
A Relational/Functional Language and Its
Compilation into the WAM

_ Harold Boley

SEKI Report SR-90-05

1

A Relational/Functional Language

and

Its Compilation into the WAM

Harold Boley

boley@informatik.uni-kl.de

Deutsches Forschungszentrum flir Kiinstliche Intelligenz

Universitat Kaiserslautern

April 1990

Abstract

The first part discusses an amalgamation of relations and functions on the basis of
'valued clauses', as used in RELFUN. These extend Horn clauses by 'foot' premises,
specifying the values to be returned. Functions can succeed or fail, enumerate values
non-deterministically, return multiple values, and have non-ground arguments and val
ues. Relations act like characteristic functions, permit functionally nested call-by-value
arguments, and are definable as higher-order operators. Higher-order clauses are charac
terized by a structure or a (free) variable in some operator position.

The second part describes the WAM compilatIon of RELFUN. Multiple-valued func
tions are transformed to a 'denotative' form, eliminating foots that are active calls. Call
by-value nestings (possibly non-deterministic) are 'flattened'. Higher-order clauses are
reduced to 'constant-operator' clauses. Finally, WAM code is generated by extending the
use of X-registers and 'put'j'get' instructions: values are put into registers Xl, ... just
before a clause returns; from there, the caller can get them as arguments, as if loaded by
top-level put instructions.

Introduction

The applicative (functional) and logic (relational) programming communities are currently
investing much effort in the development of independently standardized systems. While
acceptable standards for languages like LISP and PROLOG will be of great practical utility,
the separate growth of these software worlds also implies increasing duplication of effort. A
possible alternative is to integrate the purely functional and relational language kernels, and
then to develop a common impure language environment.

Various functional/relational amalgamation approaches have been proposed (a good sam
ple collection is [DL86]). They can be studied with emphasis on expressive power, se
mantic foundation, implementation method, or time/space efficiency. This paper intro
duces a WAM implementation method [War83] ofRELFUN (relationaljfunctionallanguage),
an amalgamation based on valued clauses. First, however, the expressive power of these

1

A Relational/Functional Language
and

Its Compilation into the WAM

Harold Boley
boley@informatik.uni-kl.de

Deutsches Forschungszentrum für Künstliche Intelligenz
Universität Kaiserslautern

April 1990

Abstract

The first part discusses an amalgamation of relations and functions on the basis of
‘valued clauses’, as used in RELFUN. These extend Horn clauses by ‘foot’ premises,
specifying the values to be returned. Functions can succeed or fail, enumerate values
non-deterministically, return multiple values, and have non-ground arguments and val-
ues. Relations act like characteristic functions, permit functionally nested call-by-value
arguments, and are definable as higher-order operators. Higher-order clauses are charac-
terized by a structure or a (free) variable in some operator position.

The second part describes the WAM compilation of RELFUN. Multiple-valued func-
tions are transformed to a ‘denotative’ form, eliminating foots that are active calls. Call-
by-value nestings (possibly non-deterministic) are ‘flattened’. Higher-order clauses are
reduced to ‘constant-operator’ clauses. Finally, WAM code is generated by extending the
use of X-registers and ‘put’/‘get’ instructions: values are put into registers X1, ... just
before a clause returns; from there, the caller can get them as arguments, as if loaded by
top-level put instructions.

1 Introduction

The applicative (functional) and logic (relational) programming communities are currently
investing much effort in the development of independently standardized systems. While
acceptable standards for languages like LISP and PROLOG will be of great practical utility,
the separate growth of these software worlds also implies increasing duplication of effort. A
possible alternative is to integrate the purely functional and relational language kernels, and
then t o develop a common impure language environment.

Various functional/relational amalgamation approaches have been proposed (a good sam-
ple collection is [DL86]). They can be studied with emphasis on expressive power, se-
mantic foundation, implementation method, or time/space efficiency. This paper intro-
duces a WAM implementation method [War83] of RELFUN (relational/functional language),
an amalgamation based on valued clauses. First, however, the expressive power of these

mailto:boley@informatik.uni-kl.de

relational/functional clauses is discussed: They permit 'closed' (non-A) higher-order rela
tional/functional terms while preserving PROLOG's "non-ground (pattern) programming"
style. RELFUN's original formal semantics is operational, in the form of a definitional inter
preter in pure LISP [BoI86].

We use transformation and compilation techniques to explore the working hypothesis that
the efficiency of relational/functional integrations will be able to approach the efficiency of
compiled PROLOG. RELFUN's functional features were conceived and implemented in the
interpreter without concern for later compilation to WAM instructions. Nevertheless, after
some preparatory transformations (mainly flattening and constant-operator reduction), func
tions turn out to have a strong affinity to this standard relational implementation method:
RELFUN clauses can return values by just putting them, as their last action, into a WAM's
"temporary (x-) registers" , where a main function call can get them as its actual arguments.
Several WAM-like X-register optimizations thus become also possible for functions. Alter
natively, flattened, constant-operator-reduced RELFUN clauses can be further transformed
to equivalent PROLOG clauses, which may then be compiled for high-efficiency PROLOG
machines such as the KCM [BDN+89].

A COMMON LISP prototype of RELFUN is now in experimental use at the University of
Kaiserslautern. It is planned to enrich this relational/functional kernel language by a hier
archical type system and augment it by a tailored programming environment. We currently
develop a RELFUN package of declarative operations on hypergraphs (semantic nets) [BoI90].
Our principal application area at the German Research Center for AI will be qualitative rea
soning in mechanical engineering.

2 The Relational/Functional Language

This is an introductory description of RELFUN. We will distinguish first-order aspects (sub
sections 2.1 through 2.3) from higher-order aspects (subsection 2.4).

2.1 Amalgamating Relations and Functions

Intuitively, the key idea of the relational/functional amalgamation can be understood in two
steps:

1.	 PROLOG-like relations are augmented to non-deterministic, non-ground functions. A
RELFUN function extends an n-ary relation by having it deliver a returned value along
with variable bindings. Such values may be non-ground terms (e.g. unbound logical
variables) and are enumerated using "don't-know" non-determinism (with failure being
signaled by the special symbol unknown). Returned values thus correspond to variable
values of an (n+1)-ary relation extended by a result argument. However, function calls
can return values directly to a main function or relation call in pure LISP's call-by-value
fashion absent from pure PROLOG.

2.	 RELFUN functions are specialized again to true-valued relations. A RELFUN relation
can either fail or succeed, as in PROLOG, but while it signals the special symbol
unknown on failure, it actually returns the truth-value true on success. Thus, true
and unknown can be regarded as the two outcomes of a characteristic function1 •

IThe interpreted RELFUN version has a third possible outcome, namely the (successful) truth-value false.

2

relational/functional clauses is discussed: They permit ‘closed’ (non-A) higher-order rela-
tional/functional terms while preserving PROLOG’s “non-ground (pattern) programming”
style. RELFUN’s original formal semantics is operational, in the form of a definitional inter-
preter in pure LISP [Bol86].
We use transformation and compilation techniques to explore the working hypothesis that
the efficiency of relational/functional integrations will be able to approach the efficiency of
compiled PROLOG. RELFUN’s functional features were conceived and implemented in the
interpreter without concern for later compilation to WAM instructions. Nevertheless, after
some preparatory transformations (mainly flattening and constant-operator reduction), func-
tions turn out to have a strong affinity to this standard relational implementation method:
RELFUN clauses can return values by just putting them, as their last action, into a WAM’s
“temporary (X-) registers”, where a main function call can get them as its actual arguments.
Several WAM-like X-register optimizations thus become also possible for functions. Alter-
natively, flattened, constant-operator-reduced RELFUN clauses can be further transformed
to equivalent PROLOG clauses, which may then be compiled for high-efficiency PROLOG
machines such as the KCM [BDN*89).
A COMMON LISP prototype of RELFUN is now in experimental use at the University of
Kaiserslautern. It is planned to enrich this relational /functional kernel language by a hier-
archical type system and augment i t by a tailored programming environment. We currently
develop a RELFUN package of declarative operations on hypergraphs (semantic nets) [Bol90].
Our principal application area at the German Research Center for AI will be qualitative rea-
soning in mechanical engineering.

2 The Relational/Functional Language

This is an introductory description of RELFUN. We will distinguish first-order aspects (sub-
sections 2 .1 through 2.3) from higher-order aspects (subsection 2.4).

2.1 Amalgamating Relations and Functions

Intuitively, the key idea of the relational /functional amalgamation can be understood in two
steps:

1. PROLOG:-like relations are augmented to non-deterministic, non-ground functions. A
RELFUN function extends an n-ary relation by having i t deliver a returned value along
with variable bindings. Such values may be non-ground terms (e.g. unbound logical
variables) and are enumerated using “don’t-know” non-determinism (with failure being
signaled by the special symbol unknown). Returned values thus correspond to variable
values of an (n+1)-ary relation extended by a result argument. However, function calls
can return values directly to a main function or relation call i n pure LISP’s call-by-value
fashion absent from pure PROLOG.

2. RELFUN functions are specialized again to true-valued relations. A RELFUN relation
can either fail or succeed, as in PROLOG, but while i t signals the special symbol
unknown on failure, i t actually returns the truth-value true on success. Thus, true
and unknown can be regarded as the two outcomes of a characteristic function?®.

!The interpreted RELFUN version has a third possible outcome, namely the (successful) truth-value false.

2

In summary, because both functions and relations can fail with unknown, their only remaining
difference is that on success functions return arbitrary values while relations return true.
More precisely, although a function may, like a relation, return true for certain argument
sequences, it can be distinguished from a relation in that it must return a non-true value for
at least one argument sequence2 • Therefore, relations and functions have actually become
unified to an abstract concept that we will refer to as operators.

Note that we deliberately did not call for determinism as a defining property of functions but
used the more general notion of non-deterministic functions, for the following reasons:

•	 Non-deterministic functions permit the tight amalgamation with relations discussed
above (non-ground arguments, invertibility).

•	 They are often useful for specifying multiple solutions in the fashion of generators,
streams, or lazy lists.

•	 They can be nested with little overhead via static flattening (cf. 3.3).

•	 They can be represented semantically as set-valued mappings from a domain to its
power set, with each set value representing zero or more enumerable solutions (the
empty set represents unknown).

•	 Determinism specification should be regarded as an optional feature of all operators,
relations as well as functions, either call-time (using something like PROLOG's once
predicate) or definition-time (using commit operators in clauses or determinism anno
tations for entire procedures).

2.2 Valued Clauses

Both a relation and a function is defined by a system of valued clauses, much like a PROLOG
procedure consisting of Horn clauses. The head of a valued clause corresponds to the conclu
sion of a Horn clause. Its body and foot, both arbitrary-length term conjunctions, correspond
to the premises of a Horn clause. Syntactically, the body and foot parts are separated by an
ampersand (&) character:

head: -bodYb ... , bodYB&foot} , ... , footF.	 (1)

A body premise, like a Horn premise, contributes only success/fail and variable-binding in
formation. A foot premise acts like a body premise but additionally delivers returned-value
information.

Thus, a valued clause acts as if the new separator (&) were replaced by an ordinary con
junction separator (,) but also returns the v} + ... + VF values of foot}, ... , footF as a
non-parenthesized sequence vah,l' ... , vallM"'" valF,l' ... , valF,vF 3.

2In the three-valued version, on success, all calls of a relation must return true or false, and some call of
a function must return a non-true and non-false value. Three-valuedness will not be further considered in
this paper.

3This explicit value sequence should not be confused with the non-deterministic enumeration of values
discussed in 2.1. Indeed, the domain mapped to its power set itself consists of sequences built from the base
domain of terms: a valued clause can non-deterministically return several value sequences.

3

In summary, because both functions and relations can fail with unknown, their only remaining
difference is that on success functions return arbitrary values while relations return true.
More precisely, although a function may, like a relation, return true for certain argument
sequences, it can be distinguished from a relation in that i t must return a non-true value for
at least one argument sequence?. Therefore, relations and functions have actually become
unified to an abstract concept that we will refer t o as operators.

Note that we deliberately did not call for determinism as a defining property of functions but
used the more general notion of non-deterministic functions, for the following reasons:

e Non-deterministic functions permit the tight amalgamation with relations discussed
above (non-ground arguments, invertibility).

e They are often useful for specifying multiple solutions in the fashion of generators,
streams, or lazy lists.

e They can be nested with little overhead via static flattening (cf. 3.3).

e They can be represented semantically as set-valued mappings from a domain to its
power set, with each set value representing zero or more enumerable solutions (the
empty set represents unknown).

e Determinism specification should be regarded as an optional feature of all operators,
relations as well as functions, either call-time (using something l ike PROLOG’s once
predicate) or definition-time (using commit operators in clauses or determinism anno-
tations for entire procedures).

2 .2 Valued Clauses

Both a relation and a function is defined by a system of valued clauses, much like a PROLOG
procedure consisting of Horn clauses. The head of a valued clause corresponds to the conclu-
sion of a Horn clause. Its body and foot, both arbitrary-length term conjunctions, correspond
to the premises of a Horn clause. Syntactically, the body and foot parts are separated by an
ampersand (&) character:

head : —bodyı, ..., bodyg& footy, ..., footp. (1)

A body premise, like a Horn premise, contributes only success/fail and variable-binding in-
formation. A foot premise acts like a body premise but additionally delivers returned-value
information.
Thus, a valued clause acts as if the new separator (&) were replaced by an ordinary con-
junction separator (,) but also returns the v1 + . . .+ vp values of foo ts , . . . , foolr as a
non-parenthesized sequence valy1, . . . , val 4 ,5 . . . , va lFy , ..., valpıp 3.

I n the three-valued version, on success, all calls of a relation must return true or fa lse, and some call of
a function must return a non-true and non-false value. Three-valuedness will not be further considered in
this paper.

3This explicit value sequence should not be confused with the non-deterministic enumeration o f values
discussed in 2.1. Indeed, the domain mapped to its power set itself consists of sequences built from the base
domain of terms: a valued clause can non-deterministically return several value sequences.

All operators can be caned as both body and foot premises, where functional values are taken

as mere success signals in the body part and a relational value (true) is actually returned in

the foot part.

There are two extreme specializations of the general form (1) of valued clauses.

First, for valued clauses without any foot (F=O) the ampersand is omitted, Le. the

top-level syntax of these footless clauses coincides with that of PROLOG Horn clauses4 :

head: -bodylo ... , bodYB. (2)

The complement set of footless clauses is caned footed clauses (F~l). Note that both clause
sets are valued because in RELFUN semantics footless clauses always return true on success,
hence are equivalent to true-footed clauses (F=l):

head: -bodylo ... , bodYB&true. (3)

A procedure consisting only of footless clauses is thus guaranteed to define a relation. Footless
clauses will be further classified like Horn clauses. Footless rules have a non-empty body
(B~l, F=O). Footless facts are simultaneously bodiless (B=O, F=O), in the below sense, and
are written without the ": -" symbol:

head. (4)

Second, for valued clauses without any body (B=O) the "&" is adjoined to ": -", Le.
these bodiless clauses can be viewed as unconditional rewrite 'rules' by reading ": -&" as a
right arrow (------T):

head: -&foott, ... , footF. (5)

The complement set of bodiless clauses is caned bodied clauses (B~l). Bodiless clauses will
again be further classified. In bodiless rules the foot is non-empty (B=O, F~l). Bodiless facts
are also footless (B=O, F=O), and the ": -&" is omitted as in form (4); they are equivalent
to true-footed bodiless rules (B=O, F=l):

head: -&true. (6)

A procedure consisting only of footed clauses is thus not guaranteed to define a function: it
may define a relation an of whose clauses have the form (6) [or, in general, (3)]5.

By combining the above two special cases, valued clauses amalgamate the expressive power of
relational and functional programming, permitting conditional, 'narrowing'-like non-ground
rewrite rules whose conditions are PROLOG-like goals that can also accumulate partial re
sults.

Regarding the above footless facts and bodiless facts as just valued facts (B=O and F=O),
we can also employ the complementary notion of valued rules (B~l or F~l), so that bodied
or footed clauses are always bodied or footed rules. In the following, for footed rules we will
concentrate on the special case of single-footed rules (F=l), but also discuss (in 3.2) the use.
and implementation of multiple-footed rules (F~2) for multiple-valued functions.

4In this paper we cannot go into the issue of the empty sequence and of empty-footed clauses returning it;
they are written by keeping the ampersand: head: -bodYl, ... , bodYB&.

5While these relations are easily recognizable as such, for a clause with an arbitrary foot it cannot be
decided in general whether it will return true as its only possible value.

4

All operators can be called as both body and foot premises, where functional values are taken
as mere success signals in the body part and a relational value (true) is actually returned in
the foot part.

There are two extreme specializations of the general form (1) of valued clauses.

First, for valued clauses without any foot (F=0) the ampersand is omitted, i.e. the
top-level syntax of these footless clauses coincides with that of PROLOG Horn clauses:

head : <body, ...,bodyp. (2)

The complement set of footless clauses is called footed clauses (F>1). Note that both clause
sets are valued because in RELFUN semantics footless clauses always return true on success,
hence are equivalent to true-footed clauses (F=1):

head : —body,, ..., bodyp&true. (3)

A procedure consisting only of footless clauses is thus guaranteed to define a relation. Footless
clauses will be further classified like Horn clauses. Footless rules have a non-empty body
(B>1, F=0). Footless facts are simultaneously bodiless (B=0, F=0), in the below sense, and
are written without the “ : —” symbol:

head. (4)

Second, for valued clauses without any body (B=0) the “&” is adjoined to “ : —”, i.e.
these bodiless clauses can be viewed as unconditional rewrite ‘rules’ by reading “ : —&” as a
right arrow (—):

head : —& footy,..., foot. (5)

The complement set of bodiless clauses is called bodied clauses (B>1). Bodiless clauses will
again be further classified. In bodiless rules the foot is non-empty (B=0, F>1). Bodiless facts
are also footless (B=0 , F=0) , and the “ : —&” is omitted as in form (4) ; they are equivalent
t o true-footed bodiless rules (B=0 , F=1):

head : —&true. (6)

A procedure consisting only of footed clauses is thus not guaranteed to define a function: it
may define a relation all of whose clauses have the form (6) [or, in general, (3)]°.
By combining the above two special cases, valued clauses amalgamate the expressive power of
relational and functional programming, permitting conditional, ‘narrowing’-like non-ground
rewrite rules whose conditions are PROLOG-like goals that can also accumulate partial re-
sults.

Regarding the above footless facts and bodiless facts as just valued facts (B=0 and F=0),
we can also employ the complementary notion of valued rules (B>1 or F>1), so that bodied
or footed clauses are always bodied or footed rules. In the following, for footed rules we will
concentrate on the special case of single-footed rules (F=1) , but also discuss (in 3.2) the use
and implementation of multiple-footed rules (F>2) for multiple-valued functions.

*In this paper we cannot go into the issue of the empty sequence and of empty-footed clauses returning i t ;
they are written by keeping the ampersand: head : —bodyi, ...,bodypé&.

5While these relations are easily recognizable as such, for a clause with an arbitrary foot i t cannot be
decided in general whether i t will return true as its only possible value.

2.3 An Example: Refining the palindrome Operator

input argument output value/signal output bindings
palindrome palinclass palinzoom palinlength

[] true even [] 0
[a] true odd [a] 1

[a,b] unknown unknown unknown unknown
Cb, b] true even [] 2

[a,d,a] true odd [d] 3

[a,n,n] unknown unknown unknown unknown
[X ,n,n] true odd En] 3 X=n
[n,X, b] unknown unknown unknown unknown
[n,X,n] true odd [Center*4] 3 X=Center*4

[s[Y,b],a,Y,X] true even [] 4 X=s[a,b], Y=a
[s [y , b] , a,Y, s [Z, Z]] unknown unknown unknown unknown
[[m,Y],a,t[X,X,Y] ,a,[X,d]] true odd [t[m,m,d]] 5 X=m, Y-d

Table 1: Palindrome variations

The RELFUN amalgamation via valued clauses will now be illustrated by developing a palin
drome relation into three functional versions. All four operators shall be defined on lists of ar
bitrary terms, possibly non-ground. The relational palindrome operator should succeed (with
the value true) for palindrome lists and fail (with the signal unknown) for non-palindrome
lists. The functional palinclass operator should refine palindrome by differentiating the
success cases into palindromes of even and odd lengths, returning the values even and odd,
respectively. Table 1 contains I/O samples for these operators.

Note that RELFUN uses "[...]"-brackets not just for lists but also for denotative (record)
structures such as the list-embedded s [Y ,b]. "(, ..)"-parentheses are used only for evalua
tive (operator) calls such as the palindrome call palindrome ([a, d, aJ) , producing the value
true and no bindings. In the table, successful output consists of one value and zero to two
bindings; failing output (i.e. the unknown signal) can never be accompanied by any bindings.

All palindrome versions shall build on the usual PROLOG append relation. The principal idea
is its inverted use to unify the last list element with the first one, and incidentally splitting
out the middle list part for recursive calls, Fig. 1 contains the definitions of the palindrome
and palinclass operators.

pal indrome ([]) . palinclass([]) :-k even.
palindrome([Center]). palinclass([Center]) :-k odd.
palindrome([First-and-LastIRest]) '- palinclass([First-and-LastIRest]) .

append(Middle,[First-and-Last],Rest), append(Middle,[First-and-Last],Rest)k
palindrome(Middle). palinclass(Middle).

palinzoom([]) : -k []. palinlength([]) :-k O.
palinzoom([Center]) :-k [Center]. palinlength([Center]) :-k 1.
palinzoom([First-and-LastIRest]) :- palinlength([First-and-LastIRest]) '

append(Middle,[First-and-Last],Rest)k append(Middle,[First-and-Last],Rest)&
palinzoom(Middle). add1(add1(palinlength(Middle))).

Figure 1: Palindrome definitions

5

2.3 An Example: Refining the palindrome Operator

input argument output value/signal output bindings
palindrome | palinclass | palinzoom | palinlength

a true even [1 0
[al true odd [a] 1

[a ,b] unknown | unknown unknown unknown
[b ,b] true even D 2

[a,d,a] true odd [4] 3
[a ,n ,n] unknown | unknown unknown unknown
{(X,n,n] true odd [nl 3 X=n
[n ,X ,b] unknown | unknown unknown unknown
En, X,n} true odd [Center+*4] 3 X=Center*4

[s [Y ,b] , a ,Y ,X] true even [Mr] 4 X=s [a ,b l , Y=a
[s [Y ,b l , a ,Y , s [Z ,Z]] unknown | unknown unknown unknown
[[m,Y1,a,t[X,X,Y],a,[X,d]] true odd [t [m,m,d]] 5 X=m, Y=d

Table 1: Palindrome variations

The RELFUN amalgamation via valued clauses will now be illustrated by developing a palin-
drome relation into three functional versions. All four operators shall be defined on lists of ar-
bitrary terms, possibly non-ground. The relational palindrome operator should succeed (with
the value true) for palindrome lists and fail (with the signal unknown) for non-palindrome
lists. The functional pal inclass operator should refine palindrome by differentiating the
success cases into palindromes of even and odd lengths, returning the values even and odd,
respectively. Table 1 contains I /O samples for these operators.

Note that RELFUN uses “[...]”-brackets not just for lists but also for denotative (record)
structures such as the list-embedded s[Y,b] . “(...)"-parentheses are used only for evalua-
tive (operator) calls such as the palindrome call pal indrome([a,d,a]), producing the value
true and no bindings. In the table, successful output consists of one value and zero to two
bindings; failing output (i.e. the unknown signal) can never be accompanied by any bindings.
All palindrome versions shall build on the usual PROLOG appendrelation. The principal idea
is its inverted use to unify the last list element with the first one, and incidentally splitting
out the middle list part for recursive calls. Fig. 1 contains the definitions of the palindrome
and palinclass operators.

palindrome([1). pa l inc lass([1) : -& even.
palindrome([Center]). pal inc lass([Center]) : -& odd.
palindrome([First-and-Last|Rest]) : - pal inc lass([Fi rs t -and-Last |Rest]) : -

append (Midd le , [First—-and-Last] ,Rest) , append(Middle, [First-and-Last] ,Res t)&
palindrome (Middle). pa l inc lass(Midd le) .

pa l inzoom([1) : -& [J]. pa l in length([]) : -& 0 .
palinzoom([Center]) : -& [Center]. pal in length([Center l) : -& 1 .
pal inzoom([Fixrst-and-Last|Rest]) : - pal in length([F i rs t -and-Last |Rest]) : -

append (Midd le , [F i rs t -and-Last] ,Rest)& append(Middle, [First-and-Last] ,Rest)&
palinzoom(Middle). addi(addi(palinlength(Middle))).

Figure 1: Palindrome definitions

The palindrome clauses are footless but could be transcribed to the footed procedure

palindrome([]) :-& true.
palindrome([Center]) :-& true.
palindrome([First-and-LastIRest]) '

append(Middle,[First-and-Last],Rest)&
palindrome(Middle).

Here it gets explicit that the empty and singleton palindrome clauses discard their list
type information by both returning true. In palinclass this value becomes refined to the
discriminative even and odd values.

The palinclass function can be further refined to a function palinzoom, which returns
the listified central element of odd-length palindromes and, the empty list for even-length
palindromes. Alternatively, palinclass can be refined to a palinlength function, return
ing the lengths of palindromes. Sample I/O is shown in Table 1; e.g. the non-ground call
palinzoom([a,X, a]) returns the non-ground unit list [Center*4] and binds X to the re
named free variable Center*4. Two definitions in Fig. 1 specify this behavior.

It is possible to represent each (multiple-valued) function by a relation using V additional
arguments for binding the V values that were returned by the function. This can be used
for a RELFUN-to-PROLOG transformation of (flattened) first-order functions to relations,
which makes both PROLOG's model-theoretic semantics and compilation technology indi
rectly available for first-order RELFUN. For instance, the unary, single-valued palinclass
function can be represented by the binary relation palinc1ass-r:

palinclass-r([],even).
palinclass-r([Center],odd).
palinclass-r([First-and-LastIRest],Class) '

append(Middle,[First-and-Last],Rest),
palinclass-r(Middle,Class).

However, if the oddI even information is not often used its inclusion as an additional argument
in a user relation palinclass-r would appear rather questionable, while its use as a returned
function value of palinclass was quite natural:

1.	 palinclass can also be used as a unary predicate equivalent to palindrome by just
ignoring the exact success value in many contexts. The binary palinclass-r relation
can only simulate this by 'absorbing' its second argument via an anonymous variable.

2.	 In the palinclass procedure only the two clauses actually returning additional infor
mation are affected by it; the third clause just "passes through" the recursively returned
value without static (same source size) or dynamic (same WAM instructions) overhead
over the third palindrome clause. In the palinclass-r procedure also the third clause
requires a new argument, Class (a "permanent variable" occupying space in the local
WAM stack), merely for handing on the recursively bound value6 •

Even if the additional information is employed heavily, the normal use mode is from palin
dromes to their classes, not vice versa, which is best expressed by an explicit function. Should,

6For a detailed comparison of value-returning and value-binding efficiency see (Hei89].

6

The palindrome clauses are footless but could be transcribed to the footed procedure

palindrome([]) : -& true.
palindrome([Center]) :-& true.
palindrome([First-and-Last|Rest]) : -

append(Middle, [First-and-Last] ,Rest)&
palindrome (Middle).

Here it gets explicit that the empty and singleton palindrome clauses discard their list-
type information by both returning true. In pal inclass this value becomes refined to the
discriminative even and odd values.
The pal inclass function can be further refined to a function palinzoom, which returns
the listified central element of odd-length palindromes and, the empty list for even-length
palindromes. Alternatively, palinclass can be refined to a palinlength function, return-
ing the lengths of palindromes. Sample I /O is shown in Table 1; e.g. the non-ground call
palinzoom([a,X,a]) returns the non-ground unit list [Center*4] and binds X to the re-
named free variable Center*4. Two definitions in Fig. 1 specify this behavior.

It is possible t o represent each (multiple-valued) function by a relation using V additional
arguments for binding the V values that were returned by the function. This can be used
for a RELFUN-to-PROLOG transformation of (flattened) first-order functions to relations,
which makes both PROLOG’s model-theoretic semantics and compilation technology indi-
rectly available for first-order RELFUN. For instance, the unary, single-valued palinclass
function can be represented by the binary relation pal inclass-r :

palinclass-r([1,even).
pal inc lass- r ([Center] ‚ odd) .
pal inclass-r([First-and-Last |Rest] ,Class) : -

append(Middle, [First-and-Last] ‚Rest) ,
pal inclass-r(Middle,Class).

However, if the odd/even information is not often used its inclusion as an additional argument
in a user relation palinclass-r would appear rather questionable, while its use as a returned
function value of pal inclass was quite natural:

1. pal inclass can also be used as a unary predicate equivalent to palindrome by just
ignoring the exact success value in many contexts. The binary pal inclass-r relation
can only simulate this by ‘absorbing’ i ts second argument via an anonymous variable.

2. In the pal inclass procedure only the two clauses actually returning additional infor-
mation are affected by i t ; the third clause just “passes through” the recursively returned
value without static (same source size) or dynamic (same WAM instructions) overhead
over the third palindrome clause. In the pal inc lass-r procedure also the third clause
requires a new argument, Class (a “permanent variable” occupying space in the local
WAM stack), merely for handing on the recursively bound value®.

Even if the additional information is employed heavily, the normal use mode is from palin-
dromes to their classes, not vice versa, which i s best expressed by an explicit function. Should,

®For a detailed comparison of value-returning and value-binding efficiency see [Hei89].

6

however, the inverse use mode become necessary, the relational version can be called more
naturally and efficiently, e.g. by palinclass-r(Oddpalins ,odd). The functional version
would require RELFUN's generalized is primitive (permitting arbitrary, non-arithmetic rhs
calls) for inversion by fixing a Ihs constant to be unified with the values enumerated via a non
ground rhs call, e.g. by odd is palinclass(Oddpalins). In general, RELFUN therefore
offers both functional and relational styles of expression.

2.4 Higher-Order Functions and Relations

Some relational/functional higher-order operations can now be introduced on the basis of the
palindrome examples. A more general explanation of higher-order clauses with the syntactic
notion of inconstant-operator clauses will follow in section 3.4.

The four unary palindrome operations all follow a common recursion scheme that can be
abstracted to a higher-order operator palin [... J ,where [... J contains three parameters
denoting the value to be produced for the empty list, the function to be applied to a singleton
list, and the function to be applied to recursive palindrome values:

palin[Emptyval,Singletonfun,RecursionfunJ(IJ) :-& Emptyval.
palin[Emptyval,Singletonfun,RecursionfunJ([CenterJ) :-&

Singletonfun([CenterJ).
palin[Emptyval,Singletonfun,RecursionfunJ([First-and-LastlRestJ) '

append(Middle,[First-and-LastJ,Rest)&
Recursionfun(palin[Emptyval,Singletonfun,RecursionfunJ(Middle)).

Suppose we also have defined the generally useful identity, constant, and twice (higher

order) functions by

id (A) :-& A.

co[CJ (A) :-& C.

twice[FJ(A) :-& F(F(A)).

Now, instead of first-order operator calls such as palinclass([a,X,aJ) we can parame

terize palin for higher-order calls such as palin [even, co [oddJ , idJ ([a, X, aJ), which via

palin [even, co [oddJ , idJ ([XJ) yields co [oddJ ([X]), Le. returns odd.

Alternatively, we can define the original palindrome versions by four fixed palin parameter

izations returned via function-valued clauses [palindrome etc. is used here as the short form

of an argumentless call pattern palindrome 0 etc.]:

palindrome :-& palin[true,co[trueJ ,id].

palinclass :-& palin[even,co[oddJ,idJ.

palinzoom : -& palin [[] , id, id] .

palinlength :-& palin[O,co[1J,twice[add1]].

Here, e.g. palinclass([a,X,aJ) or palinclassO([a,X,a]) first evaluates the operator,

yielding palin[even,co[odd] ,idJ([a,X,a]), which then evaluates as already shown.

The above higher-order clauses employ operators that are structures like twice [F] or

bound variables like F=add1 in F(F (A)). In RELFUN it is also possible to employ operators

that are unbound variables like Property in Property ([a, d, a]). Given the clauses

7

however, the inverse use mode become necessary, the relational version can be called more
naturally and efficiently, e.g. by pal inclass-r(0ddpalins,odd). The functional version
would require RELFUN’s generalized i s primitive (permitting arbitrary, non-arithmetic rhs
calls) for inversion by fixing a lhs constant to be unified with the values enumerated via a non-
ground rhs call, e.g. by odd is palinclass(0ddpalins). In general, RELFUN therefore
offers both functional and relational styles of expression.

2.4 Higher-Order Functions and Relations

Some relational [functional higher-order operations can now be introduced on the basis of the
palindrome examples. A more general explanation of higher-order clauses with the syntactic
notion of inconstant-operator clauses will follow in section 3.4.

The four unary palindrome operations all follow a common recursion scheme that can be
abstracted to a higher-order operator pa l i n [. . .] , where [. . .] contains three parameters
denoting the value to be produced for the empty list, the function to be applied to a singleton
list, and the function to be applied to recursive palindrome values:

palin[Emptyval,Singletonfun,Recursionfun] ([1) : -& Emptyval.
palin[Emptyval,Singletonfun,Recursionfun] ([Center]) : -&

Singletonfun([Center]).
palin[Emptyval,Singletonfun,Recursionfun] ([First-and-Last|Rest]) : -

append(Middle, [First-and-Last] ,Rest)&
Recursionfun(palin[Emptyval,Singletonfun,Recursionfun] (Middle)) .

Suppose we also have defined the generally useful identity, constant, and twice (higher-
order) functions by

i d (a) : -& A .
co lC l (a) : ~& C .
tw ice [F1(A) : -& F (F (A)) .

Now, instead of first-order operator calls such as pa l inc lass([a ,X,a]) we can parame-
terize palin for higher-order calls such as pa l in [even,co[odd] , id] ([a ,X,a]) , which via
palin[even,colodd] , id] ([X]) yields co[odd] ([X]), i.e. returns odd.
Alternatively, we can define the original palindrome versions by four fixed pal in parameter-
izations returned via function-valued clauses [palindrome etc. is used here as the short form
of an argumentless call pattern palindrome() etc.):

palindrome :-& pal in[t rue,col t rue] , id] .
pal inclass : -& pa l in [even,co lodd] , id] .
palinzoom : -& pa l i n [[] , i d , i d] .
palinlength : -& pa l i n {0 , co [1] , tw i ce [add1]] .

Here, e.g. pa l inc lass([a,X,a]) or pal inclass()([a,X,a]) first evaluates the operator,
yielding pa l in [even, colodd] , i d] ([a ,X ,a l]) , which then evaluates as already shown.
The above higher-order clauses employ operators that are structures like tw ice [F] or
bound variables like F=add1 in F(F(A)). In RELFUN it is also possible to employ operators
that are unbound variables like Property in Proper ty([a ,d ,a l) . Given the clauses

femfirstname([a,d,a]).

langtrademark([a,d,a]) .

palindrome([]). palindrome([Center]). palindrome(...) :- ...

this request can non-deterministically bind the relation variable Property three times, by

constructively proving (3Property)Property([a, d, aD:

Property ([a,d, a]) .

true
Property=femfirstname

true
Property=langtrademark

true
Property=palindrome

Similarly, with the clauses

femprogrammer([a,d,a]) :-& lovelace.

langdeveloper ([a,d, a]) : -& [d, 0 , d] .

palinlength(O) :-& O. palinlength([Center]) :-&; 1. palinlength(...) :- ...

a function variable Attribute can be non-deterministically bound three times, using con

structive proofs of (3Attribute)(3Value)Attribute([a, d, aD =Value:

Attribute([a,d,a]).

lovelace
Attribute=femprogrammer

[d, 0 ,d]

Attribute=langdeveloper

3

Attribute=palinlength

3 Relational/Functional WAM Compilation

After an overview, in the following subsection, we will discuss three transformational com
pilation phases (subsections 3.2 through 3.4) and the final translation to WAM instructions
(subsection 3.5).

3.1 A Compilation Strategy

Implementors of an amalgamated language like RELFUN could either extend functional
compilation technology such as SEeD and combinator machines toward relations or extend

8

femfirstname([a,d,a]).
langtrademark([a,d,a]).
palindrome([]). palindrome([Center]). pal indrome(. . .) : - .

this request can non-deterministically bind the relation variable Property three times, by
constructively proving (3 Property) Property([a,d, a]):

Property([a,d,al).
~
true
Property=femfirstname
~F

true
Property=langtrademark
~~

true
Property=palindrome

Similarly, with the clauses

femprogrammer([a,d,a]) : -& l ove lace .
langdeveloper([a,d,al) : -& [d,o0,d].
pal in length([1) : -& 0 . pal in length([Center]) : -& 1 . pa l i n l eng th (. . .) :— . . .

a function variable Attribute can be non-deterministically bound three times, using con-
structive proofs of (JAtiribute)(IV alue)Attribuie([a,d, a]) = Value:
At t r ibute([a ,d ,a l) .
~~

lovelace
Attribute=femprogrammer
~~

[d,o0,d]
Attribute=langdeveloper
nz

3
Attribute=palinlength

3 Relational/Functional WAM Compilation

After an overview, in the following subsection, we will discuss three transformational com-
pilation phases (subsections 3.2 through 3.4) and the final translation to WAM instructions
(subsection 3.5).

3.1 A Compilation Strategy

Implementors of an amalgamated language l ike RELFUN could either extend functional
compilation technology such as SECD and combinator machines toward relations or extend

relational compilation technology such as the WAM toward functions. We chose the latter ap
proach mainly because it nicely supports RELFUN's non-deterministic, non-ground function
concept discussed in 2.1.

The main concern, then, was how to extend the WAM [War83] for functional value return
ing. Our initial approach was the introduction of one additional register, VALREG, as the
"channel" for returning and fetching single values. WAM instructions for doing this have
been implemented in LISP [Hei89]. Our second approach, to be further pursued here, is to
use the existing temporary register X1 for the same purpose. Value returning and fetching
can then be done by using existing put and get instructions. The reason why VALREG can
be id~ntified with X1 is that value returning occurs as the last action of clauses, at which
time X1 is no longer needed for argument passing7 . Using X1 for both the returned value and
the first argument will permit an important optimization of l-argument nestings: the em
bedded function can directly put its value into the argument register of the main operation.
Furthermore, X-register value returning can be generalized naturally to multiple-footed rules,
whose V values can be put into the consecutive registers X1,... ,X V, again directly getable by
a V-argument operation.

The next issue was how to compile the nesting of an arbitrary number of function calls within
a main call. However, this problem was already solved in the interpreter by static flattening
with RELFUN's generalized is primitive [BoI86]: a unique variable replaces each nested call,
associating with it an is primitive conjoined to the left of the main call.

Another preparatory compilation phase, akin to flattening, is denotative normalization, which
transforms evaluative foots to variables and is bodies.

The toughest part is how to compile higher-order operations. We have been following two
approaches:

1.	 A translator can reduce RELFUN's higher-order operators to first-order operands by
introducing a new first-order operator ap, generalizing the relational apply in [War82].

2.	 The compiler can hash all fixed-arity clauses with operator structures or operator vari
ables to 'collective' procedures, which will be called by corresponding operations and
read in their actual operator via the new operator register XQ.

We will elaborate approach 1. here, since this constant-operator reduction is much simpler
than the direct "higher-order WAM" approach 2., but still can be efficient if the underlying
indexing mechanism uses the first two arguments, as done, e.g., in KCM Prolog.

Fig. 2 sequentializes the above phases into the compilation strategy elaborated in the follow
ing subsections. The denotative normalizer, static flattener, and constant-operator reducer
could be employed in different orders or, indeed, be integrated to a single preprocessing phase,
which itself could later be combined with the WAM compiler.

3.2 Multiple-Valued Functions and Denotative Normalization

A term is denotative iff it is a constant (e.g. john), a variable (e.g. Who or _1), a structure
(e.g. children[john,Who]), or a list (e.g. [Who, [] ,WhO]). Otherwise it is evaluative (e.g.

7 However, the last action can begin with the first instruction: in the optimization of 'constructor-like'
bodiless rules such as cons(H,T):-I;[HIT]. a VALREG/Xl separation would allow to "put~ist" the cell for
[H IT] immediately to VALREG, unifying the arguments Xl=H and X2=T into it, in order to save one transfer
from an auxiliary X3 to the value register.

9

relational compilation technology such as the WAM toward functions. We chose the latter ap-
proach mainly because it nicely supports RELFUN’s non-deterministic, non-ground function
concept discussed in 2.1.

The main concern, then, was how to extend the WAM [War83] for functional value return-
ing. Our initial approach was the introduction of one additional register, VALREG, as the
“channel” for returning and fetching single values. WAM instructions for doing this have
been implemented in LISP [Hei89]. Our second approach, to be further pursued here, is to
use the existing temporary register X1 for the same purpose. Value returning and fetching
can then be done by using existing put and get instructions. The reason why VALREG can
be identified with X1 is that value returning occurs as the last action of clauses, at which
time X1 is no longer needed for argument passing’. Using X1 for both the returned value and
the first argument will permit an important optimization of 1-argument nestings: the em-
bedded function can directly put i ts value into the argument register of the main operation.
Furthermore, X-register value returning can be generalized naturally to multiple-footed rules,
whose V values can be put into the consecutive registers X1,...,XV, again directly getable by
a V-argument operation.

The next issue was how to compile the nesting of an arbitrary number of function calls within
a main call. However, this problem was already solved in the interpreter by static flattening
with RELFUN’s generalized i s primitive [Bol86]: a unique variable replaces each nested call,
associating with it an i s primitive conjoined to the left of the main call.
Another preparatory compilation phase, akin to flattening, is denotative normalization, which
transforms evaluative foots to variables and i s bodies.
The toughest part is how to compile higher-order operations. We have been following two
approaches:

1. A translator can reduce RELFUN’s higher-order operators to first-order operands by
introducing a new first-order operator ap, generalizing the relational apply in [War82].

2. The compiler can hash all fixed-arity clauses with operator structures or operator vari-
ables to ‘collective’ procedures, which will be called by corresponding operations and
read in their actual operator via the new operator register X0.

We will elaborate approach 1. here, since this constant-operator reduction is much simpler
than the direct “higher-order WAM?” approach 2., but still can be efficient if the underlying
indexing mechanism uses the first two arguments, as done, e.g., in KCM Prolog.
Fig. 2 sequentializes the above phases into the compilation strategy elaborated in the follow-
ing subsections. The denotative normalizer, static flattener, and constant-operator reducer
could be employed in different orders or, indeed, be integrated to a single preprocessing phase,
which itself could later be combined with the WAM compiler.

3.2 Multiple-Valued Functions and Denotative Normalization

A term is denotative iff it is a constant (e.g. john), a variable (e.g. Who or _1), a structure
(e.g. children[john,Who]l), or a list (e.g. [Who,[],Whol). Otherwise it is evaluative (e.g.

"However, the last action can begin with the first instruction: in the optimization of ‘constructor-like’
bodiless rules such as cons (H ,T) : -& [H |T] . a VALREG/X1 separation would allow to “put_list” the cell for
[H IT] immediately to VALREG, unifying the arguments X1=H and X2=T into i t , in order to save one transfer
from an auxiliary X3 to the value register.

RELFUN source clauses

denotative normalizer

denotative clauses

static flattener

flattened clauses

constant-operator reducer

constant-operator clauses

X-return WAM compiler

WAM instructions

Figure 2: Compilation phases

children(john,Who) or _1 is jahn). A footless clause is always (implicitly true-) denota
tive. A footed clause is denotative iff all its foots are denotative terms. Any other clause is
evaluative.

Clauses can always be made denotative by replacing evaluative foots by variables. The
resulting denotative normal form is an intermediate step for compiling multiple-footed rules
(see below) and also simplifies the presentation of flattening (see 3.3). A denotative foot form
is a strong denotative normal form in which footless clauses assume the explicitly true-footed
form (3) of section 2.2.

Denotative normalization of footed clauses can be defined by a system of two rewrite rule
schemata:

... : _.··& ... ,to(tb ... ,tm), ----+ ••• : _ .. ·_yistO(tl, ... ,tm)& ... ,-y, (1)

... : _···& ... ,pisq, ----+ ••• : -···pisq& ... ,p, (2)

The two y occurrences in rewrite schema (1) stand for an integer 1, 2, ... generated such
that the variable _y is not yet used in the clause.

For example, given single-valued quotient and remainder functions, a 2-valued divide
function returning the quotient and remainder, in that order, could be defined by the following

10

RELFUN source c lauses

}
denota t ive normalizer)

denotat ive c lauses

(static f lattener)

+
f la t tened c lauses

(constant-operator reducer)

constant-operator clauses

|
(X-return WAM compiler)

¥
WAM instructions

Figure 2: Compilation phases

children(john,Who) or _1 i s john). A footless clause is always (implicitly t rue-) denota-
tive. A footed clause is denotative iff all i ts foots are denotative terms. Any other clause is
evaluative.

Clauses can always be made denotative by replacing evaluative foots by variables. The
resulting denotative normal form is an intermediate step for compiling multiple-footed rules
(see below) and also simplifies the presentation of flattening (see 3.3). A denotative foot form
is a strong denotative normal form in which footless clauses assume the explicitly true-footed
form (3) of section 2.2.
Denotative normalization of footed clauses can be defined by a system of two rewrite rule
schemata:

Wi t o t , tin) ee ee —> coo =o Gis to (t y , nn Im) . . . G ross (1)

:—- - -& . . . , p i sq , — . . . :—- - -p i sq& . . . , p , (2)

The two G occurrences in rewrite schema (1) stand for an integer 1 , 2 , . . . generated such
that the variable _G is not yet used in the clause.
For example, given single-valued quotient and remainder functions, a 2-valued d iv ide
function returning the quotient and remainder, in that order, could be defined by the following

10

bodiless, 2-footed evaluative rule 8:

divide(N,D) :-& quotient(N,D), remainder(N,D).

Two applications of the above rewrite schema (1) give us an equivalent 2-bodied, 2-footed
denotative rule 9:

divide(N,D) :- _1 is quotient(N,D), _2 is remainder(N,D) & _1, _2.

If denotative normalization precedes WAM compilation, the code returning values (in the
foot premises) can follow strictly after any (body) code containing call instructions, so in
the example the remainder call cannot overwrite the quotient value in Xl: the foots just
put the quotient value from _1 to Xl and the remainder value from --2 to X2.

Since on calling the first foot no other foot values (that could become overwritten) are
returned yet, it is sufficient to use a rest-denotative normal form for returning multiple values,
i.e. only replacing foots after the first one (which thus becomes the last one to be evaluated
in the usualleft-to-right order, a change that is irrelevant for the pure language considered
here). In the example this leads to a I-bodied, 2-footed evaluative rule:

divide(N,D) :- _1 is remainder(N,D) & quotient(N,D), _1.

Here, the foot call of quotient would implicitly put the first divide value to Xl, while the
remainder value would be explicitly put from _1 to X2.

If a foot is itself a call to a multiple-valued function, e.g. to divide, it must be replaced by
as many consecutive variables as needed for this call's number of returned values. Also, the
corresponding is body associates the entire variable sequence with the multiple-valued call,
using a "parallel assignment" -like multiple-variable is primitive (PI, ... , pv) is q (unifying the
value sequence rb"" rv of q with the variable sequence PI, ... ,Pv, as if there was a sequence
of single-variable is primitives PI is rb ... , PV is TV)10.

For example, the divide function could be used to define a 5-valued divtab function for
tabulating divisions in the form nominator, denominator, yield, quotient, remainder. Its
bodiless, 4-footed evaluative rule

divtab(N,D) :-& N, D, yield, divide(N,D).

is (denotatively and rest-denotatively) normalized to the I-bodied, 5-footed denotative rule

divtab(N,D) :- (_1,_2) is divide(N,D) & N, D, yield, _1, _2.

8For two arguments 11.3 this again returns two values 3.2; hence it can be self-nested as in
divide(divide(11.3» ""'" divide(3.2) ""'" 1.1. In the corresponding WAM instructions, the inner divide
call would put the constant 3 into the temporary register Xi and 2 into X2; the outer call could directly get
these register settings as its actual arguments.

9Such a denotative normal form of any multiple-valued function could be further transformed to a relation
without transforming subfunction definitions, which exhibits the relation-like I/O symmetry of functions once
they permit multiple values:
divide-r(N.D.j •...2) :- _1 is quotient(N.D) • ...2 is remainder(N.D).

10A 2-variable is would permit a direct, rest-denotative, 2-value-recursive definition of divide:
divide(N,D) :- lessp(N,D) t 0, N.
divide(N,D) :- greaterorequalp(N.D), (Q,R) is divide(difference(N,D),D) t add1(Q). R.

11

bodiless, 2-footed evaluative rule 8:

divide(N,D) : -& quotient(N,D), remainder(N,D).

Two applications of the above rewrite schema (1) give us an equivalent 2-bodied, 2-footed
denotative rule 9:

div ide(N,D) : - _1 is quo t i en t (N ,D) , _2 i s remainder(N,D) & _1, _2.

If denotative normalization precedes WAM compilation, the code returning values (in the
foot premises) can follow strictly after any (body) code containing call instructions, so in
the example the remainder call cannot overwrite the quotient value in X1: the foots just
put the quotient value from _1 to X1 and the remainder value from _2 to X2.
Since on calling the first foot no other foot values (that could become overwritten) are
returned yet, i t is sufficient to use a rest-denotative normal form for returning multiple values,
i.e. only replacing foots after the first one (which thus becomes the last one to be evaluated
in the usual left-to-right order, a change that is irrelevant for the pure language considered
here). In the example this leads to a 1-bodied, 2-footed evaluative rule:

d iv ide (N ,D) : - _1 i s remainder(N,D) & quo t i en t (N ,D) , _1.

Here, the foot cal l of quotient would implicitly put the first d iv ide value to X1, while the
remainder value would be explicitly put from _1 to X2.
If a foot is itself a call to a multiple-valued function, e.g. to d iv ide, it must be replaced by
as many consecutive variables as needed for this call’s number of returned values. Also, the
corresponding i s body associates the entire variable sequence with the multiple-valued call,
using a “parallel assignment”-like multiple-variable i s primitive (py, ...,pv) i s ¢ (unifying the
value sequence 74, ...,7y of ¢ with the variable sequence py, ...,pv, as if there was a sequence
of single-variable i s primitives p i s rq, ..., pv i s ry)!®.

For example, the divide function could be used to define a 5-valued divtab function for
tabulating divisions in the form nominator, denominator, y ie ld, quotient, remainder. Its
bodiless, 4-footed evaluative rule

d iv tab(N,D) : -& N , D , y i e l d , d i v i de (N ,D) .

is (denotatively and rest-denotatively) normalized to the 1-bodied, 5-footed denotative rule

d iv tab(N,D) : - (_1,_2) i s d i v i de (N ,D) & N , D , y ie ld , _1, _2.

8For two arguments 11,3 this again returns two values 3,2; hence i t can be self-nested as in
d i v i de (d i v i de (11 ,3)) ~+ d i v i de (3 ,2) ~ 1 ,1 . In the corresponding WAM instructions, the inner divide
call would put the constant 3 into the temporary register X1 and 2 into X2; the outer call could directly get
these register settings as its actual arguments.

9Such a denotative normal form of any multiple-valied function could be further transformed to a relation
without transforming subfunction definitions, which exhibits the relation-like I /O symmetry of functions once
they permit multiple values:
divide-xr(N,D, 1,2) : - _1 i s quotient(N,D), _2 is remainder(N,D).

10 A 2-variable i s would permit a direct, rest-denotative, 2-value-recursive definition of divide:
d iv ide(N,D) : - l essp (N ,D) & 0 , N .
d iv ide (N ,D) : - greaterorequalp(N,D}, (Q,R) is d i v i de (d i f f e rence (N ,D) ,D) & add1 (Q) , R .

11

All F-footed rules can be simulated by I-footed rules using calls to the bodiless, (l-to-F)
footed denotative multi identity, which for fixed F is definable by F clauses just returning
their ascending numbers of arguments. Each I-ary source clause (on the left) becomes a
'noop' WAM procedure mUltid/I(on the right):

multid(Ai) :-& Ai. multid/i : proceed
multid(Ai,A2) :-& Ai,A2. multid/2: proceed

multid(Ai, ... ,AF) :-& Ai, ... ,AF. multid/F: proceed

For example, this is the I-footed simulation of the non-normalized 2-footed divide rule:

divide(N,D) :-& multid(quotient(N,D),remainder(N,D)).

The multid analogue of denotative normalization is flattening, our next issue. In the following
subsections we will not further consider the compilation of multiple-footed rulesll .

3.3 Non-Deterministic Nestings and Static Flattening

A term is flat iff it is denotative or it is evaluative and has only denotative subterms. Oth
erwise it is nested. A clause is flat iff all its premises are flat. Otherwise it is nested. In
particular, a denotative clause is flat iff its body is flat (since it can have only denotative
foots, see 3.2).

Clauses can always be flattened by recursively replacing evaluative subterms by variables. In
the resulting flattened clauses the subterms to be evaluated become is-rhs main terms, which
simplifies their call-by-value reduction. Since a sequence of evaluative subterms leads to a
conjunction of is calls, non-deterministic subterms can be managed by the WAM's standard
backtracking techniques, thus avoiding the direct handling of non-deterministic term nestings.

If we assume that clauses are in denotative foot form (3.2), saving explicit treatment of foot
side nestings, static flattening can be defined by five rewrite rule schemata:

llIn WAM procedures the "return arity" of multiple-footed clauses should be specified (after a "/" behind
the PROLOG-usual "argument arity"): if f has one argument and two values, e.g. fOO :-ib,c., and g
has four arguments and one value, then the 3-argument nesting g(a,f(b) ,d) expands to the 4-argument
call g(a,b,c,d), as indicated by the arity specification g/4/1(a,f/1/2(b) ,d) or, omitting I-return arities,
g/4(a.f/1/2(b) ,d); also, the is call (K,L) is f(a) expands to (K.L) is (b.c), as indicated by (K.L) is
f/1/2(a). The compiler could then produce a static unknown for nestings or is calls without such arity
conformity. Varying argument arity, as in the RELFUN interpreter, or even, return arity, as in our earlier
FIT interpreter, would require an additional register, XMAX, for passing the actual argument or return arity.

12

All F-footed rules can be simulated by 1-footed rules using calls to the bodiless, (1-to-F)-
footed denotative multi identity, which for fixed F is definable by F clauses just returning
their ascending numbers of arguments. Each Iary source clause (on the left) becomes a
‘noop’ WAM procedure mult id/ I (on the right):

multid(A1) : -& A l . mul t id / i : proceed
multid(A1,A2) : -& A1,A2. mult id/2: proceed

mul t i d (a l , . . . ,AF) : -& A l1 , . . . ,AF . mul t id /F: proceed

For example, this is the 1-footed simulation of the non-normalized 2-footed d iv ide rule:

d i v i de (N ,D) : -& mu l t i d (quo t ien t (N ,D) , rema inder (N ,D)) .

The multid analogue of denotative normalization is flattening, our next issue. In the following
subsections we will not further consider the compilation of multiple-footed rules!®.

3.3 Non-Deterministic Nestings and Static Flattening

A term is flat iff it is denotative or i t is evaluative and has only denotative subterms. Oth-
erwise it is nested. A clause is flat iff all its premises are flat. Otherwise it is nested. In
particular, a denotative clause is flat iff its body is flat (since i t can have only denotative
foots, see 3.2).

Clauses can always be flattened by recursively replacing evaluative subterms by variables. In
the resulting flattened clauses the subterms to be evaluated become is-rhs main terms, which
simplifies their call-by-value reduction. Since a sequence of evaluative subterms leads to a
conjunction of is calls, non-deterministic subterms can be managed by the WAM’s standard
backtracking techniques, thus avoiding the direct handling of non-deterministic term nestings.
H we assume that clauses are in denotative foot form (3.2), saving explicit treatment of foot-
side nestings, static flattening can be defined by five rewrite rule schemata:

" I n WAM procedures the “return arity” of multiple-footed clauses should be specified (after a “/” behind
the PROLOG-usnal “argument arity”): if £ has one argument and two values, e.g. £ (W) : -&b , c . , and g
has four arguments and one value, then the 3-argument nesting g(a, f (b) ,d) expands to the 4-argument
call g (a ,b ,c ,d) , as indicated by the arity specification g/4 /1(a,£ /1 /2(b) ,d) or, omitting 1-return arities,
g /4 (a ,£ /1 /2 (b),d); also, the i s call (K ,L) i s f (a) expands t o (K ,L) is (b,c), as indicated by (K ,L) is
£/1/2(a) . The compiler could then produce a static unknown for nestings or is calls without such arity
conformity. Varying argument arity, as in the RELFUN interpreter, or even, return arity, as in our earlier
FIT interpreter, would require an additional register, XMAX, for passing the actual argument or return arity.

12

... :

---+

,SO(Sl, ... ,Si-l,tO(tI,

: - •.. ,J}isto(tI,

,tm),Si+I, ... 'sn)' ...&....

,tm),so(SI,,,,,Si-l,-O,Si+l, ... ,Sn),"'&

(1)

... :

---+

,SO(Sl,

: -

,Si-l,pisq,Si+l, ... 'Sn)' ...&....

,pisq,so(SI, ... ,Si-bP,Si+I, ... 'Sn)' ... &

(2)

. . . :

---+

, r is so(sI, ... , Si-I, to(tI, ... , tm), Si+l,

: - ... , _0 is to(tI, ... , tm), r is so(sI,

, Sn), ... &

, Si-I, -0, Si+I, ... , Sn), ... &....
(3)

... :

---+

,rissO(sl, ... ,Si-I,pisq,Si+l, ... 'Sn)' ...&....

: - .. . ,pisq,risso(sb""Si-I,P,Si+b""Sn),"'&' '"

(4)

... :

---+

,ris(pisq), ... &....

: - ... ,pisq,risp, ...&

(5)

_0 again stands for a new variable generated on each application of schemata (1) and (3). In
schemata (1)-(4) the operator So may itself be an evaluative term because the position i of
subterm substitutions is understood to range from 0 to nI2

• The is primitives transformed
by schemata (3) and (4) may have been generated by applications of schemata (1) and (2),
and later, of schemata (3) and (4) themselves.

To illustrate these concepts, we can employ child as an undefined binary functor in struc
tures like child[P,Q], just denoting P and Q's children. An embedding of such a deno
tative term into an evaluative term leaves the main term flat. Thus, the cares body of the
denotative foot form

parental(P) ;- cares(P,child[P,Q]) & true.

cannot be transformed by the above rewrite system. Instead, a request like parental (j 000)
will directly evaluate the request cares (j 000, child [j000, Q]), which may succeed using a
monolithic fact like cares (j 000, child [j ohn ,mary]).

However, we can also employ child as a binary operator defined by

child(joOO,luzy) :-& ann.
child(joOO,mary) ;-& bob.

in calls like child(P ,Q), evaluating to P and Q's children. An embedding of such an
evaluative term into another evaluative term makes the main term nested. Thus, the cares
body of the denotative foot form

parental(P) ;- cares(P,child(P,Q)) & true.

will be flattened by one application of the above schema (1):

12This is important for operator evaluation in a higher-order call like palinclassO ([a ,X, a]) of 2.4, which
flattens to _1 is palinclassO, _iC [a,X,a]); -l = palin[even,co [odd] ,id] is the actual operator value.

13

iD . . . ‚so(81, vey Si—1, to l t ı , 5 Im), Si+la 3 Sn)re0 Bosse (1)

— e i Gistoltz,..., Im)Sol, S i -15 Gy Sit) us Sn)y + & Lo

f = sey S0(S1y eos Si -1 DSG, S i t ey Sn) e r & ene (2)
— vee i— ee , p i8G ,80 (81y ey S i=15Dy Sit1y es Sn)y-& o te

P= ee , TAB 80(81y ey S i -1 , t l , ve rs Em) Sigs o r Sn)y- + & e t (3)
— 0.0.1... Gistoltz,..., tm), r i sso ls ı , . . . ,S i -1 , -G, S i t1s ee r Sn) ; - - -&

1— 004718 S0 (81 , . . 58 i - 1 , PD18, Sit15 Sn) . . . 8.0... (4)
— 0 .04 , D i8g , r i 8So (81 , . . . Si-15 Pr Si41y Sn) 80...

. i— . . . , r i s (p i sq) , . . .& (5)
— . . . :—. . . , p i sgq , r i sp , . . .&

_G again stands for a new variable generated on each application of schemata (1) and (3). In
schemata (1) - (4) the operator so may itself be an evaluative term because the position ¢ of
subterm substitutions is understood to range from 0 to n'2. The i s primitives transformed
by schemata (3) and (4) may have been generated by applications of schemata (1) and (2),
and later, of schemata (3) and (4) themselves.
To illustrate these concepts, we can employ chi ld as an undefined binary functor in strue-
tures like ch i l d [P ,Q] , just denoting P and Q’s children. An embedding of such a deno-
tative term into an evaluative term leaves the main term flat. Thus, the cares body of the
denotative foot form

parental(P) : - cares(P,ch i ld [P,Q]) & true.

cannot be transformed by the above rewrite system. Instead, a request like parental(john)
will directly evaluate the request cares(john,child[john,Q]), which may succeed using a
monolithic fact like cares(john,child[john,mary]).
However, we can also employ chi ld as a binary operator defined by

child(john,luzy) : -& ann.
child(john,mary) : -& bob.

in calls like chi ld(P,Q), evaluating to P and Q’s children. An embedding of such an
evaluative term into another evaluative term makes the main term nested. Thus, the cares
body of the denotative foot form

parental(P) : - cares(P,child(P,Q)) & true.

will be flattened by one application of the above schema (1):

12This is important for operator evalnation in a higher-order call like palinclass() ([a ,X ,a l) of 2.4, which
flattens to _1 is palinclass(), -1([a ,X,a]) : 1 = palin[even,colodd], id] is the actual operator value.

13

parental(P) :- _1 is child(P,Q), cares(P,_l) & true.

Using the flat body, a request like parental (j ohn) initially evaluates the is rhs child(john,

Q), which may non-deterministically return the solutions ann or bob. Going through a _1

binding, the first value leads to the request cares (j ohn, ann). This request would fail if we

suppose there is only a fact cares (john, bob). But backtracking on the flat conjunction

can easily reactivate the is rhs. It now returns the second value, which finally leads to the

successful request cares(john,bob).

As an example of a deeper nesting consider the second clause of the factorial definition:

f ac (0) : -&; 1.

fac(N) :-&; times(N,fac(subl(N))).

Its denotative foot form

fac(N) :- _1 is times(N,fac(subl(N))) & _1.

can be flattened by two applications of rewrite schema (3):

fac(N) :- _3 is subl(N), _2 is fac(_3), _1 is times(N,_2) &; _1.

A flattened form of evaluative bodiless, 1-footed rules, e.g. of the original second fac clause,

can be obtained easily (disregarding variable names) from their flattened denotative foot form

by resubstituting the foot variable, here _1:

fac(N) :- _3 is subl(N), _2 is fac(_3) & times(N,_2).

Since on calling the first subterm no other subterm values (that could become overwritten)

are returned yet, it is sufficient to use rest-flattened clauses in analogy to the rest-denotative

normal form of 3.2. Here, only the second and later subterms are replaced by flattening vari

ables. For example, this is a 1-footed, list-valued version of divide, along with its flattened

and rest-flattened forms:

divide(N,D) :-&; list(quotient(N,D),remainder(N,D)).

divide(N,D) .- _1 is quotient(N,D), _2 is remainder(N,D) &; list(_l,_2).

divide(N,D) :- _1 is remainder(N,D) &; list(quotient(N,D),_l).

In the last form, the call to the quotient subterm would implicitly put the first list

argument to Xl, while the remainder value would be explicitly put from _1 to X2.

An important, degenerated case is the rest flattening of unary nestings: since there is only

one subterm, they need not be flattened at all. The WAM register Xl thus acts as a fast

"communication channel" from the subterm to the main term of such an operator nesting,

comparable to the top of the call stack in functional machines. In deeper nestings this leads

to chains of consecutive calls, each expecting its argument in Xl and returning its value to

X1. A simple example is the rest-flattened form of the second factorial clause, which needs

only one new variable for a subterm of the binary times call, none for the subterm of the

recursive unary fac call:

fac(N) :- _1 is fac(subl(N)) &; times(N,_1).

This form is both readable ("... let _1 be factorial of N-1
on Xl=Nj call fac on Xl=N-1j put Xl=(N-1)! to X2j
will be given in 3.5.

") and efficient ("...
"). Its actual WAM

; call sub1

instructions

14

parental(P) : - _1 i s ch i l d (P ,Q) , cares(P,_1) & true.

Using the flat body, a request like parental (john) initially evaluates the i s rhs child(john,
Q), which may non-deterministically return the solutions ann or bob. Going through a _1-
binding, the first value leads to the request cares(john,ann). This request would fail if we
suppose there is only a fact cares(john,bob). But backtracking on the flat conjunction
can easily reactivate the is rhs. It now returns the second value, which finally leads to the
successful request cares(john,bob).
As an example of a deeper nesting consider the second clause of the factorial definition:

f ac (0) : -& 1 .
fac (N) : -& t imes (N , fac (sub l (N))) .

Its denotative foot form

f ac (N) : - _1 i s t imes (N , fac (sub i (N))) & _1.

can be flattened by two applications of rewrite schema (3):

f ac (N) : - _3 i s sub1(N), _.2 i s f ac (_3) , _1 i s t imes(N,_2) & _1.

A flattened form of evaluative bodiless, 1-footed rules, e.g. of the original second fac clause,
can be obtained easily (disregarding variable names) from their flattened denotative foot form
by resubstituting the foot variable, here _1:

f ac (N) : - _3 i s sub1 (N) , _2 i s f ac (_3) & t imes(N,_2) .

Since on calling the first subterm no other subterm values (that could become overwritten)
are returned yet, i t is sufficient to use rest-flattened clauses in analogy to the rest-denotative
normal form of 3.2. Here, only the second and later subterms are replaced by flattening vari-
ables. For example, this is a 1-footed, list-valued version of d iv ide , along with i ts flattened
and rest-flattened forms:

d i v i de (N ,D) : -& l i s t (quo t i en t (N ,D) , r ema inde r (N ,D)) .
div ide(N,D) : - _1 is quo t ien t (N ,D) , _2 i s remainder(N,D) & l i s t (_1 ,_2) .
d iv ide (N ,D) : - _1 i s remainder(N,D) & l i s t (quo t i en t (N ,D) ,_1) .

In the last form, the call to the quotient subterm would implicitly put the first l i s t
argument to X1, while the remainder value would be explicitly put from _1 to X2.
An important, degenerated case is the rest flattening of unary nestings: since there is only
one subterm, they need not be flattened at all. The WAM register X1 thus acts as a fast
“communication channel” from the subterm to the main term of such an operator nesting,
comparable to the top of the call stack in functional machines. In deeper nestings this leads
to chains of consecutive calls, each expecting its argument in X1 and returning its value to
X1. A simple example is the rest-flattened form of the second factorial clause, which needs
only one new variable for a subterm of the binary times call, none for the subterm of the
recursive unary fac call:

f ac (N) : - _1 i s f ac (sub i (N)) & t imes(N ,_1) .

This form is both readable (“ . . . let _1 be factorial of N -1 . . . ”) and efficient (“ . . . ; cal l subi
on X1=N; ca l l fac on X1=N-1; put X1=(N-1)! to X2; . . . ”) . Its actual WAM instructions
will be given in 3.5.

14

3.4 Higher-Order Clauses and Constant-Operator Reduction

A term is constant-operator iff it is denotative or it is evaluative and uses a constant as
operator and constant-operator subterms as arguments. Otherwise, if some variable, struc
ture, or evaluative term is used in an operator position, the term is inconstant-operator. A
clause is constant-operator iff its head uses a constant operator13 and all its premises are
constant-operator. Otherwise the clause is inconstant-operator.

The notion of inconstant-operator clauses is a syntactic characterization of a (>.-variableless)
subset of the usual concept of higher-order definitions: inconstant-operator clauses, unlike
constant-operator clauses, call (bound or unbound) variables, structures, or (values of) eval
uative terms in their premises, or are themselves defined with variables or structures as their
head operator.

Not included in the inconstant-operator subset are higher-order relations like transitive as
defined by constant-operator facts like transitive(ancestor)., whose second-order char
acteristics is dependent on ancestor's use as a first-order relation. On the other hand, the
following two examples are inconstant-operator clauses:

The variable ReI can be defined as a higher-order relation, 'typed' to be transitive, by the
variable-head-operator clause

Rel(A,C) :- transitive(Rel), Rel(A,B), Rel(B,C).

The structure compose [Fun1 , Fun2] can be defined as a higher-order function by the structure
head-operator clause

compose[Fun1,Fun2](A) :-& Fun1(Fun2(A)).

In general, RELFUN uses a term representation of operators, where each term (e.g. variable
or structure) may play both the role of an operator and of an operand. This very much eases
the higher-to-first-order transformation below.

Clauses can always be made constant-operator by introducing a new operator constant, which
relegates all (non-primitive) operators to the first operand position. In the resulting constant
operator-reduced clauses evaluative terms keep variables, structures, and embedded evaluative
terms only as arguments, which greatly simplifies their WAM compilation.

We assume that clauses are in denotative foot form (3.2) and flattened (3.3), saving explicit
treatment of foot-side evaluative terms and body-side evaluative subtermsj constant-operator
reduction can then be defined by three rewrite rule schemata:

... : - ... ,to(tI, ... ,tm), .•. & ~ ... : - ... ,A(to,tI, ... ,tm), ...&.... (2)

... :- ... ,risto(tI, ... ,tm), ... & ~ ... :- ... ,risA(to,tI, ... ,tm), ••• & (3)

13Clause heads can never be denotative themselves but clause-head arguments must always be denotative.

15

3.4 Higher-Order Clauses and Constant-Operator Reduction

A term is constant-operator iff i t is denotative or i t is evaluative and uses a constant as
operator and constant-operator subterms as arguments. Otherwise, if some variable, struc-
ture, or evaluative term is used in an operator position, the term is inconstent-operator. A
clause is constant-operator iff its head uses a constant operator!3 and all i ts premises are
constant-operator. Otherwise the clause is inconstant-operator.

The notion of inconstant-operator clauses is a syntactic characterization of a (A-variableless)
subset of the usual concept of higher-order definitions: inconstant-operator clauses, unlike
constant-operator clauses, call (bound or unbound) variables, structures, or (values of) eval-
uative terms in their premises, or are themselves defined with variables or structures as their
head operator.
Not included in the inconstant-operator subset are higher-order relations like transitive as
defined by constant-operator facts like transitive(ancestor) . , whose second-order char-
acteristics is dependent on ancestor’s use as a first-order relation. On the other hand, the
following two examples are inconstant-operator clauses:

The variable Rel can be defined as a higher-order relation, ‘typed’ to be transitive, by the
variable-head-operator clause

Rel(A,C) : - transit ive(Rel), Re l (A ,B) , Re l (B ,C) .

The structure compose [Fun1,Fun2] can be defined as a higher-order function by the structure-
head-operator clause

compose [Fun1,Fun2] (A) : -& Funi(Fun2(4)).

In general, RELFUN uses a term representation of operators, where each term (e.g. variable
or structure) may play both the role of an operator and of an operand. This very much eases
the higher-to-first-order transformation below.
Clauses can always be made constant-operator by introducing a new operator constant, which
relegates all (non-primitive) operators to the first operand position. In the resulting constant-
operator-reduced clauses evaluative terms keep variables, structures, and embedded evaluative
terms only as arguments, which greatly simplifies their WAM compilation.
We assume that clauses are in denotative foot form (3.2) and flattened (3.3) , saving explicit
treatment of foot-side evaluative terms and body-side evaluative subterms; constant-operator
reduction can then be defined by three rewrite rule schemata:

ho (hyy oy hp) : —.. .&. . . . — A lRo , h ız . Ak) —.. .&. . . . (1)

l em) sn — ey Altos try een tm)y r n (2)

t = . . . r i s t e (t y , stm), r s — i = r i s Ao , t r , e tm), & - (3)

13Clause heads can never be denotative themselves but clause-head arguments must always be denotative.

15

A stands for an operator name (conventionally ap) unique for the entire clause set to be trans

formed. The rewrite schemata are applied only under the following condition: the operator

transformed into the first argument must not be A itself, Le. ha f:. A in schema (1) and

to f:. A in schemata (2) and (3).14

The above flat, footless variable-head-operator clause, transcribed to denotative foot form,

yields a constant-operator version by one application of schema (1) and three applications of

schema (2):

Rel(A,C) :- transitive(Rel), Rel(A,B), Rel(B,C) & true.

ap(Rel,A,C) :- ap(transitive,Rel), ap(Rel,A,B), ap(Rel,B,C) & true.

Similarly, the nested, bodiless structure-head-operator clause, transformed to flattened, de

notative foot form, yields a constant-operator version by one application of schema (1) and

two applications of schema (3):

compose[Fun1,Fun2](A) :- _2 is Fun2(A), _1 is Fun1(_2) & _1.

ap(compose[Fun1,Fun2],A) .- _2 is ap(Fun2,A), _1 is ap(Fun1,_2) & _1.

In the constant-operator versions the operator variables ReI, Fun1, and Fun2 as well as the

operator structure compose [Fun1 , Fun2J are all relegated to first-operand positions.

Constant-operator forms not based on denotative normalization or even flattening can be

obtained by resubstitution, starting, e.g., from the last composition version:

ap(compose[Fun1,Fun2],A) :- _2 is ap(Fun2,A) & ap(Fun1,_2).

ap(compose[Fun1,Fun2],A) :-& ap(Funl,ap(Fun2,A)).

Finally, let us consider a constant-operator version of the paIin example of 2.4. It can be

obtained by applying the schemata (1)-(3) to the usual preprocessed form and then keeping

flattening but resubstituting denotative normalization. In this version of Fig. 3 the higher

order function paIin is well prepared for translation to WAM instructions 15.

141£ the rewrite rules are reformulated in an algorithmic one-pass fashion, as done in the actual implemen
tation, a single ap can be inserted where necessary, without need for any uniqueness or inequality checks.

15Constant-operator reduction also affects calls that already used a constant operator such as the append
call in Fig. 3. This works since the user definition of such operators is also ap-reduced by the rewrite
schemata. Alternatively, we could consider all constant-operator procedures such as the usual append def
inition as 'primitives', whose (non-clausal) definitions are not accessible to the ap transformation. Instead,
for each primitive the constant-operator reducer must generate one new clause, here ap(append,L1,L2,L3)
: -I; append(L1, L2 ,L3). It could then also leave constant-operator calls unchanged: the ap reduction of
variable-operator calls would handle all higher-order uses of a constant operator (append may be passed as an
argument and then be called via this bound variable), and only for such ap calls would a primitive need its
newly generated ap clause. The efficiency advantage of this reducer variant increases with the percentage of
pre-existing constant-operator clauses. Extended WAM indexing can achieve similar efficiency gains for the
original variant.

16

A stands for an operator name (conventionally ap) unique for the entire clause set to be trans-
formed. The rewrite schemata are applied only under the following condition: the operator
transformed into the first argument must not be ‚A itself, i .e . hg # A in schema (1) and
to # A in schemata (2) and (3).14
The above flat, footless variable-head-operator clause, transcribed to denotative foot form,
yields a constant-operator version by one application of schema (1) and three applications of
schema (2):

Rel(A,C) : - transit ive(Rel), Re l (A ,B) , Rel(B,C) & t r ue .
ap(Rel,A,C) : - ap(transit ive,Rel), ap(Rel ,A,B) , ap(Rel,B,C) & true.

Similarly, the nested, bodiless structure-head-operator clause, transformed to flattened, de-
notative foot form, yields a constant-operator version by one application of schema (1) and
two applications of schema (3):

compose [Fun1,Fun2] (A) : - _2 i s Fun2(4), _1 i s Fun1(_ 2) & _1.
ap(compose [Funi,Fun2] ,A) : - _2 is ap(Fun2,A), _1 i s ap(Fun1,_2) & _1.

In the constant-operator versions the operator variables Rel , Funi, and Fun2 as well as the
operator structure compose [Funi,Fun2] are all relegated to first-operand positions.
Constant-operator forms not based on denotative normalization or even flattening can be
obtained by resubstitution, starting, e.g., from the last composition version:

ap(compose[Fun1,Fun2],A) : - _2 is ap(Fun2,A) & ap(Funi,_2).
ap(compose[Funi,Fun2],A) : -& ap(Funi,ap(Fun2,A)).

Finally, let us consider a constant-operator version of the pal in example of 2.4. It can be
obtained by applying the schemata (1)-(3) to the usual preprocessed form and then keeping
flattening but resubstituting denotative normalization. In this version of Fig. 3 the higher-
order function palin is well prepared for translation to WAM instructions 15.

141f the rewrite rules are reformulated in an algorithmic one-pass fashion, as done in the actual implemen-
tation, a single ap can be inserted where necessary, without need for any uniqueness or inequality checks.

15Constant-operator reduction also affects calls that already used a constant operator such as the append
call in Fig. 3. This works since the user definition of such operators is also ap-reduced by the rewrite
schemata. Alternatively, we could consider all constant-operator procedures such as the usual append def-
inition as ‘primitives’, whose (non-clausal) definitions are not accessible t o the ap transformation. Instead,
for each primitive the constant-operator reducer must generate one new clause, here ap(append,L1,L2,L3)
:~& append(L1,L2,L3). It could then also leave constant-operator calls unchanged: the ap reduction of
variable-operator calls would handle all higher-order uses of a constant operator (append may be passed as an
argument and then be called via this bound variable), and only for such ap calls would a primitive need its
newly generated ap clause. The efficiency advantage of this reducer variant increases with the percentage of
pre-existing constant-operator clauses. Extended WAM indexing can achieve similar efficiency gains for the
original variant.

16

ap(palin[Emptyval,Singletonfun,Recursionfun],[]) : -& Emptyval.
ap(pal in[Emptyval,Singletonfun,Recursionfun],[Center]) :-&

ap(Singletonfun, [Cen te r]) .
ap(palin[Emptyval,Singletonfun,Recursionfun], [First-and-Last|Rest]) : -

ap (append ,M idd le , [First-and-Last]} ,Res t) ,
_2 i s ap(palin[Emptyval,Singletonfun,Recursionfun],Middle)&
ap (Recursionfun,2).

ap(id,A) : -& A.
ap(colCl,A) : -& C.
ap(tw ice [F] ,A) : - _2 i s ap(F,A) & ap (F , . 2) .

Figure 3: The ap version of pa l in

3 .5 Translation t o WAM Instruct ions

The WAM instructions employed here will not mention the “argument (A) registers” of
[War83], but use Warren's temporary (X) registers both for specifying argument passing and
temporary processing. Indeed, we will extend the usage of the temporary registers (X1, X2,
. . . , XV) to a third task: permitting RELFUN clauses to return V values. This generalization
makes X-register use symmetrical with respect to input arguments, internal auxiliaries, and
output values. However, for the single-valued clauses dealt with here, only X1 will be needed
for value returning.
The instructions will be named as in [GLLO85], but with the regular X/Y-registers counted
from 1 , not 0 (XO is reserved as an operator register, not yet needed here). For readabil-
ity, permanent (Y) registers will be referred to by their source variable names, assuming a
‘trimmable’ name-YI association.
In the 1-footed clauses considered here the single foot can be compiled like a body-side premise
(as if the “&” were a “,”): we let all premises, from left to right, return a value to X1, so
that the last one (the foot) overwrites X1 for the final value. Since footless clauses can be
rewritten as true-footed clauses we do not consider them here, with one exception: for facts
the compiler inserts the final instruction proctrue as a short form of the two instructions
put_constant t r ue , X1 ; p roceed .

All kinds of put instructions of the form pu t KX k , X1 except for X = y_variable can be
reinterpreted as value-returning instructions; in particular, put _x_variable X1, X1 returns
an anonymous (free) variable, and put_structure £ /N , X1 returns a structure with functor
£/N, to be filled by N subsequent unify instructions. Similarly, all kinds of get instructions
of the form ge t KX k , X1 can be reinterpreted as value-fetching instructions; in particular,
with get_y_variable and get xvariable the value from X1 is fetched into permanent and
temporary free variables.

RELFUN'’s i s calls, p i s g, can be translated by just translating q and then using an instruc-
tion ge t KX k , X1 for kfetching the value that ¢ returned to X1 (k transcribes the source lhs
p and K represents the corresponding kind of get).
Let us look at the transition from ‘relational’ instructions for a fact t o corresponding ‘func-
tional’ instructions for a 1-footed rule, taking the first factorial clause as an example. While

17

the relational version gets two arguments and just proctrues, the functional version only
gets one argument but puts a non-trivial value:

fac(O,l).

tac/2:	 get_constant 0, Xi
get_constant 1, X2
proctrue

fac(O) :-&; 1.

tac/1 :	 get_constant 0, Xi
put_constant 1, Xi
proceed

The compilation of functional nestings can always be done using flattening variables and the
is primitive. For first-argument (incl. unary) nestings a returned value can be left directly
in the Xi-argument of the main term. Both situations can be illustrated with the second
factorial clause (cf. 3.3):

fac(N) :- _1 is fac(subl(N)) &; times(N,_l).

tac/1:	 allocate
get_y_variable N, Xi
call sub1/1, 2
call tac/1, 2
get_y_variable _1, Xi
put_y_value N, Xi
put_y_value _1, X2
deallocate
execute times/2

While the above first-argument-nesting optimization requires no value transport at all, a final
nesting optimization can at least avoid the use of a permanent flattening variable for one
non-first position: if to(...) is the final evaluative subterm of a call so(... ,to(...),Si+I, ... ,sn),
none of the subterms Si+b ... , Sn can destroy X-registers; hence the returned value of to(...)
can be put..x_valued directly from Xl to the main call's register Xi. A simple example is the
main times call of the second factorial clause, whose first argument is denotative but whose
second argument is the final evaluative subterm16 (this "temporary nesting" is made more
explicit in the source line by resubstituting its flattening variable):

16Semantic properties such as the commutativity of times could lead to source-level transformations us
able for further WAM optimizations: left-recursive nestings as in fac(N) :-1; times (fac(sub1(N» ,N). can
maximally exploit the first-argument-nesting optimization, here rendering the put..x_value superfluous if the _
put_ysalue is redirected to X2.

18

the relational version gets two arguments and just proctrues, the functional version only
gets one argument but puts a non-trivial value:

f ac (0 ,1) .

fac /2 : get_constant 0 , X1
get_constant 1 , X2
proctrue

fac (0) : -& 1 .

f ac /1 : get_constant 0 , X1
put_constant 1 , X1
proceed

The compilation of functional nestings can always be done using flattening variables and the
i s primitive. For first-argument (incl. unary) nestings a returned value can be left directly
in the X1-argument of the main term. Both situations can be illustrated with the second
factorial clause (cf. 3.3):

f ac (N) : - _1 i s fac(sub1(N)) & t imes (N ,_1) .

f ac /1 : al locate
get_y_variable N , X1
call sub1/1 , 2
cal l f ac /1 , 2
get_y_variable _1 , X1
put_y_value N , X1
put_y_value _1 , X2
deal locate
execute t imes/2

While the above first-argument-nesting optimization requires no value transport at all, a final-
nesting optimization can at least avoid the use of a permanent flattening variable for one
non-first position: if to(...) is the final evaluative subterm of a call sg (. . . ,%0(. . .) ;Si+1> ++ Sn),
none of the subterms s;41, ..., Sn can destroy X-registers; hence the returned value of to(...)
can be put_x_valued directly from X1 to the main call’s register Xi. A simple example is the
main times call of the second factorial clause, whose first argument is denotative but whose
second argument is the final evaluative subterm!® (this “temporary nesting” is made more
explicit in the source line by resubstituting its flattening variable):

16Semantic properties such as the commutativity of times could lead to source-level tramsformations us
able for farther WAM optimizations: left-recursive nestings as in fac(N) :~& t imes(fac(subi(N)),N). can
maximally exploit the first-argument-nesting optimization, here rendering the put_x value superfluous if the
put_y-value is redirected to X2.

18

fac(N) :-&	 times(N,fac(subl(N))).

fac/1:	 allocate
get_y_variable N, Xi
call subi/1, 1
call fac/1, 1
put_x_value Xi, X2
put_y_value H, Xi
deallocate
execute times/2

Non-deterministic functions pose no extra problems for WAM translation: values can be

enumerated by setting and resetting Xl within the usual tryjretry/trust instructions. We

give the flattened denotative normal form of the parental example in 3.3 together with its

WAM instructions, again compiling _1 as a temporary variable:

child(john,luzy) :-& ann.

child(john,mary) :-& bob.

parental(P) :- _1 is child(P,Q), cares(P,_l).

cares(john,bob).

child/2:	 try_me_else c2, 2
get_constant john, Xi
get_constant lUzy, X2
put_constant ann, Xi
proceed

c2:	 trust_me_else_fail
get_constant john, Xi
get_constant mary, X2
put_constant bob, Xi
proceed

parental/1:	 allocate
get_y_variable P, Xi
put_x_variable X2, X2
call child/2, 1
put_x_value Xi, X2
put_y_value P, Xi
deallocate
execute cares/2

cares/2:	 get_constant john, Xi
get_constant bob, X2
proctrue

Finally, constant-operator-reduced forms of higher-order clauses are compiled as non-deter
ministic ap procedures, one for each arity. Following are optimized WAM instructions for
the paUn example in Fig. 3 of 3.4; they constitute a single procedure ap/2 because all ap
clauses happen to have arity 2:

19

f ac (N) : -& t imes (N , fac (sub1 (N))) .

f ac /1 : a l locate
get_y_variable N , X1
call subi1/1, 1
cal l f ac /1 , 1
put_x_value X i , X2
put_y_value N , X i
deal locate
execute t imes/2

Non-deterministic functions pose no extra problems for WAM translation: values can be
enumerated by setting and resetting X1 within the usual try/retry/trust instructions. We
give the flattened denotative normal form of the parental example in 3.3 together with its
WAM instructions, again compiling _1 as a temporary variable:

chi ld(john, luzy) : -& ann.
child(john,mary) : -& bob.
parental(P) : - _1 i s ch i l d (P ,Q) , cares(P,_1) .
cares (john,bob).

chi ld/2: try_me_else c2 , 2
get_constant j ohn , X1
get_constant l uzy , X2
put_constant ann, X1
proceed

c2 : t rust_me_else_fai l
get_constant j ohn , X1
get_constant mary, X2
put_constant bob , X i
proceed

parental /1: al locate
get_y_variable P , X1
put_x_variable X2 , X2
cal l ch i ld /2 , 1
put_x_value X1 , X2
put_y_value P , X1
deal locate
execute cares/2

cares/2 : get_constant j ohn , X1
get_constant bob , X2
proctrue

Finally, constant-operator-reduced forms of higher-order clauses are compiled as non-deter-
ministic ap procedures, one for each arity. Following are optimized WAM instructions for
the palin example in Fig. 3 of 3.4; they constitute a single procedure ap/2 because all ap
clauses happen to have arity 2:

19

ap/2:	 try_me_else a2. 2
get_structure palin/3. Xi
unify_x_variable Xi
get_nil X2
proceed

a2:	 retry_me_else a3
get_structure palin/3. Xi
unify_x_variable X3
unify_x_variable X1
get_list X2
unify_x_variable X3
unify_nil
execute ap/2

a3:	 retry_me_else a4
allocate
get_structure palin/3. Xi
unify_y_variable Emptyval
unify_y_variable Singletonfun
unify_y_variable Recursionfun
get_list X2
unify_x_variable XS
unify_x_variable X4
put_constant append. Xi
put_y_variable Middle. X2
put_list X3
unify_x_value XS
unify_nil
call ap/2. 4
put_structure palin/3. Xi
unify_y_value Emptyval
unify_y_value Singletonfun
unify_y_value Recursionfun
put_unsafe_value Middle. X2
call ap/2. 1
put_x_value Xi. X2
put_y_value Recursionfun. Xi
deallocate
execute ap/2

a4:	 retry_me_else as
get_constant id. Xi
put_x_value X2. Xi
proceed

as:	 retry_me_else a6
get_structure co/i. Xi
unify_x_variable Xi
proceed

a6:	 trust_me_else_fail
allocate
get_structure twice/i. Xi

20

ap/2: try_me_else a2, 2

a2 :

a3 :

a4 :

a5 :

a6 :

get_structure pal in/3, X1
unify_x_variable X1
get_nil X2
proceed

retry_me_else a3
get_structure pal in/3, X1
unify_x_variable X3
unify_x_variable X1
get_ l is t X2
unify_x_variable X3
unify_ni l
execute ap/2

re t ry_me_else a4
al locate
get_structure pal in/3, X1
unify_y_variable Emptyval
unify_y_variable Singletonfun
unify_y_variable Recursionfun
get_ l i s t X2
unify_x_variable X5
unify_x_variable X4
put_constant append, X1
put_y_variable Middle, X2
put_l is t X3
unify_x_value X5
unify_nil
call ap/2, 4
put_structure pal in/3, X i
unify_y_value Emptyval
unify_y_value Singletonfun
unify_y_value Recursionfun
put_unsafe_value Midd le , X2
call ap/2, 1
put_x_value X1, X2
put_y_value Recursionfun, X i
deal locate
execute ap/2

ret ry_me_else a5
get_constant i d , X i
put_x_value X2 , X1
proceed

ret ry_me_else ab
get_structure co/1, X1
unify_x_variable X i
proceed

t rust_me_else_fa i l
a l locate
get_structure tw i ce /1 , X1

20

4

unify_y_variable F

put_y_value F, Xi

call ap/2, 1

put_x_value Xi, X2

put_y_value F, Xi

deallocate

execute ap/2

Of course, in practice, indexing instructions would be used to let the procedures apj I directly
sw-itch on their first arguments, the original operators: former constant-head-operator clauses
and structure-head-operator clauses can be efficiently accessed with sw-itch_on_constant and
sw-itch_on_structure. Second-argument switching would then achieve, for higher-order
clauses, the efficiency of PROLOG's standard first-argument indexing.

Conclusions

Besides the PROLOG-like syntax adopted up to this point we use a LISP-like syntax for REL
FUN's valued clauses: the multiple-footed, single-footed, and hormsh (footless) clause nota
tions are (ft head bodYt ... bodYB &; fooft ... footF) , (ft head bodYt ... bodYB
foott), and (hn head bodYt ... bodYB) , respectively. The terms head, bodYI, and footJ
also use Cambridge-Polish notation: evaluative terms like child(P ,Q) become (child
_p _q) and denotative terms like child [P , Q] become '(child _p _q). In special cases,
clauses can be expressed equivalently, as in (ft (parental -p) (cares ...) &; true) {:}
(ft (parental -p) (cares ...) true) {:} (hn (parental -p) (cares ...)).

With the exception of the yet unimplemented multiple-footed clauses, this syntax is em
ployed in the present interpreter+compilerjemulator system, running in COMMON LISpt7.
The PROLOG-like syntax is currently being implemented as an alternative pretty printer; it
will also become the back-end of a RELFUN-to-PROLOG translator, whose central transfor
mation principle was illustrated in 2.3.

Our general compilation approach stresses optitnization ofthe WAM instructions, not speed
iness of the compiler. The RELFUN source transformation phases are thus formulated as
pure, recursive LISP functions (a version of the constant-operator reducer is even written in
RELFUN itself).

The WAM translation phase constitutes a much larger LISP program because it exploits
many (register) optimizations already in the DATALOG and DATAFUN (structureless and
listless RELFUN) subsets. We have defined classified RELFUN as an explicit representation
language, intermediate between preprocessed RELFUN procedures and WAM instructions;
e.g., the present DATAFUN classifier extends clauses by permanent/temporary, safe/unsafe,
and first/non-first declarations for variables, collects premises into chunks (in the sense of
Debray), specifies the argument sequence for goal unification, etc. [Kra90]. The code genera
tor thus has a platform from which it can almost read off the WAM instructions, but it also
introduces additional low-level optimizations.

We are experimenting with two LISP-based WAM emulators, one transcribed from Beer,
the other adapted from Nystrfl5m [Hei89]. Using our Xi-return compiler, only the printing of

17The original interpreter [BoI86] used only single-footed clauses (ft head bodYl •.• bodYB footl) and
bodiless, footless clauses or facts (hn head), leaving out the ft and hn tags.

21

unify_y_variable F
put_y_value F , X i
call ap/2, 1
put_x_value X i , X2
put_y_value F , X1
deallocate
execute ap/2

Of course, in practice, indexing instructions would be used to let the procedures ap/Idirectly
switch on their first arguments, the original operators: former constant-head-operator clauses
and structure-head-operator clauses can be efficiently accessed with sw i t chon constant and
sw i t chon structure. Second-argument switching would then achieve, for higher-order
clauses, the efficiency of PROLOG’s standard first-argument indexing.

4 Conclusions

Besides the PROLOG-like syntax adopted up to this point we use a LISP-like syntax for REL-
FUN’s valued clauses: the multiple-footed, single-footed, and hornish (footless) clause nota-
tions are (f t head body, . . . bodyp & footy . . . f oo t r) , (f t head body, . . . body
footy), and (hn head body, . . . bodyg), respectively. The terms head, bodys, and footy
also use Cambridge-Polish notation: evaluative terms like child(P,Q) become (chi ld
-p -q) and denotative terms like ch i l d [P ,Q] become ‘ (ch i l d .p _q). In special cases,
clauses can be expressed equivalently, as in (f t (parental _p) (cares . . .) & true) &
(f t (parental .p) (cares . . .) true) & (hn (parental _p) (cares . . .)) .

With the exception of the yet unimplemented multiple-footed clauses, this syntax is em-
ployed in the present interpreter+compiler/emulator system, running in COMMON LISPY?.
The PROLOG:-like syntax is currently being implemented as an alternative pretty printer; it
will also become the back-end of a RELFUN-to-PROLOG translator, whose central transfor-
mation principle was illustrated in 2.3.
Our general compilation approach stresses optimization of the WAM instructions, not speed-
iness of the compiler. The RELFUN source transformation phases are thus formulated as
pure, recursive LISP functions (a version of the constant-operator reducer is even written in
RELFUN itself).
The WAM translation phase constitutes a much larger LISP program because it exploits
many (register) optimizations already in the DATALOG and DATAFUN (structureless and
listless RELFUN) subsets. We have defined classified RELFUN as an explicit representation
language, intermediate between preprocessed RELFUN procedures and WAM instructions;
e.g., the present DATAFUN classifier extends clauses by permanent/temporary, safe/unsafe,
and first/non-first declarations for variables, collects premises into chunks (in the sense of
Debray), specifies the argument sequence for goal unification, etc. [Kra90)]. The code genera-
tor thus has a platform from which i t can almost read off the WAM instructions, but i t also
introduces additional low-level optimizations.
We are experimenting with two LISP-based WAM emulators, one transcribed from Beer,
the other adapted from Nystrgm [Hei89]. Using our X1-return compiler, only the printing of

"The original interpreter [Bol86] used only single-footed clauses (f t head body: . . . bodys foo t) and
bodiless, footless clauses or facts (hn head), leaving out the f t and hn tags.

21

returned values had to be added to these PROLOG emulators for obtaining RELFUN emula
tors. We have confirmed a small emulator-performance increase proceeding from relational to
equivalent functional definitions of the palinclass-r/palinclass type. In order to quantify
the LISP overhead, we have translated parts of the NystrliSm emulator to C, extrapolating a
speed-up factor of six for this entire emulator [Els90]. On the basis of these experiences we
plan extensions of a high-speed PROLOG machine, the SIEMENS-manufactured KCM, for
RELFUN.

References

[BDN+89] H. Benker, M. Dorochevsky, J. Noye, B. O'Riordan, A. Sexton, and J.C. Syre.
The knowledge crunching machine at ECRC: A joint R&D project of a high speed
PROLOG system. ICL Technical Journal, pages 737-753, November 1989.

[BoI86] Harold Boley. RELFUN: A relational/functional integration with valued clauses.
SIGPLAN Notices, 21(12):87-98, December 1986.

[Bo190] Harold Boley. Declarative operations on nets.
Applications, 1990. Forthcoming.

Computers & Mathematics with

[DL86] D. DeGroot and G. Lindstrom, editors. Logic Programming: Functions, Relations,
and Equations. Prentice-Hall, 1986.

[Els90] Klaus Elsbernd. Effizienzvergleiche zwischen einer LISP- und C-codierten WAM.
Technical Report SWP-90-03, University of Kaiserslautern, Department of Com
puter Science, June 1990.

[GLL085]	 John Gabriel, Tim Lindholm, E.L. Lusk, and R.A. Overbeek. A tutorial on the
Warren abstract machine for computational logic. Technical Report ANL-84-84,
Argonne National Laboratory, Illinois, June 1985.

[Hei89]	 Hans-Giinther Hein. Adding WAM instructions to support valued clauses for the
relational/functional integration language RELFUN. Technical Report SWP-90
02, University of Kaiserslautern, Department of Computer Science, December
1989.

[Kra90]	 Thomas Krause. Klassifizierte relational/funktionale Klauseln: Eine deklarative
Zwischensprache zur Generierung von Register-optimierten WAM-Instruktionen.
Technical Report SWP-90-04, University of Kaiserslautern, Department of Com
puter Science, May 1990.

[War82]	 David H. D. Warren. Higher-order extensions to PROLOG: are they needed?
Machine Intelligence, 10:441-454, 1982.

[War83]	 David H.D. Warren. An abstract PROLOG instruction set. Technical Report 309,
SRI International, AI Center, 1983.

22

returned values had to be added to these PROLOG emulators for obtaining RELFUN emula-
tors. We have confirmed a small emulator-performance increase proceeding from relational t o
equivalent functional definitions of the pal inclass-r/pal inclass type. In order to quantify
the LISP overhead, we have translated parts of the Nystrgm emulator to C, extrapolating a
speed-up factor of six for this entire emulator [Els90]. On the basis of these experiences we
plan extensions of a high-speed PROLOG machine, the SIEMENS-manufactured KCM, for
RELFUN.

References

[BDN+89]

[Bol86]

[Bol90]

[DL86]

[Els90]

[GLLOS5]

[Hei89]

[Kra90]

[War82]

[War83]

H. Benker, M . Dorochevsky, J. Noyé, B . O’Riordan, A. Sexton, and J.C. Syre.
The knowledge crunching machine at ECRC: A joint R&D project of a high speed
PROLOG system. ICL Technical Journal, pages 737-753, November 1989.

Harold Boley. RELFUN: A relational/functional integration with valued clauses.
SIGPLAN Notices, 21(12):87-98, December 1986.

Harold Boley. Declarative operations on nets. Computers & Mathematics with
Applications, 1990. Forthcoming.

D. DeGroot and G. Lindstrom, editors. Logic Programming: Functions, Relations,
and Equations. Prentice-Hall, 1986.

Klaus Elsbernd. Effizienzvergleiche zwischen einer LISP- und C-codierten WAM.
Technical Report SWP-90-03, University of Kaiserslautern, Department of Com-
puter Science, June 1990.

John Gabriel, Tim Lindholm, E.L. Lusk, and R.A. Overbeek. A tutorial on the
Warren abstract machine for computational logic. Technical Report ANL-84-84,
Argonne National Laboratory, Illinois, June 1985.

Hans-Giinther Hein. Adding WAM instructions to support valued clauses for the
relational /functional integration language RELFUN. Technical Report SWP-90-
02, University of Kaiserslautern, Department of Computer Science, December
1989.

Thomas Krause. Klassifizierte relational/funktionale Klauseln: Eine deklarative
Zwischensprache zur Generierung von Register-optimierten WAM-Instruktionen.
Technical Report SWP-90-04, University of Kaiserslautern, Department of Com-
puter Science, May 1990.

David H . D . Warren. Higher-order extensions to PROLOG: are they needed?
Machine Intelligence, 10:441-454, 1982.

David H.D. Warren. An abstract PROLOG instruction set. Technical Report 309,
SRI International, AI Center, 1983.

22

	BB_0001.jpg
	Report-89-KL_0003.jpg

