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Abstract

The subject of this thesis lies at the intersection of free probability, Hurwitz theory and
topological recursion. It is based on the following collaborations:

[BCGF+23] Higher order free probability vs. topological recursion: We derive functional
relations for moment and cumulant generating series in higher order free probability.
This solves an open problem posed about 15 years ago. We extend the combinatorics of
higher order freeness and propose a new extension of free probability theory. Our results
led also to new insights in topological recursion.

[HvIL22] Quantum curves and monotone Hurwitz numbers: We introduce monotone and
strictly monotone Hurwitz numbers over an arbitrary base curve and derive a differential
equation for their partition function, and we study the semiclassical limit of the quantum
curve. Surprisingly, we recover the spectral curve for the Möbius function of higher order
free probability. The latter emphasizes the relation between the two subjects and led to
the breakthrough in [BCGF+23].
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Abstrakt

Das Thema dieser Arbeit ist in den Gebieten der freien Wahrscheinlichkeitstheorie, Hur-
witz Theorie und topologischer Rekursion angesiedelt. Sie basiert auf den folgenden
Kollaborationen:

[BCGF+23] Freie Wahrscheinlichkeit in höherer Ordnung und topologische Rekursion:
Wir leiten funktionale Relationen für Momenten und Kumulanten erzeugende Funk-
tionen in der freien Wahrscheinlichkeitstheorie in höheren Ordnung her. Dies löst ein
seit ca. 15 Jahren offenes Problem. Wir formulieren eine Erweiterung der freien Un-
abhängigkeit und ihrer Kombinatorik. Unsere Resultate führen zu neuen Erkenntnissen
in der topologischen Rekursion.

[HvIL22] Quantenkurven und monotone Hurwitz-Zahlen: Wir führen Hurwitz Zahlen
über Kurven von höherem Geschlecht ein und leiten eine Differentialgleichung für ihre
Partitionsfunktionen her und bestimmen den semiclassical limit der Quantenkurve. Über-
raschenderweise finden wir eine spektrale Kurve für die Möbius Funktion der freien Wahr-
scheinlichkeit in höherer Ordnung. Dieses Resultat bekräftigt den Zusammenhang der
Gebiete und führte zu den Untersuchungen in [BCGF+23].
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möchte ich mich bei meinen Eltern, Martina und Olaf bedanken. Ohne eure Liebe und
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ohne deine Unterstützung und Liebe nicht vorstellen.

vi







Contents

Introduction 1

1 Preliminaries 15
1.1 Free probability and random matrices . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Free Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.2 Combinatorics of free probability and free cumulants . . . . . . . . 19

1.1.3 Limiting eigenvalue distributions . . . . . . . . . . . . . . . . . . . 26

1.1.4 Infinitesimal freeness . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2 Fock spaces and the boson-fermion correspondence . . . . . . . . . . . . . 31

1.2.1 Symmetric functions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.2 Bosonic Fock space . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.2.3 Fermionic Fock space . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2.4 Boson-fermion correspondence . . . . . . . . . . . . . . . . . . . . 41

1.3 Monotone Hurwitz numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.4 Topological recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Higher order and surfaced free probability 63
2.1 Introduction and prior work . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.1.1 Motivation from random matrices . . . . . . . . . . . . . . . . . . 68

2.1.2 Multiplicative functions on PS . . . . . . . . . . . . . . . . . . . . 72

2.1.3 Proof of Theorem 2.1.5 . . . . . . . . . . . . . . . . . . . . . . . . 76

2.1.4 Functional relations beyond n = 2 . . . . . . . . . . . . . . . . . . 82

2.2 Extension to higher genus . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
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Introduction

This thesis summarizes results obtained by the author within the scope of the two
projects

i) Random matrices and Hurwitz numbers,

ii) Topological recursion and free probability.

Those projects constitute the projects A14 of the SFB-TRR 195 “Symbolic tools in
mathematics and their applications”, project i) during the first and ii) during the second
funding period. The subject of this thesis sits at the intersection of the areas free
probability, Hurwitz theory and topological recursion. We start by providing background
on each topic and afterward explain the results of the author.

Free probability

Free probability was introduced by D. V. Voiculescu in the ’80s with the intention to
tackle the famous isomorphism problem of the free group factors [Voi85]. It constitutes a
noncommutative analogue of classical probability theory and thus allows a probabilistic
study of noncommuting random variables. A main feature in classical probability is the
notion of independence, and free probability admits an analogue called free independence.
Despite that free independence is quite different from the classical notion, the theories
show a lot of similarities.

Since then, free probability gained traction from various other fields such as math-
ematical physics and combinatorics. It even found interest in applied sciences such as
the study of wireless networks. Most notable is the relation to random matrices discov-

ered by Voiculescu in [Voi91]. He showed that if XN = (X
(1)
N , . . . , X

(d))
N ) are unitarily

invariant random matrices in a general position, then the limit of the joint moments

φ

((
X

(i1)
N

)k1
. . .
(
X

(ir)
N

)kr)
= lim

N→∞
E

[
tr

((
X

(i1)
N

)k1
. . .
(
X

(ir)
N

)kr)]
can be computed from the limits of the moments of individual matrices E[tr(X

(i)
N )]. This

computation rule is precisely the notion of free independence in free probability theory.
A noncommutative probability space (A, φ) consists of a unital algebra A over C and

a unital linear functional φ : A → C. By Voiculescu’s discoveries, we may think of the
algebra as the limit of the random matrix ensemble and the functional to be the limit
of E ◦ trN . The notion of freeness is defined as follows. Let (A, φ) be a noncommutative
probability space and A1,A2 ⊆ A unital subalgebras. We say A1 and A2 are freely
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Introduction

independent or simply free, if whenever we take n ∈ N and elements a1, . . . , an ∈ A1 and
a′1, . . . , a

′
n ∈ A2 with φ(ai) = 0 = φ(a′i) for i = 1, . . . , n, then we have

φ(a1a
′
1 . . . ana

′
n) = 0.

Loosely speaking, the expectation of an alternating product of centered elements van-
ishes. The notion for the case of more than two algebras is defined similarly, i.e. the
expectation of a product of centered elements vanishes if elements have only neighbours
from different algebras. Thus, freeness allows for an effective computation of the dis-
tribution of, for example, the sum or the product of two random variables which are
free from each other. In the case where the random variables admit a distribution given
by probability measures µ, ν, this corresponds to the free additive convolution µ ⊞ ν
([Voi86]) and free multiplicative convolution µ⊠ ν ([Voi87]). These are analogues of the
convolution µ ∗ ν in classical probability theory.

The main results of this thesis are formulas that generalize the relation between
Voiculescu’s R-transform and the Cauchy transform [Voi86]. Consider a probability
distribution µ of a random variable, then its Cauchy transform is the analytic function

Gµ : C+ → C−, Gµ(z) =

∫
R

dµ(t)

z − t
.

If µ is compactly supported, it admits an expansion at ∞:

Gµ(z) =

∞∑
n=0

mn

zn+1
, mn =

∫
R
tndµ(t). (0.0.1)

Note that the coefficients are precisely the moments of the probability measure µ, i.e.
Gµ is a generating function of the moments of µ. Then Voiculescu introduced the R-
transform, it is determined by the R-transform formula

Rµ(Gµ(z)) +
1

Gµ(z)
= z. (0.0.2)

He proved the important fact that the R-transform linearizes the free additive convolu-
tion

Rµ⊞ν(z) = Rµ(z) + Rν(z).

Thus it does not only provide an effective tool to compute the distribution of the sum
of two free random variables, it is also the noncommutative analogue of the logarithm
of the Fourier-transform which linearizes µ ∗ ν.

In 1994 R. Speicher discovered that many of Voiculescu’s results can be recovered from
a purely combinatorial standpoint [Spe94]. Speicher introduced the moment-cumulant
formalism for free probability via multiplicative functions on the lattice of noncrossing
partitions. First, note the combinatorial flavour of freeness by considering the following
example. Let {a1, a2} be free from {a′1, a′2}. Then they satisfy the following relation:

2



φ(a1a
′
1a2a

′
2) = φ(a1a2)φ(a′1)φ(a′2) + φ(a1)φ(a2)φ(a′1a

′
2) − φ(a1)φ(a2)φ(a′1)φ(a′2).

a1 a′1 a2 a′2 a1 a′1 a2 a′2 a1 a′1 a2 a′2

Example of the free computation rule.

Note that on the right-hand side there is no term of the form φ(a1a2)φ(a′1a
′
2), since

the corresponding partition has a crossing. Speicher put free probability theory
in the framework of the incidence algebra formalism of Rota and developed a theory
of cumulants in analogy to the classical case. One can interpret the functional φ as
a multiplicative function on the lattice of noncrossing partitions and define the free
cumulants κn via convolution with the Möbius function of the lattice. The relations of
this convolution can be written down explicitly:

φ(a1) = κ1(a1)

φ(a1a2) = κ2(a1, a2) + κ1(a1)κ1(a2)

φ(a1a2a3) = κ3(a1, a2, a3) + κ2(a1, a2)κ1(a3) + κ2(a1, a3)κ1(a2)

+ κ2(a2, a3)κ1(a1) + κ1(a1)κ1(a2)κ1(a3)

...

(0.0.3)

The formulas in (0.0.3) actually express φ(a1 . . . an) as sums over noncrossing partitions
on n points. E.g., for n = 3, the terms on the right-hand side of (0.0.3) correspond to

+ + + + .

One of the main features of κn : An → C is the fact that they capture the notion
of freeness particularly well. If two subalgebras A1,A2 are free, then κn(a1, . . . , an)
vanishes if not all ai come from the same algebra. This fact remains true for more than
two algebras free from each other. The latter is called the vanishing of mixed cumulants.
Another important discovery is that the combinatorial moment-cumulant relations are
equivalent to Voiculescu’s R-transform formulas. Let a ∈ A be a noncommutative
random variable. If we define the formal power series

G(x) =
1

x
+

∞∑
n=1

φ(an)

xn+1
, R(x) = 1 +

∞∑
n=1

κn(a, . . . , a)xn−1,

then the relations (0.0.3) are equivalent to

R(G(x)) +
1

G(x)
= x.

Note, that by this observation, Speicher gave Voiculescu’s R-transform the meaning
of a generating function similar to (0.0.1). Further, note that the vanishing of mixed
cumulants correspond to the fact that the R-transform linearizes the free convolution.

3



Introduction

Higher order free probability

In a series of papers [MS06, MŚS07, CMSS07], B. Collins, J. Mingo, P. Śniady and R.
Speicher extended free probability to second and higher order free probability theory.
Their goal was to study more refined questions in random matrix theory. For exam-
ple, second order free probability describes the fluctuations of the eigenvalues around
their limit. The information regarding the fluctuations is described by the asymptotic
behaviour of the covariances

cov(Tr(Xr1
N ),Tr(Xr2

N )), (0.0.4)

where Tr is the unnormalized trace. They add an abstract framework to the random
matrix perspective, extending the theory of Voiculescu. For example, they introduce a
free moment-cumulant formalism and a notion of freeness, which captures the limiting
behaviour of the quantities (0.0.4). This extended theory is called second order free
probability. More generally, they introduce n-th order contributions by the asymptotic
behaviour of

kn(Tr(Xr1
N ), . . . ,Tr(Xrn

N )),

where kn are classical cumulants. Thus, the notion of a higher order noncommutative
probability space (A,φ) consists of a unital algebra A and a family φ = (φn)∞n=1 of
functions φn : An → C, these correspond to the limits of the higher order classical
cumulants of traces.

Similarly to the work [Spe94], Collins, Mingo, Śniady and Speicher develop a combi-
natorial formalism by multiplicative functions. The functions are not just defined on the
set of noncrossing partitions, but on more complicated objects called partitioned per-
mutations. As the name indicates, the latter are tuples (V, π), consisting of a partition
V and a permutation π ∈ S(d) such that the cycles of π are partitioned by V.

Visualization of the partitioned permutation ({{1, 4}, {2, 3, 5}}, (1, 4)(2, 3)(5)).

Despite not being a lattice, the set of partitioned permutations admits a theory of
multiplicative functions similar to the noncrossing partitions. This setting is indeed
a generalization of [Spe94] and recovers the first order theory. The higher order free

4



cumulants are functions

κr1,...,rn : Ar1 ×Ar2 × · · · × Arn → C.

We can state the moment-cumulant relations explicitly:

φ1,1[a1; a3] := φ2(a1, a2) = κ1,1(a1; a2) + κ2(a1, a2)

φ2,1[a1, a2; a3] := φ2(a1a2, a3) = κ2,1(a1, a2; a3) + κ1(a1)κ1,1(a2, a3) + κ1(a2)κ1,1(a1, a3)

+ κ1(a1)κ2(a2, a3) + κ1(a2)κ2(a1, a3) + 2κ3(a1, a2, a3)

...

Similar to first order, the right-hand side can be seen to be a sum over certain planar
diagrams. In order n, they are given by connecting n circles with each other. Unlike
in first order, the diagrams have two different kinds of possible connections: One cor-
responding to the partition part and one corresponding to the permutation part of a
partitioned permutation.

Graphical representation of κ1,1 (left) and κ2 (right).

One of the main results of [CMSS07] is an analogue of the functional relation for the
generating functions between second order moments and cumulants. For a ∈ A, we
define

G(x1, x2) =

∞∑
r1,r2=1

mk1,k2

1

xr11

1

xr22
, R(x1, x2) =

∞∑
r1,r2=

κr1,r2x
r1−1
1 xr2−12

where

mr1,r2 = φ2(a
r1 , ar2), and κr1,r2 = κr1,r2(a, . . . , a︸ ︷︷ ︸

r1

; a, . . . , a︸ ︷︷ ︸
r2

),

then it holds

G(x1, x2) = G′(x1)G
′(x2)

(
R(G(x1), G(x2)) +

1

(G(x1) −G(x2))2

)
− 1

(x1 − x2)2
.

Although the combinatorial description for higher order free cumulants is well-developed,
the authors of [CMSS07] have not been able to find analogous functional relations beyond

5



Introduction

n = 2. The reason is that the proof of such relations relies on a tedious case by case
analysis of combinatorial diagrams, and their complexity increases with the number of
circles. Still, a theory of higher order freeness is developed in [CMSS07], it is defined
by the vanishing of mixed higher cumulants. Further, it is proven that this new notion
of free independence is sensible: Elements in C ∼= 1AC are free from everything and
freeness does not depend on the choice of generators.

The main results of [BCGF+23] presented in this thesis are the derivation of the
missing functional relations for n ≥ 3 and a non-planar extension of higher order free
probability theory of [CMSS07].

Relating the combinatorics of higher order free probability with monotone Hurwitz
numbers was crucial for the success of [BCGF+23].

Monotone Hurwitz Numbers

Hurwitz numbers have been studied first by A. Hurwitz [Hur01]. They count the number
of ramified coverings of the Riemann sphere CP 1. Hurwitz already discovered that the
covers can be described by factorizations in the symmetric group. A ramified genus g
cover of degree d with ramification point over ∞ and only simple ramification points
elsewhere is given by a factorization

τ1 . . . τrσ = id

in the symmetric group S(d). The τi are transpositions for i = 1, . . . , r and describe the
simple ramification points where two sheets meet. The number r = 2g−2+n+d is given
by the Riemann-Hurwitz formula. On the other hand, the cycle type of σ determines the
ramification at infinity, i.e. how the d sheets meet above ∞. The past two decades have
seen numerous discoveries linking Hurwitz numbers to diverse disciplines in mathematics,
including operator theory, integrable systems, random matrix models, tropical geometry,
and many more.

CP 1
• • • • •

∞p1 p2 p3 p4

Schematic illustration of a ramified cover of degree 4:
Over ∞ three sheets meet, which is not a simple ramification;

Over p1, p2, p3, p4 two sheets meet, these are simple ramification points.

6



For this thesis the most important type of Hurwitz numbers are the monotone Hurwitz
numbers, which count factorizations such that the τi satisfy an additional monotonicity
condition. These types of Hurwitz numbers have been discovered as coefficients in the
expansion of the Harish-Chandra-Itzykson-Zuber-Integral integral by I. P. Goulden, M.
Guay-Paquet and J. Novak [GGPN13, GGPN14]. They are also related to the Wein-
garten function of [Col03], which was used to motivate the introduction of higher order
free cumulants in [CMSS07, Theorem 4.4]. This relation has been rediscovered by G.
Borot and E. Garcia-Failde in the study of matrix models for ordinary and fully simple
maps [BGF20] in the context of topological recursion.

In general, Hurwitz numbers are an active research topic in topological recursion.
Many kinds of Hurwitz numbers satisfy the topological recursion [BEMS11, DLN12,
DDM17, BKW23]. Within the scope of the first project “Random matrices and Hur-
witz numbers” of the SFB TRR-195 the author studied generalizations of monotone
Hurwitz numbers and their relation to topological recursion and free probability lead-
ing to the publication [HvIL22]. There the authors noticed that the Möbius function
of higher order free probability is given by alternating monotone Hurwitz numbers and
satisfy topological recursion. During this time G. Borot, S. Charbonnier, N. Do and
E. Garcia-Failde [BCDGF19] proved that the generating functions of ordinary and fully
simple maps are related via monotone Hurwitz numbers. These new insights drew the
attention of the author of this thesis more towards the study of the connection between
the moment-cumulant formalism in free probability and the x− y duality in topological
recursion.

Topological recursion

The Chekhov-Eynard-Oratin (CEO) topological recursion is a recursive procedure that
produces meromorphic n-forms ωg,n on a Riemann surface. The input data (Σ, x, y, B)
consists of

i) a Riemann surface Σ,

ii) meromorphic functions x, y : Σ → C with prescribed pole behaviour.

iii) a bi-differential B on Σ × Σ with prescribed pole behaviour.

From this input data, one defines the initial values ω0,1 = ydx and ω0,2 = B, then
the topological recursion computes ωg,n by recursion on −χ = 2g − 2 + n. We do not
state the explicit formula here, but let us note that it can be schematically represented
by topological surfaces. The differential form ωg,n is represented by a surface of genus
g and n boundaries. It is computed by terms represented by smaller negative Euler
characteristic −χ and by gluing pairs of pants to the latter.

7



Introduction

Schematic representation of topological recursion.

This formula was first discovered in random matrix theory [CEO06] and later for-
mulated as an independent theory [EO07]. Surprisingly, the same recursive formula
has been discovered to compute different invariants from various areas in mathemat-
ics and mathematical physics. Some examples are Hurwitz numbers [BM07, BEMS11],
Gromov-Witten invariants [EO15] and knot invariants [BE15, DBPSS17]. Furthermore,
the invariants ωg,n satisfy a lot of nice properties [Eyn16]. The most interesting one

for us is called symplectic invariance. Two spectral curves (Σ, x, y, B), (Σ̃, x̃, ỹ, B̃) are
called symplectically equivalent if there is a map (x, y) 7→ (x̃, ỹ) compatible with the ini-
tial data, such that dx∧ dy = dx̃∧ dỹ. In this case, it is expected that the invariants of
both curves are related to each other. The most interesting transformation has been the
so-called x− y swap that interchanges the roles of x and y, that is x̃ = y and ỹ = x (see
[EO13]). This transformation has been intensely studied by G. Borot and E. Garcia-
Failde [BGF20]. They discovered a combinatorial example of the x − y duality that
allowed for deeper insights into this mysterious transformation. More precisely, they
discovered that the x−y transformation of the spectral curve of ordinary maps computes
another type of maps, called fully simple maps. In addition, they found a remarkable
relation between the generating functions of ordinary and fully simple maps. Let us de-
note by W1(x) and X1(w) the generating series of ordinary and fully simple discs and by
W2(x1, x2) and X2(w1, w2) the generating series of ordinary and fully simple cylinders.
Then

W1(X1(x)) = x

and

W2(x1, x2) = W ′(x1)W
′(x2)

(
X2(W (x1),W (x2)) +

1

(W (x1) −W (x2))2

)
− 1

(x1 − x2)2
,

These are exactly the relations of Voiculescu and Speicher and of Collins, Mingo, Śniady,
Speicher in free probability. These developments motivated the author to shift his focus
from “Random matrices and Hurwitz numbers”, towards the connection of free proba-
bility to topological recursion. The goal of the project “Topological recursion and free
probability” within the SFB TRR-195 was to establish a concrete connection of the
moment-cumulant formalism of free probability and the x− y duality of topological re-
cursion. This was achieved in collaboration with researchers from topological recursion
in the main publication [BCGF+23].
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Outline of the main results

Free probability and topological recursion

Chapter 2 is the main part of this thesis, and explains the derivation of the higher order
functional relations between the moment and cumulant generating functions. This solves
an open problem posed in [CMSS07]. The chapter is based on the results of the author
of this thesis and his coauthors in [BCGF+23].

We start the chapter by explaining higher order freeness and its origin in [CMSS07]. In
particular, we explain the combinatorics of partitioned permutations and the theory of
multiplicative functions on the set of partitioned permutations. We conclude Section 2.1
with a discussion of the proof of [CMSS07] for the second order functional relations.
Afterward, in Section 2.4, we explain the obstacles of deriving the functional relations
beyond second order. In Section 2.2, we explain the extension of the original theory to
a higher genus. This idea for this first step is based on discussions between J. Mingo
and the author of this thesis, during a stay in Montreal within the scope of the program
“New Developments in Free Probability and Applications” at CRM. The idea was to
add higher genus contributions to the framework of [CMSS07], by allowing non-planar
contributions into the combinatorics of partitioned permutations. The key point here is
to remove the planarity condition in the product of partitioned permutations. However,
in this setting, it is important to keep track of the non-planar contributions when dealing
with multiplicative functions. This is done by extending the range of the functions from C
to C[[ℏ]]. The formal parameter ℏ controls the higher genus contributions. This extended
theory still evolves alongside the first order theory of [Spe94]. In particular, we can
define extended cumulant functions via convolution, these also take values in C[[ℏ]] now.
At the same time, the author studied certain Hurwitz numbers within the scope of the
publication [HvIL22]. During this project, he realized that the values of the extended
Möbius function agree with signed monotone Hurwitz numbers, this fact is discussed in
Section 2.2.1. This link put even more emphasis on the connection of free probability
and topological recursion.

Meanwhile, Borot and Garcia-Failde studied ordinary and fully simple maps to explore
the x − y duality in topological recursion. They discovered that their generating series
satisfy the same functional relations as the moments and cumulants in second order free
probability [BGF20]. Then in [BCDGF19] it has been discovered that the generating
series of ordinary and fully simple maps with prescribed boundary conditions are related
via monotone Hurwitz numbers,

Map(λ) =
∑
µ⊢|λ|

H<(λ, µ)FSMap(µ). (0.0.5)

These observations together with the results of [HvIL22] lead the author of this thesis
to prove that an analogue of (0.0.5) in the extended higher order free probability setting
is equivalent to the higher genus moment-cumulant relations. A discussion during the
workshop “Noncommutative geometry meets topological recursion” in Münster regarding
this result was the starting point of the collaboration [BCGF+23]. We call (0.0.5) the

9
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master relation and show that it can be reformulated in multiple ways. We discuss
its avatars in Section 2.5.1. In particular, it has a nice description in the Fock space
formalism of Bychkov, Dunin-Barkowski, Kazarian and Shadrin in the earlier papers
[BDBKS22, BDBKS23]. S. Shadrin is part of the collaboration [BCGF+23] bringing
this expertise to the project. Concretely, the master relation can be formulated as an
operator equation for partition functions in the bosonic Fock space, involving an operator
D which is related to Hurwitz numbers. We discuss the relation between multiplicative
functions on the set of partitioned permutations and partition functions in the bosonic
Fock space in Section 2.3. The following theorem is a refined and extended version of
the original results of the author.

Theorem (Theorem 2.5.2, [BCGF+23]).
Consider two topological partition functions Zφ, Zκ (or equivalently multiplicative func-
tions φ, κ) and d ∈ N. The following four properties are equivalent:

i) Zφ(λ) = zλ
∑

ν⊢dH
<(λ, ν)Zκ(ν) holds for any λ ⊢ d;

ii) φ = ζℏ ⊛ κ holds between functions on PS(d);

iii) Zκ(ν) = zν
∑

λ⊢dH
≤(ν, λ)Zφ(λ) holds for any ν ⊢ d;

iv) κ = µℏ ⊛ φ holds between functions on PS(d).

Besides, the property Zφ = DZκ is equivalent to any of these conditions simultaneously
for all d > 0.

This is one key element in the derivation of the functional relations of higher order
free probability and in understanding the relation between topological recursion and free
probability.

Let us now state the functional relations that answer the problem posed in [CMSS07]
about 15 years ago.

Theorem (Theorem 2.4.1).
Let φ, κ : PS → C be multiplicative functions on PS with values in C, satisfying the
moment-cumulant relations φ = ζ∗κ. Then under the change of variables xi = wi/C(wi)
and for n ≥ 3, we have:

Mn(x1, . . . , xn) =
∑

s1,...,sn≥0

∑
T∈G0,n(s+1)

n∏
i=1

O⃗∨ri(wi)
′∏

I∈I(T )

C#I(wI).

The formula expresses the moment generating function M(x1, . . . , xn) as a sum over
bicoloured labelled trees G0,n with prescribed valencies. The coloured vertices correspond
to operator weights that are applied to the cumulant generating functions C(x1, . . . , xk)
with k ≤ n. We explain the formula in detail and provide examples in Section 2.4.
It is also important to note that this formula only includes genus zero, and therefore
solves the problem posed in [CMSS07]. Actually, it is a special case of a more general
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formula including higher genus contributions. Thus, we do not only solve the problem
posed by Collins, Mingo, Śniady and Speicher, but also the extension of the problem in
higher genus. The latter is discussed in Section 2.4 too. The relations are derived via
techniques developed in [BDBKS22] and the calculations we present in Section 2.5 are
merely rewriting the proof of [BDBKS23]. The derivation of the formula in Theorem 2.4.1
is split into three parts. First, we prove Theorem 2.5.2 in Section 2.5.1. From there
we proceed to present the techniques of [BDBKS22, BDBKS23] to obtain the general
formula including higher genus in Section 2.5.2. We conclude by extracting the genus
zero part of the general formula to obtain Equation (2.7.6) in Section 2.5.3.

In analogy to [CMSS07], the new extended functional relation and the extended mul-
tiplication for partitioned permutations can be used to introduce a more general version
of free probability theory. We call it surfaced free probability ; it is inspired by [CMSS07,
Appendix 9]. The combinatorial framework is given by surfaced permutations, these are
partitioned permutations endowed with a genus. All the notions of [CMSS07] can be
extended. Naturally, the introduction of new cumulants comes with a notion of freeness
via vanishing of mixed free cumulants. We call the latter (g, n)-freeness and show that
this definition is reasonable:

• In Section 2.6.4 we show that constants are free from everything and that the
notion does not depend on the choice of generators, i.e. freeness of sets carries
over to the algebras generated by the sets.

• In Section 2.6.5 we prove (∞,∞)-asymptotic freeness of two independent ensembles
of random matrices, one of which is unitarily invariant.

• Our (0, 1)-freeness recovers Voiculescu’s free independence and (0,∞)-freeness re-
covers freeness of all orders; furthermore, if we allow half integer genus, surprisingly
(12 , 1)-freeness retrieves the notion of infinitesimal freeness of [FN10] and [BS12].
The latter is discussed in Section 2.6.3.

Finally, we reformulate our main formula in the language of differentials and propose
that these relations explain the conjectured relation between the invariants of two x− y
symplectically equivalent spectral curves. This is formulated in Conjecture 2.7.2 in
Section 2.7.

Conjecture (Conjecture 2.7.2).
Let C be a compact Riemann surface, x,w are meromorphic functions on C such that dx
and dw do not have common zeroes, and B is a fundamental bidifferential of the second
kind. We call ωg,n the differentials obtained from the topological recursion with the
spectral curve (C, x, w,B), and ω∨g,n the ones associated to the spectral curve (C, w, x,B),
and define ω̃0,2 = ω̃∨0,2 = B. Then, these differentials will satisfy for all 2g − 2 + n ≥ 0
the functional relations of Theorem 2.4.8 (after they are converted to relations between
meromorphic differentials on C).

The latter sheds light on the previously not fully understood x−y duality in topological
recursion. In the meantime, the conjecture has been proven in [ABDB+22] by S. Shadrin
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and coauthors.

Monotone Hurwitz numbers and topological recursion

The second part of the thesis, Chapter 3, summarizes the results of the author while
working on the project “Random matrices and Hurwitz numbers” of the SFB TRR-195.
Although presented as the last chapter of this thesis, it is chronologically prior to the
results of Chapter 2. In this first phase, the author studied the relation between Hurwitz
numbers and topological recursion. The monotone Hurwitz numbers are deeply related
to random matrix theory. In particular, they have been introduced in the study of the
HCIZ-integral [GGPN13, GGPN14]. See also [Nov20, Nov22]. On the other hand, many
types of Hurwitz numbers satisfy topological recursion. Thus, they are particularly
interesting when studying the connection of free probability and topological recursion.

The results of this chapter are based on the publication [HvIL22]. We derive a quantum
curve for a newly introduced type of Hurwitz numbers: A partition function is a formal
power series in infinitely many variables p1, p2, p3, . . . given by

Z = exp

(∑
g≥0
n≥1

ℏ2g−2+n

n!

∞∑
µ1,...,µn=1

Fg,µ1,...,µnpµ1 . . . pµn

)
.

Typically the Fg,µ1,...,µn are chosen to be invariants from combinatorics or enumerative
geometry, for instance Hurwitz numbers. Then a quantum curve is a differential equation
for the principle specialization Ψ(x, h) of a partition function. The latter is defined by
replacing the variables pi by xi. Quantum curves are closely related to the topological
recursion. For example, the simple Hurwitz numbers satisfy topological recursion with
the spectral curve (see [EMS11])

y − xey = 0

and a quantum curve of the Hurwitz numbers is given by

(py − pxepy)Ψ(x, ℏ) = 0

where px = x· is a multiplication operator and py = −ℏ d
dx a differential operator. Thus, for-

mally replacing the noncommuting operators by commuting variables x, y, one recovers
the initial data of topological recursion. This procedure is sometimes called dequanti-
zation. Vice versa, replacing x, y by px,py is sometimes called a quantization. Of course,
by the noncommutativity of the operators, there is no unique way to quantize a spectral
curve.

In the same spirit, a quantum curve for Hurwitz numbers over a higher base curve
was computed in [LMS13]. These numbers count ramified covers of a Riemann surface
with genus h ≥ 1 instead of CP 1. Inspired by their results, we introduced and studied
monotone versions of the numbers of [LMS13] in [HvIL22]. The main results are the
computation of the following two families of quantum curves.

12



Theorem (Theorem 3.3.5).
The partition function Z≤h of the monotone base h Hurwitz numbers, resp. its principle

specialization Ψ≤h (x, ℏ), satisfies the differential equation

[pxpy2 + py + (pypx)2h]Ψ≤h (x, ℏ) = 0,

where px = x· and py = −ℏ ∂
∂x .

Theorem (Theorem 3.3.6).
The partition function Z<h of the strictly monotone base h Hurwitz numbers, resp. its
principle specialization Ψ<

h (x, ℏ), satisfies the differential equation

[py + (1 − pxpy)(pypx)2h]Ψ≤h (x, ℏ) = 0,

where px = x· and py = −ℏ ∂
∂x .

In particular, for h = 0, we recover the quantum curves of [DDM17] and [DM14];
this is discussed in Section 3.3. Motivated by the quantum curve – spectral curve corre-
spondence, we tried to run topological recursion on the curves obtained by replacing the
operators in Theorem 3.3.5 and Theorem 3.3.6 by commuting variables. Surprisingly,
it turned out that topological recursion on the spectral curve obtained for h = 1 in
Theorem 3.3.6

y(1 + yx2 − y2x3) = 0

computes signed simple monotone Hurwitz numbers instead of elliptic (h = 1) strictly
monotone Hurwitz numbers. This observation indicates a combinatorial relation between
those two quantities. More importantly, the signed simple Hurwitz numbers satisfy
topological recursion and agree with the values of the Möbius function for partitioned
permutations of higher genus. This new relation of free probability to the theory of topo-
logical recursion and partition functions motivated the author of this thesis to further
explorations, ultimately leading to the breakthrough in [BCGF+23].
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1 Preliminaries

1.1 Free probability and random matrices

In this chapter, we give an introduction to free probability. We will loosely follow the
literature of [NS06], [MS17] and the lecture notes [Spe19].

Free probability is the study of noncommutative random variables and their distribu-
tion. These notions are noncommutative analogues of the objects in classical probability
theory, that is, classical random variables in a classical probability space and their distri-
bution. As the name indicates, the noncommutative random variables in free probability
do not need to commute with each other, thus their probabilistic behaviour is not cap-
tured by the classical theory. The central concept of independence in the classical setting
has a noncommutative analogue called free independence in free probability. We start
this section by introducing these main features of free probability and discuss some
examples in Section 1.1.1.

A particularly important quantity for this thesis are the free cumulants. These pose
noncommutative versions of the classical cumulants in classical probability theory and
add a combinatorial flavour to the probabilistic theory. Whereas the classical cumulants
are defined via partitions, in free probability the free cumulants relate to moments via
noncrossing partitions. We introduce the moment-cumulant formalism of free probability
in Section 1.1.2.

Since free probability was originally introduced to study the isomorphism problem of
the free group factors in operator theory [Voi85], operator algebras constitute a natural
example for noncommutative probability spaces. More pertinent for this thesis is free
probability in the context of random matrices. It was discovered by Voiculescu ([Voi91])
that the asymptotic behaviour of random matrices is also described by the freeness rule
coming from the free group factor problem. We will discuss this matter in Section 1.1.3.

Finally, we introduce an extension of Voiculescu’s free probability, called infinitesimal
freeness. It was introduced by Belinschi and Shlyakhtenko in an analytic framework with
the intention to complement the theory of Type B freeness of [BGN03]. In 2010 Février
and Nica gave a combinatorial description of infinitesimal freeness. We introduce this
combinatorial approach in Section 1.1.4.

1.1.1 Free Probability Theory

In this section, we introduce the foundations of free probability. We start by defining
noncommutative probability spaces.
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1 Preliminaries

Definition 1.1.1.

i) A noncommutative probability space (A, φ) consists of a unital complex algebra A
and a unital linear functional φ : A → C. We call the elements a ∈ A noncommu-
tative random variables.

ii) A noncommutative probability space (A, φ) is called a ∗-probability space if A is a
∗-algebra and φ is positive, i.e.

φ(aa∗) ≥ 0, for all a ∈ A.

Further, a positive linear functional φ is called a state.

iii) A noncommutative probability space (A, φ) is called a C∗-probability space if A is
a C∗-algebra and φ a state.

iv) Let B(H) be the bounded linear operators on a Hilbert space H. A noncommuta-
tive probability space (A, φ) is called a W ∗-probability space if A ⊂ B(H) is a von
Neumann algebra and φ is a state with the properties of being

• normal: φ is continuous with respect to the weak operator topology on B(H),

• faithful: φ(aa∗) = 0 implies a = 0 for all x ∈ A.

We call φ normal faithful state.

v) A W ∗-probability space (A, φ) is called a tracial W ∗-probability space, if φ is a
trace, i.e.

φ(ab) = φ(ba), for all a, b ∈ A.

Let us consider the following examples of noncommutative probability spaces.

Example.

i) Let (Ω,F ,P) be a classical probability space. We set A = L∞(Ω,P) to be the
bounded measurable functions f : Ω → C and

φ(f) = E[f ] =

∫
Ω
f(x)dP(x),

then (A, φ) is a W ∗-probability space.

ii) Let N ∈ N be a natural number and denote by MN (C) the complex N×N matrices.
We define the normalized trace by

tr(A) =
1

N

N∑
i=1

Aii, for all A ∈MN (C),

then (MN (C), tr) is a C∗-probability space.
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iii) We can combine the two examples above and define a C∗-probability space

(A, φ) = (MN (C) ⊗ L∞(Ω,P), tr⊗E).

Definition 1.1.2.
Let (A, φ) be a noncommutative probability space.

i) Let a1, . . . , an ∈ A be noncommutative random variables, we define their joint
distribution to be the set

µa1,...,an =
{
φ(p(a1, . . . , an)) : p ∈ C⟨x1, x2, . . . , xn⟩

}
,

where C⟨x1, x2, . . . , xn⟩ is the unital free algebra over C generated by variables
x1, . . . , xn, it is called the ring of noncommutative polynomials.

ii) An element a ∈ A is called centered if

φ(a) = 0.

Remark 1.1.3.
We can interpret the joint distribution µa1,...,an of a1, . . . , an as a function µ̄a1,...,an via

µa1,...,an : C⟨x1, . . . , xn⟩ → C, p(x1, . . . , xn) 7→ φ(p(a1, . . . , an)).

Due to linearity, the functional is determined by the values of µa1,...,an on monomials

φ(ai1 . . . aik),

where k ∈ N, i1, . . . ik ∈ {1, . . . , n}.

Note that the latter is a purely combinatorial description of the joint distribution
of several noncommutative random variables. In some cases, there is more (analytic)
structure, consider the following definition.

Definition 1.1.4.
Let (A, φ) be a ∗-probability space and a∗ = a ∈ A be a self-adjoint element. If there
exists a probability measure µ on R such that

φ(ak) =

∫
R
tkdµ(t),

we say a admits an analytic distribution µ.

Example.
• A self-adjoint element S ∈ A in a ∗-probability space (A, φ) is called a semicircular
random variable of variance σ > 0 if

φ(Sk) =

{
0 if k is odd,

σ2nCn if k = 2n,
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1 Preliminaries

where

Cn =
1

n+ 1

(
2n

n

)
are the Catalan numbers. Note that a semicircular random variable admits an
analytic distribution since

φ(Sk) =
2

πa2

∫ a

−a
xk
√
a2 − x2dx,

where a = 2
√
σ.

• If AN ∈ MN (C) is a hermitian matrix in the noncommutative probability space
(MN (C), tr), then

tr(AkN ) =
1

N

N∑
i=1

λki =

∫
R
tkdµ(t),

where

µ =
1

N

N∑
i=1

δλi

is the sum of point measures at the N , not necessarily distinct, eigenvalues λi of
AN with mass 1

N .

The noncommutative analogue of independence of random variables in classical prob-
ability theory is the notion of freeness, given in the following definition.

Definition 1.1.5.
Let (A, φ) be a noncommutative probability space.

i) Let (Ai)i∈I be a family of unital subalgebras of A. Then (Ai)i∈I are called freely
independent or just free, if for any k ∈ N

φ(a1 . . . ak) = 0,

whenever ai ∈ Aji are centered random variables, and the indices ji ∈ I satisfy
j1 ̸= j2 ̸= . . . ̸= jk−1 ̸= jk.

ii) Let (Si)i∈I be a family of subsets of A. Then (Si)i∈I are called freely independent
or just free if the unital algebras (AlgC(1A, Si))i∈I generated by the Si are freely
independent.

iii) Let (ai)i∈I be a family of noncommutative random variables in A. Then (ai)i∈I
are freely independent or just free if ({ai})i∈I are freely independent.
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1.1 Free probability and random matrices

Remark 1.1.6.
It is important to note that freeness provides a rule to compute mixed moments of free
random variables, let us consider the following examples.

Example.
Let a, b ∈ A be free from each other in a noncommutative probability space (A, φ), then
ã = a− φ(a)1A and b̃ = b− φ(b)1A are centered and free from each other and we have

0 = φ(ãb̃) = φ(ab) − φ(a)φ(b)

thus φ(ab) = φ(a)φ(b). Another example is given by

0 = φ(ã1b̃ã2) =⇒ φ(a1ba2) = φ(a1a2)φ(b),

if {a1, a2} is free from {b}. Let us consider a last example, we have

φ(a1b1a2b2) = φ(a1a2)φ(b1)φ(b2) + φ(a1)φ(a2)φ(b1b2) − φ(a1)φ(a2)φ(b1)φ(b2),
(1.1.1)

where we assumed {a1, a2} to be free from {b1, b2}. Note the combinatorial flavour of
the terms on the right-hand side of (1.1.1),

a1b1a2b2

,

a1b1a2b2

,

a1b1a2b2

,

where the blocks indicate how the terms are collected in the expectations. Note that the
term φ(a1a2)φ(b1b2) does not appear since it would correspond to the crossing partition

a1b1a2b2

.

We will discuss the combinatorics of free probability theory in the next subsection.

Remark 1.1.7.
The notion of freeness is not really compatible with commutativity, as it can be shown
that if commuting variables are free from each other one of them must be a constant.

1.1.2 Combinatorics of free probability and free cumulants

In the previous section, we have seen that the rule for computing mixed moments of
free random variables has a combinatorial flavour. We want to give an introduction to
the combinatorics of (first order) free probability of [Spe94]. We start by recalling some
notation.
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Notation 1.1.8.
Let d ∈ N be an integer.

i) We denote the set {1, . . . , d} of the first d natural numbers by [d].

ii) Let d ∈ N, then V = {B1, . . . , Br} is called a partition of [d] if

• 1 ≤ r ≤ d,

• ∅ ≠ Bi ⊂ [d] for i = 1, . . . , r,

• Bi ∩Bj = ∅ for i, j = 1, . . . , r with i ̸= j, and

•
⋃r
i=1Bi = [d].

We call Bi, i = 1, . . . , r, the blocks of V. We denote the set of all partitions of [d]
by P(d).

iii) Let V = {B1, . . . , Br} ∈ P(d) be a partition of [d], then we denote by #V = r its
number of blocks. Further, we define its colength by |V| = d− #V.

iv) We say a partition V ∈ P(d) has a crossing, if there are distinct blocks B1, B2 of
V and elements i1, i2 ∈ B1 and j1, j2 ∈ B2 such that 1 ≤ i1 < j1 < i2 < j2 ≤ d.
We denote the set of partitions without crossings by NC(d) ⊆ P(d) and call it the
set of noncrossing partitions on [d].

v) Given two set partitions V,W ∈ P(d), we write V ≤ W if for every block, B ∈ V,
there is a block B′ ∈ W such that B ⊆ B′.

Remark 1.1.9.
The notion of a partition of a set in Notation 1.1.8 should not be confused with the
partition of an integer in Notation 1.2.1. Usually it is clear from the context which
partition we mean. Additionally, we use very distinctive notation throughout this thesis:

i) Set partitions are usually denoted by calligraphic letters V ∈ P(d).

ii) Integer partitions are usually denoted by lower case Greek letters λ ⊢ d (see Nota-
tion 1.2.1).

The introduction of ≤ on NC(d) makes it into a lattice:

Proposition 1.1.10.
Let d ∈ N.

i) For any V,W ∈ NC(d) there is a unique smallest element w.r.t. ≤, denoted by
V ∨W, with the defining property

V,W ≤ V ∨W.

We call V ∨W the join of V and W.
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ii) For any V,W ∈ NC(d) there is a unique largest element w.r.t. ≤, denoted by
V ∧W, with the defining property

V ∧W ≤ V,W.

We call V ∧W the meet of V and W.

Consequently, NC(d) is a lattice.

In the reminder of the section we present the key points of the incidence algebra
formalism of Rota et al. tailored to the poset NC(d); see [DRS72].

Proposition 1.1.11.
Consider the partially ordered set NC(d).

i) We define

NC(d)(2) = {(V,W) ∈ NC(d) ×NC(d) : V ≤ W}.

Moreover for functions f, g : NC(d)(2) → C, we define their convolution by

f ∗ g : NC(d)(2) → C, f ∗ g(V,W) =
∑

V≤U≤W
f(V,U)g(U ,W).

ii) Let f : N (d) → C, g : NC(d)(2) → C be functions, then we define their convolution
by

f ∗ g : NC(d)(2) → C, f ∗ g(V,W) =
∑
V≤W

f(V)g(V,W).

Proposition 1.1.12.
i) We define the delta and zeta function, δ, ζ : NC(d)(2) → C, by ζ ≡ 1 and

δ(V,W) =

{
1 if V = W,

0 otherwise.

ii) There is a function µ : NC(d)(2) → C such that

µ ∗ ζ = ζ ∗ µ = δ,

it is called the Möbius function of the lattice NC(d).

Proposition 1.1.13 (Möbius inversion).
Let f, g : NC(d) → C be functions, then we have the equivalence

f = g ∗ ζ ⇐⇒ g = f ∗ µ,

it is called the Möbius inversion.
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This language was used by Speicher to define the free cumulants in [Spe94].

Proposition 1.1.14 ([Spe94]).
Let (A, φ) be a noncommutative probability space. We define for any n ∈ N a multilinear
functional

φn : An → C, (a1, . . . , an) 7→ φ(a1 · a2 · · · an)

and extend these to a family of multilinear functionals (φV)V∈NC(d) by

(a1, . . . , ad) 7→ φV(a1, . . . , ad) :=
∏
B∈V

φ#B

(
ai : i ∈ B

)
,

where (ai : i ∈ B) denotes the product of the ai with i ∈ B in increasing order. Then
we can define a family of functionals (κV)V∈NC(d) on Ad by

(a1, . . . , ad) 7→ κV(a1, . . . , ad) :=
∑
U≤V

φU (a1, . . . , ad)µ(U ,V).

We call the collection of κV for all d ∈ N the free cumulants. The free cumulants are
linear in its entries and determine the moments via Möbius inversion, i.e.

φ = κ ∗ ζ.

More precisely, on each level d ∈ N we have

φV(a1, . . . , ad) =
∑
U≤V

κU (a1, . . . , ad)ζ(U ,V)

=
∑
U≤V

κU (a1, . . . , ad).
(1.1.2)

Example.
Consider a semicircular random variable of variance 1. Recall that its moments are given
by the Catalan numbers. These count the number of noncrossing pairings on NC2(2k),
we have

φ(S2k) = Ck =
∑

V∈NC2(2k)

∏
B∈V

1.

Comparing with (1.1.2) for V = 12k we obtain

κn(S, . . . , S) = δn,2.

Now we are ready to state freeness in terms of the cumulants.
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1.1 Free probability and random matrices

Theorem 1.1.15 ([Spe94]).
Let (A, φ) be a noncommutative probability space and (Ai)i∈I be a family of unital
subalgebras of A. Then the following two statements are equivalent.

i) The family (Ai)i∈I is freely independent in (A, φ).

ii) All mixed free cumulants vanish, that is for every d ≥ 2, i : [d] → I and aj ∈ Ai(j)

for j = 1, . . . , d we have κ(a1, . . . , ad) = 0 if i is not constant, i.e. there are at least
two different j1, j2 ∈ [d] with i(j1) ̸= i(j2).

An efficient way to deal with the distribution of a single element is to consider its
generating series of moments or resp. cumulants. Thus, let us introduce the following
objects.

Notation 1.1.16.
We denote by CZ≥0 the set of functions Z≥0 → C. For f, g ∈ CZ≥0 we define the
operations

f + g : Z≥0 → C, n 7→ f(n) + g(n),

f · g : Z≥0 → C, n 7→
n∑
k=0

f(k)g(n− k).

Then (CZ≥0 ,+, ·) is a commutative ring with zero element f ≡ 0 and multiplicative
identity

f : Z≥0 → C, n 7→

{
1 if n = 0,

0 otherwise.

We denote this ring by C[[x]] and call it the ring of formal power series in the indeter-
minate x. An element f ∈ CZ≥0 will be denoted by

∞∑
n=0

f(n)xn.

A family (an)n∈N of complex number uniquely determines a function a ∈ CZ≥0 via
a(n) = an. We call the corresponding element

a =

∞∑
n=0

anx
n ∈ C[[x]]

a generating series for the family (an)n∈N and use the notation [xn]a = a(n) = an. For
details, see [Art10].

Remark 1.1.17.
Later in this thesis, we will encounter power series in more than one variable. These can
be constructed inductively by the procedure in Notation 1.1.16 and we will adopt the
notations from the case of a single variable. We refer to [Sam23] for more details.
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Definition 1.1.18.
Let (A, φ) be a noncommutative probability space and a ∈ A. Then we define the
moment generating series

Ma(x) = 1 +
∞∑
r=1

φ(ar)xr,

and the cumulant generating series

Ca(x) = 1 +

∞∑
r=1

κr(a, . . . , a)xr.

Remark 1.1.19.

i) Sometimes we omit the subscript in Ma(x) resp. Ca(x) if it is clear what element
we are talking about.

ii) It is also conventional to abbreviate

κr(a, . . . , a) = κar , φ(ar) = ma
r .

Finally, let us state the manifestation of the moment-cumulant relations in terms of the
generating functions M(x) and C(x), called the (moment-cumulant) functional relations.
These first order relations go back to [Spe94] and recover the relations of [Voi86] in a
purely combinatorial language.

Theorem 1.1.20 (First order functional relations).
Let a ∈ A be a noncommutative random variable in a noncommutative probability space
(A, φ), then the following statements are equivalent:

i) We have m = ζ ∗ κ as functions on NC(d) on every level of d, that is

ma
d =

∑
V∈NC(d)

κaV

for every d ∈ N.

ii) We have

ma
d =

d∑
s=1

∑
r1,...,rn≥0

r1+···+rs=d−s

κasm
a
r1 . . .m

a
rs .

iii) The generating functions of ma
r and κar satisfy the functional relation

Ca(xMa(x)) = Ma(x).
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1.1 Free probability and random matrices

iv) The generating functions of ma
r and κar satisfy the functional relation

Ma

( x

Ca(x)

)
= Ca(x).

Example.
For a semicircular variable S of variance 1 we already know that κSn = δn,2 and thus

CS(x) = 1 + x2.

By the functional relations we obtain

1 + x2MS(x)2 = MS(x).

Solving for MS(x) yields

MS(x) =
1 ±

√
1 − 4x2

2x2
.

The asymptotic behaviour as x→ 0 shows that we must take the minus sign.

Remark 1.1.21.
Let a ∈ A be a noncommutative random variable in a noncommutative probability space
(A, φ). We define the Cauchy- and R-transform by

Ga(x) =
1

x
Ma

(1

x

)
and Ra(x) =

Ca(x) − 1

x
,

respectively. Then the relations of Theorem 1.1.20 are equivalent to

Ga

(
Ra(x) +

1

x

)
= x and Ra(Ga(x)) +

1

Ga(x)
= x.

Further let b ∈ A be a noncommutative random variable free from a. Then the vanishing
of mixed cumulants implies

Ra+b(x) = Ra(x) + Rb(x).

Thus, Speicher recovered the analytic results of Voiculescu in [Voi86] in purely combi-
natorial terms.

The functional relations between the generating series of moments and cumulants
in higher order constitute an integral part of this thesis, see Chapter 2. Prior to the
collaboration of the author with G. Borot, E. Garcia-Failde, S. Charbonnier and S.
Shadrin, these functional relations were unknown in order higher than 2.
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1.1.3 Limiting eigenvalue distributions

Voiculescu discovered that the limiting behaviour of the eigenvalue distribution of ran-
dom matrices [Voi91] is captured by the notion of free independence in free probability.
We give a short overview on the random matrix perspective of free probability. This sec-
tion serves as a motivation for later concepts in Chapter 2. For a detailed introduction
to random matrix theory see [Spe20].

Notation 1.1.22.
i) We denote by MN (C) the unital algebra of N ×N matrices with coefficients in C

and by IN the identity matrix in MN (C).

ii) We denote by TrN the trace

TrN : MN (C) → C, A = (Aij)
N
i,j=1 7→

N∑
i=1

Aii

and by trN the normalized trace trN ≡ 1
N TrN . Sometimes we omit the subscript

N .

iii) Let A = (AN )N∈N and B = (BN )N∈N be N ×N random matrices.

• A and B are called independent if for each N ∈ N all entries of AN are
independent from all entries of BN .

• A is called unitarily invariant, if for each N ∈ N the joint distribution of
the entries does not change if we conjugate the random matrix A with an
arbitrary unitary N ×N matrix.

iv) Let (Ω,F ,P) be a classical probability space and X a random variable. Then we
define the expectation E[X] of X by

E[X] =

∫
Ω
XdP.

Furthermore, if X1, X2 are two random variables such that E[|X1|],E[|X2|] < ∞,
we define their covariance by

cov(X,Y ) = E[(X1 − E[X1])(X2 − E[X2])].

v) In classical probability, there is a notion of classical cumulants. These are usually
defined via the classical moment generating function, but they can also be de-
fined combinatorially: let (Ω,F ,P) be a classical probability space and X1, . . . , Xn

be random variables with finite moments. Then we define the joint classical n-
cumulant kn of X1, . . . , Xn by

kn(X1, . . . , Xn) =
∑
V∈P(n)

(#V − 1)!(−1)#V−1
∏
B∈V

E

[∏
i∈B

Xi

]
.
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1.1 Free probability and random matrices

Equivalently, we have

E[X1 . . . Xn] =
∑
V∈P(n)

∏
B∈V

k#B(Xi : i ∈ B).

See [Shi16] for more details on cumulants in classical probability.

Example 1.1.23.
We have k1(X) = E[X] and

k2(X1, X2) = E[X1X2] − E[X1]E[X2] = cov(X1, X2)

Furthermore, if we consider the noncommutative probability space (L∞,E), then we have

k1(X) = κ1(X), k2(X1, X2) = κ2(X1, X2) and k3(X1, X2, X3) = κ3(X1, X2, X3),

since P(1) = NC(1), P(2) = NC(2) and P(3) = NC(3). Moreover, for n ≥ 4 we
have a proper inclusion NC(n) ⫋ P(n) and hence the corresponding classical and free
cumulants are distinct.

Definition 1.1.24.
Let A = (AN )N∈N be a sequence of N × N random matrices. The sequence (AN )N∈N

has a (first order) limiting eigenvalue distribution if

lim
N→∞

E[tr(ArN )] =: φAr

exists for all r ∈ N and

lim
N→∞

kn[tr(Ar1N ), . . . , tr(ArnN )] = 0

for any n ≥ 2 and r1, . . . , rn ∈ N, where kn are classical cumulants.

As an example, let us state Wigner’s famous semicircular law for the GUE.

Definition 1.1.25.
The Gaussian unitary ensemble (GUE) (AN )N∈N is the collection of N × N random
matrices AN = 1√

N
(ANij )Ni,j=1 where

i) AN is self-adjoint, i.e. ANij = ANji for all i, j = 1, . . . N ,

ii) {Aij : i ≥ j} are independent, and

iii) Aij is a standard Gaussian random variable, which is complex for i ̸= j and real
for i = j.

Theorem 1.1.26 (Wigner’s semicircle law for GUE).
The GUE has a limiting eigenvalue distribution given by the semicircular law. We have

lim
N→∞

E[tr(ArN )] =
1

2π

∫ 2

−2
xr
√

1 − x2dx =

{
Cn if r = 2n for some n ∈ N,

0 otherwise.
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Finally, we explain the appearance of freeness in random matrix theory.

Definition 1.1.27.
Let A = (AN )N∈N, B = (BN )N∈N be sequences of random matrices having (first order)
limiting distributions. A and B are called asymptotically free if

lim
N→∞

E

[
tr
((
Ar1N − INφ

A
r1

)(
Bs1
N − INφ

B
s1

)
. . .
(
ArnN − INφ

A
rn

)(
Bsn
N − INφ

B
sn

))]
= 0,

for all n ∈ N and all r1, s1 . . . rn, sn ∈ N.

Theorem 1.1.28 ([Voi91]).
Let A = (AN )N∈N, B = (BN )N∈N be independent sequences of random matrices having
(first order) limiting distributions, one of them being unitarily invariant. Then, A and
B are asymptotically free.

1.1.4 Infinitesimal freeness

In Section 1.1.2, we have discussed the combinatorial description of free probability in
terms of noncrossing partitions. The noncrossing partition have an analogue called type
B noncrossing partitions [Rei97]. In [BGN03], Biane et al. used these partitions to define
free independence of type B. Broadly speaking, they replaced the noncrossing partitions
by their type B analogue and developed a corresponding cumulant formalism. Later in
[BS12], Belinschi and Shlyakhtenko studied the analytic side of type B free probabil-
ity. In this context, they introduced the notion of infinitesimal laws, which are loosely
speaking the derivative of the distribution functional (law) µ defined in Remark 1.1.3.
Thus, in infinitesimal freeness, the random variables are described by their distribution
µ and additionally by its derivative µ′. In [FN10], Février and Nica developed a com-
binatorial theory tailored to the analytic framework of [BS12], it is called infinitesimal
free probability. We discuss the key points of [FN10] in this section.

Definition 1.1.29.
i) An infinitesimal noncommutative probability space (INCPS) (A, φ, φ′) consists of a

noncommutative probability space (A, φ) and a linear functional φ′ : A → C with
φ′(1A)=0.

ii) Let (A, φ, φ′) be an INCPS and (Ai)i∈I be a family of unital subalgebras. Then
(Ai)i∈I are called infinitesimally free, if for any k ∈ N

φ(a1 . . . ak) = 0,

φ′(a1 . . . ak) =

k∑
i=1

φ(a1 . . . ai−1φ
′(ai)ai+1 . . . ak),

whenever ai ∈ Aji are centered random variables, ji ∈ I and the indices satisfy
j1 ̸= j2 ̸= . . . ̸= jk−1 ̸= jk.
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1.1 Free probability and random matrices

Similarly to the theory of Speicher [Spe94] we want to consider φ and φ′ as functions
on NC(d). But recall that φ′ should be thought of as the derivative of φ, hence we need
to introduce a Leibniz rule when dealing with multiplicative functions.

Definition 1.1.30.
Let (A, φ, φ′) be an INCPS. We define for any d ∈ N multilinear functionals

φd : Ad → C, (a1, . . . , ad) 7→ φ(a1 · a2 . . . ad),
φ′d : Ad → C, (a1, . . . , ad) 7→ φ′(a1 · a2 . . . ad)

and extend them to a family of d-linear functionals (φV)V∈NC(d) and (φ′V)V∈NC(d) by

(a1, . . . , ad) 7→ φV(a1, . . . , ad) :=
∏
B∈V

φ#B(ai : i ∈ B),

(a1, . . . , ad) 7→ φ′V(a1, . . . , ad) :=
∏
B∈V

φ′#B(ai : i ∈ B).

Furthermore, for any d ∈ N and V ∈ NC(d) we define

∂φV : Ad → C, (a1, . . . , ad) 7→ ∂φ(a1, . . . , ad) =
∑
B∈V

∂φB(a1, . . . , ad),

where

∂φB = φ′#B(ai : i ∈ B)
∏
V ∈V
V ̸=B

φ#V (ai : i ∈ V ).

Example 1.1.31.
Consider V = {{1, 4, 6}, {2, 3}, {5}} = , then

∂φV(a1 . . . a6) = ∂φ{1,4,6}(a1 . . . a6) + ∂φ{2,3}(a1 . . . a6) + ∂φ{5}(a1 . . . a6)

= φ′(a1a4a6)φ(a2a3)φ(a5) + φ(a1a4a6)φ
′(a2a3)φ(a5)

+ φ(a1a4a6)φ(a2a3)φ
′(a5).

Now, we are ready to define the infinitesimal free cumulants.

Definition 1.1.32.
Let (A, φ, φ′) be an INCPS. We define the infinitesimal free cumulants by the equations

φ′(a1 . . . ad) =
∑

V∈NC(d)

∂κV(a1, . . . , ad), (1.1.3)

equivalently

κ′(a1, . . . , ad) =
∑

V∈NC(d)

µ(V,1d)∂φV(a1, . . . , ad).
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Example 1.1.33.
We have

φ′1(a1) = κ′1(a1)

and for d = 2

φ′2(a1a2) = κ′2(a1, a2) + κ′1(a1)κ1(a2) + κ1(a1)κ
′
1(a2).

Remark 1.1.34.
Another way of viewing the moment-cumulant relation for infinitesimal freeness is to
think of the sum

φ′(a1 . . . ad) =
∑

V∈NC(d)

∂κV(a1, . . . , ad)

as the sum over all noncommutative partitions with one special block, which corresponds
to κ′. This idea is similar to our higher genus development in Section 2.2.

We also have the following analogue of the vanishing of mixed cumulants.

Theorem 1.1.35.
Let (A, φ, φ′) be an INCPS and (Ai)i∈I be a family of unital subalgebras of A. Then
the following statements are equivalent:

i) The family (Ai)i∈I is infinitesimally free in (A, φ, φ′).

ii) All mixed free and infinitesimal free cumulants vanish, that is for every d ≥ 2,
i : [d] → I and aj ∈ Ai(j) for i = 1, . . . , d we have

κ′(a1, . . . , ad) = κ(a1, . . . , ad) = 0

if i is not constant, i.e. there are at least two different j1, j2 ∈ [d] with i(j1) ̸= i(j2).

Moreover, we can express the moment-cumulant formula in terms of generating series.

Proposition 1.1.36.
Let (A, φ) be a noncommutative probability space and a ∈ A. Recall the generating
series

Ma(x) = 1 +
∞∑
r=1

φ(ar)xr and Ca(x) = 1 +
∞∑
r=1

κr(a, . . . , a)xr.

Further we define

M ′a(x) = 1 +

∞∑
r=1

φ′(ar)xr and C ′a(x) = 1 +

∞∑
r=1

κ′r(a, . . . , a)xr.

Then we have the functional relation

M ′a

(
x

Ca(x)

)
=

C ′a(x)

Ca(x) d
dx

x
C(x)

.
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Remark 1.1.37.
A concise way to write this equation is in terms of differentials: if we put w = x

Ca(x)
, we

have

M ′a(w)
dw

w
= C ′a(x)

dx

x
.

1.2 Fock spaces and the boson-fermion correspondence

In this subsection, we will give a brief introduction to the boson-fermion correspondence
and recall some results of the theory of symmetric functions. The first part is a short
exposition of basic results covered in [Mac15], see also [Sav22] for an introduction. Fur-
thermore, see [Kac90] and [KRR13] for a classical Lie algebraic perspective and [MJD00]
for an introduction from the viewpoint of integrable hierarchies.

The boson-fermion correspondence expresses the representation of the Heisenberg al-
gebra on the bosonic Fock space in terms of the fermionic Fock space and vice versa the
representation of the Clifford algebra on the fermionic Fock space in terms of the bosonic
picture. These actions can also be expressed in terms of the projective representation of

pgl∞ :=

{
(Ai,j)i,j∈Z+ 1

2
: Ai,j ∈ C, ∃K ≥ 0: Ai,j = 0 for all |i− j| > K

}
,

i.e. the Lie algebra of infinite matrices having a finite number of nonzero diagonals.
This correspondence allows us to deal with (difficult) equations involving differential
operators in terms of matrices. It is the main tool in Section 2.5 to obtain the higher
order relations for free probability.

1.2.1 Symmetric functions

Essentially, the bosonic Fock space is the ring of symmetric functions. Thus, before
we discuss the boson-fermion correspondence, let us recall some theory of symmetric
functions. For a complete introduction, see [Mac98] and [Sav22].

Notation 1.2.1.

i) We denote the symmetric group acting on d elements by S(d). By convention, we
define S(0) = {∅}.

ii) Let π ∈ S(d) be a permutation. We denote by #π the number of its cycles and
define the colength of π ∈ S(d) by |π| = d− #π.

iii) Let d ∈ N. We call λ = (λ1, . . . , λr) partition of d if

• 1 ≤ r ≤ d,

• λi ≥ λi+1 for i = 1, . . . , r − 1, and

•
∑r

i=1 λi = d.
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In this case, we write λ ⊢ d and call ℓ(λ) = r the length of λ. By convention, we
define ∅ to be the only partition of 0.

iv) If r = (r1, . . . , rℓ) is a sequence of positive integers, we denote by λ(r) this sequence
written in decreasing order. Furthermore, we define a permutation by

γr1,...,rℓ := (1, . . . , r1)(r1 + 1, . . . , r1 + r2) · · · (r1 + · · · + rℓ−1 + 1, . . . , r1 + · · · + rℓ).

In particular we may use the notation γλ when λ is a partition of a nonnegative
integer.

v) Conversely, if σ is a permutation, we denote by λ(σ) the sequence of lengths of the
cycles of σ, in weakly decreasing order.

vi) Given λ ⊢ d, let Cλ ⊆ S(d) be the conjugacy class of γλ, that is, the set of
permutations σ ∈ S[d] such that λ(σ) = λ, and

zλ =
d!

#Cλ
=

ℓ(λ)∏
i=1

λi
∏
j≥1

mj(λ)!, (1.2.1)

where mj(λ) is the number of occurrences of j in the sequence λ.

vii) The irreducible representations of the symmetric group S(d) can be parameterized
by partitions λ ⊢ d. If λ ⊢ d is a partition, we denote the corresponding character
by χλ and its value on π ∈ Cµ by χλ(µ). Note that χλ is constant on the conjugacy
classes of S(d). See [Sav22, Chapter 6] for details on representation theory and
characters of finite groups.

Definition 1.2.2.
Let n ∈ N, we denote by Λn the ring of polynomials in n indeterminates x1, . . . , xn,
which are invariant under the action of the symmetric group S(n) on the indices of the
xi, i = 1, . . . , n. More precisely,

Λn := C[x1, . . . , xn]S(n).

The ring of symmetric functions is the inverse limit

Λ := lim←−
n∈N

Λn

in the category of graded C algebras, where projections of the limit are given by

fm,n : Λm → Λn, p(x1, . . . , xm) 7→ p(x1, . . . , xn, 0, . . . , 0)

for m ≥ n.
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Remark 1.2.3.
The algebra Λ can also be obtained by the following construction. Denote by Λkn the
symmetric polynomials of homogeneous degree k in n variables, that is

Λkn = (C[x1, . . . , xn]k)S(n).

We can take the inverse limits w.r.t. the projections from the definition before and write

Λk = lim←−
n∈N

Λkn.

One can show that

Λ =
⊕
k∈N

Λk.

From this construction it is clear that Λ consists of infinite sums of monomials with
bounded degree.

Example.
For n, k ∈ N we have

pk(x1, . . . , xn) =

n∑
i=1

xki ∈ Λkn,

which means in the limit Λ we have an element that restricts to these elements. It is
given by

pk =

∞∑
i=1

xki ,

which clearly is a sum of monomials of degree k. We will encounter more examples in
the following.

Let us list the following important symmetric polynomials and functions.

Definition 1.2.4.
Let k ∈ N, then we define the following symmetric polynomials.

i) We define the elementary symmetric polynomials ek(x1, . . . , xn) ∈ Λkn by

ek(x1, . . . , xn) =


∑

1≤i1<···<ik≤n
xi1 . . . xik if k < n,

0 otherwise.

The elementary symmetric functions ek ∈ Λ are given by

ek =
∑

1≤i1<i2···<ik<∞
xi1 . . . xik .
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ii) We define the complete homogeneous symmetric polynomials hk(x1, . . . , xn) ∈ Λkn
by

hk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n
xi1 . . . xik .

The complete homogeneous symmetric functions hk ∈ Λ are given by

hk =
∑

1≤i1≤i2···<ik<∞
xi1 . . . xik .

iii) We define the power sum symmetric polynomials pk(x1, . . . , xn) ∈ Λkn by

pk(x1, . . . , xn) =
n∑
i=1

xki .

The power sum symmetric functions pk ∈ Λ are given by

pk =
∞∑
i=1

xki .

By convention, we set h0 = e0 = 1.

Let us recall the following lemma, describing the generating series of the elementary
and complete homogeneous polynomials.

Lemma 1.2.5.
We have

∞∑
k=0

ek(x1, . . . , xn)tk =

n∏
i=1

(1 + txn),

and

∞∑
k=0

hk(x1, . . . , xn)tk =

n∏
i=1

1

(1 + txn)
.

All of these functions form a basis of Λ in the following sense.

Theorem 1.2.6.
Let λ be a partition, and gk any of the families of functions in Definition 1.2.4. We
define

gλ = gλ1 . . . gλℓ(λ) ,

then {gλ : λ ⊢ d, d ≥ 0} is a linear basis of Λ. In particular

Λ = C[g1, g2, g3 . . . ].
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Remark 1.2.7.
Theorem 1.2.6 for gk = ek is sometimes called the Fundamental theorem of symmetric
functions.

There is another important basis, which is given by the Schur functions.

Definition 1.2.8.
We define the elementary Schur functions by the generating function

∞∑
k=0

skz
k = exp

( ∞∑
i=1

pi
i
zi
)
.

For any partition λ we define the Schur function associated to λ by

sλ = det
(
(sλi+j−i)1≤i,j≤ℓ(λ)

)
= det


sλ1 sλ1−1 . . . sλ1+ℓ(λ)−1
sλ2−1 sλ2 . . . sλ1+ℓ(λ)−2

...
. . .

...
sλℓ(λ)−ℓ(λ)

sλℓ(λ)−ℓ(λ)+1 . . . sλℓ(λ)

 .

Since the Schur functions are elements of Λ, they can be projected onto Λn. The image
in Λn is called Schur polynomials.

Theorem 1.2.9.
The Schur functions {sλ : λ ⊢ d, d ≥ 0} form a basis of Λ.

Proposition 1.2.10.
Let d ∈ N, λ, µ ⊢ d partitions, and we denote

δλ,µ =

{
1 if λ = µ,

0 otherwise.

Let

⟨pµ, pλ⟩ := zλδµ,λ,

where zλ is defined in (1.2.1). This induces an inner product on Λ, called the Hall inner
product. Moreover, the Schur functions are orthonormal w.r.t. the Hall inner product,
that is

⟨sµ, sλ⟩ = δλ,µ.

Lemma 1.2.11.
We have the following formulas for the change of basis between the power sum basis and
the Schur basis of Λ

pµ =
∑
λ⊢|µ|

χλ(µ)sλ and sλ =
∑
µ⊢|λ|

χλ(µ)

zµ
,
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where χλ(µ) are the irreducible characters of the symmetric group.

1.2.2 Bosonic Fock space

Actually, we have already defined the bosonic Fock space, namely by the ring of sym-
metric functions Λ. We now want to put more emphasis on the operators End(Λ). In
particular, we want to study certain Lie algebra representations on the bosonic and
fermionic Fock space. These play a key role in the boson-fermion correspondence.

Definition 1.2.12.
We denote the bosonic Fock space by

B = lim←
k∈N

C[p1, . . . , pk] = C[p1, p2, p3, . . . ],

it contains the special element |⟩ := 1 ∈ C called the vacuum and admits a linear form
⟨| : B → C that extracts the constant term of an element by evaluating at pi = 0 for all
i ∈ N. It is called the covacuum.

Definition 1.2.13.
A complex Lie algebra (g, [·, ·]) consists of a complex vector space g together with a Lie
bracket [·, ·] : g× g → g, where

i) [·, ·] is bilinear,

ii) [x, x] = 0 for all x ∈ g, and

iii) [·, ·] satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

Remark 1.2.14.
For Lie algebras over C, property ii) is equivalent to [x, y] = −[y, x] for all x, y ∈ g, hence
it is sometimes called skew symmetry.

Example.
Let V be a complex vector space and denote by End(V ) the complex vector space of
linear maps V → V . Then

[f, g] : End(V ) × End(V ) → End(V ), (f, g) 7→ [f, g] := f ◦ g − g ◦ f

defines a Lie bracket on End(V ) and thus makes it into a Lie algebra. In fact, every
associative complex algebra A can be made into a Lie algebra by defining the Lie bracket
to be the commutator

[a, b] := ab− ba,

for all a, b ∈ A.
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Definition 1.2.15.
Let (g, [·, ·]g), (h, [·, ·]h) be complex Lie algebras.

i) A Lie algebra morphism Φ: g → h is C-linear map such that

Φ([x, y]g) = [Φ(x),Φ(y)]h

for all x, y ∈ g.

ii) Let V be a complex vector space. A representation of g on V is a Lie algebra
morphism

Φ: g → End(V ).

A particularly important set of operators is described by the action of Heisenberg
algebra on B.

Definition 1.2.16.
The (oscillator) Heisenberg algebra H is the complex unital Lie algebra generated by
{an : n ∈ Z} with relations

[1H, an] = 0, ∀n ∈ Z,

[an, am] = δm,−n, ∀m,n ∈ Z.

Lemma 1.2.17.
The Heisenberg algebra H has a representation on the bosonic Fock space B via

1H 7→ idB, an 7→ Jn =


n∂pn if n > 0,

p−n if n < 0,

0 if n = 0.

This settles the most important notions on the bosonic side of the boson-fermion
correspondence, we proceed by explaining the fermionic side.

1.2.3 Fermionic Fock space

In this section, we introduce the fermionic Fock space via the so-called semi-infinite
wedge formalism. Let us denote by Z + 1

2 = {z + 1
2 : z ∈ Z} the set of half integers.

Definition 1.2.18.
Let V be an infinite dimensional complex vector space with basis {vn : n ∈ Z + 1

2}. In
other words,

V =
⊕
i∈Z+ 1

2

Cvi.
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The fermionic Fock space or semi-infinite wedge space

F =
∧∞

2 V

is the complex vector space spanned by

v = vi1 ∧ vi2 ∧ vi3 . . . (1.2.2)

such that there exists k ∈ N and K ≥ 1 such that ik = c − k + 1
2 for all k ≥ K. The

integer c is called the charge of v.

Remark 1.2.19.
i) The fermionic Fock space originates in physics and is motivated by Dirac’s electron

sea, see [KRR13].

ii) By the properties of the exterior product, we will always assume that the ij are
strictly descending, i.e. i1 > i2 > i3 . . . at cost of changing the sign. Moreover, it
is clear that any v in (1.2.2) such that two indices agree, ij1 = ij2 , will vanish.

iii) The charge yields a decomposition of the space

F =
⊕
c∈Z

F (c),

where F (c) is the space spanned by elements of charge c.

iv) We can define an inner product on F by declaring the elements ψ in (1.2.2) and
under the convention ii) to be orthogonal.

Definition 1.2.20.
Let λ ⊢ d ∈ N be a partition, then we define

vλ = vλ1− 1
2
∧ vλ2− 3

2
∧ · · · ∧ v

λℓ(λ)−
2ℓ(λ)+1

2

∧ v− 2ℓ(λ)+3
2

∧ v− 2ℓ(λ)+5
2

. . . ,

furthermore we call the element

|⟩ := v∅ = ψ0 = v− 1
2
∧ v− 3

2
∧ v− 5

2
∧ . . .

the vacuum.

The vλ have charge 0 and span the charge zero sector F (0) of F .

Proposition 1.2.21.
The set {vλ : λ ⊢ d, ∀d ∈ N} is a linear basis of F (0), i.e.

F (0) =
⊕
k∈N

⊕
λ⊢k

Cvλ.
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Remark 1.2.22.
More generally, for c ∈ Z \ {0} and λ ⊢ d one can define

v
(c)
λ = vλ1− 1

2
+c ∧ vλ2− 3

2
+c ∧ · · · ∧ v

λℓ(λ)−
2ℓ(λ)+1

2
+c

∧ v− 2ℓ(λ)+3
2

+c
∧ v− 2ℓ(λ)+5

2
+c
. . .

which then form a basis of F (c).

Definition 1.2.23.
For any i ∈ Z + 1

2 we define the creation operators

ψi : F → F , vi1 ∧ vi2 ∧ vi3 ∧ · · · 7→ vi ∧ vi1 ∧ vi2 ∧ vi3 ∧ . . .

and annihilation operators

ψ∗i : F → F ,

vi1 ∧ vi2 ∧ vi3 ∧ · · · 7→

{
(−1)k−1vi1 ∧ vi2 ∧ . . . vik−1

∧ vik+1
∧ . . . if ∃k ∈ N : ik = i,

0 otherwise.

Both are elements of End(F).

Lemma 1.2.24.
i) The operators ψi, ψ

∗
i satisfy

ψiψj + ψjψi = 0, ψ∗i ψ
∗
j + ψ∗jψ

∗
i = 0, ψiψ

∗
j + ψjψ

∗
i = δi,j .

The unital algebra generated by these operators is called the infinite rank Clifford
algebra, we denote it by C.

ii) The operators ψi increase the charge while ψ∗i decrease it, that is

ψi[F
(c)] = F (c+1), ψ∗i [F

(c)] = F (c−1).

iii) The operators ψi and ψ∗i are adjoint w.r.t. the natural inner product on F .

The following operators are a central object in the boson-fermion correspondence.

Definition 1.2.25.
We define the operators

Λr =
∑

k∈Z+ 1
2

: ψk−rψ
∗
k :

where : : denotes the ordered product defined by

: ψiψ
∗
j : =

{
ψiψ

∗
j if j > 0,

ψ∗jψi if j < 0.
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1 Preliminaries

Remark 1.2.26.
i) By elementary calculations, one can see that the Λr are well-defined and contained

in End(F ). In particular, they preserve the charge, i.e.

Λr|F c ∈ End(F (c))

for any c ∈ Z. But also note that Λr are not elements in the Clifford algebra
representation.

ii) The operators Λr have a nice combinatorial description in terms of Maya diagrams
and Young diagrams, see for example [RZ16].

As mentioned, the operators Λr are not contained in the Clifford algebra, but we
introduce the following algebra to overcome this problem.

Definition 1.2.27.
We define the following Lie algebra of infinite matrices,

pgl∞ :=

{
(Ai,j)i,j∈Z+ 1

2
: Ai,j ∈ C, ∃K ≥ 0: Ai,j = 0 for all |i− j| > K

}
,

where the Lie bracket is given by the matrix commutator. Note that matrix units

Eij = (δk,iδl,j)k,l∈Z+ 1
2
, i, j ∈ Z +

1

2
.

are contained in pgl∞ and that the elements

Lr =
∑

k∈Z+ 1
2

Ek−r,k

span a commutative subalgebra algebra of pgl∞.

Remark 1.2.28.
There is a natural action of matrix algebras on the wedge space via

A(vi1 ∧ vi2 ∧ vi3 · · · = (Avi1) ∧ vi2 ∧ vi3 · · · + vi1 ∧ (Avi2) ∧ vi3 · · · + . . . (1.2.3)

but by the possible infinite diagonals of elements in pgl∞ we may run into problems.
Consider

T =
∑

k∈Z+ 1
2

λkEk,k ∈ pgl∞

for λk ∈ C, then

T (v∅) =

( ∑
k∈Z+ 1

2

λk

)
v∅.
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Depending on the choice of λk the sum may not converge. This issue can be fixed by
declaring

Êi,jv =

{(
Ei,i − IdF(0)

)
(v) if i = j,

Ei,j(v) if i ̸= j,

where the right-hand side is given by the action defined in (1.2.3). Unfortunately, this
assignment does not define a Lie algebra representation, since the Lie bracket is not
compatible in the sense of Definition 1.2.15. Still, we can make sense of this assignment in
terms of a projective representation [KRR13]. Equivalently, the latter can be described
by a representation of a central extension of pgl∞, that is a representation of the Lie
algebra

g̃l∞ = pgl∞ ⊕ C · c

with bracket

[A+ zc, B + wc]
g̃l∞

= AB −BA+ α(A,B) · c

for all A+ zc, B + wc ∈ g̃l∞. Here, α is given by extending

α(Eij , Ekl) =


1 if k = j, l = i and i ≤ 0, j ≥ 1,

−1 if k = j, l = i and j ≤ 0, i ≥ 1,

0 otherwise.

For more details see [KRR13].

Proposition 1.2.29.
As elements in End(F (0)), we have

Êi,j =: ψiψ
∗
j : and L̂r = Λr.

Remark 1.2.30.
Similarly, the algebra g̃l∞ can be represented on F (c); we are mainly interested in F (0).

1.2.4 Boson-fermion correspondence

We are now ready to state boson-fermion correspondence. The latter consists of two
parts, sometimes called the bosonization and fermionization. The first part carries the
Heisenberg structure to the bosonic Fock space B . Vice versa, the second part deploys
the Clifford algebra on B. For a detailed exposition tailored to the theory of integrable
systems see [MJD00] and for a discussion from the point of view of symmetric functions
see [Sav22, Chapter 5].
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Theorem 1.2.31 (Bosonization).
The map

ϕ(c) : F (c) → B, v
(c)
λ 7→ sλ

is an isometric isomorphism and for any r ̸= 0 the diagrams

F (c) L̂r //

ϕ(c)

��

F (c)

ϕ(c)

��
B

Jr // B

commute. In particular, the map

H → End(F (c)), Jr 7→ Λr

induces a representation of the Heisenberg algebra H on F (c).

Note that every subspace of charge c is isomorphic to a copy of the bosonic Fock
space. These isomorphisms can be collected by introducing a dummy, which captures
the charge.

Corollary 1.2.32.
We have an isomorphism

Φ: F =
⊕
c∈Z

F (c) → B [q−1, q] =: Bq, v
(c)
λ 7→ qcsλ.

For the second part of the boson-fermion correspondence, we need to introduce the
generating functions of the annihilation and creation operators.

Definition 1.2.33.
We define the generating series

Ψ(x) =
∑

k∈Z+ 1
2

x−k−
1
2ψk and Ψ∗(x) =

∑
k∈Z+ 1

2

x−k−
1
2ψ∗k.

Then we have the following second part of the boson-fermion correspondence, some-
times called fermionization.

Theorem 1.2.34 (Fermionization).
Under the map Θ: End(F ) → End(Bq) induced by Φ, the generating functions Ψ,Ψ∗

have the following form:

A(x) := Θ(Ψ(x)) = Tq exp

(
−
∑
m≥0

x−m

m
J−m

)
exp

(∑
m≥0

xm

m
Jm

)
= Tq exp

(
−
∑
m≥0

x−m
pm
m

)
exp

(∑
m≥0

xm∂m

)
,
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and

A∗(x) := Θ(Ψ(x)) = Tq−1 exp

(∑
m≥0

xm

m
J−m

)
exp

(
−
∑
m≥0

x−m

m
Jm

)
= Tq−1 exp

(∑
m≥0

xm
pm
m

)
exp

(
−
∑
m≥0

x−m∂m

)
,

where T is the map that replaces q 7→ x−1q. More precisely, if we denote

ak = [x−k−
1
2 ]A(x), a∗k = [x−k−

1
2 ]A∗(x),

then the map

C → End(Bq), ψi 7→ ai, ψ∗i 7→ a∗i ∀i ∈ Z

is a representation of C on B and for every r ∈ Z the diagram

F
ψr /ψ∗

r //

Φ
��

F

Φ
��

Bq
ar / a∗r // Bq

commutes.

The most important consequence for us is the representation of the following gener-
ating series of operators.

Proposition 1.2.35.
Under the boson-fermion correspondence we have∑

k,l∈Z+ 1
2

xly−kÊk,l =
y

1
2

x
1
2

: Ψ(x)Ψ∗(y−1) :

= x
1
2 y

1
2

exp

(∑
i>0(y

−i − x−i)pii

)
exp

(∑
i>0(x

i − yi)∂m

)
− 1

x− y
.

Furthermore, under the transformation x = ze
u
2 , y = ze−

u
2 and with the notation

ς(z) =
e

z
2 − e−

z
2

z
,

we have

∑
m∈Z

zm
∑

k∈Z+ 1
2

eu
(
k− 1

2

)
Êk−i,k =

exp

(∑
m>0 uς(iu)z−iJ−i

)
exp

(∑
i>0 uς(iu)ziJi

)
uς(u)

.

(1.2.4)
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Remark 1.2.36.
Typically, we will deal with partition functions throughout Chapter 2 (see Section 2.3).
These are elements in C[[p1, p2, p3, . . . ]], that is, power series in infinitely many variables.
We will abuse notation and write B = C[[p1, p2, p3, . . . ]]. We further extend the bosonic
Fock space by the formal parameter ℏ,

Bℏ = B ⊗ Q((ℏ)).

Note as a C((ℏ))-module, Bℏ admits a Schauder basis given by the Schur polynomials
sλ. The operators defined in this section still apply entrywise, and we will use the result
of the boson-fermion correspondence for the charge 0 sector.

1.3 Monotone Hurwitz numbers

Hurwitz numbers originates in enumerative geometry, counting ramified morphisms be-
tween Riemann surfaces. For a fixed compact Riemann surface S of genus h, Hurwitz
numbers count holomorphic maps π : S′ → S (up to isomorphism), where S′ is a compact
Riemann surface of genus g, such that

• π has ramification profile µ1, . . . , µn over n arbitrary, but fixed points on S, and

• each map is weighted by 1
|Aut(π)| .

Hurwitz used the monodromy representations for the holomorphic maps (see [Hur91,
Hur01]) to count these morphisms via factorizations in the symmetric group. We want
to summarize the most important facts needed for this thesis.

Definition 1.3.1.
Let g, h ≥ 0 be non-negative integers, d a positive integer and µ = (µ1, . . . , µn) a tuple
of partitions of d. Let

2g − 2 = d · (2h− 2) +
n∑
j=1

(
|µj | − ℓ(µj)

)
,

we call a collection (σ1, . . . , σn, α1, β1, . . . , αh, βh) of permutations in S(d) a factorization
of type (h, g, d, µ) if the following conditions are satisfied:

(H1) λ(σi) = µi, i.e. σ ∈ Cµi ;

(H2) σ1 · · ·σn = [α1, β1] · · · [αh, βh];

If additionally we have

(H3) ⟨σ1, . . . , σn, α1, β1, . . . , αh, βh⟩ acts transitively on the set {1, 2, . . . , d},
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we call the factorization connected. Denote by F(h, g, d, µ) and F◦(h, g, d, µ) the set of
factorizations of type (h, g, d, µ) and the set of connected factorizations of type (h, g, d, µ),
respectively. The Hurwitz numbers and connected Hurwitz numbers are defined by

Hh,g(µ
1, . . . , µn) =

1

d!
|F(h, g, d, µ)| respectively H◦h,g(µ

1, . . . , µn) =
1

d!
|F◦(h, g, d, µ)|.

Let us state some special cases of these numbers.

Definition 1.3.2.
i) Consider µ = (µ1, T, . . . , T ), where T = (2, 1, . . . , 1) is the partition corresponding

to transpositions. Then we call

Hh,g(µ
1) = Hh,g(µ

1, T, . . . , T )

simple base h Hurwitz numbers. Note, the number r = n − 1 of transpositions is
given by

r = 2g − 2 + ℓ(µ1) − d(2h− 1).

For h = 0, that is a base curve of genus 0, we obtain the simple Hurwitz numbers.

ii) If we take µ = (µ1, µ2, T . . . , T ) and h = 0, we obtain the double Hurwitz numbers.

In this thesis, we are particularly interested in (strictly) monotone versions of Hur-
witz numbers. The monotone version of simple Hurwitz numbers has been introduced by
Goulden, Guay-Paquet and Novak, see [GGPN13] and[GGPN14]. They appear naturally
in the study of the genus expansion of the Harish-Chandra-Itzykson-Zuber-integral and
are given by imposing a monotonicity condition on factorizations that involve transposi-
tions. More precisely, we say a collection of transpositions τ1 = (s1, t1), . . . , τn = (sn, tn)
with si < ti for all i = 1, . . . , n, satisfies the monotonicity condition or call them mono-
tone if

(M1) ti ≤ ti+1 for i = 1, . . . , r − 1,

we call them strictly monotone if

(M2) ti < ti+1 for i = 1, . . . , r − 1.

If we have a factorization involving a (strictly) monotone product of transpositions, we
say it is a (strictly) monotone factorization. Now we are ready to introduce the (strictly)
monotone versions of Hurwitz numbers.

Definition 1.3.3.
Let λ, ν ⊢ d be integer partitions and r ≥ 0.

i) The monotone double Hurwitz number H≤r (λ, ν) is 1
d! times the number of tuples

(α, τ1, . . . , τr, β) of permutations in S(d) such that:
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• α ∈ Cλ and β ∈ Cν ;

• τ1, . . . , τr satisfies (M1), that is τ1, . . . , τr is a monotone sequence of transpo-
sitions; and

• α ◦ τ1 ◦ · · · ◦ τr ◦ β = id.

If the factorization additionally satisfies the connectedness condition (H3), we
call the number connected monotone double Hurwitz number and denote it by
H◦,≤r (λ, ν).

ii) The (connected) strictly monotone Hurwitz number (H◦,<r (λ, ν)) H<
r (λ, ν) is de-

fined analogously by replacing condition (M1) with (M2).

We also introduce the generating series

H<(λ, ν) =

d−1∑
r=0

ℏrH<
r (λ, ν) ∈ Q[ℏ] ,

H≤(λ, ν) =
∑
r≥0

(−ℏ)rH≤r (λ, ν) ∈ Q[[ℏ]] .

(1.3.1)

Remark 1.3.4.
i) Similarly as in the nonmonotonic case, we can define a genus g ≥ 0 via the

Riemann-Hurwitz formula

r = 2g − 2 + ℓ(λ) + ℓ(ν).

This justifies the notation Hg(λ, ν), which is sometimes encountered in the litera-
ture.

ii) In the literature, sometimes the monotone Hurwitz numbers are referred to as
weakly monotone Hurwitz numbers to emphasize the distinction from the strictly
monotone Hurwitz numbers.

iii) The strictly monotone Hurwitz numbers are also called Grothendieck dessins d’en-
fant Hurwitz numbers according to their relation to dessins d’enfants, see [ALS16]
and Proposition 1.3.11.

iv) The special case λ = (1d), or equivalently α = e ∈ S(d), in Definition 1.3.3 is called
simple (strictly) monotone Hurwitz number and denoted by H≤r (ν) (H<

r (ν)).

Definition 1.3.5 ([HvIL22]).
Let λ ⊢ d be partitions and r, h, g ≥ 0 such that

r = 2g − 2 − d(2h− 1) + ℓ(λ).

i) The monotone simple base h Hurwitz number H≤g,h(λ) is 1
d! times the number of

tuples (τ1, . . . , τr, , α1, β1, . . . , αh, βh) of permutations in S(d) such that:
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• σ ∈ Cλ;

• τ1, . . . , τr satisfies M1, that is τ1, . . . , τr is a monotone sequence of transposi-
tions; and

• ◦τ1 ◦ · · · ◦ τr ◦ β = [α1, β1] . . . [αh, βh].

If the factorization additionally satisfies the connectedness condition (H3), we call
the number connected monotone simple base h Hurwitz number and denote it by
H◦,≤g,h (λ).

ii) The (connected) strictly monotone Hurwitz number (H◦,<g,h (λ)) H<
g,h(λ, ν) is defined

analogously by replacing condition (M1) with (M2).

The Hurwitz numbers are in a close relationship to the symmetric functions of Sec-
tion 1.2.1 via the group algebra C[S(d)].

Definition 1.3.6.
Let G be a finite group. Then we define the group algebra of G over C to be the free
vector space generated by basis vectors (vg)g∈G:

C[G] := spanC({vg : g ∈ G}) =
⊕
g∈G

Cvg.

For convenience, we identify vg = g and denote elements of C[G] by∑
g∈G

αg · g,

where αg ∈ C for every g ∈ G. The algebra structure is induced by the group operation

vg · vh = vgh, ∀g, h ∈ G

and extended bilinearly to the vector space C[G].

We are particularly interested in the group algebra C[S(d)] for d ∈ N. An important
class of elements in the group algebra of the symmetric group are the so called Jucys–
Murphy elements.

Definition 1.3.7.
The Jucys–Murphy elements Jk, are the elements in C[S(d)] defined by

Jk =
k−1∑
i=1

(i, k), for 2 ≤ k ≤ d.

It is a classical result [Juc74, Mur81] that the evaluation of symmetric polynomials in
the Jucys–Murphy elements are contained in the center of the group algebra Z(C[S(d)]).
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In particular, if we recall the elementary symmetric and complete symmetric polynomials
from Definition 1.2.4, we have

ek(J2, . . . , Jd) =
∑

2≤i1<···<ik≤d
Ji1 . . . Jik ∈ Z(C[S(d)])

and

hk(J2, . . . , Jd) =
∑

2≤i1≤···≤ik≤d
Ji1 . . . Jik ∈ Z(C[S(d)]).

By definition we have the following relation to the (strictly) monotone Hurwitz numbers.

Proposition 1.3.8.
We have

H<
r (λ, ν) =

1

d!
· [id] CλCν er(J2, . . . , Jd)

and

H≤r (λ, ν) =
1

d!
· [id] CλCν hr(J2, . . . , Jd) .

where the operation [id] stands for the extraction of the coefficient of the identical per-
mutation e in the group algebra, and Cλ is the conjugacy class of permutations of cycle
type λ seen as the element ∑

σ∈Cλ

σ ∈ C[S(d)].

Lemma 1.3.9.
For any d ∈ N and λ, ν ⊢ d, we have:∑

ρ⊢d
zλH

<(λ, ρ) · zρH≤(ρ, ν) = δλ,ν

and ∑
ρ⊢d

zλH
≤(λ, ρ) · zρH<(ρ, ν) = δλ,ν .

We give the proof of this classical result, since it is used in one of the main steps of
proving the higher order moment-cumulant relations in Theorem 2.5.2.

Proof. Using Proposition 1.3.8, we rewrite the generating series of (strictly) monotone
Hurwitz numbers from Definition 1.3.3 and use Lemma 1.2.5 for the generating functions
of the elementary and homogeneous symmetric polynomials, we find

H<(λ, ν) =
1

d!
· [id] CλCν

d∏
k=2

(1 + ℏJk) ,

H≤(λ, ν) =
1

d!
· [id] CλCν

1∏d
k=2(1 + ℏJk)

.

(1.3.2)
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In general, if B is in the center of C[S(d)], we have

1

d!
· [id] CλCνB = [Cλ]

CνB

zλ
= [Cν ]

CλB

zν
,

where we recall zλ = d!
#Cλ

. We use this relation to compute for any λ, ν ⊢ d:

δλ,ν =
zλ
d!

· [id] CλCν =
zλ
d!

· [id] Cλ

d∏
k=2

(1 + ℏJk) · Cν
1∏d

k=2(1 + ℏJk)

=
zλ
d!

· [id]

( ∑
ρ,ρ′⊢d

H<(λ, ρ) zρCρ ·H≤(ρ′, ν)zρ′Cρ′

)
=
∑
ρ⊢d

zλH
<(λ, ρ) · zρH≤(ρ, ν) .

The second relation is proved similarly.

Definition 1.3.10 ([ALS16]).
Let d ≥ 0 and λ, ν ⊢ d.

i) The disconnected free single Hurwitz number H
|
r(λ, ν) is 1

d! times the number of
triples (α, σ, β) of permutations of [d] such that

• α ∈ Cλ and β ∈ Cν ;

• σ ∈ S(d) has colength r, equivalently #σ = d− r; and

• α ◦ σ ◦ β = id.

In other words, in the group algebra we have

H |r(λ, ν) =
1

d!
· [id] CλCν

∑
ρ⊢ d

ℓ(ρ)=d−r

Cρ . (1.3.3)

If we require the additional condition

• {α, β, σ} generates a transitive subgroup of S(d),

we call the resulting number the connected free single Hurwitz number and denote

it by H
|,◦
r (λ, ν).

ii) The free group Hurwitz number H
||
r (λ, ν) is 1

d! times the weighted count of tuples
(α, σ1, . . . , σk, β) from k = 1, . . . , r of permutations of [d] such that

• α ∈ Cλ and β ∈ Cν ;

• σi ∈ S(d), with
∑

i |σi| = r equivalently
∑

#σ = dk − r; and

• α ◦ σ1 ◦ · · · ◦ σk ◦ β = id,
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where the weight is (−1)r+k. In other words, in the group algebra we have

H ||r (λ, ν) =
1

d!
· [id] CλCν

r∑
k=1

(−1)k+r
∑

ρ1,...,ρk ⊢ d∑
ℓ(ρi)=dk−r

k∏
i=1

Cρi .

If we require the additional condition

• {α, β, σ} generates a transitive subgroup of S(d)),

we call the resulting number the connected free group Hurwitz number and denote

it by H
||,◦
r (λ, ν).

Proposition 1.3.11 ([ALS16]).
We have

H |r(λ, ν) = H<
r (λ, ν) and H ||r (λ, ν) = H≤r (λ, ν).

Remark 1.3.12.
The latter result can be proved using either techniques from symmetric functions and
its avatar C[S(d)] ([ALS16]), or by the elementary observation that every permutation
admits a unique factorization into strictly monotone transpositions [BCDGF19]. We give
a proof of the monotone case via the Möbious function and its recursion in Section 2.2.1.

1.4 Topological recursion

Topological recursion is a recursive procedure that computes a family of symmetric
multidifferentials (ωg,n)g≥0,n≥1. Given the information of a spectral curve encoding the
information of the initial values ω0,1 and ω0,2, it computes ωg,n from ωg′,n′ recursively
on the Euler characteristic −χ(g, n) = 2g − 2 + n. It originates in random matrix
theory, where it computes the topological expansion of correlators of matrix integrals,
see e.g. [Eyn05, CEO06, CE06]. Later, it has been detached from random matrix
theory and formalized in [EO07]. Surprisingly, the same recursion formula for different
initial data has been found to produce many other quantities from different subjects
such as enumerative geometry, Gromov-Witten theory, integrable systems, and knot
theory. In recent developments the original formulation of topological recursion has been
generalized to find even more applications, e.g. via blobbed topological recursion [Bor15,
BS17] by G. Borot and S. Shadrin or via Quantum Airy structures by M. Kontsevich
and Y. Soibelman [KS17, ABCO17], see also [Bor17] for an introductory course. We
however will only briefly discuss the original Checkov-Eynard-Oratin formulation, for an
overview we refer to [Eyn14], for a lecture series to [Ora17] and for a full exposition to
the textbook [Eyn16]. We start by defining the initial data, the spectral curve.
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1.4 Topological recursion

Definition 1.4.1.
A spectral curve (Σ, x, y, B) consists of

i) a Riemann surface Σ, not necessarily connected or compact;

ii) two function x, y : σ → C such that dx is a meromorphic 1-form having finitely
many zeros that are simple. We call these points ramification points of x. Further,
we require dy to not vanish at the ramification points of x; and

iii) a symmetric meromorphic 2-form B : Σ×Σ → C with a double pole on the diagonal
and no further singularities. That is

B(z1, z2) ∼
dz1dz2

(z1 − z2)2
+ f(z1, z2)

where f is holomorphic.

Remark 1.4.2.

i) The functions x, y in the definition of a spectral curve encode the 1-form ω0,1 = ydx
and B encodes the initial 2-form ω0,2 = B. Thus, sometimes the spectral curve is
equivalently defined by the data (Σ, x, ω0,1, ω0,2).

ii) In this thesis we are mostly interested in the case when Σ is rational, that is Σ
is isomorphic to the Riemann sphere, Σ ∼= CP 1. Then it is known that (under
some normalization assumption) the properties of B in Definition 1.4.1 determine
B uniquely, and

B(z1, z2) =
dz1dz2

(z1 − z2)2
.

This 2-form is often called the Bergman kernel. Moreover, x(z), y(z) are rational
functions and hence they satisfy an algebraic equation

E(x, y) = 0,

which motivates the name spectral curve.

iii) Since dx has only simple zeros p, x is two-to-one in a neighbourhood of p and
there is an involution σp interchanging the sheets locally above p. We illustrate
the situation in the following figure.
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x

y

x(z)

z

z̄

σ

Local involution (teal) in a neighbourhood of branch point p (red)
mapping z 7→ z̄ := σp(z).

Definition 1.4.3 (Topological recursion).
Given a spectral curve (Σ, x, y, B) we denote ω0,1 = ydx, ω0,2 = B. For g ≥ 0, n ≥ 1
with −χ = 2g− 2 + n > 0, we define the symmetric differential forms ωg,n on Σn by the
recursion

ωg,n(z1, . . . , zn) =
∑
p∈Σ

dx(p)=0

Res
z→p

Kp(z, z1)

(
ωg−1,n+1(z, σp(z), z2, . . . , zn)

+
stable∑

g1+g2=g
I1⊔I2=[zn]

ωg1,#I1(z, zI1)ωg2,#I2(σp(z), zI2)

) (1.4.1)

where we denote [zn] = {z1, . . . , zn} and “stable” means we exclude the cases (gj , Ij) =
(0, ∅), that is the cases where either of the factors in the sum is equal to ω0,1. Furthermore

Kp(z1, z) =

∫ z
σp(z)

ω0,2(z1, ·)
2(ω0,1(z) − ω0,1(σp(z)))

is called the recursion kernel.

The following picture demonstrates the structure of the recursion formula. The idea
is that ωg,n is understood as a genus g surface with n boundaries and can be obtained
by gluing a pair of pants (the recursion kernel K) to a (possibly disconnected) surface
with −χ(g′, n′) < −χ(g, n) in (1.4.1). Hence, the name topological recursion.
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1.4 Topological recursion

Schematic representation of topological recursion.

Let us list some properties of topological recursion.

Theorem 1.4.4 ([EO07]).
The correlators ωg,n of the topological recursion have the following properties.

i) Symmetry: The ωg,n(z1, . . . , zn) are symmetric in its variables zi.
1

ii) Pole behaviour: If 2g− 2 + n > 0, then ωg,n is meromorphic in each variable, with
poles only at the ramification points of degree at most 6g − 6 + 2n + 2 and with
vanishing residue.

iii) Homogenity: For λ ̸= 0 and 2g − 2 + n > 0, under interchanging y with λy in the
spectral curve, the ωg,n turn into λ2−2g+nωg,n.

iv) Dilaton equation: For 2g − 2 + n > 0, we have∑
p∈Σ

dx(p)=0

Res
z→p

ωg,n+1(z1, . . . , zn, z)Φ(z) = (2g − 2 + n)ωg,n(z1, . . . , zn),

where Φ is such that dΦ = ω0,1 = ydx.

Finally, let us list and discuss some examples.

Example 1.4.5.
• TR for ordinary maps/Formal 1-matrix model: Consider the formal 1-matrix in-

tegral [Eyn16]

Z =

∫
formal

exp

(
− N

t

(Tr(M2)

2
−

d∑
j=3

tj
j

Tr(M j)
))

dM

=

∫
formal

exp

(
−N
t

TrV (M)

)
dM

for formal variables t, t1, t3, t4 . . . td, N . It is formally defined via interchanging the
expansion of the exponential and the integration. It is considered as a formal series.
Note that in general such an expression does not converge, again see [Eyn16] for a

1Note that in (1.4.1) z1 seems to play a special role.
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rigorous discussion. But it turns out that Z is a generating series of maps without
boundaries and bounded degree of internal faces,

Z =
∑

Ξ closed maps

(
N

t

)χ(Ξ)
tn3
3 . . . tnd

d

tv(Ξ)

#Aut(Ξ)
,

where ni is the number of i-gons of Ξ and v(Ξ) the number of vertices. Then the
topological recursion (1.4.1), with initial data

Σ = CP 1, x(z) = α+ γ
(1

z
+ z
)
, y(z)dx(z) = ω0,1(z) = W0,1(x(z))dx(z),

where α, γ are some formal parameters depending on t1, . . . , tn and

B(z1, z2) =
dz1dz2

(z1 − z2)2
,

computes the generating series of maps of genus g with n boundaries. More pre-
cisely

ωg,n(z1, . . . , zn) = Wg,n(x(z1), . . . , x(zn))dx(z1) . . . dx(zn)

+ δg,0δn,2
dx(z1)dx(z2)

(x(z1) − x(z2))2
− δg,0δn,1

V ′(x(z1))dx(z1)

2
,

where

Wg,n(x1, . . . , xn) =

∞∑
v=1

tv
∑

Ξ∈Mg,n(v)

t
n1(Ξ)
1 . . . t

nd(Ξ)
d

x
l1(Ξ)
1 . . . x

ln(Ξ)

n

and where

i) Mg,n(v) is the set of maps of genus g having n boundaries and v vertices and
internal faces of degree less than d,

ii) li(Ξ) is the length of the i-th boundary for i = 1, . . . , n, and

iii) ni(Ξ) is the number of internal (unmarked) faces of degree i for i = 1, . . . , d.

• Gaussian matrix model: We present some calculations in a case where the spectral
curve is very simple. Consider the functions

x(z) = z +
1

z
,

y(z) =
1

2

(1

z
− z
)

= −1

2

√
x2 − 4,

(1.4.2)

and

B(z1, z2) =
dz1dz2

(z1 − z2)2
,
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1.4 Topological recursion

then this initial data corresponds to the case V (x) = t2
2 x

2 above, but we omit
the formal variables t, t2. We compute some genus zero invariants of the Gaussian
random matrix model. These are known to count planar pairings. Recall that
ramification points are given by the zeroes of

dx(z) = x′(z)dz =
(

1 − 1

z2

)
dz,

i.e., by p = ±1. Moreover, the (global) involution is given by z 7→ 1
z for both

ramification points. We compute

ω0,1(z) = y(z)x′(z)dz

ω0,1

(1

z

)
= y
(1

z

)
x′
(1

z

)
d

1

z
= −y(z)x′(z)dz

and

w0,2(z1, z2) =
dz1dz2

(z1 − z2)2
.

Thus the recursion kernel is given by

K±1(z1, z) =

∫ z
1
z
ω0,2(z1, ·)

2(w0,1(z) − w0,1(
1
z ))

=

∫ z

1
z

dz1
(z1 − z)2

dz
1

4y(z)x′(1z )d1
z

=

(
1

z1 − z
− 1

z1 − 1
z

)
dz0

4y(z)(1 − z2)d1
z

.

Then by the recursion formula (1.4.1) we have

ω0,3(z1, z2, z3) =
∑
p=±1

Res
z→p

Kp(z1, z)

( stable∑
g1+g2=g
I1⊔I2=[zn]

ωg1,#I1(z, zI1)ωg2,#I2(σp(z), zI2)

)
.

Recall, that the stable sum forbids ω0,1 as a factor in the sum. Thus, the only
terms in the sum are given by I1 = {zi}, I2 = [z2] \ I2 for i = 2, 3 and we obtain

ω0,3(z1, z2, z3) =
∑
p=±1

Res
z→p

(
1

z1 − z
− 1

z1 − 1
z

)
dz1

4y(z)(1 − z2)d1
z

×
[
ω0,2(z, z2)w0,2

(1

z
, z3

)
+ ω0,2(z, z3)ω0,2

(
1

z
, z2

)]
.
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We compute the residues

Res
z→±1

(
1

z1 − z
− 1

z1 − 1
z

)
dz1

4y(z)(1 − z2)d1
z

[
dzdz2d

1
zdz3

(z − z2)2(
1
z − z3)2

+
dzdz2d

1
zdz3

(z − z2)2(
1
z − z2)2

]

= Res
z→±1

(
−1

z(z1 − z)(z1 − 1
z )︸ ︷︷ ︸

no pole at ±1

)
dz1

4 y(z)︸︷︷︸
simple zeroes

at ±1

[
dzdz2dz3

(z − z2)2(
1
z − z3)2

+
dzdz2dz3

(z − z3)2(
1
z − z1)2︸ ︷︷ ︸

no poles at ±1

]

=

(
−dz1dz2dz3

4z(z1 − z)(z1 − 1
z )

)[
1

(z − z2)2(
1
z − z3)2

+
1

(z − z3)2(
1
z − z2)2

]∣∣∣∣∣
z=±1

Res
z→±1

dz

y(z)

and

Res
z→±1

dz

y(z)
=

1

y′(±1)
.

Moreover(
−dz1dz2dz3

4z(z1 − z)(z1 − 1
z )

)[
1

(z − z2)2(
1
z − z3)2

+
1

(z − z3)2(
1
z − z2)2

]∣∣∣∣∣
z=±1

=
dz1dz2dz3

4(z1 ∓ 1)(z1 ∓ 1)

[
1

(±1 − z2)2(±1 − z3)2
+

1

(±1 − z3)2(±1 − z2)2

]
= ∓1

2

3∏
i=1

(
1

zi ∓ 1

)
and finally

ω
(0)
3 (z1, z2, z3) =

1

2y′(−1)

3∏
i=1

1

(zi + 1)2
− 1

2y′(1)

3∏
i=1

1

(zi − 1)2
.

Let us verify that these invariants are generating series for Catalan numbers.
We extract the coefficients by taking residues. In first order we have a shift by
V ′(x(z))

2 = x(z)
2 and thus

m
(0)
2l := −Res

z→∞

(
(x(z))2lω

(0)
1 (z) − 1

2
V ′(x(z))dx(z)

)
= −Res

z→∞

(
z +

1

z

)2l(
y(z) +

x(z)

2

)
x′(z)dz

= −Res
z→∞

2l∑
k=0

(
2l

k

)
z2(l−k)

1

z
(1 − 1

z2
)dz

= Res
z→0

1

z2

2l∑
k=0

(
2l

k

)
z2(k−l)z(1 − z2)
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= Res
z→0

2l∑
k=0

(
2l

k

)
z2(k−l)−1 − z2(k−l)+1

=

[(
2l

l

)
−
(

2l

l − 1

)]
= Cl

where Cl = 1
l+1

(
2l
l

)
is the l-Catalan number. A similar computation shows that

m2l+1 vanishes. Let us compute the coefficients of the second order,

m
(0)
2l1,2l2

= Res
z1,z2→∞

x(z1)
2l1x(z2)

2l2ω0,2(z1, z2)

= Res
z1,z2→∞

(
z2 +

1

z2

)2l2(
z1 +

1

z1

)2l1 dz1dz2
(z1 − z2)2

= Res
z1,z2→∞

(
z2 +

1

z2

)2l2( 2l1∑
j=0

(
2l1
j

)
z
2(j−l1)
1

)
1

z21

1

(1 − z2
z1

)2

= Res
z1,z2→∞

(
z2 +

1

z2

)2l2 1

z21

2l1∑
j=0

(
2l1
j

)
z
2(j−l1)
1

( ∞∑
n=0

(
z2
z1

)n)2

= Res
z1,z2→∞

(
z2 +

1

z2

)2l2 1

z21

2l1∑
j=0

(
2l1
j

)
z
2(j−l1)
1

∞∑
n=0

n∑
k=0

(
z2
z1

)k(z2
z1

)n−k

= Res
z1,z2→∞

(z2 +
1

z2
)2l2

1

z21

2l1∑
j=0

(
2l1
j

)
z
2(j−l1)
1

∞∑
n=0

(n+ 1)

(
z2
z1

)n

= − Res
z2→∞

(
z2 +

1

z2

)2l2
Res
z1→0

1

z21
z21

2l1∑
j=0

(
2l1
j

)
zl1−j1

∞∑
n=0

(n+ 1)(z2z1)
n

= − Res
z2→∞

(
z2 +

1

z2

)2l2
Res
z1→0

2l1∑
j=0

∞∑
n=0

(
2l1
j

)
(n+ 1)zn2 z

l1−j+n
1 .

Now as we take the residue z1 → 0, we take only the coefficient of z−11 , i.e. for
every 0 ≤ j ≤ 2l1 we have

2(l1 − j) + n = −1 ⇐⇒ n = 2(j − l1) − 1.

Since n ≥ 0 we find that j > l1. We continue the calculation

− Res
z2→∞

(
z2 +

1

z2

)2l2
Res
z1→0

2l1∑
j=0

∞∑
n=0

(
2l1
j

)
(n+ 1)zn2 z

l1−j+n
1

= − Res
z2→∞

(z2 +
1

z2
)2l2

2l1∑
j=l+1

(
2l1
j

)
(2(j − l1))z

2(j−l1)−1
2
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= − Res
z2→∞

2l2∑
k=0

(
2l2
k

)
z
2(k−l2)
2

2l1∑
j=l+1

(
2l1
j

)
(2(j − l1))z

2(j−l1)−1
2

= Res
z2→∞

1

z22

2l2∑
k=0

(
2l2
k

)
z
2(l2−k)
2

2l1∑
j=l+1

(
2l1
j

)
(2(j − l1))z

2(l1−j)+1
2

= Res
z2→∞

2l2∑
k=0

2l1∑
j=l+1

(
2l2
k

)(
2l1
j

)
(2(j − l1))z

2(l1+l2−j−k)−1
2 .

Again we compute the residue,

2(l1 + l2 − k − j) − 1 = −1 ⇐⇒ l1 + l2 − k = j.

Without loss of generality, we put l1 ≥ l2 and find that

l1 + 1 ≤ j = l1 + l2 − k ≤ 2l1 ⇐⇒ l2 − l1 ≤ k ≤ l2 − 1,

where l2 − l1 ≤ k is redundant since we have k ≥ 0 anyway. Finally, we have

m
(0)
2l1,2l2

= Res
z2→∞

2l2∑
k=0

2l1∑
j=l+1

(
2l2
k

)(
2l1
j

)
(2(j − l1))z

2(l1+l2−j−k)−1
2

=

l2−1∑
k=0

(
2l2
k

)(
2l1

l1 + l2 − k

)
(2(l2 − k)),

which can be seen to be equal to two times

Cl1,l2 =
2l1l2
l1 + l2

(
2l1 − 1

l1

)(
2l2 − 1

l2

)
,

the number of annular noncrossing partitions. They agree with the number of
annular pairings on 2l1, 2l2 points, see [MN04, Corollary 6.8, Remark 6.9]. Finally,

let us compute the coefficients of ω
(0)
3 (z0, z1, z2), the first quantity computed by

the TR. Recall that

y′(z)

∣∣∣∣
z=±1

=

(
d

dz

1

2

(
1

z
− z

))∣∣∣∣
z=±1

= −1

and

ω0,3(z1, z2, z3) =
1

2y′(−1)

3∏
i=1

1

(zi + 1)2
− 1

2y′(1)

3∏
i=1

1

(zi − 1)2

Thus we compute
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1.4 Topological recursion

m
(0)
l1,l2,l3

= Res
z1,z2,z3→∞

x(z1)
l1x(z2)

l2x(z3)
l3ω

(0)
3 (z1, z2, z3)

=
1

2y′(1)

[ 3∏
i=1

Res
zi→∞

x(zi)
li

(zi − 1)2
−

3∏
i=1

Res
zi→∞

x(zi)
li

(zi + 1)2

]
,

hence for j = ±1 and a circle Γ with radius r > 1 we compute by partial integration

Res
z→∞

x(z)l

(z + j)2
=

−1

2πi

∫
Γ

(
1
z + z

)l
(z + j)2

dz

=
−1

2πi

(
−
[(1

z + z
)l

(z + j)

]Γ(1)
Γ(0)︸ ︷︷ ︸

=0 ,Γ is closed

+l

∫
Γ

(
1
z + z

)l−1(
1 − 1

z2

)
(z + j)

dz

)

= −lRes
z→∞

(1

z
+ z
)l−1 (z + 1)(z − 1)

z2(z + j)

= −lRes
z→∞

(
1

z
+ z)l−1

z − j

z2

= −lRes
z→∞

l−1∑
m=0

(
l − 1

m

)
zl−1−2m

(
z − j

z2

)

= −l
[

Res
z→∞

l−1∑
m=0

(
l − 1

m

)
zl−2−2m − j

l−1∑
m=0

(
l − 1

m

)
zl−3−2m

]

= −l
[ l−1∑
m=0

(
l − 1

m

)
(−δl−2−2m,−1) − j

l−1∑
m=0

(
l − 1

m

)
(−δl−3−2m,−1)

]
.

The nonzero contribution of the Kronecker delta are

l − 2 − 2m = −1 ⇐⇒ m =
l − 1

2
and l − 3 − 2m = −1 ⇐⇒ m =

l − 2

2
,

so the first term only contributes if l is odd and the second only if l is even. Hence,
we find

Res
z→∞

x(z)l

(z + j)2
=

{
−l
(
2q
q

)
if l = 2q + 1

j · l
(
2q−1
q−1
)

if l = 2q

= −jl−1
{
l
(
2q
q

)
if l = 2q + 1

l
(
2q−1
q−1
)

if l = 2q

=: −jl−1cl.

Thus we find
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1 Preliminaries

ml1,l2,l3 =

[
(−1)l1+l2+l3−3 − 1

]
= −cl1cl2cl3

2

[
(−1)l1+l2+l3−2 + 1

]
= −cl1cl2cl3

2

[
(−1)l1+l2+l3 + 1

]
and in particular

m2l1,2l2,2l3 = 4

(
l1

(
2l1 − 1

l1 − 1

)
l2

(
2l2 − 1

l2 − 1

)
l3

(
2l3 − 1

l3 − 1

))
=: 4Cl1,l2,l3 .

This is the number of noncrossing pairings on three circles with 2l1, 2l2, 2l3 points.

• Simple Hurwitz numbers: Σ = CP 1, x(z) = ln(z)−z, y(z) = z, B(z1, z2) = dz1dz2
(z1−z2)2 ,

then

ωg,n(z1, . . . , zn) =
∑

ℓ(µ)=n

Hg(µ1, . . . , µn)
n∏
i=1

µie
µix(zi)dx(zi).

See [EMS11, BEMS11].

• Monotone Hurwitz numbers: Σ = CP 1, x(z) = z−1
z2

, y(z) = −z and B(z1, z2) =
dz1dz2
(z1−z2)2 , then

ωg,n(z1, . . . , zn) =

∞∑
µ1,...,mn=1

n∏
i=1

µix
µi−1
i dxi.

See [DN18].

• Bousquet-Mélou–Schaeffer numbers:2 Σ = CP 1, x(z) = (1+z)m

z , y(z) = −z
(1+z)m ,

B(z1, z2) = dz1dz2
(z1−z2)2 , then

ωg,n(z1, . . . , zn) =
∞∑

µ1,...,µn=1

bg(µ1, . . . , µn)
n∏
i=1

dXµi
i

where X = 1
x , see [BDBS20]. Note also that the Bousquet-Mélou–Schaeffer num-

bers are related to higher order free probability [CMSS07, Notation 5.17].

Let us finish with a note on symplectic invariance.

2Technically, these numbers do not satisfy the CEO topological recursion defined in Definition 1.4.3
but the Bouchard-Eynard formulation of [BE13].

60



1.4 Topological recursion

Definition 1.4.6.
i) Let (Σ, x, y, B) be a spectral curve, g ≥ 2 and Φ be a primitive of ω0,1, that is

dΦ = ω0,1, then the symplectic invariants3 Fg are defined by

Fg = ωg,0 =
1

2g − 2

∑
p∈Σ

dx(p)=0

Res
z→p

(ωg,1(z)Φ(z)).

ii) Two spectral curves (Σ, x, y, B), (Σ, x̃, ỹ, B) are said to be symplectically invariant
if the symplectic form is preserved, that is

|dx ∧ dy| = |dx̃ ∧ dỹ|.

It was known for a while [EO07] that the symplectic transforms

i) (x, y) 7→ (x, y +R(x)), where R is a rational function,

ii) (x, y) 7→ (ax+ccx+d , (cx+ d)2y), where ad− bc = 1,

preserve the Fg. The x− y swap,

x̃ = y, ỹ = x,

has turned out to be the most interesting case, see [EO13]. The first combinatorial ac-
cessible example of this x−y swap has been introduced by G. Borot and E. Garcia-Failde
[BGF20] and since then has been heavily studied [BCDGF19, BCGF21, BDBKS23]. In
particular, we conjectured in [BCGF+23] that the higher order higher genus functional
relations for moments and cumulants describe the relations between ωg,n and ω̃g,n where
ω̃g,n are the invariants computed from the spectral curve after the x − y swap; see
Conjecture 2.7.2. Indeed, the conjecture has been answered positively in [ABDB+22].

3There are also invariants F0 and F1, however their definitions are more involved see [EO07, Eyn16].
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2 Higher order and surfaced free probability

This chapter is an exposition of recent developments in higher order free and surfaced free
probability. We explain our results of the paper [BCGF+23], which solve the problem
of finding the functional relations between higher order Cauchy and R-transform.

Higher order free probability was introduced in the series of papers [MN04], [MS06]
and [MŚS07]. The second order theory is motivated by the study of fluctuations in
random matrices. These quantities can be described by covariances of traces of powers
of the random matrix. Furthermore, in examples, it has been discovered that their limits
show a similar behaviour as the limiting eigenvalue distribution in Voiculescu’s first order
free probability theory; [MN04, MS06]. In particular, it turns out that joint covariances
of traces of several matrices in a general position can be computed by the knowledge
of the covariances of traces of the individual ones. This fact justifies the name second
order freeness. Thus, we start this chapter by explaining second order free probability,
and afterward continue explaining the motivation of higher order free probability from
random matrix theory.

In first order free probability, an efficient tool to deal with joint distributions of free
random variables is the R transform; the generating series of cumulants. For instance, to
compute the distribution of the sum a+ b of two free random variables, it is particularly
well-suited. Thus, the authors of [CMSS07] introduce a combinatorial framework of
higher order free cumulants via so-called partitioned permutations. Despite the fact that
partitioned permutations do not form a lattice, the theory of multiplicative functions
evolves in parallel to the incidence algebra formalism of the noncrossing partitions. We
explain this combinatorial setting in Section 2.1.2. In particular, we state the second
order functional relations discovered in [CMSS07]. In fact, the second order theory with
most of its features is easily expanded to a more general n-th order theory. However, the
functional relations for the moment-cumulant formalism beyond second order could not
be derived by Collins, Mingo, Śniady and Speicher. We explain the obstacles in their
approach in Section 2.1.4.

The main result of this thesis is the derivation of the missing functional relations in
higher order free probability. Thus, the main task in this chapter is to explain our paper
[BCGF+23]. We start by introducing an extension of the setting of [CMSS07] to a higher
genus in Section 2.2. This is necessary to relate multiplicative functions to so-called par-
tition functions in the Fock space in Section 2.3. Furthermore, the extension allows us
to relate the Möbius function to monotone Hurwitz numbers in Section 2.2.1. In fact,
the latter observation was discovered while working on the paper [HvIL22], which will
be discussed in Chapter 3. At a first glance, the new functional relations are very com-
plicated formulas. But they are actually combinatorial equations involving a sum over
certain bicoloured trees, and thus become more accessible when explained graphically.
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2 Higher order and surfaced free probability

We present and explain some examples of the formula in Section 2.4. Afterward, we want
to address the proof of our main results, which splits into three major steps. These three
steps are explained in the three subsections of Section 2.5. At this point, the relation of
multiplicative functions and partition functions in the Fock space is explained, but we
are lacking a reformulation of the moment-cumulant convolution formulas in terms of
the Fock space language. Hence, the first step is to reformulate the relations in terms
of an operator equation. Then, the second step is to manipulate the operators in the
Fock space, using the techniques of [BDBKS22, BDBKS23]. This establishes extended
functional relations in all genera, and we conclude by extracting the genus zero sector
to derive the functional relations in higher order free probability and thus answer the
question of [CMSS07].

Naturally, our extension of the moment-cumulant formalism to higher genus comes
with a notion of freeness by the vanishing of mixed cumulants. We explain this new
extension of free probability in Section 2.6, we call it surfaced free probability; following
[CMSS07, Appendix 9]. In order to show that this definition is sensible, we prove
important properties of freeness, for instance that freeness is independent of the choice
of generators of an algebra. Furthermore, we recover many known instances of freeness,
such as Voiculescu’s first order free probability, freeness of all order of Collins, Mingo,
Śniady and Speicher and surprisingly also the notion of infinitesimal freeness of Février
and Nica.

Finally, in Section 2.7, we explain how our results relate to the theory of topological
recursion. In particular, we propose that our newly discovered relations in higher order
and higher genus can be reformulated in the language of differential forms and then
describe the x − y duality in topological recursion. We conclude this chapter with
further questions regarding the connection of free probability with topological recursion.

We want to emphasize that we changed the notation from [BCGF+23] to
present the results from a perspective catered towards free probability and
to align it with the rest of the notation.

2.1 Introduction and prior work

In this section, we recall some key results of higher order free probability. Mostly, we
will omit the proofs, they can be found in [MS06], [MŚS07] and [CMSS07].

The motivation for higher order free probability was to capture a more refined be-
haviour of the eigenvalue distribution, namely the fluctuation around the limiting dis-
tribution. Our starting point is the observation that the fluctuation of the moments

tr(ArN ) − lim
N→∞

E[trArN ]

of a random matrix A = (AN )N∈N are often asymptotically Gaussian of order 1
N , and

the information is captured in the quantity

k2(Tr(ArN ),Tr(AsN )),
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2.1 Introduction and prior work

where k2 is a classical cumulant; see Notation 1.1.22. Mingo and Speicher studied
the limiting behaviour of these classical cumulants of traces in the case of Whishard
matrices. Their study of these examples led them to the following definition of a second
order limiting distribution; cf. Definition 1.1.24.

Definition 2.1.1.
Let A = (AN )N∈N be a sequence of N × N random matrices. The sequence (AN )N∈N

has a second order limiting distribution if

φAr := lim
N→∞

k1[tr(A
r
N )] and φAr1,r2 := lim

N→∞
k2(Tr(Ar1N ),Tr(Ar2N ))

exists for all r, r1, r2 ∈ N and

lim
N→∞

kn[Tr(Ar1N ), . . . ,Tr(ArnN )] = 0

for any n ≥ 3 and r1, . . . , rn ∈ N.

Furthermore, they discovered that the limiting second order distribution of Whishart
matrices can be described by annular diagrams.

Example of an annular diagram.

Inspired by first order freeness, the question arose whether there is a notion of second
order freeness, i.e. a way of computing the limiting mixed second order moments of ma-
trices AN , BN provided we know the second order limiting distribution of the individual
matrices AN and BN . Using the combinatorial description in terms of annular diagrams,
they proposed the following notion of asymptotic second order freeness.

Definition 2.1.2 ([MN04], [CMSS07]).
Let A = (AN )N∈N, B = (BN )N∈N be random matrices having a second order limiting
distribution. We say AN and BN are asymptotically free if

lim
N→∞

k2(Tr(Ar1N ) − φAr1 ,Tr(Br2
N ) − φBr2) = 0 for all r1, r2 ∈ N
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2 Higher order and surfaced free probability

and

lim
N→∞

κ2(Tr(Ωs1(AN )Ωr1(BN ) . . .Ωsn(BN )),Tr(Ωs̃1(AN )Ωs̃1(BN ) . . .Ωs̃m(BN )))

= δm,n

n∑
i=1

n∏
j=1

(φArj+i+r̃j − φArj+i
φAr̃j )(φ

B
sj+i+s̃j − φBsj+i

φBs̃j ),

where we denote Ωr(AN ) = Tr(Ar1N ) − φAr1 (Ωr(BN ) analogously) for all m,n ∈ N and
r1, s1, . . . , rn, sn ∈ N, r̃1, s̃1, . . . , r̃m, s̃m ∈ N.

This motivates the following abstract definition of a second order noncommutative
probability space and second order freeness. In the following definition, φ2 plays the
role of the limit of κ2(·, ·) in Definition 2.1.2.

Definition 2.1.3 ([MŚS07], [CMSS07]).
i) A second order noncommutative probability space (A, φ, φ2) consists of the data

of a tracial noncommutative probability space (A, φ), endowed with a symmetric
bilinear function

φ2 : A×A → C

that is tracial in both arguments, and it holds that

φ2(1, a) = φ2(a, 1) = 0,

for all a ∈ A.

ii) Let (A, φ, φ2) be a second order noncommutative probability space. We say that
the subalgebras A1, . . . ,As ⊂ A are free of second order if

φ2(a, b) = 0,

where a and b are centered and belong to different algebras Aj1 ,Aj2 . Furthermore,
any centered cyclically alternating tuples (a1, . . . , an), (b1, . . . , bm) satisfy

φ2(a1, . . . , an; b1, . . . , bm) = δm,n

n∑
i=1

φ(a1b1+i) . . . φ(anbn+i),

where the indices are understood modulo n.

Similar to the first order case, the freeness rule yields a formula for computing mixed
second order moments from individual ones, but in an inefficient way. Recall that in
first order, Speicher developed the free moment-cumulant formalism to overcome this
problem. In [CMSS07] the authors extend the first order moment-cumulant formal-
ism to second and higher orders. Using the second order machinery, they derive the
following second order analogue of Voiculescu’s asymptotic freeness in first order; see
Theorem 1.1.28.
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2.1 Introduction and prior work

Theorem 2.1.4 ([MŚS07]).
Let A = (AN )N∈N, B = (BN )N∈N be independent random matrices having a second
order limiting distribution, with at least one of them being unitarily invariant. Then A
and B are asymptotically free of second order in the sense of Definition 2.1.2.

Furthermore, they derive analogues of the R-transform formula in second order. We
state their main results here in advance, without giving the precise definition of the
second order free cumulants.

Theorem 2.1.5 ([CMSS07]).
Let (A, φ, φ2) be a second order noncommutative probability space and a ∈ A. We
denote φar = φ(ar), φar,s = φ2(a

r, as) and let kar , κ
a
r,s be the first and second order

cumulants, then we denote

C(x) := 1 +
∞∑
i=1

κai x
i, M(x) := 1 +

∞∑
i=1

φai x
i

and

C(x1, x2) :=
∞∑

i1,i2=1

κai1,i2x
i1
1 x

i2
2 , M(x1, x2) :=

∞∑
i1,i2=1

φai1,i2x
i1
1 x

i2
2 .

Then the generating series satisfy the functional relation in second order

M(x1, x2) = C(x1M(x1), x2M(x2))
∂x1(x1M(x1))

M(x1)

∂x2(x2M(x2))

M(x2)

+ x1x2

(
∂x1(x1M(x1))∂x2(x2M(x2))

(x1M(x1) − x2M(x2))2
− 1

(x1 − x2)2

)
.

It also turns out that the second order cumulants capture freeness in an easier way
than the moments from Definition 2.1.3, by vanishing of mixed second order cumulants.
This implies the additivity of the free cumulants

Theorem 2.1.6 ([CMSS07]).
Let (A, φ, φ2) be a second order noncommutative probability space and a, b ∈ A be
noncommutative random variables, which are free of second order. Then

κa+br = κar + κbr and κa+br,s = κar,s + κbr,s

where the κ are the limiting free cumulants.

Remark 2.1.7.
Theorem 2.1.5 can be formulated in terms of the Cauchy- and R-transforms. With
Remark 1.1.21 and

G(x1, x2) =
M
(

1
x1
, 1
x1

)
x1x2

and R(x1, x2) =
C(x1, x2)

x1x2
,
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2 Higher order and surfaced free probability

we have ([CMSS07, Corollary 6.4]):

G(x1, x2) = G′(x1)G
′(x2)

(
R(G(x1), G(x2)) +

1

(G(x1) −G(x2))2

)
− 1

(x1 − x2)2
.

More generally, they introduce higher order noncommutative probability spaces. These
are spaces equipped with even more functionals φn, n ∈ N, and are motivated by limits
of higher order classical cumulants of traces:

kn(Tr(Ar1), . . . ,Tr(Arn)).

The higher order free moment-cumulant formalism is then described by combinatorial
objects called partitioned permutations. We explain the theory of multiplicative functions
on the set of partitioned permutations in Section 2.1.2 and the motivation from random
matrices in the following section.

2.1.1 Motivation from random matrices

Although the main result of [CMSS07] only proves functional relations for the moment
and cumulant generating series for second order (and reproves the R-transform formula
of Voiculescu for first order (Theorem 1.1.20), they introduce the moment-cumulant
formalism for all orders. As in the previous section, we have seen that the second order
moments are motivated by the limits of second classical cumulant of traces of a random
matrix A = (AN )N∈N. The natural extension is to take limits of the n-th classical
cumulants of traces

lim
N→∞

Nn−2kn(Tr(Ar1N ), . . . ,Tr(ArnN )), n, r1, . . . , rn ∈ N, (2.1.1)

where the convergence order is motivated by computations for Gaussian and Wishart en-
sembles. Given random matrices A1, . . . , Ad, d ∈ N, the joint higher order moments can
be encoded using permutations in the symmetric group. Consider a cycle decomposition
of a permutation π = c1 . . . cn ∈ S(d) and set

A|c = Ai1Ai2 . . . Air

for a cycle of length r ∈ N and c = (i1, . . . , ir), where i1, . . . ir ∈ [d] are pairwise distinct.
We define

φ(π)[A1, . . . , Ad] := φn(A|c1 , . . . , A|cn) := kn(Tr(A|c1), . . . ,Tr(A|cn)).

A posteriori we can see from Theorem 2.1.6 that we need to deal with products of
different orders, thus it necessitates to develop a theory that can capture all levels k ≤ n
if we want to speak of freeness of order n. We will deal with these products by the
notion of partitioned permutations. Before we continue our motivation, we introduce
some notation.
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2.1 Introduction and prior work

Notation 2.1.8.
i) Let d ∈ N, then we denote 1d = {{1, . . . , d}} ∈ P(d).

ii) Given a permutation σ ∈ S(d), we denote by 0σ ∈ PS(d) the partition given by
the orbits of σ. Sometimes we omit the index σ for convenience.

Given a permutation π ∈ S(d), we introduce a partition V ∈ P(d) that partitions the
cycles of π. More concretely, we require π(B) ⊆ B for all B ∈ V. In other words, the
moved points of each cycle of π are contained in exactly one block of V. In this case, we
have 0π ≤ V and often write π ≤ V. Let us illustrate this idea by the following example.

Example 2.1.9.
Consider π = (123)(4)(56)(789), then

π ≤ {{1, 2, 3, 4}, {5, 6}, {7, 8, 9}} but π ̸≤ {{1, 2}, {3, 4, 5, 6, 7, 8, 9}},

since the cycle (123) does not leave the blocks invariant in the last example.

Then we can patch higher order moments together via

φ(V, π)[A1, . . . , Ad] =
∏
B∈V

φ(π)|B[A1, . . . , Ad|B] (2.1.2)

for any π ≤ V, where A1, . . . , Ad|B means we take only indices that are contained in the
block B. Let us illustrate this procedure again by an example.

Example 2.1.10.
Take π ≤ V from the last example, i.e.

(123)(4)(56)(789) ≤ {{1, 2, 3, 4}, {5, 6}, {7, 8, 9}},

then

φ(V, π)[A1, . . . , A9] = φ2(A1A2A3, A4)φ(A5A6)φ(A7A8A9)

= k2(Tr(A1A2A3),Tr(A4))k1(Tr(A5A6))k1(Tr(A7A8A9)).

Remark 2.1.11.
Let π ≤ V with π ∈ S(d) and V ̸= 1d, then one may think of φ(V, π)[A1, . . . , Ad]
as a disconnected higher order moment. On the other hand, if V = 1d, we think of
φ(V, π)[A1, . . . , Ad] as connected moments. This interpretation will become more evident
in Section 2.5.

The latter discussion motivates the definition of the main combinatorial tool in higher
order free probability, the notion of partitioned permutations.
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2 Higher order and surfaced free probability

Definition 2.1.12.
A partitioned permutation of d elements is a pair (V, π), where V ∈ P(d) and π ∈ S(d),
such that 0π ≤ V. We denote by PS(d) the set of partitioned permutations of d elements
and write PS =

⋃
d≥1 PS(d).

Before we continue, let us give some visualisation of this definition in the following
example.

Example 2.1.13.
One may visualize the partitioned permutation (V, π), with V = {{1, 4}, {2, 3, 5}} and
π = (14)(23)(5), by the following diagrams. The cycles of π are contained in the blocks
of V, we are indeed partitioning the cycles of the permutation.

V = {{1, 4}, {2, 3, 5}} π = (14)(23)(5)

(V, π) (V, π)

In the last picture we want to emphasize the disconnectedness of the quantity φ(V, π).
Also, cf. Example 2.1.22.

By calculations in the unitary group, more precisely by the so-called Weingarten
calculus (see [Col03]), the authors of [CMSS07] obtain the following theorem, which
defines the asymptotic free cumulants of higher order.

Theorem 2.1.14 ([CMSS07]).

i) Let n ∈ N and A1 = (AN1 )N∈N, . . . , An = (ANn )N∈N be random matrices, then we
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2.1 Introduction and prior work

define correlation moments1 by

φNn (A1, . . . , An) := kn(Tr(AN1 ), . . . ,Tr(ANn ))

and their extension to partitioned permutations (V, π) ∈ PS as in (2.1.2). The
corresponding cumulant functions are defined by

κN (V, π)[A1, . . . , An] =
∑

(W,σ)∈PS(n)

φN (W, σ)[A1, . . . , An]CN
0π∨W,V(σπ−1),

(2.1.3)

where

CN
0π∨W,V(σπ−1) =

∑
U∈P(n)

V≥U≥0π∨W

Möb(U ,V)Wg(U , σπ−1)

is the relative cumulant of the Weingarten function. If the ANk = (A
(k)
i,j )Ni,j=1 for

k = 1, . . . , n are unitarily invariant and n ≤ N , then

κ(1n, π)[A1, . . . , An] = kn(A
(1)
i1,iπ(1)

, . . . , A
(n)
in,iπ(n)

),

for distinct i1, . . . , in.

ii) Let A1 = (AN1 )N∈N, . . . , An = (ANn )N∈N be unitarily invariant random matrices
and B1 = (BN

1 )N∈N, . . . , Bn = (BN
n )N∈N independent from A1, . . . , Ad. Then

φN (U , γ)[A1B1, . . . , AnBn] =
∑

(V,π),(W,σ)∈PS(n)
V∨W=U ,γ=πσ

κN (V, π)[A]φN (W, σ)[B], (2.1.4)

where we abbreviate A = A1, . . . , An and B = B1, . . . , Bn.

Remark 2.1.15.
Instead of (2.1.3) one can write the defining equations implicitly as

φN (U , γ)[A1, . . . , An] =
∑

(V,π)∈PS(n)
V∨γπ−1=U

κ(N)[A1, . . . , An](V, π)N#γπ−1
. (2.1.5)

Recall from Equation (2.1.1) that we assume the leading order of the correlation
moments to be N2−n. Then we can deduce the convergence order for the cumulant
functions.

1Note despite being defined via classical cumulants, these quantities play the role of moments in this
theory.
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Theorem 2.1.16.
Let A1 = (AN1 )N∈N, . . . , Ad = (ANd )N∈N be random matrices such that the limits

lim
N→∞

Nn−2kn(p1(A
N
1 , . . . , A

N
d ), . . . , pn(AN1 , . . . , A

N
d ))

exist for all n ∈ N and all choices of polynomials p1, . . . , pn ∈ C⟨z1, . . . , zd⟩ in d non-
commuting variables. Then we say A1, . . . , Ad have a (joint) limiting distribution and
we have that for the cumulants of (2.1.3) the limits

lim
N→∞

Nn−2#V+#πκNd (V, π)[A1, . . . , Ad]

exist for any (V, π) ∈ PS(d).

Remark 2.1.17.
If A1 = (AN1 )N∈N, . . . , Ad = (ANd )N∈N have a joint limiting distribution, then φN (V, π)
is of order N2#V−#π.

Therefore, we find for the leading order the equation in Equation (2.1.4)

|γ| − 2|U| = (|π| − 2|V|) + (|σ| − 2|W|),

where U = V ∨ V and γ = πσ.

Remark 2.1.18.
Let us also mention here that the results of [CMSS07] were rediscovered and connected
to recent developments. Theorem 2.1.14 was rediscovered in [BGF20] and formulated
in terms of (strictly) monotone Hurwitz numbers. Moreover, they discovered that com-
binatorial maps and a special variant, fully simple maps, satisfy the relations of Theo-
rem 2.1.5. These developments started the interest in connecting free probability theory
to the theory of topological recursion and started the collaboration [BCGF+23].

2.1.2 Multiplicative functions on PS

In the last section, we have seen that the higher order limiting distributions admit a
description in terms of so-called partitions permutations. Furthermore, the leading order
can be expressed in terms of the involved partitioned permutations. These observations
motivate the following combinatorial framework for higher order free probability.

Definition 2.1.19.
Let d ≥ 1 be an natural number.

i) Let (V, π) ∈ PS(d) be a partitioned permutation, then we define its colength by

|(V, π)| := 2|V| − |π|.
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ii) Let (V, π), (W, σ) ∈ PS(d) be partitioned permutations. We define their product
by

(V, π) · (W, σ) =

{
(V ∨W, πσ) if |(V, π)| + |(W, σ)| = |(V ∨W, πσ)|,
0 otherwise.

We will usually omit · and just write (V, π)(W, σ) for the product of two partitioned
permutations.

Remark 2.1.20.
The product of partitioned permutations is associative and for d > 1 not commutative.

Lemma 2.1.21.
i) The multiplication of partitioned permutation is associative and (0e, e) is the neu-

tral element, where e ∈ S(n) is the identical permutation.

ii) The colength of a partitioned permutation (V, π) is a nonnegative integer, and it
holds

|(0π, π)| = |π|,

|(V, π)| =
∑
B∈V

|(1#B, π|B)|, (2.1.6)

where we have made a choice of bijections [#B] → B to consider (1#B, α|B ) ∈
PS(#B), but its colength appearing on the right-hand side is independent of
these choices.

iii) We have a triangle inequality

|(V ∨W, πσ)| ≤ |(V, π)| + |(W, σ)|,

more precisely there is an integer g ≥ 0 such that

|(V ∨W, πσ)| = |(V, π)| + |(W, σ)| − 2g. (2.1.7)

Let us discuss some examples to clarify the definition of partitioned permutations and
provide some graphical interpretation.

Example 2.1.22.
The condition in Definition 2.1.19 should be interpreted as a planarity condition, consider
π1 = (14)(235), π2 = (15)(2)(34), (0π1 ∨ 0π2 , π1π2) = (15, (123)(45)). Then we have

|(0π1 , π1)| = |π1| = 5 − 2 = 3,

|(0π2 , π2)| = |π2| = 5 − 3 = 2,

|(15, (123)(45))| = 2(5 − 1) − (5 − 2) = 5.
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2 Higher order and surfaced free probability

Thus the condition in Definition 2.1.19 is satisfied, and the product is indeed defined to
be nonzero. Let us visualize this situation with the following diagram.

Planar product of partitioned permutations.

On the other hand, we may consider the case

(15, π1)(0π2 , π2) = 0

since

|(15, π1)| + |(0π2 , π2)| = 5 + 2 = 7 > 5 = |(15, (123)(45))|.

This case should be considered as non-planar and visualized as follows.

Non-planar product of partitioned permutations.

Since in both examples the partition of the product is 1d, one should interpret them
as connected objects and the value φ(15, (123)(45)) as a connected moment.

Remark 2.1.23.
The authors of [CMSS07] did not consider non-planar products, since they vanish in the
limit in the random matrix case. Therefore, they are not part of classical (higher order)
free probability theory. Allowing such products was the key for realizing the connec-
tion between the Fock space language of [BDBKS22, BDBKS23] and free probability.
Their machinery provided a solution for the problem of finding higher order functional
relations. We will discuss the more general framework in the Section 2.2.

With this framework of partitioned permutations, we can rephrase the leading order
part of Equation (2.1.4):

φ(U , γ)[A1B1, . . . , AnBn] =
∑

(V,π)(W,σ)=(U ,γ)
(V,π),(W,σ)∈PS(n)

κ(V, π)[A]φ(W, σ)[B],
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2.1 Introduction and prior work

where we left out the superscript to indicate that we deal with the leading order terms.
Despite the fact that the partitioned permutations do not form a lattice, the theory of
multiplicative functions can be developed surprisingly in parallel to the first order. We
continue by explaining the theory of [CMSS07].

Definition 2.1.24.
Let d ∈ N, f, g : PS(d) → C be functions and (V, π), (W, σ), (U , γ) ∈ PS(d).

i) We say the function f is multiplicative if

f(V, π) =
∏
B∈V

f(1#B, π|B)

and values f(1d, π) only depend on the conjugacy class of π ∈ S(d).

ii) We define the convolution of f, g to be the function defined by

f ∗ g(U , γ) =
∑

(V,π)(W,σ)=(U ,γ)

f(V, π)g(W, σ).

Comparing the leading order in Equation (2.1.5) we find that

#γ − 2#U = #π − 2#V − n+ #γπ−1.

Writing σ = γπ−1 and subtracting n we obtain

|(U , γ)| = |(V, π)| + |(0σ, σ)|.

Thus in the limit (2.1.5) reads

φ(U , γ)[A1, . . . , An] =
∑

(V,π)(0σ ,σ)=(U ,γ)

κ(V, π)[A1, . . . , An] (2.1.8)

and motivates the following definitions.

Definition 2.1.25.
We define the following functions.

i) We define the delta-function δ : PS → C by

δ(U , π) =

{
1 if (U , π) = (0e, e),

0 otherwise.

ii) We define the zeta-function ζ : PS → C by

ζ(U , π) =

{
1 if U = 0π,

0 otherwise.
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2 Higher order and surfaced free probability

Lemma 2.1.26.

i) The delta function is the neutral element w.r.t. the convolution of Definition 2.1.24,

δ ∗ f = f ∗ δ = f,

for any function f : PS → C.

ii) The zeta-function is invertible w.r.t. to the convolution of Definition 2.1.24. We
denote its inverse by µ : PS → C and call it the Möbius-function on PS. Formally,

µ ∗ ζ = ζ ∗ µ = δ.

Definition 2.1.27.
Let φ, κ : PS → C be functions. We say φ, κ satisfy the (higher order) moment-cumulant
relations if

φ = κ ∗ ζ,

or equivalently

κ = φ ∗ µ.

2.1.3 Proof of Theorem 2.1.5

The derivation of the second order functional relations in [CMSS07] relies on investigating
the combinatorics of partitioned permutations. By Definition 2.1.27 the second order
moment-cumulant relations are given by

φ(1d, γr1,r2) = κ ∗ ζ(1d, γr1,r2)

=
∑

(V,π)(W,σ)=(1d,γr1,r2 )

κ(V, π)ζ(W, σ)

=
∑

(V,π)(0σ ,σ)=(1d,γr1,r2 )

κ(V, π),

where n = r1+r2. Thus, in order to understand the right-hand side, we must investigate
the possible factorizations

(V, π)(0σ, σ) = (1d, γr1,r2). (2.1.9)

The following classes of partitioned permutations are particularly important when char-
acterizing the solutions of (2.1.9).

Definition 2.1.28.
Let d, r1, r2 ∈ N such that d = r1 + r2 and γ := γr1,r2 . We define the following sets of
(partitioned) permutations.
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i) The set of (1d, γr1,r2)−noncrossing partitioned permutations

PSNC(r1, r2) = {(V, π) ∈ PS(d) : |(V, π)| + |(0π−1γ , π
−1γ)| = d}.

ii) The set

SNC(r1, r2) = {π ∈ Sd : |π| + |γr1,r2π−1| = d and ⟨π, γr1,r2⟩ is transitive}.

Recalling that the product of partitioned permutations must satisfy

|(V, π)| + |(W, σ)| = |(U , γ)|,

a careful case-by-case analysis of (U , γ) = (1d, γr1,r2) in [CMSS07] yields the following
result.

Proposition 2.1.29.
For r1, r2 ∈ N, the solutions of the equation

(1r1+r2 , γr1,r2) = (V, π) · (W, σ)

are exactly of the following forms:

i) we have

(1r1+r2 , γr1,r2) = (0π, π) · (0π−1γr1,r2
, π−1γr1,r2),

where π ∈ SNC(r1, r2);

ii) we have

(1r1+r2 , γr1,r2) = (V, π) · (0π−1γr1,r2
, π−1γr1,r2),

where π = π1 × π2 ∈ NC(r1) × NC(r2) and #V + 1 = #π, where V contains a
block that consists of the moved points of two cycles, one of π1 and one of π2;

iii) we have

(1r1+r2 , γr1,r2) = (0π, π) · (W, π−1γr1,r2),

where π−1γr1,r2 = σ1×σ2 ∈ NC(r1)×NC(r2) and #W+1 = #σ, where V contains
a block that consists of the moved points of two cycles, one of σ1 and one of σ2.

Later, we want to discuss the difficulties of [CMSS07] of deriving functional relations
for the higher order moment-cumulant formalism in n ≥ 3. Thus, we sketch the proof
of Proposition 2.1.29.
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2 Higher order and surfaced free probability

Sketch of the proof. First note that

|(V, π)| + |(W, σ)| = |(V ∨W, πσ)|

can be rewritten as

(|V| − |π|) + (|W| − |σ|) + (|V| + |W| − |V ∨W|) = |1r1+r2 | − |γr1,r2 | = 1. (2.1.10)

Since every term in brackets on the left-hand side must be positive, we have the following
possibilities

i) |V| = |π|, |W| = |σ|, |V| + |W| = |V ∨W| + 1;

ii) |V| = |π| + 1, |W| = |σ|, |V| + |W| = |V ∨W|;

iii) |V| = |π|, |W| = |σ| + 1, |V| + |W| = |V ∨W|.

Each of these cases corresponds to one of the claimed factorizations.

Remark 2.1.30.
i) The factorizations of the cycle (1, γr) = (V, π)(W, σ) can be identified with the

noncrossing partitions and hence recover the theory of Speicher; [Spe94].

ii) The assertion of Proposition 2.1.29 can be formulated as

PSNC(r1, r2) = SNC(r1, r2) ⊔ TNC(r1, r2),

where TNC(r1, r2) consists of the partitioned permutations (V, π) described in
Proposition 2.1.29 part ii).

iii) One can easily adapt the definitions and the proof of Proposition 2.1.29 to obtain
a result for arbitrary γr1,...,rn , where n, r1, . . . , rn ∈ N. We will discuss this matter
in Section 2.1.4.

Example 2.1.31.
Let us also give a visual interpretation of the result above. As mentioned above, for one
cycle we obtain the combinatorics of the classical results of [Spe94].

Elements of NC(r).
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The diagram corresponds to the formula

φr = φ(1r, γr) =
∑

π∈NC(r)

ζ(0π, π)κ(0π−1γ) =
∑

π∈NC(r)

κπ.

In second order case, we need to study the following diagrams.

Elements of SNC(r1, r2).

Elements of TNC(r1, r2): π1 × π2 connected by a partition V.

These diagrams correspond to the moment-cumulant formula

φr1,r2 = φ(1r1+r2 , γr1,r2) =
∑

π∈SNC(r1,r2)

κ(0π, π) +
∑

π1×π2∈NC(r1)×NC(r2)
V connects two cycles

κ(V, π1 × π2).

We conclude this section by sketching the proof of the second order functional relations
of [CMSS07].

Sketch of the proof of Theorem 2.1.5. Recall that we are interested in functional rela-
tions between the generating functions

C(x) := 1 +
∞∑
i=1

κai x
i, M(x) := 1 +

∞∑
i=1

φai x
i

and
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2 Higher order and surfaced free probability

C(x1, x2) :=
∞∑

i1,i2=1

κai1,i2x
i1
1 x

i2
2 , M(x1, x2) :=

∞∑
i1,i2=1

φai1,i2x
i1
1 x

i2
2 .

Thus the strategy is to multiply the equation

φr1,r2 = φ(1r1+r2 , γr1,r2) =
∑

π∈SNC(r1,r2)

κ(0π, π) +
∑

π1×π2∈NC(r1)×NC(r2)
V connects two cycles

κ(V, π1 × π2)

(2.1.11)

by powers of formal variables xr11 , x
r2
2 and summing over r1, r2 ≥ 1. But to recover the

base levels κr1,r2 and κr from the summands in each of the sums of (2.1.11), we must
unwind the multiplicative structure of κ(0π, π) and κ(V, π1 × π2). A term in the second
sum must be of the form

κs1,s2κa1 . . . κas1κb1 . . . κbs2 ,

where a1 + · · · + as1 + s1 = r1 and b1 + · · · + bs2 + s2 = r2. It is easy to see that this
kind of terms will yield the expression

C(x1M(x1), x2M(x2))
∂x1(x1M(x1))

M(x1)

∂x2(x2M(x2))

M(x2)

when multiplying xr11 , x
r2
2 and summing over r1, r2 ≥ 1. The leftover term is the sum

over π ∈ SNC(r1, r2), which can be reduced in two steps. First we can rearrange the
terms in a way that we only sum over π that have only through-cycles, that is, every
cycle of π contains elements of {1, . . . , r1} as well as elements from {r1 + 1, . . . , r1 + r2}.
The set of all π that only have through-cycles is denoted by Sall

NC(r1, r2). This idea can
be formulated by introducing a new multiplicative function via

κ̃r = κr,

κ̃r1,r2 = κ̃(1r1+r2 , γr1,r2) =
∑

π∈SallNC(r1,r2)

κ(0π, π),

which leads to ∑
π∈SNC(r1,r2)

κ(0π, π) =
∑

π1×π2∈NC(r1)×NC(r2)
V connects two cycles

κ̃(V, π). (2.1.12)

Let us give a small example to clarify the idea of (2.1.12). Consider the partitioned per-
mutation (V, π) = ({{1, 2, 4, 5}{3}{6}}, (12)(45)(3)(6)) in NC(3) × NC(3), understood
as permutations of the sets {1, 2, 3} and {4, 5, 6}.
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(V, π), dashed lines represent the block
connection of V.

Then on the right-hand side of (2.1.12) we have the terms

κ̃(V, π) = κ̃(14, (12)(45))κ(11, (3))κ(11, (6))

=
(
κ(0, (1245)) + κ(0, (1254)) + κ(0, (14)(25))

+ κ(0, (15)(24)))κ(1, (3)
)
κ(1, (6))

= κ(0, (1245)(3)(6)) + κ(0, (1254)(3)(6)) + κ(0, (15)(24)(3)(6))

+ κ(0, (14)(25)(3)(6)).

Roughly speaking we replace the one block connection of an element in TNC(r1, r2) by
all possible through-cycles.

Putting a 4-cycle in the block. Putting two pairings in the block.

We continue with the proof. Assume we have π ∈ SNC(r1, r2) with a through-cycle
c of length s = a + b, where a is the number of points of c in {1, . . . , r1} and b the
number of points of c in {r1+1, . . . , r1+r2}. Then, for the non-through cycles, there are
only finitely many possibilities left. These are characterized by a choice of noncrossing
permutations π1, . . . , πã ∈ NC(r1 − a) and σ1 . . . σb̃ ∈ NC(r2 − b), with ã ≤ a, b̃ ≤ b, on
the remaining points with the restriction that they cannot cross the through cycles. Let
us illustrate that by the following diagram.
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Blue: possible non crossing configuration of cycles on just one of the circles.
Yellow: through cycle connection.

Thus, one gets (similar to the first case) a contribution

κ̃s1,s2κa1 . . . κas1κb1 . . . κbs2 ,

which will correspond to a term

C̃(x1M(x1), x2M(x2))

and we are left with analyzing the function

C̃(x1, x2) =
∑
r1,r2

κ̃r1,r2x
r1
1 x

r2
2 .

By a counting argument for the elements in Sall
NC(r1, r2), we have

κ̃r1,r2 = r2
∑
r≥1

∑
a1,...,ar≥1

a1+···+ar=r1

∑
b1,...,br≥1

b1+···+br=r2

r1κa1+b1 . . . κar+br

and we obtain the formula

C̃(x1, x2) = x1x2∂x1∂x1 log

(
x1C(x2) − x2C(x1)

x1 − x2

)
.

Putting everything together yields the theorem.

2.1.4 Functional relations beyond n = 2

In this section, we want to briefly review the problems in order bigger than two. Recall
that the first step towards deriving the functional relation in [CMSS07] for order two
was investigating the possible factorizations (2.1.9). For the case n = 3, the equation is
given by

(V, π)(0π, π) = (1r1+r2+r3 , γr1,r2,r3).

We denote the obvious generalizations of the sets PSNC(r1, r2) and SNC(r1, r2) by
PSNC(r1, . . . , rn) and SNC(r1, . . . , rn) which are defined by replacing γr1,r2 by γr1,...,rn in
Definition 2.1.28. As already noted in [CMSS07], Proposition 2.1.29 can be generalized
to arbitrary n. Let us discuss n = 3.
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Proposition 2.1.32.
Let r1, r2, r3 ∈ N and denote d = r1 +r2 +r3, γ = γr1,r2,r3 . The solutions of the equation

(1d, γ) = (V, π) · (W, σ)

are exactly of the following forms.

i) We have

(1d, γ) = (0, π) · (0, π−1γ),

where π ∈ SNC(r1, r2, r3).

ii) We have

(1d, γ) = (V, π) · (0, π−1γ),

where either

a) π ∈ NC(r1) × NC(r2) × NC(r3), |V| = |π| + 2 and V connects three cycles
ci ∈ NC(ri), i = 1, 2, 3 of π

or

b) π ∈ SNC(ri, rj) × NC(rk), |V| = |π| + 1 and V connects two cycles c1 ∈
SNC(ri, rj), c2 ∈ NC(rk) of π.

iii) We have

(1d, γ) = (0, π) · (W, π−1γ),

a) π ∈ NC(r1) × NC(r2) × NC(r3), |W| = |π−1γ| + 2 and W connects three
cycles ci ∈ NC(ri), i = 1, 2, 3 of π−1γ

or

a) π ∈ SNC(ri, rj) × NCrk), |W| = |π−1γ| + 1 and W connects two cycles
c1 ∈ SNC(ri, rj), c2 ∈ NC(rk) of π−1γ.

iv) We have

(1d, γ) = (V, π) · (W, π−1γ),

where π ∈ NC(r1) × NC(r2) × NC(r3), |V| = |π| + 1 and V connects two cycles
ci ∈ NC(ri), cj ∈ NC(rj) of π and |W| = |π−1γ| + 1 and W connects two cycles
ci ∈ NC(ri), cj ∈ NC(rj) of π−1γ.

Remark 2.1.33.
Note that the case iv) in Proposition 2.1.32 does not contribute anything to the moment-
cumulant equation, since the zeta function yields zero, ζ(V, π) = 0, if V ≠ 0π.
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We discuss the diagrammatic interpretation of Proposition 2.1.32 with the following
examples.

Example 2.1.34.

• Case ii) a): the following kind of diagrams give a true third order (cumulant)
contribution to the moment-cumulant formula. They have a partition connection
of order three.

Contribution: κ2,2,1κ3κ
3
2κ

2
1.

• Case ii) b) involves the following kind of diagrams, giving second and first order
(cumulant) contributions to the formula. They only have a partition connection of
order two.

Contribution: κ2,2κ4κ3κ
2
2κ1.
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• The case i) is the most complicated, since the first order connections are coming
from the permutation. The following two examples have cycle connections to all
three orbits of γr1,r2,r3 .

Two cycles connecting three orbits (cir-
cles).

One cycle connecting three orbits, but
touching the upper one twice.

Note that in the right picture the outermost cycle connecting all three circles
forbids connections between the bottom two circles (such would disturb the pla-
narity), where on the configuration on the left there is no such restriction. But
there might also be permutations that do not involve cycles permuting points of
all three orbits of γ at all.

Example with no cycles that connect all three circles.

Now the cases ii) (or iii)) a) and b) in Proposition 2.1.32, can be dealt with similarly as
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in the case n = 2. If they give a true third order contributions, then we have summands
of type

κs1,s2,s3κk1 . . . κkm , m, s1, s2, s3, k1, . . . , km ∈ N

which sums to

C3(x1M(x1), x2M(x2), x3M(x3))

in the functional relation (see. Example 2.4.3), where C3 is the generating series of third
order cumulants. On the other hand in case ii) a) and b) there are factorizations that
combine a second order with first order terms, which will contribute as a summand

C2(xiM(xi), xjM(xj)) +
xiM(xi)xkM(xk)

(xiM(xi) − xkM(xk))2

and

C2(xiM(xi), xjM(xj))C2(xiM(xi), xkM(xk)).

As already stated in [CMSS07], it turns out that the hardest part is to mimic the proof
for the contributions of elements in SNC(r1, r2, r2). Still, one can reduce the discussion
to Sall

NC(r1, r2, r3), elements consisting of only through cycles. But the analysis of the
latter becomes a tedious case by case analysis, which can be seen from part iii) of the
last example.

Let us finish by a final remark on the situation beyond n = 3 and combinatorial
approaches towards reproving our formula in [BCGF+23].

Remark 2.1.35.
i) For n = 3 it is still doable to study the elements in Sall

NC(r1, r2, r3) and the author
is confident that his computations recover the formula for n = 3, but this will
not be not part of the thesis and is still a work in progress. For n > 3 it is still
necessary to unwrap the conceptional simplifications of the term corresponding to
Sall
NC(r1, . . . , rn) and it seems out of reach to do the case by case analysis without

the latter.

ii) Let us also emphasize that recently there has been a fruitful combinatorial approach
by L. Lionni [Lio22] using hypermaps to study the moment-cumulant relations. In
particular, there is also a proof for n = 3 and a reformulation for general n that
reduces the proof to understanding terms from so called non-separable hypermaps.
The latter, from the point of view of partitioned permutations, correspond to
understanding Sall

NC(r1, . . . , rn).

2.2 Extension to higher genus

In this section, we will present a generalization of the theory of [CMSS07]. The idea is
to include more information of the distribution of noncommutative random variables,
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2.2 Extension to higher genus

inspired from sub-leading orders in random matrix theory. In this way, the connection to
the notion of topological partition functions in the bosonic Fock space is more apparent.
This connection will then be discussed in the next section, Section 2.3. Recall from the
random matrix case (2.1.3) or (2.1.5), that the authors of [CMSS07] were only interested
in the leading order terms, i.e. the terms

lim
N→∞

N−|(U ,γ)|φ(N)(U , γ)[A1, . . . , An].

But φ(N)(U , γ)[A1, . . . , An] typically admits an expansion in N , called genus expansion.
Thus, to capture the subleading orders of N , we will extend the notion of multiplicative
functions of f : PS → C by allowing

f : PS → C[[ℏ]]

for some formal parameter ℏ. The idea behind this is to model the random matrix
behaviour in subleading orders, i.e. to enforce a genus expansion on the abstract level

φr1,...,rn = φ(1d, γr1,...,rn) =
∑
g≥0

φ[g](1d, γr1,...,rn)ℏ|(1d,γr1,...,rn )|+2g, (2.2.1)

κr1,...,rn = κ(1d, γr1,...,rn) =
∑
g≥0

κ[g](1d, γr1,...,rn)ℏ|(1d,γr1,...,rn )|+2g, (2.2.2)

where d ∈ N, γ ∈ S(d). Additionally, we must allow the product of two partitioned
permutations to generate a higher genus (cf. Theorem 2.1.14 ii) and Lemma 2.1.21 iii)).
Thus, the following definitions extend Definition 2.1.24 and Definition 2.1.25.

Definition 2.2.1.
Let (U , γ), (V, π), (W, σ) ∈ PS(d) be partitioned permutations and f1, f2 : PS(d) → C[[ℏ]]
two functions.

i) We define the extended multiplication ⊙ of partitioned permutations to be

(V, π) ⊙ (W, σ) := (V ∨W, πσ).

ii) The extended convolution of two functions is

(f1 ⊛ f2)(U , γ) :=
∑

(V,π)⊙(W,σ)=(U ,γ)

f1(V, π) f2(W, σ). (2.2.3)

Definition 2.2.2.
We define the following extensions.

i) The extended zeta function ζℏ : PS → C[[ℏ]] is

ζℏ(V, π) :=

{
ℏ|π| if V = 0π,

0 otherwise.
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2 Higher order and surfaced free probability

ii) The extended Möbius function µℏ : PS → C[[ℏ]] is uniquely determined by

µℏ ⊛ ζℏ = ζℏ ⊛ µℏ = δ,

where δ is the delta function of Definition 2.1.25 but understood as a function
PS → C[[ℏ]].

Lemma 2.2.3.
The Möbius function µℏ exists.

Proof. For the existence of µℏ, we view functions PS → C[[ℏ]] (and their ⊛ convolution)
as elements of power series over the group ring C[PS(d)][[ℏ]] (with product induced by
⊙). In particular, we have

ζℏ =
∑

π∈S(d)

ℏ|π| (0π, π).

Its constant term, i.e. the coefficient of ℏ0 is exactly (0e, e), since the only permutation
with zero colength is the identity. Since (0e, e) is the unit for ⊙, ζℏ is invertible as a
power series in C[PS(d)][[ℏ]]. We denote its inverse by µℏ.

Definition 2.2.4.
A function f : PS → C[ℏ] is called multiplicative if for any d ∈ N and π ∈ S(d), the value
f(1d, π) depends only on the conjugacy class of π, and for any (V, π) ∈ PS we have

f(V, π) =
∏
B∈B

f(1#B, π|B).

Lemma 2.2.5.

i) The convolution of two multiplicative functions is again multiplicative.

ii) The zeta function and the Möbius function are multiplicative.

Proof.

i) Let (V, π)(W, σ) = (U , γ), i.e. V ∨ W = U and γ = πσ, then we have V,W ≤
U . Thus, the blocks of V,W must be contained in the blocks of U . By the
multiplicativity of f, g we get

f(V, π)g(W, σ) =
∏
V ∈V

f(V, π|V )
∏
W∈W

g(W,σ|W )

=
∏
U∈U

∏
V⊂U

f(V, π|V )
∏
W⊂U

g(W,σ|W ).

The blocks U ∈ U must satisfy

U =

( ⋃
V ∈V
V⊂U

V

)
∨
( ⋃
W∈W
W⊂U

W

)
=: SV(U) ∨ TW(U),
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2.2 Extension to higher genus

If we would have SV(U)∨TW(U) < 1U then either there is at least one point i ∈ U
which is not contained in any of the V ’s and W ’s in the union. But there must be
blocks V ′,W ′ containing i and V ′,W ′ ̸⊂ U and by definition there must be a block
U ′ of U containing both. Then U ′ must contain i and as the blocks of U must be
disjoint it agrees with U , which is a contradiction. Moreover, we know that π and
σ decompose respecting the blocks of V resp. W, such that π =

∏
V ∈V π|V with

π|V pairwise disjoint, similarly for σ. Thus, we have π|U =
∏
V ∈V,V⊂U π|V = πSV ,

σ|U = σ|TW (U) and since σ(U) = U we must have γ|U = πσ|U = π|Uσ|U =
π|SVσ|TW (U). Thus, we have shown that

(SV(U), π|SV (U))(TW(U), σ|TW (U)) = (U, γ|U )

and vice versa every factorization for a restriction to a block,

(U, γ|U ) = (V0(U), π0)(W0(U), σ0),

gives rise to a factorization (U , γ) = (V, π)(W, σ) via V = {V0(U) : U ∈ U} and
π =

∏
U∈U π|U and similarly for (W, σ). Thus,

f ⊛ g (U , γ) =
∑

(U ,γ)=(V,π)(W,σ)

f(V, π)g(W, σ)

=
∑

(U ,γ)=(V,π)(W,σ)

∏
U∈U

∏
V⊂U

f(V, π|V )
∏
W⊂U

g(W,σ|W )

=
∑

(U ,γ)=(V,π)(W,σ)

∏
U∈U

f(SV(U), π|SV (U))g(TW(U)), σ|TW (U))

=
∏
U∈U

∑
(V0,π0)(W0,σ0)=(U,γ|U )

f(V0, π0)g(W0, σ0)

=
∏
U∈U

f ⊛ g (U, γ|U ).

The fact that the value only depends on the conjugacy class is clear by

γ = πσ ⇐⇒ τ−1γτ = τ−1πττ−1στ

and the fact that f, g are multiplicative, i.e. their value only depends on the
conjugacy class of the argument.

ii) It is easy to see that the zeta function is multiplicative: let (V, π) be a partitioned
permutation with π = c1 . . . cr ∈ S(d), where c1 . . . cr is the cycle decomposition of
π into cycles of length s1, . . . , sr ∈ N. If V ̸= 0π, then, ζ(V, π) = 0 and since there
is a block B containing at least two cycles of π, ζ(B, π|B) = 0. On the other hand
if V = 0π, then

ζ(0π, π) = ℏ|π| = ℏd−#π = ℏs1+···+sr−r = ℏ|c1|+···+|cr| =
r∏
i=1

ℏ|ci| =
∏
B∈0π

ζ(1B, π|B).
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2 Higher order and surfaced free probability

Now recall hat µℏ is the inverse of ζℏ in C[PS(d)][[ℏ]] w.r.t. ⊛. These relations can
be written down explicitly: we write µr1,...,rn = µ(1d, r1, . . . , rn) if r1+ · · ·+rn = d,
then we have

1 = µ1

0 = ℏµ2 + µ1,1

0 = µ2 + µ(02, (1)(2)) + ℏµ1,1
0 = µ1,1,1 + 3ℏµ2,1 + 2ℏ2µ3

...

In general we have

0 =
∑

(0π ,π)(V,σ)=(1d,γr1,...,rn )

ℏ|π|µ(V, σ)

= µr1,...,rn +
∑

(0π ,π)(V,σ)=(1d,γr1,...,rn )
(0π ,π) ̸=(0e,e)

ℏ|π|µ(V, σ).

If we expand these equations multiplicatively, they determine the values µr1,...,rn
uniquely. Thus we may define a function M : PS → C[[ℏ]] by these relations on
(1d, γr1,...,rn) and on (V, π) by multiplicativity:

M(V, π) :=
∏
B∈V

M(1B, π|B).

Then we have

ζ ⊛M(V, π) =
∏
B∈V

ζ ⊛M(1B, π|B)

=
∏
B∈V

δ(1B, π|B)

= δ(V, π),

where we used ii) in the first equality and the defining relations of M in the second
equality. Thus M is the convolution inverse and must agree with µ. In particular
µ is multiplicative.

Moreover, as in the genus 0 case, the convolution of two multiplicative functions is
commutative:

Lemma 2.2.6.
Let f, g : PS → C[[ℏ]] be two multiplicative functions. Then

f1 ⊛ f2 = f2 ⊛ f1.
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2.2 Extension to higher genus

Proof. Let (V, π), (W, σ), (U , γ) ∈ PS be partitioned permutations, such that (V, π) ⊙
(W, σ) = (U , γ). Then U = V∨W and π◦σ = γ. This can also be written U = W∨V and
σ−1 ◦ π−1 = γ−1. The support of cycles of a permutation and its inverse are the same:
0π = 0π−1 , etc. Therefore, (V, π−1), (W, σ−1), (U , γ−1) are still partitioned permutations
and (W, σ−1) ⊙ (V, π−1) = (U , γ−1). Since π and π−1 are conjugated, a multiplicative
function takes the same values on (V, π) and on (V, π−1). Then, relabelling (V, π) into
(W, σ−1) and (W, σ) into (V, π−1) in equation (2.2.3) shows that f ⊛ g = g ⊛ f .

Definition 2.2.7.
Let φ, κ : PS → C[[ℏ]] be functions. We say φ and κ satisfy the extended or all genera
cumulant relations if

φ = ζℏ ⊛ κ

or equivalently

κ = µℏ ⊛ φ.

Lemma 2.2.8.
Let φ, κ : PS → C[[ℏ]] be two multiplicative functions with

φ(V, π) = ℏ|(V,π)|φ0(V, π) + o(ℏ|(V,π)|) and κ(V, π) = ℏ|(V,π)|κ0(V, π) + o(ℏ|(V,π)|)

for any (V, π) ∈ PS. Then φ0, κ0 define multiplicative functions φ0, κ0 : PS → C and
the relation φ = ζℏ ⊛ κ implies φ0 = ζ ∗ κ0 in the sense of [CMSS07].

Proof. Let d ≥ 0 and (U , γ) ∈ PS(d) then by definition we have

φ(U , γ) = ζℏ ⊛ κ(U , γ)

=
∑

(V,π)(W,σ)=(U ,γ)

ζℏ(V, π)κ(W, σ)

=
∑

(0π ,π)(W,σ)=(U ,γ)

ℏ|π|κ(W, σ)

Hence, if we take the ℏ|(U ,γ)| coefficient, we obtain

φ0(U , γ) = [ℏ|(U ,γ)|]
∑

(0π ,π)(W,σ)=(U ,γ)

ℏ|π|κ(W, σ)

= [ℏ|(U ,γ)|]
( ∑

(0π ,π)(W,σ)=(U ,γ)

κ0(W, σ)ℏ|π|+|(W,σ)| + o(|π| + |(W, σ)|)
)

=
∑

(0π ,π)(W,σ)=(U ,γ)
|π|+|(W,σ)|=|(U ,γ)|

κ0(W, σ)

= ζ ∗ κ(U , γ),

since |(U , γ)| = |(0π, π)(W, σ)| ≤ |π| + |(W, σ)|.
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2 Higher order and surfaced free probability

2.2.1 Hurwitz numbers and the Möbius function

There is a close relationship between the Möbius function and (monotone) Hurwitz
numbers. This is not surprising, since the Möbius function originates in the calculations
for unitary random matrices (c.f. Theorem 2.1.14) using Weingarten calculus. More
precisely, the Möbius function is given by the cumulants of the Weingarten function, see
[GGPN14]. Also, there is a nice exposition of a more general case for random tensors
in [CGL23]. In this section, we want to study the relationship of free probability to
Hurwitz numbers from the viewpoint of partitioned permutations. This will be important
in Chapter 3, which is based on the collaboration of the author and his coauthors in
[HvIL22]. Furthermore, the connection of the zeta and Möbius function to (strictly
monotone) Hurwitz numbers and their generating function is one key ingredient for the
proof of our main result in [BCGF+23].

Lemma 2.2.9.
It holds that

µ(V, π) = δ(V, π) +

∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(V,π)

σi ̸=e

ℏ|σ1|+···+|σk|

for any (V, π) ∈ PS.

Proof. Let d ≥ 1 and recall the geometric expansion in C[PS(d)][[ℏ]], then we have

µ = ζ−1 = (δ + (ζ − δ))−1

= δ +
∞∑
k=1

(−1)k(ζ − δ)k

= δ +
∞∑
k=1

(−1)k
( ∑

(W,σ)∈PS(d),π ̸=e

ζ(W, σ)(W, σ)

)k

= δ +

∞∑
k=1

(−1)k
( ∑

(0π ,π)∈PS(d),π ̸=e

ℏ|π|(0π, π)

)k

= δ +
∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)∈PS(d)

σi ̸=e

ℏ|σ1|+···+|σk|(0σ1 , σ1) · · · (0σk , σk)

= δ +
∑

(V,π)∈PS(d)

(V, π)

∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(V,π)

σi ̸=e

ℏ|σ1|+···+|σk|.

Thus, taking the coefficient for fixed (V, π), we obtain

µ(V, π) = [(V, π)]µ = δ(V, π) +

∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(V,π)

σi ̸=e

ℏ|σ1|+···+|σk|.
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This formula enables us to identify µ as the generating function of a weighted version
of the free group Hurwitz numbers of Definition 1.3.10.

Corollary 2.2.10.
The function µ is the generating function of alternating simple monotone free group
Hurwitz numbers, i.e. let µ = (n1, . . . , nl) ⊢ d be a partition, then

µ(1d, γn1,...,nl
) =

∞∑
r=0

ℏkC ||k (n1, . . . , nl),

where

C
||
k (n1, . . . , nl) = (−1)kzµH

||
k ((1, . . . 1), (n1, . . . , nl)).

Proof. If we take d > 1 and (V, π) = (1d, γn1,...,nl
) ∈ PS(d) in Lemma 2.2.9 we find

µ(1d, γn1,...,nl
) =

∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(1d,γn1,...,nl

)
σi ̸=e

ℏ|σ1|+···+|σk|.

For any fixed value r = |σ1| + · · · + |σk| we have

k ≤ |σ1| + · · · + |σk| = r,

so only finitely many values of k, namely k = 1, . . . , r, contribute to the coefficient of ℏr.
Thus, we may sum over r instead. We have

µ(1d, γn1,...,nl
) =

∞∑
r=1

ℏr
r∑

k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(1d,γn1,...,nl

)

σi ̸=e,|σ1|+···+|σk|=r

1,

where the last sum counts factorizations of γn1,...,nl
, i.e. of a fixed permutation of given

cycle type (n1, . . . , nl) (w.l.o.g. ni+1 ≥ ni), such that

• |σ1| + · · · + |σk| = r or equivalently #σ1 + · · · + #σk = dk − r, and

• 0σ1∨· · ·∨0σk = 1d or in other words, {σ1, . . . , σk, γn1,...,nk
} is a transitive subgroup

of S(d).
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2 Higher order and surfaced free probability

Hence, we continue

µ(1d, γn1,...,nl
) =

∞∑
r=1

ℏr
r∑

k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(1d,γn1,...,nl

)

σi ̸=e,|σ1|+···+|σk|=r

1

=
∞∑
r=1

ℏr(−1)r
r∑

k=1

(−1)k+r
∑

(0σ1 ,σ1)···(0σk
,σk)=(1d,γn1,...,nl

)

σi ̸=e,|σ1|+···+|σk|=r

1

=
∞∑
r=1

ℏr(−1)r
r∑

k=1

(−1)k+r
∑

(0σ1 ,σ1)···(0σk
,σk)=(1d,γn1,...,nl

)

σi ̸=e,|σ1|+···+|σk|=r

=
∞∑
r=1

ℏr(−1)rzµH
||,◦((1, . . . , 1), (n1, . . . , nl)).

The extra factor zµ takes into account that in the definition of H ||,◦(λ, µ) we count
factorizations of an arbitrary element in the conjugacy class Cµ; here we only consider
one fixed element, namely γr1,...,rn . Furthermore, we need to compensate the factor 1

d!
in the definition of the Hurwitz numbers.

Of course, from the last lemma together with Proposition 1.3.11, we could conclude
that µ enumerates monotone Hurwitz numbers. We prefer to prove this fact by a cut-
and-join equation, obtained by ideas from [CMSS07]. More precisely, we will extend
their Theorem 5.22.

Lemma 2.2.11.
Let γ ∈ S(d) be such that it does not fix 1. Then we have

−µ(U , γ) =
∑

(0τ ,τ)(V,π)=(U ,γ)
τ=(1,p)∈S(d))

ℏµ(V, π) =
d∑
p=1

∑
(0(1,p),(1,p))(V,π)=(U ,γ)

ℏµ(V, π),

i.e. we can express µ recursively by factoring a transposition that maps 1 to some
2 ≤ p ≤ d.

Proof. The proof uses the same technique as in [CMSS07], we reproduce the main steps
here. Recall that by Lemma 2.2.9

µ(V, π) = δ(V, π) +
∞∑
k=1

(−1)k
∑

(0σ1 ,σ1)···(0σk
,σk)=(V,π)

σi ̸=e

ℏ|σ1|+···+|σk|,

i.e. the value of µ depends on factorizations of length k with a sign. The formula we
want to prove is merely the realization of some cancellations within this sum. Therefore,
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2.2 Extension to higher genus

we denote by Sk the set of factorizations of (U , γ) of length k and we define the following
subsets of Sk

Sqk =

{
(0π1 , π1) . . . (0πk , πk) = (U , γ)

∣∣∣∣ q is the minimal p such that

πp(1) ̸= 1 and πp is a transposition

}
.

In [CMSS07] it was shown that⋃
q≥2

Sqk
∼= Sk−1 \

⋃
q≥1

Sqk−1 := Ŝk, (2.2.4)

i.e. there is a bijection between the factorizations where there is minimal q ≥ 1 such
that πq = (1, p) is a transposition and the set of length k−1 factorization which contain
no πi of the latter form, i.e. there is no minimal q such that πi interchanges 1 with some
2 ≤ p ≤ d. Since the sign in (2.2.4) is determined by the length of the factorization, we
only need to see that the ℏ contribution cancels. But this is also clear from the explicit
bijection in [CMSS07], we have

(0π1 , π1), . . . (0πk , πk) ∈ Sqk 7→ (0π1 , π1), . . . , (0πq−1πq , πq−1πq), . . . , (0πk , πk) ∈ Ŝk.

Since by definition of the set Sqk, πq−1 fixes 1, and πq is a transposition not fixing 1, πq
joins two cycles of πq−1, i.e. we have

|πq−1πq| = |πq−1| + 1 = |πq−1| + |πq|,

Finally, this gives the following equation

µ(U , γ) =

∞∑
k=1

(−1)k
∑

(0π1 ,π1)···(0πk
,πk)=(U ,γ)

πi ̸=e

ℏ|π1|+···+|πk|

=
∞∑
k=2

(−1)k
∑
p≥2

∑
(0,(1,p))(0π2 ,π2)···(0πk

,πk)=(U ,γ)
πi ̸=e

ℏ1+|π2|+···+|πk|

= −
∑
p≥2

∑
(0,(1,p))(V,π)=(U ,γ)

ℏ
∞∑
k=2

(−1)k−1
∑

(0π2 ,π2)···(0πk
,πk)=(V,π)

πi ̸=e

ℏ|π2|+···+|πk|

= −
∑
p≥2

∑
(0,(1,p))(V,π)=(U ,γ)

ℏµ(V, π).

Remark 2.2.12.
Note that in the proof, it was crucial to assume that γ does not fix 1. Otherwise, the sets
Sqk could have been empty. But we can fix that problem and extend it to cases where γ
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2 Higher order and surfaced free probability

fixes 1. Assume we have a γ ∈ S(d) that fixes 1 and is not the identity. Assume it does
not fix j ∈ [d] and denote τ = (1, j). If we denote Uτ the partition where we apply τ to
blocks of U . Then by the multiplicativity

µ(Uτ , τγτ) = µ(U , γ).

and since τ−1γτ does not fix 1 but j we can apply the lemma to it instead.

The only case left yet, is the case of γ = e ∈ S(d). But still, we can prove the following.

Lemma 2.2.13.
It holds

−µ(1d, e) =

d∑
k=2

∑
(0τ ,τ)(V,π)=(1n,e)
τ=(1,p)∈S(d))

ℏµ(V, π)

Proof. Given a factorization (0π1 , π1) · · · (0πk , πk) = (1d, e) we must have

0π1 ∨ · · · ∨ 0πk = 1d,

thus there must be i = 1, . . . , k such that πi moves 1. Hence, we can follow the proof of
Lemma 2.2.11, i.e. use the bijection (2.2.4).

With these results at hand, we have the following recursion.

Theorem 2.2.14.
Let n1, . . . , nk ∈ N, d = n1 + · · · + nk, N = {2, . . . , k} and

γn1,...,nk
= (1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (d− nk + 1, . . . , d).

Furthermore, for I ⊂ N , we define M(I) =
∑

i∈I ni. Then it holds that

−µ(1d,γn1,...,nk
) = ℏ

k∑
j=2

njµ(1d, γn1+nj ,n2,...,qnj ,...,nk
)

+
∑

α+β=n1

ℏµ(1d, γα,β,n2,...,nk
) + ℏ

∑
I⊔J=N

µ(1M(I)+α, γα,I)µ(1M(J)+β, γβ,J),

where for I ⊔ J = N and α+ β = n1, and for α ≥ β (for β ≥ α analogously)

γα,I = (1, . . . , α)
∏
l∈I

(n1 + · · · + nl−1 + 1, . . . , n1 + · · · + nl)

and

γβ,J = (α+ 1, . . . , n1)
∏
l∈J

(n1 + · · · + nl−1 + 1, . . . , n1 + · · · + nl).

and qj denotes the fact that we omit the index j.
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Proof. Before we start, let us introduce the notation

γn1,...,nk
= (1, . . . , n1)(n1 + 1, . . . , n1 + n2) . . . (d− nk + 1, . . . , d)

=: c1 . . . ck.

The proof is similar to a standard cut-and-join analysis. By Lemma 2.2.11, we have

−µ(1d, γn1,...,nk
) =

n∑
p=2

∑
(0τ ,τ)(V,π)=(1d,γn1,...,nk

)

τ=(1,p)∈Sn

ℏµ(V, π).

This means we have to investigate the factorizations (0τ , τ)(V, π) = (1d, γn1,...,nk
) with

τ = (1, p). We have the following cases.

• First assume that V = 1d and we have τπ = γn1,...,nk
=: γ, i.e. π = τγn1,...,nk

.
Then there are two possibilities, either p > n1 in which case τ joins two cycles of
γ or 2 ≤ p ≤ n1, i.e. τ cuts the first cycle into two cycles of π. In the first case
there must be j = 2, . . . , k such that

n1 + · · · + nj−1 + 1 ≤ p ≤ n1 + · · · + nj =: n(j).

Then

τγ = (1, . . . , n1, p, p+ 1, . . . , n(j), . . . , p− 1)
k∏
l=2
l ̸=j

cl,

i.e. by conjugation invariance we get a contribution

ℏµ(1d, τγ) = ℏµ(1d, γn1+nj ,n2,...,qnj ,...,nk
).

Moreover we get nj such contributions since there are nj possibilities for

n(j−1) + 1 ≤ p ≤ n(j).

This gives the first summand

ℏ
k∑
j=2

njµ(1d, γn1+nj ,n2,...,qnj ,...,nk
).

If 1 ≤ p ≤ n1 then we have

τγ = (1, . . . , p− 1)(p, . . . , n1)
m∏
l=2

cl

and if we put α = p− 1, β = n1 − p− 1 we get a contribution

µ(1d, τγ) = µ(1d, γα,β,n2,...,nk
).

Since all 1 ≤ p ≤ n1 give such contribution we get all possibilities for α+ β = n1,
i.e. the sum ∑

α+β=k1

ℏµ(1d, γα,β,n2,...,nk
).
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2 Higher order and surfaced free probability

• If V ̸= 1d then V can at most have 2 blocks, since τ can only connect 2 blocks in
0τ ∨ V = 1d. Thus, we may write V = {V1, V2}. Moreover, in this case τ must be
a cut for the cycles of γ in π = τγ: if not, then π must be of the form

τγ = (1, . . . , n1, p, p+ 1, . . . , n(j), . . . , p− 1)
k∏
l=2
l ̸=j

cl

hence the first cycle of τγ either respects V1 or V2. Then τ must respect the same
block. This implies 0τ ∨ V = V ≠ 1d. Thus, τ cuts the first cycle of γ:

π = (1, . . . , α)︸ ︷︷ ︸
a

(α+ 1, . . . , α+ β)︸ ︷︷ ︸
b

k∏
l=2

cl,

and the cycles a and b must respect different blocks (otherwise we would again
end up with 0τ ∨ V ̸= 1d), let us assume a respects V1. Let I be the set of indices
j = 2, . . . , k such that the j-th cycles cj of γ respects V1 and let J the set of indices
that correspond to cycles that respect V2. Then µ factorizes as

µ(V, π) = µ

(
V1, (1, . . . , α)

∏
j∈I

cj

)
µ

(
V2, (α+ 1, . . . , α+ β)

∏
j∈J

cj

)

and by conjugacy invariance we have

ℏ
∑

I⊔J=N
µ(1M(I)+α, γα,I)µ(1M(J)+β, γβ,J).

Taking all possible cuts for c1 into consideration, we get the desired sum∑
α+β=n1

ℏ
∑

I⊔J=N
µ(1M(I)+α, γα,I)µ(1M(J)+β, γβ,J).

As already mentioned, we discuss topological recursion for these numbers in Chapter 3,
thus it is natural to write the generating functions in terms of a tuple (g, n) of positive
integers. First, we have the following observation.

Lemma 2.2.15.
We have

µ(U , γ) = ℏ|(U ,γ)|
∑
g≥0

µ[g](U , γ)ℏ2g.
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2.2 Extension to higher genus

Proof. Recall the geometric series expansion of µ:

µ(U , γ) = δ(U , γ) +
∞∑
k=1

(−1)k
∑

(0π1 ,π1)···(0πk
,πk)=(U ,γ)

πi ̸=e

ℏ|π1|+···+|πk|.

Then for any factorization (0π1 , π1) · · · (0πk , πk) = (U , γ) we have by the triangle in-
equality

|π1| + · · · + |πk| = |(0π1 , π1)| + · · · + |(0πk , πk)| ≥ |(U , γ)|,

i.e. the lowest order of ℏ we can get is indeed ℏ|(U ,γ)|. The part about the exponent
being even up to ℏ|(U ,γ)| follows from the fact that for a factorization

|(V, π)| + |(W, σ)| − |(V ∨W, πσ)|

is even. We prove this by induction on the number k of factors of π. We already know
the case k = 2. So given the factorization above into π1, . . . , πk, then

|π2| + · · · + |πk| − |(0π2 ∨ · · · ∨ 0πk , π2 · · ·πk)| = 2g1

by induction hypothesis and by the case k = 2 we have

|π1| + |(0π2 ∨ · · · ∨ 0πk , π2 · · ·πk)| − |(V, γ)| = 2g2.

Putting things together, we find

|π1| + |π2| + · · · + |πk| − |(V, γ)| = 2(g1 + g2).

This finally proves that we can write µ as claimed.

Theorem 2.2.16.
Let d ∈ N and λ = (n1, . . . , nk) ⊢ d a partition. Then the values µg,k := µg(1d, γn1,...,nk

)
are given by the alternating simple monotone Hurwitz numbers via

µg,k(λ) = (−1)d+kzµH
≤
g,k(µ).

Proof. We insert the expansion of Lemma 2.2.15 in the recursion of Theorem 2.2.14 and
get

−ℏ|(1d,γn1,...,nk
)|
∑
g≥0

µ[g](1d, γn1,...,nk
)ℏ2g =

ℏ|(1d,γn1+nj,n2,...,qnj,...,nk
)|+1

k∑
j=2

∑
g≥0

njµ
[g](1d, γn1+nj ,n2,...,qnj ,...,nk

)ℏ2g

+ ℏ
∑

α+β=n1

ℏ|(1d,γα,β,n2,...,nk
)|
∑
g≥0

µ[g](1d, γα,β,n2,...,nk
)ℏ2g
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2 Higher order and surfaced free probability

+ ℏ
∑

α+β=n1

∑
I⊔J=N

ℏ|(1M(I)+α,γα,I)|
∑
g≥0

µ[g](1M(I)+α, γα,I)ℏ2g

× ℏ|(1M(J)+β ,γβ,J )|
∑
g≥0

µ[g](1M(J)+β, γβ,J)ℏ2g.

Now note that

|(1d, γn1,...,nk
)| = 2(d− 1) − (d− k) = d− 2 + k

|(1d, γn1+nj ,...,nk
)| = 2(d− 1) − (d− (k − 1)) = |(1d, γn1,...,nk

)| − 1

|(1d, γα,β,...,nk
) = 2(d− 1) − (d− (k + 1)) = |(1d, γn1,...,nk

)| + 1

and

|(1|I|+1, γα,I)| + |(1|J |+1, γβ,I)| = (2(M(I) + α− 1)) − (M(I) + α− (|I| + 1))

+ (2(M(J) + β − 1)) − (M(J) + β − (|J | + 1))

= M(I) +M(J) + α+ β︸ ︷︷ ︸
d

+ |I| + |J |︸ ︷︷ ︸
k−1

−2

= |(1d, γn1,...,nk
)| − 1.

So dividing by ℏ|(1d,γn1,...,nk
)| we get

∑
g≥0

µ[g](1d, γn1,...,nk
)ℏ2g =

∑
g≥0

k∑
j=2

njµ
[g](1d, γn1+nj ,n2,...,qnj ,...,nk

)ℏ2g

+
∑
g≥0

∑
α+β=n1

µ[g](1d, γα,β,n2,...,nk
)d2(g−1)

+
∑
g≥0

∑
g1+g2=g

∑
α+β=n1

∑
I⊔J=N

µ[g1](1M(I)+α, γα,I)µ
[g2](1M(J)+β.γβ,J)ℏ2(g1+g2)

By taking the coefficient of ℏ2g we find

µ[g](1d, γn1,...,nk
) =

k∑
j=2

njµ
[g](1d, γn1+nj ,n2,...,qnj ,...,nk

)

+
∑

α+β=n1

µ[g−1](1d, γα,β,n2,...,nk
)

+
∑

α+β=n1

∑
g1+g2=g

∑
I⊔J=N

µ[g1](1M(J)+α, γα,I)µ
[g2](1M(J)+β, γβ,J).

which is exactly the recursion formula for alternating monotone Hurwitz numbers (see
[HvIL22] or Chapter 3). Thus, since the recursion and the initial value determine the
numbers uniquely, both Hurwitz numbers and values of the Möbius function must agree.
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2.3 Topological partition functions vs multiplicative functions

Remark 2.2.17.

i) Technically, we reproved Proposition 1.3.11. There are several possibilities to prove
this fact, in particular using elementary combinatorics in S(d), which is of course
the main ingredient here as well.

ii) Furthermore, we see that the Möbius inversion on partitioned permutations is
merely an avatar of Lemma 1.3.9.

2.3 Topological partition functions vs multiplicative functions

The combinatorial proof of the functional relations could not be extended to n ≥ 3
yet. The derivation for these higher order functional relations in [BCGF+23] uses a
reformulation of the moment-cumulant formalism into the language of operators on
the (bosonic) Fock space. In this framework, we can use the toolbox [BDBKS22] to
answer this problem which was posed in [CMSS07]. More precisely, the information of
an extended multiplicative function can be encoded in a so-called partition function.
These partition functions are generating series in infinitely many variables and can be
manipulated by operators on the Fock space.

Recall the definition of the bosonic Fock space

B = C[[p1, p2 . . . ]], Bℏ = C[[p1, p2 . . . ]]((ℏ)).

Let us note, that for an element F ∈ B (resp. Bℏ) with no constant term, eF ∈ Bℏ is
well-defined. Moreover, if λ = (λ1, . . . , λℓ(λ)) ⊢ d is a partition, we define

pλ = pλ1 · · · pλℓ(λ)

If σ ∈ S(d) is a permutation, we write [pσ]F for the coefficient of pλ(0σ) in F , with the
convention that p∅ = 1. Further, we denote [p∅]F = ⟨|F . Recall the definition

zλ :=

ℓ(λ)∏
i=1

λi
∏
j≥1

mj(λ)!,

where mj(λ) is the number of occurrences of j in λ.

Definition 2.3.1.
A topological partition function is an element of Bℏ of the form Z = eF , where

F =

( ∑
g∈Z≥0

n∈N

ℏ2g−2+nFg,n
)

∈ Bℏ,

and Fg,n ∈ B has no constant term, i.e. ⟨|F = 0.
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2 Higher order and surfaced free probability

Recall that our motivation was to collect higher genus terms for matrix models (2.2.1)
and thus a multiplicative function φ ∈ PS → C[[ℏ]] is determined by a collection of

numbers φ
[g]
r1,...,rn arranged in a generating function φ(1r1+···+rn , γr1,...,rn) in ℏ. Having

again (2.2.1) and Lemma 2.2.8 in mind, we assume that φ(U , γ) = o(ℏ|(U ,γ)|). We have

φ(1d, γr1,...,rn) = ℏd+n−2
∑
g≥0

φ[g](1d, γr1,...,rn)ℏ2g = ℏd
∑
g≥0

φ[g](1d, γr1,...,rn)ℏn+2g−2,

where d = r1 + · · · + rn. Naturally we would like to define

Fφ =
∑

r1,...,rn≥1
ℏ−dφ(1r1+···+rn , γr1,...,rn)pr1 · · · prn ,

but since multiplicative functions are invariant w.r.t. conjugation we need to introduce
a symmetry factor so that we do not count the same information multiple times. Given
lengths r1, . . . , rn, we have n! ways to label the cycles of a permutation and r1 · · · rn ways
for the elements respecting the cyclic order. Then

Fφ =
∑

r1,...,rn≥1
ℏ−d

φ(1r1+···+rn , γr1,...,rn)

n!r1 · · · rn
pr1 · · · prn =

∑
d≥1
λ⊢d

ℏ−dφ(1d, γλ)
pλ
zλ
. (2.3.1)

This defines a topological partition function Zφ = eF
φ

and we can write

Z = 1 +
∑
d≥1
λ⊢d

ℏ−dZ(λ)
pλ
zλ
. (2.3.2)

The relation between the coefficients Z(λ) and the multiplicative function is

Z(λ) =
∑
V∈P(d)
0λ≤V

φ(V, γλ). (2.3.3)

Note, the 1 in (2.3.2) may be absorbed by allowing the empty partition in the sum while
setting Z(∅) = 1.

Vice versa, consider a topological partition function Z = eF , we can associate the
unique multiplicative function fZ,ℏ : PS → C[[ℏ]] such that

F =
∑
d≥1
λ⊢d

ℏ−dfZ,ℏ(1d, γλ)
pλ
zλ
. (2.3.4)

In other words, for (V, γ) ∈ PS(d) we have

fZ,ℏ(V, γ) := ℏd
∏
B∈V

[pγ|B ]zγ|BF

= ℏ|(V,γ)|
∑

g : V→N

ℏ2
∑

B∈V g(B)
∏
B∈V

[pγ|B ]zγ|BFg(V ),ℓ(γ|B)

:= ℏ|(V,γ)|
∑

g : V→N

ℏ2
∑

B∈V g(B)f
[g]
Z (V, γ).

(2.3.5)
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2.3 Topological partition functions vs multiplicative functions

Here in the second and the third formula, the sum runs over all possible assignments
of non-negative integers g(B) to B ∈ V. In the way described above, the multiplicative
function completely determines the partition function and vice versa.

Remark 2.3.2.
These definitions involve conventions regarding powers of ℏ and prefactors zλ as ex-
plained above. These are motivated by the following guiding principles from analytic
combinatorics. Partition functions are commonly used to encode and manipulate gen-
erating function of quantities counting algebraic and topological objects and structures,
e.g. Hurwitz numbers or maps, see e.g. [KL15], [BDBKS23]. Particularly, the power
of ℏ in topological partition functions behaves like the Euler characteristic, the latter
being additive under disjoint union. This is compatible with an interpretation of F as
a generating series of connected objects, while Z = eF generates disconnected objects.
Thus, we want the contribution of type (g, n), of genus g with n cycles, to appear in
F with ℏ2g−2+n. Again, for the multiplicative function the power of ℏ is dictated by
(2.2.1) and Lemma 2.2.8, we want φ(V, γ) to have leading order ℏ|(V,γ)|. In particular,
due to |(1d, γλ)| = d− 2 + ℓ(λ) and (2.3.5), the (g, n)-part contributes to φ(1d, γλ) with
ℏ2g−2+ℓ(λ)+d. To respect the principle, we canceled the ℏd in (2.3.5) to define F in (2.3.4).

Now recall from Section 1.2 that the Heisenberg algebra acts on the Fock space via
the operators

1H 7→ idB, an 7→ Jn =


n∂pn if n > 0,

p−n if n < 0,

0 if n = 0.

We collect them in two generating series

J(x) =
∑
k>0

xkJk and J̃(x) =
∑
k∈Z

xkJk.

Thus, given a topological partition function (or equivalently multiplicative function)
Z = eF , we may describe it as an operator on the Fock space via

F =
∑
n≥1
g≥0

ℏ2g−2+n

n!

∑
r1,...,rn>0

Fg;r1,...,rn

n∏
i=1

J−ri
ri

(2.3.6)

and hence

Z = expF|⟩.

The main result relevant for higher order free probability is a functional relation between
the generating series of higher order moments and cumulants of fixed order, rather than
organized in a topological partition function. Thus, we have the following definition.
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2 Higher order and surfaced free probability

Definition 2.3.3.
Let Z = eF be a partition function. We define the n-point functions by

Gn(x1, . . . , xn) = ℏ−1δn,1 +
∑
g≥0

∑
r1,...,rn>0

ℏ2g−2+n Fg;r1,...,rnx
r1
1 · · ·xrnn (2.3.7)

and the shifted n-point functions by

G̃n(x1, . . . , xn) = Gn(x1, . . . , xn) + δn,2
x1x2

(x1 − x2)2
.

If we want to emphasize that the n-point function depends on a multiplicative function
φ : PS → C[[ℏ]], i.e. Fg,n is given by (2.3.1), we denote it by Gφ.

Remark 2.3.4.
By definition, the n-point functions admit a genus expansion

Gn =
∑
g≥0

ℏ2g−2+nGg,n(x1, . . . , xn),

G̃n =
∑
g≥0

ℏ2g−2+nG̃g,n(x1, . . . , xn).

We can also express these quantities in terms of Fock space operators, more precisely in
terms of vacuum expectation values. Therefore, let us introduce the following inclusion-
exclusion formulas.

Lemma 2.3.5.
There is a linear map ⟨| · |⟩ : GL(Bℏ) → C[[ℏ]] given by

A 7→ ⟨|A|⟩ = [1]A(1).

We call it vacuum expectation value. Moreover, we can define the connected vacuum
expectation value ⟨| · |⟩◦ : GL(Bℏ) → C[[ℏ]] by the relations

⟨|A1 · · ·AneF|⟩ =
∑
I∈P(n)

∏
I∈I

〈∣∣∣∏
i∈I

Ai · eF
∣∣∣〉◦, (2.3.8)

⟨|A1 · · ·An · eF|⟩◦ =
∑
I∈P(n)

(−1)#I−1(#I − 1)!
∏
I∈I

〈∣∣∣∏
i∈I

Aie
F
∣∣∣〉 (2.3.9)

or equivalently

⟨|A1 · · ·An · eF|⟩◦ := ∂t1 · · · ∂tn ln
(
⟨|et1A1 · · · etnAneF|⟩

)∣∣∣∣
t1=0,...,tn=0

. (2.3.10)

Proof. Note that the first two statements in Lemma 2.3.5 are equivalent by Möbius
inversion on the lattice P(n). Thus, we prove their equivalence to (2.3.10). We start by
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2.3 Topological partition functions vs multiplicative functions

proving that

∂t1 . . . ∂tn ln⟨|et1A1 . . . etnAnB|⟩ =

n∑
l=1

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑
I∈P(n)
#I=l

∏
J∈I

[(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]

(2.3.11)

for any B independent of t1, . . . , tn. For n = 1 we have by expanding the logarithm

∂t1 ln⟨|eA1t1B|⟩ = ∂t1

∞∑
k=1

(−1)k−1

k

[
⟨|eA1t1B|⟩ − 1

]k
=

∞∑
k=1

(−1)k−1
[
⟨|eA1t1B|⟩ − 1

]k−1
∂t1⟨|eA1t1B|⟩.

Now for any n > 1 we have by induction hypothesis for B′ = etnAnB,

∂t1 . . . ∂tn ln⟨|et1A1 . . . etnAnB|⟩

= ∂tn

n−1∑
l=1

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑

I∈P(n−1)
#I=l

∏
J∈I

[(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]

=
n−1∑
l=1

∞∑
k=l+1

(−1)k−1
(k − 1)!

(k − (l + 1))!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−(l+1)

∂tn⟨|et1A1 · · · etnAnB|⟩
∑

I∈P(n−1)
#I=l

[ ∏
J∈I

(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]

+
n−1∑
l=1

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑

I∈P(n−1)
#I=l

∂tn

[ ∏
J∈I

(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]
.

Now in the first sum I1 = I ⊔ {{n}} ∈ P(n) with #I1 = l + 1 and in the second we
apply the product rule and extend one of the blocks of I by the element n and hence
also get a sum over I2 ∈ P(n) having n not as a singleton and #I2 = l. Thus, for the
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2 Higher order and surfaced free probability

first term with shifting the index

n−1∑
l=1

∞∑
k=l+1

(−1)k−1
(k − 1)!

(k − (l + 1))!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−(l+1)

∂tn⟨|et1A1 · · · etnAnB|⟩
∑

I∈P(n−1)
#I=l

[∏
i∈I

∂ti

]
⟨|et1A1 · · · etnAnB|⟩

=
n∑
l=2

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑

I⊔{{n}}=I1∈P(n)
#I=l−1

[ ∏
i∈I1

∂ti

]
⟨|et1A1 · · · etnAnB|⟩

and for the second one

n−1∑
l=1

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑

I∈P(n−1)
#I=l

∂tn

[ ∏
J∈I

(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]

=

n−1∑
l=1

∞∑
k=l

(−1)k−1
(k − 1)!

(k − l)!

[
⟨|et1A1 · · · etnAnB|⟩ − 1

]k−l
∑

I∈P(n),#I=l
n is not a singleton

[ ∏
J∈I

(∏
i∈J

∂ti

)
⟨|et1A1 · · · etnAnB|⟩

]
.

Besides the terms l = n in the first equation and the l = 1 term in the second we can
combine both sums since they complement each other and find precisely the desired
formula. Further, we have for B = eF

⟨|et1A1 · · · etnAneF|⟩|t1=0,...,tn=0 = 1

and

∂ti1 . . . ∂tik ⟨|e
t1A1 · · · etnAneF|⟩ = ∂ti1 . . . ∂tik

∞∑
r1,...,rn=0

tr11 . . . trnn
r1! . . . rn!

⟨|Ar11 . . .Arnn e
F|⟩

=

∞∑
rj=0, j ̸=is
j=1,...,n
s=1,...,k

∞∑
rj=1, j=is
j=1,...,n
s=1,...,k

∏
j ̸=is

t
rj
1

rj !

∏
j=is

t
rj−1
1

(rj − 1)!
⟨|Ar11 . . .Arnn e

F|⟩.

Thus [
⟨|et1A1 · · · etnAneF|⟩ − 1

]k−l∣∣∣∣
t1=0,...,tn=0

= δk−l,0,
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2.3 Topological partition functions vs multiplicative functions

and

∂ti1 . . . ∂tik ⟨|e
t1A1 · · · etnAneF|⟩

∣∣∣∣
t1=0,...,tn=0

= ⟨|Ari1i1 . . .A
rik
ik
eF|⟩.

The latter together with (2.3.11) yields the equivalence of (2.3.8) and (2.3.10).

Then we have the following description of the n-point function in terms of the Fock
space operators.

Lemma 2.3.6.
It holds

Gn(x1, . . . , xn) = ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

J(xi) · eF
∣∣∣〉◦,

G̃n(x1, . . . , xn) = ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

J̃(xi) · eF
∣∣∣〉◦.

Proof. By Leibniz rule

∂pr1 . . . ∂prne
F =

∑
I∈P(n)

∏
J∈I

(∏
i∈J

∂priF

)
eF

and we write Fg;rj1 ,...,rjl = Fg;J if J = {j1, . . . , jl}, then by (2.3.6)

⟨|Jr1 . . . JrneF |⟩ =
∏
I∈P(n)

∏
J∈I

(∑
g≥0

ℏ2g−2+#JFg;J

)
.

By inclusion-exclusion we have

⟨|Jr1 . . . JrneF |⟩◦ =
∑
g≥0

ℏ2g−2+nFg;r1,...,rn ,

which proves the first equation. For the second equation, we use the ideas of the proof
of [BDBKS22] and give a more detailed exposition. We denote

J̃(x) = J(x) +
∑
k>0

x−kJ−k =: J+(x) + J−(x)

and note that by the Leibniz rule we have

J+(xi)J−(xj)P = J+(xi)
∑
k>0

x−kj pkP

=

(∑
k>0

x−kj J+(xi)pk

)
P +

(∑
k>0

x−kj pk

)
J+(xi)P
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2 Higher order and surfaced free probability

=
∑
k>0

k

(
xi
xj

)k
P + J−(xi)J+(xi)P

=
xixj

(xi − xj)2
P + J−(xi)J+(xi)P,

for any P ∈ Bℏ. In other words

[J+(xi), J−(xj)] =
∑
k>0

k

(
xi
xj

)k
=

xixj
(xi − xj)2

.

Note that ⟨|J−(xj)P = 0 for any P . Thus, if we write

⟨|J̃(x1) . . . J̃(xn)eF|⟩ = ⟨|(J+(x1) + J−(x1)) . . . (J+(xn) + J−(xn))eF|⟩ (2.3.12)

the strategy for the proof is to use the commutation relation to bring all the J− to the
left, then these will vanish but may create a term

xixj
(xi−xj)2 . Let us illustrate this step in

a small example, we compute

(J+(x1) + J−(x1))(J+(x2) + J−(x2))(J+(x3) + J−(x3)),

we find

J+(x1)J+(x2)J+(x3) + J+(x1)J+(x2)J−(x3) + J+(x1)J−(x2)J+(x3)

+J+(x1)J−(x2)J−(x3) + terms starting with J−(x1).
(2.3.13)

The terms starting with J− will vanish in (2.3.12). For the others we expand

J+(x1)J+(x2)J−(x3) = J+(x1)J−(x3)J+(x2) +
x2x3

(x2 − x3)2
J+(x1)

= J−(x3)J+(x1)J+(x2) +
x1x3

(x1 − x3)2
J+(x2) +

x2x3
(x2 − x3)2

J+(x1)

J+(x1)J−(x2)J+(x3) = J−(x2)J+(x1)J+(x3) +
x1x2

(x1 − x2)2
J+(x3)

J+(x1)J−(x2)J−(x3) = J−(x2)J+(x1)J−(x3) +
x1x2

(x1 − x2)2
J−(x3),

thus only the first three terms in (2.3.13) contribute when we apply ⟨| · · · eF|⟩. We get

〈∣∣∣ 3∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉 = ⟨|J+(x1)J+(x2)J+(x3)e

F|⟩ +
x1x3

(x1 − x3)2
⟨|J+(x2)e

F|⟩

+
x2x3

(x2 − x3)2
⟨|J+(x1)e

F|⟩ +
x1x2

(x1 − x2)2
⟨|J+(x3)e

F|⟩.

108



2.3 Topological partition functions vs multiplicative functions

In the next step we can rewrite the formula with the inclusion-exclusion formula and
collect terms, we continue

〈∣∣∣ 3∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉 =

∑
I∈P(3)

∏
J∈I

⟨|
∏
i∈J

J+(xi)e
F|⟩◦ +

x1x3
(x1 − x3)2

⟨|J+(x2)e
F|⟩

+
x2x3

(x2 − x3)2
⟨|J+(x1)e

F|⟩ +
x1x2

(x1 − x2)2
⟨|J+(x3)e

F|⟩

= ⟨|J+(x1)J+(x2)J+(x3)e
F|⟩◦ +

3∏
i=1

⟨|J+(xi)e
F|⟩◦

+ ⟨|J+(x1)e
F|⟩◦⟨|J+(x2)J+(x3)e

F|⟩◦ + ⟨|J+(x2)e
F|⟩◦⟨|J+(x1)J+(x3)e

F|⟩◦

+ ⟨|J+(x3)e
F|⟩◦⟨|J+(x1)J+(x2)e

F|⟩◦ +
x1x3

(x1 − x3)2
⟨|J+(x2)e

F|⟩◦

+
x2x3

(x2 − x3)2
⟨|J+(x1)e

F|⟩◦ +
x1x2

(x1 − x2)2
⟨|J+(x3)e

F|⟩◦

= ⟨|J+(x1)J+(x2)J+(x3)e
F|⟩◦ +

3∏
i=1

⟨|J+(xi)e
F|⟩

+ ⟨|J+(x1)e
F|⟩◦

(
⟨|J+(x2)J+(x3)e

F|⟩◦ +
x2x3

(x2 − x3)2

)
+ ⟨|J+(x2)e

F|⟩◦
(
⟨|J+(x1)J+(x3)e

F|⟩◦ +
x1x3

(x1 − x3)2

)
+ ⟨|J+(x3)e

F|⟩◦
(
⟨|J+(x1)J+(x2)e

F|⟩◦ +
x1x2

(x1 − x2)2

)
=

∑
I∈P(3)

∏
J∈I

(
⟨|
∏
i∈J

J+(xi)e
F|⟩◦ +B(J)

)
where we define

B(J) =

{
xixj

(xi−xj)2 if #J = 2 and J = {i, j},
0 if #J ̸= 2.

Moreover, we used
⟨|J+(xi)e

F|⟩ = ⟨|J+(xi)e
F|⟩◦.

By the inclusion-exclusion principle, we must have

〈∣∣∣ j∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉◦ =

〈∣∣∣ j∏
i=1

J+(xi)e
F
∣∣∣〉◦ + δj,2

x1x2
(x1 − x2)2

= Gj(x1, . . . , xj) + δj,2
x1x2

(x1 − x2)2

for j = 1, 2, 3. Now we do the computation for all n, the same argument yields the
assertion. Since ⟨| kills every J−(xi), every contribution is characterized by k, the number
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2 Higher order and surfaced free probability

of J−(xi) in the product. These will get permuted past every J+(xj), j < i, left in the
product. After finitely many steps we arrive at a product that has terms

xjsxis
(xjs−xis )2

,

s = 1, . . . , k and a product of n−2k terms J+(xlr), r = 1, . . . , n−2k. If k > ⌊n2 ⌋ we have
more J− in a product than J+ and hence we will be left with a product having J−(xlr)
and no J+(xlr). These will vanish when taking the vacuum expectation. Thus at the
bottom line, every contribution is characterized by a set of indices K with cardinality
n− 2k and sets {is, js}, s = 1, . . . , k. Thus, we get

〈∣∣∣ n∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉 =

⌊n
2
⌋∑

k=0

∑
K⊔

⊔k
s=1{is,js}=[n]

k∏
s=1

xisxjs
(xis − xjs)

2

〈∣∣∣ ∏
j∈K

J+(xj)e
F
∣∣∣〉.

(2.3.14)

By inclusion-exclusion we can expand the k = 0 term

⟨|J+(x1) . . . J+(xn)|⟩ =

⌊n
2
⌋∑

k=0

∑
[n]=K⊔{is,js : s=1,...,k}

∑
J∈P(K)

〈∣∣∣∏
j∈J

J+(xj)e
F
∣∣∣〉◦

∑
I∈P({i1,j1,...,is,js})

〈∣∣∣∏
i∈I

J+(xi)e
F
∣∣∣〉◦

=

⌊n
2
⌋∑

k=0

∑
[n]=K⊔{is,js : s=1,...,k}

〈∣∣∣ ∏
j∈K

J+(xj)e
F
∣∣∣〉

∑
I∈P({i1,j1,...,is,js})

〈∣∣∣∏
i∈I

J+(xi)e
F
∣∣∣〉◦,

where P({i1, j1, . . . , is, js}) denotes the set of partitions of the set {i1, j1, . . . , is, js}. Now
in the second factor there must be I that consists only of pairs

⊔k
s=1{is, js}, which we

can combine with the term in (2.3.14) and get the desired〈∣∣∣ n∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉 =

∑
J∈P(n)

∏
I∈J

(〈∣∣∣∏
j∈I

J+(xj)e
F
∣∣∣〉◦ +B(J)

)
.

Finally by inclusion-exclusion the connected objects must be given by〈∣∣∣ n∏
i=1

(J+(xi) + J−(xi))e
F
∣∣∣〉◦ =

〈∣∣∣ n∏
i=1

J+(xi)e
F
∣∣∣〉◦ + δ2,nB(x1, x2)

= Gn(x1, . . . , xn) + δ2,n
x1x2

(x1 − x2)2

= G̃n(x1, . . . , xn).

2.4 Functional relations for n > 2, statement and examples

In this section we want to discuss the main result, the functional relations between
higher order moment and cumulant generating series, and delay its proof to the next
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2.4 Functional relations for n > 2, statement and examples

section. We mainly focus on the structure of the formula and give examples. Consider
two multiplicative functions φ, κ : PS → C, then we define

Mn(x1, . . . , xn) =
∑

s1,...,sn≥1
φs1,...,snx

s1
1 . . . xsnn ,

Cn(x1, . . . , xn) =
∑

s1,...,sn≥1
κs1,...,snx

s1
1 . . . xsnn ,

where we usually just write M(x1) and C(x1) for the n = 1 case. Then the following
theorem gives the functional relations in higher order free probability that solve the
problem posed in [CMSS07].

Theorem 2.4.1.
Let φ, κ : PS → C be multiplicative functions on PS with values in C satisfying the
moment-cumulant relations φ = ζ∗κ. Then under the change of variables xi = wi/C(wi)
and for n ≥ 3, we have:

Mn(x1, . . . , xn) =
∑

r1,...,rn≥0

∑
T∈G0,n(r+1)

n∏
i=1

O⃗κri(wi)
′∏

I∈I(T )

C#I(wI) , (2.4.1)

where:

• G0,n(r + 1) is the set of bicoloured trees with white vertices labeled from 1 to n
having valency r1 + 1, . . . , rn + 1, and without univalent black vertices.

• The weight O⃗κsi(wi) of the i-th white vertex is a differential operator acting on the
variable wi,

O⃗κr (w) =
∑
m≥0

(P κ(w)w∂w)mP κ(w) · [vm]
(
∂y +

v

y

)r
· 1
∣∣∣
y=Gκ

0,1(w)
, (2.4.2)

where P κ(wi) = d lnwi
d lnxi

. Note, the expression in (2.4.2) only involves C(wi).

• I(T ) is the set of black vertices, identified with the subset of white vertices they
connect to.

•
∏′ means that every occurrence of C2(wi, wj) should be replaced with C2(wi, wj)+
wiwj

(wi−wj)2
.

• For a given monomial in the xi, i = 1, . . . , n, only finitely many terms of the
right-hand side contribute.

Example 2.4.2.

i) First we want to discuss the set G0,n(r + 1) and its elements. The following is an
element of G0,7(r + 1), with r = (0, 1, 0, 1, 0, 1, 0).
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2 Higher order and surfaced free probability

An element of G0,7(r + 1) with r = (0, 1, 0, 1, 0, 1, 0).

On the other hand, the following graphs are not elements of G0,n(s + 1) for any n
and r.

No black vertices of va-
lency < 2 allowed. Trees do not admit cycles.

ii) Let us illustrate how the black vertex weight is applied for the admissible tree in
i). Every factor in the expression

′∏
I∈I(T )

C#I(wI)

corresponds to a black vertex of the graph:

The highlighted vertex above corresponds to a factor

C4(w1, w4, w5, w6).
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2.4 Functional relations for n > 2, statement and examples

When we have a black vertex with valency two

we need an additional correction term

C̃2(w2, w6) =

(
C2(w2, w6) +

w2w6

(w2 − w6)2

)
.

If we proceed with every black vertex we find the weight

′∏
I∈I(T )

C#I(wI) = C4(w1, w4, w5, w6)C̃2(w2, w6)C̃2(w2, w7)C̃2(w3, w4).

iii) For the last part of the formula, let us have a closer look at the operators O⃗κr
associated to the white vertices. We present the formulas for r = 0, 1. We have

O⃗κ0(w) =
∑
m≥0

(
d lnw

d lnx
w∂w

)m d ln y

d lnx
[vm]

(
∂y +

v

y

)0

· 1

∣∣∣∣
y=C1(w)

=
∑
m≥0

(
d lnw

d lnx
w∂w

)md lnw

d lnx
[vm] · 1

∣∣∣∣
y=C1(w)

=
d lnw

d lnx
=
x

w

dw

dx
=

1

C1(w) dx
dw

=
1

C1(w)x′(w)
.

and

O⃗κ1(w) =
∑
m≥0

(
d lnw

d lnx
w∂w

)md lnw

d lnx
[vm]

(
∂y +

v

y

)1

· 1

∣∣∣∣
y=C1(w)

=
∑
m≥0

(
d lnw

d lnx
w∂w

)md lnw

d lnx
[vm]

v

y
· 1

∣∣∣∣
y=C1(w)

=

(
d lnw

d lnx
w∂w

)
d lnw

d lnx

1

C1(w)
=

w

C1(w)x′(w)

∂

∂w

1

C1(w)2x′(w)
.

Example 2.4.3.
Let us discuss the case n = 3 in Theorem 2.4.1. The formula is the following:

M3(x1, x2, x3) =
∑

r1,r2,r3∈N

∑
T∈G0,3(r+1)

Oκri(wi)
′∏

I∈I(T )

C#I(wI).
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2 Higher order and surfaced free probability

The only trees that contribute are the following two.

r = (0, 0, 0) r = (1, 0, 0), (0, 1, 0), (0, 0, 1)

• The first one has only one black vertex of valency three, which corresponds to
C3(w1, w2, w3). All white vertices have valency 1, which means only O⃗0(wi), for
i = 1, 2, 3, will be applied to C3(w1, w2, w3).

• The diagram on the right reflects three contributions, that depend on the choice
of the label for the vertex a. In any case it consists of two black vertices, they give
a contribution C̃(wa, wb) and C̃(wa, wc). The white vertices b, c have valency one
and thus will give the operators O⃗0(wb), O⃗0(wc). The vertex a has valency two and
thus will correspond to an operator O⃗1(wa).

We take the formulas of Example 2.4.2 iii), then all together this yields

M3(x1, x2, x3) =
C3(w1, w2, w3)∏3
i=1C1(wi)x′(wi)

+
w1∏3

i=1C1(wi)x′(wi)

∂

∂w1

C̃2(w1, w2)C̃2(w1, w3)

C2
1 (w1)x′(w1)

+
w2∏3

i=1C1(wi)x′(wi)

∂

∂w2

C̃2(w1, w2)C̃2(w2, w3)

C2
1 (w2)x′(w2)

+
w3∏3

i=1C1(wi)x′(wi)

∂

∂w3

C̃2(w1, w3)C̃2(w2, w3)

C2
1 (w3)x′(w3)

.

In fact, Theorem 2.4.1 is merely a special case of a more general functional relation for
the higher genus theory explained in Section 2.2 and Section 2.3. Indeed, we proved in
[BCGF+23] a more general functional relation for all genera. In the following, we want
to discuss this formula as well. First, the set of trees in Theorem 2.4.1 must be replaced
by a more general set of graphs.

Definition 2.4.4.
Let n ∈ N, then we denote by G•n the set of possibly disconnected bicoloured graphs

i) having n labeled white vertices with labels 1, . . . , n;

ii) having black vertices of valency v ≥ 2; and

iii) such that edges only connect vertices of different colours.
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If, in addition, we require

iv) the graph is connected,

then we denote the set by Gn.

Remark 2.4.5.
We want to think of the black vertices as hyper-edges, that is, multisets containing the
information of which white vertices are adjacent to it. More precisely, a multiset in [n]
is a function f : [n] → N and we say that i belongs to the multiset with multiplicity f(i)
if f(i) > 0. We denote by I(Γ) the set of hyper-edges of a graph Γ ∈ G•n. Moreover, we
define the cardinality of the multiset by #f =

∑
i∈[n] f(i). If I is a multiset in [n], we

write I ⊂ [n].

We want to understand the automorphisms of the graphs Gn in the following way.

Definition 2.4.6.
Let Γ ∈ Gn be a graph. We define the automorphism group Aut(Γ) of Γ to be the set
of permutations, permuting the edges without changing the structure of the graph or
labeling of the vertices.

Let us give some examples for the definitions.

Example 2.4.7.
Compared to G0,n, we now allow multiple edges and in particular cycles within the graph.
Consider the following two graphs.

#Aut = 2 #Aut = 12

In the first one we can interchange the edges adjacent to the yellow vertices. We
understand this type of automorphisms as automorphisms of the hyper-edges. In the
second graph we can permute the yellow edges, which we understand as an automorphism
of multiple edges.

The functional relations for all genera are given by the following theorem.

Theorem 2.4.8.
Let Zφ, Zκ be two topological partition functions and Gφg,n, Gκg,n the generating series
appearing in the topological expansion of their n-point functions, cf. Remark 2.3.4.
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2 Higher order and surfaced free probability

Suppose that φ = ζℏ ⊛ κ. Then, under the substitution

xi =
wi

Gκ0,1(wi)
, P κ(wi) =

d lnwi
d lnxi

, (2.4.3)

we have

Gφ0,1(x1) = Gκ0,1(w1),

Gφ0,2(x1, x2) = P κ(w1)P
κ(w2)

(
Gκ0,2(w1, w2) +

w1w2

(w1 − w2)2

)
− x1x2

(x1 − x2)2
,

(2.4.4)

and for 2g − 2 + n > 0:

Gφg,n(x1, . . . , xn) = δn,1∆
κ
g (x1) + [ℏ2g−2+n]

∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

O⃗κ(wi)
∏

I∈I(Γ)

cκ(uI , wI).

(2.4.5)
Here

• the i-th white vertex weight is

O⃗κ(wi) =
∑
m≥0

(
P κ(wi)wi∂wi

)m
P κ(wi)

· [vmi ]
∑
r≥0

(
∂y +

vi
y

)r
exp

(
vi
ς(ℏvi∂y)
ς(ℏ∂y)

ln y − vi ln y

)∣∣∣
y=Gκ

0,1(wi)

· [uri ]
exp

(
ℏuiς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1)

)
ℏui ς(ℏui)

;

(2.4.6)

• the black vertex or hyper-edge weight is

cκ(uI , wI) =

{(
ℏuiς(ℏuiwi∂wi)

)2
Gκ2(wi, wi) if #I = 2 and I(i) = 2,∏

i∈I ℏuiς(ℏuiwi∂wi)G̃
κ
#I(wI) otherwise;

(2.4.7)

• the correction term appearing for n = 1 is:

∆κ
g (x) = [ℏ2g]

∑
m≥0

(
P κ(w)w∂w

)m
[vm+1] exp

(
v
ς(ℏv∂y)
ς(ℏ∂y)

ln y − v ln y

)∣∣∣
y=Gκ

0,1(w)

· P κ(w)w∂wG
κ
0,1(w).

(2.4.8)

Remark 2.4.9.

i) Equation (2.4.5) remains valid for (g, n) = (0, 2), provided the left-hand side is
replaced with G̃0,2(x1, x2). This recovers the second equation in (2.1.5).
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ii) Equation (2.4.5) remains also valid for (g, n) = (0, 1), provided we extend the
summation over m to m ≥ −1 in the definition of ∆κ

0(x) and identify(
P κ(w)w∂w

)−1
P κ(w)w∂wG

κ
0,1(w)

with Gκ0,1(w). This is the only contribution (the sum over graphs does not con-
tribute, as it contains only nonnegative powers of ℏ). This recovers the first equa-
tion in (2.4.4).

Example 2.4.10.
Recall the graph with multiple edges from Example 2.4.7. The upper vertex amounts
to a factor G4(w1, w3, w3, w3) and the lower one to G4(w1, w2, w3, w3). Note that the
introduction of possible multiple edges can cause problems in the n = 2 contributions:
The following kind of black vertices connect a white vertex to itself, generating a loop.

Contribution G2(wa, wa)

This vertex would give an ill-defined expression in the second summand of

C̃2(wi, wj) = C2(wi, wj) +
wiwj

(wi − wj)2
,

since we would have i = j. This problem is dealt with by the correction in (2.4.7).

Finally, let us emphasize the dependencies and connection to existing results.

Remark 2.4.11.
Theorem 2.4.8 is based on [BDBKS23, Theorem 4.14 and Remark 4.15]. Our main
achievement in [BCGF+23] is establishing the connection between free probability and
the framework of [BDBKS22, BDBKS23] and use this to solve the fundamental open
problem in the theory of higher order free probability ([CMSS07]).

2.5 Proof of the main result

In this section, we want to present a step-by-step proof for the functional relations
between the moment and cumulant generating series, i.e. of Theorem 2.4.8 and in
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2 Higher order and surfaced free probability

particular Theorem 2.4.1. In the following we will explain roughly the route of the proof
and in the upcoming subsection we give detailed proofs of every step.

The proof heavily relies on techniques developed in a series of papers by B. Bychkov,
P. Dunin-Barkowski, M. Kazarian and S. Shadrin [BDBKS22], [BDBKS23]. The latter
techniques involve manipulations of operators in the Fock space Bℏ. We reviewed the
description of the generating functions of moments and cumulants in the Section 2.3,
but we are still missing the reformulation of the moment-cumulant relations φ = ζ ⊛ κ
in terms of the Fock space language. It turns out it can be described by the following
operator.

Definition 2.5.1.
We define a linear operator D ∈ End(Bℏ) by the formula

D sλ =
∏

(i,j)∈λ

(1 + ℏ(j − i))sλ, (2.5.1)

where

(i, j) ∈ λ ⇐⇒ i ≤ ℓ(λ) and j ≤ λi

and sλ are the Schur functions from Definition 1.2.8. Note that D has a logarithm, and
lnD|⟩ = 0 as well as ⟨| lnD = 0.

Then the equivalent description of the moment-cumulant relations and the first main
step towards the proof of the main result Theorem 2.4.1 (or more precisely to the general
result Theorem 2.4.8), are given by the following theorem from our paper [BCGF+23].
We will discuss it in detail in Section 2.5.1.

Theorem 2.5.2.
Consider two topological partition functions Zφ, Zκ (or equivalently multiplicative func-
tions φ, κ) and d ∈ N. The following four properties are equivalent:

i) Zφ(λ) = zλ
∑

ν⊢dH
<(λ, ν)Zκ(ν) holds for any λ ⊢ d;

ii) φ = ζℏ ⊛ κ holds as functions on PS(d);

iii) Zκ(ν) = zν
∑

λ⊢dH
≤(ν, λ)Zφ(λ) holds for any ν ⊢ d;

iv) κ = µℏ ⊛ φ holds as functions on PS(d).

Besides, the property Zφ = DZκ is equivalent to any of these conditions simultaneously
for all d > 0.

For the second step, recall that by Lemma 2.3.6, we may express the n-point functions
by the vacuum expectation value

G̃φn(x1, . . . , xn) = ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

J̃(xi) · eF
φ
∣∣∣〉◦,
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2.5 Proof of the main result

then by Theorem 2.5.2 we have eFφ |⟩ = Zφ = DZκ = DeF
κ |⟩. Consequently, we may

write

G̃φn(x1, . . . , xn) = ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

J̃(xi) · eF
φ
∣∣∣〉◦

= ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

J̃(xi) · DeF
κ
∣∣∣〉◦

= ℏ−1δn,1 +
〈∣∣∣ n∏

i=1

(
D−1J̃(xi)D

)
· eFκ

∣∣∣〉◦
=: ℏ−1δn,1 +

〈∣∣∣ n∏
i=1

J(xi) · eF
κ
∣∣∣〉◦,

(2.5.2)

where we used ⟨|D = ⟨|. Note that we have expressed the n-point functions of φ in terms
of the cumulants κ, i.e. used the moment-cumulant relations. Thus, the goal is to better
understand the right-hand side, in particular the operators J. The proof proceeds in
using the following formula for the J operators.

Proposition 2.5.3 ([BDBKS22]).
With the definition

J(x) = D−1J̃(x)D =
∑
k∈Z

D−1JkDx
k =:

∑
k∈Z

Jkx
k,

we have

Jk =
∑
i∈Z+ 1

2

exp

( k∑
j=1

ln
(

1 + ℏ(i+ j − k − 1

2
)
))

pEi−k,i

=
∑
i∈Z+ 1

2

k∏
j=1

(
1 + ℏ

(
i+ j − k − 1

2

))
pEi−k,i

in pgl∞ and in terms of differential operators in End(Bℏ), we can write

Jk =
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[wkur]
1

ℏuς(ℏu)

· exp

(∑
m>0

ℏuς(ℏuw∂w)J−mw
−m
)

exp

(∑
m>0

ℏuς(ℏuw∂w)Jmw
m

)
,

(2.5.3)

where ς(u) = e
u
2 −e−

u
2

u .
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2 Higher order and surfaced free probability

Remark 2.5.4.
When we use more than one copy of J(x) and write J(xi) (eg. in (2.5.2)) it is understood
that every copy carries its own variables ui, wi, that is

J(xi) =
∑
ki∈Z

xkii
∑
ri≥0

∂riy exp

(
ki
ς(kiℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[wki u
r
i ]

1

ℏuiς(ℏui)

· exp

(∑
m>0

ℏuiς(ℏuiwi∂wi)J−mw
−m
i

)
exp

(∑
m>0

ℏuiς(ℏuiwi∂wi)Jmw
m
i

)
.

We will present the proof of Proposition 2.5.3 of [BDBKS22] in Section 2.5.2. After
the proposition is established, we use the commutation relations for the operators Jm
to commute J−m to the left and Jm to the right in (2.5.2). Then by the fact that
⟨|J−m = 0 = Jm|⟩, for m ∈ N, we will obtain an expression having no J operator
contributions and the first combinatorial formula for Gφn.

Lemma 2.5.5 (Key combinatorial identity).
Let n ∈ N, Γ ∈ Gn, I a hyper-edge of Γ and i ∈ [n]. Moreover, we define the i-th white
vertex operator by

U⃗κ(xi) =
∑
k∈Z

xki · [wki ]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

· [uri ]
exp

(
ℏui ς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1)

)
ℏuiς(ℏui)

(2.5.4)

and the hyper-edge weight by

cκ(uI , wI) =

{(
ℏuiς(ℏuiwi∂wi)

)2
Gκ2(wi, wi) if #I = 2 and I(i) = 2,∏

i∈I ℏuiς(ℏuiwi∂wi)G̃
κ
#I(wI) otherwise.

(2.5.5)

Then the relation Zφ = DZκ is equivalent to

∀n > 0, G̃φn(x1, . . . , xn) =
∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

U⃗κ(xi)
∏

I∈I(Γ)

cκ(uI , wI), (2.5.6)

where the first product is taken from left to right with i increasing.

The second to last step is to derive Theorem 2.4.8 from the key combinatorial identity.
The proof proceeds in three steps, which were suggested by M. Kazarian in an unpub-
lished manuscript (see [Kaz19], [Kaz20]). An analogous exposition can be found in our
paper [BCGF+23]. We will discuss the three steps in detail in Section 2.5.2. Finally,
the last subject is to extract the genus zero sector in Theorem 2.4.8 in order to get
Theorem 2.4.1.
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2.5 Proof of the main result

2.5.1 Facets of the moment-cumulant relations

The subject of this section is to discuss the different manifestations of the moment-
cumulant relations in Definition 2.2.7. More precisely, we want to discuss the equiva-
lences of Theorem 2.5.2. We start by computing small examples and then proceed to
give the proof of Theorem 2.5.2.

Example 2.5.6.
Let us compute some moment-cumulant relations for multiplicative functions φ, κ. Recall
that we have to solve

φ(U , γ) = ζℏ ⊛ κ(U , γ)=
∑

(0π ,π)⊙(V,σ)=(U ,γ)

ζℏ(0π, π)κ(V, σ) =
∑

(0π ,π)⊙(V,σ)=(U ,γ)

ℏ|π|κ(V, σ).

We have the following factorizations for d = 1, 2.

(U , γ) (0π, π) (V, σ) ζ(0, π)κ(V, σ)

(11, e) (11, e) (11, e) κ1

Factorizations for d = 1.

(U , γ) (0π, π) (V, σ) ζ(0, π)κ(V, σ)

(12, (12)) (12, (12)) (12, e) ℏκ1,1
(12, (12) ({{1}, {2}}, e) ℏκ21

({{1}, {2}}, e) (12, (12)) κ2
(12, e) ({{1}, {2}}, e) (12, e) κ1,1

(12, (12)) (12, (12))) ℏκ2
({{1}, {2}}, e) ({{1}, {2}}, e) ({{1}, {2}}, e) κ21

Factorizations for d = 2.

In terms of equations we get

φ1 = φ(1, e) = κ(1, e) = κ1,

in d = 1 and in d = 2 we have

φ2 = φ(12, (12)) = κ(12, (12)) + ℏκ(12, e) + ℏκ({{1}, {2}}, e) = κ2 + ℏ(κ1,1 + κ21)

and

φ1,1 + φ2
1 =

∑
U≥e

φ(U , e) = ℏκ(12, (12)) + κ(12, e) + κ({{1}, {2}}, e) = ℏκ2 + κ1,1 + κ21.
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2 Higher order and surfaced free probability

Now let us compare the results with the equations from the master relation. Recall that
we can encode the functions φ, κ as functions in the Fock space by

Zφ = exp

(∑
n≥1

∑
g≥0

ℏ2g−2+n

n!

∑
µ1,...,µn≥0

φ[g](1∑n
i=1 µi

, γµ1,...,µn)

)

= exp

(∑
d≥1

∑
g≥0

∑
µ⊢d

φ[g](1d, γµ1,...,µl(µ)
)ℏ2g−2+l(µ)

)
.

(2.5.7)

We want to compute the master relation i) of Theorem 2.5.2. First we need the strictly
monotone Hurwitz numbers which are involved. In d = 1 we have H<

k ((1), (1)) = δk,1
and for d = 2 we have the following table.

k H<
k ((2); (2)) H<

k ((2); (1, 1))) H<
k ((1, 1); (2)) H<

k ((1, 1)); (1, 1)))

0 1
2 0 0 1

2
1 0 1

2
1
2 0

k > 1 0 0 0 0

Strictly monotone Hurwitz numbers in S2.

Furthermore, we have for zλ (see (1.2.1)) the following values:

z(1) = 1, z(2) = z(1,1) = 2.

We obtain in the trivial d = 1 case

φ1 = φ(11, (1)) = Zφ((1)) = z(1)
(
H<((1), (1))Zκ((1))

)
= Zκ((1)) = κ(11, (1)) = κ1.

For d = 2 we use the definition of Zφ(λ) (2.3.3) associated to the multiplicative functions
φ and κ and obtain

φ(12, (12)) = Zφ((2)) = z(2)
(
H<((2), (2))Zκ((2)) +H<((2), (1, 1))Zκ((1, 1))

)
= κ(12, (12)) + ℏκ(12, (1)(2)) + ℏκ(11, (1))2

and

φ(12, (1)(2)) + φ(11, (1))2 = Zφ((1, 1))

= z(1,1)
(
H<((1, 1), (2))Zκ((2)) +H<((1, 1), (1, 1))Zκ((1, 1))

)
= ℏκ(12, (12)) + κ(12, (1)(2)) + κ(11, (1))2.

We see that the relations agree with the equations we computed by φ = ζℏ⊛κ. Now for
the final equivalence, we want to see that these can be reformulated in the Fock space
language. Let us also do some examples for small d. Assume we have two partition
functions Zφ and Zκ induced by two multiplicative functions φ and κ and that we have

Zφ = DZκ.
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2.5 Proof of the main result

We will now compute both sides of the equation above and see that this will give precisely
the master relation involving the Hurwitz numbers. Since we already have seen that the
master relation is equivalent to the moment-cumulant formula, we then will have verified
(for small d) that the moment-cumulant formula can be written as an operator in the
Fock space. Recall that the operator D is a diagonal operator in the basis (sλ)λ, given
by

Dsλ =
∏

(i,j)∈λ

(1 + ℏ(j − i))sλ.

Thus we will change the basis from the power sum basis (pµ)µ to the Schur basis (sλ)λ
in order to compute both sides of Zφ = DZκ. For the d = 1, i.e. the µ = (1) term of
(2.5.7), we have

Zφ((1))p1 = [p1]Z
κp1 = [p1]Z

κs1,

since p1 = s1. Hence, the operator equation reads

Zφ((1))p1 =
∏

(i,j)∈(1)

(1 + ℏ(j − i))

︸ ︷︷ ︸
=1

Zκ((1))p1 = Zκ((1))p1,

i.e. Zφ(1) = Zκ(1), which agrees with the previous computations. We continue with
d = 2, for changing basis (see Lemma 1.2.11) we need the following character values:

λ\µ (2) (1, 1)

(2) 1 1
(1, 1) −1 1

Values of the characters χλ(µ).

Thus, by the transformation formula we have

s(2) =
1

2
p(2) +

1

2
p2(1), s(1,1) = −1

2
p(2) +

1

2
p2(1),

p(2) = s(2) − s(1,1), p(1,1) = p2(1) = s(2) + s(1,1),

and hence

Zκ((2))p(2) + Zκ((1, 1))p2(1)

= Zκ((2))(s(2) − s(1,1))) + Zκ((1, 1))(s(2) + s(1,1)))

= (Zκ((2)) + Z((1, 1)))s(2) + (−Zκ((2)) + Zκ((1, 1)))s(1,1).

Applying the operator D to Zκ and comparing the coefficients in Zφ = DZκ yields the
equations

Zφ((2)) + Zφ((1, 1))) = (1 + ℏ)(Zκ((2)) + Zκ((1, 1)))
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2 Higher order and surfaced free probability

and

−Zφ((2)) + Zφ((1, 1)) = (1 − ℏ)(−Zκ((2)) + Zκ((1, 1))),

which we can solve for Zφ((2)) and Zφ((1, 1)). We find

Zφ((2)) =
1

2
(1 + ℏ)(Zκ((2)) + Zκ((1, 1))) − (1 − ℏ)(−Zκ((2)) + Zκ((1, 1)))

= Zκ((2)) + ℏZκ((1, 1))

and

Zφ((1, 1)) =
1

2
(1 + ℏ)(Zκ((2)) + Zκ((1, 1))) + (1 − ℏ)(−Zκ((2)) + Zκ((1, 1)))

= ℏZκ((2)) + Zκ((1, 1)).

These are exactly the relations obtained by the master relation for d = 2.

Now that we have seen the equivalences in small examples we want to prove the
statement in general.

Proof of Theorem 2.5.2.

• First we prove ii) ⇐⇒ i). Let λ ⊢ d be a partition of d. Let us assume that φ and
κ satisfy the moment-cumulant relations φ = ζℏ ⊛ κ. Then by (2.3.3), we have

Zφ(λ) =
∑
V∈P(d)
0λ≤V

(ζℏ ⊛ κ)(V, γλ)

=
∑
V∈P(d)
0λ≤V

∑
(0π ,π)⊙(W,σ)=(V,γλ)

ℏ|π| κ(W, σ)

=
∑

π,σ∈S(d)
π◦σ=γλ

∑
W∈P(d)
0σ≤W

ℏ|π|κ(W, σ)

=
∑
ν⊢d

∑
π∈S(d)

ℏ|π|
∑
σ∈Cν
π◦σ=γλ

( ∑
W∈P(d)
0σ≤W

κ(W, σ)

)
,

where we collected all σ = π−1 ◦ γλ belonging to the same conjugacy class Cν .
By multiplicativity of κ, the sum inside the brackets only depends on the cycle
structure of σ. In particular, substituting σ with γν does not change the sum, and
by comparing with (2.3.3) we recognise the value of Zκ(ν). This yields

Zφ(λ) =
∑
ν⊢d

∑
π∈S(d)

ℏ|π|
∑
σ∈Cν
π◦σ=γλ

Zκ(ν) =
∑
ν⊢d

Zκ(ν)

( ∑
π∈S(d),σ∈Cν
π◦σ=γλ

ℏ|π|
)
.
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2.5 Proof of the main result

The last constraint can be rewritten as γ−1λ ◦ π ◦ σ = id. By comparison with
Definition 1.3.10, we recognise the free single Hurwitz numbers,

Zφ(λ) = zλ
∑
ν⊢d

Zκ(ν)

( d−1∑
r=0

ℏrH |r(λ, ν)

)
.

Here, r is the colength of π, and the factor zλ = d!
#Cλ

is explained as follows.

The numerator compensates the 1
d! in the definition of Hurwitz numbers. The

denominator comes from the fact that in the definition of free single Hurwitz
numbers, we let the leftmost permutation be any element of the conjugacy class
Cλ, so we overcount by a factor of #Cλ. By Proposition 1.3.11 and by comparison
with the definition of the generating series of strictly monotone Hurwitz numbers
in Definition 1.3.3, we get the identity

Zφ(λ) = zλ
∑
ν⊢d

H>(λ, ν)Zκ(ν).

That is, it holds i), and since all the steps are equivalences we actually have i)
⇐⇒ ii).

• The equivalence ii) ⇒ iv) is clear since µℏ and ζℏ are inverses w.r.t. the extended
convolution.

• The implication i) ⇒ iii) is obtained by multiplying i) by zνH
≤(ν, λ), summing

over λ ⊢ d and using the first line of Lemma 1.3.9, while the converse direction is
obtained likewise using the second line of Lemma 1.3.9.

This finishes the proof of all equivalences between i), ii), iii), iv). Let us finally prove
the equivalence between i) for all d > 0 and Zφ = DZκ. We write

Zφ = D
∑
d≥1

∑
µ⊢d

([pµ]Zκ)pµ

and changing the basis yields

Zφ = D
∑
d≥1

∑
µ,α⊢d

([pµ]Zκ)χα(µ)sα =
∑
d≥1

∑
µ,α⊢d

([pµ]Zκ)χα(µ)
∏

(i,j)∈α

(1 − ℏ(j − i))sα.

We apply the Hall inner product with pβ and find

⟨pβ, Zφ⟩ =
∑
d≥1

∑
µ,α⊢d

([pµ]Zκ)
∏

(i,j)∈α

(1 − ℏ(j − i))χα(µ)⟨pβ, sα⟩

=
∑
µ,α⊢d

([pµ]Zκ)
∏

(i,j)∈α

(1 − ℏ(j − i))χα(µ)χα(β)

= zβ
∑
µ,α⊢d

zµ([pµ]Zκ)
∏

(i,j)∈α

(1 − ℏ(j − i))
χα(µ)

zµ

χα(β)

zβ
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= zβ
∑
µ⊢d

zµ([pµ]Zκ)
∑
α⊢d

∏
(i,j)∈α

(1 − ℏ(j − i))
χα(µ)

zµ

χα(β)

zβ

= zβ
∑
µ⊢d

zµ([pµ]Zκ)H<(µ, β)

= zβ
∑
µ⊢d

⟨pµ, Zκ⟩H<(µ, β).

By this calculation we know that Zφ = DZκ is equivalent to the master relation for the
quantities

⟨pµ, Zφ⟩ = zµ[pµ]Zφ, ⟨pµ, Zκ⟩ = zµ[pµ]Zκ.

Comparing with (2.3.2) and (2.3.3) yields the desired result.

2.5.2 Using the Fock space formalism

Now that we have proven that the moment-cumulant relation can be equivalently for-
mulated as an operator equation of partition functions in the Fock space, we want to
explain the main tools from [BDBKS22, BDBKS23] and prove our main result. Note
that the moment-cumulant relation or more precisely the corresponding operator D is a
special case of an operator equation

Z1 = DψZ2

in [BDBKS22, BDBKS23]. In our case we consider ψ = ln(1 + y). We will not bother
with the most general choice of D (resp. ψ) as we are mainly concerned with the higher
order free probability application. The more general case has similar results, but it does
not describe the moment-cumulant relation in free probability.

Lemma 2.5.7.
The operator D belongs to the Lie group of pgl∞ and we have

D = exp

( ∑
k∈Z+ 1

2

wkÊk,k

)
,

where wk is determined by wk+ 1
2
− wk− 1

2
= ln(1 − kℏ).

Proof. Consider an operator

W =
∑

k∈Z+ 1
2

wk pEk,k ∈ pgl∞,

then it acts on the fermions via

∑
k∈Z+ 1

2

wk pEk,kvλ =

( ℓ(λ)∑
i=1

wλi−i+ 1
2
− w−i+ 1

2

)
vλ = wλvλ. (2.5.8)
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2.5 Proof of the main result

In other words wλ is an eigenvalue of W with eigenvector vλ. Let us write

ψk = wk+ 1
2
− wk− 1

2
,

then we may rearrange the telescopic sum

wλi−i+ 1
2
− wi+ 1

2

= wλi−i+ 1
2
−wλi−i− 1

2
+ wλi−i− 1

2︸ ︷︷ ︸
=0

+wλi−1−i+ 1
2
− wλi−1−i+ 1

2︸ ︷︷ ︸
=0

· · · + w1−i+ 1
2
− w−i+ 1

2

= (wi+1+ 1
2
− wi+1− 1

2
) + · · · + (wλi−i+ 1

2
− wλi−i− 1

2
)

=

λi∑
j=1

wj−i+ 1
2
− wj−i− 1

2

=

λi∑
j=1

ψj−i.

Thus we have

wλ =

ℓ(λ)∑
i=1

λi∑
j=1

ψj−i =
∑

(i,j)∈λ

ψj−i.

Hence the exponential of W has the eigenvalues

exp

( ∑
(i,j)∈λ

ψj−i

)
,

and for the choice ψk = ln(1 + (j − i)ℏ) we find

exp

( ∑
(i,j)∈λ

ln(1 + (j − i)ℏ)

)
vλ =

∏
(i,j)∈λ

(1 + (j − i)ℏ).

Under the boson-fermion correspondence the eigenvectors in Bℏ are the Schur polyno-
mials with the same eigenvalue, i.e. the operator we defined agrees with D.

We proceed by proving the representation of J in Proposition 2.5.3.

Proof of Proposition 2.5.3. First observe that for k = 0 we have∑
j∈Z+ 1

2

pEj,jsλ = 0

by (2.5.8), with wk = 0 for all k. Thus J0 and hence J0 annihilates the whole space Bℏ.
Let us write

W =
∑

j∈Z+ 1
2

wj pEj,j ,
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2 Higher order and surfaced free probability

then for k ̸= 0 we have

D−1JkD = exp(−W)Jk exp(W)

=
∞∑
n=0

[(−W)n, Jk]

n!

by the Campbell identity (see [Hal15]), where [(W)n, Jk] is a shorthand notation for
the n-times application of the commutator [W, [W, . . . , [W, Jk]]]. Using the commutation
relations for the pEi,j , we compute

[−W, Jk] = −
∑

i,j∈Z+ 1
2

wj [ pEj,j , pEi−k,i]

= −
∑
i∈Z+ 1

2

wi−k pEi−k,j + wi(− pEi−k,i)

=
∑
i∈Z+ 1

2

(wi − wi−k) pEi−k,i,

and inductively

[(−W)n, Jk] = [−W, [−W, . . . , [−W, Jk]]]

=
∑

j1,...,jn∈Z+ 1
2

wj1 . . . wjn [ pEj1,j1 , [
pEj2,j2 , . . . , [

pEjn,jn , Jk]]]

=
∑
i∈Z+ 1

2

(wi − wi−k)
n

pEi−k,i.

Thus we have

D−1JkD =

∞∑
n=0

[(−W)n, Jk]

n!

=
∞∑
n=0

∑
i∈Z+ 1

2

(wi − wi−k)
n

n!
pEi−k,i

=
∑
i∈Z+ 1

2

exp(wi − wi−k) pEi−k,i.

Recall the trick in the last proof of expanding via a telescoping sum, and

ln
(

1 + ℏ
(
m− 1

2

))
= wm − wm−1 for m ∈ Z +

1

2
.
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2.5 Proof of the main result

Then we obtain∑
i∈Z+ 1

2

exp(wi − wi−k) pEi−k,i =
∑
i∈Z+ 1

2

exp

( k−1∑
j=0

wi−j − wi−j−1

)
pEi−k,i

=
∑
i∈Z+ 1

2

exp

( k−1∑
j=0

ln
(

1 + ℏ
(
i− j − 1

2

)))
pEi−k,i

=
∑
i∈Z+ 1

2

k−1∏
j=0

(
1 + ℏ

(
i− j − 1

2

))
pEi−k,i.

Finally, a change of indices yields the first formula in Proposition 2.5.3. Now let us
rewrite the product in the following way

k∏
j=1

(
1 + ℏ

(
i+ j − k − 1

2

))
=

k∏
j=1

(
1 + ℏ

((
i− k

2

)
+ j − k + 1

2

)

=
k∏
j=1

(
1 + ℏ

(
y + j − 1 − k − 1

2

))∣∣∣∣∣
y=(i− k

2
)

.

We expand the expression using Taylor’s formula at y = 0 and obtain

k∏
j=1

(
1 + ℏ

(
y + j−1 − k − 1

2

))∣∣∣∣∣
y=(i− k

2
)

=

∞∑
r=0

∂ry

k∏
j=1

(
1 + ℏ

(
y + j − 1 − k − 1

2

))∣∣∣∣∣
y=0

(i− k
2 )r

r!

=:
∞∑
r=0

∂ryϕk(y)

∣∣∣∣∣
y=0

(i− k
2 )r

r!
.

On the other hand we have

ϕk(y) =

k∏
j=1

(
1 + ℏ

(
y + j − 1 − k − 1

2

))

= exp

( k∑
j=1

ln
(

1 + ℏ
(
y + j − 1 − k − 1

2

))

= exp

(
eℏ

k−1
2
∂y

k∑
j=1

eℏ(i−1)∂y ln(1 + y)

)
.

Now we use

xk − yk

x− y
=

k∑
i=1

xi−1yk−i
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2 Higher order and surfaced free probability

for x = eℏ(i−1)∂y , y = 1 and obtain

exp

(
eℏ

k−1
2
∂y

k∑
j=1

eℏ(i−1)∂y ln(1 + y)

)
= exp

(
eℏ

k−1
2
∂y e

kℏ∂y − 1

eℏ∂y − 1
ln(1 + y)

)

= exp

(
eℏ

k−1
2
∂y e

kℏ∂y − 1

eℏ∂y − 1
ln(1 + y)

)
= exp

(
eℏ

m
2
∂y − e−ℏ

m
2
∂y

e
ℏ
2
∂y − e

−ℏ
2
∂y

ln(1 + y)

)
= exp

(
k
ς(ℏk∂y)
ς(ℏ∂z)

ln(1 + y)

)
.

Together with (1.2.4), we obtain the desired result.

Remark 2.5.8.
The computations in the proof of Proposition 2.5.3 are exactly the computations as in
[BDBKS22] in Proposition 3.1 and Lemma 4.6, here for the case

ϕk(y) =
k∏
j=1

(
1 + ℏ

(
y + j − k − 1

2

))
.

More precisely, Proposition 2.5.3 is merely a special case of the latter two results for our
choice of ϕk. We presented the proof here for a self-contained reading and because of
the importance of understanding the techniques.

Together with Lemma 2.3.6, Proposition 2.5.3 is our starting point in [BCGF+23] for
proving Theorem 2.4.8. The next step is to use (2.5.3) and the commutation relations
for the operators J, that is

[Jr, Js] = rδr,−s

and the immediate consequence for the generating series

[ ∞∑
r=1

Jrx
r
1,
∞∑
s=1

J−sx
−s
2

]
=

n∑
i=i

i

(
x1
x2

)i
=

x1x2
(x1 − x2)2

.

We commute the Jr with r < 0 to the left and the ones where r > 0 to the right.
Then, the latter will be killed by ⟨| or by |⟩ respectively. This will result in the key
combinatorial identity, an expression for the n-point functions as a sum over the graphs.

Lemma 2.5.9 (Key combinatorial identity).
Let n ∈ N, Γ ∈ Gn, I a hyper-edge of Γ and i ∈ [n]. Moreover, we define the i-th white
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2.5 Proof of the main result

vertex operator by

U⃗κ(xi) =
∑
k∈Z

xki · [wki ]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

· [uri ]
exp

(
ℏui ς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1)

)
ℏuiς(ℏui)

(2.5.9)

and the hyper-edge weight by

cκ(uI , wI) =

{(
ℏuiς(ℏuiwi∂wi)

)2
Gκ2(wi, wi) if #I = 2 and I(i) = 2,∏

i∈I ℏuiς(ℏuiwi∂wi)G̃
κ
#I(wI) otherwise.

(2.5.10)

Then relation Zφ = DZκ is equivalent to

∀n > 0, G̃φn(x1, . . . , xn) =
∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

U⃗κ(xi)
∏

I∈I(Γ)

cκ(uI , wI), (2.5.11)

where the first product is taken from left to right with i increasing.

Remark 2.5.10.
Recall that we have added an additional term for the 2-point function

G̃2(x1, x2) = G2(x1, x2) +
x1x2

(x1 − x2)2
.

Thus a hyper-edge of cardinality two connecting the same vertex to itself would yield
an ill-defined expression G̃(wi, wi). To prevent this, we have introduced a correction in
(2.5.10).

Proof of Lemma 2.5.9. Let Zφ = DZκ. We start by recalling the formula for the n-
point function in terms of the operators in the Fock space. More precisely, we will start
by considering a disconnected expression (cf. Lemma 2.3.5),

G̃φ,•n (x1, . . . , xn) = ⟨|J(x1) . . .J(xn) exp(Fκ)|⟩, (2.5.12)

where J(x1) are the generating series of the Jk. Furthermore, from Proposition 2.5.3 we
have the expression

Jk =
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[wkur]
1

ℏuς(ℏu)

· exp

(∑
m>0

ℏuς(ℏuw∂w)J−mw
−m
)

exp

(∑
m>0

ℏuς(ℏuw∂w)Jmw
m

)
.

We focus on the terms

exp
( ∞∑
i=1

aiJ−mw
−m
i

)
exp

( ∞∑
i=1

aiJmw
m
i

)
.
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2 Higher order and surfaced free probability

As stated earlier, our goal is to get the J−m annihilated by ⟨| and the Jm annihilated by
|⟩, i.e. we need to commute the J−m to the left and Jm to the right. We will use the
following commutation relation

exp
( ∞∑
m=1

amJm
)

exp
( ∞∑
m=1

bmJ−m
)

= exp
( ∞∑
m=1

mambm

)
exp

( ∞∑
m=1

bmJ−m
)

exp
( ∞∑
m=1

amJm
)
.

(2.5.13)

It is a special case of the Baker-Campbell-Hausdorff identity and can also be proven by
direct computation (see [BDBKS22, Proposition 2.3]). Thus, the product〈∣∣∣ n∏

i=1

exp

(∑
m>0

ℏuiς(ℏuiwi∂wi)w
−m
i J−m

)
exp

(∑
m>0

ℏuiς(ℏuiwi∂wi)w
m
i Jm

)∣∣∣〉
becomes∏

1≤i<j≤n
exp

(∑
m≥0

ℏuiς(ℏuiwi∂wi)ℏujς(ℏujwj∂wj )m

(
wi
wj

)m)

=
∏

1≤i<j≤n
exp

(
ℏuiς(ℏuiwi∂wi)ℏujς(ℏujwj∂wj )

wiwj
(wi − wj)2

)
=:

∏
1≤i<j≤n

exp
(
αiαjB(wi, wj)

)
,

, (2.5.14)

where we used

a(i)m = ℏuiς(ℏuiwi∂wi)w
m
i

and

b(i)m = ℏuiς(ℏuiwi∂wi)w
−m
i

in (2.5.13). Thus, we have

G̃φ(x1, . . . , xn)

=
∑

k1,...,kn∈Z
r1,...,rn≥0

n∏
i=1

xkii ∂
ri
y exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣∣
y=0

∏
1≤i<j≤n

exp
(
αiαjB(wiwj)

)
〈∣∣∣ n∏

i=1

exp

(∑
m>0

b(i)m J−m

) n∏
i=1

exp

(∑
m>0

a(i)m Jm

)
exp(F κ)

∣∣∣〉
=

∑
k1,...,kn∈Z
r1,...,rn≥0

n∏
i=1

xkii ∂
ri
y exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

∏
1≤i<j≤n

exp
(
αiαjB(wiwj)

)
〈∣∣∣ n∏

i=1

exp

(∑
m>0

a(i)m Jm

)
exp(F κ)

∣∣∣〉,

132



2.5 Proof of the main result

where in the second equation we used the fact that ⟨| annihilates all the J−m, and thus
leaves only the constant term 1 of the exponential. For the equation, we recall that
the exponential of the generating series of Jm operators for positive values m act as a
translation operator on any f = f(p1, p2, . . . ) ∈ Bℏ, that is

exp

( n∑
m=1

αmJm

)
f = exp

( n∑
m=1

αmm∂m

)
f(p1, p2, . . . )

= f(p1 + α1, p2 + 2α2, p3 + 3α3, . . . ).

Thus we have〈∣∣∣ n∏
i=1

exp

(∑
m>0

a(i)m Jm

)
exp(F κ)

∣∣∣〉

=
〈∣∣∣ n∏

i=1

exp

(∑
m>0

a(i)m Jm

)
exp

(∑
ℓ≥1
g≥0

ℏ2g−2+ℓ

ℓ!

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

J−sj
sj

)∣∣∣〉

=
〈∣∣∣ n∏

i=1

exp

(∑
m>0

a(i)m Jm

)
exp

(∑
ℓ≥1
g≥0

ℏ2g−2+ℓ

ℓ!

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

psj
sj

)

=
〈∣∣∣ exp

(∑
ℓ≥1
g≥0

ℏ2g−2+ℓ

ℓ!

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

(psj
sj

+
n∑
i=1

a(i)sj

))

= exp

(∑
ℓ≥1
g≥0

ℏ2g−2+ℓ

ℓ!

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

( n∑
i=1

a(i)sj

))

= exp

(∑
ℓ≥1
g≥0

ℏ2g−2+ℓ

ℓ!

n∑
i1,...,il=1

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

a
(ij)
sj

)
. (2.5.15)

First we want to treat the ℓ = 2 case since we need to match it with terms in (2.5.14)
(in this case G̃2 differs from G2), the other terms are more or less in the right form, we
will treat them afterward. When i1 ̸= i2, then

exp

(∑
g≥0

ℏ2g

2!

∑
i1,i2∈[n]
i1 ̸=i2

∑
s1,s2>0

F κg;s1,s2a
(i1)
s1 a(i2)s2

)

= exp

(∑
g≥0

ℏ2g
∑

1≤i1<i2≤n

∑
s1,s2>0

F κg;s1,s2a
(i1)
s1 a(i2)s2

)

= exp

(∑
g≥0

ℏ2g
∑

1≤i1<i2≤n

∑
s1,s2>0

F κg;s1,s2ℏui1ς(ℏui1wi1∂wi1
)ws1i1 ℏui2ς(ℏui2wi2∂wi2

)ws2i2

)
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= exp

( ∑
1≤i1<i2≤n

αi1αi2
∑
g≥0

ℏ2g
∑

s1,s2>0

F κg;s1,s2w
s1
i1
ws2i2

)

= exp

( ∑
1≤i1<i2≤n

αi1αi2G
κ
2(wi1 , wi2)

)
, (2.5.16)

where the 1
ℓ! eliminated the symmetry to obtain Gκ2(wi1 , wi1). Recall the factor from

(2.5.14), ∏
1≤i<j≤n

exp
(
αiαjB(wi, wj)

)
= exp

( ∑
1≤i<j≤n

αiαjB(wi, wj)

)
,

we can combine it with (2.5.16) to get a term

exp

( ∑
1≤i1<i2≤n

αi1αi2
(
Gκ2(wi1 , wi2) +B(wi1 , wi1)

))
= exp

( ∑
1≤i1<i2≤n

αi1αi2G̃
κ
2(wi1 , wi2)

)
.

Now if i1 = i2 we have a term

exp

(
1

2

∑
1≤i1≤n

α2
i1G

κ
2(wi1 , wi1)

)
= exp

(
1

2

∑
1≤i1≤n

α2
i1G̃

κ
2(wi1 , wi1)

)
.

For ℓ ≥ 3 we have similarly terms of the form

exp

(∑
g≥0

ℏ2g−2+ℓ

ℓ!

n∑
i1,...,il=1

∑
s1,...,sℓ>0

F κg;s1,...,sℓ

ℓ∏
j=1

a
(ij)
sj

)

= exp

(
1

ℓ!

n∑
i1,...,iℓ=1

( ℓ∏
j=1

αij

)
G̃κℓ (wi1 , . . . , wiℓ)

)
.

Thus expanding the exponential function

exp

(
1

2

n∑
i1=1

α2
i1G

κ
2(wi1 , wi1) +

∑
i1<i2

αi1αi2G̃
κ
2(wi1 , wi2)

+
∑
ℓ≥3

1

ℓ!

n∑
i1,...,iℓ=1

( ℓ∏
j=1

αij

)
G̃κℓ (wi1 , . . . , wiℓ)

)
,

we get products of the type cκ(uI , wI), i.e. every factor containing G̃κℓ (wi1 , . . . , wiℓ)
can be described by a multi-edge connection of white vertices ij j = 1, . . . , n (possibly
multiple times), and every product of such terms is the contribution of a graph in Gn.
Note that the factor 1

ℓ! deals with multiplicity or more precisely the automorphisms of
the multisets; see e.g. the ℓ = 2 case we treated explicitly. The factor from expanding
the exponential will deal with the automorphisms of the multi-edges. The only thing
left is obtaining the claimed form of the operators Uκ. The terms∑

k∈Z

xki
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

· [uri ]
1

ℏuiς(ℏui)

134



2.5 Proof of the main result

are immediate from the representation of the J operators in Proposition 2.5.3, and the
numerator in (2.5.9) is explained by the ℓ = 1 case of (2.5.15). We have

exp

(∑
g≥0

ℏ2g−1
n∑

i1=1

∑
s1>0

F κg,s1a
i1
s1

)
= exp

( n∑
i1=1

αi1(G̃κ1(wi1) − ℏ−1)
)
,

where the extra ℏ−1 term is due to the term we added in (2.3.7), the definition of the
n-point functions. Note that in the previous computations the graphs we obtain do not
need to be connected, i.e. we obtain a sum over graphs in G•n for (2.5.12). Thus, applying
the inclusion-exclusion principle, we obtain the desired expression for G̃φn(x1, . . . , xn).

Remark 2.5.11.
In [BCGF+23] Lemma 2.5.9 is cited to be a special case of [BDBKS23, Lemma 2.1] when
the quantities are translated carefully. With the proof given here, we aim to fill in more
detail from [BDBKS22, Section 3] and [BDBKS23, Section 2] for this special case in
order to highlight the method of commuting the operators in the Fock space.

In order to match the expression of the key combinatorial identity to the assertion in
Theorem 2.4.8, we proceed in three steps, which were suggested by M. Kazarian in an
unpublished manuscript (see [Kaz19],[Kaz20]). An analogous exposition can be found
in our paper [BCGF+23].

We have the following three results, the second being merely a simple observation.
First, we have the following lemma.

Lemma 2.5.12 (step one).
Let Φ(y), Ψ(u) and Y (w) be three formal power series and Y (w) = O(w), then∑

r≥0
(∂ryΦ)(0) · [ur] exp(uY (w))Ψ(u) =

∑
r≥0

(∂ryΦ)(Y (w)) · [ur] Ψ(u) . (2.5.17)

Proof. We have∑
r≥0

(∂ryΦ)(0)[ur] exp(uY (w))Ψ(u) =
∑
r≥0

(∂ryΦ)(0)[ur]
∞∑
i=0

Y (w)i

i!
uiΨ(u)

=
∑
r≥0

∞∑
i=0

(∂ryΦ)(0)
Y (w)i

i!
[ur]uiΨ(u)

=
∑
r≥0

∞∑
i=0

(∂ryΦ)(0)
Y (w)i

i!
[ur−i]Ψ(u)

=
∑
r≥0

∞∑
i=0

(∂(r−i)+iy Φ)(0)
Y (w)i

i!
[ur−i]Ψ(u)

=
∞∑
s=0

∑
r,i≥0
r−i=s

(∂(r−i)+iy Φ)(0)
Y (w)i

i!
[ur−i]Ψ(u)
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=
∞∑
s=0

∑
i≥0

(∂s+iy Φ)(0)
Y (w)i

i!
[us]Ψ(u)

=

∞∑
s=0

(∂syΦ)(Y (w))[us]Ψ(u),

where we used that every pair (s, i) determines r uniquely in the second to last equation
and Taylor expansion in the last one.

Lemma 2.5.13 (step two).
Let Q(x) be a polynomial. Then

∞∑
j=0

[vj ](x∂x)j
∞∑
k=0

Q(v)xk =
∞∑
k=0

Q(k)xk.

Proof. We have

∞∑
k=0

Q(k)xk =

∞∑
k=0

( degQ∑
j=0

[vj ]Q(v) · kj
)
xk

=
∞∑
k=0

degQ∑
j=0

[vj ]Q(v) · kjxk

=
∞∑
k=0

degQ∑
j=0

[vj ]Q(v) · (x∂x)jxk

=

degQ∑
j=0

(x∂x)j [vj ]
∞∑
k=0

Q(v)xk.

The formula is still valid if we replace degQ by ∞, since then [vj ]Q(v) will yield zero
for terms j ≥ degQ.

For the third and last step, we will use the Lagrange inversion formula. Particularly,
we will use [Ges16, Theorem 2.1.1] without a proof and only state the special case we
need (equation (2.1.5) in op. cit.).

Proposition 2.5.14 (Lagrange inversion formula).
Let R(t) be a formal power series independent of x. Then there is a unique power series
f(x) such that f(x) = xR(f(x)), and for any Laurent series ψ independent of x and any
integer n ∈ N we have

[xn]
ψ(f)

1 − f R
′(f)
R(f)

= [tn]ψ(t)R(t)n.
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Remark 2.5.15.
We note that we may see x as a function in f via

f(x) = xR(f(x)) ⇐⇒ x =
f(x)

R(f(x))
⇐⇒ x(f) =

f

R(f)
,

and hence

d

df
x(f) =

R(f) − fR′(f)

R(f)2
=

1 − f R
′(f)
R(f)

R(f)
.

Consequently we may write

d ln f

d lnx
=
x

f

df

dx
=
x

f

R(f)

1 − f R
′(f)
R(f)

=
1

1 − f R
′(f)
R(f)

,

where we used R(f)
f = 1

x .

Proof of Theorem 2.4.8. First we will prove the formula for n ≥ 2, since in the case
n = 1 the graphs in the sum contain an element without a hyper-edge. For n ≥ 2 the
connectedness assures the existence of hyper-edges. We start from Lemma 2.5.9 and use
the last three lemmas step by step.

i) Recall the definition of U⃗κ(xi) from (2.5.9),

U⃗κ(xi) =
∑
k∈Z

xki · [wki ]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[uri ]
exp(ℏuiς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1))

ℏuiς(ℏui)
.

Then the second factor has a contribution of the form

exp(ℏui(Gκ1(wi) − ℏ−1)) = exp(ui(G
κ
0,1(wi) − 1) + uiℏ2Gκ1,1(wi) + . . . ),

when we expand ς(z) = 1 + x2

24 + . . . and take the constant coefficient. The
consequence is that, with rising order of xki , the operator [wki ] takes more and
more coefficients of Gκ0,1(wi) into the formula. The contribution in each of xi and
ℏ is finite, but in the equation for the generating series Gφn(x1, . . . , xn), as we sum
over the all orders, we get an infinite contribution. Thus, we use Lemma 2.5.12 to
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2 Higher order and surfaced free probability

get rid of these contributions. If we set Y (w) = (Gκ0,1(w) − 1) then we may write

G̃n(x1, . . . , xn)

=
n∏
i=1

∑
k∈Z

xki · [wki ]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[uri ] exp(ui(G
κ
0,1(wi) − 1))

exp(ℏuiς(ℏuiwi∂wi)(G
κ
1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1))

ℏuiς(ℏui)
∑
Γ∈Gn

∏
I∈I(Γ)

cκ(uI , wI)

#Aut(Γ)

=
n∏
i=1

∑
k∈Z

xki · [wki ]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=Gκ

0,1(wi)−1

[uri ]
exp(ℏuiς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1))

ℏuiς(ℏui)
∑
Γ∈Gn

∏
I∈I(Γ)

cκ(uI , wI)

#Aut(Γ)
.

ii) In order to use Lemma 2.5.13, we need to get a polynomial dependence in k in the
factor

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=Gκ

0,1(wi)−1
,

it has a term exp(k ln(1 + y)) in the expansion of ς. We compute

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=Gκ

0,1(wi)−1

= ∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)∣∣∣
y=Gκ

0,1(wi)

= (Gκ0,1(wi))
k

(
exp(−k ln(y)) · ∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

))∣∣∣
y=Gκ

0,1(wi)
.

(2.5.18)

We claim

exp(−k ln(y))∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
=
(
∂y +

k

y

)r
exp

(
k

(
ς(kℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)
.

(2.5.19)

For r = 0 the assertion is true, and for any r > 0 we have by induction(
∂y +

k

y

)r
exp

(
k

(
ς(kℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)
=
(
∂y +

k

y

)
exp(−k ln(y))∂r−1y exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
=

−k
y

exp(−k ln(y))∂r−1y exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
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2.5 Proof of the main result

+ exp(−k ln(y))∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
+
k

y
exp(−k ln(y))∂r−1y exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
= exp(−k ln(y))∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(y)

)
.

We continue using the formula,

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=Gκ

0,1(wi)−1

= (Gκ0,1(wi))
k
(
∂y +

k

y

)r
exp

(
k

(
ς(kℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)∣∣∣
y=Gκ

0,1(wi)
,

where the right-hand side has a polynomial dependence in k at each order of ℏ.
Thus, we can apply Lemma 2.5.13; we have

G̃n(x1, . . . , xn)

=
n∏
i=1

∞∑
j=0

(xi∂xi)
j [vj ]

∑
k∈Z

xki · [wki ]
∑
r≥0

(Gκ0,1(wi))
k

(
∂y +

v

y

)r
exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)∣∣∣
y=Gκ

0,1(wi)

[uri ]
exp(ℏuiς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1))

ℏuiς(ℏui)∑
Γ∈Gn

∏
I∈I(Γ)

cκ(uI , wI)

#Aut(Γ)
.

iii) In the last step we remove G(wi)
k by Lagrange inversion, i.e. by Proposition 2.5.14

and Remark 2.5.15, with f = wi, R = Gκ0,1, xi = wi
Gκ

0,1(wi)
. Then we have

[xki ]
d ln(wi)

d ln(xi)
ψ(wi) = [xk]

ψ(wi)

1 − wi
Gκ

0,1
′(w)

Gκ
0,1(wi)

= [tk]ψ(t)Gκ0,1(t)
k.

Hence∑
k∈Z

xki [w
k
i ]Gκ0,1(wi)

kψ(wi) =
∑
k∈Z

xki [x
k
i ]

d ln(wi)

d ln(xi)
ψ(wi) =

d ln(wi)

d ln(xi)
ψ(wi)

for any ψ. With the notation P κ(wi) = d ln(wi)
d ln(xi)

and the observation

xi∂xi = xi
dwi
dxi

∂wi = wi
xi
wi

dwi
dxi

∂wi = wi
d ln(wi)

d ln(xi)
∂wi ,
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2 Higher order and surfaced free probability

we obtain the desired

G̃n(x1, . . . , xn) =
∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

O⃗κ(wi)
∏

I∈I(Γ)

cκ(uI , wI)

for n ≥ 2.

Now for n = 1, there is a graph Γ0 with no hyper-edges, thus there is a summand with∏
I∈I(Γ0)

cκ(uI , wI) = 1.

Hence, when we apply the operator U⃗κ(w), the result and in particular the factor

exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1))
ℏuς(ℏu)

=
1

ℏuς(ℏu)
+
ς(ℏuw∂w)(Gκ1(w) − ℏ−1)

ς(ℏu)
+ . . .

will have a pole. To remove this pole, and proceed similar to the first step for n ≥ 2, we
write

G̃φ(x) = Gφ(x) − ℏ−1 (2.5.20)

=
∑
k∈Z

xk · [wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1))

ℏuς(ℏu)
−

exp(u(Gκ0,1(w) − 1))

uℏ

]

+
∑
k∈Z

xk · [wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]
exp(u(Gκ0,1(w) − 1))

uℏ
.

(2.5.21)

Then we can apply Lemma 2.5.12 to the term in (2.5.21), we obtain∑
k∈Z

xk · [wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1))

ℏuς(ℏu)
−

exp(u(Gκ0,1(w) − 1))

uℏ

]

=
∑
k∈Z

xk · [wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]

exp(u(Gκ0,1(w) − 1))

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1) − (u(Gκ0,1(w) − 1)))

ℏuς(ℏu)
− 1

uℏ

]

=
∑
k∈Z

xk · [wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=Gκ

0,1(w)−1
[ur][

exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1) − (u(Gκ0,1(w) − 1)))

ℏuς(ℏu)
− 1

uℏ

]
.
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Since the second sum runs over r ≥ 0, the term 1
uℏ does not contribute. Next we apply

Lemma 2.5.13 and obtain

G̃φ(x) =
∞∑
j=0

(x∂x)j [vj ]
∑
k∈Z

xk · [wk]
∑
r≥0

(Gκ0,1(w))k

(
∂y +

v

y

)r
exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)∣∣∣
y=Gκ

0,1(w)

[ur]

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1) − u(Gκ0,1(w) − 1))

ℏuς(ℏu)

]
and finally Lagrange inversion, Proposition 2.5.14, yields

G̃φ(x) =

∞∑
j=0

(x∂x)j [vj ]
d lnw

d lnx

(
∂y +

v

y

)r
exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)∣∣∣
y=Gκ

0,1(w)

[ur]

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1) − u(Gκ0,1(w) − 1))

ℏuς(ℏu)

]
=
∞∑
j=0

(wP κ(w)∂w)j [vj ]P κ(w)
(
∂y +

v

y

)r
exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln(y)

)∣∣∣
y=Gκ

0,1(w)

[ur]

[
exp(ℏuς(ℏuw∂w)(Gκ1(w) − ℏ−1) − u(Gκ0,1(w) − 1))

ℏuς(ℏu)

]
.

This is exactly the term we get from the graph with no hyper-edges. We still need to
match the correction term ∆κ

g in Theorem 2.4.8. We repeat the calculations from our
paper [BCGF+23], which are originally from [BDBKS22, Section 6.2]. We have∑
k≥1

xk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]
exp

(
u(Gκ0,1(w) − 1)

)
ℏu

=

∫ x

0
dx

d

dx

∑
k≥1

xk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]
exp

(
u(Gκ0,1(w) − 1)

)
ℏu

=

∫ x

0

dx

x

∑
k≥1

kxk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]
exp

(
u(Gκ0,1(w) − 1)

)
ℏu

=

∫ x

0

dx

x

∑
k≥1

xk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]w∂w
exp

(
u(Gκ0,1(w) − 1)

)
ℏu

.

We have for the derivative

[ur]w∂w
exp

(
u(Gκ0,1(w) − 1)

)
ℏu

= [ur]
exp

(
u (Gκ0,1(w) − 1)

)
ℏ

w∂wG
κ
0,1(w)

and thus we can apply Lemma 2.5.12 to obtain∫ x

0

dx

x

∑
k≥1

xk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln(1 + y)

)∣∣∣
y=0

[ur]w∂w
exp

(
u(Gκ0,1(w) − 1)

)
ℏu
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=

∫ x

0

dx

x

∑
k≥1

xk[wk]
∑
r≥0

∂ry exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln y

)∣∣∣
y=Gκ

0,1(w)
[ur]

w∂wG
κ
0,1(w)

ℏ

=

∫ x

0

dx

x

∑
k≥1

xk[wk] exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln y

)∣∣∣
y=Gκ

0,1(w)

w∂wG
κ
0,1(w)

ℏ
,

where in the last equality we used that we have no contribution from [ur] for r > 0 in
the right most factor. We use the tricks (2.5.18) and (2.5.19) to apply Lemma 2.5.13,
we obtain∫ x

0

dx

x

∑
k≥1

xk · [wk] exp

(
k
ς(kℏ∂y)
ς(ℏ∂y)

ln y

)∣∣∣
y=Gκ

0,1(w)

w∂wG
κ
0,1(w)

ℏ

=

∫ x

0

dx

x

∑
k≥1

xk · [wk](Gκ0,1(w))k exp

(
k

(
ς(kℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)

w∂wG
κ
0,1(w)

ℏ

=

∫ x

0

dx

x

∞∑
j=0

(x∂x)j [vj ]
∑
k≥1

xk[wk](Gκ0,1(w))k exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)

w∂wG
κ
0,1(w)

ℏ
.

We can apply Lagrange inversion, Proposition 2.5.14, and get∫ x

0

dx

x

∞∑
j=0

(x∂x)j [vj ]
∑
k≥1

xk[wk](Gκ0,1(w))k exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)

w∂wG
κ
0,1(w)

ℏ

=
1

ℏ

∫ x

0

dx

x

∞∑
j=0

(x∂x)j [vj ] exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)
P κ(w)w∂wG

κ
0,1(w)

=
1

ℏ

∫ x

0

dx

x

∞∑
j=1

(x∂x)j [vj ] exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)
P κ(w)w∂wG

κ
0,1(w)

+
1

ℏ

∫ x

0

dx

x
P κ(w)w∂wG

κ
0,1(w).

For the first summand we integrate against one of the outer derivatives x∂x

1

ℏ

∫ x

0

dx

x

∞∑
j=1

(x∂x)j [vj ] exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)
P κ(w)w∂wG

κ
0,1(w)

=
1

ℏ

∞∑
j=1

(x∂x)j [vj−1] exp

(
v

(
ς(vℏ∂y)
ς(ℏ∂y)

− 1

)
ln y

)∣∣∣
y=Gκ

0,1(w)
P κ(w)w∂wG

κ
0,1(w)

=

∞∑
g=1

ℏ2g−1∆κ
g (x).
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and the j = 0 term together with P κ(w)w∂w = x∂x yields

1

ℏ

∫ x

0

dx

x
P κ(w)w∂wG

κ
0,1(w) =

1

ℏ
(Gκ0,1(w) − 1).

In conclusion, for 2g− 2 +n > 0 taking the coefficient [ℏ2g−2+n], we obtain the assertion
of Theorem 2.4.8. The special cases (0, 1) and (0, 2) are the known cases [Voi86, Spe94]
and [CMSS07] respectively.

Remark 2.5.16.
The special cases (0, 1) and (0, 2) can also be obtained by the techniques in the proof of
Theorem 2.4.8; see [BCGF+23, section 4.2].

2.5.3 Extracting the genus zero sector

Finally, we will be extracting the genus zero sector of Theorem 2.4.8 for n ≥ 3. This
solves the problem of finding higher order functional relations for the moment-cumulant
formalism posed in [CMSS07].

Proof of Theorem 2.4.1. Let us recall the expression of Theorem 2.4.8 and specialise it
to genus 0. We have for n ≥ 3

Gφg,n(x1, . . . , xn) = [ℏ2g−2+n]
∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

O⃗κ(wi)
∏

I∈I(Γ)

cκ(uI , wI).

Thus, for g = 0, we obtain

Gφ0,n(x1, . . . , xn) = [ℏn−2]
∑
Γ∈Gn

1

#Aut(Γ)

n∏
i=1

O⃗κ(wi)
∏

I∈I(Γ)

cκ(uI , wI).

The leading order in ℏ of the terms on the right hand side can be read from

cκ(ui, wi) = ℏ2#I−2
(∏
i∈I

ui

)
G̃κ0,#I(wI) +O(ℏ2#I−1)

and

O⃗κ(w) =
∑
m≥0

(P κ(w)w∂w)m · [vm]
∑
r≥0

(
∂y +

v

y

)r
1
∣∣∣
y=Gκ

0,1(w)
· [ur] (uℏ)−1 +O(ℏ0)

= ℏ−1
∑
r≥0

O⃗κr (w) · [ur+1] +O(ℏ0) ,

where, in the last line, O⃗κr is defined in Theorem 2.4.1. Thus, for a graph Γ ∈ Gn, the
minimal degree on the right-hand side is given by

−n+
∑

I∈I(Γ)

(2#I − 2).
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2 Higher order and surfaced free probability

This number attains its minimal value n−2 when Γ is a tree. Hence, the only contribution
to the genus 0 part of G̃n is given by the latter. Furthermore, trees have no non-trivial
automorphisms. The variable ui only appears from the hyper-edge contributions, and
its power is the valency of the i-th white vertex. Therefore, the extraction of powers of
ui prescribed by the operators at the vertices restricts the sum to the set G0,n(r + 1) of
trees where the i-th white vertex has valency ri + 1. We obtain in genus 0 and for n ≥ 3

Gκ0,n(x1, . . . , xn) =
∑

r1,...,rn≥0

n∏
i=1

O⃗κri(wi)
∑

T∈G0,n(r+1)

∏
I∈I(T )

G̃κ0,#I(wI). (2.5.22)

With the classical notation of genus zero free probability, that is Gφ0,n = Mn and Gκ0,n =
Cn as well as the correction for n = 2, we find precisely Theorem 2.4.1.

2.6 Surfaced free probability

In this section, we extend higher order free probability to so-called surfaced free probabil-
ity. Concretely, we will extend the results of [CMSS07, Section 7] to our setting of higher
genus. We start this section by recalling higher order free probability of [CMSS07]. After-
ward, we introduce an extension of the partitioned permutation, which we call surfaced
permutations and show that their theory of multiplicative functions evolves in parallel
to partitioned permutations. The extended combinatorial theory allows for a new notion
of freeness, we call it (g, n)-freeness. Furthermore, we show that it is a sensible notion
by proving important properties: (g, n)-freeness does not depend on generators and con-
stants are free from everything. Moreover, we recover Voiculescu’s free independence as
well as freeness of all order of [CMSS07]. Surprisingly, we can also recover infinitesimal
freeness (cf. Section 1.1.4) by allowing half integer genus. We conclude this section by
extending the asymptotic result of Theorem 2.1.4.

2.6.1 Higher order free probability

Recall from Definition 2.1.3, that a second order noncommutative probability space
consists of the data (A, φ1, φ2), where A is a unital algebra, and φ1 is a unital linear
functional and φ2 a symmetric bilinear form that is tracial in its arguments and vanishes
on 1A · C ×A. Motivated by the random matrix calculations presented in Section 2.1.1,
Collins, Mingo, Śniady and Speicher extended the notion of a noncommutative proba-
bility space and the moment-cumulant formalism to higher orders. Despite not deriving
the higher order functional relations, they already introduced and studied the so-called
freeness of all orders.

Definition 2.6.1.
i) A higher order noncommutative probability space (HOPS) is the data (A,φ) con-

sisting of a unital associative (maybe non-commutative) algebra A over C and a
family φ = (φn)n≥1 of tracial n-linear forms such that

φ1(1) = 1 and φn(1, a2, . . . , an) = 0,
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2.6 Surfaced free probability

for all n ≥ 2 and a2, . . . , an ∈ A.

ii) Let a ∈ A be a noncommutative random variable in a HOPS (A,φ). Then the
higher order distribution of a is given by

µHO
a = {φn(ar1 , . . . , arn) : n ≥ 1, r1, . . . , rn ∈ N}.

iii) Let a1, . . . , aℓ ∈ A be noncommutative random variables in a HOPS (A, φ). Then
the higher order joint distribution of a1, . . . , aℓ is given by

µHO
a1,...,aℓ

= {φn(ar1i1 , . . . , a
rn
in

) : n ≥ 1, i1, . . . , in ∈ [ℓ], r1, . . . , rn ∈ N}.

By the discussions from prior sections, we can encode the higher order distribution of
a single element via a multiplicative function φ : PS → C given by

φ(1r1+···+rn , γr1,...,rn) = φn(ar1 , . . . , arn), n ∈ N, r1, . . . , rn ∈ N. (2.6.1)

Then Theorem 2.4.1 gives the functional relations between the moment and cumulant
generating functions

Mn(x1, . . . , xn) =
∑

r1,...,rn≥1
φr1,...,rnx

r1
1 . . . xrnn

and

Cn(x1, . . . , xn) =
∑

r1,...,rn≥1
κr1,...,rnx

r1
1 . . . xrnn .

In free probability, we want to study the central notion of freeness, and it only appears
if we look at joint distributions of several variables. Thus, we need to make sense of
the joint distribution in terms of multiplicative functions. This was already done in
[CMSS07] and we briefly explain the set-up.

Definition 2.6.2.
Let A be an algebra.

i) We define the set of A-decorated partitioned permutations by

PS(A) :=
⋃
d≥1

PS(d) ×Ad.

If f : PS(A) → C, then we denote the value of f on an element ((V, π), a1, . . . ad) ∈
PS(d) ×Ad by

f(V, π)[a1, . . . , ad].
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2 Higher order and surfaced free probability

ii) Let f : PS → C and g : PS(A) → C be two functions, d ≥ 1, and (U , γ) ∈ PS(d).
We define the convolution of f and g by f ∗ g : PS(A) → C, where

(f ∗ g)(U , γ)[a1, . . . , ad] :=
∑

(V,π)·(W,σ)=(U ,γ)

f(V, π)(g(W, σ)[a1, . . . , ad]).

iii) Let f : PS(A) → C be a function, we call f multiplicative if the following two
properties hold:

a) We have

f(1d, τ
−1 ◦ σ ◦ τ)[a1, . . . , ad] = f(1d, σ)[aτ(1), . . . , aτ(d)]

for any d ≥ 1, π, σ ∈ S(d) and a1, . . . , ad ∈ A.

b) We have

f(A, α)[a1, . . . , an] =
∏
A∈A

f(1#A, α|A)[(ai)i∈A],

where bijections [#A] → A have been chosen to make sense of the right-hand
side, which is independent of this choice due to the first condition.

The latter is used to put higher order moments into the framework of multiplicative
functions, in particular it lets us define higher order cumulants via convolution.

Definition 2.6.3.
Let (A,φ) be a HOPS.

i) We define the moment function to be the multiplicative function φ : PS(A) → C
given by

φ(1d, γλ)[a1, . . . , ad] = φn

( λ1∏
j=1

aj ,

λ2∏
j=1

aλ1+j , . . . ,

λn∏
j=1

aλ1+···+λn−1+j

)

for any d ∈ N and any partition λ ⊢ d.

ii) We define the cumulant function to be the multiplicative function κ : PS(A) → C
given by

κ = µ ∗ φ.

Moreover, we define the higher order cumulants by

κr1,...,rn(a1, . . . , an) := κ(1d, γr1,...,rn)[a1, . . . , ad]

for any n, r1, . . . , rn ∈ N and d = r1 + · · · + rn.
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2.6 Surfaced free probability

Remark 2.6.4.
Note, with these definitions, we may write

Mn(x1, . . . , xn) =
∑

r1,...,rn≥1
φ(ar1 , . . . , arn)xr11 . . . xrnn

and

Cn(x1, . . . , xn) =
∑

r1,...,rn≥1
κr1,...,rn(a, . . . , a)xr11 . . . xrnn ,

as we already mentioned.

Let us recall the main features of higher order free probability of [CMSS07] without a
proof. We will later generalize these to higher genus and obtain them as special case.

Definition 2.6.5.
Let (Xi)i∈I be a family of subsets of A. We call (Xi)i∈I free of all orders if we have the
following vanishing of mixed cumulants: For all d ≥ 2 and all ak ∈ Xi(k) (1 ≤ k ≤ d)
such that i(p) ̸= i(q) for some 1 ≤ p, q ≤ d we have

κ(1d, π)(a1, . . . , ad) = 0

for all π ∈ S(d).

Remark 2.6.6.
Since the combinatorics of partitioned permutations is yet to be fully understood it is
not clear how to express higher order freeness in terms of the moments, so we have to
rely on the vanishing of mixed cumulants. Recall that first order freeness was developed
in terms of moments and only later [Spe94] introduced free cumulants and showed that
the vanishing of mixed cumulants is equivalent to freeness. In theory, the vanishing of
mixed cumulants should explain how the formula for the moments looks like, but up to
this day it is still not tangible.

Proposition 2.6.7 ([CMSS07]).
Let (A,φ) be a HOPS. Then 1A is free of all orders from every set X ⊆ A, that is

κr1,...,rn(1A, a2, . . . , ad) = 0

for any d ≥ 2 and r1, . . . , rn with d = r1 + · · · + rn and any a2, . . . , ad ∈ A.

Theorem 2.6.8 ([CMSS07]).
Let (A,φ) be a HOPS and X1,X2 ⊂ A. We denote X+

i = Xi ∪ {1}. The following
statements are equivalent:

i) X1 and X2 are free of all orders.
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2 Higher order and surfaced free probability

ii) X+
1 and X+

2 are free of all orders.

iii) For any d ∈ N, (U , γ) ∈ PS(d),a1, . . . , ad ∈ X+
1 and any b1, . . . , bd ∈ X+

2 , we have

φ(U , γ)[a1b1, . . . , adbd] =
∑

(V,π)(W,σ)=(U ,γ)

κ(V, π)[a1, . . . , ad]φ(W, σ)[b1, . . . , bd].

iv) For any d ∈ N, any (U , γ) ∈ PS(d), a1, . . . , ad ∈ X+
1 and b1, . . . , bd ∈ X+

2 , we have

κ(U , γ)[a1b1, . . . , adbd] =
∑

(V,π)(W,σ)=(U ,γ)

κ(V, π)[a1, . . . , ad]κ(W, σ)[b1, . . . , bd].

Theorem 2.6.9 ([CMSS07]).
Let (Xi)i∈I be a family of subsets of A, and Ai the unital subalgebra generated by Xi.
The freeness of all orders of (Xi)i∈I is equivalent to the freeness of all orders of (Ai)i∈I .

2.6.2 Surfaced permutations

In this section, we will introduce the combinatorial framework for surfaced free prob-
ability. The objects in this theory are called surfaced permutations, motivated by the
appendix [CMSS07]. In principle, surfaced permutations are only partitioned permuta-
tions with the additional data of a genus on each of its blocks. In order to develop a
moment-cumulant formalism using these objects, we need to make this new information
compatible with the multiplicative structure. The motivation for these objects comes
from the extension in Section 2.2, where the multiplicative functions have values in C[[ℏ]].
The idea is that rather than storing the information of a function in a generating series,
we distinguish every coefficient [h|(V,π)|+2g]f(V, π) by a value on surfaced permutation
with the prescribed genus. With this new point of view, we are able to introduce the
notion of (g, n)-freeness and study its properties and applications.

Definition 2.6.10.
i) A surfaced permutation of [d] is a triple (V, π, g) where (V, π) ∈ PS(d) and g : V →

N is a function. We denote by PS(d) the set of surfaced permutations of [d], and
set PS :=

⋃
d≥1 PS(d).

ii) The colength of (A, α, g) ∈ PS(d) is defined by

|(A, α, g)| := |(A, α)| +
∑
A∈A

2g(A).

Definition 2.6.11.
Let (V, π, g), (W, σ, h) ∈ PS be surfaced permutations.

i) We define the extended product of (V, π, g),(W, σ, h) ∈ PS(d) by

(V, π, g) ⊙PS (W, σ, h) = (V ∨W, π ◦ σ, k),
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2.6 Surfaced free probability

in which the genus function on a block B ∈ V ∨W is given by

k(B) :=
|(V|B , π|B, g|B)| + |(W|B, σ|B, h|B)| − |(V ∨W|B, π ◦ σ|B)|

2
. (2.6.2)

Here, if D = {D1, . . . , Dl} ∈ P(d) and B ⊆ [d], the notation D|C stands for
{D1 ∩B, . . . ,Dl ∩B} from which one removes the elements which are empty sets.

ii) We define the (planar) product of (V, π, g), (W, σ, h) ∈ PS(d) by

(V, π, g) · (W, σ, h) =

{
(V ∨W, πσ, k) if |(V, π)| + |(W, σ)| = |(V ∨W, πσ)|,
0 otherwise,

where k is defined by (2.6.2).

iii) Let f, g : PS(d) → C be functions. Then we define the convolution of f and g by
f ⊛PS g : PS(d) → C,

(f ⊛PS g)(U , γ, k) =
∑

(V,π,g)⊙PS(W,σ,h)=(U ,γ,k)

f(V, π, g) g(W, σ, h) . (2.6.3)

Similarly we define the planar convolution where we replace ⊙ by · in (2.6.3).

iv) We call a function f : PS → C multiplicative if the values of f only depend on the
conjugacy classes, that is

f(1d, π, g) = f(1d, τ
−1πτ, g ◦ τ)

for any d ∈ N and τ ∈ S(d) and we have

f(V, π, g) =
∏
B∈V

f(1B, π|B, g|B).

Remark 2.6.12.
Let us propose another interpretation of the genus (2.6.2): let (V, π, g), (W, σ, h) be
surfaced permutations. If we expand the colength we have

k(B)=
|(V|B, π|B)| + |(W|B, σ|B)| − |(V ∨W|B, π ◦ σ)|B|

2
+
∑
C∈V
C⊆B

g(C) +
∑
C∈W
C⊆B

h(C).

(2.6.4)

Then the last two sums give the genera of the blocks of V and W that contribute towards
B ∈ V ∨W. Furthermore, having (2.1.7) in mind, the first term is the genus that gets
generated by a possible non-planar multiplication. This non-planar contribution only
allows integer values. We will explain this idea in Example 2.6.14.
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2 Higher order and surfaced free probability

Remark 2.6.13.
The reason for introducing the planar product on PS is that we later obtain the theory
of [CMSS07] as the special case of planar functions on PS together with the planar
product. More importantly, we will discuss the relation to infinitesimal freeness, there
is is important the genus is only created via the partitions and not via a non-planar
product.

Example 2.6.14.
We can reconsider Example 2.1.22: consider the two permutations π1 = (14)(235),
π2 = (15)(2)(34) and the product of partitioned permutations

(15, π1)(0π2 , π2) = (15, π1, (123)(45)).

In the context of surfaced permutations we have (15, π1, g), (0π2 , π2, h), with g ≡ 0, h ≡ 0
and hence

(15, π1, g) ⊙PS (0π2 , π2, h) = (15, π1, (123)(45), k),

with

k(15) = g(15)︸ ︷︷ ︸
=0

+h({1, 5})︸ ︷︷ ︸
=0

+h({2})︸ ︷︷ ︸
=0

+h({3, 4})︸ ︷︷ ︸
=0

+
|(15, π1)| + |(0π2 , π2)| − |(15, π1π2)|

2

=
7 − 5

2
= 1,

i.e. the genus we obtain is indeed coming from taking the product. We recall the picture
for a better understanding:

Product of surfaced permutations.

On the other hand, we may alter the first example in Example 2.1.22. We consider

(0π1 , π1, g̃)(0π2 , π2, h̃) = (15, (123)(45), h̃)

by taking g̃({1, 4}) = 0, g̃({2, 3, 5}) = 1 and h̃ ≡ 0 then

k(15) = g̃({1, 4})︸ ︷︷ ︸
=0

+ g̃({2, 3, 5})︸ ︷︷ ︸
=1

+h({1, 5})︸ ︷︷ ︸
=0

+h({2})︸ ︷︷ ︸
=0

h({3, 4})︸ ︷︷ ︸
=0

+

+
|(0π1 , π1)| + |(0π2 , π2)| − |(15, π1π2)|

2︸ ︷︷ ︸
=0

= 1
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and the contribution towards the genus of the product is due to the genus we introduced
to (0π1 , π1) via g̃. The following diagram visualizes the situation.

Product of surfaced permutations.

Remark 2.6.15.
i) Consider a multiplicative function f : PS → C, then f induces a multiplicative

function pf : PS → C[[ℏ]] via

pf(V, π) =
∑

g : V→N

ℏ|(V,π,g)|f(V, π, g).

ii) There is a natural injection ι : PS → PS, ι(V, π) = (V, π, 0). A function h : PS →
C can be extended to a function ι∗h on PS, by ι∗h(V, π, 0) = h(V, π) and setting
it to be zero outside ι(PS). Furthermore, if h is multiplicative then ι∗h is also
multiplicative.

Lemma 2.6.16.
Let d ∈ N and (V, π, g),(W, σ, h) ∈ PS(d) be surfaced permutations.

i) If k is given by (2.6.2) then

|(V ∨W, πσ, k)| = |(V, π, g)| + |(W, σ, h)|.

ii) Let f, g : PS → C be functions. Then with the notation from Remark 2.6.15 we
have

{f ⊛PS g = pf ⊛ pg.

Thus we may write ⊛ instead ⊛PS.

Proof. For i) we compute

|(V ∨W, πσ, k)| = |(V ∨W, πσ)| +
∑

B∈V∨W
k(B)

(2.1.6)
=

∑
B∈V∨W

|(V ∨W|B, πσ|B)| + k(B)

(2.6.4)
=

∑
B∈V∨W

∑
C⊆B
C∈V

g(C) +
∑
C⊆B
C∈W

h(C) + |(V|B, π|B)| + |(W|B, σ|B)|
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=

(
|
∑
C∈V

(V|C , π|C)| + g(C))

)
+

(
|
∑
C∈W

|(W|C , σ|C)| + h(C)

)
= |(V, π, g)| + |(W, σ, h)|,

where in the second to last equality we used that every C ∈ V and C ∈ W is contained
in a B ∈ V ∨W and for every (U , γ) ∈ PS its colength is additive w.r.t. the blocks of
U . In particular, we have used

|(V|B, π|B)| =
∑
C⊂B
C∈V

|(V|C , π|C)|.

For ii) we use i), we have

{f ⊛PS g(U , γ) =
∑

k : U→N

ℏ|(U ,γ,k)|f ⊛PS g(U , γ, k)

=
∑

k : U→N

ℏ|(U ,γ,k)|
∑

(V,π,h)⊙PS(W,σ,j)=(U ,γ,k)

f(V, π, h)g(W, σ, j)

i)
=

∑
k : U→N

∑
(V,π,h)⊙PS(W,σ,j)=(U ,γ,k)

ℏ|(V,π,h)|f(V, π, h)ℏ|(W,σ,j)|g(W, σ, j)

=
∑

(V,π)⊙PS(W,σ)=(U ,γ)

∑
h : U→N

ℏ|(V,π,h)|f(V, π, h)
∑

j : U→N

ℏ|(W,σ,j)|g(W, σ, j)

=
∑

(V,π)⊙(W,σ)=(U ,γ)

pf(V, π)pg(W, σ)

= pf ⊛ pg,

where we used that we may sum over all possible j : V → C and h : W → C instead of
all k : V ∨W → C.

Definition 2.6.17.
We define the following versions of the delta, zeta and Möbius functions:

δ := ι∗δ, ζ := ι∗ζ

and µ is the inverse of ζ w.r.t. ⊛PS; µ is characterized by

pµ = µℏ.

Remark 2.6.18.
We say a function f : PS → C is planar if for every d ≥ 1 and (V, π, g) ∈ PS(d) we
have f(V, π, g) = 0 whenever there is a block B ∈ V with g(B) > 0. Then the planar
functions together with the planar product · and planar convolution ∗ recover the theory
of [CMSS07].
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2.6 Surfaced free probability

2.6.3 Relation to infinitesimal freeness

We can recover features from Section 1.1.4 by allowing the genus functions g in (V, π, g)
to take values in 1

2Z≥0 = {0, 12 , 1,
3
2 , 2 . . . }. We denote these extended surfaced permu-

tations by PS
g
2 (d). Note, we can repeat the definitions and results from the last section

and everything works as in the case of PS. The only thing that changes is that the genus
now has possibly positive half integer values. We recover multiplicative functions on PS
from multiplicative functions on PS

g
2 similar to recovering functions on PS from PS.

Remark 2.6.19.
We say a function f : PS

g
2 → C is even if for every d ≥ 1 and (V, π, g) ∈ PS

g
2 (d) we have

f(V, π, g) = 0 whenever g(B) ̸∈ N. Then the even functions together with the extended
product ⊙ and extended convolution ⊛ recover the multiplicative functions on PS.

Recall that in infinitesimal freeness we have two functionals φ,φ′. We can encode the
same information in the genus zero part plus the genus 1

2 part in our theory of surfaced
permutations.

Definition 2.6.20.
We say that two multiplicative functions f1, f2 : PS

g
2 → C agree infinitesimally if their

values coincide on (A, α, g) for any g : A → 1
2Z≥0 such that

∑
A∈A g(A) ≤ 1

2 . In that
case, we write f1 ≈ f2.

The extraction of leading order in Lemma 2.2.8 can be upgraded to include the first
sub-leading order (encoded in genus 1

2):

Lemma 2.6.21.
Let ϕ1, ϕ2 : PS

g
2 → C be two multiplicative functions. The relation ϕ1 = ζ ⊛ ϕ2 implies

the infinitesimal agreement ϕ1 ≈ ζ ∗ ϕ2.

Proof. Same as in Lemma 2.2.8, taking into account that the creation of genus occurs
by integer units only (see Remark 2.6.12).

Remark 2.6.22.
This has an equivalent presentation via the ring of dual numbers C′ = C[[ℏ]]/(ℏ2). We
write for i = 1, 2

pfi(A, α) = ℏ|(A,α)|
(
ϕi(A, α, 0) + ℏf ′i(A, α) + o(ℏ)

)
,

and define multiplicative functions

♭fi : PS → C′, ♭fi(A, α) = fi(A, α, 0) + ℏf ′i(A, α) .

Then, the relation f1 = ζ ⊛ f2 between C-valued functions on surfaced permutations
implies the relation ♭f1 = ζ ∗ (♭f2) between C′-valued functions on partitioned permuta-
tions. Observe that fi(−,−, 0) is a multiplicative function on PS, but f ′i is not. Instead,
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2 Higher order and surfaced free probability

we have

f ′i(A, α) =
∑
A∈A

f ′i(1#A, α|A)
∏
A′∈A
A′ ̸=A

fi(1#A′ , α|A′ , 0) .

Note the similarity to the definition of ∂φ in Definition 1.1.30.

With only a little extra work, we can put Theorem 2.4.1 into the context of infinites-
imal freeness. Therefore, let us introduce the following set of trees.

Definition 2.6.23.
Let G′0,n be the set of bicoloured trees as in Theorem 2.4.1, except that they must
contain one special black vertex, whose corresponding hyper-edge I ′ may be univalent.
In G′0,n(r + 1), we require the i-th vertex to have valency ri + 1.

When we again understand multiplicative functions in the sense of (2.6.1) or tran-
sition to a decorated version PS

g
2 (A) of PS

g
2 , then we have the following version of

Theorem 2.4.1 for infinitesimal freeness.

Theorem 2.6.24.
Let φ,φ′, κ, κ′ : PS → C be functions so that

♭φ = φ+ ℏφ′ : PS → C′, ♭κ = κ+ ℏκ′ : PS → C′

are multiplicative. Introduce the n-point functions

Gφ0,n(x1, . . . , xn) =
∑

r1,...,rn>0

φ(1r1+···+rn , πλ(k))
n∏
i=1

xrii ,

Gφ1
2
,n

(x1, . . . , xn) =
∑

r1,...,rn>0

φ′(1r1+···+rn , πλ(k))

n∏
i=1

xrii ,

(2.6.5)

and likewise Gκ1
2
,n

. Suppose that we have ♭φ = ζ ∗ ♭κ. Then, the genus 0 functional

relations given in Theorem 2.4.1 hold, and with the same substitution and notations we
have for any n ≥ 1

Gφ1
2
,n

(x1, . . . , xn) =
∑

r1,...,rn≥0

n∏
i=1

O⃗κri(wi)
∑

T∈G′0,n(r+1)

Gκ1
2
,#I′

(wI′)
′∏

I ̸=I′
Gκ0,#I(wI) . (2.6.6)

Proof. First, we put our data into the context of Section 2.2. Thus, we define multi-
plicative functions φℏ, κℏ : PS → C[[ℏ]] by

κℏ(1d, π) = ℏ|(1d,π)|
(
κ(1d, π) + ℏκ′(1d, π)

)
, φℏ = ζℏ ⊛ κℏ(1d, π). (2.6.7)

Let Gφℏ
n and Gκℏn be the n-point functions corresponding to φℏ and κℏ, they have an

ℏ expansion of the form in Remark 2.3.4 with half-integer g allowed. Now with that
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notation and assumptions we know that Gφℏ
n and Gκℏn satisfy Theorem 2.4.8. To prove

the relation, we need to rearrange the formula. First we write

Gκℏ1 (w)
∑
g∈Z≥0

ℏ2g−1Gκℏg,1(w) +
∑

g∈ 1
2
+Z≥0

ℏ2g−1Gκℏg,1(w)

=: Gκℏeven,1(w) +Gκℏodd,1(w).

Then in the definition of the operator Oκ in we may rewrite the last term:

exp
(
ℏuiς(ℏuiwi∂wi)(G

κ
1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1)

)
ℏui ς(ℏui)

=
exp

(
ℏuiς(ℏuiwi∂wi)(G

κ
even,1(wi) − ℏ−1) − ui(G

κ
0,1(wi) − 1)

)
ℏui ς(ℏui)

exp
(
ℏuiς(ℏuiwi∂wi)(G

κ
odd,1(wi)

)
.

The extra factor involving Gκodd,1(wi) will be incorporated into the weight cκ(uI , wI) by
the following changes. We define the set G′n of bicoloured graphs like in Definition 2.4.4
but now allowing univalent black vertices and the i-th white vertex weights receive
additionally

cκ(ui, wi) = ℏuiς(ℏuiwi∂wi)G
κ
odd,1(wi)

for any univalent black vertex connected to the i-th white vertex. With these changes,
the relation of Theorem 2.4.8 holds. When extracting the genus 1

2 part of the formula,
only the leading power in ℏ of each of the weights and only the trees in G′n, in which
exactly one factor of G 1

2
,#I is picked, will contribute. This is because the series ς where

ℏ occurs is even, corresponding to the fact that monotone Hurwitz numbers have integer
genus. By the definition of the n-point function and (2.6.7) and the fact that the zeta
function can only create even genus (cf. proof of Lemma 2.6.21), Gφℏ

0,n and Gφℏ
1
2
,n

must

agree with the generating series (2.6.5). Thus, we obtain the claimed formulas.

We recover the known functional relation in the setting of infinitesimal freeness via
the case n = 1.

Corollary 2.6.25.
We have

Gφ1
2
,1

(x) = P κ(w)Gκ1
2
,1

(w) , x =
w

Gκ0,1(w)
, P κ(w) =

d lnw

d lnx
. (2.6.8)

Equivalently we can express the formula in terms of differentials, we have

Gφ1
2
,1

(x)
dx

x
= Gκ1

2
,1

(w)
dw

w
.

Proof. We specialise (2.6.24) to n = 1. The set G′0,1(r + 1) is non-empty only for r = 0
and then contains a single tree, namely the white vertex connected to the special vertex.
We already computed O⃗0 = P κ(w) = dw

dx in Example 2.4.2 and we obtain

G 1
2
,1(X) = P κ(w)Gκ1

2
,1

(w).

155



2 Higher order and surfaced free probability

2.6.4 Freeness in higher genus

In this section, we want to introduce a notion of freeness for our extended combinatorial
setting and show that it is a sensible extension of higher order freeness. Since freeness is
defined via vanishing of mixed cumulants, we wish to work with moments and cumulants
in several variables. Therefore, we introduce the set PS(A) or PS

g
2 (A) of surfaced

permutations decorated by elements of an associative algebra A (cf. Section 2.6.1). Let
us start by introducing a central notion, the surfaced probability spaces.

Definition 2.6.26.
A (noncommutative) surfaced probability space (SPS) is the data (A,φ) consisting of a
unital associative algebra A over C and a family φ =

(
φg,n : g ∈ 1

2Z≥0, n ∈ Z>0

)
of

symmetric n-linear forms on A that are tracial in its n arguments such that φ0,1(1) = 1
and φg,n(1, a2, . . . , an) = 0 for any (g, n) ̸= (0, 1) and a2, . . . , an ∈ A.

We can put the setting of surfaced probability spaces into the combinatorial framework
of multiplicative functions on the set of surfaced permutations, similar to Definition 2.6.3.

Definition 2.6.27.
Let (A,φ) be a SPS.

i) We define the moment function to be the multiplicative function φ : PS
g
2 (A) → C

given by

φ(1d, γλ, g)[a1, . . . , ad] = φg(1d),n

( λ1∏
j=1

aj ,

λ2∏
j=1

aλ1+j , . . . ,

λn∏
j=1

aλ1+···+λn−1+j

)
(2.6.9)

for any d ∈ N and any partition λ ⊢ d.

ii) We define the cumulant function to be the multiplicative function κ : PS
g
2 (A) → C

given by

κ = µ ⊛ φ,

moreover we define the higher order cumulants by

κg;r1,...,rn(a1, . . . , an) := κ(1d, γr1,...,rn , g)[a1, . . . , ad]

for any n, r1, . . . , rn ∈ N and d = r1 + · · · + rn.

Remark 2.6.28.
By the extension to higher genus, we added new layers to the moment-cumulant relation.
In order to understand freeness in higher genus, we need to unwind the dependencies.
We overcome this problem by introducing the so-called type of a surfaced permutation.
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2.6 Surfaced free probability

Definition 2.6.29.
Denote Typ = 1

2Z≥0 × Z>0.

i) We define a partial order2 on Typ = 1
2Z≥0×Z>0 by declaring (g, n) ⪯ (g′, n′) when

g ≤ g′ and g + n ≤ g′ + n′ . We also define

Typ = Typ ∪
( ⋃
g∈ 1

2
Z≥0

{(g,∞)}
)
∪ {(∞,∞)} ,

on which the partial order relation extends naturally, for instance, if g, g′ ∈ 1
2Z≥0

with g < g′ and n ∈ Z>0

(g, n) ≺ (g,∞) ≺ (g′,∞) , (g,∞) ≺ (g′, n) .

ii) The type of a surfaced permutation (A, α, g) is (g, n) ∈ Typ where n is the number
of cycles of α and g =

∑
A∈A g(A).

Lemma 2.6.30.
Let (g0, n0) ∈ Typ. The knowledge of φg,n for all (g, n) ⪯ (g0, n0) is equivalent to the
knowledge of κg;k1,...,kn for all (g, n) ⪯ (g0, n0) and k1, . . . , kn > 0.

Proof. This can be extracted by elementary means from the moment-cumulant relations
Definition 2.6.27 ii), but we propose here to read it off from Theorem 2.4.8. By mul-
tilinearity, it is enough to prove the claim for the evaluations of φg,n and κg;k1,...,kn on
tuples of the form (a, . . . , a). The claim clearly holds for (g, n) = (0, 1), and for (12 , 1)
(see Corollary 2.6.25). Now take a ∈ A and (g, n) ∈ Typ with 2g−2+n > 0: we consider
(2.4.5) expressing the generating functions Gφg,n in terms of Gκg′,n′ . The summand associ-
ated to a graph Γ ∈ Gn contains contributions from the hyper-edges involving G∨gI ,#I for

some gI ∈ 1
2Z≥0 with the exception Gκ0,1, and contributions from the i-th vertex which

give either a 1 or a product
∏qi
p=1G

κ
gi,p,1

with qi > 0 and gi,p ∈ 1
2Z>0. The extraction of

the correct power of ℏ in (2.4.5) shows that

2g − 2 + n =

n∑
i=1

(
− 1 +

qi∑
p=1

2gi,p

)
+
∑

I∈I(Γ)

2(gI − 1 + #I) .

In other words:

g − 1 + n =
n∑
i=1

qi∑
p=1

gi,p +
∑

I∈I(Γ)

(gI − 1 + #I) . (2.6.10)

Besides, as Γ is connected, we must have
∑

I∈I(Γ)(−1 + #I) ≥ n− 1 and thus

g ≥
n∑
i=1

qi∑
p=1

gi,p +
∑

I∈I(Γ)

gI . (2.6.11)

2This is not a total order. For instance, (1, 1) and (0, 3) are not comparable. More generally, two
distinct elements (g, n), (g′, n′) having 2g − 2 + n = 2g′ − 2 + n′ are not comparable.

157



2 Higher order and surfaced free probability

As in the right-hand side of (2.6.10)-(2.6.11) all terms of the sums are nonnegative, we
deduce that only Gκg′,n′ with g′ + n′ ≤ g + n and g′ ≤ g are involved in the sum over
graphs, that is (g′, n′) ⪯ (g, n). Noticing that the correction term ∆∨g in (2.4.8) only
involves Gκg′,1 for g′ ≤ g, we deduce that Gφg,n is expressed as a function of Gκg′,n′ with
(g′, n′) ⪯ (g, n).

Example 2.6.31.
We want to express φ1;1(a

2) = φ1;1, i.e. (g, n) = (1, 1) in terms of cumulants. We denote
(12, γ) = (12, (1, 2)), and for a factorization (0π, π, g) ⊛ (V, σ, h) of (12, γ) we denote

Ω =
|π| + |(V, σ)| − |(12, γ)|

2
.

By (2.6.4) we must have Ω ≤ 1. Recall that Ω describes the genus coming from taking
the product, but if the factors itself carry a genus it may contribute as well, thus we
obtain the following factorizations:

Ω (0π, π) (V, σ)

0 ({{1}, {2}}, e) (12, (12))
(12, (12) ({{1}, {2}}, e)

1 (12, (12)) (12, e)

Factorizations of (12, γ).

In the Ω = 0 cases, we need to assign a genus to the blocks of the factorizations. In
the Ω = 1 case, we have no choice but to assign 0 to all blocks. Thus we have

φ1;1 = κ1;2 + 2κ1;1κ0;1 + κ21
2
,1︸ ︷︷ ︸

Ω=0

+κ0;1,1︸ ︷︷ ︸
Ω=1

.

Note that we have on the right-hand side the types (1, 1), (0, 1), (12 , 1), (0, 2). These are
exactly the types that satisfy (g, n) ⪯ (1, 1).

Typ κ

(1, 1) κ1;2, κ1,1
(0, 1) κ0;1
(12 , 1) κ 1

2
;1

(0, 2) κ0;1,1

Type of the κs.

Definition 2.6.32.
Let (g0, n0) ∈ Typ. A family (Xi)i∈I of subsets of A is called (g0, n0)-free if for any
(g, n) ⪯ (g0, n0), for any d ≥ 0, any (a1, . . . , ad) ∈

∏d
p=1Xi(p) and r1, . . . , rn > 0 so that

r1 + · · · + rn = d, we have κg;r1,...,rn(a1, . . . , ad) = 0 whenever there exists p, q ∈ [d] such
that i(p) ̸= i(q).
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2.6 Surfaced free probability

Remark 2.6.33.
Voiculescu’s freeness is (0, 1)-freeness, the second-order freeness of [MS06] is (0, 2)-
freeness, the all-order freeness of [CMSS07] is (0,∞)-freeness. Due to Lemma 2.6.21,
along with Remark 2.6.22 or looking at the definition of the convolution ∗ on PS

g
2 ,

(12 , 1)-freeness coincides with the notion of infinitesimal freeness of [FN10]. We note that
it involves only the free cumulants of type (g, n) = (0, 1) and (12 , 1). Besides, the order k
infinitesimal freeness of [Fév12] corresponds to (1, 0)-freeness using multiplicative func-
tions valued in the ring R of upper triangular Töplitz matrices of size (k + 1) (instead
of C[[ℏ]]/(ℏ2), which corresponds to k = 1).

In the following, we show that (g, n)-freeness is a reasonable notion, in particular we
prove analogues of the properties of freeness in higher order; see [CMSS07, Section 7].

Lemma 2.6.34.
Let (A, φ) be a SPS. Then 1A is (∞, 1)-free from any set in A.

Proof. We need to show that

0 = κg;d(1, a2, . . . , ad) = κ(1d, γd, g)[1, a2, . . . , ad]

for any d > 1 and any g ≥ 0. Here we abuse notation and write

g = g(1d),

since g is the constant function on the only block [d] of 1d, i.e. we identify it with its
value. For d ≥ 1 and g = 0, and in particular for d = 2, g = 0 the assertion is immediate.
Moreover, κ1;1(1A) = φ1,1(1A) = 0. Then for any fixed d > 1 and g we have

φ(1d, γd, g)[1, a2, . . . , ad] = ζ ⊛ κ(1d, γd, g)[1, a2, . . . , ad]

=
∑

(0π ,π,0)⊙(V,σ,h)=(1d,γd,g)

κ(1d, σ, h)[1, a2, . . . , ad]

= κ(1d, γr1,...,rn , g)[1, a2, . . . , ad]

+
∑

(0π ,π)⊙(V,σ)=(1d,γd,g)
|(V,σ)|<|(1d,γd)|

κ(1d, σ, h)[1, a2, . . . , ad].

We discuss the sum in the second summand. By the definition of the product of surfaced
permutations, particularly (2.6.2),

g =
∑
B∈V

h(B) +
|π| + |(V, σ)| − |(1d, γr1,...,rn)|

2

=: h+ Ω.

If Ω > 0 and 1 ∈ B1, h(B1) > 0 then all the blocks in the summand on the right-hand
side have genus h(B) < g and in particular h(B1) < g, thus these summands vanish by
induction hypothesis on g.
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2 Higher order and surfaced free probability

Proposition 2.6.35.
Let (A,φ) be a SPS. Then 1A is (∞,∞) free from every set X ⊆ A, that is

κg;r1,...,rn(1A, a2, . . . , ad) = 0

for any d ≥ 2, g ∈ 1
2Z≥0 and r1, . . . , rn with d = r1 + · · ·+ rn and any a2, . . . , ad ∈ A. In

particular, 1A is (g, n) free from every set for any choice of g ∈ Z≥0, n ∈ N.

Proof. Let

g = g(V) =
∑
B∈V

g(B).

We prove the assertion by induction on g. Note, for g = 0 and any d ≥ 2, this is the
result of [CMSS07]. Let d = r1 + · · · + rn and g > 0. Then we have

φg;r1,...,rn [1A, a2, . . . , ad] = φ(1d, γr1,...,rn , g)[1A, a2, . . . , ad]

= ζ ⊛ κ(1d, γr1,...,rn , g)[1, a2, . . . , ad]

=
∑

(0π ,π,0)⊙(V,σ,h)=(1d,γr1,...,rn ,g)

κ(V, σ, h)[1A, a2, . . . , ad].

(2.6.12)

To simplify the notation of the last summand, let us introduce

PSζ(d) = {(V, σ, h) ∈ PS(r1, . . . , rn) : (0γσ−1 , γσ−1, 0) ⊙ (V, σ, h) = (1d, γ, g)},

where we abbreviate γ = γr1,...,rn . We continue and denote for the factorizations in
(2.6.12)

g =
∑
B∈V

h(B) +
|π| + |(V, σ)| − |(1d, γr1,...,rn)|

2
(2.6.13)

=: h+ Ω. (2.6.14)

Thus

φg;r1,...,rn [1A, a2, . . . , ad] =
∑

(V,σ)∈PSζ(r1,...,rn)

∑
h : V→ 1

2
Z≥0

g=h+Ω

κ(V, σ, h)[1A, a2, . . . , ad]

=
∑

h : V→ 1
2

Z≥0

g=h+Ω

κ(1d, γr1,...,rn , h)[1A, a2, . . . , ad]

+
∑

(V,σ)∈PSζ(r1,...,rn)
|(V,π)|<|(1d,γr1,...,rn )|

∑
h : V→ 1

2
Z≥0

g=h+Ω

κ(V, σ, h)[1A, a2, . . . , ad]

= κ(1d, γr1,...,rn , g)[1A, a2, . . . , ad]

+
∑

(V,σ)∈PSζ(r1,...,rn)
|(V,π)|<|(1d,γr1,...,rn )|

∑
h : V→ 1

2
Z≥0

g=h+Ω

κ(V, σ, h)[1A, a2. . . . , ad].
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2.6 Surfaced free probability

The last equality is due to the fact that we have no other choice but h = g for
κ(1d, γr1,...,rn , h) by (2.6.13). We now investigate the remaining sum in the last equality.
We denote the block of V containing 1 by B1. Then we have the following possibilities
for its genus:

• for g > h(B1) > 0 the corresponding κ will vanish by assumption on g,

• for h(B1) = 0 the corresponding κ will vanish unless #B1 = 1 by Proposition 2.6.7,

• for h(B1) = g we proceed as follows:

If h(B1) = g we have by (2.6.13)

g = h+ Ω =⇒ Ω = 0.

Thus, the only contribution in the sum are those (V, σ) that come from planar factor-
izations of (1d, γr1,...rn , g), that is

0 = Ω =
|π| + |(V, σ)| − |(1d, γr1,...,rn)|

2
.

In this case, we have a sum over all planar factorizations that assign g to the block B1

and zero to all other blocks of V, let us denote the corresponding genus function by g1.
Then our sum reduces to ∑

(V,σ)∈PSNC(r1,...,rn)

κ(V, σ, g1).

If B1 ̸= 1d then the term vanishes by a induction on d and we are left with∑
(1d,σ)∈PS(r1,...,rn)

κ(V, σ, g1). (2.6.15)

Note that then we have

d+ #σ − 2 = |(1d, σ)| < |(1d, γr1,...,rn)| = d+ n− 2 ⇐⇒ #σ < n.

Thus we have to show by induction on n that κ(1d, γs1,...,sl , g) = 0, for s1 + · · · + sl = d
and l < n: For l = 1, s1 = d, we have

φ(1d, γd, g)[1, a2, . . . , ad] = κ(1d, γd, g)[1, a2, . . . , ad]

+
∑

(V,σ)∈PSζ(d)
|(V,σ)|<|(1d),γd)|

∑
h : V→ 1

2
Z≥0

κ(V, σ, h)[1, a2, . . . , ad].

Let us denote the block containing 1 by B̃1. By the exact same arguments as before we
arrive at the possibilities:

• #B̃1 = 1 and h(B̃1) = 0,
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2 Higher order and surfaced free probability

• V = 1d, where h(B̃1) = g.

The latter implies σ = γd, which contradicts |(1d, σ)| < |(1d, γd)|. More precisely, it is
the case we already took out of the sum. Thus, we are left with the first case. We can
use κ0;1(1A) = 1 and arrive at

φ(1d, γd, g)[1, a2, . . . , ad] = κ(1d, γd, g)[1, a2, . . . , ad]

+
∑

(Ṽ,σ̃))∈PSζ(d−1)

∑
h : Ṽ→ 1

2
Z≥0

κ(Ṽ, σ̃, h)[a2, . . . , ad]

= κ(1d, γd, g)[1, a2, . . . , ad]

+ ζ ⊛ κ(1d−1, γd−1)[a2, . . . , ad]

= κ(1d, γd, g)[1, a2, . . . , ad]

+ φ(1d−1, γd−1, g)[a2, . . . , ad],

where the second summand on the right-hand side agrees with the expression on the
left-hand side. Thus,

κ(1d, γd, g)[1, a2, . . . , ad] = 0.

We need to repeat the steps for l < n again, we arrive at the situation where

h(B̃1) = 0 and #B̃1 = 1

or

h(B̃1) = g and V = 1d and #σ < l.

The latter case will vanish by the assumption on l and we obtain, similar as in the l = 1
case

φ(1d, γr1,...,rl , g)[1, a2, . . . , ad] = κ(1d, γr1,...,rl , g)[1, a1, . . . , ad]

+
∑

(Ṽ,σ̃)∈PSζ(r1−1,r2,...rl)

∑
h : Ṽ→ 1

2
Z≥0

κ(Ṽ, σ̃, h)[a2, . . . , ad]

= φ(1d−1, γr1−1,r2...,rl , g)[a2, . . . , ad],

which implies κ(1d, γr1,...,rl , g)[1, a1, . . . , ad] = 0. Note that r1 = 1 cannot contribute
since then γ1,r2,...,rl and σ fixed 1 and consequently the same holds true for π = γσ−1.
We would end up with 0π ∨ V ̸= 1d.
Finally, this means (2.6.15) vanishes and in our original problem only the case h(B1) = 0
with #B1 = 1 is left. Once again we find

φg;r1,...,rn [1A, a2, . . . , ad] = κ(1d, γr1,...,rn)[1A, a2, . . . , ad] + φ(1d−1, γr1−1,...,rn).

Which implies κ(1d, γr1,...,rn)[1A, a2, . . . , ad] = 0.
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Lemma 2.6.36.
Let (A,φ) be a SPS and X1,X2 ⊂ A, and (g0, n0) ∈ Typ. We denote X+

i = Xi ∪ {1}.
The following statements are equivalent:

i) X1 and X2 are (g0, n0)-free.

ii) X+
1 and X+

2 are (g0, n0)-free.

iii) For any positive integer d ∈ Z≥0, any (U , γ, k) ∈ PS(d) of type (g, n) ⪯ (g0, n0),
any a1, . . . , ad ∈ X+

1 and b1, . . . , bd ∈ X+
2 , we have

φ(U , γ, k)[a1b1, . . . , adbd] =
∑

(V,π,g)⊙(W,σ,h)=(U ,γ,k)

κ(V, π, g)[ad]φ(W, σ, h)[bd],

where we abbreviate ad = (a1, . . . , ad) and bd respectively.

iv) For any positive integer d ∈ Z≥0, any (U , γ, k) ∈ PS(d) of type (g, n) ⪯ (g0, n0),
any a1, . . . , ad ∈ X+

1 and b1, . . . , bd ∈ X+
2 , we have

κ(U , γ, k)[a1b1, . . . , adbd] =
∑

(V,π,g)⊙(W,σ,h)=(U ,γ,k)

κ(V, π, g)[ad]κ(W, σ, h)[bd].

where we abbreviate ad = (a1, . . . , ad) and bd respectively.

Proof. This is the higher-genus generalisation of Theorem [CMSS07, Theorem 7.9]. Here
we only explain (i) ⇒ (iii). The implication (iii) ⇒ (iv) comes from extended convo-
lution with the Möbius function and (iv) ⇒ (iii) from extended convolution with the
zeta function. The equivalence between (i) and (ii) is an immediate consequence of
Proposition 2.6.35.

Let (U , γ, k) ∈ PS(d) of type (g, n). We take a second copy [d̄] of the set [d] and
interleave their elements

[d, d̄] := {1, 1̄, 2, 2̄, 3, 3̄, . . . , d, d̄} ∼= [2d] .

We call ψ : [d] → [d̄] the canonical identification. For a block B = {i1, . . . , iℓ} ⊂ [d], we
denote by B̄ = {ī1, . . . , īℓ} ⊂ [d̄]. We define the surfaced permutation (Û , γ̂, k̂) ∈ PS(2d)
as follows:

• the blocks of Û are of the form B̂ := B ∪ B̄ where B ∈ U , that is

Û = {B ∪ B̄ : B ∈ U};

• the permutation γ̂ is characterised by γ̂|[d] = ψ ◦ γ and γ̂|[d̄] = γ ◦ ψ−1, that is

γ̂(k) = k̄ and γ̂(k̄) = γ(k)

for all k ∈ [d]; and
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2 Higher order and surfaced free probability

• the genus function is inherited via k̂(C ∪ C̄) = k(C).

Then we have

φ(U , γ, k)[a1b1, . . . , adbd] = φ(Û , γ̂, k̂)[a1, b1, . . . , ad, bd]

=
∑

(0π ,π,0)⊙(V,σ,h)=(Û ,γ̂,k̂)

κ(V, σ, h)[a1, b1, . . . , ad, bd]. (2.6.16)

Assume that (X1,X2) is (g0, n0)-free. The vanishing of the mixed surfaced free cumulants
up to order (g0, n0) means that the only terms remaining in the right-hand side of (2.6.16)
come from surfaced permutations (V, σ, h) where blocks B ∈ V are included either in [d]
or in [d̄]. We denote

V1 = {B : B ∈ V, B ∩ [d] ̸= ∅}
V2 = {B : B ∈ V, B ∩ [d] = ∅}
V2 = ψ−1[V2] = {ψ−1(B) : B ∈ V, B ∩ [d] = ∅},

i.e. V1 consists of the blocks containing only non-bar entries of V and V2 consists of the
blocks that contain only bar entries, and V2 is the identification of V2 in [d] via ψ−1.
Since 0σ ≤ V, the permutation σ respects this decomposition into [d] and [d̄] and we
introduce

σ̂1 = σ1 = σ|[d], σ̂2 = σ|[d̂] σ2 = ψ−1 ◦ σ̂2 ◦ ψ,

in order to understand the factorization of σ in S(d). More precisely, we want to use
the latter to understand the factorizations on the right-hand side of in (2.6.16) in S(d).
Our claim is that

(0π, π, 0) ⊙ (V, σ, h) = (Û , γ̂, k̂) (2.6.17)

is equivalent to a factorization

(0π̃, π̃, 0) ⊙ (V1, σ1, h1) ⊙ (V2, σ2, h2) = (U , γ, k). (2.6.18)

It remains to explain π̃, h1, h2 and the fact that the equations (2.6.17) and (2.6.18) are
equivalent. First note that if we have an equation like (2.6.17), then with the previous
discussion, it holds that

γσ−12 σ−11︸ ︷︷ ︸
=:π̃

σ1σ2 = γ

and vice versa any σ1, σ2 determine an element σ ∈ PS(2d)

σ = σ1 ◦ (ψ ◦ σ2 ◦ ψ−1)

and a factorization

(γ̂σ−1)︸ ︷︷ ︸
=:π

σ = γ̂.
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2.6 Surfaced free probability

Thus on the level of permutations we are settled. Furthermore, by [CMSS07] Û = V ∨0γ̂
is equivalent to U = V1 ∨V2 ∨0γ . Hence also on the level of partitions the equivalence is
clear. In order to make sense of the genus functions, let us observe the following. Since
we have πσ = γ̂ in S([d, d̄]) = S(2d) and σ decomposes w.r.t. [d]∪ [d̄] we must have that
π = γ̂σ−1 maps [d] to [d̄]. This implies that if C ∪ C̄ ∈ Û where C ∈ U is a block of
non-bar elements we have

|π|C∪C̄ | = |π|C |. (2.6.19)

Let us elaborate. First 0π ≤ Û = 0π ∨ V, that is by restricting π|C∪C̄ we do not break
any cycles of π, we only lose some. Hence, π|C∪C̄ also maps bar to non-bar elements and
vice versa. Then all cycles consist of at least two elements: a bar element and a non-bar
element. If we now erase all bar elements we do not change the number of cycles, hence
(2.6.19). Let us further note, for any k ∈ [d], we have

π = γ̂σ−1(k) = (σ−11 (k)),

since σ1 is the part of σ that operates on non-bar elements in [d]. Then we apply once
more γ̂σ−1

γ̂σ−1(γ̂σ−1(k)) = γ̂σ−1(σ−11 (k))

= γ̂(σ̂−12

(
σ−11 (k)

)
)

= γ(σ̂−12

(
σ−11 (k)

)
),

where we used that only σ2 operates on bar elements in [d̄] and afterward that γ̂ maps
bar elements l̄ to γ(l). In particular, restricting π to only non-bar elements yields

k 7→ γ(σ̂−1(σ−11 (k))) = γ(σ−12 (σ−11 (k))) = γ ◦ σ−12 ◦ σ−11 (k) = π̃,

thus

|π|C | = |π̃|C |.

Using the latter and the equations of [CMSS07, Lemma 7.10] for the colength, we find
by the definition of the genus for Ĉ ∈ Û

k̂(Ĉ) =
|(0π|Ĉ , π|Ĉ)| + |(V|Ĉ , σ|Ĉ)| − |(Û |Ĉ , γ̂|Ĉ)|

2
+

∑
B∈V=V1∪V2

B⊂Ĉ=C∪Ĉ

h(B)

=
|π|Ĉ | + |(V|Ĉ , σ|Ĉ)| − |(Û |Ĉ , γ̂|Ĉ)|

2
+
∑
B∈V1
B⊂C

h(B) +
∑
B∈V2

B⊂C̄

h(B)

=
|π̃|C | + |(V1|C , σ1|C)| + |(V2|C , σ2|C)| − |(U|C , γ|C)|

2

+
∑
B∈V1
B⊂C

h(B) +
∑
B∈V2
ψ(B)⊂C̄

h(ψ(B)),

(2.6.20)
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2 Higher order and surfaced free probability

where we used that V respects the decomposition into bar and non-bar elements. Thus,
if we define

h1 : V1 →
1

2
Z≥0, h1(B) = h(B),

h2 : V2 →
1

2
Z≥0 h2(B) = h(ψ(B)),

we have achieved the implication we wanted. Note that we could reverse the steps,
hence we have an equivalence of factorizations. Finally, this allows us to continue the
computation of (2.6.16) by∑

(0π̃ ,π̃,0)⊙(V1,σ1,h1)⊙(V2,σ2,h2)=(U ,γ,k)

κ(V1, σ1, h1)[a]κ(V2, σ2, h2)[b]

=
∑

(W,ω,g)⊙(V2,σ2,h2)=(U ,γ,k)

 ∑
(0π̃ ,π̃,0)⊙(V1,σ1,h1)=(W,ω,g)

ζ(0π̃, π̃, 0)κ(V1, σ1, h1)[a]


× κ(V2, σ2, h2)[b]

=
∑

(W,ω,g)⊙(V2,σ2,h2)=(U ,γ,k)

φ(W, ω, g)[a]κ(V2, σ2, h2)[b],

where we first used the multiplicativity of κ and then recognized the convolution with
ζ.

Proposition 2.6.37.
Let (Xi)i∈I be a family of subsets of A, and Ai the unital subalgebra generated by Xi.
Let (g0, n0) ∈ Typ. Then (g0, n0)-freeness of (Xi)i∈I is equivalent (g0, n0)-freeness of
(Ai)i∈I .

Proof of Proposition 2.6.37. By multilinearity, the linear spans of two free sets are free.
The only thing that deserves a check is that freeness of X1 and X2 implies freeness of X1

and X2X2. Given Lemma 2.6.36, the proof is identical to [CMSS07, Theorem 7.12].

2.6.5 Application in random matrix theory

The formalism of surfaced free cumulants and freeness up to order (g0, n0) can be di-
rectly applied in random matrix theory, generalising Theorem 1.1.28 of [Voi91] and
Theorem 2.1.4 of [CMSS07].

Definition 2.6.38.
If A is a matrix of size N and λ ⊢ d a partition of length n, with d ≤ N , we denote

pλ(A) =

n∏
i=1

Tr(Aλi) , Pλ(A) =

d∏
c=1

Ac,πλ(c) . (2.6.21)
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2.6 Surfaced free probability

We recall the following result, which comes from Weingarten calculus. An equivalent
formulation can be found in [CMSS07, Theorem 4.4] and [BGF20, Theorem 8.8].

Theorem 2.6.39 ([CMSS07],[BGF20]).
Let A be a random hermitian matrix of size N , whose law is invariant under unitary
conjugation. Then for any λ ⊢ d:

E[pλ(A)] = zλ
∑
ν⊢d

NdH<(λ, ν)
∣∣
ℏ=1/N

E[Pν(A)] ,

E[Pλ(A)] = zλ
∑
ν⊢d

N−dH≤(λ, ν)
∣∣
ℏ=1/N

E[pν(A)] .

Definition 2.6.40.
Let (AN )N∈N, AN ∈ MN (C) be a sequence of hermitian random matrices. We say that
it admits a limit distribution up to order (g0, n0) if there exists FAg;k1,...,kn indexed by
(g, n) ⪯ (g0, n0) and k1, . . . , kn > 0, independent of N , such that for any n ∈ [⌊g0⌋ + n0]
and any k1, . . . , kn > 0, we have for N → ∞

E◦
[
Tr(Ak1N ), . . . ,Tr(AknN )

]
=

∑
g∈ 1

2
Z≥0

g≤g0+min(0,n0−n)

N2−2g−n FAg;k1,...,kn + o(N2−2g0−n0+|n0−n|) ,

where E◦ denotes the cumulant expectation value (cf. (2.3.10)). In this expression, the
order of the o(. . .) is adjusted to be the next subleading term compared to the sum.
When g0 = ∞, we ask for the existence of such an asymptotic expansion to an arbitrary
order o(N−K) for all n ≤ n0, and in that case we use the notation

E◦
[
Tr(Ak1N ), . . . ,Tr(AknN )

]
=

∑
g∈ 1

2
Z≥0

N2−2g−n FA
g;k1,...,kn + o(N−∞) . (2.6.22)

From Theorem 2.6.39 it can be observed that (AN )N has a limit distribution up to
order (g0, n0), then for any partition λ ⊢ d of length n ≤ ⌊g0⌋+n0 we have when N → ∞

E[Pλ(AN )] =
∑

g∈ 1
2

Z≥0

g≤g0+min(0,n0−n)

N2−2g−n−d κAg;λ1,...,λn + o(N2−2g0−n0+|n0−n|−d) . (2.6.23)

We obtain the structure of a SPS on the algebra A = C[a] by defining the moments

φg,n(ak1 , . . . , akn) = FA
g;k1,...,kn ∀(g, n) ⪯ (g0, n0).

Combining Theorem 2.6.39 and the expansion (2.6.23) with Theorem 2.5.2 indicates that
κAg;k1,...,kn are the free cumulants at order (g, n) ⪯ (g0, n0).

Theorem 2.6.41.
Let (AN )N and (BN )N be two sequences of ensembles of random matrices of size N , at
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2 Higher order and surfaced free probability

least one of them being unitarily invariant, and such that for each N , AN is independent
from BN . Assume that both ensembles have a limit distribution up to order (g0, n0)
(possibly ∞), and consider the algebra A = C⟨a, b⟩ of noncommutative polynomials in
two letters. Then, for any Q ∈ A, Q(AN , BN ) admits a limit distribution up to order
(g0, n0), so A can be upgraded to a SPS. Besides, the subalgebras C[a] and C[b] are
(g0, n0)-free.

Proof. Let (AN )N and (BN )N be as in the theorem. For any k, k′ > 0, (AkN )N and (Bk′
N )

clearly have a limit distribution up to order (g0, n0). Examining the finite N formula
in [CMSS07, Theorem 4.4, (2)], the products (AkNB

k′
N )N also have a limit distribution

up to order (g0, n0). Take σ ∈ S(d), N ≥ d and a map Ω: [d] → {AN , BN}. Due to
independence of AN and BN , and unitary invariance of the law of one of the matrices
(say AN ), we have

E

[
d∏
c=1

(Ω(c))c,σ(c)

]
= E

[ ∏
c∈Ω−1(AN )

(AN )c,σ(c)

]
E

[ ∏
c∈Ω−1(BN )

(BN )c,σ(c)

]

=

∫
U(N)

dU E

[ ∏
c∈Ω−1(AN )

(UANU
−1)c,σ(c)

]
E

[ ∏
c∈Ω−1(BN )

(BN )c,σ(c)

]

=
∑

ic,jc∈[N ]
c∈Ω−1(AN )

(∫
U(N)

dU
∏

c∈Ω−1(AN )

Uc,icU
−1
jc,σ(c)

)
E

[ ∏
c∈Ω−1(A)

(AN )ic,jc

]
E

[ ∏
c∈Ω−1(B)

(BN )c,σ(c)

]
.

(2.6.24)

By Weingarten calculus [Col03] the integral over U(N) vanishes unless there exist two
permutations α, β ∈ S(Ω−1(AN )) such that we have c = jβ(c) and ic = σ(α(c)) for all
c ∈ Ω−1(AN ). This cannot happen when Ω takes at least once the values AN and BN ,
as we can find c0 ∈ [d] such that Ω(c0) = AN , and Ω(σ(c0)) = BN or Ω(σ−1(c0)) =
BN . Since the surfaced free cumulants evaluated on (Ω(c))c∈[d] are extracted from the
asymptotic expansion of (2.6.24) when N → ∞ (recall (2.6.23)), all mixed surfaced free
cumulants between C[a] and C[b] vanish up to order (g0, n0) (which from the assumption
is the order up to which the asymptotic expansion exist), i.e. these two algebras are
(g0, n0)-free in the surfaced probability space C⟨a, b⟩.

Remark 2.6.42.
The combinatorics underlying infinitesimal free cumulants is the truncation keeping the
leading (genus 0) and the first subleading (genus 1

2) of the master relation involving
monotone Hurwitz numbers, whose appearence can be traced back to Weingarten cal-
culus for the unitary group. Typically, for topological expansions in unitarily invariant
random hermitian matrices the genus 1

2 order (corresponding to a term of orderN−1 com-
pared to the leading term) vanishes. An example of a situation where it does not vanish
is the 1-hermitian matrix model with a N -dependent potential of the form V0 +N−1V1.
Although the non-vanishing of the genus 1

2 order is typical in the topological expansion
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2.7 Relation to topological recursion

for orthogonally invariant random symmetric matrices, the observation of Mingo [Min19]
that infinitesimal freeness cannot describe the relations between moments and cumulants
in such models is not a surprise, as they should rather be governed by the Weingarten
calculus for the orthogonal group.

Remark 2.6.43.
The topological partition function associated with (2.6.22) is in fact the N → ∞ asymp-
totic series of the formal series in the variables X1, X2, . . .

E

[∏
i

1

det(1 −XiAN )

]
= E

[
exp

(∑
k≥1

Tr(AkN )pk
k

)]

= exp

(∑
n≥1

E◦
[
Tr(Ak1), . . . ,Tr(Akn)

] pk1 · · · pkn
n! k1 · · · kn

)
= Z

∣∣
ℏ=1/N

·
(
1 +O(N−∞)

)
,

where pk =
∑

iX
k
i is the k-th power sum. The first equality is Cauchy’s identity, the

second one is the definition of the connected expectation value, and the last one comes
from comparing (2.6.22) and Section 2.3.

2.7 Relation to topological recursion

Recall that many combinatorial and geometric invariants can be computed by topological
recursion. Typically, one recovers the generating series from the TR invariants via

ωg,n(z1, . . . , zn) =

∞∑
k1,...,kn=1

Cg,k1,...,knx(z1)
k1 . . . x(zn)k1dx(z1) . . . dx(zn).

From our perspective of free probability, the quantities of interest are the moments
φg;r1,...,rn and the cumulants κg;r1,...,rn of random variables in a noncommutative proba-
bility space. However, in context of topological recursion we usually are not interested
in this setup. In order to be consistent with the notation, we consider two families of
n-point functions denoted by Gφn, Gκn that are related via the master relation of Theo-
rem 2.5.2. But we want to emphasize that despite our notation, Gφn, Gκn are just formal
power series. First, we introduce a change of variable

u(w) =
1

x(w)
= w−1Gκ0,1(w). (2.7.1)
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2 Higher order and surfaced free probability

For 2g − 2 + n ≥ 0, we define the differential forms of the n-points functions by

ωφg,n(u1, . . . , un) =
n∏
i=1

dui
ui

Gφg,n(u−11 , . . . , u−1n )

=
∑

k1,...,kn>0

Fφg;k1,...,kn

n∏
i=1

dui

uki+1
i

,

ωκg,n(w1, . . . , wn) =

n∏
i=1

dwi
wi

Gκg,n(w1, . . . , wn)

=
∑

k1,...,kn>0

F κg;k1,...,kn

n∏
i=1

wki−1i dwi ,

(2.7.2)

and their shifted version for (g, n) = (0, 2),

ω̃φ0,2(u1, u2) = ωφ0,2(u1, u2) +
du1du2

(u1 − u2)2
,

ω̃κ0,2(w1, w2) = ωκ0,2(w1, w2) +
dw1dw2

(w1 − w2)2
.

(2.7.3)

Remark 2.7.1.
Note that the change of variables and the formulas (2.7.2) correspond to the Cauchy-
and R-transform in Remark 2.1.7.

The relation Gκ0,1(w) = Gφ0,1(u
−1) can be rephrased as the statement on the functional

inverse

w(u) =
Gφ0,1(u

−1)

u
⇐⇒ u(w) =

Gκ0,1(w)

w
, (2.7.4)

again compare to Remark 1.1.21. For (g, n) = (0, 2), (2.4.4) becomes

ω̃φ0,2(u1, u2) = ω̃κ0,2(w1, w2), (2.7.5)

which is equivalent to the formula of [CMSS07, Corollary 6.4]. For n ≥ 3 and under the
change of variable (2.7.1) the operator (2.4.2) becomes

O⃗κr (w) =
∑
m≥0

(−u∂u)m
−udw

wdu
· [vm]

(
∂y +

v

y

)r
· 1
∣∣∣
y=uw

,

and the functional relation in Theorem 2.4.1 becomes

ωφ0,n(u1, . . . , un) =∑
r1,...,rn≥0

n∏
i=1

dui
ui

O⃗κri(wi)
( wi

dwi

)ri+1 ∑
T∈G0,n(r+1)

′∏
I∈I(T )

ωκ0,#I(wI) ,
(2.7.6)

where
∏′ means that any occurrence of ωκ0,2(wi, wj) with i ̸= j should be replaced with

ω̃κ0,2(wi, wj).
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2.7 Relation to topological recursion

Consider the example of Gφg,n being the generating series of ordinary maps of genus
g with n boundaries and Gκg,n enumerating fully simple maps of the same topology. It
is known that, in this case, the ωφg,n are computed by the topological recursion [EO07,
EO09] applied to the spectral curve

Sφ =
(
CP 1, u, w, dz1dz2

(z1−z2)2
)
,

while in [BDBKS23, BCGF21], it was shown that ωκg,n are computed by the topological
recursion applied to

Sκ =
(
CP 1, w, u, dz1dz2

(z1−z2)2
)
.

Furthermore, G. Borot and E. Garcia-Failde proved that the generating series are related
by the master relation (see [BGF20, BCDGF19]), equivalently they are related by the
moment-cumulant relations. This example motivated us in [BCGF+23] to the conjecture
that Theorem 2.5.2, or rather the functional relations given in Theorem 2.4.8, when
written in terms of differentials, in fact describe the effect of the symplectic exchange
u↔ w in topological recursion.

Conjecture 2.7.2.
Let C be a compact Riemann surface and let u,w be meromorphic functions on C such
that du and dw do not have common zeroes. Furthermore, let B be a fundamental
bidifferential of the second kind. We denote by ωφg,n the differentials obtained from the
topological recursion with the spectral curve (C, u, w,B), and by ωκg,n the ones associated
to the spectral curve (C, w, u,B), and define ω̃φ0,2 = ω̃κ0,2 = B. Then, these differentials
will satisfy the functional relations of Theorem 2.4.8 for all 2g − 2 + n ≥ 0 (after they
are converted to relations between meromorphic differentials on C).

The conjecture has in the meantime been proven in [ABDB+22]. Let us state a
particularly important result of [ABDB+22] in our language.

Theorem 2.7.3 ([ABDB+22]).
Assume that ωφg,n satisfy topological recursion on the spectral curve (Σ, u, w,B), where
u,w are meromorphic such that the ramification points p of w, that is zeroes of dw, are
simple and u is regular on p. Then the ωκg,n given by extending (2.7.6) to higher genus
are produced by the spectral curve (Σ, w, u,B).

Let us conclude with the following remark.

Remark 2.7.4.
i) In terms of free probability Theorem 2.7.3 means that given a distribution satisfy-

ing the topological recursion on a spectral curve (Σ, u, w,B) such that u satisfies
the regularity conditions on the ramification points w, then the cumulants must
satisfy topological recursion on the spectral curve given by (Σ, w, u,B).

ii) Note that although we have these results at hand, we still do not know how to
phrase the property of satisfying topological recursion in terms of regularity prop-
erties in free probability. A probably related notion of free probability is called
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2 Higher order and surfaced free probability

the conjugate variables. Consider a W ∗-probability space (M, τ); recall that is M
is a von Neumann algebra equipped with a faithful normal tracial state τ . Then
a conjugate variable ξ for an element X ∈M is an element ξ ∈ L2(M, τ) that has
the property that

τ(ξp(X)) = τ ⊗ τ(∂Xp(X))

for any noncommutative polynomial p ∈ C⟨X⟩ and where

∂X : C⟨X⟩ → C⟨X⟩ ⊗ C⟨X⟩

denotes the noncommutative derivative. It is given by the extension of

Xn 7→
n−1∑
k=0

Xk ⊗Xn−1−k,

where X0 = 1M . In the case where ξ = (DV )(X) is the derivative of a polynomial
V (x) evaluated at X, the equation is more or less the first loop equation of a
hermitian 1-matrix model with potential V . Furthermore, Mingo and Speicher
introduced an extension to second order. A second order conjugate variable satisfies

τ0,2(ξp(X), q(X)) = τ0,2(τ0,1 ⊗ id + id⊗τ0,1(∂Xp(X), q(x)) + τ0,1(p(X)(Dq)(X));

see [MS13]. It also can be easily deduced that the second order equation is equiv-
alent to the second loop equation. Then one may extend these definitions of
conjugate variable by requiring that the higher order and higher genus loop equa-
tions hold. This procedure could lead to an understanding of how the existence of
a more general conjugate variable ξ ̸= (DV )(X) might impact the existence of a
spectral curve that computes the moments (and hence cumulants) via topological
recursion. Furthermore, we propose the study of other regularity properties in
regard to topological recursion, e.g. finite free Fisher information and finite free
entropy.

iii) Another still open problem is to understand the joint distribution in terms of the
theory of topological recursion and the Fock space formalism. Also, the search
for a higher order (and higher genus) formula for cumulants of products is closely
related; see [MST09].
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3 On quantum curves and topological
recursion for various monotone Hurwitz
numbers

In this chapter, we discuss the results of [HvIL22] regarding quantum curves and topo-
logical recursion. This part is strongly motivated by the works [LMS13] and [DN18].

Topological recursion is a recursive procedure that computes a family of multidiffer-
entials ωg,n from the initial data of a spectral curve (Σ, x, y, B). A lot of enumerative
problems can be computed from this recursion, in particular various types of Hurwitz
numbers. Typically the challenge is to find the initial data of a spectral curve that
produces these numbers via topological recursion. But, there are techniques that have
proved helpful to overcome this problem.

If Σ is a connected compact Riemann surface and x, y : Σ → C meromorphic functions,
then x, y satisfy an algebraic equation P (x, y) over C. Thus, the search for the initial
data can be formulated as a search for the an algebraic curve P . In many cases, such an
equation can be found via the dequantization of a so-called quantum curve. A quantum
curve for an enumerative problem is a differential equation for the specialized partition
function. In terms of Section 2.3, the specialization is the evaluation Ψ = Z|pi=xi in

a formal variable x. Then a quantum curve is a differential equation pP(py,px)Ψ = 0,
involving the operators py = ℏ∂x and px = x·. If pP is a polynomial in py and px, we can
formally replace py and px by commuting variables y and x and obtain an algebraic equation
P (x, y). In many cases, this procedure yields the spectral curve of the initial enumerative
problem. In recent papers, this strategy has been made rigorous; it is called the quantum
curve – topological recursion correspondence. We start our chapter by explaining this
correspondence informally.

X. Liu, M. Mulase and A. Sorkin introduced Hurwitz numbers over a higher genus
base curve in [LMS13]. These enumerative quantities count ramified coverings of higher
genera Riemann surfaces. In the hope of proving topological recursion, they computed a
quantum curve equation for these Hurwitz numbers and studied its semiclassical limit;
aka its dequantization. In the same spirit, we introduce (strictly) monotone versions of
the numbers of [LMS13] in our paper [HvIL22] and compute quantum curves. When
studying the dequantization of strictly monotone Hurwitz numbers over an elliptic curve,
we discover a spectral curve for monotone simple Hurwitz numbers, enumerated in an
alternating way. These numbers agree with the values of the Möbius function in surfaced
free probability. In the last section we prove topological recursion for the Möbius function
based on the calculations of [DN18].
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3.1 Quantum curves and the QC-TR correspondence

We want to motivate the results of [HvIL22] by giving a short informal introduction to
quantum curves and their relation to TR. Let us start from the perspective of Chapter 2,
or more precisely Section 2.3. The notion of quantum curves connects the theory of
topological recursion with integrable systems. From a perspective of partition functions,
the notion of a quantum curve is derived as follows. Consider a partition function

Z = exp

(∑
g≥0
n≥1

ℏ2g−2+n

n!

∞∑
µ1,...,µn=1

Fg,µ1,...,µnpµ1 . . . pµn

)
,

then we define its principle specialization1 by

Ψ(x, ℏ) := Z
∣∣∣
pi=xi : i∈N

= exp

(∑
g≥0
n≥1

ℏ2g−2+n

n!

∞∑
µ1,...,µn=1

Fg,µ1,...,µnx
|µ|
)
.

Assume that the Fg,n can be computed by TR of a spectral curve (Σ, x, y, B), such that
x, y satisfy a polynomial equation P (x, y) = 02. Then a quantization of P is a differential
operator pP = pP(px,py, ℏ) such that

pP(px,py, ℏ) = P (px,py) +O(ℏ),

where px = x· is the multiplication operator, py = ℏ d
dx and P (px,py) is the evaluation of the

polynomial P in normal ordering. Then a quantum curve is a quantization pP of P that
annihilates the principle specialization, i.e.

pPΨ = 0.

The perspective from the standpoint of topological recursion is a bit more complicated.
Consider a spectral curve (Σ, x, y, B) such that Σ = CP 1, then x and y satisfy a poly-
nomial equation, furthermore we denote the topological recursion correlators by ωg,n.
Then there is a way to define Ψ without the context of partition functions via

Ψ(x(z)) = exp

(∑
g≥0
n≥1

∫ ∞
p

· · ·
∫ ∞
p

ωg,n − δg,0δn,2B(x(z1)x(z2))

)
,

for a good choice of a basepoint p. For higher genus spectral curves there are also ways
to define Ψ but they involve some correction. We are ready to formulate the QC-TR
correspondence, also called the Gukov-Sulkowski conjecture.

1Sometimes Ψ is called the wave function.
2This setup is usually referred to as rational spectral curve.

174



3.2 Stirling numbers

Conjecture 3.1.1 ([GS12]).
Let S = (Σ, x, y, B) be an algebraic spectral curve. Then there exists a quantization pP
of the polynomial equation P (x, y) = 0 for x and y that annihilates the wave function
of S.

This conjecture was first proved in a case-by-case manner for various enumerative
problems, e.g. [MS12], [DBMN+17] and [DN18]. The first general proof for genus
zero curves was given by V. Bouchard and B. Eynard [BE17] for a large class of genus
zero spectral curves. Recently the conjecture has been proven for all genera spectral
curves with simple ramification behaviour [EGFMO21]. Also there has been an approach
beyond algebraic equations [BKW23]. From this perspective it seems sensible to use a
reversed approach, that is, given an enumerative problem where the spectral curve is
not known, one can try to find a quantum curve and dequantize it to obtain TR. In
that spirit we present the following results on the quantum curve for base h (strictly)
monotone Hurwitz numbers.

3.2 Stirling numbers

Before we start the discussion of the main results, we introduce the Stirling numbers
of the first and second kind. Their relation to Hurwitz numbers and their recursive
structure are the main ingredient for proving the quantum curve equations.

Definition 3.2.1.
For n, k ∈ N, we define Stirling numbers of the first kind by the recurrence relation[

n+ 1

k

]
= n

[
n

k

]
+

[
n

k − 1

]
for k > 0;

[
0

0

]
= 1 and

[
n

0

]
=

[
0

n

]
= 0 for n > 0

and Stirling numbers of the second kind by the recurrence relation{
n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
for k > 0;

{
0

0

}
= 1 and

{
n

0

}
=

{
0

n

}
= 0 for n > 0.

We recall a well known fact for the generating series of the Stirling numbers; see e.g.
[Cha18].

Lemma 3.2.2.
The generating functions of Stirling numbers satisfy

n∑
k=0

[
n

k

]
xn−k

n!
=

n−1∏
r=1

(1 − rx) and

∞∑
n=k

{
n

k

}
xn−k =

k∏
r=1

1

1 − rx
. (3.2.1)
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3 On quantum curves and topological recursion for various monotone Hurwitz numbers

3.3 Quantum curve for (strictly) monotone base h Hurwitz
numbers

Motivated by the successful study of the base h Hurwitz numbers in [LMS13] and of the
monotone Hurwitz numbers in [GGPN14], we introduce base h Hurwitz numbers with
additional monotonicity conditions. This section is devoted to deriving a quantum curve
for this new enumerative problem.

Recall the connected labeled monotone base h Hurwitz numbers H≤g,h(µ1, . . . , µn) from
Section 1.3.

Definition 3.3.1.
We define

F≤g,h(x1, . . . , xn) =
∑
µ∈Zn

≥0

H≤g,h(µ1, . . . , µn) xµ11 . . . xµnn ,

and analogously the generating series for the strictly monotone case F<g,h(x1, . . . , xn).

Definition 3.3.2.
We define the specialization of the partition function of the base h monotone Hurwitz
numbers as the formal series in variables x, ℏ, given by

Ψ≤h = Ψ≤h (x, ℏ)

= exp

[ ∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!
F≤g,h(x, x, . . . , x)

]

= exp

[ ∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!

∑
µ∈Zn

≥0

H≤g,h(µ1, . . . , µn)x|µ|
]
,

and analogously the partition function Ψ<
h = Ψ<

h (x, ℏ) of the base h strictly monotone
Hurwitz numbers.

Remark 3.3.3.
Throughout the rest of the thesis we refer to Ψ as the partition function instead of its
principle specialization for the sake of simplicity.

Proposition 3.3.4.
For the partition functions for the monotone and strictly monotone case, we have

Ψ≤h = 1 +
∞∑
d=1

∞∑
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

= 1 +
∞∑
d=1

(d!)1−χxdℏd(1−χ)
d−1∏
j=1

1

1 − jℏ

176
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and

Ψ<
h = 1 +

∞∑
d=1

d−1∑
r=0

[
d

d− r

]
(d!)1−χxdℏr+d(1−χ)

= 1 +
∞∑
d=1

(d!)1−χxdℏ1−χ
d−1∏
j=1

(1 − jℏ),

where χ = 2 − 2h and the equalities are understood in the sense of formal power series.

Proof. Since

∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!
F≤g,h(x, x, . . . , x) =

∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!

∑
µ∈Zn

≥0

H≤g,h(µ1, . . . , µn)x|µ|

counts transitive (connected) monotone base h factorizations, we can use the exponential
formula and find the generating series for the not necessarily transitive factorizations

Ψ≤h = 1 +
∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!

∞∑
µ1,...,µn=1

H⃗•,≤g,h (µ1, . . . , µn)x|µ|.

Collecting all factorizations for given d = |µ|, we get

Ψ≤h = 1 +
∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!

∞∑
d=0

( ∑
|µ|=d

H•,≤g,h (µ)

)
xd.

Recall that the number of transpositions is r = r(g, n, |µ|) = 2g− 2 +n− |µ|(2h− 1), so
we write

∞∑
g=0

∞∑
n=1

ℏ2g−2+n

n!

∞∑
d=0

( ∑
|µ|=d

H•,≤g,h (µ)

)
xd =

∞∑
g=0

∞∑
n=1

∞∑
d=0

∑
|µ|=dH

•,≤
g,h (µ)

n!
ℏr(xℏ2h−1)d

=
∞∑
g=0

∞∑
n=1

∞∑
d=0

∑
|µ|=dH

•,≤
g,h (µ)

n!
ℏr(xℏ1−χ)d.

Since H≤g,h(µ) is non-zero if r ≥ 0, we can rearrange the series by collecting all possi-

ble g, n for a given r and d. Viewing the partition function Ψ≤h as a series in Q[[ℏ, xℏ1−χ]],
we find that the coefficient of xdℏr+d(1−χ) is precisely the number of monotone base h
factorizations of length r in S(d), i.e.

[xdℏr+d(1−χ)]Ψ≤h =
1

d!
#

(τ1, . . . , τr, σ, α1, β1, . . . , αh, βh)

∣∣∣∣∣∣∣
τi monotone transpositions,

σ, α1, β1 . . . αh, βh ∈ Sd,

στ1 . . . τr = [α1, β1] . . . [αh, βh]

.
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3 On quantum curves and topological recursion for various monotone Hurwitz numbers

Since the αi, βi run over all elements in S(d) and using [DDM17, Lemma 17], we obtain

[xdℏb+d(1−χ)] Ψ≤h = (d!)2g−1#{(τ1, . . . , τr) | τi monotone transpositions }

= (d!)1−χ
{
d+ r − 1

d− 1

}
.

Finally, we have

Ψ≤h = 1 +
∞∑
d=1

∞∑
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

= 1 +
∞∑
d=1

(d!)1−χxdℏd(1−χ)
∞∑
r=0

{
d+ r − 1

d− 1

}
ℏr

= 1 +
∞∑
d=1

(d!)1−χxdℏd(1−χ)
d−1∏
j=1

1

1 − jℏ
,

where we used the well-known identity in (3.2.1).

In the case of the strictly monotone Hurwitz numbers we do a similar calculation and
view Ψ<

h as an element of Q[[ℏ, xℏ1−χ]]. We find

[xdℏr+d(1−χ)] Ψ<
h = (d!)1−χ#{(τ1, . . . , τb) | τi strictly monotone transpositions }

and in particular [xdℏb+d(1−χ)] Ψ<
h = 0 for r ≥ d. These tuples can be expressed by eval-

uating the elementary symmetric polynomials in the Jucys–Murphy elements (defined in
Section 1.3). This also yields an enumeration by evaluating the same polynomials in the
number of summands of the i−th Jucys–Murphy element, which yields (see e.g. [KLS16,
Equation (4)])

#{(τ1, . . . , τr) | τi strictly monotone transpositions } =

[
d

d− r

]
.

for r ≤ d. Hence we have the assertion

Ψ<
h = 1 +

∞∑
d=1

d−1∑
r=0

[
d

d− r

]
(d!)1−χxdℏr+d(1−χ)

= 1 +
∞∑
d=1

(d!)1−χxdℏ1−χ
d−1∑
r=0

[
d

d− r

]
ℏd

= 1 +
∞∑
d=1

(d!)1−χxdℏ1−χ
d−1∏
j=1

(1 − jℏ),

where the last equality follows by (3.2.1).
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3.3 Quantum curve for (strictly) monotone base h Hurwitz numbers

Theorem 3.3.5.
The partition function Ψ≤h satisfies the differential equation

[pxpy2 + py + (pypx)2h]Ψ≤h = 0,

where px = x· and py = −ℏ ∂
∂x .

Proof. The recursion formula for the Stirling numbers of the second kind yields

{
d+ r − 1

d− 1

}
= (d− 1)

{
d+ r − 2

d− 1

}
+

{
d+ r − 2

d− 2

}
.

We multiply this equation by (d!)2h

(d−1)!x
dℏr+d(1−χ) and sum over d ≥ 1, r ≥ 0. For reasons

of clarity, we first do the computations term by term before conflating them. For the
term on the left hand side we have

∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
(d!)2h

(d− 1)!
xdℏr+d(1−χ) =

∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
d(d!)1−χxdℏr+d(1−χ)

= x
∂

∂x

∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

= x
∂

∂x

(
1 +

∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

)

= x
∂

∂x
Ψ≤h ,

where we used the fact that the derivative of the constant 1 vanishes. For the first
expression on the right hand side we get

∞∑
d=1
r=0

(d− 1)

{
d+ r − 2

d− 1

}
(d!)2h

(d− 1)!
xdℏr+d(1−χ)

=

∞∑
d=1
r=0

d(d− 1)

{
d+ r − 2

d− 1

}
(d!)1−χxdℏr+d(1−χ)

= x2ℏ
∂2

∂x2

∞∑
d=1
r=0

{
d+ r − 2

d− 1

}
(d!)1−χxdℏr−1+d(1−χ).

179



3 On quantum curves and topological recursion for various monotone Hurwitz numbers

Now, note that for r = 0 we have
{
d−2
d−1
}

= 0. Hence

x2ℏ
∂2

∂x2

∞∑
d=1
r=0

{
d+ r − 2

d− 1

}
(d!)1−χxdℏr−1+d(1−χ)

= x2ℏ
∂2

∂x2

∞∑
d=1
r=1

{
d+ r − 2

d− 1

}
(d!)1−χxdℏr−1+d(1−χ)

= x2ℏ
∂2

∂x2

∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

= x2ℏ
∂2

∂x2
Ψ≤h ,

where we performed the shift r′ = r − 1 in the second equality. For the last term we
obtain

∞∑
d=1
r=0

{
d+ r − 2

d− 2

}
(d!)2h

(d− 1)!
xdℏr+d(1−χ)

=

∞∑
d=1
r=0

d2h
{
d+ r − 2

d− 2

}
((d− 1)!)1−χxdℏr+d(1−χ)

=

(
x
∂

∂x

)2h

xℏ1−χ
∞∑
d=1
r=0

{
d+ r − 2

d− 2

}
((d− 1)!)1−χxd−1ℏr+(d−1)(1−χ)

=

(
x
∂

∂x

)2h

xℏ1−χ
(

1 +
∞∑
d=1
r=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

)

=
x

ℏ

(
ℏ
∂

∂x
x

)2h(
1 +

∞∑
d=1
b=0

{
d+ r − 1

d− 1

}
(d!)1−χxdℏr+d(1−χ)

)

=
x

ℏ

(
ℏ
∂

∂x
x

)2h

Ψ≤h .

Putting things together and multiplying by ℏ
x we get[

xℏ2
∂

∂x
− ℏ

∂

∂x
+

(
ℏ
∂

∂x
x

)2h]
Ψ≤h = 0.

Substituting px = x and py = −ℏ ∂
∂x we obtain the claim

[pxpy2 + py + (pypx)2h]Ψ≤h = 0.
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3.4 A mysterious topological recursion

For the strictly monotone Hurwitz number we have a similar result.

Theorem 3.3.6.
The partition function Ψ<

h satisfies the differential equation

[py + (1 − pxpy)(pypx)2h]Ψ<
h = 0,

where px = x· and py = −ℏ ∂
∂x .

Proof. The proof is in the same spirit as in Theorem 3.3.5 but uses the Stirling numbers
of the first kind instead.

Remark 3.3.7.
Note that for h = 0, we recover the quantum curve for the usual monotone (strictly
monotone) Hurwitz numbers of [DDM17] (resp. [DM14]).

3.4 A mysterious topological recursion

In this section, we consider the quantum curve of the strictly monotone Hurwitz numbers
derived in Theorem 3.3.6. We focus on the case with elliptic base curve, i.e. on h = 1.
Computing the semi-classical limit, we obtain the spectral curve

y + (1 − xy)(xy)2 = 0, (3.4.1)

which can be parameterized by

x(z) =
(z − 1)2

z
, y(z) =

z

(z − 1)3
. (3.4.2)

Surprisingly, running topological recursion for this input data yields the monotone single
Hurwitz numbers with an additional combinatorial prefactor. More precisely, we obtain
the cumulants of the Weingarten function. This points towards an unknown relationship
between the combinatorics of strictly monotone Hurwitz numbers with elliptic base curve
and monotone Hurwitz numbers with rational base curve.

As already noted in the introduction, topological recursion for monotone single Hur-
witz numbers with rational base curves and a different normalisation was proved in
[DDM17], however for a different spectral curve and the exclusion of the (0, 2)-case. In
our normalisation, the (0, 2)-case still encodes the relevant invariants. It is important to
note that by (3.4.3) it can be easily deduced that the symplectic transformation

(x, y) 7→ (−1

x
, x2y)

maps the spectral curve (3.4.1) (after cancelling y = 0) to the spectral curve

xy2 + y + 1 = 0
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3 On quantum curves and topological recursion for various monotone Hurwitz numbers

given in [DDM17]. This has been unnoticed up to now. By [EO07, Theorem 7.1] it
follows that the according symplectic invariants agree, moreover in the proof of their
Theorem 7.1 they note that the Wg,n must be related by a sign3. However we still
include the proof of TR for the weighted monotone Hurwitz numbers along the lines of
[DDM17] for the sake of completeness.

We begin by defining the correct normalisation of monotone single Hurwitz numbers
for our purpose, which coincide with the cumulants of the Weingarten function. The
latter was motivated by discussions with James Mingo on problems of higher order
freeness in free probability [CMSS07]. In particular using the following normalizations,
the numbers coincide with certain values of the Möbius function on the set of partitioned
permutations, see Section 2.2.1.

Definition 3.4.1.
Let g be a nonnegative integer, d, n be a positive integers and µ a partition d of length l.
We denote by mg,n(µ) the number of connected labeled monotone factorizations of a
fixed (but arbitrary) permutation σ with c(σ) = µ. Moreover we put

Cg,n(µ) = (−1)2g−2+n+|µ|mg,n(µ) = (−1)n+|µ|mg,n(µ)

and denote by Wg,n(x1, . . . , xn) the corresponding generating series, i.e.

Wg,n(x1, . . . , xn) =
∞∑

µ1,...,µn=1

Cg,n(µ1, . . . , µn)

xµ1+1
1 . . . xµn+1

n

.

Remark 3.4.2.

i) The numbers Cg,n(µ) agree with the monotone Hurwitz numbers up to the com-

binatorial factor (−1)n+|µ|
∏l
i=1 µi.

ii) When we drop the connectivity condition in the definition of mg,n(µ), we obtain
the disconnected analogues of Cg,n(µ). These numbers are the coefficients of the
asymptotic expansion of the Weingarten function [GGPN14].

iii) In [GGPN13] and [DDM17], the numbers mg,n(µ) are put into a generating series
via

Mg,n(y1, . . . , yn) =
∞∑

µ1,...,µn=1

mg,n(µ1, . . . , µn) yµ1−11 · · · yµn−1n .

Thus their generating series relates to Wg,n(x1, . . . , xn) via

Wg,n(x1, . . . , xn) =
Mg,n(−1x1 , . . . ,

−1
xn

)

x21 · · ·x2n
.

3The authors of [EO07] actually claim that the Wg,n agree, however we think that it might be a small
error as we have a sign in our particular example.
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3.4 A mysterious topological recursion

Note also that this amounts to a change of variable yi = −1
xi

if we phrase things in
the language of differential forms, i.e.

Mg,n(y1, . . . , yn)dy1 · · · dyn = Wg,n(x1, . . . , xn)dx1 · · · dxn. (3.4.3)

The following is the main theorem of this section, which we prove in Section 3.4.1.

Theorem 3.4.3.
The numbers Cg,n(µ) satisfy topological recursion with the spectral curve given by

x(z) =
(z − 1)2

z
, y(z) =

z

(z − 1)3
,

i.e. the differentials

ωg,n(z1, . . . , zn) =

∞∑
µ1,...,µn=1

Cg,n(µ1, . . . , µn)

x(z1)µ1+1 . . . x(zn)µn+1
dx(z1) · · · dx(zn) for (g, n) ̸= (0, 2)

ω0,2(z1, z2) =

∞∑
µ1,µ2=1

C0,2(µ1, µ2)

x(z1)µ1+1x(z2)µ2+1
dx(z1)dx(z2) +

dx(z1)dx(z2)

(x(z1) − x(z2))2

satisfy the recursion

ωg,n(z1, . . . , zn) = Res
z→±1

K(z1, z)

[
ωg−1,n+1(z, σ(z), z2, . . . , zn)

+
′∑

g1+g2=g
I⊔J=N\{1}

ωg1,|I|+1(z, zI)ωg2,|J |+1(σ(z), zJ)

]
(3.4.4)

on 2g − 2 + n > 0,

K(z1, z) =

1
2

∫ z
σ(z) ω(z1, ·)

ω0,1(z) − ω0,1(σ(z))
=

z(z − 1)3dz1
2(z + 1)(z1 − z)(z1z − 1)

, σ(z) =
1

z

and with the initial data given by

ω0,1(z) = ydx and ω0,2(z1, z2) = B(z1, z2) :=
dz1dz2

(z1 − z2)2
.

Remark 3.4.4.
Note that dx(z) = z2−1

z2
has the zeroes z = ±1 and since y(z) has a pole of order bigger

than 1 at z = 1, the spectral curve (x, y) is irregular in the sense of [DN18, section 2.1
item 2(b)]. Hence the invariants ωg,n agree with the invariants obtained from the local
spectral curve obtained by removing the point z = 1. In particular the residue at z = 1
in (3.4.4) does not contribute and it suffices to compute the residue at z = −1.

Moreover, we note that while ω0,2 ̸= W0,2dx(z1)dx(z2), we have

Res
z1,z2→∞

x(z1)
µ1 x(z2)

µ2 ω0,2(z1, z2) = C0,2(µ1, µ2) (3.4.5)

since their difference is holomorphic by definition.

183



3 On quantum curves and topological recursion for various monotone Hurwitz numbers

The starting point of our proof is the following recursion, which is a direct consequence
of [GGPN13, Theorem 2.1].

Proposition 3.4.5.
Let g be a nonnegative integer, n ∈ N and µ = (µ1, . . . , µn) a partition of a positive
integer. Then we have the recursion

−Cg,n(µ) =
n∑
j=2

µj Cg,n−1(µ1 + µj , µN\{1}) +
∑

α+β=µ1

Cg−1,n+1(α, β, µN\{1})

+
∑

α+β=µ1

∑
g1+g2=g

I⊔J=N\{1}

Cg1,1+|I|(α, µI)Cg2,1+|J |(β, µJ),

where µI = (µi1 , . . . , µik) for I = {i1, . . . , ik}, N = {1, . . . , n} and the initial value
C0,1(1) = 1.

The following proposition reformulates the cut-and-join equation of Proposition 3.4.5
as a differential equation for generating series.

Proposition 3.4.6.
It holds that

−Wg,n(x1, . . . , xn)

=

n∑
j=2

∂

∂xj

xj
x1

x1Wg,n−1(X{1,...,n}\{j}) − xjWg,n−1(X{1,...,n}\{1})

x1 − xj

+ x1Wg−1,n+1(x1, X{1,...,n}) + x1
∑

g1+g2=g
I⊔J=N\{1}

Wg1,|I|+1(x1, XI)Wg2,|J |+1(x1, XJ)

− 1

x2
δg,0δn,1,

where XI = (xi1 , . . . , xik) for I = {i1, . . . , ik} ⊂ N .

Proof. We multiply the cut-and-join equations from Proposition 3.4.5 by the variables

x
−(µ1+1)
1 . . . x

−(µn+1)
n and sum over µ1, µ2 . . . µn ≥ 1. We start by dealing with the first

term on the right hand side. First observe that for fixed 2 ≤ j ≤ n we have

∞∑
µ1,µj=1

µj
Cg,n−1(µ1 + µj , µN\{µj})

xµ1+1
1 x

µj+1
j

= − ∂

∂xj

1

x21

∑
µ1≥1,µj≥0

Cg,n−1(µ1 + µj , µN\{µj})

xµ1−11 x
µj
j

= − ∂

∂xj

1

x21

∞∑
ν=0

∑
µ1+µj=ν
µ1,µj≥0

Cg,n−1(ν + 1, µN\{µj})

xµ11 x
µj
j

.
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3.4 A mysterious topological recursion

We note that

∑
µ1+µj=ν

1

xµ11 x
µj
j

= −x1xj

1
xν+1
1

− 1
xν+1
j

x1 − xj

and hence we find

− ∂

∂xj

1

x21

∞∑
ν=0

∑
µ1+µj=ν
µ1,µj≥0

Cg,n−1(ν + 1, µN\{µj})

xµ11 x
µj
j

=
∂

∂xj

xj
x1

∞∑
ν=0

Cg,n−1(ν + 1, µN\{µj})(
x1
xν+2
1

− xj
xν+2
j

)

x1 − xj
.

Further, we can put this in the summation over all µ1, . . . , µn and we obtain

∞∑
µ1,...,µn=1

µjCg,n−1(µ1 + µj , µN\{µj})

xµ1+1
1 . . . xµn+1

n

=
∂

∂xj

xj
x1

x1Wg,n−1(X{1,...,n}\{j}) − xjWg,n−1(X{1,...,n}\{1})

x1 − xj
.

We proceed analogously for the second term and observe that

∞∑
µ1,...,µn=1

∑
α+β=µ1

Cg−1,n+1(α, β, µN\{1})

xµ1+1
1 . . . xµn+1

n

=

∞∑
µ2,...µn,α,β=1

Cg−1,n+1(α, β, µN\{1})

xα+β+1
1 . . . xµn+1

n

= x1Wg−1,n+1(x1, X{1,...,xn}).

Finally, for the third term we obtain

∞∑
µ1,...,µn=1

∑
α+β=µ1

∑
g1+g2=g

I⊔J=N\{1}

Cg1,1+|I|(α, µI)Cg2,1+|J |(β, µJ)

xµ1+1
1 . . . xµn+1

n

= x1
∑

g1+g2=g
I⊔J=N\{1}

∞∑
α,µi=1
i∈I

Cg1,1+|I|(α, µI)

xα+1
1

∏
i∈I x

µi+1
i

∞∑
α,µi=1
i∈J

Cg1,1+|I|(β, µI)

xβ+1
1

∏
i∈J x

µi+1
i

= x1
∑

g1+g2=g
I⊔J=N\{1}

Wg1,|I|+1(x1, XI)Wg2,|J |+1(x1, XJ).

Putting everything together yields the desired equation.

In the perspective of CEO topological recursion it is handy to rewrite the cut-and-join
equation in way that Wg,n(x) does not appear on the right hand side.
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3 On quantum curves and topological recursion for various monotone Hurwitz numbers

Corollary 3.4.7.
It holds

−(1+2x1W0,1(x1))Wg,n(x1, . . . , xn)

=

n∑
j=2

∂

∂xj

xj
x1

x1Wg,n−1(X{1,...,n}\{j}) − xjWg,n−1(X{1,...,n}\{1})

x1 − xj
+

+ x1Wg−1,n+1(x1, X{1,...,n}) + x1

′∑
g1+g2=g

I⊔J=N\{1}

Wg1,|I|+1(x1, XI)Wg2,|J |+1(x1, XJ)

− 1

x2
δg,0δn,1,

where
∑′ means that the cases (g1, I) = (0, ∅) or (g2, J) = (0, ∅) are excluded.

We now compute some special cases of Wg,n, which require special treatment in the
CEO topological recursion. We have the following result for the first few values of (g, n).

Corollary 3.4.8 ([GGPN13, Theorem 1.1],[GGPN16, Theorem 6.2]).
We have that

C0,1(µ) = (−1)µ−1
1

µ

(
2µ− 2

µ− 1

)
,

C0,2(µ1, µ2) = (−1)µ1+µ2
2µ1µ2
µ1 + µ2

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)
,

C0,3(µ1, µ2, µ3) = (−1)µ1+µ2+µ3−18µ1

(
2µ1 − 1

µ1

)
µ2

(
2µ2 − 1

µ2

)
µ3

(
2µ3 − 1

µ3

)
.

A straightforward calculation shows the following lemma.

Lemma 3.4.9.
The following identities hold:

W0,1(x(z)) =
z

(z − 1)3
,

W0,2(x(z1), x(z2)) =
z21z

2
2

(z21 − 1)(z22 − 1)(1 − z1z2)2
,

W0,3(x1, x2, x3) =
8

x21x
2
2x

2
3(1 + 4

x1
)
3
2 (1 + 4

x2
)
3
2 (1 + 4

x3
)
3
2

=

3∏
i=1

2

x2i (1 + 4
xi

)
3
2

=

3∏
i=1

2

(zi + 1)2
1

x′(zi)
.
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3.4 A mysterious topological recursion

The next lemma is a key step towards proving the topological recursion for the num-
bers Cg,n(µ), as determining the difference between the Bergman kernel and the (0, 2)
free energy is important for the input data of the topological recursion.

Lemma 3.4.10.
We have

W0,2(x(z1), x(z2))dx(z1)dx(z2) =
dz1dz2

(1 − z1z2)2
=

dz1dz2
(z1 − z2)2

− dx(z1)dx(z2)

(x(z1) − x(z2))2

and in particular

W0,2(x(z1), x(z2))dx(z1)dx(z2) = −B(
1

z1
, z2).

Proof. From the last proposition and x′(zi) =
z2i−1
z2i

we obtain

W0,2(x(z1), x(z2)) =
z21

(z21 − 1)

z22
(z22 − 1)

1

(1 − z1z2)2
=

1

x′(z1)

1

x′(z2)

1

(1 − z1z2)2
,

from which the first equality follows immediately. For the second one, a straightforward
calculation yields

(x(z1) − x(z2))
2 =

(
z21 + 1

z1
− z22 + 1

z2

)2

=
(1 − z1z2)

2(z1 − z2)
2

z21z
2
2

,

which yields

1

(z1 − z2)2
− x′(z1)x

′(z2)

(x(z1) − x(z2))2
=

1

(z1 − z2)2
− (z21 − 1)(z22 − 1)

(1 − z1z2)2(z1 − z2)2
=

1

(1 − z1z2)2
.

3.4.1 Proof of Theorem 3.4.3

Our proof of Theorem 3.4.3 is inspired by the approach in [DDM17]. We begin by
considering the case (g, n) = (0, 3), which requires an independent discussion.

Lemma 3.4.11.
The multidifferential ω0,3 satisfies the recursion in (3.4.4).

Proof. Recall that by Lemma 3.4.9, we have

W0,3(x1, x2, x3) =
8

x21x
2
2x

2
3(1 + 4

x1
)
3
2 (1 + 4

x2
)
3
2 (1 + 4

x3
)
3
2

=

3∏
i=1

2

x2i (1 + 4
xi

)
3
2

.
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We find

W0,3(z1, z2, z3) =
3∏
i=1

2

xi(z)2(1 + 4
xi(z)

)
3
2

=

3∏
i=1

2z2i (zi − 1)3

(zi − 1)4(zi + 1)3

=
3∏
i=1

2

(zi + 1)2
z2i

(zi + 1)(zi − 1)

=
3∏
i=1

2

(zi + 1)2
1

x′(zi)
.

The recursion from topological recursion reads

ω0,3(z1, z2, z3)

= Res
z→−1

K(z1, z)

[
w0,2(z, z2)w0,2(

1

z
, z3) + w0,2(z, z3)w0,2(

1

z
, z2)

]
= Res

z→−1

z(z − 1)3dz1
2(z + 1)(z1 − z)(z1z − 1)dz

[
dzdz2

(z − z2)2
d1
zdz3

(1z − z3)2
+

dzdz3
(z − z3)2

d1
zdz2

(1z − z2)2

]
= Res

z→−1

1

z + 1

−(z − 1)3dz1
2z(z1 − z)(z1z − 1)dz

[
dzdz1dz2dz3

(z − z2)2(
1
z − z3)2

+
dzdz1dz2dz3

(z − z3)2(
1
z − z2)2

]
,

which is of the form

f(z, z1, z2, z3)dz

(z + 1)
dz1dz2dz3

where f is holomorphic in z around z = −1. Hence we get

ω0,3(z1, z2, z3) = f(−1, z1, z2, z3)dz1dz2dz3 =
8dz1dz2dz3

(z1 + 1)2(z2 + 1)2(z3 + 1)2
,

which concludes the proof.

Recall the polynomiality result for monotone Hurwitz numbers.

Theorem 3.4.12 ([GGPN16]).
There are symmetric rational functions P⃗g,h such that

H⃗g,n(µ1, . . . , µn) =
n∏
i=1

(
2µi
µi

)
P⃗g,n(µ1, µ2, . . . , µn).

Moreover, if (g, n) ̸= (0, 1), (0, 2), then P⃗g,n is a polynomial with rational coefficients of
degree 3g − 3 + n.
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3.4 A mysterious topological recursion

Since Cg,n agrees with H⃗g,h up to the factor (−1)r
∏n
i=1 µi, we immediately get

Cg,n = (−1)r
n∏
i=1

µi

(
2µi
µi

)
P⃗g,n(µ1, µ2, . . . , µn).

Thus, for the polynomial

P⃗g,n(µ1, . . . , µn) =

finite∑
a=0

Bg,n(a)
∏

µaii (3.4.6)

with coefficients Bg,n(a), we can write our generating function as

Wg,n(x1, . . . , xn) =
finite∑
a=0

Bg,n(a)
n∏
i=1

∞∑
µi=1

µai+1
i

(
2µi
µi

)(
−1

xi

)µi+1

=
finite∑
a=0

Bg,n(a)
n∏
i=1

fai(xi)

with

fa(x) =
∞∑
µ=1

µa+1

(
2µ

µ

)(
−1

x

)µ+1

. (3.4.7)

A careful analysis of the functions fa will give us the analytic properties of Wg,n.

Lemma 3.4.13.
Let (g, n) ̸= (0, 1), (0, 2), then the functions Wg,n(z1, . . . , zn) satisfy

Wg,n(z1, . . . , zn) = −Wg,n(σ(z1), z2, . . . , zn) = −Wg,n(
1

z1
, z2, . . . , zn).

Moreover they are rational functions in each zi having poles at zi = 1 and at zi = −1.

Proof. Note that the functions fa satisfy the recursion

fa(x) =
∞∑
µ=1

µa+1

(
2µ

µ

)(
−1

x

)µ+1

= − ∂

∂x
xfa−1(x), (3.4.8)

i.e.

fa(x) = (− ∂

∂x
x)af0(x)

and

f0(x) =
∞∑
n=1

µ

(
2µ

µ

)(
−1

x

)µ+1

=
2

√
x(x+ 4)

3
2

.
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3 On quantum curves and topological recursion for various monotone Hurwitz numbers

In the variable z we get

f0(z) =
2z2

(z − 1)(z + 1)3

and

f0(σ(z)) = f0

(1

z

)
=

2 1
z2

(1z − 1)(1z + 1)3
= − 2z2

(z − 1)(z + 1)3
= −f0(z).

We find by induction

fa(z) + fa(σ(z)) =
∂

∂x
x(fa−1(z) + fa−1(σ(z))) = 0

and hence

Wg,n(z1, z2, . . . , zn)+Wg,n(σ(z1), z2, . . . , zn) =

finite∑
a=0

Bg,n(a)[fa1(z)+fa1(σ(z))]
n∏
i=2

fai(xi)

= 0.

Moreover note that (3.4.8) reads

fa(z) =

(
−z2

z2 − 1

∂

∂z

(z − 1)2

z

)
fa−1(z)

in the variable z. It follows by induction that fa is rational and has a pole of order 1 at
z = 1 and a pole of order 2a+ 3 of z = −1.

The last result can be reformulated in terms of the forms ωg,n.

Corollary 3.4.14.
For (g, n) ̸= (0, 1), (0, 2), the forms ωg,n(z1, . . . , zn) are antisymmetric w.r.t. σ, i.e.

ωg,n(z1, . . . , zn) = −ωg,n(σ(z1), z2, . . . , zn) = −ωg,n
(

1

z1
, z2, . . . , zn

)
.

They only have poles at z = ±1, where the pole at z = 1 has at most order 1.

Proof. The assertions follow from the Lemma 3.4.13.

Now we are ready to prove Theorem 3.4.3.

Proof of Theorem 3.4.3. The initial data is given by (g, n) = (0, 1), (0, 2) and the case
of (g, n) = (0, 3) was proved in Lemma 3.4.11. Thus, in the following we assume that
(g, n) ̸= (0, 1), (0, 2), (0, 3).

The idea is to add the recursions for Wg,n(z1, z2, . . . , zn) and Wg,n(σ(z1), z2, . . . , zn)
and proceed with a careful combinatorial analysis after substituting the identity in
Lemma 3.4.13.
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3.4 A mysterious topological recursion

• First we note that the left hand side yields the following

− (1 + 2x1W0,1(z1))Wg,n(z1, z2, . . . , zn) − (1 + 2x1W0,1(σ(z1)))Wg,n(σ(z1), z2, . . . , zn)

= −(1 + 2x1W0,1(z1))Wg,n(z1, z2, . . . , zn) + (1 + 2x1W0,1(σ(z1)))Wg,n(z1, z2, . . . , zn)

= −2x1[W0,1(z1) −W0,1(σ(z1))]Wg,n(z1, z2, . . . , zn).

• The first term on the right hand side is

n∑
j=2

∂

∂xj

xj
x1

x1Wg,n−1(Z{1,...,n}\{j}) − xjWg,n−1(Z{1,...,n}\{1})

x1 − xj

and its counterpart where z1 is replaced by σ(z1). First we note that we can rewrite
the derivatives by

∂

∂x
=

z2

z2 − 1

∂

∂z
.

Now we want to focus on the change of z1 with σ(z1), using x(σ(z1)) = x(z1) we get
terms of the form

z2j
z2j − 1

∂

∂zj

x(zj)

x(z1)

x(σ(z1))Wg,n−1(σ(z1), Z{2,...,n}\{j}) − xjWg,n−1(Z{1,...,n}\{1})

x1 − xj
.

By our observations the latter is equivalent to

z2j
z2j − 1

∂

∂zj

x(zj)

x(z1)

−x1Wg,n−1(Z{1,...,n}\{j}) − xjWg,n−1(Z{1,...,n}\{1})

x1 − xj
.

Thus x1Wg,n−1(Z{1,...,n}\{j}) cancels in the sum and we end up with the term

−2
n∑
j=2

z2j
z2j − 1

∂

∂zj

x(zj)
2

x(z1)

Wg,n−1(Z{1,...,n}\{1})

x1 − xj
.

• The second term on the right hand side is

x1

(
Wg−1,n+1(z1, z1, z2, . . . , zn) +Wg−1,n+1(σ(z1), σ(z1), z2, . . . , zn)

)
= −2x1Wg−1,n+1(z1, σ(z1), z2, . . . , zn).
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• The third term is

x1

[ ∑
g1+g2=g

I⊔J=N\{1}

Wg1,|I|+1(z1, ZI)Wg2,|J |+1(z1, ZJ)

+
∑

g1+g2=g
I⊔J=N\{1}

Wg1,|I|+1(σ(z1), ZI)Wg2,|J |+1(σ(z1), ZJ)

+ 2
n∑
j=2

(
W0,2(z1, zj)Wg,n−1(z1, Z{1,...,n}\{j})

+W0,2(σ(z1), zj)Wg,n−1(σ(z1), Z{1,...,n}\{j})

)]
.

By Lemma 3.4.10 and Corollary 3.4.14 this yields

− 2x1

[ ∑
g1+g2=g

I⊔J=N\{1}

Wg1,|I|+1(z1, ZI)Wg2,|J |+1(σ(z1), ZJ)+

+
n∑
j=2

(
B(σ(z1), zj)

dx(z1)dx(zj)
Wg,n−1(z1, Z{1,...,n}\{j})

+
B(z1, zj)

dx(σ(z1))dx(zj)
Wg,n−1(σ(z1), Z{1,...,n}\{j})

)]
.

As (g, n) ̸= (0, 1), (0, 2), (0, 3) we have (g, n − 1) ̸= (0, 1), (0, 2). Thus the differentials
Wg,n−1dx(z1) · · · dx(zn−1) satisfies Corollary 3.4.14. Therefore, putting things together,
dividing by

−2x1[W0,1(x(z1)) −W0,1(x(σ(z1)))] = −2x1(ω0,1(z1) − ω0,1(σ(z1)))
1

dx1

and multiplying with dx1 . . . dxn, we obtain

ωg,n(z1, . . . , zn)

=
1

ω0,1(z1) − ω0,1(σ(z1))

[ n∑
j=2

dx1dx1
x21

z2j
z2j − 1

∂

∂zj
x2j
ωg,n−1(z2, . . . , zn)

x1 − xj

+ ωg−1,n+1(z1, σ(z1), z2, . . . , zn) +
◦∑

g1+g2=g
I⊔J=N\{1}

ωg1,|I|+1(z1, ZI)ωg2,|J |+1(σ(z1), ZJ)

+
∑
j=2

ω0,2(σ(z1), zj)ωg,n−1(z1, Z{1,...,n}\{j}) + ω0,2(z1, zj)ωg,n−1(σ(z1), Z{1,...,n}\{j})

]

192



3.4 A mysterious topological recursion

=
1

ω0,1(z1) − ω0,1(σ(z1))

[ n∑
j=2

dx1dx1
x21

z2j
z2j − 1

∂

∂zj
x2j
ωg,n−1(z2, . . . , zn)

x1 − xj

+ ωg−1,n+1(z1, σ(z1), z2, . . . , zn) +
′∑

g1+g2=g
I⊔J=N\{1}

ωg1,|I|+1(z1, ZI)ωg2,|J |+1(σ(z1), ZJ)

]
.

The next step is to apply Cauchy’s formula and use the fact that the ωg,n are rational
forms (in particular in z1) having only poles at ±1. We have

ωg,n(z1, . . . , zn) = Res
z→z1

ωg,n(z, z2, . . . , zn)dz1
z − z1

= Res
z→±1

dz1
z1 − z

ωg,n(z, z2, . . . , zn)

= Res
z→±1

dz1

z1 − 1
z

ωg,n(
1

z
, z2, . . . , zn)

= Res
z→±1

dz1
z1 − σ(z)

ωg,n(z, z2, . . . , zn),

the second equality is due to the fact that ωg,n are rational differentials in each zi, hence
the sum over all residue must vanish, i.e.

0 = Res
z→z1

ωg,n(z, z2, . . . , zn)dz1
z − z1

+ Res
z→±z1

ωg,n(z, z2, . . . , zn)dz1
z − z1

,

where Res
z→±1

denotes the sum of the residues at 1 and −1. Thus we get

ωg,n(z1, . . . , zn) = Res
z→±1

1

2

[
dz1
z1 − z

− dz1
z1 − σ(z)

]
ωg,n(z, z2, . . . , zn)

= Res
z→±1

[
1

2

∫ z

σ(z)
ω0,2(z1, ·)

]
ωg,n(z, z2, . . . , zn).

Now we want to invoke the recursion for the ωg,n which we established before. We get

ωg,n(z1, . . . , zn)

= Res
z→±1

1
2

∫ z
σ(z) ω0,2(z1, ·)

ω0,1(z) − ω0,1(σ(z))

[ n∑
j=2

dxdx

x2
z2j

z2j − 1

∂

∂zj
x2j
ωg,n−1(z2, . . . , zn)

x− xj

+ ωg−1,n+1(z, σ(z), z2, . . . , zn) +
∑

g1+g2=g
I⊔J=N\{1}

ωg1,|I|+1(z, ZI)ωg2,|J |+1(σ(z), ZJ)

]
.

First we need to argue that the residue at z = 1 does not contribute. But this is the
case since

K(z1, z) =

1
2

∫ z
σ(z) ω(z1, ·)

ω0,1(z) − ω0,1(σ(z))
=

z(z − 1)3dz1
2(z + 1)(z1 − z)(z1z − 1)dz

,
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i.e. K has a zero of order 3 at z = 1 which cancels the poles (of order 1) of the differential
ωg,n(z, z2, . . . , zn). Hence the last two terms on the right hand side vanish. For the first
one, note that

dxdx

x2
=

(z + 1)2dzdz

(z − 1)2z2

has pole of order 2, so the zero of K(z1, z) cancels this as well. Lastly we show that the
first term on the right hand side vanishes if we take the residue at z = −1. But by the
last equation we see that the pole of order 1 of K is removed by the zero of order 2.
Thus we finally arrive at

ωg,n(z1, . . . , zn) = Resz→−1

1
2

∫ z
σ(z) ω0,2(z1, ·)

ω0,1(z) − ω0,1(σ(z))

[
ωg−1,n+1(z, σ(z), z2, . . . , zn)

+
∑

g1+g2=g
I⊔J=N\{1}

ωg1,|I|+1(z, ZI)ωg2,|J |+1(σ(z), ZJ)

]
.
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[BGF20] Gaëtan Borot and Elba Garcia-Failde. Simple maps, Hurwitz numbers,
and topological recursion. Communications in Mathematical Physics,
380(2):581–654, 2020.

[BGN03] Philippe Biane, Frederick Goodman, and Alexandru Nica. Non-crossing
cumulants of type b. Transactions of the American Mathematical Society,
355(6):2263–2303, 2003.

[BKW23] Vincent Bouchard, Reinier Kramer, and Quinten Weller. Topological re-
cursion on transalgebraic spectral curves and Atlantes Hurwitz numbers.
arXiv preprint arXiv:2304.07433, 2023.

[BM07] Vincent Bouchard and Marcos Marino. Hurwitz numbers, matrix models
and enumerative geometry. arXiv preprint arXiv:0709.1458, 2007.
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