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Abstract 

Raw data derived from experiments or nu
merical simulations in a certain domain is at 
an abstraction level far too low to be used for 
the interpretation by a computer. In order 
to detect similarities, relations or dependen
cies within different data sets it is often ad
visable to construct a qualitative description 
using various transformational steps. Ideally 
this process should lead to the same high
level symbolic form that human researchers 
are used to dealing with themselves. En
abling a system to perform this transforma
tion and to make inferences based on the 
symbolic description represents a first step 
towards automatic discovery. In this paper, 
we report on the above-mentioned aspects 
of the MOBIS (Modelling of Biological Sys
tems) project, a case-based, interactive sim
ulation environment which is designed to as
sist neurophysiologists to step through the 
experiment life-cycle of design, simulation, 
and analysis of neurophysiological simulation 
experiments. We are going to present one 
component of the intelligent assistant whose 
purpose is to automatically simplify, analyze, 
and interpret complex numerical neurophys
iological data derived from real experiments 
or - as in our case - from the results of 
computerized simulation. 

INTRODUCTION 

Although this paper presents an AI application in neu
rophysiology, we omit an in-depth introduction to bi
ological neuronal networks, the electro-chemical pro-
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cesses in neurons and synapses that are modelled in 
the simulator and the like. Instead we assume a basic 
understanding of these processes and, if necessary, we 
include sufficient detail along the following sections so 
that the non-biolo;ist can understand the rest of the 
paper. 

Typically, simulations of biological neural networks 
produce only raw data, as e.g. in the simulation sys
tem GENESIS (Wilson, Bhalla, Uhley, Bower 90). A 
variety of existing software tools already allow some 
(statistical) analysis of this data, but for a neuwphys
iologist, it turns out that certain qualitative features of 
the simulation (e.g., the presence of spikes, or the fact 
that a neuron remains inactive throughout a certain 
period of time whilst another neuron shows activity) 
represent the main results of a numerical simulation. 
In this case we would like a computer program to pro
vide (and understand) a representation of the results 
that includes these qualitative features. Simply graph
ing the results is helpful but not sufficient for these 
purposes: a plotting routine does serve to summarize 
data for the user, but it fails to provide that summa
rized data in a more abstract and symbolic form that 
may then be further examined by the computer itself 
(c.f.(Eisenberg 90)). 

Figure 1: A typical membrane voltage plot. 

Fig. 1 shows a typical plot of neuronal activity within 
a network. The plot is the graphical representation 
of the raw data derived from numerical simulation. 
We developed algorithms and a de.ta structure (called 
episode-structure) enabling us to represent an overall 
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Abstract

Raw data derived from experiments or nu—
merical simulations in a certain domain is at
an abstraction level far too low to be used for
t he  in terpre ta t ion  by a. computer. In  order
to detect similari t ies,  relat ions o r  dependen-
cies wi th in  different data  sets i t  is often ad—
visable to  const ruct  a qual i ta t ive  descr ipt ion
using various transformational steps. Ideally
this process should lead to the same high—
level symbol ic  form tha t  human researchers
are used to  dealing with themselves. En—
abling a system to perform this transforma—
t ion  and to  make inferences based on  the
symbol ic  description represents a first step
towards automatic discovery. In this paper,
we report on the above—mentioned aspects
of the MOBIS (Modelling of Biological Sys-
tems) project ,  a case-based, interactive sim-
ulation environment which is designed to as-
sist neurophysiologists to step through the
experiment life—cycle of design, simulation,
and analysis of neurophysiological simulation
experiments. We are going to present one
component of the intelligent assistant whose
purpose is to automatically simplify, analyze,
and interpret complex numerical neurophys-
iological data derived from real experiments
or  — as i n  our case —— from the results of
computerized simulation.

1 INTRODUCTION

Although this paper presents an AI application in  neu-
rophysiology, we omit an in-depth introduction to bi-
ological neuronal networks, the electro-chemical pro-
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cesses in neurons and synapses that are modelled in
the  simulator and the like. Instead we assume a basic
understanding of these processes and, if necessary, we
include sufficient detail along the following sections so
that  the non—biologist can understand the rest of the
paper.

Typically, simulations of biological neural networks
produce only raw data,  as e .g .  in the simulation sys-
tem GENESIS (Wilson, Bhalla, Uliley, Bower 90). A
variety of existing software tools already allow some
(statistical) analysis of this data, but for a neurophys-
iologist, i t  turns out that certain qualitative features of
the simulation (e.g., the presence of spikes, or the fact
that  a neuron remains inactive throughout a certain
period of time whilst another neuron shows activity)
represent the main results of a numerical simulation.
In this case we would like a computer program to pro-
vide (and understand) a representation of the results
that includes these qualitative features. Simply graph-
ing the results is helpful but not sufficient for these
purposes: a plotting routine does serve to summarize
data for the user, but i t  fails to provide that summa-
rized data i n  a more abstract and symbolic form that
may then be further examined by the computer itself
(c.f.(Eisenberg 90)).
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Figure 1:  A typical membrane voltage plot.

Fig. 1 shows a typical plot of neuronal activity within
a network. The plot is the graphical representation
of the  raw data derived from numerical simulation.
We developed algorithms and a data structure (called
episode—structure) enabling us to represent an overall
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qualitative description of the results of a simulation 
or of real (digitized in-vivo) experiment recordings. 
This data structure is coarse-grained enough to pro
vide a substantial compaction of the numerical data 
while still r-. <dining enough fine-grained detail to cap
ture those features of the simulation that are of interest 
to the researcher. Additionally, this data structure is 
in a form that can be examined, classified, and manip
ulated in interesting ways by the computer program 
itself, allowing for intra- and inter-experiment discov
eries. Since we tried to use domain independent al
gorithms, our system does not contain any knowledge 
about the simulation process, thus accounting for a 
shallow coupling of simulator and analysis component. 
Domain knowledge is needed only for feature detection. 

The following section gives an in-depth discussion of 
the various transformational steps in experiment anal
ysis that have to be accomplished in order to extract 
any meaningful information buried in the simulation 
data. Data reduction, gain of information. and the 
possibility of further inferences based on this symbolic 
representation are the main advantages of these trans
formational steps. We finally show how the system 
detects qualitative relationships in an example taken 
from our problem domain. 

2 THE TRANSFORMATIONAL 
STEPS IN EXPERIMENT 
ANALYSIS 

Neurophysiologists can observe the result of a simula
tion and discern a sequence of significant events. These 
events may be interpreted as part of a larger repertoire 
of qualitative behavior of neural networks. When ad
dressing the problem of automated experiment anal
ysis in neurophysiology, the key issue is to construct 
a qualitative history of membrane voltage plots. The 
elements of this qualitative history are called episodes. 
Fig. 1 shows a typical membrane voltage plot. In anal
ogy to human perception, several steps of interpreta
tion can be distinguished. Initially, the function is 
recognized in a hierarchical manner: a primal sketch 
of the rough outline is established, skipping irrelevant 
details, but being fine-grained enough to maintain im
portant phenomena. The function is segmented into 
intervals. Next, sequences of successive intervals form 
typical patterns or features subject to a direct inter
pretation. Finally, sequences can be grouped into repe
titions. In the following sections, these transformation 
steps will be discussed in more detail. 

2.1 SEGMENTATION INTO INTERVALS 

For segmenting functions into meaningful intervals, 
various kinds of points (such as extrema of a function 
and its derivatives) can serve as boundaries. Fig. 2 
depicts the interval between 90 and 190 ms from the 

example voltage plot of Fig. 1. Each vertical line indi
cates a local extremum. Out of this set of candidates, 
"significant" segmentation points are to be selected, 
generally by application of a digital filter. Thus in 
Fig. 3 the (possibly irrelevant) events between 115 and 
150 ms may be neglected. 

An automated function segmentation is supposed to 
comply with the following requirements: 

•	 Noise and unimportant details (e.g. oscillations 
without domain-dependent meaning) should be 
omitted while preserving characteristic phenom
ena. 

•	 A hierarchical form would be desirable in order to 
examine functions on different resolution levels. 
E.g., in Fig. 2 the minimal modifications between 
115 and 150 ms could be regarded as subinter
vals of the decreasing interval and, if necessary, 
be neglected. 

•	 The generation of a description ought to be inde
pendent of parameter input by the user. 

•	 Contr..c.:tion or extension of the axes should not 
affect the interval structure. 

•	 The segmentation process should be capable of 
treating arbitrarily shaped functions. 

•	 The significance of interval boundaries should be 
measured not by a filter derived from the overall 
function, but rather by comparison with the local 
neighborhood. 

These demands introduce the problem of scale. Dig
ital filters principally smooth a curve by computing 
some kind of weighted mean value over a neighbor en
vironment. The size of this environment (which can be 
regarded as a window) can be determined by modify
ing the distribution parameter (J. Finding a suitable (J 

proved to be nearly impossible in two respects: a cho
sen value resulting in an adequate description of one 
example function yielded unacceptable segmentations 
of the other (and vice versa); moreover, it didn't suf
fice to apply one fixed filter size to the entire potential 
function, but it had to be adapted to the local envi
ronment. In order to gain an interval segmentation 
which fullfils the above-listed requirements, it seems 
inevitable to exploit the idea of scale space. 

2.2 THE SCALE SPACE 

Function segmentations on different scales (i.e., resolu
tion levels) can be obtained by con~inuous smoothing 
using convolution with some filter operator. The pa
rameter of standard deviation (J indicates the scale of 
the filtered signal. With x denoting the signal axis, 
the (x, (J)-plane is called scale space (Shapiro 88). Ex
trema on different scales but similar positions now ap
pear as the same event seen through different filters. 
Events consist of trajectories of single points along the 

qualitative description of the results of a simulation
or of real (digitized in—vivo) experiment recordings.
Thi s  da ta  s t ruc tu re  is  coarse—grained enough to  pro-
vide a substantial  compact ion  of t he  numerical  data
while s t i l l  [ cunn ing  enough fine—grained de ta i l  t o  cap-
ture  those features of the  s imula t ion  tha t  are o f  interest
to  the researcher. Additionally, th i s  da ta  s t ruc ture  is
in  a form tha t  can be  examined ,  classified, and  manip-
ulated in interesting ways by the  compu te r  program
itself, allowing for intra— and  inter—experiment discov-
eries. Since we tr ied t o  use domain  independent  al—
gor i thms,  ou r  system does no t  conta in  any knowledge
abou t  t he  s imula t ion  p roces s ,  t hus  accoun t ing  for a
shallow coupling of  s imula tor  and  analysis componen t .
Domain knowledge is  needed only  for feature detection.

The following section gives an  in—depth discussion of
the  various transformational s t eps  i n  exper iment  anal-
ysis that  have to be accomplished in order to  extract
any meaningful information buried in the simulation
data. Data reduction, gain of information. and the
possibility of fur ther  inferences based on  th i s  symbol ic
representation are the main advantages of these trans-
formational s teps.  We finally show how the  system
detects qual i ta t ive  relationships in an  example  taken
from our  problem domain .

2 THE TRANSFORMATIONAL
STEPS IN EXPERIMENT
ANALYSIS

Neurophysiologists can observe the result of a simula—
t ion and discern asequence  of s ignificant  events.  These
events may be  interpreted as pa r t  of  a larger repertoire
of quali tat ive behavior of neural  networks.  When  ad-
dressing the problem of automated experiment anal—
ysis in  neurophysiology, t he  key issue is t o  const ruct
a qualitative history of membrane  voltage plots.  The
elements of  th i s  qualitative history are called episodes.
Fig.  1 shows a typical membrane voltage p lot .  In  anal—
ogy to human perception, several steps of interpreta-
tion can be distinguished. Initially, the function is
recognized in a hierarchical manner: a primal sketch
of the rough out l ine  is established, skipping irrelevant
details, bu t  being fine—grained enough to main ta in  im-
portant phenomena.  The funct ion is segmented into
intervals. Next ,  sequences of successive intervals form
typical patterns or features subject to a direct inter-
pretation. Finally, sequences can be grouped into repe-
titions. In the following sections, these transformation
steps will be discussed in more detail.

2.1 SEGMENTATION INTO INTERVALS

For segmenting functions into meaningful intervals,
various kinds of points (such as extrema of a function
and its derivatives) can serve as boundaries. Fig. 2
depicts the  interval between 90  and 190  ms from the

example voltage plot of Fig. 1.  Each vertical line indi—
cates a local extremum. Out  of th is  set  of candidates,
" s ign ifican t”  segmentat ion points are to  be  selected,
generally by appl ica t ion of a digital  fi l ter .  Thus i n
Fig. 3 the (possibly irrelevant) events between 115 and
150 ms  may be neglected.

An automated function segmentation is supposed to
comply with the following requirements:

. Noise and unimportant details (e.g. oscillations
without domain—dependent meaning) should be
omit ted while preserving characteristic phenom—
ena.

o A hierarchical form would be desirable in order to
examine functions on different resolution levels.
E.g., in Fig. 2 the minimal modifications between
115 and 150 ms could be regarded as subinter—
vals of the  decreasing interval and ,  if necessary,
be neglected.

. The generation of a description ought to be inde-
pendent  of parameter  i npu t  by t he  user.

0 Contract ion o r  extension of t he  axes should not
affect the  interval s t ruc ture .

. The  segmentation process should  be  capable of
treating arbitrarily shaped functions.

. The significance of interval boundaries should be
measured not by a filter derived from the overall
function, but rather by comparison with the local
neighborhood.

These demands introduce the problem of scale. Dig—
ital filters principally smooth a curve by computing
some kind of weighted mean value over a neighbor en-
vironment. The size of this environment (which can be
regarded as a window) can be determined by modify-
ing the distribution parameter 0'. Finding a suitable (7
proved to be  nearly impossible in  two respects:  a cho-
sen value resulting in an adequate description of one
example  function yielded unacceptable segmentations
of the other (and vice versa); moreover, it didn’t suf—
fice to  apply one fixed filter size to the entire potential
funct ion,  but  i t  had t o  be  adapted to  the local envi-
ronment. In order t o  gain an interval segmentation
which fullfils the above—listed requirements, i t  seems
inevi table  to  exploit t he  idea of scale space.

2 .2  THE SCALE SPACE

Function segmentations on different scales (i.e., resolu-
tion levels) can be obtained by continuous smoothing
using convolution w i th  some filter operator. The pa—
rameter of standard deviation 6 indicates the scale of
the filtered signal. With a: denoting the signal axis,
the (z ,  cr)—plane is called scale space (Shapiro 88). Ex-
trema on different scales but similar positions now ap-
pear as the same event seen through different filters.
Events consist of trajectories of single points along the
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Figure 2: Section from Fig. 1. 
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Figure 3: Filtered function. 

u-axis. By increasing u, they can move along the x
axis and finally disappear in pairs (e.g., a minimum 
merges with the neighbor maximum). This vanishing 
scale can be seen as a measure of significance. 

2.3	 THE INTERVAL TREE 

The scale space extrema whose scales exceed a given 
threshold UT partition the x-axis into intervals. As UT 

is decreased, starting from a coarse scale, new events 
appear in pairs (each associated with an "apex" singu
larity in the scale space image), dividing the enclosing 
interval into a triple of subintervals. As UT is decreased 
further, these new intervals in turn subdivide, down to 
the finest observable scale. 

Figure 4: The scale space. The z-axis represents log u. 
By decreasing the resolution level of a signal function, 
extrema become flat and extend until they finally dis
appear. This end point indicates the scale and can be 
regarded as a measure of significance. 
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Figure 5: Interval tree of the example function. 
Shaded areas mark the interval nodes chosen by the 
stability criterion. 

The intervals correspond to nodes in a ternary
branching tree: an interval's parent is the larger in
terval from which it emerged, and its offsprings are 
the subintervals into which it divides. Fig. 5 shows 
the interval tree of the example. 

2.4	 GAINING A FUNCTION 
DESCRIPTION 

All sets of intervals from the interval tree satisfying the 
condition that every point on the x-axis is covered by 
exactly one node represents a valid segmentation of 
the function. From any starting point, one may gener
ate a new segmentation either by splitting an interval 
into its offspring, or merging some intervals into their 
common parent. The space of descriptions can be thus 
explored. Note that senseless descriptions (i.e., an in
terval contains an extremum of larger scale than either 
of the two bounding ones) are excluded from the in
terval tree. 

The final description can be derived from the interval 
tree by specification of a so-called stability criterion. 
An interval appears to be the more "intuitive", the 
larger the ratio (scale of bounding extrema/scale of 
offspring) is. Such an interval should be preferred in 
the choice of interval nodes. 

2.5	 IMPLEMENTATION OF THE SCALE 
SPACE METHODS 

A complete computation of the scale space or the cor
rect gaussian filtering of one function would be too 
time-consuming. Thus a filter operator was devel
oped which can be computed in constant time for one 
value, but imposes the disadvantage of being inexact 
in some cases (especially in functions with a relatively 
high density of extrema). The determination of the 
vanish scales of the extrema avoids filtering the whole 
function; extrema are traced through scale space by 
successive steps until they can't be observed any more. 
These steps comprise of little increments of u and sub
sequent tests to find out the extrema's change in posi
tion. 
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a—axis. By increasing a ,  they  can  move along the  ::—
axis and finally disappear in pairs (e.g.‚ a minimum
merges with the neighbor maximum). This vanishing
scale can be seen as a measure of significance.

2 .3  THE INTERVAL TREE

The scale space extrema whose scales exceed a given
threshold a’T par t i t ion  t he  r—axis into intervals. As  07
is decreased, s ta r t ing  from a coarse scale, new events
appear in pairs (each associated wi th  an  ”apex”  singu—
larity i n  the  scale space image) ,  dividing the  enclosing
interval in to  a t r ip le  of  subintervals .  As  07 is decreased
further,  these new intervals in  t u rn  subdivide,  down to
the  finest  observable scale.

Figure 4: The scale space. The z—axis represents log o‘.
By decreasing the resolution level of a. signal function,
extrema become flat and extend until  they finally dis-
appear. This end  point  indicates the scale and can be
regarded as a measure of significance.

Figure  5 :
Shaded areas mark the interval nodes chosen by the
s tabi l i ty  cri terion.

Interval tree of the example function.

The intervals correspond to  nodes in  a ternary-
branching tree: an interval’s parent is the larger in-
terval from which i t  emerged, and i ts  offsprings are
the subintervals into which it divides. Fig. 5 shows
the interval tree of the example.

2 .4  GAINING A FUNCTION
DESCRIPTION

All sets  of  intervals  from the interval tree satisfying the
condi t ion tha t  every point  on  the  :r—axis i s  covered by
exactly one node represents a valid segmentation of
the function. From any starting point, one may gener-
ate a new segmentation either by spl i t t ing an  interval
into its offspring, or merging some intervals into their
common parent .  The space of  descriptions can  be  thus
explored. Note that senseless descriptions (i.e., an in-
terval contains an extremum of larger scale than  either
of the two bounding ones) are excluded from the in-
terval tree.

The final description can be  derived from the interval
tree by specification of  a so—called stability criterion.
An  interval appears to  be  the  more ”intui t ive”,  the
larger the ratio (scale of bounding extrema/scale of
offspring) is. Such an interval should be preferred in
the choice of interval nodes.

2.5 IMPLEMENTATION OF THE SCALE
SPACE METHODS

A complete computation of the scale space or the cor-
rect gaussian filtering of one function would be too
time—consuming. Thus a fi l ter  operator was devel-
oped which can be computed in constant time for one
value, but imposes the disadvantage of being inexact
in  some cases (especially in  functions with a relatively
high density of extrema). The determination of the
vanish scales of the extrema avoids filtering the whole
function; extrema are traced through scale space by
successive steps until they can’t be observed any more.
These steps comprise of  little increments of a' and sub-
sequent tests to  find out the extrema’s change in  posi—
tion.
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The interval tree of our example in Fig. 2 is shown in 
Fig. 5. The modulations have been classified as subin
tervals, providing the desired hierarchical description. 

2.6 FEATURE CLASSIFICATION 

We aim at obtaining a function description in terms of 
"meaningful units". Such features represent typically 
shaped regions within a function where a domain
specific interpretation can be directly associated with. 
They consist of a number of subsequent function seg
ments gained from the interval tree. Figures 6 - 10 
show examples of such membrane potentials, taken 
from actual simulation runs. Feature classification 
is the transformational step where domain-dependent 
knowledge is introduced for the first time. 

Features are detected by a simple rule interpreter, 
which classifies sequences of function segments accord
ing to some properties (e.g. length, slope, curvature 
etc.). The rules are applied with a priority defined by 
their ordering. All function segments are classified, at 
least as dummy "unknown"-features. 

For different types of functions, separate rule sets are 
applied: 

•	 Neuron potentials: spike, epsp, near miss (epsp 
just below spike threshold), ipsp, constant. 

•	 Stimulus functions (applied to neurons): rising, 
falling, constant, zero. 

2.7 GROUPING INTO REPETITIONS 

Some phenomena as e.g. spikes often appear in pack
ets (this phenomenon is called burst, see Fig. 10). Es
pecially repetitions can be analytically exploited by 
asking "how does a property of a feature change from 
one occurrence in a repetition to the next?". Thus 
it makes sense to think of repetitions of features (or 
combinations of them) as episodes rather than of sin
gle features themselves. 

Our system finds the shortest possible description in 
terms of repetitions; these repetitions also can be 
nested. For example, if A, B, C are features, then the 
descriptions of the sequences 

ABABCABC, AAABCAAABC 

become 

respectively. 

Within our system, the recognition of repetitions rep
resents the final step towards a "symbolic" function 
description. As shown in Fig. 12, the description can 
be visualized in textual form and integrated in an au
tomatically generated analysis report. 

Figure 6: Ipsp: inhibitory postsynaptic potential. 
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Figure 7: Epsp: excitatory postsynaptic potential. 
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Figure 8: Superposition of epsps. 
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Figure 9: Spike. 
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Figure 10: Burst. 

The interval tree of our example in Fig. 2 is shown in
Fig. 5. The modulations have been classified as subin-
tervals, providing the  desired hierarchical description.

2.6 FEATURE CLASSIFICATION
vWe aim at obtaining a function description in terms of
”meaningful un i t s” .  Such  features represent typically
shaped regions within a function where a domain—
specific interpretation can be  directly associated wi th .
They consist of a number of subsequent function seg-
ments gained from the interval t ree.  Figures 6 -- 10
show examples of such membrane  potent ia ls ,  taken
from actual  s imulat ion runs .  Feature classification
is the transformational step where domain—dependent
knowledge is  int roduced for t he  firs t  t ime .

Features are detected by a s imp le  ru le  interpreter ,
which classifies sequences of  funct ion segments accord-
ing to some properties (e.g. length. slope, curvature
etc.) .  The  rules are applied w i th  a priority defined by
their ordering. All function segments are classified, at
least as dummy "unknown”—features.

For different types of functions,  separate rule  sets are
applied:

o Neuron potentials:  spike, epsp ,  near  miss  (epsp
just below spike threshold), ipsp, constant.

o Stimulus functions (applied t o  neurons): rising,
falling, constant ,  zero.

2.7  GROUPING INTO REPETITIONS

Some phenomena as e.g. spikes often appear in pack-
ets (this phenomenon is called burst, see Fig. 10). Es-
pecially repetitions can be analytically exploited by
asking ” how does a property of a feature change from
one occurrence in  a repet i t ion to the  nex t ?” .  Thus
it makes sense to think of repetitions of features (or
combinations of them) as episodes rather than of sin-
gle features themselves.

Our system finds the shortest possible description in
terms of repetitions; these repetitions also can be
nested. For example ,  if A ,  B ,  C are features, then the
descriptions of the sequences

ABABCABC,  AAABCAAABC

become
AB(ABC)2, (A330)?

respectively.

Within our system, the recognition of repetitions rep-
resents the final step towards a ”symbolic” function
description. As shown in Fig. 12, the description can
be visualized in textual form and integrated in an au-
tomatically generated analysis report.

Figure  6 :  Ipsp:  inhibi tory postsynaptic potential.
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Figure  7: Epsp:  excitatory postsynaptic potential .
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Figure 8: Superposition of epsps.

Figure 9: Spike.
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Figure 10: Burst.
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Figure 11: Example of a rule. 

0.0 ms constant 
100.0 ms repetition 2 times: 

epsp 
risinq 
fallinq 
burst with 27 spikes (frequency: 113.8 Hz) 

end 
786.0 ms ris in..'l 

Figure 12: Textual description of Fig. 1. 

3	 USING SYMBOLIC 
DESCRIPTIONS 

3.1	 FUNCTION MATCHING 

Experiments frequently are performed in series with 
slight variation of parameters or conditions. From one 
simulation to another, potential plots of involved neu
rons look very similar. Thus the episode sequences can 
be mapped onto each other, and analogous episodes 
can be identified. 

We implemented a matching algorithm for episode 
structures, which finds a relation with maximum to-
tal time of overlapping similar episodes. Two episodes 
are considered similar, if both are features of the same 
type or both are repetitions of similar patterns. Thus, 
e.g. bursts with 5 or 8 spikes can be matched. The 
differences between identified episodes (e.g. a change 
in the average frequency of a burst, the strength of a 
repetition of epsps and so on) are particularly relevant 
for experiment analysis. 

Thus the matching algorithm can be used to dis
cover dependencies between experiment parameters 
and neuron behavior. The user may define formulae 
constructed of episode parameters. Similar episodes 
within the experiment series are matched, conse
quently the variation of the specified formula can be 
traced automatically, hence supporting the neurophys
iologist's analysis. The generated dependency function 
could be submitted to the same transformation pro-
cess and be described symbolically. Moreover, it can 
be used for predicting experiment results by means of 
correlation analysis. 
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Figure 13: Four neuron potentials. 

3.2	 NEURON POTENTIALS SEEN AS 
PATTERN LANGUAGE 

Another issue we are currently investigating is the in
terpretation of the symbolic representation of trans
formed neuron potentials as a sentence of a pattern 
language " spoken" by the neuron. An interesting ques
tion thus could be: "What is the underlying grammar 
of a neuron's language?" 

The overall behavior of the entire network can be ex
pressed using tokens of vectors consisting of episodes 
that occur simultaneously in different neurons. 

In the example of Fig. 13, which shows the neuronal 
activity of a 4-neuron network, the behavior can be 
described by the pattern 

ln UJ [~] U] [~] U] [:j] 
[:fJ UJ [~J UJ [~] UJ [:f] 
UJ[~J UJ[~ JUJ[:f] [n 
[~J UJ [~J UJ [:fJ UJ [~J 

where each 4-tupel of simultaneous episodes is re
garded as attributed character. Each character is in
terpreted as follows: s - spike, i - ipsp, e - epsp, f 
falling, r - rising, * - repetition. 

Several observations can be made using this represen

‚e l f  makeRule :
[ze-.ch :following :

( each  firnValue  l euThan:  ( each  luIVa lue ) )
& ( fo l lowing  firs tVa lue  greaserThan:  ( fo l l owing  la s tVa lue ) )
& ( each  fit-"Value l euThan:  ( fo l lowing  lu tVa lue ) )
a ( each  s lope  abs  grea terTlnn:  ( fo l lowing  s lope  abs ) ) ]

is: Epsp .

Figure 11: Example of a rule.
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0 .0  ms constant “
100.0 ms repetition 2 times:
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rising
falling
burst with 27 spikesffrequency: 113.8 Hz)

end
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Figure 12: Textual description of Fig. 1.
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DESCRIPTIONS

3.1  FUNCTION MATCHING

Experiments frequently are performed in series with
slight variation of parameters or conditions. From one
simulation to another, potential plots of involved neu—
rons look very similar. Thus the episode sequences can
be mapped onto each other, and analogous episodes
can be identified.
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structures, which finds  a relation with‘maximum to—
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are considered similar, if both are features of the  same
type or both are repetitions of similar patterns. Thus,
e.g. bursts with 5 or 8 spikes can be matched. The
differences between identified episodes (e g. a change
in the average frequency of a burst the strength of a
repetition of epsps and so on) are particularly relevant
for experiment analysis.

Thus the matching algorithm can be used to  dis-
cover dependencies between experiment parameters
and neuron behavior. The user may define formulae
constructed of episode parameters. Similar episodes
within the experiment series are matched, conse-
quently the variation of the specified formula can be
traced automatically, hence supporting the neurophys-
iologist’s analysis. The generated dependency function
could be submitted to the same transformation pro—
cess and be  described symbolically. Moreover, i t  can
be used for predicting experiment results by means of
correlation analysis.
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Several observations can be made using this represen-
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tation: for example, in the first tuple a spike in neuron 
1 (s*) occurs with an ipsp in neuron 2 (i*). Neurons 
1 and 2 exhibit a similar behavior five tuples later, in
ducing the hypothesis of inhibitory coupling between 
these two neurons. The characteristic property of this 
type of network is the existence of three distinct states, 
where only one of the neurons can fire. 

The following subpattern can be identified within the 
above-listed token sequence where it is repeated three 
times: 

It reflects exactly the cyclic state transitions of the 
network. 

Another promising approach using the presented sym
bolic description will involve the applicability uf 
Allen's temporal logic (Alien 83) to describe tempo
ral relationships between episodes. Investigations in 
this direction have just begun. 

SUMMARY AND CONCLUSION 

In this paper we described the analysis component of 
MOBIS, a case-based system that is capable of car
rying out a complex series of neurophysiological simu
lation experiments. The analysis phase performed af
ter each simulation run transforms the computed raw 
data into an abstract symbolic description which then 
is used to detect correlating features in the behav
ior of different neurons, between neurons and stimu
lus functions or even between the behavior of neurons 
across different experiments. Establishing matches be
tween different episodes and the application of statis
tical analysis tools induce hypotheses about the struc
ture of the neuronal network that exhibits the observed 
behavior. 

Analysis of the system's performance on a number of 
different problems taken from various simulation re
sults, different simulators and even digitized record
ings from in-vivo experiments has shown its stability 
and usefulness. A major drawback of the approach is 
the fact that functions consisting of many tiny super
imposed signals cannot be processed adequately. 

MOBIS refers to ongoing efforts rather than to the 
ultimate system. The simulator with the underly
ing mathematical model of neuronal activity is fully 
implemented and can be used as a stand-alone sys
tem without the knowledge-based intelligent assistant. 
It is written in C and runs under OSF/MOTIF on 
Unix workstations. The experiment analyzer as one 
part of the intelligent assistant is fully implemented 
as well. .The implementation language is Smalltalk
80 and it runs on any platform for which Objectworks 

Smalltalk-80 Release 4 by ParcPlace Systems is avail
able. 

The whole system is developed and used in conjunc
tion with a neurophysiology project in the Kai~r
slautern Department of Biology investigating the neu
ronal grounds of the femur-tibia junction in the stick 
insect carausius morosus. 

We believe our work contributes to the state of current 
research on scientific discovery by proposing a com
putational approach that can - due to its primarily 
data driven nature - be applied to a wide variety of 
domains, such as interpretation of electroencephalo
grams or seismographic data. 
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