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Preface

The First European Workshop on Case-Based Reasoning (EWCBR-93) is aimed at researchers and prac-
titioners interested in the methodological progress and the extensions of the areas of application of
Case-Based Reasoning. Case-Based Reasoning is a topic which becomes more and more important and
has raised considerable interest recently. It supports knowledge acquisition and problem solving, and it is
related to key words like machine learning, analogy, cognitive modeling, similarity, information retrieval
among others. Although case-based reasoning has a well defined place within Al-related conferences, we
felt that the topic deserves a workshop on its own also in Europe, as there have been such events in the US.

The program committee accepted 21 submissions for presentation at the workshop and about 50 submis-
sions for the poster sessions. This volume contains alkthese extended abstracts. The scientific program
also includes four invited talks, system demonstrations as well as one panel discussion. An overview on
Case-Based Reasoning as well as the presentation of commercial CBR systems is scheduled for the first
" day. :

An overview on Case-Based Reasoning is given by Agnar Aamodt (University of Trondheim, Norway)
and Enric Plaza (CEAB-CSIC, Spain).

Invited talks cover important aspects of Case-Based Reasoning:

Janet L. Kolodner (Georgia Institute of Technology, U.S.A.):
Making Computers Creative - A Case-Based Approach.

Katharina Morik (University of Dortmund, Germany):
A Case for Inductive Learning.

Mark T. Keane (Trinity College, Ireland):
Analogical Asides on Case-Based Reasoning.

Manuela Veloso (Carnegie Mellon University, U.S.A.):
Analogical/Case-Based Reasoning in General Problem Solving.

We thank all who submitted their papers. We are most grateful to the members of the program com-
mittee for carrying out the difficult task of paper selection. It was the general feeling that we had an
unusual responsibility because this is the first workshop on the topic in Europe and will most likely be a
milestone for the future developrnent of this area of research.

The forthcoming proceedings of the workshop will contain the final versions of a selection of long papers.

Michael M. Richter
(program chair)

Stefan Wess, Klaus-Dieter Althoff, Frank Maurer
(organizing committee)
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ANAIS: A Case-Based Reasoning System in an Problem Solving
Environment
Nathalie Beauboucher
Unité de recherche INRIA Rhoéne-Alpes
LIFIA 46 avenue Félix Viallet
38031 Grenoble Cedex, France
Email: Nathalie.Beauboucher@imag.fr

Introduction

In case-based reasoning approach, new problems are solved using past solutions of pre-
viously solved problems. Analogy is based on an extraction of solved problems, and the
most important difficulty is finding significant aspects shared by the solved problems and
the new problem [Car86]. Representing a case not only by its characteristics but by
memorizing a trace of the problem solving reasoning for this case extends the scope of
case-based reasoning from problem solving to knowledge acquisition. In ANAIS (ANA-
logical Intelligent System), a case is a set of characteristics organized in a hierarchy, and
also an instantiated task network which represents the reasoning. Two phasis are used
to select the most similar case. In the first one, a selection of some cases is based on the
characteristics, and in the second one, a retrieval of the most similar case is based on a
matching algorithm of reasonings. Although this study is independant of any domain,
an application is implemented in electromyography. The electromyography is a diagnosis
medical technique, its results are used to predict muscular or nervous diseases.

1 The first phase: a preselection

In order to retrieve cases similar to the new problem from memory, the first phase has
to select cases with the same characteristics before matching the reasoning. The main
difficulty encountered is to formulate the characteristics of a problem. In electromyogra-
phy, few characteristics are avaible, such as: general disease, suspected diagnostic to be
confirmed, and some important symptoms. Because of small number of characteristics,
the reasoning matching phase is important to refine the set of cases selected by the first
phase. )

s Ty
{symptome moteur
. sorte-de, = symptome;
nature-de symptome $domai “moteur;"
‘ Slot ) groupe-de-symptome
Facet $domaine
“fatigabilite" "crampe”
“faiblesse musculaire"
territoire-muscle $liste-de anatomie-muscle;
territoire-nerf $liste-de anatomie-nerve;
territoire-racine $liste-de  anatomie-root;
\_ territoire-plexus  $liste-de  anatomie-plexus) J

Figure 1: A scheme in SHIRKA

The characteristics are stored in SHIRKA [RU91] representation knowledge model. A
Shirka entity describes a class of objects and its instances. An object called a “scheme”, is



defined by its slots, each slot having several facets. A facet can be a list of possible values,
some constraints on the slot value or can reference another scheme (Figure 1). The classes
are organized in a specialisation hierarchy with inheritance mechanism, which means that

a class inherits slots from its super-classes. The inherited slots from the super-classes also
inherit their constraints and a class can have some additionals slots which are its own

slots. '

In ANALIS, the slots of a class represent the characteristics of a case, except one slot
which is a list pointing on cases sharing these characteristics. The root class has been
defined with one shared slot : the slot “cas” in wich are founded all the cases attached
to the class. All the existing characteristics of the domain are supposed to be stored in
a hierarchy (Figure 2). Adding some new characteristics means to modify the hierarchy,
it can be the moving of classes, the creation of a new slot in a class or a new class.
Coherence problems can appear and the coherence maintenance is also a preoccupation
in the laboratory [Cap93].

Class1
Class2 Class3
Differential diagnostic General desease

Classd ClassS Class6

Diagnostic to Diagnostic to i = "ves”
be determined be confirmed Clinical antecedents = "yes
case = {casl1, casl7, cas63}
Class7

Clinical antecedents = "yes"
case = {casl, cas7, cas12, cas22}

Figure 2: The hierarchy of characteristics

When the user tries to solve a new problem, he provides some of its characteristics. For
example, in medical diagnosis, these characteristics can be probable diagnostic already
known, general desease, clinical antecedents or muscular desease. With these given char-
acteristics and those defined in the hierarchy, some cases can be selected. This extraction
‘relies on the SHIRKA classification algorithm. This one allows a given instance with some
slot values attached to the root class, to determine all possible classes the instance could
be attached to 1. So, the user creates a new instance of the root class, he provides some
characteristics (slot values), and the classification algorithm finds all possible classes of
the instance. With the slot “cas” of each possible class, a set of cases is built. Thus, the
matching reasoning phase is relieved with this reduced number of cases.

2 Representation of problem solving reasoning

The reasoning representation of a case takes place in the problem solving environment
SCAI (Scientific Computing with Artificial Intelligence) [PR91]. In this formalism, a task
is modeled as a class with slots describing its inputs and outputs, and can be decomposed

IFor more information about the classification algorithm see [MRU90] or [Mar93]



into sub-tasks until elementary tasks, corresponding to a decomposition of a complex
problem into sub-problems. This model had been built onto the SHIRKA representation
system, thus this phasis is naturally integrated with the previous one. The reasoning
trace is described by a hierarchical network of instantiated tasks.

A complex task can be defined by sequential sub-tasks or choice sub-tasks (automatic
choice or interactive choice). An elementary task references a method to be executed. All
types of tasks can be specialized, allowing a context adaptation. Iteration and recursion
are defined explicitly by a recall of a task in one of its subtasks (Figure 3).

Diagnostic

s
| Execute-diagnostic j End-diagnostic
-7 i h - Task to be specialized
-7 Sequential task ~
[ ‘ Choice-hypothesis j [ Choice-protocolj ‘ Diagnostic ]I

Recursivity

Figure 3: Representation of tasks in SCAI

The first assumption is that there is a task base in which the user can choose a task
and execute it automatically or decompose it himself. This base allows to solve some
problems in a specific domain. When the user tries to solve a problem, sometimes he
realizes that he cannot completely solve it with the actual base, even if some tasks are
usefull. With the usefull tasks indicated by the user, ANAIS provides the similar cases,
in order to allow the user to extend the knowledge base of tasks to solve the new problem.
In this way, the task base is improved covering more and more problems. Another way is
when the user is lost in the solving of a problem, a similar case can help him. The user
can also have found a new way to solve a problem and he wants to extend the knowledge
base. In our problem solving environnement, several task bases can be loaded, and the
user can pick some tasks in the differerent bases to solve a new problem. Providing similar
cases in each base can help the user to build other complex tasks in order to cover the
solving of the new problem.

In each of these instances, the user wants to solve a new problem and he partially

gives the reasoning to achieve it. Thus, he describes a set of instantiated tasks which
" are decomposed or not. So, the description of a new problem to be solved consists in
two parts, the characteristics of the problem, and some parts of instantiated networks
corresponding to a partial resolution of the problem. The extracted cases from the first
phase are compared with partial descriptions corresponding to a partial reasoning in order
to obtain the most similar reasoning. -Determining the most similar case in the second
phase needs to match instantiated task networks and to compute their similarity.

3 Second phase: case evaluation and similarity
In the environment problem solving, there are two modes of execution, a free one and

a guided one. In the guided mode, the user gives the principal task and the inference
mechanism system automatically decomposes and solves the problem according to the



knowledge base decomposition of the task. In the free mode, the user can choose many
tasks and solve them independently. In this mode, a partial reasoning can be expressed.

Matching these partial descriptions with past stored reasoning allows the retrieval of
the most similar solution, and allows the user to complete his reasoning with the similar
case and extend the task base. The partial resolution of the new problem is memorized
with the history of executed tasks. This history is a set of executed tasks and is represented
in a LISP list in which all sublists are subtasks of a high level task. The reasonings of
selected cases is a list of tasks, also in LISP formalism.

In the matching function, the input is a list corresponding to the reasoning of a case,
and a partial reasoning described by the user. The output of a first algorithm is a list of
all tasks shared by the inputs. The evaluation of these shared tasks depends on the task
importance and on the generality or specificity of these tasks. Some tasks are independent
. of the case, for example, in electromyography, the diagnostic always begins with anterior
face and extremity examinations. These tasks have not to be taken into account for the
similarity calculus.

Then, some equivalence rules are necessary to determine the similarity of reasonings.
For example, if a task t1 is not explicitly in one of the input, but if chained subtasks
executing completely t1 appear, these subtasks have to be considered equivalent to t1i
and vice-versa. Some simplification rules are also necessary, like: cut the recursive-task
associated tree, cut the terminal-task associated procedure, cut the control task and trans-
formations are to be used to idertify equivalent sequences. Some rules are independent
of the domain and others are expressed according to electromyography.

Before the similarity assessment, significance are to be associated to all executed tasks.
Now, a significance task depends on the domain and may be also on the specific case.
To avoid to the user giving these significance values, we have some rules for the relative
importance of tasks. For example, more a task has level of subtasks or has direct subtasks,
more it is an important one and recursive tasks are the most important ones. Actually, a
structural similarity assessment defined by [Bis92] is studied to fit as well as possible the
human reasoning in the domain.

Issues

In electromyography, which is a set of techniques allowing the diagnostic of nervous or
muscular diseases, a system has been developped [ZVC92]. However, this system does not
take all the reasoning into account. The behavior of the system is like a beginner, execut-
ing all the possible examinations for a disease hypothesis. Giving case-based reasoning
to the system can allow the examination protocol to be optimal. In addition of the case
representation and the retrieval process of a similar case, an objective is to improve the
knowledge base.

In the matching of reasonings, numerous equivalence and simplification rules are nec-
essary. These rules have to be independant of the application domain and are based on
the environment problem solving definition. Otherwise, the task significance can depend
on the considered domain. In issue, the generalization of similar problems into a generic
reasoning model can be an extension of case-based reasoning. The first advantage is to
relieve the case memory, in substituting the similar cases by their generic models. The
second advantage is to improve knowledge acquisition by using these’generic models for
the problem reasoning expression.
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Abstract. In this paper we present a quantitative similarity metric for retrieval of past cases imperfectly
described and explained. We introduce the concepts of matching situation and situation snippet which are
used in our metric.

We describe CLASH, a Case-Based Reasoning Expert System implemented in PROLOG, which applies
this metric. The results provided by CLASH are compared with another system based on a different metric
for case retrieval.

1. Introduction

The power of a Case-Based Reasoning (CBR) System [10, 5, 3] is greatly determined by its capability to
retrieve the relevant cases for prediction of the new outcome. The retrieval process involves indexing cases.

A nearest neighbour algorithm for case retrieval, described by Duda ef al. [2], searches through every case in
memory, applies a similarity metric and returns the case (or k cases) with the past situation most similar to the
new situation. This similarity metric counts the number of facts that the past and the new situations have in
common,

Two other systems CYRUS [4] and UNIMEM [6] index cases by facts in the past situation that are predictive of
other facts in the outcome. Predictiveness of the facts is determined by some correlation calculations. This has
some drawbacks, specially when calculations are performed on a small data set [8].

The combination of nearest neighbour and knowledge-guided techniques led to the development of hybrid
systems joining CBR and Explanation-Based Learning (EBL) techniques [7]. These systems use domain
knowledge for constructing explanations of why a situation had a specific outcome in the past. These
explanations are necessary to judge the relevance for future retrieval of the facts describing a past situation. This
approach was followed by Cain et al. [1]. They use a CBR+EBL similarity metric in which case explapations
influence but do not determine the relevance assigned to past situation facts.

Past case explanations are subject to imperfections. These are related to the absence of a perfect theory on the
domain and to imperfections in the past situation description (complete proof trees can not be constructed when
the situation description lives out some relevant facts ).

We report three kinds of imperfections in explanations: (1) broken explanations; (2) partial explanations; (3)

incomplete set of explanations. Broken and partial explanations, not considered in Cain’s metric, are discussed
in this paper. ]
In section 2, we make a brief overview of the similarity metric for retrieval proposed by Cain et al. and report
four limitations in this metric. In section 3, we describe a new metric that overcomes the drawbacks reported
before. In section 4, we present CLASH, a Case-Based System, implemented in PROLOG, for evaluation of the
highway code offences that where in the origin of car accidents. This system uses our metric. We compare the
ability of CLASH to retrieve relevant past cases with a system that uses the Cain similarity metric. Finally, in
section 5, we make some comments concerning the advantages of our approach.

2. A Brief Overview of Cain et al. Similarity Metric

In Cain et al. approach a case is composed by a set of facts that represent a past sitnation (PS), another set of
facts that represent an outcome (OUTC) and a set of explanations (EXPS) of why the situation had such an
outcome. A new situation (NS) is also represented by a set of facts.

Cain et al. use a parameterized similarity function influenced by the explanations produced by the domain



mailto:emesto@moebius.uc.pt
mailto:bento@alma.uc.pt

theory for each case in memory:

n n .
o Y, sim(fj, fi’)+ B 2, relevance(fp * sim(fj, fi*)
i=1 i=1 ( 1)
n .
on + B relevance(f)
i=1
where ;
1 if fi=f" 1 if fiisrelevant

0 if fizfi 0 if fi isirrelevant ’

f; is a fact in the past situation, fj’ is a fact in the new situation. A fact fj is relevant if it is included in an
explanation for the past case. The o parameter represents the weight of a maich between any fact in the past
situation and a fact in the new situation. Parameter P represents the additional weight of a match between a
relevant fact in the past situation and the same fact in the new situation.

If B is set to zero then the evaluation function ignores the relevance of facts and a pure Similarity-Based
match is performed. With positive values for o and B a CBR+EBL based metric is performed.

Although this metric bas produced interesting results when compared with a nearest neighbour based
retrieval or with a pure knowledge-guided retrieval the following points weaken Cains et al. approach:

(1) It assumes all explanations are complete. '
As it is accepted that past sitnation descriptions and domain theory are both imperfect it is expected to
have imperfect explanations in cases.
Facts in the past situation that are relevant for imperfect explanations must have a different treatment
from those that are relevant for complete explanations.

(2) It assigns the same relevance to a fact, independently of belonging to a small or a large set of facts that as
a whole influences or determines an outcome fact.
It is expected that the unmatching of a fact from a set with few facts that influences or determines an
outcome fact is more harmful than the unmatching of a fact from a set with many facts. So, it must be
assigned a higher relevance to a fact of the first type than to one of the second type.

(3) It does not discriminate between a fact that is relevant for one explanation and one that is relevant for
several explanations.
It is sound to assign a higher relevance to a fact which influences several outcome facts than to one that
influences only one outcome fact.

(4) It does not discriminate between two cases, one with a complete set of explanations and another with an
empty set of explanations .
As past situations may be imperfectly described it is sensible to prefer cases that are explained over
cases that are not. In a completely explained case it is known which facts in the past situation
description influence or determine the outcome. In a case with an empty set of explanations this is
unknown. ,

In the next section-we describe a similarity metric that does not suffer from these limitations.

sim(fi, fi’ ) = { e relevance(fi) = {

3. An Alternative Approach

In our approach a case is composed of a past sitaation, an outcome and a set of explanations of why the
situation had-such outcome. We consider the three kinds of explanation imperfections described before: (1)
broken explanations; (2) partial explanations; (3) incomplete set of explanations.

Fig. 1 - (a) a case with a complete set of explanations; (b) a case with an incomplete set of explanations; (c) a case
with a partial and a broken explanation.

A broken explanation is one in which there is a gap between the proof tree and the case outcome (e.g., In fig. 1c
the second proof tree from the left). A partial explanation is one whose proof tree omits some branches.
Branches labeled with a ‘+’ represent a step in which some are absent) (e.g., In fig. 1c the second step in the
proof tree on the left). In a case with an incomplete set of explanations some outcoine facts are not explained
and so are not end of a proof tree (e.g., The cases represented in fig.s 1b and 1c. Facts £’z and "’; in the
outcome are not end of a proof tree).
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Fig. 2 - Case Matching.

Case indexing involves the concepts of past situation, matching situation, strong, weak, and undetermined
situation snippet. A past situation represents a problem or event in the past that had the outcome described in a
case. A matching situation is a situation that is obtained by going down (from the past situation to the outcome)
in one or more explanation trees in order to gather the maximum number of facts that match the new sitnation
(e.g., In fig. 2, the matching situation {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its_side(a),
on_its_side(b)}). '

In our approach, a past or matching situation is seen as composed by a set of situation pieces called situation
snippets (in analogy with “case snippets” from Redmond [9]). A situation snippet is a set of facts that are the
leaves of a proof tree (the premises of an outcome fact). Depending on the proof tree being complete, partial or
broken the situation snippet is strong (e.g., In fig. 2, {dangerous_driving(a)} concerning to
‘offence(a,dangerous_driving)’), weak (e.g., In fig. 2, {dangerous_driving(a), unsafe_dist(b,a), on_its_side(b)}
concerning to ‘offence(b;none)’), or undetermined (e.g., 1In fig. 2, {car(a), car(b))} concerning to
‘same_prior_rules(a,b)’). The situation snippets of a situation are not necessarily disjoined sets of facts (as is the
case for the examples of strong and weak situation snippets described above). A fact in a situation that does not
belong to any proof tree is a single fact undetermined situation snippet (e.g., In fig. 2, {on_its_side(a)}). If a
case has a complete set of complete explanations (proof trees) then the undetermined situation snippets become
irrelevant.

Matching between a past case and a new situation is represented by the facts in the matching sitation that
match a fact in the new situation. Each matched fact has information about the situation snippet to which it
belongs. Figure 2 provides an example of a matching between a case on highway accident interpretation and a
new situation (more detailed information on this domain is given in the next section). In this example the
matching situation is {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its_side(a), on_its_side(b)}.
The matching facts are ‘car(b)’ which belongs to the undetermined situation snippet {car(a), car(b)},
‘dangerous_driving(a)’ which belongs to the strong situation snippet {dangerous_driving(a)} and to the weak
situation snippet {dangerous_driving(a), unsafe_dist(b,a), on_its_side(b)}, and ‘unsafe_dist(b,a)’ which belongs
to the weak situation snippet {dangerous_driving(a),unsafe_dist(b,a),on_its_side(b)}.
For case retrieval we propose a similarity metric composed of three terms:
k T t
x Y relev(f;,SSy) sim(fi,fi7)+ A Y relev(fj,SSw) sim(fi,fi") + 1 relev(fi, SSg) sim(fj, fi) (2)
i=1 i=1 i=1
with fj a fact in the matching situation; fi’ a fact in the new situation; SSy;, SSw and SSg means, respectively,
undetertnined weak and strong situation snippets;
1
“cardinal of the SStype set to which fj belongs”

1 if fi=f{
0 if fi2fy

Constants k, 1, t are, respectively, the number of occurrences of the matching situation facts in undetermined,
weak and strong situation snippets (remember that the situation snippets are not necessarily disjoint sets).

relev(fi, SStype) = 3); and

sim(fi, fi’) ={
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+ In examples above we do not consider cases with partial explanations as Cain does not address them.

Fig. 3 - Similarity values from Cain’s approach and CLASH system.

The ways in which this metric overcomes the limitations pointed to Cain et al. approach are reported below:

(1) It discriminates between facts relevant to broken, partial and complete explanations.
The first term in our meiric accounts for those matching facts whose influence in the outcome is
unknown (matching facts belonging to undetermined situation snippets). The second term respects to
matching facts that belong to sets of facts that influence outcome facts but are not sufficient to
determine them (matching facts belonging to weak situation snippets). The third term is built by the
facts that belong to sets of facts that determine outcome facts (matching facts belonging to strong
sitnation snippets). Parameters X, A and j represent the weight assigned to the three kinds of matching
facts.

(2) It assigns relevance to each matching fact, function of its situation snippet size (see expression (3)).
It is assumed that the relevance of a fact is greater when the number of facts in the situation snippet it
belongs is smaller. This is why for CLASH, in fig. 3, the unmatching of f3 is more penalizing for case

Al than for case A2,
Any situation snippet is assigned a unitary relevance value (numerator in expression (3)). This value is
divided by the number of facts in it to determine the relevance of a single fact. The reason for this is that
any strong, weak or undetermined situation snippet is believed to influence or determine an outcome
fact. As the relative importance of outcome facts is unknown it is assumed they all have the same
importance. Consequently it is attributed the same relevance to each situation snippet.

(3) It takes into account a matching fact as many times as the number of times it occurs in the situation
snippets.
It is sound to assign a higher importance to a fact influencing various outcome facts than to a fact
influencing only one outcome fact. This is the reason why for CLASH, in fig. 3, case B2 is less
penalized by the unmatching of fy, than case B1.

(4) It assigns a lower similarity value to unexplained cases.
When A and | have a value greater than x then a null second or third term in expression (2) is more
penalizing for the result than a null first term.
This is why for CLASH, in fig. 3, case C1 has a higher similarity value than case C2.

This similarity metric has been used in CLASH.

4. An Example: The CLASH System

Expert inspection of car accidents is a demanding activity for Insurance Companies. To produce faster decisions
on compensation for accident losses, they give their costumers a normalized form called “Friendly Accident
Declaration”. This form is filled when an accident takes place and the drivers agree on the way it occurred. The
declaration has seventeen questions of type yes/no about the accident circumstances and a space to draw a
sketch of the accident. With the form in their possession, companies are interested in determining (if possible in
an automatic way) which driving offences were at the origin of the accident.

CLASH is a prototype of a Case-Based Expert System that has a memory of past accidents. Each case in
memory is composed by a past situation that is a transcript of a “Friendly Accident Declaration”, an outcome
that is a list of offences attributed to the participants in the accident, and a set of explanations of why these
offences have been ascribed.
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Below we show how a case is represented in the accident library:

CASE NAME: case6

SITUATION:
[car(a),car(b),reversing(a),collision_ssr(b,a),cp(a,rear),cp(b,front),on_its_side(a),on_its_side(b)]
OUTCOME:

[offence(a,dangerous_driving),offence(b,none)]

EXPLANATIONS:

[[car(a), car(b)] -> [same_prior_rules(a,b)]

[reversing(a)] ->+ [dangerous_driving(a)]
[collision_ssr(b,a),cp(a,rear),cp(b,front)] -> [unsafe_dist(b,a)]
[dangerous_driving(a)] ->+ [justif_unsafe_dist((b,a)]

[dangerous_driving(a)] -> [offence(a,dangerous_driving)]
(justif_unsafe_dist((b,a),unsafe_dist(b,a),on_its_side(b)] -> [offence(b,none)}
[car(a), car(b)] -> [same_prior_rules(a,b)]]

Case 6 (sce also drawing in fig. 2) means:

“A car 3 was reversing and collided with a car b that was moving on the same side of the road. The collision
point on car g was on its rear and on car b on its front. Both cars were moving on their side of the road.

The decision on this accident was that driver of car 3 committed a dangerous driving offence and driver of car b
did not commit any offence.

The explanations were that the reversing of car 3 influenced the guess that the driver was doing dangerous
driving (to have a strong evidence on this offence it would be necessary that the visibility was low, a fact not
mentioned in the accident form). The facts that car b was moving on the same side of the road of car 3, the
collision point on car 3 was on its rear and on car b on its front determined the evidence that car b did not guard
a safe distance from car 3. The fact that the driver of car 2 was doing dangerous driving influenced the guess
that the driver of car b could not guard a safe distance. The fact that the driver of car 3 was doing dangerous
driving determined a reason for the accident. The facts that the driver of car b did not guard a safe distance, had
a justification not to guard a safe distance from car 3 and was on his side of the road determined the decision of
not assigning any offence to him. The facts that g and b are cars determined that they had to carry the same
priority rules”.

The case similarity values assigned by CLASH and Cain’s metric for three new accidents are printed below. The
system based on Cain’s metric was initialized with a=1 and B=15. CLASH ran with x=1, A=7, and p=15 L. The
system was setup to return the five cases with the highest similarity value.

TEST

<CAIN coefficients> Alpha=1 Beta=15 <CLASH coefficients> Kappa=1 Lambdas7 Mu=15
NEW SITUATION 1 ---- [car(a), car(b), from_the_right(b,a), cp(a, rear), cp(b, front), on_its_side(a), on_its_side(b)]
CAIN Approach: 0.85/case3, 0.76/case5, 0.66/casel, 0.61/case6, 0.5/case9

CLASH Approach: 20/case5, 17.25/case9; 14.5/case7, 7.5/case8, 7.5/case2

NEW SITUATION 2 - [dangerous_driving(a),low_visibil,car(b),collision_ssr(b, a),cp(a, rear),cp(b, front),on_its_side(b)]
CAIN Approach: 0.78/case6, 0.5/caseS5, 0.28/case3, 0.24/case7, 0.2/case9

CLASH Approach: 21.1/case6, 12/case5, 8/case?, 6/case9, 2/case3

NEW SITUATION 3 ---- [roundabout(a), lorry(a), lorry(b), enter_roundabout(b), cp(a, front), cp(b, front)]

CAIN Approach: 0.8/case9, 0.8/case8, 0.49/case7, 0.4/case2, 0.34/casel

CLASH Approach: 24/case9, 22.5/case8, 11/case7, 7.5/case2, 5/caseS

New situation 1 represents an accident on a road junction (the fact ‘from_the_right(V1,V2)’ only occurs if the
accident takes place on a road junction, roundabout or driveway) in which a car 3 moves from the right of a car
b. The collision point on a is on its rear and on b on its front. Both cars are moving on their side of the road.
Applying Cain’s metric the highest similarity value was for case 32. This is an irrelevant case as in this accident
a head-on collision occurred between a vehicle a and a car b that had to give way to vehicle g - an ambulance
(this was not mentioned in the situation for case 3 but was considered in the outcome).

CLASH selected the best case in memory. Case 5 represents an accident in which a car 3 and a car b were
moving on a straight road. Car 3 stopped and car b collided on the rear of car 3. In this case car b was assigned
the offence of not guarding a safe distance between it and the car ahead. Case 5 has the correct outcome for
situation 1.

This interesting result is due to the relevance assigned by explanations to some facts in the past situation.
CLASH performed better than Cain’s metric due o the same reason that caused case C1 to be assigned a higher
score than C2 by CLASH in fig. 3. As in C1 and C2 case 3 does not have complete or partial explanations’
whereas case 5 has a complete set of explanations.

1CLASH has proved not to be very sensitive to parameters A and p provided they are much greater than K.
2Due to space limitations we do not list some cases referenced in this example.
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In the new situation 2 the driver of vehicle 3 is performing dangerous driving on a low visibility place and
collides with a car b that is moving on the same side of the road. The collision points are, respectively, the rear
and the front of g and b. When the accident occurs car b is on its side of the road.

For this accident case 6 had the highest score in both approaches and this was the correct selection.

The last new situation describes an acc1dent on a roundabout between a lorry 3 that is going round on it and
alorry b that is entering the roundabout. A head-on collision occurs between them.

For this accident Cain’s metric proposes two winners, cases 8 and 9. Case 8 is a case in which a car b was
entering the roundabout and collided with a bicycle g that was going round on it. All streets that ended on the
roundabout had a “junction ahead” sign. Due to this, car b was blamed of not respecting the sign. Case 9 is one
in which a car b was entering a roundabout and a car 3 was going round on it. A head-on collision occurred
between them. Blame was assigned to car a for not respectmg the priority owed to a car that was traveling from
the right of it.

Case 9 was the relevant case for the new sm)auon outcome and CLASH assigned it the highest score. The
reason for the discrimination made by CLASH between cases 8 and 9 was similar to the one made between
cases Al and A2 in ﬁg 3. Cases 8 and 9 had two unmatched facts in the matchmg situation, respectively,

‘roundabout_wth_prior’ (means that all streets that end on the roundabout have a “junction ahead” sign) and

‘car(b)’. ‘roundabout_wth_prior” belongs to a strong: ‘situation smppet in case 8 with cardinality 3 and ‘car(b)’ to
a strong situation smppet in .case 9 with cardinality 4. This implied that in CLASH the absence of
‘roundabout_wth_prior’ in the new situation was more penalizing for case 8 than the absence of ‘car(b)’ in the
new situation for the similarity value of case 9. Due to this case 9 is the winner in CLASH.

5. Conclusions

Case-Based Reasoning is a well suited approach when a perfect theory on the domain is not available and a
report of past cases exists. As it has been shown in this paper it is important to take into account the
imperfections in past case descriptions and explanations.

We sustain that three kinds of explanations must be considered for case indexing: broken explanations,
partial explanations, and complete explanations.

In our approach the concepts of matching situation, strong, weak and undetermined situation snippet are
central to the matching process. The proposed simi}arity metric is also supported on these concepts.

Our metric cumulatively uses three measures for similarity assignment, Each measure relates to a kind of
matching facts in the matching situation. We report three kinds of facts depending on their membership to
undetermined, weak or strong situation snippets.

The relevance function assigns higher relevance to facts that belong to smaller situation snippets. This
proved to be a sounding heuristic in many retrieval scenarios.

The contribution of each matching fact to the similarity value is increased by the number of times it occurs in
the situation snippets. This is an intuitively interesting option.

The empirical results reported in this paper and the results obtained with CLASH prototype at work
confirmed the expectations that we had on the described similarity metric. In fact CLASH never selected a past
case less relevant than the one selected by the Cain’s metric and most times it selected a more relevant one.
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STRUCTURAL SIMILARITY AS GUIDANCE IN
CASE-BASED DESIGN *

Katy Borner .‘
HTWK Leipzig, Dept. of Informatics
P.O.Box 66, 04251 Leipzig, FRG
katy@informatik.th-leipzig.de

Abstract

The effectiveness of case-based reasoning CBR depends on the ability to determine former
experiences (cases) that are useful and applicable to solve new, similar problems. When
one tries to handle synthesis tasks as opposed to analysis tasks, however, the determination
of similarity alone is not enough: It becomes important to determine the adaptability of
former cases to problems of current interest. Consequently, during similarity assessments
rule-based knowledge concerning possible adaptations of previous cases becomes necessary.
The objective of this paper is to present a new approach which interactively integrates and
tunes case-based and rule-based knowledge in order to solve synthesis tasks. Structural
similarity will provide guidance to solution adaptation. We will flesh out the general ideas
of this approach and will show their motivation by pointing out relations to prior work. For
illustrative purposes, we take an example of industrial building design.

1 Introduction

The purpose of this paper is twofold: The first is to introduce a close integration of case-
based and rule-based background knowledge tuned to supplement each other!. The second is to
present an approach to determine structural similarity to guide solution adaptation. Therefore,
similarity is no longer defined as a value between 0 and 1 but as the most specific structure two
cases have in common, inclusive of the modification rules needed to obtain this structure from
the two cases. '

The paper is organized as follows: First, we describe the main procedure that uses structural
similarity as guidance to adapt prior solutions so that they fit new problems, and we point out
relations to prior work. Second, we exemplify our approach, we solve a specific synthesis task
taken from the domain of building design. Finally, we delineate a number of directions for future
work.

2  Ouwur Approach: Structural Similarity as Guidance

To introduce our general approach, we use Fig. 1. In the figure, the case-base is given on the left
side. On the right side, the new problem including its solution is presented. We distinguish three
different schemes of case representation: attribute-based, structural, and structurally modified.
The more general these representations are, the more rounded the corresponding boxes are
shown. Rules will be stored in a rule-base, as shown in the middle of Fig. 1. Arrows are used
to mark the steps in case-based problem solving.

*This research was supported by the German Ministry for Research and Technology (BMFT) within the joint
project FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German National Research
Center of Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of
Dresden, HTWK Leipzig, University of Freiburg, and University of Karlsruhe.

!Note, that by tuning both kinds of knowledge their representation and use will be different from stand-alone
case-based or rule-based problem solvers.
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Figure 1: General approach and different levels to assess similarity

As a basis for reasoning cases and rules are needed. Cases have to be represented both in
attribute-based and structural forms (e.g., by terms, trees, graphs). Background knowledge is
represented by domain-dependent and task-dependent rules (e.g., term, tree, or graph substitu-
tions and generalizations) including their ‘inverse’ rules.

The main procedure to assess structural similarity and adaptation is as follows: Given the
_ new problem in attribute-based description, we start by determining a set of candidate cases.
The surface attributes of those cases are similar to those of the new problem. Based on this
computationally cheap analysis (surface similarity assessment) of the problem, we can now
use transformation function ¢ to translate the new problem into a structural representation.
Corresponding to the new problem and the preselected candidate cases, modification rules will
be chosen (rule selection) and applied until a common structure of the actual problem and one
candidate case is found. Now the solution of this candidate case, likewise modified, can be
transferred to the new problem. After that, inverse modification rules f~! are applied to get the
concrete structural representation of the new solution. Using ¢~! we will get the attribute-based
representation of the new solution representation. This will be offered to the user.

The core idea of our approach does not refer to the way similarity is assessed but to the way
similarity will be used to lead to adapted, structurally sound solutions. The common structure
of cases together with the modification rules applied to obtain them determine which prior
solutions are useful. The inverse modification rules will show how to adapt them.
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Also sketched in Fig. 1 are prior approaches to determining similarity (denoted by fat grey double
arrows): (1) In CBR, surface similarity assessments based on attribute-based representations
are frequently used (c.f., [11, 10, 7]). (2) If interdependencies of attributes have to be taken into
account, representations like terms, trees, and graphs are used as basis for similarity assessments.
(3) There are approaches where cases stored in the case base are modified (e.g., using unification
(6] or using letter substitution rules as known in speech recognition) to determine similarity. (4)
The principle of redescription [5, 9] modifies new and old problem descriptions depending on
the problem at hand. We emphasize that all the approaches mentioned above deal with analysis
tasks, and therefore synthesis and adaptation issues are not addressed.

3 An Example: Case-based Industrial Building Design

Much work has been done in case-based building design [3, 2, 8], which is one of the most
complex real world synthesis tasks. In our project, we focus.on the installation of supply system
nets in industrial buildings with a complex infrastructure. The main problem is how to layout
subsystems for fresh and return air, electrical circuits, warm, cold, and used water, etc.. By using
the A4 model introduced in [4] and letting thinly drawn circles denote places where accesses can
be placed, and letting ellipses denote areas where connections of supply accesses can be placed,
the task of designing arrangement of connections for supplies that cover all of a given set of
accesses for supply is reduced to the connection of circles with ellipses.

To tackle this task, we use two different types of case representations as well as a rule-based
representation of the background knowledge. The first of the case representations is an attribute-
based representation of visually prominent features of objects. Following the work of LUDGER
HoVESTADT [4] each object, (circle or ellipse) will be represented by its spatial dimensions and
‘nine further attributes like time at which this object was created, aspect which assumes one of
‘return air,” ‘fresh air,” etc., and morphology which refers to ‘access,” ‘connection,’.., etc. This
fixed set of dimensions will be used as indices.? This representation will be used to produce
graphics, the main basis for man-machine interaction in building design.

Second, we have to encode structural knowledge, e.g., case-based knowledge about spatial ar-
rangements and relative positions of objects in a machine-usable form. Our approach, which
is influenced by the work of BiPIN INDURKHYA (cf.[5]), is to represent the complex structures
like supply air net structures as terms over some appropriately tailored signature. A finite,
heterogeneous, and finitary signature is assumed. This is taken as a basis for building terms
and formulae, as usual®. Additionally, equational knowledge about functions and their relations
is formalized to represent term rewriting knowledge. Note that a solution description contains
the corresponding problem description. There is a function ¢ with its inverse which realizes the
transformation of the attribute-based descriptions into structural ones and opposite.

Third,’we need background knowledge rules for determining proper domain dependent and
task dependent modifications of structural case representations. Terms can be modified using
generalizations. To express generalized terms we need a sorted family of variables. For simplicity,
we assume all variables to be called z, with indices whenever necessary. There are meaningful
adaptations like reflection, rotation, translation, etc. in our domain. Additionally, structural
representations can be modified using abstraction rules, which transform term expressions to
constants (abstract attributes) like row, regular, covered etc. These three different kinds of
modification rules including their inverses will be stored in the rule-base.

Given these three types of knowledge representations, we are able to determine structural sim-
ilarity and use it to guide the solution adaptation. For illustration, the main procedure given
in Fig. 1 is exemplified in Fig. 2. The left, lowest box shows the pictorial and attribute-based
representation? of one typical case stored in the case-base. By taking the functions cover and

2To get cases in a less redundant form, ‘space-coordinates’ will be normalized. Therefore, we simply assume
that the smallest x-, y-, and z-dimensions of each case is equal to zero.

>The detailed formal description of the signature used to represent cases structurally can be found in [1]

*For simplicity, we only gave the values of the atributes x, dx, y, dy, time, aspect, and morphology of each
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Figure 2: Structural similarity assessment and adaptation - an example

copy and object constants and combining them with appropriate parentheses and commas, we
are able to express the solution of this case structurally by cover({copy(Y,3,Circle)). This term
stands for take one circle, copy it three times and arrange all in y-direction. Afterwards cover
all circles with a single ellipse. The right, lowest box shows the pictorial and attribute-based
representation of the new problem to be solved. Given in the same box but not available at
this time is the solution of the new problem. The particular intention (also called subgoal) the
user wants to concentrate on is the connection of air supplies. The first initial analysis of the
new problem can be done on the basis of the inexpensive surface similarity assessment, based
on the attribute-based descriptions. The result is a set of candidate-cases which have similar
surface attributes such as aspect, number of objects etc. In this way, the rather large set of
cases stored in the case-base can be reduced to a few useful candidate-cases. The next step is
the transformation of the new problem into a structural representation. Here, candidate-cases
provide information about proper transformations referred to as ¢. Thus, the new problem,
which consists of three circles arranged in a row in x-direction can be structurally represented
by copy(X,3,Circle). :

Based on the structural representation of superficially similar prior cases, the more expensive
structural similarity assessment is performed. Axioms and modification rules will be applied
to determine the main structure the new and a prior problem have in common. In our example,
there are at least three different ways to achieve this:

e The first way uses generalization. For example, the concrete arrange direction and

object.
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the number of copies will be replaced by variables z; and z2. The resulting common
problem description will be: copy(z1,z2,Circle) as shown in Fig. 2.

o The second way is to use generalization and adaptation rules. Here, the number of

copies will be generalized, too. One term representation will be rotated about 90
degrees.

e The third way uses abstraction. Here abstract descriptions like row and regular will be
used as structural attributes. The idea behind this is that the more identical abstract
attributes structural descriptions share, the more similar they are.

Given the main structure of both problem descriptions, we can simply transfer the main prior
structurally modified solution (in the example cover(copy(z1, z2,Circle))) to the actual problem
(in Fig. 2 referred to as solution transfer). Using the knowledge about the sequence of modifi-
cations to determine the common structure, the transferred solution can be adapted to the new
problem. This is denoted by f~1. To get the concrete structural solution, in the example,

» where two generalizations were used to determine structural similarity, one has to
replace z; by its former value X and analogous z3 by 2. The resulting term will be
cover(copy(X,2, Circle)).

e where generalization and adaptation were used, one applies the inverse adaptation func-
tion and rotates the figure about -90 degrees (or 270.degrees) and replaces the variable
number of copies by 2. Likewise, the resulting term will be cover(copy(X,2,Circle)).

e where abstraction was used, the transferred solution can be expressed by the attribute
covered. But the reverse concretization is somewhat difficult. Given terms and their
corresponding abstract descriptions, one can try to find one term-representation which
fulfills all abstract attributes (in this example row, regular, and covered). This suffices, if
the number of these term-attribute assignments remains small but becomes intractable
otherwise.

Given the structural representation of the new solution the application of the inverse transfor-
mation ¢! yields the attribute-based and hence pictorial representation of the new solution.

4 Conclusion and Future Work

The approach introduced in this paper offers a practical way to integrate and tune case-based
and rule-based background knowledge to solve real world synthesis tasks. Resulting advantages
are problem solutions in synthesis domains like design, where only locally consistent knowledge is
available. Even with only locally consistent knowledge, the adapted solutions are not necessarily
bad solutions, because just the appropriate rules can be selectively applied to adapt them. In
addition, the structural similarity assessment provides a basis for more descriptive explanations
for why particular solutions have been adapted.

There are some interesting directions of further work. Some knowledge structures in our do-
main cannot be efficiently captured by term representations. Therefore, we wish to extend our
approach to other knowledge representation schemes like general trees, graphs, etc. In such cas-
es, different cases will have completely different structural representations and hence different
modification rules. However, the main direction for further work is the integration of learning.
The domain specific determination of knowledge representations and interactions between them
is a first step before learning can be included.

To demonstrate the effectiveness of our approach, we have started implementing a system called
SynTerm (like Synthesis by using Term representations). This program realizes problem solving
in industrial building design using the approach introduced.
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An Under-Lving Memorv Model to Support Case Retrieval.
Mike G. Brown’
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Abstract. The work described in this paper is aimed at providing an underlying model of memory
to support Case-Based Reasoning (CBR). The approach taken is to include a mimber of types of
biasing constraint within the structure of memory itself and to use an activation passing process to
exploit this information for retrieval of relevant cases. This provides the potential for highly flexible
case retrieval without resorting to exhaustive search of memory  This claim is supported by initial
experimentation using a prototype implementation ol the model of memory.

1 Introduction.

CBR is now a well established problem solving technique. Part of its popularity lies in the intuitive
appeal of a computer system that can base its reasoning on the reuse of isolated -experiences’. Yet
this intuitive appeal may also be deceptive. Each of the stages of the ("BR process (such as retrieval,
relevancy judgement. evaluation, adaptation and learning) is in itself a complex task that has spawned
and continues to support many research projects.

The work described” in this paper seeks to find a more fundamental mechanism that underpins the
process of CBR. Research along these lines may help to clarify the interaction between the different stages
of CBR and alzo determine the relationship of CBR to similar types of reasoning, such as analogical
reasoning.

[t is desirable that an underlyving moclel of memory has the following properties:

e Flexibility. There should be a minimal inherent restriction in terms of the circumstance under
which a case can be retrieved and hence reused
o Generality. The knowledge representation should not restrict what constitutes a case.

o Efficiency. The retrieval of appropriate cases should avoid an exhaustive search of memory.

In order to satisfy these potentially conflicting goals the approach taken in the described work is to
use a variety of constraints as hiases on retrieval This approach is similar to that taken in syvstems such
as PARADYME [®. 7] and ARCS [14]. However. the work described in this paper is novel in so much as
it attempts to satisfy the above requirements by the exploitation of a richly structured memory and as
such the proposed model of retrieval is potentially less computationally intensive,

The model of niemory that will be described in this paper is illustrated in figure 1 The retrieval
nmechanism has three distinet phases. Phase | snuply involves the access of all components of the target
case’s cdecompositional structure?  Fhe second and most prolonged phase 1~ a’search throngh the network
of memory from each of the target case component 1o “similar’ sonrce case components. The types of
information that mflucice this process and hence contribute 10 a biasing towards shimilarity are described
i section 2. while the activation passing mechanisni that perforims retvieval i~ described in section 3.
The final phase i Tor all the isolated retrievals of source case components to be combinied to generate a
global measure of the retrieval strength for each zource case. This process is briefly described n section
3.2 The wodel of memory has been implemented in the CRASH? prototype svstem and some initial
experimental work i~ described in section 4.

"This work was supported by the scientific and Fngneering Research Couneil (SERCY).
“Note that it is assumied that the assimilation of the target case with the rest of memory has already occurred.
“Case Retrieval by Activation passing StHell,
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Figure 1: The Memory Structure and Retrieval Flow for C'RASH.

2 Memory Structure and Retrieval Biasing.

Five distinet classes of information ave recognisecl as iuherent fo the proposed model of memory. Each
of these inforination categories is described below in terms of how it is vepresented and the vole it plays
in case retrieval.

e Semantic Knowledge. This i1s the “factual” knowledge held in memory. including the cases
themselves and all appropriate supporting domain ‘knowledge. For CRASH. this knowledge is
represented as a conceptual graph. A ‘local” representation is used where each node represents
exactly one item of knowledge and where the relations in the network are analogous to the associative
relationships that exist between knowledge items in reality. In this way the basic structure of the
conceptual graph defines a search space for retrieval of knowledge that is meaningful.

¢ Contextual Delimmitation. In reality few. if any. “facts”™ are universally true, rather a given item of
knowledge is only appropriate in confert In the CRASH model of memory “contexrt”™ equates to the
explicit representation of knowledge that determines when an individual relationship is relevant. It
follows that the general role that context playvsis to segregate memory so that appropriate knowledge
can be focussed on at the time of retrieval. The fact that the constraining action of context can be
dynamically supernmposed npon memory means that there is greater flexibility in terms of the use
of memory than can generally be achieved using traditional “tndering”™ approaches.

e Recently Retrieved Knowledge. The knowledge in nmiemory that has already been selected
plays an important role in determining what new facts should also be retrieved [9]. Hence this type
of information acts as a fluid form of context for the on-going retrieval process. For CRASH. this
type of information equates to the momentary distribntion of activation during retrieval.

e Descriptive Structure. [t is well recognised, particularly in analogical reasoning [5]. that the two
cases are more likelv to strongly relate to one another if their descriptions involve similar patterns
of relations. 1t tollows that retrieval shonld atrempt to preserve structure of a target case when
retrieving applicable source cases. The achievément ol this in CRASH is discussed in section 3.2.

o Typicality and Idiosyncrasy. These are two meta-level measures based on all knowledge held in
memory. These factors provide a default, graded structure for memory that. in the absence of any
stronger contextual coustraints. can be used to guide retrieval along the paths through memory that
are potentially of most use. Typicality is useful in terms of providing gnidance of retrieval towards
most frequently encountered semantic knowledge. This can be shown to improve the accuracy for
abductive inference of additional knowledge about a target case. By contrast. idiosyncrasy guides
retrieval to the most exceptional (and hence characteristic) features of a particular description.
Both measures are assigned to all velations in the conceptual graph by statistical calculations in
C'RASH. Details of the calculation and use of these relation weights can be found in [2. chapter3].

3 On the Use of Activation Passing for Retrieval.

There are a number of reasons why activation passing was chosen as a snitable technicue for implementing
retrieval. The numeric markers that are passed provide a suitable vehicle by which the various constraints
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built into the orgamsation of memory can be quantitatively assessed during retrieval. This has important
efficiency and flexibility implications with respect to retrieval because, if memory is suitably well struc-
tured. the need for post-retrieval evaluation of cases may be avoided. In this way CRASH improves upon
systerns such as PARADYME [&. 7] and MAC/TFAC [6].

The responsiveness of activation passing to constraints can greatly be increased through the intro-
duction of competition into the process [10]. However, traditional approaches to competitive activation
passing are not well suited to the task of case retrieval and an appropriate solution is put forward in
section 3.1. An additional problem with activation passing is that it is difficult to include a bias to-
wards preserving deseriptive structure during retrieval. A possible solution to this problem is described
n section 3.2.

3.1 Competitive Activation Passing for Case Retrieval.

A major problem in applying activation passing techniques to the task of case retrieval is the determination
of an appropriate form of "competitiveness’. In order to be space efficient some form of “wvirtual” inhibition
is required [12]. rather than the reliance on explicit inhibitory links such as in [14. 10]. However, the
virtual inhibition described in [12] produces a “winner-takes-all” strategy that is too restrictive for case
retrieval: for successful CBR it is often best to deal with a small corpus of potentially relevant cases
rather than the one most relevant case [11. 3. 13).

The adopted solution is to systematically restrict the number of outward links that can be used by
a node at any point during phase 2 of the rerrieval There are several factors that determine which of a
given node’s outputs will be selected as recetvers when it sends actvation  First and foremost an output
is ouly a candidate recerver if the currently selected rontexts explicitly state that the relation associated
with that output is velevant? Secondly. any candidate recerver output that leads to a node that already
possesses activation will anutomatically be selecred. This instigates the desired bias in retrieval towards
the reinforcement of already vetrieved knowledge. In particular it favours the recollection of coherent
bodies of facts. rather than facts in isolation. Finally. if the above selection criteria does not exhaust the
allowed limit on a given node’s receivers. outward links are selected in the order imposed by the tyvpicality
and idiosyncrasy relation weighting, up to the point at which the receiver limit is reached.

Once all receivers have been selected the same amount of activation is sent to each. The competition
therefore lies in becoming a receiver. not in terms of acquiring more activation than other receivers.
In particular. relation weighting has the role of controlling in what direction an activation distribution
expands but has no effect on the anmtount of activation that i~ sent. This means that. in a suitably unusual
context. a low weighted relation may be one of the few selected receivers and subsequently a relatively
large amount of activarion will pass through it Ju this way the flexibility of the proposed retrieval
mechanism is enhanced

3.2 Preserving Case Struecture During Activation Passing.

A second major problem with activation passing is that. because it is governed by highly localised rules.
1t s difficult to mateh source and target cases based on their cescriptive structure. A bias towards this
type of structural preservation 1s implemented in CRASH through the labelling of disjoint activation
distributions by “colour” tags.

A dependency hierarchy between different activation colours is generated during phase 1 of the re-
trieval reflecting the decompositional structure of the target case itsell The propagation of activation
(rony cach target case component 1o like source casc <'omp;)n<—\nl\ then proceeds during phase 2 of the
retrieval. more-or-less independently  However hy phase 3 the isolated activations deposited in the nodes
representing components of sonrce cases are amwalgamated by the propagation of activation up the sonree
case structures. The colowr dependencies generated in phase | can be used to guide the recombination of
colours during phase 3. This can be used 1o ensuve that only source cases that are highly 1zomorphic to
the rarget case in terims of their representation can be vetrieved More generally. the strength of merging
of two colours depends on their proximity in a colour dependency hierarchy  This provides some tolerance
to deviation between source and targel case structures.

4 Experimental Work.

This section gives a briel deseription of somie of the experiniental work that has so far beeu carried out
using the CRASIH prototype mplementation of the model of memory

The selection of contexts is bevond the seape of this paper. see [2] [or details
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4.1 Experiment Description.

For the purposes of initial experimentation a simple “bin-packing” problem was devised. This problem
involves a rectangular grid and a set of right-angled polygons. The task is to place all the shapes within
the grid so that they tessellate and exactly cover the grid. The problem is simplified such that the
polygons are either rectangles or L-shapes of various sizes.

For the problem to be tackled using CBR requires a collection of source cases that represent individual
placements of shapes within a grid. Accordingly a set of source cases were produced by recording the
problem-solving actious of the author while tackling a number of exemplar bin-packing problems set by
a colleague. Each source case is composed of two main parts, an initial state and the placement. The
initial state in turn comprises a description of the remaining space to be filled and a description of the
set of shapes still to be placed. The placement is composed of a shape selected for placement and the
shape’s final position within the remaining grid. The representation of cases was carefully designed so as
to minimise the amount of bias towards problem solving characteristics that are implicit within the case
description structure itself. A

A target case was encoded and a series of retrievals performed. Experimentation was performed
across a range of different cases bases and with systematic variation in the key paramneters that control
the operation of C'RASH. In particular. the amount of retrieval effort was varied between retrievals by
altering the allowable number of receivers per node. The result of each retrieval is a graded ordering of
the source cases in terms of how much activation resulted within their representation,

4.2 Experimental Bench-marks.

This ordering of source cases produced by each retrieval is compared to three theoretical bench-mark
orderings defined in terms of the following criteria:

-+ Semantic Ordering: This is based on a measure of the "semantic similarity” between target case
and each source case. Cases are ordered according to a measurement of the maximal size for a set
of compatible feature pairings that can be generated between two case descriptions.

e Structural Ordering: This is based on a measure of the correspondence between the structure
of the target case description and each source case description.

e Pragmatic Ordering: During knowledge elicitation [or the bin-packing problem a set of heuristics
were identified that can be used to achieve a high success rate when generating solutions. Examples
of these heuristics include “position the largest re maining shape next” and “keep the remaining space
as rectangular as possible . These heuristics can be used to evaluate how useful is the placement
suggested by each source case with respect to the initial state of the target case which in turn
provides a pragmatic orcering of source cases.

The deviation of the retrieval ordering from each bench-mark ordering is calculated. This measure can
be converted into a biasing strength by considering the probability that a randomly generated ordering
of the source cases has as close a match to the bench-mark ordering as that produced by a given retrieval.

4.3 Results and Analysis.

The results for all retrievals so lar carriéd out using CRASH on the bin-packing problem are summar-
ised in figure 2. One of the main goals of the experimentation is to empirically establish a relationship
between the amount of retrieval eflort performed (with respect to an exhaustive search of memory) and
the quality of retrieval. The results shown in figure 3 are typical®.

Several conclusions can be raade from these results. Firstly it is clear from figure 2 that there is
generally a strong positive bias towards all three bench-marks. In particular, as is shown in figure 3, the
correspondence between structural and semantic ordering is high. This coupling can be attributed to the
use of a standard format for representing bin-packing cases.

The case retrieval also shows a general bias towards selecting the source cases that are of most use for
problem solving. This helps confirm an underlying premise of this work: that the combination of various
preference constraints can be sufficient to determine what source cases ave relevant to a new problem
solving episode. Figure 3 shows that the bias of retrieval towards pragmatic ordering is generally slightly

?Figure 3 shows the results for a sertes of 39 separate retrievals carried out on a case base containing 22 bin-packing
cases.
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Figure 20 The Overall Quality of Retrieval for the Bin-Packing C'ase Study.

weaker than for the other two bench-nrarks. This is not surprising and reflects the efforts to avoid any
undue pragmatic bias in the structure of the case representation. In addition, the context sequence used
to control phase 2 of all experimental retrievals implements a feature-based search from all components of
the target case. To howe the retrieval for problem-solving would require vetrieval strategies that prioritized
the target case components: for example, retrieving source cases from the larger target case shapes but
1gnoring the smaller shapes.

Finally, and perhaps most importantly, figure 3 shows that a near maximal retrieval quality can be
produced with respect to all bench-marks at a retrieval effort well below that required for exhaustive
search of memory ( & 7% in the example of figure 3). This is strong evidence for the claim put forward
at the start of this paper: that a flexible model of retrieval can be implemented by relving on a rich
organisation of memory rather than on a more brute-force approach involving an extensive search of
Memory.

5 Conclusions and Future Work;

This paper describes the work that has been carried out in the development of an underlying model of
memory to support CBR. The potential for utilising activation passing for the achievement of retrieval
has been recognised elsewhere [14, 4. 1, 15]. However the scheme proposed here is unique i that it does
not rely on the explicit representation of inhibitory links vet is sufficiently selective to vield useful case
retrieval without resorting to exhaustive search.

The initial experiental results support the claims that the proposed model can efficiently incorporate
into retrieval various measures relating to similarity judgements (and hence relevancy). However there is
a need to apply the model to larger and more complex problein domains. This is intended as one area
for future work. i

IFrom a theoretical staud-point an important future direction is to wuvestigate how other aspects of
CBR unify with retrieval. For example. the tasks of retrieval and mapping seem intuitively to be linked.
Furthermore, it may be plausible that tasks such as case adaptation can be recast as iterative vetrieval.
provided that the relevamn knowledge is held in memory. The approach of seeking to explain the process
of CBR via such a unified modelmay help to generate important insights into the general role of memory
in reasoning. \
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1 Introduction

The main idea in case-based reasoning is to use the solution of a problem that has been solved earlier in
order to solve a new problem. Given the actual problem P and a collection of previously solved problems
Py, Ps, ..., P, one first evaluates the similarity between P and each P;,i=l,...,n. Once the case P;
has been found that is most similar to P, its solution is used in order to construct a solution of P. The
similarity measures used in many case-based reasoning systems assume that cases are represented by
collections of attribute-value pairs. Based on this assumption, the similarity between two cases is usually
computed by a weighted sum of the similarity of the individual attribute values. For a general discussion
of this type of similarity measures see [1].

In this paper, we propose a different approach. We assume cases not being given just by collections of
attribute-value pairs but by structured representations. Formally, we assume each case being represented
by a directed labeled graph (or graph, for short) ¢ = (N, E, a, §), where

e N is the finite set of nodes,

e E C N x N is the finite set of edges,

e a: N~ Ly is the node labeling function,
e (: E — Lg is the edge labeling function;

Ly and Lg are the finite alphabets of node and egde labels, respectively. Using such a representation, we
normally represent concepts or objects of the problem domain by nodes, and relations between concepts
or objects by edges. Relations can represent, for example, spatial, temporal, or causal relationships
between nodes. The alphabets of node and edge labels are problem dependent and vary, in general, from
one application to the other. Particularly, the above definition includes semantic networks and frame

o {4

systems as special cases of graphs if we introduce relations like “instance” “instance of”, “a kind of” a.s.o.

2 A Similarity Measure on Graphs

Using graphs as introduced in the last section for the representation of problems, or cases, a measure
is needed that gives the similarity of any two graphs. In this paper, we introduce a similarity measure
based on a weighted graph edit distance. Our proposed measure is a generalization of string edit distance
[2].

We start from a set of elementary edit operations on graphs, namely, the insertion, deletion, and
substitution of a node or an edge in a graph. Formally, this set is given by

EO = {del_node, ins_node, subst_node, del_edge, ins_edge, subst_edge}.

If we apply one or more of these edit operations to a given graph g;, a new graph g, is obtained. For
example, the graph shown in Fig la can be transformed into the graph shown in Fig 1b by (1) substituting
the node labeled ”Cup” by a node labeled " Bow]”, (2) substituting the edge labeled ”below-of” by an edge
labeled "right-of”, (3) inserting a node labeled "Noodles”, and (4) inserting an edge labeled ”contains”
between the nodes ”Plate” and ”Noodles”. Apparently, our set of edit operations is complete in the sense
that it allows to transform any given graph g¢; into any other graph g,. This can be readily concluded
from the fact that EO contains the insertion and deletion of both nodes and edges. Thus, in order to
transform a given graph g, into any other graph g, we could first delete all nodes and edges in g1 and
then insert all nodes and edges in g4, for example. Note that for any two graphs g; and g3, there are
usually more than one sequence of edit operations transforming g; into gs.

In order to model the fact that certain differences between two graphs have more weight or importance
than others, we introduce costs for the basic edit operations. Let e € EO be an edit operation. Then
c(e) > 0 denotes its cost. If it is required, one can normalize the costs such that 0 < ¢(e) < 1. Given
a sequence s = (e, es,...,e,) of edit operations with e; € EQ,i = 1,...,n, we define its cost ¢(s) =
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Figure 1: An example illustration of basic edit operations and subgraph isomorphism.

S oi=p c(ei). Finally, for any two graphs g; and gs, we define their edit distance d(gl,gg) as the minimum
cost sequence of edit operations that transform gy into g2. Formally,

d(g1,92) = min{c(s)|s = (e1,...,e,) is a sequence of edit operations transforming g, into g»}.

Intuitively, the cheaper and the fewer the operations are that are required to make gy and g» identical,
the smaller is the edit distance d(g1, g2) between g; and gs.

The graph distance defined above has a number of interesting properties, like reflexivity, symmetry,
or metric property, depending on the way the costs of the operations in EO are defined. If we define
the cost of any identical substitution equal to zero and the cost of any other operation greater than
zero, then d(g1,g2) = 0 if and only if g; and g, are isomorphic to each other. Similarly, if not only the
costs of identical substitutions but also the costs of any insertions in g, are equal to zero, while all other
operations from EO have costs greater than zero, then d(g:,g2) = 0 if and only if g, is a subgraph of g».

Apparently, d(g1,g92) is rather a measure of dissimilarity than similarity between g; and g;. How-
ever, it can be easily converted into a similarity measure s(g1, g2) by defining, for example, s(g1,92) =
[d(g1,92)]71. It is also easy to normalize d(g;,g2) or s(g1,g2) such that all values are resiricted to a
certain interval, for example, the interval [0, 1].

3 A Practical Procedure for Subgraph Isomorphism Detection

The concept of graph distance introduced in the last section is very flexible and powerful. However,
its actual computation is not trivial. A possible approach to graph edit distance computation is graph
search!. When computing d(g1, g2) by means of graph search, we systemaiically explore all possibilities to
match the nodes and edges of g; to nodes and edges of g, allowing substitutions, deletions and insertions.
Thus the problem of finding the minimum cost sequence of edit operations that transform gy into g, is
converted into the problem of finding the minimum cost state in the search graph. Heuristics can be
used to speed up the search, i.e., to aveoid exploring those parts of the search graph that don’t contribute
to the solution [3, 4]. Regardless of any heuristics, the worst time complexity of graph edit distance
computation is exponential in the size of the underlying graphs. This can be easily concluded from
the fact that subgraph isomorphism detection, which is a special case of graph distance computation, is
known to be NP-complete[5].

In the rest of this paper we will restrict our considerations to subgraph isomorphism detection. That
1s, given an actual problem P, represented by a graph g, and a number of solved problems P, ..., Py,
represented by graphs ¢1,...,9n we want to find cut if any of the g; is a subgraph of g. Formally, g; is

YIn the term graph search, graph refers to the representation of the underlying problem space (or state space) by means
of a graph. This representation of the underlying problem space must not be confused with the graphs g, and g2, the edit
distance d(g;, g2) of which is to be computed.
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a subgraph of g if all nodes and edges of g; are contained in g, and if corresponding nodes and edges
have the same labels. For example, the graph shown in Fig lc is a subgraph of the graph shown in Fig
1b. As mentioned before, determining if g; is a subgraph of g, is a special case of graph edit distance
computation under particular costs of the elementary edit operations.

Subgraph isomorphism detection has a high degree of practical relevance in applications where prob-
lems are decomposable into subproblems that can be solved individually. In such an application, we
would collect all previously solved subproblems in a library. Let the library be represented by graphs
J1,-..,9n. Now given a new problem, i.e. a graph g, we match it to each stored case in the library. If g
contains one or more g;’s as subgraphs then we conclude that the solutions of these subproblems can be
used for the given problem.

As subgraph isomorphism detection is NP-complete, we have to be concerned about computation
time. The problem of computational efficiency becomes even more serious if our library of previously
solved cases is large. Under a naive strategy, we would sequentially match the actual problem to each
library case in order to find out if it occurs as a subproblem in the actual problem. Thus the overall
computation time would increase by a factor equal to the number of cases in the library. In this paper, we
propose a new method for efficient subgraph isomorphism detection. The method is particularly useful
if the number of cases in the library is large because substructures that occur more than once within
the same or different model graphs are considered only once by the matching procedure. Thus much
computational work can be saved. It can be shown that in the limit when the model graphs become more
and more similar to each other, the computational complexity of the new matching procedure becomes
independent of the number of models.

The method for subgraph isomorphism detection has some similarity with the RETE-algorithm that
was introduced for efficient conflict set determination in forward-chaining rule-based systems [6, 7]. In
an off-line phase, we compile the library graphs g1,...,9n into a network. This network is a compact
representation of the library in the sense that nodes and edges that occur in different g;’s or several times
within the same g; are stored only once in the network. The network can be incrementally updated. That
is, if a new solved subproblem g; is added to the library, it can be easily incorporated into the network
without the need of recompiling the network from scratch, i.e., from the enlarged library.

The network for the graphs in Fig 1b and 1c is shown in Fig 2a. Due to the fact that the model in
Fig 1c is a subgraph of the model in Fig 1b, any instance corresponding to the node F is considered both
an instance of the model in Fig lc, and an instance of a subgraph of the model in Fig 1b. Generally, a
network like the one in Fig 2a consists of four kinds of nodes. The entrance to the network is marked by
the one and only input-node. The input-node receives at run time the graph that is to be tested. From the
input-node there are one or more outgoing n-edges? leading to ,I-vertéx-checkers. The l-vertez-checkers
are the second type of nodes in the network. The task of a I-vertex-checker is to test whether a vertex v
of the input graph has the label I. If the label of v is I then v is an instance of any model vertex with
label I and is stored in a memory which is local to the l-vertex-checker. Each l-vertex-checker has one
or more outgoing n-edges leading to E-subgraph-checkers or g-model-nodes (see below). An E-subgraph-
checker, the third type of node, has always two parent nodes to which it is connected by one n-edge each.
The parent nodes are either of type l-vertex-checker or E-subgraph-checker. An FE-subgraph-checker
represents a subgraph of one or several model graphs in the network. Its task is to find instances of this
subgraph based on the instances which are found by the parent nodes. If an E-subgraph-checker receives
a new instance from its left (right) parent then it will try to combine it with all the instances stored in
the local memory of the right (left} parent. Two instances can be combined if they are disjoint, i.e., if
they do not have any vertex in common, and if each edge that is specified in a list E' exists between the
two instances. Any succesful combination results in an instance of the subgraph which is represented
in this E-subgraph-checker. The new instance is stored in the local memory and sent to all successor
nodes.” There may be one or several outgoing n-edges from each E-subgraph-checker leading to other
E-subgraph-checkers or to g-model-nodes. The g-model-nodes are the fourth kind of network nodes. For
each model graph ¢; that was compiled into the network there is one g;-model-node. Each g-model-node
has exactly one incoming n-edge. Any instance that arrives at a g-model-node is an instance of the model
graph g.

In order to explain the run time behavior of the network in detail, we consider the graph in Fig 2b.
The contents of the local memories of the network nodes are displayed in brackets below the actual nodes.
First, each vertex of the graph in Fig 2b is sent via the input-node to the l-vertex-checkers, where the
vertices with the matching labels are stored in the local memory. There are two vertices, 3 and 4, in the
input graph that match the label in node A. Therefore, the local memory of node A contains the instances

?In order to distinguish between the edges of the graphs and the edges of the network, we will refer in the following to
network edges as n-edges.
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{3} and {4}. The other I-vertex-checkers B,C,D receive a single instance each. Next, the E-sibgraph-
checker E takes the instances found in A and B and tests whether there exists an edge labeled contains
between them. Such an edge exists between the vertices 3 and 2, but not between 4 and 2. Thus, the
instance {3, 2} is the only one found by E. It is stored in the local memory of E. The E-subgraph-checker
F finds {3, 2,5}, which is an instance of the model in Fig lc and a partial instance of the model in Fig
1b. Finally, in the node G two edge tests are performed. First, there must be an edge labeled right —of
from the second vertex in the left instance to the single vertex in the right instance. Secondly, there must
be an edge labeled on from the single vertex in the right instance to the third vertex in the left instance.
As both edges exist, we find the instance {3,2,5,1} in G and thus an instance for the model in Fig 1b.
The algorithm terminates succesfully after both instances of the models in Fig 1b and 1c in the input
graph have been found. :

4 Computational Complexity and Experimental Results

In.order to analyze the computational complexity of the proposed method for subgraph isomorphism
detection, let )

N = number of different solved cases in the library,

I = number of edges in the actual problem to be solved,

M = maximum number of edges in one solved case in the library,

M; = number of edges that occur in all solved cases in the library,

M, = number of edges that are unique to each solved case, where M; + My = M

The computational complexity of a naive subgraph isomorphism detection procedure that is based on
graph search, treating each solved case individually , is

O(NM3IM) and O(NM3D) (1)

in the worst and best case, respectively. By contrast, our proposed method has a computational time
complexity of

O(M3M + NMyM?I™) and O(M2 + NM2M,) (2)
in the worst case and best case, respectively. We notice that the two expressions in (2) become equal to
O(NM3IM) and O(NM3) for M; =0, i.e., M = M,. This corresponds to the one extreme case where
there are no common parts in the solved cases in the library. Notice that in this case the worst case is
equal to (1) while the best case is better than (1) by a factor of I. In the other extreme case, we have
My = 0,ie, M = M,. This means that all the solved cases in the library are identical, or, in other
words, the common part that is shared in the network is maximum. In this case, the two expressions in
(2) become equal to O(M3I™M) and O(M?3), respectively. Comparing with (1) we notice that now the
time complexity is no longer dependent on the number of solved cases in the library, neither in the worst
nor the best case.

The proposed method for subgraph isomorphism detection has been implemented in C++ and runs
on a SUN workstation. In order to verify the results of our theoretical computational complexity analysis
we run a number of experiments with randomly generated graphs. For the purpose of comparison, we
also implemented a straightforward solution to subgraph isomorphism detection based on graph search
and sequentially testing each of the g;’s.

In the first experiment, we generated a database of 10 model graphs, each containing 50 vertices and
an average of 100 edges. In order to study the influence of the size of the common subgraph on the time
performance of our algorithm, we varied the size of the common subgraph of all the models between 5
and 45 vertices. For each size of the subgraph we run five test series, i.e. we generated five times a
database of 10 models and measured the average time the algorithm used in order to match each model
to the database. The results are shown in Fig 3. We can observe that while the tree search uses more
time the larger the common subgraph becomes, our new method performs better thanks to its capability
of sharing the common subgraph among the different models.

In the second experiment, we kept the size of the common subgraph constant at 20 vertices and varied
the size of the database. Starting with one model we increased the number of models until 20. Each
model contained a total of 30 vertices. The results of the second experiment are shown in Fig 4. The
fact that for any new model added to the database a subgraph of size 20 is already represented in the
network explains why the new algorithm shows only a slight increase in time for a growing database. The
traditional approach, however, performs an independent matching process for each model in the database
and forgets about previously found instances of the common subgraph. With 1 graph in the database, -
both algorithms used 0.5 seconds while in the end, with 20 graphs in the database the traditional approach
took more than 3.5 seconds to terminate compared to 0.5 seconds of the new algorithm.
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Figure 3: (first experiment) For each point of measurement we generated a database of ten models, each
containing 50 vertices, including the common subgraph. The average number of edges per model was
100.
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Figure 4: (second experiment) Each model in the steadily growing database contained 30 vertices includ-
ing a common subgraph with 20 vertices. There was an average number of 50 edges per model.

5 Conclusion

The similarity of graphs is an important aspect in case based reasoning and other application areas.
In this paper, we have first introduced a general framework for graph similarity based on a set of edit
operations. Then, we have proposed a new computational procedure for a special case, namely subgraph
isomorphism detection. Both, a theoretical complexity analysis and practical experiments have shown
that the new procedure is more efficient than traditional tree search based methods for subgraph isomor-
phism detection. It is particularly useful if the number of cases in the library of a system is large and if
the stored cases are similar to each other.
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Abstract

Work on similarity can be shown to follow either a system view or a processing view with the former
paying more attention to architectures of similarity assessing systems and the latter concentrating
on similarity metrics. As similarity depends on a number of characteristics (e.g., goals, knowledge,
context, common features) both view have their own merits, when assessing similarity. In this paper,
we present a framework of multistage similarity assessment that provides a linkage for a modeling of
similarity according to the system and processing view. In so doirg, the stages of the system can be
evaluated according to both the characteristics of similarity being modeled and the errors possibly
made.

1 Introduction

During the past several years, a flurry of interest in similarity has been touched off by research done in
information retrieval (IR), analogical (AR) and case-based reasoning (CBR) (e.g., Vosniadou & Ortony,
1989). While puzzling out principles of similarity assessment in cognitive science and artificial intelligence
two different approaches have been pursued: Investigations of similarity adopting the processing view
strive at developing a condensed formal account of similarity intended to be used independently of the
pecularities of a system’s architecture. To put it another way, the core idea of the processing view has
been to uncover principles of similarity as basic as possible to obtain a coverage as broad as possible. A
well-known proponent of the processing view is (Tversky 1977) and his contrast model.

Conversely, research indebted to the system view concentrates on specifying architectural constraints

on similarity assessment. That is, according to the credo of the system view characteristics of similarity
may be captured by choosing an appropriate architecture of a system. Following this line, in case-
based reasoning a number of models of computing similarity start with a great number of computational
cheap similarity assessments. Only cases that yield a high score are taken over to the second stage to
be assessed again with computationally expensive methods used to select the best scoring cases (e.g.,
Gentner & Forbus, 1991).
Pointing out to differences between a processing and system view is not supposed to pass unchallenged.
At least when it comes down to actually building a system, so a possible caveat might go, the distinction
between the two views seems to be more a difference in emphasis than in substance. Our objection to
this argument is that there is quite a variety of characteristics of similarity assessment (Janetzko, Wess
& Melis 1992), some of which are best modeled either according to the system view as to the processing
View.

For example, the dependency of similarity assessment on the number of common and distinguishing
attributes is probably best captured by the processing view. In contrast, the dependency of similarity
assessment on goals, knowledge, context, or resources invested like time or memory are issues covered
best by the system view. Thus, differentiating between these two views is more but a funny curiosity
in the zoo of models of similarity as it can be used to guide modeling of characteristics of similarity
according to the appropriate view. ‘

The present paper is devoted to an analysis of the costs and benefits of similarity assessment according
to the processing and the system view. First, the notion of process and system view is stepwisely fleshed
out to gain further understanding of the possibilities given by each of both views. Second, we discuss
errors that may occur within multistage similarity assessment that links the processing and the system
view. Third, we introduce a three-stage model of similarity assessment and present an evaluation along
with the criteria established before. Finally, we discuss relationships towards other models of similarity
assessment.

*This research was supported by the "Deutsche Forschungsgemeinschaft” (DFG), " Sonderforschungsbereich” (SFB) 314:
” Artificial Intelligence and Knowledge-Based Systems”, projects X9 and D3.
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2 Linking the processing and the system view on similarity

As foreshadowed by the preceeding discussion, distinguishing between the processing and the system view
and differentiating among various characteristics of similarity leads to a desirable goal when building
models of similarity assessment: Similarity may be best modeled in accordance to the possibilities of the
two different views, i.e. on different levels. This first tenet may be called "The principle of preferred levels
of modeling”.

Linked to that principle is another one that has to be fulfilled to make similarity assessment flexible.
This second principle is referred to as ”The principle of graceful degradation” (Norman & Bobrow, 1975).
By this, we mean that similarity assessment should show a smooth decline rather than an all-or-none
behavior when faced with difficulties, e.g., low-quality data or the like. This is deemed important if
resources (e.g., time, memory) are limited or if the system itself does intend to limit resources (e.g., to
perform a preselection) in order to invest resources in an economical fashion.

Finally, the principle just mentioned implies a third -one. This is called *The principle of continually
available output” (Norman & Bobrow, 1975; Russell & Zilberstein, 1991). To spell out this principle
is to specify the principle of graceful degradation. As a consequence, it should be possible to stop
processes of similarity assessment, e.g., by retracting resources needed, and obtain results that are usable
by the system although suboptimal when compared to the results acquired without stopping similarity
assessment.

The ideas in this paper rely on the conjecture that modeling of similarity assessments according to the
three principles mentioned above is only possible by linking the processing and the system view. When put
into practice, the principle-guided linkage of the two views amounts to a multistage similarity assessment
with characteristics of similarity brought into focus by each view distributed on different stages. The
framework of such an architecture provides a number of advantages: Modeling of characteristics of
similarity can and should be done on different stages according to the principle of preferred levels of
modeling. Depending on the stage of processing reached there is a smooth decline in the quality of
the system’s output, which obeys to the principle of graceful degradation. Finally, an architecture of
multistage similarity assessment allows for a good approximation to the principle of continually available
output as each stage may serve an exit-point for similarity assessment. The quality of the similarity
assessment reached at each exit-point is a function of the resources invested.

3 Demands on the assessment of similarity

In what follows, we characterize two basic requirements to be fulfilled when assessing similarity. This
is done along with a discussion of how to put the ideas of this paper into practice when building a
system and an eye towards related work in information retrieval, analogical, and case-based reasoning.
In so doing, we will find further evidence for a multistage similarity assessment, which is spelled out in
subsequent sections.

3.1 Efficiency

Analyzing the process of similarity assessment from a efficiency point of view results in the demand of
low computational costs of the retrieval. Since all items of the knowledge base are involved in the first
step of the process, 1t is reasonable to require the first step to work very quickly on each item. The next
step which works already on a set of preselected cases may have higher relative costs:

A similar goal is aimed at by open hashing in databases: The hash function makes it possible to access
- a list of items very fast; the search within this list, being as short as possible, has higher relative costs.

In database research a lot of other retrieval approaches has been developed that are computationally
cheap e.g., multidimensional associative binary trees, called &-d Trees (Bently, 1978), close match retrieval
(Friedman, Bently & Finkel, 1977), incremental nearest-neighbor search (Broder, 1990), best-match
retrieval based on Voronoi-Diagrams (c.f. Mehlhorn, 1984) or hypercubes (Stolter; Henke & King, 1989).
These techniques are able to retrieve a best-match based on a set of surface features in logarithmic
expected time O(log(n)) where n is the number of stored items in the database.

The now commercial available case-based reasoning shell REMIND (Cognitive Systems, 1991) de-
veloped by Cognitive Systems an enterprise founded by R.C. Schank uses this kind of rapid retrieval
algorithms for case-based reasoning.

Other approaches to a computationally cheap search of similar cases use the assessment of similarity
on the basis of the dot product over feature vectors (Medin & Schaffer, 1978), connectionist models of
learning (Rummelhart & McClelland, 1986), the PATDEX-approach (Wess, 1991; Richter & Wess, 1991),

33



or the memory-based reasoning approach (Stanfil & Waltz, 1986), which relies on a massive parallel
search on a connection machine.

High Order Relations > ) ]
Structural Consistency
Similarity Assessment Application
Goals - h
Preferences > Pragmatic-Driven
Domain-Theory - Similarity Assessment
\ J
Similarity Measure ( Surface F h
Constraints > .. a.c o Foatures
Similarity Assessment .
L I Database
DATABASE

Figure 1: The system view

3.2 Reliability

The analysis of the process from a reliability point of view yields characteristics of the kind of errors
occurring at the consecutive steps of the process. These types of errors are well known in statistics
as they give an account of the errors that can be made whenever a hypothesis is accepted or rejected
{e.g. Bock, 1975). We use the notion of a-error and S-error to classify possible errors to be made when
assessing the similarity between two cases.

Definition 1 (a-Error) If ¢ previous case being useful to solve a problem at hand 1s part of the case
base but not selected, the error is called a-error.

Definition 2 (8-Error) If a previous case not being useful to solve the current problem is part of the
case base but selected, the error is called beta-error.

Each model of selecting cases has to account for both kinds of errors. The selection of similar items (e.g.,
cases, concepts, entries in a database) is guided by selection criteria. - and S-errors depend on the
selection criteria applied to find similar items. Selection criteria causing no a-error are necessary criteria,
and selection criteria causing no G-error are sufficient criteria.

As well known (Mitchell, Keller & Kedar-Cabelli, 1986), explanation-based generalization (EBG)
provides sufficient descriptions. The goal-driven similarity assessment in (Janetzko, Wess & Melis, 1992)
using the EBG-method provides sufficient criteria and tends to keep the F-error low.

The ideas that form the basis of a— and B-errors are closely related to the version space method
introduced by (Mitchell, 1982). The description to follow shows how the version space technique can be
applied to find a selection criteria that keep a— and G-error at the lowest level possible.

Let the example space be a set of pairs of items. The criteria space CRIT is taken to mean a space of
formulae representing selection criteria, i.e., the analogue to Mitchell’s concept space. The partial order
on CRIT (more specific, more general) can be defined analogously to the hierarchy of generalizations
in the version space. In agreement with the version space method the search space CRIT is reduced
from top and from bottom introducing G (as the set of most general criteria selecting all known positive
examples and rejecting all known negative examples) and S (as the set of most specific criteria selectlng
all known positive examples and rejecting all known negative examples).

The criteria from G keep the a— and the criteria from S keep the S-errors at the lowest level possible.
Following Mitchell’s model, if G = § the concept is learned and no a- or S-errors occurs.
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It is desirable that in the first step of case selection no (or almost no) a-error occurs, that is, no useful
previous case is excluded from further processing. It is also desirable that in the last step cases being not
useful are excluded.

There are several possibilities to meet this demand: If during the first step of the process no a-error
occurs, and there are useful items in the database then there remains a nonempty set C of items. During
the next steps from C items may be selected the computational costs of adaptation are lowest for. Items
with computational costs of adaptation that exceed those to be expected can be eliminated.

There are several approaches including such a usability assessment. For example, the goal-driven sim-
ilarity assessment (Janetzko, Wess & Melis, 1992), similarity conserving transformations (SCT’s Koton,
1988) evaluate certain similarities and dissimilarities as relevant or irrelevant.

4 Stages of similarity assessment

As noted earlier, a multistage similarity model has been deemed necessary to cover a number of issues in-
volved in similarity assessment. Among the most important of those issues are the possibility to combine
various models of similarity assessments according to different characteristics of similarity. In this way,
it is feasible to control the impact of each of those characteristics. Additionally, multistage similarity
assessment allows for specifying constraints on errors such that the a—error should be low in the first and
the B—error should be low in the last stage. During the stages the number of items considered decreases
and the computational costs per item increase.

Stage I - Syntactic features: Multistage similarity assessment begins by using a syntactic measure of
similarity which is based on features that form.an explicit part of the representation of the items being
compared. Measures deriving similarity from the number of common and different features that may or
may not be combined with weigths can be used at this stage (Tversky, 1977). Alternatively, models of
similarity assessment mentioned in 3.1 like k-d trees may be employed for that purpose. At this stage,
similarity assessment does not depend on the representation of the domain theory. No knowledge but
that encoded in the items (cases, entries of database) is used explicitly. Since this stage is usually com-
putationally cheap it is well suited to be used for preselecting items.

Stage II - Pragmatic relevance: A pure syntactic approach is not sufficient for similarity assessment.
First, a difference with regard to only one feature results in a high statistical similarity score but may
be based only on a high agreement with regard to unimportant features. Vice versa, a great number of
differences between two cases leads to a poor statistical similarity score but may camouflage an agreement
with regard to important features. For that matter, the next stage proceeds by allowing for the influence
of pragmatic determinants (e.g., goals and knowledge)} on similarity assessment. In goal-driven similarity
assessment {Janetzko, Wess, & Melis, 1992), for example, a set of features is computed by using EBG to
single out those features that are of pragmatic relevance according to a goal and a domain theory. At
this stage, similarity assessment makes use of the representation of the domain theory and pragmatic
determinants like goals or purposes. This stage is computationally more expensive than the first one.

Stage III - Consistency: For economical reasons, the kind of knowledge used in multistage similarity
" assessment is distributed on three stages. Knowledge that can be used as a test to rule out similarity
of items has not been employed in the preceeding stages. This kind of knowledge is taken to reject
items that are definitely dissimilar when compared to the input item. This stage is extremely dependent
on the domain theory and on the application. As a result, there are various possibilities to perform
consistency tests. For example a diagnostic application consistency may be defined by a model-based
diagnosis approach c.f. (Koton, 1988). Depending on the respective application this consistency check
may be very expensive. Hence, this procedure is left for the last stage of similarity assessment.

5 Conclusions

Although up to now there is not.a clear division into demands for knowledge-based steps of retrieval of
cases and others, empirical results show a correspondence of knowledge-based and not-knowledge-based
preselections with the selection of cases by experts and novices respectively.

Novick (1988) has found differences between the retrieval cues available for the retrieval process by
experts and novices: Novices almost exclusive rely on salient surface features of the target. Experts,
however, will be able to use both surface and structural features. For common domains Holyoak and
Koh (1987) established that retrieval of analogues relies more on surface similarity and less on structural
similarity (than mapping). This might be simulated in the retrieval included in CBR by a pure statistical
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preselection followed up by a more knowledge-based final selection step. An attempt to capture the
novice pheneomenon is done by Gentner and Forbus (1991). They use as a first stage a matcher that
works as follows: Each case is stored with a content vector (vector of number of occurrences of predicates,
functions, and connectives) The content vector of each case is compared with the computed content vector
of an entered probe. Hence, this stage consists of a purely statistical syntactic comparison. Afterwards
a matcher calculating literal similarity is applied to the output of the first stage.

This does not mean that knowledge-based similarity assessment in general provides only sufficient
selection criteria. On the contrary, the domain theory can provide necessary criteria, too.

Depending on the pecularities of the domain there is the possibility to introduce knowledge-based
modifications, e.g., of a pure statistic preselection by the contrast rule (Tversky & Gati 1982). This
may be reasonable if the domain under study provides features or combinations of features which make
usability probable or which rule out usability.
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Abstract

In this paper we are engaged in the tnterpretation and representation of spatial arrange-
ments and relatiouships rhat hold hetween different kinds of objects. because this is one of
the most crucial issues in case-based bailding design. The core idea of this paper is. that
what we represent in a case is not ouly an abstraction of the sparial arrangefnents, but also an
abstraction of how a case was huilt. Every case represents two different kinds of information:
The first abstraction concerns the shape and location of object and their spatial relations.
We prescut a relational symbolic case representation that takes primarily this information
into account. The second abstraction concerns the constructive-technical information of a
case. therefore information about the applied sequence of spatial operators. This information
is represented in an operational symbolic cuse representation. Thus, we discuss how useful
are information about the sequence of applied operators to solve ambiguity problems that
are connected t6 a symbolic reinterpreation of a spatial arrangement and model a change of
perspective taken this operator sequences into account.

1 Background and motivation

The interpretation and representation of spatial arrangement and relationships between different
kinds of objects belongs to the most crucial issues in case-based building design. Our work in
this context is influenced by two approaches that were presented by [Gentner1983] on the one
hand and [Indurkhyal992] and [O’Haral992] on the other.

In lLer structure-mapping theory Gentner [Gentner1983] [Gentner and Forbusl991] argues - as
opposed to other approaches - that the meaning of a given case has to be derived from the
relations of its parts. rather than from attributes or properties. A case is described by higher
order relations between its parts, and similarity assessment is based on these relations. A lot
of psychological experiments indicate how powerful this approach is and the main idea is very
importaut from a practical point of view as well as from a cognitive science perspective.

However. in recent years in particular [Indurkhyal992] and [O'Haral992] emphasize that Gen-
tner’s approach ouly deals with fized-descriptions of a case. As according to [Indurkhyal992] in
the context of analogy it is very important to take into account that humans often take different
points of view when assessing similarity. The key idea is a process by which new points of
view can be created and these redescriptions can be useful in the matching process. This crit-
icisin Is meaningful from a cognitive science perspective and is just as important as Gentner's
structure-mapping approach. Thus, it is appropriate to combine these two approaches.

What [Indurkhyal992] and [O’Haral992] also contribute to this issue is to emphasize the role of
operator knowledge in analogical reasoning. In his system PAN, [O’Haral992] proposes besides
a set of objects. a set of one-argument operators like TRANSLATION,” ROTATE, REFLECT, SCALE
and a two-argument operator. GLUE. The key idea is to represent the shape of figures taking these
operators into account and similarity assessment is modeled as a match of operators. Indurkhya’s
approach was supported from a cognitive psychology perspective by [Knauff and Schlieder1993]
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and [Boernerl993] proposes an approach in the domain of architecture design, that is strongly
influenced by such approaches.

Strictly speaking, the main concern of Indurkhya's and O’Hara’s approaches is shape represen-
tation and they thereby deal with spatial relations among objects. On the other hand, the main
advantage of Gentner's approach lies in the stressing of the importance of the relations between
the parts of a case for similarity assessment. In the light of this, we concentrate in this chapter
on the combination of operator representation and spatial relations.

It should be noted here that a symbolic description of a spatial arrangement can be either
based on relations or on operators. The first type of description specifies spatial relations that
hold hetween the objects. A typical example would be to represent the distance between two
objects by distance(A,B,50). The other type of description specifies hiow the arrangement is
constructed out of a set of primitive objects by applying spatial operators. As part of such a
description the expression B = translate(A,50) could appear which says that the object B is
obtained by translating the object A a certain distance.

We will distinguish these two approaches to spatial representation and speak about relational
and operational symbolic descriptions. By making appeal to different mathematical concepts.
relational and operational description express a difference in emphasis too. i.e. emphasis on the
static (perceptive) or the dynamic (constructive) aspect of spatial arrangements respectively.
The core idea of our *work is to integrate these two aspects in the process of spatial similarity

assessinent,
We present an approach that represents cases symbolic as sequence of primitive and complezx
spatiel operators. A priomaitive spateal operator in our meaning combines or moves primitive
parts siich as COPY, MOVE. A complex spatial operator is a combination of a get of primi-
tive operators. which application leads to a specific spatial arrangement. The complex spatial
operator ARRANGE-IN-A-LINE for cxanple, builds a line of a variable number of object-
s (may be with different shapes). Possible parameters are x-orientation, y-orientation,
number-of-objects, distance-of-objects. The following example gives you a first idea of
what we are planning to do. It illustrates the function of a very important operator. which can

be called ARRANGE-PARALLEL-TO-LINE.

2 A short glimpse at a typical planning prbblem in FABEL

In the University of Karlstuhe. the computer-driven construction-design system DANCER has
been developed. The system lelps architects deal with complex design-and planning- processes
and enables them to present designs in a more transparent and comprehensive manner. The
origins of this system are the architectual works of Fritz Haller. in particular the construction
set for wmultistorey office or school buildings. called MIDI. Tt intergrates the complete technical
equipment with cabeling. piping warn and cold water. used and fresh air. electric supplies and so
on. [Hovestadt1992]. In DANCER all subsystems arc represented as civcles and ellipses. which
denote places in a multidimensional design space. To keep it simple we outline one typical

exawple of a planhing situation.

Figure 1: (a) Given Solution: (b) New Problem: {¢) Solution of the new planning problemn
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Figure 1. shows a part of the ellipse and circle representation of an air network of an office
building. Figure 1(a). describes a known arrangement of supply air outlets for a given building,
which had been planned earlier. Figure 1(b) is a new problem description: The architect has to
plan the arrangement of the outlets of a fresh air network in another building and the ellipses
represeut only their rough location. As we immediately see, 1(a) is similar to 1(b), because
there are only three differences: The orientation of the network, the difference between fresh
and supply air and the size of the building. Figure 1(c) shows the solution of this problem, by
adopting the given example 1(a).

Formulated in generally applicable terms, a case, in our approach, is given as a sequence of
diagrams - the first represents the starting point or problem description, the last, the goal or
solution description. Figure 2. is absolutely simplified, but it shows the double application of

the operator ARRANGE-PARALLEL-TO-LINE and the result.

Problem Solution
a O0oag
O 00 © OO0 O 0O0
. e . aga
diagram 1 diagram 2 disgram 8

Figure 2: Case in case library

We are going on the assumption now that this case is represented in the case library and another
problem description as in figure 3. is given.

2

dagamt

Figure 3: New problem

The new problemn is simaler to the represeuted case. because it can be solved by the application
of the same spatial operator ARRANGE-PARALLEL-TO-LINE. The only difference to the
represented case is the x- or y-orientation and the number of objects. We now just have to
adopt this solution taking these two differences into account. Two parallel new lines will be

built (figure 4).

Probiem : Solution

® e gon
0 go Ce s oo

Figure 4: Solution of the new problemn

3 Using information about the perception of a case and how
it was built: Relational and operational case representation

It is important to recognize the core idea of this paper: What we represent in a case is not. only
an abstraction of the spatial arrangements. but also an abstraction of how a case was built.
Every case represents two different kinds of information:
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e The first abstraction concerns the shape and location of object and their spatial rela-
tions and the relational symbolic case representation takes primarily this information into
account.

e The second abstraction concerns the constructive-technical information of a case, therefore
information about the applied sequence of spatial operators and the operational symbolic
case representation takes primarily this information into account.

We will call the first (perceptive) abstraction grouping, the second (constructive) sequencing.
The following figure gives a flavor of this distinction.

Grouping A Grouping B Sequencing A Sequencing B

O 0| 2
Figure 5: Grouping and sequencing of the same spatial arrangement of objects

o ol fo

Formulated in generally applicable terins the relational object representation (REL) represents
the groupings of the objects of a case as a partition of the set of objects, whereas the operational
object representation represents the sequencings as a permutation of a set of objects and we
know that there are much more permutations than partitions ! We have exactly

nl sequences. in our case 362880. if n=9

2™ groupings, in our case 512. if n=9

As we immediately see. we get more information from sequencing, because it chooses from
much move alternatives. Our proposal is to represent these two different aspects of a spatial
arrangement in the concept-network. Thus. every concept represents fivstly information about
the arrangement of objects. and secondly one or just a few default construction sequences. The
concept arranged-in-a-line. for example. can be captured in the following figure.

21
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- H S ]
recognize - | | generate ]
. arrangement ! sequencing
of objacts i of objects
)
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gestait ‘ " history !
. |
2l 0| ¢ ! =0
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o e lo| + § =0=0
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Figure 6: Cowmponents of the concept arranged-in-a-line

We call that part of the concept representation that represents the arrangement of objects the
recognize-component, while the representation of defaults sequences is called generate-component.
The recognize-component must mateh a parametrized geometrical case representation with a
symbolic representation of a concept. The generate-component has to transform a symbolic
represeutation into a geometric representation. The following figure gives you a brief impression
of relational obyect representation and the operational case representation of the same case.

'A partition of a set M s a disjoint nuion of subsets. A permutation of n distinct objects of length k is an
ordered arvangement of any k of the objects {Graham et al.1989]. ‘
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Figure 7: The relational and operational case representation format

4 Ambiguity and change of perspective

A key issue of a symbolic reinterpretation of a geometric representation of a spatial arrangement
is its ambiguity. That means that there are a lot of different ways of interpreting a given spatial
arrangement and we have to find the right - or at least.the best- one. Gentners approach has
to deal with sich problems and Indurkhya’s and O'Hara’s works on representational change ave
concerned witly this issue too. We now want to use the above ideas to deal with such problems
and propose a change of perspective. taking different operator sequences into account.

Iu principle. there are as many perspectives on a case as permutations of the objects are possible.
In order to better understand the process by which people construct a spatial arrangement of
objects we are planning to conduct a series of psychological experiments. Special attention will be
paid to the sequencing of spatial operators such as moving, copying and combining object parts.
Owr working hypothesis predicts that the number of ways in which humans actually sequentialize
the construction process is far inferior to the number of all combinatorially possible operator
sequences. Analysis of the performance data should further show whether a set of preferred
operator sequences can be identified. that is, sequences whicly people use as standard, default
solutions when they are confronted with a construction task.

If evidence supports the assuunption of default sequences this would provide a natural solution
to an issuce that [Indurkhyal992] addresses in connection with liis computational approach to
analogy. Central to any analogy problem of the type A is to B as C is to D (where D has to be
computed given A. B and C). is the representation of the objects involved. In the spatial domain
the object represeutation specifies how an arrangenient can be constructed out of primitive parts
by means of primitive operators. Generally. the representation is not uniquely determined be-
cause therc arve different ways to decompose an arvangement into parts. Since the computational
approach to analogy is based on structure-preserving mappings between object representations
this kind of indeterminacy becomes a serious obstacle. There is no escape from the problem by
simply restricting the nuimber of primitive parts and operators. As [Indurkhyal992] pointed out
indeterminacy can arise with just a single primitive part and two unary operators.

(O Haral992] proposed to resolve the problem of representational indeterminacy by introducing
a normal form for operator-based descriptions of spatially arranged objects. His PAN algo-
rithm uses normal form input descriptions of geometrical analogy problems. This dramatically
siplifies the task of finding an analogy at least fromn. the point of view of computational com-
plexity. The essential idea behind this definition of the normal form is to distinguish between
an operator GLUE that combines primitive parts and the operators that move primitive parts.
suchh as ROTATE. A noral form representation then consists of an operator trec whose top
node is & GLUE operation possibly followed by othier GLUE operations in right-associative for-
m. The wmoveent operators appear as inner nodes without their position obeying any further
constraints. However, as [0 Haral992] observed. this normal form does not eliminate all repre-
sentational indeterminacy. Some spatial arrangements can be described by different normal form
representations. It is (uestionable whether the choice of the label "normal form” is appropriate
under these cirenstances.
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Default sequencings of operators that people use when constructing spatial arrangements could
provide a better solution to the problem of representational indeterminacy. Consider a spatial
arrangement consisting of an alignment of objects, say, five squares in a horizontal row. We
conjecture that there is only a very restricted number of default ways to construct such an ar-
rangement (1-2-3-4-5, 5-4-3-2-1. 1-5-2-3-4, ...7). It would make sense to take only these standard
decompositions into account when building a description based on a single primitive part, the
square, and a unary operator, translation. One would not end up with a single normal form. but
instead with a small set of standard representations. We do not expect the number of standard
representations to be large since cognitive processes typically only consider a constant number
of cases out of an exponential number of possible ones. A further reduction of complexity could
be achieved by ranking the standard representation according to its frequency of use as can be
revealed by psychological experiments.
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1 Introduction

The application and use of case law provides a fertile area for testing concepts and ideas from the
domain of case-based reasoning. In UK law, the legal decision maker is as much bound by past
case law as by statutes. It is the job of the legal decision maker to decide whether a case in case
law matches the present case in order that the present case should be decided in same way as a
relevant past case. Acts which have been on the statute book for some time may have generated
significant bodies of case law, all of which may be potentially relevant. Complex domains such as
legal reasoning require the ability to choose between and combine exemplar-based reasoning and
generalization so that the techniques can be used in support of one another. Index transformation
can also provide a different view of the case base by leading the problem solver to previously
‘inaccessible cases. The present research looks at strategies where past cases may be indexed and
matched to the present case and ultimately where solutions may be adapted to suit the present
case. Multiple case, multiple features retrieval is proposed an important strategy for the retrieval
of past cases. Generalized features, exemplar-based reasoning and indexing are incorporated into
the design of the prototype system. UK employment law has been chosen as suitable application
area.

2 Multiple Case, Multiple Features Retrieval

There are a number of specific areas of interest when looking at the use of CBR.in the law. A legal
decision maker may use part of a solution from a past case or a number of partial solutions from
past cases to reason about the present case. The problem here involves both the representation of
previous past cases, where important features must be represented in hierarchical order and also
the adaptation of several partial solutions to form an overall solution or suggested decision. The
retrieval of multiple cases based on multiple features is an important strategy. Most case-based
reasoning systems use a single ‘best’ or ‘most similar’ case as the basis for solution [2,5,10], but
clearly systems most suited to legal reasoning are those which combine pieces of several old cases
to solve a new problem [1,4,12,13,14].

Our approach to multiple features retrieval strategy involves using a two step algorithm.
First by using generalized features, the system retrieves all cases which match or partly match
the target case. Then specific features are compared between the retrieved cases in order to
choose the most similar case. In the second step, index transformation can be used to define
specific features. Suppose the case base has cases relating to employment law, with important
features described as below.

e Employment, Sex discrimination, Indirect discrimination.
o Employment, Sex discrimination, Direct discrimination.

o Employment, Sez discrimination, Indirect discrimination, Part-time workers.
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o Employment, Sez discrimination, Occupational pensions.
o Employment, Sex discrimination, Indirect discrimination, Equal pay.
o Employment, Sez discrimination, Indirect discrimination, Equal pay, Special Circumstances.

If the case base is very large and has covered several different areas of law, then the feature
Employment can be used otherwise it can be eliminated. To retrieve cases relating to Sex Dis-
crimination Law we can use Sez discrimination as a generalized feature and retrieve all similar
cases. If we add Indirect discrimination to the generalized previous feature to make it more
specific, we will have fewer cases but they are more similar. By using this algorithm considering
more specific features like special circumstances(e.g. Material difference) we can retrieve the most
similar case. If no exact match occurred when using specific features, we can always backtrack
and pick up cases from the previous search. In the above format the first feature of the list is the
most general feature and the last one is the most specific one. For example, the case of FLETCHER
V.CLAY CROSS (QUARRY SERVICES) LIMITED can be indexed by using Sez discrimination, Equal
pay, Material difference. The first two featuires are very common, so to find more similar cases
we use a Special circumstances feature like Material difference. By doing this the following cases
will be retrieved.

e E. COOMES (HOLDINGS) LTD. V. SHIELDS [1978] L.R.L.R. 263 (c.A.). FEATUREs(Sez
discrimination. Equal pay. Material difference. Eztrinsic forces).

¢ NATIONAL COAL BOARD V. SHERWIN AND SPRUCE [1978] L.R.L.R. 122 (E.A.T.). FEA-
TURES(Sez discrimination. Equal pay. Material difference. Extrinsic forces).

e HODGSON V. J.M. FIELDS INC.[1971] 335 F. supp.731. FEATURES(Sez discrimination.
Equal pay. Material difference. Market forces).

e BERNNAN V. CITY STORE [1973] 479 F.2D 235. FEATURES(Ser discrimination. Equal
pay. Material difference. Market forces).

All four cases above are similar to the Fletcher case and can be used as an exemplar to reason
by. Those cases also can be retrieved by using the like work equalpay feature.
Generalized features, such as we describe above, are conceptually simple but this must not disguise
the necessity of including such a mechanism in a system of this type and must also not obscure
the need to describe generalized features in such away that the system can use them meaningfully.

3 The Use of Exemplars in Legal Reasoning

The approach taken in our research acknowledges and is designed to work around some important
inherent limitations of the law. Legal rules are of necessity underdetermined in that they can
never be written in such a way ds to categorize all areas where they should apply; the law is
made by the process of interpretation and decision making; what Hart, the philosopher of ju-
risprudence, [6], described as the “open textured” nature of the law. A domain of open-textured
rules can be partially defined by examples. The advantage of legal reasoning is that the court
cases are recorded and published, and can be used to provide a set of facts. Because of their
open textured nature, legal rules can cover a wide range of possibilities without any specification.
The same example can be used differently in two different cases. For example the words equal
pay as an open textured concept can cover many different cases in the domain of employment law.

In order to deal with open texturedness the approach taken here is to design the knowledge
base in such a way as to contain instances, exemplars or paradigms of various categories of past
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case. Each new case is analyzed by comparing it to the exemplars that it most closely resembles.
This technique is very useful in case-based legal reasoning where exemplars can help fill the gap
between case descriptions and the language of generalization.

Generalization by itself cannot be sufficient in legal reasoning. For example generalized fea-
tures like sez discrimination or equal pay are clearly too general to retrieve the most genuinely
similar cases from the case base. This problem can be tackled by an approach to knowledge
representation in which full descriptions of known instances or exemplars are represented and
a new case is compared to the exemplars that it most closely resembles. An exemplar-based
representation can reason about categories for which there are insufficient generalizations. It re-
quires knowledge of the relations among features and of the explanatory principles that connect
exemplars to the categories of which they are members [3].

4 Indexing in Multiple Case Multiple Features

A third problem which the current research is investigating involves the problem of indexing.
This is a problem in CBR in general, and in legal reasoning in particular. What happens when
the indexing mechanism does not retrieve relevant cases even though there is one or more rele-
vant case in the knowledge base? In other words what happens when the index of the target case
does not correspond to the one which has been used to try retrieve the past case? A number
of approaches have been proposed including index transformation [16], condensation [9], causal
explanation and decomposition {11}, elaboration [8] and tweaking [15].

When generalized features are used in a large case base many cases are retrieved. Under
these circumstances it is hard to decide which one of the cases represents the closest match. To
alleviate this problem in our research, we concentrate on higher order features such as special
circumstances. For example if we have the set of indexes described below;

o Employment, Sex discrimination, Indirect discrimination, Fqual pay, Special circumstances.

We can use the words Fqual pay as a generalized feature and Special circumstances ( e.g. red
circling ) as a specific feature. If the specific feature did not match any feature in the source cases
and no similar case is retrieved, then some index transformation and elaboration must be done.
In the case TRICO FLORETH LTD. V. S. GROVES AND E. AISTON (L.R.L.R. 1976 327 c.M.-117)
which is about women who claimed that they should be paid the same wage as men who were
doing the same work, the employers resisted the claim on the grounds that the variation in pay
was genuinely due to a material difference (i.e. other than a difference in sex). These are two
very similar cases to the above case and where a different high order index is used.

e SNOXELL AND DAVIS V. VAUXHALL MOTORS LTD. [7]. FEATURES(Sezr discrimination.
Fqual pay. Material difference. Red circling).

e CHARLES EARLY AND MARRIOT (WITNEY) LTD. V. SMITH AND BELL (HUNNINGS, 1988
P.186-7). FEATURES(Sezr discrimination. Equal pay. Material difference. Red circling).

In both of the above cases claims arose under equal pay Act 1970 and the principle issue
concerns the correct treatment of the practice known as red circling or red ringing. Red circlingis
the practice of protecting the wages of an employee or group of employees, moved from a better
paid type of work to a worse paid type of work, perhaps because the first is no longer undertaken.
Such transferred employees are often ringed in red in work schedules. It may happen that where
men and women undertake like work and where all the women are paid less than any of the
men, the discrimination will be justified on the basis that the men are Red circle cases [7]. In
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the last two cases red circling or red ringing can be used as a specific index. But red circling
will not retrieve the first case although it has many features in common. One way to solve this
problem is to use an abstract index which it is not discussed in this paper. Another method is
to use index transformation and elaboration techniques, by adding more detail to the index. For’
example instead of using red circling or material difference we can use better paid type of work to
a worse paid type of work, or equal pay for men and women for same work.

5 Conclusion

In conclusion we have described preliminary work in the design of a prototype system combining
the problems of generalized features, exemplars and indexing in multiple case, multiple features
retrieval. Initial results suggest that the choice of employment law as an example domain has
yielded an extremely fruitful area on which to test these concepts. Further research will concen-
trate on building a larger system in which the concepts-described aboyve may be further refined
and tested. In particular the question of adapting solutions will be investigated.
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Abstract

We propose a probabilistic case-space metric for the case matching and case adaptation tasks.
Central to our approach is a probability propagation algorithm adopted from Bayesian reasoning
systems, which allows our case-based reasoning system to perform theoretically sound probabilistic
reasoning. The same probability propagation mechanism actually offers an uniform solution to both
the case matching and case adaptation problems. We also show how the algorithm can be implemented
as a connectionist network, where efficient massively parallel case retrieval is an inherent property of
the system. We argue that using this kind of an approach, the difficult problem of case indexing can
be completely avoided.

1 Introduction

In case-based reasoning (CBR) paradigm the dynamic case memory is central to the reasoning process
(see the process model in Figure 1) — learning is an inherent part of the process. Although the idea of
using a set of representative instances as the basis for a reasoning system is simple in principle, there are
many difficult problems related to constructing a case base from data (learning), case matching and case
adaptation. Here we do not address the problem of choosing a suitable set of cases, but for our purposes
we assume that they are defined by a human expert, or derived from a large database of observations by
" statistical clustering methods. We will focus on the central problems concerning the reasoning part of
the CBR system: case matching and adaptation tasks.

Much of the published work on CBR has concentrated on applying machine learning methods for
case indexing, in order to avoid costly comparison of the input with the large set of cases in the case
memory during the case matching task [2]. We adopt an alternative approach and show how to construct
a massively parallel implementation of CBR confirming to the so called connectionist architecture (see
e.g. [12]). Connectionist networks are constructed from a large amount of elements with an input fan
order of magnitudes larger than in computational elements of conventional architectures. This means
that the set of connections of the elements can be used for distortion tolerant storing of large number of
cases (represented by high dimensional vectors) by making single elements “sensitive” to a stored item,
l.e, to produce a high output for particular subregions in- the input space. In our approach the case
indexing problem is thus addressed directly at the architectural level where matching can be performed
efficiently by using the available parallelism. On the other hand, chip level implementation of massive
parallelism constraints the complexity of a single computing element to a limited set of operations and
structurally simple local memory. Consequently case-based reasoning, with a knowledge base of high-
dimensional cases as the basis for the reasoning process, offers a very natural computational framework
for connectionist architectures.

In addition to using connectionist models for avoiding the case indexing problem, we will also propose a
uniform solution to the problem of choosing proper metrics for case matching and adaptation. Developing
appropriate metrics for case matching and adaptation-has in practice lead to heuristic solutions which are
hard to justify theoretically. The obvious disadvantages of such approaches are related to the difficulty of
interpreting differences in the similarity of the various cases, and to the related problem of discovering the
significance of the difference of the attribute values. For example in ad hoc solutions based on uncertainty
values, in most cases it is very difficult to interpret if e.g., the difference between values .9 and .99 is less
important than the difference between .6 and .8. To avoid resorting to such ad hoc heuristic solutions in

*This research was supported by Technology Development Center (TEKES) and Honkanen Foundation.
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Figure 1: A generic CBR system architecture.

the reasoning process, we propose that one uses methods developed for Bayesian probabilistic reasoning
systems [10], [8]. In Section 3, we show how our Bayesian reasoning framework, which we call Bayesian
case-based reasoning, offers us a uniform similarity metrics for both the case matching and adaptation
tasks. In Section 4, we present a massively parallel implementation of our Bayesian CBR. system.

2 Massively Parallel Case-Based Reasoning

Let our knowledge of the problem domain be coded using m attributes A;,..., Ap,. A case Cy is repre-
sented as a vector ¢ consisting of a value assignment for these attributes: ¢y = (a1(k), ..., am(k)), where
a;(k) is either a value of attribute A;, or undefined. Our case base C is a collection of [ case vectors,
C={Cy,...,Ci}.

A CBR process starts when an input case vectorc* = (af, ..., a},) is presented to the system. The goal
is to provide each case Cy with a similarity rank S(C}) representing the similarity between the vectors
cx and ¢* (case matching task), and each attribute A; not defined in ¢* with a value consistent with the
highly ranked cases (case adaptation task). For a very general class of case-matching and case adaptation
algorithms this can be done in a massively parallel connectionist architecture. As an illustrative example,
let us consider a case matching task where the similarity rank for a case Cy is a function depending on
the inner product of the case and input vectors: S(Cy) = F(cpc*). Let us now assign one processing unit
for each of the cases and each of the attributes, and connect each case unit to all the attribute units that
belong to the corresponding case value assignment. The weight of the connection from an attribute unit
to a case unit is equal to the corresponding attribute value in the case definition. Hence each case vector
cx is coded as a set of weights attached to the conmnections leading to the corresponding case unit (see
Figure 2).

Let the value of an attribute unit be either given in the input case assignment c¢*, or zero if the value
is undefined. In our connectionist network, each unit sends its value to all the adjacent units, which sum
all the incoming messages weighted by the connection strengths of the corresponding arcs. It is obvious
that the total input of a case unit is the inner product cic*. If each case unit now computes the function
F using the input as the parameter, we have accomplished our goal: parallel computation of the case
ranks. A similar construction can be presented for the case adaptation task. In Section 4 we present a
massively parallel implementation of CBR where both the case matching and case adaptation tasks are
performed using the same, undirected connectionist network.

As there is nothing that resembles a shared memory, the connectionist computing architecture is
inherently parallel, and each element can perform comparison of its input against the value stored in
the interconnections independently from the others. This offers a linear speed-up in the comparison
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Figure 2: Massively parallel implementation of case matching.

process with respect to the number of computational elements available. This type of a memory-based or
instance-based reasoning approach allows matching of the input against millions of stored cases efficiently

[4]. |
3 Bayesian Case-Based Reasoning
In our Bayesian framework, the case attributes A,,..., A, are assumed to be discrete random variables.

This is a very natural assumption in the context of expert systems, which currently is the main application -
area of CBR. If an attribute is not discrete, it can be discretized using standard quantization methods.

Also all the cases C,...,C) can be regarded as binary random variables, with C} = 1 denoting the fact
that case Cy is in question, C) = 0 the opposite situation.
Let an attribute A; has n; possible values, aj1,...,a:n;. A case vector c; is a “prototype” represen-

tation of a class of (in some sense) similar instances, and is coded as a vector

ek = (Pe(an1), - - -, Pu(ain,), Pe(az1), - - ., P(@zn,), - - - Pe(am1), - - -, Pelamn,, ),
Py (A1) Pk&z) P;Iz;m)

where Pi(A;) expresses the probability distribution for the values of attribute A; inside the class Cy:
Pi(aij) = P(Ai = a;; | Cp = 1).

Our case base can now be represented as a Bayesian belief network[10], consisting of variables
A1,...,An and C,...,C) (see Figure 3a). Let C* be a random variable the values of which are the
input case vectors, and let ¢* denote the current input vector, the value of C*. The theory of graph-
ical belief network representations provides us with rigorous algorithms (see e.g.[10, 8]) for calculating
probabilities P(Cy = 1 | C* = ¢*) for each case Ci (case matching). What is more, these algorithms
offer also a method for computing probabilities P(A; = a;; | C* = ¢") for all the values a;; not deter-
mined by c¢* (case adaptation). To be able to use these algorithms, we need to provide each arc from
variable C to variable A; with probabilities Pr{a;1),..., Pr(a:n,). In addition to this, each case must
be provided with a prior probability P(Cy = 1). This probability can be estimated by the proportional
number of occurrences of class Cy, if a database of observations is available. Similarly, the probabilities
Pr(aij) = P(Ai = a;;{Cr = 1) can be estimated by occurrences of the value a;; inside class C.

In principle we are now able to solve the case matching task, using the probability measure as the
metrics of our system. In addition, the same method can also be used for the case adaptation task of
our CBR system. However, the network in Figure 3a is not singly connected, which means that there are
loops in the underlying network, if the direction of the arcs is disregarded. In this case, the problem of
calculating the above mentioned probabilities can be shown to be NP-hard [1]. One approach to overcome
this problem is to use stochastic simulation schemes such as Gibbs sampling [3] for approximating the
outcome of the updating process. In our earlier work [9, 6] we presented schemes for implementing Gibbs
sampling on a connectionist network architecture. However, the problem of determining the so called
annealing schedule has proven very hard in practice, resulting to slow convergence of the algorithm.
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Figure 3: Case base as a a) multiply connected Bayesian network with several case variables, and b)
singly connected tree with a single case variable as the root of the tree,

On the other hand, for singly-connected networks, there exists a polynomial time algorithm for belief
updating, developed by Pearl [10]. In the approach introduced in [5], a given belief network is first
transformed to a singly-connected network, which is then updated by using Pearl’s algorithm. However,
as the problem is NP-hard, the transformation process may take an exponential time. In the following,
we show how our case base can be viewed as a simple singly connected network, a tree, in which case
Pearl’s belief updating algorithm can be applied directly.

Let us regard the cases ¢y, .. ., ¢, as mutually exclusive values of a single random variable, C. To be
able to do this, all the cases must be complete, i.e., all the values Py(a;;) must be given for each case
cx. If the user is unable to provide complete cases, the missing probabilities can be filled in by using the
uniform probability distribution (if we do not know the value of an attribute, we assume all the values
to be equally probable). Alternatively, the user may also define another a priori distribution for the
missing cases, if this kind of information about the attributes is available. After storing the complete
cases, we can obviously retrieve any probability Pi(a;;), given a case Ci. In the Bayesian framework
this means that all the variables A; are conditionally independent of each other, given the value of the
variable C. What this means is that the Bayesian network corresponding to this representation is a tree,
where a single variable C is the root of the tree, and variables A; form the leaves (see Figure 3b). To
use this network for probabilistic reasoning, an arc to variable A; must be provided with probabilities
Pi{as1), . .., Pe(ain,;), for all the cases C,...,C). In the next section, we show how these probabilities
can be stored as weights in a connectionist network, and used as part of a massively parallel probabilistic
reasoning process.

4 Massively Parallel Bayesian CBR.

We now show how to construct a undirected 3-layer connectionist network which performs the compu-
tations of Pearl’s algorithm in parallel. In an earlier paper [7] we discussed a related directed 6-layer
feedforward neural network architecture, which has a more complex structure than the connectionistic
network presented here, but used simpler computational elements. In addition to the general idea pre-
sented in Section 2, we need a special intermediate layer, where for each attribute X we have [ nodes,
one for each case (see Figure 4). The total number of nodes in the resulting network is 3 .2, n; + ml +1,
and the number of arcs in the network is given by Y v, In; + Im.

During the network computation process, each node X computes its activation value S(X) using
incoming messages, and sends the computed value further through the arcs leading to nodes in the other
layers. This activation propagation starts when the user sets the values S(a;;) for the nodes in layer 1.
According to the idea of virtual evidence [10], if there exists some initial evidence e for the value a;; of the
attribute A4;, the value S(a;;) should be set equal to the probability P(e | A; = a;;). Total ignorance of
the correct value of A; is represented by setting all the values S(a;1), ..., S(ain,) to be equal, for example
1. If the value of A; is known to be a;; for certain, then S(a;p) should be set to 1, and the values S(aj;)
to 0, for all § # A.

Intuitively the computation consists of two phases. The initial phase, corresponding to a bottom-up
value propagation through the network, performs case matching. As a result, the third layer activation
values gives us.a matching score for each of the cases (i.e., to nodes C}), thus these activation values can
be directly used for classification, if needed. In the second phase, the probabilities are propagated from
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Figure 4: A connectionist network implementing Bayesian CBR.

the top down back to the attribute values, thus complementing the attribute value vectors based on the
“winning” cases. In general this allows many stored cases to contribute to the adaptation by the amount
Jjustified by their original inatching. In the general framework of Figure 1 this approach corresponds to
situation where the case-space metrics and adaptation criteria coincide.

In the following we illustrate more closely how the activation propagation process proceeds from layer
to layer. The first 3 steps correspond to the bottom-up propagation phase, and steps 4 and 5 to the
top-down phase.

Step 1: The first layer contains one node for each of the possible attribute values a;;, altogether E:Z L
nodes. The value S(a;;) is either given by the user, or initialized to the defined a priori value.

Step 2: Layer 2 consists of m groups of nodes, each of which has { individual nodes A;, ..., Aj, making
the total number of nodes in this layer mi. Each node A;; has n; arriving arcs from all the nodes
@;1,...,qn,. The weight W(A;); from node a;; to node A; is P(A; = ai;|C = cx), ie., the
conditional probability that the attribute A;; has value a;; given an observation from class Ck.
The activation value of node A;; is computed by S(Aix) = 3°71, W(Aix); S(ai;)-

Step 3: Inlayer 3, there is one node for each of the I classes. Each node C} receives input from m nodes in
the layer 2, Ay, ..., Ami. The activation value of node ¢ is computed by S(Ci) = 0; []i~, S(Aix)-
This activation gives a score for éach of the stored cases. The constant value 8, = P(C = c¢) is
assumed to be stored in the node Cj.

Step 4: The propagation process returns back to layer 2. Each node A;; updates its activation value

using the formula S(A;x) = S(Cr)/S(Air)-

Step 5: Each node a;; on layer 1 receives incoming signals from [ nodes, A;i,..., Ay. The weight
W(aij)r from node Ajx to node a;j is P(asjlex). The units update their states by computing
S(ai;) = S(aij)}__:;czl W(a;;)xS(Aix). This can be understood as a “correction” to the original
values assuming that the matching cases have prediction value for unidentical, but similar cases.

Using the notation of Pearl in [10], the task of the step 2 is to compute the m values A4, (ck), for
each of the ! cases. As A(ck) is defined as A(ck) = [z, Aa,(ck), the activation value of node ¢ is
S(cg) = P(ck)A(cx). Pearl has proved that this is equal to aP(cy | ¢*), where a is a normalizing
constant. The actual probabilities can now be retrieved easily by normalizing the values S{ci):

1
P(C=ci |C" =c")=S5(Ce)/ Y S(Ch).
h=1

In a similar way, step 4 produces the terms m4,(Ck), and step 5 the values

!
S(aij) = Maij) D 7a,(Cr)P(Ai = aij | C = &) = Maij)m(ayj) = aP(A; = a;; | C" = ),
k=1
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where « is again a (different) normalizing constant. The actual probabilities can be retrieved again by
normalization: P(4; = a;; | C* = ¢*) = S(ai;)/ Y5, S(ain).

Naturally, the two normalization tasks can also be performed in parallel on a connectionist network
by using two extra layers of units.

5 Conclusion

We have presented an approach where case-based reasoning can be implemented as a connectionist net-
work architecture. The method is based on implementing Pearl’s probability propagation as a 3-layer
hierarchical network. The advantages of such an approach are twofold. In the first place, it provides
an efficient solution to the case indexing problem based on the parallel architecture. Secondly, it offers
a theoretically sound Bayesian interpretation of the case-space metrics and its successful application to
both the case matching and adaptation via probability propagation. However, it is evident that there
are several aspects left for further research. The most important of the questions to be addressed is the
proper choice of the cases (observe that in the presence of noise the optimal strategy is not necessar-
ily to store all the cases encountered). In addition, methods to determine the conditional probabilities
P(A; = @;;]C = ci) used by the reasoning algorithm should be investigated. Initially it can be as-
sumed that such probabilities are estimated by the expert in a regular knowledge acquisition process,
but it is clear that one can also use various statistical clustering techniques for this purpose. We are
currently developing learning algorithms for our CBR, systemn based on the information theoretic MDL
principle [11].
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Abstract

This project is an examination of the use of structured, semantic network, representations of cases
for Case Based Reasoning. The Conceptual Graph notation is used to represent complex events and
the aim is to investigate and evaluate methods of defining similarity and adaptation methods for
them. The domain for investigation is the Law of Negligence, where the alleged ability of semantic
networks to represent causal information is expected to be particularly relevant.

1 Introduction

The purpose of this project is to examine the use of structured, semantic network based representations
of cases in Case Based Reasoning. In an effort to avoid the creation of ad koc concepts and relations
the intention is to use results of previous work on semantic networks and on meaning representations
in computational linguistics (in particular Somers’ grid of deep cases [10] which is suggested in [2] as
particularly appropriate for representing legal cases). As explained in a later section an aim is that the
case representations could be parsed from natural language descriptions.

The notation used is that of Conceptual Graphs, though not restricted to Sowa’s concepts and rela-
tions. The choice of domain for investigation was governed by several principles:

1. it should be complicated enough that the representation and inference rules are thoroughly tested.

2. the cases should not just make sense to a very small set of domain experts. There should be enough
common-sense knowledge involved that the problems arising can be demonstrated to all interested
parties.

3. a set of well-defined and generally accessible cases should be available to allow other researchers to
attempt alternative representations of the same cases.

4. the cases should have enough causal or temporal structure that a structured, semantic network,
representation is worthwhile.

The domain chosen is the Law of Negligence (and Nervous Shock), and as far as possible cases chosen
are ones generally described and analyzed in legal casebooks. Legal expertise is sought where it seems
necessary, but the focus is on dealing with the common-sense level of similarity! rather than attempting
to simulate the reasoning of legal experts. There is no expectation that the results will be of interest to
legal theorists.

An example of a case representation is given in Figure 1 below. The case represented is that of
McLoughlin v. O’Brian [1982]. In this case the plaintiff claimed (successfully) for the nervous shock
caused when she discovered (two hours after the event) that one of her daughters had been killed and
other members of her family injured in an accident caused by the negligence of the defendant. Note that
this example uses Sowa’s case relations rather than Somers’ less generally known ones. Many aspects of the
representation are arguable, but it gives an idea of the general form and complexity of the representation.
Explanatory information and the decision itself are not represented in this example, as the initial aim is
to see the requirements of a system that just matches fact descriptions.

lan informal example of commeon-sense (conceptual) similarity might be that ‘Mary threw a brick at Bill’ is {(arguably)
more similar to ‘Mary punched Bill’ than it.is to ‘Mary threw a tennis ball at Bill’, despite the fact that it shares more
individual concepts with the latter.
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Figure 1: Example Case: McLoughlin v. O’Brian and others 1976

2 Similarity and Adaptation with Structured Representations

Structured representations present some particular problems for similarity measurement over and above
those for attribute-value representations. In the simplest case, where the Conceptual Graphs of the
two cases to be compared are isomorphic, the similarity of the two cases can perhaps be defined as a
function of the similarity of the aligned? concepts and relations in the two graphs (this is suggested as
a similarity metric for CBR in [8]). Even within this very simplistic scheme for comparing structured
representations, however, there are complications - particularly with regard to defining a static similarity
- metric for individual concepts (see below).”

More importantly, however, it is hard to guarantee that two Conceptual Graphs with the same
meanings® are isomorphic. One of the goals of Conceptual Dependency theory (eg [9]) was to define
a single, canonical representation of the meaning of any utterance, regardless of the particular words (or
even language) chosen. It is not clear whether such an aim is achievable, in fact it seems Schank and
his co-workers now use much higher-level representations, that are ‘expanded-out’ according to need (see
review of CD theory [7]).- This suggests that even cases that can be said to have identical meaning can
potentially be represented in different ways. Clearly cases that are merely similar are gomg to share much
less structure, so strictly isomorphism-based matching is going to have limited use.

In fact it is found with legal cases that even cases that are quoted as direct precedents tend to lead
to representations that are very far from isomorphic. How can this problem of lack of isomorphism be
tackled? In this research project there are two general approaches adopted:

1. Graph Grammar rules:{4] a set of allowable transformations is defined that change the shape of the

2Medin et ol [3] describe alignment as the process of deciding which features of one object are to be compared to which
features in another object when the two objects are compared
3the term meaning is used rather informally throughout this abstract. It awaits formal definition.
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graph while preserving its meaning. Most of these rules might be ‘common-sense’ transformations,
for example ‘if two actions have the same physical cause and happen at the same time they also
have the same location), while some would need to be domain-specific.

2. Abstraction: an often used technique to compare semantic networks is to progressively abstract
the graphs until a common abstraction is found (eg (6]). Three (related) methods of automatically
abstracting graphs are considered:

e abstracting individual concepis: particular concepts (or relations) might be locally replaced by
generalizations (ie concepts higher up a concept hierarchy).

o atiribute dropping: concepts that can be identified as ‘least important’ to the meaning of the
case may be dropped.

o converting subgraphs to nodes: subgraphs describing a part of the case might be replaced by a
single node approximating the meaning of the subgraph. (Clearly this method is very closely
related to the use of a graph grammar mentioned above.)

Each of these techniques is potentially complicated, and in general it will not be possible to guarantee
that they will not alter the meaning of the case transformed. Thus it is necessary to associate some form
of certainty factors with transformations, to ensure cases are not transformed beyond a point at which °
they might be expected to preserve their meaning. .

3 Similarity of individual concepts

As part of any similarity metric between semantic networks there will need to be a sub-metric of similarity
between individual concepts. Some schemes considered include:

e Predefined metric: each concept is assigned a similarity rating with each other (for example in a
matrix). If the possible concepts to be represented cover a sizeable proportion of natural language
concepts then manually producing such a metric will be impractical.

e Reduction to primitives: each concept is reduced down to a subgraph of a limited set of primitive
concepts and relations (as in Schanks Conceptual Dependency theory eg [9]). These primitive
relations can then more easily be compared to each other. There are many open questions here
regarding what primitives might be used and how far this process should go, and it is not clear how
helpful primitive representations are.

e Comparison of features: if each concept used is defined in terms of a set of features then similarity
can be defined in terms of number of shared features, perhaps with weighting of particular features.

e Traversal distance in a concept hierarchy: if all concepts are in a hieradaterchy (as in [11]) then the
similarity between two concepts can be defined in terms of the number of edges traversed between
the two concepts, or the depth in the hierarchy of the least common supertype.

Each of these schemes has separate problems but there is one problem of particular interest that they
all share: the problem of the context of the concepts.

4 Dealing with Context in Similarity Judgements

In the Ps‘ychology literature the subject of similarity is an important one (see [3] for a recent review).
Within that literature it is generally held that there can be no fixed, context-independent similarity rating
between two concepts: similarity only makes sense ‘with respect to’ something.

As a practical example, imagine comparing two legal cases, within one case is the concept ‘dog’, in the
other is the concept ‘hi-fi’. If these two concepts are aligned, then their similarity needs to be assessed.
This could be done by counting edges traversed in a concept hierarchy hierarchy, or counting up shared
and non-shared features to arrive at a rating. However, the problem is that the similarity of the concepts
depends on their roles in the cases. If the two concepts represent objects that have been stolen, then their
monetary value might be seen as the most important feature to be compared. If they have been causing
a nuisance their ability to make noise might be important. If they have been intentionally damaged
(harmed) then different criteria again might apply.

4clearly this rule would actually require more gualification than given here
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This problem does not quite arise in this form with attribute-value representations, as the name of the
attribute in a sense fixes its context. If there are very specific predicates such as ‘EMPLOYEE RECEIVED
SOMETHING OF VALUE TO SWITCH EMPLOYMENT’, where the values allowed include the list of items
received ([1]) then it can be known which features of the items are relevant, and so perhaps it is possible
to set up a static metric.

Even with attribute-value representations, however, the subject of context is sometimes seen as rel-
evant. Thus Cain et al [12] use ‘explanation based learning’ techniques to determine how important
individual features are in terms of their role in an explanation of the case using domain knowledge. The
welght given to individual similarity matches is therefore dependent on the context of the other features
in the particular case.

One approach to context considered in this project is within the framework of using a concept hierarchy
to determine similarity. All common supertypes of the two concepts matched are considered. The aim
is to find the least common supertype that could play the role of both individual concepts in the two
graphs.

Thus in the example of the dog and the hi-fi comparison, common supertypes might be ‘valuable-
object’, ‘producer-of-noise’, ‘object-of-size-about-x’ and so on. Inferences can be made to test which of
these can sensibly fit into the position of the concepts in the separate graphs. Similarity could then be a
function of the depth in the concept hierarchy of this least common supertype.

There are other aspects to the problem of context, and part of the research project is to characterize
the problem in detail.

5 Creating Representations Directly from Natural Language

An important feature of the representation used is that it be (theoretically) possible to create it from
natural language by machine. Partly this is because of a desire to use the similarity metric results in
areas such as information retrieval, and partly to avoid the creation of ad hoc concepts and relations.

At present the issue of actually undertaking the translation has not been tackled, but the intention is
that the representation be something that a computational linguist would recognize as a representation
of the meaning of the original natural language. The aim would be a representation form and set of
transformation and matching rules that fulfil Hirsts[5] desiderata for a semantic interpreter of natural
language (zbid. p. 137) , in particular the idea of compositionality: ‘[...]| We would like each syntactically
well-formed component of a sentence ‘to correspond to a semantic object, and we would want that object
to retain its identity even when it forms part of a larger semantic object.’

6 ~ Experimental Evaluation

The intention is to evaluate the ideas described experimentally as well as theoretically. The following is
a simple example of the sort of evaluation it is hoped will be able to be carried out. A set of subjects
view a series of events (similar to events in legal cases). Each is then asked to describe these in their
own words. The descriptions are converted algorithmically into meaning representations. The test of
the system would be whether it is able to match all the alternative descriptions of the same events, and
distinguish representations of different events.
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Abstract. This work is related to the prediciion of process behaviours. From the description of a process
behaviour since its beginning, the aim of our system is being able to predict its follow-up. In the domain
considered, the use of a model is not sufficient. The only reliable knowledge consists in a set of the behaviours
of some processes. Their utilization has led to a case-based approach. A case describes the behaviour of a
process with sucessions of events. As events may be quite different, cases are considered from a viewpoint. In
this paper, we describe how matching is realized thanks to a string matching algorithm.

1 Introduction

CBR consists in searching in memory for a problem similar to the problem to resolve and adapting its solution,
when necessary, according to the differences between their terms [6]. So that the similarity measure be accurate, a
case has thus to represent relevant pieces of information on the problem. This requires a good understanding of
the initial episodes [4].

Our system has to predict the behaviour of one process, more precisely its follow-up. The system receives
information on the process behaviour, from which it has to predict what will happen afterwards. This problem is
not new. Prediction is indeed an important field of Al. But working realized in this area has always concerned
domains for which the process could engage in a limited number of behaviours [1]. Such is not the case with
regard to the domain chosen for this work, forest fires. In this domain, process developments depend on many
interacting parameters that may take an infinity of values.

There exists some models that can help to predict the propagation of a fire, i.c. to know where the fire will be
and when. Some of them evaluate propagation speed. These models don't take explicitely into account parameters
that the experts consider as the most important for a fire development : relief, vegetation, wind. Actually,
existing models restrict a fire to its combustibility properties.

Little knowledge is available about the influence of these last parameters on a process behaviour. These models
take into account the influence of the value of one parameter at one instant. The approach chosen is different, we
consider indeed the history of parameters : if during their development, parameters take the same succession of
values, then two processes are likely to behave the same way.

This is the reason why we use case-based reasoning. While in CBR some features are extracted from the initial
description of experiences and make up the representation of a case, a case describes here the totality of a process
" behaviour, including the values of the parameters that influenced it.

Processes result from many different types of parameters. Despite of this, cases have been represented in a
uniform formalism, the one of "event". But such a representation does not permit to index the case base.
Selection and matching phases are thus mixed : the algorithms are described in this paper.

2 The Domain : an Overview

A forest fire propagates under the influence of many parameters such as wind, relief, vegetation [7]. It can run
across different accidents of relief, different vegetations. And during a fire development, several winds with
different directions and speeds may coexist. That's the combination of these different parameters that determines
the propagation.

To fight efficiently against fires, firemen have to anticipate the propagation. It is realized in the field thanks to

the observation of some parameters like those above. Some data can be calculated. Propagation speed for
example is very critical. Its prediction is realized thanks to some models of propagation [2].
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They rely on a combination of parameters too. But they consider the value of some parameters at one instant
only, whereas the influence of parameters like relief, vegetation and wind is not limited to one instant but to the
whole of the fire follow-up. The clearing of a valley may for example accelerate it or change its direction, We
consider then that if during their developments, two fires go through the same values of parameters, e.g. run
along the same relief, then they will behave the same way afterwards. Some of the parameters are quite stable,
we concentrate here only on changing ones.

3 Method being used

This method which relies on similarities between histories of parameters values is case-based and runs the
following way : from the description of a process since its beginning, i.e. a target case, the system has to search
for a process, a source case, which is gone through the same succession of values of parameters. Then it uses the
behaviour that followed to predict the one of the target case [S].

The searching of an history of parameters requires a partial order between values of parameters. We introduced
two types of parameter order : one relating to time and the other relating to physical distances. They are non-
conflicting.

3.1 Initial Description of Fires : some Properties

The reports writien by firemen describe the environment in which the fire occured, its propagation, and the value
of some parameters : the relief and the vegetation run along, the changes of wind. In the follow-up we consider
that these parameters take successions of values, extracted directly from the reports or resulting from a
transformation. One of them is described in section 4.

As we have to locate an history of fire development in an other one, we need to introduce a partial order between
values of parameters making them up. This is realized in the reports thanks to the fire departure location and
date. Relief is mmally described thanks to a curve. The points that make it up are located a certain distance away
from the fire start. It is the same for vegetation. Wind is located in space and in time but it is mainly time that
permits to order its successive values.

We assert the following : )
Let v1 and v2 be two values of parameters, either relief, vegetation and wind and i1, i2 be the instants/distances
associated with them then we have :

v1 occurs before v2 iff i1 before 12, if il and i2 are dates «
iff il <12, if il and i2 are distances | C°

Relation (*) can be false in two cases :

- if v1 and v2 are located thanks to some distances and fire spreads backwards. But this is quite seldom and in our
-system we neglected this case,

- a fire can spread in several directions and speeds may be different in each one. We alleviated this problem by
considering and representing separetely different directions of propagation.

Relief has a continuous description, whereas vegetation representation is segmented and wind description is
discrete. Despite of this, we utilize a uniform representation in terms of events.

3.2 A Uniform Representation for Heterogeneous Parameters

Matching between two cases needs 1o take into account the succession of values of all the parameters considered.
But inside each case, these parameters may be quite different and we can consider that we will never find a source
case matching a target case according to all of them. Indeed, even if two fires happen at the same place, experts
recognize that fire behaviours may be very different : only the relief may not change but all the other parameters
would. That's the reason why we decided to match cases from a viewpoint. Matching from a viewpoint consists
in comparing cases restricted to one of the parameters influencing propagation [5]. In our system, two cases are
then similar from at least one viewpoint.

CBR may be different from one viewpoint to the other one, it is the same for representation of parameters.
Indeed, parameters have either a continuous or a discrete description. But each value can be considered as having
an effect on the environment on which it has an influence. For that reason, we associate an event with each
change of value of one parameter. A change of wind for example constitutes an event.
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But which value to choose if a parameter has a continuous description ? This problem arises for relief. In fact,
our continous description is tranformed into a discrete one through an association of data.

4 From a Continuous to a Discrete Tranformation from the Relief Viewpoint

Matching's aim is to find a relief which exactly maiches an other one. But this can seldom occur. And a
superposition of curves, initial representation of relief, is not adapted : there can be a difference of height of the
points compared, or points at the same height may be shifted and despite this little difference, matching may fail.
What seems important for experts is the succession of slopes, of accidents of relief run along. We have at our
disposal eight. types of forms : valleys, cols, cliffs, etc. And before matching the system proceeds to a
transformation of curves into successions of slopes, either descendant or ascendant. Then it tries to associate
successive slopes to constitute some forms such as the one mentioned above. This step is realized thanks to a set
of rules. The generated forms or remaining slopes make up events. At the end of the transformation, we obtain
sequences of events from the viewpoint relief whose an exemplar is given below :

¢l = an AscendantSlope ¢2 = a Peak e3 is a CLiff ¢4 is a Thalweg
degree is #pos0 degree is made up of degree is made up of  degree is made up of the
distance is 25 m the following slopes the following slopes following slopes
degree is degree is degreeis (a.
(an AscendantSlope (an AscendantSlope  DescendantSlope
— degree = #pos0 —p» degree =#pos0 ——p» degree = #negl
distance = 1300 distance = 3100 distance = 5150
a DescendantSlope a DescendantSiope an AscendantSlope
degree = #negl degree = #negl degree = #pos0
distance = 2000) distance = 3900 distance = 5750)
" an AscendantSlope
distance is 1300 m degree = #pos0 distance is 5150 m
distance = 4400) ’
distance is 3100 m

Fig. 1. : A Sequence of Events for the Relief Viewpoint

The degree associated with a form expresses the degree of membership of the form to the model of this form. For
forms like peaks, the degree is made up of the slopes that make it up. The distance is a distance of the relief
accident from the fire departure location and permits to locate these events on a "distance” axis.

From the other viewpoints, a transformation can be realized. Such is the case of the wind viewpoint for example.
It only consists in associating relating events with a propagation axis.

5 Case Representation

* ‘Whatever the viewpoint considered, all the events are related to the next. That means that events located thanks
to some distances (relief, vegetation), are related to the next on the "distance” axis, while those described with
time are related to the following on a "time" axis.

Each event conveys an effect on the propagation but our system does not yet consider their combinations. We
get then the following case description (fig. 2).

A case describes an achieved propagation of fires in terms of events (represented by circles). A fire can spread in
several directions. Only one is represented here. Wind and relief are transformed for matching. Result of
transformation is kept for storage in the case base.

Like wind, propagation events are associated with time. Propagation events indicate the progression of fire by a

location reached and a time. Hypotheses on future propagation are expressed thanks to these events. The
mechanism permitting to generate them is described in [5].
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Fig. 2. : The case Representation

6 Matching between successions of events

The succession of events to compare is a collection of events relative to the same viewpoint, i.e. relief,
vegetation or wind. In our system, matching and selection are mixed.
The following algorithm permits to select the best case :

The target case is the case, i.c. fire, whose we wish to predict the future evolution
1_ empty list.
Starget _ the sequence of events relative to the viewpoint v which occured sinc
the beginning of the target case,
For each case ¢ in the case base do
for each direction of propagation in ¢ do
Ssource _ the sequence of events relative to the viewpoint v which occured
since the beginning of the source case. °
cost _ the littlest cost of matching between Starget and each subsequence of -
Ssource of length the one of Starget.
add cost to 1 with the description of the location in the case base of the
sequence of events relating to it
end for
end for
best result is the element of 1 whose cost is the littlest.

Fig. 3. : Best case Selection Algorithm from one viewpoint

As told above, matching may be different from a viewpoint to the other one. In the followmg we limit the
description of matching algorithms to one of them : that relative to relief. '

Matching between two strings of events considers strings of the same length, i.e. made up of the same number
of events. We would like the same.events happen in both, and in the same order. But as already told above, this
can seldom occur. We have to evaluate a distance between them., ’
Two strings of events may be different because of
- event content : events may indeed be relative to a valley, a col, etc.,
- sequencing of events : we may have to face the following configurations of strings (fig. 4).

62



Let A be an event from source case, B, B', C' other events from target case.

- A
(o B B'
Two cases :

A and B are of the same A and B are different. C’' is morg
type of relief similar to B than B' is. But B’ is
nearer from B than C' is, and ther
respects more the sequence of events
than C' does

Fig. 4 : An Example of Configuration of Events in two strings

To evaluate similarity between 2 strings of events, we introduced one evaluation of similarity, one relating to
the content of events, the other one to their positions.

These measures are evaluated thanks to 2 algorithms. One of them calculates a physical distance between events.
Its aim is to match an event of the source case with the nearest event, if possible with the same content, of the
target case. It is described in fig. 5.

ltarget _ symbol list B describing the relief stemming from the target case.
Isource _ symbol list A describing the relief stemming from the source case of length
the one of B.
distance _0.i _1.
while Itarget and Isource are not empty do
ftarget _ ltarget][i].
fsource _ Isourceli].
if ftarget and fsource describe the same kind of slope (ascendant or descendant) or the
same kind of form then
cost _ comparison between ftarget and fsource
suppress ltarget][i]
else
search for a kind of slope or the kind of form the most like fsource and such that it
is in ltarget. The found object is aux. We take it off from ltarget.
cost _ the distance, in number of positions, from the aux position in Isource to
the ftarget position in ltarget
i_i+1 '
end if
distance _ distance + cost
end while
result _ distance.

Fig. 5 : Matching Algorithm Relating to the Position of Events

Last one (fig 6) considers only contents of events and considers both strings as sets :

Both precedent algorithms utilize a similarity between types of events. The first, when it can not find at a

position i in both strings the same type of event, searches for another type, the most similar to the first, which
may be located at a position near from i.

The second algorithm holds the same operation when it can not find in the target case an event of a given type.

Both utilize a distance between types of events based on their structure. It associates with each form the type(s)
of form(s) similar to it and the numerical distance to each one.
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Itarget _ symbol list B describing the relief stemming from the target case.
Isource _ symbol list A describing the relief stemming from the source case of length the one of B.
ept _0.i_L
while i <= length (Isource) do
cpt _ cpt + the degree of membership of the ith element of 1source to ltarget
i_i+1l
end while
result _ cpt.

Fig. 6. : Matching Algorithm Relating to the Content of Events

7 Related work and Conclusion

This string matching problem is a difficult one. It has to be approximate to reject no solution. Other .
approximate algorithms exist [3] but they can only match together characters located at the same location or
shifted to the right or left of one position. And they tolerate only identical characters.

Here, we consider that events in both strings may be organized randomly. We consider too that events may be
different. We introduced then two similarity metrics, one relying mainly on the positions of events compared and
the other one on the similarity of their content. Resulting values make up a distance, resulting from the adding
of both, which permits to choose the best case.

This type of matching between 2 cases facilitates representation of cases. It doesn't require an interpretation of
initial episodes, and relies little on domain knowledge. But it has a drawback which is the lack of precision of
similarity evaluation. It can not be used for the adaptation of solution for example.

We are working now on the testing of this algorithm for wind viewpoint.. String matching algorithm principle
remains the same but distances between events do not. One of the remaining tasks then will be the choice of the
viewpoints from which to realize predictions.
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Abstract. A similarity measure based on inductive learning is presented. It
requires a set of examples, and some induction algorithm that performs the
building of a ruleset from a set of examples ; it is then knowledge extensive,
compared to approaches requiring the expert to correct the system output
and explain his decisions, or to provide and tune numerical coefficients. Sev-
eral similarity measures can be derived from a ruleset, with a local behavior
quite different to that of a weight-based similarity.

A similarity measure enables several tasks beyond the reach of a ruleset,
such as clustering the examples or detecting atypical examples. It enables
classification as well, by means of a K-nearest neighbours method.

1 Introduction

A hot research topic in artificial intelligence is about similarity measures, be they
concerned with case-based reasoning (CBR) [8, 1], classification [7, 5], generaliza-
tion in first-order predicate logic [2], or analogical reasoning [11].

In most cases, building a similarity measure requires much knowledge :
o Declarative knowledge, as in Protos [1]. The expert, acting as an oracle and a
teacher, corrects the system output and explains his decisions ; the various simi-
larity indices involved in Protos evolve through these interactions.
e Numerical knowledge, as in KBG |2]. In KBG, predicates are weighted by the
expert ; the similarity measure derived from these weights is used to guide the
generalization algorithm.
o Probabilistic knowledge. In [5], the similarity measure relies on the joined distri-
butions of all variables and all predicates involved in the domain representation.
This similarity measure enables to classify examples with incomplete description.

In this paper, a similarity measure only requiring "poor” knowledge, i.e. ex-
amples, is presented. Our approach is based on inductive learning : given a set of
examples, an induction algorithm is used to build a ruleset [9, 6, 2, 12]. Several
similarity measures can then be derived from a ruleset, with a local behavior quite
different to that of a weight-based similarity measure.

Section 2 defines the rule-based similarity measures and studies the require- ~
ments of our approach. Section 3 presents an experimental validation on three
problems well-studied by the machine learning community [9, 4, 3, 12, 7].

2 Principle

In machine learning, a rule is traditionnally considered with respect to its exten-
sion, i.e. the given examples satisfying the premises of the rule [9]. Reciprocally,
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given a set of rules, an example can be associated to the rules whose extensions it
belongs to. The subsets of rules associated to examples can then be compared.

2.1 Defining rule-based similarity measures (RBS)

Let Th = {Ri,...,Rn} (Th like Theory) be a set of rules defined on problem
domain E ; we associate to any example e in F a subset of Th (maybe empty) :

the set of rules R; whose premises are satisfied by e.
E — P(Th) .
ecE — e ={R;€Th/ e satisfies the premises of R;}

Given two examples e; and ey, one can then compare their images e} and é}.
The dissimilarity D(e;, e2) is set to the cardinality of the symetric difference e] Aeb;
two examples matching the same rules thus have zero dissimilarity. Dissimilarity
D would then be coarse if sets e] or e; were trivial, i.e. empty or reduced to a
single element. This restriction will be discussed in 2.3.

We accordingly define the rule-based similarity (RBS) of two examples:

Definition 1. Similarity S1 is o function defined from E X E, where E
denotes the problem space, onto Rt : 81 : Ex E — Rt
Si(er,e2) =# {R;€Th / ( e; and eg satisfy the premises of R;)
OR ( neither e; nor ey satisfy the premises of R;) }
where '#G’ stands for the number of elements in set G.

It may seem a bit artificial that rules fired by none of two examples contribute to
their similarity. So'a second RBS, named Sz, only takes into account rules actually
fired by both examples.

Definition 2. Similarity Sz is a function defined from E x E onto R,
by :
Sa(e1,e2) = # {R: € Th / ( e1 and ey satisfy the premises of R;)}

Last, the relevance of rules can be taken into account by means of weights :

Definition 3. Define the weight of rule R; as
w(R;) = w; = #{positive examples 6f R; in the example set}
Then, similarity Sz is a function defined from E x E onto R, by :

53(61762) = Z( ey and ez satisfy the premises of R;) Wi

Remark : All definitions above are operational whatever formalism examples and
rules are expressed within : they only need to check whether or not an example
satisfies a rule.

2.2 Comparizon with a weight-based similarity

In attribute-value formalisms, dissimilarity measures usually rely on weights :
Dv(el, 62) = Zf—.l ’Uid,_'(el, 62), or Dv(el, 62) = (Zi[\il(wdi(el, 62))2)1/2
where weight v; reflects the relevance of attribute i and d;(e;,e2) denotes the
difference between values of the -th attribute for examples e; and ex.
The difference between a rule-based dissimilarity and a weight-based dissimi-
larity is illustrated in the context of ”"Green pea recognition” by examples below:
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| Color  Shape _ Size Color  Shape Size
e; | Green Circle Small es | Green Triangle Medium
€2 ‘ Blue Circle Small | es | Blue Triangle Medium

A weight-based similarity (WBS) should give the same similarity between e,
and e;, and between e; and ey : their respective differences are the same (the
former is green while the latter is blue), so the difference estimation only depends
on the distance between Green and Blue, and on the weight of attribute Color.

In opposition, let us consider the RBS defined from the unique rule

R : If (Color = Green) and (Shape = Circle), Then Green_Pea

Rule R makes a difference between e; and ey (because it is matched by e; and not
by ez ; so D(e1,e2) = 1), but it does not make any difference between e and e4
(neither ez nor e4 does match rule R ; D{es,eq) = 0).

A RBS enables to make a difference among differences, such as between the
pairs (eg, ez), and (es,es). Therefore we claim that the topology induced by a
RBS may be very fine ; a difference between values of attribute 7 (instead of being
considered always with a given weight) may be either unseen or very influent,
depending on the values taken by the examples for this attribute and for the
others - and according to ruleset Th.

2.3 Requisites

Let us now consider the defects of a ruleset as characterized in [10] and study their
impact on the RBS.
Redundancy. Roughly speaking, the redundancy of a ruleset is the average num-
ber of rules (leading to the same conclusions) fired by an example. Redundancy
is often considered a defect in a rule-based system : it endangers the consistent
evolution of the system. Now let us consider a non-redundant ruleset ; assume that
any example fires a single rule. Then, any two examples either fire the same rule
- and they are similar, or they do not, and they are dissimilar. In other words, a
non-redundant ruleset induces a coarse dissimilarity on the problem space. So, the
redundancy of the ruleset is mandatory in order to induce a usable dissimilarity.
Incompleteness. The incompleteness of a ruleset is manifest as some examples
do not fire any rule. The corresponding rule-based dissimilarity does not allow to
separate such examples ; so this defect is quite penalizing from our point of view.
Inconsistency / Errors. A ruleset is inconsistent when rules leading to incom-
patible conclusions (e.g. distinct diagnosis) are fired by one example. A rule is
erroneous if there exists examples satisfying the premises of the rules, but not its
conclusion. These defects are unseen in our approach, as the conclusions of the
rules are never taken into account. :

In short, the central requisite of our approach is the redundancy of the ruleset.

3 Application to Classification

Some experimental validation of our approach is done on 3 well-studied classi-
fication problems. The rule-based similarity is first compared with a classical
weight-based similarity and a weight-based similarity optimized through genetic
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algorithms [7]. The predictive accuracy of the rule-based similarity is also com-
pared to those of the very rules it is based on, and with rulesets induced by some
famous induction algorithms [9, 4, 3, 12].

3.1 Experimental parameters

We followed the protocol used in the reference litterature. The data set is divided
into a training set and a test set; this selection is done at random, except that the
classes distributions in the training set are same as in the total data set. Rules
are learned from the training set. Validation is done through a cross validation
technique ; the results obtained on the test set are averaged over five independant
selections of the training and test sets.

We used a star-like induction algorithm detailed in [12] ; similarities S1, Sz and
S3 (2.1) are derived from the rulesets learned from the training set. Any similarity
plus the training set enables a K-nearest neighbours method , denoted RKNN (for
Rules based K-Nearest Neighbours). The sensitivity of classifier RKNN is studied
with respect to the rules redundancy - which is tunable in ocur generalization
algorithm. The redundancy rate ranks from 1 (concise rules) to 5 (the total number
of rules is multiplied by about 2.5).

3.2 Comparizon with similarity-based classifiers

Two problems fitting within attributes-values formalism are considered. The first
one (Iris) is the iris data set of Fisher, with 150 examples divided into 3 classes and
described by 4 attributes. The second one (Glass). is composed of 214 examples
divided into 6 classes and described by 9 attributes.

The reference results of J. Kelly. and L. Davis [7] are given in Table 2; KNN
denotes a classical K-nearest neighbours method using a weight-based similarity
with equal weights. GA-WKNN denotes a K-nearest neighbours method using a
weight-based similarity whose weights are optimized by genetic algorithms®. Our
results are given in the RKNN column, with a redundancy rate ranking from 1 to
5.

Table 2 : Comparizon with weight-based similarities

KNN GA-WKNN RKNN

red. 1 red. 3 red. 5
Sl 52 53 51 Sz ‘53 S1 Sz 53

IRIS 90 94-93 92 91 91193 93 93|91 91 91

GLASS 58 60 - 62 65 64 64|64 68 68|52 70 70

3.3 Comparizon with rule-based classifiers

The comparizon with some well-known induction algorithms is done on a medical
problem still fitting within an attribute-value formalism. The data set is composed
of 286 examples described by 13 attributes and divided into 2 classes.

! The results found in [7] are labelled Classification Error Rates. To ease the comparizon we
take the complement to 100 % of these results as Classification Success Rates.
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Table 3 shows the results obtained by AQ15 [9], CN2 [4], Assistant86 [3] and
a simple bayesian classifier denoted Buayes ; these results can be found in [3]. On
our side, the results obtained from just the rulesets are given with the legend RO
(for Rules Only) ; the results of RKNN using the different similarities are given
beside, with' the redundancy rate ranking from 1 to 5.

Table 8 : Comparizon with classical induction

Training set (190 examples) | Test set (87 examples) |
Bayes 97 ’ 65
AQ15 100 72
Assistant86 92 - 95 62 - 68
CN2 76 - 72 70-71
RKNN !
RO RO S5 5 S red.
87 73 71 72 72 1
90 72 71 72 72 3
90 70 71 71 73 5

3.4 Discussion

The results above are interpreted as follows :

In the Iris problem, all classes are equally represented, and all classifiers nearly
reach the same results (in particular, all similarities give the same results) ; so, our
only advantage compared to the weight-based similarity (with weights optimised
by genetic algorithms) is to be less expensive. {about 10 minutes on a Symbolics
Ivory-based Lisp machine, against 10 seconds on a HP 700 work station).

On the ill-distributed problem Glass, similarity S; outperforms similarity S
and S3; when redundancy is low ; the inverse is true when redundancy is high.
This can be explained as follows. When redundancy increases, a lot of rules are
fired by none of any two examples ; these examples are thus similar for S; ; in the
meanwhile, S; and S5 improve as expected and our results are significantly better
than the reference results (from 5 to 8 points).

On the third problem there is no great difference between all similarities. The
predictive accuracy of the rule-based similarities is quite similar to that of the
rules themselves (and equal to the best reference results). However, the accuracy
of the RBS increases as the redundancy increases, while the accuracy of the ruleset
decreases. This suggests that the rule-based similarity could be used in order to
break the ties.

4 Conclusion and Perspectives

This paper describes the 2-step induction of similarity measures given a set of
examples. A set of rules is first induced from the examples ; then several similarity
measures can be derived from a ruleset.

Our approach appears to put very few requisites on the initial knowledge and
requires very few help from the expert compared to most related works (see [1]
or [2] ; unfortunately a detailed discussion is prohibited due to space limitations).
Besides, it escapes any dependency from the domain representation : the induction
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step, if possible, captures the semantic information hidden in the examples what-
ever their syntactic description. Last, it applies within any formalism ; its only
requirements are an induction algorithm to be available within this formalism, and
this algorithm to provide redundant rulesets.

Our approach is validated on some well-studied problems, with predictive accu-
racy equal or slightly better than reference results. Besides, it is worth mentioning
that a similarity measure may be used to many other aims than a ruleset : it en-
ables using data analysis tools to pre-process the data, so to detect and discard
atypical examples before classification, or to cluster the examples in order to reduce
a concept formation task to several conjunctive concepts formation tasks.

Further research deals with pruniﬁg a set of reference examples, in order to
retain only most prototypical examples. Such pruning is expected to both speed
up and improve classification.
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Abstract

This paper discusses the idea that a Case-Based Reasoning (CBR) approach offers a good way of
making an information retrieval system evolving and adaptive all along its life cycle. In this purpose
we propose an approach combining CBR and information retrieval whose aim is to improve the
search strategy and to perform contextual adaptation by managing a memory of retrieval sessions.
Information retrieval sessions stand for cases in our approach. Management of the memory of sessions
exploits success as well as failure of the information retrieval system. Furthermore, such a system can
be viewed as a synergy agent between different categories of users {experts in different areas, novices,

etc).

1 Introduction

This paper deals with Information Retrieval (IR) and more precisely with the design of adaptive In-
formation Retrieval Systems (IRS). Exploiting IRS’s experience is of obvious interest to mitigate the
preliminary knowledge acquisition bottleneck. A review of the recent literature convinced us that Case-
Based Reasoning approach type seems to be an appropriate way to make a knowledge-based system
evolving and adapting. This is particularly true when the knowledge in hand is incomplete and noisy.

Our initial goal was to answer the question on how we can make an IRS evolve all along its life cycle.
This is called long-term learning by contrast with short-term learning corresponding to the relevance
feedback [Salton 83). To this purpose we work on a methodology to build an evolving IRS integrating
CBR concepts with IR ones. This proposal (CABRI'n for CAse-Based Retrieval of Information - Nancy)
has a two-fold objective:

o offering help to IRS design. This can be reached by refining and adapting a generic retrieval strategy
according to the users’ needs and to the document base. This mechanism can be viewed as design
adaptation [Hinrichs 91]. In Section 3 we propose such a generic and flexible IR process model;

e building and managing a memory of sessions which will constitute the long-term memory (a retrieval
session stands for a case). This memory is designed and used primarily for achieving the first
objective. In further steps we intend the memory of sessions for inductive learning purposes.

This will be achieved by taking advantage of the IRS interaction with different categories of users.
Users are assumed to be capable of judging the relevance of a proposed document or of the results of a
search; more expert users are able to decide whether the retrieval strategy applied to a particular problem
is relevant or not. But nobody is good at providing general rules for choosing the right retrieval strategy
according to some contextual characteristics of a search situation. Furthermore, the system can be con-
sidered as a synergy agent between different categories of users (novices, experts in document retrieval,
experts in the document collection domain, ...).

This paper is centered on the idea that CBR is a good way of incrementally improving an IRS. Section 2

discusses motivations for combining IR and CBR. Section 3 is a short description of a parameterized IR
process model. The last section describes some characteristic aspects of our approach.
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2 Combining Case-Based Reasoning and Information Retrieval

It is convenient at this point to discuss the relation between CBR, [Riesbeck 89] and IR!. Indeed the two
fields are related and a mutual contribution is possible. They are similar in the sense that théy both try
to locate in databases information relevant for a given problem.

Furthermore, IR efforts-help CBR in indexing information, in formulating queries to retrieve relevant
information, and in defining matching methods.

Conversely, CBR offers a dynamic memory model which allows IR uncertain and incomplete knowledge
Improvement. v

Our approach attempts to exploit analogies as well as mutual reinforcement between CBR and IR.

‘

3 Parameterized Information Retrieval Process Model

In IR context documents are poorly indexed 1.e, a document index is only a short surrogate of the docu-
ment itself. Consequently the search strategy is very important to make sure that precision (proportion
of retrieved items actually relevant) and recall (proportion of relevant information actually retrieved)
are good. Several learning techniques have been used to improve retrieval system performances. The
relevance feedback mechanism was primarily proposed to lead to an interactive and iterative retrieval
process. The goal is to try to improve precision and recall values at each step? by taking into account the
user’s relevance assessments (i.e., identification of relevant and non-relevant documents among previously
proposed ones) for automatic query reformulation.

Although few formal user experiments have been made on relevance feedback based systems, one can
say that even the best ones have a limited recall [Harman 92]. A quite important deal of experimental
work has been done to tune different parameters of some existing systems and to evaluate alternative
forms.

Query Formulation

Query Interpretation
(interpretation tzpe)

[Query Modification] —l

(choice criteria)

Matching
(exhaustivity, specificity)

T

Visualisation + Choice
cut criterion,

y

Reformulation
(previous query contribution ,
rejected documents contribution,
chosen documents contribution)
_—’—+

[ Rettieval Session Evaluation

Figure 1: Parameterized information retrieval process model.
,

Indeed we have often noticed that some choices made during IRS design turn out to be ineffective
when using the system. In fact, for each information retrieval primitive, there exist several alternatives
(within a given IR model). In Figure 1 we propose a general IR process model. Examples of primitives
are: query interpretation, matching, and reformulation. Each primitive is parameterized to express the
different realization alternatives [Smail 93] (parameters are italicized in Figure 1).

1This issue was the topic of the AAAI spring symposium held in Palo Alto on march 1993.
2 A step ranges from query formulation to reformulation.
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Furthermore, it has been suggested in the IR literature that different types of user situations, problems,
goals, characteristics might require different types of retrieval strategies. This means that besides the
generic retrieval process model, we need to have available a typology of potential needs (or queries) that
may be addressed. Then for each type of need we have to define a particular instantiation of the retrieval
process model. This is performed through what we call default strategy choice rules.

4 CABRI’'n : CAse-Based Retrieval of Information-Nancy

4.1 Architecture
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Figure 2: CABRI'n overall architecture.

Figure 2 shows the overall architecture of CABRI’n combining information retrieval (left side) and sessions
retrieval (right side). The IRS calls the case-based component like a human intermediary would call for
his experience in order to better respond to a query.

To deal with a query, the IRS component uses the particular instantiation of the generic model which
is suggested by the CBR part. During the initialization phase, where the memory of sessions is empty or
too small, the default strategy choice rules mentioned above (Section 3) will be used to suggest a default
mstantiation. .

When a new information query occurs, it is categorized according to the queries typology invoked in
Section 3, before the sessions memory is searched. The query or need type is an important contextual
characteristic for former sessions retrieval and adaptation.

For example, needs (expressed in queries) in iconographic databases can be categorized in four types:
exploratory need, precise need, connotative need, and thematic need.

The matching step results in a ranked subset of candidate sessions of the same need type as the current
one.

Whenever a session similar to the current problem is retrieved it is adapted in a way depending on
the need type and relevance level of the retrieved session.

According to the adaptation performed, the IRS takes control at different points (see on Figure 2
arrows originating from Adaptation).
The retrieval session evaluation determines the relevance level of the ending search. The richer this
evaluation is, the more finely the current session can be adapted in the future.
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4.2 Retrieving Search Sessions

A session is modeled as an object with two main attributes: inder and content. The index is composed of
a thematic index and a globalindex. The global index of the session describes its relevance (determined by
the session evaluation primitive in Figure 2) and the type of the need it deals with. The session content
itself has two levels of detail to allow different types of adaptation. The detailed content includes the
session trace whereas the synthesized content involves items related to the adopted strategy, the relevant
document set, and the non-relevant document set.

The sessions retrieval is made in two steps. First a selection is performed based on (a part of) the
global index; the sessions which correspond to the current need type are thus selected.
Once a selection is done among the memory of sessions, a matching has to be performed between the
current query and each selected session. The matching process is based on the thematic index ranking
the selected candidates according to the similarity of their search criteria and the current ones.

Furthermore, in order to allow another kind of sessions search based on strategy, we consider strategy
as an additional indexing structure (i.e., given a strategy we-can find all the sessions which use it). More
precisely, a retrieval-sirategy object aggregates a strategy definition s (parameters of each IR primitive),
a collection of sessions using s, and a collection of retrieval strategies adapted from s.

4.3 Adapting Search Sessions

The adaptation function primarily depends on the relevance level of the “best” recalled session.

Adapting a session which led to a failure consists in anticipating this failure in order to avoid it.
If the session to adapt is of mitigate level, the adaptation goal is to propose improvement across certain
strategic parameters modifications.

Finally a successful session does not really need adaptation but we can reuse its retrieval strategy or
even its results (relevant documents).
Furthermore, the results of the searches performed on a set of the (closest) successful retrieved sessions
can be combined to summarize the IRS experience on the current topic. A sampling can be made on
these results before presenting them to the user for instance. This retrospective combination is expected
to improve the information retrieval recall.

The definite adaptation to perform in each of the three enumerated situations depends secondarily on
the current query type.

The described functions have to be refined and we are currently working on the partial reuse of the
parameterized IR process (Section 3) for the search sessions retrieval. \

5 Concluding Remarks and Perspectives

The proposed approach is expected to facilitate the acquisition process of different types of information
retrieval knowledge (strategic knowledge, domain knowledge, and organization knowledge).

We are currently implementing a prototype based on the ideas presented above. This is performed in
an object-oriented environment (Smalltalk-80) and the document base is an image base. Besides, we are
also thinking better of the mutual contribution between IR and CBR in CABRI'n by sharing indexing
structures and sharing retrieval primitives.

Up to now, we have assumed that the IRS component could call the CBR part (see Figure 2) only
once during a sessions retrieval and that the retrieval strategy was the same during the whole session.
An interesting investigation issue would be to make CABRI’'n more reactive in such a way that IRS could
cope With each retrieval step by calling the CBR part. This ambition implies that the CBR retrieval
function will have a supplementary search criterion: similar search evolution.

In further steps we intend the memory of sessions for two inductive learning purposes. The first consists
in extracting explicit knowledge items to enrich the IRS domain knowledge such as contextual thesaurus
links and multi-criteria document base organization. The second purpose is to synthesize the adapted
strategy over the memory of sessions.
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Abstract. The retrieval of a suitable case is of crucial importance to the success of case-based
reasoning. A good criterion for judging “case suitability” is how complex a case will be to adapt.
However, it has proven difficult to directly calculate this measure of case "adaptability” without incurring
the full cost of adaptation. This has led most researchers to abandon direct algorithmic methods in favour
of more efficient, albeit less accurate, heuristic methods.

This" paper describes an approach to case retrieval that allows case adaptability to be accurately
measured whilst overcoming the problems which, in the past, led to the adoption. of heuristic methods.
We argue that this approach benefits from improved retrieval accuracy, flexibility, and greater overall
problem solving efficacy. Our methods are implemented in Déja Vu, a case-based reasoning system for
software design, and we use examples from Déja Vu to demonstrate our approach.

1 Introduction

Case-Based Reasoning (CBR) is a reasoning method that exploits experiential knowledge, in the form of past
cases, to solve problems [1]. When faced with a new problem, a CBR system wili retrieve a case that is similar,
and, if necessary, adapt it to provide the desired solution. Obviously, the success of case-based problem solving
is crucially dependent on the retrieval of a suitable case; that is, one that can be adapted to give the desired
solution. Moreover, the efficiency of case-based methods depends critically on the retrieval of a case that is the
easiest, of those available, to adapt.

The majority of CBR systems have proven successful in judging the general suitability of cases to new
problem situations. However, accurately determining the "ease of adaptation” or "adaptability” of a given case
has proven more difficult because of inherent efficiency problems; how can adaptation be accurately predicted
without actually performing the adaptation itself? This has led most researchers to abandon such deep
algorithmic methods of computing case adaptability in favour of more efficient, albeit less accurate, shallow
heuristic methods; the hope being that heuristic manipulation of ‘good predictive indices will result in the
retrieval of the appropriate case. Typically, these heuristics are designed to give preference to those cases which
contain features that have been observed to yield desirable retrieval results. Unfortunately, they seldom anticipate
all adaptation problems and less than optimal cases are often retrieved.

In this paper we advance a case selection technique which can accurately determine the ease of adaptation of a
case while, at the same time, overcoming the efficiency problems that led to the adoption of heuristic methods.
The technique uses adaptation knowledge during case selection to “look ahead” to the adaptation stage, allowing
its complexity to be assessed, but without incurring the full cost of adaptation. Our methods are implemented in
Déja Vu, a case-based reasoning system for “real world” software design, and we demonstrate our approach using
examples from this system. The next section introduces Déja Vu, detailing the structure of its adaptation
knowledge. Section three describes how this knowledge is used in retrieval and includes a very brief review of
some conventional heuristic retrieval approaches. Finally, in section four, we argue that our methods benefit
from improved retrieval accuracy and flexibility, as well as greater overall problem solving performance.

2 Déja Vu

Déja Vu is a CBR system for software design operating in the domain of Plant-Control software [2]. Using a
hierarchical approach to design, Déja Vu retrieves a number of cases at different levels of abstraction. These are
adapted to provide solutions to the various sub-tasks of the target problem, the resulting solution segments
-being integrated into the overall solution “on the fly”. Problem solving activity is efficiently co-ordinated using
a blackboard architecture with dedicated knowledge sources handling the various problem solving stages of
analysis, problem decomposition, retrieval, adaptation, and solution integration. Of particular importance, in the
context of this paper, is the nature of Déja Vu’s adaptation knowledge which is used during retrieval to improve
retrieval accuracy and overall problem solving efficiency.

2.1 The Plant Control Domain
Plant-Control software is concerned with controlling autonomous vehicles within a factory or plant
environment. Figure 1 illustrates an important class of Plant-Control tasks aimed at the control of vehicles

during the loading and unloading of metal coils in a steel mill. Déja Vu's cases are software modules for
controlling vehicles and other devices during such tasks. For example, a simple software design is concerned

76


mailto:mkeane@cs.tcd.ie
mailto:barry@hdl.ie

with controlling the movement of a coil-car (vehicle) across the factory floor, including collision avoidance, and
speed control of the vehicle.

Tension-Reel
Load | Unload Spoot / Coil ension-Ree

Sensor

Raise | Lower

N
ey &

Forward Backward

Figure 1. Load/Unload Plant-Control Tasks
2.2 Déja Vu's Adaptation Knowledge

Déja Vu uses a distributed adaptation scheme that facilitates both specific local modifications, through the action
of adaptation specialists, as well as global conflict resolution, via adaptation strategies. As such adaptation
knowledge is captured as a set of specialists and a set of general strategies.

2.2.1 Specialists

Adaptation specialists correspond to packages of procedural knowledge each concemned with a specific adaptation
task. Each specialist can thus make a specific local modification to a retrieved case. During adaptation many
specialists will act on the retrieved case to transform its solution into the desired target solution. Thus, through
specialist activity, the differences between the retrieved case and the target are reduced in a fragmentary fashion.

For example, in the plant-control domain, one common difference between a retrieved case and a target
problem is that the speed capability of the target’s vehicle may differ from that of a retrieved case. To cater for
this situation Déja Vu uses a dedicated speed specialist which can satisfy the speed requirements of the target by
modifying those of the retrieved case.

As well as procedural knowledge each spemahst also has declarative knowledge describing its particular
adaptation task. In this way specialists are organised in terms of the modifications they are designed to carry out.

2.2.2 Adaptation Strategies

In the course of adapting a retrieved case it is possible that solution conflicts will arise. This is because
specialists are not designed to consider the modifications made by others and so interactions that occur between
specialists go unchecked. In the past, the resolution of such conflicts has been one of the stumbling blocks of
many planning and automated- design systems [3]. Déja Vu attempts to overcome this problem by using an
efficient scheme of conflict representation and resolution. Using a set of adaptation strategies, Déja Vu can
detect and repair any conflicts that arise. Strategics are organised in terms of the conflicts they resolve and each
is indexed by a description of the type of conflict it can repair. Of course each strategy also has an associated
method of repair for resolving the conflict in question.

For example, one common solution conflict occurs when the effect of some event prevents the occurrence of
some later event. Figure 2 depicts this situation; the pre-condition state (1) of some goal achieving event (2) has
been disabled (or "blocked”) by the state (3), a-result of some earlier event (4). This blocked pre-condition
conflict can be resolved by including a new sub-goal which re-enables the blocked pre-condition (1) after the
blocking event (4) has occurred. An adaptation strategy to cater for such a conflict would contain a description of
- this blocked pre-condition situation as well as the appropriate repair method (the inclusion of a sub-goal to re-
enable the blocked pre-condition).

Achieved-
coar “H8 () —»@
EVENT EVENT

f Pre-Condition Causes

STATE @\\—’/@ STATE
Figure 2. The "blocked pre-condition" configuration.
During adaptation, conflicts can be detected by matching strategy descriptions against the effects of
specialists. Specialist activity is described using influence relations. These relations are described in more detail

in section 3.2.2 but for now let us just say that by using graphs of these influences the qualitative effect of
specialist activity can be efficiently characterised, and used as a means of indexing the appropriate adaptation
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strategies. A positive match between a strategy description and specialist effects indicates a conflict that can then
be resolved by the strategy's repair method.

2,2.3 An Example Adaptation Scenario

As an example adaptation scenario consider the following situation. A piece of software is required to move a
two speed coil-car to a tension-reel. A case is retrieved which moves a one speed coil-car. Obviously the one
speed case must be transformed into a two speed case. Therefore, a speed specialist is used to convert the one
speed design into a two speed design. However, such a modification has an adverse affect on the fuel
consumption of the coil-car, and the modified design fails because of a lack of fuel. Further modifications are
obviously required to remove this conflict between speed and fuel. The detection of such conflicts is where
strategy descriptions fit in. The speed increase of a coil-car exerts a negative, blocking influence on its fuel
availability. This situation (a blocked pre-condition failure) is captured by the configuration of Figure 2, and the
appropriate repair strategy is applied; in this example, the availability of fuel pre-condition is re-enabled by
including a re-fuelling stop into the design.

3 The Role of Adaptation Knowledge in Case Retrieval

In order to guarantee the retrieval of a case that is the easiest to adapt, the retrieval mechanism must give explicit
consideration to how cases will be adapted. This is clearly difficult without actually performing the adaptation.

We can think of the processes of retrieval® and adaptation as searching of two distinct search spaces, the
specification space and the adaptation space, respectively. To determine the adaptation requirements of a
candidate case, a measure of the closeness of the target and candidate in the adaptation space is needed. However,
for reasons of efficiency, conventional systems use heuristic rules that select cases on the basis of their closeness
in the specification space; that is, cases are compared in terms of specification similarities rather than their more
complex (and more important) solution similarities. The hope is that, if two cases have similar specifications
then they will have similar solutions, and thus require little adaptation. Unfortunately, this assumption does not
always hold, inevitably leading to sub-optimal retrievals.

Déja Vu’s approach to retrieval is different. It uses actual adaptation knowledge during retrieval, to assess
specification similarities directly in terms of their adaptation requirements, and hence judges a case’s suitability
by considering how it will be adapted; whereas conventional systems use heuristic rules to select cases, Déja Vu
use rules that are more algorithmic in nature. Essentially the specification space and the adaptation space are
coupled by this adaptation knowledge (see Figure 3). Using adaptation knowledge in this way it is possible to
predict how specification similarities and dissimilarities will impinge on adaptation by determining how
elements of the specification space relate to elements of the adaptation space. Thus, complex adaptation
requirements can be determined by comparing the specification’s of the target and candidate.

Retrieval

Filteri.ng’. Selectiop" —D-» Adaptation |,

Adaptation

‘ Knowledge '

Specification Space Adaptation Space

Figure 3. Adaptation knowledge links the specification and adaptation spaces.
3.1 Conventional Approaches to Retrieval

Conventional, heuristic approaches to case selection attempt to estimate the similarity between the specification
of the target and the specification of the candidate case. Exactly Aow a candidate will be adapted is ignored,
efficiency being chosen in favour of accuracy. Essentially, the retricval stage and adaptation stage are de-coupled
and the closeness of the target to the candidate case in the adaptation space is estimated by their perceived
closeness in the specification space. The rationale being that the case whose specification is most semartically
similar 10 the target’s will also be the "most useful” case and will require the Ieast adaptation [6, 7].

While such traditional retrieval techniques can produce efficient retrieval results the rationale on which they
are based may not be fully justified, and this may ultimately lead to a sub-optimal adaptation stage. That is, the
most similar case to the target problem may not be the most useful, or indeed, the easiest to adapt. Semantic

* Retrieval can be viewed as a two stage process. First, the filtering stage identifies a small number of candidate cases
that are deemed to be contextually relevant to the target. Next, the selection stage performs a detailed analysis between
the target and each of these candidates. During this analysis, a set of correspondences or mappings is established
between the target and the candidates [4, 5]. In general these mappings are used to determine a measure of similarity
between the cases and form the basis of the subsequent adaptation process.
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similarity does not guarantee the best results. Two cases could be equally similar to a target problem on this
measure and one could be adapted with ease while the other may be considerably harder or even impossible to
adapt. To compensate, many researchers have therefore argued that other factors as well as semantic similarity
need to be used in retrieval [1, 8, 9, 10, 11], the spirit of this approach being that all mappings are not equal.

For example, Kolodner [10] has argued that some mappings found between a target problem and a candidate
case 'should be preferred over others if they exhibit certain characteristics; for instance, if a match is more
specific or goal-directed it should be preferred. In particular, Kolodner also argues that the ease-of-adaptation of a
match should result in it being preferred over other matches which are indicative of more difficult adaptations.
Similarly, Goel's KRITIK system [9] also prefers candidate cases which are easier to adapt by preferring matches
which satisfy the functional specifications of the desired, target design. Birnbaum et al. [12] propose a system
that learns to index cases on the basis of their adaptability, overriding semantic similarity where appropriate.
During problem solving certain features are identified as particularly problematic and cases with such features
can be avoided in future problem solving episodes.

In all of these approaches the quality of a candidate case is based on the presence or absence of certain features
which are pre-classified as important with respect to retrieval. The relation between specification features and the
subsequent adaptation phase is ignored. Consequently, cases are selected on the basis of an "educated guess"
rather than through any real insight into their adaptation requirements.

3.2 Déja Vu's Approach to Retrieval: Adaptation Guided Retrieval

In contrast to the above methods, Déja Vu's retrieval stage gives explicit consideration to how a case will be
adapted. The retrieval and adaptation stages are coupled by allowing the use of algorithmic adaptation knowledge

, during retrieval; mappings between the target’s and candidate’s specifications can be linked directly to elements of
the adaptation space. Consequently, specification space closeness can be measured in terms of adaptation space
closeness.

Furthermore, the structure of Déja Vu's adaptation knowledge allows the adaptation requirements of a case to
be assessed in an efficient manner, and so the problems that led to the adoption of heuristic approaches in the
past are no longer an issue. The result is a more accurate and flexible retrieval stage.

During retrieval, each candidate is judged in terms of the modifications that it would need should it be
retrieved. More precisely, case elements that require modification are associated with the adaptation procedures
(specialists or strategies) that can perform this modification. In this way it is not only possible to anticipate
adaptation success during the retrieval stage, but it is also possible to calculate the complexity of this adaptation.

3.2.1 Specialist Associations

Conventional retrieval systems generate correspondences (mappings) between the target’s features and the
candidate’s features. Normally, these mappings are established according to some measure of perceived similarity
between the features involved. In contrast, Déja Vu constructs mappings if and only if there is evidence that the
differences that they entail can be correctly adapted.

Déja Vu's approach is based on the fact that the mappings established between the candidate and target are
suggestive of the differences that exist between the candidate solution and desired target solution. Identical
mappings suggest candidate solution sections which can be transferred intact to-the target. On the other hand,
non-identical mappings are indicative of candidate solution sections that will need to be adapted.

In the example of 2.2.3 a non-identical mapping would have been formed between the single speed feature of
the candidate and the two speed feature of the target. This mapping served to point out that the candidate
solution required a speed modification. To form such a mapping, Déja Vu requires evidence that the
corresponding solution differences can be successfully catered for. This evidence exists in the form of specialists.
During case selection, sets of mappings are matched against the descriptions of specialists which are designed to
perform the entailed modifications. To facilitate the efficient location of the appropriate specialists, the
specialist descriptions themselves are in the form of generalised groups of mappings.

3.2.2 Strategy Associations

Like specialists, adaptation strategies are also used during retrieval. As discussed in section 2.2.2, “blind”
specialist activity can lead to solution conflicts which must be repaired. Therefore, in predicting the adaptation
requirements of a case it is not sufficient to simply determine the appropriate set of specialists without
considering the type of conflicts that may arise. To predict conflicts we must be able to describe the effects of
specialist activity. This is achieved with the aid of influence relations [13].

An influence relation is a qualitative causal relationship between two domain elements. It specifies that one
element (the influencer) effects another (the influenced) in some way. The mode of influence can be either
positive (+) or negative (-). A positive influence means that a change in the influencer entails a corresponding
change in the influenced. For example, speed and fuel consumption are connected by a positive influence
relation from speed to fuel consumption; an increase in speed leads to an increase in fuel consumption. A
negative influence means that a change in the influencer leads to a qualitatively opposite change in the
influenced. For example, fuel consumption exerts a negative influence on fuel availability; an increase in fuel
consumption causes less fuel to be available. Using graphs of these influence relations an qualitative model of
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the dependencies between domain elements can be built up. With these graphs it is possible to describe both the
desired effects and side-effects of specialists. For example, the speed specialist changes the speed of a case.
According to the influences above it also effects the fuel consumption and fuel availability of the case.

Strategies are indexed into the domain knowledge-base by sets of influence relations. During retrieval the
specialist associations activate a set of influences that capture their intended effect. In turn these influences
activate relevant strategy descriptions, indicating possible conflict problems. The retrieval context is used to
instantiate these strategies which are then associated with the problematic specialists and mappings. In this way,
during retrieval, solution conflicts can be predicted and repairs scheduled.

3.2.3 An Example Retrieval Scenario

As an example, let us return to the problem of section 2.2.3 which was to design a two speed movement case
from a single speed case. We saw the type of modifications that are necessary in this adaptation scenario. Now
we demonstrate how these modifications are predicted during retrieval.

The mappings between the speed features of the candidate and target signify the need for a speed modifying
specialist. Once a specialist has been found the mapping can be established. In addition, a measure of the
quality of the mapping is based on the computational complexity of the specialist. But, what about predicting
conflicts? In particular, how can the fuel availability problem be foreseen and an appropriate strategy identified
to effect its repair ? ,

The target problem is concerned with moving a two speed coil-car to a tension-reel (1). A pre-condition of
movement is that fuel be available (2). The speed specialist will case the speed of the case to be increased. The
influence that this increase in speed (3) exerts on the consumption of fuel (4) leads to the disablement of the fuel
availability pre-condition. This configuration (boxed portion of Figure 4) matches the description for the
blocked pre-condition strategy of section 2.2.2. After instantiating the strategy in the current context (unboxed
region of Figure 4) it is associated with the speed specialist. During adaptation the action of the speed specialist
is augmented with the repair action of this adaptation strategy; in this case adaptation consists of changing the
speed of the case and adding a re-fuelling stop.
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Figure 4. An example failure configuration.
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Although simple, the example above does highlight the key features of our approach: the relevant local and
global adaptation knowledge (in the form of specialists and adaptation strategies) is efficiently assembled during
retrieval enabling an accurate judgement to be made on the adaptation requirements of a candidate case.

4 Beneficial Implications

Our approach ensures the retrieval of a case that requires minimal adaptation. This is in contrast to other CBR
systems that do not directly couple retrieval and adaptation and, as such, can only estimate the usefulness of a
given case in terms of its semantic similarity -- which is often not a very accurate measure of adaptability.

Retrieval now carries out the preliminary adaptation work by identifying and instantaiting the specialists and
strategies that will be necessary during the adaptation stage. The additional retrieval complexity which this
involves is minimised by organising adaptation knowledge in a manner that permits the efficient identification of
the appropriate specialists and strategies. Moreover, any additional retrieval expense is offset by improved
adaptation efficiency; not only is some of the adaptation work carried out during retrieval, but the case retrieved
should be the easiest, of those available, to adapt.

In addition, greater retrieval flexibility is also achieved. With conventional approaches, changes to the
adaptation capabilities of a system will not be immediately reflected in the retrieval preferences of the system.
Instead changes must be made to the retrieval heuristics to capture the new adaptation possibilities. In contrast,
because the retrieval and adaptation stages are directly coupled in Déja Vu, any changes to its adaptation
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capabilities will be immediately available to the retrieval system; the altered adaptation knowledge itself is used
in retrieval.

Finally, the representational requirements of the approach are domain independent and thus facilitate the
adoption of the technique across a range of CBR application domains.

5 Conclusions

The main thrust of the paper centres on the description of an important issue in CBR, that of case selection.
More precisely, it concentrates on a critical case selection criterion, that of adaptation efficiency. Through Déja
Vu's coupling of the retrieval and adaptation processes, an efficient model of this selection criterion is realised.
Succeeding where similar methods have failed in the past, an approach is described that can perform accurate and
efficient algorithmic assessments of the adaptation requirements of retrieval candidates, without incurring the full
cost of adaptation. Researchers have abandoned such algorithmic selection methods in the past because of the
difficulty in predicting the potentially complex set of interactions that can arise during adaptation. Dé€ja Vu has
tackled these interaction issues head-on by advancing a mechanism for resolving such conflicts during adaptation
while facilitating their prediction during retricval.

The result is an approach to retrieval which, improves retrieval accuracy and flexibility as well as overall
problem solving performance, and can be applied to a range of case-based reasoning tasks.
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Abstract

Retrieval of cases is one important step within the case-based reasoning paradigm. We propose an
improvement of this stage in the process ‘model for finding most similar cases with an average effort
of O[logzn], n number of cases. The basic idea of the algorithm is to use the heterogeneity of the
search space for a density-based structuring and to utilize this precomputed structure for efficient
case retrieval according to a given similarity measure. Therefore, we combine basic aspects of object-
oriented data bases, information retrieval, nearest neighbor classification, and case-based reasoning for
the improvement of well-known techniques. The described approach is fully implemented and currently
used in a case-based reasoning system (PATDEX) for diagnostic applications in technical domains.

1 Introduction

Retrieval of sufficiently similar cases is one of the main points in the process model of case-based reasoning,
i.e. before selecting the most useful case(s) for adaptation, the case base must be restricted to a small set
of reasonable candidates. Retrieval and selection of cases are often distinguished by the kind of features
they use for case comparison (surface versus structural similarity: [16]). To detect really useful cases for
the problem at hand, the selection step has to consider all available knowledge of the underlying domain.
Thus, computing this structural similarity match is very expensive. Unfortunately, the retrieval step which
deals with all cases in the case base must be computed very fast. Therefore, this step can only rely on the
comparison of syntactical features (surface similarity) [14]. Basically, there are two different approaches
to similarity assessment in case-based reasoning [22, 3]: the representational approach, proposed by [17]
using a structured memory of cases, and the computational approach e.g. [25, 1], which is based on the
computing of an explicit similarity function (cf. [29]).

A naive approach to case retrieval would be to compute the surface similarity by comparing syntactical
features of every case in the case base to the current problem according to a given similarity measure.
The set of cases which must be examined by the following selection procedure is then determined by the
m-most similar cases (m fixed), or by all cases exceeding a given similarity threshold §. Many known
case-based reasoning systems use this simple kind of approach (at least hidden in the implementation).
Since the overall complexity of this retrieval procedure is O[n], n number of cases, for small case bases this
strategy is reasonable. But, for increasing case bases this procedure leads to a too time-consuming process
that restricts this approach to toy domains.

Up to now, the improvement of the efficiency of the retrieval step has been the goal in different research
projects. We can distinguish two main approaches: First, the brute-force methods using massively parallel
architectures like [25, 19] which take up to one processing element for each case in the case base. Second,
precomputation of indices (ef. {28]) for rapid access to the case base, e.g. [5, 26, 4]. The first approach
needs a lot of hardware support for the speed up of the retrieval process. By using the second approach,
it 1s difficult to guarantee the completeness of the retrieval according to the used similarity measure.

The problem of determining the most similar cases (best matches) based on a given case description is
well known as nearest neighbor search [8]. Cases can then be interpreted as points within a multidimensional
search space where each attribute implements one dimension that can be searched with an associative
procedure. The main idea of the proposed approach is to structure the search space based on its observed
density and using this precomputed structure for efficient case retrieval according to the given similarity
measure. We developed a retrieval mechanism [21] based on a k-d tree, a multi-dimensional binary search
tree [6, 12, 7]. Within the k-d tree an incremental best-match search is used to find the m most similar

*Funding for this research has been partially provided by the Commission of the European Communities (ESPRIT contract
P6322, the INRECA project). The partners of INRECA are AcknoSoft (prime contractor, France), tecInno (Germany), Irish
Multimedia Systems (Ireland), and the University of Kaiserslautern (Germany).
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cases (nearest neighbors) within a set of n cases with k specified indexing attributes (dimensions). The
search is guided by application-dependent similarity measures based on user-defined value ranges. The
overall similarity measure is split into local measures for each value range and a global measure which is
composed from the local ones [23]. A k-d tree as such is comparable to a discrimination net {10, 9] that
has been optimized for similarity-based retrieval of cases. '

Beyond the pure data structure the k-d tree approach includes procedures for optimizing the tree
structure both from scratch, or incrementally. In addition, search procedures are available that take
advantage of the known geometric boundaries along the various indexing dimensions. This is important
for a correct search procedure to be efficient. Cases with missing attribute values can also be found in
a reasonable amount of time. With respect to the special use of similarity measures in our approach,
we are restricted to have a monotic and symmetric global similarity measure, monotonic and symmetric
local similarity measures, and ordered value ranges. Nevertheless, similarity measures as described in [4]
and learning of improved similarity measures as described in {24] can be applied. Therefore, the proposed
approach can be seen as a natural and reasonable extension of the PATDEX system, a case-based reasoning
system for diagnostic applications [30]. PATDEX is an integrated subpart of the knowledge acquisition
workbench MOLTKE [2] including systems for heuristic diagnosis as well as inductive and model-based
reasoning. PATDEX uses knowledge-based methods to improve its similarity estimations. Therefore, it is
able to process (among others) default values for symptoms, heuristic determination rules for symptom
values being generated by an inductive learning system, and ¢ausal deterrnination rules being generated
by a knowledge compilation system. PATDEX can also handle abnormal and unknown symptom values.
The main restriction of PATDEX is that its indexing mechanisms can only deal with symbolic value ranges
and the processing of very large case bases could be a problem if there exist too many attribute values.
‘"Therefore, a multi-dimensional retrieval structure, namely a k-d tree, is used to overcome these problems.

The associative search mechanism, as proposed below, is used for the basic indexing and retrieval
task [12, 7], but has to be seen in the broader context of a real complex application [4]. Therefore,
many additional improvements have been implemented [21]. The improvements encompass the following:
different weightings for the respective attributes, several different sirnilarity measures within the same tree,
learning of improved similarity measures, different kinds of predefined symbolic (local) similarity measures
as well as handling of incomplete or missing data. Additionally, the matching of object-oriented case
representations instead of flat feature-based attribute vectors is included. For reasons of efficiency, the
retrieval procedure is built on top of an object-oriented data base (GEMSTONE).

2 Building a k-d Tree

The basic idea of the approach is to build a tree which splits the search space into parts which contain a
number of similar cases according to the given similarity measure (Figure 1).
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Figure 1: An exemplary two-dimensional search space and the according k-d tree

Therefore, every node within the k-d tree represents a subset of the cases of the case base and the root
node represents the whole case base. Every inner node partitions the case set into two disjoint subsets,
storing the bounding values for each dimension (attribute). The leaves of the tree which contain a specific
number of cases are called buckets. For the construction of the tree, we have to choose the best partitioning
attribute which divides the case base into two equally sized parts [12]. The process continues recursively
for each of the constructed subsets of the case base until only a few cases (bucket size) remain which are
stored together in one bucket. The determination of the partitioning attribute (dimension) is the most
crucial part of the approach. For best speedup of the retrieval process the partition of the search space
has to reflect the structure and the density of the underlying case base.
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To estimate the dispersion, we use a statistical measure, namely the interquartile distance that can be used
for both numeric and ordered nominal attribute value ranges.
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Figure 2: Basic idea of the partitioning

While the median splits a given distribution of values into two equally-sized areas, quartiles split them into
four (Figure 2). The first quartile q; (256% quartile) divides the "lower half” of the distribution into two
equally-sized areas as the third quartile g5 (75% quartile) does with the ”"upper half” of the distribution.
The median is denoted as the second quartile. The interquartile distance i¢gr is then computed as the
distance between the first and the third quartile. The bigger the distance between these quartiles, the
bigger is the dispersion of the attribute values. During tree construction that attribute having the maximal
dispersion is selected as the discriminating attribute. Since we use similarities and not distances, we
want to introduce the interquartile similarity as a new term. It denotes that we select that attribute for
discriminating purposes where the respective quartiles have the lowest similarity (which corresponds to
the maximal distance}.

procedure BUILD_TREE(setOfData);
local j, disc, minSimilarity, p;
begin
if Size(setOfData) < b then return MAKE_TERMINAL_NODE(setOfData);
minSimilarity:=oo;
for all coordinates A, (1 <j<k) do
if SPREAD(A;,setOfData) < minSimilarity then
begin
minSimilarity:=SPREAD(A;,setOfData);
disc:=j3
end;
p:=MEDIAN(disc,setOfData);
return
MAKE_NONTERMINAL.NODE
(disc,p,
BUILD.TREE(LEFT_SUBFILE(disc,p,setOfData)),
BUILD_TREE(RIGHT_SUBFILE(disc,p,setOfData))
end B()IILD_TREE‘

The procedure SPREAD(A;,setOfData) computes the dispersion of the values of attribute A; for the
set of data setOfData using the interquartile similarity. The procedure MEDIAN(disc,setOfData) com-
putes the median of the discriminating attribute disc based on the values of disc given by setOfData.
LEFT_SUBFILE and RIGHT_SUBFILE generate the two partitions of setOfData with respect to the
discriminating attribute disc and the discriminating value p. MAKE_TERMINAL_NODE and MAKE-
_NONTERMINAL_NODE generate leaf nodes and inner nodes, respectively. Every leaf node contains
within 1ts bucket at most b cases where b is the predefined bucket size. An inner node contains its discrim-
inating attribute disc, the respective discriminating value p as well as two pointers to its left and right
successor node (leftSon and rightSon).

The average case effort [20] for generating a k-d tree is O[k * n * logan], for the worst case O[k * n?].
The average costs for retrieving the most similar case are O[logan], if the tree is optimal organized. For
the worst case, the retrieval costs are O[n]. The retrieval mechanism is correct and complete in the sense
that it always returns the m most similar cases according to the specified global similarity measure sim.

3 Searching Similar Cases using a k-d Tree

The search for similar cases in the k-d tree is done via a recursive tree search procedure according to the
global similarity measure sim. Normally, there are no fully identical cases in the case base and we have

.
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to look for the most similar ones. Using the tree as a kind of binary search tree leads to a bucket where
a specific number of cases are stored. At this stage, it is necessary to compute the similarity of each case
stored in the bucket using the predefined similarity measure stm. If we are looking for the m most similar
cases we can build up a queue containing these most similar cases. Using this queue we draw a hyperball
around the given problem that includes the m most similar cases found in the current bucket. Thus,
every case which is at least as similar as the examined ones must be within this constructed k-dimensional
hyperball.

Figure 3 describes the basic idea. In this example, we have a current problem called Xg {query) and
up to four similar cases PQCT1]...PQC[4] found in one bucket. Cases at least as similar as PQCT4] like
X but not examined yet appear also in the 2-dimensional ball. The single point outside of the ball is not ’
similar enough and has not to be considered.
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Figure 3: Basic idea of the bounds tests: building a hyperball

For an efficient implementation of this basic idea we use two test procedures [12]: BALL-WITHIN-
BOUNDS (BWB) and BOUNDS-OVERLAP-BALL (BOB) (Figure 4). These procedures check whether
it would be reasonable to explore certain areas of the search space in more detail, or not. Such tests can
be carried out without retrieving the respective cases. The geometric bounds of the considered subspaces
are used to compute a ”similarity interval” whose upper bound then ”answers” the question to explore;
or not. For finding the m most similar cases for a given working case (or query case), we apply recursive
tree search. Thus, as input we need the query case X;, the number m of most similar cases, the k-d
tree represented by its root node, and the global similarity measure sim. During search a priority queue
PQC is continuously updated which includes the m most similar cases (while PQC[n] denotes the nth
most similar case, PQS[n] denotes the actual similarity value of the nth most similar case). If the recursive
search procedure examines a leaf node, the similarity of all included cases is computed and, if necessary,
the priority queue PQC is updated. If the examined node is an inner node, then the search procedure is
recursively called for that son node which should include the query case. If this call terminates, it is tested
whether it is also necessary to examine the other son node by using the BOB test.
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Figure 4: Basic idea of the BOB and BWB test

The BOB test is TRUE if the cases of the actual tree node have to be explored. The inner nodes are
correct generalizations of all the cases they represent in the sense that they include the geometric (upper
and lower) bounds (for every indexing attribute) which correspond to the respective subspace.

BOB <= Sim(Xmin, Xq) > PQS[m] ( = Sim(PQC[m],Xq) )

These geometric bounds are used to compute a similarity interval whose upper bound then answers the
question to explore, or not. The closest point Xp,i, within the actual node’s subspace is computed as the
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projection onto the actual node’s geometric bounds (Figure 4). Xmin is on the actual node’s bounding
box on the edge facing the query case X,. If there is no overlapping in any of the k¥ dimensions between
the node’s bounding box and the k-dimensional ball round X,, then Xp;, is a corner of the bounding
box. If X, is within the bounding box then X, = X,;, (Figure 4). Before the recursive search procedure
terminates, the BWB test is applied. This test is TRUE if the k-dimensional ball round X, is completely
within the bounding box of the actual tree node (Figure 4).

BWB <= Sim(X,X,) < PQS[m] A Sim(X$,X,) < PQS[m}Vi=1,....k

In this case, no overlapping with other bounding boxes is possible. Thus, the search is finished, and the m
most similar cases for the cufrent problem according the given global similarity measure sim are found.

procedure SEARCH(node);
local p, d, temp;
begin
if isTerminal(node) then (* node is a leaf node *)
begin
”test the cases in node.bucket and update PQC, PQS”;
(* test if the search can be finished *)
if BALL-WITHIN-BOUNDS then done else return
end;
d:=node.discriminator;
p:=node.partitionValue;
(* recursive call of the son node that contains X, *)
if X,[d] < p then
begin
temp:=Upper(d]; Upper[d]:=p;
SEARCH(node.le ftSon);
Upper[d]:=temp;
end
else begin
temp:=Lower[d]; Lower[d]:=p;
SEARCH(node.rightSon);
Lower[d]:=temp;
end -~
(* recursive call of the other son node *)
if X,[d] < p then
begin
temp:=Lower[d]; Lower[d]:=p;
if BOUNDS-OVERLAP-BALL then SEARCH(node.rightSon);
Lower{d]:=temp;
end
else begin
temp:=Upper[d]; Upper[d]:=p;
if BOUNDS-OVERLAP-BALL then SEARCH(node.le ftSon);
Upper[d]:=temp;
end; .
{* test if search can be finished *)
if BALL-WITHIN-BOUNDS then done else return;
end SEARCH.

4 Summary

Case-based reasoning using a simple case representation and avoiding case adaptation (which is, e.g.
the case for case-based fault diagnosis in engineering systems) is comparable to conceptual clustering
in the sense that incremental concept formation as described in [13] can be viewed as a special variant
of case-based reasoning, i.e. from a very abstract point of view both approaches are identical. As a
- consequence, these two approaches might benefit from one another if the above assumptions are fulfilled.
In fact, we currently experiment with an alternative for determining the partitioning attribute and the
dispersion of the attribute values which is based on the CoBWEB approach [11]. But, our approach
proposed here significantly differs from conceptual clustering because class-dependent information is used
to dynamically decide on the selection of an appropriate global similarity measure using the well informed
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PATDEX similarity measures. In addition, case retrieval via k-d trees is only one subcomponent of the
PATDEX system being combined with other techniques. The combination of information retrieval /nearest
neighbor classification and CBR has been of increasing interest recently e.g. [27]. Nevertheless, we are not
aware of any similar approach which is also correct, complete and efficient.
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Using a High-Level, Conceptual Knowledge Representation
Language for Visualizing Efficiently the Internal Structure of
Complex “Cases”
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Abstract. In this short paper, we assert that the implementation of more sophisticated, “second
generation” CBR applications can benefit from the adoption of high-level knowledge representation
languages like NKRL (“Narrative Knowledge Representation Language”™), which can be used to
describe the internal structure of complex cases. After having evoked very succinctly the main
characteristics of NKRL, we mention briefly the'possible use of this language for typical CBR
applications like analogical reasoning or indexing.

1 Introduction

In the practice of case-based reasoning (CBR) techniques, the ‘flat structure” paradigm seems to be largely
diffused : accordingly, cases are represented simply as flat lists of features without internal structure. On the other
hand, even if we are aware of several theoretical proposals — see, €.g., [1] — and prototypical systems — see,
e.g., [2] — concerning the use of more structured representations like event concept coherence networks (EEC
networks) or frames, there is no agreement on how to impose more complex internal structuring on cases, and
for what reasons. This attitude is in good agreement with a well-diffused indifference, in the CBR milieu,
towards the knowledge representation problems.

In this short paper, we affirm on the contrary that, (at least) for domains like the socio-economic-political
one (according to the broadest meaning of these words), the possibility of putting to work more sophisticated,
“second generation” CBR applications can be facilitated by the possibility of making use of more powerful
knowledge representation tools. If, on one hand, in a socio-economic-political context, it is difficult to avoid the
comparison of information given in the form of cases, examples or stories, it is also evident that the
“knowledge” to be represented is, here, too complex and informal to fit well into the ‘flat” representation which
can be sufficient, e.g., for CBR applications in the diagnostic style.

2 A Short Description of NKRL

In this Section, we will evoke briefly the main characteristics of a high-level, implemented, ‘Narrative”
. Knowledge Representation Language (NKRL), see [12, 13] for more details. The aim is here that of suggesting
that the use of NKRL in order to describe particularly complex “cases” can be of some benefit for the CBR
community. NKRL — which, inter alia, has been recently used in two CEC-funded programs dealing with
‘complex socioeconomic data, NOMOS (“knowledge acquisition for NOrMative reasOning Systems”, ESPRIT
P5330) and COBALT (“COnstruction of knowledge BAses from natural Language documenTs in the financial
domain ”, LRE P61011) — represents the last incarnation of a body of knowledge representation principles
originally developed at CNRS (the French National Centre for Scientific Research) in the RESEDA project and
its derivatives : these principles have definitely proved suitable for the representation of complex (“narrative”)
information.

2.1 The Four Components

In NKRL -- which presents some rough similarities with the standard hybrid and terminological
languages in the KL-ONE style, see, e.g., [3] — we make use of four neatly differentiated but interrelated
components :

. The “descriptive component” concerns the representation of the semantic content of NL clauses
describing some general classes of real-world events. In the context of the descriptive component, the

89



events taken into consideration must be structured events, i.e., characterized by the explicit indication of
an actor, an object, an instrument, etc. Examples of such general classes may be “moving a physical

% 46,

object”, “formulate a need”, “having a negative attitude towards someone”, “spreading academic
knowledge”, “be present somewhere”, “come in possession of new resources”, etc. The formal, NKRL
representations of such general NL expressions are called “templates”. Of course, for each template, its
formal realization is independent of the surface structures of the possible, different NL utterances which
can be used to describe the corresponding class of events.

. The ‘factual component” gives the formal representation of the NL narrative expressions relating some
specific events — characterized, at least implicitly, by precise spatial and temporal coordinates — which
constitute the concrete instantiations of the general class of the descriptive component. It concerns,
therefore, the representation of NL. expressions such as : “Tomorrow, I will move the wardrobe”, “This
morning, Lucy was looking for a taxi”, “Mr. Smith has fired Mr. Brown”, ‘Last year, he gave a course
of lectures on Greek philosophy”, ‘“Peter lives in Paris”, “Company X, located in Geneva, has taken the
control of Company Y”, etc. The NKRL expressions of these narrative statements take the name of
“predicative occurrences”. “Binding occurrences” are used to represent the logico-semantic links which
can exist between the original events (e.g., a network of causal relationships).

. The “definitional component” concerns the formal representation of the main defining properties of all
the general notions (at least partially proper to a specific-application domain) which can be used in the
framework of the descriptive and factual components. The corresponding NKRL data structures are called
“concepts”. Therefore, the definitional tools are used to represent in a concept format the essential
properties of general entities like “physical_object”, “taxi_” (the general class including all the taxis,
not a specific cab), “academic_knowledge”, ‘“resources_”, etc.

. The “enumerative component” concerns the formal representation of the instances (concrete examples) of
the general notions (concepts) pertaining to the definitional component ; the NKRL formal
representations of such instances take the name of “individuals”. Therefore, individuals are created by
instantiating (some of) the properties of the concepts of the definitional component. Individuals are
characterized by the fact of being countable and of possessing unique conceptual labels (“smith_",
“general _motors”, “course_on_greek_philosophy_27") : two individuals associated with the saine
NKRL description but having different labels will be different individuals.

2.2  Representing temporal information

Particular attention has been paid, in a descriptive and factual components framework, to the efficient NKRL
representation of temporal information. This possibility is of particular relevance in a CBR context, given that
cases in most domains, and particularly in the socio-economic-political context, carry time-dependent,
information, and should therefore display some kind of ordering of (some of) their components — but in CBR
practice this is most often built into the software to analyze the cases and is not explicit in the cases themselves.
Exceptions to this last approach are described, e.g., in [4].

In the context of the representation of temporal information, NKRL’s original contributions are, e.g., the
notions of “category” and “perspective”. The “category of dating” characterizes the association of a temporal
marker to the beginning (the category is here the “posteriority”, or “subsequence”), the end (“anteriority”, or
“precedence”) or a particular moment (“contemporaneity”, or “coincidence”) of a given elementary event. The
“perspective of dating” is used to define the degree of precision (for example, an incertitude expressed by a pair of
dates) with which a given temporal marker is known. It can be shown that, inter alia, this formalism a) permits
an integration of the “point” and the “interval” paradigms ; b) provides some tools (based on the concept of
“perspective”) in order to deal with the “fuzziness” which, in concrete situations, is often associated with the
description of a temporal marker.

For a rough idea of the NKRL representation of temporal information, see, infra, Section 2.5 ; a recent
paper on this subject is [14].

2.3 The NKRL data structures

The data structures supporting the four components are highly homogeneous, given that templates, occurrences,
classes and individuals are all implemented as “structured objects” identified by an “OID” (object identifier). More
precisely, the definitional and enumerative data structures are built up in a “frame” style. The structured
elementary objects of the descriptive and factual components, on the other hand, are centered around a (unique)
“semantic predicate” having its arguments introduced by means of “roles” as SUBJ(ect), OBJ(ect), SOURCE, etc.
For example, the elementary occurrence (factual component) translating the NL sentence “John gives a book to
Mary” will include a semantic predicate corresponding roughly to “coming in possession of something after a
transfer”: “Mary” will be the SUBJ of “coming in possession”, “book” the OBJ and “John” the SOURCE. The
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descriptive and the definitional components are both implemented as hierarchies (or, more precisely, DAGs,
Directed Acyclic Graphs) of structured objects.

2.4 The seven semantic predicates

According to what we said until now, the NKRL’s structures are very general, and able to represent under the
form of “cases” any sort of narrative context. Moreover, if this context is, as in the CEC-funded projects
NOMOS and COBALT, a socio-economic-political one, where the main characters are human beings or social
bodies, experience has shown that it is possible to make use, in the templates and occurrences of the descriptive
and factual components, of only seven semantic predicates corresponding to very general, prototypical categories
of human attitudes. They are described in Table 1.

Predicate . Mnemonic Description

BEHAVE A character adopts a particular attitude, or acts to obtain a particular result.

EXIST To be present, also metaphorically, in a certain place.

EXPERIENCE A character is affected by some sorts of good, bad or neutral news or events.

MOVE The displacement of a person or a physical object, the transmission of a
message ...

OWN To have, to hold, to possess...

PRODUCE Cause to exist or occur, with reference to material or immaterial entities,
like the production of a service:

RECEIVE To acquire, to obtain, without any connotation of mandatory or permanent
possession

Table 1. NKRL semantic predicates

In this case, thanks to the reduced number of basic semantic predicates, all the legal descriptive and
factual structures and their practical modalities of use can be fully described in a “catalog” (see, e.g., the so-cailed
“Stouder’s catalog” [10]), thus allowing the use of these structures according to a coherent, reproducible and
shareable strategy. Moreover, if necessary, new NKRL descriptive and factual structures can easily be derived
from those already described in the “catalog”.

2.5 An Example of NKRL Representation

. As a very simple example of NKRL coding of a “case”, let us consider the NKRL representation of the
information : ‘Kurt Waldheim flies today to Baghdad in order to obtain from Saddam Hussein the release of the
95 Austrian hostages [25th of August, 1990]”.

The coding will give rise to three occurrences (factual component) see Fig. 1 : two predicative occurrences,
identified with the labels “a” and “b”, and a binding occurrence, “c”. This last occurrence is realized using GOAL,
one of the four binding operators pertaining to the NKRL “taxonomy of causality”, see, e.g., [13 : 705].
Occurrences “a” and *“b” have two (mandatory) temporal determiners, the two date blocks “date-1” and “date-2”
which are used to register the dating elements giving the limits of the temporal interval associated with the
occurrence. In the case of the occurrence labelled as “a”, only the first data block is filled because the situation
described in this uait (Kurt Waldheim leaving Vienna on August 25th in order to meet Saddam Hussein in
Baghdad) may be represented as a “point” on the time axis. In the occurrence “b”, the two blocks are empty
because, in the particular wording of the original piece of information (e.g., a news agency item about the 1990

Gulf crisis), the actual release of all the Austrian hostages is not stated expressly (the final result of the Kurt

Waldheim’s mission was still unknown when the notice has been issued). According to the original information,
the situation represented by “b” must, therefore, be interpreted as “conjectural”, i.e., it represents only, in a way,
the “intentions” linked with the Waldheim’s mission.
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In “a” and “db” of Fig. 1, the arguments of the NKRL semantic predicates (entities of the domain) pertain to
two categories : “Kurt_Waldheim”, “Saddam_Hussein”, ‘flight_7”, “‘austrian_hostages_1" (the specific hostages
of Austrian nationality in the “1990 Gulf crisis” context) are “individuals” (enumerative component) ; “release_”
is a “concept” (definitional component hierarchy) which subsumes all sorts of possible incarnations of the
general concept of setting a person free (we shall learn afterwards that the hostages have been handed over to Kurt
‘Waldheim, and that they left Iraq using:its own presidential jet). The argument introduced by the DEST(ination)
role in “b” is a structured one (“expansion”), realized by using the quantifying attribute “95” inside a
“SPECIF(ication)” list ; SPECIF is the “attributive operator”. The colon code, “”, introduces the “location
determiner” linked with a particular argument. In a MOVE construction, like “a”, concerning the displacement of
a character — in NKRL, we systematically represent this situation by expressing that the character, as a
SUB(ject), moves himself as an OBJ(ect) — the location determiner (possibly, a list) associated with the
SUB(ject) argument represents the initial location(s), and the determiner linked with the OBJ(ect) argument the
final location(s).

a) MOVE : SUBJ Kurt_Waldheim : [ Wien_ ]
0oBJ Kurt_Waldheim : [ Baghdad_ ]
DEST Saddam_Hussein : [ Baghdad_ ]

MODAL flight 7
[ date-1: 25_august_1990 ]

[date-2: ]
b) PRODUCE : SUBJ Saddam: Hussein : [ Baghdad_ ]
OBJ release_
DEST ( SPECITF austrian_hostages_195):[Iraq] }
[ date-1: 1
[ date-2: ]

) (GOAL ab)

Fig. 1. Predicative occurrences and binding occurrences.

3 The NKRL inference procedures

Strictly associated with the NKRL environment are different sorts of “standard” inference procedures. I will only
evoke here the “transformations”, i.e. a class of inference procedures which are proper to the descriptive and
factual contexts, see, e.g., [11]. Transformations are declarative rules which allow a system organized around a
conceptual knowledge representation language in the NKRL style to come up with information that was not
exactly what was asked for, but nevertheless could be considered as a “plausible answer™ to a given formal query.
This result can be obtained by searching for semantic affinities between what is requested and what is really
known by the system ; the fundamental principle adopted is then to transform the original query into one or
more different queries, which are semantically close to the original one. Therefore, transformations alfow us to
implement an original form of analogical reasoning. '

To give a very simple example, suppose that, working in the context of an hypothetical knowledge base
about university professors, we should want to ask a question like : “Who has lived in the United States” even
without an explicit representation of this fact in the base. If the knowledge base contains some information
about the degrees obtained by the professors, we can tell the user that, although we do not explicitly know who
lived in the States, we can nevertheless look for people having an American degree. This last piece of
information, obtained by transformation of the original query, would indeed normally imply that some time was
spent by the professors in the country, the United States, which issued their degree.

Without entering now in too many formal details, we can say that transformations are made up of a “left
tiand side” — formulation in a template (descriptive component) format of the linguistic expression which is to
be transformed - and one or more “right hand sides” — representation in the same style of one or more
linguistic expressions that must be substituted for the given one. A transformation can, therefore, be expressed
as: “A (lefthand side) — B (right hand side) ”. The “transformation arrow”, ““ — ”, has a double meaning :
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. an operational meaning, where the arrow indicates the direction of the transformation : the left hand side
A is dropped and replaced by the right hand side B ;

. a logical meaning, where the arrow indicates that the information obtained through the use of B
implies the one obtained from A.

In reality, the “always true” implications (noted as “ B => A " in NKRL, where we assume that the symbol
=> ” represents the “implication arrow”) are not very frequent. Most transformations found in real world
applications represent in fact “modalized implications” (noted as “B *=> A ”, which means “it is possible that B
implies A”). An example of this last type of transformations is given by the transformation t1 in Fig. 2,
which will permit us to deal with the informal example above about “university professors” ; the left and hand
right side of t1 are normal templates of the descriptive component, derived by basic templates described in the
“catalog”. Transformation t1 says : “If someone ( x ) has obtained a title from an official authority by means of
an official document, then it is possible that he has been physically present at that moment in the place ( k)
where the authority is located”.

This rule, for example, is not always valid.in the case of an university degree (the degree could be obtained
in a correspondence school, etc.). Nevertheless, it is easy to see that, in this case, the “semantic distance”
between an “always true” implication and a “modalized” one is not too important, as it is always possible to
change t1 into a true transformation by the addition of a few constraints on the variable p, for instance the
“disequation” : “p = < obtainable_by_correspondence_degree > . Please note that all the constraints are realized
by making use of concepts of the NKRL definitional component. More exampies, and a complete semi-formal
theory of transformations, can be found in [11].

&

tl) EXIST SUBY x : [k ] — OWN SUBJ X

OBJ P
SOURCE g : [k ]
MODAL r

x = <human_being_>

p = <title_>

g = <authority_>

k = <location_>

r = <official_document >

Fig. 2. A simple example of “transformation” rule.

In a CBR context, inference rules of the “transformation” type can demonstrate very useful for (at least) a)
creating a very powerful unification module, based on some sort of “extended match operations”, for comparing
the (NKRL) description of a new case to that of the cases stored in a case base ; b) executing typical CBR
operations, see [6], like the estimation of similarities or the adaptation of old cases.

4. Conclusions

We can conclude this short paper by mentioning another interesting aspect, in a CBR context, of an NKRL
approach. )

If we consider, in fact, the CBR indexing problem, the use of NKRL in order to represent cases should
allow us to realize an up-to-date version of the principle of “indexing on complex features”, see, e.g., [7, 8] —
we prefer to use the term “conceptual indexing”. “Conceptual indexing” goes back to R. Schank’s original work
on “memory organization packets” and “thematic organization packets” see, e.g., [9] and also [5] : this principle
consists, very roughly, in the selection of some relevant characteristics of a specific type of representation and in
the use of these characteristics to identify “semantic clusters”. These clusters conceptually divide the knowledge
bases into smaller modules, which are homogeneous from the point of view of the semantic content and which
can be, at least partially, superposable.

According now to an NKRL approach, case bases where the cases are described by making use of the NKRL
language can be indexed using as classification criteria some specific NKRL features, e.g. predicates, particular
classes of concepts pertaining to the definitional component, the notions of “category” and “perspective” of
dating, see, in this last context, the very detailed description given in [14]. Comparing these “main”
characteristics with those appearing in the (NKRL) description of the case at hand, it is possible to “preselect”
quickly a subset of the base containing all the cases which, according to the classification criteria adopted, are a
priori likely to match the new case proposed. The true “match operations”, which can be very complex, are thus
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restrained to the match between the new case and the cases included in the reduced subset of the base created
during the preselection phase.
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Bases
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Abstract. One form of human analogical reasoning consists of solving problems based on their similarity
to past episodes. In this paper we discuss a novel reasoning engine that performs analogical reasoning using
traditionally engineered knowledge bases. This analogical reasoning engine learns inference rules that
.decompile heuristic associations from a knowledge base. Problems are solved by matching input data to
plausible initial problem states and then applying learned rules, which decompile heuristics, to find a
solution. An uncertainty management scheme has been developed that combines conceptual distance,
probabilistic information, and rule uncertainty. The analogical reasoning engine emulates case-based
reasoning using a simple architecture composed of one application-specific module and three domain-
independent modules. The application-specific module is a heuristic knowledge base that uses a task
model. The domain-independent modules are: a conceptual matching module, a rule-learning module
based on a semantics-driven repertory grid analysis, and an uncertainty management module.

1 Introduction

Based on analogical problem solving, CBR systems rely on finding similarities to past cases to solve current
problems [4,7]. Representation, indexing, and match and retrieval are among the issues contemplated in the design
of CBR systems. In contrast with CBR systems, the purpose of heuristic KBs is to capture heuristic associations
and solve problems following the approaches used by human experts. Heuristic KBs use well-known domain-
specific or generic representation languages. Heuristic problem solving has at least three drawbacks which could
be alleviated by adding analogical reasoning: it requires precise data matching, its overall consistency cannot be
verified, and it involves intensive knowledge acquisition.

The analogical reasoning engine presented in this paper emulates case-based reasoning using a simple architecture
composed of an application-specific module and three domain-independent modules. The application-specific
module is a heuristic knowledge base that uses a task model; the domain independent modules are a conceptual
matching algorithm, a rule-learning module based on repertory grid analysis, and an uncertainty management
module. The analogical reasoning engine learns inference rules from the knowledge base, and solves problems by
matching input data to plausible initial problem states and then applying the rules to find a solution.

_ This paper has the following outline: Section 2 deals with the components of the analogical reasoning engine,
Section 3 deals with conceptual distance, Section 4 describes our approach to repertory grid analysis, Section 5
deals with uncertainty management, Section 6 presents the results of applying the analogical reasoning engine to
the troubleshooting domain, and Section 7 contains the conclusions from this work.

' 2 The Analogical Reasoning Engine

The analogical reasoning engine is a problem solver that enables a heuristic KB to make use of analogical
reasoning. The four main modules shown in Figure 1 are: an application-specific KB and task model, a conceptual
matching module, a rule learning module, and an uncertainty management module. We have developed two new
algorithms, one for conceptual matching and one for uncertainty management. For the rule learning module we
have used a technique called repertory grid analysis, with a new semantic element added to it. The roles of the four
modules are described below, and the details of the algorithms will be given in the following sections.

Application-specific module. This module can be any type of KB that contains heuristics and an abstraction of
the problem solving approach called the task model. A task model is a notion derived from decision-making
models and human-performance models. It simply captures the decision making stages or main subgoals of
problem solving used by human experts (i.e. troubleshooting has three subgoals: diagnose, repair, and verify).

Conceptual Matching Module. The purpose of this module is to match the input problem to plausible initial
problem states. The analogical reasoning process starts when a problem description is entered as free form text.
The conceptual matching algorithm identifies keywords in the text and looks for matching strings in the KB. In
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Application-Specific Module

input problem

Conceptual
Matching

Uncertainty
Management

Rule Learning

advice

Figure 1. Analogical Reasoning Engine

this fashion, domain-specific concepts such as symptoms, functional units, or pathological states can be identified
and assigned a conceptual distance to the problem input. The conceptual distance measure allows the generation
of an ordered set of plausible initial problem states. The analogical reasoning engine, however, does not take the
approach of simply retrieving the heuristic answer to the most likely problem state.

Rule Learning Module. This module learns rules underlying heuristic associations. A measure of uncertainty is
associated with the premises and the conclusions of the rules. The analogical inference éngine finds an answer by
applying these heuristics-decompiling rules to the concepiually matching data. Decompiling a heuristic
association means making explicit at least one intermediate conclusion used by that heuristic without engaging in
the type of model-based reasoning described in [2]. Which and how many types of heuristics should be
decompiled varies depending on the task model. Usually, there is one key heuristic that applies to all problems and
decompiling it is enough. Otherwise more than one heéuristic should be decompiled. At least the main heuristic
should be decompiled so that the analogical reasoning engine may be able to generate more precise advice than
the KB, or generate advice which was not apparently available before.

Uncertainty Management Module. This module does the computation of accumulated uncertainty from the rules
and the conceptual matching. The goal of the uncertainty management module is to fine tune the matching of
problem data to KB knowledge. If a solution is not found at the end of one cycle of matching and inferencing, the
process can be repeated as desired; otherwise the system would give up. The uncertainty management module
makes sure that uncertainty values from the conceptual matching and the rules, plus any available probabilistic
data are accumulated and carried through to the final conclusions. If any solutions are found, they are ranked by
their overall certainty.

If no solutions were found in the first pass, under an open loop implementation the system would give up. Under
a supervised closed loop implementation, a new cycle that uses a lower uncertainty threshold starts, and
recomputes the initial matching states, with or without further interaction with the user. Data from unsolved cases
from both open and closed loop configurations should be used to refine the knowledge base off line, using tools
available in the original KB development environment.

3 Matching Textual Descriptions and Conceptual Distance

One of the mechanisms to select relevant knowledge base objects is conceptual matching between the problem
input in free text form and textual information in the KB which is linked to domain objects. Syntactic matching
between two textual strings S1,S; is done using a metric d(S;,S;). We have developed a conceptual distance
measure which is based on the similarity among keywords related to domain concepts found in two text strings.
The conceptual distance uses the matching score between two keywords KW, and KW, defined as:

Mehars + Ochars - L - Lol
KWecore KW, KWy) = <1
Ly

M _ars is the number of identical characters from KW which are found in the same position in KW, and Ocpars
accounts for the remaining identical but shifted characters as follows: 0.9 if the character is one position away, 0.8
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if the character is two positions away, and 0.5 if the character is more than two positions away. Based on this non-
symmetrical matching score, the distance between two keywords has been defined as:

dKW, KW = 1 - KW, (KW, KW))

The matching of text strings, S; and S, with n; and n, words respectively, is analogous to the matching just
described for keywords. The maximum scores for each keyword are accumulated and normalized by the number
of keywords in the target, minus a weighted penalty for length difference. The formulae are the following:
ny
Y max {KW.. (KW, KW}), ke [1,n,]}
i=1
StoSgeore (815 S2) = - LDF *
ny ny

|n1-n2|

StoSgistance(S1s S2) = 1-St0S;ore (51, Sy)

LDF is the length difference factor. Empirical observations indicate that totally unrelated strings usually lie at a
conceptual distance greater than 0.65 when the LDF is set to 0.3. Thus, we have used 0.65 as the cutoff for

conceptual distance.

4 An Algorithm for Rule Learning: Semantics-Driven Repertory Grid Analysis

Repertory grid analysis is a technique which has been applied with some success to the automation of knowledge
acquisition [1,3]. It is based on the personal construct theory, which holds that people evaluate their own
experiences by means of bipolar distinctions called constructs, which apply to items called elements. For instance,
the construct “drivenfunmotivated” may be used by teachers to evaluate their students as follows: the students are
assigned integers from 1 to 5 to express their rating within the two extremes of the construct (e.g. extremely driven
1, extremely unmotivated 5, neutral 3).

SYMPTOMS
no prints no emrors ce o
test power cord 1 extremely necessary =1
“n . extremely unnecessary = 5
EJ test power switch 2 neutral = 3
[l test power input 3
w
Z
] power supply 1 extremely involved = 1
% interface 3 extremely not inlzolved =5
& neutral = 3
= .
5 paper feed 3.
o

Figure 2. Repertory Grid Analysis for Troubleshooting Heuristics

From analysis of the grid ratings it is possible to generate classificatory rules which may be applied to elements
outside the original set. Let us consider an example for the checklist heuristic from the troubleshooting domain.
The elements are the symptoms, and the constructs are tests and components (i.e. the necessity to do the tests and
the involvement of the suspect components). In general, the elements must be the inputs to a key heuristic, and the
constructs are at least two types of outputs of the heuristic (i.e. one of them is the type of an intermediate
conclusion of the heuristic). A repertory grid like the one shown in Figure 2 has been used to decompile checklist

heuristics.

We have introduced the notion of semantic categorization of the constructs, suspect components and diagnostic
tests, which leads to distinct grid regions that determine the rule types that can be generated (see the regions on
the cross reference matrix in Figure 3). With the semantic categorization, the analogical reasoning engine can
insure that only rules which can be interpreted in the light of the task model are generated, thus avoiding the

problem of rule interpretation.
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Repertory Grid Cross Reference Matrix
S1 82 S3...(symptoms) Tests Components
T :
Tests T Tests TT | TC
C :
Components C; Components CT i CC

Figure 3. Semantic Categorization and Types of Rules Generated from Grid Data

Four types of rules can be learned: T-T (test to test), T-C (test to component), C-T (component to test), and C-C
(component to component). For each element of the cross reference matrix it is possible to generate more than one
rule. In general, the rules have the following format:

[Q; CONSTRUCT; entails Q; CONSTRUCT;] ¢, i#

This means that any two different constructs could be linked by a rule with a confirmation factor computed from
the evidence available on the grid. The qualifiers Q; and Q; are the qualitative interpretations of the ratlngs and
can be any single value or a meaningful range, for example: extremely needed (1), at least somewhat needed (<2),
extremely involved (1), etc.

A C;-T; rule would clearly indicate how necessary the diagnostic test T; is when component C; is a suspect. To
generaie such a rule, with qualifiers extremely involved and extremely needed (grid ratings = 1), from a grid with
10 symptoms we would need the following grid rows:

C, data, or the i-th row in the Repertory Grid: 1352131333
T; data, or the j-th row in the Repertory Grid: 3353133333

The rating values of 1 are defined as being on the alpha plane 1 or o;. The confirmation factor for the rule is the
ratio between the positive relevant evidence and all relevant evidence, as shown in Figure 4. (This factor is really
the amount of partial entailment of T; given C;.) Notice that all relevant evidence is located on the alpha plane
and all information for C; which is not on o is irrelevant evidence.

Relevant Evidence

Positive Negative CF - - Positive Rel. Ev. _ 1 - 033
Ci&Tj@ 03] Ci@al&Tj@«xl Total Rel. Ev. 3
1 2
Total: 3 all information for C;@~0,, is irrelevant

Figure 4. Computation of the Confirmation Factor for Rule C;- T;

Our use of repertory grid analysis has the following innovations: (i) semantic categorization of the constructs, (ii)
selective learning, so that only rules relevant to the task model are generated and invoked, and (iii) rule applica-
tion following a task model and using analogical reasoning.

5 Uncertainty Management

Several types of uncertainty accumulate along the process of solving a problem with the analogical reasoning
engine. The conceptual distance, the uncertainty of the rules, and any probabilistic information available (e.g.
known failure probabilities) need to be combined to generate a certainty measure for the final conclusion. For the
troubleshooting example we developed the formula shown in Figure 5. Due to its linearity and simplicity, this
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scheme can be generalized as the product of the conceptual distance to the closest initial problem state, the a priori
probabilities of the preconditions of relevant rules, and the certainty factors of the conclusions of the rules.

Formula to rank recommended tests: S\_d Symptom Conceptual Distance

Trs = [1-S_d]1* C_fp * T cf C_fp Component fault probability

T_cf  C-T rule confirmation factor

Figure 5. Uncertainty Computation Formula

6 Results

We applied the analogical reasoning engine to a troubleshooting KB built using DSS [5]. The KB was designed
for the troubleshooting of laser printers. As shown in Figure 6, analogical reasoning helped to generate diagnostic
tests for complaints stated in plain English by (i) matching the input against symptom descriptions, (ii) from the
likely symptoms, one set of diagnostic tests and another set of suspect components were generated, (iii) C-T rules
were learned and used to infer recommended tests, and (iv) the recommended tests were ranked based on overall
certainty.

Problen) Input

Rule
Learning

Conceptual
Distance

Uncertainty Foweg
Management 2

C Suspect Recommended
omponents | Tests:
T2
% Checklist
’ symptoms Z Tests

Figure 6. Analogical Reasoning for a Troubleshooting KB

The elements of the repertory grid were symptoms, and the constructs were checklist tests, and suspect
components. The main heuristic which was decompiled was the association between symptoms and diagnostic
tests called the checklist [S]. The grid ratings used were simply a 1, or strongly needed or involved, if the test or
component was present in the checklist or in the suspects list, and 3, or neutral, otherwise. The checklist is thus
decompiled as the sequence “first generate the suspect components, and then find the optimum test for the most
likely fauity component™,

We performed two experiments done using different types of input. In the first experiment we entered verbatim
the known symptom description “prints have a wavy pattern” to analyze the extent of agreement with its checklist
in the KB. In the second experiment we entered a more ambiguous description.

As expected, in the first case the conceptual distance to the target symptom was 0.0, and the recommended tests
included the original checklist items with the highest scores. Other recommended tests came from the checklist
of a symptom which lies at a conceptual distance of 0.5625. In the second experiment, we entered an ambiguous
and misspelled description of a known symptom. The results showed that the conceptual distance matching
works well, selecting the right symptom, and the only member of the original checklist is one of the recom-
mended tests. The other recommended tests were found to lead to plausible diagnoses according to the original
KB.

All learned rules must be validated by a domain expert before they are used in an application. Otherwise, unex-
pected conclusions may need to be analyzed in order to judge the value of the rules. In a few cases, tests which
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were not in the original checklist were highly recommended. Upon closer examination of the knowledge base, we
found that in one case the new test corresponded to the checklist of a sub-symptom of the current symptom, and
the evidence for the use of that test was stronger than the evidence for any of the tests in the original checklist (it
had highest confirmation factor for the C-T rule). Thus, we concluded that given the data available it could have
been a more effective test for diagnosing the suspect component.

7 Conelusions

‘We have presented an innovative approach to analogical reasoning for heuristic knowledge bases which takes
advantage of existing KB architectures. The analogical reasoning engine adds flexibility to heuristic problem
solving by broadening the range of input data. With this approach we have shown that the specialized case-based
architecture can be emulated by the analogical reasoning engine, which only requires a heuristic knowledge base
and its task model. ‘

The analogical reasoning engine has three domain-independent modules which include the following specific
innovations: a conceptual matching algorithm, a semantics-driven repertory grid analysis tool, and an uncertainty
management scheme. The semantics-driven repertory grid analysis has the advantage of solving the problem of
rule interpretation since the semantics of the rules generated are given by the grid region on which they fall. The
grid can also be used to build new KBs by letting the user create rows for categorized constructs, and columns for
elements whose relationships with the rows can be rated by the values entered in the grid. This spreadsheet-like
approach would enable new consistency tests based on cross referencing, which may help the KB designer vali-
date the notions of structure and behavior implicit in heuristic associations. When applied to existing KBs, as in
our example, the constructs and elements for rows and columns already exist and are simply placed on the grid
and the ratings are filled in with default values such as extremely relevant or neutral, corresponding to whether
two concepts are related or not.

The improved utilization of heuristic knowledge bases has broad effects. Knowledge bases are usoaily designed
for one specific delivery environment, and the knowledge is intentionally entered to be used in one manner.
However, analogical reasoning provides the flexibility of using the knowledge base in a different mode. In the case
of troubleshooting, heuristic knowledge bases are built for field assistance. With analogical reasoning, help desk
consultations are possible given that one can enter loosely stated problems, just as they are stated by non-
technically oriented customers who want the best advice possible.
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Abstract

The paper introduces and examines the relevance of the notion of “interpolation” between case features, to
facilitate fast adaptation of existing cases to a current situation. When this situation is time-critical there is not
enough time for exhaustive comparison of various aspects of all the stored cases, so it may not be possible to
retrieve a high-quality match for a current problem within a specified time-limit. Viewing imperfect adaptation
as a process of interpolation (or a set of possible processes with different qualities of interpolation) then gives
the best and most robust perspective for time-critical reasoning. Although interpolation-like adaptation tech-
niques have been used in some existing CBR systems, they have not previously been treated explicitly from this.
perspective.

1. Introduction

Interpolation is a well-known technique for quick solution of numerical problems. In this paper we extend the
numerical-interpolation idea to symbolic values in order to achieve efficient adaptation.-for Case-Based Reason-
ing (CBR) systems. Efficient adaptation is one of the prime requirements for CBR systems in general. But in
systems dealing with time-critical problems this need becomes much more acute as the performance here can
be characterised primarily by features like speed and timeliness i.e. ability to finish a task within a stipulated
time [6]. Since an upper limit of allowable time to find a solution is prescribed, a CBR system solving time-
critical problems usually cannot afford the standard methods of wading through an entire case-base, judging
each case individually, in order to retrieve the best possible match. Consequently the system is left with the
option of modifying the best possible past case(s) that it could retrieve within an allotted time period - or in
extreme situations may have to adapt some "default’ solutions stored against such contingency [3]. Naturally, an
effective general adaptation approach is required for a CBR system working in a time-critical environment. We
offer the notion of interpolation as a means of fulfilling the need for a domain-independent, quick and efficient
adaptation tactic.

In some of our earlier work [4] we proposed the notion of interpolation for knowledge-based systems, and
argued briefly that its special requirements could make it even more suitable to apply to cases than to other
" knowledge representation schemes. In this paper we explain how ’interpolation’ can be extended to cover sym-
bolic values and examine in detail the kinds of interpolation that can occur.

However, we feel that ’interpolation’ is not an entirely new concept in case adaptation. As we review critically
the papers on existing CBR systems, we find that in many of them some ad hoc steps have been taken which
closely resemble some of the interpolation techniques we suggest below. This observation not only authenti-
cates the suitability of interpolation methods for adaptation, but also paves the way for an in-depth look at it.
This paper in that sense is a pioneering effort to put interpolation in CBR on a uniform footing.

2. Interpolation in CBR - the Approach

The basic motivation for interpolation comes from numerical analysis, where it is often used as "the technique
of approximating a function in order to evaluate it at some unknown point when the values are known for a set
of tabular points" [5]. And one uses the term "extrapolation" for the same general procedure when the unknown
value is not too far off one end of an interval whose properties are known.

This paradigm is obviously attractive for case adaptation provided that it can be made to have a good degree of
uniformity (domain-independence) and applicability outside the range suggested by the example of numerical
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analysis. However, extension of the idea of interpolation to non-numerical problems is not straightforward -
which is probably why ’interpolation’ has so far remained uncited in knowledge-based problems. Hence some
careful observations are needed for making the basic tactics of interpolation clear.

The most immediate property of numerical values is that they have an inherent order. Therefore when a new
quantity is encountered it is simple to determine its relative position with respect to other quantities, making
interpolation straightforward to apply. But that is usually not so for features in realistic knowledge-intensive
problems, where symbols are used predominantly. As no well-defined order is immediately present between
symbols, interpolation in symbolic domains requires some means of imposing an order (or a partial order, at the
least) on the features.

Now, an order between two symbols is meaningless unless an attribute that is relevant in the current context is
considered. For example, there is no obvious order on the animals deer, cow and elephant. But when we talk
about any specific property we can hope to find some order with respect to it: cow falls between deer and
elephant when the attribute is weight, when speed is important elephant comes .between cow and deer, while
deer falls between elephant and cow when potential for domestication is the attribute to consider. A metric can
be set up in any one dimension to assign relative distances between pairs of entities, and distance in multiple
dimensions (multiple properties) can then be calculated via standard metrics (Euclidean, Manhattan etc.). We
use the word ’interpolation’ to cover both interpolation and extrapolation, in the sense mentioned above, with
respect to knowledge-based problems as well. ‘

In the next section we indicate how different types of metrics can be specified for symbolic quantities.

3. Different Ways of Imposing Metric Interpretations

In connection with our CBR work we have identified 8 different ways to impose metric interpretations on sym-
bolic quantities. We illustrate them through real-life examples or examples from existing CBR systems where
they are already expressed in a similar language.

Most straightforward is the situation when the feature itself has implicit order. This situation has two subdivi-
sions.

3.1. Numerical Values

There are certain features which can be characterised adequately by numerical values only, e.g. distance, time,
weight. Here people often use straightforward interpolation (rather unconsciously and subjectively, perhaps).
For example: when A asks B how much it should cost to go to Victoria from King’s Cross by taxi, B immedi--
ately replies that it should be around 7 to 8 pounds, from his tentative idea that the trip should take around 20
minutes by road and last time when he travelled by taxi he paid 2.50 pounds to go from Oxford Street to Enston
station which took nearly 6 minutes of driving.

3.2. Symbolic Quantities Masking Numerical Values

There are features which are measurable according to some standard scale (which may be known only to-the
domain experts and not the people who record the raw case data), yet in non-expert practice are expressed in
symbolic terms. The common choice of an ordering of colours according to the wavelengths of the correspond-
ing light or use of musical notes instead of their frequencies are simple relevant examples here.

For features that are not directly metrisable we suggest two different types of artificial metric: artificial
enumeration through ordinals, and fuzzy. ’

3.3. Fuzzy Quantifiers

Here we can borrow from the standard techniques of fuzzy reasoning, e.g. translating fuzzy terms into distribu-
tions, performing convolutions to derive distributions expressing combinations of terms, and making inverse
translations to find the right fuzzy quantifier for the result. The formality of the treatment distingunishes this
scheme from the one immediately above, even though their terms may overlap. Zadeh [10] discusses this in
detail. In real life people often use fuzzy terms e.g. very-big/ big/ small/ fairly-small (for size), heavy/ medium/
light (for weight), very high/ high/ low (for temperature) etc. instead of actual quantitative values. Similar con-
cepts can be seen in the system for fault recovery in automated machinery designed by Barletta and Mark [1].
When they use explanations like ’since the current temparature is 110 degrees, the viscosity is low and
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therefore manual rotation is not needed’, they are basically applying interpolation (according to our definition)
on domain knowledge like ’if the lubricant is too cold then viscosity s too high’.

3.4. Artificial Enumeration Through Ordinals

Often artificial orderings are applied to symbols to express their relative order e.g. for educational qualifications
of persons, postgraduate 5/ graduate 4/ diploma 3/ A-level 2 etc. CHEF [7] uses this technique for describing
object properties. For example, knowledge of the form ’taste of broccoli'is savoury with intensity 5.” and "taste
of beef is savoury with intensity 9.’ corroborate this artificial enumeration. Whatever consequent recipe-
adapting actions CHEF takes (on the basis of these values) in order to replace one ingredient by another in
some dish falls within the scope of this heading.

It should also be noted that the ordinals are normally set with respect to certain particular feature. Thus a post-
graduate may get ordinal number 2 while a diploma-holder may get 5 when the relevant feature is “ability to do
electrical repairing works’. :

Other interpolation methods that we have used are:

3.5. Discrete Selection: choosing one of a finite set of alternatives

Examples of this can often be found implicitly in real life, although they are usually not described in terms simi-
lar to the heading above. For example, it may be necessary for a maintenance worker to fit into a confined space
(which implies a suitable small size and high level of agility) and to be strong enough to manipulate heavy
objects in that space (which puts premium on strength and therefore downgrades small size). A foreman may
select X from the list of available workers because X is a member between Y who is too weak and Z who is
rather too large for the job, given also that there is some positive information about agility on X’s record.

3.6. Optimisation of Certain Functions

Often compromise between two conflicting demands is arrived at by providing an alternative that maximises the
the total satisfaction of the two parties involved. For example, Mr. X wants to spend the holidays in the moun-
tains of Austria while Mrs. X, who does not like hills, prefers to go to a French seaside location. Mr. X being
' totally reluctant to go to a sea resort, the ultimate solution they arrive at is to go to a historical place like Rome.
Although it may be 2nd and 3rd in the preference lists of Mr. and Mrs. X, it maximises their joint utility func-
tion. Interpolation involves finding an intermediate point by applying a guiding criterion, (i.e. a search for an
extremum) here.

Examples of this type of interpolation can be found in JULIA, the case-based meal planner [8]. For example,
the conflicting goals of a host, who wants to serve egg as the main ingredient, and an invitee, who is on a low-
cholesterol diet, is solved by the planner by suggesting a menu with egg as the secondary ingredient.

. 3.7. Rule Sets

To keep close to our paradigm of-interpolation, the postconditions of the rules must be. of the form "given x, y,
z, f(x) and f(z), where x <y < z, derive f(y) in the following ... way". The method of derivation indicated by ...
will vary from rule to rule: a rule’s preconditions will therefore determine a context. Where ’f’ gives a ratio
between amounts of different types of financial instrument, in the portfolio of a stockbroker’s client, and the
context is a financial outlook described by national quantitative economic indicators, expert systems produced
in the EQUUS project [2] perform just such an interpolation.

3.8. Iterative Interpolation

Above, we have mentioned an interpolation that is a compromise between two values A and B. Applying a
guiding criterion, as mentioned there, is in general likely to involve an iterative improvement on some rough
initial solution. Here, each of A and B has associated with it a set of tests or conditions which serve as
justifications for a value determined by some more elementary type of interpolation to be moved closer to itself.
When neither set can offer a justification stronger than some predefined threshold, the interpolation terminates.
The resulting picture is of a bargaining and counter-bargaining dialogue. PERSUADER, a system to imitate
mediation in labour disputes [9], applies this kind of interpolation.
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4. An Example

In this section we illustrate a use of interpolation with an example from our current CBR problem domain of
ground operations control of an airport. Suppose the current situation is as follows:

A plane which is due to depart in 15 minutes has a problem with a piece of defective radio equip-
ment, which can be repaired and recalibrated in place only after a very long delay, or within 15
minutes if the plane is (re)located close to a concourse window from which connections to elec-
tronic facilities can be made. The situation is time-limited because an incoming flight is scheduled
to unload at the gate occupied by the original plane in 20 minutes.

No case is found in the case-base with exactly the attributes above. The most similar cases differ basically from
the current one in a "dimension" that we can summarise, for the purposes of this paper, as "difficulty-in-
repair-or replacement". The two closest cases are (i) one in which a plane is delayed by a defective baggage-
door, (ii) one in which a crack has been found in an external window, necessitating replacement of this window.
Common to both cases are the instructions
- call engineers to repair the defect (with different expected times for the

repair, e.g. 5 minutes for the window and 15 for the door);
- ensure that the repaired plane will leave as soon as the work is completed;
- make a path plan for the incoming plane.

The plan in the "window" case also contains the instruction "ensure that a special component" (the replacement
window) "is ordered”, while there is no such instruction in the "door" plan. In this instance the interpolation
must select one or the other (discrete selection, stated above); there is no intermediate possibility. The controller
is therefore prompted to ask the most accessible specialist (e.g. the crew member in charge of navigation etc.) if
it is desirable to order a special component - while the absence of the interpolation scheme might have meant
that such an order could have been overlooked until far too late.

Also relevant to interpolation (of different operations on the same data) is the fact that the "door" case contains
an instruction replan-flight-movements with one argument indicating the time horizon over which readjustments
are likely to be necessary, while in the corresponding position in the "window" case there is an instruction
readjust-identity, with the same type of argument. (This refers to a situation in which the window defect was in
a plane allocated to a flight over a significant distance, while an identical plane allocated by the same airline to
a short-haul flight was at an adjacent gate). In this environment there is a set of similar operations differing in
their ranges of effect in the airport. The set includes a readjust operation, available for any airline that occupies
a sequence of gates, whose effect is to ask the manager for that airline’s operations to consider some rearrange-
ment, of any type (relabeling, physical movement), for planes assigned to those gates. Here, this suggests the
possibility of moving the plane with the defective equipment to a gate adjacent to a concourse. The interpola-
tion selects the readjust operation.

In a final simple interpolation, the expected repair time is estimated as 10 minutes (interpolating numerically
between 5 minutes for window and 15 minutes for door).

5. Concluding Remarks

In the full-sized paper we intend to illustrate the effectiveness of ’interpolation” as a rapid adaptation technique,
via examples from our time-critical problem domain of ground operations control of an airport, using instances
of all the types of interpolation mentioned above, and indicating how to choose an appropriate type automati-
cally for each problem. Our work has shown further that (with the help of a caching scheme [3]) results can be
computed reliably within the time limits set by the time-critical requests. An essential feature of our treatment.
of time-criticality is that different interpolation schemes, each with a time cost determined by past experiments,
are available, and the best interpolation consistent with the time allowed is chosen automatically [3].

While the main emphasis of this abstract is on interpolation, a full justification for interpolation in use relies on
being able to express relative distances between symbolic terms. As indicated above, this is a standard activity
in numerical taxonomy, but notions of semantic distance are also occasionally used in Al Discussion of this
issue can be expanded within a full-sized paper, if required. ’
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Abstract. A major advantage in using a case-based approach to developing knowledge-based systems
is that it can be applied to problems where a strong domain theory may be difficult to determine.
However the development of case-based reasoning (CBR) systems that set out to support a sophisticated
case adaptation process does require a strong domain model. The Derivational Analogy (DA) approach to
CBR is a case in point. In DA the case representation contains a trace of the reasoning process involved
in producing the solution for that case. In the adaptation process this reasoning trace is reinstantiated in
the context of the new target case; this requires a strong domain model. In this paper we analyse this
issue using as an example a CBR system called CoBRA that assists with the modelling tasks in
numerical simulation. We conclude that CBR systems for more innovative tasks should focus on
interactive adaptation.

1 Introduction

Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as a model of human memory
and reminding. It has been embraced by researchers on Al applications as a methodology- that avoids some of the
knowledge acquisition and reasoning problems that occur with other methods for developing knowledge-based
systems. One of the central advantages in using a case-based approach to developing knowledge-based systems
(KBS) is that CBR systems can be developed without encoding a strong domain theory for the problem domain
[1]. However there are CBR systems that incorporate a strong domain theory. Systems that set out to support a
sophisticated case adaptation process. do require a strong domain model. So there is some question as to whether
these CBR systems with deep knowledge representations loose this central advantage of the CBR approach to
KBS development.”

The Derivational Analogy (DA) approach to CBR is a case in point [2]{3][4]. In DA the case representation
contains a trace of the reasoning process involved in producing the solution for that case. In the adaptation
process this reasoning trace is reinstantiated in the context of the new target case. If the domain model is to
support the reinstantiation of a reasoning tracc then it will have to be a fairly comprehensive representation.

In this paper we will attempt to analyse this issue using as an example a CBR system called COBRA (Case-
Based Reasoning Assistant) that assists with the mathematical modelling tasks in numerical simulation.
CoBRA is a DA based CBR system that produces simplified models of cooling fins for heat and fluid flow
analysis. COBRA's cases consist of model descriptions and a trace of the model simplification process (see Fig.
3). The adaptation process attempts to reapply this reasoning trace to the fin model in the target case. COBRA
contains a fairly sophisticated domain model to support this adaptation. The question is: is the advantage of
CBR lost in having to support it with a deep model of the problem domain? Could this system have been
developed as readily by encoding the knowledge as a planning system of transformation heuristics represented as
rules?

Before looking more closely at CoBRA we will look at a simple CBR system called Rachmann for
estimating house prices. This system will act as a touch stone to.mark the simplicity of the basic CBR process.

2 Rachmann: A classic CBR system

- Rachmann is a small CBR system for property valuation. Each case is a property represented as set of features
and the value of that property (see Fig. 1). A target case is a set of features representing a property for which a
valuation is sought. The systems finds the best match from its case base and performs simple adaptations on
that case to determine a valuation for the target case.

The advantages of CBR for knowledge acquisition are manifest in this example. The cases are easy to set up
as the features are obvious important attributes of houses affecting the market value. However, the system is
not completely without a domain theory because the organisation of the indices in the discrimination network
reflects their relative importance. In addition, the partitioning of a city into locations reflecting property values

* It is worth mentioning that these comments apply to the use of CBR in developing KBS and not to the use of CBR as
a model of memory and mental processes.
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requires some expertise. Nevertheless, our experience has been that this system is much easier to set up than an
equivalent system using heuristics to reason from first principles.

4WF | Indices Indices

Location: SM-1 Location: SM-1
B-Rooms: 2 B-Rooms: 3

Age: Modern Age: Modern
Rec-Rooms: 1 Rec-Rooms: 2
Kitchen: Smali Kitchen: Large
Rear-Acc.: No Rear-Acc.: Yes
Tot-Area: <800 Tot-Area: >1,200
En-Suite: No En-Suite:  Yes
Price £75,000 Price £98,000

Fig. 1. Example cases from Rachmann, the property valuation system

3 CBR and Problem Complexity

The basic tenet of CBR is that, rather than solve a problem from first principles, it may be easier to retrieve a
similar problem and transform the solution to that problem. In Fig. 2 we attempt to illustrate these trade-offs
graphically. SP' represents the specification for a new problem and SL' is the solution to that problem. FP'
represents the search process that establishes this solution from first principles—the task we wish to avoid. A
CBR solution is worthwhile if the retrieval task R, and the adaptation task A are simpler than FP'.

A

FP'

Sp
SL
Fp

Specification
Solution
First Principles Reasoning

A Adaptation
R Retrieval

Figure 2. The transformation processes in CBR and in reasoning from first principles.

From an 'Al as Engineering' perspective the big issue here is the complexity of the adaptation task A. An
analysis of the CBR literature suggests that CBR adaptation might be divided into three categories arranged in
order of increasing complexity as follows:-

« Substitution Adaptation: This is the simplest type of adaptation and merely involves
substituting some of the parameters in the solution.

« Transformational Adaptation: This adaptation is more complex and will involve structural
changes to the solution.

* Generative Adaptation: This is the most complex adaptation and is not perfectly represented
by the diagram. The adaptation process involves a rework of the reasoning process FP in the
context of the new problem situation represented by SP'. Derivational Analogy fits in this
category.
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The Rachmann system shown above is an example of a CBR system using substitution adaptation. This is at
the easy end of the spectrum and the advantage of CBR is evident here. For substitution adaptation to work it is
necessary that the expression of solutions should be simple. Solutions should be atomic (a single price or the
name of a faulty component) or should be made up of a few features with little interdependency. In tasks where
the solution expression has a complex structure the adaptation process is more delicate and interaction between
solution components must be considered. The cases in CoBRA have this kind of complexity.

Adaptation of complex solutions requires an adequate domain model. So the question is; will this model need
to be as complex as that required for a 'conventional knowledge-based system? Does the use of CBR in complex
problem domains manage to avoid any of the knowledge engineering needed for a solution based on planning?

3.1 The CoBRA problem domain

CoBRA is an example of a CBR system operating in a domain where substitution adaptation is not adequate. It
is a system for creating physical models in engineering analysis. The task being addressed is the generation of
simplified models suitable for numerical analysis. This process of model simplification is an important initial
stage in thermal analysis in engineering. The objective is to produce a simplified geometric model suitable as a
basis for a mathematical model. This simplified model must be a reasonable approximation to the actual
physical system. For the human designer this process involves a series of assumptions and justifications that
produce the simplified model (see [5] for more details).

CoBRA has been implemented to work on a case base of coolmg fing, a typ1ca1 example of which is shown
in Fig. 3. Each case is made up of a representation of the basic model, the simplified model and a teasoning trace
of the justifications for the transformations in going from the basic to the simplified model.. These
transformations and justifications are the key component in the case representation. Because of this COBRA uses
generative adaptation involving a re-run of this reasoning trace—rather than transformation adaptation. This
adaptation by regeneration is derivational analogy.

Basic Fin e
Simplified
Model FinModel

Reasoning Trace

Fig. 3. Example case from CoBRA, the thermal modelling system

3.1 Derivational Analogy

Evidently a case in a DA system will have three components; a description of the start state, a description of the
goal state and the reasoning trace that prodices the goal state. The adaplation process attempts to reinstantiale
these reasoning traces in the target case.

In CoBRA cach reasoning trace has an action part and a decision part (after [S]). The decision part contains:-

+  Altemnatives considered and rejected
»  Reasons for decisions taken
+  Starts of false paths

+  Dependencies of later decisions on earlier ones

The action part holds the slcps taken as a result of the reasons held in the decision part. A typical action is,
"Remove the extended surface which faces into the flow”. The two main actions in COBRA are REMOVE and
RESIZE. The actual functions used to express these actions must be sufficicntly abstract to allow their
application to cases similar to the one with which they are stored. Both the decision and action parts operate on
parameters which are common to all cases, for example:

« altitude: the altitude of a feature

110



« surface-area: the heat transfer surface area

« base-area: the surface area of the feature base.

Summarising, each reasoning trace is made up of a set of actions and justifications for those actions. The
reasoning trace can be reinstantiated for the new case if these justifications are valid in the new situation,

4 Reconstructive CBR in CoBRA

For Derivational Analogy each case must have three components; a description of the start state, a description of
the goal state and the reasoning trace that links these two states. In CoOBRA the representation of the start state
and the goal state are similar. After all one is a simplification if the other. Figure 4 illustrates a portion of such
a case. The diagram on the left shows a cross section of a finned heat exchanger unit and the task addressed by
CoBRA is to produce simplified models of cases of this type. The frame description on the right illustrates the
representation that is manipulated by the system. A target case contains only this frame representation; this is
the problem specification. :

Secondary ( Complex Appendage N
Appendage Spatial Model
Longitudinal :base
Rectangular type slender_body
Fin profile flat_plate

:base_appendage
type longitudinal
profilerectangle

Positive Positiv boundary_region windward
Egaﬁmg Feat :positive_feature
Longitudinal Longitudinal type longitudiunal
Rectangular Triangular profiletriangular
Fin o . boundary_region leeward
ter Positi Fin -
Positive. ?E'LL:“ :positive_feature
Longxtudlnal Longltudmal [ype lo’:lgltudlunal
: : Triangular profiletriangular
Tna.n.gu ar Fin boundary_region upper parallel
Fin :positive_fleature o
]_,oAnmnmtudMal B type longitudina
ngi base profilerectgngular
Rectangular Body . .

Fin

- /

Fig. 4 A spatial classification of the problem with a partial description of the associated target case.

Each base case contains a solution in addition to this problem specification. The solution is made up of the
simplified model and the reasoning trace. A typical reasoning trace is shown in Fig. 5. Each node in the
reasoning trace represents a decision point in the model simplification process. For instance Goal_2 considers
the heat transfer associated with a sub-feature. There are three possible actions depending on the amount of heat
transfer associated with the feature. This reasoning trace encodes the removal of the feature. This illustrates how
the reasoning trace in derivational analogy represents a known good route through a vast search space. So
whatever about the knowledge acquisition advantages of DA it has a clear advantage in reducing backtracking in
problem solving (this point is made by Mostow in [3]).
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[Goal_la Is the feature in the laminar or )
turbulent boundary layer Reasoning
Approach  Estimate the transition point for a platg ) Trace
with a developed boundary layer
Assumptions [eading edge of flow commences at -
bluff body stagnation point. Goal 1a Fin on Flat
Approx- Flat plate transition point - Plate
imation approximation
Result Fin is located in a =>Goal_1b
\_ turbulent boundary layer Y,
fGoal_lb Is the feature enclosed by the 1
turbulent boundary layer
Approach  Calculate the turbulent boundary
layer thickness Goal_1b Turbulent Laminar

Assumptions That the boundary layer thickness
estimator can be used for a composite

body composition
Approx- Boundary layer
imation thickness approximation
Result Fin is completely within —>Goal 2 Non Goal 2
\ turbulent boundary layer ~ ¢ _J Enclosed -

(Goal 2 Is the contribution of the finto ~~ \
heat transfer less than 5%

Approach  Estimate the heat transfer associated
with the feature

Assumptions That the fin apporximations are Heat transfer Heat transfer
applicable in this case less than 5%_ Heat transfer greater than 8%
Approx- Fin A N greater than 5%
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Fig. 5 A derivational trace for a windward finned appendage
5 Alternative Knowledge Based Solutions

There has been much Al research on problems of this type that does not use CBR - particularly under the
headings of model based reasoning and qualitative reasoning (see for instance [6] [7] [8] This research emphasises
representation but it is evident that the reasoning process in mind is one of planning - search with backtracking
through a solution space. It should be evident that CBR will help constrain this search process but the question
here is whether it will reduce the knowledge acquisition problem? If we consider what a planning based system
for our model simplification task would look like we will see that it will not.

The conventional alterriative to the CoBRA system involves developing a model of the entities in the
problem domain and encoding heuristics that represent the transformations on these entities. The entity model
will be the similar to that used is CoOBRA and the planning heuristics will be the same as those encoded in the
reasoning trace.

The development of a planning system for model simplification requires a knowledge level analysis of the
problem domain to ascertain the appropriate transformation hcuristics. It is our conclusion from developing
CoBRA that the encoding of the reasoning trace is the same kind of task. In this problem domain a
- comprehensive DA system will explicitly encode the same heuristics as a rule-based planner.

However, it might be said in favour of CBR that the emphasis on cases will focus the knowledge acquisition
process.
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5.1 Alternatives to Rachmann system

The situation is quite different with the property valuation task addressed by the Rachmann system. Setting up
the Rachmann case-base requires very little knowledge level analysis. The heuristics are encoded implicitly in the
cases. By contrast a rules-based system for the same task would require the determination of the influence
features like location, facilities, etc. have on price. So, for this property valuation problem, CBR has avoided
this need to explicitly encode a domain model.

6 Conclusions

From the perspective of the design and modelling task, CBR does offer some advantages compared to a model
based reasoning approach. Establishing cases on the basis of fundamental modelling scenarios allows retrieval of
modelling solutions that can be adapted in a focused manner by using derivational reasoning. This avoids
extensive backtracking associated with rule based systems. Secondly, it has been our experience that for a
complex domain such as convection heat transfer, the process of knowledge acquisition based on reasoning traces
provided no special difficulties for our domain expert. This is in marked contrast to our experiences for
knowledge elicitation in model based reasoning systems. Finally, because of the episodic nature of the
derivational trace, the explanation of the reasoning processes is somewhat more clear.

On the other hand from a CBR perspective, we realise that CBR has been embraced by researchers in
knowledge based systems because it has two significant advantages. The first is that case-bases are easier to set
up than other knowledge representations. The second is that, in problem solving, cases encode known good
routes in the solution space and thus reduce backtracking. These advantages will only be maximised in CBR
systems where solution representations are not made up of complex interacting components and the adaptation
process is comparatively simple. Out experiments with the Rachmann system confirms this view. However, in
CoBRA, where solutions have complex representations, adaptation is more dilficult and a full domain model is
required to support this adaptation, our opinion is that some of these advantages may have been lost.

Finally we would like to add, that, where automated adaptation is complex and therefore negates some of the
strengths of the CBR approach, we believe that involving the user as an agent in the adaptation process as
advocated by Kolodner [9] may overcome this disadvantage. We hope to explore this issue in future work.
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Abstract An interactive cased based reasoning tool for assisting engineers with the mathematical modelling
tasks associated with the analysis of thermal problems is described. By representing fundamental thermal
modelling scenarios as cases, complex physical systems are modelled in a piecewise fashion by successive
application of matching cases. Retrieval is based on the use of qualitative indices, derivational analogy allows
for generative adaptation of retrieved cases, thereby providing a basis for validating cases in the context of the
problem under consideration. This work represents an alternative perspective to model based reasoning
approaches that have been applied.to model generation to date.

1 Introduction

This paper describes work in progress which aims to develop an interactive case based reasoning system that
assists engineers with the mathematical modelling tasks associated with convection heal transfer analysis. This
domain is described mathematically by the thermal partial differential equations (PDEs) and is nowadays
usually analysed using numerical simulation techniques such as the finite element method. Mathematical
modelling precedes numerical analysis and involves abstracting a mathematical model from a real world
problem. This is achieved by applying physical and mathematical idealisations, so as to create a model that is
computationally realistic to solve, but, at the same time, still retains the important features of the physical
system [1,2]. It is for this modelling task that we propose a case-based reasoning solution.

The case base is made up of episodes that represent valid model simplifications. Each case consists of a
model that is close 10 the real world problem, a simplified but valid model of this physical system and a set of
assumptions and transformations involved in producing this simplified model. These assumptions and
transformations are a key component of the case representation and entail the use of generative adaptation in
using retrieved cases. This is the derivational analogy approach to CBR as advocated by Carbonell [3].

The paper is organised as follows; firstly we describe the domain of convection heal transfer by examining
the various issues associated with mathematical modelling. Next we discuss from a modelling perspective the
conceptual approach that we have taken so that case based reasoning techniques could be applied effectively.
We then discuss implementation work carried out 1o date and demonstrate an early prototype system called
CoBRA (Case-Based Reasoning Assistant) that focuses on spatial modelling. Finally we discuss the use of
derivational analogy techniques and describe the structure and contents of a typical reasoning trace.

2 Modelling in Heat Transfer Convection

Convection heat transfer problems can be defined as physical systems where heat transfer occurs between a
solid body and a surrounding fluid medium, each at a different temperature. Numerical analysis of convection
problems is usually carried out in number of stages which have been identified as follows [1]:
Behavioural Analysis This is normally the first task in any analysis episode and it involves reasoning about the
physical system with the objective of oblaining a behavioural understanding of the underlying phenomena.
Physical and Mathematical Modelling This phase involves applying idealisations and simplifications to
various spatial and phenomenological aspects of the physical systcm with objective of abstracting an analysis
model. This task is thé focus of the current work.
Numerical Simulation This phase involves simulating the mathematical model by applying numerical
techniques such as the finite element method.
Visualisation This stage involves post processing and visualising of the numerical data produced by the
simulation process

In this paper, we [ocus on task of creating an analysis model (physical and mathematical modelling) which is
representative of the physical system. We assume that the engineer has already obtained a behavioural
understanding of the physical systeml and consequently, this task is not addressed in this work. The main
objective in analysis modelling, is 1o abstract a mathematical model acting on a domain, that is computationally
realistic 10 solve whilst at the same time prescrves the essential integrity of the physical system. We consider
construction of an analysis model 10 have two aspects; a physical perspective and a mathematical perspective
[4]. Physical modelling focuses on spatial or geometric aspects ol the problem domain and involve applying

1 Much work 1 date in qualitative physics has focused on predicting the qualitative behaviour of domains described by
ordinarily differential equations (ODEs). However, little work has been carried out on problems defined by partial
differential equations.
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modelling sirategies such as; taking a two dimensional idealisation of a three dimensional physical system,
applying geometric symmetries or carrying out feature modelling. Strategies used in feature modelling,
illustrated in Figure 1, can involve either replacing an existing complex feature with a simpler feature,
removing the featurc and substituting it with an equivalent boundary condition or removing the feature

completely without any compensatory measures.

Modelling Physical Possible Modelling . .
oal System Strategies Simplified Physical Model
. . Fegn.lre .. 1% Plate with
Plate with Simplification simplified
complex fin and fin
Resizing
g Plate with
’ Feature equivalent
Fcatmte Removal N boundary
Modelling ituti iti
and Substitution I condition
Plate
Feature without
Removal . complex
fin

Fig. 1 Feature modelling strategies

Mathematical modelling deals with the construction of a PDE model that describes the thermal heat transfer
process. Considering the (ull thermal PDE, it consists of three sub-equations based on the physical laws of
conservation of mass, momentum and energy. Each sub-equation is in turn composed of terms, where each term
describés a particular sub-phenomenon. For example, in the energy equation, the diffusion term describes the
hecat transfer at a molecular level, the advection term describes heat transfer due to bulk motion of the fluid,
whereas the viscous dissipation term describes the conversion of mechanical energy to thermal energy due to
internal [riction effects. In many heat transter problems it is not necessary to model alt these sub-phenomena and
therefore terms can be either simplilied or even be ignored completely. Another mathematical modelling task
(illustrated in Figure 2) s the specification of an analysis volume that defines the extent of the fluid medium o
be examined. Although this modelling task has spatial connotations, its specification is essentially governed by
type phenomenological analysis that is required by the user.

3 Related Work, Conceptual Matters and Design Issues

3.1 Related work from heat transfer modelling

To our knowledge, no other work with a similar focus and approach has been undertaken 1o date. However,
three related projects that exploit aliernative knowledge based techniques in comparable domains are relevant
and are briefly discussed here. Ling and Steinberg [5] describe a system-that is currently under development
which is aimed at modelling conduction heat transfer problems. Model based reasoning is the basis for the
approach taken in this work. The system is implemented as part of a greater design system and emphases is
placed on achieving automated modelling decisions without the intervention of the user. Three modelling issues
are dealt with and these include; the choice of control region, the determination of the relevant physical
processes and the abstraction of appropriate mathematical equations. However, from a geometric perspective,
the coverage of this system is confined to simple parallelepiped domains. In addition its confinement to
conduction based problems makes this domain considerably simpler than convection heat transfer problems.
Wentorf and Shephard |2] describe a rule based expert system, that deals with idealisation issues associated
with modelling in stress analysis of aircraft. The emphasis in this system is the use of knowledge based
techniques to integrate and control interdisciplinary tools in an analysis system such as CAD interfaces, error
optimisers and numerical error predictors. Finally, Yip describes a system for simplifying the Navier Stokes
(fluid flow) equations using order of magnitude reasoning within a qualitative analysis framework [6]. This
system produces idealised PDE models which are mathematically complete, but in many cases have no physical
meaning and may sometimes be computationally insolvable. Nevertheless, this work is important as it
examines how PDE type problems can be tackled using qualitative physics.
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Fig.2 A subset of mathematical modelling issues
3.2 Conceptual Issues

In this work, particular attention was given (o observing how engineers model convection heat transfer problems.

These observations have strongly influenced the approach adopled and are summarised here;

« Engineers usually model complex convection problems in distinct stages. These stages correspond to the
physical and mathematical modelling issues outlined in Section 2 and are as follows; spatial modelling,
phenomenological modelling, dimensional reduction, temporal modelling and control volume modelling.

» Engineers exploit a number of techniques when modelling convection problems, these include; the use of first
principle domain knowledge to reason about modelling strategies, exploitation of previously modelled
problems and relying on the guidance from more experienced colleagues. In most modelling episodes, a
combination of these techniques are used.

* When investigating a particular modelling stage, e.g., spatial modelling, engineers usually decompose a
complex physical system into easily understood sub-problems. These sub-problems are sufficiently low-level
10 be related to what we call classical engineering modelling scenarios. A scenario typically consists of
simple modelling episodes and allow engineering approximations and heuristics to be applied, thereby
permitting the modelling issue under consideration to be evaluated easily.

These conclusions influence our approach in iwo ways; firstly, for an inleractive system it is imperative that we

aim 1o accommodale the end-user and therefore the system should attempt (0 integrate with the modelling

patterns used by engineers. Secondly, by capturing engineering first principles, engineering approximations and
heuristics within fundamental classical modelling scenarios, it is possible to build a case based reasoning system
that is based on episodic based templates that provide guidance for modelling tasks.

3.3 Design Approach adopted in this work

We summarise herc our conceptual approach to modelling which forms the basis for the implemented CBR

system.

+ The sysiem is organised so as 1o allow modelling 10 be carried out in distinct stages. In this paper, we
consider the stage of spatial [eature modelling.

+  Within any modclling stage, modelling decisions are taken in a piece wise fashion by examining each
modclling issue in m. '

+ Case bascd rcasoning with derivalional analogy techniques form the core approach. Cases are based on
fundamental modelling scenarios and are derived {rom episodic modelling events.

« Solutions within cases describe a model strategy that can be applied to similar target cases. The strategy is
usually in form of some action which is in response to a particular modelling goal.

» Derivational traces describe the full engineering reasoning basis by which a particular modelling solution was
reached. They also_act as an explanation facility and validator of the case solution. More importantly
however, they allow solutions of base cases that are close to the target case 1o be adapted and apphied to the
target.

4. Implementation Details
4.1 A Convection Heat Transfer Problem

Figure 3 illusirates a typical convection heat transfer problem that can be tackled by the modelling system. The
physical system consists of a [inned heal exchanger tube that dissipates heat (o the surrounding ambient air. Two

116



complex appendages are attached Lo the cylindrical base, cach appendage has additional minor associated
features. The modelling goal in this task is to assess the importance of both the minor features and the
appendages themselves, this task corresponds 10 the spatial modelling phase described in Section 2.

Air Flow

Reynolds
10, 000
Number
Ambient
Temperature

—>

0 °c

Entry
Temperature 80
Reynolds
Number 2000

Fig. 3 A finned heat exchanger tube

4.2 Target Case Description

A larget case consists of a frame based representation of the physical system. Within a target frame,
representation is organised according to the different modelling perspectives; spatial modelling,
phenomenological modelling and control volume analysis modelling. Figure 4 illustrates from a spatial
perspective how the finned heat exchanger is classified and shows some of the indices used to describe the
problem. In this case, a partonomic type relationship at three levels describes the essential components of the
physical system, namely; the base cylinder, the complex appendages and their associated minor features. In this
problem, the base is classified as a cylindrical bluff body in crossflow, the complex appendage is a rectangular
longitudinal fin with [eatures located on its windward, upper parallel and leeward sides. These features are a
longitudinal rectangular cavity, a longiudinal triangular fin and a longitudinal rectangular fin. Problem
parameters such as geometric data are also included in the target case but are not used as indices, however this
information is used in the derivational traces.

4.3 Modelling Approach and Base Case Description

In Section 2, we argued that engineers normally model convection problems by decomposing the problem into
well understood scenarios and considering each of these in a sequential manner. By classifying the heat
exchanger problem as shown in Figure 4, this decomposition has been effectively achieved. Modelling
progresses by firstly examining the role of the minor features with respect to the complex appendage and
secondly the role of the complex appendage with respect to the cylindrical base. Each of these modelling
episodes are sufficiently fundamental, so that they are comparable in terms of complexity and detail to the
classical modelling scenarios discussed in Section 3. Consequently, all base cases are represented at this
. modelling abstraction level. Figure S illustrates onc base case, that of modelling a longitudinal positive
rectangular feature on the windward side of a reclangular fin. This base case is a classical heat transfer situation,
is well understood and can be adapled and applied 10 a range of similar problems. In this base case, qualitative
indices describe the minor feature and the associaled base appendage. The modelling action or solution
associaled with this base case is that the feature can be removed completely without the need for any
compensatory action. However, this action is not applied directly but is instead implemented by a process of
regenerative transformation by applying the assoctated derivational trace.

4.4 Matching and Mapping

Case retricval is implemented in a two stage process, matching (or base {iltering) and mapping. In our initial
prototype matching is implemented using an activation net which is made up of activation units which
correspond o the indices of base cases. A feature veclor is created for each target case which contains the
relevant indices of the problem. The feature vector is the basis by which the activation units are initialised and on
completion, each case in the case base is contains a value of how many indices it shares with the target case. The
mapping stage is concerned on establishing the correspondences between the base cases and the target cases. In
our initial prototype, mapping based on cstablishing the full set of matching features between the target and base
cases 1 the criteria for retrieving useful cases.
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Fig. 4 A spatial classification of the problem with a partial description of the associated target case.

4.5 Derivational Traces

Derivational traces arc cxploited in this domain, because, although the target and base cases may map
qualitatively, small differences between physical parameters such as spatial or medium data can lead to
significantly different solutions. Such differcnces cannot be expected Lo be captured in the initial qualitative
classification of the problem, furthermore, to index all episodes based on both descriptive and parametric indices
would result in an intractably large case base. A derivational trace describes the basis of the modelling solution,
in this example, the removal of a windward longitudinal feature on a rectangular appendage, the reasoning
behind these decisions and the engincering approximations and heuristics used in the evaluation process. In this
example, the solution in the base case was derived in two ordered stages; firstly, the influence of the feature on
the medium flow field was determined and found o be negligible and secondly the contribution of the feature to
lotal appendage heat transfer was assessed and found 1o be of minor importance. Figure 6 shows a simplified
version of the derivational trace. The fist stage cxamines the influence of the feature on the flow field and
consists of Goals Ta and 1b. This involves detenmining whether the feature is actually fully contained within a
turbulent boundary layer, and if so, the influence of the feature on the flow field is deemed negligible. Goal
examines the contribution of the feature w0 overall heat transfer. In the base case, the heat transfer contribution of
the feature was of the order of 4% of 1otal heat transfer well within the 5% constraint, so therefore the fin was be
removed, in the target case, this contribution was of the order of 3.5% thereby permiuting the feature to be
removed. :

fRect:m;'ulur Appendage with I<in

Description Solution
Action  Remaove fin

direction: windward ¢
Compensation None

lype Jlat plate
:positive feature Derivational Trace
Lype longitudinal
profile rectangular

location -afi

k flow_regime turbulen:

/

Fig 5 A samplc base case for modelling a rectangular appendage with a positive [cature
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5. Conclusions

We have described a preliminary prototype of an interactive case based reasoning tool for mathematical modelling ol
thermal engineering problems. Derivational analogy techniques are exploited o provide for gencrative adaptation and
validation of base cases. We have found that because of the complexity of the domain, derivational analogy
techniques are necessary to provide for case adaptation and validation. Nevertheless we believe that this work
represenis an important allernative perspective 10 model based reasoning approaches that have been applied to model
generation to date. :

G()al la [s the feature in the laminar or )

N turbulent boundary layer

Approach Estimale the transition point for a plate| Reasoning
with a developed boundary layer Trace

Goal 1a Fin on Flat
- Plate
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\_ wrbulent boundary layer j
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Approx- . L . .
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Result Fin heat trabsfer 1s less bQ”“Q?fY
than 5% =>Remove/ condition
Fig 6 A derivational trace [or a windward finned appendage
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1 Introduction

In many domains there are different representations of the same cases.. For instance, the filler for
the time slot in a case description can be made in terms of hours or in terms of morning, noon,
afternoon, evening, and night; a kinematic description can be made in terms of mass and velocity, as
well as in terms of momentum and energy. Actually some approaches and techniques in theoretical
computer science and artificial intelligence are (implicitly) dealt with reformulation. Reformulation
was also identified in [4] as one of the more difficult issues in analogical reasoning.

However, the use and techniques of reformulating the base and the target problem for analogy
formation have found little attention although Indurkhya [5] and Russell [7] established the import-
ance of of reformulation in analogical reasoning in general. In [6] we have shown that reformulation
rather than only symbol mapping is often necessary for advanced analogy-driven theorem proving
in mathematical domains. There we have developed techniques for reformulation within a proof
planning context. As we think that the results can be generalized for analogical reasoning and
case-based reasoning, we give an outline here that is, of course, restricted by the lenght of the
paper.

2 The General Problem of Reformulation

o The reformulation of a case representation can serve to identify ezplicitly the similarities-of
cases with only tmplicitly shared aspects. Since case-based and analogical reasoning are based
on the similarities of problems the machine supported reformulation of a given representation
1s often paramount for the solution of the problem.

o We consider reformulation as a change of the representation of problems and solutions (goals).
This is possible because of the connections between goals and goal-relevant aspects of the
problems. )

e Reformulation is different from the modification/adaptation step of analogical reasoning:

— It is done during retrieval or, if the analogous case is given, before matching the problems.
— Some reformulations affect the base and the target case.
— Modifications are partially anticipated by the reformulation.

e Mechanisms of reformulation have a domain-dependent search space and domain-dependent
control strategies guiding the choice of reformulations.

3 Reformulation in Analogy-Driven
Theorem Proving

We consider a situation, where a proof § of a base problem S = (asss F thmgs) is given. and the task
is to find a proof T of the target problem T = (assy b thmr) which is supposed to be analogous



mailto:melis@cs.uni-sb.de

to S.

Our approach is embedded in a proof planning framework (see [2]). It considers plan operators,
called methods, as basic units. Methods encode problems as well as partial proof schemata. They
are represented by frame-like structures, as for example,

Method: homi

parameter Tformulaf, £: function

pre {ass(1), ass(2), ass(3)}
post : symmetric(£(p))
1. ;1 +  Vz formulay (LEMMA)
2. ;2 F Vo(symmetric{o} — Vzr,y({z,y) Eoc — (y,z) € 7)) (LEMMA)
3. ;3 b symmetric(p) {(LEMMA)
dec-cont 4 ;1,3 F vz, y((=,y) € £(p) — (v,2) € £(p)) (PLAN;)
5. ;1,2,3 F  symmetric(£(p)) (METHOD;
2 4)
procedure | schema-interpreter

history |

The idea of this method is to prove symmetric(£(c)) from certain preconditions and from the
definition of £ in line 1.

All slots but procedure have declarative slot fillers. Thus methods can be reformulated by
* so-called meta-methods that change the declaratively filled slots. We give an example for such a
meta-method, called 4dd Argument:

Metamethod: Add Argument T
parameter | P: problem

P=(ass;thm) and term f£(z) occurs in concl{M) an
pre thm=concl(M)[£(z)/'(z. y)]
post M’=M[£(t;)/£'(t1,t2)], where t;,t2, are terms
{:'rocedux:eT PROCADD
rating ADD-rating

Add Argument 1s applicable if the unary function symbol f occurs in the conclusion of M. This
meta-method changes a unary function to a binary one. This is coded in PROCADD. Add Argument
should be applied if concl(M) of the M;.-method! M equals the conclusion of an M».-method after
replacing the unary function symbol f by a binary function symbol f.

3.1 The Model

Starting with the method M; made up from the base problem P1 and its proof, and method M,
made up from the target problem P2 without a proof, the goal is to reformulate M; to a method
M in k steps, such that the postcondition of My, matches P2. Although the reformulation could
in principle be limited to Pl-methods, such that Pl=(assl;thml) is reformulated to a problem
(assl’;thml’) with thml’ = thm2 and assl’ C ass2, it is more convenient to apply normalizing and
abstracting meta-methods to both M;.- and M..-methods. Such reformulations are advantageous
since they are more purpose directed: It is easier to abstract two methods and then to find an
additional reformulation that yields a problem that matches the abstracted problem, than to find
an abstraction, a reformulation, and a reverse abstraction that provide a problem matching the
original P2. In the former case it is easy to find out which reverse abstraction to use. Also the
reformulation of M;; to M;, is more goal directed (see figure 1).

1the Mj.- and Ms.- methods are descendent of the base and the target methods, respectively
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Figure 1: Outline goal directed reformulation

In addition to this process there is a preparation procedure for the verification of methods,
which removes the method variables from Mj; and yields the method M;,. This method M;, is
then checked by a verifier and if the verification succeeds, M. is replaced by M;,, which finally
contains a verified proof schema.

If the verification fails, the same process is tried again but with all the sub-methods, sub-
submethods etc. of M; and M,. These sub-methods are obtained from the structuring reformula-
tions presented below.

When all methods and sub-methods have been dealt with, there are methods that were obtained
from M; by some reformulations, such that their postconditions match P2 or some subproblems of
P2. These successfully reformulated methods serve as preferred candidate elements for the proof
plan. Verified methods are favoured candidates, compared to methods that have the same postcon-
dition but are not verified.

3.2 Analysis of Reformulation in Theorem Proving

Here we mention some basic properties of our approach. They are due to the domain of mathematical
theorem proving.

o The reformulation steps depend on the source problem S and on the target problem T, and
to a certain extend on the proof/proof idea for S.

e Nature of the representational differences between the analogues
Problems/proofs can be formulated at several levels of abstraction. Two problems/proofs
can be instances of the same abstraction, e.g., proof by Diagonalization Method. Different
Iepresentations can be due to rewriting w.r.t. (equations of) a theory or just to logical
reformulation. Representations can differ in their basic concepts (their signature). There are
symmetries and dualities (both are interpretations of .a theory in a theory) in mathematics
bridging differences.

e Metamethods available to the system
We identified several classes of reformulations which differ in their application and effects:
NORMALIZATION, with, e.g., Expand Definitions
ABSTRACTION, with, e.g., Bomomorphy Abstraction
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DIRECT REFORMULATION, with, e.g., Symbol Mapping and Add Argument
STRUCTURING, with, e.g., Conjunctive Decomposition

REVERSION, with, e.g., Reverse Hom-Abstr.

Our current set of (heuristically) justified metamethods is not complete. Metamethods are to
discover by experience in mathematics. :

e Control strategy guiding the choice among the metamethods

At any point in time during the reformulation process there may be several meta-methods
applicable to more than one method, hence the need for control strategies. A first and im-
portant control strategy fixes the right choice of the class of reformulations and these classes
are to be activated in a fixed sequence; afterwards we have to pick the heuristically best choice
within each class.

The general sequence of these classes that turned out to be most -useful is:

1. Normalization

2. Abstraction

3. Direct Reformulation
4. Restructuring

In addition, metamethods have preconditions for their application to be tested. If several
metamethods are applicable in the same situation, then their ratings are decisive.

e How the reformulation leads to a proof plan for T.

Proof planning tries to partially order the successfully reformulated methods by comparing
instances of their pre- and postconditions respectively. It can use information from the struc-
turing of the M;.- and Mj.-methods. Proof Planning starts with a method M that has the
desired problem P2 as its postcondition. Then it looks for metliods that have problems of
pre(M) (maybe less instantiated) as its postcondition etc. The process stops when the precon-
ditions of the new methods are empty or there are no new methods. It may provide several
proof plans.

Often there will still be gaps between the elements of the proof plan. That is, not all precon-
ditions of a method are found in the succeeding methods. Hence. to obtain a plan as complete
as possible, additional methods have to be inserted which can be found, for instance, by
searching bridge lemmas or by difference matching, see [3, 1].

Conclusion

Within this framework several types of analogies can be established:

e Analogies based on direct mapping of proofs onto proofs, as in previéus approaches to theorem
proving by analogy:

proof 1 proof 2
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¢ Analogies based on abstractions of proofs (and subsequent
reverse_abstraction):

abstraction

proof 1 proof 2

e Analogies based on abstracted and in addition reformulated proofs with subsequent reverse_abstraction.

r abstraction | Reformulation(abstr)
I
proof 1 proof 2
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Abstract. The notion of similarity is important for both indexation and adap-
tation. But traditionally, research has been almost exclusively focused on the use
of similarity between cases for indexation. Therefore, the present paper looks at
similarity-based adaptation instead. Two uses of similarity in adaptation are iden-
tified: the adaptation of actions prescribed by a case solution using a hierarchy of
similar actions and a heuristic weighting of actions where multiple substitute actions
have been found for an action in the solution. The approach is illustrated with an
example from the domain of local area network redesign.

1 Introduction

The case-based problem solving process can be decomposed into two distinct phases:
indexation and adaptation [2]. In the first, a case is selected from a case base according
to its similarity to the current problem situation. In the second, the solution proposed by
the selected case is adapted by applying appropriate changes that reflect the difference
between the current problem situation and the assumptions made in the situation on
which the case is based.

The notion of similarity is important for both indexation and adaptation. But tra-
ditionally, research has been almost exclusively focused on the use of similarity between
cases for indexation. This becomes particularily obvious with regard to the list of pa-
pers submitted to this workshop. Therefore, the present paper looks at similarity-based
adaptation instead.

Two uses of similarity in adaptation will be identified: the adaptation of actions pre-
scribed by a case solution and a heuristic weighting of actions where multiple substitute
- actions have been found for an action in the solution. We introduce the concept of ac-
tion hierarchies of similar actions, where their degree of similarity is measured by both
abstraction and specificity. )

The paper will proceed as follows. First a typical problem situation will be described.
Next the representation of cases will be presented. In the main part of the paper the adap-
tation mechanism itself will be outlined. It comprises three phases: search for a substitute
action, parameter adaptation and application of the identified actions. In conclusion, the
present state of the work will be reviewed. Throughout the paper the approach is illus-
trated with a concrete example from the domain of local area network design.

2 Problem Situations

The application domain of the proposed case-based system is the redesign of local area
networks (LANSs). Such networks are composed of data segments linked by repeaters or
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bridges. Each data segment connects to a number of workstations and servers to which
peripheral devices are usually attached. Each server provides a list of services that can be
requested by the workstations.

The redesign process is initiated by the identification of a bottleneck situation (redesign
problem). It is assumed that this redesign problem is obtained from the application of
an appropriate diagnosis algorithm. Together, the redesign problem and a description of
the local area network provide the input to the system, which is captured in a problem
situation.

Definition 1. A problem situation contains a description of the network and a problem
description.

The full formalisim for the description of a local area network will not be presented
here. Instead, we will refer to the topology shown in fig. 1.

Ws-1  WS-3 WSS Server-1 ) | WS-7
DataSeg-1 DJ | J T | JI] - D ﬁJ | T | J[] DataSeg-2

WS-2 WS-4 WS-6 WS-8

Fig. 1. LAN topology for a typical problem situation

Definition 2. A problem description contains sender, receiver, a description of the kind
of traffic between sender and receiver and the path by which they communicate. It also
states a performance requirement that must be met by the solution.

A problem description states that for some reason the communication between the
sender and the receiver is insufficiently supported by the current network configuration.
For example, the problem description below describes a contention of the bridge from the
topology in fig. 1:

Sender: DataSeg-1
Receiver: Server-1
Traffic:  S(database, Server-1) = DataSeg-1
D(DataSeg-1) = Server-1
P(B) = NOT-ACCEPTABLE
Path: DataSeg-1/B/DataSeg-2/Server-1
Required: P(B) = WITH-MARGIN

This problem description is to be read in the following way: The database service of
Server-1 is heavily used by clients in data segment DataSeg-1 (the notation “=" is used).
Large amount of data are flowing from this data segment to the server. The descriptors
S and D are used to denote a service offered by a particular server and the data traffic
caused by a network component. The other descriptor P symbolizes performance.

3 Case Representation

The problem description from the problem situation is now used as in index into the case
base. (We will not discuss indexation here, however.)
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Definition 3. A case connects a problem description to a solution description.

A case also prescribes a list of actions, such as duplicate-server, to be performed on the
local area network. The list of actions comprises the solution description.

Definition 4. An action is an operation that changes either the structure or the compo-
sition of the network. In addition, actions can be specified with variable components or
parameters.

Definition 5. A solution description is a list of actions that applied resolve the redesign
problem associated with the case.

For example, the action duplicate-server creates an additional server in another data
segment with the same range of services associated with the original server. The services
are represented as an attribute to the server object.

duplicate-server(Server, Segment)

The following is a case that fits the problem situation above. It is composed from the
problem description:

Sender: Segment-1
Receiver: Server-2
Traffic:  S(print-service, Server-2) — Segment-1
D(Segment-1) = Server-2
P(B) = NOT-ACCEPTABLE
Path: - Segment-1/R/Segment-2/B/Segment-3/Server-2
Required: P(B) = WITH-MARGIN

and the solution description:
duplicate-server(Server-2, Segment-1)

In this case an average number of print jobs is submitted to Server-2 by clients in
Segment-1 (using the notation “—”"). However, since these print jobs cause a high traffic
there is heavy load on the bridge B between Segment-2 and Segment-3. The performance
of B is therefore rated NOT-ACCEPTABLE. The required performance of B is to operate
- WITH-MARGIN. In order to achieve this desired state, i.e. to keep the traffic caused by
the print jobs local, Server-2 should be duplicated.

4 Adaptation Mechanism

The assumptions made in the case problem situation usually do not match exactly those
of the current situation. Therefore a substitute action has to be determined that fits these
different assurhptions. At this point of the process the adaptation mechanism enters the
game. The adaptation mechanism comprises three elements:

— search for substitute actions,
— parameter adaptation, and
— application of the selected actions.

These will be described in more detail now. Fig. 2 shows how these elements are related.
We now introduce the concept of action hierarchies and our notion of similarity.
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Fig. 2. Adaptation cycle

Definition 6. An action hierarchy is a hierarchy of similar actions, where their degree of
similarity is measured by both abstraction and specificity.

Fig. 3 shows parts of action hierarchy. In particular, the left half contains the special-
izations of the action reposition-server.

Definition 7. A substitute action is an action that as similar as possible to the action in
the solution description of the case, and at the same time suitable.

Definition 8. The degree of similarity u(p ~ p') of an action p and a particular substitute
action p’ is defined by a weighted difference of the degree of specificity ui(p ~ p’) and
abstraction p_(p ~ p') of p':
wp~p)=pilp~p) =B p-(p~p)
The parameter 3 (for bias) can be definied to suit the user’s pereferences. If the user
chooses to favor substitute actions that are closer within the hierarchy to the orginal

action, the value of 8 should be high. The reason for this will be intuitive from the
example below. The following definitions apply.

Definition 9. Let p be an action, p’ a particular substitute action and p A p’ the least
common abstraction of p and p’. The degree of specificity py(p ~ p') is the distance d
between p A p’ and p’ in the abstraction hierarchy:

- pi(p~p) =dlpAp,p)
The degree of abstraction p_(p ~ p') is the distance d between p and p A p' in the

abstraction hierarchy:
p-(p~p')=d(p,pAp)

For example, the action duplicate-server could be relaxed either to the action split-
server or the action increase-bridge-buffer (compare fig. 3). The latter action is again a
specialization of the action improve-hardware. On the one hand it is very much different
from the original action, on the other it could be used as substitute action due to its
specificity; the choice depends on the value of the bias 3.
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We now describe the search process used to find a substitute action. We first note
that the set of substitute actions is restricted, because not all actions are suitable. The
applicability of an action will be made dependent on certain conditions.

Definition 10. An action is further characterized by preconditions and postconditions.
The former give the reason for the application of the action, the latter describe what is
achieved by the action.

An action inherits its preconditions and postconditions to its successors in the hierar-
chy. Each successor action adds specific conditions of its own.

Definition 11. An action is suitable if its preconditions are satisfied and its postcondi-
tions not already realized in the network.

Depending on the values of the preconditions and postconditions of the currently
examined action different subspaces of the abstraction hierarchy are searched. Each of
these search spaces is traversed in depth-first manner, but applies different exit conditions.
Two of these subspaces are shown in fig. 3.

In the example problem situation the solution proposed by the case is:

duplicate-server(Server-1, DataSeg-1)

" Its precondition includes that a group of workstations (user group) must use all services
of a particular server:

DataSeg-1 is a user group
DataSeg-1 uses the whole service range {database,mail} of server Server-1 in another subnet

Assuming that from the network description in the problem situation we know that
Server-1 also supports other services, e.g. a mail service, that is not exclusively used by
DataSeg-1. Therefore the duplication of the server would not attack the problem in a
consistent way; a substitute action has to be found.

The next action tested is reposition-server, which is more general. The condition about
the use of the whole service range is relaxed, now only a group of users must exist that
requests services in another subnet. Since the postcondition that there already is a server
with these services in the subnet is not satisfied, the search again becomes more specific.
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Finally, the action split-server is found. It is suitable because it prescribes to move
only those services into the subnet of the user group that are requested by it. It does
so by splitting the server into two servers. The application of split-server will make its
postcondition true:

‘All services {database} from {database,mail} of server Server-1 requested by DataSeg-1 are
now offered in the same subnet as DataSeg-1

Parameter adaptation is used to adapt the variable components of an action. It com-
prises component substitution, e.g. the service print-service of Server-2 is substituted by
the service database of Server-1, as well as the creation of new parameters, e.g. the action
split-server introduces two new parameters that did not exist in duplicate-server:

split-server(Server-1, {mail}, {database}, DataSeg-1)

5 Conclusion

The contributions of this paper are twofold. First, it describes a technique for modeling
redesign problems in the domain of local area networks. Though this application domain
is of great practical relevance, it is also difficult to model. Therefore, there is not much pre-
vious work on this topic; one related approach is described in [3]. The notation introduced
should be an important step towards documenting redesign situations.

Second, it emphasizes the importance of similarity notions in adaptation. Most re-
search to date has focused on the use of similarity for indexation instead. A good account
of this in the redesign context can be found in [1]. We claim that the more noticeable
impact of similarity concepts will be on the adaptation of the actions prescribed by a
case to the existing problem situation. The adaptation process is based on background
knowledge about the suitability of the actions.

The work described in this paper is still in progress. It was done as part of a research
project on an environment for concurrent engineering in local area network design [4]. It
will contribute a redesign component that can propose design options to the users and
should eventually learn new redesign cases from monitoring the designers’ activities. The
adaptation mechanism has been specified to the level of abstract search algorithms, and
a partial analysis of the domain of LAN design has been performed.
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Abstract
In the recent years methods of case-based classification were often used in domains traditionally
dominated by symbolic learning algorithms. This arises the question, what are the differences and
the learning power of the two paradigms. In this work we study the relationship between the case
base, the measure of similarity, and the target concept of a case-based learning process. To do so we
transform a simple symbolic learning algorithm (the Version Space [10]) in an equivalent case-based
variant. The proposed results underline the equivalence of symbolic an case-based methods and show
the strong dependency between the measure used by a case-based algorithm and the target concept.

1 Introduction

Machine Learning is one of the main research areas in AI. In.the recent years this area has branched
off significantly. In face of these different approaches arises the question, what are the differencies and
what the commonalities of the paradigms. In this work, we want to compare two important inductive
learning paradigms ~ the symbolic and the case-based approach. The learning task we want to study is
the classification of objects. The aim of the classification is to map the objects of a universe to concepts,
1.e. subsets of the universe. In the most simple scenario the aim is to decide the membership problem of
a certain concept, i.e. the universe is separated in two disjunct subsets. \

We call the phase during the systems produce their hypothesis learning phase and the phase while
the hypothesis are used to classify new objects application phase. The fundamental problem of both
approaches 'during the learning phase is the same. At every moment the learner knows the correct
classification of a finite subset of the universe only. The knowledge that it is able to use to produce
a hypothesis is incomplete and therefore the hypothesis need not to be correct. The main difference
between the two approaches is the way the learning algorithm produces and represents its hypothesis.

In the learning phase, a symbolic algorithm like Version Space [10] builds up a set of rules or a decision
tree. In the application phase, these rules are used for the classification of new objects. In contrast, a
case-based classifier consists of a finite set of already classified objects — the case base — and a measure
of similarity.! Given a new. object, the system searches in the case base for the nearest neighbor (or the
most similar case) and states its classification as the classification of the new object [15]. Learning and
the employment of the learned knowledge are not separated but highly integrated. From the viewpoint
of machine learning, case-based reasoning (case-based learning) may be seen as a concept formation task
[3, 14]. If the case-based classifier gets more and more cases, it builds a sequence of pairs (CB;, sim;).
The aim is to get in the limit a pair (CB, sim), which is a correct classifier for the target concept.
This raises the question how the concepts are represented in the systems. Contrary to symbolic learning
systems that represent a learned concept ezplicitly by a symbolic formula, case-based systems describe
concepts implicitly by a pair (CB, sim) [13], i.e. by a measure of similarity sim and a set C'B of cases.

The two paradigms of symbolic [7, 8] and case-based classification [2, 1, 4] arise the question which
one performs better than the other. In the area of case-based reasoning there is only a very few work
concerning the relationship between the used measure of similarity and the set of learnable concepts. The
results proposed, e.g., by Cost and Salzberg [4] seem to be too optimistic to us. For the area of Inductive
Inference, Jantke [6] proved the equality of the learning power of symbolic and case-based classifiers. The
proof is based on the learner’s ability to adjust the measure of similarity to the given problem. To use

*The presented work was partly supported by the Deutsche Forschungsgemeinschaft, SFB 314: ” Artificial Intelligence
and Knowledge Based Systems” and the Project IND-CBL.

11t is possible to use a distance measure instead of a measure of similarity. We will use the term measure to capture
both types. For the equivalence of distance and similarity measures see [12].
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case-based classification, it is necessary to understand the possibilities to adjust the measure of similarity
or, more generally, to understand the use of information in the algorithms [13]. In this paper, we want to
show that it is possible to state some relationships and the consequences that follow from this analysis.
For our example we have found a direct transformation so that the symbolic and the case-based approach
result in an equal classification behavior. We conclude that there is a set of learnable concepts associated
with each measure of similarity.

2 Example: Version Space

To illustrate the possibility to reformulate a symbolic learning algorithm in a case-based manner we first
describe a well-known symbolic algorithm and then the way to construct an equivalent case-based variant.
The Version Space algorithm is a simple and well-known symbolic learner [10]. Because of its simplicity,
it is easy to show a lot of properties, which hold for many other learning systems, where it would be
difficult to prove them. First we want to describe the Version Space.

Let W; := Ni, (:=1, ..., n) be sets of values.2 U := Wy x ... x W, is the universe. A concept
is a vector K = (K1, ..., Kp,), where K; = x or K; = a; (a; € W;). An object a = (a1, az, ..., an) fulfills
the concept K (i.e. K(a) = 1), if for all 1 <i < n holds: K; = % or K; ='a;. Otherwise, K(a) is set to 0.

All possible concepts can be arranged in a directed acyclic graph (the Version Space) where the
concept at the end of an arrow specifies just one more atiribute than the concept at the starting point.
The algorithm gets a sequence (a') of positive and negative examples of the concept. With respect to
the known examples, the Version Space algorithm constructs two sets of concepts. The set S contains
all concepts, which are fulfilled by all the known positive and by no known negative example and there
is no more specialized® concept with the same properties. The set G contains the most general concepts
which are fulfilled by all the known positive and by no known negative example.

The algorithm describes the way to modify the sets S and G, when a new example is presented. To
define S and G properly we force the first example a' to be positive. The algorithm is based on some
assumptions which should be verified. For example, the assertion that the set S has always only one
element and that for every concept g from G a more specialized concept with the demanded properties
can be found. We do not prove these assertions here. The sets S and G characterize at every moment
the classification ability of the Version Space. Under the assumption that the concept is a member of the
Version Space every object which fulfills'the concept in S must be positive. If the object does not fulfill
any concept in G then the object must be negative.

Version Space algorithm

1. Initialize G as the set containing only the most general concept

G ={(x,...,%)}and S = {a'}.

2. Assume the new example a is positive.
Remove all concepts g from G which are not fulfilled by a. Search for the most specialized
concept K in the Version Space which is fulfilled by all positive examples and set S =
{R}.
Assume the new example a is negative.
For every concept g from G which is fulfilled by a, search for the most general specializa-
tions, which are fulfilled by all known positive and no known negative example. Replace
¢ by the found specializations.

3. If there is a concept ¢ in G which is more specific than a concept in .5,
then HALT(The examples do not fulfill any concept of the Version Space).

4. IfS=0G
then RETURN(Found concept = S)
else go to 2)

2.1 A Case-Based Version Space

[t is obvious that the main ability of the Version Space algorithm is to separate relevant and irrelevant
values. A value is called relevant, if it is part of the concept the learner has to learn. The following

2Ny = {0, 1, ..., k}
k v by s

?A concept Ky is called more specialized than Ky, if Vz € U [K1(z) = K2(z)]A3y € U [K2(y) # Ki(y)]- The term
more generelized is defined analogously.
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case-based variant (VS—CBR) follows this basic idea. For every attribute ¢ a function f; is defined that
maps the set W; to {0, 1}. If the concept K = (K1, ..., Ky) is learned then for every z; € W; holds:

v_J1 : Ki=zis possible
fii) = { 0 : otherwise

The constructed f; will be combined to a function f: U — {0,1}". The distance between two objects
is then defined as

df(a,b) = |f1(a1) - fl(bl)l + ... + |fn(an) —_— fn(bn)l

During the learning phase the function f is learned by the algorithm presented below. It is obvious that
every change of the function f will change the distance measure on the universe. Like the original Version
Space the first presented case has to be positive to initialize the function f.

Learning Algorithm for f
1. Define fi(z;) = 0 for. all i, z; € W;

2. If the first positive example is a = (a1, a2, ..., apn) define fi(a;) = 1 for all ¢.
Define CB = {[a, +]}

3. Let b = (b1,...,b,) be a new example.
If b is negative, then store b in the case base: CB := CBU {[b, -]}

4. If b is a positive example then for all i: If f;(b;) = 0
then set fi(z;) = 0 for all z; € W;.

5. If there exists a positive case p and a negative case n in the case base with
ds(p,n) = 0 then HALT(Not a concept of the Version Space).

6. Delete redundant cases from the case base.®
7. If the concept is unequivocal go to step 8) otherwise go to step 3)

8. RETURN(The concept is learned)

‘ @A case 7 is redundant if there is a case s in the case base so that d¢(r, s) = 0 holds. ‘

Step 5) tests like the symbolic Version Space whether the known examples fit any concept which is
learnable. If the learning is done the function f and the case base are used for classification. Given a new
object ¢, the set F := {fb | d;(fb,c) < ds(fV,¢) for all fb' in the case base} is build up. If F contains
more than one element the classification is determined by a fixed strategy. For example, the strategy
may state the lowest classification value.

2.2 Classification with VS—-CBR

We want to compare the classification abilities of VS and VS-CBR. In step 2} for all 7 exactly one a; € W;
is mapped to 1. Step 4) occasionally deletes a 1. So, there is never more than one value of an attribute
mapped to 1. Let us look at VS and VS—CBR after the presentation of every object. It is obvious that
fi(a;) = 1 holds if and only if the concept in S contains the value a; for the attribute ¢. The function
ds forces that at every moment dy(a,b) = 0 implies that a and b must be equally classified. Based on
these observations, it is easy to verify that objects which can be classified by VS are equally classified
by VS-CBR. But VS-CBR, will give a classification to every object even if the classification is uncertain.
It is possible to suppress this uncertainty by a test of the validity of the classification. If we call the
hypothesis when the i*? example is presented VS; or VS-CBR;, respectively, then VS-CBR;(z) = VS;(z)
holds for all i and all z € U.

Positive and negative cases are used differently in VS_CBR during the learning phase.

o Positive cases are used to change f, i.e. to adapt the distance measure d. They will not be stored
in the case base (with the exception of the very first positive example). The distance between any
two positive cases is zero. .

e Negative cases are stored in the case base but do not change the distance measure.

We have seen that it is possible to rewrite the Version Space algorithm in a case-based manner so that
the case-based variant behaves exactly as the symbolic algorithm.
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3 Basic Issues of Case-Based Classification

In the last paragraph, we have seen a simple case-based classifier. In this paragraph, we want to discuss
some basic issues of case-based classifiers and the related learning algorithms. First of all, we have to
clarify the conditions which must be fulfilled to learn a concept in a case-based manner. In a second
part, we present some examples to show the interdependence between the measure of similarity and the
learning power.

A case-based classifier consists of a case base and a measure of similarity (or a distance measure).
Neither the case base nor the measure is sufficient for the classification alone. The knowledge about the
concept is spread to both. Even in the VS—-CBR you can get the concept from the distance measure only
because you know the way in which the measure was constructed If we try to symbolize the relationship
we can describe a case base system as a “sum”

Concept = Case Base + Measure of Similarity

There are always multiple concepts which can be learned by a given measure. Because of the distribution
of the knowledge between the case base and the distance measure it is clear that there are many tuples
(CB, sim) which represent the same concept. If the hypothesis of the learner must be modified there
are always two possibilities. Either to change the case base or to change the distance measure, ¢f. [9, 5].
VS—CBR uses the positive cases to change the distance measure (by updating the functions f;) while the
negative cases are stored in the case base without changing the distance measure.

3.1 Simplified Quantitative Analysis

To illustrate the relationship between a case base and a distance measure we simplify the framework for
a moment.

1. Let I/ be a finite unjverse
2. d(a,b)=0=Vz € Uld(z,a) = d(z,b)]
3. d is fixed.

The assumption 2 means that the relation ~ defined as ¢ ~ y <> d(z,y) = 0 is an equivalence relation.
~ builds [U/ ~ | equivalence classes. It is clear that a concept K is learnable by a measure d if and only
ifforallz, y € U d(z,y) = 0 = K(z) = K(y) holds, i.e. all elements of an equivalence class must have
the same classification. On the other hand, the equivalence classes can be classified without any respect
to each other. Therefore, we can conclude that d is able to distinguish between 2!/~ different concepts.
" Each of these concepts can be learned by a case base with [U/ ~ | (appropriate) cases (i.e. one case in
every equivalence class). As a result, we can state that for the learnability of a concept the only question
is the definition of the distance 0. If we have two measures d and d’ where dz,y) =0 d'(z,y) =0
and d(z,y) # 0 < d’(z,y) = 1 they can recognize the same concepts.

Case based systems can be compared with respect to two important dimensions. The first dimension
relates to the implicit knowledge in the measure.

Definition 1 A case-based system (C By, sim;) is called to be better informed than a_system (CBa, sims)
iff they can recognize the same concept and |CB| < ICBQ' and, for i € {1,2}, there is no CB} C CB; so
that (CB;, sim;) is a classifier of the concept.

The second dimension relates to the set of learnable concepts.

Definition 2 A similarity measure sim; is called to be more universal than a similarity measure simy
off the set of concepts which are learnable by sims is a proper subset of the set of concepts which are
learnable by sim;.

To use a universal similarity measure struggles against a minimal case base. To minimize the size of the
case base results normally in a less universal similarity measure. We illustrate the countercurrency in
figure 1. It lists different distance measures together with the minimal size of the case base to select a
certain concept and the total number of learnable concepts. For the table, we use a universe with objects
which consists of four attributes. Each attribute can take one value out of 16. So, the size of the universe
is 655636. The concept which the measures try to learn fixes two attributes.

We can distinguish two extrem measures:
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Identity of objects: The similarity is maximal if and only if the compared objects are identical. The
measure is universal because it is able to recognize every binary concept in the given universe. But
to do so it needs the whole universe as a case base.

Identity of classification: The similarity is maximal if the classification of the compared objects is
identical. Nearly the whole knowledge about the concept is coded in the measure by the definition of
the concept. The case base is used only to exclude some trivial concepts. sim(z,y) = K(z) < K(y)
can only distinguish four concepts (K, not(K), TRUE - i.e. all objects are positive, FALSE - i.e.
all objects are negative).

The other measures in the table are between the extremes. VS_CBR; and VS_CBR;, are neither maximally
universal nor able to recognize a concept with a minimal case base. VS_CBR; is the distance measure,
which is built for VS-CBR when the first case is presented. In every dimension exactly one value is
mapped to one so that the universe is mapped into the edges of a four dimensional cube. VS_CBR; is
the measure, which is used, when VS—CBR has recognized the concept. It distinguishes only between the
two relevant values of the concept and, therefore, builds up only four equivalent classes.

measure minimal size of CB  number of learnable concepts
sim{z,y) = (z=y) 65536 = 16* 265536
VS_CBR; 16 65536 = 216
VS_CBR» 3(4) 16 = 24
stm(z,y) = K(z) = K(y) 2 22

Figure 1: Measures together with the minimal case base and the number of learnable concepts

The table indicates to describe the relationship between the distance measure and the concept in a
different manner: The distance measure determines the space of possible target concepts and the case
base selects one of them. In other words we can say that the choice of the distance measure is the bias
of case-based classification. Its choice determines the set of target concepts which can be recognized and
the efficiency of the learning process as we will see in the next section.

In a typical case-based learner two processes — reducing the size of the hypothesis space and increasing
the size of the case base — are done in parallel. So, it is normally difficult to specify the influence of a
single case.

The last measure in figure 1 indicates a simple way to rewrite any symbolic algorithm as a case-based
one. Use the actual symbolic hypothesis to construct such a measure and store one positive and one
negative case in the case base.

4 Consequences for Case-Based Classification

We have analyzed the relationship between the measure of similarity, the case base, and the target
concept in the described scenario. In the scenario, the learner needs strong preassumptions about the
target concept to solve its task with an acceptable number of cases. Preassumptions exclude certain
concepts from the hypothesis space. A case-based learner can code this preassumptions in the measure
of similarity. Symbolic learners restrict the language to represent their hypothesises.

If we agree to the assertion that there is no measure which depends only on the universe and not on the
set of target concepts we must conclude that we are confronted with a bias in case-based classification,
too. The bias is the distance measure. Like the bias in symbolic classification, the distance measure
determines which concepts are learnable and, in addition, the efficiency of the learning process.

Rendell [11] divides the abstraction done in a'learning system in two parts, the bias (to describe the
amount of preassumptions) and the power of the learner. We have characterized the learning systems by
the number of learnable concepts and the number of cases they need to identify a target concept. The
bias relates to the restriction of the set of learnable concepts and is therefore comparable to the degree
of universality. The minimal size of the case base reflects the information the learner needs to come to
a correct hypothesis. This amount of information is measured by Rendell in the information gain. It is
therefore very important to select an appropriate distance measure according to the given problem. The
measure must have equivalence classes which cover the target concepts and meaningful distance values,
i.e. a short distance between two objects must indicate a high probability that the objects have the same
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classification. If we know that there is a distance measure with these properties, case-based classification
seems to be a good choice. Given an appropriate distance measure, case-based classification has some
other useful features. If there is some noise in the data and the effect of the noise is small according to the
distance measure then case-based reasoning is a very natural way to implement a noise tolerant learner.
In contrast to the results of [4] and [3] we state that the intelligibleness of solutions of a case-based
system depends on the intelligibleness of the measure of similarity and is therefore not a property of the
case-based approach itself.

To summarize we can say that there is no fundamental advantage or disadvantage of case-based clas-
sification [4] compared to the traditional symbolic approach in the simple framework we have considered
here. So the question which algorithm is better for a given task depends on the simplicity and adequacy
of the representation of the given knowledge. Both approaches need a method to cut down the size of the
hypothesis space. While the symbolic approach uses this extraevidential knowledge to construct useful
abstractions, the case-based algorithms need it to get appropriate measures of similarity.
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Abstract

Pattern languages seem to suit case-based reasoning particularly well. Therefore, the problem of
inductively learning pattern languages is paraphrased in a case-based manner. A careful investiga-
tion requires a formal semantics for case bases together with similarity measures in terms of formal
languages. Two basic semantics are introduced and investigated. It turns out that representability
problems are major obstacles for case-based learnability. Restricting the attention to so-called proper
patterns avoids these representability problems. A couple of learnability results for proper pattern
languages are derived both for case-based learning from only positive data and for case-based learn-
ing from positive and negative data. These result exhibit the importance of flexible non-standard
approaches to similarity. The chosen semantics determine which type of similarity measure support
representability and learnability.

Was sich uberhaupt sagen lafit, lifit sich klar sagen;
und wovon man nicht reden kann, dardber muf man

schweigen.
Lupwic WITTGENSTEIN

Tractatus Logico-Philosophicus, 1922

1 Motivation

Case-based reasoning is a currently booming area in artificial intelligence. Research papers are mush-
rooming, thus, providing a huge amount of cases for case-based reasoning. As outsiders, we became’
interested in the area, as cases seem to play a role particularly similar to the role of examples in our work
in inductive inference. We found it extremely difficult to make this first rough observation more precise.
One crucial reason is the lack of formalization in a large number of case-based reasoning approaches.
Thus, we decided to approach-our problem by paraphrasing inductive inference in terms of case-based
learning in an area which seems particularly tailored to fit the gist of case-based reasoning. This is
the area of pattern languages, more precisely, the domain of learning pattern languages from positive
or both positive and negative cases. In this well-formalized research area, we did some investigations
focussing on clear results valid under clear assumptions. For example, we tried to find out how particular
semantics influence the type of similarity measures suitable for succesful learning. We could prove with
mathematical precision that the symmetry of similarity concepts is rarely desirable, e.g. Interestingly,
our results may be interpreted in case-based reasoning and are throwing some light on essential problems
of case-based reasoning, in general.

We are interested in results of mathematical precision exhibiting fundamental phenomena related to case-
based reasoning. Although our work presented has been mainly driven by the learnability investigations
reported in chapter 4, we consider the results of chapter 3 as basic.

*The work has been partially supported by the German Federal Ministry for Research and Technology (BMFT) within the
Joint Project (BMFT-Verbundprojekt) GOSLER on Algorithmic Learning for Knowledge-Based Systems under
contract no. 413-4001-01 IW 101 A and by the DFG-Project IND-CBL under reference Ja 566/2-1.
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2 Introduction

This paper is dealt with problems of case-based learning in a particular area where we can exploit a
remarkable amount of inductive learning results. This is the area of pattern languages as introduced in
[3]. This area has attracted enormous attention in learning theory (cf. [3), (171, [16], [6], [15], [7], [14],
and others). A key reason for the intensive research work dedicated to the learning of pattern languages
is the naturalness of the general learning problem as well as the closeness of individual texts to the gen-
eral underlying pattern structures. From this insight, there is outgrowing a particular motivation of the
investigations presented here.

Here, we are briefly illustrating what will be considered in more detail below. Due to the very restricted
space, we can not present any more detailed technical discussion or proof!. Instead, we put more empha-
sis on illustrations. Given any text structure like

Tauthor, Ttitles LTjournal Lvolume (z'year)y Zpages
one may easily imagine a number of typical instances. Vice versa, from some typical cases like

Dana Angluin and Carl H. Smith, A Survey of Inductive Inference: Theory and Methods, Com-
puting Surveys 15 (1983), 237-269 )

Reinhard Klette and Rolf Wiehagen, Research in the Theory of Inductive Inference by GDR
Mathematicians - A Survey, Information Sciences 22 (1980), 149-169

most people will infer underlying patterns like the one above. In this particular domain, there is an easy
concept of cases, and humans are usually able to learn from a small number of those cases (cf. [16] for
experiments and measurements on automated pattern inference).

This consideration motivated the following intention. First, if pattern inference is an area where we have
a natural and easy to understand concept of cases, we should be able to develop and illustrate basic
ideas of case-based learning. Second, if there are general difficulties of case-based learning in such a
nice area, this could be undetstood as testbed for problems we are faced to in a large number of areas
where formal considerations may be of a considerably greater complexity. In a sense, the results about
case-based learning of pattern languages developed in the sequel may be interpreted as lower bounds for
the difficulties of case-based learning in a huge variety of further areas.

2.1 Case-Based Learning

Case-based reasoning is a recently booming subarea of artificial intelligence. One important reason is that

human experts tend to use knowledge in the form of particular cases or episodes rather frequently than
generalized knowledge as described by rules, e.g. Therefore, there is some hope that case-based reasoning

may help to widen the bottleneck of knowledge acquisition. The reader is directed to [13] for a recent

introduction in and survey of case-based reasoning. Within case-based reasoning, case-based learning as

investigated in [1] and [2], for instance, is a rather natural way of designing learning procedures. Recent

formalizations (cf. [8]) have exhibited the remarkable power of case-based learning algorithms.

2.2 Text Patterns

Following [3], a pattern is a non-empty string build over some alphabet A and some disjoint set of variables
X = {z1,23,...}. By P we denote the set of all patterns, i.e. P = (AU X)*. PP = P\ At denotes the
set of so-called proper patterns. For a pattern p, we denote by L(p) the corresponding pattern language
defined by p. L(p) contains all strings which can be obtained by substituting non-empty strings for the
variables of p, where the same variables have to be substituted by the same strings.

Pattern languages form the basis of a couple of applications in different fields, e.g. in the intelligent. text
processing system EBE (cf. [16]) or in a classification system for transmembrane proteins (cf. [5]).

2.3 Inductive Pattern Inference

Inductive inference is the process of hypothesizing a general rule from eventually incomplete data. It
has its origins in philosophy of sciences. During the last three decades, it received much attention in
computer science (cf. [4]).

The general situation investigated in language learning can be described as follows: There is some target

language to be learnt (identified, ...) inductively. Given more and more possibly incomplete information
concerning the language to be learnt, an inference device has to produce in every step a hypothesis about

1For the proofs, the reader may consult [10]. A version of this paper focussed to learning problems appears as [11].
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the phenomenon to be inferred. The set of all admissible hypotheses is called space of hypotheses. The
given information may contain only positive ezamples (indicated by the suffix TXT below), i.e. exactly all
the strings contained in the language to be recognized, or both positive and negative ezamples (indicated
by INF), i.e. the learner is fed with arbitrary strings over the underlying alphabet which are classified
with respect to their containment to the unknown language. The sequence of hypotheses has to converge
to a hypothesis correctly describing the object to be learnt. To sum up, the inference process as a whole
is a limiting one.

Our learnability concept (cf. [10], [11]) is an immediate adaptation of the classical identification types in
recursion-theoretic inductive inference (cf. [4], [12]). It is reflecting the approaches underlying [3], [17],
[15], e.g. Using standard notations, the following learnability results may be assumed.

Theorem 1
()YPe LIMTXT
(2) Pe LIM.INF

3 Case-Based Representation of Pattern Languages

If some algorithm is expected to learn any member of some class of objects in a case-based manner by
processing information about particular target objects to come up with some finite case-base and some
similarity measure describing the particular target object, this obviously assumes some interpretation of
pairs built from case-bases and similarity functions in terms of the objects under consideration. For-
mally spoken, one needs some well-defined semantics. In general, there is no standard semantics. [8] is
introducing three slightly different semantics, in a particular setting. Similarly, the reader will find below
two slightly different approaches used in the paper on hand. It is especially surprising that a remarkable
number of papers do not make the chosen semantics explicit. But for a formally correct treatment, the
choice of some precise semantics is inevitable. The reader may check our theorems below and their proofs
in this regard (cf. [10]).

3.1 Semantics

There is assumed some finite, non-empty alphabet A. Cases about some formal language are labelled
words indicating whether or not some word provided belongs to the language to be represented or even
to be learnt. For labelling words, we choose 0 and 1 meaning no and yes, respectively. Certain papers
in the area of case-based reasoning provide some rough concept of semantics as follows (cf. [1], [2], for
example). If there is some finite case-base CB and some given similarity measure o, this classifies words w
according to the following pcocedure: Search CB for some labelled word (v, d) where (v, w) is maximal.
Return d to classify w. There may obviously arise some ambiguity, if there are conflicting classifications
by cases (v1,0) and (v2, 1) where both v; and vp are of maximal similarity to w. There are several ways
to resolve those conflicts. Two of them are chosen for the formal semantics introduced in the sequel. The
standard approach and the competing approach will be denoted by £,,(CB, 0} and L.(CB, o), respectively.

Any formal semantics has to be based on some similarity concept. Therefore, before specifying the
intended semantics, we have to put some emphasis on similarity.

3.1.1 Similarity Concepts

The majority of current publications in case-based reasoning is considering cases as tuples over some
chosen collection of attributes. For every attribute a;, there is some domain D; of possible attribute
values. Usually, D; is equipped with some metric é; to describe the distance of any two corresponding
attribute values. This allows to express the distance of two tuples t; and t; by a HAMMING distance
by 6(t1,t2) = S iy wi - 6(¢1.ai,t2.a;). Usually, distances are transformed to describe similarities. There
1i ;(’t‘:;z 5 The richness
of current problems attacked by case-based reasoning approaches bears abundant evidence of the need
of more sophisticated similarity concepts. [9] is intended to be one step towards structural similarity
concepts. Throughout the present paper, we are not going to invoke structural approaches to similarity.
But we are interested in more flexibility than provided by encoded HAMMING distances.

is a standard way which seems to be used in most approaches: o(t1,22) = 1 —

For the purpose of the present extended abstract, ¥ is chosen to denote the class of all total recursive
similarity concepts (cf, [10]). Elements ¢ of ¥ may be either 0, 1-valued or mapping into the rational
numbers ranging from 0 to 1.
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3.1.2 Formal Semantics

There may be further approaches to the semantics of case bases together with similarity functions for
formal languages, but the two considered seem to be basic. Assume CB C At x {0,1} and ¢ € ¥ as
introduced above.

Definition 1
Ls¢(CB, o) = {w/Hu,1) € CBo(u,w) > 0AV(v,0) € CB[o(u, w) > o(v, w)]]}
L(CB,0o) = {w/3(u,1) € CBo(u,w) > 0AV(v,d) € CB[u # v = o(u,w) > o(v,w)]]}

The presentation of the following lemmata has a twofold intention. First, these lemmata provide some
insight into the nature of the semantics considered. They illustrate both common features and differ-
ences of these semantics. Second, these lemmata provide a firm basis for understanding and proving the
following theorems (cf [10] for details). '

Lemma 1

Vo € £VYp € PYCB Cyin L(p) x {1} U L(p) x {0}

(ICBN L(p) x {1}| =1 => L(CB,0) = L,:(CB, ) )

Lemma 2

Vo € ZVX C AY x {0,1}VZ C At x {1}( L2(X,0) C Li(X U Z,0))
Lemma 3

Vo € T (o idempotent = YX C A* x {1} ( X C L4(X,0) x {1,0}))
Lemma 4

Yo € ZVp € PYCB Cyin L(p) x {1} UL(p) x {0}

( LACB, o) C L4:(CB, o))

Lemma 5

Yo € £Vp € PVCB Cyin L(p) x {1} U L(p) x {0}

3o’ € £3ICB’ Crin L(p) x {1} U L(p) x {0} (£,:(CB, o) = L(CB', o"))
Lemma 6

Vo € Vp € PYCB Cyin L(p) x {1} UL(p) x {0}

3o’ € TICB’ Cyin L(p) x {1} U L(p) x {0} (L(CB, o) = L;(CB',0"))

o is called idempotent, if o(z,2) = 1 holds for all admissible arguments z. This property is deemed
important, but the proofs of our theorems below (cf. [10]) show that it can rarely be achieved.

The lemmata show that both semantics, although they have the same expressive power, behave differently
in some respect. This will be used below.

3.2 Representability Results

In the results listed below, the notation £, refers to both the standard semantics and the competing se-
mantics as introduced above. For the readers convenience, every theorem will be paraphrased (in italics),
first.

Under both semantics, there is no universal similarity measure o which allows to represent every pattern
language by a finite number of its elements considered as positive cases.

Theorem 2
=30 € XVp € PACB Cyin L{p) x {1} (L(p) = L.(CB, o))
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Under standard semantics, there is some universal similarity measure o which allows to represent every
pattern language by a finite number of cases, where the words of these cases are not restricted to be taken
from the target language itself.

Theorem 3
Jo € TV¥p € PACB Cyin AT x {1}(L(p) = L.(CB, ¢))

Under both semantics, there 1s a universal similarily measure ¢ which allows to represent every proper
patlern language by a finite number of its words considered as positive cases.

Theorem 4
Jo € TZVp € PPICB Cyin L(p) x {1}(L(p) = L.(CB,0))

Under both semantics, there is no universal similarity measure o being symmetric which allows to repre-
sent every proper pattern language by ¢ finite number of its words considered as positive cases.

Theorem 5
-3¢ € [0 symmetric AVp € PPACB Cyin L(p) x {1} [L(p) = L.(CB, 0)]|

Under standard semantics as well as under competing semantics, there is a universal similarity measure
o allowing to represent every pattern language by a finite case-base CB of both ezamples and counter-
ezamples considered as positive and negative cases, respectively.

Theorem 6

3o € ZV¥p € PACB Cyin L(p) x {1} U L(p) x {0} (L(p) = L«(CB, 7))

At the very moment, it is still open whether or not Theorem 6 is valid, if it is required that the
corresponding similarity measure o is symmetric. We conjecture that there does not exist any symmetric
similarity measure ¢ which allows to represent the class of all pattern languages using positive and
negative cases under any of the two semantics investigated.

4 Case-Based Learning of Pattern Languages

Because of the lack of space, we can provide a list of annotated results, only.

4.1 Learning Scenario

All the formalisms may be found in [11}. It is sufficient to understand the basic scenario. Some pattern
language is learnable from text or informant under one of the semantics introduced, if there is a universal
learning device able to collect cases from any text or informant, respectively, such that it is collecting a
case base in the limit, which is only finite, and which describes the target language correctly under the
assumed semantics. Any similarity concept is assumed.

4.2 Learnability Results

. Theorem 4 and Theorem 6 circumscribe the possibilities of case-based learning of pattern languages.
Again, every theorem will be paraphrased for the readers convenience.

For the class of proper paltern languages, there are universal case-based learning algorithms based on text

for both semantics considered.

Theorem 7
()PP e S-CBLTXT
(2) PP € C - CBLTXT

Corollary
(1) PP S—CBL.INF
(2) PPeC—-CBL.INF

Under competing semantics, the whole class of pattern languages P is case-based learnable from positive
and negative examples.

Theorem 8
PeC—-CBLINF
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5 Discussion

The results above and their corresponding proofs are raising a considerable number of questions about
the interplay of semantics, types of similarity measures, and learnability concepts. Because of the lack of
space, we can mention only three of them:

e The proofs of the Theorems 3, 4, and 6 invoke similarity measures which do not meet human
intuition quite well. What is the expressiveness of similarity concepts reflecting certain human ideas
of similarity of strings under particular semantics?

o If one chooses standard semantics in Theorem 7, {0, 1}-valued similarity measures are sufficiently
expressive. This does not hold under competing semantics. How to characterize similarity concepts
which admit {0, 1}-valued similarity measures?

o Until now, 1t is still open whether a result similar to Theorem 8 can be achieved under standard
sernantics, too.
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Abstract

This paper compares the performance of a typical case-based learner to search— and comprehension-
based learning systems. Various Tower of Hanoi tasks are used as a testbed for evalnating the strengths
and potential shortcomings of the three different learning schemes. The amount and types of know-
ledge that are required for the successful performance will be identified for each of the three systems.
In addition, the performance of the three learning systems is compared to respective data from a
psychological experiment.

1 Case—, Search— and Comprehension—-based Learning

Case-based planners (Hammond, 1989) acquire additional knowledge by storing new cases (i-e. the specific
plans for different problems); search-based systems like SOAR or PRODIGY learn by chunking the result
of a search process (Rosenbloom et al., 1991a; Minton et al., 1989), by compilation (Anderson, 1987),
and by forming macro-operators (Korf, 1985). The chunking mechanism of SOAR, which resembles
or is identical to explanation-based generalization, is also capable of learning at the knowledge level
(Rosenbloom et al. 1991b). This technique is known as data—chunking. It enables SOAR to memorize
declarative structures (e.g. plans or prior problem solving experiences) explicitly which is a necessary
ability to model the behavior of case-based systems. This memorizing is conducted by an operator and
thus is a knowledge-based and deliberate act. Generally, SOAR productions are better thought of as
memory retrievers than as-operators or procedures (Rosenbloom et al., 1991a). The mapping from a
" case-based system onto SOAR as a search~based system is therefore rather straightforward, as was just
outlined by Akyurek (1992): Suppose there is a plan for achieving some goal. The chunking mechanism
adds this plan which is indexed by its (generalized) goal conditions to the long~term recognition memory.
Confronted with a similar task this declarative structure can be retrieved and be used as a template for
achieving the task. Plan modification and repairs are both accomplished by the default problem-solving
capabilities of SOAR. The resulting new plan again can be stored with the data—chunking mechanism
for later recall. The gain for cognitive modeling using this approach is twofold. First, you have to make
explicit which part of a present case will be memorized and what can serve as its retrieval cue. Note that
beside generalization which results automatically from the chunking mechanism, also abstracted versions
of the cases at hand can stored. All necessary knowledge for doing this abstraction process (e.g. prior
known concepts) has to be part of the model. Second, you need to have a theory about when this case
storing event will happen.

Comprehension-based systems (Mannes & Kintsch, 1991; Wharton & Kintsch, 1991) offer a third
possibility for learning: From specific problem solving experiences (cases) and a related problem descrip-
tion (text) some coarse—grained abstract representation is constructed, that may initially be inconsistent
and redundant. By holistic integration processes a coherent and consistent procedure schema is subse-
quently formed. Such a procedure schema can be reused for obtaining solutions to problems which are
quite different at the concrete level, but have been comprehended to share abstract commonalities. The
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importance of forming and reformulating abstract representations has recently also been pointed out by
Clancey (1989).

2 Different Tower of Hanoi Problems as a Testbed

The Tower of Hanoi task (Simon, 1975) requires that a tower of n disks which are graded in size is
transferred from a start peg (say peg A) to some goal peg (say peg C). At the outset, all the disks are
arranged pyramidically on peg A. An additional peg (say peg B) may be used as an auxiliary location.
The following rules must be observed: At any time only a single disk may be moved and a larger disk
must never be put on top of a smialler disk.

A problem solving system will represent the individual disks in a concrete description language. A
problem state of the Tower of Hanoi problem can be represented by a list. The initial states of the 3—, 4-,
and 5- disk problems are thus represented by {[12 3] [J 1], [[1 23 4] [] []] and [[1 2 3 4 5] [] []] respectively:
1 refers to the smallest disk, 2 to the second smallest disk and so on.

For the 3 different types of learning systems, the acquisition and utilization of knowledge was tested
in the following way: Each system (case-, search—, and comprehension—based) was alternatively trained
with three different case~data (3-, 4-, and 5~ disk problems). The utilization of the acquired knowledge
was then tested with the 4-disk problem.

3 Practical Results Concerning the Comparison of the 3
Approaches

For the Tower of Hanoi tasks the comparison of the acquisition and utilization of knowledge in case—based,
search—based, and comprehension-based systems yields the following results: A case—based planner stores
the specific experiences and utilizes these experiences by adapting them to new problems. The specific
solutions of 5~disk (odd number of disks) and 4-disk problems (even number of disks) are quite diffe-
rent (Simon, 1978). A case-based system with a 5-disk training required a substantial amount of new
knowledge for refitting the solution of the 5~disk problem for solving 4-disk problems. Search-based
systems acquire new knowledge by searching a problem space and forming macro—operators or chunks.
Since the Tower of Hanoi task results in an ill-suited problem decomposition, macro-operators are for-
med which yield quite ineflicient problem solutions (Korf, 1985). Quite often, these macro—operators
cannot be transferred between problems with a different number of disks. When multiple levels of des-
criptions are available like m SOAR, more useful chunks of problem solving experiences can be formed
(Ruiz & Newell, 1989).

A SOAR model which learns chunks as a result of a lookahead-search combined with a goal-de-
composition strategy (“move biggest disk not-on-C to C”) predicts only positive transfer from a 4-disk
training to the 4—disk criterion task. Transfer from an odd-numbered training task to an even-numbered
task is negative. ‘

A second SOAR model which uses the cased-based approach described above for memorizing small
episodes (cases) during solving the training problems predicts better transfer from a 5-disk training to
a 4—disk criterion task due to more opportunities for storing episodes. This model which is influenced
by the concurrent protocol analysis recently reported by VanLehn {1991) stores abstracted experiences
acquired during the “major moves” which form a stable pattern of 4k + 1 moves in the protocol. At first
the abstraction process uses the prior known concept of a pyramid and then secondly, learns to conceive
the size of the pyramid a further relevant concept.

With a comprehension-based approach an abstract procedure schema is formed in terms of situation
knowledge. The same ahstract schema. is thus acquired for all Tower of Hanoi tasks with more than 4 disks.
The schema acquired from the 3- and 4-disk problems is still similar but less elaborated. Comprehension—
based learning from a 5~disk training therefore even produces better solutions for the 4-disk criterion
task than a 4-disk training.

4 Empirical Results from a Psychological Experiment

In order to evaluate the psychological validity of case-, search—, and comprehension—based learning, an
experiment with human subjects was performed. In three different conditions (30 subjects each), subjects
had to solve two 3-disk, two 4-disk, or two 5 disk—problems in a row and their number of moves was
recorded. The two consccutive problems were similar. The first time the tower of disks was on peg A in
the initial state. The second time it was located on peg B. Both times, it had to be transferred to peg C.
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Thereafter, the knowledge which they had acquired from these problem solving episodes was tested. In
order to obtain a more complete assessment of their knowledge with respect to the 4-disk problem, which
served as the criterion task, all subjects were presented with the 81 different states of the four disk
problem, one at a time. Rather than completely solving the Tower of Hanoi problem, the subject had to
select the best move for each of the 81 different problem states, which were randomly divided in three
sets of 27 states. For selecting a move, subjects were allowed 15; 30 or 45 seconds. The allowed processing
time and the three sets of 27 states were counterbalanced by a Latin—-Square design.

Tabelle 1. Average number of moves in three different training tasks

Mean number 3—disk 4-disk 5-disk
of moves problem | problem | problem
first problem - 11.1 30.9 66.0
second problem 9.1 214 55.0

Table 1 shows the average number of moves for two similar problems with 3, 4 or 5 disks. Clearly,
fewer moves were required when solving the problem for the second time as compared to the first time.
Table 2 shows the performance in the 4-disk criterion task. The average number of correct moves is
shown as a function of the allowed processing time (15, 30, or 50 seconds) and the three types of training
(solving 3-, 4-, or 5~ disk problems).

Tabelle 2. Percentage of optimal moves in the 4-disk criterion task as a function of pretraining and
processing time

Pretraining
Time (s) | 3-disks | 4-disks | 5—disks
15 63 68 70
30 69 75 77
45 . 69 76 81

Independent of the specific processing time which was allowed for selecting the best move from a given
state, the subjects with the 5-disk problem solving experience performed better than the subjects with
the 4- or 3-disk problem solving experiences. We may thus conclude that the subjects did not solely store
the problem solving moves for the specific Tower of Hanoi problem nor solely compiled solution knowledge
for it. Instead subjects must have also utilized background knowledge which allowed them to form a more
abstract representation from the problem solving episodes, that could be efficiently transferred from the
5-disk training task to the 4-disk test task. Since more elaborate abstractions can be acquired from the
5—-disk problem, the subjects with this training performed better in the criterion task than the subjects
with the 4- or 3—disk training.

5 References

Akyurek, A. (1992). On a computational model of human planning. In J. A. Michon & A. Akyurek (Eds.),
Soar: A cognitive archilecture in perspective (pp. 81-108). Dodrecht, The Netherlands: Kluwer.

Anderson, J. R. (1987). Skill Acquisition: Compilation of weak-method problem solutions. Psychological
Review 94(2):192-210.

Clancey, W.J. (1989). The knowledge level reinterpreted: Modeling how systems interact Machine Lear-
ning 4:285-291.

Hammond, K. (1989). Case-based planning. London: Academic Press.

Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial Intelligence 26:35-77.

Mannes, S. M., and Kintsch, W. (1991). Routine computing tasks: Planning as understanding. Cognitive
Science 15:305-342.

Minton, T. M., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R., Etzioni, O., and Gil, Y. (1989).
Explanation-based learning: A problem solving perspective. Artificial Intelligence 40:63-118.

147



Rosenbloom, P. S., Laird, J. E., Newell, A., and McCarl, R. (1991a). A preliminary analysis of the SOAR
architecture as a basis for general intelligence. Artificial Intelligence 47: 289-325.

Rosenbloom, P.S., Newell, A., Laird, J. E. (1991b). Toward the knowledge level in Soar: The role of the
architecture in the use of knowledge. In K. VanLehn (Ed.) Architectures for intelligence. Hillsdale,
NJ: Erlbaum.

Ruiz, D. and Newell, A. (1989). Tower-noticing triggers strategy—change in the Tower of Hanoi: A Soar
Model. Cognitive Science Proceedings.

Simon, H. A. (1975). The functional equivalence of problem-solving skills. Cognitive Psychology 7: 268-
288.

VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies. Cognitive
Science, 15(1), 1-47.

Wharton, C., and Kintsch, W. (1991). An overview of the construction—integration model: A theory of
comprehension as a foundation for a new cognitive architecture. SIGART BULLETIN 2(4) :169-173.

148



Learning Prediction of Time Series. A Theoretical and Empirical Comparison of CBR.
with some other Approaches.

Gholamreza Nakhaeizadeh
Daimler-Benz AG, Research and Technology
Wilhelm-Runge Str.11, postfach 2360, 89013 Ulm, Germany

Abstract. The concept of K-Nearest Neighbours (KNN) traced back to early fifties and during the last
years it is investigated deeply by the statistical community. Case-Based Reasoning (CBR), which is very
similar to KNN is rather new. Besides KNN and CBR one can use other statistical procedures like regres-
sion analysis or Box-Jenkins methods to pel:form the prediction tasks. Furthermore, it is possible to use
the procedures based on neural networks and symbolic machine learning. Although learning prediction
of time series is a very important task in different scientific disciplines, there is no comprehensive study
in the literature which compares the performance of CBR with the performance of the other alternative
approaches. The aim of this paper is to contribute to this debate from a theoretical and empirical point

of view.
1. Introduction

Learning prediction of time series is a very important task in different scientific disciplines. In Statistics
there are several, partly sophisticated, methods to perform this task. Generally, these procedures use the
information available about the behaviour of the time series in the past to predict its development in the
future. Box-Jenkins ARMA and ARIMA models are well-known examples for this type of procedures
(Henery and Nakhaeizadeh (1993)).

Besides the information about the past values of the time series itself, one can also use other information
based on the exogenous indicators which have an impact on the development of the time series. K-
Nearest-Neighbours and regression analysis can be mentioned as examples for such procedures. Recently,
the attention is focused also on the application of Neural Networks (Graf and Nakhaeizadeh (1993)).
Some of symbolic machine learning algorithms based on ID3-concept can be used to predict the deve-
lopment of time series as well (Merkel and Nakhaeizadeh (1992)). It should be mentioned that although
CBR, which is very similar to KNN, has found several applications for examples in classification, planning
and design (see Althoff et al. (1992)), very little attention has been paid to the application of CBR to
time series prediction. An exception is the work of Quinlan (1993) which applies both CBR-based and
model based learning approaches to prediction.

The above facts show that several alternative approaches can be applied to prediction of 1\;ime series. The
aim of this study is to evaluate, firstly, these alternative approaches from a theoretical point of view and,
secondly, to compare their performance in dealing with real-world prediction problems arise in industry
and commerce. We will refer also to some results achieved within an Esprit-Project funded by the Euro-
pean Community.

2. A Short Description of the Applied Alternative Approaches

Before we give a summary about the theoretical aspects of different approaches which can contribute to
prediction of development of time series, we should mention here a general problem exists in dealing with
a large number of time series. This is the limited number of available cases. In many circumstances,
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there is no information at all about the far past values of the time series. On the other hand, if such
a dataset is available, it is not always suggestive to use it because too far past values have only a weak
impact on the future development of the time series. It means, in 'dealing with time series the learning
task has to be performed by using only a limited number of training data. Having this fact in mind, we
will give in following a short description of different approaches.

Linear Regression Analysis and Box-Jenkins Approach
Denoting Y; as a time series in period ¢, a linear regression model can be described by the equation

n
Yt=a+Eb.'Xu

i=1

In the above equation, X;; denotes the value of exogenous variable X; in the period t. The value Y; 41 in

the period ¢t 4 1 can be predicted simply as:
J

n
Yipr =+ E I;»'X.'(¢+1)

i=1
where & and b; are the estimations for a and §; and can be calculated using least-squares or maximum-
likelihood method. Of course, one can use instead of a linear regression a nonlinear model as well. In
this case, the parameters a and b; can be estimated using numerical procedures. The regression analysis
is theoretically well investigated and it is very simple to apply. One disadvantage of this method is the
problem of model selection. A lot of other statistical approaches have the same disadvantage as well. The
other problem is that the calculation of Yiy; is only possible when all Xi(t+1) are known for the period
t + 1 in advance, which is in praxis not always the case.

Concerning the Box-Jenkins approach, one can describe an ARMA (autoregressive moving average) model
as:

Yi+ar i1+ ...+ ath_,, =€+ ﬂlft_1'+ o ,3961_1

where €, are independent normal distributed random variables.

If the parameters o or @ are zero, the above model will be reduced to a MA (moving average) or AR

(autoregressive) process, respectively.

The main assumption in the ARMA model is that the time series Y; is stationary. A time series is
stationary if its means and variance remain unchanged with the time. For a lot of real world time series,
this assumption is not valid. In such cases, the time series should be transformed for example by taking
successive differences so long as necessary to make the resuiting series stationary. In this case, the ori-
ginal series is called an integrated ARMA process, i.e. an ARIMA process. Although the Box-Jenkins
approach has some advantages, one needs a lot of experience to be able to apply it efficiently (see Henery
and Nakhaeizadeh (1993)).

Symbolic Machine Learning and Neural Networks-

Most of the symbolic machine learning algorithms are more appropriate to perform the classification
tasks. But between the ID3-type algorithms, CART and NEWID can also be used for prediction because
they can handle continuous-valued classes as well. In contrast to other approaches, the predictor derived
from these learning algorithms consists of a decision tree which can be transformed to production rules.
Furthermore, these learning algorithms apply a single attribute at each level of the tree and this is in
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contrast to the most statistical and neural learning algorithms which consider all attributes to make a

decision.

The main advantage of symbolic machine learning approach is that it is possible very easily to involve
other available information in prediction process, for example, by including the background knowledge of
experts. However, like other approaches, prediction algorithms based on symbolic machine learning have
also some shortcomings. Generally, they can not predict the values beyond the range of training data.
Regarding the fact that, especially, a lot of time series have an increasing (decreasing) trend component,
it can be seen that by using just the raw class values, one can never achieve a predicted value which is
outside the range of the class values used for training. This can be avoided by taking differences of the

class values as it was the case in Box-Jenkins approach.

In the recent years, one can also see in literature some efforts put to apply Neural Networks to prediction
of time series. Although the development of Neural Networks at early stage was stimulated by model-
ling of learning process in human brain, the further development of this technology shows a very strong
similarity with statistical approaches. There are some studies which compare the Neural Networks with
some statistical procedures like nonlinear regression from a theoretical point of view (see for example
Arminger (1993)). However, it should be mentioned that the ability of adaptive learning which charac-
trizes the most of Neural Networks is not implemented in statistical procedures like regression analysis
and Box-Jenkins approach.

The main problem in using Neural Networks for prediction consists of finding the optimal network archi-
tecture. To realize this task, one has to devide the available time series data into two training and test
sets. Regarding the problem of limited number of observations in time series data which is dicussed at
the beginning of this section, deviding the whole series into two training and test sets leads to an still
smaller training dataset, in many circumstances.

K-Nearest Neighbours and Case-Based Reasoning

Although the concept of KNN traced back to early fifties (see for example Fix & Hodges (1951)), the
studies on CBR are rather new and are mostly due to Artificial Intelligence researchers. Regarding the
prediction task, KNN and CBR try to find the patterns in the past data which have the most similarity
to the recent pattern Y;_g,...,Yi—1,Y:. The prediction value for the recent pattern is then simply the
average of the prediction values of the most similar patterns in the past.

There is a controversial discussion if KNN and CBR can be regarded at all as inductive learning me-
thods. The reason for this controversy is that the learning task in the most inductive systems generates,
in contrast to CBR, a general concept which can be used later for predicting the class of unseen cases.
On the other hand, it is true that in CBR one uses the information given by the cases. This information
is applied, however, to measure a pre-defined distance function but it is not applied to find a general
prediction concept which is the main part of inductive learning. The learning task in CBR and KNN is
limited to finding similarities. Formalization of the relation between CBR and inductive concept learning
is discussed by Jantke (1992).

The problems mentioned in the case of Neural Networks exist in application of CBR and KNN as well.
Especially, finding the optimal length of the searched pattern and determining the number of considered
patterns (X) need again using a separate test dataset which reduces the number of available training

cases.
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3. Empirical Evaluation Results

There are some studies in literature which compare the performance of different statistical approaches
using the time series data (Makridakis et al (1984)). But, there is no comprehensive study which includes
the recent developed prediction approaches based on the Al-methodology like CBR, Neural Networks
and Symbolic Machine Learning. An exception is the attempts put on this task within the Esprit-Project
StatLog. In this Project three real time series datasets are applied to compare the performance of diffe-
rent learning algorithms. ‘

As it mentioned before, although a lot of learning algorithms can perform the classification task, they
can not be applied to prediction, directly, because they can not handle the continuous-valued classes. It
is, however, possible to consider the prediction task as classification by an appropriate discretization of
the class values. '

The first application used in the project StatLog deals with prediction of development of interest rates
on successive trading days. The empirical results for this dataset are ambiguous. On one hand, some
symbolic machine learnig algorithms like CN2 deliver very precise predictions. On the other hand, the
performance of the other machine learning algorithms like NEWID and C4.5 are very poor. CBR-type
and Neural Networks algorithms-are not evaluated for this dataset. The second and the third datasets are
two versions of an real-world application which is in interest of the marketing department of Mercedes-
Benz AG, Stuttgart. This application deals with prediction of number of registered cars and trucks in
France. While the performace of Box-Jenkins method and NEWID are the best for this application, the
prediction power of a CBR-type algorithm based on the KNN-concept is very poor. Other statistical
and neural networks learning algorithms deliver an average performance (see Henery and Nakhaeizadeh
(1993) for more detail). '

Besides the results we have achieved within the project StatLog, some other empirical works has be done
by the Machine Learning Group at the Ressort Research and Technology of Daimler-Benz AG in Ulm.
Besides the prediction of number of cars and trucks for the other countries, we have evaluated different
learning algorithms by using another real-world application which deals with prediction of daily exchange
rates of US-Dollar against D-Mark. Work on this application is in progress. The first results show that
the performance of CBR, Neural Networks and Symbolic Machine Learning algorithms are almost the
same. But they are still too far from the accuracy rates which one can get for example by using classical

chart analysis.
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1 Introduction

One advantage of case-based reasoning over rule-based reasoning that has been advocated is that cases
can be interpreted differently, whereas once a rule has been abduced from cases, there is no possibility
of reinterpreting the cases. Eor instance, Riesbeck and Schank (1989, pp. 9-14) compare and contrast
three modes of reasoning: 1) reasoning with ossified cases (rules or abstract principles), 2) reasoning
with paradigmatic cases (cases with a given interpretation), and 3) reasoning with stories (cases with
many possible interpretations and capable of re-interpretation). They argue that it is the third mode of
reasoning that displays the most flexibility and power of having a knowledge base containing cases.

However, most of the existing work on case-based reasoning remains confined to the second mode or
to a version of the third mode where cases have a number of fixed interpretations. Almost all existing
case-based reasoning systems associate dimensions (also called indices) with every case in a case-base,
and use these dimensions for similarity assessment and retrieval. Consider, for instance, the system Hypo
that applies case-based reasoning to law (Ashley 1990). At the time each case is entered in the case base,
one must determine the possible ways in which that case might be relevant, and each relevant factor that
is found is assigned a dimension. As an example, take the domain of home-office tax deduction that is
discussed in Rissland and Skalag (1991). Upto a point in time, the courts were consistently ruling that
the statutory predicate ‘principal place of business’ means the place where the most important part of
the business is carried out, which would mean classroom for a teacher, concert stage for a musician ete.
However, in one particular case the court decided that this was an unfair test, and decided to consider
the place where the taxpayer spends the most amount of their time as the principal place of business,
which could be home-office for a teacher, if she spends most of her time there in preparing for lectures,
grading, etc. This decision, however, introduces a fresh dimension, for now we must consider the place
where the taxpayer spends most time in arguing a case, and citing a precedent. If this dimension was not
included in the cases that are already in the case base, the retrieval mechanism will miss out on many
relevant precedents.

Of course, one solution is to include a large number of dimensions with each case. But then this will
have the disadvantage that many irrelevant cases will be retrieved, not to mention the fact that there is
always the possibility that, no matter how large the initial set of dimensions, a new dimension becomes
necessary that was not foreseen before and hence not included in the initial set.

This point is best illustrated with the domain of geometric figures. Consider Fig. 1. Suppose this

Figure 1: A figure included in a case base.
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Figure 2: Another figure to be interpreted in terms of Fig. 1.
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Figure 3: A proportional analogy including Fig. 1.

figure is to be included in a case base. How should we dimension it? Perhaps one obvious way is to
dimension it is as a figure consisting of four triangles. But then Fig. 2 would not be seen as similar to
Fig. 1 at all, whereas, given the right context (Fig. 3) the similarity between the two becomes obvious.
Moreover, no matter how many dimensions were used in the initial representation of Fig. 1, we can always
produce another figure that is similar to it, but requires a new dimension.

It is clear that what is necessary is a way to interpret the figure differently depending on the context,
and create new dimensions or indices as appropriate. This is the ultimate promise of case-based reasoning,
as rightly emphasized by Riesbeck and Schank, that is yet to be delivered.

We have been working towards fulfilling the promise of case-based reasoning. One of the authors
(Indurkhya 1991, 1992) has been working on formalizing the process of reinterpretation in an algebraic
framework, and on articulating the crucial role it plays in many aspects of cognition. The other author
(O’Hara 1992) has been implementing a system PAN that models this reinterpretation process in the
domain of geometric figures. PAN is designed to solve proportional analogy relations of geometric figures
that involve reinterpretation. We will present an outline of the architecture of PAN in Section 2. In
Section 3 we discuss briefly how the reinterpretation mechanism a la PAN can be incorporated in a
conventional case-based reasoning system. In Section 4, we point out the further research questions that
are raised by our approach.

2 The Architecture of PAN

PAN (for Proportional ANalogy) is a program being developed to solve geometric proportional analogy
problems. The input to PAN consists of three geometric figures A, B and C made up of straight line
segments. The output of PAN is a new geometric figure D such that the four figures, A, B, C and D satisfy
the proportional analogy relation: A isto B as C is to D. PAN creates the answer figure D by constructing
descriptions of the figures A, B and C. These descriptions are at a higher “conceptual-level” than the
initial line-segment input and involve rotations, translations, repetitions, convex polygons, symmetry etc.
A key feature of PAN is that the descriptions of the figures are constructed “in tandem” permitting the
figures and their descriptions to act as contexts for each other during their construction.

The architecture of PAN is illustrated by the diagram in Fig. 4 and is essentially that of a production
system. In the diagram, circular and oval shapes represent data structures and rectangular shapes
represent processes. The input to PAN is represented by the oval containing the geometric figures in the
lower-left part of the diagram. The input is simply a set of line segments representing the figures A, B and
C. The first task performed by PAN is to preprocess the raw input data into a graph-like structure that
makes computations easier and allows PAN to keep track of what part of the figure has been described
and what part remains to be described. One such graph is constructed for each of fizures A. B and C.

~
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After PAN finishes the preprocessing step, it enters into a search process that builds the descriptions
of the figures. This process is represented by the block called the description-building engine. The
description-building engine takes as input the contents of the work area and a data base of condition-
action rules called the description-building rule database {or rule database for short). The work area
consists of partial descriptions of figures A, B and C (initially, the descriptions are null), the figure
graphs constructed by the preprocessor, and a vector of state variables which are tested in the condition
part of the rules and used to indicate what task should be done next in the work area.

The description-building engine checks the conditions of the rules against the contents of the work area
and then modifies the contents of the work area by applying the actions of a matched rule. Typically,
the actions of a rule will do three things: (1) extend a description in the work area, (2) update the
corresponding figure graph to reflect that more of the figure has been described, and (3) modify the state
variables to indicate what should be done next. This process continues until all figures are completely
described, at which point the fourth figure D is generated. In general, the description-building engine
will find more than ore rule that applies. These options are tried one by one, backtracking whenever an
option fails or proves to be too complicated.

The overall search process executed by the description-building engine is guided by an iterative-
deepening search strategy (Korf 1985). Iterative-deepening visits the nodes of a search tree by executing
a series of bounded depth-first searches to an ever increasing depth in the tree. The depth in the tree
to which the depth-first search goes is specified by a depth variable. This variable is first set to one
so the first depth-first search just visits the root node. If the goal is not found, the depth variable is
incremented so that the next depth-first search visits the root node and all the children of the root. The
depth variable is repeatedly incremented and depth-first searches are repeatedly performed until a goal
node is obtained. While this strategy appears to be wasteful since it covers the same nodes over and over
again, it actually performs much better than a breadth-first search and is guaranteed to find a shortest
path to a goal node.

In the description-building engine, the depth variable represents the overall complexity of the descrip-
tions in the work area which is measured by the description complezity function. This function is defined
on the positive integers and can be arbitrarily large. At present, the description complexity function
is a count of the number of different description elements that appear in the descriptions in the work
area. Combinatorial explosion is delayed by placing a limit on the size of each individual description and
by limiting the number of “combinatorial” description elements that may appear in any one description.
This approach of preferring the least complex descriptions is similar to the approach of van der Helm, van
Lier and Leeuwenberg (1992) who deal with the description of individual geometric figures. While van
der Helm et al. have focused on the problem of finding the least complex description for single figures,
our approach focuses on finding the least-complex overall description of a proportional analogy. In our
framework, it is possible that the description of an individual geometric figure will be different depending
on the proportional analogy in which it occurs.

The description language in which the geometric figures are represented is an algebra-like construction.
consisting of a set of primitive objects (polygons and broken line-segments) and a set of operations which
transform geometric objects into new ones. There are three broad classes of operators that we use: (1)
tlerative processes which make multiple copies of a figure. For example, in Fig. 1, the top two triangles
might be obtained by applying an iterative process to the upper-left triangle. The entire figure can be
obtained by applying another iterative process to the top two triangles obtaining the bottom two triangles;
. (2) join operators are multiple-argument operators which combine two or more geometric figures into a
single composite figure. A join operator will typically require that argument figures have some particular
relationship to one another and may require that an argument be of a particular type such as a polygon.
For example, Fig. 2 is constructed by applying an ‘inside’ join operator to a square and the cross figure;
(3) global operators are single argument operators that act on a figure as a whole. Examples of these

. operators are: rotate, scale, stretch etc. These three classes of operators were arrived at empirically by
examining a number of typical proportional analogies.

A description of a geometric figure is modeled as a description tree with exterior nodes labeled with
objects and interior nodes labeled with operators. The object described by a description tree is found by
recursively evaluating the tree. A description tree is essentially a possible history of how the geometric
figure might have been constructed. When forming a proportional analogy, descriptions of figures A and
B are related to one another by substituting, inserting and deleting operators in description A to form
description B. Descriptions A and C must be isomorphic.

The production rules in PAN come in several varieties. We illustrate these rules by means of two
examples. Consider how PAN might solve the proportional analogy in Fig. 3. The first thing that PAN
might do is recognize the square in figure A. Next, a new rule would detect that the square in figure A
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Figure 5: Another proportional analogy involving Fig .1.

is similar to the square in figure B. Figures A and B are then partially described as containing squares.
Next, PAN might notice that the cross in figure A is similar to the cross in figure B. The descriptions of
A and B are then expanded to reflect this. Given that there are two objects noticed so far in A, a rule -
may be applied to determine what their relationship is. In this case, a ‘inside’ join operator would be
inserted into A’s description. Similarly, a ‘left-of” join operator would be inserted into B’s description.
Notice that both A and B are fully described, so there is nothing else to do but for the description of A to
interact with figure C. Given that figure A is currently described as a cross inside a square, PAN might
then attempt to describe figure C similarly. PAN, using a projection procedure attached to the ‘inside’
concept, decomposes C into a “containing” polygon and an inner figure (the diamond.) From these full
desciptions of A, B and C, the figure D is generated.

Figure. 5 shows a proportional analogy that would result in a different description of figure C. After
preprocessing figures A, B and C, the first thing that PAN might do in this example is to find a the
left-hand rectangle in A. Next, a new rule would detect that the lefi-hand rectangle in A is similar to
the left-hand rectangle in B. An iterative process now might be inserted above the left-hand rectangle in
A providing a description of the whole figure A. Similarly, a different iterative process might be inserted
above the left-hand rectangle in B providing a description of the the whole figure B. Figures A and B are
now fully described, so the description of A must now interact with figure C. PAN uses a the projection
procedure attached to the iterative process in A to decompose C. (The behavior of this procedure is
rather involved, so we will leave it to the full paper to describe.) C is now described as two hour-glass
figures that have been pulled apart.

3 Interpretation in Case-Based Reasoning

In the introduction, we articulated the need for a reinterpretation component in case-based reasoning.
We do not propose it as an alternative to the conventional approach using dimensions (or indices) but in
addition to it. It should be clear from our brief description of the PAN architecture in the last section
that it is a computationally expensive process. Moreover, when an aspect of a case is deemed relevant,
and turned into a dimension, it is usually because it is considered to have more general appeal than just
as an idiosyncracy of that case. Therefore it seems quite likely that many new problems could be solved
using conventional dimensions, which allow a fast retrieval of similar past cases.

So it would be prudent to continue to encode the cases in terms of dimensions depending on what
aspects of it seem relevant at the time the case is entered in the case base. But then we could provide an
interpretation module that is evoked when the retrieval based on conventional dimensions is not helpful.
This could be because the retrieved cases, even though they are similar to the problem, do not have
solutions that can be easily adapted to solve the problem (Borner 1993), or it could be because the
problem at hand requires attention to an aspect that was not considered relevant so far, and is therefore
not included in the dimensions. In all such situations, the reinterpretation mechanism is called, which
alters the similarity metric (as manifested by existing dimensions) so that the cases in the case base are
made to look similar to the new problem, like making Fig. 2 seem similar to Fig. 1.

It may seem at first that the reinterpretation process is rather like a runaway horse, retrieving a
horde of useless cases from the case base, for almost anything could be made to look similar to anything
else. However, a careful analysis in any domain shows that there are sufficient top-down, goal-directed
constraints to keep the reins on reinterpretation. For instance, in the domain of geometric proportional
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analogy, the context provided by the other figures acts as a powerful constraint to focus the search for
new dimensions in the right direction. In the domain of legal reasoning, which one of the authors has
been exploring and where there is a crucial need for reinterpretation mechanism, we have found that the
goals of the arguer serve as a beacon to keep the search for new dimensions and relevant precedents from
growing exponentially (Jantezko and Indurkhya, in preparation).

4 Conclusions and Further Research

We have argued in this paper for a need to incorporate a reinterpretation mechanism in case-based
reasoning systems, and have outlined an approach to it. Obviously, we are just crossing the threshold
into a new realm where a lot of exploration needs to take place. Qur work on modeling reinterpretation
in geometric proportional analogies and legal reasoning is only a beginning of this exploration. We hope,
however, that other researchers working on case-based reasoning would also realize the need to address
the process of reinterpretation and join this exploration. Only then we will be able to realize the full

potential of case-based reasoning.
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Abstract

In this paper, we will introduce an inductive learning algorithm called Prototype-Based Learning
(PBL). PBL learns a concept description, which consists of both prototypical attributes and attribute
importances, by using a distance metric based on prototype-theory and information-theory. PBL can
learn the concept description from even a small set of training cases and is tolerant of inappropriate
cases. Furthermore. even the attribute importance differs depending on the combinations of the other
attribute-value pairs present describing the case, PBL can learn the concept description and highly
utilize it so as to do the accurate classification. Finally, PBL can learn indexing knowledge directly
from the concept description, which is useful for a human expert to understand and verify the concept
description generated by the learning algorithm.

1 Introduction

This paper describes an overview of the approach we are taking to machine learning within a continuing
research project. The project is concerned with developing a cognitively based symbolic concept learning
algorithm. In contrast, the type of machine learning that has attracted most attention in the Al literature
is the learning of minimum discrimination rules to classify a new case into an appropriate category. In
this type of machine learning, if a training set involves inappropriate cases (i.e. noisy cases, incomplete
cases, or exception cases), the approach of extracting discrimination rules may generate too complex and
failure rules. On the other hand, our approach is to classify a new case into nearest categories by use
of a distance metric based on prototype-theory [6] and information-theory. More precisely, our approach
extracts a concept description, which consists of both prototypical attributes and attribute importances,
from the set of training cases. As a result, our approach can learn the concept description from even
a small set of training cases and is, tolerant of inappropriate cases. Furthermore. even the attribute
importance is context-sensitive, our approach can extract and highly utilize the concept description so as
to do the accurate classification. Finally, our approach can learn indexing knowledge directly from the
concept description, which is useful for a human expert to understand and verify the concept description
generated by the learning algorithm.

2 Basic Ideas

2.1 Prototypicality Ratings

PBL1 is the simplest prototype-based learning algorithm. The learning task of PBL1 is inductive learning
or learning by examples. Especially, we will focus on probabilistic approach to inductive learning in which
the only input is a sequence of cases. Each case is assumed to be represented by a set of attribute-value
pairs and its category. For example. if the j-th case I; lhas the n attributes aj, az, ... . @, and the
category is c. the case I; is represented as follows:

I; = (c.ayj, a2js - .., Anj)

where j ranges over the cases in the training set.

The primary output of PBL1 is a concept description. This is a function that maps cases to categories.
The concept description is represeuted by a distance metric called prototypicality ratings. Prototypical-
ity ratings provide a partial ordering on candidate categories. That is, prototypicality is a rating of the
representativeness of a case with respect to a category. Thus, the category which las the highest family
resemiblance is the most prototypical. During classification, PBL1 uses prototypicality ratings to deter-
mine the category which is the most likely to match the new case. To compute prototypicality ratings.
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PBL1 counts the frequency of each value that the attribute can take on. If the new case I, is given.
the prototypicality ratings can be computed as follows:

N
. . 9 _ fla,,aij)
prototypicality(c. Inew) = Yo q Z.%
where f(a;,a;;) = {

1 if @i = Qgy
0 otherwise

where ¢ ranges over the attributes. a; is the value of the case Ine,, on attributez. j ranges over the cases
in the category . N 1s the total muuber of cases in c.

2.2 Empirical Studies with PBL1

Fig. 1 prescuts the experimental evidence for the performance of PBL1. In this experiment, the perfor-
mance accuracy of PBL1 was compared to ID3 [5] on the “famous” soybean database which contains tle
diagnosis of soybean discases. Tle database contains 289 cases and 17 categories (diagnoses). Diagnoses
are described by 50 attributes (plant and environmental descriptors). We used 145 cases as the training
set and 144 cases as the test set. The training and test sets were always disjoint. These cases were drawn
randomly from the database. All results reported in Fig. 1 were averaged over 20 trials.
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Figure 1: Performance accuracy of PBL1 and ID3.

Fig. 1 shows that PBL1 behaves well, but the performance accuracy of ID3 becomes greater than
that of PBL1 as the number of cases for each category increases. Furthermore, performance accuracy
of PBL1 does not increase even if the number of cases increases, whereas performance accuracy of ID3
increases as the number of cases increases. From this experimental result, we will not argue that PBL1
is superior to the more sophisticated algorithm ID3, but the result shows that it behaves well even the
number of cases for each category is small. Thus, PBL1 is a promising learning algorithm that deserves
more intensive extension.

3 Some Extensions to Prototype-Based Learning

3.1 Attribute Importance

PBL1 differs from ID3 in the following important respect. PBL1 learns salient (prototypical) atiributes
while ID3 learns discriminant attributes. Salient attributes represent what cases in a single category
have in common. Discriminant attributes represent distinguishing attributes of two or more categories.
When PBL1 computes the prototypicality ratings, it is learning the salient attributes of a category.
However, PBL1 assigus the same weight setting to each attribute, and does not pay attention to the
relative importances of attributes. Thus, PBLI1 performs poorly if the training set involves large numbers
of irrelevant attributes. This leads to the development of PBL2, which learns the refative importances
of attributes, represented as attribute weight settings, for the purpose of computing accurate similarity
assessments. .

Now we will introduce an information-theoretic approach and augnient the prototypicality ratings
described in Section 2. PBL2 examines all attributes and computes the expected information for each
attribute. Intuitive basis for this approach is that an attribute distributed in many categories has high
expected information, whereas an attribute occurring in only one or two categories has lower expected
information. Therefore we use the expected information as a measure of attribute importance. However,
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since an unimportant attribute for thie purpose of accurate classification, that is, an attribute distributed
in many categories, should be ignored, the attribute weight setting should have a low value, whereas the
important attribute should be assigned the greater attribute weight setting. Thus, the attribute weight
setting is defined as follows:

- - plegla;) log p(C'Iai))
(JJ((L,,) —9 ( Zc,ec i 2 PLey — Hp(cllai)p(clla,)

where [ ranges over the categories. p(ci|a;) means the probability that the observed case with attribute
a; will be determined to belong to the category ¢; and Y p(cla;) = 1. Furthermore, the range of w(a;)
is [0,1): w(a;) = 1 means the maximum attribute weight setting.

Now that we have defined the attribute weight settings, we will augment the definition of prototypi-
cality ratings introduced in Section 2.1. The definition of augmented prototypicality rating is defined as
follows:

.. n ZN flas.aqij)
prototypicality(c, Inew) = 3 iy =15 x w(a;)

where f(a;,a;;) = {

1 if a; = @iy
0 otherwise

Fig. 2 shows that PBL2 outperforms PBL1 and ID3. To some extent, the experiment shown in Fig. 2
also indicates that PBL2 -can tolerate irrelevant attributes better than PBL1, which effectively assigns
the same (static) attribute weight setting to each attribute. This is because PBL2 learns a separate set
of attribute weight settings for each category. Since attribute weight setting is used as the similarity
function, learning attribute weight setting is in effect learning a separate similarity function for each
category. Therefore, even if the given case includes some irrelevant attributes, their attribute weight
settings are relatively low and do not affect the similarity assessments.
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Figure 2: Performance accuracy of PBL1. PBL2 and ID3.

3.2 Attribute Importancé in Context

PBL2 will not perform particularly well where attribute importance is context sensitive, in the sense that
the attribute importance differs depending on the candidate categories under consideration. Consider
the following example, a taxonomy of vehicles: '

superordinate: vehicles
subordinate: bicycle. moped, nmotorcycle, passenger cars,
van, pickup, ...

In this sitnation. the attribute "two-wheels’ would be expected to be important, if we discritninate between
‘motorcycle’ and ‘passenger car.” However, this attribute should be assigned lower importauce, if we
discriminate between ‘motoreycle’ and ‘bicycle.” That is. we cannot assign a single attribute weight to
each attribute aliead of time: instead. the weight must be re-calculated with respect to the candidate
categories under consideration.

Context sensitive attribute weight settings are required to derive appropriate attribute importance
in applications where attribute importance is context-dependent. Since PBL2 adopts one-shot approach
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which considers all training cases and computes both prototypicality ratings and attribute weight settings
at one time, PBL2 cannot deal with the context sensitive problem.

Now we will propose the two-step approach to prototype-based learning algorithim named PBL3. The
first stage of PBL3 is quite similar to PBL2 in that it considers all training cases at one time. but it also
provides a partial ordering on categories based on prototypicality ratings. In the second stage, PBL3
selects the most prowising categories (i.e. the category whose prototypicality rating is the highest and
its nearest neighbors) and recomputes the prototypicality ratings among them. Prototypicality ratings in
the second stage of PBL3 is modified so as to amplify the attribute importance. The modified definition
is as follows:

L. n ZN_I flai,aij)
prototypicality(c. Inew) = 2iey =5 X w(a;)*

where the range of the amplifier @ is [1,4]. In other words, the first stage of the classification process
is to learn a prototype for each category. The second stage is to use these prototypes so as to discrim-
inate among the similar candidate categories. Fig. 3 shows the performance accuracy of PBL3 and its
ancestor PBL2. The results of the comparison shows that PBL3 outperforms PBL2 and achieves a high
classification accuracy as the number of cases for-each category increases.
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Figure 3: Performance accuracy of PBL2 and PBL3.

3.3 Some Experimental Results

The performance accuracies of PBL2 and PBL3 were compared to PROTO-TO [2], C4 (ID3), and
Bayesian classifier [1] on eight databases. All databases except soybean data were taken from the UCI
database collection [3]. The results of the comparison are shown in Table 1. Each experiment was re-
peated 50 times so the numbers are averages. The experimental results of PROTO-TO and C4 (ID3)
were borrowed from (2]. )

Table 1: Comparison of performance accuracy.

Name FBL3 PBL2 PROTO-TO C3 (ID3) Bayesian classifier
glass 45 - 55 % 43 - 50 % 48.0 % 65.5 % n/e
hepatitis 34.2 % 84.2 % 79.9 % 79.8 % 34.8 %
Touse-vote 92.1 % 92.1 % 90.4 % 95.3 % 50.5 %
soy bean data 97.1 % 96.3 % n/a (82.3) % 91.5 %
breast cancer 95.2 % D5.2 % n/a n/a 97.2 %
iris 95.4 % 95.4 % $6.0 % 94.2 % 95.3 %
200 92.8 % 93.0 % n/a n/a 93.8 %
tic-tac-toe 72.9 % 729 % n/a n/a 67.7 %

Table 1 shows that PBL3 recorded higher accuracies than the others in the five domains. However,
in the two of the domains, such as ‘hepatitis’ and ‘tic-tac-toe,” PBL3 performed slightly poorly, although
PBL3 is at least as accurate as Bayesian classifier. In the ‘glass’ domain, PBL3 performed relatively
poorly in comparison to the other algorithms, since the ‘glass’ database consists of continuous attributes
instead of nominal attributes. Note that all the continuous attributes were pre-processed by using a
clustering algorithm (i.e. k-means method) to ensure that they are treated with equal importance by the
prototypicality ratings of both PBL2 and PBL3. Furthermore, since some databases contain only two
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categories (i.e., hepatitis, house-vote. breast cancer, tic-tac-toe), the performance accuracies of PBL3 are
same as those of PBL2 on these databases.

4 Learning Indexing Knowledge

The last problem we have to consider is to learn indexing knowledge from cases. In a domain-specific
system that uses case-based learning algorithm, the efficient use of cases during classification requires
that they should be indexed so that they can be efficiently retrieved when they are likely to be similar
to a new case. One of PBLs’ primary learning tasks is the acquisition of indexing knowledge from cases.

Three types of indexing knowledge can be obtained directly from the concept description generated by
PBLs: confirmatory index, attribute-to-category index. and category-to-attribute index. These indices
can be extracted from both the prototypicality ratings and attribute weight settings in the following
ways:

1. If the prototypicality is equal to 1 and the attribute weight setting is also equal to 1, then extract
the category c; and the attribute a;. These category-attribute pairs are called confirmatory indices.
Confirmatory indices associate attributes with categories and they are foolproof. That is, confir-
matory index from a; to ¢; suggests that c; is the reliable classification for cases described with a;
and that every case in c; has the attribute a; without uncertainty.

2. If the prototypicality rating is less than 1 and the attribute weight setting is equal to 1. then the
attribute-to-category index is extracted. Attribute-to-category index also associates the attribute
a; with the category ¢;, but it is not foolproof. That is, the attribute-to-category index simply
enumerates a sct of possible classifications for the new case described with a;.

3. If the prototypicality is equal to 1 and the attribute weight setting is less than 1, then the category-
to-attribute index is extracted. Category-to-attributeindex associates a category with an attributes.
This is opposite to the direction of an attribute-to-category index. In other words. category-to-
attribute indices can produce what may be called “prototypical” cases by creating a case that has
the most frequent value for each attribute.

The following are examples of indexing knowledge for soybean diseases. The right hand side of the
index is a triple of the form:

[attribute=value, prototypicality, attribute weight]
e counfirmatory index:

powdery mildew « [leaf mildew growth = on upper leaf surface, 1.0, 1.0].

e attribute-to-category index:

phytophthora + [external decay of stem = watery and soft,0.88,1.0].
phytophthora « [external stem discoloration = dark brown,0.88,1.0].

o category-to-attribute index:

phyllosticta — f[leaf spot color = tan,1.0,0.50].
phyllosticta — [leaf spot growth = from edge of leaf inward, 1.0, 0.65].

By index transformation, we extracted 2 confirmatory indices, 27 attribute-to-category indices, and 30
category-to-attribute indices from the soybean database. Note that, in the category-to-attribute index,
the number of indices depends on the threshold of the attribute weight setting. In the above example,
the threshold is set to 0.3, that is. 0.3 < w(e;) < 1.0. If we decrease the threshold from 0.3 to 0.2, we can
extract 125 category-to-attribute indices, although some of them are *weak’ category-to-attribute indices.
However, an experiment was conducted in the domain of soybean disease to determine the effect of
providing ‘weak” category-to-attribute indices. Table 2 shows that category-to-attribute indices provided
important evidence during the classification process. Consequently, removing ‘weak’ category-to-attribute
indices actually hurt the performance accuracy of the system.

Learning indexing kuowledge from cases has already been proposed by Protos [4]. Protos elicits and
refines domain knowledge by interacting with a human expert in the context of problem-solving failures:
failures to classify cases and failures to explain its classification. Although Protos’ knowledge acquisition
process is rather systematic, such a process is still very time and effort consuming for the human expert.
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Table 2: Contribution of category-to-attribute indices to performance accuracy.

threshold value of wiag, o;)
5.1 0.2 T3 0.3 0.5 0.6 0.7

wuniber of indires 137 135 30 13 8 1 0

performance RT % 83 % 34 % 79 % 76 % 7 % 70 %

. Furthermore, when Protos assigns the strength to each index. Protos relies heavily on the heuristic

¥ processing of explanations, which are based on a large number of underlying assumptions. This kind of
approarch may be failed. if the appropriate knowledge for understanding the explanation could not be
made gencrally available to the system « prior.

5 Concluding Remarks

In this article. we described one of the inductive learning paradigm called PBL. The PBL paradigm
supports relatively robust learning algorithms. They can tolerate noisy and irrelevant attributes and
can represent both probabilistic and symbolic concept descriptions. The PBL paradigmn is a promising
approach and is rich with opportunities for additional research.

Firstly, we have not yet studied how the PBL approach can use continuously-valued attributes to
classify a case which consists of the values of cither unordered or totally-ordered attributes. We are

" now developing a labeling procedure for the continuous attributes. The labeling procedure divides all
pumerical data into several clusters, and labels a new nominal attribute for each cluster. The labeling
procedure will be unified into the PBL algorithm so that each numerical attribute is directly translated
into the nominal attribute.

Secondly, the PBL paradigin lacks the mechanism to deal with information about which combinations
of attributes comprise realizable cases of a category. The PBL paradigm also cannot represent knowledge
of correlated groups of attributes nor knowledge about the acceptable ranges of values for individual
attributes. This limitation confronting the PBL paradigm is problematic, and constructive induction
approach may be useful to solve the problem.

Thirdly, one of the limitations of the PBL paradigm comes from the attribute-value representation
for cases. The PBL algorithms cannot learn in knowledge-rich domains that require more elaborate
and complex case representations. Applications involving higher-order attribute relationships, such as
planning and reasoning, are not amenable to current PBL algorithms. .

Finally, additional study of the PBL paradigm in the context of a large-scale database is necessary.
PBL algorithms perform well in a small domain, but its storage requirements increases, since we must
store the prototypicality rating and attribute weight setting for each attribute-value pair, although their
required space is rather sparse. For example, 3,451 prototypicality ratings must be stored for soybean
database, although about 2,000 ratings are equal to 0. In order to reduce storage requirements, we can
make use of indexing knowledge extracted from the concept description. Protos also proposed the method
for learning indexing knowledge from classification and discrimination failures. We cannot adopt Protos’
approach directly, since it learns the indexing knowledge by being told from the human expert. However,
learning the indexing knowledge from failures is an interesting topic for future research.
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extended abstract

This paper describes an application of case based reasoning in the field of health care
planning. The process is modelled in the FLORENCE expert system, -an experimental
prototype which models the reasoning of an expert clinician in advising on the three basic
planning tasks of diagnosis, prognosis and prescription within a Nursing domain. We have
developed an empirical approach which models the reasoning processes of expert clinicians.
Both rule-based and case-based reasoning are used where appropriate. It has been found
that case-based reasoning is especially appropriate to situations where decisions must be
made about the progress of cases over time.

Diagnosis is defined as the process of evaluating health status by making a set of
observations. This meaning should be differentiated from the common medical meaning of
diagnosis as the identification of the cause of a fault or disease. The diagnostic module of
FLORENCE is essentially rule-based being structured around the "health patterns” of Gordon

However, the diagnostic module generates records of cases containing numerical
indicators which form the indices for retrieval of suitable cases in the other two modules. The
numerical indicators produced represent the health status of a client. The essential
diagnostic process is one of reducing the task of evaluating the large, general health patterns
of Gordon’s model to one of evaluating easily observable client parameters. Repeated
observations may then serve as a basis for measuring change of status and/or evaluating
the effects of treatments.

Gordon defines a pattern as "a sequence of behaviour across time" and delineates eleven
areas in which such behaviours may be observed. Examples of these patterns are: activity-
exercise pattern, nutritional-metabolic pattern and elimination pattern. For each health
pattern, sub-concepts were chosen in consultation with experienced clinical nurses. Figure 1
shows the activity-exercise pattern which has 9 associated sub-concepts. Each sub-concept
is related to critical indicators; these are the observable parameters that may be assessed by
the clinician in regard to a particular client. For any sub-concept, the critical indicators are
not necessarily extensive; it being more important to identify those that most accurately
predict health status. Figure 2 shows the sub-concept mobility and its associated indicators.
Any indicator may relate to one or more sub-concepts ; for any given sub-concept, the
indicators may vary in significance.
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pattern: activity-exercise sub-concept: mobility
sub-concepts: health pattern : activity-exercise
exercise tolerance .
moblmy_ . indicator weighting
occupation/recreation
self-care physical movement 5
home maintenance motor function 4
airways clearance conscious state 3
breathing pattern musculo-gkeletal dev. 3
cardiac output happiness 1
tissue perfusion

| figure 1 : the activity-exercise pattern figure 2: the mobility sub-concept i

. The varying significance of the indicators is represented by a weighting system which
allocates an indicator a score on a scale of 5 .. 1, where a score of 5 denotes major
significance and a score of 1 denotes minor significance. Essentially, this weighting,
answers the question, "to what extent does indicator X predict the health status of sub-
concept Y7". Figure 2 also shows the weightings of the mobility sub-concept indicators.

The user enters his/her observations of the indicator in the client. Indicators in a client are
assessed by observation as being on a scale of +2 .. 0.. -2, where +2 indicates very
satisfactory ("well above average”), 0 indicates normal {"average") and -2 indicates very
unsatisfactory ("well below average”). "Average" is taken as meaning the usual level of this
indicator in the general population .

When entry of the observation is complete a numerical evaluation of client status is
calculated. The client score on an indicator is related to the weighting of that indicator,
giving a contribution to the sub-concept status. In turn, each sub-concept score of a pattern
may be combined to give a total numerical score for that patiern. in addition to the
calculation of these numerical indicators, FLORENCE reports on the presence of any
specific problems ("nursing diagnoses") displayed by the client. The.diagnostic system, on
request from the user, writes to the client record information about:

i. abnormal indicators detected.
ii. nursing diagnoses made
iii. progressive changes within the health parameters.

Repeated observation allows accumulation of progressive data about a client's changing
health status. A client record or "case” comprises a series of timed observations together
with the derived numerical indicators. A bank of completed client cases provides the basis
for reasoning about change over time which is fundamental o the other two tasks - prognosis
and prescription.

FLORENCE defines prognosis as the prediction of changes in health status, simulating the
real life activity of “"remembering” similar real cases in the past. Briefly, if completed cases
can be found that, at some time in their development, were similar to the present new
{incomplete) case the new case is extrapolated forward in time on the assumption that it will
follow a similar course to the retrieved cases. The process may be considered as having two
stages: (i) finding similar cases and (ii) formulating future projection(s).

A major problem in any system using case based reasoning is the retrieval of cases from a
case base within a reasonable time. It is our aim to avoid the use of abstract indices, rather
allowing case features to form their own indices. However, it is obviously undesirable fo
search every case on a multitude of features. The method used in FLORENCE retrieves, on
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an initial pass through the case base, a subset of cases on a single indexing feature; this
subset may be expected to contain all relevant cases. This, in itself, is a not inconsiderable
task. The FLORENCE prototype has about 30 cases each containing between 7 and 10
days of records. The current prototype is developed in HyperTalk; it is anticipated that a
system for use in the real world would need re-engineering to maximise efficiency.

The initial parameter used for case retrieval is the overall health score for a particular day.
All cases are retrieved which have any day with a health score “close” to the health score of
the current day in the new case. "Close” is experientially defined; we have found that to
seek a score within 0.5 of the current day score retrieves a useful, but manageable, selection
of cases. The old case name and the day are entered into a list of possible similarities.

The pool of retrieved case-days will contain all similar days. However, it is possible that it
may contain case-days that have similar health scores but, as the total health score is an
average of concept scores, quite different distributions of concept scores. Therefore,
further similarity metrics are applied to the retrieved cases.

For each case-day a difference score is calculated. This provides a numerical estimation of
the differences between concept distributions of the old case-day and the new case-day.
The difference score gives a much closer approximation of similarity between case-days
then a simple comparison of health scores. Those case days with the lowest difference
scores are most similar.

There is also provision to refine the process further and consider similarity at sub-concept
level. Although sub-concept scores are calculated during the diagnostic process, these are
regarded as intermediary scores and ‘are not retained in the permanent client record.
However, a record is kept of abnormal clinical features along with their commencement and
conclusion days; abnormal clinical features relate directly to sub concepts. Therefore, a
measure of sub concept similarity may be approximated by calculating the number of
abnormal features that old-case-day and new-case-day have in common giving a feature
score .

On the basis of the difference scores and feature scores, cases can be ranked into order of
similarity. A rank score is calculated by ranking all difference scores in inverse order,
ranking all feature scores in ascending order and taking an average of the two rankings

Projections into the future based on similar cases may now be made. Initially it was our
intention to make a composite projection based on several similar cases. This may be
viewed conceptually as the formulation of a prototypical or “"average" case. However,
difficulty with the development, and hence usage, of a prototypical case was the confounding
effects of different treatments. What we would really like 10 know from a prototypical case is
"what will happen if nothing is done?". However, it is rare to see a case, especially one
showing abnormal features, in which some treatment is not given. It is obviously unethical to
withhold well accepted interventions in order to see what will happen without them.
Therefore, we modified the system to formulate several individual projections. This would
also have the effect of allowing comparisons of differing treatments to be made.

The user selects the desired case days, from the pool of ranked days, on which to perform a
projection. This user input allows the elective choice, it desired, of early days in an old
case; these may not always be the "best” days but are more likely to allow a lengthy
projection. In addition, the user may utilise "hunch" type knowledge, which may be based on
the memory of specific persons.
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The projection process commences by comparing the overlapping days (the current day and
the retrieved old case day). For each health pattern, a correction factor is calculated to align
the score of the old day with that of the current. The current case is then projected forwards
by applying the correction factors to each pattern of the subsequent old case days.
Experiments with te system show that the process well replicates the prognoses formulated
by an experienced clinician. When used to project on real cases in which the outcome is
known, close matches dc occur but, in a minority of cases, the outcome is quite different
from that projected; this is to be expected as a result of the large number of variables that
may affect human health status. The function of the prognosis module may be mainly
viewed as one of asking "what if?" questions about case development.

Prescription is defined as implementing interventions that affect the environmental factors
impinging on the health status in such a way as to influence health change in a positive
direction. The effects of treatments can only be reasonably determined retrospectively by
noting changes in observations. However, it is obviously important to predict in advance
which treatments are likely to be useful for a particular client. - Again, this may be performed -
by utilising expert knowledge about the likely uses and effects of treatments. FLORENCE
actually incorporates an essentially rule-based adviser which groups treatments relevant to
promotion and cure in ‘different health areas. This is seen as inadequate because of the
many treatment choices and combinations of choices within and between health areas. We
have, therefore, developed an advisory module which suggests appropriate treatments on
the basis of experience in real past cases.

The input to this prescription advisory module consists of the single case projections
developed in the prognosis module. The process is one of selecting the best treatments for
each health concept by considering individual health concept outcomes in each case. This
provides a pool of treatments which have been shown to be effective in similar cases. The
problem here is that, because these treatments are derived from several different cases,
some may be mutually incompatible. Our approach is to examine the occurrence of
treatments within their original cases and dynamically derive constraints on their interactions.
For example, such constraints may derived as never having two treatments together in the
same case or of one treatment always preceding another. With these constraints, the
selected "best" treatments are then projected onto a temporal prescription plan which
suggests which treatments should be used, at what times and in what combinations.

From pool of "projection” cases the "best" cases are selected for each of the health patterns.
A “best" case is the one that shows the greatest improvement in pattern score from the day
of projection start until the end of the case. Then for each concept, the treatments that were
used in each of the best cases are collected including the commencement and completion
times of each treatment. This collection forms the basis of the suggested treatment plan.

Next the embryonic plan is rationalised to ensure that recommendations for conflicting
therapies are not made. Therapies may conflict by inappropriate occurrence {eg.
prescription of two therapies whose effects negate each other; prescription of multiple
therapies of which the cumulative effect is negative) within the same case, or by temporal
conflict (allowing therapies to overlap inappropriately or prescribing iherapies in an
inappropriate sequence).

Certain modifications are made to the plan without the necessity of consulting the case base.
Firstly, rare events are eliminated; a treatment that is derived from less than half of the
contributing cases is defined as a rare event. It is assumed possible that this treatment is
uncommon, possibly specific to some unusual case. These rare events are eliminaied from
the treatment list. Secondly, duplications are resolved. lt is possibie that the same treatment
was prescribed in two or more of the source cases. In this case, the treatment is initially
retained , commencement and completion times being taken as the mean of those of the
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contributing cases for that treatment. Remaining treatments are then sorted in order of
commencement time.

The main danger to be considered in a plan developed from multiple sources is that
treatments may be given in harmiul combinations. FLORENCE handles this problem by
searching the full case base to ascentain which treatments remaining in the plan have either
never been given together in the same case or have never overlapped in any case. With
this derived knowledge, incompatibilities in the plan are resolved. One of two mutually
exclusive treatments is eliminated; comparison of surviving treatments is continued until all
survivors can be shown to be compatible with each other. Compatible, but non-overlap
treatments have start and stop times as necessary to produce compatibility. This means that
the final prescription plan will be safe although it may not necessarily be the optimum plan.

The prescription module of FLORENCE is the in some ways the least satisfactory. Evenin a
prototypical system with a small case base, the search time invoived in deriving the
exclusion and overlap constraints is considerable. The difficulty is that, for the derivation of
accurate constraints, a really large case base is desirable but increasing case base size
increases search time. Current work is being undertaken in the development of a sub-
system, separate from the prescription module, to "learn" the constraints; the prescription
module may then simple look up a record of learned constraints about any treatment. Of
some concern also is the usefulness of detailed plan generated for future use in a changing
environment. However, the possibility of generating and comparing mutltiple plans make
prescription, as with prognosis, a useful "what if" exercise.

In summary, the FLORENCE system provides advice to the health care planner on the tasks
of diagnosis, prognosis and prescription. A feature of the system is the calculation of
statistical parameters representing various aspects of health care status. These are stored,
along with the observed features and prescribed treatments in a client case which provides
a record of the ongoing health profile. These old client cases may then be used to predict
likely outcomes and to suggest suitable treatments in a new case.
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ABSTRACT

A Case-Based Reasoning (CBR} system prototype for managing the
use of fertilizers on farm land has been developed, adapting the
CBR techniques used in CHEF, the planning system in the cooking
domain (Case-based Planning. Kristian J.Hammond. Academic Press
1989). The pxrototyps creates fertilization plans for aitrus
farms by accessing a case library of citrus-tree fertilization.
It addresses the main issues of the CBR techniques: representing
and indexing past cases, retrieving and modifying old plans and
explaining and learning from failures in fertilization schedules.
Developing that prototype is a step towards understanding how CBR
system could be used to aid humans in solving problem process in
the agriocultural domain.

1. The Domain

Modern intensive agriculture typically uses large gquantities of nutrients
to achieve high levels of production. When these nutrients escape the agri-
cultural system (e.g.,nitrate leaching), nutrient use efficiency is lowered
and pollution may result. A correct ferxtilization should zreturn the amount
of nutrient removed from the plant-soil system during vegetative and repro- .
ductive orchard growth. Knowledge of soil properties, soil nutrient availa-
bility, climatic conditions, orchard performance and cropping operation is
needed for identifying causes of nutritional imbalance and suggesting gcox-
rect fertilization. Antagonistic and synergistic relationships between plant
nutrients must also be taken intoc account.

In oxrder to make sound fertilizer recommendations, it is necessary to relate
the diagnostic indexes to the amount of nutrients required for optimum
yields. In many instances, rules-~-of-thumb as well as axperience of the
agronomist or extension specialists can provide a useful mean for planning
fertilizations. Suggestions from past cases often help citrus experts to de-
fine fertilization schedules, by zecall;ng a previous schedule and adapting
the old solution to the new scenario in terms of soil properties, nutrients
balance, climate and weather forecast.

The fact that citrus experts use experience with previous fertilization
pPlans to define the new ones, makes case-based reasoning particularly appro-
priate for decision support system in managing and planning fertilization
schedules.

-

2. Case-based Planning: the Chef Model and our Prototype

Case-based planning is planning from experience [l]. The basic idea is that
a machine planner should use its own experience in developing new plans,

Past successes are recalled and modified to create new plans, memories of
past failures are used to avoid having same problems again and past repairs
are remainded to solve them [2]. Successful plans are stored in memory, in-
dexed by the goals they satisfy and the problems that they avoid. Failures
are also stored, indexed by the features that predict them. By storing fai-
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lures as wellas successes, the planner is able to anticipate and avoid fu-
ture plan failure [3].

This planning theory has been implemented in Hammond’s system Chef, which
creates new plans, using the old ones, in the Szechwan cocking domain.

Our prototype’s goal is to plan a citrus fertilization schedule given a set
of szlots which describe cultivar, tree age, soil properties, visual symp-
toms, cropping operation, orchard perfomance and leaf analysis data, if
available. We have built a case library containing citrus £ertilization
schedules. Each case, represented by the MOP (Memory Oxganization Packed)
structure [4], consists of a set of slot describing the citrus orchard fea-
tures and state, and the planned fertilization schedule expressed in terms
of steps. As a recipe the schedule consists of a set of steps that citrus
growers should follow to achieve high quality yield and control the ferti-
lizer inputs (£fig.1l).

—
I(DEFMOP I-M-SCHEDULEl (M-SCHEDULE)

| (CULTIVAR I-M--NAVEL)

|  (AGE I-M~20)

| (SOIL I~M-CLAYEY-SOIL)

| (LEAF I~-M~LEAF-SURFACE)

| (LEAF-COLOR I-M-YELLOWISH)

| (LEAF I-M~CENTRAL-VEINATION)

| (PART-COLOR I-M-YELLOW)

| (CHEM I-M-LOW-STANDARD)

| (EL-CHEM I-M-N)

| (FRUIT-QUANT I-M-HIGH)

| (FRUIT-SIZE I-M-SMALL)

| (PROD I-M~-100-Q/HA)

| (ADVICE M-ADVICE-STEPS

[ (DEF-AM-STEPS M-STEP-GROUP

| (1 M-DEF-AM-STEP (OBJECT I~M-NITRATE)
| (QUANTITY I-M-200-KG/HA)))
| (SPLIT-AM-STEPS M-STEP-GROUP

| (1 M~SPLIT-AM-STEP (DOSAGE M-AMOUNT-GROUP

| (1 I-M-100-KG/HA)

[ (2 I-M-50-KG/HA)

| (3 I-M-50-KG/HA))))

| (SPLIT-TIME~STEPS M-STEP-GROUP

| (1 M~-SPLIT-TIME-STEP (DATE M-DATE-GROUP

| (3 I-M-APRIL)

[ (2 I-M-15JUN-31AUG)

| ) . ] (3 I-M~-15J0N-31AUG))))
| (TREAT-STEPS I-M-EMPTY~GROUP)

|

(IRRIGATION-STEPS I-M-EMPTY-GROUP)))
L

Fig.l A case from the memory.

Like Chef’s architecture [1], our prototype is composed of processes and
knowledge structures, it consists of the modules: anticipator, retriever,
modifier, repairer, storer and the assigner. Goals are handed to the antici-
pator, which tries to predict any problems that might arise while planning
for them, If a problem is predicted, a goal to avoid it is added to the
initial goals. The retriever identifies the most appropriate cases in the
case memory and presents them to the modifier. The simplest way to identify
the most similar case is to use nearest-neighbor search [5]. But this is an
expensive operation and its cost grows with the size of the case base. To
avoid such an exhaustive comparison without compromising accuracy, we have
organized cases in memory using indices, generally the most discriminating
features of the cases. The retriever compares only the indices with the new
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problem and retrieves those cases whose indices match the new problem. To
improve the performance of this process, indices are organized hierarchical-
ly [6). After retrieving cases based con indices, the retriever searches the
best match comparing the new problem features with those of the case instan-
ces under the matched index.

The retriever can only find and suggest past schedule for new situations: it
cannot do anything about modifying these schedules. The modifier adapts the
retrieved schedule to satisfy goais not already satisfied. In order to adapt
the old schedule the modifier needs knowledge about the soil properties, how
and how much nutrients can be uptaken by the different soil type. For exam-
ple, if the soil t&pe in the retrieved case was a sindy scil, but the cur-
rent soil type is a sandy-loam the nitrate amount is splitted in differxent
steps and the dose is calculated by a formula. The modifier to handle the
changes uses a library of modification rules and domain knowledge that out-
lines how it should adapt specific domain features while using its mcre ge-
neral rules.

The built plan is run and the results are checked against the planner’s ini-
tial goals. The planner runs a schedule simulation and uses the results to
diagnose arrors. It can even ask an outside source if the plan behavior is
what expected. In that way some unpredictable events as rainfall or insects
pressure can be taken into account when a fertilization is planned. The plan
simulation is done by using a model. The model [7], considerxing climate data
(rain, temperature, evaporation), water holding capacity of the current soil
type and information related on plant phisiology, estimates the chemical
losses and verifies if the nutrient amounts in the modified schedule return
the plant requirements. Checking whether the defined schedule is a success
or a failure means to verify that the initial goals have been satisfied.
Thus, the system searches if there is a goal violation in the events chain
occured during the simulation and then goes backwoxrd to identify the step
that caused the failure, if any. Successful schedule is handed to the storer
and placed in memory indexed by the same features that will be used to ac-
cess it. The indices used to store schedules are satisfied goals. If there
is a failure the plan is given to the repairer that builds a causal descrip-
tion of why a fertilization has failed. The explanation pointing to the ac-
tions that caused the failure, provides the focus as to what parts of a plan
have to be changed. The system uses the explanation to find a structure in
memory that organizes a set of strategies for solving the problem.

These structures called TOP (Tematic Organizatin Packed) [4] are general in-
dices for a set of repair strategies. Foxr example, aeven though Potassium and
Magnesium were given in the right amount, a deficiency of one could result.
The deficient nutrient should not be given to the plant, being preseant in
the soil, because the interactions between those nutrients prevent the tree
to uptake both. The explanation leads to the TOP labeled: side foect disa-
bled condition concurrent [3]. Under that TOP there is the repair strategy
that will fix the deficiency by deleting the schedule step in which the de-
ficient nutrient is suggested to be given. The zrepaired schedule will be
placed in memory indexed by the avoided problems as well as the achieved
goals. While the repairer is fixing the schedule, the assigner decides wich
features caused the failure. Then it can extrapolate from these to the fea-
tures in later situations that could arise again. The assigner’s output is
not a plan, but is a knowladge base of possible problems that can arise and
the circumstances that predict them. Its output can be a set of inference
rules that are fired in the early stages of planning (e.g., 4if it is winter
time, no nitrate should be used because the rain may leaching it). The anti-
cipator module which anticipate prxoblems on the basis of features marked by
the assigner has to take these rules and making predictions before other
planning is done.

We are still implementing the assigner and anticipator modulaes.
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3. Results and Discussion

When we started this work, we examined different case-based systems [8] and
determined that, of available case-based reasoning paradigms, that developed
by K. Hammond for the Chaf system would be most effective for agricultural
domain.

Working on the citrus fartilization planner we deterxmined the key ways in
which the agricultural domain differs from the recipe domain of the oxiginal
Chef program, and the modifications necessary to adapt Chef to our domain.
Principal among these differences ara: 1) the fact that in the agricultural
domain the outcome of a plan may not match that expected due to unanticipa-
ted effect (e.g.,heavy rainfall, fungie or insect pressure, etc.), and modi-
fications to planner must be made to help to anticipate these affacts or at
least respond them in future situations; 2) modify the adaptation process so
that pieces of different old schedules that partially match the new ones can
be used.

The prototype development demonstrated how case-based reasoning and a fairly
large case base can be used for planning agricultural crop management. Much
work still remains.

Our first priority is to build a full system. We alsoc need to investigate
the effectiveness of simulation models and the similarity assessmeant among
the retrieved cases. Finally, we plan to integrate the case-based system
with a rule-based expert system to create a useful decision support system
for extension specialists and citrus growers.
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Abstract. The problems of case retrieval in CBR and plagiarism detection have in common a need to

detect close but not exact matches between exemplars. In this paper we describe a plagiarism detection

system that has been inspired by ideas from CBR research. In particular this system can detect

similarities between programs without performing exhaustive comparisons on all exemplars. Our

* analysis of similarity in this well controlled domain offers some insights into the kinds of profiles that
can be used in similarity assessment in general. We argue that the choice of a perspicuous profile is
crucial to any classification task and determining the best predictive features may require significant
analysis of the problem domain.

~

1 Introduction

The problem of detecting plagiarism in computing assignments depends on being able to identify similar
programs in large populations. This emphasis on similarity, on identifying close matches, is reminiscent of the
problem of case retrieval in CBR. In this paper we will concentrate on the application of CBR techniques in
Cogger*, a.system for detecting plagiarism. We will discuss what this novel domain informs us about retrieval
in CBR and about the automatic assessment of similarity in general. Our considerations on similarity in this
well controlled domain offer some insights into the alternatives of statistical and knowledge based classification.

Since the idea of similarity can be considered along several dimensions it is often difficult for humans to
agree on when cases, or programming assignments, are similar. In this research the programs under consideration
have complicated structure and programs are considered to be similar if their function call structure is similar.
This involves the determination of the similarity of function call trees; the mechanisms we use are described in
Appendix 1.

Before examining the problem of plagiarism for a CBR perspective we will introduce some theoretical
issues in CBR that are relevant. In section 3 we discuss similarity in general and in section 4 we consider the
issue of problem representation that must be considered before any similarity can be determined. We believe that
a basic tenet of the majority of CBR research is that similar cases can be retrieved from the case-base
inexpensively; in section 5 we consider what kinds of representations are required to support this.

2 Theoretical Issues

Currently in Al there is a view that knowledge representation is unsuccessful and knowledge acquisition is
fraught with problems. Consequently there is a move towards an Al paradigm that avoids these issues. This new
Al is based on statistics and weights rather than symbolic knowledge representation [1). The current popularity
of connectionism is evidence of this. Closer to CBR, Memory Based Reasoning (MBR) is an approach to Al
that wishes to avoid knowledge acquisition and domain modelling [2]. The great attraction of neural networks and
MBR is the contention that expert performance can be achieved without knowledge level analysis of the problem
domain. This is in sharp contrast with the conventional view in Al; the view that "In the knowledge lies the
power" and the knowledge must be represented explicitly.

CBR is a methodology that can serve both of these paradigms. Case-Based Reasoning systems can be
information theoretic or knowledge-based. CBR systems for simple tasks like diagnosis or property
valuation can be set up with little analysis of the problem domain. At the other end of the spectrum systems for
more complex tasks like design require a complex domain model ir order to process retrieved cases.

The main theme of this paper is the implications that these issues have on determining similarity in case
retrieval. Is it possible to establish the similarity of two cases in a system that does not have a strong domain
model? How far can we go with shallow index features in case retrieval? To this end we will analyse similarity
in the context of detecting plagiarism in computing assignments. This is not really a CBR problem but we will
argue that the issues of similarity are the same nonetheless.

* "Cogging" is an anglo-irish slang word for copying homework or other exercises.
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3 Similarity in CBR and in Plagiarism Detection

The standard approach to the probiem of detecting plagiarism is to produce a profile reflecting the use of
keywords and identifiers and to use this signature to produce a table describing the 'distance’ between different
programs (see [3]1[4][5] for instance). Research in CBR and machine learing has developed methods for assessing
similarity in large populations that are more sophisticated than this so in this paper we apply CBR insights on
simnilarity to the plagiarism detection problem.

In CBR the objective in noticing similarity is to allow for reuse of old solutions in new situations. In
plagiarism the object is to identify similarity that betrays a common origin. In CBR similarity may be based on
surface features or on features that are more abstract and structural. In plagiarism detection attempts will have
been made to conceal superficial similarity and detection must be able to identify systematic or structural
similarities.

3.1 A Brief overview of CBR
In attempting to apply CBR techniques in this domain our understanding of the stages in CBR are as follows:-

« Case Representation

+  Case Indexing/Retrieval
*  Mapping

«  Adaptation

A fundamental idea in much of CBR research is that the identification of the best matching case from the case-
base should be a two stage process [6]. Base filtering is the first stage where a set of candidate cases are
selected from an indexed case-base. The case-base will often be organised as a discrimination net to facilitate this.
The second stage (Case Selection) will select a case from this candidate set based on a more detailed
comparison of the cases. A mapping between the base and target cases may also be produced at this stage. Such a
selection that does not involve an exhaustive search of the case+base is a novel idea in plagiarism detection.

For plagiarism detection we will concentrate first on producing a representation of the programs for
mapping, before analysing the mapping process itself. More than anything this exercise in plagiarism detection
highlighted the importance of this parameterisation process.

4 Representation

The first phase in the development of a CBR system involves deciding on a represcntation of the cases in the
system (Fig. 1). This phase is crucial because the perspicuousncss of the representation greatly influences the
success of the subsequent phases. It is impartant 1o note that the contribution of neural networks in tasks of this
type is in the classification process that operates on the chosen representation (see the mushroom classification
task in [7] for instance. However we are arguing that the crucial phase in this problem solving process is
choosing the correct representauon in the first place. Indeed given a good predictive representation it may be
possible to classify inputs using traditional cluster analysis techniques.

<
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World O _—
Problem > @D Retrieval

3. ——————
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=
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Fig.1. Characterisation involves producing a profile that represents real world problem for use in classification, etc.

From a problem solving perspective it is useful to characterise indexing features along a continuum from
shallow to deep (Fig. 2). Shallow features are the obvious surface features of a case and can be determined
without much analysis. Deep features are more predictive in the context of the problem in hand but require more
analysis to determine. It should be clear that when two cases are very similar they will share surface features.
However, when the similarity is more abstract shallow indexes may be different and the similarity may only be
indicated in more abstract features. We believe that the plagiarism detection problem that we will describe offers
some useful insights in this regard.
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Fig.2. Indexing features can be shallow or deep depending on their semantic content.

S Base Filtering

‘What we require form base filtering is a computationally inexpensive means of selecting a small set of candidates
from the case-base that are likely to be similar to our target case. This is essentially a classification problem and
as such there are several different approaches that can be adopted. One important criteria in categorising
techniques is whether classification involves an exhaustive search of the case-base. Nearest neighbour techniques
are of this type and involve comparing the target case with each base case in turn using a global distance metric.
In these cases retrieval is O(n) where n is the number of cases in the case-base. More promising case retrieval
techniques structure the case-base as a decision tree and retrieval is O(log (n)) since it does not involve visiting
every case in the case-base.*

The most common means of supporting base filtering in CBR is to organise the case-base as a decision tree
that will support rough remindings without the need for exhaustive comparisons. Two approaches were
considered for Cogger:-

« Information theoretic: Using Gennari's Classit algorithm [8]. This method takes a case
represented as a vector of numeric attributes and can incrementally locate the case in a classification
hierarchy. In case retrieval this classification can produce the candidate set required from base
filtering. The main advantage of Classit is that it is incremental, unlike other cluster analysis
techniques in statistics.

e Knowledge based: Discrimination networks (D-nets). The indexing features are ordered according
to importance and the case-base is structured as a taxonomy based on this feature ordering. Cases
are classified by locating them in this taxonomy.

D-nets have the advantage that, with redundancy, they can support different types of remindings. However, the
use of D-nets commits the user to a knowledge level evaluation of the problem domain and to an ordering of the
indices to reflect their priorities. For this reason Gennari's incremental clustering algorithm was used to perform
the base filtering in Cogger.

Experiments with this base filtering indicate that no cases are slipping though the net. In no situation has
the base filtering failed to capture known similar cases in the candidate set.

5.1 Experiments in Cogger

One of the very simplest profiles that can be used as the basis for similarily assessment in plagiarism detection
is an ordered frequency count of identifiers in the programs. Matching is done based on comparing ranked
frequency counts. Table 1 shows an example of two such profiles. This profile is at the very shallow end of the
continuum shown in Figure 2. It is easy to construct without any knowledge of what is going on.in the
program. This profile is adequate for spotting blatant plagiarisms as is the case here. However, a few simple
changes to the programs will fool any similarity meiric based on this profile.

* There are also connectionist techniques for classification and similarity that have not been considered here. In
particular spreading activation and constraint satisfaction have been used in ARCS [9] and SAARCS [10]. These are
localist connectionist-systems and are different to other approaches mentioned in this paper.
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Table 1. Frequency counts of identifiers in two programs

Program stul Program stul

19 close 20 close

11 pipea 10 pipea

10 pipeb 10 pipeb
4 hold 4 num
4 dup 4 dup

- 3 wait 3 wait

3 fork 3 fork
3 execlp 3 execlp
2 squasherpd 2 squasherpd
2 readerpd 2 readerpd
2 pipe . 2 formatterpd
2 formatterpd

A rudimentary understanding of the programming language suggests a improved profile based on counts of
reserved keywords only. This profile better reflects the actual structure of the program since keywords like do
and if indicate specific control structures. Similarity metrics based on this profile can spot less obvious
similarities.

Table 2. Profiles based on counts of reserved identifiers.

Program sta($s Program sta(9

4 char 2 char

1 do
38 else 41 else
1 float 1 float
19 for 14 for
52 if 56 if
4 int 9 int
21 return 22 return
1 sizeof 1 sizeof
2 struct 2 struct
22 void 27 void
9 while 8 while

In the terms introduced in Fig. 2 this is an improved surface profile or a rudimentary structural profile. The
profile that we actually used in Cogger is a further improvement on this. Some of the less predictive keywords
have been dropped and some structural parameters of the programs have been included. For instance; the first
parameter (top width) is the number of function calls from the top level of the program, the depth is the
maximum depth of function calls.

Table 3. Profiles based on structural paramters and counts of reserved identifiers.

Program sta05 Program sta(9
39 top width 9 top width
6 | depth 6 depth
39 max width 31 max width
13 user defined 14 user defined
i3 system def. 12 system def.
0 | recursive 1 recursive
0 do : 1 do
19 for 14 for
52 if ! 56 if
9 while 8 while
21 return 22 return
38 else 41 else
0 case 0 case
0 [switch 0 switch

6 Evaluation and Conclusions

We have tested these profiles on three data sets containing from 6 to 35 program profiles. When programs are
very similar it shows up in all profiles as would be expccted. When the plagiarism is more subtle and surface
features have been altered the similarity is not evident in the surface profile but shows up in the structural profile
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(see Table 3). Determining the appropriate features for this profile required some analysis. So we conclude that
for more difficult classification tasks surface profiles are not adequate and the more abstract profiles are more
expensive to set up.

From the perspective of the plagiarism detection task, the main novelty of this system is that it operates
without doing exhaustive comparisons. Cogger performs similarity assessment as a two stage process; the first
stage uses the Classit algorithm [8] to produce the candidate set of cases. The second stage performs expensive
comparisons of the program structures to produce a metric of similarity (see Appendix 1 for details). The main
conclusions from this exercise are as follows:-

»  Effective profiling is crucial: no amount of cleverness in matching and retrieval can compensate for
poor case representation. Figure 1 depicts the characterisation process that produces the regular case
representation for classification etc. Settling on the best predictive fcatures was a non-trivial task in
Cogger and would be expected to be more difficult in less formal domains.

» Cogger performs very well at identifying similaritics in programs; however, it must be
acknowledged that using the function tree structure as the basis of the mapping process is-crucial to
this success.
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Appendix I

Ultimately, the similarity of two programs is judged on the amount of common structure in their function trees.
Computationally, this is a difficult task, increasing rapidly with the size of the trees. The solution adopted in
Cogger is to convert the tree structure to a string representation and find common sub-strings. This string
matching is complicated by what ihe strings represent and the character of the similarity that should be detected.
Consider the following example C program:-

#include <stdio.h> main ()
#include <math.h> {
float pi = 3.1415926; ° do_it () :
if (1)
void do_it (void) printf ("END \n");
{ . else
printf("Hello, worlid\n"); ferintf (stdout, "END\n") ;
printf("cos(pi/4) = %f\n",cos(pi/4) y: 1}
} -

This programme has the tree structure shown in Figure 3.

main.0.1
| R ]
do it.0.1 printf.0.0 fprint£.0.0
J 1 1
print£.0.0 cos.0.0 printf.0.0

Fig.3 A typical function call structure shown as a tree.
This is converted to the following string format for processing:-
main.0.3.0.0 -- do_it.1.3.0.1 -- printf.2.0.0.0 -- c0s5.2.0.0.0 -- printf.2.0.0.0 --printf.1.0.0.0 -- fprintf.1.0.0.0

In this format each node has three attributes; its level in the tree, the number of branches, depth of recursion, a
flag to indicate whether it is user defined or not. This string representation is used in the matching process; the
measure used is as follows:-

> matched substrings

total length

Nodes are considered to maich if they are user defined and match on the recursion and branching flags or if they
are system defined and have an identical name. Substrings match only if the change in the level attribute between
nodes is consistent. ’ :

183




Case-Based Learning of Dysmorphic Syndromes

Carl Evans
Department of Computer Science,
University College London,
Gower Street,

" London WCLE 6BT,
United Kingdom.
email: cevans@uk.ac.ucl.cs

Abstract

The aim of this research is to develop a case-based system to provide decision support for diagnosis
of cases of dysmorphic syndromes, and increase the scope of syndrome analysis with respect to rare cases
through its learning capability. An interactive case-based model hag been designed to facilitate diagnosis
through classification, and learning through reorganisation.

Dysmorphic syndromes describe morphological disorders and patterns of morphologic defects!. An
example is Down Syndrome which can be described in terms of characteristic clinical and radiographic
manifestations such as mental retardation, sloping forehead, a flat nose, short broad hands and generally
dwarfed physique [4]. There are currently about two thousand registered syndromes which affect about
7 in 1000 children. The primary goal of medical specialists is to diagnose a patient to a récognised
syndrome. Firm diagnosis enables prediction of abnormal developmental processes. This may promote
a course of treatments that reduce the effects of the disease, or allow genetic counceling to be given in
the case of a hereditary disease. However, firm (or even tentative) diagnosis is not always possible. A
case may resemble a syndrome but exhibit (or lack) significant features resulting in sufficient doubt for
a firm diagnosis. About forty percent of cases remain undiagnosed with respect to known syndromes.
A secondary task concerns analysis of rare cases with a view to establishing new syndrome descriptions
along with retrospective analysis (and possible reorganisation) of current syndrome categories. Case-
based reasoning (CBR) provides an intuitive model for addressing these performance tasks. Diagnosis is
in essence a classification task. Conceptually this may be considered as the problem of locating a specific
case within a structured case memory in which generalised cases represent syndrome descriptions. The
secondary learning task may be considered a reorganisation problem. This may be facilitated by the
dynamic properties of a structured case based memory.

An interactive case-based model has been designed to incorporate these two performance tasks. Such
an approach was favoured due partly to the weakness of the domain theory [3] and to offer a realistic
scope for system performance. Both diagnosis of a case and recognition of a new syndrome or pattern
of malformations are highly subjective and ultimately require clinical or radiological investigation rather
than symbolic comparison. The scope of the case-based system is to assist in researching similarly
affected cases and to focus the attention of an expert towards possible reorganisations. Two particular
areas of interest have presented themselves with respect to CBR theory and have greatly influenced the
design of this model. The first concerns the actual structure of syndrome categories as they are currently
understood which has ramifications upon representational issues of memory and cases along with the
subsequent indexing mechanism. The second concerns the general concept of similarity which in this
domain is complex and can involve a number of competing factors.

The domain theory is weak in terms of well defined hierarchical categories. Some recognised syndrome
families exist, but many syndromes (and cases) stand isolated. Categories are not necessarily clearly

1 A syndrome can be defined as a pattern of multiple anomalies thought to be pathogenetically related.
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disjoint, or mutually exclusive. Standard CBR indexing mechanisms that rely on hierarchical memory

" structures cannot therefore be employed. Another consideration, which also affects similarity, is that
experts interpret case features differently and case descriptions vary in detail. Non-uniform featural
descriptions affect both representation and similarity with respect to learning {2]. A distributed approach
has been adopted for case memory representation. A memory item (case or syndrome) is a structured
object with nodes representing only those abnormal clinical or skeletal regions that are described. In
this way the overall shape to the item will vary according to the abnormalities that exist with respect to
clinical and skeletal regions. Each type of clinical and skeletal object is stored relative to other objects
of the same type (from different memory items) within memory. This fragmented representation has a
number of advantages. Firstly it caters for non-uniform data as objects are only instantiated for those
features described in the medical record. Whether a case .is described by 30 features or 3 features will be
reflected in the shape of the resulting structured object. This representation facilitates confined search
without the requirement of a hierarchical memory structure. Once indexes have been chosen they can
probe the respective regional clusters without the need to traverse a network structure. A further aspect
under consideration when choosing the representation was similarity assessment. As described below
matching does not necessarily involve an overall assessment of similarity and only a small number of
regions may be involved. The structured nature of the representation aids such focus.

Of major interest is the similarity assessment performed by medical specialists. Similarity of cases
can be biased by a number of different influences. In one sense similarity assessment may be considered
as goal or task driven. Experts often have an initial diagnosis in mind which causes them to focus on
a small set of similar features around certain regions of the body rather than examining the overall
match. During this time dissimilarities may be regarded as insignificant to the degree that they will
not count against a match (ie, overlooked provided they carry minor significance). In contrast if the
goal is retrospective analysis of a category with respect to a new case, focus will be on dissimilarities
and the interpretation of their respective significance may increase. Feature interdependencies can also
be an important factor. These may comprise of combinations of abnormalities that simply appear to
commonly occur, or are known to be radiologically or clinically interdependent. Matching may have a
number of different temporal aspects and the temporal status (ie, if the patient is alive, or if dead the age
of the patient at death) can be very diagnostic. Temporal development is important in some syndromes,
for example in Noonan Syndrome clinical appearance and characteristic features change significantly
with age. The temporal development of bone and cartilage is important for matching cases of skeletal
dysplasias? which form a relatively well understood subset of syndromes.

An initial similarity metric utilised domain knowledge of feature weights (from the London Dysmor-
phology Database [6]). These weights reflect the diagnostic significance of abnormal features. However,
significance can vary depending on the goal of the matching process ie, indexing or general similarity
assessment. For example, mental retardation occurs in over 600 syndromes and so does not provide a
good retrieval index. However, in terms of diagnosis against some syndromes it is a vital feature and
so for general similarity assessment may have high significance. This aspect of matching would lead to
problems in an unsupervised system in which indexing and matching operate in tandem. The interac-
tive model separates indexing from general matching and allows the user to adjust feature weights to
his interpretation of significance with respect to the current group under analysis and the goal of the
matching process. .

There would seem to be a trade off between the utilisation of a numerical similarity metric based
on feature sets and weights ([1]) against a difficult and time consuming elicitation of detailed match-
ing knowledge and cognitive processes. This research has so far favoured a generalised set theoretical
approach to similarity assessment [5). A model of similarity has been designed based on the general
matching principles described above that relate to this domain. It establishes a number of different
operators that may play a part in overall matching to varying degrees. A matching operator exists for
the performance goal ie, whether the performance task is diagnosis or retrospective analysis. This will
influence which item (of the two being matched) forms the subject and which forms the referent. This
idea coincides with Tversky’s opinion that similarity can be directional, or asymmetric. The weights
of similarities and dissimilarities are increased or decreased according to the direction of similarity as-

2A dysplasia is an sbnormal orgenisation of cells into tissue(s) and its morphological result(s).
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sessment which is in turn defined by the performance goal. Operators also exist to focus on temporal
matching, interdependencies and for matching normal regions (currently syndrome descriptions only
incorporate abnormalities, but normal regions can be significant in matching).

In conclusion, practical issues have guided the system design towards an interactive case-based model.
Interactive control is provided to the user to allow flexibility in retrieval and reorganisation of the case
memory, and to offer an aid rather than a solution. The user can control indexing through adjustment of
feature weights to account for his own interpretation of significance, and allow him to account for featural
equivalences due to the non-uniformity of case descriptions. Following the application of a generalised
similarity model to the retrieved memory objects the user is prompted to analyse the similarity mappings
" produces by the system in order to either confirm a diagnosis or accept (or reject) a proposed link between
memory objects or a reorganisation. :
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Abstract. In this paper, we not only describe the sales advisory system - which uses case based
reasoning - but also how we tackled both issues of indexing and case adaptation in a novel, intelligent
and effective way. Here we propose a multidimensional indexing technique, which is capable of
incremental adaptation to the requirements derived from newly occurred cases. We also suggest
and advocate in favor of composition of multiple cases or parts of cases. A solution is composed from
multiple cases which are similar to the new case with respect to different indexing dimensions. The
developed case-based reasoning technique for adapting case indexing is multidimensional and generic
in nature. Furthermore, we also provide an analysis of the cognitive task of sales consultation.

1 Introduction

In present business environment especially in the manufacturing industry the functions of sales organiza-
tions have become complex as products are becoming multi-variant’and customer requirements(wishes)
high and specific [11]. Due to the increased complexity of sales situations a strong, competent and effi-
cient sales consultation is often required. Thus to facilitate and accelerate the sales consultation process
the advisory systems are of utmost importance. Sales consultants usually improve their skills through
practice. During the sales dialogue, consultants often use the experience from previous consultation ses-
sions, which help improve their understanding of the needs of the new customer. Moreover, usually first
the consultant tries to clarify the most important points for a decision and later to suggest trade-offs
among less important points, if necessary. Hence, a case-based reasoning approach to sales consultation
appears promising, although the known techniques seem to be insufficient for adequately treating the
consultation task.
In this paper, we not only describe the sales advisory system (in section 3) - which uses case based
. reasoning - but also how we tackled both issues of indexing and case adaptation in a novel, intelligent
and effective way. Here we propose a multidimensional indexing technique, which is capable of incremental
adaptation to the requirements derived from newly occurred cases. We also suggest and advocate in favor
of composition of multiple cases or parts of cases. A solution is composed from multiple cases which are
similar to the new case with respect to different indexing dimensions (see section 2). The developed
case-based reasoning technique for adapting case indexing is multidimensional and generic in nature.
Furthermore, we also provide an analysis of the cognitive task of sales consultation.

1.1 The Problem Domain: Sales Consultation

In this context, let us consider the following scenario:

Scenario

A customer presently owns a small transport company and is close to exceeding the load/volume capacity
of his present fleet. He can increase his load/volume capacity by either:

* Author’s present Address: School of CS & Eng. University of New South Wales, P.O. Box 1, Kensington, NSW 2033,
AUSTRALIA, e-mail: achim@cs.unsw.oz.au
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1) Buying/adding new trucks or 2) Leasing some more trucks or 3) A sensible combination of two or 4)
Reorganizing his present activities + buying/leasing new trucks.

Consider a situation, where he still is not able to find an optimal mix on his own. In this situation what
he requires is an able consultant.

He walks into a local sales office of a leading truck manufacturer. After the pleasantries, sales represen-
tative proceeds systematically; querying the customer to determine the customer’s requirements, then
mapping requirements to the actual product/component leading finally to a product. While doing so the
sales person generally falls back upon the prior sales cases.

1.2 Desiderata for a Sales Consultation System

A close look at the scenario above shows the complexity involved in such decision making situations.
The question is not simply to optimize some specific objective but any proposed solution will be the
result of balancing competing goals. There are not only technical issues, but financial and organizational
objectives should be considered as well. Merely a solution would be insufficient; rather explanations are
required to persuade and convince the decision maker that the proposed solution is reasonable.

The present situation in this field is that the sales person does everything from requirements analysis to
product configuration; from present organizational & financial situation analysis to suggesting an appro- -
priate solution etc. manually. This task requires an enormous amount of knowledge and experience of a
sales person in various subfields ranging from product component/ configuration knowledge to financial
marketing etc. Todays ever changing product development and financial market situations do not allow
all sales person to have the same degree of experience and knowledge about every subfield involved in
the decision making. Often, a proposed configuration is technically impossible, which is figured out by
the technical staff and results in unpleasant additional costly consultation sessions. A computer support
in this situation can be of great help.

The motivation for the current work is not only to facilitate and accelerate the sales consultation process
but to improve upon the quality of the consultation as well. We mean quality of the sales consultation
in terms of a large number of alternative solutions considered in less time and in terms of the outcome of
the consultation i.e. how well does the sales object offered to the customer fits into his/her environment
or to his/her specific needs.

2 A CBR approach to sales consultation

Case-based Reasoning (CBR) [7] is 2 method of using previous episodes to suggest solutions to new
problems. CBR allows a reasoner to solve problems efficiently when previous similar experiences are
available. Problem solving using case-based reasoning usually involves retrieving relevant previous cases,
adapting the solution(s) from the previous case(s), if necessary, to solve the problem, and storing the
current episode as a new case to be used in the future {9].

Kolodner (in [8]) distinguishes two styles - problem-solving and interpretive - of CBR. In the problem-
solving style of the case-based reasoning, solutions to new problems are derived using old solutions as a
guide. CBR of this type supports a variety of problem-solving tasks, including planning, diagnosis and
design. In the interpretive style new situations are evaluated in the context of old situations. This style
1s generally useful for situation classification; the evaluation of solution; argumentation; the justification
of a solution, interpretation or plan; and the projection of effects of a decision or plan.

All of the CBR systerns developed to date [10] fall under such ’natural’ domains like medicine or law,
which are historically suited to this style of reasoning. What makes our domain different - and somewhat
unconventional - from the traditional domains of CBR is that, in our application no ’exact’ solutions exist
(’identical’ customers may want different solutions) and any proposed solution can always be modified.
What is important here is that a good approximation/consensus with the customer, should be reached in a
fewer negotiation steps, i.e. the system should produce a short list of high quality suggested configurations.

2.1 The domain of sales consultation

The customer’s choices of particular options will not be arbitrary or unpredictable, since the choices
usually depend on the customer’s needs, desires and preferénces in terms which are more abstract than
technical features (e.g. particular options).

Our approach tries to identify characteristic properties of customer needs which are suitable to determine
most of the possible choices in most cases.

One source of knowledge which guides the identification process of the characteristic properties of cus-
tomer needs are previous cases of sales consultation. However, since the number of cases will be relatively
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small compared to the number of possible sales objects (in the case of truck configurations more than
101°9), additional knowledge is necessary which guides the interpretation of the stored cases. This kind
of knowledge should determine the assumed interdependencies between the choice of options. In our
approach, it defines groups of attributes for which typically fixed interdependencies among their values
exist. E.g. for a given color of a car, usually only very few colors for the interior will be desired by a
customer, which could be derived from previous consultation cases.

If these assumed interdependencies do not hold in the particular sales case, it does not result i an
insufficient choice of the sales object but in a prolongation of the consultation session.

2.2 Multidimensional indexing

The rather abstract characteristic properties of the customer needs are used in our approach as case
indexing for retrieving similar cases. They are called kigh level features (in short HLFs) and are considered
as additional features of the sales objects. I.e. they are supposed to describe how well a given sales object
meets certaln customer requirements.

In order to retrieve previous sales cases which are similar to the customer’s requirements catalogue, the
HLFs are used as indices for case-based reasoning. Since the values of different HLFs are partly logically
independent, it is useful to index the cases according to multiple criteria.

2.3 Composing solutions from multiple cases

As a consequence, the proposed solution is composed from different cases, where each case is similar to
the case with respect to another HLF. The HLF which serve as indices for the cases are conceived to be
initially provided by an expert, usually an experienced sales consultant. However, since it is unrealistic to
assume that the sales consultant will provide the definition of an optimal set of HLF's, our approach uses
case-based reasoning in order to detect suboptimal indexing and to propose optimizing modifications of
the used indices (see 3.2.3 for details).

Since the optimality does not solely depend on the sold objects, but also on the cognitive structure of
the sales consultant and the customers, the expert has to judge each proposed modification. Moreover,
he is in charge to give cognitively adequate names to the possibly modified HLFs.

3 System Description ‘

The target of the sales consultation can be viewed as the determination of a possibly empty class X, C X
of acceptable sales objects.

However, as already explained, we cannot presuppose that the customer is able to determine the class
X. by his/her own. Hence, it is not sufficient to query for the desired value of each technical feature of
the sales objects. :

3.1 The representation of cases

The representation of the possible sales objects is frame based. The basic slots contain all possible
technical features of the sales objects. \

_ In addition to these slots the frame contains slots for HLFs. These HLFs are represented as slots with
associated sets of possible values. To each HLF is a dependence set associated, which is a set of basic
slots. For the dependence set of slots each value of the HLF defines default values. Hence by choosing a
specific value for a HLF, one automatically chooses a set of default values for the basic slots; i.e. a set of
technical features. See figure 1.

3.1.1 The formal description of the sales cases

We consider the following representation of sales objects. The representation of the cases for our case-
based reasoning approach is grounded on the sales object representation:
Each object z; is characterized by a vector of attribute-value combinations:

&r; = ((alrvi1)7 (a2:vi2)’ : .4,(11,,, vin))

Each attribute has a finite number of range values that can be chosen. The set of range values is denoted
by V{a;). Le.

Vi V(a)={v,...,va}.
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Figure 2: The system architecture of ASC. The arrows depict the major flow of information.

Then, the complete set of possible objects X is given by:
X = {2Vl < < ) v, € V(a)}.

3.1.2 High level features (HLFs)

A HLF i1s formally the same as a property, i.e. an attribute with a set of possible values. To each HLF P;
is a dependence set of attributes D(P;) associated. The set of values Vp, = {v1,...,v,} of P; determines
default values for the attributes in the dependence set of P;.

I.e. there is a mapping Att : Mp — 24 which determines the dependence set of attributes of each HLF.
The mapping De fp, determines the default values for the attributes in At¢(F;) for each possible value of
P;. Le. VV(F;) there is a specified mapping

DEfPi . V(Pz‘) — V(al,p,.) X ... X V(a,A“(pi)l’pi),wheT'e {al,p,., Ceey alA“(Pi)l:Pi} = Att(Pi).

One should note, that it is allowed to have nondisjoint sets of attributes associated to different HLF. This
can be useful, if different high level features of the customer’s needs respectively of the sales objects affect
the same detailed sales object features. However, this nondisjointness may also cause conflicts between
‘the default values assigned to attributes in the intersection of two HLF dependence sets. The resolution
of such conflicts is explained later on.

3.2 Architecture and Operation of ASC - Automated Sales Consultation sys-
tem

Figure 2 shows the principal architecture of ASC. ASC consists basically of two modules, Set of Possible
Sales Objects and the Case Base, which have just a retrieval function within the system. Three further
modules, Set up, Consultation and Update, are responsible for the different modes of operation of ASC.

3.2.1 The set up mode of ASC

All basic slots of the case representation are specified and named together with the range of admissible
slot values. Furthermore, all initial HLFs are defined, named and their respective dependence set of basic
slots are specified. The default value sets for the allowed HLF values are determined as well.
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3.2.2 The consultation mode

The consultation mode of ASC is conceived to support the sales person in asking the right questions at
the right time. Thus, ASC poses questions which should be answered by the customer after discussing
it with the sales person. ASC tries to minimize the number of questions which are necessary in order to
guarantee an appropriate choice of the sales object.

For that purpose, ASC starts with querying for the value of the first HLF among the HLFs of highest
degree. Consecutively, ASC proceeds by querying for the yet unknown values of all HLFs of the highest
level. As long as no conflicts among the assigned default values for the (basic) slots appear, it is up to
the sales person to determine, when the assigned default values to the slots of the respective dependence
set are verified. Verification, here, means that the assigned values are shown to the customer for either
acknowledging or modifying the assigned values.

After each modification of an assigned slot value, ASC checks whether the currently assigned slot value
combination of the dependence set of all HLFs becomes more similar to another HLF value. If so, this is
indicated to the user and a change of the HLF value is performed together with the replacement of the
default values for the slots of the dependence set, which have not yet been acknowledged or modified.
This procedure continues until all basic slot values have been assigned and acknowledged or modified
explicitly.

3.2.3 The update mode

The update mode contains the case-based reasoner of ASC. It is invoked after a successful sales consul-
tation. Since it requires a lot of computational effort, it would thus preferably be run in the batch mode
over night.

The case-based reasoner 1s used in order to determine - from prior consultation sessions - an adequate
query strategy for the sales consultation process.

The query strategy can be modified in the following ways:

a) Modifying the defanlt values for the dependence set associated to a value of a HLF:
Assume the number of cases, in which a set of default values associated to a HLF-value - chosen by
the customer - has been modified. If it is significantly greater than the number of cases where the
complete default value set has been acknowledged, then this dominating modification of the default
values is chosen as the new set of default values associated to the respective HLF value.

b) Extending the set of values of a HLF /the creation of a new default value combination
for the dependence set: Assume the number of cases, in which the set of default values for
the dependence set of a HLF is modified towards the same resulting slot value set. If it is greater
than a prespecified threshold, then this dominating modification of the default values is chosen as
a proposal for introducing a new HLF value, which has as its associated default values the above
mentioned values.

¢} Modifying the dependence sets of the currently defined HLF's: If particular slot values
are often modified after they have been set to a default value due to the choice of HLF set of the
respective HLF, then the inclusion of slots into a dependence set works as follows: If the finally
chosen values of a slot s, in known cases, correlate significantly stronger with the values of a new
HLF P, than with the old HLF P,, in whose dependence set s is contained, then ASC proposes to
include s mto the new HLF P,.

d) Extending the set of HLFs: ASC suggests the creation of new HLFs if a large number of the
same slots is modified in a significant fraction of consultation sessions. Here, ASC lists the respective
slots and proposes to create a new HLF covering the listed slots.

All modifications of the HLF structure are subject to expert’s (in our case the sales consultant) confir-
mation. New HLFs or new HLF values must be properly named by the sales consultant, e.g. security
of transport 1s very important, or minimal price is requested. This is to make the meaning of the HLF
values cognitively accessible for the sales consultant as well as for the customer who has finally to decide
among different values.

4 Conclusions

A new technique of case-based reasoning has been described, which makes possible to use CBR in areas
where only very few cases are available. Multidimensional indexing as well as composing a solution from
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multiple cages have been proposed. The possible modification of the indexing structure by modifying the
dependence set of a HLF allows the implicitly used similarity measure to be asymmetric which appears
to be psychologically much more plausible than symmetric similarity measures. So far, only symmetric
similarity measures have been used in CBR. Moreover, the cognitive structure of sales consultation
has been analyzed insofar, that the sales consultant can be strongly supported by an automatic sales
consultation system.
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A priori Selection of Mesh Densities for Adaptive Finite Element
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NEIL HURLEY
Hitachi Dublin Laboratory,
O'Reilly Institute, Trinity College, Dublin 2, Ireland.
Email : nhurley@hdl.ie

Abstract. This paper describes the application of case based reasoning techniques to a complex domain,
namely, mesh specification for finite element analysis. The case base provides a high-level store of
information extracted through CPU-intensive numerical error analysis of previously solved problems, making
it available for mesh specification before the simulation of new similar problems. Using this information, a
near-to-optimum mesh is specified as input to the simulation engine, avoiding time-consuming computation
during simulation. The paper describes the system, case representation, organisation and retrieval, and
compares the CBR approach with the more usual rule-based approaches to this application domain.

1 Background

Finite element analysis (FEA) 7] is a powerful tool for solving engineering problems described by differential
equations. In FEA, the continuous physical characteristics (for example temperature, pressure, fluid flow) of
interest to the engineer, are approximated by a discrete model, in which a grid of mesh elements is generated
across the geometrical domain and the numerical values for the physical characteristics are calculated at the grid
points (usually referred to as the nodes). The values within the elements are approximated by piecewise
continuous 'interpolation’ functions. A typical problem from heat analysis is shown in Figure 1. (This problem
will be used to explain our iechnique, and will be referred to from now on as Problem 1.)
D C

A B
Figure 1 : Heat Conduction over a Flat Plate

The accuracy of the finite element model is highly dependent on the mesh. The greater the number of
nodes used, the greater the accuracy. However, as the number of nodes is increased, the time required to
complete the simulation also increases. There is therefore a trade-off between accuracy and efficiency and it is
very important to find an optimum between the two.

Specifying appropriate densities for the mesh so that solution features are properly captured, is one of the
most difficult tasks facing users of FEA. This issue is illustrated in Probiem 1, in which the linear steady-state 2-
dimenstonal heat conduction problem has a severe discontinuity in the boundary conditions in the lower right-
hand corner (labelled by B in the diagram). The temperature profile shows a steep gradient due to this
discontinuity between the points E and B. This will be correctly modelled only if a fine mesh density is used
close 1o the corner. A much coarser mesh density will suffice further away from the comer (see Figure 2). Note
that a priori knowledge of the temperature profile is required in order to correctly specify the mesh. Since, for
most complex problems, Lime and memory limitations preclude the placement of a fine mesh over the whole
domain, it is desirable to find an optimum mesh, with the mesh density throughout the domain varying
according 1o local requirements. However, for many practical problems, it is not immediately obvious to the
engineer or analyst where a fine mesh may be required.

The numerical approach o this problem is called adaptive finite element analysis. Essentially, the strategy
18 to solve the finite element problem a number of times, each time improving the quality of the mesh, until a
satisfactory solution is found. An error cstimator applied after each simulation locates the areas of high error and
the mesh is refined in those areas. The process is repeated until a satisfactory error tolerance is obtained.

While the basic adaptive strategy is Lo start with a coarse uniform mesh throughout the domain, leaving the
1ask of locating local phenomena which require mesh refinement completely to the error estimator, it has been
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observed (e.g. in [5]) that the effectiveness of adaptive strategies can be dependent on the initial mesh. In any
case, it is desirable o avoid many iterations during the adaptive process, and one way Lo achieve this is to use a
priori knowledge to set a near-to-optimum initial mesh. In practise, a priori techniques tend to be heuristic in

~ nature, with the engineer or analyst relying on past experience to determine where a fine mesh will be required
for a given problem.

In this paper, the application of case based reasoning technigues to the task of setting an initial mesh for an
adaptive finite element simulator is described. Given a differential equation problem to solve, the system forms
a solution strategy by accessing a case base of previously solved problems and matching the current problem
with similar solved problems. The case base serves to augment a priori knowledge of a given problem by
making available knowledge gained through a posteriori error analysis of previously solved, similar problems.

2 System Overview

Briefly, a case base of differential equation problems is stored, with each case containing a set of problem
features and a set of solution profile features, extracted from the numerical solution. Solution features include
any qualitative characteristics, for example, high gradient, which can be extracted from the numerical results
data, (and which can only be modelled properly through the use of local mesh refinement). A frame
representation of the problem (target case) is formed, and the problem features in this representation are-maiched
against the problem features of the base cases. From the retrieved cases, a set of predicted solution featres for
the target case is formed. Meshing strategy routines generate the initial mesh given the predicted solution
features. The adapiive finite element simulator sotves the problem, refining the mesh, if necessary. The problem
{with its solution) is then added to the case base.

3 Related Work

Much interest has focused in recent years on the application of knowledge-based techniques to the creation of
problem solving environments for engineering and mathematical analysis. However, most of this work has
considered rule-based approaches only. Within this body of work, rule-based mesh generation and adaptation
systems have been considered. Expert systems fo aid the geometrical problem of mesh generation (i.e. to ensure
that elements are well-shaped) include the EZGrid system {1}. Tackling the issue of mesh adaptation, an expert-
system {or deciding when and how 1o refine or coarsen a mesh is described in [2]; Rank and Babuska [5] propose
an expert system approach for selection of mesh adaptation strategies; and a blackboard architecture expert
system, which makes use of boundary conditions and loading information to design a mesh refined at critical
points, is described in {3]. Also of note is the work by Macedo et al. [4] who propose a knowledge-based
approach 1o the selection of error indicators for mesh refinement schemes, based on a case analysis of several
characteristic problems.

The case-based approach adopted in this research is motivated by the desire to create a flexible system
which can augment its knowledge-base as more knowledge becomes available. In fact the importance of
accumulating expericnce in knowledge-based engineering design/analysis systems has already been noted (e.g.
in [6]). While a rule-based approach can provide a good coverage of well-understood problems, it will fail when
new problems outside this coverage are presented. A rule-base which predicis the bchaviour of simulation
problems needs 1o take into account not only all the many features that these problems may exhibit, butalso how
these features interact. This is particularly difficult, since the behaviour when two features are present may be
completely different 1o the behaviour when cither one is present without the other.

It is felt that the case-bascd approach can propose solutions cven when only partial knowledge is available,
since 1t forms stratcgies based on similarity, without requiring this similarity (o be grounded in explicit domain
knowledge.  Furthermore, the adaptive simulation cngine at the back-end of the system can act as a teacher,
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correcting the initial mesh design proposed by the front-end, and providing the means by which case indices can
be improved to avoid the same pitfalls in later problem-solving episodes.

4 Case Representation and Retrieval

The solution profile from a finite element simulation is influenced by three categories of features, namely
equation features, geometry features, and boundary condition features. By equation features, we mean equation
types such as parabolic, hyperbolic or elliptic,' as well as characteristics such as non-linearity, size of
coefficients, inclusion of sources, etc. Boundary condition features include the type of boundary condition (e.g.
insulated or fixed flux) as well as size of coefficients, etc. Geometrical features include cracks, corners,
protrusions, obstacles, etc. Since there is a large body of differential equations, describing many different
behaviours, it is necessary to focus on some sub-class of problems. We are applying our techniques to steady-
state diffusion and advection heat transfer problems, that is, the class of problems described by the following
partial differential equation :
=V (k(x, V@) +v.Vp = q(x,y) (1)

In the context of heat ransfer, ¢ represents the temperature profile, £(x,y) the material conductivity, v the
(fixed) flow field, and g(x,y), the heat source or sink. Associated with this problem, there are four categories
of boundary condition, namely,

Fixed Temperature : The temperature is prescribed on the boundary,

Fixed Flux : A fixed heat flux is maintained across the boundary,

Insulated : No heat transfer across the boundary,

Convection : Convection to the ambient temperature.

Work is focusing on determining mesh densities for different combinations of these equation and boundary
condition features.

Each case conlains a full problem description, consisting of the equation to be solved, the domain over
which it is solved and the boundary conditions on each boundary. Such a description is shown in Figure 3.

{pde-problem

(geomerry (a (point (0 0)))
(ab (line a b))
) (rl (polygon ab be ¢d da)))
regions r] .
{boundaries  ab bccd da)
variables (TT))
equationl  (TT)
= (diffuse TT) O
bcondl (= TT 100) on ab)

(bcond4 (= (ngrad TT) 0) on da))))

Figure 3 : Problem Description

To devise a scheme for matching target and base cases, we note the following:

(i) Relationships between case features are important. This is illustrated by Problem 1. The high gradient
profile at corner B results not because of a single feature; rather it is due to the relative location of the
Convection and Fixed Temperature boundary conditions.

(i) A qualitative representation of the problem does not suffice. It is important to establish the significance
* of features on the overall solution profile, and this can only be accomplished if the strength of the feature's effect
is taken into account.

Comparing relative strengths of features between different problems requires that the problems be
normalised in some manner. This may be achieved by calculating a characteristic length of the domain, and
using engineering approximations to estimate the average temperature and heat flux on the domain, based on the
initial data. Of interest from a meshing point of view are those local areas of the domain where the heat flux is
much greater than the average. i

To facilitate matching, a taxonomy of problem features and feature relationships is maintained (see Figure
4). The case indices consist of specific relationships between the problem features coupled with specific solution
behaviours. For example, the case corresponding to Problem 1, would be indexed by the predicate

Connected-at (bcondl, bcond2, B)
where bcondl and bcond2 are the two boundary conditions which meet at the point B, coupled with the
solution predicate -
Close~to({soln-featurel, B)

IThis terminology refers to the order of the various spatial and time derivatives in the equations.
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Figure 4: Part of the Taxonomic Hierarchy

where soln~-featurel is the solution feature corresponding to the high gradient at the point B. Associated
with each solution feature, the case holds a mesh density parameter which indicates how much the mesh needs to
be refined in order to capture the feature properly. In essence, the index corresponds to a rule which is true for
the specific case to which it is attached. Complex cases may contain many such indices if more than one
solution feature appears in the solution profile. .

Case retricval proceeds by lirstly extracting all the relationships which hold in the target case. Cases are
stored in a hicrarchy which classifies them according to the equation type e.g. Linear-diffusion-case or
diffusion-advection-case ¢lc., and the type of problem features which occur in their indices ¢.g.
fixed-temp-case,or convection—case. Matching is performed only against those cases which are
concerned with the same equation type and whose indices contain problems features which also appear in the
target case. Partial matching may be achieved by generalisation and specialisation of the index components
along their taxonomic hierarchies. Many cases may be retrieved for one given target case, corresponding to
matches against different target relationships. If more than one case matches a particular target relationship, then
quantitative information is taken into account. For the above example, the numerical values of the boundary
conditions are examined, and the case for which the numerical values agree most closely is preferred.

S Simulation and Learning

Once the mesh design is processed by the mesh generator, the problem is simulated and the mesh is adapted
using numerical techniques. It is possible that the problem may exhibit behaviours which were not predicted by
the case-based pre-processor, in which case a new index to account for this behaviour should be generated.
Methods for accomplishing this task still need to be investigated, but at least this can be done through user
consultation. The other possible error is that predicted solution features are not actually present in the actunal
solution profile. This requires not only that the index in the original target case, but also that the index in the
base case with which it was matched be modified. One method is to search for specialisations of the base case
index which do not hold for the target case. For example, in Problem 1, the high gradient feature results not just
because the boundaries are connected, but, more exactly, because they are incompatible i.e. there is a
discontinuity at the corner. The specialisation to the incompatible relationship will be necessary when, in a
new problem solving episode, & target with the same boundary condition features is found not to exhibit the high
gradient featurc in its solution profile. By adjusting its indices in this manner, the system can learn to avoid
mistakes it has madc in the past.

6 Conclusions

A case-based reasoning system for mesh design of finite element problems has been described. The system is
currently under implementation . It is believed that this approach has certain important advantages over more
traditional rule-based approaches to this domain, in particular, its ability to deal with problems where a complete
a priori understanding of possible behaviours is not possible, and its ability to learn from past problem-solving
episodes.
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Abstract

Help desk systems are one of the most successful application areas of case-based reasoning. How-
ever, case-based reasoning techniques cover only parts of the whole help ‘desk scenario. One missing
part is providing access to the technical documnentation. Combining these becomes especially impor-
tant in the area of service support systems, where the service person has no access to the printed
documentation. This paper presents a concept how to integrate CBR and technical documentation
for service suppott systems. ’ ‘

1 Introduction

One of the most successful application areas of Case-Based Reasoning® is the domain of so-called ‘Help
Desk Systems’. ‘Service Support Systems’ essentially serve the same purpose but in a slightly different
environment. In this paper we investigate extensions to ‘classic’ CBR that are needed for service support
systems. Therefore we first explain how we want to understand the terms help desk system and service
support system and then define some requirements for service support systems. In the remainder we
describe a concept for a CBR based service support system that meets these requirements.

2 Help Desk Systems

With the development of the personal compaiter in the early 80s the need for supporting new kind of users,
i. e. managers, technicians, secretaries, arose. Therefore many companies created Information Centers,
to assist and control the nse of PCs within the company.

The first systems used by the Information Centers were database management systems to help with
the information about the clients hard- and software. With the advent of expert systems intelligent
job aids for Information Centers could be developed. Thus expert system theorists called this systems
diagnostic expert systems, training assistants called them intelligent job aids, and the people at Tls
Information Center® called them help desks.

First used for computer-related problems, Lelp desks today can refer to any computer-based system
that aids people in providing assistance via phone. Users needing advice contact® a human operator
or Customer Service Representative*. In a simple operation tlie CSR listens to the user describing the
problem, and then provides a recommendation based on his experience.

Unfortunately, such operators are hard to find. Moreover, as equipment gets more complex, it’s hard
to find anyone to man a help desk who really understands everything a user might ask about. Most CSRs
know how to deal with the standard, frequent questions and rely on manuals and notes to come up with
a solution for harder, less frequent problems.

2.1 Requirements

Creating a help desk system therefore is the task to assist the CSR. with retrieving and storing with the
following kinds of information.

Information about events and users This means storing and retrieving records of user configura-
tions, contacts, etc.

lwe will abbreviate this as CBR in the following

2TI developed sucly systems, e.g. the Hotline Advisor for assisting customer support people in solving customers problems
related to printers

Fnormally by phone

4abbreviated as CSR below
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Information about products and services Information of that kind is provided with the technical
documentation of the products, such as a manual describing the part structure or a diagnostic
manual etc. .

Information about known problems This is the information gained in past calls to the help desk
and often stored as notes or protocols of the calls.

Knowledge about how to solve problems Knowledge about problem solutions® consists of proce-
dural knowledge,i. e. how to proceed in a certain situation, heuristic knowledge or behavioral
models.

Assisting the first kind of information is often done with conventional data-base techniques, where
the second could be supported by information retrieval and online document retrieval. The third item
1s best assisted by case-based reasoning systems whereas the fourth is due to rule-based or model-based
diagnostic expert systems.

For that reason, most CBR systems used in the field of help desk systems provide the CSR with
information about previous calls, replacing the paper-based notes and protocols. The other kinds of
information are provided by other sorts of systems like databases or information retrieval systems.

3 Service Support Systems

A situation similar to help desk systems is given if one is to assist the work of a service man or technician
on location. But beside the task of supporting the technician in finding the right diagnosis, a service
support system has to serve himn in some other parts of his work as well.

3.1 Additional Requirements

Plauning visits Because of the different tasks of a technician and the steadily increasing palette of
machines (and their variants) it is impossible for him to remember all installations he is responsible
for. Regular maintenance of the machine including the determination of critical parameter values
.and the exchange of wearing components is often part of the contract for complex machines.

In order to plan a visit to a customer the technician has to know the details of the installation, i.e.
to take the right components with him. A service support system has to provide the technician
with this information. This corresponds to the information about users in a help desk system.

Online Technical Documentation It is impossible for the technician to carry the whole technical
documentation for a large variety of machines. Thus a service support system has to provide the
technical documentation as well as the experiences. Therefore including facilities to access the
documentation is mandatory for a service support system.

Protocols To document his job the technician has to write reports of liis visits. In contrast to pure help
desk systems not only the failures are interesting but also the values of certain parameters over
time, e.g. to fulfill some legal constraints. These protocols have to be stored by a service support
system.

3.2 System Design

Another important point is the emphasis on support in service support system as opposed to automatic
operation. This is motivated by the following two observations:

Due to their job, techuicians are used to work alone. They are the ones to make decisions and to
take the respousibility for it. Therefore, every kind of tutorship has negative impact.

Systems which make decisions, e. g. a diagnosis, by themselves, typically make faults. When these
decisions are treated too offensively by the system, the technician will soon refute the systemS.

A service support system therefore has to leave the initiative to the technician, it serves as a system
that provides the information the technician wants to have in a particular situation. This is in contrast
to a model where the initiative belongs to the system and the user is to provide the information which
the system cannot deduce.

5The distinction between information and knowledge about problems is a bit fuzzy
€This observations are general, but in the context of service support systems their impacts are crucial
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4 A CBR Based Service Support System
4.1 Classic CBR approaches

There are several papers describing the state of the art in CBR[8, 4, 1]. We therefore only give a short
description of a classic CBR approach in technical domains and especially help desk systems.

Case Representation In most systems cases are represented as attribute’-value vectors with some
basic value types such as numbers (intervals), strings and sets of symbols describing nominal or ordinal

types.

Feature Similarity The single attribute similarity is mostly obtained by equality testing. Some sys-
tems allow ranges and deviations for features involving numbers, and implement some spell checking
routines and substring testing for string features.

Similarity Measure The similarity measure comparing the current situation with a stored case is
often a function combining single attribute similarities to a value in the interval [0...1] (or [-1...1]).
This is often a weighted sum of the single attribute similarities, or a function based on the contrast rule
by Tversky[9]. .
Retrieval In afirst step a set of relevant cases is selected, often on a selection of those cases that contain
mandatory features. Then cases are sorted according to a similarity measure in a second step, determining
the nearest neighbors of the presented case. Following steps eventually involve the modification of the
most similar case according to the given situation, but there are few implemented systems and especially
in the domain of classification® this step is often not needed.

In this kind of CBR systems there is no way to represent the structure of a machine as well as
the history of the features over the time. Additionally there are no means of integrating the technical
documentation. In the following we will describe a concept for a system realizing these requirements.

4.2 Structured CBR — The AMS Appraoch

Normally cases are represented by flat feature-value vectors. But often, and especially in the field of
help desk or service support systems, there is knowledge about the structure of the domain, i. e. about
machines and plants to be supported.

(defconcept 'filter ‘plant-part
((size (concept :filter-size))
(manufacturer
{concept: filter-manufacturer)
(capacity (:concept filter-flow))
o))
(defconcept 'pressure-filter 'filter
({pressure (:concept filter-pressure))))

is-a hierarchy

Filter

l Machine

{defconcept 'filter-size 'quantitative-parameter-slot
{(gquantitative {0m2 10m2)))}

(defeoncept filter-manufacturer °string-parameter-slot
Milling-Machine ({string (:conucept text))))
— {defconcept ‘filter-flow ‘qualitative-parameter-slot

{(qualitative (:one-of 'low 'normal 'high))}))

Pressure-Filter

pat-of hierarchy

‘(defcon('ept ‘palant ‘part
({pasins {:concept plant-basin))
(filters (:concept plant-filter))

B
(Gefconcept '‘plant-basin 'part-slot
{{set {:set (:some (:concept basin) 0 5)))))
{defconcept "plant-filter 'part-slot
{(set (:get {:some [:concept filter 0 2)))))

Figure 1: Parts of the domain structure of AMS

This knowledge enables us to model the structure of the domain via #s-a and part-of relations as in
frame knowledge representation systems like KL-ONE or KEE[3}?. With this kind of structure we can for
example represent the fact that a milling machine is a kind of a machining tool, or that a pressure-filter
1s a kind of filter. With the part-of relation we can describe that a manufacturing plant has, among
other, some basins for the cutting fluid, some filters to separate chips and dirt from the cutting fluid,
some machining tools etc. (see Figure 1).

7or feature, parameter
®ie. finding a diagnosis
IKL-ONE and KEE are chosen among the variety of frame representation systems to iliustrate the design space of frame

representation systems
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Plant-]
Machine-1
Feature-1
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Machine-2

Feature-3 — .

Feature-4

v

‘to a diagnostic case

time
[ 1 ovservation MMM obscrvation belonging

Figure 2: A Schematic Plant History

Recent CBR. projects like AMS!?[2] and INRECA[5] therefore use frame-representation languages to
structure the domain. ’

Domain Structuring The domain is structured via the above mentioned is-a and part-of relations.
One defines concepts representing domain objects and states relations between them.

For example one might define a concept. £ilter as a kind of plant-part with the measurable para-
meters size, grammes-per-square-meter, capacity etc. It is a leaf node in the part-of hierarchy and
contains no part slots. Special filters as a pressure-filter would then be defined ‘as subconcepts of
filter e. g. by adding a parameter-siot pressure.

Measurable parameters are defined as subconcepts of the class parameter-slot. They can contain
nominal, qualitative (ordinal) and quantitative values as well as texts!!. part-slots are relations with
a range that is a subconcept of part. They might have number restrictions as known by KL-ONE:

Case Representation As stated in section 3, a service support system has to store and retrieve the
normal values of some features as well as the feature values determined during the diagnostic process.

Machine and Plant Histories In order to store feature values of a certain machine the technician
has first to enter thie structure of the machine, i.e. he has to instantiate the domain concepts in order to
get concrete instances. The slots of these instances are then filled by the feature values.

When a new feature value is entered, it corresponds to an observation made by the service man.
An observation is a quadruple (object, slot, value, time), so that the slot value of a feature is a list of
pairs (feature,time), representing the history of this feature. The plant history is then the collection of
thefeature histories.

Diaguostic cases Diagnostic cases are represented as (reference, characterization, situation, diagnosis)
where reference is a pointer to the plant the failured occured on, characterization is a (short) textual
description of the failure, whereas situation is a set of previously made observations, and diagnosis is a
list of diagnosis-steps. diagnosis-steps themselves are triples {hypothesis,test, result) with hypothesis
as a hypothetical observation, test an evaluation method and result an observation confirming or refusing
the hypothesis. '

Feature Similarity In order to allow a rather broad scope of queries, including exact matches, we
define a set of comparing relations for each basic type A. The relations are themselve partially ordered in
the sense of set. inclusion. The minimal element of this ordering is the diagonal relation id?(a, b) consisting
only of the pairs {(a, a)|a € A}, whereas the maximal relation is the all relation ali(a,b) = 4%.12

For some types one then can define other relations as is?(«, b) meaning set inclusion for sets of symbols
or range inclusion for intervals. For strings is7(a, b) could be interpreted as substring occurrence. Another
step in this relation hierarchy conld be sect?(a, b) meaning a non-empty section between two sets or ranges.
Furthermore near?(a,b) could be defined, specifying that a is not too far apart from & in the sense of a
distance measure based on the type the difference in the case of numbers, or something like a hamming
distance!? in the case of strings. The different stages of feature relations provide a first way to generalize
from a given situation in order to perform a similarity search.

Instance Similarity Aunother dimension of generalization is provided by the domain structure, in that
we can generalize within the is-a or part-of hierarchy. The approach is best described by the rough

10 AMS is a case-based support system developed hy the author at University of Hamburg’s Artificial Intelligence Labo-
ratory in cooperation with a manufacturer of cooling lubricants in order to aid it's technical staff.

11in AMS dimensions can be defined and used in quantitative Slots

12 Because some of the comparing relations are no equivalence relations (e. g. they are not transitive) the relations could
not be embedded in the lattice of the equivalence relations over A.

13j.e. allowing a certain number of insertions, deletions and wrong characters when searching the substring a in the string
b. This would implement a kind of spell checking function
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definition that ‘similarity is equality on a more abstract (or general) level’ and corresponds to the set-
theoretic semantic of concepts in KL-ONE[3]. This can overcome the limitation of flat feature vectors
when determining for example, that Relais-1 and Relais—2 are syntactically different attributes, but
have semantically the same function in functionally and structural identical subparts of a machine[6].

The specification of a pressure-filter in a certain query can then be replaced by a filter allowing
to match all other kinds of filters. This could be accomplished by defining relations similar to the ones
presented in the previous section over the set of all concepts. The relations between instances are then
defined by the relations of their corresponding concepts.

For example, the diagonal relation id7(a,b) is fulfilled if the instances @ and b are instances of the
same concept, whereas is?(a,b) would have the semantics that the set of subconcepts'? of a is a subset
of the set of subconcepts of b, or to say it in another way, if a is a subconcept of b. In a similar way,
near?(a,b) maybe defined as the path length between two concepts in the hierarchy.

Retrieval Retrieval is performed by formulaling queries, i. e. conjunctions or disjunctions of patterns
of observations, hypotheses etc., resulting in sets of machine histories or diagnostic cases that contain
observations etc. that match this query.

One of the requirements made in section 3 was a user centered system design. This includes the
specification of the similarity measure used in order to answer a certain query. The user can specify
different comparing relations on the feature as well as on the instance level, where the defanlt similarity
measure used is testing the various parts of the observation via the is?(a, b) relation resulting in a kind
of subsumption test.

Thus the retrieval cycle is as follows:

1. Formulate In a specific situation, the user formulates a query and retrieves the items matching
this query.

2. Inspect He/she inspects some of the retrieved cases. If he gets too many or too few matches he
may reformulate the query, specializing or generalizing it, respectively.

<o

. Adapt If he finds an interesting match, he adopts this match to the current situation and proceeds.

5 Incorporating the Technical Documentation

The concept described in the last section solves the tasks of storing and to retrieving the structure of
machines as well as their history and diagnostic cases associated with them. It does not yet provide any
means to mcorporate the technical documentation.

Additional Basic Types The main idea for incorporating the technical documentation is to broaden
the range of basic feature types. Adding types used in hypermedia systems, such as sound, pictures and
video allows us to store the documentation. Because the structure of the documentation is similar to that
of the defined domain structure!®, moreover, the domain structure often is derived and acquired from the
documentation, it is easy to incorporate the documentation into this structure, for example by providing
the relevant parts of a components manual as additional slots of the concept describing that component.

Structure as Hypertext Having incorporated the technical documentation into the concept taxonomy
and partonomy, one can use the is-a and part-of hierarchies as a link structure similar to a hypertext
system, allowing the user to easily navigate through the so constructed online manual.

The new basic types can not only be used to incorporate the documentation, they are also useful i
modeling the domain itself.

Nominal and ordinal paramneters Tlere are a lot of situations where it is much easier for a user
to have sounds or pictures describing ordinal or nominal value types than the normally used symbol
sets. For example, one can use sound to illustrate different noises of a part representing correct and
false behavior. Another example are dip slides that are used to measure the pH-value or pictures of
bacteriological cultures to determine a germination index.

Visualization Videos and Pictures could be used to visualize a certain test, e. g. how to replace a
defect part.

6 CBR and Information Retrieval

Closely related to C'BR is the field of Information Retrieval[7], which is mainly the task of retrieving a
set. of documents similar to a list of keywords (or another document). This is often accomplished by the

Yincluding the concept
15ie. the structure of machine manuals (chiapter, sections etc.) correspond to the part structure of the machine
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use of indexed teats They are an alternative to the string type when larger texts need to be stored and
retrieved. They allow the efficient retrieval of similar texts, and the method of relevance feedback[7] used
to improve a qiery in information retrieval fits into the main retrieval loop mentioned in 4.2. Moreover

" many information retrieval systems also have different retrieval modes ranging from boolean retrieval to
complex similarity functions similar to the relation hierarchy in 4.2 and 4.2.

Indexed texts than can assist in overcoming a problem of CBR projects, the problem of inadequate
descriptions of old cases. When starting a CBR. project one is often told that there are lots of cases
already acquired. But when it comes to the point of getting the cases there are fewer than previously
said, and they are in the wrong format, mostly protocols. '

Protocols have to be converfed into the more structured form of cases, which is a time consuming
process. With indexed texts, protocols can be used directly for retrieval. For example the characterization
part of a diagnostic case could be an indexed text. Then old cases, or cases the service man has no pos-
sibility or time to enter the formal description, could be first given in an textual description (and turned
into a formal one later). Indexed texts therefere provide a migration path from unstructured to structured
representation of cases and should be added as another basic type.

7 Summary & Outlook

In this paper we introduced service support systems as user-centered systems related to help desk systems
and presented a concept for realizing them. This concept differs from other CBR. systems in that it uses
knowledge about the domain to structure the cases. Additionally it supports two types of cases: machine
histories and diagnostic cases. The retrieval methods are based on a semantic similarity measure different
from the more syntactic measures in classic CBR systems. The user itself can modify the similarity
measure for a certain question to broaden or coufine the retrieval.

Adding indexed texts, sound, pictures, and video as basic types allows us to integrate the technical
documentation,which is often missing in normal CBR. based help desk systems. They also allow to
describe the cases in a more natural way and facilitate the process of converting existing paper-based
case descriptions.

Nothing has been said about case adaption and learning. How this can be done using the classification
and recognition capabilities of KL-ONE is part of current research.

References

[1] K.D. Althoff, S. Wess, B. Bartsch-Sporl, D. Janetzko, Frank Maurer, and Angi Voss. Fallbasiertes
Schliessen in Expertensystemen: Welche Rolle spielen Fille fiir wissensbasierte Systeme. K1, (4):14-
21, 1992.

[2] Gerd Kamp. Ahnlichkeit in AMS. In Workshop: Ahnlichkeit von Fillen beim fallbasierten Schliessen,
pages 83-86. K.D. Althoff and S. Wess and B. Bartsch-Sporl and D. Janetzko, 1992.

[3] Peter D. Karp. The design space of frame knowledge representation systems. SRI AI Center Technical
Note 520, SRI International, 1993.

_ [4] Janet L. Koloduer. Improving human decision making through case-based decision aiding. Al Mag-
azine, 12(2):52-68, 1991.

[5] M. Manago, R. Bergmann, N. Conruyt, R. Traphoner, J.Pasley, J. LeRenard, F. Maurer, S. Wess,
K.D. Althoff, and S. Dumont. Casuel: A common case representation language. Technical report,
INRECA, 1993.

[6] G.Pews, F. Weiler, and S. Wess. Bestimmung der élmlichkeit in der fallbasierten Diagnose mit simula-
tionsfahigen Maschinenmodellen. In Workshop: Ahnlichkeit von Fallen beim fallbasierten Schliessen.

K.D. Althoff and S. Wess and B. Bartsch-Sporl and D. Janetzko, 1992.

[7] Peter Schauble. A tutorial on information retrieval. In Proc. of the 1993 Workshop on CBR. AK
CBR of the GI, 1993. (to appear).

[8] Stephen Slade. Case-based reasoning: A research paradigm. Al Magazine, 12(1):42-55, 1991.

[9] S. Wess. PATDEX - ein Ansatz zur wissensbasierten und inkrementellen Verbesserung von
Alinlichkeitsbewertungen in der fallbasierten Diagnostik. In FEapertensysteme 93, pages 125-138.
F. Puppe and A.Giinter, 1993.

203




CABATA — A hybrid CBR system

Mario Lenz
Department of Computer Science
Humboldt-University
Berlin

Abstract

This paper presents CABATA, a hybrid case-based reasoning system that has been developed at the
Department of Computer Science, Humboldt-University, Berlin. The most characteristic feature of
the system is the combination of model-based and case-based reasoning within a hybrid architecture.

1 Introduction

Within the framework of CBR research at the Department of Computer Science at Humboldt-University,
Berlin, the CaBATA-system has been — and is still being — developed. The system was designed to pay
particular attention to the combination of domain-specific knowledge and classical CBR methods within
a hybrid architecture. The cooperation of both, the rule-based and the case-based reasoning strategy, is
expected to show significant improvements concerning all phases of CBR:

efficient case retrieval (using indexing),
the matching of cases,

storage of cases and meory organization,
learning beyond the scope of CBR.

The key features of the CaBATA-system are

¢ integration of user-defined rules guiding the inference within the CBR-like inference engine
o dynamic similarity assessment of feature values via user-given context graphs

e incremental classification by subsequently modifying similarity knowledge

o EBL-like acquisition of domain knowledge.

The outhne of the paper is as follows: Section 2 gives a short introduction to the domain chosen to serve
as an example to demonstrate the hybrid architecture. Section 3 describes the way domain-specific rules
can be defined and are used within the CABATA-system. Section 4 sketches the usage of context graphs
to assess the similarity between symbolic feature values. Section 5 shows two ways efficient indexing can
be implemented, section 6 describes a first attempt to implement learning strategies. Section 7 shortly
discusses the CABATA-system in relation to important work in the literature (7.1) and lists some of the
research topics (7.2) within the CABATA-system in the near future. During the whole paper a basic
knowledge of case based reasoning methods is assumed.

The CABATA-system has been implemented using C++. Currently, CABATA runs on a PC 386/486
and requires Microsoft Windows@©)3.1.

2 The chosen domain’

The simulation of a travel agency was chosen to serve as an example to demonstrate the CABATA!
architecture. However, all parts of the inference engine have been implemented independently of the
domain under consideration®. The task of CABATA is to choose one of its stored cases describing past
holiday trips as a suggestion for a new trip satisfying user-specified conditions. These conditions are
given as case descriptions and include features such as

' CaBATA = CAse BAsed Travel Agency
2[n fact, all parts of the whole program except for the graphical user interface.
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e the type or aim of holiday (e.g. recreation, sporting activity, language course etc.),
o the chosen region (both general descriptions such as mountains or sea, and particular countries,

cities or areas),

the wanted means of transport (e.g. coach, car, train or plane),
the season or month of the holiday trip,

the maximal price,

While some features are numerical ones, others may take symbolic values. This will be of particular
importance in section 4.

It

seams important to point out here the difference to other CBR systems dealing mainly with technical

diagnosis (e.g. [3, 4, 5, 6, 7, 17]): ’

1.

In contrast to technical devices no causal relations guiding the inference are available.

2. The terminology describing the domain is not well defined: Such terms as “Recreation” are highly

ambigous.

. The diagnosis of a case itself is not an atomic object, such as a fault number or a descriptional

string. Rather it is a structured object: A proposal of a new holiday trip similarly structured as
other cases.

The process of selecting the best applicable case from memory is designed to be an incremental one,
i.e. after a suggestion has been made by the system, the user may modify the set of conditions and the
matching knowledge to adapt the solution.

3

Rules

Integration of domain-specific rules

within the CaBATA-system have the form

IF <featurel> <rell> <valuel> THEN <feature2> <rel2> [<value2>].

where

featurel contains the feature of the case description that — when satisfying the given condition

— implies a certain modification of the inference.

rell describes the relation between featurel and valuel. This may be one of the ordinary

arithmetic relations (=, #, <, > etc.), or a relation named isA to express if the value
belongs to a certain type hierarchy, i.e. is a sub-type of valuel.

valuel is the value to which featurel is compared using rell.
feature2 contains the feature of the case description for which a certain condition must hold.
rel?2 states the relation to value2 thas must hold for feature2. Here two types are

possible: Firstly, as above it may be one of the ordinary arithmetic relations or the
isA relation. Secondly, it may be a statement indicating the importance of feature2
when comparing two cases (reaching from not important to most important). In
the latter case value2 cannot be selected.

value?2 gives the value to which feature2 is compared using rel2.

On the basis of this scheme, rules may be used in two different ways:

1.

The dynamic similarity assessment may be influenced by increasing or decreasing the importance
of particular features if certain conditions hold, e.g.

IF HOLIDAY_TYPE = CITY THEN SEASON IS OF LESS INTEREST.
stating that, when planning to visit a particular city, the season is less important than usually.

. These rules may serve as restrictions (constraints) when demanding that a particular feature be of

a certain value, for example

IF REGION isA SEA THEN REGION MUST NOT BELONG TO MOUNTAINS.

helps to avoid anomalies caused by the propagation of similarity values through the context graphs
(see section 4) as:

e The Alps have something in common with [taly3.
o [taly has something in common with the Mediterranean Sea.

2To

have something in common expresses that the similarity value between the mentioned feature values is different

from Q, the actual value is of no importance here.
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e Hence: The Alps have something in common with the Mediterranean Sea.

Thus, in combination with the similarity graphs described in section 4 the integration of rules allows
for a similarity assessment which depends on the context of the comparison of the attribute values.

4 Context graphs

For every symbolic feature being part of the case description a context graph is constructed containing
information about both

e generalization and specialization
o similarities

between all possibile? attribute values. )

These graphs have to be defined using binary relations between particular feature values. To serve as
an aid during this process, a tool has been constructed — first of all to allow larger parts of the graphs
to be displayed and edited. Thus the risk of local acceptable changes leading to global inconsistencies®
is reduced (see the example above).

The similarity between two values of a feature itself is expressed using a number of measures ranging
from nothing in common via similar to identical thus giving reasonable flexibility to describe domain
knowledge.

At run time, that is when classification of a case is requested, this context graph is used to determine
the similarity between different values of symbolic case attribute®. If the corresponding nodes of the two
attribute values are connected, i.e. if a binary relation has been specified for these two values. a numerical
equivalence for this relation is returned. If they are not directly connected the similarities are propagated
through the graph. Thus the larger the distance between two nodes the weaker the similarity.

5 Indexing

To implement an efficient case retrieval, CABATA is designed to employ a twofold indexing strategy:

1. By applying a passive indexing to the case database stored cases are excluded from the classification
if they do not satisfy certain conditions required by the case to be classified.
2. On the contrary, active indexing directly searches for cases with certain attribute values.

To give an example how both strategies work together, imagine that the current problem case expresses
that somebody wants to go on a sporting activity holiday to Italy in winter:

s Passive indexing should exclude all cases dealing with city trips {wrong type of holiday), other
destinations, taking place from April to September etc. However, a reference case describing a
bathing holiday in October at the Mediterranean Sea could not definitely be excluded.

o Active indexing, on the other hand, could assume that the customer actually wants to go skiing.

Thus cases describing holiday trips to the Italien Alps from October to March could be searched
for.

So active indexing can be seen as a more sophisticated method using implicit assumptions not ex-
plicitely given in the description of the problem case. However, it is not yet clear how these implicit
assumptions can be derived. Probably the attempt of learning determination rules (section 8.2) will give
useful hints. Currently, only passive indexing is applied within CaBAaTA.

6 Learning

One objective of CABATA was to investigate methods that could enable the system to learn beyond the
mere storing of cases. Currently. two approaches are taken into account:

1Of course, during run time the set of all possible values of a feature may be modified.

SFor instance, an acceptable modification of a single binary relation between two feature values may result in completely
different values being similar to some extent. This is due to propagation of similarities through the graphs.

6 Numerical values are compared by employing a sigmoid function.
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6.1 Modified Explanation-Based Learning

Since pure ezplanation based learning ([10, 11, 12]) seams not applicable’, a slightly modified strategy is
applied: Similar to [13] the user is asked for matching knowledge when a diagnosis is finally selected for
a case and discrepancies concerning that diagnosis are detected (i.e. a user-defined constraint is violated
or there are other cases regarded significantly more similar).

6.2 Modified Learning from Examples

In a later stage, a knowledge acquisition based on the Machine Learning paradigm of learning from
ezamples ([1, 2, 16]) will be applied to the case database. While other CBR researchers (mainly when
dealing with technical diagnosis) heavily rely on this, the assumption of a very weak domain theory again
requires a modified strategy. Either the weak domain theory will prevent the detection of rules leading
directly to a diagnosis for a given description®, or these rules will be applicable only in very restricted
circurnstances, i.e. only for very few problem cases. Furthermore, it might be desirable to extract weaker
regularities — heuristics —, too. This is somewhat difficult when using the generalization based methods.

The idea is, not to learn production rules or decision trees, but to derive determination rules as
described in [9]: How certain attribute values influence other attributes of the case or, possibly, the
diagnosis. An example of such a determination rule has already been shown in section 3: If somebody
wants to go on a bathing holiday he’ll have to go to the sea. On the other hand, a general rule enabling
the system to determine the destination for a given type of holiday can not be derived.

However, this part of CABATA is currently being investigated and it is not yet clear Aow these deter-
mination rules can be learned efficiently.

7 Discussion

7.1 Relation to \other work

Due to the restricted place here only a few authors can be mentioned — far away from being complete.

The two systems that were of particular importance for the development of CABATA will be discussed
in the next sections.

7.1.1 The CcC+-system

The CcC-system ([15, 14]) employs a quite similar idea of using rules to modify the importance of case
attributes. Since the domain is not technical diagnosis, an adaption of the way rules are integrated was
necessary. Furthermore, the following modifications lead to a much more powerful architecture:

1. Not only the diagnosis of the reference case is taken into account — rather all attributes of a case
may trigger rules.

2. The restricted similarity schemes provided in CcC+ have been designed much more powerful in
CABATA by using context graphs (see section 4).

3. While the problem of automatic acquisition of classification knowledge in CcC+ remains completely
unsolved, CABATA at least in some situations explicitely asks for this kind of knowledge (section 6.1).

7.1.2 The PrROTOS-system

The ProTOS-system ([13]), was also motivated by a weak domain theory disabling a pure model-based
approach. To compare different feature values, PROTOS, too, uses matching knowledge to be given to
the system in a predefined language:

1. Featural importances are used similar to the way rules may be used within CABATA (see section 3).

2. Structural knowledge explains relations among different attributes of a case. This is similar to the
use of rules as constraints (see section 3).

However, both systems differ significantly in the way this knowledge is apptied. While CABATA allows
interactions between different case attributes (determinativon rules — see section 6.2), PROTOS focusses
mainly on the target classification, for example (taken from [13]):

“This is due to the assumption of an existing domain theory in EBL.
#1In fact, if this were not the case, the whole problem could be solved using the rule-based approach only.
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ad 1. A seat is essential for the class chair while wheels are spurious.
ad 2: A pedestal enables the chair to hold a person, as do legs.

In the latter case PROTOS additionally employs a much richer language describing functional relations.
This might be integrated in CABATA by enriching the context graph (section 4) with semantic relations.
However, these will be highly domain-dependent.

The attempt to learn from a classification by letting the user explain the discrepancies is extended in
CaBaTa by checking whether previously defined constraints were violated. What’s more, in PROTOS the
explanations are only used to justify a classification while in CABATA domain knowledge may be tought
this way.

Another difference between both systems is the structure of the classification: While CABATA con-
structs a proposal, PROTOS simply chooses one of previously defined diagnostic categories. This, too,

is the main reason for the above mentioned differences: The task of CaBATA is problem solving® while
PRroTOS is used to classify problem cases.

7.1.3 Other research

Concerning the problem of learning of matching knowledge AHa et. al. ({1, 2]) suggest various algorithms
to be applied in a case-based reasoning context. However, for all algorithms a concept description is
required. Thus these algorithms are hardly applicable for wéak-theory domains.

BARLETTA and MARK [8] suggest Fzplanation Based Indezing as a method to use domain-specific
knowledge for an efficient memory management. This could be of use in future work on CABATA. However,
it has to be extended to be more flexible and context-sensitive.

Another project dealing with technical diagnosis is the MoOLTKE workbench ([3, 4, 5, 6, 7, 17]). Here,
too, context graphs are used to represent experience knowledge and an attempt is made to combine
various sources of knowledge and inference strategies. However, it is not clear, whether all results can be
simply adapted to other domains {(e.g. decompaosition of tasks, use of causal knowledge).

RissLaND and SKALAK ([18]) employ a miézed paradigm approach: Their CABARET system consists
of two co-reasoners, a rule-based and a case-based one. Both are capable of running in a stand-alone
manner — in CABARET they work together using an agenda-based controller. Though CABARET
is applied to legal reasoning, it should be well-suited for the technical domain, too: There are rules,
underlying causalities etc., and the case-based part could enable the system to work more efficiently by
envoking the right part of the rule base. Again, how this approach could be applied to weak-theory

domains remains an open question — here the rule-based part is much to restricted to be capable of
running as a stand-alone machine.

7.2 Future work

Future work on the CABATA-system will include

¢ improvement of the algorithms used to propagate similarities through context graphs to avoid
certain anomalies,

e research about the possibilities to integrate Machine Learning techniques to allow learning beyond
the storage of cases, i.e. on the level of domain knowledge,

» integration of methods for efficient memory organization and case retrieval (e.g. indexing).
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Abstract

This extended abstract adresses part of our architecture of individual agent in multiagent
environment: the identification process. This process allows to understand the actual situation
and select the goal or action that best suits the situation. To achieve this, we are developing
a testbed in which the identification is based on past situations of many agents. This type of
identification is described in this short paper.

1 Introduction

We are currently developing the architecture of an intelligent entity that can evolve in a
multiagent environment [CHAI92, CHAI93]. A multiagent environment is a system in which
evolve many entities that are more or less intelligent and more or less specialized. These
entities are called "agents”. To conceptualize the notion of agent, one can think of a factory
where several robots realize different tasks individually or in group. These robots can be seen
as agents. The muitiagent theory is derived from distributed Al and may be used in several
domains, among which are: distributed problem solving, decision aiding, process control,
etc. We presently elaborate the architecture of an agent that would be ideally adaptable to
any application domain. To reach this goal, several components must be integrated into the
architecture [CHAT93]. Our agent is made up of those components:

e The Perception module: it is used to sense the environment.
e The Identification module: its purpose is to understand the meaning of the sensed data.

o The Deliberative module: it is used to evaluate the consequences of several potential
goals or actions, using a cognitive map.

o The Planning module: it builds plans to realize the agent’s goals.

*This research is supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERCQ).

tpreferred for correspondance.
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e The Action module: it simply executes the actions commanded by the other components.

Our aim in this paper is to detail the Identification module. The task of this module is to
understand the situation and select the goal or action that best suits the situation.

We are developing a testbed simulating the behaviour of several vehicles automated with
our architecture. In this case, the task of the Identification component is to analyze the
perceived situation, which may be composed of several elements like traffic lights, vehicles,
walls, etc. According to the situation, the process has to choose among various actions such
as slow down, break, turn left, etc.

In a simulated world, it is possible to anticipate every situation that an agent can face.
So, in this case, it is feasible to settle the behaviour of an agent with rules like:

IF <vehicle in front is too close> THEN <slow down>
or
IF <traffic light is red> THEN <stop>.

However, in the real world, the combination of individual elements may produce situations
that are very complex and it is quite hard to define an adequate behaviour for every possible
situation with such rules.

Therefore, we feel that case-based reasoning is more appropriate than rule-based reasoning
to fit the needs of the Identification module. Case-based reasoning allows to refer to past
situations if a specific action is not specifically defined for the current situation. It is not
a static process like rule-based reasoning; it allows the agent to acquire experience (that is,
learn from new cases) and adapt itself to new situations.

However, case-based reasoning is much harder to implement than rule-based reasoning.
Furthermore, the use of case-based reasoning in conjunction with multiagent theory is not a
very well documented topic, so we had to take our inspiration from work purely dedicated
to case-based reasoning, as [RIES89] [HAMMS90] [GOL91] [KOLO93]. Thus, we present in
the next sections a design for a case-based reasoner that meets the needs of the Identification
module. We named this process Case-based Identification.

2 The Case-Based Identification Process

As mentioned in the previous section, the Identification module receives as input a situation
description and has to select an action that is well suited for this situation.

However, the action is not chosen only accordingly to the situation, but also accordingly
to the mental state of the agent. The mental state of an agent consists of the knowledge,
beliefs and goals of the agent.

For example, if an agent has the goal reduce fuel consumption and another agent has
the goal reach destination as fast as possible, they will react differently if there is a
vehicle in front of them: thé first agent will probably choose to follow the vehicle in front of
him and slow down if needed, while the second agent is very likely going to pass the vehicle.
Thus, we see the impact of the mental state on the choice of an action.

We are now ready to describe in detail the case-based identification process, depicted on
fig. 1.
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Figure 1: The Case-based Identification Process

The Matcher receives as input a situation description and the current mental state of the
agent. Its task is to retrieve from the Cases database the case that best matches the current
input. The cases database initially contains a set of cases obtained experimentally or defined
by the designer. A case description is made up of a situation description, a mental state
description and the action associated with this case.

Sometimes, the Matcher retrieves a case identical to the current one, but often, there is
no identical case in the database. In this situation, the Matcher uses similarity metrics to
compare the current mental state and current situation to stored cases. The case that is the
most similar to the current case is selected and the action associated with it constitutes the
Selected action. The new case is then linked to the Selected action and stored in the Cases
database by the Storer.

The similarity metrics are dependent from the application domain and are determined
according to the requirements of the application.

Following the storage of the case, the Selected action is sent to the Action module to be
executed.

Ideally, the Selected action would always have the expected effects. However, due to the
lack of pertinent cases, the Selected action may not be appropriate for the current situa-
tion and have undesired consequences for the agent himself or for the community. In those
circumstances, the Repairer receives the description of a Failed case.

The Repairer analyses the Failed case, using a database containing a description of the
Consequences of the actions. It then tries to select a more suitable action for this case and
sends the Repaired case to the Storer, which stores it into the.Cases database.

But, for the Repairer to receive such a feedback telling him that a certain action went
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wrong, someone must have realized that this action had undesirable consequences. This
feedback can come from the agent himself or from an other agent. For example, the Selected
action may cause effects that go against the own goals of the agent or, for some reason, the
agent may be unable to execute the action. In these cases, the agent himself is in position to
understand what is going wrong and give the description of a Failed case to the Repairer.

However, since the agent evolves in a multiagent environment, the feedback may come from
an other agent. An advantage of evolving with other entities is that you may get experience
from more specialized (or more competent) agents. So, if the actions undertaken by an agent
harm an other agent or the community in general, the agent in the wrong might receive a
message from someone else containing the description of a Failed case.

3 Indexing of the Cases

For certain application domains, the Cases database may become huge. So, it is important to
use a storage scheme that will allow for a quick retrieval of stored cases and an efficient use
of memory. We think that MOPs (Memory Organization Packages) are well suited for this.
The concept of MOP has been introduced by Roger Schank as a way to structure and index
scenes. He defined a scene as:

”A memory structure that groups together actions with a shared goal, that oc-
curred at the same time. It provides a sequence of general actions. Specific
memories are stored in scenes, indexed with respect to how they differ from the
general action in the scene.” [SCHAS82]

Since this concept of scene is very close to our concept of situation, it naturally follows that
we can use MOPs to adequately index situations. In the same work, we find the following
definition for a MOP:

”A MOP consists of a set of scenes directed towards the achievement of a goal.

A MOP always has one major scene whase goal is the essence or purpose of the
events organized by the MOPs.” [SCHAS82] -

Thus, we can use MOPs to link situations relating to the same context, that is, situations
sharing identical elements. The major scene (or, in our case, major situation) of a MOP con-
tains the elements shared by all the situations related to that MOP. The situations are indexed
_ by their differences from the major situation. This kind of organization provides an almost
immediate access to all situations present in memory and an appreciable saving of memory [?].

Conclusion

In this paper, we presented a method of case-based reasoning that allows an agent to identify
a situation in a multiagent environment and act consequently. Using this method, an agent
can get experience by storing new cases and can learn from his mistakes through the repair
of failed cases.
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When we designed the agent architecture, we tried to make it psychologically valid. From
this point of view, a process of case-based reasoning fits well in our architecture, since this
process stays at a very cognitive level. The concept of MOP, which is used to represent
cases in mermnory, also respects the criterion of psychological validity, since it is based on the
functioning of human memory.

We feel that case-based reasoning is a powerful concept and we plan to integrate it into
other components of our agent architecture. The planning module, for one, will use a process
of case-based planning to elaborate the agent’s plans.
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Abstract. Even though today case based reasoning is applied in a wide range of different areas, there
are only few systems which make use of case based techniques for network management. In this paper,
we outline the domain of network management and highlight consequences for the application of
problem solvers operating in this domain. After this, we present a case based prototype performing a
task of closed-loop network management upon a simulated computer network together with first results.

1 The Domain of Network Management

Network Management covers the operations and strategies for designing, installing, maintaining and operating
computer and telecommunication networks. Whereas design and installation of networks both take place off-line,
operation and maintenance have to be done during the network's operational phase.

In this brief introduction we will focus upon the latter tasks which are intended to guarantee the desired quality of
network services to the user and to collect and evaluate information.

In order to guarantee quality of service, one has to optimize performance, manage configuration and faults and the
system has to be kept secure. Information has to be gathered for the purposes of accounting and for gammg
information for future network design.

The actions mentioned above all rely on the elementary tasks of monitoring the network's state, reasoning about
this state and controlling the network (see fig. 1).

Monitoring provides information about the state of the devices forming the network. After information retrieval,
reasoning takes place in order to plan actions to be taken, e.g. for keeping a connection's throughput at a desired
level. The reasoning task includes storing information for future use or learning about the network's behaviour.
Finally, if the managed network's state has been recognized as optimizeable, undesirable or even critical, adequate
control actions have to be taken in order to drive the network back into a desired state. Each of those elementary
tasks may be automatted up to a certain degree.

'

Learning & Reasoning

L . Design
Monitoring Control & Ins%all

Network

Figurel: Basic actions in network management

In early network installations it was necessary for operators to log in to every single computer system attached
to the network for retrieving and changing its network oriented behaviour. Devices without remote access, like
hubs, bridges and routers had to be monitored and controlled by lamps and switches or by special control
terminals. With this kind of installation, network management could be regarded as an adventure, where both the
running and the thinking had to be done by network operators.
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Because of growing network complexity the need for systems taking over the "running" part from the network
operator emerged. This led to the development of todays management systems. While there are still many
problems to solve, those systems provide a uniform access to a large number of different network devices,
including computers as well as devices uniquely dedicated to network operation. This is accomplished by making
use of standardized management information formats and standardized protocols for the exchange of such
information [RFC 1157] [ISO 10040]. Every device that implements an agent, thereby providing access to its
management information may be managed by programs taking over a manager role. There exist various
structuring principles for management systems consisting of agents and managers, but explaining these would be
out of the scope of this paper.

Network
Operator

-

Management
Protocol

Manager | ‘ | Agent

Managed
Resources

Managed
Resources

Figure 2: Basic components and structure of a management architecture

Many of today's management systems provide mechanisms giving the operator a better overview of the managed
network. They comprise: -

* graphical network maps with indication of the site where a problem occurs

 filters which allow for hiding of less interesting network events

¢ tresholds which can be set for performance parameters which trigger alarms, if exceeded

» execution of shell scripts or stmple actions when an alarm occurs in the managed network

Nevertheless, in todays network management systems the reasofling has still to be done by human experts. This
task becomes increasingly difficult with growing network complexity and calls for intelligent support.

2 Case-Based Reasoning applications in Network Management

Network management is a good domain for application of knowledge based techniques. The knowledge
acquisition bottleneck is not as severe as in other domains, given that many network experts have a computer
science background and thus may easier express their knowledge in a form adequate for knowledge representation.
Even so, it is relatively easy to motivate network operators to test new approaches.

2.1 Existing Systems

A number of efforts have already been undertaken to support network operators by means of knowledge based
systems [Goyal 91). Quite a few rule based expert systems for network fault diagnosis, network design and
decision support in network topics have been developed so far, but until now there are only two publicated
approaches making use of case based reasoning in network management.
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NETTRAC [Brandau 91] is a case-based network management assistant. It is concerned with traffic management
in telecommunication networks and is designed to advise network operators of problems, and to recommend sets
of controls that would alleviate those problems. Cases represent a complete history of a single network problem
and the control actions that alleviated the problem.

CRITTER [Lewis 93] is a case-based trouble ticketing system. When an operator solves a network problem, he
fills in a so called trouble ticket. The ticket, consisting of a problem description and a solution is entered into a
case base and may be retrieved when a similar problem is entered to the system, later on.

The systems mentioned above have in common, that user interaction is mandatory, that is, there are no
knowledge based systems which automatically accomplish a closed-loop network management task, performing
monitoring, reasoning and controlling.

2.2 Requirements for Network Management Expert Systems

The requirements to be fulfilled by an expert system performing closed-loop management are:
+ real time response
» work with minimal information
¢ self control
« easy knowledge acquisition and adaptability

e self adaptation

The task of network management often requires fast reaction on problems for minimizing the effects of network
component failures or local bottlenecks. Therefore it is necessary that an efficient reasoning technique comes to
use and that it be implemented in an efficient way. Because of good scalability of case based approaches, it seems
easier to build a case based expert system that is both fast and compact at a time, than to build a rule based
system meeting the same requirements.

Whereas telecommunication networks often have separate lines for passing on management information, in most
computer networks the same lines are used for user communication and for passing on management information.
Thus, in order to keep the additional overhead of network management small, it is important that an expert
system performing closed-loop management solves problems based on as little information as possible. It would
be helpful, if the problem solver could deal with imprecise information, thereby allowing to increase the time
between information updates.

When operating in a closed-loop mode, i.e. monitoring, reasoning and control tasks are to be accomplished
without human interaction during normal operation, it is important that problem solvers operate in a pessimistic
manner. That is, control actions have to be verified in case of uncertainty before applying them to the managed
network. This can either be achieved by simulations previewing the resuits of corrective actions or by reporting
intended actions to human operators for verification.

A network management system has to operate in a rapidly changing domain. It is thus crucial that the expert
system's knowledge base can be easily set up and adapted to new environments. In the domain of network
management, it is.possible to automatically acquire knowledge by monitoring network operation and by
evaluating simulation runs. To make use of these and also to facilitate knowledge acquisition through network
experts a simple knowledge representation is needed, likely to be encountered in the area of case based reasoning.

If the environment in which the expert system operates changes, e.g. a new site is connected to a wide area
network, changing the network’s topology as well as traffic patterns, the expert system must adapt itself to the
new situation. This is easily done when using case based techniques relying on graded matches and on treshold
values that can automatically be modified.

3 A Case-Based Problem Solver for Closed-Loop Network Management

The requirements mentioned in the previous section, together with previous experience in the field of case based
reasoning, led us to try a case based approach before investigating other knowledge based techniques for
automating network management.

The ExSim Prototype which will be described here, consists of three parts. First, there is a simulation program,
simulating a wide area network to be managed. The network is composed of gateways which exchange messages,
using static routing techniques, Due to this simple routing strategy, local overload may occur decreasing the
network's performance, if routing information is not changed by means of management. This task is delegated to
a case based reasoner which detects bottlenecks and malfunctions through classification of network states by
comparing them to the problem parts of cases stored in its case base.
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Figure 3: Structure of the ExSim-Prototype, performing closed-loop network management

3.1 Knowledge Representation

A case consists of four parts. It is composed of a problem description, a solution description, a unique name and
two treshold values, o and 3. Problems and solutions are described by sets of feature/value pairs. Each feature
describes an aspect of a possible network component's state. ‘

A problem description consists of a set of gateway routing tables joined into one feature, load information on
every network link (i.e. output queue lengths), a topology table and gateway states (i.e. a gateway can be 'up' or
'down'). The domain of the routing table feature is a set of integer matrices, the link load feature's domain is the
set of positive floating point numbers and node state features are associated with the domain {'up', 'down'}. Qur
approach naturally allows for arbitrary domains, but they are not used in the prototypes implementation.

A solution description only consists of a set of routing tables for the managed network's gateways represented by
a single feature, like above.

The tresholds o and 3 are used for deciding wheter a case is a candidate for problem solution at all or if a case's
solution may be applied to the current network problem, respectively. The property 0 < 0. < 6 < 1 is always
assured by the system. Whenever a case's similarity to the current problem exceeds its a-treshold, it is added to
the list of problem solving candidates. If similarity exceeds the 3-treshold, too, following systemi policy, its
solution may be applied to the current problem. Thus, it is possible to influence the probability of cases being
chosen for problem solving by adjusting o and 8.

3.2 The Similarity Measure

The similarity measure applied for matching cases against network state descriptions is based on the ratio model
by Tversky [Tversky 77]. We calculate the ratio between evidences indicating commonalities and all evidences
recorded, by means of the function sim, where

a-common
a-common + b - different

sim(state, case) = e [0,1].

common means the number of features present as well in the network state description as in the case's problem
\description and whose values are classified as similar. Two values are classified as similar if their similarity
‘exceeds a global treshold t. different is the count of features which are present in the network state description and
in the case’s problem description but whose values are classified as not similar.

\ ifferent feature relevances are dealt with by making it more difficult to be classified as similar for values
adjoined to highly relevant features than for values adjoined to less relevant features.
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At present, network state descriptions always contain the same features as the problem description parts of cases.
So it is not necessary to deal with features contained in the cases problem description but not in the network
state description, and vice versa. Later on, this will be accomplished with a slight modification to the above
function (see [Wel3 91]).

To implement a pessimistic strategy, we set the value of coefficient a to 1 and chose 2 as value for coefficient b.

Each feature domain has its own similarity function. Node state values have similarity 1 if either both values are
‘up' or both values are 'down'. Else their similarity is 0. Values describing network topology must be identical to
be assigned similarity 1, else similarity O is assigned. To compute similarity of two routing tables, the number
of coinciding entries is counted and divided by the total number of entries in the routing table. Two link load
values are similar if they both exceed a treshold C, thereby representing critical link loads, or if they both do not
represent critical link loads. C is adjusted according to the maximum and minimum link loads occuring in the
network state for guaranteeing specifity of the similarity measure. Thus, link load features are not treated
independently by the matcher.

3.3 The Problem Solving Strategy

Critical network states are recognized by the reasoner either by receiving a network alarm message indicating an
overload in one of the network's gateways and including network state information or by explicitely polling the
network state. Network state information consists of a set of gateway routing tables, load information on the
network's links (i.e. output queue lengths), topology information and gateway states (i.e. a gateway can be 'up'
or 'down"). Upon reception it is compared to the problem parts of cases stored in case memory by means of the
similarity measure, described above.

If a matching case is found, the solution contained in the best matching case is sent to the active network
components, hopefully alleviating the critical situation. A solution consists of a new set of routing tables for
the gateways concerned by the overload or being the source of it.

Should the best matching case's solution already be in use upon occurrence of a network atarm, the case is
penalized by increasing its o and 8 tresholds, thereby reducing the case's competetiveness in future matches.

Finding no matching cases may have different meanings, depending on if the problem solver was triggered by a
network alarm, or not. In the latter case it indicates, that in terms of the problem solvers knowledge, the network
is operating correctly, and no action has to be taken. In the former case, it means, that for an existing network
problem there is no solution to be found in case memory. Thus, new knowledge has to be acquired. This is done
by passing network state information to a program simulating a network similar to the one being controlled,
with the sole difference, that’a dynamic load dependent routing strategy (e.g. shortest path routing) is
implemented in that network. After the simulation run has ended, resulting in a set of routing tables applicable
to the managed network, these are combined with the description of the current network problem, yielding a new
case. This case is put into the case memory and its solution part is passed on to the managed network.

3.4 First Results

We compared the ExSim prototype's performance to the performance of a variant of the shortest path routing
algorithm, embedded into the same testing framework. Comparisons were carried out for several different network
topologies, as well as for two classes of test scenarios. Class 1 scenarios assumed heavily loaded networks
(average load of each link is about 75% of its maximum capacity), class 2 contained scenarios assuming an
average network load of 75% maximum capacity with peaks resulting from single batch transmissions.

The results for é network consisting of eight gateways and ten full-duplex links were as follows.

Problem solving with the shortest path routing algorithm was generally about 10 times faster than with the case
based reasoner. Implemented in C++ and running on a Sun Sparc 1+ workstation, typical problem solving
duration for the case based reasoner was 0.5 seconds if no case had to be learned and 1 second if a new case had to
be created. Under the same circumstances typical problem solving duration for the shortest path routing
algorithm was 0.08 seconds. Nevertheless, the case based reasoner with a simulation program serving as
knowledge source kept the managed network stable, almost whenever the shortest path algorithm did (We call a
network stable, if local overloads may be alleviated by rerouting and average link load does not increase over
time, given that traffic characteristics do not change substantially). In about 10% of these cases, network
behaviour wasn't as good as after solving the same problem by directly using the shortest path algorithm. This
is due to the increased problem solving duration as well as to the unverified graded match applied for case
retrieval.

To solve by retrieval 60% of the problems occurring in a class 2 scenario with three batch jobs inserted to the
network at different times, a case-base with about 100 cases is necessary. A larger number of cases is necessary,
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to solve by retrieval the same amount of problems in a class 1 scenario. The reason for this behaviour is, that in
class 1 scenarios all kinds of problems are equally like to occur whereas occurring problems are much more
specific for class 2 scenarios. Note, that because we didn't implement a mechanism for discarding cases, the case
base always tends to grow over time. However, only about one third of cases contained in the case base are
frequently reused, so that a significant improvement can be made here.

‘Whereas the ExSim prototype meets real-time requirements imposed by the particular test domain, performs well
for the intended purpose and adapts well to changes, some of the requirements for network management expert
systems are not taken into account, at all. The implemented prototype doesn't verify the appropriateness of-
solutions before applying them to the network. Also, in the approach chosen, complete state information for
every network component is needed for problem solving. In a real system this would lead to an enormous
overhead by network management traffic dramatically decreasing network capacity.

4 Conclusion

There are many application areas for case based techniques in the field of network management. Test results of
the prototype described in this paper show, that case based problem solvers may even be efficient enough to
perform tasks of closed-loop management of computer networks. This may be especnally valuable, when solving
problems which can't be solved by standard algorithms.
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Abstract. This paper presents a case-based simulation ‘environment devised to assist neurophysiologists in
the design and analysis of simulation experiments with biologically oriented neural networks. We describe the
problem domain and our specific notion of a case, discuss the complex structure of such cases and present a
method to automatically transform the numerical raw data derived from simulations into a symbolic behavioral
description that can be used for further inferences.

1 Introduction

MORBIS - Modeling of Biological Systems - is a case-based, interactive simulation environment devised to assist
neurophysiologists in the design and analysis of simulation experiments with biological neural networks. In such
a complex problem domain the problem parameters are highly interdependent and solutions are experimental
setups fine-tuned through an iterative process of design, simulation, and analysis. Utilizing existing solutions for
new problems and for the comparison of simulation experiments thus becomes an interesting issue. The capture
and automated use of this type of problem-solving suggests the use of case-based reasoning (CBR) methods.
Although this paper presents an Al application in neurophysiology, we omit an in-depth introduction to biological
neural networks, the electro-chemical processes in neurons and synapses that are modelled in our simulator and
the like. Instead we assume a basic understanding of these processes and, where necessary, provide sufficient
detail along the following sections so that the non-biologist can understand the rest of the paper.

The next two sections discuss the problem domain and the simulation life-cycle. We show where the experience
and expertise of a neurophysiologist performing simulatidn experiments can be assisted by CBR-methods. Our
notion of a case in this specific context is described in section 4. Section 5 presents a method to automatically
transform the numerical raw data derived from simulations into a symbolic behavioral description that can be
used for further inferences by the system itself. In section 6 we briefly show the interpretation of neural behavior
as a pattern language and finally we summarize and give an outlook on future activities.

2 A Model Neuron

The underlying mathematical model of a neuron that we use in our simulations is the classical cable model as
proposed by Hodgkin and Huxley ([81) and others ([9]). A neuron and its components are interpreted as parts of
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Fig. 1: A neuron (a) and its compartmental model with electrical diagram of the passive properties (b). The corre-
sponding differential equations are numerically computed in each simulation time step. (¢} An example network with
four neurons created with the interactive graphical network editor.

an electrical circuit which is described in terms of differential equations that are numerically computed for each
simulation time step. Fig. 1 shows an example of such a model neuron and some of its parameters. These
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parameters are to be set by the human experimenter in order to achieve a specific behavior of the single neuron.
We implemented an interactive graphical editor to design assemblies of such neurons and to compose small neural
networks (see Fig. 1).

3 Simulation Life-Cycle

In a process called the design-simulation-analysis-cycle (c.f. (16]) the human experimenter has to fine-tune a
variety of parameters for the network to show a certain, desired behavior.

3.1 Design

Typically, he starts off with a baseline experiment, whose outcome reminds him of the desired behavior of the to-
be-created experiment. He has to define the topology of the network and the neurons’ connectivity, he has to
choose values for a multitude of parameters for each neuron and each synapse, and for the whole network. The
experimenter also forms-hypotheses about the expected result of the simulation, i.e. the expected activity pattern
of the neurons. But since many parameter settings are involved in designing a network, exhaustive search on all
possible parameter combinations is intractable. At this step, case-based reasoning imitates the use of experience
and expertise a human experimenter has acquired: old experiments may have shown interesting outcomes and
results that could be exploited in the current situation of designing a new experiment. Thus, experience with old
experiments that exhibited similar behavior might be a promising base to start off. ‘

3.2 Simulation

Typically, simulations of biological neural networks produce only numerical raw data, as e.g. in the simulation
system GENESIS ({17}). Our simulation, too, is done numerically by computing. the differential equations that
describe the network. The behavior of each neuron can be observed by visualizing the numerical ouicome as a
membrane potential trace.

3.3 Analysis

But for a neurophysiologist it turns out that certain gualitative features of the simulation (e.g. the presence of
spikes, or the fact that a neuron remains inactive during a certain period of time whilst another neuron shows
activity) represent thé main results of a simulation. In this case we would like a computer program to provide (and
understand) a representation of the results that includes these qualitative features. Simply graphing the results is
helpful but not sufficient for these purposes: a plotting routine does serve to summarize data for the user, but it
fails to provide that summarized data in a more abstract and symbolic form that may then be further examined by
the computer itself (c.f. [6]). Fig. 2 (a) shows a typical plot of neural activity within a network. We developped
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Fig. 2: (a) Neural activity plot with time [msec] and amplitude [mV] axes (the figure shows two subsequent bursts).

(b) Automatically generated symbolic textual description of this neural activity pattern. (c) Features in the membrane
potential of a neuron. EPSP=excitatory postsynaptic potential, IPSP=inhibitory postsynaptic potential.

algorithms and a data structure (called episode structure) enabling us to represent an overall qualitative
description of the results of a simulation or of real digitized experiment recordings. Fig. 2 (b) gives an example of
an automatically generated symbolic description which has been textualized. In the analysis phase of the
simulation life-cycle, the experimenter has to answer questions like the following:

¢ Did the network show the desired or expected behavior (Aypothesis evaluation)?

 Are there any important behavioral patterns within this very special experiment (intra-experiment analysis)?

* What are the observable cffects of parameter changes along the line of experiment sequences (inter-experi-
ment analysis, trajectory analysis, sensitivity analysis)?

* Is it possible to cluster networks or experiments in classes (e.g. oscillators, thythm generators)?

# Can we identify topological substructures within a complex network that are responsible for certain behavioral
aspects?

Aside from having appropriate utilities to graph and statistically interpret the numerical data, the system should

;\supply assistance to answer the questions listed above and propose experiment modifications for a new
experiment design. When addressing the problem of automated experiment analysis, the key issue is to construct
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a qualitative history of membrane potential plots. This is described later in section S. The next section discusses
the use of CBR in the design and analysis phase and it presents our notion of a case.

4 Case-Base Reasoning

Case-based reasoning is a general paradigm to reason from experience that can be represented as cases. It
comprises a memory model to represent, index, and organize past experience and a process model to retrieve,
integrate, and modify cases. [2} and [10) provide an introductory overview on CBR. [13] gives a comprehensive
compilation on actual activities in this area.

4.1  General Considerations

Expertise mainly consists of experience. A neurophysiologist doing many computer simulations of neural
networks becomes an expert in this domain. He remembers, which experiments he already did and knows about
their results. He knows which experiments were successful with regard to a certain aim, which experiments failed,
and he has an idea of how to tune parameters in order to validate hypotheses associated with specific networks.
Thus, from a CBR point of view, in our domain the notions case and experiment are identical.

4.2  Cases with Complex Structural and Behavioral Component

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the be havior
of this structure (see Fig. 3 (a) and [5], [14], [15]). The structure comprises the topology of the neural network
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Fig. 3: (a) Simulation experiments as cases. They consist of complex structural and behavioral components. (b)
Retrieval of neuronal structures with similar behavior.

induced by the various neurons and their synaptic connectivity, their specific parameter values (such as
capacitances, transmitter release thresholds etc.), and, optionally, stimulus functions applied to a neuron’s soma or
dendritic compartments. The behavior exhibited by such a network is the computed soma membrane potential
traced for each neuron over the whole duration of the simulation. These recordings are transformed into a
qualitative description using attributed domain-dependent features which contain further information like
duration, amplitude, and frequency. This symbolic description represents the neuronal behavior at a much higher
abstraction level than the data-intensive outcome of the numerical simulation and yet is fine-grained enough to
capture the most significant features and can be further examined and analyzed by the system itself (see sections 5
and 6). . ‘

4.3  Using Cases

After a simulation run, each experiment (now consisting of the network structure and the qualitative behavioral
description) is stored and integrated into a memory structure called case memory. Old experiments are used in two
distinct ways:

1. Design: Prior cases provide a baseline network and set of parameters that are to be modified for new experi-
ments in an iterative cycle of parameter testing, analysis, and parameter adjustment until the desired behavior
of a neural network is achieved.

2. Analysis: Prior cases are examined to identify network topologies with similar behavior, but possibly very dif-
ferent structure.

A very challenging issue is the analysis of causal relationships between structure and behavior. Digitized
membrane recordings of real in-vivo experiments that have been appropriately transformed into a symbolic
description could be matched against experiments stored in the case base to identify experimental setups where
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neurons exhibited similar behavior. Fig.3 (b) illustrates this idea. This use of cases will assist the human
experimenter by giving hints as to which structure might be found in an organism, given the observable behavior.

5 Transformational Steps in Experiment Analysis

The simulation results as obtained by the simulator’s output have to be transformed into a symbolic
representation. Thus they can be interpreted by the system and used for further inferences (c.f. [6], [11], and [12]).
The final representation called episode-structure has the following properties: a) It is a qualitative description of a
simulation result with descriptional primitives used by the human experimenter. b) It simultaneously realizes
data-abstraction and data-compression. ¢} It can be input to other inference processes. We give a short description
of these transformational steps in the subsequent subsections.

5.1  Segmentation into Intervals: Scale Space and Interval Tree

For segmenting membrane potential functions into meaningful intervals, various kinds of points (such as extrema
of a function and its derivatives) can serve as boundaries. Out of this set of candidates, significant segmentation
points are to be selected, generally by application of a digital filter. An automated function segmentation is
supposed to extract significant segmentation points and to comply-with the following requirements: Omission of
noise and unimportant details but preservation of characteristic phenomena, applicability to arbitrarily shaped
functions, and significance of interval boundaries based on comparison with the local neighborhood.

These demands introduce the problem of scale and impose the use of a variable and adaptive filter parameter, that
filters the function at each point with respect to the local neighborhood. Segmenting the function with different
scales is achieved by a variable filter parameter and continunos smoothing. Maxima and minima vanish at a
certain scale. Extrema whose scale exceeds a threshold o partition the function into intervals. For different filters
o, these intetvals are subdivided into subintervals so that the whole function can be interpreted as hierarchical tree
structure: the root node is the whole function, offsprings represent subintervals with corresponding scales. A
stability criterion determines, which segmentation is to be taken.

5.2 Feature-Classification

Feature classification is the transformational step where domain-dependent knowledge is introduced for the first
time. Features represent typically shaped regions within a function where a domain-specific interpretation can be
directly associated with (see Fig.2 c). Feawures are detected by a simple rule interpreter, which classifies
sequences of function segments according to certain properties {(e.g. length, slope, curvature etc.). For different
types of functions, separate rule sets are applied.

5.3 Grouping into Repetitions

Some phenomena as e.g. spikes often appear in packets (this phenomenon is called burst). Especially repetitions
can be analytically exploited by asking “how does a property of a feature change from one occurrence in a
repetition to the next?”. Thus it makes sense to think of repetitions of features (or combinations of them) as
episodes rather than of single features themselves. Our system finds the shortest possible description in terms of
repetitions; these repetitions also can be nested. For example, if A, B, C are features, then the descriptions of the
sequences ABABCABC and AAABCAAABC become AB(ABC) and (A>BCF, respectively.

5.4  Symbolic Description

Within our system, the treatment and recognition of repetitions represents the final step towards a “symbolic”
function description. As shown in Fig. 2 (b), the description can be visualized in textual form and integrated in an
automatically generated analysis report. Experiments frequently are performed in series with slight variation of
parameters or conditions. From one simulation to another, potential plots of involved neurons look very similar.
Thus the episode sequences can be mapped onto each other, and analogous episodes can be identified. We
implemented a matching algorithm for episode structures, which finds a relation with maximum total time of
overlapping similar episodes. Two episodes are considered similar, if both are features of the same type or both
are repetitions of similar patterns. Thus, e.g. bursts with 5 or 8 spikes can be matched. The differences between
identified episodes (e.g. a change in the average frequency of a burst, the strength of a repetition of epsps and so
on) are particularly relevant for experiment analysis. Thus the matching algorithm can be used to discover
dependencies between experiment parameters and neuron behavior. The user may define formulae constructed of
episode parameters. Similar episodes within the experiment series are matched, consequently the variation of the |,
specified formula can be traced automatically, hence supporting the neurophysiologist’s analysis. The generated
dependency function could be submitted to the same transformation process and be described symbolically.
Moreover, it can be used for predicting experiment results by means of correlation analysis.
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6 Neuronpotentials as Pattern Language?

Another interesting issue we are currently investigating is the interpretation of the symbolic representation of
transformed neuron potentials as a sentence S of a pattern language L “spoken” by the neuron. An interesting
question thus could be: “What is the underlying grammar G of a neuron’s language L with L = L(G)” and is it
possible to inductively infer this grammar by presenting sufficient example sentences?
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Fig. 4: (a) Simultaneous presentation of the neural activity pattern of all four neurons N1-N4 of the example network.

The generated corresponding episode structure is superimposed in this illustration. (b) Patern description of the neu-

ral activity. s=spike, i=ipsp, e=epsp, r=rising, f=falling; *=repetition. Arrows indicate in which direction to read the

tuples, the oval around the first tuple in (b) corresponds with the oval in (a).
The overall behavior of the entire network can be expressed using tokens of vectors consisting of episodes that
occur simultaneously in different neurons. In the example of Fig. 4 (a), which shows the neural activity of the 4-
neuron network of Fig. 1 (c), the behavior can be described by the pattern in Fig. 4 (b), where each 4-tupel of
simultaneous episodes is regarded as attributed character. Several observations can be made using this
representation: for example, in the first wple [s*, i, r, ], a spike in neuron N1 (s*) occurs with an ipsp in
neuron N2 (i*). Neurons N1 and N2 exhibit a similar behavior five tuples later, inducing the hypothesis of
inhibitory coupling between these two neurons. The characteristic property of this type of network is the existence
of three distinct states, where only one of the neurons can fire. Another approach we are currently investigating is
the use of tree grammars to describe the resulting episode structure. Fu and others ({41, {7]) propose techniques,
how to inductively induce tree grammars from tree examples that are presented to the system.

7 Summary and Conclusion

MOBIS is a case-based, interactive simulation environment devised to assist neurophysiologists in the design and
analysis of simulation experiments with biologically oriented neural networks. In such a complex problem
domain the problem parameters are highly interdependent and solutions are experimental setups fine-tuned
through an iterative process of design, simulation, and analysis.

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the behavior
of this structure. The structure comprises the topology for the neural network induced by the various neurons and
their synaptic connectivity and their specific parameter values. The behavior exhibited by such a network is the
computed soma membrane potential traced for each neuron over the whole duration of the simulation. These
recordings are transformed into a qualitative description using attributed domain-dependent features. This
symbolic description represents the neuronal behavior at a much higher abstraction level than the data-intensive
outcome of the numerical simulation and yet is fine-grained enongh to capture the most significant features and
can be further examined and analyzed by the system itself. After a simulation run, each experiment is stored and
integrated into the case memory. Prior cases provide a baseline set of parameters that are to be modified for new
experiments in an iterative cycle of parameter testing, analysis, and parameter adjustment. The case-based
approach is consistent with psychological models of human experimentation performance: expertise and
experience are essential in the search for appropriate baseline cases, for the parameter adjustment to meet new
requirements, and for the result interpretation. The MOBIS system bases its activities on its past experiences and
includes the human experimenter in the design-simulate-analyze cycle.

The simulator with the underlying neuron model is fully implemented and can be used as a stand-alone system, Tt
1s written in C and runs under OSF/MOTIF on Unix workstations. The simulation evironment is implemented in
Objectworks/Smalltalk-80, running on a variety of different platforms, Both systems communicate via files
allowing for a shallow coupling of simulator and intelligent experimentation environment.
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The system is being developed and used in collaboration with a neurophysiology project in the Kaiserslautern
Department of Biology investigating the neurophysiological grounds of the femur-tibia junction and the central
flight pattern generator of stick insects (c.f. [3]). Future work will investigate on the applicability of pattern
languages and their corresponding grammars such as tree grammars ({4], [7]) in our particular domain. We then
would be able to describe, compare and classify neuronal behavior in terms of grammars. A problem still would
be the description of temporal relationships between activity patterns in different neurons. Here we will evaluate
Allen’s time interval relations ([1]). The case memory and appropriate indexing and retrieval structures are
currently being defined and will be implemented soon.
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Abstract. Some commercial shells are available to simplify the development of case-based
systems. We describe how the process model of case-based reasoning (CBR) is realized by
these shells. Furthermore, we examine if a standard real-world and ill-structured diagnostic
application can be realized using CBR shells: recommending a strategy type in management
consultation. We compare implementations using a CBR shell with a rule-based approach in
this domain. Finally, we give a qualitative assessment of four shells with regard to business
consultation applications. '

1 Introduction

Shells can be regarded as an indicator of the degree of generalization achieved in a particular area of
knowledge-based systems. To support case-based reasoning, several commercial PC-based shells are available:
ART-IM, CBR Express, ReMind, ESTEEM and INDUCE-IT [1,4,5]. After a short look at -how the process
model of CBR is realized by these shells, we report on our efforts to implement a strategy consultant as a real
world test application for the shells.

Common processes in a case-based system can be described by the following cycle [3]:

Input of a problem description, given a case memory that is not empty

Provision of several possibly relevant previous cases from the case memory using a similarity measure
Selection of the most similar case(s)

Adaptation of these case to the current situation

Internal test and critique of the adapted solution

External evaluation and feedback

Learning by updating the memory or the similarity measure

A ol e

The first generation shells mentioned above support this process model for CBR in similar ways:
Input: Cases are represented as attribute-value pairs, where the values are numerical or symbolical.

Provision and Selection: These two steps are replaced by a one step retrieval process in all these shells.
" Previous cases are selected by nearest neighbor retrieval, counting the weighted results of the comparison of the
relevant attributes. For each attribute, predefined criteria for a partial match can be selected. In this way,
numbers or texts differing only slightly are recognized as similar. For each attribute one has to specify if it is
supposed to influence the similarity of cases. Then, the kind of match is determined, together with the
numerical weight of the resulting similarity. Only ESTEEM permits user-defined rules to compare the values
and to determine the weight.

Adaptation: With the exception of CBR Express, it is possible to adapt a retrieved similar case to the current
situation. This may be achieved by using a rule language that allows for an adaptation according to value
differences in certain attributes.

The subsequent steps of the process model are not supported by these shells. With regard to functionality in
the first four phases, shells can be partitioned in two groups:

o  Simple shells (ART-IM, CBR Express): flat case structure, feature matching using predefined alternatives,
fixed weights.

e Advanced shells (ESTEEM, ReMind, Induce-It): hierarchical case structure allowing derived features,
user-defined matching procedures, runtime weighting (not all shells), user-defined adaptation.
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The goal of our work was to examine if despite these restrictions concerning knowledge representation and
process model a standard real-world and ill-structured diagnostic application can be realized using CBR shells.

2 The Domain: Management Strategy Consultation

The objective of the domain chosen (management strategy consultation) is a comprehensive evaluation of the
ethical values of the management, the capabilities of the employees and the performance of the administrative
systems in order to develop a well-suited corporate strategy. In order to fulfill all these requirements_ the
management consultants have to take into consideration a lot of data.

A great deal of work has been done in analyzing general or generic types of company planning situations,

and buliding structural models for developing general strategies and focus in any situation [7, 8].
Industry types have been classified for sirategic planning purposes as emerging, declining, mature, or
fragmented. Within each of these industry types, there are various possible external factors affecting planning,
such as the comparative company and competitor position relative to opportunities and critical success factors
(which can be affected by buyer and customer strength, by the likelihood of the introduction of substitute
products, and by the threat of new entrants), special company markets, organizational and financial factors, and
competitors’ size and number. Different types of company positions (dominant company, low share of the
market, locally concentrated) have also been identified. Based or a study of these characteristics Porter [7, 8]
and others have identified a variety of possible generic sirategies.

As a consequence, a dependency framework for strategy planning was developed. Dependencies within this
framework are often represented as heuristic if-then relationships. For example, if a specific industry type,
company, competition, and specific market conditins are given in a situation, then a certain type of general
strategy might be worthwhile to consider.

This approach to developing strategies reflects the way many strategic planners work during the initial
stages of a project. Additionally, for a preliminary analysis of a situation planners often review their past
experience in search for similar patterns that may be useful in solving the situation.

When reviewing a situation, the planner observes, for instance, that the present siuation under study
involves a mature industry, where several large competitors are dominant in the market, and where the
company being planned for is a relatively small player. The human planner would review any experience with
other mature industries to search analogous factors that might suggest possible solution patters, useful to
explore in the present. So empirical know-how and experience are the guidance for successful strategic
planning, making it a candidate for case-based reasoning, as there doesn't exist a causal model. For a prototype
implementation we chose a subtask of the planning process, i.e., the classification of a recommended strategy

_type of strategic business units (SBU) [7, 8]. Additionally, we try to evaluate the different shells concepts with
respect 1o this classification task.
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Figure 1. Attribute dependencies in the strategy classification domain
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The domain was modeled in a standard rule-based fashion by the system CASA ("Computer Aided Strategy
Audit", [2]) that is currently in routine use. CASA analyzes three strategic dimensions that influence the
success of an enterprise; corporate culture, market and competitive situation, and strategic cost position. We
tried to organize the case-based prototype along CASA's market and competitive situation analysis.
Additionally, we built on the CASA system while determining the relevant attributes and their influences on
the classification task. Figure 1 shows a model of how to gain strategic recommendations from business data.
This general approach provides a useful starting point for developing a prototype case-based decision support
system in the strategy planning area. In general, three possible generic strategies can be identified:

o Cost leadership: The products or services of the SBU are offered to all or most industrial customers. There
is an aggressive investment in productive assets, and a minimization of costs in corporate sectors like
Research & Development, service, sales staff, marketing, etc. in order to reach an extensive cost advantage.

e Differentiation: The products or services of the SBU are unlike others in the industry. The overall goal is to
make them unique in the industry. Customers honour the outstanding benefit to be offered by the products
or services. .

e Focus: In general, the SBU doesn't have a strong position, but it has some special strength in certain
products or services. The goal is to focus its resources on the area of its strenght.

The CASA system was implemented using a rule-based expert system shell. Based on the data requested from
the user, data abstractions and strategy types shown in Figure 1 are computed by rules.

3 Case-Based Versions of the Strategy Consuitant: First Results

Our long-term goal is to assess and compare rule-based and case-based approaches in the domain chosen. For a
proper comparison, independent judgements on the quality of the respective solutions is necessary. At the
moment, we do not have these judgements yet. Therefore, we describe the performance of versions of our case-
based alternative named CASTRAC ("Case-Based Strategy Consultation™) only with respect to the rule-based
system, thus regarding CASA as the reference system.

Several versions of CASTRAC were implemented using the shells ESTEEM and ReMind. By keeping track
of the shell features used, we are able to estimate if a given version can be reimplemented using simpler shells.
The CASTRAC versions implemented first contain extremely simple similarity measures. They regard all case
attributes as equally relevant, without assigning individual weights to the attributes.

CASTRAC's recommendations were compared in three different ways with those of the rule-based CASA
system. First order agreement requires the CASA solution to be exactly the strategy type of the most similar
case retrieved by CASTRAC. Second order agreement allows the CASA solution to be the strategy type of the
most similar or second most similar case retrieved by CASTRAC, third order agreement is defined
analogically.

We tested the versions with a case base of 30 consultation cases with solutions generated by CASA. 10
problems had to be solved case-based by CASTRAC. The results are surprising: The simple CASTRAC version
performed quite well, resulting in a 80% first order agreement and a 100% second (and third) order agreement
with the CASA judgements. As the knowledge engineering complexity of the CASTRAC system was only a
small fraction of that of the CASA system, we conclude that for decision support systems simple case-based
retrieval mechanisms can be effective if the user is competent enough to assess the cases retrieved.

Furthermore, we tested versions where derived attributes were considered in addition to the problem data.
These derived features can be supplied by the user or (as we did) by CASA. However, a certain amount of
" domain knowledge is needed for an adaquate derivation. However, the quality of the solutions could not be
improved by taking into account these additional attributes.

Currently, we are exploring if CASTRAC can be improved by allowing partial matches of attributes. We-
tried to realize this by ordering attribute values and defining similarity according to this ordering. However, we
found the solution quality to decrease, which we cannot explain. Further efforts are needed to accomplish better
results.

In addition to that, we arc preparing experiments with a human strategy consultation expert in order to
assess the quality of the case-based and rule-based version with respect to human experience. As the rule-based
version may also be deficient with respect to human judgement, we might have to revise the evaluation results
obtained so far.
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4 Suitability of CBR Shells for Management Support Systems

In the following, we try to give a provisional qualitative assessment of the suitability of four shells with respect
to business consultation tasks and with respect to an integration in common software environments. We
distinguish between the technical, the organizational, and the functional dimension. The results are shown in
Figurc 2: ,

ESTEEM ReMind CBR-Express ART-IM
Technical Aspects
Flexibility & e ® ®
Speed ® e &) <
Presentation ® 2 ® ®
Tuning e. © @ ®
Organizational Aspects
Developer & @ © ®
End user &) <) © ®
Integration ® <) ® ®
Functional Aspects
Modeling ® <) ® &)
Cases S S ® ®
Similarity © e ® ®
Adaption <) ® ® &)
Feedback ® e ® ®
Learnig ® ® ® ®

Figure 2. Qualitative assessments of four CBR shells
Concerning the technical assessment, we take four aspects into consideration:

° Flexibility: Is an application easily adaptable to changing demands, e.g., when interface or functionality
requirements change?
Speed: How long does it take to transfer, process and present data?
Presentation: Are there tools to present data as common business charts?
Tuning: After first results were obtained, is there a variety of ways to tune an application?

Three organizational aspects are regarded:

° Developer: Does creating an application require advanced programming skills? Is it even possible for
non-programmers?

. End user: Is the user interface difficult to handle

° Integration: Can the CBR application be integrated easily in a conventional software environment?

Finally, we assess the shells with regard to six aspects of functionality:

Modeling: Is it possible to model even complex domains?
Cases: What kinds of case structures are possible? Are nested cases and cases of variable length allowed?
Similarity: Is it just possible to choose a similarity measure from a set of predefined building blocks, or
can the measure be completely user-defined?
Adapration: How well does the shell support the adaptation of retrieved cases to the current situation?

" Feedback: How difficult is it to integrate user feedback concerning the quality of the solation?
Learning: Beside augmenting the case base, is learning possible, e.g. by an adaptation of the similarity
measure with regard to feedback?
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INDUCE-IT was left out of the comparison as we did not have enough time to evaluate it due to the difficulty to
find a suitable MS-Excel version INDUCE-IT operates with.

We should stress that the gradings for ART-IM refer only to the case-based functionality. In contrary to the
other shells, ART-IM is a hybrid development environment for knowledge-based systems with a rich
functionality, but offers only basic support for CBR compared to dedicated case-based reasoning shells.

Finally, we tried to aggregate the performance assessments with regard to the three dimensions (technical,
organizational, functional). The results are shown in Figure 3.

Organizational
Aspects

high

CBR-Express

ESTEEM
medium
. ART-IM
poor | Technical
— 1 Aspects
poor medium high
Figure 3. Overview of shell characteristics
(circle diameters correspond to success in functional dimensions)
5 Discussion

Schult and Janetzko [6] examine how the case-based process model is realized by these first generation CBR
shells and identify elements of the model that are not supported sufficiently, even though generalized methods
are known. Based on these shortcomings, they characterize demands on the second generation of case-based
expert system shells, in order to make them an adequate environment for complex case-based knowledge
engineering.

_ Here, we just want to add two demands obtained in the management consultation domain:

. The consultant should have the choice whether derived attributes are computed or entered by hand. If
they are computed, a flexible language should be provided for that task.

) The system should allow for a change of the¢ similitary measure taking the consultation context into
account (e.g., if a quick, but not optimal solution is to be found).

In summary, applications using CBR shells may be a means to ease knowledge acquisition in classification
domains. Even without advanced CBR techniques, a prototype with a good performance in the domain of
management strategy consultation could be realized. However, CBR solutions might not be as reliable as rule-
based or model-based ones. Therefore, we see the role of such a consultant as supporting the expert rather than
taking decisions on its own.
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