SWP-88-01

\\oﬂ sx\at
@ee

The MKRP User Manual
M. Beetz, H. Freitag,]. Klug
Ch. Lingenfelder (Ed.)

-
0]
g
A
o
8
W
S
M4
43
/2]

AuBuLI®D) ‘M ‘| WI9INB|SIESIEY 06/9-0
6Y0€ YoepSOd o
wJsine|sIasie)| 1BNISISAIUN
AlewIoju| yolaIaqyoe e

The MKRP User Manual

M. Beetz, H. Freitag, J. Klug
Ch. Lingenfelder (Ed.)
SEKI Working Paper SWP-88-01

M. Beetz, H. Freitag, J. Klug

The MKRP User Manual

Contents
1. Introduction ..., 1
2. The MKRP Operating System 9
3. The Input Language ... 15
4. The MKRP Editor iirnenenae 27
5. Setting the MKRP Parameters......... 33
6. Subsystem Commands ... 65
7. The Output Facility cceevevevreeneee. 66
8. ATestRun .., 72

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 1

1. _Introduction
The current state of development of the Markgraf Karl Refutation Procedure

(MKRP), a theorem proving system under development since 1977 at the
Universities of Karlsruhe and Kaiserslautern, West Germany, is presented and
evaluated in the sequel. The goal of this project can be summarized by the
following three claims: it is possible to build a theorem prover (TP) and
augment it by appropriate heuristics and domain-specific knowledge such
that
i) it will display an active and directed behaviour in its striving for a
proof, rather than the passive combinatorial search through very large
search spaces, which was the characteristic behaviour of the TPs of the
past. Consequently

ii) it will not generate a search space of many thousands of irrelevant
clauses, but will find a proof with comparatively few redundant
derivation steps.

iii) Such a TP will establish an unprecedented leap in performance over
previous TPs expressed in terms of the difficulty of the theorems it can
prove.

With about 25 man years invested up to now and a source code of almost
2000 K (bytes of Lispcode), the system represents the largest single software
development undertaken in the history of the field and the results obtained
thus far corroborate the first two claims.

“The final (albeit essential) claim has not been achieved yet: although at
present it performs substantially better than most other automatic theorem
proving systems, on certain classes of examples (induction, equality) the
comparison is unfavourable for the MKRP-system. But there is little doubt
that these shortcomings reflect the present state of development; once the
other modules (equality reasoning, a more refined monitoring and induction)
are operational, traditional theorem provers will probably no longer
competitive.

This statement is less comforting than it appears: the comparison is based on
measures of the search space and it totally neglects the (enormous) resources
needed in order to achieve the behaviour described. Within this frame of
reference it would be possible to design the "perfect” proof procedure: the
supervisor and the look-ahead heuristics would find the proof and then guide
the system without any unnecessary steps through the search space.

In summary, although there are good fundamental arguments supporting the
hypothesis that the future of TP research is with the finely knowledge

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 2

engineered systems as proposed here, there is at present no evidence that a
traditional TP with its capacity to quickly generate many ten thousands of
clauses is not just as capable. The situation is still (at the time of writing)
reminiscent of todays chess playing programs, where the programs based on
intellectually more interesting principles are outperformed by the brute force
systems relying on advances in hardware technology.

The following paragraph summarizes the basic notions and techniques for
theorem proving as far as they are relevant here (and may be skipped by a
reader already familiar with the field).

Basic Techniques and Terminology

The language used in this report is that of first-order predicate logic with
which we assume the reader to be familiar. From the primitve symbols of this
logic we use: Wx.v.z as individual variables; a.b.c.d as individual constants; P,
Q. R as predijcate constants; f. g. h as function letters. The equality predicate
will be denoted by E and mostly written in infix notation as = to improve
readability. Individual constants and variables are terms as well as n-place
functions applied to n terms. As metasymbols for terms we use . s and t. the
arity of functions and predicates will be clear from the context. An n-place
predicate letter applied to n terms is an atom. A literal is an atom or the
negation thereof. For literals we use L, K. The absolute value IL| of a literal L is
the atom K such that either L is K or L is ~K.

A clause is a finite set of literals for which the metasymbols C, D are used. A
clause is interpreted as the disjunction of its literals, universally quantified
(over the entire disjunction) on its individual variables. The empty clause is
denoted as 0. A ground clause, ground literal or ground term is one that has
no variables occurring in it. A substjtution 6 is a mapping from variables to
terms almost identical everywhere. Substitutions are extended to mappings
from terms to terms by the usual morphism. Substitutions are also used to
map literals (clauses) to literals (clauses) in the obvious way. A substitution is
denoted as a set of pairs § = {(v <t) .. (v «t)} where the v, are variables

and the t, are terms. The term 8(t) (the literal (L), the clause 8(C)) is called an
instance of t (an instance of L, an instance of C). We use 8, 6 for substitutions.
A substitution 6 is called a unifier for two atoms L and K, iff 6(L) = 6(K), 6 is

called a most general unifier (mgu) of L and K, if for any other unifying
substitution d there exists a substitution A such that § = A - 6, where - denotes

the functional composition of substitutions. A matcher (or one-way unifier)
for two literals L and K relative to L is a substitution 6 such that sL =K.

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 3

The Herbrand Universe H(S) of a set S of clauses is the set of all ground terms

that can be constructed from the symbols occuring in S (if no individual
constant occurs in S we add the single constant symbol ¢). A Herbrand
instance H(t) of a term t is an instance 8(t), such that all terms in § are from
H(S), similarly we define a Herbrand instance of an atom, a literal, a clause. An
interpretation T of S is a set of ground literals, whose absolute values are all
the Herbrand instances of atoms of S such that for each Herbrand instance L
of an atom exactly L or ~L is in T. An interpretation T satisfies a ground clause
Ciff Cn T # Q. T satisfies a clause C if it satisfies every ground instance of C in
H(C); T satisfies a set of clauses S if it satisfies every clause in S. A model M of
a set of clauses S is an interpretation that satisfies S. If S has no model it is
unsatisfiable. For the equality predicate = and a set of clauses S, a model M of
S is an E-model if

i) t=t eM for all termst

ii) if the literals L €e M and s =t € M and if L' is obtained from L by

replacing an occurence of sin L by t thenL'e M.

If S has no E-models then it is E-unsatisfiable.

Two literals are complementary if they have opposite sign and the same
predicate letter.

If C and D are clauses with no variables in common and L and K are
complementary literals in C and D respectively, and if |L| and |K]| are
unifiable with most general unifier &, then R= 6(C-{L}) us(D-{K}) is a resolvent
of C and of R and each literal L in R descends from a literal L' in C or D.

If Cis a clause with two literals L and K and if a most general unifier 6 exists
such that 6(L) = 6(K) then F = 6(C-K) is called a factor of C. If C and D are
clauses with no variables in common, and s =t is a literal in C, and r is a term
occuring in D such that there exists 6 with 6(s) = 6(r), and D' is obtained from D
by replacing r in D by t then P = 6(D') U 6(C-{ s=t }) is a paramodulant of C and
D. This inference rule is called paramodulation.

A connectjon graph CG is
i) a set of clauses S
ii) a binary relation R over literals in S, such that (L,K) e Rif |L| and |K]|
are unifiable and L and K are of opposite sign. Sometimes we write <S>
for the connection graph obtained from S.

A literal L in S is pure if it does not occur in any of the pairs of R i.e. it is not
connected and the clause containing L may then be deleted in CG. A

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 4

connection grph is graphically represented by drawing a link between L and K
for every (L, K) € R. L and K are said to be connected. Instead of repeating the
definition of the connection graph proof procedure [Ko 75] we give an
example for the derivation step. Consider the following connection graph:

®-—K—L @—LRS ®—ST
NS T~
@KL—M @—R

—T

P|Q|M

/\

P -M| Q

__Q

Suppose we want to obtain the resolvent of clause (I) and clause (II), i.e. we
want to resolve upon link (1). This is done by adding the resolvent to the
graph and by connecting the resolvent in the following way: if a literal L in
the resolvent descends from a literal L' in one of the parent clauses and if L'
was connected to some literal K and if K and L are unifiable, then L and K are
connected by a link. Finally the link resolved upon is deleted and all
tautologies and all clauses containing pure literals are deleted.

For the connection graph above, resolving upon link (1) leads to a tautology,
which is deleted, hence (I) and (II) are deleted since K, ~K is now pure.

Similarly clauses (III), (IV) and (V) are deleted; i.e. after one step the whole
connection graph shrinks to:

P| Q| M

/\

—P -M| Q

)

This potentially rapid reduction of the original graph causes the practical
attraction as well as the theoretical problems of this proof procedure. A more
formal representation of the procedure is contained in [KARL MARK GRAPH
paragraph 6.3.10].

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 b)

Apart from the deletion of clauses containing pure literals there are additional
deletion rules, which become particularily significant in the context of
connection graphs: every deletion of a clause may cause further deletions of
clauses (and links) and the resulting complex interplay is still not very well
understood theoretically (see e.g. [BI 81] [EI 81][EI 87]1[SM 82]).

A clause C is a tautology if it contains two complementary literals L and K
such that |L|=|K| or a literal of the form t =t.

A clause C subsumes a clause D if |C|<|D| and there exists a substitution §
such that 8C e D. (This is the definition of §-subsumption in [LOV 781]).

Subsumed clauses and tautologeous clauses may be deleted from the graph, as
discussed in [KARL MARK GRAPH section 6.3.3] and [KARL MARK GRAPH
section 6.3.4] respectively. The unrestriced use of these deletion rules is
known to make the respective proof procedure incomplete and even
inconsistent. '

A traditional refinement restricts the search space by blocking certain
possible resolutions steps. For example a UNIT refutation, in which at least
one parent clauses of a resolvent must be a unit clause, is such a refinement.
SET-OF-SUPPORT is also a refinement: the set of clauses is partitioned into two
subsets (usually the set of the axiom clauses S and the set of the theorem
clauses T) and resolution is only permitted if at least one parent clause is in T.
The resolvents are put into T, i.e. the effect of set-of-support is most
profitable at the beginning of the search, but it fades the more the deduction
proceeds.

A LINEAR refinement selects a top clause from the set of theorem clauses and
uses this clause as one of the parents for a resolution step. Then the resolvent
becomes the top clause and so on either until the empty clause has been
derived or backtracking is necessary.

The development of complete refinements was the main focus of research in
theorem proving in the past and there may be close to a hundred now (see
e.g. [LOV 78] [CHL 73]), some of those are used to advantage in the
MKR-Procedure as well.

In contrast to a refinement, which only restricts the number of possible steps
(and often "cuts off garbage and gold alike"), a strategy gives active advice as
to what to do next. The development and integration of such strategies into
one system was the main research problem of the MKRP project [cf. KARL

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 6

MARK GRAPH]. Strategic information overrides any other information: even if
a particular refinement was chosen, the resulting deduction may be very
different. Only if nothing better is known, does the system behave like a
traditional theorem prover.

Completeness

The MKR-Procedure is incomplete, yet even worse it is inconsistent as it
stands. This is partly so, because the implementation is not completed and
partly because there are open theoretical problems in the connection graph
procedure itself, see e.g. [BI 81] and [SM 82]. Most of the cases causing
incompleteness (except paramodulation) however are irrelevant for practical
examples; quite on the contrary, for some of them it is a hard job to find an
example where it is in fact relevant.

In particular there are the following cases:
e As all reductions are performed before factorization, the graph may collapse
although the clause set is unsatisfiable (i.e. the system is inconsistent):

Example:
< —.P(a, X) , —P(x, a) >

<P(@a, x) , P(x,a)>

All four R-links are tautology links and will be deleted causing purity deletion
of both clauses, although the factors <P(a a)> and <NOT P(a a)> would allow for
a refutation.

e Tautologies are deleted without any restriction, although this is known to
be inconsistent, see [SM 82].

e Subsumed clauses and links are deleted without any restriction, which can
also cause inconsistency, see [SM 82] [EI 81].

e Paramodulation and equality reasoning is not fully implemented. Especially
the mechanism to generate only those P-links into variables which are
necessary for completeness is not yet completed. Unrestriced generation of
P-links from each side of an equation into each variable would blow up the
graph without significantly increasing the total amount of information. Hence,

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 7

P-links into variables are not generated so far.

These deficiencies may be the reason that a proof exists, but cannot be found
by the system. Even worse, the graph may collapse (usually indicating
satisfiability), although the initial clause set is unsatisfiable.

As more theoretical results about clause graph procedures become known
[EI83], we hope to eliminate at least the case causing inconsistency, whereas
completeness results, although interesting as they may be from a theoretical
point of view, are of course less important for practical purposes.

Overview of the System

The working hypothesis of the MKRP project first formulated in an early
proposal in 1975, reflects the then dominating themes of artificial intelligence
research, namely that TPs have attained a certain level of performance, which
will not be significantly improved by:

i) developing more and more intricate refinements (like unit preference,
linear solution, TOSS, MTOSS, ...), whose sole purpose is to reduce the
search space, nor by

ii) using different "logics" (like natural deduction logics, sequence logics,
matrix reduction methods etc.)

although this was the main focus of theorem proving deduction research in
the past and of course it is not entirely without its merits even today.

The relative weakness of current TP-systems as compared to human
performance is due to a large extent to their lack of the rich mathematical and
extramathematical knowledge that human mathematicians have: in particular,
knowledge about the subject and knowledge of how to find proofs in that
subject.

To a lesser, but still important extent the relative weakness of current
TP-systems can be attributed to the insufficient emphasis which in the past
has been laid onto the software engineering problems and - sometimes even
minor - design issues that in their combination account more for the strength
of a system than any single refinement or "logical improvement"”.

Hence the object of the MKRP-project is firstly to carefully design and develop
a TP system comparative in strength to traditional systems and secondly to

User Manual for the Markgraf Karl Theorem Proving System Chapter 1 8

augment this system with the appropriate knowledge sources and heuristics
methods. As a test case and for the final evaluation of the project's success or
failure, the knowledge of an algebraic treatment of automata theory shall be
made explicit and incorporated such that the theorems of a standard textbook
[DE 71] can be proved mechanically. These proofs are to be transformed into
ordinary natural language mathematical proofs, thus generating the first
standard textbook entirely written by a machine.

In the following chapters we give a complete description of the user interface
of the system. Most commands will work for any version of the MKRP, but the
starting procedure is described for the SIEMENS BS2000 version.

The system also runs on a Symbolics Lisp Machine under Genera 7.1 (Common
Lisp). The major differences to the SIEMENS version are mentioned at the end
of each chapter.

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 9

2. The MKRP Operating System
After the logon command to a SIEMENS BS2000 system, the user types
/DO ATP, <load-subsystem>

to load the Markgraf Karl Refutation Procedure (MKRP for short). As the
system as a whole doesn't fit into main memory, it is partitioned into four
different subsystems. The <load-subsystem>-parameter selects one of them to
be initially loaded. This parameter has one of the following four values:

E.COM for Edit
C.COM for Construct
R.COM for Refute
P.COM for Protocol

Independently from the subsystem being actually active, the system accepts
any MKRP-command. If necessary, it automatically adds the subsystem
needed to execute the command.

On a Symbolics the system is started by typing :Load System MKRP
(1) Architecture of the System from a User's View
The system consists of the following four subsystems:

- EDIT

- CONSTRUCT
- REFUTE

- PROTOCOL

EDIT provides a set of functions to create and manipulate sets of
axioms and theorems.

Given a set of axioms and theorems (created by EDIT), CONSTRUCT
generates the corresponding initial connection graph(s).

With the result of CONSTRUCT as input, REFUTE tries to detect a
refutation by the application of resolution steps to the connection
graph.

PROTOCOL produces a listing of initial clauses and the proof steps

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 10

which are necessary to deduce the empty clause.

(2) A More Detailed Description of the Four Subsystems

The subsystem EDIT enables the user to create axiom- and theorem-files,
consisting of formulas of the input-language Predicate Logic Language PLL,
which is discussed in chapter 3. The editor checks the syntactic and semantic
correctness of the input formulas. These formulas are transformed into a
formal problem description being stored in a so called problem file.

This problem file is the input for the CONSTRUCT-subsystem, which
generates the initial connection graph(s) according to the reduction rules for
initial graphs as specified by the user-defined adjustment of the options. The
output of this subsystem is a graph file. Raw data for the protocol are written

to a code file.

REFUTE then, tries to proof the theorem by resolving clauses in the
connection graph. The user can control the deduction process by specifying
various options (to be discussed in more detail in chapter 3.4). REFUTE also
writes raw data to a code file. In order to get protocol raw data of CONSTRUCT
and REFUTE on the same codefile use CR (see below) if possible.

" PROTOCOL produces a listing of the initial clauses, together with the
resolution proof as performed by REFUTE.

(3) A Precise Explanation of the Operating System Commands

At the toplevel of the MKRP-System, the following operating system
commands are available:

VvV H[ELP] EX[IT] O[PTIONS] IIND[UCTION]I
HC LI[ISP] LO[GOFF] S[UBSYSTEMS]
EP
FP
ER CP
FR
EC 'CR RP
FC
E[DIT] C[ONSTRUCT] R[EFUTE] P[ROTOCOL]

F[ORMULA]

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 11

DIEFINE.]ID[IRECTORY]
S[ORT.]G[ENERATION]

D[EFINE.]D[IRECTORY]

<Directory1>

<Directory2>

D[EFINE.JE[XAMPLENAME]

<Example-name>»

V TIYIYES

V NILININO

H[ELP] <COM>
H[ELP]
EX[IT]

O[PTIONS]

I[ND[UCTION]]

D[EFINE.]JE[XAMPLENAME]

<Directory1> <Directory2»

Defines the directories where the files will be
written on and read from.

Directory for files to read and for files to
write. As directoryl only a directory on the
user’'s own user-id is allowed. The $-prefix is
not allowed for directoryl.

Directory for files to read.

<Example-name>

Files generated during the session will be
prefixed with the Example-name.

An example name; the Standard-name
is TEMP.OS'.

turns the manual terminal control on.
turns it off

explains the command <COM>
prints a list of all available OS-commands

terminates the MKRP-Session and returns to
BS 2000

calls the option-module of the proof-control.
It has its own self-explanatory command
system. 'OK' returns to where you came from.
The option module is described in detail in
section 3.4

Not yet fully implemented.
Calls the Karlsruhe Induction-Therorem-

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 12

HC <File>
HC T

HC N INIL

L[ISP]
LO[GOFF]

S[UBSYSTEMS]

S[ORT.]JG[ENERATION]

<Input Graph File>

<Output Graph File»

E[DIT] [<Problem File>]

<Problem File>

F[ORMULA]

<Axiom File>
<Theorem File>

prover

Hardcopy of the Terminal-Session on <File»
Hardcopy on System File. Automatic Output
on Printer

HC is switched off and <File> is closed

Calls Interlisp. Return with 'OK'
terminates this Terminal-Session

Shows the actual system-configuration. It has
its own self-explanatory command system.
'OK' returns to where you came from.

The subsystem commands are explained in
section 3.5.

<Input Graph File> <Output Graph File>
Transforms unary predicates into sorts; in
some cases a contradiction or a model is
found.

A file containing the initial graph(s). If nil,
the last one created is used, if such a file
exists.

File containing new initial graphs. New split
parts are possible.

creates a problem description.

To that end the formula editor is called twice,
first for the axiom formulas, then for the
theorem formulas.

The problem description is written on

, if given, otherwise a default name is used.

<Axiom File> <Theorem File> [<Problem File>]
creates a problem description from compiled
formula files.

and

contain the compiled axiom and theorem

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 13

<Problem File>

C[ONSTRUCT]

<Problem File>

<Graph File»

<Code File>

<Comment>

<Batch File»

<ATP-Version»

R[EFUTE]

<Graph File»

<Number>

formulas.

The problem description is written to

, if given, otherwise a default name is used.
Using this command requires <Axiom File>
and <Theorem File> to be compatible, i.e. they
must be created during the same editor
session.

[<Problem File>[<Graph Files>[«Code File>
[<Comment>[<Batch File>[<ATP Version>11]111]
creates a set of initial graphs from a problem
description.

contains the problem description. If nil, the
last one created is used, if such a file exists.

is the file the initial graph(s) will be written
on. If nil, a default file name is used.

is the file, where the raw data for the protocol
will be written to. If nil, a default file name is
used.

is inserted into the proof protocol.
<Comment> must be a list, each element is
printed in a separate line.

Jif given, causes the creation of a batch job
using the given

or the standard version, respectively.

[<Graph File>[<Number>[«Code File>[<Batch
File>[<ATP-Version<]11]]

refutes a set of initial graphs and creates raw
data for the protocol.

is the file containing the initial graph(s). If nil,
the last one created is used, if such a file
exists.

If a

say n, is given, only the nth graph is refuted,
otherwise (i.e. <cnumber> = nil) all graphs on

User Manual for the Markgraf Karl Theorem Proving System Chapter 2 14

the file.

<Code File> is the file, where the raw data for the protocol
will be written to.

<Batch File> if given, causes the creation of a batch job
using the given

<ATP-Version> or the standard version, respectively.

P[ROTOCOL] [<Code File>[List File>[<Batch File>

[<ATP-Version]]]]
creates a proof protocol from raw data.

<Code File> File containing the raw data.

<List File> File, where the processed data for protocol
will be written to in a readable format.

<Batch File» ,if given, causes the creation of a batch job,
using

<ATP-Version» or the standard version, respectively.

The commands Edit, Formula, Construct, Refute and Protocol can be combined
in various different ways.
This causes several commands being executed after one another.
Possible combinations are:
EP
FP
ER CP
FR
EC CR RP
FC

For example the CP <Problem File> <Graph File> <Code File>

<comment> <List File>
causes first CONSTRUCT to create a <Graph File> and a <Code File> starting with
<Problem File>. Then REFUTE tries to refute the graph and writes also protocol
raw data to the <«Code File> and at last PROTOCOL creates a <List File>.

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 15

3, The Input Language

The PREDICATE LOGIC LANGUAGE (PLL), a formal language in which sorted
first-order predicate logic formulas can be formulated, is described. Axioms
and theorems, which are given to MARKGRAF KARL REFUTATION PROCEDURE,
are represented in PLL. The language constructs of PLL which reflect the
special facilities of this system are exhibited, i.e.

- an inference mechanism based on a many-sorted calculus,
- the incorporation of special axioms into the inference mechansim, and
- the control of the inference mechanism using special derivation strategies.

Basic Concepts

In PLL all the usual junctors, denoted by OR, AND, IMPL, EQV, and NOT, the
universal quantifier ALL and the existential quantifier EX are present.
Junctors and quantifiers have the following priorities when used in a formula
without parentheses:

(1) NOT
(2) AND
(3) OR

(4) IMPL
(5) EQV
(6) ALL, EX

In a formula without parentheses, the rightmost junctor has precedence over
all junctors of the same priority to its left.

Example

NOT A OR B AND C is equivalent to (NOT A) OR (B AND C) and A IMPL B IMPL
C is equivalent to A IMPL (B IMPL C).

In PLL the sign '=' denotes the equality symbol, i.e. we use a first-order
predicate calculus with equality. As an example for using PLL, we axiomatize
a group:

Example

* AXIOMATIZATION OF A GROUP WITH EQUALITY,
*F IS A GROUP OPERATOR AND 1 IS THE IDENTITY ELEMENT

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 16

ALLXYEXZ F(XY)=1

ALL XYZ F(XF(YZ)) = F(F(XY) Z)
ALL X F(1X)=XANDF(X 1) =X
ALLXEXY FXY)-=1

A theorem given to the MKRP system could be for instance:
*IDEMPOTENCY IMPLIES COMMUTATIVITY
ALL X F(XX)=1 IMPL (ALL X,Y,F(X Y) = F(Y X))

The lines starting with a ™ are PLL-comments. We give another
axiomatization of a group:

Example

* AXIOMATIZATION OF A GROUP WITHOUT EQUALITY
*P(XY Z) DENOTES F(XY) = Z WHERE F IS THE
* GROUP OPERATOR. E IS THE LEFTIDENTITY.

ALL XY EXZ P(XYZ)

ALL XY,ZUV,W P(XYU) ANDP(YZ V) IMPL
(P(XV W)EQVP(UZW)

ALL X P(EX X)

ALLXEXY P(XY E)

Now a theorem could be for instance:
* LEFTIDENTITY IS RIGHTIDENTITY
ALL X P(XEX)

The Many-Sorted Calculus

Assume we have a set of symbols ordered by the subsort order, a partial
order relation which is reflexive, antisymmetric and transitive. Variable,
constant and function symbols are associated with a certain sort symbol. The
sort of a variable or constant symbol is its rangesort and the sort of a term
which is different from a variable or constant symbol is determined by the
rangesort of its outermost function symbol.

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 17

All argument positions of a function or predicate symbol are associated with
certain sort symbols, called the domainsorts. In the construction of the well
formed formulas of the many-sorted calculus, only those terms may fill an
argument position of a function or predicate symbol, whose sorts are subsorts
of the domainsorts given for the argument position of the respective function
or predicate symbol.

Besides the increase of readability of axiomatizations, the usage of the
information given by the range- and domainsorts and by the subsort order
prevents the inference mechanism of the theorem prover to do useless
derivations. The theoretical foundation of the many-sorted calculus
implemented in the MARKGRAF KARL REFUTATION PROCEDURE can be found
in [Walther-831.

As an example for an application of a many-sorted calculus we axiomatize sets
of letters and digits and some basic operations for these sets:
Example

* DEFINITION OF THE SORTS LETTER AND DIGIT; L.E.
* A, B, ..,Z ARE CONSTANTS OF SORT LETTER AND
*0,1,..,9 ARE CONSTANTS OF SORT DIGIT

TYPE ABCDEFGH,IJKLMNOPQRSTUVWJXY,Z: LETTER
TYPE 0,9,8,7,6,5,4,3,2,1: DIGIT

* LETTER AND DIGIT ARE SUBSORTS OF SORT SIGN
SORT LETTER, DIGIT:SIGN

* DEFINITION OF THE EMPTY SET AND SET-MEMBERSHIP,
* L.LE. EMPTY IS A CONSTANT OF SORT SET AND MEMBER
* IS A BINARY PREDICATE DEFINED ON (SIGN SET)

TYPE EMPTY:SET

TYPE MEMBER(SIGN SET)

ALL X:SIGN NOT MEMBER(X EMPTY)

ALL U,V:SET U = V EQV (ALL X:SIGN MEMBER (X U) EQV MEMBER (X V))
* DEFINITION OF SINGLETONS, L.E. .

* SINGLETON IS A FUNCTION MAPPING SIGN TO SET

TYPE SINGLETON(SIGN):SET
ALL X:SIGN ALL U,V:SET (MEMBER(X U) OR MEMBER(X V))

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 18

EQV MEMBER (X UNION (U V))

Theorems to be proved by the ATP system could be for instance:
* UNION IS IDEMPOTENT AND EMPTY IS AN IDENTITY ELEMENT
ALL X:SET UNION (X Y) = X AND UNION(EMPTY X) = X
* SINGLETON IS INJECTIVE
ALL X,Y:SIGN SINGLETON(X) = SINGLETON(Y) IMPLX =Y
* EACH LETTER IS A SIGN
ALL Y:SET (EX U:LETTER MEMBER(U Y))

IMPL (EX X:SIGN MEMBER(X Y))
Attributes of Functions and Predicates

Attributes are abbreviations for their defining axioms, i.e. first-order axioms
which axiomatize certain properties of functions or predicates.

The effect in stating a certain attribute of a function or predicate using an
~attribute declaration is formally the same as giving the defining axiom to the
ATP. At the moment the following properties can be declared.

Attribute Declaration Defining Axiom

REFLEXIVE(P) ALL X P(X X)
IRREFLEXIVE(P) ALL X NOT P(X X)
SYMMETRIC(P) ALL XY P(XY)IMPL P(Y X)
ASSOCIATIVE(F) ALLXY<Z F(XF(YZ))=F(F(XY)Z)

The defining axioms of attributes are incorporated into the inference
mechanism of the system as described above in [KARL MARK G RAPH-84].

Example
In the first example for instance the associativity of the group operator F

could be stated by: ASSOCIATIVE (F). In the second example we could write as
an axiom: ASSSOCIATIVE(UNION).

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 19

The Syntax of PLL

The formal syntax of PLL defined by a context free grammar is contained in
[Walther-82], which presents additional details and examples.

Semantic Constraints for PLL

In the sequel we state the semanti_c constraints (i.e. the context dependent
language features) for PLL. The strings in angle brackets, e.g. <term>, refer to
the production rules of the PLL-grammar as defined in [Walther-82].

Sort Symbols

Sort symbols are introduced with their first usage in

- a <sort declaration>, e.g. SORT LETTER, DIGIT:SIGN, ALPHABET
- a <type declaration», e.g. TYPE A ,B:BOOL,

- a «<variable declaration>, e.g. ALL Z:INT EX N:NAT ABS(Z) = N

The direct subsort relation imposed on the set of sort symbols is a partial,
irreflexive and non-transitive relation such that the predefined sort symbol
ANY is no direct subsort of each sort symbol and each sort symbol different
from ANY is a direct subsort of at least one other sort symbol.

The subsort order imposed on the set of sort symbols is the reflexive and
transitive closure of the direct subsort relation.

The subsort symbols left of the colon in a <sort declaration> are direct
subsorts of each sort symbol to the right of the colon in the <sort declaration>.

The sort symbols right of the colon in a <sort declaration> are direct subsorts
of ANY, provided these sort symbols are introduced by this <sort declaration>.

Example

For the <sort declaration> given above LETTER and DIGIT are subsorts of SIGN
and of ALPHABET, and SIGN and ALPHABET are direct subsorts of ANY.
Hence LETTER, DIGIT and SIGN are subsorts of SIGN and ANY, SIGN,
ALPHABET, LETTER and DIGIT are subsorts of ANY.

Yarjable Symbols

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 20

Variable symbols are introduced by a «variable declaration> in a
<quantification>.

Example
ALL X,YEXZSP(XYZ)

The scope of a <variable declaration> is the <quantification> following the
<variable declaration> in a <quantification>.

In its scope each «variable symbol> has as rangesort the sort symbol given by
the <sort symbol> following the colon in its <variable sort> of the <variable
declaration>. If no <variable sort> is present, the rangesort of the «variable
symbol> is the predefined sort symbol ANY.

Example

The expression given in the above example has the following sorts:
rangesort(X) = rangesort(Y) = ANY and
rangesort(Z) = S.

In each <quantification> variable symbols are consistently renamed from left
to right to resolve conflicts on multiple introductions of variable symbols.

Example

ALL Y,X P(Y) is the same as ALL X,Y P(Y) and
ALL X (EX X P(X)) IMPL Q(X) is the same as
ALL X (EX Y P(Y)) IMPL Q(X)

Constant Symbols

Constant symbols are introduced with their first usage
- in a <type declaration», e.g. TYPE -1,+1:INT
- as <term>, e.g. ALLXP(X A)ORF(C) =D

Each constant symbol has a rangesort the <sort symbol> following the colon in
the <type declaration> which introduces the <constant symbol>.

Example
For the expressions given above we find
rangesort(-1) = rangesort(+1) = INT.

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 21

The rangesort for a constant symbol which is introduced with its first usage as
a <term> is ANY.

Note that in PLL variable symbols are always preceded by a quantifier and
thereby can always be distinguished from constant symbols. As a consequence
there is no concept of free variables in PLL.

Function Symbols

Function symbols are introduced with their first usage in
- a <type declaration>, e.g. TYPE ABS(INT):NAT

- an <attribute declaration>, e.g. ASSOCIATIVE(PLUS)

- ac<term>,e.g. ALL XP(F(X))ORG(X) = A

Each function symbol is associated with a sort symbol for each argument
position i, called its ith domainsort, with a natural number, called its arity, and
with a sort symbol, called its rangesort.

Function symbols which are introduced by <type declaration> have as their
domainsorts the <sort symbol>s given on the appropriate positions in the list
of <sort symbol>s following the «function symbol> in the <type declarationy.

Example
- For the expression TYPE PRODUCT(SCALAR VECTOR):VECTOR we get
domainsort (PRODUCT 1) =SCALAR and domainsort (PRODUCT 2)=VECOTR.

A function symbol> which is introduced by a <attribute declaration> or by its
first usage in a <term> has ANY as ith domainsort for each argument position i.

The arity of a function symbol is defined as

- the number of sort symbols in the list of <sort symbols> following the
<function symbol> in the <type declaration> which introduces the «function
symbol>

- two, for a «function symbol> introduced by an <attribute declaration>

- or else the number of arguments at its first usage in a <term>.

Example

For the expressions given above we get arity(ABS) = 1,

arity(PLUS) = 2 and arity(F) = arity(G) = 1.

The rangesort of a «function symbol> is defined by the <sort symbol> following

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 22

the colon in a <type declaration>. Its rangesort is ANY if the «function symbol
is introduced by a <attribute declaration> or by its first usage in a <termo.

Example

For the examples given in the above expressions we get
rangesort(ABS) = NAT

rangesort(PRODUCT) = VECTOR, and

rangesort(PLUS) = rangesort(F) = rangesort(G) = ANY.

Predicate Symbols

A predicate symbol is introduced with its first usage in
- a <type declaration>, e.g. TYPE MEMBER(SIGN SET)
- a <atom> in a formula, e.g. EX X,Y P(X Y) ANDQ

Each predicate symbol is associated with a natural number, called its arity,
and with a sort symbol for each argument position i, called its ith domainsort.

The arity and domainsort of predicate symbols are determined in the way
arity and domainsorts are determined for function symbols.

The <equality symbol> is a predefined predicate symbol with arity 2 and 1st
and 2nd domainsort ANY. It is the only predicate symbol which is written in
infix notation.

‘TRUE' and 'FALSE' are predefined predicate symbols with arity 0, which have
the obvious meaning.

In the following the numbers in angle brackets, e.t. <23>, denote error code
numbers returned by the PLL-compiler of the MARKGRAF KARL REFUTATION
PROCEDURE (summarized below) when given a semantically incorrect
<expression> as input. The phrase unknown symbol denotes a string of the
terminal alphabet of the PLL-grammer, which was not used before.

S Al Sort Declarati

A <sort declaration> SORT S1, ..., Sm:T1, ..., Tn is semantically correct, if
- all Si and all Tj (i=1..m, j=1..n) are sort symbols or else are unknown
symbols (otherwise error message) <61,62,63,64> and Si is a direct subsort

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 23

of Tj <1> or else at least one of the symbols S and Tj is an unknown
symbol <2>.

S icall Tvpe Declaratio;

A <type declaration> T is semantically correct if

- TisTYPECIH, .., Cn:S and S is a sort symbol or else is an unknown symbol
<61,62,63,64> and for all i=1..n Ci is a constant symbol with rangesort(Ci)=
S <14> or Ci is an unknown symbol <11,12,16,17>

- or T is TYPE P(S1,..,.Sn) and for all i=1..n Si is a sort symbol or else is an
unknown symbol <61,62,63,64> and P is a predicate symbol with
arity(P)=n <34> and domainsort(P=i)=Si<36> or else is an unknown symbol
<31,32,36,37>

- or T is TYPE F(S1..Sn):S and for all i=1..n S and Si are sort symbols or else
are unknown symbols <61,62,63,64> and F is a function symbol with
arity(F)=n <23>, rangesort(F)=S 27> and domainsrot (F i)=Si <26> or
unknown symbol <21,22,24,28>.

S icall \ttribute Declarati

A <attribute declaration> ASSOCIATIVE(F) is semantically correct if
- Fis a function symbol with arity(F)=2 <23>, rangesort (F) = domainsort(F
1) = domainsort(F 2) or else is an unknown symbol <21,22,24,28>.

The «<attribute declarations>s REFLEXIVE(P), IRREFLEXIVE(P) and
SYMMETRIC(P) are semantically correct if

- P is a predicate symbol with arity(P)=2 <34> and domainsort (P 1) =
domainsort (P 2) <36> or else is an unknown symbol <31,32,33,37>.

: icall I : ificati

The sort of a term t, denoted sort(t), is the rangesort of t, if t is a variable or
constant symbol, and else is the rangesort of the outermost function symbol of
t.

A <term> T is semantically correct if

- T is a constant symbol, a variable symbol or an unknown symbol

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 24

<11,12,16,17>

- or Tis F(T1..Tn) and for all i=1..n, Ti is a semantically correct term, F is a
function symbol with arity(F)=n <23> and sort (Ti) is a subsort of
domainsort(F i) <81> or else F is an unknown symbol <21,22,24,28>.

An <atom> A is semantically correct if

- A is a predicate symbol with arity(A)=0 <34> or A is an unknown symbol
<31,32,33,37>

- or AisP(T1..Tn) and for all i=1..n, Ti is a semantically correct term, P is a
predicate symbol with arity(P)=n <34> and sort(Ti) is a subsort of
domainsort(P i) <81> or else P is an unknown symbol <31,32,33,37>

- or AisT1 =T2 and T2 are semantically correct terms and = is an <equality
symbol>.

A <quantification>Q is semantically correct if
- Qis ALL X.. or EX X... and X is a variable symbol or an unknown symbol
<31,52,53,55> and each atom in Q is semantically correct.

Ecrors detected by the Compiler

The PLL compiler of the ATP system checks each input for syntactical and
semantical correctness. An input containing signs which are not member of

the terminal alphabet is responded by a message.

¥** SYMBOL ERROR <<« xxx IS NO ADMISSIBLE SYMBOL

where XXX is a sign which is not member of the terminal alphabet.

For a syntactically incorrect input, the compiler responds

++++ SYNTAX ERROR »>>> xxx NOT ACCEPTED
UNEXAMINED REMAINDER OF THE INPUT »>> zzz

where XXX is the sign which causes the syntactical incorrectness and zzz is the
unanalysed remainder of the given input.

For a syntactically correct but semantically incorrect input, the compiler

User Manual for the Markgraf Karl Theorem Proving System Chapter 3 25

responds

¥xxxx SEMANTIC ERROR nnn »»> message
UNEXAMINED REMAINDER OF THE INPUT »»> zzz

where 'nnn' is the semantic error code, 'message' is an error message
explaining the kind of the semantic error and 'zzz' is the (not analysed)
remainder of the given input.

Particularities of the Input Rout]

Since the whole ATP system is an INTERLISP program, the special features of
the INTERLISP input routines have to be taken into account, i.e.

- () isread as NIL

- X is read as (QUOTE X)

- <is read as (

->isread as a non empty sequence of)'s

- > closes all left-brackets up to the first left-superbracket <

each left-bracket has to be matched by a right-bracket or by a
right-superbracket »

each input has to contain an even number of " (i.e. the string indicator)

a sequence of blanks is read as one blank (except in a string)

+ is read as a blank if it is followed by a sequence of digits, e.g. +4711 is
read as 4711

a sequence of zeroes is read as a zero, unless the sequence is preceded by
non-zero sign, e.g. 007 isread as 7.

Separator Characters

In INTERLISP each of the following characters separates S-expressions:

- ablank

- a bracket, i.e.), (,> or <
- the quote sign, i.e.’

- the string indicator, i.e. "

Signs acting as separators in PLL are

User Manual for the Markgraf Karl Theorem Proving System

Chapter 3

26

- all INTERLISP separators
- the colon, i.e. X:Y is the same as X : Y and
- the comma, i.e. XY is the same as X ,Y.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 27

4. The MKRP-Editor

The MKRP-Editor is a screen-oriented, syntax-directed editor for the sorted
logic formulas, written in PLL. The formulas are kept in two different areas: if
a formula was accepted by the compiler, it is included into the active area. In
this case symbol table entries and prefix form exist for the formula and are
accessable.

Other formulas (e.g. such with syntax errors) are stored in the passive area.
Thus even erroneous input is not lost and the passive area can be used as a
scratch pad.

When terminated the editor returns the list of the formulas in the active area
for further processing (e.g. by the theorem prover). The passive formulas are
not considered.

Below is a list of the editor commands. Several commands can be concatenated
by the separator | .
Every command must begin with an atom (insert without command name).

I[NSERT] <FORMULA>
<FORMULA>

If formula <FORMULA> is syntactically and semantically correct, it will be
inserted as last one in active area, else as first one in passive area.

DIELETE] [<FROM>] [-] [<TO>]
DIELETE] [<FROM>] [/] [<TO>]

If <TO> is greater or equal than number of last formula in active area, the
corresponding formulas will be deleted.

Examples: D- deletes all formulas,
D2 deletes formula 2,
D 3- deletes all formulas from the third one,
D deletes the last formula of active area if it exists, else

the first of passive area.

+[SHIFT] [<NUMBER>]

++[SHIFT]

+SHIFT shifts the first <NUMBER> formulas of the passive area into the active
area, if they are syntactically and semantically correct.

Default -value of <NUMBER> is 1.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 28

++ SHIFT shifts all formulas.

Example: vy * ¥1 ¥
2 + 2 x2
5 - - *3*
4 4

-[SHIFT] [NUMBERI]

--[SHIFT]

-SHIFT shifts the last <NUMBER> formulas of the active area into the passive

area.

Default -value of <NUMBER> is 1.

--SHIFT shifts all formulas.

Example: *qox
¥2 % o - 2

E[DIT] [<NR>]

The Lisp-Editor is called for the formula <NR>.

If the active area is not empty, the default-value of <NR> is the number of last
formula in active area, else 1.

C[HANGE] [<NR>]

The formula <NR> is printed on the terminal. User shall enter a new formula to
replace the printed one.

If the active area is not empty, default-value of <NR> is the number of last
formula in active area, else 1.

RIEAD] <FILE»>

<FILE> must be created by the write-command. If the editor is in the initial
state, the formulas are inserted into the same areas containing them at write
time. Otherwise all formulas are inserted into the passive area.

WIRITE] <FILE>
The contents of the editor will be saved on file <FILE>, so that it can be
restored with the read-command.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 29

GIET] <FILE>

<FILE> contains a sequence of formulas in the following format:
(<FORMULA ¢>)
(<FORMULA »>)

(<FORMULA;>)
STOP
the formulas are inserted into the passive area.

EXEC[UTE] <FILE>
The file <FILE> contains a sequence of editor commands in the following
format:

<COMMAND> |

<COMMAND>> |

<COMMAND,> |
OK

The commands will be executed. For further dialogue the terminal is used.
Take care of the right number of closing parentheses.

SWIITCH] [<NR>1] [<NR2>]

If formula <NR1> and formula <NR2> are in the passive area they will be
exchanged.

If the user only gives one number, this and first formula are taken, switch
alone exchanges first and last formula of passive area.

UINDO] [<NUMBER>]

UINDO] ON

UINDO] OFF

UNDO ON AND UNDO OFF are switching undo-mode ON OR OFF, respectively.
UNDO undoes the last <NUMBER> destructive commands, AS INSERT, DELETE,
EDIT, CHANGE, +SHIFT, -SHIFT, READ, AND GET.

NO <NUMBER»> means one command.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 30

REP[LACE] <OLD> <NEW>

X <OLD> <NEW>

REPLACE replaces the symbol <OLD> by the symbol <NEW> in active and
passive area as well as in symbol-table.

REPLACE cannot be undone,

nor can any commands executed prior to a replace.

PP[RINT] <FILE>
Print writes the symobl-table and all formulas in a readable form on the
given file.

S[HOW] <X15...<XN>
S[HOW] -
Each <X1> must be a symbol-name or a list of kinds.
There are the kinds S[ORT], FIUNCTION], P[REDICATE] and C[ONSTANT] all
symbols that are so specified will be shown on the terminal.
Example: S (P) F will show all predicates and symbol F,
S- all symbols.

SS[HOW] <«X1>...<XN>
SS[HOW] -
SSHOW is a more beautyful version of show.
Each <XI> must be a symbol-name or a list of kinds.
There are the kinds S[ORT], F[UNCTION], P[REDICATE] and C[ONSTANT] all
symbols that are so specified will be shown on the terminal.
Example: SS (P) F will show all predicates and symbol F,
SS- all symbols.

PRE[FIX] [<FROM>][-] [<TO>]
PREI[FIX] [<FROM>][/] [<TO>]
F [<FROM>] [-] [<TO>]
F [<FROM>] [/] [<TO>]
PREFIX or F writes the compiled (PREFIX-) form of the formulas <FROM> to
<TO> on the screen.
Examples: PRE- or PRE/ all formulas of the active area,
PRE 3 formula 3, if active,
PRE -5 the formulas 1 to 5, if they are in the active area.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 31

IN[FIX] [<FORM>] [-] [<TO>]

INIFIX] [<FORM>] [/] [<TO>]

LIIST] [<FORM>] [-] [<TO>]

LI[IST] [<FORM>] [/] [<TO>]

INFIX or LIST writes the INFIXFORM (INPUT-LANGUAGE) of the formulas
<FROM> to <TO> on the sreen.

Examples: IN-OR IN/ all formulas,

IN7 the seventh formula,
IN -5 the formulas 1 to S
IN the last formula of active area, or if it doesn't exist

the first of passive area.

ST[ATE]
STATE shows the user, how the formulas are distributed on the areas.
Example: AREA 1: 3 formulas (active area)
AREA 0: 1 formula (passive area)
oK

OK terminates the editor and returns to the calling module.
OK used on a file for the execute command terminates the execute command.

|
| terminates the editor and returns to ATP-TOP-LEVEL.
I in the input of a command cancels it.

LISP
LISP calls the LISP system.
You can return to the editor by OK.

V ON

V [OFF]

V ON and V T will switch on the manual TELETYPE-CONTROL.
V OFF and V will switch it off.

User Manual for the Markgraf Karl Theorem Proving System Chapter 4 32

H[ELP] [<COMMAND>]

HELP prints a list of all possible commands on the screen.
HELP <COMMAND> explaines the command <COMMAND:>.

HH[ELP] <FILE»

HHELP prints explanations for all possible commands on file 'FILE'

In the version running on Symbolics machines, the editor ZMACS is used to
edit the formulae. It is called from the editor subsystem of MKRP by the
command I[NSERT] without a parameter. Alternatively one may use G[ET], if
the formulae have been written before.

In both cases every formula has to be enclosed in parentheses. It is then
actually inserted into MKRP by marking it and typing the key <END>. If more
than one formula is marked, all of them are entered in order.

User Manual for the Markgraf Karl Theorem Proving System Chapter S 33

5, Setting the MKRP Parameters

The OPTIONS command is the key into the options module. It offers the
possibility to adjust various parameters to govern the overall search behavior
and influence trace and protocol. The options are subdivided into several
areas according to their tasks.

(1) Explanation of the Commands

In the OPTIONS-module, the following commands are available:

H[ELP] P[RINT] PP[RINT] R[EAD] WI[RITE]
L[ISP] OK \'

H[ELP] prints a list of all available commands
H[ELP] <com> explains the command <com>

P[RINT] <Area> prints the options of <Area> and their current values

PP[RINT] <File> prints all areas, their options and default values together
with a detailed explanation on <File»>

R[EAD] <File»> reads the option-values from <File>. This file must have been
created by a W[RITE] <File> command

WIRITE] <File> writes all options and their current values on <File>
L[ISP] calls INTERLISP. Return with 'OK'".

V TIYIYES|IOK turns the manual terminal control on.
V NILININO turns it off again

<AREA> prints all the options of the area <AREA»

<OPT><VAL> sets the option <OPT> to the new value <VAL>

2) Explanation of the Options

The purpose of the options is to adjust the general search behavior of the

theorem prover to the characteristics of the given problem. According to their
tasks the options are grouped in the following categories:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 34

TWO RED.I REDD STR GEN TR PR
All options have default values.

To influence the construction of the initial connection graph (CONSTRUCT) the
user can change the values of the options of TWO, RED.I and the option
SPLITTING of the area GEN.

The search behaviour during the deduction process (REFUTE) can be governed
by options of the areas RED.D and STR.

Tracing of the deduction process can be influenced by options of the area TR.
The information on the protocol can be selected by options of the area PR
(options of the areas TR and PR are discussed in detail in chapter 7).

All other options which do not fit in any of these areas are put into the area
GEN.

To solve difficult problems it seems to be very useful to change the values of
the options:

RED.I : LINK.INCOMPATIBILITY
RED.D : LINK.INCOMPATIBILITY
STR : TERM.DEPTH

STR : TERM.ITERATIONS

STR : TERM.BREADTH.FIRST

Advantages and disadvantages of the various option settings are discussed
below. Reduction operations should be switched off for efficiency reasons if it
is known that there is no possibility for applying a reduction operation
(especially link reductions).

In the following description some effects of options of the areas TWO, RED.I
and RED.D are demonstrated by examples of simple refutation graphs. The
default values of options are marked with "»".

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 35

OPTIONS OF THE CATEGORY TWO

This category consists of options handling two-literal-clauses during the
construction of the initial connection graph in a special way. The special
handling results in the insertion of additional links representing a sequence of
two or more deduction steps.

TWO:RULES

The value of this option controls the special handling of two-literal-clauses.

Examples
1)
C1 |Pxy|Ryx
L1 L2
X«a Xea
yeb y«b
Pab | C2 C3 |Rba (S

Resolving link L1 and inheriting link L2 creates:

€
Rba Rba | S

L3
C4 C3

This deduction process can be abbreviated by inserting a link between C2 and
C3. Resolving on this new link has the same effect as resolving on L3, but
takes only one resolution step.

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 36
Pxy | Ryx
L1 L2
Xea Xea
V&b y«b
e —
Pab Rba | S
C2 L4 3

2) By this method we can save more than one resolution step:
(f is a binary function symbol)

Ryx

Pxy

Pfafbcd Pufxfyz | Puffxyz

Pdffabe

By this way, chains of two-literal-clauses of any length can be simulated by

one link.

3) The special handling of two-literal-clauses can also connect a clause with

itself like:

User Manual for the Markgraf Karl Theorem Proving System Chapter S 37

Pyx

Pxy
L1 JX]L L2
Paa

-/
L3

In the original graph (without link L3) it is possible to deduce the empty
clause. In the graph resulting from the special handling of two-literal-clauses
this is no longer possible.

Possible Values
T/Y/YES : Two-literal-clauses are treated as described above
PARTIAL : Link insertion only if the two clauses connected by the new

link are different.
» NIL/N/NO: The two-literal-clause algorithm is switched off.

Eff 4 ial i [_iiteral-cl

The advantages of the special handling are at one hand that the proof
procedure needs less deduction steps to deduce the empty clause, on the other
hand all clauses representing intermediate clauses are not inserted in the
graph.

Switching on the two-literal-rule algorithm may cause the system to consume
more time. The completion of the graph by this way may cause a increasing
size of the graph.

The handling of the two-literal-clauses is executed during the construction of
the initial connection graph (CONSTRUCT) but takes effect to the deduction
steps during REFUTE.

TWO: RULES.MAXLEVEL

The value of this option is the maximal length of two-literal-clause-chains
which are substituted by one link.

Possible Values
Natural Numbers
Default Value: 1

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 38

TWO: SUPPRESS.NO.RULES

This option controls the creation of intermediate result clauses if there are
chains of two-literal-clauses which are longer than the maximal length.

Possible Values
T/Y/YES : Intermediate result clauses are created and inserted in the
graph
» NIL/N/NO: The creation of intermediate clauses is suppressed.

Remark

With value N for this option the proof procedure becomes incomplete.

OPTIONS OF THE CATEGORY RED.I

- This area contains options which influence the construction of the initial
connection graph

RED.I: CLAUSE MULTIPLE.LITERALS

A clause containing some identical literals can be simplified by deletion of the
multiple literals. Two literals are identical if they have

- the same sign

- the same predicate symbol

- equal term lists _
(equal means here equal under a certain theory), or if they are connected by a
R-link with e-unifier caused by the two-rule-algorithm.

Example

Pa | Pa = Pa

User Manual for the Markgraf Karl Theorem Proving System Chapter S 39

Pafxfyz | Pffxyza

= Pafxtyz

if P is symmetric and f is associative

Possible Values

» T/Y/YES : Multiple Literals are removed
NIL/N/NO: Clauses with multiple literals remain unchanged

RED.I : CLAUSE.PURITY

This option offers the possibility to delete all clauses of the connection graph
which cannot support the deduction of the empty clause, because they are
"pure”. A clause is pure, if and only if it contains a literal which is not
connectecd by a R- or P-link. This means no deduction step is possible to
reduce a pure clause to the empty clause, i.e. pure clauses cannot support the
deduction of the empty clause

| [/

C1

Qy

| %

/N

X ‘ Ub |V C2
Pa Uz C

7aY

3

The clause C1 is pure because the literal S is not connected by a R- or P-link
and is therefore eliminated. All links connecting C1 to other clauses are also

deleted:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 40

Ub |V C2

Pa| T | Uz C3

/\

This operation changes the clause C3 to a pure clause, causing the deletion of
C3:

Ub |V C2

This example shows an effect which is caused by the reduction rules
described in this and the following paragraph: Every deletion of a clause may
cause further deletions of clauses and links (snowball effect)

Possible Values
»T/Y/YES : Pure clauses are deleted
NIL/N/NO: Pure clauses remain in the graph

Remark

This option should only be switched off for test purposes.
RED.I : CLAUSE.TAUTOLOGY

This option influences the treatment of tautological clauses. A tautological
clause is always true under the actual theory.
a) A clause containing two literals which have

- different signs

- the same predicate symobl

- equal term lists

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 41

is a tautology

Example

1) Pa | Pa

2) Rab | Rba
if R is symmetric

b) A clause containing a literal of the form t1 = t2 with t1 equal to t2 is a
tautology

Example

1) g(@) =g(a)

2) f(af(b¢))=1(f(ab)c)
if f is associative

c) A clause containing two literals which
- are connected by a R-link with €-unifier caused by the
two-rule-algorithm
is a tautology

Example

Qb | Rx

| X%

Additional links created by the two-rule algorithm can also trigger other
reduction rules. In the following we do not mention this explicitly.

User Manual for the Markgraf Karl Theorem Proving System Chapter S 42

Possible Values
»T/Y/YES : Removal of tautological clauses
NIL/N/NO: No Removal

RED.I : CLAUSE.SUBSUMPTION

This option controls the treatment of subsumed clauses in the initial graph. A
clause C subsumes a clause D if |C| < ID| and there exists a substitution 6 that
6(C) € D. This inclusion must be bijective. If the deduction of the empty clause
by D is possible it is also possible and in most cases even shorter by using the
clause D. By this it seems useful to delete the subsumed clause (see also
[Loveland-78], [Karl Mark Graph-84]).

Example

5

Xe?Z V<2

C1 Pz | Pfa

C2 Px | Pfy

C1 can be deleted because it is subsumed by C2.

Possible Values
»T/Y/YES : Subsumed clauses are removed
NIL/N/NO: No removal

RED.I : REPL.FACTORING

A factor C may subsume its parent clause D and therefore D can be deleted.
Instead of executing the factorization step and then deleting the subsumed
clause C can be obtained by simply erasing the appropriate literal of the
parent clause D, i.e. factorization and the application of the subsumption
reduction rule can be grouped together to a macro graph operation.

Example

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 43

Cc1 Px | Qay|Pa |[Qxy| Qaz

|| xea |

ye«a

A factor of C1 is

Pa | Qaz

Cl is subsumed by C2 and can be deleted. The instantiation and erasure of
literals has the same effect

N/ _/ _/
c1 PX |y |Pa |QXy|Qaz
/ N/ \ / N\

A possible generalization is the erasure of literals which become false under
all theories by the instantiation step:

_/
ﬁx’ Pa A XX = Pa
/ \ / \ /7 \

Possible Values

»T/Y/YES : switched on

NIL/N/NO: switched off

RED.I: CLAUSE . REPL. RESOLUTION

Just as a factor may subsume its parent, a resolvent may subsume one of its
parents. As above (REPL.FACTORING) some deduction steps can be grouped
together to a macro graph operation. The simplest case of this is the following:

a) Suppose we have a unit clause Pa and a clause ~Pa, ax

User Manual for the Markgraf Karl Theorem Proving System Chapter S 44

C1 |Pa Pa | Qy | C2

The result of the resolution step with subsequent subsumption can be
obtained by simply erasing the literal ~Pa in clause C2.

b) One possible generalization is possible merging literals:

€ —
c1 Qb [Pa Pa | Qb C2

Here we still may just erase ~Pa.
c) Taking the instantiation process into account we can solve the following
example by this method:

— £ —
C1 Px | Pa Pa | Qy C2

The literal ~Pa is substituted by the more general literal ~Px.

A further generalization possibility is the deletion of literals which become
false in any interpretation by the instantiation process.

Possible Values
GENERALIZING: One of the resolution literals is substituted by a more general
one of the other clause, as described in example c,

» SIMPLE: A Resolution literal is erased and possible merging, factoring
and unit-resolution is done (as in example b)

UNIT: One of the parent clauses must be a unit clause (example a)

NIL/N/NO: Replacement Resolution is switched off.

The tautology reduction rule described so far is incomplete. For example
suppose we have the following three clauses:

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 45

L1

C2

ol

C1 P

C3

If the link L1 is missing, possible deduction steps can be lost by the deletion
of the tautology C3. The existence of the link L1 is here termed as "link
condition". For the other reduction rules subsumption, replacement factoring,
replacement resolution similar link conditions exist. These link conditions
make several additional checks necessary:

- after link insertion to check if a link condition is now fulfilled

- after link deletion to check if a link condition becomes now superfluous

The following options describe these additional checks.

RED.I : CLAUSE.TAUTOLOGY.RECHECK

The adjustment of this option controls a renewed tautology check after link
insertion and deletion. After link deletion the link condition can become
superfluous.

Example

C1 P C2

ol

L1 L2

C3

In this case the link condition is not fulfilled and the tautology C3 cannot be
deleted. Deleting L1 or L2 causes the link condition to become superfluous and
C3 can be deleted.

After link insertion a renewed check is also necessary because the inserted
link can fulfill the link condition. If a link is inserted by the
two-rule-algorithm a clause, which wasn't a tautology can now become a

User Manual for the Markgraf Karl Theorem Proving System Chapter S 46

tautology e.g.

c1 Pxy | Pyx

L1 L2

C2 Qx | Pab|Pba| Rz
1
L3

The two-rule-algorithm causes the insertion of L3 and C2 becomes a
tautology.

Possible Values
» PARTIAL/P : only clauses which are incident (i.e. directly connected) to the
clauses the link is inserted (or deleted) between are checked
NIL/N/NO : The option is switched off

RED.I: CLAUSE.SUBSUMPTION.RECHECK

The link condition for the subsumption rule is the following

C1
Pz | Rx
L1
Pz Pa | Rb | Sy
L2
C3 C2

The existence of L1 is the link condition for the subsumption rule. This option
controls a renewed subsumption check after link deletion (the link condition
is no longer necessary) and link insertion (the link condition becomes valid).
The third case making a renewed check necessary is the insertion of a S-link
by a two-literal-rule:

User Manual for the Markgraf Karl Theorem Proving System Chapter S 47

C1
1
e I
C3 Pa | Qa L1|
\\. 1
Pa [Rb [Sy
C2

L1 is inserted by the two-literal-rule-algorithm and now C2 is subsumed by
C1 and can be deleted.

Possible Values
» PARTIAL/P : only clauses which are incident (i.e. directly connected) to the
clauses the link is inserted (or deleted) between are checked
NIL/N/NO : The option is switched off

RED.I : REPLACEMENT.FACTORING.RECHECK
The adjustment of this option controls a renewed check for replacement

factoring after link deletion or link insertion. For example suppose the
following situation:

Xea L3
1 1
Cl1 |RX|Q|S|T Pa C1 QIS |T Pa
L1 L2 L2
Rx | Pa Rx | Pa
VAN VAR
C2 c2

The link L3 is inserted by the two-rule-algorithm and makes a replacement
factoring possible.

Possible Values
»T/]/]A : Replacement factoring recheck is switched on
NIL/N/NEIN : switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 48

RED.I : CLAUSE.REPL.RESOLUTION.RECHECK

After link deletion or link insertion it is necessary to check a second time for
the link condition of replacement resolution. The adjustment of this option
controls this renewed check for replacement resolution.

Suppose the following example:

C1 |
/ Pa | Qz —
Pa | Rx A = Qy | Tv
C3 | |
Rx [Qy | Tv
C2 I |

L1 is inserted by the two-rule-algorithm. The clause «Qy, Tv> resulting by
resolving upon link L1 would subsume C2. Therefore C2 can be replaced by
Qy, Tv»

Possible Values
»T/Y/YES : Replacement Resolution Recheck is switched on
NIL/N/NO: switched off.

RED.I: CLAUSE. REWRITING

To make the axioms better readable (and to save time when typing the
axioms) it is possible to abbreviate some complex terms. These abbreviations
are replaced by the origin terms during construction of the initial graph. This
replacement operation is controlled by this option.

There are two possibilities

1)a-= t with: a constant, t term and a4t
2) f(xl. xn) =t with: x; variables with maximal domainsort, f ¢ t, and t

contains no other variables * Xj

User Manual for the Markgraf Karl Theorem Proving System

Chapter 5

49

Example
(i) sq (x) =times (x x)
(ii) x <sq (x)
will be expanded to X < times (X x)

Possible Values .
» T/Y/YES: Clause. Rewriting is switched on
NIL/N/NO: Clause. Rewriting is switched off

RED.I: LINK. INCOMPATIBILITY

An R-link represents a possible deduction step and is marked with the most
general unifier of the two literals connected by this R-link. Resolving upon an
R-link makes instantiantions of some literals necessary. Such an instantiation
can block further resolution possibilities. Two links are compatible if their
unifiers do not contradict each other, i.e. resolution upon one link does not
block resolving on the other link. Some links are simultaneously compatible if
their substitutions don't contradict each other. A link can be deleted as
incompatible, if not every other literal has at least one link so that they are

simultaneously compatible.

Example
Pzz
Qx | Pxy| Ry

Link L1 ist compatible with L2 and L1 is compatible with L3, but L1, L2, L3

are not simultaneously compatible and L1 can therefore be deleted.

Possible Values
»T/Y/YES : Incompatible links are deleted.
PARTIAL : Only one step purity check.

NIL/N/NO: No removal of incompatible links.

User Manual for the Markgraf Karl Theorem Proving System

Chapter S

Remark: The check for link incompatibility is often very expensive and only a
few links are removed. Therefore it seems very useful to choose only the
"partial”-adjustment or even to switch this option off.

RED.I: LINK.TAUTOLOGY

The resolvent of two clauses can be a tautology. Tautologies can be removed
from the graph. Therefore it seems useful to remove links which would

generate tautologies.

Examoples
1)

Xe2

Ry

Px | Qxy

L1

Xez
y«2

Resolving on L1 would generate the tautology

i.e.L1 can be removed from the graph.

2)

—

Px

Py

Qxy

Rz | Pz | Pz
L1 — —
sy Qzz | Pz
y«2

Remove L1 to prevent the generation of a tautology

3)
L1

p

=]
X | Py

Q

=
X | Qy

Removal of L1 is possible.

Pz

Rz

Px

Qy

User Manual for the Markgraf Karl Theorem Proving System Chapter S 51

Possible Values
T/Y/YES : Removal of tautology-generating links without Link-Condition
check .
» REMOVE-INHIBIT/RI: Removal of the links complying with the link
condition.
Inhibition of the others.
INHIBIT/I : Inhibition of tautology-generating links
REMOVE/R : Removal of the links complying with the link condition
NIL/N/NO : No removal, no inhibition

RED.I: LINK. TAUTOLOGY. RECHECK

The adjustment of this option controls a renewed check for a link-tautologies
after link insertion or link removal.

Possible Values

T/Y/YES: The option is switched on
» NIL/N/NO: switched off
RED.I: LINK. SUBSUMPTION

Links which generate clauses, which are subsumed by other clauses can be
removed. This removal operation is controlled by this option.

Example

Pz | Qab dea Quv | Rfu| Sb
Veb

C1 C2

Px | Rfy C3

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 52

Pz |Rfa| Sb —
| dea] I
Pz | Qab Quv | Rfu| Sb
Veb
C1 Cc2
Px | Rfy C3

C4 is subsumed by C3 and can be removed.

Possible Values
T/Y/YES: Removal of the links without link condition check
» REMOVE-INHIBIT/RI: Removal of the links complying with the link
condition. Inhibition of the others

INHIBIT/I : Inhibition of the links
REMOVE/R : Removal of the links complying with the link condition
NIL/N/NO - No removal, no inhibition

RED.I: LINK. SUBSUMPTION. RECHECK

This option influences a renewed link subsumption check upon link removal
or link insertion:

Possible Values
T/Y/YES: switched on
» NIL/N/NO: switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 53

Options of the category RED.D

This option-area consists of options for various reductionrules during
deduction.

RED.D:CLAUSE.MULTIPLE.LITERALS

This option has the same effect as RED.I:CLAUSE.MULTIPLE.LITERALS.

Possible Values
» T/Y/YES: option is switched on
NIL/N/NO: option is switched off

RED.D:CLAUSE.PURITY

The option has the same effect as RED.I:CLAUSE.PURITY.

Possible Values
» T/Y/YES: removal of the pure clauses
NIL/N/NO: no removal

RED.D.:CLAUSE.TAUTOLOGY

Treatment of deduced tautology clauses.
Such clauses can be removed if no deduction possibility is lost by the removal
(for precise explanation see RED.I:CLAUSE.TAUTOLOGY).

Possible Values
T/Y/YES : removal of the tautology clauses without link
condition check.
» REMOVE-INHIBIT/RI: removal of the clauses where link condition is met,
reinsertion and inhibition of creator links.

INHIBIT/I : removal of the clauses as well as reinsertion and
inhibition of creator links

REMOVE/R : removal of the links complying with the link condition

NIL/N/NO : no removal, no inhibition

RED.D:CLAUSE.TAUTOLOGY.RECHECK

Renewed tautology check and treatment after insertion or removal of links
(for precise explanation see RED.I:CLAUSE.TAUTOLOGY.RECHECK).

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 54

Possible Values
T/Y/YES: switched on for insertion and removal
Partial/P: switched on for insertion of incident links
» NIL: switched off

RED.D: CLAUSE.SUBSUMPTION.FORW ARD

Treatment of deduced clauses which are subsumed by previous clauses.

Possible Values
T/Y/YES : removal of the clauses without link condition check
» REMOVE-INHIBIT/R: in case of deduced subsumed clause, removal of
the clause. If link condition is met reinsertion and
inhibitation of creator link

INHIBIT/I : removal of the clauses as well as reinsertion and inhibition
of creator links

REMOVE/R : removal of the clauses complying with the links condition

NIL/N/NO : noremoval, no inhibition

RED.D: CLAUSE.SUBSUMPTION.BACKWARD

Treatment of such clauses, which are subsumed by deduced new clauses.

Possijble Values
T/Y/YES: removal of all appropriate clauses without link condition
check
» REMOVE: only removal of such clauses which comply with the link
condition

NIL/N/NO: the option is switched off
RED.D: CLAUSE.SUBSUMPTION.RECHECK

This option controls a renewed subsumption check, if subsumptions become
possible respectively no longer possible by link insertion or removal

Possible Values
T/Y/YES: switched on for insertion and removal of links

» REMOVE/R: removal of the clauses complying with the link condition
NIL/N/NO: the option is switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 b))

RED.D: CLAUSE.REPL.FACTORING

The option has the same effect as RED.I:CLAUSE.REPL.FACTORING.

Possible Values
» T/YES/Y: switched on
NIL/N/NO: switched off
RED.D: CLAUSE.REPL.FACTORING.RECHECK

The option has the same effect as RED.I:CLAUSE.REPL.FACTORING.RECHECK

Possible Values

» T/Y/YES: switched on
NIL/N/NO: switched off

RED.D: CLAUSE.REPL.RESOLUTION

The option has the same effect as RED.I:CLAUSE.REPL.RESOLUTION

Possible Values
GENERALIZING/G: one of the resolution literals is replaced by a more general
one of the other clause
» SIMPLE/S: switched on, only for one step, without generalizing
UNIT/U: switched on for unit partner only
NIL/N/NO: switched off

RED.D: CLAUSE.REPL.RESOLUTION.RECHECK

The option has the same effect as RED.I:CLAUSE.REPL.RESOLUTION.RECHECK.

Possible Values

» T/YES/Y: switched on
NIL/N/NO: switched off

RED.D: LINK.INCOMPATIBILITY

The option has the same effect as RED.I:LINK.INCOMPATIBILITY.

Possible Values
» T/YES/Y: removal of the links

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 56

NIL/N/NO: no removal
RED.D: LINK.TAUTOLOGY

The option has the same effect as RED.I:LINK.TAUTOLOGY

Possible Values
T/Y/YES: removal of the links without link condition check
» REMOVE-INHIBIT/RI: removal of the links complying with the link condition.
Inhibition of the others.
INHIBIT/I: Inhibition of the links
REMOVE/R: Removal of the links complying with the link condition
NIL/N/NO: no removal, no inhibition

RED.D: LINK.TAUTOLOGY.RECHECK

The option has the same effect as RED.I:LINK.TAUTOLOGY.RECHECK.

Possible Values
T/Y/YES: switched on for removal and insertion
PARTIAL/P: switched on for insertion of adjacent links
» NIL/N/NO: switched off

RED.D: LINK.SUBSUMPTION
The option has the same effect as RED.I:LINK.SUBSUMPTION

Possible Values
T/YES/Y: removal of links without link condition check
» REMOVE-INHIBIT/RI: removal of the links complying with the link condition.
Inhibition of the others.
INHIBIT/I: Inhibition of the links
REMOVE/R: Removal of the links complying with the link condition.
NIL/N/NO: no removal, no inhibition

RED.D: LINK.SUBSUMPTION.RECHECK

The option has the same effect as RED.I:LINK.SUBSUMPTION.RECHECK.

Possible Values
T/Y/YES: switched on for removal and insertion
Partial/P: switched on for insertion of adjascent links

User Manual for the Markgraf Karl Theorem Proving System

Chapter 5

57

» NIL/N/NO: switched off

User Manual for the Markgraf Karl Theorem Proving System Chapter S 58

OPTIONS OF THE CATEGORY STR

This area consists of options, which direct the search-behaviour while looking
for a proof.

FAC:INITIAL

This option controls factorizations in the initial graph

Example
C1 Pax | Pxa| Qx
U
C2 Paa | Qa
Instantiation of the variable x causes the original clause C1 to
be transformed into the shorter clause C2.
Possible Values
T/Y/YES the option is switched on

» NIL/N/NO the option is switched off
FAC:EACH.STEP

Factorizing after each deduction step

Possible Values
T/Y/YES the option is switched on
» NIL/N/NO the option is switched off

STR:RESOLUTION

Adjustment of the basic deduction strategy during proof search, which is
activated only if the selection-module (chap.2) is not in control. Various
classical refinement strategies like set-of-support, linear etc. are available and
are simulated in the connection graph calculus by marking R and P-links as
"active" or "passive".

User Manual for the Markgraf Karl Theorem Proving System Chapter 5 59

Possible Values
BASIC-RESOLUTION/BASIC/B

» SET-OF-SUPPORT/S0S/S

UNIT-REFUTATION/UNIT/U

INDUCTION-SPECIAL/I-S

All links are marked as active such that the
selection module does a breadth first
search.

Only if there is at least one theorem clause
the Set-of-Support strategy will be applied,
else the strategy is switched to basic.

All links connected to unit clauses are
activated, the other ones are marked as
passive.

not yet fully implemented

linear/L/linear.axm#/linear.thm#/L.axm#/L.thm#

combined strategies:
U-B

U - SOS

U- L/U-lLaxm#/U-lL.thm#

STR: E-RESOLUTION

The first clause the linear strategy starts
with (i.e. the "top clause") is either defined
by using a concatenation of "linear." and the
printname of the top clause as the strategy
name, or is asked for by the system if one
uses Str: Resolution = linear (in this case the
system prints all clauses with their
printname).

Unit - Basic,

- Set-of-Support

- linear.
Unit Resolution prunes the search space
considerably, but unfortunately it is not
complete for all clause sets. The user can
define strategies:
U-SO0S, U-B and U-L saying
“if the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>