
UJ33NE|SJ3SIEY £€99/9-Q
UJ9INE|SIASIEY| 3EPSIO

N
IU

N
4I3e W

O
U

] YoD
I3qYIE-

Q<aoSi
=oSi«=Som

a
£@2pad
a=[oo
Q=[4+]

=<

Matthias Fuchs
SEKI Report SR-94-03

18O
dI&

 - A
S





An alternative for handling ACl 

Matthias Fuchs
 
Universitiit Kaiserslautern
 

Fachbereich Infonnatik
 
Postfach 3049
 

67653 Kaiserslautern
 
Gennany
 

E-mail: fuchs@infonnatik.uni-kLde
 

March 1994
 

Abstract 
A method for efficiently handling associativity and commutativity (A.C) in implementations 
of (equational) theorem provers without incorporating AC as an underlying theory will be 
presented. The key of substantial efficiency gains resides in a more suitable representation 
of permutation-equations (such as f(x,f(y,z))=f(y,f(z.x)) for instance). By representing these 
permutation-equations through permutations in the mathematical sense (Le. bijective func
tionscr: {l,...n} -H I ....nD. and by applying adapted and specialized inference rules. we can 
cope more appropriately with the fact that permutation-equations are playing a particular 
role. Moreover, a number of restrictions concerning application and generation of permuta
tion-equations can be found that would not be possible in this extent when treating permu
tation-equations just like any other equation. Thus. further improvements in efficiency can 
be achieved. 

o. Introduction 
Whenever a theorem proving system has to deal with functions that are both associative 
and commutative (AC), it will face certain specific problems. These problems largely 
depend on the method employed to cope with the AC-property. Basically there are two 
extremes of handling the AC-property. 
The first extreme used for example by unfailing completion (see [BDP89]) consists in 
ignoring completely the fact that the AC-property holds for certain functions. Hence, asso
ciativity and commutativity and all the numerous permutation-equations creatable are 
treated like any other equation. But the unsophisticated generation and application of per
mutation-equations quite often causes the respective proving system to perform poorly, 
because pennutation-equations allow a lot of reductions and critical pairing, entailing vast 
matching resp. unification efforts. But quite a considerable part of these reductions and crit
ical pairing is unnecessary and thus represents redundant effort. Moreover, permutation
equations can be created in many different ways, what leads to irrimense costs for eliminat
ing duplicates. We shall see in the following sections how these striking drawbacks can be 
compensated for by using an appropriately designed representation and adapted inference 
rules for these problematic pennutation-equations. 

I The second extreme for dealing with AC is incorporating the AC-property into the proving 

1. This work was supported by the Deutsehe Forschungsgemeinschaft (DFG). 

- I 

An  alternative for handling AC!

Matthias Fuchs
Universitit Kaiserslautern

Fachbereich Informatik
Postfach 3049

67653 Kaiserslautern
Germany

E-mail: fuchs@informatik.uni-kl.de

March 1994

Abstract
"A  method for efficiently handling associativity and commutativity (AC) in  implementations

o f  (equational) theorem provers without incorporating AC  as an underlying theory will be
presented. The key o f  substantial efficiency gains resides in  a more suitable representation
o f  permutation-equations (such as f(x,f(y,2))=f(y,f(z,x)) for instance). By  representing these
permutation-equations through permutations in the mathematical sense (i.e. bijective func-
tions 'c:{1,...,n}—{1,..,n}), and by applying adapted and specialized inference rules, we can
cope more appropriately with the fact that permutation-equations are playing a particular
role. Moreover, a number of  restrictions concerning application and generation o f  permuta-
tion-equations can be found that would not be possible in this extent when treating permu-
tation-equations just like any other equation. Thus, further improvements in  efficiency can
be achieved.

0. Introduction
Whenever a theorem proving system has to deal with functions that are both associative
and commutative (AC), it will face certain specific problems. These problems largely
depend on the method employed to cope with the AC-property. Basically there are two
extremes of  handling the AC-property.
The first extreme used for example by  unfailing completion (see [BDP89]) consists in
ignoring completely the fact that the AC-property holds for certain functions. Hence, asso-
ciativity and commutativity and all the numerous permutation-equations creatable are
treated like any other equation. But the unsophisticated generation and application of  per-
mutation-equations quite often causes the respective proving system to perform poorly,
because permutation-equations allow a lot of  reductions and critical pairing, entailing vast.
matching resp. unification efforts. But  quite a considerable part of  these reductions and crit-
ical pairing is unnecessary and thus represents redundant effort. Moreover, permutation-
equations can be created in  many different ways, what leads to immense costs for eliminat-
ing duplicates. We shall see in  the following sections how these striking drawbacks can be
compensated for by using an appropriately designed representation and adapted inference
rules for these problematic permutation-equations.
‚The second extreme for dealing with AC  is incorporating the AC-property into the proving

1. This work was supported by  the Deutsche Forschungsgemeinschaft (DFG).

mailto:fuchs@infonnatik.uni-kLde


system, yielding proofs resp. proving modulo AC (e.g. [PS81]). This way of proceeding 
calls for sophisticated algorithms (such as AC-unification resp. the computation of com
plete sets of AC-unifiers (e.g. [St81 l), reduction modulo AC etc.) in high complexity 
classes. These algorithms are theoretically well founded and sometimes even indispensa
ble, e.g. when attempting to compute a complete set of rules (modulo AC). But in the case 
where we are not interested in computing complete sets, intending only to prove a given 
theorem, the algorithms in question are off-putting due to their complexity, and practical 
performance does not necessarily encourage their utilization. 

Therefore, an alternative method will be proposed which is very close to the first 
extreme, yet causing impressive efficiency gains. The main reason for such improvements 
lies in removing the permutation-equations from the set of equations and in representing 
them by pairs of permutations (<Jl,()2)' The generation process as well as the application of 
permutation-equations in this new format can then be conveniently designed so as to avoid 
redundancies and inefficiencies that were inherently present before. As we shall see, the 
advantages of the new representation are remarkable, giving rise to substantial speed-ups. 
In the following sections the details will be presented. The first section will introduce the 
general representation principle and some of its properties that are of interest in subsequent 
sections. In the sequel, the generation of permutation-equations in the format described in 
th~ preceding section is to be discussed. This generation process consists mainly in an enu
meration that can be done without redundant effort. After that, reduction and critical pair
ing will be investigated, which both are based on exchanging arguments, thus avoiding 
unification and matching. In that section, we shall also take a look at issues concerning sub
sumption under these altered conditions. Finally, we will discuss correctness and complete
ness of the presented method. A conclusive summary will bring this report to a close. 
A comparison of run times for some problems with and without the use of our method can 
be found in the appendix. 

1, The 2eneral representation principle 
Proofs involving functions with the AC-property usually confront proof systems with a 
considerable number of permutation-equations such as f(x,f(y,f(z,u»)=f(z,f(x,f(u,y»), for 
instance. When employing methOds for incorporating the AC-property as a theory, we trade 
the existence of these problematic permutation-equations for the necessity of highly com
plex and costly algorithms. Here, we do not want to use such methods and consequently 
have to admit permutation-equations. Hence we must analyze the essential difficulties 
caused by permutation-equations and we must find other ways to cope with them. 
The main problem caused by permutation-equations is the fact that they can be used for a 
lot of reductions (entailIng many matching efforts), and also create numerous new equa
tions via critical pairing (causing unification efforts), especially when performing critical 
pairing among each other. This latter action is particularly responsible for a substantial 
amount of redundancy since only a small percentage of the critical pairs thus creatable 
actually are not yet available permutation-equations. As a consequence, expensive sub
sumption tests must be performed which allow to get rid of "doubles". Furthermore, unifi
cation and matching which precede critical pairing resp. reduction are an awkward way of 
performing the essential effect of a permutation-equation consisting in the exchange of 
arguments according to the respective permutation. It therefore stands to reason to treat and 
represent permutation-equations by what they express: permutations. 
A permutation is obviously represented by a bijective function ():9\~9\ with 9\={1,..,n} 

-2

system, yielding proofs resp. proving modulo AC (e.g. [PS81]). This way of  proceeding
calls for sophisticated algorithms (such as AC-unification resp. the computation of  com-
plete sets o f  AC-unifiers (e.g. [St81]), reduction modulo AC  etc.) i n  high complexity
classes. These algorithms are theoretically well founded and sometimes even indispensa-
ble, e.g. when attempting to compute a complete set o f  rules (modulo AC) .  But i n  the case
where we are not  interested i n  computing complete sets, intending only to prove a given
theorem, the algorithms in  question are off-putting due to their complexity, and practical
performance does not necessarily encourage their utilization.

Therefore, an alternative method wi l l  be proposed which is very close to the first
extreme, yet causing impressive efficiency gains. The main reason for such improvements
lies in  removing the permutation-equations from the set of  equations and in  representing
them by pairs of  permutations (601,60). The generation process as well as the application of
permutation-equations in  this new format can then be conveniently designed so as to avoid
redundancies and inefficiencies that were inherently present before. As we shall see, the
advantages of  the new representation are remarkable, giving rise to substantial speed-ups.
In  the following sections the details wi l l  be presented. The first section will introduce the
general representation principle and some of  its properties that are of  interest in  subsequent
sections. In  the sequel, the generation of  permutation-equations in  the format described in
the preceding section is to be discussed. This generation process consists mainly in  an enu-
meration that can be done without redundant effort. After that, reduction and critical pair-
ing will be investigated, which both are based on exchanging arguments, thus avoiding
unification and matching. In that section, we shall also take a look at  issues concerning sub-
sumption under these altered conditions. Finally, we will discuss correctness and complete-
ness of  the presented method. A conclusive summary will bring this report to a close.
A comparison of  run times for some problems with and without the use of  our method can
be found in  the appendix.

1,  The general representation principle
Proofs involving functions with the AC-property usually confront proof systems with a
considerable number of  permutation-equations such as f(x,f(y,f(z,u)))=f(z.f(x,f(u,y))), for
instance. When employing methods for incorporating the AC-property as a theory, we trade
the existence of  these problematic permutation-equations for the necessity of  highly com-
plex and costly algorithms. Here, we do not want to use such methods and consequently
have to admit permutation-equations. Hence we must analyze the essential difficulties
caused by  permutation-equations and we must find other ways to cope with them.
The main problem caused by permutation-equations is the fact that they can be used for a
lot of  reductions (entailing many matching efforts), and also create numerous new equa-
tions via critical pairing (causing unification efforts), especially when performing critical
pairing among each other. This latter action is particularly responsible for a substantial
amount o f  redundancy since only a small percentage of  the critical pairs thus creatable
actually are not yet available permutation-equations. As a consequence, expensive sub-
sumption tests must be performed which allow to get rid o f  “doubles”. Furthermore, unifi-
cation and matching which precede critical pairing resp. reduction are an awkward way of
performing the essential effect of  a permutation-equation consisting i n  the exchange of
arguments according to  the respective permutation. It therefore stands to reason to  treat and
represent permutation-equations by what they express: permutations.
A permutation is obviously represented by a bijective function 6:R—R with R=({1,..,n}



!)eing a finite subset of the set of natural numbers. We define D(O")=I9\I(=n). Furthermore, if 
O"(i)=kj for all 1~~D(O")=n, then we write 0"=(k1,.. ,kn) for short. 
Since every permutation-equation can be read from left to right and from right to left and 
thus stands for two permutations in general, we have to deal with pairs of permutations in 
order to replace permutation-equations properly. 

Example: 
Let us consider the permutation-equation PE := f(x,f(y,z»=f(y,f(z,x».
 
Reading it from left to right we recognize that x is moved from the first position to the third,
 
y from the second position to the first and z from the third position to the second. Thus,
 
viewed this way, PE can be represented by the permutation 0"1 with 0"1(1)=3, 0"1(2)=1,
 
0"1(3)=2 or 0"1=(3, 1,2) for short. Analogously, reading PE from right to left, we realize that
 
0"2 with 0"2(1)=2, 0"2(2)=3, 0"2(3)=1 or 0"2=(2,3,1) for short is the conjoined permutation. By
 
convention, PE as a whole is represented by (0"1>0"2)=«3,1,2),(2,3,1». (Obviously, the order
 
of those two tuples doesn't matter at all, since it is also irrelevant if we write f(x,f(y,z»=

[(y,f(z,x» or f(y,f(z,x»=[(x,f(y,z». That means, we could as well have chosen (0"2,0"1) to
 
represent PE.)
 

Notes:
 
=---rf(0"1,0"2) represents a permutation-equation, then O"r0"2=0"2'0"1=id, i.e. 0"2=0"1-1 resp.
 

0"1=0"2 -1 . 
- Applying a permutation 0" to a term f(tl, .. ,tn) results in the term [(sl,..,sn), where scr(i)=tj. 
- Be aware that the application of a permutation 0" to a term f(t1> .. ,tn), as it was just 

described, does not result in f(tcr(l), .. ,tcr(n»' but in f(tcr'(l), ..,tcr'(n»)' where 0"'=0"-1. , 

By choosing the pair-of-permutation format, we eliminate another nasty property ofpermu
tation-equations when being represented by the standard format. 

Example: 
PE1:=f(x,f(y,z»=f(y,f(z,x»
 
PE2:=f(x,f(y,z»=f(z,f(x,y»
 
PE I and PE2 look quite different at first sight, but turn out to be identical modulo variable
 
renaming (rename z to x, x to y and y to z in P~), a fact that has to be discovered by sub

sumption tests involving matching. These efforts are not necessary when representing PE I
 
and PE2 by their respective pairs of permutations «3,1,2),(2,3; 1» and «2,3,1),(3,1,2», pro

viding us with an unambiguous representation "modulo swapping sides". The full advan

tage will become obvious in connection with an ordering on permutations and the
 
systematic generation of pairs of permutations as it will be introduced in the following sec

tion.
 

2. The systematic eeneration of pairs of permutations 
We shall now come to know the procedure which provides us with the needed permutation

equations as pairs of permutations. This procedure is based on enumeration rather than crit

ical pairing, what increases efficiency remarkably.
 
First of all, it must be notified that the associativity remains in its standard format, usually
 
being incorporated as a rewrite rule f(f(x,y),z)~f(x,f(y,z» or f(x,f(y,z»~f(f(x,y),z).We
 
need it in this position not only for normal forms (this is truly of secondary interest), but
 

-3

being a finite subset of  the set of  natural numbers. We define D(0)=/Ri(=n).  Furthermore, i f
o(i)=k; for al l  1<i<D(0)=n, then we write =(k},...k,) for short.
Since every permutation-equation can be read from left to right and from right to left and
thus stands for two permutations in  general, we have to deal with pairs of  permutations in
order to replace permutation-equations properly.

Example:
Let us consider the permutation-equation PE := f(x,{(y,z))={(y,f(z,x)).
Reading i t  from left to  right we recognize that x is moved from the first position to the third,
y from the second position to  the first and z from the third position to the second. Thus,
viewed this way, PE  can be represented by  the permutation ¢ ;  wi th 61(1)=3, 6;(2)=1,
01 (3 )=2  or  6 ,= (3 ,1 ,2 )  for short. Analogously, reading PE  from right to  left, we  realize that
oy  with 65(1)=2, 6,(2)=3,  02(3)=1 or  65=(2,3,1) for short i s  the conjoined permutation. By
convention, PE  as a whole is  represented by  (61,6,)=((3,1,2),(2,3,1)). (Obviously, the order
of  those two tuples doesn’t matter at all, since i t  is also irrelevant i f  we write f(x,f(y,z))=-
f(y,f(z,x)) or  f(y,f(z,x))=f(x,f(y,z)). That means, we could as well  have chosen (62,61) to
represent PE.)

Notes:
- I f  (01,02) represents a permutation-equation, then 0 , -0 ,=0 , -0 ;= i d ,  i.e. o2=01! resp.

01=07"  .
- App ly ing  a permutation © to a term f(t;, . . , t ;)  results i n  the term f(sy,.. ,s,),  where Sa(i)=ti-
- Be aware that the application of  a permutation ¢ to a term f(ty,..,t;), as i t  was just

described, does not result in  f(tg1),...tg(n)), but in  f i t ) » tg"(n))> Where = ) ,

By choosing the pair-of-permutation format, we eliminate another nasty property of  permu-
tation-equations when being represented by the standard format.

Example:
PE1:=f(x,f(y,z))=f(y,f(z,x))
PE2:=f(x,f(y,z))=f(z,f(x,y))
PE; and PE,  look quite different at first sight, but turn out to be identical modulo variable
renaming (rename z to x,  X to  y and y to z in  PE), a fact that has to be discovered by sub-
sumption tests involving matching. These efforts are not necessary when representing PE;
and PE;  by their respective pairs of  permutations ((3,1,2),(2,3,1)) and ((2,3,1),(3,1,2)), pro-
viding us with an unambiguous representation “modulo swapping sides”. The full advan-
tage will become obvious in  connection with an ordering on  permutations and the
systematic generation o f  pairs of  permutations as i t  will  be introduced in  the following sec-
t ion.

2. The systematic generation of  pairs of permutations
We shall now come to know the procedure which provides us with the needed permutation-
equations as pairs of  permutations. This procedure is based on enumeration rather than crit-
ical pairing, what increases efficiency remarkably.
First of  all, i t  must be notified that the associativity remains in  its standard format, usually
being incorporated as a rewrite rule f(f(x,y),z)—f(x.f(y.z)) or  f(x,f(y,z))—=f(f(x,y),z). We
need it in  this position not only for normal forms (this is truly of  secondary interest), but



especially for preserving completeness as we shall see later on in section 4. All other per

mutation-equations (including commutativity) are to be removed whenever they turn up
 
(after having been generated by some critical pairing or by being part of the input). An enu

meration process -whose presentation follows- is entrusted with the generation of the corre

sponding pairs of permutations. (How these pairs can be applied for reductions and critical
 
pairing is the subject of the subsequent section 3.)
 
The enumeration process is founded on an ordering of the perml1t:~tions, which is also
 
handy for some optimization. We shall therefore take a look at this ordering first.
 
The chosen ordering is the obvious lexicographic ordering which is defined as follows:
 

Definition:
 
Let al,a2 be two permutations.
 
a1<pa2 iff
 
(a) D(al)<D(a2) or 
(b) D(al)=D(a2) and there is l~~D(al) with al(i)=a2(i) for all l~i<k and al(k)<a2(k) 
« is the usual ordering on natural numbers.) 

(Note: <p is total.) 

It is straight forward to enumerate permutations by starting with the smallest one and com
puting one by one the immediate successors w.r.t. <I" Since we are not interested in identi
ties (id), Le. permutations a with a(i)=i for all ie 9i, we skip these by proceeding to their 
immediate successor (l,.. ,n~2,n,n-l), where n=D(a). Furthermore, we certainly do not have 
to care about "permutations" with D(a)<2. (Consequently, the starting permutation would 
be (2,l).) 

In section 1 we argued that permutation-equations obviously are to be represented 
by pairs of permutations (a I ,(2)' Since a I·0"2=a2·aI=id for all permutation-equations (i.e. 
a2=aI- I resp. al=a2- I), it suffices to enumerate the aI'S and to compute 0'2 according to 
0"2·aI=id (what can be done in time O(D(aI» ). Due to the ordering <p on permutations we 
have a very efficient possibility to check whether a pair of permutations (al,aV generated 
this way has already been created before (to be exact, we have to check whether (a2,aI) is 
already available; in this case (al,a2) is redundant because it does not bear new 
information. This fact will become clear when the application of pairs of permutations for 
reduction and critical pairing is introduced in section 3): We know that whenever a 
permutation 0l<palo then (Olo~) must have been enumerated before (aba2)' Hence, if 
a2<pal' (a2,al) is already existing and consequently (al,a2) can be ignored. (The test 
"a2<paI?" can also be performed in time O(D(aI»') 
It remains to devise an algorithm for computing the immediate successor of a permutation 
a w.r.t. <I" The algorithm is based on the following observation: 
Let Ia={ie {l,..,D(a)-I} I a(i)<a(i+l)}. 
If la is empty, then idD(a)+l=(l,.. ,D(a),D(a)+I) is the immediate successor of a w.r.t. <po 
(Since we want to skip identities, we shall later choose in this case (l,.. ,D(a)
I,D(a)+I,D(a» as "immediate" successor.) 
If la is not empty, then let m=max(I), k=min({a(i) I m<isD(a)Aa(i»a(m) }) (k exists 
because m<D(a) and o'(m)<a(m+1». Choose furthermore j so that a(j)=k. 
For alll$xsD(a), let asucc(x) be 

a(x) if 1$x<m,
 
k ifx=m,
 
a(m) if x=j
 

-4

especially for preserving completeness as we shall see later on in  section 4. All other per-
mutation-equations (including commutativity) are to be removed whenever they turn up
(after having been generated by some critical pairing or by being part of  the input). An  enu-
meration process -whose presentation follows- is entrusted with the generation of  the corre-
sponding pairs of  permutations. (How these pairs can be applied for reductions and critical
pairing is the subject of  the subsequent section 3.)
The enumeration process is founded on an ordering of  the permutations, which is also
handy for some optimization. We shall therefore take a look at this ordering first.
The chosen ordering is the obvious lexicographic ordering which is defined as follows:

Definition:
Let 01,07 be two permutations.
O1<p02  iff
(a) D(0})<D(03) or
(b) D(o})=D(05) and there is 1<k<D(o7) with 6(i)=0(i) for all 1<i<k and &;(k)<G,(k)
(<  is the usual ordering on natural numbers.)

(Note: <p is  total.)

I t  is straight forward to  enumerate permutations by starting with the smallest one and com-
puting one by one the immediate successors w.r.t. <p Since we are not interested in  identi-
ties (id), i.e. permutations ¢ with o(i)=i for all  ie ,  we skip these by proceeding to their
immediate successor (1,..,n-2,n,n-1), where n=D(c).  Furthermore, we  certainly do  not have
to care about “permutations” with D(6)<2. (Consequently, the starting permutation would
be (2,1).)

In section 1 we argued that permutation-equations obviously are to be represented
by pairs of  permutations (61,65). Since 61-6,=0,-0;=id for all permutation-equations (i.e.
02=611 resp. O01=02 "), i t  suffices to enumerate the G,’s and to compute 6 )  according to
C,-01=id  (what can be done in  time O(D(g1))  ) .  Due to the ordering <p on  permutations we
have a very efficient possibility to check whether a pair of  permutations (67,02) generated
this way has already been created before (to be exact, we have to check whether (65 07) is
already available; in this case (07,07) is redundant because i t  does not bear new
information. This fact will become clear when the application of  pairs of  permutations for
reduction and critical pairing is introduced in section 3): We know that whenever a
permutation §;<p0;, then (8,,3;) must have been enumerated before (64,07). Hence, if
O2<pO1, (07,07) is already existing and consequently (0,05) can be ignored. (The test
“02<p017” can also be performed in  time O(D(o})).)
I t  remains to  devise an algorithm for computing the immediate successor of  a permutation
GO w.r.t. <p  The algorithm is based on  the following observation:
Let Ig={ie {1,..,.D(0)-1} | 6(i)<c(i+1)}.
If  I ;  is empty, then idp(g)41=(1,..,D(6),D(0)+1) is the immediate successor of  6 w.r.t. <u
(Since we want to skip identities, we shall later choose in this case (1,..,.D(0)-
1,D(6)+1,D(0)) as “immediate” successor.)
If Is is not empty, then let m=max(I), k=min({o(i) | m<i<D(c)Ac(i)>0(m)}) (k exists
because m<D(o) and o(m)<o(m+1)). Choose furthermore j so that o(j)=k.
For all  1<x<D(o), let O,..(x) be

o(x) if 1<x<m,
k if x=m,
o(m) if x=j



cr(D(cr)-x+m+ 1) else. 
Obviously, cr<pcrsucc since cr(i)=crsucc(i) for all 1~i<m and cr(m)<k=crsucc(m). 
We still have to prove that crsucc is an immediate successor, i.e. for all pennutations 8 with 
cr<p8, 8=crsucc or crsucc<p8. 

Proof:
 
If Icr=0, then crsucc=idD(cr)+l clearly is the immediate successor of cr. .
 
If 1cr7'0, then D(cr)=D(crsucc). Let 8 be a pennutation satisfying cr<p8. If D(8»D(cr)=D(cr

succ)' we are done.
 
The case D(8)<D(cr) is inadmissible because of the prerequisite cr<p8.
 
Therefore D(8)=D(cr)=D(crsucc)=:n. Since we demanded cr<p8, t~ere is m'E {1,..,nJ with
 
cr(i)==8(i) for all1~i<m' and cr(m')<8(m').
 
(a)	 m>m'; consequently crsucc(m')=cr(m')<8(m') and thus crsucc<p8. 
(b)	 m<m': contradiction to cr<p8 since due to the choice ofm cr(i»cr(i+l) for all m<i<n. 
(c)	 m=m': We know that cr(i)=asucc(i)=8(i) for alll~i<m, crsucc(m»cr(m) and 8(m»cr(m). 

Due to the choice of m, a(i»a(i+ 1) for all m<i<n. Furthennore, crsucc(m)=k, k>cr(m) 
and for all m<i~n cr(i»cr(m) implies ~cr(i) (0). Moreover, asucc(i)<crsucc(i+1) for all 
m<i<n (*). Three cases arise: 
(i)	 8(m»crsucc(m); In this case, crsucc<p8. 
(ii)	 8(m)<crsucc(m); Here, 8(m)<k t\ 8(m»cr(m) t\ 8(m)E {cr(i) I m<i~n}, what 

contradicts (0) or the prerequisite a<p8. 
(iii)	 8(m)=crsucc(m); We then have 8=crsucc v crsucc<p8 since (*) holds, and because 

of (8(i) I m<i~n J = (crsucc(i) I m<i~n}. 0 

Algorithmic formulation: 

PERMSUCC 
~: cr=(i 1,· .,in );
 

m:=n-l;
 
while (m>O) and (im>im+1) do
 

m:=m-l; 
if (rn$O) then 

return crsucc=(l, .. ,n-l,n+l,n) /* identity skipped */ 
else begin 

j:=m+l; 
k:=im+1 ; 
q:=m+l; 
while (q<n) do 
begin 

if (iq>im) and (iq<k) then
 
begin
 

k: =iq ; 

j:=q
 
end;
 
q:=q+l
 

end; 

return crsucc=(il" .,im-1,k,in , •• ,ij+l,im,ij_lt .. ,im+1) 
end; 

PERMSUCC computes the immediate successor of cr (skipping identities) in time O(D(cr». 

It is now a simple task to write an algorithm for computing the "next" pair of permutations 
when given a pair (crl,cr2)' 

- 5 

o(D(o)-x+m+1) else.
Obviously, G<pOsuce Since 6(1)=0gc(i) for all 1<i<m and o(m)<k=Cgycc(m).
We still have to prove that Og,  is an immediate successor, i.e. for a l l  permutations 8 wi th
0<pd, 8=Cjgcc OF Oye <pd.

Proof:
I f  15=©, then Ogc=idp(g)41 Clearly is the immediate successor of ©.
I f  159, then D(0)=D(Osucc). Let 8 be a permutation satisfying 6<pd. I f  D(3)>D(0)=D(c—
succ) We are done.
The case D($)<D(o)  is inadmissible because of  the prerequisite G<pö.
Therefore D(8)=D(0)=D(Gg,c)=:n. Since we demanded 0<pd, there is  m ’e  {1,..,n) with
o(i)=S(i) for all 1<i<m’ and 6(m’)<8(m’).
(a) m>m’: consequently Gg..(m’)=0(m’)<d(m’) and thus Cgc <pd.
(b) m<m’:  contradiction to 0<pd since due to the choice o f  m 6( i )>c( i+1)  for al l  m<i<n.
(c) m=m’ :  We know that 6( i )=0, . . (1)=8()  for al l  1<i<m, Osycc(m)>0(m) and &(m)>c(m).

Due to the choice o f  m ,  6( i )>c( i+1) for a l l  m<i<n.  Furthermore, Og, .(m)=k, k>6(m)
and for all m<i<n o(i)>0(m) implies k<o(i) (# ) .  Moreover, Og,(1)<Cgcc(it+1) for all
m<i<n (¥%). Three cases arise:
( i )  S(m)>Oguce(m); In  this case, Gg <pO.
( i )  O(m)<Ogcc(m); Here, d(m)<k A d(m)>c(m) A d(m)e {o(i) | m<i<n}, what

contradicts (& )  or the prerequisite o<pd.
(ili) 8(m)=0gy,c.(m); We then have 8=Cgc. V Oguec<pd since (¥)  holds, and because

of (S(i) | m<isn} = {Osuceli) | m<i<n}.

Algorithmic formulation:

PERMSUCC
input :  o= (1 i , ,  RP WS IF
m:=n -1 ;
wh i l e  (m>0) and  ( i , > i p , ; )  do

m:=m-1 ;
i f  (m<0) t hen

re tu rn  Og, e= { ( l , . . , n -1 ,n+ l , n )  / *  i den t i t y  sk ipped * /
e l se  beg in

3 :=m+1 ;

k i= i ps1 i
q :=m+ l ;
wh i l e  (g<n)  do
beg in

i f  ( i g> im)  and  ( i g<k )  t hen
beg in

r e tu rn  Ssuce=  ( 117  ee r i p -1 - ky  i n ,  . .  z i g+ ı r dee  i s_ ıs  . e7 i lm+1 )
end ;

PERMSUCC computes the immediate successor o f  ¢ (skipping identities) in  time O(D(o)).

I t  is now a simple task to write an algorithm for computing the “next” pair of  permutations
when given a pair (61,65).



repeat 
0"1 :=PERMSUCC(O"I); 
for i:=l to D(O"I) do 

0"2(0"1 (i»:=i;
 
if (0"2<PO"1) then
 

found:=false
 
else
 

found:=true 
until found; 
return (0"1,0"2); 

Consequently, the computation of the next pair of permutations can also be done in time 
O(D(O"I»' 

Notes: 
If there is no fact known to the proof system containing a subterm which has an AC 
function symbol as top-level symbol and whose arity when flattened exceeds n, then the 
enumeration process of pairs of permutations for the respective AC function symbol can 
be stopped when that threshold n is reached (Le. when the first pair (0",0"') with O(O"»n 
is generated). Naturally, the enumeration must continue if n increases. 
Furthermore, the enumeration of pairs of permutations must be integrated into the proof 
procedure. The best way to accomplish this seems to be by interleaving the enumeration 
process with some suitable inference, e.g. enumerate the next pair of permutations after 
having selected and worked on n~ 1 critical pairs. At this point, note that the generation 
of pairs of permutations and their applications as described in the following section 3 
can naturally be regarded as inferences themselves. So, there will be no inconsistency in 
notation when the generally preferred way of describing a proof system by a set of infer
ence rules is employed. 

We have learned so far how permutation-equations c~ be represented and generated. In the 
next section, we shall turn our attention to the vital operations "reduction" and "critical 
pairing", outlining the way they can be performed utilizing pairs of permutations instead of 
permutation-equations in term form. We shall see that further efficiency increasing meas
ures can be taken on account of the more appropriate representation. 

3. Reduction and critical pairin2 
Since we remove all permutation-equations (except the rule or equation expressing associa

tivity) from the current system of equations during a proof, replacing them gradually by
 
pairs of permutations, we have to provide adapted strategies for reduction and critical pair

ing in order to be able to preserve completeness. For this purpose we shall work with flat
 
terms.
 
A flat term corresponding to a term t=t"(sl,s2) can be obtained by applying the following
 
transformation:
 
ftaCterm(f(sl,oo,sn»=f(sl,",Sn) iff there is no Si with si=t"(tl,t2), where f is an AC function
 
symbol and ~2.
 

Otherwise, ftaCterm(f(sl ,oo,sn))=flaCterm(f(sl,oo,si_l,t1,t2,si+1,.. ,sn»·
 
The concept of flat terms together with pairs of permutations allow to execute reductions,
 

-6

repeat
6 1:=PERMSUCC(g|);
for i :=1  to D(6 , )  do

02(61i)):=i;
i f  (G2<pO1) then

found:=false
else

found:=true
unt i l  found;
return (61,02);

Consequently, the computation of  the next pair of  permutations can also be done in  time
O(D(g1)).

Notes:
I f  there i s  no fact known to the proof system containing a subterm which has an AC
function symbol as top-level symbol and whose arity when flattened exceeds n,  then the
enumeration process of  pairs of  permutations for the respective AC  function symbol can
be siopped when that threshold n is reached (i.e. when the first pair (6,6°) with D(c)>n
is generated). Naturally, the enumeration must continue i f  n increases.
Furthermore, the enumeration of  pairs o f  permutations must be integrated into the proof
procedure. The best way to accomplish this seems to  be by interleaving the enumeration
process with some suitable inference, e.g. enumerate the next  pair of  permutations after
having selected and worked on n21 critical pairs. At  this point, note that the generation
of  pairs of  permutations and their applications as described in the following section 3
can naturally be regarded as inferences themselves. So, there will be no inconsistency in
notation when the generally preferred way of  describing a proof system by a set of  infer-
ence rulesis employed.

We have learned so far how permutation-equations can be represented and generated. In  the
next section, we shall turn our attention to the vital operations “reduction” and “critical
pairing”, outlining the way they can be performed utilizing pairs of  permutations instead of
permutation-equations in term form. We shall see that further efficiency increasing meas-
ures can be taken on  account of  the more appropriate representation.

.R  ion and critical pairin
Since we remove all  permutation-equations (except the rule or equation expressing associa-
tivity) from the current system of  equations during a proof, replacing them gradually by
pairs of  permutations, we have to provide adapted strategies for reduction and critical pair-
ing in  order to be able to preserve completeness. For this purpose we shall work with flat
terms.
A flat term corresponding to a term t=f(s;,s;) can be obtained by applying the following
transformation:
flat_term(f(s1 ...,Sp))=f(S1,..,Sp) iff therei s  no s; with s=f(t,.t,), where f i s  an AC function
symbol and n22.
Otherwise, flat_term(f(s,..,s,))=flat_term(f(sy,..,5i.1,t15t2,8i4+15-»Sn))-
The concept of  flat terms together with pairs of  permutations allow to execute reductions,



critical pairing and subsumption tests conveniently without having to employ matching or 
unification, thus contributing a great deal to remarkable efficiency gains. Details will be 
explained in the subsequent discussions. 

3.1. Reduction 
Reducing a given term t with a given equation SI =s2 generally involves finding a match 't 
and a subterm tip of t so that 't(sA)=tlp, and replacing 't(SA) by 't(SB) results in· a term 
t[Pf-'t(SB)] which is smaller W.r.t. a given reduction ordering> (SAE (sl,s2}, SBE (SI,s2)
(SA n. This principle naturally also applies if SI =s2 is a permutation-equation. But in this 
special case the matching effort is not necessary. It is sufficient to find a subterm tip of t 
with tlp=£'(t1,t2), where f is the AC function symbol SI=s2 expresses permutations for, and 
there is no subterm tlq of t so that tlq=f(vl,v2) and p=q.l or p=q.2. Let then t' be the flat 
term corresponding to tip, i.e. t'=flaCterm(tlp)=f(tl',..,tn'). Furthennore, (0',0") be the pair 
of permutations superseding SI =s2' If D(O');t:n, then there is no point in trying to use (0',0") 
for an attempt to reduce t' resp. tip. If D(O'»n, then a range of pairs of permutations (<1>,<1>') 
have already been enumerated with 0(<1>)=n that will take effect. Otherwise, if D(O')<n, then 
we might as well wait until the proper pairs (8,8') with D(8)=n will appear, instead of 
taking care of subterms t of tip with flacterm(t)=f(tl, .. ,tm) and m=D(O') or even using not 
completely flattened tenns. Both alternatives would cause unnecessary and therefore 
redundant effort. This restriction is compensated for by the fact that permutations are as 
well related by some kind of "sub-permutation" relation. Take for instance (2,1) which is 
comprised in (2,1,3) or (1,3,2). 

Example: 
t=£'(a,f(b,c», f be AC. 
Using commutativity «2,1),(2,1», what is not recommendable here, yields f(f(b,c),a) resp. 
f(b,f(c,a» (assuming that the equation representing associativity is incorporated as rewrite 
rule f(f(x,y),z)~f(x,f(y,z») and f(a,f(c,b». f(b,f(c,a» would be produced when not 
flattening completely, f(a,f(c,b» by considering the subterm f(b,c).) The same results will 
also be attained by applying the "left" sides of «3,1,2),(2,3,1» resp. «1,3,2),(1,3,2» to the 
totally flattened term f(a,b,c). 

Consequently, by proceeding in the outlined manner, the number of reductions which must 
be considered as wasted effort can be cut down considerably. 

So, let us suppose that D(O')=n. We then have two possibilities to employ (0',0") which are 
equivalent to what could also be done if we disposed of tip and SI ~S2' .Applying the 
permutation 0' resp. 0" to t' we obtain rl=£'(t'O"(1),.. ,t'0"(n» resp. r2=£'(t'O'(1),..,t'O'(n»' t is 
reduced to ul=t[pf-'P(rl)] resp. u2=t[pf-'P(r2)] ift>ul resp. t>u2' 'P(t) denotes a structured 
(and possibly completely interreduced) term corresponding to the flat term 1. (If we have 
the associativity as a rewrite rule f(f(x,y),z)~f(x,f(y,z» resp. f(x,f(y,z»~f(f(x,y),z), then it 
is recommendable to have 'P build the right- resp. left-parenthesized form to avoid further 
reductions.) 

3.2. Critical pairs 
With the principles just learned from the reduction of a term t with a pair of permutations in 
mind, the generation of critical pairs by (virtually) overlapping a permutation-equation 
(represented by a pair of permutations (0',0"), therefore "virtually") into an equation t=s or 

- 7 

critical pairing and subsumption tests conveniently without having to employ matching or
unification, thus contributing a great deal to remarkable efficiency gains. Details will be
explained in  the subsequent discussions,

3.1, Reduction
Reducing a given term t with a given equation s;=s, generally involves finding a match ©
and a subterm tlp o f  t so that t(ss)=tlp, and replacing t (s , )  by t(sp) results in 'a  term
t[pe1(sg)] which is smaller w.r.t. a given reduction ordering > (spe (5,53), sge {spS2)-
{sa}). This principle naturally also applies i f  s;=s, is a permutation-equation. But in  this
special case the matching effort is not necessary. I t  is sufficient to find a subterm tip o f  t
with tlp=f(t,tp), where f is the AC function symbol s,=s, expresses permutations for, and
there is no subterm tlq of  t so that tig=f(v,,v,) and p=q.1 or p=q.2. Let then t ’  be the flat
term corresponding to tip, i.e. t’=flat_term(tlp)=£(t;’,...ty’). Furthermore, (5 ,6 ’ )  be  the pair
of  permutations superseding sy=s,. I f  D(6)#n, then there is no point i n  trying to use (0,0’)
for an attempt to  reduce t ’  resp. tlp. I f  D(6)>n, then a range of  pairs o f  permutations (¢ ,0 )
have already been enumerated with  D(¢)=n that will take effect. Otherwise, i f  D(G)<n, then
we might as well wait until the proper pairs (8,8’) with D(d)=n will appear, instead of
taking care of  subterms t o f  tip with flat_term(t)=£(t;,..,t;,) and m=D(o) or even using not
completely flattened terms. Both alternatives would cause unnecessary and therefore
redundant effort. This restriction is compensated for by the fact that permutations are as
well related by  some k ind  o f  “sub-permutation” relation. Take for instance (2,1) which is
comprised i n  (2,1,3) or  (1,3,2).

Example:
t=f(a,f(b,c)), f be AC.
Using commutativity ((2,1),(2,1)), what is  not recommendable here, yields f(f(b,c),a) resp.
f(b,f(c,a)) (assuming that the equation representing associativity is incorporated as rewrite
rule f(f(x,y),z)—f(x,f(yv,z))) and f(af(c,b)). f(b,f(c,a)) would be produced when not
flattening completely, f(a,f(c,b)) by  considering the subterm f(b,c).) The same results will
also be attained by applying the “left” sides of  ((3,1,2),(2,3,1)) resp. ((1,3,2),(1,3,2)) to the
totally flattened term f(a,b,c).

Consequently, by proceeding in  the outlined manner, the number of  reductions which must
be considered as wasted effort can be cut down considerably.

So, let us suppose that D(c)=n.  We then have two possibilities to employ (6,6°) which are
equivalent to what could also be done i f  we disposed of  tp  and s;=s;. Applying the
permutation G resp. 6 ’  to t ’  we obtain r ,= f (U( 1  a (n)) ESP. T2=E(E St  5(m))- t iS
reduced to  u1=t[p«—"¥(r)] resp. up=tp<—¥(rp)] i f  t>u; resp. t>u,. P(t) denotes a structured
(and possibly completely interreduced) term corresponding to the flat term t. (If we have
the associativity as a rewrite rule f(f(x,y),z)—f(x,f(y,z)) resp. f(x,f(y,z))->f(f(x,y),z), then i t
is recommendable to have ‘¥  build the right- resp. left-parenthesized form to avoid further
reductions.)

2, Criti i
With the principles just learned from the reduction of  a term t with a pair of  permutations in
mind, the generation of critical pairs by (virtually) overlapping a permutation-equation
(represented by a pair of  permutations (0,6°), therefore “virtually”) into an equation t=s or



s=t or a rule t~s imposes no major problems. 
Analogously to the reduction case discussed in 3.1, we are looking for places p in t so that 
tlp=t'=f(tl,t2), where f is AC and (a,a') is related to f, f1aCterm(t')=f(tl ', .. ,tn') and n=D(a). 
(The reason for the latter condition is the same as before.) When attempting a reduction, we 
were contemplatipg the two possible outcomes of an application of (a,a'), namely 
rl'=f(t'cr'(l), .. ,t'cr'(n) and ri=f(t'cr(l), .. ,t'cr(n», and we were interested in establishing 
t>ul=t[pf-'f'(rl)] or t>u2=t[pf-'f'(r2)]' For the creation of critical pairs these comparisons 
with the reduction ordering> are to be changed to -,(ul>t) resp.•(u2>t). But apart from 
that, critical pairing is similar to reducing, and we obtain the critical pairs u1=s resp. u2=s, 
provided that -,(ul>t) and -,(u2>t) respectively. 
There is no need for unification as it would be the case if the permutation-equations were 
not handled separately. 
Furthermore, we do not need to generate critical pairs by overl~pping into permutation
equations if the used reduction ordering meets certain requirements (see section 4). The 
equations and rules derived from such an operation can then as well be attained by overlap
ping into associativity (which still is a member of the set of rules or equations as we have 
already stipulated), in combination with reductions and overlapping into the resulting 
terms, using pairs of permutations in the described way. 
Hence, we dispose in this case of further restrictions allowing to avoid redundancy and 
computational effort. 
Section 4 will explain more exactly the effects of the presented method on correctness and 
completeness, especially regarding the latter w.r.t. the constraints proposed so far. But 
before that, let us investigate concisely subsumption in connection with the representation 
of permutation-equations as pairs of permutations. 

3.3. SubsymptioD 
Subsumption generally stands for precluding formulas that are subsumed by other more 
general ones. It is not an indispensable feature of proving systems, but often serves the 
desirable purpose of reducing the amount of formulas kept by a system. This can have a 
deciding influence on the performance of proving systems. For this reason we should cover 
this subject from a point of view induced by the new method. 
For the case that is interesting for us in this context, namely the subsumption of an equation 
by another one, we have in general the following definition. 

Definition:
 
s=t is subsumed by u=v iff there is a place p in both s and t, and there is a substitution 't (a
 
match), so that slp=t(u), s[pf-t(v)]=t, where nE {u,v}, VE {u,v}-{u}.
 

(Note: For p=c we have t(n)=t(v) = s=1.) 

Naturally, we are interested in the case where u=v is a permutation-equation which is repre
sented by a pair of permutations. We are here in the fortunate position of not having to care 
about the exact shape of u=v except the fact that it is some permutation-equation. As a con
sequence, the test whether an equation s=t is subsumed by some permutation-equation can 
be reduced to finding a place p in both sand t, so that slp=f(SI,s2)' tlp=f(tl,t2)' s[pf-tlp]=t, f 
is AC and flaCterm(slp)=f(Sl', .. ,Sn')=f(t'cr(l),..,t'cr(n», where f(tl',..,tn')=flacterm(tlp) ~nd 

cr is a permutation with D(cr)=n. Again, the avoidance of matching and the fact that we do 
not have to search the current set of equations for an equation u=v that subsumes s=t make 
subsumption testing in this case more efficient 

- 8 • 

s=t  or a rule t—s imposes no major problems.
Analogously to the reduction case discussedin  3.1, we are looking for places p in  t so that
tlp=t’=f(t,,t), where f i s  AC  and (0,0°) i s  related to f, flat_term(t’)=f(t,’...,t;’) and n=D(0).
(The reason for the latter condition is  the same as before.) When attempting a reduction, we
were contemplating the two possible outcomes of an application o f  (0,6°), namely
N=’  e t ’  on) and 1= f ( t ’(1) 5m)» and we were interested in establishing
t u =t[pe—¥(ry)] or  t>uy=t{p«¥(rp)]. For the creation of  critical pairs these comparisons
with the reduction ordering > are to be changed to —(u;>t) resp. —(up>t). But apart from
that, critical pairing is similar to reducing, and we obtain the critical pairs u;=s resp. uz=s,
provided that —(u;>t) and —(uy>t) respectively.
There is no need for unification as i t  would be the case i f  the permutation-equations were
not handled separately.
Furthermore, we do not need to generate critical pairs by overlepping into permutation-
equations i f  the used reduction ordering meets certain requirements (see section 4). The
equations and rules derived from such an operation can then as well be attained by overlap-
ping into associativity (which still is a member of the set of  rules or equations as we have
already stipulated), in combination with reductions and overlapping into the resulting
terms, using pairs o f  permutations in  the described way.
Hence, we dispose in  this case of further restrictions allowing to avoid redundancy and
computational effort.
Section 4 will explain more exactly the effects of  the presented method on correctness and
completeness, especially regarding the latter w.r.t. the constraints proposed so far. But
before that, let us investigate concisely subsumption in connection with the representation
of  permutation-equations as pairs of  permutations.

3.3, Subsumption
Subsumption generally stands for precluding formulas that are subsumed by other more
general ones. It i s  not an indispensable feature of  proving systems, but often serves the
desirable purpose of  reducing the amount of  formulas kept by  a system. This can have a
deciding influence on the performance of  proving systems. For this reason we should cover
this subject from a point o f  view induced by the new method.
For the case thati s  interesting for us in  this context, namely the subsumption of  an equation
by another one, we havein  general the following definition.

Definition:
s=t is subsumed by u=v iff there is a place p in  both s and t, and there is a substitution © (a
match), so that sip=t(u), s[p«1(v)]=t, where ue {u,v}, ve  {u,v}-{u}.

(Note: For p=¢ we have t(u)=t(V) = s=t.)

Naturally, we are interested in  the case where u=v is  a permutation-equation which is  repre-
sented by a pair of  permutations. We are here in the fortunate position of  not having to care
about the exact shape of  u=v except the fact that i t  is some permutation-equation. As a con-
sequence, the test whether an equation s=t is subsumed by some permutation-equation can
be reduced to finding a place p in  both s and t, so that slp=f(s;,s,), tp=f(ty tp), s[petip]=t, £
is AC  and flat_term(slp)=£(s;’,..,s,")=f(t’(1)  a(n)» Where f(t;’,...t,)=flat_term(tlp) and
GO is a permutation with D(G)=n. Again, the avoidance of  matching and the fact that we do
not have to search the current set of  equations for an equation u=v that subsumes s=t make
subsumption testing in  this case more efficient.



(Note: With this subsumption test, pennutation-equations that may still be present in tenn 
fonn can be eliminated since the test will succeed at p=€ whenever s=t is a pennutation
equation for some AC symbol.) 

4. Correctness and completeness 
In this section we shall take a look at aspects of our method concerning correctness and 
completeness. 
As for correctness, it is quite clear that we do not perform an illegal, i.e. theory distorting 
operation when pennuting arguments of AC functions, taking the respective flat tenn as a 
starting point. We shall therefore not go any further into this matter, devoting our attention 
to the less easily understandable subject of completeness. 
It is satisfactory for us to show that we do not jeopardize completeness by using the pair of 
pennutation representation instead of pennutations in term fonn. 
It is not hard to see that we do not lose any necessary critical pair that can be generated by 
overlapping a permutation-equation into a rule or equation according to the proceeding 
described in 3.2. Thus, we only have to make sure that the restriction not to perfonn over
laps into pennutation-equations does not destroy completeness. For this purpose, we shall 
demonstrate that any critical pair resulting from an overlap into a pennutation-equation can 
also be attained without such an overlap. As we shall see in the sequel, we cannot show this 
in complete generality. The reduction ordering has to meet some requirements which, fortu
nately, the most commonly used reduction orderings (LPO, KBO, RPO and polynomial 
orderings) do meet. 
In the following, we shall not give an exact proof, contenting ourselves with a sketch of the 
basic ideas. For simplifying the notation let us suppose that the associativity is included as 
the rewrite rule (*) f(f(x,y),z)-7f(x,f(y,z» so that we can assume every tenn to be in nonnal 
form w.r.t. to that rule. Furthermore, f(tl,t2, ..,tn) be the short form for f(tl,f(t2, .. ,f(tn_l,tn)..). 
When overlapping a rule or the left side of an equation l-r (i.e. -E { -7,=}) into a permuta
tion-equation PEQ f(XI, .. ,Xn)=f(xcr(I),,,,Xcr(n» (i.e. (0-1,0) in pair notation), a critical pair 
CP= <'t(f(xI""xk,r», t(f(xcr(I),oo,Xcr(n»» will be created, where t is the mgu off(xk+l""xn) 
and 1. Moreover, IQ1, since otherwise a top-level overlap has been performed what is 
already covered by overlaps of permutation-equations into rules or equations. As we do not 
have to consider overlaps into variables, we also know that k<n-l. (In addition 
-,(t(f(xb",xk,r» > t(f(xb",xn))) and -,('t(f(Xcr(I)""Xcr(n»)»t(f(Xb"'Xn))) since otherwise 
CP needs not be examined. See [KB70].) W.l.o.g. PEQ and l-r do not have variables in 
common. We can now be more specific about the shape of 1: 1must have the form f(ll,..,lm) 
with ~2 and none of the Ij has the function symbol f as top-level symbol. Two cases must 
be distinguished: 
(1) m+IQn 
(2) m+k<n 
In case (1), w.l.o.g. we have t(z)=z for all variables occurring in L By overlapping l-r into 
(*) at position p=l, we obtain CP1=<f(lI,..,lm,zl),f(r,zl»' where zl is a new variable. 
When making a rule or equation from CP1 we can continue this kind of overlapping 
(regardless of the orientation of such a CPi when transformed into a rule), finally coming up 
with CPk=<f(1l,oo, lm,zl,..,zk), f(r,zl,oo,zk» (the zi'S denoting new variables). With CPk we 
can produce CP via a combination of reductions of CP and CPk and top-level overlaps of 
permutation-equations into one or both sides of CPk . 

In case (2), we employ the same operation as in case (1) what will provide us with CPk= 

-9

(Note: With this subsumption test, permutation-equations that may still be present in  term
form can be eliminated since the test will succeed at p=¢ whenever s=t is a permutation-
equation for some AC symbol.)

4.  Correctness and completeness
In  this section we shall take a look at  aspects of  our method concerning correctness and
completeness.
As for correctness, i t  is quite clear that we do not perform an illegal, i.e. theory distorting
operation when permuting arguments of  AC functions, taking the respective flat term as a
starting point. We shall therefore not go any further into this matter, devoting our attention
to the less easily understandable subject of  completeness.
I t  is satisfactory for us to  show that we do not jeopardize completeness by using the pair of
permutation representation instead of  permutations i n  term form.
I t  is not hard to  see that we do not lose any necessary critical pair that can be generated by
overlapping a permutation-equation into a rule or equation according to the proceeding
described in  3.2. Thus, we only have to make sure that the restriction not to perform over-
laps into permutation-equations does not destroy completeness. For this purpose, we shall
demonstrate that any critical pair resulting from an overlap into a permutation-equation can
also be attained without such an overlap. As we shall see in  the sequel, we cannot show this
in  complete generality. The reduction ordering has to meet some requirements which, fortu-
nately, the most commonly used reduction orderings (LPO, KBO, RPO and polynomial
orderings) do meet.
In  the following, we shall not  give an exact proof, contenting ourselves with a sketch of  the
basic ideas. For simplifying the notation let us suppose that the associativity is  included as
the rewrite rule (Xk) f(f(x,y),z)—f(x,f(y,z)) so that we  can assume every term to  be in  normal
form w.r.t. to that rule. Furthermore, f(ty,1)....t;) be the short form for £(t,f(t;,...f(t;_1,tn)-.)-
When overlapping a rule orthe left side of  an equation I~r (i.e. ~ {—,=}) into a permuta-
tion-equation Peg £(x1,--Xp)=f(Xg(1)--X s(n) (Le. GC)  in  pair notation), a critical pair
CP= <t(f(xy,...xk.D)), T(f(Xg(1)s---Xg(n)))> Will  be created, where 7 is the mgu  of  f(Xx41»-,Xp)
and 1. Moreover, k21, since otherwise a top-level overlap has been performed what is
already covered by overlaps of  permutation-equations into rules or equations. As we do not
have to consider overlaps into variables, we also know that k<n-1. (In addition
—(T(f(x1,... XT)  > T(f(X15..,Xp))) and X 1 )  Kan) > (X. . .  Xn))) since otherwise
CP needs not be examined. See [KB70].) W.Lo.g. Pgq and I~r do not have variables in
common. We can now be more specific about the shape of  1: 1 must have the form f(l;...,1r,)
with m22 and none of  the J; has the function symbol f as top-level symbol. Two cases must
be distinguished:
(1) m+k>n
(2) m+k<n
In  case (1), w.l.o.g. we have 1(z)=z for all variables occurring in  1. By  overlapping l~r into
(*) at position p=1, we  obtain CP;=<f(l;,..,l,,21).f(r,21)>, where z i s  a new variable.
When making a rule or equation from CP; we can continue this kind of  overlapping
(regardless of  the orientation of  such a CP; when transformed into a rule), finally coming up
with CP=<f(ly,.., L5,,Z},..,2), f(,2y,..,z)> (the z;’s denoting new variables). With CP  we
can produce CP via a combination of reductions of CP and CPy and top-level overlaps of
permutation-equations into one or both sides of  CP.
In case (2), we employ the same operation as in  case (1) what will provide us with CPy=

\



<f(lI, .. ,lm,ZI""Zk)' f(r,zl""zk»' lm must be a variable because m+n<k. Since lel, we may 
overlap (*) into the rule or equation resulting from CPk so that lm matches the subterm 
f(x,y) coming from (*). 

Note: 
An essential prereqUiSite for this overlap is the condition -,(f(r,zl""zk) > 
f(ll, .. ,lm,zl""zk))' The most commonly used reduction orderings (e.g. LPO, RPO, KBG 
and polynomial orderings) meet this requirement, provided that -,(r>l) what we implic
itly assume because of I-H or l=r, not r~l. 

As the result of the described overlap we get CPk+1=<f(11) .. ,lm-l,yl,y2,zl>,,,zk), 
f('tl(r),zl,,,,zk»' where 'tl(lm)='f(Yl,y2), 'tl(x)=x for all x:;;:lm and Yl, Y2 are new variables. 
Continuing this process by overlapping (*) into the rule or equation made from CPk+i so 
that one of the introduced (and new) variables Yl,.. ,Yi+l is bound to f(x,y) will event~ally 

result in CPk+n-m-k=CPn-m=<f(ll ,.. ,lm-l ,Yl ,··,Yn-m-k+1,zl ''',Zk),f('tn_m_k(r),zl""zk», where 
'tn-m-k= f(Yl, .. ,Yn-m-k+l) and 'tn_m_k(x)=x for all x:;;:lm' CPn_m can be transformed into CP as 
outlined in the discussion of case (1). 

Note: 
If a member in the chain of CPj's is reducible, then the application of the same technique 
sketched above to the reducing rule will show that CP itself is finally reducible and 
hence not worth considering. 

5. Summary 
An important performance criterion of any proving system involving equality is its ability 
to cope with AC functions, i.e. functions that are both associative and commuta.tive.Be-

I 

cause the AC-property is responsible for a considerable amount of (partially redundant) 
effort spent on account of the so~called permutation-equations (e.g. f(x,f(y,z))=f(y,f(z,x)) ), 
it is most desirable to handle these efficiently.. 
The way we chose here to achieve this goal is founded on a representation of these permu
tation-equations that is more suitable than the usual term format. By representing them 
through pairs of permutations (<J1,<J2), a lot of efficiency increasing measures can be taken. 
Among the most striking improvements is the generation of the pairs of permutations via 
enumeration (instead of critical pairing), reduction, critical pairing and subsumption testing 
without having to employ unification or matching procedures, and the possibility to exploit 
efficiently the fact that overlaps into permutation-equations are not necessary, at least when 
utilizing "conventional" reduction orderings (KBO, LPO, RPO, polynomial orderings). It 
must be appended that the incorporation of associativity as a rule or eq1lation in term form 
plays a vital role for not losing completeness. All other permutation-equations (including 
commutativity) are available as pairs of permutations only. 
The advantage of this method resides in its conceptual simplicity due to it~ close relation
ship to the "simplest way tQhandle AC", Le. not making any difference between permuta
tion-equations and other equations at all. Nevertheless, the attained improvements are 
remarkable and encouraging, and the comparison of a range of proofs accomplished with 
and without the presented method corroborates this observation. 

- 10

< fp lm Z i  Zk)> (1zı...,Zk)>- Im must be a variable because m+n<k. Since k21, we may
overlap (*) into the rule or equation resulting from CPy so that 1m matches the subterm
f(x,y) coming from (*).

Note:
"An  essential prerequisite for this overlap is  the condition —(f(r,zy,..,zy) >

fps lm Zı--2g)). The most commonly used reduction orderings (e.g. LPO, RPO, KBO
and polynomial orderings) meet this requirement, provided that —(r>1) what we implic-
i t l y  assume because of  1—r or  l=r, not r l .

As the result o f  the described overlap we get CPi1=<f(l},...I0-1,Y1,¥2:Z1-:2K)>
f(t1(0),z},...2)>, where T1(1;)=f(y1,y2), T1(x)=x for al l  x7lm and y ı ,  yo are new variables.
Continuing this process by overlapping (*)  into the rule or equation made from CPy,; so
that one of  the introduced (and new) variables y ı , . . ,y;+1 is bound to f(x,y) will eventually
resu l t  i n  CPr in -m-k=CPum=<f l1 , . Im-1>Y 1 -2  ¥n-m-k+  1215»  Zk  f Tnem-k (0:2  15 -2 )  >» where

Ta-m-k= f¥1>-2¥n-m-k+1) and Tpa-m-k(X)=x for all x#lm. CPp.m can be transformed into CP as
outlined in  the discussion o f  case (1).

Note:
If  a memberin  the chain of  CP;’s is reducible, then the application o f  the same technique
sketched above to  the reducing rule will show that CP itselfi s  finally reducible and
hence not worth considering.

5 ,  Summary
An  important performance criterion of  any proving system involving equality is its ability
to cope with AC  functions, i.e. functions that are both associative and commutative.Be-
cause the AC-property is responsible for a considerable amount of  (partially redundant)
effort spent on  account o f  the so-called permutation-equations (e.g. f(x,f(y,z))=f(y,f(z,x)) ) ,
i t  is  most desirable to handle these efficiently.
The way we chose here to achieve this goalis founded on a representation of  these permu-
tation-equations thatis  more suitable than the usual term format. By  representing them
through pairs of  permutations (G4,05), a lot of  efficiency increasing measures can be taken.
Among the most striking improvements is the generation of  the pairs of  permutations via
enumeration (instead of  critical pairing), reduction, critical pairing and subsumption testing
without having to employ unification or matching procedures, and the possibility to exploit
efficiently the fact that overlaps into permutation-equations are not necessary, at least when
utilizing “conventional” reduction orderings (KBO, LPO, RPO, polynomial orderings). It
must be appended that the incorporation of  associativity as a rule or equation in  term form
plays a vital role for not losing completeness. All other permutation-equations (including
commutativity) are available as pairs of  permutations only.
The advantage of  this method resides in  its conceptual simplicity due to its close relation-
ship to the “simplest way tohandle AC”,  i.e. not making any difference between permuta-
tion-equations and other equations at all. Nevertheless, the attained improvements are
remarkable and encouraging, and the comparison of  a range of  proofs accomplished with
and without the presented method corroborates this observation.

-10-



Appendix 

The table depicted in this appendix compares the run times and some of the characteristics 
of proofs in pure equationallogic accomplished by the DISCOUNT-system which is based 
on the unfailing Knuth-Bendix completion ([BDP89]). 
There are two rows for each problem: the first row lists the results obtained when not 
employing the presented method, the second one those gained when using it. 
It must be emphasized that in both cases the same strategy for selecting the next critical pair 
was used. That is, the only difference was the way the permutation-equations were dealt 
with. 

Proof details: 
reduction ordering: LPO (preorder given for each problem; lexicographic evaluation 
from left to right); 
selection of next critical pair: select pair with minimal weight, where the weight for a 
critical pair <u,v> = <1>(u)+<1>(v) with <1>(x)=1, if x is a variable, else <1>(g(tl, .. ,tn»= 
2+<1>(t1)+'.+<1>(tn). 
The goal is already negated and skolemized, and the skolem conscants are also listed in 
the preorder of the LPO. 

problem descriptions: 
(The hirsh examples were taken from 

Workshop on automated reasoning 
Argonne laboratory, August 1989) 

hirsh9.4 
axioms:	 o(x,y) = o(y,x)
 

o(o(x,y),z) = o(x,o(y,z»
 
n(o(n(o(x,y»,n(o(x,n(y»») = x
 
a = n(o(n(b),c»
 

gQa!: a:t; n(o(n(o(o(b,a),c»,c»
 
preorder: n > 0 > a > b > c
 

hirsh95 
axioms:	 o(x,y) = o(y,x)
 

o(o(x,y),z) = o(x,o(y,z»
 
n(o(n(o(x,y»,n(o(x,n(y»))) = x
 
a = n(o(b,c»
 

goal: a:t; n(o(n(o(o(n(b),a),c»,c»
 
preorder: n>o>a>b>c
 

hirsh12 
axioms:	 o(x,y) = o(y,x)
 

o(o(x,y),z) = o(x,o(y,z»
 
n(o(n(o(x,y»,n(o(x,n(y))))) = x
 
n(o(a,n(b))) = n(a)
 
o(a,b) =b
 

- 11 

Appendix

The table depicted in  this appendix compares the run times and some of  the characteristics
of  proofs in pure equational logic accomplished by the DISCOUNT-system which is  based
on  the unfailing Knuth-Bendix completion ([BDP89]).
There are two rows for each problem: the first row lists the results obtained when not
employing the presented method, the second one those gained when using it.
I t  must  be emphasized that i n  both cases the same strategy for selecting the next critical pair
was used. That is, the only difference was the way the permutation-equations were dealt
with.

Proof details:
reduction ordering: LPO (preorder given for each problem; lexicographic evaluation
from left to right);
selection of next critical pair: select pair with minimal weight, where the weight for a
critical pair <u,v> = B(u)+S(v) with O(x)=1, i f  x i s  a variable, else P(g(ty,...t,))=
2+ ( t+ .  +D(ty).
The goal is already negated and skolemized, and the skolem constants are also listed in
the preorder of  the LPO.

problem descriptions:
(The hirsh examples were taken from

Workshop on automated reasoning
Argonne laboratory, August 1989)

hirsh94
axioms: o(x,y) = o(y.x)

o(o(x,y),z) = o(x,0(y,z))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
a = n(o(n(b),c))

goal: a # n(a(n(o(o(b,a),c)),c))
preorder: n>o0>a>b>c

hirsh9.5
axioms: o(x ,y )  = o(y.x)

o(o(x,y),z) = o(x,0(y,z))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
a =n(o(b,c))

goal: a # n(o(n(o(o(n(b),a),c)),c))
preorder: n>o0>a>b>c

hirsh12
axioms: o(x,y) = o(y,x)

o(o(x,y),z) = o(x,0(y,2))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
n(o(a,n(b))) = n(a)
o(a,b)=Db

-11-



n(g(x)) =x
 
~: n(b) 'I; n(o(a,n(a)))
 
preorder: n > 0 > g > a > b
 

tlill..lQ 
axioms:	 o(x,y) =o(y,x) 

o(o(x,y),z) =o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) =x 
n(n(x)) =x 

goal: a 'I; o(n(o(n(a),n(b))),n(o(n(a),b))) 
preorder: n >0 > a > b 

hirsh8a 
axioms:	 o(x,y) =o(y,x) 

o(o(x,y),z) =o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) = x 
n(g(x)) =x 
o(a,n(a)) =a 

goal: n(a) 'I; o(n(a),n(a))
 
preorder: n > 0 > g > a
 

hirsh6 
axioms:	 o(x,y) =o(y,x) 

o(o(x,y),z) =o(x,o(y,z)) 
n(o(n(o(x,y)),n(o(x,n(y))))) =x 
o(e,d) =e 
o(n(e),d) =nee) 
n(g(x)) =x 

~: n(n(a)) 'I; a
 
preorder: n > 0 > g > a > e > d
 

demo] 
axioms:	 f(a,f(b,e)) =b
 

f(f(x,y),z) =f(x,f(y,z))
 
f(x,y) =f(y,x)
 
f(b,f(e,x)) =f(a,f(b,x))
 

goal: f(a,f(cx,f(e,f(ey,b)))) * f(ex,f(cy,b)) 
preorder: f > e > ey > b > ex > a 

demo2 
axioms:	 f(a,f(b,e)) =b
 

f(f(x,y),z) =f(x,f(y,z))
 
f(x,y) =f(y,x)
 
f(b,f(c,x)) =f(a,f(b,x))
 

goal: f(a,f(ex,f(c,f(ey,b)))) * f(cx,f(ey,b)) 
preorder: f > b > ey > e > ex > a 

dem04 
axioms:	 f(h(x),f(r(x),x)) =h2(x) 

- 12

n(g(x)) =x
goal: n(b) # n(o(a,n(a)))
preorder: n>o0>g>a>b

hirshS
axioms: o(x,y) = o(y,x)

o(o(x,y),z) = o(x,0(y,2))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
n(n(x) )  =x  .

goal: a # o(n(o(n(a),n(b))),n(o(n(a),b)))
preorder: n>0>a>b

hirsh8q
axioms: o(x,y) = o(y,x)

o(o(x,y),z) = o(x,0(y,z))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
n(g(x)) =x
o(a,n(a)) =a

goal: n(a) # o(n(a),n(a))
preorder: n>o0>g>a

hirsh
axioms: o(x,y) = o(y,x)

o(o(x,y),z) = o(x,0(y,z))
n(o(n(o(x,y)),n(o(x,n(y))))) = x
o (cd )=c
o(n(c),d) = n(c)
n(g(x)) =x

goal: n(n(a)) # a
preorder: n>o0>g>a>c>d

demol
axioms: f (a f (b ,c ) )=b

f(f(x,y),z) = f(x.f(y,2))
f(x,y) = f(y,x)
f(b,f(c,x)) = f(a,f(b,x))

goal: f(a,f(cx,f(c,f(cy,b)))) # f(cx,f(cy,b))
preorder: f >c>cy>b>cx>a

demo2
axioms: f(a,f(b,c))=b

f(f(x,y),z) = f(x,f(y,2))
f(x,y) = f(y,x)
f(b,f(c,x)) = f(a,f(b,x))

goal: f(a f(cx,.f(c.f(cy,b)))) = f(cx,f(cy,b))
preorder: f >b>cy>c>cx>a

demo4
axioms: f(h(x),f(r(x),x)) = h2(x)

-12-



f(f(x,y),Z) = f(x,f(y,z)) 
f(x,y) = f(y,x) 

goal: f(cx,h2(f(cu,cv))) ::;:. f(cu,f(cx,f(r(f(cu,cv)),f(cv,h(f(cu,cv)))))) 
preorder: f > r > h > h2 > cv > Cll > cx 

nonassring4a (non-associative ring theory: linearity of associator in first argument) 
axioms: f(x,a) = x 

f(x,f(y,z)) = f(f(x,y),z) 
f(x,g(x)) =a 
f(x,y) = f(y,x) 
h(x,h(y,y)) =h(h(x,y),y) 
h(h(x,x),y) = h(x,h(x,y)) 
h(x,f(y,z)) = f(h(x,y),h(x,z)) 
h(f(x,y),z) = f(h(x,z),h(y,z)) 
a(x,y,z) = f(h(h(x,y),z),g(h(x,h(y,z)))) 

goal: a(f(dl,d2),d3,d4)::;:. f(a(dl,d3,d4),a(d2,d3,d4)) 
preorder: a > h > g > f > a> d1 > d2 > d3 > d4 

The figures listed in the table on the following page denote 
(1) number of rules generated 
(2) number of equations generated 
(3) number of critical pairs generated 
(4) number of reductions performed 
(5) run time (in seconds)
 
For (3) and (4), in the case where pairs of permutations are used, the number in parentheses
 
indicates the number of critical pairs resp. reductions on account of permutations (per

formed by applying pairs of permutations).
 
The column "name" refers to the problems just described above.
 
The column "speed-up" displays the speed-up factor of our method.
 
The entry "> 10 min." indicates that the proof was aborted (by the user) after 10 minutes.
 

- 13 

f(f(x,y),z) = f(x,f(y,z))
f(x,y) = f(y,x)

goal: f(cx,h2(f(cu,cv))) = f(cu,f(cx,f(r(f(cu,cv)),f(cv,h(f(cu,cv))))))
preorder: f > r>h  > h2 > cv  >cu  >cx

nonassring4g (non-associative ring theory: linearity of  associator i n  first argument)
axioms: f ( x , 0 )=x

f(x,f(y,2)) = f(f(x,y),2)
f(x,g(x)) = 0
f(x,y) = f(y,x)
h(x,h(y,y)) = h(h(x,y),y)
h(h(x,x),y) = h(x,h(x,y))
h(x,{(y,z)) = f(h(x,y),h(x,z))
h(f(x,y),z) = f(h(x,z),h(y,z))
a(x,y,z) = f(h(h(x,y),z),g(h(x,h(y,2))))

goal: a(f(d1,d2),d3,d4) = f(a(d1,d3,d4),a(d2,d3,d4))
r eo rde r :a>h>g> f>0>d l  >d2>d3>d4

The figures listed in  the table on the following page denote
(1)  number of  rules generated
(2) number of  equations generated
(3) number of  critical pairs generated
(4) number of  reductions performed
(5)  run time ( in seconds)
For (3) and (4), in  the case where pairs of  permutations are used, the number in  parentheses
indicates the number of  critical pairs resp. reductions on account of  permutations (per-
formed by applying pairs of  permutations). .
The column “name” refers to  the problems just described above.
The column “speed-up” displays the speed-up factor of  our method.
The entry “>  10 min.” indicates that the proof was aborted (by the user) after 10 minutes.

- 13 -



Table 1: 

name (1) (2) (3) (4) (5) s.'Jeed
up 

hirsh9.4 11 14 2167 2075 40.8 sec 

12 0 (13) 173 . (143) 218 0.45 sec ca. 90 

hirsh9.5 11 15 2456 2380 50.1 sec 

12 0 (13) 168 (131) 206 0.45 sec ca. 111 

hirsh12 9 4 154 159 0.7 sec 

10 0 (14) 32 (14) 43 0.11 sec ca. 6 

hirsh5 9 4 263 383 1.34 sec 

9 0 (15) 86 (72) 246 0.23 sec 5.8 

hirsh8a - - - - > 10 min. 

161 0 (798)11931 (10673) 26577 106.6 sec >5.6 

hirsh6 - - - - > 10 min. 

127 2 (606) 9573 (9005) 16499 74.1 sec >8 

demo1 16 23 4801 7359 142.6 sec 

13 2 (142) 173 (122) 435 0.95 sec ca. 150 

demo2 18 33 7279 12832 229.9 sec 

19 6 (279) 352 (199) 815 2.2 sec 104.5 

dem04 7 15 2362 2823 51.3 sec 

18 1 (337) 522 (331) 919 4.3 sec ca. 12 

nonassring4a 48 19 5217 10136 163.6 sec 

49 5 (620) 1705 (471) 4613 22.9 sec ca. 7 

- 14 

Table 1 :

name | (1) | @ 3)  (4) ON Rvs

hirsh9.4 11 | 14 2167 2075 40.8 sec

12 0] @3)173 | (143)218 | 0.45sec | ca. 90

hirsh9.5 11 15 2456 2380 50.1 sec

12 0 (13)168 (131)206 | 0.45sec ca. 111

hirsh12 9| 4 154 159 0.7 sec

10 of #32  (14) 43 0.11sec | ca.6
hirsh5 9| 4 263 383 1.34 sec

9 of ( 586  (72)246 | 0.23sec | 5.8

hirsh8a - - — - > 10 min.

161 | 0 | (798) 11931 |(10673) 26577 106.6 sec | >5 .6

hirsh6 - - So  - > 10 min.

127 2 (606) 9573 (9005) 16499 | 74.1 sec >8

demol 16 23 4801 7359 142.6 sec

13 2 (142) 173 (122) 435 0.95 sec |ca. 150

 demo2| 18] 33| 7279 12832 | 229.9 sec

19 6 | (279)352 (199) 815 2.2 sec | 104.5

demod 7 15 2362 2823 51.3 sec

18 1 (337) 522 (331) 919 43sec | ca. 12

nonassringd4a | 48 | 19 5217 | 10136 163.6 sec

49 5 | (620) 1705 (471) 4613 229sec | ca.7

„ 14-



References 

[BDP89] 

[KB70] 

[PS81] 

[St81 ] 

Bachmair, L.; Dershowitz, N.; Plaisted D.A.:
 
"Completion without failure"
 
ColI. on the resolution of equations in algebraic stru'::'urcs,
 
Austin, Texas 1987
 
Academic Press, 1989
 

Knuth, D.E.; Bendix, P.B.:
 
"Simple word problems in universal algebra"
 
Computational algebra, J. Leach, Pergamon Press, 1970, pp 263-297
 

Peterson, G.E.; Sticke1, M.E.:
 
"Complete sets of reductions for some equational theories"
 
Journal of the association for computing machinery
 
Vol. 28, No 2, pp 233-264, April1981
 

Stickel, M.E.:
 
"A unification algorithm for associative-commutative functions"
 
Journal of the association for computing machinery
 
Vol. 28, No 3, pp 423-434, July 1981
 

- 15 

References

[BDP89]

[KB70]

[PS81]

[St81]

Bachmair, L . ;  Dershowitz, N . ;  Plaisted D.A.:
“Completion without failure”
Coll. on  the resolution of  equations i n  algebraic struciures,
Austin, Texas 1987
Academic Press, 1989

Knuth, D.E.;  Bendix, P.B.:
“Simple word problems in  universal algebra”
Computational algebra, J. Leach, Pergamon Press, 1970, pp  263-297

Peterson, G.E.; Stickel, M.E.:
“Complete sets of  reductions for some equational theories”
Journal of the association for computing machinery
Vol. 28, No 2, pp 233-264, April 1981

Stickel, M.E.:
“A  unification algorithm for associative-commutative functions”
Journal of  the association for computing machinery
Vol. 28, No 3, pp 423-434, July 1981

-15-


