
U
ni

ve
rs

itä
t K

ai
se

rs
la

ut
er

n

D
-6

75
0

K
ai

se
rs

la
ut

er
n

1,
 W

. G
er

m
an

y

F
a

ch
b

e
re

ic
h

 I
nf

or
m

at
ik

P
os

tfa
ch

 3
04

9

XX)
ee

The MKRP User Manual

M. Beetz, H. Freitag, J. Klug
Ch. Lingenfelder (Ed.)

SEKI Working Paper SWP-88-01

a
th

 -
W

or
ki

ng
 P

ap
er

The MKRP User Manual

M. Beetz, H. Freitag, J. Klug
Ch. Lingenfelder (Ed.)

SEKI Working Paper SWP-88-01

M. Beetz, H. Freitag, J. Klug

The MKRP User Manua l

Contents
1. Introduction i n , 1

2. The MKRP Operating System 9

3. The Input Language aan 15

4. The MKRP Editor essen 27

5. Setting the MKRP Parameters......... 33

6. Subsystem Commands 65

7. The Output Facility esse 66

8. ATestRun r r r 72

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 1

1.Introduction

The cur ren t state of deve lopment of the Markgraf Karl Refutation Procedure
(MKRP), a theorem proving system under deve lopment since 1977 at the
Universi t ies of Kar lsruhe and Kaiserslautern, West Germany, is presented and
evaluated in the sequel. The goal of this pro ject can be summarized by the
following three claims: it is possible to bu i ld a theorem prover (TP) and
augment i t by appropr ia te heuristics and domain-specif ic knowledge such
that |

i) i t wi l l d isp lay an active and d i rected behaviour in its str iv ing for a
proof, ra ther than the passive combinator ia l search through very large
search spaces, which was the characteristic behaviour of the TPs of the
past. Consequent ly

ii) i t wi l l not generate a search space of many thousands of i r relevant
c lauses , bu t wi l l f i nd a proof wi th compara t i ve l y few redundan t
derivation steps.

iii) Such a TP will establ ish an unprecedented leap in performance over
previous TPs expressed in terms of the difficulty of the theorems it can
prove.

With about 25 man years invested up to now and a source code of almost
2000 K (bytes of Lispcode), the system represents the largest single software
development under taken in the history of the f ie ld and the results obtained
thus far corroborate the f irst two claims.

The final (albeit essential) claim has not been achieved yet: although at
presen t i t pe r fo rms substant ia l ly bet te r than most other automatic theorem
proving systems, on certain classes of examples (induction, equality) the
compar i son is unfavourab le for the MKRP-sys tem. But there is l itt le doubt
that these shortcomings ref lect the p resen t state of development ; once the
other modules (equal i ty reasoning, a more ref ined monitoring and induction)
are opera t iona l , t rad i t i ona l t heo rem p rove rs wi l l p robab l y no longer
competitive.

This statement is less comforting than it appears: the comparison is based on
measures of the search space and it totally neglects the (enormous) resources
needed in order to achieve the behav iour described. Within this frame of
re ference it wou ld be possib le to design the "per fec t " proof procedure: the
supervisor and the look-ahead heurist ics would f ind the proof and then guide
the system without any unnecessary steps through the search space.

In summary , although there are good fundamenta l arguments support ing the
hypothesis that the fu tu re of TP research is with the f inely knowledge

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 2

engineered systems as proposed here, there is at present no evidence that a
tradit ional TP with its capacity to quickly generate many ten thousands of
clauses is not just as capable. The si tuat ion is st i l l (at the time of writing)
remin iscent of todays chess playing programs, where the programs based on
intellectually more interesting pr inciples are outper formed by the bru te force
systems relying on advances in hardware technology.

The following pa rag raph summarizes the basic notions and techn iques for
theorem proving as far as they are relevant here (and may be skipped by a
reader already familiar with the field).

Basic Techn iques and Terminology

The l anguage used in th is repo r t is that of f i rs t -order pred ica te logic with
which we assume the reader to be familiar. From the pr imitve symbols of this
logic we use: ux. v.z as indiv idual variables; a.b.c.d as indiv idual constants; PB.
Q. Ras predicate constants; f, gh asfunct ion letters. The equality predicate
wil l be denoted by E and mostly written in infix notation as = to improve
readabi l i ty . Ind iv idua l constants and var iables are terms as well as n-place
functions app l ied t on terms. As metasymbols for terms we use £._s and t. the
arity of funct ions and p red i ca tes wi l l be clear f rom the context . An n -p lace
pred ica te let ter app l ied to n te rms is an atom. A literal is an atom or the
negation thereof. For literals we use L, K. The absolute value ILI of a l iteral L is
the atom K such that either L is Kor L is ~K.

A clause is a finite set of l i terals for which the metasymbols C, D are used. A
clause is in terpreted as the dis junct ion of its l i tera ls, universal ly quantified
(over the ent i re disjunct ion) on its ind iv idual var iables. The empty clause is
denoted as O. A ground clause, ground literal or ground term is one that has
no var iab les occurr ing in it. A substitution ö is a mapp ing f rom var iab les to
terms almost ident ica l everywhere. Subst i tu t ions are ex tended to mappings
from terms to terms by the usual morphism. Substitutions are also used to
map literals (clauses) to literals (clauses) in the obvious way. A substitution is
denoted as a set of pairs 8 = (ve t) ve (Vv e t)) where the v, are variables
and the t, are terms. The term 8(t) (the l i teral 8(L), the clause 6(C)) is called an
instance of t (an instance of L, an instance of C). We use 5, 6 for substitutions.
A subst i tut ion 6 is called a unifier for two atoms L and K, iff &(L) = 6(K), 6 is
called a most general unifier (mgu) of L and K, if for any other unifying
subst i tut ion d there exists a subst i tut ion A such that 8 = A - 6, where + denotes
the functional composition of substi tut ions. A matcher (or one-way unifier)
for two l i terals L and K relat ive to L is a subst i tut ion 6 such that sL = K.

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 3

The Herbrand Universe H(S) of a set S of clauses is the set of all ground terms
that can be constructed from the symbols occuring in S (if no individual
constant occurs in S we add the single constant symbol c). A Herbrand
instance H(t) of a term t is an instance 8(t), such that all terms in 5 are from
H(S); similarly we define a Herbrand instance of an atom, a literal, a clause. An
interpretation IT of S is a set of g round l i tera ls , whose abso lu te va lues are all
the Herb rand instances of atoms of S such that for each Herbrand instance L
of an atom exactly L or ~L i s i n T. An interpretation I satisfies a ground clause
Ciff CnT # O.T satisfies a clause C if i t satisfies every ground instance of C in
H(C); T satisfies a set of clauses S if it satisfies every clause in S. A modelM of
a set of c lauses S is an interpretat ion that sat is f ies S. I f S has no model it is
unsatisfiable. For the equal i ty predicate = and a set of clauses S, a model M of
S is an E-model if

i) t = t eM for all terms t
i i) if the literals L €e M and s = t € Mand if L' is obta ined from L by

replacing an occurence of sin L by t then L'e M.
If S has no E-models then it is E-unsatisfiable.

Two l i tera ls are complementary if they have opposite sign and the same
predicate letter.

I f C and D are clauses with no var iab les in common and L and K are
complementary l i terals in C and D respectively, and if |L | and |K| are

~unifiable with most general unifier 6, then R= 6(C-{L}) ua(D-{K}) is a resolvent
of C and of R and each l iteral L in R descends from a l i teral L' in C or D.

If Cis a clause with two l i terals L and K and if a most general unif ier 6 exists
such that 6(L) = 6(K) then F = 6(C-K) is called a factor of C. If C and D are
clauses with no var iables in common, and s = t is a l i teral in C, and r is a term
occuring in D such that there exists 6 with 6(s) = 6(r), and D' is obtained from D
by replacing r in D by t then P = 6(D') u 6(C-{ s=t }) is a paramodulant of C and
D. This inference ru le is cal led paramodulation.

A connection graph CG is
i) a set of clauses S

ii) a b inary relat ion R over l i terals in S, such that (L,K) e Rif |L | and [K]|
are unif iable and L and K are of opposite sign. Sometimes we write <S>
for the connection graph obtained f rom 8S.

A l i teral L in S is pure if i t does not occur in any of the pairs of R i.e. it is not
connected and the clause contain ing L may then be deleted in CG. A

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 4

connection grph is graphical ly represented by drawing a l ink between L and K
for every (L, K) eR.L and K are said to be connected. Instead of repeating the
definition of the connect ion graph proof procedure [Ko 75] we give an
example for the derivation step. Consider the following connection graph:

Ox Sonn ORE

© © ==

Suppose we want to obtain the resolvent of clause (I) and clause (II), i.e. we
want to resolve upon link (1). This is done by adding the resolvent to the
graph and by connecting the resolvent in the following way: if a l i teral L in
the resolvent descends from a l i teral L' in one of the parent clauses and if L'
was connected to some l i teral K and if K and L are uni f iable, then L and K are
connected by a l ink . Final ly the l ink reso lved upon is deleted and all
tautologies and all clauses containing pure l i tera ls are deleted.

For the connection graph above, resolv ing upon link (1) leads to a tautology,
which is deleted, hence (I) and (I I) are deleted since K, ~K is now pure.

Similarly clauses (I I I) , (IV) and (V) are deleted; i.e. after one step the whole
connection graph shrinks to:

P| QM

a] Q

—Q

This potent ial ly rap id reduc t ion of the or ig inal graph causes the practical
attraction as wel l as the theoretical p rob lems of this proof procedure. A more
fo rma l representat ion of the procedure is contained in [KARL MARK GRAPH
paragraph 6.3.10].

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 S

Apar t f rom the delet ion of clauses containing pure l i terals there are addit ional
de le t ion ru les, which become par t icu lar i ly s ign i f icant in the context of
connection g raphs : every delet ion of a clause may cause further deletions of
clauses (and l inks) and the resul t ing complex interplay is stil l not very well
understood theoretically (see e.g. [BI 81] [EI 81] [EI 87] [SM 82]).

A clause C is a tautology if i t contains two complementary l i terals L and K
such that | L |= |K | or a l iteral of the form t =t.

A clause C subsumes a clause D if |C|<|D| and there exists a substitution 5
such that 8C «=D. (This is the definition of 8-subsumption in [LOV 781).

Subsumed clauses and tautologeous clauses may be de le ted f rom the graph, as
discussed in [KARL MARK GRAPH section 6.3.3] and [KARL MARK GRAPH
section 6.3.4] respectively. The unrestriced use of these deletion rules is
known to make the respec t i ve proof p rocedure incomple te and even
inconsistent. |

A t rad i t iona l refinement res t r i c t s the search space by b lock ing cer ta in
possible resolut ions steps. For example a UNIT refutation, in which at least
one parent clauses of a resolvent must be a unit clause, is such a refinement.
SET -OF-SUPPORT is also a ref inement : the set of clauses is part i t ioned into two
subsets (usua l ly the set of the axiom clauses S and the set of the theorem

c lauses T) and resolut ion is only permi t ted if at least one parent clause is in T.
The reso lven ts are put into T, i.e. the effect of se t -o f -suppor t is most
prof i table at the beginning of the search, but i t fades the more the deduct ion
proceeds.

A LINEAR ref inement selects a top clause from the set of theorem clauses and
uses this clause as one of the parents for a resolution step. Then the resolvent
becomes the top clause and so on ei ther unt i l the empty clause has been
der ived or backtracking is necessary.
The development of complete ref inements was the main focus of research in
theorem proving in the past and there may be close to a hund red now (see
e.g. [LOV 78] [CHL 73]), some of those are used to advantage in the
MKR-Procedure as well.

In contrast to a ref inement, which only restr icts the number of possible steps
(and often "cuts off garbage and gold alike"), a strategy gives active advice as
to what to do next. The deve lopment and integration of such strategies into
one system was the main research prob lem of the MKRP project [cf. KARL

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 6

MARK GRAPH]. Strategic information overr ides any other information: even if
a par t i cu la r re f inement was chosen, the resu l t ing deduct ion may be very
dif ferent. Only if nothing better is known, does the system behave l ike a
traditional theorem prover.

Comp le teness

The MKR-Procedure is incomplete, yet even worse i t is inconsistent as it
stands. This is part ly so, because the implementat ion is not completed and
part ly because there are open theoretical prob lems in the connection graph
procedure i tse l f , see e.g. [BI 81] and [SM 82]. Most of the cases causing
incompleteness (except paramodulat ion) however are i r relevant for practical
examples; quite on the contrary, for some of them it is a hard job to f ind an
example where it is in fact relevant.

In part icular there are the following cases:
e As all reduct ions are per formed before factorization, the graph may collapse
although the clause set is unsatisfiable (i.e. the system is inconsistent):

Example:
<—P(a, x) , —P(x, a) >

<P(a, x) , P(x, a) >

All four R-l inks are tautology l inks and will be deleted causing purity deletion
of both clauses, although the factors <P(a a)> and <NOT P(a a)» would allow for
a refutation.

e Tautologies are deleted without any restriction, although this is known to
be inconsistent, see [SM 82].

e Subsumed clauses and l inks are deleted without any restr ict ion, which can
also cause inconsistency, see [SM 82] [EI 81].

eo Paramodulat ion and equality reasoning is not fully implemented. Especially
the mechanism to generate only those P- l inks into var iab les which are
necessary for completeness is not yet completed. Unrestr iced generation of
P- l inks f rom each side of an equat ion into each var iable would blow up the
graph without significantly increasing the total amount of information. Hence,

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 7

P-l inks into var iables are not generated so far.

These deficiencies may be the reason that a proof exists, but cannot be found
by the system. Even worse, the graph may collapse (usually indicat ing
satisf iabi l i ty), although the init ial clause set is unsatisfiable.

As more theoret ical resul ts about clause graph procedures become known
[EI83] , we hope to el iminate at least the case causing inconsistency, whereas
completeness results, although interest ing as they may be from a theoretical
point of v iew, are of course less important for pract ical purposes.

Overview of the Sys tem

The work ing hypothesis of the MKRP project f i rs t formulated in an early
proposal in 1975, ref lects the then dominat ing themes of artif icial intelligence
research, namely that TPs have attained a certain level of performance, which
will not be significantly improved by:

i) developing more and more intricate refinements (l ike unit preference,
linear solution, TOSS, MTOSS, ...), whose sole purpose is to reduce the
search space, nor by

ii) using dif ferent "logics" (like natura l deduct ion logics, sequence logics,
matrix reduction methods etc.)

although this was the main focus of theorem proving deduct ion research in
the past and of course it is not entirely without its meri ts even today.

The re lat ive weakness of cu r ren t TP-systems as compared to human
performance is due to a large extent to their lack of the r ich mathematical and
ex t ramathemat ica l knowledge that human mathematicians have: in particular,
knowledge about the subject and knowledge of how to f ind proofs in that
subject.

To a lesser , bu t s t i l l impo r tan t ex ten t the re la t i ve weakness of cu r ren t
TP-systems can be at t r ibuted to the insuff ic ient emphasis which in the past
has been la id onto the software engineer ing p rob lems and - sometimes even
minor - des ign issues that in their combinat ion account more for the strength
of a system than any single re f inement or "logical improvement" ,

Hence the object of the MKRP-project is f irstly to careful ly design and develop
a TP system comparat ive in strength to tradit ional systems and secondly to

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 | 8

augmen t this system with the appropr ia te knowledge sources and heurist ics
methods. As a test case and for the f inal evaluation of the project 's success or
fa i lure, the knowledge of an algebraic t reatment of automata theory shall be
made explicit and incorporated such that the theorems of a s tandard textbook
[DE 71] can be proved mechanically. These proofs are to be t ransformed into

‘ o rd i na ry na tu ra l language mathemat ica l p roofs , thus generat ing the f i rst
s tandard textbook entirely written by a machine.

In the following chapters we give a complete descript ion of the user interface
of the system. Most commands will work for any version of the MKRP, but the
start ing procedure is descr ibed for the SIEMENS BS2000 version.
The system also runs on a Symbolics Lisp Machine under Genera 7.1 (Common
Lisp) . The major differences to the SIEMENS version are mentioned at the end
of each chapter. |

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 9

2. The MKRPOpera t i ng System

After the logon command to a SIEMENS BS2000 system, the user types

/DO ATP, <load-subsystem>

to load the Markg ra f Kar l Refutat ion Procedure (MKRP for shor t) . As the
system as a whole doesn't f i t into main memory, it is part i t ioned into four
different subsystems. The <load-subsystem>-parameter selects one of them to
be init ially loaded. This parameter has one of the following four values:

E.COM for Edit
C.COM for Construct
R.COM for Refute
P.COM for Protocol

Independent ly f rom the subsystem being actually active, the system accepts
any MKRP-command. I f necessary, i t automat ical ly adds the subsystem
needed to execute the command.

On a Symbolics the system is started by typing :Load System MKRP

(1) Architecture of the System from a User's View

The system consists of the following four subsystems:

- EDIT
- CONSTRUCT
- REFUTE
- PROTOCOL

EDIT prov ides a set of funct ions to create and manipu la te sets of
axioms and theorems.

Given a set of axioms and theorems (created by EDIT), CONSTRUCT
generates the corresponding initial connection graph(s). |

With the resu l t of CONSTRUCT as inpu t , REFUTE tr ies to detect a
refutat ion by the application of resolut ion steps to the connection
graph.

PROTOCOL produces a l isting of init ial clauses and the proof steps

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 10

which are necessary to deduce the empty clause.

(2) A More Detailed Descript ionof the Four Subsystems

The subsystem EDIT enables the user to create axjom- and theorem-files,
consist ing of f o rmu las of the input - language Predicate Logic Language PLL,
which is discussed in chapter 3. The editor checks the syntactic and semantic
cor rec tness of the i npu t f o rmu las . These f o rmu las a re t r ans fo rmed into a
fo rma l p rob lem descr ipt ion be ing stored in a so ca l led problem file.

This p rob lem fi le is the i npu t for the CONSTRUCT -subsystem, wh ich
genera tes the init ial connection g raph (s) according to the reduct ion ru les for
initial g raphs as speci f ied by the user -def ined ad jus tmen t of the opt ions. The
output of this subsystem is a graph f i le. Raw data for the protocol are written
to a code f i le.

REFUTE then, t r ies to proof the theorem by reso lv ing clauses in the
connection g raph . The user can control the deduct ion process by specifying
var ious opt ions (to be discussed in more detai l in chapter 3.4). REFUTE also
wri tes raw data to a code file. In order to get protocol raw data of CONSTRUCT
and REFUTE on the same codefile use CR (see below) if possible.

PROTOCOL produces a listing of the in i t ia l clauses, together wi th the
resolution proof as per formed by REFUTE.

(3) A Prec ise Explanat ion of the Operat ing Sys tem Commands

At the top leve l of the MKRP-System, the fol lowing opera t ing system
commands are available:

V HI[ELP] EXIIT] O[PTIONS] IINDIUCTION]]
HC LI[ISP] LO[GOFF] S[UBSYSTEMS] |

| EP
FP

ER CP
FR

EC CR RP
FC

E[DIT] C[ONSTRUCT] REFUTE] P[ROTOCOL]
F[ORMULA]

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 11

DIEFINE.]D[IRECTORY]
S[ORT.]G[ENERATION]

DIEFINE.]D[IRECTORY]

<Directory»

<Directory2>

DIEFINE.JE[XAMPLENAME]

<KExample-name>

V TIYIYES
-V NILININO

H[ELP] «COM>
H[ELP]

EX[IT]

O[PTIONS]

IIND[UCTION]]

D[EFINE.JE[XAMPLENAME]

<Directory 1> <Directory2>
Defines the directories where the files wil l be
written on and read from.
Directory for f i les to read and for fi les to
wr i te . As directory1l only a directory on the
user's own user - id is al lowed. The $-pref ix is
not allowed for directoryl.
Directory for files to read.

<KExample-name>
Fi les gene ra ted du r i ng the sess ion w i l l be
pref ixed with the Example-name.
An examp le name ; the S tanda rd -name
is TEMP.OS'.

turns the manual terminal control on.
turns it off

explains the command <COM»
prints a l ist of all avai lable OS-commands

te rmina tes the MKRP-Session and re tu rns to
BS 2000 _

cal ls the op t ion-modu le of the proof-control.
I t has its own se l f -exp lanatory command
system. OK returns to where you came from.
The option module is descr ibed in detai l in
section 3.4

Not yet fully implemented.
Calls the Ka r l s ruhe I nduc t i on -The ro rem-

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 12

prover

HC <File> Hardcopy of the Terminal-Session on <File>
HC T Hardcopy on System File. Automatic Output

on Printer
HC N INIL HC is switched off and «File» is closed

L[ISP] Calls Interlisp. Return with 'OK'
LO[GOFF] terminates this Terminal-Session

S[UBSYSTEMS] Shows the actual system-configuration. I t has
its own self-explanatory command system.
OK returns to where you came from.
The subsystem commands are explained in
section 3.5.

S[ORT.]G[ENERA TION] <Input Graph Files <Output Graph File>
Transforms unary predicates into sorts; in
some cases a cont rad ic t ion or a model is
found.

«Input Graph File> A file containing the init ial graph(s). If nil,
the last one created is used, if such a file
exists.

<Output Graph File» File containing new init ial graphs. New split
par ts are possible.

E[DIT] [<Problem File>] creates a problem description.
To that end the fo rmu la editor is called twice,
f i r s t for the axiom fo rmulas , then for the
theorem formulas.
The prob lem descript ion is written on

<Prob lem File» ‚ i f given, otherwise a defau l t name is used.

F[ORMULA] <Axiom File> «Theorem File> [<Problem File>]
creates a prob lem descr ipt ion from compiled
formula files.

<Axiom File» and
<Theorem File» contain the comp i l ed axiom and theorem

User Manual for the Markgraf Karl Theorem Proving System | Chapter 2 13

<Problem File»

C[ONSTRUCT]

<Problem File»

<Graph File»

<Code File»

<Comment>

<Batch File»

<ATP-Version»

R[EFUTE]

<Graph File>

<«Number>

formulas.
The problem description is written to
‚ i f given, otherwise a default name is used.
Using this command requ i res <Axiom File>
and <Theorem File> to be compatible, i.e. they
must be c rea ted du r i ng the same editor
session.

[<Problem File>[<Graph File>[<Code File>
[<Comment>[<Batch File>[<ATP Version>]1111]
creates a set of initial graphs from a problem
descr ipt ion.
contains the p rob lem description. I f nil, the
last one created is used, if such a file exists.
is the file the init ial graph(s) wi l l be written
on. If nil, a default file name is used.
is the f i le, where the raw data for the protocol
will be written to. If nil, a default file name is
used.
is i nse r t ed in to the p roo f protocol.
<Comment> must be a l ist, each e lement is
pr inted in a separate l ine.
Af g iven, causes the creat ion of a batch job
using the given
or the standard version, respectively.

[<Graph File>[<Number>[<Code File>[<Batch
File>[<ATP-Version<]111]
refutes a set of initial graphs and creates raw
data for the protocol.
is the file containing the initial graph(s). If nil,
the last one created is used, if such a file
exists.
If a
say n, is given, only the nth graph is refuted,
otherwise (i.e. <number> = nil) all graphs on

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 14

the file.
<Code File> is the f i le, where the raw data for the protocol

wil l be wri t ten to.
<Batch File» if g iven, causes the c rea t ion of a ba tch job

using the given
<ATP-Version> or the standard version, respectively.

P[ROTOCOL] [<Code File>[List File>[<Batch File»
[<ATP-Version] l]]
crea tes a proof protocol f r om raw data.

<Code Files File containing the raw data.
<List File» Fi le, whe re the p rocessed data for protoco l

wil l be wri t ten to in a readable format.
<Batch File» Af g i ven , causes the c reat ion of a ba tch job,

us ing
<ATP-Version> or the standard version, respectively.

The commands Edit , Fo rmu la , Construct , Refute and Protocol can be comb ined
in var ious dif ferent ways.
This causes severa l commands be ing execu ted after one another.
Possible combinations are:

EP
FP

ER CP
FR

EC CR RP
FC

For examp le the CP P rob lem File> «Graph File> «Code File»
c<comment> <List File»

causes f i rs t CONSTRUCT to create a «Graph File> and a «Code File» s tar t ing with
<Problem File>. Then REFUTE tries to refute the graph and wr i tes also protocol
raw data to the <Code File> and at last PROTOCOL creates a <List File».

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 15

3, The Input Language

The PREDICATE LOGIC LANGUAGE (PLL), a fo rma l language in which sorted
f i rs t -order predicate logic formulas can be fo rmu la ted , is desc r ibed . Ax ioms
and theorems, which are given to MARKGRAF KARL REFUTATION PROCEDURE,
are rep resen ted in PLL. The language constructs of PLL which reflect the
special facil i t ies of this system are exhibi ted, i.e.

- an inference mechanism based on a many-sorted calculus,
- the incorporation of special axioms into the inference mechansim, and
- the control of the inference mechan ism using spec ia l derivation strategies.

Bas i c Concepts

In PLL all the usual junctors, denoted by OR, AND, IMPL, EQV, and NOT, the
un iversa l quantifier ALL and the ex is ten t ia l quant i f ie r EX are present.
Junctors and quant i f iers have the following priorities when used in a formula
without parentheses:

(1) NOT
(2) AND
(3) OR
(4) IMPL
(5) EQV

(6) ALL, EX

In a fo rmu la without parentheses, the rightmost junctor has precedence over
all functors of the same priority to its left.

Examp le

NOT A OR B AND C is equivalent to (NOT A) OR (B AND C) and A IMPL B IMPL
C is equivalent to A IMPL (B IMPL C).

In PLL the sign '= ' denotes the equal i ty symbol, i.e. we use a f i rs t -order
predicate calculus with equality. As an example for using PLL, we axiomatize
a group:

Example

* AXIOMATIZATION OF A GROUP WITH EQUALITY,
* F IS A GROUP OPERATOR AND 1 IS THE IDENTITY ELEMENT

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 16

ALLXYEXZ F(XY)=12
ALL XYZ F(XF(YZ)) = F(F(X Y) Z)
ALL X F(1 X) = X AND F(X 1) = X
ALLXEXY F (XY)=1

A theorem given to the MKRP system could be for instance:

*IDEMPOTENCY IMPL IES COMMUTATIVITY

ALL X F(X X) = 1 IMPL (ALL X,Y,F(X Y) = F(Y X))

The l ines s ta r t ing wi th a ™ are PLL -commen ts . We give another
axiomatization of a group:

Example

* AXIOMATIZATION OF A GROUP WITHOUT EQUALITY
* P(X Y Z) DENOTES F(X Y) = Z WHEREF IS THE
* GROUP OPERATOR. E IS THE LEFTIDENTITY.

ALL X,Y EX Z P(X Y Z)
ALL X,Y,Z,U,V,W P(XY U) AND P(Y Z V) IMPL

(P(X V W) EQV P(UZ W)
ALL X P(E X X)

ALL XEXY P(XYE)

Now a theorem could be for instance:

* LEFTIDENTITY IS RIGHTIDENTITY

ALL X P(X E X)

The Many-Sor ted Calculus

Assume we have a set of symbols o rdered by the subsort order, a partial
order re lat ion which is re f lex ive, an t isymmet r ic and t ransi t ive. Variable,
constant and function symbols are associated with a certain sort symbol. The
sort of a var iab le or constant symbol is its rangesort and the sort of a term
which is different f rom a var iab le or constant symbol is determined by the
rangesort of its outermost function symbol.

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 17

All argument positions of a function or predicate symbol are associated with
certain sort symbols, called the domainsorts. In the construction of the well
f o rmed fo rmu las of the many-sor ted calculus, only those terms may fi l l an
argument position of a function or predicate symbol, whose sorts are subsorts
of the domainsorts given for the argument position of the respective function
or predicate symbol.

Besides the increase of readability of axiomatizations, the usage of the
information given by the range- and domainsorts and by the subsort order
prevents the in ference mechan ism of the theorem prover to do useless
de r i va t i ons . The theore t i ca l f ounda t ion of the many -so r t ed calculus
imp lemented in the MARKGRAF KARL REFUTATION PROCEDURE can be found
in [Walther-83].

As an example for an application of a many-sorted calculus we axiomatize sets
of letters and digi ts and some basic operat ions for these sets:
Example

* DEFINITION OF THE SORTS LETTER AND DIGIT, L.E.
* A,B, . . ,Z ARE CONSTANTS OF SORT LETTER AND
*0 ,1 , . . , 9 ARE CONSTANTS OF SORT DIGIT

TYPE AB,CDEFGH,IJKLMN,OPQRSTUVWXYZ LETTER
TYPE 0,9,8,7,6,5,4,3,2,1: DIGIT

* LETTER AND DIGIT ARE SUBSORTS OF SORT SIGN

SORT LETTER, DIGIT:SIGN

* DEFINITION OF THE EMPTY SET AND SET-MEMBERSHIP,
* I.E. EMPTY IS A CONSTANT OF SORT SET AND MEMBER
* IS A BINARY PREDICATE DEFINED ON (SIGN SET)

TYPE EMPTY:SET
TYPE MEMBER(SIGN SET)
ALL X:SIGN NOT MEMBER(X EMPTY)
ALL U,V:SET U = V EQV (ALL X:SIGN MEMBER (X U) EQV MEMBER (X V))
* DEFINITION OF SINGLETONS, I.E. |

* SINGLETON IS A FUNCTION MAPPING SIGN TO SET

TYPE SINGLETON(SIGN):SET
ALL X:SIGN ALL U,V:SET (MEMBER(X U) OR MEMBER(X V))

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 18

EQV MEMBER (X UNION (U V))

Theorems to be proved by the ATP system could be for instance:

* UNION IS IDEMPOTENT AND EMPTY IS AN IDENTITY ELEMENT

ALL X:SET UNION (X Y) = X AND UNION(EMPTY X) = X

* SINGLETON IS INJECTIVE

ALL X,Y:SIGN SINGLETON(X) = SINGLETON(Y) IMPL X=Y

* EACH LETTER IS A SIGN

ALL Y-SET (EX U:LETTER MEMBER(U Y))
IMPL (EX X:SIGN MEMBER(X Y))

Attr ibutes of Functions and Predicates

Attr ibutes are abbreviat ions for their defining axioms, i.e. f i rs t -order axioms
which axiomatize certain propert ies of functions or predicates.

The effect in stat ing a cer ta in at t r ibute of a funct ion or pred icate using an
attr ibute declarat ion is formal ly the same as giving the defining axiom to the

ATP. At the moment the following propert ies can be declared.

Attr ibute Declaration Defining Axiom

REFLEXIVE(P) ALL X P(X X)
IRREFLEXIVE(P) ALL X NOT P(X X)
SYMMETRIC(P) ALL XY PXY)IMPL P(Y X)
ASSOCIATIVE(F) ALL XYZ F(X F(Y Z)) = F(F(X Y) Z)

The def in ing ax ioms of a t t r i bu tes are i nco rpo ra ted in to the in fe rence
mechanism of the system as described above in [KARL MARK G RAPH-84].

Example

In the f i rs t example for instance the associativity of the group operator F
could be stated by: ASSOCIATIVE (F). In the second example we could write as
an axiom: ASSSOCIATIVE(UNION).

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 19

The Syntax of PLL

The formal syntax of PLL def ined by a context free grammar is contained in
[Wal ther -82] , which presents addit ional details and examples.

Seman t i c Constra in ts for PLL

In the sequel we state the semantic constraints (i.e. the context dependent
language features) for PLL. The str ings in angle brackets, e.g. <term>, refer to
the production rules of the PLL-grammar as defined in [Walther-82].

Sort Symbols

Sort symbols are introduced with their f i rst usage in
- a <sort declaration», e.g. SORT LETTER, DIGIT:SIGN, ALPHABET
- a <type declaration», e.g. TYPE A,B:BOOL,
- a <variable declaration», e.g. ALL Z:INT EX N:NAT ABS(Z) = N

The d i rec t subso r t re lat ion imposed on the set of sort symbo ls is a partial,
i rref lexive and non-transit ive relat ion such that the predef ined sort symbol
ANY is no direct subsort of each sort symbol and each sort symbol different
from ANY is a direct subsort of at least one other sort symbol.

The subsort order imposed on the set of sort symbols is the ref lexive and
transit ive closure of the d i rect subsor t relat ion.

The subsor t symbols left of the colon in a <sort declaration> are direct
subsorts of each sort symbol to the r ight of the colon in the <sort declaration».

The sort symbols r ight of the colon in a <sort declaration» are direct subsorts
of ANY, provided these sort symbols are introduced by this <sort declarat ion.

Example
For the <sort declaration» given above LETTER and DIGIT are subsorts of SIGN
and of ALPHABET, and SIGN and ALPHABET are direct subsorts of ANY.
Hence LETTER, DIGIT and SIGN are subsorts of SIGN and ANY, SIGN,
ALPHABET, LETTER and DIGIT are subsorts of ANY.

Variable Symbols

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 20

Var i ab le symbo l s are i n t r oduced by a «var iab le declarat ion> in a
<quanti f icat ion.

Example

ALL X,Y EX Z:S P(X Y Z)

The scope of a «variable declaration» is the <quantification> following the
«variable declaration» in a <quantification>.

In its scope each «variable symbol> has as rangesort the sort symbol given by
the <sort symbol> following the colon in its «variable sort> of the «variable
declaration». I f no «variable sort> is present, the rangesort of the «variable
symbol> is the predef ined sort symbol ANY.

Example

The expression given in the above example has the following sorts:
rangesort(X) = rangesort(Y) = ANY and
rangesort(Z) = S.

In each <quantification> var iable symbols are consistently renamed from left
to r ight to resolve conflicts on mult iple introductions of var iable symbols.

Example

ALL Y,X P(Y) is the same as ALL X,Y P(Y) and
ALL X (EX X P(X)) IMPL Q(X) is the same as
ALL X (EX Y P(Y)) IMPL Q(X)

Constant Symbols

Constant symbols are introduced with their f i rst usage
- in a <type declaration», e.g. TYPE -1,+1:INT
- as <term>, e.g. ALL X P(X A) OR F(C) =D

Each constant symbol has a rangesort the <sort symbol> following the colon in
the <type declaration> which introduces the «constant symbol».

Example
For the expressions given above we find
rangesort(-1) = rangesort(+1) = INT.

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 21

The rangesort for a constant symbol which is introduced with its f i rst usage as
a <term> is ANY.

Note that in PLL var iab le symbols are always preceded by a quantifier and
thereby can always be dist inguished from constant symbols. As a consequence
there is no concept of f ree var iab les in PLL.

Function Symbols

Function symbols are introduced with their f irst usage in
- a <type declaration, e.g. TYPE ABS(INT):NAT
- an <attribute declaration», e.g. ASSOCIATIVE(PLUS)
- a <term>, e.g. ALL X P(F(X)) OR G(X) = A

Each function symbol is associated with a sort symbol for each argument
position i, called its ith domainsort, with a natural number, called its arity, and
with a sort symbol, called its rangesort.

Function symbols which are in t roduced by <type declaration> have as their
domainsorts the <sort symbol>s given on the appropr iate positions in the list
of <sort symbol>s following the «function symbol> in the <type declaration».

Example
For the expression TYPE PRODUCT(SCALAR VECTOR):VECTOR we get

domainsor t (PRODUCT 1) =SCALAR and domainsor t (PRODUCT 2)=VECOTR.

A «function symbol> which is introduced by a <attr ibute declaration» or by its
f i rs t usage in a <term> has ANY as ith domainsort for each a rgumen t position i.

The arity of a function symbol is def ined as
- the number of sort symbols in the l ist of <sort symbo ls following the

function symbol> in the «type declaration> which in t roduces the «function
symbol»

- two, for a «function symbols introduced by an <attr ibute declaration»
- or else the number of arguments at its f i rst usage in a <termp.

Example
For the expressions given above we get arity(ABS) = 1,
arity(PLUS) = 2 and arity(F) = arity(G) = 1.
The rangesor t of a «function symbols is def ined by the <sort symbols following

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 22

the colon in a <type declaration>. Its rangesort is ANY if the «function symbol
is introduced by a <attr ibute declaration» or by its f i rst usage in a <termo.

Example
For the examples given in the above expressions we get
rangesort(ABS) = NAT
rangesort(PRODUCT) = VECTOR, and
rangesort(PLUS) = rangesort(F) = rangesort(G) = ANY.

Predicate Symbols

A predicate symbol is int roduced with its f i rs t usage in
- a <type declarations, e.g. TYPE MEMBER(SIGN SET)
- a <atom> in a formula, e.g. EX X,Y P(X Y) AND Q

Each predicate symbol is associated with a na tu ra l number , called its arity,
and with a sort symbol for each a rgument position i, called its ith domainsort.

The arity and domainsor t of predicate symbols are de te rmined in the way
arity and domainsorts are determined for function symbols.

| The <equality symbol» is a predef ined predicate symbol with arity 2 and 1st
and 2nd domainsort ANY. I t is the only predicate symbol which is wri t ten in
infix notation.

TRUE’ and FALSE are predef ined predicate symbols with arity 0, which have
the obvious meaning.
I n the following the numbers in angle brackets, e.t. <23>, denote e r ro r code
numbers re turned by the PLL-compiler of the MARKGRAF KARL REFUTATION
PROCEDURE (summarized below) when given a semantically incorrect
<eXpression> as input . The phrase unknown symbol denotes a str ing of the
te rmina l a lphabet of the PLL -g rammer , which was not used before.

S call Sort Declarati

A <sort declaration» SORT S1, . . . ,Sm:T1, . . , Tn is semantical ly correct, if
- all Si and all Tj (i=1. .m, j=1. .n) are sort symbols or else are unknown

symbols (otherwise error message) <61,62,63,64> and Si is a direct subsort

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 23

of Tj <1> or else at least one of the symbols S and Tj is an unknown
symbol <2>.

S a l l Type Declaratios

A «type declaration» T is semantical ly correct if
- T is TYPE C1,... , Cn:S and S is a sort symbol or else is an unknown symbol

<61,62,63,64> and for all i=1..n Ci is a constant symbol with rangesort(Ci)=
S <14> or Ci is an unknown symbol <11,12,16,17>

- or T is TYPE P(S1,...Sn) and for all i=1...n Si is a sort symbol or else is an
unknown symbo l <61,62,63,64> and P is a p red ica te symbol wi th
arity(P)=n <34> and domainsort(P=i)=Si<36> or else is an unknown symbol
<31,32,36,37>

- or T is TYPE F(S1..Sn):S and for all i=1..n S and Si are sort symbols or else
are unknown symbols <61,62,63,64> and F is a funct ion symbol with
arity(F)=n <23>, rangesort(F)=S «27> and domainsrot (F i)=Si <26> or
unknown symbol <21,22,24,28>.

; a l] Attribute Declarati

A <attribute declaration> ASSOCIATIVE(F) is semantically correct if
- Fis a function symbol with arity(F)=2 <23>, rangesort (F) = domainsort(F

| 1) = domainsort(F 2) or else is an unknown symbol <21,22,24,28>.

The <attribute declarations>s REFLEXIVE(P), IRREFLEXIVE(P) and
SYMMETRIC(P) are semantically correct if

- P is a predicate symbol with arity(P)=2 <34> and domainsort (P 1) =
domainsort (P 2) <36> or else is an unknown symbol <31,32,33,37>.

; call 1. LO ‚ f icati

The sort of a term t, denoted sort(t), is the rangesort of t, if t is a variable or
constant symbol, and else is the rangesort of the outermost function symbol of
t.
A <term> T is semantically correct if

- T is a constant symbol , a var iab le symbo l or an unknown symbol

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 24

<11,12,16,17>
- or T is F(T1..Tn) and for all i=1...n, Ti is a semantically correct term, F is a

funct ion symbol with arity(F)=n <23> and sort (Ti) is a subsort of
domainsort(F i) <81> or else F is an unknown symbol <21,22,24,28>,

An <atom> A is semantical ly correct if
- A is a predicate symbol with ar i ty (A)=0 <34> or A is an unknown symbol

<31,32,33,37>
- or Ais P(T1..Tn) and for all i=1..n, Ti is a semantically correct term, P is a

pred ica te symbo l wi th a r i t y (P)=n <34> and sor t (T i) is a subsort of
domainsort(P i) <81> or else P is an unknown symbol <31,32,33,37>

- or A i sT1 =T2 and T2 are semantically correct terms and = is an <equality
symbol .

A <quantification>Q is semantically correct if
- Q is ALL X... or EX X... and X is a var iable symbol or an unknown symbol

<31,52,53,55> and each atom in Q is semantically correct.

Errorsde tec ted by the Compiler

The PLL compiler of the ATP system checks each input for syntactical and
semant ica l correctness. An input containing signs which are not member of
the terminal alphabet is responded by a message.

*** SYMBOL ERROR «<< xxx IS NO ADMISSIBLE SYMBOL

where XXX is a sign which is not member of the te rmina l alphabet.

For a syntactically incorrect input , the compiler responds

++++ SYNTAX ERROR >>> xxx NOT ACCEPTED
UNEXAMINED REMAINDER OF THE INPUT >>> zzz

where XXX is the sign which causes the syntactical incorrectness and zzz is the
unanalysed remainder of the given input.

For a syntactical ly cor rec t bu t semant ica l l y incor rect i npu t , the compiler

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 25

responds

xxx SEMANTIC ERROR nnn >>» message
UNEXAMINED REMAINDER OF THE INPUT >>> zzz

where 'nnn' is the semant ic error code, ‘message’ is an error message
expla in ing the k ind of the semantic error and 'zzz' is the (not analysed)
remainder of the given input.

Particularities of the] Routi

Since the whole ATP system is an INTERLISP program, the special features of
the INTERLISP input routines have to be taken into account, i.e.

- () is read as NIL
- 'X is read as (QUOTE X)
- < is read as (
- > is read as a non empty sequence of) 's
- > closes all le f t -brackets up to the f i rs t le f t -superbracket <
- each lef t -bracket has to be matched by a r ight-bracket or by a

r ight -superbracket >
- each input has to contain an even number of " (i.e. the string indicator)

= - a sequence of b lanks is read as one b lank (except in a s t r ing)
- + is read as a b lank if i t is followed by a sequence of d ig i ts , e.g. +4711 is

read as 4711
- a sequence of zeroes is read as a zero, unless the sequence is p receded by

non-zero sign, e.g. 007 i s read as 7.

Separator Characters

In INTERLISP each of the following characters separates S-expressions:

- a blank
- a bracket, i.e.), (, > or «
- the quote sign, i.e.’
- the string indicator, i .e.”

Signs acting as separators in PLL are

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 26

- all INTERLISP separators
- the colon, i.e. X:Y is the same as X : Y and
- the comma, ie . X,Y is the same as X ,Y .

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 27

4. TheMKRP-Editor

The MKRP-Editor is a screen-oriented, syntax-directed editor for the sorted
logic formulas, written in PLL. The formulas are kept in two dif ferent areas: if
a fo rmu la was accepted by the compiler, it is inc luded into the active area. In
this case symbol table entr ies and pref ix form exist for the fo rmu la and are
accessable.

Other fo rmu las (e.g. such with syntax errors) are stored in the passive area.
Thus even erroneous input is not lost and the passive area can be used as a
scratch pad.

When terminated the editor re turns the list of the formulas in the active area
for fur ther processing (e.g. by the theorem prover) . The pass ive fo rmu las are
not considered.

Below is a list of the editor commands. Several commands can be concatenated
by the separator |.
Every command must begin with an atom (insert without command name).

IINSERT] <FORMULA)>
<FORMULA>
I f formula <FORMULA> is syntactically and semant ical ly correct, it wi l l be
inser ted as last one in active area, else as f i rst one in passive area.

DIELETE] [<FROM>] [-] [<TO>]
DIELETE] [<FROM>1[/] [<TO>]
I f <TO> is greater or equal than number of last f o rmu la in active area, the
corresponding fo rmu las wil l be deleted.
Examples: D- deletes all formulas,

D2 deletes formula 2,
D 3- deletes all formulas from the third one,
D deletes the last fo rmu la of active area if it exists, else

the f i rs t of passive area.

+[SHIFT] [<NUMBER>]
++[SHIFT]
+SHIFT shifts the f i rst «NUMBER; formulas of the passive area into the active
area, if they are syntactically and semantical ly correct.
Default -value of <NUMBER> is 1.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 28

++ SHIFT shifts all formulas.
Example: 1% a

2 + 2 2
Bananen _ x 3 *

4 4

-[SHIFT] [NUMBER]
--[SHIFT]
-SHIFT shifts the last «NUMBER; formulas of the active area into the passive
area.
Default -value of <NUMBER> is 1.
--SHIFT shifts all formulas.
Example: 1 -

KPD __________>

E[DIT] [<NR>]
The Lisp-Editor is called for the formula <NR>.
I f the active area is not empty, the default-value of <NR> is the number of last
fo rmula in active area, else 1.

C[HANGE] [<NR>]
The formula <NR> is printed on the terminal . User shall enter a new formula to

replace the printed one.
I f the active area is not empty , defaul t -va lue of <NR> is the number of last
formula in active area, else 1.

RIEAD] <FILE»>
<FILE> must be created by the wr i te -command. I f the editor is in the initial
state, the fo rmu las are inser ted into the same areas containing them at write
time. Otherwise all f o rmu las are inserted into the passive area.

WIRITE] <FILE>
The contents of the ed i tor wi l l be saved on f i le <FILE>, so that i t can be
restored with the read-command.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 29

GIET] <FILE>
<FILE> contains a sequence of formulas in the following format:

(<FORMULA¢>)
(<FORMULA>)

(<FORMULA>)
STOP

the fo rmu las are inserted into the passive area.

EXECIUTE] «FILE»
The f i le <FILE> contains a sequence of editor commands in the following
format:

«COMMAND> |
<COMMAND>> |

«COMMAND, |
OK

The commands will be executed. For further dialogue the terminal is used.
Take care of the r ight number of closing parentheses.

SWIITCH] [<NR>1] [<NR2>]
I f f o rmu la <NR1> and fo rmu la <NR2> are in the passive area they will be
exchanged.
I f the user only gives one number , this and f i rs t fo rmu la are taken, switch
alone exchanges f i rst and last fo rmula of passive area.

UINDO] [<NUMBER>] .
UINDO] ON
UINDO] OFF |

UNDO ON AND UNDO OFF are switching undo-mode ON OR OFF, respectively.
UNDO undoes the last «NUMBER; destruct ive commands, AS INSERT, DELETE,
EDIT, CHANGE, +SHIFT, -SHIFT, READ, AND GET.
NO «<NUMBER> means one command.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 30

REP[LACE] <OLD> <NEW>
X <OLD> <NEW>
REPLACE replaces the symbo l <OLD> by the symbol <«NEW> in active and
passive area as well as in symbol-table.
REPLACE cannot be undone,
nor can any commands executed prior to a replace.

PP[RINT] <FILE>
Print wr i tes the symobl - tab le and all f o rmu las in a readable form on the
given fi le.

S[HOW] <X1>...<XN>
S[HOW] -
Each <X1> must be a symbol-name or a list of kinds.
There are the kinds S[ORT], FIUNCT ION], P[REDICATE] and C[ONSTANT] all
symbols that are so specified will be shown on the terminal.
Example: S (P) F will show all predicates and symbol F,

S- all symbols.

SS[HOW] <X1>...<XN>
SS[HOW] -
SSHOW is a more beautyful version of show.

Each <XI> must be a symbol-name or a list of Kinds.
There are the kinds S[ORT], FIUNCTION], PI[REDICATE] and C[ONSTANT] all
symbols that are so specif ied will be shown on the terminal.
Example: SS (P) F will show all predicates and symbol F,

SS- all symbols.

PRE[FIX] [<FROM>] [-] [<TO>]
PREI[FIX] [<FROM>] [/] [<TO>]
F [<FROM>] [-] [<TO>]
F [<FROM>] [/1 [<TO>]
PREFIX or F writes the compiled (PREFIX-) form of the formulas <FROM> to
<TO> on the screen.
Examples: PRE-or PRE/ all formulas of the active area,

PRE 3 formula 3, if active,
PRE -5 the formulas 1 to 5, if they are in the active area.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 31

IN[FIX] [<FORM>] [-] [<TO>]
IN[FIX] [<FORM>] [/] [<TO>]
L[IST] [<FORM>] [-] [<TO>]
LI IST] [<FORM>] [7] [<TO>]
INFIX or LIST wr i tes the INFIXFORM (INPUT-LANGUAGE) of the formulas

<FROM> to <TO> on the sreen.
Examples: IN-OR IN/ all formulas,

IN7 the seventh formula,
IN -5 the fo rmu las 1 to S
IN the last formula of active area, or if i t doesn't exist

| the f irst of passive area.

STIATE]
STATE shows the user, how the fo rmu las are d is t r ibuted on the areas.
Example: AREA 1 : 3 formulas (active area)

= AREA 0: 1 formula (passive area)

OK
‚OK terminates the editor and returns to the calling module.
OK used on a file for the execute command terminates the execute command.

|
| terminates the editor and returns to ATP-TOP-LEVEL.
| in the input of a command cancels it.

LISP
LISP calls the LISP system.
You can return to the editor by OK.

V ON
V [OFF]
V ON and V T will switch on the manual TELETYPE-CONTROL.
V OFF and V will switch it off.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 32

HIELP] [<COMMAND>]
HELP prints a l ist of all possible commands on the screen.
HELP <COMMAND:> explaines the command <COMMAND:>.

HH[ELP] <FILE>
HHELP prints explanations for all possible commands on file FILE.

In the version running on Symbolics machines, the editor ZMACS is used to
edit the fo rmu lae . I t is called from the editor subsystem of MKRP by the
command I[NSERT] without a parameter. Alternatively one may use G[ET], if
the formulae have been written before. |

In both cases every fo rmu la has to be enclosed in parentheses. I t is then
actually inserted into MKRP by marking it and typing the key <END». If more
than one formula is marked, all of them are entered in order.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 33

5, Setting the MKRP Parameters

The OPTIONS command is the key into the opt ions module. I t offers the
possibil i ty to adjust var ious parameters to govern the overall search behavior
and inf luence t race and protocol. The opt ions are subd i v ided into several
areas according to their tasks.

(1) Explanation of the Commands

I n the OPTIONS-module , the following commands are available:

HELP] P[RINT] PP[RINT] R[EAD] W[RITE]
L[ISP] OK V

H[ELP] prints a list of all available commands
H[ELP] «com> explains the command «com>

P[R INT] <Area> pr ints the opt ions of <Area> and their cu r ren t va lues

PP[R INT] «File» prints all a reas , their opt ions and defau l t va lues together
with a detai led explanat ion on <File>

R[EAD] Files reads the option-values from «Files. This file must have been
created by a W[RITE] <File> command

WIRITE] <File> wri tes all options and their current values on <File>

L[ISP] calls INTERLISP. Return with 'OK'.

V TIYIYESIOK turns the manual terminal control on.
V NILININO turns it off again

<AREA> prints all the options of the area <AREA>

<OPT><VAL> sets the option OPT> to the new value <VAL>

2) Explanat ion of the Options

The purpose of the options is to adjust the general search behavior of the
theorem prover to the characteristics of the given problem. According to their
tasks the options are grouped in the following categories:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 34

TWO RED.I RED.D STR GEN TR PR

Al l options have defaul t values.

To influence the construction of the init ial connection graph (CONSTRUCT) the
user can change the va lues of the opt ions of TWO, RED.I and the option
SPLITTING of the area GEN.

The search behaviour dur ing the deduction process (REFUTE) can be governed
by options of the areas RED.D and STR.

Tracing of the deduct ion process can be inf luenced by opt ions of the area TR.
The informat ion on the protocol can be selected by opt ions of the area PR
(options of the areas TR and PR are discussed in detai l in chapter 7).
All other options which do not fit in any of these areas are put into the area
GEN. |

To solve diff icult p rob lems it seems to be very useful to change the values of
the options:

RED.I : LINK.INCOMPATIBILITY
RED.D : LINK.INCOMPATIBILITY
STR : TERM.DEPTH
STR : TERM.ITERATIONS
STR : TERM.BREADTH FIRST

Advantages and disadvantages of the var ious option sett ings are discussed
below. Reduction operations should be switched off for efficiency reasons if it
is known that there is no poss ib i l i ty for app ly ing a reduc t ion operat ion
(especially link reductions).

In the following descr ipt ion some effects of options of the areas TWO, RED.I
and RED.D are demons t ra ted by examples of simple refutat ion graphs. The
defaul t values of options are marked with "»".

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 35

OPTIONS OF THE CATEGORY TWO

This category consists of opt ions hand l ing two-literal-clauses dur ing the
construct ion of the in i t ia l connection graph in a special way. The special
handling resul ts in the insertion of addit ional links representing a sequence of

two or more deduction steps.

TWO:RULES

The value of this option controls the special handling of two-literal-clauses.

Examples

1)

C1 |Pxy|Ryx

L1 L2
Xea Xea
Veb y«b

Pab | C2 C3 |Rba |S

Resolving link L1 and inheriting link L2 creates:

€ |Rba | Rba | S
L3

C4 C3

This deduction process can be abbreviated by insert ing a link between C2 and
C3. Resolving on this new l ink has the same effect as resolving on L3, but
takes only one resolution step.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 36

Pxy| Ryx
L1 L2

X ea Xea
VY e«b Veb

€ —

Pab Rba | S

C2 L4 C3

2) By this method we can save more than one resolut ion step:
(f is a binary function symbol)

RyXxPxy

Pfafbcd Pufxfyz | Puffxyz

Pdffabe

By this way, chains of two- l i teral-c lauses of any length can be simulated by
one l ink.

3) The special handl ing of two-l i teral-c lauses can also connect a clause with
i tself l i ke :

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 37

PXy | Pyx

[L1 \ / L2

Paa
\ /

L3

In the or ig ina l graph (without l ink L3) it is possible to deduce the empty
clause. I n the g raph resul t ing f rom the specia l handl ing of two- l i teral-c lauses
this is no longer possible.

Possible Values
T/Y/YES : Two-l i tera l -c lauses are t reated as descr ibed above |

PARTIAL : Link insert ion only if the two clauses connected by the new
l ink are different.

» N IL /N /NO: The two-l i teral-clause algorithm is switched off.

Eff 4) 21 handli e two-literal-cl

The advan tages of the spec ia l hand l i ng are at one hand that the proof
procedure needs less deduction steps to deduce the empty clause, on the other

hand all clauses represent ing in te rmed ia te clauses are not inser ted in the
graph.
Switching on the two-l i teral-rule algorithm may cause the system to consume
more t ime. The complet ion of the graph by this way may cause a increasing
size of the graph.

The handl ing of the two-l i teral-clauses is executed dur ing the construction of
the initial connection graph (CONSTRUCT) but takes effect to the deduction
steps dur ing REFUTE.

TWO: RULES.MAXLEVEL

The value of this option is the max ima l length of two-l i teral-clause-chains
which are subst i tuted by one link.

Possible Values
Natura l Numbers
Defaul t Va lue : 1

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 38

TWO: SUPPRESS.NO.RULES

This opt ion controls the creat ion of i n te rmed ia te resu l t c lauses if there are
chains of two-l i teral-clauses which are longer than the maximal length.

Possible Values
T/Y/YES : I n te rmed ia te resu l t c lauses are c rea ted and inser ted in the

g raph
» NIL/N/NO: The creation of intermediate clauses is suppressed.

Remark
With va lue N for this option the proof procedure becomes incomple te .

OPTIONS OF THE CATEGORY RED.I

- This area contains options which inf luence the construct ion of the init ial
connection graph

RED.I: CLAUSE MULTIPLE.LITERALS

A clause containing some identical l i terals can be simplified by deletion of the
mult ip le l i terals. Two l i terals are ident ical if they have

- the same sign
- the same predicate symbol
- equal term lists |

(equal means here equal under a certain theory), or if they are connected by a
R-link with e¢-unifier caused by the two-rule-algori thm.

Example

Pa | Pa => Pa

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 39

| Pafxfyz | Pffxyza = Pafxfyz

if P is symmetric and f is associative

Possible Values
» T/Y/YES : Multiple Li terals are removed

N IL /N /NO: Clauses with mult ip le l i terals remain unchanged

RED.I : CLAUSE.PURITY

This opt ion offers the possibi l i ty to delete all clauses of the connection graph
which cannot suppo r t the deduct ion of the emp ty c lause, because they are
“pure” . A clause is pure, if and only if i t contains a l i tera l which is not
connectecd by a R- or P- l ink . This means no deduct ion step is possible to
reduce a pure clause to the empty clause, i.e. pure clauses cannot support the
deduct ion of the empty clause

| | 1/
s|R[o]|Qy |Px| Ub|v| C2

/I\
C1

Pa7 IN zZ C3

The clause C1 is pure because the l i teral S is not connected by a R- or P-link
and is therefore e l iminated. All l inks connecting C1 to other clauses are also
deleted:

|

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 40

| 1/
Ub|V C2

Pa|T|Uz[C3

This operat ion changes the clause C3 to a pure clause, causing the deletion of
C3:

This example shows an effect which is caused by the reduc t ion rules
described in this and the following paragraph: Every deletion of a clause may
cause further deletions of clauses and l inks (snowball effect)

Possible Values
»T/Y/YES : Pure clauses are deleted

NIL /N /NO: Pure clauses remain in the graph

Remark
This option should only be switched off for test purposes.

RED.I : CLAUSE. TAUTOLOGY

This option in f luences the t rea tment of tautological clauses. A tautological
clause is always true under the actual theory.
a) A clause containing two l i terals which have

- di f ferent signs
- the same predicate symobl
- equal term l ists

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 41

is a tautology

Example

1) Pa | Pa

2) Rab | Rba
if R is symmetric

b) A clause containing a l i teral of the form t1 = t2 with t1 equal to t2 is a
tautology

Example
1) ga) = g(a)

2) [tatoo -1t@v) a]
if f is associative

c) A clause containing two literals which
| - are connected by a R- l ink with e¢-uni f ier caused by the

two-rule-algor i thm
is a tautology

Example

Px | Rx

/
X | Qb | Rx

|

Addi t ional l inks created by the two-rule algor i thm can also t r igger other
reduction rules. In the following we do not mention this explicitly.

User Manual for the Markgraf Kar! Theorem Proving System Chapter S 42

Possible Values
»T/Y/YES : Removal of tautological clauses

NIL /N /NO: No Removal

RED.I : CLAUSE.SUBSUMPTION

This option controls the t reatment of subsumed clauses in the init ial graph. A
clause C subsumes a clause D if [C| <= IDI and there exists a substitution 6 that
6(C) = D. This inclusion must be bi ject ive. If the deduction of the empty clause
by D is possible it is also possible and in most cases even shorter by using the
clause D. By this it seems usefu l to delete the subsumed clause (see also
[Loveland-78], [Karl Mark Graph-84]).

Example

th
Xe2 VY «2a

C1 [Pz |Pfa

C2 Px | Pry

C1 can be deleted because it is subsumed by C2.

Possible Values
»T/Y/YES : Subsumed clauses are removed

NIL/N/NO: No removal

RED.I : REPL.FACTORING

A factor C may subsume its parent clause D and therefore D can be deleted.
Ins tead of executing the factorization step and then deleting the subsumed
clause C can be obta ined by s imply erasing the appropr ia te l i teral of the
parent clause D, i.e. factorizat ion and the appl icat ion of the subsumption
reduction rule can be grouped together to a macro graph operation.

Example

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 43

Xea XeC ye2
[] []

C1 Px | Qay| Pa | Qxy| Qaz
|| xa |

y «2

A factor of C1 is
Pa | Qaz

C1 is subsumed by C2 and can be deleted. The instantiation and erasure of
l i terals has the same effect

N_/Z \ _ / \
C1 PX | Qxy | Pa QXY | Qaz

AN IN / N

A poss ib le generalization is the e rasu re of l i tera ls which become false under
all theories by the instantiation step:

\ _ /

PXPa

2
1

0
4|

/ N / \ 1
9

|

Pa

Possible Values
» T /Y/YES

NIL /N /NO:
switched on
switched off

RED.I: CLAUSE . REPL. RESOLUTION

Just as a factor may subsume its parent , a resolvent may subsume one of its
parents. As above (REPL. FACTORING) some deduct ion steps can be grouped
together to a macro graph operation. The simplest case of this is the following:

a) Suppose we have a unit clause Pa and a clause ~Pa, ax

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 44

ct [Pa ——Pa|qQy | c2

The resu l t of the reso lu t ion step with subsequen t subsump t i on can be
obtained by s imply erasing the l i teral ~Pa in clause C2.

b) One possib le general izat ion is possib le merging literals:

£ =

C1 Qb | Pa Pa | Ob | C2

Here we stil l may just erase ~Pa.
c) Taking the instantiat ion process into account we can solve the following
example by this method:

|
£

C1 |Px | Pa Pa | Qy C2

The l i teral ~Pa is subst i tuted by the more general l i teral ~Px.

A fur ther general izat ion possibi l i ty is the deletion of l i tera ls which become
false in any interpretat ion by the instantiation process.

Possible Values
GENERALIZING: One of the resolution l i terals is subst i tuted by a more general

one of the other clause, as described in example c,

» SIMPLE: A Resolution l i teral is erased and possible merging, factoring
and unit-resolution is done (as in example b)

UNIT: One of the parent clauses must be a unit clause (example a)

NIL /N/NO: Replacement Resolution is switched off.

The tautology reduct ion rule descr ibed so far is incomplete. For example
suppose we have the following three clauses:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 45

L1
C2C1 P /

P|ol

C3

I f the l ink L1 is m iss ing , poss ib le deduct ion steps can be lost by the delet ion
of the tautology C3. The existence of the l ink L1 is here termed as "l ink
condit ion”. For the other reduct ion rules subsumption, replacement factoring,
r ep lacemen t resolut ion s im i la r l ink condit ions exist . These l ink condit ions
make several addit ional checks necessary: |

- after link insertion to check if a link condition is now fulf i l led
- after link deletion to check if a link condition becomes now superfluous
The following options descr ibe these addit ional checks.

RED.I : CLAUSE.TAUTOLOGY.RECHECK

The ad jus tment of this option controls a renewed tautology check after link
insert ion and delet ion. After l ink delet ion the l ink condit ion can become
superfluous.

Example

C1 P C2"O
l

L1 L2

C3

In this case the link condition is not fulfilled and the tautology C3 cannot be
deleted. Deleting L1 or L2 causes the link condition to become superfluous and
C3 can be deleted.
After l ink insertion a renewed check is also necessary because the inserted
link can fu l f i l l the link condition. If a l ink is inserted by the
two-ru le-a lgor i thm a clause, which wasn't a tautology can now become a

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 46

tautology e.g.

C1 Pxy | Pyx

L1 L2

C2 Qx | Pab| Pba| Rz
1

L3

The two- ru le -a lgor i thm causes the inser t ion of L3 and C2 becomes a
tautology.

Possible Values
» PARTIAL /P : only clauses which are incident (i.e. directly connected) to the

clauses the link is inserted (or deleted) between are checked
NIL/N/NO : The option is switched off

RED.I: CLAUSE.SUBSUMPTION.RECHECK

The link condition for the subsumption rule is the following

C1

Pz | Rx
L1

Pz Pa | Rb | Sy
L2

C3 C2

The existence of L1 is the l ink condition for the subsumpt ion rule. This option
controls a renewed subsumpt ion check after link deletion (the l ink condition
is no longer necessary) and link insert ion (the l ink condition becomes valid).
The third case making a renewed check necessary is the insertion of a S-link
by a two-l i teral-rule:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 47

C1

=
RX

|
C3 | Pa | Qa L1,

TTT [Ro Sy

C2

L1 is inserted by the two-l i teral-rule-algori thm and now C2 is subsumed by
Cl and can be deleted.

Possible Values
» PARTIAL /P : only clauses which are inc ident (i.e. directly connected) to the

clauses the link is inserted (or deleted) between are checked
NIL /N/NO : The option is switched off |

RED.I : REPLACEMENT.FACTORING.RECHECK

The ad jus tment of this opt ion controls a renewed check for replacement
factor ing after l ink delet ion or l ink inser t ion. For example suppose the
following situation:

Xea L3
|]

Cl |Rx S |T | Pa C1 Q IS |T | Pa

L1 L2 L2

Rx | Pa Rx | Pa
/T TN 7 T TN

C2 C2 |

The link L3 is inserted by the two-rule-algorithm and makes a replacement
factoring possible.

Possible Values
»T/] /]JA : Replacement factoring recheck is switched on

NIL/N/NEIN : switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 48

RED.I : CLAUSE.REPL.RESOLUTION.RECHECK

After link deletion or link insert ion it is necessary to check a second time for
the l ink condition of replacement resolut ion. The ad justment of this option
controls this renewed check for replacement resolution.
Suppose the following example:

C1 |

Pa | Qz —

Pa | Rx L1 = Qy | Tv

C3 AN
| Rx | Qy | Tv

2 | |

L1 is inser ted by the two-ru le-a lgor i thm. The clause <Qy, Tv> resul t ing by
resolving upon l ink L1 would subsume C2. Therefore C2 can be rep laced by

<Qy, Tw»

Possible Values
»T /Y /YES : Replacement Resolution Recheck is switched on

NIL/N/NO: switched off.

RED.I: CLAUSE. REWRITING

To make the axioms bet ter readable (and to save time when typing the
axioms) it is possible to abbreviate some complex terms. These abbreviations
are replaced by the origin terms dur ing construction of the init ial graph. This
rep lacement operat ion is controlled by this option.
There are two possibilities

1)a= t w i t h :a constant, t term and a¢ t
2) f (x , vu x) = t with: x; variables with maximal domainsort, f 4 t, and t

contains no other var iables + X;

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 49

Example
(i) sq (x) = t imes (x x)
(ii) x <sq (x)

will be expanded to x =< times (x x)

Possible Values |

» T/Y/YES: Clause. Rewrit ing is switched on
NIL /N /NO: Clause. Rewrit ing is switched off

RED.I: LINK. INCOMPATIBILITY

An R-l ink represents a possible deduct ion step and is marked with the most
genera l unifier of the two l i terals connected by this R- l ink. Resolving upon an
R-l ink makes instantiant ions of some l i terals necessary. Such an instantiation
can block fur ther resolut ion possibi l i t ies. Two l inks are compatible if their
uni f iers do not contradict each other, i.e. reso lu t ion upon one l ink does not
block resolving on the other l ink. Some l inks are simultaneously compatible if
their subst i tu t ions don't contradict each other. A l ink can be deleted as
incompatible, if not every other l i te ra l has at least one l ink so that they are
simultaneously compatible.

Example

Pzz_

Qx | Pxy| Ry
Xea | L1 L2| V«D

Link L1 ist compatible with L2 and L1 is compatible with L3, but L1, L2, L3
are not simultaneously compatible and L1 can therefore be deleted.

Possible Values
»T/Y/YES : Incompatible l inks are deleted.

PARTIAL : Only one step purity check.
NIL /N/NO: No removal of incompatible links.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5

Remark: The check for link incompatibility is often very expensive and only a
few l inks are removed. Therefore it seems very usefu l to choose only the
"par t ia l ” -adjustment or even to switch this option off.

RED.I: LINK.TAUTOLOGY

The resolvent of two clauses can be a tautology. Tautologies can be removed
from the graph. Therefore it seems usefu l to remove l inks which would
generate tautologies.

Examples
1)

Xe2

| L1 |
Ry | Px | Qxy[—— Qzz | Pz

y «2

Resolving on L1 would generate the tautology

Rz | Pz | Pz

‘ i e . L1 can be removed from the graph.

2)
Xey

L] L1 — —
Px |Py | Qxy[—_, 1Qzz Pz | = Pz | Fz | Rz

y «2

Remove L1 to prevent the generation of a tautology

3)
L1 xy Xey

| |
Px |Py | x | Qy > Px | Py | Qy

Removal of L1 is possible.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 51

Possible Values
T/Y/YES : Removal of tautology-generating l inks without Link-Condition

check |

» REMOVE- INHIB IT /R I : Remova l of the l inks comp ly ing wi th the l ink
condition.
Inhibit ion of the others.

INH IB IT / I : Inhib i t ion of tautology-generat ing l inks
REMOVE/R : Removal of the l inks complying with the link condition
NIL /N/NO : No removal, no inhibit ion

RED.I: LINK. TAUTOLOGY. RECHECK

The adjustment of this option controls a renewed check for a l ink-tautologies
after link insertion or l ink removal.

Possible Values
T/Y/YES: The option is switched on

» N IL /N /NO: switched off

RED.I: LINK. SUBSUMPTION

Links which generate clauses, which are subsumed by other clauses can be
r emoved . This removal operation is control led by this option.

Example

Pz | Qab nea Quv | Rfu| Sb [—

Veb
C1 C2

Px | Rty” C3

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 52

|
Pz | Rfa| Sb

| ua]]
Pz | Qab Quv | Rfu| Sb

Ved
C1 C2

Px | Rfy C3

C4 is subsumed by C3 and can be removed.

Possible Values
T/Y/YES: Removal of the l inks without link condition check

» REMOVE-INHIBIT/RI: Remova l of the l inks comply ing wi th the l ink
condition. Inhibit ion of the others

INH IB IT /1 Inhibit ion of the l inks
REMOVE/R Removal of the l inks complying with the link condition
NIL /N/NO No removal, no inhibition

RED.I: LINK. SUBSUMPTION. RECHECK

- This option inf luences a renewed link subsumpt ion check upon link removal
or link insert ion:

Possible Values
T/Y/YES:

» NIL/N/NO:
switched on
switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 53

Opt ions of the category RED.D

This op t i on -a rea cons is ts of op t ions for va r i ous reduc t i on ru les du r i ng
deduction.

RED.D:CLAUSE.MULTIPLE.LITERALS

This option has the same effect as RED.I:CLAUSE.MULTIPLE.LITERALS.

Possible Values
» T/Y/YES: option is switched on

NIL/N/NO: option is switched off

RED.D:CLAUSE.PURITY

The option has the same effect as RED.I:CLAUSE.PURITY.

Possible Values
» T/Y/YES: removal of the pure clauses

NIL /N /NO: no remova l

RED.D.:CLAUSE.TAUTOLOGY

- Treatment of deduced tautology clauses.
Such clauses can be removed if no deduct ion possibi l i ty is lost by the removal
(for precise explanat ion see RED.I:CLAUSE.TAUTOLOGY).

Possible Values
T/Y/YES : removal of the tautology clauses without l ink

condition check.
» REMOVE-INHIBIT/RI: remova l of the clauses where l ink condit ion is met,

reinsert ion and inhibit ion of creator links.
INHIBIT/ I : removal of the clauses as wel l as reinsertion and

inhibit ion of creator l inks
REMOVE/R : removal of the l inks complying with the l ink condit ion
NIL /N/NO : no removal, no inhibit ion

RED.D:CLAUSE.TAUTOLOGY.RECHECK

Renewed tautology check and t rea tment after insert ion or remova l of l inks
(for precise explanation see RED.I:CLAUSE.TAUTOLOGY.RECHECK).

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 54

Possible Values
T/Y/YES: switched on for insert ion and removal
Part ia l /P: switched on for insert ion of incident l inks

» NIL: switched off

RED.D: CLAUSE.SUBSUMPTION.FORWARD

Treatment of deduced clauses which are subsumed by previous clauses.

Possible Values
T/Y/YES : removal of the c lauses without l ink condition check

» REMOVE-INHIBIT/R: in case of deduced subsumed clause, removal of
the clause. If l ink condition is met reinsert ion and
inhibitation of creator link

INHIB IT / I : removal of the clauses as well as reinsert ion and inhibition
of creator l inks

REMOVE/R : removal of the clauses comply ing with the l inks condit ion
NIL/N/NO : no removal , no inhibition

RED.D: CLAUSE.SUBSUMPTION.BACKWARD

- Treatment of such clauses, which are subsumed by deduced new clauses.

Possible Values
T/Y/YES: r emova l of al l app rop r ia te c lauses w i thout l i nk condi t ion

check
» REMOVE: only r emova l of such clauses which comply with the l ink

condition
NIL/N/NO: the option is switched off

RED.D: CLAUSE.SUBSUMPTION.RECHECK

This option controls a renewed subsumpt ion check, if subsumptions become
possible respect ively no longer possib le by l ink insert ion or removal

Possible Values
T/Y/YES: switched on for insertion and removal of l inks

» REMOVE/R: removal of the clauses complying with the link condition
NIL/N/NO: the option is switched off

User Manual for the Markgraf Kar! Theorem Proving System Chapter 5 55

RED.D: CLAUSE.REPL.FACTORING

The option has the same effect as RED.I:CLAUSE.REPL.FACTORING.

Possible Values
» T /YES/Y : switched on

N IL /N /NO: switched off

RED.D: CLAUSE.REPL.FACTORING.RECHECK

The option has the same effect as RED.I:CLAUSE.REPL.FACTORING.RECHECK

Possible Values
» T/Y/YES: switched on

NIL /N /NO: switched off

RED.D: CLAUSE.REPL.RESOLUTION

The option has the same effect as RED.I:CLAUSE.REPL.RESOLUTION

Possible Values
GENERALIZING/G: one of the resolution l i terals is replaced by a more general

one of the other clause
‚> SIMPLE/S: switched on, only for one step, without generalizing

UNIT /U: switched on for unit par tner only
NIL /N/NO: switched off

RED.D: CLAUSE.REPL.RESOLUTION.RECHECK

The option has the same effect as RED.I:CLAUSE.REPL.RESOLUTION.RECHECK.

Possible Values
» T/YES/Y: switched on

NIL /N/NO: switched off

RED.D: L INK. INCOMPATIB IL ITY

The option has the same effect as RED.I:LINK.INCOMPATIBILITY.

Possible Values
» T/YES/Y: removal of the l inks

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 56

NIL/N/NO: no removal

RED.D: LINK.TAUTOLOGY

The option has the same effect as RED.I:LINK.TAUTOLOGY

Possible Values
T/Y/YES: removal of the l inks without link condition check

» REMOVE-INHIBIT/RI: removal of the l inks complying with the l ink condition.
Inhibit ion of the others.

INH IB IT / I : Inhibit ion of the l inks
REMOVE/R: Removal of the l inks complying with the l ink condition
NIL /N/NO: no removal , no inhibit ion

RED.D: LINK.TAUTOLOGY.RECHECK

The option has the same effect as RED.I:LINK.TAUTOLOGY.RECHECK.

Possible Values
T/Y/YES: switched on for removal and insert ion
PARTIAL/P: switched on for insertion of adjacent l inks

» N IL /N /NO: switched off

RED.D: LINK.SUBSUMPTION

The option has the same effect as RED.I:LINK.SUBSUMPTION

Possible Values
T/YES/Y: removal of l inks without link condition check

» REMOVE-INHIBIT/RI: removal of the l inks complying with the link condition.
Inhibit ion of the others.

INH IB IT / I : Inhibit ion of the l inks
REMOVE/R: Removal of the l inks complying with the link condition.
NIL /N/NO: no removal , no inhibition

RED.D: LINK.SUBSUMPTION.RECHECK

The option has the same effect as RED.I:LINK.SUBSUMPTION.RECHECK.

Possible Values
T/Y/YES: switched on for removal and insertion
Part ial /P: switched on for insertion of adjascent l inks

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 57

» NIL/N/NO: switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 58

OPTIONS OF THE CATEGORY STR

This area consists of options, which direct the search-behaviour while looking
for a proof.

FAC: IN IT IAL

This option controls factorizations in the initial g raph

Example

C1 Pax | Pxa| Ox

U

C2 Paa | Qa

Instant iat ion of the var iable x causes the or iginal clause C1 to
be t ransformed into the shorter clause C2.

Possible Values
T/Y/YES the option is switched on

‚ > NIL /N /NO the option is switched off

FAC:EACH.STEP

Factorizing after each deduction step

Possible Values
T/Y/YES the option is switched on

» N IL /N /NO the option is switched off

STR:RESOLUTION

Ad jus tmen t of the basic deduct ion strategy dur ing proof search, which is
activated only if the selection-module (chap.2) is not in control. Various
classical ref inement strategies like set-of-support, l inear etc. are available and
are s imu la ted in the connection graph calculus by mark ing R and P- l inks as
"active" or "passive".

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 59

Possible Values
BASIC-RESOLUTION/BASIC/B

» SET-OF-SUPPORT/SOS/S

UNIT-REFUTATION/UNIT/U

INDUCTION-SPECIAL/I-S

Al l l inks are marked as active such that the
se lec t ion modu le does a b read th f i r s t
search.
Only if there is at least one theorem clause
the Set-of -Suppor t strategy wil l be applied,
else the strategy is switched to basic.
Al l l i n ks connec ted to un i t c lauses are
activated, the other ones are marked as
passive.
not yet fully imp lemented

l i near /L / l i near .axm#/ l i near . thm#/L .axm#/L . thm#

combined strategies:
U -B

~ U-S0S
U- L/U-lLaxm#/U-lL.thm#

STR: E-RESOLUTION

The f i rs t clause the l inear strategy starts
with (i.e. the "top clause") is either defined
by using a concatenation of “l inear.” and the
pr intname of the top clause as the strategy
name, or is asked for by the system if one
uses Str: Resolution = linear (in this case the
sys tem p r i n t s all c lauses w i th their
printname).

Unit - Basic,
- Set-of-Support
- linear.

Uni t Resolut ion prunes the search space
considerably , but unfor tunate ly i t is not
complete for all clause sets. The user can

define strategies:
U-SOS, U-B and U-L say ing
"if the c lause set is horn renamab le the
unit-Resolut ion, else Set-of -Suppor t ” ,

respec. Basic or l inear strategy.

This resolut ion strategy is prov ided for specia l equal i ty proofs but is not yet
fully imp lemen ted and therefore switched off.

Possible Values
T/Y/YES the option is switched on

» N IL /N/NO the option is switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 60

STR:PARAMODULATION

By this option the requ i red Paramodulation-Strategy can be chosen.

Possible Values
NONE A basic setting of the option; as long as any active R-l ink

is available, no paramodulat ion is performed.

» UNIT-ANCESTRY Paramodulat ion between unit c lauses

REWRITE Paramodulat ion between unit clauses if the term
complexity is decreasing.

STR: LINK.DEPTH

This option rest r ic ts the length of the deduct ion-steps per fo rmed at each
clause (with respect to the initial clauses).
This link depth is defined as follows:

Links between clauses in the initial graph have the link depth
d(L)=0
For all other L: d(L) = 1 + max (d(L1) , d(L2)) where L1 and L2
are the l inks which generated the two clauses connected by L.

Possible Values |

positive integer upper bound for link depth
» N/NO/NIL no upper bound

STR: TERM.DEPTH

By this option an upper bound for the term nest ing depth can be specified.
This prevents deducing terms with depth greater than the specified one and
thereby restr ict ing the search-space.

Possible Values
positive integer upper bound for term nesting depth

» N/NO/NIL no upper bound

TERM: UNITS

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 61

The option controls processing of pattern leading to unit clauses found by the
terminator

Possible Values

» T/Y/YES the resolut ion steps necessary to produce the unit clauses
proposed by the terminator are per fo rmed

NIL/N/NO resolut ion possibi l i t ies leading to unit clauses found by the
terminator are ignored.

TERM: ITERATIONS

This option inf luences the length of a path which wi l l be processed by the
terminator proceeding from each clause to detect a " terminator situation" (cf.
chap.2).

» 0 no new uni t clauses are generated and only the one level
terminator situations can be found.

integer > O deeper level te rmina to r s i tua t ions can be f ound , but more
time consuming.

remark: The number of te rm: i te ra t ions should not be chosen too high
(normally max. 3-5) because the time for one deduction step
i n c reases exp los i ve l y . Howeve r th i s op t i on shou ld be
coordinated with STR:TERM.DEPTH to rest r ic t the set of clauses to
examine,

TERM:SET-OF-SUPPORT

Allows restr ict ing the set of unit clauses examined by the terminator to detect
a terminator situation.

Possible Values
» N IL /N/NO no restriction of the unit clauses

T/Y/YES the terminator only uses unit clauses of the set-of-support

TERM: BREADTH.FIRST

Allows switching the search strategy of the terminator to breadth first.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 62

Possible Values
T/Y/YES pure breadth first search

» NIL/N/NO the basic search strategy of the terminator is used (similar to
the usual l inear strategies)

OPTIONS OF THE CATEGORY GEN

This area consists of severa l genera l options.

GEN: SPL ITT ING

This opt ion al lows part i t ioning of the t heo rem into seve ra l i ndependen t
subprob lems if the theorem contains conjunct ions. (Reduct ion of a p rob lem in
severa l smaller subp rob lems) The option causes a t rans fo rmat ion of the
theorem in DNF and then the DNF is splitted.

Example

(Andrews example)

[((3x Vy Px = Py) = ((3x Qx) = (Vy Py))]
3

[(3x Vy Qx = Qy) = ((3x Px) = (Vy Qy))]

Direct t ransformat ion into clausal no rma l form would generate thousands of
clauses to be inser ted in the graph. Spl i t t ing of the theorem produces 8
i ndependent g raphs with 58 clauses each which can be re fu ted by the MKRP.

Possible Values
NIL /N /NO option is switched off
integer 2 0 switched on. max imal nesting depth up to which

multipl ication into DNF takes place in order to enable splitting.
T/Y/YES switched on. Multiplication in all nesting depth.

» Default Va lue : 0

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 . 63

GEN: MANUAL.CONTROL

Allows the user to influence the proof. Links to be used for deduction can be
chosen interactively by the user. The use of this option requ i res detai led
knowledge of the internal structure of the MKRP and should therefore not be
used.

Possible Values
T/Y/YES the option is switched on

» NIL/N/NO the option is switched off

GEN: MAXIMUM.STEPS

Allows to l imi t the number of deduct ion steps of a proof. When reaching the
spec i f i ed number of s t eps MKRP s tops w i t h the message
"RESULT:FAILURE.ABORTED.MAXSTEPS".

Possible Values
» NIL infinite

positive integer max imum number of deduction-steps of a proof

Remark
This option is important especially if the prover runs in batch. If the specified

time l imi t of a batch job is reached and no refutation has been found so far,
the prover stops “abno rma l ” , i.e. is not poss ib le to create a l is t ing of the
deduct ion steps so far made. If one can approximate the max imal number of
deduct ion steps, GEN:-MAXIMUM.STEPS can be set to this number . After
reaching the specif ied step the deduction process stops and it is now possible
to create a listing.

GEN:GRAPH.SAVING

Enables the user to store the actual state of the graph after a certain number
of deduct ion-steps in order to have the possibi l i ty to res tar t the deduction
process at this state. I t is use fu l . t o save the graph a few steps before
GEN:MAXIMUM.STEPS is reached, so that the graph can be continued, if this
seems promising.

Possible Values
» NIL no effect

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 64

positive integer number of deduction-steps between two savings of the
graph

Remark: The option Gen:save.file allows specifying a file-name for the graph
stored by the user.

GEN:SAVE.FILE

Allows to specify a file name on which the graph(s) (see GEN:GRAPH.SAVING)
will be stored.

Possible Values
<File name> the system saves the graph on this file

» NIL a default name for the saved graph will be used

On a Symbolics the va lues of the options can be chosen using a mouse and a
window oriented menu system.

User Manual for the Markgraf Karl Theorem Proving System Chapter 6 65

6. Subsystem Commands

These commands control the actual subsystem configuration of the system to
be used for the present run.
They are:

H[ELP] PIRINT] R[EMOVE] A[DD] OKV LI[ISP]

H[ELP] prints a list of all available commands
H[ELP] «COM> explains the command «COM>

P[RINT] | prints the actual system-configurat ion

RIEMOVE] «SUBSYSTEM4 SUBSYSTEM, ... SUBSYSTEM,>
removes the modules of
SUBSYSTEM 4 SUBSYSTEM, i " SUBSYSTEM,

needed no more. (Except those of the basic
<Atp-version»)

A[DD] «SUBSYSTEM{ SUBSYSTEM, ... SUBSYSTEM,»
loads the not yet existing modules of
SUBSYSTEM SUBSYSTEM, ... SUBSYSTEM

OK leaves the system-configuration part

V T/Y/YES/OK turns the manual terminal control on
VY NIL /N/NO turns if off again

L[ISP] calls INTERLISP. Return with 'OK'

Subsystems are not needed on the Symbolics, since the entire system is
always loaded.

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 66

7 . The Output Faciliti

When the user sets the options for a proof, he can determine the output by
specifying var ious parameters in the trace and protocal option areas.

7.1Protocol
A protocol l isting normally includes the following informations:

- the user's input: axioms, theorems, options
- prel iminary t rans-

formation: axioms and theorems in c lausal no rma l form and the
system table of all symbols used

- proof steps parent clause(s), type of operation, result ing clause unifier

A l isting can be generated by calling the PROTOCOL module with a code file as
parameter.

The information in the code fi le depends on the ad jus tmen t of the protocol
options.

PR: PROTOCOL

| This option controls the generation of a CODE-FILE.

T/Y/YES Raw data for the protocol are writ ten to a fi le
NIL /N /NO No raw data for the protocol are writ ten to a fi le

PR: INFIX. FORM

Inf ix fo rm of inpu t fo rmu lae in protocol

Possible Values
» T /Y/YES switched on

NIL /N/NO switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 67

PR: PREFIX.FORM

Prefix form of input formulae in protocol

Possible Values
T/Y/YES switched on

» N IL /N /NO switched off

PR: OPTIONS

Values of proof options in protocol

Possible Values
T/Y/YES switched on

» NIL/N/NO switched off

PR: SYMBOLS

Symbol Table in Protocol

Possible Values
» T/Y/YES switched on

NIL /N /NO switched off

- PR:NEW.PNAMES

The value of this option controls the generat ion of new pnames for clauses in
protocol.

Possible Values
» T/Y/YES New Pnames for Clauses in Protocol are generated

NIL /N/NO Same clause names as in proof wi l l be used (In the proof
ident ical names may be used for logically different clauses)

PR: DIFFERENT.VARIABLES

The va lue of this option controls the generat ion of names for the var iab les in
protocol.

Possible Values
T/Y/YES Different names for all var iables in protocol

» N IL /N/NO Different clauses may contain the same variables

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 68

PR: DIRECT.PROOF
The va lue of this option influences which deduct ion steps are written to the
protocol f i le.

Possible Values
» T/Y/YES : Only deduct ion steps necessary for the proof are writ ten to

| the protocol
NIL /N/NO : All steps inc luding unnecessary ones appear in the protocol

PR: LEFT.MARGIN

First position to be printed in each line
» Default Value : 0

PR: LINELENGTH

Number of characters per l ine
» Default Value : 120

7.2 Trace

For debugging purposes, the MKRP-system has special TRACE-functions,
tracing the preprocessing or the deduct ion steps for instance. These functions

‚can be invoked by setting trace options.

TR: PREPROCESSING

Trace of the in termediate resu l ts of the preprocessors.

Possible Values
T/Y/YES switched on

» N IL /N /NO switched off

TR: STEP.MODE

Trace of each deduct ion step

Possible Values
NIL /N/NO No trace is done
I / IMP Detailed implementat ional protocol of all changes (clauses and

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 69

L/LOG
» LR

l inks)
Protocol of all changes in a more logical form (clauses)
same as under L, addit ionally var iables are renamed.

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 70

TR: DUMP

Dump of the current graph after certain intervals

Possible Values
» N IL /N /NO No dump is done

pos. integer number of deduct ion-s teps between two subsequent dumps

TR: CLAUSE.MODE

Format of the output of clauses if TR:DUMP is set

Possible Values
» N IL /N /NO No output at all

I / IMPL Output is implementat ional
L/LOG Logical output
LR same as under L, addit ionally variables are renamed

TR: LINK.MODE

Format of the output of l inks if TR:DUMP IS SET

Possible Values
~~ NIL /N/NO No output at all

» I / IMPL Output is implementat ional

TR:TRACE.FILE

Output file for traces and dumps

Possible Values
» NIL/N/NO No output at all

T /TERMINAL Output on terminal
<FILE> Output on <File>

TR. TERMINAL

Brief in format ion about the proof d isplayed on te rmina l (in addi t ion to the
displayed statistics)

Possible Values

User Manual for the Markgraf Karl Theorem Proving System Chapter 7 71

» N IL /N /NO switched off
T/Y/YES switched on

Remark
I t is advisable to switch on on the te rmina l trace unless the proof is done in a
batch job.

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 72

8, ATes t Run

The following protocol l ists a typical session: the f i rst set of instructions is
used to set up the database etc. The second set is the final output protocol.

Terminal —

(IN) DO ATP,C.COM
(OUT) % BLS0500 PROGRAM ' L ISPV4 ' , VERSION ' ~~~ ' OF ' 81 -09 -29 ' LOADED.
(OUT) ATP SYSTEM: MARKGRAF KARL REFUTATION PROCEDURE, UNI KAISERSLAUTERN
(OUT) VERSION: 4-APR-85
(OUT) PLEASE ENTER THE INFO.AND.REPAIR FILE NAME. THE STANDARD NAME IS :
(OUT) $KINF4511.ATP.INFO.AND.REPAIR
(OUT)
(IN) $KINF4511.ATP.INFO.AND.REPAIR
(OUT)
(OUT)
(OUT) PRETTYDEF FORMAT ATP . INFO.AND.REPAIR CREATED 31-AUG-85 13 :52 :06
(OUT) FILENAME: ATP.INFO.AND.REPAIR.(O1
(OUT) ATP . INFO . AND . REPAIRCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.PRESIMPLIFICATION CREATED 21-DEC-84 14 :37 :08
(OUT) FILENAME: ADD.PRESIMPLIFICATION.O1l
(OUT) ADD .PRESIMPLIFICATIONCOMS
(OUT) |

(OUT) PRETTYDEF FORMAT ADD .NORM CREATED 11 -FEB-85 20 :44 :32
(OUT) FILENAME: ADD.NORM.O00
(OUT) ADD .NORMCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.REDUCTION CREATED 27 -SEP-85 15 :06 :41
(OUT) FILENAME: ADD .TEMP .REDUCTION.00
(OUT) ADD . TEMP . REDUCTIONCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.RED.DATASTRUCTURE CREATED 27 -SEP-85 15 :11 :41
(OUT) FILENAME: ADD.TEMP.RED.DATASTRUCTURE.OQO0
(OUT) ADD . TEMP .RED .DATASTRUCTURECOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.TWO CREATED 2-AUG-85 14 :45 :20
(OUT) FILENAME: ADD.TEMP.,TWO.00
(OUT) ADD . TEMP . TWOCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.OPERATION CREATED 19-JUN-85 14 :53 :40
(OUT) FILENAME: ADD.OPERATION.O00
(OUT) ADD . OPERATIONCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.PROTOCOL CREATED 26-JUN-87 12 :17 :34
(OUT) FILENAME: ADD.TEMP .PROTOCOL.00
(OUT) ADD . TEMP . PROTOCOLCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.CONNECTIONGRAPH CREATED 1-AUG-85 20 :04 :44
(OUT) FILENAME: ADD.CONNECTIONGRAPH.02
(OUT) ADD . CONNECTIONGRAPHCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.MEMORY CREATED 7-AUG-85 15 :18 :38

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 73

(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(IN)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)

(OUT)
(OUT)
(OUT)
(OUT)

(OUT)
(OUT)
(OUT)
(IN)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(IN)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)
(OUT)

FILENAME: ADD.TEMP.MEMORY.00
ADD . TEMP .MEMORYCOMS

@

help
THE FOLLOWING OS-COMMANDS ARE AVAILABLE IN THIS SYSTEM:

v H[ELP] EX [IT] O [PT IONS] I [ND [UCT ION]]
HC L [ISP] LO [GOFF] S [UBSYSTEMS]

EP
FP

ER CP
FR

EC CR RP
FC |

E [D IT] C [ONSTRUCT] R [EFUTE] P [ROTOCOL]
F [ORMULA]

D[EF INE .]D [IRECTORY] D [EF INE .]E[XAMPLENAME]

S [ORT .]G[ENERATION]

H[ELP] <COM> PRINTS AN EXPLANATION OF THE COMMAND <COM>.

@

he
C[ONSTRUCT] [<PROBLEM F ILE> [<GRAPH F ILE> [<CODE F ILE> [<COMMENT>
[<BATCH F ILE> [<ATP VERSION>11111]
CREATES A SET OF IN IT IAL GRAPHS FROM A PROBLEM DESCRIPT ION.
<PROBLEM F ILE> F ILE CONTAINING THE PROBLEM DESCRIPTION. IF OMITTED,

THE LAST CREATED ONE IS USED, IF SUCH A F ILE EX ISTS .
F ILE THE IN IT IAL GRAPHS ARE WRITTEN ON. IF OMITTED,
A STANDARD F ILE NAME IS USED.
F ILE , WHERE THE RAW-DATAS FOR THE PROTOCOL ARE
WRITTEN ON. |

IS INSERTED INTO THE PROOF PROTOCOL.
IF GIVEN, CAUSES THE CREATION OF A BATCH JOB USING
THE GIVEN <ATP VERSION> OR THE STANDARD VERSION,
RESPECTIVELY.

<GRAPH F ILE>

<CODE F ILE>

<COMMENT>
<BATCH F ILE>

@

C t h ie f .p rob lem th ie f . g raph t h i e f . ccode "TH IEF"
CONSTRUCT : ® % % Ye KX CONSTRUCTION OF THE INITIAL GRAPHS.
AXIOM 50 MSEC L INKS: 0+ 0~- O0CLAUSES: 1 + 1 - 0 STORE:156
AXIOM 63 MSEC L INKS: l + 1 - O0CLAUSES: 2 + 1 - 0 STORE:155
AXIOM 75 MSEC LINKS: 3+ 2 - 0 CLAUSES: 3 + 1 - 0 STORE:155
AXIOM 101 MSEC L INKS: 9+ 6 - 0 CLAUSES: 4 + 1 - 0 STORE:154
AXIOM 280 MSEC L INKS: 18 + 9 - 0 CLAUSES: 5 + 1 - 0 STORE:153
AXIOM 228 MSEC L INKS: 23 + 5 - 0 CLAUSES: 6 + 1 - 0 STORE:152
AXIOM 225 MSEC L INKS: 33 + 10 - 0 CLAUSES: 7 + 1 - 0 STORE:151
AXIOM 194 MSEC L INKS: 33 + 0 - 0 CLAUSES: 7 + 0 - 0 STORE:150
AXIOM 588 MSEC L INKS: 7 + 1 - 27 CLAUSES: 4 + 1 - 4 STORE:146

% Jk % kk kk

10
10

9

W
O

 W
O

 W
O

 W
w

 O
w

 W
w

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 74

(OUT) AXIOM 500 MSEC L INKS: 3+ 1 - 5 CLAUSES: 4 + 1 - 1 STORE:143 9
(OUT) RED.SUC 43 MSEC L INKS: 3+ 2 ~- 2 CLAUSES: 5 + 1 - 0 STORE:143 9
(OUT) REFUTATION DETECTED
(OUT) CONSTRUCT: % kk Jk kk Kk ok THEOREM PROVED Kk kk kk kkk k

(OUT)
(OUT) @
(OUT)
(IN) ex
(IN) DO ATP ,P .COM

(OUT) % BLS0500 PROGRAM ' L ISPV4 ' , VERSION '~~~ ' OF ' 81 -09 -29 ' LOADED.
(OUT) ATP SYSTEM: MARKGRAF KARL REFUTATION PROCEDURE, UNI KAISERSLAUTERN
(OUT) VERSION: 4 -APR-85
(OUT) PLEASE ENTER THE INFO.AND.REPAIR F ILE NAME. THE STANDARD NAME IS :
(OUT) SKINF4511.ATP.INFO.AND,REPAIR
(OUT)
(IN) SK INF4511 .ATP . INFO.AND.REPAIR

(OUT)
(OUT)
(OUT) PRETTYDEF FORMAT ATP . INFO.AND.REPAIR CREATED 31 -AUG-85 13 :52 :06
(OUT) FILENAME: ATP . INFO.AND.REPAIR .01

(OUT) ATP . INFO.AND.REPAIRCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.MEMORY CREATED 7-AUG-85 15 :18 :38
(OUT) F ILENAME: ADD, TEMP .MEMORY.(00
(OUT) ADD . TEMP .MEMORYCOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.TEMP.PROT.PREPARE CREATED 30 -JUN-87 14 :11 :30
(OUT) FILENAME: ADD.TEMP.PROT.PREPARE.(8
(OUT) ADD. TEMP .PROT.PREPARECOMS
(OUT)
(OUT) PRETTYDEF FORMAT ADD.SYST .PROT.DATASTRUCTURE CREATED 31 -AUG-85 12 :41 :00
(OUT) FILENAME: ADD.SYST.PROT.DATASTRUCTURE.(00
(OUT) ADD .SYST.PROT.DATASTRUCTURECOMS
(OUT)
(OUT) @
(OUT)
(IN) p t h i e f . ccode t h i e f . l i s t
(OUT) PROTOCOL: THE PROTOCOL WAS CREATED ON F ILE TH IEF .L IST .00

(OUT)
(OUT) @
(OUT)
(IN) ex

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 75

Acke r

* *

* ATP-SYSTEM : MARKGRAF KARL REFUTATION PROCEDURE, UNI KAISERSLAUTERN *
% %*

* VERSION : 4-APR-85 *
* DATE : 8 -JUL-87 13 :39 :58 *
* *

ee ee ee ak de ak ok de de dk ale dk dk kok ale a dk dk dk ale dk dk dk dk ok dk al dk dk dk dk dk dk dk ale ok ae a ak a ae dk dk dk aa ie ae die ok ae ok dk dk ala aleae al alle ala ar ok ok ok ok

de dc ve sk ok 3k ok kk kk ok ok 3k ok kk ok ok ok ok 3k ok ok ok vk ok ok kk ok sk ok ok kk alle ok ok ok ok ok dk A ok ok kk kk ok ok ok dk ok vk dk dk ok ok kk % %

EDIT : AXIOMS AND THEOREMS EDITED: 6 - JUL -87 15 :23 :12
% de 5% Kk J al dk dk Kk dk dk dk k k de Kk dk dk dd dk kd dk kd dk ok dk ok dk ok dk ok ok k k ok ok ok ok dk ok ok ok k k ok ok kok ok ok ok k k kk ok ok ok ok ok

hhh ale hhh hh ak al Ahk hh kh hhh kk kkk kkk kkk hhh hk hhh hk k kk hkkdk kkk kkk kkk hk hdkhkkkkkkk

CONSTRUCT: THIEF

% ek ke k k kk dk k k kok de k k dk dk kd dk kK kkk ke de dk dk k k kk dk dk dk dk de k k dk dk dk ok ek dd de de ke de de de de ke ke de de de ok de de de dk k kk kk

FORMULAE GIVEN TO THE EDITOR

AXIOMS : * THERE ARE THREE SUSPECTS TO HAVE STOLEN A SILVER RING IN A HOTEL,
* LUCKY, WILL IE , AND JACKY. ALL THREE OF THEM ARE KNOWN TO BE UNABLE
* TO MAKE THREE CONSECUTIVE STATEMENTS WITHOUT LY ING.
* WILL IE : I AM NO TH IEF . ALL OF LUCKY'S STATEMENTS ARE FALSE.
* LUCKY: I 'M INNOCENT. I HAVE NEVER BEEN IN A HOTEL .
* WILL IE IS THE TH IEF .
* WILL IE : I AM NO TH IEF . ALL OF LUCKY 'S STATEMENTS ARE FALSE.
* JACKY IS INNOCENT
* JACKY: ZI D IDN 'T STEAL ANYTHING. LUCKY WAS IN THE HOTEL. AT
* LEAST ONE OF LUCKY 'S STATEMENTS WAS TRUE.
* GIVEN THAT THERE WAS ONLY ONE TH IEF , WHO IS IT?
THIEF (WILL IE) OR THIEF (LUCKY) OR THIEF (JACKY)
NOT (TH IEF (WILL IE) AND THIEF (LUCKY) OR THIEF (WILL IE) AND THIEF (JACKY)

OR THIEF (LUCKY) AND THIEF (JACKY))
ALL X THIEF (X) IMPL IN .HOTEL(X)
NOT (NOT THIEF (LUCKY) AND NOT IN .HOTEL (LUCKY) AND THIEF (WILL IE))
NOT (NOT THIEF (WILL IE) AND THIEF (LUCKY) AND IN .HOTEL(LUCKY) AND NOT

THIEF (WILL IE) AND NOT THIEF (JACKY))
NOT (NOT THIEF (JACKY) AND IN .HOTEL (LUCKY) AND(NOTTHIEF (LUCKY) OR NOT

IN .HOTEL (LUCKY) OR THIEF (WILL IE)))

THEOREMS : THIEF (JACKY)

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 | 76

CONSTANTS

| NAME | SORT | | ATTRIBUTES |

WILLIE	ANY		
LUCKY	ANY		
JACKY	ANY		

PREDICATES

| NAME | DOMAIN | | ATTRIBUTES |

TRUE			DEFINED
FALSE			DEFINED
THIEF	ANY		
IN.HOTEL	ANY		

SET OF AXIOM CLAUSES RESULTING FROM NORMALIZATION

* A l : -= THIEF (WILL IE) - THIEF (LUCKY)
* A2 : - THIEF (WILL IE) - THIEF (JACKY)
* A3 : -= THIEF (LUCKY) - THIEF (JACKY)
* Ad : ALL X :ANY - TH IEF(X) + IN .HOTEL(X)
* AS : + THIEF (WILL IE) + THIEF (LUCKY) + THIEF (JACKY)
* A6 : + THIEF (LUCKY) + IN .HOTEL (LUCKY) - THIEF (WILL IE)

AT : + THIEF (JACKY) - IN .HOTEL (LUCKY) + THIEF (LUCKY)
A8 : + THIEF (JACKY) - IN .HOTEL (LUCKY) + IN .HOTEL (LUCKY)

* A9 : + THIEF (JACKY) - IN .HOTEL(LUCKY) ~- THIEF (WILL IE)
* A10 : + THIEF (WILL IE) - THIEF (LUCKY) - IN .HOTEL(LUCKY) + THIEF (WILL IE)

+ THIEF (JACKY)

OPERATIONS ON AXIOMS

IN .HOTEL (LUCKY) - THIEF (WILL IE) - THIEF (WILL IE)A6 ,1 & A l , 2 --> * R1 : +
Rl 2=3 -=> * D2 : + IN .HOTEL (LUCKY) - THIEF (WILL IE)
A9 ,2 & D2 ,1 -=> * R3 : + THIEF (JACKY) - TH IEF(WILL IE) - THIEF (WILL IE)
R3 2=3 ==> * D4 + THIEF (JACKY) ~- THIEF (WILL IE)
D4 ,1 & A2 ,2 —-=> * RS : - TH IEF (WILL IE) - THIEF (WILL IE)
RS 1=2 -=> * D6 : - THIEF (WILL IE)
AS5,1 & D6 ,1 => * R7 : + THIEF (LUCKY) + THIEF (JACKY)
A l0 1=4 ==> * D8 : + TH IEF(WILL IE) - THIEF (LUCKY) - IN.HOTEL(LUCKY) +

THIEF (JACKY)

User Manual for the Markgraf Karl Theorem Proving System Chapter 8 77

D8,4 & A3 ,2 -—-> * R9

R9 2=4 —=> * D10
D10 ,3 & A4 ,2 --> * R11
R11 2=3 ~=> * D12
D12 ,1 & D6 ,1 --> * R13
R7,1 & R13 ,1 --> * R14

+
+

+
+

THIEF (WILL IE)
THIEF (LUCKY)
THIEF (WILL IE)
THIEF (WILL IE)
THIEF (WILL IE)
THIEF (LUCKY)
THIEF (JACKY)

THIEF (LUCKY)

THIEF (LUCKY)
THIEF (LUCKY)
THIEF (LUCKY)

SET OF THEOREM CLAUSES RESULTING FROM NORMALIZATION

* T11 : - THIEF (JACKY)

IN IT IAL OPERATIONS ON THEOREMS

T11 ,1 & R14 ,1 --> * R15 [1

- IN .HOTEL (LUCKY) =

= IN.HOTEL (LUCKY)
- THIEF (LUCKY)

Q. E . D ,
STOP

