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Abstract
Elves seldom give unguarded advice, for

advice is a dangerous gift, even from the

wise to the wise.

(Gildor, LotR)

Machine learning (ML) systems are about to expand into every area of our lives,
including human healthcare. Thus, ensuring their trustworthiness represents one of
today’s most pressuring scientific and societal issues.
In this thesis, we present novel ML-based decision support tools for one of the most
complex, prevalent, and mortal diseases of our time: cancer. In particular, we fo-
cus on developing trustworthy ML methods for predicting anti-cancer drug responses
from personalized multi-omics data. Our methods encompass strategies to minimize
the effect of data-related issues such as class or regression imbalance, to achieve the
interpretability of the models, and to increase the reliability of the models.
Our first approach, MERIDA, is dedicated to interpretability: it delivers Boolean
rules as output and considers a priori pharmacogenomic knowledge to a previously
unconsidered extent. With SAURON-RF, we devised a simultaneous classification
and regression method that improved the statistical performance for the under-
represented yet essential group of drug-sensitive samples, whose performance has
mainly been neglected in the scientific literature. Its successor, reliable SAURON-
RF, provides a conformal prediction framework, which, for the first time, ensures
the reliability of classification and regression with certainty guarantees. Moreover,
we propose a novel drug sensitivity measure that addresses the shortcomings of the
commonly used measures.

iii





Kurzfassung
Elves seldom give unguarded advice, for

advice is a dangerous gift, even from the

wise to the wise.

(Gildor, LotR)

Systeme des machinellen Lernens (ML) sind im Begriff, in jeden Bereich un-
seres Lebens vorzudringen, inklusive der Gesundheitsversorgung. Dementsprechend
ist die Sicherstellung der Vertrauenswürdigkeit dieser Systeme eine der größten
gesellschaftlichen und wissenschaftlichen Herausforderungen unserer Zeit.
Diese Dissertation stellt ML-basierte Entscheidungshilfeverfahren für eine der kom-
plexesten und am weitesten verbreiteten Krankheiten der Welt vor: Krebs. Der
Fokus dieser Arbeit liegt hierbei auf der Entwicklung vertrauenswürdiger Vorher-
sagemodelle für die Wirksamkeit von Krebsmedikamenten basierend auf personal-
isierten omics Daten. Unsere Methoden umfassen dabei Strategien zur Minimierung
der Auswirkungen datenbezogener Probleme wie Klassen- oder Regressionsungle-
ichgewicht, zur Verbesserung der Interpretierbarkeit der Modelle und zur Erhöhung
der Zuverlässigkeit der Modelle.
Unser erster Ansatz, MERIDA, ist der Interpretierbarkeit gewidmet: MERIDA
liefert logische Regeln als Ausgabe und berücksichtigt dabei pharmakogenomis-
ches a priori Wissen in bisher nicht betrachtetem Umfang. Mit unserem zweiten
Ansatz, SAURON-RF, haben wir eine Methode zur gleichzeitigen Regression und
Klassifikation entwickelt. SAURON-RF verbessert die Vorhersagekraft für die un-
terrepräsentierten Gruppe der arzneimittelempfindlichen Proben, deren Wichtigkeit
bisher vernachlässigt wurde. Der Nachfolger, reliable SAURON-RF, nutzt konforme
Vorhersage (conformal prediction), um die Verlässlichkeit der Klassifikation und Re-
gression zu gewährleisten. Darüber hinaus schlagen wir ein neuartiges Maß für die
Medikamentenwirksamkeit vor, welches Unzulänglichkeiten üblicher Maße behebt.
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1 Introduction
Speak, friend, and enter.

(Inscription at the door of Moria, LotR)

We live in an era where data is interminably collected everywhere and subsequently
digitally stored to become analyzed and leveraged. To name but a few examples:
companies gather information on the purchase behavior of their customers to tailor
the supply to the demand, social media platforms collect personal information to
increase marketing revenues or even influence public opinion, and medical research
centers and institutes monitor their patients to help improve prevention, diagnosis,
prognosis, and treatment of diseases. The ever-increasing amount and complexity
of the data that almost entirely prohibit a manual extraction of relevant patterns
gave rise to automated and intelligent computerized data processing and helped
artificial intelligence (AI) and especially the machine learning (ML) realm of AI
to prosper vividly. Designing ML algorithms that fit the data but also satisfy the
constraints imposed by (end) users such as usability, security, privacy, reliability,
and interpretability can be extremely challenging. In the healthcare domain, where
sensible personal data is used to guide decisions, and the data itself is already prone
to technical and biological variance, none of the mentioned requirements should be
neglected - posing an even greater challenge to developing ML-based systems.
In medicine, the ultimate goal has always been to deliver tailored decisions for all
disease-related circumstances an individual may face [1]. Since the advent of techni-
cally advanced molecular measuring techniques, terms such as personalized medicine,
precision medicine, and individualized medicine have been coined to describe this
customization of healthcare based on molecular measurements of patients [1, 2] (cf.
Figure 1.1). The hope is that a computer-aided integrative analysis of these fine-
grained measurements - with AI - can shed light on the cellular machinery at a
previously unprecedented scale. Subsequently, the gained insights and developed
models should then help to guide therapy of complex diseases such as cancer [3, 4].
Cancer is a very heterogeneous class of diseases generally associated with abnormal
cell growth and the ability to eventually spread to distant sites from the original
tissue [5]. All across the world, it has a high incidence and mortality [6]. According
to the German federal statistical office, it was the second most common cause of
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1 Introduction

Patients

Molecular 
profiles

(mutations, 
CNAs, RNA 

expression, ...)

Treatment 
options

1. Profiling

2. Assignment

Efficiency

Figure 1.1: Personalized medicine. This figure exemplifies the concept of personalized
medicine for our application case. Based on the interpretation of patient-specific molecular
data, the optimal drug treatment can be determined. Created with BioRender.com.

death in Germany in 2022, accounting for 21.7% of deaths [7]. One reason for its
high incidence and mortality is that it is a cellular disease (almost) everyone can
develop without the need for exposure to specific triggers. Rather, it is the result of
a multi-step evolutionary process from the complex interplay between the molecular
condition of a person and the environmental exposure and lifestyle of that person. In
particular, there is a risk accumulation with increasing age which is thought to occur
because of an accumulation of damage on the hereditary material [8]. Due to the
complexity of the highly individualized formation process, there exists a heterogene-
ity not only between patients and tumours but also within the same tumour. This
heterogeneity, in turn, represents a major obstacle to treatment success: anti-cancer
drug response is strongly affected by tumour characteristics, and the emergence of
drug resistance is promoted [9, 10]. Another impediment to successful anti-cancer
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drug treatment is the limited possibility of testing the plethora of available drugs in
clinical settings. Currently, it is neither ethically justifiable nor technically feasible
to explore the space of all possible treatments exhaustively in real clinical applica-
tions.
As a remedy, biomedical research employs model systems such as patient-derived
xenografts or cancer cell line panels to study cancer biology and cancer treatment
since these can be more easily exposed to the existing multitude of (anti-cancer)
drugs [11, 12] (cf. Figure 1.2). Over the last decades, especially cancer cell line pan-
els have been proven to be a useful tool in that respect and therefore enjoy immense
popularity for drug-screening community efforts [13, 14, 15, 16, 17]. The Genomics
of Drug Sensitivity in Cancer (GDSC) is one of the largest publicly available cancer
cell line panels. It contains drug screening data of hundreds of compounds applied
to approximately 1000 cancer cell lines. In addition to this pharmacogenomic infor-
mation, the GDSC database comprises molecular measurements on a diverse set of
omics data for these cell lines, e.g., in terms of (epi)genomics and transcriptomics
[14, 18, 19, 20, 15].
A diverse set of ML methods has already been applied to such panels to help elu-
cidate the relationship between molecular cancer biology and anti-cancer treatment
efficacy [11, 12]. The ultimate goal of these tools is to assist medical decision-making
by matching patients to optimal drug treatments (cf. Figure 1.1). Here, the pri-
mary task is performing drug prioritization, i.e., identifying effective drugs and drug
combinations and subsequently ranking these by their efficiency. In Figure 1.2, we
schematically depict how drug prioritization can be performed using the current
body of knowledge. The design of appropriate ML approaches has proven to be
a great challenge, being affected by (the quality of) the data itself, the choice of
methodology, and the requirements imposed by the exceptional diligence this task
requests.
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1 Introduction

Figure 1.2: An overview of machine learning with anti-cancer drug response
cell line data. In this figure, we depict a typical workflow for machine learning-based
anti-cancer drug response prediction. Cancer cell line data from extensive high-throughput
experiments typically represents the main data source. In addition, there exists a plethora
of curated databases encompassing information of prior pharmaceutical, biological, and
medical knowledge, including for example chemical structures of molecules, biological path-
ways, and known oncogenicity of genes. These heterogenous data sources need to be unified
to become eligible to ML. After training, the resulting ML model has to be evaluated, e.g.,
in terms of interpretability and performance. Created with BioRender.com.
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1.1 Scope of the thesis

This thesis addresses numerous unresolved issues for trustworthy anti-cancer drug
response prediction using ML. We formulate anti-cancer drug response prediction as
a supervised ML problem and develop methods to answer the following questions:
(1) how to classify samples as sensitive or resistant (classification task), (2) how
to predict continuous sensitivity values for samples (regression task), and finally (3)
how to prioritize drugs for a given sample (prioritization task). While the former two
tasks are frequently addressed in the corresponding literature, the latter has rarely
been investigated despite being the ultimate goal. Our novel methods encompass
strategies to minimize the effect of data-related issues such as high dimensionality
and class or regression imbalance, to achieve the interpretability of the models, and
to increase the reliability of the models.
Our first contribution is a review of the ML landscape for drug sensitivity prediction
in cancer. Our categorization of the existing approaches into the four major ML
branches, i.e., supervised, unsupervised, semi-supervised, and reinforcement learn-
ing, reveals that almost all approaches fall within the supervised ML realm and
either focus on classification or regression but not both simultaneously. Moreover,
we describe properties that render ML methods trustworthy, particularly reliability
and interpretability. We find that reliability has hardly been considered for model
development. On the other hand, the concept of interpretability is relatively often
implemented. Yet, the concept is rather used intuitively, employing different con-
notations without a clear definition. Therefore, we unify the prevalent connotations
and propose a taxonomy of interpretability that may serve as a sound and easily
extendable basis for future research.
Our second contribution is the MEthod for Rule Identification in multi-omics DAta
(MERIDA) [21]. It is a classification approach for distinguishing between sensitivity
and resistance to a particular drug based on an integer linear programming (ILP)
formulation for synthesizing well-interpretable Boolean rules. With MERIDA, we de-
veloped a method focusing on interpretability, which is already reflected in Boolean
rules as model output choice. To increase the interpretability of our rules, we inte-
grate a priori pharmacogenomic knowledge in the form of drug response biomarkers
into our models, which has not been described in the literature before. For selecting
and creating features of known relevance to cancer, we leverage information from
multiple cancer-related databases: IntOGen [22], COSMIC [23], CIViC [24], On-
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coKB [25], and CGI [26]. By using this feature selection and annotation strategy,
we could incorporate pharmacogenomic a priori knowledge in our models while si-
multaneously reducing the dimensionality of the problem. A relatively well-known
problem with drug response data is that the high specificity of targeted anti-cancer
agents induces a skewed distribution of drug response values in favour of the re-
sistant cell lines. This leads to a class imbalance when the inherently continuous
drug response values are binarized. However, since the sensitive cell lines repre-
sent cases of treatment success, their correct identification is crucial for personalized
oncology. MERIDA counteracts this class imbalance by employing sample-specific
weights similar to those introduced by Knijnenburg et al. [27].
While class imbalance is usually addressed in the (drug sensitivity prediction) liter-
ature, the related problem for regression, i.e., regression imbalance, has rarely been
investigated [28]. Here, ML methods reasonably estimate the mean of the distribu-
tion. In contrast, the upper or lower end of the distribution is systematically over-
or underestimated while yet being of utmost importance. In our third contribution,
we demonstrate for the first time that regression imbalance is a central issue for a
variety of ML methods, i.e., elastic net, boosting trees, neural networks, and random
forests, when predicting anti-cancer drug responses [29]. These methods systemat-
ically underestimate the response of the highly drug-sensitive cell lines. As a rem-
edy for this problem, we then propose SimultAneoUs Regression and classificatiON
Random Forests (SAURON-RF). Unlike all competitor methods that either per-
form regression or classification, we suggest combining both tasks in SAURON-RF.
By jointly performing regression and classification in a random forest regressor, we
could also employ standard strategies against class imbalance, e.g., sample weights
or upsampling, to mitigate regression imbalance. Furthermore, our results clearly
indicate that our joint regression and classification outperforms mere regression,
mere classification, and sequential execution of classification followed by regression.
Contrary to MERIDA, SAURON-RF does not rely on literature-driven feature selec-
tion and creation but on selecting features statistically associated with the response.
More specifically, we used a heuristic based on the maximum-relevance-minimum-
redundancy principle, which aims to maximize the mutual information between the
features and the response (maximum relevance) while minimizing the mutual in-
formation between the features (minimum redundancy) [30]. However, we did not
exhaustively compare different dimensionality reduction strategies to justify our re-
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spective choices. Likewise, most authors from the drug sensitivity prediction domain
do not report how they opted for a specific dimensionality reduction technique, i.e.,
whether they tested other dimensionality reduction techniques and how these per-
formed in comparison. However, given the variety of DR techniques and ML models
they could be combined with, the correct choice might strongly influence the ML
model performance. In our fourth contribution, we dedicated ourselves to gauging
the influence of dimensionality reduction techniques on the performance of various
ML methods. More specifically, we present a comprehensive benchmarking study of
nine DR techniques combined with four ML methods, ultimately resulting in more
than 16,000,000 investigated models. In total, our analyses reveal that relatively
simple methods outperform more complex ones given the current data situation for
drug sensitivity prediction: the elastic net (combined with PCA) outperformed all
other methods, closely followed by random forests. Neural networks were not com-
petitive, neither as an ML method nor as a DR technique.
While performance measures such as mean-squared error or accuracy are commonly
evaluated to assess the quality of a model for drug response prediction, other cri-
teria such as reliability have mainly been neglected. More specifically, only one
regression approach (Fang et al.[31]) and no classification approach took reliabil-
ity into account. In our fifth and last contribution, we designed and implemented a
framework for reliable drug response classification and regression, guaranteeing user-
specified certainty levels through conformal prediction (CP). To render SAURON-
RF amenable to this approach, we developed a novel quantile regression algorithm
adapted from Meinshausen et al. [32]. We could demonstrate that CP not only
delivers the desired certainty guarantees but also successfully diminishes false pre-
dictions while retaining correct ones - ultimately improving model performance. Up
to this point, we used the established IC50 value as a drug response measure. It
is comparable across cell lines but not across drugs, preventing a straightforward
drug prioritization for one cell line. Since this is a common issue among such mea-
sures, we propose a novel measure with across-drug comparability, the CMax viabil-
ity. By combining this measure with our joint classification and regression method
SAURON-RF and CP, we can ultimately perform reliable drug prioritization, which
has not been described in the literature before.
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1.2 Structure of the thesis

This thesis consists of 9 chapters. The remaining 8 chapters are structured as de-
scribed in the following: In Chapter 2, we take a detailed look at cancer biology
and treatment. We use a rough overview of the molecular biology of cells as a basis
to subsequently illuminate alterations implicated in cancer development and pro-
gression. Afterwards, we discuss the effect of such alterations on treatment options,
mainly targeted anti-cancer drugs. Chapter 3 contains information on the model sys-
tems typically used to quantify anti-cancer drug responses in biomedical research.
We particularly focus on cell line-based systems since cancer cell line panels enjoyed
the greatest popularity for large-scale drug screening. These data sets represent the
basis for ML model training, as we conducted throughout this thesis. In Chapter
4, we describe the fundamental concepts of machine learning. We included basic
definitions and descriptions of the four main machine learning branches, i.e. super-
vised, unsupervised, semi-supervised, and reinforcement learning, since all of them
have already been applied to drug response prediction. However, we particularly
thoroughly discuss supervised learning because all of our proposed anti-cancer drug
sensitivity prediction approaches belong to this branch. In addition, we repeatedly
contextualized the existing body of drug sensitivity methods in this chapter, which
also constitutes our first contribution to this research area (Trust me if you can:
a survey on reliability and interpretability of machine learning approaches for drug
sensitivity prediction in cancer, Lenhof et al. 2024, under submission). Chapters
5-8 are dedicated to our four major contributions to anti-cancer drug sensitivity
prediction:

• Chapter 5 - MERIDA (MERIDA: a novel Boolean logic-based integer linear
program for personalized cancer therapy, Lenhof et al. 2021 [21]): a classifier
with focus on interpretability, including a feature selection and annotation
strategy using a priori drug response biomarkers

• Chapter 6 - SAURON-RF (Simultaneous regression and classification for drug
sensitivity prediction using an advanced random forest method, Lenhof et
al. 2022 [29]): a simultaneous classification and regression method that tackles
class and regression imbalance
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• Chapter 7 - Benchmarking (A comprehensive benchmarking of machine learn-
ing algorithms and dimensionality reduction methods for drug sensitivity pre-
diction, Eckhart et al. , under submission): Benchmarking of 9 DR techniques
combined with 4 ML techniques

• Chapter 8 - Reliable SAURON-RF (Reliable anti-cancer drug sensitivity pre-
diction and prioritization, Lenhof and Eckhart et al. 2023 [33], under submis-
sion): extension of SAURON-RF with CP, introduction of the CMax viability,
implementation of a reliable drug prioritization pipeline

In each chapter, we present the related literature and pinpoint how our approach
contributes to solving particular problems: In Chapter 9, we confront the weaknesses
of our approaches and discuss which research directions seem to be most promising
to finally implement the dream of personalized anti-cancer drug treatment.

Authors’ contributions
Many parts of this thesis represent the result of joint research efforts that
have already been published in peer-reviewed journals. In the following
chapters, these boxes are used to indicate my contributions to the respective
works.
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2 The biology of cancer and cancer
treatment

During the 19th and 20th centuries scientists began to elucidate that what we per-
ceive of an organism, i.e., its phenotype, is a direct result of the heritable entity,
i.e., the genome, of that organism. Yet, since this discovery, the study of the rela-
tionship between phenotype and genotype has been the main focus of research in
biology, partly because this research is expected to explain and subsequently cure
many if not all diseases [34]. Indeed, if we, for example, consider the human organ-
ism alone, there are already more than 7,000 phenotypes (traits and diseases) that
can be (partially) explained by genotypic variation and more than 4,000 genes with
a variation directly linked to a phenotype [35]. The spectrum of disease complexity
ranges from monogenic diseases, i.e., diseases caused by mutations in a single gene
[36], to extremely complex diseases involving aberrations in multiple genomic regions
as well as environmental and lifestyle factors. The clear causal relationship between
genotype and phenotype in monogenic diseases enormously facilitates research in
that area. However, monogenic diseases are rare [37], and common diseases such
as asthma, diabetes, or cancer are often the result of a complex interplay of less
penetrant, more common sequence variants with the environment and lifestyle of a
person. Typically, these more common variants also exhibit their effects later in life
(late onset) than rare variants (early onset), which further complicates research [34].
Cancer is the prototypical example of a common disease: it is a leading cause of
death all over the world [38, 6] with a median age of 66 years at diagnosis according
to the NCI [39]. In Germany in 2022, cancer accounted for 21.7% of deaths, mak-
ing it the second most common cause of death (cf. Figure 2.1). While there exist
genetic variants that clearly predispose to cancer development [41], the onset of tu-
morigenesis of most cancer types involves multiple genetic factors as well as lifestyle
choices and environmental conditions. To date, more than 500 genes are known to
be implicated in its development [42]. Given its high prevalence, it is not surprising
that there is a high public interest in driving cancer research forward. However, its
complexity still poses a great challenge to comprehensive treatment success.
In this chapter, we illuminate the biology of cancer and cancer treatment. To this
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Malignant neoplasms (cancer)
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Figure 2.1: Causes of death, Germany 2022. On the left, the pie chart depicts the
causes of death in Germany in 2022 according to the German Federal Statistical Office
(destatis) [7]. On the right, the bar chart shows the breakdown of cancer deaths by cancer
type as reported by the German Federal Statistical office [40].

end, we start with a brief description of the molecular biology of cells, followed by
(epi)genetic aberrations that can deregulate cellular processes. Then, we discuss
cancer, including its development, characteristics, and common treatment options.
Note that the information presented in the following sections largely stems from the
book The biology of cancer by Robert Weinberg [43], two landmark papers by Dou-
glas Hanahan and Robert Weinberg on the biology of cancer [44, 45], and a novel
paper of this series by Douglas Hanahan alone [46].

Authors’ contributions
The structure and content of my bachelor’s and master’s thesis are partly
used as basis of this chapter, while the text has been completely rewritten.
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2.1 The flow of genetic information in human cells

Figure 2.2: Flow of genetic information. In this figure, we visualize the flow of genetic
information, a simplified scheme typically used to describe the expression of phenotypes
from the genetic material of a cell. In the boxes on the right, we give examples of measurable
alterations that serve as indicators of disturbed information signaling in a cell. Created
with BioRender.com.

2.1 The flow of genetic information in human cells

It is estimated that the human body consists of approximately 3 × 1013 cells [47],
distributed across more than 400 documented cell types [48] that fulfil distinct func-
tions. All of these cells are descendants of the same fertilized egg, the zygote, which
has the ability to differentiate into any cell type of the human body [49]. The de-
velopment of the different cells from the zygote is a highly regulated process whose
description is out of the scope of this thesis. However, we will briefly describe the
main cellular processes that enable the expression of different phenotypes from the
same genetic material.
The genome level: Traditionally, the flow of genetic information (cf. Figure 2.2)
is used as a simplified scheme to explain how the hereditary information is trans-
lated to molecules that fulfil the variety of functions within a cell. In this scheme,
the entirety of desoxyribonucleic acid (DNA) in the nucleus, i.e., the genome, is the
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2 The biology of cancer and cancer treatment

information carrier. It is a double-stranded helix with each helix strand consisting
of a sequence of nucleotides, each comprising a phosphate group, the 5-carbon sugar
desoxyribose and one of the following four nucleobases: guanine, adenine, cytosine,
and thymine. Roughly speaking, the order of the nucleobases determines, which
functional products can be synthesized [50]. Moreover, some sequences, such as
promoters, silencers, or enhancers, are involved in the regulation of the synthesis.
Apart from that, sequences with no known or potentially no function exist. Note
that mitochondria also contain hereditary information in form of DNA. However,
the organization and inheritance mechanism of the mitochondrial genome deviate
from that of the nuclear genome.
The epigenome level: The DNA is densely packed in the nucleus in a form known
as chromatin. The chromatin is formed by the interaction of the DNA with DNA-
binding proteins, mainly histones. The basic unit of packed DNA is the nucleosome,
a histone octameter with 146 base pairs of DNA wrapped around it [51]. Linker
histones bind to the nucleosomes and allow for the building of the next higher level
of ordering, the chromatosomes [52] that then spatially organize further involving
other proteins, e.g., Polycomb, and non-coding RNAs [53]. The regulation of this
packing, whose study is known as epigenetics [53], governs the (in)activation of ge-
nomic regions by changing sequence accessibility. Known regulatory mechanisms
include but are not limited to the methylation of the DNA itself, chromatin remod-
elling, covalent histone modifications, or incorporation of histone variants [51].
The transcriptome level: If the DNA at a specific genomic region encoding for
a functional product is accessible, the transcription of the DNA can be initiated.
The transcription is catalyzed by an enzyme called RNA polymerase, that usually
requires the interaction with regulatory elements, e.g., transcription factors, to start
synthesis. Thereby, transcription factors can either act as activators or repressors of
transcription. Besides the direct stabilization or blocking of the interaction between
the RNA polymerase and the DNA, transcription factors can regulate transcription
using a variety of other mechanisms. The product of transcription is some form of
ribonucleic acid (RNA) that is complementary to the originating DNA sequence.
RNA is a single-stranded sequence of nucleotides, each consisting of a phosphate
group, the 5-carbon sugar ribose, and one of the following four bases: guanine,
adenine, cytosine, and uracil (as the equivalent to thymine in DNA). A plethora
of different RNAs can be distinguished. Yet, the most fundamental distinction is
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the one between (precursor) messenger RNA ((pre-)mRNA) and non-coding RNA
types. The precursor mRNA undergoes post-transcriptional processing before the
mature mRNA is transported to the ribosomes in the cytoplasm, where it becomes
translated into proteins. Most prominently, in a process termed alternative splicing,
specific segments of the sequence can be left or removed from the premature mRNA,
enabling the generation of a set of mature mRNAs from the pre-mRNA, ultimately
not only increasing mRNA diversity but also protein diversity [54]. Non-coding
RNA types may also be processed; however, they are not translated to proteins and
exhibit a variety of other functions in the cell.
The proteome level: Once the mRNA reaches the ribosomes in the cytoplasm, the
mRNA can serve as the blueprint for synthesising a protein. More specifically, three
consecutive nucleobases, called codon in this context, are translated to one amino
acid by a ribosome. Each codon specifically encodes one amino acid. However,
the code is degenerate: several codons can encode the same amino acid [55]. The
translation starts at a specific codon, the so-called start codon. Then, the ribosome
traverses the RNA-sequence codon by codon until a codon indicating termination,
a so-called stop codon, is encountered. Note that one nucleobase is only part of one
codon, i.e., codons are non-overlapping. The resulting amino acid sequence is called
the primary structure. Interactions between the amino acids then cause the protein
to fold into an energetically favourable 3D conformation, a process that helper pro-
teins, the chaperones, can also assist. Proteins can be subject to post-translational
modifications, i.e., they can be covalently modified after translation. These modifi-
cations can significantly alter the protein structure, function, or activity [56]. Some
proteins need to further assemble into protein complexes to fulfil their function.

2.2 Aberrations

Within the human population, a significant amount of natural variation occurs,
leading to the manifestation of unique molecular processes and, subsequently, phe-
notypic traits per individual [57]. The majority of common genetic variations is
supposedly not severely affecting the correct functioning of the human organism.
However, many of them can still contribute to disease progression, especially in
complex diseases [58]. While common genetic variants already reside in the popu-
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lation for some generations, they arise through the same mechanisms that can lead
to cancer. In the following, we briefly discuss these mechanisms and differentiate
between different classes of alterations. Most information in this section is based on
(chapter nine of) a genetics book by Jochen Graw [59].
An alteration of the nucleic acid sequence in the genome of an organism is called
mutation [59]. The classification system of mutations is complex. In the following,
we discuss classifications based on cause, hereditability, size, and effect.
Cause: In terms of cause, we can distinguish between spontaneous mutations and
induced mutations. Spontaneous mutations encompass molecular decay, errors in-
troduced during DNA repair and errors introduced during DNA replication, e.g.,
error-prone translesion synthesis [60]. Some regions in the genome are particularly
susceptible to mutations during DNA repair or replication, e.g., repetitive sequences
such as expanding triplets or multiplets [61]. In contrast to these spontaneous muta-
tions, induced mutations have an exogenous source from the environment. Examples
of such sources are radiation, chemicals, viruses and bacteria.
Hereditability: The human organism consists of two fundamental cell types: germ
cells (ova and spermatozoa) and somatic cells (cells of any other cell type of the hu-
man body). Depending on whether a mutation affects a germ or a somatic cell,
different consequences regarding hereditability can be observed. Germline muta-
tions can be passed on to the offspring. In that case, all somatic cells of the newly
developed organism will carry this alteration. Mutations occurring in the soma can
solely be passed on to descendants of the mutated cell of the respective organism.
Size: Yet another means to classify mutations is the size of the affected genomic
region. Typically, the scientific literature distinguishes between rather small-scale
changes (e.g., substitutions, insertions, or deletions of a few nucleotides) and large-
scale changes affecting large parts of the genome. Large-scale alterations are usually
further subdivided into structural alterations, i.e., rearrangements (inversions and
translocations) and copy number alterations (deletions or duplications) of genomic
regions, and numerical alterations, i.e., changes in the number of chromosomes (fu-
sions, fissions, aneuploidies, and polyploidies).
Effect: None of the previous classifications says anything about the effect of a par-
ticular mutation on a functional product or the phenotype of an affected cell more
generally. In principle, one distinguishes between mutations occurring in coding
regions, i.e., mutations potentially capable of directly affecting functional products,
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and mutations occurring in non-coding regions, i.e., mutations potentially capable
of indirectly affecting functional products. Small-scale mutations in protein-coding
regions (substitutions, insertions, and deletions of one or a few nucleotides) are fur-
ther sub-classified into synonymous and non-synonymous mutations. Synonymous
mutations (usually substitutions) are called silent since - due to the degeneracy of
the genetic code - the resulting codon encodes for the same amino acid as the origi-
nal codon. However, such mutations can still influence the phenotype of a cell, e.g.,
by altering the folding of the mRNA and, hence, the translation efficiency. Non-
synonymous mutations can have various effects on the resulting protein. Usually,
we can differentiate between mutations resulting in amino acid exchange(s), protein
truncation, protein elongation, or no protein product. An additional effect-based
classification on the protein level is the partition into gain-of-function and loss-of-
function mutations. Gain-of-function mutations improve the activity/function of
the protein or introduce a novel function, while loss-of-function mutations decrease
the protein activity.
Historically, the term mutation was coined to describe changes in the genome of an
organism. Since research has shown that epigenetic modifications can also be passed
on from a cell to its descendants (from mother to daughter cells and from genera-
tion to generation) [62], the term mutation is occasionally expanded to epigenetic
marks as well. Indeed, mutations of the epigenome, e.g., histone modifications or
methylation pattern changes, affect cells similarly to genomic mutations and, thus,
often contribute to the onset of complex diseases, including cancer [63]. For exam-
ple, the hypermethylation of cytosines in a CpG context in promoters is linked to
gene inactivation [64]. Similarly, alterations in histone modifications can regulate
the accessibility of DNA, potentially activating or repressing the transcription of a
gene [65].

2.3 Cancer

Cancer is a class of diseases characterized by abnormal and uncontrolled growth
of cells. The cancerous cells are descendants of healthy cells that transformed into
these malignant ones by a complex multi-step process involving multiple cell gen-
erations affected by various (epi)genomic aberrations. In the following, we outline
this process and describe the commonalities shared between different cancer types
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using the conceptual framework by Hanahan and Weinberg, known as the hallmarks
of cancer, as basis.

2.3.1 Cancer development

The (epi)genome of somatic cells is repeatedly subject to spontaneous or induced
alterations during the lifespan of an organism (cf. Section 2.2). To prevent such mu-
tations from manifesting, there exist cellular damage detection and repair systems
that maintain the integrity and stability of cells. However, not all alterations can
be eliminated successfully and, thus, become part of the (epi)genome. While most
alterations will have little effect, and some may even be disadvantageous for cell
survival, others may possess favourable traits under specific circumstances. These
cells may still be detected and eliminated by the immune system. Nevertheless, the
more time passes, the more likely such mutations occur, manifest, and accumulate,
ultimately significantly altering cell function. This continuous process of natural
selection acting upon mutations in somatic cells can be interpreted as a Darwinian-
like evolution within a population. Progressively, cell populations with abnormal
growth potential, i.e., cancer, can develop. The process of cancer formation is called
carcinogenesis and depends not only on the genetic predisposition but also on envi-
ronmental exposure and lifestyle choices of a person. Carcinogenesis usually requires
time, and thus, it is not surprising that cancer risk increases with age. The exact
period until a specific individual develops a particular type of cancer is barely fore-
seeable. However, some germline mutations may expedite this process since they
clearly predispose to cancer development [66].
As already indicated in the previous section, not all mutations actively contribute
to carcinogenesis. Therefore, one distinguishes between driver mutations, which
promote(d) tumour growth and have been positively selected during the tumour
evolution, and passenger mutations, which are considered happenstances [67, 68].
Genes that can be affected by driver mutations are known as cancer (or driver)
genes [67, 68]. Typically, we can classify them as belonging to one of the following
two non-exclusive categories: (proto-)oncogenes and tumour suppressor genes [69].
Proto-oncogenes are genes positively involved in cell growth. If their activity or
expression is increased through some mutational event (usually a gain-of-function
mutation), they become oncogenes that help cells to grow and divide disproportion-
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ally [69]. On the contrary, tumour suppressor genes are mostly negative regulators
of cell growth. Upon deactivation (e.g., via loss-of-function mutations), they lose
the capability to serve as gatekeepers of cell growth. While mutations in proto-
oncogenes are usually dominantly acting, i.e., only one mutated allele is sufficient
to exhibit a malfunctioning phenotype, mutations in tumour suppressor genes are
typically recessively acting, i.e., both alleles of the corresponding gene have to be
deactivated [67].

2.3.2 Cancer classification and common characteristics

Clearly, the cell type of origin and its associated cell type-dependent gene expres-
sion play a role during carcinogenesis and also in the final appearance of the tumour.
This observation gave rise to a cancer classification system based on cell type: on
the highest level, carcinomas (epithelial origin), sarcomas (mesenchymal origin),
leukaemia and lymphomas (haematopoietic and lymphoid origin), and neuroecto-
dermal tumours (originating from central and peripheral nervous system cells) can
be distinguished. Other classification systems based on the primary site of origin
or stage of the tumour also exist. However, samples from different classes are often
jointly analyzed in a pan-cancer manner because of molecular and phenotypical sim-
ilarities across different cancer types. Indeed, the same molecular mechanisms are
implicated in carcinogenesis and therapy responsiveness of tumours from different
classes.
In the hallmarks of cancer, Hanahan and Weinberg unify these cellular commonali-
ties between different cancer types [44, 45, 46]. Currently, their framework consists
of the ten most protruding and common characteristics of cancer cells, which they
refer to as hallmarks, as well as four so-called enabling mechanisms that allow for the
acquisition of the hallmark capabilities. In Table 2.1, we summarize the hallmarks of
cancer as envisioned by Hanahan in the latest version [46]. Briefly, incipient cancer
cells manage to escape the state of tissue homeostasis, i.e., the persistently main-
tained balance between cell regeneration and death in healthy tissue. To this end,
they need to evade inter- and intracellular growth-suppressing and death-inducing
signals, establish elevated levels of proliferative signalling, and ensure a stable nutri-
ent supply. Moreover, they need to obtain the capability to cross tissue boundaries,
ultimately allowing the cancer to spread to distant sites of the human body. The
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Table 2.1: The latest version of the hallmarks of cancer. In this table, we provide
an overview of the hallmarks of cancer as envisioned by Hanahan in the latest conceptual
update. We provide the name of the property (column 1), information on whether it is a
hallmark or enabling mechanism (column 2), information on whether it is an established
or emerging property (column 3), and an explanation or example of the property (column
4).
Property name Type Established Explanation/example

Resisting cell death hallmark 3 avoidance or inactivation of apoptotic programs, e.g., by
inactivation of DNA damage sensors that trigger apop-
tosis

Deregulating cellu-
lar metabolism

hallmark 3 adapting the energy metabolism to the needs of the can-
cerous tissue

Sustaining prolifer-
ative signaling

hallmark 3 disturbance of homeostasis, e.g., by increasing produc-
tion of growth factors or growth factor receptors

Evading growth
suppressors

hallmark 3 deactivation of tumour suppressors, e.g., RB or TP53

Avoiding immune
destruction

hallmark 3 circumventing detection and subsequent destruction by
immune cells

Enabling replica-
tive immortality

hallmark 3 counteracting telomere erosion, e.g., by reactivation of
telomerases adding suitable segments to the end of chro-
mosomes

Activating invasion
and metastasis

hallmark 3 obtaining the ability to invade other tissues and distant
sites, e.g., by disturbing the attachment to other cells
and the extracellular matrix

Inducing or access-
ing vasculature

hallmark 3 ensuring nutrient supply and possibilities for waste
disposal by the sprouting of new blood vessels, e.g.
by deregulation of vascular endothelial growth factor
(VEGF) signaling

Senescent cells hallmark 7 the role of senescent cells is only partly understood,
senescence-associated secretory phenotype (SASP) is,
however, pro-inflammatory

Unlocking pheno-
typic plasticity

hallmark 7 evading or reverting terminal differentiation by dediffer-
entiation, blocked differentiation, or transdifferentiation

Genome instability
and mutation

enabling mech-
anism

3 mutations that confer growth advantages can manifest in
the genome and subsequently be propagated to daughter
cells

Tumour-promoting
inflammation

enabling mech-
anism

3 infiltration of cancerous tissue with immune cells that
foster tumour growth, e.g., by supply of growth-
supporting molecules

Nonmutational
epigenetic repro-
gramming

enabling mech-
anism

7 alterations of epigenetic marks confer growth advantages

Polymorphic
microbiomes

enabling mech-
anism

7 microbial species within the tumour microenvironment
but also important host microbiomes more generally
(e.g., the gut microbiome) influence carcinogenesis

main driving forces of this malignant transformation were already discussed in the
previous section on cancer development, i.e., (epi)genomic aberrations that confer
growth advantages to cells. In the model of Hanahan and Weinberg, this corresponds
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to the two enabling mechanisms called genome instability and mutation and nonmu-
tational epigenetic reprogramming. In addition to these two mechanisms, Hanahan
and Weinberg consider inflammation an important enabling factor: immune cells
can serve as suppliers of bioactive molecules, amongst others, directly fostering cell
growth, limiting cell death, or supporting angiogenesis. Moreover, the tumour mi-
crobiome and the microbiotic state of the organism as a whole can positively or
negatively influence inflammation, genome stability, and response to therapeutic in-
terventions, rendering microbiota another enabling mechanism of carcinogenesis.

2.3.3 Drug-based anti-cancer therapy

To date, there are still three main treatment options for cancer: surgery, radiother-
apy, and systemic therapy. Which therapy or combination of therapies to choose
depends on various factors, including the localisation and stage of the cancerous
disease, as well as the patient’s general health status. While early-stage tumours
can typically be treated effectively with surgery alone, therapeutic modalities must
be administered concurrently or sequentially in many other cases [70]. In particu-
lar, if the cancer has already metastasized, delivery through the bloodstream, i.e.,
systemic therapy, is indispensable. Systemic therapy can currently be divided into
classical chemotherapy, targeted therapy and immunotherapy [10]. Each of these
three approaches follows a specific principle to eradicate cancer cells. However, the
boundaries between the different approaches are often blurred.
Chemotherapy: In the previous sections, we thoroughly discussed that cancer
cells are characterized by their abnormal ability to grow and proliferate. Classical
chemotherapeutic agents make use of this fact and disrupt the cell cycle by different
mechanisms of action [70]. Consequently, they attack all rapidly dividing cells in
the human body [70], which is often associated with relatively high toxicity.
Targeted therapy: With a growing understanding of the genetic causes of can-
cer, the development of targeted agents started: these substances were designed
to specifically target disrupted signalling cascades with pivotal roles during tu-
mour progression and maintenance, e.g., molecular pathways helping to establish
the hallmark capabilities. Consequently, these drugs should be less damaging to
healthy tissue than classical chemotherapy. Typically, the direct targets of these
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drugs are the protein products translated from oncogenes, the so-called oncopro-
teins, or signal-transducing proteins downstream of cancer driver genes [71]. While
tumour suppressor genes are not directly targetable, proteins from genes in a syn-
thetic lethality relationship with a tumour suppressor gene can also be drugged [71].
The PI3K-AKT-mTOR pathway is a prototypical example of an attractive target
pathway: it contains a variety of (proto-)oncogenes and tumour suppressor genes
mutated across a variety of cancer types [72, 73, 74]. Here, the mammalian target
of Rapamycin (mTOR), a member of the PI3K-AKT-mTOR pathway, has been a
main focus of anti-cancer drug development [75].
Immunotherapy: Immunotherapies are designed to modulate the immune re-
sponse of the patient. They include checkpoint blockade [10], adoptive T-cell therapy
using either tumour-infiltrating lymphocytes (TIL) or modified T-cells expressing
T-cell receptors (TCR) or chimeric antigen receptors (CAR) [76, 77], and cancer
vaccines [78]. While the review of all of these immunological therapeutic strategies
is out of the scope of this thesis, we would like to mention that monoclonal anti-
bodies used as checkpoint blockade inhibitors (directed against CTLA-4 , PD-1, or
PD-L1) can be regarded as targeted agents as well.
Independent of the chosen systemic treatment strategy, the administration of a sin-
gle drug (monotherapy) is often not sufficient to successfully treat cancer: even if
the tumour cells responded sensitively to initial treatment, intra-tumour heterogene-
ity could allow for rapid adoption to selective pressure induced by the drug, finally
leading to drug resistance. Consequently, drug combination strategies are developed
as countermeasures [10]. Here, the rationale is to exploit several non-overlapping,
possibly complementary mechanisms of action to avoid escape from therapeutic
success. Still, the same mechanisms that lead to the failure of single agents also
occur for combination strategies. Briefly summarized, the complexity of the disease
caused by the extremely individual interplay of the (epi)genomic condition of the
affected human, as well as lifestyle choices and environmental influences, leads to a
gap in knowledge about the disease. Cancer biology and the biology of anti-cancer
treatment efficacy are far from being fully elucidated. To complete our knowledge,
model systems, e.g., cancer cell lines, may be employed since they can more easily
be exposed to the multitude of already existing anti-cancer drugs as well as drug
candidates.
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Often, it is nearly impossible to study human diseases in human beings, e.g., because
of ethical concerns regarding unknown effects of new treatments or because of ex-
tremely long putative observation periods. Therefore, biomedical research typically
relies on model systems such as Caenorhabditis elegans, Drosophila melanogaster,
Mus musculus, or cell cultures instead [79]. While each model system has a specific
set of (dis)advantages - rendering it particularly suitable for particular use cases
- all share several favourable properties compared to humans. These systems are
relatively easy to establish and maintain in the laboratory, they replicate fast while
exhibiting a high pheno- and genotypic stability, their cultivation cost is low, and
significantly fewer ethical concerns arise during their use.
For cancer research and especially anti-cancer drug screening, 2D cell cultures de-
rived from tumours and, more recently, patient-derived xenografts (PDX), i.e., im-
munodeficient mice engrafted with cancer cells from tumours, were intensively in-
vestigated [80, 79, 81]. However, neither 2D cell cultures nor PDX are able to
represent the physiopathology of human tissue and the tumour microenvironment.
Consequently, they at least partially fail to mimic in vivo anti-cancer drug responses
[82, 80]. Therefore, 3D cell cultures, e.g., in the form of patient-derived organoids
(PDO), were developed over the past few years [80, 83].
However, most publicly available anti-cancer drug screening databases are still based
on 2D cell cultures (cf. Table 3.1 for an overview of datasets in the public domain).
We are unaware of a single database with large-scale organoid data and only one
with PDX data, i.e., NIBR-PDXE [84]. Yet, NIBR-PDXE is still comparatively
small compared to 2D cell line panels such as the Genomics of Drug Sensitivity in
Cancer (GDSC) database. Since machine learning algorithms benefit from a large
number of samples, we decided to analyze the GDSC database, one of the largest
databases in terms of available samples and screened drugs.
In the following, we will first present the typical workflow of a drug screen on a 2D
cell culture. Then, we describe the GDSC database in more detail.
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Table 3.1: Publicly available drug screening data sets. In this table, we provide
an overview of the existing large-scale drug screening databases of the public domain. See
Section 3.1.1 for an explanation of viability assays.
Database Version Type #Samples #Compounds Assay

NCI60 [13] – , developed
1980 - today

Monotherapy
for cancer cell
lines

60 >100,000 [85] Sulforhodamine
B [86]

GDSC1 [18, 19] Release 8.4
(July 2022),
developed
2010-2015 [87]

Monotherapy
for cancer cell
lines

970 403 Resazurin or
Syto60

GDSC2 [87] Release 8.5
(October 2023),
developed 2015
- today [87]

Monotherapy
for cancer cell
lines

969 297 CellTiter-Glo

CTRPv1 [88] – (correspond-
ing paper
published 2013
[88])

Monotherapy
for cancer cell
lines

242 185 CellTiter-Glo

CTRPv2
[16, 89]

– (correspond-
ing papers pub-
lished in 2015
and 2016 [16,
89])

Monotherapy
for cancer cell
lines

860 481 CellTiter-Glo

Primary
PRISM repur-
posing data set
[90]

– (correspond-
ing paper pub-
lished 2020)

Monotherapy
for cancer cell
lines

578 4,518 PRISM assay

Secondary
PRISM repur-
posing data set
[91]

– (no dedicated
publication yet)

Monotherapy
for cancer cell
lines

499 1,448 PRISM assay

NIBR-PDXE
[84]

– (correspond-
ing paper pub-
lished in 2015
[84])

Monotherapy
and combina-
tion therapy for
PDX

approx. 270 38 PDX clinical
trial

NCI-
ALMANAC
[92]

– (correspond-
ing paper
published 2017
[92])

Combination
screen for
cancer cell lines

60 pairwise combi-
nations of 104

Sulforhodamine
B, CellTiter-Glo

O’Neil [93] – (correspond-
ing paper
published 2016
[93])

Combination
screen for
cancer cell lines

39 pairwise combi-
nations of 38

CellTiter-Glo

AstraZeneca
DREAM
challenge [94]

– (correspond-
ing paper
published 2019
[94])

Combination
screen for
cancer cell lines

85 pairwise combi-
nations of 118

Sytox Green
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3.1 Cell viability assays applied to 2D cell cultures

When treating cancer patients with anti-cancer drugs, one is interested in efficiently
eliminating tumorous tissue while minimizing side effects. Thus, approved drugs
have undergone a complex development pipeline encompassing numerous stringent
tests to assure their usefulness and safety. Viability screening on model systems such
as 2D cell cultures is one key technique in the early stages of the drug development
pipeline, helping to identify candidate drugs [95]. Roughly speaking, a cancer cell
line is exposed to different concentrations of a compound, and for each concentra-
tion, the number of living cells, i.e., the cell viability, is determined. By investigating
the change in viability, the usefulness of the drug (e.g., efficacy and efficiency) can
be estimated. Especially when combined with multi-omics measurements on the
corresponding cell lines, these screens can help gain insights into the molecular biol-
ogy of treatment response and design predictive machine learning models that can
then be part of the drug development pipeline or medical decision support systems.

3.1.1 In vitro workflow

There exist various experimental methods to measure cell viability [96, 97] (cf. Table
3.1). These methods leverage a differentiating characteristic of either live or dead
cells to generate a detectable signal. For example, the CellTiter-Glo assay uses ATP
as a marker of metabolically active, i.e., viable, cells [97]: under the consumption
of ATP from viable cells, the luciferase enzyme converts luciferin to oxyluciferin, a
reaction in which light proportional to the amount of available ATP is emitted. In
the following, we describe the general components and proceedings of drug screening
based on viability assays. Whenever specific assay or workflow details are required,
we refer to the information from the GDSC database.
After the selection of cell cultures and compounds of interest, a viability assay starts
with the preparation of a microtiter plate, a plate with a grid of small test tubes
(wells), in which the assay will be performed (cf. Figure 3.1). A careful plate design
is required to avoid technical biases because of the arrangement of experiments on
the plate. Note that such a viability assay is typically performed simultaneously for
several cell lines and compounds. Given a specific cancer cell line and one particular
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Figure 3.1: Cell viability measurement. This figure visualizes the workflow of in vitro
cell viability measurement for 2D cell cultures. Created with BioRender.com.

drug, we can distinguish between two general types of well content:

• Wells with a treated sample: Initially, these wells contain medium and cells.
Later, they will be incubated with a specific concentration of the investigated
compound.

• Wells serving as control: These wells will not contain the investigated com-
pound and serve as control instances that measure the overall validity of the
experiments. Depending on the used assay, there are different sub-types of
control wells with various compositions. In the GDSC database, we can dis-
tinguish between [98]:

– Wells serving as negative control: These wells contain medium and cells.
They serve as representatives for 100% viability.

– Wells serving as positive control: These wells contain medium only and
are also denoted as blanks. They represent 0% viability.

To ensure comparability between the wells with a particular cell culture, each such
well should contain a nearly identical number of cells.
After the preparation of the microtiter plate(s), the compounds are added to the
respective wells and the wells are incubated with them for a fixed time span, e.g.,
72 h [98]. Typically, not only one concentration of a compound is tested, but sev-
eral ones. These different concentrations can be obtained by a dilution series [98].
Moreover, the same experimental conditions are investigated several times to ensure
reproducibility and robustness of the experiment series.
After the incubation period, the viability assay components are added to the wells,
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and a detectable signal, e.g., luminescence for CellTiter-Glo, is emitted. The signal
can be measured and is then processed as described in the ensuing section.

3.1.2 Processing of intensity values

The performed viability assay results in one intensity value for each well, and each
intensity value corresponds to the amount of viable cells within a well. A mandatory
first processing step after conducting a biological experiment is to validate its suc-
cess by performing background correction and quality control. The viability assay
already contained positive and negative control wells for quality control. The raw
intensity values of these wells were assumed to represent 0% and 100% viability,
respectively. Thus, the average intensity value of the positive control should be low,
most likely lower than all other values, since no living cell was seeded in those wells.
The average intensity of the negative control wells should be comparatively high. A
commonly applied background correction for viability assays also includes the use
of the control wells. It is defined by subtracting the average intensity value of all
positive control wells from other wells [99]. More specifically, we can accomplish
this as described in the following. For the simplicity of this description, we assume
that each experiment has only been conducted once, i.e., no replicates have been
generated. Let N be the number of investigated cell lines, K be the number of
tested compounds, and C1, . . . , CK be the respective sets of tested concentrations
for each compound. Furthermore, let n̄i be the average of the negative control wells
belonging to the i-th cell line and let p̄ be the average of the positive control wells.
Note that depending on the plate design, p̄ could be calculated based on all positive
control wells or a selection of positive control wells. Furthermore, let vikx be the
intensity of the i-th cell line treated with compound k at concentration x. We then
calculate the corrected intensities ñi and ṽikx as follows

ñi = n̄i − p̄, ∀i ∈ {1, . . . , N} (3.1)

and

ṽikx = vikx − p̄, ∀i ∈ {1, . . . , N},∀k ∈ {1, . . . , K},∀x ∈ Ck. (3.2)
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After background correction, we can assess the effect of a treatment by a comparison
between corrected intensity of the treated well and the corresponding corrected
negative control, i.e., we can calculate the so-called relative viability

rikx =
ṽikx
ñi

, ∀i ∈ {1, . . . , N}, ∀k ∈ {1, . . . , K},∀x ∈ Ck. (3.3)

The relative viability is 1 if the treatment did not affect cell growth, and ≤ 1 if
an inhibition occurs. Also, values ≥ 1 can be observed because of experimental
fluctuations or if the treatment fosters cell growth. Negative values should usually
not occur. However, if a compound eradicates all living cells, it may occasionally
happen that the numerator is negative, i.e., if the average positive control value
p̄ is larger than the observed viability vikx, resulting in a negative rikx. However,
the average of the positive control wells should never be higher than the average
of negative control wells, precluding a negative denominator. Vis et al. clip values
outside the [0, 1] interval [99]. Note that we describe the relative viability formula
given in the code of the gdscIC50 R package, which is, however, not identical to the
formula presented in the corresponding paper by Vis et al.(cf. [99]), which seems
incorrect.

Curve fitting

After the generation of the relative viabilities, we can plot the relative viabilities
against the tested concentrations for each combination of cell line and drug, which
results in one dose-response plot per combination (cf. Figure 3.1). Using this plot,
we can visually inspect how the drug response varies with increasing concentration
and evaluate whether replicate measurements lie close by. Typically, a dose-response
curve is fitted to this point cloud to reduce noise (e.g., from replicate measurements)
and create inter- and extrapolations for non-investigated concentrations. Moreover,
the curve can carry additional information that may help to compare different cell
lines or drugs, which we will also describe later in this chapter when discussing dose-
response metrics.
Often, it is assumed that the dose-response curve takes a sigmoidal form [99, 100,
101]. In particular, Vis et al. assume they can model the dose-response relationship
with a two-parameter sigmoidal function [99]. In their model, the first parameter
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Figure 3.2: Dose response curve. This figure visualizes a sigmoidal dose response
curve as employed by Vis et al. [99]. Created with BioRender.com.

xinfl denotes the position (concentration) of the inflection point and the second
parameter pslope corresponds to the slope of the curve at the inflection point (see
Figure 3.2). The upper and lower asymptotes are fixed to 1 and 0, representing
100% and 0% viability, respectively. In total, they use the following two-parameter
logistic function that depends on the concentration x

f(x) =
1

1 + e
−x−xinfl

pslope

. (3.4)

While they allow xinfl to vary for each combination of cell line and drug, they restrict
pslope to vary across cell lines only. This means that they expect the drug to affect
the position but not the slope of the inflection point. Estimating the parameters is
accomplished by reducing the distance of the observed points to the fitted curve by
employing the non-linear mixed effects model by Lindstrom and Bates [102]. This
model has been developed to fit the needs of repeated measures data (e.g., time
series data), where a set of samples is measured at differing conditions, and it is,
furthermore, tenable to assume that the responses of the samples follow a similar
non-linear functional relationship.
After model fitting, the model fitness should be assessed as a further quality con-
trol step. To this end, Vis et al. employ the root-mean-squared error (RMSE)
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Figure 3.3: Dose response metrics This figure visualizes two popular dose response
metrics, i.e., the IC50 value (half maximal inhibitory concentration) and the AUC (area
under the viability curve for the tested concentration range). Created with BioRender.com.

between the area under the dose-response measurements and the area under the
fitted curve.

Commonly used metrics

In order to compare the effect of different compounds, characteristic values of the
curve are employed. These values are calculated using metrics that condense the
information of one dose-response curve in one continuous value. In the following,
we briefly present the most commonly applied metrics.

IC50. The half maximal inhibitory concentration (IC50) denotes the concentra-
tion of a compound needed to achieve 50% relative viability [103]. If we fit the
dose-response curve with the upper asymptote fixed to 1 and the lower asymptote
fixed to 0, it corresponds to the concentration of the inflection point of the sig-
moidal curve (see Figure 3.3). The IC50 value is comparable between cell lines
treated with the same compound: a lower IC50 indicates an earlier success of the
compound. However, different drugs usually possess different feasible concentration
ranges. Thus, IC50 values are generally not comparable between drugs.
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AUC. The area under the viability curve (AUC) is typically defined as the area
under the viability curve for the tested concentration range [103] (cf. Figure 3.3).
As long as the tested concentration range is equal across experiments, it is com-
parable across cell lines and drugs. In this case, a small AUC corresponds to a
strong response and a high AUC to a weak response. While employing the same
concentration range across different cell lines for the same compound is relatively
common, it is uncommon or even infeasible to test the same concentration range
for different compounds since their feasible concentrations may differ by magni-
tudes. As a partial remedy for compounds with overlapping concentration ranges,
Pozdeyev et al. suggested the adjusted AUC, which is calculated solely using the
shared concentration range [100]. Vis et al. [99] suggest normalizing the AUC by
dividing the original value by the area of the box defined by the four vertices
(xmin, 0), (xmin, 100), (xmax, 0), (xmax, 100), where xmin and xmax are the minimal
and maximal tested concentrations, respectively. While this enforces an AUC range
of [0, 1], these values can still be artificially inflated or deflated if the chosen con-
centration range covers merely a part of the feasible concentration range.

GR metrics. In 2016, Hafner et al. showed that metrics such as IC50 and AUC,
which are defined using relative viability, are affected by one fundamental flaw [101]:
they depend on the proliferation rate of the cell lines. When performing an assay
with a fixed duration, a cell line with a lower proliferation rate will be reported as
having a lower IC50 or AUC than a biologically very similar cell line with a higher
proliferation rate. Thus, Hafner et al. propose computing a normalized growth rate
inhibition (GR value) instead of the relative viability and defining various metrics
using the GR value. To calculate GR values, they either need the initial cell count
measured directly prior to drug exposure or the division time of the cell line [101].
Also, note that only if we know the initial cell count can we faithfully distinguish
cytostatic (slowing down or stopping tumour growth) from cytotoxic (killing tumour
cells) compounds [103]. However, in many studies, neither the initial cell count nor
the division time of cell lines is supplied [103]. To the best of our knowledge, the
GDSC database does neither provide initial cell counts nor cell division times, so we
cannot determine GR values.
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3.2 Genomics of Drug Sensitivity in Cancer

(GDSC) database

The Genomics of Drug Sensitivity in Cancer (GDSC) database, a joint endeavour
by the Wellcome Trust Sanger Institute and the Center for Molecular Therapeu-
tics Massachusetts General Hospital Center, is one of the largest publicly available
cancer cell line drug screening panels in terms of screened drugs and cell lines (cf.
Table 3.1). Since its inception in 2012 [14], the data set has been continuously
maintained and developed until today. Generally, the GDSC database encompasses
a plethora of chemotherapeutic and targeted drugs, ranging from approved anti-
cancer compounds to putative drugs still in early development. The drug screening
data is accompanied by molecular profiles of the cell lines, rendering the GDSC a
valuable resource for drug response biomarker discovery and anti-cancer drug sensi-
tivity prediction. The molecular profiling data encompasses mutations, copy number
alterations, microsatellite instabilities, gene fusions, methylation information, and
gene expression data.
In the following, we limit ourselves to describing the data types we used throughout
this thesis, i.e., the drug response, the mutation, the copy number, and the gene ex-
pression data. Descriptions for the generation of the other data types can be found
in the Supplement ([104]) of a GDSC publication by Iorio et al. [19, 104]. Note that
different releases of the GDSC data set exist. These mainly differ in the number of
screened cell lines and drugs. Here, we describe the drug response data of the latest
release (Release 8.5, October 2023), as well as the mutation, copy number, and gene
expression data of the release they were introduced.

3.2.1 Drug response

The GDSC drug response data can be divided into two subsets, i.e., GDSC1 and
GDSC2. They differ in the experimental setup that was used to measure cell vi-
ability. For GDSC1, which was in development from 2010 to 2015, adherent cell
lines (cell lines growing attached to the surface of their vessel) were screened with
the Syto60 assay, while a Resazurin assay was employed for suspension cell lines
[104] (cell lines growing free-floating). From 2015 onwards, cell viability was mea-
sured with the CellTiter-Glo assay instead, resulting in the still actively maintained
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GDSC2 data set [98]. After generation of the raw viability values with either tech-
nique, the relative viabilities were calculated (cf. Section 3.1.2) and dose-response
curves were fitted with the described model by Vis et al. [99]. For each subset
(GDSC1/GDSC2), all dose-response curves were fitted simultaneously [98]. The
GDSC website provides downloads of the raw and fitted viability data, including
logarithmized IC50 and AUC values.

3.2.2 Mutation calling

The cell lines were genetically characterized using the Agilent SureSelectXT Human
All Exon 50Mb bait set [105], which is a procedure that can generate information
on mutations in the human exome. The procedure captures the exome of a sample
by hybridization to a DNA library containing the desired exon sequences. Then, the
obtained fragments are sequenced. To identify sequencing variants, i.e., substitutions
and small insertions or deletions, CaVEMan [106] and Pindel [107] were applied
[104]. Lastly, putative sequencing artefacts and germ line variants were removed
as described in the Supplement of Iorio et al. [104]. The resulting data has been
deposited on the COSMIC website [108, 104], the version that we used (Release v71)
can be downloaded from the GDSC website [109] and contains mutations in 19100
genes.

3.2.3 Copy number estimation

In addition to relatively small-scale mutations in the genome, losses and gains of
whole genomic regions were also quantified. To this end, the Affymetrix SNP6.0
Array was used [105]. Generally, this microarray encompasses oligonucleotides that
interrogate interesting positions in the genome, e.g., SNP or CNV-associated posi-
tions [110]. The genomic sample of interest can be characterized by hybridization of
the fragmented and labelled sample to the complementary sequences of the microar-
ray [110]. In the GDSC database, the raw data from the microarray experiment
was processed with the PICNIC algorithm [111], a specialized tool for absolute copy
number estimation from microarray data in cancer cells [112]. These absolute copy
numbers were then employed to calculate losses and gains of genomic regions [111].
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Given the estimated average genome ploidy of a cell line, loss and gain were defined
as [111]

gain =

avg. genome ploidy ≤ 2.7 ∧ total copy number ≥ 5

avg. genome ploidy > 2.7 ∧ total copy number ≥ 9

and

loss =

avg. genome ploidy ≤ 2.7 ∧ total copy number = 0

avg. genome ploidy > 2.7 ∧ total copy number < (avg. genome ploidy− 2.7)

The corresponding file can be downloaded from COSMIC and, amongst others,
contains information on the start and end position of the copy number variant as
well as the gene name (17618 genes). Note that we could not find further information
on the presented definition of copy number loss and copy number gain. However,
it seems that this definition was motivated by a finding of van Loo et al. [113] that
the average genome ploidy of breast carcinoma is larger than 2.7.

3.2.4 Gene expression

The cancer cell lines were also profiled regarding their gene expression. The data
was obtained with the Affymetrix Human Genome U219 array [105]. The generated
raw values were normalized with the robust multi-array analysis (RMA) algorithm
by Irizarry et al. [114], resulting in gene expression values for 18562 loci as defined
in the chip definition file (BrainArray v.10) by Dai et al. [115].

34
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Just like the conception of personalized medicine can be traced back to the ancient
Greek philosopher Hippocrates [1], the prospect of machines with human-like in-
telligent behaviour has already fascinated and inspired thinkers and writers many
centuries ago - also giving rise to the science fiction literature genre, in which such
futuristic machines commonly occur [116].
However, the birth date of the academic discipline surrounding the quest of design-
ing intelligent machines, i.e., artificial intelligence (AI), is located somewhere in the
1950s when Alan Turing dedicated himself to the topic as well [117]. At the same
time, machine learning (ML) evolved as a subdomain of artificial intelligence con-
cerned with developing algorithms and software for learning from data. While it is
widely accepted that the term machine learning had been coined or at least been
popularized by the IBM employee Arthur Samuel in the 1950s [118], early works on
simple artificial neural networks - which should later become a key technique of ML
- had already been published in 1943 by McCulloch and Pitts [119, 116, 120]. The
so-called McCulloch-Pitts neuron was a mathematical abstraction of the basic func-
tionality of a biological neuron in the brain and could represent Boolean functions,
i.e., could accept Boolean inputs and produce a Boolean output. In 1957, Rosenblatt
introduced the perceptron model, a more generalized version of the McCulloch-Pitts
neuron, often regarded as the first artificial neural network [121, 122]. Over the last
few decades, the public interest in AI and ML fluctuated while a variety of novel
ML algorithms were devised and refined to fit the needs of the available data and
the users. However, over the course of the previous years, a growing interest in AI
and ML developed. After decades of technological advances in computer science
and engineering, it seems the time has finally come for their widespread use. When
OpenAI made their chatbot ChatGPT - a large language model based on artificial
neural networks - publicly available in November 2022, the public interest in AI and
ML reached its peak (cf. Figure 4.1). Indeed, it seems that almost every academic
discipline and business alike currently integrates AI and ML algorithms into their
workflows.
Historically speaking, ML and neighbouring scientific fields, e.g., optimization,
statistics, data mining and pattern recognition, have been integral to bioinformatics
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Figure 4.1: GoogleTrends for AI and ML. This figure depicts the relative worldwide
interest in artificial intelligence (AI), machine learning (ML), and the chatbot ChatGPT
over almost the complete last two decades as reported and measured by GoogleTrends. The
data was retrieved from the GoogleTrends website on 10th of October, 2023. The upper
plot shows the comparison between the three terms, where it can be clearly observed that
ML draws the least attention from the public. Since we could not visibly inspect the
development of the interest in ML in this plot, the lower plot only depicts the relative
interest in ML alone.

since its birth. Especially research on large cancer cell line panels has literally been
shaped by the use of ML techniques.
In the following, we first provide a brief yet comprehensive overview of the ML land-
scape of today. Then, we will delve into the aspects most relevant to this work. To
this end, we present the key algorithms on which our work builds.
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Authors’ contributions
While this chapter is not strictly based on the publications presented in this
thesis, it contains descriptions of algorithms that were also part of them.
In particular, the random forest description and the minimum-redundancy
maximum-relevance algorithm description in this chapter have been adopted
from the SAURON-RF publication [29], and the text on reliability esti-
mation rests on the information presented in the follow-up work reliable
SAURON-RF [33]. I drafted both manuscripts. Moreover, I drafted the
review paper Trust me if you can: a survey on reliability and interpretabil-
ity of machine learning approaches for drug sensitivity prediction in cancer
during the genesis of this chapter. Thus, the text of this chapter overlaps
with information in the corresponding manuscript.

4.1 The different realms of machine learning

Clearly, machine learning is a multidisciplinary research area, sharing its methodol-
ogy with various other disciplines such as optimization, statistics, and information
theory. Yet, what all ML methods have in common is that they are employed for
learning from data. Tom Mitchell has given a central definition of what constitutes
learning in the ML context:

‘A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.’ (Tom
Mitchell, 1997 [123])

Arguably, the currently existing body of ML methods can be divided into four
major realms, each tailored to fulfilling specific tasks: supervised, unsupervised,
semi-supervised, and reinforcement learning [124]. In the following, we will briefly
contrast the ideas and concepts underlying these four realms and highlight their
application cases within anti-cancer drug sensitivity prediction.
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4.1.1 Supervised learning

In supervised learning, we are given a set of observed pairs {(x1, y1), (x2, y2),
...(xN , yN)}, where xi ∈X is called the feature vector and yi ∈ Y the response, and
we are interested in finding a mapping f̂ : X → Y that best approximates the as-
sumed, yet unknown functional relationship f between the features and the response
[125, 126]. A standard assumption of many supervised learning algorithms is that
these pairs are drawn iid from a distribution with range X ×Y [125]. The term iid
refers to the set of random variables of a probability distribution and means that
these random variables are (1) sharing the same probability distribution (identical)
and (2) not influencing each other in any way (independent). However, especially
the latter assumption is frequently violated by real-world (biological) data.
Usually, we employ a matrix-vector notation to represent the observed pairs. Here,
X is an N×P -matrix (N ∈ N, P ∈ N) with each row corresponding to one xi, where
xi is a row vector containing values of P features. The vector y is the accordingly
ordered N -dimensional response vector with yi as entries. Depending on whether
the output variable is quantitative (continuous) or qualitative (discrete), the su-
pervised learning task is called regression or classification, respectively [126]. Note
that for convenience, we often denote a discrete response vector with d instead of y
throughout this work. Furthermore, note that for simplicity, we follow the notation
in the book Semi-supervised learning [125] and assume that all distributions have
densities for the following description. Instead of directly learning a function, many
supervised ML algorithms are probabilistic models in the sense that they estimate
the conditional density p(y|x). A so-called discriminative ML model directly models
this conditional density p(y|x), whereas a generative one models the joint density
p(x, y) = p(x|y) · p(y), which can be plugged into Bayes’ theorem to determine the
desired conditional density: p(y|x) = p(x|y)·p(y)∫

z p(x|z)·p(z)dz
[125].

Clearly, the straightforward ML modeling of drug response prediction is via super-
vised learning. Indeed, most publications fall within this realm (cf. Table 4.1, p. 50).
Here, the features are results from multi-omics measurements, e.g., gene expression
values, and the response is the observed drug sensitivity from a drug screening as-
say reported in the form of some summary metric such as IC50 (cf. Chapter 3).
Consequently, each row of the model matrix X then contains the molecular char-
acterization of one cancer cell line, and each entry of the response vector y is the
measured sensitivity value. While drug response prediction is inherently a regres-
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sion task, it can be formulated as a classification task by discretising the continuous
sensitivity value.

4.1.2 Unsupervised learning

Unsupervised learning can be interpreted as the task of finding interesting struc-
tures in data without a specific variable that guides or supervises the model [125].
Mathematically, this can be described as a situation where we have the model ma-
trix X, generated by drawing samples iid from a distribution with range X , but
no designated response vector y. From a probabilistic view, we might thus aim to
estimate the density function p(x). In low-dimensional spaces, this can already be
achieved relatively well, while high-dimensionality seems to necessitate the usage of
simpler approaches more loosely learning the structure of the data [127].
The drug response prediction task, as such, is usually not modeled as an unsuper-
vised learning task. Yet, there still exists a plethora of functions within this task
that can be fulfilled by unsupervised learning methods: Since data obtained from
high-throughput multi-omics measurements suffers from the curse of dimensionality
(P � N), unsupervised learning algorithms such as principal component analysis
are frequently employed for reducing the dimensionality of the model matrix. Clus-
tering algorithms, e.g., k-medoid clustering, can help divide the samples into groups
when a group association is unknown beforehand. Furthermore, some techniques
can be repurposed for supervised learning, e.g., association rule mining can be re-
formulated as a supervised learning task by enforcing the rules to adopt a specific
form.

4.1.3 Semi-supervised learning

Classical semi-supervised learning lies conceptually between supervised and unsu-
pervised learning: the model matrixX can be divided into two parts, one sub-matrix
Xr for which an associated response vector yr is available, and a second sub-matrix
Xw without an associated response. While we can interpret this setting as a super-
vised learning application and, thus, simply train a supervised model on the former
data set and then apply the resulting predictor to the latter one, we can also ar-
gue that the unlabeled data might provide additional information for improving our
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model. This means we require p(x) to improve the estimation of p(y|x). Different
ideas and associated assumptions exist on how p(x) interacts with p(y|x), which
inspired the development of different algorithms. Three very popular assumptions,
i.e., the smoothness assumption, the low density assumption, and the cluster as-
sumption, have a common principle [125], and may even be interpreted as different
phrasing for the same principle that can roughly be summarized as follows: if two
points xi and xj from a high-density region lie close by, they should not be sepa-
rated by a decision boundary, i.e., their class labels yi and yj should be equal. If
such an assumption holds, then unlabeled points can clearly help in locating de-
cision boundaries by providing information on the density of a region. Typically,
semi-supervised methods can be divided into two categories, inductive and trans-
ductive methods [125, 128]. Inductive semi-supervised methods can be considered a
direct extension of supervised learning and yield a predictive function f̂ : X → Y

as output, whereas transductive semi-supervised methods only generate predictions
for the samples without response [128].
Currently, we are only aware of one method that employs semi-supervised learning
for drug response prediction: a deep generative neural network approach (variational
autoencoder) by Rampášek et al. [129].

4.1.4 Reinforcement learning

In contrast to all previously presented ML realms, reinforcement learning is con-
cerned with dynamically learning from interaction instead of learning from a given
set of static data points [123]. This concept can be described as follows. Let there
be a so-called agent that can perform all possible actions from a set of actions A.
Moreover, let there be an environment that can be in a set of states S. Each time an
agent performs an action, the environment returns a reward or penalty and changes
its state [130]. Clearly, the agent should pursue the goal of maximizing its reward.
In that sense, reinforcement learning is most similar to supervised learning since the
environment provides some form of supervision. However, there are differences be-
tween supervised learning and reinforcement learning and specific challenges rather
unique to reinforcement learning. For example, since there is no immediate access to
some static mapping of features to responses, the agent must explore its environment
by taking actions (trial and error search). The action an agent takes at a specific
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point in time may not only influence the direct reward but also all future rewards
(delayed reward principle). Mathematically speaking, reinforcement learning can be
formulated as an incompletely known Markov decision process [130], the details of
which are out of the scope of this thesis.
In drug response prediction, this form of modeling has only rarely been investigated
at the time this thesis was written (cf. Table 4.1, p. 50). However, we could inter-
pret the task of drug prioritization in terms of reinforcement learning. The model
by Liu et al. [131], for example, assumes that an agent must construct the correct
drug ranking. At each time step, the model opts for one specific drug and obtains
a reward from the environment based on the accuracy of the choice. We think re-
inforcement learning can be a rewarding avenue for drug response prediction and
discuss its potential in the last chapter of this thesis (cf. Chapter 9).

4.2 Requirements for machine learning systems in

practice

In the previous sections, we gave a brief overview of the machine learning land-
scape of today and highlighted how the diverse set of available techniques may be
applied to anti-cancer drug response prediction. The current state of the art and
this thesis mainly focus on supervised learning combined with some unsupervised
techniques to achieve progress in drug response prediction. Therefore, the remainder
of this chapter mainly revolves around considerations that play a role in these tech-
niques. However, many of the principles can be straightforwardly translated into
semi-supervised and reinforcement learning. In the ensuing section, we mainly deal
with requirements that ML systems should comply with to become trustworthy.

4.2.1 Trustworthiness

The term trustworthiness does not refer to a single mathematical property but rather
a continuously extensible collection of such that together should guarantee lawful,
ethical, and robust use of developed machine learning systems [132]. The European
Commission recently released guidelines on how to implement trustworthy AI sys-
tems in practice [132]. Compliance with these guidelines should ensure that humans
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interacting with the system receive maximal benefit while any harm should be pre-
vented. For example, the data should be securely stored and protected, the decisions
of the system should be reliable, reproducible and traceable, and the system should
not be intentionally discriminatory against specific societal groups. Moreover, the
user should be made aware of the fact that an interaction with an AI-based system
takes place and learn to understand the risks associated with this circumstance.
Especially for a high-stake application case such as medical decision support sys-
tems, we need to demand for complying with the highest possible standards in all
mentioned aspects.

4.2.2 Statistical performance

Clearly, an ML system is only helpful if its output is correct, i.e., if it learned to
perform a specific task. In supervised learning, we explicitly optimize for correctness
by finding a function f̂ : X → Y that best approximates the assumed relationship
between the (N×P )-dimensional sample matrix X and the N -dimensional response
vector y. Indeed, we already employ performance measures in the model training
phase to minimize false predictions. In supervised learning, performance can be
measured by comparing the predictions ŷ from the trained model to the known
response y. If y is continuous, measures such as the mean-squared error (MSE)
or mean absolute error (MAE) are routinely employed. The co-domain of both
measures is [0,∞). Both evaluate to their minimal value 0 iff the model is perfectly
representing y. The larger the value becomes, the worse the model approximates
the response. The MSE is defined as

1

N

N∑
i=1

(yi − ŷi)2 (4.1)

and the MAE can be determined analogously by replacing the square deviation with
the absolute deviation. If one is more generally interested in finding out whether the
trained model correctly captured a specific trend, correlation measures such as Pear-
son correlation [133, 134] and Spearman correlation [135] can be employed instead.
Compared to MSE and MAE, these correlation coefficients have the advantage that
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they evaluate to the closed co-domain [−1, 1] rendering their outputs more com-
parable per se. Pearson correlation measures the linear dependency between two
variables. It is 0 iff no linear dependency between two variables can be detected.
If y and ŷ tend to linearly increase simultaneously, their Pearson correlation will
be positive. If either increases while the other decreases, their Pearson correlation
coefficient will be negative. The magnitude of the value indicates the strength of the
correlation. Let ȳ and ¯̂y be the empirically determined mean of y and ŷ, respectively.
Then, the Pearson correlation coefficient (PCC) can be calculated as

∑N
i=1(yi − ȳ)(ŷi − ¯̂y)√∑N

i=1(yi − ȳ)2
∑N

i=1(ŷi − ¯̂y)2
. (4.2)

The PCC is only able to measure linear dependency between two variables. However,
variables might be non-linearly dependent. The Spearman correlation coefficient
(SCC) can capture a monotonic relationship between two variables. The SCC is
defined as the PCC between the ranks instead of the values of the two variables.
Analogous to the PCC, the SCC is 0 iff there is no monotonic relationship between
the two variables. If they tend to increase concurrently, the sign of the SCC is
positive. If either of them increases while the other decreases, it is negative. Once
again, the magnitude of the value indicates the strength of the correlation.
If we deal with a discrete response variable d instead, one typically generates a
confusion matrix to assess the correctness of a classifier [136]. A confusion matrix
can be defined as follows: Let k be the number of different classes the discrete
response can potentially assume. The confusion matrix is a k×k-matrix whose rows
correspond to the predicted classes and whose columns correspond to the observed
classes. Each entry of this confusion matrix contains the co-occurrence frequency of
one predicted class and one observed class such that the sum in each row is equal to
the number of instances predicted to be of one particular class, and the sum of each
column is equal to the number of instances actually within a class. In Figure 4.2,
we depict a confusion matrix for a binary classifier distinguishing between a positive
and negative class, which may, for example, correspond to sensitive and resistant cell
lines in drug sensitivity prediction, respectively. Here, sensitive cell lines predicted
to be sensitive are called true positives (TP), sensitive cell lines predicted to be
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resistant are called false negatives (FN), resistant cell lines predicted to be resistant
are called true negatives (TN), and resistant cell lines predicted to be sensitive are
called false positives (FP). The sum of TP and FN is equal to all positives (P), the
sum of TN and FP is equal to all negatives (N), the sum of TP and FP is equal to
all predicted positives (PP), and the sum of TN and FN is equal to all predicted
negatives (PN).

TP (true 
positive)

FP (false 
positive)

FN (false 
negative)

TN (true 
negative)

actual classes
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Figure 4.2: Binary confusion matrix. In this figure, we exemplary show a confusion
matrix for a binary classification task. Each row corresponds to a predicted class, and each
column to an actual class. The investigated classes are called positive and negative, and
may, for example, correspond to drug-sensitive cell lines (positive) and drug-resistant cell
lines (negative) for drug sensitivity prediction.

Such a confusion matrix serves as the basis for defining a plethora of metrics for
evaluating classifier performance. In the following, we restrict ourselves to defining
metrics for binary classification since this is the main focus of this work. Arguably,
the most simple metric we could define is the accuracy given as the proportion of
correct predictions

accuracy =
TP + TN
P + N

. (4.3)

It suffers from one major drawback: if the two classes are highly imbalanced, the
result of an accuracy computation can be misleading. Suppose a classifier simply
returns the value of the majority class for each possible input sample. In that case,
the accuracy can still be very high despite the classifier having no discriminatory
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ability at all. As a remedy, we can consider the sensitivity and specificity of a
classifier. The sensitivity of a classifier is the ability of the classifier to correctly
identify positive cases out of all positive cases

sensitivity =
TP
P
. (4.4)

Analogously, the specificity is the ability of the classifier to correctly identify negative
cases out of all negative cases

specificity =
TN
N
. (4.5)

If a classifier simply returns the value of the majority class, either sensitivity or
specificity evaluates to 0. If one aims to evaluate a single, most informative metric,
Chicco and Jurman [137] argue that Matthew’s correlation coefficient (MCC) [138]
should be employed since it considers all four entries of the binary confusion matrix
and does mathematically not distinguish between what is defined as positive or
negative class. The MCC can be calculated as

MCC =
TP · TN− FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
(4.6)

4.2.3 Reliability and (un)certainty

When we address the question of whether we have trust in a prediction, perfor-
mance evaluation can point towards a certain direction since we expect to observe
a similar performance on new samples. However, performance estimates typically
tell us nothing about the degree of trust that we have in a prediction for a single,
previously unseen instance during model deployment, which is what is often referred
to as reliability in the ML literature [139, 140, 141]. One possibility to achieve relia-
bility is via uncertainty quantification [142, 143]. Here, one is ultimately interested
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in estimating predictive uncertainty, i.e., the uncertainty about the prediction for
a specific instance [144, 142]. Thereby, an ML model should be enabled to abstain
from casting a prediction for a new instance if it is uncertain, rendering the corre-
sponding model reliable. Note that this proceeding also mimics how medical doctors
act when deciding to seek a second opinion before giving medical advice.
A prediction for a new instance constitutes the end of an ML pipeline. Thus, the
predictive uncertainty consists of all uncertainties from data generation to the de-
ployment of the trained ML model. Currently, the machine learning literature dis-
tinguishes between at least two different forms of uncertainty: aleatoric uncertainty
and epistemic uncertainty [144, 143]. Aleatoric uncertainty is the data-inherent
uncertainty that stems from randomness in the experiment generating the measure-
ment, e.g., noise [144]. Indeed, we must acknowledge that all biological experiments
harbour this source of uncertainty. For drug sensitivity prediction, e.g., we may
observe aleatoric uncertainty in the response: the drug response distributions of the
sensitive and resistant cell lines may overlap, making any prediction of a classifier
in the overlapping region aleatorically uncertain. Aleatoric uncertainty is called ir-
reducible, i.e., it cannot be removed by gathering more data, i.e., more samples. On
the contrary, epistemic uncertainty is reducible and refers to the uncertainty arising
from a lack of knowledge [144]. Thus, it can potentially be resolved by gathering
more samples. Hülllermeier and Waegeman [144] partition epistemic uncertainty
into two further types of uncertainty, namely model uncertainty and approximation
uncertainty. The former refers to the uncertainty about which model to choose,
while the latter denotes the uncertainty in the estimation of the model parameters.
Thus, it is also referred to as estimation or parametric uncertainty in the literature
instead [143]. There is a direct link between this uncertainty definition and the
classical bias-variance tradeoff from statistics that we will briefly revisit in Section
4.3.1. While it seems straightforward to define aleatoric and epistemic uncertainty as
presented above, in fact, these definitions are to some extent ambiguous (cf. Hüller-
meier and Waegeman [144] and Gruber et al. [143] for thorough discussions) and
Gruber et al. argue that they are too simple to cover the full range of uncertainties
arising in real-world applications [143], e.g., uncertainties during data collection or
model deployment cannot be captured.
We evaluated whether the current landscape of drug sensitivity approaches considers
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reliability for model development. The results of this assessment are presented in
Table 4.1, p. 50. In Chapter 8, we will look at reliability estimation in more detail.

4.2.4 Interpretability and explainability

Up to this point, we have only discussed trust in ML from the perspective of model
correctness. Arguably, trust can, however, also be generated by rendering models
understandable to humans interacting with the system, which is what is commonly
referred to as interpretability [145, 146, 147]. This definition of interpretability
may seem trivial at first sight since we all have some intuition and preconceptions
about what should constitute interpretability. However, from an ML perspective,
there exists a plethora of possibilities to apply this definition and yet no universally
agreed approach to achieve or merely assess it [148, 149]. In this thesis, we provide
a taxonomy of interpretability in ML (cf. Figure 4.3), which we believe to represent
the vast majority of methods within the field of (supervised) ML more generally and
drug sensitivity prediction in particular. Note that a specific ML system can possess
characteristics from all categories in the last layer of the taxonomy. We derived this
taxonomy mainly based on the works by Lipton [150], Biran and Cotton [147], and
Imrie, Davis, and van der Schaar [146].
Generally speaking, interpretability can be model-inherent or generated by post

hoc explanations. The former concept is often referred to as (model) transparency,
while the latter is known as explainability. The source of the transparency can vary.
A model can be transparent because of

• its simplicity either in terms of size or computation time needed for inference.
Lipton calls this form of model transparency simulatability [150]. Simulatabi-
lity refers to the simplicity of the entire model.

• the comprehensibility of its components (inputs, parameters, calculation rules,
outputs), called intelligibility by Lou et al. [151] and decomposability by Lip-
ton [150]. Decomposability refers to the simplicity of the individual model
components.

• the transparency of the learning algorithm defined by the understandability
of the solution space in terms of convergence criteria or uniqueness of the
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Figure 4.3: Taxonomy of interpretability in ML. This figure depicts a taxonomy of
interpretability in ML that we derived from works by Lipton [150], Biran and Cotton [147],
and Imrie, Davis, and van der Schaar [146]. The bright blue speech bubbles provide brief,
intuitive descriptions of the technical terms. Note that a specific ML model may possess
properties from all categories of the last layer.

solution. Lipton calls this form of transparency algorithmic transparency, and
it refers to the comprehensiveness of the training algorithm and its solutions.

To maximize trust in a machine learning model, it might be tempting to demand
for interpretability in this strict sense. However, like Lipton [150], we believe that
one must then also ask whether a human can actually be trusted. Until today, we
cannot understand how the human brain (or the complete human organism) makes
decisions. We only know the explanations and justifications that humans provide.
Indeed, humans are like black box ML models augmented with post-hoc explana-
tions instead.
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In ML, post-hoc explanations are typically generated if model-inherent interpretabil-
ity is absent. Nevertheless, it might be useful to augment inherently interpretable
(transparent) models with post hoc explanations as well. Imrie, Davis, and van der
Schaar [146] divide post hoc explanations into five categories

• feature-based explanations that measure the importance of features, either
locally for specific samples or globally across the model.

• example-based explanations that return those samples from the training set
most similar to the input sample, giving users the opportunity to apply their
domain knowledge.

• counterfactual-based explanations that return artificially engineered yet plau-
sible samples resulting in different outputs than originally obtained for a spe-
cific sample. In particular, the idea is to (slightly modify) the input values of
as few features as possible to create a different model output.

• model-based explanations that return a second, more interpretable (transpar-
ent) model trained on the original model.

• concept-based explanations that indicate whether specific concepts (patterns)
are processed or utilized in the model. Typically, this is accomplished by
examining whether internal representations of samples with and without the
concept differ.

In Table 4.1, we compare various drug sensitivity prediction approaches concerning
their interpretability using the suggested taxonomy.

4.2.5 Other requirements

In this thesis, we focus on the above-mentioned desiderata of ML methods in the
context of drug sensitivity prediction and prioritization in cancer. However, for a
successful deployment of a complete ML system in practice, we have to consider a
variety of other equally important factors as well. These include but are not limited
to

• privacy mechanisms that protect the utilized data,
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Table 4.1: Placement of drug sensitivity prediction approaches in the ML uni-
verse. This table visualizes ML approaches pursued for drug sensitivity prediction over
the last decade. Supervised learning (white: regression, light blue: simultaneous regression
and classification, steel blue: classification) was the preferred research direction, and only
few approaches were dedicated to semi-supervised learning (light yellow) or reinforcement
learning (light orange). We also assessed the trustworthiness of the approaches in terms of
reliability and interpretability.

Interpretability Reliability

Transparency Explainability

Simula-
tability

Decompo-
sability

Algo-
rithmic
trans-
parency

Feature Sample Counter-
factual

Concept Model

Su
pe

rv
is
ed

Menden et al. (2013)
[152]

7 7 7 7 7 7 7 7 7

Zhang et al. (2015)
[153]

7 3 7 7 7 7 7 7 7

SRMF (2017) [154] 7 3 7 7 7 7 7 7 7

HARF (2017) [155] 7 3 7 7 7 7 7 7 7

Matlock (2018) [156] 7 3 7 7 7 7 7 7 7

KRL (2018) [157] 7 7 7 7 7 7 7 7 7

RWEN (2018) [158] 7 3 7 7 7 7 7 7 7

CDRscan (2018)
[159]

7 7 7 7 7 7 7 7 7

QRF (2018) [31] 7 3 7 3 7 7 7 7 3

NCFGER (2018)
[160]

7 3 7 7 7 7 7 7 7

DeepDR (2019)
[161]

7 7 7 7 7 7 7 7 7

netBITE (2019)
[162]

7 3 7 7 7 7 7 7 7

Deng et al. (2020)
[163]

7 3 7 7 7 3 7 7 7

PathDSP (2021)
[164]

7 7 7 3 7 7 7 7 7

GraphDRP (2021)
[165]

7 3 7 3 7 7 7 7 7

SAURON-RF (2022)
[29]

7 3 7 3 7 7 7 7 7

reliable SAURON-
RF (2023) [33]

7 3 7 (3) 7 7 7 7 3

LOBICO (2016) [27] 3 3 3 3 7 7 7 7 7

Stanfield (2017)
[166]

7 3 7 7 7 7 7 7 7

HNMDRP (2018)
[167]

7 3 7 7 7 7 7 7 7

Deep-Resp-Forest
(2019) [168]

7 7 7 7 7 7 7 7 7

MERIDA (2021)
[21]

3 3 3 7 7 7 7 7 7

S
em

i

Dr.VAE (2019) [129] 7 7 7 7 7 7 7 7 7

R
ei
n
f.

PPORank (2022)
[131]

7 7 7 7 7 7 7 7 7
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• security mechanisms that protect against external threats and intentional mis-
use of the system,

• safety mechanisms that protect against accidental misuse of the system

• bias-awareness and fairness of an ML system that protect against harm gen-
erated by the use of data considered sensitive, e.g., ethnicity or gender.

We refer to Qayyum et al. [169] for further discussions about these topics.

4.3 Supervised learning techniques

In Section 4.1, we have already briefly introduced the concept of supervised machine
learning. In this section, we will look at supervised ML in more depth and provide
descriptions of algorithms used or extended as part of this thesis.
Recall that in supervised learning, we are given a set of observed pairs
{(x1, y1), (x2, y2), . . . , (xN , yN)} as realizations of random variables (X1, Y1), (X2, Y2),

. . . , (XN , YN) drawn iid from a distribution with range X × Y , where xi ∈ X is
called the feature vector and yi ∈ Y the response. We assume that there is a true
functional relationship f : X → Y that we can approximate using ML techniques.
In particular, we can express this functional relationship as

Y = f(X) + ε. (4.7)

Here, ε is a random error term that typically represents measurement noise. Let
f̂ : X → Y denote the trained ML model approximating f , then f̂ induces the
prediction Ŷ that we can compare to Y to measure the goodness of our fit. Indeed,
training an ML model involves minimizing the difference between the prediction
and the observed values. Mathematically speaking, if we hypothesize that a specific
model type (hypothesis space) H containing mappings h : X → Y might be
a good fit for our problem, we obtain f̂ by minimizing over some loss function
l : Y × Y → R within an empirical risk function Remp(h) [144], i.e.,
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Remp(h) =
1

N

N∑
i=1

l(h(xi), yi) (4.8)

and

f̂ = argminh∈H Remp(h). (4.9)

By following this approach, our prediction carries a variety of uncertainties (cf.
Section 4.4): the error term ε is related to the aleatoric, i.e., stochastic uncertainty,
the choice of the hypothesis space to the model uncertainty, and the difference
between the best model from the hypothesis space and the model that we obtained
through empirical risk minimization to the estimation uncertainty.

4.3.1 Training a machine learning model

Suppose that we trained our ML method on our training observations {(x1, y1),
(x2, y2), . . . , (xN , yN)} and obtained the trained model f̂ . By design, f̂(xi) is close
to yi for all i ∈ {1, . . . , N} and a performance measure used to derive the model,
e.g. the MSE (cf. Section 4.2.2), should have a small value. However, we are not
actually interested in predicting values for our training data set since we already
know the responses. Rather, we want to select the model that generalizes well to
unseen samples. To put it differently, given unseen test observations, we want to
identify the model with the lowest test error as opposed to the lowest training error.
To understand which properties of our method play a role in selecting a model that
minimizes the test MSE for an unseen observation x, we can exploit the bias-variance
decomposition of the expected test MSE [126]

E[(y − f̂(x))2] = Var(f̂(x)) + [Bias(f̂(x))]2 + Var(ε). (4.10)

From Equation 4.10, we learn that we have to select a model with low bias and
low variance, and, since both the squared bias and the variance are nonnegative

52
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quantities, we can never obtain a model below the variance of the error ε. Indeed,
we can now draw analogies to our uncertainty definitions: Var(ε) corresponds to
the aleatoric uncertainty, Var(f̂(x)) is the amount by which f̂ would change when
trained on a different training data set and, consequently, corresponds to the estima-
tion uncertainty, and [Bias(f̂(x))]2 corresponds to the amount of error introduced
by choosing a hypothesis space H for modeling, i.e., corresponds to the model un-
certainty. Generally speaking, the higher the flexibility of a method, the lower its
bias. For example, (deep) neural networks make very few assumptions about the
underlying function to be approximated and have a very low bias. Yet, the vari-
ance increases simultaneously with the flexibility of a method given a fixed training
data set and overtraining can occur. Hence, the estimation uncertainty for neural
networks is usually rather high but could potentially be resolved by gathering more
data. On the contrary, simpler methods will often - but do not have to - result in
biased models (undertraining) of real-world data. Yet, they exhibit less variance.
When training an ML model, we should keep this so-called bias-variance tradeoff in
mind. However, as long as we have no access to unseen test data, we cannot observe
it in practice. To approximate the generalization error, we typically have to employ
resampling strategies such as k-fold cross-validation (CV)[126]. Briefly, to perform
k-fold CV, we randomly split the complete training data set into k non-overlapping
groups, called folds. Each fold i ∈ {1, . . . , k} is used as a test set once, while the
remainder of the data serves as the training set for our method. We can then use
the average error of the folds as an approximation of the generalization error:

1

k

k∑
i=1

MSEi. (4.11)

4.3.2 Considerations for drug response data

In Chapter 3, we introduced the data set we use to train and test our models. In
the following, we will briefly explain some specific issues of this data set and ML
techniques to resolve them. Specifically, we discuss the high dimensionality of the
feature space and the techniques we employed to counteract it. Additionally, we
describe a clustering algorithm that we used to discretize the inherently continuous
response.
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Dimensionality reduction

Our cancer cell line data is extremely high dimensional (P � N), a circumstance
that inevitably leads to the curse of dimensionality, i.e., the space in which our sam-
ples live is not sufficiently covered to draw conclusions on its structure [170, 171].
Consequently, reducing the dimensionality before (or during) training an ML model
is advisable. To tie up with our previous discussion on the bias-variance tradeoff,
by reducing the dimensionality, we also reduce the variance of our putative model
and minimize the risk of overfitting while we increase its bias. The specific level of
reduction in variance and simultaneous increase in bias depends on the employed
dimensionality reduction (DR) technique.
Generally speaking, dimensionality reduction techniques can be divided into two
sets of approaches: feature selection (FS) and feature extraction (FE) [172, 173].
While FS identifies a relevant subset of variables, FE generates a (smaller) set of
new ones obtained by some transformation of the original ones. Since FS approaches
preserve the structure of the feature space, they are usually considered more inter-
pretable than FE methods. However, FE methods often incur less bias than FS
approaches. For FS, three main groups can be distinguished: filter, wrapper and
embedded methods [174]. These three groups differ in how the FS interacts with the
ML model training. Briefly summarized, filter methods are applied to the data be-
fore ML model training, wrapper methods generate and evaluate subsets of features
based on the performance of the respective trained model, and embedded methods
select features during model construction. Indeed, many of the ML models we will
discuss in the ensuing sections, e.g.,random forest, boosting trees and the elastic
net, perform embedded feature selection.
Throughout this thesis, we investigate the performance of a variety of DR meth-
ods, especially in Chapter 7, where we compare a diverse set of established FE
and FS approaches. Furthermore, we developed a literature-driven FS strategy for
MERIDA, which we will present in Chapter 5. In addition, our method SAURON-
RF, which we introduce in Chapter 6 and extend in Chapter 8, employs a supervised
FS algorithm by Kwak and Choi [30] that is based on the minimum-redundancy-
maximum-relevance (MRMR) principle. In the following, we will briefly describe
this filter algorithm.
Approaches based on the minimum-redundancy-maximum-relevance principle aim
to identify a set of features with a strong dependency on the response variable,
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i.e., a large relevancy, while simultaneously exhibiting a weak dependency on each
other, i.e., having a low redundancy. We already discussed measures of dependence
between variables, such as the Pearson correlation coefficient and the Spearman cor-
relation coefficient, in the context of performance measures for training ML models
(cf. Section 4.2.2). Kwak and Choi [30] employ mutual information as a measure
of mutual dependence between variables. The mutual information between two dis-
crete random variables X ∈ X and Y ∈ Y is a symmetric measure that indicates
how much we can reduce the entropy of one variable by knowing the other variable.
With the entropy as the average level of information of a variable X ∈X given by
[175]

H(X) = −
∑
x∈X

Pr(x) · log(Pr(x)) (4.12)

and the conditional entropy defined as

H(X|Y ) = −
∑
y∈Y

∑
x∈X

Pr(x, y) · log
(
Pr(x, y)

Pr(y)

)
(4.13)

the mutual information can be defined as [175]

I(X;Y ) = H(X)−H(X|Y ) =
∑
y∈Y

∑
x∈X

Pr(x, y) · log
(

Pr(x, y)

Pr(x) · Pr(y)

)
(4.14)

It is 0 iff X and Y are independent, and its magnitude corresponds to the strength
of dependence.
The approach by Kwak and Choi represents a heuristic supervised MRMR feature
selection method typically applied as a filter before training the final ML model. In
their approach, features are greedily added to the set of already selected features
based on a tradeoff between the mutual information of the potential features with
the response and the mutual information of the potential features with the already
selected features. To this end, let F = {X1, . . . , XP} initially denote the set of all
available features and Y the response variable. Furthermore, let K be the number
of features to be selected and S = {} the set of already selected features, which is
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initially empty. Now, we iteratively add that feature Xi ∈ F to S that maximizes
the following term:

max
Xi∈F

I(Y ;Xi)−
∑
Xs∈S

I(Y ;Xs)

H(Xs)
· I(Xi;Xs) (4.15)

After a feature Xi is selected, F and S are updated:

F ← F\{Xi}, S ← S ∪ {Xi} (4.16)

This procedure is repeated until the desired number of features is selected, i.e., until
|S| = K.

Group partitioning

The cancer cell line drug response data is typically represented by a real-valued
summary metric of the dose response curve, such as the commonly used IC50. This
results in the continuous response vector y ∈ RN for one particular drug. Yet, one
might be interested in predicting only whether a specific cell line will respond to a
drug (sensitive cell line) or not (resistant cell line) instead. Indeed, this may also be
advantageous from an ML perspective since we may eliminate some aleatoric uncer-
tainty of the continuous values and, apart from that, reduce the risk of overfitting.
To this end, the continuous response has to be discretized. For the binarization of
IC50 values, Knijnenburg et al. [27] developed a heuristic outlier procedure as part
of their LOBICO method. We present this procedure in Chapter 5, where we also
discuss the LOBICO classifier. We also developed a novel drug sensitivity measure
(cf. Chapter 8), which we discretized using partitioning around medoids (PAM)
that we outline in the ensuing paragraph.
Partitioning around medoids, also known as k-medoid clustering, is an unsupervised
ML algorithm that assigns each point to one of k groups (called clusters) based on
some dissimilarity measure such as Euclidean distance [176]. More specifically, the
dissimilarity between points assigned to a cluster and the designated center point
of that cluster is minimized. In k-medoid clustering, the center point, the so-called
medoid, is an actual datapoint instead of an arithmetic mean, such as in k-means
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clustering. Generally, the PAM algorithm consists of two phases: an initialization
phase and a swapping phase. During the initialization phase, k cluster medoids are
greedily selected such that they minimize some cost function defined by the dissim-
ilarity measure. Then, the remaining points are associated with the closest medoid.
In the swapping phase, all potential exchanges (swappings) between a medoid and a
non-medoid point are considered, and it is evaluated whether they would improve the
cost. The best swapping is executed in case it improves over the current clustering.
Otherwise, the algorithm terminates.

4.3.3 Linear methods

Our previous considerations have been focused on a general description of ML model
training. In this section and the ensuing ones, we now explicitly address the question
of how we can achieve this for particular ML model types. This section is specifi-
cally dedicated to linear regression, traditionally regarded as interpretable. Regard-
ing the taxonomy in Figure 4.3, the interpretability of linear models translates to
model transparency in all three listed aspects (simulatability, decomposability and
algorithmic transparency).
For our following description of linear methods, we use X1, . . . , XP to refer to the
predictor variables, and Y denotes the response variable. For linear regression, we
assume that the true relationship between the feature variables and the response
variable is linear, i.e.,

Y = β0 + β1X1 + β2X2 + · · ·+ βPXP + ε. (4.17)

Given a feature matrixX ∈ RN×P and the corresponding response vector y ∈ RN , we
can estimate the coefficients with the ordinary least squares minimizer [177, 178]

β̂ = argminβ
N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 (4.18)

with β̂ = (β̂0, β̂1, . . . , β̂P )T . In the case of the existence of several highly correlated
feature variables, the coefficients of a linear model suffer from high variance. To
alleviate this issue, regularization techniques can be employed [127, 178]. To this
end, Hoerl and Kennard proposed the L2-penalized least squares estimate known as
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ridge regression [177]. Here, the coefficients of the ordinary least squares estimate
(cf. Equation 4.18) are shrunken by the following constraint

P∑
j=1

β2
j ≤ c, (4.19)

where c limits the size of the coefficients. By penalizing the coefficients using the
L2-norm, they can be shrunken but not set exactly to zero [178]. In order to render
a model more interpretable (in the sense of simulatability, see Figure 4.3), we might
pursue the goal of reducing several of the coefficients exactly to zero. Therefore,
Robert Tibshirani introduced the L1-penalized ordinary least squares estimate, also
known as least absolute shrinkage and selection operator (lasso) [179]. The lasso
constraint takes the following form

P∑
j=1

|βj| ≤ d, (4.20)

where d determines the amount of shrinkage. However, there are still some limita-
tions of the lasso method. We refer the reader to [178] for a thorough discussion.
Two of the arguments presented therein are the following: Firstly, if a group of
variables with high pairwise correlations exists, the lasso tends to select only one of
them instead of the whole group. Secondly, if there are more features than samples
(P > N), the lasso can select N features at most, which can lead to the neglect of
important features. As a remedy, Zou and Hastie suggested the elastic net contraint,
which is a convex combination of the ridge and lasso constraints [178]:

α
P∑
j=1

|βj|+ (1− α)
P∑
j=1

β2
j ≤ t, α ∈ [0, 1], (4.21)

given a threshold t. For the two edge cases (α = 0 or α = 1), this constraint
degenerates to the ridge and lasso constraint, respectively. Otherwise, the estimator
inherits properties of both methods: the elastic net constraint can set coefficients to
zero exactly like the lasso but also shrinks coefficients like in ridge regression [178].
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4.3.4 Tree-based methods

One of the most inherently interpretable, i.e., transparent, methods from ML are
decision trees since they mimic the human decision-making process in many aspects:
they consist of internal nodes representing decision problems, branches represent-
ing the selectable decisions, and leaves representing the final outcome of the com-
plete decision process [126]. Thus, they generate relatively simple if-then rules for
decision-making. In the following, we will first briefly describe the construction of a
single decision tree before elaborating on more complex tree-based methods. Note
that we limit the descriptions of tree-based methods to quantitative features and
response variables. Yet, tree-based methods can work with qualitative feature and
response variables as well.
Once again, let X ∈ RN×P be the feature matrix and y ∈ RN be the correspond-
ingly ordered response vector. The central model assumption of tree-based methods
is that the space in which our samples live can be divided into a set of simple,
non-overlapping box-type regions, with each region corresponding to one common
response value. Thus, building a decision tree must entail the identification of suit-
able regions R1, . . . , RL using some loss function. Let ŷRl represent the predicted
value of the l-th box, e.g., the mean response of the samples in this box. If we em-
ploy the residual sum of squares as a loss function, the goal of decision tree building
is to find boxes R1, . . . , RL that minimize [126]

L∑
l=1

∑
i∈Rl

(yi − ŷRl)2. (4.22)

A popular estimator of Equation 4.22 is a greedy algorithm known as binary recursive
splitting [126]. The algorithm starts with determining a feature variable Xj from
X1, . . . , XP and a cutpoint s that achieves the greatest reduction in error as given
below. Let Rleft(j, s) = {i|xij < s} and Rright(j, s) = {i|xij ≥ s} denote the two
emerging regions from a putative split. Then, we seek to minimize∑

i∈Rleft(j,s)

(yi − ŷRleft)
2 +

∑
i∈Rright(j,s)

(yi − ŷRright)
2. (4.23)

This procedure is repeated recursively for each region until a tree is fully grown
or some stopping criterion is fulfilled. For instance, we may stop tree splitting as
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soon as a minimal number of samples per leaf is reached. If we want to predict the
response value of a new sample x, we can trace a path from the first node (the root)
to a leaf and predict the value of the corresponding region.

Bagging and random forests

Decision trees, as described above, exhibit a high variance and are thus prone to over-
fitting. As a remedy, Leo Breiman proposed following an ensemble approach called
bagging, also known as bootstrap aggregating [180]. Bootstrapping is a resampling
method in which several new data sets are generated from an original dataset by
drawing samples with replacement. In bagging using decision trees, we first generate
B bootstrapped data sets from the original one and build a tree for each data set.
Then, we average the predictions of the B individual trees to determine the over-
all prediction (aggregation step). Later, Leo Breiman suggested further reducing
variance by decreasing the correlation between the trees by investigating a random
subset of features as splitting candidates instead of the whole feature space. This
algorithm is known as random forests [181], and we thoroughly investigate it below.
Suppose X ∈ RN×P is the model matrix, y ∈ RN the response vector, and B the
number of trees in the forest. We first draw B bootstrap data sets. For each data
set b ∈ {1, . . . , B}, we build one decision tree. For each tree, we start tree build-
ing in the root node that contains all bootstrap samples (i.e., data points that are
part of one bootstrap data set b) and repeat the following steps until some stopping
criterion, such as the minimal number of samples per leaf, is fulfilled:

1. For each current leaf node that does not yet satisfy the stopping criterion, we
draw m < P features without replacement from the set of features.

2. For each drawn feature, we assess the quality of its putative splitting points,
i.e., we determine by how much a binary division of the samples at each specific
splitting point can improve the used error measure.
To this end, let v be the current node and let δ(v) represent all bootstrap
samples that belong to this node. Note that δ(v) can contain some of the initial
samples twice and that we treat them as unique samples of the corresponding
tree for the respective equations. Let yv be the known response vector for
the bootstrap samples falling into node v and let wvn be sample weight that

60



4.3 Supervised learning techniques

reflects the desired importance of sample n. Typically, all samples are weighted
equally, and wvn = 1

|δ(v)| . However, the weights can be set to meet user-defined
properties, which we will discuss when we introduce SAURON-RF in Chapter
6.
The predicted response of our current node v is constant for each sample in
that node and given by

∀i ∈ δ(v) : ŷvi =
∑
n∈δ(v)

wvn · yvn (4.24)

The remaining error in that node can be measured using the MSE between
the known response yv and the predicted response ŷv

MSE(yv, ŷv) =
∑
n∈δ(v)

wvn · (yvn − ŷvn)2. (4.25)

For each splitting point of a feature, we can assess its quality by the improve-
ment of the error by splitting node v into the two nodes vr and vl

wan(v) · (MSE(yv, ŷv)− (4.26)

wch(vr) ·MSE(yvr , ŷvr)−

wch(vl) ·MSE(yvl , ŷvl)).

Here, wan(v), wch(vr), and wch(vl) are node-specific weights for the ancestor
and child nodes, respectively, which can for example represent the fraction of
samples assigned to a node. In particular, wan(v) = |δ(v)|

N
, wch(vr) = |δ(vr)|

|δ(v)| , and
wch(vl) = |δ(vl)|

|δ(v)| are typical choices for a regression forest [182].

3. Finally, we can use the feature and splitting point for which Equation 4.26
is maximized to divide the samples into two groups. The respective splitting
criterion of the feature then represents an internal node of the tree, and the
two groups become the children of this node.

For a new sample x ∈ RP , the prediction of a single tree b can then be calculated as
the average of the response values in the reached leaf node. Let µ be the leaf node
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that is reached by sample x, then the prediction of a single tree can be calculated
as described above (cf. Equation 4.24)

f̂b(x) =
∑
n∈δ(µ)

wµn · yµn . (4.27)

The random forest prediction can subsequently be obtained by averaging the pre-
dictions of all of the trees. Similar to the sample-specific weights, the trees can be
assigned weights that quantify their importance for the prediction and the formula
for the prediction is given by

f̂(x) =
B∑
b=1

wb(x) · f̂b(x) . (4.28)

Here, wb(x) is the tree-specific weight, which is set to 1
B

in a conventional random
forest to obtain the simple average of the trees. When we introduce SAURON-RF
in Chapter 6, we will propose other weighting schemes.
In comparison to an ordinary decision tree, random forests lack interpretability.
Thus, augmenting them with post hoc explanations in the form of feature impor-
tance values is common. One possibility to measure feature importance is via error
reduction. Here, the importance of a particular feature is given by the (normalized)
average of error reductions over all splits that feature was involved in [183].

Boosting

Another approach able to improve the predictive performance of decision trees is
known as boosting and was proposed by Robert Schapire in 1990 [184]. Instead of
fitting many trees to bootstrapped data sets of the original data set, the boosting
technique relies on fitting trees sequentially on data sets modified through previously
trained trees. Thus, the first tree is trained on the original data set. All ensuing
trees are fit using the residuals, i.e., the deviation of the predicted values from the
true values, of the current boosted forest. The boosting algorithm can be briefly
summarized as follows: Suppose X ∈ RN×P is the model matrix, y ∈ RN the
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response vector, and B the number of trees in the forest. Moreover, let d be the
number of splits in each tree and let r ∈ RN denote the current residuals. Initially,
we set f̂(x) = 0 and r = y. Tree boosting consists of the following three steps that
are executed until B trees are fit [126]:

1. We fit a tree to the current training data given by (X, r) resulting in the model
f̂ b(x)

2. We update the total model f̂(x) by adding a scaled version of f̂ b:

f̂(x)← f̂(x) + λf̂ b(x). (4.29)

Here, λ is called shrinkage parameter. It is a small positive value representing
the learning rate.

3. We update the residuals by calculating

ri ← ri − λf̂ b(xi), ∀i ∈ {1, . . . , N}. (4.30)

The final prediction of the boosted forest can be determined by calculating

f̂(x) =
B∑
b=1

λf̂ b(x). (4.31)

4.3.5 Neural networks

In the introductory section of this chapter, we already mentioned that artificial neu-
ral networks have been part of machine learning since its beginning in the 1950s.
Probably, they are the most versatile and flexible already existing ML method. They
can be utilized to solve problems from all four ML realms alike (for examples see
[185, 186, 187, 188]) and are thought to have universal approximation capability
[144], which means that they are flexible enough to safely assume that model un-
certainty disappears when using them. However, their strength can simultaneously
be considered their Achilles’ heel: their flexibility results from model complexity
in terms of (hyper)-parameters, which is coupled to relatively high estimation un-
certainty. Thus, fitting neural networks is computationally expensive. Moreover, it
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typically requires extensive data sources to alleviate estimation uncertainty. Histori-
cally speaking, neural networks were even replaced by less computationally expensive
ML methods for a certain period [189]. Owing to technological advances in hardware
and software and the availability of suitable large data sources, they, however, expe-
rienced a revival in the last decade. During the genesis of this thesis, we repeatedly
investigated neural networks for performing drug sensitivity prediction. However,
their results were not surpassing those of less computationally expensive ones such
as random forests. In the last chapter of this thesis, we will discuss the reasons for
this observation (cf. Chapter 9). Since neural networks are not the focus of this
thesis, we limit our description to specific aspects required to understand the parts
of this thesis where they are nevertheless applied.

Feedforward neural networks in supervised ML

Generally, neural networks can be described as graphs consisting of nodes repre-
senting neurons and edges representing their connections. In Figure 4.4, we show
an example of a simple fully-connected feedforward neural network as employed for
supervised learning. Feedforward neural networks can be interpreted as a special
form of directed acyclic graphs with the following topology: they comprise an input
layer that consists of nodes corresponding to predictor variables, one or several con-
secutive hidden layers that transform and forward the information from one layer
to the next, and an output layer representing the desired response variable(s). Note
that we restrict our description to a single output node in the following. The net-
work is called feedforward because there is an unidirectional flow of information
from the input layer to the output layer, and thus, no feedback between layers oc-
curs [190, 191]. Typically, each edge has an associated weight, and each node in the
hidden and output layer has a node bias. The edge weights and the node biases are
known as the parameters of a neural network that we have to determine by model
training. Moreover, each node transforms the received signal from the previous layer
by application of a (non-linear) activation function.
Mathematically speaking, we can think of a (fully-connected feedforward) neural

network as a nesting of (non-)linear functions and formulate them as described in the
following. To this end, we use X1, . . . , XP to refer to the predictor variables and Y
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Figure 4.4: Simple fully-connected feedforward neural network. This figure de-
picts an example network architecture for a simple feedforward neural network with four
input nodes and one output node.

to refer to the response variable. Let L be the number of layers in the network, and
let Kl denote the number of nodes in layer l. Moreover, we use the variable name
blc to refer to the bias of node c in layer l and wlc→d to refer to the weight of an edge
connecting node c of layer l−1 to node d of layer l. Additionally, we are given some
non-linear function σ, known as activation function, that is identical across all nodes.
One such activation function is the ReLU function σ = max(0, x), σ : R→ R+

0 . In-
deed, it could be a different function for each node of the neural network, but this
is typically not investigated. Given these variables, we assume that our response
variable Y can be expressed as

Y = σ(bL1 +

KL−1∑
k=1

wLk→1 · outL−1k ) + ε. (4.32)
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Here, the prediction, i.e., the output of the last node, is defined recursively depending
on the outputs of the nodes in the previous layer (outL−1k ). Generally speaking, it
holds that

outL−1k =

Xk, if L− 1 = 1, i.e., the previous layer is the input layer

σ(bL−1k +
∑KL−2

m=1 wL−1m→k · outL−2m ), otherwise.
(4.33)

Network training

Like all previously discussed ML models, neural networks can be trained by mini-
mizing an error function such as the mean-squared error. To this end, the training
of neural networks involves the following three steps

1. Parameter initialization: Initially, the weights and biases of the neural network
have to be fixed to some numerical values. There exists a variety of initial-
ization methods (e.g., Glorot initialization [192] or He initialization [193]), yet
their discussion is out of the scope of this thesis.

2. Network application and error calculation: The network is applied to the train-
ing data, resulting in the network predictions for all training samples. The
performance of the current neural network is determined by comparing the
predictions to the known actual values within an error function.

3. Parameter adaptation: Since the goal of the neural network training is the
minimization of the error, we have to adapt the weights and biases so that
the error is reduced. Typically, the so-called gradient descent algorithm is
employed for this purpose [190]. Roughly speaking, we calculate the gradient
of the error function, i.e., the first derivative of the error function with respect
to all model parameters (weights and biases), to determine the direction of the
steepest ascent. Then, each parameter is updated by slightly moving in the
direction of its negative partial derivative, i.e., the direction of the steepest
descent. In practice, the computational cost of computing the gradient is
reduced by the application of the backpropagation algorithm, which is based
on the idea of recursively applying the chain rule of calculus [194, 190].

The latter two steps are repeated until some stopping criterion is satisfied.
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4.4 Reliability estimation via conformal prediction

4.4 Reliability estimation via conformal prediction

The term conformal prediction was coined by Vovk, Gammermann, and Shafer in
2005 to describe a procedure that delivers statistically confident predictions for an
arbitrary learning algorithm [195, 196]. To achieve confidence in predictions (for new
samples previously unseen by the learning algorithm), their procedure relies on a
specific similarity of the new sample to the training samples, which they apparently
denote as conformity [195]. In Section 4.2, we discussed that creating trust in ML
is a critical challenge for (healthcare) applications. In this section, we will outline
how conformal prediction (CP) can be employed for this purpose.
Recall that the predictions delivered by ML models can readily be used to assess the
overall model performance in terms of conventional error measures such as mean-
squared error as long as the true response is known. While the evaluation of perfor-
mance measures certainly indicates some form of reliability, we cannot use it to tell if
a prediction for a previously unseen sample with an unknown response will be close
to its actual but unknown value, which is what we refer to as reliability (cf. Section
4.4). Conformal prediction is a reliability estimation framework that can sit on top
of various ML methods given that they provide a notion of predictive (un)certainty
[197]. For random forest classifiers, such a notion of certainty can be represented by
the proportion of trees that voted for the predicted class. Intuitively speaking, the
more trees vote for a particular class, the more likely it becomes that this prediction
is correct. Similarly, we may use some form of quantile regression as a notion of cer-
tainty for regression models, e.g., for random forest regressors. The CP framework
then converts this notion into a mathematical rigorous certainty guarantee. For a
user-specified maximal allowed error rate α, CP constructs a (preferably non-trivial)
valid prediction set (classification) or interval (regression), which then contains the
true value with a certainty of almost exactly 1 − α. Note that it is furthermore
possible to interpret these sets or intervals via p-values assigned to the members.
While we did not pursue this approach in this thesis, the interested reader can refer
to [196] for more information.
In the following, we first introduce a general conformal prediction procedure
that employs a notion of (un)certainty in a score function, also referred to as
(non-)conformity measure, to convert it into a rigorous (un)certainty guarantee by
delivering valid prediction sets and intervals. After describing the conformal predic-
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Figure 4.5: CP procedure. This figure depicts a typical workflow of a conformal
prediction procedure.

tion algorithm, we present the score functions that we evaluated in Chapter 8 in the
context of reliability estimation for anti-cancer drug sensitivity prediction.

4.4.1 Conformal prediction procedure

Training supervised ML models generally includes partitioning the complete data
set into a disjoint training and test data set (cf. Section 4.3.1). While the training
data set usually serves for the training of the parameters of a particular ML model,
the test set is used to evaluate the performance of this model on data previously
unseen by the model. Conformal prediction needs a third disjoint data set, the so-
called calibration data set employed to calculate statistics on the (un)certainty of
the model. For our application case, let Z = (X,y) be the complete data set with
X ∈ X as feature matrix and y ∈ Y as correspondingly ordered response vector.
Note that y can be discrete or continuous. Let Ztrain, Zcal, and Ztest be the disjoint
training, calibration, and test set, respectively. Moreover, let Ntrain, Ntest, and Ncal

denote the number of samples in each of these data sets, and let α ∈ [0, 1] be the
desired maximal error rate. Then, CP can be divided into the ensuing four steps
[197]

1. First, we train the chosen ML model using Ztrain.

2. Then, we define a score function s(x, y) that is based on the given notion of
(un)certainty by the model.
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3. Next, we apply the trained model to Zcal, and calculate one score for each
calibration sample. Based on the resulting score distribution, we derive a
threshold q̂ that corresponds to the allowed error rate α.

4. Lastly, we calculate the corresponding scores for Ztest and use q̂ to form inter-
vals (regression) or sets (classification).

In Figure 4.5, we visualize the CP procedure. By performing CP as outlined above,
we construct intervals or sets that contain the true response with a probability of
almost exactly 1 − α, which are also called valid prediction intervals or sets. More
specifically, let C(xi) represent this interval or set for xi ∈ Xtest, CP guarantees
marginal coverage (certainty) [197]

1− α ≤ Pr(yi ∈ C(xi)) ≤ 1− α +
1

Ncal + 1
. (4.34)

This equation is referred to as marginal coverage property of CP since the certainty
(coverage) is averaged (marginalized) over the randomness in the test and calibra-
tion data points [197]. For this guarantee to hold, we do not need to assume that
our random variables are drawn iid. It suffices that they are drawn exchangeable
[197], i.e. their underlying joint probability distribution is invariant to finite permu-
tations. From Equation 4.34, we can also deduce that the more calibration samples
are available, the lower the upper boundary becomes, i.e., the coverage would be-
come exactly 1 − α for Ncal → ∞. Indeed, the relationship between Ncal and the
observed coverage can be described analytically. We refer to [198, 197] for in-depth
information on this issue.
Instead of marginal coverage, we would usually like to guarantee conditional cover-
age, meaning that we guarantee the coverage for a particular sample, i.e., we would
like to guarantee

Pr(yi ∈ C(xi)|xi) ≥ 1− α. (4.35)

While it is impossible to achieve conditional coverage with CP in all possible sce-
narios according to Vovk [198], it can be approximated with appropriate scores
[197]. Therefore, we also assessed our models and the ensuing score functions in
that respect in Chapter 8.
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Figure 4.6: True-class (TC) score example. This figure exemplifies how to apply
CP to an unknown sample using the True-Class score with different maximal allowed error
rates.

4.4.2 Classification scores

As mentioned above, CP consists of four steps. In particular, step two requires defin-
ing a score function based on the notion of (un)certainty given by the model. The
choice of score function heavily influences the quality of results [197]. Angelopoulos
and Bates [197] thoroughly discuss a variety of criteria that can play a role in select-
ing the best score function for different application cases. In the following, we will
briefly describe the score functions evaluated for reliable SAURON-RF presented in
Chapter 8. We start with classification scores and finally present a regression score
based on quantile regression. For the following descriptions, let d denote a discrete
response vector potentially containing k different classes, y denote a continuous re-
sponse vector and X be the feature matrix.

True-class (TC) score. Arguably, the most simple scoring function that An-
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gelopoulos and Bates [197] represents the probability of misclassifying a sample.
Given a sample x of class d, it is defined as

sTC(x, d) = 1− P̂r(d|x) . (4.36)

Here, P̂r(d|x) is an estimate of the probability Pr(d|x) based on the trained classifier.
For a random forest, P̂r(d|x) is the proportion of trees that voted for the true class
d of the calibration sample x. The True-class score results in high values if the true
class of sample x had a low probability and vice versa. As described in Step 3 of
the CP procedure, we calculate this score for each sample xj in Zcal, resulting in a
score distribution. Based on this distribution, we derive the threshold q̂ that tells us
which classes to add to our prediction set to satisfy the marginal coverage property
in Equation 4.34. In particular, we calculate q̂ as a modified (1-α)-quantile of the
distribution. We must modify the usual (1 − α)-quantile to account for the finite
number of calibration samples Ncal. Thus, we determine q̂ as the d(Ncal+1)(1−α)e

Ncal
-

quantile. Note that d(Ncal+1)(1−α)e
Ncal

can be larger than 1. In that case, we cannot
satisfy the desired maximal error rate α for the given number of calibration samples
Ncal. For a new sample xi, we do not know the true class. Hence, we calculate the
score for all classes and add those with a score smaller or equal to q̂ to the prediction
set, i.e.,

C(xi) = {cl|sTC(xi, cl) ≤ q̂, ∀l ∈ {1, . . . , k}} (4.37)

In Figure 4.6, we exemplify how to apply the TC score to an unknown sample using
different values of α.

Summation (Sum) score. Angelopoulos and Bates propose another score function
based on ideas from [199, 200]. We call this score function Summation score since
it builds on the concept of summing up the probabilities of all classes until the true
class is reached. The Summation score for a sample x with true class d is calculated
as follows

1. Firstly, we generate a prediction for sample x and sort the resulting estimated
probabilities for all classes cl ∈ {1, . . . , k} decreasingly from highest to lowest
probability. For random forest classifiers, this probability is again given by the
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proportions of samples that voted for a class. W.l.o.g., let u = [c1, . . . , ck] be
this sorted list for the sample x.

2. Secondly, we add up the probabilities of all classes in this sorted list until the
true class d of sample x is reached:

sSum(x, d) =
d∑

o=c1

P̂r(o|x) (4.38)

Roughly speaking, the behaviour of the Summation score can be summarized as
follows. If the Summation score results in high values, it was either because the cor-
rect class was predicted with high probability or the sample was misclassified and
several class probabilities had to be summed up until the true class was reached. If
the score is comparably low, the correct class was predicted with a low probability.
Once again, we calculate the score for each sample in Zcal to obtain the score distri-
bution. To subsequently derive the threshold q̂ that we need to decide whether to
include a class into our prediction set for a new sample, we calculate the adjusted
(1−α)-quantile q̂ as described for the True-class score. For a new sample xi, we do
not know the true class. However, we can use q̂ to identify all classes that need to
be added to the prediction set C(xi) by performing the two steps above in a slightly
modified manner. At first, we sort the predicted class probabilities from highest to
lowest. Again, w.l.o.g. let ui = [c1, . . . , ck] be this sorted list for sample i. We obtain
C(xi) by adding all classes until, in sum, their predicted class probabilities exceed
q̂

C(xi) = {cl |l ∈ {1, . . . ,max{l′ :
l′∑
u=1

P̂r(cu|xi) < q̂}+ 1}} (4.39)

Mondrian (Mon) score. The Mondrian score is a type of class-conditional CP
in which the marginal coverage from Equation 4.34 is extended to hold for each
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available class, i.e., the predicted sets for a new sample xi from the test set should
fulfil [201, 197, 202]

Pr(di ∈ C(xi)|di = cl) ≥ 1− α, ∀l ∈ {1, . . . , k}. (4.40)

Instead of generating one score distribution in the calibration step of CP, the gen-
eral idea of Mondrian CP is to perform the calibration step in each class separately.
Thus, using the True-class score, Mondrian CP can be conducted as follows: we
calculate sTC for each sample from the calibration data set and divide the resulting
distribution into k sub-distributions, one distribution for each class. We then deter-
mine the modified (1 − α)-quantile for each distribution, resulting in k thresholds
q̂l, l ∈ {1, . . . , k}. For a new sample xi, we do not know the true class. Thus, we
calculate the score for each class and add a class cl to the prediction set C(xi) if it
fulfills sTC(xi, cl) ≤ q̂l.

4.4.3 Regression score

As outlined in Section 4.4.1, regardless of whether classification or regression is per-
formed, the CP procedure can be applied as long as an appropriate score function
is provided. Romano et al. developed a CP method based on quantile regression
[203]. In principle, we can already employ quantile regression itself to provide an
estimate of the certainty of the regression: we can train one model f̂α

2
that predicts

the α
2
-quantile and another model f̂1−α

2
that predicts the 1− α

2
-quantile and expect

the interval [f̂α
2
, f̂1−α

2
] to contain the true response with 1 − α certainty. However,

we do not know how accurate the predicted intervals are because they were calcu-
lated on the training data set. Thus, Romano et al. define a score function, which
we also call Quantile (Qu) in the following, that quantifies whether the samples
from the calibration data set were within the signified quantile interval as often as
expected. For a sample x from the calibration data set with its known response y,
this score function represents the signed distance between y and the nearest interval
boundary

sQu(x, y) = max

f̂α2 (x)− y

y − f̂1−α
2
(x)

(4.41)
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The sign of this score function is positive if y is outside of the interval and negative
if y is within the interval. Again, we calculate sQu for each sample of the calibration
data set and receive a score distribution on which we determine q̂ as the modified
(1 − α)-quantile of the distribution. If the quantile regression achieves the desired
coverage, q̂ will be approximately 0, and the predicted interval for a new sample xi
will remain unaltered. Otherwise, the interval will be widened (q̂ > 0) or narrowed
(q̂ < 0), i.e., the predicted interval is

C(xi) = [f̂α
2
(xi)− q̂, f̂1−α

2
(xi) + q̂]. (4.42)
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linear programming

In Chapter 4, we outlined which requirements a drug sensitivity prediction approach
should meet at best to become trustworthy. Interpretability, i.e., the ability of a
model to generate human comprehensible decisions, plays a major role in this spe-
cific area and, more generally, in the healthcare domain [204]. However, many ML
models suffer from a lack of inherent interpretability (cf. Table 4.1 in Chapter 4). For
example, (deep) neural networks, which recently gained much attention within the
drug sensitivity prediction community (cf. Table 5.1), often deliver well-performing
models with respect to error measures. Yet, their interpretation is impeded by com-
plex model structures.
To address the demand for model interpretability, Knijnenburg et al. developed a
classifier named LOBICO [27]. LOBICO is an integer linear programming formula-
tion aiming to deliver Boolean logic-based rules as output. These rules then specify
under which conditions a sample will be sensitive or resistant to a particular drug.
In principle, Knijnenburg et al. build on work by Kamath et al. , who show how to
solve the Boolean function synthesis problem (BFSP) with integer linear program-
ming [205]. Boolean function synthesis is concerned with logically combining input
variables such that an output variable is explained. For drug sensitivity prediction,
the input is given by the model matrix that for each sample contains binary val-
ues for a set of variables (features) while the output is the binary drug response.
Knijnenburg et al. use mutation data of 60 genes as input and a binarized version
of IC50 values as output. To determine a binary drug response, they introduced a
novel heuristic outlier procedure inspired by the previous observation of Garnett et
al. that most cell lines will not be responsive to a (targeted) anti-cancer treatment
[14]. This approach leads to a binarization threshold that Knijnenburg et al. then
leverage to retain some of the continuous information in their model via sample-
specific weights. Since the space of possible logic combinations grows rapidly when
increasing the size of a logic formula or the number of employed input features,
LOBICO suffers from runtime issues. Furthermore, LOBICO and most approaches
for drug sensitivity prediction do not consider a priori pharmacogenomic knowledge
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in terms of known biomarkers of drug response (cf. Table 5.1). While easily inter-
pretable models reflecting molecular mechanisms of drug sensitivity are desirable,
overly small models may not suffice to mirror the complexity of biological processes
involved in cancer development and anti-cancer drug resistance. Hence, larger yet
easily interpretable models are required to analyse cancer cell sensitivity.
To this end, we propose MERIDA (MEthod for Rule Identification with multi-omics
DAta), a new ILP formulation based on the LOBICO approach. Analogous to LO-
BICO, we rely on an ILP formulation to synthesize a Boolean function. While LO-
BICO is principally able to fit any logic function to the given data, MERIDA is only
allowed to infer a restricted Boolean formula, reducing the runtime tremendously.
Consequently, MERIDA can build more comprehensive rules and simultaneously en-
ables the consideration of more input features. In addition to using a predefined form
of the Boolean formula, we also investigated the influence of other weight functions
on the runtime of LOBICO and MERIDA. Our analyses demonstrate that different
weight functions can further reduce the runtime while delivering almost identical
rules as output. Finally, we integrate biomarkers of drug response into the Boolean
formulas and gauge their effect on the prediction quality. In order to generate com-
prehensive lists of sensitivity/resistance biomarkers, we leveraged information from
various well-established cancer-related databases: IntOGen ([22]), COSMIC ([23]),
CIViC ([24]), OncoKB ([25]), and the Cancer Genome Interpreter (CGI) ([26]).
However, a priori knowledge might not only be obtained from databases but can
also be newly generated by interpretable models such as MERIDA. Therefore, we
also applied MERIDA iteratively, i.e., we added features detected in previous runs
as prior knowledge into the next run. Our results show that the iterative approach
not only improves the statistical performance but also identifies more comprehensive
sets of putative sensitivity biomarkers.
The remainder of this chapter is structured as outlined in the following: We first
explain the ILP formulation of LOBICO. Afterwards, we introduce our novel ap-
proach, MERIDA, highlighting differences and commonalities to LOBICO. Lastly,
we present the results of a case study using the GDSC data set that demonstrates
the superiority of MERIDA over LOBICO.
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Table 5.1: Comparison between different supervised ML methods with respect
to used base method and biomarker integration. In this table, we compare var-
ious supervised ML approaches for drug sensitivity prediction. We list their underlying
base methodology and information on whether they incorporated knowledge on a priori
biomarkers for drug response prediction.
Name and author Base method Biomarker in-

tegration

Menden et al., 2013 [152] neural network 7

Zhang et al., 2015 [153] similarity network 7

LOBICO by Knijnenburg et al., 2016 [27] integer linear program 7

Stanfield et al., 2017 [166] similarity network 7

SRMF by Wang et al., 2017 [154] matrix factorization 7

HARF by Rahman et al., 2017 [155] random forest 7

HNMDRP by Zhang et al., 2018 [167] similarity network 7

Matlock et al., 2018 [156] random forest, neural network, K nearest
neighbour

7

KRL by He et al., 2018 [157] kernelized rank learning 7

RWEN by Basu et al., 2018 [158] elastic net 7

CDRscan by Chang et al., 2018 [159] neural network 7

QRF by Fang et al., 2018 [31] random forest 7

NCFGER by Liu et al., 2018 [160] similarity network 7

DeepDR by Chiu et al., 2019 [161] neural network 7

Deep-Resp-Forest by Su et al., 2019 [168] random forest 7

netBITE by Oskooei et al., 2019 [162] random forest 7

Deng et al., 2020 [163] neural network 7

PathDSP by Tang et al., 2021 [164] neural network 7

MERIDA by Lenhof et al., 2021 [21] integer linear program 3

GraphDRP by Nguyen et al., 2022 [165] neural network 7

SAURON-RF by Lenhof et al., 2022 [29] random forest 7
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Authors’ contributions
This chapter is based on my publication MERIDA: a novel Boolean logic-
based integer linear program for personalized cancer therapy [21] in terms
of content and text. Hans-Peter Lenhof and I conceived the initial idea
of developing a drug sensitivity prediction model using integer linear pro-
gramming (ILP), which is the basis of the MEthod for Rule Identification
in multi-omics DAta (MERIDA). A first version of MERIDA was then pre-
sented in my master’s thesis (2018), which was mainly supervised by Lara
Schneider. Until its publication in 2021 [21], this method has undergone
substantial development including the incorporation and analysis of a larger
drug sensitivity data set, the introduction of a substantially refined feature-
selection and a priori knowledge annotation strategy, as well as changes in
the ILP model equations itself. I implemented the software, conducted the
computational experiments, and drafted the manuscript for this publica-
tion. Together with the remaining authors, I also analyzed and evaluated
the results.

5.1 Using logic models to predict drug sensitivity in

cancer

MERIDA (MEthod for Rule Identification in multi-omics DAta) aims to build easily
interpretable logic rules that specify whether a cell line is sensitive or resistant to
a drug. To this end, we decided to pursue the approach by Knijnenburg et al.,
who employ integer linear programming for synthesizing a Boolean function from a
binary model matrix and a binarized drug response vector. By reducing the search
space of allowed logic combinations, MERIDA can investigate a considerably higher
input feature space and generate larger rules than LOBICO. In addition, we enabled
the integration of prior knowledge in terms of known biomarkers of drug response,
increasing the comprehensiveness of our output rules even more. In the following,
we first discuss LOBICO before introducing MERIDA.
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5.1.1 LOBICO

With LOBICO, Knijnenburg et al. aimed to address the demand for interpretability
in drug sensitivity prediction. They decided to achieve this goal by formulating an
integer linear program for Boolean function synthesis.

Discretization of drug sensitivity measurements

However, drug sensitivity prediction using the prevailing drug sensitivity measures,
e.g., IC50 or AUC, is inherently a regression task. Thus, Knijnenburg et al. had to
discretize the continuous drug response to apply a logic modelling approach. Mo-
tivated by the previous observation of Garnett et al. [14] that most cell lines will
be non-responders to a specific (targeted) drug, they developed a heuristic outlier
procedure for distinguishing sensitive cell lines from resistant ones. Briefly, they first
gather all IC50 values for a specific drug and perform kernel density estimation. The
highest point of the kernel density is then interpreted as the mean of the distribu-
tion of resistant cell lines, which they subsequently model as a normal distribution.
By evaluating the corresponding cumulative normal distribution, they then derive
the drug-specific threshold t. Roughly speaking, the threshold t corresponds to an
input value of the cumulative normal distribution for which this cumulative normal
distribution evaluates to a small value. Cell lines with an IC50 value below the
threshold are called sensitive, the remaining ones are called resistant.
After binarization of the response, Knijnenburg et al. argue that the additional in-
formation such a continuous value may possess should not be discarded. Therefore,
they introduce the sample-specific weights as an additional input. We will describe
these weights in the ensuing section.

LOBICO ILP

The ILP formulation of LOBICO is based on work by Kamath et al. [205] who
formulate the Boolean function synthesis problem as an ILP. Briefly, the goal of
Boolean function synthesis is to find a Boolean function that satisfies constraints
imposed by an (incompletely) specified truth table. In case of drug sensitivity pre-
diction, the incompletely specified truth table is defined by the binary model matrix
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Figure 5.1: LOBICO ILP formulation. This figure depicts the LOBICO ILP approach
by Knijnenburg et al. [27]. In particular, it is shown how the model matrix X and the
response vector d become integrated in the ILP formulation for the Boolean function
synthesis. Moreover, the connections between the variables are visualized.

X ∈ {0, 1}N×P , which represents the P variables of N samples that should be com-
bined in the logic formula, and the corresponding binary model output d ∈ {0, 1}N

denoting the desired evaluation of the logic formula for all samples. Knijnenburg et
al. then search for a Boolean function of a given size that best reflects the assumed
underlying Boolean relationship between X and d. However, two main differences
exist between classical Boolean function synthesis with ILPs and LOBICO: Knij-
nenburg et al. allow mismatches between the Boolean function and the response,
and they weight each sample with a factor that mimics its importance. The ILP
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for this task can be formulated as shown in the following. As introduced earlier, let
X ∈ {0, 1}N×P be the model matrix and d ∈ {0, 1}N be the response vector. Here,
N is the number of samples, and P is the number of features. Then, Knijnenburg
et al. search for a Boolean function in disjunctive normal form (DNF). Note that
any Boolean function can be expressed in DNF. A Boolean function is in disjunctive
normal form if it consists of a disjunction (OR-gate) of conjunctions (AND-gate)
of literals (atomic variables or their negation). To this end, let K be the number
of disjunctive terms and M be the maximal number of conjunctions allowed per
disjunctive term. Note that these two values are hyperparameters that must be set
during model training. Furthermore, let spk denote the selection variable of a feature
p ∈ {1, . . . , P} in the disjunctive term k ∈ {1, . . . , K}, i.e.,

spk =

1 if feature p is in the kth disjunctive term

0 if feature p is not in the kth disjunctive term
(5.1)

Analogously, let s′pk be the selection variable for the negation of the feature p ∈
{1, . . . , P} in the disjunctive term k ∈ {1, . . . , K}, i.e.,

s
′

pk =

1 if the negation of feature p is in the kth disjunctive term

0 if the negation of feature p is not in the kth disjunctive term
(5.2)

In each disjunctive term, we may only allow either spk or spk ′ to be present since oth-
erwise, the logical formula would be led ad absurdum. Thus, we need the following
constraint to ensure the latter:

∀p ∈ {1, . . . , P} : ∀k ∈ {1, . . . , K} : spk + s
′

pk ≤ 1 (5.3)

Furthermore, we require that each disjunctive term contains at most M elements:

∀k ∈ {1, . . . , K} :
P∑
p=1

(spk + s
′

pk) ≤M (5.4)

Let now tnk be a set of auxiliary variables representing the disjunctive terms k ∈
{1, . . . , K} for all samples n ∈ {1, . . . , N}. In order for our constraints to depict
a logical formula in DNF for each sample n ∈ {1, . . . , N}, each disjunctive term
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needs to consist of conjunctions of literals. This can be mathematically expressed
as follows using logic AND gates:

∀n ∈ {1, . . . , N} : ∀k ∈ {1, . . . , K} :

P · tnk ≤
∑

∀p:xnp=1

(1− s′pk) +
∑

∀p:xnp=0

(1− spk) ≤ tnk + P − 1 (5.5)

Consequently, one disjunctive term k ∈ {1, . . . , K} is now given by the N -
dimensional vector tk, i.e., tk = (t1k, . . . , tNk)

T . Finally, our synthesized Boolean
function needs to represent the disjunction of the tk. Thus, we generate the N -
dimensional output vector d

′
via a logic OR gate between the tk:

∀n ∈ {1, . . . , N} : d
′

n ≤
K∑
k=1

tnk ≤ K · d′n (5.6)

This output vector is the prediction based on the currently used logic formula and
should resemble our actual response vector d as closely as possible. This means that
we have to find the logic formula that reduces some error function most. To this
end, LOBICO minimizes the weighted sum of incorrectly inferred samples

minimize
∑
∀n:dn=0

(wn · d
′

n)−
∑
∀n:dn=1

(wn · d
′

n). (5.7)

If the true response dn is 0 and the prediction d
′
n is 1, the error increases by wn,

while the contribution to the error is 0 if d′n is also 0. If the true response dn is 1 and
the prediction d′n is 0, the contribution to the error is 0, while the error decreases by
wn if d′n is also 1. Hereby, wn is a sample-specific importance factor, which allows
us to put emphasis on particular cell lines. Given the continuous response vector y,
these weights correspond to the absolute distance of a particular value yn from the
threshold t and can be calculated as

wn =
|yn − t|

2 ·
∑
∀m:dm=dn

|ym − t|
(5.8)

In the following, we call this weight function linear. We provide an overview of the
variable chaining of LOBICO in Figure 5.1.
Apart from this core ILP formulation, Knijnenburg et al. provide two constraints
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for controlling the sensitivity and specificity of the derived Boolean formula. More
specifically, these constraints exclude any Boolean function as a solution that does
not satisfy a predefined minimal requirement on the sensitivity or specificity, which
can, however, ultimately lead to infeasibility of the ILP. Let Sensmin be the de-
sired minimal sensitivity and Specmin be the desired minimal specificity. The two
constraints are given by

∑
∀n:dn=1

(wn · d
′

n) ≥ Sensmin ·
N∑
n=1

(wn · dn) (5.9)

and

∑
∀n:dn=0

(wn · (1− d
′

n)) ≥ Specmin ·
N∑
n=1

(wn · (1− dn)) (5.10)

If all sample-specific weights equal 1,
∑N

n=1(wn · dn) is the number of positives and∑
∀n:dn=1(wn · d

′
n) the number of true positives. Likewise,

∑N
n=1(wn · (1− dn)) is the

number of negatives and
∑
∀n:dn=0(wn · (1 − d

′
n)) is the number of true negatives.

Hence, the constraints exactly represent a minimum requirement for sensitivity and
specificity, respectively. If the sample-specific weights are set differently, Knijnen-
burg et al. refer to these equations as continuous versions of sensitivity and specificity
that factor in the relative importance of samples.

5.1.2 MERIDA

Similar to LOBICO, the ILP formulation of MERIDA aims to deliver well-
interpretable logic rules explaining drug sensitivity and resistance. While Knijnen-
burg et al. did not restrict their rules to adhere to a specific form, traversing the full
space of possible logic combinations becomes extremely computationally expensive,
which limits the applicability of the approach. Thus, we propose a modified version
of the ILP that tremendously reduces the runtime, allowing for the investigation of
larger input feature sets and larger rules. Moreover, we enable the integration of a
priori knowledge in form of known biomarkers of drug response, which increases the
comprehensiveness of our rules even more.
Briefly, we model the prediction vector d

′
as a logic combination of only two terms.
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Figure 5.2: MERIDA ILP formulation. In this figure, we depict MERIDA using
the same schematic display format we employed for the LOBICO ILP in Figure 5.1 .
For MERIDA, we show how the model matrix X, the response vector d, and the known
biomarkers of drug response are integrated in the ILP formulation. Moreover, the connec-
tions between the variables are visualized.

One term (s) represents features that may cause or explain drug sensitivity, and
one term (r) represents features that may cause or explain drug resistance. Within
each term, we connect the features via a disjunction, while the two terms are joined
using a conjunction between the sensitivity-associated term and the negation of the
resistance-associated term. In the ensuing section, we present the constraints and
the objective function of the corresponding ILP. In Figure 5.2, we visualize MERIDA
using the same schematic display format we employed for LOBICO in Figure 5.1.

84



5.1 Using logic models to predict drug sensitivity in cancer

Let X ∈ {0, 1}N×P once again be the model matrix and d ∈ {0, 1}N the binary
response vector. For MERIDA, we decided to synthesize only Boolean formulas
adhering to the scheme described above. The logic rule should only consist of two
terms: one term representing all sensitivity-associated alterations and one repre-
senting all resistance-associated alterations. Consequently, we need two types of
selection variables that indicate whether a feature p ∈ {1, . . . , P} is part of the
former or latter set, i.e.

ap =

1 if feature p is selected as sensitivity-associated

0 else
(5.11)

and

bp =

1 if feature p is selected as resistance-associated

0 else
. (5.12)

We ensure that a feature cannot be part of both sets simultaneously by using the
following constraint

ap + bp ≤ 1, ∀p ∈ {1, . . . , P}. (5.13)

Moreover, we restrict the total number of features to be selected to M :∑
p∈{1,...,P}

ap + bp ≤M. (5.14)

Note that M is the only hyperparameter of our model. The selection variables now
need to be combined into the logic formula. Firstly, we join the putative sensitivity-
associated features ap into the binary vector s of dimension N via a logic OR

sn ≤
∑
p∈Gn

ap ≤ |Gn| · sn, ∀n ∈ {1, . . . , N} . (5.15)

Here, Gn is the set of features that is altered in cell line n. The logic OR ensures
that sn is equal to 1 iff at least one sensitivity-associated alteration is contained in
Gn, i.e.

∑
p∈Gn ap ≥ 1. More specifically, the lower boundary ensures that sn cannot

be equal to 1 if
∑

p∈Gn ap = 0 and the upper boundary ensures that sn cannot be
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equal to 0 if
∑

p∈Gn ap ≥ 1

Analogously, we join the putative resistance-associated features bp into the binary
vector r of dimension N :

rn ≤
∑
p∈Gn

bi ≤ |Gn| · rn, ∀n ∈ {1, . . . , N} (5.16)

Finally, assuming that a cell line is only sensitive to a drug if a sensitivity-inducing
but no resistance-inducing alteration is present, we combine the vectors s and r to
the binary prediction vector d

′
by a logic AND between the vector components of s

and the negation of r:

0 ≤ sn + (1− rn)− 2 · d′n ≤ 1, ∀n ∈ {1, . . . , N}. (5.17)

Here, d′n will be equal to 1 iff the cell line n is predicted to be sensitive and 0
otherwise. Finally, we then employ the error function from LOBICO as objective
function to obtain the prediction vector d

′
that resembles d most

min
∑
∀n:dn=0

wn · d′n −
∑
∀n:dn=1

wn · d′n

(5.18)

While LOBICO uses only linear weights, we also consider quadratic and cubic weight
functions that more strongly emphasize the distance of the continuous drug response
value yn from the binarization threshold t

wn =
|yn − t|v

2 ·
∑
∀ym:ym=yn

|ym − t|v
(5.19)

with v ∈ {2, 3}. The usage of a quadratic or cubic weight function can be advan-
tageous. In our experiments (cf. Section 5.4.1), we show that these alternative
weighting schemes significantly reduce the runtime.

86



5.1 Using logic models to predict drug sensitivity in cancer

Inclusion of drug response biomarkers

We already discussed (cf. Chapters 3 and 4) that data from multi-omics measure-
ments are usually very high-dimensional while the number of samples is compara-
tively low. In computer science, this problem is known as the curse of dimensionality
and severely impacts the search for relevant alterations using machine learning. To
counteract this issue, we decided to implement a literature-driven feature selection
and annotation strategy in front of our method, the details of which will be presented
in-depth in Section 5.2. Briefly summarized, we filter the alterations of the used data
types for known cancer genes and annotate them with their assumed oncogenicity
and known relationships to drug response. In this paragraph, we focus on why the
annotation with known biomarkers of drug response is especially desirable and how
easily this can be accomplished for MERIDA or similar logic modelling approaches.
For various alterations, it is already known whether they confer sensitivity or re-
sistance to a certain drug [25]. However, other (yet unknown) alterations may
annihilate their expected effect. Apart from that, many sensitivity or resistance de-
terminants are still assumed to be unknown, especially rarer variants. Phenomena
like these severely impede the search for relevant features based on purely compu-
tational methods, e.g., ML techniques, given the high dimensionality of the feature
space. Often, it is even barely possible to rediscover known biomarkers. By directly
incorporating known drivers of drug response, an algorithm can more easily learn
patterns truly related to drug response.
For MERIDA, integrating known sensitivity- or resistance biomarkers is fairly sim-
ple: the a priori knowledge imposes constraints on the corresponding selection vari-
ables, e.g., if it is known that a mutation is responsible for sensitivity to the inves-
tigated drug, the corresponding selection variable ap can be set to 1. If it is known
that a feature is related to drug resistance, the corresponding selection variable bp
can be set to 1. Importantly, allowing the incorporation of a priori biomarkers in
this form enables an iterative application of MERIDA, where knowledge generated
in previous runs of MERIDA can serve as a priori knowledge for the next run.
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5.2 Data preparation

For the analyses presented in this chapter, we employed various publicly accessible
resources: The cancer cell line data was downloaded from the Genomics of Drug
Sensitivity in Cancer (GDSC) website [19]. Here, we use the pre-processed muta-
tion data (whole exome sequencing with Agilent Sure- SelectXT Human All Exon
50Mb bait set) from Release 6.1, the copy number data (Affymetrix SNP6.0 Ar-
ray) from Release 6.1, the gene expression data (Affymetrix Human Genome U219
Array) from Release 7.0, and drug data from Release 8.0, which can be divided
into two sub-datasets depending on the experimental assay type (GDSC1: Syto60
and resazurin assay, GDSC2: CellTiterGlo). As briefly mentioned in the previous
paragraph, we developed and implemented a literature-driven feature selection and
annotation strategy, for which we leveraged information from established cancer-
related databases, i.e., IntOGen (Release 2016.5) [22], COSMIC (Version v86) [23],
CIViC (Release 01-Oct-2018) [24], OncoKB (Version v1.16) [25], and CGI (Version
2018/01/17[26], as well as curated information from a publication by Sanchez-Vega
et al. [206]. In the following, we describe how these different data types contribute
to the generation of interpretable logic models for drug sensitivity prediction.

5.2.1 Drug response vectors

In this chapter, we concentrate our analyses on mTOR pathway inhibitors since the
mTOR pathway is known to play a pivotal role in cancer development and progres-
sion [206, 68] and, thus, it is already relatively well investigated. In particular, for
various mTOR inhibitors, there is already knowledge on drug response biomarkers
(cf. Appendix Tables B.1 - B.11 ), which we can directly integrate into our logic rules
and improve the interpretability of MERIDA. In total, we investigated 37 different
mTOR inhibitors. If a drug was screened for GDSC1 and GDSC2, we decided to
use the newer GDSC2 database if there were sufficient cell lines available (>700 cell
lines). Since the presented models rely on binary data to generate Boolean rules for
drug sensitivity prediction, we have to binarize the given continuous logarithmized
IC50 values from the GDSC. By applying the heuristic outlier procedure described
in Section 5.1.1, we obtain drug-specific thresholds that can be used to construct
one binary response vector per drug, specifying for each cell line whether it is sen-
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sitive (1) or resistant (0). In Figure 5.3, the resulting sensitive-to-resistant ratio is
depicted for all drugs in GDSC1. The analogous plot for GDSC2 can be found in
the Appendix B.1. It is clearly visible that for most drugs the resistant cell lines
outnumber the sensitive cell lines, i.e., almost all drug data sets exhibit a high class
imbalance. On average, 10% of cell lines are sensitive to a particular drug treatment.
To investigate the performance of MERIDA when there is almost no class imbalance,
we decided to analyze the four drugs with the highest number of sensitive cell lines
in GDSC1 and GDSC2 (the p53(R175) mutant reactivator NSC319726 (GDSC1),
the rRNA synthesis inhibitor CX-5461 (GDSC1), the selective PARP1/2 inhibitor
Niraparib (GDSC2), and the PARP inhibitor Talazoparib (GDSC2)) in addition to
the 37 mTOR inhibitors. The drug-specific threshold cannot only be used to parti-
tion the data but can help retain some of the continuous information from the IC50
values in the binarized data. As explained in Section 5.1.1, Knijnenburg et al. sug-
gest employing the distance from the threshold as weights reflecting the importance
measure of the cell lines. Since the sum of the weights for the sensitive cell lines is
equal to the sum of the weights for the resistant cell lines, this can be interpreted
as a direct countermeasure against the class imbalance.

5.2.2 Input feature matrix

Generally, the binary input feature matrices of the drugs consist of gene expres-
sion, copy number alteration, and mutation features. Each feature is represented
by a binary vector indicating whether each considered cell line is affected by the
corresponding aberration (1) or not (0). We constructed the input feature matrices
taking into account the mentioned cancer-related databases containing information
on oncogenicity and known association to drug response of alterations. We will now
describe how we integrate this knowledge.

Gene expression features: The gene expression features of the matrix are obtained
by performing the following steps:

• From the available genes of the GDSC gene expression matrix, we consider
only those that belong to the IntOGen cancer driver gene list (459 genes).
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Figure 5.3: Sensitive-to-resistant ratio in GDSC1. In this figure, we depict the
fraction of sensitive cell lines for each drug from GDSC1 when binarizing the logarithmized
IC50 values with the procedure suggested by Knijnenburg et al. [27]. The coloring indicates
whether a drug has been screened with more than 700 cell lines (red) or not (black).
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• For each of the selected genes, two binary vectors are added to the feature
matrix: one binary vector that specifies whether the gene is up-regulated in
the considered cell lines (1) or not (0) and one binary vector that specifies
whether the gene is down-regulated (1) or not (0). The binarization was
accomplished by the calculation of gene-wise z-scores and selection of the top
5% up- and down-regulated cell lines per gene. Note that we used only the
training cell lines to determine the sample mean and standard deviation and
also used these values to obtain the z-score for the test set.

In summary, we obtained up to 918 gene expression features.

Copy number features: Similar to the gene expression data, we also filter the GDSC
CNV data: we consider only genes that are listed in the copy number driver list by
Sanchez-Vega et al. [206] (140 genes). For each of these genes, two binary feature
vectors are added to the feature matrix: one vector that represents for each cell line
whether a copy number gain is present (1) or not (0) and an analogous vector for
copy number loss. Hence, this leads to a CNV feature list with up to 280 elements.

Mutation features: The GDSC mutation data is given as point mutations of genes
within the cell lines. However, using each point mutation as a feature would lead
to a sparse, high-dimensional matrix, posing a problem to ML methods. Thus, we
consider only genes contained in the IntOGen driver list (459 genes) and gather all
mutations assigned to these genes in a filtered mutation list. For each gene in this
list, we combine mutations with similar functional annotations into four composite
vectors representing four oncogenicity states: oncogenic gain-of-function, oncogenic
loss-of-function, neutral, and status unknown. We use the annotations from CGI,
CIViC, COSMIC, and OncoKB to define and derive the composite features by per-
forming the steps described below:

• We annotate the alterations from the filtered mutation list with an oncogenic-
ity status from the four mentioned states.

• Afterwards, all mutations with the same annotation in one particular gene
are merged into one binary feature vector. Consequently, the resulting feature
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vector contains a 1 iff at least one of the alterations is present in a cell line
and 0 otherwise.

By doing so, we consider up to 1836 mutation features. If frameshift or truncating
mutations present in our samples have not been annotated in one of the databases,
we add these as extra features to our input matrix since we consider them deleterious.

5.2.3 Integration of drug response biomarkers

In the previous paragraphs, we outlined how to integrate the oncogenicity of alter-
ations into the input feature matrix. In this paragraph, we explain how to incorpo-
rate available prior knowledge on sensitivity or resistance biomarkers for a particular
drug. To this end, we have to perform additional processing steps for each drug sep-
arately. After filtering the CNV and mutation data using the list by Sanchez-Vega
et al. and the IntOGen driver list, respectively, we define a sensitivity status for the
remaining alterations. This sensitivity status can have one of the following states:
sensitive (alteration is predictive of a positive drug response), not sensitive (alter-
ation has been shown not to be predictive for a positive drug response), resistant
(alteration is predictive of negative drug response), not resistant (alteration has been
shown not to be predictive for a negative drug response) and status unknown (cf.
Appendix Tables B.1 - B.11 for an overview of the alterations with known drug re-
sponse association per drug). For all alterations with unknown status, we construct
the feature matrix as described in the previous section. For all other alterations,
we can, however, define and construct composite features, i.e., we merge all alter-
ations with the same state into a binary feature vector. This vector contains a 1 iff
at least one of the alterations with the same state is present in the considered cell
line and 0 otherwise. Suppose at least one of the databases more generally stated
that oncogenic loss-of-function, oncogenic gain-of-function, truncating mutations,
or frameshift mutations of a gene are linked to drug sensitivity or resistance. In
that case, we add all alterations of a sample with a matching label in the corre-
sponding gene to the composite features. Note that all features contributing to a
drug response composite feature are not integrated into the oncogenicity-associated
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composite features.

5.2.4 Model training

In this chapter, we showcase the capabilities of MERIDA. To this end, we generally
focus on a thorough comparison of MERIDA to its direct competitor, LOBICO,
with respect to runtime, statistical performance, and selected biomarkers. However,
we also benchmark MERIDA against baseline classifiers, i.e., k nearest neighbours
(KNN) [207] and random forests (RF) [181], regarding statistical performance. For
most experiments, we use the data and data processing steps as outlined above (cf.
Section 5.2). However, the runtime analysis was conducted on a simplified data
set solely prepared and used for this purpose. In the following, we describe the
preparation and training procedure of all methods in detail.

Preparation of runtime analysis

We performed the runtime benchmarking between MERIDA and LOBICO on the
Rapamycin drug data set and the mutation data of GDSC Version 6.1. The Ra-
pamycin data set of GDSC Version 6.1 comprises IC50 values for roughly 350 cell
lines that we binarized using the LOBICO threshold provided in the publication by
Iorio et al. [19], in which this version of the GDSC data set was introduced, and
LOBICO was already applied to generate logic rules explaining drug sensitivity and
resistance. For this analysis, we decided to construct a simple input feature matrix
containing mutation features only. To this end, we established a gene-wide mutation
status, i.e. we call a gene mutated (feature value of 1) iff at least one mutation is
present and not mutated (feature value of 0) otherwise. This means that we do
not distinguish between different mutations or classes of mutations for this analysis.
Since we wanted to assess the influence of the number of input features on the time
needed to fit a model, we compiled 16 data sets with varying feature set sizes in the
range from 25 to 400 features by a step size of 25. We used the IntOGen cancer driver
list to filter and prioritize the genes through the frequency of mutations within a
gene as provided by IntOGen [22]. We tested MERIDA and LOBICO with different
hyperparameters including the three different weight functions (linear, quadratic,
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and cubic) and different number of input features. We performed the calculations
on a compute server with four Intel(R) Xeon(R) CPU E5-4657L v2 processors with
2.40GHz clock rate. IBM ILOG CPLEX Optimization Studio V12.6.2 for C++ was
employed to formulate and solve the ILP. CPLEX was run using 32 cores and a de-
terministic parallel mode. Each experiment was repeated 10 times if not prohibited
by a high runtime.

Preparation of statistical performance and biomarker analysis

Except for the runtime analysis, we benchmarked MERIDA using the data process-
ing and annotation scheme described in Section 5.2. As mentioned in that section,
we focused our analyses on mTOR pathway inhibitors since, for many of them,
comprehensive knowledge of drug response biomarkers exists, which we can directly
incorporate into MERIDA. To assess the effect of these biomarkers on prediction
performance, we generally investigated three analysis settings:

• Setting 1: the available drug response biomarkers are not included in the input
feature matrix, i.e., the matrix is constructed as if there was no biomarker
information

• Setting 2: the available drug response biomarkers are part of the input feature
matrix as a specific composite feature (cf. Section 5.2.3), and the value of the
corresponding ILP feature variable is fixed in advance of solving the ILP (cf.
Section 5.1.2)

• Setting 3: the available drug response biomarkers are part of the input feature
matrix, but the value of the corresponding feature variable is determined by
the (ILP) model

We can merely carry out analyses for Setting 1 if there is no a priori biomarker
knowledge for a particular drug. We report the statistical performance during
cross-validation (CV) and on a test set. To this end, we divide each drug data
set consisting of the input feature matrix and the binarized drug response into a
training (80%) and a test (20%) set by performing a stratified sampling with re-
spect to the cancer site. This partition into training and test set is identical for
all methods. On the training set, we then conduct a 5-fold CV to determine the
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best hyperparameters. Note that the CV fold division can vary between methods.
We then trained a final model on the complete training data employing the best
hyperparameter combination from CV and applied this model to the test set.

5.3 Implementation and data deposition

The implementation of LOBICO and MERIDA was accomplished with C++14 and
a CMake-based build system. Using standard software engineering techniques, we
kept the implementation modular so that it could be easily extended with novel
ILPs for Boolean function synthesis. We employed IBM ILOG CPLEX Optimiza-
tion Studio V12.6.2 for C++ to formulate and solve the ILPs. The resulting C++
program can be called from the console. It requires a simple configuration file in
txt format containing model hyperparameters and file paths as input and delivers
a custom txt file with Boolean rules and performance information as output. We
deposited the C++ code alongside example files on our publicly available GitHub:
https://github.com/unisb-bioinf/MERIDA.git.
Apart from the core ILP models, we also filed the implementation of the feature
annotation and selection strategy and the implementation of the baselines meth-
ods on this GitHub repository. The feature annotation and selection strategy was
implemented with python. The heuristic outlier procedure for binarising the drug
response values is written in R, and the baseline methods were implemented using
the caret package [208].

5.4 Results

The number of already known cancer-associated genetic and molecular variants is
enormous [22, 23, 24, 25]. Apparently, they not only determine cancer development
and progression but also influence therapy responsiveness. Yet, due to the com-
plexity of this disease, many contributing factors and their interactions still remain
to be elucidated. With MERIDA, we pursued the goal of developing an approach
able to handle this variety of features in order to discover logical rules that may
serve as a basis for hypothesis generation concerning the anti-cancer drug response
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5 Rule identification using integer linear programming

of tumours. While MERIDA is similar to LOBICO, our method has a significantly
reduced runtime, which allows it to handle large feature sets and construct more
comprehensive rules. In addition to that, MERIDA directly accounts for known
drug response biomarkers if desired.
In the following sections, we will first discuss the runtime advantages of our method
in comparison to LOBICO. Then, we will examine the statistical performance of
the methods. Here, we also show that MERIDA performs significantly better than
baseline machine learning methods such as random forests and k-nearest neighbors.
Lastly, we show that MERIDA is able to identify biomarkers for drug sensitivity.

5.4.1 Runtime analysis

At first, we applied LOBICO and MERIDA to the specially prepared runtime data
sets to compare their runtime with respect to the number of input features and vary-
ing model hyperparameters. As model hyperparameters, we investigated the three
different weight functions as well as the maximally allowed number of selectable
features, i.e., the parameter M of MERIDA (cf. Section 5.1.2) and the parameters
K and M of LOBICO (cf. Section 5.1.1). In Figure 5.4, we exemplarily plotted the
results of MERIDA models with M ∈ {2, 4, 8} compared to a 4-feature sized model
(K = 2,M = 2) of LOBICO, which is the largest model with both M > 1 and
K > 1 that we could solve in a reasonable amount of time.
In Figure 5.4, we can observe that the runtime of both MERIDA and LOBICO is de-
pendent on the used weight function. The original linear weight function of LOBICO
consistently has the highest runtime for all tested parameter combinations. For a
4-feature-sized model (M = 1, K = 4, M = 4, K = 1, M = 2, K = 2), the runtime
of LOBICO can, on average, across all runtime data sets be reduced by a factor
of 2.17 and 3.47 by employing a quadratic or cubic weight function, respectively.
For MERIDA, the use of a quadratic or cubic weight function is also advantageous.
MERIDA with a quadratic or cubic weight function is, on average, 1.35 and 1.65
times faster than the linear version. The direct comparison between LOBICO and
MERIDA furthermore reveals that the runtime of MERIDA is not only rising more
slowly with an increasing number of input features but is also considerably lower.
For the linear weight function, for example, MERIDA can obtain a 4-feature sized
model (M = 4) 3.61 times faster than LOBICO’s K = 1,M = 4 model, 71.79 times
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faster than LOBICO’s K = 4,M = 1 model, and 641.97 times faster than LO-
BICO’s K = 2,M = 2 model on average across the different input matrix sizes. By
using the quadratic or cubic function for MERIDA, further speed-ups up to a factor
of 1147.6 can be achieved. The most extreme values for speed-up can be observed
when comparing LOBICO’s K = 2,M = 2 model (linear weight function) with
MERIDA’s M = 4 model (cubic weight function) for the input matrix size of 400
features. Here, a speed-up factor of 5775 could be observed. To conclude, MERIDA
can consider more features in the input matrix and construct larger models. More-
over, since MERIDA has only one hyperparameter (M), fewer models need to be fit
during tuning in comparison to LOBICO with two hyperparameters (K and M).
For MERIDA, we additionally analyzed whether the runtime can be improved by
iteratively increasing the model size instead of fitting a model of a particular size
in one shot. The details of this analysis can be found in the Appendix B. Briefly,
we perform the iterative extension of models as described in the following: we first
select the best model among models with M ∈ {1, . . . , 6} using Youden’s J (sensi-
tivity + specificity -1) as selection criterion. Then, we interpret the selected features
as a priori biomarkers and utilize them as the basis for the next, larger model. We
repeat this procedure by iteratively enlarging M by 4 until the desired model size is
reached. By this iterative application of MERIDA, we can generate more compre-
hensive models with larger values of M significantly faster than in one shot (by a
factor of 25 on average). Additionally, the resulting models deliver similar features
to those generated in one shot.
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Figure 5.4: Results of runtime analysis. The runtime analysis was conducted on a
small data set (350 samples) with varying feature set sizes in the range from 25 to 400
features and each experiment was repeated 10 times if not prohibited by high runtime.
The figure depicts the mean runtime (plotted on a log2-scale) of LOBICO and MERIDA
for different numbers of input features, weight functions, and hyperparameters.
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Figure 5.5: Comparison between LOBICO and MERIDA. In this figure, we present
the averaged statistical performance across all drugs (A) without a priori knowledge and
(B) with a priori knowledge. Shown is the mean performance and standard deviation
during cross validation as well as the test error.

5.4.2 Statistical performance analysis

As outlined in Section 5.2, we mainly analyzed 37 mTOR pathway inhibitors since
these are a relatively well-studied class of drugs with which we can assess the capa-
bilities of MERIDA, particularly concerning integrating drug response biomarkers.
Since there is an unfavourable ratio between sensitive and resistant cell lines of 1:10
for almost all of them, we additionally opted for investigating the four drugs with
the highest number of sensitive cell lines: NSC319726, CX-5461, Niraparib, and Ta-
lazoparib. In the following, we first present a direct comparison between LOBICO
and MERIDA. Afterwards, we briefly discuss the performance of MERIDA in com-
parison to two baseline classifiers, i.e., KNN and RF.
Unfortunately, fitting LOBICO models was extremely time-consuming even for
2-feature-sized models (cf. Section 5.4.1 and Appendix B), which is why we lim-
ited our comparison of LOBICO to MERIDA to six mTOR inhibitors (Rapamycin,
Temsirolimus, Omipalisib, AZD8055, Dactolisib, and Voxtalisib) in addition to the
four drugs with the best class balance. In Figure 5.5, the corresponding resulting
statistical performances are depicted for the three settings introduced in Section
5.2.4: the available drug response biomarkers are not included in the input feature
matrix (Setting 1), the available drug response biomarkers are part of the input
feature matrix as a specific composite feature and the value of the corresponding
ILP feature variable is fixed in advance of solving the ILP (Setting 2), the avail-
able drug response biomarkers are part of the input feature matrix but the value
of the corresponding feature variable is determined by the ILP (Setting 3). A di-
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rect comparison between MERIDA and LOBICO in Settings 1 and 3 shows that
MERIDA has a higher average sensitivity across all drugs and lower average speci-
ficity. Since there is a high class imbalance in favour of the resistant cell lines for
many of the drugs, the high sensitivity, i.e., correct identification of the sensitive
cell lines, indicates a more balanced overall model fit for MERIDA. The inclusion
of the sensitivity biomarkers (Setting 2) should, in general, improve the sensitivity
of MERIDA even more. Actually, the a priori knowledge improves the average CV
sensitivity while decreasing CV specificity. The average test sensitivity also slightly
increases. However, when considering the test performances individually (per drug),
we observed that it improved for Rapamycin, CX-5461, and Talazoparib, while it
did not for Temsirolimus and Dactolisib. In Section 5.4.3, we explore why the a
priori knowledge seems less beneficial than expected.
Next, we tested whether the performance can be improved when integrating the
most informative features from previously calculated models as a priori knowledge
into new models. Here, we added the features from the current best model as a
priori knowledge to the next model to be fitted. To this end, we fixed the corre-
sponding ILP variables to 1 and then solved the ILP again. The best model was
selected based on Youden’s J (sensitivity + specificity -1). We observe that by it-
erative repetition of this process, the performance can be improved for the tested
drugs compared to the first application of our method (cf. Appendix Figure B.3).
For example, the model after the fourth iteration performs best for Niraparib across
all tested settings.
We also compared MERIDA to the two baseline classifiers RF and KNN on the
complete set of investigated drugs (41) using the receiver operating characteristic
(ROC) and sensitivity as model selection criteria during CV. In Figure 5.6, we ex-
emplarily depict the performance for RF with sensitivity as the model selection
criterion. The corresponding plot using the ROC as a selection criterion can be
found in Appendix Figure B.10. Moreover, analogous plots for KNN are also shown
in Appendix B. Generally, our results for RF and KNN confirm that standard ma-
chine learning approaches do not account for the class imbalance without specific
countermeasures such as upsampling or sample-specific weighting. We will further
delve into this topic in Chapter 6. Clearly, MERIDA addresses the class imbalance
issue by calculating sample-specific weights. By comparing the results of KNN and
RF to those for MERIDA shown in Figures 5.7 and 5.8, it can, thus, be seen that
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Figure 5.6: RF performance using sensitivity as selection criterion. This figure
depicts the statistical performance of the best RF model in Setting 1 for all 41 drugs using
sensitivity as selection criterion.

MERIDA outperforms RF and KNN. Regarding the different weight functions, we
could not identify one with the overall best performance. However, on average,
the linear weight function generates the most balanced fits, and the cubic function
generates the least balanced ones. Considering the fact that both the cubic and
quadratic weight functions usually have a tremendously lower runtime, we argue
that the quadratic weight function should be preferred.
The analyses thus far dealt with the full pan-cancer data set from the GDSC. Since
it is well-known that the cancer type plays a role in drug response, we also car-
ried out analyses for sub-groups of cell lines. When dividing the GDSC data set
into single sites, many of them will be relatively small, exacerbating the curse of
dimensionality. Therefore, we opted for two groups of cell lines with a considerable
amount of cell lines: haematological (i.e., leukaemia, lymphoma, and myeloma) and
non-haematological cancer cell lines. The former comprises 160 cell lines, and the
latter comprises approximately 700 cell lines. After dividing the two groups, we
prepared the data sets as described in Section 5.2.4. As expected, the statistical
performance decreased for both groups in comparison to the pan-cancer analysis
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Figure 5.7: MERIDA performance in Setting 1 for all 41 drugs.This figure depicts
the statistical performance of the best MERIDA model in Setting 1 for all 41 drugs using
the three different weight functions.

(cf. Appendix B), a phenomenon that may be attributed to the reduced number of
cell lines.
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Figure 5.8: Averaged MERIDA performance in Setting 1. This figure depicts the
averaged statistical performance of the best MERIDA model in Setting 1 for all 41 drugs
using the three different weight functions.

5.4.3 Selected biomarkers

Lastly, we wanted to assess the relevance of the selected features of MERIDA. To
this end, we compare them to the feature sets generated by LOBICO for the 10
investigated drugs in the previous section and then provide an interpretation in the
corresponding biological context.
When analyzing the similarity of the selected feature sets between LOBICO and
MERIDA for each drug separately, it becomes apparent that these sets significantly
resemble each other (see Appendix Figure B.29 and Table B.25, Fisher’s p-value <
0.05 ). However, since MERIDA allows larger models, it detects additional biomark-
ers that may influence drug sensitivity. We also analyzed the similarity of the models
between the different weight functions. We observed that the selected feature sets
are very similar (cf. Appendix Figures B.30 and B.31 and Tables B.23 and B.24),
which reinforces the formerly given advice to opt for the quadratic weight function
when performing an analysis.
To gain insight into the biological relevance of the selected features, we started by
simultaneously considering the resulting models of all mTOR pathway inhibitors.
One sensitivity feature consistently selected across almost all mTOR inhibitors is
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low expression of the tight junction protein 1 (TJP1), a member of the membrane-
associated guanylate kinase (MAGUK) family of proteins. It plays a vital role in
cell-cell communication, and it has recently also been shown to be implicated in
anti-cancer drug sensitivity [209]. To test whether this observation is a general fea-
ture of sensitive cell lines rather than an mTOR pathway inhibitor-specific feature,
we performed an enrichment analysis with the GeneTrail 3 C++ library [210] as
follows: For each drug, we sorted the cell lines by decreasing sensitivity, i.e. by in-
creasing logarithmized IC50 values. As a category, we define all cell lines for which
TJP1 expression is low (same z-score-based definition as used for the binarization
of the gene expression values, cf. Section 5.2) and carry out an enrichment analysis,
i.e. for each drug, we test for an enrichment of this category at the top or bottom
of the cell line list using a Kolmogorov-Smirnov test. Interestingly, TJP1 seems
to be a key sensitivity determinant for the vast majority of drugs (258/320 drugs
in GDSC1, 156/175 drugs in GDSC2). We repeated this type of analysis for all
of the selected gene expression features and could identify several of the selected
features as being also of broad importance to a variety of drugs (for further details
and the results of this analysis, please refer to Appendix Tables B.26 and B.27).
For example, NCKAP1 low expression (239/320 drugs in GDSC1, 156/175 drugs in
GDSC2) and PTPRF low expression (205/320 drugs in GDSC1, 150/175 drugs in
GDSC2) also seem to influence the sensitivity to various drugs. NCKAP1, whose
low expression was detected as sensitivity-associated for AZD8055 by our analysis,
is part of the WAVE complex that regulates actin filament organization. Moreover,
NCKAP1 has been shown to promote tumor progression in specific mice melanoma
cells [211]. With this potential oncogenic role, NCKAP1 expression might be a use-
ful marker for the malignancy grade of cell lines that influences the susceptibility
to drug treatments. Similarly, PTPRF, which MERIDA identified as a sensitivity
factor of Rapamycin, was recently found to promote tumor progression by activating
WNT signaling in colorectal cancer [212]. Thus, low expression of PTPRF could
classify cell lines as less malignant and, as a consequence, might improve treatment
outcome prediction.
When explicitly investigating the results for Setting 3, in which the ILPs can decide
on whether to select the a priori knowledge features of drug response, we observe
that neither LOBICO nor MERIDA opts for these variables (cf. Appendix Section B
for all output rules). This indicates that from an ML perspective, their integration is
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not favourable. We wanted to identify putative causes for this lack of performance.
Therefore, we exemplary investigated how the drug response biomarkers distribute
across the Rapamycin sensitivity scale. Indeed we find that literature biomarkers
do not accumulate at the top (sensitive end) of this cell line list. On the contrary,
these alterations usually do not affect the most sensitive cell lines. Furthermore,
some predictive biomarkers from the literature seem to be more informative than
others. For example, the well-studied PTEN loss and certain PTEN loss-of-function
mutations seem to be rather predictive for the sensitivity of Rapamycin. In con-
trast, other features such as STK11 loss or FBXW loss are predominantly present in
the resistant group, although there exists literature evidence that these alterations
support sensitivity as well [213], [214]. There are various explanations for this phe-
nomenon: There can be differences in the strength of the predictive biomarkers due
to differing roles of distinct biomarkers in biological pathways. Furthermore, the
cell lines are usually affected by various mutations that typically influence several
biological pathways, which can, in turn, downgrade the importance of a single pre-
dictive biomarker.
A group of cell lines that repeatedly stood out in our analyses, i.e., the haemato-
logical cell lines, may be responsible for some of the abovementioned results. In
particular, we found that the haematological cell lines are enriched at the top - the
most sensitive end - of almost all sorted drug response lists (cf. Appendix Figures
B.13 and B.14 for mTOR inhibitors). Thus, it is not unlikely that some of the iden-
tified biomarkers reflect the heightened susceptibility of haematological cell lines to
anti-cancer treatments rather than actual drug responsiveness. This explanation
also coincides with similar observations by Sharifi-Noghabi et al. [215].

5.5 Discussion

A major goal of personalized medicine in cancer is optimizing anti-cancer drug treat-
ment based on measurements of different genetic and molecular characteristics of
cancer cells. Here, the ability of a model to provide interpretable decisions is of
utmost importance and poses a challenge to current ML methods. Not only should
the model structure and results be amenable to human reasoning, but the current
body of knowledge should also be considered.
To this end, we devised MERIDA, an integer linear programming formulation de-

104



5.5 Discussion

rived from LOBICO, a similar method by Knijnenburg et al. While LOBICO can fit
any Boolean formula to a given data set, we decided to restrict the space of permis-
sible logical functions to reduce the runtime, which should enable MERIDA to fit
larger models and integrate more input features. Indeed, we showcase that reducing
the space of allowed logic combinations accelerates the runtime of the correspond-
ing branch-and-cut algorithm tremendously. Additionally, our proposed weighting
schemes as importance measures for the cell lines in the objective function improved
the runtime of MERIDA (and LOBICO) even further. Meanwhile, the selected fea-
tures of LOBICO and MERIDA are similar for the small models LOBICO can fit.
Due to the reduced runtime, MERIDA, however, can handle considerably larger
input feature sets and construct larger models. Despite the reduced space of logic
combinations, the statistical performance of MERIDA is similar to or superior to
LOBICO. In particular, MERIDA achieves superior results with respect to the sta-
tistical sensitivity measure, which is of particular importance for unbalanced data
sets with a low amount of true positives.
We also investigated another option for improving the prediction models: integrat-
ing prior knowledge. While this could be implemented for any logical model, the
systemic integration of predictive biomarkers has not been conducted for previously
published logical models. This knowledge can stem from biomarker databases or
be newly acquired by our own method. By integrating known biomarkers of drug
response into our models, we can guide them towards learning why a known effect
does not occur and identify drivers in samples with no already known drug re-
sponse association. Indeed, by using knowledge from biomarker databases, we could
improve the statistical performance of some of the drugs. Additionally, we could en-
hance the statistical performance by iteratively running our new method and adding
biomarkers (features) identified by previous runs to the next model. Here, our re-
sults indicate that the iterative application provides similar models compared to the
one-shot approach with a significant speed-up.
Nevertheless, the statistical performance should still be improved. An important fac-
tor influencing the performance is the choice of the used features. Feature selection
or dimension reduction is usually indispensable to counteract the curse of dimen-
sionality present for such large multi-omics data sets as provided by the GDSC. We
decided to do a literature-driven feature selection with curated cancer driver lists
to focus on alterations that are most likely involved in therapeutic responsiveness.
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However, by restricting our models to known cancer-associated genes, we neglect
the importance and discovery of novel drug-gene associations. In Chapter 6, we will
pursue the opposite strategy and select features based on their statistical association
with the drug response, and in the subsequent chapter, i.e., Chapter 7, we more gen-
erally gauge the influence of feature selection and dimension reduction techniques
on the performance of various ML methods. Apart from the feature selection or
dimensionality reduction technique, incorporating additional feature types, such as
epigenomic data, may improve the performance and interpretability of the results.
In this chapter, we devised a classifier whose resulting logical models can be used
to identify effective drugs for a given cell line or tumour. However, a central task in
personalized medicine is to find the best drug or a suitable combination of drugs for
a specific cell line. To this end, the effective drugs have to be prioritized, which can
be achieved by performing regression. In Chapter 6, we start addressing this issue
by developing a simultaneous regression and classification method. In Chapter 8,
we then combine this method with a novel drug sensitivity measure and a reliability
estimation framework to achieve reliable drug prioritization.
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In Chapter 5, we already discussed that the high specificity of (targeted) anti-cancer
agents leads to a severe underrepresentation of sensitive cell lines in the GDSC can-
cer cell line panel. Consequently, classifiers that do not take any countermeasures are
prone to poor statistical performance for sensitive cell lines. Yet, the correct iden-
tification of sensitive cell lines is essential since they represent cases of treatment
success. To counteract this class imbalance in MERIDA, we followed the approach
by Knijnenburg et al. [27] and pursued the strategy of integrating sample weights
that reflect the importance of the cell lines. In particular, we and Knijnenburg et
al. opted for sample weights reflecting continuous sensitivity values.
While the class imbalance problem is commonly discussed and addressed in the ML
literature, the analogous regression problem, i.e., regression imbalance, has hardly
been investigated [28]. The regression imbalance problem is defined as a system-
atic under- or overestimation of values at the edges of a distribution, while these
more extreme values represent cases of particular interest. We can easily translate
this concept to the drug sensitivity prediction domain: the sensitive cell lines, i.e.,
cell lines with a high sensitivity to a drug, are of utmost importance, yet regressors
would systematically underestimate their response since the majority of cell lines has
a low sensitivity. The first contribution of this work is to demonstrate that regres-
sion imbalance indeed occurs for a multitude of ML methods, i.e., neural networks,
random forests, boosting trees and the elastic net, in the context of drug sensitivity
prediction. These methods learn to predict drug sensitivity values around the mean
drug response well but fail to deliver reasonable predictions for the highly sensitive
cell lines.
In the drug sensitivity prediction literature, only a few approaches directly tackled
this problem (cf. Table 6.1): Basu et al. [158] proposed an iterative response-
weighted elastic net, where in each iteration more weight is placed on the extreme
values at the leftmost end (high sensitivity) of the response distribution. To define
this leftmost end, they employ an approximation for the lower limit of the 90% con-
fidence interval. However, the lower limit of the 90% confidence interval does not
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necessarily correspond to the set of sensitive cell lines for each drug.
For random forests, the tendency to predominantly predict values around the mean
was already described as well [156, 216]. Although not initially designed to cir-
cumvent this issue, the HARF (Heterogeneity-Aware Random Forests) approach by
Rahman et al. [155] can nevertheless help. By integrating cancer types as classes
into the leaf nodes of a conventional random forest regressor, Rahman et al. per-
form cancer type prediction. This prediction is subsequently used to weight the
trees for the regression task. As a consequence, HARF delivers continuous predic-
tions around the mean of each integrated cancer type. The success of this procedure
depends on the used cancer types: if cancer types substantially differ with respect
to their average drug responses, the HARF method results in accurate predictions
and outperforms conventional regression random forests [155]. Thus, for each drug,
Rahman et al. consider only cancer types with sufficiently different average drug
responses and neglect all other available cancer types. In practice, they usually even
limit their analyses to two cancer types and, hence, dismiss large portions of the
data.
To directly address regression and class imbalance, we propose our novel approach
SAURON-RF (SimultAneoUs Regression and classificatiON Random Forests). More
generally speaking, SAURON-RF simultaneously predicts continuous and discrete
drug sensitivity values by exploiting the mechanics behind HARF. In particular, we
suggest three main extensions (cf. Figure 6.1):

1. Instead of using cancer types, we propose to employ a partition into sen-
sitive and resistant cell lines as a class assignment for SAURON-RF. Hence,
SAURON-RF inherently meets the demand for distinct average drug responses
per class without the disadvantage of sample exclusion.

2. We suggest counteracting class imbalance and regression imbalance by using
either upsampling techniques or calculating sample-specific weights.

3. We introduce alternatives to the tree weighting scheme by Rahman et al. to
further improve the regression performance.

In the following, we start with describing the HARF concept. Afterwards, we give a
comparative overview of our novel approach, SAURON-RF. Lastly, we present the
results of a comprehensive study on the GDSC data set, in which we demonstrate
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that regression imbalance is present for a variety of ML regression methods and
that SAURON-RF effectively counteracts not only regression imbalance but also
class imbalance.

Table 6.1: Comparison between different supervised ML methods for drug
sensitivity prediction. In this table, we state whether a method performs regression,
classification, or both and whether the data-inherent imbalance between sensitive cell lines
and resistant cell lines has been considered for model design.
* Rahman et al. [155] and Matlock et al. [156] do not explicitly address class or regression
imbalance. However, the approach by Rahman et al. can be employed for this purpose and
the approach by Matlock et al. has a positive effect on the performance of the sensitive
cell lines.

Name and author Supervised technique Class imbalance
addressed

Regression
imbalance
addressed

Menden et al., 2013 [152] regression (neural network) 7 7

Zhang et al., 2015 [153] regression (dual-layer inte-
grated drug-cell line similarity
network)

7 7

LOBICO by Knijnenburg et
al., 2016 [27]

classification (integer linear
program delivering Boolean
rules)

3 7

Stanfield et al., 2017 [166] classification (cell line and
drug proximity networks)

7 7

SRMF by Wang et al., 2017
[154]

regression (similarity regular-
ized matrix factorization)

7 7

HARF by Rahman et al., 2017
[155]

regression (random forest aug-
mented with cancer types)

7 (3)*

HNMDRP by Zhang et al.,
2018 [167]

classification (similarity net-
works)

7 7

Matlock et al., 2018 [156] regression (model stacking) 7 (3)*
RWEN by Basu et al., 2018
[158]

regression (response-weighted
elastic net)

7 3

CDRscan by Chang et al., 2018
[159]

regression (convolutional neu-
ral networks)

7 7

QRF by Fang et al., 2018 [31] regression (quantile regression
random forest)

7 7

NCFGER by Liu et al., 2018
[160]

regression (neighbor-based col-
laborative filtering with global
effect removal)

7 7

Continued on next page
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Table 6.1 – continued from previous page

Name and author Supervised techn. CI addressed RI addressed

DeepDR by Chiu et al., 2019
[161]

regression (neural networks) 7 7

Deep-Resp-Forest by Su et al.,
2019 [168]

classification (deep cascaded
forest)

7 7

netBITE by Oskooei et al.,
2019 [162]

regression (biased tree ensem-
ble)

7 7

Deng et al., 2020 [163] regression (neural network) 7 7

PathDSP by Tang et al., 2021
[164]

regression (neural network) 7 7

MERIDA by Lenhof et al.,
2021 [21]

classification (integer linear
program delivering Boolean
rules)

3 7

GraphDRP by Nguyen et al.,
2022 [165]

regression (neural network) 7 7

SAURON-RF by Lenhof et al.,
2022 [29]

regression and classification
(simultaneous regression and
classification random forest)

3 3

Authors’ contributions
This chapter is based on my publication Simultaneous regression and clas-
sification for drug sensitivity prediction using an advanced random forest
method [29] in terms of content and text. The idea of the SAURON-RF
methodology was coined by me. For the corresponding publication, I also
implemented the SAURON-RF software and drafted the manuscript, while
the therein presented computational experiments were performed by me and
Lea Eckhart. In particular, Lea Eckhart implemented the feature selection
method, and conducted the comparison experiments with methods other
than SAURON-RF. Moreover, the design of the study was yielded from
Lea Eckharts master’s thesis, which I supervised. All authors discussed the
results and commented on the manuscript.
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6.1 Simultaneous regression and classification with

random forests

Our novel approach, SAURON-RF (SimultAneoUs Regression and classificatiON
Random Forest), aims to tackle the drug sensitivity prediction problem by using
regression random forests simultaneously for regression and classification. To this
end, we pursue a similar strategy to HARF [155], i.e., we train regression random
forests and augment them with class information. However, instead of using cancer
types as classes, we use the drug-specific division into sensitive and resistant cell
lines introduced in Chapter 5. We first discuss HARF before we describe our novel
approach, SAURON-RF, in detail.

6.1.1 HARF

The functioning of the HARF algorithm can be briefly summarized as described
below. The algorithm starts with the training of a canonical regression random
forest on a given model matrix X ∈ RN×P and the continuous response vector
y ∈ RN with N being the number of samples and P being the number of features
(cf. Chapter 4, Section 4.3.4 for a description of RF). Let B be the number of trees
of this regression RF. Rahman et al. now additionally use the cancer types of the
training samples to assign each leaf of a tree to the class that represents the relative
majority (mode) of the training samples in the corresponding leaf node. To this
end, suppose C = {c1, . . . , ck} is the set of different classes and d ∈ CN is the
vector with class assignments for all samples. By assigning each leaf node to the
majority class of its training samples, each leaf, and, consequently, each tree and
the complete random forest can classify a sample x: the class prediction of a tree is
given by the class prediction of the reached leaf, and the class prediction of the RF
is provided by the mode over the class predictions of all trees. This classification
can now be employed to modify the weight of the trees for the final continuous
prediction. To calculate the continuous prediction of the forest, Rahman et al. use
only the trees for which the predicted class is equal to the class prediction of the
forest. We can express this using tree-specific weights. The tree-specific weights
wb(x) can be calculated by dividing an indicator variable Ib(x), which is 1 if the
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mode of the leaf of tree b is equal to the mode of the forest and 0 otherwise, by the
sum of these indicator variables over all reached leaves in all trees, i.e., the weight
wb(x) is

wb(x) =
Ib(x)∑B
β=1 Iβ(x)

(6.1)

In the following, we refer to this tree weighting as binary tree weighting scheme
(binary t.w.). Finally, the continuous prediction of the regression random forest is
given by the weighted average of all trees. To this end, let f̂b(x) be the regression
prediction of a single tree b for a sample x. Then, the final prediction is given as

f̂(x) =
B∑
b=1

wb(x) · f̂b(x) . (6.2)
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Figure 6.1: SAURON-RF workflow. The figure depicts the three-step workflow of
SAURON-RF. The SAURON-RF procedure starts with a preprocessing phase, in which
the dimensionality of the input gene expression matrix is reduced, e.g., by our minimum-
redundancy-maximum-relevance feature selection, and the binary drug response (sensi-
tive/resistant) is derived from the logarithmized IC50 values. In the second step, SAURON-
RF addresses class imbalance by either performing upsampling or using sample-specific
weights. In the last step, a regression random forest is trained from the given continuous
IC50 values and the gene expression matrix. Then, each leaf node is assigned to the ma-
jority class of its corresponding samples. Thereby, the regression random forest can also be
used to classify samples by majority vote over the trees. For a new sample x, a continuous
prediction is calculated by multiplying the tree-specific weights wb(x) with the tree-specific
predictions f̂b(x).
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6.1.2 SAURON-RF

Our approach, SAURON-RF, relies on the basic functioning behind HARF. How-
ever, we propose three major modifications that can be summarized as follows (see
Figure 6.1): instead of performing a cancer type classification by augmenting an
RF regressor with class types, we propose augmenting the RF regressor with a divi-
sion into sensitive and resistant cell lines to simultaneously perform anti-cancer drug
response classification and regression. This direct coupling of the drug response clas-
sification and regression task then allows us to counteract the observed regression
imbalance for the sensitive cell lines with techniques borrowed from classification.
Finally, we suggest using a different tree weighting scheme than Rahman et al. to
further improve the performance of the RF.
Augmenting RF with division into sensitive and resistant cell lines: To
this end, let N again be the number of samples, P be the number of features, and
X ∈ RN×P the corresponding model matrix. Suppose y ∈ RN is the continuous
response vector for the training of the weighted regression random forest. From
the continuous drug response, we can derive a discretized version by comparison of
the continuous values with a discretization threshold t as introduced in Chapter 5,
dividing the cell lines into sensitive (1) and resistant (0) ones. Suppose d ∈ {0, 1}N

is the corresponding binary response vector. Note that we restrict the following de-
scription of our method to the binary case, while the method can be easily extended
to multiple classes (cf. Chapter 8, Section 8.1.1).
Sample-specific weights: One possibility to counteract class imbalance is using
sample-specific weights in the training procedure of the RF. We tested several pos-
sibilities to set these weights. A simple way is to utilize the proportion between the
majority and the minority. W.l.o.g., let 0 be the majority and 1 the minority class.
Moreover, suppose that NMa is the number of samples in the majority class and NMi

is the number of samples in the minority class. The simple sample weights (simple
s.w.) for all samples xi, i ∈ {1, . . . , N} can be calculated as

w∗i =

1, if sample i belongs to the majority
NMa
NMi

, if sample i belongs to the minority
(6.3)
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In Chapter 5, we also discussed the use of alternative weight functions to this simple
weight function, i.e., weight functions that emphasize samples based on the distance
from the threshold t, such as

w∗i =
|yi − t|g

2 ·
∑
∀n∈{1,...,N}:dn=di |yn − t|g

(6.4)

with g ∈ {1, 2}. Based on the exponent, we refer to them as linear and quadratic.
Once these initial sample weights have been determined, they are carried through
the training procedure of the RF: These weights are directly incorporated in the
node-specific sample weights, which themselves are part of the prediction of the
response of a node, the error measure, and the splitting criterion (cf. Chapter 4,
Section 4.3.4). Let δ(v) be the set of bootstrap samples that belong to the node v.
The node-specific sample weight for a sample xi in this node v can be calculated as
follows

wvi =
w∗i∑

n∈δ(v)w
∗
n

. (6.5)

Alternatives to sample-specific weights: As an alternative to calculating
sample-specific weights to assign samples a higher importance during training, we
propose to perform upsampling prior to the training of the forest. In particular, we
suggest upsampling the minority class by random drawing with replacement from the
set of sensitive samples until the number of samples from the minority and majority
class is equal. We call this method upsampling. We also investigated an upsampling
scheme, which we call proportional upsampling, where we consider the distance from
the threshold t to determine how often a sensitive sample should be duplicated. To
this end, we calculate the linear sample-specific weights (see Equation 6.4) for the
sensitive cell lines. Then, we multiply these weights by 2 such that they sum up to
1. For each sample, this value then reflects the percentage of importance. We then
determine the desired number of copies by multiplying this importance by the total
number of resistant samples.
Tree-specific weights: Once the RF regressor is trained, we also employ the classes
to modify the continuous predictions. We assign each leaf to the weighted majority
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of its training samples using the initial sample weights, which directly enables clas-
sification: for a sample x, the class prediction of a tree is given by the prediction
of the reached leaf, and the class prediction of the RF is provided by the mode
over the class predictions of all trees. Based on this classification, the trees can ob-
tain weights that can be incorporated in the continuous prediction of the regression
random forest (cf. Equation 6.2). For SAURON-RF, we suggest a variety of differ-
ent weighting schemes reflecting the data-inherent class distribution. For the tree
weighting scheme referred to as binary sensitive (binary sens.), we use the HARF
weights (cf. Equation 6.1) for the samples predicted to be sensitive, while we use
the usual random forest prediction, i.e., tree weight 1

B
, for the samples predicted to

be resistant. For the tree weighting scheme called majority tree weighting, we first
determine for each leaf the weighted fraction of samples that agree with the class
prediction of the forest. For a particular tree, we use this fraction in the reached
leaf normalized by the sum of all fractions as tree weight. Let In(x) be an indicator
function that is 1 if the class of sample n is equal to the overall majority of trees
and 0 if not. Let µ be the reached leaf node of tree b. With the fraction given by

fracb(x) =

∑
∀n∈δ(µ) In(x) · w∗n∑

∀n∈δ(µ)w
∗
n

(6.6)

the tree-specific weight is given as

wb(x) =
fracb∑B

β=1 fracβ(x)
. (6.7)

Finally, we also used a tree weighting scheme, which we call majority sensitive
(majority sens.), where we employ the majority tree weighting given in Equation
6.7 for the sensitive samples and the usual RF weight 1

B
for the resistant samples.
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6.2 Data preparation

We downloaded Release 8.3 (June 2020) of the Genomics of Drug Sensitivity in
Cancer (GDSC) cancer cell line panel for the analyses presented in this chapter.
In particular, we obtained the pre-processed gene expression matrix (Affymetrix
Human Genome U219 Array) and the pre-processed drug sensitivity data in the
form of logarithmized IC50 values (GDSC1 compounds: Syto60 and resazurin assay,
GDSC2 compounds: CellTiter-Glo assay) from the GDSC website.

6.2.1 Processing of drug response values

In our analyses, we focused on the more recently published GDSC2 data set, which
is based on an improved drug screening procedure and assay (cf. Chapter 3 for more
details on the GDSC data set development). This version of the GDSC2 data set
consists of 809 cell lines and 198 drugs. In this chapter, we use only drugs with more
than 750 available cell lines, which results in 86 investigated drugs. For each drug,
we consider only cell lines with complete information for drug sensitivity and gene
expression.
Since SAURON-RF performs a simultaneous regression and classification analysis,
it requires a continuous and discrete response vector as model input for training.
As a continuous measure of drug response, we use the provided logarithmized IC50
values. As discussed in Chapter 5, the logarithmized IC50 values can be binarized
using the heuristic outlier procedure introduced by Knijnenburg et al. [27]. For each
drug, we apply this procedure to the logarithmized IC50 data to derive one threshold
able to divide the cell lines into sensitive (1) or resistant (0) ones, which results in
a binary drug-specific response vector.

6.2.2 Model training

To comprehensively benchmark SAURON-RF, we trained various ML models: elas-
tic nets, neural networks, boosting trees, and numerous random forest approaches,
including HARF. All methods were fit and tested on the same data that was pre-
pared with the following scheme. For each drug, we divide the corresponding data
set consisting of the triple of gene expression matrix, continuous drug response and
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binary drug response into a training (80%) and test data set (20%) by randomly
drawing without replacement from the set of available cell lines. The training data
set is then subject to a 5-fold CV split. Since the gene expression data is very high-
dimensional, we implemented a feature selection that reduces the dimension of the
expression matrix before serving as input for the machine learning methods. Conse-
quently, the feature selection is performed on each CV training set and the complete
training data set. We decided to use the greedy minimum-redundancy-maximum-
relevance algorithm proposed by Kwak and Choi [30] as a feature selection method.
An in-depth description of this algorithm is provided in Chapter 4. Briefly, the
algorithm selects the top features that maximize the feature-response (gene - drug )
mutual information (MI) while minimizing the feature-feature (gene - gene) MI. The
optimal number of features is a hyperparameter, which can be determined during the
CV. In our application case, the features (gene expression values) and the response
(logarithmized IC50 values) are continuous. Hence, we discretized them for calcu-
lating the MI using equal width binning. A table with the used (hyper)parameters
of the feature selection algorithm and all ML models is provided in Appendix Table
C.30.

6.3 Implementation and data deposition

All random forest-based approaches were implemented using Python 3 and the
sklearn RandomForestRegressor and RandomForestClassifier packages [182]. In par-
ticular, the RandomForestRegressor from sklearn also serves as the basis for our
implementation of HARF and SAURON-RF. The corresponding Python script can
be executed from the console with a single configuration file in JSON-format as
input. The configuration file comprises information about standard random forest
parameters such as the number of trees or the number of features per split and
specific parameters introduced for SAURON-RF, e.g., the technique to counteract
class imbalance or the desired tree weight. The script delivers several output files in
a simple tab-separated txt-format containing the training and test set predictions
as well as the evaluation of performance measures such as mean-squared error and
accuracy. We deposited the code for our newly developed SAURON-RF algorithm
(including a HARF implementation) alongside example files on our publicly avail-
able GitHub: https://github.com/unisb-bioinf/SAURON-RF.git.
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6.4 Results

Besides RF-based approaches, we also trained boosting trees, elastic nets and neural
networks. Boosting trees and elastic nets were fit using the R packages gbm (Ver-
sion 2.1.8) [217] and glmnet (Version 4.1.1) [218], respectively. The neural networks
were fit using the Python framework Keras (Version 2.3.1) together with the GPU
Version of Tensorflow (1.13.1) [219, 220].

6.4 Results

We applied a multitude of ML regression methods, i.e., elastic net, neural networks,
boosting trees, and random forests, to the 86 drugs from the GDSC data set. To
evaluate their regression performance, we calculated the mean squared error (MSE)
and median squared error (median SE) averaged across all drugs. Additionally, we
calculated the MSE and median SE for the set of sensitive and set of resistant cell
lines separately to assess whether regression imbalance is present. Expectedly, all
tested approaches achieved a similar overall regression performance with elastic nets
and random forests having a slightly superior average performance with respect to
mean-squared error (MSE) and median squared error (cf. Figure 6.2). Moreover, we
observed that all methods predict values around the mean response of the cell lines
(resistant cell lines) considerably well while especially the lower (highly sensitive)
end of the sensitivity scale is misfitted to a varying degree, clearly indicating that
regression imbalance is present independent of the ML method. In Figure 6.3A, we
exemplary illustrate this circumstance for 5-Fluorouracil, a typical representative of
high class imbalance within the GDSC (8.6% of sensitive cell lines). We can clearly
discern that values around the mean of the resistant samples are sufficiently well
predicted. Simultaneously, none of the sensitive samples has a reasonable prediction.
Next, we determined the classification performance of all methods. To this end, we
derived a discrete response from the continuous prediction by comparison to the
drug-specific IC50 thresholds. As to be expected, we found that the classification
performance for the sensitive cell lines, i.e., the sensitivity, is low, while the specificity
is high. In summary, the classification performance of the models reflects their
ability to predict the continuous response and vice versa. This can already be seen
as indicative for positive effects on predictive performance by a coupling of regression
and classification.
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6 Simultaneous regression and classification random forests

Figure 6.2: Average test set performance for different ML algorithms. In this
figure, we compare boosting trees, elastic nets, neural networks, and random forests. We
show the average test set performance across the 86 different drugs from the GDSC for
20 input features. We measured performance in terms of the mean-squared error (MSE),
median squared error (median SE), Matthew’s correlation coefficient (MCC), sensitivity,
and specificity. Each measure was once calculated across all cell lines, the set of sensitive
cell lines, and the set of resistant cell lines.
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Figure 6.3: Regression performance of different ML methods for 5-Fluorouracil.
This figure exemplifies the performance of different ML algorithms when applied to the
5-Fluorouracil data set of the GDSC database using 20 input features. In Figure A, we
compare boosting trees, elastic net, neural networks and random forests. The upper row of
Figure A shows the predicted IC50 values plotted against the actual IC50 values including
a fitted regression line, which is shown as a solid black line. The mean IC50 of training
samples for each investigated class is depicted as a horizontal dashed line. The lower row
of Figure A shows the absolute prediction error. Here, the solid curve is a loess curve
fitted to the error, the vertical dashed line gives the mean IC50 of all training samples. In
Figure B, we depict analogous plots for a comparison between HARF (HARF applied to
two cancer types with different average drug responses), HARFSR (HARF applied to our
proposed class division), and SAURON-RF (SAURON-RF simple s.w., binary sens t.w.).
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6.4.1 Development of SAURON-RF

The HARF approach by Rahman et al. performs simultaneous drug response re-
gression and cancer type classification by integrating cancer types with distinct
average drug responses into a random forest regressor trained on drug sensitivity
data. More specifically, they use the cancer type distribution of the leaf nodes
to modify the tree weights after regression (cf. Section 6.1.1). In Figure 6.3B,
we show its performance for a typical application scenario: We applied HARF to
5-Fluorouracil using two cancer sites with distinct average drug responses. In par-
ticular, we opted for the two most abundant sites of origin of the GDSC data set as
classes: haematopoietic/lymphoid cell lines (139 cell lines) and lung cell lines (135),
resulting in a very balanced data set. As expected, the HARF predictions for the
haematopoietic/lymphoid and lung cell lines are well-separated and concentrated
around the mean of the respective class. However, there is still the tendency to mis-
fit the upper and lower end of the prediction sale. Moreover, we had to exclude 532
of 806 available cell lines for 5-Fluorouracil in the GDSC, which is especially critical
in data poor settings. Apart from that, this modeling approach is even infeasible
if an investigated cancer type exhibits a heterogenous response distribution for a
particular drug.
To address these issues, we suggest linking the regression and classification prob-
lems more closely by using the division into sensitive and resistant cell lines instead
of cancer types. Consequently, we meet the demand for distinct average drug re-
sponses per class by definition and do not have to exclude samples to enforce this
requirement artificially. We call this method HARFSR. In Figure 6.3B, the perfor-
mance of HARFSR is shown. As expected when considering the poor classification
performance of RFs as shown in Figure 6.2, the substantial class imbalance with
only 8.6% of sensitive cell lines negatively affects the classification performance of
HARFSR because it identifies only one sensitive cell line correctly. Since the regres-
sion performance of the HARF approach relies on the classification performance, we
also do not obtain reasonable continuous predictions for the sensitive cell lines.
Class imbalance is a common obstacle for ML algorithms, especially for drug sensitiv-
ity prediction [221, 222, 223, 224, 225, 21]. For most drug data sets in the GDSC, the
sensitive cell lines are heavily underrepresented with an average sensitive-to-resistant
ratio of 1:10. If we do not counteract class imbalance, the average sensitivity of clas-
sification random forests (cRF) is only 9% (cf. Figure 6.4). In order to improve the
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classification and subsequently the regression performance, we address the class im-
balance. We proposed using various upsampling schemes and sample-specific weights
(cf. Section 6.1.2). To enhance the regression performance even more, we suggest
alternative tree-weighting schemes to the one by Rahman et al. (cf. Section 6.1.2).
We call the resulting method SAURON-RF. Using 5-Fluorouracil as an example, it
can be seen that SAURON-RF follows a promising principle (see Figure 6.3). In
the ensuing sections, we benchmark SAURON-RF against multiple RF-based ap-
proaches.

6.4.2 Performance comparison of SAURON-RF to regression

and classification RFs

We applied various versions of standard regression RFs (rRFs), classification RFs
(cRFs), HARFSR, and our new approach SAURON-RF to 86 drugs of the GDSC.
As described in the previous section, we employed the MSE and median SE to eval-
uate the regression performance. Additionally, we calculated sensitivity, specificity,
and MCC to assess classification performance. While HARFSR and SAURON-RF
can inherently perform classification and regression, we had to derive a discrete re-
sponse for rRFs and a continuous response for cRFs. To determine class predictions
for a standard regression RF, we compare its prediction to the drug-specific IC50
threshold. We derived the continuous response for cRFs as follows: For a new sam-
ple, we first determine the trees that agree with the majority vote of the forest.
Then we average the continuous values of the training samples in the reached leaf
nodes. Finally, we then average over the selected trees.
Figure 6.4 shows an overview of the test results for 20 gene expression input fea-

tures obtained by our minimum-redundancy-maximum-relevance feature selection.
We provide results for additional input feature set sizes in Appendix Figures C.32
- C.35. Generally speaking, those results strongly resemble the ones that will be
presented in the following. As can be seen in Figure 6.4A, both rRF and HARFSR
have a low overall MSE, while they perform very poorly for the sensitive cell lines,
i.e. the average MSE for the sensitive cell lines is 2.9 times (rRF) and 3.2 times
(HARFSR) as high as the average MSE of the resistant cell lines. Moreover, the
statistical sensitivity for both approaches is very low with 10% for rRFs and 9% for
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HARFSR. When counteracting class imbalance by employing simple sample weights
(simple s.w.) as defined in Equation 6.3, the sensitivity of both methods increases
substantially by 21% and 50%, respectively. In comparison, the specificity decreases
only moderately by 5% (rRF) and 15% (HARFSR). Simultaneously, the average
MSE for the sensitive cell lines drops from 3.99 to 2.68 (-32.8%) for rRF and from
4.31 to 3.16 (-26.6%) for HARFSR. In contrast, the MSE for the resistant cell lines
rises from 1.36 to 1.68 (23,5%) for rRF and from 1.34 to 1.74 (29.8%) for HARFSR.
When combining the sample weights with the proposed tree weighting scheme
(SAURON-RF, simple s.w., binary sens t.w.), the reduction in average MSE for
the sensitive cell lines compared to rRF even amounts to 1.63 (-40.8%), and com-
pared to HARFSR amounts to 1.95 (-45.2%). The MSE for the resistant cell lines
increases by 0.55 (40.4%) for rRF and 0.57 (42.5%) for HARFSR. In total, the MSE
of the resistant and sensitive cell lines is more leveled for SAURON-RF: while the av-
erage MSE of the sensitive cell lines for rRF is 2.9 times as high as the average MSE
of the resistant cell lines, the average MSE of the sensitive cell lines for SAURON-
RF is only 1.2 times as high as the average MSE of the resistant cell lines. We
note that upsampling improves the predictive performance for the sensitive samples
slightly less than the proposed simple sample weights. The overall best performance
in terms of classification and regression was achieved by SAURON-RF simple s.w.,
binary sens. t.w.
For this best-performing model, we also plotted the absolute gain in performance
for the sensitive cell lines against the absolute loss of performance for the resistant
cell lines compared to rRF on a per drug basis (cf. Figure 6.4B). For almost all
drugs, the absolute performance gain of SAURON-RF for the sensitive cell lines
outweighs the absolute performance loss for the resistant ones in terms of classifi-
cation and regression. When we focus on the correctly identified sensitive cell lines,
we note that the MSE value for SAURON-RF is even three times smaller than the
MSE of all sensitive cell lines. Hence, our results also strongly indicate that further
reducing the classification error would substantially improve regression performance.
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Figure 6.4: Random forest test set performance. In Figure 3A, we compare re-
gression random forests (rRFs), classification random forests (cRFs), and HARFSR with
different versions of our suggested approach SAURON-RF. We show the average test set
performance across the 86 different drugs for 20 input features. Results for additional
versions of SAURON-RF and other input feature set sizes can be found in the Appendix
Figures C.32 - C.36. In Figure 3B, we depict for each of the 86 drugs the tradeoff between
the absolute reduction in test error for the sensitive cell lines and the absolute increase
in test error for the resistant cell lines when comparing our best-performing version of
SAURON-RF (SAURON-RF simple s.w., binary sens. t.w.) with rRF.
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To quantify whether our joint regression and classification approach can compete
with a pure classification method, we compared the classification performance of
SAURON-RF to classification RFs (cRFs). The cRF exhibits a similar classification
performance to HARFSR and rRF: 99% specificity, 9% sensitivity, and an MCC of
0.12. When integrating our proposed simple sample weights into cRF (cRF, simple
s.w.) or using the built-in class balancing of the cRF python implementation (cRF,
balanced s.w.), the sensitivity and MCC improve. However, in terms of statistical
sensitivity, SAURON-RF is superior, while still maintaining a similar specificity.
Furthermore, SAURON-RF outperforms all tested cRF versions in the regression
task for the sensitive cell lines.
Finally, we also compared SAURON-RF to a hierarchical RF approach, where we
fit one classification RF on the complete data set and two regression RFs on the
respective subsets of sensitive and resistant cell lines. The performance of this ap-
proach was also inferior to all versions of SAURON-RF presented in Figure 6.4 (see
Appendix Figure C.36).

6.4.3 Evaluating predictive biomarkers

Typically, RFs lend themselves well to interpretation due to their method of origin,
binary decision trees. While it is possible and relatively common to manually inspect
a single decision tree in order to understand the importance of the features used for
splitting, there is the need to aggregate the feature importances across all trees for
RFs (cf. Chapter 4). To assess the capability of our method to select biomarkers
that provide information on drug response, we investigated the feature importances
provided by the in-built sklearn functionality. For each drug, we only considered
models trained using our best-performing version of SAURON-RF (SAURON-RF,
simple s.w., binary sens t.w.) and selected the ten drugs with the largest MCC
during CV as visualized in Figure 6.5. For each of these 10 drugs, we then sorted
the features of the best model and investigated their potential involvement in mech-
anisms of drug sensitivity or resistance through literature research. For most drugs
(6/10), we could identify at least one feature with a known relation to drug response
among the top five features. For the BCL2 inhibitor ABT737, for example, the most
important features include its target gene BCL2, as well as MIR22HG, IDH2 and
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Figure 6.5: Top-performing models. This figure depicts the classification and re-
gression performance for the 10 drugs with the highest CV MCC. We obtained this list
by sorting the results for the best-performing SAURON-RF model (SAURON-RF, simple
s.w., binary sens t.w.) for all drugs using the CV MCC. The hyperparameter K indicates
the size of the input feature set.

BLVRB. While MIR22HG is involved in the downregulation of BCL2 [226, 227], mu-
tations in IDH2 are associated with increased sensitivity to ABT737 [228, 229]. Low
expression of BLVRB has been linked to increased sensitivity to the BCL2 inhibitor
Obatoclax [230]. For the drug Nutlin-3a(-), which targets the p53 pathway, we
identified its direct target gene MDM2 as the most important feature. Additionally,
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we identified RPS27L – a downstream target of TP53 – that is activated in cells,
which undergo apoptosis following Nutlin-3a(-) treatment [231]. Further important
features included DDB2 and CYFIP2, whose expression has been shown to increase
through Nutlin-3a(-) treatment [232, 233]. This could indicate the involvement of
these genes in the mode of action of Nutlin-3a(-). We provide information on the
selected features for the remaining drugs in Appendix Tables C.31 - C.40.
We also investigated whether we are able to identify features more commonly as-
sociated with drug sensitivity or resistance. For each feature, we determine the
number of drugs for which it is selected and then average its feature importance.
As shown in Figure 6.6, we could identify three genes that are not only selected
for many drugs but have a high average feature importance as well: PPIC, SDC4
and DCBLD2. All three genes encode transmembrane proteins. PPIC is involved
in protein folding [234], while SDC4 and DCBLD2 play a role in cellular signaling
[235, 236]. DCBLD2 upregulation is associated with poor prognosis in various can-
cers, including glioblastoma and colorectal cancer [237, 238, 236] and has recently
been linked to 5-Fluorouracil resistance [236]. However, the role of these genes in
multi-drug resistance remains to be investigated.
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Figure 6.6: Feature importance for SAURON-RF using 20 input features. This
figure shows the 50 features with the highest average feature importance for the best-
performing SAURON-RF model using K = 20 input features per drug. The per feature
average was calculated based on the drugs for which this feature was selected in the feature
selection. The corresponding percentage of drugs is also depicted (blue dots).

6.5 Discussion

With our novel method, SAURON-RF, we aimed to address the regression imbal-
ance problem in drug sensitivity prediction. More specifically, we pursued the goal
to mitigate the negative effects that the skewed distribution of drug response values
in favour of the drug-resistant cell lines exerts on the predictions of the sensitive cell
lines.
To this end, we pursued the strategy of augmenting a drug response regression RF
with information on the corresponding class partition into sensitive and resistant
cell lines. This proceeding allowed us to address regression and class imbalance
directly with commonly employed techniques for counteracting class imbalance dur-
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ing simultaneous regression and classification. We could substantially improve not
only the classification performance for the sensitive cell lines but also the respective
regression performance at the expense of a moderate loss in performance for the
resistant cell lines. We have shown that jointly conducting regression and classifica-
tion is superior to performing either of them alone. Moreover, we demonstrated that
an accurate classification can substantially improve a subsequent regression. The
practical implementation of this strategy could be best achieved using a combined
regression and classification approach instead of a hierarchical approach. Therefore,
the development and refinement of joint classification and regression approaches like
SAURON-RF seem to be a promising field of future research.
Here, the ultimate goal would be the integration of SAURON-RF into the medi-
cal decision process as part of a comprehensive decision support pipeline such as
ClinOmicsTrailbc [239]. ClinOmicsTrailbc helps to interpret molecular and clinical
data of patients and, amongst others, assesses standard-of-care treatments, the phar-
macokinetics of drugs, potential adverse effects, as well as known biomarkers for drug
efficacy. SAURON-RF could complement this existing information by providing ev-
idence for the on-label use of drugs and also giving insight into potential off-label
treatment options.
However, we recognize several potential starting points for improving our method.
Since we have shown that joint regression and classification is advantageous for
both classification and regression compared to each of them alone, it could be ben-
eficial for SAURON-RF to combine regression and classification splitting criteria in
the tree-building process, e.g., as described in [240, 241]. Another important fac-
tor that influences the predictive performance of our method is the choice of input
features and dimensionality reduction method. Currently, we conduct a maximum-
relevance-minimum redundancy feature selection on gene expression data. While
gene expression has been shown to be the most informative data type [17], the
performance and interpretability of the machine learning models can, for example,
benefit from the integration of (epi)genomics data [17], protein-protein interaction
networks [162], pathway information [19], and pharmacogenomic a priori knowledge
[21]. The process in which the features are selected or reduced has also already been
shown to affect the performance of ML models [242]. In the following chapter, we
aim to provide a more comprehensive benchmark for a diverse set of feature selec-
tion and dimensionality reduction techniques combined with various ML models (cf.
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Chapter 7). An additional factor that influences the predictive performance of our
approach is the class division that we actively leverage in model building. The bina-
rization procedure by Knijnenburg et al. only represents a heuristic to estimate the
division into sensitive and resistant samples, while the factual division is unknown.
Since our analyses clearly indicate that the most sensitive samples, i.e., samples
of potential treatment success, benefit from considering such a partitioning if they
are underrepresented, it might be interesting to investigate different discretization
schemes. Thus, we pursued this goal in Chapter 8.
To benchmark SAURON-RF against a variety of ML methods, we followed a very
common approach: we assessed performance measures such as accuracy, sensitivity,
specificity, MSE, and median SE. However, none of these measures estimates the
reliability of predictions for previously unseen samples, which is, however, required
to translate ML methods into clinical decision-making. There exist ML approaches
that are specifically designed for such purposes, e.g., conformal prediction (see Chap-
ter 4). We are going to investigate the usefulness of conformal prediction in Chapter
8.
In order to provide even more useful recommendations for decision support sys-
tems, our method should be able to perform drug prioritization, i.e., to deliver a
list of recommendable drugs sorted by their efficiency. In principle, SAURON-RF
can become leveraged for precisely this purpose by identifying effective drugs with
the classification part and then ranking the effective ones using the regression part.
Unfortunately, IC50 values are not comparable across drugs (cf. Chapter 3), which
prevents us from sorting the drugs that we predict to be effective. In Chapter 8, we
also address this shortcoming.
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reduction techniques and machine
learning methods

In the previous two chapters, we presented two novel approaches for drug sensi-
tivity prediction: In Chapter 5, we introduced the rule-based classifier MERIDA,
and in Chapter 6, we devised the random forest-based simultaneous regression and
classification model SAURON-RF. MERIDA and SAURON-RF differ in many re-
spects. In particular, they employ different methods for modelling drug sensitivity
and counteract the curse of dimensionality using distinct dimensionality reduction
(DR) techniques. To be more precise, MERIDA relies on literature-driven feature
selection and creation, and SAURON-RF employs a data-driven approach based on
the maximum-relevance-minimum-redundancy principle, i.e., a selection of features
statistically associated with the response. We already discussed (cf. Chapter 4) that
a dimensionality reduction step is typically indispensable before or during model
training when investigating data sets with far more features than samples. Thereby,
the estimation uncertainty (variance of the model) is reduced, and the ML models
usually become more interpretable. Thus, such a step is integrated into most drug
sensitivity methods, as shown in Table 7.1. Simultaneously, most authors do not re-
port how they opted for a specific dimensionality reduction technique, i.e., whether
they tested other dimensionality reduction techniques and how these performed in
comparison. However, given the variety of DR techniques and ML models they
could be combined with, the correct choice might strongly influence the ML model
performance. Some benchmarking studies on drug sensitivity prediction in cancer
aim to establish best practices. For example, Jang et al. systematically assessed
the difference in performance when combining different types of input features, ML
models, and drug response summary metrics [243]. However, they did not focus on
comparing different DR strategies. Koras et al. compared several DR techniques
[242], particularly literature-based feature selection using drug targets and target
pathways and data-driven feature selection with elastic net and random forests, but
did not systematically compare the combination with different ML methods. More-
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over, they did not account for size differences in the investigated feature sets.
In this chapter, we present the results of a comprehensive benchmarking study on
DR techniques and ML methods for drug sensitivity prediction in cancer. More
specifically, we trained four different supervised ML methods (elastic net, random
forest, boosting trees, neural networks) combined with nine different DR approaches
(random, literature-based, variance, correlation, enrichment, minimum-redundancy-
maximum-relevance, principal component analysis, pathway activity, autoencoder)
resulting in more than 16,000,000 investigated models. We consulted different qual-
ity measures such as interpretability, statistical performance regarding error mea-
sures, and runtime for the comparative evaluation. Our analysis reveals that for
most drugs, the elastic net outperforms all other methods in terms of statistical per-
formance and runtime. The best-performing DR methods were principal component
analysis and the minimum-redundancy-maximum-relevance approach.
In the following, we first describe the study design before presenting the results of
our benchmarking study.

Table 7.1: Comparison between methods for drug sensitivity prediction with
respect to dimensionality reduction. In this table, we compare various drug sensitivity
approaches with respect to their integrated dimensionality reduction method. Moreover, we
assessed whether the authors benchmarked the selected dimensionality reduction method
against others.
Name and author Methodology DR technique DR comparison

Menden et al., 2013 [152] neural network literature-based 7

Zhang et al., 2015 [153] dual-layer integrated drug-cell
line similarity network

7 7

LOBICO by Knijnenburg et
al., 2016 [27]

integer linear program deliver-
ing Boolean rules

literature-based 7

Stanfield et al., 2017 [166] cell line and drug proximity
networks

literature-based 7

SRMF by Wang et al., 2017
[154]

similarity regularized matrix
factorization

matrix factorization 7

HARF by Rahman et al., 2017
[155]

random forest augmented with
cancer types

RELIEFF 7

HNMDRP by Zhang et al.,
2018 [167]

similarity networks 7 7

Matlock et al., 2018 [156] model stacking RELIEFF 7

Continued on next page
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Table 7.1 – continued from previous page

Name and author Methodology DR technique DR comparison

KRL by He et al., 2018 [157] kernelized rank learning 7 PCA

RWEN by Basu et al., 2018
[158]

response-weighted elastic net elastic net 7

CDRscan by Chang et al., 2018
[159]

convolutional neural networks literature-based 7

QRF by Fang et al., 2018 [31] quantile regression random for-
est

correlation, random
forest feature im-
portance

7

NCFGER by Liu et al., 2018
[160]

neighbor-based collaborative
filtering with global effect
removal

7 7

DeepDR by Chiu et al., 2019
[161]

neural networks autoencoder PCA

Deep-Resp-Forest by Su et al.,
2019 [168]

deep cascaded forest random 7

Dr.VAE by Rampášek et al.,
2019 [129]

semi-supervised generative
modeling based on variational
autoencoders

literature-based, au-
toencoder

7

netBITE by Oskooei et al.,
2019 [162]

biased tree ensemble feature biasing 7

Deng et al., 2020 [163] neural network literature-based 7

PathDSP by Tang et al., 2021
[164]

neural network pathway enrichment 7

MERIDA by Lenhof et al.,
2021 [21]

integer linear program deliver-
ing Boolean rules

literature-based 7

GraphDRP by Nguyen et al.,
2022 [165]

neural network unknown 7

PPORank by Liu et al., 2022
[131]

deep reinforcement learning literature-based 7

SAURON-RF by Lenhof et al.,
2022 [29]

simultaneous regression and
classification random forest

min.-redundancy-
max.-relevance

7

reliable SAURON-RF by
Lenhof and Eckhart et al.,
2023 [33]

simultaneous regression and
classification random forest us-
ing CP

min.-redundancy-
max.-relevance

7
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Authors’ contributions
The main research presented in this chapter has been conducted by Lea Eck-
hart while working at the corresponding publication called A comprehensive
benchmarking of machine learning algorithms and dimensionality reduction
methods for drug sensitivity prediction. In particular, Lea Eckhart also
drafted the manuscript. I was involved in the study design, contributed
by implementing some of the feature selection methods, and reviewed and
edited the manuscript.

7.1 Study design

With this study, we dedicated ourselves to gauging the influence of DR techniques
on ML methods for anti-cancer drug sensitivity prediction. Generally speaking,
we aimed to represent the current supervised ML landscape in this research area
with our selection of ML methods and DR techniques. Thus, we decided to in-
vestigate four popular ML algorithms, i.e., elastic net, random forest, boosting
trees, and neural networks, each one combined with nine different DR techniques
(random, literature-based, variance, correlation, enrichment, minimum-redundancy-
maximum-relevance, principal component analysis, pathway activity, autoencoder).
Similar to Chapter 5, we compare the resulting models concerning runtime, inter-
pretability and statistical performance. In the ensuing sections, we briefly present
the study design encompassing the employed data set, the model training, and the
main ideas of the DR and ML methods used.

7.1.1 Data set

For the analyses presented in this chapter, we used Release 8.3 of the Genomics of
Drug Sensitivity in Cancer (GDSC) database, the version also described and em-
ployed in the previous chapter. Once again, we downloaded the preprocessed gene
expression matrix (Affymetrix Human Genome U219 Array) and drug-screening data
(GDSC1 compounds: Syto60 and resazurin assay, GDSC2 compounds: CellTiter-
Glo assay) from the GDSC website. In particular, we employ the provided loga-
rithmized IC50 values as drug sensitivity measure. Similar to our analyses in the
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previous chapter, we opted to analyze the GDSC2 data set that is based on an
improved drug screening procedure and drug screening assay (CellTiter-Glo) com-
pared to the GDSC1 data set. While the GDSC2 data set contains drug response
measurements for 198 drugs, we consider only those 179 drugs with drug response
values for at least 600 cell lines.

7.1.2 Model training and testing

We generally model drug sensitivity prediction as a supervised learning task em-
ploying the gene expression matrix as the input feature matrix and the logarith-
mized IC50 values of each drug as the response vector. More specifically, we
train drug-specific regression models using four different ML algorithms predict-
ing the logarithmized IC50 values of cell lines from a reduced representation of the
initial gene expression matrix. We obtain the reduced representation of the ini-
tial gene expression matrix by applying nine different DR techniques. Each DR
method generates input feature matrices of size N × k, where N is the number of
cell lines and constant, and k is the number of input features. We investigated
k ∈ {1, 2, 3, . . . , 25, 50, 100, 200, 300, 400, 500}. In the following, we call one triple
consisting of an ML algorithm, DR method, and the number of input features k
setting.
For each of the 179 drugs, we divide the available cell lines into a training (80%)
and test (20 %) set by randomly drawing without replacement. The training set is
then subject to a 5-fold cross-validation (CV) split on which we determine the best-
performing hyperparameter combination of an ML model in terms of mean-squared
error (MSE). For the best hyperparameter combination of a model, we train a final
model on the complete training data set and evaluate its performance on the test set.
In Table 7.2, we provide the model-specific hyperparameters. This procedure has to
be performed for each setting separately, holding the training and test sets as well as
the CV splits constant such that for one drug, all settings can be directly compared.
Note that we also apply our DR methods only to samples in the respective training
sets (including the CV).
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7.1.3 Used dimensionality reduction techniques

In Chapter 4, we stated that DR techniques can be divided into feature selection (FS)
and feature extraction (FE) approaches. In total, we analyzed six FS approaches
(random, literature-based, variance, correlation, enrichment, minimum-redundancy-
maximum-relevance) and three FE approaches (principal component analysis, path-
way activity, autoencoder) that we present in the following.

Feature selection techniques

Generally, there exists a plethora of possibilities for choosing a subset of most infor-
mative features from the set of all available features. In Chapter 4, we introduced the
three main groups of FS algorithms that can be distinguished: filter, wrapper and
embedded methods. In our analysis, we solely focus on filter methods since these are
most commonly applied for drug sensitivity prediction (cf. Table 7.1). In contrast
to embedded methods, they are model-agnostic, i.e., independent of a specific ML
model. Furthermore, they are also significantly less computationally expensive com-
pared to wrapper methods. However, note that most ML models we investigated,
i.e., random forest, boosting trees and the elastic net, perform embedded feature
selection.

Randomized feature selection: An effortless and straightforward technique to
reduce the dimensionality is the random selection of features. We generated the
randomized feature sets by drawing k features without replacement from the set of
all available features. To stabilize the prediction error estimation for each particular
k, we draw ten random feature sets of size k and average the performance of the
corresponding models.

Literature-based feature selection: Literature-based FS is extremely popular
in anti-cancer drug sensitivity prediction. One possibility to perform this type of
FS is to consider cancer driver genes [27, 21]. To this end, we decided to employ
the cancer driver gene list from IntOGen (Release 2020-02-01) [244]. We removed
genes with warnings (e.g., known artefacts) from the downloaded list and intersected
the new gene list with the genes available in our input feature matrix from GDSC,
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resulting in the final list of 476 remaining genes. Next, we sorted the final gene
list descendingly from most robust evidence of being a cancer driver (tier 1) to
weakest evidence (tier 3). To break ties within a tier, genes were sorted descendingly
according to the number of data sets in which they have been reported as cancer
drivers. We then generated literature-based feature lists of size k by selecting the
first k features of this sorted list.

Variance-based feature selection: For this FS, we calculated the variance of
our input features (i.e., the variance of the expression per gene) and sorted the
features in descending order from highest to lowest variance. We generated the list
of size k by selecting the first k features for which the variance of expression values
was largest.

Correlation-based feature selection: For this FS, we determined the Pearson
correlation coefficient (PCC) between all input features and the response (cf. Chap-
ter 4 for the definition of the PCC). We sorted the complete gene list decreasingly
from the highest absolute PCC value to the lowest absolute PCC value and generated
lists of size k by choosing the first k features of the sorted list.

Enrichment-based feature selection: Enrichment analyses are a family of ap-
proaches extremely popular in bioinformatics to uncover deregulated biological pro-
cesses [210]. For example, Kolmogorov-Smirnov tests [245, 246] are employed to
determine whether a category, i.e., a set of entities such as the genes of a specific
pathway, is predominantly concentrated at the top or bottom of a sorted list, e.g.,
a list of differentially expressed genes. We investigated whether we can employ
Kolmogorov-Smirnov tests to identify genes whose deregulation is linked to sensi-
tivity or resistance to a particular drug. To this end, we proceed as follows: First,
we generate a sorted list by increasingly ordering the available cell lines for a par-
ticular drug by their logarithmized IC50 values. Then, we define a category as the
set of cell lines with a particular deregulation, i.e., up- or downregulation of a gene.
We call a gene upregulated (downregulated) in a cell line if its expression z-score is
greater (smaller) than the 95% (5%) percentile of the standard normal distribution.
Note that we defined those categories using the complete training set of a particular
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drug. Lastly, we can conduct Kolmogorov-Smirnow tests to check whether a certain
category, i.e., the up- or downregulation of a particular gene, is overrepresented at
the top or bottom of the sorted list of cell lines. Each test results in an enrichment
direction indicating whether a putative enrichment occurs at the top (enriched) or
the bottom (depleted) of the list and an associated p-value giving the significance of
the test. We adjusted the p-values using the Benjamini-Hochberg procedure [247]
separately for the two groups of up- and downregulated genes.
To obtain a final list from which we can select the k first elements, we pro-
ceed as follows: First, we assemble four lists from these results by combining
each enrichment direction (enriched/depleted) with each deregulation state (up-
regulated/downregulated). We can sort each list from lowest (most significant) to
highest p-value (least significant) and assign each gene a rank based on this ordering.
We keep a gene solely in the list with its smallest rank (highest significance). To
obtain a final sorted gene list, we merge the four lists starting with the smallest rank
and break ties using the calculated p-values. We obtain lists of size k by choosing
the first k features from this final list.

Minimum-redundancy-maximum relevance feature selection: To reduce
the number of input features for SAURON-RF, we decided to use the greedy
minimum-redundancy-maximum-relevance (MRMR) algorithm proposed by Kwak
and Choi [30] since MRMR algorithms enjoy relative popularity, especially when
applied to gene expression data, because of their simplicity and efficiency [248, 249,
250]. We already gave a thorough description of this algorithm in Chapter 4 and
briefly presented it in Chapter 6. Thus, we will just revisit the main aspects relevant
to this chapter.
In contrast to the two previously discussed FS approaches that aim to maximize
the feature-response association (maximum relevance), MRMR-based FS methods
simultaneously aim to minimize the feature-feature association (minimum redun-
dancy). More specifically, the MRMR algorithm by Kwak and Choi [30] greedily
adds features to the initially empty set of already selected features based on the
evaluation of the mutual information between the set of all potential features and
the response, as well as the set of all already selected features and the set of all
potential features. Since the mutual information is defined between two discrete
random variables, we had to discretize our continuous feature variables (gene ex-
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pression values) and the continuous response variable (logarithmized IC50 values).
To this end, we performed an equal-width binning with six bins. Given a desired
number of selected features k, the output of the MRMR algorithm by Kwak and
Choi is a list of size k decreasingly ordered from highest to lowest relevancy.

Feature extraction techniques

While FS techniques lower the dimensionality by selecting a subset of most rele-
vant features, FE techniques transform the original set of features into a potentially
smaller set of new features by application of (non-)linear functions. Thus, in con-
trast to FS strategies, where features from the original feature space are explicitly
discarded, the new features generated by an FE technique can represent (non-)linear
combinations of all original features. While this can allow for compact encoding of
all relevant information from the original feature space in a few newly generated
features, interpreting the new features and ML models trained on them can be
difficult.

Principal component analysis: Principal component analysis is a technique
that searches for a linear transformation of the original features such that most
of the variation can be explained using fewer of the transformed features, called
principal components. Each principal component is a normalized linear combination
of the original features. Moreover, all principal components are orthogonal to each
other. Thus, the first principal component is the direction in which the data varies
most. It holds that all other principal components represent the direction explaining
most of the variance while being orthogonal to all previously determined principal
components [126]. Thereby, PCA generates a list of principal components ordered
by the variance they explain.
We computed the principal components and obtained a list of size k by choosing the
first k principal components.

Pathway activity score learning: Karagiannaki et al. [251] developed their
Pathway Activity Score Learning (PASL) approach as a remedy for the limited in-
terpretability of PCA. Roughly speaking, they follow the idea of calculating principal
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components on subsets of the feature matrix. Here, each subset corresponds to a
predefined feature set, i.e., pathway and the obtained principal components to the
pathway activity. In the corresponding publication, Karagiannaki et al. present sev-
eral options to perform PASL. We restrict ourselves to describing the intuitive yet
computationally expensive algorithm for calculating the optimal solution regarding
explained variance. This optimal solution can be determined by repetition of the
following steps until a stopping criterion is met: First, they calculate the first prin-
cipal component of each pathway-associated sub-matrix and identify the principal
component explaining most of the variance. This principal component is added to
the solution. Then, they remove the contribution of this principal component from
the complete input feature matrix and re-start the procedure. Like PCA features,
PASL features are sorted from explaining most variance to explaining least variance.
We employed the PASL default parameters and pathway data sets, to obtain feature
lists of size k.

Autoencoder: An autoencoder is a type of neural network (cf. Chapter 4 for an
introduction to artificial neural networks) that learns a lower-dimensional represen-
tation of an initial input matrix by minimizing the reconstruction error of this input
matrix. It consists of two parts: an encoder part that compresses the input matrix
to a lower dimension (e.g., k) and a decoder part that reconstructs the input matrix
using this lower-dimensional representation. While the autoencoder is trained as a
whole, the low-dimensional representation generated by the encoder part is used as
input for ML models.
To generate a k-dimensional representation using autoencoders as DR technique, we
must train one autoencoder per k for each drug and training set separately.

7.1.4 Used machine learning techniques

In Chapter 4, we already provided detailed descriptions of the four ML algorithms
(elastic net, random forests, boosting trees, and neural networks) that we bench-
mark in this chapter. Therefore, we limit ourselves to briefly summarizing the key
aspects here.
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Elastic Net: The elastic net is a regression model that estimates the coefficients
of a linear model with the ordinary least squares minimizer [177, 178]. Thereby,
the response is modeled as a linear combination of the input features. Often, the
coefficients of such linear models are penalized to reduce their variance and eliminate
the least significant ones. The elastic net penalty, as proposed by Zou and Hastie,
employs a combination of the L1 and L2 norm for this purpose [178] (cf. Chapter
4). This penalty allows some feature coefficients to become exactly zero, i.e., the
elastic net performs embedded feature selection.

Random forests: Random forests are a decision tree-based ensemble method able
to perform regression and classification [181]. Each tree of the ensemble is trained
on a bootstrapped subset of the original training data set, and the predictions of
all trees are combined into one prediction by averaging (regression) or majority
vote (classification). To decide which feature to choose in order to perform a split
within one node of a particular tree, only a randomly drawn subset of the features
is considered. The best-performing feature with the corresponding splitting point is
selected based on some performance measure, e.g., error reduction. This proceeding
can also be regarded as a form of embedded feature selection.

Boosting trees: Like random forests, boosting trees is a decision-tree-based en-
semble method. However, instead of parallelized training of decision trees on boot-
strapped datasets, they employ sequential training. Here, each tree is fit to correct
for the error of the predecessors. Depending on regularization parameters such as the
depth of the single trees and the total number of trees, boosting trees also perform
embedded feature selection.

Neural networks: Neural networks are an extremely versatile and flexible clas-
sification and regression approach loosely modeled after signal transmission mecha-
nisms of neurons in the brain [119, 190]. They are represented as graphs consisting
of multiple layers of nodes (artificial neurons) connected through weighted directed
edges. In a neural network, nodes receive information via incoming edges, transform
the information via (non-linear) activation functions, and forward the transformed
information to their neighbours. While various network architectures exist, we solely
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consider fully connected feedforward neural networks, where each node is connected
to all nodes of the consecutive layer.

7.2 Implementation and data deposition

We trained elastic nets, random forests and boosting trees with R. In particular, we
employ glmnet v.4.1.3 [218] for elastic net, ranger v.0.13.1 [252] for random forests,
and gbm v.2.1.8 [217] for boosting trees. For the training and tuning of neural net-
works, we rely on the python Keras API v.2.3.1[220] of Tensorflow v.1.13.1 [219]. In
Table 7.2, we provide an overview of the tuned hyperparameters of the correspond-
ing implementations. More detailed information can be found in Appendix Table
D.41.
Most of the investigated DR methods (random, literature-based, variance, correla-
tion, PCA (stats v.3.6.3 [253]), PASL [251]) were implemented with R. We applied
PASL with the default settings given in the publication by Karagiannaki et al. [251].
The enrichment was conducted with the C++ implementation of the GeneTrail
tool suite [210]. Moreover, we implemented the minimum-redundancy-maximum-
relevance algorithm by Kwak and Choi [30] in C++. For the autoencoder, we use
the python Keras API v.2.3.1[220] of Tensorflow v.1.13.1 [219]. Note that we did
not perform hyperparameter tuning for the autoencoder because of an extremely
high runtime (4.5 minutes on average for a single model). In Appendix Table and
D.42, we provide information on the network architecture.
We deposited all corresponding code on our publicly available GitHub repository:
https://github.com/unisb-bioinf/ML_DR_Benchmarking_Drug_Sensitivity_P

rediction.
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7.3 Results

Table 7.2: Hyperparameter information of benchmarking study. In this table,
we provide an overview of the employed R and python packages including the tuned hy-
perparameters of all four ML algorithms. If a particular hyperparameter is not mentioned
in this table, we simply use the default settings of the respective package. In Appendix
Tables D.41 and D.42, we supply further information on the network architecture and
hyperparameters of the trained neural networks.
Model Package Parameter Value(s) #Combinations

Elastic net glmnet, v. 4.1.3 (R)
[218]

alpha [0, 1] in steps of 0.1 11 · 20 = 220

lambda 10v , v: 20 equally
spaced values
∈ [−2, 2]

Random forest ranger, v. 0.13.1
(R) [252]

mtry [1, 25] in steps of 2
and

up to 22

[40, 200] in steps of
20

Boosting trees gbm, v. 2.1.8 (R)
[217]

n.trees 1-20 20 · 5 = 100

interaction.depth 1-5

Neural network Tensorflow, v.
1.13.1

# Hidden layers 1, 2, 3 3 · 2 · 2 = 12

Keras API, v. 2.3.1 Activation function tanh, ELU (none in
output layer)

(Python) [219, 220] Dropout 10%, 30%

7.3 Results

In the ensuing sections, we present the results of our comprehensive benchmarking
study. Here, we compare the different techniques with respect to runtime, statistical
performance, and interpretability.

7.3.1 Runtime

We trained ML models for boosting trees, random forests, and elastic nets using an
Intel Xeon Gold 6248 CPU with a 2.5GHz clock rate using 24 cores. For neural net-
work training, we initially employed an Nvidia Tesla V100-SXM2 GPU since GPUs
are optimized for such computations. However, the comparison to calculations on
an Intel Xeon E5-2698 v4 using 24 cores revealed a higher runtime on the GPU.
This observation may be attributed to the overhead from transferring calculations
to the GPU that outweighs the computational speedup for small networks. Thus,
we switched from GPU to CPU.
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Figure 7.1: Runtime comparison of ML algorithms. Figure 7.1A visualizes the
average runtime for one single model for each k. Figure 7.1B shows the accumulated
runtime needed to tune (CV + final fitting + all hyperparameter combinations) one ML
approach for each k.

In Figure 7.1, we present the observed runtimes. In Figure 7.1A, we plot the av-
erage runtime needed to train a single model for each k. Figure 7.1B depicts the
accumulated runtime needed to tune (CV + final fitting + all hyperparameter com-
binations) one ML approach for each k. In Figure 7.1A, we find that the elastic
net exhibits the lowest average runtime. Moreover, Figure 7.1B shows that despite
being tested for most hyperparameter combinations, it remains the fastest approach
regarding accumulated runtime for k > 10. On the contrary, neural networks are not
only the method with the highest average runtime but also the approach with the
highest accumulated runtime despite being tuned on the fewest hyperparameters.

7.3.2 Statistical performance

The statistical performance evaluation is subdivided into three parts: First, we show
the average results across all drugs. Then, we assess the different settings (triples
consisting of ML method, DR technique, and the number of input features k) in
more detail. In particular, we focus on evaluating the complexity in terms of the
parameter k. Finally, we explore options for improving predictive performance for
the sensitive cell lines.

Average test performance In Figure 7.2, we depict the test error in terms of
the mean-squared error (MSE) averaged across all drugs. More specifically, Figure
7.2A shows the performance averaged across all drugs and DR techniques. Thus, we
obtain the best-performing ML model for each investigated k. To generate Figure
7.2B, we averaged across all drugs and ML methods, yielding one best-performing
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DR technique per k.
Overall, Figure 7.2 clearly illustrates that errors decrease with increasing k. The
most significant drop in error occurs between k = 1 and k = 10, followed by a drop
for k ≥ 25, which is particularly pronounced for the elastic net. The comparison of
ML methods (Figure 7.2A) further reveals that neural networks consistently perform
the worst, while random forests, boosting trees, and the elastic net achieve consid-
erably similar performance. By comparing the DR techniques (Figure 7.2B), we
observe that the autoencoder, the literature-based FS, and the random FS cannot
compete with the remaining six DR techniques until k = 25. Then, their error sig-
nificantly decreases. For the literature-based and random FS, the error approaches
the level of the other six DR techniques, with the random FS being the least per-
forming one out of these eight. However, the error of the autoencoder remains at
an even higher level.
Note that neural network training was extremely time-intensive (cf. Section 7.3.1),
which is why we trained the neural networks only for the 50 drugs with the highest
number of available cell lines. To ensure that our evaluations were not biased, we
also plotted the corresponding figure for the subset of 50 drugs employed for neural
network training (cf. Appendix Figure D.37). This figure shows the same trends.

Analysis of different settings While the previous section provided a rough
overview of the average performance of different ML methods and DR techniques,
this section is dedicated to a more fine-grained analysis. To this end, recall that
we refer to one triple consisting of an ML algorithm, DR method, and the number
of input features k as setting. In this section, we determine and analyze the best-
performing settings. In particular, we also quantify the improvement over a simple
baseline method.
To generate the plots in Figure 7.3, we first identified the best-performing hyperpa-
rameter combination of each setting (based on the 5-fold CV error) for each investi-
gated drug. Among these best-performing models for each setting and drug, we then
identify the best-performing combination of DR technique and ML method for each
drug and k based on test error. In Figure 7.3, we depict the best-performing settings
for each k and in Figure 7.4 we show the best-performing k only. From Figure 7.3A,
we can conclude that random forest and elastic net models are most successful with
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Figure 7.2: Average test performance. In this figure, the average test set mean-
squared error (MSE) is depicted. In Figure A, we show the mean-squared error averaged
across all drugs and DR techniques, yielding one best-performing ML model for each
investigated k. To generate Figure B, we averaged across all drugs and ML methods,
resulting in one best performing DR technique per k. For boosting trees, elastic net, and
random forests, the average was calculated using the results for all 179 drugs. The high
runtime of the neural networks did not allow us to fit models for all 179 drugs. Instead,
we only trained models for 50 drugs. Consequently, the average is also only calculated
across these 50 drugs. In Appendix Figure D.37, we depict the results of all methods for
the subset of 50 drugs. This figure shows the same trends. Note that for some settings,
it was not possible to train models: The elastic net cannot be trained for k = 1 since the
used R package glmnet solely supports k ≥ 2. The IntOGen cancer driver list encompasses
476 features. Thus, no results for k = 500 can be generated. The number of principal
components of the stats R package is limited by the number of available input samples,
and since most of the CV training folds contain less than 500 samples, no results for k = 500
exist.

increasing dominance of elastic net models for larger input feature sizes. With an
increasing size of the feature sets, the redundancy of the features increases while
their relevancy decreases. Potentially, this circumstance is more easily ignored by
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Figure 7.3: Best-performing settings for each drug. The plots in this figure depict
the best-performing setting for each investigated drug and each k .

elastic net models than random forests since random forests randomly select features
in each node, i.e., they might have to include less informative features in some splits.
From the investigated DR techniques (cf. Figure 7.3B), PCA and MRMR are the
most dominant ones, with an increasing performance advantage of PCA for larger
k. In agreement with these results, Figure 7.3C reveals the combination of elastic
net and PCA as most successful combination.
In the previously discussed Figures 7.3A to C, we presented the best-performing

settings for each k. In Figures 7.4A to C, we depict the same results limited to
only the k that achieved the best performance. We can see that for almost the
complete set of drugs, a feature set size ≥ 50 is advantageous, while the mode of the
distribution is reached at k = 300. The best-performing combination is once again
PCA in front of the elastic net. However, except for the random FS, almost all DR
techniques scored best for some drugs.
Up to this point, we compared different ML methods combined with various DR

techniques and identified the best-performing settings using the MSE as an error
measure. However, the raw MSE value cannot tell us how good the models actually
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Figure 7.4: Best-performing settings for each drug. The plots in this figure depict
the best-performing setting for each investigated drug the best k .

are. To this end, we can employ a baseline error, such as a simple dummy model
that always predicts the mean response of the training samples. In Figure 7.5A,
we plot the ratio between the test MSE of the best-performing ML/DR combina-
tion per k of a drug and the corresponding dummy model. All models are superior
to the baseline, and for 80% of models, the improvement equals at least 20%, i.e.,
MSE

Baseline
≤ 0.8. For 18% of models, the improvement is even 40% at least.

Figures 7.5B to D show analogous results for comparisons between models of differ-
ent complexity in terms of k (B), Pearson correlation and PCA (C), and Pearson
correlation and literature-based FS with IntOGen (D). In 7.5B, we note that for
the majority of models (63%), the MSE increase by using fewer features (k < 300)
is rather small (< 10%), indicating that model complexity can be reduced signif-
icantly without major performance loss. Similarly, the comparison between PCA
(best-performing FS) and Pearson correlation points towards the same direction: For
52% of models, the increase in error by using Pearson correlation instead of PCA is
rather small (<10%). The Pearson correlation coefficient even outperformed PCA
for 37% of models. From Figure 7.5D, we can learn that a simple literature-based
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FS is not advisable. The Pearson correlation coefficient outperforms the IntOGen
FS for 93% of models.
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Figure 7.5: Error ratio. This figure depicts performance comparisons between different
models. For comparing the models we employ the ratios between their respective test
MSEs. I
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Addressing regression imbalance Throughout Chapters 5 and 6, we illustrated
that classifiers and regressors trained on the GDSC database suffer from performance
issues because of the under-representation of sensitive cell lines, i.e., they exhibit
a low sensitivity (classification) and a high MSE (regression) for those cell lines.
Moreover, we have shown how to counteract these issues, known as class and re-
gression imbalance, by introducing sample-specific weights or pursuing upsampling
strategies.
Another straightforward implementation of a countermeasure against this class or
regression imbalance is using error measures emphasizing the importance of the un-
derrepresented class. In Figure 7.6, we depict the effects of one such approach on
the test performance of the best-performing model: On the left, we employed the
conventional CV MSE to select the hyperparameters during the CV and the best-
performing setting per drug . On the right, we used a weighted MSE instead, i.e., we
separately calculated the MSE of the sensitive and resistant cell lines and then aver-
aged these two. Note that we binarized the drug response data using the described
approach by Knijnenburg et al. [27] (cf. Chapter 5). We can observe that the MSE
of the sensitive cell lines decreases considerably at the cost of a slight increase in
MSE for the resistant cell lines, which is what we already noted in Chapters 5 and
6.
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Figure 7.6: Effect of different error measures during hyperparameter tuning.
This figure depicts the test MSE of the best-performing model for sensitive and resistant
cell lines using the conventional MSE (left) for hyperparameter tuning and best-performing
setting selection versus a weighted MSE instead (right). For the weighted version, we
separately calculated the MSE of the sensitive and resistant cell lines, and then averaged
these two.

7.3.3 Model and feature interpretability

In Chapter 4, we discussed that interpretability, i.e., the amount by which humans
can understand an ML model, is a means to generate trust in ML. Especially for
ML approaches in medicine, and therefore also drug sensitivity prediction methods,
the quantification of interpretability is indispensable since these approaches should
serve as decision support for human-centred affairs. In drug sensitivity prediction,
these models are also used to gain insights into biomarkers of disease mechanisms
and treatment success or failure, fostering basic medicine and pharmacy research
alike. Thus, rendering these models amenable to human interpretation increases
their usefulness.
In Chapter 4, we propose a taxonomy of interpretability based on definitions by
Lipton [150] and Imrie et al. [146] (cf. Chapter 4, Figure 4.3). In that chapter, we
also provide a detailed assessment of the existing drug sensitivity prediction models
concerning interpretability. In this chapter, we limit ourselves to discussing some
considerations that may arise before opting for a particular model.
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7 A benchmarking of DR techniques and ML methods

The ML models and DR techniques of this benchmarking exhibit different levels of
interpretability. If the original feature space already corresponds to understandable
entities, e.g., genes, FS techniques are typically more interpretable than FE tech-
niques since FE involves transformations of the original feature space, potentially
obscuring meaning. However, FE techniques such as PASL try to increase inter-
pretability in terms of transparency by introducing components corresponding to
real-world entities, e.g., pathways. Indeed, this may help to elucidate high-level bio-
logical processes that are otherwise difficult to detect. From the four employed ML
algorithms, neural networks are the least inherently interpretable ones (cf. Table
7.3 for a rough overview): they involve - even in simple network structures - various
non-linear transformations of the input data. As a remedy, approaches for adding
post-hoc explanations (i.e., explainability) are developed (cf. Chapter 4), giving rise
to the branch of explainable artificial intelligence (XAI).
Usually, interpretability is not considered in isolation when opting for an ML model.
For example, the bias-variance tradeoff (cf. Chapter 4) also plays a crucial role.
Here, neural networks are a favorable approach if large amounts of data are avail-
able because they essentially incur no bias. The results of this chapter and the
previous chapters do, however, not indicate that neural networks are particularly
recommendable for drug sensitivity prediction with the presented data.
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Table 7.3: Interpretability of ML methods. We assess the interpretability of the
four ML methods using the terms transparency and explainability from the taxonomy
of interpretability we proposed in Chapter 4. Briefly, transparency describes the inher-
ent interpretability of an ML model and can roughly be approximated by its complexity.
Explainability denotes any form of interpretability that is generated post hoc using expla-
nations or justifications that were not part of the model. In this table, we solely list the
explainability methods that are readily available in the used R/Python packages (cf. Table
7.2).

Model Transparency Explainability

Elastic net + easily interpretable feature coeffi-
cients

• feature importance: absolute value of
coefficients; sign of coefficient denotes
impact direction

Random forest + easily interpretable decision splits
– typically large number of trees

• feature importance: error improve-
ment obtained from splits using certain
feature; error increase when feature is
randomly perturbed
• samples similar to given input: train-
ing samples reaching same leaf nodes

Boosting trees + easily interpretable decision splits
– typically large number of trees
– trees affect predictions to varying de-
gree

• feature importance: error improve-
ment obtained from splits using certain
feature; error increase when feature is
randomly perturbed

Neural network – typically thousands of model param-
eters
– complex, multi-layered computa-
tions

7.4 Discussion

In this chapter, we presented the results of a large-scale benchmarking study. In to-
tal, we fitted over 16,000,000 models using four ML methods (elastic net, boosting
trees, random forests, neural networks) combined with nine DR techniques (ran-
dom, literature-based, variance, correlation, enrichment, MRMR, PCA, PASL, au-
toencoder). We identified the elastic net, a regularized linear model, as the top-
performing ML method throughout all conducted analyses, i.e., in terms of statis-
tical performance, runtime, and interpretability. Random forests were only slightly
less performant. Despite being the most complex tested model, neural networks
were not competitive with the other methods. For the investigated DR techniques,
we observed the following: elastic nets should be combined with the FE technique
PCA to achieve the lowest error. However, the MRMR FS was on par with PCA for
most analyses. Moreover, the features obtained by MRMR are easier to interpret
than PCA-derived ones. The least-performing DR techniques were the IntOGen
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7 A benchmarking of DR techniques and ML methods

driver list, the random FS, and the autoencoder.
Overall, our results imply that relatively simple ML methods suffice to achieve rea-
sonable predictions of anti-cancer drug sensitivity using cell line data. This finding
also seems to align well with a recent study by Kapoor and Narayanan [254]. They
identify data leakage, i.e., the inappropriate handling of data before, during, or after
the model training process, as a root cause of overoptimistic claims about the per-
formance of complex ML methods in comparison to simple ones [254]. However, we
recognize several limitations of our benchmarking study. Firstly, we solely focused
on gene expression data since it is known to be the most informative omics data
type [17]. Including other omics data as features could induce a different result
since more complex ML methods and DR techniques may more accurately capture
intricate biological processes between omics types. Generally, one can argue that
we benchmarked only relatively basic approaches for both ML methods and DR
techniques. Moreover, the results from Chapters 5 and 6 also show that advanced
modelling can help improve upon basic models, especially for the underrepresented
class of sensitive cell lines. In this chapter, however, we show that by employing a
different error measure during the tuning of basic methods, we can also improve the
performance for these cell lines.
In the last chapter of this thesis, when we conclude the complete work presented
therein, we will deal with these issues once more. We believe that the results of this
study may serve as a guide for developing future models.
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8 Reliable anti-cancer drug
sensitivity prediction and
prioritization

In the previous three chapters, we already addressed various unresolved issues for
anti-cancer drug response prediction using supervised ML classification and regres-
sion techniques. Our newly developed methods, and most related works from the
literature, predict a single class or single continuous drug response value for one
specific cell line, i.e., they return point predictions. By comparing these point pre-
dictions to the known actual values, the overall model performance during training,
validation, and testing can be assessed using conventional error measures such as
MSE for regression or sensitivity and specificity for classification. While a thorough
evaluation on a test set can already hint towards the reliability of a model, we have
neither a guarantee nor an estimation for the model uncertainty for a new sample,
i.e., we do not know if a prediction for a new sample is likely going to be close to
its actual but unknown value. In real-world healthcare applications, the described
scenario represents the standard use case. Thus, a reliability estimate or guarantee
is required for a translation of computational methods into actual medical decision-
making.
From the related methods, only Fang et al. already integrate some form of reliability
estimation for their predictions (see Table 8.1). They estimated prediction intervals
with a quantile regression random forest [31]. Intuitively, the length of the interval
corresponds to the reliability of the prediction. While their approach highlights the
significance of reliability estimation, it is limited to RF regression. Moreover, their
approach does not give a confidence level or guarantee. In the drug discovery and
toxicity prediction domains, conformal prediction (CP) recently gained popularity
[202, 255, 256, 257] (see Chapter 4 for a detailed description of CP). In this chapter,
we introduce the corresponding concepts into the drug sensitivity prediction do-
main. Therefore, we developed a CP-based pipeline to reliably predict anti-cancer
drug responses for classification, regression and combined classification and regres-
sion methods such as SAURON-RF. Moreover, we then proceed to shift our focus
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from reliable drug sensitivity prediction to drug prioritization. Here, drug prior-
itization is defined as the task of identifying and subsequently sorting the list of
effective drugs for each sample. To allow for this shift, a drug sensitivity measure
that is comparable across drugs is necessary. To this end, we propose a novel drug
sensitivity measure, the CMax viability, which is based on clinically relevant drug
concentrations as described in [258]. As mentioned above, we define drug prioriti-
zation as the task of identifying and subsequently sorting the list of recommendable
drugs. As such, it is similar in spirit to drug recommendation [157]. He et al. define
drug recommendation as the task of correctly ranking the k most efficient drugs.
Indeed, we can formulate drug prioritization as drug recommendation with k being
an already known, cell line-specific value given by the number of drugs that were
effective for a cell line. However, the implementations of drug recommendation by
He et al. [157], and Liu et al. [131] have some major drawbacks compared to our
approach. Firstly, they cannot evaluate whether they only identified effective drugs.
Secondly, they do not predict sensitivities directly. Thirdly, they provide no cer-
tainty estimation.
In the following, we briefly describe a quantile regression algorithm for SAURON-RF
needed to render it amenable to CP. Moreover, we provide a multi-class extension of
SAURON-RF to investigate whether a more fine-grained discretization of response
values could increase performance. Then, we present our novel drug sensitivity
measure, the CMax viability, which enables a straightforward prioritization of drugs
because of its across-drug comparability. Finally, we depict how to apply CP to
reliably predict anti-cancer drug responses and perform drug prioritization based on
these predictions.
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Table 8.1: Comparison between different tools for drug sensitivity prediction
with respect to certainty estimation and prioritization. In this table, we compare
the existing drug sensitivity prediction approaches with respect to the used methodology
and drug sensitivity measure. Moreover, we assess whether the methods provide certainty
estimates and perform drug prioritization.
* Rahman et al. [155] use the jackknife-after-the-bootstrap approach but did not employ
it to deliver reliable predictions.
** He et al. [157] and Liu et al. [131] perform drug recommendation, which is similar but
not identical to prioritization.
Name and author Methodology Drug sensi-

tivity mea-
sure

Reliability Prioritization

Menden et al., 2013 [152] neural network IC50 7 7

Zhang et al., 2015 [153] dual-layer integrated drug-cell
line similarity network

activity
area, IC50

7 7

LOBICO by Knijnenburg et
al., 2016 [27]

integer linear program deliver-
ing Boolean rules

binarized
IC50

7 7

Stanfield et al., 2017 [166] cell line and drug proximity
networks

binarized
IC50

7 7

SRMF by Wang et al., 2017
[154]

similarity regularized matrix
factorization

IC50, activ-
ity area

7 7

HARF by Rahman et al., 2017
[155]

random forest augmented with
cancer types

AUC (7)* 7

HNMDRP by Zhang et al.,
2018 [167]

similarity networks IC50 7 7

Matlock et al., 2018 [156] model stacking AUC 7 7

KRL by He et al., 2018 [157] kernelized rank learning normalized
IC50

7 (3)**

RWEN by Basu et al., 2018
[158]

response-weighted elastic net AUC 7 7

CDRscan by Chang et al., 2018
[159]

convolutional neural networks IC50 7 7

QRF by Fang et al., 2018 [31] quantile regression random for-
est

activity area 3 7

NCFGER by Liu et al., 2018
[160]

neighbor-based collaborative
filtering with global effect
removal

IC50 7 7

DeepDR by Chiu et al., 2019
[161]

neural networks IC50 7 7

Continued on next page
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Table 8.1 – continued from previous page

Name and author Methodology Drug sens.
meas.

Reliability Prio.

Deep-Resp-Forest by Su et al.,
2019 [168]

deep cascaded forest binarized
activity
area, bi-
narized
IC50

7 7

Dr.VAE by Rampášek et al.,
2019 [129]

semi-supervised generative
modeling based on variational
autoencoders

binarized
area above
the dose-
response
curve

7 7

netBITE by Oskooei et al.,
2019 [162]

biased tree ensemble IC50 7 7

Deng et al., 2020 [163] neural network normalized
Actarea

7 7

PathDSP by Tang et al., 2021
[164]

neural network IC50 7 7

MERIDA by Lenhof et al.,
2021 [21]

integer linear program deliver-
ing Boolean rules

binarized
IC50

7 7

GraphDRP by Nguyen et al.,
2022 [165]

neural network normalized
IC50

7 7

PPORank by Liu et al., 2022
[131]

deep reinforcement learning normalized
IC50

7 (3)**

SAURON-RF by Lenhof et al.,
2022 [29]

simultaneous regression and
classification random forest

IC50 and
binarized
IC50 simul-
taneously

7 7

reliable SAURON-RF by
Lenhof and Eckhart et al.,
2023 [33]

simultaneous regression and
classification random forest us-
ing CP

IC50 and
binarized
IC50 simul-
taneously,
CMax via-
bility and
binarized
CMax
viability
simultane-
ously

3 3
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8.1 Conformal drug sensitivity prediction and prioritization

Authors’ contributions
This chapter is based on the preprint Reliable Anti-Cancer Drug Sensitivity
Prediction and Prioritization [33] in terms of content and text. Therein, the
reliable SAURON-RF drug sensitivity prediction and prioritization pipeline
using CP is presented. This pipeline represents the follow-up work to the
SAURON-RF paper. I conceived the idea for the study and in particular
for employing CP in the context of drug sensitivity prediction. Lisa-Marie
Rolli implemented an initial version of the CP pipeline in her bachelor’s the-
sis, which I supervised. The CP framework was then extended in her work
as a student assistant at our chair. Lea Eckhart developed the novel drug
sensitivity measure, which I then discretized for usage with SAURON-RF.
I also implemented the novel extensions of SAURON-RF, i.e., the multi-
class extension as well as the quantile regression functionality. Moreover, I
drafted the manuscript. The computational experiments were jointly per-
formed by me, Lea Eckhart, and Lisa-Marie Rolli. Hans-Peter Lenhof and
Andrea Volkamer supervised the study. All authors discussed the results
and commented on the manuscript.

8.1 Conformal drug sensitivity prediction and

prioritization

A prerequisite for translating ML models into healthcare decision support systems is
the creation of trust in their predictions. We developed and implemented a confor-
mal prediction (CP) pipeline to address this demand for drug sensitivity prediction
and prioritisation. Since we demonstrated (cf. Chapter 6) that joint classification
and regression methods outperform regression and classification alone for drug sen-
sitivity prediction, the framework is able to handle classification, regression, and
joint classification and regression methods.

8.1.1 SAURON-RF extensions

SAURON-RF represents a possibility of performing classification and regression si-
multaneously. To that end, it pursues the strategy to augment the canonical re-
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gression random forest algorithm with class information for the training samples
(cf. Chapter 6 for a detailed description). In summary, SAURON-RF employs the
canonical regression random forest algorithm for model fitting with a continuous re-
sponse (e.g., IC50 values). However, a binary response vector, e.g., partitioning into
sensitive and resistant samples, is also used as input to calculate sample-specific
weights and to weight the regression predictions of the trees. Here, we present
two extensions to SAURON-RF: Firstly, we adopt the quantile regression algorithm
described by Meinshausen [32] to SAURON-RF. By doing so, we enable the esti-
mation of reliabilities for our predictions and, in particular, the implementation of
a combined regression and classification CP framework. Secondly, we enable the
processing of more than two classes to allow for a more fine-grained analysis of
sensitivity levels.

Quantile regression for SAURON-RF

The goal of supervised learning algorithms is to express the relationship between
a predictor variable, e.g., in our case, the P -dimensional random variable X, and
the real-valued response variable Y , such that the resulting model approximates Y
with minimal error. To this end, standard regression algorithms typically employ
a squared-error loss function with which the conditional mean E(Y |X = x) is esti-
mated [32]. Random forests also approximate the conditional mean [32]. However,
there exist cases in which not only the conditional mean but the complete condi-
tional distribution F (y|X = x) is of interest, e.g., reliability estimation or outlier
detection [32, 259]. In our application case, we are indeed interested in estimating
the dispersion of response values to assess the reliability of our prediction and to
obtain a drug response value for a specific cell line that is unlikely to be exceeded.
With quantile regression, such questions can be addressed [260]. For this purpose,
Meinshausen proposed quantile regression forests, a generalisation to random forests
able to estimate the conditional distribution function F (y|X = x). We present an
adapted version of this quantile regression algorithm for SAURON-RF in the fol-
lowing.
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8.1 Conformal drug sensitivity prediction and prioritization

Let the conditional distribution function F (y|X = x) be defined by the probability
that Y is at most y for X equal to x, i.e.,

F (y|X = x) = Pr(Y ≤ y|X = x). (8.1)

The α-quantile for X = x is then defined as the minimum y for which the conditional
distribution function is at least α:

Qα(x) = inf{y : F (y|X = x) ≥ α} . (8.2)

Hence, we need an estimate of the conditional distribution function to perform
quantile regression. Meinshausen shows that this is indeed possible with random
forests by interpreting them as proposed by Lin and Jeon, who view them as an
adaptive neighbourhood classification or regression algorithm [261]. In particular,
Meinshausen employs the fact that the final prediction of an ordinary random forest
is an estimate of the conditional mean and that it can be viewed as a weighted sum
of the response values of the training observations. To this end, let y ∈ RN be the
response vector containing response values of N samples. Then, the final prediction
of the ordinary RF can be expressed as

E(Y |X = x) = f̂(x) =
N∑
i=1

wi(x) · yi (8.3)

with wi(x) representing a forest-wide weight for each training sample i ∈ {1, . . . , N}
(cf. Meinshausen [32] for definition in usual random forests). In contrast, we ex-
pressed the final prediction of SAURON-RF as a weighted average of the tree pre-
dictions f̂b(x),∀b ∈ {1, . . . , B} (cf. Equation 6.2 in Chapter 6):

f̂(x) =
B∑
b=1

wb(x) · f̂b(x) . (8.4)

Here, wb(x) is a tree-specific weight. The equivalence of Equation 8.4 and 8.3 can
however also be established. To this end, let δ(v) be the set of bootstrap samples
that belong to the node v and let wvj be the node-specific sample weight for the
bootstrap sample j as defined in Chapter 6 Equation 6.5. Moreover, let wvi∗ be the
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node-specific sample weight of the training samples, which can be derived from the
weights of the bootstrap samples of the trees by calculating

wvi∗ =
∑

j∈δ(v):j=i

wvj ,∀i ∈ {1, . . . , N}. (8.5)

We now start with Equation 6.2 and transform it to 8.3

B∑
b=1

wb(x) · f̂b(x) =
B∑
b=1

wb(x) ·
∑

n∈δ(µb)

wµbn · yn

introduce Iδ(µb)(i)=


1, if sample i is in leaf node µb

0, otherwise
=

B∑
b=1

wb(x) ·
N∑
i=1

Iδ(µb)(i) · w
µb
i∗ · yi

=
B∑
b=1

N∑
i=1

wb(x) · Iδ(µb)(i) · w
µb
i∗ · yi

=
N∑
i=1

B∑
b=1

wb(x) · Iδ(µb)(i) · w
µb
i∗ · yi

define wi(x)=
∑B
b=1 wb(x)·Iδ(µb)(i)·w

µb
i∗

=
N∑
i=1

wi(x) · yi .

Given this equivalence, we can - in analogy to Meinshausen - estimate the conditional
distribution function by

F̂ (y|X = x) =
N∑
i=1

wi(x) · Iyi≤y (8.6)

with Iyi≤y being 1 iff yi ≤ y and 0 otherwise. Finally, the quantile regression forest
algorithm for SAURON-RF reads as follows

1. Train the SAURON-RF regression random forest as explained in Chapter 4
Section 4.3.4 and Chapter 6 Section 6.1.2.
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2. For a new sample x, trace a route from root to leaf for each tree b ∈ {1, . . . , B},
which results in the set of reached leaf nodes L = {µ1, . . . , µB}.

3. For each µb ∈ L , calculate the node-specific sample weights (cf. Equation 8.5)
of all training samples xi, i ∈ {1, . . . , N}.

4. Then, average these weights across L to obtain a forest-wide weight of each
training sample i ∈ {1, · · · , N}, i.e.,

wi(x) =
B∑
b=1

wb(x) · Iδ(µb)(i) · w
µb
i∗ ,∀i ∈ {1, . . . , N} (8.7)

5. Now, an estimate of the distribution function F̂ (y|X = x) can be determined
for all y ∈ R by using Equation 8.6.

6. By plugging F̂ (y|X = x) into Equation 8.2, calculate the estimate of the
conditional quantile Q̂α(x), i.e., return the minimal response value y for which
the estimate of the conditional distribution function F̂ (y|X = x) is at least α.

Multi-class extension

For the initial version of SAURON-RF, we solely considered a binary division into
sensitive and resistant cell lines, i.e., we gave definitions for the sample-weight func-
tions of the binary case (see Chapter 6). However, especially for drug sensitivity
prediction, allowing for a more fine-grained class division can be advantageous to
more accurately reflect the biological variance and uncertainty of drug response.
Thus, we provide straightforward extensions for the Equations 6.3 and 6.4.
Let C = {c1, . . . , ck} be a set of k classes. Furthermore, suppose that Ncj with
j ∈ {1, . . . , k} is the number of samples of class cj. W.l.o.g., let ck be the class
containing the relative majority (mode) of samples. The simple sample weights can
be determined by the formula

w∗i =

1, if sample i belongs to ck
Nck
Ncj

, if sample i ∈ cj,∀j ∈ {1, . . . , k − 1}
(8.8)
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

To define the linear and quadratic weight function for the multi-class setting, we
additionally assume that the classes are ordered in ascending order of the thresholds
that divide the corresponding class pairs. To this end, let tj,r ∈ {t1,2, . . . , tk−1,k}
be the threshold that divides the samples from class j and r. Let d and y be the
discrete and continuous drug response vectors respectively. The weight function in
Equation 6.4 remains unaltered for samples belonging to class c1 and ck since these
classes have only one neighbouring threshold. For all other samples, the distances
from the two thresholds are averaged. In total, the following formula provides the
sample weights

w∗i =


|yi−t1,2|g

k·
∑
∀n∈{1,...,N}:dn=di

|yn−t1,2|g , if sample i belongs to c1
|yi−tk−1,k|g

k·
∑
∀n∈{1,...,N}:dn=di

|yn−tk−1,k|g
, if sample i belongs to ck

|yi−tj−1,j |g+|yi−tj,j+1|g
k·
∑
∀n∈{1,...,N}:dn=di

|yn−tj−1,j |g+|yn−tj,j+1|g , otherwise

(8.9)

with g ∈ {1, 2}.

8.1.2 Definition of novel drug sensitivity measure

In Chapter 3, we thoroughly described a variety of drug sensitivity measures calcu-
lated from dose-response curves resulting from cell line viability assays. There, we
already pointed out that established measures such as the IC50 and AUC values, as
provided by the GDSC, are only comparable across cell lines but not across drugs.
To address this demand, we propose a novel drug sensitivity measure called CMax
viability. The across-drug comparability of the novel measure will then allow for
a direct comparison of efficiency between different drugs applied to one particular
cancer sample. We define the CMax viability of a drug as the viability of a cell
line at the CMax concentration of that drug. Here, the CMax concentration is
the peak plasma concentration of a drug after administering the highest clinically
recommended dose [258]. The CMax viability can take values in the range [0, 1],
where 0 corresponds to no viability of cancer cells after treatment, and 1 indicates
100% viability. To derive the viability of a cell line at the CMax concentration,
we determine the intersection point between the dose-response curve of the cell line
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Figure 8.1: Exemplary dose-response curves for six drug and cell line combi-
nations. This figure depicts six exemplary dose-response curves fitted with the multilevel
mixed effects model by Vis et al. [99]. Here, the black crosses represent the actual dose-
response measurements provided by the GDSC database. The blue-shaded area highlights
the tested concentration range and the blue circle marks the IC50 concentration (cf. Chap-
ter 3, Section 3.1.2 for a definition). The intersection point between the red vertical line
(passing through the CMax concentration) and the dose-response curve marks the CMax
viability (cf. Section 8.1.2 for the definition). Used abbreviations in plots: RMSE (Root
Mean Squared Error), R2 (R-Squared)

calculated from raw viability data and the line parallel to the viability axis passing
through the CMax concentration (see Figure 8.1 for examples).
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

8.1.3 Conformal prediction pipeline

In Chapter 4, we discuss ML and various CP variants in detail. In the following, we
briefly summarise and describe the key aspects of inductive conformal prediction as
we employ it to perform reliable drug sensitivity prediction and prioritization.
CP represents a mathematical rigorous certainty estimation framework applicable
to all regression and classification ML methods provided that the latter supply a
notion of (un)certainty. Given a user-specified maximal error rate α ∈ [0, 1], CP
returns prediction sets (classification) or intervals (regression) that contain the true
response with a certainty, also known as coverage, of almost exactly 1− α. This is
called marginal coverage property (see Chapter 4, Section 4.4.1). We designed and
implemented a flexible CP framework in Python that can be used for regression,
classification and joint regression and classification methods. In the following, we
outline the functionality of our framework. The corresponding graphical overview
of the framework applied to SAURON-RF is given in Figure 8.2.
Input of CP: In ML, we usually assume that our samples are drawn i.i.d. to
guarantee the claimed properties of our methods. For the CP guarantee to hold, we
only need to assume the exchangeability of the data, i.e., that the underlying joint
probability distribution is invariant to finite permutations [197]. The training and
testing of supervised ML methods typically requires at least two disjoint data sets:
a training data set for parameter selection and a test set for the final evaluation of
the trained model. CP demands a third disjoint data set, the calibration data set,
used to derive a distribution on the (un)certainty of the trained model. Accordingly,
the trained model needs to provide a notion of uncertainty (or certainty). In the
case of SAURON-RF, we employ

1− #trees that voted for predicted class
#trees

as a notion of uncertainty for classification. For regression, we quantify the dis-
persion of response values with quantile regression. In addition to this notion of
uncertainty, the user has to specify a maximal allowed error rate α, which allows for
a flexible certainty control. If a model cannot generate single-class prediction sets
or narrow intervals given a strict error rate, increasing α, i.e., lowering the desired
certainty, might still help to identify the most reliable trends.

168



8.1 Conformal drug sensitivity prediction and prioritization
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Figure 8.2: CP pipeline. This figure depicts how CP can help to perform reliable
(simultaneous) regression and classification. At first, the given drug data set has to be split
into three disjoint data sets: a training, a calibration, and a test set. The ML method, e.g.,
SAURON-RF, is then trained on the training data set. Afterwards, the resulting model is
applied to the calibration data to derive a distribution of (un)certainty of the predictions.
Together with the user-specified maximal allowed error rate α, this distribution is used
to define a threshold that when appropriately applied to the test data set guarantees a
certainty of 1− α of the test set predictions.
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

Score functions: CP integrates a given notion of uncertainty in a score function,
also called non-conformity score in the corresponding literature. By applying this
score function to the calibration data set, a score distribution can be generated.
For classification, we implemented three different score functions: True-class (TC),
Summation (Sum), and Mondrian (Mon). For regression, we implemented a score
function called Quantile (Qu). In Chapter 4, Section 4.4.2 and Section 4.4.3 we
give their definitions. Given a score distribution and the maximal allowed error rate
α, CP derives a threshold q̂ that can be used to generate valid intervals or sets.
More specifically, q̂ is a modified (1 − α) quantile of the score distribution if the
score function quantifies uncertainty (see Chapter 4, Section 4.4.1 for details). Note
that it is possible to implement all of the mentioned score functions as uncertainty
measures, i.e., high values correspond to high uncertainty, and low values correspond
to high certainty.

Output of CP: After training the ML model on the training data set, and em-
ploying its notion of uncertainty in a score function to derive a score distribution
on the calibration data set, the CP output for the test set can be generated. The
trained ML model has to be applied to the test set, and the score function must
also be evaluated. By combining q̂ with the derived score per test set sample, the
point prediction of the ML model can be exchanged with a valid prediction set
(classification) or interval (regression). More specifically, CP returns prediction sets
(classification) or intervals (regression) that fulfil the marginal coverage property.
Some scores guarantee special versions of this property. The Mondrian score, for
example, provides this coverage for every ground truth class, which is especially de-
sirable when there is a considerable class imbalance present, as is the case for drug
sensitivity prediction in cancer [29]. Our CP pipeline cannot only return prediction
sets or intervals but also both simultaneously, making it amenable to joint classi-
fication and regression methods such as SAURON-RF. Moreover, when combining
this capability with our novel drug sensitivity measure that is comparable across
drugs, we can leverage the full potential of SAURON-RF and ultimately perform
drug prioritization: we can first reliably identify effective drugs (classification) and
then rank them by their predicted efficiency (regression) using the (upper limit of
the) CP interval. We depict this application scheme in Figure 8.3.
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Figure 8.3: Drug prioritization pipeline. This figure shows a drug prioritization
pipeline originating from combining the CMax viability with SAURON-RF and CP. The
output of the CP pipeline (cf. Figure 1) deployed with our SAURON-RF method are sets
for the classification task and intervals for the regression task. Here, sets that contain only
one element indicate that we can be confident about the initial point prediction (single
class) of the trained model. Thus, we can identify effective drugs by filtering for sets solely
comprising the class corresponding to drug sensitivity (1: sensitive). Due to the across-drug
comparability of the CMax viability, we can rank these drugs by their predicted efficiency
using, for example, the upper limit of the regression interval that represents a value not
being surpassed with high probability.
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

8.2 Data preparation

For all analyses in this chapter, we employ release 8.3 (June 2020) of the GDSC
cancer cell line panel [19], which is the same version deployed for the analyses of
Chapter 6. In particular, we again used the pre-processed gene expression values and
the pre-computed logarithmized IC50 drug responses. In addition, we downloaded
the raw viability data and obtained a list of CMax concentrations from [258] to
calculate the CMax viability measure.

8.2.1 Drug response processing

In our experiments, we use two different drug sensitivity measures, i.e., the logarith-
mized IC50 value and the CMax viability, separately to fit our models. To achieve a
fair performance comparison between the two measures, we restrict our analyses to
drugs with availability for both. Thus, we considered 107 drugs from GDSC1 (60)
and GDSC2 (47) in total. As a method that simultaneously performs classification
and regression, SAURON-RF requires a continuous and discrete drug response vec-
tor as input. Therefore, we also derive discretized drug response vectors for both
sensitivity measures.

IC50 value processing: As a continuous measure of drug sensitivity, we employ
the logarithmized IC50 values provided by the GDSC. The corresponding binarized
drug response was obtained by applying the custom R-script as described in Chapter
5. For each drug, we thereby derive one binarization threshold that divides the cell
lines into sensitive and resistant ones, finally resulting in one binary drug response
vector.

CMax viability processing: To calculate the viability at the CMax concentra-
tion, we first determined the dose-response curves for all cell line-drug combinations
simultaneously with the multilevel mixed effects model by Vis et al. [99] using the
raw drug sensitivity data from the GDSC. For each drug-cell line combination, we
then identify the viability at which the corresponding dose-response curve passes
through the line parallel to the viability (Y) axis through the CMax concentration
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8.2 Data preparation

(a) One threshold (b) Two thresholds

Figure 8.4: Threshold determination. This figure depicts the density of the CMax
viability values and the derived thresholds (red lines) as well as the medoids (blue dashed
lines) resulting from applying PAM.

of the drug. We call this CMax viability (see Section 8.1.2). Since SAURON-RF
demands a discrete and a continuous drug response vector as input, we also dis-
cretize the CMax viabilities. In contrast to the IC50 data, we do not derive specific
thresholds for each drug. Instead, we leverage the across-drug comparability of
the viabilities to determine one threshold (binarization) or even several thresholds
(discretizations such as threefold division) applicable to all drugs. To this end, we
employ the partitioning around medoids (PAM) clustering algorithm (see Chap-
ter 4, Section 4.3.2), which has already been used in drug sensitivity prediction
to discretize GI50 values [17]. Using PAM on the complete set of available CMax
viabilities across all drugs, we identify either two clusters or three clusters of cell
lines. The mid-points between the clusters are discretization thresholds (cf. Figure
8.4). In the case of two classes, we then interpret the cell lines of the two clusters
to be sensitive (1) and resistant (0). If we derive two thresholds, we interpret the
clusters as sensitive, ambiguous, and resistant cell lines. Consequently, when we ap-
ply the discretization threshold(s) to the continuous CMax viabilities of a particular
drug, we obtain a binary (two classes) or ternary (three classes) response vector. In
our SAURON-RF analyses, we combine the continuous response vector of one drug
either with the binary or the ternary response vector of that drug.
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

8.2.2 Model training

In all previous chapters, we were concerned with the prediction of continuous or dis-
crete drug response values and an evaluation of these predictions from a drug-centric
perspective. Specifically, this means that we assessed the model performance on a
per-drug basis. For each drug, we predicted the sensitivities of the cell lines and
then determined the model performance, e.g. we calculated the Pearson correlation
coefficient between our predictions for one drug and the actual values of that drug.
Eventually, we are interested in assessing model performance from a cell-line-centric
perspective, i.e., for each cell line, we would like to identify and subsequently pri-
oritize all suitable drugs. Given the across-drug comparability of our novel drug
sensitivity measure, the CMax viability, we can now finally conduct such analy-
ses. In the ensuing sections, we present results for two major settings: drug-centric
analysis and cell line-centric analysis, which have been performed as described below.

Drug-centric analysis: To achieve a fair performance comparison between the
IC50 values and the CMax viabilities, we only considered drugs where both values
were available, which resulted in 107 (60 from GDSC1, 47 from GDSC2) potentially
analyzable drugs. Here, one drug data set consists of the following triple: the gene
expression matrix, the continuous response of a particular drug, and the discretized
response of that drug. We partitioned each data set into a training (70%), calibra-
tion (15 %), and test (15%) set. The training set was further subdivided to serve
as input for a 5-fold cross-validation (CV). Within each CV step, the fold usually
employed as the test set is partitioned into a disjoint calibration and test set. If the
discretized CMax viabilities for one drug contained only one class or consisted of
an insufficient number of samples per available class, we discarded this drug for the
CMax viability and the corresponding IC50 analyses (see Figure 8.5 for the GDSC2
binary case and Appendix Figures E.38 - E.40 for all other cases). In total, we
could thus analyze 41 drugs for the binarized drug responses of GDSC1, 32 drugs
for the binarized drug responses of GDSC2, 37 drugs for the ternary drug responses
of GDSC1, and 28 drugs for the ternary drug responses of GDSC2. For each data
set, the final model is trained on the complete training data, and the CP pipeline
is applied accordingly afterwards. Here, we only report the results for the newer
GDSC2 data set, which is based on an improved drug sensitivity assay. The results
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for the GDSC1 data set can be found in the Appendix Figures E.54 - E.64.

Cell line-centric analysis: When we shift the focus of the performance evaluation
from a drug to an investigated cancer sample, we have to adjust the generation of
our training, calibration, and test set. In particular, if we prioritize drugs for one
particular cell line, this cell line must be previously unseen by each drug-specific
model in the training process in order to derive an unbiased estimate of the drug
prioritization capability. Since this has to hold for all cell lines in the test set, all
drugs must share the cell lines in the test set. To ensure this for our analyses, we first
determined the common cell lines between all investigated drugs for each database
(GDSC1/GDSC), resulting in 243 common cell lines for the GDSC1 drugs and 609
common cell lines for the GDSC2 drugs. For each database, we then randomly
sampled a test and calibration set from the common cell lines such that their sizes
were approximately equal to the average sizes from our drug-centric analyses. The
calibration and test sets each contained 121 cell lines for GDSC1 and 152 cell lines
for GDSC2. The remaining cell lines are added to the training sets of the drugs. For
this analysis, we decided to employ only drugs with at least 6% of samples in each
class since models for drugs with a comparably low imbalance perform better than
models trained on drugs with high class imbalance. Beyond that, the CP certainty
guarantee also becomes more accurate the more calibration samples are available,
see [198, 197], which is particularly important for the minority class. In total, we
analyzed 25 drugs for GDSC1 and 25 drugs for GDSC2. Again, we report only the
results for the GDSC2 data set here. The respective results for the GDSC1 data set
can be found in Appendix Tables E.65 - E.75.
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Figure 8.5: Percentage of sensitive cell lines of binarized CMax viability in
GDSC2. The upper row of this figure shows a histogram for the percentage of sensitive
cell lines across all available drugs. The lower row depicts the corresponding percentage
for each drug. Moreover, the color of the points indicates which drugs had to be excluded
for the analysis and why.

176



8.3 Implementation and data deposition

8.3 Implementation and data deposition

Using the previous implementation of SAURON-RF as basis, we implemented the
extensions of SAURON-RF using Python 3 and the sklearn RandomForestRegressor
package [182]. Similar to its predecessor, extended SAURON-RF including the CP
framework can be called from the console with a single configuration file in JSON-
format as input. The CMax viability values were determined using R. In particular,
the gdscIC50 R package was employed for the fitting of the dose response curves
[99]. The CP framework was implemented in Python 3. The respective code and
data has been deposited in the publicly available GitHub: https://github.com/u
nisb-bioinf/Conformal-Drug-Sensitivity-Prediction.git.

8.4 Results

In the ensuing sections, we present the results of the drug-centric and the cell line-
centric analysis. We start with an evaluation of the CP pipeline applied to the estab-
lished logarithmized IC50 value as the drug sensitivity measure, i.e., with standard
drug sensitivity prediction from a drug-centric perspective. Subsequently, we show
the results of a drug-centric assessment for our novel drug sensitivity measure, the
CMax viability. Here, we did not only assess a binary division of cell lines but also
the proposed ternary division. Finally, we leverage the full potential of our pipeline
and perform drug prioritization, i.e., we evaluate the capabilities of SAURON-RF
together with the CMax viability and CP to reliably detect effective drugs and
afterwards rank them by predicted efficiency.

8.4.1 Drug-centric analysis - drug sensitivity prediction

At first, we applied SAURON-RF without CP to the IC50 data. In Figures 8.6 and
8.7, we show the respective classification and regression performance on the test
set. With an average sensitivity of 56%, specificity of 87%, Matthew’s correlation
coefficient (MCC) of 0.35, and mean-squared error (MSE) of 2.5 across all drugs,
the performance is similar to what we and others observed previously [29, 21].
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Figure 8.6: Classification test set performance GDSC2. The upper row of this
figure depicts the classification performance of SAURON-RF across the different drugs
from GDSC2. The middle row shows the effects of CP on the performance in terms of true
positive/negative predictions. In the lower row, the CP efficiency is presented.

To achieve certainty, we employed our CP pipeline with a fixed allowed error rate
of α = 10%. We notice that the certainty guarantee for classification and regression
is indeed fulfilled for each of the three investigated classification scores and the

178



8.4 Results

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56Mean PCC: 0.56

−1.0

−0.5

0.0

0.5

1.0

Ve
ne

to
cl

ax
Tr

am
et

in
ib

Iri
no

te
ca

n
Vo

rin
os

ta
t

N
el

ar
ab

in
e

O
xa

lip
la

tin
__

_1
80

6
C

is
pl

at
in

N
ilo

tin
ib

Te
m

oz
ol

om
id

e
So

ra
fe

ni
b

C
yt

ar
ab

in
e

D
ac

tin
om

yc
in

__
_1

81
1

Ep
iru

bi
ci

n
M

ito
xa

nt
ro

ne
Te

ni
po

si
de

Vi
nb

la
st

in
e

G
em

ci
ta

bi
ne

C
yc

lo
ph

os
ph

am
id

e
Vi

no
re

lb
in

e

O
xa

lip
la

tin
__

_1
08

9
C

riz
ot

in
ib

Vi
nc

ris
tin

e

D
ac

tin
om

yc
in

__
_1

91
1

D
ab

ra
fe

ni
b

5−
Fl

uo
ro

ur
ac

il
O

la
pa

rib
Er

lo
tin

ib
Bo

rte
zo

m
ib

D
as

at
in

ib
R

ap
am

yc
in

D
oc

et
ax

el
__

_1
81

9
La

pa
tin

ib

PCC per drug (decreasingly sorted) 

●

●
0.5

0.00
0.25
0.50
0.75
1.00

Rel. interval size

●●
●

●
2.52

●

●●
●

●
3.04

●●●

●
2.4

MSE MSE sensitive MSE resistant

0.0
2.5
5.0
7.5

10.0

MSE across all drugs 

Figure 8.7: Regression test set performance GDSC2. The upper row of this figure
depicts the Pearson correlation coefficient between the actual continuous response values
and the predicted continuous response values for all drugs. The lower row shows the mean-
squared error (MSE) and the interval width of the CP Quantile regression score relative
to the spanned training ranges of the drugs.

regression score, i.e., our sets (classification) and our intervals (regression) contain
the actual response with a probability of almost exactly 1 − α = 90% on average
across all drugs (see Appendix Figure E.41). Next, we analyzed whether this also
holds for each class to investigate the effect of class imbalance on the validity (see
Appendix Figure E.41). Indeed, we fulfil the marginal coverage property for the
majority class (resistant cell lines) for all scores. For the sensitive cell lines (minority
class), the Summation score delivers valid sets in all cases, while the True-Class score
coverage fluctuates with a mean of approximately 73%. The Mondrian score, which
is supposed to fulfil the coverage property for each actual class by definition, exhibits
significantly fewer fluctuations than the True-Class score and reaches a coverage of
85% across all drugs. For the Quantile regression score, the coverage for the sensitive
cell lines is 86%. Since the adherence to the CP certainty guarantee depends on the
number of available data points [197], the sensitive cell line scarcity can cause these
fluctuations.
In our current application scenario, a valid prediction set can either stem from a
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

single class prediction or the set with all classes. CP efficiency is typically employed
to quantify the number of single-class predictions among all predictions. It is defined
as the number of single-class predictions divided by the total number of samples. In
Figure 8.6, we depict the per-drug CP efficiency for the classification scores. We note
that the True-Class score with an average CP efficiency of 80% clearly outperforms
the Mondrian and Summation scores. The low CP efficiency of the Summation score
then directly explains its high coverage: the Summation score almost exclusively
predicts two-class sets as output (low efficiency), which by definition must contain
the actual class in a binary classification (high coverage). For regression, the CP
efficiency is given by the width of the interval. Consequently, it is highly desirable
that these intervals are narrow. In Figure 8.7, we can, however, see that on average,
across all drugs, the intervals are relatively large (approximately 50% relative to
the spanned training range), which indicates that the trained models need to be
refined in that respect. We discuss improvement strategies in the Discussion section.
With CP for classification, we pursue the goal of retaining the true positive and true
negative predictions while minimizing the errors, i.e., false positive and false negative
predictions. With the fixed α = 10%, the false positive (FP) errors were, on average,
reduced from 13% to 9% and the false negative (FN) errors from 44% to 15% for the
Mondrian score (cf. Figure 8.6). However, the true positive (TP) and true negative
(TN) predictions also decrease: from 56% to 48% for the TP and 87% to 60% for
the TN. In general, the True-class score also effectively removes FN (from 44% to
25%) and FP (from 13% to 7%). Again, the true predictions are also reduced: from
56% to 43% for the TP and from 87% to 74% for the TN. In contrast, we note that
the Summation score does not only almost completely remove the false predictions
but also the true predictions, which is in accordance with our previous observations
for efficiency. Thus, the True-class score and the Mondrian score clearly outperform
the Summation score, while the Mondrian score seems to perform better for the TP
and FN values and the True-class score for the TN and FP values.
Next, we applied SAURON-RF and the CP pipeline to the newly derived CMax
viability data set. We find that the CMax viabilities could be predicted with similar
sensitivity (64%), specificity (76%), and MCC (0.35) compared to the IC50 data. We
again ascertain that CP with a fixed error rate of α = 10% delivers the desired 90%

certainty guarantee on average (cf. Appendix Figure E.42). Indeed, it approximately
holds for all three classification scores and the regression score on average across all
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drugs. For the CMax viabilities, class imbalance also represents an issue. Contrary
to the IC50 data, for some drugs, the sensitive cell lines constitute the minority class,
and for others, the resistant cell lines do. Still, we discover the same overall trends
for the validity of the scores of the minority and majority classes (see Appendix
Figures E.43 and E.44). Regarding CP efficiency and the reduction in FP and FN
predictions, we could also identify similar tendencies compared to our IC50 analyses
(see Appendix Figures E.45 and E.46). Notably, with an average relative interval
size of 0.62, the predicted regression intervals are larger for the CMax analyses than
for the IC50 analyses. Overall, the CMax viability could be predicted with similar
performance as the established IC50 value.
In the previous paragraphs, we described the results for a division of the CMax
viability and IC50 values into two classes. However, a more fine-grained division
into, e.g. three classes (sensitive, ambiguous, resistant) may more accurately reflect
the biological variance and uncertainty of the experimental drug response values
and may thus be even more accurately learned and predicted by models. We first
applied SAURON-RF without CP to the ternary CMax drug data sets. The results
(see Appendix Figures E.47 - E.49) reflect all general tendencies we reported for
the binary partition. Here, it is particularly noteworthy that confusions between
the sensitive and resistant classes seem rather rare (9% on average for the sensitive
samples and 6% on average for resistant samples), which aligns with the goal of
improving certainty. Nevertheless, both classes displayed a high confusion with the
ambiguous class (37% on average for the sensitive class and 39% on average for the
resistant class), and the average PCC (0.49) and MCC (0.3) are slightly lower than
those for the binary partition. We also evaluated the validity and efficiency of the
CP pipeline. Briefly, the efficiency was considerably lower than for the two-class
partition. Thus, we decided to focus on the binary partition for the cell line-centric
analysis.

8.4.2 Cell line-centric analysis - drug prioritization

Due to the shared test set and the across-drug-comparability of the CMax viability,
we can now assess the performance from a cell line-centric perspective, i.e., for each
cell line, we can identify effective drugs (classification) and then prioritize them (re-
gression). We call a drug effective if its CP class set prediction for a particular cell
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

line consists solely of the single class indicating sensitivity (1). We then subsequently
rank all drugs that fulfil this property for a particular cell line using the upper limit
of the CP interval. Figures 8.8 and 8.9 exemplary depict the results for such a pri-
oritization task for two particular cell lines (see Appendix Figures E.50 - E.53 for
further cell lines). Notably, for both examples, the SAURON-RF point predictions
not only efficiently distinguish between effective and non-effective drugs (MCC 0.66
and 0.6) but also sort them exceptionally well (PCC 0.9 and 0.89). For the first
example, there still exist FN predictions but no FP predictions, which we would
like to remove. Both the True-class and the Mondrian score expectedly accomplish
the task of removing the FN predictions well at the cost of a few TP predictions.
Also, in accordance with our previous drug-centric analyses, the Summation score
removes all single-class predictions. For the second example, we have several FP and
one FN prediction. Removing FP predictions is particularly important since this
equals the avoidance of ineffective drug treatments. The True-class score outper-
forms the Mondrian and the Summation score in removing these false predictions.
In particular, the True-class score eliminated 3 out of 4 FP predictions, while the
Mondrian score removed only 2 out of 4, suggesting that the True-class score might
be more suitable to avoid ineffective drug treatments. In total, the True-class score
seems to slightly outperform the Mondrian score, while both are superior to the
Summation score. The CP regression intervals are again spanning a wide range of
values. Nevertheless, they are ascending alongside the actual values, which indicates
that they can be employed for sorting the drugs. A Spearman correlation coefficient
(SCC) of 0.87 (0.8) between the upper limit of the CP interval and the true values
confirms this impression. In the lower rows of Figures 8.8 and 8.9, we also depicted
the potential prioritizations obtained by sorting the sets of effective drugs after CP
deployment. For the Summation score, no prioritization is possible since no drug
was predicted to be effective after CP. However, the rankings introduced by the
CP upper limit of the interval are reasonably similar to the actual rankings for the
restricted sets of drugs from the Mondrian (SCC 0.6 and 0.59) and True-class (SCC
0.62 and 0.55) scores.
Finally, we analyzed whether these observations hold for all test cell lines (cf.

Figure 8.10). With an average MCC of 0.53, sensitivity of 71%, specificity of 81%,
and PCC of 0.81, SAURON-RF performs well in both the classification and the
regression task. The Mondrian and the True-class score effectively remove the false
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∅

Figure 8.8: Prioritization example GDSC2. This figure exemplifies the performance
of our prioritization pipeline (cf. Figure 8.3) when applied to one particular cell line
(COSMIC ID 1240154) from the test set of the GDSC2 data set. The upper plot visualizes
the classification performance with and without CP for all analyzed drugs. The middle
plot depicts the regression result for all drugs, including the 90% CP interval, and the
lower plot shows the resulting prioritized drug lists with the drugs ascendingly sorted by
their upper CP limit prediction.

predictions: 48 % less FN for Mondrian compared to 53% less FN for True-class
as well as 42% less FP for Mondrian and 52% less FP for True-class. However,
both scores reduce not only the false predictions but also true predictions: 45% less
TP for Mondrian compared to 26% less for True-class as well as 39% less TN for
Mondrian compared to 17% for True-class. Indeed, the True-class score not only
reduces the false predictions to a greater extent but also preserves more correct
predictions, i.e., it clearly outperforms the Mondrian (and the Summation) score
in this analysis. For the regression part of the pipeline, we note that the average
SCC between the SAURON-RF predictions and the actual values (0.82) is slightly
higher than the average SCC between the upper limit of the CP interval and the
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

∅

Figure 8.9: Second prioritization example GDSC2. This figure exemplifies the
performance of our prioritization pipeline (cf. Figure 8.3) when applied to one particular
cell line (COSMIC ID 688031) from the test set of the GDSC2 data set. The upper plot
visualizes the classification performance with and without CP for all analyzed drugs. The
middle plot depicts the regression result for all drugs, including the 90% CP interval, and
the lower plot shows the resulting prioritized drug lists with the drugs ascendingly sorted
by their upper CP limit prediction.

actual values (0.75). The goal of the prioritization task is to obtain a complete list
of potentially effective drugs sorted by their efficiency. We already noticed that the
True-Class score retains more TP predictions than the Mondrian score, i.e., it yields
more complete lists of effective drugs. Furthermore, the predicted effective drug list
from the True-class score has a higher median precision (92%) than the list pre-
dicted by using the Mondrian score (83%). Both are superior to SAURON-RF only
(76%). Despite the fact that the TP predictions are also reduced by performing CP,
the actual most efficient drug belongs to this list 75% of the time for the True-class
score and 56% for the Mondrian score. Moreover, the first drug in our predicted
effective drug list still has a median rank of three in the original drug list for both
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the True-class and the Mondrian score and is a TP prediction in 85% (TC) and 79%
(Mon) of cases. The CMax viability difference between this drug and the actual first
drug is below 0.1 for 62% of cell lines for the True-Class score and 56% of cell lines
for the Mondrian score. In relation to the CMax viability range ([0, 1]), this value
indicates reasonable proximity of the actual first drug and the drug that we predict
to occupy rank one. Overall, we find that the True-Class score is most convincing
concerning correctness and completeness.

185



8 Reliable anti-cancer drug sensitivity prediction and prioritization

●●
●

●
0.53

−1.0

−0.5

0.0

0.5

1.0

MCC

●

●

●
●●

●
●●●

●

●

●
●●

●
●●●

●

●

●

●

71

29

81

19

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

52

14

67

9

27

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
39

15

49

11

40

●●●
●
●

●●●

●

●●●●

●
●
●
●
●●
●●●

●
●●
●
●●●●●●
●
●
●●●
●●●●
●
●●

● ● ● ●

●

0 0 1 0

99
SAURON−RF TC Mon Sum

TP FN TN FP TP FN TN FP NA TP FN TN FP NA TP FN TN FP NA

0

25

50

75

100

P
er

ce
nt

A

●
●●●

●●

●

●
●

●
●

●
●

●

●

●

●

●●
●
●

●
●

●

0.04 0.04
0.03

0.00

0.05

0.10

0.15

MSE MSE eff. MSE n. eff.

●
●●

●
0.81

−1.0

−0.5

0.0

0.5

1.0

PCC

●

●
0.82

−1.0

−0.5

0.0

0.5

1.0

SCC

●●

●
0.75

−1.0

−0.5

0.0

0.5

1.0

SCC upper lim.

B

76
.4

7

92
.3

1

83
.7

7

10
0

SAURON−RF TC Mon Sum

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

20

40

60

% correct predictions in effective drug list

#C
el

l l
in

es

Precision of effective drug list

90

56

0

75

0

25

50

75

100

SAURON−RF TC Mon Sum

P
er

ce
nt

% actual most efficient drug detected

2

33

6

0

2

4

6

SAURON−RF TC Mon Sum

R
an

k

Median rank 1st drug in effective drug list

91

79
85

3
0

25

50

75

100

SAURON−RF TC Mon Sum

P
er

ce
nt

Hit rate for 1st drug in effective drug list

74
%

 <
=

 0
.1

 d
iff

.

62
%

 <
=

 0
.1

 d
iff

.

56
%

 <
=

 0
.1

 d
iff

.

3%
 <

=
 0

.1
 d

iff
.

SAURON−RF TC Mon Sum

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0

20

40

60

80

CMax viability difference

#C
el

l l
in

es

CMax viability difference histogram

C

Figure 8.10: Prioritization results across all test cell lines of GDSC2. In A, we
show the classification performance of SAURON-RF with and without CP. B depicts the
regression performance in terms of MSE, PCC and SCC. Here, the MSE is given for the
effective drugs, the ineffective drugs, and all drugs. We provide the SCC using SAURON-
RF only (SCC) and SAURON-RF with the upper limit of the CP interval (SCC upper
lim.). In C, the upper row depicts the precision of SAURON-RF only (SAURON-RF) and
SAURON-RF with CP (TC + upper limit, Mon + upper limit, Sum + upper limit). In
the middle row, we show the percentage of cell lines for which the most efficient drug was
detected, the median rank of the first drug in our predicted effective drug list and the
percentage of cell lines for which this prediction was a TP. The CMax viability difference
between our first drug and the actual first drug is shown in the lower row.
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8.5 Discussion

With the reliable SAURON-RF drug sensitivity prediction and prioritization
methodology, we aimed to address two crucial challenges in the area of anti-cancer
drug treatment optimization with ML systems: We were interested in (1) reliably
predicting anti-cancer drug responses (2) and prioritizing drugs for a given cancer
sample based on these reliable predictions.
To tackle the first challenge, we implemented a conformal prediction pipeline pro-
viding user-specified certainty levels. Our pipeline can handle not only regression
or classification methods but also joint classification and regression methods. Our
results demonstrate that CP can substantially improve predictions. In particular,
CP does not only provide guarantees for predictions, but it successfully diminishes
false predictions, i.e., FP and FN, while retaining TP and TN.
To address the second challenge, we developed a novel drug sensitivity measure
called CMax viability that is comparable across drugs. Since the CMax viability
is based on clinically relevant drug concentrations, it may also help to translate
findings into clinical application. By deploying the CP pipeline with our joint re-
gression and classification method SAURON-RF and the CMax viability, we could
finally fulfil the prioritization task: We could first use the classification part of our
model combined with CP to successfully identify drugs that are very likely effec-
tive. In particular, by applying CP, we could eliminate 52% of the remaining 19%
ineffective drugs falsely predicted to be effective by SAURON-RF. In total, we thus
achieved a median overall 92% precision of our prioritized drug lists, which 75%
of the time also contained the actual most efficient drug. Finally, we could also
predict the continuous drug sensitivity and, through the extension of SAURON-RF
with quantile regression, build intervals that contain the correct response with a
high probability. Our results indicate, that the first drug of our predicted list has a
similar CMax viability value as the actual most efficient drug. Thus, the presented
CP drug sensitivity prediction and prioritization pipeline can serve as a valuable as-
set in medical decision support systems by delivering a sorted list of recommended
drugs serving as reinforcement of already established therapies or as a suggestion of
alternative treatment options.
Nevertheless, we recognize several starting points for improvement. We currently
train our models on cell line-based monotherapy responses because of the relatively
high abundance of the corresponding data, which is beneficial for training ML mod-
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8 Reliable anti-cancer drug sensitivity prediction and prioritization

els. However, since monotherapy can promote drug resistance [262], integrating
data from drug combination screens would be highly desirable to increase the value
of our tool for actual medical decision-making. Similarly, incorporating data from
more complex model systems such as patient-derived xenografts or organoids may
be advantageous because they are assumed to more accurately represent tumour
characteristics [84]. Apart from that, we were focusing solely on the gene expression
data as input features. While gene expression is assumed to be the most informa-
tive data type [17], the interpretability of models can benefit from the integration
of additional data types such as mutation and copy number variation data, and, in
particular, a priori knowledge, e.g., in the form of known biomarkers [21], biological
pathways and gene interaction networks [19, 162], or drug-based features [152, 153].
If those features complement the information from the gene expression data, the
performance in terms of certainty might also be increased. Besides, we opted for a
particular type of conformal prediction in this work and implemented three differ-
ent classification scores and one regression score. Since we noted that the regression
intervals are rather wide and the prioritization of the effective drug list might be
negatively affected by this, it might be beneficial to investigate different regression
scores. In addition, there exists a plethora of CP-based techniques [263], some of
which may even further improve classification and regression results.
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9 Summary, discussion, and
conclusion

Don’t adventures ever have an end? I

suppose not. Someone else always has to

carry on the story.

(Bilbo Baggins, LotR)

The development of (trustworthy) machine learning (ML) methods is of greater
importance than ever before. Already today, there is hardly any research field or
company that does not rely on some ML-aided analysis of data. ML-based systems
are anticipated to continue to tremendously augment and change our lives, including
especially sensitive areas such as human healthcare.
In this thesis, we pursued the goal of improving ML-based tools that are designed
to be incorporated into medical decision support systems for anti-cancer drug treat-
ment:

• To this end, we started with describing the fundamental concepts of ML in
Chapter 4, including a description of the four major ML branches: supervised,
unsupervised, semi-supervised, and reinforcement learning. Moreover, we dis-
cussed properties that render ML methods trustworthy, particularly reliability
and interpretability. Throughout this chapter, we repeatedly contextualized
the existing body of drug sensitivity prediction approaches. Almost all ap-
proaches fall within the supervised ML realm, which is also the basis of the
ML methods developed and presented in this thesis. While reliability has
hardly been addressed so far for drug sensitivity prediction, the concept of
interpretability has been used rather intuitively using different connotations
without a clear definition. Therefore, we unified its prevalent connotations and
proposed an easily extensible taxonomy of interpretability, which may serve
as reference, facilitating future research.

• In Chapter 5, we devised a classifier focusing on model interpretability:
MERIDA delivers Boolean logic-based rules as output. Unlike all of its com-
petitors, MERIDA explicitly includes a priori pharmacogenomic knowledge in
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terms of known sensitivity- and resistance biomarkers, rendering the model
even more interpretable. By crafting features based on pharmacogenomic
knowledge, we not only increase the interpretability of the models but si-
multaneously reduce the dimensionality of the feature space. Apart from that,
MERIDA addresses the class imbalance issue present in the GDSC drug data
set.

• In Chapter 6, we show that imbalance is not only an issue for classification but
also for regression, i.e., the high specificity of most anti-cancer drugs induces a
skewed distribution of drug response values in favour of the more drug-resistant
cell lines, negatively affecting the regression performance for the sensitive cell
lines. We exemplified that all commonly applied ML regression algorithms
(neural networks, boosting trees, elastic net, random forest) suffer from this
imbalance. To diminish the negative influence of the regression imbalance on
our predictions, we designed SAURON-RF. It is a joint regression and classifi-
cation method based on canonical regression random forests augmented with
sample-specific and tree-specific weights derived from the class distribution. It
outperforms mere classification, mere regression, and sequential execution of
classification followed by regression.

• While MERIDA relies on literature-driven feature selection and creation,
SAURON-RF employs a heuristic based on the maximum-relevance-minimum-
redundancy principle, i.e., a selection of features statistically associated with
the response. In Chapter 7, we presented the results of a comprehensive
benchmarking study on DR techniques and ML methods. More specifi-
cally, we trained four different supervised ML methods (elastic net, ran-
dom forest, boosting trees, neural networks) combined with nine differ-
ent DR approaches (random, literature-based, variance, correlation, enrich-
ment, minimum-redundancy-maximum-relevance, principal component analy-
sis, pathway activity, autoencoder) resulting in more than 16,000,000 investi-
gated models. Overall, this analysis revealed that relatively simple ML meth-
ods outperform more complex ones: the elastic net outperformed all other
methods, closely followed by random forests. Neural networks were not com-
petitive, neither as an ML method nor as a DR technique.

• In Chapter 4, we already pointed out that reliability, e.g., in the form of cer-
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tainty guarantees, has hardly been integrated into current approaches for drug
sensitivity prediction. In Chapter 8, we addressed this demand by designing
and implementing a framework for reliable drug response classification and re-
gression based on conformal prediction (CP). This framework is, in principle,
applicable to any supervised ML method. To render SAURON-RF eligible, we
extended it with a quantile regression algorithm adapted from Meinshausen et
al. [32]. We demonstrated that CP not only delivers the desired certainty guar-
antees but also successfully diminishes false predictions while retaining correct
ones - ultimately improving model performance. The CP certainty guarantees
enable SAURON-RF to abstain from casting a prediction for a new instance if
it is uncertain, potentially facilitating integration into decision-support tools.

• Throughout the entire work up to Chapter 8, we employed the IC50 value
as a drug response measure. It is comparable across cell lines but not across
drugs. Given a particular sample, it can consequently not be employed to com-
pile a list of recommendable drugs sorted by efficiency, i.e., a straightforward
drug prioritization for one sample is prevented. As a remedy, we propose a
novel measure with across-drug comparability, the CMax viability. Thereby,
we can finally leverage the full potential of SAURON-RF: we can first iden-
tify effective drugs using classification and then rank these by their efficiency
with regression. Thus, combined with the CP framework our tool can assist
decision-making by providing a list of prioritized drugs that can reinforce medi-
cal advice or suggest alternative treatment options at a user-specified certainty
guarantee.

In Chapters 5 to 8, we already discussed specific weaknesses of our novel approaches
in dedicated discussion sections. In this chapter, we want to comprehensively re-
view our results in their entirety, focusing on recurring issues and their putative
remedies.

9.1 Input data

We decided to train our ML methods on the Genomics of Drug Sensitivity in Cancer
(GDSC) database, which is a publicly available pharmacogenomic cancer cell line
panel encompassing approximately 1000 cell lines screened with several hundreds
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of compounds. The database also provides multi-omics profiles of the cell lines, in-
cluding (epi)genomic and transcriptomic data. The joint analysis of the multi-omics
profiles and the drug response data enables the identification of associations between
tumour biology and therapeutic response. Compared to other model systems (cf.
Chapter 3), cancer cell lines have enjoyed immense popularity for anti-cancer drug
screening, resulting in the most comprehensive, publicly available resource to study
anti-cancer drug response. The comparatively high number of different samples (cell
lines) played a critical role in our choice since ML models - like any statistical eval-
uation - benefit from a high abundance of the investigated data.
However, model systems reflect reality only to some degree. For example, cancer
cell lines are not genetically identical to the tumours of origin, and they can neither
represent the 3D structure nor the cell diversity of a tumour and its environment.
Consequently, our results, including our trained models, cannot be translated di-
rectly into the clinic. A relatively straightforward option to improve our models in
that respect is considering data from more realistic model systems, such as xenograft
models or 3D cell cultures. Since the available amount of data is comparatively low
(cf. Chapter 3), we might aim at developing methods for combining data from het-
erogeneous sources instead of training models only on one model system. To this
end, transfer learning [264] or meta-learning [265] techniques may become leveraged.
Possibly, such techniques also represent an opportunity to incorporate existing tu-
mour and clinical data.
Another noteworthy limitation of our data choice is that the GDSC database solely
contains monotherapy responses. Yet, monotherapy promotes drug resistance [262],
which is why drug combinations are administered instead [10, 266, 267, 268]. Since
the number of putative combinations - even when resorting to the investigation of
pairwise combinations - is enormous, the available amount of experimental drug
synergy data is significantly more limited than monotherapy data (cf. Chapter 3).
Thus, training supervised ML models will likely prove even harder for synergy data.
We could employ standard semi-supervised learning as a potential remedy to this
issue. Since we have the sensitivity data at our disposal, a more appropriate so-
lution might involve the combination of these two data types in a semi-supervised
fashion. For example, we might perform multi-task learning with sensitivity and
synergy data as response values since we expect that the relatedness of the tasks
can be exploited. A more explicit utilization of the commonalities between the tasks
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might involve the derivation of constraints from the sensitivity data for the missing
synergy data.
A further point for discussion is our focus on cell line-derived input features, neglect-
ing the possibility of incorporating chemical information of drugs. Notably, there
already exist works exploiting this information (e.g., [152] and [153]). While we
believe that incorporating drug-based features can be beneficial for modelling, we
are unaware of a comprehensive benchmarking between methods with and without
such knowledge.
In the following years, technological advances in experimental techniques will un-
doubtedly change and improve the data situation, opening up new possibilities for
data analysis.

9.2 Machine learning and algorithmic choices

Throughout this thesis, we investigated various supervised ML approaches to pre-
dict the sensitivity of cancer cell lines to anti-cancer compounds. While we started
our analyses with an inherently interpretable Boolean-logic-based optimization ap-
proach, we also studied classical ML techniques, i.e., elastic net, boosting trees,
random forests, and neural networks. One prominent of our findings is that neural
networks, which were the most complex tested approach, are not superior to simpler
methods (cf. Chapter 6 and Chapter 7). On the contrary, in our benchmarking,
they were the least-performing ML method with respect to runtime, statistical per-
formance, and inherent interpretability. Due to the low or even absent model uncer-
tainty of neural networks, we would initially expect that they are the most suitable
approach to model complex biological processes. However, their low model uncer-
tainty is coupled with a high estimation uncertainty, i.e., extensive data sources are
required to estimate their parameters. Because of the limited data availability, it
thus seems logical that they are not the most convincing approach. Our results for
MERIDA and elastic nets support this interpretation. Both methods should incur a
high model uncertainty (high bias) and were competitive with or superior to meth-
ods of lower model uncertainty. Nevertheless, there exist various works on neural
networks for drug sensitivity prediction claiming their superiority (e.g., CDRscan by
Chang et al. [159], DeepDR by Chiu et al. [161], and the model by Deng et al. [163]).
Thus, the question arises how we can harmonize our results with theirs. Clearly, we
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focused on certain aspects during our benchmarking. For example, we only used gene
expression data. The inclusion of additional omics types may, however, reveal that
neural networks could more accurately capture biological processes between omics
types. Generally, we trained rather shallow neural networks, and one can extend
this criticism to the benchmarking study as a whole: we trained relatively basic
approaches. That being said, we would also like to note that we refrained from
training more complex neural networks because of their extremely high runtime.
Moreover, the mentioned works also have their respective shortcomings. Chang et
al. and Deng et al. did not perform dimensionality reduction in front of their ba-
sic competitor methods. Moreover, it is unclear whether Chang et al. performed
hyperparameter tuning for the basic competitors or the neural network. Chiu et
al. employed a dimensionality reduction method for the basic competitors, however,
they used the inferior dimensionality reduction method from their neural network
comparison and did not optimize the number of input features. Interestingly, in a
recent study, Li et al. benchmarked some neural network methods including the one
by Deng et al. [269]. They found that RFs mostly perform similarly or even better.
A recent study on ML-based science reveals another putative reason for reports on
extremely well-performing complex ML methods [254]. In this study, Kapoor and
Narayanan outline that data leakage, which roughly corresponds to inappropriate
handling of data before, during, or after the model training process, causes overop-
timistic claims about the performance of ML methods. To clarify the question of
which method is most suitable for the currently available drug response data, a
large-scale comparison study between existing advanced (neural network) methods
and basic competitors would be needed.
All our novel approaches are based on discriminative supervised ML methods since
they are straightforward modelling techniques for drug response prediction. In Chap-
ter 4, we, however, outlined the diversity of the ML landscape and indicated which
areas are hardly researched, including generative supervised ML methods, semi-
supervised learning and reinforcement learning. Accordingly, it would be of interest
to advance the methodological development of these areas and benchmark already
existing methods from these areas against discriminative supervised models.
Regardless of which specific ML method proves to be particularly useful for drug
sensitivity prediction, its development will encompass strategies to achieve trustwor-
thiness, e.g., in terms of interpretability, reliability, reproducibility, security, safety,
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privacy, and fairness. In our work, we solely focused on reliability and interpretabil-
ity. To implement reliability, our conformal prediction framework, and conformal
prediction more generally, is a particularly attractive starting point, as conformal
prediction is not only flexible and versatile but also easy to use. In our work, we
tested only some conformal prediction techniques. Yet, there exists a plethora of
different ones [263], some of which may serve our goals better. Additionally, we can
and should pursue other strategies on the path to reliability, e.g., performing out-of-
distriubtion estimation [270] or using probabilistic graphical models [271]. Regarding
interpretability, we were mainly concerned with generating inherently interpretable
(transparent) models. Interestingly, our results allow us to conclude that relatively
simple, transparent models suffice for drug sensitivity prediction given the current
data situation. The apparent biological complexity suggests that with increasing
data availability, they might not be able to compete with more complex, less inher-
ently interpretable models anymore. Consequently, efficient methods for generating
post-hoc interpretability (explainability) are needed. Here, inherently interpretable
models may be re-used to generate partial explanations for observed phenomena
in less inherently interpretable models. Note that, even for methods traditionally
regarded as more inherently interpretable as deep neural networks, e.g., random
forests, the derivation of post-hoc explanations can help to better understand the
underlying biology.

9.3 Perspectives

In the previous paragraphs, we already outlined solutions to specific problems arising
for drug sensitivity prediction in cancer. However, similar problems occur regularly
and all over (ML-based) science. Depending on the scientific discipline, the impor-
tance of the problems may, of course, vary. From our previous considerations, we
derive the following main long-term challenges in the development of methods for
drug sensitivity prediction, but also of methods for medical decision support more
generally:

• How can we combine complex (heterogeneous) data sources most efficiently?
Biological systems are extremely complex, and data gathered about them tends
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to add complexity, e.g., because of biases introduced by the experimental tech-
nique or a missing temporal resolution of the measurements. Thus, the avail-
able data must be combined such that conclusions can be drawn despite or
thanks to the complexity.

• How can we develop benchmarking standards? Our world seems to change
faster every day, and information is - though also more accessible - more ob-
scure and scattered than ever before. In addition, negative results are often
not reported because they are not valued sufficiently. As a consequence, the
scientific literature represents an even more distorted image of science in a field
than is already the case due to subjective perceptions of scientists. These cir-
cumstances represent an obstacle to comprehensive benchmarking and should
be considered when designing benchmarking standards.

• How can we implement trustworthy (ML) systems? From a pure computa-
tional perspective, we can invent and implement techniques to ensure what-
ever we as humans consider to be an aspect of trustworthiness. However, one
factor we should not overlook is the human itself as part of the interaction with
the (ML) system. Not only do we need human-computer interaction studies
for the design of the user interfaces, but also a wide public awareness and
understanding of such systems.

Mastering such challenges requires a vibrant and diverse scientific community and
a political and societal environment enabling the needed transformations. While
personalized medicine has been a dream for centuries, we believe that the tasks
ahead can be accomplished in a relatively short time and (ML-based) personalized
medicine is a forthcoming reality now.
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B MERIDA additional information

Figure B.1: Sensitive-to-resistant ratio in GDSC2. In this figure, we depict the
fraction of sensitive cell lines for each drug from GDSC2 when binarizing the logarithmized
IC50 values with the procedure suggested by Knijnenburg et al. [27]. The coloring indicates
whether a drug has been screened with more than 700 cell lines (red) or not (black).
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Table B.1: This table depicts all biomarkers used as a priori knowledge for Rapamycin.

Feature name Association

PTEN truncating mutations sensitive
PTEN p.R173H sensitive
PTEN p.R130* sensitive
PTEN p.R233* sensitive
PTEN p.T167A sensitive
PTEN p.Y68H sensitive
PTEN p.D162H sensitive
PTEN p.K128N sensitive
PTEN p.C136R sensitive
PTEN p.Y155C sensitive
PTEN p.R130Q sensitive
PTEN p.F341V sensitive
PTEN p.Q298* sensitive
PTEN p.R173C sensitive
PTEN p.Y16* sensitive
PTEN p.L42R sensitive
PTEN p.W274* sensitive
PTEN p.R159S sensitive
PTEN p.D92H sensitive
PTEN p.G36R sensitive
PTEN p.R335* sensitive
PTEN p.R173P sensitive
PTEN p.C136Y sensitive
PTEN p.K128T sensitive
PTEN p.R130G sensitive
PTEN p.E307* sensitive
PTEN p.R47G sensitive
PTEN p.Q245* sensitive
PTEN CNV loss sensitive
FBXW7 truncating mutations sensitive
NF1 truncating mutations sensitive
NF1 p.R304* sensitive
NF1 p.R1204W sensitive
NF1 p.Y2285* sensitive
NF1 CNV loss sensitive
FBXW7 loss-of-function sensitive
TSC1 frameshift sensitive
PIK3CA p.E542K sensitive
STK11 CNV loss sensitive
FBXW7 CNV loss sensitive
MTOR p.C1483Y sensitive
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Table B.2: This table depicts all biomarkers used as a priori knowledge for Temsirolimus.

Feature name Association

PTEN R130* sensitive
PTEN CNV loss sensitive
PIK3CA p.H1047R sensitive
ERBB2 gain-of-function sensitive
ERBB2 p.S310F sensitive
ERBB2 p.D277H sensitive
ERBB2 p.R678Q sensitive
ERBB2 p.S335C sensitive
ERBB2 p.L755S sensitive
ERBB2 p.T798I sensitive
ERBB2 p.V842I sensitive
ERBB2 p.S653C sensitive
ERBB2 CNV gain sensitive
PIK3CA p.E542K sensitive
AKT1 p.E17K sensitive

Table B.3: This table depicts all biomarkers used as a priori knowledge for Dactolisib.

Feature name Association

PIK3CA p.H1047R sensitive

Table B.4: This table depicts all biomarkers used as a priori knowledge for Talazoparib.

Feature name Association

BRCA1 loss-of-function mutations sensitive
BRCA1 truncating mutations sensitive
BRCA2 truncating mutations sensitive

Table B.5: This table depicts all biomarkers used as a priori knowledge for CX-5461.

Feature name Association

BRCA1 loss-of-function mutations sensitive
BRCA1 truncating mutations sensitive
BRCA2 truncating mutations sensitive
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Table B.6: This table depicts all biomarkers used as a priori knowledge for Apitolisib.

Feature name Association

PIK3CA p.E545K sensitive
PIK3CA p.E542K sensitive

Table B.7: This table depicts all biomarkers used as a priori knowledge for Alpelisib.

Feature name Association

PIK3CA p.H1047R sensitive
PIK3CA CNV gain sensitive
PTEN CNV loss resistant

Table B.8: This table depicts all biomarkers used as a priori knowledge for AZD8186.

Feature name Association

PTEN CNV loss sensitive

Table B.9: This table depicts all biomarkers used as a priori knowledge for MK-2206.

Feature name Association

KRAS p.G12D sensitive
PIK3CA p.E545K sensitive
PTEN CNV loss sensitive
AKT1 p.E17K not sensitive

Table B.10: This table depicts all biomarkers used as a priori knowledge for Pictilisib.

Feature name Association

BRAF p.V600E sensitive
PIK3CA p.E545K sensitive
ERBB2 CNV gain sensitive
PIK3CA CNV gain sensitive

Table B.11: This table depicts all biomarkers used as a priori knowledge for Taselisib.

Feature name Association

PIK3CA p.H1047R sensitive
PIK3CA CNV gain sensitive
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Iterative feature selection

The results of our runtime analysis clearly show that MERIDA has a significantly
reduced runtime compared to LOBICO. However, since in our real performance anal-
ysis, the number of input features is considerably higher (1500 features), the number
of possible logic combinations becomes very large and the parameter M had to be
chosen carefully to balance between the runtime of the analysis and the expressive-
ness of the Boolean formulas. Whereas MERIDA could still identify models with
up to M = 10 features in an acceptable amount of time, LOBICO could mostly only
handle 2 features. In order to simultaneously increase the parameter M and the
number of input features for MERIDA without compromising the performance, we
tested an iterative approach.
To this end, we used the data sets for OSI-027, PIK-93, and Voxtalisib. Then we
randomly drew 400 features for each of the drugs and use these as input features for
the analyses described in the following.
For each of the three drugs, we trained models with M ∈ {1, . . . , 16} in one-shot,
i.e. without any iterative selection. In addition, we tested an iterative procedure:
we first selected the best model among the models with M = 1 to M = 6 using
Youden’s J. Then, we iteratively increased M by 4 putative features and selected
the best model using Youden’s J until we could fit a model with M = 16. Figure
B.2 shows the results of this analysis for the cubic weight function. It can be seen,
that the overall runtime (including all necessary cross-validation steps) can be re-
duced by a factor of 25 on average. Moreover, the selected feature sets for the two
approaches resemble each other significantly (Fisher’s exact test p-value < 0.05).
Based on these tests, we decided to perform the iterative analysis in the main text
similarly: we initially fit models with M in the range of 1 to 6 and increase M by 4
putative features in each iteration.
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OSI-027

M No iteration Iteration P-value

2 Sensitive: SPOP_high_expr, 
TJP1_low_expr

Sensitive: SPOP_high_expr, TJP1_low_expr —

3 Sensitive: SPOP_high_expr, 
TJP1_low_expr


Resistant: CSNK2A1_high_expr

Sensitive: SPOP_high_expr, TJP1_low_expr


Resistant: CSNK2A1_high_expr

1.25e-05

4 Sensitive: SPOP_high_expr, 
TJP1_low_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr

Sensitive: SPOP_high_expr, TJP1_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr

0.00044

5 Sensitive: SPOP_high_expr, 
TJP1_low_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr, PSIP1_low_expr

Sensitive: SPOP_high_expr, TJP1_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr

9.37e-06

6 Sensitive: SPOP_high_expr, 
TJP1_low_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr, PSIP1_low_expr, 
HLF_high_expr

Sensitive: SPOP_high_expr, TJP1_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr

4.31e-10

7 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr, HLF_high_expr, 
ATRX_low_expr

Sensitive: SPOP_high_expr, TJP1_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown

1.44e-06

8 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr, HLF_high_expr, 
PSIP1_low_expr, HSP90AA1_Unknown

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown

3.69e-08

9 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr


Resistant: FAF1_low_expr, 
DIS3_low_expr, HLF_high_expr, 
PSIP1_low_expr, HSP90AA1_Unknown, 
ERBB3_Unknown

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown, 
EP300_low_expr

1.84e-07

10 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr


Resistant: FAF1_low_expr, 
HLF_high_expr, PSIP1_low_expr, 
HSP90AA1_Unknown, 
ERBB3_Unknown, CAD_high_expr, 
PLXNB2_Unknown

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown, 
EP300_low_expr, CDK4_high_expr

7.77e-09

M
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12 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr


Resistant: FAF1_low_expr, 
HLF_high_expr, PSIP1_low_expr, 
HSP90AA1_Unknown, 
ERBB3_Unknown, CAD_high_expr, 
PLXNB2_Unknown, 
HSP90AA1_low_expr, CDK4_high_expr

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown, 
EP300_low_expr, CDK4_high_expr, 
CAD_high_expr, HSP90AA1_Unknown

7.18e-14

14 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr, 
CHEK2_low_expr


Resistant: FAF1_low_expr, 
HLF_high_expr, PSIP1_low_expr, 
HSP90AA1_Unknown, 
ERBB3_Unknown, CAD_high_expr, 
PLXNB2_Unknown, CDK4_high_expr, 
RTN4_high_expr, EZH2_low_expr

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown, 
CHEK2_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown, 
EP300_low_expr, CDK4_high_expr, 
CAD_high_expr, HSP90AA1_Unknown, 
RTN4_high_expr

1.41e-16

16 Sensitive: SPOP_high_expr, 
TJP1_low_expr, ARID1B_high_expr, 
CHEK2_low_expr, SRN1_high_expr


Resistant: RTN4_high_expr, 
ARFGAP2_low_expr, 
HSP90AA1_Unknown, FAF1_low_expr, 
CAD_high_expr, PSIP1_low_expr, 
PLXNB2_Unknown, CTTN_high_expr, 
CDK4_high_expr, ACSL6_high_expr, 
ERBB3_Unknown

Sensitive: SPOP_high_expr, 
TJP1_low_expr, FMR1_Unknown, 
CHEK2_low_expr


Resistant: CSNK2A1_high_expr, 
PSIP1_low_expr, HLF_high_expr, 
FAF1_low_expr, PLXNB2_Unknown, 
EP300_low_expr, CDK4_high_expr, 
CAD_high_expr, HSP90AA1_Unknown, 
RTN4_high_expr, HSP90AA1_low_expr, 
PPP2R1A_low_expr

2.28e-12

No iteration Iteration P-valueM

Total 
Time

33135 s 1144 s

240



Appendix B: MERIDA additional information

PIK-93

M No iteration Iteration

2 sensitive: PTPRF_low_expr, 
CTTN_low_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr

—

5 sensitive: NTRK1_CNVgain, 
PPM1D_Unknown, 
NCKAP1_low_expr, 
MED23_high_expr, CTTN_low_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain

9.37e-06

8 sensitive: FRG1_high_expr, 
NTRK1_CNVgain, ELF1_high_expr, 
PPM1D_Unknown, 
NCKAP1_low_expr, CTTN_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr

1.41e-10

9 sensitive: FRG1_high_expr, 
NTRK1_CNVgain, ELF1_high_expr, 
PPM1D_Unknown, 
NCKAP1_low_expr, CTTN_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, 
PLXNA1_high_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr

1.26e-09

10 sensitive: ING1_low_expr, 
NTRK1_CNVgain, 
PPM1D_Unknown, 
NCKAP1_low_expr, 
MED23_high_expr, CTTN_low_expr


resistant: DICER1_low_expr, 
TBX3_high_expr, NTN4_high_expr, 
ATRX_low_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr, 
IRF6_high_expr

7.23e-07

11 sensitive: ING1_low_expr, 
NTRK1_CNVgain, 
PPM1D_Unknown, 
NCKAP1_low_expr, 
MED23_high_expr, CTTN_low_expr


resistant: ANK3_high_expr,  
DICER1_low_expr, TBX3_high_expr, 
NTN4_high_expr, ATRX_low_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr, 
IRF6_high_expr, MYD88_Unknown

2.37e-06

12 sensitive: HDAC3_low_expr, 
NCKAP1_low_expr, 
MED23_high_expr, CTTN_low_expr, 
ASXL1_Unknown


resistant: TBX3_high_expr, 
ANK3_high_expr, MED12_low_expr, 
CAD_low_expr, IRF6_high_expr, 
FXR1_low_expr, ERBB3_high_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr, 
IRF6_high_expr, MYD88_Unknown, 
ATRX_low_expr

0.0039

M
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13 sensitive: HDAC3_low_expr, 
NCKAP1_low_expr, 
MED23_high_expr, CTTN_low_expr, 
ASXL1_Unknown, MNDA_high_expr


resistant: TBX3_high_expr, 
ANK3_high_expr, MED12_low_expr, 
CAD_low_expr, IRF6_high_expr, 
FXR1_low_expr, ERBB3_high_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr, 
IRF6_high_expr, MYD88_Unknown, 
ATRX_low_expr, NRAS_high_expr

0.0063

16 sensitive: ATR_low_expr, 
ROBO2_high_expr, 
FRG1_high_expr, NTRK1_CNVgain, 
FAT1_low_expr, CTTN_low_expr


resistant: AMER1_low_expr, 
PCDH18_high_expr, 
DLG1_low_expr, IRF6_high_expr, 
TBX3_high_expr, FN1_high_expr, 
MYH10_Unknown, 
ACACA_low_expr, ATRX_low_expr

sensitive: PTPRF_low_expr, 
CTTN_low_expr, CCND1_high_expr, 
PPM1D_Unknown, NTRK1_CNVgain, 
FAT1_low_expr, NCKAP1_low_expr


resistant: DICER1_low_expr, 
MMP2_high_expr, DLG1_low_expr, 
IRF6_high_expr, MYD88_Unknown, 
ATRX_low_expr, ELF1_low_expr, 
ACACA_low_expr, PCDH18_high_expr

9.43e-09

No iteration IterationM

Total 
Time

35446 s 1318 s
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Voxtalisib

M No iteration Iteration P-value

4 sensitive: MYC_Unknown, 
MYH10_high_expr, 
BCL11A_high_expr, SCAI_high_expr

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr

—

8 sensitive: MYC_Unknown, 
AFF4_low_expr, CREBBP_Loss-of-
function, BCL11A_high_expr, 
SCAI_high_expr


resistant: SVEP1_Unknown, 
PTPRU_high_expr, CHD4_Unknown

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr


resistant: AKAP9_Unknown

0.00028

9 sensitive: MYC_Unknown, 
SPOP_low_expr, CREBBP_Loss-of-
function, FAT2_CNVloss, 
BCL11A_high_expr, SCAI_high_expr


resistant: SVEP1_Unknown, 
AKAP9_Unknown, ANK3_Unknown

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr


resistant: AKAP9_Unknown, 
STK11_low_expr

1.84e-07

10 sensitive: MYC_Unknown, 
MYH10_high_expr, FAT2_CNVloss, 
STK11_Unknown, 
BCL11A_high_expr, SCAI_high_expr, 
PRKAR1A_high_expr


resistant: CHD1L_Unknown, 
AKAP9_Unknown, STK11_low_expr

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr


resistant: AKAP9_Unknown, 
STK11_low_expr, CHD1L_Unknown

3.8e-20

12 sensitive: MYC_Unknown, 
MYH10_high_expr, FAT2_CNVloss, 
STK11_Unknown, 
BCL11A_high_expr, SCAI_high_expr, 
PRKAR1A_high_expr


resistant: RFC4_high_expr, 
CHD1L_Unknown, RPL22_low_expr 
AKAP9_Unknown, STK11_low_expr

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr


resistant: AKAP9_Unknown, 
STK11_low_expr, CHD1L_Unknown, 
RFC4_high_expr, RPL22_low_expr

3.37e-23

13 sensitive: MYC_Unknown, 
CREBBP_Loss-of-function, 
FAT2_CNVloss, MTOR_Neural, 
STK11_Unknown, 
BCL11A_high_expr, SCAI_high_expr, 
PIK3C2B_low_expr


resistant: F8_high_expr, 
AHCTF1_low_expr, MYB_Unknown, 
RB1_Loss-of-function, 
CHD4_Unknown

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr, 
CDK12_Unknown


resistant: AKAP9_Unknown, 
STK11_low_expr, CHD1L_Unknown, 
RFC4_high_expr, RPL22_low_expr

1.73e-05

M
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16 sensitive: MYC_Unknown, 
CREBBP_Loss-of-function, 
FAT2_CNVloss,  MTOR_Neutral, 
STK11_Unknown, 
BCL11A_high_expr, SCAI_high_expr, 
PIK3C2B_low_expr, SF3B1_low_expr


resistant: F8_high_expr, 
DIS3_low_expr, AHCTF1_low_expr, 
MYB_Unknown, RB1_Loss-of-
functiion, DICER1_high_expr, 
CHD4_Unknown

sensitive: MYC_Unknown, 
MYH10_high_expr, BCL11A_high_expr, 
SCAI_high_expr, STK11_Unknown, 
FAT2_CNVloss, PRKAR1A_high_expr, 
SF3B1_low_expr


resistant: EEF1A1_low_expr, 
DIS3_low_expr, AKAP9_Unknown, 
STK11_low_expr, CHD1L_Unknown, 
RFC4_high_expr, RPL22_low_expr, 
CHD4_Unknown

9.43e-09

No iteration Iteration P-valueM

Total 
Time

10893 s 520 s

Figure B.2: In this figure, we present a comparison between the selected features of a
one-shot approach and an iterative selection for OSI-027, PIK-93, and Voxtalisib using the
cubic weight function. We show the feature sets for the best M value in each iteration
compared to the model of the same size in the one-shot approach. Common features are
marked in magenta, blue features only occur in one of the approaches and black features
appear in both approaches but not for the given value of M . We start with the best model
among M = 1 to M = 6 and then iteratively add 4 putative features until we reach a
possible model size of M = 16. For M = 16, we simply show the first model of this size,
which is reached in the last iteration. This model does not correspond to the best model of
the last iteration. The given p-value is the Fisher’s exact test p-value for the intersection
of the feature sets. The total time refers to the time needed to fit all models including all
M values and CV steps.
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Figure B.3: In Sub-Figure (a - g), we present the statistical performance for drugs without
a priori knowledge during CV as well as on a test set when iteratively using the features
from previous applications of our method as a priori knowledge for a new run.
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Runtime analysis additional results

We tested MERIDA and LOBICO with different hyperparameters (see Table B.12),
different numbers of input features, and the three different weight functions. Note
that for LOBICO we could not fit larger models with both K > 1 and M > 1

in a reasonable amount of time. We performed the computations on a compute
server with four Intel(R) Xeon(R) CPU E5-4657L v2 processors with 2.40GHz clock
rate. IBM ILOG CPLEX Optimization Studio V12.6.2 for C++ was employed for
formulating and solving the ILP. CPLEX was run using 32 cores and a deterministic
parallel mode.
We could observe that using MERIDA instead of LOBICO leads to a considerably

Table B.12: Parameters

MERIDA parameters LOBICO parameters

M ∈ {2, 4, 8} (K,M) ∈ {(1, 1), (2, 1), (1, 2), (2, 2), (1, 4), (4, 1)}

reduction in runtime (cf. Table B.13). Moreover, considering the quadratic or cubic
weight function instead of the linear one does also reduce runtime significantly (cf.
Table B.14). For LOBICO, we note that the two parameters K and M seem to
influence the runtime differently, i.e. according to our analyses for different K and
M (see Figure B.4), it can be seen that the model parameterK increases the runtime
more strongly than the model parameter M .

Table B.13: Runtime comparison of a four-feature model from LOBICO versus a four-
feature model from MERIDA. The values depict the factor by which MERIDA is faster
than LOBICO using its original linear weight function. To obtain a four-feature model with
LOBICO, three different parameter settings can be used ((K,M) ∈ {(1, 4), (4, 1), (2, 2)}).

MERIDA linear MERIDA quadratic MERIDA cubic

(K,M) = (1, 4) 3.61 4.85 6
(K,M) = (4, 1) 71.79 98.54 125.31
(K,M) = (2, 2) 641.97 876.74 1147.6
Mean of the above three rows 239.13 326.71 426.31
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Figure B.4: In this figure, we present the runtime of LOBICO with varying hyperparam-
eters M and K for the three different weight functions.
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Figure B.5: In this figure, we present the runtime of MERIDA for M = 16 and M = 32
for the different weight functions.
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Table B.14: The table gives the runtime advantage of using a quadratic or cubic weight
function instead of using a linear weight function. The values depict the factor by which
a model with a quadratic or cubic weight function is faster than a model build with the
linear weight function. The given factor is calculated by averaging over all tested numbers
of features. The number in brackets are the model parameters. For LOBICO, the first
number is the value for K and the second number is the value for M .

MERIDA (4) LOBICO (1, 4) LOBICO (4, 1) LOBICO (2, 2)

quadratic 1.35 2.25 1.38 2.88
cubic 1.65 2.49 2.55 5.38
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Table B.15: This table gives the mean and median runtime of MERIDA across all drugs
for the different settings, weight functions, and parameter combinations in the pan-cancer
analysis. The mean (median) is calculated by summing up the runtime of the cross-
validation and the final fit for one specific drug and then averaging across all drugs.

Setting Weight function Model size Mean runtime (in s) Median runtime (in s)
Setting 1 cubic 1 5.3170 6
Setting 1 cubic 2 15.7073 10
Setting 1 cubic 3 109.6829 96
Setting 1 cubic 4 314.45 265
Setting 1 cubic 5 1128.3076 963
Setting 1 cubic 6 4970.3421 3589.5
Setting 1 quadratic 1 4.6097 6
Setting 1 quadratic 2 17.8780 11
Setting 1 quadratic 3 114.9024 107
Setting 1 quadratic 4 315.6666 241
Setting 1 quadratic 5 1583.2631 1051
Setting 1 quadratic 6 7657.0277 4104
Setting 1 linear 1 4.1463 5
Setting 1 linear 2 26.2195 15
Setting 1 linear 3 128.4390 120
Setting 1 linear 4 409 215
Setting 1 linear 5 2219.1842 1434.5
Setting 1 linear 6 9679.0285 7176
Setting 2 cubic 1 0 0
Setting 2 cubic 2 3.9090 5
Setting 2 cubic 3 9.9090 9
Setting 2 cubic 4 68.6363 62
Setting 2 cubic 5 137.3636 147
Setting 2 cubic 6 428.5454 322
Setting 2 quadratic 1 0 0
Setting 2 quadratic 2 2.3636 1
Setting 2 quadratic 3 11.3636 10
Setting 2 quadratic 4 79.3636 77
Setting 2 quadratic 5 167.7272 174
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Setting 2 quadratic 6 695.3636 438
Setting 2 linear 1 0 0
Setting 2 linear 2 2.3636 1
Setting 2 linear 3 24.6363 16
Setting 2 linear 4 102.3636 93
Setting 2 linear 5 376.1818 220
Setting 2 linear 6 1854.9090 1168
Setting 3 cubic 1 3.8181 3
Setting 3 cubic 2 12.9090 12
Setting 3 cubic 3 105.3636 109
Setting 3 cubic 4 265.1818 230
Setting 3 cubic 5 1100.8181 701
Setting 3 cubic 6 4942.1818 2544
Setting 3 quadratic 1 4.8181 6
Setting 3 quadratic 2 15.9090 12
Setting 3 quadratic 3 107 124
Setting 3 quadratic 4 273.5454 221
Setting 3 quadratic 5 1600.6363 1381
Setting 3 quadratic 6 9044.1818 6007
Setting 3 linear 1 3.7272 4
Setting 3 linear 2 28.7272 16
Setting 3 linear 3 114 99
Setting 3 linear 4 452 179
Setting 3 linear 5 2950.4545 1332
Setting 3 linear 6 8749 7584

Table B.16: This table gives the mean and median runtime of MERIDA across all
drugs for the different settings, weight functions, and parameter combinations in the non-
haematological cancer cell line analysis. The mean is calculated by summing up the runtime
of the cross-validation and the final fit for one specific drug and then averaging across all
drugs.

Setting Weight function Model size Mean runtime (in s) Median runtime (in s)
Setting 1 cubic 1 1.2926 1
Setting 1 cubic 2 12.9024 10
Setting 1 cubic 3 88.7317 62
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Setting 1 cubic 4 233.9268 172
Setting 1 cubic 5 774.1707 476
Setting 1 cubic 6 2433.5609 1759
Setting 1 quadratic 1 1.5853 1
Setting 1 quadratic 2 14.4146 10
Setting 1 quadratic 3 70.1463 62
Setting 1 quadratic 4 188.7560 151
Setting 1 quadratic 5 622.6097 445
Setting 1 quadratic 6 2753.7560 1930
Setting 1 linear 1 2.0487 1
Setting 1 linear 2 23.9024 12
Setting 1 linear 3 67.4634 62
Setting 1 linear 4 177.4146 127
Setting 1 linear 5 700.3170 480
Setting 1 linear 6 5473.6829 2277
Setting 2 cubic 1 0 0
Setting 2 cubic 2 1.4545 1
Setting 2 cubic 3 7.0909 7
Setting 2 cubic 4 40.8181 32
Setting 2 cubic 5 90.1818 79
Setting 2 cubic 6 195 145
Setting 2 quadratic 1 0 0
Setting 2 quadratic 2 0.54545 0
Setting 2 quadratic 3 11.0909 9
Setting 2 quadratic 4 54.5454 59
Setting 2 quadratic 5 110.1818 100
Setting 2 quadratic 6 261.1818 133
Setting 2 linear 1 0 0
Setting 2 linear 2 0.7272 0
Setting 2 linear 3 19.4545 10
Setting 2 linear 4 61.1818 54
Setting 2 linear 5 150.3636 101
Setting 2 linear 6 742.8181 232
Setting 3 cubic 1 0.7272 0
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Setting 3 cubic 2 10.9090 9
Setting 3 cubic 3 66.2727 68
Setting 3 cubic 4 179.7272 192
Setting 3 cubic 5 498.9090 435
Setting 3 cubic 6 1724.1818 1539
Setting 3 quadratic 1 1.0909 0
Setting 3 quadratic 2 13.2727 8
Setting 3 quadratic 3 65.9090 63
Setting 3 quadratic 4 166.5454 168
Setting 3 quadratic 5 581.3636 458
Setting 3 quadratic 6 2644.7272 2203
Setting 3 linear 1 1 0
Setting 3 linear 2 23.9090 12
Setting 3 linear 3 67 55
Setting 3 linear 4 225.4545 130
Setting 3 linear 5 900.3636 553
Setting 3 linear 6 9887.0909 2176

Table B.17: This table gives the mean and median runtime of MERIDA across all drugs
for the different settings, weight functions, and parameter combinations in the haemato-
logical cancer cell line analysis. The mean is calculated by summing up the runtime of the
cross-validation and the final fit for one specific drug and then averaging across all drugs.

Setting Weight function Model size Mean runtime (in s) Median runtime (in s)
Setting 1 cubic 1 0 0
Setting 1 cubic 2 0.0243 0
Setting 1 cubic 3 2.1707 1
Setting 1 cubic 4 10.5853 11
Setting 1 cubic 5 20.4878 23
Setting 1 cubic 6 29.3170 31
Setting 1 quadratic 1 0 0
Setting 1 quadratic 2 0.0487 0
Setting 1 quadratic 3 2.9756 2
Setting 1 quadratic 4 11.7804 12
Setting 1 quadratic 5 20.4878 22
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Setting 1 quadratic 6 27.3414 27
Setting 1 linear 1 0 0
Setting 1 linear 2 0.2195 0
Setting 1 linear 3 4.7073 4
Setting 1 linear 4 14.3414 16
Setting 1 linear 5 19.9756 21
Setting 1 linear 6 26.5365 27
Setting 2 cubic 1 0 0
Setting 2 cubic 2 0 0
Setting 2 cubic 3 0 0
Setting 2 cubic 4 1.3636 1
Setting 2 cubic 5 8.4545 10
Setting 2 cubic 6 18 21
Setting 2 quadratic 1 0 0
Setting 2 quadratic 2 0 0
Setting 2 quadratic 3 0 0
Setting 2 quadratic 4 1.5454 1
Setting 2 quadratic 5 10 11
Setting 2 quadratic 6 16.0909 20
Setting 2 linear 1 0 0
Setting 2 linear 2 0 0
Setting 2 linear 3 0.0909 0
Setting 2 linear 4 2.2727 2
Setting 2 linear 5 9.4545 9
Setting 2 linear 6 18.6363 22
Setting 3 cubic 1 0 0
Setting 3 cubic 2 0.0909 0
Setting 3 cubic 3 1.3636 1
Setting 3 cubic 4 9.3636 12
Setting 3 cubic 5 19.8181 21
Setting 3 cubic 6 30.4545 35
Setting 3 quadratic 1 0 0
Setting 3 quadratic 2 0 0
Setting 3 quadratic 3 1.9090 1
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Setting 3 quadratic 4 11.6363 13
Setting 3 quadratic 5 16.8181 18
Setting 3 quadratic 6 25.2727 28
Setting 3 linear 1 0 0
Setting 3 linear 2 0 0
Setting 3 linear 3 2.9090 2
Setting 3 linear 4 11.2727 13
Setting 3 linear 5 18.0909 19
Setting 3 linear 6 24.3636 25

Table B.18: This table provides the runtime (CV + final fit) of LOBICO for each of the
10 analyzed drugs. In total, LOBICO needed approximately 4.5 days (total runtime) for
fitting the shown models. For the calculation of the total runtime, we excluded all models
where either a single fit in the cross-validation or the final fitting procedure was higher
than 6 hours. Note that these models were also not completely fit. Additionally, we did not
fit models for specific parameter combinations for the quadratic and linear weight function
if the runtime for the cubic weight function already exceeded this threshold. Similarly, we
did not fit a model for the linear weight function if the quadratic weight function exceeded
this threshold.

Drug Setting Weight function Model size Runtime (in s)
AZD8055 Setting 1 cubic 1, 1 27
AZD8055 Setting 1 cubic 1, 2 1036
AZD8055 Setting 1 cubic 2, 1 137
AZD8055 Setting 1 cubic 2, 2 42971
AZD8055 Setting 1 quadratic 1, 1 29
AZD8055 Setting 1 quadratic 1, 2 3251
AZD8055 Setting 1 quadratic 2, 1 143
AZD8055 Setting 1 quadratic 2,2 > 21 600
AZD8055 Setting 1 linear 1, 1 28
AZD8055 Setting 1 linear 1, 2 1916
AZD8055 Setting 1 linear 2, 1 136
AZD8055 Setting 1 linear 2,2 -
Omipalisib Setting 1 cubic 1, 1 27
Omipalisib Setting 1 cubic 1, 2 1412
Omipalisib Setting 1 cubic 2, 1 135
Omipalisib Setting 1 cubic 2, 2 > 21 600
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Omipalisib Setting 1 quadratic 1, 1 28
Omipalisib Setting 1 quadratic 1, 2 2507
Omipalisib Setting 1 quadratic 2, 1 137
Omipalisib Setting 1 quadratic 2,2 -
Omipalisib Setting 1 linear 1, 1 31
Omipalisib Setting 1 linear 1, 2 7317
Omipalisib Setting 1 linear 2, 1 9530
Omipalisib Setting 1 linear 2, 2 -
Voxtalisib Setting 1 cubic 1, 1 28
Voxtalisib Setting 1 cubic 1, 2 421
Voxtalisib Setting 1 cubic 2, 1 145
Voxtalisib Setting 1 cubic 2, 2 35849
Voxtalisib Setting 1 quadratic 1, 1 26
Voxtalisib Setting 1 quadratic 1, 2 1887
Voxtalisib Setting 1 quadratic 2, 1 920
Voxtalisib Setting 1 quadratic 2,2 > 21 600
Voxtalisib Setting 1 linear 1, 1 29
Voxtalisib Setting 1 linear 1, 2 2916
Voxtalisib Setting 1 linear 2, 1 10353
Voxtalisib Setting 1 linear 2, 2 -
NSC319726 Setting 1 cubic 1, 1 36
NSC319726 Setting 1 cubic 1, 2 8696
NSC319726 Setting 1 cubic 2, 1 3121
NSC319726 Setting 1 cubic 2, 2 > 21 600
NSC319726 Setting 1 quadratic 1, 1 26
NSC319726 Setting 1 quadratic 1, 2 6859
NSC319726 Setting 1 quadratic 2, 1 8616
NSC319726 Setting 1 quadratic 2, 2 -
NSC319726 Setting 1 linear 1, 1 25
NSC319726 Setting 1 linear 1, 2 49149
NSC319726 Setting 1 linear 2, 1 16323
NSC319726 Setting 1 linear 2,2 -
Niraparib Setting 1 cubic 1, 1 24
Niraparib Setting 1 cubic 1, 2 708
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Niraparib Setting 1 cubic 2, 1 103
Niraparib Setting 1 cubic 2, 2 > 21 600
Niraparib Setting 1 quadratic 1, 1 26
Niraparib Setting 1 quadratic 1, 2 1428
Niraparib Setting 1 quadratic 2, 1 102
Niraparib Setting 1 quadratic 2,2 -
Niraparib Setting 1 linear 1, 1 23
Niraparib Setting 1 linear 1, 2 2499
Niraparib Setting 1 linear 2, 1 168
Niraparib Setting 1 linear 2, 2 -
Temsirolimus Setting 3 cubic 1, 1 34
Temsirolimus Setting 3 cubic 1, 2 2545
Temsirolimus Setting 3 cubic 2, 1 176
Temsirolimus Setting 3 cubic 2,2 > 21 600
Temsirolimus Setting 3 quadratic 1, 1 26
Temsirolimus Setting 3 quadratic 1, 2 3338
Temsirolimus Setting 3 quadratic 2, 1 2901
Temsirolimus Setting 3 quadratic 2, 2 -
Temsirolimus Setting 3 linear 1, 1 27
Temsirolimus Setting 3 linear 1, 2 5280
Temsirolimus Setting 3 linear 2, 1 15451
Temsirolimus Setting 3 linear 2, 2 -
CX-5461 Setting 3 cubic 1, 1 26
CX-5461 Setting 3 cubic 1, 2 2212
CX-5461 Setting 3 cubic 2, 1 515
CX-5461 Setting 3 cubic 2, 2 > 21 600
CX-5461 Setting 3 quadratic 1, 1 31
CX-5461 Setting 3 quadratic 1, 2 7170
CX-5461 Setting 3 quadratic 2, 1 5794
CX-5461 Setting 3 quadratic 2, 2 -
CX-5461 Setting 3 linear 1, 1 28
CX-5461 Setting 3 linear 1, 2 31725
CX-5461 Setting 3 linear 2, 1 21984
CX-5461 Setting 3 linear 2, 2 -
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Rapamycin Setting 3 cubic 1, 1 25
Rapamycin Setting 3 cubic 1, 2 44
Rapamycin Setting 3 cubic 2, 1 115
Rapamycin Setting 3 cubic 2, 2 9440
Rapamycin Setting 3 quadratic 1, 1 23
Rapamycin Setting 3 quadratic 1, 2 337
Rapamycin Setting 3 quadratic 2, 1 111
Rapamycin Setting 3 quadratic 2, 2 20823
Rapamycin Setting 3 linear 1, 1 30
Rapamycin Setting 3 linear 1, 2 1927
Rapamycin Setting 3 linear 2, 1 110
Rapamycin Setting 3 linear 2, 2 > 21 600
Dactolisib Setting 3 cubic 1, 1 24
Dactolisib Setting 3 cubic 1, 2 217
Dactolisib Setting 3 cubic 2, 1 107
Dactolisib Setting 3 cubic 2, 2 11968
Dactolisib Setting 3 quadratic 1, 1 25
Dactolisib Setting 3 quadratic 1, 2 1181
Dactolisib Setting 3 quadratic 2, 1 110
Dactolisib Setting 3 quadratic 2, 2 15602
Dactolisib Setting 3 linear 1, 1 24
Dactolisib Setting 3 linear 1, 2 1900
Dactolisib Setting 3 linear 2, 1 119
Dactolisib Setting 3 linear 2, 2 > 21 600
Talazoparib Setting 3 cubic 1, 1 24
Talazoparib Setting 3 cubic 1, 2 1078
Talazoparib Setting 3 cubic 2, 1 131
Talazoparib Setting 3 cubic 2,2 > 21 600
Talazoparib Setting 3 quadratic 1, 1 23
Talazoparib Setting 3 quadratic 1, 2 956
Talazoparib Setting 3 quadratic 2, 1 125
Talazoparib Setting 3 quadratic 2,2 -
Talazoparib Setting 3 linear 1, 1 23
Talazoparib Setting 3 linear 1, 2 1284
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Talazoparib Setting 3 linear 2, 1 5258
Talzoparib Setting 3 linear 2, 2 -

Table B.19: This table provides the runtime (CV + final fit) of MERIDA for each of the
10 drugs analyzed in the comparison between LOBICO and MERIDA. In total, MERIDA
needed approximately 3 days for fitting the shown models. No models were excluded for
the calculation of the total runtime.

Drug Setting Weight function Model size Runtime (in s)
AZD8055 Setting 1 cubic 1 7
AZD8055 Setting 1 cubic 2 10
AZD8055 Setting 1 cubic 3 137
AZD8055 Setting 1 cubic 4 327
AZD8055 Setting 1 cubic 5 1234
AZD8055 Setting 1 cubic 6 4742
AZD8055 Setting 1 quadratic 1 6
AZD8055 Setting 1 quadratic 2 9
AZD8055 Setting 1 quadratic 3 115
AZD8055 Setting 1 quadratic 4 256
AZD8055 Setting 1 quadratic 5 1043
AZD8055 Setting 1 quadratic 6 4188
AZD8055 Setting 1 linear 1 6
AZD8055 Setting 1 linear 2 22
AZD8055 Setting 1 linear 3 143
AZD8055 Setting 1 linear 4 260
AZD8055 Setting 1 linear 5 1581
AZD8055 Setting 1 linear 6 8986
Omipalisib Setting 1 cubic 1 6
Omipalisib Setting 1 cubic 2 14
Omipalisib Setting 1 cubic 3 53
Omipalisib Setting 1 cubic 4 203
Omipalisib Setting 1 cubic 5 317
Omipalisib Setting 1 cubic 6 1228
Omipalisib Setting 1 quadratic 1 5
Omipalisib Setting 1 quadratic 2 19
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Omipalisib Setting 1 quadratic 3 133
Omipalisib Setting 1 quadratic 4 212
Omipalisib Setting 1 quadratic 5 728
Omipalisib Setting 1 quadratic 6 2838
Omipalisib Setting 1 linear 1 4
Omipalisib Setting 1 linear 2 57
Omipalisib Setting 1 linear 3 217
Omipalisib Setting 1 linear 4 1221
Omipalisib Setting 1 linear 5 7524
Omipalisib Setting 1 linear 6 39933
Voxtalisib Setting 1 cubic 1 6
Voxtalisib Setting 1 cubic 2 8
Voxtalisib Setting 1 cubic 3 99
Voxtalisib Setting 1 cubic 4 219
Voxtalisib Setting 1 cubic 5 1160
Voxtalisib Setting 1 cubic 6 6790
Voxtalisib Setting 1 quadratic 1 6
Voxtalisib Setting 1 quadratic 2 22
Voxtalisib Setting 1 quadratic 3 117
Voxtalisib Setting 1 quadratic 4 241
Voxtalisib Setting 1 quadratic 5 818
Voxtalisib Setting 1 quadratic 6 5589
Voxtalisib Setting 1 linear 1 7
Voxtalisib Setting 1 linear 2 41
Voxtalisib Setting 1 linear 3 119
Voxtalisib Setting 1 linear 4 165
Voxtalisib Setting 1 linear 5 610
Voxtalisib Setting 1 linear 6 4254
NSC319726 Setting 1 cubic 1 3
NSC319726 Setting 1 cubic 2 6
NSC319726 Setting 1 cubic 3 32
NSC319726 Setting 1 cubic 4 93
NSC319726 Setting 1 cubic 5 153
NSC319726 Setting 1 cubic 6 470
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NSC319726 Setting 1 quadratic 1 4
NSC319726 Setting 1 quadratic 2 12
NSC319726 Setting 1 quadratic 3 93
NSC319726 Setting 1 quadratic 4 135
NSC319726 Setting 1 quadratic 5 467
NSC319726 Setting 1 quadratic 6 1734
NSC319726 Setting 1 linear 1 1
NSC319726 Setting 1 linear 2 30
NSC319726 Setting 1 linear 3 125
NSC319726 Setting 1 linear 4 235
NSC319726 Setting 1 linear 5 1436
NSC319726 Setting 1 linear 6 8995
Niraparib Setting 1 cubic 1 1
Niraparib Setting 1 cubic 2 3
Niraparib Setting 1 cubic 3 15
Niraparib Setting 1 cubic 4 65
Niraparib Setting 1 cubic 5 134
Niraparib Setting 1 cubic 6 317
Niraparib Setting 1 quadratic 1 0
Niraparib Setting 1 quadratic 2 5
Niraparib Setting 1 quadratic 3 28
Niraparib Setting 1 quadratic 4 79
Niraparib Setting 1 quadratic 5 142
Niraparib Setting 1 quadratic 6 372
Niraparib Setting 1 linear 1 1
Niraparib Setting 1 linear 2 7
Niraparib Setting 1 linear 3 52
Niraparib Setting 1 linear 4 117
Niraparib Setting 1 linear 5 201
Niraparib Setting 1 linear 6 1100
Temsirolimus Setting 3 cubic 1 7
Temsirolimus Setting 3 cubic 2 16
Temsirolimus Setting 3 cubic 3 122
Temsirolimus Setting 3 cubic 4 315
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Temsirolimus Setting 3 cubic 5 1955
Temsirolimus Setting 3 cubic 6 13281
Temsirolimus Setting 3 quadratic 1 6
Temsirolimus Setting 3 quadratic 2 40
Temsirolimus Setting 3 quadratic 3 184
Temsirolimus Setting 3 quadratic 4 330
Temsirolimus Setting 3 quadratic 5 3298
Temsirolimus Setting 3 quadratic 6 19885
Temsirolimus Setting 3 linear 1 4
Temsirolimus Setting 3 linear 2 89
Temsirolimus Setting 3 linear 3 185
Temsirolimus Setting 3 linear 4 889
Temsirolimus Setting 3 linear 5 4035
Temsirolimus Setting 3 linear 6 31163
CX-5461 Setting 3 cubic 1 5
CX-5461 Setting 3 cubic 2 7
CX-5461 Setting 3 cubic 3 109
CX-5461 Setting 3 cubic 4 198
CX-5461 Setting 3 cubic 5 701
CX-5461 Setting 3 cubic 6 2544
CX-5461 Setting 3 quadratic 1 6
CX-5461 Setting 3 quadratic 2 18
CX-5461 Setting 3 quadratic 3 168
CX-5461 Setting 3 quadratic 4 357
CX-5461 Setting 3 quadratic 5 2725
CX-5461 Setting 3 quadratic 6 6852
CX-5461 Setting 3 linear 1 6
CX-5461 Setting 3 linear 2 51
CX-5461 Setting 3 linear 3 235
CX-5461 Setting 3 linear 4 2132
CX-5461 Setting 3 linear 5 14777
Rapamycin Setting 3 cubic 1 3
Rapamycin Setting 3 cubic 2 12
Rapamycin Setting 3 cubic 3 186
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Rapamycin Setting 3 cubic 4 367
Rapamycin Setting 3 cubic 5 1873
Rapamycin Setting 3 cubic 6 6656
Rapamycin Setting 3 quadratic 1 1
Rapamycin Setting 3 quadratic 2 8
Rapamycin Setting 3 quadratic 3 126
Rapamycin Setting 3 quadratic 4 385
Rapamycin Setting 3 quadratic 5 1757
Rapamycin Setting 3 quadratic 6 12140
Rapamycin Setting 3 linear 1 1
Rapamycin Setting 3 linear 2 12
Rapamycin Setting 3 linear 3 101
Rapamycin Setting 3 linear 4 225
Rapamycin Setting 3 linear 5 1302
Rapamycin Setting 3 linear 6 7584
Dactolisib Setting 3 cubic 1 1
Dactolisib Setting 3 cubic 2 5
Dactolisib Setting 3 cubic 3 54
Dactolisib Setting 3 cubic 4 185
Dactolisib Setting 3 cubic 5 338
Dactolisib Setting 3 cubic 6 1719
Dactolisib Setting 3 quadratic 1 6
Dactolisib Setting 3 quadratic 2 6
Dactolisib Setting 3 quadratic 3 81
Dactolisib Setting 3 quadratic 4 197
Dactolisib Setting 3 quadratic 5 528
Dactolisib Setting 3 quadratic 6 2469
Dactolisib Setting 3 linear 1 6
Dactolisib Setting 3 linear 2 14
Dactolisib Setting 3 linear 3 107
Dactolisib Setting 3 linear 4 179
Dactolisib Setting 3 linear 5 1045
Dactolisib Setting 3 linear 6 3689
Talazoparib Setting 3 cubic 1 3
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Talazoparib Setting 3 cubic 2 5
Talazoparib Setting 3 cubic 3 21
Talazoparib Setting 3 cubic 4 94
Talazoparib Setting 3 cubic 5 172
Talazoparib Setting 3 cubic 6 317
Talazoparib Setting 3 quadratic 1 6
Talazoparib Setting 3 quadratic 2 7
Talazoparib Setting 3 quadratic 3 27
Talazoparib Setting 3 quadratic 4 84
Talazoparib Setting 3 quadratic 5 174
Talazoparib Setting 3 quadratic 6 365
Talazoparib Setting 3 linear 1 5
Talazoparib Setting 3 linear 2 12
Talazoparib Setting 3 linear 3 68
Talazoparib Setting 3 linear 4 131
Talazoparib Setting 3 linear 5 323
Talazoparib Setting 3 linear 6 3916
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RF/KNN results

Figures B.6 to B.12 depict the performance for random forests and k-nearest neigh-
bors using both of the mentioned model selection criteria. For k-nearest neighbors,
the ROC selection criterion leads to models with high specificity and very low sen-
sitivity for all of the investigated 41 drugs. Notably, almost only drugs that are
balanced with respect to sensitive and resistant cell lines (CX-5461, NSC319726,
Niraparib, Omipalisib, Talazoparib) achieve sensitivities different from 0. By se-
lecting the best model based on sensitivity alone, the average sensitivity could be
improved (see Figure B.8 and B.9). However, it is still much lower than for our
MERIDA method (cf. Figure 5.7 and 5.8).
For random forests, it can similarly be seen that the average sensitivity is compar-
atively low and is also only marginally improved by using sensitivity as selection
criterion. In general, drugs with less class imbalance also seem to achieve a better
prediction performance.
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Figure B.6: This figure depicts the statistical performance of the best KNN model in
Setting 1 for all 41 drugs using the ROC as selection criterion.
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Figure B.7: This figure depicts the averaged statistical performance of the best KNN
model in Setting 1 for all 41 drugs using the ROC as selection criterion.
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Figure B.8: This figure depicts the statistical performance of the best KNN model in
Setting 1 for all 41 drugs using sensitivity as selection criterion.
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Figure B.9: This figure depicts the averaged statistical performance of the best KNN
model in Setting 1 for all 41 drugs using sensitivity as selection criterion.
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Figure B.10: This figure depicts the statistical performance of the best RF model in
Setting 1 for all 41 drugs using the ROC as selection criterion.
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Figure B.11: This figure depicts the averaged statistical performance of the best RF
model in Setting 1 for all 41 drugs using the ROC as selection criterion.
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Figure B.12: This figure depicts the averaged statistical performance of the best RF
model in Setting 1 for all 41 drugs using sensitivity as selection criterion.
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Site specific analysis

The main analysis focuses on the full pan-cancer data set from the GDSC. How-
ever, it is well-known that tissue or organs of origin plays a significant role in drug
sensitivity and resistance. Therefore, we also applied our method to two interest-
ing sub-groups of cell lines: haematological cancer cell lines and non-haematological
cancer cell lines. In the following, we will first explain how we prepared the data.
Then, we shortly present the results with respect to statistical performance and
selected biomarkers.

Data preparation

In general, the performance of statistical learning methods strongly depends on the
number of available samples in comparison to the number of available features. As
already discussed, dimension reduction steps are therefore indispensable in this field
of bioinformatics. When subdividing the pan-cancer data set into single sites, most
of them will be too small to be analyzed. Therefore, we decided to investigate two
groups of cell lines that still have a considerable amount of samples that we deter-
mined as described in the following.
When observing the site distribution of cell lines across the drug responses of the
different drugs, we noted that one particular group of cell lines, the haematological
cancer cell lines (i.e. leukemia, lymphoma, and myeloma), is often found to be very
sensitive to drugs (cf. Figure B.13 and B.14 for mTOR pathway inhibitors). We
then use this group containing approximately 160 cell lines per drug and the group
of the non-haematological cancer cell lines containing approximately 700 cell lines
per drug for further analysis.
We prepared the data sets exactly as already described. This means that we first
divided the available cell lines into the two aforementioned groups and then per-
formed the preparation of the data sets including literature-based feature selection
and annotation. We also analyzed these two groups in the first two of the three
settings :

• Setting 1: the a priori knowledge is not included, i.e. the matrix without a
priori knowledge is used
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• Setting 2: the information about the sensitivity biomarkers is integrated in
the input feature matrix as one specific composite feature and the value of the
corresponding ILP feature variable is fixed to 1
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Figure B.13: This figure shows the results of an enrichment analysis for the different
sites available in the GDSC database for the mTOR pathway inhibitors in GDSC1. The
enrichment analysis was conducted using the respective site as category, and the increas-
ingly sorted logarithmized IC50 lists as ranked lists. The p-values were adjusted using the
Benjamini-Yekutieli procedure.

Results

Figures B.15 to B.22 show the statistical performance for MERIDA on the 41 differ-
ent drugs for the non-haematological and haematological cell lines. For Setting 1, it
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Figure B.14: In analogy to Figure B.13, this figure shows the results of an enrichment
analysis for the different sites available in the GDSC database for the mTOR pathway
inhibitors in GDSC2. The enrichment analysis was conducted using the respective site as
category, and the sorted IC50 lists as ranked lists. The p-values were adjusted using the
Benjamini-Yekutieli procedure.

can be seen that both specificity and sensitivity are highest for the pan-cancer anal-
ysis (cf. Figure 5.7) and lowest for the haematological cancer analysis (cf. Figure
B.18). This effect could generally be attributed to the fact that fewer cell lines are
used in both, the haematological cancer analysis and the non-haematological cancer
analysis in comparison to the pan-cancer analysis. For Setting 2, it can be noted
that the a priori knowledge seems to be more favourable for the pan-cancer cell lines
and the non-haematological cancer cell lines in terms of statistical sensitivity, which
might indicate that the drug sensitivity of the haematological cancer cell lines is less
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determined by the used biomarkers.
We also analyzed the importance of the site of origin in the resulting models. From
our results for Setting 1, we can clearly see that the selected biomarkers from the
non-haematological cancer group largely resemble those from the analysis using all
cell lines (cf. Figure B.23 to B.26). There is still some intersection of the selected
biomarkers for the haematological cancer cell lines with the biomarkers for some of
the drugs (cf. Figure B.27 and B.28 and Table B.20 to Table B.22). However, the
relationship is much less pronounced highlighting the need for site-specific models.
The smallest overlap can be observed for the features from the haematological can-
cer cell lines with the features from the non-haematological cancer cell lines (see
Table B.22).

Table B.20: Intersection of selected features between non-haematological cell lines and
all cell lines

Drug Database Setting P-value (Fisher’s exact test)

Afuresertib GDSC2 1 3.85E-07
AKT-inhibitor-VIII___228 GDSC1 1 1
Alpelisib GDSC2 1 2.40E-06
AMG-319 GDSC2 1 6.15E-07
Apitolisib GDSC1 1 2.90E-05
AS605240 GDSC1 1 8.01E-05
AT13148 GDSC2 1 3.21E-03
AT7867 GDSC1 1 6.58E-06
AZD6482___1066 GDSC1 1 8.60E-03
AZD8055 GDSC1 1 2.79E-04
AZD8186 GDSC2 1 1.62E-04
Buparlisib GDSC2 1 6.55E-07
CX-5461 GDSC1 1 1.64E-03
CZC24832 GDSC2 1 2.35E-01
Dactolisib GDSC2 1 4.94E-07
GNE-317 GDSC2 1 7.93E-05
GSK1059615 GDSC1 1 5.47E-08
GSK690693 GDSC1 1 2.93E-07
IC-87114 GDSC1 1 2.27E-01
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Idelalisib GDSC1 1 5.11E-02
Ipatasertib GDSC2 1 1.74E-08
LJI308 GDSC2 1 6.53E-03
MK-2206 GDSC2 1 1.18E-02
Niraparib GDSC2 1 5.07E-03
NSC319726 GDSC1 1 2.75E-12
Omipalisib GDSC1 1 6.71E-03
OSI-027 GDSC1 1 5.52E-07
PF-4708671 GDSC1 1 7.27E-08
Pictilisib GDSC2 1 2.58E-04
PIK-93 GDSC1 1 1.64E-03
Pilaralisib GDSC1 1 7.78E-09
Rapamycin GDSC2 1 1.90E-02
Talazoparib GDSC2 1 7.41E-06
Taselisib GDSC2 1 2.28E-11
Temsirolimus GDSC1 1 8.23E-03
Torin-2 GDSC1 1 3.66E-07
Uprosertib___2106 GDSC2 1 2.38E-06
Voxtalisib GDSC1 1 6.98E-06
WYE-125132 GDSC1 1 7.87E-11
YM201636 GDSC1 1 9.90E-03
ZSTK474 GDSC1 1 1

Table B.21: Intersection of selected features between haematological cell lines and all cell
lines

Drug Database Setting P-value (Fisher’s exact test)

Afuresertib GDSC2 1 1.66E-01
AKT-inhibitor-VIII___228 GDSC1 1 1
Alpelisib GDSC2 1 1.81E-01
AMG-319 GDSC2 1 1
Apitolisib GDSC1 1 1
AS605240 GDSC1 1 1.92E-01
AT13148 GDSC2 1 1
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AT7867 GDSC1 1 1.29E-01
AZD6482___1066 GDSC1 1 1
AZD8055 GDSC1 1 1
AZD8186 GDSC2 1 2.03E-02
Buparlisib GDSC2 1 1
CX-5461 GDSC1 1 1
CZC24832 GDSC2 1 1.39E-01
Dactolisib GDSC2 1 1.15E-02
GNE-317 GDSC2 1 1
GSK1059615 GDSC1 1 1.45E-01
GSK690693 GDSC1 1 1
IC-87114 GDSC1 1 1
Idelalisib GDSC1 1 1
Ipatasertib GDSC2 1 1
LJI308 GDSC2 1 1
MK-2206 GDSC2 1 1
Niraparib GDSC2 1 1
NSC319726 GDSC1 1 1
Omipalisib GDSC1 1 1
OSI-027 GDSC1 1 1.46E-01
PF-4708671 GDSC1 1 2.63E-01
Pictilisib GDSC2 1 3.92E-02
PIK-93 GDSC1 1 1.22E-01
Pilaralisib GDSC1 1 1
Rapamycin GDSC2 1 1
Talazoparib GDSC2 1 1.37E-01
Taselisib GDSC2 1 1
Temsirolimus GDSC1 1 1.34E-01
Torin-2 GDSC1 1 1.19E-01
Uprosertib___2106 GDSC2 1 2.56E-01
Voxtalisib GDSC1 1 1.16E-01
WYE-125132 GDSC1 1 2.93E-02
YM201636 GDSC1 1 1
ZSTK474 GDSC1 1 1
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Figure B.15: This figure depicts the statistical performance of the best MERIDA model
in Setting 1 for all 41 drugs for the non-haematological cell lines.

Table B.22: Intersection of selected features between non-haematological cell lines and
haematological cell lines

Drug Database Setting P-value (Fisher’s exact test)

Afuresertib GDSC2 1 1.76E-01
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AKT-inhibitor-VIII___228 GDSC1 1 1
Alpelisib GDSC2 1 1.73E-01
AMG-319 GDSC2 1 1
Apitolisib GDSC1 1 1
AS605240 GDSC1 1 1
AT13148 GDSC2 1 1
AT7867 GDSC1 1 2.22E-01
AZD6482___1066 GDSC1 1 1
AZD8055 GDSC1 1 1
AZD8186 GDSC2 1 2.51E-01
Buparlisib GDSC2 1 1
CX-5461 GDSC1 1 1
CZC24832 GDSC2 1 1
Dactolisib GDSC2 1 1
GNE-317 GDSC2 1 1
GSK1059615 GDSC1 1 1
GSK690693 GDSC1 1 1
IC-87114 GDSC1 1 2.10E-01
Idelalisib GDSC1 1 1
Ipatasertib GDSC2 1 1
LJI308 GDSC2 1 1
MK-2206 GDSC2 1 1
Niraparib GDSC2 1 1
NSC319726 GDSC1 1 1
Omipalisib GDSC1 1 1
OSI-027 GDSC1 1 3.63E-03
PF-4708671 GDSC1 1 2.41E-01
Pictilisib GDSC2 1 1
PIK-93 GDSC1 1 1
Pilaralisib GDSC1 1 1
Rapamycin GDSC2 1 1
Talazoparib GDSC2 1 1.76E-01
Taselisib GDSC2 1 1
Temsirolimus GDSC1 1 1
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Torin-2 GDSC1 1 1
Uprosertib___2106 GDSC2 1 2.24E-01
Voxtalisib GDSC1 1 8.97E-02
WYE-125132 GDSC1 1 2.52E-01
YM201636 GDSC1 1 1
ZSTK474 GDSC1 1 1
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Figure B.16: This figure depicts the averaged statistical performance of the best
MERIDA model in Setting 1 for all 41 drugs for the non-haematological cell lines.
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Figure B.17: This figure depicts the statistical performance of the best MERIDA model
in Setting 1 for all 41 drugs for the haematological cell lines.
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Figure B.18: This figure depicts the averaged statistical performance of the best
MERIDA model in Setting 1 for all 41 drugs for the haematological cell lines.
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Figure B.19: This figure depicts the statistical performance of the best MERIDA model
in Setting 2 for non-haematological cell lines.
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Figure B.20: This figure depicts the averaged statistical performance of the best
MERIDA model in Setting 2 for non-haematological cell lines.
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Figure B.21: This figure depicts the statistical performance of the best MERIDA model
in Setting 2 for haematological cell lines.
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Figure B.22: This figure depicts the averaged statistical performance of the best
MERIDA model in Setting 2 for the haematological cell lines.
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Figure B.23: This figure depicts the the frequency of the top 20 selected sensitivity-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 in the pan-cancer analysis.
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Figure B.24: This figure depicts the the frequency of the top 20 selected resistance-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 in the pan-cancer analysis.
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Figure B.25: This figure depicts the the frequency of the top 20 selected sensitivity-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 for the non-haematological cancer cell lines.
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Figure B.26: This figure depicts the the frequency of the top 20 selected resistance-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 for the non-haematological cancer cell lines.
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Figure B.27: This figure depicts the the frequency of the top 20 selected sensitivity-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 for the haematological cancer cell lines.
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Figure B.28: This figure depicts the the frequency of the top 20 selected resistance-
associated features (using all models of size 1 to 6 per drug) across all mTOR pathway
inhibitors (37) for Setting 1 for the haematological cancer cell lines.
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Pan-cancer analysis features
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Figure B.29: In Sub-Figure (a - e), we present Venn diagrams with the respective Fisher’s
exact test overlap p-value for the selected features between LOBICO and MERIDA.

293



Appendix B: MERIDA additional information

AZD8055 p−value: 7.02e−12

2 25

linear quadratic

(a) AZD8055 linear vs quadratic

AZD8055 p−value: 2.09e−08

5 34

cubic linear

(b) AZD8055 linear vs cubic
AZD8055 p−value: 3.76e−14

3 16

cubic quadratic

(c) AZD8055 quadratic vs cubic

Figure B.30: In Sub-Figure (a - c), we present Venn diagrams with the respective Fisher’s
exact test overlap p-value for the selected features of MERIDA for AZD8055 between the
three different weight functions. The remaining overlap p-values for all other drugs can be
found in Table B.23.

Table B.23: Similarity of selected features for different weight functions for MERIDA

Drug Database Setting Compared weight functions P-value (Fisher’s exact test)

AZD8055 GDSC1 1 linear, quadratic 7.02E-12
AZD8055 GDSC1 1 linear, cubic 2.09E-08
AZD8055 GDSC1 1 quadratic, cubic 3.76E-14
CX-5461 GDSC1 2 linear, quadratic 4.95E-14
CX-5461 GDSC1 2 linear, cubic 1.15E-08
CX-5461 GDSC1 2 quadratic, cubic 1.24E-14
CX-5461 GDSC1 3 linear, quadratic 4.21E-06
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CX-5461 GDSC1 3 linear, cubic 2.77E-04
CX-5461 GDSC1 3 quadratic, cubic 9.29E-14
CX-5461 GDSC1 1 linear, quadratic 1.98E-04
CX-5461 GDSC1 1 linear, cubic 2.77E-04
CX-5461 GDSC1 1 quadratic, cubic 4.42E-16
Dactolisib GDSC2 2 linear, quadratic 6.19E-22
Dactolisib GDSC2 2 linear, cubic 2.72E-18
Dactolisib GDSC2 2 quadratic, cubic 3.40E-20
Dactolisib GDSC2 3 linear, quadratic 2.47E-20
Dactolisib GDSC2 3 linear, cubic 4.07E-17
Dactolisib GDSC2 3 quadratic, cubic 3.34E-22
Dactolisib GDSC2 1 linear, quadratic 2.49E-20
Dactolisib GDSC2 1 linear, cubic 4.09E-17
Dactolisib GDSC2 1 quadratic, cubic 3.36E-22
Niraparib GDSC2 1 linear, quadratic 1.30E-11
Niraparib GDSC2 1 linear, cubic 1.30E-11
Niraparib GDSC2 1 quadratic, cubic 7.01E-17
NSC319726 GDSC1 1 linear, quadratic 2.02E-06
NSC319726 GDSC1 1 linear, cubic 2.02E-06
NSC319726 GDSC1 1 quadratic, cubic 6.62E-17
Omipalisib GDSC1 1 linear, quadratic 5.74E-09
Omipalisib GDSC1 1 linear, cubic 2.15E-06
Omipalisib GDSC1 1 quadratic, cubic 3.08E-15
Rapamycin GDSC2 2 linear, quadratic 1.41E-14
Rapamycin GDSC2 2 linear, cubic 1.69E-10
Rapamycin GDSC2 2 quadratic, cubic 9.03E-16
Rapamycin GDSC2 3 linear, quadratic 1.31E-05
Rapamycin GDSC2 3 linear, cubic 1.17E-03
Rapamycin GDSC2 3 quadratic, cubic 1.31E-05
Rapamycin GDSC2 1 linear, quadratic 7.73E-06
Rapamycin GDSC2 1 linear, cubic 1.23E-05
Rapamycin GDSC2 1 quadratic, cubic 1.37E-14
Talazoparib GDSC2 2 linear, quadratic 9.17E-11
Talazoparib GDSC2 2 linear, cubic 3.73E-08
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Talazoparib GDSC2 2 quadratic, cubic 7.67E-12
Talazoparib GDSC2 3 linear, quadratic 1.14E-22
Talazoparib GDSC2 3 linear, cubic 8.24E-18
Talazoparib GDSC2 3 quadratic, cubic 2.50E-20
Talazoparib GDSC2 1 linear, quadratic 1.13E-22
Talazoparib GDSC2 1 linear, cubic 8.20E-18
Talazoparib GDSC2 1 quadratic, cubic 2.49E-20
Temsirolimus GDSC1 2 linear, quadratic 1.24E-14
Temsirolimus GDSC1 2 linear, cubic 1.86E-11
Temsirolimus GDSC1 2 quadratic, cubic 1.90E-17
Temsirolimus GDSC1 3 linear, quadratic 6.98E-12
Temsirolimus GDSC1 3 linear, cubic 1.16E-08
Temsirolimus GDSC1 3 quadratic, cubic 1.24E-14
Temsirolimus GDSC1 1 linear, quadratic 6.93E-12
Temsirolimus GDSC1 1 linear, cubic 1.15E-08
Temsirolimus GDSC1 1 quadratic, cubic 1.24E-14
Voxtalisib GDSC1 1 linear, quadratic 2.44E-12
Voxtalisib GDSC1 1 linear, cubic 2.89E-07
Voxtalisib GDSC1 1 quadratic, cubic 1.15E-19

Table B.24: Similarity of selected features for different weight functions for LOBICO

Drug Database Setting Compared weight functions P-value (Fisher’s exact test)

AZD8055 GDSC1 1 linear, quadratic 1.60E-05
AZD8055 GDSC1 1 linear, cubic 5.60E-05
AZD8055 GDSC1 1 quadratic, cubic 2.49E-07
CX-5461 GDSC1 3 linear, quadratic 7.98E-06
CX-5461 GDSC1 3 linear, cubic 5.98E-03
CX-5461 GDSC1 3 quadratic, cubic 7.98E-06
Dactolisib GDSC2 3 linear, quadratic 1.87E-08
Dactolisib GDSC2 3 linear, cubic 1.87E-08
Dactolisib GDSC2 3 quadratic, cubic 1.73E-14
Niraparib GDSC2 1 linear, quadratic 8.25E-06
Niraparib GDSC2 1 linear, cubic 8.25E-06
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Niraparib GDSC2 1 quadratic, cubic 1.87E-09
NSC319726 GDSC1 1 linear, quadratic 1.81E-09
NSC319726 GDSC1 1 linear, cubic 8.10E-06
NSC319726 GDSC1 1 quadratic, cubic 8.10E-06
Omipalisib GDSC1 1 linear, quadratic 5.98E-03
Omipalisib GDSC1 1 linear, cubic 5.98E-03
Omipalisib GDSC1 1 quadratic, cubic 1.77E-09
Rapamycin GDSC2 3 linear, quadratic 1.80E-10
Rapamycin GDSC2 3 linear, cubic 2.64E-07
Rapamycin GDSC2 3 quadratic, cubic 3.52E-15
Talazoparib GDSC2 3 linear, quadratic 8.30E-06
Talazoparib GDSC2 3 linear, cubic 8.30E-06
Talazoparib GDSC2 3 quadratic, cubic 1.88E-09
Temsirolimus GDSC1 3 linear, quadratic 7.99E-06
Temsirolimus GDSC1 3 linear, cubic 1
Temsirolimus GDSC1 3 quadratic, cubic 1
Voxtalisib GDSC1 1 linear, quadratic 1
Voxtalisib GDSC1 1 linear, cubic 1.19E-02
Voxtalisib GDSC1 1 quadratic, cubic 3.55E-08

Table B.25: Comparison between selected features for LOBICO vs MERIDA

Drug Database Setting P-value (Fisher’s exact test)

AZD8055 GDSC1 1 2.91E-07
CX-5461 GDSC1 3 6.39E-06
Dactolisib GDSC2 3 8.42E-06
Niraparib GDSC2 1 2.46E-04
NSC319726 GDSC1 1 2.95E-04
Omipalisib GDSC1 1 2.89E-06
Rapamycin GDSC2 3 2.11E-13
Talazoparib GDSC2 3 4.27E-04
Temsirolimus GDSC1 3 1.53E-10
Voxtalisib GDSC1 1 5.37E-09
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Figure B.31: In Sub-Figure (a - c), we present Venn diagrams with the respective Fisher’s
exact test overlap p-value for the selected features of LOBICO for AZD8055 between the
three different weight functions. The remaining overlap p-values for all other drugs can be
found in Table B.24.
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Enrichment analysis results

We employ the GeneTrail C++ library for performing a Gene Set Enrichment Anal-
ysis (GSEA) like analysis with the custom categories and ranked lists as described
above, i.e. we test for an enrichment of a specific category at the top or bottom of
a ranked cell line list. We use the Benjamini-Hochberg procedure ([303]) to adjust
the resulting p-values. We consider results as significant at the significance level
α = 0.05.
Tables B.26 + B.27 show the result of this analysis for the genes that have been
selected by MERIDA.

Table B.26: The table shows the number of times a lowly expressed gene has been
enriched
or depleted.

Gene #Enriched GDSC1 #Enriched GDSC2 #Depleted GDSC1 #Depleted GDSC2

IDH1 8 33 3 1
PIK3CB 65 40 8 0
FRG1 0 0 20 56
CYTH4 0 0 0 0
TJP1 258 156 13 0
PTPRF 205 150 12 1
MAP4K1 0 0 0 0
IREB2 8 0 16 18
MLL2 1 1 0 4
DDX5 3 0 40 4
WIPF1 0 0 0 0
SMARCB1 0 0 20 16
RGS3 0 0 0 0
HDAC9 0 0 0 0
EPC1 1 0 4 13
AHCTF1 1 1 9 2
ADCY1 0 0 0 0
ROBO2 0 0 0 0
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ERBB2 0 0 0 0
PPP6C 2 0 38 86
FOXA1 0 0 0 0
TBX3 0 0 0 0
KAT6B 0 0 5 3
SOX9 0 0 0 0
JMY 0 0 3 0
GNG2 0 0 0 0
VHL 6 0 35 46
ACO1 44 63 8 0
HDAC3 0 0 1 0
SFPQ 0 0 2 14
NCKAP1 239 156 10 0
FKBP5 0 0 0 0
NTRK2 0 0 0 0
PPP2R5A 16 15 35 3
HSP90AB1 0 0 9 0
XPO1 0 0 9 1
PTGS1 0 0 0 0
CNOT3 0 0 1 6
STARD13 0 0 0 0
IDH2 6 0 0 0
FMR1 1 5 2 1
ZNF638 0 0 16 10
ADAM10 10 0 24 7
TCF4 0 0 0 0
TCF7L2 0 0 0 0
CDC73 1 0 0 0
PBRM1 3 0 62 42
ARHGEF6 0 0 0 0
CCND1 33 42 14 0
BCL11A 0 0 0 0
KLF6 111 119 7 0
CLASP2 0 0 14 11
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CASP8 32 58 30 1
FBXW7 0 0 2 2
HLA-B 34 65 66 5
MYC 16 12 85 7
DNMT3A 0 0 0 0
MFNG 0 0 0 0
RBM10 2 1 67 11
MYH9 15 45 11 2
TCF12 1 0 0 0
UPF3B 0 0 57 38
ARFGEF2 5 9 5 0
ARID2 0 0 56 16
NAP1L1 0 1 52 58
AHNAK 173 144 15 3
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Table B.27: The table shows the number of times a highly expressed gene has been
enriched
or depleted.

Gene #Enriched GDSC1 #Enriched GDSC2 #Depleted GDSC1 #Depleted GDSC2

IDH1 0 1 28 98
PIK3CB 11 5 2 1
FRG1 184 139 6 0
CYTH4 205 152 4 0
TJP1 0 0 0 0
PTPRF 0 0 7 0
MAP4K1 191 151 15 3
IREB2 155 123 5 0
MLL2 143 113 2 0
DDX5 14 0 0 0
WIPF1 193 150 13 1
SMARCB1 193 146 9 2
RGS3 24 4 51 43
HDAC9 10 0 1 2
EPC1 177 129 6 1
AHCTF1 53 20 6 0
ADCY1 22 33 58 6
ROBO2 112 117 5 1
ERBB2 20 9 57 48
PPP6C 38 20 8 1
FOXA1 1 6 184 109
TBX3 3 0 56 30
KAT6B 153 127 7 2
SOX9 0 0 24 16
JMY 40 97 4 0
GNG2 138 122 8 1
VHL 128 140 6 0
ACO1 11 1 70 50
HDAC3 26 17 1 0
SFPQ 80 94 6 0
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NCKAP1 0 0 0 0
FKBP5 192 150 10 2
NTRK2 0 0 24 3
PPP2R5A 10 4 2 0
HSP90AB1 6 33 3 0
XPO1 17 12 5 1
PTGS1 37 10 0 1
CNOT3 15 30 1 0
STARD13 28 23 0 0
IDH2 33 58 12 2
FMR1 2 1 20 2
ZNF638 62 44 6 0
ADAM10 2 0 27 21
TCF4 146 131 14 1
TCF7L2 8 2 38 55
CDC73 3 1 9 3
PBRM1 181 119 6 1
ARHGEF6 237 151 9 0
CCND1 8 2 5 1
BCL11A 200 146 8 0
KLF6 6 2 59 41
CLASP2 133 120 10 2
CASP8 105 89 0 0
FBXW7 147 137 11 0
HLA-B 0 0 0 0
MYC 0 0 0 0
DNMT3A 135 126 11 2
MFNG 224 151 13 1
RBM10 76 60 17 2
MYH9 18 1 120 70
TCF12 106 92 20 5
UPF3B 72 93 16 2
ARFGEF2 0 0 107 116
ARID2 162 129 7 1
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NAP1L1 153 72 2 0
AHNAK 2 0 23 30
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Output rules

Table B.28: MERIDA’s output rules for each drug (best model selected based on Youden’s
J)

Drug Setting Weight function Rule size Model rule
AZD8055 1 linear 5 FKBP5 high expression

∨ VHL high expression
∨ ROBO2 high expression
∨ TRIO low expression
∨ NCKAP1 low expression

AZD8055 1 quadratic 4 ALK Gain of function
∨ FKBP5 high expression
∨ VHL high expression
∨ NCKAP1 low expression

AZD8055 1 (iteration 4) quadratic 7 (ALK Gain of function
∨ FKBP5 high expression
∨ VHL high exprression
∨ TRIO low expression
∨ NCKAP1 low expression)
∧¬ (TBX3 high expression
∨ PSME3 low expression)

AZD8055 1 cubic 4 ALK Gain of function
∨ FKBP5 high expression
∨ VHL high expression
∨ NCKAP1 low expression

AZD8055 1 (iteration 4) cubic 7 (ALK Gain of function
∨ FKBP5 high expression
∨ VHL high expression
∨ PTEN high expression
∨ NCKAP1 low expression)
∧¬ (RBBP7 low expression
∨ HDAC3 low expression)

CX-5461 1 linear 2 CLASP2 high expression
∨ TJP1 low expression
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CX-5461 2 linear 2 (5)* known sensitivity determinants
∨ CLASP2 high expression
∨ TJP1 low expression

CX-5461 3 linear 2 CLASP2 high expression
∨ TJP1 low expression

CX-5461 1 quadratic 2 TCF4 high expression
∨ TJP1 low expression

CX-5461 2 quadratic 2 (5)* known sensitivity determinants
∨ CLASP2 high expression
∨ TJP1 low expression

CX-5461 3 quadratic 2 TCF4 high expression
∨ TJP1 low expression

CX-5461 1 cubic 4 CLASP2 high expression
∨ PRPF8 high expression
∨ LIMA1 low expression
∨ TJP1 low expression

CX-5461 2 cubic 2 (5)* known sensitivity determinants
∨ CLASP2 high expression
∨ TJP1 low expression

CX-5461 3 cubic 4 CLASP2 high expression
∨ PRPF8 high expression
∨ LIMA1 low expression
∨ TJP1 low expression

Dactolisib 1 linear 2 MGA Unknown mutation
∨ TJP1 low expression

Dactolisib 2 linear 2 (3)* MGA Unknown mutation
∨ known sensitivity determinants
∨ TJP1 low expression

Dactolisib 3 linear 2 MGA Unknown mutation
∨ TJP1 low expression

Dactolisib 1 quadratic 2 MGA Unknown mutation
∨ TJP1 low expression
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Dactolisib 2 quadratic 2 (3)* MGA Unknown mutation
∨ known sensitivity determinants
∨ TJP1 low expression

Dactolisib 3 quadratic 2 MGA Unknown mutation
∨ TJP1 low expression

Dactolisib 1 cubic 2 MGA Unknown mutation
∨ TJP1 low expression

Dactolisib 2 cubic 2 (3)* MGA Unknown mutation
∨ known sensitivity determinants
∨ TJP1 low expression

Dactolisib 3 cubic 2 MGA Unknown mutation
∨ TJP1 low expression

Niraparib 1 linear 5 ARID4B high expression
∨ ARID2 high expression
∨ KLF6 low expression
∨ TJP1 low expression
∨ ARFGEF2 low expression

Niraparib 1 quadratic 4 ARID2 high expression
∨ CASP8 low expression
∨ KLF6 low expression
∨ TJP1 low expression

Niraparib 1 (iteration 4) quadratic 7 ARID4B high expression
∨ WASF3 high expression
∨ ARID2 high expression
∨ CASP8 low expression
∨ KLF6 low expression
∨ CTTN low expression
∨ TJP1 low expression

Niraparib 1 cubic 4 ARID2 high expression
∨ CASP8 low expression
∨ KLF6 low expression
∨ TJP1 low expression
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Niraparib 1 (iteration 4) cubic 10 (ARID4B high expression
∨ WASF3 high expression
∨ ARID2 high expression
∨ CASP8 low expression
∨ KLF6 low expression
∨ CTTN low expression
∨ TJP1 low expression
∨ ARNTL low expression)
∧¬ (FAT2 high expression
∨ ATF1 low expression)

NSC319726 1 linear 5 CDC73 high expression
∨ TCF12 high expression
∨ TCF4 high expression
∨ TJP1 low expression
∨ ADAM10 low expression

NSC319726 1 quadratic 4 TCF12 high expression
∨ ROBO2 high expression
∨ TJP1 low expression
∨ ADAM10 low expression

NSC319726 1 (iteration 4) quadratic 9 (TCF12 high expression
∨ TGFBR2 high expression
∨ IDH2 high expression
∨ ROBO2 high expression
∨ KLF6 low expression
∨ TJP1 low expression
∨ ADAM10 low expression
∨ RB1 low expression)
∧¬ RHOA low expression

NSC319726 1 cubic 3 TCF12 high expression
∨ ROBO2 high expression
∨ TJP1 low expression
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NSC319726 1 (iteration 4) cubic 6 TCF12 high expression
∨ TGFBR2 high expression
∨ IDH2 high expression
∨ ROBO2 high expression
∨ TJP1 low expression
∨ ADAM10 low expression

Omipalisib 1 linear 2 PIK3CA Gain of function
∨ TJP1 low expression

Omipalisib 1 quadratic 2 AHCTF1 high expression
∨ TJP1 low expression

Omipalisib 1 (iteration 4) quadratic 5 (SH2B3 high expression
∨ AHCTF1 high expression
∨ STAG2 low expression
∨ TJP1 low expression)
∧ ¬ BCLAF1 low expression

Omipalisib 1 cubic 4 STAG2 Loss of function
∨ SH2B3 high expression
∨ AHCTF1 high expression
∨ TJP1 low expression

Omipalisib 1 (iteration 4) cubic 11 (TP53BP1 Loss of function
∨ PPP2R1A Unknown mutation
∨ STAG2 Loss of function
∨ CCNE1 CNV gain
∨ SH2B3 high expression
∨ AHCTF1 high expression
∨ TJP1 low expression
∨ ARID1A low expression
∨ PTPRF low expression )
∧ ¬ (NTN4 Unknown mutation
∨ TAOK2 low expression )

Rapamycin 1 linear 2 MAP4K1 high expression
∨ PTPRF low expression

Rapamycin 2 linear 1 (42)* known sensitivity determinants
∨ TJP1 low expression
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Rapamycin 3 linear 2 MAP4K1 high expression
∨ PTPRF low expression

Rapamycin 1 quadratic 2 MAP4K1 high expression
∨ PTPRF low expression

Rapamycin 2 quadratic 2 (43)* known sensitivity determinants
∨ NCKAP1 low expression
∨ TJP1 low expression

Rapamycin 3 quadratic 5 (STK4 Unknown mutation
∨ PRKAR1A Unknown mutation
∨ MAP4K1 high expression
∨ PTPRF low expression)
∧¬ ARFGEF2 Unknown mutation

Rapamycin 1 cubic 4 (TBL1XR1 Unknown mutation
∨ CYTH4 high expression
∨ MAP4K1 high expression)
∧¬ WT1 high expression

Rapamycin 2 cubic 2 (43)* known sensitivity determinants
∨ NCKAP1 low expression
∨ TJP1 low expression

Rapamycin 3 cubic 1 MAP4K1 high expression
Talazoparib 1 linear 3 TCF12 high expression

∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 2 linear 2 (5)* known sensitivity determinants
∨ TCF12 high expression
∨ TJP1 low expression

Talazoparib 3 linear 3 TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 1 quadratic 3 TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression
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Talazoparib 2 quadratic 3 (6)* known sensitivity determinants
∨ TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 3 quadratic 3 TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 1 cubic 3 TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 2 cubic 3 (6)* known sensitivity determinants
∨ TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Talazoparib 3 cubic 3 TCF12 high expression
∨ TJP1 low expression
∨ HLA-B low expression

Temsirolimus 1 linear 5 PTEN Loss of function
∨ SMARCB1 high expression
∨ WIPF1 high expression
∨ PRRX1 high expression
∨ DHX9 low expression

Temsirolimus 2 linear 1 (16)* known sensitivity determinants
∨ TJP1 low expression

Temsirolimus 3 linear 5 PTEN Loss of function
∨ SMARCB1 high expression
∨ WIPF1 high expression
∨ PRRX1 high expression
∨ DHX9 low expression

Temsirolimus 1 quadratic 5 PTEN Loss of function
∨ MMP2 high expression
∨ SMARCB1 high expression
∨ WIPF1 high expression
∨ DHX9 low expression
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Temsirolimus 2 quadratic 1 (16)* known sensitivity determinants
∨ TJP1 low expression

Temsirolimus 3 quadratic 5 PTEN Loss of function
∨ MMP2 high expression
∨ SMARCB1 high expression
∨ WIPF1 high expression
∨ DHX9 low expression

Temsirolimus 1 cubic 4 PTEN Loss of function
∨ MMP2 high expression
∨ SMARCB1 high expression
∨ WIPF1 high expression

Temsirolimus 2 cubic 3 (18)* (PTEN Loss of function
∨ known sensitivity determinants
∨ MAP4K1 high expression)
∧¬ MAGI2 Unknown mutation

Temsirolimus 3 cubic 4 PTEN Loss of function
∨ MMP2 high expression
∨ SMARCB1 high expression
∨ WIPF1 high expression

Voxtalisib 1 linear 1 TJP1 low expression
Voxtalisib 1 quadratic 5 BRAF Gain of function

∨ PPP2R5A high expression
∨ XPO1 high expression
∨ BCL11A high expression
∨ CSNK1G3 low expression
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Voxtalisib 1 (iteration 4) quadratic 13 (BRAF Gain of function
∨ CDK12 Unknown mutation
∨ TGFBR1 CNV gain
∨ PPP2R5A high expression
∨ CNOT4 high expression
∨ XPO1 high expression
∨ BCL11A high expression
∨ CSNK1G3 low expression)
∧ ¬ (CHD6 Unknown mutation
∨ HDAC9 Unknown mutation
∨ CAT Unknown mutation
∨ SMURF2 high expression
∨ CAST low expression)

Voxtalisib 1 cubic 6 (MITF CNV gain
∨ PPP2R5A high expression
∨ XPO1 high expression
∨ BCL11A high expression
∨ CSNK1G3 low expression)
∧¬ CHD6 Unknown mutation

Voxtalisib 1 (iteration 4) cubic 10 (MTOR neutral mutations
∨ MITF CNV gain
∨ PPP2R5A high expression
∨ XPO1 high expression
∨ BCL11A high expression
∨ PIK3C2B low expression
∨ CSNK1G3 low expression)
∧¬ (CHD6 Unknown mutation
∨ NCF2 high expression
∨ PIK3R3 high expression)

* Known sensitivity determinants for the respective drugs can be found in Tables B.1 - B.11. The provided
rule size denotes the number of terms without known sensitivity determinants, while the number in brackets
includes them.
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Table B.29: LOBICO’s output rules for each drug (best model selected based on Youden’s
J)

Drug Setting Weight function Rule size Model rule

AZD8055 1 linear 1 TJP1 low expression
AZD8055 1 quadratic 1 NCKAP1 low expression
AZD8055 1 cubic 1 NCKAP1 low expression
CX-5461 3 linear 2 TJP1 low expression

∨ CLASP2 high expression
CX-5461 3 quadratic 2 TJP1 low expression

∨ TCF4 high expression
CX-5461 3 cubic 2 TJP1 low expression

∨ TCF4 high expression
Dactolisib 3 linear 2 MGA Unknown mutation

∨ TJP1 low expression
Dactolisib 3 quadratic 2 MGA Unknown mutation

∨ TJP1 low expression
Dactolisib 3 cubic 2 MGA Unknown mutation

∨ TJP1 low expression
Niraparib 1 linear 2 TJP1 low expression

∨ CASP8 low expression
Niraparib 1 quadratic 2 TJP1 low expression

∨ KLF6 low expression
Niraparib 1 cubic 2 TJP1 low expression

∨ KLF6 low expression
NSC319726 1 linear 2 TJP1 low expression

∨ TCF12 high expression
NSC319726 1 quadratic 2 TJP1 low expression

∨ TCF12 high expression
NSC319726 1 cubic 2 TJP1 low expression

∨ TCF12 high expression
Omipalisib 1 linear 2 PIK3CA Gain of function

∨ TJP1 low expression
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Omipalisib 1 quadratic 2 AHCTF1 high expression
∨ TJP1 low expression

Omipalisib 1 cubic 1 TJP1 low expression
Rapamycin 3 linear 2 PTPRF low expression

∨ MAP4K1 high expression
Rapamycin 3 quadratic 2 MAP4K1 high expression

∧¬ PTPRU Unknown mutation
Rapamycin 3 cubic 1 MAP4K1 high expression
Talazoparib 3 linear 2 TCF12 high expression

∨ TJP1 low expression
Talazoparib 3 quadratic 2 TCF12 high expression

∨ TJP1 low expression
Talazoparib 3 cubic 2 TCF12 high expression

∨ TJP1 low expression
Temsirolimus 3 linear 1 TJP1 low expression
Temsirolimus 3 quadratic 1 TJP1 low expression
Temsirolimus 3 cubic 2 MAP4K1 high expression

∨ MMP2 high expression
Voxtalisib 1 linear 1 TJP1 low expression
Voxtalisib 1 quadratic 2 SCAI high expression

∨ NCKAP1 low expression
Voxtalisib 1 cubic 2 NCKAP1 low expression

∧¬ MLH1 high expression
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C SAURON-RF additional information
Model Parameter Value(s)
Feature selection K {20, 40, 60, 80, 100}

binning equal width
bins 6

Boosting Trees n.trees 100
interaction.depth 4
shrinkage 0.1
bag.fraction 0.5
distribution “gaussian”
cv.folds 5

Random Forests n_estimators 500
min_samples_leaf 15
max_features #Features

3
or
√

(#Features)
(regression) (classification)

Elastic Net alpha [0, 1]
lambda 10v, v ∈ [−2, 2]
standardize TRUE
CV folds 5

Neural Network Loss function MSE
Optimizer Adam
Learning rate 0.001
# Hidden layers 1, 2, 3
# Nodes per hidden layer same as input layer
Activation function tanh (none in output layer)
Weight initialization Glorot uniform
Bias initialization 0.01
Weight regularization L2
Bias regularization none
Dropout 10%
Batch size 128
Epochs max. 4000 (early stopping)
Patience 15 epochs
Data fraction for validation 20%

Table C.30: Summary of all model parameters used to fit the feature selection algorithm,
boosting trees, random forests (including SAURON-RF), elastic nets and neural networks
for the generation of the results.
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Figure C.32: Random forest test set performance for 40 input features. In this figure,
we compare regression random forests, classification random forests, and HARF with our
suggested approach SAURON-RF. We show the average test set performance across the
86 different drugs for 40 input features.
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Figure C.33: Random forest test set performance for 60 input features. In this figure,
we compare regression random forests, classification random forests, and HARF with our
suggested approach SAURON-RF. We show the average test set performance across the
86 different drugs for 60 input features.
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Figure C.34: Random forest test set performance for 80 input features. In this figure,
we compare regression random forests, classification random forests, and HARF with our
suggested approach SAURON-RF. We show the average test set performance across the
86 different drugs for 80 input features.
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Figure C.35: Random forest test set performance for 100 input features. In this figure,
we compare regression random forests, classification random forests, and HARF with our
suggested approach SAURON-RF. We show the average test set performance across the
86 different drugs for 100 input features.
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Figure C.36: Test set performance for additional versions of SAURON-RF, including the
hierarchical approach. We show the average test set performance across the 86 different
drugs for 20 input features.
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Drug: ABT737
Target(s): BCL2, BCL-XL, BCL-W, BCL-B, BFL1
Target pathway: Apoptosis regulation

Feature Feature function (GeneCards
[299])

Validated?

TNFRSF12A involved in extrinsic apopoto-
sis and wound healing regula-
tion

X [288]

BCL2 located in the outer mito-
chondrial membrane and in-
volved in apoptosis

X drug target

MIR22HG involved in wound response (X) involved in downregulation of
BCL2 ([227, 226])

BLVRB catalyzes final step of heme
metabolism

(X) low expression associated with
obatoclax sensitivity (also BCL2
inhibitor) ([89])

IDH2 catalyzes the oxidative decar-
boxylation of isocitrate to 2-
oxoglutarat

X mutations associated with in-
creased sensitivity ([228, 229])

Table C.31: This table lists the five features with highest importance in the prediction
model for ABT737 using our best-performing SAURON-RF version with K=60. Addition-
ally, the drug target(s) and target pathway (both derived from the GDSC) are shown.
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Drug: Nutlin-3a(-)
Target(s): MDM2
Target pathway: p53 pathway

Feature Feature function (GeneCards
[299])

Validated?

MDM2 nuclear-localized E3 ubiqui-
tin ligase, which can promote
tumour formation

X drug target

RPS27L might be a component of the
40S ribosomal subunit

X [231]

DDB2 part of protein complex that
is involved in nucleotide ex-
cision repair and cellular re-
sponse to DNA damage in
general

(X) maybe yes, has to do with
MDM2 and nucleotide excision re-
pair [289], Nutlin-3a(-) treatment
increases DDB2 expression sub-
stantially ([232])

CYFIP2 participates in T-cell adhe-
sion and p53-dependent in-
duction of apoptosis

(X) Nutlin-3a(-) treatment in-
creases CYFIP2 expression sub-
stantially ([233])

SDC4 is a transmembrane proteo-
glycan involved in intracellu-
lar signaling

×

Table C.32: This table lists the five features with highest importance in the predic-
tion model for Nutlin-3a(-) using our best-performing SAURON-RF version with K=80.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.
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Drug: Irinotecan
Target(s): TOP1
Target pathway: DNA replication

Feature Feature function (GeneCards
[299])

Validated?

SLFN11 involved in tRNA binding,
defense response to virus,
negative regulation of G1/S
transition and replication
fork arrest

X [291]

SDC4 is a transmembrane proteo-
glycan involved in intracellu-
lar signaling

(X) high plasma levels of SDC1
related to Irinotecan resistance
([292])

NCKAP1L transmembrane protein, part
of the WAVE complex that
regulates cell shape, ex-
pressed in haematopoietic
cells only

×

DAG1 part of complex that links
extracellular matrix to cy-
toskeleton in skeletal muscle

(X) combination treatment with
PHY906 reduces DAG1 expres-
sion compared to other treatments
([290])

CELSR1 it is postulated that the cor-
responding protein acts as re-
ceptor involved in contact-
mediated communication

×

Table C.33: This table lists the five features with highest importance in the predic-
tion model for Irinotecan using our best-performing SAURON-RF version with K=100.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.
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Drug: Venetoclax
Target(s): BCL2
Target pathway: Apoptosis regulation

Feature Feature function (GeneCards
[299])

Validated?

TNFRSF12A involved in extrinsic apopoto-
sis and wound healing regula-
tion

×

CTTN involved in actin cytoskeleton
and cell shape regulation

×

P4HA2 involved in collagen synthesis
and amino acid metabolism

×

CYSTM1 related to the innate immune
system

×

PIP4K2C kinase ×

Table C.34: This table lists the five features with highest importance in the prediction
model for Venetoclax using our best-performing SAURON-RF version with K=80. Addi-
tionally, the drug target(s) and target pathway (both derived from the GDSC) are shown.

Drug: Temozolomide
Target(s): DNA alkylating agent
Target pathway: DNA replication

Feature Feature function (GeneCards
[299])

Validated?

IKZF1 transcription factor X [300]
CYR61 besides others involved in cell

proliferation, chemotaxis and
angiogenesis

X [301]

SDC4 involved in intracellular sig-
naling

×

CTDSPL has phosphatase activity X host gene of miR-26a, whose
overexpression correlates with
poor treatment prognosis ([302])

ASPHD2 has metal ion binding activity ×

Table C.35: This table lists the five features with highest importance in the prediction
model for Temozolomide using our best-performing SAURON-RF version with K=100.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.
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Drug: I-BRD9
Target(s): BRD9
Target pathway: Chromatin other

Feature Feature function (GeneCards
[299])

Validated?

YAP1 transcription factor, tumor
suppressor

×

PPIC protein folding ×
DCBLD2 negative regulation of cell

growth
×

DDR1 transferase activity ×
LURAP1L involved in positive regula-

tion of I-kappaB kinase/NF-
kappaB signaling

×

Table C.36: This table lists the five features with highest importance in the prediction
model for I-BRD9 using our best-performing SAURON-RF version with K=100. Addi-
tionally, the drug target(s) and target pathway (both derived from the GDSC) are shown.

Drug: Cytarabine
Target(s): Antimetabolite
Target pathway: Other

Feature Feature function (GeneCards
[299])

Validated?

PPIC protein folding ×
TUFT1 structural constituent of

tooth enamel
×

LMNA part of nuclear lamina ×
ZNF22 transcription factor ×
ARHGAP19 has GTPase activator activ-

ity
×

Table C.37: This table lists the five features with highest importance in the predic-
tion model for Cytarabine using our best-performing SAURON-RF version with K=20.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.
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Drug: Trametinib
Target(s): MEK1, MEK2
Target pathway: ERK MAPK signaling

Feature Feature function (GeneCards
[299])

Validated?

DUSP6 has phosphatase activity X [293]
SPRY2 invovled in kinase binding X [294]
BCAS4 part of BLOC-1 complex and

associated with breast cancer
×

ETV4 transcription factor X [295]
SLC22A18 has transporter activity ×

Table C.38: This table lists the five features with highest importance in the predic-
tion model for Trametinib using our best-performing SAURON-RF version with K=80.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.

Drug: Dabrafenib
Target(s): BRAF
Target pathway: ERK MAPK signaling

Feature Feature function (GeneCards
[299])

Validated?

BCL2A1 involved in apoptosis X [296]
ARHGAP15 involved in RHO GTPase

regulation
×

CTHRC1 may be involved in wound
healing

X [297]

FAM89A - ×
MBP involved in formation and

stabilization of myelin mem-
brane

X [298]

Table C.39: This table lists the five features with highest importance in the predic-
tion model for Dabrafenib using our best-performing SAURON-RF version with K=100.
Additionally, the drug target(s) and target pathway (both derived from the GDSC) are
shown.
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Drug: Epirubicin
Target(s): Anthracycline
Target pathway: DNA replication

Feature Feature function (GeneCards
[299])

Validated?

SEPT6 involved in actin cytoskeleton
organization

×

TM4SF1 involved in cell growth and
motility

×

GNA11 involved in transmembrane
signaling

×

EPHX1 enzyme ×
PLEKHA6 involved in metabolism ×

Table C.40: This table lists the five features with highest importance in the prediction
model for Epirubicin using our best-performing SAURON-RF version with K=80. Addi-
tionally, the drug target(s) and target pathway (both derived from the GDSC) are shown.
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D Benchmarking additional information

Table D.41: Overview of all hyperparameters that were investigated for the training of
neural networks.

Parameter Value(s)

Loss function MSE
Optimizer Adam
Learning rate 0.001 (default)
# Hidden layers 1, 2, 3
# Nodes per layer input: k, output: 1, hidden: evenly spaced between in- and output
Activation function tanh, ELU (none in output layer)
Weight initialization Glorot uniform for tanh activation, He normal for ELU
Bias initialization 0.01
Weight regularization L2
Bias regularization none (default)
Dropout 10%, 30%
Batch size 64
Epochs max. 4000 (early stopping using 20% of samples as validation data)
Patience 15 epochs
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Table D.42: Overview of all hyperparameters that were used for the training of autoen-
coders.

Parameter Value(s)

Loss function MSE
Optimizer Adam
Learning rate 0.001 (default for Adam)
# Nodes per layer input: 17,419; hidden (encoder): 3,484 and 697; bottleneck: k;

hidden (decoder): 697 and 3,484; output: 17,419
Activation function RELU (none in last encoder layer)
Weight initialization Glorot uniform (default)
Bias initialization 0 (default)
Weight regularization none (default)
Bias regularization none (default)
Dropout none (default)
Batch size 64
Epochs max. 100 (early stopping using 20% of samples as validation data)
Patience 5 epochs
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Figure D.37: Average test MSEs for the 50 drugs with most cell lines. In this figure, the
average test set mean-squared error (MSE) is depicted. In Figure A, we show the mean-
squared error averaged across all drugs and DR techniques, yielding one best-performing
ML model for each investigated k. To generate Figure B, we averaged across all drugs and
ML methods, resulting in one best performing DR technique per k. .
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E Reliable SAURON-RF additional information
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Figure E.38: Percentage of sensitive cell lines of binarized CMax viability in
GDSC1. The upper row of this figure shows a histogram for the percentage of sensitive
cell lines across all available drugs. The lower row depicts the corresponding percentage
for each drug. Moreover, the color of the points indicates which drugs had to be excluded
for the analysis and why.
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Figure E.39: Percentage of sensitive, ambiguous, and resistant cell lines of
ternary CMax viability in GDSC1. The upper row of this figure shows a histogram
for the percentage of sensitive, ambiguous and resistant cell lines across all available drugs.
The lower row depicts the corresponding percentages for each drug. Moreover, the shape
of the points indicates which drugs had to be excluded for the analysis and why.
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Figure E.40: Percentage of sensitive, ambiguous, and resistant cell lines of
ternary CMax viability in GDSC2. The upper row of this figure shows a histogram
for the percentage of sensitive, ambiguous and resistant cell lines across all available drugs.
The lower row depicts the corresponding percentages for each drug. Moreover, the shape
of the points indicates which drugs had to be excluded for the analysis and why.
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Figure E.41: Coverage evaluation for CP models of 32 drugs from the GDSC2
database trained using IC50 values and a two-class classification setting. This
figure depicts histograms of the coverage property across CP models for 32 drugs obtained
from the GDSC2 database. The left plot in each sub-figure depicts the total coverage, i.e.
the fraction of cell lines from the test set of each drug, for which the true response was part
of the predicted set / interval. The middle and right plots show the coverage for subsets
of resistant and sensitive cell lines for each drug, respectively. The expected coverage of
0.9 for the employed error rate of α = 0.1 is shown in red, the actual mean coverage over
all investigated drugs is shown in blue. Sub-Figures (a), (b) and (c) depict histograms
for the classification setting using the True-class (TC), Mondrian (Mon) and Summation
(Sum) scoring functions, respectively. Sub-Figure (d) shows histograms for the regressions
setting, where CP was performed using the Quantile (Qu) scoring function.
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Coverage evaluation Average, error rate = 0.10, regression (Qu)
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Figure E.42: Coverage evaluation for CP models of 32 drugs from the GDSC2
database trained using CMax viability values and a two-class classification set-
ting. This figure depicts histograms of the coverage property across CP models for 32
drugs obtained from the GDSC2 database. The coverage is computed as the fraction of
cell lines from the test set of each drug, for which the true response was part of the predicted
set / interval. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.

340



Appendix E: Reliable SAURON-RF additional information

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Coverage evaluation Average (< 25% sensitive), error rate = 0.10, classification (TC)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0
0

5
10

15

(a) True-class score

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Coverage evaluation Average (< 25% sensitive), error rate = 0.10, classification (Mon)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(b) Mondrian score

341



Appendix E: Reliable SAURON-RF additional information

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Coverage evaluation Average (< 25% sensitive), error rate = 0.10, classification (Sum)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(c) Summation score

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Coverage evaluation Average (< 25% sensitive), error rate = 0.10, regression (Qu)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

(d) Quantile score

Figure E.43: Coverage evaluation for CP models of 17 drugs from the GDSC2
database trained using CMax viability values and a two-class classification set-
ting with underrepresentation of the sensitive class. This figure depicts histograms
of the coverage property across CP models for 17 drugs obtained from the GDSC2 database,
for which the number of sensitive cell lines was less than 25%. The left plot in each sub-
figure depicts the total coverage, i.e. the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The middle and
right plots show the coverage for subsets of resistant and sensitive cell lines for each drug,
respectively. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.

342



Appendix E: Reliable SAURON-RF additional information

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Coverage evaluation Average (< 25% resistant), error rate = 0.10, classification (TC)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

5
6

7

(a) True-class score

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Coverage evaluation Average (< 25% resistant), error rate = 0.10, classification (Mon)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

(b) Mondrian score

343



Appendix E: Reliable SAURON-RF additional information

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Coverage evaluation Average (< 25% resistant), error rate = 0.10, classification (Sum)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

(c) Summation score

Total coverage

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Coverage evaluation Average (< 25% resistant), error rate = 0.10, regression (Qu)

Resistant samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

Covered by conformal prediction

expected cov. mean

Sensitive samples

Coverage

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

(d) Quantile score

Figure E.44: Coverage evaluation for CP models of seven drugs from the
GDSC2 database trained using CMax viability values and a two-class classifi-
cation setting with underrepresentation of the resistant class. This figure depicts
histograms of the coverage property across CP models for seven drugs obtained from the
GDSC2 database, for which the number of resistant cell lines was less than 25%. The left
plot in each sub-figure depicts the total coverage, i.e. the fraction of cell lines from the test
set of each drug, for which the true response was part of the predicted set / interval. The
middle and right plots show the coverage for subsets of resistant and sensitive cell lines
for each drug, respectively. The expected coverage of 0.9 for the employed error rate of
α = 0.1 is shown in red, the actual mean coverage over all investigated drugs is shown in
blue. Sub-Figures (a), (b) and (c) depict histograms for the classification setting using the
True-class (TC), Mondrian (Mon) and Summation (Sum) scoring functions, respectively.
Sub-Figure (d) shows histograms for the regressions setting, where CP was performed using
the Quantile (Qu) scoring function.
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Figure E.45: Classification test set performance for 32 drugs from the GDSC2
database trained using CMax viability values and a two-class classification set-
ting. The upper row of this figure depicts the classification performance of SAURON-RF
across the different drugs. The middle row shows the effects of CP on the performance in
terms of true positive/negative predictions. In the lower row, the CP efficiency is presented.
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Figure E.46: Regression test set performance for 32 drugs from the GDSC2
database trained using CMax viability values and a two-class classification set-
ting. The upper row of this figure depicts the Pearson correlation coefficient between
the actual continuous response values and the predicted continuous response values for all
drugs. The lower row shows the mean-squared error (MSE) and the interval width of the
CP Quantile regression score relative to the spanned training ranges of the drugs.
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Coverage evaluation Average, error rate = 0.10, classification (Sum)
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Coverage evaluation Average, error rate = 0.10, regression (Qu)

Coverage

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

Covered by conformal prediction

expected cov. mean

(d) Quantile score

Figure E.47: Coverage evaluation for CP models of 28 drugs from the GDSC2
database trained using CMax viability values and a three-class classification
setting. This figure depicts histograms of the coverage property across CP models for 28
drugs obtained from the GDSC2 database. The coverage is computed as the fraction of cell
lines from the test set of each drug, for which the true response was part of the predicted
set / interval. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.48: Classification test set performance for 28 drugs from the GDSC2
database trained using CMax viability values and a three-class classification
setting. The upper row of this figure depicts the classification performance of SAURON-
RF across the different drugs. The middle row shows the effects of CP on the performance
in terms of confusions between classes. In the lower row, the CP efficiency is presented.
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Figure E.49: Regression test set performance for 28 drugs from the GDSC2
database trained using CMax viability values and a three-class classification
setting. The upper row of this figure depicts the Pearson correlation coefficient between
the actual continuous response values and the predicted continuous response values for all
drugs. The lower row shows the mean-squared error (MSE) and the interval width of the
CP Quantile regression score relative to the spanned training ranges of the drugs.
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Figure E.50: Prioritization example GDSC2.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 724863)
from the test set of the GDSC2 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.51: Prioritization example GDSC2.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 906861)
from the test set of the GDSC2 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.52: Prioritization example GDSC2.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 908444)
from the test set of the GDSC2 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.53: Prioritization example GDSC2.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 1298216)
from the test set of the GDSC2 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.54: Coverage evaluation for CP models of 41 drugs from the GDSC1
database trained using IC50 values and a two-class classification setting. This
figure depicts histograms of the coverage property across CP models for 41 drugs obtained
from the GDSC1 database. The left plot in each sub-figure depicts the total coverage, i.e.
the fraction of cell lines from the test set of each drug, for which the true response was part
of the predicted set / interval. The middle and right plots show the coverage for subsets
of resistant and sensitive cell lines for each drug, respectively. The expected coverage of
0.9 for the employed error rate of α = 0.1 is shown in red, the actual mean coverage over
all investigated drugs is shown in blue. Sub-Figures (a), (b) and (c) depict histograms
for the classification setting using the True-class (TC), Mondrian (Mon) and Summation
(Sum) scoring functions, respectively. Sub-Figure (d) shows histograms for the regressions
setting, where CP was performed using the Quantile (Qu) scoring function.
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Figure E.55: Classification test set performance for 41 drugs from the GDSC1
database trained using IC50 values and a two-class classification setting. The
upper row of this figure depicts the classification performance of SAURON-RF across the
different drugs. The middle row shows the effects of CP on the performance in terms of
true positive/negative predictions. In the lower row, the CP efficiency is presented.
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Figure E.56: Regression test set performance for 41 drugs from the GDSC1
database trained using IC50 values and a two-class classification setting. The
upper row of this figure depicts the Pearson correlation coefficient between the actual
continuous response values and the predicted continuous response values for all drugs.
The lower row shows the mean-squared error (MSE) and the interval width of the CP
Quantile regression score relative to the spanned training ranges of the drugs.
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Coverage evaluation Average, error rate = 0.10, classification (Sum)
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Coverage evaluation Average, error rate = 0.10, regression (Qu)
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Figure E.57: Coverage evaluation for CP models of 41 drugs from the GDSC1
database trained using CMax viability values and a two-class classification set-
ting. This figure depicts histograms of the coverage property across CP models for 41
drugs obtained from the GDSC1 database. The coverage is computed as the fraction of
cell lines from the test set of each drug, for which the true response was part of the predicted
set / interval. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.58: Coverage evaluation for CP models of 22 drugs from the GDSC1
database trained using CMax viability values and a two-class classification set-
ting with underrepresentation of the sensitive class. This figure depicts histograms
of the coverage property across CP models for 22 drugs obtained from the GDSC1 database,
for which the number of sensitive cell lines was less than 25%. The left plot in each sub-
figure depicts the total coverage, i.e. the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The middle and
right plots show the coverage for subsets of resistant and sensitive cell lines for each drug,
respectively. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.59: Coverage evaluation for CP models of 14 drugs from the GDSC1
database trained using CMax viability values and a two-class classification set-
ting with underrepresentation of the resistant class. This figure depicts histograms
of the coverage property across CP models for 14 drugs obtained from the GDSC1 database,
for which the number of resistant cell lines was less than 25%. The left plot in each sub-
figure depicts the total coverage, i.e. the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The middle and
right plots show the coverage for subsets of resistant and sensitive cell lines for each drug,
respectively. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.60: Classification test set performance for 41 drugs from the GDSC1
database trained using CMax viability values and a two-class classification set-
ting. The upper row of this figure depicts the classification performance of SAURON-RF
across the different drugs. The middle row shows the effects of CP on the performance in
terms of true positive/negative predictions. In the lower row, the CP efficiency is presented.
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Figure E.61: Regression test set performance for 41 drugs from the GDSC1
database trained using CMax viability values and a two-class classification set-
ting. The upper row of this figure depicts the Pearson correlation coefficient between
the actual continuous response values and the predicted continuous response values for all
drugs. The lower row shows the mean-squared error (MSE) and the interval width of the
CP Quantile regression score relative to the spanned training ranges of the drugs.
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Coverage evaluation Average, error rate = 0.10, classification (TC)
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Coverage evaluation Average, error rate = 0.10, classification (Sum)
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Coverage evaluation Average, error rate = 0.10, regression (Qu)
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Figure E.62: Coverage evaluation for CP models of 37 drugs from the GDSC1
database trained using CMax viability values and a three-class classification
setting. This figure depicts histograms of the coverage property across CP models for 37
drugs obtained from the GDSC1 database. The coverage is computed as the fraction of cell
lines from the test set of each drug, for which the true response was part of the predicted
set / interval. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.63: Classification test set performance for 37 drugs from the GDSC1
database trained using CMax viability values and a three-class classification
setting. The upper row of this figure depicts the classification performance of SAURON-
RF across the different drugs from GDSC1. The middle row shows the effects of CP on the
performance in terms of confusions between classes. In the lower row, the CP efficiency is
presented.
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Figure E.64: Regression test set performance for 37 drugs from the GDSC1
database trained using CMax viability values and a three-class classification
setting. The upper row of this figure depicts the Pearson correlation coefficient between
the actual continuous response values and the predicted continuous response values for all
drugs. The lower row shows the mean-squared error (MSE) and the interval width of the
CP Quantile regression score relative to the spanned training ranges of the drugs.
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Coverage evaluation Average, error rate = 0.10, classification (TC)
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Coverage evaluation Average, error rate = 0.10, classification (Sum)
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Coverage evaluation Average, error rate = 0.10, regression (Qu)
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Figure E.65: Coverage evaluation for CP models of 25 drugs from the GDSC1
database trained using CMax viability values and a two-class prioritization
setting. This figure depicts histograms of the coverage property across CP models for 25
drugs obtained from the GDSC1 database, which were used to conduct the drug prioritiza-
tion analyses. The coverage is computed as the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The expected
coverage of 0.9 for the employed error rate of α = 0.1 is shown in red, the actual mean
coverage over all investigated drugs is shown in blue. Sub-Figures (a), (b) and (c) depict
histograms for the classification setting using the True-class (TC), Mondrian (Mon) and
Summation (Sum) scoring functions, respectively. Sub-Figure (d) shows histograms for the
regressions setting, where CP was performed using the Quantile (Qu) scoring function.
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Figure E.66: Coverage evaluation for CP models of twelve drugs from the
GDSC1 database trained using CMax viability values and a two-class prioriti-
zation setting with underrepresentation of the sensitive class. This figure depicts
histograms of the coverage property across CP models for twelve drugs obtained from the
GDSC1 database, for which the number of sensitive cell lines was less than 25%. These
drugs were used to conduct the drug prioritization analyses. The left plot in each sub-
figure depicts the total coverage, i.e. the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The middle and
right plots show the coverage for subsets of resistant and sensitive cell lines for each drug,
respectively. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.67: Coverage evaluation for CP models of eight drugs from the
GDSC1 database trained using CMax viability values and a two-class prior-
itization setting with underrepresentation of the resistant class. This figure
depicts histograms of the coverage property across CP models for eight drugs obtained
from the GDSC1 database, for which the number of resistant cell lines was less than 25%.
These drugs were used to conduct the drug prioritization analyses. The left plot in each
sub-figure depicts the total coverage, i.e. the fraction of cell lines from the test set of each
drug, for which the true response was part of the predicted set / interval. The middle and
right plots show the coverage for subsets of resistant and sensitive cell lines for each drug,
respectively. The expected coverage of 0.9 for the employed error rate of α = 0.1 is shown
in red, the actual mean coverage over all investigated drugs is shown in blue. Sub-Figures
(a), (b) and (c) depict histograms for the classification setting using the True-class (TC),
Mondrian (Mon) and Summation (Sum) scoring functions, respectively. Sub-Figure (d)
shows histograms for the regressions setting, where CP was performed using the Quantile
(Qu) scoring function.
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Figure E.68: Classification test set performance for 25 drugs from the GDSC1
database trained using CMax viability values and a two-class prioritization set-
ting. The upper row of this figure depicts the classification performance of SAURON-RF
across for all GDSC1 drugs, which were used to conduct the drug prioritization analy-
ses. The middle row shows the effects of CP on the performance in terms of true posi-
tive/negative predictions. In the lower row, the CP efficiency is presented.
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Figure E.69: Regression test set performance for 25 drugs from the GDSC1
database trained using CMax viability values and a two-class prioritization
setting. The upper row of this figure depicts the Pearson correlation coefficient between
the actual continuous response values and the predicted continuous response values for all
GDSC1 drugs, which were used to conduct the drug prioritization analyses. The lower row
shows the mean-squared error (MSE) and the interval width of the CP Quantile regression
score relative to the spanned training ranges of the drugs.
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Figure E.70: Prioritization results across all test cell lines of GDSC1. n A, we
show the classification performance of SAURON-RF with and without CP. B depicts the
regression performance in terms of MSE, PCC and SCC. Here, the MSE is given for the
effective drugs, the ineffective drugs, and all drugs. We provide the SCC for the predicted
values using SAURON-RF only (SCC) and the upper limit of the CP interval (SCC upper
lim.). In C, the upper row depicts the precision of SAURON-RF without (SAURON-RF)
and with CP (TC + upper limit, Mon + upper limit, Sum + upper limit). In the middle
row, we show the percentage of cell lines for which the most efficient drug was detected,
the median rank of the first drug in our effective drug list and the percentage of cell lines
for which this prediction was a TP. The CMax viability difference between our first drug
and the actual first drug is shown in the lower row.
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Figure E.71: Prioritization example GDSC1.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 753532)
from the test set of the GDSC1 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.72: Prioritization example GDSC1.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 905941)
from the test set of the GDSC1 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Figure E.73: Prioritization example GDSC1.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 905942)
from the test set of the GDSC1 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Appendix E: Reliable SAURON-RF additional information
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Figure E.74: Prioritization example GDSC1.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 906875)
from the test set of the GDSC1 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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Appendix E: Reliable SAURON-RF additional information
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Figure E.75: Prioritization example GDSC1.This figure exemplifies the performance
of our prioritization pipeline when applied to one particular cell line (COSMIC ID 917486)
from the test set of the GDSC1 data set. The upper plot visualizes the classification
performance with and without CP for all analyzed drugs. The middle plot depicts the
regression result for all drugs, including the 90% CP interval, and the lower plot shows the
resulting prioritized drug lists with the drugs ascendingly sorted by their upper CP limit
prediction.
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