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Abstract: State space models (SSM) with selection mechanisms and hardware-aware architectures,
namely Mamba, have recently shown significant potential in long-sequence modeling. Since the com-
plexity of transformers’ self-attention mechanism is quadratic with image size, as well as increasing
computational demands, researchers are currently exploring how to adapt Mamba for computer
vision tasks. This paper is the first comprehensive survey that aims to provide an in-depth analysis
of Mamba models within the domain of computer vision. It begins by exploring the foundational
concepts contributing to Mamba’s success, including the SSM framework, selection mechanisms, and
hardware-aware design. Then, we review these vision Mamba models by categorizing them into
foundational models and those enhanced with techniques including convolution, recurrence, and
attention to improve their sophistication. Furthermore, we investigate the widespread applications of
Mamba in vision tasks, which include their use as a backbone in various levels of vision processing.
This encompasses general visual tasks, medical visual tasks (e.g., 2D/3D segmentation, classification,
image registration, etc.), and remote sensing visual tasks. In particular, we introduce general visual
tasks from two levels: high/mid-level vision (e.g., object detection, segmentation, video classification,
etc.) and low-level vision (e.g., image super-resolution, image restoration, visual generation, etc.). We
hope this endeavor will spark additional interest within the community to address current challenges
and further apply Mamba models in computer vision.

Keywords: Mamba; computer vision; state space model; application

1. Introduction

Deep neural networks have exhibited remarkable performance across various artificial
intelligence tasks, with the fundamental architecture playing a crucial role in determining
the model’s capabilities. Typically, traditional neural networks comprise multi-layer per-
ceptron (MLP) or fully connected layers [1,2]. Convolutional neural networks (CNNs) [3,4]
introduce convolutional and pooling layers, which are particularly effective for process-
ing shift-invariant data like images. Recurrent neural networks (RNNs) [5,6] utilize re-
current cells to handle sequential or time series data. To address the existing issue of
CNNs, RNNs, and Graph Neural Networks models only capturing local relationships,
the transformer [7–9], introduced in 2017, excels at learning long-distance feature rep-
resentations. Transformers primarily depend on attention-based attention mechanisms,
e.g., self-attention and cross-attention, to extract intrinsic features and enhance their repre-
sentation capability. Pre-trained massive transformer-based models, such as GPT-3 [10],
deliver robust performance across various natural language processing datasets, excelling
in tasks involving the generation and comprehension of natural language. The remarkable
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performance of transformer-based models has led to their extensive adoption in vision
applications. The key to transformer models is their exceptional skill in capturing long-
range dependencies, as well as maximizing the use of large datasets. The feature extraction
module is the primary component of vision transformer architectures. In addition, it also
processes data using a sequence of self-attention blocks, which can obviously enhance its
capacity to analyze images.

Nevertheless, a primary obstacle for transformers is the substantial computational
demands of the self-attention mechanism, which can increase quadratically with image
resolution. The Softmax operation within the attention blocks can further intensify these
computational demands, presenting significant challenges for implementing the above-
mentioned models on edge and low-resource devices. Apart from that, real-time computer
vision systems utilizing transformer-based models must adhere to stringent low-latency
standards in order to maintain a high-quality user experience. This scenario emphasizes the
continuous evolution of new architectures to enhance performance, although this usually
comes with the trade-off of higher computational demands. Numerous new models on
the basis of sparse attention mechanisms or innovative neural network paradigms have
been put forward to further lower computational costs, while obtaining long-range de-
pendencies and maintaining high performance. SSMs have become a central focus among
these developments. As displayed in Figure 1a, the number of publications related to SSM
demonstrates an explosive growth trend. Initially devised to simulate dynamic systems in
areas including control theory and computational neuroscience using state variables, SSM
predominantly describes linear invariant (or stable) systems adapted for deep learning.
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Figure 1. The number of SSM and Mamba papers published (from year 2021 to year March 2024).
(a) SSM-based papers, (b) Mamba-based papers on vision.

As SSMs have evolved, a new class of selective SSMs has emerged, termed Mamba [11].
These have advanced the modeling of discrete data, such as text, with SSMs through two
key improvements. Firstly, they feature an input-dependent mechanism for adjusting SSM
parameters dynamically, enhancing information filtering. Secondly, Mamba employs a
hardware-aware approach that processes data linearly with sequence length, boosting
computational speed on modern systems. Inspired by Mamba’s achievements in language
modeling, several initiatives are currently aiming to adapt this success to the field of vision.
Several studies have explored its integration with mixture-of-experts (MoE) techniques, as
demonstrated by works like Jamba [12], MoE-Mamba [13], and BlackMamba [14], outper-
forming the state-of-the-art architecture transformer-MoE with fewer training steps. As
depicted in Figure 1b, since the release of Mamba in December 2023, the number of research
papers focusing on Mamba in the vision domain has rapidly increased, reaching a peak in
March 2024. This trend suggests that Mamba is emerging as a prominent research area in
vision, potentially providing a viable alternative to transformers. Therefore, a review of the
current related works is necessary and timely, to provide a detailed overview of this new
methodology in this evolving field.
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Consequently, we present a comprehensive overview of how Mamba models are used
in the vision domain. This paper aims to serve as a guide for researchers looking to delve
deeper into this area. The critical contributions of our work include:

• This survey is the first attempt to offer an in-depth analysis of the Mamba technique
in the vision domain, explicitly concentrating on analyzing the proposed strategies.

• An investigation on how Mamba’s capabilities can be enhanced and combined with
other architectures in order to achieve superior performance, by expanding upon the
Naive-based Mamba visual framework.

• We offer an exploration that organizes the literature based on various application tasks.
In addition, we establish a taxonomy, identify advancements specific to each task, as
well as offer insights on overcoming challenges.

• To keep up with the rapid development in this field, we will regularly update this
review with the latest relevant papers and develop an open-source implementa-
tion at https://github.com/ziyangwang007/Awesome-Visual-Mamba (accessed on
25 June 2024).

Here is the structure for the remaining portions of the survey. Section 2 examines the
general and mathematical concepts underlying Mamba strategies. Section 3 discusses the
naive Mamba visual models and how they integrate with other technologies to enhance per-
formance, as recently proposed. Section 4 explores the application of Mamba technologies
in addressing a variety of computer vision tasks. Finally, Section 5 concludes the survey.

2. Formulation of Mamba

Mamba [11] was initially introduced in the domain of natural language processing.
As depicted in Figure 2, the original Mamba Block integrated a Gated MLP into the SSM
architecture of H3 [15], utilizing an SSM sandwiched between two gated connections
alongside a standard local convolution. For the activation function σ, SiLU [16] or Swish
activation function [17] is used. The Mamba architecture consists of Mamba blocks that
are repeated and interspersed with residual connections and standard normalization. An
optional normalization layer (LayerNorm [18] chosen by the original Mamba) is applied in
a similar location to RetNet [19].

H3 GatedMLP Mamba

σ σ σ

Linear

Linear Linear Linear

Linear

Linear Linear Linear Linear

Linear

SSM SSM

Conv Conv

Figure 2. Graphical representation of Mamba Block [11].

2.1. State Space Model

Consider a structured SSM mapping a one-dimensional sequence x(t) ∈ RL to
y(t) ∈ RL through a hidden state h(t) ∈ RN . With the evolution parameter A ∈ RN×N and

https://github.com/ziyangwang007/Awesome-Visual-Mamba
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the projection parameters B ∈ RN×1, C ∈ R1×N , such a model is formulated using linear
ordinary differential equations

h′(t) = Ah(t) + Bx(t),

y(t) = Ch(t).
(1)

2.1.1. Discretization

To adapt to deep learning, SSMs as continuous-time models are discretized with
a zero-order hold (ZOH) assumption. Therefore, the continuous-time parameters A, B
are transformed into their discretized counterparts A, B with a timescale parameter ∆
according to

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) · ∆B.
(2)

Thus, Equation (1) can be rewritten as

ht = Aht−1 + Bxt,

yt = Cht.
(3)

To facilitate understanding of this discretization, we have illustrated it visually in
Figure 3. To enhance computational efficiency and scalability, the iterative process in
Equation (3) can be synthesized through a global convolution

K = (CB, CAB, · · · , AL−1B),

y = x ∗ K,
(4)

where L is the length of the input sequence x, K ∈ RL serves as the kernel of the SSM, and
∗ represents the convolution operation.

Figure 3. Graphical representation of a discretized SSM.

2.1.2. Architectures

SSMs usually serve as independent sequence transformations that can be integrated
into neural network architectures that are end-to-end. Here, we introduce several funda-
mental architectures. Linear attention [20] approximates self-attention with a recurrence
mechanism as a simplified form of linear SSM. H3 [15], as illustrated in Figure 2, places
an SSM between two gated connections and inserts a standard local convolution before it.
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Following H3, Hyena [21] substitutes an MLP-parameterized global convolution [22] for
the SSM layer. RetNet [19] introduces an extra gate and employs simpler SSM. RetNet uses
a variant of multi-head attention (MHA) in place of convolutions, providing an alternate
parallelizable computing approach. Inspired by the attention-free transformer [23], the
recent RNN design RWKV [24] can be interpreted as the ratio of two SSMs, owing to its
primary “WKV” mechanism involving linear time invariance (LTI) recurrences.

2.1.3. Selective SSM

Traditional SSMs demonstrated linear time complexity but their representativity of
sequence context is inherently limited by time-invariant parameterization. To overcome
the existing constraints, selective SSMs introduce selective scan for interactions among
sequential states, as shown below:

B = SB(x),

C = SC(x),

∆ = τ∆(∆ + S∆(x)).

(5)

This occurs before Equations (2) and (3), so that the parameters B ∈ RB×L×N , CB×L×N

and ∆B×L×D are dependent on the input sequence x ∈ RB×L×D, where B represents the
batch size, and D represents number of channels. Normally, SB and SC are linear parame-
terized projections to dimension N, i.e. LinearN(·), while S∆(x) = BroadcastD(Linear1(x))
and τ∆ = so f tplus. The choice of S∆ and τ∆ is results from the relationship with RNNs
gating mechanisms, which will be explained later.

2.2. Other Key Concepts in Mamba
2.2.1. Selection Mechanism

There is a well-established link between discretizing continuous-time systems and
RNN gating [25]. One example of the selection mechanism for SSMs is the traditional gating
mechanism of RNNs. When N = 1, A = −1, B = 1, S∆ = Linear(x) and τ∆ = so f tplus,
then the selective SSM recurrence takes the following form:

gt = σ(Linear(x(t)))

ht = (1 − gt)ht−1 + gtxt.
(6)

2.2.2. Scan

The selection mechanism was devised to address the constraints of linear time in-
variance (LTI) models. However, it reintroduces the computation issue associated with
SSMs. To enhance GPU utilization and efficiently materialize the state h within the memory
hierarchy, hardware-aware state expansion is enabled by selective scan. By incorporating
kernel fusion and recomputation with parallel scan, the fused selective scan layer can effec-
tively decrease the quantity of memory I/O operations, leading to a significant acceleration
compared to conventional implementations.

2.2.3. Discussion

Compared to RNNs and LSTMs, which struggle with vanishing gradients and long-
range dependencies, Mamba provides efficient computation and memory utilization. While
transformers excel in batch processing and handling long-range dependencies through
attention mechanisms, they incur high computational costs, especially during inference.
Mamba introduces a selective SSM, incorporating input-dependent matrices to enhance
adaptability, while maintaining the computational advantages of traditional SSMs. Mamba
bridges the gap between traditional SSMs and modern neural network architectures by
providing a selective dependency mechanism, optimal GPU memory utilization, and
linear scalability with context length, therefore offering a promising solution for various
sequential data processing tasks.
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3. Mamba for Vision

The original Mamba block was designed for one-dimensional sequences, yet vision-
related tasks require processing multi-dimensional inputs like images, videos, and 3D
representations. Consequently, to adapt Mamba for these tasks, enhancements to the
scanning mechanism and architecture of the Mamba block play a vital role in effectively
handling multi-dimensional inputs.

The current section presents efforts to enable Mamba to tackle vision-related tasks,
while enhancing its efficiency and performance. Initially, we delve into two foundational
works, including Vision Mamba [26] and VMamba [27]. These works introduced the Vision
Mamba (ViM) block and visual state space (VSS) block, respectively, serving as a foundation
for subsequent research endeavors. Subsequently, we explore additional works focused
on refining the Mamba architecture as a backbone for vision-related tasks. Lastly, we
discuss integrating Mamba with other architectures, including convolution, recurrence,
and attention.

3.1. Visual Mamba Block

Drawing inspiration from the visual transformer architecture, it seems natural to
preserve the framework of the transformer model, while substituting the attention block
with a Mamba block and keeping the rest of the process intact. At the crux of the matter lies
adapting the Mamba block to vision-related tasks. Nearly simultaneously, Vision Mamba
and VMamba presented their respective solutions: the ViM block and the VSS block.

3.1.1. ViM

ViM block [26], also known as a bidirectional Mamba block, annotates image se-
quences with position embeddings and condenses visual representations based on a bidi-
rectional SSM. It processes inputs both forward and backward, employing one-dimensional
convolution for each direction, as displayed in Figure 4a. The Softplus function en-
sures non-negative ∆. Forward and backward y are computed via the SSM described
in Equations (2) and (3), and then combined through SiLU gating to produce the output
token sequence as Figure 5a.

(a) BiDirectional (b) Cross-Scan (c) Continuous 2D (d) Local Scan
Scan Scanning

1 3

11 13

6 8

14 16

2 4

10 12

5 7

13 15

(e) Efficient 2D Scanning (ES2D) (f) Zigzag Scan

Figure 4. Cont.
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(g) Omnidirectional Selective Scan (h) 3D BiDirectional Scan

…

…

(i) Hierarchical Scan (j) Spatiotemporal Selective Scan

(k) Multi-Path Scan

Figure 4. Comparison between different 2D scans and the selective scan orders in Vim (a) [26],
VMamba (b) [27], PlainMamba (c) [28], LocalMamba (d) [29], Efficient VMamba (e) [30],
Zigzag (f) [31], VmambaIR (g) [32], VideoMamba (h) [33], Motion Mamba (i) [34], Vivim (j) [35]
and RSMamba (k) [36].

Linear

Linear Linear

Layer Norm

Forward 
Conv

Backward 
Conv

Backward 
SSM

Forward 
SSM

SiLU

Linear

Linear Linear

Layer Norm

SS2D

SiLU SiLU

DW Conv

Layer Norm

Linear 
projection

SSM

Convolution

DW Conv

Forward SSM

Backward SSM

SiLU

Layer Norm

SS2D

Forward Conv

Backward Conv

(a) (b)
Figure 5. Graphical representation of the architecture and element functions of the ViM Block and
VSS Block. (a) ViM block (b) VSS block.

3.1.2. VSS

The VSS block [27] incorporates the pivotal SSM operation. It begins by directing
the input through a depth-wise convolution layer, followed by a SiLU activation function,
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and then through the SSM outlined in Equations (2) and (3) employing an approximate
B. Afterward, the output of the SSM is subjected to layer normalization before being
amalgamated with the output of other information streams, as in Figure 5b. To tackle the
direction-sensitive problem, they presented a cross-scan module (CSM), which can traverse
the spatial domain and transform any non-causal visual image into order patch sequences,
as shown in (b) Figure 4. They refined the approximation of B using the first-order Taylor
series B = (∆A)−1(exp(∆A)− I) · ∆B ≈ (∆A)(∆A)−1∆B = ∆B.

3.2. Pure Mamba

It is clear from Figure 5 what the primary distinction is between ViM and VSS blocks:
the ViM block employs separate one-dimensional convolutions for scanning different
directions. Conversely, in VSS blocks, different scanning schemes share the same depth-
wise convolution layer. Thus, for pure Mamba architectures, we consider designs that use
individual one-dimensional convolutions for each scanning direction as an extension of
ViM-based approaches, while those sharing a depth-wise convolution layer among different
scanning schemes are seen as extensions of VSS-based approaches. In addition to these
two approaches, researchers also consider visual data as multi-dimensional data, where
the pure Mamba architecture typically relies on the original Mamba block. Therefore, in
this subsection, we will introduce the pure Mamba architecture derived from these three
branches, followed by a summary of 2D scanning mechanisms utilized in visual Mamba.

3.2.1. ViM-Based

Inspired by the vision transformer architecture, Vision Mamba [26] replaces the trans-
former encoder with a vision Mamba encoder based on ViM blocks, while retaining the
remainder of the process. This involves converting the two-dimensional image into flat-
tened patches, followed by linear projection of these patches into vectors and the addition
of position embeddings. A class token represents the entire patch sequence, and subsequent
steps involve normalization layers and an MLP layer to derive the final predictions.

LocalMamba [29] is built based on a Vim block, and it introduces a revolutionary
approach to scanning that combines global context with localized scanning within dis-
tinct windows to capture comprehensive local information. In addition, LocalMamba
searches scanning directions across various network layers to identify and utilize the
most effective scanning combinations. They proposed two variants, i.e., with plain and
hierarchical structures. In addition, they proposed their LocalVim Block, which includes
four scanning directions (cf . Figure 4d) shows ViM scanning and partitioning tokens into
distinct windows, in addition to their flipped equivalents, to facilitate scanning from tail to
head. Additionally, the block incorporates a state space module and a spatial and channel
attention module (SCAttn).

3.2.2. VSS-Based

VMamba [27] undergoes four stages after partitioning the input image into patches as
Vision Mamba. VMamba stacks several VSS blocks on the feature map with a resolution
H
4 × W

4 as Stage 1. In Stage 2, before more VSS blocks are involved, the feature map in Stage
1 undergoes a patch merge operation for downsampling, in order to build hierarchical
representations, resulting in an output resolution of H

8 × W
8 . Stage 3 and Stage 4 are the

repetition of Stage 1 and Stage 2 with resolutions of H
16 × W

16 and H
32 × W

32 .
The PlainMamba block [28], which is based on the VSS block, uses the following two

primary mechanisms to improve its capacity to learn features from two-dimensional images:
(i) using a continuous 2D scanning procedure to increase spatial continuity, ensuring tokens
in the scanning sequence are adjacent, as depicted in Figure 4c; and (ii) integrating direction-
aware updating to encode directional information, allowing the model to recognize spatial
relationships between tokens. PlainMamba can address the issue of spatial discontinuity
in the 2D scanning mechanisms of Vim and VMamba. It continues to scan in the opposite
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direction as it moves to a new row or column until it reaches the image’s final vision token.
Moreover, PlainMamba does away with the requirement for special tokens.

Within lightweight model designs, EfficientVMamba [30] improves the capabilities of
VMamba with an atrous-based selective scan approach, i.e., efficient 2D scanning (ES2D).
Instead of scanning all patches from various directions and increasing the total number
of patches, ES2D adopts a strategy of scanning forward vertically and horizontally, while
skipping patches and maintaining the number of patches unchanged, as shown in Figure 4e.
Their efficient visual state space (EVSS) block comprises a convolutional branch for local
features, applies ES2D as the SSM branch for global features, and all branches end with a
squeeze-excitation block. They employ EVSS blocks for both Stage 1 and Stage 2, while
opting for inverted residual blocks in Stage 3 and Stage 4, to enhance the capture of
global representations.

3.2.3. Visual Data as Multi-Dimensional Data

Existing models for multi-dimensional data also work for visual-related tasks but
often lack the capacity to facilitate inter- and intra-dimensional communication or data
independence. The MambaMixer block [37] incorporates a dual selection mechanism
that operates across tokens and channels. By linking sequential selective mixers via a
weighted averaging mechanism, it enables layers to directly access inputs and outputs
from different layers. Mamba-ND [38] expands the application of the SSM to higher
dimensions by alternating sequence wandering across layers. Utilizing a similar scanning
strategy as VMamba in the 2D scenario, it extends this approach to 3D. Additionally, they
advocated for the use of multi-head SSMs as an analog to multi-head attention. In response
to the inefficiencies and performance challenges encountered by traditional transformers
in image and time series processing, a new architecture named simplified Mamba-based
architecture, SiMBA [39] was proposed to incorporate the Mamba block for sequence
modeling and Einstein FFT (EinFFT) for channel modeling, hoping to improve the model’s
stability and effectiveness when handling image and time series tasks. The Mamba block
proves effective at processing long sequence data, while EinFFT represents a novel channel
modeling technique. Experimental results demonstrated that SiMBA surpassed the existing
SSMs and transformers across multiple benchmark tests.

3.2.4. Summary of 2D Scanning Mechanisms

Scan serves as a key component for Mamba, as when it comes to multi-dimensional
inputs, the scanning mechanism matter. As shown in Figure 4, we summarize the existing
2D scanning mechanisms. In particular, direction-aware updating employs a set of learnable
parameters {Θk} to represent both the four cardinal directions and a special begin direction
for the initial token, reformulating Equation (3) as follows:

h′k(t) = Athk(t) + (Bt + Θk,t)x(t),

y′(t) =
4

∑
k=1

Cth′k(t),

y(t) = y′(t)⊙ z(t),

(7)

where ⊙ denotes the element-wise multiplication, and z(t) is a gating mechanism that
modulates the output. Expanding on the fundamental structure of Mamba in Equation (7),
we can devise the additional scanning mechanisms depicted in Figure 4.

As a vital element of Mamba, scanning mechanisms not only help the efficiency but
also provide information in the scenario of visual-related tasks. In this study, we summarize
the usage of different scanning mechanisms in existing works in Table 1. Cross-scan [27]
and bidirectional scan [26] stand out as the most widely adopted scanning mechanisms.
Nevertheless, various other scanning mechanisms serve specific purposes. For example, 3D
bidirectional scan [33] and spatiotemporal selective scan [35] are tailored for video inputs.
Local scan [29] focuses on gathering local information, while ES2D [30] prioritizes efficiency.
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3.3. Mamba with Other Architectures

Mamba, being a novel component compared to convolution, recurrence, and attention,
offers opportunities for synergistic combinations with other architectures that are still
relatively underexplored. The combination of Mamba with other architectures typically
occurs through two approaches: (i) designing blocks that integrate the concepts of other
architectures alongside Mamba blocks, or (ii) incorporating Mamba blocks into existing ar-
chitectures. In this section, we examine existing exploratory findings on such combinations.
We begin by presenting the first type of combination, followed by summarizing the second
type in Table 2.

Table 1. Summary of the Scanning mechanisms used in visual Mamba.

Scanning Mechanisms Method

BiDirectional Scan [26]

Vision Mamba [26], Motion Mamba [34]
HARMamba [40], MMA [41], VL-Mamba[42]

Video Mamba Suite [43], Point Mamba [44]
LMa-UNet [45]

Motion-Guided Dual-Camera Tracker [46]

Cross-Scan [27]

VMamba [27],VL-Mamba[42], VMRNN [47]
RES-VMAMBA [48], Sigma [49], ReMamber [50]

Mamba-UNet [51], Semi-Mamba-UNet [52]
VMambaMorph [53], ChangeMamba [54]

H-vmunet [55], MambaMIR [56], MambaIR [57]
Serpent [58], Mamba-HUNet [59], TM-UNet [60]

Swin-UMamba [61], UltraLight VM-UNet [62]
VM-UNet [63], VM-UNET-V2 [64]

MedMamba [65], MIM-ISTD [66], RS3Mamba [67]

Continuous 2D Scanning [28] PlainMamba [28]

Local Scan [29] LocalMamba [29], FreqMamba [68]

Efficient 2D Scanning (ES2D) [30] EfficientVMamba [30]

Zigzag Scan [31] ZigMa [31]

Omnidirectional Selective Scan [32] VmambaIR [32], RS-Mamba [69]

3D BiDirectional Scan [33] VideoMamba [33]

Hierarchical Scan [34] Motion Mamba [34]

Spatiotemporal Selective Scan [35] Vivim [35]

Multi-Path Scan [36] RSMamba [36]

3.3.1. Mamba with Convolution

Convolution, being a widely employed technique, possesses the advantageous property
of capturing local information. Consequently, it is frequently integrated with Mamba to
augment its capabilities. To construct a new fundamental block, the identity branch of the
residual block and convolution layers are commonly employed to enhance the Mamba block.
This integration is aimed at enhancing the representational capability of the model and
its effectiveness in tasks requiring a thorough comprehension of visual data, by combining
localized details captured by Mamba blocks with overarching global features. By incorporating
a residual learning framework into the VMamba model, RES-VMAMBA [48] was the first to
utilize both local and global state features that were part of the original VMamba architectural
design. MambaIR [57] introduced the residue state space (RSS) block, incorporating scale
residual connections, a convolutionary layer, and channel attention atop the VSS block. LMa-
UNet [45] incorporates residual connections with ViM at both pixel-level and patch-level.
nnMamba [70] introduced the Res-Mamba block, which merges the Mamba block with a
convolution layer, batch normalization, ReLU activation, residual connections, and weight
sharing among channels and spatial dimensions using a Siamese input. SegMamba [71]
introduced the TSMamba block, which can enhance the Tri-orientated Mamba with layer
normalization, gated spatial convolutional layers, and residual connections. MambaMIR [56]
introduced the AMSS block group, which enhances feature extraction for reconstruction and
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uncertainty estimation by incorporating a convolutional layer and layer normalization ahead
of a VSS-based Mamba block called AMSS. MedMamba [65] introduced the SS-Conv-SSM
block, which comprises a convolution branch and a VSS branch.

Table 2. Summary of visual Mamba with other architectures.

Other Architecture Mamba Method Capability

Convolution

RES-VMAMBA [48] Food vision tasks

MedMamba [65] Medical images classification tasks

HSIMamba [72] Hyperspectral images classification
tasks

MambaMIR [56] Medical images reconstruction tasksMambaMIR-GAN [56]

MambaIR [57] Image restoration tasks

VMambaMorph [53] 3D images registration tasks

FreqMamba [68] Image deraining tasks

Pan-Mamba [73] Pan-sharpening tasks

MambaTalk [74] Gesture synthesis tasks

Samba [75] Images semantic segmentation tasks

Semi-Mamba-UNet [52], Swin-UMamba [61]

Medical images segmentation tasks
H-vmunet [55], UltraLight VM-UNet [62]

Weak-Mamba-UNet [76]
LMa-UNet [45], SegMamba [71], T-Mamba [77]

Vivim [35], nnMamba [70], ProMamba [78]

Recurrence
VMRNN [47] Video prediction tasks

VMambaMorph [53] 3D images registration tasks

Attention

SSM-ViT [79] Event camera-based tasks

MMA [41] Image super-resolution tasks

ViS4mer [80] Long movie clip classification tasks

FDVM-Net [81] Images exposure correction tasks

CMViM [82] 3D multi-modal representation tasks

Motion-Guided Dual-Camera Tracker [46] Endoscopy skill evaluation tasks

MambaIR [57] Image restoration tasks

FreqMamba [68] Image deraining tasks

3DMambaComplete [83] Point cloud completion tasks

VM-UNET-V2 [64], Weak-Mamba-UNet [76] Medical images segmentation tasksUltraLight VM-UNet [62], ProMamba [78]

U-Net

U-Mamba [84], UVM-Net [85], Mamba-UNet [51]

Medical images tasks

TM-UNet [60], Semi-Mamba-UNet [52]
Swin-UMamba [61], Weak-Mamba-UNet [76]

LMa-UNet [45], LightM-UNet [86]
UltraLight VM-UNet [62], VM-UNET-V2 [64]

H-vmunet [55], Mamba-HUNet [59]
VM-UNet [63]

MambaMIR-GAN [56] Medical images reconstruction tasks

VmambaIR [32] Image restoration tasks

Motion Mamba [34] Generation tasks

MambaMorph [87] Multi-modality registration tasks

FreqMamba [68] Image deraining tasks

RS-Mamba [69] Dense image prediction tasks

Diffusion
DiS [88], ZigMa [31], Motion Mamba [34]
SSM-based diffusion model [89] Generation tasks

MD-Dose [90] Radiation dose prediction tasks
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In particular, specialized Mamba-based blocks have been devised to capture frequency-
based information, leveraging techniques from convolutional networks. T-Mamba [77]
introduced the Tim block, which integrates frequency-based bandpass filtering atop con-
volutional shared dual position encoding compensation and a gate selection unit. HSI-
Mamba [72] introduced the HyperspectralBiNetworks block, which was derived from
ViM but tailored for spectral inputs. Vivim [35] introduced the Temporal Mamba Block,
integrating a spatiotemporal version of ViM named ST-Mamba, along with detail-specific
FFN, convolution, and layer normalization. FreqMamba [68] introduced the FreqSSM block,
incorporating a convolutional layer for the spatial branch, discrete wavelet transforma-
tion with the SSM block for the frequency band branch, and a Fourier modeling branch
implemented with a convolutional layer.

A branch of research directly integrates Mamba blocks with convolutional layers into
existing architectures. VMambaMorph [53] utilizes a hybrid approach, employing half of a
3D VSS block and half of a 3D CNN to construct a U-shaped network to serve as the regis-
tration module. Pan-Mamba [73] and UltraLight VM-UNet [62] incorporate convolutional
layers at the start and end of their architecture to enhance feature quality. RS3Mamba [67]
employs VSS blocks to construct an auxiliary encoder and utilizes convolution-based CCM
modules and residual blocks as the main encoder for semantic segmentation of remote
sensing images. Samba [36] utilizes convolution as a stem at the beginning of the architec-
ture. H-vmunet [55] integrates high-order VSS blocks into a CNN-based U-shaped network
for medical image segmentation tasks. Swin-UMamba [61] substitutes attention with VSS
blocks in a Swin model [91], incorporating hierarchical Mamba with shifted windows.
Additionally, it integrates a CNN-based U-shaped network architecture. Semi-Mamba-
UNet [52] combines Mamba-based and CNN-based U-shaped branches to segment medical
images in a semi-supervised manner. Furthermore, Weak-Mamba-UNet [76] enhances
performance by incorporating an additional ViT-based U-shaped branch. MambaTalk [74]
employs two convolutional-based audio feature extraction networks along with a Mamba
model for motion synthesis. ProMamba [78] consists of a ViM-based image encoder, a
Transformer-based prompt encoder, and a CNN-based mask decoder.

3.3.2. Mamba with Recurrence

To harness the long-sequence modeling capabilities of Mamba blocks and the spa-
tiotemporal representation prowess of LSTMs, the VMRNN [47] Cell eliminates all weights
and biases in ConvLSTM [92] and employs VSS blocks to learn spatial dependencies ver-
tically. Long-term and short-term temporal dependencies are captured in the VMRNN
Cell by updating the information on cell states and concealed states from a horizontal per-
spective. Building upon the VMRNN Cell, two variants have been proposed: VMRNN-B
and VMRNN-D. VMRNN-B mainly focuses on stacking VMRNN layers, while VMRNN-D
incorporates more VMRNN Cells and introduces patch merging and patch expanding
layers. By downsampling the data and lowering its spatial dimensions, the patch merging
layer helps to capture more abstract, global features, while also lowering the computational
complexity. In contrast, upsampling employs a patch-expanding layer to increase the spa-
tial dimensions in order to recover detail and facilitate accurate feature localization during
the reconstruction stage. Ultimately, the reconstruction layer creates the predicted frame
for the subsequent time step by scaling the concealed state from the VMRNN layer back
to the input size. Integrating downsampling and upsampling processes offers important
benefits for a predictive architecture. By making the input representation simpler through
downsampling, the model can process higher-level features with minimal computational
cost. This is especially helpful for grasping the intricate linkages and patterns in the data
more abstractly. In addition, in VMambaMorph [53], a recursive registration framework
integrated a hybrid VSS and CNNs-based VMambaMorph as the registration module.
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3.3.3. Mamba with Attention

Attention mechanisms, like self-attention and cross-attention, empower transform-
ers to concentrate on pertinent segments of the input sequence. This attention-driven
strategy boosts the model’s capacity to assess the significance of various elements, result-
ing in more intricate and contextually informed representations. Cross-attention stands
out as the most prevalent element for integrating with Mamba to facilitate information
exchange. FD-Vision Mamba [81] introduced the C-SSM block, which merges the SSM
block with cross-attention to facilitate information exchange between the amplitude and
phase branches. SpikeMba [93] integrated the SNN block with simplified cross-attention
in a spiking saliency detector to enable information exchange between text features and
relevant slots. Subsequently, it employs multi-modal relevant Mamba blocks to bolster
long-range dependency. MambaIR [57] uses channel attention as part of its RSS block. The
meet more areas (MMA) block introduced in [41] adopts a MetaFormer-style architecture,
comprising two layer normalization layers, a token mixer (consisting of a channel attention
mechanism and a ViM block in parallel), and an MLP block for deep feature extraction.
Instead of using cross-attention, the SSM-ViT block [79] comprises three main components:
a self-attention block (Block-SA), a dilated attention block (Grid-SA), and an SSM block.
The block-SA focuses on immediate spatial relations and provides a detailed representation
of nearby features. Grid-SA offers a global perspective, capturing comprehensive spatial
relations and overall input structure. The SSM block ensures temporal consistency and
a smooth information transition between consecutive time steps. By integrating SSMs
with self-attention, the SSM-ViT block enables faster training and parameter timescale
adjustment for temporal aggregation.

Few works have leveraged attention at the architectural level to enhance Mamba’s
performance. In ViS4mer [80], self-attention is employed to process each frame and obtain
features for the SSN-based multi-scale decoder. Following the extraction of the short-
range spatiotemporal features by the normal transformer encoder, the long-term temporal
reasoning is captured by the Mamba-based multi-scale temporal S4 decoder. Thus, ViS4mer
achieves decent performance in understanding long videos. CMViM [82] incorporates a
single cross-attention layer after the online ViM encoder to facilitate information exchange
between MRI and PET branches. 3DMambaComplete [83] integrates attention blocks into
the HyperPoint generation process to enhance features extracted from incomplete point
clouds and FPS. FreqMamba [68] exploits the distinctive data-dependent characteristic of
Mamba alongside attention to identify potential degradation locations at different granular
levels. ProMamba [78] employs self-attention and prompt-to-image attention mechanisms
within the prompt encoder. UltraLight VM-UNet [62] employs spatial and channel attention
mechanisms to facilitate weight sharing. Conversely, VMUNetV2 [64] introduces an SDI
block, which computes attention scores for both spatial and channel dimensions. This block
is positioned between the encoder, composed of VSS blocks, and the decoder, consisting
of fusion blocks. In the motion-guided dual-camera tracker [46], two crucial elements are
employed: a cross-camera mutual template strategy (CMT) and a Mamba-based motion-
guided prediction head (MMH). Inspired by cross-attention, CMT aggregates features from
dual cameras, while MMH utilizes a ViM block to capture motion tokens. The integration
of vision and motion is facilitated by a cross-attention module.

3.3.4. Others

The U-shape net and diffusion architectures serve as fundamental frameworks fre-
quently combined with Mamba blocks, particularly in the medical field. Given their
prevalence, we believe that it is important to highlight them, so we have compiled related
works in Table 2.

3.4. Comparison of Mamba Models and Other State-of-the-Art Models

In this section, we have thoroughly summarized the performance of various visual
Mamba backbone networks on standard benchmarks and conducted an in-depth com-
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parison with the performance of some backbones from CNN and Transformer models on
the same datasets, as shown in Tables 3–6. Our analysis focused on three public datasets:
ImageNet-1K for classification, COCO for object detection, ADE10K for semantic seg-
mentation. By analyzing the performance and computational complexity of models with
different architectures, we can gain insights into each model’s advantages, guiding model
selection and providing valuable references for future research and practical applications
in computer vision.

According to these tables, we clearly observe that compared to CNN and Trans-
former models, Mamba either achieved better performance or required less computational
resources. In Table 3, the best performance achieved by CNN was 81.7% with 39M pa-
rameters, 84.5% with 88M parameters by transformer, while Mamba achieved 84.7% with
40M parameters. Similar superior performances by Mamba are observed in Tables 4 and 6.
An exception is noted in Table 5, where a Transformer achieved the best performance of
51.9% with 145M parameters and 982 FLOPs, whereas Mamba, with a maximum of 69M
parameters, achieved an 49.9% average precision (AP).

3.4.1. Analysis and Comparison in Image Classification Tasks

As shown in Table 3, the ImageNet-1K dataset is designed for image classification
tasks, where accuracy is the key measure of performance. Therefore, we used the Top-1
Accuracy metric to compare the classification capabilities of different models. The compari-
son shows that CNN models have moderate parameters and computational complexity but
relatively low Top-1 accuracy, mostly below 80%. The highest Top-1 accuracy among CNN
models was 81.7% for RegNetY-8G [94]. In contrast, most Transformer models have more
parameters and greater computational complexity. For example, the ViT-L/16 [95] model
has 307M parameters and 190.7G FLOPs, making it suitable for high-performance comput-
ing environments. In such environments, Transformer models generally achieve higher
Top-1 accuracy, such as 83.7% for ViL-Base-RPB [96] and 83.8% for Focal-Base [97]. Mamba
models exhibit various parameters and computational complexities, accommodating vari-
ous application needs. They include lightweight models like EfficientVMamba-T [30] and
more complex models like VMamba-B [27]. Many Mamba models achieved Top-1 accuracy
above 83%, such as LocalVMamba-S [29] and SiMBA-B [39].

From Table 3, it is evident that CNN models do not perform as well in terms of accuracy
compared to Transformer and Mamba models. Let us focus on comparing the Transformer
and Mamba models. Among the Transformer models, Swin-B [91] performed the best, with
a Top-1 accuracy of 84.5%. Of the Mamba models, SiMBA-B (MLP) [39] performed the
best, with a Top-1 accuracy of 84.7%. Notably, Swin-B used an image size of 3842, whereas
SiMBA-B (MLP) used an image size of 2242. Swin-B can provide more detailed information,
but SiMBA-B (MLP) still outperformed Swin-B. Additionally, because Swin-B uses a larger
image size, its parameters and computational complexity are significantly higher than
SiMBA-B’s (MLP).

Based on the above analysis, we can summarize the advantages and disadvantages of
these three types of models in image classification tasks. CNN models have relatively low
parameters and computational complexity, making them suitable for environments with
limited resources, but perform worse for accuracy. Transformer models have relatively high
accuracy, higher parameters, and computational complexity, requiring substantial resources,
thus fitting high-performance computing environments. Mamba models are more diverse,
fitting different computational resources and application requirements, with many models
being competitive in accuracy. However, researchers must select the appropriate model
based on specific application scenarios.

3.4.2. Analysis and Comparison in Object Detection and Instance Segmentation Tasks

Since the COCO dataset is used for object detection and instance segmentation tasks,
it not only requires recognizing object categories but also accurately localizing them. There-
fore, average precision (AP) metrics are needed to comprehensively evaluate a models’
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performance at different intersection over union (IoU) thresholds. To fully measure the
performance of models under different training configurations, we have provided two
tables, which show the performance of Mask R-CNN under the a 1× schedule and 3 × MS
schedule for object detection and instance segmentation tasks on the COCO dataset, as
shown in Tables 4 and 5.

Table 3. Comparison of Mamba models and other state-of-the-art models on t ImageNet-1K dataset.

Model Backbone Image Size Params (M) FLOPs (G) Top-1 ACC (%)

CNN

ResNet-50 [98] 2242 25.5 4.1 76.50
ResNet-50-D [99] 2242 25.0 4.3 77.16
ResNet-101 [98] 2242 44.6 7.8 77.4
ResNet-152 [98] 2242 60.2 11.6 78.3

ResNeXt-50-32 × 4d [100] 2242 25 4.1 77.8
ResNeXt-101-32 × 4d [100] 2242 44 7.8 78.8

RegNetY-4G [94] 2242 21 4.0 80.0
RegNetY-8G [94] 2242 39 8.0 81.7

Transformer

ViT-B/16 [95] 3842 86 55.4 77.9
ViT-L/16 [95] 3842 307 190.7 76.5
DeiT-S [101] 2242 22 4.6 79.8
DeiT-B [101] 2242 86 17.6 81.8
DeiT-B [101] 3842 86 55.4 83.1
Swin-T [91] 2242 29 4.5 81.3
Swin-S [91] 2242 50 8.7 83.0
Swin-B [91] 2242 88 15.4 83.5
Swin-B [91] 3842 88 47.0 84.5

ViL-Small-APE [96] 2242 24.6 4.9 82.0
ViL-Small-RPB [96] 2242 24.6 4.9 82.4

ViL-Medium-APE [96] 2242 39.7 8.7 83.3
ViL-Medium-RPB [96] 2242 39.7 8.7 83.5

ViL-Base-APE [96] 2242 55.7 13.4 83.2
ViL-Base-RPB [96] 2242 55.7 13.4 83.7

Focal-Tiny [97] 2242 29.1 4.9 82.2
Focal-Small [97] 2242 51.1 9.1 83.5
Focal-Base [97] 2242 89.8 16.0 83.8

Mamba

Vim-Ti [26] 2242 7 - 76.1
Vim-S [26] 2242 26 - 80.5

VMamba-T [27] 2242 22 4.5 82.2
VMamba-S [27] 2242 44 9.1 83.5
VMamba-B [27] 2242 75 15.2 83.2

PlainMamba-L1 [28] 2242 7 3.0 77.9
PlainMamba-L2 [28] 2242 25 8.1 81.6
PlainMamba-L3 [28] 2242 50 14.4 82.3

LocalVim-T [29] 2242 8 1.5 76.2
LocalVim-S [29] 2242 28 4.8 81.2

LocalVMamba-T [29] 2242 26 5.7 82.7
LocalVMamba-S [29] 2242 50 11.4 83.7

EfficientVMamba-T [30] 2242 6 0.8 76.5
EfficientVMamba-S [30] 2242 11 1.3 78.7
EfficientVMamba-B [30] 2242 33 4.0 81.8

Mamba-2D-S [38] 2242 24 - 81.7
Mamba-2D-B [38] 2242 92 - 83.0

SiMBA-S (Monarch) [39] 2242 18.5 3.6 81.1
SiMBA-S (EinFFT) [39] 2242 15.3 2.4 81.7

SiMBA-S (MLP) [39] 2242 26.5 5.0 84.0
SiMBA-B (Monarch) [39] 2242 26.9 5.5 82.6
SiMBA-B (EinFFT) [39] 2242 22.8 4.2 83.0

SiMBA-B (MLP) [39] 2242 40.0 9.0 84.7
SiMBA-L (Monarch) [39] 2242 42 8.7 83.8
SiMBA-L (EinFFT) [39] 2242 36.6 7.6 83.9

As seen in Table 4, when using the Mask R-CNN 1× schedule, the precision metrics of
CNN models improved as the number of parameters and FLOPs increased. Compared to
Transformer and Mamba models, CNN models had moderate parameters and FLOPs but
relatively lower performance. Among the Transformer models, the ViT-Adapter-B [102]
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performed excellently but with relatively high parameters. Transformer models offer good
performance but generally have higher parameters and FLOPs. On the other hand, Mamba
models, while maintaining lower parameters and computational complexity, can deliver
performance very close to or even surpassing some Transformer models, particularly with
the LocalVMamba [29] and VMamba [27] backbones.

Table 4. Comparison of Mamba Models and other state-of-the-art models on COCO dataset (Mask
R-CNN 1× schedule).

Model Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params (M) FLOPs (G)

CNN

ResNet-50 [98] 38.2 58.8 41.4 34.7 55.7 37.2 44 260
ResNet-101 [98] 38.2 58.8 41.4 34.7 55.7 37.2 63 336

ResNeXt101-32 × 4d [100] 41.9 - - 37.5 - - 63 340
ResNeXt101-64 × 4d [100] 42.8 - - 38.4 - - 102 493

Transformer

ViT-Adapter-T [102] 41.1 62.5 44.3 37.5 59.7 39.9 28.1 -
ViT-Adapter-S [102] 44.7 65.8 48.3 39.9 62.5 42.8 47.8 -
ViT-Adapter-B [102] 47.0 68.2 51.4 41.8 65.1 44.9 120.2 -

Swin-Tiny [91] 42.2 - - 39.1 - - 48 264
Swin-Small [91] 44.8 - - 40.9 - - 69 354
PVT-Tiny [103] 36.7 59.2 39.3 35.1 56.7 37.3 32.9 -

PVT-Small [103] 40.4 62.9 43.8 37.8 60.1 40.3 44.1 -
PVT-Medium [103] 42.0 64.4 45.6 39.0 61.6 42.1 63.9 -

PVT-Large [103] 42.9 65.0 46.6 39.5 61.9 42.5 81.0 -

Mamba

VMamba-T [27] 46.5 68.5 50.7 42.1 65.5 45.3 42 262
VMamba-S [27] 48.2 69.7 52.5 43.0 66.6 46.4 64 357
VMamba-B [27] 48.5 69.6 53.0 43.1 67.0 46.4 96 482

PlainMamba-Adapter-L1 [28] 44.1 64.8 47.9 39.1 61.6 41.9 31 388
PlainMamba-Adapter-L2 [28] 46.0 66.9 50.1 40.6 63.8 43.6 53 542
PlainMamba-Adapter-L3 [28] 46.8 68.0 51.1 41.2 64.7 43.9 79 696

EfficientVMamba-T [30] 35.6 57.7 38.0 33.2 54.4 35.1 11 60
EfficientVMamba-S [30] 39.3 61.8 42.6 36.7 58.9 39.2 31 197
EfficientVMamba-B [30] 43.7 66.2 47.9 40.2 63.3 42.9 53 252

LocalVMamba-T [29] 46.7 68.7 50.8 42.2 65.7 45.5 45 291
LocalVMamba-S [29] 48.4 69.9 52.7 43.2 66.7 46.5 69 414

SiMBA-S [39] 46.9 68.6 51.7 42.6 65.9 45.8 60 382

Table 5. Comparison of Mamba models and other state-of-the-art models on COCO dataset (Mask
R-CNN 3 × MS schedule).

Model Backbone APb APb
50 APb

75 APm APm
50 APm

75 Params (M) FLOPs (G)

CNN ConvNeXt-T [104] 46.2 67.9 50.8 41.7 65.0 44.9 48 262

Transformer

Swin-T [91] 50.5 69.3 54.9 43.7 66.6 47.1 86 745
Swin-S [91] 51.8 70.4 56.3 44.7 67.9 48.5 107 838
Swin-B [91] 51.9 70.9 56.5 45.0 68.4 48.7 145 982

ViT-Adapter-T [102] 46.0 67.6 50.4 41.0 64.4 44.1 28.1 -
ViT-Adapter-S [102] 48.2 69.7 52.5 42.8 66.4 45.9 47.8 -
ViT-Adapter-B [102] 49.6 70.6 54.0 43.6 67.7 46.9 120.2 -

PVT-Tiny [103] 39.8 62.2 43.0 37.4 59.3 39.9 32.9 -
PVT-Small [103] 43.0 65.3 46.9 39.9 62.5 42.8 44.1 -

PVT-Medium [103] 44.2 66.0 48.2 40.5 63.1 43.5 63.9 -
PVT-Large [103] 44.5 66.0 48.3 40.7 63.4 43.7 81.0 -

ViL-Tiny-RPB [96] 44.2 66.4 48.2 40.6 63.2 44.0 26.9 199
ViL-Small-RPB [96] 47.1 68.7 51.5 42.7 65.9 46.2 45.0 277

ViL-Medium-RPB [96] 48.9 70.3 54.0 44.2 67.9 47.7 60.1 352
ViL-Base-RPB [96] 49.6 70.7 54.6 44.5 68.3 48.0 76.1 439

Focal-Tiny [97] 47.2 69.4 51.9 42.7 66.5 45.9 48.8 291
Focal-Small [97] 48.8 70.5 53.6 43.8 67.7 47.2 71.2 401
Focal-Base [97] 49.0 70.1 53.6 43.7 67.6 47.0 110.0 533

Mamba

VMamba-T [27] 48.5 69.9 52.9 43.2 66.8 46.3 42 262
VMamba-S [27] 49.7 70.4 54.2 44.0 67.6 47.3 64 357

LocalVMamba-T [29] 48.7 70.1 53.0 43.4 67.0 46.4 45 291
LocalVMamba-S [29] 49.9 70.5 54.4 44.1 67.8 47.4 69 414
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From Table 5, it is evident that the characteristics of the three models become more
pronounced under the Mask R-CNN 3 × MS schedule. In object detection and instance
segmentation tasks, CNN models, while suitable for resource-constrained environments, are
somewhat less accurate. Transformer models are suited for high-performance computing
environments, demanding significant computational resources but achieving excellent perfor-
mance. Mamba models balance performance and computational complexity well, providing
outstanding performance with relatively lower computational resource requirements.

3.4.3. Analysis and Comparison in Semantic Segmentation Tasks

The ADE20K dataset was used for semantic segmentation tasks. As shown in Table 6,
we used the mIoU metric to compare and analyze the performance of various models on
this dataset. mIoU, or mean intersection over union, is the standard metric for measuring
model performance in segmentation tasks, reflecting the model’s accuracy in handling
complex scenes and objects of different scales.

Table 6. Comparison of Mamba models and other state-of-the-art models on ADE20K datasets.

Model Backbone Image Size Params (M) FLOPs (G) mIoU (SS) mIoU (MS)

CNN

ResNet-50 [98] 5122 67 953 42.1 42.8
ResNet-101 [98] 5122 85 1030 42.9 44.0

ConvNeXt-T [104] 5122 60 939 46.0 46.7
ConvNeXt-S [104] 5122 82 1027 48.7 49.6
ConvNeXt-B [104] 5122 122 1170 49.1 49.9

Transformer

Swin-T [91] 5122 60 945 44.4 45.8
Swin-S [91] 5122 81 1039 47.6 49.5
Swin-B [91] 5122 121 1188 48.1 49.7
Focal-T [97] 5122 62 998 45.8 47.0
Focal-S [97] 5122 85 1130 48.0 50.0
Focal-B [97] 5122 126 1354 49.0 50.5

DeiT-S + MLN [105] 5122 58 1217 43.8 45.1
DeiT-B + MLN [105] 5122 144 2007 45.5 47.2

Mamba

Vim-Ti [26] 5122 13 - 41.0 -
Vim-S [26] 5122 46 - 44.9 -

VMamba-T [27] 5122 55 939 47.3 48.3
VMamba-S [27] 5122 76 1037 49.5 50.5
VMamba-B [27] 5122 110 1167 50.0 51.3
VMamba-S [27] 6402 76 1620 50.8 50.8

PlainMamba-L1 [28] 6402 35 174 44.1 -
PlainMamba-L2 [28] 6402 55 285 46.8 -
PlainMamba-L3 [28] 6402 81 419 49.1 -

LocalVim-T [29] 5122 36 181 43.4 44.4
LocalVim-S [29] 5122 58 297 46.4 47.5

LocalVMamba-T [29] 5122 57 970 47.9 49.1
LocalVMamba-S [29] 5122 81 1095 50.0 51.0

EfficientVMamba-T [30] 5122 14 230 38.9 39.3
EfficientVMamba-S [30] 5122 29 505 41.5 42.1
EfficientVMamba-B [30] 5122 65 930 46.5 47.3

SiMBA-S [39] 5122 62 1040 49.0 49.6

In semantic segmentation tasks, CNN models exhibit relatively stable mIoU perfor-
mance under both single-scale (SS) and multi-scale (MS) settings. ConvNeXt [104] models
perform slightly better than ResNet [98] models, with ConvNeXt-B achieving a mIoU (SS)
of 49.1 and a mIoU (MS) of 49.9. Compared to other models, CNNs offer stable and reliable
performance, making them suitable for resource-limited applications, though they may fall
short in tasks requiring high precision.
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Among Transformer models, Swin-B [91] stands out on the ADE20K dataset, with a
mIoU (SS) of 48.1 and a mIoU (MS) of 49.7. Focal [97] models also perform well, particularly
Focal-B, which achieved mIoU (SS) and mIoU (MS) scores of 49.0 and 50.5, respectively.
However, Transformer models generally demand significant computational resources. For
instance, while delivering excellent performance, Focal-B required 126M parameters and
1354G FLOPs. Similarly, DeiT-B + MLN [105] required 144M parameters and 2007G FLOPs.

In the Mamba model category, the VMamba [27] backbones showed outstanding per-
formance under both single-scale and multi-scale tests, particularly VMamba-S (6402),
which achieved a mIoU (SS) and mIoU (MS) of 50.8. The PlainMamba [28] and Lo-
calVim [29] backbones also provide high mIoU scores with lower parameters and FLOPs,
such as PlainMamba-L3, which achieved a mIoU (SS) of 49.1.

Therefore, while both Transformer and Mamba models perform well in semantic
segmentation tasks, Transformer models require high computational resources, making
them suitable for high-performance computing environments. Mamba models, on the
other hand, offer a diverse range of options, including the high-performance VMamba [27]
backbones and the low-complexity yet high-performance LocalVim [29] backbones, catering
to various computational resource scenarios. Mamba models balance performance and
computational complexity well, making them ideal for applications requiring high precision
but with limited computational resources.

4. Visual Mamba in Application Fields

Mamba-based modules increase the efficiency of processing sequential data, adeptly
capturing long-range dependencies and seamlessly integrating into existing systems. In
medical visual tasks and remote sensing images, where inputs usually entail high-resolution
data, Mamba emerges as a pivotal tool for augmenting various visual tasks, especially
those pertinent to medical applications.

In the current section, we began by highlighting the contributions of Mamba-based
modules in enhancing general visual-related tasks. Then, we delved into their specific
impact on medical visual tasks and remote-sensing images.

4.1. General Visual Mamba

General vision-related tasks are categorized into high/mid-level vision and low-level
vision. high/mid-level vision includes recognition tasks for different input formats (pictures,
videos, and 3D representation), including segmentation, object detection, classification, and
prediction. By contrast, low-level vision includes restoration, generation etc., as shown in
Table 7.

Table 7. Representative works of general visual mamba.

Category Sub-Category Method Efficiency Code

Backbone
Visual Mamba

Vision Mamba [26] Params
Vim-Ti: 7, Vim-S: 26

!

VMamba [27] FLOPs Base: 15.2
Small: 9.1, Tiny: 4.5

!

PlainMamba [28]

FLOPs
PlainMamba-L1: 3.0
PlainMamba-L2: 8.1
PlainMamba-L3: 14.4

!

LocalMamba [29]
FLOPs
LocalVMamba-T: 5.7
LocalVMamba-S: 11.4

!

Mamba-ND [38]
Params Mamba-2D: 24
Mamba-3D: 36

!

SiMBA [39] - !

RES-VMAMBA [48] - !

Efficient Mamba
EfficientVMamba [30] - !

MambaMixer [37] - !
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Table 7. Cont.

Category Sub-Category Method Efficiency Code

High/Mid-level vision

Object detection SSM-ViT [79] Params 17.5 %

Segmentation
ReMamber [50] - %

Sigma [49] - !

Video classification ViS4mer [80] Memory 5273.6 !

Video understanding

Video Mamba Suite [43] - !

VideoMamba [33]

FLOPs
VideoMamba-Ti: 7.1
VideoMamba-S: 28
VideoMamba-M: 83.1

!

SpikeMba [93] - %

Multi-Modal
understanding

Cobra [106] - !

ReMamber [50] - %

VL-Mamba [42] - %

Video prediction

VMRNN [47] Params 2.6, FLOPs 0.9 !

HARMamba [40]

FLOPs
PAMAP2:279.21
UCI:237.83
UNIMIB HAR:238.36
WISDM:256.52

%

Low-level vision

Image super-resolution MMA [41] - %

Image restoration

MambaIR [57] Params 16.7 !

SERPENT [58] - %

VmambaIR [32] Params 10.50, FLOPs 20.5 !

Image dehazing UVM-Net [85] Params 19.25 !

Image derain FreqMamba [68] Params 14.52 %

Image deblurring ALGNet [107] FLOPs 17 %

Visual generation

MambaTalk [74] - %

Motion Mamba [34] - !

DiS [88] - !

ZigMa [31] - !

Point cloud

3DMambaComplete [83] Params 34.06, FLOPs 7.12 %

3DMambaIPF [108] - %

Point Cloud Mamba [109] Params 34.2, FLOPs 45.0 %

POINT MAMBA [44] Memory 8550 !

SSPointMamba [110] Params 12.3, FLOPs 3.6 !

3D reconstruction GAMBA [111] - %

Video generation SSM-based diffusion model [89] - !

For the efficiency, inference speed is in ms, memory is in MB, Params is in M, and FLOPS is in G.

4.1.1. High/Mid-Level Vision

The visual Mamba backbone [26–29,38] had decent performance in classification,
object detection, and segmentation. SSM-ViT [79] was designed for object detection using
event cameras. Differently from standard frame-based cameras, event cameras record per-
pixel relative brightness changes in a scene as they occur. Therefore, object detection with
event cameras requires processing an asynchronous stream of events in a four-dimensional
spatio-temporal space. Earlier studies used RNNs architectures with convolutional or
attention mechanisms to develop models exhibiting superior performance on downstream
tasks using event camera data. However, these models usually suffer from slow training.
As a response, the SSM-ViT block was introduced by leveraging an SSM for efficient event-
based information processing. It explores two strategies to mitigate aliasing effects when
deploying the model at higher frequencies.
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For referencing image segmentation (RIS), a difficult problem in the field of multi-modal
comprehension, ReMamber [50] was introduced, utilizing Mamba’s notable advances in
efficient training and inference with linear complexity. Distinguished from conventional
segmentation, RIS entails identifying and segmenting specific objects in images according to
textual descriptions. The ReMamber architecture comprises several Mamba Twister blocks,
each featuring multiple VSS blocks and a Twisting layer. The Mamba Twister block is a multi-
modal feature fusion block that blends textual and visual features into a single output, which
is the fused multi-modal feature representation. The last segmentation mask is generated by
retrieving intermediate features after every Mamba Twister block and feeding them into a
flexible decoder. The VSS layers are tasked with extracting visual features, while the Twisting
layer primarily captures effective visual-language interactions. The experiments conducted
by authors on various RIS datasets produced cutting-edge outcomes. Sigma [49] presented a
novel network tailored for multimodal semantic segmentation tasks. Following each Mamba
Twister block, intermediate features are retrieved and input into a flexible decoder, which
generates the segmentation mask at the end. Furthermore, a channel-aware Mamba decoder
and an attention-based Mamba fusion mechanism were presented. During the decoding
phase, the fused features undergo further enhancement through channel-aware VSS (CVSS)
blocks, adept at capturing multi-scale long-range information and facilitating cross-modal
information integration.

Unlike transformers that depend on quadratic complexity attention mechanisms,
Mamba, as a pure SSM-based model, excels in handling long sequences with linear complex-
ity and is particularly adept at processing lengthy videos at high resolutions. ViS4mer [80]
serves as a model primarily used for recognizing and classifying long videos, especially for
understanding and categorizing lengthy movie clips. ViS4mer is composed of two primary
parts: a multi-scale temporal S4 decoder suited for further long-range temporal reasoning,
and a standard Transformer encoder intended for short-distance spatiotemporal feature
extraction from videos. The multi-scale temporal S4 decoder is based on SSM and makes
use of the ability of the core SSM to identify long-range correlations in consecutive data, in
order to reduce the computational cost of the model.

The Video Mamba Suite [43] is not a novel method; rather, it investigates and evaluates
SSM’s potential, embodied by Mamba, in tasks related to comprehending videos. The
decomposed bidirectionally Mamba (DBM) block is an improved version of the ViM block
that shares the SSM parameters in both scanning directions, while allowing the input pro-
jector to be separated. They classify Mamba into four distinct roles for modeling videos and
compare it with existing Transformer-based models to evaluate its effectiveness in various
video understanding tasks. The 14 models and modules that make up the Video Mamba
Suite were used to assess performance on 12 different video comprehension tasks. The
experiments showed that Mamba is applicable in video analysis and can be used for more
complex, multimodal video understanding challenges. Apart from the Video Mamba Suite,
VideoMamba [33] was proposed for video understanding tasks, with a specific focus on
addressing the following two major challenges: local redundancy and global dependencies.
The study evaluated VideoMamba’s capabilities across four key aspects: scalability in the
video domain, sensitivity to short-term action recognition, advantages in long-term video
understanding, and compatibility with other modalities. To enhance model scalability
in the visual domain, a self-distillation strategy is used in VideoMamba. This approach
significantly enhances the model’s performance as both the model and input sizes increase,
without the need for pretraining on large-scale datasets. While the ViM block enhances the
model’s spatial perception capabilities, VideoMamba extends this capability to 3D video
understanding by including spatio-temporal bidirectional scanning. By extending the ViM
block, VideoMamba achieves a significant elevation in processing speed and a reduction in
computational resource consumption without compromising performance. SpikeMba [93]
presents a pioneering multimodal video content understanding framework geared towards
the task of temporal video localization. The proposed framework amalgamates spiking
neural networks (SNNs) with SSM blocks in order to discern intricate relationships within
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multimodal input features. The spike saliency detector (SSD) leverages SNNs’ thresholding
mechanism to generate sets of saliency proposals, denoting highly pertinent or salient
instances in a video via spikes. Furthermore, based on SSM, the multimodal relevance
Mamba block (MRM) retains linear complexity within respect to input size, while increasing
long-range dependency modeling.

Multimodal large language models (MLLMs), on the basis of transformers, have
demonstrated significant success across diverse domains, albeit with secondary computa-
tional intricacy. In order to improve these models’ efficiency, Mamba has been included in
this work. In order to produce the most effective multimodal representation, Cobra [106]
combines an effective Mamba language model into the visual modality and investigates
several modal fusion strategies. It comprises three parts, including a visual encoder, a
projector, and a Mamba backbone. The visual encoder extracts the visual representation
of the image, while the projector adjusts the dimensions of the visual representation to
align with the Mamba language model’s tokens. The Mamba backbone consists of 64 iden-
tical basic blocks, maintaining connectivity and RMSNorm, and transforms the combined
visual and textual embeddings into target token sequences in an autoregressive manner.
VL-Mamba [42] comprises a pretrained visual coder, a randomly initialized MMC, and
a pretrained Mamba LLM. The visual coder takes the original picture and uses the ViT
architecture to create a series of patch features. Regarding the MMC, it introduces a 2D
visual selective scanning mechanism tailored for computer vision tasks, the state-space
model is designed for 1D sequential data with causality, while visual sequences from the
visual coder are 2D non-causal data. The study explored three multimodal connector
variants including MLP, VSS-MLP, and VSS-L2. Initially, input images are processed into
visual characteristics by the coder. After feeding these visual series to the MMC, the output
vectors that are produced are coupled with a tokenized text question and sent to the Mamba
LLM, which produces the appropriate response. Through the synergistic combination of
these components, the integration and processing of visual and verbal information are opti-
mized . ReMamber [50] addresses the referential image segmentation (RIS) task, including
identifying and dividing particular elements in a picture according to written descriptions.
The architecture combines Mamba with multimodal Mamba Twister blocks to simulate
image–text interactions explicitly through a distinctive channeling and spatial warping
mechanism, therefore fusing textual and visual features. After each Mamba Twister block,
ReMamber extracts intermediate features and passes them through a versatile decoder to
produce the segmentation mask at the end.

To tackle the unparalleled challenge of predicting temporal and spatial dynamics for
spatio-temporal forecasting in videos, the VMRNN cell [47] introduced a novel recurrent
unit designed to efficiently handle spatio-temporal prediction tasks. By recognizing the
challenges in processing extensive global information, the VMRNN cell integrates VSS
blocks with an LSTM architecture to leverage the long-sequence modeling abilities of VSS
blocks and the spatio-temporal representation capabilities of LSTM. This integration can
enhance the accuracy and efficiency of spatio-temporal predictions. The model performs
image-level analysis by segmenting each frame into patches, which are subsequently
flattened and processed through an embedding layer. Moreover, this process enables the
VMRNN layer to extract and predict spatio-temporal features effectively. HARMamba [40]
builds on ViT blocks for activity recognition and achieves superior performance, lowering
reducing computational and memory overhead in activity recognition tasks.

4.1.2. Low-Level Vision

In the realm of image super-resolution, meet more areas (MMA) [41] stands out as a
novel model designed for super-resolution tasks. By building on the ViM block, MMA aims
to enhance performance by activating a wider range of areas within images. On this basis,
MMA adopts several key strategies, including adding ViM to modules in MetaFormer style,
pre-training ViM on larger datasets, and employing complementary attention mechanisms.
MMA comprises the following three primary modules: shallow feature extraction, deep
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feature extraction, and high-quality reconstruction. By leveraging the ViM module, MMA
effectively models global information and further expands the activation region through
attention mechanisms.

Existing restoration backbones often confront a dilemma between global receptive
fields and efficient computation, hindering their application in practice, while Mamba has
a lot of promise for linear complexity long-range dependency modeling, which can also
offer an efficient a way to resolve the above dilemma. MambaIR [57] aimed to address the
problem by introducing local enhancement and channel attention mechanisms to enhance
the standard Mamba model. The methodology of the model mainly consists of three stages:
shallow feature extraction, deep feature extraction, and high-quality image reconstruc-
tion. Among them, the deep feature extraction stage utilizes multiple residual state space
blocks (RSSBs) for feature extraction, adding a VSS block before the channel attention
block designed in previous transformer-based restoration networks. SERPENT [58] has
a hierarchical architecture, processing input images in a multi-scale manner, including
processing steps such as segmentation, embedding, downsampling, and upsampling, and
introduces jump connections to facilitate information flow. Among them, the Serpent
block is the main processing unit, consisting of multiple VSS blocks stacked on top of each
other. Serpent reduces the computational effort, GPU memory demand, and model size
significantly, while preserving good reconstruction quality by combining the benefits of
transformers and convolutional networks. VmambaIR [32] put forward the OSS module
to comprehensively and efficiently model image features from six directions. In addition,
the omnidirectional selective scanning mechanism overcomes the unidirectional modeling
limitation of SSMs and accomplishes thorough pattern identification and modeling by
simulating the three-dimensional visual information flow.

UVM-Net [85] refers to a novel single-image defogging network architecture exhibiting
effective performance by merging the long-range dependency modeling capacity of SSMs with
the local feature extraction of convolutional layers. The method employs an encoder–decoder
network architecture, and the critical component is the ViM block, which leverages the long-
range modeling capability of SSMs through rolling the feature map over the channel domain.
Differently from U-Mamba [84] and Mamba-UNet [51], with long-range dependencies on the
non-channel domain, a different feature map dimension is established using the ViM block.

Images lose important frequency information under the influence of raindrops, affect-
ing the performance of visual perception and advanced visual tasks. FreqMamba [68] is
a novel image de-raining method combining Mamba modeling and frequency analysis
techniques to deal with the image de-raining problem. Specifically, FreqMamba contains
three branching structures, including spatial Mamba, frequency band Mamba, and Fourier
global modeling. Spatial Mamba processes raw image features to extract details and cor-
relations within the image. Frequency band Mamba employs wavelet packet transform
(WPT) to decompose the input features into spectral features in different frequency bands
and scan them over the frequency dimension. Fourier modeling, i.e., processing an input
using Fourier transform, captures the global degradation patterns that can affect an image.
Numerous tests have shown that FreqMamba works better than current state-of-the-art
techniques in terms of both visual and quantitative aspects.

Image deblurring is a traditional issue in low-level computer vision, with the goal
of restoring crisp, high-quality images from hazy input photographs. ALGNet [107] is
an efficient image deblurring network utilizing selective state-space models (SSM) to
aggregate rich and accurate features. The network consists of multiple ALGBlocks, each
of which contains a CLGF module that captures local and global features and a feature
aggregation module FA. The CLGF module captures long-range dependent features using
a SSM and employs a channel-attention mechanism to lower local pixel forgetting and
channel redundancy. Through weight calibration, the FA module highlights the significance
of local features in recovery.

The efficiency of Mamba makes a significant contribution to mitigating the high
computational complexity associated with training generation tasks. To address the change
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in generating long and diverse sequences with low latency, MambaTalk [74] implements a
two-stage modeling strategy with discrete motion priors to improve the quality of gestures
and employs a mamba block to enhance gesture diversity and rhythm through multimodal
integration. Motion Mamba [34] was introduced to construct a motion generation model
based on Mamba, leveraging an efficient hardware-aware design. Motion Mamba consists
of the following two main components: a hierarchical temporal Mamba (HTM) block for
temporal data handling; and for analyzing latent postures, a bidirectional spatial Mamba
(BSM) block. To maintain motion consistency across frames, the HTM block employs
several separate SSM modules within a U-Net architecture that is balanced. Meanwhile,
the BSM block enhances the accuracy of motion generation within a temporal frame by
processing latent poses bidirectionally. Diffusion state space odels (DiS) [88] substitute
the conventional U-Net backbone in diffusion models with SSM. All inputs are taken
into account by this system, including time, conditions, and tokens and noisy image
patches. To address the oversight of spatial continuity in the scanning scheme of existing
Mamba-based vision methods, Zigzag Mamba [31] was introduced as a straightforward,
plug-and-play solution inspired by DiT-style approaches. Essentially, it retains the scanning
scheme of plain Mamba but expands it from four to eight schemes by incorporating mirror
flipping schemes, as displayed in Figure 4f. Then, Zigzag Mamba was integrated using
the framework of the stochastic interpolant, forming ZigMa, to investigate the diffusion
model’s scalability using high-resolution visual datasets. GAMBA [111] introduces a
sequential network based on Mamba, allowing for linear sequence length scalability and
context-dependent reasoning. This architecture accommodates many Gaussians for the
3D Gaussian splatting process. To deal with the issue of the increase in quadratic memory
consumption with sequence length in traditional attention-based video generative diffusion
models, an SSM-based diffusion model [89] was introduced for generating longer video
sequences. Similarly to ViS4mer [80], the SSM-based diffusion model re-imagines the
attention modules within the conventional temporal layers of video diffusion models. It
can replace them with a ViM block designed to record the temporal changes of video
data and an MLP to improve model performance. Moreover, this innovative approach
significantly mitigates memory consumption for extended sequences.

In 3D vision tasks, the irregularity and sparsity of point cloud data present considerable
hurdles. While transformers exhibit promise in exploring point cloud data, due to their strong
global information modeling capability, but their computational complexity escalates signifi-
cantly as the input length increases. This limitation restricts their applicability, particularly in
long sequence models. SSPoint Mamba [110] employs embedded point blocks as inputs and
enhances an SSM’s capacity for global modeling by rearranging the structure to produce a
geometric scanning order that is more logical. Then, rearranged point tokens undergo process-
ing via multiple Mamba blocks in order to causally represent the structure of the point cloud,
showcasing effectiveness across different point cloud analysis tasks. 3DMambaComplete [83]
tackles the computational complexity challenges of point cloud completion by leveraging the
Mamba framework. The method involves downsampling incomplete point clouds, enhancing
feature learning with a Mamba encoder, predicting and refining hyperpoints, dispersing
hyperpoints to various 3D locations through learned offsets, and performing point deforma-
tion to generate complete point clouds. Structured state-space modeling optimizes shape
reconstruction by predicting hyperpoints and controlling the deformation at each hyperpoint
location. 3DMambaIPF [108] concentrates on denoising large-scale point cloud data. Integrat-
ing Mamba into a filtering module, Mamba-Denoise, can enable accurate and fast modeling of
long sequences of point cloud features. By employing iterative point cloud filtering and loss
functions, including reconstruction loss and differentiable rendering loss, it minimizes the
distance between noisy and real point clouds, optimizing visual boundaries, and enhancing
denoising realism. Point Cloud Mamba [109] combines local and global modeling frameworks
and introduced a consistent traversal serialization (CTS) approach to convert 3D point cloud
data into 1D point sequences, while preserving spatial adjacency. Moreover, it incorporates
point cuing and position encoding based on spatial coordinate mapping to improve Mamba’s
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efficiency in processing point sequences and injecting position information. Point Mamba [44]
addresses causality in SSM for point cloud data through introducing an octree-based ordering
strategy. Additionally, it integrates bi-directional selective scanning mechanisms into point
Mamba blocks to adjust sequence order dependency, thus enhancing its adaptability to point
cloud structures.

4.2. Medical Visual Mamba

Transformers [8] have exerted a deep influence on the field of medical imaging with
their ability to master complex data representations. They have led to notable advance-
ments across various imaging modalities, including radiography [112], endoscopy [113],
computed tomography (CT) [114], ultrasound images [115], and magnetic resonance imag-
ing (MRI) [116]. However, since most medical images are high-resolution and detailed,
transformer models typically require considerable computational resources, which scale
quadratically with image resolution.

Recently, the medical imaging field has experienced a surge in the development of
Mamba-based methodologies, particularly following the introduction of VMamba. The
current section provides detailed examples of these design choices, further dividing them
into 2D and 3D-based approaches based on the input type, as displayed in Table 8.

Table 8. Representative works of medical visual mamba.

Category Sub-Category Method Efficiency Code

2D

Segmentation

Mamba-UNet [51] - !

H-vmunet [55]
Memory 0.676
Params 8.97

!

Mamba-HUNet [59] - %

P-Mamba [117]

Inference speed 23.49
Memory 12.22
Params 183.37

FLOPs 71.81×109

%

ProMamba [78] Params 102 %

TM-UNet [60]
Params 14.86

Total Params 8.41
FLOPs 3.42

%

Semi-Mamba-UNet [52] - !

Swin-UMamba [61]
Params 28
FLOPs 18.9

!

UltraLight VM-UNet [62]
Params 0.049
GFLOPs 0.060

!

U-Mamba [84] - !

VM-UNet [63]
Params 34.62
FLOPs 7.56
FPS 20.612

!

VM-UNET-V2 [64]
Params 17.91
FLOPS 4.40
FPS 32.58

!

Weak-Mamba-UNet [76] - !

Radiation dose prediction MD-Dose [90]
Inference speed 18

Params 30.47
!

Classification
MedMamba [65] - !

MambaMIL [118] - !

Image reconstruction
MambaMIR

/MambaMIR-GAN
[56] - !

Exposure correction FDVM-Net [81] Inference speed 22.95 !
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Table 8. Cont.

Category Sub-Category Method Efficiency Code

3D

Segmentation

LMa-UNet [45] - !

LightM-UNet [86]
Params 1.87

FLOPs 457.62 × 109
!

SegMamba [71] Inference speed 151 !

T-Mamba [77] - !

Vivim [35] FPS 35.33 !

Classification CMViM [82] Params 50 !

Motion tracking
Motion-Guided Dual-Camera

Tracker [46]
- !

Backbone nnMamba [70]
Params 15.55

FLOPs 141.14
%

Image registration

VMambaMorph [53]

Inference speed 19

Memory 3.93

Params 9.64

!

MambaMorph [87]

Inference speed 27

Memory 7.60

Params 7.59

!

For efficiency, inference speed is in ms, memory is in Gb, Params is in M, and FLOPS is in G.

4.2.1. Two-Dimensional Medical Images

Mamba has exhibited impressive potential in 2D medical segmentation, as displayed
in Figure 6. Here, we discuss in detail some methods that explore the use of mamba to
model the global structure information of 2D medical segmentation.

Figure 6. An overview of Mamba models used for segmentation task in 2D medical images.

Most of the innovative architectures that have been developed are based on U-Net,
it has shown outstanding results in a variety of medical image segmentation challenges.
U-Mamba [84] refers to the first extension of the mamba model to the U-Net framework for
visual segmentation in biomedical imaging, addressing the challenge of long-range depen-
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dency modeling, which is captured by a hybrid CNNs-SSM block. Wu et al. introduced the
High-order Vision Mamba UNet (H-vmunet) [55], an improvement on U-Mamba, which
employs a high-order 2D-selective scan at each interaction to bolster the learning of local
features, while minimizing the incorporation of redundant information. Shortly after their
initial release, the team expanded their work by introducing the UltraLight VM-UNet [62].
This new iteration was developed through in-depth analysis of the critical factors affecting
parameter efficiency within the Mamba framework. This resulted in a significantly more
lightweight model with a mere 0.049M parameters and a computational efficiency of only
0.060 GFLOPs. Moreover, Mamba-UNet [51] combines the encoder–decoder architecture
of U-Net with the capabilities of Mamba and maintains spatial information at different
network scales based on jump connections. A Visual Mamba-based VSS block is used,
which utilizes linear embedding layers and deep convolution to extract features, while
downsampling and upsampling are facilitated by multiple merge operations and extension
layers for comprehensive feature learning.

Both Pyramid ViT (PVT) and Swin-Unet are pioneering hierarchical designs that apply
visual tasks and propose progressive shrinking pyramids and spatial-reduction attention.
By drawing inspiration from PVT and Swin-Unet, Ruan et al. introduced VM-UNet [63], a
foundational model for purely SSM-based segmentation in medical imaging. This model
shows the capabilities of SSMs in medical image segmentation and is made up of three
primary components: an encoder, a decoder, and skip connections. By building on their
previous work, the team proposed VM-UNET-V2 [64]. The purpose of the visual state space
(VSS) block was to obtain a greater range of contextual information. A semantics and detail
infusion (SDI) mechanism was also implemented to enhance the fusion of low-level and
high-level features. Mamba-HUNet [59], as another multi-scale hierarchical upsampling
network, incorporates the Mamba technique. Additionally, it preserves spatial information
by extracting hierarchical characteristics through the use of patch merging layers and visual
state space blocks. TM-UNet [60] introduced improvements to the bottleneck layer. This
architecture proposes triplet SSMs as the bottleneck layer, marking the first attempt to
combine spatial and channel data using a pure SSM technique. Current Mamba-based
models miss out on possible advantages, because they are mostly developed from scratch.
As a new Mamba-based model tailored explicitly for medical image segmentation tasks,
Swin-UMamba [61] leveraged the strengths of ImageNet-based pretraining.

Previous discussions have primarily concentrated on supervised learning methods, but
other supervisory approaches have also been explored. Semi-Mamba-UNet [52] combines
a visual Mamba-based U-shape encoder–decoder with a traditional CNNs-based UNet in
a semi-supervised learning framework. In order to enhance feature learning, especially
with regard to unlabeled data, it presents a self-supervised pixel-by-pixel contrastive
learning approach that makes use of two projectors. Weak-Mamba-UNet [76] refers to a
novel weakly-supervised learning structure for medical image segmentation, combining
CNNs, ViT, and the VMamba. It employs a cooperative, cross-supervisory approach
using pseudo labels for iterative network learning and improvement, with a focus on
scribble-based annotations.

Some segmentation approaches diverge from UNet architectures. P-Mamba [117]
presents a novel dual-branch framework for highly efficient left ventricle segmentation in
pediatric echocardiograms. This model features an innovative DWT-based encoder branch
equipped with Perona–Malik diffusion (PMD) blocks. Moreover, to bolster computational
and memory efficiency, P-Mamba adopts vision mamba layers within its vision mamba
encoder branch. PromptMamba [78] represents a groundbreaking integration of vision
Mamba and prompt technologies, marking a significant milestone as the first model to
leverage the Mamba framework for the specific task of polyp segmentation.

In addition, mamba has also expanded into research in 2D medical imaging beyond
segmentation, enhancing the precision and speed of image analysis to support diagnosis
and treatment planning. Classification is a vital and fundamental task in the area of analysis
of medical images. Yue et al. invented Vision Mamba for this purpose, which was also
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known as MedMamba [65]. They created a brand-new module called Conv-SSM, which
combines SSM’s long-range dependency capture with a convolutional layers’ local feature
extraction. This enables efficient modeling of medical images from different modalities.
Furthermore, MambaMIL [118] introduced the Sequence Reordering Mamba (SR-Mamba),
a model recognizing the order and distribution of instances in long sequences, to effectively
harness valuable embedded information. Since accurate and efficient clinical decision-
making depends on high-quality and high-fidelity medical pictures, image reconstruction
plays a critical role in improving diagnostic processes. Huang et al. [56] developed Mam-
baMIR, a model leveraging Mamba technology for the reconstruction of medical images,
alongside its advanced counterpart, MambaMIR-GAN, which incorporates generative
adversarial networks. Zheng et al. introduced FDVision Mamba (FDVM-Net) [81], a
frequency-domain-based structure that effectively corrects image exposure by restoring
endoscopic pictures’ frequency domain, as recorded endoscopic images often suffer from
exposure abnormalities. As shown in specialized areas, MD-Dose [90], a cutting-edge
diffusion model based on the Mamba architecture, was designed to accurately predict
radiation therapy dose distribution for thoracic cancer patients.

4.2.2. Three-Dimensional Medical Images

Three-dimensional image analysis in medical imaging enables more accurate and
comprehensive diagnoses by providing a detailed view of complex anatomical structures.
Gong et al. presented nnMamba [70], an innovative architecture designed for 3D medical
imaging applications, which integrates local and global relationship modeling via the
MICCSS (Mamba-In-Convolution with Channel-Spatial Siamese input) module. nnMamba
was tested on a comprehensive benchmark of six datasets for three crucial tasks, including
segmentation, classification, and landmark detection, showcasing its capability for long-
range relationship modeling at channel and spatial levels.

Precise 3D segmentation results can alleviate physicians’ diagnostic workloads in
disease management. SegMamba [71], a cutting-edge architecture, is the first technique
to use Mamba expressly for precise 3D medical imaging segmentation. It introduced a
tri-orientated Mamba (ToM) module for modeling 3D features from three directions and a
gated spatial convolution (GSC) module to enhance spatial feature representation before
each ToM module. By similarly employing a U-shaped architecture, LightM-UNet [86]
uses the residual vision Mamba layer alone in a Mamba-only method to model large-
scale spatial dependencies and extract deep semantic features in a lightweight framework.
Both LMa-UNet [45] and T-Mamba [77] built upon the foundation of SegMamba, with
improvements made to the Mamba block. A notable aspect of T-Mamba [77] was creating
a gate selection unit to adaptively combine two features in the spatial domain with one
feature in the frequency domain, whereas LMa-UNet [45] refers to its use of large windows,
which outperformed small kernel-based CNNs and small window-based Transformers
in local spatial modeling. This marks the first instance of incorporating frequency-based
features into the vision Mamba framework. The issue of long-term temporal dependency in
video scenarios was also addressed by developing a general framework called Vivim [35],
built on Mamba for video vision. Based on a specifically engineered temporal Mamba
block, this model effectively compresses long-term spatiotemporal data into sequences of
different scales.

In terms of image registration tasks, MambaMorph [87] introduced a groundbreaking
multi-modality deformable registration framework that enhances medical image analysis
by combining a Mamba-based registration module with an advanced feature extractor
for efficient spatial correspondence and feature learning. The VMambaMorph [83] model
further enhanced its VMamba-based block by incorporating a 2D cross-scan module,
redesigned to process 3D volumetric features in an efficient way.

In other domains, the Contrastive Masked Vim Autoencoder (CMViM) [82] tack-
les Alzheimer’s disease (AD) classification by incorporating vision Mamba (ViM) into a
masked autoencoder for 3D multi-modal data reconstruction. Regarding endoscopy skill
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evaluation, a low-cost motion-guided dual-camera tracker [34] provided reliable endoscope
tip feedback, and a Mamba-based motion-guided prediction head (MMH) merged visual
tracking with historical motion data based on a SSM.

4.2.3. Challenge

Here, we explore some promising future research directions for vision Mamba in
medical image analysis. Challenges include the need for pretraining on large datasets,
which could enhance the interpretability of Mamba-based medical imaging approaches,
as well as improve robustness against adversarial attacks. There is a need to design
efficient Mamba architectures suitable for real-time medical applications and to address the
challenges in deploying Mamba-based models in distributed settings.

4.3. Remote Sensing Image

The progress of remote sensing methods has sparked interest in high-resolution
Earth observation, with the transformer model providing an optimal solution through its
attention mechanism. Its quadratic complexity, however, presents problems with memory
consumption and modeling efficiency. The SSM addresses these issues by establishing
long-distance dependencies with near-linear complexity, and Mamba can further enhance
efficiency through hardware optimization and time-varying parameters. Representative
recent work is presented in Table 9.

Table 9. Representative mamba work in remote sensing image.

Category Method Highlight Efficiency Code

Pan-sharpening Pan-Mamba [73] channel swapping Mamba;
cross-modal Mamba

Params 0.1827
FLOPs 3.0088 !

Infrared Small
Target Detection MIM-ISTD [66] Mamba-in-Mamba

architecture

Params 1.16
FLOPs 1.01
Inference speed 30
Memory 1774

!

Classification
RSMamba [36] multi-path activation - !

HSIMamba [72] process data bidirectionally Memory 136.53 !

Image dense prediction RS-Mamba [69] omnidirectional selective scan - !

Change detection ChangeMamba [54] cross-scan mechanism - !

Semantic segmentation
RS3Mamba [67] dual-branch network

FLOPs 31.65
Params 43.32
Memory 2332

!

Samba [75] encoder-decoder architecture Params 51.9 !

For the Efficiency, Inference speed is in ms, Memory is in MB, Params is in M, and FLOPS is in G.

By drawing inspiration from TNT, Chen et al. introduced a new Mamba-in-Mamba
(MiM-ISTD) [66] architecture to enhance the efficiency of infrared tiny target detection.
In the proposed approach, local patches are considered “visual sentences”, while outer
Mamba is utilized to extract global information. Regarding remote sensing image classi-
fication, RSMamba [36] features a dynamic multi-path activation mechanism to improve
Mamba’s capability for handling non-causal data. RS-Mamba [69] is adept at handling
very-high-resolution (VHR) remote sensing images for dense prediction tasks, built on an
omnidirectional selective scan module to model images from various angles comprehen-
sively. In remote sensing research, it is challenging to classify hyperspectral images because
of their high-dimensional complicated data. HSIMamba [72] was designed with a module
dedicated to spatial analysis, including multiple spectral bands and three-dimensional
spatial structures to take advantage of the rich multidimensional nature of the hyperspec-
tral data and to improve the feature representation capability using linear transformations
and activation functions. Through the use of forward and backward spectral dependence
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capture, HSIMamba uses a bi-directional processing approach that enhances the network’s
capacity to represent and use spectrum information. In addition, Pan-Mamba [73] of-
fers a novel network in the pansharpening space and modifies two essential elements,
channel switching Mamba and cross-modal Mamba, both of which are skillfully designed
for effective cross-modal information fusion and interchange. For the first time, Change-
Mamba [54] investigated the Mamba architecture’s potential for distant sensing change
detection (CD) activities. For binary change detection (BCD), semantic change detection
(SCD), and building damage assessment (BDA) tasks, the MambaBCD, MambaSCD, and
MambaBDA network frameworks were built. Three spatio-temporal connection modeling
mechanisms were proposed to completely learn spatio-temporal features. ChangeMamba
employs selective state-space modeling to capture long-range dependent features and
maintains linear computational complexity while providing a visual Mamba architecture
to learn global spatial context information. Semantic segmentation of remotely sensed
images is crucial for geoscientific research. RS3Mamba [67] is a novel two-branch model
developed for this purpose. The model incorporates visual state space (VSS) models,
particularly the Mamba architecture, aiming to improve long-range relational modeling
capabilities. A co-completion module (CCM) was proposed for feature fusion. The ex-
perimental results demonstrated that RS3Mamba had significant advantages over CNNs
and transformer-based approaches. With an encoder–decoder architecture, Samba [75]
is a revolutionary semantic segmentation system designed especially for high-resolution
remote sensing images. Samba blocks act as encoders to extract multilevel semantic infor-
mation, and Mamba blocks adopt SSMs for capturing global semantic information with
linear computational complexity.

5. Conclusions

Mamba is gaining prominence in computer vision for its capability for managing long-
range dependencies and its significant computational efficiency relative to transformers. As
detailed in recent surveys, various methods have been developed to harness and investigate
Mamba’s capabilities, reflecting ongoing advancements in the field.

We began by discussing the foundational concepts of SSM and Mamba architectures,
followed by a comprehensive analysis of various competing methodologies across a spec-
trum of computer vision applications. Our survey encompassed state-of-the-art Mamba
models designed explicitly for backbone architectures, high/mid-level vision, low-level
vision, medical imaging, as well as remote sensing. Moreover, this survey is the first review
paper on the recent developments in SSMs and Mamba-based techniques, explicitly con-
centrating on computer vision challenges. Our goal was to generate more interest among
the vision community in utilizing the possibilities of Mamba models, finding solutions to
their current limitations.

5.1. Challenges and Limitations

Currently, Mamba has some limitations that vision Mamba aims to address. The
original Mamba’s one-dimensional selective scanning struggles to capture spatial informa-
tion in high-dimensional visual data. While the existing methods attempt to mitigate this
issue with enhanced scanning mechanisms, they are still insufficient and require further
exploration to effectively retain spatial relationships within the Mamba framework. The
use of multiple scanning directions and bi-directional approaches can result in significant
redundancy and increased computational demands, reducing Mamba’s linear complex-
ity advantages. Efficient computation strategies are necessary to improve performance,
without excessive resource consumption. Originally designed for causal sequential data,
Mamba’s selective scanning struggles with non-causal visual data, indicating a need for
further refinement to adapt Mamba for visual data processing. Gradient vanishing and
exploding are persistent challenges in deep learning, which is exacerbated as datasets grow
larger. The Mamba architecture encounters stability issues that need addressing to bolster
its robustness and reliability.
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Achieving trustworthiness is an ongoing concern. Understanding Mamba’s effec-
tiveness in visual tasks poses a significant challenge, requiring a deeper theoretical and
empirical grasp of its mechanisms compared to models such as RNNs, CNNs, and ViTs.
Improved interpretability will enable more effective application and optimization across
diverse visual tasks. Mamba’s hidden states tend to accumulate domain-specific informa-
tion, which can hinder generalization. Its reliance on 1D scanning strategies may introduce
biases specific to certain domains, and current techniques often fall short in ensuring
domain-agnostic processing. Enhancing Mamba’s ability to generalize and its robustness,
especially in adversarial contexts, presents a critical challenge.

5.2. Future Directions

Mamba represents an exciting and emerging direction with numerous avenues for
exploration. Here, we highlight several promising directions:

Innovative Scanning Mechanisms: To harness the full potential of visual Mamba, new
scanning schemes are needed. These schemes should effectively address the non-causal
nature of visual data and capture spatial information across multiple dimensions. Devel-
oping more sophisticated scanning mechanisms will be crucial for improving Mamba’s
performance in visual tasks.

Hybrid Architectures: Combining Mamba with other architectures like transformers
could mitigate some of its inherent limitations. Hybrid models that integrate Mamba with
self-attention mechanisms or CNNs may leverage the strengths of each approach. However,
careful design is necessary to ensure these hybrid models do not conflict with their sequence
modeling methods and can effectively capture comprehensive and detailed information.

Large-Scale Models and Data Efficiency: As large models become the norm, scaling
Mamba while maintaining its computational efficiency is essential. Developing large-scale
Mamba models that retain their advantages in sequence modeling could lead to powerful
visual foundation models. Additionally, improving data efficiency and enabling optimal
performance without reliance on extensive datasets will broaden Mamba’s applicability in
various tasks.

Integration with Other Methodologies: Mamba can be integrated with other method-
ologies, such as multi-modal information processing, diffusion models, domain general-
ization, and visual-language models. Exploring how Mamba can synergize with these
methods will expand its utility and effectiveness in complex tasks across multiple domains.

Computation Efficiency: Enhancing the computational efficiency of Mamba models, espe-
cially for vision tasks, is a promising research direction. Developing hardware-aware algorithms
tailored for visual Mamba models can reduce computational overheads, while maintaining or
improving performance, making them more practical for real-world applications.
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