AuBuuan M 'L uiainejsiesiey 05/9-a
6¥0€ Ude}isod

UISINE[SIASIRY JBJISISAIUN

NNEBWIOU| YyoIalaqyoey

\ & Qi \\0,
D 66
Py

$8110}e10gET]
souabijelu)
ey

Richard Gobel

P
Q
c
5
>
—
c
o
(&
o
c
2
O
[
(&}

November 1986 SEKI-REPORT SR-86-18

140d43Y-1435






Ground Confluence

Richard Gobel
Fachbereich Informatik
Universitat Kaiserslautern
Postfach 3049
D-6750 Kaiserslautern

Abstract

In this paper we introdﬁce a test for confluence on ground terms. This test
allows us to prove the ground confluence of term rewriting systems where
the Knuth-Bendix Algorithm does not terminate.

Ground Confiuence of term rewriting systems is sufficient, if one is interested
in congruences on ground terms. This is for example the case in the domain of
inductive proofs or in the domain of program synthesis.
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(1) Introduction

The Knuth-Bendix Algorithm is a procedure for transforming a set of equations into a
confluent term rewriting system. It has recently been applied in theories where only the
congruence on ground terms of the equational theory is of interest, for example in the
domain of inductive proofs (e.g. [MU 80], [HH 82], [KM 83}, [X 85]) or in the domain of
program synthesis (e.g. [DE 85]). Although it is sufficient for these applications to
generate term rewriting systems which are confluent on ground terms, the classical
Knuth-Bendix Algorithm tries 10 generate a term rewriting system which is confluent on
arbitrary terms. This often leads to cases where the classical Knuth-Bendix Algorithm
generates an infinite system, even’ though the infinite system contains a finite ground
confluent system. In this paper we will introduce a test for ground confluence which is
stronger than the classical confluence test. This test allo(ws us to prove the ground
confluence of term rewriting systems where the classical Knuth-Bendix Algorithm does
not terminate. .

Tests for ground confluence have also been considered in [GO 85b] and [FR 86], where
restrictions to the number of critical pairs are introduced if we apply the Knuth-Bendix
Algorithm for inductive proofs. _ '

In [GO 85b] a term rewriting system is splitted into three disjoint sets, a confluent set of
rules (A) which are axioms for the inductive theory , a set of rules (I) which are inductive
consequences of A and a set containihg all other rules (0). The critical pairs are computed
only from A © O but they are fre&uoed by all rules (A v I v 0). If the function symbols can
be splitted into constructors and defined functions, then the number of &itical pairs can
be further reduced by considering only overlappings where variables are replaced by
constructor terms. ‘

In [FR 86] the term rewriting system is also splitted into axioms (A) and a set containing
all other rules (0). Critical pairs between rules of O are not considered and for a rule in O
only critical overlappings at a single position in the left hand side of the rule have to be
considered. For this position a critical overlapping with a rule from A has to exist for
every (constructor-) ground instance of the rule. If no position in the rule satisfies this
condition, then the confluence test can not be applied. ‘

For both methods one needs special infor mations about the term rewriting system:
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- One has to to identify a subset of rules as axioms A

- In [GO 85b] one has to identify also a set cf consequenses |

- In [FR 86] one has to choose a position in the left hand side of a rule
ii one is not able 1o identify a set of axioms in a set of rules R which is smaller than R,
then both meihods can not bé applied. This is the case for example in program synthesis
where one starts with an unstructured set of equations. But also in the area of inductive
proofs, one may get problems if the term rewriting systems contains more than one
complete set of axioms in a set of rules. We will give an example with two complete sets
of ayioms, where the Knuth-Bendix Algorithm with the ground confluence test of [GO 85b]
or [FR 86] does not terminate if we choose the wrong set of axioms.
in [FR 36], one has to choose also positions in left hand sides of rules. Often, a wrong
choice also causes the completion procedure to generate an infinite system.
In'this paper we give a ground confluence test for term .r,éwriting systems without the
problem of choosing a set of axioms or a position in the left hand side of rules (section 3).
This test can be improved for term rewriting systems with convertible function symbols
(section 4), where a function symbol is convertible (defined function) if it does not occur
in any ground term normal form. Finally we give examples where the ground confluence
t2sts in [GO 85b] and [FR 86] fail and with the test developed in this paper we can prove
the ground confluence of these examples.

Wé assume familiarity of the reader with the basic proofs and results of the
lﬁﬁﬁﬂ;—Bendix Algorithm (e.g. [HU 77], [HO 80}, [KB 701)), its extension for inductive proofs
(eg. [MU 80), [HH 82)) and the generalized Newman Lemma [WB 83].

We denote by VA the set of all variables and by FS the set of all function symbols. TE(F,V)
is the sot of all terms constructed by variables from Ve VA and by functionb symbols
from Fe FS. A single term is denoted by t or by o, B, ¥ or & if it occurs in a rule or
equation. Occurences in terms are denoted by u, v and w. The symbol ¢ denotes the top
tevel occurence of a term. O(t) is the set of all occurences of the term t and O'(t) is the set

of ai'l_ non variable occurences of t. V(t) returns all variables of the term t. Substitutions
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are denoted by &, T and ¢.

A set of pairs of terms is denoted by P, if we consider this pairs as rules we will denote it
by R and if we consider these pairs as equations we will denote it by B.a — f and z—e )
denote single rules and o =8 and ¥ =5 denote single equations. For every term rewriting
system R in this paper we assume a R-compatible term ordering >, therefore we consider
only terminating term rewriting systems. A one step derivation with a rule in P is

denoted by t — p t’ and i p is the symmetric closure of — p..*» p and F p are the
reflexive and transitive closures of — P and i p. Two terms t, and t, are connected in
one step below a term t (t, —p ¢ ). if t, i pty, t >t and 1> 1, The reflexive and
transitive closure of i Pt is denoted by 4 Pt

The set IRR(R) contains all terms which are irreducible in R and IRRG(R) contains all

ground terms from IRR(R). Terms from IRR(R) are called to be in R normal form. t IR is
. the normal form of the term t in R, if t has a unique normal form.

A term rewriting system is ground confluent, iff for all derivations t, and t, from a

ground term t, there exists a term t" which is derivable from 1, and t,,

In this paper we will distinguish between critical overlappings Cd(R) and critical triples
CT(R) of a term rewriting system R. This two sets are defined as follows:

(2.1) Definition
Let R be a term rewriting system, CO(R) dénows the set of all critical overlappings of R:
CO(R) = { (o0 — B, u, ¥ -_f—»ﬁ) I
a——oﬂ.i'—'&.éRh ueO(x)ade, t:6(@)/uv=1(3))
CT(x — B, u, xA —»8) returns a critical triple for a critical overlapping from CO(R):
CT(R) = (s(at), 6(ct) [ u — &(p(8)) 1, 6(B))
with: - @ is a renaming substitution of ¥
- V(p(x)) n V(o) - @
- 6 is a most general unifier of a/u and p(3).
We denote the set of all critical triples of R by CTS(R).
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The confivence and the connectedness of a critical tripie are defined as follows:

{2.2) Definition
et R be a term rewriting system and (‘1- to t3) be a triple of terms. Then:
- {t. b, 13) is confluent in R iff 1,IR = 1,IR

- {t,. t,. t;) is subconnected in R iff t,— R 11 b3

{3) A test for ground confluence

In this section, we introduce a test for ground confluence. We start with the cbservation
that a term rewriting system is ground confluent, iff every ground instance of a critical
triple is confluent. Usually there are infinitely many ground instances of critical triples,
therefore we have to find a testable criterion. For confluent critical triples, the confluence
of every ground instance of the triple is obviously satisfied, but the ground instances of
other critical triples may be confluent even though the triple itself is not confluent. In
this paper we introduce a test for prqvins the confluence of all ground instances for

critical triples which are not confluent. This test bases on the following ideas:

- We create a finite set M of instances for a critical triple (t,, t,, t,) if the critical
triple is not confluent (1, R + t,IR)

- We prove that every triple (1, t‘z.'t‘?’) from M is subconnected (t', R U1 r,)

- The critical triple-(t‘, t, 13) is ground subconnected if every ground instance of

(t.t,, t_,") is also a ground instance of a triple in M (M covers {(t, t,, 1))

Note, that we use the subconnectedness of triples instead of confluence. The confluence of
a triple always implies its subconnectedness and for confluent term rewriting systems,
these properties are equivalent [WB 83]. For other term rewriting systems the
subconnectedness may aiso hold for triples which are not confluent. This is also true in

our case where we may have ground confluence but not full confluence for a term
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rewriting system. Therefore a critical triple with variables may be subconnected even
though only every ground instance of the triple is confluent but not the critical triple

itself. We will show examples of this case in the appendix.

We will now formalize these ideas. The proofs for this section and the next section can be
found in the appendix.

We will first give some notation:

(3.1) Definiti
Let (t,. L, t3) be a triple of terms and M be a set of triples of terms.

- I{M) denotes the set of all ground instances of triples in M:
I(M) = ((6(t,), 6(t,), 6(t)) 1 (1, t), t,) e M
AV xe V(1) UV, uV(t,) - e(x) e TE(FS, 8) )
- (tl. 179 15) is ground confluent if all ground instances of (tl'-"z- 13) are confluent:
V(U 1 t) e 1 (ty, 1y 1) 1) : t)lR =17, IR
- (‘1- ‘t2. ts)‘ is ground subconnected xf all ground instances of (t,. i, tS) are
subconnected:

VLUt e I0(t, 1y, 1) ) Uy g gty
The basis for this paper is the next theorem:

(3.2) Theorem ,
Let R be a terniinatjng term rewriting system. Then, R is ground confluent iff every
critical triple is ground subconnected:

Bvery ground instance of a critical triple is connected if it is covered by a connected set
of triples M (defintion 3.3, lemma 3.4):
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(3.3) Definiti

Let M, and M, be sets of triples of terms. M, covers M2 iff every ground instance of a
iriple in in M, is also a ground instance of a triple in M,:

1{M,) = 1(M,)

(34) Lemma
Let R be a term rewriting system, (t,, t,, t,) a critical triple from CTS(R) and M be a set
of triples of terms with:

VU Ut eMit, g ot

Then, (t, 1,, t3) is ground connected if { (‘1' iy ‘3) } is covered by M.

Now we need a way to generate instances of critical triples and to prove that these
instances are connected. The method in this paper bases on an extension of the
confluence test given by [WB 83] and [KU 85].

Por & eritical iriple which is not confluent we try 1o unify the left hand sides of rules

with a subterm of the first component of the triple. Assume (t, t,, ;) = CT(a@ — B, u,

¥ — B) is a critical triple which is not confluent and ¥ — & is a rule where ¥ is

unifiable with t,/u by 6. Then the rules & — B, ¥ — 8 and 3" — & can be applied at
e(t,):
e(ty) —R e(t,) withy —6atu
—golt,) [vee)] withy —&atv
— g olt,) witho —fate
The wriple (a(ty), 6(t,), 6(t,)) is subconnected if the triples (s(t,), 6(t,), 6(t,) [ v —6(8) 1)

and (s(t,), elt,) [ v«—e(8) ). 6(t,)) are confluent:
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e(t,)

s(t,) 6(t)lve—s(d)] oty

1

We try to prove the conflience of the triples by considering the positions where the
rulesy — 8, ¥ — & are applied (case 1) for the triple (s(t'). 6([2), s(t,)[ve—6)1)

and the positions where the rules y' — &, oo — B are applied (case 2) for the triple

(st,). o(t,) [ v — o(5) 1 6lt,)).

If two rules are applied at posidons which do not critically overlap, then the derived
terms can be reduced to a common term, otherwise we have to check the:critical
overlappings.

We formalize this idea by introducing a new set DCO(C,R) (double critical overlappings)
of critical overlappings. DCO(CR) . contains an element of the form
(@ —B uy—b v,y —&) if (@—P,uy— 8 is an element from C and a non
variable subterm of the first component from (_tl, to Ls) = CT(ot — P, u,y— 0) is
unifiable with a rule from R. We denote the instance of the triple CT{(at —B, u, ¥y — &)
by DCT(a — B, u, ¥ — 8, v, ¥’ — &) (double critical triple). The set D(.TS(C.R) contains a
double critical triple for every element from DCR(CR).

(3.5) Definiti
Let R be a set of term rewriting rules and C a subset of CO(R). We define the sets DCO,
DCT and DCTS on R and C as follows:
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DCO(C, RY 1= ({2t — B, u, 3 =8, v. ¥ —8) [ (@ —Bu,x —8leCay —BeR
ALty ty t,) = CT(@ — B, u, x — )
= ve0(t)ade t:6(t,)v= 1(3)))
DCT{a —— B, u. 3 — 8, v, ¥’ — &) = (s(L,), 6(t,), 6(t;))
with: (. ty t5) = CT(@ — B, u, 3y — )
& ¢ renaming substitution of ¥ and V(¢'(3")) 0 V(t,) - 8
» &€ mgult, /v, 9(x))
DCTS(C, R) = ( DCT(at — B, u, 3y — 8, v,y — &) |
(a— B, 0,y —»8.v,x' — 8’) € DCO(C,R) )

In lemma 3.6 we give the criterion for the ground subconnectedness of a double critical
triple DCT(ot — B, u, ¥ — 8, v, ¥' — &). If there is no critical overlapping between the
rule ¥ — & and the rules oo —f and 3 — & (the conditions ve O'(a), u = v.u’ a
u e 0(y) and v - uv A v €0(3) are not satisfied), then the ground subconnectedness
is immediately satisfied otherwise we have to check critical overlappings between the

rule 3" — & and the rulesa —p and y — 8.

(3.6) Lemma
Let R be a term rewriting system and (0@ — P, u, 3 — 8, v, 3 — &) be from
DCO(CO(R), R). The triple DCT(ct — B, u, 3 — 6, v, 3’ — &) is ground subconnected, if:
(veO(a)= CT(a —B,v,3 — &) is confluent ) '
A (u=vuaueO(y)=CI(y — &, v’y — &) is confluent )

A (v=uvaveO(y)=CI(y—8 v,y —¥&)is confluent )

Basing on these definitions and Lemmata, we can give a test for ground confluence:



Ground Confluence

10

Confluence Test

(1) CONFL-CO = { {ot — 8, u, 3y — 8) | (@ — P, u, 3 — 8) € CO(R)
: and CT(a — P, u, ¥y — 8) is confluent }
NOT-CONFL-CO = { (0 — B, u, ¥ —8) | (0 — B, u, ¥ — &) € CO(R)
‘ and CT(x — B, u, 3 — &) is not confluent }

(2) CONNECTED-DCO = { (¢ —>B, u, 3 —8,v,5' — &) |
(¢ — P, u, ¥ —8,v, 3 — &) e DCO(NOT-CONFL-CO, R)
A(veO ()= CT(ax — B, v, 3 — &) is confluent )
Alu=vuaveo(y)
— CT(y' — &, u’, 3 — &) is confluent )
A(v=uvaveO(y)

== CT(y — 8, v’, 3" — &) is confluent ) }

(3) R is ground oconfluent, if CONNECTED-DCO u CONFL-CO covers
NOT-CONFL-CO

For the correctness of this test, we have to prove that every critical triple of R is ground
connected (Theorem 3.2). If a ~triple' is- confluent, then it is also ground connected.
Otherwise we oonsider- a set of connected triples CONNECTED-DCO (Lemma 3.6). Then, the
critical triple is connected if it is covered by the set of connecied triples CONNECTED-DCO
U CONFL-CO (Lemma 3.4). \

To complete this confluence test, we need a method for proving the coveredness
property. With the test of Kounalis [KO 85] for example we can prove the coveredness of
a set of terms by another set of terms. This test can be extended {o triples of terms, by
introducing a new ternary operator { j and applying it to every triple. Then, we check the

coveredness of a set of triples M, by a set of triples M, as follows:
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{1} Transform the triples in M, and M, into terms:
M (It 1) 1 b, ) e My )

g = Uty ) 1ty ) e My )

(2) M, is covered by M, iff M, is covered by M’,

(3) 2 , ible functi

Ia [GO 85b] the number of critical pairs has been reduced by introducing a weaker

rewrite relation —» p for a term rewriting system R. A term t’ is derivable from a term
1 by —» p if t can be reduced to t' by a rule from R and all variables in the left hand

side of the rule are replaced by constructor terms. It has been proved, that the ground

confluence of the relation —» g is equivalent to the ground confluence of — R if every

ground term is reducible to a constructor ground term. In this case, it is sufficient to

consider only critical pairs where variables are replaced by constructor terms.

Here, we will also consider a weaker rewrite relation denoted by —» R but the

definition of this relation differs from the relation given in'[GO 85b]. We allow an

application of a rule if the variables on the left hand side are replaced by normal forms:

(4.0) Definiti

Let R be a term rewriting system. We define the relations —» RYIR and +—¥ Rt @8
follows: _
-ty—» gty e=:3Ja—PeR:IeTuecO(t):1/u=-6l)
A(Vxe V(o) :s(x)e IRR(R))
4A12-l‘[ u«—os(p) ]
“LRlh, =Ly pLvL g

"l g S iliriplato At
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We denote by *» the reflexive and transitive closure of —» and by »*+ the reflexive

and transitive closure of i—i .

The relations —» g and — R have the same normal forms, their symmetric, transitive

and reflexive closures are equivalent and —» p is confluent iff —» R is confluent:

(4.2) Theorem
Let R be a term rewriting system. Then:

-V t:tirreducible by —» p & tirreducible by — p
g = PHR

eibop is confluent iff — R is confluent.

If we use the. relation —» R On ground terms, then the variables of a rule are only

replaced by ground terms which contain no convértiblé function symbols. We can
modify the test given in section 2 for the relation —» p by considering only those
function symbols F which are not converiible for the computation of critical
overlappings and for the coveredness test of a critical triple.

In definition 4.3 we restrict the critical oveflappings to cases where variables in rules

can be replaced by terms without convertible functions:

(4.3) Definiti
Let R be a term rewriting system and F « FS. We define the set of critical overlappings
COR(R) and the set of critical triples CTSg(R) as follows:

COp(R) = { (¢, — B, u,x —8) la — P,y —BeRaue0(a)
a3e,1:6(a)/u-t(y) -
AV xe V(a):e(x) e TE(RVA)
AVxeV@):tx)e TE(F,VA))
CTSp(R) = { CT(at —B; v,y — 8) | (¢ —B.'u, 3 — &) € COp(R) }
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\

Note, that the CO(R) is equal to COpg(R) and CTS(R) is equal to CTSpg(R).

Iastead of coansidering all ground instances of triples, we consider only instances where

variables are replaced by ground terms without convertible function symbols:

(4.4) D=finition (modified version of definition 3.1)
Let (i, t,, 13) be a triple of terms, F = FS a set of function symbols and M be a set of
tripies of terms. '

= IF{M) denotes the set of all ground instances in F of triples in M:
Ip(M) = ((e(t,), 6(t,), 6(t)) | (1, 15, 1) e M

AV xe V(t,) uV(t,) V(L) : 6(x) € TE(F, £) )
- (L, b, 13) is ground confluent in F if all ground instances in F of (t,t,, ty) are
confluent:
VULt elpl{t, ty 1) 1) : U, lR =1/, IR
- (i‘, L ts) is ground connected in P if all ground instances in F of (t,. 179 13) are
connected:

VUt e Il ty ) N ety g 4 1y

A term rewriting system is ground confluent if all ground instances in P of CPSF(R) are

connected and FS\F contains only convertible function symbols:

(45) Theorem (modified version of theorem 3.2)
Let R be a terminating term rewriting system, F < FS a set of function symbols and FS\F
coniains only convertible function symbols. Then, R is ground confluent iff:

V(. t, 1) € IfCTS(R)) : 1, g 4y 1y

The definition of the coveredness property can also be extended for convertible functions:
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' (4.6) Definition (modified version of definition 3.3)

Let M, and M, be sets of triples of terms and F <FS a set of function symbols. M, covers
M, in F iff:

I(M,) « Ip(M,)

Bvery ground instance in F of a critical triple is connected if it is covered in F by a

connected set of triples M:

(47) Lemma (modified version of lemma 3.4)

Let R be a term rewriting system, F < FS a set of function symbols, (1, t,, t,) a critical
triple from CTSg(R) and M be a set of triples of terms with:
V (t'l. t’z. tla) € M : t2 "l"' R' t‘ t3

Then, (1, 1,, t,) is ground connected in F if { ('), 5 1';) ) is covered in F by M.

Now, we can also give a modified test for ground confluence:

Confluence Test

(1) CONFL-CO:= { (x — B, u, ¥ — 8) | (@ — B, u, 3 — 8) € COpg(R)

and CT(ct — B, u, y — 8) is confluent }

NOT-CONFL-CO = { (ot — B, u, 3 — 8) | (@ — B, u, ¥ — 8) € COR(R)

and CT(at — P, u, 3 — &) is not confluent }

(2) CONNECTED-DCO = { (ot —B,u, 3 —8,v,¥ — &) |
(@ — B, u, ¥ — 0, v,y — &) e DCO( NOT-CONFL-CO, R)
a(veO(a)=CT(a —p, v,y — 8) is confluent )
Alu=vuau eO(y)=CI(y —&, v, ¥ — b) is confluent)

A(v=uvaveO(y) =CI(y—8& v,y — &) isconlluent )
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(3) R is ground confluent, if CONNECTED-DCO vy CONFL-CO covers
NOT-CONFL-CO in F

Note, that we consider all confluent critical triples from COpg(R) because this may help us

to prove more triples in DCO(nred-crit,R) to be confluent than to consider only confluent

critical triples from COg(R).

The coveredness test of Kounalis [KO 85] has not to be modified, because it allows us to
distinguish constructors (F) and defined functions (FS\F), and prove the coveredness of a

set of terms only for constructor ground instances.
Co .

The test developed in this paper allowed us to prove the ground confluence of many
systems where the classical Knuth-Bendix generates an infinite system. The ground
confluence could be proven without splitting the term rewriting system into axioms and
other rules and without choosing position in rules, which was necessary in [GO 85b] or
[FR 86]. In fact, we could prove more systems to be ground confluent than with the
methods given in [GO 85b] and [FR 86], but it is not obvious that our method is a stronger
test for any lerm rewriting system.

A major problem for this test are term rewriting systems which are not terminating. In
future, we pian to exiend the test for globally finite term rewriting systems on the base
of [GO 85a). Also the method of [HR 86] will be considered because it may help in cases

where the term rewriting system is not even globally [inite. -
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Appendix 1  Examples

We have implemented a simple completion procedure with the ground confluence test
described in this paper. We will give three examples, where the ground conflunce can be

proved by our implementation and the classical completion procedure generates an

infinite set of rules.

(1) Associativity of /

In the following term rewriting system rule 1 and 2 axiomize the addition on natural
numbers and rule 3 is an inductive consequence of rule 1 and rule 2:

(1) add(0y) — y

(2) add(s(x).y) — s(add(x,y))

(3) add(x,add(yz)) — add(add(x,y)z)
This example has been considered in [FR 86] and could be proven to be ground confiuent,
even though the classical Knuth-Bendix Algorﬁhm generates an infinite set of rules.
For this example we show completely how our ground conflunce test wor?s. For lack of

space we will skip details of the test in the other examples.

For this example, we assume that add is convertible. We get the following critical

overlappings and critical triples:
(rule 3, 2, rule 2): ( add(x,add(s(y),z)), add(x,s(add(y,z))), add(add(x,s(y)).z) )
(rule 3,¢,rule 2):  (add(s(x),add(y.2)), s(add(x,add(y.z))), add(add(s(x).y).z) )
(rule 3,2, rule 1) ( add(x,add(0.y)), add(xy), add(add(x,0)2) )
(rule 3,¢,rule 1)« ( add(0,add(x.y)), add(x.y), add(add(0,x),y) )
(rule 3, 2, rule 3) :

( add(x,add(y,add(z,u}))), add(x,add(add(y,z),u)), add(add(x,y),add(z,u)) )\

Now, the critical triples of the second critical overlapping (rule 3, €, rule 2), the fourth
critical overlapping (rule 3, €, rule 1) and the fifth critical overlapping (rule 3, 2, rule 3)

are confluent. The other critical triples are not confluent but belong to COR(R) therefore
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we have to generate instances by unifying left hand sides of rules with their first
elements:
(rule 3, 2, rule 1, ¢, rule 2):
( add(s(x),add(0,y)), add(s(x),y), add(add(s(x),0),y) )
(rule 3, 2,rule 1, ¢, rule 1): |
( add(0,add(0,y)), add(0,y), add(add(0,0),y) )

(rule 3, 2, rule 2, €, rule 2):
( add(s(x),add(s(y).z)), add(s(x),s(add(y,z))), add(add(s(x),5(y)).z) ) _
(rule 3, 2, rule 2, ¢, rule 1) :

( add(0,add(s(y)z)), add(0, s(add(y.z))), add(add(0,s(y))z) )

Now, we can prove that all these triples are connected. Consider for example the triple of
the overlapping (rule 3, 2, rule 2, ¢, rulé 1). This triple is confiuent because the triple of
the overlapping (rule 3, €, rule 1) is confluent and rule 2 has been applied at a subterm
which has been matched by a variable of rule 1 (for details see lemma 3.6).

Note, that all four doble critical triples are not confluent and for every example in this
appendix the conffuence of triples is not sufficient for broving the ground confluence of
the examples.

It remains to proof that the critical triples of the overlappings (rule 3, 2, rule 2) and
(rule 3, 2, rule 1) are covered in (s, 0} by their connected instances. This is easy for both
triples because the instances have been generated by repl}xcing a single variable by s(x)

and 0, and s(x), 0 cover all ground instances in {s, 0).

The associativity of add can also be proved by the classical Knuth-Bendix Algorithm, if we
add the inductive consequences add(x,0) — x and add(x,s(y)) — s(add(x,y)) to the
system or use the associativity law in the reverse direction. In the next example it does
not help to add other rules or to orient rules in the other direction, the classical

Knuth-Bendix Algorithm will always generate an infinite system.
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(2) Add and Sub on Natural Numbers

In this example we give two equivalent axiomatization of the addition (rules (1), (2) and
rules (3), (4)) and one axiomatization of the subtraction (rules (5) - (7)) on natural

numbers. Rules (8) and (9) are inductive consequences of the rules (1) - (7):

(1) add(0y) — y
(2) add(s(x),y) — s(add(xy))
(3) add(x,0) +— x
(4) add(x,s(y)) — s(add(x,y))

(S) sub(s(;),s(y)) — sub(x,y)
(6) SUb(O.y) —Yy
(7) sub(x,0) — x

(8) sub(add(x,y)y) —x
(9) sub(add(yx)y) — x

With our confluence test we can prove the ground confluence of this system. The methods
presented in [GO 85b] and [FR 86] fail for this example. The ground confluence of the
subsystem 1-8 and the subsystem 1-7, 9 can be proved by both methods if we choose the
right axiomatization of add but the classical Knuth-Bendix Algorithm still diverges for
these subsystems.

(3) Greater on Natural Numbers

In the last example, we give an axiomatizaﬁon of the predicate greater on natural
numbers (rules 1, 2, 3), of boolean functions (rules 4 - 9) and three inductive
consequences of greater (greater is irreflexive (rule 10), antisymmetric (rule 11) and
transitive (rule 12)). These rules have been given to oui' completion procedure which
generates three other rules (rules 13 - 15) and proves the ground confluence of the final

system.
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(1) gr(0,x) — false
(2) gr(s(x),0) — true
(3) gr(s(x),s(y)) — gr(x,y)

(4) not(true) — false
(5) not(_false) — true

(6) or(true,y) — true
(7) or(false,y) — y

(8) and(true,y) — y
(9) and(false,y) — false

(10) gr(x,x) — false
(11) or(not(gr(x,y)),not(gr(y,x))) — true
(12) or(not(gr(x.y)),or(not(gr(y,.z)).gr(x,z))) — true

(12),(10) ==> (13) or(not(gr(x,y)),true) — true
(12),(10) ==> (14) or(not(gr(x,y)).or(not(gr(y,x))false)) — true
(12),(3) ==> (15) or(not(gr(x,s(y)))or(not(gr(y.z)) gr(x,s(2)))) — true
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Appendix2  Proofs

Instead of proving theorem 3.2 and lemma 3.4 we will prove the more general theorem
4.5 and lemma 4.7. Therefore we start with the proof of theorem 4.2 because the proof of
theorem 4.5 bases on this proof.

Proof of theorem 4.2

- (1) V t:tirreducible by —» p = t irreducible by — g
(e=) obvious because —» g — p

(=)t irreducible by —» p -

The proof follows from the fact that a term t is reducible by — iff there is
a subterm of t which is only reducible on top and therefore the subterm is

also reducible by —» :

Assume t is reducible by — g

Let u be the deepest occurence in t, which is reducible :
Ja—peRIe:t/u=6(@)aV veO(t): v>u=t/ve IRRR)
Then, every variable in o matches an irreducible term :

« is of the form f(t,....t) because no left hand side consists of
a single variable :

= t/u=elf(t,,...,t)) t/u =e(a)
= t/u=flelt,),...,elt))

=+ 6(t,),...,6(t) e IRR(R)

= VIxeV(t)u...uV(t):6(x) e IRR(R)

=V xe V(I(t,,...,t.) 6(x) e IRR(R)



Ground Confluence . ‘ 21

== t is reducible by —» g at u

= contradiction : t is irreducible by —» p
()4 pg = g
(==) obvious :#—lR © g

(e=) We will prove:
LR => Y R,
Then, the case:
LR L=t R L,
is obvious, because v-!-i R is the reflexive and transitive closure

dHR.

LHIRY
= () 3a—pPeRIv6:t/u~cla)aty=~t [u—e(f)]

v(ii) 3a—peRIy6:t,/u=sl@)at =t,[u—elp)]

(i) We can reduce the subterms of t, and t, which are matched by

variables from o and B (e(x)) by —» to their normal forms

(6'(x)) and derive the reduced 1, from the reduced t, by —».

We define &'(x) as follows :

~ x€ V(o) == 6'(x) := normal form of 6(x) in %»p

¢ V@) =6(x):=x

Then: V x € V(o) : &'(x) € IRR(R) with (1)
=t [u—e@]—pt,[u—e@]

=t 2ept[u—6@]—gtylu—e@) Ige*t,
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(ii) this proof is equivalent to (i)

(3) —» g confluent <= — p is confluent.

(==) —» g is confluent
Assumet - pt atXspt,
=t Hipt,
= t, g t, with(2)
=3t Xept'aty,Xwpt’ - pisChurch-Rosser
wt‘—!—rRt'ntz-!-'Rt' Ewpce-Sp

= % Ris confluent

(e=) — g is confluent
Assumet*wpt atEept,
Then reduce L @d t, to their normal forms t'; and t', by %= p
tl-!‘-»Rt'iAtz-’-»Rt'z
= ' gt
= U g t, with (2)
= I Zsptat, B pt" = p Church-Rosser
with t, t, irreducible by *» p = ', t’, irreducible by
2 p(1):
vi=tat,=t

= t', - t'z
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== —»p is confluent

Lemma A.1 allows us to simplify the proofs of theorem 4.5 and lemma 4.6:

(Ad) Lemma

Let R be a term rewriting system, F a subset of FS, t a ground term and x — B, ¥ — 0 be
rules from R. The rule a — p can be applied at v in t, the rule ¥ — & can be applied at v
in t and all variables in a and § match terms from TB(F,9):
-t/u =e(a) a t/v = 1(y) a t € TE(FS, &)
-V 1€ V(a):o(x) € TE(F, @) A V x € V(3) : 1(x) € TE(F, ©)
Then the triple (t, t [ u—e6(p) ], t [ v — 1(6) ]) is connected if:
(1) u and v are disjoint
or (2)v=uvav¢0i(a)
oo (3)v-uvaveO(a)

=V (1, 1. t;) € I{(CT(a — B, V', g — B ty 12 g (4 1,

Proof
(1) v, v are disjoint

Then y — & can still be applied at t [ u —&(p) ]
tlue—e@)]/v=t/v=1(y)  with:t/v =1(3) A u, v are disjoint

= t[ue—of)]—ptlu—s@) [v—r1())

and o — f can be applied at t [ v «— 1(5) ]:
tlve—1(@)])/u=t/u-=6la) with: t/u = 6(a) a u, v are disjoint

= t{ve—t@ ] —gtlve—1@)][u—se@)]
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tflu—eP)l[v—1@) ]=t[ve—1(®) ][ uve—e(p)] u,vare disjoint

— tlu—6@) I, tve—1()]

2Q)v=uvav ¢0(a)

=3V, V,y:V =V, VoA a/v e VA

Let(w,,...,w, } be the positions of this variable in o

(wiooo,w h={(wla/w=-alv, )

All subterms t at uw,.v, have tobeequaltot/v(i=1,...,n):
t/uw,v, =ela)/w.v, \ with t/u = e(at)

= t/uw.v, =ela/w)/v,

= t/uw,v, =ela/v)/v, with : at/v, - a/wi} fori=1,...,n
= t/uwW,V, = o(d)/v,.vz

= t/uw,v, = (t/u)/ v,v, with : t/u = e(a)

= t/u.wl.v2 =t/v with: v’ = V(V AV = uy’

¥ — 8 can be applied at every position t/u.w, v, and we get :

t—ptlve—t@ 1 2 ptliuw,v,—1@]...[uw v, — 1) ]

Now o — B can be applied at t [uw, v, «—1(®) ]... [ uw v, —1(0) ]
We define a matcher & for « as follows :
-x =a/v, e’ (x)=elx) [ uy—1(8) ]
-x1=a/v, 16°(x) =6(x)
Then :
tluw,v,—1@®)]...[ uw v, —1(6) J/u

~t/ulwv,e—1@]...[wv,—1(6) ]
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=ola) [ w,u, —1@®) ]...[wu,—1(6)] with:t/u-6e(a)

=ela) with:{w,...,w }={wla/w=a/v,)}

= tluw.vy—1@)]... [uw, v, —1@)]
—ptluw, vy —1® ). . [uw v, —1@®) 1 [u—e@) ]

=tlu—e@) ]

In the other reduction t [ u «— 6(p) ] the subterm which was matched by a/v, will
occur at any position w in o(8), where f/w = a/v,:

Let(w,....w_}={WI[B/W=-alv}

Then, ¥ — 8 can be applied at every positiont [ u—e@) )/ uw' v, fori-1,..., n:
tlue—e@) )V uw' v, =-o@)/w v,
=e(B/w )/v,
-ela/v /v, with:p/w' -a/v fori=1,..., n
-~e(@)/v,.v,
=t/uv,v,  with:t/u=-ela)
-t/v C With: V.V, =V AV=UuY

-1(3)

= t[u—ea(@)]
Hptlue—o@) I [uw vy—1@®)]...[uw v, —1(8)]
-t m—e(b) [ w‘,.vzc-——r‘(ﬁ) Lo Iwov,e=1) 1]

=t[v—e@)]

We have derived t [ ve— &'(B) 1from t [ u «—e(p) Jand t [ v — 1 (8) ] and we get
t[U&Q(ﬂ)]iiiR.11[V+—T(6)]
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(3) v=uvaveOia)
with t/u = s(at) :
t/uv =ela)/v’
= /v =ela)/V’ wv' o =v
= 1(3) =6(a)/v t/v =1(3)
= (@ — B, V', y — &) € COp(R)

with V x € V(a) +6(x) € TE(F, @) a ¥ 1 € V(3) : t(x) € TE(F, )

We get CT(a — B, v', 3 — 8 ) as follows :
Let ¢ be a renaming substitution of ¥ with V(a) n V(p(3)) = @ and ¢’ the converse of
9 (9" - =id). Then:

sla)/v' -1’ (p(y)))

a/v’ and () are unifiable by the following substitution 6,:
-xe V(a): o,(x)=o(x)
-xe Vip(z)): o,(x)-1(g(x))
-x¢ Vi@)v V(p(z)): 6,(x)=-x

= g,(@)/u ~o(a)/v' - (g (9()) - o (o))

and we can find a most aeneral unifier for a/v’, p(y) :

=36, :6, € mgula/v’, p(y))

A (6y(a), 8 (@) [ V' — 0,(9(8)) ], 6,(B) ) - CT(x — B, V', ¥ —B)
=36,16,=6,6, with: 6, € mgu (a/v', 9(3)) A 6,(a/v’) = 6,((3))
—_ 6,(6,(a)), 65(6,(a)) [ V' «— &,(6,(9(6))) ], 65(6,()) )

- (o,(@). 6, () [V —o, (@) LoB)) 6 -0y-0,

= (o), o) [ v e—1(8) ], 6(8) ) definition of &,

If we can prove that:
V 1€ V(o,(@)) v V(e,(@) [ v — 6,(p(B)) 1) v V(6,(B)) : 64(x) € TE(F, )
then the triple (t, t [ u «—o(f) }, t [ v «— 1(8) ] ) is subconnected:
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(sla), o@) [ v —1(8) ],6() ),
€ Ip ({ (6,(a), 6,5() [ v —6,(p(6)) 1 6,(B)) 1)

= (o(a), 6(a) [ v' — 1(8) ], 6() ) € Ip(CT(x — B, V', 5 —5))

= (e(a), o(a) [ v' — 1(8) ], () ) € IR(CTSR(R))

= 6(a) [ v’ —1(6) 1**4 g () 6

= tlue—o)[ve—1@) 1] g [ye—sl)] tIv—0cB]
s t[u— (@) 1[0 — 16 ] 4R g ()] L] U—®)]
= tluv —1(0)] g, tlu—e@ ] - t/u-sla)

= t{ve—1B)] g, tlve—e@)] UV ev

Now, it remains to prove:

V 1€ Vio,(@) v Vio, (@) [ V' — 6,(9(6)) D) u V(s,(8)) : 6,(x) € TE(F. B)

x € Vio,(a)) v Vie,(@) [ v «— 6,(¢(8)) 1) v V(e,(p)

= 1€ V(e,(a)) v Vie,(a) [ v’ «—6,(p(8)) ]) V(p)e Via)
= x€ V(oy(a)) v Vie,((8))

== 1 € V(e,(a)) v V(e,(9(3)) V(g)e V()

We consider two cases, either x ¢ V(e,(a)) (case i) or x € V(e,(p(3))) (case ii) «

(i) x € V(e,(a))
=3 w:6,(a)/w-1x

=W, Wy 1 W Wy=Waa/w, =yayeVA

== 6(y) € TE(F, &) VY ye V(o) : ely) € TE(F, 9)
= ¢,(y) € TE(F, 9) e,(y) -e(y) for y € V(a)
== 64(6,(y)) ¢ TE(F, @) €,=6;°6,

= 6,(6,(a/w,)) ¢ TEF, @) a/w, -y
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= 6,(6,(a/w,))/w, € TE(F, 9) w, € Ola/w,)
= 6,(6,(a)/w,.w,) € TE(F, 9)
. ss(oz(a)/w) ¢ TE(F, 9) W W, =W

= 65(1) ¢ TE(F, 9) 6,(a)/w -1

(ii) x € V(e (p(3))
=3 w:0,(p(3))/w -1
— 3 W, Wy W W,y = WA o)/ w -yayeVA

=+3z¢V(3):9(z)-y
1(z) ¢ TE(F, 9) V ze V(3) : t(z) e TE(R, ©)
== 1(9’(¢(2))) € TE(F, 9)

= 1(p'(y)) € TE(F, Q) e(z) -y
= 6,(y) e TE(F, 9) 6,(y) = t(p’(y)) for y € V(p(3))
= 6,(6,(y)) € TE(F, ©) 6,=6;+6,

== 6,(6,(p(y)/w,)) € TE(F, 2) @(y)/w -y

= 6,(6,(9(3)/W,))/w, ¢ TE(F, &) w,e Olp(y)/w,)
= 6,(6,(p(y))/w,.w,) € TE(F, &)

= 6,(6,(p(3))/W) € TE(F, ) w w,-W

= 6,(x) € TE(F, 9) 6,(p(3))/w =1

With (), (ii) «
= V1€ Vio,fa0)) v Vie,(a) [ u— 6,((6)) 1) u Vie,()) «6,(x) € TE(F, 8)
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Proof of theorem 4.5 (theorem 3.2)

(=)

Let (1., 1,,1,) € Ip(CTSg(R))

== 3 (@ — P, u, ¥ — 8) € COL(R) : (,, t,, 1,) € Ig({CT(ct — B, u, 3 — 8))
=236, 13Vt ~6l@)at /v=t(3)aty =t [ve—1(3)1at,-6(f)
=1 —RLAYRY

=3t:,Hptat,Hpt R is ground confluent

()

It is sufficient to prove

Vil 1, eTBFS, @) :t—wptat—wply=t p (1,:

—.Rconfluent
= —» Rconfluent theorem 4.2
e==th,t|.t2€TE(FS,ﬁ)=t—»Rt|At——»th==ot'vluR 1t

Generalized Newman Lemma [WB 83]
= VLt LETEFS, @):t—wptat—sply=2t g L

theorem 4.2

Fort—»Rtlat—»thwegetz

t—»pt,=3ueOlt) Ia—pPeR3o:t/u-sla)atlu—eo)]-t,
AV xe V(a) «6(x) € IRRG(R)

t—»pt,=3veO(t) Iy —8eRAT:t/v=-1F)at[ve—1()]-t,

AV 1€ V() : 1(x) € IRRG(R)
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F contains all function symbols which are not convertible :

— IRRG(R) < TE(F, )
==V xeV(a):e(x)e TB(F,8)aV xe V(y): t(x) € TE(R, B)

By lemma A.1, the subconnctedness of (t, L ‘z) follows immedeately for the case where

we have no critical overlapping between the rules (case 1 and 2). For the other cases
where we have a critical overlapping (v = u.v’ A vie 0'(at) or v=uv’ a v’ € 0'(at)), we can

prove the subconnectedness by considering critical triples:
Assume w.1og.: vV = uv aveOi(a)

with: t/u = e(a)
== t/uv’ =el@)/v’
= t/v=6(a)/Vv’ V=uv
= 1(3) - 6(a)/V’ () =t/v
- = (0 —B, V', ¥ — 8) € CO(R)
with: V x € V(at) : 6(x) € TE(R, &) o V x € V(3) : v(x) € TB(F, 9)
= CT(at — B, V', ¥ — 8) € CTSR(R)

=V (U, U, Uy) € I{CT@ — B, V. 3 — 8 c Uy g o Uy
with assumption of theorem .

= (L1, tz) is subconnected lemma A.1

Proof of lemma 4.7 (lemma 3.4)

Assume: (U, t'), t'5) € IR(( (t), 15, 13) )
= (U, V' t'5) € Ip(M)
with: { (t,, t,, t) ) is well covered by M

= t’zvl‘-Q E 1 t'3 with assumption of lemma
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- (L, Ly 13) is ground connected

Proof of lemma 3.6

Assume: (o —p,u,3—b v, ¥ ——o ') € DCO(CO(R), R)
a (1,15, 1) € Ipg(( DCT(@t —B, u, 3 —8, v, 3’ — 5 )

Then . — § can be applied it €, 3 — 0 can be applied at u and ' — & can be applied at

v in t;. We will consider the pair of terms which can be derived bya —pand y— &
from t, (case 1) and the pair which can be derived by 3 — 8 and " — &' (case 2). We
will show thgt both pairs are connected below t, by Lemma.A.i. then by the transitivity

of 4 p 4, the terms t, and t; are connected below t,.

Let: (o(a) 6 (a)[ ue—o,(p(d)) ], 6,() )~ CT(cx — B, u,y —8)
(&,(6,(a)), 8,(6,(ax)) [ U — 6,(6,(9p(8))) ], 6,(c,(B)) )

=DCT(a — B, u, 3 —8,v.3 — &)
6,(6,(a))/v = 1(¥)

Then :
(t), 1. t5) € Ipg({ DCT(@ — B, u, 3 — 8, v. ' — ) )
=+ 3611, -6(6,(6,(x)))
Aty =06(6,(6,(a))) [ u—ole,(e,(9(5))) ]

A 13 = 6(6,(6,(8))
(1) a —p, ¥y — 08

e(e,(e,(a)))/v = e(x(y) 4 6(6,(6, () /¢ = 6(6,(6, ()



Ground Confluence 32

(2)

(1.1)veO(a) S

== CT(at — P, v, 3’ — &) is confluent assuniption of Lemma
=V (.1, t3) € Ipg(( CT(at — B, v, 3" — 8) D) e %4 Rt
= 6(6,(6,())) [ v e— 6(t(8)) 14 g 4(g2(61(a))) (62164 (B))

with: Lemma A.1 case 3

(1.2)v¢ O'(a)
= ele,(e (@) [v — o(t(5)) TR g(ea(e1())) ©(62(64B))

with: Lemma A.1 case 2

1 —8, 3y —0b:
elo,(6, ())/v = o(t(y)) » ols,(6,(@)))/u - o(e, (6, (p(3))))

(21)u=vuaveO(y)
== CT(y" — &', u’, 3 — 08) is confluent  assumption of Lemma
=V (1,15, 1) € Ipg({ CT(¥ — &, U, 3 —8) ) e tyHip (1
= 6(6,(6,(@))[v —6(t(E))]
4 R (ea(en(@))) (626, (DU — 6 o,(0, (9(E))]

with lemma A.1 case 3

(22)v=uva v ¢0(3)
= 6(6,(6, (@))V — &(1(5))]
Yy R, s(s2(81(a0))) 6(62(6'((1)))[0 —6( 62(6, (p(5))))]

" with lemma A.1 case 2
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(2.2) u and v are disjoint

= &(6,(6,(a)))[v — e(1(5))]

4 R, a(e2(61(a))) 8(02(61(0)))[u — o 6,(6, (p(6))))]

with lemma A.1 case 1

(1), (2) = e(6,(6,B)) P4 R g(62(61(a))) ©(62(81 (@)U — 6&( 8,(6, (p(6)))]
= tyHp b, With: 1, - e(e,(6,(@))
t, = 6(6,(6, () [ u — ole,(e,(p(6))) ]
t, = 6(6,(c,(B))
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