%.MUEUWMW

......

VAN
Nyl

Q¥

AuBWIAG) AA | LWISINBISISSIEY 06/9- o
B6¥0E Yorjiscd Eus

UJBiNe|SIssiey jeisIaAuN
HHBULION| YDi13iaqyoe -v-um

lllllll

COMBINATION OF
Alexander Herold
MEMO SEKI-85-VIII-KL

=
=
B
[~
0
0
=
=
o
2
O
=

14370 -1A45

COMBINATION OF
UNIFICATION ALGORITHM

Alexander Herold

MEMO SEKI-85-VIII-KL

COMBINATION OF UNIFICATION ALGORITHMS

Alexander Herold

Universitdt Kaiserslautern
Fachbereich Informatik
Postfach 3049
6750 Kaiserslautern
FR. Germany

MEMO SEKI-85-VIII-KL

ABSTRACT:

Unification in equational theories, i.e. solving equations in varieties, is a basic
operation in many applications of computer science, particularly in automated
deduction [Si 84]. A combination of unification algorithms for regular finitary
collapse free equational theories with disjoint function symbols is presented.
The idea i1s first to replace certain subterms by constanis and to unify this
constant abstraction and then in a recursive step to handle the replaced
subterms. Total correctness is shown, i.e. the algorithm terminates and yields a
correct and complete set of unifiers provided the special algorithms do so.

CONTENTS

1. Introduction

2. Definitions and Notations

3. The Algorithm

4. The Merge of Substitutions

S. An Example

6. Termination

7. Correctness and Completeness
8. Conclusion

1. INTRODUCTION

Unifcation theory is concerned with problems of the following kind: given two
terms built from function symbols, constants and variables, do there exist
terms that can be substituted for the variables such that the two terms thus
obtained become equal? Robinson [Ro 65] was the first to give an algorithm to
find such a substitution with the additional property that the returned 'unifier’
is most general (or is an mgu for short), i.e. all other substitutions 'unifying’ the
two terms can be computed from that substitution. From an algebraic point of
view unification is solving equations and an mgu is a 'basis’ of the whole set of
unifiers.

Equational unification extends the classical unification problem to solving
equations in equationally defined theories. But then there may not exist one
single mgu. Depending on the equational theory there are finite or infinite sets
of mgu's and in some cases the set of mgu's does not even exist. The equational
theories can therefore be classified into unitary, finitary and infinitary theories
and the class of nullary theories. In the literature there are many unification
algorithms for special equational theories,but they only solve problems with
input terms built from the function symbols defining the equational theories,
arbitrary constants and variables. For a detailed bibliography we refer to
the-state-of-the-art survey of J. Siekmann [Si 84]. In that article the problem
of extending these algorithms to handle terms with additional free' function
symbols (i.e. there is no equational theory defined for that function symbol) is
mentioned. F. Fages was the first who solved that problem for the equational
theory defined by an associative and commutative (AC) function symbol
[Fa 84]. Building upon this work K. Yelick [Ye 85] and E. Tidén [Ti 85]
independently gave algorithms for combining finitary theories by abstracting
those subterms to variables that do not belong to the theory of the top function
symbol. Yelick restricts the problem to regular finitary collapse free theories
(she calls them confined) whereas Tidén gives a proof of the completeness of
his algorithm for the whole class of finitary theories. But in that general

framework termination fails. Another approach is given by C. Kirchner [Ki 85]
who tackles the problem by a decomposition of the terms to be unified. This
algorithm only admits a more restrictive class of equational theories than the
regular finitary collapse free theories.

Working on an extension of the AC-unification algorithm of Livesey and
Siekmann [LS 76][HS 85] we independently found a unification algorithm for
regular finitary collapse free equational theories. The total correctness of the
algorithm is shown, i.e. the algorithm terminates with a complete and correct
set of unifiers. The essential idea of the algorithm is as follows: for the given
terms the subterms not starting with a function symbol from the same
equational theory as the original terms are temporarily replaced by special
constants not occurring in the whole problem, thus reducing the case at hand to
a problem that can be solved by special unification algorithms. The replaced
subterms are then taken care of in a recursive call of the same process.

After some definitions and notation we shall present our algorithm,
demonstrate its working by an example and prove its total correctness. Finally
we shall compare our algorithm with those of Yelick and Tidén.

2. DEFINITIONS AND NOTATIONS
2.1 Terms and Substitutions

Unification theory rests upon the usual algebraic notions (see eg. [Gr 79]
[BS 81]) with the familiar concept of an algebra 4 = (A, F) where A is the

carrier and P is a family of operators given with their arities. For a given
congruence relation ¢ the quotient algebra modulo ¢ is written as
A=, D

Assuming that there is at least one constant (operator of arity O) in F and a
denumerable set of variables ¥ , we define T, the set of first order terms,
over B and V¥, as the least set with (i) ¥ €T, and if arity(f) = 0 for fe F then
feT and (ii) if t,,...t €T and arity(f) = n then f(t, ..t) € T. For a given term
t= g(tl tn) the term tk,l < k =1, is called an immediate subterm of t and
is the immediate superterm of t.; the leading function symbol of t is g

denoted as hd(t) = g. If t is a constant or a variable then hd(t) = t.

Let V(s) be the set of variables occuring in term s; a term s is ground if
Vis)=2.

As usual F'denotes the algebra with carrier T and with operators, namely the
term constructors corresponding to each operator of B. 7 is called the
absolutely free (term) algebra i.e. it just gives an algebraic structure to T. If the

carrier is the set of ground terms it is called the initial algebra [GT 78] or
Herbrand Universe [Lo 78].

A substitutione: T - T is an endomorphism on the term algebra 7' which is
identical almost everywhere on V and can be represented as a finite set of
pairs: 6 = { et .. X et). The restriction el of a substitution & to a set of

variables V is defined as elvx =eX if xe V and 6va = Y else.

Z is the set of substitutions on F and ¢ the identity. The application of a
substitutione to a term t € T is written as 6t. The composition of substitutions
is defined as the usual composition of mappings: (6« Tt =6 (tt)forteT.

Let DOMe ={xeV lex+x} (domain of &)
CODs ={ex|xeDOMs } (codomain of &)
VCODe = V(CODs) (variables in codomain of &)

If VCOD& = @ then & is 2 ground substitution.
A set of substitutions Z ¢ T is said to be based on a set of variables W away
from Z 2 W iff the following two conditions are satisfied

(i) DOMe =W foralleeX
(i) VCODenZ=0 foralleeX

In particular for based substitutions baed on some W we have
DOMs n VCODe = @ which is equivalent to the idempotence of &, i.e. 86 =6. We
shall use this property in the proofs later on.

2.2 Equational Logic and Unification

An equation 8 =t is a pair of terms. A set of equations T is called an
equational theory iff an equation e is in T whenever e is true in every model
of T ie. e is a consequence of T (or for short: e e T whenever T = e). A set of
axioms T of an equational theory T is a set of equations such that T is the least
equational theory containing this set T. We sometimes say that the equational
theory T is presented by T. For simplicity we do not distinguish between the
equational theory and its presentation.

The equality =; generated by a set of equations T is the finest congruence over

T containing all pairs es =6t for s=teT and 6 e&E. (ie. the B-invariant
congruence relation generated by T). The following is Birkhoffs well-known
completeness theorem of equational logic [Bi 35]

Theorem 2.1: T = s=t1 iff 8 5L

We shall sometimes use another derivation system for equational logic which
has been useful in induction proofs (see e.g. McNulty [Mc 76]).

We define

8 ——)0,9 t

iff there exists an equation e of the form 1 =r in T and a substitution & € £ such
that t results from s by replacing a subterm of s equal to &l by er. By a

derivation of s =, t we mean a finite sequence of steps 8, , —. o. S

S = 8 —g1e1 31 e2e23% “e3e3 ~ enen Sn - !

where s, € X and e, ¢ T. If they are clear from the context we omit the indices &
and e. If we consider T as a directed rewrite system we have =5 = oy

where <% is the reflexive, symmetric and transitive closure of —. Our

definitions and notations are consistent with [Gr 79][HO 80])[Mc 76] and
[Ta 791

We extend T-equality in T to the set of substitutions E by:

6= T iff vieV ex=;1x.

If T-equality of substitutions is restricted to a set of variables W we write

6=TT[W] iff VieW ex=;1x

and say & and 1 are T-equal on W.

A substitution T is more general than ¢ on W (or ¢ is a T-instance of T
on W)

6<. T [W] iff IXeE o= At[W]

Two substitutions &1 are called T-equivalent on W

e=,1 [W] iff & T [Wlandt 6 [W]

Given two terms s, t and an equational theory T, a unification problem for T is
denoted as

<s=t>.l.

We say 6 € X is a solution of <8 = 1>, (or & is a T-unifier of s and 1) iff &s = 6l.
For the set of all T-unifiers of s and t we write UZ.(s, t). Without loss of

generality we can assume that the unifiers of s and t are idempotent (if not,
one can find an equivalent set of unifiers that is idempotent). For a given

unification problem <s=1 >po it is not necessary to compute the whole set of
unifiers UZ.(s,t), which is always recursively enumerable for a decidable
theory T, but instead a smaller set useful in representing UZT. Therefore we
define cUZ.(s, 1), a complete set of unifiers of s and t on W = V(s, t) as:

(i) cUz, € UZ, , (correctness)
(ii) VdeUZ, 3eeclZ; bx,6[W] (completeness)

A set of most general unifiers uUZT(s, t) is a complete set with
(i) Ve teplZ: o<, 1[Wlimpliese =1 (minimality).

For technical reasons it turned out to be useful to have the following
requirement: For a set of variablesZ with WeZ

(iv) BUZ(s, t) (resp. cUZ(s, 1)) is based on W away from Z
(protection of Z)

If conditions (i) - (iv) are fulfilled we say WUZ, is a set of most general
unifiers away from Z (resp. cUZ.l.(s, i) is a complete set of unifiers away

from Z) [PL72].
The set pUZ, does not always exist [FH 831[Sc 86]; if it does then it is unique up

to the equivalence =, [W] (see [Hu 76][FH 83]). For that reason it is sufficient
to generate just one pUZ, as some representative of the equivalence class
[HUZ Ly

Depending on the cardinality of the set of most general unifiers we can classify

the equational theories into the following subclasses:
- a theory is unitary iff pUZ. exists and JpUZ.(s, 1)l = 1 for all sand1

- a theory is finitary iff pUZ. exists and IpUZ(s, t)] <oo for all s and t

- a theory is infinitary iff pUZ exists and |nUZ(s, 1)| = co for some s and t

- a theory is nullary iff pUX.,. does not exist for some s and t
Sometimes it turned out to be useful to change the relation <, [W] used in the
definition of completeness and minimality to <, [X] with WeXeZ This
procedure is justified by the so called "Fortsetzungsiemma" as follows

Lemma 2.1: For two idempotent substitutions 81, 92 and the sets of
variables U € V with DOMB, € U and VCODE!2 nV=0:
8, < 6,[U1 iff 8, <. 6,[V]

Proof: Let W = V\U be the extension of the validity domain. By assumption
there exists A; with 8, = A8, [U]. Since VCODB, n V = @ we can find A, such

that for allxe W A;x = x. Define Ay, ={ X« B,x | 1€ W } =8,lyy and let A =A A,
Then for x € U it is AB,X ~p AyA;B,X =A, B, X = 8,1 =8,X by definition of A, and A
and the idempotence of B,. For xe W it is Aﬂzx =kwkuezx T AyX =B,x since
Ajx=x for xeW and DOMB,nW=0. Hence 8, = A8, [UuW=V]
ie. 8, <, 8, [V] The other direction is trivial.]

Another technical lemma which is useful for later proofs is the following:

Lemma 2.2: For idempotent substitutions &, &, T and a set of variables V
with DOMT = V(6(V)) and VCODT n(VCODs LU V) =@
(i) DOM7te = V u DOMe and
(i) if 8 <; TIV(e(V))] then &s <, 16 [DOM1el.

Proof: Using the previous lemma we haved <, 1 [V(e(V v DOMs))] and hence
d¢ <. 16 [V uDOMe] and DOM1e = V u DOMe. |

A unification algorithm is called complete (and minimal) if it returns a correct
and complete (and minimal) set of unifiers for every pair of terms.

2.3 Combination of Equational Theories

In this section we shall describe the equational theories for which we shall give
a unification algorithm.

An equation | = r is called regular iff V(1) = V(r). It is called a collapse axiom
iff it is of the form X =t where 1 is a non-variable term. A set of equations is
called regular iff all equations are regular, and collapse free iff it does not
contain any collapse axioms. In [Ye 85] collapse free theories are called
confined. A theory T is consistent iff the equation X =, y is not deducible in T.

Lemma 2.3: (i) An equational theory T is regular iff some presentation of
T is regular.
(ii) A theory T is collapse free iff some presentation of T is
collapse free.

Proof: (i) Suppose s —, t and let | =t be the equation e then V(el) = V(er)
since T is regular. As t differs form s only by a subterm with the same
variables as the replaced subterm of s we have V(s) = V(1).

(ii) Suppose S—4eX then I=r must be a collapse axiom which is a

contradiction. The lemma follows by induction on the length of a derivation of
st &

Let T be a presentation of an equational theory then F(T) is the set of function
symbols and constants occurring in T. We sometimes call them interpreted
function symbols or interpreted constants to distinguish them from the set l'z

of function symbols and C; of constants for which no equational theory is

defined. We say these function symbols belong to the empty theory @ or are
uninterpreted. A term t is constrained by a theory T iff hd(t) e F(T) and we
write TH(t) = T.

In the sequel we shall assume that T is the union of a set of presentations Ti

whose set of function symbols are mutually disjoint, ie. T = T,I1siscn)
andl'(Ti)nP(Ti) =@ for1<ci+jsn
We say a subterm r is aliem in 8 if it is not an uninterpreted constant or a
variable, ie r¢ cg vV, and if it is constrained by another theory than its
immediate superterm, ie. r is an immediate subterm of some subterm r' of s
and TH(r) = TH(r"). By abuse of notation t is an alien subterm of tif t¢ C;u V.
For a set S of terms we denote as ALIEN(S) a set of representatives of the
T-equivalence classes of the alien subterms of S. Hence s =t iff s=1 for all
s, t € ALIEN(S).
We have to impose some restrictions on the subtheoies T, of T in order for the
algorithm to work:

(i) each equational theory Ti must be regular;

(ii) each equational theory T, must not contain any collapse axioms;

(iii) each equational theory T, must be consistent,

(iv) the wordproblem in the equational theory T must be decidable, ie. it
must be decidable whether s =t for every s,teT;

(v) each equational theory T, must be unitary or finitary,

(vi) for each equational theory there must exist a complete unification
algorithm for uninterpreted constants and variables, i.e. we can solve
unification problems < s = t >, where s, te T(F(T,)uC,, V) and C; is

a denumerable set of uninterpreted constants.
The first restriction is needed for the completeness and termination of the main
algorithm. The second restriction is necessary in order to know which special
unification algorithm is to be called. Regularity and the absence of collapse

axioms is inherited to the whole equational theory T by Lemma 2.3. The third
restriction is obvious since otherwise the unification problem would be trivial.
The next condition is heavily relied upon in our proofs and without this
restriction any unification problem is senseless. The last restrictions are
necessary since the main idea of our algorithm is to abstract subterms
constrained by a different theory than the original terms to uninterpreted
constants. We shall now formalize this abstraction process and give some useful
lemmata about T-equal terms.

Given a set of constants C_; = { ¢, |[t]le T(F(T), V), ;)< C, indexed by the
equivalence classes modulo =, the replacement of the subterms of a term t not

constrained by the theory of t can be described by the following recursive
function -

C-abstract; T(K(T), V) — T(R(T,uC, V)

with C-abstract(t)=t if t=x with xeV or t=c with ceC; and
C-abstract,(t) = f(C-abstract(t,) .. C-abstract,(t) if t=f£(t, .. t) and fe F(T)
and C-abstract(t) = (‘m if t=£(t,.. t)and f¢ F(T,). We omit the indices of
C-abstract, if it is clear to which subalgebra we abstract. Note that we replace

T-equal subterms by the same constant.
Let TH(t) = T, then we denote the abstracted term by t = C-abstract,(t). The set

I-ALIEN(t) = {t, .., t_} = ALIEN(1) of immediate subterms constrained by
another theory than t and replaced by some constants Ct1] - Gtm] denotes
the set of immediate alien subterms and @ = [t ‘=°[u]-----1m‘=°[tn]] the

subterm replacement with t-=0t. Now consider the inverse subterm
replacement a“-[qmet, ,...,c[lm]e=tm]. If we treat the constants

Cit1] > Jtm] in o1 as ‘'special variables' there is no need to formally

distinguish between the subterm replacement o™ and the substitution
® ={qq1<ty - Qtm] © ln)- We then have as=ams=;s. Note that the set

I-ALIEN is again a set of representatives of the T-equivalence classes.
We now define the theory height of a term t as the maximal number of
theory changes in that term:

1+ max{h.(s)|seI-ALIEN(t)} if I-ALIEN(t)+© and
ho(t) =4
L1 else
and call terms whose theory height equals 1 pure terms. Note that for pure

termst = C-abstract(t) and I-ALIEN(t) = @.
Next we collect some lemmata which are needed later on. All lemmas apply to

9

equational theories T which satisfy the above restrictions. The proofs are
always induction proofs on the length of a derivation of s %+ t. We only show
the induction base.

Lemma 2.4: Ifs=_t then TH(s) = TH(1).

Proof: Suppose s el and let 1 =r be the equatione in T. If sl = sthent = er

and hd(s), hd(t) e B(T) since T is collapse free. If &l is equal to a subterm of s
then hd(s) = hd(t), i.e. s and t are constrained by the same theory. [

As an immediate consequence we have the following corollary which is useful
as an extended ‘clash criterium’ for the equational theories under consideration:

Corollary 2.1: If TH(s) = TH(t) then s and t are not T-unifiable.

Lemma 2.5: Ifs=-;t then hi(s) = hi(t).

Proof: Again we consider one derivation step 8 —, o 1. Let 1 = r be the equation
e then h.(1) = h(r) = 1 and since T is regular we have h.(el) = hy(er). But now t

only differs from 8 in a subterm with the same theory height and constrained
by the same theory and therefore we have h.(s) = h(t). m

We finally want to show that a complete set of Ti-unifiers for Ti-pure terms is

a complete set of T-unifiers. The idea of the proof is to abstract the non-pure
subterms in the codomain of an arbitrary unifier by constants to get a pure
unifier which is more general than the original unifier. E. Tidén [Ti 85] showed
the lemma for the more general case of nonregular theories with collapse
axioms.

Lemma 2 6: Let s and t be pure terms with TH(s) = TH(1) = T,. Then every
complete set cUZ..(s,t) of T,-unifiers is a complete set of
T-unifiers.

Proof: For a substitution 6 we define in an analogue way the constant
abstraction & of 6 by &x = C-abstracti(ex) =¢X. For a Ti—pure term 8 it is obvious

that es =@s. Taking the subterm replacement b= Gy ¢ L |t e ALIEN(CODs)]
we have 61 =, bex for all x € DOMe.

We now show that for arbitrary terms s,t with s =r t We have g =, t. As above
the proof is by induction on the length of a derivation of s =r L. Given a single

10

derivation step s % L If s is a variable then t must be a variable since T is
consistent. Now let s = s(s, ,.., 8) with I-ALIEN(s) = (s, ,..,s_}and t=t(t, ,..,)
with I-ALIEN(t)={t,,.,t} and hemce §-= s(o[m s Qgg)) @D
1= t(q“] yeers qm]). We have to distinguish two cases.

CASE 1: The subterm that is replaced by the derivation step is a subterm of sj
for 1<j<m. Then by definition we have t=s(s,,.., 8 1 §) and

—
L= 8(qgq] . Qg s Gom)) a0 8 =L SinCE O] = gy

CASE 2: The subterm that is replaced starts in s. Then we can deduce a
derivation s g el and e is an equationin T, ie. § =, L.

To finish the proof let 8 be an arbitrary unifier of the T,-pure terms s and t
with DOMB = V(s, t) then 8 is a T,-unifier of s and t since 8s =8s =, Bt = Bt. Since
cUZ,.(s, t) is a complete set of T,-unifiers there exists & € cUZ,.(s, t) and A with
8=; A6 [V(s,t)]. We have to show that 8s,6[V(s 1)} for xeVi(s,t)
8x =; b(8x) =; b(Aex) =b(A)(ex) where B(X) is defined by b(A)x =B(Ax). The
equations are easy to see since b acts like a substitution. Hence cUZ,,(s, t) is a
complete set of T-unifiers. @

Finally we want to introduce a new class of theories called simple theories: a
theory T is simple iff pUZT(x, t) = @ for all terms t and all variables x occurring

in t. This is equivalent to the fact that a term is never T-equal to one of its
subterms. It is easy to see that theories with finite congruence classes are
always simple. The converse does not hold. For simple theories some of the
proofs are easier and especially in the algorithms a lot of recursive calls can be
dropped.

3. THE ALGORTIHM

Before we state the algorithm we need some notation: given two arbitrary
terms s and t we defined the set I-ALIEN(s, t) of toplevel subterms that are
constrained by another theory than s resp. t. We then need the set of
subproblems of s and t

SP(s,t) := {(s,t)]s,t eI-ALIEN(s, t) and TH(s') = TH(t') }

i.e. those pairs which are potentially unifiable.

We do not explicitly consider the details of basing the unifier on V(s, t) away
from some set of variables containing V(s, t) since it would only complicate the
notation. The proofs demonstrating that the unifiers are based on V(s, t) away
from Z are not difficult. The special algorithms for the particular theories Tl are

11

denoted by T,-UNIFY.

In our main algorithm we shall use an operation called the merge o= of two
substitutions & and «. Essentially the merge is the set of most general instances
of the two substitutions and is defined in chapter 4 along with some properties.
For a set £ of substitutions we abbreviate {ed|seZ} by Z.8 and
U{esd |6 eZ)by Zad.

The main idea of the unification algorithm is first to unify the constant
abstractions of the original terms. In order to obtain finally the unifiers for the
original terms we have to merge the unifiers of the abstracted terms with the
substitution reversing the abstraction, where the newly introduced constants
are now regarded as variables (STEP 5). Once we have solved the unification
problem for the constant abstraction we have to apply it recursively to all
subterms that have been 'abstracted away' (STEP 6).

FUNCTION UNIFY

INPUT: Two arbitrary terms s and t

STEP 1: if seV or teV then ZT(s, t) := VARIABLE-UNIFY(s, t)
STEP 2: elseif seC or teC then Z.(s,t):= CONSTANT-UNIFY(s,1t)
STEP 3: elseif TH(s) «+ TH(1) then Z.(s,1):=0@
STEP 4: elseif I-ALIEN(s, t) = @ then ZT(s, t) .= TH(s)-UNIFY(s, t)
else let 8.1 be the constant abstraction and o be the
corresponding substitution reversing the abstraction
in
STEPS: (s, 1) = TH(s)-UNIFY(s, 1) x o
STEP 6 forall (s',t) e SP(s,t) do

forall &' € UNIFY (s, t) do
Z.(s, 1) = Z,(s, 1) v UNIFY(e's, 6't)-e

od
od
OUTPUT: The set of unifiers Z.r(s, t) away from Z2 V(s, t)
ENDOF UNIFY

There remain the cases where at least one term is either a variable or a
constant.

12

FUNCTION CONSTANT-UNIFY

INPUT: Two non-variable terms s and t where at least one is a constant

STEP 1: if seCB and tecg then
if s=t then Z.r(s,t) ={e} else Z(s,t)=0
STEP 2: elseif seCj; then Z.(s,t):-@

STEP 3: elseif teC, then Zs.t)=9
STEP 4: elseif TH(s) + TH(t) or h.(s)+ hy(t)
then ZT(s, t):=0 else ZT(S, t) := TH(s)-UNIFY(s, t)

OUTPUT: The set of unifiers Z.(s, t) away from Z2 V(s, t)
ENDOF CONSTANT-UNIFY

Provided the Ti-unification algorithms terminate, the termination of
CONSTANT-UNIFY is no problem.

Lemma 3.1: For a constant and a non-variable term CONSTANT-UNIFY
returns a correct and complete set of unifiers.

Proof: For STEP 1 - 3 the lemma is obvious.
For STEP 4 let s be a constant in F(T,) and hence h.(s) = 1. If t is constrained by

another theory than T, then s and t are not unifiable by Corollary 2.1. so we
have TH(s)=TH(t)=T, Now suppose hi(t)>1 and eeUZ(s t) then
1 ¢hylt) < holet) = h.r(es) = hy(s) = 1 which is a contradiction. Hence s and t are
T,-pure terms and the assertion follows from Lemma 2.6.]

The variable case is more complicated if the considered theories are not simple.
FUNCTION VARIABLE-UNIFY

INPUT: Two terms s and t where at least one is a variable

STEP1: if seV and teV then
if s=t then Z.(s t):={e} else Z(s t)={{st}h

STEP 2: elseif seV then ZT(S, t) :== VARIABLE-TERM-UNIFY(s, t)
STEP 3: elseif teV then Z(s,t):= VARIABLE-TERM-UNIFY(t, s)

OUTPUT: The set of unifiers Z.(s, t) away from Z 2 V(s, t)
ENDOF VARIABLE-UNIFY

13

The fouowing example shows the difficulty in the variable-term-case: let
T, = {(f(f(x, y), y) =f(x,y)}, T,=8 with geP(T,) and T=-T,uT, be the

equational theories and < u = f(u, g(v)) >, the unification problem. Then there

exists a unifier & = { u « f(u', g(v)) } which will be computed by the following
algorithm in STEP 5.

FUNCTION VARIABLE-TERM-UNIFY

INPUT: A variable ¥ and a non-variable term t

17¢]

TEP 1: if x¢ V(i) then Z (x,t)={{xc1})

else let TH(1) =T,

in

STEP2: if T,issimple then Z,(x,1) =0

STEP 3: elseif 1-ALIEN(t) =@ then ZT(x, t):= Ti-UNIFY(x, t)
else let t be the constant abstraction and a be the
corresponding substitution reversing the abstraction
in

STEP 4: if xeVCODa then Z.(x,t):=9

else
STEP S: ZT(I, t):= Ti-UNIFY(X, Uxa
STEP 6: forall (s,t) e SP(t) do

forall ¢ e UNIFY (s, t) do
z,{x, 1) = Z(x,t) v UNIFY(e'z, 6't)-6'

od
od

QUTPUT The set of unifiers Z.(x, t) away from Z2 V(s, t)

ENDOF VARIABLE-TERM-UNIFY

In STEP 1 and STEP 2 termination, correctness and completeness are trivial. By
Lemma 2.6 we know that in STEP 3 a correct and complete set of unifiers is
returned and termination is trivial. In STEP 4 correctness and completeness
follows from the next lemma, whereas termination is inherited from
termination of Ti-UNIFY. For the other steps termination, correctness and

completeness is shown as for the main algorithm.

14

Lemma 3.2: If xeV(t) and x does not occur in some immediate alien
subterm of t, i.e. xe VCODa where o reverses the constant
abstraction of t, i.e. at =; t, then UZ(x, t)=0@.

Proof: Suppose there exists a ¢ such that ax =r ol. Since ¥ € VCODa there exists

a subterm s in t that is constrained by another theory as t and ¥ e V(s). Hence
6x is a subterm of es and therefore hy(ex) < h.(es) < hy(et) which is a

contradiction to ax =; 6t and Lemma 2.5.]

The lemma is a generalized 'occur-check' for non-simple theories. With the
theories T, and T, of the above example the unification problem

<u =f(vg(u))>; has no solutions since u occurs in the immediate alien subterm
g(u).

4. THE MERGE OF SUBSTITUTIONS

The algorithm of the previous section used an operation called the merge of
substitutions or unification of substitutions. Given two substitutions ¢ and T we
say 6 and 1 are T-unifiable iff there exists A such that Ae =, At. Then A is called

a T-unifier of & and 1. The sets UZ.(s, 1), cUZ. (8, 1), pUZ. (6, 1) are defined
accordingly. If pUZ.(e, 1) exists then ext:= {Ae |A e pUZ(6,1)} is called a
merge of & and 1.

In the special situation of the previous algorithms there are certain constraints

on the two substitutions which we want to exploit in the computation of the
merge: first T = {xl 1., xmetm} is a unifier of the constant abstractions

which are pure terms and o:={c1 efr, ,...,cne—rn} reverses a constant

abstraction. Note that the newly introduced constants are now considered as
special variables. Hence we have

(i) DOMT n DOMa = @
(ii) VCODT n VCODa = @.

The last equation holds since CODt only contains the special variables and new
variables not occurring in s and t, whereas VCODa ¢ V(s, t).

In the following lemmata we shall always assume that T and o satisfy these
conditions. We show that unifying two substitutions is the same as unifying two
termlists (¢ unifies (s, ..., sn) and (t,,..., tn) iff es;=p6t, for 1<i<n, or

equivalently e unifies the set of termpairs { (s, t.)| 1 si<n}).

15

Lemma 4.1: For t and a as above:
UZ(T(I) m((xi”m"”n)(t" lm)|l)r))

f

Proof: Let Aa =; AT and x e DOMt then X = x; and Ax; =AQx; =; ATx; =At; for
1<i<m and for x e DOMa then x =¢ and Jtci =lt¢:i =.rl<:u:i =lri for 1<j<n
Hence A is a unifier of the termlists. Conversely let 8 be a unifier of the

termlists then for xe DOMt it is x = with 1 <i< m and Bctxi =Bxi -Tﬂti =6‘rxi

and for x € DOMa x =ciwith 1 <j<nandérc =8¢ =.l.9ri=6ac

=9 P =

Since for simple equational theories uUZ.(x,t)-@ if xeV(t) and

MUZ(x, 1) = {{x « t}} otherwise the most general unifier (if it exists) of the

termlists in Lemma 4.1 is just the composition of {x, « 1.} and {c’ “ ri}. Hence we

define T, =1 and T =61 ands {c<—t r}for 1<j<n

Lemma 4.2: In a simple theory T the termlists (xl yeees XG4 ,...,cn) and
(tI sy B L yoees rn) are T-unifiable iff T, is the most general
unifier.

Proof: We show the “only if" direction by induction on n: let 8 be a unifier then
81, IV Iwith V =V(x; ... X 6 oo, Gty vy 1oy e 1),

Base step: Since Bx; = 8t, =Btx, it is8 = Bt and hence we get 8 <, T, =T [Vn]-

Induction step: Since 8 <, 1 _[V_] there exists A such that 8 =, At _[V_1and
with Lemma 2.1 we have B=.At [V ,,] But then
Ac ., =At.c, =6c =Br =Atrr . (since T ¢

n+1
)ie. A unifies ¢, , and

n'n+1 n n o+ nnsl n+l
anml Hence n+] ¢ Vix rnﬂ) and }IUE (cn+l' n nbl) {Gnﬂ th
8,1 ={C €T fp) and Aspe [V, ., 7)] Therefore we have
Asy n,,[V(c o0 Tafgey)V VCODT 1 and 8 ;AT ;6,7 =7, [DOMT]

with Lemma 2.2 But then® < 7, [V .1 again with Lemma 2.1.

Hence T, exists and is the most general unifier of the termlists.
The other direction is trivial. (]

Corollary 4.1: Let T be a simple theory. If the substitutions T and o are
T-unifiable then T, is a single most general unifier of T and a

and TxQx = (tn } with T, =T, & =7,T is the merge of T and a. If

the substitutions T and o are not T-unifiable then there exists
ih1<j<nwithce V('rHri).

16

For non-simple theories thevum'fication problem < ¢ =Tiyfj 1 is not trivial as

we have seen in chapter 3. It can produce a set of substitutions different from
{ci - Ti-lri}' Hence we cannot directly state the set of most general unifiers of T

and a. But we shall show that it is sufficient to compute the set of most general
unifiers of two smaller termlists. We later use these termlists to show the
termination of our main algorithm.

Lemma 43: (i) If 1 and a are T-unifiable then the termlists

(te,,...,1c)) = (¢, ,..,c)) and (tr . €r)=(s,.,8) are

T-unifiable and vice versa.
(ii) For ~ AepUZ.((c,,..,c) (s;,.,8)) there exists

8 € pUZ (1, @) with At =, 8 [V(1) v V(a)] and vice versa.

Proof: (i) Let A be a unifier of T and a then A is a unifier of the termlists since
Ac; =ATC; = Aac; =Aqac; =Aar, =, Atr; =As, for 1 si<n. The first equation holds

by condition (4.1). Conversely let A be a unifier of the termlists then for
X ¢ DOM7 it is ATTx =ATX =Atax (the last equation again by (4.1)) and for
¢, € DOMa it is Atae, = Atr, =p AT¢; = At1¢;, hence AT unifies T and a.

(i) If A e pUZ((c, ,..,c), (s, ,..,8,)) then AT is a unifier of T and «. Hence
there exists 8 € pUZ(t,) with At <, 8 [V,] where V, - V(1) v V(). But by (i)
8 is a unifier of (c,,..c) and (s,,..s) and therefore thkere exists
NepUZ((c,,...c) (s, ,...8)) with 8<ALV,] where
V,=V(lc,,...c). (s;,...8)) =V(u(V(a))) V,. Hence we have At <. 8[V,]
and 0<.A'[V,] and since At-2[V,] by V,nDOMt=-0 it is
A=At <8<, A [V,] and by the minimality A =A" HenceA =At=,0[V,]. In
addition we have Bt - 8 since for x e DOMt Brx - Bax -8x by (4.1) and
AT sT'B <y ALV, 1 But as VCODt € V, it is 8t <, AT [V,] and therefore we finally
have At =, 8 [V 1.

Now we consider the mapping ®: pUZ (1, a) — pUZ((c, ...,). (s, ... 8))
with $(8) =Ay With AT =8 [V,]. First we show that ¢ is a mapping. Suppose
®(8) =A, and ®(8) =A, then A, = A, [V,] and hence A, = A,. For the injectivity of
 let ®(8,) - 9(8,) then it is 8, =, Ag,T = Ag,T =,0, [V1] and by the minimality
8, =8,. By the above surjectivity of & is obvious, hence & is bijective and the
converse holds. @

We shall now describe an algorithm that computes a complete set
cUZ!.I.((s1 sn). (t1 tn)) of unifiers of two termlists. We assume the existence

of our main algorithm UNIFY since LIST-UNIFY and UNIFY are mutually

17

recursive.

FUNCTION LIST-UNIFY

INPUT: Two arbitrary termlists (s, ,.., s) and (t, ..., t) of length n
20 - {8}
fori:=1,.,ndo
Z, ={1.6,_,l6,_ €Z and 1, e UNIFY(e,_;s, 6, ,1.))}
od

OUTPUT The set of unifiers Z away from Z2 V((s, ,.., s), (t, ... 1))

ENDOF LIST-UNIFY

Lemma 4.4: If UNIFY is a correct and complete algorithm which terminates
then LIST-UNIFY is a correct and complete algorithm for two
termlists.

Proof: Lets eZ thens =1t, where 1, is a correct unifier of T, ;o ... «T,s;
and 7, .. 7,1, by the hypothesis for UNIFY and hence 6, =r 6,t, for all

1
1 <i<n,ie LIST-UNIFY is a correct algorithm.
Now let 8 be a unifier of (s1 sn) and (t1 tn) then 8 is a unifier of s, and t,.

By the completeness of UNIFY there exists t,€Z, = UNIFY(s, t,) with
BSTTIIV(si;ti)]. By Lemma 21 we have 8-:A,7,[W] with
W=V(s;,..s,t,..1) and hence A, is unifier of (t,s,,.,7,s,) and
(tyt, ..., 74t)). By induction it is easy to see that 8= A t.-.. .1,[W] ie
LIST-UNIFY is complete. [|

Termination of our main algorithm and hence of LIST-UNIFY is shown in
section 6. In order to compute the merge it is sufficient to take a complete (not
necessarily minimal) set of unifiers of T and a. We then have some redundant
unifiers which can be eliminated in a minimizing step.

18

S. AN EXAMPLE

Given the unification problem
«f(x f(x f(y g(x u)))) = f(zf(g(ab)g(ab)))>,

where T = T, u T, with T, the theory of associativity and commutativity (AC)
for the function symbol f denoted as AG and T, the empty theory @ forg ab

are two uninterpreted constants. To ease the notation we drop the unnecessary
function symbols f and represent the terms as abelian strings. The immediate
alien subterms for s=f(x’yg(xu)) and t=f(zg(ab)glab)) are
I-ALIEN(s,t) ={g(x u),g(ab)}). The only subproblem is therefore
(s, 1) =(g(x u), g(ab)) with the most general unifier ¢ ={xe<a, ueb}. The
constant abstractions of s and t are g=f(x’yc,) and t=f(z¢?) with

a= {cl «g(x u), C, & g(a b)). The set of most general unifiers for 8§ and t is (see
[St 81][HS 85]):

PUZL(s V) = ({xef(z c)), Yz, 2ef(zy 22 ¢))),
(xec, yeu, zef(u2c,),
xevy, yeiv,e?), zflv,v,2c.c))),
xew,, yeflc,?), zeflw,cc))}).

Merging these unifiers with o we get:

HUZ (s, Uxax = {
(xef(z, g(ab)), yez, zf(z, 2,28(f(z, glab)) z,)), uez,),
{xeglab), yeu, z<f(u,2g(g(ab)u,)), ucu,},
{xev,, y«flv,g(ab)glab)), z<f(v,v,2g(ab)g(v,v,)), uev,),
{xew,, yf(glab) glab)), zf(w, glab)g(w, w,),uew,})}

The only unifier of (s,t) is 6 = {X « a, u « b} and hence 6s = f(a® y g(a b)) and
et=f(zg(ab)g(ab)) have the set of most general T-unifiers
PUZ (es, 6t) = {1, T,) with 1, = {y «f(x, g(a b)), zf(x, a%)) and

1, ={y «g(ab), z«1f(a?)). Hence
1,6 = {Xca,y«f(x, glab)), z«f(x, a?), u < b)
1,e={xcayeglab), z«fa?) ueb)

are two more most general T-unifier of s and t. So finally we have
BUZ (s, t) = pUZ(s t)xa v {1,6, 1,8).

19

6. TERMINATION

In order to prove the termination of Stickel's AC-unification algorithm, F. Fages
[Fa 84] gave a complexity measure for two terms which can be used in the
more general case [Ye 85][Ti 85]. We shall use a slightly modified version of
that measure for showing that our algorithm terminates. The following are
prerequisites for the definition of that measure.
We define the immediate function symbols of a term r in a term s by

Op(r, s) = { hd(t) | t is an immediate superterm of r and a subterm of s }.
We write Op(r,S) for U{Op(r,s)IseS)} and we omit the parentheses in
Op(r, (s, t}) and write Op(r; s, t). The set of theories by which s is constrained in
t is denoted as

T-Op(r,s) = {T'| f e B(T') and f € Op(r, s) }
and T-Op(r, S) as U{ T-Op(r, s) | se S). The set of shared variables of a set of
terms S is then defined as the set of those variables constrained by at least two
different theories

V,(S)=-{xeV(S)|IT-0p(x,S)|>1}.

The complexity of a pair of terms for two terms s and t, which we shall use to
show the termination of our algorithm is:

C(s,t)=(,t) where v=Ns(s, t)] and T =JALIEN(s, t)l.

where the set ALIEN(s,t) of alien subterms is as defined in section 2.3. To
illustrate the definitions we take the example of the previous chapter: let
s = f(x f(x f(y g(x u)))) and t=f(zf(g(ab)g(ab))) then Op(x;s,t)=1{f,g} and
T-Op(x; s, t) = {AG, @). Since the other variables only occur immediately under

one function symbol we have V _(st) = {x}. The set of alien subterms of s and t

is ALIEN(s, t) = {s, t, g(x u), g(a b)). Note that an uninterpreted constant is not
an alien subterm in our definition whereas in the definitions of Fages, Tiden
and Yelick it is.

Taking the lexicographic order on the complexities we obtain a Noetherian
order. For this section we always assume that one of the given terms s and t is
not a variable or an uninterpreted constant since the other cases were treated
in section 3. The following lemma states that the complexity of alien subterms
is less than the complexity of the terms itself.

Lemma 6.1: Given two terms s and t. If §,1 e ALIEN(s, t)u V(s,t) are

proper subterms of s or t and not both are variables then
e(s, t) <e(s, t).

20

Proof: Let C(s,t)=(v,7) and C(s,t)= (v',lr'). Since V(s,t)e V(s,t) and
Op(x; ¢, t') € Op(x; 8, 1) we have V (s, 1) e V (s, 1) and hence v' < v. If v' =v we
have to show ~ that T <1 Now consider the mapping
@: ALIEN(S, t') — ALIEN(s, t) with ®(r'):=r and r =, r". Then @ is an inclusion
and since at least s or t is not contained in ALIEN(s', t') it is 1’ < 1.]

To show the termination of our main algorithm UNIFY we have to show
C(es, &t) < C(s, t) if & unifies some immediate alien subterms of s and t, i.e. we
have to show that unifiers produced by the algorithm decrease the complexity
of the original terms.

We say a substitution & is monotone for s and t iff C(ss, 6t) <C(s, t) and
strictly monotone for s and tiff C(es, 6t) < (s, t). In the following lemmata
we show the monotony of certain substitutions. We call a substitution & alien
for sand tiff 6 = {x « r} with x € V(s, t), r ¢ ALIEN(s, t) and x ¢ V(r).

Lemma 6.2: If a substitution & is alien for two terms s and t then & is
monotone for s and t.

Proof: Let Cles,6t)=W,, 1), C(s,t)=0 1) and e={xer) Since
V, (es,61) = V (s, t) we have v, <.
If Vv, <V we are done. If v, =V we want to show that T, <T. We construct an

injective mapping ¥ from ALIEN(es, &t) to ALIEN(s,t) with ¥(p)=p' and
8p = p. For p=r we define ¥(r)-r with er=r since re ALIEN(s,t) and

X ¢ V(r). For p = r in ALIEN(es, &t) there exists an p'e ALIEN(s, t) with &p' = b;
we define ¥(p) = p'. Hence we have ¥(p) = p' with ep’ =; p.

The injectivity of ¥ is easy to see: q,=¥(p,)=-¥(p,)=-q, implies
P, =164, =6q, =; P, and by definition of ALIEN p, = p, (note that for s' and t'in
ALIEN(s, t) we have: if =gt then ‘=1). Hence
IALIEN(es, 6t)l =, < T = JALIEN(s, t)l. N

A substitution & is called T-pure for s and t iff DOMsc V(s t),
VCODs n VY (s, t) = @ and the following two conditions are satisfied

¢ TeT-Op(x; s, t) for all x e DOMe and

e 6X is a T-pure term (i.e. CODs c T(R(T)u C,, V)).
We can asssume that the algorithms T-UNIFY only generate T-pure

substitutions for T-pure terms; we simply speak of pure substitutions and pure
terms if there are no ambiguities.

Lemma 6.3: If a substitution 6 is T-pure for two terms s and t then & is
monotone for s and t.

21

Proof: Let C(ss, 6t) = v, 7,), (s, 1) = v, 1) and & be T-pure for s and t. We
shall construct an injective mapping & from V. (6s,6t) to V(s t). Let
x eV (es,61): if 1 ¢ VCODe then x eV (s, t) and we choose ®(x) = x. Note that
X ¢ DOMe. For xe VCODe consider the set of variables V, ={ylxeV(ey)}.
Suppose that for all ye V1 ey + X. Since & is T-pure x occurs only under the

function symbols of T in &s and et (x ¢ V(s, t)), which is a contradiction. Now
consider the set V, = {yeV, |6y = x). But then there exists y ¢ V,nV (s, 1) and

we can choose ®(x) =y. Otherwise again all y would only occur under the
function symbols of T in s and t which contradicts x € Vs(e s, 6t). Hence we have

6y =x for all x with &(x)=y. The injectivity of & is easy to see:
y, =®(x,) -#(x,) - y, implies x, -6y, -6y, - X,. Hence v,_ <v.

If v, < v nothing is to show. If v, =v the mapping ® is bijective and there exists
the inverse ! from V (s, t) to V (e, 6t) with &!(x) =ex = y. We want to show
that 1_ < 1. Again we construct a mapping ¥ from ALIEN(ses, 6t) to ALIEN(s, t)
with ¥(p) = p and &p’ = p.

By the bijectivity of # for all x € DOMe with 6x ¢ V we have x ¢ V (s, t). Let p be

in ALIEN(es, st) then p is not introduced by & since for all x with ex¢ V
T-Op(x; s, t) = {T} and {hd(ex)}e T or 6x is an uninterpreted constant. Hence
there must exist a subterm p' e ALIEN(s, t) with &p’ =; p and we define ¥(p) = p'
The injectivity of ¥ is again easy to see: g, =®(p,) =®(p,) = q, implies
Py =84, =84, =; P, and as above p, =p, Hence we have
|ALIEN(es, 6t)l = T_ < T = |ALIEN(s, t)l. =

In the termination proof we shall often use the fact that a substitution which is

pure or alien for s’ and t' is pure or alien for s and t as well if s' and t' are alien
subterms of s and t:

Lemma 6.4: Let s and t be two terms and let s, t' e ALIEN(s, t) u V(s, t) be
proper subterms of s or t and not both variables. If & is alien for
s and t' then & is alien for s and t. If 6 is a pure substitution for
s and t' and VCOD(e) n V(s, t) = @ thena is pure for s and t.

The proof is obvious. The next lemma is the key for the termination proof.
Lemma 6.5: Let 6 be a pure or alien substitution for s and t which are not
both variables and let s, t'€ ALIEN(s, t) be proper and distinct

subterms of s or t. If 6 unifies s and t' then 6 is strictly
monotone.

22

Proof: By the lemmata 6.2 and 6.3 we have C(es, 6t) <C(s,t). Suppose
C(es,6t) =C(s,t), ie. the mapping ¥ from ALIEN(ss,6t) to ALIEN(s,t)
constructed in the above proofs is bijective. Hence the inverse -1 exists with
¥-1(p) - q and ep =; q. But then ¥~!(s) =¥~!(t) since & unifies s' and ' which

contradicts the bijectivity of ¥-1. g

Since in the algorithm the substitutions are built up by composition we say a
substitution & is elementary for the problem <s=t > (or short for s and t)

iff it is a composition of pure or alien substitutions, i.e. 6 =66, ,..6, where 8,
is pure or alien for 6, --6,8ande, , ..e,tfor 2<i<n and &, is pure or alien
for s and t. By an induction argument we have:

Lemma 6.6: (i) If & is an elementary substitution for s and t then & is

~ monotone for s and t.

(ii) If in addition & unifies two distinct and proper subterms
8, t'e ALIEN(s, t) then & is strictly monotone for s and t.

(iii) Let ', t' € ALIEN(s, t) u V(s, t) be proper subterms of s or t
and not both are variables. If 6 is elementary for s' and t'
then 6 is elementary for s and t provided the newly
introduced variables are away from V(s, t).

To summarize: first we introduced monotone substitutions. Then we have
shown that alien and pure substitutions (the elements of the generated
unifiers) and their composition are monotone.
The main termination proof is by Noetherian induction on the complexities of
the input terms. We show UNIFY(s, t) terminates and generates substitutions
elementary for s and t. Therefore it is sufficient:
for two terms s and t the complexity of the input terms s’ and t' in every
recursive call of UNIFY in UNIFY(s, t) is smaller than the complexity of the
original terms ie. C(s,t)<C(s,t) (hence we can apply the induction
hypothesis) and the substitutions generated by UNIFY(s, t) are elementary
for the original terms s and t.
First we prove that the merge operation terminates by showing that every call
of UNIFY in LIST-UNIFY((c,,..,c), (try ,..,tr))) terminates and yields

substitutions which are elementary for s and t.

Theorem 6.1:Given s and t with the corresponding abstractions s resp. t, the
substitutions a = {cl “f ., G ¢ rn} reversing the abstraction

and 1 e TH(s)-UNIFY(s, 1) unifying the abstractions, then the
merge operation T=x terminates and the merges are elementary
for sand t.

23

Proof: We show by induction on n that for i=1,..,n€(r,_,c,1,,r)<C(s1)
and 1, is elementary for s and t with 1,=1, T,-e¢;7,_, and
e, € UNIFY(t,_,c;, 7, ,r,). Since T e TH(s)-UNIFY(s,t) 1, =1 is pure and hence
elementary for s and t; w.l.o.g. we can assume VCODt 2 {c, cn}.

Base step: first we have 1,c, = ¢, € V(tys, 7,t). Since r, € I-ALIEN(s, t) it is
T, € I-ALIEN(t 8, T,t) and with Lemma 6.1 we have
C(14Cq, Tof) < ClTys, T4t) < C(s, t). To show that 7, is elementary for s and t we

distinguish two cases:
CASE 1: cje V(t,r,): Let &, € UNIFY(t,c,, T;r,) then by the main Noetherian

induction hypothesis 6, is elementary for T,c, and 7,r, and by Lemma 6.6 (idd)
6, is elementary for 7,8 and 1t.

CASE 2: c¢ V(t,r,): with 6, = {c; « 7,r,} we have {6,} = UNIFY(r,c,, T,r,) and
with Lemma 6.4 6, is alien for 1,5 and T,t.

Summarizing T, -6,T, is elementary for s and t.

Induction step: If 1 _,c =c then the proof is analogue to the base step. Now
let v, ,c +c.If TH(x ,c)= TH(s) then by Corollary 2.1 t,_,c, and 1, _,r, are
not unifiable since TH(t _,r)+ THt__,c). Now if TH(t__,c)+ TH(s)t__,c isin
ALIEN(t__;s, 7, (t) by TH(s)e T-Op(c; tys,T4t). By the same argument as
above T, _r € ALIBN(tn_,s. Tn_,t). Hence with Lemma 6.1 and the induction
hypothesis (’(n_1 is elementary for s and t) we get that
C(T, €y Tpqfy) <C(T, (8.7, (1) <sC(s,t). Hence by the main Noetherian
induction 6 € UNIFY(t__,c_, T, ,r) is elementary for t_,c and t_.r_and with
Lemma 6.6 (iii) for T,.¢8 and 7__,t. Finally we have 1, =6 _t,_, is elementary
for sand t.]

We now state the two main theorems:

Theorem 6.2:For a variable x and a term t VARIABLE-TERM-UNIFY(x, t)
terminates and generates substitutions which are elementary
for x and t.

The proof is analogue to that of the next theorem:
Theorem 6.3: For two terms s and t at least one of which is not a variable,
UNIFY(s, t) terminates and generates substitutions which are

elementary for sand t .

Proof: In STEP 1 termination is established by Theorem 6.2 as well as the
property of the generated substitutions being elementary.

24

For STEP 2 termination of CONSTANT-UNIFY is obvious. The empty substitution
and unifiers of pure terms are elementary for s and t.

For STEP 3 nothing is to prove.

In STEP 4 termination follows from termination of TH(s)-UNIFY and the
generated substitutions are elementary since they are T-pure by the remark
before Lemma 6.3.

As in STEP 4 TH(s)-UNIFY(g, t) terminates. By Theorem 6.1 the merge operation
terminates and the merges are elementary for s and t. So the theorem is shown
for STEP 5.

In STEP 6 let (s,t)e SP(st) then by Lemma 6.1 €(s,t) < (s, t) and hence
UNIFY(s', t') terminates and the substitutions &' € UNIFY(s', t') are elementary for
s' and t by the main induction hypothesis. With Lemma 6.6 (iii) &' is elementary
for s and t since §,t'e ALIEN(s, t). Since &' unifies s' and t' we know by
Lemma 6.6 (ii) that &' is strictly monotone for s and t, ie. C(e's, 6't) < C(s, t).
Hence by induction hypothesis UNIFY(e's, 6't) terminates and produces
substitutions 6" which are elementary for 6's and 6't, i.e. 6 =6"-6' is elementary
for sand t.]

7. CORRECTNESS AND COMPLETENESS

All the proofs of this chapter are by induction on the recursion depth of the
term pair which is a Noetherian order by the last chapter. The set of
substitutions returned by the unification algorithm is a correct set of unifiers:

Theorem 7.1: Fors,teT UNIFY(s, t) returns a correct set of unifiers.

Proof: Consider each step in UNIFY in succesion:

STEP 1: The theorem follows from the theorem below (correctness for the
variable-term-case).

STEP 2: Correctness is obvious (confer chapter 3).

STEP 3: Nothing is to show.

STEP 4: By assumption Ti-UNIFY is correct.

STEP 5: Let 8,1 be the constant abstractions of s and t with o =r 8 and ot = L.

By induction hypothesis let T be a correct T-unifier of s and t. Since for 8 € Tx
8 =Aa =7 At for some A we have (using the idempotence of T and a):

8.1 =r AsToT =AoT =r AsQl = AeQloQt I B-a

Hence Bs = Bas
=r Be18
) 8.1t by assumption
=r 8.0t
- Bt

25

STEP6: Let (s, t) be a subproblem of s and t. By induction hypothesis let 6" be a
correct unifier of ' and t' and &" be a correct T-unifier of &'s and &'t. Then for
8 =66 € ZT we have
&S = 6'(e's)
- o't by hypothesis
- et a

Theorem 7.2: LetxeVandteT then VARIABLE-TERM-UNIFY(x, t) returns
a correct and complete set of unifiers.

The correctness proof is analogous to the one above, completeness is shown as
below. The following theorem shows that the main algorithm returns a
complete set of unifiers. The technical lemmata can be found below the main
proof.

Theorem 7.3: Lets, tbe terms and let 8 be a T-unifier of s and t. Then there
exists 6 € Z.(s, t) (returned by UNIFY(s, t)) such that

B<,6 [V] withV =V(s,1).

Proof: Again we consider each step in turn.

STEP 1: The theorem follows from the next theorem (completeness for the
variable-term-case).

STEP 2: By Lemma 3.1.

STEP 3: By Corollary 2.1.

STEP 4: By Lemma 2.6.

STEP 5: Now I-ALIEN(s, t) + & and assume for all (s, t) € SP(s, t) it is 8s' # 6t

(else STEP 6 applies). Then by Lemma 7.3 there exists 8 with 8s =81 and
8* €8xt with 8 < 8* [V], where s -as and t - ot are the constant abstractions of

s and t and o the substitution reversing the constant abstraction a. By Lemma
2.6 there exists 8' € Z.(s, 1) (returned by TH(s)-UNIFY(s, t)) such that

8.8 [V] whereV-V(st).

Using Lemma 2.1 we get
B< 8Vl

With Lemma 7.4 we have for & € xa € Z.(s, t) (returned by UNIFY(s, t))
8<;6[V]

STEP 6: In this step the subproblems are considered and moreover there
exists (s,t)eSP(s,t) with 8s' =, 8t. By Noetherian induction there exists

6 € Z(s, t') (returned by UNIFY(s|, t')) such that
8,6 [V] withV'=V(s,t).
In other words there exists A with 8 = A¢' [V] using Lemma 2.1.

26

But then A is a unifier of &'s and &'t. By Noetherian induction there exists
&" € Z,(e's, 6'1) (returned by UNIFY(s's, 6't)) with

Aspe' [V'] with V' = V(e's, 61)
and by Lemma 2.1 and 2.2 we obtain

Ae' < 6’6" [V]
and hence with 6 :=66’ there exists 6 € Z(s, t) (returned by UNIFY(s, t)) such
that 8<6 [Vl .

While this completes the main result of this paragraph, some technical lemmata
remain to be shown stating the existence of certain substitutions in STEP 5.
Regarding the situation in STEP 5 we have two terms s and t constrained by the
same theory, 8 a unifier of s and t and for all subproblems (s, t') € SP(s, t) it is
Bs' ».6t. Let {r,,.,r,} be the immediate alien subterms of s and t

a = {cl T rn} and oy = {c1 «0ry,..c « Brn} =9°‘|00Mor Since Br, a-TBri
for i+j1s<ijsn by assumption let @=[r, «c,,. r,ec] and
Bg=[0r, < c,,.,Br, « c] be the corresponding subterm replacements. If
8=(x, «p,,., X, <Py} We define 8 = {x, « agp, ,..., X «Bgp,_}. Furthermore we

denote by s=os and t=at the constant abstractions of s and t and by
V =V (s, t) the set of variables in s and t.

Lemma 7.1: B(@s) -agBs and B(at) -agbt.

Proof: We only show the first equation for all subtermsr in 8 =as.
Forre cg we distinguish the casesr = ¢, and r = ¢, for 1 < i < n. For the first case

Br =ag8r is obvious. For r = ¢, we have B¢, = ¢, and there exists a subterms r'in s
with ' =_r, and a8’ = ar, =c,. Now let r=xe V. If x ¢ DOM8 - DOMB then
Bx =x =8x =ng8x and for xe DOMB it is Bx =mg8x. Since there occur no
immediate alien subterms in 8 we have for all subterms r of s with r¢C,u V
Or =ogr. .

Lemma 7.2: For all terms q not containing ¢, ,..., C: BaByQq =; 6q.

Proof: Suppose there exists a subterm r in q with r =7 Br; then r is replaced by
8y to c;. Applying Ba to that ¢, we again have Br,. If r +.6r, we have amgr =r
since q does not contain any of the ¢, and hence Baagq - 8q.]

Lemma 7.3: 8 is a unifier of s and t and there exists 8* ¢ Bxo. with
8 <; 6*[V] and V=V(s1)

27

Proof: First 8 is a unifier of s and t since by Lemma 7.1 and the fact that 8
unifies s and t we have
8s =08(ns) =n4(0s) =; a,(6t) -B(at) -BL

We now show that o and 8 are unifiable, i.e. the merge exists. Using Lemma 4.1
we define h, = (x, ,.., X ¢, ,..,¢) and h, = (@gD, ..., 8D 1 ..., f,) then

Bah, = (Bamgp, ..., Ba@gp , Bar, ..., Bar,)
= Bp, ,....0p,, Or, ,....0r) by Lemma 7.2
= Bax,,..,8ax ,Bac, ,..,Bac) = Bah,.
Hence Bt < A [W] where A is a most general unifier of @ and 8 and W are the
variables of a and 8. Therefore we have with V& W and 8% =, Aat =; At
8 =6 s; A = 8*[V] =

Lemma 7. 4: Let 8 be a unifier of s and t with gs.l. 6[vV] and
VCODB' n V = @ then there exists a 6 € 8'=a with 8 %6 [vl

Proof: We assume w.log. that DOM@' = V (if not define 8'x = z for x € V\DOME'
and z is a new variable which does not occur in the problem). Since 8 < 0Lvl

there exists 8 with 8 =,56' [V]and

(1) DOM6nV =0 and DOM&c VCODA.
Furthermore using VCODB‘ nV = @ we have

We show that 8' and o are unifiable. Using again Lemma 4.1 we define
8, = (1, ..., X, ..., ¢) and g, = (B, s 8Ty oo, 1) Now we have 8g, = 8, = h,

by (1) and (2) (confer for the definition of h,and h, the proof of the last
lemma) and 632 = l'n2 by (2). Since h, and h, are unifiable by 6a g, and g, are
unifiable by 8ad and therefore there exists 6 € 8xat with 8a <, 6 [V]. Hence
with 88 -8 [V] we have 8 <; 6 [V] @

8. CONCLUSION

We presented a general unification algorithm that combines unification
algorithms for regular finitary collapse free equational theories. Correctness,
completeness, and termination are shown. Hence the combination of regular
finitary collapse free equational theories is again finitary. The algorithm is not
minimal, but the redundant unifiers can be eliminated in a minimizing step.
Our method does not apply to theories with collapse axioms: for example given
an idempotent function symbol f, i.e. the equational theory I = {f(x x) =x }, an
uninterpreted function symbol g, and the problem <g(x, f(x, y)) = g(a, a) », o,

our algorithm would not find a unifier since the constant abstraction

28

<g(x, c) = gla, a)>M, is not unifiable and there does not exist any further

subproblem. But the original equation is solvable by the substitution
6 = {X « a, Y « a}). The reason is that in equational theories with collpase axioms
terms can collapse to variables by instantiation. It is an open problem to find a
terminating unification algorithm for the whole class of finitary theories.

Given a special unification algorithm for a regular collapse free theory we can
extend this algorithm at once to handle uninterpreted function symbols by our
method. To get an efficient implementation however we are not forced to
compute the whole set of subproblems as defined in the abstract algorithm.
Depending on the theory and the variables in the considered problem, that
algorithm can be improved by only taking a subset of SP(s, t) in the iterative
step. For common equational theories it is an open problem to find such sets.
The combination of unification algorithms for regular collpsefree theories as
proposed by E. Tidén and K. Yelick are based on the same method: both abstract
the immmediate alien subterms to variables, unify the variable-pure
abstracted terms and then merge the resulting unifiers with the substitution
reversing the abstraction. Our algorithm however uses a different approach.
Just as Yelick's algorithm was motivated by the AC-unification algorithm of
Stickel [St 81] and its extension by Fages [Fa 84] we started our work on
extending the AC-unification algorithm of Livesay and Siekmann [LS 76]
resulting in a unification algorithm for AC-function symbols and uninterpreted
function symbols [HS 85]. This algorithm avoids the notoriously inefficient
process of variable abstraction and its redundancy by a reduction of the case at
hand to a variable and constant equation. These advantages carry over to our
general approach: unifying the variable abstractions of the example in section 5
results in 69 unifiers [St 81], each of which has to be merged with the
substitution reversing the variable abstraction. As we have seen, unifying the
constant abstraction of the example yields only four unifiers, which have to be
merged. In the iteration we also have to solve much simpler terms in order to
compute the other two unifiers. Another point is that pure variable term pairs
are almost always unifiable. Hence our constant abstraction process reduces the
unifiability of the abstracted terms in comparison to the variable abstractions
and so reduces the number of merges.

Acknowledgement: I would like to express my gratitude to Hans Jirgen
Biirckert and Jorg Siekmann for their patience in endless discussions. Their
support and constructive criticism have contributed much to the present form
of this paper. I am also grateful to Manfred Schmidt-Schau8 for a thorough
reading of earlier draft of this paper.

29

REFERENCES:

[Bi 351]

[BS 81]

[Fa 84]

[FH 83]

[GT 78]

[Gr 79]
[HO 80]
[HS85]

[Hu 76]
[Ki 85]

[Lo 78]
[LS 76]
[Mc 76]
[Ro 65]

[Sc 86]

[Si 84]
[St 81]

[Ta 79]

Birkhoff, G., 'On the Strucutre of Abstract Algebra’, Proc. Cambrigde
Phil. Soc., Vol. 31,433-454, (1935)

Burris, S. and Sankappanavar, HP., ‘A Course in Universal Algebra),
Springer-Verlag,(1981)

Fages, F. 'Associative-Commutative Unification’, in Proc. of 7%
CADE (ed. RE. Shostak), Springer-Verlag, LNCS 170, 194-208,
(1984)

Fages, F. and Huet, G., 'Unification and Matching in Equational
Theories', Proc. of CAAP83 (ed. G. Ausiello and M. Protasi),
Springer-Verlag, LNCS 159, 205-220, (1983)

Goguen, J. A, Thatcher, J.W. and Wagner, E. G, 'An Initial Algebra
Approach to the Specification, Correctness and Implementation of
Abstract Data Types, in 'Current Trends in Programming
Methodology, Vol.4, Data Structuring' (ed. R. T. Yeh), Prentice Hall,
(1978)

Gritzer, G., 'Universal Algebra', Springer-Verlag, (1979)

Huet, G. and Oppen, D. C,, 'Equations and Rewrite Rules: A Survey’,
in 'Formal Languages: Perspectives and Open Problems (ed R.
Book), Academic Press, (1980)

Herold, A. and Siekmann,], 'Unification in Abelian Semigroups
MEMO SEKI-85-111-KL, Universitit Kaiserslautern,(1985)

Huet, G., ‘Résolution d'équations dans des langages d'ordre
1,2,..,0, Thése de doctorat d'état, Université Paris VII, (1976)
Kirchner, C, Methodes et outils de conception systematique
d'algorithmes d'unification dans les théories équationelles’, Thése
de doctorat d'état, Université de Nancy 1, (1985)

Loveland, D., 'Automated Theorem Proving’, North-Holland, (1978)
Livesay, M. and Siekmann, J. , 'Unification of Sets and Multisets',
Universitit Karlsruhe, Techn. Report, (1976)

McNulty, G., The Decision Problem for Equational Bases of Algebras
Annals of Mathematical Logic 10, 193-259, (1976)

Robinson, J. A.,'A Machine-Oriented Logic Based on the Resolution
Principle’, JACM 12, N2 1, 23-41, (1965)

Schmidt-SchauB, M., ‘Unifcation under Associativity and
Idempotence is of Type Nullary', MEMO SEKI, Universitit
Kaiserslautern, (1986)

Siekmann, J., ‘Universal Unification’, in Proc. of 7' CADE (ed R. E.
Shostak), Springer-Verlag, LNCS 170, 1-42, (1984)

Stickel, M.E,, A Unification Algorithm for Associative-Commutative
Functions', JACM 28, N2. 3, 423-434, (1981)

Taylor, W., ‘Bquational Logic, Houston Journal of Mathematics S,
(1979)

30

[Ti 85]

[Ye 85]

Tidén, E., 'Unifiaction in Combinations of Theories with Disjoint Sets
of Function Symbols', Royal Institute of Technology, Department of
Computing Science, S-100 44 Stockholm, Sweden, (1985)

Yelick, K., ‘Combining Unification Algorithms for Confined Regular
Equational Theories,in Proc. of 'Rewriting Techiques and
Applications' (ed J.-P. Jouannaud), Springer-Verlag, LNCS 202,
365-380, (1985)

31

