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Abstract
In this note, we extend the scope of our previous work joint with Bonnafoux,
Kattler, Niño, Sedano-Mendoza, Valdez, and Weitze-Schmithüsen by showing
the arithmeticity of the Kontsevich–Zorich monodromies of infinite families of
square-tiled surfaces of genera four, five, and six.
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1 INTRODUCTION

Square-tiled surfaces (or origamis) are translation surfaces obtained from finite branched covers of the flat torus ℝ2∕ℤ2

which are unramified away from the origin. The 𝑆𝐿(2,ℝ)-orbits of square-tiled surfaces are closed subsets of the moduli
spaces of translation surfaces called arithmetic Teichmüller curves. The first cohomology groups of the Riemann surfaces
of genus 𝑔 ≥ 2 in an arithmetic Teichmüller curve form a variation of Hodge structures whose monodromy group is natu-
rally isomorphic to a subgroup of 𝑆𝐿(2, ℤ) × 𝑆𝑝(2𝑔 − 2,ℤ). The projection of the monodromy group in the second factor
of 𝑆𝐿(2, ℤ) × 𝑆𝑝(2𝑔 − 2,ℤ) is called the Kontsevich–Zorich monodromy of the square-tiled surface and, partly inspired
by a question of Sarnak, one can try to decide if the Kontsevich–Zorich monodromy of a “typical” square-tiled surface is
arithmetic or thin.1
Möller noticed that any square-tiled surface of genus two has an arithmetic Kontsevich–Zorich monodromy (cf.

Appendix B of [1]). Moreover, in our previous work [1] joint with Bonnafoux, Kattler, Niño, Sedano-Mendoza, Valdez,
and Weitze-Schmithüsen, we showed that many square-tiled surfaces in the minimal stratum of the moduli space of
translation surfaces of genus three have an arithmetic Kontsevich–Zorich monodromy.
In this paper, we extend these results to certain families of square-tiled surfaces of genera four, five, and six. We hereby

use methods which are very similar to the methods used for genus three origamis in [1], but we have to enrich our toolbox
bymore advanced concepts from theGalois theory to findGalois pinching elements in theKontsevich–Zorichmonodromy
for growing genera.
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Theorem 1.0.1. Let(2𝑔 − 2) be the minimal stratum of the moduli space of translation surfaces of genus 𝑔. For each 𝑔 ∈
{4, 5, 6}, there are infinitely many square-tiled surfaces in(2𝑔 − 2) whose Kontsevich–Zorich monodromies are arithmetic.

Remark 1.0.2. As it turns out, we shall deduce this statement from the more precise results in Theorems 3.2.2, 4.3.2, and
5.3.2.

The remainder of this note concerns the proof of Theorem 1.0.1. More concretely, we organize this note as follows: in
Section 2, we recall some Zariski-denseness and arithmeticity criteria used in [1] together with a discussion of the Galois
groups of reciprocal polynomials based on a result of Jackson [5] about the subgroups of the hyperoctahedral groups;
afterward, we complete the paper by showing the validity of Theorem 1.0.1 in(6),(8), and(10) (resp.) in Sections 3–5
(resp.).

Remark 1.0.3. In what follows, we shall assume some familiarity with the basic theory of square-tiled surfaces explained
in [1, Section 2] (for instance).

We close this short introduction with the following question: is it true that the Kontsevich–Zorich monodromy of a
typical2 square-tiled surface is arithmetic?

2 PRELIMINARIES

2.1 Square-tiled surfaces and their Kontsevich–Zorich monodromies

Recall that a square-tiled surface or origami is a translation surface  = (𝑀,𝜔), where the Riemann surface 𝑀 comes
from a finite branched cover 𝜋 ∶ 𝑀 → ℝ2∕ℤ2 which is unramified away from 0 ∈ ℝ2∕ℤ2, and the Abelian differential 𝜔
is 𝜋∗(𝑑𝑥 + 𝑖𝑑𝑦). The group Aff() of affine homeomorphisms of an origami  respects the natural splitting

𝐻1(𝑀,ℚ) = 𝐻𝑠𝑡
1
(, ℚ) ⊕ 𝐻

(0)
1
(, ℚ), (2.1.1)

where

𝐻
(0)
1
(, ℚ) =

{
𝛾 ∈ 𝐻1(𝑀,ℚ) ∶ ∫

𝛾

𝜔 = 0

}

and 𝐻𝑠𝑡
1
(, ℚ) is the symplectic orthogonal of 𝐻(0)

1
(, ℚ) with respect to the usual intersection form on 𝐻1(𝑀,ℚ). The

decomposition in Equation (2.1.1) is for origamis defined over ℤ. In this setting, the Kontsevich–Zorich monodromy of
an origami  is the subgroup Γ of 𝑆𝑝

(
𝐻
(0)
1
(, ℤ)) ≃ 𝑆𝑝(2𝑔 − 2,ℤ) generated by the actions of the elements of Aff() on

𝐻
(0)
1
(, ℤ).

The Zariski-denseness of the Kontsevich–Zorich monodromy Γ of an origami  of genus 𝑔 can be checked in many
contexts using the actions on homology of Dehn twists associated with cylinder decompositions in rational directions.
More precisely, suppose that:

(a) we can combine such Dehn twists to produce a Galois pinching element 𝐴 ∈ 𝑆𝑝
(
𝐻
(0)
1
(, ℤ)), that is, a symplectic

matrix whose characteristic polynomial is irreducible over ℤ, splits over ℝ, and possesses the largest possible Galois
group among reciprocal polynomials of degree 2𝑔 − 2, the hyperoctahedral group;

(b) some Dehn twist induces a non-trivial unipotent element

𝐵 ∈ 𝑆𝑝
(
𝐻
(0)
1
(, ℤ))

such that (𝐵 − Id)
(
𝐻
(0)
1
(, ℝ)) is not a Lagrangian subspace of𝐻(0)

1
(, ℝ).
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1894 KANY and MATHEUS

Then, Γ is Zariski-dense in 𝑆𝑝
(
𝐻
(0)
1
(, ℝ)) thanks to [8, Theorem 9.10] and [7, Proposition 4.3].

Furthermore, if  is an origami whose Kontsevich–Zorich monodromy Γ is Zariski-dense in 𝑆𝑝
(
𝐻
(0)
1
(, ℝ)), then

Singh–Venkataramana [9] showed that Γ is arithmetic (i.e., it has finite index in 𝑆𝑝
(
𝐻
(0)
1
(, ℤ))) provided that it contains

three unipotent matrices 𝑇𝑛, 𝑛 = 1, 2, 3, with

(𝑇𝑛 − Id)
(
𝐻
(0)
1
(, ℤ)) = ℤ𝑤𝑛,

such that𝑊 = ℚ𝑤1 ⊕ℚ𝑤2 ⊕ℚ𝑤3 is not an isotropic subspace and the group ⟨𝑇𝑛|𝑊 ∶ 𝑛 = 1, 2, 3⟩ contains a non-trivial
element of the unipotent radical of 𝑆𝑝(𝑊).
The Zariski-denseness and arithmeticity criteria above were used in [1] to establish the abundance of arithmetic

Kontsevich–Zorich monodromies among origamis in (4). In order to extend this kind of result to minimal strata(6),
(8), and(10), we shall need the Galois-theoretical facts described in the next two subsections.

2.2 Galois groups as permutation group

Consider a monic irreducible polynomial 𝑃(𝑋) ∈ ℤ[𝑋] of degree 𝑛 with set of complex roots 𝑆 = {𝜆1, … , 𝜆𝑛}. Let 𝑍(𝑃) =
ℚ(𝜆1, … , 𝜆𝑛) be the splitting field of the polynomial 𝑃(𝑋) ∈ ℤ[𝑋]. We consider the standard embedding of Gal(𝑃) =
Autℚ(𝑍(𝑃)) in the permutation group Sym(𝑆) via

Gal(𝑃)⟶ Sym(𝑆), 𝜎 ⟼ 𝜎|𝑆.
The theorem of Dedekind is a useful tool to study the Galois group of a polynomial 𝑃(𝑋) ∈ ℤ[𝑋] as above:

Theorem 2.2.1 (Dedekind). Let 𝑃(𝑋) ∈ ℤ[𝑋] be monic irreducible of degree 𝑛. For every prime number 𝑝 not dividing the
discriminant of 𝑃(𝑋) ∈ ℤ[𝑋], let the monic irreducible factorization of 𝑃(𝑋) ∈ ℤ[𝑋]modulo 𝑝 be

𝑃(𝑋) ≡ 𝜋1(𝑋)⋯𝜋𝑘(𝑋)mod 𝑝

with 𝜋𝑖(𝑋) pairwise distinct and set 𝑑𝑖 ∶= deg𝜋𝑖(𝑋), so 𝑑1 +⋯+ 𝑑𝑘 = 𝑛. Then, the Galois group Gal(𝑃) of 𝑃(𝑋) ∈ ℤ[𝑋]

viewed as a subgroup of Sym(𝑆) contains an element that permutes the roots 𝑆 of 𝑃(𝑋) with cycle type (𝑑1, … , 𝑑𝑘).

2.3 Galois groups of polynomials of degree four and five

For a reference of the following, see [6]. We consider in this subsection a monic irreducible polynomial

𝑄(𝑋) = 𝑋𝑘 +

𝑘−1∑
𝑖=0

𝑏𝑖 𝑋
𝑖 ∈ ℚ[𝑋]

of degree four or five with set of roots 𝑆 = {𝜇1, … , 𝜇𝑘} (𝑘 = 4 or 𝑘 = 5).
Let first 𝑘 = 4. We define the cubic resolvent 𝐶𝑅𝑄(𝑌) ∈ ℚ[𝑌] of the polynomial 𝑄(𝑋) as

𝐶𝑅𝑄(𝑌) = (𝑌 − (𝜇1𝜇2 + 𝜇3𝜇4)) (𝑌 − (𝜇1𝜇3 + 𝜇2𝜇4)) (𝑌 − (𝜇1𝜇4 + 𝜇2𝜇3)).

Direct calculations show

𝐶𝑅𝑄(𝑌) = 𝑌3 − 𝑏2 𝑌
2 + (𝑏1 𝑏3 − 4𝑏0) 𝑌 − (𝑏0 𝑏

3
3
− 4 𝑏0 𝑏2 + 𝑏2

1
).

 15222616, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300085 by U
niversitaet D

es Saarlandes, W
iley O

nline L
ibrary on [27/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KANY and MATHEUS 1895

Furthermore, a computation reveals the equality

Disc(𝑄(𝑋)) = Disc(𝐶𝑅𝑄(𝑌))

between the discriminant Disc(𝑄(𝑋)) of 𝑄(𝑋) ∈ ℚ[𝑋] and the discriminant Disc(𝐶𝑅𝑄) of 𝐶𝑅𝑄(𝑌) ∈ ℚ[𝑌]. The five tran-
sitive subgroups of the permutation group 𝑆4 are the Klein-four group 𝑉4, 𝐶4, the dihedral group 𝐷4, 𝐴4 and 𝑆4 itself.
The next theorem will help to determine the Galois group of the polynomial 𝑄(𝑋) ∈ ℚ[𝑋]. A proof can be found in [6,
Theorem 2.2.2].

Theorem2.3.1. Let𝑍(𝐶𝑅𝑄) be the splitting field of the cubic resolvent𝐶𝑅𝑄(𝑌) ∈ ℚ[𝑌] fromabove and let𝑚 = [𝑍(𝐶𝑅𝑄) ∶ ℚ]

be the degree of the field extension over the rational numbers. Then, we have for the Galois groupGal(𝑄) ≤ 𝑆4 of the irreducible
polynomial 𝑄(𝑋) ∈ ℚ[𝑋] from above:

Gal(𝑄) =

⎧⎪⎪⎨⎪⎪⎩

𝑆4 if 𝑚 = 6

𝐴4 if 𝑚 = 3

𝐷4 or 𝐶4 if 𝑚 = 2

𝑉4 if 𝑚 = 1

Remark 2.3.2. Since the cubic resolvent 𝐶𝑅𝑄(𝑌) ∈ ℚ(𝑌) of 𝑄(𝑋) ∈ ℚ[𝑋] is a degree three polynomial it is sufficient for
the splitting field 𝑍(𝐶𝑅𝑄) to be a degree six field extension over the rational numbers, that 𝐶𝑅𝑄(𝑌) ∈ ℚ(𝑌) is irreducible
and that the discriminant Disc(𝐶𝑅𝑄) = Disc(𝑄) of 𝐶𝑅𝑄(𝑌) respectively 𝑄(𝑋) is not a square of a rational number.

Now, let 𝑘 = 5. TheWeber sextic resolvent 𝑆𝑊𝑅𝑄(𝑌) ∈ ℚ[𝑌] defined as in Definition 2.3.2 of [6] helps to determine the
Galois group of the quintic polynomial 𝑄(𝑋) ∈ ℚ[𝑋] as we will explain in the following theorem and remark (see [6,
Theorem 2.3.3] for a proof of the theorem):

Theorem 2.3.3. The Galois group Gal(𝑄) ≤ 𝑆5 of the irreducible monic polynomial 𝑄(𝑋) ∈ ℚ[𝑋] is solvable if and only if
the sextic Weber resolvent SW𝑅𝑄(𝑌) ∈ ℚ[𝑌] has a root in the rational numbersℚ.

Remark 2.3.4. The only transitive subgroups of 𝑆5 are 𝐶5, the dihedral group 𝐷5, 𝐹20, 𝐴5 and 𝑆5 itself. Hence, the only
transitive subgroups that are non-solvable are 𝐴5 and 𝑆5. Thus, it is easy to ensure that Gal(𝑄) = 𝑆5 with the help of the
previous theorem and the fact that Gal(𝑄) ≤ 𝐴5 if and only if the discriminant Disc(𝑄) is a square of a rational number.

2.4 Galois group of certain reciprocal polynomials

Consider from now on an irreducible monic polynomial

𝑃(𝑋) =

𝑛∑
𝑖=0

𝑐𝑖 𝑋
𝑖 ∈ ℤ[𝑋]

of degree 𝑛 = 2𝑘 with 𝑐𝑛 = 𝑐0 = 1 and 𝑐𝑖 = 𝑐𝑛−𝑖 for 𝑖 = 1, … , 𝑘.
The Galois group of such a 𝑃(𝑋) ∈ ℤ[𝑋] can be naturally seen as a subgroup of the hyperoctahedral group 𝐺𝑘 as we

will see in Section 2.4.1. But first we want to explain the hyperoctahedral group as we want to use it in this text.
For 𝑘 ≥ 1, we define the hyperoctahedral group as the semidirect product 𝐺𝑘 = ℤ𝑘

2
⋊ 𝑆𝑘, where 𝑆𝑘 is the permutation

group on a set with 𝑘 elements. The group 𝑆𝑘 acts onℤ𝑘
2
by 𝜏(𝜖1, … , 𝜖𝑘) = (𝜖𝜏(1), … , 𝜖𝜏(𝑘)) (𝜖𝑖 ∈ {±1}) and themultiplication

on the hyperoctahedral group 𝐺𝑘 is defined by

(𝜖, 𝜏) ⋅ (𝜖̃, 𝜏̃) = (𝜏̃−1(𝜖) ⋅ 𝜖̃, 𝜏◦𝜏̃). (2.4.1)

Compare Section 2 in [5].
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1896 KANY and MATHEUS

2.4.1 Description of the Galois group

Let again 𝑃(𝑋) as in the beginning of the section. Since 𝑃(𝑋) ∈ ℤ[𝑋] is reciprocal and its splitting field is of zero charac-
teristic and hence perfect, the polynomial 𝑃(𝑋) has 𝑛 = 2𝑘 distinct roots which come in pairs {𝜆𝑖, 𝜆−1𝑖 } for 𝑖 ∈ {1, … , 𝑘}.
Denote by 𝑍(𝑃) the splitting field of the polynomial 𝑃(𝑋) ∈ ℤ[𝑋] and by Gal(𝑃) = Autℚ(𝑍(𝑃)) the Galois group of
𝑃(𝑋) ∈ ℤ[𝑋]. An automorphism 𝜎 ∈ Gal(𝑃) necessarily permutes the 𝑘 pairs of roots {𝜆𝑖, 𝜆−1𝑖 } of 𝑃(𝑋) ∈ ℤ[𝑋] and this
leads to a group homomorphism

𝜙 ∶ Gal(𝑃)⟶ 𝑆𝑘, 𝜎 ⟼ 𝜏𝜎,

where we set 𝜏𝜎(𝑖) = 𝑗 if 𝜎({𝜆𝑖, 𝜆−1𝑖 }) = {𝜆𝑗, 𝜆
−1
𝑗
} (𝑖, 𝑗 ∈ {1, … , 𝑘}). The kernel 𝑁 of 𝜙 is given by the automorphisms 𝜎 ∈

Gal(𝑃) such that 𝜎({𝜆𝑖, 𝜆−1𝑖 }) = {𝜆𝑖, 𝜆
−1
𝑖
} for every 𝑖 ∈ {1, … , 𝑘}. Hence, we can identify 𝑁 with a subgroup of ℤ𝑘

2
via the

following homomorphism:

𝜄 ∶ 𝑁 ⟶ ℤ𝑘
2
, 𝜎 ⟼ 𝜖𝜎 = (𝜖𝜎

1
, … , 𝜖𝜎

𝑘
),

where 𝜖𝜎
𝑖
= 1 if 𝜎(𝜆𝑖) = 𝜆𝑖 and 𝜖𝜎𝑖 = −1 if 𝜎(𝜆𝑖) = 𝜆−1

𝑖
. Since𝑁 is the kernel of 𝜙, it is normal and together with the map 𝜄,

we can represent Gal(𝑃) = 𝑁 ⋊ Im(𝜙) as a subgroup of the hyperoctahedral group 𝐺𝑘 = ℤ𝑘
2
⋊ 𝑆𝑘. The whole situation is

visualized in the following commutative diagram:

Here, 𝑖𝑘 ∶ ℤ𝑘
2
→ 𝐺𝑘 is the inclusionmap and 𝜋𝑘 ∶ 𝐺𝑘 → 𝑆𝑘 is the projectionmap, whatmakes of courseℤ𝑘

2

𝑖𝑘
⟶ 𝐺𝑘

𝜋𝑘
⟶

𝑆𝑘 a split exact sequence.

2.4.2 Action of the hyperoctahedral group on the splitting field

In the following, we also want to consider the action of the hyperoctahedral group 𝐺𝑘 on the splitting field 𝑍(𝑃) of 𝑃(𝑋) ∈
ℤ[𝑋] that fits together with the action of Gal(𝑃) from above. Hence, we define the action of 𝐺𝑘 on 𝑍(𝑃) via a permutation
of the roots {𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, … , 𝑘} in the following way: for 𝜖 = (𝜖1, … , 𝜖𝑘) ∈ {(±1,… , ±1)}, every 𝜏 ∈ 𝑆𝑘 and 𝑖 = 1, … , 𝑘 we
define

(𝜖, 𝜏) . 𝜆𝑖 = 𝜆
𝜖𝑖
𝜏(𝑖)

and (𝜖, 𝜏) . 𝜆−1
𝑖

= 𝜆
−𝜖𝑖
𝜏(𝑖)

. (2.4.2)

Lemma 2.4.1. The equalities in Equation (2.4.2) indeed define an action of the group 𝐺𝑘 on the set of roots {𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 =

1, … , 𝑘}.

Proof. We have to show the compatibility with the multiplication on 𝐺𝑘 defined in Equation (2.4.1). Let 𝛿 ∈ {±1} and
𝑖 ∈ {1, … , 𝑘}. For (𝜖, 𝜏), (𝜖̃, 𝜏̃) ∈ 𝐺𝑘, we have

(𝜖, 𝜏).
(
(𝜖̃, 𝜏̃) . 𝜆𝛿

𝑖

)
= (𝜖, 𝜏) . 𝜆

𝛿⋅𝜖̃𝑖
𝜏̃(𝑖)

= 𝜆
(𝛿⋅𝜖̃𝑖 )⋅𝜖𝜏̃(𝑖)

𝜏◦𝜏̃(𝑖)
= (𝜏̃−1(𝜖) ⋅ 𝜖̃, 𝜏◦𝜏̃) . 𝜆𝛿

𝑖
,

what ends the proof since (𝜖, 𝜏) ⋅ (𝜖̃, 𝜏̃) = (𝜏̃−1(𝜖) ⋅ 𝜖̃, 𝜏◦𝜏̃) by the definition of the product on 𝐺𝑘. □

In our subsequent discussion, we shall need to describe the Galois groups Gal(𝑃) such that the map 𝜙 ∶ Gal(𝑃) → 𝑆𝑘 is
onto. The next proposition will help us with that.
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KANY and MATHEUS 1897

Proposition 2.4.2. Let 𝑘 ≥ 2 and 𝑃(𝑋) ∈ ℤ[𝑋] be an irreducible reciprocal polynomial of degree 2𝑘 with 𝜙(Gal(𝑃)) = 𝑆𝑘 .
Then, Gal(𝑃) is isomorphic to one of the following subgroups of 𝐺𝑘 = ℤ𝑘

2
⋊ 𝑆𝑘:

Either Gal(𝑃) ≃ 𝑆𝑘 , Gal(𝑃) ≃ 𝐺𝑘 or Gal(𝑃) is isomorphic to one of the following three subgroups 𝐻𝑘,1, 𝐻𝑘,2, 𝐻𝑘,3 ≤ 𝐺𝑘 ,
where

𝐻𝑘,1 ∶=

{
((𝜖1, … , 𝜖𝑘), 𝜏) ∣

𝑘∏
𝑖=1

𝜖𝑖 = 1

}
,

𝐻𝑘,2 ∶=

{
((𝜖1, … , 𝜖𝑘), 𝜏) ∣ sign(𝜏)

𝑘∏
𝑖=1

𝜖𝑖 = 1

}
,

and 𝐻𝑘,3 ∶= {(+1,… ,+1), (−1, … ,−1)} × 𝑆𝑘.

Proof. For 𝑘 = 2, this is an easy exercise since the only possible subgroups of 𝐺2 = ℤ2
2
⋊ 𝑆2 which surject onto 𝑆2 and

which are not the full group, are groups of order four. In this case

𝐻2,1 = 𝐻2,3 = ⟨ (𝜆1, 𝜆2)(𝜆−11 , 𝜆−1
2
), (𝜆1, 𝜆

−1
1
)(𝜆2, 𝜆

−1
2
) ⟩ ≃ 𝑉4

and

𝐻2,2 = ⟨ (𝜆1𝜆−12 𝜆−1
1
𝜆2) ⟩ ≃ 𝐶4.

For 𝑘 = 3, 4 and all 𝑘 ≥ 5, the result follows as in Proposition 4 in [5] since 𝐴3 is a simple group as well as all 𝐴𝑘 with
𝑘 ≥ 5 and the only non-trivial normal subgroup of 𝐴4 is the Klein four-group 𝑉4 which has index three in 𝐴4. □

Together with the fundamental theorem of the Galois theory, wewill use the next lemma to ensure that the Galois group
of certain reciprocal polynomials 𝑃(𝑋) ∈ ℤ[𝑋] equals the whole hyperoctahedral group, that is, Gal(𝑃) = 𝐺𝑘.

Lemma 2.4.3. Let the hyperoctahedral group 𝐺𝑘 = ℤ𝑘
2
⋊ 𝑆𝑘 act on the splitting field 𝑍(𝑃) = ℚ({𝜆𝑖, 𝜆

−1
𝑖

∣ 𝑖 = 1, … , 𝑘}) of
the polynomial 𝑃(𝑋) ∈ ℤ[𝑋] as explained in Section 2.4.2. Consider the two subgroups 𝐻𝑘,1 and 𝐻𝑘,2 of 𝐺𝑘 defined in
Proposition 2.4.2. Then:

(i) The expression 𝛿𝑘,1 ∶=
∏

𝑖

(
𝜆𝑖 − 𝜆−1

𝑖

)
is invariant under the action of𝐻𝑘,1 but not 𝐺𝑘 .

(ii) The expression 𝛿𝑘,2 ∶=
∏

𝑖<𝑗

(
𝜆𝑖 + 𝜆−1

𝑖
− 𝜆𝑗 − 𝜆−1

𝑗

)∏
𝑖

(
𝜆𝑖 − 𝜆−1

𝑖

)
is invariant under the action of𝐻𝑘,2 but not 𝐺𝑘 .

Proof. For every 𝜏 ∈ 𝑆𝑘 and every 𝑖 ∈ {1, … , 𝑘}, we have

((+1, … ,+1), 𝜏) . (𝜆𝑖 − 𝜆−1
𝑖
) = 𝜆𝜏(𝑖) − 𝜆−1

𝜏(𝑖)
.

This shows that 𝛿𝑘,1 ∈ 𝑍(𝑃) is invariant under the action of 𝑆𝑘.
Now consider (𝜖, id).(𝜆𝑖 − 𝜆−1

𝑖
) for 𝜖 = (𝜖1, … , 𝜖𝑘) ∈ ℤ𝑘

2
and 𝑖 ∈ {1, … , 𝑘}. We have

(𝜖, id) . (𝜆𝑖 − 𝜆−1
𝑖
) = 𝜆𝑖 − 𝜆−1

𝑖
= 𝜖𝑖 (𝜆𝑖 − 𝜆−1

𝑖
) if 𝜖𝑖 = 1,

(𝜖, id) . (𝜆𝑖 − 𝜆−1
𝑖
) = 𝜆−1

𝑖
− 𝜆𝑖 = 𝜖𝑖 (𝜆𝑖 − 𝜆−1

𝑖
) if 𝜖𝑖 = −1.

Furthermore, (𝜖, id).(𝜆𝑖 + 𝜆−1
𝑖
) = 𝜆𝑖 + 𝜆−1

𝑖
for every 𝜖 ∈ ℤ𝑘

2
.

We know sgn(𝜏) = (−1)inv(𝜏) for every element 𝜏 ∈ 𝑆𝑘 with inv(𝜏) ∈ ℕ0 is the number of elements (𝑖, 𝑗) ∈ {1, … , 𝑘} ×

{1, … , 𝑘} with 𝑖 < 𝑗 but 𝜏(𝑖) > 𝜏(𝑗) and thus

((+1, … ,+1), 𝜏) .
(∏
𝑖<𝑗

(𝜆𝑖 + 𝜆−1
𝑖

− 𝜆𝑗 − 𝜆−1
𝑗
)
)

= sgn(𝜏)
(∏
𝑖<𝑗

(𝜆𝑖 + 𝜆−1
𝑖

− 𝜆𝑗 − 𝜆−1
𝑗
)
)
.
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1898 KANY and MATHEUS

Putting this together with the arguments from above, we conclude for every (𝜖, 𝜏) ∈ 𝐺𝑘 = ℤ𝑘
2
⋊ 𝑆𝑘 where 𝜖 = (𝜖1, … , 𝜖𝑘) ∈

{(±1,… , ±1)}:

(𝜖, 𝜏) . 𝛿𝑘,1 =

(
𝑘∏
𝑖=1

𝜖𝑖

)
𝛿𝑘,1 and (𝜖, 𝜏) . 𝛿𝑘,2 = sgn(𝜏)

(
𝑘∏
𝑖=1

𝜖𝑖

)
𝛿𝑘,2

This proves (i) and (ii). □

Remark 2.4.4. For a reciprocalmonic polynomial𝑃(𝑋) ∈ ℤ[𝑋] of degree𝑛 = 2𝑘with set of roots {𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, … , 𝑘} ⊂ ℂ

we can always find a polynomial 𝑄(𝑌) ∈ ℤ[𝑌] such that 1∕𝑋𝑘 ⋅ 𝑃(𝑋) = 𝑄(𝑋 + 1∕𝑋 + 2). The polynomial 𝑄(𝑌) ∈ ℤ[𝑌]

has distinct roots 𝜇𝑖 (𝑖 = 1, … , 𝑘) such that without loss of generality 𝜇𝑖 = 𝜆𝑖 + 𝜆−1
𝑖

+ 2 for all 𝑖 = 1, … , 𝑘. We write in the
following Δ𝑘,1 ∶= 𝛿2

𝑘,1
and Δ𝑘,2 ∶= 𝛿2

𝑘,2
for the squares of the expressions 𝛿𝑘,1 and 𝛿𝑘,2 from Lemma 2.4.3. We have

(i) Δ𝑘,1 = 𝛿2
𝑘,1

=
∏𝑘

𝑖=1
(𝜆𝑖 − 𝜆−1

𝑖
)2 =

∏𝑘

𝑖=1
𝜇𝑖(𝜇𝑖 − 4) = 𝑄(0)𝑄(4)

and

(ii) Δ𝑘,2 = 𝛿2
𝑘,2

=
(∏

𝑖<𝑗
(𝜇𝑖 − 𝜇𝑗)

)2(∏
𝑖
(𝜆𝑖 − 𝜆−1

𝑖
)
)2

= Disc(𝑄)Δ𝑘,1.

This shows Δ𝑘,1, Δ𝑘,2 ∈ ℚ and delivers an easy way how to write Δ𝑘,1 and Δ𝑘,2 in terms of coefficients of 𝑄(𝑌) ∈ ℚ[𝑌].

2.5 Real roots of cubic, quartic, and quintic polynomials

2.5.1 Real roots for cubic polynomials

For a cubic polynomial 𝑄(𝑋) ∈ ℝ[𝑋] with discriminant Disc(𝑄) ≠ 0, it is well known that the number of real roots can
be read from the discriminant as follows. If

Disc(𝑄) > 0, then 𝑄(𝑋) has three real roots,

Disc(𝑄) < 0, then 𝑄(𝑋) has one real root and two non-real roots.
(2.5.1)

2.5.2 Real roots for quartic polynomials

We have a slightly more complicated statement of this form for quartic polynomials as well, so let

𝑄(𝑋) = 𝑋4 + 𝑎𝑋3 + 𝑏 𝑋2 + 𝑐 𝑋 + 𝑑 ∈ ℝ[𝑋]

be a real monic polynomial of degree four. By substituting 𝑋 = 𝑌 − 𝑎∕4, we get the depressed quartic polynomial

𝐷𝑄(𝑌) = 𝑌4 + 𝑞 𝑌2 + 𝑟𝑌 + 𝑠 ∈ ℝ[𝑌], (2.5.2)

with coefficients

𝑞 = 𝑏 − (3∕8) 𝑎2, 𝑟 = 𝑐 − (1∕2) 𝑎 (𝑏 − (1∕4) 𝑎2) and

𝑠 = 𝑑 − (3∕256) 𝑎4 + (1∕16) 𝑎2 𝑏 − (1∕4) 𝑎 𝑐.

For a quartic polynomial in the depressed form as in Equation (2.5.2), there is an easy criterion whether the polynomial
has four real roots or no real roots (see [3]). We want to state the result and denote by Disc(𝐷𝑄) the discriminant of the
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KANY and MATHEUS 1899

polynomial in Equation (2.5.2) and by 𝐹(𝐷𝑄) the expression 𝐹(𝐷𝑄) ∶= 𝑞2 − 4𝑠. If we have

Disc(𝐷𝑄) > 0, 𝑞 ≤ 0, then Equation (2.5.2) has no real roots,

Disc(𝐷𝑄) > 0, 𝐹(𝐷𝑄) ≤ 0, then Equation (2.5.2) has no real roots,

Disc(𝐷𝑄) > 0, 𝑞 < 0, 𝐹(𝐷𝑄) < 0, then Equation (2.5.2) has four real roots.

(2.5.3)

2.5.3 Real roots for quintic polynomials

We want to end this section with a criterion from [10] with which we can find out whether a quintic polynomial in ℝ[𝑋]
has simple real roots. Let

𝑄(𝑋) = 𝑋5 + 𝑎𝑋4 + 𝑏 𝑋3 + 𝑐 𝑋2 + 𝑑 𝑋 + 𝑒 ∈ ℝ[𝑋].

By substituting 𝑋 = 𝑌 − 𝑎∕5 we get a depressed polynomial

𝐷𝑄(𝑌) = 𝑌5 + 𝑝𝑌3 + 𝑞 𝑌2 + 𝑟 𝑌 + 𝑠 ∈ ℝ[𝑋]. (2.5.4)

With the help of the following four discriminants, we can find out whether 𝐷𝑄(𝑌) has simple real roots. We define

𝐹1(𝐷𝑄) = −𝑝,

𝐹2(𝐷𝑄) = 40 𝑟 𝑝 − 12𝑝3 − 45 𝑞2,

𝐹3(𝐷𝑄) = 12𝑝4 𝑟 − 4𝑝3 𝑞2 + 117 𝑝 𝑟 𝑞2 − 88 𝑟2 𝑝2 − 40 𝑞 𝑝2 𝑠

+ 125 𝑝 𝑠2 − 27 𝑞4 − 300 𝑞 𝑟 𝑠 + 160 𝑟3,

𝐹4(𝐷𝑄) = −1600 𝑞 𝑠 𝑟3 − 3750 𝑝 𝑠3 𝑞 + 2000 𝑝 𝑠2 𝑟2 − 4𝑝3 𝑞2 𝑟2

+ 16𝑝3 𝑞3 𝑠 − 900 𝑟 𝑠2 𝑝3 + 825 𝑞2 𝑝2 𝑠2 + 144 𝑝 𝑞2 𝑟3

+ 2250 𝑞2 𝑟 𝑠2 + 16 𝑝4 𝑟3 + 108 𝑝5 𝑠2 − 128 𝑟4 𝑝2 − 27 𝑞4 𝑟2

+ 108 𝑞5 𝑠 + 256 𝑟5 + 3125 𝑠4 − 72𝑝4 𝑟 𝑠 𝑞 + 560 𝑟2 𝑝2 𝑠 𝑞

− 630 𝑝 𝑟 𝑞3 𝑠.

(2.5.5)

In [10], they classified the number of real roots and their multiplicity of a depressed quintic polynomial as in Equa-
tion (2.5.4) using six discriminants among which are the four discriminants from Equation (2.5.5). We only state for us the
relevant case, namely if the four discriminants 𝐹1(𝐷𝑄), 𝐹2(𝐷𝑄), 𝐹3(𝐷𝑄), and 𝐹4(𝐷𝑄) are positive then the polynomial
𝐷𝑄(𝑌) in Equation (2.5.4) has five simple real roots.

3 GENUS FOUR STAIRS

We found our infinite families of origamis with arithmetic Kontsevich–Zorich monodromies among “stairs origamis” as
shown in Figures 1, 2, and Figure 6. We used the cylinder decomposition in certain directions to construct elements in the
Kontsevich–Zorich monodromies of the mentioned origamis from above. Hereby, we started analyzing small cases of the
“stairs prototypes” and then tried to extend them by adding a number of squares satisfying adequate arithmetic conditions
to keep the same features of the cylinder decomposition. Also, we think that this kind of “uniform” approach based on a
few directions could be generalized once 𝑆𝐿(2, ℤ)-orbits of origamis are classified.
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1900 KANY and MATHEUS

F IGURE 1 The origami (4)
𝑁,𝑀 .

3.1 Dehn twists in genus four

Let 𝑁 ≥ 4 and 𝑀 = 4 + 2𝑚 with 𝑚 ≥ 0. We consider the origami (4)
𝑁,𝑀 associated with the pair of permutations ℎ, 𝑣 ∈

Sym({1, … ,𝑁 +𝑀 + 2}), where

ℎ = (1, 2, 3… ,𝑁)(𝑁 + 1,𝑁 + 2,𝑁 + 3)(𝑁 + 4,𝑁 + 5)(𝑁 + 6)… (𝑀)

𝑣 =(1, 𝑁 + 1, 𝑁 + 4, 𝑁 + 6,… ,𝑁 +𝑀)(2, 𝑁 + 2, 𝑁 + 5)(3, 𝑁 + 3)

(4)… (𝑁).

see Figure 1.
The Kontsevich–Zorich monodromy of (4)

𝑁,𝑀 was studied in Section 5 in [1] via the analysis of Dehn twists in several
rational directions. You can find all the details how we constructed the following matrices in Section 5 of the article [1]
and so we will omit this part.
For the purpose of finding a Galois pinching element in 𝑆𝑝

(
𝐻
(0)
1
((4)

𝑁,𝑀,ℤ)
)
, we consider the horizontal and vertical

directions which lead to Dehn twists acting on an appropriate basis of𝐻(0)
1
((4)

𝑁,𝑀,ℚ) via the matrices

𝑀
(0)

ℎ
=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 3𝑁 3𝑁

0 1 0 2𝑁 2𝑁 2𝑁

0 0 1 −6 −12 −6(𝑀 − 1)

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
,

𝑀
(0)
𝑣 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −3𝑀 −3𝑀 1 0 0

−2𝑀 −2𝑀 −2𝑀 0 1 0

6 12 6(𝑁 − 1) 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
.
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KANY and MATHEUS 1901

Furthermore, in [1, Section 5.3] the authors showed that the directions (1, 1), (1, −1) and (1, 2) provide Dehn twists
acting on a non-isotropic three dimensional subspace𝑊 ⊂ 𝐻

(0)
1
((4)

𝑁,𝑀,ℚ) via the matrices

𝐷𝛿|𝑊 =

⎛⎜⎜⎜⎝
1 𝑎 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠, 𝐷𝜒|𝑊 =

⎛⎜⎜⎜⎝
1 0 0

−𝑎 1 0

0 0 1

⎞⎟⎟⎟⎠ and

𝐷𝛾|𝑊 =

⎛⎜⎜⎜⎜⎜⎝

2
𝑏𝑐

𝑎
+ 1 2

𝑐2

𝑎
0

−2
𝑏2

𝑎
−2

𝑏𝑐

𝑎
+ 1 0

𝑏

𝑎

𝑐

𝑎
1

⎞⎟⎟⎟⎟⎟⎠
with respect to an appropriate basis, where 𝑎 = 22 − 4𝑁 − 4𝑀, 𝑏 = 6 + 3𝑚 and 𝑐 = 12 − 3𝑁 + 9𝑚. If we choose 𝑐 = 0 or
equivalently𝑁 = 3𝑚 + 4, then the group generated by𝐷𝛿|𝑊, 𝐷𝜒|𝑊, 𝐷𝛾|𝑊 contains a non-trivial element of the unipotent
radical of the symplectic group on𝑊, namely (𝐷𝜒|𝑊)−2𝑏2◦(𝐷𝛾|𝑊)𝑎2 is represented by

⎛⎜⎜⎝
1 0 0

0 1 0

𝑏 𝑎 0 1

⎞⎟⎟⎠ .

3.2 Zariski density and arithmeticity for a genus four family

At this point, we are ready to establish the arithmeticity of the Kontsevich–Zorich monodromy of (4)
𝑁,𝑀 for many choices

of 𝑁,𝑀. More precisely, consider the matrix

𝐴4(𝑁,𝑀) ∶= 𝑀
(0)

ℎ
⋅ 𝑀

(0)
𝑣 ∈ ℝ6×6.

The characteristical polynomial of 𝐴4(𝑁,𝑀) is a reciprocal, sextic polynomial

𝑃(𝑋) = 𝜒𝐴(𝑋) = 𝑋6 + 𝑎1 𝑋
5 + 𝑎2 𝑋

4 + 𝑎3 𝑋
3 + 𝑎2 𝑋

2 + 𝑎1 𝑋 + 1 ∈ ℤ[𝑋]

and the coefficients 𝑎1, 𝑎2, 𝑎3 ∈ ℝ are given by

𝑎1 = 312𝑚2 + 650𝑚 + 238,

𝑎2 = 22032𝑚4 + 98280𝑚3 + 146568𝑚2 + 84520𝑚 + 15743,

𝑎3 = 279936𝑚6 + 2099520𝑚5 + 6161184𝑚4 + 8927280𝑚3

+ 6611328𝑚2 + 2317980𝑚 + 299812.

We have 1∕𝑋3 ⋅ 𝑃(𝑋) = 𝑄(𝑋 + 1∕𝑋 + 2) for the cubic polynomial

𝑄(𝑌) = 𝑌3 + (𝑎1 − 6)𝑌2 + (−4 𝑎1 + 𝑎2 + 9)𝑌 + 2𝑎1 − 2𝑎2 + 𝑎3 − 2. (3.2.1)

For𝑚 ≡ 1modulo 13, the polynomials 𝑃(𝑋) and 𝑄(𝑌) can be written by irreducible factors modulo 13 as

𝑃(𝑋) ≡ 𝑥6 + 4𝑋5 + 10𝑋4 + 6𝑋3 + 10𝑋2 + 4𝑋 + 1modulo 13 and

𝑄(𝑌) ≡ 𝑋3 + 11𝑋2 + 3𝑋 + 5modulo 13.
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1902 KANY and MATHEUS

In the following, we will assume 𝑚 ≡ 1 modulo 13 and thus the polynomials 𝑃(𝑋) and 𝑄(𝑌) are irreducible over the
rational numbersℚ.
As in Section 2.4, we will identify the Galois group Gal(𝑃) of the reciprocal degree 6 polynomial 𝑃(𝑋) ∈ ℤ[𝑋] with a

subgroup of the hyperoctahedral group 𝐺3 as well as with a subgroup of the permutation group 𝑆6 (see Section 2.2). The
discriminant Disc(𝑄) of the polynomial 𝑄(𝑌) ∈ ℤ[𝑌] has an irreducible factorization in terms of𝑚 as

Disc(𝑄) = 𝑐9

(
8∑
𝑖=0

𝑐𝑖 𝑚
𝑖

)
(𝑚 + 2)2 (3𝑚 + 4)2,

with coefficients

𝑐9 = 186624, 𝑐8 = 1778112, 𝑐7 = 7832160,

𝑐6 = 14307444, 𝑐5 = 13909500, 𝑐4 = 8133701,

𝑐3 = 2980770, 𝑐2 = 676093, 𝑐1 = 87020,

𝑐0 = 4900.

By Siegel’s theoremon integral points of algebraic curves (see, e.g., [4]), we have that the discriminant of𝑄(𝑌) is a square
of a rational number only for finitely many choices of 𝑚. This implies that Gal(𝑄) = 𝑆3 for all but finitely many 𝑚 ∈ ℕ

with𝑚 ≡ 1modulo 13. Furthermore, Gal(𝑃), the Galois-group of 𝑃(𝑋) ∈ ℤ[𝑋], is a subgroup of the hyperoctahedral group
𝐺3 = ℤ3

2
⋊ 𝑆3 such that Gal(𝑃) projects surjectively onto 𝑆3.

The only non-trivial subgroups of 𝐺3 = ℤ3
2
⋊ 𝑆3 which project surjectively onto 𝑆3 are the groups 𝐻3,1, 𝐻3,2, and 𝐻3,3

defined in Lemma 2.4.2.
Next, we want to factorize the expressions Δ3,1 = 𝛿2

3,1
and Δ3,2 = 𝛿2

3,2
from Lemma 2.4.3 in terms of𝑚. We get

Δ3,1 = 𝛿2
3,1

= 𝑐7

(
6∑
𝑖=0

𝑐𝑖 𝑚
𝑖

)
(2𝑚 + 1)(3𝑚 + 1)(𝑚 + 2)2(3𝑚 + 4)2

with coefficients

𝑐7 = 165888, 𝑐6 = 8748, 𝑐5 = 65610, 𝑐4 = 191160,

𝑐3 = 272835, 𝑐2 = 197463, 𝑐1 = 67195, 𝑐0 = 8400.

and Δ3,2 = 𝛿2
3,2

= Δ3,1 ⋅ Disc(𝑄).
By applying Siegel’s theorem again, we see that the expressions 𝛿3,1 and 𝛿3,2 are not rational numbers for all but finitely

many𝑚 ∈ ℕwith𝑚 ≡ 1modulo 13. In particular, the Galois group Gal(𝑃) of 𝑃(𝑋) is not contained in the subgroups𝐻3,1

or𝐻3,2 of the hyperoctahedral group 𝐺3 by the fundamental theorem of the Galois theory and Lemma 2.4.3.
Furthermore, if we have𝑚 ≡ 1modulo 11, the discriminant Disc(𝑃) of 𝑃(𝑋) ∈ ℤ[𝑋] is not divisible by 11 since Disc(𝑃) =

9modulo 11 and the polynomial 𝑃(𝑋) ∈ ℤ[𝑋] can be written by irreducible factors as

𝑃(𝑋) ≡ (𝑋2 + 10𝑋 + 1)(𝑋4 + 2𝑋3 + 8𝑋2 + 2𝑋 + 1)modulo 11.

If we view Gal(𝑃) as a subgroup of Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, 2, 3}), then Dedekind’s theorem (cf. Section 2.2) says that Gal(𝑃)
contains a permutation of type (2,4) for 𝑚 ≡ 1 modulo 11. The groups 𝑆3 and 𝐻3,3 ≤ 𝐺3 on the other hand contain only
non-trivial permutations of cycle type (6), (3, 3), (2, 2, 2), or (1,1,2,2) (see Appendix A). Hence, Gal(𝑃) is not contained in
one of the groups 𝑆3, or𝐻3,3 of 𝐺3 for𝑚 ≡ 1modulo 11.
In summary, we showed the main part of the following proposition:

Proposition 3.2.1. For all but finitely many choices of𝑚 ∈ ℕ such that𝑚 ≡ 1modulo 𝑝, where 𝑝 ∈ {11, 13}, we have that
𝐴4(𝑁,𝑀) = 𝑀

(0)

ℎ
⋅ 𝑀

(0)
𝑣 ∈ ℝ6×6 is a Galois pinching matrix.
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KANY and MATHEUS 1903

Proof. The discriminant Disc(𝑄(𝑌)) of the cubic polynomial 𝑄(𝑌) ∈ ℤ[𝑌] from Equation (3.2.1) converges to infinity for
growing 𝑚. This shows that 𝑄(𝑌) has three distinct real roots for 𝑚 ≡ 1 modulo 13 big enough. Furthermore for 𝑚 big
enough all the coefficients of the polynomial 𝑄(𝑌) are positive and hence by Decarte’s rule of signs the three roots 𝜇1, 𝜇2,
and 𝜇3 of 𝑄(𝑌) are negative. Furthermore

𝜇𝑖 = 𝜆𝑖 + 𝜆−1
𝑖

+ 2 for 𝑖 = 1, 2, 3,

for the six roots {𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, 2, 3} of 𝑃(𝑋). With 𝜆−1
𝑖

= 𝜆𝑖∕|𝜆𝑖|, we conclude for the imaginary part Im(𝜇𝑖) of 𝜇𝑖 for every
𝑖 = 1, 2, 3:

0 = Im(𝜇𝑖) = Im(𝜆𝑖)(1 − 1∕|𝜆𝑖|)
This shows |𝜆𝑖| = 1 or Im(𝜆𝑖) = 0 for every 𝑖 = 1, 2, 3. Assume that Im(𝜆𝑗) ≠ 0 for some 𝑗 ∈ {1, 2, 3}. Then, |𝜆𝑗| = 1 and

0 > Re(𝜇𝑗) = Re(𝜆𝑗 + 𝜆−1
𝑗

+ 2) = Re(𝜆𝑗) + Re(𝜆𝑗) + 2.

This would imply Re(𝜆𝑗) < −1 a contradiction to |𝜆𝑗| = 1.
This shows that all roots of 𝑃(𝑋) are real for 𝑚 ≡ 1 modulo 13 big enough. Together with the calculations on Gal(𝑃)

from this section we conclude that 𝐴4(𝑁,𝑀) ∈ ℝ6×6 is a Galois pinching matrix for every natural number𝑚 big enough
such that𝑚 ≡ 1modulo 𝑝, where 𝑝 ∈ {11, 13}. □

From this statement, it is not hard to show that:

Theorem 3.2.2. The Kontsevich–Zorich monodromies of the genus four origamis (4)
𝑁,𝑀 ∈ (6) with𝑀 = 2𝑚 + 4 and𝑁 =

3𝑚 + 4 are finite index subgroups of the symplectic group Sp
(
𝐻
(0)
1
((4)

𝑁,𝑀,ℤ)
)
for all but perhaps finitely many𝑚 ∈ ℕ such

that𝑚 ≡ 1modulo 𝑝, where 𝑝 ∈ {11, 13}.

Proof. One can check that the matrix 𝐵 ≠ Id associated with an appropriate Dehn twist in the direction (1,1) is a unipotent
matrix such that the image (𝐵 − Id)(ℝ6) is one-dimensional and hence not a Lagrangian subspace (cf. the relevant matrix
𝐵 is called 𝑀(0)

𝛿
in Section 5.1 of [1]). Since the matrix 𝐴4(𝑁,𝑀) is Galois pinching for all but finitely many choices of

𝑚 ∈ ℕ with 𝑚 ≡ 1 modulo 𝑝, where 𝑝 ∈ {11, 13} as in Proposition 3.2.1. The desired result follows now from Singh–
Venkataramana’s arithmeticity criterion (cf. Section 2.1). □

4 GENUS FIVE STAIRS

For 𝑁,𝑀 ∈ ℕ with 𝑀 = 6 + 4𝑚 (𝑚 ∈ ℕ), we consider the origami (5)
𝑁,𝑀 that is given by the following horizontal and

vertical permutation ℎ, 𝑣 ∈ Sym({1, 2, … ,𝑁 +𝑀 + 5}):

ℎ = (1, … ,𝑁)(𝑁 + 1,… ,𝑁 + 4)(𝑁 + 5,… ,𝑁 + 7)

(𝑁 + 8,𝑁 + 9)(𝑁 + 10)… (𝑁 +𝑀 + 5)

𝑣 = (1,𝑁 + 1,𝑁 + 5,𝑁 + 8,𝑁 + 10,… ,𝑁 +𝑀 + 5)

(2,𝑁 + 2,𝑁 + 6,𝑁 + 9)(3,𝑁 + 3,𝑁 + 7)(4,𝑁 + 4)(5)… (𝑁).

The five waist curves 𝜎1, … , 𝜎4, 𝜎𝑁 of the maximal horizontal cylinders together with the waist curves 𝜁1, … , 𝜁5, 𝜁𝑀 of the
maximal vertical cylinders form a basis 𝐵 of the absolute homology𝐻1

((5)
𝑁,𝑀,ℚ

)
of the origami(5)

𝑁,𝑀 , see Figure 2. With

respect to the basis 𝐵 the symplectic intersection form Ω on 𝐻1((5)
𝑁,𝑀,ℚ) has a matrix representation𝑀Ω = (Ω(𝜎𝑖, 𝜁𝑗)𝑖,𝑗

given by
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1904 KANY and MATHEUS

F IGURE 2 Origami (5)
𝑁,𝑀 with horizontal waist curves 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎𝑁 and vertical waist curves 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁𝑀 .

𝑀Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1 1

0 0 0 0 −1 0 0 0 0 0

0 0 0 −1 −1 0 0 0 0 0

0 0 −1 −1 −1 0 0 0 0 0

0 −1 −1 −1 −1 0 0 0 0 0

−1 −1 −1 −1 −1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we compare the length of the waist curves of the five maximal horizontal and vertical cylinders of (5)
𝑁,𝑀 , we see that

𝐵(0) = {Σ1, Σ2, Σ3, Σ𝑁, 𝑍1, 𝑍2, 𝑍3, 𝑍𝑀}

is a basis of the non-tautological part𝐻(0)
1
((5)

𝑁,𝑀,ℚ), where

Σ1 ∶= 𝜎2 − 2𝜎1, Σ2 ∶= 𝜎3 − 3𝜎1, Σ3 ∶= 𝜎4 − 4𝜎1, Σ𝑁 ∶= 𝜎𝑁 − 𝑁 𝜎1,

𝑍1 ∶= 𝜁2 − 2 𝜁1, 𝑍2 ∶= 𝜁3 − 3 𝜁1, 𝑍3 ∶= 𝜁4 − 4 𝜁1, 𝑍𝑀 ∶= 𝜁𝑀 −𝑀 𝜁1.

If we restrict the intersection formΩ to the subspace𝐻(0)
1
((5)

𝑁,𝑀,ℚ) of the absolute homology then it can be represented
by the following matrix𝑀Ω(0) = (Ω|𝐻(0)

1
(Σ𝑖, 𝑍𝑗))𝑖,𝑗 with respect to the basis 𝐵(0) from above:

𝑀Ω(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 −1

0 0 0 0 0 1 1 −2

0 0 0 0 1 1 1 −3

0 0 0 0 −1 −2 −3 1 − 𝑁 −𝑀

0 0 −1 1 0 0 0 0

0 −1 −1 2 0 0 0 0

−1 −1 −1 3 0 0 0 0

1 2 3 𝑀 + 𝑁 − 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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KANY and MATHEUS 1905

F IGURE 3 Cylinder decomposition in direction (1,2) and direction (1, −2) of the origami (5)
𝑁,𝑀 . Here, 𝛾1 is the waist curve of the blue

cylinder in the direction (1,2) and 𝛼1 is the waist curve of the blue cylinder in the direction (1, −2).

4.1 Dehn twists in genus five

Before we start with our calculations for the origami (5)
𝑁,𝑀 , we want to explain what we mean by length or combinatorial

length of a curve in an origami.

Remark 4.1.1. For an origami 𝜋 ∶  → ℝ2∕ℤ2 and a curve 𝛾 ∶ [0, 1] → ,wemean by (combinatorial) length the number
of 𝑡 ∈ (0, 1] such that 𝜋(𝛾(𝑡)) = 𝜋(𝛾(0)).

Now, we can start with our calculations. Recall that𝑀 = 6 + 4𝑚. In this case, the cylinder decompositions of (5)
𝑁,𝑀 in

the directions (1,2), (1, −2), and (1,4) have the following structure (Figure 3 and 4).
In the direction (1,2), we find a waist curve 𝛾1 of length 3 + 2𝑚 and a waist curve 𝛾2 of length 8 + 𝑁 + 2𝑚. Thus,

Γ ∶= (8 + 𝑁 + 2𝑚)𝛾1 − (3 + 2𝑚)𝛾2 ∈ 𝐻
(0)
1

((5)
𝑁,𝑀,ℤ

)
and this direction yields a transvection

𝐷𝛾 ∶ 𝑣 ⟼ 𝑣 + (8 + 𝑁 + 2𝑚)Ω(𝛾1, 𝑣) 𝛾1 + (3 + 2𝑚)Ω(𝛾2, 𝑣) 𝛾2.

For later reference, let us observe that:

Ω(𝛾1, 𝜎1) = −1, Ω(𝛾1, 𝜎2) = −1, Ω(𝛾1, 𝜎3) = −1,

Ω(𝛾1, 𝜎4) = −1, Ω(𝛾1, 𝜎𝑁) = −1,

Ω(𝛾1, 𝜁1) = 0, Ω(𝛾1, 𝜁2) = 0, Ω(𝛾1, 𝜁3) = 0,

Ω(𝛾1, 𝜁4) = 1, Ω(𝛾1, 𝜁𝑀) = 2 + 2𝑚
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1906 KANY and MATHEUS

F IGURE 4 Origami (5)
𝑁,𝑀 with cylinder decomposition in the direction (1, 4). Here, 𝜒1 is the waist curve of the blue cylinder.

and

Ω(𝛾2, 𝜎1) = −1, Ω(𝛾2, 𝜎2) = −3, Ω(𝛾2, 𝜎3) = −5,

Ω(𝛾2, 𝜎4) = −7, Ω(𝛾2, 𝜎𝑁) = 1 − 2𝑁,

Ω(𝛾2, 𝜁1) = 1, Ω(𝛾2, 𝜁2) = 2, Ω(𝛾2, 𝜁3) = 3,

Ω(𝛾2, 𝜁4) = 3, Ω(𝛾2, 𝜁𝑀) = 4 + 2𝑚

We can write Γ ∈ 𝐻
(0)
1
(𝑁,𝑀,ℤ) as a linear combination of elements of 𝐵(0) in the following way:

Γ = − (𝑁 + 2𝑚 + 8) Σ1 + (2𝑚 + 3) Σ2 + (2𝑚 + 3) Σ3 + (2𝑚 + 3) Σ𝑁

+𝑀 𝑍1 +𝑀 𝑍2 +𝑀 𝑍3 − (𝑁 + 5) 𝑍𝑀

Furthermore, we calculate

𝐷𝛾(Σ1) = Σ1 + Γ, 𝐷𝛾(Σ2) = Σ2 + 2Γ,

𝐷𝛾(Σ3) = Σ3 + 3Γ, 𝐷𝛾(Σ𝑁) = Σ𝑁 + (𝑁 − 1)Γ,

𝐷𝛾(𝑍1) = 𝑍1, 𝐷𝛾(𝑍2) = 𝑍2,

𝐷𝛾(𝑍3) = 𝑍3 + Γ, 𝐷𝛾(𝑍𝑀) = 𝑍𝑀 + (2 + 2𝑚)Γ.

(4.1.1)

In the direction (1, −2), we have a waist curve 𝛼1 of length 2 and a waist curve 𝛼2 of length 9 + 𝑁 + 4𝑚. This yields a
transvection

𝐷𝛼 ∶ 𝑣 ⟼ 𝑣 + (9 + 𝑁 + 4𝑚)Ω(𝛼1, 𝑣) 𝛼1 + 2Ω(𝛼2, 𝑣) 𝛼2.

Again, for later reference, we note that:

Ω(𝛼1, 𝜎1) = 0, Ω(𝛼1, 𝜎2) = 1, Ω(𝛼1, 𝜎3) = 1,
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KANY and MATHEUS 1907

Ω(𝛼1, 𝜎4) = 1, Ω(𝛼1, 𝜎𝑁) = 1,

Ω(𝛼1, 𝜁1) = 0, Ω(𝛼1, 𝜁2) = 0, Ω(𝛼1, 𝜁3) = 0,

Ω(𝛼1, 𝜁4) = 1, Ω(𝛼1, 𝜁𝑀) = 1,

and

Ω(𝛼2, 𝜎1) = 2, Ω(𝛼2, 𝜎2) = 3, Ω(𝛼2, 𝜎3) = 5,

Ω(𝛼2, 𝜎4) = 7, Ω(𝛼2, 𝜎𝑁) = 2𝑁 − 1,

Ω(𝛼2, 𝜁1) = 1, Ω(𝛼2, 𝜁2) = 2, Ω(𝛼2, 𝜁3) = 3,

Ω(𝛼2, 𝜁4) = 3, Ω(𝛼2, 𝜁𝑀) = 5 + 4𝑚,

We can write 𝐴 = (9 + 𝑁 + 4𝑀)𝛼1 − 2𝛼2 ∈ 𝐻
(0)
1

((5)
𝑁,𝑀,ℤ

)
as a linear combination of elements of 𝐵(0) as

𝐴 = −(9 + 𝑁 + 4𝑚)Σ1 + 2Σ2 + 2Σ3 + 2Σ𝑁 − 4𝑍1 − 4𝑍2 + (7 + 𝑁 + 4𝑚)𝑍3 − 4𝑍𝑀.

We calculate

𝐷𝛼(Σ1) = Σ1 + 𝐴, 𝐷𝛼(Σ2) = Σ2 + 𝐴,

𝐷𝛼(Σ3) = Σ3 + 𝐴,𝐷𝛼(Σ𝑁) = Σ𝑁 + 𝐴,

𝐷𝛼(𝑍1) = 𝑍1, 𝐷𝛼(𝑍2) = 𝑍2,

𝐷𝛼(𝑍3) = 𝑍3 + 𝐴,𝐷𝛼(𝑍𝑀) = 𝑍𝑀 + 𝐴.

(4.1.2)

This leads to a matrix representation 𝑀
(0)
𝛼 of 𝐷𝛼 on 𝐻

(0)
1
((5)

𝑁,𝑀,ℚ) with respect to the basis 𝐵(0). It can be seen in
Appendix B.
Finally, in the direction (1,4), we find a waist curve 𝜒1 of length 1 + 𝑁 +𝑚 and a waist curve 𝜒2 of length 10 + 3𝑚. The

transvection associated with this direction is:

𝐷𝜒 ∶ 𝑣 ⟼ 𝑣 + (10 + 3𝑚)Ω(𝜒1, 𝑣) 𝜒1 + (1 + 𝑁 +𝑚)Ω(𝜒2, 𝑣) 𝜒2

Also, let us remark that:

Ω(𝜒1, 𝜎1) = −1, Ω(𝜒1, 𝜎2) = −2, Ω(𝜒1, 𝜎3) = −4,

Ω(𝜒1, 𝜎4) = −6, Ω(𝜒1, 𝜎𝑁) = −6 − 4(𝑁 − 4),

Ω(𝜒1, 𝜁1) = 1, Ω(𝜒1, 𝜁2) = 1, Ω(𝜒1, 𝜁3) = 1,

Ω(𝜒1, 𝜁4) = 1, Ω(𝜒1, 𝜁𝑀) = 2 + 𝑚,

(4.1.3)

as well as

Ω(𝜒2, 𝜎1) = −3, Ω(𝜒2, 𝜎2) = −6, Ω(𝜒2, 𝜎3) = −8,

Ω(𝜒2, 𝜎4) = −10, Ω(𝜒2, 𝜎𝑁) = −10,

Ω(𝜒2, 𝜁1) = 0, Ω(𝜒2, 𝜁2) = 1, Ω(𝜒2, 𝜁3) = 2,

Ω(𝜒2, 𝜁4) = 3, Ω(𝜒2, 𝜁𝑀) = 4 + 3𝑚.

(4.1.4)

 15222616, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300085 by U
niversitaet D

es Saarlandes, W
iley O

nline L
ibrary on [27/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1908 KANY and MATHEUS

F IGURE 5 Origami (5)
𝑁,𝑀 with cylinder decomposition in the vertical and horizontal directions.

We can write 𝑋 = (3𝑚 + 10) 𝜒1 − (𝑁 +𝑚 + 1)𝜒2 ∈ 𝐻
(0)
1

((5)
𝑁,𝑀,ℤ

)
as a linear combination of elements of 𝐵(0) as

𝑋 = (𝑁 +𝑚 + 1) Σ1 + (𝑁 +𝑚 + 1) Σ2 + (𝑁 +𝑚 + 1)Σ3 − (3𝑚 + 10)Σ𝑁

+ (2𝑁 − 4𝑚 − 18) 𝑍1 + (2𝑁 − 4𝑚 − 18) 𝑍2 + (3𝑁 − 7) 𝑍3 + (3𝑁 − 7) 𝑍𝑀.

We calculate for the image of 𝐵(0) under 𝐷𝜒:

𝐷𝜒(Σ1) = Σ1, 𝐷𝜒(Σ2) = Σ2 − 𝑋,

𝐷𝜒(Σ3) = Σ3 − 2𝑋,𝐷𝜒(Σ𝑁) = Σ𝑁 − (3𝑁 − 10)𝑋,

𝐷𝜒(𝑍1) = 𝑍1 − 𝑋,𝐷𝜒(𝑍2) = 𝑍2 − 2𝑋,

𝐷𝜒(𝑍3) = 𝑍3 − 3𝑋,𝐷𝜒(𝑍𝑀) = 𝑍𝑀 − (4 + 3𝑚)𝑋.

(4.1.5)

For the cylinder decompositions of the origami (5)
𝑁,𝑀 in the horizontal, resp. vertical direction, we get in both cases

five maximal cylinders with moduli 1∕(𝑀 − 4), 2∕1, 3∕1, 4∕1, 𝑁∕1 for the horizontal direction and moduli 1∕(𝑁 −

4), 2∕1, 3∕1, 4∕1, 𝑀∕1 for the vertical direction (see Figure 5a,b). We get two Dehn twists which act on 𝐻(0)
1

((5)
𝑁,𝑀,ℚ

)
by the following mapping rules:

𝐷ℎ ∶ 𝑤 ⟼𝑤 + 12(𝑀 − 4)𝑁 Ω(𝜎1, 𝑤) 𝜎1 + 6𝑁Ω(𝜎2, 𝑤) 𝜎2

+4𝑁 Ω(𝜎3, 𝑤) 𝜎3 + 3𝑁Ω(𝜎4, 𝑤) 𝜎4 + 12 Ω(𝜎𝑁,𝑤) 𝜎𝑁,

𝐷𝑣 ∶ 𝑤 ⟼ 𝑤 + 12(𝑁 − 4)𝑀 Ω(𝜁1, 𝑤) 𝜁1 + 6𝑀 Ω(𝜁2, 𝑤) 𝜁2

+4𝑀 Ω(𝜁3, 𝑤) 𝜁3 + 3𝑁Ω(𝜁4, 𝑤) 𝜁4 + 12 Ω(𝜁𝑀,𝑤) 𝜁𝑀.
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KANY and MATHEUS 1909

It is now easy to calculate representation matrices𝑀(0)

ℎ
and𝑀(0)

𝑣 for the action of the horizontal and vertical twist on

𝐻
(0)
1

((5)
𝑁,𝑀,ℚ

)
with respect to the basis 𝐵(0):

𝑀
(0)

ℎ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 6𝑁 6𝑁

0 1 0 0 0 4𝑁 4𝑁 4𝑁

0 0 1 0 3𝑁 3𝑁 3𝑁 3𝑁

0 0 0 1 −12 −24 −36 12 − 12𝑀

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

𝑀
(0)
𝑣 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 −6𝑀 −6𝑀 1 0 0 0

0 −4𝑀 −4𝑀 −4𝑀 0 1 0 0

−3𝑀 −3𝑀 −3𝑀 −3𝑀 0 0 1 0

12 24 36 −12 + 12𝑁 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4.2 Finding a family of candidates in genus five

If we compare the length of waist curves obtained by cylinder decompositions in the previous subsection, we can find the
following elements of the non-tautological part𝐻(0)

1

((5)
𝑁,𝑀,ℤ

)
:

𝑋 = (3𝑚 + 10) 𝜒1 − (𝑁 +𝑚 + 1)𝜒2

= (𝑁 +𝑚 + 1) Σ1 + (𝑁 +𝑚 + 1) Σ2

+(𝑁 +𝑚 + 1)Σ3 − (3𝑚 + 10)Σ𝑁

+(2𝑁 − 4𝑚 − 18) 𝑍1 + (2𝑁 − 4𝑚 − 18) 𝑍2

+(3𝑁 − 7) 𝑍3 + (3𝑁 − 7) 𝑍𝑀,

𝐴 = (9 + 𝑁 + 4𝑀)𝛼1 − 2𝛼2

= −(9 + 𝑁 + 4𝑚)Σ1 + 2Σ2 + 2Σ3 + 2Σ𝑁

−4𝑍1 − 4𝑍2 + (7 + 𝑁 + 4𝑚)𝑍3 − 4𝑍𝑀,

Γ = (8 + 𝑁 + 2𝑚)𝛾1 − (3 + 2𝑚)𝛾2

= −(𝑁 + 2𝑚 + 8) Σ1 + (2𝑚 + 3) Σ2 + (2𝑚 + 3) Σ3 + (2𝑚 + 3) Σ𝑁

+𝑀 𝑍1 +𝑀 𝑍2 +𝑀 𝑍3 − (𝑁 + 5) 𝑍𝑀.
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1910 KANY and MATHEUS

We consider the subspace𝑊 = Spanℚ({𝑋,𝐴, Γ}) of𝐻
(0)
1

((5)
𝑁,𝑀,ℚ

)
. With respect to the basis {𝑋, 𝐴, Γ}, we can represent

the restrictions of the Dehn twists𝐷𝜒 ,𝐷𝛼, and𝐷𝛾 to𝑊 by the following three matrices (compare Equations (4.1.1), (4.1.2),
and (4.1.5)):

⎛⎜⎜⎝
1 𝑏 𝑎

0 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

−𝑏 1 𝑐

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

0 1 0

−𝑎 −𝑐 1

⎞⎟⎟⎠ ,
where 𝑎 = −5𝑁 − 3𝑁𝑚 + 5𝑚 + 5, 𝑏 = −9𝑁 + 21 and 𝑐 = −2𝑁 + 8𝑚 + 2. The element 𝑒 ∶= −𝑐 𝑋 + 𝑎𝐴 − 𝑏 Γ ∈ 𝑊 is
invariant under (𝐷𝜒)|𝑊, (𝐷𝛼)|𝑊 respectively (𝐷𝛾)|𝑊 . The two waist curves 𝛾1, 𝛾2 are linear independent in 𝐻1((5)

𝑁,𝑀,ℚ)

and the same holds for the waist curves 𝛼1, 𝛼2 and 𝜒1, 𝜒2. From the definition of the transvections 𝐷𝜒 , 𝐷𝛼, and 𝐷𝛾 and
the fact that the element 𝑒 is invariant under them, we can directly seeΩ(𝑒, 𝑤) = 0 for all𝑤 ∈ 𝑊. With respect to the new
basis {𝑋, 𝐴, 𝑒} of𝑊 we have the following matrix representations for (𝐷𝜒)|𝑊, (𝐷𝛼)|𝑊 and (𝐷𝛾)|𝑊 :

⎛⎜⎜⎝
1 𝑏 0

0 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

−𝑏 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎝

𝑎𝑐

𝑏
+ 1

𝑐2

𝑏
0

−
𝑎2

𝑏
−
𝑎𝑐

𝑏
+ 1 0

𝑎

𝑏

𝑐

𝑏
1

⎞⎟⎟⎟⎟⎟⎠
whereby 𝑏 = −9𝑁 + 21 ≠ 0 for all𝑁 ∈ ℕ. If we now choose 𝑐 = 0 or equivalent𝑁 = 1 + 4𝑚 one can easily see that𝑎, 𝑏 ≠ 0

for all 𝑁, 𝑚 ∈ ℕ and the subgroup of SpΩ(𝑊) generated by (𝐷𝜒)|𝑊, (𝐷𝛼)|𝑊 , and (𝐷𝛾)|𝑊 contains a non-trivial element
of the unipotent radical.

4.3 Zariski density and arithmeticity for a genus five family

In this subsection, we fix 𝑀 = 6 + 4𝑚 and 𝑁 = 1 + 4𝑚 (𝑚 ∈ ℕ). The characteristic polynomial of the matrix 𝐴 ∶=

𝐴5(𝑁,𝑀) ∶= 𝑀
(0)

ℎ
⋅ 𝑀

(0)
𝑣 ∈ ℝ8×8 is given by a reciprocal polynomial

𝑃(𝑋) = 𝜒𝐴(𝑋) =

8∑
𝑖=0

𝑎𝑖 𝑋
𝑖 ∈ ℤ[𝑋]

with 𝑎0 = 𝑎8 = 1 and 𝑎𝑖 = 𝑎8−𝑖 for 𝑖 = 1, … , 4.
We have 1∕𝑋4 ⋅ 𝑃(𝑋) = 𝑄(𝑋 + 1∕𝑋 + 2) for the quartic polynomial

𝑄(𝑌) = 𝑌4 +

3∑
𝑖=0

𝑏𝑖 𝑌
𝑖 ∈ ℤ[𝑌] (4.3.1)

with coefficients

𝑏3 = 𝑎1 − 8, 𝑏2 = 𝑎2 − 6 𝑎1 + 20,

𝑏1 = 𝑎3 − 4 𝑎2 + 9 𝑎1 − 16, 𝑏0 = 𝑎4 − 2 𝑎3 + 2 𝑎2 − 2 𝑎1 + 2.

Let now 𝜇1, 𝜇2, 𝜇3, 𝜇4 ∈ ℂ be the roots of the polynomial 𝑄(𝑌) ∈ ℤ[𝑌]. and 𝐶𝑅𝑄(𝑌) ∈ ℚ[𝑌] its cubic resolvent (cf.
Section 2.3).
For𝑚 ≡ 1modulo 31, the polynomials 𝑃(𝑋) ∈ ℤ[𝑋] and𝑄(𝑌) ∈ ℤ[𝑌] are irreducible modulo 31 and hence irreducible

over the rational numbersℚ. Furthermore, the cubic resolvent 𝐶𝑅𝑄(𝑌) ∈ ℤ[𝑌] is irreducible modulo 11 if𝑚 ≡ 1modulo
11 and in this case also irreducible over the rational numbers. The discriminant Disc(𝑄) of the polynomial 𝑄(𝑌) can be
written by irreducible factors in terms of𝑚 as

Disc(𝑄) = 𝑐 ⋅ 𝑓(𝑚) ⋅ (2𝑚 + 3)6 ⋅ (4𝑚 + 1)6
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KANY and MATHEUS 1911

for a positive integer 𝑐 and a monic polynomial 𝑓(𝑚) of degree 12. With Siegel’s theorem of integral points, we conclude
thatDisc(𝑄) can only be a square of a rational number for finitelymany𝑚 ∈ ℕ. This implies that theGalois groupGal(𝑄) of
𝑄(𝑌) can be identified with the full symmetric group Sym({𝜇1, … , 𝜇4}) for all but perhaps finitely many𝑚 ∈ ℕwith𝑚 ≡ 1

modulo 𝑝 ∈ {11, 31}. In these cases, the Galois group Gal(𝑃) ≤ ℤ4
2
⋊ 𝑆4 of our reciprocal polynomial 𝑃(𝑋) = char𝐴(𝑋)

projects surjectively on 𝑆4 and hence Gal(𝑃) can be identified with 𝑆4, with one of the groups𝐻4,𝑖 (𝑖 = 1, 2, 3) or with the
full hyperoctahedral group 𝐺4 = ℤ4

2
⋊ 𝑆4.

We can write Δ4,1 = 𝛿2
4,1

from Lemma 2.4.3 by irreducible factors in terms of𝑚 as

Δ4,1 = 𝑐 ⋅ 𝑔(𝑚) ⋅ (2𝑚 + 1)(4𝑚 − 3)(2𝑚 + 3)3(4𝑚 + 1)3

for an integer 𝑐 and a monic polynomial 𝑔(𝑚) of degree 8. Furthermore, Δ4,2 = Disc(𝑄) ⋅ Δ4,1.
Siegel’s theorem on integral points implies again that 𝛿4,1 and 𝛿4,2 are rational numbers only for finitely many𝑚 ∈ ℕ.

Since𝐻4,3 is a subgroup of𝐻4,1, the fundamental theoremofGalois theory togetherwith Lemma 2.4.3 shows that Gal(𝑃) ≠
𝐻4,𝑖 for 𝑖 = 1, 2, 3.
We showed the hardest part of the following proposition:

Proposition 4.3.1. Thematrix𝐴 = 𝐴5(𝑁,𝑀) ∈ ℝ8×8 is Galois pinching for all but finitelymany𝑚 ∈ ℕwith𝑚 ≡ 1modulo
𝑝, where 𝑝 ∈ {11, 31}.

Proof. The only thing that is left to show, is that for𝑚 ∈ ℕ as in the statement and big enough, the matrix 𝐴5(𝑁,𝑀) has
only real eigenvalues. For this reason, we analyze the roots of the polynomial 𝑄(𝑌) ∈ ℤ from Equation (4.3.1) with the
help of Equation (2.5.3) in Section 2.5. First, we bring𝑄(𝑌) in the depresses form𝐷𝑄(𝑡) by substituting 𝑡 = 𝑌 − 𝑏3∕4. If we
determined the roots of the depressed form𝐷𝑄(𝑡), we can determine them directly for𝑄(𝑌) as well. By a boring but not to
complicated analysis of the expressions Disc(𝐷𝑄), 𝐹(𝐷𝑄) and 𝑞 for 𝐷𝑄(𝑌) as in Equation (2.5.3) (or by using a computer
algebra system), we see that

Disc(𝐷𝑄) > 0, 𝐹(𝐷𝑄) < 0 and 𝑞 < 0

for𝑚 big enough.
Hence in that case all the roots of 𝐷𝑄(𝑡) and thus all the roots of 𝑄(𝑌) are real. As in the proof of Proposition 3.2.1

we conclude that 𝐴5(𝑁,𝑀) has only real eigenvalues for 𝑚 ∈ ℕ with 𝑚 ≡ 1 modulo 𝑝, where 𝑝 ∈ {11, 31} and 𝑚 big
enough. □

Since 𝐵5(𝑁,𝑀) ∶= 𝑀
(0)
𝛼 is a unipotent matrix such that the image (𝐵5(𝑁,𝑀) − Id)(ℝ8) is not a Lagrangian sub-

space, the matrices 𝐴5(𝑁,𝑀) and 𝐵5(𝑁,𝑀) generate a Zariski-dense subgroup of Sp
(
𝐻
(0)
1
((5)

𝑁,𝑀,ℤ)
)
for all 𝑚 ∈ ℕ as

in Proposition 4.3.1. Together with the theorem of Singh–Venkataramana and the result in Section 4.2, we conclude:

Theorem 4.3.2. The genus five origamis (5)
𝑁,𝑀 ∈ (8) with 𝑁 = 1 + 4𝑚 and𝑀 = 6 + 4𝑚 have Kontsevich–Zorich mon-

odromies with finite index in Sp
(
𝐻
(0)
1
((5)

𝑁,𝑀,ℤ)
)
for all but finitely many 𝑚 ∈ ℕ such that 𝑚 ≡ 1 modulo 𝑝, where 𝑝 ∈

{11, 31}.

5 GENUS SIX STAIRS

For 𝑁,𝑀 ∈ ℕ with 𝑀 = 6 + 4𝑚 (𝑚 ∈ ℕ), we consider the origami (6)
𝑁,𝑀 that is given by the following horizontal and

vertical permutation ℎ, 𝑣 ∈ Sym({1, 2, … ,𝑁 +𝑀 + 9}):

ℎ = (1, … ,𝑁)(𝑁 + 1,… ,𝑁 + 5)(𝑁 + 6,… ,𝑁 + 9)

(𝑁 + 10,𝑁 + 11,𝑁 + 12)

(𝑁 + 13,𝑁 + 14)(𝑁 + 15)… (𝑁 +𝑀 + 9)
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1912 KANY and MATHEUS

F IGURE 6 Origami (6)
𝑁,𝑀 with horizontal waist curves 𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎𝑁 and vertical waist curves 𝜁1, 𝜁2, 𝜁3, 𝜁4, 𝜁5, 𝜁𝑀 .

𝑣 = (1,𝑁 + 1,𝑁 + 6,𝑁 + 10,𝑁 + 13,𝑁 + 15,… ,𝑁 +𝑀 + 9)

(2,𝑁 + 2,𝑁 + 7,𝑁 + 11,𝑁 + 14)(3,𝑁 + 3,𝑁 + 8,𝑁 + 12)

(4,𝑁 + 4,𝑁 + 12)(5,𝑁 + 5)(6)… (𝑁).

The six waist curves 𝜎1, … , 𝜎5, 𝜎𝑁 of the maximal horizontal cylinders together with the waist curves 𝜁1, … , 𝜁5, 𝜁𝑀 of the
maximal vertical cylinders form again a basis of the absolute homology𝐻1

((6)
𝑁,𝑀,ℤ

)
of the origami (6)

𝑁,𝑀 see Figure 6.

It is easy to see that 𝐵(0) = {Σ𝑖, Σ𝑁, 𝑍𝑖, 𝑍𝑀 ∣ 𝑖 = 1, … , 4} is a basis of the non-tautological part𝐻(0)
1

((6)
𝑁,𝑀,ℚ

)
, where

Σ𝑖 ∶= 𝜎𝑖+1 − (𝑖 + 1) 𝜎1 for 𝑖 = 1, … , 4, Σ𝑁 ∶= 𝜎𝑁 − 𝑁 𝜎1,

𝑍𝑖 ∶= 𝜁𝑖+1 − (𝑖 + 1) 𝜁1 for 𝑖 = 1, … , 4, 𝑍𝑀 ∶= 𝜁𝑀 −𝑀 𝜁1.

We can represent the restriction of the intersection form Ω to the non-tautological part 𝐻(0)
1
((6)

𝑁,𝑀,ℚ) of the absolute
homology by the following matrix with respect to the basis 𝐵(0) from above:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 1 −1

0 0 0 0 0 0 0 1 1 −2

0 0 0 0 0 0 1 1 1 −3

0 0 0 0 0 1 1 1 1 −4

0 0 0 0 0 −1 −2 −3 −4 1 − 𝑁 −𝑀

0 0 0 −1 1 0 0 0 0 0

0 0 −1 −1 2 0 0 0 0 0

0 −1 −1 −1 3 0 0 0 0 0

−1 −1 −1 −1 4 0 0 0 0 0

1 2 3 4 𝑀 + 𝑁 − 1 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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KANY and MATHEUS 1913

F IGURE 7 Origami (6)
𝑁,𝑀 with cylinder decomposition in direction (1, −2). Here, 𝛾1 is the waist curve of the blue cylinder.

5.1 Dehn twists in genus six

In the direction (1, −2), there are two (Figure 7) maximal cylinders with one waist curve 𝛾1 of combinatorial length 4 and
one waist curve 𝛾2 of combinatorial length 𝑁 + 4𝑚 + 11. We count intersection points of 𝛾1 and 𝛾2 with the elements of
𝐵(0) and get

Ω(𝛾1, 𝜎1) = 0, Ω(𝛾1, 𝜎2) = 1, Ω(𝛾1, 𝜎3) = 1,

Ω(𝛾1, 𝜎4) = 2,Ω(𝛾1, 𝜎5) = 2,Ω(𝛾1, 𝜎𝑁) = 2,

Ω(𝛾1, 𝜁1) = 0,Ω(𝛾1, 𝜁2) = 0,Ω(𝛾1, 𝜁3) = 1,

Ω(𝛾1, 𝜁4) = 1,Ω(𝛾1, 𝜁5) = 1,Ω(𝛾1, 𝜁𝑀) = 1,

Ω(𝛾2, 𝜎1) = 2,Ω(𝛾2, 𝜎2) = 3,Ω(𝛾2, 𝜎3) = 5,

Ω(𝛾2, 𝜎4) = 6,Ω(𝛾2, 𝜎5) = 8, Ω(𝛾2, 𝜎𝑁) = 2(𝑁 − 1),

Ω(𝛾2, 𝜁1) = 1,Ω(𝛾2, 𝜁2) = 2,Ω(𝛾2, 𝜁3) = 2,

Ω(𝛾2, 𝜁4) = 3,Ω(𝛾2, 𝜁5) = 4,Ω(𝛾2, 𝜁𝑀) = 5 + 4𝑚.

We can write Γ ∶= (𝑁 + 4𝑚 + 11)𝛾1 − 4𝛾2 ∈ 𝐻
(0)
1

((6)
𝑁,𝑀,ℤ

)
as a linear combination of elements of 𝐵(0) in the following

way:

Γ = 4Σ1 + 4Σ2 − (𝑁 + 4𝑚 + 11) Σ3 + 4Σ4 + 4Σ𝑁

− 8𝑍1 + (𝑁 + 4𝑚 + 7) 𝑍2 − 8𝑍3 + (𝑁 + 4𝑚 + 7) 𝑍4 − 8𝑍𝑀.

The Dehn twist along the waist curves 𝛾1 and 𝛾2 acts on𝐻
(0)
1

((6)
𝑁,𝑀,ℚ

)
via the mapping

𝐷𝛾 ∶ 𝑣 ⟼ 𝑣 + (𝑁 + 4𝑚 + 11)Ω(𝛾1, 𝑣) 𝛾1 + 4Ω(𝛾2, 𝑣) 𝛾2
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1914 KANY and MATHEUS

F IGURE 8 Origami (6)
𝑁,𝑀 with cylinder decomposition in directions (1,4) and (1, −4). Here, 𝛿1 and 𝛼1 are the waist curves of the blue

cylinders.

and for the images of the elements in 𝐵(0) under 𝐷𝛾 we get

𝐷𝛾(Σ1) = Σ1 + Γ, 𝐷𝛾(Σ2) = Σ2 + Γ, 𝐷𝛾(Σ3) = Σ3 + 2Γ,

𝐷𝛾(Σ4) = Σ4 + 2Γ, 𝐷𝛾(Σ𝑁) = Σ𝑁 + 2Γ,

𝐷𝛾(𝑍1) = 𝑍1, 𝐷𝛾(𝑍2) = 𝑍2 + Γ, 𝐷𝛾(𝑍3) = 𝑍3 + Γ

𝐷𝛾(𝑍4) = 𝑍4 + Γ, 𝐷𝛾(𝑍𝑀) = 𝑍𝑀 + Γ.

For the direction (1, 4), there are two (Figure 8) maximal cylinders with waist curve 𝛿1 of length 2𝑚 + 6 and waist curve
𝛿2 of length 𝑁 + 2𝑚 + 9. We have

Ω(𝛿1, 𝜎1) = −2, Ω(𝛿1, 𝜎2) = −3, Ω(𝛿1, 𝜎3) = −4,

Ω(𝛿1, 𝜎4) = −5,Ω(𝛿1, 𝜎5) = −5,Ω(𝛿1, 𝜎𝑁) = −5,

Ω(𝛿1, 𝜁1) = 0,Ω(𝛿1, 𝜁2) = 0,Ω(𝛿1, 𝜁3) = 1,

Ω(𝛿1, 𝜁4) = 1, Ω(𝛿1, 𝜁5) = 2,Ω(𝛿1, 𝜁𝑀) = 2 + 2𝑚,

Ω(𝛿2, 𝜎1) = −2,Ω(𝛿2, 𝜎2) = −5,Ω(𝛿2, 𝜎3) = −8,

Ω(𝛿2, 𝜎4) = −11,Ω(𝛿2, 𝜎5) = −15,Ω(𝛿2, 𝜎𝑁) = −4𝑁 + 5,

Ω(𝛿2, 𝜁1) = 1,Ω(𝛿2, 𝜁2) = 2,Ω(𝛿2, 𝜁3) = 2,

Ω(𝛿2, 𝜁4) = 3,Ω(𝛿2, 𝜁5) = 3,Ω(𝛿2, 𝜁𝑀) = 4 + 2𝑚.
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KANY and MATHEUS 1915

The element Δ ∶= (𝑁 + 2𝑚 + 9)𝛿1 − (2𝑚 + 6)𝛿2 ∈ 𝐻
(0)
1

((6)
𝑁,𝑀,ℤ

)
can be written as a linear combination of elements of

𝐵(0) as

Δ = − (𝑁 + 2𝑚 + 9) Σ1 + (2𝑚 + 6) Σ2 − (𝑁 + 2𝑚 + 9) Σ3

+ (2𝑚 + 6) Σ4 + (2𝑚 + 6) Σ𝑁

+ (8𝑚 + 24) 𝑍1 + (4𝑚 − 𝑁 + 9) 𝑍2 + (4𝑚 − 𝑁 + 9) 𝑍3

+ (4𝑚 − 𝑁 + 9) 𝑍4 − (2𝑁 + 6) 𝑍𝑀.

The Dehn twist along the waist curves 𝛿1 and 𝛿2 of the maximal cylinders acts on the non-tautological part of the absolute
homology via the mapping

𝐷𝛿 ∶ 𝑣 ⟼ 𝑣 + (𝑁 + 2𝑚 + 9)Ω(𝛿1, 𝑣) 𝛿1 + (2𝑚 + 6)Ω(𝛿2, 𝑣) 𝛿2.

If we evaluate the elements of the basis 𝐵(0) of𝐻(0)
1

((6)
𝑁,𝑀,ℚ

)
, then we get

𝐷𝛿(Σ1) = Σ1 + Δ, 𝐷𝛿(Σ2) = Σ2 + 2Δ, 𝐷𝛿(Σ3) = Σ3 + 3Δ,

𝐷𝛿(Σ4) = Σ4 + 5Δ, 𝐷𝛿(Σ𝑁) = Σ𝑛 + (2𝑁 − 5)Δ,

𝐷𝛿(𝑍1) = 𝑍1, 𝐷𝛿(𝑍2) = 𝑍2 + Δ, 𝐷𝛿(𝑍3) = 𝑍3 + Δ,

𝐷𝛿(𝑍4) = 𝑍4 + 2Δ, 𝐷𝛿(𝑍𝑀) = 𝑍𝑀 + (2 + 2𝑚)Δ.

We have two maximal cylinders in the direction (1, −4) with waist curve 𝛼1 of combinatorial length 4 + 𝑚 and waist
curve 𝛼2 of combinatorial length 𝑁 + 3𝑚 + 11. We calculate the following intersection points with the elements of the
basis 𝐵(0):

Ω(𝛼1, 𝜎1) = 1, Ω(𝛼1, 𝜎2) = 1, Ω(𝛼1, 𝜎3) = 2,

Ω(𝛼1, 𝜎4) = 4, Ω(𝛼1, 𝜎5) = 4, Ω(𝛼1, 𝜎𝑁) = 4,

Ω(𝛼1, 𝜁1) = 0,Ω(𝛼1, 𝜁2) = 0,Ω(𝛼1, 𝜁3) = 1,

Ω(𝛼1, 𝜁4) = 1,Ω(𝛼1, 𝜁5) = 1,Ω(𝛼1, 𝜁𝑀) = 1 + 𝑚,

Ω(𝛼2, 𝜎1) = 3,Ω(𝛼2, 𝜎2) = 7,Ω(𝛼2, 𝜎3) = 10,

Ω(𝛼2, 𝜎4) = 12,Ω(𝛼2, 𝜎5) = 16,Ω(𝛼2, 𝜎𝑁) = 𝑁 − 4,

Ω(𝛼2, 𝜁1) = 1,Ω(𝛼2, 𝜁2) = 2,Ω(𝛼2, 𝜁3) = 2,

Ω(𝛼2, 𝜁4) = 3,Ω(𝛼2, 𝜁5) = 4,Ω(𝛼2, 𝜁𝑀) = 5 + 3𝑚.

With this information we can write the element 𝐴 ∶= (𝑁 + 3𝑚 + 11)𝛼1 − (4 + 𝑚)𝛼2 in the basis 𝐵(0):

𝐴 = (𝑚 + 4) Σ1 + (𝑚 + 4) Σ2 − (𝑁 + 3𝑚 + 11) Σ3

+ (𝑚 + 4) Σ4 + (𝑚 + 4) Σ𝑁

− (4𝑚 + 16) 𝑍1 + (2𝑁 + 4𝑚 + 14) 𝑍2 + (𝑁 − 1) 𝑍3

− (4𝑚 + 16) 𝑍4 + (𝑁 − 1) 𝑍𝑀.
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1916 KANY and MATHEUS

The map

𝐷𝛼 ∶ 𝑣 ⟼ 𝑣 + (𝑁 + 3𝑚 + 11)Ω(𝛼1, 𝑣) 𝛼1 + (𝑚 + 4)Ω(𝛼2, 𝑣) 𝛼2

has images

𝐷𝛼(Σ1) = Σ1 − 𝐴, 𝐷𝛼(Σ2) = Σ2 − 𝐴 𝐷𝛼(Σ3) = Σ3,

𝐷𝛼(Σ4) = Σ4 − 𝐴,𝐷𝛼(Σ𝑁) = Σ𝑁 − (𝑁 − 4)𝐴,

𝐷𝛼(𝑍1) = 𝑍1, 𝐷𝛼(𝑍2) = 𝑍2 + 𝐴, 𝐷𝛼(𝑍3) = 𝑍3 + 𝐴,

𝐷𝛼(𝑍4) = 𝑍4 + 𝐴, 𝐷𝛼(𝑍𝑀) = 𝑍𝑀 + (𝑚 + 1)𝐴.

In the horizontal direction, we have six maximal cylinders with moduli 1∕(𝑀 − 5), 2∕1, 3∕1, 4∕1, 5∕1, and𝑁∕1 respec-
tively in the vertical direction there are sixmaximal cylinderswithmoduli 1∕(𝑁 − 5), 2∕1, 3∕1, 4∕1, 5∕1, and𝑁∕1. As in the
sections before we can calculate representation matrices for the action of the associated Dehn twists on 𝐻(0)

1

((6)
𝑁,𝑀,ℚ

)
.

In the horizontal direction, we have

𝑀
(0)

ℎ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 30𝑁 30𝑁

0 1 0 0 0 0 0 20𝑁 20𝑁 20𝑁

0 0 1 0 0 0 15𝑁 15𝑁 15𝑁 15𝑁

0 0 0 1 0 12𝑁 12𝑁 12𝑁 12𝑁 12𝑁

0 0 0 0 1 −60 −120 −180 −240 −60(𝑀 − 1)

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and in the vertical direction we get

𝑀
(0)
𝑣 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 −30𝑀 −30𝑀 1 0 0 0 0

0 0 −20𝑀 −20𝑀 −20𝑀 0 1 0 0 0

0 −15𝑀 −15𝑀 −15𝑀 −15𝑀 0 0 1 0 0

−12𝑀 −12𝑀 −12𝑀 −12𝑀 −12𝑀 0 0 0 1 0

60 120 180 240 60(𝑁 − 1) 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

5.2 Finding a family of candidates in genus six

Recall that we obtained elements Γ, Δ, 𝐴 of the non-tautological part 𝐻(0)
1

((6)
𝑁,𝑀,ℤ

)
of the absolute homology by com-

paring the waist curves of the maximal cylinders in directions (1, −2), (1, 4), and (1, −4). We wrote them as a linear
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KANY and MATHEUS 1917

combination of elements of 𝐵(0) in the following way:

𝐴 = (𝑚 + 4) Σ1 + (𝑚 + 4) Σ2 − (𝑁 + 3𝑚 + 11) Σ3

+ (𝑚 + 4) Σ4 + (𝑚 + 4) Σ𝑁

− (4𝑚 + 16) 𝑍1 + (2𝑁 + 4𝑚 + 14) 𝑍2 + (𝑁 − 1) 𝑍3

− (4𝑚 + 16) 𝑍4 + (𝑁 − 1) 𝑍𝑀

Γ = 4Σ1 + 4Σ2 − (𝑁 + 4𝑚 + 11) Σ3

+ 4Σ4 + 4Σ𝑁

− 8𝑍1 + (𝑁 + 4𝑚 + 7) 𝑍2 − 8𝑍3 + (𝑁 + 4𝑚 + 7) 𝑍4 − 8𝑍𝑀

Δ = − (𝑁 + 2𝑚 + 9) Σ1 + (2𝑚 + 6) Σ2 − (𝑁 + 2𝑚 + 9) Σ3

+ (2𝑚 + 6) Σ4 + (2𝑚 + 6) Σ𝑁

+ (8𝑚 + 24) 𝑍1 + (4𝑚 − 𝑁 + 9) 𝑍2 + (4𝑚 − 𝑁 + 9) 𝑍3

+ (4𝑚 − 𝑁 + 9) 𝑍4 − (2𝑁 + 6) 𝑍𝑀.

Let𝑊 = Spanℚ(𝐴, Γ, Δ} the ℚ-linear subspace of 𝐻
(0)
1

((6)
𝑁,𝑀,ℚ

)
spanned by 𝐴, Γ, and Δ. The three maps 𝐷𝛼, 𝐷𝛾, and

𝐷𝛿 are transvections on 𝐻
(0)
1

((6)
𝑁,𝑀,ℚ

)
and if we restrict them to the subspace𝑊, they have the following three matrix

representations with respect to {𝐴, Γ, Δ}:

⎛⎜⎜⎝
1 𝑏 𝑎

0 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

−𝑏 1 𝑐

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

0 1 0

−𝑎 −𝑐 1

⎞⎟⎟⎠ ,
where 𝑏 = 2 − 2𝑁, 𝑎 = −10𝑁 + 12𝑚 − 4𝑚𝑁 + 42, and 𝑐 = 16𝑚 + 24 − 8𝑁. The element 𝑒 ∶= 𝑐 𝐴 − 𝑎 Γ + 𝑏 Δ is invari-
ant under the elements (𝐷𝛼)|𝑊, (𝐷𝛾)|𝑊, (𝐷𝛿)|𝑊 ∈ SpΩ(𝑊) and an element of the nullspace 𝑊Ω. The restrictions of
𝐷𝛼, 𝐷𝛾, and 𝐷𝛿 to the subspace𝑊 have the following matrix representations with respect to the basis {𝐴, Γ 𝑒}:

⎛⎜⎜⎝
1 𝑏 0

0 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎝
1 0 0

−𝑏 1 0

0 0 1

⎞⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎝
𝑎𝑐

𝑏
+ 1

𝑐2

𝑏
0

𝑎2

𝑏

𝑎𝑐

𝑏
+ 1 0

−
𝑎

𝑏
−

𝑐

𝑏
1

⎞⎟⎟⎟⎟⎠
.

If we choose 𝑐 = 0 or𝑁 = 3 + 2𝑚, then we can easily find an element of the unipotent radical of SpΩ(𝑊) in the subgroup
generated by the three transvections (𝐷𝛼)|𝑊, (𝐷𝛾)|𝑊 , and (𝐷𝛿)|𝑊 .
5.3 Zariski density and arithmeticity for a genus six family

We consider in this subsection the family of origamis (6)
𝑁,𝑀 , where 𝑀 = 6 + 4𝑚, 𝑁 = 3 + 2𝑚, and 𝑚 ∈ ℕ. As before in

the genus four and five section we try first to determine an infinite family of natural numbers𝑚 ∈ ℕ for which the matrix
𝐴 = 𝐴6(𝑁,𝑀) = 𝑀

(0)

ℎ
⋅ 𝑀

(0)
𝑣 ∈ ℝ10×10 is Galois pinching. The characteristic polynomial

𝑃(𝑋) ∶= 𝜒𝐴(𝑋) =

10∑
𝑖=0

𝑎𝑖 𝑋
𝑖 ∈ ℤ[𝑋]
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1918 KANY and MATHEUS

of the matrix𝐴 = 𝐴6(𝑁,𝑀) ∈ ℝ10×10 is monic reciprocal, that is, 𝑎10 = 𝑎0 = 1 and 𝑎𝑖 = 𝑎10−𝑖 for 𝑖 = 1, … , 5. Hence, there
is a cubic polynomial

𝑄(𝑌) = 𝑌5 +

4∑
𝑖=0

𝑏𝑖 𝑌
𝑖 ∈ ℚ[𝑌] (5.3.1)

such that 1∕𝑋5 ⋅ 𝑃(𝑋) = 𝑄(𝑋 + 1∕𝑋 + 2). The coefficients of 𝑄(𝑌) ∈ ℚ[𝑌] are

𝑏4 = 𝑎1 − 10, 𝑏3 = 𝑎2 − 8 𝑎1 + 35, 𝑏2 = 𝑎3 − 6 𝑎2 + 20 𝑎1 − 50,

𝑏1 = 𝑎4 − 4 𝑎3 + 9 𝑎2 − 16 𝑎1 + 25, 𝑏0 = 𝑎5 − 2 𝑎4 + 2 𝑎3 − 2 𝑎2 + 2 𝑎1 − 2.

Denote the sexticWeber resolvent of𝑄(𝑌) ∈ ℚ[𝑌] again by 𝑆𝑊𝑅𝑄(𝑌) ∈ ℚ[𝑌]. For𝑚 ≡ 2modulo 89, we have that 𝑃(𝑋) =
𝜒𝐴(𝑋) can be written by irreducible factors modulo 89 as

𝑃(𝑋) ≡ 𝑋10 + 4𝑋9 + 63𝑋8 + 33𝑋7 + 39𝑋6 + 71𝑋5

+39𝑋4 + 33𝑋3 + 63𝑋2 + 4𝑋 + 1modulo 89.

Furthermore for 𝑚 ≡ 2 modulo 17 respectively 𝑚 ≡ 2 modulo 19, we have that 𝑄(𝑌) respectively 𝑆𝑊𝑅𝑄(𝑌) factorizes
as

𝑄(𝑌) ≡ 𝑌5 + 4𝑌4 + 𝑌2 + 6𝑌 + 16modulo 17 and

𝑆𝑊𝑅𝑄(𝑌) ≡ 𝑌6 + 13𝑌5 + 7𝑌4 + 3𝑌3 + 15𝑌2 + 17𝑌 + 16modulo 19.

Hence, 𝑄(𝑌) is irreducible modulo 17 and 𝑆𝑊𝑅𝑄(𝑌) is irreducible modulo 19. Thus, 𝑃(𝑋) ∈ ℚ[𝑋] is irreducible for𝑚 ≡ 2

modulo 89 and we identify its Galois group Gal(𝑃) of 𝑃(𝑋) ∈ ℤ[𝑋] again with a subgroup of the hyperoctahedral group
𝐺5 = ℤ5

2
⋊ 𝑆5.

To ensure that 𝐴 = 𝐴6(𝑁,𝑀) is Galois pinching, we need that Gal(𝑃) projects surjectively onto 𝑆5 or equivalent that
Gal(𝑄) = 𝑆5. With Theorem 2.3.3 and Remark 2.3.4, it suffices to find 𝑚 ∈ ℕ such that the discriminant Disc(𝑆𝑊𝑅𝑄) =

Disc(𝑄) is not a rational square and that the sextic Weber resolvent 𝑆𝑊𝑅𝑄(𝑌) ∈ ℚ[𝑌] does not have a rational root. We
have

Disc(𝑄) = 𝑐 𝑓(𝑚) (2𝑚 + 3)24

for 𝑐 > 0 and an irreducible polynomial 𝑓(𝑚) ∈ ℤ[𝑚] of degree 16. With Siegel’s theorem of integral points and the
equations above we conclude that Gal(𝑄) = 𝑆5 for all but finitely many𝑚 ∈ ℕ with𝑚 ≡ 2modulo 𝑝 ∈ {17, 19}.
Next, we want to restrict 𝑚 ∈ ℕ further such that Gal(𝑃) ≠ 𝑆5 and Gal(𝑃) ≠ 𝐻5,𝑖 for 𝑖 = 1, 2, 3. For the expressions

Δ5,1 = 𝛿2
5,1

and Δ5,2 = 𝛿2
5,2

from Lemma 2.4.3 and Remark 2.4.4, we get

Δ5,1 = 𝑄(0)𝑄(4) = 𝑐 ⋅ 𝑔(𝑚) ⋅ (𝑚 − 1)(4𝑚 + 1)(2𝑚 + 3)8 and

Δ5,2 = Disc(𝑄) ⋅ Δ5,1,

where 𝑐 ∈ ℤ and 𝑔(𝑚) ∈ ℤ[𝑚] is an irreducible polynomial of degree 10. This shows that Gal(𝑃) ≠ 𝐻5,𝑖 for 𝑖 = 1, 2 and
almost all𝑚 ∈ ℕwith𝑚 ≡ 2modulo𝑝, where𝑝 ∈ {17, 19, 89}. Furthermore, if𝑚 ≡ 2modulo 29 then𝑃(𝑋) can bewritten
in irreducible factors modulo 29 as

𝑃(𝑋) ≡ (𝑋 + 15)(𝑋 + 2)(𝑋2 + 7𝑋 + 7)(𝑋2 + 𝑋 + 25)

(𝑋4 + 22𝑋3 + 21𝑋2 + 22𝑋 + 1)modulo 29.
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KANY and MATHEUS 1919

Since 29 does not divide the discriminantDisc(𝑃) of𝑃(𝑋) ∈ ℚ[𝑋] for𝑚 ≡ 2modulo 29, we concludewith the theoremof
Dedekind that in this case Gal(𝑃) contains a permutation of cycle type (4,2,2,1,1). But𝐻5,3 does not contain a permutation
of this cycle type as we showed in Appendix A.
The discussion from the above almost showed:

Proposition 5.3.1. The matrix 𝐴6(𝑁,𝑀) ∈ ℝ10×10 is Galois pinching for all but perhaps finitely many𝑚 ∈ ℕ with𝑚 ≡ 2

modulo 𝑝, where 𝑝 ∈ {17, 19, 29, 89}.

Proof. Let 𝑚 ∈ ℕ such that the quintic polynomial 𝑄(𝑌) ∈ ℚ[𝑌] from Equation (5.3.1) is irreducible. By substituting
𝑡 = 𝑌 − 𝑏4∕5, we can bring 𝑄(𝑌) in the depressed form

𝐷𝑄(𝑡) = 𝑡5 + 𝑝 𝑡3 + 𝑞 𝑡2 + 𝑟 𝑡 + 𝑠 ∈ ℚ[𝑡].

By an analysis of the four discriminants 𝐹𝑖(𝐷𝑄) (𝑖 = 1, 2, 3, 4) from Equation (2.5.5), for the polynomial𝐷𝑄(𝑡) from above,
we can easily see that for all 𝑖 = 1, 2, 3, 4 and𝑚 big enough the inequality 𝐹𝑖(𝐷𝑄) holds. From [10], we know that in this
case the depressed polynomial 𝐷𝑄(𝑡) and hence 𝑄(𝑌) has five real roots. Denote the roots of 𝑄(𝑌) by 𝜇𝑖 (𝑖 = 1, … , 5). We
have the equality

𝜇𝑖 = 𝜆𝑖 + 𝜆−1
𝑖

+ 2

for all 𝑖 = 1, … , 5, where 𝜆𝑖 and 𝜆−1𝑖 are roots of the reciprocal characteristic polynomial 𝑃(𝑋) of 𝐴6(𝑁,𝑀). Furthermore
for𝑚 big enough all the coefficients 𝑏𝑖 (𝑖 = 1, … , 5) of 𝑄(𝑌) are positive. With Decarte’s rule of signs, we conclude that in
this situation all the roots 𝜇𝑖 (𝑖 = 1, … , 5) are negative real numbers. As before in Proposition 3.2.1, we know now that the
roots {𝜆𝑖 𝜆−1𝑖 ∣ 𝑖 = 1, … , 5} of 𝑃(𝑋) are real. Putting this argument together with the arguments we did before for Gal(𝑃),
we see that𝐴6(𝑁,𝑀) is Galois pinching for𝑚 ∈ ℕ big enough such that𝑚 ≡ 2modulo 𝑝, where 𝑝 ∈ {17, 19, 29, 89}. □

Denote by 𝐵6(𝑁,𝑀) = 𝑀
(0)
𝛾 ∈ ℝ10×10 the representation matrix with respect to the basis 𝐵(0) of the map 𝐷𝛾 on the

non-tautological𝐻(0)
1

((6)
𝑁,𝑀,ℝ

)
from Section 5.1. Then, 𝐵6(𝑁,𝑀) is unipotent and the subspace

(𝐵6(𝑁,𝑀) − Id)(ℝ10)

is one-dimensional and hence not a Lagrangian subspace with respect to Ω. Furthermore, 𝐴6(𝑁,𝑀) and 𝐵6(𝑁,𝑀) do
not commute but perhaps for finitely many 𝑚 ∈ ℕ. Putting this together with the previous proposition about the matrix
𝐴6(𝑁,𝑀), Proposition 4.3 in [7] and Theorem 9.10 in [8] implies:

Theorem 5.3.2. The genus six origamis (6)
𝑁,𝑀 ∈ (10) with 𝑁 = 3 + 2𝑚 and𝑀 = 6 + 4𝑚 have Kontsevich–Zorich mon-

odromies with the finite index in Sp
(
(𝐻

(0)
1

((6)
𝑁,𝑀,ℤ

))
for all but finitely many 𝑚 ∈ ℕ such that 𝑚 ≡ 2 modulo 𝑝, where

𝑝 ∈ {17, 19, 29, 89}.
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ENDNOTES
1As it was remarked by Filip, the Kontsevich–Zorichmonodromy of a “typical” square-tiled surface of genus 𝑔 is Zariski dense in 𝑆𝑝(2𝑔 − 2,ℝ)

(cf. Theorem 5.4.7 in Filip’s survey [2]). In particular, a “typical” square-tiled surface of genus 𝑔 has arithmetic Kontsevich–Zorichmonodromy
when this group has finite index in 𝑆𝑝(2𝑔 − 2,ℤ).

2 In the sense of [2].
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APPENDIX A: CYCLE TYPES
We call 𝜑𝑘 the map that identifies the group 𝐻𝑘,3 ≤ 𝐺𝑘 from Proposition 2.4.2 with a subgroup of the permutation group
Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, … , 𝑘}).
We first consider 𝑘 = 3 and 𝜑3 ∶ 𝐻3,3 → Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, 2, 3}). We have

𝜑3((−1, −1, −1), (123)) =(𝜆1𝜆
−1
2
𝜆3𝜆

−1
1
𝜆2𝜆

−1
3
),

𝜑3((−1, −1, −1), (1, 2)) =(𝜆1𝜆
−1
2
)(𝜆2𝜆

−1
1
)(𝜆3𝜆

−1
3
),

𝜑3((+1, +1, +1), (123)) =(𝜆1𝜆2𝜆3)(𝜆
−1
1
𝜆−1
2
𝜆−1
3
)

𝜑3((+1, +1, +1), (1, 2)) =(𝜆1𝜆2)(𝜆
−1
1
𝜆−1
2
)(𝜆3)(𝜆

−1
3
).

The element (123) ∈ 𝑆3 is of cycle type (3) and (12) ∈ 𝑆3 is of type (2,1). These two cycle types are the only non-trivial
cycle types that can appear in 𝑆3. Hence, the calculations from above show that the only non-trivial cycle types that occur
in 𝜑3(𝐻3,3) ≤ Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, 2, 3}) are (6), (3, 3), (2, 2, 2), and (2,2,1,1).
For 𝑘 = 5, the permutation group 𝑆5 has permutations of type (5), (4,1), (3,2), (3,1,1), (2,2,1), (2, 1, 1, 1), and (1,1,1,1,1). If

we want to determine the cycle types of the elements of𝐻5,3 as a subgroup of Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, … , 5}), then because of
symmetry reasons it is sufficient to determine the permutations 𝜑5((−1,… ,−1), 𝜎)) and 𝜑5((+1,… ,+1), 𝜎)), where 𝜎 ∈ 𝑆5
is a represent of a cycle type of 𝑆5 as above. We have

𝜑5((−1,… ,−1), (12345)) =(𝜆1𝜆
−1
2
𝜆3𝜆

−1
4
𝜆5𝜆

−1
1
𝜆2𝜆

−1
3
𝜆4𝜆

−1
5 )

𝜑5((−1,… ,−1), (1234)) =(𝜆1𝜆
−1
2
𝜆3𝜆

−1
4
)(𝜆2𝜆

−1
3
𝜆4𝜆

−1
1
)(𝜆5𝜆

−1
5 )

𝜑5((−1,… ,−1), (123)(45)) =(𝜆1𝜆
−1
2
𝜆3𝜆

−1
1
𝜆2𝜆

−1
3
)(𝜆4𝜆

−1
5 )(𝜆5𝜆

−1
4
)

𝜑5((−1,… ,−1), (123)) =(𝜆1𝜆
−1
2
𝜆3𝜆

−1
1
𝜆2𝜆

−1
3
)(𝜆4𝜆

−1
4
)(𝜆5𝜆

−1
5 )

𝜑5((−1,… ,−1), (12)(34)) =(𝜆1𝜆
−1
2
)(𝜆2𝜆

−1
1
)(𝜆3𝜆

−1
4
)(𝜆4𝜆

−1
3
)(𝜆5𝜆

−1
5 )

𝜑5((−1,… ,−1), (12)) =(𝜆1𝜆
−1
2
)(𝜆2𝜆

−1
1
)(𝜆3𝜆

−1
3
)(𝜆4𝜆

−1
4
)(𝜆5𝜆

−1
5 ).
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We conclude that for the subgroup 𝜑𝑘(𝐻𝑘,3) ≤ Sym({𝜆𝑖, 𝜆−1𝑖 ∣ 𝑖 = 1, … , 5}) only non-trivial permutations of type (10),
(4,4,2), (6,2,2), (2,2,2,2,2) and of type (5,5), (4,4,1,1), (3,3,2,2), (3,3,1,1,1,1), (2,2,2,2,1,1) and (2,2,1,1,1,1,1,1) can occur.

APPENDIX B: REPRESENTATIONMATRIX FOR DEHN TWIST
The following matrix is the representation matrix𝑀(0)

𝛼 for the restriction of the Dehn twist 𝐷𝛼 in the direction (1, −2) to
𝐻
(0)
1

((5)
𝑁,𝑀,ℚ

)
with respect to the basis 𝐵(0) from Section 4.1.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8 − 𝑁 − 4𝑚 −9 − 𝑁 − 4𝑚 0 −9 − 𝑁 − 4𝑚 −9 − 𝑁 − 4𝑚 −9 − 𝑁 − 4𝑚 0 −9 − 𝑁 − 4𝑚

2 3 0 2 2 2 0 2

2 2 1 2 2 2 0 2

2 2 0 3 2 2 0 2

−4 −4 0 −4 −3 −4 0 −4

−4 −4 0 −4 −4 −3 0 −4

7 + 𝑁 + 4𝑚 7 + 𝑁 + 4𝑚 0 7 + 𝑁 + 4𝑚 7 + 𝑁 + 4𝑚 7 + 𝑁 + 4𝑚 1 7 + 𝑁 + 4𝑚

−4 −4 0 −4 −4 −4 0 −3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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