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Abstract 

In this paper we introduce a test for confluence on ground terms. This lest 

8110ws us to prove the ground confluence of term rewriting systems where 

the Knuth~Bendix Algorithm does not terminate. 

Ground Confluence of term rewriting systems is suffident, if one is interested 

in congruences on ground terms. This is for example the case in the domain of 

inductive proofs or in the domain of program synUlesis. 
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.2 Ground COnfluence 

(1) Introduction 

The Knuth-Bend~ Algorithm is a procedure for transforming a set of equations into a 

confluent term rewriting system. It has recently been applied in theories where only the 

congruence on ground terms of the equational theory is of interest, for example in the 

domain of iriductive proofs (e.g. [MU 80], [HH 821 [KM 83], [jK 85]) or in the domain of 

program synthesis (e.g. (DB 85]). Although it is sufficient for these applications to 

generate term rewriting systems which are confluent. on ground terms, the classical 

Knuth-Bendix Algorithm tries to generate a term rewriting system wIDeh is confluent on 

arbitrary terms. This often: leads to cases where the classical knuth-Bcmwx Algorithm 

generates an infinite system, even though the infinite system contalns a finite ground 

confluent system. In this paper we will introduce a test for ground confluence which is 

stronger than the classical confluence test. Tbis test aHows us to prove the' ground 

confluence of term rewriting systems where the classical Knuth-BendiI Algorithm does 

not terminate. 

Tests for gro~nd confluence have also been considered in [GO 8Sb] and [FR 86], where 

restrictions to the number of cri~ca1 pairs are introduced if we apply the Knuth-BendiI 

Algorithm for inductive proofs. 

In (GO 8Sb] a term rewriting system is splitted into three disjoint sets, a confluent set of , 

rules (A) which are axioms for the inductive theory, a set of rules (I) which are inductive 

consequ~ces of A and a set cootaJning all other rules (0). The critical pairs are computed 

only from A Cl 0 but they are reduced by all rules (A \:I I Cl 0). If the function symbols can 

be splitted into CODstructorsand defined Junctions, then the number of critical pairs can 

be further reduced by considering only overlapping~ where variables are replaced by 

constructor terms. 

In (PR 8~) the term rewriting system is also spHtted into axioms (A) and a set CODtainlna 

all other rules (0). Critical pairs between rules of 0 are not considered and for a rule in 0 

only critical overlappings at a single position in the left hand side of the rule have to be 

considered. FOr this position a critical overlapping with a rule from A has to exist for 

every (constructor-) ground instance of the rule. If no position in the rule satisfies this 

condition, then the confluence test can not be applied. 

For both methods oneneeds special informations about the term rewriting system: 
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- One has to to identify a subset of rules as aIioms A
 

- In [00 8Sb] one has to identify also a set ef consequen::es I
 

- In [FR 861 one has to choose a position in th0 left hand side of a rule
 

r one is flot able to identify a set of lIiom~ in a set of rules Rwhich is smaller than RI 

then both methods can not be applied. This is the case fQC example in program synthesis 

where one starts with an unstructured set of equations. But also in the area of inductive 

proots, one may get problems if the term rewriting systems 'contains more than one 

complete set of uioms in a set of rules. We will give an example with two complete sets 

Di uioms. where thetnuth-Bendil: Algorithm with the ground confluence test of [GO 8Sb] 

Of [PR 86] does not ter minate if we choose the wrong set ol axioms. 

In [PR 36], one has to choose also pQSitions in left hand sides of rules. Often. a wrong 

choice also causes the completion procedure to generate an infinite system. 

In this paper we give a ground confluence test for term rewriting systems without the 

problem of choosing a set of axioms or a position in the left hand side of rules (se<:tion 3). 

This test can be improved for term 'rewriting systems with convertible function symbols 

(s~ -4). where a function symbol is convertible (defined function) if it does not occur 

if' any ground term nOrmal form. Finally we give examples where the ground confluence 

t"sisin [GO 85b] and [PR 86] fail and with the test developed in this paper we can prove,.
 

the ground CODC1uen~ of these examples.
 

(2) Notation and Basic Definitions 

We assume Cam~ity of the reader with the basic proofs and results of ·the 
'.. ," 

Knutb-Bendix Algorithm (e.g. [HU 77], [HO 80], [KB 70]). its e:Itension Cor inductive proofs. .,. , 

, (e:g, (MU 80), [HH 82i> and tJle generalized Newman Lemma [WB 83]. 

edenote by VA the set of all variables and by PS tJle set of all Cunction symbols. TE(F,V) 

is oot of all terms constructed by variables Crom Vc VA and by Cunction symbols 

from P c: PS. A single term is denoted by t or by at p, l or 6 if it occurs in a rule or 

equatiOn. Occurences in terms are denoted by u. v and w. The symbol £ denotestJle top 

levelcx:curence of a term. O(t) is the set of all occurences of tJle term t and O'(t) is the set 

of all non variable occurences of 1. V(t) returns all variables of the term 1. Substitutions 
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are den0U!d by 0, '{ and ,. 

A set of pairs of terms ill denoted by P, if we consider this pairs as rules we will denote it 

by R and if we consider these. pairs as equations we will denote it by B, a -+ fJ and 1 -- IS 

denote single rules and a • pand ~ • IS denote single equations. For every term rewriting 

system R in this paper we assume a R-compatible term order~g >, therefore we ronsider 

only terminating terPl rewriting systems. A one step derivation with II rule in P is 

denoted by t -:- p t' and I-i p is the symmetric closure of -- p.•~ P ~d I-!...J P aJ:e the 

reflexive and transitive closures of -- p and I-i p. Two terms t 1 and ~ are connected in 

one step below a term t (t. Hp, t ~), if t. I-i P ~, t ) t. and t >t2.-The reflexive and 

transitive closure of H p, t is denoted by ~ P, t· 

The set IRR(R) contains all terms which are irreducible in R and IR.Ro(R) rontains all 

ground terms from IRR(R). Terms from IRR(R) are called to be in R normal form, t ~R is 

the normal form of the term tin R, if t has a unique normal form. 

A term rewriting system is ground confluent, iff for all derivations t. and ~ from a 

ground term t, there exists a 'term t' which is derivable from t. and t2, 

In. this paper we will distinguish between critical overlappings CO(R) and critical triples 

CT(R) of a term rewriting System R. This two sets aredefined as follows: 

(2.1 ) Definition 

Let R be a term rewriting system. CO(R) denotes the set of all critical overlappings of RI 

CO(R) - { (a -- p, U,l --6) I 

a -+ p, 1 ~ 6 ERA U E O'(a) A 3 6, '( : 6((X) tu· "(l» 

CT(a ~ p, u, l --+ 6) returns a critical triple for a critiCal overlapping from CO(R): 

Cf(R) ~ (6(a), 6(a) [ u +- 6(,(6» 1, 6(P» 

with. - , is a renaming substitution of l 

- V(lp(l» n V(a)-£1 

- 6 is a most general unifier or' atu and. '(l). 

We denote the set of all critical triples of R by CTS(R). 
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The 1fluence and the connectedness of a critical tripie are defined as follows: 

(2,2) Definition
 

Let R be a term rewriting system and (t •. t2• t3) be a triple of terms. Then:
 

- {t i , t 2• t3) is confluent in Riff t2~R t3~R2 

- (t i , 12, t3) is subconnected in R iff t21-1 R, 11 t3· 

(3) A test [or ground confluence 

In this section, we introduce a test for ground confluence. We start with the observation 

that a term rewriting system is ground confluent, iff every ground instance of a critical 

triple is confluent. Usually there are infinitely many ground instances of critical triples. 

therefore we have to find a testable criterion. For confluent critical triples, the confluence 

of every ground instance of the triple is obviously satisfied, but the ground instances or 
other critical triples may be confluent even though the triple itself is not confluent. In 

his paper we introduce a test [or pr~vjng the confluence of all ground instances for 

critical triples which are not Confluent. This test bases on the following ideas. 

- We create a finite set M of instances for a critical triple (tt. ~, t3) if the critical 

triple is not confluent (~~R + t3~R) 

- We prove that every triple (1' t, l'2'1'3)from M is subconnected (1' 2 t-!-i R, 1', 1'3) 

- The critical triple (t" t2• t3) is ground subconnected if every ground instance of 

(t•. t2, t ) is also a ground instance ora triple in M (M covers {(t!' t2• t )})3 3

Note, that we use the subconnectedness of triples instead of confluence. The confluence of 

a triple always implies its subconnectedness and for confluent term rewriting systems. 

these properties are. equivalent [WB 83]. For other term rewriting systems the 

subconnectedness may also hold for triples which are not confluent. This is also true in 

our case where we may have ground confluence but not full confluence for a term 
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these properties are equivalent [WB 83]. For other term rewriting systems the

subconnectedness may also hold for triples which are not confluent. This is also true in

our case where we may have ground confluence: but not full confluence for a term
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rewriting system. Therefore a critical triple with variables may be subconnected even
 

though only every ground instance of the triple is confluent but not the critical triple
 

itself. We will show eIamples of this case in the appendix.
 

We will now formalize these ideas. The proofs for this section and the nelt section can be
 

found in the appendix.
 

We will first give SOme notation:
 

(3.1) Definition
 

Let (t.. t2, t3) be a triple of terms and M be a set of triples of terms.
 

-	 I(M) denotes the set of all ground instances of triples in M,
 

I(M) 1- ((6(tt),6(t2),O(t »I ht, t2• t ) EM
3 3

" V,X E V(t l fu V(t2) u V(t3) '0(1) E TE(FS. 0) } 

- (tt. t • t ) is sround confluent if all ground instances of (t1,t2• t ) are confluent. 2 3	 3
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V (t' l' t'2't'3) E 1( (t1•12, t3) »:t'2 ~ R. r 1 r 3 

The basis for this paper is the nelt theorem. 

(3.2) Theorem 

Let, R be a terminating term rewriting system. Then. R is ground confluent iff every 

crjtical triple is ground subconnected: 

V (t.. t2• t3) E I(CTS(R» : t2 ~ R. tl t3 

Every ground instance of a critical triple is connected if it is covered by a connected set 

of triples M (defintion 3.3. lemma 3.4), 
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13,3) Definition 

Let Mj and M2 be $ets of triples of terms, M covers Mi iff every ground instance of at 

triple in. . 2 is also a ground instance of a triple in M :t 

HM2) c HM,) 

BA) Lemma 

Let R be a term rewriting system, (t1, t2, t ) a critical triple from crS(R) and M be a set 
3

of triples of terms with: 

V (t'1' t'2' t'3) e M It'2 t-!.-f R. r t t'3 

Then,{tl' t2, t3) is ground connected if { (t., t2, t 3) } is covered by M. 

Now we need a way to generate instances of critical triples and to prove that these 

instances are connected. The method in this paper bases on an extension of the 

oolllfluence test given by [WB 83] and [KU 85]. 

For a rdtlca1 triple which is not confluent we try to unify the left hand sides of rules 

with a subterm of the first component of the triple. Assume (tl' t2, t ) - CT(a -+ p, u,3

l-+ 6) is a critical triple which is not confluent and t -+ 6' is a rule where t is 

unifiable with t. tu by 0, Then the rules ex. -+ p, l -+ 6 and (( -+ 6' can be appJied at 

o(t. ): 

0(t.)~R0{t2) with o-+6atu 

-+ Ro(t.) [v t-- 0(6')] with (( ---t 6' at v 

---+ R0(t3) with ex. ---+ pat t 

The trjpl~ (o(t,), 6{t2)' 0(13» is subconnected if the triples (o(t.), 0(t2), 6(t.) [ v+- 6(tO ]) 

and (eh. ),o(t.) [ v t-- 0(6~) l. 0(t3» are confluent: 
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(3.3) Definitior

Let M,  and M ,  be sets of triples of terms. M ,  covers M,  iff every ground instance of a

triple in  in  M,  is also a ground instance of a triple in  My:

1{M,)  I (M,)

(34) Lemma
Let R be a term rewriting system, ( t , ,  t,, t , )  a critical triple from CTS(R) and M be a set

of triples of terms with:

VI ,  t yu tdeM  i t ,  pg o t

Then, (t,, t,, t , )  is ground connected if { (t,,  t , ,  t , )  } is covered by M.

Now we need a way to generate instances of critical triples and to prove that these

instances are connected. The method in this paper bases on an extension of the

confluence test given by [WB 83] and [KU 85].
For a critical triple which is not confluent we try to unify the left hand sides of rules

with a subterm of the first component of the triple. Assume (t,t, t,) = CT(@ — B, u,

¥ — 5) is a critical triple which is not confluent and ¥' — & is a rule where ¥ is

unifiable with t , /u  by 6 .  Then the rules « — B, 3 — 8 and y '—  & can be applied at

(ty).

s( t )  — po(t,) withy — 8 a tu

—po l t )  [v—60(8)] withy —&a tv

— pelt) w i t ha— pate

The triple (e(t,), 6(t,), 6(t,)) is subconnected if the triples (e(t,), s(t,), ( t , )  [ v —6(8). ])

and (oft, o(t,)  [ v«— (8) 1. 6(t,)) are confluent:
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We try to prove the confluence of the triples by' considering the positions where the 

rules l --+ 6. t --+ 6' are applied (case 1) for the triple (6(i l ). 6(~). 6(tl ) [ v ~,6(6') ] ) 

and the positions where the rules t --+6', <X. ---+ P are applied (case '2) for the triple 

(6(t ), 6(t ) [ v ~ 6(6') 1. 6(t ». l l 3

If two rules are appHed at positions which do not criticaHy overlap, then the derived 

terms can be reduced to a common term, otherwise' we have to check the critical 

overlappings, 

We formalize this idea by introducing a new set DCO(C.R) (double critical overlappings) 

of critical overlappings. DCO(C,R), contains an element of the form 

(a --+ P. u, l- 6. v, t --+ 6') if (a--+ P. u, l--+ 6) is an element from C and a non 

variable subterm of the fifst component from (tl' t2'~) -' cr(a --+ p, U,l--+ 6) is 

unifiable'wlth a rule from R. Wc denote the instance of the triple cr(a ----'-P. u. ¥ ---+6) 

by DCT(a ---+ p, u,l--+.6. y, t --+ 6') (double critical triple), The set IX.iS(C,R) contains a 

double critical triple for every element from DCR(C,R); 

(3.'5) Definition 

Let R be a set of term rewriting rules and C a subset of CO(R), We define the sets DCO. 

DCT and DCTS onR and Cas followsl 
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We try to prove the confluence of the triples by considering the positions where the

rulesy — 5, y — § are applied (case 1) for the triple (e(t,), 6(t,), 6(t,} [ v —6(5) 1 )

and the positions where the rules y — &, a — PB are applied (case 2) for the triple

(e(t,), eft,  [ v— (8) ] s i t y ) .

I f  two rules are applied at positions which do not critically overlap, then the derived

terms can be reduced to a common term, otherwise we have to check the: critical
overlappings.

We formalize this idea by  introducing a new set DCO(CR) (double critical overlappings)

of critical overlappings. DCO(CR) . contains an element of the form

(a —B uy—b vy —&)  if ( a—PB, u, y— 5) is an element from C and a non

variable subterm of the first component from ( t , t ,  ty) = CT(@-—ß, u, 3 — 8) is

unifiable with a rule from R. We denote the instance of the triple CT(a —B u, 3 — 5)
by  DCT(@« — B, u, x — 5, v,  3 — &) (double critical triple). The set DCTS(CR) contains a

double critical triple for every element from DCR(CR):

(3.5) Definiti

Let R be a set of term rewriting rules and C a subset of  CO(R). We define the sets DCO,

DCT and DCTS onR and C as follows:

Ground Confluence 8

e( t ,

ety) e t )  v — 6(8°)] (tz)
ra ™,

Ca ,

@
a

ff
e

re
n

ts

w ¥ ®
 

rm
We try to prove the confluence of the triples by considering the positions where the

rulesy — 5, y — § are applied (case 1) for the triple (e(t,), 6(t,), 6(t,} [ v —6(5) 1 )

and the positions where the rules y — &, a — PB are applied (case 2) for the triple

(e(t,), eft,  [ v— (8) ] s i t y ) .

I f  two rules are applied at positions which do not critically overlap, then the derived

terms can be reduced to a common term, otherwise we have to check the: critical
overlappings.

We formalize this idea by  introducing a new set DCO(CR) (double critical overlappings)

of critical overlappings. DCO(CR) . contains an element of the form

(a —B uy—b vy —&)  if ( a—PB, u, y— 5) is an element from C and a non

variable subterm of the first component from ( t , t ,  ty) = CT(@-—ß, u, 3 — 8) is

unifiable with a rule from R. We denote the instance of the triple CT(a —B u, 3 — 5)
by  DCT(@« — B, u, x — 5, v,  3 — &) (double critical triple). The set DCTS(CR) contains a

double critical triple for every element from DCR(CR):

(3.5) Definiti

Let R be a set of term rewriting rules and C a subset of  CO(R). We define the sets DCO,

DCT and DCTS onR and C as follows:
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OCO(C, R) I- «a ~P. u. ~ ~6. v, 0' -tfO I(a ~p, u,lf ~6) e C" t -t6' E R 

" ( (t\, ~, t3) - Cf(a ~ p, u, If ~ 6) 

~ V E O'(t l )" 3 o. '( : o(tl)/v - t(t») 

IX.'T(' --', u, ~ ~ 6, v, i ~ 6') .- (6(t l ). 6(t2), 6(t3» 
with: (t l , t , ( ) - Cf(a ~ p, u, ~ ~ 6)

2 3

J'. cp' renaming substitution of 0' and VC,' (0'» n V( t,) - £1 

t, «5 E mgu(t,/v, q'(i)) 

OCTS(C, R) .- ( DCT(a ~ p, u, If -46, v. t ~ 6') I 

(a -4 p, U, ~ ---+ 6, v, i -4 6') E DCO(C, R) } 

In lemma 3,6 we give the criterion for the ground subconnectedness of a double critical 

triple DCT(a ---+ p, U, l-;-+ 6, v, t ~ 6'). If there is no critical overlapping between the 

rule i -- 6' and the rules a --p and l-- 6 (the conditions ve O'(a), u - V.u· " 

U' E O'(t> and v - U.V' 11 v' E O'(l) are not satisfied), then the ground subconnectedness 

is im . ediately satisfied otherwise we have to check. critical overlappings between the 

rute t 6' and the rules a ~ pand if ---+ 6.-t 

(3.6) Lemma 

Let R be a term rewriting system and (a -t p, u, l ~ 6, v, l' -t 6') be from 

DCO(CO(R), R). The triple DCT(a -- p, U,II -t 6, v. t ~ 6') is ground sUbconnected. if: 

( VE O'(a) ~ cr(a -- p, v, t --In is confluent)
 

" (u .. v.u' 11 u· E O·(t) ~ Cf( t __ 6', u'. ~ ~ 6) is confluent)
 

(v .. u.v· "V· E O'(l) ~ Cf( l-- 6, v', 0' ~ 6') is confluent)
 

Basing on these definitions and Lemmata, we can give a test for ground confluence: 
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DOC,R) = { (ot —B, u, 3 —8 ,v ,¥  —5) Ia—B,uy—HeECaAy-—FER

A {Ly ty, t y ) = CT(@ —B,  u, x — 8)

= veO( t )ade  t o t  ) v=  t ( y ) ) )

DCT(a —B, u ,  — 5, v, 3 — &) = (s(t),  6(t,), 6(t,))

with: (ty. tp  t3) = CT(@ —B,  u, y — 8)

+» ¢ renaming substitution of x‘ and V(g'(3)) n V(t,)= 6

a 6€  mgult,/v,  9'(y))

DCTS(C, R) = ( DCT(@ — PB, u, 3 — 8, v. 5 — &) |
(x —B,u,3—8,v,3 — 8)  eDCO(C,R))

In  lemma 3.6 we  give the criterion for the ground subconnectedness of a double critical

triple DCT(@« — PB, u, 3 — 8, v,  3" — 68). I f  there is no critical overlapping between the

rule ¥— 8 and the rules «x—pP andy— 8 (the conditions ve O(a), u = vu’  a

u e0(y)  and v = uv  av  €O(3) are not satisfied), then the ground subconnectedness
is immediately satisfied otherwise we have to check critical overlappings between the

rule x’ — 0" and the rules @ — p and y — §.
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Confluence Test 

(1) CONFL-CO I· { (a ~ p, u, ~ ~ 6) I (a ~ P, u, ~ ~ 6) e CO(R)
 

and CT(a ~ p, U, tl ---.6) is confluent}
 

NOT-CONFL-CO I. { (a ~p, u, ~ ---.6) I (a ---t p, U, ~ ---t 6) E CO(R) 

and CT(a ---t p, u, tl ---t 6) is not confluent} 

(2) CONNECTED-DCO I· {(a ---t p, U, ~ ~ 6, v, t ---t 6') I 

(a ~ p, u, ~ ~ 6, v, t ---. 6') E DCO(NOT-CONPL-CO, R) 

,,( ve O'(a) ~ CT(a ---t P, v, tl' ~ 6') is confluent) 

A( u· v.u' " u' e O'(/(} 

~ CT(t ---.6', u', ~ ---t 6') is confluent) 

A( v - u.v'" v' E O'(~) 

=> CT(~ ~ 6, v', t ~ 6') is confluent) } 

(3)	 R is ground confluent, if CONNECTED-DCO u CONFL:-CO covers 

NOT-CONPL-CO 

Por the correctness of this test, we have to prove that every critical triple Of Ris ground 

connected (Theorem 3.2), If a -triple is confluent, then It' is alSo ground connected, 

Otherwise we consIder a set of connected triples CONNECTED-OCO (Lemma 3.6). Then, the 

critical triple is connected if it is covered by the set of connected triples CONNBCTED'-OCO 

uCONPL-CO (Lemma 3.4). 

To complete this confluence test, we need a method for proving the coveredness 

property. With the test of tounalis {to 85] for' example we can prove the coveredneils of 

a set of terms by another set of terms. This test can be extended to triples of terms, by 

introducing a new ternary operator f and applying it to every triple. Then, we check the 

coveredness of a set of triples Mj by a set of triples M2 as followsl 
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Confluence Test

(1) CONFL-CO = { (d — §, u, 3 — 8) | (a — B, u, y— 8) € CO(R)
: and CT (a— P, u, 3 — 8) is confluent}

NOT-CONFL-CO = { (dd — B, u , ¥ — 8) | (0d —B,  u, 3 — 5) € CO(R)
and  CT(at — p, u, y — 8) is not confluent}

(2) CONNECTED-DCO i =  { (x —»B, u, 3 — 8, v, 3 — 8) |
(a — PB, u, 3 — 5, V,  3 — &)e DCO(NOT-CONFL-CO, R)

A(ve  O(a)  = CT(ax — PB, v ,  3 — 8) is confluent )

AM(u=vu au e l ( y )
= CT(3 —&,u ,3—  8) is confluent )

AMv=uvaveO(y)
== CT(y — 8, v', 3" — 8) is confluent ) }

(3) R is ground confluent, if CONNECTED-DCO u CONFL-CO covers

NOT-CONFL-CO

For the correctness of this test,‘we have to prove that every critical triple of R is ground

connected (Theorem 3.2). I f  a triple is confluent, then it is also ground connected.

Otherwise we consider a set of  connected triples CONNECTED-DCO (Lemma 3.6). Then, the

critical triple is connected if  it is covered by the set of connected triples CONNECTED-DCO

UCONFL-CO (Lemma 3.4).

To complete this confluence test, we  need a method for proving the coveredness

property. With the test of Kounalis [KO 85] for example we can prove the coveredness of

a set of terms by another set of terms. This test can be extended io triples of terms, by

introducing a new ternary operator { and applying it to  every triple. Then, we  check the

coveredness of a set of triples M ,  by  a set of triples M,  as follows:
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introducing a new ternary operator { and applying it to  every triple. Then, we  check the

coveredness of a set of triples M ,  by  a set of triples M,  as follows:
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(1) Transform the triples in M1 and M into terms. 2
 

M't J-U(ti • t2• t3) I (ti' 12- Llb: M t )
 

M'2 I'" {f(t.. ~_ t ) I (ll' t 2• t ) E M2 }3 3

(2) M is covered by M2 iff M't is covered by M'21 

(3) An extension to convertible functions 

h1 [GO 85b] the number of critical pairs has been reduced by introducing a weaker 

rewrite relation --lO Rfor a term rewriting system R. A term l' is derivable from a term 

t by --lO Rift can be reduced to l' by a rule from ~ and all variables in the left hand 

side of the rule are replaced by constructor terms. It has been proved. that the ground 

confluence of the relation --lO R is equivalent to the ground confluence of -+ R- if every 

ground term is reducible to a constructor ground term. In this case. it is sufficient to 

consider Gnly critical pairs where variables are replaced by constructor terms. 

Here, we will also consider a weaker rewrite reJation denoted by -- R. but the 

definition of this relation differs from the relation given in' [GO 85b). We allow an 

application of a rule if the variables on the left hand side are replaced by normal forms. 

(4,1) Definition 

Let R be a term .rewriting system. We define the relations -- R-~ R and II-lI R, t as 

follows. 

- t1-- Rt2 ~ 13 a -+ pER 1363 U E O(t) I tt/u .6(a) 

A (V I E Veal I 6{I) E lRR(R) ) 

A t2 - tt [ u +- 6(P) ] 

- t l II-ll R t2 ~ I t l ~ Rt2 v ~ -+> R t l 

. t, !l-I R, t ~ ~ I tt II-lI R t2 " t > t l At> t 2 
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We denote by ~ the reflexive and transitive closure of -» and by t-!-f the reflexive 

and transitive closure of Ir-il . 

The relations -- R and ~ R have the same normal forms, their symmetric. transitive 

and reflexive closures are equivalent and -JP R is confluent iff -R is confluent, 

(4,2) Theorem 

Let Rbe a term rewriting system. Then· 

- V t , t irreducible by -It R ~ t irreducible by R-t 

* r=-i* R- t-=--lI R ~ 

- -- R is confluent iff ~ R is confluent 

If we use the, relation -- R on ground terms, then the variables of ,a rule are only
 

replaced by ground terms which contain no convertible function symbols. We can
 

modify the test given in section, 2 for the relation ~) R 'by considering only those
 

function symbols P which are not convertible, for the computation of critical
 

overlappings and for the coveredness test of a critical triple.
 

In definition 4.3 we restrict the critical overlappings to cases where ,variables in rules
 

can be replaced by terms without convertible functions:
 

(4.3) Definition 

Let R be a term rewriting system and pc: PS. We define the set of critical overlappings 

COp(R) and the set of critical triples crSF(R) as follows: 

COpCR) :- ( Ca, - P. u, l ~ 6) I a ~ P. 11 -t 6 eRA u eO'Ca) 

A 3 6, '( I 6(a)/u -'(11)
 

A V X e VCa) I 6(X) E TE(P,VA)
 

A V:x E V(Il} I '(x) E TE(P,VA) )
 

crSp(R) '-.( crCa - p; u, 11 - 6) I Ca --+ p,u, 11 --+ 6} e COpCR) ) 
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Note, that the CO(R) is equal to COFS(R) and crS(R) is equal to crSFS(R). 

Instead of considering all ground instances of triples. we consider only instances where
 

variables are replaced by ground terms without convertible function symbols:
 

(.4.1) Definition (modified version of definition 3.1 )
 

Let (t.. ~. t3) be a triple of terms, F c: FS a set of function symbols and M be a set of
 

triples of terms.
 

- Ip\M) denotes the set of all ground instances in P of triples in M: 

iP(M):- ( (6{t1). 6(t ). 6(t »I (t •. t • t ) eM2 3 2 3

AVIE V(t,) u V(~) u V(t3) 16(1) e TE(F. 0)} 

- (t" ~. ~) is sround confluent in F if all ground instances in F of (tl' t2, t3) are 

confluent: 

V {ft. 1'2' 1'3)e Ip({ (ttl t 2• t3»)): t'2!R - 1'3 !R 

- (t1• t2• t 3) is ground connected in P if all ground instances in P QC (t.. t2, t ) are3

oonnected: 

V (f•. 1'2' ( 3)E Ip« (tf' t2, t3»)) I 1'2 ~ R. 1'11'3 

A term rewriting system is ground confluent· if all ground instances in P of CPSp(R) are
 

connected and FS\F contains only convertible function symbols:
 

(4,5) Theorem (modified version of theorem 3.2)
 

Let R be a terminating term rewriting system. peps a set of.function symbols and FS\P
 

contains only convertible function symbols. Then, R is ground confluent iff:
 

'vi (tt' 1:.!. t 3) E Ip(crs(R» : t 2 ~ R, t1 t 3 

The definition of the coveredness property can also be eltended for convertible functions: 
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Note, that the CO(R) is equal to COpg(R) and CTS(R) is equal to CTSg(R).

Instead of considering all ground instances of triples, we consider only instances where

variables are replaced by  ground terms without convertible function symbols:

(4.4) Definition (modified version of definition 3.1)

Let (1,  to. ty) be a triple of terms, F <= FS a set of function symbols and M be a set of

triples of terms.

- IgM)  denotes the set of all ground instances in  F of triples in  M:

Ip(M) = { (s(t),  6(t,), 6(t,)) | ( t , t )  t ,)  eM

AV xe V i t )  U V(t„) u V(t,) ı 6(x) € TE(F, 2 ))

- (t,,  t,, t;) is ground confluent in F if all ground instances in F of ( t , t ,  t,) are

confluent:

VU,  va t )  ep  (tty ty)  ) 1 )  IR= 1,IR

- (ty, 129 t,)  is ground connected in F if all ground instances in F of (1,,1,, 1,) are

connected:
Vtg  Uy)  e Ip  tz) R t

A term rewriting system is ground confluent if all ground instances in F of CPSp(R) are

connected and FS\F contains only convertible function symbols:

(45) Theorem (modified version of theorem 3.2)

Let R be a terminating term rewriting system, F © FS a set of function symbols and FS\F

contains only convertible function symbols. Then, R is ground confluent iff:

V (tg. tz  ty) € Ip(CTS(R)) : 1 FR 4;  13

The definition of the coveredness property can also be extended for convertible functions:
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(4.6) Definition (modified version of definition 3.3)
 

Let M1 and M2 be sets of triples of terms and Fe FS a sel of function symbols. M1 covers
 

M in F iff: 

Ip(M.) c Ip(M2) 

Every ground instance in P of a critical triple is connected if it is coVered in P by a 

connected set of triples M. 

(4.7) Lemma (modified version of lemma 3.4)
 

Let R be a term rewriting system, peps a set of function symbols, (t•. t2, t ) a critical
3

triple from CfSp(R) apd M be a set of triples of terms with: 

V (1'.,1'2' t'3)E M: t2 t-!.; R, 11 t 3 

Then, (tp t2, t3) is ground connected in P if { (r., r 2' r 3) } is covered in P by M. 

Now, we can also give a modified test for ground confluence: 

Confluence Test 

(1) CONPL-CO:- { (a ---+ p, u. l---+ 6)\ (a ~ p, u, l ~ 6) E COps(R) 

and cr(a ~ p, u. l ~ 6) is confluent} 

NOT-CONFL-CO .- { (a ---+ p, u, lr---+ 6) I (a ---+ P. u, l---+ 6) E t.op<R) 

and cr(a ---+ P. u. lr ---+ 6) is not confluent} 

(2) CONNECfED-OCO ,- { (a ---+ p, u, l ~ 6, v, t -+ 6') I 

(a ~ p, U, l ---+ 6, v. t - 6') E OCO( NOT-OONFL-OO. R) 

,,( v E O'(a) :::q cr(a - p, v. t - 6') is confluent) 

A ( u - V.u' A u' EO'(t) :::q cr(t -'6', u', ~ -6) is confluent) 

" ( v - U.V' " v' E O'(~) ===> cr(~ ---+ 6, v', t -6') is confluent) 
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(4.6) Definition (modified version of definition 3.3)

Let M ,  and M ,  be  sets of triples of  terms and F<  FS a set of  function symbols. M ,  covers

M ,  in  F iff:

Bvery ground instance in F of a critical triple is connected if it is covered in F by a

connected set of triples M:

(47) Lemma (modified version of lemma 3.4)

Let R be a term rewriting system, F © FS a set of function symbols, (1,, t,, 1,) a critical

triple from CTSp(R) and M be a set of triples of terms with:

v ( v ,  v y  t ' , )e M 3 1 Hy  R ,  11  1 ;

Then, (1,, t,,  , )  is ground connected in  F if { (t‘,, t ' , ,1 ’ , )} is covered in  F by M.

Now, we can also give a modified test for ground confluence:

Confluence Test

(1) CONPL-CO«= { (d — f, u, x — 8) | (@ —B,  u, 3 — 8) € COpg(R)
and CT(x — B, u, y — 8) is confluent )

NOT-CONFL-CO = { (@ — B, U, 3 — 8) | (@ —B, u,  § — 8) € COp(R)
and CT(& — P. u, 3 — 8) is not confluent )

(2) CONNECTED-DCO:= { (d —B,u, 3 —5,v,  3 — 5) |
(@ —B,u,  3 —8 ,v .  3 — 8)  e DCO{ NOT-CONFL-CO, R)

a (  ve  0’(0) =>  CT(a —B,v ,¥  — 8)  is confluent )
A lu=vu  au e0(y)  = CT(y — 8,  u’. y — 5) is confluent)
A lv=uvaveO(y )==CI (g—8v ,¥  — 8) is confluent )

Ground Confluence 14

(4.6) Definition (modified version of definition 3.3)

Let M ,  and M ,  be  sets of triples of  terms and F<  FS a set of  function symbols. M ,  covers

M ,  in  F iff:

Bvery ground instance in F of a critical triple is connected if it is covered in F by a

connected set of triples M:

(47) Lemma (modified version of lemma 3.4)

Let R be a term rewriting system, F © FS a set of function symbols, (1,, t,, 1,) a critical

triple from CTSp(R) and M be a set of triples of terms with:

v ( v ,  v y  t ' , )e M 3 1 Hy  R ,  11  1 ;

Then, (1,, t,,  , )  is ground connected in  F if { (t‘,, t ' , ,1 ’ , )} is covered in  F by M.

Now, we can also give a modified test for ground confluence:

Confluence Test

(1) CONPL-CO«= { (d — f, u, x — 8) | (@ —B,  u, 3 — 8) € COpg(R)
and CT(x — B, u, y — 8) is confluent )

NOT-CONFL-CO = { (@ — B, U, 3 — 8) | (@ —B, u,  § — 8) € COp(R)
and CT(& — P. u, 3 — 8) is not confluent )

(2) CONNECTED-DCO:= { (d —B,u, 3 —5,v,  3 — 5) |
(@ —B,u,  3 —8 ,v .  3 — 8)  e DCO{ NOT-CONFL-CO, R)

a (  ve  0’(0) =>  CT(a —B,v ,¥  — 8)  is confluent )
A lu=vu  au e0(y)  = CT(y — 8,  u’. y — 5) is confluent)
A lv=uvaveO(y )==CI (g—8v ,¥  — 8) is confluent )



15 Ground Confluence 

(3)	 R is ground confluent, if CONNEcrED-DCO u CONFL-CO covers 

NOT-CONFL-CO in F 

Note, that we consider all confluent critical triples from e0ps(R) because this may help us 

to prove more triples in DCO(nred-crit,R) to be confluent than to consider only confluent 

critical triples from COp(R). 

The coveredness test of Kounalis [KO 851 has not to be modified. because it allows us to 

distinguish constructors (F) and defined functions (PS\F). and prove the coveredness of a 

set of terms only for constructor ground instances. 

COnclusion 

The test developed in this paper allowed us to prove the ground confluence of many 

systems where the classical Knuth-BendiI generates an infinite system. The ground 

confluence could be proven without splitting the term rewriting system into axioms and 

other rules and without choosing position in rules. which was necessary in [GO 8Sb] or 

[FR 86]. In fact, we could prove more systems to be ground confluent than with the 

methods given in [GO 8Sb] and [FR 86), but it is not obvious that our method is a stronger 

test for any term rewriting system. 

A major problem for this test are term rewriting systems which are not terminating. In 

future, we plan to eltend the test for globally finite term rewriting systems on the base 

of [GO 8Sa). Also the method' of [HR 861 wiJ1 be considered because it may help in cases 

where the term rewriting system is not even globally finite. . 
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Appendil 1 Examples 

We have implemented a simple completion procedure with the ground confluence test 

described in this paper. We will give three elamples, where the ground conflunce can be 

proved by our implementation and the classical completion procedure generates an 

infinite set of rules. 

(1) Associativity of Add 

In the following term rewriting system rule 1 and 2 axiomize the addition on natutal 

numbers an.d rule 3 is an inductive consequence of rule 1. and rule 2: 

(1) add(O,y) -J y 

(2) add(s(x),y) -J s(add(x,y» 

0) add(x.add(y.z» -J add(add(x,y).z) 

This example has been considered in [FR 86] and could be proven to be ground confluent, 

even though the classical Knu~h-Bendix Algorithm generates an infinite set of rules. 

For this example we show completely how our ground conflunce test worh. Pqr Jack of 

space we will skip details of the test in the other examples. 

Por this example. we assume that add is convertible. We get the following critical 

overlappings and critical triples: 

(rule 3.2, rule 2): (add(x.add(s(y).z», add(x,s(add(y.z))). add(add(x.s(y)),z) ) 

(rule 3, E, rule 2) : (add(s(x).add(y;z», s(add(I.add(y.z))), add(add(s(x),y).z) ) 

(rule 3, 2, rule 1): (add(~,add(O,y»,add(x,y), add(add(x,O),z) ) 

(rule 3. E. rule 1) : (add(O,add(x.y», add(x.y), add(add(O,:x),y) ) 

(nHe 3.2. rule 3) : 

( add(x,add(y,add(z.u))). add(x.add(add(y,z},u», add(add(x,y),add(z,u» ) 

Now, the critical triples of the second critical overlapping (rule 3, E, rule 2), the 'fourth 

critical overlapping (rule 3, E, rule 1) and the fifth critical overlapping (rule 3, 2, rule 3) 

are confluent. The other crItical triples are not confluent but belong to COp(R) therefore 
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we have to generate instances by unifying left hand sides of rules with their first 

elementsl 

(rule 3, 2, rule 1, E, rule 2) I 

( add(s(I),add(O,y», add(s(I).y). add(add(s(I),O).y) ) 

(rule 3, 2, rule 1, E, rule 1) I 

( add(O,add(O,y», add(O,y), add(add(O.O),y) ) 

(rule 3, 2, rule 2, E, rule 2) I 

( add(S(I ),add(s(y ),z», add(s(x ),s(add(y ,Z))), add(add(s(x ),s(y »,Z) ) 

(rule 3, 2, rule 2, E, rule 1) : 

( add(O,add(s(y),z)), add(O, s(add(y,z))), add(add(O,s(y»,z) ) 

Now, we can prove that all these triples are connected. Consider for example the triple of 

the overlapping (rule 3, 2, rule 2, E, rule 1). This triple is confluent because the triple of 

the overlapping (rule 3, E, rule 1) is confluent and rule 2 has been applied at a subterm 
I 

which has been matched by a variable of rule 1 (for details see lemma 3.6). 

Note, that all four doble critical triples are' not confluent and for every example in this 

ap~ndix the confluence of triples is not sufficient for proving the ground confluence of 

the examples. 

It remains to proof that the critical triples of the overlappings (rule 3. 2, rule 2) and 

(rule 3, 2, rule 1) are covered in {s, O} by their connected instances. This is easy for both 
. ' 

triples because the instances have been generated by replacing a single variable bYS(I) 

and 0, and s(x), 0 cover all ground. instances in {Sf O}. 

The associativity of add can also be proved by the classical Knuth-Bendil Algorithm, if we 

add the Inductive consequences add(I,O) -+ x and add(I.s(y» -+ s(add(I,y)) to the 

system or use the associativity law in the reverse ~irection. In the nelt example it does 

not help to add other rules or to orient rules in the other direction, the classicaJ 

Knuth-Bendix Algorithm will always generate an infinite system. 
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{2) Add and Sub on Natural Numbers

In  this example we give two equivalent axiomatization of the addition (rules (1), (2) and

rules (3), (4)) and one axiomatization of the subtraction (rules (5) - (7)) on natural
numbers. Rules (8) and (9) are inductive consequences of the rules (1) - (7):

(1) add(0,y) —y

(2) add(s(x),y) — s(add(x.y))
(3) add(x,0) — x .

(4) add(1,s(y)) — s(add(xy))

(5) sub(s(x),s(y)) — sublxy)

(6) sub(0,y) — y

(7) sub(x,0) — x

(8) sub(add(x,y)y) — x

(9) sub(add(yx)y) — x

With our confluence test we can prove the ground confluence of this system. The methods

presented in [GO 85b) and [FR 86) fail for this example. The ground confluence of the

subsystem 1-8 and the subsystem 1-7, 9 can be proved by both methods if  we choose the
right ariomatization of add but the classical Knuth-Bendix Algorithm still diverges for

these subsystems.

(3) Greater on Natural Numbers

In the last example, we give an axiomatization of  the predicate greater on natural

numbers (rules 1, 2, 3), of boolean functions (rules 4 - 9) and three inductive

consequences of greater (greater is irreflexive (rule 10), antisymmetric (rule 11) and

transitive (rule 12)). These rules have been given to our completion procedure which

generates three other rules (rules 13 - 15) and proves the ground confluence of the final

system.
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(1) gr(0,x) — false

(2) gr(s(x),0) — true
(3) gr(s(x),s(y)) — g(x,y)

(4) not( true)— false

(5) not(false) — true

(6) or(truey) — true

(7) or(falsey) — y

(8) and(true,y) — y

(9) and(false,y) — false

(10 )  gr (x .x)— false

(11) or(not(gr(x.y)).not(gr(y.x))} — true
(12) or(not(gr(x,y))or(not(gr(y,z))gr(x,z))) — true .

(12)(10) ==> (13) or(not(gr(x,y)),irue)— true
(12)(10) ==> (14) or(noi(gr(x.y))or(not(gr(y.x))false) — true
(12)(3) ==> (15) or(not(gr(zs(y))or(not(grly.z)gr(xs(z))))— true
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Appendit2 Proofs

Instead of proving theorem 3.2 and lemma 3.4 we will prove the more general theorem

4.5 and lemma 4.7. Therefore we start with the proof of theorem 4.2 because the proof of

theorem 4.5 bases on this proof.

Proo fof theorem 4.2

-(1) V t:tirreducible by —» p «= t irreducible by — p

{e=m) obvious because —» RE  AR

(=) t irreducible by  —w R

The proof follows from the fact that a term t is reducible by  — iff there i s

a subterm of t which is only reducible on top and therefore the subterm is

also reducible by  —:

Assume t is reducible by —R

Let u be the deepest occurence in  t,  which is reducible :
Ja  —pBeRIo : t / u=s l@)aV  vel): v>u=st/ve IRR(R)

Then, every variable in  a matches an irreducible term : |

a is of the form f ( t , . . . . t )  because no left hand side consists of

a single variable :

= t/u = 6(f(t,,. 8 | t )  Vu-6(0)

— t /u=f le( t , ) , . . .  60)

= 6(t,) , . . .  6(t)) € IRR(R)

— Ve  Vie)  u . . .  u Vit) exe IRR(R)

= V x € Vif l t , . . . . ,  1.) : 60x) ¢ IRR(R)
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=»  t is reducible by —»p at u
== contradiction : t is irreducible by —» p

(==) obvious:#24p © HR

(=) We will  prove: .

RR
Then, the case:

RR

is obvious, because 4 R is the reflexive and transitive closure

o f  i p .

RL
==> (i) 3a—pecRIve : t / u=e la )a t y= t [ue l ]

v (i) 3a—pecR3  u,6: t , /U =6(0) At,»t,[u—6(8))]

(i) We can reduce the subterms of t, and i, which. are maiched by

variables from o and B (e(x)) by — to their normal forms

(e'(x)) and derive the reduced 1 ,  from the reduced t ,  by —.

We define 6’(x) as follows :

x € V(t) == (x)  = normal form of e(z) in “op

X € Via) ==6(x):=x

Then:V x € V(x) : 6'(x)€ IRR(R) with (1)

Ed  [ ue—e l@) ]—g  t l  ue—e(P)]

Al Rt  [Ue—e@]—wpt , [ue—6@) gett,
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(ii) this proof is equivalent to (i)

(3) —» p confluent «=  — p is confluent. -

(=) — R is confluent

Assume tp t  atEspt)

= t  Fp l ,

= tHapt, With (2)

IU  ep UAL ap t  — p is Church-Rosser

= Sp t  a t  ap !  pe ta  |

=»  £5  p isconfluent

(¢==) — g is confluent

Assume t-2w p t ,  rEwptly

‘Then reduce t and t ,  to their normal forms 1‘, and t ' ,  by  A»  p+

a Mn  A |

= UFR,

Cm URE,  With (2)

— 31 ,  Ep ta t ,Xsp t ’  Ar  p Church-Rosser

with t ,  t ,  irreducible by 2»  p = 1,  Vz irreducible by

Zp  (1):

t v y= ta t ,= t

t = ,
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= —»  R is confluent

Lemma A.1allows us to simplify the proofs of theorem 4.5 and lemma 4.6:

(Al) Lemma

Let R be a term rewriting system, F a subset of FS, t a ground term and —f ,  3 — 6 be

rules from R. The rule a — p can be applied at u in  t ,  the rule ¥ — 5 can be applied at v

in  t and all variables in ot and § match terms from TE(F,O)
- t / u  =e(a) a t/v - (3) a t  TE(PS, 0 )
-V  x Va): 6(x) TEP,8) a V x € V(3) : 1(x) € TB(F, 9 )

Then the triple ( t , t  [ u—— 6(B) ] , t [  Vv — (8) 1) is connected if:

(1) u and v are disjoint
or (2 )v=uvav¢0 i (a )
or ( 3v -uvaveO ia )

== V (ty, 15 ty) € IR((CT(0 — f v ’ ,  3 — 8D) ty rtp ( t y

Proof

(1) u,v are disjoint

Then 3 — 8 can still be applied at t [ u «— &(p) ]
t l ue—e@)) /v= t /v - t l y )  with: t/v = t(y)  a u, v are disjoint

= t l ue—of ) ]—p t l ue—e@)  I[ve—r1(@)]

and a — ß can be applied att [ v—1(5)  1:
t ive—1@d)1/u=-t/u=-sla) with: t /u  =e(a) a u, v are disjoint

= t [ ve—1@)  ]—ogt ive—t@) }[u—s@)]
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t[u«— ol) 1 ve—1(8) l e t [ ve—1(6)  Ju — 0 ) ] u, v are disjoint

= t l u—e l )  J i p ,  t [ ve—1( ) ]  |

(2) v=uv av ¢0i (a)

=p 3 V i  Vy :  V = V Va  a/v, e VA

Let {w,,..., w,  } be the positions of this variable i na :

(Wyo .  Whe (W laW =alv, }

All subterms t at U.W,.V,have tobeequaltot /v i i=1,. . . ,n):

t hw ,  slaw,  witht/u-ela)

= t/uW,V, ~ 6(a/W IV,

= 1/uw,v, =sla/v)lv, with «a/v, = a/v, fori=1,....n
= t/uw,v,~ e l ) ,  |

= uw vy = (u l  vv, with 1t/u = ola)

= Vw,  “ t iv  With 1 V'  = VV, AV  = UY’

t

3 — 8 can be applied at every position t/u.w,v, and we get :

t—Rt l v— 108) Ed  uw  Vz — 10) ] . . .  [ uw  v;  — 10)  ]

Now a —s ß can be applied at t [uw vv, —1(8) 1... [ uw,vy +— 10) ]

We define a matcher 6’ for & as follows :

- x=a / v ,  61)  molx) [ u,  — 18)  |

x=  a/v, 16'(x) = ox)
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Ground Confluence

t[u«— ol) 1 ve—1(8) l e t [ ve—1(6)  Ju — 0 ) ] u, v are disjoint

= t l u—e l )  J i p ,  t [ ve—1( ) ]  |

(2) v=uv av ¢0i (a)

=p 3 V i  Vy :  V = V Va  a/v, e VA
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ola) [ wu, —1@®) 1... [ wu, —1(8) ] . w i t h :t/u ~ ela)

=6(a) with: (w , , . . . ,  Ww, } = (W la /w=a l v , )

t l  uw Vv,— 1 ] . . .  [ uw  v,—1(@)]

— RU  uw ,  — TO] . . .  [uw v, — (6)  1[ ue—o@) ]

c t f u—e@))

In  the other reduction t [ u — 6(ß) ] the subterm which was matched by a/v, will

occur at any position w in  6(f), where f /w = a/v:

Le t {w , . . . .w_ )w={WI | f /w -  alv,)

Then, 3 — 8 can be  applied at every position t [ u «— e(ß) 1/ ww  vplfori=1,...,n:

tlue—o@) Vuw,v, -eBlw,v,

=e (@/w '  Iv,

-ola/v,)/v, with B/W =a/v f o r i =1 , . . . , n

- ela)/v, v ,

=t/uv,v, With: U/U = 6(a) |

“ t v  With:vV,=VaAV=UuV

t lg )

= | [ u — 6(ß) ]

2 p t lue—of )  1 uw vy — 16) ] . . . [  uw LV, — 106) ]

=tlue—o) [WV — 1)  I . . .  [Wve 108) 1]
= t l ve—e@]

We have der ivedt [ v — e’(ß) 1f romt [ u —— 6(ß) Jand t [ v — 1 (8) ] and we get :

t l ue—e l )1p  (tlve—1(0)]
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(3) v=uvaveOfa )

with t /u  = s(t) :

t/uv =sla)/v’ |

m t/v =6(a)/V’ uv =v

w= (3) = ) ’  t/v = (3)

== (X — B, V', § — 8) € COp(R)

wi thV x € V(a) 1 6(x) € TE(F,8) a V x € V(5) : (x) e TEIF,8)

We get CI( a — PB, v', 3 — 8) as follows:

Let ¢ be a renaming substitution of y with Via) n VORN= and ¢’ the converse of

9 (9 +9=id). Then:
sla)/v' = tie ( 00 ) :

a/v’ and ¢(3) are unifiable by the following substitution 6,:

- xe  V ia ) :  6,(x)=6(x)

- xe  Vip(y)): o,(x) = (g(x)

- x¢  V i@)u  V(p(z) ) :  e , ( x )=x

= g,(@)/y ~ola)/v’ = tg  (p(x) - a,(0)

and we can find a most general unifier for a/v’, p(y) .

==36,:6,  € mgula/v’, 9(3))

a (6,(0),6,(@) [ v" — 6,(p(8)) 1, 6,(8) ) = CT(a —B, v', 3 — 8)

=36 , : 6 , - 6 , : 6 ,   With:6,€ mgu (a/v',  9(3)) a 6,(a/v ')  =6,(0(3))

== ( 6,(6,()),  85(6,(@)) [ Vv" — 6,(6,(9(5))) 1, 6,(6,(B)) )

- ( 0 ,0 ) ,  0c)  [V' —0, (96 ) )  L6,®)) 6 ,050 ,

= (ola),  ola) [ v‘ — (8) 1, 6(p) ) definition of 6 ,

If  we can prove that:

V x € Vio,(@)) u Vie,(@) [ v — 6,(p(B)) 1) u V(6,(B)) + 6,(x)  € TE(F, 0 )

then the triple (t,t [ u — e(ß) lt[v«—1t(8) ] )  is subconnected:
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(ola), ola) [ v'  — (8) ], 68) ),

€ I p  ( {  (o,(a), 6,(x)  [ Vv — 6,(9(5)) }, 6,(8)) })

= ( l a ) ,  (a) [ v" «— 1(8) 1, 6(B) ) € Ip(CT(ct—B, V', § — 5)

= ( (0), (a) [ v' — 1(8) ], 6(B) ) € I(CTSR(R))

= (a) [ Vv" — 708) IR  sa) SB)

= u«—6la ) [V— 181 Pip[ yes ]  u — 6 ]

=>:[ u  — 6(a) ] [  u . v—1(8 ) ]  PAR bo)  ] t l u—se@) ]

= t l uv — 10) ] i p  tiue—e@)]  t / u - s l a )

VOR lu  e l ]  uv =v

Now, it  remains to prove:

Y xe Vis,(a))  u Vea)  [ v' — 6.(9(8)) Du Vie,(p)) : 65(x) € TE(F, 2)

x € Vio,(a) u Vie, (a) [ v '  — 6,(9(8)) 1) u V(s,(p))

==  1 € Vie,(a)) u Vie,(a) [Vv «—o,(p(8)) ]) V( )e  Via)

= x V(s,(@)) u Vis,(p(6))

w=  1 € V(6,(0)) vu V(6,(0(3))) Vg)  e V(y)

We consider two cases, either x € V(o,(a)) (case i )  or x € V(o,(p(3)) (case ii) :

( i)  xe  V(6,(a))

w=3 W :6,(0)/W = x

== IW Wa WW  WAC/W,= YA  ye  VA

= 6(y)e TE(F, 9 )  V ye  V ia ) :sly) € TE(F, ©)

== 6,(y) € TE(F, 9 )  6,(y) =6(y) for y € V(a)

== 6,(6,(y)) € TE(F, 2 )  6 ,656 ,

zn  85(e,(a/w,NeTEF.8) o /w , - y
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= 6,(6,(a/w,))/w, € TE(F, 0 )  w,  € Ola/w,)

= 6,(6,(a)/w,.w,) € TE(F, 9 )

‘ =  6,(6,(a})/w) € TE(F, 9 )  WW,  =W

= 6,(x)€ TE(F, 9)  6,(@)/w= x

(ii) x € V(o„(g(8)))

= J w:6,(p(3))/w=-1

| — IW,Wy WW,  = WAR) Ww ~yayeVA

3 ze Vix) 192) - y  |

1(z) € TE(F, 9 )  V ze V(y):t(z)e TE(F, 9 )

==1(¢’(p(2))) € TE(F, 9 )
= (p(y) € TE(F, 9 )  pz)  =y

= 6,(y)e TBF. 8)  6,(y) = tlp’(y)) for y € Via)

= 6,(6,(y)) € TE(F, 2)  6 ,=6 ,+ 6 ,

== 6,(6,(p(y)/w,)) € TE(F, 2 )  @(y)/w-y

= 6,(6,(p(3)/W,))/w, € TBF, 8 )  w,eOlp(y)/w,)

= 6,(6,(p(y))/w, We TRF, 8 )

= 6,(6,(9(3))/W)¢ TE(F, 9 )  Ww, w,=W

==  6,(1) € TE(F, 9 )  6,{p(3))/w =x

With (i),  (id) « oo

— VT  € Vloz(a)) u Viola) [ u — 6,(p(6)) Du  V ie,(8) :6,(x)  TE(F, 8 )
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Proof of theorem 45 (theorem 3.2)

(==)

Let ( t , .  12. t,) € Ip(CTSp(R))

= 3 (a —p ,  u y  — 8) € OLR) :  (t,,  2, 3)  € IUCT(a — B, u,3 — 5 )

=+36 ,13v i t  ~ola)at v= t ( y )a t y= t  [ve—1(3) Ja tz -o f )

= ,  —Rl  A RL

I l  Spa t ,  Sg t  R is ground confluent

=p tH  R 11 ty

(em)

I t  is sufficient to  prove

V i ,  t e  TB(FS, 8) it —» p t  a t  RR J

= g confluent

+=  —» p confluent theorem 4.2

= V i t ,  LeTEFS, 0 ) :  t—» p t ,  RG
GeneralizedNewman Lemma [WB 83]

= V t ,  tye TEES, 2) 1 —» p t ,  AL—w pms  1 Ep  1 ty

theorem 4.2

For 1 — p 1, at—» p t ,  wegel:

t s  g t ,  =o 3 ve t )  3a—peRIc: t /u-ola)at [ue—eolp) ] - t ,

»V xe  V(a) :6(x)   IRRG(R)

t—»pty=3veO(t) 33— SERIT Vv - t l y )a t i ve— 8)  ]-t, |

AV ie  V i )  Te IRRG(R)
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_F contains all function symbols which are not convertible :

= IRRG(R) € TE(F, 2 )

= V x€ V(x) ox)  e TBF, 8 )  a V x € V(3) : (x) € TB(F, 9 )

By lemma A.1, the subconnctedness of (t, t,. t,)  follows immedeately for the case where

we have no critical overlapping between the rules (case 1 and 2). For the other cases

where we have a critical overlapping (v = uv’  a vie 0'(a) or v=uv’  a v'  € 0’(a)), we can

prove the subconnectedness by considering critical triples:

Assume W.1.0.8.: V «uv aveO(a)

with: t/u = 6(a)
= t /uv’  = 6(@)/V’

= 1/V = 6(a)/V’ V=uv

= 1(3) = s(a)/v’ | - wy)  =t/v |

== (00 —»B, V', § — 8) € COp(R) |

with: V ze V(@) ox)  € TRF, 8 ) a V x V(3) + 1(x) € TBIP, ©)

= CT(et — B, v', 3 — 8) € CTSR(R)

wt  \V LE  t 's  t ,)  € Ip((CT(a — BV ,  3—  8 )  tH  R U1 ty

with assumption of theorem .

= (1, t , .  1 )  is subconnected lemma A.

Proof of lemma 4.7 (lemma 3.4)

Assume: (1), tp, U )  € IR(( (ty, 15, 45) ))

= (1 ,  Uy, tg)  € Ip(M)

with: { (t,,  15, t,) ) is well covered by M

= UHH  E t t  t y  with assumption of lemma

Ground Confluence ; . ; ; 30

_F contains all function symbols which are not convertible :

= IRRG(R) € TE(F, 2 )

= V x€ V(x) ox)  e TBF, 8 )  a V x € V(3) : (x) € TB(F, 9 )

By lemma A.1, the subconnctedness of (t, t,. t,)  follows immedeately for the case where

we have no critical overlapping between the rules (case 1 and 2). For the other cases

where we have a critical overlapping (v = uv’  a vie 0'(a) or v=uv’  a v'  € 0’(a)), we can

prove the subconnectedness by considering critical triples:

Assume W.1.0.8.: V «uv aveO(a)

with: t/u = 6(a)
= t /uv’  = 6(@)/V’

= 1/V = 6(a)/V’ V=uv

= 1(3) = s(a)/v’ | - wy)  =t/v |

== (00 —»B, V', § — 8) € COp(R) |

with: V ze V(@) ox)  € TRF, 8 ) a V x V(3) + 1(x) € TBIP, ©)

= CT(et — B, v', 3 — 8) € CTSR(R)

wt  \V LE  t 's  t ,)  € Ip((CT(a — BV ,  3—  8 )  tH  R U1 ty

with assumption of theorem .

= (1, t , .  1 )  is subconnected lemma A.

Proof of lemma 4.7 (lemma 3.4)

Assume: (1), tp, U )  € IR(( (ty, 15, 45) ))

= (1 ,  Uy, tg)  € Ip(M)

with: { (t,,  15, t,) ) is well covered by M

= UHH  E t t  t y  with assumption of lemma
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=>  (1,  ty  1,) is ground connected _

Assume: (x —B,  u, y — 5, v,  35 — 8 )  € DCO(COR),R)

A ( t , t ,  tg) € Ipsl{ DCT(ct —B, u, 3 — 5,7, 3 — 5)  ))

Then « — fi can be applied at et, 3 — 0 can be applied at u and y '  — 8’ can be applied at

vin t , .  We will consider the pair of terms which can be derived by x — f§ and z-— 8
from t, (case 1) and the pair which can be derived by § — 8 and x‘ — &' (case 2). We

will show that both pairs are connected below t, by Lemma A l ,  then by the transitivity

of F i  p 4, the terms t, and t; are connected below t,.

Let: (o,(a), 6(a) [ u — 6,(p(8)) 1, 6,(8) ) = CT(at —B, u, 3 —8)

(6,(6,(«)), 8 (6,(a) [ u — 6„(6,(p(8))) ], 6,(c,())  )

= DCT(a — Bu,3 — 8, v.53 — 8)

o,(e,(a))/v = (x)

Then : |

( t , ,  tp. t5) € Ipg({ DCT(¢ —B,  u,3 — 8, v 3  — 8)  ) )

= 361 ,  = 6(6,(0,(a)))

a ty =o le (e  (a) [ u— ols,(6,(p(3))) ]

At;  -6l6,(6,(p))

( 1 )  «a —p,yy — 0b:

6lo,(6,(@)))/v = 6(v(3) a 8(6,(6, (0) /¢  = 6(c,(6, (x)
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At;  -6l6,(6,(p))

( 1 )  «a —p,yy — 0b:

6lo,(6,(@)))/v = 6(v(3) a 8(6,(6, (0) /¢  = 6(c,(6, (x)
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(2)

(1.1) veO'(a)

= CT(x — f,  v, 3 — &) is confluent assumption of Lemma

== V (4, 2,13) € Ipg({ CT(@ —f,  v3  — 8)  N FR 41,
m=  6(6,(6,(@))) [ Vv — (TE) IHR  (e2(e1(a))) ole,(e,())

with: Lemma A.1 case 3

(1.2) ve Ola)

= ole,0,(@) [ v — ott) 111g g(asar(ar))) 00,8)
with: Lemma A.1 case 2

3 -55  8 :

ol6z(6,(0)))/v = 6(t(3")) a ele (6,(@) ) ) / u  = ole,(6,  (903) |

21 )u --VU AY coy)  5 .
= CT  — bu,10 is confluent sssumption of Lemma

ect ole,le (aM  — 6(t(8‘))]

I RRelozier(a)) 6(o,(6,(c)))u — of a (HE

with lemma A.1case3

(2.2) v = wa  VOT)

— oloylo (av — e l »
HR  lezle1(a))) 588; ( u  — of 06,(v6)

N with lemma A.1 case 2
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(2.2) u and v are disjoint

= 6(6,(6,(@))v — e(1(§))]

Hi  R, s(e2(s1(at))) ole (6,(c)))u  — of 6,(s,(p(6))))]

with lemma A.1 case 1

(1), (2) = lol ,  (BFH  R g((e1(a))) (6200, (XU — el  6,6,  (2051

= typ tz With 1, -6l6„(6,(0))) 
|

t,  = 6(6,(6, (a) [ u — &lo,(6, (p(6))) ]

1,= el(6,8)
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