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ABSTRACT:

Unification in equational theories, i.e. solving equations in varieties, is 'a  basic
operation in many applications of computer science, particularly in automated
deduction [Si 84]. A combination of unification algorithms for regular finitary
collapse free equational theories with disjoint function symbols is presented.
The idea is first to replace certain subterms by constants and to unify this
constant abstraction and then in a recursive step to handle the replaced
subterms.  Total correctness is shown, i.e. the algorithm terminates and yields a
correct and complete set of unifiers provided the special algorithms do so.
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1. INTRODUCTION

Unifcation theory is concerned with problems of the following kind: given two
terms built from function symbols, constants and variables, do there exist
terms that can be substituted for the variables such that the two terms thus
obtained become equal? Robinson [R0 65 ]  was the first to give an algorithm to
find such a substitution with the additional property that the returned 'unifier'
is most general (or is an mgu for short), i.e. all other substitutions 'unifying’ the
two terms can be computed from that substitution. From an algebraic point of
view unification is solving equations and an mgu is a 'basis' of the whole set of
unifiers. _ - _
Equational unification extends the classical unification problem to solving

equations in equationally defined theories. But then there may not exist one
single mgu. Depending on the equational theory there are finite or infinite sets
of mgu's and in some cases the set of mgu's does not even exist. The equational
theories can therefore be classified into unitary, f initary and inf initary theories
and the class of nullary theories. In the literature there are many unification
algorithms for special equational theories,but they only solve problems with
input terms built from the function symbols defining the equational theories,
arbitrary constants and variables. For a detailed bibliography we refer to
the-state-of-the-art survey of ]. Siekmann [Si 84]. In  that article the problem
of extending these algorithms to handle terms with additional 'free' function
symbols (i.e. there is no equational theory defined for that function symbol) is
mentioned. F. Pages was the first who solved that problem for the equational
theory defined by an associative and commutative (AC) function symbol
[Fa 84]. Building upon this work K. Yelick [Ye 85 ]  and E. Tidén [Ti 85 ]
independently gave algorithms for combining f initary theories by abstracting
those subterms to variables that do not belong to the theory of the top function
symbol. Yelick restricts the problem to regular finitary collapse free theories
(she calls them confined) whereas Tidén gives a proof of the completeness of
his algorithm for the whole class of finitary theories. But in that general





framework termination fails. Another approach is given by C. Kirchner [Ki 85]
who tackles the problem by a decomposition of the terms to be unified. This
algorithm only admits a more restrictive class of equational theories than the
regular finitary collapse free theories.
Working on an extension of the AC—unification algorithm of Livesey and
Siekmann [LS 76][HS 85] we independently found a unification algorithm for
regular finitary collapse free equational theories. The total correctness of the
algorithm is shown, i.e. the algorithm terminates with a complete and correct
set of unifiers. The essential idea of the algorithm is as follows: for the given
terms the subterms not starting with a function symbol from the same
equational theory as the original terms are temporarily replaced by special
constants not occurring in the whole problem, thus reducing the case at hand to
a problem that can be solved by special unification algorithms. The replaced
subterms are then taken care of in a recursive call of the same process.
After some definitions and notation we shall . present our algorithm,
demonstrate its working by an example and prove its total correctness. Finally
we shall compare our algorithm with those of Yelick and Tidén.

2 .  DEFINITIONS AND NOTATIONS

2 .1  Terms and Substitutions

Unification theory rests upon the usual algebraic notions (see e.g. [Gr 79]‘
[BS 81]) With the familiar concept of an algebra A = (A. P) where A is the
carrier and P is a family of operators given with their arities. For a given
congruence relation 9 the quotient algebra modulo g is written as
A,? = (A,? r). ' _ '
Assuming that there is at least one constant (operator of arity O) in F and a
denumerable set of variables V , we define T. the set of first order terms,
over F and V. as the least set with (i) V E T. and if ar_ity(f) = 0 for to  F then
f e  T and (ii) if t1 tn e T and arity(f) = n then f(t1 In) ET. For a given term
t = 3(tl tn) the term lt.!  ;: k s n, is called an immediate subterm of t and t
is the immediate superterm of tk; the leading function symbol of t is g
denoted as hd(t) = g. If t is a constant or a variable then hd(t) = t.
Let V(s) be the set of variables occuring in term, s; a term .5 is ground if
WS) ==ß. _
As usual I'denotes the algebra with carrier T and “With operators,'namely the
term constructors corresponding to each operator of P. ]" is called the
absolutely free (term) algebra i.e. it just'gives an algebraic structure to T. If the
carrier is the set of ground terms it is called the initial algebra [GT 78 ]  or
Herbrand Universe [Lo 78].





A substitution 6: T -+ '1' is an endomorphism on the term algebra F which is
identical almost everywhere on V and can be represented as a finite set of
pairs: 6 ={x1  <- t i  1n!- tn }. The restriction olv of a substitution 6 to a set of
variables V is defined as olvx = 61 if I e V and olvx = I else.

2. is the set of substitutions on " and a the identity. The application of a
substitution 6 to a term t e 'l' is written as ot._The composition of substitutions
is defined as the usual composition of mappings = (6 - t)t  = 6 (tt) for t e 'l'.

‘ Let DOMo=le |ox+x i  (domainofo)
CODo ={oxlxeDOMo} (codomain ots)
VCODo = WCODo) (variables in codomain of o)

If VCODo = B then 6 is a ground substitution.
A set of substitutions Z s 2 is said to be based on a set of variables W away
from Z = W iff the following two conditions are satisfied

(i) DOM5=W foralle
(ii) VCODonZ=B fora l loez

- ‘In particular for based substitutions baed on some W we have
DDMo n VCODe = 9 which is equivalent to the idempotence of o, i.e. 5-6 = s. We
shall use this property in the proofs later on.

' 2.2 ag.-„uam Logic and Unification

An equation 9‘ = t is a pair of terms. A set of equations '1' is called an
equations! theoryéiff an equation e is in T whenever e is true in every model
of T i.e. e is a consequence of 'l' (or for short: e e '1' whenever T != e). A set of
axioms T of an equations! theory T is a set of equations such that T is the least

_ equational theory containing this set T. We sometimes say that the equations!
theory T is presented by T. For simplicity we do not distinguish between the
equations! theory and its presentation.
The equality =1. generated by a set of equations T is the finest congruence over

'1' containing all pairs es = at for s = t eT  and aeg .  (i.e. the Z-invariant
congruence relation generated by T). The following is Birkhoffs well-known
completeness theorem of equations! logic [Bi 35]

Theorem 2-1:  'l' |= s= t  iff sar t .

We shall sometimes use another derivation system for equations! logic which '
has been useful in induction proofs (see es. McNulty [Me 761).





We define
t_)

s o,e

iff there exists an equation. e of the form I = r in T and a substitution 6 e 2 such
that t results from s by replacing a subterm of s equal to o i  by or. By a
derivation of s =]. t we mean a finite sequence of steps s“ —’ei ei si

s "' ‘n'—*61,61 31—3232  32"" 63,63 —’on,en sa = ‘

Where oi e Z and ei e T. If they are clear from the context we omit the indices 6
and e. If we consider T as a directed rewrite system we have = = «L.
where «L» is the reflexive, symmetric and transitive closure of —->. Our
definitions and notations are consistent with [Cr 79l[H0 80][Mc 76] and
[Ta 79].

' We extend T-equality in 'l' to the set of substitutions 2 by:

6=TT ifl‘ Ve  war“ .

If T-equality of substitutions is restricted to a set of variables W we write

6=TT[W]  il‘l‘ \ ! e  ex=Ttx

' and say a and I are T-equal on W.
A substitution I is more general than 6 on W (or o is a T-instance of I
on W):

6ST‘l’ [W] it‘l' 3162  6=TÄT [W].

Two substitutions 6,I are called T-equivalent on W

6 ET I [W] iff a 51.1 [W] and I s., o [W].

Given two terms s, t and an equational theory T, a unification problem for T is
denoted as

<s=t>T

We saye is a solution of < s = t >]. (or o is a T—unil‘ier of s and t) ill‘es =Tot.
For the set of all T—unil‘iers of s and t we write 15:43, t) .  Without loss of

generality we can assume that the unifiers of s and t are idempotent (if nat.
one can find an equivalent set of unil‘iers that is idempotent). For a given





unification problem < s = t >1, it is not necessary to compute the whole set of
unifiers [1211s, t), which is always recursively enumerable for a decidable
theory T, but instead a smaller set useful in representing UZT. Therefore we

define cUZT(s, t), a complete set of unifiers of a and t on W = V(s, t) as:

(i) cUZT : U21. .. (correctness)
(ii) V 6 6 ua,. j 3 o e cUZT= ö s1. 6 [W] (completeness)

A set of most general unifiers uUET(s, t) is a complete set with

(iii) ' _ V o, 'l' e 11s . a Sr 1: [W] implies o =r (minimality).

For technical reasons. it turned out to be useful to have the following
requirement: For a set of variables Z with W s: Z

(iv) uUZT(s, t) (resp. cUET(s, t)) is based on W away from Z
(protection of Z)

If conditions (i) - (iv) are fulfilled we say pUZT is a set of _ moat general
unifiers away from Z ( resp. cUET(s, t) is a complete set of unifiera away
from 2) [PL72). . _
The set (1112., does not always exist [FH 83][Sc 86]; if it does then it is unique up
to the equivalence 3., [W] (see [Hu 76llFH 831). For that reason it is sufficient
to generate just one ”LIE;r as some representative of the equivalence class

Willa:- .
Depending on the cardinality of the set of most general unifiers we can classify
the equations] theories into the following subclasses:

- a theory is unitary iff uUZI.r exists and lpUZTß, t)| = 1 for all s and t
- a theory is finitary iff uUET exists and luUZT(s, t)| < oo for all s and t
-; a theory is infinitary iff 1102:T exists and IpUZT(s. t)| = oo for some s and t
- a theory is nullary iff pUZ.r does not exist for some 3 and t '

Sometimes it turned out to be useful to change the relation $, [W] used in the
definition of completeness and minimality to 51. [X] with W 5 X 5 Z. This
procedure is justified by the so called "Fortsetzungslemma" as follows





Lemma 2 .1 :  For two idempotent substitutions 91, 92 and the sets of
variables U s. V with BOMB2 s U and VCODB2 n V = B:

91 51. 92w] iff a1 51. 92 m.

Proof: Let W = V\U be the extension of the validity domain. By assumption
there exists 1" with 81 =1. AUG: [U]. Since VCODB2 n V = 6 we can find A" such
thatfor all xe  W A"! = itDefineAw = { x:- l I l e  W}=B‚lw and len dwin-

Then for x e U it is m,: _, xwxuazx =xw9‚x = a,: =a‚x by definition of AW and A"
and the idempotence of 91° For x e W it is 1921 =Awluflzx _ ,w  =l  since
A": = 1 for I e W and DOME2 n W = B. Hence BI =.r A82 [UUW = V],
to. BI 51. 92 [V]. The other direction is trivial. a

Another technical lemma which is useful for later proofs is the following:

Lemma 2.2: For idempotent substitutions 6,6,1’ and a set of variables V
' with DOM! = mtv» and VCODI n ( vcone u v ) = a

(i) DOMto = V u DOMo and
(ii) i fö  51. 1' [V(o(V))l then as 51. re [DOMro].

Proof: Using the previous lemma we have 6 s., t “(N V u DOMo))l and hence
do :1 to [V  u DOMo] and DOMro = V u noun. a

A unification algorithm is called complete (and minimal) if it returns a correct
and complete (and minimal) set of unifiers for every pair of terms.

2.3 Combination of Equational Theories

In this section we shall describe the equational theories for which we shall give
a unification algorithm.
An equation 1 = r is called regular iff VU) = Vlr). It is called a collapse axiom
iff it is of the form x = t where t is a non-variable term. A set of equations is
called regular iff all equations are regular, and collapse free iff it does not
contain any collapse axioms. In [Ye 85 ]  collapse free theories are called
confined. A theory T is consistent iff the equation x =... y is not deducible in T.

Lemma 2.3: (1) An equational theory T is regular ilf some presentation of
T is regular.

(ii) A theory T is collapse free iff some presentation of T is
collapse free.





Proof: (i) Suppose s ———+ t and let [=  r be the equation 9 then Viol)= War)
since T is regular. As t differs form s only by a subterm with the same
variables as the replaced subterm of s we have We)  = Wt).
(ii) Suppose 3—)”!  then l=r  must be a collapse axiom which is a

. contradiction. The lemma follows by induction on the length of a derivation of
s JL; t. I

Let T be a presentation of an equational theory then NT) is the set of function
symbols and constants occurring in T. We sometimes call them interpreted
function symbols or interpreted constants to distinguish them from the set PB
of function symbols and CB of constants for which no equational theory is
defined. We say these function symbols belong to the empty theory H or are
uninterpreted. A term t is constrained by a theory T iff hd(t) GMT) and we
write THlt) = T.
In the sequel we shall assume that T is the union of a set of presentations 'l‘i
whose set of function symbols are mutually disjoint, i.e. T = U{ Ti | l s i s n)

_and‘ül'(T)-i=hl'(T)=fl forl siarjsn.
' We say a subterm r is alien in 3 if it is not an uninterpreted constant or a

variable, Le. r 4 c„ u V, and if it is constrained by another theory than its
immediate superterm, Le. r_ is an immediate subterm of some subterm r' of s

- and Tl-llr) = 'I'H(r'). By abuse of notation t is an alien subterm of t if to CB u V.
For a set S d' terms we denote as ALIENS) a set of representatives of the
T—equivalence classes of the alien subterms of 5. Hence 3 =.r 1 iff s = t for all
s, t e ALIENS).
We have to impose some restrictions on the subtheoies ‘I'i of T in order for the
algorithm to work:

(i) each equational theory 'I'i must be regular;
(ii) each equational theory Ti must not contain any collapse axioms;
(iii) each equational theory Ti must be consistent;
(iv) the wordproblem in the equational theory T must be decidable, Le. it

must be decidable whether 3 =--.r t for every 3, t e T;
(v) each equational theory Ti must be unitary or finitaryi
(vi) for each equational theory there must exist a complete unification

algorithm for uninterpreted constants and variables, Le. we can solve
unification problems < s = t ’Ti where s, t e Tl "Ü U c ‚V) and GB is
a denumerable set of uninterpreted constants.

The first restriction is needed for the completeness and termination of the main
algorithm. The second restriction is necessary in order to know which special
unification algorithm is to be called. Regularity and the absence of collapse





axioms is inherited to the whole equational theory T by Lemma 2.3. The third
restriction is obvious since otherwise the unification problem would be trivial
The next condition is heavily relied upon in our proofs and without this _
restriction any unification problem is senseless. The last restrictions are
necessary since the main idea of our algorithm is to abstract subterms
constrained by a different theory than the original terms to uninterpreted
constants. We shall now formalize this abstraction process and give some useful
lemmata about T-equal terms. "
Given a set of constants €;[ = { “11] I [tleTl HT), WM };CB indexed by the
equivalence classes modulo-- , the replacement of the subterms of a term t not

constrained by the theory of t can be described by the following recursive
function

c-abstracti= NINTH) ——> HWJWW V) . _
with C—abstractifl) -- t if t=  x with e or t = c with c'e CE and -
C-abstractiit) = f(C—abstractlül) C-abstractiunn if t = f(tl tn) and'fe !(Ti)
and C-abstract (t) am if t----f(t.  .. tn) and re P(Ti). We omit the indices of

- C-abstract. if it is clear to which subalgebra we abstract. Note that we replace '
T-equal subterms by the same constant.
Let TH(t)= Ti then we denote the abstracted term by t=  C—ab stractilt). The set
i --=ALIEN(t) {t ,...,t_}= ALIEN“) of immediate subterms constrained by
another theory than t and replaced by some constants °[tll  °[tn] denotes

. the set of immediate alien subterms and u= l t l  <=c_[„],...‚1m<=c[t_ll the
subterm replacement with _t_ so t .  Now consider the inverse subterm
replacement n" Januar ,  ‚ . . . , t e tn l .  If we treat the constants
cm] ""’c[t1n] in 1:" as “special variables“ there is no need to formally "
distinguish between the subterm replacement 13" and the substitution
a={q„1e - t„ .  Wendi-t }. We then have as=ans=Ts .  Note that the set

I-  ALIEN is again a set of representatives of the T-e‘quivalence classes.
We now define the theory he1ght of a term t as the maximal number of
theory changes in that term:

f1+max{h1(s)|seI-ALIEN_(t)} if mustache and
h,“) -—{ _

l 1 else

and call terms whose theory height equals 1 pure terms. Note that for pure
termst- C- abstract(t)andi- ALIBN(t)- ß.
Next we collect some lemmata which are needed later on. All lemmas apply to

9





equational theories T which satisfy the above restrictions. The proofs are
always induction proofs on the length of a derivation of s -‘"—» L We only show
the induction base.

Lemma 2-4: If- s =T t then THls) = TI-l(t).

Proof: Suppose s a” t and let 1 = r be the equation e in T. If cl = s then t = or

and MM. hd(t) e NT) since ‘1‘ is collapsefree. If sl is equal to a subterm of s
then hd(s) - hd(t), i.e. s and t are constrained by the same theory. I

As  an immediate consequence we have the following corollary which is useful
as an extended 'clash criteriu m' for the equational theories under consideration:

Corollary 2.1: If mm a: TH“) then s and t are not T—unifiable.

Lemma 2.5: It: _.‚t then n‚(s)-n‚(t).
Proof: Again we consider one derivation step 3 a“ t. Let 1 = r be the equation
e then hT(l) # hT(r) = l and since T is regular we have h,(ol) = hT(or). But now t
only differs from s in a subterm with the same theory height and constrained
by the same theory and therefore we have hrls) = hr“). - I

We finally want to show that a complete set of Ti-unil‘iers for “Ti-pure terms is
a complete set or T-unifiers. The idea of the proof is to abstract the non-pure

, subterms in the codomain of an arbitrary unifier by constants to get a pure
unifier which is more general than the original Unifier. E. Tiden [Ti 85 ]  showed
the lemma for the more general case of nonregular theories with collapse
axioms.

Lemma 2.6: Let s and t be pure terms with mm = mm = Tr Then every
complete set clETils, t) of Ti-unifiers is a complete set of
T—unifiers.

Proof: For a substitution 6 we define in an analogue way the constant
abstraction 9 of o by g: = C-abstractißx) = 51. For a Ti-pure term 3 it is obvious
that gs =g.  Taking the subterm replacement I) = [ cm <- t I t e ALIEN(COD6) l
we have ox =T be; for all x e DOMo.
We now show that for arbitrary terms s,t with s '1‘ t we have fi-‘n 1. As above
the proof is by induction on the length of a derivation of s "r t. Given a single

10





derivation step 9 a” t. If s is a variable then t must be a variable since T is
consistent. Now let 3 = s‘lsI- sm) with l-ALIEl) = {31 s“) and t = t(tI tn)
with l-ALIENlt) = {tI tn} and hence . s = stqm] %ml) and
t = dem] ,...,“ qm). We have to distinguish two cases.
CASE 1: The subterm that is replaced by the derivation step is a subterm of si
for 1 s i s m. Then by definition we have . t - s(sI si' sm) and

1 = 8(‘1311 °[si'l "(su-]) and 3 "' 1 since c[si] "' c[si'l'

CASE 2: The subterm that is replaced starts in s. Then we can deduce a
deriVation ge” t and e is an equation in Ti, Le. ; '11 1.
To finish the proof let 9 be an arbitrary unifier of the Ti-pure terms 3 and t

with DOMB = We, t) then g is a Ti-unifier of s and t since as =_B_s =." Eli =B_t. Since
cUZn(s, t) is a complete set of Ti-unifiers there exists a e cU2„(s‚ t) and A with
B. =.“ lo (“S, t)]. We have to show that B 5T6 [V(s, t)]= for x e Wa, t)
B: fiblflx)  arena) =b(1)(6x) where [3(1) is defined by bu)! =b(lx). The
equations are easy to see since b acts like a substitution. Hence cUZTi(s, t )  is a
complete set of T-unil‘iers. I

Finally we want to introduce a new class of theories called simple theories: a
theory T is simple iff 11112111, t) = 9 for all terms t and all variables x occurring
in t. This is equivalent to the fact that a term is never T-equal to one of its
subterms. It is easy to see that theories with finite congruence classes are
always simple. The converse does not hold. For simple theories some of the

. proofs are easier and especially in the algorithms a lot of recursive calls can be
dropped.

an"?

_3. 'rmt ALconnnu _
Before we state the algorithm we need some notation: given two arbitrary
terms 3 and t we defined the set I-ALIEl, t) of toplevel subterms that are
constrained by another theory than 3 resp. t. We then need the set of
subproblems of s and t

SP(s, t) == {(s', t")|s', t‘e l-ALIEl, t) and TH(’s') =TH(t')}

i.e. those pairs which are potentially unifiable.
We do not explicitly consider the details of basing the unifier on V(s, t) away
from some set of variables containing V(s, t) since it would only complicate the
notation. The proofs demonstrating that the unifiers are based on V(s, t) away
from Z are not difficult. The special algorithms for the particular theories TI are

l l





denoted by Ti-UNIFY.
In our main algorithm we shall use an operation called the merge canon of two
substitutions o and ot. Essentially the merge is the set of most general instances
of the two substitutions and is defined in chapter 4 along with some properties.
For a set 22 of substitutions we abbreviate {es-ö Io  e 2 } by 2-6 and
Uicub IceZ}byZ:-6.
The main idea of the unification algorithm is first to unify the constant
abstractions of the original terms. In order to obtain finally the unifiers for the
original terms we have to merge the unifiers of the abstracted terms with the
substitution reversing the ab str action, where the newly introduced constants
are now regarded as variables (STEP 5). Once we have solved the unification
problem for the constant abstraction we have to apply it recursively to all
subterms that have been 'abstracted away“ (STEP 6).

EUHCLLQH UNIFY

INPUT: Two arbitrary terms 8 and t

STEP 1: if s e V 9L te  V men 21-(8, t) == VARIABLE-UNIFY(s, t)
STEP 2: elsgif s e C or; use then Eris, t) === CONSTANT-UNIFYis, t)
STEP 3: elseif THls) s THU.) men Eris, t) == 9

m _! % oh
—

elseif I-ALIEN(s, t) = ß then 2113, t) == THls)—UNIFY(s, t)
_el_se_ let :5 _t_ be the constant abstraction and a be the

corresponding substitution reversing the abstraction
in

ZTls, t) == THis)-UNIFY(_s_. t) an a
£91111 (s',t') e SP(s, t) d_o

[og]; o‘ e UNIFY (s',_t') d_o
Z.,(s, t) == 2113, t) u UNIFYio's,n't)-o'

od
99.

33
1

IE
E

OUTPUT: The set of unifiers 2113, t) away from Z 2 W3, t)

mm: UNIFY

There re main the cases where at least one term is either a variable or a
constant.

12





w CONSTANT -UNIFY

IEEE Two non—variable terms 3 and t where at least one is a constant

51m= if. seca  and. H563 til—en.

j; s= t  then Z.,(s, t) == {e} else; ZT(s,t)==H
51m gm set:ß then ZT(s,t)=-B
sum am: t een  then 21(8.t)==9

5124; mg; mop-mu) or hT(s)-u-hr(t)
' then ZT(s, t) ==ß else ZT(9,t)== TH(s)-UNIFY(s,t)

OQIPUT= The set of unifiers E.,.(s, t) away from Z 2 Wa, t) .
m CONSTANT-UNITY

Provided the Ti-unil'ication algorithms terminate, the termination of

CONSTANT—UNIFY is no problem.

_ Lemma 3.1.: For a constant and a non—Variable term CONSTANT-UNIFY
returns a correct and complete set of unifiers.

Proof: For STEP 1 - 3 the lemma is obvious. _
For STEP 4 let 3 be a constant in !(Ti) and hence hT(s) = 1. If t is constrained by
aucther theory than Ti then s and t are not unifiable by Corollary 2.1. so we

have TH(s) = TH(_t) = Tr Now suppose b...“) > l and o e UZT(s, t) then
1 < tt) s hT(ot) = Ill-(68) = hr(s) = l which is a oontradiction. Hence 3 and t are
Ti-pure terms and the assertion follows from Lemma 2.6. I

The variable case is more complicated if the considered theories are not simple.
ION VARIABLE-UNIFY '

111213;: Two terms 8 and t where at least one is a variable

SELL ii .36V and teV then
11 8- t  than 21-(8, t) «(6 m 21(3. t) =- {{s<-t}}

m: M say then z.,(s,t)== VARIABLE-TERM-UNIFY(s,t)
STEP 3: elseif Ni V then ts, t) == VARIABLB—TERM-UNIFY(t, s)

MEET: The set of unifiers 2118, t) away from Ze W3, t)
BHDQE VARIABLE-UNIFY '

13





The following example shows the difficulty in the variable-term-case: let

T1={f(f(x,y).y)=f(x,y)}. T2=ß with gel'(T2) and T=T1uT2 be the

equational theories and < u = flu, g(v)) "r the unification problem. Then there
exists a unifier o = { u «flu'. g(v)) } which will be computed by the following
algorithm in STEP S.

meg VARIABLEL-TBRM-UNIFY

111311;. A variable x and a non-variable term t

smn= ;;— uvm then z,(x‚u==un.tn
elselm ‘l‘H(t)=Ti

5°

—if  T. is simple _t___hen 2 T(!, t) ==
elsett l---ALlEN(t) fl then Z.,(x, t )=-'l‘. -UNIFY(x. t)

eleeel_e_Lt_ be the constant abstraction and or be the
corresponding substitution reversing the abstraction
in

SIE;= ;! xevcona- gee 241,059

5152.:

E
E

em
21(1. t) == Ti-UNIFYü, ;) a: a

me » mm (str) e spa) do
' —— ’ o_rall e’ e-UNIFY(3‘,t') gg

21(1, t)  =- 2111, t)  u UNIFY(o'x,o't)oe'
Qi .

Qil

m.  The set of unifiers ETü, t) away from Z a We, 1)

meet: 'VARIABLE—TERM-PUNIFY

In STEP 1 and STEP 2 termination, correctness and completeness are trivial. By
Lemma 2.6 we know that in STEP 3 a correct and complete set of unifiers is
returned and termination is trivial. In STEP 4 , correctness and completeness
follows from the next lemma, whereas termination is inherited from
termination of T i-UNIFY. For the other steps termination, correctness and

completeness is shown as for the main algorithm.
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Lemma 3.2: If elt) and I does not occur in some immediate alien
subterm of t, Le. x e VCODa where ct reverses the constant

. abstraction of t, is. ct_t_ =1. t, then UZTü, t) = ß.

Proof: Suppose there exists a a such that ox :., at. Since x e VCODct there exists

a subterm s in t that is constrained by another theory as t and x e Vls). Hence
ex. is _ a subterm of us and therefore h.,(ßx) 5 Mess) < h.,(ot) which is a
contradiction to ox =.r at and Lemma 2.5. I

The lemma is a generalized 'occur—check' for non-simple theories. With the
theories 'l‘l and 'I‘2 ol' the above example the unification problem

' < u =- f(v glui) >T has no solutions since u occurs in the immediate alien subterm

am).

4. rm: lines or sunsn'rurtons

The algorithm ' of the previous section used an operation called the merge of
substitutions or unification of substitutions. Given two substitutions o and ‘l’ we
say 6 and 1' are T—unifiable iff- there exists A such that An =]. kr. Then A is called

' a‘ T-unifier of o and 1“. The sets urns, T), cUZ.r(e‚ t) ,  pUZTw, t )  are defined
accordingly. If. pUZT(o, t )  exists then out == {Au IA e pUETß, t ) }  is called a
merge of o and t .  ‘ _ _
In the special situation of the previous algorithms there are certain constraints

' on the two substitutions which we want to exploit in the computation of the
merge: first 'r = {11 4— t1 xml- ta} is a unifier of the constant abstractions
which are pure terms and ct = {c1 e -r l  cn «— rn} reverses a constant
abstraction. Note that the newly introduced constants are now considered as
special variables. Hence we have

(i) DOMI n DOMa = 3
(ii) VCOD‘l' n VCODa = H.

The last equation holds since CODT only contains the special variables and new
variables not occurring in s and t, whereas VCODOL : V(s, t).
In the following lemmata we shall always assume that t and at satisfy these
conditions. We show that unifying two substitutions is the same as unifying two
termlists (o unifies (s1 so) and (t1 tn) iff cssi "r 6ti for l s i s n, or
equivalently o unifies the set of termpairs { (si. ti) l 1 s i s n }).
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Lemma 4 .1 :  For I and (1 as above:
" U):T(I,ci)=UE:T((xI ‚.. . . . , c l ,  w“ (tl... ., tm"! ‚...,rnn

Proof: Let Act "T“ and ze  DOMI then x = 1i and Axi =Actx =TAIxi ---Ati for

t s i sm and for xeDOMcL then x=ct  and Aci= AIci=TAaci=a=A1'i for 1 sgsn
Hence A is a unifier of the termlists. Conversely let 9 be a unifier of the
termlists then for x e DOMI it is x=  x. with 1 < i s  m and Bctxi ===Bxi “19‘: a-BIx i

andforxeDOMctxsc iwi th l s j snandBIc=  Sci-.rflri aflacl. I

Since for . simple equational theories HUB-[(1. t) =6  if :11 Wt) and
uUlx, t) = {{x 4- tl} otherwise the most general unifier (if- it exists) of the
termlists in Lemma 4.1 is just the composition of {xi «- ti} and {c' 1- ri}. Hence we
define _Iu =I and Ii ---11iIi_I and ei = {cl "Ti—lri} for l s j s 11.

Lemma 4-2: in a simple theory T the termlists (1:l ....xm,'1:I ..-,cn) and

(tI t-r‘ r“) are T-unil‘iable 111' In is the most general
unifier.

Hoof: We show the"on1y if" direction by induction on 11: let 8 be a unifier then
BsTIBIawithV=V(xl, . .c1. . .cn, .t1. .tn,11 .....rn)
Due step: Since Bxi "r at. = Bu it is 8—=1 BI and hence we get 8-1 .19 - I [Vo].
Induction step: Since 8 s f rI[_Vn  ] there exists A such that B „|. un [Vll ] and
with Lemma . 2.1 we have 8 '1' AI „HMI .  But _ then
ken”---11‘rncn„=8c„;l ----.r Brn+1 =—Atnrml (since Incm= cm) i..e A unifies c„„ and
1all-11:1 Hence ml  ‘ V“  arm!)  and ”U21“: n+1' In r 'm l )  {end} With
an" = {cm *aml}  and Asrcm1 [Vlcml,In1‘_m1)]. Therefore we have

A ST 6nd [V(c11+ l ’ f  arm!)  u VCODTn:I and B =‘l' 11.11 5‘l' 6n+1tn=  Tne l  [MMI-ml]

with Lemma 2.2. But then 9 "r Im1 [Van]  again with Lemma 2.1.
Hence In+1 exists and is the most general unifier of the termlists.
The other direction is trivial. I

Corollary 4 .1 :  Let T be a simple theory. It" the substitutions I and a are
T-unil‘iable then I n is a single most general unifier of I and (x
and na = {In  } with In =Tna =‘l'n'l' is the merge of I and a.  If
the substitutions I and 01 are not T—unil‘iable then there exists
i. 1 5 i S n With ci e VhHri).

16





. For non-simple theories the unification problem < cI =1'Hri "r is not trivial as
we have seen in chapter 3. It can produce a set of substitutions different from
(Ci «- tHri}. Hence we cannot directly state the set of most general unifiers of ‘l'
and &. But we shall show that it is sufficient to compute the set of most general
unifiers of two smaller termlists. We later use these termlists to show the
termination of our main algorithm.

Lemma 4-3: (i) If ‘l' and (1 are T—unifiable then the termlists
('rcI ,...,rcn)=(c",...,cn) and (trl , . . . , trn)=(si , . . . , sn)  are

T-unifiable and vice versa.
(ii) For A e uUZT( (cI cu), (sI an) ) there exists

B e pUZTh, a)  with Ar. zT B [ Wt) u Vlad ] and vice versa.

Proof: (i) Let A be a unifier of 1' and at then A is a unifier of the termlists since
Aci - A‘tci s., Acxci = Actctci = Antri "r Atri- = Asi for 1 s i s n. The first equation holds
by condition (4.1). Conversely let A be. a unifier of the termlists then for
ze  DOM! it is Mu =Au =Atctx (the last equation again by (4.1)) and for

' ci e DOMa it is A'Irctci =A'rri =.|.A‘rci =Atrci, hence A1: unifies ‘[ and ct.

(ii) If Ae uUZT( (cl ca), ($l san then A1: i sa  unifier of ‘l' and (1. Hence
there exists 9 e pUZTh, a) with AI s., 9 [V , ]  where - Vl - Wt) U Wat). But by (i)
B is a unifier of (cI cn) and (sI sa) and therefore there exists
A' e 1111211 (c1 on), (sl so) ) with 8 ST A' [V2] where

_ V2 =V( (01- en), (81 an)) =V( «(an ) ;  VI. Hence we have A1 51.3 [V2]
and 'BsTA'lvzl and since At =-A[V2] by VaOMr -ß  it is
A = A1 "r 8 s, A' [V2] and by the minimality A =A‘. Hence A =«A1: a., 9 [V2]. In
addition we have 91 are since for x e DOM! Bu arm: -Bx by (4.1) and
At sT'B s., A [V1]. But as VCOD‘l’ 5 VI it is 81 s., AI [V1] and therefore we finally
have Ar :., 9 [V , ] .
Now we consider the mapping d»: uUZTPr, ct) ——-> uUZT( (c1 en), (81 sun
with MB) - A9 with Ant '1' B [V , ] .  First we show that 0 is a mapping. Suppose
MB) = A1 and M8) =- A2 then A1 "r A2 [V2] and hence A1 = A2. For the iniectivity of
0 let MB,) 4492) thenit is 91 a.]. A311 - A9,; a.]. 92 [V1] and by the minimality
91 “er  By the above suriectivity of tb is obvious. hence tb is biiective and the
converse holds. - I

We shall now describe an algorithm that computes a complete set
cUIZ.l.((sI so). (tI tn” of unifiers of two termlists. We assume the existence
of our main algorithm UNIFY since LIST-UNIFY and UNIFY are mutually
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recursive.

- W LIST-UNIFY

11mm Two arbitrary termlists (sI so) and (t1 tn) of length n

==- {8}
Engl . .  ‚um

S:=_--{‘1'i-6i 1 l ap  1s i lk  1 andrieUNlFY(oi_ 191- 5141”}

M

DELPHI. The 'set of unifiers Zn away from Z; V((s1 an), (11 ‚..., tn”

_ am LIST—UNIFY

Lemma'4.4= If UNIFY is a correct and complete algorithm which terminates
then LIST-UNIFY is a correct and complete algorithm for two
termlists.

Ptoot: Let on e Zn then on = rn- orI where fi is a correct unifier of IH— o'l’1si

and 1'1- ‚o ..-r  1it by the hypothesis for UNIFY and hence onei a, anti for all
l s i s  n. i.e. LlST-UNIFY 1s a correct algorithm.
Now let 9 be a unifier of (S , ... ., ) and (t1... , t )  then 9 is a unifier of 31 and tl.
By the completeness of UNIFY there exists T1621=UNIFY(81, t,) with

'BSTTJVRIJ'H. By' Lemma 2.1 we have B-TAII'IW] with
'W=V(s,,...,sn.t1,....tn) and hence l l  is unifier of (1 ,31 , . - . t  and
, (T.1tl,...‚‘tltn). By induction it is easy to see that B-TAatn- ...-tJW], i.e.

LlST-UNIFY is complete. I

Termination of our main algorithm and hence of LIST-UNIFY is shown in
section 6 .  In order to compute the merge it is sufficient to take a complete (not
necessarily minimal) set of unifiers of r and at. We then have some redundant
unifiers which can be eliminated in a minimizing step.
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5. AN Kanpur
Given the unification problem

< f(x f(x f(y g(x u)))) = H: f(g(a b) g(a b))) >T

where T = T' u 'l_‘2 with T1 the theory of associativity and commutativity (AC)
for the function symbol f denoted as AC, and 'I'2 the empty theory 9 for 3, a, b
are two uninterpreted constants. To ease the notation we drop the unnecessary
function symbols f and represent the terms as abeli‘an strings. The immediate
alien subterms for s = H!2 y ah n)) and t = l‘(z g(a b) 3(a b)) are
l—ALIENLs, t) = { ah u), g(a b) }. The only subproblem is therefore
(3', t') = (all u), 3(a b)) with the most general unifier o‘ = (x e- a, u e- b}. The
constant abstractions of s and t are s = f(x2 y c,) and t = f(z cf) with
a ={c1'4- glx u), c2 e- g(a b)). The set of most general unifiers for ; and t is (see

[St 81 1l 85]):

nUZTh'z. l) - {(x <- f(zl c2). y <— 22. z <- f(zl zz2 c1 )}.
{I <- cz, y <- “2» z <- f(u22 cl”,
' {x «— v„ y e— f(V2022). z «- f(vlvzzclcgß.
{! 4- WI, y (— 11622), z <- f(clcz)) }.

Merging these unifiers with ct we get:

Wilda. that = {
{ x <- f(z1 g(a b)). y e— zz, z <- f(zI 22? g( f(zl g(a b)) 23 )). u 4- 23 ),
{ I  <— 8(a b). y e- 112, z «flug,2 8( 8(a b) ua)), u «— u3 ).
{ x «v„ y e-flv2 gta b) gta b)). z <-f(vI v.} g(a b)g(v1v3)). u «vs },
{x  <— wi, y e—f(g(a b) g(a b)). 2 «- f(wI 8(a b) g(w1 “Va" u c-ws }}

The only unifier of (s'. t') is o = {x <— a, u +- b} and hence es = f(a2 y gla b)) and
at - f(z g(a b) 8(a b)) have the set of most general T-unifiers
uUETms, at) = {Tl. T2) with T1 = {y <- fürl gia b)). 2 +- f(x1 az)} and
t2 = {y <- g(a b), z e- f(azß. Hence

1'16 = {x c- a, y e-fllrI gla b)). z «t I  az), u +- b}
1'26 = {x«-a,ye-g(a b), z<—f( a2), [Jr-b}

are two more most general T-unifier of s and t. So finally we have

FIRTH. t)  = l-IUZT(§. that U {116126}.
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6.  TERMINATION

In order to prove the termination of Stickers AC— unification algorithm, F. Pages
[Fa 84} gave a complexity measure for two terms which can be used in the
more general case [YeBSllTi 85]. _ We shall use a slightly modified version of
that measure for showing that our algorithm terminates. The following are
prerequisites for the definition of that measure.
We define the immediate function symbols of a term r, in a term s by

Op(r, s) = { hd(t) I t is an immediate superterm of r and a subterm of s }.
We write 0p(r‚ S) for U{ Op(r‚ s) l s e S}  and we omit the parentheses in
0p(r, {s, t)) and write 0p(r, s, t). The set of theories by which 3 is constrained in
t is denoted as

T— Op(r, s)= ”‘ Ifel'(T') andfe Op(r, s ) }
and T-0p(r, S) as U{ T-0p(r, s) I s e S}  The set of shared variables of a set of
terms 5 is then defined as the set of those variables constrained by at least two
different theories

v‚(5)_--{x e VISI I I T-Op(x, 5) | > 1 }.
The complexity of a pair of terms for two terms 3 and t. which we shall use to
show the termination of our algorithm is:

c(s,t)=(v,r) "where v=lv‚(s‚t)l and 1' =IALIEN(s,t)l.

where the set ALIEN(s, t) of alien subterms is als-defined in section 2.3. To
illustrate the definitions we take the example of the previous chapter: let
s _- f(x f(x l‘(y 3(x um) and t = f(z f(g(a b) 3(a b”) then 0p(x; s, t) = {f, a} and
T—Oplx; s, t) = {AL}, ß}. Since the othervariables only occur immediately under
one function symbol we have V8(s,t) = {x}. The set of alien subterms of s and t
is ALIEN(s, t) = {s, t, g‘(x u), g(a b)}. Note'that an uninterpreted constant is not
an alien subterm in our definition whereas in the definitions of Pages, Tiden
and Yelick it is.
Taking the lexicographic order on the complexities we obtain a Noetherian
order. For this section we always assume that one of the given terms 3 and t is
not a variable or an uninterpreted constant since the other cases were treated
in section 3. The following lemma states that the complexity of alien subter ms
is less than the complexity of the terms itself.

Lemma 6 .1 :  Given two terms 3 and t. If s' .t'e ALIEN(s. t )uV(s .  t)  are
proper subterms of s or t and not both are variables then

[:(s', t') < cls.  t).
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Proof: Let 8(3, t) =(V,1') and 0(3', t') = (v',‘r;). Since V(s‘, t ' ) :  V(3, t) and
Op(xi 3', t') s 0p(x, s, t) we have Vs(s',t') !=. Vs(s, t) and hence v' 5. v. If v' - v  we
have to show " ‘ that 'r' < 1’. Now consider the mapping.
@: ALIEl', t“) 4—4: ALIEN(s, t) with tblr') == r and r =1 r‘. Then @ is an inclusion
and since at least 3 or t is not contained in ALIEN(3‘, t') it is r' < 'l'. I

To show the termination of our main algorithm UN IFY we have to show
Mos, at) < 0(3, t) if e unifies some immediate alien subterms of 3 and t, i.e. we

' have to show that unifiers produced by the algorithm decrease the complexity
of the original terms. '
We say a substitution 6 is monotone for a and t iff 0(os,ot) 30(3, t) and
strictly monotone for a and t iff Mas, at) < B(s, t). In the following lemmata
we show the monotony of certain substitutions. We call a substitution 6 alien
for a and t iff o = {I 4- r} with I 6 WS, t), r e ALIEN(s, t) and x Q Wt).

Lemma 6.2:  If a substitution 5 is alien for two terms 3 and t then a is
monotone for s and t. .

Proof=- Let 8(63, et) -_- (ve, T6), C(3, t) = (v, T) and . o = {I e - r} .  Since
“(as, at) s v„(s, t) we have Pa 5 v.

‘ If _va <“? we are done. If va. =‘v we want to show that Tu s r .  We construct an

injective “mapping ‘.l’ from ALIEN(os,ot)‘to ALIEN(3, t) with ‘P(p)- p' and
op'=.l.p. For-p =r  we define ‘l'(r)=r with or =r  since reALIEN(s, t) and
x e V(r). For p == r in ALIEN(os, at) there exists an p‘ e ALIEN(3, t) with ep’ =T p,

. we define ‘?(p) = p'. Hence we have ‘l’(p) = p' with op' =1. p.
The injectivity org ‘? is easy to see: q1 = IMp! )  = ‘l’(p2) = q2 implies
p15,  oq1 =oq2 =]. p2 and by definition of ALIEN p1 = p2 (note that for s' and t' in
ALIEN(3, t) we have: if s'- =.r t' then s' = t'). Hence

‘ IALIEN(os, at)! = ta .<. ‘l' = |ALIEN(s‚ t)l. I

A substitution 6 is. called T—pure for a and t ifl‘ DOMo : V(s‚ t),
VCODo :1 W3, t) - H and the following two conditions are satisfied

0 T e T-0p(x, s, t) for all x e mm: and
o 61 is a T-pure term (i.e. CODE: 5 T( HT) U C , V)).

We can asssUme that the algorithms T-UNIFY only generate T—pure
substitutions for T-pure terms. we simply speak of pure substitutions and pure
terms if there are no ambiguities. ‘

Lemma 6.3: If a substitution 6 is T—pure for two terms 3 and t then 6 is
monotone for s andt.
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Proof: Let Mas, 6t) = (va, te), Bls, t) = (12,!) and 6 be T—pure for s and t. We
shall construct an injective mapping tb from Vs(6s‚ at) to Vsls, t). Let
x e Vsles, at): if x 4 VC0D6 then x e Vsls, t) and we choose 43(1) - x. Note that
x c DOMo. For 15  WOW consider the set of variables VI = {y I x eVleyi}.
Suppose that for all y e V'  6y 4- 1. Since 6 is T—pure x occurs only under the

function symbols of T in 68 and 6t (1 4 WS, 0), which is a contradiction. Now
consider the set V2 = {y e V1 I6y =- I}. But then there exists y e V2 n Vs(s, t) and
we can choose @(x) = y. Otherwise again all y would only occur under the
function symbols of T in s and t which contradicts x e ”Isle 3. 6t). Hence we have
6y - x for all x with @(x) - y. The 'injectivity of 0 ' is easy to see:
yI - mp - ts) =- 572 implies x1 soyI  - 6Y2 - x2. Hence v.ß s v.
If v° < v nothing is to show. If vu = v the mapping (b is bijective and there exists

the inverse 0" from V‚(s‚ t) to Vsles, est) with @"(x) = 6x = y. We want to show
that TB s 1'. Again we construct a mapping ‘1' from ALIENles, 6t) to ALIEl, t)
with WP) = 9“ and 6p' "r p.
By the biiectivity of d? for all x e DOMo with ex € V we have x 4 Vsls, t). Let p be
in ALIEN(6s, 6t) then'p is not introduced by 6 since for all x with MGV
T-0p(x. s, t) = {T} and {hd(61)} e T or ex is an uninterpreted constant. Hence
there mustexist a subterm p' e ALIEN(s, t) with 6p‘ =1. p and we define 1l’lp) = p'.
The injectivity of ‘1’ is again easy to see: q1 4191) =(!!(p2) = q2 implies
pI «faq! =6q2 =1. p2 and as above _ p' = 92- Hence we have

‘ lALIENlos, 6t)l = tu s T =|AL1EN(s,t)l. I

In the termination proof we shall often use the fact that a substitution which is
pure or alien for s' and t' is pure or alien for s and t as well if s' and t' are alien
subterms of s and t:

. Lemma 6.4: Let s and t be two terms and let s', t'e ALIEN(s, t) u V(s‚ t) be
proper subterms of s or t and not both variables. If 6 is alien for
s’ and t' then 6 is alien for s and t. If 6 is a pure substitution for
s' and t' and VCOD(6) n W8, 1) '= ß thenn is pure for 3 and t.

The proof is obvious. The next lemma is the key for the termination proof.

Lemma 6 .5:  Let 6 be a pure or alien substitution for s and t which are not
both variables and let 3', t' e ALIEN(s, t) be proper and distinct
subterms of s or t. If 6 unifies s' and t' then 6 is strictly
monotone.
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Proof: By the lemmata 6.2 and 6.3 we have C(os.ot) 5 MS, t). Suppose
c(es,'ot) =c(s, t). i.e. the mapping ‘1' from ALIEN(os,ot) to ALIEN(s, t)
constructed in the aboVe proofs is biiective. Hence the inverse ‘?" exists with
‘1’"(p) = q and op -T q. But then 111413044110 since 6 unifies s' and t' which
contradicts the bijectivity of "P". I

Since in the algorithm the substitutions are built up by composition we say a
substitution o is elementary for the problem < s = t >... (or short for s and t)
iff it is a composition of pure or alien substitutions, i.e. 6 :  “11511-1" .1111 where 51

is pure or alien for GH a l s  and 6H s i t  for 2 s i s n and o ,  is pure or alien
for s and t By an induction argument we have:

Lemma 6.6: (i) If e is an elementary substitution for s and t then 6 is
_ monotone for s and t.

(ii) If in addition 6 unifies two distinct and proper subterms
s', t’ e ALIEN(s, t) then 6 is strictly monotone for s and t.

(iii) Let s', t' e-ALIEN(s, t) UVls ,  t) beproper subterms of s or t
and not both are variables. If e is elementary for ' s' and t'
then 6 is elementary for s and t provided the newly
introduced variables are away from V(s, t).

To summarize: first we introduced monotone substitutions. Then we have
shown that alien and pure substitutions (the elements of the generated

' ~un1f1ers) and their composition are monotone.
' The main termination proof is by Noetherian induction "on the complexities of

the input terms. We show UNIFY(s. t) terminates and generates substitutions
elementary for s and t. Therefore it is sufficient:

for two terms 3 and t the complexity of the input terms 8' and t' in every
recursive call of UNIFY' in UNIFY(‘s, t) is smaller than the complexity of the
original terms i.e. 0(3'. t') < ds.  t) (hence we can apply the induction
hypothesis) and the substitutions generated by UNIFY(s. t) are elementary
for the original terms 3 and t.

First we prove that the merge operation terminates by showing that every call
of UNIFY in LIST-UNIFY( (c1 cn), (frl ,...,trn) ) terminates and yields
substitutions which are elementary for s and t

Theorem 6.1-.- Given s and t with the corresponding abstractions s resp. t. the
substitutions 11 :c  <— "1 '‚. ‚ . ,c  4— r n} reversing the abstraction
and ‘l' e TH(s)-UNIFY(§. _) unifying the abstractions. then the
merge operation tact terminates and the merges are elementary
for s and t.
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Proof: We show by induction on n that for i s  1 n 8(I1_1c1,I1_1r1) < cls, t)
and I1 is elementary for s and t with To =I. I1=61I1_1 and
eieUNIFY(ti_lci‚.tHri). Since teTH(s)-UNIFY(3‚L)' 111-‘1' is pure and hence
elementaryl'o'r s and t; w.l.o.g. we can assume VCODI 2 {c1 cn}.
Bue step: first we have („cl = C16 V(Ios,Iot). Since r1 6 I-ALIEN(s, t) it is
Ior1eI-ALIEN(I1,s,I11t) and with Lemma 6. l we have
8(Ioc1,I11r1) < C(Ios,I11t) s l3(s, t). To show that I1 is elementary for s and t we
distinguish two cases:
CASE 1=cc1e V(I11r1 )= Let 61 e UNIFY(Ioc1.Ior1) then by the main Noetherian
induction hypothesis 61 is elementary for tool and Ior1 and by Lemma 6.6 (iii)
61 is elementary for („3 and („I.
CASE 2: C13 V(I11r1): with 61 - {c1 :— I11r1} we have {61} =- UNIFY(I11c1,I11r1) and
with Lemma 6.4 61 is alien for {118 and fat.
Summarizing I1  - 61I11 is elementary for s and t.
Induction step: If In_1c1‘I = cn then the proof is analogue to the base step. Now
let In_ 1% + cn. If TH(In_1cn)- TH(s) then by Corollary 2.1 I11_1cn and In_1rn are
not unifiable since 'I‘H(_I11_11'n ) * TH(I11_1cn ). Now if TIilIll_1611) * TH(s)I11_1cll is in

, ALIBN(In_1s. In_1t) by TH(s) e T-Op(c1. I113,I11t) . By the same argument as
above was  ALIENlIn_1s,In_1t). Hence with Lemma 6.1 and the induction
hypothesis (t“ is elementary for _ s and t) we get that
C(In_c1 n. 

111-1'11) < C(I11_1s. In_1t) s [!(s, t). Hence by the main Noetherian
- induction ein e UNIFY(Tn-1°11: 111-1’11) is elementary for Tn_1c“ and I mr and with
Lemma 6.6(iii). . for In_1s and {Mt. Finally we have In =6I1I11_ 1 is elementary
for s and t. > I

We now state the two main theorems:

Theorem 6.2: For a variable x and a term t VARIABLE-TBRM-UNIFY(X. t)
terminates and generates substitutions which are elementary
for x and t. '

The proof is analogue to that of the next theorem:

Theorem 6.3: For two terms 3 and t at least one of which is not a variable,
UNIFY(s, t )  terminates and generates substitutions which are
elementary for s and t .

Proof: In STEP 1 termination is established by Theorem 6.2 as well as the
property of the generated substitutions being elementary.
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For STEP 2 termination of CONSTANT-UNIFY is obvious. The empty substitution
and unifiers of pure terms are elementary for s and L
For STEP 3 nothing 18 to prove.
In STEP 4 termination follows from termination of TH(s)—UNIFY and the

v generated substitutions are elementary since they are T——pure by the remark
before Lemma 6.3.
As in STEP 4 TH(s)—UNIFY(s. t) terminates. By Theorem 6.1 the merge operation
terminates and the merges are elementary for s and t. So the theorem is shown
for STEP 5.
In STEP 6 let (s', t') e SP(s,t) then by Lemma 6.1 c(s', t') < c(s, t) and hence
UNIFY(s', t') terminates and the substitutions 6' e UNIFY(s', t') are elementary for
s' and t' by the main induction hypothesis. With Lemma 6.6 (iii) 6' is elementary
for s and t since s', t‘ e .ALIEN(s; t). Since 6' unifies s‘ and t’ we know by
Lemma 6.6 (ii) that 6' is strictly monotone for s and t, i.e. c(6'3,6't) < C(s. t).
Hence by induction hypothesis UNIFY(6's e't) terminates and produces
substitutions 6" which are- elementary for 6' s and out i.e. 6=°6"o6'1s elementary
for s and t. _ I

_ 7. comcrNhss m) coupLB'mmss
All the proofs of this chapter are by induction on the recursion depth of the
term pair which is a Noetherian order by the last chapter. The set of
substitutions returned by the unification algorithm is a correct set of unifiers:

Theorem 7 .1  : For s,  t e 'l' UNIFYts, t) returns a correct set of unifiers.

Proof: Consider each step in UNIFY in succesion:
STEP 1: The theorem follows from the theorem below (correctness for the
variable-term-case).
STEP 2: Correctness is obvious (confer chapter 3).
STEP 3: Nothing is to show.
STEP 4: By assumption Ti-UNIFY is correct.
STEP 5: Let s, t be the constant abstractions of s and t with as =.r s and at "r t.
By induction hypothesis let 1' be a correct T-unifier of s and 1. Since for 9 e no.
B - la '1' M for somel we have (using the idempotence of ‘l’ and at):

Hot =.r Lot-r = Afr =», M: = loll-(1 ""f im
Hence Es a, 9-0. s

=1. 9-13

'r 8-11 .by assumption
=]. 3-(11

'1- 91 . ,
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STEP6= Let (s', t') be a subproblem of s and L By induction hypothesis let 6' be a
correct unifler of s' and t' and o" be a correct T-unifier of 6's and 6'1. Then for
e = 6“o6' e 2T we have

as  =9: 6"(5‘3)
'1' 6"(6' t) by hypothesis
- e t  _ _ I

Theorem 7.2: Let x e V and t e T then VARIABLE-TERM-UNIFY(x. t) returns
a correct and complete set of unifiers.

The correctness proof is analogous to theme above, completeness is shown as
below. The following theorem shows that the main algorithm returns a

_“ complete set of unifiers. The technical lemmata can be found below the main
proof. - —

Theorem 7.3: Let s, t be terms and let 9 be a T—unifier of s and t. Then there
exists 6 e £T(s, t) (returned by UNIFY(s, t)) such that

B s.T 6 [V]  with V =- Vls. t).

‘ Proof: Again we consider each step in turn.
STEP 1: The theorem follows from the next theorem (cempleteness for the

1variabledam-ease). ' '
STEP 2: By Lemma 3.1.
STEP 3= By Corollary 2.1.
STEP 4: By Lemma 2 ..6

' STEP 5: Now l-  ALIEN(s, t) +Hand assume for all (s', t',)eSP(s t) it is 93' wet
(else STEP 6 applies). Then by Lemma 7.3 there exists Q with Es =, Bit and
9“ 6 flat: with 9 51. 8" [V] ,  where s - a s  and L - nt  are the constant abstractions of

3 and t and a the substitution reversing the constant abstraction a. By Lemma
2.6 there exists B‘ e ZT(s. I) (returned by TH(s)-UNIFY(s. t)) such that

a s1. 9' [ l ]  where 1 = Wi. 1).
Using Lemma 2.1 we get

.9. ‘1 B‘ [V].
With Lemma 7.4 we have for o e B'xoL s E.,(s, t) (returned by UNIFY(s, t))

BsToIV1
STEP 6: In this step the sub problems are considered and moreover there
exists (8', t') e SP(s, t) with 83' =, (it. By Noetherian induction there exists
6' e ZT(s', t') (returned by UNIFY(s', t')) such that

9 s1. 5' [V'] with V' = V(s’, t'). _
In other words there exists 1 with B =T Äö' [V]  using Lemma 2.1.
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But then 1 is a unifier of 6's and at By Noetherian induction there exists
a" e Erie‘s, a't) (returned by UNIFY(e's, 31)) with

' A ‘1 6" [V“] with V" = Vlo's, e't)
' and by Lemma 2.1 and 2.2 we obtain

__ lo' :1. 6"6' [V]
and hence with e == 6"6' there exists 6 e 71(3, t) (returned by UNIFYls, t)) such
that 8 s1. 6 [V]. I

While this completes the main result of this paragraph, some technical lemmata
remain to be shown stating the existence of certain substitutions in STEP 5.
Regarding the situation in STEP S we have two terms 3 and t constrained by the
same theory, 0 a unifier of s and t and for all subproblems (s', t') e SP(s, t) it is
83' „er .  Let {r1 rn} be the immediate alien subterms of s and t,
at - {cI «- t'l ‚..., cn <- rn} and cto = {01 +- 91'' cn «- a} deflower Since 9rl tr 9rj

for i a: j, 1 5 Li 5 n by assumption let a =- [r' <= 0‘ rue cn] and
no - [Brl = c ‘  ,...,91'‚. = cn] be the corresponding subterm replacements. If

„ B’ - {x1 +- p! x“I <— pm} we define a == {xI e- “up1 x“ <- uop'}. Furthermore we
denote by s = us  and _t_ = at the constant abstractiOns of s and t and by
V - V(s. t) the set of variables in s and t.

team: 7.1: fl(us)-uefls and fi(at)-u.8t.

Proof: We onlyshow the first equation for all subterms r in s = us.
For r e cg'we distinguish the cases r == ci and r = c‘ for 1 s i s n For the first case
fir - uOBr is obvious. For r ci we have Qci = ci and there exists a subterms r' in _s
with r' =1. ri and 0,91" =1.u‚9ri _= c‘. Now let r = x e V. If x e DOME = now then
fix =- x =8x walk and for x e DOME it is fix annex. Since there occur no
immediate alien subterms in s, we have for all subterms r of s with r 4 ca u V
fir - user. I

Lemma 7.2: For all terms q not containing c1 ‚...,_cn= Bacon “r Bq.

Proof = Suppose there exists a subterm r in q with r '1' 9ri then r is replaced by
a, to cr Applying 9a to that ol we again have er,. If r a», 9rI we have door = r
since q does not contain any of the ci and hence 9(1q -.|. Bq. I

Lemma 7.3: a is a unifier of s. and t and there exists 8* € am with
- B sT 8* [V]  and V = V(s, t).

27





Proof: First 3 is a unifier of 5; and 1 since by Lemma 7.1 and the fact that B
unifies s and t we have _

Q; = mus) -.-u‚(es) =, como =acut) =31.
We now show that on and Q are ‘unifiable, i.e. the merge exists. Using Lemma 4.1
we define h1 - (xI Imp, cn) and h2 = (“ap1 ‚...,uapmx1 rn) then

Both2 '- (Baußp1 Bauopm, HeirI Barn)
=,- (lip1 ,. . . ,8p,  Br1 ‚...,Ora) . by Lemma 7.2
= (Bax! ,...‚Buxm, Bixc1 ,...,Bcicn) = Buhl.

Henoe 901 5,1 [W] where a is a most general unifier of oz and Q and W are the
variables of a and 3. Therefore we have with V = W and B" 'r la '1' Ar

B-BcLsTAcL=8*[V]. .
Lemma 7.4: Let 9' be a unifier of s and t with 851. 9' [V]  and

VCODO' n V = 6 then there exists a 6 e B'uct with 8 s]. a [V].

Proof: We assume w.l.o.g. that DOMB' = V (if not define B'x = z for x e V\DOM9’
and z is a new variable which doesnot occhr in the problem). Since a s1. 9‘ [V]

' - there exists 6 with a =169' [V] and
( l )  DOM6nV=9  and DOM6:VCOD9‘.
Furthermore using VCOlJB' n V = ß we have
.(2) DOME n Wa) &
We show that B’ and 01 are unifiable. Using again Lemma 4.1 we define

_ gI - (xI xmrc1 cn) and g2 - (B'x1 ,...,B‘xm,rI yr“). Now we have 63‘ - g1 - h1
- by (Hand (2) (confer for the definition of n' and l12 the proof of the last

lemma) and 632 - h2 by (2). Since 1:1l and h2 are unifiable by Ba 31 and 32 are
unifiable by 9016 and therefore there exists a e B'xct with Bali S1. 6 [V].  Hence
with 9016 - 9  [V]  we have 9 ST 6 [V].  I

8.  CONCLUSION

We presented a general unification algorith m. that combines unification
algorithms for regular finitary collapse free equational theories. Correctness,
completeness, and termination are shown. Hence the combination of regular
f initary collapse free equational theories is again finitary. The algorithm is not
minimal. but the redundant unifiers can be eliminated in a minimizing step.
Our method does not apply to theories with collapse axioms: for example given
an idempotent function symbol f. i.e. the equational theory I = { f(x x) = x }, an
uninterpreted function symbol g, and the problem < g(x. f(x, y)) = g(a, a) >M.
our algorithm would not find a unifier since the constant abstraction

28





< g(x‚ c) =- g(a, a) >”, is not. unifiable and there does not exist any further

subprbblem. But. the original equation is solvable by the substitution
6 - {x e- a, y <- a}. The reason is that in equational theories with collpase axioms

_ terms can collapse to variables by instantiation. It is an open problem to find a
terminating unification algorithm for the whole class of finitary theories.
Given a special unification algorithm for a regular collapse free theory we can
extend this algorithm at once to handle uninterpreted function symbols by our
method. To get an efficient imple mentation however we are not forced to
compute the whole set of subproblems as defined in the abstract algorithm.
Depending on the theory and the variables in the considered problem, that
algorithm can be improved byonly taking a subset of SPls, t) in the iterative
step. For common equational theories it is an open problem to find such sets.
The combination of unification algorithms for regular collpsefree theories as
proposed by E Tidén and K. Yelick' are based on the same method: both abstract
the im'mmediate alien subterms to variables, unify the variable-pure
abstracted terms and then merge the, resulting unifiers with the substitution
reversing the abstraction. Our algorithm however uses a different approach.
Just as Yelick's algorithm was motivated by the AC—unification algorithm of
Stickel [St 81] and its extension by Fages [Pa 84] we started our work on
extending the AC-unification algorithm of Livesay and Siekmann [LS 76]
resulting in a unification algorithm for AC-function symbols and uninterpreted
function symbols [HS SSL This algorithm avoids the notoriously inefficient
process cf variable abstraction and its redundancy by a reduction of the case at
hand to a variable and constant equation. These advantages carry over to our
general approach: unifying the. variable abstractions of the example in section 5
results in 69. unifiers [St _81], each of which has to be merged with the

' substitution reversing the variable abstraction. As we have seen, unifying the
constant abstraction of the example yields only four unifiers, which have to be
merged. In the iteration we also have to solve much simpler terms in order to
compute the other two unifiers. Anotherpoint is that pure variable term pairs
are almost always unifiable. Hence our constant abstraction process reduces the
unifiability of the abstracted terms in comparison to the variable abstractions
and so reduces the number of merges. '
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