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Preface 

The First European Workshop on Case-Based Reasoning (EWCBR-93) is aimed at researchers and prac­
titioners interested in the methodological progress and the extensions of the areas of application of 
Case-Based Reasoning. Case-Based Reasoning is a topic which becomes more and more important and 
has raised considerable int.erest recently. It supports knowledge acquisition and problem solving, and it is' 
related t.o key words like machine learning, analogy, cognitive modeling, similarity, information retrieval 
among others. Although case-based reasoning has a well defined place within AI-related conferences, we 
felt t.hat the topic deserves a workshop on its own also in Europe, as there have been such events in the US. 

The program committee accepted 21 submissions for presentation at the workshop and about 50 submis­
sions for the poster sessions. This volume contains all- these extended abstracts. The scientific program 
also includes four invited talks, system demonstrations as well as one panel discussion. An overview on 
Case-Based Reasoning as well as the presentation of commercial CBR systems is scheduled for the first 
day. 

An overview on Case-Based Reasoning is given by Agnar Aamodt (University of Trondheim, Norway) 
and Emic Plaza (CEAB-CSIC, Spain). 

Invited talks cover important aspects of Case-Based Reasoning: 

Janet 1. Kolodner (Georgia Institute of Technology, U.S.A.): 
Making Computers Creative - A Case-Based Approach. 

Katharina Morik (University of Dortmund, Germany): 
A Case for Inductive Learning. 

Mark T. Keane (Trinity College, Ireland): 
Analogical Asides on Case-Based Reasoning. 

Manuela Veloso (Carnegie Mellon University, U.S.A.): 
Analogical/Case-Based Reasoning in General Problem Solving. 

We thank all who submitted their papers. We are most grateful to the members of the program com­
mittee for carrying out the difficult task of paper selection. It was the general feeling that we had an 
unusual responsibility because this is the first workshop on the topic in Europe and will most likely be a 
milestone for the future development of this area of research. 

The forthcoming proceedings of the workshop will contain the final versions of a selection of long papers. 

Michael M. Richter 
(program chair) 

Stefan Wess, Klaus-Dieter Althoff, Frank Maurer 
(organizing committee) 
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Introduction 

In case-based reasoning approach, new problems are solved using past solutions of pre­
viously solved problems. Analogy is based on an extraction of solved problems, and the 
most important difficulty is finding significant aspects shared by the solved problems and 
the new problem [Car86]. Representing a case not only by its characteristics but by 
memorizing a trace of the problem solving reasoning for this case extends the scope of 
case-based reasoning frbm problem solving to knowledge acquisition. In ANAIS (ANA­
logical Intelligent System), a case is a set of characteristics organized in a hierarchy, and 
also an instantiated task network which represents the reasoning. Two phasis are used 
to select the most similar case. In the first one, a selection of some cases is based on the 
characteristics, and in the second one, a retrieval of the most similar Case is based on a 
matching algorithm of reasonings. Although this study is independant of any domain, 
an application is implemented in electromyography. The electromyography is a diagnosis 
medical technique, its results are used to predict muscular or nervous diseases. 

The first phase: a preselection 

In order to retrieve cases similar to the new problem from memory, the first phase has 
to select cases with the same characteristics before matching the reasoning. The main 
difficulty encountered is to formulate the characteristics of a problem. In electromyogra­
phy, few characteristics are avaible, such as: general disease, suspected diagnostic to be 
confirmed, and some important symptoms. Because of small number of characteristics, 
the reasoning matching phase is important to refine the set of Cases selected by the first 
phase. 

(Scheme) {symptomemoteor 

sorte-de.;:; symptome;
 

nature-de syrnptome Sdomaine "moteur·"
 

( Slot ) groupe-de-symptome 

$domaine 

~ "fatigabilite" "cram.pe" 
"faiblesse musculaire" 

tenitoire-muscle Sliste-de anatomie-muscle; 
territoire-nerf $liste--de anatomie-Derve; 
territoire-racine Sliste-de anatomie·root; 
territoire-plexus Sliste-de anatomie-plexus I 

Figure 1: A scheme in SHIRKA 

The characteristics are stored in SHIRKA [RU91] representation knowledge model. A 
Shirka entity describes a class of objects and its instances. An object called a "scheme", is 
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Introduction

In case—based reasoning approach, new problems are solved using past solutions of pre-
viously solved problems. Analogy is based on an extraction of solved problems, and the
most important difficulty is finding significant aspects shared by the solved problems and
the new problem [Car86]. Representing a case not only by its characteristics but by
memorizing a trace of the problem solving reasoning for this case extends the scope of
case-based reasoning frbm problem solving to knowledge acquisition. In AN AIS (ANA-
logical Intelligent System), a case is a set of characteristics organized in a hierarchy, and
also an instantiated task network which represents the reasoning. Two phasis are used
to select the most similar case. In the first one, a selection of some cases is based on the
characteristics, and in the second one, a retrieval of the most similar case is based on a
matching algorithm of reasonings. Although this study is independant of any domain,
an application is implemented in electromyography. The electromyography is a diagnosis
medical technique, its results are used to predict muscular or nervous diseases.

1 The first phase: a preselection

In order to  retrieve cases similar to the new problem from memory, the first phase has
to select cases with the same characteristics before matching the reasoning. The main
difliculty encountered is to  formulate the characteristics of a problem. In electromyogra—
phy, few characteristics are avaible, such as: general disease, suspected diagnostic to be
confirmed, and some important symptoms. Because of small number of characteristics,
the reasoning matching phase is important to refine the set of cases selected by the first
phase. _
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Figure 1: A scheme in SHIRKA

The characteristics are stored in SHIRKA [RU91] representation knowledge model. A
Shirka entity describes a class of objects and its instances. An object called a “scheme”, is



defined by its slots, each slot having several facets. A facet can be a list of possible values, 
some constraints on the slot value or can reference another scheme (Figure 1). The classes 
are organized in a specialisation hierarchy with inheritance mechanism, which means that 
a class inherits slots from its super-classes. The inherited slots from the super-classes also 
inherit their constraints and a class can have some additionals slots which are its own 
slots. 

In ANAIS, the slots of a class represent the characteristics of a case, except one slot 
which is· a list pointing on cases sharing these characteristics. The root class has been 
defined with one shared slot : the slot "cas" in wich are founded all the cases attached 
to the class. All the existing characteristics of the domain are supposed to be stored in 
a hierarchy (Figure 2). Adding some new characteristics means to modify the hierarchy, 
it can be the moving of classes, the creation of a new slot in a class or a new class. 
Coherence problems can appear and the coherence maintenance is also a preoccupation 
in the laboratory [Cap93]. 

Classl 

Class2 Class3 
Differential diagnostic General desease 

/~ I 
Class4 Class5 Class6 

Diagnostic to 
be determined 

Diagnostic to 
be confirmed 

Ginical antecedents ='yes' 

case ={cas11, cas1?, cas63} 

Class7 
Clinical antecedents = 'yes" 

case ={casl, cas?, casl2, cas22} 

Figure 2: The hierarchy of characteristics 

When the user tries to solve a new problem, he provides some of its characteristics. For 
example, in medical diagnosis, these characteristics can be probable diagnostic already 
known, general desease, clinical antecedents or muscular desease. With these given char­
acteristics and those defined in the hierarchy, some cases can be selected. This extraction 

. relies on the SHIRKA classification algorithm. This one allows a given instance with some 
slot values attached to the root class, to determine all possible classes the instance could 
be attached to 1. So, the user creates a new instance of the root class, he provides some 
characteristics (slot values), and the classification algorithm finds all possible classes of 
the instance. With the slot "cas" of each possible class, a set of cases is built. Thus, the 
matching reasoning phase is relieved with this reduced number of cases. 

Representation of problem solving reasoning 

The reasoning representation of a case takes place in the problem solving environment 
SCAI (Scientific Computing with Artificial Intelligence) [PR9l]. In this formalism, a task 
is modeled as a class with slots describing its inputs and outputs, and can be decomposed 

1For more information about the classification algorithm see [MRU90] or [Mar93] 
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defined by its slots, each slot having several facets. A facet can be a list of possible values,
some constraints on the slot value or can reference another scheme (Figure 1). The classes
are organized in a specialisation hierarchy with inheritance mechanism, which means that
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In ANAIS, the slots of a class represent the characteristics of a case, except one slot
which is‘a list pointing on cases sharing these characteristics. The root class has been
defined with one shared slot : the slot “cas” in wich are founded all the cases attached
to the class. All the existing characteristics of the domain are supposed to be stored in
a hierarchy (Figure 2). Adding some new characteristics means to modify the hierarchy,
i t  can be the moving of classes, the creation of a new slot in a class or a new class.
Coherence problems can appear and the coherence maintenance. is also a preoccupation
in the laboratory [Cap93].
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case = {casl‚  cas'I, cal, cas22}

Figure 2: The hierarchy of characteristics

When the user tries to solve a new problem, he provides some of its characteristics. For
example, in medical diagnosis, these characteristics can be probable diagnostic already
known, general desease, clinical antecedents or muscular desease. Wi th  these given char-
acteristics and those defined in the hierarchy, some cases can be selected. This extraction

“relies on the SHIRKA classification algorithm. This one allows a given instance with some
slot values attached to the root class, to determine all possible classes the instance could
be attached to 1 .  So, the user creates a new instance of the root class, he provides some
characteristics (slot values), and the classification algorithm finds all possible classes of
the instance. With the slot “cas” of each possible class, a set of cases is built. Thus, the
matching reasoning phase is relieved with this reduced number of cases.

2 Representation of problem solving reasoning

The reasoning representation of a case takes place in the problem solving environment
SCAI (Scientific Computing with Artificial Intelligence] [PR9].]. In this formalism, a task
is modeled as a class with slots describing its inputs and outputs, and can be decomposed

1For  more information about the classification algorithm see [MRUQO] or [Mar93]



into sub-tasks until elementary tasks, corresponding to a decomposition of a complex 
problem into sub-problems. This model had been built onto the SHIRKA representation 
system, thus this phasis is naturally integrated with the previous one. The reasoning 
trace is described by a hierarchical network of instantiated tasks. 

A complex task can be defined by sequential sub-tasks or choice sub-tasks (automatic 
choice or interactive choice). An elementary task references a method to be executed. All 
types of tasks can be specialized, allowing a context adaptation. Iteration and recursion 
are defined explicitly by a recall of a task in one of its subtasks (Figure 3). 

S uential task 

End-diagnostic 

Task to be specialized 

Choice-hypothesis Choice-protocol ( Diagnostic) 

Recursivity 

Figure 3: Representation ~f tasks in SCAI 

The first assumption is that there is a task base in which the user can choose a task 
and execute it automatically or decompose it himself. This base allows to solve some 
problems in a specific domain. When the user tries to solve a problem, sometimes he 
realizes that he cannot completely solve it with the actual base, even if some tasks are 
usefull. With the usefull tasks indicated by the user, AN AIS provides the similar cases, 
in order to allow the user to extend the knowledge base of tasks to solve the new problem. 
In this way, the task base is improved covering more and more problems. Another way is 
when the user is lost in the solving of a problem, a similar case can help him. The user 
can also have found a new way to solve a problem and he wants to extend the knowledge 
base. In our problem solving environnement, several task bases can be loaded, and the 
user can pick some tasks in the differerent bases to solve a new problem. Providing similar 
cases in each base can help the user to build other complex tasks in order to cover the 
solving of the new problem. 

In each of these instances, the user wants to solve a new problem and he partially 
gives the reasoning to 'achieve it. Thus, he describes a set of instantiated tasks which 
are decomposed or not. So, the description of a new problem to be solved consists in 
two parts, the characteristics of the problem, and some parts of instantiated networks 
corresponding to a partial resolution of the problem. The extracted cases from the first 
phase are compared with partial descriptions corresponding to a partial reasoning in order 
to obtain the most similar reasoning. ·Determining the most similar case in the second 
phase needs to match instantiated task networks and to compute their similarity. 

Second phase:. case evaluation and similarity 

In the environment problem solving, there are two modes of execution, a free one and 
a guided one. In the guided mode, the user gives the principal task and the inference 
mechanism system automatically decomposes and solves the problem according to the 
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can also have found a new way to solve a problem and he wants to  extend the knowledge
base. In our problem solving environnement, several task bases can be loaded, and the
user can pick some tasks in the differerent bases to solve a new problem. Providing similar
cases in each base can help the user to build other complex tasks in order to  cover the
solving of the new problem.

In each of these instances, the user wants to solve a new problem and he partially
gives the reasoning to achieve i t .  Thus, he. describes a set of instantiated tasks which

. are decomposed or not .  So,  the description of a new problem to  be solved consists in.
two parts, the characteristics of the problem, and some parts of instantiated networks
corresponding to a partial resolution of the problem. The extracted cases from the first
phase are compared with partial descriptions corresponding to a partial reasoning in order
to obtain the most similar reasoning. Determining the most similar case in the second
phase needs to match instantiated task networks and to compute their similarity.

3 Second phasez. case evaluation and similarity
In the environment problem solving, there are two modes of execution, a free one and
a guided one. In the guided mode, the user gives the principal task and the inference
mechanism system automatically decomposes and solves the problem according to the



knowledge base decomposition of the task. In the free mode, the user can choose many 
tasks and solve them independently. In this mode, a partial reasoning can be expressed. 

Matching these partial descriptions with past stored reasoning allows the retrieval of 
the most similar solution, and allows the user to complete his reasoning with the similar 
case and extend the task base. The partial resolution of the new problem is memorized 
with the history of executed tasks. This history is a set of executed tasks and is represented 
in a LISP list in which all sublists are subtasks of a high level task. The reasonings of 
selected cases is a list of tasks, also in LISP formalism. 

In the matching function, the input is a list corresponding to the reasoning of a case, 
and a partial reasoning described by the user. The output of a first algorithm is a list of 
all tasks shared by the inputs. The evaluation of these shared tasks depends on the task 
importance and on the generality or specificity of these tasks. Some tasks are independent 

. of the case, for example, in electromyography, the diagnostic always begins with anterior 
face and extremity examinations. These tasks have not to be taken into account for the 
similarity calculus. 

Then, some equivalence rules are necessary to determine the similarity of reasonings. 
For example, if a task t 1 is not explicitly in one of the input, but if chained subtasks 
executing completely t 1 appear, thfse subtasks have to be considered equivalent to t 1 
and vice-versa. Some simplification rules are also necessary; like: cut the recursive-task 
associated tree, cut the terminal-task associated procedure, cut the control task and trans­
formations are to be used to identify equivalent sequences. Some rules are independent 
of the domain and others are expressed according to electromyography~ 

Before the similarity assessment, significance are to be associated to all executed tasks. 
Now,a significance task depends on the domain and may be also on the specific case. 
To avoid to the user giving these significance values, we have some rules for the relative 
importance of tasks. For example, more a task has level of subtasks or has direct subtasks, 
more it is an important one and recursive tasks are the most important ones. Actually, a 
structural similarity. assessment defined by [Bis92] is studied to fit as well as possible the 
human reasoning in the domain. 

Issues 

In electromyography, which is a set of techniques allowing the diagnostic of nervous or 
muscular diseases, a system has been developped [ZVC92]. However, this system does not 
take all the reasoning into account. The behavior of the system is like a beginner, execut­
ing all the possible examinations for a disease hypothesis. Giving case-based reasoning 
to the system can allow the examination protocol to be optimal. In addition of the case 
representation and the retrieval process of a similar case, an objective is to improve the 
knowledge base. 

In the matching of reasonings, numerous equivalence and simplification rules are nec­
essary. These rules have to be independant of the application domain and are based on 
the environment problem solving definition. Otherwise, the task significance can depend 
on the considered domain. In issue, the generalization of similar problems into a generic 
reasoning model can be an extension of case-based reasoning. The first advantage is to 
relieve the case memory, in substituting the similar cases by their generic models. The 
second advantage is to improve knowledge acquisition by using these'generic models for 
the probleJI!. re~soning expression. 
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Abstract. In this paper we present a quantitative similarity metric for retrieval of past cases imperfectly 
described and explained. We introduce the concepts of matching situation and situation snippet which are . 
used in our metric. 

We describe CLASH, a Case-Based Reasoning Expert System implemented in PROLOG, which applies 
this metric. The results provided by CLASH are compared witli another system based on a different metric 
for case retrieval. 

1. Introduction 
The power of a Case-Based Reasoning (CBR) System [10, 5, 3] is greatly determined by its capability to 
retrieve the relevant cases for prediction of the new outcome. The retrieval process involves indexing cases. 

A nearest neighbour algorithm for case retrieval, described by Duda et al. [2], searches through every case in 
memory, applies a similarity metric and returns the case (or k cases) with the past situation most similar to the 
new situation. This similarity metric counts the number of facts that the past and the new situations have in 
common. 

Two other systems CYRUS [4] and UNIMEM [6] index cases by facts in the past situation that are predictive of 
other facts in the outcome. Predictiveness of the facts is detennined by some correlation calculations. This has 
some drawbacks, specially when calculations are perfonned on a small data set [8]. . 

The combination of nearest neighbour and knowledge-guided techniques led to the development of hybrid 
systems joining CBR and Explanation-Based Leaming (EBL) techniques [7]. These systems use domain 
knowledge for constructing explanations of why a situation had a specific outcome in the past. These 
explanations are necessary to judge the relevance for future retrieval of the facts describing a past situation. This 
approach was followed by Cain et al. [1]. They use a CBR+EBL similarity metric in which case explanations 
influence but do not determine the relevance assigned to past situation facts. 

Past case explanations are subject to imperfections. These are related to the absence of a perfect theory on the 
domain and to imperfections in the past situation description (complete proof trees can not be constructed when 
the situation description lives out some relevant facts). 

We report three kinds of imperfections in explanations: (1) broken explanations; (2) partial explanations; (3) 
incomplete set of explanations. Broken and partial explanations, not considered in Cain's metric, are discussed 
in this paper. 

In section 2, we make a brief overview of the similarity metric for retrieval proposed by Cain et al. and report 
four limitations in this metric. In section 3, we describe a new metric that overcomes the drawbacks reported 
before. In section 4, we present CLASH, a Case-Bas~ System, implemented in PROLOO, for evaluation of the 
highway code offences that where in the origin of car accidents. This system uses our metric. We compare the 
ability of CLASH to retrieve relevant past cases with a system that uses the Cain similarity metric. Finally, in 
section 5, we make some comments concerning the advantages of our approach. 

2. A Brief Overview of Cain et al. Similarity Metric 
In Cain et al. approach a case is composed by a set of facts that represent a past situation (PS), another set of 
facts that represent an outcome (OUTC) and a set of explanations (EXPS) of why the situation had such an 
outcome. A new situation (NS) is also represented by a set of facts. 

Cain et al. use a pararneterized similarity function influenced by the explanations produced by the domain 
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In section 2, we make a brief overview of the similarity metric for retrieval proposed by Cain er al. and report
four limitations in this metric. In section 3, we describe a new metric that overcomes the drawbacks reported
before. In section 4, we present CLASH, a Case-Based System, implemented in PROLOG, for evaluation of the
highway code offences that where in the origin of car accidents. This system uses our metric. We compare the
ability of CLASH to retrieve relevant past cases with a system that uses the Cain similarity metric. Finally, in
section 5, we make some comments concerning the advantages of our approach.

2.  A Brief Overview of Cain e t  al. Similarity Metric
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theory for each case in memory: 

n n 
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ex. n + ~ L relevance(fi) 
i=1 

where: 

I if fi = fi' {I if fi is relevant 
sim(fl, fi') = 0 relevance(fi) = { if fi -:I- fi' 0 if fi is irrelevant 

fi is a fact in the past situation, fi' is a fact in the new situation. A fact fi is relevant if it is included in an 
explanation for the past case. The ex. parameter represents the weight of a match between any fact in the past 
situation and a fact in the new situation. Parameter ~ represents the additional weight of a match between a 
relevant fact in the past situation and the same fact in the new situation. 

If ~ is set to zero then the evaluation function ignores the relevance of facts and a pure Similarity-Based 
match is performed. With positive values for ex. and ~ a CBR+EBL based metric is performed. 

Although this metric bas produced interesting results when compared with a nearest neighbour based 
retrieval or with a pure knowledge-guided retrieval the following points weaken Cains et al. approach: 

(1) It assumes all explanations are complete. ' 
As it is accepted that past situation descriptions and domain theory are both imperfect it is expected to 
have imperfect explanations in cases. 
Facts in the past situation that are relevant for imperfect explanations must have a different treatment 
from those that are relevant for complete explanations. 

(2) It assigns the same relevance to a fact, independently of belonging to a small or a large set of facts that as 
a whole influences or determines an outcome fact. 
It is expected that the unmatching of a fact from a set with few facts that influences or determines an 
outcome fact is more harmful than the unmatching of a fact from a set with many facts. So, it must be 
assigned a higher relevance to a fact of the frrst type than to one of the second type. 

(3) It does not discriminate between a fact that is relevant for one explanation and one that is relevant for 
several explanations. 
It is sound to assign a higher relevance to a fact which influences several outcome facts than to one that 
influences only one outcome fact. 

(4) It does not discriminate between two cases, one with a complete set of explanations and another with an 
empty set of explanations. 
As past situations may be imperfectly described it is sensible to prefer cases that are explained over 
cases that are not. In a completely explained case it is knoWn Which facts in the past situation 
description influence or determine the outcome. In a case with an empty set of explanations this is 
unknown. 

In the next sectionwe describe a similarity metric that does not suffer from these limitations. 

3. An Alternative Approach 
In our approach a case is composed of a past situation, an outcome and a set of explanations of why the 
situation had such outcome. We consider the three kinds of explanation imperfections described before: (1) 
broken explanations; (2) partial explanations; (3) incomplete set of explanations. 

re I I \ ups)' re \ ~ ~ ps J re 'I \ I PS 

~ rEXPS 
~ V ~ ~ ~E~PS 

~ \I \J 
EXPS 7­ ___ 

lC c fwC fPUTC)~ (a) J ~ r w Or$>UTCl (b) " (~'wOr?UTC) (c) 

FIg. I - (a) a case WIth a complete set of explanations; (b) a case WIth an mcomplete set of explanations; (c) a case 
with a partial and a broken explanation. 

A broken explanation is one in which there is a gap between the proof tree and the case outcome (e.g., In fig. le 
the second proof tree from the ieft). A partial explanation is one whose proof tree omits some branches. 
Branches labeled with a '+' represent a step in which some are absent) (e.g., In fig. Ic the second step in the 
proof tree on the left). In a case with an incomplete set of explanations some outcome facts are not explained 
and so are not end of a proof tree (e.g., The cases represented in fig.s lb and lc. Facts f' z and f" z in the 
outcome are not end of a proof tree). 
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Facts in the past situation that are relevant for imperfect explanations must have a different treatment
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It is expected that the unmatching of a fact from a set with few facts that influences or determines an
outcome fact is more harmful than the unmatching of a fact from a set with many facts. So, it must be
assigned a higher relevance to a fact of the first type than to one of the second type.

(3) It does not discriminate between a fact that is relevant for one explanation and one that is relevant for
several explanations.
It is sound to assign a higher relevance to a fact which influences several outcome facts than to one that
influences only one outcome fact.

(4) It does not discriminate between two cases, one with a complete set of explanations and another with an
empty set of explanations .
As past situations may be imperfectly described it is sensible to prefer cases that are explained over
cases that are not. In a completely explained case it is  known which facts in the past situation
description influence or determine the outcome. In a case with an empty set of  explanations this is
unknown. ,

In the next section we describe a similarity metric that does not suffer from these limitations.

3. An Alternative Approach
In our approach a case is composed of a past situation, an outcome and a set of explanations of why the
situation had-such outcome. We consider the three kinds of explanation imperfections described before: (1)
broken explanations; (2) partial explanations; (3) incomplete set of  explanations.

Fig. 1 - (a) a case with a- complete set of explanations; (b) a case with an incomplete set of explanations; (c) a case
with a partial and a broken explanation.

A broken explanation is one in which there is a gap between the proof tree and the case outcome (e. g... In fig. 1c
the second proof tree from the left). A partial explanation is one whose proof tree omits some branches.
Branches labeled with a. ‘+’ represent a step in which some are absent) (e.g., In fig. 1c the second step in the
proof tree on the left). In a case with an incomplete set of explanations some outcome facts are not explained
and so are not end of a proof tree (e.g., The cases represented in fig.s 1b and 1c. Facts f’z and f”z in the
outcome are not end of a proof tree).



New Sltuadon:
 
(Iony(a) • ~ .Idangerous diivmi(aj. low_visibil .Iunsate diSt(6.a3)
 

Case In Memory:
 

Matching (matcblng fact I sltuadon snippet to wblch matching fact belongs): 
dangerous_driving(a) I (dangerous_driving(a)) strong 

dangerous_driving(a) I (dangerous_driving(a),unsafe_dist(b.a),on_its_side(b)) weak 

unsafe_dist(b,a) I (dangerous_driving(a),unsafe_dist(b,a).on_its_side(b)) weak 

car(b) I{car(a),car(b))undetennined 

l&&mdi 
car(V) means wyehicle V is a car".
 
cp(V,P) means ",Tbe coIli;ion point on
 
vehicle V was P" .
 
lD_lts_s1de(V) means "Vehicle V was
 
at its sile d Cle road when the
 
accident took place".
 
reversing(V) means "Vehicle V was
 
reversing".
 
m1Usbn_ssr(VI,V2) means "Bef<re
 
theco.lisim vehicles VI and V2 wore
 
on the same side of the road".
 
daq;erous_driving(V) moans "Vehicle
 
V w.s doing dangerous driving" . 
unsafe_d1st(VI'yZl means "Vehicle 

. VI did nit. guanl a sare d islMlce frlm 
vehicle V2" . 
jnsdC unsafe_d1 st(V I,V 2) means 
"Vehicle VI had a juslificati<n nit to 
guard a safe distance from vehicle V2 
due to an irregular action taken by V2". 
iJlTence(V; Y) means "The 'offence Y• 
•Irbuted blbe driverofvehicle V ....... 
cause for the .cciden~' . 

Fig. 2 - Case Matching. 

Case indexing involves the concepts of past situation, matching situation, strong, weak, and undetennined 
situation snippet. A past situation represents a problem or event in the past that had the outcome described in a 
case. A matching situation is a situation that is obtained by going down (from the past situation to the outcome) 
in one or more explanation trees in order to gather the maximum number of facts that match the new situation 
(e.g., In fig. 2, the matching situation {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its_side(a), 
on_its_side(b)}). 

In our approach, a past or matching situation is seen as composed by a set of situation pieces called situation 
snippets (in analogy with "case snippets" from Redmond [9]). A situation snippet is a set of facts that are the 
leaves of a proof tree (the premises of an outcome fact). Depending on the proof tree being complete, partial or 
broken the situation snippet is strong (e.g., In fig. 2, {dangerous_driving(a)} concerning to 
'offence(a,dangerous_driving)'), weak (e.g., In fig. 2, {dangerous_driving(a), unsafe_dist(b,a), on_its_side(b)} 
concerning to 'offence(b;none)'), or undetennined (e.g., In fig. 2, {car(a), car(b»} concerning to 
'same_priocrules(a,b)'). The situation snippets of a situation are not necessarily disjoined sets of facts (as is the 
case for the examples of strong and weak situation snippets described above). A fact in a situation that does not 
belong to any proof tree is a single fact undetermined situation snippet (e.g., In fig. 2, {on_its_side(a)}). If a 
case has a complete set of complete explanations (proof trees) then the undetennined situation snippets become 
irrelevant. 

Matching between a past case and a new situation is represented by the facts in the matching situation that 
match a fact in the new situation. Eacb matched fact has infonnation about the situation snippet to which it 
belongs. Figure 2 provides an example of a matching between a case on highway accident interpretation and a 
new situation (more detailed infonnation on this domain is given in the next section). In this example the 
matching situation is {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its_side(a), on_its_side(b)}. 
The matching facts are 'car(b)' which belongs to the undetennined situation snippet {car(a), car(b)}, 
'dangerous_driving(a)' which belongs to the strong situation snippet {dangerous_driving(a)} and to the weak 
situation snippet {dangerous_driving(a), unsafe_dist(b,a), on_its_side(b)}. and 'unsafe_dist(b,a)' which belongs 
to the weak situation snippet {dangerous_driving(a),unsafe_dist(b,a),on_its_side(b)}. 

For case retrieval we propose a similarity metric composed of three tenns: 

k r t 
lCLrelev(fi,SSu) sim(fi,fi')+ ALrelev(fi,SSw) sim(fi,fi') + IlLrelev(fi, SSs) sim(fi, fn (2) 
i=l i=l i=l 

with fi a fact in the matching situation; fj' a fact in the new situation; SSu, SSw and SSs means, respectively, 
undetennined weak and strong situation snippets; 

1 
(3) ; andrelev(fi , SStype) = "cardinal of the SStype set to which fi belongs" 

I if fi= fi' 
sim(fl,fi') = { o if fi:;t f{ 

Constants k, r, t are, respectively, the number of occurrences of the matching situation facts in undetennined, 
weak and strong situation snippets (remember that the situation snippets are not necessarily disjoint sets). 
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New Situation:How am _ .  www . 1
Case in Memory:

f [Hilghwny Accident. Case

mm

-eversing(a) collisiondssr(b,a) ep(a,rear) cp(b,front) '} on_its_side(a) on_its_side(b)

ear-(V) means ”Vehicle V is a car".
cp(V,P) means "„The coll'sion point on
vehicle V was P”.
m_its_side(V)_ means "Vehicle V was
at its site cf he  road when the
accident took place".
rcversingN) means "V chicle V was
reversing".

.W'
uilishn_ssr(V1,V2) means ”Befa'e
the colisim vehicles V1 and V2  wee
on the same side of the road”.
dargerous_drlvlng(V) means "Vehicle

same_prior_rules(a,b)
justif_unsafc_dist(b,a)

V was doing dangerous driving“ .

‚L J vehicle V2".
justif_ unsafe_di st(V IN 2 )  means
"Vehicle V1 Ind a jusn'ficatim nd  to
glard a safe (istame from vehicle V2
due to an irregular action taken by V2".
üflenceW,‘ Y)  means "me 'offence Y,
atrbuted ta the driver of  veh icle V,  usa
cause for the accident" .

Matching (matching fact I situation snippet to whidl matching fact belongs):
dangerous_driving(a) I {dangerous_driving(a)} strong
dangerousfldrivinga) I {dangerous_driving(a)‚unsafe_dist(b,a)‚on_its__side(b)} weak
unsafe_dist(b,a) I {dangerousfldriving(a),unsafe_dist(b‚a),on_its__side(b)} weak
car(b) l '  {car(a)‚cal(b)}undetemined

Fig. 2 - Case Matching.

Case indexing involves the concepts of past situation, matching situation, strong, weak, and undetermined
situation snippet. A past situation represents a problem or event in the past that had the outcome described in a
case. A matching situation is a situation that is obtained by going down (from the past situation to the outcome)
in one or more explanation trees in order to gather the maximum number of facts that match the new situation
(e.g., In fig. 2, the matching situation {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its_side(a),
on_its_side(b)}). '

In our approach, a past or matching situation is seen as composed by a set of situation pieces called situation
snippets (in analogy with “case snippets” from Redmond [9]). A situation snippet is  a set of facts that are the
leaves of a proof tree (the premises of an outcome fact). Depending on the proof tree being complete, partial or
broken the situation snippet is  strong (e.g., In fig. 2 ,  {dangerous_driving(a)} concerning to
‘offence(a‚dangerous_dfiving)’), weak (e.g., In fig. 2, {dangerous_driving(a), unsafe_dist(b,a), on_its__side(b)}
concerning to ‘offence(b,none)’), or undetermined (e.g., In fig. 2, { car(a), car(b))} concerning to
‘same___p1ior_rules(a,b)’). The situation snippets of a situation are not necessarily disjoined sets of faCts (as is the
case for the examples of strong and weak situation snippets described above). A fact in a situation that does not
belong to any proof tree is a single fact undetermined situation snippet (e.g., In fig. 2, {on_its_side(a)}). If a
case has a complete set of complete explanations (proof trees) then the undetermined situation snippets become
irrelevant.
Matching between a past case and a new situation is represented by the facts in the matching situation that
match a fact in the new situation. Each matched fact has information about the situation snippet to which it
belongs. Figure 2 provides an example of a matching between a case on highway accident interpretation and a
new situation (more detailed information on this domain is given in the next section). In this example the
matching situation is {car(a), car(b), dangerous_driving(a), unsafe_dist(b,a), on_its__side(a), on_its_side(b)}.
The matching facts are ‘car(b)’ which belongs to the undetermined situation snippet {car(a), car(b)},
‘dangerous_driving(a)’ which belongs to the strong situation snippet {dangerous_driving(a)} and to the weak
situation snippet {dangerous_driving(a), unsafe__dist(b,a), on_its_side(b)] , and ‘unsafe__dist(b,a)’ which belongs
to the weak situation snippet {dangerous_driving(a),unsafe_dist(_b‚a)‚on_its_side(b)} .
For case retrieval we propose a similarity metric composed of three terms:

k r t
x2relev(fi,SSu) sim(fi,fi’)+ l2relev(fi,SSw) sim(fi,fi’) + qelevfli, SSS) sim(fi, ff) (2)

i=1 i=1 '= l

with fi a fact in the matching situation; fi’ a fact in the new situation; SS“, SSW and SSS means, respectively,
undetermined weak and strong situation snippets;

1
“cardinal of the SStype set, to which _fi belongs”

1 if fi=fi '
0 if fi ifi '

Constants k, r, tare, respectively, the number of occurrences of the matching situation facts in undetermined,
weak and strong situation snippets (remember that the situation snippets are not necessarily disjoint sets).

relev(fi , SStype) = (3) ; and

sim(fi‚ fi ' )  ={

10



CASE Al CASE A2 

a tbrc fd fe f NS: {tlc,tb,fc.fd,fe,fg) fm"' f NS: (fk,tb,fc,fd,f<,fg) 

CA!N I * 5 .. 15 * 5 _ 0.83 CAIN 1 * 5 + 15 * S 0.83 
EXPS l' 6 + 15 * 6 EXP 1 * 6 + IS * 6 

I ,....J-~....-o-u-rc ClASH= IS*(lI2)*I+15*(114)*4=22.2S oure ClASH=IS*(l14)*3+1S*(lI2)*2=26.2S 

CASE III CASEBZ 

f'NS: {fa,fc,fd,fe I 

EX CAIN =~.s_:",:1_= 0 8 • EXPS CAIN = 1 * 4 + 15 * 4 - 0.8 
1*5'·15'5 I*S+IS*S 

oure"'! CLASH =IS*(I(2)*)+I5'(1/4)*3=18.75 CQ:.~ CLASH= IS*(lI2)*I+lS*(l13)*3=22 S fiI
CASE Cl CASEC2 

'f 
NS: Ifa,tb,fc,fd}NS: (fa,[Qfc,fdl 

~CAIN = 1 • 4 + 15' 4 _ 0.8 CAIN - I *4 + 15 * 0 _ 0.8 
EX l' 5 + 15 * 5 1* 5 + 15 * 0 

OUTe ClASH= 15*(112)*2+15*(113)*2 = 25 cr.JL9~ CLASH =1 * (1/5) * 4 = 0.8 

l&&m!h 
• Results above were obtained with a=1 and ~=IS in the Cain approach and ,,=1 andl'=IS in the ClASH system. 
• In examples above we do not consider C:<I.se5 with partial explanations as Cain does not address them. 

Fig. 3 - Similarity values from Cain's approach and CLASH system. 

The ways in which this melric overcomes the limitations pointed to Cain et al. approach are reported below: 
(1) It discriminates between facts relevant to broken, partial and complete explanations. 

The first term in our metric accounts for those matching facts whose influence in the outcome is 
unknown (matching facts belonging to undetermined situation snippets). The second term respects to 
matching facts that belong to sets of facts that influence outcome facts but are not sufficient to 
determine them (matching facts belonging to weak situation snippets). The third term is built by the 
facts that belong to sets of facts that determine outcome facts (matching facts belonging to strong 
situation snippets). Parameters K, Aand Il represent the weight assigned to the three kinds of matching 
facts. 

(2) It assigns relevance to each matching fact, function of its situation snippet size (see expression (3)). 
it is assumed that the relevance of a fact is greater when the number of facts in the situation snippet it 
belongs is smaller. This is why for CLASH, in fig. 3, the unmatching of fa is more penalizing for case 
Al than for case A2, 
Any situation snippet is assigned a unitary relevance value (numerator in expression (3)). This value is 
divided by the number of facts in it to determine the relevance of a single fact. The reason for this is that 
any strong, weak or undetermined situation snippet is believed to influence or determine an outcome 
fact. As the· relative importance of outcome facts is unknown it is assumed they all have the same 
importance. Consequently it is attributed the same relevance to each situation snippet. 

(3) It takes into account a matching fact as many times as the number of times it occurs in the situation 
snippets. 
It is sound to assign a higher importance to a fact influencing various outcome facts than to a fact 
influencing only one outcome fact. This is the reason why for CLASH, in fig. 3, case B2 is less 
penalized by the unmatching of fb than case B1. 

(4) It assigns a lower similarity value to unexplained cases. 
When A and Il have a value greater than K then a null second or third term in expression (2) is more 
penalizing for the result than a null flfst term. 
This is why for CLASH,'in fig. 3, case Cl has a higher similarity value than case C2. 

This similarity metric has been used in CLASH. 

4. An Example: The CLASH System 
Expert inspection of car accidents is a demanding activity for Insurance Companies. To produce faster decisions 
on compensation for accident losses, they give their costumers a normalized form called "Friendly Accident 
Declaration", This form is filled when an accident takes place and the drivers agree on the way it occurred. The 
declaration has seventeen questions of type yes/no about the accident circumstances and a space to draw a 
sketch of the accident. With the form in their possession, companies are interested in determining (if possible in 
an automatic way) which driving offences were at the origin of the accident. 

CLASH is a prototype of a Case-Based Expert System that has a memory of past accidents. Each case in 
memory is composed by a past situation that is a transcript of a "Friendly Accident Declaration", an outcome 
that is a list of offences attributed to the participants in the accident, and a set of explanations of why these 
offences have been ascribed. 
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Literals '
' Results above were obtained with (1:1 and [3:15 in the Cain approach and x==l and 1.1215 in the CLASH system.
° In examples above we do not consider cases with partial explanations as Cain does not address them.

Fig. 3 - Similarity values from Cain’s approach and CLASH system.

The ways in which this metric overcomes the limitations pointed to Cain er al. approach are reported below:
(1) It discriminates between facts relevant to broken, partial and complete explanations.

The first term in our men-ic accounts for those matching facts whose influence in the outcome is
unknown (matching facts belonging to undetermined situation snippets). The second term respects to
matching facts that belong to sets of facts that influence outcome facts but are not sufficient to
determine them (matching facts belonging to weak situation snippets). The third term is built by the
facts that belong to sets of  facts that determine outcome facts (matching facts belonging to strong
situation snippets). Parameters K, it and u represent the weight assigned to the three kinds of matching
facts.

(2) It assigns relevance to each matching fact, function of its situation snippet size (see expression (3)).
It is assumed that the relevance of a fact is greater when the number of facts in the situation snippet it
belongs is smaller. This is why for CLASH, in fig. 3, the unmatching of fa is more penalizing for case
A1  than for case A2.
Any situation snippet is assigned a unitary relevance value (numerator in expression (3)). This value is
divided by the number of facts in it to determine the relevance of a single fact. The reason for this is that
any strong, weak or undetermined situation snippet is  believed to influence or determine an outcome
fact. As therelative importance of outcome facts is unknown it is assumed they all have the same
importance. Consequently it is  attributed the same relevance to each situation snippet.

(3) It takes into account a matching fact as many times as the number of times it occurs in the situation
snippets.
It is sound to assign a higher importance to a fact influencing various outcome facts than to a fact
influencing only one outcome fact. This is the reason why for CLASH, in fig. 3, case B2  is less
penalized by the unmatching of fb than case B1.

(4) It assigns a lower similarity value to unexplained cases.
When % and u have a value greater than x then a null second or third term in expression (2) is  more
penalizing for the result than a null first term.
This is why for CLASH,'in fig. 3, case C l  has a higher similarity value than case C2.

This similarity metric has been used in CLASH.

4. An Example: The CLASH System
Expert inspection of car accidents is a demanding activity for Insurance Companies. To produce faster decisions
on compensation for accident losses, they give their costumers a annualized form called “Friendly Accident
Declaration”. This form is  filled when an accident takes place and the drivers agree on the way it occurred. The
declaration has seventeen questions of type yes/no about the accident circumstances and a space to draw a
sketch of the accident. With the form in their possession, companies are interested in determining (if possible in
an automatic way) which driving offences were at the origin of the accident.

CLASH is a prototype of a Case-Based Expert System that has a memory of past accidents. Each case in
memory is composed by a past situation that is a transcript of a “Friendly Accident Declaration”, an outcome
that i s  a list of offences attributed to the participants in the accident, and a set of explanations of why these
offences have been ascribed.
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Below we show how a case is represented in the accident library: 

CASE NAME: case6
 
SITUATION:
 
[car(a),car(b),reversing(a),collision_ssr(b,a),cp(a,rear),cp(b,front),on_its_side(a),on_its_side(b)]
 
OUTCOME:
 
[offence(a,dangerous_driving),offence(b,none)]
 
EXPLANATIONS:
 
[[car(a), car(b)] -> [same_prior_rules(a,b)]
 
[reversing(a)] ->+ [dangerous_driving(a)]
 
[collision_ssr(b,a),cp(a,rear),cp(b,front)] -> [unsafe_dist(b,a)]
 
[dangerous_driving(a)] ->+ [justiCunsafe_dist(b,a)]
 
[dangerous_driving(a)] -> [offence(a,dangerous_driving)]
 
[justiCunsafe_dist«(b,a),unsafe_dist(b,a),on_its_side(b)] -> [offence(b,none)]
 

I[car(a), car(b)l -> [same _prior rules(a,b)ll 

Case 6 (see also drawing in fig. 2) means:
 
"A car a was reversing and collided with a car h that was moving on the same side of the road. The collision
 
point on car a was on its rear and on car h on its front. Both cars were moving on their side of the road.
 
The decision on this accident was that driver of car a committed a dangerous driving offence and driver of car h
 
did not commit any offence.
 

The explanations were that the reversing of car a influenced the guess that the driver was doing dangerous 
driving (to have a strong evidence on this offence it would be necessary that the visibility was low, a fact not 
mentioned in the accident form). The facts that car h was moving on the same side of the road of car a, the 
collision point on car a was on its rear and on car h on its front determined the evidence that car h did not guard 
a safe distance from car a. The fact that the driver of car a was doing dangerous driving influenced the guess 
that the driver of car h could not guard a safe distance. The fact that the driver of car a was doing dangerous 
driving determined a reason for the accident. The facts that the driver of car h did not guard a safe distance, had 
ajustification not to guard a safe distance from car a and was on his side of the road determined the decision of 
not assigning any offence to him. The facts that a and h are cars determined that they had to carry the same 
priority rules". 

The case similarity values assigned by CLASH and Cain's metric for three new accidents are printed below. The 
system based on Cain's metric was initialized with a=l and ~=15. CLASH ran with 1C=1, ').;:::7, and ~=15 1. The 
system was setup to return the five cases with the highest similarity value. 

TEST 
<CAIN coefficients> Alpha= 1 Beta= 15 <CLASH coefficients> Kappa= 1 Lambda",7 Mu= 15 

NEW SITUATION 1 ---- [car(a), car(b), from_the_right(b,a), cp(a, rear), cp(b, front), on_its_side(a), on_its_side(b)] 
CAIN ApproaCh: O.85/case3, O.76/case5, O.66/casel, O.611case6, 0.5/case9 
CLASH Approach: 20/case5, 17.25Icase9; 14.5Icase7, 7.5/case8, 7.5/case2 

NEW SITUATION 2 - [dangerous_driving(a),low_visibil,car(b),collision_ssr(b, a),cp(a, rear),cp(b, front),on_its_side(b)] 
CAIN Approach: O.781case6, O.5/case5, O.28/case3, O.24/case7, O.2/case9 
CLASH Approach: 21.1Icase6, 12/case5, 8/case7, 6/case9, 2lcase3 

NEW SITUATION 3 ---- [roundabout(a), lorry(a),lorry(b), enter_roundabout(b), cp(a, front), cp(b, front)] 
CAIN Approach: O~81case9, O.81case8, O.49/case7, O.4fcase2, 0.34/casel 
CLASH Approach: 24/case9, 22.5fcase8, ll1case7, 7.5/case2, 5/case5 

New situation 1 represents an accident on a roall junction (the fact 'from_the_right(Vl,V2)' only occurs if the 
accident takes place on a road junction, roundabout or driveway) in which a car a moves from the right of a car 
h. The collision point on ais on its rear and on h on its front. Both cars are moving on their side of the road. 
Applying Cain's metric the highest similarity value was for case 32. This is an irrelevant case as in this accident 
a head-on collision occurred between a vehicle a and a car h that had to give way to vehicle a - an ambulance 
(this was not mentioned in the situation for case 3 but was considered in the outcome). 

CLASH selected the best case in memory. Case 5 represents an accident in which a car a and a car h were 
moving on a straight road. Car a stopped and car h collided on the rear of car a. In this case car h was assigned 
the offence of not guarding a safe distance between it and the car ahead. Case 5 has the correct outcome for 
situation 1. 

This interesting result is due to the relevance assigned by explanations to some facts in the past situation. 
CLASH performed better than Cain's metric due to the same~reason that caused case Cl to be assigned a higher 
score than C2 by CLASH in fig. 3. As in Cl and C2 case 3 does not have complete or partial explanations 
whereas case 5 has a complete 'set of explanations. 

I CLASH has proved not to be very sensitive to parameters Aand ~ provided they are much greater than lC. 

2Due to space limitations we do not list some cases referenced in this example. 
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Below we show how a case is represented in the accident library:

CASE NAME: case6
SITUATION:
. [car(a),car(b),reversing(a),collision__ssr(b,a),cp(a,rear),cp(b,front),on_its__side(a),on___its_side(b)]
OUTCOME:
[offence(a,dangerous__driving),offence(b,none)]
EXPLANATIONS:
[[car(a), car(b)] —> [same_prior_rules(a,b)]
[reversing(a)] ->+ [dangerons_driving(a)]
[collision__ssr(b,a),cp(a,rear),cp(b,front)] -> [unsafe_dist(b,a)]
[dangerous_driving(a)] ->+ [instif__unsafe_dist((b,a)]
[dangerous_driving(a)] -> [offence(a,dangerous_driving)]
[justif_unsafe_dist((b,a),unsafe_dist(b,a),on_its_side(b)] -> [offence(b,none)]
[carfilL car(b)] -> [same _Jarior__rules(a,b)]]

Case 6 (see also drawing in fig. 2) means:
“A car a was reversing and collided with a car ]; that was moving on the same side of the road. The collision
point on car a was on its rear and on car 11 on its front. Both cars were moving on their side of the road.
The decision on this accident was that driver of car a committed a dangerous driving offence and driver of  car 12
did not commit any offence.

The explanations were that the reversing of car a influenced the guess that the driver was doing dangerous
driving (to have a strong evidence on this offence it would be necessary that the visibility was low, a fact not
mentioned in the accident form). The facts that car h was moving on the same side of the road of car a, the
collision point on car a was on its rear and on car I; on its front determined the evidence that car 1; did not guard
a safe distance from car a. The fact that the driver of car a was doing dangerous driving influenced the guess
that the driver of car b_ could not guard a safe distance. The fact that the driver of car a was doing dangerous
driving determined a reason for the accident. The facts that the driver of car 12 did not guard a safe distance, had
a justification not to guard a safe distance from car a and was on his side of  the road determined the decision of
not assigning any offence to him. The facts that a and h are cars determined that they had to carry the same
priority rules”.
The case similarity values assigned by CLASH and Cain’s metric for three new accidents are printed below. The
system based on Cain’s metric was initialized with (1:1 and [3:15. CLASH ran with ler-1, 79:7, and |.1=15 1 .  The
system was setup to return the five cases with the highest similarity value.

‘.

TEST
<CAIN coefficients> Alpha: 1 Beta: 15 (CLASH coefficients> Kappa: 1 Lambda; 7 Mu: 15

NEW SITUATION 1 ——-- [car(a), car(b), from_the__right(b,a), cp(a, rear), cp(b, front), on_its_side(a), on_its_side(b)]
CAIN Approach: 0.85/case3, 0.76fcase5, 0.66/casel. 0.61/case6, 0.5lcase9
CLASH Approach: 20/case5, 17-.25/case9. 14.5/case7, 7.5/case8, 7.5/case2

NEW SITUATION 2 — [dangerous_d1iving(a),low_visibil,car(b),collision__ssr(b, a),cp(a, rear),cp(b, front),on_its‘_side(b)]
CAIN Approach: 0.78/case6, 0.5/case5, 0.28/case3, 0.24lcase7, 0.2/case9
CLASH Approach: 21.1/case6, 12/caseS, 8/case7, 6/case9, 2/case3

NEW SITUATION 3 -—-- [roundabout(a), lorry(a), lorry(b), enter_roundabout(b), cp(a, front), cp(b‚ front)]
CAIN Approach: 0.8/case9, 0.8/case8, 0.49/case7, 0.4/case2, 0.34Icase1
CLASH Approach: 24/case9, 22.5/case8, 11/case7, 7.5/case2. 5/case'5'

New situation 1 represents an accident on a road junction (the fact ‘from__the__right(Vl,V2)’ only occurs if the
accident takes place on a road junction, roundabout or driveway) in which a car 3 moves from the right of a car
12. The collision point on a is on its rear and on b on its front. Both cars are moving on their side of the road.
Applying Cain’s metric the highest similarity value was for case 32. This is an irrelevant case as in this accident
a head-on collision occurred between a vehicle a and a car 12 that had to give way to vehicle a - an ambulance
(this was not mentioned in the situation for case 3 but was considered in the outcome).

CLASH selected the best case in memory. Case 5 represents an accident in which a car a and a car 12 were
moving on a straight road. Car a stopped and car I; collided on the rear of car a. In this case car 12 was assigned
the offence of not guarding a safe distance between it and the car ahead. Case 5 has the correct outcome for
situation 1.

This interesting result is due to the relevance assigned by explanations to some facts in the past situation.
CLASH performed better than Cain’s metric due to the samerreason that caused case C1  to be assigned a higher
score than C2 by CLASH in fig.  3 .  As in C1 and C2 case 3 does not have complete or partial explanations‘
whereas case 5 has a complete set of explanations.

_ .

1CLASH has proved not to be very sensitive to parameters 1. and 11 provided they are much greater than IC.
2Due to space limitations we do not list some cases referenced in this example.
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In the new situation 2 the driver of vehicle a is performing dangerous driving on a low visibility place and 
collides with a car h that is moving on the same side of the road. The collision points are, respectively, the rear 
and the front of a and h. When the accident occurs car h is on its side of the road. 

For this accident case 6 had the highest score in both approach~s and this was the correct selection. 
The last new situation describes an acci~ent Qjt a rQ~ndabo-Ut ~tween a lorry a that is going round on it and 

a lorry b. that is entering the roundabout. A bead-on collision o<;cursbetween them. 
For this accident Cain's metric propos~s two,win~t;rs, cases 8 ~d 9. Case 8 is a c~ in which a car b. was 

entering the roundabout and collided with a b~cY<;,I~ aUlat \\;as goipg round on it. All streets that ended on the 
roundabout had a "junction abead" sign. Due to $is, car 12 was blamed of not respecting the sign. Case 9 is one 
in which a car b. was entering a roundabout and a car a was going round on it. A head-on collision occurred 
between them. Blame was assigned to car a for D()t respecting the priority owed to a car that was traveling from 
the right ofit.; 

Case 9 was the relevant case for the new situation outcome and CLASH assigned it the highest score. The 
reason for the discrimination made by CLASH ~tween case,s 8 and 9 was similar to the one made between 
cases Al and A2 in fig. 3. Cases 8 and 9 had two ul1rpatched facts in the matching situation, respectively, 
'roundaboucwth_prior' (means that all sg;~~ tb~t~n4. on th,e rO~ndabout have a "junction ahead" sign) and 
'car(b)'. 'roundabouCwth_prior' belongs lOa strongsiWapon snippet in case 8 with cardinality 3 and 'car(b)' to 
a strong situation snippet in, case 9 with cardinality 4. Thi's implied that in CLASH the absence of 
'roundaboucwth_prior' in the new situation was plore penalizing for case 8 than the absence of 'car(b)' in the 
new situation for the similarity value of case 9. Due to this case 9 is the winner in CLASH. 

5. Conclusions 
Case-Based Reasoning is a well suited approach when a perfect theory on the domain is not available and a 
report of past cases exists. As it has been shown in this paper it is important to take into account the 
imperfections in past case descriptions and explanations. 

We sustain that three kinds of explanations must be considered for case indexing: broken explanations, 
partial explanations, and complete explanations. 

In our approach the concepts of matching situation, strong, weak and undetermined situation snippet are 
central to the matching process. The proposed simi.Jarity metric is also supported on these concepts. 

Our metric cumulatively uses three measures for similarity assignment. Each measure relates to a kind of 
matching facts in the matching situation. We report three kinds of facts depending on their membership to 
undetermined, weak or strong situation snippets. 

The relevance function assigns higher relevance to facts that belong to smaller situation snippets. This 
proved to be a sounding heuristic in many retrieval scenarios. 

The contribution of each matching fact to the similarity value is increased by the number of times it occurs in 
the situation snippets. This is an intuitively interesting option. 

The empirical results reported in this paper and the results obtained with CLASH prototype at work 
confirmed the expectations that we had on the d~bed similarity metric. In fact CLASH never selected a past 
case less relevant than the one selected by the Caltt's metric and most times it selected a more relevant one. 
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In the new situation 2 the driver of vehicle a is performing dangerous driving on a low visibility place and
collides with a car 11 that is moving on the same side of the road. The collision points are, respectively, the rear
and the front of a and b. When the accident occurs car 12 is  on its side of the road.

For this accident case 6 had the highest score in both approaches and this was the correct selection.
The last new situation describes an accident on a roundabout between a lorry a that IS going round on it and

a lorry b that 1s entering the roundabout. A head-on collision occurs between them.
For this accident Cain’s metric proposes two winners, cases 8 and 9. Case 8 'IS a case in which a car 12 was

entering the roundabout and collided with a bicycle a that was going round on it. All streets that ended on the
roundabout had a ‘junction ahead” sign. Due to this, car h was blamed of not respecting the sign. Case 9 IS one
in which a car 11 was entering a roundabout and a car a was going round on it. A head-on collision occurred
between them Blame was assigned to car a for not respecting the priority owed to a car that was traveling from
the n ht of it.

Cgase 9 was the relevant case for the new situation outcome and CLASH assigned it the highest score. The
reason for the discrimination made by CLASH between cases 8 and 9 was similar to the one made between
cases A1 and A2 1n fig. 3. Cases 8 and 9 had two unmatched facts in the matching situation, respectively,
‘ro_undaboutwth__prior’ (means that all streets that end .on the roundabout have a “junction ahead” sign) and
‘.car(b)’ ‘roundabout_wth__prior’ belongs to a strong Situation snip—pet in case 8 with cardinality 3 and "Cflffb) to
a strong situation snippet in case 9 with cardinality 4. This implied that in CLASH the absence of
‘roundabout _wth_prior’ in the new situation was __more penalizing for case 8 than the absence of "car(b) in the
new situation for the similarity value of case 9 .  Due to this case 9 is the winner in CLASH.

5. Conclusions
Case-Based Reasoning is a well suited approach when a perfect theory on the domain is not available and a
report of past cases exists. As it has been shown in this paper it is important to take into account the
immrfections in past case descriptions and explanations.

We sustain that three kinds of explanations must be considered for case indexing: broken explanations,
partial explanations, and complete explanations.

In our approach the concepts of matching situation, strong, weak and undetermined situation snippet are
central to the matching process. The proposed similarity metric is also supported on these concepts.

Our metric cumulatively uses three measures for similarity assignment. Each measure relates to a kind of
matching facts in the matching situation. We report three kinds of facts depending on their membership to
undetermined, weak or strong situation snippets.

The relevance function assigns higher relevance to facts that belong to smaller situation snippets. This
proved to be a sounding heuristic in many retrieval scenarios.

The contribution of each matching fact to the similarity value is increased by the number of times it occurs in
the situation snippets. This is an intuitively interesting option.

The empirical results reported in this paper and the results obtained with CLASH prototype at work
confirmed the expectations that we had on the described similarity metric. In fact CLASH never selected a past
case less relevant than the one selected by the Cain’s metric and most times it selected a more relevant one.
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Abstract 

The effectiveness of case-based reasoning CBR depends on the ability "to determine former 
experiences (cases) that are useful and applicable to solve new, similar problems. When 
one tries to handle synthesis tasks as opposed to analysis tasks, however, the determination 
of similarity alone is not enough: It becomes important to determine the adaptability of 
former cases to problems of current interest. Consequently, during similarity assessments 
rule-based knowledge concerning possible adaptations of previous cases becomes necessary. 
The objective of this paper is to present a new approach which interactively integrates and 
tunes case-based and rule-based knowledge in order to solve synthesis tasks. Structural 
similarity will provide guidance to solution adaptation. We will flesh out the general ideas 
of this approach and will show their motivation by pointing out relations to prior work. For 
illustrative purposes, we take an example of industrial building design. . 

1 Introduction 

The purpose of this paper is twofold: The first is to introduce a close integration of case­
based and rule-based background knowlep.ge tuned to supplement each other!. The second is to 
present an approach to determine structural similarity to guide solution adaptation. Therefore, 
similarity is no longer defined as a value between 0 and 1 but as the most specific structure two 
cases have in common, inclusive of the modification rules needed to obtain this structure from 
the two cases. . 

The paper is organized as follows: First, we describe the main procedure that uses structural 
similarity as guidance to adapt prior solutions so that they fit new problems, and we point out 
relations to prior work. Second, we exemplify our approach, we solve a specific synthesis task 
taken from the domain of building design. Finally, we delineate a number of directions for future 
work. 

2 Our Approach: Structural Similarity as Guidance 

To introduce our general approach, we use Fig. 1. In the figure, the case-base is given on the left 
side. On the right side, the new problem including its solution is presented. We distinguish three 
different schemes of case representation: attribute-based, structural, and structurally modified. 
The more general these representations are, the more rounded the corresponding boxes are 
shown. Rules will be stored in a rule-base, as shown in the middle of Fig. 1. Arrows are used 
to mark the steps in case-based problem solving. 

'This research was supported by the German Ministry for Research and Technology (BMFT) within the joint 
project FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German National Research 
Center of Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of 
Dresden, HTWK Leipzig, University of Freiburg, and University of Karlsruhe. 

1 Note, that by tuning both kinds of knowledge their representation and use will be different from stand-alone 
case-based or rule-based problem solvers. 
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Abstract
\

The effectiveness 'of case-based reasoning CBR depends on the ability'to determine former
experiences (cases) that are useful and applicable to  solve new, similar problems. When
one tries to  handle synthesis tasks as opposed to  analysis tasks, however, the  determination
of similarity alone is not enough: It becomes important to determine the adaptability of
former cases to problems of current interest. Consequently, during similarity assessments
rule—based knowledge concerning possible adaptations of previous cases becomes necessary.
The objective of this paper is to present a new approach which interactively integrates and
tunes case—based and rule-based knowledge in order to  solve synthesis tasks. Structural
similarity will provide guidance to  solution adaptation. We will flesh out  the  general ideas
of this approach and will show their motivation by pointing out relations to prior” work. For
illustrative purposes, we take an example of industrial building design.

1 Introduction

The purpose of this paper is twofold: The first is to introduce a close integration of case-
based and rule-based backgrbund knowledge tuned to supplement each otherl .  The second is to
present an approach to determine structural similarity to guide solution adaptation. Therefore,
similarity is no longer defined as a value between O and 1 but as the most Specific structure two
cases have in common, inclusive of the modification rules needed to obtain this structure from
the two cases. '
The paper i s  organized as follows: First, we describe the main procedure that uses structural
similarity as guidance to adapt prior solutions so that they fit new problems, and we point out
relations to prior work. Second, we exemplify our approach, we solve a specific synthesis task
taken from the domain of building design. Finally, we delineate a number of directions for future
work.

2 Our Approach: Structural Similarity as Guidance
To introduce our general approach, we use Fig. 1. In the figure, the case-base is given on the left
side. On  the right side, the new problem including i ts  solution is presented. We distinguish three
different schemes of case representation: attribute-based, structural, and structurally modified.
The more general these representations are, the more rounded the corresponding boxes are
shown. Rules will be  stored in a rule-base, as shown in the middle of Fig. 1. Arrows are used
to mark the steps in case-based problem solving.

*This research was supported by the German Ministry for Research and Technology (BMFT) within the joint
project FAB EL under contract no. 413—4001-OIIW104. Project partners in FABEL are German National Research
Center of Computer Science (GMD) ,  Sankt Augustin, BSR Consulting GmbH, München, Technical University of
Dresden, HTWK Leipzig, University of Freiburg, and University of Karlsruhe.

1Note ,  that by tuning both kinds of knowledge their representation and use will be different from stand-alone
case-based or  rule—based problem solvers.
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Figure 1: General approach and different levels to assess similarity 

As a basis for-reasoning cases and rules are needed. Cases have to be represented both in 
attribute-based and structural forms (e.g., by terms, trees, graphs). Background knowledge is 
represented by domain-dependent and task-dependent rules (e.g., term, tree, or graph substitu­
tions and generalizations) including their 'inverse' rules. 

The main procedure to assess structural similarity and adaptation is as follows: Given the 
new problem in attribute-based description, we start by determining a set of candidate cases. 
The surface attributes of those cases are similar to those of the new problem. Based on this 
computationally cheap analysis (surface similarity assessment) of the problem, we can now 
use transformation function </> to translate the new problem into a structural representation. 
Corresponding to the new problem and the preselected candidate cases, modification rules will 
be chosen (rule selection) and applied until a common structure of the actual problem and one 
candidate case is found. Now the solution of this candidate case, likewise modified, can be 
transferred to the new problem. After that, inverse modification rules f- 1 are applied to get the 
concrete structural representation of the new solution. Using </>-1 we will get the attribute-based 
representation of the new solution representation. This will be offered to the user. 

The core idea of our approach does not refer to the way similarity is assessed but to the way 
similarity will be used to lead to adapted, structurally sound solutions. The common structure 
of cases together with the modification rules applied to obtain them determine which prior 
solutions are useful. The inverse modification rules will show how to adapt them. 
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Figure 1: General approach and different levels t o  assess similarity

As a basis for"reasoning cases and rules are needed. Cases have to be represented both in
attribute—based and structural forms (e.g. ,  by terms, trees, graphs). Background knowledge is
represented by domain—dependent and task-dependent rules (e.g., term, tree, or graph substitu-
tions and generalizations) including their ‘inverse’ rules.

The main procedure to assess structural similarity and adaptation is as follows: Given the
‘ new problem in attribute-based description, we start by determining a set of candidate cases.

The surface attributes of those cases are similar to those of the new problem. Based on this
computationally cheap analysis (surface similarity assessment) of the problem, we can now
use transformation function gb to translate the new problem into a structural representation.
Corresponding to the new problem and the preselected candidate cases, modification rules will
be  chosen (rule selection) and applied until a common structure of the actual problem and one
candidate case is found. Now the solution of this candidate case, likewise modified, can be
transferred to the new problem. After that,  inverse modification rules f "1  are applied to  get the
concrete structural representation of the new solution. Using 45—1 we will get the attribute—based
representation of the new solution representation. This will be offered to the user.

The core idea of our approach does not refer to the way similarity is assessed but to the way
similarity will be  used to  lead to  adapted, structurally sound solutions. The common structure
of cases together with the modification rules applied to obtain them determine which prior
solutions are useful. The inverse modification rules will show how to  adapt them.
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Also sketched in Fig. 1 are prior approaches to determining similarity (denoted by fat grey double 
arrows): (1) In CBR, surface similarity assessments based on attribute-based representations 
are frequently used (c.f., [11, 10, 7]). (2) If interdependencies of attributes have to be taken into 
account, representations like terms, trees, and graphs are used as basis for similarity assessments. 
(3) There are approaches where cases stored in the case base are modified (e.g., using unification 
[6] or using letter substitution rules as known in speech recognition) to determine similarity. (4) 
The principle of redescription [5, 9] modifies new and old problem descriptions depending on 
the problem at hand. We emphasize that all the approaches mentioned above deal with analysis 
tasks, and therefore synthesis and adaptation issues are not addressed. 

An Example: Case-based Industrial Building Design 

Much work has been done in case-based building design [3, 2, 8], which is one of the most 
complex real world synthesis tasks. In our project, we focus·on the installation of supply system 
nets in industrial buildings with a complex infrastructure. The main problem is how to layout 
subsystems for fresh and return air, electrical circuits, wa.rm, cold, and used water, etc.. By using 
the A4 model introduced in [4] and letting thinly drawn circles denote places where accesses can 
beplaced, and letting ellipses denote areas where connections of supply accesses can be placed, 
the task of designing arrangement of connections for supplies that cover all of a given set of 
accesses for supply is reduced to the connection of circles with ellipses. 

To tackle this task, we use two different types of case representations as well as a rule-based 
representation of the background knowledge. The first of the case representations is an attribute­
based representation of visually prominent features of objects. Following the work of LUDGER 
HOVESTADT [4] each object, (circle or ellipse) will be represented by its spatial dimensions and 
nine further attributes like time at which this object was created, aspect which assumes one of 
'return air,' 'fresh air,' etc., and morphology which refers to 'access,' 'connection,' .. , etc. This 
fixed set of dimensions will be used as indices.2 This representation will be used to produce 
graphics, the main basis for man-machine interaction in building design. 

Second, we have to encode structural knowledge, e.g., case-based knowledge about spatial ar­
rangements and relative positions of objects in a machine-usable form. Our approach, which 
is influenced by the work of BIPIN INDURKHYA (cf. [5]) , is to represent the complex structures 
like supply air net structures as terms over some appropriately tailored signature. A finite, 
heterogeneous, and finitary signature is assumed. This is taken as a basis for building terms 
and formulae, as usual3 . Additionally, equational knowledge about functions and their relations 
is formalized to represent term rewriting knowledge. Note that a solution description contains 
the corresponding problem description. There is a function <p with its inverse which realizes the 
transformation of the attribute-based descriptions into structural ones and opposite. . 
Third, we need background knowledge rules for determining proper domain dependent and 
task dependent modifications of structural case representations. 'Terms can be modified using 
generalizations. To express generalized terms we need a sorted family of variables. For simplicity, 
we assume all variables to be called x, with indices whenever necessary. There are meaningful 
adaptations like reflection, rotation, translation, etc. in our domain. Additionally, structural 
representations can be modified using abstraction rules, which transform term expressions to 
constants (abstract attributes) .like row, regular, covered etc. These three different kinds of 
modification rules including their inverses will be stored in the rule-base. 

Given these three types of knowledge representations, we are able to determine structural sim­
ilal'ity and use it to guide the solution adaptation. For illustration, the main procedure given 
in Fig. 1 is exemplified in Fig. 2. The left, lowest box shows the pictorial and attribute-based 
representation4 of one typical case stored in the case-base. By taking the functions cover and 

2To get cases in a less redundant form, 'space-coordinates' will be normalized. Therefore, we simply assume 
that the smallest X-, y-, and z-dimensions of each case is equal to zero. 

3The detailed formal description of the signature used to represent cases stI'ucturally can be found in [1] 
4FOl' simplicity, we only gave the values of the atributes x, dx, y, dy, time, aspect, and morphology of each 
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Also sketched in Fig. 1 are prior approaches to determining similarity (denoted by fat grey double
arrows): (1) In CBR,  surface similarity assessments based on attribute-based representations
are frequently used (c.f., [11, 10, 7]). (2) If interdependencies of attributes have to be  taken into
account, representations like terms, trees, and graphs are used as basis for similarity assessments.
(3) There are approaches where cases stored in the case base are modified (e.g., using unification
[6] or using letter substitution rules as known in speech recognition) to determine similarity. (4)
The principle of redescription [5, 9] modifies new and old problem descriptions depending on
the problem at hand. We emphasize that all the approaches mentioned above deal with analysis
tasks, and therefore synthesis and adaptation issues are not addressed.

3 An Example: Case-based Industrial Building Design

Much work has been done in case-based building design [3, 2, 8], which is  one of the most
complex real world synthesis tasks. In our project, we focus-on the installation of supply system
nets in industrial buildings with a complex infrastructure. The main problem is how to layout
subsystems for fresh and return air, electrical circuits, warm, cold, and used water, etc.. By using '
the A4 model introduced in [4] and letting thinly drawn circles denote places where accesses can
beplaced, and letting ellipses denote areas where connections of supply accesses can be  placed,
the task of designing arrangement of connections for supplies that cover all of a given set of
accesses for supply is reduced to  the connection of circles with ellipses.

To tackle this task, we use two different types of case representations as well as a rule-based
representation of the background knowledge. The first of the case representations is an attribute—
based representation of visually prominent features of objects. Following the Work of LUD-GER
I-IOVESTADT [4] each ob ject, (circle or ellipse) will be represented by its spatial dimensions and

'nine further attributes like time at which this object was created, aspect which assumes one of
‘return air,’ ‘fresh air,’ etc., and morphology which refers to ‘access,’ ‘connection,’.., etc. This
fixed set of dimensions will be  used as indices.2 This representation will be‘ used to produce
graphics, the main basis for man—machine interaction in building design.

Second, we have to encode structural knowledge, e.g., case-based knowledge about spatial ar-
rangements and relative positions of objects in a machine-usable form. Our approach, which
is influenced by the work of BIPIN INDURKHYA (cf.[5]), is to represent the complex structures
like supply air net structures as terms over some appropriately tailored signature. A finite,
heterogeneous, and finitary signature is assumed. This is taken. as a basis for building terms
and formulae, as usual3. Additionally, equational knowledge about functions and their relations
is formalized to  represent term rewriting knowledge. Note that a solution description contains
the corresponding problem description. There is a function @ With its inverse which realizes the
transformation of the attribute-based descriptions into structural ones and opposite.

Third, ‚we  need background knowledge rules for determining proper domain dependent and
task dependent modifications of structural case representations. Terms can be  modified using
generalizations. To express generalized terms we need a-sorted family of variables. For simplicity,
we assume all variables to be  called IB, with indices whenever necessary. There are meaningful
adaptations like reflection, rotation, translation, etc. in our domain. Additionally, structural
representations can be  modified using abstraction rules, which transform term expressions to
constants (abstract attributes) like row, regular, covered etc. These three different kinds of
modification rules including their inverses will be  stored in the rule-base.

Given these three types of knowledge representations, we are able to determine structural sim-
ilarity and use i t  to guide the solution adaptation. For illustration, the main procedure given
in Fig. 1 is exemplified in Fig. 2. The left, lowest box shows the pictorial and attribute—based
representation4 of one typical case stored in the case-base. By taking the functions cover and

2To  get cases in  a less redundant form, ‘space-coordinates’ will be  normalized. Therefore, we simply assume
that the smallest x-, y-,  and z—dimensions of each case is  equal to  zero.

3The  detailed formal description of the signature used to  represent cases structurally can be  found in [1]
4For  simplicity, we only gave the  values of the atributes x ,  dx, y, dy, t ime,  aspect, and morphology of each
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Figure 2: Structural similarity assessment and adaptation - an example 

copy and object constants and combining them with appropriate parentheses and commas, we 
are able to express the solution of this case structurally by cover(copy(Y,3,Circle)). This term 
stands for take one circle, copy it three times and arrange all in y-direction. Afterwards cover 
all circles witn a single ellipse. The right, lowest box shows the pictorial and attribute-based 
representation of the new problem to be solved. Given in the same box but not available at 
this time is the solution of the new problem. The particular intention (also called subgoal) the 
user wants to concentrate on is the connection of air supplies. The first initial analysis of the 
new problem can be done on the basis of the inexpensive surface similarity assessment, based 
on the attribute-based descriptions. TtJ.e result is a set of candidate-cases which have similar 

, surface attributes such as aspect, number of objects etc. In this way, the rather large set of 
cases stored in the case-base can be reduced to a few useful candidate-cases. The next step is 
the transformation of the new problem into a structural representation. Here, candidate-cases 
provide information about proper transformations referred to as </>. Thus, the new problem, 
which consists of three circles arranged in a row in x-direction can be structurally represented 
by copy(X,3,Circle). 

Based on the structural representation of superficially similar prior cases, the more expensive 
structural similarity assessment is performed. Axioms and modification rules will be applied 
to determine the main structure the new and a prior problem have in common. In our example, 
there are at least three different ways to achieve this: 

• The first way uses generalization. For example, the concrete arrange direction and 

object. 
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Figure 2: Structural similarity assessment and adaptation - an example

cepy and object constants and combining them with appropriate parentheses and commas, we
are able to express the solution of this case structurally by c0ver(com/( Y,3, Circle}) This term
stands for take one circle, copy it three times and arrange all in  y-dz'rect'ion. Afterwards cover
all circles with a single ellipse. The right, lowest box shows the pictorial and attribute-based
representation of the new problem to be  solved. Given in the same box but not available at
this time is the solution of the new problem. The particular intention (also called subgoal) the
user wants to concentrate on is the connection of air supplies. The first initial analysis of the
new problem can be  done on the basis of the inexpensive surface similarity assessment, based
on the attribute-based descriptions. The result is a set of candidate—cases which have similar
surface attributes such as aspect, number of objects etc. In this way, the rather large set of
cases stored in the case—base can be  reduced to a few useful candidate-cases. The next step is
the transformation of the new problem into a structural representation. Here, candidate—cases
provide information about proper transformations referred to as (‚b. Thus, the new problem,
which consists of three circles arranged in a row in x—direction can be  structurally represented
by copy(X , 3, Circle).

Based on the structural representation of superficially similar prior cases, the more expensive
structural similarity assessment is  performed. Axioms and modification rules will be  applied
t o  determine the main structure the new and a prior problem have in common. In our example,
there are at least three different ways to achieve this:

. The first way uses generalization. For example, the concrete arrange direction and

object .
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the number of copies will be replaced by variables Xl and X2. The resulting common 
problem description will be: coPy(xI,x2,Circle) as shown in Fig. 2. 

•	 The second way is to use generalization and adaptation rules. Here, the number of 
copies will be generalized, too. One term representation will be rotated about 90 
degrees. 

•	 The third way uses abstraction. Here abstract descriptions like row and regular will be 
used as structural attributes. The idea behind this is that the more identical abstract 
attributes structural descriptions share, the more similar they are. 

Given the main structure of both problem descriptions, we can simply transfer the main prior 
structurally modified solution (in the example cover(cOPY(XI, X2, Circle))) to the actual problem 
(in Fig. 2 referred to as solution transfer). Using the knowledge about the sequence of modifi­
cations. to determine the common structure, the transferred solution can be adapted to the new 
problem. This is denoted by f-l. To get the concrete structural solution, in the example, 

• where two generalizations were used	 to determine structural similarity, one has to 
replace Xl by its former value X and analogous X2 by 2. The r~sulting term will be 
cover(copy(X,2, Circle)). 

•	 where generalization and adaptation were used, one applies the inverse adaptation func­
tion and rotates the figure about -90 degrees (or 270 degrees) and replaces the variable 
number of copies by 2. Likewise, the resulting term will be cover(copy(X,2,Circle)). 

•	 where abstraction was used, the transferred solution can be expressed by the attribute 
covered. But the reverse concretization is somewhat difficult. Given terms and their 
corresponding abstract descriptions, one can try to find one term-representation which 
fulfills all abstract attributes (in this example row, regular, and covered). This suffices, if 
the number of these term-attribute assignments remains small but becomes intractable 
otherwise. 

Given the structural representation of the new solution the application of the inverse transfor­
mation </J-l yields the attribute-based and hence pictorial representation of the new solution. 

Conclusion and Future Work 

The approach introduced in this paper offers a practical way to integrate and tune case-based 
and rule-based background knowledge to solve real world synthesis tasks. Resulting advantages 
are problem solutions in synthesis domains like design, where only locally consistent knowledge is 
available. Even with only locally consistent knowledge, the adapted solutions are not necessarily 
bad solutions, because just the appropriate rules can be selectively applied to adapt them. In 
addition, the structural similarity assessment provides a basis for more descriptive explanations 
for why particular solutions have been adapted. 

There are some interesting directions of further work. Some knowledge structures in our do­
main cannot be efficiently captured by term representations. Therefore, we wish to extend our 
approach to other knowledge representation schemes like general trees, graphs, etc. In such cas­
es, different cases will have completely different structural representations and hence different 
modification rules. However, the main direction for further work is the integration of learning. 
The domain specific determination of knowledge representations and interactions between them 
is a first step before learning can be included. 

To demonstrate the effectiveness of our approach, we have started implementing a system called 
SynTerm (like Synthesis by using Term representations). This program realizes problem solving 
in industrial building design using the approach introduced. 
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the number of copies will be  replaced by variables :51 and 3:2. The resulting common
problem description will be: copy(m1,x2,0ircle) as shown in Fig. 2.

. The second way is t o  use generalization and adaptation rules. Here, the number of
copies will be  generalized, too.  One term representation will be  rotated about 90
degrees.

. The third way uses abstraction. Here abstract descriptions like row and regular will be
used as structural attributes. The idea behind this is that the more identical abstract
attributes structural descriptions share, the more similar they are.

Given the main structure of both problem descriptions, we can simply transfer the main prior
structurally modified solution (in the example cover(copy($1, :62, Circle») to the actual problem
(in Fig. 2 referred to as solution transfer). Using the knowledge about the sequence of modifi-
cations. to determine the common structure, the transferred solution can be  adapted to the new
problem. This is denoted by f ‘ l .  To get the concrete structural solution, in the example,

o where two generalizations were used to determine structural similarity, one has to
replace 3:1 by its former value X and analogous 3:2 by 2. The resulting term will be
cover(copy(X,2, Circle».

. where generalization and adaptation were used, one applies the  inverse adaptation func—
tion and rotates the figure about -90 degrees (or 270degrees) and replaces the variable
number of copies by 2. Likewise, the  resulting term will be  cover(copy(X,2, Circle».

. where abstraction was used, the transferred solution can be  expressed by the attribute
covered. But  the reverse concretization is somewhat difficult. Given terms and their
corresponding abstract descriptions, one can try to  find‘one term-representation which
fulfills all abstract attributes (in this example row, regular, and covered). This suffices, if
the number of these term-attribute assignments remains small but  becomes intractable
otherwise.

Given the structural representation of the new solution the application of the inverse transfor-
mation (V4 yields the attribute-based and hence pictorial representation of the new solution.

4 Conclusion and Future Work

The approach introduced in this paper offers a practical way to integrate and tune case-based
and rule—based background knowledge to solve real world synthesis tasks. Resulting advantages
are problem solutions in synthesis domains like design, where only locally consistent knowledge is
available. Even with only locally consistent knowledge, the adapted solutions are not necessarily
bad solutions, because just the appropriate rules can be  selectively applied to adapt them. In
addition, the structural similarity assessment provides a basis for more descriptive explanations
for why particular solutions have been adapted.

There are some interesting directions of further work. Some knowledge structures in our do-
main cannot be  efliciently captured by term representations. Therefore, we wish to extend our
approach to other knowledge representation schemes like general trees, graphs, etc. In such cas-
es, different cases will have completely different structural representations and hence different
modification rules. However, the main direction for further work is the integration of learning.
The domain specific determination of knowledge representations and interactions between them
is a first step before learning can be  included.

To demonstrate the effectiveness of our approach, we have started implementing a system called
Syn Term (like Synthesis by using Term representations). This program realizes problem solving
in industrial building design using the approach introduced.
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Ab;;tl'act.. The \\'ork described in this paper is aimed at. providing an underlying model of memory 
to support Case-Based Reasoning (eBR), The approach t.aken is t.o include it nllmber of t~'pes of 
biasing constraint wit.hin the structure of memory itself and to use an act.ivat.ion passing process to 

exploit this infonlliition for retrieval of relevant cases, This provides t.he i)ot~ntiaJ for highly flexible 
caSE' ret.rieval withoul re,ortinp; to exhaust.ivE' search of memot'~ This claim is supported b~' initial 
experimentation using a prorot.~'pe implementation of t 11(' model of memor~', 

1 Introduction. 

('BR is now a well e;;tabli;;hecl problem solving technique, Part of its popularity lie;; in thp int.uitivp 

appeal of a computn system that can base its reasoning on thp rt>usP of isolatp(] 'q:periences', Yet 
this int.uitive appeal lI1a~' also 1)(' deceptive, Filch of t.he stage~ of the e'BR l)J'oce;;s (such as l'et.ripval. 

relevancy judgement, pvaluat.ion. adaptation <tnd learning) is in ibPlf Cl compkx task that has spawned 

and cont.i IlUPS to support l11an~' rese<H'ch projpets, 

TIlE' work c!csc.!'ibe(r in this palwr seeks to find it morp funclanwnutl Ilwcha11ism that underpins the 
process of eBR, Rpse<llTh along t.hesp lines ma~' help 1'·0 clal'if\ thp interactioll hetwppn the different stage;; 

of CRR and also determine the relationship of CBH to similar t~!pe" of reasoning" such as analogical 
reasonmg, 

It is desirablp that an undPl'I~!ing, llIodel of lllel1l0r~' has thp fo]]ol\'ing propert ie;;: 

•	 Flexibility. TIJPre shonld be a minimal inher"llt restriction in terms of tlw cirCl1ll1stance under 
which a ca;;(-' nlll 1)<' retrieved <md hence reuspd 

•	 Generality. 'fliP knowledge representatIon should not· restrict whal conslitnti's a case, 

•	 Effieiellcy. 'The rc'trienll of appropriatp casps should m'oiel all f'xhau;;ti,'c search of mcmory. 

In ordpr to satisl\ tlwsp potent.ially conflicting gOil\S t.he approaeiJ taken in the descrilwcl work is to 
use it variety of con;;traint.s as {)/U8t.' on ret.ripval This approach is simililr to that tClkpn in s~';;tPl11S such 

as PAHADY:\[[ [t<o I] and .-\RCS [1-1], However, thp work dpsnilwc! in this pap"r is novel ill so much as 

it aUpmpls to satisf,- tlw above n'quirements by the exploitat.ion of Cl richl~! strllctured nWllIory and as 

sllch the proposed 1110(1..-101' rpt.rin'al is potPntiall~' lpss cOlllputiltionally intellsive, 

Th" 1Il0cld of 1lJf-'1II0r.1' t!I;'l1 Il'in bc' c1f:'scribeel in thi.~ p'llwr i.~ illu,.:tnlec! in figurp 1 Tlw retripval 
111('chanislll hib tllree distillct phasc" I)hilse I Slltl[Jly lll\'oh~'" the <I('('C"" of all "(JlIlponents of the target 
('ase's Cle('OllljJO"itlollal sll'll<'tUi'(,2 I'Iw ;;econd ill'cl Illo:;l l)roloni',ed I)ha"e I" <tsearch throtlgh thp network 
of nWlllor~' frolll e,l<'lt of tll(' target ('ase COlllpolIPnt tC) 'similar' SOllr('e CClse conlp0npnt,:" Tlw typ"s of 

informat.ioll t.It;lt 1111111"11<'(' tlli" pi'()('e"" and IWlif'(' COlltrihul(' 10,\ hic1Sillg 1011'ard;, Silllili'rit,v are clp~nibpd 

in seetioll L, ",llile tll<' ,wtl,'ati011 I>ilssing 111i'chaIJi"ill that perfonn" retrieval i" clescribed in spctioll :.\, 

The filial phas0 i~ I'or ,ill tll" isolated rNric\'c,l" OfSOllrO' casp COl11pOltf'llts to hp <'ombit,jecl to gpnerate a 
global nl<'a~lIl'p of tit<' rei I'Icval streugth for each ;;ource case, This pro('('~" is hridly c1escribpd in spctioll 

;{,L The lIlodel of Ilwlllory It'l" heen il1lplellwilted ill t.lw CH.\SJll PI'Olol~'IH' sv;;tf'll1 and somi' initi<tl 
('xperilll('Jllill \\'ork i" cl""nilwcl ill section 4. 
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An Undeefi-ting Memory i\--"Iodel t o  Support Case Retrieval.
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Abs t rac t .  The  work described in this paper is aimed a t  providing an underlying model of memory
to  support Case—Based Reasoning (GER) .  The approach taken is t o  include a number of types of
biasing constraint within the  structure of memory itself and to  use an activation passing process to
exploit this  information for retrieval of relevant cases. This  provides the  potential for highly flexible
case retrieval without resorting t o  exhaustive searcl'i of mentor} Th i s  claim is suprmrted by initial
experimentation using a prototype implementation of t he  model of memory.

1 In t roduc t ion .

CBR is now a well established problem solving technique. Part of its 1;)opularity lies in the  intuitive
appeal of a. computer system that can base its reasoning on the reuse. of isolated experiences". Yet
this intuitive appeal may also be deceptive. Each of the stages of the (""-BR process (such as retrieval,
relevancy judgement. evaluation. adaptation and learning) is in itself a complex task that  has spanned
and continues to support many research projects.

The work descriloecl'in this paper seeks to  find a more fundamental mechanism that underpins the
process of CBR.  Research along tl'iese lines may help to  clarify the  interaction l‘)Pi'\\-’PF‘I'1 the different stages
of C BR and also determine the  relationship of CBR to  similar types ot" reasoning. such as analogical
reasoning.

[t is desirable that an underlying model of memory has the  following properties:

o Flexib i l i ty .  There should be a minimal inherent restriction in terms of the  circumstance under
which  a ca se  can  be  l'€;‘i'-l.'it“\"t‘(.l and  hence  reused

o Genera l i ty .  The  knmvledge representation should not. restrict what constitutes a case.

o Efficiency. The  retrieval of appropriate cases should avoid an exhaus t ive  search of memory.

in  order to satisfy these potentially conflicting goals the approach taken in the  described work is to
use a variety of constraints as biases on retrieval This  approach is similar to  that  taken in systems such
as PARADYME [& T] and ARCS [ll]  However. the work described in this paper is novel in so much as
it a t tempts  to satisfy the above requirements by," the  exploitation of a richly struct'm'cd memory and as
such the proposed model of retrieval is potentially less computationally intt-‘nsive.

The  model of ltle‘ll‘l()l'}' that will be described in this paper is illustrated in figure l The  retrieval
mechanism has three distinct phases. Phase | simply involxcs the access of all r 'mnponcn t s  of the target
case ’ s  clet'<:.>Iupositlc'mal structure? l'he second and most [ '> ro longed  phase is a'search through the network
of memory from each of the target case t'cn'nponet‘it to  ‘similar source case con‘iponents. The  types of
information that ml‘luence this process and hence contrilmte to a biasing towards similarity are described
in section 2. while the activation passing I'uechanisl'n that performs retrieval is described in section 3.
The  final phase is l'or all the isolated retrievals of source case components to  be combined to generate a
global nu-rasure ol' the retrieval Si-l't"llgt-ll for each source case. This  process is briefly described in section
3.2 The  model of tt'lt‘lltt‘ll'}' has been iniplt-‘iuentecl in the CRASH“ prototyl'ie system and some initial
expe r imen ta l  work  is descr ibed  in  sec t ion  4.

I ' I uh i s  work  was  s l i ppu r tml  la} t h l  h r ‘ i cn t i f i c  21ml I zngmm-‘ r in :  l i t - s cu r r ' h  ( 'm i l l t ' i l  (fi l i l i p ) .
} ' - . . . I _ \ .' . \ u t e  t ha t  II is a s sumed  [ha t  t he  t isslmllatnm uf t he  ta rge t  ca se  Wllll t he  rest ul mvnmry  has  a l r eady  m"t_'1|rrcrl.
(h.—m Retr ieval  bx Act iva t ion  pas smg  hilt-l],
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Figme 1: The ~JemOl'Y Structure and Retrieval Flow for cn ASH. 

2 Menl.ory Structure and Retrieval Biasing. 

Fivp distinct classes of inCormation ,,1'e recognised "s inJlPl'ent 10 the propose'd model of I1wmory. Each 
of these ilifonnatioJ"] ci:ltcgol'ies is c1pscribed belo\\' in terms of holl' it is repre.sented and the role it plays 
in c<-lse retripv,,1. 

•	 Semantic Knowledge. 'Ihis is t.he "factual" knowledge held in memory. including the cases 
themselves "lid ,,11 approprint.e supporting domain kno\\'ledge. For CRASH. tllis knowledge is 
represented as 3 ,'oliceptual graph. A 'local' representatioli is used where each nodE' represents 
eX!'lctly one item of knO\vleclge and where the relations in the network are an310gous to the associative 
relationships that exist between knowledge items in realit.v. In this \\'ay the basic stmcture of the 
conc(>ptual gr3ph defines a search spacp for retl'ieval of knowledge that is meaningful. 

•	 Contextual Delimitation. In J'palit~, fell'. if any. "faets" are uliiversall~' true. rat.her a given item of 
kllo\vledge is only appropriatp ill (Oil/cd In the CRASH model of memory "colltcd" equates to the 
explicit rqm',.;elltal ion 0[' kllO\\kdge that. detf:'rmines when an individual relationship is relevant.. It 
follows that. t.he g<'lwral role t.hat coutext. p]a.vs is to SEgregate memor." so that. appropriate knowledge 
('an Lw focussrd on al the timp of retrieval. TllP fact that. t.he const.raining action of context can be 
dyumnically "uperimpu,.;ed upon memory llleans that. t.here is greater flexibility in t.elTns of the use 
of nlemor.v than call gellc'rally Lw achieli'd lI,.;iug (radit,ioual "im!t-.cillg" approaches. 

•	 Recently n.etriev(~d Knowledge. The kno\I'ledge in memory t.hat has already been self:'cted 
plays an impo\'t,ant role in determining what. new facts should al:3o bp retrif'ved [9]. Hc-nce this type 
of infol'lTlat.ion acts as a fluid form of 1'0nti'xt Cor the on-going retrieval process. For CR.ASH. this 
type of inforrnarioll equate,,; tu t,he ruornent.ary di,,;tribntion of activation during retripval. 

•	 Descriptive St1'111:ture. It is well recognised. particnlarly in ancdogical rpasoning [,j]. that the two 
cases arf' rt101'e likel.'· to st.rongl~' relate to one nJ10ther if tlwir descriptions involve similar patterns 
of relations. It follows t.hat retrieval "honld alternpl 10 preserve strLlC'lure of Cl target case ,vhen 
retrieving ilpplicalJle SOli reI' case,.;. The achiel'i'ment or t.his in CR.ASH is discussed in section :3.2. 

•	 Typicality and Idi()sYllcrasy. The~se are two rueta-level measures based on oil knowledge held in 
memory. Thesp fiJ('\.ors provide a default. graded struct.ure for rnemory t.hat. in thp absence of any 
stronger con k'xtll a I constl'aims. can be used to guide retrieval along the paths t.hrough memory that 
are potent.ially of most. USe. Typicality is useful in terms of providing guidance of retrieval towards 
most frequently pncouiltered semantic knowledge. This can be shown to improve the accuracy for 
abeluet.ive inference of addit.ional knowledge about. a target casp. By contrast, idiosyncrasy guides 
retrieval to the tnost pxcept.ional (anel hence charactel'i.slic) features of a particular description. 
Both measu res are a,;signed to all relations in the conceptual graph by st.atistical calculations in 
CflASH. Dptaih of the calculation and use of these relation weights can be round in [2. chapter3]. 

3 On the Use of Activation Passing for Retrieval. 

'IItere ar<:' ,I Ilurnh<:'r or r'·il";OII~ why ilctivatioll Pilssiug II'as chosen a,; a suitahle teclJnique for implementing 
retrieval. The Ilullleri,' Illilrkpl's t.hat. arE' passed provide a suit.able vehicle by which the various constraints 
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Figure l :  The  Memory Structure and Retrieval Flow for CRASH.

2 Memory St ruc ture  and Retrieval Bias ing .

Five  d i s t i nc t  c lasses  of  in lin'ma-itiou a r e  recognised a s  i nhe ren t  t o  t he  proposed mode l  of memory .  Each
of these information categories is described below in terms of how it is represented and the  role it. plays
in case retrieval.

o Semant i c  Knowledge .  "lili'is is the "factual" knowledge held in memory. including the cases
themselves and all appropriate supporting domain knowledge. For CRASH. this knowledge is
represented as a concep tua l  g r aph .  A ‘ local’  r epresen ta t ion  is used  whe re  each node  represents
exactly one item of knowledge and  where the  relations in the network are analogous to  the associative
relationships tha t  exist between knowledge i tems in reality. In this way the basic structure of the.
conceptual graph defines a search space for retrieval of knowledge tha t  is meaningful.

o Contextual  De l imi t a t i on .  ln reality few. if any. “facts" are universally true, rather a. given item of
knowledge is only appropriate in confer-f 1n the CRASl-‘l model of memory "contort" equates to  the
explicit rein-e~se.iit.z-it ion of knowledge tha t  determines when an individual relationship is relevant. I t
follows tha t  the general role t ha t  context plays is t o  segregate memory so tha t  appropriate knowledge
can be l'ocussed on at the t ime of retrieval. The  fact tha t  the  constraining action of context can be
dynan'iicaflly superimposed upon memory means tha t  there is greater ih-rxibility in terms of the  use
of memory than can generally be achieved using traditional "inch-tiring" aprn'oz-iches.

. Recently Re t r i eved  Knowledge.  The  knowledge in memory tha t  has already been selected
plays an  important role in determining what new facts should also be  retrieved [9]. Hence this type
of information acts as a fluid form of context For the on-going retrieval proceSs. For CRASH. this
type of iniorination equates to  the momentary distribution of activation during retrieval.

vo Descr ip t ive  S t ruc tu re .  [ t  is well recognised. particularly in analogical reasoning [a]. tha t  the  two
cases are more likely to  strongly relate to one another if their descriptions involve similar patterns
of relations. ll 'l'ollows that retrieval should attempt t o  preserve structure of a target case when
retrieving applicable source cases. The achievement of this in CRASH is discussed in section 23.2.

o Typica l i ty  and  Id iosyncrasy .  These are two meta—level measures based on all knowledge held in
memory. These Factors provide a default. graded structure for memory tha t .  in the absence of any
stronger contextual constraints. can be used to  guide retrieval along the  paths  through memory that
are potentially of most use. Typicality is useful in terms of providing guidance of retrieval towards
most frequently encountered semantic knowledge. This  can be shown to  improve the  accuracy for
abductive inference of additional knowledge about  a target case. By contrast. idiosyncrasy guides
retrieval t o  the most exceptional (and hence characteristic) features of a. particular description.
Both measures are assigned to  all relations in the conceptual graph by statistical calculations in
CRASH. Details of the calculation and use of these relation weights can be found in ['2. chapter3].

3 On  the  Use  o f  Activat ion Passing for Retrieval .

There are a nu in her of reasons why a ctiva tion passing was chosen as a. suitable technique for implementing
ret.1'ie\-'a.l. The  numeric markers that. are passed provide a. suitable vehicle by which the various constraints
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built int.o the orgarllsation of nWl110ry ('an be CJuantitar.ively assessed during retripval. This has import.ant 
efficiellcy and flexibiJit~· implications with respect to retrieval becausp. if memory is suitably well struc­
tured. the l1f'ed for post-rptripval evaluation of ('ases may be avoided. In this way CRASH improves npon 
systpms S11<'h as PARADYi\IE [8. 7] and MAC/FAC [6]. 

The responsivPI1E'ss of activation passing to constraints can .greatly be increased through the intro­
duction of compNition into the process [10]. However. traditional approaches to competit.ive activation 
passing arp not. wdl suitpcl to the t,ask of casp retrieval and an appropriate solution is put forward in 
section ?..l. An additional.problem with activation passing is t,hat it is difficult to include a bias to­
wards presPl'ving des('riptivp structure during retrieval. A possiblp solution to this problem is described 
in sp<t.ion :~.2. 

3.1 Competitive Activation Passing for Case Retrieval. 

A major problem in applying act.iyation passing t.echniques to thp task of casp retrie\'aJ is the determination 
of an appropriate form of 'comppt.itiveness'. In order to be space efficient some form of "ulrtual" inhibition 
is required [12], rather than tJw reJial1<'p on explicit inhibitory links such as in [14. 10]. However. the 
virtual inhibit.ion (Iescribpd in [lL] produces a "winner-takes-alr' strategy that is too restrictive for case 
retrieval: for successful eDR it is often best. to (Ie,\] \\'ith a SlllCl11 corpus of potentii1,lly relevant cases 
rather than the OlW 1110,,1 relevanl ca"... [ll. :j, l:~]. 

The adoptpd solutioll is \.0 sy,:;t P ll1at,ici1lly restrict the 11111111)('1' of outward link,:; that can be used by 
a node al any poinl during, phn,..e :! of the rer.rieval There are "','ver,,,] rclCtOr,:; that determine which of a 
givPII node's OIHpul,,, "'ill he ""le(·[.c(1 a" I·('('('iver,.. \Vh('11 it ':;('llcb ;·wl,lvnl.jOJI Firsl and foremost an OlHpl.lt, 

i" old.\· a ci111dielate I·foj· ... ller if the <'\11'1"'1111.1' se!(yt,od ,'ontexl,.. explicill.'· staU: that the relation associated 

with that 01lt.jJUl i,.. re!ev,ult of SpcondJy. any candidat" recel\er output that Ipads to a node that alrei1dy 
possesses activatiou will autollwtl,,,'ally be selected. This instigates the (Iesired bias in retrie\'al towards 
the reinforcement of alread~' rprrieved knowledge. In particular it favours tlw recollection of coherent 
bodies of facts. rather than fach in isolation. Finally. if the ahove selection criteria does not pxhaust the 
allowed limit on a given nodp's receivers. outward link,s are "eJectpd in tlw order imposed by thp t~'picality 

and idiosyncrasy relation \\'eighting, up to the point at which the receIver limit is reached. 
Once all receivers have Iwen s('k'cted the same arnount of activation is sent to each. The competition 

therefore lies ill hecoming a receiver. not in term,:; of acquiring more aerivation than otlJPr receivers. 
In particular. relation \veighting Ilas t,he roll" of controlling in whal direction an activation distribution 
expancls I)ut has no eA'ect on the anIon nt of nctivat,ion that i" sent. This llwall" that. in a suitabl~' uuusual 
coutext. Cl 101\' wpighled r<'lat iOll Illr]y h,' one or' thp rp\I' sel<'cl (>d r<"'cf'i""rs alld "ubsPCJlIent.I~" a relativel~" 

large alllOll1lT of aCli\iltioll will pa,..,; throngll il llJ 1I1i,~ "'Cly tll(' flexibilit,l' of the proposed retrieval 
mechanism is plllHlIil'('c1 

3.2 Preserving Cil"C Structure During Aetivation Passing . 

.\ seCOIl(] Illa.ior problem with activatioll pa,ssing j" that.. because it j;, governed b~' Iligh].\· localised rules. 
it is cliffir'ult t.o match source and target. cases baspd on tlleir dpscriptive strJl<'tllH'. A ilia" to\\'ards this 

t~'IW of structural pn'Serviltion is implE'l1lentecl ill C'HASH through the labelliug of disjoint activation 
distributions by "101011I'" tag"', 

.-\ d"pcndpllc.I· Ilier<ll'ch~' Iwtl\'eell (]ifIPrellt aetivcltion colours is generaled dnring pbilse 1 of the rp­
t.rip\·c11 reflecling Ill, CII'('Oil1l)O"itiollal ;,tru('\.ur<, of th,.' t,arg'~1 C<1se it;,;"II' 1'1", prop;lgal ion of activatioll 
1'1'0111 "i!ciJ l<1I'gel ca'!' "UlIJ1h)lJ('nt le) like ,..Ollrc,' ('a"" "OlllpOIH"'nl" Ilkll prul'f'e(],.. durillg pha;,,, 2 of the 
retri<'val. 1I10r<'-or-I"s" indC'pen(I('lltl~' 1100\'ever ill phase ;j Ille isolated aClivatiotls deposited ill tllf' nodes 
I'ppre",,"'ntlll,g COrnpulll'llt'> ,>!·"ollr!.'e ,'as(',; 'liT illllalgalllclted b~' Ilw propagatioll of acli\alion up the SOIIITI' 

,'asf' "tructu1'i';" 'I'll'" ,'ul')ur d<'I)('IIc!"IICH> g<,lwt'atecl in pha;," I (';lIl Iw used to guide till-' recombination of 
('O!Ollr" durillg pha,..., ;;. Till;, ,';111 1)(' lIsed tu elblll'(' that onl.\' suurc(' ",lse,; rhi1t are higltl~' isumorphic to 
the Inrget CCISP ill \('1'111,.. or th<'lr J'('I,respnti1tioll can 1)(' retripvpd \lorp genel'n]l.\'. thp "trpngth of merging 

of tm, "010111';' dep'·'II(I,.. ulI t h<'l)' proxil1ljl~' in a co]our c1ependpnc.v hipralTh.v Thi,.; provides some tolerancp 
to de\'iation Iwt\\'("'1I ,..ourcc ;\11(1 target casp stnil'luJ'(-''', 

4 Experilllental Work. 

This ,:;('ctloll ,l!.iH'''' iI hrief d(',..nlptioll PI' some PI' t.he ('XIWriI1li'lllc11 \I'ork that ha" "0 filr beell carried out 
,,;,ills. tll" ('11,\<';11 I'rPI!)I.qw Irnplcllwnl,clllOII pr Ill<' Illodel PI' IIWlllor.1 
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built into the  orgarnsat-ion of memory can be quantitatively assessed during retrieval. This  has important.
efficiency and flexibility implications with respect t o  retrieval because. if memory is suitably well struc-
tured. the  need for post-retrieval evaluation of cases may be avoided. In  this way CRASH improves upon
systems such as  PAR.='\DY1\IE [& T] and i\'lAC/FAC [6'].

The  responsiveness of activation passing to  constraints can greatly be increased through the  intro—
duction of competition into the  process [10]. However. traditional approaches to competitive activation
passing are not. well suited to  the  task of case retrieval and  an appropriate solution is put forward in
section 3.1. An additional problem with activation passing is tha t  it is difficult t o  include a bias to-
wards preserving descriptive structure during retrieval. A possible solution to  this problem is described
in section 3.2.

3 .1  Compet i t ive  Ac t iva t i on  Pass ing  for Case  Retr ieval .

A major problem in applying activation passing techniques to  the  task of case retrieval is the  determination
of an appropriate form of ‘connaetitiveness‘. In order to be space efficient some form of "tnrtnal " inhibition
is required. [12]. rather than the  reliance on explicit inhibitory links such as in [14. 10]. However. the
virtual inhibition described in [12] produces a “wiriner-takes-all" strategy that is too restrictive for case
retrieval: for successful (‚"BR it is often best. t o  deal with a small corpus of potentially relevant cases
rather than the one most relevant case [ l ] .  13. 13].

The adopted solution is to systematically restrict the  innnber of outward links that can be used by
a node at any point during phase 2 of the retrieval There are several factors tha t  determine which of a
given node's outputs  will be selected as receivers when it. sends 2-1.ct.11-':-n.i0n First and foremost an output
is only a candidate I't-‘t'c'lVF'r if the currently selected c tn ‘ i t ex t s  explicit Iy s ta te  that  the  relation associated
with that  output. is relevz-nni Secondlv any candidate receiver output that  leads to  a node tha t  already
possesses activation will antomatmally be selected. This  instigates the  desired bias in retrieval towards
the reinforcement of z-ilready retrieved knowledge. In particular it favours the  recollection of coherent
bodies of facts. rather than  facts in isolation. Finally. if the above selection criteria does not exhaust the
allowed limit on a given nodes  receivers. outward links are selected in the order imposed by the typicality
and idiosyncrasy relation weighting. up  to  the  point at which the  receiver limit is reached.

Once all receivers have been selected the same amount of activation is sent t o  each. The  competition
therefore lies in becoming a receiver. not in terms of acquiring more activation than other receivers.
l n  particular. relation weighting has the role of controlling in what direction an activation distribution
expands but has no effect on the  amount of act.i\--'ation that. is sent. This  means tha t .  in a suitably unusual
context. a low weighted relation may be one of the few selected receivers and subsequently a relatively
large amount of activation will pass through it in this way the flexibility of the proposed retrieval
mechanism is enhz-niccd

3 .2  Preserv ing  Cas t :  S t ruc tu re  Dur ing  Ac t iva t i on  Pas s ing .

.-\ second major problem with activation passing is that .  because it is governed by highly lo<::a|ised rules.
it is difficult to  match source and target cases based on their descriptive structure. A bias towards this
type of structural preservation is implemented in ("'RASH through the labelling of disjoint activation
distributions by “colour" tags.

A dependency hierarchy between different activation colours is generated during phase 1 of the  re—
trieval reflecting t'ln (let-tunpositional structure of the target case itself The propagation of activation
from each target case mtnponeru to like source case components then proceeds during phase ‘2 of the
retrieval. inore-m—lcss indcpendctItly I-lou'ever in phase 3 the isolated z-tctivations deposited in the  nodes
representing components ofsotn'ce cases arc amalgamated by the propagation of acti1ation up the  source
case st 1°ncture.s. The  colour flt"|)t-‘llC'lr’llClCh generated in phase I can  be used to  guide the  recombination of
co lou r s  during phasi- li. This  can be used to ensure that. only source cases t ha t  are highly isomorphic to
the target case in terms of their rc—qwesentation can be retrieved More generally. the  strength of merging
of two colours depends on their proximity in a colour dependency hierarchy This provides some tolerance
to  deviation between source and target case structures.

4 Exper imenta l  Work.

This section gives a brief rlcscrtption of some of the  experimental work that has so far been carried out
using the (‘R . \S | l  prototype nnplcinentaticm of the model of memory

*Thc select ion ul con tex t s  is beyond  the  s cope  of th i s  pape r .  s ec  ‘2] [or  r l c t a i l s
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4.1 Experiment Description. 

For the purposes of initial experimentation a simple "bin-packing" problem was devised. This problem 
involves a. rectangular grid and a s"t of right-angled polygons. The task is to place all th" sharjes within 
the grid so that th,,~' te;;sel1ate and exactly cover tlJP gricL The problem is simplified such that the 
polygon;; ilre eit.her rect.angles or L-shapes of various sizes. 

For t \JP probl,,11l to \)<" tackled using CBR r"quir"s Cl collection of sourc" cases that represent individual 
placement;; of shapes within a gricl. Accordingly a set of source cases were produced by recording the 
problprtl-;;olving actions of the author while tackling a lIumber of expmplar bin-packing problems set by 
a collpague. Eilc·h SOlllTP casp i;; composed of two main part,s, an initial state and the plac"ment, The 
initial state in turn cOlllprise;; a description oft-he remaining space to be filled and a description of the 
set of shap"s still to l)f' placed, The placement is compos"d of a shape selected for plac"m"nt and the 
shape's final po;;ition wit hin the remaining grid. The representation of cases was carefully designed so as 
to minimise the amount of bias towards problem solving characteristics that are implicit within the case 
descript.ion structure itself. ' 

A target case \\,as encoded and a series of retrievals performed, Experimentation \vas performed 
across a rclllge of cl i fferPIl t cases bases ;md \vi th system atic variat ion ill the key pa rallleters th a t. control 
the operation of ('HAS1], In part.icula!'. the amount of retrieval effort was varied between ret.rievals by 
altering the al1ow<1b]e 1I11111ber of' rec'(,ivers p"r noelp, Tlw result, of "ach r"trin'al is a graded ordering of 
I.he sourC'(' ('(ISi';, ill k'rm" of 110\\' nlllch aetivatioll resulted wit,hin their repre;;"nta.tion, 

4.2 Experimental B())Ieh-lllal'ks. 

This ordering of ~Olll'Cf' C(lses produced by each retrieval is compared to thrf'e th"orptical bench-mark 
orderings defined in tf'rn I;' of the following cri teria: 

•	 Semantie Orderillg: This is based on a measure of the 'semantic similarity' bptween target case 
and each somce ca;;e, Cases are ordered according to a measurement of the maximal size for a set 
of compatible feature pairings that can be generated bet\yeen two case descriptions, 

•	 Structural Ordering: This is based on a measme of the correspondence between the structure 
of the target case descript.ion and each source case description. 

•	 Pragmatic: Ordering: During knowledgp elicitatioll ['01' the bin-packing problem a set of heuristics 
were identified tha 1 can be [heel 1·0 achieve a high success 1'a te when generating solutions. Examples 
of these heurist.ics induele "position the !myest re Ilwining shape neTt" and "keep the remaining space 
a8 reetangu!o/' (/8 possiblt ". These heuristics can be used to evaluate how useful is the placement 
suggested b~' each somce case \\'ith respect, to the initial state of the target case which in turn 
provicles Cl pragmiltic ordering of source cases. 

The deviation of the retrieval ordering from each bench-mark ordering is calculated. This measure can 
be converted imo ;1 biasing st.rength by considering the probability that a randomly generated ordering 
of the sourc" cases hi1;, as closp a match to the bench-mark ordering as that produced by a given retrieval. 

4.3 Results and Analysis. 

The re;;uIL;; for al[ rplrie\'al,,;;o far carrie;d out using CRASH on the bin-packing problem are summar­
ised in figure 2, One of rlIP main goals of the experimentat.ion is to empirically establish a relationship 
between tlJf' amount of !'Pt,rieval efrort performed (with respect to an exhaustive search of memory) and 
the qualit.y of retrieval. Th" results shown in figure :3 are typical", 

Sf'vera I conclusion;; c'an be made from these results. Firstly it is clear from figure 2 that there is 
generally a strong positivI' bias towards all t.hree bench-marks. In particular. as is shown in figure :3. the 
correspondence between struct.ural and semantic ordering is high. This coupling can be at.tributed to the 
use of a ;;tandard fOlTnat for representing bin-packing cases. 

The case retrieval also ;;hows a general bias towards selecting the source cases that are of most use for 
problem solving, This helps confirm an underlying premise of this work: that the combination of various 
preferenl'f' constraints C;'ln he sufficienl, to determine \\'hat source cases (lre relevant to a new problem 
solving epi;;ode. Figme:\ "haws th<1t t,he bias of retrieval t.owards pragmatic ordering is generally slightly 

SFigurf ' :~ ;h()\v~ 1"lw r(~~IIII~ for a series of :39 separate retrievals carried out. on a case base containing:22 bin-packing 
case~. 
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4 .1  Experiment Descr ipt ion .

For the purposes of initial experimentation a. simple "bin-packing" problem was devised. Th is  problem
involves a. rectangular grid and a set of right—angled polygons. The  task is to place all the  shapes within
the  grid so that  they tessellate and exactly cover the grid. The problem is simplified such that  the
polygons are either rectangles or L-shapes of various sizes.

‚_F‘or the problem to  be tackled using CBR requires a collection of source cases that. represent individual
placements of shapes within a grid. Accordingly a set of source cases were produced by recording the
problem—solving actions of the author  while tackling a number of exemplar bin-packing problems set by
a colleague. Each source case is composed of two main parts. an initial s t a te  and the  placement. The
initial s ta te  in turn comprises a. description of ‘the remaining space to  be filled and a description of the
set of shapes still to  be placed. The  placement is composed of a. shape selected for placement and the
shapes  final position within the remaining grid. The  representation of cases was carefully designed so as
to  minimise the amount of bias towards problem solving characteristics that  a re impl ic i t  within the case
description structure itself.

A target case was encoded and a series of retrievals performed. Experimentation was performed
across a range of different cases bases and with systematic variation in the key parameters t ha t  control
the operation of (:“J‘iASll. ln particular. the amount  of retrieval effort. was varied between retrievals by
altering the allowable number of receivers per node. The result of each retrieval is a graded ordering of
the som-ce cases in terms of how much activation resulted within their representation.

4 .2  Exper imenta l  Bench-marks .

This  ordering of source cases produced by each retrieval is compared to three theoretical bench—mark
orderings defined in terms of the following criteria:

-o Semant ic  Order ing :  This is based on a. measure of the  semant ic  s imi lar i ty  between target case
and each source case. Cases are ordered according to  a. measurement of the  maximal  size for a set
of compatible feature pairings tha t  can be generated between two case descriptions.

o Struc tura l  Order ing :  This  is based on a measure of the correspondence between the  structure
of the target case (.lescription and each source case description.

0 P ' agmat ic  Orde r ing :  During knowledge elicitation for the bin—packing problem a set of heuristics
were identified that can be used to achieve a. high success ra te  when generating solutions. Examples
of these heuristics include "position the largest rentaimng shape pert” and "keep the remaming space
as  ir-cfcnigulm' a s  possible These heuristics can be  used to evaluate how useful is the  placement
suggested by each source case with respect t o  the initial s ta te  of the target case which in turn
provides a pragmatic ordering of source cases.

The deviation of the  retrieval ordering from each bench-mark ordering is calculated. This measure can
be converted into a biasing strength by considering the probability tha t  a randomly generated ordering
of the source cases has as  close a match to the  bench-mark ordering as that. produced by a given retrieval.

4 .3  Resu l t s  and  Ana lys i s .

The  results for all ret.rii-i-'als.so far carried out  using CRASH on the bin-packing problem are  summar—
ised in figure 2. One of the main goals of" the experimentation is to empirically establish a. relationship
between the  amount. of retrieval effort performed (with respect. t o  an exhaustive search of memory) and
the quality of retrieval. The  results shown in figure 3 are typicali’.

Several conclusions can  be made from these results. Firstly i t  is clear from figure '2 that. there is
generally a strong positive bias towards all three bench—marks. In particular. as is shown in figure 3. the
correspondence between structural and semantic ordering is high. This  coupling can be  at tr ibuted to  the
use of a standard format for representing but-packing cases.

The case retrieval also shows a general bias towards selecting the  source cases t ha t  are of most use for
problem solving. This  helps confirm an underlying premise of this work: t ha t  the combination of various
preference constraints can be sufficient to determine what source cases are relevant to  a. new problem
solving episode. li‘igure It sl'iows that the bias of retrieval towards pragn‘iatic ordering is generally slightly

“F igu re  3 shows  the  resu l t s  for a ser ies  of 3.9 s epa ra t e  re t r ievals  ca r r i ed  ou t  on  a case. base con ta in ing  2‘2 b in -pack ing
cases .
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weaker than for t lJ(· 01 her t \,"0 IWllch-marks. This is flot surprising a Ild r<'fleets the efforts to avoid any 
undue pragmatic bia,; in thp stl'1lctur!' of t.!li' cas!' representntiol1, In addition. the context spquence used 
to control phase :2 of all experiment.al ret,rievals implements a feature-based search from Clff components of 
the target case. To hone the ret rievaJ for problem-solving would require retrieval strategies that prioritized 
the target case components: for example, retrieving source cases from the larger target case shapes but 
ignoring the smaller shapes. 

Finally, and perhaps most importantly, figure :3 shows that a near maximal retrieval quality can be 
produced with respect to all bench-marks at a retrieval efrort well below t.hat required for exhaustive 
search of memory ( :::::: 7% in the example of figure :3). This is strong evidence for the claim put forward 
at. the start of this paper: that a flexible model of retrieval can be Implemented by relying on a rich 
organisation of n]f'mol'~' rather than on a more brute-force approach involving an extensive search of 
memory. 

5	 Conclusions and Future Work. 

This paper describ!'s tllf' ,,'ork that has been carried out in the development of an underlying model of 
memory to support CBR. The potentia.l for utilising activation passing for t1w achievement of retrieval 
has been recognised elsewhere [J 4, 4. 1. 15]. However the scheme proposed Iwn' is unique ill that it cloes 
not re]~" on t.heexplicit represpntation of inhibitory links yet is sufficient 1.\" selective to ,vield useful case 
retrieval \\'ithou t re"orti ug t.o pxhausti ve search. 

The init,ial explCrilllPntal results support the claims that the proposed model can efficiently incorporate 
into retrieval various I!wa';\II'e,; relating to similarity judgements (and hence rp]e\'aney). Howpver there is 
a neeel to a.pply tllt'llloc!el 1.0 larger awl more compjpx problelll domains. This is intended as one area 
for future work. 

From a theoretical si awl-point an important future dirc'ction is to im'!'stigate how other aspects of 
CBR unif~' \yit.h retrip\'al. For ,'xamplp, the tasks of retrieval ancl rnapping sepl11 int.uitively to be linked, 
Furthermorp. it llla~' hp plausible tllat tasks such as case adaptation can be rpcast as iterative retrievaL 
provided that the relevant kno\vledge is hetel in nwmory. Thp apI,>roach of seeking t.o explnin the process 
of CBR via such a Ilnifiec! nlOelflmay help to generate important insights into t he general role of me11l0r~' . . 
III reasonlllg. 
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weaker than for the other two bench-marks. This is not surprising and reflects the efforts to avoid any
undue pragmatic bias in the structure of the case representation. In addition. the context sequence used
to control phase 2 of all experimental retrievals implements a. feat tire-based search from all components of
the target. case. To hone the retrieval for problem—solving would require retrieval strategies that prioritized
the target case. components: for example. retrieving source cases from the larger target. case shapes but.
ignoring the smaller shapes.

Finally. and perhaps most. importantly. figure 3 shows that a near maximal retrieval quality can be
produced with respect. to all bench—marks at a retrieval effort well below that. required for exhaustive
search of memory ( z 7% in  the example of figure 3). This is strong evidence for the claim put forward
at the start of this paper: that a flexible model of retrieval can be implemented by relying on a rich
organisation of memory rather than on a more brute-force approach involving an extensive search of
memorv.

5 Conc lus ions and Future Work.

This paper describes the work that has been carried out in the (lei-relopment of an underlying model of
memory to support CBR.  The potential for utilising activation passing for the achievement of retrieval
has been recognised elsewhere [If-f. 4. 1. 15]. However the scheme prOposecl here is unique in  that i t  does
not rely on the explicit rein-esentation of inhibitory links yet. is sufficiently selective to yield useful case
retrieval without resorting to exhaustive search.

The init ial  experimental results support. the claims that the proposed model can efficiently incorporate
into retrieval various measures relating to similarity judgements (and hence relevancy). However there is
a. need to apply the 'i‘nodcl to larger and more complex problem domains. This is intended as one area.
[or future work. -

From a. theoretical stand—point an important future direction is to investigate how other aspects of
CBR unify with retrieval. For example. the tasks of retrieval and I'i'iapping seem intuitively to be linked.
Furthermore. i t  may be plausible that tasks such as case adaptation can be recast as iterative retrieval.
provided that the relevant knowledge is held in  memory. The approach of seeking to explain the process
of CBR via. such a. unified model'may help to generate important. insights into the general role of memory
in. reasoning. "
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1 Introduction 

The main idea in case-based reasoning is to use the solution of a problem that has been solved earlier in 
order to solve a new problem. Given the actual problem P and a collection of previously solved problems 
PI, P2 , ••• , Pn , one first evaluates the similarity between P and each Pi, i=l, ... , n. Once the case Pi 
has been found that is most similar to P, its solution is used in order to construct a solution of P. The 
similarity measures used in many case-based reasoning systems assume th.at cases are represented by 
collections of attribute-value pairs. Based on this assumption, the similarity between two cases is usually 
computed by a weighted sum of the similarity of the individual attribute values. For a general discussion 
of this type of similarity measures see [1]. 

In this paper, we propose a different approach. We assume cases not being givenjust by collections of 
attribute-value pairs but by structured representations. Formally, we assume each case being represented 
by a directed /abe/ed graph (or graph, for short) 9 = (N, E, 0:,13), where 

• N is the finite set of nodes, 

• E ~ N x N is the finite set of edges, 

• 0:: N o--t LN is the node labeling function, 

• 13: E o--t LE is the edge labeling function; 

LN and LE are the finite alphabets of node and egde labels, respectively. Using such a representation, we 
normally represent concepts or objects of the problem domain by nodes, and relations between concepts 
or objects by edges. Relations can represent, for example, spatial, temporal, or causal relationships 
between nodes. The alphabets of node and edge labels are problem dependent and vary, in general, from 
one application to the other. Particularly, the above definition includes semantic networks and frame 
systems as special cases of graphs if we introduce relations like "instance" ,"instance of', "a kind of' a.s.o. 

2 A Similarity Measure on Graphs 

Using graphs as introduced in the last section for the representation of problems, or cases, a measure 
is needed that gives the similarity of any two graphs. In this paper, we introduce a similarity measure 
based on a weighted graph edit distance. Our proposed measure is a generalization of string edit distance 
[2]. 

We start from a set of elementary edit operations on graphs, namely, the insertion, deletion, and 
substitution of a node or an edge in a graph. Formally, this set is given by 

EO = {deLnode, ins_node, subsLnode, deLedge, ins_edge, subsLedge}. 

If we apply one or more of these edit operations to a given graph gl, a new graph 92 is obtained. For 
example, the graph shown in Fig la can be transformed into the graph shown in Fig 1b by (1) substituting 
the node labeled "Cup" by a node labeled "Bowl", (2) substituting the edge labeled "below-of' by an edge 
labeled "right-of', (3) inserting a node labeled "Noodles", and (4) inserting an edge labeled "contains" 
between the nodes" Plate" and" Noodles". Apparently, our set of edit operations is complete in the sense 
that it allows to transform any given graph 91 into any other graph g2. This can be readily concluded 
from the fact that EO contains the insertion and deletion of both nodes and edges. Thus, in order to 
transform a given graph 91 into any other graph 92, we could first delete all nodes and edges in 91 and 
then insert all nodes and edges in 92, for example. Note that for any two graphs gl and g2, there are 
usually more than one sequence of edit operations transforming 91 into g2. 

In order to model the fact that certain differences between two graphs have more weight or importance 
than others, we introduce costs for the basic edit operations. Let e E EO be an edit operation. Then 
c(e) ~ 0 denotes its cost. If it is required, one can normalize the costs such that 0 $ c(e) $ 1. Given 
a sequence s = (el' e2, ... , en) of edit operations with ei E EO, i = 1, ... , n, we define its cost c(s) = 
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1 Introduction

The main idea. in case-based reasoning is to use the solution of a problem that has been solved earlier in
order to  solve a new problem. Given the actual problem P and a collection of previously solved problems
P1,P2,  . . . , P , , ,  one first evaluates the similarity between P and each P,-,z'=1, . . . , n .  Once the case P;
has been found that is most similar to P ,  i ts solution is used in order to construct a solution of P .  The
similarity measures used in  many case-based reasoning systems assume that cases are represented by
collections of attribute-value pairs. Based on this assumption, the similarity between two cases is usually
computed by a weighted sum of the similarity of the individual attribute values. For a general discussion
of this type of similarity measures see [1].

In this paper, we propose a different approach. We assume cases not being given just by collections of
attribute-value pairs but  by structured representations. Formally, we assume each case being represented
by a directed labeled graph (or graph, for short) 9 = (N,  E ,  a ,  ß ) ,  where

. N is the finite set. of nodes,

. E g 'N x N is the finite set of edges,

o a : N |_) LN is the node labeling function,

. ß : E -—> LE is the edge labeling function;

L N and L E are the finite alphabets of node and egde labels, respectively. Using such a representation, we
normally represent concepts or objects of the problem domain by nodes, and relations between concepts
or objects by edges. Relations can represent, for example, spatial, temporal, or causal relationships
between nodes. The alphabets of node and edge labels are problem dependent and vary, in general, from
one application to the other. Particularly, the above definition includes semantic networks and frame

„ “systems as special cases of graphs if we introduce relations like “instance , instance of” , “a kind of” a.s.o.

2 A Similarity Measure on Graphs

Using graphs as introduced in the last section for the representation of problems, or cases, a measure
is needed that gives the similarity of any two graphs. In this paper, we introduce a similarity measure
based on a weighted graph edit distance. Our proposed measure is a generalization of string edit distance
[2].

We start from a set of elementary edit operations on graphs, namely, the insertion, deletion, and
substitution of a node or an edge in a graph. Formally, this set is given by

E0 : {del-node, insmode, substmodc, deLedge, ins_edge, subsLedge}.

If we apply one or more of these edit operations to a givengraph g l ,  a new graph gg is obtained. For
example, the graph shown in Fig 1a  can be transformed into the graph shown in Fig l b  by ( 1) substituting
the node labeled ”Cup” by a node labeled ”Bowl”, (2) substituting the edge labeled ”below—oi” by an edge
labeled ”right-of”, (3) inserting a node labeled ”Noodles”, and (4) inserting an edge labeled ”contains”
between the nodes ”Plate” and ”Noodles”. Apparently, our set of edit operations is complete in the sense
that i t  allows to transform any given graph g l  into any other graph gg. This can be readily concluded
from the fact that E0 contains the insertion and deletion of both nodes and edges. Thus, in order to
transform a given graph gl  into any other graph gg, we could first delete all nodes and edges in 91 and
then insert all nodes and edges in 92, for example. Note that for any two graphs 9; and gg, there are
usually more than one sequence of edit  operations transforming g l  into 92.

In order to model the fact that certain differences between two graphs have more weight or importance
than others, we introduce costs for the basic edit operations. Let c € E0 be an edit operation. Then
c(e) Z 0 denotes its cost. If it is required, one can normalize the costs such that 0 g c(e) g 1. Given
a sequence s = (81,82, . . . , en )  of edit operations with e,- E E0 , i  = l , . .  . , n ,  we define its cost c(s) =
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Figure 1: An example illustration of basic edit operations and subgraph isomorphism. 

E~=l c(ei)' Finally, for any two graphs 91 and 92, we define their edit distance d(gl, 92) as the minimum 
cost sequence of edit operations that transform 91 into 92. FormaHy, 

d(91,92) = min{c(s) Is = (e1, ... , en) is a sequence of edit operations transforming 91 into 92}. 

Intuitively, the cheaper and the fewer the operations are that are required to make 91 and 92 identical, 
the smaller is, the edit distance d(91, 92) between 91 and 92. 

The graph distance defined above has a number of interesting properties, like reflexivity, symmetry, 
or metric property, depending on the way the costs of the operations in EO are defined. If we define 
the cost of any identical substitution equal to zero and the cost of any other operation greater than 
zero, then d(91,92) = 0 if and only if 91 and 92 are isomorphic to each other. Similarly, if not only the 
costs of identical substitutions but also the costs of any insertions in 92 are equal to zero, while all other 
operations from EO have costs greater than zero, then d(91, 92) = 0 if and only if 91 is a subgraph of 92. 

Apparently, d(91,92) is rather a measure of dissimilarity than similarity between 91 and 92. How~ 

ever, it can be easily converted into a similarity measure S(91, 92) by defining, for example, S(91' 92) = 
[d(91,92)]-1. It is also easy to normalize d(91,92) or S(91,92) such that all values are restricted to a 
certain interval, for example, the interval [0,1]. 

A Practical Procedure for Subgraph Isomorphism Detection 

The concept of graph distance introduced in the last section is very flexible and powerful. However, 
its actual computation is not trivial. A possible approach to graph edit distance computation is graph 
search1 . When computing d(91, 92) by means of graph search, we systematically, explore all possibilities to 
match the nodes and edges of 91 to nodes aild edges of 92 allowing substitutions, deletions and insertions. 
Thus the problem of finding the minimum cost sequence of edit operations that transform 91 into 92 is 
converted into the problem of finding the minimum cost state in the search graph. Heuristics can be 
used to speed up the search, i.e., to avoid exploring those parts of the search graph that don't contribute 
to the solution [3, 4]. Regardless of any heuristics, the worst time complexity of graph edit distance 
computation is exponential in the size of the underlying graphs. This can be easily concluded from 
the fact that subgraph isomorphism detection, which is a special case of graph distance computation, is 
known to be NP-complete[5]. 

In the rest of this paper we will restrict our considerations to subgraph isomorphism detection. That 
is, given an actual problem P, represented by a graph 9, and a number of solved problems P1 , ••. ,Pn , 

represented by graphs 91, ... ,9n we want to find out if any of the 9i is a subgraph of g. Formally, 91 is 

1 In the term graph search, .graph refers to the representation of the underlying problem space (or state space) by means 
of a graph. This representation of the underlying problem space must not be confused with the graphs 91 and g2, the edit 
distance d(91, 92) of which is to be computed. 
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Figure 1: An example illustration of basic edit operations and subgraph isomorphism.

i=12"  C(eg). Finally, for any two graphs 91 and gg, we define their edit distance (1(91, '92) as the minimum
cost sequence of edit operations that transform gl into g2. Formally, .

d(gl, gg) : min{c(s)|s : (e1, . . . ,e„) is a sequence of edit operations transforming 91 into gg}.

Intuitively, the cheaper and the fewer the operations are that are required to make 91 and gg identical,
the smaller is. the edit distance d(g1,gg) between g1 and gg.

The graph distance defined above has a number of interesting properties, like reflexivity, symmetry,
or metric property, depending on the way the costs of the operations in E0 are defined. If we define
the cost of any identical substitution equal to zero and the cost of any other operation greater than
zero, then d(gl ,  gg) : 0 if and only if 91 and 92 are isomorphic to each other. Similarly, if not  only the
costs of identical substitutions but  also the costs of any insertions in  gg are equal to zero, while all other
operations from EO have costs greater than zero, then d(g1, 92) = 0 if and only if g l  is a subgraph of gg.

Apparently, d(gl,gg) is rather a measure of dissimilarity than similarity between g ;  and gg. How-'
ever, i t  can be easily converted into a similarity measure 3(91, 92) by defining, for example, 8(91, gg) =
[d(gl, 92)]'1. It is also easy to normalize d(g1, 92) or s(gl,gg) such that all values are restricted to a
certain interval, for example, the interval [0, 1].

3 A Practical Procedure for Subgraph Isomorphism Detection

The concept of graph distance introduced in  the last section is very flexible and powerful. However,
its actual computation is not trivial. A possible approach to graph edit distance computation is graph
searchl.  When computing (1(91, gg) by means of graph search, we systematically. explore all possibilities to
match the nodes and edges of 91 to  nodes and edges of gg allowing substitutions, deletions and insertions.
Thus the problem of finding the minimum cost sequence of edit operations that transform 91 into gg is
converted into the problem of finding the minimum cost state in the search graph. Heuristics can be
used to speed up the search, i.e., to  avoid exploring those parts of the search graph that don’t contribute
to the solution [3, 4]. Regardless of any heuristics, the worst t ime complexity of graph edit distance
computation is exponential in the size of the underlying graphs. This can be easily concluded from
the fact that subgraph isomorphism detection, which is a special case of graph distance computation, is
known to be NP-complete[5].

In the rest of th is  paper we will restrict our considerations to subgraph isomorphism detection. That
is, given an actual problem P ,  represented by a graph g ,  and a number of solved problems P1 , .  . . ,  Pm
represented by graphs 91, . . . ,  g„ we want to find out if any of the g,- is a subgraph of g .  Formally, g l  is

1In  the  term graph search, graph refers to  the representation of the  underlying problem space (or  state space) by means
of a graph.  This representation of  t he  underlying problem space must  not  be  confused wi th  the  graphs g l  and gg ,  the edit
distance d (g l , gg )  of which  is t o  be  computed .
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a subgraph of 92 if all nodes and edges of 91 are contained in 92, and if corresponding nodes and edges 
have the same labels. For example, the graph shown in Fig le is a subgraph of the graph shown in Fig 
lb. As mentioned before, determining if 91 is a subgraph of 92 is a special case of graph edit distance 
computation under particular costs of the elementary edit operations. 

Subgraph isomorphism detection has a high degree of practical relevance in applications where prob­
lems are decomposable into subproblems that can be solved individually. In such an application, we 
would collect all previously solved subproblems in a library. Let the library be represented by graphs 
91, ... , 9n. Now given a new problem, Le. a graph 9, we match it to each stored case in the library. If 9 
contains one or more gi'S as subgraphs then we conclude that the solutions of these subproblems can be 
used for the given problem. 

As subgraph isomorphism detection is NP-complete, we have to be concerned about computation 
time. The problem of computational efficiency becomes even more serious. if our library of previously 
solved cases is large. Under a naive strategy, we would sequentially match the actual problem to each 
library case in order to find out if it occurs as a subproblem in the actual problem. Thus the overall 
computation time would increase by a factor equal to the number of cases in the library. In this paper, we 
propose a new method for efficient subgraph isomorphism detection. The m.ethod is particularly useful 
if the number of cases in the library is large because substructures that occur more than once within 
the same or different model graphs are considered only once by the matching procedure. Thus much 
computational work can be saved. It can be shown that in the limit when the model graphs become more 
and more similar to each other, the computational complexity of the new matching procedure becomes 
independent of the number of models. 

The method for subgraph isomorphism detection has some similarity with the RETE-algorithm that 
was introduced for efficient conflict set determination in forward-chaining rule-based systems [6, 7]. In 
an off-line phase, we compile the library graphs 91, ... ,gn into a network. This network is a compact 
representation of the library in the sense that nodes and edges that occur in different Dj'S or several times. 
within the same Dj are stored only once in the network. The network can be incrementally updated. That 
is, if a new solved subproblem gj is added to the library, it can be easily incorporated into the network 
without the need of recompiling the network from scratch, Le., from the enlarged library. 

The network for the graphs in Fig 1band lc is shown in Fig 2a. Due to the fact that the model in 
Fig lc is a subgraph of the model in Fig lb, any instance corresponding to the node F is considered both 
an instance of the model in Fig lc, and an instance of a subgraph of the model in Fig lb. Generally, a 
network like the one in Fig 2a consists of four kinds of nodes. The entrance to the network is marked by 
the one and only input-node. The input-node receives at run time the graph that is to be tested. From the 
input-node there are one or more outgoing n-edges2 leading tol-vert~x-checkers. The l-vertex-checkers 
are the second type of nodes in the network. The task of a l-vertex-checker is to test whether a vertex v 
of the input graph has the label 1. If the label of v is 1 then v is an instance of any model vertex with 
labell and is stored in a memory which is local to the l-vertex-checker. Each l-vertex-checker has one 
or more outgoing n-edges leading to E-subgraph-checkers or g-model~nodes (see below). An E-subgmph­
checker, the third type of node, has always two parent nodes to which it is connected by one n-edge each. 
The parent nodes are either of type l-vertex-checker or E-subgraph-checker. An E-subgraph-checker 
represents a subgraph of one or several model graphs in the network. Its task is to find instances of this 
subgraph based on the instances which are found by the parent nodes. If an E-subgraph-checker receives 
a new instance from its left (right) parent then it will try to combine it with all the instances stored in 
the local memory of the right (left) parent. Two instances can be combined if they are disjoint, i.e., if 
they do not have any vertex in common, and if each edge that is specified in a list E exists between the 
two instances. Any succesful combination results in an instance of the subgraph which is represented 
in this E-subgraph-checker. The new instance is stored in the local memory and sent to all successor 
nodes. There may be one or several outgoing n-edges from each E-subgraph-checker leading to other 
E-subgraph-checkers or to g-model-nodes. The g-model-nodes are the fourth kind of network nodes. For 
each model graph gj that was compiled into the network there is one gj-model-node. Each g-model-node 
has exactly one incoming n-edge. Any instance that arrives at a g-model-node is an instance of the model 
graph g, 

In order to explain the run time behavior of the network in detail, we consider the graph in Fig 2b. 
The contents of the local memories of the network nodes are displayed in brackets below the actual nodes. 
First, each vertex of the graph in Fig 2b is sent via the input-node to the l-vertex-checkers, where the 
vertices with the matching labels are stored in the local memory. There are two vertices, 3 and 4, in the 
input graph that match the label in node A. Therefore, the local memory of node A contains the instances 

2In order to distinguish between the edges of the graphs and the edges of the network, we will refer in the following to 
network edges as n-edges. 

28
 

a subgraph of 92 if all nodes and edges of 91 are contained in 92, and if corresponding nodes and edges
have the same labels. For example, the graph shown in Fig 1c is a subgraph of the graph shown in Fig
1b.  As mentioned before, determining if 91 is a subgraph of 92 is a special case of graph edit distance
computation under particular costs of the elementary edit operations.

Subgraph isomorphism detection has a high degree of practical relevance in applications where prob-
lems are decomposable into subproblems that can be solved individually. In such an application, we
would collect all previously solved subproblems in a library. Let the library be represented by graphs
g1, . . . , g" .  Now given a new‘ problem, i.e. a graph y ,  we match it to each stored case in the library. If g
contains one or more gg’s as subgraphs then we conclude that the solutions of these subproblems can be
used for the given problem.

As subgraph isomorphism detection is NP-complete, we have to be concerned about computation
time. The problem of computational efficiency becomes even more serious, if our library of previously
solved cases is large. Under a naive strategy, we would sequentially match the actual problem to each
library case in  order to find out if i t  occurs as a subproblem in the actual problem. Thus the overall
computation time would increase by a factor equal to the number of cases in the library. In- this paper, we
propose a new method for efficient subgraph isomorphism detection. The method is particularly useful
if the number of cases in the library is large because substructures that occur more than once within
the same or different model graphs are considered only once by the matching procedure. Thus much
computational work can be saved. I t  can be shown that in the limit when the model graphs become more
and more similar to each other, the computational complexity of the new matching procedure becomes
independent of the number of models.

The method for subgraph isomorphism detection has some similarity with the RETE—algorithm that
was introduced for efficient conflict set determination in forward—chaining rule-based systems {6, 7]. In
an off-line phase, we compile the library graphs g l ,  . . . , g,. into a. network. This network is a compact
representation of the library in the sense that nodes and edges that occur in different 9, ’s or several times ‚
within the same g, are stored only once in the network. The network can be incrementally updated. That
is, if a new solved subproblem 9; is added to the library, it can be easily incorporated into the network
without the need of recompiling the network from scratch, i.e., from the enlarged library.

The network for the graphs in Fig 1b  and 1c is shown in Fig 2a.  Due to the fact that the model in
Fig 1c is a subgraph of the model in Fig 1b ,  any instance corresponding to the node F is considered both
an instance of the model in Fig Ic ,  and an instance of a subgraph of the model in Fig l b .  Generally, a
network like the one in Fig 2a  consists of four kinds of nodes. The entrance to the network. is marked by
the one and only input- node. The input-node receives at run time the graph that is to be tested. From the
input-node there are one or more outgoing n—edges2 leading to l-vertex-checkers. The l—verter-checkers
are the second type of nodes in the network. The task of a l-vertex—checker is to test whether a vertex 9
of the input  graph has the label I. If the label of v is I then v is an instance of any model vertex with
label 1 and is stored in  a memory which is local to the l—vertex-checker. Each l-vertex—checker has one
or more outgoing n—edges leading to E—subgraph-checkers or g—modeaodes (see below); An E-subgmph-
checker, the third type of node, has always two parent nodes to  which i t  is connected by one n-edge each.
The parent nodes are either of type l-vertex-checker or E—subgraph—checker. An E—subgraph-checker
represents a subgraph of one or several model graphs in the network. Its task is to find instances of this
subgraph based on the instances which are found by the parent nodes. If an E—subgraph-checker receives
a new instance from its  left (right) parent then i t  will try to combine i t  with all the instances stored in
the local memory of the right (left) parent. Two instances can be combined if they are disjoint, i.e., if
they do not have any vertex in common, and if each edge that is specified in a list E exists between the
two instances. Any succesful combination results in an instance of the subgraph which is represented
in this E-subgraph-checker. The new instance is stored in the local memory and sent to all successor
nodes.“ There may be one or several outgoing n—edges from each E-subgraph-checker leading to other
E—subgraph—checkers or to g-model-nodes. The g-model-nodes are the fourth kind of network nodes. For
each model. graph g; that was compiled into the network there is one gg—mOdel-node. Each g-model-node
has exactly one incoming n—edge. Any instance that arrives at a g-model—node is an instance of the model
graph 9.-

In order to explain the run time behavior of the network in  detail, we consider the graph in Fig 2b.
The contents of the local memories of the network nodes are displayed in brackets below the actual nodes.
First,  each vertex of the graph in Fig 2b is sent via the input—node to the l-vertex—checkers, where the
vertices with the matching labels are stored in the local memory. There are two vertices, 3 and 4 ,  in  the
input graph that match the label in  node A .  Therefore, the local memory of node A contains the instances

2In  order to distinguish between the edges of the graphs and the edges of the network, we will refer in the following to
network edges as nvedges.
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Figure 2: The network a) is compiled for the models in Fig lb and le. The local memory contents are 
given after the insertion of the input graph b). 
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{3} and {4}. The other I-vertex-checkers B,C,D receive a single instance each. Next, the E-subgraph­
checker E takes the instances found in A and B and tests whether there exists an edge labeled contains 
between them. Such an edge exists between the vertices 3 and 2, but not between 4 and 2. Thus, the 
instance {3,2} is the only one found by E. It is stored in the local memory of E. The E-subgraph-checker 
F finds {3, 2, 5}, which is an instance of the model in Fig lc and a partial instance of the model in Fig 
lb. Finally, in the node G two edge tests are performed. First, there must be an edge labeled right - of 
from the second vertex in the left instance· to the single vertex in the right instance. Secondly, there must 
be an edge labeled on from the single vertex in the right instance to the third vertex in the left instance. 
As both edges exist, we find the instance {3, 2, 5, I} in G and thus an instance for the model in Fig lb. 
The algorithm terminates succesfully after both instances of the models in Fig lb and lc in the input 
graph have been found. 

Computational Complexity and Experimental Results 

In, order to analyze the computational complexity of the proposed method for subgraph isomorphism 
detection, let 
N = number of different solved cases in the library, 
J = number of edges in the actual problem to be solved, 
M = maximum number of edges in one solved case in the library, 
M1 = number of edges that occur in all solved cases in the library, 
M2 = number of edges that are unique to each solved case" where M1 + M2 = M 
The computational complexity of a naive subgraph isomorphism detection procedure that is based on 
graph search, treating each solved case individually, is 

(1) 

in the worst and best case, respectively. By contrast, our proposed method has a computational time 
complexity of 

O(MfJM + N M2M 2JM) and O(Mf + N M 2M2) (2) 

in the worst case and best case, respectively. We notice that the two expressions in (2) become equal to 
O(NM 3 JM) and O(NM 3 ) for Ml = 0, i.e., M = M2 . This corresponds to the one extreme case where 
there are no common parts in the solved cases in the library. Notice that in this case the worst case is 
equal to (1) while the best case is better than (1) by a factor of J. In the other extreme case, we have 
M 2 = 0 , i.e., M = M 1 • This means that all the solved cases in the library are identical, or, in other 
words, the common part that is shared in the network is maximum. In this case, the two expressions in 
(2) become equal to O(M3 JM) and O(M3 ), respectively. Comparing with (1) we notice that now the 
time complexity is no longer dependent on the number of solved cases in the library, neither in the worst 
nor the best case. 

The proposed method for subgraph isomorphism detection has been implemented in C++ and runs 
on a SUN workstation. In order to verify the results of our theoretical computational complexity analysis 
we run a number of experiments with randomly generated graphs. For the purpose of comparison, we 
also implemented a straightforward solution to subgraph isomorphism detection based on graph search 
and sequentially testing each of the gi'S. 

In the first experiment, we generated a database of 10 model graphs, each containing 50 vertices and 
an average of 100 edges. In order to study the influence of the size of the common subgraph on the time 
performance of our algorithm, we varied the size of the common subgraph of all the models between 5 
and 45 vertices. For each size of the subgraph we run five test series, i.e. we generated five times a 
database of 10 models and measured the average time the algorithm used in order to match each model 
to the database. The results are shown in Fig 3. We can observe that while the tree search uses more 
time the larger the common subgraph becomes, our new method performs better thanks to its capability 
of sharing the common subgraph among the different models. 

In the second experiment, we kept the size of the common subgraph constant at 20 vertices and varied 
the size of the database. Starting with one model we increased the number of model.s until 20. Each 
model contained' a total of 30 vertices. The results of the second experiment are shown in Fig 4. The 
fact that for any new model added to the database a subgraph of size 20 is already represented in the 
network explains why the new algorithm shows only a slight increase in time for a growing database. The 
traditional approach, however, performs an independent matching process for each model in the database 
and forgets about previously found instances of the common subgraph. With 1 graph in the database, 
both algorithms used 0.5 seconds while in the end, with 20 graphs in the database the traditional approach 
took more than 3.5 seconds to terminate compared to 0.5 seconds of the new algorithm. 
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{3} and {4}. The other l-vertex—checkers B,C,D receive a single instance each. Next, the E—slibgraph-
checker E takes the instances found in A and B and tests whether there exists an edge labeled contains
between them. Such an edge exists between the vertices 3 and 2, but not between 4 and 2.  Thus, the
instance {3 ,  2} is the only one found by E .  It is stored in the local memory of E .  The E—subgraph—checker
F finds {3 ,  2 ,5},  which is an instance of the model in Fig 1c and a partial instance of the model in Fig
1b .  Finally, in the node G two edge tests are performed. First,  there must be an edge labeled right — of
from the second vertex in the left instance- to the single vertex in the right instance. Secondly, there must
be  an edge labeled on from the single vertex in the right instance to  the third vertex in the left instance.
As both edges exist, we find the instance {3 ,  2 , 5 ,1}  in G and thus an instance for the model in Fig 1b .
The algorithm terminates succesfully after both instances of the models in Fig Ib  and 1c in ‘the input
graph have been found. -

4 Computational  Complexity and Experimental Results

In.order to analyze the computational complexity of the proposed method for subgraph isomorphism
detection, let ‘ '
N = number of different solved cases in the library,
I = number of edges in the actual problem to be solved,
M : maximum number of edges in one solved case in the library,
M1 : number of edges that occur in all solved cases in the library,
M2 = number of edges that  are unique to each solved case” where M1 + M2 = M
The computational complexity of a naive subgraph isomorphism detection procedure that is based on
graph search, treating each solved case individually , is

0(NM3IM) and 0(NM31) (1 )

in the worst and best case, respectively. By contrast, our proposed method has a computational time
complexity of

om?!” + NM2M2IM) and 0(M;—" + NM2M2) (2)
in the worst case and best case, respectively. We notice that the two expressions in (2) become equal to
0(NM3IM) and 0(NM3) for M1 : 0, i.e., M = M2. This corresponds to the one extreme case where
there are no common parts in the solved cases in the library. Notice that in this case the worst case is
equal to (1) while the best case is better than (1) by a factor of I .  In the other extreme case, we have
M2 = 0 , i.e., M : M1. This means that all the solved cases in the library are identical, or ,  in other
words, the common part that is shared in the network is maximum. In this case, the two expressions in
(2) become equal to 0(M31M) and 0(M3),  respectively. Comparing with (1) we notice that now the
t ime  complexity is no longer dependent on the number of solved cases in the library, neither in the worst
nor the best case.

The proposed method for subgraph isomorphism detection has been implemented in C++ and runs
on a SUN workstation. In order to verify the results of our theoretical computational complexity analysis
we run a number of experiments with randomly generated graphs. For the purpose of comparison, we
also implemented a straightforward solution to subgraph isomorphism detection based on graph search
and sequentially testing each of the 95,8.

In  the  first experiment,  we generated a database of 10  model graphs, each containing 50 vertices and
an average of 100 edges. In  order to  study the influence of the size of the common subgraph on the time
performance of our  algorithm, we varied the size of the common subgraph of all the models between 5
and 45 vertices. For each size of the subgraph we run five test series, i.e. we generated five times a
database of 10 models and measured the average time the algorithm used in order to match each model
to  the database. The results are shown in Fig 3 .  We can observe that while the tree search uses more
time the larger the common subgraph becomes, our new method performs better thanks to its capability
of sharing the common subgraph among the different models.

In the second experiment, we kept the size of the common subgraph constant at 20 vertices and varied
the size of the database. Starting with one model we increased the number of models until 20. Each
model contained'a  total of 30 vertices. The results of the second experiment are shown in Fig 4.  The
fact that for any new model added to the database a subgraph of size 20 is already represented in the
network explains why the new algorithm shows only a slight increase in time for a growing database. The
traditional approach, however, performs an independent matching process for each model in the database
and forgets about previously found instances of the common subgraph. With  1 graph in the  database, '
both algorithms used 0.5 seconds while in the end, with 20 graphs in the database the traditional approach
took more than 3.5 seconds to terminate compared to 0.5 seconds of the new algorithm.
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Figure 3: (first experiment) For each point of measurement we generated a database of ten models, each 
containing 50 vertices, including the common subgraph. The average number of edges per model was 
100. 
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Figure 4: (second experiment) Each model in the steadily growing database contained 30 vertices includ­
ing a common subgraph with 20 vertices. There was an average number of 50 edges per model. 

Conclusion 

The similarity of graphs is an important aspect in case based reasoning and other application areas. 
In this paper, we have first introduced a general framework for graph similarity based on a set of edit 
operations. Then, we have proposed a new computational procedure for a special case, namely subgraph 
isomorphism detection. Both, a theoretical complexity analysis and practical experiments have shown 
that the new procedure is more efficient than traditional tree search based methods for subgraph isomor­
phism detection. It is particularly useful if the number of cases in the library of a system is large and if 
the stored cases are similar to each other. 
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5 Conclusion

The similarity of graphs is an important aspect in case based reasoning and other application areas.
In this paper, we have first introduced a general framework for graph similarity based on a set of edit
operations. Then, we have proposed a new computational procedure for a special case, namely subgraph
isomorphism detection. Both,  a theoretical complexity analysis and practical experiments have shown
that the new procedure is more efficient than traditional tree search based methods for subgraph isomor—
phism detection. It is particularly useful if. the number of cases in the library of a. system is large and if
the stored cases are similar to each other.
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Abstract 

Work on similarity can be shown to follow either a system view or a processing view with the former 
paying more attention to architectures of similarity assessing systems and the latter concentrating 
on similarity metrics. As similarity depends on a number of characteristics (e.g., goals, knowledge, 
context, common features) both view have their own merits.when assessing similarity. In this paper, 
we present a framework of multistage similarity assessment that provides a linkage for a modeling of 
similarity according to the system and processing view. In so doing, the stages of the system can be 
evaluated according to both the characteristics of similarity being modeled and the errors possibly 
made. 

Introduction 

During the past several years, a flurry of interest in similarity has been touched off by research done in 
information retrieval (fR), analogical (AR) and case-based reasoning (CBR) (e.g., Vosniadou & Ortony, 
1989). While puzzling out principles olsimilarity assessment in cognitive science and artificial intelligence 
two different approaches have been pursued: Investigations of similarity adopting the processing view 
strive at developing a condensed formal account of similarity intended to be used independently of the 
pecularities of a system's architecture. To put it another way, the core idea of the processing view has 
been to uncover principles of similarity as basic as possible to obtain a coverage as broad as possible. A 
well-known proponent of the processing view is (Tversky 1977) and his contrast model. 

Conversely, research indebted to the system view concentrates on specifying architectural constraints 
on similarity assessment. That is, according to the credo of the system view characteristics of similarity 
may be captured by choosing an appropriate architecture of a system. Following this line, in case­
based reasoning a number of models of computing similarity start with a great number of computational 
cheap similarity assessments. Only cases that yield a high score are taken over to the second stage to 
be assessed again with computationallyexpensive methods used to select the best scoring cases (e.g., 
Gentner & Forbus, 1991). 
Pointing out to differences between a processing and system view is not supposed to pass unchallenged. 
At least when it comes down to actually building a system, so a possible caveat might go, the distinction 
between· the two views seems to be more a difference in emphasis than in substance. Our objection to 
this argument is that there is quite a variety of characteristics of similarity assessment (Janetzko, Wess 
& Melis 1992), some of which are best modeled either according to the system view as to the processing 
view. 

For example, the dependency of similarity assessment on the number of common and distinguishing 
attributes is probably best captured by the processing view. In contrast, the dependency of similarity 
assessment on goals, knowledge, context, or resources invested like time or memory are issues covered 
best by the system view. Thus, differentiating between these two views is more but a funny curiosity 
in the zoo of models of similarity as it can be used to guide modeling of characteristics of similarity 
according to the appropriate view. 

The present paper is devoted to an analysis of the costs and benefits of similarity assessment according 
to the processing and the system view. First, th~ notion of process and system view is stepwisely fleshed 
out to gain further understanding of the possibilities given by each of both views. Second, we discuss 
errors that may occur within multistage similarity assessment that links the processing and the system 
view. Third, we introduce a three-stage model of similarity assessment and present an evaluation along 
with the criteria established before. Finally, we discuss relationships towards other models of similarity 
assessment. 

-This research was supported by the "Deutsche Forschungsgemeinschaft" (DFG), "Sonderforschungsbereich" (SFB) 314: 
" Artificial Intelligence and Knowledge-Based Systems" , projects X9 and 03. 

32 

System and Processing View-in Similarity Assessment*

Dietmar Janetzko Erica Melis Stefan Wess
University of Freiburg University of Saarbrücken University of Kaiserslautern

D—79098 Freiburg D-66000 Saarbrücken D—67653 Kaiserslautern

Abstract
Work on similarity can be  shoWn to follow either a system view or a processing view with the former
paying more attention to  architectures of similarity assessing systems and the latter concentrating
on similarity metrics. As similarity depends on a number of characteristics (e.g., goals, knowledge,
context,  common features) both view have their own merits.when assessing similarity. In this paper,
we present a framework of multistage similarity assessment that provides a linkage for a modeling of
similarity according to  the system and processing view. In so doing, the stages of the system can be
evaluated according to  both the characteristics of similarity being modeled and the errors possibly
made. .

1 . Introduction

During the past several years, a flurry of interest in similarity has been touched off by research done in
information retrieval (IR), analogical (AR) and case-based reasoning (CBR} (e.g., Vosniadou & Ortony,
1989). While puzzling out principles ofsimilarity assessment in cognitive science and artificial intelligence
two different approaches have been pursued: Investigations of similarity adopting the processing view
strive at developing a condensed formal account of similarity intended to be used independently of the
pecularities of a system’s architecture. To put it another way, the core idea of the processing view has
been to uncover principles of similarity as basic as possible to  obtain a coverage as broad as possible. A
well-known proponent of the processing view is (Tversky 1977) and his contrast model.

Conversely, research indebted to  the system view concentrates-on specifying architectural constraints
on similarity assessment. That is, according to the credo of the system view characteristics of similarity
may be  captured by choosing an appropriate architecture of a system. Following this line, in case-
based reasoning a number of models of computing similarity start with a great number of computational
cheap-similarity assessments. Only cases that yield a high score are taken over to the second stage to
be assessed again with computationally expensive methods used to  select the best scoring cases (e.g.,
Gentner & Forbus, 1991).
Pointing out  to differences between a processing and system view is not supposed to  pass unchallenged.
At least when i t  comes down to actually building a system, so a possible caveat might go, the distinction
between‘the two views seems to be  more a difference in emphasis than in substance. Our objection to
this  argument is that  there is quite a variety of characteristics of similarity assessment (J anetzko, Wess
& Melis 1992), some of which are best modeled either according to the system view as . to the processing
view.

For example, the dependency of similarity assessment on the number of common and distinguishing
attributes is probably best captured by the‘processing View. In contrast, the dependency of similarity
assessment on goals, knowledge, context, or resources invested like t ime or memory are issues covered
best by the system view. Thus, differentiating between these two views is more but  a funny curiosity
in the zoo of models of similarity as i t  can be  used to guide modeling of characteristics of similarity
according to  the appropriate view. .

The present paper is devoted to an analysis of the costs and benefits of similarity assessment according
to  the processing and the system view. First,  the notion of process and system view is stepwisely fleshed
out  to gain further understanding of the possibilities given by each of both" views. Second, we discuss
errors that  may occur within multistage similarity assessment that links the processing and the system
view.  Th i rd ,  we in t roduce a three—stage model of similari ty assessment and present an evaluation along
with the criteria established before. Finally, we discuss relationships towards other models of similarity
assessment.

*This research was supported by the ”Deutsche Forschungsgemeinschaft” (DFG), " Sonderforschungsbereich” ( SFB) 314:
” Artificial Intelligence and Knowledge—Based Sys tems” ,  projects X9 and D3 .
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2 Linking the processing and the system view on similarity 

As foreshadowed by the preceeding discussion, distinguishing between the processing and the system view 
and differentiating among various characteristics of similarity leads to a desirable goal when building 
models of similarity assessment: Similarity may be best modeled in accordance to the possibilities of the 
two different views, i.e. on different levels. This first tenet may be called "The principle of preferred levels 
of modeling". 

Linked to that principle is another one that has to be fulfilled to make similarity assessment flexible. 
This second principle is referred to as "The principle of graceful degradation" (Norman & Bobrow, 1975). 
By this, we mean that similarity assessment should show a smooth decline rather than an all-or-none 
behavior when faced with difficulties, e.g., low-quality data or the like. This is deemed important if 
resources (e.g., time, memory) are limited or if the system itself does intend to limit resources (e.g., to 
perform a preselection) in order to invest resources in an economical fashion. 

Finally, the principle just mentioned implies a third one. This is called "The principle of continually 
available output" (Norman & Bobrow, 1975; Russell & Zilberstein, 1991). To spell out this principle 
is to specify the principle of graceful degradation; As a consequence, it should be possible to stop 
processes of similarity assessment, e.g., by retracting resources needed, and obtain results that are usable 
by the system although suboptimal when compared to the results acquired without stopping similarity 
assessment. 

The ideas in this paper rely on the conjecture that modeling of similarity assessments according to the 
three principles mention!3d above is only possible by linking the processing and the system view. When put 
into practice, the principle-guided linkage of the two views amounts to a multistage similarity assessment 
with characteristics of similarity brought into focus by each view distributed on different stages. The 
framework of such an architecture provides a number of advantages: Modeling of characteristics of 
similarity can and should be done on different stages according to the principle of preferred levels of 
modeling. Depending on the stage of processing reached there is a smooth decline in the quality of 
the system's output, which obeys to the principle of graceful degradation. Finally, an architecture of 
multistage similarity assessment allows for a good approximation to the principle of continually available 
output as each stage may serve an exit-point for similarity assessment. The quality of the similarity 
assessment reached at each exit-point is a function of the resources invested. 

3 Demands on the assessment of similarity 

In what follows, we characterize two basic requirements to be fulfilled when assessing similarity. This 
is done along with a discussion of how to put the ideas of this paper into practice when building a 
system and an eye towards related work in information retrieval, analogical, and case-based reasoning. 
In so doing, we will find further evidence for a multistage similarity assessment, which is spelled out in 
subsequent sections. 

3.1 Efficiency 

Analyzing the process of similarity assessment from a efficiency point of view results in the demand of 
low computational costs of the retrieval. Since all items of the knowledge base are involved in the first 
step of the process, it is reasonable to require the first step to work very quickly on each item. The next 
step which works already on a set of prese\ected cases may have higher relative costs: 

A similar goal is aimed at by open hashing in databases: The hash function makes it possible to access 
- a list of items very fast; the search within this list, being as short as possible, has higher relative costs. 

In database research a lot of other retrieval approaches has been developed that are computationally 
cheap e.g., multidimensional associative binary trees, called k-d Trees (Bently, 1978), close match retrieval 
(Friedman, Bently & Finkel, 1977), incremental nearest-neighbor search (Broder, 1990), best-match 
retrieval based on Voronoi-Diagrams (c.f. Mehlhorn, 1984) or hypercubes (Stolter; Henke & King, 1989). 
These techniques are able to retrieve a best-match based on a set of surface features -in logarithmic 
expected time O(log(n)) where n is the number of stored items in the database. 

The now commercial available case-based reasoning shell REMIND (Cognitive Systems, 1991) de­
veloped by Cognitive Systems an enterprise founded by R.C. Schank uses this kind of rapid retrieval 
algorithms for case-based reasoning. . 

Other approaches to a computationally cheap search of similar cases use the assessment of similarity 
on the basis of the dot product over feature vectors (Medin & Schaffer, 1978), connectionist models of 
learning (Rummelhart & McClelland, 1986), the PATDEx-approach (Wess, 1991; Richter & Wess, 1991), 
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or the memory-based reasoning approach (Stanfil & Waltz, 1986), which relies on a massive parallel 
search on a connection machine. 
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Figure 1: The system view 
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3.2 Reliability 

The analysis of the process from a reliability point of view yields characteristics of the kind of errors 
occurring at the consecutive steps of the process. These types of errors are well known in statistics 
as they give an account of the errors that can be made whenever a hypothesis is accepted or rejected 
(e.g. Bock, 1975). We use the notion of O:'-error. and f3-error to classify possible errors to be made when 
assessing the similarity between two cases. 

Definition 1 (O:'-Error) If a previous case being useful to solve a problem at hand is part of the case 
base but not selected, the error is called O:'-error. 

Definition 2 (f3-Error) If a previous case not being useful to solve the current problem is part of the 
case base but selected, the error is called beta-error. . 

Each model of selecting cases has to account for both kinds of errors. The selection of similar items (e.g., 
cases, concepts, entries in a database) is guided by selection criteria. 0:'- and f3-errors depend on the 
selection criteria applied to find similar items. Selection criteria causing no O:'-error are necessary criteria, 
and selection criteria causing no f3-error are sufficient criteria. 

As well known (Mitchell, Keller & Kedar-Cabelli, 1986), explanation-based generalization (EBG) 
provides sufficient descriptions. The goal-driven similarity assessment in (Janetzko, Wess & Melis, 1992) 
using the EBG-method provides sufficient criteria and tends to keep the f3-error low. 

The ideas that form the basis of 0:'- and f3-errors are closely related to the version space method 
introduced by (Mitc};1ell, 1982). The description to follow shows how the version space technique can be 
applied to find a sele~tion criteria that keep 0:'- and f3-error at the lowest level possible. 

Let the example space be a set of pairs of items. The criteria space GRIT is taken to mean a space of 
formulae representing selection criteria, i.e., the analogue to Mitchell's concept space. The partial order 
on C RIT (more specific, more generaQ can be defined analogously to the hierarchy of generalizations 
in the version space. In agreement with the version space method the search space GRIT is reduced 
from top and from bottom introducing G (as the set of most general criteria selecting all known positive 
examples and rejecting all known negative examples) and S (as the set of most specific criteria selecting 
all known positive examples and rejecting all known negative examples). 

The criteria from G keep the 0:'- and the criteria from S keep the f3-errors at the lowest level possible. 
Following Mitchell's model, if G = S the concept is learned and no 0:'- or f3-errors occurs. 

34 

or the memory-based reasoning approach (Stanfil & Waltz, 1986), which relies on a massive parallel
search on a connection machine.

High Order Relations =: .
Structural“ Con51stency
Slmllanty Assessment Application

Goals __
Preferences : Pragmatic-Driven
Domain-Theory A.: Similarity Assessment

Similarity Measure > (
. Surface FeaturesConstramts = . . .Similarity AssessmentL Database

DATABASE

Figure 1: The system view

3.2 Reliability
The analysis of the  process from a reliability point of view yields characteristics of the kind of errors
occurring at the consecutive steps of the process. These types of errors are well known in statistics
as they give an account of the errors that can be  made whenever a hypothesis is accepted or rejected
(e.g. Bock, 1975). We use the notion of a-error, and ßen-or to classify possible errors to be  made when
assessing the similarity between two cases.

Definition 1 (oz-Error) If a previous case being useful to  solve a problem a t  hand is part of the ease
base but not selected, the error is called a -  error.

Definition 2 (‚ß-Error) If a previous case not being useful to solve the current problem is part of the
case base but selected, the error is  called beta-error.

Each model of selecting cases has to account for both kinds of errors. The selection of similar items (e.g.,
cases, concepts, entries in a database) is  guided by selection criteria. a— and ‚ß—errors depend on the
selection criteria applied to find similar items. Selection criteria causing no a—error are necessary criteria,
and selection criteria causing no fl—error are sufficient criteria.

As well known (Mitchell, Keller & Kedar—Cab-elli, 1986), explanation-based generalization (EEG)
provides sufficient descriptions. The goal—driven similarity assessment in (J anetzko, Wess &: Melis, 1992)
using the EEG—method provides sufficient criteria and tends to keep the ß—error low.

The ideas tha t  form the basis of a— and ‚B—errors are closely related to the version space method
introduced by (Mitchell, 1982). The description to follow shows how the version space technique can be
applied to find a selection criteria that keep af and B—error at the lowest level possible.

Let the example space be a set. of pairs of i tems. The criteria space CRI T is taken to mean a space of
formulae representing selection criteria, i.e., the analogue to  Mitchell’s concept space. The partial order
on C RIT (more specific, more general) can be  defined analogously to the hierarchy of generalizations
in the  version space. In agreement with the version space method the search space C RIT is reduced
from top and from bottom introducing G (as the set of most general criteria selecting all known positive
examples and rejecting all known negative examples) and S (as the set of most specific criteria selecting
all known positive examples and rejecting all known negative examples).

The criteria from G keep the a— and the criteria from S keep the ‚ß--errors at the lowest level possible.
Following Mitchell’s model, if G = S the  concept is learned and no a— or ß—errors occurs.
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It is desirable that in the first step of case selection no (or almost no) a-error occurs, that is, no useful 
previous case is excluded from further processing. It is also desirable that in the last step cases being not 
useful are excluded. 

There are several possibilities to meet this demand: If during the first step of the process no a-error 
occurs, and there are useful items in the database then there remains a nonempty set C of items. During 
the next steps from C items may be selected the computational costs of adaptation are lowest for. Items 
with computational costs of adaptation that exceed those to be expected can be eliminated. 

There are several approaches including such a usability assessment. For example, the goal-driven sim­
ilarity assessment (Janetzko, Wess & Melis, 1992), similarity conserving transformations (SCT's Koton, 
1988) evaluate certain similarities and dissimilarities as relevant or irrelevant. 

4 Stages of similarity assessment 

As noted earlier, a multistage similarity mod~l has been deemed necessary to cover a number of issues in­
volved in similarity assessment. Among the most important of those issues are the possibility to combine 
various models of similarity assessments according to different characteristics of similarity. In this way, 
it is feasible to control the impact of each of those characteristics. Additionally, multistage similarity 
assessment allows for specifying constraints on errors such that the a-error should be low in the first and 
the f3-error should be low in the last stage. During the stages the number of items considered decreases 
and the computational costs per item increase. 

Stage I - Syntactic features: Multistage similarity assessment begins by using a syntactic measure of 
similarity which is based on features that form an explicit part of the representation of the items being 
compared. Measures deriving similarity from the number of common and different features that mayor 
may not be combined with weigths can be used at this stage (Tversky, 1977). Alternatively, models of 
similarity assessment mentioned in 3.1 like k-d trees may be employed for that purpose. At this stage, 
similarity assessment does not depend on the representation of the domain theory. No knowledge but 
that encoded in the items (cases, entries of database) is used explicitly. Since this stage is usually com­
putationally cheap it is well suited to be used for preselecting items. 

Stage II - Pragmatic relevance: A pure syntactic approach is not sufficient for similarity assessment. 
First, a difference with regard to only one feature results in a high statistical similarity score but may 
be based only on a high agreement with regard to unimportant features. Vice versa, a great number of 
differences between two cases leads to a poor statistical similarity score but may camouflage an agreement 
with regard to important features. For that matter, the next stage proceeds by allowing for the influence 
of pragmatic determinants (e.g., goals and knowledge) on similarity assessment. In goal-driven similarity 
assessment (Janetzko, Wess, & Melis, 1992), for example, a set of features is computed by using EBG to 
single out those features that are of pragmatic relevance according to a goal and a domain theory. At 
this stage, similarity assessment makes use of the representation of the domain theory and pragmatic 
determinants like goals or purposes. This stage is computationally more expensive than the first one. 

Stage In - Consistency:' For economical reasons, the kind of knowledge used in multistage similarity 
assessment is distributed on three stages. Knowledge that can be used as a test to rule out similarity 
of items has not been employed in the preceeding stages. This kind of knowledge is taken to reject 
items that are definitely dissimilar when compared to the input item. This stage is extremely dependent 
on the domain theory and on the application. As a result, there are various possibilities to perform 
consistency tests. For example a diagnostic application consistency may be defined by a model-based 
diagnosis approach c.f. (Koton, 1988). Depending on the respective application this consistency check 
may be very expensive. Hence, this procedure is left for the last stage of similarity assessment. 

5 Conclusions 

Although up to now there is not.a clear division into demands for knowledge-based steps of retrieval of 
cases and others, empirical results show a correspondence of knowledge-based and not-knowledge-based 
preselections with the selection of cases by experts and novices respectively. 

Novick (1988) has found differences between the retrieval cues available for the retrieval process by 
experts and novices: Novices almost exclusive rely on salient surface features of the target. Experts, 
however, will be able to use both surface and structural features. For common domains Holyoak and 
Koh (1987) established that retrieval of analogues relies more on surface similarity and less on structural 
similarity (than mapping). This might be simulated in the retrieval included in CBR by a pure statistical 
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on the domain theory and on the application. As a result, there are various possibilities to  perform
consistency tests. For example a diagnostic application consistency may be defined by a model—based
diagnosis approach 6.f (Koton, 1988). Depending on the respective application this consistency check
may be very expensive. Hence, this procedure is left for the last stage of similarity assessment.
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Although up to now there is not  . a  clear division into demands for knowledge-based steps of retrieval of
cases and others, empirical results show a correspondence of knowledge—based and not-knowledge—based
preselections with the selection of cases by experts and novices respectively.

Novick (1988) has found differences between the retrieval cues available for the retrieval process by
experts and novices: Novices almost exclusive rely on salient surface features of the target. Experts,
however, will be  able to  use both surface and structural features. For common domains Holyoak and
Koh ( 1987) established that retrieval of analogues relies more on surface similarity and less on structural
similarity ( than mapping).  This might be  simulated in the retrieval included in CBR by a pure statistical
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preselection followed up by a more knowledge-based final selection step. An attempt to capture the 
novice pheneomenon is done by Gentner and Forbus (1991). They use as a first stage a matcher that 
works as follows: Each case is stored with a content vector (vector of number of occurrences of predicates, 
functions, and connectives) The content vector of each case is compared with the computed content vector 
of an entered probe. Hence, this stage consists of a purely statistical syntactic comparison. Afterwards 
a matcher calculating literal similarity is applied to the output of the first stage. 

This does not mean that knowledge-based similarity assessment in general provides only sufficient 
selection criteria. On the contrary, the domain theory can provide necessary criteria, too. 

Depending on the pecularities of the domain there is the possibility to introduce knowledge/based 
modifications, e.g., of a pure statistic preselection by the contrast rule (Tversky & Gati 1982). This 
may be reasonable if ~he domain under study provides features or combinations of features which make 
usability probable or which rule out usability. 
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preselection followed up by a more knowledge-based final selection step.  An attempt to capture the
novice pheneomenon IS done by Gentner and Forbus (1991). They use as a first stage a matcher that
works as follows: Each case is stored with a content vector (vector of number of occurrences of predicates,
functions and connectives) The content vector of each case is compared with the computed content vector
of an entered probe. Hence, this stage consists of a purely statistical syntactic comparison. Afterwards
a matcher calculating literal similarity is  applied to the output of the first stage.

This does not mean that knowledge—based similarity assessment in general provides only sufficient
selection criteria. On the  contrary, the domain theory can provide necessary criteria, too.

Depending on the  pecularities of the domain there is the possibility to introduce knowledge—based
modifications e.  g .  of a pure statistic preselection by the contrast rule (Tversky & Gati  1982). This.
may be  reasonable if the domain under study provides features or combinations of features which make
usability probable or which rule out usability.
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Abstract 

In this papl:'r W(' an' "nf;ac;ed in rh,' intprprNation and representation of spatial arrange­
ments and relat,iouships that hold l)('t\\'I'I'U dilfl'n'\lt kinds of objects. because this is one of 
thl:' most crucial issul's in nl.s('-basl'd building d,'sign. The core idea of this paper is. that 
what WI' repn~s,'nt iu a ,';LSI' is !lot <Jnly an al.stractiou of thl:' spatial arrangements, but also an 
abstr;(ction of how a Cl\.Sf' wa" built. EYt'ry case represents two different kinds of information: 
Thl:' first abst.raetiou concerIlS t.he shapl' and locat.ion of object and their spatial relations. 
'VI' present a rdatio7/.a.1 s?/UI,bolic ClL.~(: 'rezm:$(mta.tion that takes primarily this information 
into ;tccouut. The St'cO!ld abstraction concern:> the constructive-technical information of a 
c,\..,e. tht'rdore informatio!l about thl' appliell sequence of spatial operators. This information 
is represt·ut.ed iu au opemtio'fl,nl symbolic ClLse re]JTI~sentation. Tll1ls, wc discuss how useful 
are iufornmt.iou about. t.he sequence of applied operators to solye ambiguity problems that 
an' couuected tc) a symbolic reinterpreation of a spatial arrangement and model a change of 
perspective takeu t.his operator sequences iuto account. 

Background and motivation 

The interpretation nnd representation of spatial arrangement and relationships between different 
kinds of object.s belongs t.o t.he most crucial issues in case-based building design. Our work in 
this cont.ext is influenced by two approaches that were presented by [Gentner1983] on the one 
hand and [Indurkhya1992] and [O'Hara.l992] on the other. 

In her strnct'll'f'e-mapP'tng theoTy Gentner [Gentner1983] [Gentner and Forbus1991] argues - as 
opposed to other approaches - that t.he meaning of a given case has to be derived from the 
relations of its parts. rat~ler t.han from attributes or properties. A case is described by higher 
order relations between it.s parts. and similarity assessment is based on these relations. A lot 
of psychological experiments indicate how powerful this approach is and the main idea is very 
important frOlil a practical point of view as well as from a cognitive science perspective. 

However. in recent years in particular [Indurkhya1992] and [O'Hara1992] emphasize t.hat Gen­
t.ner·s approach only deals wit.h fixed-desc,,.iptions of a case. As according to [Indurkhya1992] in 
t.he context of analogy it is very important. to take into account that humans often take different 
points of view when assessing similarity. The key idea is a process by which new points of 
view C<1.n be created and these redescriptions can be useful in the matching process. This crit ­
icislll is meaningful from a cognitive science perspective and is just as important as Gentner's 
st'f'nci'n'f'e-mappi'll.g ILppmach. Thus. it is appropriate to combine these two approaches. 

What. [Indnrkhya1992] and [O'Hara1992] also contribute t.o t.his issue is to emphasize the role of 
operat.or knowledge in analogical reasoning. In his syst.em PAN. [O'Hara1992] proposes besides 
a set. of object.s. ;t set. of one-;u·gument. operat.ors like TRANSLATION " ROTATE, REFLECT, SCALE 
and a t.wo-arglllnent, operator. GLUE. The key idea is t.o represent the shape of figures taking these 

operators into account and similarity assessment is lllodeled as a match of operators. Indurkhya's 
approach was support.ed from Cl. cognitive psychology perspective by [Knauff and Schlieder1993] 
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Abstract

In this paper  we are engaged in the interpretation and representation of spatial arrange-
ments  and relationships that  hold between different kinds of objects.  because this is one of
the  most crucial issues in case-based building design. The core idea of this paper  is. tha t
what we represent in a case is not only an abstraction of the spatial  arrangements, but  also an
abstraction of how a case was built. Every case represents two different kinds of information:
The  first abstraction concerns the shape and location of object and their  spatial relations.
We present a relational symbolic case represemotion. that  takes primarily this information
into account. The second abstraction concerns the constructi'ue-technical information of a
case. therefore information abou t  the applied sequence of spatial operators.  This  information
is represented in an operational symbolic case 'r'rzprcsentat'ion. Thus, we discuss how useful
are information about  the sequence of applied operators to solve ambiguity problems that
are connected to  a symbolic reinterpreation of a spatial arrangement and model a change of
perspective taken this operator sequences into account.

1 Background and motivation

The interpretation and representation of spatial arrangement and relationships between different
kinds of objects belongs to the most crucial issues in case-based building design. Our work in
this context is influenced by two approaches that were presented by [Gentner1983] on the one
hand and [Indurkhya1992] and [O’Hara1992] on the other.

In her stracture—mapping theory Gentner [Gentner1983] [Gentner and ForbulQl] argues - as
opposed toother  approaches — that the meaning of a given case has to be  derived from the
relations of i ts  parts.  rather than from attributes or properties. A case is described by higher
order relations between its parts. and similarity assessment is based on these relations. A lot
of psychological experiments indicate 110w powerful this approach is and the main idea is very
important from a practical point of view as well as from a cognitive science perspective.

However. in recent years in particular [Indurkhya1992] and [O’Hara1992] emphasize thatGen-
tne r s  approach only deals with fired-descriptions of a case. As according to  [Indurkhya1992] in
the context of analogy i t  is very important to take into account that humans often take different
points  of  view when assessing similarity. The key idea is  a. process by which new points of
view can be  created and these redescriptions can be  useful in the matching process. This crit-
icism is nuaaningful from a cognitive science perspective and is just as important as Gentner’s
.s-t-r-wct'u-re—mapping approach. Thus. i t  is appropriate to combine these two approaches.
What [IndurkhyalOQ2] and [O’Hara1992] also contribute to this issue is  to emphasize the role of
operator knowledge in analogical reasoning. In his system PAN „ [O’Hara1992] proposes besides
a set of objects. a set of one-in'gui‘nent operators like TRANSLATION; ROTATE, REFLECT, SCALE
and a two—argument operator. GLUE. The key idea is to represent the shape of figures taking these
operators into account and similarity assessment is modeled as a match of operators. Indurkhya’s
approach was supported from a cognitive psychology perspective by [Knaufi' and Schlieder1993]
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2 

and [Boerner1993] proposes an approach in the domain of architecture design, that is strongly 
influenced by such approaches. 

I 

Strictly speaking, the main concern of Indurkhya's and O'Hara's approaches is shape represen­
tation and they thereby deal with spatial relations among objects. On.the other hand, the main 
advantage of Gentner's approach lies in the stressing of the importance of the relations between 
the parts of a case for similarity assessment. In the light of this, we concentrate in this chapter 
on the combination of operator representation and spatial relations. 

It should be noted here that a symbolic description of a spatial arrangement can be either 
based on T(~lat';'ons or on ope·mto·rs. The first type of description specifies spatial relations that 
hold het.ween the objects. A typical example would be to represent the distance between two 
objects by distance(A,B,50). The other type of description specifies how the arrangement is 
constructed out of a: set of primitive objects by applying spatial operators. As part of such a 
des<Tipt.ioll the expression B = translate(A,50) could appear which says that the object B is 
obtailled by t.ransbting the object A a certain distance. 

VV(~ will dist.inguish these two approaches to spatial rein'esentation and speak abont relational 
;md 0IWf'o.t'i.oua.l syrnbolic tle.w:·ript';'ons. By making appeal to different nmt.hematical ("on("(~pt.s. 

relational awl operational description express a difference in emphasis too. i.e. emphasis on the 
static (perceptive) or the dynmllic (constructive) aspect of spatial arrangements respect.ively. 
The core idea of our ·work is to integrate these two aspects in the process of spatial similarity 
assessnlCnt. 

We present. an approach that represents cases symbolic as sequence of primitive and complex 
spatial operators. A p'rim:itivc spat'id ope'rato'r in our meaning combines or moves primitive 
parts shch as COpy, MOVE. A complex spatial operator is a combination of a set of primi­
t.ive 0pf)rat.ors. which application leads t.o a specific spatia.l arrangement.. The complex spatial 
ope'rato'!' ARRANGE-IN-A-LINE f()l' example, builds a line of a variable number of object­
s (llln.y be with different shapes). Possible paramet.ers are x-orientation, y-orientation, 
number-of-objects, distance-of-objects. The following example giv(~s you a first idea of 
what we <tl'l~ planning t.o do. It illnst.rat.(~s t.he function of a very important. (lperator. which can 
be called ARRANGE-PARALLEL-TO-LINE. 

A short glimpse at a typical planning problem in FABEL 

In t.he Uniw~rsit.y of Karlsruhe. t.he comput.er-driven construction-design syst.em DANCER has 
been developed. The syst.em helps architects deal wit.h complex design-and planlling- processes 
and cllabh~s them to present designs in a more t.ransparent a.nd comprehensive manner. The 
origins of t.his syst.em are t.he ardlit.ed.ual works of Frit;;: Hallcr. in particular t.he construction 
sd for u11l1tistol'<~y office or school lmildings. called MIDI. It intergratcs t.he complet.e technical 
(~quiplllcUt wit.h cabelillg. pipiug warlll and cold water. nsed. and fresh air. electric supplies and so 
011. [HoVf~stndt.1992]. Iu DANCER nIl subsystems a1'f~ i·cprcsellt.ed as circles and ellipses. which 
(lCllOt.(' pla("(~s in a lllnltidiuH~n~i(Jual cl(~sigll space. To keep it. simple we outline one typical 
('xnlllplc of a planlliug situatiou. 

Figll!"p 1: (a) Given Solnt.iou: (b) N(~w Problem: (c) Solnti(lll of the li(~w planning problem 
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and [Boerner1993] proposes an approach in the domain of architecture design, that is strongly
influenced by such approaches.

Strictly speaking. the main concern of Indurkhya’s and O’Hara’s approaches is shape represen—
tation and they thereby deal with spatial relations among objects. On ‚the otherhand, the main
advantage of Gentner 's approach lies in the stressing of the importance of the relations between
the parts of a case for similarity assessment. I11 the light of this, we concentrate in this chapter
on the combination of operator representation and spatial relations.

I t  should be noted here that a symbolic description of a spatial arrangement can be  either
based on relations or  on ape-raters. The first type of description specifies spatial relations that
hold between the objects. A typical example would be  to represent the distance between two
objects by d i s t ance (A ,B ,50 ) .  The other type of description specifies 110w the arrangement is
constructed out  of a set  of primitive objects by applying spatial. operators. As part of such a
description the expression B = t r ans l a t e (A ,50 )  could appear which says that the object B is
obta ined by translating the object  A a certain distance.

We will distinguish these two apI.)rozu'.hes to spatial representation and speak about relational
and Operational symbolic descriptions. By making appeal to different mathematical concepts.
relational and operational description express a difference in emphasis too. i.e. emphasis on the
stat ic (1.)e1'c.(-:ptive) or the dynamic (constructive) aspect of spatial arrangements respectively.
The core idea of 01.1r'w01'k is to integrate these two aspects in the process of spatial similarity
assessment.  '

We present an approach that represents cases symbolic as sequence of primitive and complex
spatial operators. A prisms-22m: spatial operator in our meaning combines or moves primitive
parts s'uch as COPY.  MOVE. A complex spatial operator is a combination of a set of primi-
tive operators. which application leads to a specific spatial arrangement. The complex spatial
operator ARRANGE-IN-A—LINE for example, builds a line of a variable number of object-
s (may  be  w i th  different shapes ) .  I’ossible parameters are x -o r i en t a t i on ,  y -o r i en t a t i on ,
number -o f -ob j ec t s  , d i s t ance -o f -ob j ec t s .  The following example gives you a first idea of
what we are planning to  do. I t  illustrates the function of a very important Operator. which can
be  cal led ARRANG E— PARALLEL—TO— LINE.

2 A short glimpse at a typical planning problem in FABEL

In the  University of Karlsruhe. the computor-driven construct ion-design system DANCER has
been developed. The system helps architects deal with complex design—and planning- processes
and enables them to  present (“lesigns in a more transparent and comprehensive manner. The
origins of this system are the architectual works of Fritz' Haller. in particular the construction
set  for niultistorey office or school buildings. called MIDI. It intergrates the complete technical
equipment  w i th  ca lml ing.  p ip ing warm and cold water.  used and fresh air .  electr ic supplies and so
on. [HovestadtIOD‘Z]. In DANCER. all subsysten‘ls are represented as circles and ellipses. which
denote places in a inultidiniensiianal design space. To keep i t  simple we outline one typical
example of a planning situation.
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Figu re  l :  ( a )  G iven  Solu t ion :  (b )  New Problem: (c)  Solut imi  of the  new planning problem
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Figure 1. shows a part of the ellipse and circle representation of an air network of an office 
building. Figure l(a). describes a known arrangement of supply air outlets for a given building, 
which had been planned earlier. Figure l(b) is a new problem description: The architect has to 
plan (",he arrangement of the ont.lets of a fresh air network in another building and the ellipses 
represent only their rongh location. As we immediately see, l(a) is similar to l(b), because 
there are only t.hree differences: The orientation of the network, the difference between fresh 
and supply air and the size of the building. Figure l(c) shows the solution of this problem, by 
adopting the given example 1(a). 

Formulated in generally applicable terms, a case, in our approach, is given as a sequence of 
diagrams - the first represents t.he ,starting point or problem description, the last. the goal or 
solution description. Figure 2. is absolutely simplified, but it shows the double application of 
the operator ARRANGE-PARALLEL-T.o-LINE and the result. 

Problem Solution 

B5 ODD 
000 
ODD 

diagram 1 di_gram 2 diagram 6 

Figure 2: Case in case library 

We are going on t,he ass1lInption now that t.his case is represented in the case library and another 
probtem description as in figure 3. is given. 

Fig-me 3: New problem 

The new problem is s'im..ilaT to the represented case. because it. can be solved by the application 
of t,he same spatial operator ARRANGE-PARALLEL-TO-LINE. The only difference t.o the 
represent.ed case is t.he x- or y-oriellt.atio!l and the !lumber of objects. We now just have t.o 
adopt t.his solution t.aking these two differences into account. Two parallel new lines will be 
built (figure 4). 

Problem 

Ic:l
 
~
 

Figun~ -1: Solntion of the new problem 

U sing information about the perception of a case and how 
it was built: Relational and operational case representation 

It is illlportallt to recognir.e the core idea of this paper: What we represent in a case is not only 
a.n abstraction of the spat,ial alTang(~nwllt.s. but also an abstraction of how a case was built. 
Every case represents two different kinds of information: 
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Figure 1. shows a part of the ellipse and circle representation of an air network of an office
building. Figure 1(a). describes a known arrangement of supply air outlets for a given building,
which had been planned earlier. Figure 1(b) is a new problem description: The architect has t o
plan the arrangement of the outlets of a fresh air network in another building and the ellipses
represent only their rough location. As we immediately see, 1(a) is similar to  1(b),  because
there are only three differences: The orientation of the network, the difference between fresh
and supply air and the size of the building. Figure 1(c) shows the solution of this problem, by
adopting the given example 1(a).

Formulated in generally applicable terms, a case, in our approach, is given as a sequence of
diagrams - the first represents the starting point or problem description, the last, the goal or
solution description. Figure 2. is absolutely simplified, but it  shows the double application of
the operator ARRANGE—PARALLEL—T_O—LINE and the result.

Problem Solution
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Figure 2: Case in case library

We are going on the assumption new that  this case is represented in the case library and another
problem description as in figure 3. is given.
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Figure 3: New problem

The new problem is similar to the represented case. because i t  can be solved by the application
of the same spatial operator ARRANGE—PARALLEL-TO-LINE. The only difference to  the
represented ease is  the x— or y-orientation and the number of objects .  We now jus t  have to
adopt this solution taking these two (‘lifferences into account. Two parallel new lines will be
built (figure 4).

Problam ' Solution

Q o mom
@ ao  - - -  DOD

Figure 4: Solution of the new problem

3 Using information about  the  percept ion of  a case and how
it was buil t :  Relational and operational case representation

I t  is important. to  recognize the core idea of this paper: What we represent in a case is not only
an abstraction of the spatial :u'rangeimrnts. but also an abstraction of how a case was built.
Every case represents two different kinds of information:
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•	 The first abstract.ion concerns the sha.pe and location of object and their spatial rela­
tions a.nd the relational symbolic case representation takes primarily this information into 
account . 

•	 The second abstraction concerns the constructive-technical information of a case, therefore 
information a.bout the applied sequence of spatial operators and the operational symbolic 
case TepTesentat-ion takes primarily this information into account. 

We will call the first (perceptive) abstraction grouping, the second ~constructive) sequenczng. 
The following figure gives a flavor of this distinction. 

Grouping A Grouping B Sequencing A Sequencing B 

10 0 01~ 

: 10 0 01~ °1 Z rH~	 .. ¥tI t") 0 01 ••• •••••••,oi 
~•...J 

Figure 5: Gronping and sequencing of the same spatial arrangement of objects 

Formulated in generally a.pplicable terms the relational object Tepresentation (REL) represents 
the groupings of the objects of a case as a pa'rtition of the set of objects, whereas the opemtioual 
object TepTese·/),tat-ion represents the sequencings as a permutation of a set of objects and we 
know that there are nlllch more permutations than partitions 1 We have exactly 

n!	 sequmlces. in our case 362880. if n=9 

211 gronpings. in onr case 512. if 11=9 

As we inlluediately see. we get more information from sequencing, becanse it chooses from 
much more alternati"vcs. Onr proposal is to represent. these two different aspects of a spatial 
arrangement in the cOllcept-network. Thus. every concept repn~sents firstly information about 
the arrangement of object.s. and secondly one or just. a few default. construction sequences. The 
concept arranged-in-a-line. for example. ca.n be captnred in the following figure. 

, arrangement ! sequencing I 

: of objects i of objects i 

: Ic -.J 

history 

~ 
/'	 . 

0::-<,.0---,0 

~;:) 

Figure 6: Components of t.he concept arranged-in-a-line 

\Ve call t,lwtpart of t.he concept representation t.hat represent.s the arrangement of objects the 
rfOcoquize-com.]loncnt. while t.he represent.ation of default.s sequences is called qenemte-component. 

The recognize-com_pouent must. mat.ch a parmnet.rized geometrical case representation with a 
symbolic rcpres(~nt.at.ion of a concept.. The genemte-component has t.o transform a symbolic 
mprp,,;cntat.ioll into a ).!;eonH:t.ric n~prcsent.at.i()n. The following fig;ure gives you a brief impression 
of rdatioulIl O/IJC(:t repres(Cntntiou and t.he ope-mt'ioulLl case representation of t.he same case. 

I •.., 1"/.r/itlO." d' <I ,,'f :-,j is a <lisjoinf union of suhsets...., pe7'lnlLtatio1L of n distinct objects of length k is an 
urderc,d <lrrangeul('nt of ;1lI~" k of the ohjects [Graham ct al.1989]. 
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0 The first abstraction concerns the shape and location of object and their spatial rela—
tions and the relational symbolic case representation takes primarily this information into
account.

0 The second abstraction concerns the constr'uctive-technical information of a case, therefore
information about the applied sequence of spatial operators and the operational symbolic
case representation takes primarily this information into account.

We will call the first (perceptive) abstraction grouping, the second (constructive) sequencing.
The following figure gives a flavor of this distinction.

Grouping A Grouping B Sequencing A Sequencing B

i„ a/ t
Figure 5: Grouping and sequencing of the same spatial ar 'angement of objects

Formulated in generally applicable terms the relational object representation (REL) represents
the  groupings of the objects of a case as a partition of the set of objects, Whereas the operational
object representation represents the sequencings as a permutation of a set of objects and we
know that there are much more permutations than partitions 1 We have exactly

n!  sequences. in our case 362880. if 11:9

2"  groupings. in our case 512. if 11:9

As we immediately see. we get more information from sequencing, because i t  chooses from
much more alternatives. Our  proposal is to  represent these two different aspects of a spatial
arrangement in the concept—network. Thus.  every concept represents firstly information about
the  arrangement of objects. and secondly one or just a few default construction sequences. The
concept a r ranged- in-a- l ine .  for example. can be  captured in the following figure.

ms. with .
' i : ' : I

recognize -. i generate I

„ arrangement ! sequencing
of objects i of objects

5
ges t a l t  ‘ history i

_. | ! :e o o „ W :a I „<.-0 c3 ‚0 i ‘ f—v—JD
i ‚ f

H Ü Ü :, I Qi!) “9
l

Figure  6 :  Components  of  the concept arranged-in-a- l ine

We call that  part of the concept representation that represents the arrangement of objects the
recognise-component. while the  1‘epr<=:sentation of defaults sequences is called generate-component.
The recognise-corriponent must match a parametrized geometrical case representation wi th  a
symbolic representation of a concept. The generate-component has to transform a symbolic
representa t ion  i n to  a geometr ic  representat ion.  The following figure gives you a brief  impression
of relational object representation and the operational case representation of the same case.

'_-\ partition. of a wet M is a disjoint union of subsets.  A permutation of n dis t inct  objec ts  of length k is an
ordered arrangement of any k of the objects [Graham ct al.1989]. '
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Figure 7: The relat.ional and operational case representation format 

Ambiguity and change of perspective 

A key issne of a symbolic reint.erpretation of a geometric representation of a spatial arrangement 
is its nm.lriyuity. That means that there are a lot of different ways of interpreting a given spatial 
;tlT,mg;r'Illlmt and we have to find the right - or at least. the best- one. Gentners approach has 
t.o deal with s11ch problems and Indllrkhya's and O'Hara's works on representational change are 
COllC(~rned with t.his issne t.oo. We now want to use the above ideas to deal with such problems 
and propose a dwuge of peTspect·i·ue. taking different operator sequences into acconnt. 

In principle. t.here are as many perspectives on a case as permutations of the objects are possible. 
In order to better understand the process by which people construct a spatial arrangement of 
objects we are planning to conduct a series of psychological experiments. Special attention will be 
paid t.o t.he seqnenciug of :;;patial operators snch as moving, copying and combining object parts. 
Onr working hypothesis predicts that the number of ways in which humans actually sequent.iali7.e 
the constrnction process is far inferior t.o the number of all combinatorially possible operator 
seqnences. Analysis of t.he performance data should further show whether a set of preferred 
op(~rat.or sequences can be ident.ified. that is. sequences which people use as standard. default 
solntions whim t.hey are confront.ed with a const.ruction task. 

If evidence supports t.he assumpt.ion of defanlt seqnences this would provide a natural solution 
t.o an issue t.hat [Illdmkhya1992] addresses in connection with his computational approach to 
analogy. Central t.o any analogy problem of the type A is t.o 13 as C is to D (where D has to be 
compnt.ed given A. 13 and C). is the represent.ation of the objects involved. In the spat.ial domain 
t:he object. represelltation specifics how an arrangement, can be constrncted out of primit.ive part.s 
by means of.primitive operat.ors. Generally. t.he representation is not uniquely det.ermined be­
cause t.here are diH·erent. ways t.o decompose an arrangement into parts. Since the computat.ional 
approach to analogy is based on structure-preserving mappings between object representations 
t.his kind of indet.el'lninacy becomes a serious obstacle. There is no escape from the problem by 
simply rest.rict.ing t.he lluinbcr of primit.ive parts and operators. As [Indurkhya1992] point.ed out 
indet.erminacy can arise with just a single primitive part and two unary operators. 

[0'Hara1992] proposed t.o n~solve the problem of representational illdet.erminacy by introducing 
a normal form for operator-based descript.ious of spati;tlly arranged objects. His PAN al~o­

rithm uses Jl(~nllal form input. descript.iolls of geomet.rical aualogy problems. This dramat.ically 
simplifies t.he task of tiudinl-'; an analogy at. least from. the point. of view of computational com­
plexit.y. The esscntial idea behincl this definition of t.he normal form is t.o dist.inguish between 
an operat.or G LDE t.hat combines primitive parts and the operat.ors that move primitive part.s. 
::i11ch as ROTATE. A uonnal form representat.iou t.hen consist.s of an operat.or tree whose t.op 
node is a GLUE operation possibly followed by ot.her GLUE operat.ions in right-associat.ive for­
Ill. The mOV(~IlWIlt. operat.ors appear as inner nodes without their position obeying any further 
const.raillts. However. as [0 'Hara1992] observed. this llol'mal form does not eliminat.e all repre­
sCIlt.at.ioual illllet.enninacy. Some spatial arrangements can be described by different normal form 
repn~s(~nt.ati()ns. It. is f[nest.ionahle whether t.he choice of the label "normal form" is appropriate 
nuder t.hese CirC11l11stallces. 
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Figure 7: The relational and operational case representation format

4 Ambiguity and change of  perspective

A key issue of a symbolic reinterpretation of a geometric representation of a spatial arrangement
is its mainly-airy. That  means that  there are a lot of different ways of interpreting a given spatial
:u‘rangennent and we have to  find the right — or at leastthe best— one. Gentners approach has
t o  deal w i th  such problems and Indurkhya's and O’Hara’s  works on representational change are
concerned with this issue too. We now want to use the above ideas to deal with such problems
and propose a change of perspective. taking different operator sequences into account.

In pr inciple .  there are as many perspectives on  a case as permutations of the objects are possible.
In order to bet ter  understand the process by which people construct a spatial arrangement of
objects we are planning to conduct a series of psychological experiments. Special attention will be
paid t o  the sequencing of spat ia l  operators such as moving, copying and combining object  par ts .
Our working hypothesis predicts that  the number of ways in which humans actually sequentialize
the construction process is far inferior to the number of all combinatorially possible operator
sequences. Analysis of the performance data should further show whether a-set of preferred
operator  sequences can be  identified.  that  is.  sequences which people use as standard. default
solutions when they are confronted with a construction task.

If evidence supports the assumption of default sequences this would provide a natural solution
t o  an issue that  [Indurkhya1992] addresses i n  connection With his computational approach to
analogy. Central to any analogy problem of the type A is to B as C is to D (where D has to be
computed given A. B and C).  is the representation of the objects involved. In the spatial domain
the object representation specifies how an arrangement can be constructed out  of primitive parts
by means of ,p r imi t ive  01.)erators. Generally. the representation is  not uniquely determined be—
cause there are different ways to decompose an arrangement into—“parts. Since the computational
approach to  analogy is based on structine-preserving mappings between object representations
this kind of indeterminacy becomes a serious obstacle. There is no escape from the problem by
simply restricting the number of primitive parts and operators. As [Indurkhya1992] pointed out
indeterminacy can arise with just a single primitive part and two unary operators.

[O 'Hara1992]  proposed to  resolve the  problem of representational  indeterminacy by introducing
a normal form for opt-trator—based descript ions of spatially arranged objec ts .  His  PAN algo-
r i thm uses normal form inpu t  descr ipt ions of geometrical analogy problems.  This  dramatically
simplifies the task of finding an analogy at least from the point of view of computatidnal com-
plexity. The essential idea behind this definition of the normal form is to distinguish between
an operator GLUE  that combines primitive parts and the operators that move primitive parts.
such as ROTATE. A normal form reI'n'esentation then consists of an operator tree whose top
node is a GLUE operation possibly followed by other GLUE ope  ‘ations in right—associative for-
m. Tln~2,1novement operators appear as inner nodes without their position obeying any further
constraints. However. as [O'HaralDD2] observed. this normal form does not eliminate all repre-
sentational indeterminacy. Some spatial arrangements can be  described by different normal form
r<=:prr-:sentations. I t  is questionable whether the choice of the label " normal form”? is appropriate
under these circumstamtes.
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Default sequencings of operators that people use when constructing spatial arrangements could 
provide a better solution t.o t.he problem of representational indeterminacy. Consider a spatial 
arrangement. consisting of an alignment of objeCts, say, five squares in a horizontal row. We 
conjecture t.hat t.here is only a very restricted number of default ways to construct such an ar­
rangement (1-2-3-4-5.5-4-3-2-1. 1-5-2-3-4, ... ?). It would make sense to take only t.hese standard 
decompositions int.o account when building a descript.ion based on a single primitive part., the 
square, and a unary operator, t.ranslation. One would not end up with a single normal form. but 
instead with a small set. of standard representations. We do not expect the number of standard 
representations to be la.rge since cognit.ive processes typically only consider a constant number 
of cases out of an exponential number of possible ones. A further reduction of complexity could 
be achieved by ranking t.he standard representation according to its frequency of use as can be 
reve<tled by psychological experiments. 
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Default sequencings of operators that peeple use when constructing spatial arrangements could
provide a better solution to the problem of representational indeterminacy. Consider a spatial
arrangement consisting of an alignment of objects, say, five squares in a horizontal row. We
conjecture that there i s  only a very restricted number of default ways to construct such an ar—
rangement (1-2—3-4-5. 5—4-3-2-1. 1-5—2-3-4, . . . ? ) .  It would make sense to  take only these standard
decompositions into account when building a description based on a single primitive part. the
square, and a unary operator, translation. One would not end up with a single normal form. but
instead with a small set of standard representations. We do not expect the number of standard
representations to be  large since cognitive processes typically only consider a constant number
of cases out of an exponential number of possible ones. A further reduction of complexity could
be achieved by ranking the standard 1ep1esentation according to its frequency of use as can be
revealed by psychological experiments
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1 Introduction 

The application and use of case law provides a fertile area for testing concepts and ideas from the 
domain of case-based reasoning. In UK law, the legal decision maker is as much bound by past 
case law as by statutes. It is the job of the legal decision maker to decide whether a case in case 
law matches the present case in order that the present case should be decided in same way as a 
relevant past case. Acts which have been on the statute book for some time may have generated 
significant bodies of case law, all of which may be potentially relevant. Complex domains such as 
legal reasoning require the ability to choose between and combine exemplar-based reasoning and 
generalization so that the techniques can be used in support of one another. Index transformation 
can also provide a different view of the case base by leading the problem solver to previously 
inaccessible cases. The present research looks at strategies where past cases may be indexed and 
matched to the present case and ultimately where solutions may be adapted to suit the present 
case. Multiple case, multiple features retrieval is proposed an important strategy for the retrieval 
of past cases. Generalized features, exemplar-based reasoning and indexing are incorporated into 
the design of the prototype system. UK employment law has been chosen as suitable application 
area. 

2 Multiple Case, Multiple Features Retrieval 

There are a number of specific areas of interest when looking at the use of CBR in the law. A legal 
decision maker may use part of a solution from a past case or a number of partial solutions from 
past cases to reason about the present case. The problem here involves both the representation of 
previous past cases, where important features must be represented in hierarchical order and also 
the adaptation of several 'partial solutions to form an overall solution or suggested decision. The 
retrieval of multiple cases based on multiple features is an important strategy. Most case-based 
reasoning systems use a single 'best' or 'most similar' case as the basis for solution [2,5,10], but 
dearly systems most suited to legal reasoning are those which combine pieces of several old cases 
to solve a new problem [1,4,12,13,14]. 

Our approach to multiple features retrieval strategy involves using a two step algorithm. 
First by using generalized features, the system retrieves all cases which match or partly match 
the target case. Then specific features are compared between the retrieved cases in order to 
choose the most similar case. In the second step, index transformation can be used to define 
specific features. Suppose the case base has cases relating to employment law, with important 
features described as below. 

• Employment, Sex discrimination, Indirect discrimination. 

• Employment, Sex discrimination, Direct discrimination. 

• Employment, Sex discrimination, Indirect discrimination, Part-time workers. 
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1 Introduction

The application and use of case law provides a fertile area for testing concepts and ideas from the
domain of case—based reasoning. In UK law, the legal decision maker is as much bound by past
case law as by statutes. It is the job of the legal decision maker to decide whether a case in case
law matches the present case in order that the present case should be decided in same way as a
relevant past case. Acts which have been on the statute book for some time may have generated
significant bodies of case law, all of which may be potentially relevant. Complex domains such as
legal reasoning require the ability to choose between and combine exemplar-based reasoning and
generalization so that the techniques can be used in support of one another. Index transformation
can also provide a different view of the case base by leading the problem solver to previously
“inaccessible cases. The present research looks at strategies where past cases may be indexed and
matched to the present case and ultimately where solutions may be adapted to suit the present
case. Multiple case, multiple features retrieval is proposed an important strategy for the retrieval
of past cases. Generalized features, exemplar-based reasoning and indexing are incorporated into
the design of the prototype system. UK employment law has been chosen as suitable application
area.

2 Multiple Case,  Multiple Features Retrieval

There are a number of specific areas of interest when looking at the use of CBR. in the law. A legal
decision maker may use part of a solution from a past case or a number of partial solutions from
past cases to reason about the present case. The problem here involves both the representation of
previous past cases, where important features must be represented in hierarchical order and also
the adaptation of several partial solutions to form an overall solution or suggested decision. The
retrieval of multiple cases based on multiple features is an important strategy. Most case-based
reasoning systems use a single ‘best’ or ‘most similar’ case as the basis for solution [2,5,10], but
clearly systems most suited to legal reasoning are those which combine pieces of several old cases
to solve a new problem [1,4,12,13,14].

Our approach to multiple features retrieval strategy involves using a two step algorithm.
First by using generalized features, the system retrieves all cases which match or partly match
the target case. Then specific features are compared between the retrieved cases in order to
choose the most similar case. In the second step, index transformation can be used to define
specific features. Suppose the case base has cases relating to employment law, with important
features described as below.

o Employment, Sea: discrimination, Indirect discrimination.

o Employment, Sea: discrimination, Direct discrimination.

o Employment, Sex discrimination, Indirect discrimination, Part-time workers.
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•	 Employment, Sex discrimination, Occupational pensions. 

•	 Employment, Sex discrimination, Indirect discrimination, Equal pay. 

•	 Employment, Sex discrimination, Indirect discrimination, Equal pay, Special Circumstances. 

If the case base is very large and has covered several different areas of law, then the feature 
Employment can be used otherwise it can be eliminated. To retrieve cases relating to Sex Dis­
crimination Law we can use Sex discrimination as a generalized feature and retrieve all similar 
cases. If we add Indirect discrimination to the generalized previous feature to make it more 
specific, we will have fewer cases but they are more similar. By using this algorithm considering 
more specific features like special circumstances(e.g. Material difference) we can retrieve the most 
similar case. If no exact match occurred when using specific features, we can always backtrack 
and pick up cases from the previous search. In the above format the first feature of the list is the 
most general feature and the last one is the most specific one. For eX;l.mple, the case of FLETCHER 
V.CLAY CROSS (QUARRY SERVICES) LIMITED can be indexed by using Se:c discrimination, Equal 
pay, Material difference. The first two featb.res are very common, so to find more similar cases 
we use a Special circumstances feature like Material difference. By doing this the following cases 
will be retrieved. 

•	 E. COOMES (HOLDINGS) LTD. V. SHIELDS [1978] LR.L.R. 263 (C.A.). FEATuREs(Se:c 
discrimination. Equal pay. Material difference. E:ctrinsic forces). 

•	 NATIONAL COAL BOARD V. SHERWIN AND SPRUCE [1978] I:R.L.R. 122 (E.A.T.). FEA­
TUREs(Sex discrimination. Equal pay. Material difference. E:ctrinsic forces). 

•	 H'ODGSON V. J.M. FIELDS INC.[197l] 335 F. SUPP.731. F'EATuREs(Sex discrimination. 
Equal pay. Material difference. Market forces). 

•	 BERNNAN V. CITY STORE [1973J 479 F.2D 235. FEATuREs(Sex discrimination. Equal 
pay. Material difference. Market forces). 

All four cases above are similar to the Fletcher case and can be used as an exemplar to reason 
by. Those cases also can be retrieved by using the like work equalpay feature. 
Generalized features, such as we describe above, are conceptually simple but this must not disguise 
the necessity of including such a mechanism in a system of this type and must also not obscure 
the need to describe generalized features in such away that the system can use them meaningfully. 

The Use of Exemplars in Legal Reasoning 

The approach taken in our research acknowledges and is ~esigned to work around some important 
inherent limitations of the Jaw. Legal rules are of necessity underdetermined in that they can 
never be written in such a way as to categorize all areas where they should apply; the law is 
made by the process of interpretation and q.ecision making; what Hart, the philosopher of ju­
risprudence, [6], described as the "open textured" nature of the law. A domain of open~textured 

rules can be partially defined by examples. The advantage of legal reasoning is that the court 
cases are recorded and published, ,and can be used to provide a set of facts. Because of their 
open' textured nature, legal rules can cover a wide range of possibilities without any specification. 
The same example can be used differently in two different cases. For example the words equal 
pay as an open textured concept can cover many different cases in the domain of employment law. 

In order to deal with open texturedness the approach taken here is to design the knowledge 
base in such a way as to contain instances, exemplars or paradigms of various categories of past 
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o Employment, Sex discrimination, Occupational pensions.

0 Employment, Sea: discrimination, Indirect discrimination, Equal pay.

o Employment, Sea: discrimination, Indirect discrimination, Equal pay, Special Circumstances.

If the case base is very large and has covered several different areas of law, then the feature
Employment can be used otherwise it  can be eliminated. To retrieve cases relating to Sex Dis-
crimination Law we can use Sea: discrimination as a generalized feature and retrieve all similar
cases. If we add Indirect discrimination to the generalized previous feature to make it more
specific, we will have fewer cases but they are more similar. By using this algorithm_considering
more specific features like special circumstances(e.g. Material difierence) we can retrieve the most
similar case. If no exact match occurred when using Specific features, we can always backtrack
and pick up cases from the previous search. In the above format the first feature of the list is the
most general feature and the last one is the most specific one. For example, the case of FLETCHER
V.CLAY CROSS (QUARRY SERVICES) LIMITED can be indexed by using Sea: discrimination, Equal
pay, Material difference. The first two features are very common, 8.0.130 find more similar cases
we use a Special circumstances feature like Material difierence. By doing this the following cases
will be retrieved.

. E. COOMES (HOLDINGS) LTD. V .  SHIELDS, [1978] I.R.L.R. 263 (C.A.). FEATU'RES(’Se:c
discrimination. Equal pay. Material difi'e/rence. Extrinsic forces).

. NATIONAL COAL BOARD v .  SHERWIN AND SPRUCE [1978] IlR.L.R. 122 (E.A.T.). FEA-
TU R‚ES(.S'e:z: discrimination. Equal pay. Material difierence. Extrinsic forces).

o IiODGSON v .  J.M. FIELDS INO.[1971] 335 F. SUPP.731. EEATURES(Sea: discrimination.
Equal pay. Material difierence. Market forces).

o BERNNAN v .  CITY STORE [1973] _479 F.2D 235. FEATURES(Se:c discrimination. Equal
pay. Material difierence. Market forces).

All four cases above are similar to the Fletcher case and can be used as an exemplar to reason
by. Those cases also can be retrieved by using the like work equalpay feature.
Generalized features, such as we describe above, are conceptually simple but this must not disguise
the necessity of including such a mechanism in a system of this type and must also not Obscure
the need to describe generalized features in such away that the system can use them meaningfully.

3 The Use of Exemplars in  Legal Reasoning

The approach taken in our research acknowledges and is designed to work around some important
inherent limitations of the  -law. Legal rules are of necessity underdetermined in that they can
never be  written in such a way as to categorize all areas where they should apply; the law is
made by the process of interpretation and decision making; what Hart,  the philosopher of ju-
risprudence, [6], described as the “Open textured” nature of the law. A domain of open-textured
rules can be partially defined by examples. The advantage of legal reasoning is that the court
cases are recorded and published, and can be used to provide a set of facts. Because of their
open” textured nature, legal rules can cover a wide range of possibilities without any specification.
The same example can be used differently in two different cases. For example the words equal
pay as an Open textured concept can cover many different cases in the domain of employment law.

In order to  deal with open texturedness the approach taken here is to  design the knowledge
base in such a way as to contain instances, exemplars or paradigms of various categories of past
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case. Each new case is analyzed by comparing it to the exemplars that it most closely resembles. 
This technique is very useful in case-based legal reasoning where exemplars can help fill the gap 
between case descriptions and the language of generalization. 

Generalization by itself cannot be sufficient in legal reasoning. For example generalized fea­
tures like sex discrimination or equal pay are clearly too general to retrieve the most genuinely 
similar cases from the case base. This problem can be tackled by an approach to knowledge 
representation in which full descriptions of known instances or exemplars are represented and 
a new case is compared to the exemplars that it most closely resembles. An exemplar-based 
representation can reason about categories for which there are insufficient generalizations. It re­
quires knowledge of the relations among-features and of the explanatory principles that connect 
exemplars to the categories of which they are members [3]. 

Indexing in Multiple Case Multiple Features 

A third problem which the current research is investigating involves the problem of indexing. 
This is a problem in CBR in general, and in legal reasoning in particular. What happens when 
the indexing mechanism does not retrieve relevant cases even though there is one or more rele­
vant case in the knowledge base? In other words what happens when the index of the target case 
does not correspond to the one which has been used to try retrieve the past case? A number 
of approaches have been proposed including index transformation [16], condensation [9], causal 
explanation and decomposition [1lJ, elaboration [8] and tweaking [15]. 

When generalized features are used in a large case base many cases are retrieved. Under 
these circumstances it is hard to decide which one of the cases represents the closest match. To 
alleviate this problem in our research, we concentrate on higher order features such as special 
circumstances. For example if we have the set of indexes described below; 

•	 Employment, Sex discrimination, Indirect discrimination, Equal pay, Special circumstances. 

We can use the words Equal pay as a generalized feature and Special circumstances ( e.g. red 
circling) as a specific feature. If the specific feature did not match any feature in the source cases 
and no similar case is retrieved, then some index transformation and elaboration must be done. 
In the case TRICO FLORETH LTD. V. S. GROVES AND E. AISTON (LR.L.R. 1976 327 c.M.-117) 

which is about women who claimed that they should be paid the same wage as men who were 
doing the same work, the employers resisted the claim on the grounds that the variation in pay 
was genuinely due to a material difference (Le. other than a difference in sex). These are two 
very similar cases to the above case and where a different high order index is used. 

•	 SNOXELL AND DAVIS V. VAUXHALL MOTORS LTD. [7]. FEATuREs(Sex discrimination. 
Equal pay. Material difference. Red circling). 

•	 CHARLES EARLY AND MARRIOT (WITNEY) LTD. V. SMITH AND BELL (HUNNINGS, 1988 

p.186-7). FEATuREs(Sex discrimination. Equal pay. Material difference. Red circling). 

In both of the above cases claims arose under equal pay Act 1970 and the principle issue 
concerns the correct treatment of the practice known as red circling or red ringing. Red circling is 
the practice of protecting the wages of an employee or group of employees, moved from a better 
paid type of work to a worse paid type of work, perhaps because the first is no longer undertaken. 
Such transferred employees are often ringed in red in work schedules. It may happen that where 
men. and women undertake like work and where all the women are paid less than any of the 
men, the discrimination will be justified on the basis that the men are Red circle cases [7]. In 
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the last two cases red circling or red ringing can be used as a specific index. But red circling 
will not retrieve the first case although it has many features in common. One way to solve this 
problem is to use an abstract index which it is not discussed in this paper. Another method is 
to use index transformation and elaboration techniques, by adding more detail to the index. For' 
example instead of using red circling or material difference we can use better paid type of work to 
a worse paid type of work, or equal pay for men and women for same work. 

5	 Conclusion 

In conclusion we have described preliminary work in the design of a prototype system combining 
the problems of generalized features, exemplars and indexing in multiple case, multiple features 
retrieval. Initial results suggest that the choice of employment law as an example domain has 
yielded an extremely fruitful area on which to test these concepts. Further research will concen­
trate on building a larger system in which the concepts ·described a.bove may be further refined 
and tested. In particular the question of adapting solutions will be investigated. 
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Abstract 

We propose a probabilistic case-space metric for the case matching and case adaptation tasks. 
Central to our approach is a probability propagation algorithm adopted from Bayesian reasoning 
systems, which allows our case-based reasoning system to perform theoretically sound probabilistic 
reasoning. The same probability propagation mechanism actually offers an uniform solution to both 
the case matching and case adaptation problems. We also show how the algorithm can be implemented 
as a connectioJ;list network, where efficient massively parallel case retrieval is an inherent property of 
the system. We argue that using this kind of an approach, the difficult problem of case indexing can 
he completely avoided. 

Introduction 

In case-based reasoning (CBR) paradigm the dynamic case memory is central to the reasoning process 
(see the process model in Figure 1) - learning is an inherent part of the process. Although the idea of 
using a set of representative instances as the basis for a reasoning system is simple in principle, there are 
many difficult problems related to constructing a case base from data (learning), case matching and case 
adaptation. Here we do not address the problem of choosing a suitable set of cases, but for our purposes 
we assume that they are defined by a human expert, or derived from a large database of observations by 

, statistical clustering methods. We will focus on the central problems concerning the reasoning part of 
the CBR system: case matching and adaptation tasks. 

Much of the published work on CBR has concentrated on applying machine learning methods for 
case indexing, in order to avoid costly comparison of the input with the large set of cases in the case 
memory during the case matching task [2]. We adopt an alternative approach and show how to construct 
a massively parallel implementation of CBR confirming to the so called connectionist architecture (see 
e.g. [12]). Connectionist networks are constructed from a large amount of elements with an input fan 
order of magnitudes larger than in computational elements of conventional architectures. This means 
that the set of connections of the elements can be used for distortion tolerant storing of large number of 
cases (represented by high dimensional vectors) by making single elements "sensitive" to a stored item, 
i.e'., to produce a high output for particular subregions in· the input space. In our approach the case 
indexing problem is thus addressed directly at the architectural level where matching can be performed 
efficiently b.y using the available parallelism. On the other hand, chip level implementation of massive 
parallelism constraints the complexity of a single computing element to a limited set of operations and 
structurally simple local memory. Consequently case-based reasoning, with a knowledge base of high­
dimensional cases as the basis for the reasoning process, offers a very natural computational framework 
for connectionist architectures. 

In addition to using connectionist models for avoiding the case indexing problem, we will also propose a 
uniform solution to the problem of choosing proper metrics for case matching and adaptation. Developing 
appropriate metrics for case matching and adaptation has in practice lead to heuristic solutions which are 
hard to justify theoretically. The obvious disadvantages of such approaches are related to the difficulty of 
interpreting differences in the similarity of the various cases, and to the related problem of discovering the 
significance of the difference of the attribute values. For example in ad hoc solutions based on uncertainty 
values, in most cases it is very difficult to interpret if e.g., the difference between values .9 and .99 is less 
important than the difference between .6 and .8. To avoid resorting to such ad hoc heuristic solutions in 

·This research was supported by Technology Development. Cent.er (TEKES) and Honkanen Foundat.ion. 
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Abstract

We propose a probabilistic case-space metric for the case matching and case adaptation tasks.
Central to our approach is a probability propagation algorithm adopted from Bayesian reasoning
systems, which allows our case-based reasoning system to  perform theoretically sound probabilistic
reasoning. The same probability propagation mechanism actually offers an uniform solution to both
the case matching and case adaptation problems. We also show how the algorithm can be implemented
as a connectionist network, where efficient massively parallel case retrieval is an inherent property of
the system. We argue that  using this kind of an approach, the difficult problem of case indexing can
be  completely avoided.

1 Introduction

In case-based reasoning (CBR) paradigm the dynamic case memory is central to the reasoning process
(see the process model in Figure 1) — learning is an inherent part of the process. Although the idea of
using a set of representative instances as the basis for a reasoning system is simple in principle, there are
many difficult problems related to constructing a case base from data (learning), case matching and case
adaptation. Here we do not address the problem of choosing asu i tab le  set of cases, bu t  for our purposes
we assume that they are defined by a human eXpert, or derived from a large database of observations by

' statistical clustering methods. We will focus on the central problems concerning the reasoning part of
the CBR system: case matching and adaptation tasks.

Much of the published Work on CBR has concentrated on applying machine learning methods for
case indexing, in order to avoid costly comparison of. the input with the large set of cases in the case
memory during the case matching task [2]. We adopt an alternative approach and show how to construct
a massively parallel implementation of CBR confirming to  the  so called connectionist architecture (see
e.g. [12]). Connectionist networks are constructed from a large amount of elements with an input  fan
order of magnitudes larger than in computational elements of conventional architectures. This means
that the set of connections of the elements can be used for distortion tolerant storing of large number of
cases (represented by high dimensional vectors) by making single elements “sensitive” to a stored i tem,
i.e'., to produce a high output  for particular subregions in- the input space. In our approach the case
indexing problem is thus addressed directly at the  architectural level where matching can be performed
efficiently by using the  available parallelism. On  the other hand,  chip level implementation of massive
parallelism constraints the  complexity of a single computing element to a limited set of operations and
structurally simple local memory. Consequently case-based reasoning, with a knowledge base of high-
dimensional cases as the basis for the  reasoning process, offers a very natural computational framework
for connectionist architectures.

In  addition to  using connectionist models for avoiding the  case indexing problem, we will also propose a
uniform solution to the problem .of choosing proper metrics for case matching and adaptat ion.  Developing
appr0priate metrics for case matching and adaptationhas in practice lead to  heuristic solutions which are
hard to justify theoretically. The obvious disadvantages of such approaches are related to the  difficulty of
interpreting differences in the similarity of the various cases, and to the related problem of discovering the
significance of  t he  difference of the  at tr ibute values. For example in ad hoc solutions based on uncertainty
values, in most cases i t  is very diflicult to interpret if e.g., the  difference between values .9 and .99 is less
important than the difference between .6 and .8. To avoid resorting to  such ad hoc heuristic solutions in
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Figure 1: A generic CBR system architecture. 

the reasoning process, we propose that one uses methods developed for Bayesian probabilistic reasoning 
systems [10], [8]. In Section 3, w~ show how our Bayesian reasoning framework, which we call Bayesian 
case-based reasoning, offers us a uniform similarity metrics for both the case matching and adaptation 
tasks. In Section 4, we present a massively paralhil implementation of our Bayesian CBR system. 

Massively Parallel Case-Based Reasoning 

Let our knowledge of the problem domain be coded using m attributes AI, ... , Am. A case Cl" is repre­
sentedas a vector Cl" consisting of a value assignment for these attributes: Cl" = (al(k), ... , am(k», where 
ai(k) is either a value of attribute Ai, or undefined. Our case base C is a collection of [' case vectors, 
C ={Cl, ... , C,}. 

A CBR process starts when an input case vector c· =(ai, ... , a;;") is presented to the system. The goal 
is to provide each case Cl" with a similarity rank S(Cl,,) representing the similarity between the vectors 
Cl" and c· (case matching task), and each attribute Ai not defined in c· with a value consistent with the 
highly ranked cases (case adaptation task) ..For a very general class of case-matching and case adaptation 
algorithms this can be done in amassively parallel connectionist architecture. As an illustrative example, 
let us consider a case matching task where the similarity rank for a case Cl" is a function depending on 
the inner product of the case and input vectors: S(C,,) = F(c"c·). Let us now assign one processing unit 
for each of the cases and each of the attributes, and connect each case unit to all the attribute units that 
belong to the corresponding case value assignment. The weight of the connection from an attribute unit 
to a case unit is equal to the corresponding attribute value in the case definition. Hence each case vector 
Cl" is coded as a set of weights attached to the connections leading to the corresponding case unit (see 
Figure 2). 

Let the value of an attribute unit be either given in the input case assignment c· , or zero if the value 
is undefined. In our connectionist network, each unit sends its value to all the adjacent units, which sum 
all t.he incoming messages weighted by the connection strengths of the corresponding arcs. It is obvious 
that the total input of a case unit is the inner product c"c·. If each case unit now computes the function 
F using the input as the parameter, we have accomplished our goal: parallel computation of the case 
ranks. A similar construction can be presented for the case adaptation task. In Section 4 we present a 
massively parallel implementation of CBR where both the case matching and case adaptation tasks are 
performed using the same, undirected connectionist network. 

As there is nothing that resembles a shared memory, the connectionist computing architecture is 
inherently parallel, and each element can perform comparison of its input against the value stored in 
the interconnections independently from the others. This offers a linear speed-up in the comparison 
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the reasoning process, we propose that one uses methods developed for Bayesian probabilistic reasoning
systems [10], [8]. In Section 3, we show how our Bayesian reasoning framework, which we call Bayesian
case—based reasoning, offers us a uniform similarity metrics for both the case matching and adaptation
tasks. In Section 4 ,  we present a massively parallel implementation of our Bayesian CBR system.

2 Massively Parallel Case-Based Reasoning
Let our knowledge of the problem domain be  coded using m attributes A1, . . . ,Am.  A case CI, is repre-
sented as a vector ck consisting of a value assignment for these attributes: ck = (c1109), . . .,am(k)), where
Ian-(k) is either a value of attribute Ai,  or undefined. Our case base C’ i s  a collection of l 'case vectors,
C ={C1 , . . . ,C; } .

A CBR process starts when an input case vector c"' = (a’f, . . . , at") is presented to the system. The goal
is to provide each case 0;, with a similarity rank S(Ck) representing the similarity between the vectors
ck and 0* (case matching task), and each attribute A; not defined in c“ with a value consistent with the
highly ranked cases (case adaptation task).  ‚For a very general class of case-matching and case adaptation
algorithms this can be  done in  a massively parallel connectionist architecture. As an illustrative example,
let us consider a case matching task where the similarity rank for a case CI, is a function depending on
the inner product of the case and input vectors: 5(C'k) : F(ckc*). Let us now assign one processing unit
for each of the cases and each of the attributes, and connect each case uni t  to all the attribute units that
belong to the corresponding case value assignment. The weight of the connection from an attribute unit
to a case unit  is equal to the corresponding attribute value in the case definition. Hence each case vector
ck is coded as a set of weights attached to the connections leading to the corresponding case unit (see
Figure 2).

Let the value of an attribute unit  be either given in the  input case assignment c*, or zero if the value
is undefined. In our connectionist network, each unit  sends its value to  all the adjacent units,  which sum
all the incoming messages weighted by the connection strengths of the corresponding arcs. I t  is obvious
that the total input  of a case unit  is the inner product ck c*. If each case unit now computes the function
F using the input as the parameter, we have accomplished our goal: parallel computation of the case
ranks. A similar construction can be  presented for the case adaptation task.  In Section 4 we present a
massively parallel implementation of CBR where both the case matching and case adaptation tasks are
performed using the same, undirected connectionist network.

As there is nothing that resembles a shared memory, the connectionist computing architecture is
inherently parallel, and each element can perform comparison of its input against the value stored in _
the interconnections independently from the others. This offers a linear speed-up in the  comparison
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Figure 2: Massively parallel implementation of case matching. 

process with respect to the number of computational elements available. This type of a memory-based or 
instance-based reasoning approach allows matching of the input. against millions of stored cases efficiently 
[4] . 

Bayesian Case-Based Reasoning 

In our Bayesian framework, the case a~tributes AI, ... ,Am are assumed to be discrete random variables. 
This is a very natural assumption in the context of expert systems, which currently is the main application. 
area of CBR. If an attribute is not discrete, it can be discretized using standard quantization methods. 
Also all the cases Cl, ... ,Cl can be regarded as binary random variables, with Ck = 1 denoting the fact 
that case Ck is in question, Ck = 0 the opposite situation. 

Let an attribute Ai has ni possible values, ail, ... , ain;' A case vector Ck is a "prototype" represen­
tation of a class of (in some sense) similar instances, and is coded as a vector 

Ck = (Pk(an), ... , Pk(aln,), Pk(a21), ... , Pk(a2n2)"'" Pk(amI), ... , Pk(amnm )), 
... 'V' ,.,. .... 'V' I... 'V -I 

P,(A,) P,(A 2 ) Pk(A m ) 

where Pk(Ai) expresses the probability distribution for the values of attribute Ai inside the class Ck: 
Pk(aij) = P(Ai = aij ICk = 1). 

Our case base can now be represented as a Bayesian belief network[lO], consisting of variables 
AI, ... ,Am and Cl, ... ,Cl (see Figure 3a). Let C· be a random ,,:ariable the values of which are the 
input case vectors, and let c· denote the current input vector, the value of C·. The theory of graph­
ical belief network representations provides us with rigorous algorithms (see e.g. [10, 8]) for calculating 
probabilities P(Ck = 1 I C· = c·) for each case Ck (case matching). What is more, these algorithms 
offer also a method for computing probabilities P(Ai = aij I C· = c·) for all the values aij not deter­
mined by c· (case adaptation). To be able to use these algorithms. we need to provide each arc from 
variable Ck to variable Ai with probabilities Pk(ait}, ... , Pk(ain.). In addition to this, each case must 
be provided with a prior probability P(Ck = 1). This probability can be estimated by the proportional 
number of occurrences of class Ck, if a database of observations is available. Similarly, the probabilities 
Pk(aij) = P(Ai = aijlCk = 1) can be estimated by occurrences of the value aij inside class Ck. 

In principle we are now able to solve the case matching task, using the probability measure as the 
metrics of our system. In addition, the same method can also be used for the case adaptation task of 
our CBR system. However, the network in Figure 3a is not singly connected, which means that there are 
loops in the underlying network, if the direction of the arcs is disregarded. In this case, the problem of 
calculating the above mentioned probabilities can be shown to be NP-hard [1]. One approach to overcome 
this problem is to use stochastic simulation schemes such a'3 Gibbs sampling [3] for approximating the 
outcome of the updating process. In our earlier work [9, 6] we presented schemes for implementing Gibbs 
sampling on a connectionist network architecture. However, the problem of determining the so called 
annealing schedule has proven very hard in practice, resulting to slow convergence of the algorithm. 
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Figure 2:  Massively parallel implementation of case matching.

process with respect to the number of computational elements available. This type of a memory-based or
instance-based reasoning approach allows matching of the input  against millions of stored cases efficiently
[4]-

3 Bayesian Case-Based Reasoning
In our  Bayesian framework, the case attributes A1, . . . , Am are assumed to be  discrete random variables.
This is a very natural assumption in the context of expert systems, which currently is the main application .
area of CBR. If an attribute is not discrete, i t  can be discretized using standard quantization methods.
Also all the cases 01 , .  . . , C; can be  regarded as binary random variables, with Cy, = 1 denoting the fact
that case 0;, is in question, 0;, = 0 the opposite situation.

Let an attribute A,- has n,- possible values, an ,  . .  . ,  am, - -  A case vector c), is a, “prototype” represen-
tation of a class of (in some sense) similar instances, and is coded as a vector

Ck = (53160111), - ' ' a Pk(a1ng lafi ( a21 ) ‚  ' - - :Pk (a2n2)a  - - - a fk (am1) ,  - - - a Pk(amnm))a

v i  v i

man) P:.(Az) PJÄm)

where Pk(A5) expresses the probability distribution for the values of attribute A,- inside the class Ck:
Pkw,-) = PMs = as ICh = 1)-

Our case base can now be represented as a_ Bayesian belief network[10], consisting of variables
A1, . . . ‚Am and C l ,  . . . ‚C :  (see Figure 3a) .  Let C* be  a random variable the values of which are the
input  case vectors, and let c* denote the current input vector, the value of 0* .  The theory of graph-
ical belief network representations provides us with rigorous algorithms (see e.g.[10, 8]) for calculating
probabilities P(C’;c = 1 | C" = c") for each case 0;,- (case matching). What is more, these algorithms
offer also a method for computing probabilities P(A,- : aij | C * = c") for all the  values (1,,- not deter-
mined by c* (case adaptation).  To be  able to use these algorithms, we need to provide each arc from
variable 0;, to variable A,- with probabilities Puch-1), . . . ,Pk(a i„‚ ) .  In addition to this, each case must
be  provided with a prior probability P(Ck : 1).  This  probability can be  estimated by the proportional
number of occurrences of class Ck, if a database of observations is available. Similarly, the  probabilities
Pk(a,'j) := P(A,- : ailk : 1 )  can be  estimated by occurrences of the  value a5,- inside class Ck.

In principle we are now able to solve the case matching task,  using the probability measure as the
metrics of our  system. In addition, the same method can also be  used for the case adaptation task of
our CBR system. However, the network in Figure 3a  is not singly connected, which means that  there are
loops in the  underlying network, if the direction of the arcs is  disregarded. In this case, the problem of
calculating the above mentioned probabilities can be shown to be N P—hard [1]. One approach to overcome
this problem is to use stochastic simulation schemes such as Gibbs sampling [3] for approximating the
outcome of the updat ing process. In our earlier work [9, 6] we presented schemes for implementing Gibb-s
sampling on a connectionist network architecture. However, the  problem of determining the  so called
annealing schedule has proven very hard in practice, resulting to slow convergence of the algorithm.
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Figure 3: Case base as a a) multiply connected Bayesian network with several case variables, and b) 
singly connected tree with a single case variable as the root, of the tree. 

On the other hand, for singly-connected networks, there exists a polynomial time algorithm for belief 
updating, developed by Pearl [10]. In the approach introduced in [5], a given belief network is first 
transformed to a singly-connected network, which is then updated by using Pearl's algorithm. However, 
as the problem is NP-hard, the transformation process may take an eXIYonential time. In the following, 
we show how our case base can be viewed as a simple singly connected network, a tree, in which case 
Pearl's belief updating algorithm can be applied directly. 

Let us regard the cases Cl, ... , Cn as mutually exdusive values of a single random variable, C. To be 
able to do this, all the cases must be complete, i.e., all the values Pk(aij) must be given for each case 
Ck. If the user is unable to provide complete cases, the missing probabilities can be filled in by using the 
uniform probability distribution (if we do not know the value of an attribute, we assume all the values 
to be equally probable). Alternatively, the user may also define another a priori distribution for the 
missing cases, if this kind of information about the attributes is available. After storing the complete 
cases, we can obviously retrieve any probability Pk (aij ), given a case Ck. In the Bayesian framework 
this means that all the variables Ai are conditionally independent of each other, given th~ value of the 
variable C. What this means is that the Bayesian network corresponding to this representation is a tree, 
where a single variable C is the root of the tree, and variables Ai form the leaves (see Figure 3b). To 
use this network for probabilistic reasoning, an arc to variable Ai must be provided with probabilities 
Pk(aiI}, ... ,Pk(ainJ, for all the cases Cl, ... ,C/. In the next section, we show how these probabilities 
can be stored as weights in a connectionist network, and used as part of a massively parallel probabilistic 
reasoning process. 

Massively Parallel Bayesian CBR 

We now show how to construct a undirected 3-layer connectionist network which performs the compu­
tations of Pearl's algorithm in parallel. In an earlier paper [7] we discussed a related directed 6-layer 
feedforward neural network architecture, which has a more complex structure than the connectionistic 
network presented here, but used simpler computational elements. In addition to the general idea pre­
sented in Section 2, we need a special intermediate layer, where for each attribute X we have I nodes, 
one for each case (see Figure 4). The total number of nodes in the resulting network is I::l ni + rnl + I, 
and the number of arcs in the network is given by I::l lni + lrn. 

During the network computation process, each node X computes its activation value S(X) using 
incoming messages, and sends the computed value further through the arcs leading to nodes in the other 
layers. This activation propagation starts when the user sets the values S(aij) for the nodes in layer 1. 
According to the idea of virtual evidence [10], if there exists some initial evidence e for the value aij of the 
attribute Ai, the value S(aij) should be set equal to the probability P(e I Ai = aij). Total ignorance of 
the correct value of Ai is represented by setting all the values S(ail), ... , S(ainJ to be equal, for example 
1. If the value of Ai is known to be aih for certain, then S(aih) should be set to 1, and the values S(aij ) 
to 0, for all j ::j:. h. 

Intuitively the computation consists of two phases. The initial phase, corresponding to a bottom-up 
value propagation through the network, performs case matching. As a result, the third layer activation 
values gives us a matching score for each of the cases (i.e., to nodes Cd, thus these activation values can 
be directly used for classification, if needed. In the second phase, the probabilities are propagated from 
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Figure 3 :  Case base as‘ a a) multiply connected Bayesian network with several case variables, and b )
singly connected tree with a single case variable as the root of the tree.

On the other hand,  for singly—connected networks, there exists a polynomial t ime algorithm for belief
updating, developed by Pearl [10]. In the approach introduced in [5], a. given belief network is first
transformed to a singly-connected network, which is then updated by using Pearl’s algorithm. However,
as the problem is NP—hard, the transformation precess may take an exponential t ime.  In the following,
we show how our case base can be  viewed as a simple singly connected network, a tree, in which case
Pearl’s belief updating algorithm can be applied directly.

Let hs regard the cases c l ,  . . .‚cn as mutually exclusive values of a single random variable, C .  To be
able to do this, all the cases must be complete, i.e., all the values Pkw,-j) must be  given for each case
ck. If the user is unable to provide complete cases, the missing probabilities can be  filled in by using the
uniform probability distribution (if we do not know the value of an attribute, we assume all the values
to be  equally probable). Alternatively, the user may also define another a priori distribution for the
missing cases, if this kind of information about the attributes is available. After storing the complete
cases, we can obviously retrieve any probability Pflug) ,  given a case Ck.  In the Bayesian framework
this means that a l l  the variables A,- are conditionally independent of each other, given the, valve of the
variable C . What this means is that the Bayesian network corresponding to this representation is a tree,
where a single variable C is the root of the tree, and variables A,; form the leaves (see Figure 3b).  To
use this network for probabilistic reasoning, an arc to variable A,- must be  provided with probabilities
Pk(a,-1), . . . ,Pk(a,-n,),  for all the cases C l ,  . . . ,Cz .  In the next section, we show how these probabilities
can be  stored as weights in a connectionist network, and used as part of a massively parallel probabilistic
reasoning process.

4 Massively Parallel Bayesian CBR.
We now show how to  construct a undirected 3—layer connectionist network which performs the compu-
tations of Pearl’s algorithm in parallel. In an earlier paper [7] we discussed a related directed 6-layer
feedforward neural network architecture, which has a more complex structure than the connectionistic
network presented here, but used simpler computational elements. In addition to the general idea pre-
sented in Section ‘2, we need a special intermediate layer, where for each attribute X we have 1 nodes,
one for each case (see Figure 4). The total number of nodes in the resulting network is 2:1 n,- + ml + l,
and the number of arcs in the network is given by 2:11 In,- + Im.

During the network computation process, each node X computes its activation value 5(X) using
incoming messages, and sends the computed value further through the arcs leading to nodes in  the other
layers. This activation propagation starts when the user sets the values S(a,-,-) for the nodes in layer 1.
According to the idea of virtual evidence [10], if there exists some initial evidence e for the value (1,5 of the
attribute Ag, the value 5 (a i j )  should be  set equal to the probability P (e  I A,- -~.: (I,-‚‘). Total ignorance of
the  correct value of A,- is represented by setting all the values 5(a51), . . . ,S(a,-m) to be  equal, for example
1 .  If the value of A,- is known to be  a“, for certain, then 8(a5h) should be set to 1, and the values S(a,-,-)
to 0, for all j 75 h.

Intuitively the computation consists of two phases. The initial phase, corresponding to a bottom-up
value propagation through the network, performs case matching. As a. result, the third layer activation
values gives us- a matching score for each of the cases (i.e., to nodes Ck), thus these activation values can
be  directly used for classification, if needed. In  the second phase, the probabilities are propagated from
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Figure 4: A connectionist network implementing Bayesia.n CBR. 

the top down back to the attribute values, thus complementing the a.ttribute value vectors based on the 
"winning" cases. In general this allows many stored cases to contribute to the adap.tation by the amount 
justified by their original matching. In the general framework of Figure 1 this approach corresponds to 
situation where the case-space metrics and adaptation criteria coincide. 

In the following.we illustrate more closely how the activation propagation process proceeds from layer 
to layer. The first 3 steps correspond to the bottom-up propagation phase, and steps 4 and 5 to the 
top-down phase. 

Step 1: The first layer contains one node for each of the possible attribute values aij, altogether 2:;:1 ni 
nodes. The value S(aij) is either given by the user, or initialized to the defined a priori value. 

Step 2: Layer 2 consists of m groups of nodes, each of which has I individual nodes Ail, ... , Ail, making 
the total number of nodes in this layer ml. Each node Aik has ni arriving arcs from all the nodes 
ail, ... ,ain;. The weight W(Ak)j from node aij to node Aik is P(Ai = aij IC = Ck), i.e., the 
conditional probability that the attribute Aik has value aij given an observation from class Ck. 
The activation value of node Aik is computed by S(Aik ) =2:j~l W(Aik)jS(aij). 

Step 3: . In layer 3, there is one node for each of the I classes. Each node Ck receives input from m nodes in 
the layer 2, Aa, ... , Amk . The activation value of node Ck is computed by S(Ck) = rh n;:l S(Aik)' 
This activation gives a score for each of the stored cases. The constant value (Jk = P(C = Ck) is 
assumed to be stored in the node Ck. 

Step 4: The propagation process returns back to layer 2. Each node Aik updates its activation value 
using the formula S(Aik) = S(Ck)/S(Aik)' 

Step 5: Each node aij on layer 1 receives incoming signaIs from I nodes, Ail,.'" Ail. The weight 
W(aij)k f~om node Aik to node aij is P(aijlck)' T.he units update their states by computing 
S(aij) = S(aij) 2:~=1 W(a;j)kS(Aik)' This can be understood as a "correction" to the original 
values assuming that the matching cases have prediction vaIue for unidentical, but similar cases. 

Using the notation of Pearl in [10], the task of the step 2 is to compute the m values AA;(Ck), for 
each of the I cases. As A(Ck) is defined as A(Ck) = n;:lAA,(Ck), the activation value of node Ck is 
S(Ck) = P(Ck)A(Ck)' Pearl has proved that this is equal to o:P(Ck I c*), where 0: is a normalizing 
constant. The actual probabilities can now be retrieved easily by normaliziilg the values S(ck!: 

I 

P(C =Ck IC* =CO) = S(Ck)/ L S(Ch). 
h=l 

In a similar way, step 4 produces the terms 71'A,(Ck), and step 5 the values 

I 

S(aij) = A(aij) E 71'A; (Ck)P(Ai = aij IC =Ck) = A(aij )7l"(Oij) = o:P(Ai =aij IC' = c'), 
k=l 
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Figure 4: A connectionist network implementing Bayesian CBR.

the top down back to the attribute values, thus complementing the attribute value vectors based on the
“winning” cases. In  general this allows many stored cases to  contribute to the adaptation by the amount
justified by their original matching. In the general framework of Figure 1 this approach corresponds to
situation where the case—space metrics and adaptation criteria coincide.

In the following .we illustrate more closely how the activation propagation process proceeds from layer
to layer. The first 3 steps correspond to the bottom—up propagation phase, and steps 4 and 5 to the
top-down phase.

Step 1: The first layer contains one node for each of the possible attribute values (az-j, altogether 2:11 ng
nodes. The value S(a‚-j) is either given by the user, or  initialized to  the  defined a priori value.

Step 2 :  Layer 2 consists of m groups of.nodes, each of which has  I individual nodes An ,  . . . , Au, making
the total number of nodes in this layer ml  . Each node A“; has m- arriving arcs from all the nodes
a51 , . . . , a im .  The weight W(A.:k)j from node (1,3 to node AM is P(A‚° : ag,-IC : ck), i.e.‚ the
conditional probability that the attribute A”, has value ai,- given an observation from class Ck.
The activation value of node A“ is computed by 5(Aik) : zyzl W(A‚-k)_‚- S(a‚-‚-).

Step 3: ‘ In  layer 3 ,  there is one node for each of the l classes. Each node Ck receives input  from m nodes in
the layer 2, Alk, . . . , Amk. The activation value of node C}; is computed by S(Ck) : 9;; [1:11 5045):).
This activation gives a score for each of the stored cases. The constant value 61., : P (C  = ck) is
assumed to be  stored in the node Ck.

Step 4: The propagation process returns back to layer 2. Each node An. updates i ts  activation value
using the formula STA“) 2 S(Ck)/S(A‚rk).

Step 5: Each node (15,- on layer 1 receives incoming signals from I nodes, A51,...,A‚71. The weight
W(a‚-‚-)k from node Au; to node aij is P(a‚-j|ck). The units update their states by computing
5(03-3') : S(a„—)ZL=1 W(a,-_,- „SQL,-k). This can-be understood as a “correction” to the original
values assuming that the matching cases have prediction value for unidentical, but  similar cases.

Using the notation of Pearl in [10], the task of the step 2 is to compute the m values AAA”), for
each of the 1 cases. As Ä(ck) is defined as Mck) : H:”:l / \A‚ (Ck) ‚  the activation value of node ck is
S(ck) : P(ck))\(ck). Pearl has proved that  this is equal to aP(ck  | c“), where a is a normalizing
constant.  The actual probabilities can now be  retrieved easily by normalizing the values S(ck):

I

P(C : ck | c*  : c“) = won /Zach ) .
h=1

In  a similar way, step 4 produces the  terms «A‚(Ck), and step 5 the values

l
5(02 ‘1 ' ) :  Ä-(a i j )  ZWAe(Ck)P(Ai = “ij I C = ck )  = Ä(a i j )7 r ( a ‚ : j )  : aP(A‚- : aij | 0* = c*),

16:1
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where a is again a (different) normalizing constant. The actual probabilities can be retrieved again by 
normalization: peA; = aij IC* = c*) = S(aij)/ 2:~~1 S(aih)' 

Naturally, the two normalization tasks can also be performed in parallel on a connectionist network 
by using two extra layers of units. 

Conclusion 

We have presented an approach where case-based reasoning can be implemented as a connectionist net­
work architecture. The method is based on implementing Pearl's probability propagation as a 3-layer 
hierarchical network. The advantages of such an approach are twofold. In the first place, it provides 
an efficient solution to the case indexing problem based on the parallel architecture. Secondly, it offers 
a theoretically sound Bayesian interpretation of the case-space metrics and its successful application to 
both the case matching and adaptation via. probability propagation. However, it is evident that there 
are several aspects left for further research. The most important of the questions to be addressed is the 
proper choice of the cases (observe that in the presence of noise the optimal strategy is not necessar­
ily to store all the cases encountered). In addition, methods to determine the conditional probabilities 
P(Ai = aij IC = Ck) used by the reasoning algorithm should be investigated. Initially it can be as­
sumed that such probabilities are estimated by the expert in a regular knowledge acquisition process, 
but it is clear that one can also use various statistical clustering techniques for this purpose. We are 
currently developing learning algorithms for our CBR system based on the information theoretic MDL 
principle [11]. 
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where er is again a (different) normalizing constant. The actual probabilities can be retrieved again by
normalization: P(A‚; :: agj IC“ = c*) = S(a‚-‚- ) /  22‘21 S(a,-;,).

Naturally, the two normalization tasks can also be performed in parallel on a connectionist network
by using two extra layers of units.

5 Conclusion

We have presented an approach where case—based reasoning can be implemented as a . connec t ion i s t  net-
work architecture. The method is based on implementing Pearl’s probability-propagation as a 3-layer
hierarchical network. The advantages of such an approach are twofold. In  the  first place, i t  provides
an efficient solution to  the case indexing problem based on the parallel architecture. Secondly, i t  offers
a theoretically sound Bayesian interpretation of the case-space metrics and i ts  successful application to
both the case matching and adaptation via probability propagation. However, i t  is evident that  there
are several aspects left for further research. The most important of the questions to be  addressed is the.
proper choice of the cases (observe that  in the presence of noise the optimal strategy is not necessar-
ily to store all the cases encountered). In addition, methods to determine the conditional probabilities
P(A,; : ag,-IC : ck) used by the reasoning algorithm should be investigated. Initially it can be as—
sumed that such probabilities are estimated by the expert in a regular knowledge acquisition process,
but  i t  is clear that  one can also use various statistical clustering techniques for this purpose. We are
currently developing learning algorithms for our CBR system based on the information theoretic MDL
principle [11].
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Abstract 

This project is an examination of the use of structured, semantic network, representations of cases 
for Case Based Reasoning. The Conceptual Graph notation is used to represent complex events and 
the aim is to investigate and evaluate methods of defining' similarity and adaptation methods for 
them. The domain for investigation is the Law of Negligence, where the alleged ability of semantic 
networks to represent causal information is expected to be particularly relevant. 

Introduction 

The purpose of this project is to examine the use of structured, semantic network based representations 
of cases in Case Based Reasoning. In an effort to avoid the creation of ad hoc concepts and relations 
the intention is to use results of previous work on semantic networks and on meaning representations 
in computational linguistics (in particular Somers' grid of deep cases [10]' which is suggested in [2] as 
particularly appropriate for representing legal cases). As explained in a later section an aim is that the 
case representations could be parsed from natural language descriptions. 

The notation used is that of Conceptual Graphs, though not restricted to Sowa's concepts and rela­
tions. The choice of domain for investigation was governed by several principles: 

1.	 it should be complicated enough that the representation and inference rules are thoroughly tested. 

2.	 the cases should not just make sense to a very small set of domain experts. There should be enough 
common-sense knowledge involved that, the problems arising can be demonstrated to all interested 
parties. 

3.	 a set of well-defined and generally accessible cases should be available to allow other researchers to 
attempt alternative representations of the same cases. 

4.	 the cases should have enough causal or temporal structure that a structured, semantic network, 
representation is worthwhile. 

The domain chosen is the Law of Negligence (and Nervous Shock), and as far as possible cases chosen 
are ones generally described and analyzed in legal casebooks. Legal expertise is sought where it seems 
necessary, but the focus is on dealing with the common-sense level of similarity l rather than attempting 
to simulate the reasoning of legal experts. There is no expeCtation that the results will be of interest to 
legal theorists. 

An example of a case representation is given in Figure 1 below. The case represented is that of 
McLoughlin v. O'Brian [1982J. In this case the plaintiff claimed (successfully) for the nervous shock 
caused when she discovered (two hours after the event) that one of her daughters had been killed and 
other members of her family injured in an accident caused by the negligence of the defendant. Note that 
this example uses Sowa's case relations rather than Samers' less generally known ones. Many aspects ofthe 
representation are arguable, but it gives an idea of the general form and complexity of the representation. 
Explanatory information and the decision itself are not represented in this example,' as the initial aim is 
to see the requirements of a system that just matches fact descriptions. 

1 an informal example of corrunon-sense (conceptual) similarity might be that 'Mary threw a brick at Bill' is (arguably) 
more similar to 'Mary punched Bill' than it is to 'Mary threw a tennis ball at' Bill', despite the fact that it shares more 
individual concepts with the latter. 
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This project is an examination of the use of structured, semantic network, representations of cases
for Case Based Reasoning. The Conceptual Graph notation is used to  represent complex events and
the aim is to  investigate and evaluate methods of defining similarity and adaptation methods for
them. The domain for investigation is the Law of Negligence, where the alleged ability of semantic
networks to represent causal information is expected to  be  particularly relevant.

1 Introduction

The purpose of this project is to examine the use of structured, semantic network based representations
of cases in Case Based Reasoning. In an efi'ort to  avoid the creation of ad hoc concepts and relations
the intention is to  use results of previous work on semantic networks and on meaning representations
in computational linguistics (in particular Somers’ grid of deep cases [10], which is suggested in [2] as
particularly appropriate for representing legal cases). As explained in a later section an aim is that the
case representations could be parsed from natural language descriptions.

The notation used is that of Conceptual Graphs, though not restricted to Sowa’s concepts and rela-
tions. The choice of domain for investigation was governed by several principles:

1. it should be complicated enough that the representation and inference rules are thoroughly tested.

2. the cases should not just make sense to a very small set of domain experts. There should be  enough
common-sense knowledge involved that, the problems arising can be demonstrated to all interested
parties.

3. a set of well-defined and generally accessible cases should be available to allow other researchers to
attempt alternative representations of the same cases.

4.  the cases should have enough causal or temporal structure that a structured, semantic network,
representation is worthwhile.

The domain chosen is the Law of Negligence (and Nervous Shock), and as far as possible cases chosen
are ones generally described and analyzed in legal casebooks. Legal expertise is sought where it seems
necessary, but the focus is on dealing with the common-sense level of similarity1 rather than attempting
to simulate the reasoning of legal experts. There is no expectation that the results will be of interest to
legal theorists.

An example of a case representation is given in Figure 1 below. The case represented is that of
McLaughlin 'u. O’Brien [1982]. In this case the plaintiff claimed (successfully) for the nervous shock
caused when she discovered (two hours after the event) that one of her daughters had been killed and
other members of her family injured in an accident caused by the negligence of the defendant. Note that
this example uses Sowa’s case relations rather than Somers’ less generally known ones. Many aspects of the
representation are arguable, but. it gives an idea of the general form and complexity of the representation.
Explanatory information and (the decision itself are not  represented in this example, as the initial aim is
t o  see the requirements of a system that just matches fact descriptions.

1an  informal example of common-sense (conceptual) similarity might be  that ‘Mary threw a brick at Bill’ is (arguably)
more similar t o  ‘Mary punched Bill’ than i t - i s  t o  'Mary threw a tennis ball at Bill', despite the fact that i t  shares more
individual concepts with the lat ter .
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Figure 1: Example Case: McLoughlin v. O'Brian and others 1976 

Similarity and Adaptation with Structured Representations 

Structured representations present some particular problems for similarity measurement over and above 
those for attribute-value representations. In the simplest case, where the Conceptual Graphs of the 
two cases to be compared are isomorphic, the similarity of the two cases can perhaps be defined as a 
function of the similarity of the aligned2 concepts and relations in the two graphs (this is suggested as 
a similarity metric for CBR in [8]). Even within this very simplistic scheme for comparing structured 
representations, however, there are complications - particularly with regard to defining a static similarity 
metric for individual concepts (see below).' 

More importantly, however, it is hard to guarantee that two Conceptual Graphs with the same 
meanings3 are isomorphic. One of the goals of Conceptual Dependency theory (eg [9]) was to define 
a single, canonical representation of the meaning of any utterance, regardless of the particular words (or 
even language) chosen. It is not clear whether such an aim is achievable, in fact it seems Schank and 
his co-workers now use much higher-level representations, that are 'expanded-out' according to need (see 
review of CD theory [7]). -This suggests that even cases that can be said to have identical meaning can 
potentially be represented in different ways. Clearly cases that are merely similar are going to share much 
less structure, so strictly isomorphism-based matching is going to have limited use. 

In fact it is found with legal cases that even cases that are quoted as direct precedents tend to lead 
to representations that are very far from isomorphic. How can this problem of lack of isomorphism be 
tackled? In this research project there are two general approaches adopted: 

1. Graph Grammar rules:[4] a set of allowable transformations is defined that change the shape of the 

2Medin et al [3] describe alignment as the process of deciding which features of-one object are to be compared to which 
features in another object when the two objects are compared 

3 t he term meaning is us.ed rather informally throughout this abstract. It awaits formal definition. 
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2 Similarity and Adaptation with Structured Representations

Structured representations present some particular problems for similarity measurement over and above
those for attribute—value representations. In the simplest case, where the Conceptual Graphs of the
two cases to  be compared are isomorphic, the similarity of the two cases can perhaps be defined as a
function of the similarity of the aligned2 concepts and relations in the two graphs (this is suggested as
a similarity metric for CBR in [8]). Even within this very simplistic scheme for comparing structured
representations, however, there are complications - particularly with regard to defining a static similarity

- metric for individual concepts (see below).'
More importantly, however, it is hard to guarantee that two Conceptual Graphs with the same

meanings3 are isomorphic. One of‘the goals of Conceptual Dependency theory (eg [9]) was to define
a single, canonical representation of the meaning of any utterance, regardless of the particular words (or
even language) chosen. It is not clear whether such an aim is achievable, in fact it seems: Schank and
his co—workers now use much higher-level representations, that are ‘expanded-out’ according to need (see
review of CD theory [7]) This suggests that even cases that can be said to have identical meaning can
potentially be  represented in different ways. Clearly cases that are merely similar are going to share much
less structure, so strictly isomorphism-based matching is going to have limited use. ‘

In fact it  is found with legal cases that even cases that are quoted as direct precedents tend to lead
to representations that are very far from isomorphic. How can this problem of lack of isomorphism be
tackled? In this research project there are two general approaches adopted:

1. Graph Grammar rules:[4] a set of allowable transformationsis defined that change the shape of the
2Medin  et al  [3] describe alignment as the process of deciding which features of one object are to  be  compared to  which

features in another object when the two objects are compared
3the: term meaning is  used“ rather informally throughout this abstract. It awaits formal definition.
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graph while preserving its meaning. Most of these rules might be 'common-sense' transformations, 
for example 'if two actions have the same physical cause and happen at the same time they also 
have the same 10cation'4), while some would need to be domain-specific. 

2.	 Abstraction: an often used technique to compare sem~ntic networks is to progressively abstract 
the graphs until a common abstraction is found (eg [6]). Three (related) methods of automatically 
abstracting graphs are considered: 

•	 abstracting individual concepts: particular concepts (or relations) might be locally replaced by 
generalizations (ie concepts higher up a concept hierarchy). 

•	 attribute dropping: concepts that can be identified as 'least important' to the meaning of the 
case may be dropped. 

•	 converting subgraphs to nodes: subgraphs describing a part of the case might be replaced by a 
single node approximating the meaning of the subgraph. (Clearly this method is very closely 
related to the use of a graph grammar mentioned above.) 

Each of these techniques is potentially complicated, and in general it will not be possible to guarantee 
that they will not alter the meaning of the case transformed. Thus it is necessary to associate some form 
of certainty factors with transformations, to ensure cases arc;: not transformed beyond a point at which 
they might be expected to preserve their meaning. . 

3 Similarity of individual concepts 

As part of any similarity metric between semantic networks there will need to be a sub-metric of similarity 
between individual concepts. Some schemes considered include: 

•	 Predefined metric: each concept is assigned a similarity rating with each other (for example in a 
matrix). If the possible concepts to be represented cover a sizeable proportion of natural language 
concepts then manually producing such a metric will be impractical. 

•	 Reduction to primitives: each concept is reduced down to asubgraph of a limited set of primitive 
concepts and relations (as in Schanks Conceptual Dependency theory eg [9]). These primitive 
relations .can then more easily be compared to each other. There are many open questions here 
regarding what primitives might be used and how far this process should go, and it is not clear how 
helpful primitive representations are. 

•	 Comparison of features: if each concept used is defined in terms of a set of features then similarity 
can be defined in terms of number of shared features, perhaps with weighting of particular features. 

•	 Traversal distance in a concept hierarchy: if all concepts are in a hieradaterchy (as in [11]) then the 
similarity between two concepts can be defined in terms of the number of edges traversed between 
the two concepts, or the depth in the hierarchy of the least common supertype. 

Each of these schemes has separate problems but there is one problem of particular interest that they 
all share: the problem of the context of the concepts. 

4 Dealing with Context in Similarity Judgements 

In the Psychology literature the subject of similarity is an-important one (see [3] for a recent review). 
Within that literature it is generally held that there can be no fixed, context-independent similarity rating 
between two concepts: similarity only makes sense 'with respect to' something, 

As a practical example, imagine comparing two legal cases, within one case is the concept 'dog', in the 
other is the concept 'hi-fi'. If these two concepts are aligned, then their similarity needs to be assessed. 
This could be done by counting edges traversed in a concept hierarchy hierarchy, or counting up shared 
and non-shared features to arrive at a rating. However, the problem is that the similarity of the concepts 
depends on their roles in the cases. If the two concepts represent objects that have been stolen, then their 
monetary value might be seen as the most important feature to be compared. If they have been causing 
a nuisance their ability to make noise might be important. If they have been intentionally damaged 
(harmed) then different criteria again might apply. 

4 clearly this rule would actually require more. qualification than given here 
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o converting subgraphs to nodes: subgraphs describing a part of the case might be replaced by a
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Each of these techniques is potentially complicated, and in general it  will not be possible to guarantee
that they will not alter the meaning of the case transformed. Thus it is necessary to  associate some form
of certainty factors with transformations, to ensure cases are not transformed beyond a point at which '
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As part of any similarity metric between semantic networks there will need to  be a sub-metric of similarity
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o Predefined metric: each concept is assigned a similarity rating with each. other (for example in a
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concepts then manually producing such a metric will be impractical.
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concepts and relations (as in Schanks Conceptual Dependency theory eg [9]). These primitive
relations can then more easily be compared to each other. There are many open questions here
regarding what primitives might be used and how far this process should go, and it is not clear how
helpful primitive representations are.

o Comparison of features: if each concept used is defined in terms of a set of features then similarity
can be defined in terms of number of shared features, perhaps with weighting of particular features.

o Traversal distance in a concept hierarchy: if all concepts are in a hieradaterchy (as in [11]) then the
similarity between two concepts can be defined in terms of the number of edges traversed between
the two concepts, or thedepth in the hierarchy of the least common supertype.

Each of these schemes has separate problems but there is one problem of particular interest that they
all share: the problem of the context of the concepts.

4 Dealing with Context in Similarity Judgements

In the Psychology literature the subject of similarity is all—important one (see [3] for a recent review).
Within that literature it is generally held that there can be no fixed, context-independent similarity rating
between two concepts: similarity only makes sense ‘with respect to’  something.

As a practical example, imagine comparing two legal cases, within one case is the concept ‘dog’, in the
other is the concept ‘hi—fi’. If these two concepts are aligned, then their similarity needs to be  assessed.
This could be  done by counting edges traversed in a concept hierarchy hierarchy, or counting up shared
and non—shared features to arrive at a rating. However, the problem is that the similarity of the concepts
depends on their roles in the cases. If the two concepts represent objects that have been stolen, then their
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This problem does not quite arise in this form with attribute-value representations, as the name of the 
attribute in a sense fixes its context. If there are very specific predicates such as 'EMPLOYEE RECEIVED 

SOMETHING OF VALUE TO SWITCH EMPLOYMENT', where the values allowed include the list of items 
received ([t]) then it can be known which features of the items are relevant, and so perhaps it is possible 
to set up a static metric. 

Even with attribute-value representations, however, the subject of context is sometimes seen as rel­
evant. Thus Cain et al [12] use 'explanation based learning' techniques to determine ):low important 
individual features are in terms of their role in an explanation of the case using domain knowledge. The 
weight given to individual similarity matches is therefore dependent on the context of the other features 
in the particular case. 

One approach to context considered in this project is within the framework of using a concept hierarchy 
to determine similarity. All common supertypes of the two concepts matched are considered. The aim 
is to find the least common supertype that could play the role of both individual concepts in the two 
graphs. 

Thus in the example of the dog and the hi-fi comparison, common supertypes might be 'valuable­
object', 'producer-of-noise', 'object-of-size-a:bout-x' and so on. Inferences can be made to test which of 
these can sensibly fit into the position of the concepts in the separate graphs. Similarity could then be a 
function of the depth in the concept hierarchy of this least common supertype. 

There are other aspects to the problem of context, am;!. part of the research project is to characterize 
the problem in detail. 

5 Creating Representations Directly from Natural Language 

An important feature of the representation used is that it be (theoretically) possible to create it from 
natural language by machine. Partly this is because of a desire to use the similarity metric results in 
areas such as information retrieval, and partly to avoid the creation of ad hoc concepts and relations. 

At present the issue of actually undertaking the translation has not been tackled, but the intention is 
that the representation be something that a computational linguist would recognize as a representation 
of the meaning of the original natural language. The aim would be a representation form and set of 
transformation and matching rules that fulfil Hirsts[5] desiderata for a semantic interpreter of natural 
language (ibid. p. 137) , in particular the idea of compositionality: '[...] We would like each syntactically 
well-formed component of a sentence "to correspond to a semantic object, and we would want that object 
to retain its identity even when it" forms part of a larger semantic object.' 

6	 . Experimental Evaluation 

The intention is to evaluate the ideas described experimentally as well as theoretically. The following is 
a simple example of the sort of evaluation it is hoped will be able to be carried out. A set of subjects 
view a series of events (similar to events in legal cases). Each is then asked to describe these in their 
own words. The descriptions are converted algorithmically into meaning representations. The test of 
the system would be whether it is able to match all the alternative descriptions of the same events, and 
distinguish representations of different events. 
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Abstract. This work is related to the prediction of process behaviours. From the description of a process 
behaviour since its beginning, the aim of our system is being able to predict its follow-up. In the domain 
considered, the use of a model is not sufficient. The only reliable knowledge consists in a set of the behaviours 
of some processes. Their utilization has led to a case-based approach. A case describes the behaviour of a 
process with sucessions of events. As events may be quite different, cases are considered from a viewpoint. In 
this paper. we describe how matching is realized thanks to a string matching algorithm. 

1 Introduction 

CBR consists in searching in memory for a problem similar to the problem to resolve and adapting its solution, 
when necessary, according to the differences between their tenns [6]. So that the similarity measure be accurate, a 
case has thus to represent relevant pieces of information on the problem. This requires a good understanding of 
the initial episodes [4]. 

Our system has to predict the behaviour of one process, more precisely its follow-up. The system receives 
information on the process behaviour, from which it has to predict what will happen afterwards. This problem is 
not new. Prediction is indeed an important field of AI. But working realized in this area has always concerned 
domains for which the process could engage in a limited number of behaviours [l]. Such is not the case with 
regard to the domain chosen for this work, forest fires. In this domain, process developments depend on many 
interacting parameters that may take an infinity of values. 

There exists some models that can help to predict the propagation of a fire, i.e. to know where the fire will be 
and when. Some of them evaluate propagation speed. These models don't take explicitely into account parameters 
that the experts consider as the most important for a fire development: relief, vegetation, wind. Actually, 
existing models restrict a fire to its combustibility properties. 

Little knowledge is available about the influence of these last parameters on a process behaviour. These models 
take into account the influence of the value of one parameter at one instant. The approach chosen is different, we 
consider inde.ed the history of parameters: if during their development, parameters take the same succession of 
values, then two processes arelikely to behave the same way. 

This is the reason why we use case-based reasoning. While in CBR some features are extracted from the initial 
description of experiences and make up the representation of a case, a case describes here the totality of a process 
behaviour, including the values of the parameters that influenced it 

Processes result from many different types of parameters. Despite of this, cases have been represented in a 
uniform formalism, the one of "event". But such a representation does not permit to index the case base. 
Selection and matching phases are thus mixed: the algorithms are described in this paper. 

2 The Domain : an Overview 

A forest fire propagates under the influence of many parameters such as wind, relief, vegetation [7]. It can run 
across different accidents of relief, different vegetations. And during a frre development, several winds with 
different directions and speeds may coexist. That's the combination of these different parameters that determines 
the propagation. 

To fight efficiently against frres, frremen have to anticipate the propagation. It is realized in the field thanks to 
the observation of some parameters like those above. Some data can be calculated. Propagation speed for 
example is very critical. Its prediction is realized thanks to some models of propagation [2]. 
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Abstract. This work is related to the prediction of process behaviours. From the description of a process
behaviour since its beginning. the aim of our system is being able to predict its follow-up. In the domain
considered, the use of a model is not sufficient. The only reliable knowledge consists in a set of the behaviours
o f  some processes. Their utilization has led to a case-based approach. A case describes the behaviour of a
process with sucessions of events. As events may be quite different, cases are considered from a viewpoint. In
this paper, we describe how matching is realized thanks to a string matching algorithm.

1 Introduction

CBR consists in searching in memory for a problem similar to the problem to resolve and-adapting its solution,
when necessary, according to the differences between their terms [6]. So that the similarity measure be accurate, a
case has thus to represent relevant pieces of information on the problem. This requires a good understanding of
the initial episodes [4].

Our system has to predict the behaviour of one process, more precisely its follow-up. The system receives
information on the process behaviour, from which it has to predict what will happen afterwards. This problem is
not new. Prediction is indeed an important field of AI. But working realized in this area has always concerned
domains for which the process could engage in a limited number of behaviours [1.]. Such is not the case with
regard to the domain chosen for this work, forest fires. In this domain, process developments depend on many
interacting parameters that may take an infinity of values.

There exists some models that can help to predict the propagation of a fire, i.e. to know where the fire will be
and when. Some of them evaluate propagation speed. These models don't take explicitely into account parameters
that the experts consider as the most important for a fire development : relief, vegetation, wind. Actually,
existing models restrict a fire to its combustibility properties.

Little knowledge is available about the influence of these last parameters on a process behaviour. These models
take into account the influence of the value of  one parameter at one instant. The approach chosen is different, we
consider indeed the history of parameters: if during their development, parameters take the same succession of
values, then two processes are'likely to behave the same way.

This is the reason why we use case-based reasoning. While in CBR some features are extracted from the initial
description of experiences and make up the representation of a case, a case describes here the totality of a process

' behaviour, including the values of the parameters that influenced it.

Processes result from many different types of parameters. Despite of this, cases have been represented in a
uniform formalism, the one of "event". But such a representation does not permit to index the case base.
Selection and matching phases are thus mixed : the algorithms are described in this paper.

2 The Domain : an Overview

A forest fire propagates under the influence of many parameters such as wind, relief, vegetation [7]. It can run
across different accidents of relief, different vegetations. And during a fire development, several winds 'with
different directions and speeds may coexist. That's the combination of these different parameters that determines
the propagation.

To fight efficiently against fires, firemen have to anticipate the propagation. It is realized in the field thanks to
the observation of some parameters like those above. Some data can be calculated. Propagation speed for
example is very critical. Its prediction is realized thanks to some models of propagation [2].
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They rely on a combination of parameters too. But they consider the value of some parameters at one instant 
only, whereas the influence of parameters like relief, vegetation and wind is not limited 10 one instant but 10 the 
whole of the fire follow-up. The clearing of a valley may for example accelerate it or change its direction. We 
consider then that if during their developments, two fires go through the same values of parameters, e.g. run 
along the same relief, then they will behave the same way afterwards. Some of the parameters are quite stable, 
we concentrate here only on changing ones. 

3 Method being used 

This method which relies on similarities between histories of parameters values is case-based and runs the 
following way: from the description of a process since its beginning, i.e. a target case, the system has to search 
for a process, a source case, which is gone through the same succession of values of parameters. Then it uses the 
behaviour that followed to predict the one of the target case [5]. 

The searching of an history of parameters requires a partial order between values of parameters. We introduced 
two types of parameter order : one relating to time and the other relating to physical distances. They are non­
conflicting. 

3.1 Initial Description of Fires : some Properties 

The reports written by flfemen describe the environment in w~ch the fire occured, its propagation, and the value 
of some parameters: the relief and the vegetation run along, the changes of wind. In the follow-up we consider 
that these parameters take successions of values, extracted directly from the reports or reSUlting' from a 
transformation. One of them is described in section 4. 

As we have to locate an history of fife development in an other one, we need to introduce a partial order between 
values of parameters making them up. This is realized in the reports thanks to the fire departure location and 
date. Relief is initially described thanks to a curve. The points that make it up are located a certain distance away 
from the fife start. It is the same for vegetation. Wind is located in space and in time but it is mainly time that 
permits to order its successive values. 

We assert the following:
 
Let v I and v2 be two values of parameters, either relief, vegetation alld wind and i I, i2 be the instants/distances
 
associated with them then we have:
 

v1 occurs before v2 iff i1 before i2, if i1 and i2 are dates 
(*)iff it < i2, if it and i2 are distances 

Relation (*) can be false in two cases : 
- if vI and v2 are located thanks to some distances and fire spreads backwards. But this is quite seldom and in our 
.system we neglected this case, 
- a fife can spread in several directions and speeds may be different in each one. We alleviated this problem by 
considering and representing separetely different directions of propagati~n. 

Relief has a continuous description, whereas vegetation representation is segmented and wind description is 
discrete. Despite of this, we utilize a uniform representation in terms of events: 

3.2 A Uniform Representation for Heterogeneous Parameters 

Matching between two cases needs to take into account the succession of values of all the parameters considered. 
But inside each case, these parameters may be quite different and we can consider that we will never fmd a source 
case matching a target case according to all of them. Indeed, even if two fifes happen at the same place, experts 
recognize that fife behaviours may be very different: only the relief may not change but all the other parameters 
would. That's the reason why we decided to match cases from a viewpoint. Matching from a viewpoint consists 
in comparing cases restricted to one of the parameters influencing propagation [5]. In our system, two cases are 
then similar from at least one viewpoint. 

CBR may be different from one viewpoint to the other one, it is the same for representation of parameters. 
Indeed, parameters have either a continuous or a discrete description. But each value can be considered as having 
an effect on the environment on which it has an influence. For that reason, we associate an event with each 
change of value of one parameter. A change of wind for exampl~ constitutes an event. 
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They rely on a combination of parameters too. But they consider the value of some parameters at one instant
only, whereas the influence of parameters like relief, vegetation and wind is not limited to one instant but to the
whole of the fire follow-up. The clearing of a valley may for example accelerate it or change its direction. We
consider then that if during their developments, two fires go through the same values of parameters, e.g. run
along the same relief, then they will behave the same way afterwards. Some of the parameters are quite stable,
we concentrate here only on changing ones.

3 Method being used

This method which relies on similarities between histories of parameters values i s  case-based and runs the
following way : from the description of a process since its beginning, i.e. a target case, the system has to search
for a process, a source case, which is gone through the same succession of values of parameters. Then it uses the
behaviour that followed to predict the one of the target case [5].

The searching of an history of parameters requires a partial order between values of parameters. We introduced
two types of parameter order : one relating to time and the other relating to physical distances. They are non-
conflicting.

3.1 Initial Description of Fires : some Properties

The reports written by firemen describe the environment in which the fire occured, its propagation, and the value
of some parameters : the relief and the vegetation run along, the changes of wind. In the follow-up we consider
that these parameters take successions of values, extracted directly from the reports or resulting from a
transformation. One of them is described in section 4.

As we have to locate an history of fire development in an other one, we need to introduce a partial order between
values of parameters making them up. This is realized 1n the reports thanks to the fire departure location and
date. Relief rs initially described thanks to a curve. The points that make it up are located a certain distance away
from the fire start. It 1s the same for vegetation. Wind is located m space and '1n time but it is mainly time that
permits to order its successive values.

We assert the following:
Let v l  and v2 be two values of parameters, either relief, vegetation and wind and i l ,  i2 be the instants/distances
associated with them then we have:

v l  occurs before v2 iff i l  before i2, if i l  and i2 are dates *
iff il < i2, if il and i2 are distances ( )

Relation (*) can be false in two cases :
- if v l  and v2 are located thanks to some distances and fire spreads backwards. But  this is quite seldom and in our

system we neglected this case,
- a fire can Spread in several directions and speeds may be different in each one. We alleviated this problem by
considering and representing'separetely different directions of propagation.

Relief has a continuous description, whereas vegetation representation is segmented and wind description is
discrete. Despite of this, we utilize a uniform representation in terms of events:

3.2 A Uniform Representation for Heterogeneous Parameters

Matching between two cases needs to take into account the succession of values of all the parameters considered.
But inside each case, these parameters may be quite different and we can consider that we will never find a source
case matching a target case according to all of them. Indeed, even if two fires happen at the same place, experts
recognize that fire behaviours may be very different : only the relief may not change but all the other parameters
would. That's the reason why we decided to match cases from a viewpoint. Matching from a viewpoint consists
in comparing cases restricted to one of the parameters influencing propagation [5]. In our system, two cases are
then similar from at least one viewpoint.

CBR may be different from one vieWpoint to the other one, it is the same for representation of parameters.
Indeed, parameters have either a continuous or a discrete description. But each value can be considered as having
an effect on the environment on which it has an influence. For that reason, we associate an event with each
change of value of one parameter. A change of wind for exatnple constitutes an event.
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But which value to choose if a parameter has a continuous description? This problem arises for relief. In fact, 
our continous description is tranformed into a discrete one through an association of data. 

4 From a Continuous to a Discrete Tranformation from the Relief Viewpoint 

Matching's aim is to find a relief which exactly matches an other one. But this can seldom occur. And a 
superposition of curves, initial representation of relief, is not adapted: there can be a difference of height of the 
points compared, or points at the same height may be shifted and despite this little difference, matching may fail. 
What seems important for experts is the succession of slopes, of accidents of relief run along. We have at our 
disposal eight types of forms: valleys, cols, cliffs, etc. And before matching the system proceeds to a 
transformation of curves into successions of slopes, either descendant or ascendant Then it tries to associate 
successive slopes to constitute some forms such as the one mentioned above. This step is realized thanks to a set 
of rules. The generated forms or remaining slopes make up events. At the end of the transformation, we obtain 
sequences of events from the viewpoint relief whose an exemplar is given below : 

el =an AscendantSlope e2 = a Peak e3 is a Cliff e4 is a Thalweg 
degree is #posO degree is made up of degree is made up of degree is made up ofthe 
distance is 25 m the following slopes the following slopes following slopes 

degree is degree is degree is Ul.. 
(an AscendantSlo,ue (an AscendantSlom< PescendantSlcwe 
degree = #posO ~ degree = #posO ---... degree = #negl 
distance = 1300 distance =3100 distance =5150 

a DescendantSleme a DescendantSlcwe an AscendantSlgpe 
degree = #negl degree = #negl degree = #posO 
distance = 2000) distance = 3900 distance = 5750) 

an AscendantSlcwe 
distance is 1300 m degree = #posO distance is 5150 m 

distance = 4400) 

distance is 3100 m 

Fig. 1. : A Sequence of Events for the Relief Viewpoint 

The degree associated with a form expresses the degree of membership of the form to the model of this form. For 
forms like peaks, the degree is made up of the slopes that make it up. The distance is a distance of the relief 
accident from the fire departure location and permits to locate these events on a "distance" axis. 

From the other viewpoints, a transformation can be realized. Such is the case of the wind viewpoint for example. 
It only consists in associating relating events with a propagation axis. 

5 Case Representation 

Whatever the viewpoint considered, all the events are related to the next That means that events located thanks 
to some distances (relief, vegetation), are related to the next on the "distance" axis, while those described with 
time are related to the following on a "time" axis. 

Each event conveys an effect on the propagation but our system does not yet consider their combinations. We 
get then the following case description (fig. 2). 

A case describes an achieved propagation of fires in terms of events (represented by circles). A fife can spread in 
several directions. Only one is represented here. Wind and relief are transformed for matching. Result of 
transformation is kept for storage in the case base. . 

Like wind, propagation events are associated with time. Propagation events indicate the progression of.fire by a 
location reached and a time. Hypotheses on future propagation are expressed thanks to these events. The 
mechanism permitting to generate them is described in [5]. 
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But which value to choose if a parameter has a continuous description ? This problem arises for relief. In fact,
our continous description is tranformed into a discrete one through an association of data.
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Matching's aim is to find a relief which exactly matches an other one. But this can seldom occur. And a
superposition of curves, initial representation of relief, is not adapted : there can be a difference of height of the
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Fig. 1. : A Sequence of Events for the Relief ViewPoint

The degree associated with a form expresses the degree of membership of the form to the model of this form. For
forms like peaks, the degree is made up of the slopes that make it up. The distance is a distance of the relief
accident from the fire departure location and permits to locate these events on a "distance“ axis.

From the other viewpoints, a transformation can be realized. Such is the case of the wind viewpoint for example.
It only consists in associating relating events with a propagation axis.

5 Case Representation

' Whatever the viewpoint considered, all the events are related to the next. That means that events located thanks
to some distances (relief, vegetation), are related to the next on the "distance" axis, while those described with
time are related to the following on a "time" axis.

Each event conveys an effect 'on the propagation but our system does not yet consider their combinations. We
get then the following case description (fig. 2).

A case describes an achieved propagation of fires in terms of events (represented by circles). A fire can spread in
several directions. Only one is represented here. Wind and relief are transformed for matching. Result of
transformation is kept for storage in the case base.

Like wind, propagation events are associated with time. Prepagation events indicate the progression of ‚fire by a
location reached and a time. Hypotheses on future propagation are expressed thanks to these events. The
mechanism permitting to generate them is described in [5].
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Fig. 2. : The case Representation 

6 Matching between successions of events 

The succession of events to compare is a collection of events relative to the same viewpoint, i.e. relief,
 
vegetation or wind. In our system, matching and selection are mixed.
 
The following algorithm permits to select the best case :
 

The target case is the case, Le. fire, whose we wish to predict the future evolution 
1_ empty list 
Starget _ the sequence of events relative to the viewpoint v which occured sinc 
the beginning of the target case, 
For each case c in the case base do 

for each direction of propagation in c do 
Ssource _ the sequence of events relative to the viewpoint v which occured 
since the beginning of the source case. \ 
cost _ the littlest cost of matching between Starget and each subsequence of 
Ssource of length the one of Starget. 
add cost to I with the description of the location in the case base of the 
sequence of events relating to it 

end for 
end for 
best result is the element of I whose cost is the littlest 

Fig. 3. : Best case Selection Algorithm from one viewpoint 

As told above, matching may be different from a viewpoint to the other one. In the following we limit the 
description of matching algorithms to one of them : that relative to relief. 

Matching between two strings of events considers strings of the same length, i.e. made up of the same number 
of events. We would like the same. events happen in both, and in the same order. But as already told above, this 
can seldom occur. We have to evaluate a distance between them. . 

Two strings of events may be different because of 
- event content: events may indeed be relative to a valley, a col, etc., 
- sequencing of events: we may have to face the following configurations of strings (fig. 4). 
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6 Matching between successions of events

The succession of events to compare is a collection of events relative to the same viewpoint, i.e. relief,
vegetation or wind. In our system, matching and selection are mixed.
The following algorithm permits to select the best case :

The target case is the case, i.e. fire, whose we wish to predict the future evolution
1_  empty list.
Starget __ the sequence-of events relative to the viewpoint v which occured since
the beginning of the target case,
For each case c in the case base do

for each direction of propagation in e do
Ssource _ the sequence of events relative to the viewpoint v which occured
since the beginning of the source case. \
cost _ the littlest cost of matching between Starget and each subsequence of -
Ssource of length the one of Starget.
add cost to l with the description of the location in the case base of the
sequence of events relating to it

end for
end for
best result is the element of l whose cost is the littlest.

Fig. 3. : Best case Selection Algorithm from one viewpoint

As told above, matching may be different from a viewpoint to the other one. In the following we limit the
description of matching algorithms to one of them: that relative to re l i e f . ‘

Matching between two strings of events considers strings of the same length, i.e .  made up of the same number
of events. We would like the same events happen’1n both, and'1n the same order. But as already told above, this
can seldom occur. We have to evaluate a distance between them. ’

Two strings of events may be different because of
- event content : events may indeed be relative to a valley, a col, etc.,
- sequencing of events : we may have to face the following configurations of strings (fig. 4).
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Let A be an event from source case, B, B', C' other events from target case. 

A 

C' B B' 

Two cases : 

A and B are of the same A and B are different. C' is mor 
type of relief similar to B than B' is. But B' i 

nearer from B than C' is, and the 
respects more the sequence of even 
than C' does 

Fig. 4 : An Example of Configuration of Events in two strings 

To evaluate similarity between 2 strings of events, we introduced one evaluation of similarity, one relating to 
the content of events, the other one to their positions. 

These measures are evaluated thanks to 2 algorithms. One of them calculates a physical distance between events. 
Its aim is to match an event of the source case with the nearest event, if possible with the same content, of the 
target case. It is described in fig. 5. 

ltarget _ symbol list B describing the relief stemming from the target case.
 
lsource _ symbol list A describing tile relief stemming from the source case of lengtli
 
the one ofB.
 
distance _ O. i_I.
 
while ltarget and lsource are not empty do
 

ftarget _ltarget[i].
 
fsource _lsource[i].
 
if ftarget and fsource describe the same kind of slope (ascendant or descendant) or the
 
same kind of form then
 

cost _ comparison between ftarget and fsource
 
suppress ltarget[i]
 

else 
search for a kind of slope or the kind of form the most like fsource and such that it 
is in ltarget. The found object is aux. We take it off from ltarget. 
cost _ the distance, in number of positions, from the aux position in lsource to 
the ftarget position in ltarget 
i-i+l . 

end if 
distance _ distance + cost 
end while 
result _ distance. 

Fig. 5 : Matching Algorithm Relating to the Position of Events 

Last one (fig 6) considers only contents of events and considers both strings as sets : 

Both precedent algorithms utilize a similarity between types of events. The first, when it can not find at a 
position i in both strings the same type of event, searches for another type, the most similar to the first, which 
may be located at a position near from i. 

The second algorithm holds the same operation when it can not find in the target case an event of a given type. 
Both utilize a distance between types of events based on their structure. It associates with each form the type(s) 
of form(s) similar to it and the numerical distance to each one. . 
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To evaluate similarity between 2 strings of events, we introduced one evaluation of similarity,,one relating to
the content of events, the other one to their positions.

These measures are evaluated thanks to 2 algorithms. One of them calculates a physical distance between events.
Its aim is to match an event of the source case with the nearest event, if possible with the same content, of the
target case. It is described in fig. 5.

ltarget _ symbol list B describing the relief stemming from the target case. “J
lsource __ symbol list A describing the relief stemming from the source case of leng
the one of B.
distance _ 0. i _ 1.
while ltarget and lsource are not empty do

ftarget __ ltarget[i].
fsource _ lsource[i].
if ftarget and fsource describe the same kind of slope (ascendant or descendant) or the
same kind of form then

cost. __ comparison between ftarget and fsource
suppress ltarget[i]

else
search for a kind of slope or the kind of form the most like fsource and such that it
is in ltarget. The found object is aux. We take it off from ltarget.
cost _ the distance, in number of positions, from the aux position in lsource to
the ftarget position in ltarget
i _ i+1  '

end if
distance _ distance + cost

end while
result __ distance.

Fig. 5 : Matching Algorithm Relating to the Position of Events

Last one (fig 6) considers only contents of events and considers both strings as sets :

Both precedent algorithms utilize a similarity between types of events. The first, when it can not find at a
position i in both strings the same type of event, searches for another type, the most similar to the first, which
may be located at a position near from i.

The second algorithm holds the same operation when it can not find in the target case an event of a given type.
Both utilize a distance between types of events based on their structure. It associates with each form the type(s)
of form(s) similar to it and the numerical distance to each one. ‘
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ltarget _ symbollistB describing the relief stemming from the target case.
 
lsource _ symbol list A describing the relief stemming from the source case of length the one of B.
 
cpt_ O. i_I.
 
while i <= length (lsource) do
 

cpt _ cpt + the degree of membership of the ith element of lsource to ltarget 
i_i + 1 

end while 
result_ cpt 

Fig. 6. : Matching Algorithm Relating to the Content of Events 

7 Related work and Conclusion 

This string matching problem is a difficult one. It has to be approximate to reject no solution. Other 
approximate algorithms exist [3] but they can only match together characters located at the same location or 
shifted to the right or left of one position. And they tolerate only identical characters. 

Here, we consider that events in both strings may be organized randomly. We consider too that events may be 
different. We introduc.ed then two similarity metrics, one relying mainly on the positions of events compared and 
the other one on the similarity of their content. Resulting values make up a distance, resulting from the adding 
of both, which permits to choose the best case. 

This type of matching between 2 cases facilitates representation of cases. It doesn't require an interpretation of 
initial episodes, and relies little on domain knowledge. But it has a drawback which is the lack of precision of 
similarity evaluation. It can not be used for the adaptation of solution for example. 

We are working now on the testing of this algorithm for wind viewpoint. String matching algorithm principle 
remains the same but distances between events do not. One of the remaining tasks then will be the choice of the 
viewpoints from which to realize predictions. 
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7 Related work and Conclusion

This string matching problem is a difficult one. It has to be approximate to reject no solution. Other .
approximate algorithms exist [3] but they can only match together characters located at the same location or
shifted to the right or left of one position. And they tolerate only identical characters.

Here, we consider that events in both strings may be organized randomly. We consider too that events may be
different. We introduced then two similarity metrics, one relying mainly on the positions of events compared and
the other one on the similarity of their content. Resulting values make up a distance, resulting from the adding
of both, which permits to choose the best case.

This type of matching between 2 cases facilitates representation of cases. It doesn't require an interpretation of
initial episodes, and relies little on domain knowledge. But it has a drawback which is the lack of precision of
similarity evaluation. It can not be used for the adaptation of solution for example.

We are working now on the testing of this algorithm for wind viewpoint- String matching algorithm principle
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Abstract. A similarity measure based on inductive learning is presented. It
 
requires a set of examples, and some induction algorithm that performs the
 
building of a ruleset from a set of examples; it is then knowledge extensive,
 

compared to approaches requiring the expert to correct the system output
 
and explain his decisions, or to provide and tune numerical coefficients. Sev­

eral similarity measures can be derived from a ruleset, with a local behavior
 
quite different to that of a weight-based similarity.
 
A similarity measure enables several tasks beyond the reach of a ruleset,
 
such as clustering the examples or detecting atypical examples. It enables
 
classification as well, by means of a K-nearest neighbours method.
 

1 Introduction 

A hot research topic in artificial intelligence is about similarity measures, be they 
concerned with case-based reasoning (CBR) [8, 1]' classification [7, 5]' generaliza­
tion in first-order predicate logic [2]' or analogical reasoning [Il]. 

In most cases, building a similarity measure requires much knowledge: 
• Declarative knowledge, as in Protos [1]. The expert, acting as an oracle and a 
teacher, corrects the system output and explains his decisions; the various simi­
larity indices involved in Protos evolve through these interactions. 
• Numerical knowledge, as in KBG 12]. In KBG, predicates are weighted by the 
expert ; the similarity measure derived from these weights is used to guide the 
generalization algorithm. 
• Probabilistic knowledge. In 1:5], the similarity measure relies on the joined distri­
butions of all variables and all predicates involved in the domain representation. 
This similarity measure enables to classify examples with incomplete description. 

In this paper, a similarity measure only requiring "poor" knowledge, i.e. ex­
amples, is presented. Our approach is based on inductive learning: ghen a set of 
examples, an induction 'algorithm is used to build a ruleset [9, 6, 2, 12]. Several 
similarity measures can then be derived from a ruleset, with a local behavior quite 
different to that of a weight-based similarity measure. 

Section 2 defines the rule-based similarity measures and studies the require­
ments of our approach. Section 3 presents an experimental validation on three 
problems well-studied by the machine learning community [9, 4, 3, 12, 7]. 

2 Principle 

In machine learning, a rule is traditionnally considered with respect to its exten­

sion, i.e. the given examples satisfying the premises of the rule [9]. Reciprocally, 
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given a set of rules, an example can be associated to the rules whose extensions it 
belongs to. The subsets of rules associated to examples can then be compared. 

2.1 Defining rule-based similarity measures (RBS) 

Let Th = {RI, ... , RN} (Th like Theory) be a set of rules defined on problem 
domain E ; we associate to any example e in E a subset of Th (maybe empty) : 
the set of rules R whose premises are satisfied bye. 

E -7 P(Th)
 
e E E -7 e' = {Ri E Th / e satisfies the premises of Rd
 

Given two examples el and e2, one can then compare their images e~ and e~. 

The dissimilarity D(el, e2) is setto the cardinality ofthe symetric difference e~ ~e~; 

two examples matching the same rules thus have zero dissimilarity. Dissimilarity 
D would then be coarse if sets e~ or e~ were trivial, i.e. empty or reduced to a 
single element. This restriction will be discussed in 2.3. 

We accordingly define the rule-based similarity (RBS) of two examples: 

Definition 1. Similarity SI is a function defined from E x E, where E 
denotes the problem space, onto R+ : SI : E x E -+ R+ 
SI(el, e2) = # {Ri E Thj ( el and e2 satisfy the premises of Ri) 

OR ( neither el nor e2 satisfy the premises of Ri) } 
where '#G' stands for the number of elements in set G. 

It may seem a bit artificial that rules fired by none of two examples contribute to 
their similarity. Soa second RBS, named S2, only takes into account rules actually 
fired by both examples. 

Definition :2. Similarity S2 .is a function defined from E x E onto R+, 
by : 

S2(el,e2) = # {Ri E Th / ( el and e2 satisfy the premises of Rn 
Last, the relevance of rules can be taken into account by means of weights: 

Definition 3. Define the weight of rule Ri as 

w(Rd = Wi = #{positive examples of R in the example set} 
Then, similarity S3 is a function defined from E x E onto R+, by : 

S3 (el, e2) =L:( e, and e2 satisfy the premises of R;) Wi 

Remark: All definitions above are operational whatever formalism examples and 
rules are expressed within: they only' need to check whether or not an example 
satisfies a rule. 

2.2 Comparizon with a weight-based similarity 

In attribute-value formalisms, dissimilarity measures usually rely on weights: 
D v (el,e2) = L:~1 vidi(el,e2), or D V (el,e2) = (L:~I(vidi(el,e2))2)1/2 

where weight Vi reflects the relevance of attribute i and di(el, e2) -denotes the 
difference between values of the i-th attribute for examples el and e2. 

The difference between a rule-based dissimilarity and a weight-based dissimi­
larity is illustrated in the context of "Green pea recognition" by examples below: 
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Calor Shape Size 
Green Circle Smallel 
Blue Circle Smalle2 

Calor Shape Size 
Green Triangle Mediume3 
Blue Triangle Mediume4 

A weight-based similarity (WEB) should give the same similarity between el 
and e2, and between e3 and e4 : their respective differences are the same (the 
former is green while the latter is blue), so the difference estimation only depends 
on the distance between Green and Blue, and on the weight of attribute Calor. 

In opposition, let us consider the RES defined from the unique rule 

R : If (Calor = Green) and (Shape = Circle), Then Green_Pea 

Rule R makes a difference between el and e2 (because it is matched by el and not 
bye2 ; so D(el,e2) = 1), but it does not make any difference between e3 and e4 
(neither e3 nor e4 does match rule R ; D(e3, e4) = 0). 

A RES enables to make a difference among differences, such as between the 
pairs (el, e2), and (e3' e4). Therefore we claim that the topology induced by a 
RES may be very fine; a difference between values of attribute i (instead of being 
considered always with a given weight) may be either unseen or very influent, 
depending on the values taken by the examples for this attribute and for the 
others - and according to ruleset Th. 

2.3 Requisites 

Let us now consider the defects of a ruleset as characterized in [HI] and study their 
impact on the RES. 
Redundancy. Roughly speaking, the redundancy of a ruleset is the average num­
ber of rules (leading to the same conclusions) fired by an example. Redundancy 
is often considered a defect in a rule-based system: it endangers the consistent 
evolution of the system. Now let us consider a non-redundant ruleset ; assume that 
any example fires a single rule. Then, any two examples either fire the same rule 
- and they are similar, or they do not, and they are dissimilar. In other words, a 
non-redundant ruleset induces a coarse dissimilarity on the problem space. So, the 
redundancy of the ruleset is mandatory in order to induce a usable dissimilarity. 
Incompleteness. The incompleteness of a ruleset is manifest as some examples 
do not fire any rule. The c<?rresponding rule-based dissimilarity does not allow to 
separate such examples; so this defect is quite penalizing from our point of view. 
Inconsistency / Errors. A ruleset is inconsistent when rules leading to incom­
patible conclusions (e.g. distinct diagnosis) are fired by one example. A rule is 
erroneous if there exists examples satisfying the premises of the rules, but not its 
conclusion. These defects are unseen in our approach, as the conclusions of the 
rules are never taken into account. 

In short, the central requisite of our approach is the redundancy of the ruleset. 

3 Application to Classification 

Some experimental validation of our approach is done on 3 well-studied classi­
fication problems. The rule-based similarity is first compared with a classical 
weight-based similarity and a weight-based similarity optimized through genetic 
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Color Shape Size Color Shape Size
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Let us now consider the defects of a ruleset as characterized in [10] and study their
impact on the  RBS.
Redundancy. Roughly speaking, the  redundancy of a ruleset is the average num-
ber of rules (leading to the same conclusions) fired by an example. Redundancy
is often considered a defect in a rule-based system : it endangers the consistent
evolution of the system. Now let us consider a non-redundant ruleset ; assume that
any example fires a single rule. Then, any two examples either fire the  same rule
- and they are similar, or they do not,  and they are dissimilar. In other words, a
non-redundant ruleset induces a coarse dissimilarity on the problem space. So, the
redundancy of the ruleset is mandatory in order to induce a usable dissimilarity.
Incompleteness. The incompleteness of a ruleset is manifest as some examples
do not fire any rule. The corresponding rule—based dissimilarity does not allow to

- separate such examples ; so this defect is quite penalizing from our point of view.
Inconsistency / Errors.  A ruleset is inconsistent when rules leading to incom-
patible conclusions (e.g. distinct diagnosis) are fired by one example. A rule is
erroneous if there exists examples satisfying the premises of the rules, but not its
conclusion. These defects are unseen in our approach, as the conclusions of the
rules are never taken into account. '

In short ,  the central requisite of our approach is the redundancy of the  ruleset.

3 Application t o  Classification

Some experimental validation of our approach is done on 3 well—studied classi-
fication problems. The rule-based similarity is first compared with a classical
weight-based similarity and a weight-based similarity optimized through genetic
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algorithms [7]. The predictive accuracy of the rule-based similarity is also com­
pared to those of the very rules it is based on, and with rulesets induced by some 
famous induction algorithms [9, 4, 3, 12]. 

3.1 Experimental parameters 

We followed the protocol used in the reference litterature. The data set is divided 
into a training set and a test set; this selection is done at random, except that the 
classes distributions in the training set are same as in the total data set. Rules 
are learned from the training set. Validation is done through a cross validation 
technique; the results obtained on the test set are averaged over five independant 
selections of the training and test sets. 

We used a star-like induction algorithm detailed in [12] ; similarities SI, S2 and 
S3 (2.1) are derived from the rulesets learned from the training set. Any similarity 
plus the training set enables a K-nearest neighbours method, denoted RKNN (for 
Rules based K-Nearest Neighbours). The sensitivity of classifier RKNN is studied 
with respect to the rules redundancy - which is tunabl€ in our generalization 
algorithm. The redundancy rate ranks from 1 (concise rules) to 5 (the total number 
of rules is multiplied by about 2.5). 

3.2 Comparizon with similarity-based classifiers 

Two problems fitting within attributes-values formalism are considered. The first 
one (Iris) is the iris data set of Fisher, with 150 examples divided into 3 classes and 
described by 4 attributes. The second one (Glass) is composed of 214 examples 
divided into 6 classes and described by 9 attributes. 
The reference results of J. Kelly and L. Davis [7] are given in Table 2; KNN 
denotes a classical K-nearest neighbours method using a weight-based similarity 
with equal weights. GA- WKNN denotes a K-nearest neighbours method using a 
weight-based similarity whose weights are optimized. by genetic algorithms l . Our 
results are given in the RKNN column, with a redundancy rate ranking from 1 to 
5. 

Table 2 : Comparizon with weight-based similarities 
KNN GA-WKNN RKNN 

IRIS 

GLASS 

red. 5 red. 1 red. 3 
SI S2 S3SI S2 S3 SI S2 S3 

91 91 9190 94 - 93 92 91 91 93 93 93 

58 60 - 62 52 70 7065 64 64 64 68 68 

3.3 Comparizon with rule-based classifiers 

The comparizon with some well-known iriduction algorithms is done on a medical 
problem still fitting within an attribute-value formalism. The data set is composed 
of 286 examples described by 13 attributes and divided into 2 classes. 

1 The results found in [7] are labelled Classification Error Rates. To ease the comparizon we 
take the complement to 100 % ~f these results as Classification Success Rates. 
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Table 3 shows the results obtained by AQ15[9], CN2 [4]' Assistant86 [3] and 
a simple bayesian classifier denoted Bayes ; these results can be found in [3]. On 
our side, the results obtained from just the rulesets are given with the legend RO 
(for Rules Only) ; the results of RKNN using the different similarities are given 
beside, with the redundancy rate ranking from 1 to 5. 

Table 3 : Comparizon with classical induction 
Training set (190 examples) Test set (87 examples) 

red. 
1 
3 
5 

Bayes 
AQ15 
Assistant86 
CN2 

97 
100 

92 - 95 
76 - 72 

65 
72 

62 - 68 
70 ­ 71 

RO SI 82 Ss 
73 71 72 72 
72 71 72 72 
70 71 71 73 

RKNN 
RO 
87 
90 
90 

3.4 Discussion 

The results above are interpreted as follows: 
In the Iris problem, all classes are equally represented, and all classifiers nearly 

reach the same results (in particular, all similarities give the same results) ; so, our 
only advantage compared to the weight-based similarity (with weights optimised 
by genetic algorithms) is to be less expensive. (about 10 minutes on a Symbolics 
Ivory-based Lisp machine, against 10 seconds on a HP 700 work station). 

On the ill-distributed problem Glass, similarity 8 1 outperforms similarity 82 

and 8s when redundancy is low ; the inverse is true when redundancy is high. 
This can be explained as follows. When redundancy increases, a lot of rules are 
fired by none of any two examples; these examples are thus similar for 8 1 ; in the 
meanwhile, S2 and 8s improve as expected and our results are significantly better 
than the reference results (from 5 to 8 points). 

On the third problem there is no great difference between all similarities. The 
predictive accuracy of the rule-based similarities is quite similar to that of the 
rules themselves (and equal to the best reference results). However, the accuracy 
of the RB8 increases as the ted~ndancyincreases, while the accuracy of the ruleset 
decreases. This suggests that the rule-based similarity could be used in order to 
break the ties. 

4 Conclusion and Perspectives 

This paper describes the 2-step induction of similarity measures given a set of 
examples. A set of rules is first induced from the examples; then several similarity 
measures can be derived from a ruleset. 

Our approach appears to put very few requisites on the initial knowledge and 
requires very few help from the expert compared to most related works (see [1] 
or [2] ; unfortunately a detailed discussion is prohibited due to space limitations). 
Besides, it escapes any dependency from the domain representation: the induction 
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step, if possible, captures the semantic information hidden in the examples what­
ever their syntactic description. Last, it applies within any formalism ; its only 
requirements are an induction algorithm to be available within this formalism, and 
this algorithm to provide redundaij.t rulesets. 

Our approach is validated on some well-studied problems, with predictive accu­
racy equal or slightly better than reference results. Besides, it is worth mentioning 
that a similarity measure may be used to many other aims than a ruleset : it en­
ables using data analysis tools to pre-process the data, so to detect and discard 
atypical examples before classification, or to cluster the examples in order to reduce 
a concept formation {ask to several conjunctive concepts formation tasks. 

Further research deals with pruni~g a set of reference examples, in order to 
retain only most prototypical examples. Such pruning is expected to both speed 
up and improve classification. 
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ever their syntactic description. Last, it applies within any formalism ; its only
requirements are an induction algorithm to be  available within this formalism, and
this algorithm to provide redundant rulesets.

Our approach is validated on some well—studied problems, with predictive accu—
racy equal or  slightly better than reference results. Besides, it  is worth mentioning
that a similarity measure may be used to many other aims than a ruleset : it  en-
ables using data analysis tools to pre—process the data, so to  detect and discard
atypical examples before classification, or to cluster the examples in order to reduce
a concept formation task to several conjunctive concepts formation tasks.

Further research deals with pruning a set of reference examples, in order to
retain only most prototypical examples. Such pruning is expected to  both Speed
up and improve classification.
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Abstract 

This paper discusses the idea that a Case-Based Reasoning (CBR) approach offers a good way of 
making an information retrieval system evolving and adaptive all along its life cycle. In this purpose 
we propose an approach combining CBR and information retrieval whose aim is to improve the 
search strategy and to perform contextual adaptation by managing a memory of retrieval sessions. 
Information retrieval sessions stand for cases in our approach. Management of the memory of sessions 
exploits success as well as failure of the information retrieval system. Furthermore, such a system can 
be viewed as a synergy agent between different categories of users (experts in different areas, novices, 
etc). 

Introduction 

This paper deals with Information Retrieval (IR) and more precisely with the design of adaptive In­
formation Retrieval Systems (IRS). Exploiting IRS's experience is of obvious interest to mitigate the 
preliminary knowledge acquisition bottleneck. A review of the recent literature convinced us that Case­
Based Reasoning approach type seems to be an appropriate way to make a knowledge-based system 
evolving and adapting. This is particularly true when the knowledge in hand is incomplete and noisy. 

Our initial goal was to answer the question on how we can make an IRS evolve all along its life cycle. 
This is called long-term learning by contrast with short-term learning corresponding to the relevance 
feedback [Salton 83J. To this purpose we work on a methodology to build an evolving IRS integrating 
CBR concepts with IR ones. This proposal (CABRI'n for CAse-Based Retrieval oflnformation - Nancy) 
has a two-fold objective: 

•	 offering help to IRS design. This can be reached by refining and adapting a generic retrieval strategy 
according to the users' needs and to the document base. This mechanism can be viewed as design 
adaptation [Hinrichs 91]. In Section 3 we propose such a generic and flexible IR process model; 

•	 building and managing a memory of sessions which will constitute the long-term memory (a retrieval 
session stands for a case). This memory is designed and used primarily for achieving the first 
objective. In further steps we intend the memory of sessions for inductive learning purposes. 

This will be achieved by taking advantage of the IRS interaction with different categories of users. 
Users are assumed to be capable of judging the relevance of a proposed document or of the results of a 
search; more expert users are able to decide whether the retrieval strategy applied to a particular 'problem 
is relevant or not. But nobody is good at providing general rules for choosing the right retrieval strategy 
according to some contextual characteristics of a search situation. Furthermore, the system can be con­
sidered as a synergy agent between different categories of users (novices, experts in document retrieval, 
experts in the document collection domain, ... ). 

This paper is centered on the idea that CBR is a good way of incrementally improving an IRS. Section 2 
discusses motivations for combining IR and CBR. Section 3 is a short description of a parameterized IR 
process model. The last section describes some characteristic aspects of our approach. 
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2 Combining Case-Based Reasoning and Information Retrieval 

It is convenient at this point to discuss the relation between CBR [Riesbeck 89] and IR1 . Indeed the two 
fields are related and a mutual contribution is possible. They are similar in the sense that they both try 
to locate in databases information relevant for a given problem. 

Furthermore, IR efforts help CBR in indexing information, in formulating queries to retrieve relevant 
information, and in defining matching methods. 

Conversely, CBR offers a dynamic memory model which allows IR uncertain and incomplete knowledge 
improvement. 

Our approach attempts to exploit analogies as well as mutual reinforcement between CBR and IR. 

3 Parameterized Information Retrieval Process Model 

In IR context documents are poorly indexed i.e, a document index is only a short surrogate of the docu­
ment itself. Consequently the search strategy is very important to make sure that precision (proportion 
of retrieved items actually relevant) and recall (proportion of relevant information actually retrieved) 
are good. Several learning techniques have been used to improve retrieval system performances. The 
relevance feedback mechanism was primarily proposed to lead to an interactive and iterative retrieval 
process. The goal is to try to improve precision and recall values at each step 2 by taking into account the 
user's relevance assessments (i.e., identification of relevant and non-relevant documents among previously 
proposed ones) for automatic query reformulation. 

Although few formal user experiments have been made on relevance feedback based systems, one can 
say that even the best ones have a limited recall [Harman 92]. A quite important deal of experimental 
work has been done to tune different parameters of some existing systems and to evaluate alternative 
forms. 

, 
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~ 
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Figure 1: Parameterized information retrjeval process modeL 

Indeed we have often noticed that some choices made during IRS design turn out to be ineffective 
when using the system, In fact, for each information retrieval primitive, there exist several alternatives 
(within a given IR model). In Figure 1 we propose a general IR process model. Examples of primitives 
are: query interpr-etation, matching, and reformulation. Each primitive is parameterized to express the 
different realization alternatives [Small 93] (parameters are italicized in Figure 1). 

1 This issue was the topic of the AAAI spring symposium held in Palo Alto on march 1993.
 
2 A step ranges from query formulation to reformulation.
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Indeed we have often noticed that some choices made during IRS design turn out to be  ineffective
when using the system, In  fact,  for each information retrieval primitive, there exist several alternatives
(within a given IR  model). In Figure 1 we propose. a general IR  process model.  Examples of primitives
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Furthermore, it has been suggested in the IR literature that different types of user situations, problems, 
goals, characteristics might require different types of retrieval strategies. This means that besides the 
generic retrieval process model, we need to have available a typology of potential needs (or queries) that 
may be addressed. Then for each type of need we have to define a particular instantiation of the retrieval 
process model. This is performed through what we call default strategy choice rules. 

4 CABRl'n: CAse-Based Retrieval of Information-Naney 

4.1 Architecture 
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Figure 2: CABRI'n overall architecture. 

Figure 2 shows the overall architecture of CABRI'n combining information retrieval (left side) and sessions 
retrieval (right side). The IRS calls the case-based component like a human intermediary would .call for 
his experience in order to better respond to a query. 

To deal with a query, the IRS component uses the particular instantiation of the generic model which 
is suggested by the CBR part. During the initialization phase, where the memory of sessions is empty or 
too small, the default strategy choice rules mentioned above (Section 3) will be used to suggest a default 
instantiation. 

When a new information query occurs, it is categorized according to the queries typology invoked in 
Section 3, before the sessions memory is searched. The query or need type is an important contextual 
characteristic for former sessions retrieval and adaptation. 

For example, needs (expressed in queries) in iconographic databases can be categorized in four types: 
exploratory need, precise need, connotative need, and thematic need. 

The matching step results in a ranked subset of candidate sessions of the same need type as the current 
one. 

Whenever a session similar to the current problem is retrieved it is adapted in a way depending on 
the need type and relevance level of the retrieved session. 

According to the adaptation performed, the IRS takes control at different points (see on Figure 2 
arrows originating from Adaptation). 
The retrieval session evaluation determines the relevance level of the ending search. The richer this 
evaluation is, the more finely the current session can be adapted in the future. 
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When a new information query occurs, i t  is categorized according to the queries typology invoked in
Section 3,  before the sessions memory is searched. The query or need type is an important contextual
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For example, needs (expressed in queries) in iconographic databases can be  categorized in four types:
exploratory need, precise need, connotative need, and thematic need.

The matching step results in  a ranked subset of candidate sessions of the  same. need type as the current
one.

Whenever a session similar to the current problem is retrieved it is adapted in a way depending on
the need type and relevance level of the retrieved session.
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arrows originating from Adaptation).
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4.2 Retrieving Search Sessions 

A session is modeled as an object with two main attributes: index and content. The index is composed of 
a thematic index and a global index. The global index of the session describes its relevance (determined by 
the session evaluation primitive in Figure 2) and the type of the need it deals with. The session content 
itself has two levels of detail to allow different types of adaptation. The detailed content includes the 
session trace whereas the synthesized content involves items related to the adopted strategy, the relevant 
document set, and the non-relevant document set. 

The sessions retrieval is made in two steps. First a selection is performed based on (a part of) the 
global index; the sessions which correspond to the current need type are thus selected. 
Once a selection is done among the memory of sessions, a matching has to be performed between the 
current query and each selected session. The matching process is based on the thematic index ranking 
the selected candidates according to the similarity of their search criteria and the cm:rent ones. 

Furthermore, in order to allow another kind of sessions se<U'ch based oil st~ategy, we consider strategy 
as an additional indexing structure (i.e., given a strategy we can find all the sessions which use it) .. More 
precisely, a retrieval-strategy object aggregates a strategy definition s (parameters of each IR primitive), 
a collection of sessions using s, and a collection of retrieval strategies adapted from s. 

4.3 Adapting Search Sessions 

The adaptation function primarily depends on the relevance level of the "best" recalled session. 

Adapting a session which led to a failure consists in anticipating this failure in order to avoid it. 
If the session to adapt is of mitigate level, the adaptation goal is to propose improvement across certain 
strategic parameters modifications. 

Finally a successful session does not really need adaptation but we can reuse its retrieval strategy or 
even its results (relevant documents). 
Furthermore, the results of the searches performed on a set of the (closest) successful r.etrieved sessions 
can be combined to summarize the IRS experience on the current topic. A sampling can be made on 
these results before presenting them to the user for instance. This retrospective combination is expected 
to improve the information retrieval recall. 

The definite adaptation to perform in each of the three enumerated situations depends secondarily on 
the current query type. 

The described functions have to be refined and we are currently working on the partial reuse of the 
parameteri:.>;ed IR process (Section 3) for the search sessions retrieval. 

5 Concluding Remarks and Perspectives 

The proposed approach is expected to facilitate the acquisition process of different types of information 
retrieval knowledge (strategic knowledge, domain knowledge., and organization knowledge). 

We are currently {mplementing a prototype based on the ideas presented above. This is performed in 
an object-oriented environment (Smalltalk-80) and the document base is an image base. Besides, we are 
also thinking better of the mutual contribution between IR and CBR in CABRI'n by sharing indexing 
structures and sharing retrieval primitives. 

Up to now, we have assumed that the IRS component could call the CBR part (see Figure 2) only 
once during a sessions retrieval and that the retrieval strategy was the same during the whole session. 
An interesting investigation issue would be to make CABRI'n more reactive in such a way that IRS could 
cope with each retrieval step by calling the CBR part. This ambition implies that the CBR retrieval 
function will have a supplementary search criterion: similar search evolution. 

In further steps we intend the memory of sessions for two inductive learning purposes. The first consists 
in extracting explicit knowledge items to enrich the IRS domain knowledge such as contextual thesaurus 
links and multi-criteria document base organization. The second purpose is to synthesize the adapted 
strategy over the memory of sessions. 
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Abstract. The retrieval of a suitable case is of crucial importance to the success of case-based 
reasoning. A good criterion for judging "case suitability" is how complex a case will be to adapt. 
However, it has proven difficult to directly calculate this measure of case "adaptability" without incurring 
the full cost of adaptation. This has led most researchers to abandon direct algorithmic methods in favour 
of more efficient, albeit less accurate, heuristic methods. 

This paper describes an approach to case retrieval that allows case adaptability to be accurately 
measured whilst overcoming the problems which, in the past, led to the adoption of heuristic methods. 
We argue that this approach benefits from improved retrieval accuracy, flexibility, and greater overall 
problem solving efficacy. Our methods are implemented in Deja Vu, a case-based reasoning system for 
software design, and we use examples from Deja Vu to demonstrate our approach. ' 

1 Introduction 

Case-Based Reasoning (CBR) is a reasoning method that exploits experiential knowledge, in the form of past 
cases, to solve problems [1]. When faced with a new problem, a CBR system will retrieve a ca,se that is similar, 
and, if necessary, adapt it to provide the desired solution. Obviously, the success of case.-based problem solving 
is crucially dependent on the retrieval of a suitable case; that is, one that can be adapted to give the desired 
solution. Moreover, the efficiency of case-based methods depends critically on the retrieval of a case that is the 
easiest, of those available, to adapt. 

The majority of CBR systems have proven successful in judging the general suitability of cases to new 
problem situations. However, accurately determining the "ease of adaptation" or "adaptability" of a given case 
has proven more difficult because of inherent efficiency problems; how can adaptation be accurately predicted 
without actually performing the adaptation itself? This has led most researchers to abandon such deep 
algorithmic methods of computing case adaptability in favour of more efficient, albeit less accurate, shallow 
heuristic methods; the hope being that heuristic manipulation of good predictive indices will result in the 
retrieval of the appropriate case. Typically, these heuristics are designed to give preference to those cases which 
contain features that have been observed to yield desirable retrieval results. Unfortunately, they seldom anticipate 
all adaptation problems and less than optimal cases are often retrieved. 

In this paper we advance a case selection technique which can accurately determine the ease of adaptation of a 
case while, at the same time, overcoming the efficiency problems that led to the adoption of heuristic methods. 
The technique uses adaptation knowledge during case selection to "look ahead" to the adaptation stage, allowing 
its complexity to be assessed, but without incurring the full cost of adaptation. Our methods are implemented in 
Deja Vu, a case-based reasoning system for "real world" software design, and we demonstrate our approach using 
examples from this system. The next section introduces Deja Vu, detailing the structure of its adaptation 
knowledge. Section three describes how this knowledge is used in retrieval and includes a very brief review of 
some conventional heuristic retrieval approaches. Finally, in section four, we argue that our methods benefit 
from improved retrieval accuracy and flexibility, as well as greater overall problem solving performance. 

2 Deja Vu 

Deja Vu is a CBR system for software design operating in the domain of Plant-Control software [2]. Using a 
hierarchical approach to design, Deja Vu retrieves a number of cases at different levels of abstraction. These are 
adapted to provide solutions to the various sub-tasks of the target problem, the resulting solution segments 

.being integrated into the overall solution "on the fly". Problem solving activity is efficiently co-ordinated using 
a blackboard architecture with dedicated knowledge sources handling the various problem solving stages of 
analysis, problem decomposition, retrieval, adaptation, and solution integration. Of particular importance, in the 
context of this paper, is the nature of Deja Vu's adaptation knowledge which is used during retrieval to improve 
retrieval accuracy and overall problem solving efficiency. 

2.1 The Plant Control Domain 

Plant-Control software is concerned with controlling autonomous vehicles within a factory or plant 
environment. Figure 1 illustrates an important class of Plant-Control tasks aimed at the control of vehicles 
during the loading and unloading of metal coils in a steel mill. Deja Vu's cases are software modules for 
controlling vehicles and other devices during such tasks. For example, a simple software design is concerned 
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Abstract.  The retrieval of  a suitable case i s  of  crucial importance to the success of  case-based
reasoning. A good criterion for judging "case suitability" is  how complex a case will be to adapt.
However, it has proven difficult to directly calculate this measure of  case "adaptability" without incurring
the full cost of  adaptation. This has led most researchers to abandon direct algorithmic methods in favour
of  more efficient, albeit less accurate, heuristic methods.

This paper describes an approach to ease retrieval that allows case adaptability to be accurately
measured whilst overcoming the problems which, in the past, led to the adoption. of heuristic methods.
We argue that this approach benefits from improved retrieval accuracy, flexibility, and greater overall
problem solving efficacy. Our methods are implemented in Déja Vu, a case-based reasoning system for
software design, and we use examples from Déjä Vu to demonstrate our approach.

i Introduction

Case-Based Reasoning (CBR) is  a reasoning method that exploits experiential knowledge, in the form of past
cases, to solve problems [1]. When faced with a new problem, a CBR system will retrieve a case that is similar,
and, if necessary, adapt it to provide the desired solution. Obviously, the success of  case-based problem solving
is crucially dependent on the retrieval of a suitable case; that is, one that can be adapted to give the desired
solution. Moreover, the efficiency of case-based methods depends critically on the retrieval of a case that is the
easiest, of those available, to adapt.

The majority of CBR systems have proven successful in judging the general suitability of  cases to new
problem situations. However, accurately determining the "ease of adaptation" or "adaptability" of a given case
has proven more difficult because of inherent efficiency problems; how can adaptation be accurately predicted
without actually performing the adaptation itself? This has led most researchers to abandon such deep
algorithmic methods of computing case adaptability in favour of  more efficient, albeit less accurate,'shallow
heuristic methods; the hope being that heuristic manipulation of  good predictive indices will result in the
retrieval of the appropriate case. Typically, these heuristics are designed to give preference to those cases which
contain features that have been observed to yield desirable retrieval results. Unfortunately, they seldom anticipate
all adaptation problems and less than optimal cases are often retrieved.

In this-paper wexadvance a case selection technique which can accurately determine the ease of adaptation of  a
case while, at the same time, overcoming the efficiency problems that led to the adoption of heuristic methods.
The technique uses adaptation knowledge during case selection to “look ahead” to the adaptation stage, allowing
its complexity to be assessed, but without incurring the full cost of  adaptation. Our methods are implemented in
Déjä Vu, a case-based reasoning system for “real world” software design, and we demonstrate our approach using
examples from this system. The next section introduces Déjä Vu, detailing the structure of its adaptation
knowledge. Section three describes how this knowledge is used in retrieval and includes a very brief review of
some conventional heuristic retrieval approaches. Finally, in section four, we argue that our methods benefit
from improved retrieval accuracy and flexibility, as well as greater overall problem solving performance.

2 Déja Vu
Déjä Vu is a CBR system for software design operating in the domain of Plant-Control software [2]. Using a
hierarchical approach to design, Déjä Vu retrieves a number of cases at different levels of abstraction. These are
adapted to provide solutions to the various sub—tasks of  the targetproblem, the resulting solution segments

'being integrated into the overall solution “on the fly”. Problem solving activity is efficiently co-ordinated using
a blackboard architecture with dedicated knowledge sources handling the various problem solving stages of
analysis, problem decomposition, retrieval, adaptation, and solution integration. Of particular importance, in the
context of this paper, is the nature of  Déjä Vu’s adaptation knowledge which is used during retrieval to improve
retrieval accuracy and overall problem solving efficiency.

2.1 The Plant Control Domain

Plant-Control software is concerned with controlling autonomous vehicles within a factory or plant
environment. Figure 1 illustrates an important class o f  Plant-Control tasks aimed at the control of vehicles
during the loading and unloading of metal coils in a steel mill. Déjä Vu's cases are software modules for
controlling vehicles and other devices during such tasks. For. example, a simple software design is concerned
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with controlling the movement of a coil-car (vehicle) across the factory floor, including collision avoidance, and 
speed control of the vehicle. 
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Figure 1. Load/Unload Plant-Control Tasks 

2.2 Deja Vu's Adaptation Knowledge 

Deja Vu uses a distributed adaptation scheme that facilitates both specific local modifications, through the action 
of adaptation specialists, as well as global conflict resolution, via adaptation strategies. As such adaptation 
knowledge is captured as a set of specialists and a set of general strategies. 

2.2.1 Specialists 

Adaptation specialists correspond to packages of procedural knowledge each concerned with a specific adaptation 
task. Each specialist can thus make a specific local modification to a retrieved case. During adaptation many 
specialists will act on the retrieved case to transform its solution into the desired target solution. Thus, through 
specialist activity, the differences between the retrieved case and the target are reduced in a fragmentary fashion. 

For example, in the plant-control domain, one common difference between a retrieved case and a target 
problem is that the speed capability of the target's vehicle may differ from that of a retrieved case. To cater for 
this situation Deja Vu uses a dedicated speed specialist which can satisfy the speed requirements of the target by 
modifying those of the retrieved case. 

As well as procedural l.j:nowledge each specialist also has declarative knowledge describing its particular 
adaptation task. In this way specialists are organised in terms of the modifications they are designed to carry out. 

2.2.2 Adaptation Strategies 

In the course of adapting a retrieved case it is possible that solution conflicts will arise. This is because 
specialists are not designed to consider the modifications made by others and so interactions that occur between 
specialists go unchecked. In the past, the resolution of such conflicts has been one of the stumbling blocks of 
many planning and automated design systems [3}. Deja Vu attempts to overcome this problem by using an 
efficient scheme of conflict representation and resolution. Using a set of adaptation strategies, Deja Vu can 
detect and repair any conflicts that arise. Strategies are organised in terms of the conflicts they resolve and each 
is indexed by a description of the type of conflict it can repair. Of course each strategy also has an associated 
method of repair for resolving the conflict in question. 

For example, one common solution conflict occurs when the effect of some event prevents the occurrence of 
some later event. Figure 2 depicts this situation; the pre-condition state (1) of some goal achieving event (2) has 
been disabled (or "blocked") by the state (3), a result of some earlier event (4). This blocked pre-condition 
conflict can be resolved by including a new sub-goal which re-enables the blocked pre-condition (1) after the 
blocking event (4) has occurred. An adaptati0i'! strategy to cater for such a conflict would contain a description of 
this blocked pre-condition situation as well as the appropriate repair method (the inclusion of a sub-goal to re­
enable the blocked pre-condition). 
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Figure 2. The "blocked pre-condition" configuration. 

During adaptation, conflicts can be detected by matching strategy descriptions against the effects of 
specialists. Specialist activity is described using influence relations. These relations are described in more detail 
in section 3.2.2 but for now let us just say that by using graphs of these influences the qualitative effect of 
specialist activity can be efficiently characterised, and used as a means of indexing the appropriate adaptation 
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with controlling the movement of a coil-car (vehicle) across the factory floor, including collision avoidance, and
speed control of the vehicle.
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2.2 Déjä Vu ' s  Adaptat ion Knowledge

Déja Vu uses a distributed adaptation scheme that facilitates both specific local modifications, through the action
of adaptation specialists, as well as global conflict resolution, via adaptation strategies. As such adaptation
knowledge is captured as a set of specialists and a set of general strategies.

2 .2 .1  Spec i a l i s t s

Adaptation specialists correspond to packages of procedural knowledge each concerned with a specific adaptation
task. Each specialist can thus make a specific local modification to a retrieved case. During adaptation many
specialists will act on the retrieved case to transform its solution into the desired target solution. Thus, through
specialist activity, the differences between the retrieved case and the target are reduced in a fragmentary fashion.

For example, in the plant-control dom‘ain, one common difference between a retrieved case and a target
problem is that the speed capability of the target’s vehicle may differ from that of a retrieved case. To cater for
this situation Déjä Vu uses a dedicated speed specialist which can satisfy the speed requirements of the target by
modifying those of the retrieved case.

As well as procedural knowledge each specialist also has declarativeknowledge deseribing its particular
adaptation task. In this way specialists are organised in terms of  the modifications they are designed to carry out.

2.2.2 Adap ta t ion  S t ra t eg ies

In the course of adapting a retrieved case i t  is  possible that solution conflicts will arise. This is because
specialists are not designed to consider the modifications made by others and so interactions that occur between
specialists go unchecked. In the past, the resolution of such conflicts has been one of the stumbling blocks of
many planning and automated design systems [3]. Déjä Vu attempts to overcome this problem by using an
efficient scheme of conflict representation and resolution. Using a set of adaptation strategies, Déjä Vu can
detect and repair any conflicts that arise. Strategies are organised in terms of  the conflicts they resolve and each
is indexed by a description of the type of conflict it can repair. Of  course each strategy also has an associated
method of repair for resolving the conflict in question.

For example, one common solution conflict occurs when the effect of some event prevents the occurrence of
some later event. Figure 2 depicts this situation; the pre——condition state (1) of some goal achieving event (2) has
been disabled (or "blocked") by the state (3), a result of some earlier event (4). This blocked pre--condition
conflict can be resolved by including a new sub--goal which re--enables the blocked pre——condition (1) after the
blocking event (4) has occurred. An adaptation strategy to cater for such a conflict would contain a description of

' this blocked pre-condition situation as well as the apprOpriate repair method (the inclusion of  a sub- goal to re-
enable the blocked pre--condition). .
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Figure 2. The "blocked pre—condition" configuration.

During adaptation, conflicts can be detected by matching strategy descriptions against the effects of
specialists. Specialist activity is described using influence relations. These'relations are described in more detail
in section 3.2.2 but for now let us just say that by using graphs of these influences the qualitative effect of
specialist activity can be efficiently characterised, and used as a means of indexing the appropriate adaptation
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strategies. A positive match between a strategy description and specialist effects indicates a conflict that can then 
be resolved by the strategy's repair method. 

2.2.3 An Example Adaptation Scenario 

As an example adaptation scenario consider the following situation. A piece of software is required to move a 
two speed coil-car to a tension-reel. A case is retrieved which moves a one speed coil-car. Obviously the one 
speed case must be transformed into a two speed case. Therefore, a speed specialist is used to convert the one 
speed design into a two speed design. However, such a modification has an adverse affect on the fuel 
consumption of the coil-car, and the modified design fails because of a lack of fuel. Further modifications are 
obviously required to remove this conflict between speed and fuel. The detection of such conflicts is where 
strategy descriptions fit in. The speed increase of a coil-car exerts a negative, blocking influence on its fuel 
availability. This situation (a blocked pre-condition failure) is captured by the configuration of Figure 2, and the 
appropriate repair strategy is applied; in this example, the availability of fuel pre-condition is re-enabled by 
including a re-fuelling stop into the design. 

3 The Role of. Adaptation Knowledge in Case Retrieval 

In order to guarantee the retrieval of a case that is the easiest to adapt, the retrieval mechanism must give explicit 
consideration to how cases will be adapted. This is clearly difficuit without actually performing the adaptation. 

We can think of the processes of retrieval* and adaptation as searching of two distinct search spaces, the 
specification space and the adaptation space, respectively. To determine the adaptation requirements of a 
candidate case, a measure of the closeness of the target and candidate in the adaptation space is needed. However, 
for reasons of efficiency, conventional systems use heuristic rules that select cases on the basis of their closeness 
in the specification space; that is, cases are compared in terms of specification similarities rather than their more 
complex (and more important) solution similarities. The hope is that, if two cases have similar specifications 
then they will have similar solutions, and thus require little adaptation. Unfortunately, this assumption does not 
always hold, inevitably leading to sub-optimal retrievals. 

Deja Vu's approach to retrieval is different. It uses actual adaptation knowledge during retrieval, to assess 
specification similarities directly in terms of their adaptation requirements, and hence judges a case's suitability 
by considering how it will be adapted; whereas conventional systems use heuristic rules to select cases, Deja Vu 
use rules that are more algorithmic in nature. Essentially the specification space and the adaptation space are 
coupled by this adaptation knowledge (see Figure 3). Using adaptation knowledge in this way it is possible to 
predict how specification similarities and dissimilarities will impinge on adaptation by determining how 
elements of the specification space relate to elements of the adaptation space. Thus, complex adaptation 
requirements can be determined by comparing the specification's of the target and candidate. 

......................g..~!!..t~.y.~! .
 

I1 Filteri.OS··n Adaptation J"-....SelectiO!/! i-----------...........
:·:] 
'_..:~~ ~:::~:~;; .....~ 

Specification Space Adaptation Space 

Figure 3. Adaptation knowledge links the specification and adaptation spaces. 

3.1 Conventional Approaches to Retrieval 

Conventional, heuristic approaches to case selection attempt to estimate the similarity between the specification 
of the target and the specification of the candidate case. Exactly how a candidate will be adapted is ignored, 
efficiency being chosen in favour of accuracy. Essentially, the retrieval stage and adaptation stage are de-coupled 
and the closeness of the target to the candidate case in the adaptation space is estimated by their perceived 
closeness in the specification space. The rationale being that the case whose specification is most semantically 
similar to the target's will also be the "most useful" case and will require the least adaptation [6,7]. 

While such traditional retrieval techniques can produce efficient retrieval results the rationale on which they 
are based may not be fully justified, and this may ultimately lead to a sub-optimal adaptation stage. That is, the 
most similar case to the target problem may not be the most useful, or indeed, the easiest to adapt. Semantic 

* Retrieval can be viewed as a two stage process. First, the filtering stage identifies a small number of candidate cases 
that are deemed to be contextually relevant to the target. Next, the selection stage performs a detailed analysis between 
the target and each of these candidates. During this analysis, a set of correspondences or mappings is established 
between the target and the candidates [4, 5]. In general these mappings are used to determine a measure of similarity 
between the cases and form the basis of the subsequent adaptation process. 
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strategies. A positive match between a strategy description and specialist effects indicates a conflict that can then
be resolved by the strategy's repair method.

2.2.3 An  Example  Adap ta t ion  Scena r io

As an example adaptation scenario consider the following situation. A piece of software is required to move a
two speed coil-car to a tension-reel. A case is  retrieved which moves a one speed coil—car. Obviously the one
speed case must be transformed into a two speed case. Therefore, a speed specialist is used to convert the one
speed design into a two speed” design. However, such a modification has an adverse affect on the fuel
consumption of the coil-car, and the modified design fails because of a lack of fuel. Further modifications are
obviously required to remove this conflict between speed and fuel. The detection of such conflicts is where
strategy descriptions fit in. The speed increase of a coil-car exerts a negative, blocking influence on its fuel
availability. This situation (a blocked pre—condition failure) is captured by the configuration of  Figure 2, and the
apprOpriate repair strategy is  applied; in this example, the availability of fuel pre-condition is re-enabled by
including a re-fuelling stop into the design.

3 The Role of .Adaptat ion Knowledge in Case Retrieval

In order to guarantee the retrieval of a case that is the easiest to adapt, the retrieval mechanism must give explicit
consideration to how cases will be adapted. This is clearly difficult without actually performing the adaptation.

We can think of the processes of retrieval* and adaptation as searching of two distinct search spaces, the
specification space and the adaptation space, respectively. To determine the adaptation requirements of a
candidate case, a measure of the closeness of the target and candidate in the adaptation space is needed. However,
for reasons of efficiency, conventional systems use heuristic rules that select Cases on the basis of their closeness
in the specification space; that is, cases are compared in terms of specification similarities rather than their more
complex (and more important) solution similarities. The hOpe is that, if two cases have similar specifications
then they will have similar solutions, and thus require little adaptation. Unfortunately, this assumption does not
always hold, inevitably leading to sub-Optimal retrievals.

Déjä Vu’s approach to retrieval is different. It uses actual adaptation knowledge during retrieval, to assess
specification similarities directly in terms of their adaptation requirements, and hence judges a case’s suitability
by considering how it will be adapted; whereas c‘onventional systems use heuristic rules to select cases, Déjä Vu
use rules that are more algorithmic in nature. Essentially the specification space and the adaptation space are
coupled by this adaptation knowledge (see Figure 3). Using adaptation knowledge in this way it is possible to
predict how specification similarities and dissimilarities will impinge on adaptation by determining how
elements of the. specification space relate to elements of the adaptation Space. Thus, complex adaptation
requirements can be determined by comparing the specification’s of the target and candidate.
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Figure 3 .  Adaptation knowledge links the specification and adaptation spaces.

3.1 Convent iona l  Approaches  to  Re t r i eva l

Conventional, heuristic approaches to case selection attempt to estimate the similarity between the specification
of the target and the specification of the candidate case. Exactly how a candidate will be adapted is  ignored,
efficiency being chosen in favour of accuracy. Essentially, the retrieval stage and adaptation stage are de—coupled
and the closeness of the target to the candidate case in the adaptation space is estimated by their perceived
closeness in the specification space. The rationale being that the case whose specification is most semantically
similar to the target’s will also be the "most useful" case and will require the least adaptation [6, 7].

While such traditional retrieval techniques can produce efficient retrieval results the rationale on which they
are based may not be fully justified, and this may ultimately lead to a sub-optimal adaptation stage. That is, the
most similar case to the target problem may not be the most useful, or indeed, the easiest to adapt. Semantic

* Retrieval can be viewed as a two stage process. First, the filtering stage identifies a small number of candidate cases
that are deemed to be contextually relevant to the target. Next, the selection stage performs a detailed analysis between
the target and each of  these candidates. During this analysis. a set of correspondences or mappings is established
between the target and the candidates {4, 5]. In general these mappings are used to determine a measure of similarity
between the cases and form the basis of the subsequent adaptation process.
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similarity does not guarantee the best results. Two cases could be equally similar to a target problem on this 
measure and one could be adapted with ease while the other may be considerably harder or even impossible to 
adapt. To compensate, many researchers have therefore argued that other factors as well as semantic similarity 
need to be used in retrieval [1,8,9, 10, 11], the spirit of this approach being that all mappings are not equal. 

For example, Kolodner [10] has argued that some mappings found between a target problem and a candidate 
case should be preferred over others if they exhibit certain characteristics; for instance, if a match is more 
specific or goal-directed it should be preferred. In particular, Kolodner also argues that the ease-oJ-adaptation of a 
match should result in it being preferred over other matches which are indicative of more difficult adaptations. 
Similarly, Goers KRITIK system [9] also prefers candidate cases which are easier to adapt by preferring matches 
which satisfy the functional specifications of the desired, target design. Bimbaum et al. [12] propose a system 
that learns to index cases on the basis of their adaptability, overriding semantic similarity where appropriate. 
During problem solving certain features are identified as particularly problematic and cases with such features 
can be avoided in future problem solving episodes. 

In all of these approaches the quality of a candidate case is based on the presence or absence of certain features 
which are pre-classified as important with respect to retrieval. The relation between specification features and the 
subsequent adaptation phase is ignored. Consequently, cases are selected on the basis of an "educated guess" 
rather than through any real insight into their adaptation requirements. 

3.2 Deja Vu's Approach to Retrieval: Adaptation Guided Retrieval 

In contrast to the above methods, Deja Vu's retrieval stage gives explicit consideration to how a case will be 
adapted. The retrieval and adaptation stages are coupled by allowing the use of algorithmic adaptation knowledge 

,during retrieval; mappings between the target's and candidate's specifications can be linked directly to elements of 
the adaptation space. Consequently, specification space closeness can be measured in terms of adaptation space 
closeness. 

Furthermore, the structure of Deja Vu's adaptation knowledge allows the adaptation requirements of a case to 
be assessed in an efficient manner, and so the problems that led to the adoption of heuristic approaches in the 
past are no longer an issue. The result is a more accurate and flexible retrieval stage. 

During retrieval, each candidate is judged in terms of the modifications that it would need should it be 
retrieved. More precisely, case elements that require modification are associated with the adaptation procedures 
(specialists or strategies) that can perform this modification. In this way it is not only possible to anticipate 
adaptation success during the retrieval stage, but it is also possible to calculate the complexity of this adaptation. 

3.2.1 Specialist Associations 

Conventional retrieval systems generate correspondences (mappings) between the target's features and the 
candidate's features. Normally, these mappings are established according to some measure of perceived similarity 
betwyen the features involved. In contrast, Deja Vu constructs mappings if and only if there is evidence that the 
differences .that they entail can be correctly adapted. 

Deja Vu's approach is based on the fact that the mappings established between the candidate and target are 
suggestive of the differences that exist between the candidate solution and desired target solution. Identical 
mappings suggest candidate solution sections which can be transferred intact to· the target. On the other hand, 
non-identical mappings are indicative of candidate solution sections that will need to be adapted. 

In the example of 2.2.3 a non-identical mapping would have been formed between the single speed feature of 
the candidate and the two speed feature of the target. This mapping served to point out that the candidate 
solution required a speed modification. To form such a mapping, Deja Vu requires evidence that the 
corresponding solution differences can be successfully catered for. This evidence exists in the form of specialists. 
During case selection, sets ofmappings are m~tched against the descriptions of specialists which are designed to 
perform the entailed modifications. To facilitate the efficient location of the appropriate specialists, the 
specialist descriptions themselves are in the form of generalised groups of mappings. 

3.2.2 Strategy Associations 

Like specialists, adaptation strategies are also used during retrieval. As discussed in section 2.2.2, "blind" 
specialist activity can lead to solution conflicts which must be repaired. Therefore, in predicting the adaptation 
requirements of a case it is not sufficient to simply determine the appropriate set of specialists without 
considering the type of conflicts that may arise. To predict conflicts we must be able to describe the effects of 
specialist activity. This is achieved with the aid of influence relations [13]. 

An influence relation is a qualitative causal relationship between two domain elements. It specifies that one 
element (the influencer) effects another (the influenced) in some way. The mode of influence can be either 
positive (+) or negative (-). A positive influence means that a change in the influencer entails a corresponding 
change in the influenced. For example, speed and fuel consumption are connected by a positive influence 
relation from speed to fuel consumption; an increase in speed leads to an increase in fuel consumption. A 
negative influence means that a change in the influencer leads to a qualitatively opposite change in the 
influenced. For example, fuel consumption exerts a negative influence on fuel availability; an increase in fuel 
consumption causes less fuel to be available. Using graphs of these influence relations an qualitative model of 
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similarity does not guarantee the best results. Two cases could be equally similar to a target problem on this
measure and one could be adapted with case. while the other may be considerably harder or even impossible to
adapt. To compensate, many researchers have therefore argued that other factors as well as semantic similarity
need to be used in retrieval [1  , 8 ,  9 ,  10 ,  11] ,  the spiri t  of  this approach being that all mappings are not equal.

For example, Kolodner [10] has argued that some mappings found between a target problem and a candidate
case‘should be preferred over others if they exhibit certain characteristics; for instance, if a match is more
specific or goal-directed it should be preferred. In particular, Kolodner also argues that the ease-of-adaptation of a
match should result in it being preferred over other matches which are indicative of more difficult adaptations.
Similarly, Goel's KRITIK system [9] also prefers candidate cases which are easier to adapt by preferring matches
which satisfy the functional specifications of the desired, target design. Bimbaum et a]. [12] propose a system
that learns to index cases on the basis of their adaptability, overriding semantic similarity where appropriate.
During problem solving certain features are identified as particularly problematic and cases with such features
can be avoided in future problem solving episodes.

In all of these approaches the quality of a candidate case i s  based on the presence or absence of certain features
which are pre-classified as important with respect to retrieval. The relation between specification features and the
subsequent adaptation phase is ignored. ConseCIuently, cases are selected on the basis of an "educated guess"
rather than through any real insight into their adaptation requirements.

3.2 Déjä Vu ' s  Approach to Retr ieval :  Adapta t ion Gu ided  Retr ieval

In contrast to the above methods, Deja Vu's retrieval stage gives explicit consideration to how a case will be
adapted. The retrieval and adaptation stages are coupled by allowing the use of algorithmic adaptation knowledge

, during retrieval; mappings between the target’s and candidate’s specifications can be linked directly to elements of
the adaptation space. Consequently, specification space closeness can be measured in terms of adaptation space
closeness.

Furthermore, the structure of Déja Vu's adaptation knowledge allows the adaptation requirements of a case to
be assessed in an efficient manner, and so the problems that led to the adoption of heuristic approaches in the
past are no longer an issue. The result is a more accurate and flexible retrieval stage.

During retrieval, each candidate is judged in terms of the modifications that it would need should it be
retrieved. More precisely, case elements that require modification are associated with the adaptation procedures
(specialists or strategies) that can perform this modification. In this way it is not only possible to anticipate
adaptation success during the retrieval stage, but it is  also possible to calculate the complexity of this adaptation.

3.2 .1  Special ist  Assoc ia t ions

Conventional retrieval systems generate correspondences (mappings) between the target’s features and the
candidate’s features. Normally, these mappings are established according to some measure of perceived similarity
between the features involved. In contrast, Déjä Vu constructs mappings if and only if there is evidence that the
differences that they entail can be correctly adapted.

Déja Vu's approach is based on the fact that the mappings established between the candidate and target are
suggestive of the differences that exist between the candidate solution and desired target solution. Identical
mappings suggest candidate solution sections which can be transferred intact to~the target. On the other hand,
non-identical mappings are indicative of candidate solution sections that will need to be adapted.

In the example of 2.2.3 a non-identical mapping would have been formed between the single speed feature of
the candidate and the two speed feature of  the target. This mapping served to point out that the candidate
solution required a speed modification. To form such a mapping, Déjä Vu requires evidence that the
corresponding solution differences can be successfully catered for. This evidence exists in the form of specialists.
During case selection, sets of mappings are matched against the descriptions of specialists which are designed to
perform the entailed modifications. To facilitate the efficient location of the appropriate specialists, the
specialist descriptions themselves are in the form of generalised groups of mappings.

3.2.2 Stra tegy Associations

Like specialists, adaptation strategies are also used during retrieval. As discussed in section 2.2.2, “blind”
Specialist activity can lead to solution conflicts which must be repaired. Therefore, in predicting the adaptation
requirements of  a case it is  not sufficient to simply determine the appropriate set of  specialists without
considering the type of conflicts that may arise. To predict conflicts we must be able to describe the effects of
specialist activity. This is achieved with the aid of influence relations [13].

An influence relation is a qualitative causal relationship between two domain elements. It specifies that one
element (the influencer) effects another (the influenced) in some way. The mode of influence can be either
positive (+) or negative (-). A positive influence means that a change in the influencer entails a corresponding
change in the influenced. For example, speed and fuel consumption are connected by a positive influence
relation from speed to fuel consumption; an increase in speed leads to an increase in fuel consumption. A
negative influence means that a change in the influencer leads to a qualitatively opposite change in the
influenced. For example, fuel consumption exerts a negative influence on fuel availability; an increase in fuel
consumption causes less fuel to be available. Using graphs of these influence relations an qualitative model of
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the dependencies between domain elements can be built up. With these graphs it is possible to describe both the 
desired effects and side-effects of specialists. For example, the speed specialist changes the speed of a case. 
According to the influences above it also effects the fuel consumption and fuel availability of the case. 

Strategies are indexed into the domain knowledge-base by sets of influence 'relations. During retrieval the 
specialist associations activate a set of influences that capture their intended effect. In turn these influences 
activate relevant strategy descriptions, indicating possible conflict problems. The retrieval context is used to 
instantiate these strategies which are then associated with the problematic specialists and mappings. In this way, 
during retrieval, solution conflicts can be predicted and repairs scheduled. 

3.2.3 An Example Retrieval Scenario 

As an example, let us return to the problem of section 2.2.3 which was to design a two speed movement case 
from a single speed case. We saw the type of modifications that are necessary in this adaptation scenario. Now 
we demonstrate how these modifications are predicted during retrieval. 

The mappings between the speed features of the candidate and target signify the need for a speed modifying 
specialist. Once a specialist has been found the mapping can be established. In addition, a measure of the 
quality of the mapping is based on the computational complexity of the specialist. But, what about predicting 
conflicts? In particular, how can the fuel availability problem be foreseen and an appropriate strategy identified 
to effect its repair ? 

The target problem is concerned with moving a two speed coil-car to a tension-reel (1). A pre-condition of 
movement is that fuel be available (2). The speed specialist will case the speed of the case to be increased. The 
influence that this increase in speed (3) exerts on the consumption of fuel (4) leads to the disablement of the fuel 
availability pre-condition. This configuration (boxed portion of Figure 4) matches the description for the 
blocked pre-condition strategy of section 2.2.2. After instantiating the strategy in the current context (unboxed 
region of Figure 4) it is associated with the speed specialist. During adaptation the action of the speed specialist 
is augmented with the repair action of this adaptation strategy; in this case adaptation consists of changing the 
speed of the case and adding a re-fuelling stop. 

Increase (Coil-Car, Speed) 0
 
At (Coil-Car, Tension-Reel) CD
 

GOAL Achieved-B.. ~-----l"~® 

1 tP,:~:~d:tiOn ~::.~ 18] 
1. 0: JConsume (Coil-Car, Fuel) 

~' . STATE 

Has (Coil-Car, Fuel) [3] ....~---------_/ 
Figure 4. An example failure configuration. 

Although simple, the example above does highlight the key features of our approach: the relevant local and 
global adaptation knowledge (in the form of specialists and adaptation strategies) is efficiently assembled during 
retrieval enabling an accurate judgement to be made on the adaptation requirements of a candidate case. 

4 Beneficial Implications 

Our approach ensures the retrieval of a case that requires minimal adaptation. This is in contrast to other CBR 
systems that do not directly couple retrieval and adaptation and, as such, can only estimate the usefulness of a 
given case in terms of its semantic similarity -- which is often not a very accurate measure of adaptability. 

Retrieval now carries out the preliminary adaptation work by identifying and instantaiting the specialists and 
strategies that will be necessary during the adaptation stage. The additional retrieval complexity which this 
involves is minimised by organising adaptation knowlcdge.in a manner that permits the efficient identification of 
the appropriate specialists and strategies. Moreover, any additional retrieval expense is offset by improved 
adaptation efficiency; not only is some of the adaptation work carried out during retrieval, but the case retrieved 
should be the easiest, of those available, to adapt. 

In addition, greater retrieval flexibility is also achieved. With conventional approaches, changes to the 
adaptation capabilities of a system will not be immediately reOected in the retrieval preferences of the system. 
Instead changes must be made to the retrieval heuristics to capture the new adaptation possibilities. In contrast, 
because the retrieval and adaptation stages are directly coupled in Deja Vu, any changes to its adaptation 
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the dependencies between domain elements can be built up. With these graphs it is  possible to describe both the
desired effects and side-effects of specialists. For example, the speed specialist changes the speed of a case.
According to the influences above it also effects the fuel consumption and fuel availability of the case.

Strategies are indexed into the domain knowledge-base by sets of influence ‘relations. During retrieval the
specialist associations activate a set of influences that capture their intended effect. In turn these influences
activate relevant strategy descriptions, indicating possible conflict problems. The retrieval context is  used to
instantiate these strategies which are then associated with the problematic specialists and mappings. In this way,
during retrieval, solution conflicts can be predicted and repairs scheduled.-

3.2.3 An  Example  Re t r ieva l  Scenar io

As an example, let us return to the problem of section 2.2.3 which was to design a two speed movement case
from a single speed case. We saw the'type of modifications that are necessary in this adaptation scenario. Now
we demonstrate how these modifications are predicted during retrieval.

The mappings between the speed features of the candidate and target signify the need for a speed modifying
specialist. Once a specialist has been found the mapping can be established. In addition, a measure of the
quality of the mapping is based on the computational complexity of the specialist. But, what about predicting
conflicts? In particular, how can the fuel availability problem be foreseen and an appropriate strategy identified
to effect its repair ?

The target problem 1s concerned with moving a two speed coil-car to a tension—reel (1). A pre--condition of
movement is that fuel be available (2). The speed specialist will ease the speed of the case to be increased. The
influence that this increase in speed (3) exerts on the consumption of fuel (4) leads to the disablement of the fuel
availability prev-condition. This configuration (boxed portion of Figure 4) matches the description for the
blocked pre—condition strategy of section 2.2.2. After instantia-ting the strategy in the current context (unboxed
region of Figure 4) it is associated with the speed specialist. During adaptation the-action of the speed specialist
is augmented with the repair action of this adaptation strategy; in this case adaptation consists of changing the
speed of the case and adding. a re-fuelling stop.
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Figure 4. An example failure configuration.

Although simple, the example above does highlight the key features of our approach: the relevant local and
global adaptation knowledge (in the form of specialists and adaptation strategies) is efficiently assembled during
retrieval enabling an accurate judgement to be made on the adaptation requirements of a candidate case.

4 Beneficial Implicat ions

Our approach ensures the retrieval of a case that requires minimal adaptation. This is in contrast to other CBR
system-s that do not directly couple retrieval and adaptation and, as such, can only estimate the usefulness of a
given case in terms of its semantic similarity -- which is often not a very accurate measure of adaptability.

Retrieval now carries out the preliminary adaptation work by identifying and instantaiting the specialists and
strategies that will be necessary during the adaptation stage. The additional retrieval complexity which this
involves 1s minimised by organising adaptation knowledge 1n a manner that permits the efficient identification of
the appropriate specialists and strategies. Moreover, any additional retrieval expense is offset by improved
adaptation efficiency; not only is some of the adaptation work carried out during retrieval, but the case retrieved
should be the easiest, of those available, to adapt.

In addition, greater retrieval flexibility is also achieved. With conventional approaches, changes to the
adaptation capabilities of a system will not be immediately reflected in the retrieval preferences of the system.
Instead changes must be made to the retrieval heuristics to capture the new adaptation possibilities. In contrast,
because the retrieval and adaptation stages are directly coupled in Déjä Vu, any changes to its adaptation
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capabilities will be immediately available to the retrieval system; the altered adaptation knowledge itself is used 
in retrieval. 

Finally, the representational requirements of the approach are domain independent and thus facilitate the 
adoption of the technique across a range of CBR application domains. 

5 Conclusions 

The main thrust of the paper centres on the description of an importarit issue in CBR, that of case selection. 
More precisely, it concentrates on a critical case selection criterion, that of adaptation efficiency. Through Deja 
Vu's coupling of the retrieval and adaptation processes, an efficient model of this selection criterion is realised. 
Succeeding where similar methods have failed in the past, an approach is described that can perform accurate and 
efficient algorithmic assessments of the adaptation requirements of retrieval candidates, without incurring the full 
cost of adaptation. Researchers have abandoned such algorithmic selection methods in the past because of the 
difficulty in predicting the potentially complex set of interactions that can arise during adaptation. Deja Vu has 
tackled these interaction issues head-on by advancing a mechanism for resolving such conflicts during adaptation 
while facilitating their prediction during retrieval. ' 

The result is an approach to retrieval which, improves retrieval accuracy and flexibility as well as overall 
problem solving performance, and can be applied to a range of case-based reasoning tasks. 
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Abstract 

Retrieval of cases is one important step within the case-based reasoning paradigm. We propose an 
improvement of this stage in the process 'model for finding most similar cases with an average effort 
of O[log2n], n number of cases. The basic idea of the algorithm is to use the heterogeneity of the 
search space for a density-based structuring and to utilize this precomputed structure for efficient 
case retrieval according to a given similarity measure. Therefore, we combine basic aspects of object­
oriented data bases, information retrieval, nearest neighbor classification, and case-based reasoning for 
the improvement of well-known techniques. The described approach is fully implemented and currently 
used in a case-based reasoning system (PATDEX) for diagnostic applications in technical domains. 

Introduction 

Retrieval of sufficiently similar cases is one of the main points in the process model of case-based reasoning, 
i.e. before selecting the most useful case(s) for adaptation, the case base must be restricted to a small set 
of reasonable candidates. Retrieval and selection of cases are often distinguished by the kind of features 
they use for case comparison (surface versus structural similarity: [16]). To detect really useful cases for 
the problem at hand, the selection step has to consider all available knowledge of the underlying domain. 
Thus, computing this structural similarity match is very expensive. Unfortunately, the retrieval step which 
deals with all cases in the case base must be computed very fast. Therefore, this step can only rely on the 
comparison of syntactical features (surface similarity) [14]. Basically, there are two different approaches 
to similarity assessment in case-based reasoning [22, 3]: the representational approach, proposed by [17] 
using a structured memory of cases, and the computational approach e.g. [25, 1], which is based on the 
computing of an explicit similarity function (cf. [29]). 

A naive approach to case retrieval would be to compute the surface similarity by comparing syntactical 
features of every case in the case base to the current problem according to a given similarity measure. 
The set of cases which must be examined by the following selection procedure is then determined by the 
m-most similar cases (m fixed), or by all cases exceeding a given similarity threshold 8. Many known 
case-based reasoning systems use this simple kind of approach (at least hidden in the implementation). 
Since the overall complexity of this retrieval procedure is O[n], n number of cases, for small case bases this 
strategy is reasonable. But, for increasing case bases this procedure leads to a too time-consuming process 
that restricts this approach· to toy domains.. 

Up to now, the improvement of the efficiency of the retrieval step has been the goal in different research 
projects. We can distinguish two main approaches: First, the brute-force methods using massively parallel 
architectures like [25, 19] which take up to one processing element for each case in the case base. Second, 
precomputation of indices (cf. [28]) for rapid access to the case base, e.g. [5, 26, 4]. The first approach 
needs a lot of hardware support for the speed up of the retrieval process. By using the second approach, 
it is difficult to guarantee the completeness of the retrieval according to the used similarity measure. 

The problem of determining the most similar cases (best matches) based on a given case description is 
well known as nearest neighbor search [8]. Cases can then be interpreted as points within a multidimensional 
search space where each attribute implements one dimension that can be searched with an associative 
procedure. The main idea of the proposed approach is to structure the search space based on its observed 
density and using this precomputed structure for efficient case retrieval according to the given similarity 
measure. We developed a retrieval mechanism [21] based on a k-d tree, a multi-dimensional binary search 
tree [6, 12, 7]. Within the k-d tree an incremental best-match search is used to find the m most similar 

• Funding for this research has been partially provided by the Commission of the European Communities (ESPRIT contract 
P6322, the INRECA project). The partners of INRECA are AcknoSoft (prime contractor, France), tecInno (Germany), Irish 
Multimedia Systems (Ireland), and the University of Kaiserslautern (Germany). 
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Abstract

Retrieval of cases is one important step within the case-based reasoning paradigm. We propose an
improvement of this stage in the process'model for finding most similar cases with an average effort
of O[Zoggn], n number of cases. The basic idea of the algorithm is to  use the heterogeneity of the
search space for a density-based structuring and to  utilize this precomputed structure for efficient
case retrieval according to  a given similarity measure. Therefore, we combine basic aspects of object—
oriented data bases, information retrieval, nearest neighbor classification, and case-based reasoning for
the  improvement of well-known techniques. The described approach is fully implemented and currently
used in a case—based reasoning system (PATDEX) for diagnostic applications in technical domains.

1 Introduction

Retrieval of sufficiently similar  cases is one of the main points in the process model of case-based reasoning,
i.e. before selecting the most useful case(s) for adaptation, the case base must be  restricted to a small set
of reasonable candidates. Retrieval and selection of cases are often distinguished by the kind of features
they use for case comparison (surface versus structural similarity: [16]). To detect really useful cases for
the problem at hand,  the selection step has to consider all available knowledge of the underlying domain.
Thus,  computing this structural similarity match is very expensive. Unfortunately, the retrieval step which
deals with all cases in the case base must be computed very fast. Therefore, this step can only rely on the
comparison of syntactical features (surface similarity) [14]. Basically, there are two different approaches
to similarity assessment in case-based reasoning [22, 3]: the representational approach, proposed by [17]
using a structured memory of cases, and the computational approach e.g. [25, 1], which is based on the
computing of an explicit similarity function (cf. [29]).

A naive approach to case retrieval would be  to compute the surface similarity by comparing syntactical
features of every case in the case base to the current problem according to a given similarity measure.
The set of cases which must be examined by the following selection procedure is then determined by the
m—most similar cases (m  fixed), or by all cases exceeding a given similarity threshold 6. Many known
case-based reasoning systems use this simple kind of approach (at least hidden in the implementation).
Since the overall complexity of this retrieval procedure is 0 [n ] ,  n number of cases, for small case bases this
strategy is reasonable. But ,  for increasing case bases this procedure leads to a too time-consuming process
that restricts this approachoto toy domains.

Up to now, the improvement of the efficiency of the retrieval step has been the goal in different research
projects. We can distinguish two main approaches: First,  the brute-force methods using massively parallel
architectures like [25, 1-9] which take up to one processing element for each case in the case base. Second,
precomputatiOn of indices (cf. [28]) for rapid access to the case base, e.g. [5, 26, 4]. The first approach
needs a lot of hardware support for the speed up of the retrieval process. By using the second approach,
i t  is difficult to guarantee the completeness of the retrieval according to the used similarity measure.

The problem of determining the most similar cases (best matches) based on a give-n case description is
well known as nearest neighbor search [8]. Cases can then be interpreted as points within a multidimensional
search space where each attribute implements one dimension that can be searched with an associative
procedure. The main idea of the proposed approach is to structure the search space based on its observed
density and using this  precomputed structure for efficient case retrieval according to the given similarity
measure. We developed a retrieval mechanism [21] based on a k—d tree, a multi-dimensional binary search
tree [6, 12, 7]. Within the k-d tree an incremental best-match search, is used to find the m most similar
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cases (nearest neighbors) within a set of n cases with k specified indexing attributes (dimensions). The 
search is guided by application-dependent similarity measures based on user-defined value ranges. The 
overall similarity measure is split into local measures for each value range and a global measure which is 
composed from the local ones [23]. A k-d tree as such is comparable to a discrimination net [10, 9] that 
has been optim:ized for similarity-based retrieval of cases. . 

Beyond the pure data structure the k-d tree approach includes procedures for optimizing the tree 
structure both from scratch, or incrementally. In addition, search procedures are available that take 
advantage of the known geometric boundaries along the various indexing dimensions. This is important 
for a correct search procedure to be efficient. Cases with missing attribute values can also be found in 
a reasonable amount of time. With respect to the special use of similarity measures in our approach, 
we are restricted to have a monotic and symmetric global similarity measure, monotonic and symmetric 
local similarity meas~res, and ordered value ranges. Nevertheless, ~imilarity measures as described in [4] 
and learning of improved similarity measures as described in [24] can be applied. Therefore, the proposed 
approach can be seen as a natural and reasonable extension of the PATDEX system, a case-based reasoning 
system for diagnostic applications [30]. PATDEX is an integrated subpart of the knowledge acquisition 
workbench MOLTKE [2] including systems for heuristic diagnosis as well as inductive and model-based 
reasoning. PATDEX uses knowledge-based methods to improve its similarity estimations. Therefore, it is 
able to process (among others) default values for symptoms, heuristic determination rules for symptom 
values being generated by an inductive learning system, and causal determination rules being generated 
by a knowledge compilation system. PATDEX can also handle abnormal and unknown symptom values. 
The main restriction of PATDEX is that its indexing mechanisms can only deal with symbolic value ranges 
and the processing of very large case bases could be a problem if there exist too many attribute values. 
Therefore, a multi-dimensional retrieval structure, namely a k-d tree, is used to overcome these problems. 

The associative search mechanism, as proposed below, is used for the basic indexing and retrieval 
task [12, 7], but has to be seen in the broader context of a: real complex application [4]. Therefore, 
many additional improvements have been implemented [21]. The improvements encompass the following: 
different weightings for the respective attributes, several different similarity measures within the same tree, 
learning of improved similarity measures, different kinds of predefined symbolic (local) similarity measures 
as well as handling of incomplete or missing data. Additionally, the matching of object-oriented case 
representations instead of flat feature-based attribute vectors is included. For reasons of efficiency, the 
retrieval procedure is built on top of an object-oriented data base (GEMSTONE). 

Building a k-d Tree 

The basic idea of the approach is to build a tree which splits the search space into parts which contain a 
number of similar cases according to the given similarity measure (Figure 1). 
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Figure 1: An exemplary two-dimensional search space and the according k-d tree 

Therefore, every node within the k-d tree represents a subset of the cases of the case base and the root 
node represents the whole case base. Every inner node partitions the case set into two disjoint subsets, 
storing the bounding values for each dimension (attribute). The leaves of the tree which contain a specific 
number of cases are called buckets. For the construction of the tree, we have to choose the best partitioning 
attribute which divides the case base into two equally sized parts [12]. The process continues recursively 
for each of the constructed subsets of the case base until only a few cases (bucket size) remain which are 
stored together in one bucket. The determination of the partitioning attribute (dimension) is the most 
crucial part of the approach. For' best speedup of the retrieval process the partition of the search space 
has to reflect the structure and the density of the underlying case bdSe. 
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cases (nearest neighbors) within a set of n cases with k specified indexing attributes (dimensions). The
search is guided by application-dependent similarity measures based on user-defined value ranges. The
overall similarity measure is split into local measures for each value range and a global measure which is
composed from the local ones [23]. A k-d tree as such is comparable to a discrimination net [10, 9] that
has been optimized for similarity—based retrieval of cases. '

Beyond the pure data structure the k—d tree approach includes procedures for optimizing the tree
structure both  from scratch, or incrementally. In addition, search procedures are available that take
advantage of the known geometric boundaries along the various indexing dimensions. This is important
for a correct search procedure ‘to be  efficient. Cases with missing attribute values can also be  found in
a reasonable amount of t ime.  With respect to the special use of similarity measures in our approach,
we are restricted to have a monotic and symmetric global similarity measure, monotonic and symmetric
local similarity measures, and ordered value ranges. Nevertheless, similarity measures as described in [4]
and learning of improved similarity measures as described in [24] can be applied. Therefore, the proposed
approach can be  seen as a natural and reasonable extension of the PATDEX system, a case—based reasoning
system for diagnostic applications [30]. PATDEX is an integrated subpart of the knowledge acquisition
workbench MOLTKE [2] including systems for heuristic diagnosis as well as inductive and model-based
reasoning. PATDEX uses knowledge-based methods to improve its similarity estimations. Therefore, i t  is
able to process (among others) default values for symptoms, heuristic determination rules for symptom
values being generated by an inductive learning system, and causal determination rules being generated
by a knowledge compilation system. PATDEX can also handle abnormal and unknown symptom values.
The main restriction of PATDEX is that i ts  indexing mechanisms can only deal with symbolic value ranges
and the processing of very large case bases could 'be a problem if there exist too many attribute values.
Therefore, a multi—dimensional retrieval structure, namely a k-d tree, is used to overcome these problems.

The associative search mechanism, as proposed below, is used for the basic indexing and retrieval
task [12, 7], but has to be seen in the broader context of a real complex application [4]. Therefore,
many additional improvements have been implemented [21]. The improvements encompass the following:
different weightings for the respective attributes, several different similarity measures within the same tree,
learning of improved similarity measures, different kinds of predefined symbolic (local) similarity measures
as well as handling of incomplete or  missing data.  Additionally, the matching of object—oriented case
representations instead of flat feature-based attribute vectors is included. For reasons of eflilciency, the
retrieval procedure is built on top of an object—oriented data base (GEMSTONE).

2 Building a k-d Tree
The basic idea of the  approach is to build a tree which splits the search Space into parts which contain a
number of similar cases according to the given similarity measure (Figure 1).
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Figure 1: An  exemplary two-dimensional search space and the  according k—d tree

(b)

Therefore, every node within the k—d tree represents a subset of the cases of the case base and the root
node represents the Whole case base. Every inner node partit ions the  case set into two disjoint subsets,
storing the bOundi-ng values for each dimension (at t r ibute) .  The leaves of the tree which contain a- specific
number of cases are called buckets. For the construction of the tree, we have to choose the best partitioning
attr ibute which divides the  case base into two equally sized parts [12]. The process continues recursively
for each of the constructed subsets of the case base until only a few cases (bucket size) remain which are
stored together in one  bucket. The determination of the  partitioning attribute (dimension) is the most
crucial part  of the  approach. For best speedup of the  retrieval process the partition of the search space
has to  reflect the structure and the density of the  underlying case base.
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To estimate the dispersion, we use a statistical measure, namely the interquartile distance that can be used 
for both numeric and ordered nominal attribute value ranges. 
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Figure 2: Basic idea of the partitioning 

While the median splits a given distribution of values into two equally-sized areas, quartiles split them into 
four (Figure 2). The first quartile ql (25% quartile) divides the "lower half' of the distribution into two 
equally-sized areas as the third quartile q3 (75% quartile) does with the "upper half' of the distribution. 
The median is denoted as the second quartile. The interquartile distance iqr is then computed as the 
distance between the first and the third quartile. The bigger the distance between these quartiles, the 
bigger is the dispersion of the attribute values. During tree construction that attribute having the maximal 
dispersion is selected as the discriminating attribute. Since we use similarities and not distances, we 
want to introduce the interquartile similarity as a new term. It denotes that we select that attribute for 
discriminating purposes where the respective quartiles have the lowest similarity (which corresponds to 
the maximal distance). 

procedure BUILD_TREE(setOfData);
 
local j, disc, minSimilarity, p;
 
begin
 

ifSize(setOfData) :S b then return MAKE-TERMINAL_NODE(setOfData); 
minSimilarity:=oo; 
for all coordinates A J (1 :S j :S k) do 

if SPREAD(Aj ,setOfData) < minSimilarity then 
begin 

minSimilarity:=SPREAD(Aj,setOfData ); 
disc:=j 

end; 
p:=MEDIAN(disc,setOfData); 
return
 

MAKE_NONTERMINAL_NODE
 
(disc,p, 
BUILD_TREE(LEFT_SUBFILE(disc,p,setOfData)), 
BUILD_TREE(RIGHT_SUBFILE(disc,p,setOfData)) 
); 

end BUILD_TREE. 

The procedure SPREAD(Ai,setOfData) computes the dispersion of the values of attribute Ai for the 
set of data setOfData using the interquartile similarity. The procedure MEDIAN(disc,setOfData) com­
putes the median of the discrlminating attribute disc based on the values of disc given by setOfData. 
LEFT_SUBFILE and RIGHT_SUBFILE generate the two partitions of setOfData with respect to the 
discriminating attribute disc and the discriminating value p. MAKE-TERMINAL_NODE and MAKE­
_NONTERMINALNODE generate leaf nodes and inner nodes, respectively. Every leaf node contains 
within its bucket at most b cases where b is the predefined bucket size. An inner node contains its discrim­
inating attribute disc, the respective discriminating value p as well as two pointers to its left and right 
successor node (leftSon and rightSon). 

The average case effort [20] for generating a k-d tree is O[k * n.* log2n], for the worst case O[k * n2]. 
The average costs for retrieving the most similar case are O[log2n], if the tree is optimal organized. For 
the worst case, the retrieval costs are O[n]. The retrieval mechanism is correct and complete in the sense 
that it always returns the m most similar cases according to the specified global similarity measure sim. 

Searching Similar Cases using a k-d Tree 

The search for similar cases in the k-d tree is done via a recursive tree search procedure according to the 
global similarity measure sim. Normally, there are no fully identical cases in the case base and we have 
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To estimate the dispersion, we use a statistical measure, namely the interquartile distance that can be used
for both numeric and ordered nominal attribute value ranges.
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While the median splits a given distribution of values into two equally—sized areas, quartiles split them into
four (Figure 2). The first quartile ql (25% quartile) divides the ”lower half” of the distribution into two
equally-sized areas as the third quartile (13 (75% quartile) does with the ”upper  half” of the distribution.
The median is denoted as the second quartile. The interquartile distance z'qr is  then computed as the
distance between the  first and the third quartile. The bigger the distance between these quartiles, the
bigger is the  dispersion of the attribute values. During tree construction that attribute having the maximal
dispersion is selected as the discriminating attribute. Since we use similarities and not distances, we
want to introduce the  interquartile similarity as a new term. I t  denotes that we select that attribute for
discriminating purposes where the respective quartiles have the lowest similarity (which corresponds to
the maximal distance).

procedure BUILD_TREE(set0fData);
local 3', d isc ,  minSz’mz’larity, p;
begin

if  Size(setOfData) g b then return MAKE_TERMINAL_NODE(setOfData);
minSimilar i ty:=oo;
for all coordinates AJ (1 S j S 1:) do

if SPREAD(AJ-,set0fData) < minSimz’larz‘ty then
begin

minSimilari tyzzsPREAD(A‚-‚set0fData);
disc := j

end;
p:=MEDIAN(disc,sctOfData);
return

MAKE_NONTERMINAL-NODE
(disc,p,
BUILD_TREE(LEFT_SUBFILE(disc,p,setOfData)),
BUILD_TREE(RIGHT..SUBFILE(disc,p,setOfData))
);

end BUILD_TREE.

The procedure SPREAD(A_„-,setOfData) computes the dispersion of the values of attribute A,- for the
set of data setOfData using the interquartile similarity. The procedure MEDIAN(disc,sct0fData) com-
putes the median of the discriminating attribute disc based on the values of disc given by seiOfData.
LEFT-SUBFILE and RI-GHT_SUBFILE generate the two partitions of sctOfData with respect to the
discriminating attribute disc and the discriminating value p .  MAKE_TERMINAL_NODE and MAKE-
_NONTERMINAL_NODE generate leaf nodes and inner nodes, respectively. Every leaf node contains
within its bucket at most b cases where b is the predefined bucket size. An inner node contains its discrim-
inating attribute disc, the respective discriminating value p as well as two pointers to  its left and right
successor node (leflSon and rightS’on).

The average case effort [20] for generating a k-d tree is 0[k * n,* 10927;], for the worst case 0U: * n2].
The average costs for retrieving the most similar case are 0[Ioggn], if the tree is optimal organized. For
the worst case, the retrieval costs are 0[n]. The retrieval mechanism is correct and complete in the sense
that i t  always returns the m most similar cases according to  the specified global similarity measure Sim.

3 Searching Similar Cases using a k-d Tree
The search for‘ similar cases in the k-d tree is done via a recursive tree search procedure according to the
global similarity measure s im.  Normally, there are no fully identical cases in the case base and we have
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to look for the most similar ones. Using the tree as a kind of binary search tree leads to a bucket where 
a specific number of cases are stored. At this stage, it is necessary to compute the similarity of each case 
stored in the bucket using the predefined similarity measure sim. If we are looking for the m most similar 
cases we can build up a queue containing these most similar cases. Using this queue we draw a hyperball 
around the given problem that includes the m most similar cases found in the current bucket. Thus, 
every case which is at least as similar as the examined ones must be within this constructed k-dimensional 
hyperball. 

Figure 3 describes the basic idea. In this example, we have a cu.rrent problem called Xq (query) and 
up to four similar cases PQC[l] .. .PQG[4] found in one bucket. Cases at least as similar as PQG[4] like 
X but not examined yet appear also in the 2-dimensional ball. The single point outside of the ball is not ' 
similar enough and has not to be considered. 

• 

Figure 3: Basic idea of the bounds tests: building a hyperball 

For an efficient implementation of this basic idea we use two test procedures [12]: BALL-WITHIN­
BOUNDS (BWB) and BOUNDS-OVERLAP-BALL (BOB) (Figure 4). These procedures check whether 
it would be reasonable to explore certain areas of the search space in more detail, or not. Such tests can 
be carried out without retrieving the respective cases. The geometric bounds of the considered subspaces 
are used to compute a "similarity interval" whose upper bound then "answers" the question to explore; 
or not. For finding the m most similar cases for a given working case (or query case), we apply recursive 
tree search. Thus, as input we need the query case X q , the number m of most similar cases, the k-d 
tree represented by its root node, and the global similarity measure sim. During search a priority queue 
PQG is continuously updated which includes the m most similar cases (while PQC[n] denotes the nth 
most similar case, PQS[n] denotes the actual similarity value of the nth most similar case). If the recursive 
search procedure examines a leaf node, the similarity of all included cases is computed and, if necessary, 
the priority queue PQG is updated. If the examined node is an inner node, then the search procedure is 
recursively called for that son node which should include the query case. If this call terminates, it is tested 
whether it is also necessary to examine the other son node by using the BOB test . 

.12+­ --1­ -+ 

Al Al 

Figure 4: Basic idea of the BOB and BWB test 

The BOB test is TRUE if the cases of the actual tree node have to be explored. The inner nodes are 
correct generalizations of all the cases they represent in the sense that they include the geometric (upper 
and lower) bounds (for every indexing attribute) which correspond to the respective subspace. 

BOB {=} Sim(Xmin, X q ) 2:: PQS[m] ( == Sim(PQC[m], X q ) ) 

These geometric bounds are used to compute a similarity interval whose upper bound then answers the 
question to explore, or not. The closest point Xmin within the actual node's subspace is computed as the 
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to look for the most similar ones. Using the tree as a kind of binary search tree leads to a bucket where
a specific number of cases are stored. At this stage, it is necessary to compute the similarity of each case
stored in the bucket using the predefined similarity measure sim. If we are looking for the m most. similar
cases we can build up a queue containing these most similar cases. Using this queue we draw a hyperball
around the given problem that includes the m most similar cases found in the current bucket. Thus,
every case which is at least as similar as the examined ones must be within this constructed k-dimensional
hyperball.

Figure 3 describes the basic idea. In this example, we have a current problem called X9 (query) and
up to four similar cases PQC’ [1] . . .PQC  [4] found in one bucket. Cases at least as similar as PQC[4] like
X but not examined yet appear also in the 2-dimensional ball. The single point outside of the ball is not '
similar enough and has not to be considered.
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Figure 3: Basic idea of the bounds tests: building a hyperball

For an efficient implementation of this basic idea we use two test procedures [12]: BALL—WITHIN—
BOUNDS (BWB) and BOUNDS—OVERLAP—BALL (BOB) (Figure 4). These procedures check whether
it would be reasonable to explore certain areas of the search space in more detail, or not. Such tests can
be carried out without retrieving the respective cases. The geometric bounds of the considered subspaces
are used to  compute a ”similarity interva ” whose upper bound then ”answers” the question to explore;
or not. For finding the In most similar cases for a given working case (or query case), we apply recursive
tree search. Thus, as input we need the query. case X9, the number m of most similar cases, the Ic—d
tree represented by its root node, and the global similarity measure sim. During search a priority queue
PQC is continuously updated which includes the m most similar cases (while PQC[n] denotes the nth
most similar case, PQS[n] denotes the actual similarity value of the nth most similar case). If the recursive
search procedure examines a leaf node, the similarity of all included cases is computed and, if necessary,
the priority queue PQC is updated. If the examined node is an inner node, then the search procedure is
recursively called for that son node which should include the query case. If this call terminates, it is tested
whether it is also necessary to examine the other son node by using the BOB test.
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Figure 4: Basic idea of the BOB and BWB test

The BOB test is TRUE if the cases of the actual tree node have to  be explored. The inner nodes are
correct generalizations of all the cases they represent in the sense that they include the geometric (upper
and lower) bounds (for every indexing attribute) which correspond to the respective subspace.

BOB «:> swam-n, Kg) 2 PQSlm] ( = SitQCIml, Xq) )

These geometric bounds are used to compute a similarity interval whose upper bound then answers the
question to explore, or not. The closest point Xmgn within the actual node’s subspace is computed as the
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projection onto the actual node's geometric bounds (Figure 4). Xmin is on the actual node's bounding 
box on the edge facing the query case X q • If there is no overlapping in any of the k dimensions between 
the node's bounding box and the k-dimensional ball round X q , then X min is a corner of the bounding 
box. If X q is within the bounding box then X q = Xmin (Figure 4). Before the recursive search procedure 
terminates, the BWB test is applied. This test is TRUE if the k-dimensional ball round X q is completely 
within the bounding box of the actual tree node (Figure 4). 

BWB {=} Sim(Xi J ), X q ) < PQS[m] '/\ Sim(X~j),X q ) < PQS[m] "Ij = 1, ... , k 

In this case, no overlapping with other bounding boxes is possible. Thus, the search is finished, and the m 
most similar cases for the current problem according the given global similarity measure sim are found. 

procedure SEARCH(node);
 
local p, d, temp;
 
begin
 

if isTerminal(node) then (* node is a leaf no'de *) 
begin
 

"test the cases in node,bucket and update PQC, PQS";
 
(* test if the search can be finished *)
 
if BALL- WITHIN-BOUNDS then done else return
 

end; 
d:=node.discriminator;
 
p:=node,partitionValue;
 
(* recursive call of the son node that contains X q *)
 
if Xq[d] :s; p then
 
begin
 

temp:=Upper[d]; Upper[d]:=p;
 
SEARCH(noddeftSon};
 
Upper[d]:=temp;
 

end
 
else begin
 

temp:=Lower[d]; Lower[d]:=p;
 
SEARCH(node.rightSon);
 
Lower[d]:=temp;
 

end
 
(* recursive call of the other son node *)
 
if Xq[d] :s; p then
 
begin
 

temp:=Lower[d]; Lower[d]:=p;
 
if BOUNDS-OVERLAP-BALL then SEARCH(node.rightSon);
 
Lower[d]:=temp;
 

end
 
else begin
 

temp:=Upper[d]; Upper[d]:=p;
 
if BOUNDS-OVERLAP-BALL then SEARCH(node.leftSon);
 
Upper[d]:=temp;
 

end;
 
(* test if search can be finished *)
 
if BALL- WITHIN-BOUNDS then done else return;
 

end SEARCH. 

Summary 

Case-based reasoning using a simple case representation and avoiding case adaptation (which is, e.g. 
the case for case-based fault diagnosis in engineering systems) is comparable to conceptual clustering 
in the sense that incremental' concept formation as described in [13] can be viewed as a special variant 
of case-based reasoning, i,e. from a very abstract point of view both approaches are identical. As a 
consequence, these two approaches might benefit from one another if the above assumptions are fulfilled. 
In fact, we currently experiment with an alternative for determining the partitioning attribute and the 
dispersion of the attribute values which is based on the COBWEB approach [11]. But, our approach 
proposed here significantly differs from conceptual clustering because class-dependent information is used 
to dynamically decide on the selection of an appropriate global similarity measure using the well informed 
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projection onto the actual node’s geometric bounds (Figure 4) .  Xmgn is on the actual node’s bounding
box on the edge facing the query case Xq .  If there is no  overlapping in  any of the k dimensions between
the node’s  bounding box and the k—dimensional ball round X9 ,  then Xmm is- a corner of the bounding
box. If Xq is within the bounding box then X q : X,.m-fl (Figure 4) .  Before the recursive search procedure
terminates, the BWB test is applied. This test is TRUE if the k—dimensional ball round Xq is completely
Within the bounding box of the actual tree node (Figure 4).

BWB <=} Sim(XgJ),Xq) < q[m] ‘ A Sim(xgi),xq) < PQS[m} w = 1,...,k
\—

In this case, no overlapping with other bounding boxes is possible. Thus, the search is finished, and the m
most similar cases for the current problem according the given global similarity measure sim are found.

procedure SEARCH(node);
local p,  d ,  temp;
begin

i f  isTerminal(node) then ("= node is a leaf node *)
begin

” test the cases in nodebacket  and update PQC, PQS”;
(* test if the search can be finished *)
if BALL— WITHIN—BOUNDS then done else return

end;
d :=node .d i sc r imina tor ;
p :=node.par t i t ionValae ;
(* recursive call of the son node that contains X9 *]
if X q[d]  g p then
begin

temp::Upper[d]; Upper[d]:=p;
SEARCH(node.leftSon);
U pper[d]:=temp;

end
else begin

temp:=Lower[d]; Lower[d]:=p;
SEARCH(node. r ightSon) ;
Lower[d]:=temp;

end “\
(* recursive call of the other son node *)
if Xq[d] g p then
begin

temp:=Lower[d]; Lower[d]:=p;
if BO UNDS—OVERLAP—BALL then SEARCH(node.rightSon);
L0wer[d]:=temp;

end
else begin

temp:=Upper[d];  Upper[d]:=p;
if BOUNDS—OVERLAP-BALL then SEARCH(node.IeftSon);
Upper[d]:=temp;

end; .
(* test if search can be finished *)
if BALL— WITHIN—BOUNDS then done else return;

end SEARCH.

4 Summary
Case-based reasoning using a simple case representation and avoiding case adaptation (which is, e.g.
the case for case-based fault diagnosis in engineering systems) is comparable to conceptual clustering
in the sense that incremental concept formation as described in [13] can be  viewed as a special variant
of case-based reasoning, i.e. from a very abstract point of view both approaches are identical. As a

, consequence, these two approaches might benefit from one another if the above assumptions are fulfilled.
In fact, we currently experiment with an. alternative for determining the partitioning attribute and the
dispersion of the attribute values which is based on the COBWEB approach [11]. But,  our approach
proposed here significantly differs from conceptual clustering because class—dependent information is used
to dynamically decide on the selection of an appropriate global similarity measure using the well informed
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PATDEX similarity measures. In addition, case retrieval via k-d trees is only one subcomponeIit of the 
PATDEX system being combined with other techniques. The combination of information retrieval/nearest 
neighbor classification and CBR has been of increasing interest recently e.g. [27]. Nevertheless, we are not 
aware of any similar approach which is also correct, complete and efficient. 
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PATDEX similarity measures. In  addition, case retrieval via k-d trees is only one subcomponen't of the
PATDEX system being combined with other techniques. The combination of information retrieval /nearest
neighbor classification and CBR has been of increasing interest recently e.g. [27]. Nevertheless, We are not,
aware of any similar approach which is also correct, complete and efiicient.
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Abstract. In this short paper, we assert that the implementation of more sophisticated, "second 
generation" CBR applications can benefit from the adoption of high-level knowledge representation 
languages like NKRL ("Narrative Knowledge Representation Language"), which can be used to 
describe the internal structure of complex cases. After having evoked very succinctly the main 
characteristics of NKRL, we mention briefly the' possible use of this language for typical CBR 
applications like analogical reasoning or indexing. 

1	 Introduction 

In the practice of case-based reasoning (CBR) techniques, the "flat structure" paradigm seems to be largely 
diffused: accordingly, cases are represented simply as flat lists of features without internal structure. On the other 
hand, even if we are aware of several theoretical proposals - see, e.g., [1] - and prototypical systems - see, 
e.g., [2] - concerning the use of more structured representations like event concept coherence networks (EEC 
networks) or frames, there is no agreement on how to impose more complex internal structuring on cases, and 
for what reasons. This attitude is in good agreement with a well-diffused indifference, in the CBR milieu, 
towards the knowledge representation problems. 

In this short paper, we affirm on the contrary that, (at least) for domains like the socio-economic-political 
one (according to the broadest meaning of these words), the possibility of putting to work more sophisticated, 
"second generation" CBR applications can be facilitated by the possibility of making use of more powerful 
knowledge representation tools. If, on one hand, in a socio-economic-political context, it is difficult to avoid the 
comparison of information given in the form of cases, examples or stories, it is also evident that the 
"knowledge" to be represented is, here, too complex and informal to fit well into the "flat" representation which 
can be sufficient, e.g., for CBR applications in the diagnostic style. 

2	 A Short Description of NKRL 

In this Section, we will evoke briefly the main characteristics of a high-level, implemented, ''Narrative'' 
Knowledge Representation Umgl,lage (NKRL), see [12, 13] for more details. The aim is here that of suggesting 
that the use of NKRL in order to describe particularly complex "cases" can be of some benefit for the CBR 
community. NKRL - which, inter alia, has been recently used in two CEC-funded programs dealing with 
complex socioeconomic data, NOMOS ("knowledge acquisition/or NOrMative reasOning Systems", ESPRIT 
P5330) and COBALT ("COnstruction 0/ knowledge BAses from natural Language documenTs in the financial 
domain ", LRE P61011) - represents the last incarnation of a body of knowledge representation principles 
originally developed at CNRS (the French National Centre for Scientific Research) in the RESEDA project and 
its derivatives: these principles have definitely proved suitable for the representation of complex ("narrative') 
information. 

2.1	 The Four Components 

In NKRL - which presents some rough similarities with the standard hybrid and terminological 
languages in the KL-ONE style, see, e.g., [3] - we make use of four neatly differentiated but interrelated 
components: 

•	 The "descriptive component"concems the representation of the semantic content of NL clauses 
describing some general classes of real-world events. In the context of the descriptive component, the 
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2 . 1 The Four Components

In NKRL _— which presents some rough similarities with the standard hybrid and terminological
languages in the KL-ONE style, see, e.g., [3] -- we make use of four neatly differentiated but interrelated
components :

° The “descriptive component” concerns the representation of the semantic content of NL clauses
describing some general classes of real-world events. In the context of the descriptive component, the
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events taken into consideration must be structured events. i.e.• characterized by the explicit indication of 
an actor. an object, an instrument, etc. Examples of such general classes may be "moving a physical 
object", "formulate a need", "having a negative attitude towards someone". "spreading academic 
knowledge", "be present somewhere". "come in possession of new resources", etc. The formal, NKRL 
representations of such general NL expressions are called ''templates''. Of course, for each template, its 
formal realization is independent of the surface structures of the possible, different NL utterances which 
can be used to describe the corresponding class of events. 

•	 The ''factual component" gives the formal representation of the NL narrative expressions relating some 
specific events - characterized, at least implicitly, by precise spatial and temporal coordinates - which 
constitute the concrete instantiations of the general class of the descriptive component. It concerns, 
therefore, the representation of NL expressions such as : 'Tomorrow, I will move the wardrobe", 'This 
morning, Lucy was looking for a taxi", ''Mr. Smith has fired Mr. Brown", ''Last year, he gave a course 
of lectures on Greek philosophy", ''Peter lives in Paris", ''Company X, located in Geneva. has taken the 
control of Company y", etc. The NKRL expressions of these narrative statements take the name of 
"predicative occurrences". "Binding occurrences" are used to represent the logico-semantic links which 
can exist between the original events (e.g., a network of causal relationships). 

•	 The "definitional component" concerns the formal representation of the main defining properties of all 
the general notions (at least partially proper to a specific·application domain) which can be used in the 
framework of the descriptive and factual components. The corresponding NKRL data structures are called 
"concepts". Therefore. the definitional tools are used to represent in .a concept format the essential 
properties of general entities like "physicaCobject", "taxc" (the general class including all the taxis, 
not a specific cab), "academic_blOwledge", ''resources_'', etc. 

•	 The "enumerative component" concerns the formal representation of the instances (concrete examples) of 
the general notions (concepts) pertaining to the definitional component ; the NKRL formal 
representations of such instances take the name of "individuals". Therefore, individuals are created by 
instantiating (some of) the properties of the concepts of the definitional component. Individuals are 
characterized by the fact of being countable and of possessing unique conceptual labels ("smith_", 
"general_motors", "course_on_greek_philosophy_27") : two individuals associated with the saine 
NKRL description but having different labels will be different individuals. 

2.2	 Representing temporal information 

Particular attention has been paid, in a descriptive and factual components framework, to the efficient NKRL 
representation of temporal information. This possibility is of particular relevance in a CBR context, given that 
cases in most domains, and particularly in the socio-economic-political context, carry time-dependent 
information, and should therefore display some kind of ordering of (some of) their components - but in CBR 
practice this is most often built into the software to analyze the cases and is not explicit in the cases themselves. 
Exceptions to this last approach are described. e.g., in [4]. 

In the context of the representation of temporal information. NKRL's original contributions are. e.g., the 
notions of "category" and "perspective". The "category of dating" characterizes the association of a temporal 
marker to the beginning (the category is here the "posteriority". or "subsequence"), the end ("anteriority", or 
"precedence") or a particular moment ("contemporaneity", or "coincidence") of a given elementary event. The 
"perspective of dating" is used to define the degree of precision (for example. an incertitude expressed by a pair of 
dates) with which a given temporal marker is known. It can be shown that, inter alia, this formalism a) permits 
an integration of the "point" and the "interval" paradigms; b) provides some tools (based on the concept of 
"perspective") in order to deal with the ''fuzziness'' which. in ~ncrete situations, is often associated with the 
description of a temporal marker. 

For a rough idea of the NKRL representation of temporal information, see, infra, Section 2.5 ; a recent 
paper on this subject is [14]. 

2.3	 The NKRL data structures 

The data structures supporting the four components are highly homogeneous, given that templates, occurrences, 
classes and individuals are all implemented as "structured objects" identified by an "OlD" (object identifier). More 
precisely, the definitional and enumerative data structures are built up in a ''frame'' style. The structured 
elementary objects of the descriptive and fac.tual components. on the other hand, are centered around a (unique) 
"semantic predicate" having its arguments introduced by means of "roles" as SUBJ(ect), OBJ(ect), SOURCE, etc. 
For example, the elementary occurrence (factual component) translating the NL sentence "John gives a book to 
Mary" will include a semantic predicate corresponding roughly to "coming in possession of something after a 
transfer": "Mary" will be the SUBJ of "coming in possession", "book" the OBJ and "John" the SOURCE. The 
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descriptive and the definitional components are both implemented as hierarchies (or, more precisely, DAGs, 
Directed Acyclic Graphs) of structured objects. 

2.4 The seven semantic predicates 

According to what we said until now, the NKRL's structures are very general, and able to represent under the 
form of "cases" any sort of narrative context. Moreover, if this context is, as in the CEC-funded projects 
NOMOS and COBALT, a socio-economic-political one, where the main characters are human beings or social 
bodies, experience has shown that it is possible to make use, in the templates and occurrences of the descriptive 
and factual components, of only seven semantic predicates corresponding to very general, prototypical categories 
of human attitudes. They are described in Table 1. 

Predicate 

BEHAVE 

EXIST 

EXPERIENCE 

MOVE 

OWN 

PRODUCE 

RECEIVE 

Mnemonic Description 

A character adopts a particular attitude, or acts to obtain a particular result 

To be present, also metaphorically, in a certain place. 

A character is affected by some sorts of good, bad or neutral news or events. 

The displacement of a person or a physical object, the transmission of a 
message . 

To have, to hold, to possess . 

Cause to exist or occur, with reference to material or immaterial entities, 
like theproduction of a service. 

To acquire, to obtain, without any connotation of mandatory or permanent 
possession 

Table 1. NKRL semantic predicates 

In this case, thanks to the reduced number of basic semantic predicates, all the legal descriptive and 
factual structures and their practical modalities of use can be fully described in a "catalog" (see, e.g., the so-called 
''Stouder's catalog" [10]), thus allowing the use of these structures according to a coherent, reproducible and 
shareable strategy. Moreover, if necessary, new NKRL descriptive and factual structures can easily be derived 
from those already described in the "catalog". 

2.5 An Example of NKRL Representation 

As a very simple example of NKRL coding of a "case", let us consider the NKRL representation of the 
information: "Kurt Waldheim flies today to Baghdad in order to obtain from Saddam Hussein the release of the 
95 Austrian hostages [25th of August, 1990]". 

The coding will give rise to three occurrences (factual component), see Fig. 1 : two predicative occurrences, 
identified with the labels "a" and "b", and a binding occurrence, "c". This last occurrence is realized using GOAL, 
one of the four binding operators pertaining to the NKRL "taxonomy of causality", see, e.g., [i3 : 705]. 
Occurrences "a" and "b" have two (mandatory) temporal determiners, the two date blocks "date-I" and "date-2" 
which are used to register the dating elements giving the limits of the temporal interval associated with the 
occurrence. In the case of the occurrence labelled as "a", only the first data block is filled because the situation 
described in this unit (Kurt Waldheim leaving Vienna on August 25th in order to meet Saddam Hussein in 
Baghdad) may be represented as a "point" on the time axis. In the occurrence "b", the two blocks are empty 
because, in the particular wording of the original piece of information (e.g., a news agency item about the 1990 
Gulf crisis), the actual release of all the Austrian hostages is not stated expressly (the final result of the Kurt 
Waldheim's mission was still unknown when the notice has been issued). According to the original information, 
the situation represented by "b" must, therefore, be interpreted as "conjectural", i.e., it represents only, in a way, 
the "intentions" linked with the Waldheim's mission. 
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3 

In "a" and ''b'' of Fig. I, the arguments of the NKRL semantic predicates (entities of the domain) pertain to 
two categories: "KurCWaldheim", "Saddam_Hussein", "flighC7", "austrian_ho,stages_I" (the specific hostages 
of Austrian nationality in the "1990 Gulf crisis" context) are "individuals" (enumerative component) ; "release_" 
is a "concept" (definitional component hierarchy) which subsumes all sorts of possible incarnations of the 
general concept of setting a person free (we shall learn afterwards that the hostages have been handed over to Kurt 
Waldheim, and that they left Iraq usingits own presidential jet). The argument introduced by the DEST(ination) 
role in ''b'' is a structured one ("expansion"), realized by using the quantifying attribute ''95'' inside a 
"SPEOF(ication)" list ; SPECIF is the "attributive operator". The colon code, ":", introduces the ''location 
determiner" linked with a particular argument. In a MOVE construction, like "a", concerning the displacement of 
a character - in NKRL, we systematically represent this situation by expressing that the character, as a 
SUB(ject), moves himself as an OBJ(ect) - the location determiner (possibly, a list) associated with the 
SUB(ject) argument represents the initiallocation(s), and the determiner linked with the OBJ(ect) argument the 
finallocation(s). 

-------------~----------------------~---------------------------, 

a) MOVE: SUBJ Kurt_Wal~eim : [Wien_] 
OBJ Kurt_Waldheim: [Bagbdad_] 
DEST Saddam_Hussein : [Baghdad_] 
MODAL flighC7 
[date-I: 25_augusC I990 ] 
[date-2 : ] 

b) PRODUCE: SUBJ Saddam:...Hussein: [Baghdad_] 
OBJ release~ 
DEST ( SPECIF austrian_hostages_1 95 ) : [Iraq] } 
[date-I: ] 
[date-2 : ] 

c) (GOAL ab) 

Fig. 1. Predicative occurrences and binding occurrences. 

The NKRL inference procedures 

Strictly associated with the NKRL environment are different sorts of "standard" inference procedures. I will only 
evoke here the "transformations", i.e. a class of inference procedures which are proper to the descriptive and 
factual contexts, see, e.g., [11]. Transformations are declarative rules which allow a system organized around a 
conceptual knowledge representation language in the NKRL style to come up with information that was not 
exactly what was asked for, but nevertheless could be considered as a "plausible answer" to a given formal query. 
This result can be obtained by searching for semantic affinities between what is requested and what is really 
known by the system; the fundamental principle adopted is then to transform the original query into one or 
more different queries, which are semantically close to the ori~nal one. Therefore, transformations allow us to 
implement an original form of analogical reasoning. ' 

To give a very simple example, suppose that, working in the context of an hypothetical knowledge base 
about university professors, we should want to ask a question like: 'Who has lived in the United States" even 
without an explicit representation of this fact in the base. If the knowledge base contains some information 
about the degrees obtained by the professors, we can tell the user that, although we do not explicitly know who 
lived in the States, we can nevertheless look for people having an American degree. This last piece of 
information, obtained by transformation of the original query, would indeed normally imply that some time was 
spent by the professors in the country, the United States, which issued their degree. 

Without entering now in too many formal details, we can say that transformations are made up of a ''left 
hand side" - formulation in a template (descriptive component) format of the linguistic expression which is to 
be transformed - and one or more "right hand sides" - representation in the same style of one or more 
linguistic expressions that must be substituted for the given one. A transformation can, therefore, be expressed 
as : "A (left hand side) --. B (right hand side) ". The "transformation arrow", "--. ", has a double meaning: 
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In “a” and “b” of Fig. l ,  the arguments of‘ the NKRL semantic predicates (entities of the domain) pertain to
two categories : “Kurt__Waldheim”, “Saddam_Hussein”, ‘flight_7”, “aust1ian_hqstages_l” (the specific hostages
of Austrian nationality in the “1990 Gulf crisis” context) are “individuals” (enumerative component) ; “release_”
is  a “concept” (definitional component hierarchy) which subsumes all sorts of possible incarnations of the
general concept of setting a person free (we shall learn afterwards that the hostages have been handed over to Kurt
Waldheim, and that they left Iraq using2its own presidential jet). The argument introduced by the DEST(ination)
role in “b” is a structured one (“expansion”), realized“ by using the quantifying attribute “95” inside a
“SPECIF(ication)” list ; SPECIF is  the “attributive operator”. The colon code, “2”, introduces the “location
determiner” linked with a particular argument. In a MOVE construction, like “a”, concerning the displacement of
a character -— in NKRL, we systematically represent this situation by expressing that the character, as a
SUB(ject), moves himself as an OBJ(ect) -— the location determiner (possibly, a list) associated with the
SUBQ'ect) argument represents the initial location(s), and the determiner linked with the OBJ(ect) argument the
final lomtion(s).

a) MOVE : SUBJ Kurt_Waldheim: [Wien__]
OBJ Kmt_Waldheim : [ Baghdad_ ]
DEST Saddam_Hussein : [Baghdad_ ]
MODAL flight]
[date-1 : 25__august_l990 ]

. [ date-2 : ]

b) PRODUCE : SUBJ Saddam-_Hussein : [Baghdad_ ]
OBJ release—_;
DEST (SPECIF austrian_hostages_1 95 ) : [ Iraq]  }
[ date-1 : ]
[ date-2 : ]

0) (GOAL ab)

Fig. 1. Predicative occurrences and binding occurrences.

3 The NKRL inference procedures

Strictly associated with the NKRL environment are different sorts of “standar ”inference procedures. I will only
evoke here the “transformations”, i.e. a class of inference procedures which are proper to the descriptive and
factual contexts, see, e.g., [ l  l]. Transformations are declarative rules which allow a system organized around a
conceptual knowledge representation language in the NKRL style to come up with information that was not
exactly what was asked for, but nevertheless could be considered as a “ lausible answer” to a given formal query.
This result can be obtained by searching for semantic affinities between what is requested and what is really
known by the system ; the fundamental principle adopted is  then to transform the original query into one or
more different queries, which are semantically close to the original one. Therefore, transformations allbw us to
implement an original form of analogical reasoning. '

To give a very simple example, suppose that, working in the context of an hypothetical knowledge base
about university professors, we should want to ask a question like : “Who has lived in the United States” even
without an explicit representation of this fact in the base. If the knowledge base contains some information
about the degrees obtained by the professors, we can tell the user that, although we do not explicitly know who
lived in  the States, we can nevertheless look for people having an American degree. This last piece of
information, obtained by transformation of the original query, would indeed normally imply that some time was
spent by the professors in the country, the United States, which issued their degree.

Without entering now in too many formal details, we can say that transformations are made up of a “left
hand side” —- formulation in a template (descriptive component) format of the linguistic expression which is  to
be transformed ~- and one or more “right hand sides” — representation in the same style of one or more
linguistic expressions that must be substituted for the given one. A transformation can, therefore, be expressed
as : “ A (left hand side) —-> B (right hand side) ”. The “transformation arrow”, “ -a- ”, has a double meaning :
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• an operational meaning, where the arrow indicates the direction of the transformation: the left hand side 
A is dropped and replaced by the right hand side B ; 

• a logical meaning, where the arrow indicates that the information obtained through the use of B 
implies the one obtained from A. 

In reality, the "always true" implications (noted as " B ~ A "in NKRL, where we assume that the symbol 
""~ represents the "implication arrow") are not very frequent. Most transformations found in real world 

applications represent in fact "modalized implications" (noted as "B *~ A ", which means "it is possible that B 
implies A"). An example of this last type of transformations is given by the transformation t1 in Fig. 2, 
which will permit us to deal with the informal example above about "university professors" ; the left and hand 
right side of t1 are normal templates of the descriptive component, derived by basic templates described in the 
"catalog". Transformation t1 says: "If someone ( x ) has obtained a title from an official authority by means of 
an official document, then it is possible that he has been physically present at that moment in the place ( k) 
where the authority is located". 

This rule, for example, is not always valid.in the case of an university degree (the degree could be obtained 
in a correspondence school, etc.). Nevertheless, it is easy to see that, in this case, the "semantic distance" 
between an "always true" implication and a "modalized" one is not too important, as it is always possible to 
change t1 into a true transformation by the addition of a few constraints on the variable p, for instance the 
"disequation" : ''p :;t; < obtainable_bYJorrespondence_degree > ". Please note that all the constraints are realized 
by making use of concepts of the NKRL definitional component. More examples, and a complete semi-formal 
theory of transformations, can be found in [11]. 

tl) EXIST SUBJ x [k] OWN SUB] x 
OBJ p 
SOURCE q [k] 
MODAL r 

x = < human_being_ > 
p = < title_ > 
q = < authority_ > 
k = < location_ > 
r = .< official_document> 

Fig. 2. A simple example of "transfonnation:' rule. 

In a CBR context, inference rules of the "transformation" type can demonstrate very useful for (at least) a) 
creating a very powerful unification module, based on some sort of "extended match operations", for comparing 
the (NKRL) description of a new case to that of the cases stored in a case ba,se ; b) executing typical CBR 
operations, see [6], like the estimation of similarities or the adaptation of old cases. 

4. Conclusions 

We can coriclude this short paper by mentioning another interesting aspect, in a CBR context, of an NKRL 
approach. 

If we consider, in fact, the CBR indexing problem, the use of NKRL in order to represent cases should 
allow us to realize an up-to-date version of the principle of "indexing on complex features", see, e.g., [7,8] ­
we prefer to use the term "conceptual indexing", ''Conceptual indexing" goes back to R. Schank's original work 
on "memory organization packets" and ''thematic organization packets" see, e.g., [9] and also [5] : this principle 
consists, very rougWy, in the selection of some relevant characteristics of a specific type of representation and in 
the use of these characteristics to identify "semantic clusters". These clusters conceptually divide the knowledge 
bases into smaller modules, which are homogeneous from the point of view of the semantic content and which 
can be, at least partially, superposable. 

According now to an NKRL approach, case bases where the cases are described by making use of the NKRL 
language can be indexed using as classification criteria some specific NKRL features, e.g. predicates, particular 
classes of concepts pertaining to the defi~itional component, the notions of "category" and "perspective" of 
dating, see, in this last context, the very detailed description given in [14]. Comparing these "main" 
characteristics with those appearing in the (NKRL) description of the case at hand, it is possible to "preselect" 
quickly a subset of the base containing all the cases which, according to the classification criteria adopted, are a 
priori likely to match the new case proposed. The true "match operations", which can be very complex, are thus 
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° an operational meaning, where the arrow indicates the direction of the transformation : the left hand side
A is  dropped and replaced by the right hand side B ;

0 a logical meaning, where the arrow indicates that the information obtained through the use of B
implies the one obtained from A.

In reality, the “always true” implications (noted as “ B =» A ” in NKRL, where we assume that the symbol
=> ” represents the “implication arrow”) are not very frequent. Most transformations found in real world

applications represent in fact “modalized implications” (noted as “ B *=: A ”, which means “it is possible that B
implies A”). An example of this last type of transformations is  given by the transformation t l  in Fig. 2 ,
which will permit us to deal with the informal example above about ‘fimiversity professors” ; the left and hand
right side of t l  are normal templates of the descriptive component, derived by basic templates described in the
“catalog”. Transformation t l  says : “If someone ( x ) has obtained a title from an official authority by means of
an official document, then it i s  possible that he has been physically present at that moment in the place ( k )
where the authority is  located”.

This rule, for example, is not always validin the case of an university degree (the degree could be obtained
in a correspondence school, etc.). Nevertheless, i t  i s  easy to see that, in  this case, the “semantic distance”
between an “always true” implication and a “modalized” one is not too important, as it i s  always possible to
change t1 into a true transformation by the addition of a few constraints on the variable p, for instance the
“disequation” : “p at < obtainable_by_correspondence_degree > ”.“ Please note that all the constraints are realized
by making use of concepts of the NKRL definitional component. More examples, and a complete semi-formal
theory of transformations, can be found in [11].

“

t l )  EXIST SUBJ x : [k  ] -> OWN SUBJ x
OBJ p
SOURCE q : [k  ]
MODAL r

x = < human_being_ >
p = < title_ >
q = < authority_ >
k = _< location_ >
r = < ofliciaLdocument >

Fig. 2. A simple example of “transformation” rule.

In a CBR context, inference rules of the “transformation” type can demonstrate very useful for (at least) a)
creating a very powerful unification module, based. on some sort of “extended match operations”, for comparing
the (NKRL) description of a new case to that of the cases stored in a case base ; b) executing typical CBR
operations, see [6], like the estimation of similarities or the adaptation of old cases.

4 . Conc lus ions

We can conclude this short paper by mentioning another interesting aspect, in  a CBR context, of an NKRL
approach. _

If we consider, in  fact, the CBR indexing problem, the use of NKRL in order to represent cases should
allow us to realize an up-to—date version of the principle of “indexing on complex features”, see, e.g., [7, 8] —
we prefer to use the term “conceptual indexing”. “Conceptual indexing” goes back to R. Schank’s original work
on “memory organization packets” and “thematic organization packets” sec, e.g., [9] and also [5] : this principle
consists, very roughly, in the selection of some relevant characteristics of a specific type of representation and in
the use of these characteristics to identify “semantic clusters”. These clusters conceptually divide the knowledge
bases into smaller modules, which are homogeneous from the point of view of the semantic content and which
can be, at least partially, superposable.

According now to an NKRL approach, case bases where the cases are described by making use of the NKRL
language can be indexed using as classification criteria some specific NKRL features, e.g. predicates, particular
classes of concepts pertaining to the definitional component, the notions of “category” and “perspective” of
dating, see, in this last context, the very detailed description given in [14]. Comparing these “main”
characteristics with those appearing in the (NKRL) description of the case at hand, it i s  possible to “preselect”
quickly a subset of the base containing all the cases which, according to the classification criteria adOpted, are a
priori likely to match the new case proposed. The true “match operations”, which can be very complex, are thus
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restrained to the match between the new case and the caSes included in the reduced subset of the base created 
during the preselection phase. 

References 

1.	 Alterman, R. (1989) "A Concept Space for Reasoninng About Cases Involving Event Structures",.in: 
Proceedings of the 1989 DARPA Case-Based Reasoning Workshop. San Mateo (Calif.): Morgan 
Kaufmann. 

2.	 Ashley, K.D., and Rissland, E.L. (1986) 'Toward Modelling Legal Arguments", in: Automated Analysis 
of Legal Texts, Martino, A.A., and Sacci Natali, E, eds. Amsterdam: North-Holland. 

3.	 Brachman, R.J.• McGuinness, D.L., Patel-Schneider, P.E, Resnick, L.A., and Borgida, A. (1991) 
''Living with CLASSIC: When and How to Use a KL-ONE-Like Language", in: Principles of Semantic 
Networks, Sowa, J.E, ed. San Mateo (CA): Morgan Kaufmann. 

4.	 Campbell, J.A., and N. Chatterjee, N. (1991) Use of Time-Related Connectives in Representing Cases 
(Research Note). London: UCL Dept. of Computer Science. 

5.	 Kolodner. J.L. (1984) Retrieval and Organizational Strategies in Conceptual Memory. Hillsdale (NJ.): 
Lawrence Erlbaum. 

6.	 Kolodner, J.L. (1992) "An Introduction to Case-Based Reasoning", Artificial Intelligence Review, 6,3­
34. 

7.	 Martin, C.E. (1989) ''Indexing Using Complex Features", in: Proceedings of the 1989 DARPA Case­
Based Reasoning Workshop. San Mateo (Calif.): Morgan Kaufmann. 

8.	 Martin, c.B. (1989) Direct Memory Access Parsing (Ph.d. Thesis). New Haven (Conn.): Yale University. 

9.	 Schank, R.C. (1982) Dynamic Memory: A Theory of Reminding and Learning in Computer and People. 
Cambridge: Cambridge University Press. 

10.	 Stouder. L. (1987) RESEDA, le metalangage (Conv. INALCO/CIMSA SINTRA n° 0223A). VeJ.izy: 
Division CIMSA SINIRA de Thomson-CSE 

11.	 Zarri, G.P. (1986) 'The Use of Inference Mechanisms to Improve the Retrieval Facilities from 
Large Relational Databases", in: Proceedings of the Ninth International ACM Conference on Research and 
Development in Information Retrieval, Rabitti, E, ed. New York: ACM. 

12.	 Zarri, G.P. (1990) "A Knowledge Representation Language for Large Knowledge Bases and 'Intelligent' 
Information Retrieval Systems", Information Processing & Management, 26, 349-370. 

13.	 Zarri, G.P. (1992) 'The 'Descriptive' Component of a Hybrid Knowledge Representation Language", in: 
Semantic Networks in Artificial Intelligence, Lehmann. E, ed. Oxford: Pergamon Press. 

14.	 Zarri, G.P. (1992) ''Encoding the Temporal Characteristics of the Natural Language Descriptions of 
(Legal) Situations", in: Expert Systems in Law, Martino. A., ed. Amsterdam: Elsevier Science 
Publishers. 

94
 

restrained to the match between the new case and the cases included in the reduced subset of the base created
during the preselection phase.

References

1.

10.

11.

12.

13.

14.

Alterman, R. (1989) “A Concept Space for Reasoninng About Cases Involving Event Structures”,.in:
Proceedings of the 1989 DARPA Case-Based Reasoning Workshop. San ‘Mateo (Calif.): Morgan
Kaufmann.

Ashley, K.D., and Rissland, BL. (1986) ‘Toward Modelling Legal Arguments”, in: Automated Analysis
of Legal Texts, Martino, A.A., and Socci Natali, F., eds. Amsterdam: North-Holland.

Brachman, R.J., McGuinness, D.L., Patel-Schneider, RE,  Resnick, L.A., and. Borgida, A.  (1991)
“Living with CLASSIC : When and How to Use a KL-ONE-Like Language”, in: Principles of Semantic
Networks, Sowa, J.F., ed. San Mateo (CA): Morgan Kaufmann.

Campbell, J ..,A and N. Chatterjee, N (1991) Use of Time- Related Connectives ln Representing Cases .
(Research Note). London: UCL Dept. of Computer Science.

Kolodner, J .L. (1984) Retrieval and Organizational Strategies in Conceptual Memory. I-Iillsdale (N .] .):
Lawrence Erlbaum.

Kolodner, J .L. (1992) “An Introduction to Case-Based Reasoning”, Artificial Intelligence Review, 6, 3—
34.

Martin, C.E. ( 1989) “Indexing Using Complex Features”, in: Proceedings of the 1989 DARPA Case-
Based Reasoning Workshop. San Mateo (Calif .): Morgan Kaufmann.

Martin, CE. (1989) Direct Memory Access Parsing (Ph.d. Thesis). New Haven (Conn): Yale University.

Schank, R.C. (1982) Dynamic Memory : A Theory of Reminding and Learning in Computer and People.
Cambridge: Cambridge University Press.

Stouder, L. (1987) RESEDA, le métalangage (Cohv. INALCO/CIMSA SINTRA n° 0223A). Vélizy:
Division CIMSA SINTRA de Thomson—GSF.

Zarri, G.P. (1986) ‘The Use of Inference Mechanisms to Improve the Retrieval Facilities from
Large Relational Databases”, in: Proceedings of the Ninth International ACM Conference on Research and
Development in Information Retrieval, Rabitti, F., ed. New York: ACM.

Zarri, GP. (1990) “A Knowledge Representation Language for Large Knowledge Bases and ‘Intelligent’
Information Retrieval Systems”, Information Processing & Management, 26, 349—370.

Zarri, GP. (1992) "The ‘Descriptive’ Component of a Hybrid Knowledge Representation Language”, ln
Semantic Networks in Artificial Intelligence, Lehmann, F., ed. Oxford: Pergamon PreSs.

Zarri, GP. (1992) “Encoding the Temporal Characteristics of the Natural Language Descriptions of
(Legal) Situations”, in: Expert Systems in Law, Martino, A., ed. Amsterdam: Elsevier Science
Publishers.

94



Chapter 2 

Adaptation and Analogy 

95
 

Chapter 2

Adaptation and Analogy

95





An Analogical Reasoning Engine for Heuristic Knowledge
 
Bases
 

lorge E. Caviedes 

Information Sciences Sector
 

Philips Laboratories
 

BriarcliffManor. NY 10510
 

Abstract. One form of human analogical reasoning consists of solving problems based on their similarity 
to past episodes. In this paper we discuss a novel reasoning engine that performs analogical reasoning using 
traditionally engineered knowledge bases. This analogical reasoning engine learns inference rules that 

.decompile heuristic associations from a knowledge base. Problems are solved by matching input data to 
plausible initial problem states and then applying learned rules, which decompile heuristics. to fmd a 
solution. An uncertainty management scheme has been developed that combines conceptual distance. 
probabilistic information, and rule uncertainty. The analogical reasoning engine emulates case-based 
reasoning using a simple architecture composed of one application-specific module and three domain­
independent modules. The application-specific module is a heuristic knowledge base that uses a task 
model. The domain-independent modules are: a conceptual matching module. a rule-learning module 
based on a semantics-drive.n repertory grid analysis. and an uncertainty management module. 

1 Introduction 

Based on analogical problem solving, CBR systems rely on finding similarities to past cases to solve current 
problems [4,7]. Representation, indexing, and match and retrieval are among the issues contemplated in the design 
of CBR systems. In contrast with CBR systems, the purpose of heuristic KBs is to capture heuristic associations 
and solve problems following the approaches used by human experts. Heuristic KBs use well-known domain­
specific or generic representation languages. Heuristic problem solving has at least three drawbacks which could 
be alleviated by adding analogical reasoning: it requires precise data matching, its overall consistency cannot be 
verified, and it involves intensive knowledge acquisition. 

The analogical reasoning engine presented in this paper emulates case-based reasoning using a simple architecture 
composed of an application-specific module and three domain-independent modules. The application-specific 
module is a heuristic knowledge base that uses a task model; the domain independent modules are a conceptual 
matching algorithm. a rule-learning module based on repertory grid analysis, and an uncertainty management 
module. The analogical reasoning engine learns inference rules from the knowledge base, and solves problems by 
matching input data to plausible initial problem states and then applying the rules to find a solution. 

This paper has the following outline: Section 2 deals with the components of the analogical reasoning engine, 
Section 3 deals with conceptual distance, Section 4 describes our approach to repertory grid analysis, Section 5 
deals with uncertainty management, Section 6 presents the results of applying the analogical reasoning engine to 
the troubleshooting domain. and Section 7 contains the conclusions from this work. 

2 The Analogical Reasoning Engine 

The analogical reasoning engine is a problem solver that enables a heuristic KB to make use of analogical 
reasoning. The four main modules shown in Figure I are: an application-specific KB and task model, a conceptual 
matching module, a rule learnIng module. and an uncertainty management module. We have developed two new 
algorithms, one for conceptual matching and one for uncertainty management For the rule learning module we 
have used a technique called repertory grid analysis, with a new semantic element added to it. The roles of the four 
modules are described below. and the details of the algorithms will be given in the following sections. 

Application-specific module. This module can be any type of KB that contains heuristics and an abstraction of 
the problem solving approach called the task model. A task model is a notion derived from decision-making 
models and human-perfonnance models. It simply captures the decision making stages or main subgoals of 
problem solving used by human experts (i.e. troubleshooting has three subgoals: diagnose, repair, and verify). 

Conceptual Matching Module. The purpose of this module is to match the input problem to plausible initial 
problem states. The analogical reasoning process starts when a problem description is entered as free fonn text. 
The conceptual matching algorithm identifies keywords in the text and looks for matching strings in the KB. In 
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to past episodes. In this paper we discuss a novel reasoning engine that performs analogical reasoning using
traditionally engineered knowledge bases. This analogical reasoning engine learns inference rules that

.decompile heuristic associations from a knowledge base. Problems are solved by matching input data to
plausible initial problem states and then applying learned rules, which decompile heuristics, to find a
solution. An uncertainty management scheme has been developed that combines conceptual distance,
probabilistic information, and rule uncertainty. The analogical reasoning engine emulates case-based
reasoning using a simple architecture composed of one application-specific module and three domain-
independent modules. The applibation-specific module is a heuristic knowledge base that uses a task
model. The domain-independent modules are: a conceptual matching module, a rule-learning module
based on a semantics-driven repertory grid analysis, and an uncertainty management module.

1 Introduction

Based on analogical problem solving, CBR systems rely on finding similarities to past cases to solve current
problems [4,7]. Representation, indexing, and match and retrieval are among the issues contemplated in the design
of CBR systems. In contrast with CBR systems, the purpose of heuristic KBs is to capture heuristic associations
and solve problems following the approaches used by human experts. Heuristic KBs use well-known domain-
specific or generic representation languages. Heuristic problem solving has at least three drawbacks which could
be alleviated by adding analogical reasoning: it requires precise data matching, its overall consistency cannot be
verified, and it involves intensive knowledge acquisition.

The analogical reasoning engine presented in this paper emulates case-based reasoning using a simple architecture
composed of an application-specific module and three domain—independent modules. The application-specific
module is  a heuristic knowledge base that uses a task model; the domain independent modules are a conceptual
matching algorithm, a rule-learning module based on repertory grid analysis, and an uncertainty management
module. The analogical reasoning engine learns inference rules from the knowledge base, and solves problems by
matching input data to plausible initial problem states and then applying the rules to find a solution.

‘ This paper has the following outline: Section 2 deals with the components of the analogical reasoning engine,
Section 3 deals with conceptual distance, Section 4 describes our approach to repertory grid analysis, Section 5
deals with uncertainty management, Section 6 presents the results of applying the analogical reasoning engine to
the troubleshooting domain, and Section 7 contains the conclusions from this work.

' 2 The Analogical Reasoning Engine
The analogical reasoning engine is a problem solver that enables a heuristic KB to make use of analogical
reasoning. The four main modules shown in Figure 1 are: an application-specific KB and task model, a conceptual
matching module, a rule learning module, and an uncertainty management module. We have developed two new
algorithms, one for conceptual matching and one for uncertainty management. For the rule learning module we
have used a technique called repertory grid analysis, with a new semantic element added to it. The roles. of the four
modules are described below, and the details of the algorithms will be given in the following sections.

Application-specific module. This module can be any type of KB that contains heuristics and an abstraction of
the problem solving approach called the task model. A task model is a notion derived from decision-making
models and human—performance models. It simply captures the decision making stages or main subgoals of
problem solving used by human experts (i.e. troubleshooting has three subgoals: diagnose, repair, and verify).

Conceptual Matching Module. The purpose of this module is  to match the input problem to plausible initial
problem states. The analogical reasoning process starts when a problem description is entered as free form text.
The conceptual matching algorithm identifies keywords in the text and looks for matching strings in the KB. In
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Figure 1. Analogical Reasoning Engine 

this fashion, domain-specific concepts such as symptoms, functional units, or pathological states can be identified 
and assigned a conceptual distance to the problem input. The conceptual distance measure allows the generation 
of an ordered set of plausible initial problem states. The analogical reasoning engine, however, does not take the 
approach of simply retrieving the heuristic answer to the most likely problem state. 

Rule Learning Module. This module learns rules underlying heuristic associations. A measure of uncertainty is 
associated with the premises and the conclusions of the rules. The analogical inference engine finds an answer by 
applying these heuristics-decompiling rules to the conceptually matching data. Decompiling a heuristic 
associatiori means making explicit at least one intermediate conclusion used by that heuristic without engaging in 
the type of model-based reasoning described in [2]. Which and how many types of heuristics should be 
decompiled varies depending on the task model. Usually, there is one key heuristic that applies to all problems and 
decompiling it is enough. Otherwise more than one heuristic should be decompiled. At least the main heuristic 
should be decompiled so that the analogical reasoning engine may be able to generate more precise advice than 
the KB, or generate advice which was not apparently available before. 

Uncertainty Management Module. This module does the computation of accumulated uncertainty from the rules 
and the conceptual matching. The goal of the uncertainty management module is to fine tune the matching of 
problem data to KB knowledge. Ifa solution is not found at the end of one cycle of matching and inferencing, the 
process can be repeated as desired; otherwise the system would give up. The uncertainty management module 
makes sure that uncertainty values from the conceptual matching and the rules, plus any available probabilistic 
data are accumulated and carried through to the final conclusions. If any solutions are found, they are ranked by 
their oV~rall certainty. 

If no solutions were found in the first pass, under an open loop implementation the system would give up. Under 
a supervised closed loop implementation, a new cycle that uses a lower uncertainty threshold starts, and 
recomputes the initial matching states, with or without further interaction with the user. Data from unsolved cases 
from both open and closed loop configurations should be used to refine the knowledge base off line, using tools 
available in the original KB development environment. 

3 Matching Textual Descriptions and Conceptual Distance 

One of the mechanisms to select relevant knowledge base objects is conceptual matching between the problem 
input in free text form and textual information in the KB which is linked to domain objects. Syntactic matching 
between two textual strings SI,S2 is done using a metric d(Sl,S2). We have developed a conceptual distance 
measure which is based on the similarity among keywords related to domain concepts found in two text strings. 
The conceptual distance uses the matching score between two keywords KW1 and KW2 defined as: 

Mchars + 0chars -ILl - LzI
 
KWscore (KWI' KW2) :SI
 

Mchars is the number of identical characters from KW1which are found in the same position in KW2, and.Ochars 
accounts for the remaining identical but shifted characters as follows: 0.9 if the character is one position away, 0.8 

98
 

Application-Specific Module
. : . : ._. ‘ .4

input problem

Conceptual
Matching

Uncertainty
Management

“ ‘
__

__
__

- -
‘ \

\

advice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1 .  Analogical Reasoning Engine

this fashion, domain-specific concepts such as symptoms, functional units, or pathological states can be identified
and assigned a conceptual distance to the problem input. The conceptual distance measure allows the generation
of an ordered set of plausible initial problem states. The analogical reasoning engine, however, does not take the
approach of simply retrieving the heuristic answer to the most likely problem state.

Rule Learning Module. This module learns rules underlying heuristic associations. A measure of uncertainty is
associated with the premises and the conclusions of the rules. The analogical inference engine finds an answer by
applying these heuristics-decompiling rules to the conceptually matching data. 'Decompiling a heuristic
association means making explicit at least one intermediate conclusion used by that heuristic without engaging in
the type of model-based reasoning described in [2]. Which and how many types of “heuristics should be
decompiled varies depending on the task model. Usually, there is one key heuristic that applies to all problems and
decompiling it is enough. Otherwise more than one heuristic should be decompiled. At least the main heuristic
should be decompiled so that the analogical reasoning engine may be able to generate more precise advice than
the KB, or generate advice which was not apparently available before.

Uncertainty Management Module. This module does the computation of accumulated uncertainty from the rules
and the conceptual matching. The goal of the uncertainty management module is to fine tune the matching of
problem data to KB knowledge. If a solution is not found at the end of one cycle of matching and inferencing, the
process can be repeated as desired; otherwise the system would give up. The uncertainty management module
makes sure that uncertainty values from the conceptual matching and the rules, plus any available probabilistic
data are accumulated and carried through to the final conclusions. If any solutions are found, they are ranked by
their overall certainty.

If no solutions were found in the first pass, under an open loop implementation the system would give up. Under
a supervised closed loop implementation, a new cycle that uses a lower uncertainty threshold starts, and
recomputes the initial matching states, with or without further interaction with the user. Data from unsolved cases
from both Open and closed loop configurations should be used to refine the knowledge base off line, using tools
available in the original KB development environment.

3 Matching Textual Descriptions and Conceptual Distance
One of the mechanisms to select relevant knowledge base objects is conceptual matching between the problem
input in free text form and textual information in the KB which is linked to domain objects. Syntactic matching
between two textual strings 31,82 is done using a metric d(Sl,Sz). We have developed a conceptual distance
measure which is based on the similarity among keywords related to domain concepts found in two text strings.
The conceptual distance uses the matching score between two keywords KWl and KWz defined as:

Mchars + Ochars  ' IL ]  ' LZI

Kwscore ( l ,  s) = s 1
L1

Mchars is the number of identical characters from KWI which are found in the same position in KW2, and.,OchaIs
accounts for the remaining identical but shifted characters“ as follows: 0.9 if the character is one position away, 0.8
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if the character is two positions away, and 0.5 if the character is more than two positions away. Based on this non­
symmetrical matching score, the distance between two keywords has been defined as: 

The matching of text strings, SI and S2 with nl and n2 words respectively, is analogous 10 the matching just 
described for keywords. The maximum scores for each keyword are accumulated and nonnalized by the number 
of keywords in the target, minus a weighted penalty for length difference. The fonnulae are the following: 

°1 
L. max {KWscore (KW.. KWk), k E [1,02]} 

i=l 1°1-°21
 
StoSscore (SI' S2) = . LDF *
 

StoSdistance(SI, Sz) = 1 - StoSscore (SI, S2) 

LDF is the length difference factor. Empirical observations indicate that totally unrelated strings usually lie at a 
conceptual distance greater than 0.65 when the LDF is set to 0.3. Thus, we have used 0.65 as the cutoff for 
conceptual distance. 

4 An Algorithm for Rule Learning: Semantics-Driven Repertory Grid Analysis 

Repertory grid analysis is a technique which has been applied with some success to the automation of knowledge 
acquisition [1,3]. It is based on the personal construct theory, which holds that people evaluate their own 
experiences by means of bipolar distinctions called constructs, which apply 10 items called elements. For instance, 
the construct "driven/unmotiv.ated" may be used by teachers 10 evaluate their students as follows: the students are 
assigned integers from 1 to 5 10 express their rating within the two extremes of the construct (e.g. extremely driven 
1, extremely unmotivated 5, neutraI3). 

SYMPTOMS 

test power cord 

test power switch 

test power input 

no prints no errors 

1 

2 

3 

.. . 
extremely necessary =1 
extremely unnecessary = 5 

neutral = 3 + 
power supply 

interface 

paper feed 

1 

3 

3 

extremely involved = 1 
extremely not involved = 5 

neutral = 3 + 
Figure 2. Repertory Grid Analysis for Troubleshooting Heuristics 

From analysis of the grid ratings it is possible to generate classificatory rules which may be applied to elements 
outside the original set. Let us consider an example for the checklist heuristic from the troubleshooting domain. 
The elements are the symptoms, and the constructs are tests and components (i.e. the necessity to do the tests and 
the involvement of the suspect components). In general, the elements must be the inputs to a key heuristic, and the 
constructs are at least two types of outputs of the heuristic (i.e. one of them is the type of an intermediate 
conclusion of the heuristic). A repertory grid like the one shown in Figure 2 has been used to decompile checklist 
heuristics. 

We have introduced the notion of semantic categorization of the constructs, suspect components and diagnostic 
tests, which leads to distinct grid regions that determine the rule types that can be generated (see the regions on 
the cross reference matrix in Figure 3). With the semantic categorization, the analogical reasoning engine can 
insure that only rules which can be interpreted in the light of the task model are generated, thus avoiding the 
problem of rule interpretation. 
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symmetrical matching score, the distance between two keywords has been defined as:

d(KW1, s) = 1 - Kwsmtxwl, KW,)
The matching of text strings, S I  and 82  with nl and 112 words respectively, is analogous to the matching just
described for keywords. The maximum scores for each keyword are accumulated and normalized by the number
of keywords in the target, minus a weighted penalty for length difference. The formulae are the following:

111

2, max {KWscore (KW” KWk), k & [l,nzl}

i=1
Stosscore (SI! SZ) = - LDF "

ll1 n1

Inf-112]

Stosdistance(slr SZ) : 1 " Stosscore (SI !  SZ)

LDF is the length dzfi‘erence factor. Empirical observations indicate that totally unrelated strings usually lie at a
conceptual distance greater than 0.65 when the LDF is set to 0.3. Thus, we have used 0.65 as the cutoff for
conceptual distance.

4 An Algorithm for Rule Learning: Semantics-Driven Repertory Grid Analysis
Repertory grid analysis is a technique which has been applied with some success to the automation of knowledge
acquisition [1,3]. I t  is based on the personal construct theory, which holds that people evaluate their own
experiences by means of bipolar distinctions called constructs, which apply to items called elements. For instance,
the construct “driven/unmotivated” may be used by teachers to evaluate their students as follows: the students are
assigned integers from 1 to 5 to express their rating within the two extremes of the construct (e.g. extremely driven
l ,  extremely unmotivated 5 ,  neutral 3).
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no prints no errors . . .

test power cord 1 extremely necessary = I
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m
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O

Figure 2. Repertory Grid Analysis for Troubleshooting Heuristics

From analysis of  the grid ratings it i s  possible to generate classificatory rules which may be applied-to elements
outside the original set. Let us consider an example for the checklist heuristic from the troubleshooting domain.
The elements are the symptoms, and the constructs are tests and components (Le. the necessity to do the tests and
the involvement of the suspect components). In general, the elements must be the inputs to a key heuristic, and the
constructs are at least two types of outputs of the heuristic (Le. one of them is the type of an intermediate
conclusion of the heuristic). A repertory grid like the one shown in Figure 2 has been used to decompile checklist
heuristics.

We have introduced the notion of semantic categorization of the constructs, suspect components and diagnostic
tests, which leads to distinct grid regions that determine the rule types that can be generated (see the regions on
the cross reference matrix in Figure 3). With the semantic categorization, the analogical reasoning engine can
insure that only rules which can be interpreted in the light of the task model are generated, thus avoiding the
problem of rule interpretation.
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Figure 3. Semantic Categorization and Types of Rules Generated from Grid Data 

Four types of rules can be learned: T-T (test to test), T-C (test to component),C-T (component to test), and C-C 
(component to component). For each element of the cross reference matrix it is possible to generate more than one 
rule. In general, the rules have the following format: 

[Qi CONSTRUCTi entails Qj CONSTRUCTj] CF, i*j 

This means that any two different constructs could be linked by a rule with a confirmation factor computed from 
the evidence available on the grid. The qualifiers Qi and Qj are the qualitative interpretations of the ratings and; 
can be any single value or a meaningful range, for example: extremely needed (1), at least somewhat needed (9), 
extremely involved (1), etc. 

A Ci-Tj rule would clearly indicate how necessary the diagnostic test Tj is when component ~ is a suspect. To 
generate such a rule, with qualifiers extremely involved and extremely needed (grid ratings =1), from a grid with 
10 symptoms we would need the following grid rows: 

q data, or the i-th row in the Repertory Grid: 13 5 213 13 3 3 

Tj data, or the j-th row in the Repertory'Grid: 3 3 5 3133333 

The rating values of 1 are defined as being on the alpha plane 1 or al' The confirmation f~ctor for the rule is the 
ratio between the positive relevant evidence and all relevant evidence, as shown in Figure 4. (This factor is really 
the amount of partial entailment of Tj given ~.) Notice that all relevant evidence is located on the alpha plane a I 

and all information for ~ which is not on al is irrelevant evidence. 

Relevant Evidence 
Positive 

Ci&TJ-@al 

Negative 

Ci@al&Tj@-al 

1 2 

Total: 3 

Positive ReI. Ev. 1 
CF = 0.33"-------- = 

Total ReI. Ev. 3 

all information for Ci@-al is irrelevant 

Figure 4. Computation of the Confirmation Factor for Rule q- Tj 

Our use of repertory grid analysis has the following innovations: (i) semantic categorization of the constructs, (ii) 
selective learning, so that only rules relevant to the task model are generated and invoked, and (iii) rule applica­
tion following a task model and using analogical reasoning. 

5 Uncertainty Management 

Several types of uncertainty accumulate along the process of solving a problem with the analogical reasoning 
engine. The conceptual distance, the uncertainty of the rules, and any probabilistic information available (e.g. 
known failure probabilities) need to be combined to generate a certainty measure for the final conclusion. For the 
troubleshooting example we developed the formula shown in Figure 5. Due to its linearity and simplicity, this 
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Four types of rules can be learned: T-T (test to test), T—C (test to component), _C-T (component to test), and GO
(component to component). For each element of the cross reference matrix it is possible to generate more than one
rule. In general, the rules have the following format:

[Qi CONSTRUCTi entails Qj CONSTRUCTj] CF, i¢j

This means that any two different constructs could be linked by a rule with a confirmation factor computed from
the evidence available on the grid. The qualifiers Qi and Q are the qualitative interpretations of the ratings<and
can be any single value or a meaningful range, for example: extremely needed (1), at least somewhat needed (__2 ),
extremely involved (I ), etc.

A C- -Tj rule would clearly indicate how necessary the diagnostic test Tj is when component Ci is a suspect. To
generate such a rule, with qualifiers extremely involved and extremely needed (grid ratings-_- 1), from a grid with
10 symptoms we would need the following grid rows:

Ci data, or the i—th row in the Repertory Grid: 1 3 5 2 _l_ 3 l 3 3 3

Tj data, or the j-th row in the Repertory‘Grid: 3 3 5 3 1 3 3 3 3 3

The rating values of 1 are defined as being on the alpha plane 1 or a l .  The confirmation factor for the rule is the
ratio between the positive relevant evidence and all relevant evidence, as shown in Figure 4 .  (This factor is really
the amount of partial entailment of Tj given Ci.) Notice that all relevant evidence is located on the alpha plane al
and all information for Ci which is not on a1 is irrelevant evidence.

Relevant EvidencePositive Negative CF = - Positive Rel. Ev. = l = 0.33
Ci&TJ@ (xl Ci@a1&Tj@—al Total Rel. Ev. 3

1 2 '
Total- 3 all information for Ci@~0t1 is irrelevant

Figure 4. Computation of the Confirmation Factor for Rule Ci“ TJ-

Our use of repertory grid analysis has the following innovations: (i) semantic categorization of the constructs, (ii)
selective learning, so that only rules relevant to the task model are generated and invoked, and (iii) rule applica-
tion following a task model and using analogical reasoning.

5 Uncertainty Management
Several types of uncertainty accumulate along the process of solving a problem with the analogical reasoning
engine. The conceptual distance, the uncertainty of the rules, and any probabilistic information available (e.g.
known failure probabilities) need to be combined to generate a certainty measure for the final conclusion. For the
troubleshooting example we developed the formula shown in Figure 5. Due to its linearity and simplicity, this
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scheme can be generalized as the product of the conceptual distance to the closest initial problem state, the a priori 
probabilities of the preconditions of relevant rules, and the certainty factors of the conclusions of the rules. 

Formula to rank recommended tests: S_d Symptom Conceptual Distance 

Cjp Component fault probability 

T_cf C-T rule confmnation factor 

Figure 5. Uncertainty Computation Formula 

6 Results 

We applied the analogical reasoning engine to a troubleshooting KB built using DSS [5J. The KB was designed 
for the troubleshooting of laser printers. As shown in Figure 6, analogical reasoning helped to generate diagnostic 
tests for complaints stated in plain English by (i) matching the input against symptom descriptions, (ii) from the 
likely symptoms, one set of diagnostic tests and another set of suspect components were generated, (iii) C-T rules 
were learned and used to infer recommended tests, and (iv) the recommended tests were ranked based on overall 
certainty. 

Recommended 
Tests: 
11 
T2 

Uncertainty 
Management 

C-T 
Rules 

Rule 
L,earning 

Checklist 
Tests 

Suspect 
Components 

Conceptual 
Distance 

e cri tion 

n on 
n :on 

Figure 6. Analogical Reasoning for a Troubleshooting KB 

The elements of the repertory grid were symptoms, and the constructs were checklist tests, and suspect 
components. The main heuristic which was decompiled was the association between symptoms and diagnostic 
tests called the checklist [5J. The grid ratings used were simply a I, or strongly needed or involved, if the test or 
component was present in the checklist or in the suspects list, and 3, or neutral, otherwise. The checklist is thus 
decompiled as the sequence "first generate the suspect components, and then find the optimum test for the most 
likely faulty component". 

We performed two experiments done using different types of input. In the first experiment we entered verbatim 
the known symptom description "prints have a wavy pattern" to analyze the extent of agreement with its checklist 
in the KB. In the second experiment we entered a more ambiguous description. 

As expected, in the first case the conceptual distance to the target symptom was 0.0, and the recommended tests 
included the original checklist items with the highest scores. Other recommended tests came from the checklist 
of a symptom which lies at a conceptual distance of 0.5625. In the second experiment, we entered an ambiguous 
and misspelled description of a known symptom. The results showed that the conceptual distance matching 
works well, selecting the right symptom, and the only member of the original checklist is one of the recom­
mended tests. The other recommended tests were found to lead to plausible diagnoses according to the original 
KB. 

All learned rules must be validated by a domain expert before they are used in an application. Otherwise, unex­
pected conclusions may need to be analyzed in order to judge the value of the rules. In a few cases, tests which 
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scheme can be generalized as the product of the conceptual distance to the closest initial problem state, the a priori
probabilities of the preconditions of relevant rules, and the certainty factors of the conclusions of the rules.
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6 Results

We applied the analogical reasoning engine to a troubleshooting KB built using DSS [5]. The KB was designed
for the troubleshooting of laser printers. As shown in Figure 6, analogical reasoning helped to generate diagnostic
tests for complaints stated in plain English by (i) matching the input against symptom descriptions, (ii) from the
likely symptoms, one set of diagnostic tests and another set of suspect components were generated, (iii) C-T rules
were learned and used to infer recommended tests, and (iv) the recommended tests were ranked based on overall
certainty.
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Figure 6. Analogical Reasoning for a Troubleshooting KB

The elements of the repertory grid were symptoms, and the constructs were checklist tests, and suspect
components. The main heuristic which was decompiled was the association between symptoms and diagnostic
tests called the checklist [5]. The grid ratings used were simply a 1, or strongly needed or involved, if the test or
component was present in the checklist or in the suspects list, and 3, or neutral, otherwise. The checklist is thus
decompiled as the sequence “first generate the suspect components, and then find the optimum test for the most
likely faulty component”.

We performed two experiments done using different types of input. In the first experiment we entered verbatim
the known symptom description “prints have a wavy pattern” to analyze the extent of agreement with its checklist
in the KB. In the second experiment we entered a more ambiguous description.

As expected, in  the first case the conceptual distance to the target symptom was 0.0, and the recommended tests
included the original checklist items with the highest scores. Other recommended tests came from the checklist
of a symptom which lies at a conceptual distance of 0.5625. In the second experiment, we entered an ambiguous
and misspelled description of a known symptom. The results showed that the conceptual distance matching
works well, selecting the right symptom, and the only member of the original checklist is one of the recom-
mended tests. The other recommended tests were found to lead to plausible diagnoses according to the original
KB.

All learned rules must be validated by a domain expert before they are used in an application. Otherwise, unex-
pected conclusions may need to be analyzed in order to judge the value of the rules. In a few cases, tests which
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were not in the original checklist were highly recommended. Upon closer examination of the knowledge base, we 
found that in one case the new test corresponded to the checklist of a sub-symptom of the current symptom, and 
the evidence for the use of that test was stronger than the evidence for any of the tests in the original checklist (it 
had highest confrrmation factor for the C-T rule). Thus, we concluded that given the data available it could have 
been a more effective test for diagnosing the suspect component. 

7 Conclusions 

We have presented an innovative approach to analogical reasoning for heuristic knowledge bases which takes 
advantage of existing KB architectures. The aru.Uogical reasoning engine adds flexibility to heuristic problem 
solving by broadening the range of input data. With this approach we have shown that the specialized case-based 
architecture can be emulated by the analogical reasoning engine, which only requires a heuristic knowledge base 
and its task model. . 

The analogical reasoning engine has three domain-independent modules which inClude the following specific 
innovations: a conceptual mate~ing algorithm, a semantics-driven repertory grid analysis tool, and an uncertainty 
management scheme.. The semantics-driven repertory grid analysis has the advantage of solving the problem of 
rule interpretation since the semantics of the rules generated are given by the grid region on which they fall. The 
grid can also be used to build new KBs by letting the user create rows for categorized constructs, and columns for 
elements whose relationships with the rows can be rated by the values entered in the grid. This spreadsheet-like 
approach would enable new consistency tests based on cross referencing, which may help the KB designer vali­
date the notions of structure and behavior implicit in heuristic associations. When applied to existing KBs, as in 
our example, the constructs and elements for rows and columns already exist and are simply placed on the grid 
and the ratings are filled in with default values such as extremely relevant or neutral, corresponding to whether 
two concepts arerelated or not. 

The improved utilization of heuristic knowledge bases has broad effects. Knowledge bases are usually designed 
for one specific delivery environment, and the knowledge is intentionally entered to be used in one manner. 
However, analogical reasoning provides the flexibility of using the knowledge base in a different mode. In the case 
of troubleshooting, heuristic knowledge bases are built for field assistance. With analogical reasoning, help desk 
consultations are possjble given that one can enter loosely stated problems, just as they are stated by non­
technically oriented customers who want the best advice possible. . 
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were not in the original checklist were highly recommended. Upon closer examination of the knowledge base, we
found that in one case the new test corresponded to the checklist of a sub-symptom of the current symptom, and
the evidence for the use of that test was stronger than the evidence for any of the tests in the original checklist (it
had highest confirmation factor for the C-T rule). Thus, we concluded that given the data available it could have
been a more effective test. for diagnosing the suspect component.

7 Conclusions

We have presented an innovative approach to analogical reasoning for heuristic knowledge bases which takes
advantage of existing KB architectures. The analogical reasoning engine adds flexibility to heuristic problem
solving by broadening the range of input data. With this approach we have shown that the specialized case-based
architecture can be emulated by the analogical reasoning engine, which only requires a heuristic knowledge base
and its task model. ‘

The analogical reasoning engine has three domain-independent modules which include the following specific
innovations: a conceptual matching algorithm, a semantics-driven repertory grid analysis tool, and an uncertainty
management scheme. The semantics-driven repertory grid analysis has the advantage of solving the prOblem of
rule interpretation since the semantics of the rules generated are given by the grid region on which they fall. The
grid can also be used to build new KBs by letting the user create rows for categorized constructs, and columns for
elements whose relationships with the rows can be rated by the values entered in the grid. This spreadsheet-like
approach would enable new consistency tests based on cross; referencing, which may help the KB designer vali-
date the notions of structure and behavior implicit in heuristic associations. When applied to existing KBs, as in
our example, the constructs and elements for rows and columns already exist and are simply placed on the grid
and the ratings are filled in with default values such as extremely relevant or neutral, corresponding to whether
two concepts are‘related or not.

The improved utilization of heuristic knowledge bases has broad effects. Knowledge bases are usually designed
for one specific delivery environment, and the knowledge is intentionally entered to be used in one manner.
However, analogical reasoning provides the flexibility of using the knowledge base in a different mode. In the case
of troubleshooting, heuristic knowledge bases are built for field assistance. With analogical reasoning, help desk
consultations are possible given that one can enter loosely stated problems, just as they are stated by non-
technically oriented customers who want the best advice possible.
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Abstract 
The paper introduces and examines the relevance of the notion of "interpolation" between case features, to 
facilitate fast adaptation of existing cases to a current situation. When this situation is time-critical there is not 
enough time for exhaustive comparison of various aspects of all the stored cases, so it may not be possible to 
retrieve a high-quality match for a current problem within a specified time-limit. Viewing imperfect adaptation 
as a process of interpolation (or a set of possible processes with different qualities of interpolation) then gives 
the best and most robust perspective for time-critical reasoning. Although interpolation-like adaptation tech­
niques have been used in some existing CBR systems, they have not previously been treated explicitly from this. 
perspective. 

1. Introduction 

Interpolation is a well-known technique for quick solution of numerical problems. In this paper we extend the 
numerical-interpolation idea to symbolic values in order to achieve efficient adaptation for Case-Based Reason­
ing (CBR) systems. Efficient adaptation is one of the prime requirements for CBR systems in general. But in 
systems dealing with time-critical problems this need becomes much more acute as the performance here can 
be characterised primarily by features like speed and timeliness i.e. ability to finish a task within a stipulated 
time [6]. Since an upper limit of allowable time to find a solution is prescribed, a CBR system solving time­
critical problems usually cannot afford the standard methods of wading through an entire case-base, judging 
each case individually, in order to retrieve the best possible match. Consequently the system is left with the 
option of modifying the best possible past case(s) that it could retrieve within an allotted time period - or in 
extreme situations may have to adapt some 'default' solutions stored against such contingency [3]. Naturally, an 
effective general adaptation approach is required for a CBR system working in a time-critical environment. We 
offer the notion of interpolation as a means of fulfilling the need for a domain-independent, quick and efficient 
adaptation tactic. 

In some of our earlier work [4J we proposed the notion of interpolation for knowledge-based systems, and 
argued briefly that its special requirements cQuld make it even more suitable to apply to cases than to other 
knowledge representation schemes. In this paper we explain how 'interpolation' can be extended to cover sym­
bolic values and examine in detail the kinds of interpolation that can occur. 

However, we feel that 'interpolation' is not an entirely new concept in case adaptation. As we review critically 
the papers on existing CBR systems, we find that in many of them some ad hoc steps have been taken which 
closely resemble some of the interpolation techniques we suggest below. This observation not only authenti­
cates the suitability of interpolation methods for adaptation, but also paves the way for an in-depth look at it. 
This paper in that sense is a pioneering effort to put interpolation in CBR on a uniform footing. 
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. 

The basic motivation for interpolation comes from numerical analysis. where it is often used as "the technique 
of approximating a function in order to evaluate it at some unknown point when the values are known for a set 
of tabular points" [5J. And one uses the term "extrapolation" for the same general procedure when the unknown 
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analysis. However, extension of the idea of interpolation to non-numerical problems is not straightforward ­
which is probably why 'interpolation' has so far remained uncited in knowledge-based problems. Hence some 
careful observations are needed for making the basic tactics of interpolation clear. 

The most immediate property of numerical values is that they have an inherent order. Therefore when a new 
quantity is encountered it is simple to determine its relative position with respect to other quantities, making 
interpolation straightforward to apply. But that is usually not so for features in realistic knowledge-intensive 
problems, where symbols are used predominantly. As no well-defined order is immediately present between 
symbols, interpolation in symbolic domains requires some means of imposing an order (or a partial order, at the 
least) on the features. 

Now, an order between two symbols is meaningless unless an attribute that is relevant in the current context is 
considered. For example, there is no obvious order on the animals deer, cow and elephant. But when we talk 
about any specific property we can hope to find some order with respect to it: cow falls between deer and 
elephant when the attribute is weight, when speed is important elephant comes between cow and deer, while 
deer falls between elephant and cow when potential for domestication is the attribute to consider. A metric can 
be set up in anyone dimension to assign relative distances between pairs of entities, and distance in multiple 
dimensions (~ultiple properties) can then be calculated via standard metrics (Euclidean, Manhattan etc.). We 
use the word 'interpolation' to cover both interpolation and extrapolation, in the sense mentioned above, with 
respect to knowledge-based problems as well. ' 

In the next section we indicate how different types of metrics can be specified for symbolic quantities. 

3. Different Ways of Imposing Metric Interpretations 

In connection with our CBR work we have identified 8 different ways to impose metric interpretations on sym­
bolic quantities. We illustrate them through real-life examples or examples from existing CRR systems where 
they are already expressed in a similar language. 

Most straightforward is the situation when the feature itself has implicit order. This situation has two subdivi­
sions. 

3.1. Numerical Values
 

There are certain features which can be characterised adequately by numerical values only, e.g. distance, time,
 
weight. Here people often use straightforward interpolation (rather unconsciously and subjectively, perhaps).
 
For example: when A asks B how much it should cost to go to Victoria from King's Cross by taxi, B immedi­

ately replies that it should be around 7 to 8 pounds, from his tentative idea that the trip should take around 20
 
minutes by road and last time when he travelled by taxi he paid 2.50 pounds to go from Oxford Street to Euston
 
station which took nearly 6 minutes of driving.
 

3.2. Symbolic Quantities Masking Numerical Values 

There are features which are measurable according to some standard scale (which may be known only to the 
domain experts and not the people who record the raw case data), yet in non-expert practice are expressed in 
symbolic terms. The common choice of an ordering of colours according to the wavelengths of the correspond­
ing light or use of musical notes instead of their frequencies are simple relevant examples here. 

For features that are not directly metrisable we suggest two different types of artificial metric: artificial 
enumeration through ordinals, and fuzzy. 

3.3. Fuzzy Quantifiers 

Here we can borrow from the standard techniques of fuzzy reasoning, e.g. translating fuzzy terms into distribu­
tions, performing convolutions to derive distributions expressing combinations of terms, and making inverse 
translations to find the right fuzzy quantifier for the result. The formality of the treatment distinguishes this 
scheme from the one immediately above, even though their terms may overlap. Zadeh [10] discusses this in 
detail. In real life people often use fuzzy terms e.g. very-big! big! small! fairly-small (for size), heavy/ medium! 
light (for weight), very high! high! low (for temperature) etc. instead of actual quantitative values. Similar con­
cepts can be seen in the system for fault recovery in automated machinery designed by Barletta and Mark [1]. 
When they use explanations like 'since the current temparature is 110 degrees, the viscosity is low and 
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therefore manual rotation is not needed', they are basically applying interpolation (according to our definition) 
on domain knowledge like 'if the lubricant is too cold then viscosity is too high'. 

3.4. Artificial Enumeration Through Ordinals 

Often artificial orderings are applied to symbols to express their relative order e.g. for educational qualifications 
of persons, postgraduate 5/ graduate 41 diploma 3/ A-level 2 etc. CHEF [7] uses this technique for describing 
object properties. For example, knowledge of the form 'taste of broccoli is savoury with intensity 5.' and 'taste 
of beef is savoury with intensity 9.' corroborate this artificial enumeration. Whatever consequent recipe­
adapting actions CfIEF takes (on the basis of these values) in order to replace one ingredient by another in
 
some dish falls within the scope of this heading.
 

It should also be noted that the ordinals are normally set with respect to certain particular feature. Thus a post­

graduate may get ordinal number 2 while a diploma-holder may get 5 when the relevant feature is 'ability to do 
electrical repairing works'. 

Other interpolation methods that we have used are: 

3.5. Discrete Selection: choosing one of a finite set of alternatives
 

Examples of this can often be found implicitly in real life, although they are usually not described in terms simi­

lar to the heading above. For example, it may be necessary for a maintenance worker to fit into a confined space
 
(which implies a suitable small size and high level of agility) and to be strong enough to manipulate heavy
 
objects in that space (which puts premium on strength and therefore downgrades small size). A foreman may
 
select X from the list of available workers because X is a member between Y who is too weak and Z who is
 
rather too large for the job, given also that there is some positive information about agility on X's record.
 

3.6. Optimisation of Certain Functions
 

Often compromise between two conflicting demands is arrived at by providing an alternative that maximises the
 
the total satisfaction of the two parties involved. For example, Mr. X wants to spend the holidays in the moun­

tains of Austria while Mrs. X, who does not like hills, prefers to go to a French seaside location. Mr. X being
 
totally reluctant to go to a sea resort, the ultimate solution they arrive at is to go to a historical place like Rome.
 
Although it may be 2nd and 3rd in the preference lists of Mr. and Mrs. X, it maximises their joint utility func­

tion. Interpolation involves finding an intermediate point by applying a guiding criterion, (i.e. a search for an
 
extremum) here.
 

Examples of this type of interpolation can be found in JULIA, the case-based meal planner [8]. For example,
 
the conflicting goals of a host, who wants to serve egg as the main ingredient, and an invitee, who is on a low­
cholesterol diet, is solved by the planner by suggesting a menu with egg as the secondary ingredient. 

3.7. Rule Sets 

To keep close to our paradigm of-interpolation, the postconditions of the rules must be of the form "given x, y, 
z, f(x) and fez), where x < y < z, derive fCy) in the following ... way". The method of derivation indicated by ... 
will vary from rule to rule: a rule's preconditions will therefore determine a context. Where 'f' gives a ratio 
between amounts of different types of financial instrument, in the portfolio of a stockbroker's client, and the 
context is a financial outlook described by national quantitative economic indicators, expert systems produced 
in the EQUUS project [2] perform just such an interpolation. 

3.8. Iterative Interpolation 

Above, we have mentioned an interpolation that is a compromise between two values A and B. Applying a 
guiding criterion, as mentioned there, is in general likely to involve an iterative improvement on some rough 
initial solution. Here, each of A and B has associated with it a set of tests or conditions which serve as 
justifications for a value determined by some more elementary type of interpolation to be moved closer to itself. 
When neither set can offer a justification stronger than some predefined threshold, the interpolation terminates. 
The resulting picture is of a bargaining and counter-bargaining dialogue. PERSUADER, a system to imitate 
mediation in labour disputes [9], applies this kind of interpolation. 
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4. An Example 

In this section we illustrate a use of interpolation with an example from our current CBR problem domain of 
ground operations control of an airport. Suppose the current situation is as follows: 

A plane which is due to depart in 15 minutes has a problem with a piece of defective radio equip­
ment, which can be repaired and recalibrated in place only after a very long delay, or within 15 
minutes if the plane is (re)located close to a concourse window from which connections to elec­
tronic facilities can be made. The situation is time-limited because an incoming flight is scheduled 
to unload at the gate occupied by the original plane in 20 minutes. 

No case is found in the case-base with exactly the attributes above. The most similar cases differ basically from
 
the current one in a "dimension" that we can summarise, for the purposes of this paper, as "difficulty-in­

repair-or replacement". The two closest cases are (i) one in which a plane is delayed by a defective baggage:
 
door, (ii) one in which a crack has been found in an external window, necessitating replacement of this window.
 
Common to both cases are the instructions
 
- call engineers to repair the defect (with different expected times for the
 

repair, e.g. 5 minutes for the window and 15 for the door); 
- ensure that the repaired plane will leave as soon as the work is completed; 
- make a path plan for the incoming plane. 

The plan in the "window" case also contains the instruction "ensure that a special component" (the replacement 
window) "is ordered", while there is no such instruction in the "door" plan. In this instance the interpolation 
must select one or the other (discrete selection, stated above); there is no intermediate possibility. The controller 
is therefore prompted to ask the most accessible specialist (e.g. the crew member in charge of navigation etc.) if 
it is desirable to order a special component - while the absence of the interpolation scheme might have meant 
that such an order could have been overlooked until far too late. 

Also relevant to interpolation (of different operations on the same data) is the fact that the "door" case contains 
an instruction replan-flight-movements with one argument indicating the time horizon over which readjustments 
are likely to be necessary, while in the corresponding position in the "window" case there is an instruction 
readjust-identity, with the same type of argument. (This refers to a situation in which the window defect was in 
a plane allocated to a flight over a significant distance, while an identical plane allocated by the same airline to 
a short-haul flight was at an adjacent gate). In this environment there is a set of similar operations differing in 
their ranges of effect in the airport. The set includes a readjust operation, available for any airline that occupies 
a sequence of gates, whose effect is to ask the manager for that airline's operations to consider some rearrange­
ment, of any type (relabeling, physical movement), for planes assigned to those gates. Here, this suggests the 
possibility of moving the plane with the defective equipment to a gate adjacent to a concourse. The interpola­
tion selects the readjust operation. 

In a final simple interpolation, the expected repair time is estimated as 10 minutes (interpolating numerically 
between 5 minutes for window and 15 minutes for door). 

5. Concluding Remarks 

In the full-sized paper we intend to illustrate the effectiveness of 'interpolation' as a rapid adaptation technique, 
via examples from our time-critical problem domain of ground operations control of an airport, using instances 
of all the types of interpolation mentioned above, and indicating how to choose an appropriate type automati" 
cally for each problem. Our work has shown further that (with the help of a caching scheme [3]) results can be 
computed reliably within the time limits set by the time-critical requests. An essential feature of our treatment 
of time-criticality is that different interpolation schemes, each with a time cost determined by past experiments, 
are available, and the best interpolation consistent with the time allowed is chosen automatically [3]. 

While the main emphasis of this abstract is on interpolation, a full justification for interpolation in use relies on 
being able to express relative distances between symbolic terms. As indicated above, this is a standard activity 
in numerical taxonomy, but notions of semantic distance are also occasionally used in AI. Discussion of this 
issue can be expanded within a full-sized paper, if required. 

6. Reference 

[1]	 Barletta R. and Mark W. : Explanation-based Indexing of Cases. Proceedings of 7-th National Conference 
on Artificial Intelligence. Saint Paul, Minnesota August 21-26, 1988, pp 541-546 . 
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Abstract. A major advantage in using a case-based approach to developing knowledge-based systems 
is that it can be applied to problems where a strong domain theory may be difficult to determine. 
However the development of case-based reasoning (CBR) systems that set out to support a sophisticated 
case adaptation process does require a strong domain model. The Derivational Analogy (DA) approach to 
CBR is a case in point. In DA the case representation contains a trace of the reasoning process involved 
in producing the solution for that case. In the adaptation process this reasoning trace is reinstantiated in 
the context of the new target case; this requires a strong domain model. In this paper we analyse this 
issue using as an example a CBR system called CoBRA that assists with the modelling tasks in 
numerical simulation. We conclude that eBR systems for" more innovative tasks should focus on 
interactive adaptation. 

1 Introduction 

Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as a model of human memory 
and reminding. It has been embraced by researchers on AI applications as a methodology, that avoids some of the 
knowledge acquisition and reasoning problems that occur with other methods for developing knowledge-based 
systems. One of the central advantages in using a case-based approach to developing knowledge-based systems 
(KBS) is that CBR systems can be developed without encoding a strong domain theory for the problem domain 
[1]. However there are CBR systems that incorporate a strong domain theory. Systems that set out to support a 
sophisticated case adaptation process. do require a strong domain model. So there is some question as to whether 
these CBR systems with deep knowledge representations loose this central advantage of the CBR approach to 
KBS development.'" 

The Derivational Analogy (DA) approach to CBR is a case in point [2][3][4]. In DA thecase representation 
contains atrace of the reasoning process involved in producing the solution for that case. In the adaptation 
process this reasoning trace is reinstantiated in the context of the new target case. If the domain model is to 
support the reinstantiation of a reasoning trace then it will have to be a fairly comprehensive representation. 

In this paper we will attempt to analyse this issue using as an example a CBR system called CoBRA (Case­
Based Reasoning Assistant) that assists with the mathematical modelling tasks in numerical simulation. 
CoBRA is a DA based eBR syste!TI that produces simplified models of cooling fins for heat and fluid flow 
analysis. CoBRA's cases consist of model descriptions and a trace of the model simplification process (see Fig. 
3). The adaptation process attempts to reapply this reasoning trace to the fin model in the target case. CoBRA 
contains a fairly sophisticated domain model to support this adaptation. The question is: is the advantage of 
CBR lost in having to support it with a deep model of the problem domain? Could this system have been 
developed as readily by encoding the knowledge as a planning system of transformation heuiistics represented as 
rules? 

Before looking more closely at CoBRA we will look at a simple CBR system called Rachmann for 
estimating house prices. This system will act as a touch stone to.mark the simplicity of the basic CBR process. 

2 Rachmann: A classic CBR system 

Rachmann is a small CBR system for property valuation. Each case is a property represented as set of features 
and the value of that property (see Fig. 1). A target case is a set of features representing a property for which a 
valuation is sought. The systems finds the best match from its case base and performs simple adaptations on 
that case t9 determine a valuation for the target case. 

The advantages of CBR for knowledge acquisition are manifest in this example. The cases are easy to set up 
as the features are obvious important attributes of houses affecting the market value. However, the system is 
not completely without a domain theory because the organisation of the indices in the discrimination network 
reflects their relative importance. In addition, the partitioning of a city into locations rellecting property values 

'" It is worth mentioning that these comments apply to the use of CBR in developing KBS and not to the use of CBR as 
a model of memory and mental processes. 
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is that it can be applied to problems where a strong domain theory may be difficult to determine.
However the development of case-based reasoning (CBR) systems that set out to support a sophisticated
case adaptation process does require a strong domain model. The Derivational Analogy (DA) approach to
CBR is a case in point. In DA the case representation contains a trace of the reasoning process involved
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the context of  the new target case; this requires a strong domain model. In this paper we analyse this
issue using as an example a CBR system called CoBRA that assists with the modelling tasks in
numerical simulation. We conclude that CBR systems fo r 'more  innovative tasks should fo'cus on
interactive adaptation.
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Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as  a model of human memory
and reminding. It has been embraced by researchers on A1 applications as a methodology». that avoids some of the
knowledge acquisition and reasoning problems that occur with other methods for developing knowledge-based
systems. One of the central advantages in using a case-based approach to deveIOping knowledge-based systems
(KBS) is that CBR systems can be developed without encoding a strong domain theory for the problem domain
[1]. However there are CBR systems that incorporate a strong domain theory. Systems that set out to support a
sophisticated case adaptation process. do require a strong domain model. So  there i s  some question as to whether
these CBR systems with deep knowledge representations loose this central advantage of the CBR approach to
KBS development?

The Derivational Analogy (DA) approach to CBR is a case in point [2] [3] [4]. In DA the‘case representation
contains a trace of the reasoning process involved in producing the solution for that case. In the adaptation
process this reasoning trace is reinstantiated in the context of the new target case. If the domain model is to
support the reinstantiation of a reasoning trace then it will have to be a fairly comprehensive representation.

In this paper we will attempt to analyse this issue using as an example a CBR system called COBRA (Case-
Based Reasoning Assistant) that assists with the mathematical modelling tasks in numerical simulation.
COBRA is a DA based CBR system that produces simplified models of cooling fins for heat and fluid flow
analysis. COBRA's cases consist Of model descriptions and a trace of the model simplification process (see Fig.
3). The adaptation process attempts to reapply this reasoning trace to the fin model in the target case. COBRA
contains a fairly sophisticated domain model to support this adaptation. The question is: i s  the advantage of
CBR lost in having to support it with a deep model Of the problem domain? Could this system have been
developed as readily by encodinglthe knowledge as a planning system of transformation heuristics represented as
rules?

Before looking more closely at  COBRA we will look at  a simple CBR system called Rachmann for
estimating house prices. This system will act as a touch stone tomark the simplicity of  the basic CBR process.

2 Rachmann:  A classic CBR system

‘ Rachmann is a small CBR system for property valuation. Each case is a property represented as set of features
and the value Of that property (see Fig. 1). A target case is a set of featuies representing a prOperty for which a
valuation is sought. The systems finds the best match from its case base and performs simple adaptations on
that case to determine a valuation for the target case.

The advantages of CBR for knowledge acquisition are manifest in this example. The cases are easy to set up
as the features are obvious important attributes of houses affecting the market value. However, the system is
not completely without a domain theory because the organisation of the indices in the discrimination network
reflects their relative importance. In addition, the partitioning of a city into locations reflecting property values

* It is worth mentioning that these comments apply to the use of CBR in developing KBS and not to the use of CBR as
a model of memory and mental processes.
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requires some expertise. Nevertheless, our experience has been that this system is much easier to set up than an 
equivalent system using heuristics to reason from first principles. 

Indices14WF 
Location: SM-1 
B-Rooms: 2 
Age: Modern 
Rec-Rooms: 1 
Kitchen: Small 
Rear-Ace.: No 

Tot-Area: <800 
En-Suite: No 

. 
Price £75,000 

13 LR
 Indices 
Location: SM-1 
B-Rooms: 3 
Age: Modern 
Rec-Rooms: 2 
Kitchen: Large 
Rear-Ace.: Yes 

Tot-Area: >1,200 
En-Suite: Yes 

Price £98,000 

Fig. 1. Example cases from Rachmann, the property valuation system 

3 CBR and Problem Complexity 

The basic tenet of CBR is that, rather man solve a problem from first principles, it may be easier to retrieve a 
similar problem and transform me solution to that problem. In Fig. 2 we attempt to illustrate these trade-offs 
graphically. SP' represents the specification for a new problem and SL' is the solution to that problem. FP' 
represents the search process that establishes this solution from first principles-the task we wish to avoid. A 
CBR solution is worthwhile if the retrieval task R, and me adaptation task A are simpleI: man FP'. 

FP' 

SP Specification A Adaptation 
SL Solution R Retrieval 
FP First Principles Reasoning 

Figure 2. The transformation processes in eRR and in reasoning from first principles. 

From an 'AI as Engineering' perspective the big issue here is the complexity of the adaptation task A. An 
analysis of the CBR literature suggests that CBR adaptation might be divided into three categories arranged in 
order of increasing complexity as f<?llows:­

Substitution Adaptation: This is the simplest type of adaptation and merely involves 
substituting some of the parameters in the solution. 

Transformational Adaptation: This adaptation is more complex and will involve structural 
changes to the solution. 

Generative Adaptation: This is me most complex adaptation and is not perfectly represented 
by the diagram. The adaptation process involves a rework of the reasoning process FP in the 
context of the new problem situation represented by SP'. Derivational Analogy fits in this 
category. 
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3 CBR and Problem Complexity

The basic tenet of CBR is that, rather than sclve a problem from first principles, it may be easier to retrieve a
similar problem and transform the solution to that problem. In Fig. 2 we attempt to illustrate-these trade-offs
graphically. SP' represents the specification ‚for a new problem and SL'  is the solution to that problem. FP'
represents the search process that establishes this solution from first principlesw—the task we wish to avoid. A
CBR solution is  worthwhile if the retrieval task R,  and the adaptation task A are simpler than'FP‘.

lA. .

FP'

SP  Specification A Adaptation
SL Solution R Retrieval
FP First Principles Reasoning '

Figure 2. The transformation processes in CBR and in reasoning from first principles.

From an 'AI as Engineering'- perspective the big issue here i s  the complexity of the adaptation task A .  An
analysis of the CBR literature suggests that CBR adaptation might be divided into three categories arranged in
order of increasing complexity as follows:-

- Substitution Adap ta t i on :  This is the simplest type of adaptation and merely involves
substituting some of the parameters in the solution.

- Transformational Adapta t ion:  This adaptation i s  more complex and will involve structural
changes to the solution.

° Generative Adaptation: This is the most complex adaptation and is not perfectly represented
by the diagram. The adaptation process involves a rework of the reasoning process FP in the
context of the new problem situation represented by SP'. Derivational Analogy fits in this
category.
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The Rachmann system shown above is an example of a CBR system using substitution adaptation. This is at 
the easy end of the spectrum and the advantage ofCBR is evident here. For substitution adaptation to work it is 
necessary that the expression of solutions should be simple. Solutions should be atomic (a single price or the 
name of a faulty component) or should be made up of a few features with little interdependency. In tasks where 
the solution expression has a complex structure the adaptation process is more delicate and interaction between 
solution components must be considered. The cases in CoBRA have this kind of complexity. 

Adaptation of complex solutions requires an adequate domain model. So the question is; will this model need 
to be as complex as that required for a 'conventional' knowledge-based system? Does the use of CBR in complex 
problem domajns manage to avoid any of the knowledge engineering needed for a solution based on planning? 

3.1 The CoBRA problem domain 

CoBRA is an example of a CBR system operating in a domain where substitution adaptation is not adequate. It 
is a system for creating physical models in engineering analysis. The task being addressed is the generation of 
simplified models suitable for numerical analysis. This process of model simplification is an important initial 
stage in thermal analysis in engineering. The objective is to produce a simplified geometric model suitable as a 
basis for a mathematical model. This simplified model must be a reasonable approximation to the actual 
physical system. For the human designer this process involves a series of assumptions and justifications that 
produce the simplified model (see [5] for more details). . . 

CoBRA has been implemented to work on a case base of cooling fins, a typical example of which is shown 
in Fig. 3. Each case is made up of a representation of the basic model, the simplified model and a reasoning trace 
of the justifications for the transformations in going from the basic to the simplified model. These 
transformations and justifications are the key component in the case representation. Because of this CoBRA uses 
generative adaptation involving a re-run of this reasoning trace-rather than transformation adaptation. This 
adaptation by regeneration is derivational analogy. 

Basic Fin 
SimplifiedModel 
FinModel 

Reasoning'Trace 

> 

Fig. 3. Example case from CoBRA, the thermal modelling system 

3.1 Derivational Analogy 

Evidently a case in a DA system will have three components; a description of the start state, a description of the 
goal state and the reasoning trace that produces the goal state. The adaptation process attempts to reinstantiate 
these reasoning traces in the target case. 

In CoBRA each reasoning trace has an action part and a decision part (after [5]). The decision part contains:­

Alternatives considered and rejected 

Reasons for decisions taken 

Starts of false paths 

Dependencies of later decisions on earlier ones 

The action part holds the steps taken as a result of the reasons held in the decision parl. A typical action is, 
"Remove the extended surface which faces into the now". The two main actions in CoBRA are REMOVE and 
RESIZE. The actual functions used to express these actions must be sufficiently abstract to allow their 
application to cases similar to the one with which they are stored. Both the decision and action parLS operate on 
parameters which are common.to all cases, for example: 

altitude: the altitude of a feature 
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the easy end of the spectrum and the advantage of“ CBR is evident here. For substitution adaptation to work it is
necessary that the expression of solutions should be simple. Solutions should be atomic (a single price or the
name of a faulty component) or should be made up of a few features with little interdependency. In tasks where
the solution expression has a complex structure the adaptation process is more delicate and interaction between
solution components must be considered. The cases in COBRA have this kind of complexity.

Adaptation of complex solutions requires an adequate domain model. So  the question is; will this model need
to be as complex as that required for a ‘conventional' knowledge-based system? Does the use of CBR in complex
problem domains manage to avoid any of the knowledge engineering needed for a solution based on planning?

3 .1  The  CoBRA problem domain

COBRA is an example of a CBR system operating in a domain where substitution adaptation is not adequate. It
is a system for creating physical models in engineering analysis. The task being addressed is the generation of
simplified models suitable for numerical analysis. This process of model simplification is. an important initial
stage in thermal analysis in engineering. The objective is to produce a simplified geometric model suitable as a
basis for a mathematical model. This simplified model must be a reasonable approximation to the actual
physical system. For the human designer this process involves a series of assumptions and justifications that
produce the simplified model (see [5] for more details).

COBRA has been implemented to work on a case base of cooling fins, a typical example of which lS shown
in Fig. 3 .  Each case i s  made up  of a representation of the basic model, the simplified model and a reasoning trace
of the justifications for the transformations in going from the basic to the simplified model.. These
transformations and justifications are the key component in the case representation. Because of  this COBRA uses
generative adaptation involving a re-run of this reasoning trace—rather than transformation adaptation. This
adaptation by regeneration is derivational analogy.

Basic Fin . . .Slmpln‘ted
Model FinModel

Reasoning'Trace

Fig. 3 .  Example case from CoBRA, the thermal modelling system

3 .1  Der iva t iona l  Analogy

Evidently a casein  a DA system will have three components; a description of the start state, a description of the
goal state and the reasoning trace that produces the goal state. The adaptation process attempts to reinstantiate
these reasoning traces in the target case.

In COBRA each reasoning trace has an action part and a decision part (after [5]). The decision part contains:-

. Alternatives considered and rejected

. Reasons for decisiOns taken
- Starts of false paths

° Dependencies of later decisions on earlier ones

The aCtion part holds the steps taken as a result of the reasons held in the decision part. A typical action is.
"Remove the extended surface which faces into the flow". The two main actions in COBRA are REMOVE and
RESIZE. The actual functions used to express these actions must be sufficiently abstract to allow their
application to cases similar to the one with which they are stored. Both the decision and action parts Operate on
parameters which are commonto all cases, for example:

- a l t i t ude :  the altitude o f  a feature
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surface-area: the heat transfer surface area 

base-area: the surface area of the feature base. 

Summarising, each reasoning trace is made up of a set of actions and justifications for those actions. The 
reasoning trace can be reinstantiated for the new case if these justifications are valid in the new situation. 

Reconstructive CBR in CoBRA 

For Derivational Analogy each case must have three components; a description of the start state, a description of 
the goal state and the reasoning trace that links these two states. In CoBRA the representation of the start state 
and the goal state are similar. After all one is a simplification if the other. Figure 4 illustrates a portion of such 
a case. The diagram on the left shows a cross section of a finned heat exchanger unit and the task addressed by 
CoBRA is to produce simplified models of cases of this type. The frame description on the right illusJrates the 
representation that is manipulated by the system. A target case contains only this frame representation; this is 
the problem specification. 
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Fig. 4 A spatial classification of the problem with a partial description of the associated target case. 

Each base case contains a solution in addition to this problem specification. The solution is made up of the 
simplified model and the reasoning trace. A typical reasoning trace is shown in Fig. 5. Each node in the 
reasoning trace represents a decision point in the model simplification process. For instance Goal 2 considers 
the heat transfer associated with a sub-feature. There are three possible actions depending on the amount of heat 
transfer associated with the feature. This reasoning trace encodes the removal of the feature. This illustrates how 
the reasoning trace in derivational analogy represents a known good route through a vast search space. So 
whatever about the knowledge acquisition advantages of DA it has a clear advantage in reducing backtracking in 
problem solving (this point is made by Mostow in [3]). 
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. surface-area: the heat transfer surface area

- base-area: the surface area of the feature base.

Summarising, each reasoning trace is  made up of a set of actions and justifications for those actions. The
reasoning trace can be reinstantiated for the new case if these justifications are valid in the new situation.

4 Reconstructive CBR in  COBRA

For Derivational Analogy each case must have three components; a description of the start state, a description of
the goal state and the reasoning trace that links these two states. In COBRA the representation of the start state
and the goal state are similar. After all one is a simplification if the other. Figure 4 illustrates a portion of such
a case. The diagram on the left shows a cross section of a finned heat exchanger unit and the task addressed by
CoBRA is  to produce simplified models of cases of this type. The frame description on the right illustrates the
representation that lS manipulated by the system. A target case contains only this frame representation; this lS
the problem specification.
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Fig. 4 A spatial classification of the problem with a partial description of the associated target case.

Each base case contains a solution in addition to this problem specification. The solution is made up of the
simplified model and the reasoning trace. A typical reasoning trace is shown in Fig. 5 .  Each node in the
reasoning trace represents a decision point in the model simplification process. For instance Goal__2 considers
the heat transfer associated with a sub-feature. There are three possible actions depending on the amount of heat
transfer associated with the feature. This reasoning trace encodes the removal of the feature. This illustrates how
the reasoning trace in derivational analogy represents a known good route through a vast search space. So
whatever about the knowledge acquisition advantages of DA it has a' clear advantage in reducing backtracking in
problem solving (this point is made by Mostow in [3]).
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Fig. 5 A derivational trace for a windward finned appendage 

5 AUernative Knowledge Based Solutions 

There has been much AI research on problems of this type that does not use CBR - particularly under the 
headings of model based reasoning and qualitative reasoning (see for instance [6] [7] [8] This research emphasises 
representation but it is evident that the reasoning process in mind is one of planning - search with backtracking 
through a solution space. It should be evident that CBR will help constrain this search process but the question 
here is whether it will reduce the knowledge acquisition problem? If we consider what a planning based system 
for our model simplification task would look like we will see that it will not. 

The conventional alternative to the CoBRA system involves developing a model of the entities in the 
problem domain and encoding heuristics that represent Ihe transformations on these entities. The entity model 
will be the similar to that used is CoBRA and the planning heuristics will be the same as those encoded in the 
reasoning trace. 

The development of a planning system for model simplification requires a knowledge level analysis of the 
problem domain to ascertain the appropriate transformation heuristics. It is our conclusion from developing 
CoBRA that the encoding of the reasoning trace is the same kind of task. In this problem domain a 

, comprehensive DA system will explicitly encode the same heuristics as a rule-based planner. 
However, it might be said in favour of CBR that the emphasis on cases will focus the knowledge acquisition 

process. 
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5 Alternat ive Knowledge Based Solutions

There has been much AI research on problems of this type that does not use CBR - particularly under the
headings of  model based reasoning and qualitative reasonin g (see for instance [6] [7] [8] This research emphasises
representation but it is evident that the reasoning process in mind is one of  planning - search with backtracking
through a solution space. It should be evident that CBR will help constrain this search process but the question
here is whether it will reduce the knowledge acquisition problem? If we consider what a planning based system
for our model simplification task would look like we will see that it will not.

The conventional alternative to the CoBRA system involves developing a model of the entities in the
problem domain and encoding heuristics that represent the transformations on these entities. The entity model
will be the similar to that used is COBRA and the planning heuristics will be the same as those encoded in the
reasoning trace.

The development of a planning system for model simplification requires a knowledge level analysis of the
problem domain to ascertain the apprOpriate transformation heuristics. I t  i s  our conclusion from developing
COBRA that the encoding of the reasoning trace is the same kind of task. In this problem domain a

. comprehensive DA system will explicitly encode the same heuristics as a rule-based planner.
However, it might be said in favour of CBR that the emphasis on  cases will focus the knowledge acquisition

process. }
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5.1 Alternatives to Rachmann system 

The situation is quite different with the property valuation task addressed by the Rachmann system. Setting up 
the Rachmann case-base requires very little knowledge level analysis. The heuristics are encoded implicitly in the 
cases. By contrast a rules-based system for the same task would require the determination of the influence 
features like location, facilities, etc. have on price. So, for this property valuation problem, CBR has avoided 
this need to explicitly encode a domain model. 

6 Conclusions 

From the perspective of the design and modelling task, CBR does offer some advantages compared to a model 
based reasoning approach. Establishing cases on the basis of fundamental modelling scenarios allows retrieval of 
modelling solutions that can be adapted in a focused manner by using derivational reasoning. This avoids 
extensive backtracking associated with rule based systems. Secondly, it has been our experience that for a 
complex domain such as convection heat transfer, the process of knowledge acquisition based on reasoning traces 
provided no special difficulties for our domain expert. This is in marked contrast to our experiences for 
knowledge elicitation in model based reasoning systems. Finally, because of the episodic nature of the 
derivational trace, the explanation of the reasoning processes is somewhat more clear. 

On the other hand from a CBR perspective, we realise that CBR has been embraced by researchers in 
knowledge based systems because it has two significant advantages. The first is that case-bases are easier to set 
up than other knowledge representations. The second is that, in problem solving, cases encode known good 
routes in the solution space and thus reduce backtracking. These advantages will only be maximised in CBR 
systems where solution representations are not made up of complex interacting components and the adaptation 
process is comparatively simple. Out experiments with the Rachmann system confirms this view. However, in 
CoBRA, where solutions have complex representations, adaptation is more difficult and a full domain model is 
required to support this adaptation, our opinion is that some of these advantages may have been lost. 

Finally we would like to add, that, where automated adaptation is complex and therefore negates some of the 
strengths of the CBR approach, we believe that involving the user as an agent in the adaptation process as 
advocated by Kolodner [9] may overcome this disadvantage. We hope to explore this issue in future work. 
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5 .1  Alternatives t o  Rachmann  system

The situation is quite different with the prOperty valuation task addressed by the Rachmann system. Setting up
the Rachmann case-base requires very little knowledge level analysis. The heuristics are encoded implicitly in the
cases. By contrast a rules-based system for the same task would require the determination of  the influence
features like location, facilities, etc. have on price. So,  for this property valuation problem, CBR has avoided
this need to explicitly encode a domain model.

6 Conclus ions

From the perspective of the design and modelling task, CBR does offer some advantages compared to a model
based reasoning approach. Establishing cases on the basis of fundamental modelling scenarios allows retrieval of
modelling solutions that can be adapted in a focused manner by using derivational reasoning. This avoids
extensive backtracking associated with rule based systems. Secondly, it has been our experience that for a
complex domain such as convection heat transfer, the process of knowledge acquisition based on reasoning traces
provided no special difficulties for our domain expert. This is in marked contrast to our experiences for
knowledge elicitation in model based reasoning systems. Finally, because of the episodic nature of the
derivational trace, the explanation of the reasoning processes is somewhat more clear.

On the other hand from a CBR perspective, we realise that CBR has been embraced by researchers in
knowledge based systems because it has two significant advantages. The first is  that case-bases are easier to set
up than other knowledge representations. The second is that, in problem solving, cases encode known good
routes in the solution space and thus reduce backtracking. These advantages will only be maximised in CBR
systems where solution representations are not made up of complex interacting components and the adaptation
process is comparatively simple. Out experiments with the Rachmann system confirms this view. However, in
COBRA, where solutions have complex representations, adaptation is more difficult and a full domain model is
required to support this adaptation, our opinion is  that some of these advantages may have been lost.

Finally we would like to add, that, where automated adaptation is complex and therefore negates some of the
strengths of the CBR approach, we believe that involving the user as an agent in the adaptation process as
advocated by Kolodner [9] may overcome this disadvantage. We how to explore this issue in future work.
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Abstract An interactive cased based reasoning tool for assisting engineers with the mathematical modelling 
tasks associated with the analysis of thermal problems is described. By representing fundamental thermal 
modelling scenarios as cases, complex physical systems are modelled in a piecewise fashion by successive 
application of matching cases. Retrieval is based on the use of qualitative indices, derivational analogy allows 
for generative adaptation of retrieved cases, thereby providing a basis for validating cases in the context of the 
problem under consideration. This work represents an alternative perspective to model based reasoning 
approaches that have been applied. to model generation to date. 

1 Introduction 

This paper describes work in progress which aims to develop an interactive case based reasoning system that 
assists engineers with the mathematical modelling tasks associated with convection heat transfer analysis. This 
domain is described mathematically by the thermal partial differential equations (POEs) and is nowadays 
usually analysed using numerical simulation techniques such as the finite element method. Mathematical 
modelling precedes numerical analysis and involves abstracting a mathematical model from a real world 
problem. This is achieved by applying physical and mathematical idealisations, so as. to create a model that is 
computationally realistic to solve, but, at the same time, still retains the important features of the physical 
system [1,2]. It is for this modelling task that we propose a case-based reasoning solution. 

The case base is made up of episodes that represent valid model simplifications. Each case consists of a 
model that is close to the real world problem, a simplified but valid model of this physical system and a set of 
assumptions and transformations involved in producing this simplified model. These assumptions and 
transformations are a key component of the case representation and entail the use of generative adaptation in 
using retrieved cases. This is the derivational analogy approach to CBR as advocated by Carbonell [3]. 

The paper is organised as follows; firstly we describe the domain of convection heat transfer by examining 
the various issues associated with mathematical modelling. Next we discuss from a modelling perspective the 
conceptual approach that we have taken so that case ·based reasoning techniques could be applied effectively. 
We then discuss implemyntation work carried out to date and demonstrate an early prototype system called 
CoBRA (Case-Based Reasoning Assistant) that focuses on spatia] modelling. Finally we discuss the use of 
derivational analogy techniques and describe the structure and contents of a typical reasoning trace. 

2 Modelling in Heat Transfer Convection 

Convection heat transfer problems can be defined as physical systems where heat transfer occurs between a 
solid body and a surrounding fluid medium, each at a different temperature. Numerical analysis of convection 
problems is usually carried out in number of stages which have been identified as follows [1]: 
Behavioural Analysis This is normally the first task in any analysis episode and it involves reasoning about the 
physical system with the objective of obtaining a behavioural understanding of the underlying phenomena. 
Physical and Mathematical Modelling This phase involves applying idealisations and simplifications to 
various spatial and p~enomenologicaJ aspects of the physical system with objective of abstracting an analysis 
model. This task is the focus of the current work. 
Numerical Sirnulation This phase involves simulating the mathematical model by applying numerical 
techniques such as the finite element method. 
Visualisation This stage involves post processing and visualising of the numerical data produced by the 
simulation process 

In this paper, we focus on task of creating an analysis model (physical and mathematical modelling) which is 
represent,itive of the physical system. We assume that the engineer has already obtained a behavioural 
understanding of the physical system l and consequently, this task is not addressed in this work. The main 
objective in analysis modelling, is to abstract a mathematical model acting on a domain, that is computationally 
realistic to solve whilst at the same time preserves the essential integrity of the physical system. We consider 
construction of an analysis model to have two aspect,s; a physical perspective and a mathematical perspective 
141. Physical modelling focuses on spatial or geometric aspects of the problem domain and involve applying 

1 Much work lo date in qualitative physics has focused on predicting the qualitative behaviour of domains described by 
ordinarily differential equations (ODEs). However. little work has been carried out on problems defined by partial 
differential equations. 
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Abstract  An interactive cased based reasoning tool for assisting engineers with the mathematical modelling
tasks associated with the analysis of thermal problems is described. By representing fundamental thermal
modelling scenarios as cases, complex physical systems are modelled in a piece-wise fashion by successive
application of matching cases. Retrieval is based on the use of qualitative indices, derivational analogy allows
for generative adaptation of retrieved cases, thereby providing a basis for validating cases in the context of  the
problem under consideration. This work represents an alternative perspective to model based reasoning
approaches that have been applied. to model generation to date.

1 Introduction

This paper describes work in progress which aims to deveIOp an interactive case based reasoning system that
assists engineers with the mathematical modelling tasks associated with convection heat transfer‘analysis. This
domain is described mathematically by the thermal partial differential equations (PDEs) and is nowadays
usually analysed using numerical simulation techniques such as the finite element method. Mathematical
modelling precedes numerical analysis and involves abstracting a mathematical model from a real world
problem. This is achieved by applying physical and mathematical idealisations, so as, to create a model that is
computationally realistic to solve, but, at the same time, still retains the important features of the physical
system [1,2]. It is for this modelling task that we propose a case—based reasoning solution.

The case base is made up of episodes that represent valid model simplifications. Each case consists of a
model that is close to the real world problem, a simplified but valid model of this physical system and a set of
assumptions and transformations involved in producing this simplified model. These assumptions and
transformations are a key component of the case representation and entail the use of generative adaptation in
using retrieved cases. This is the derivational analogy approach to CBR as advocated by Carbonell [3].

The paper is organised as  follows; firstly we describe the domain of convection heat transfer by eXamining
the various issues associated with mathematical modelling. Next we discuss from a modelling perspective the
conceptual approach that we have taken so that case-based reasoning techniques could be applied effectively.
We then discuss implementation work carried out to date and demonstrate an early prototype system called
COBRA (Case-Based Reasoning Assistant) that focuses on spatial modelling. Finally we discuss the use of
derivational analogy techniques and describe the structure and contents of a typical reasoning trace.

2 Modelling in Heat Transfer Convection

Convection heat transfer problems can be defined as physical systems where heat transfer occurs between a
solid body and a surrounding fluid medium, each at  a different temperature. Numerical analysis of convection
problems is  usually carried ou t  in number o f  stages which  have been identified as follows [1]:
Behavioural Analysis This is normally the first task in any analysis" episode and it involves reasoning about the
physical system with the objective of obtaining a behavioural understanding of the underlying phenomena.
Physical and  Mathematical  Modelling This phase involves applying idealisat'ions and simplifications to
various spatial and phenomenological aspects of the physical system with objective of abstracting an analysis
model This task IS the tocus of the current work.
Numerical  Simulat ion This phase involves simulating the mathematical model by applying numerical
techniques such as the finite element method.
Visualisation This stage involves post processing and, visualising of the numerical data produced by the
simulation process

In this paper, we focus on task of creating an analysis model (physical and mathematical modelling) which is
representative of the physical system. We assume that the engineer has already obtained a behavioural
understanding of the physical system1 and consequently, this task is not addressed in this work. The main
objective in analysis modelling, is to abstract a mathematical model acting on a domain, that is computationally
realistic to solve whilst at the same time preserves the essential integrity of the physical system. We  consider
construction of an analysis model to have two awaits; a physical perspective and a mathematical perspective
[41. Physical modelling focuses on spatial or geometric aspects of the problem domain and involve applying

1 Much work to date in qualitative physics has focused on predicting the qualitative behaviour of domains described by
ordinarily differential equations (ODEs). However. little work has been carried out on problems defined by partial
differential equations”.

114



modelling str~tegies such as; taking a two dimensional idealisation of a three dimensional physical system, 
applying geometric symmetries or carrying out feature modelling. Strategies used in feature modelling, 
illustrated in Figure 1, can involve either replacing an existing complex feature with a simpler feature, 
removing the feature and substituting it with an equivalent boundary condition or removing the feature 
completely without any compensatory measures. 
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Fig. I Feature modelling strategies 

Mathematical modelling deals with the construction of a PDE model that describes the thermal heat transfer 
process. Considering the full thermal PDE, it consists of three sub-equations based on the physical laws of 
conservation of mass, momentum and energy. Each sub-equation is in turn composed of terms, where each term 
describes a particular sub-phenomenon. For example, in the energy equation, the diffusion term describes the 
heat transfer at a molecular level, the advection term describes heat transfer due to bulk motion of the fluid, 
whereas the viscous dissipation term describes the conversion of mechanical energy to thermal energy due to 
internal friction effects. In many heat transfer problems it is not necessary to model all these sub-phenomena and 
therefore terms can be either simplified or even be ignored completely. Another mathematical modelling task 
(illustrated in Figure 2) is the specification of an analysis volume that defines the 'extent of the fluid medium to 
be examined. Although this modelling task has spatial connotations, its specification is essentially governed by 
type phenomenological analysis that is required by the user. 

3 Related Work, Conceptual Matters and Design Issues 

3.1 Related work from heat transfer modelling 

To our knowledge, no other work with a similar focus and approach has been undertaken to date. However, 
three related projects that exploit alternative knowledge based techniques in comparable domains are relevant 
and are briefly discussed here. Ling and Steinberg [5J describe a system that is currently under development 

,	 which is aimed at modelling conduction heal transfer problems. Model based reasoning is the basis for the 
approach taken in this work. The system is implemented as part of a greater design system and emphases is 
placed on achieving automated modelling decisions without the intervention of the user. Three modelling issues 
are dealt with and these include; the choice of control region, the determination of the relevant physical 
processes and the abstraction of appropriate mathematical equations. However, from a geometric perspective, 
the coverage of this system is confined to simple parallelepiped domains. In addition its confinement to 
conduction based problems makes this domain considerably simpler than convection heat transfer problems. 
Wentorf and Shephard l2J describe a rule based expert system, that deals with idealisation issues associated 
with modelling in stress analysis of aircraft. The emphasis in this system is the use of knowledge based 
techniques to integrate and control interdisciplinary tools in an analysis system such as CAD interfaces, error 
optimisers and numerical error predictors. Finally, Vip describes a system for simplifying the Navier Stokes 
(tluid tlow) equations using order of magnitude reasoning within a qualitative analysis framework [6]. This 
system produces idealised PDE models which are mathematically complete, but in many cases have no physical 
meaning and may sometimes be computationally insolvable. Nevertheless, this work is important as it 
examines how PDE lype problems can be tackled using qualitative physics. 
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Mathematical modelling deals with the construction of a PDE model that describes the thermal heat transfer
process. Considering the full thermal PDE, it consists of three sub-equations based on the physical laws of
conservation of mass, momentum and energy. Each sub-equation is in turn composed of terms, where each term
describes a particular sub—phenomenon. For example, in the energy equation, the diffusion term describes the
heat  transfer a t  a molecular  level ,  the  advection term describes heat transfer due to bulk motion o f  the fluid,
whereas the viscous dissipation term describes the conversion of mechanical energy to thermal energy due to
internal friction effects. In many heat transfer problems it is not necessary to model all these sub-phenomena and
therefore terms can be either simplified or even be ignored completely. Another mathematical modelling task
(illustrated in Figure 2) is the specification of an analysis volume that defines the extent of the fluid medium to
be examined. Although this modelling task has spatial connotations, its specification is essentially governed by
type phenomenological analysis that is required by the user.

3 Related Work, Conceptual Matters and Design Issues

3.1 Related work from heat transfer modelling

To our knowledge, no other work with a similar focus and approach has been undertaken to date. However,
three related projects that exploit alternative knowledge based techniques in comparable domains are relevant
and are briefly discussed here. Ling and Steinberg [5] describe a system-that is currently under development
which is aimed at modelling conduction heat transfer problems. Model based reasoning is the basis for the
approach taken in this work. The system is implemented as part of a greater design system and emphases is
placed on achieving automated modelling decisions without the intervention of the user. Three modelling issues
are dealt with and these include; the choice of control region, the determination of the relevant physical
processes and the abStraction of appropriate mathematical equations. However, from a geometric perspective,
the coverage of this system is confined to simple parallelepiped domains. In addition its confinement to
conduction based problems makes this domain considerably simpler than convection heat transfer problems.
Wentorf and Shephard [2 ]  describe a ru le  based expert sys tem,  that  deals wi th  idealisation issues associated
with modelling in stress analysis of aircraft. The emphasis in this syStem is the use of knowledge based
techniques to integrate and control interdisciplinary tools in an analysis syStem such as CAD interfaces, error
optimisers and numerical error predictors. Finally, Yip describes a system for simplifying the Navier Stokes
(fluid flow) equations using order of magnitude reasoning within a qualitative analysis framework [6]. This
system produces idealised PDE models which are mathematically complete, but in many cases have no physical
meaning and may sometimes be computationally insolvable. Nevertheless, this work i s  important as it
examines how PDE type problems can be tackled using qualitative physics.
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.3.2 Conceptual Issues 

In this work, particular attention was given to observing how engineers model convection heat transfer problems. 
These observations have strongly influenced the approach adopted and are summarised here; 

Engineers usually model complex convection problems in distinct stages. These stages correspond to the 
physical and mathematical modelling issues outlined in Section 2 and are as follows; spatial modelling, 
phenomenological modelling, dimensional reduction, temporal modelling and control volume modelling. 
Engineers exploit a number of techniques when modelling convection problems, these include; the use of first 
principle domain knowledge to reason about modelling strategies, exploitation of previously modelled 
problems and relying on the guidance from more experienced colleagues. In most modelling episodes, a 
combination of these techniques are used. 
When investigating a particular modelling stage, e.g., spatial modelling, engineers usually decompose a 
complex physical system into easily understood sub-problems. These sub-problems are sufficiently low-level 
to be related to what we call classical engineering modelling scenarios. A scenario typically consists of 
simple modelling episodes and allow engineering approximations and heuristics to be applied, thereby 
permitting the modelling issue under consideration to be evaluated easily. 

These conclusions influence our approach in two ways; firstly, for an interactive system it is imperative that we 
aim to accommodate the end-user and therefore the system should attempt to integrate with the modelling 
patterns used by engineers. Secondly, by capturing engineering first principles, engineering approximations and 
heuristics within fundamental classical modelling scenarios, it is possible to build a case based reasoning system 
that is based on episodic based templates that provide guidance for modelling tasks. 

3.3 Design Approach adopted in this work 

We summarise here our conceptual approach to modelling which forms the basis for the implemented CBR 
system. 

The system is organised so as to allow modelling to be carried out in distinct stages. In this paper, we 
consider the stage of spatial feature modelling. 
Within any modelling stage, modelling decisions are taken in a piece wise fashion by examining each 
modelling issue in tum. 
Case based reasoning with derivalional analogy techniques form the core approach. Cases are based on 
fundamental modelling scenarios and are derived from episodic modelling evenL~. 

Solutions within cases describe a model strategy that can be applied to similar target cases. The strategy is 
usually in form of some action which is in response to a particular modelling goal. 
Derivational traces describe the full engineering reasoning basis by which a particular modelling solution was 
reached. They also. act as an explanation facility and validator of the case solution. More importantly 
however, they allow solutions of base cases that are close to the target case to be adapted and applied to the 
target. 

4. Implementation Details 

4.1 A Convection Heat Transfer Problem 

Figure 3 illustrates a typical convection heat transfer problem that can be tackled by the modelling system. The 
physical system consists or a finned heat exchanger tube that dissipates heat to the surrounding ambient air. Two 
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_3.2 Conceptual Issues

In this work, particular attention was given to observing how engineers model convection heat transfer problems.
These observations have strongly influenced the approach adopted and are summarised here;
- Engineers usually 'model complex convection problems in diStinct stages. These stages correspond to the

physical and mathematical modelling issues outlined in Section 2 and are as follows; spatial modelling,
phenomenological modelling, dimensional reduction, temporal modelling and control volume modelling.

- Engineers exploit a number of techniques when modelling convection problems, these include; the use of first
principle domain knowledge to reason about modelling strategies, exploitation of previously modelled
problems and relying on the guidance from more experienced colleagues. In most modelling episodes, a
combination of these techniques are used.

- When investigating a particular modelling stage, e.g., spatial modelling, engineers usually decompose a
complex physical system into easily understood sub—problems. These sub—problems are sufficiently low-level
to be related to what we call classical engineering modelling scenarios. A scenario typically consists of
simple modelling episodes and allow engineering approximations and heuristics to be applied, thereby
permitting the modelling issue under consideration to be evaluated easily.

These conclusions influence our approach in two ways; firstly, for an interactive system it is imperative that we
aim to accommodate the end-user and therefore the system should attempt to integrate with the modelling
patterns used by engineers. Secondly, by capturing engineering first principles, engineering approximations and
heuristics within fundamental classical modelling scenarios, it is possible to build a case based reasoning system
that is based on episodic based templates that provide guidance for modelling tasks.

3.3 Design Approach adopted in this work

We summarise here our conceptual approach to modelling which forms the baSiS‘fOI‘ the implemented CBR
system.
° The system is organised so  as to allow modelling to be carried out in distinct stages. In this paper, we

consider the stage of spatial feature modelling.
- Within any modelling stage, modelling decisions are taken in a piece wise fashion by examining each

modelling issue in tum. '
° Case based reasoning with derivational analogy techniques form the core approach. Cases are based on

fundamental modelling scenarios and are derived from episodic modelling events.
- Solutions within cases describe a model strategy that can be applied to similar target cases. The strategy is

usually in form of some action which is in response to a particular modelling goal.
. Derivational traces describe the full engineering reasoning basis'by which a particular modelling solution was

reached. They a l so  act as an  explanation facility and validator of the case solution. More importantly
however, they allow solutions of base cases that are close to the target case to be adapted and applied to the
target.

4.  Implementa t ion Details

4 .1  A Convec t ion  Hea t  Transfer  P rob lem

Figure 3 illustrates a typical convection heat transfer problem that can be tackled by the modelling system. The
physical system consists of a finned heat exchanger tube that dissipates heat to the surrounding ambient air. Two

115



cqmplex appendages arc attached to the cylindrical base, each appendage has additional minor associated 
features. The modelling goal in this task is to assess the importance of both the minor features and the 
appendages themselves, this task corresponds to the spatial modelling phase described in Section 2. 
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Fig. 3 A finned heat exchanger tube 

4.2 Target Case Description 

A target case consists of ,a frame based representation of the physical system. Within a target frame, 
representation is organised according to the different modelling perspectives; spatial modelling, 
phenomenological modelling and control volume analysis modelling. Figure 4 illustrates from a spatial 
perspective how the finned heat exchanger is classified and shows some of the indices used to describe the 
problem. In this case, a partonomic type relationship at three levels describes the essential components of the 
physical system, namely; the base cylinder, the complex appendages and their associated minor features. In this 
problem, the base is classified as a cylindrical bluff body in crossflow , the complex appendage is a rectangular 
longitudinal fin with features located on its windward, upper parallel and leeward sides. These features are a 
longitudinal rectangular cavity, a longitudinal triangular fin and a longitudinal rectangular fin. Problem 
parameters such as geometric data are also included in the target case but arc not used as indices, however this 
information is used in the derivational traces. 

4.3 Modelling Approach and Base Case Description 

In Section 2, we argued that engineers normally model convection problems by decomposing the problem into 
well understood scenarios and considering each of these in a sequential manner. By classifying the heat 
exchanger problem as shown in Figure 4, this decomposition has been effectively achieved. Modelling 
progresses by firstly examining the role of the minor features with respect to the complex appendage and 
secondly the role of the complex appendage with respect to the cylindrical base. Each of these modelling 
episodes are sufficiently fundamental, so that they are comparable in terms of complexity and detail to the 
classical modelling scenarios discussed in Section 3. Consequently, all base cases are represented at this 
modell ing abstraction level.' Figure 5 illustrates onc base case, that of modelling a longitudinal positive 
rectangular feature on the windward side of a rectangular fin. This base case is a classical heat transfer situation, 
is well understood and can be adapted and applied to a range of similar problems. In this base case, qualitative 
indices describe the minor feature and the associated base appendage. The modelling action or solution 
associated with this base case is that the feature can be removed completely without the need for any 
compensatory action. However, this action is not applied directly but is instead implemented by a process of 
regenerative transformation by applying the associated derivational trace. 

4.4 Matching and Mapping 

Case retrieval is implemented in a two stage process, matching (or base filtering) and mapping. In our initial 
prototype matching is implemented using an activation net which is made up of activation units which 
correspond to the indices of base cases. A feature vector is created for each target case which contains the 
relevam indices of the problem. The feature vector is the basis by which the activation units are initialised and on 
completion, each case in the case base is contains a value of how many indices it shares with the target case. The 
mapping st.age is concerned on establishing the correspondences between t.he base cases and the target cases. In 
our initial prototype, mapping based on establishing the full set of matching features between the target and base 
cases is the criteria for retrieving useful cases. 

117 

complex appendages are attached to the cylindrical base, each appendage has additional minor associated
features. The modelling goal in this task is to assess the importance of both the minor features and the
appendages themselves, this task corresponds to the spatial modelling phase described in Section 2.
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4.2 Target Case Description

A target case consists o f a  frame based representation of the physical system. Within a target frame,
representation is organised according to the different modelling perspectives; spatial modelling,
phenomenological modelling and control volume analysis modelling. Figure 4 illustrates from a spatial
perspective how the finned heat exchanger is classified and shows some of the indices used to describe the
problem. In this case, a partonomic type relationship a t  three levels describes the essential components of the
physical system, namely; the base cylinder, the complex appendages and their associated minor features. In this
problem, the base is classified as a cylindrical bluff body in crossflow, the complex appendage is a rectangular
longitudinal tin with features located on its windward, upper parallel and leeward sides. These features are a
longitudinal rectangular cavity, a longitudinal triangular fin and a longitudinal rectangular fin. Problem
parameters such as geometric data are also inc'luded‘in the target case but are not used as  indices, however this
information i s  used in the derivational traces.

4.3 Modelling Approach and  Base Case Description

In Section 2, we argued that engineers normally model convection problems by decomposing the problem into
well understood scenarios and considering each of these in a sequential manner. By classifying the heat
exchanger problem as  shown in Figure 4 ,  this decomposition has been effectively achieved. Modelling
progresses by firstly examining the role of the minor features with respect to the complex appendage and
secondly the role of the complex appendage with respect to the cylindrical base. Each of these modelling
episodes are sufficiently fundamental, so that they are comparable in terms of complexity and detail to the
classical modelling scenarios discussed in Section 3. Consequently, all base cases are represented at this

. modelling abstraction level.'Figure 5 illustrates one base case, that of modelling a longitudinal positive
rectangular feature on the windward side of a rectangular fin. This base case is a classical heat transfer situation,
is well understood and can be adapted and applied to a range of similar problems. In this base case, qualitative
indices describe the minor feature and the associated base appendage. The modelling action or  solution
associated with this base case is that the feature can be removed completely ,without the need for any
compensatory action. However, this action is not applied directly but is instead implemented by a process of
regenerative transformation by applying the associated derivational trace.

4.4 Matching and Mapping

Case retrieval is implemented in a two stage process, matching (or base filtering) and mapping. In our initial
protOtype matching is implemented using an activation net which is made up of activation units which
correspond to the indices of base cases. A feature vector is created for each target case which contains the
relevant indices of the problem. The feature vector is the basis by which the activation units are initialised and on
completion, each case in the case base is contains a value of how many indices it shares with the target case. The
mapping stage is concerned on establishing the correspondences between the base cases and the target cases. In
our initial prototype, mapping based on establishing the full set of matching features between the target and base
cases is the criteria for retrieving useful cases.
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4.5 Derivational Traces 

Derivational' traces are exploited in this domain, because, although the target and base cases may map 
qualitatively, small differences between physical parameters such as spatial or medium data can lead to 
significantly different solutions, Such differences cannot be expected to be captured in the initial qualitative 
classification of the problem', furthermore, to index all episodes based on both descriptive and parametric indices 
would result in an intractably large case base. A derivational trace describes the basis of the modelling solution, 
in this example, the removal of a windward longitudinal feature on a rectangular appendage, the reasoning 
behind these decisions and the engineering approximations and heuristics used in the evaluation process. In this 
example, the solution in the base case was derived in two ordered stages; firstly, the influence of the feature on 
the medium flow field was determined and found to be negligible and secondly the contribution of the feature to 
total appendage heat transrer was assessed and found to be of minor importance. Figure 6 shows a simplified 
version of the derivational trace, The fist stage examines the influence of the feature on the flow field and 
consists of Goals 1a and 1b. This involves determining whether the feature is actually fully contained within a 
turbulent boundary layer, and if so, the intluence of the feature on the tlow field is deemed negligible. Goal 
examines the contribution of the feature to overall heat transfer. In the base case, the heat transfer contribution of 
the feature was of the order of 4% of total heat transfer well within the 5% constraint, so therefore the fin was be 
removed, in the target case, this contribution was of the order of 3.5% thereby permiuing the feature to be 
removed. 

RectangUlar Appendage with Fin 

Description 

direction: windward 

type .flat plate 

:positive_featun~ 

type longiLUdinal 

profile rectangular 

location .aji 
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Solution 
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Fig 5 A sample base case for modelling a rectangular appendage with a positive feature 
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4.5 Derivational Traces

Derivational' traces are exploited in this domain, because, although the target-and base cases may map
qualitatively, small differences between physical parameters such as  spatial or medium data can lead to
Significantly different solutions. Such differences cannot be expected to be captured in the initial qualitative
classification of the problem‘, furthermore, to index all episodes based on both descriptive and parametric'indices
would result in an intractably large ease base. A derivational trace describes the basis of the modelling solution,
in this example, the removal of a windward longitudinal feature on a rectangular appendage, the reasoning
behind these decisions and the engineering approximations and heuristics used in the evaluation process. In this
example ,  the solut ion in the base case was derived in two ordered stages; firstly, the influence  of the feature on
the medium flow field was determined and found to be negligible and secondly the contribution of the feature to
total appendage heat transfer was assessed and found to be of minor importance. Figure 6 shows a simplified
version of the derivational trace. The fist stage examines the influence of the feature on the flow field and
consists of Goals l a  and lb .  This involves determining whether the feature is actually fully contained within a
turbulent boundary layer, and if so, the influence of the feature on the [low field is deemed negligible. Goal
examines the contribution of the feature to overall heat transfer. In the base case, the heat transfer contribution of
the feature was of the order of 4% of tetal heat transfer well within the 5% constraint, so therefore the fin was be
removed, in the target case, this contribution was of the order of 3.5% thereby permitting the feature to be
removed. -

\
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Fi g 5 A sample base case for modelling a rectangular appendage with a positive feature
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s. Conclusions 

We have described a preliminary prototype of an interactive case based reasoning tool for mathematical modelling of 
thermal engineering problems. Derivational analogy techniques are exploited to provide for generative adaptation and 
validation of base cases. We have found that because of the complexity of the domain, derivational analogy 
techniques are necessary to provide for case adaptation and validation. Nevertheless we believe that this work 
represents an important alternative perspective to model based reasoning approaches that have been applied to model 
generation to date. 
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5. Conclusions

We have described a preliminary prototype of an interactive case based reasoning tool for mathematical modelling of
thermal engineering problems. Derivational analogy techniques are exploited to provide for generative adaptation and
validation of base cases. We have found that because of the complexity of the domain, derivational analogy
techniques are necessary to provide for case adaptation and validation. Nevertheless we believe that this work
represents an important alternative perspective to model based reasoning approaches that have been applied to model
generation to date. -
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1	 Introduction 

In many domains there are different representations of the same cases.· For instance, the filler for 
the time slot in a case description can be made in terms of hours or in terms of morning, noon, 
afternoon, evening, and night; a kinematic description can be made in terms of mass and velocity, as 
well as in terms of momentum and energy. Actually some approaches and techniques in theoretical 
computer science and artificial intelligence are (implicitly) dealt with reformulation. Reformulation 
was also identified in [4) as one of the more difficult issues in analogical reasoning. 

However, the use and techniques of reformulating the base a.nd the target problem for analogy 
formation have found little attention although Indurkhya [5] and Russell [i) established the import­
ance of of reformulation in analogical reasoning in general. In [6] we have shown that reformulation 
rather than only symbol mapping is often necessary for advanced a.nalogy-driven theorem proving 
in mathematical domains. There we have developed techniques for reformulation within a proof 
planning context. As we think that the results can be generalized for analogical reasoning and 
case-based reasoning, we give an outline here that is, of course, restricted by the lenght of the 
paper. 

2	 The General Problem of Reformulation 

•	 The reformulation of a case representation can serve to identify explicitly the similarities -of 
cases with only implicitly shared aspects. Since case-based and analogical reasoning are based 
on the similarities of problems the machine supported reformulation of a given representation 
is often paramount for the solution of the problem. 

•	 We consider reformulation as a change of the representation of problems and solutions (goals). 
This is possible because of the c(mnections between goals and goal-relevant aspects of the 
problems. ­

•	 Reformulation is different from the modification/adaptation step of analogical reasoning: 

-	 It is done during retrieval or, if the analogous case is given, before matching the problems. 

Some reformulations affect the base and the target case. 

-	 Modifications are partially anticipated by the reformulation. 

•	 ~fechanisms of reformulation have a domain-dependent se;uch space and domain-dependent 
control strategies guiding the choice of reformulations. 

3	 Reformulation in Analogy-Driven 
Theorem Proving 

'Ne consider a situation. where a proof S of a base problem S =(asss f- thms) is given. and the task 
is to find a proof T of the target problem T = (assT f- thmT) which is supposed to be analogous 
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1 Introduction

In many domains there are different representations of the same cases.- For instance, the filler for
the time slot in a case description can be  made in terms of hours or in terms of morning, noon,
afternoon, evening, and night; a kinematic description can be made in terms of  mass and velocity, as
well as in terms of momentum and energy. Actually some approaches and techniques in theoretical
computer science and artificial intelligence are (implicitly) dealt with reformulation. Reformulation
was also identified in [4] as one of the more difficult issues in analogical reasoning.

However, the use and techniques of reformulating the base and the target problem for analogy
formation have found little attention although Indurkhya [5] and Russell [7] established the import—
ance of of reformulation in analogical reasoning in general. In [6] we have shown that reformulation
rather than only symbol mapping is often necessary for advanced analogy-driven theorem proving
in mathematical domains. There we have developed techniques for reformulation within a proof
planning context. As we think that the results can be  generalized for analogical reasoning and
case—based reasoning, we give an outline here that is, of course, restricted by the lenght of the
paper.

2 The General Problem of Reformulation

o The reformulation of a case representation can serve to identify explicitly the similaritiesrof
cases with only implicitly shared aspects- Since case-based and analogical reasonn are based
on the similarities of problems the machine supported reformulation of a given representation
is often paramount for the solution of the problem.

0 We consider reformulation as a change of the representation of problems and solutions (goals).
This is possible because of the connections between goals and goal-relevant aspects of the
problems. '

o Reformulation is different from the modification / adaptation step of analogical reasoning:

- It  is done during retrieval or, if the analogous case is given, before matching the problems.
- Some reformulations affect the base and the target case.
-— Modifications are partially anticipated by the reformulation.

o Mechanisms of reformulation have a domain—dependent search space and domain—dependent
control strategies guiding the choice of reformulations.

3 Reformulation in Analogy-Driven
Theorem Proving

We consider a s i tuat ion.  where a proof 8 of a base problem 5 = (ass-5 l- t hms)  is given. and the task
is to find a proof T of the  target problem~ T : (ass? l— thm'rp) which is supposed to be analogous
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to S. 
Our approach is embedded in a proof planning framework (see [2)). It considers plan operators, 

called methods, as basic units. Methods encode problems as well as partial proof schemata. They 
are represented by frame-like structures, as for example, 

Method: hom1 

parameter tormula!, t: function 

{ass( l), ass(2), ass(3)} 

;symmetric(t(p)) 
1. ; 1 r­ 'Ix foraulaj 
2. ; 2 f­ 'v'o-(symmetric(<T) ..... 'tx,y«x,y) Eo- --+ (y,x) E 0-) 
3. ;3 f­ symmetric(p) 
4. ; 1,3 f­ 'v'x,y«x,y) E f(p) --+ (y,x) E f(p» 
5. ; 1, 2, 3 f­ symmetric( f(p» 

schema-interpreter 

(LEMMA) 
(LEMMA) 
(LEMMA) 
(PLANJl 
(METHODs 
2 4) 

pre 

post 

dec-cont 

procedure 

history 

The idea of this met.hod is t.o prove symmetric(t(c)) from certain preconditions and from the 
definition of t in line l. 

All slots but procedure have declarative slot fillers. Thus methods can be reformulated by 
so-called meta-methods that. change the declaratively filled slots. We give an example for such a 
meta-method, called Add Argument: 

:Metamethod: Add Argument 

parameter P: problem 
t->=(ass; thm) and term t(x) occurs m conc1(~l) and 

pre 
thm=concl(~lHt(x)lil(x.y)l 

post ~f'=~l[f(tl)/i'(tl,t 2 )], where t l , t 2 , are terms 

procedure PROCADD 

rating ADD-rating 

Add Argument is applicable if the unary function symbol f occurs in the conclusion of M. This 
meta-method changes a unary function to a binary one. This is coded in PROCADD. Add Argument 
should be applied if concl(M) of the MI .-method1 M equals the conclusion of an ~12.-method after 
replacing the unary function symbol f by a binary function symbol F. 

3.1 The Model 

Starting with the method M I made up from the base problem PI and its proof, and method M2 
made up from the target problem P2 without a proof, the goal is to reformulate M I to a method 
Ma in k steps, such that the postcondition of Ma matches P2. Although the reformulation could 
in principle be limited to PI-methods, such that Pl=(assl; thml) is reformulated to a problem 
(assl /;thml /) with thmll = thm2 and assll 

~ ass2, it is more convenient to apply normalizing and 
abstracting meta-methods to both M I .- and .\1 2.-methods. Such reformulations are advantageoUs 
since they are more purpose directed: It is easier to abstract two methods and then to find an 
additional reformulation that yields a problem that matches the abstracted problem, than to find 
an abstraction, a reformulation, and a reverse abstraction that provide a problem matching the 
original P2. In the former case it is easy to find out which reverse abstraction to use. Also the 
reformulation of .'vllj to Mlm is more goal directed (see figure 1). 

1 the Mlo- and ~h.- methods are descendent of the base and the target methods. respectively 
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Add Argument is applicable if the unary function symbol f occurs in the conclusion of M.  This
meta-method changes a unary function to a binary one. This is coded in PROCADD. Add Argument
should be applied if concl(M) of the M1.-method1 M equals the conclusion of an Hg.-method after
replacing the unary function symbol f by a binary function symbol f’ .

3.1 The Model

Starting with the method M1 made up from the base problem P l  and its proof, and method Mg
made up from the target problem P2 without a proof, the goal is to reformulate M1 to a method
M1 1: in  I: steps, such that  the postcondition of My; matches P2.  Although the reformulation could
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(assl';thm1’) with thml’ : ihm? and (1551’ g 0552, it is more convenient to apply normalizing and
abstracting meta—methods to both M1..- and  Mg..—methods. Such reformulations are advantageous
since they are more purpose directed: It is easier to abstract two methods and then to find an
additional reformulation that yields a problem that matches the abstracted problem, than to find
an abstraction, a reformulation, and a reverse abstraction that provide a problem matching the
original P2. In  the former case i t  is easy to  find out which reverse abstraction to use. Also the
reformulation of MI,- to M1,“ is more goal directed (see figure 1) .

1 the -M1.-  and M2.-  methods are descendent of t he  base and the target methods. respectively
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Figure 1: Outline goal directed reformulation 

In addition to this process there is a preparation procedure for the verification of methods, 
which removes the method variables from Ma and yields the method Mlr. This method Mlr is 
then checked by a verifier and if the verification succeeds, M2 is replaced by Mlr, which finally 
contains a verified proof schema. 

If the verification fails, the same process is tried again but with all the sub-methods, sub­
submethods etc. of M1 and M2 . These sub-methods are obtained from the structuring reformula­
tions presented below. 

When all methods and sub-metbods have been dealt with, there are methods that were obtained 
from M I by some reformulations, such that their postconditions match P2 or some subproblems of 
P2. These successfully reformulated methods serve as preferred candidate elements for the proof 
plan. Verified methods are favoured candidates, compared to methods that have the same postcon­
dition but are not verified. 

3.2 Analysis of Reformulation in Theorem Proving 

Here we mention some basic properties of our,approach. They are due to the domain of mathematical 
theorem proving. 

•	 The reformulation steps depend on the source problem S and on the target problem T, and 
to a certain extend on the proof/proof idea for S. 

•	 N attire of tit( representational differences bet11Jee7l: the analogues 
Problems/proofs can be formulated at several levels of abstraction. Two problems/proofs 
can be instances of the same abstraction, e.g., proof by Diagonalization Method. Different 
.representations can be due to rewriting w.r .t. (equations of) a theory or just to logical 
reformulation .. Representations can differ in their basic concepts (their signature). There are 
symmetries and dualities (both are interpretations ofa theory in a theory) in mathematics 
bridging differences. 

•	 M etamethods available to tlu system 
We identified several classes of reformulations which differ in their application and effects: 
NORMALIZATION, with, e.g., Expand Definitions 
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In addition to this process there is a preparation procedure for the verification of methods,
which removes the method variables from Mn and yields the method Mk .  This method MI,- is
then checked by a verifier and if the verification succeeds, Mg is replaced by M1, ,  which finally
contains a verified proof schema-

If the verification fails, the same process is tried again but  with all the sub-methods, sub-
submethods etc. of M1 and Mg. These sub-methods are obtained from the structuring reformula-
tions presented below.

When all methods and sub-methods have been dealt with,  there are methods that were obtained
from M 1 by some reformulations, such that their postconditions match P2  or some subproblems of
P2.  These successfully reformulated methods serve as preferred candidate elements for the proof
plan. Verified methods are favoured candidates, compared to methods that have the same postcon—
dition but are not  verified.

3 .2  Analysis of Reformulat-ion in Theorem Proving
Here we mention some basic properties of our.approach. They are due to the domain of mathematical
theorem proving.

0 The reformulation steps depend on the source problem S and on the target problem T,  and
to a certain extend on the proof/ proof idea for ‘S.

o Nature of the representational differences between the analogues
Problems/proofs can be formulated at several levels of abstraction. Two problems/proofs
can be instances of the same abstraction, e.g., proof by Diagonalization Method. Different
representations can be due  to rewriting w.r . t .  (equations of) a theory or just to logical
reformulation. Representations can differ in their basic concepts (their signature). There are
symmetries and dualities (both are interpretations of . a  theory in a theory) in mathematics
bridging differences

. Metamethods available to  the system
We identified several classes of reformulations which differ in their application and effects:
NORMALIZATION, with,  e.g.‚ Expand Defini t ions
ABSTRACTION, with,  e.g., Homomorphy Abstract ion

122



4 

DIRECT REFORMULATION, with, e.g., Symbol Mapping and Add Argument 
STRUCTURING, with, e.g., Conjunctive Decomposition 
REVERSION, with, e.g., Reverse Hom-Abstr. 
Our current set of (heuristically) justified metamethods is not complete. Metamethods are to 
discover by experience in mathematics. 

•	 Control strategy guiding the choice among the metamethods 
At any point in time during the reformulation process there may be several meta-methods 
applicable to more than one method, hence the need for control strategies. A first and im­
portant control strategy fixes the right choice of the class of reformulations and these classes 
are to be activated in a fixed sequence; afterwards we have to pick the heuristically best choice 
within each class. 

The general sequence of these classes that turned out to be most useful is: 

1.	 Normalization 

2.	 Abstraction 

3. Direct Reformulation 

4. Restructuring 

In addition, metamethods have preconditions for their application to be tested. If several 
metamethods are applicable in the same situation, then their ratings are decisive. 

•	 How the reformulation leads to a proof plan for T. 
Proof planning tries to partially order the successfully reformulated methods by comparing 
instances of their pre- and postconditions respectively. It can use information from the struc­
turing of the M1.- and M2.-methods. Proof Planning starts with a method M that has the 
desired problem P2 as its postcondition. Then it looks for methods that have problems of 
pre(M) (maybe less inst.antiated) as its post.condition etc. The process stops when the precon­
ditions of the new methods are empty or there are no new methods. It may provide several 
proof plans. 

Often there will still be gaps between the elements of the proof plan. That is, not all precon­
ditions of a method are found in the succeeding methods. Hence. to obtain a plan as complete 
as possible, additional methods have to be inserted which can be found, for instance, by 
searching bridge lemmas or by difference matching, see [3. 1]. 

Conclusion 

Within this framework several types of analogies can be established: 

•	 Analogies based on direct mapping of proofs onto proofs, as in previ~us approaches to theorem 
proving by analogy: . 

___p_r_o_of_l__----~.I....__p_r_o_o_f_2 _ 
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3 .  Direct Reformulation
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In addition, metamethods have preconditions for their application to be tested. If several
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ditions of the new methods are empty or there are no new methods. It may provide several
proof plans.

Often there will still be gaps between the elements of the proof plan. That is, not all precon—
ditions of a method are found in the succeeding methods. Hence. to obtain a plan as complete
as possible, additional methods have to be inserted which can be found, for instance, by
searching bridge lemmas or by difference matching, see [3. 1].

4 Conclusion

Within this framework several types of analogies can be established:

. Analogies based on direct mapping of proofs onto proofs, as in previbus approaches to theorem
proving by analogy:
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• Analogies based on abstractions of proofs (and subsequent 
reverse_abstraction) : 

• Analogies based on abstracted and in addition reformulated proofs with subsequent :everse_abstraction. 

1 Reformulation(abstr) 
L....----r------'I abstraction I- -+1: I 

proof 1 proof 2I	 I I I 
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Abstract. The notion of similarity is important for both indexation and adap­
tation. But traditionally, research has been almost exclusively focused on the use 
of similarity between cases for indexation. Therefore, the present paper looks at 
similarity-based adaptation instead. Two uses of similarity in adaptation are iden­
tified: the adaptation of actions prescribed by a case solution using a hierarchy of 
similar actions and a heuristic weighting of actions where multiple substitute actions 
have been found for an action in the solution. The approach is illustrated with an 
example from the domain of local area network redesign. 

1 Introduction 
The case-based problem solving process can be decomposed into two distinct phases: 
indexation and adaptation [2]. In the first, a case is selected from a case base according 
to its similarity to the current problem situation. In the second, the solution proposed by 
the selected case is adapted by applying appropriate changes that reflect the difference 
between the current problem situation and the assumptions made in the situation on 
which the case is based. 

The notion of similarity is important for both indexation and adaptation. But tra­
ditionally, research has been almost exclusively focused on the use of similarity between 
cases for indexation. This becomes particularily obvious with regard to the list of pa­
pers submitted to this workshop. Therefore, the present paper looks at similarity-based 
adaptation instead. 

Two uses of similarity in adaptation will be identified: the adaptation of actions pre­
scribed by a case solution and a heuristic weighting of actions where multiple substitute 
actions have been found for an action in the solution. We introduce the concept of ac­
tion hierarchies of similar actions, where their degree of similarity is measured by both 
abstraction and specificity. 

The paper will proceed as follows. First a typical problem situation will be described. 
Next the representation of cases will be presented. In the main part of the paper the adap­
tation mechanism itself will be outlined. It comprises three phases: search for a substitute 
action, parameter adaptation and application of the identified actions. In conclusion, the 
present state of the work will be reviewed. Throughout the paper the approach is illus­
trated with a concrete example from the domain of local area network design. 

2 Problem Situations 
The application domain of the proposed case-based system is the redesign of local area 
networks (LANs). Such networks are composed of data segments linked by repeaters or 
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Abstract. The notion of similarity is important for both indexation and adap-
tation. But traditionally, research has been almost exclusively focused on the use
of similarity between cases for indexation. Therefore, the present paper looks at
similarity—based adaptation instead. Two uses of similarity in adaptation are iden-
tified: the adaptation of actions prescribed by a case solution using a hierarchy of
similar actions and a heuristic weighting of actions where multiple substitute actions
have been found for an action in the solution. The approach is illustrated with an
example from the domain of local area network redesign.

1 Introduction
The case—based problem solving process can be decomposed into two distinct phases:
indexation and adaptation [2]. In the first, a case is selected from a case base according
to its similarity to the current problem situation. In the second, the solution proposed by
the selected case is adapted by applying appropriate changes that reflect the difference
between the current problem situation and the assumptions made in the situation on
which the case is based.

The notion of similarity is important for both indexation and adaptation. But tra—
ditionally, research has been almost exclusively focused on the use of similarity between
cases for indexation. This becomes particularily obvious with regard to the list of pa-
pers submitted to this workshop. Therefore, the present paper looks at similarity-based
adaptation instead.

Two uses of similarity in adaptation will be identified: the adaptation of actions pre—
scribed by a case solution and a heuristic weighting of actions where multiple substitute

. actions have been found for an action in the solution. We introduce the concept of ac-
tion hierarchies of similar actions, where their degree of similarity is measured by both
abstraction and specificity. „

The paper will proceed as follows. First a typical problem situation will be described.
Next the representation of cases will be presented. In the main part of the paper the adap-
tatidn mechanism itself will be outlined. It comprises three phases: search for a substitute
action, parameter adaptation and application of the identified actions. In conclusion, the
present state of the work will be reviewed. Throughout the paper the approach is illus—
trated with a concrete example from the domain of local area networkdesign.

2 Problem Situat ions
The application domain of the proposed case~based system is the redesign of local area
networks (LANS). Such networks are composed of data segments linked by repeaters or
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bridges. Each data segment connects to a number of workstations and servers to which 
peripheral devices are usually attached. Each server provides a list of services that can be 
requested by the workstations. 

The redesign process is initiated by the identification of a bottleneck situation (redesign 
problem). It is assumed that this redesign problem is obtained from the application of 
an appropriate diagnosis algorithm. Together, the redesign problem and a description of 
the local area network provide the input to the system, which is captured in a problem 
situation. 

Definition 1. A problem situation contains a description of the network and a problem 
description. 

The full formalisim for the description of a local area network will not be presented 
here. Instead, we will refer to the topology shown in fig. 1. 

WS-1 WS-3 WS-5 SeNer-1 WS-7 

DataSeg-1 0-,.....L--,._.......I'---r--..l._-T""'l DataSeg-2
 

Fig. 1. LAN topology for a typical problem situation 

Definition 2. A problem description contains sender, receiver, a description of the kind 
of traffic between sender and receiver and the path by which they communicate. It also 
states a performance requirement that must be met by the solution. 

A problem description states that for some reason the communication between the 
sender and the receiver is insufficiently supported by the current network configuration. 
For example, the problem description below describes a contention of the bridge from the 
topology in fig. 1: 

Sender: DataSeg-l 
Receiver: Server-1 
Traffic: $(database. Server-I) => DataSeg-l 

D(DataSeg-l) => Server-l 
P(B) = NOT-ACCEPTABLE 

Path: DataSeg-l/B/DataSeg-2/Server-1 
Required: P(B) = WITH-MARGIN 

This problem description is to be read in the following way: The database service of 
Server-l is heavily used by clients in data segment DataSeg-l (the notation "=>" is used). 
Large amount of data are flowing from this data segment to the server. The descriptors 
Sand D are used to denote a service offered by a particular server and the data traffic 
caused by a network component. The other descriptor P symbolizes performance. 

Case Representation 
The problem description from the problem situation is now used as in index into the case 
base. (We will not discuss indexation here, however.) 
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problem). It is assumed that this redesign problem is obtained from the application of
an appropriate diagnosis algorithm. Together, the redesign problem and a description of
the local area network provide the input to the system, which is captured in a problem
situation.

Definition 1. A problem situation contains a description of the network and a problem
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The full formalisim for the description of a local area network will not be presented
here. Instead, we will refer to the topology shown in fig. 1.
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Definition 2 .  A problem description contains sender, receiver, a description of the kind
of traffic between sender and receiver and the path by which they communicate. It also
states a performance requirement that must be met by the solution.

A problem description states that for some reason the communication between the
sender and the receiver is insufficiently supported by the current network configuration.
For example, the problem description below describes a contention of the bridge from the
topology in fig. 1:

Sender: DataSeg—l
Receiver: Server-1
Traffic: S(database, Server-1) => DataSeg-l

D(Data‘Seg—1) => Server-1
P(B) : NOT—ACCEPTABLE

Path: DataSeg-l / B / DataSeg—2 / Server-1
Required: P(B) : WITH-MARGIN

This problem description is to  be read in the following way: The database service of
Server—l is heavily used by clients in data segment DataSeg—l (the notation “=>” is used).
Large amount of data are flowing from this data segment to the server. The descriptors
S and D are used to denote a service offered by a particular server and the data traffic
caused by a network component. The other descriptor P symbolizes performance.

3 Case Representation
The problem description from the problem situation is now used as in index into the case
base. (We will not discuss indexation here, however.)
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Definition 3. A case connects a problem description to a solution description. 

A case also prescribes a list of actions, such as duplicate-server, to be performed on the 
local area network. The list of actions comprises the solution description. 

Definition 4. An action is an operation that changes either the structure or the compo­
sition of the network. In addition, actions can be specified with variable components or 
parameters. 

Definition 5. A solution description is a list of actions that applied resolve the redesign 
problem associated with the case. 

For example, the action duplicate-server creates an additional server in another data 
segment with the same range of services associated with the original server. The services 
are represented as an attribute to the server object. 

duplicate-server(Server. Segment} 

The following is a case that fits the problem situation above. It is composed from the 
problem description: 

Sender: Segment-I 
Receiver: Server-2 
Traffic: S(print-service, Server-2) ~ Segment-I 

D(Segment-l) ::::} Server-2 
P(B) = NOT-ACCEPTABLE 

Path: Segment-IjRjSegment-2j BjSegment-3jServer-2 
Required: P(B) = WITH-MARGIN 

and the solution description: 

duplicate-server(Server-2. Segment-I) 

In this case an average number of print jobs is submitted to Server-2 by clients in 
Segment-I (using the notation "~"). However, since these print jobs cause a high traffic 
there is heavy load on the bridge B between Segment-2 and Segment-3. The performance 
of B is therefore rated NOT-ACCEPTABLE. The required performance of B is to operate 
WITH-MARGIN. In order to achieve' this desired state, i.e. to keep the traffic caused by 
the print jobs local, Server-2 should be duplicated. 

Adaptation Mechanism 
The assumptions made in the case problem situation usually do not match exactly those 
of the current situation. Therefore a substitute action has to be determined that fits these 
different assu~ptio:p.s. At this point of the process the adaptation mechanism enters the 
game. The adaptation mechanism comprises three elements: 

- search for substitute actions, 
- parameter adaptation, and 
- application ·of the selected actions. 

These will be described in more detail now. Fig. 2 shows how these elements are related. 
We now introduce the concept of action hierarchies and our notion of similarity. 
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Definition 3. A case connects a problem description to a solution description.

A case also prescribes a list of actions,  such as duplicate—server, to be  performed on the
local area network. The list of actions comprises the solution description.

Definition 4 .  An action is an operation that changes either the structure or the compo-
sition of the network. In addition, actions can be specified with variable components or
parameters.

Definition 5 .  A solution description is a list of actions that applied resolve the redesign
problem associated with the case.

For example, the action duplicate—server creates an additional server in another data
segment with the same range of services associated with the original server. The services
are represented as an attribute to the server object.

duplicate-server(5erver, Segment).

The following is a case that fits the problem situation above. It is composed from the
problem description:

Sender: Segment—1
Receiver: Server-2
Traffic: S(print-service, Server-2) —> Segment-1

D(Segment-1) => Server—2
P(B) : NOT—ACCEPTABLE

Path: ' Segment-1 / R/ Segment—2/ B/ Segment-3/Server-2
Required: P(B) : WlTH—MARGIN

and the solution description:

duplicate-server(Server—2, Segment-1)

In this case an average number of print jobs is submitted to Server-2 by clients in
Segment-1 (using the notation “—>”). However, since these print jobs cause a high traffic
there is heavy load on the bridge B between Segment-2 and Segment—3. The performance
of B is therefore rated NOT-ACCEPTABLE. The required performance. of B is to operate

' WITH-MARGIN. In order to achieve' this desired state, i.e. to keep the traffic caused by
the print jobs local, Server—2 should be duplicated.

4 Adaptation Mechanism
The assumptions made in the case problem situation usually do not match exactly those
of the current situation. Therefore a substitute action has to  be  determined that fits these
different assumptions. At this point of the process the adaptation mechanism enters the
game. The adaptation mechanism comprises three elements:

— search for substitute actions,
—- parameter adaptation, and
— application-of the selected actions.

These will be  described in more detail now. Fig. 2 shows how these elements are related.
We now introduce the concept of action hierarchies and our notion of similarity.
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ne,xt action of the 
solution description 

Problem 
Description 

LAN 
Description 

Action 
Hierarchy 

LAN 
Description 

Fig. 2. Adaptation cycle 

Definition 6. An action hierarchy is a hierarchy of similar actions, where their degree of 
similarity is measured by both abstraction and specificity. 

Fig. 3 shows parts of action hierarchy. In particular, the left half contains the special­
izations of the action reposition-server. 

Definition 7. A substitute action is an action that as similar as possible to the action in 
the solution description of the case, and at the same time suitable. 

Definition 8. The degree of similarity p(p rv p') of an action p and a particular substitute 
action p' is defined by a weighted difference of the degree of specificity, p+ (p p') andrv 

abstraction p_ (p rv p') of p': 

rvp(p rv p') = p+ (p rv pi) .:.-. 13 p_ (p p') 

The parameter 13 (for bias) can be definied to suit the user's pereferences. If the user 
chooses to favor substitute actions that are closer within the hierarchy to the orginal 
action, the value of 13 should be high. The reason for this will be intuitive from the 
example below. The following definitions apply. 

Definition 9. Let p be an action, p' a particular substitute action and p /\ p' the least 
common abstraction of p and p'. The degree of specificity p+ (p p') is the distance drv 

between p /\ p' and pi in the abstraction hierarchy: 

p+ (p p') = d(p /\ pi, p') rv 

The degree of abstraction p_ (p rv p') is the distance d between p and p /\ p' III the 
abstraction hierarchy: 

p_ (p rv pi) = d(p, p /\ p') 

For example, the action duplicate-server could be relaxed either to the action split­
server or the action increase-bridge-buffer (cOInpare fig. 3). The latter action is again a 
specialization of the action improve-hardware. On the one hand 'it is very much different 
from the original action, on the other it could be used as substitute action due to its 
specificity; the choice depends on the value of the bias 13. 
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Definition 6. An action hierarchy is a hierarchy of similar actions, Where their degree of
similarity is measured by both abstraction and specificity.

Fig. 3 shows parts of action hierarchy. In particular, the left half contains the special-
izations of the action reposition-server.

Definition 7. A substitute action is an action that as similar as possible to the action in
the solution description of the case, and at the same time suitable.

Definition 8. The degree of similarity Mp ~ p' ) of an action p and a particular substitute
action p’ is defined by a weighted difference of the degree of specificity. „+ (p N p' ) and
abstraction a- (p N p’ ) of p’ :

u®~d%=mtwwfl4fln4p~fl)
The parameter ‚6 (for bias) can be definied to suit the user’s pereferences. If  the user

chooses to favor substitute actions that are closer Within the hierarchy to the orginal
action, the value of ß should be high. The reason for this will be intuitive from the
example below. The following definitions apply.

Definition 9. Let p be an action, p’ a particular substitute action and p A p’ the least
common abstraction of p and p’. The degree of specificity „+ (p N p’) is the distance d
between p /\ p’ and p’ in the abstraction hieraIChy:

, MAP N P,) = 6“? Aplap’)
The degree of abstraction ,a-(p ~ p’) is the distance d between p and p A p’ in the
abstraction hierarchy:

nip~p3=dwmAp3
For example, the action duplicate—server could be relaxed either to the action split-

server or the action increase-bridge—buffer (compare fig. 3). The latter action is again-a
specialization of the action improve-hardware. On the one hand it is very much different
from the original action, on the other i t  could be used as substitute action due to its
specificity; the choice depends on the value of the bias ‚6.
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Fig. 3. Action hierarchy 

We now describe the search process used to find a substitute action. We first note 
that the set of substitute actions is restricted, because not all actions are suitable. The 
applicability of an action will be made dependent on certain conditions. 

Definition 10. An action is further characterized by preconditions and postconditions. 
The former give the reason for the application of the action, the latter describe what is 
achieved by the action. 

An action inherits its preconditions and postconditions to its successors in the hierar­
chy. Each successor action adds specific conditions of its own. 

Definition 11. An action is suitable if its preconditions are satisfied and its postcondi­
tions not already realized in the network. 

Depending on the values of the preconditions and postconditions of the currently 
examined action different subspaces of the abstraction hierarchy are searched. Each of 
these search spaces is traversed in depth-first manner, but applies different exit conditions. 
Two of these subspaces are shown in fig. 3. 

In the example problem situation the solution proposed by the case is: 

duplicate-server(Server-l, DataSeg-l) 

Its precondition includes that a group of workstations (user group) must use all services 
of a particular server: 

DataSeg-l is a user group 
DataSeg-l uses the whole service range {database,mail} of server Server-l in another subnet 

Assuming that from the network description in the problem situation we know that 
Server-l also supports other services, e.g. a mail service, that is not exclusively used by 
DataSeg-l. Therefore the duplication of the server would not attack the problem in a 
consistent way; a substitute action has to be found. 

The next action tested is reposition-server, which is more general. The condition about 
the use of the whole service range is relaxed, now only a group of users must exist that 
requests services in another subnet. Since the postcondition that there already is a server 
with these services in the subnet is not satisfied, the search again becomes more specific. 
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Fig.  3. Action hierarchy

We now describe the search process used to find a substitute action. We first note
that the set of substitute actions is restricted, because not all actions are suitable. The
applicability of an action will be  made dependent on certain conditions.

Definition 10 .  An action is further characterized by preconditions and postconditions.
The former give the reason for the application of the action, the latter describe what is
achieved by the action.

An action inherits i ts  preconditions and postconditions to  i ts  successors in the hierar—
chy. Each successor action adds specific conditions of its own.

Definition 11. An action is suitable if its preconditions are satisfied and its postcondi—
tions not already realized in the network.

Depending on the values of the preconditions and postconditions of the currently
examined action different subspaces of the abstraction hierarchy are searched. Each of
these search spaces is traversed in  depth—first manner, but applies different exit conditions.
Two of these subspaces are shown in fig. 3.

In the example problem situation the solution proposed by the case is:

duplicate-server(5erver—1, DataSeg—l)

‘ Its precondition includes that a group of workstations (user group) must use all services
of a particular server:

DataSeg—l is a user group
DataSeg—l uses the whole service range {databasemail} of server Server-l in another subnet

Assuming that from the network description in the problem situation we know that
Server-1 also supports other services, e .g.  a mail service, that i s  not exclusively used by
DataSeg-l. Therefore the duplication of the server would not attack the problem in a
consistent way; a substitute action has to be  found.

The next action tested is reposition-server, which is more general. The condition about
the use of the whole service range is relaxed, now only a group of users must exist that
requests services in another subnet. Since the postcondition that there already is a server

_ with these services in the subnet is not satisfied, the search again becomes more specific.
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Finally, the action split-server is found, It is suitable because it prescribes to move 
only those services into the subnet of the user group that are requested by it. It does 
so by splitting the server into two servers. The application of split-server will make its 
postcondition true: 

All services {database} from {database,mail} of server Server-l requested by DataSeg-l are 
now offered in the same subnet as DataSeg-l 

Parameter adaptation is used to adapt the variable components of an action. It com­
prises component substitution, e.g. the service print-service of Server-2 is substituted by 
the service database of Server-l, as well as the creation of new parameters, e.g. the action 
split-server introduces two new parameters that did not exist in duplicate-server: 

split-server(Server-l, {mail}, {database}, DataSeg-l) 

Conclusion 
The contributions qf this paper are twofold. First, it describes a technique for modeling 
redesign problems in the domain of local area networks. Though this application domain 
is of great practical relevance, it is also difficult to model. Therefore, there is not much pre­
vious work on this topic; one related approach is described in [3]. The notation introduced 
should be an important step towards documenting redesign situations. 

Second, it emphasizes the importance of similarity notions in adaptation. Most re­
search to date has focused oil the use of similarity for indexation instead. A good account 
of this in the redesign context can be found in [1]. We claim that the more noticeable 
impact of similarity concepts will be on the adaptation of the actions prescribed by a 
case to the existing problem situation. The adaptation process is based on background 
knowledge about the suitability of the actions. 

The work described in this paper is still in progress. It was done as part of a research 
project on an environment for concurrent engineering in local area network design [4]. It 
will contribute a redesign component that can propose design options to the users and 
should eventually learn new redesign cases from monitoring the designers' activities. The 
adaptation mechanism has been specified to the level of abstract search algorithms, and 
a partial analysis of the domain of LAN design has been performed. 
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Finally, the action split—server is found-. It is suitable because i t  prescribes to move
only those services into the subnet of the user group that are requested by it .  It does
so by splitting the server into two servers. The application of split—server will make its
postcondition true:

"All services {database} from {database,mail} of server Server-1 requested by DataSeg—l are
now offered in the same subnet as DataSeg—l

Parameter adaptation is used to adapt the variable components of an action. It  com—
prises component substitution, e.g. the service print-service of Server-2 is substituted by
the service data base of Server-1, as well as the creation of new parameters, e.g. the action
split-server introduces two new parameters that did not exist in duplicate-server:

split-serverCServer—l, {mail}, {database}, DataSeg-I)

5 Conclusion
The contributions of this paper are twofold. First, i t  describes a technique for modeling
redesign problems in the domain of local area networks. Though this application domain
i s  of great practical relevance, i t  is also difficult to model.  Therefore, there i s  not much pre-
vious work on this topic; one related approach is described in [3]. The notation introduced
should be  an important step towards documenting redesign situations.

Second, it emphasizes the importance of similarity notions in adaptation. Most re-
search to date has focused on the use of similarity for indexation instead. A good account
of this in the redesign context can be found in [1]. We claim that the more noticeable
impact of similarity concepts will be on the adaptation of the actions prescribed by a
case to  the existing problem situation. The adaptation process is based on background
knowledge about the suitability of the actions.

The work described in this paper is still in progress. It  was done as part of a research
project on an environment for concurrent engineering in local area network design [4]. It
will contribute a redesign component that can propose design options to the users and
should eventually learn new redesign cases from monitoring the designers’ activities. The
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a' partial analysis of the domain of LAN design has been performed.
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Abstract
 

In the recent years methods of case-based classification were often used in domains traditionally
 
dominated by symbolic learning algorithms. This arises the question, what are the differences and
 
the learning power of the two paradigms. In this work we study the relationship between the case
 
base, the measure of similarity, and the target concept of a case-based learning process. To do so we
 
transform a simple symbolic learning algorithm (the Version Space [10]) in an equivalent case-based
 
variant. The proposed results underline the equivalence of symbolic an case-based methods and show
 
the strong dependency between the measure used by a case-based algorithm and the target concept.
 

Introduction 

Machine Learning is one of the main research areas in AI. In. the recent years this area has branched 
off significantly. In face of these different approaches arises the question, what are the differencies and 
what the commonalities of the paradigms. In this work, we want to compare two important inductive 
learning paradigms - the symbolic and the case-based approach. The learning task we want to study is 
the classification of objects. The aim of the classification is to map the objects of a universe to concepts, 
i.e. subsets of the universe. In the most simple scenario the aim is to decide the membership problem of 
a certain concept, i.e. the universe is separated in two disjunct subsets. 

We call the phase during the systems produce their hypothesis learning phase and the phase while 
the hypothesis are used to classify new objects application phase. The fundamental problem of both 
approaches 'during the learning phase is the same. At every moment the learner knows the correct 
classification of a finite subset of the universe only. The knowledge that it is able to use to produce 
a hypothesis is incomplete and therefore the hypothesis need not to be correct. The main difference 
between the two approaches is the way the learning algorithm produces and represents its hypothesis. 

In the learning phase, a symbolic algorithm like Version Space [10] builds up a set of rules or a decision 
tree. In the application phase, these rules are used for the classification of new objects. In contrast, a 
case-based classifier consists of a finite set of already classified objects - the case base - and a measure 
of similarity. 1 Given a new. object, the system searches in the case base for the nearest neighbor (or the 
most similar case) and states its classification as the classification of the new object [15]. Learning and 
the employment of the learned knowledge are not separated but highly integrated. From the viewpoint 
of machine learning, case-based reasoning (case-based learning) may be seen as a concept formation task 
[3, 14]. If the case-based classifier gets more and more cases, it builds a sequence of pairs (CBj , simj). 
The aim is to get in the limit a pair (CB,sim), which is a correct classifier for the target concept. 
This raises the question how the concepts are represented in the systems. Contrary to symbolic learning 
systems that represent a learned concept explicitly by a symbolic formula, case-based systems describe 
concepts implicitly by a pair (CB, sim) [13], i.e. by a measure of similarity sim and a set CB of cases. 

The two paradigms of symbolic [7, 8] and case-based classification [2, 1, 4] arise the question which 
one performs better than the other. In the area of case-based reasoning there is only a very few work 
concerning the relationship between the used measure of similarity and the set of learnable concepts. The 
results proposed, e.g., by Cost and Salzberg [4] seem to be too optimistic to us. For the area of Inductive 
Inference, J antke [6] proved the equality of the learning power of symbolic arid case-based classifiers. The 
proof is based on the learner's ability to adjust the measure of similarity to the given problem. To use 

-The presented work was partly supported by the Deutsche Forschungsgemeinschajt, SFB 314: "Artificial Intelligence 
and Knowledge Based Systems" and the Project IND-CBL. 

1 It is possible to use a distance measure instead of a measure of similarity. We will use the term measure to capture 
both types. For the equivalence of distance and similarity measures see [12]. 
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Abstract

In  the  recent years methods of case—based classification were often used in domains traditionally
dominated by symbolic learning algorithms. This arises the question, what are the differences and
the learning power of the two paradigms. In this work we study the relationship between the case
base, the measure of similarity, and the target concept of a case-based learning process. To do so we
transform a simple symbolic learning algorithm ( the  Version Space [10]) in an equivalent case-based
variant.  The proposed results underline the equivalence of symbolic an case-based methods and show
the  strong dependency between the  measure used by a case-based algorithm and the target concept.

..

1 Introduction

Machine Learning is one of the main research areas in AI. In the  recent years this area has branched
off significantly. In face of these different approaches arises the question, what are the difl'erencies and
what the commonalities of the paradigms. In  this work, we want to compare two important inductive
learning paradigms __, the symbolic and the case-based approach. The learning task we want to study is
the  classification of objects. The aim of the classification is to map the objects of a universe to concepts,
i.e. subsets of the universe. In  the most simple scenario the aim is to  decide the membership problem of
a certain concept, i.e. the universe is separated in two disjun-ct subsets. ‘

We call the phase during the systems produce their hypothesis learning phase and the phase while
the hypothesis are used to  classify new objects application phase. The fundamental problem of both
approaches ‘during the learning phase is the same. At every moment the learner knows the correct
classification of a finite subset of the universe only. The knowledge that i t  is able to  use to  produce
a hypothesis is incomplete and therefore the hypothesis need not to  be  correct. The main difference
between the two approaches is the way the learning algorithm produces and represents i ts hypothesis.

In the learning phase, a symbolic algorithm like Version Space [10] builds up a set of rules or a decision
tree. In the application phase, these rules are used for the classification of new objects. In contrast, a
case-based classifier consists of a finite set of already classified objects — the case base - and a measure
of similarity.1 Given a new. object,  the system searches in the case base for the nearest neighbor (or the
most similar case) and states its classification as the classification of the new object [15]. Learning and
the employment of the learned knowledge are not separated but  highly integrated. From the viewpoint
of machine learning, case—based reasoning (case-based learning) may be  seen as a concept formation task
[3, 14]. If the  case-based classifier gets more and more cases, it builds a sequence of pairs (GBI-‚5577130.
The aim is to get in the limit a pair (CB,sim), which is a correct classifier for the target concept.
This raises the question how the concepts are represented in  the systems. Contrary to  symbolic learning
systems that represent a learned concept explicitly by a symbolic formula, case—based systems describe
concepts implicitly by a pair (CB,  Sim) [13], i.e. by a measure of similarity Sim and a set CB of cases.

The two paradigms of symbolic [Y, 8] and case—based classification [2, 1, 4] arise the question which
one performs better than the other. In the area of case—based reasoning there is only a very few work
concerning the  relationship between the used measure of similarity and the set of learnable concepts. The
results proposed,  e . g . ,  by Cost and Salzberg [4] seem to  be  too optimist ic to u s .  For the  area of Inductive
Inference, J antke [6] proved the equality of the learning power of symbolic and case—based classifiers. The
proof is based on the learner’s ability to adjust the measure of similarity to the given problem. To use

‘The presented work was partly supported by the Deut sche  Forschungsgemeinschaft ,  SFB 314: ” Artificial Intelligence
and Knowledge Based Systems” and the Project IND-CBL.

1I t  i s  possible to  use a distance measure instead of a measure of similarity. We will use the term measure to  capture
both types. For the equivalence of distance and similarity measures see [12].
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case-based classification, it is necessary to understand the possibilities to adjust the measure of similarity 
or, more generally, to understand the use of information in the algorithms [13]. In this paper, we want to 
show that it is possible to state some relationships and the consequences that follow from this analysis. 
For our example we have found a direct transformation so that the symbolic and the case-based approach 
result in an equal classification behavior. We conclude that there is a set of learnable concepts associated 
with each mea,;ure of similarity. 

Example: Version Space 

To illustrate the possibility to reformulate a symbolic learning algorithm in a case-based manner we first 
describe a well-known symbolic algorithm and then the way to construct an equivalent case-based variant. 
The Version Space algorithm is a simple and well-known symbolic learner [10]. Because of its simplicity, 
it is easy to show a lot of properties, which hold for many other learning. systems, where it would be 
difficult to prove them. First we want to describe the Version Space. 

Let Wi := Nk, (i := 1, ... , n) be sets of values. 2 U := W l x ... X Wn is the univers~. A concept 
is a vector K = (K l , ... , K n ), where K i = * or K i = ai (ai E Wi ). An object a = (al' a2, ... , an) fulfills 
the concept K (i.e. K(a) = 1), if for alII::; i ::; n holds: Ki ::;:: * or K i =ai. Otherwise, K(a) is set to O. 

All possible concepts can be arranged in a directed acyclic graph (the Version Space) where the 
concept at the end of an arrow specifies just one more attribute than the concept at the starting point. 
The algorithm gets a sequence (a i ) of positive and negative examples of the concept. With respect to 
the known examples, the Version Space algorithm constructs two sets of concepts. The set 5 contains 
all concepts, which are fulfilled by all the known positive and by no known negative example and there 
is no more specialized3 concept with the same properties. The set G contains the most general concepts 
which are fulfilled by all the known positive and by no known negative example. 

The algorithm describes the way to modify the sets 5 and G, when a new example is presented. To 
define 5 and G properly we force the first example a l to be positive. The algorithm is based on some 
assumptions which should be verified. For example, the assertion that the set 5 has always only one 
element and that for every concept 9 from G a more specialized concept with the demanded properties 
can be found. We do not prove these assertions here. The sets 5 and G characterize at every moment 
the classification ability of the Version Space. Under the assumption that the concept is a member of the 
Version Space every object which fulfills the concept in 5 must be positive. If the object does not fulfill 
any concept in G then the object must be negative. 

Version Space algorithm 

1.	 Initialize G as the set containing only the most general concept
 
G = {(*, ... ,*)} and 5 = {al}.
 

2.	 Assume the new example a is positive. 
Remove all concepts 9 from G which are not fulfilled by a. Search for the most specialized 
concept K in the Version Space which is fulfilled by all positive examples and set 5 = 
{K}. 

Assume the new example a is negative.
 
For every concept 9 from G which is fulfilled by a, search for the most general specializa­

tions, which are fulfilled by all known positive and no known negative example. Replace
 
9 by the found specializations.
 

3.	 If there is a concept 9 in G which is more specific than a concept in 5,
 
then HALT(The examples do not fulfill any concept of the Version Space).
 

4.	 If 5 = G
 
then RETURN(Found concept = 5)
 
else go to 2)
 

2.1 A Case-Based Version Space 

It is ohvious that the main ability of the Version Space algorithm is to separate relevant and irrelevant 
values. A value is called relevant, if it is part of the concept the learner has to learn. The following 

2Nk := {O, 1, ... , k} 
Cl A conc"pl 1"'1 is called mOTe specialized than K 2, if V x E U [Kdx) '* K 2(x)] A 3 yE U [K2(Y) ~ K1(y)]. The term 

mOTI; !/1·7/.cra.lized is rlefined analogously. 
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case-based classification, it is necessary to understand the possibilities to  adjust the measure of similarity
or ,  more generally, to understand the use of information in the algorithms [13]. In this paper,  we want to
show that i t  i s  poSsible to state some relationships and the consequences that  follow from this analysis.
For our example we have found a'  direct transformation so that the symbolic and the case-based approach
result in an equal classification behavior. We conclude that there is a set of learnable concepts associated
wi th  each measure of  s imilari ty.

2 Example: Version Space
To illustrate the possibility to reformulate a symbolic learning algorithm in a case-based manner we first '
describe a well—known symbolic algorithm and then the way to construct an equivalent case-based variant.
The Version Space algorithm is a. simple and well—known symbolic learner [10]. Because of i ts  simplicity,
i t  is easy to show a lot of properties, which hold for many other learning systems, where i t  would be
difficult to  prove them.  First we want to describe the'Version Space.

Let W,- :: Nk, ( i  :=  1 ,  . . . ,  n)  be  sets of values.2 U :=  W1 >< X Wn is the universe. A concept
is a vector K : (K1,  ..., Kn) ,  where K,- : at or K,- : az» (az- 6 W3). An object a : (a1, ag, . . . ,  an )  fulfills
the concept K (i.e. K(a) = 1), if for all 1 g i g n holds: K3 :: * or K,- :'az-. 'Otherwise ,  K(a) is set to 0.

All possible concepts can be  arranged in a directed acyclic graph (the Version Space) where the
concept at the end of an arrow specifies just  one more attribute than the concept at the starting point.
The algorithm gets a sequence (ag) of positive and negative examples of the concept. With respect to
the known examples, the Version Space algorithm constructs two sets of concepts. The set 5' contains
all concepts, which are fulfilled by all the known positive and by no known negative example and there
is no more specialized3 concept with the  same properties. The set G contains the most general concepts
which are fulfilled by all the known positive and by no known negative example.

The algorithm describes the  way to modify the sets .5' and G ,  when a new example is presented. To
define S and G properly wer—force the first example a l  to be  positive. The algorithm is based on some
assumptions which should be  verified. For example, the assertion that the  set S has always only one
element and that for every concept 9 from G a more specialized concept with the demanded properties
can be  found. We do not prove these assertions here. The sets 5' and G characterize at every moment
the classification ability of the Version Space. Under the  assumption that the concept is a member of the
Version Space every object which fulfills 'the concept in 5' must be positive. If the object does not fulfill
any concept in  G then the object must be  negative.

Version Space algorithm

1. Initialize G as the set containing only the most general concept
G :: {(*, ,...*)} and S’ = {a1}.

2. Assume the  new example a is  positive.
Remove all concepts g from G which are not fulfilled by a .  search for the most specialized
concept If in the Version Space which is fulfilled by all positive examples and set S =
{K}.
Assume the  new example a is negative.
For every concept 9 from G which is fulfilled by a ,  search for the most general specializa—
tions, which are fulfilled by all known positive and no known negative example. Replace
g by the found specializations.

3.  If there is a concept g in  G which is more specific than a concept in 5,
then HALT(The examples do not  fulfill any concept of the Version Space).

4. If S = G
then RETURN(Found concept : S)
else go to  2)

2 .1  A Case-Based Version Space
It is obvious t ha t  the  main ability of the  Version Space algorithm is to separate relevant and irrelevant
values. A value is called relevant, if i t  is part of the concept the learner has to learn. The followmg

21W; :=  {0 ,  l ,  . . . , k}
3A concep t  K ;  i s  ca l led  more  specialized than Kg ,  i e  E U [K1(x )  => K'z ($ ) ]  A 3 y E U [REG/) 75 K1(y ) ] .  The term

mart.- gr-ncmlized i s  defined  analogously.
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case-based variant (VS-CBR) follows this basic idea. For every attribute i a function fi is defined that 
maps the set Wi to {O, I}. If the concept ]{ = (I{l, ... , ]{n) is learned then for every Xi E Wi holds: 

]{i = Xi is possible 
fi(Xi) = { ~ otherwise 

The constructed fi will be combined to a function f : U --+ {O, 1r. The distance between two objects 
is then defined as 

During the learning phase the function f is learned by the algorithm presented below. It is obvious that 
every change of the function f will change the distance measure on the universe. Like the original Version 
Space the first presented case has to be positive to initialize the function f. 

Learning Algori thm for f 

1.	 Define fi(Xi) = 0 for. all i, Xi E Wi 

2.	 If the first positive example is a = (al,a2," .,an ) define fi(ai) = 1 for all i. 
Define CB = Ha, +]} 

3. Let	 b = (b1, .. . ,bn ) be a new example.
 
If b is negative, then store b in the case base: CB := CB U {[b,-]}
 

4.	 If b is a positive example then for all i: If fi(b;) = 0
 
then set fi(Xi) = 0 for all Xi E Wi.
 

5.	 If there exists a positive case P and a negative case n in the case base with 
dj(p, n) = 0 then HALT(Not a concept of the Version Space). 

6.	 Delete redundant cases from the case base. a 

7.	 If the concept is unequivocal go to step 8) otherwise go to step 3) 

8. RETURN(The concept is learned)
 

a A case r is redundant if there is a case s in the case base sO that df (r, s) =0 holds.
 

Step 5) tests like the symbolic Version Space whether the known examples fit any concept which is 
learnable. If the learning is done the function f and the case base are used for classification. Given a new 
object c, the set F := {fb I dj(Jb, c) :S dj(Jb', c) for all fb' in the case base} is build up. If F contains 
more than one element the classification is determined by a fixed strategy. For example, the strategy 
may state the lowest classification value. 

2.2 Classification with VS-CBR 

We want to compare the classification abilities of VS and VS-CBR. In step 2) for all i exactly one ai E Wi 
is mapped to 1. Step 4) occasionally delet.es a 1. So, there is never more than one value of an attribute 
mapped to 1. Let us look at VS and VS-CBR after the presentation of every object. It is obvious that 
fi (ai) = 1 holds if and only if the concept in S contains the value ai for the attribute i. The function 
dj forces that at every ~oment dj(a, b) = 0 implies that a and b must be equally classified. Based on 
these observations, it is eas.y to verify that objects which can be classified by VS are equally classified 
by VS-CBR. But VS-CBR will give a classification to every object even if the classification is uncertain. 
It· is possible to suppress this uncertainty by a test of the validity of the classification. If we call the 
hypothesis when the ith example is presented VSi or VS-CBR;, respectively, then VS-CBR;(x) =VSi(X) 
holds for all i and all X E U. 

Positive and negative cases are used differently in VS_CBR during the learning phase. 

•	 Positive cases are used to change f, i.e. to adapt the distance measure d. They will not be stored 
in the case base (with the exception of the very first positive example). The distance between any 
two positive cases is zero. . 

•	 Negative cases are stored in the case base but do not change the distance measure. 

We have seen that it is possible to rewrite the Version Space algorithm in a case-based manner so that 
the case-based variant behaves exactly as the symbolic algorithm. 
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case—based variant (VS—CBR) follows this basic idea. For every attribute z' a function f,- is defined that
maps the  set W,- to {O, 1}, If the  concept K = (K1,  . . . , Kn)  is learned then for every 9:,- E W,- holds:

. . . .  1 I Ki=m¢isposs ib l e

fahrt) "{  0 : otherwise

The constructed f,- will be combined to a function f : U —+ {0 ,1}” .  The distance between two objects
is then defined as

(Ma: 5 )  == |f1(a1) _ f1(b1)| + . . - + Ifn(an) " f„‚(b„)|
During the learning phase the function f is learned by the algorithm presented below. I t  is obvious that
every change of the function f will change the distance measure on the universe. Like the original Version
Space the first presented case has to  be  positive to initialize the function f .

Learning Algorithm for f

1.  Define fz-(xz) = 0 fon all z", 1:,- € W,-

2. If the first positive example is a = (a1, a2, . . .‚a„‚) define fg(a‚-) : 1 for all z'.
Define CB : {[a, +]}

3.  Let b = (b1, . . . , bn )  be  a new example.
If b is negative, then store b in the case base: CB :: CB U {[1}, ...]}

4. If 5 is a positive example then for all 5: If flan) = 0
then set f,(.r,») = 0 for all 2:,- & W,;.

5. If there exists a positive case p and a negative case n in the case base with
dj (p, n) = 0 then HALT(Not a concept of the Version Space).

6.  Delete redundant cases from the case base.“

7.  If the concept is unequivocal go to step 8 )  otherwise go to step 3)

8. RETURN(The concept is learned)

“A case r is redundant if there is a case s in the case base so that dj ( r ,  s )  = 0 holds. ‘

Step 5 )  tests like the symbolic Version Space whether the known examples fi t  any concept which is
learnable. If the learning is done the function f and the case base are used for classification. Given a new
object c, the set F :: {fb | df(fb, c) g df(fb’,c) for all fb' in the case base} is build up. If F contains
more than one element the classification is  determined by a fixed strategy. For example, the  strategy
may state the lowest classification value.

2 .2  Classification with VS—CBR

We want t o  compare the classification abilities of VS and VS—CBR. In  step 2) for all i exactly one a,- E W,:
is mapped to 1 .  Step 4)  occasionally deletes a 1 .  So, there is never more than one value of an attribute
mapped to 1 .  Let us look at VS and VS—CBR after the presentation of every object. It is obvious that
jig-(oi) = 1 holds if and only if the concept in S contains the value a,- for the attribute z'. The function
dj forces that at every moment df ( a ,  b) = 0 implies that a and b must be equally classified. Based on
these observations, it is easy to  verify that objects which can be  classified by VS  are equally classified
by VS—CBR. But VS—CBR will give a classification to every object even if the classification is uncertain.
I t ‘ i s  possible to  suppress this uncertainty by a test of the validity of the classification. If we call the
hypothesis when the  im example is presented VS.- or VS-CBR5, respectively, then VS-CBRz-(x) = VS,—(:::)
holds for all 2' and all x E U.

Positive and negative cases are used differently in VS_CBR during the learning phase.

0 Positive cases are used to change f ,  i.e. to adapt the distance measure (1. They will not be stored
i n  the  case base (wi th  the exception of the  very first positive example).  The distance between any
two positive cases is zero. '

o Negative cases are stored in the case base but  do not change the distance measure.

We have seen that i t  is possible to rewrite the Version Space algorithm in a case—based manner so that
the case—based variant behaves exactly as the symbolic algorithm.
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3 Basic Issues of Case-Based Classification 

In the last paragraph, we have seen a simple case-based classifier. In this paragraph, we want to discuss 
some basic issues of case-based classifiers and the related learning algorithms. First of all, we have to 
clarify the conditions which must be fulfilled to learn a concept in a case-based manner. In a second 
part, we present some examples to show the interdependence between the measure of similarity and the 
learning power. 

A case-based classifier consists of a case base and a measure of similarity (or a distance measure). 
Neither the case base nor the measure is sufficient for the classification alone. The knowledge about the 
concept is spread to both. Even in the VS-CBR you can get the concept from the distance measure only 
because you know the :way in which the measure was constructed. If we try to symbolize the relationship 
we can describe a case base system as a "sum". 

Concept = Case Base + Measure of Similarity 

There are always multiple concepts which can be learned by a given measure. Because of the distribution 
of the knowledge between the case base and the distance measure it is clear that there are many tuples 
(CB, sim) which represent the same concept. If the hypothesis of the learper must be modified there 
are always two possibilities. Either to change the case base or to change the distance measure, cf. [9, 5]. 
VS-CBR uses the positive cases to change the distance measure (by updating the functions Ii) while the 
negative cases are stored in the case base without changing the distance measure. 

3.1 Simplified Quantitative Analysis 

To illustrate the relationship between a case base and a distance measure we simplify the framework for 
a moment. 

1. Let V be a finite universe 

2. d(a, b) = 0 =} "'Ix E V[d(x, a) = d(x,b)] 

3. d is fixed. 

The assumption "2 means that the relation ~ defined as x ~ y :<=> d(x, y) = 0 is an equivalence relation. 
~ builds IV/ ~ I equivalence classes. It is clear that a concept K is learnable by a measure d if and only 
if for all x, yE V d(x, y) = 0 =} K(x) =;:: K(y) holds, i.e. all elements of an equivalence class must have 
the same classification. On the other hand, the equivalence classes can be classified without any respect 
to each other. Therefore, we can conclude that cl is able to distinguish between 21U/~1 different concepts. 
Each of these concepts can be learned by a case base with IV/ ~ I (appropriate) cases (i.e. one case in 
every equivalence class). As a result, we can state that for the learnability of a concept the only question 
is the definition of the distance o. If;e have two measures d and d' where d(x, y) = 0 <=> d'(x, y) = 0 
and d(x, y) :f. 0 <=> d'(x, y) = 1 they can recognize the same concepts. 

Case based systems can be compared with respect to two important dimensions. The first dimension 
relates to the implicit knowledge in the measure. 

Definition 1 A case-based system (CBI, simI) is called to be better informed than a.system (CB2, sim2) 
ijJ they can recognize the same concept and ICBII < jCB2 1 and, for i E {I, 2}, there is no CBi C CBi so 
that (CBi, simi) is a classifier of the concept. 

The second dimension relates to the set of learnable concepts. 

Definition 2 A similarity measure siml is called to be more universal than a similarity measure sim2 
ijJ the set of concepts which are learnable by sim2 is a proper subset of the set of concepts which are 
learnable by siml . 

To use a universal similarity measure struggles against a minimal case base. To minimize the size of the 
case base results normally in a less universal similarity measure. We illustrate the countercurrency in 
figure 1. It lists different distance measures together with the minimal size of the case base to select a 
certain concept and the total number of learnable concepts. For the table, we use a universe with objects 
which consists of four attributes. Each attribute can take one value out of 16. So, the size of the universe 
is 65536. The concept which the measures try to learn fixes two attributes. 
We can distinguish two extrem measures: 
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3 Basic Issues of  Case—Based Classification

In the last paragraph, we have seen a simple case-based classifier. In this paragraph, we want to discuss
some basic issues of case—based classifiers and the related learning algorithms. First of all, we have to
clarify the conditions which must be  fulfilled to learn a concept in  a case-based manner. In a second
par t ,  we present some examples to show the interdependence between the measure of similarity and the
learning power.

A case—based classifier consists of a case base and a measure of similarity (or a distance measure).
Neither the case base nor the measure is sufficient for the classification alone. The knowledge about the
concept is spread to both. Even in the VS—CBR you can get the concept from the distance measure only
because you know the  way in which the  measure was constructed If we try to symbolize the relationship
we can describe a case base system as a ’”’sum

Concept = Case Base + Measure of Similarityl

There are always multiple concepts which can be  learned by a given measure. Because of the distribution
of the knowledge between the case base and the distance measure i t  is clear that there are many tuples
(CB,  sim) which represent the  same concept. If the hypothesis of the learner must be modified there
are always two possibilities. Either to change the  case base or to change the distance measure, cf. [9, 5].
VS—CBR uses the  positive cases to  change the distance measure (by updating the functions fi) while the
negative cases are stored in the case base without changing the  distance measure.

3.1 Simplified Quantitative Analysis
To illustrate the relationship between a case base and a distance measure we simplify the framework for
a moment .

1 .  Let  U be  a fini te  universe

2. d(a,  b ) :  0 => Va: E U[d(;c, a )  : d(:r:‚ b)]

3 .  d is fixed.

The assumption ’2 means that the relation N defined as x ~ y zii} d(:c, y) = 0 is an equivalence relation.
~ builds IU/ ~ | equivalence classes. I t  is clear that a concept K is learnable by a measure d if and only
if for all x, y E U d(m, y) = 0 => K(a:) E K (y) holds, i.e. all elements of an equivalence class must have
the  same classification. On the other hand, the equivalence classes can be classified Without any respect
to each other. Therefore, we can conclude that d' is able to distinguish between 2IU/Nl different concepts.

' Each of these concepts can be learned by a case base with IU/ ~ | (appropriate) cases (ie.  one case in
every equivalence class). As a result, we can state that for the learnability of a concept the only question
is the definition of the distance 0. If we have two measures at and d '  where d(.'r:‚ y ) “.- 0 {:> d '  (a:, y)—— 0
and d(:1:, y) # 0 <:> d’(:c, „y)-'_ 1 they can recognize the same concepts.

Case based systems can be  compared with respect to  two important dimensions. The first dimension
relates to the implicit knowledge in the measure.

Definition 1 A case-based system (CBl,sim1) is called to be better informed than a system (C32, simg)
if? they can recognize the same concept and |CB1| < |CBg| and, for z E {1, 2}, there is no 03;' C CB- so
that (CBg,simz) is a classifier of the concept.

The second dimension relates to the set of learnable concepts.

Definition 2 A similarity measure s iml  is called to be more universal than a similarity measure simg
if} the se t  of concepts which are learnable by simg is a proper subset of the set  of concepts which are
learnable by s iml .

To use a universal similarity measure struggles against a minimal case base. To minimize the size of the
case base results normally in a less universal similarity measure. We illustrate the countercurrency in
figure 1. It lists different distance measures together with the minimal size of the case base to select a
certain concept and the total number of learnable concepts. For the table, we use a universe with objects
which consists of four at tr ibutes.  Each attribute can take one value out of 16. So, the size of the universe
is 65536. The concept which the measures try to learn fixes two attributes.
We can distinguish two extrem measures:
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Identity of objects: The similarity is maximal if and only if the compared objects are identical. The 
measure is universal because it is able to recognize every binary concept in the given universe. But 
to do so it needs the whole universe as a case base. 

Identity of classification: The similarity is maximal if the classification of the compared objects is 
identical. Nearly the whole knowledge about the concept is coded in the measure by the definition of 
the concept. The case base is used only to exclude some trivial concepts. sim(x, y) = K(x) {::} K(y) 
can only distinguish four concepts (K, noteK), T RUE - i.e. all objects are positive, F ALSE - i.e. 
all objects are negative). 

The other measures in the table are between the extremes. VS_CBR1 and VS_CBR2 are neither maximally 
universal nor able to recognize a concept with a minimaL case base. VS_CBR1 is the distance measure, 
which is built for VS-CBR when the first case is presented. In every dimension exactly one value is 
mapped to one so that the universe is mapped into the edges of a four dimensional cube. VS_CBR2 is 
the measure, which is used, when VS-CBR has recognized the concept. It distinguishes only between the 
two relevant values of the concept and, therefore, builds up only four equivalent classes. 

measure 

sim(x, y) := (x = y) 

VS_CBR1
 

VS_CBR2
 

sim(x, y) := K(x) == K(y)
 

minimal size of CB number of learnable concepts 

65536 = 164 265536 

16 65536 = 2 16 

3 (4) 16 = 2 4 

2 2 
2 

Figure 1: Measures together with the minimal case base and the number oflearnable concepts 

The table indicates to describe the relationship between the distance measure and the concept in a 
different manner: The distance measure determines the space of possible target concepts and the case 
base selects one of them. In other words we can say that the choice of the distance measure is the bias 
of case-based classification. Its choice determines the set of target concepts which can be recognized and 
the efficiency of the learning process as we will see in the next section. 

In a typical case-based learner two processes - reducing the size of the hypothesis space and increasing 
the size of the case base - are done in parallel. So, it is normally difficult to specify the influence of a 
single case. 

The last measure in figure 1 indicates a simple way to rewrite any symbolic algorithm as a case-based 
one. Use the actual symbolic hypothesis to construct such a measure and store one positive and one 
negative case in the case base. 

Consequences for Case-Based Classification 

We have analyzed the relationship between the measure of similarity, the case base, and the target 
concept in the described scenario. In the scenario, the learner needs strong preassumptions about the 
target concept to solve its task with an acceptable number of cases. Preassumptions exclude certain 
concepts from the hypothesis space. A case-based learner can code this preassumptions in the measure 
of similarity. Symbolic learners restrict the language to represent their hypothesises. 

If we agree to the assertion that there is no measure which depends only on the universe and not on the 
set of target concepts we must conclude that we are confronted with a bias in case-based classification, 
too. The bias is the distance measure. Like the bias in symbolic classification, the distance measure 
determines which concepts are learnable and, in addition, the efficiency of the learning process. 

Rendell [11] divides the abstraction done in alearning system in two parts, the bias (to describe the 
amount of preassumptions) and the power of the learner. We have characterized the learning systems by 
the number of learnable concepts and the number of "cases they need to identify a target concept. The 
bias relates to the restriction of the set of learnable concepts and is therefore comparable to the degree 
of universality. The minimal size of the case base reflects the information the learner needs to come to 
a correct hypothesis. This amount of information is measured by Rendell in the information gain. It is 
therefore very important to select an appropriate distance measure according to the given problem. The 
measure must have equivalence classes which cover the target concepts and meaningful distance values, 
i.e. a short distance between two objects must indicate a high probability that the objects have the same 
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Identity of objects:  The similarity is  maximal if and only if the compared objects are identical. The
measure is universal because it is able to recognize every binary concept in the given universe. But
to do  so i t  needs the whole universe as a case base.

Identity of classification: The similarity is maximal if the classification of the compared objects is
identical. Nearly the whole knowledge about the concept is coded in the measure by the definition of
the concept. The case base is used only to exclude some trivial concepts. sim(:c, y) = K(.r) © K(y)
can only distinguish four concepts (K,  not(K), TRUE — i.e. all objects are positive, FALSE — i.e.
all objects are negative).

The other measures in  the table are between the extremes. VS_CBR1 and VS_CBR2 are neither maximally
universal nor able to  recognize a concept wi th  a minimaLcase base. VS_CBR1 is the distance measure,
which is built  for VS—CBR when the first case is presented. In every dimension exactly one value is
mapped to  one so that the universe is mapped into the edges of a four dimensional cube. VS_CBR2 is
the measure, which is used, when VS—CBR has recognized the concept. I t  distinguishes only between the
two relevant values of the concept and, thefefore, builds up only four equivalent classes.

measure minimal size of CB number of learnable concepts

sim(x, y) :=  (x = y) 65536 = 164 265536

VS_CBR1 16 65536 = 216

VS_CBR2 3 (4) 16 = 24

sim(:c, y) :=  K(:r) E K[y) 2 22

Figure 1: Measurestogether with the minimal case base and the number of learnable concepts

The table indicates to describe the relationship between the distance measure and the concept in a
different manner: The distance measure determines the space of possible target concepts and the case
base selects one of them.  In other words we can say that the choice of the distance measure is the bias
of case—based classification. Its choice determines the set of target Concepts which can be recognized and
the efficiency of the  learning process as we will see in  the next section.

In a typical case—based learner two processes — reducing the size of the hypothesis space and increasing
the size of the case base — are done in parallel. So, it is normally difficult to specify the influence of a
single case.

The last measure in figure 1 indicates a simple way to rewrite any symbolic algorithm as a case-based
one. Use the actual symbolic hypothesis to construct such a measure and store one positive and one
negative case in the case base.

4 Consequences for Case-Based Classification
We have analyzed the relationship between the measure of similarity, the case base, and the target
concept in the described scenario. In the scenario, the learner needs strong preassumptions about the
target concept to solve i ts  task with an acceptable number of cases. Preassumptions exclude certain
concepts from the hypothesis space. A case-based learner can code this preassumptions in the measure
of similarity. Symbolic learners restrict the language to represent their hypothesises.

If we agree to the assertion that there is no measure which depends only on the universe and not on the
set of target concepts we must conclude that we are confronted with a bias in case—based classification,
too .  The bias is the distance measure. Like the bias in symbolic classification, the distance measure
determines which concepts are learnable and,  in addition, the efficiency of the learning process.

Rendell [1]-] divides the abstraction done in a ' learning system in two parts, the bias (to describe the
amount of preassumptions) and the power of the learner. We have characterized the learning systems by
the number of learnable concepts and the number of ‘cases they need to identify a target concept. The
bias relates to the restriction of the  set of learnable concepts and is therefore comparable to  the degree
of universality. The minimal size of the case base reflects the information the learner needs to  come to
a correct hypothesis. This amount of information is measured by Rendell in the information gain. It is
therefore very important to  select an appropriate distance measure according to the given problem. The
measure must have equivalence classes which cover the target concepts and meaningful distance values,
i.e. a short distance between two objects must indicate a high probability that the objects have the same
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classification. If we know the;tt there is a distance measure with these properties, case-based classification 
seems to be a good choice. Given an appropriate distance measure, case-based classification has some 
other useful features. If there is some noise in the data and the effect of the noise is small according to the 
distance measure then case-based reasoning is a very natural way to implement a noise tolerant learner. 
In contrast to the results of [4] and [3] we state that the intelligibleness of solutions of a case-based 
system depends on the intelligibleness of the measure of similarity and is therefore not a property of the 
case-based approach itself. 

To summarize we can say that there is no fundamental advantage or disadvantage of case-based clas­
sification [4] compared to the traditional symbolic approach in the simple framework we have considered 
here. So the question which algorithm is better for a given task depends on the simplicity and adequacy 
of the representation of the given knowledge. Both approaches need a method to cut down the size of the 
hypothesis space. While the symbolic approach uses this extraevidential knowledge to construct useful 
abstractions, the case-based algorithms need it to get appropriate measures of similarity. 

Acknowledgement 

The authors thank Michael M. Richter, Klaus P. Jantke,· KlauscDieter Althoff and the whole research ' 
group. in Kaiserslautern for many helpful discussions. 

References 
[1]	 David W. Aha. Case-Based Learning Algorithms. In Ray Bareiss, editor, Proceedings: Case-Based Reasoning 

Workshop, San Mateo, California, 1991. DARPA, Morgan Kaufmann Publishers. Washington, D.C., USA, 
M~y 8-10, 1991. ' 

[2]	 David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-Based Learning Algorithms. Machine Learning, 
6:37-66, 1991. March 1991. 

[3]	 D.W. Aha and D. Kibler. Noise-Tolerant Instance-Based Learning Algorithms. In Proceedings of the 11th 
International Conference on Artificial Intelligence IJCAI-89, pages 794-799. IJCAI, 1989. Detroit, Michigan, 
USA. 

[4]	 S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with symbolic features. Machine 
Learning, 10(1):56-78, 1993. 

[5]	 Robert S. Holte. Commentary on: Protos an exemplar-based learning apprentice. In Yves Kodtratoff and 
Ryszard Michalski, editors, Machine Learning: An Artificial Inteligence Approach, volume Ill, pages 128-139. 
Morgan Kaufmann, 1990. 

[6]	 Klaus P. Jantke. Case-Based Learning in Inductive Inference. In Proc. COLT-92, 1992. 

[7]	 R. Michalski, J. G. Carbonell, and T. Mitchell, editors. Machine Learning: An Artificial Intelligence Ap­
proach, volume 1. Tioga, Palo Alto, California, 1983. 

[8]	 R. Michalski, J. G. Carbonen, and T. Mitchell, editors. Machine Learning: An Artificial Intelligence Ap­
proach, volume 2. Morgan Kaufmann, Palo Alto, California, 1986. 

[9]	 Ryszard S. Michalski. Concept Me'aning, Matching and Cohesiveness. In Stella Vosniadou and Andrew 
Ortony, editors, Similarity and Analogical Reasoning, chapter 4, pages 122-145. Cambridge University Press, 
Cambridge, 1989. 

[10]	 T.M. Mitchell. Gerneralization as search. Artificial Intelligence, 18(2):203-226, 1982. 

[11]	 L. Rendell. A General Framework for Induction and a Study of Selective Induction. Machine Learning, 
1:177-226, 1986. 

[12]	 M. M. Richter and S. Wess. Similarity, Uncertainty aond Case Based Reasoning in PATDEX. In Robert S. 
Boyer, editor, Automated Reasoning - Essays in Honor of Woody Bledsoe, pages 249-265. Kluwer Academic 
Publishers, 1991. 

{13]	 Michael M. Richter. ClassificatioI\ and learning of similarity measures. In Proc. of the 16th Annual Conference 
of the German Society for Classification (Gesellschaft fur Klassifikation e. V.). Springer Verlag, 1992. 

[14]	 Steven Salzberg. Distance Metrics for Instance-Based Learning. In Z. W. Ras and M. Zemankova, editors, 
Proceedings of the 6th International Symposium on Methodologies for Intelligent Systems (ISMIS '91), volume 
542 of Lecture Notes in Artificial Intelligence, pages 399-408, Berlin, 1991. Springer-Verlag. Charlotte, North 
Carolina, USA, October 1991. 

[15]	 Craig Stanfill and David Waltz. The Memory Based Reasoning Paradigm. In Janet 1. Kolodner, editor, 
Proceeding~ Case-Based Reasoning Workshop, pages 414-424, San Mateo, California, 1988. DARPA, Morgan 
Kaufmann Publishers. Clearwater Beach, Florida, USA, May 10-13, 1988. 

138 
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seems to be  a good choice. Given an appropriate distance measure, case-based classification has some
other useful features. If there is some noise in  the data and the effect of the noise is small according to the
distance measure then case—based reasoning is a very natural way to implement a noise tolerant learner.
In  contrast to the results of [4] and [3 ]Wwe state that the intelligibleness of solutions of a. case—based
system depends on the  intelligibleness of the measure of similarity and IS therefore not a property of the
case—based approach itself.

To summarize we can say that there is no fundamental advantage or disadvantage of case-based clas-
sification [4] compared to the traditional symbolic approach in the simple framework we have considered
here. So the question which algorithm is better for a given task depends on the simplicity and adequacy
of the representation of the given knowledge. Both approaches need a method to cut down the size of the
hypothesis space. While the symbolic approach uses this extraevidential knowledge to construct useful
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Abstract 

Pattern languages seem to suit case-based reasoning particularly well. Therefore, the problem of 
inductively learning pattern languages is paraphrased in a case-based manner. A careful investiga­
tion requires a formal semantics for case bases together with similarity measures in terms of formal 
languages. Two basic semantics are introduced and investigated. It turns out that representability 
problems are major obstacles for case-based learnability. Restricting the attention to so-called proper 
patterns avoids these representability problems. A couple of learnability results for proper pattern 
languages are derived both for case-based learning from only positive data and for case-based learn­
ing from positive and negative data. These result exhibit the importance of flexible non-standard 
approaches to similarity. The chosen semantics determine which type of similarity measure support 
representability and learnability. 

Was sich iiberhaupt sagen liifJt, liifJt sich klar sageni 
und wovon man nicht reden kann, dariiber mufJ man 
schweigen. 

LUDWIG WITTGENSTEIN 

Tractatus Logico-Philosophicus, 1922 

Motivation 

Case-based reasoning is a currently booming area in artificial intelligence. Research papers are mush­
rooming, thus, providing a huge amount of cases for case-based reasoning. As outsiders, we became 
interested in the area, as cases seem to play a role particularly similar to the role of examples in our work 
in inductive inference. We found it extremely difficult to make this first rough observation more precise. 
One crucial reason is the !ack of formalization in a large number of case-based reasoning approaches. 
Thus, we decided to approach. our problem by paraphrasing inductive inference in terms of case-based 
learning in an area which seems particularly tailored to fit the gist of case-based reasoning. This is 
the area of pattern languages, more precisely, the domain of learning pattern languages from positive 
or both positive and negative cases. In this well-formalized research area, we did some investigations 
focussing on clear results vaiid under clear assumptions. For example, we tried to find out how particular 
semantics influence the type of similarity measures suitable for succesful learning. We could prove with 
mathematical precision that the symmetry of similarity concepts is rarely desirable, e.g. Interestingly, 
our results may be interpreted in case-based reasoning and are throwing some light on essential problems 
of case-based reasoning, in general. 

We are interested in results of mathematical precision exhibiting fundamental phenomena related to case­
based reasoning. Although our work presented has been mainly driven by the learnability investigations 
reported in chapter 4, we consider the results of chapter 3 as basic. . 

"The work has been partially supported by the German Federal Ministry for Research and Technology (BMFT) within the 
Joint Project (BMFT-Verbundprojekt) GOSLER on Algorithmic Learning for Knowledge-Based Systems under 
contract no. 413-4001-01 IW 101 A and by the DFG-Project IND-CBL under reference Ja 566/2-1. 
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Abstract

Pattern languages seem to suit case—based reasoning particularly well. Therefore, the problem of
inductively learning pattern languages is paraphrased in a case—based manner. A careful investiga—
tion requires a formal semantics for case bases together with similarity measures in terms of formal
languages. Two basic semantics are introduced and investigated. It turns out that representability
problems are major obstacles for case—based learnability. Restricting the attention to so-called proper
patterns avoids these representability problems. A couple of learnability results for proper pattern
languages are derived both for case-based learning from only positive data and for case-based learn-
ing from positive and negative data. These result exhibit the importance of flexible non—standard
approaches to similarity. The chosen semantics determine which type of similarity measure support
representability and learnability.

Was sich überhaupt sagen läßt, läßt sich klar sagen;
und wovon man nicht reden kann, darüber muß man
schweigen.

LUDWIG WITTGENSTEIN
Tractatus Logico—Philosophicus, 1922

1 Motivation

Case-based reasoning is a currently booming area in artificial intelligence. Research papers are mush-
rooming, thus, providing a huge amount of cases for case-based reasoning. As outsiders, we became
interested in the area, as cases seem to play a role particularly similar to the role of examples in our work
in inductive inference. We found it extremely difficult to make this first rough observation more precise.
One crucial reason is the lack of formalization in a large number of case-based reasoning approaches.
Thus, we decided to approach-our problem by paraphrasing inductive inference in terms of case-based
learning in an area which seems particularly tailored to fit the gist of case-based reasoning. This is
the area of pattern languages, more precisely, the domain of learning pattern languages fro-m positive
or both positive and negative cases. In this well-formalized research area, we did some investigations
focussing on clear results valid under clear assumptions. For example, we tried to find out how particular
semantics influence the type of similarity measures suitable for succesful learning. We could prove with
mathematical precision that the symmetry of similarity concepts is rarely desirable, e.g. Interestingly,
our results may be interpreted in case-based reasoning and are throwing some light on essential problems
of case-based reasoning, in general.

We are interested in results of mathematécal precision exhibiting fundamental phenomena related to case-
based reasoning. Although our work presented has been mainly driven by the learnability investigations.
reported in chapter 4, we consider the results of chapter 3 as basic.

'The work has been partially supported by the German Federal Ministry for Research and Technology (BMFT) within the
Joint Project (BMFT—Verbundprojekt) GOSLER on Algorithmic Learning for Knowledge-Based Systems under
contract no. 413-4001-01 IW 101 A and by the DFG-Project IND-CBL under reference .13. 566/ 2-1.
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2 Introduction 

This paper is dealt with problems of case-based learning in a particular area where we can exploit a 
remarkable amount of inductive learning results. This is the area of pattern languages as introduced in 
[3]. This area has attracted enormous attention in learning theory (cf. [3], [17], [16], [6], [15], [7], [14], 
and others). A key reason for the intensive research work dedicated to the learning of pattern languages 
is the naturalness of the general learning problem as well as the closeness of individual texts to the gen­
eral underlying pattern structures. From this insight, there is outgrowing a particular motivation of the 
investigations presented here. 

Here, we are briefly illustrating what will be considered in more detail below. Due to the very restricted 
space, we can not present any more detailed technical discussion or proofl . Instead, we put more empha­
sis on illustrations. Given any text structure like 

Xauthor, Xtitle, x journal Xvolume (X year ), Xpages 

one may easily imagine a number of typical instances. Vice versa, from some typical cases like 

Dana Angluin and Carl H. Smith, A Survey of Inductive Inference: Theory and Methods, Com­
puting Surveys 15 (1983), 237-269 

Reinhard Klette and Rolf Wiehagen, Research in the Theory of Inductive Inference by GDR 
Mathematicians - A Survey, Information Sciences 22 (1980), 149-169 

most people will infer underlying patterns like the one above. In this particular domain, there is an easy 
concept of cases, and humans are usually able to learn from a small number of those cases (cf. [16] for 
experiments and measurements on automated pattern inference). 

This consideration motivated the following intention. First, if pattern inference is an area where we have 
a natural and easy to understand concept of cases, we should be able to develop and illustrate basic 
ideas of case-based learning. Second, if there are general difficulties of case-based learning in such a 
nice area, this could be understood as testbed for problems we are faced to in a large number of areas 
where formal considerations may be of a considerably greater complexity. In a sense, the results about 
case-based learning of pattern languages developed in the sequel may be interpreted as lower bounds for 
the difficulties of case-based learning in a huge variety of further areas. 

2.1 Case-Based Learning 

Case-based reasoning is a recently booming subarea of artificial intelligence. One important reason is that 
human experts tend to use knowledge in the form of particular cases or episodes rather frequently than 
generalized knowledge as described by rules, e.g. Therefore, there is some hope that case-based reasoning' 
may help to widen the bottleneck of knowledge acquisition. The reader is directed to [13] for ~ recent 
introduction in and survey of case-based reasoning. Within case-based reasoning, case-based learning as 
investigated in [1] and [2], for instance, is a rather natural way of designing learning procedures. Recent 
formalizations (cf. [8]) have exhibited the remarkable power of case-based learning algorithms. 

2.2 Text Patterns 

Following [3], a pattern is a non-empty string build over some alphabet A and some disjoint set of variables 
X = {Xl, X2, ...}. By P we denote the set of all patterns, i.e. P = (A U X)+. pp =P \ A+ denotes the 
set of so-called proper patterns. For a pattern p, we denote by £(p) the corresponding pattern language 
defined by p. £(p) contains all strings which can be obtained by substituting non-empty strings for the 
variables of p, where the same variables have to be substituted by the same strings. 

Pattern languages form the basis of a couple of applications in different fields, e.g. in the intelligent text 
processing system EBE (er. [16]) or in a classification system for transmembrane proteins (cf. [5]). 

2.3 Inductive Pattern Inference 

Inductive inference is the process of hypothesizing a general rule from eventually incomplete data. It 
has its origins in philosophy of sciences. During the last three decades, it received much attention in 
computer science (cf. [4]). 

The general situation investigated in language learning can be described as follows: There is some target 
language to be learnt (identified, ... ) inductively. Given more and more possibly incomplete information 
concerning the language to be learnt, an inference device has to produce in every step a hypothesis about 

1For the proofs, the reader may consult [10]. A version of this paper focussed to learning problems appears as [11]. 
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2 Introduction

This 'paper  is  dealt with problems of case—based learning in a particular area Where we can exploit a
remarkable amount of inductive learning results. This is the area of pattern languages as introduced in
[3]. This area has attracted enormous attention in learning theory (cf. [3], [17], [16], [6], [15], [7], [14],
and others). A key reason for the intensive research work dedicated to the learning of pattern languages
is the naturalness of the general learning problem as well as the closeness of individual texts to the gen-
eral underlying pattern structures. From this insight, there is outgrowing a particular motivation of the
investigations presented here.
Here, we are briefly illustrating what will be considered in more detail below; Due to  the very restricted
space, we can not present any more detailed technical discussion or proofl.  Instead, we put more empha-
sis on illustrations. Given any text structure like

xau tho r ;  x t i t l e a  x jou rna l  xvo lume  (myea r ) :  xpages

one may easily imagine a number of typical instances. Vice versa, from some typical cases like

Dana Angluin and Carl H .  Smith, A Survey of Inductive Inference: Theory and Methods, Coma
puting Surveys 15 (1983), 237-269 _
Reinhard Klette and Rolf Wiehagen, Research in the Theory of Inductive Inference by GDR
Mathematicians - A Survey, Information Sciences 22 (1980), 149-169

most people will infer underlying patterns like the one above. In this particular domain, there is an easy
concept of cases, and humans are usually able to learn from a small number of those cases (cf. [16] for
experiments and measurements on automated pattern inference).
This consideration motivated the following intention. First, if pattern inference is an area where we have
a natural and easy to understand concept of cases, we should be able to develop and illustrate basic
ideas of case-based learning. Second, if there are general difficulties of case—based learning _in such a
nice area, this could be  understood as testbed for problems we are faced to in a large number of areas
where formal considerations may be of a considerably greater complexity. In  a sense, the results about
case-based learning of pattern languages developed in the sequel may be  interpreted as lower bounds for
the difficulties of case-based learning in a huge variety of further areas.

2 .1  Case-Based Learning
Case—based reasoning is a recently booming subarea of artificial intelligence. One important reason is that
human experts tend to use knowledge in the form of particular cases or  episodes rather frequently t han \
generalized knowledge as described by rules, e.g. Therefore, there is some hope that case-based reasoning
may help to  widen the bottleneck of knowledge acquisition. The reader is  directed to  [13] for a recent
introduction in and survey of case—based reasoning. Within case-based reasoning, case-based learning as
investigated in [1] and [2], for instance, is a rather natural way of designing learning procedures. Recent
formalizations (cf. [8]) have exhibited the remarkable power of case-based learning algorithms.

2 .2  Text Patterns

Following [3], a pattern is a non—empty string build over some alphabet A and some disjoint. set of variables
X = {$1,132,.. . .} By 73 we denote the set of all patterns, i.e. ’P = (A U X)+ .  ?? = ’P \ A+ denotes the
set of so—called proper patterns. For a pattern p, we denote by £(p) the  corresponding pattern language
defined by p .  £(p) contains all strings which can be  obtained by substituting non-empty strings for the
variables of p, where the same variables have to be substituted by the same strings.

Pattern languages form the basis of a couple of applications in different fields, e.g. in the intelligent. text
processing system EBE (cf. [16]) or in a Classification system for transmembrane proteins (cf. [5]).

2 .3  Inductive Pattern Inference

Inductive inference is the  process of hypothesizing a general rule from eventually incomplete data. I t
has i ts  origins in philosophy of sciences. During the last three decades, i t  received much attention in
computer science (cf. [4]).
The general situation investigated in language learning can be  described as follows: There is some target
language to be  learnt (identified, ...) inductively. Given more and more possibly incomplete information
concerning the language to be  learnt, an inference device has to produce in every step a hypothesis about

1For  the proofs, the reader may consult [10]. A version of this paper focussed to learning problems appears as [11].
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the phenomenon to be inferred. The set of all admissible hypotheses is caned space of hypotheses. The 
given information may contain only positive examples (indicated by the suffix TXT below), i.e. exactly all 
the strings contained in the language to be recognized, or both positive and negative examples (indicated 
by IN F), i.e. the learner is fed with arbitrary strings over the underlying alphabet which are classified 
with respect to their containment to the unknown language. The sequence of hypotheses has to converge 
to a hypothesis correctly describing the object to be learnt. To sum up, the inference process as a whole 
is a limiting one. 

Our learnability concept (cf. [10], [11]) is an immediate adaptation of the classical identification types in 
recursion-theoretic inductive inference (cf. [4], [12]). It is reflecting the approaches underlying [3], [17], 
[15], e.g. Using standard notations, the following learnability results may be assumed. 

Theorem 1 
(1) P E LIM.TXT 
(2) P E LIM.INF 

3 Case-Based Representation of Pattern Languages 

If some algorithm is expected to learn any member of some class of objects in a case-based manner by 
processing information about particular target objects to come up with some finite case-base and some 
similarity measure describing the particular target object, this obviously assumes some interpretation of 
pairs built from case-bases and similarity functions in terms of the objects under consideration. For-: 
many spoken, one needs some well-defined semantics. In general, there is no standard semantics. [8] is 
introducing three slightly different semantics, in a particular setting. Similarly, the reader will find below 
two slightly different approaches used in the paper on hand. It is especially surprising that a remarkable 
number of papers do not make the chosen semantics explicit. But for a formally correct treatment, the 
choice of some precise semantics is inevitable. The reader may check our theorems below and their proofs 
in this regard (er. [10]). 

3.1 Semantics 

There is assumed some finite, non-empty alphabet A. Cases about some formal language are labelled 
words indicating whether or not some word provided belongs to the language to be represented or even 
to be learnt. For labelling words, we choose 0 and 1 meaning no and yes, respectively. Certain papers 
in the area of case-based reasoning provide some rough concept of semantics as follows (cf. [l], [2], for 
example). If there is some finite case-base CB and some given similarity measure u, this classifies words w 
according to the following pcocedure: Search CB for some labelled word (v, d) where u(v, w) is maximal. 
Return d to classify w. There may obviously arise some ambiguity, if there are conflicting classifications 
by cases (V1 1 0) and (V2, 1) where both Vl and V2 are of maximal similarity to w. There are several ways 
to resolve those conflicts. Two of them are chosen for the formal semantics introduced in the sequel. The 
standard approach and the competing approach will be denoted by £st (CB, u) and £c(CB, u), respectively. 

Any formal semantics has to be based on some similarity concept. Therefore, before specifying the 
intended semantics, we have to put some emphasis on similarity. 

3.1.1 Similarity Concepts 

The majority of current publications in case-based reasoning is considering cases as tuples over some 
chosen collection of attributes.. For every attribute aj, there is some domain Dj of possible attribute 
values. Usually, Dj is equipped with some metric 8j to describe the distance of any two corresponding 
attribute values. This allows to express the distance of two tuples tl and t 2 by a HAMMING distance 8 
by 8(t1 , t2) = L:~::l Wj . 8(t1.aj, t2.aj). Usually, distances are transformed to describe similarities. There 
is a standard way which seems .to be used in most approaches: u(t1 , t2) = 1 - 11(6ttt':~t~)' The richness 
of current problems attacked by case-based reasoning approaches bears abundant evidence of the need 
of more sophisti<;ated similarity concepts. [9] is intended to be one step towards structural similarity 
concepts. Throughout the present paper, we are not going to invoke structural approaches to similarity. 
But we are interested in more flexibility than provided by encoded HAMMING distances. 

For the purpose of the present extended abstract, ~ is chosen to denote the class of all total recursive 
similarity concepts (cf, [10]). Elements u of ~ may be either 0, I-valued or mapping into the rational 
numbers ranging from 0 to 1. 
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the phenomenon to be inferred. The set of all admissible hypotheses is called space of hypotheses. The
given information may contain only positive examples (indicated by the suffix TX T below), i.e. exactly all
the strings contained in the language to be recognized, or both positive and negative examples (indicated
by INF) ,  i.e. the  learner is fed with arbitrary strings over the underlying alphabet which are classified
with respect to their containment to the unknown language. The sequence of hypotheses has to  converge
to a hypothesis correctly describing the object to be learnt. To sum up, the inference process as a whole
is a l imiting one.

Our learnability concept (cf. [10], [11]) is an immediate adaptation of the classical identification types in
recursion-theoretic inductive inference (cf. [4], [12]). It is reflecting the approaches underlying [3], [17],
[15], e.g. Using standard notations, the following learnability results may be assumed.

Theorem 1

(1) 'P 6 LIM.TXT
(2) ? € LIMJNF

3 Case-Based Representation of Pattern Languages
If some algorithm is expected to learn any member of some class of objects in a case-based manner by
processing information about particular target objects to  come up with some finite case-base and some
similarity measure describing the particular target object,  this obviously assumes some interpretation of
pairs built from case-bases and similarity functions in terms of the objects under consideration. For—'
mally spoken, one needs some well-defined semantics. In general, there i s  no standard semantics. [8] is
introducing three slightly different semantics, in a particular setting. Similarly, the reader will find below
two slightly different approaches used in the paper on hand.  It is especially surprising that a remarkable
number of papers do not make the chosen semantics explicit. But for a formally correct treatment, the
choice of some precise semantics is inevitable. The reader may check our theorems below and their proofs
in this regard (cf. [10]).

3 .  1 Semantics

There is assumed some finite, non—empty alphabet A.  Cases about some formal language are labelled
words indicating whether or not some word provided belongs to the language to be represented or even
to be  learnt. For labelling words, we choose 0 and 1 meaning no and yes, respectively. Certain papers
in the area of case-based reasoning provide some rough concept of semantics as follows (cf. [1], [2], for
example). ‚If there is some finite case-base CB and some given similarity measure a ,  this classifies words w
according to the following pcocedure: Search CB for some labelled word-(v, d) where a(v, w) is maximal.
Return d to classify w.  There may obviously arise some ambiguity, if there are conflicting classifications
by cases (v1,0) and (v2, 1 )  where both vl and 222 are of maximal similarity to w.  There are several ways
to resolve those conflicts. Two of them are chosen for the formal semantics introduced in the sequel. The
standard approach and the competing approach will be  denoted by Est(CB , 0’) and E,;(CB, 0'), respectively.
Any formal semantics has to be  based on some similarity concept. Therefore, before specifying the
intended semantics, we'have to put some emphasis on similarity.

3.1.1 Similarity Concepts

The majority of current publications in case—based reasoning is considering cases as tuples over some
chosen collection of attributes.~ For every attribute (lg, there is some domain D,- of possible attribute
values. Usually, D,- is equipped with some metric 65 to describe the distance of any two corresponding
attribute values.  This allows to express the distance of two tuples t l  and t z  by a HAMMING distance 6
by 6(t1,t2) = 22;, wg - 6(t1.a,-,t2.a,-). Usually, distances are transformed to describe similarities. There
is a standard way which seems ,to be  used in most approaches: a ( t1 , t2)  = 1 — %.  The richness
of current problems attacked by case-based reasoning approaches bears abundant evidence of the need
of more sophisticated similarity concepts. [9] is intended to be one step towards structural similarity
concepts. Throughout the present paper,  we are not going to invoke structural approaches to similarity.
But  we are interested in  more flexibility than provided by  encoded HAMMING distances.

For the purpose of the present extended abstract, 2 is chosen to  denote the class of all total recursive
similarity concepts (cf, [10]). Elements 0' of B may be  either 0,1—valued .or mapping into the rational
numbers rangingfrom 0 to 1.
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3.1.2 Formal Semantics 

There may be further approaches to the semantics of case bases together with similarity functions for 
formal languages, but the two considered seem to be basic. Assume CB ~ A+ x {O, I} and u E E as 
introduced above. 

Definition 1 

£st(CB, u) = {wf3(u, 1) E CB [u(u, w) > 0 t\ V(v, 0) E CB [u(u, w) > u(v, w)]]} 

£c(CB, u) = {wf3(u, 1) E CB [u(u, w) > 0 t\ V(v, d) E CB [u # V :::} u(u, w) > u(v, w)]]} 

The presentation of the following lemmata has a twofold intention. First, these lemmata provide some 
insight into the nature of the semantics considered. They illustrate both common features and differ­
ences of these semantics. Second, these lemmata provide a firm basis for understanding and proving the 
following theorems (cf [10] for details). 

Lemma 1 

Vu E EVp E PVCB Cjin L(p) x {I} UL(p) x {O} 

( ICB n L(p) x {1}1 = 1 =:::} £c(CB, u) =£.t(CB, u) ) 

Lemma 2 

Lemma 3
 

Vu E E ( u idempotent =:::} VX ~ A+ x {I} ( X ~ £.t(X, u) x {I, O} ))
 

Lemma 4
 

Vu E EVp E PVCB Cjin L(p) x {I} U L(p) x {O}
 

(£c(CB,u) ~ £st(CB,u)) 

Lemma 5
 

Vu E EVp E PVCB Cjin L(p) x {I} U L(p) x {O}
 

3u' E E3CB' Cjin L(p) x {1}UL(p) x {O} (£.t(CB,u) =£c(CB',u'))
 

Lemma 6
 

Vu E EVp E PVCB Cjin L(p) x {I} UL(p) x {O}
 

3u' E E3CB' Cjin L(p) x {l} U L(p) x {O} (£c(CB, u) =£.t(CB', u'))
 

u is called idempotent, if u(x, x) = 1 holds for all admissible arguments x. This property is deemed 
important, but the proofs of our theorems below (cf. [10]) show that it can rarely be achieved. 

The lemmata show that both semantics, although they have the same expressive power, behave differently 
in some respect. This will be used below. 

3.2 Representability Results 

In the results listed below, the notation £. refers to both the standard semantics and the competing se­
mantics as introduced above. For the readers convenience, every theorem will be paraphrased (in italics), 
first. 

Under both semantics, there is no universal similarity measure u which allows to represent every pattern 
language by a finite number of its elements considered as positive cases. 

Theorem 2 

,3u E EVp E P3CB Cjin £(p) x {l}(£(p) = £.(CB, u)) 
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3 .1 .2  Formal Semantics

There may be  further approaches to the semantics of case bases together with similarity functions for
formal languages, but the two considered seem to be basic. Assume CB g A+ x {0,1} and a € E as
introduced above.

Definition 1

£‚t(CB, a) = {w/El(u, 1) € CB [0(u, w) > 0 AV(v, 0) 6 CB [0(u, w) > a(v, w)]]}

£c(CB,or) = {w/El(u,1) & CB [0'(u, w) > 0 AV(v, d) 6 CB [u # v => cr(u,w) > a(v, w)]]}

The presentation of the following lemmata has a twofold intention. First, these lemmata provide some
insight into the nature of the semantics considered. They illustrate both common features and differ-
ences of these semantics. Second, these lemmata provide a firm basis for understanding and proving the
following theorems (cf [10] for details). '

Lemma 1

Var E EVp € ’PVCB Cfm L(p) x {1} um? x {0}

( IC'B n L(p) x {1}| =1  => £c(CB,o) = 5,.(03, 0') )

Lemma 2

Va 6 EVX g A+ x {0,1}vz g A+ x {1}( £,„(X,a'—) ; £„(X uz ,  «) )

Lemma 3

Va e 2 ( a idempotent => VX g A+ x {1} ( X 9 ß„(X‚a) x {1,0} ) )

Lemma 4

Va- 6 EVp e ’PVCB can L(p) x {1} um x {0}
( 5,,(03, a") g 5,,(03, a) )

Lemma 5

Va 6 zvp e ’PVCB cm L(p) x {1} um x {0}

30" e 2303' cm, L(p) x {1} um x {0} (5,.(03, 0') : £c(CB', d))

Lemma 6 _

Va € EVp 6 'PVCB Cfin MP) X {1} Um x {0}

30' e 2303' cm L(p) x {1}  u “Ema {0} (L,(CB, 0') = £„(CB'‚ d))

0' is called idempotent, if 0013,12) = 1 holds for all admissible arguments a:. This property is deemed
important, but the proofs of our theorems below (cf. [10]) show that it can rarely be achieved.
The lemmata show that both semantics, although they have the same expressive power, behave differently
in some respect. This will be used below.

3 .2  Representability Results
In the results listed below, the notation LI... refers to both the standard. semantics and the competing se-
mantics as introduced above. For the readers convenience, every theorem will be paraphrased (in italics),
first .

Under both semantics, there is no  universal similarity measure a' which allows to  represent every pattern
language by a fini te  number of its elements considered as positive cases.

Theorem 2

„aa e we 6 race cm [:(p) x {1} (£(p) = 1:...(03, a))

142



Under standard semantics, there is some universal similarity measure u which allows to represent every 
pattern language by a finite number of cases, where the words of these cases are not restricted to be taken 
from the target language itself. 

Theorem 3 

3u E 'L,'rIp E P3CB Cjin A+ x {l}(.c(p) = .c.(CB, u)) 

Under both semantics, there is a universal similarity measure u which allows to represent every proper 
pattern language by a finite number of its words considered as positive cases. 

Theorem 4 

3u E 'L,'rIp E PP3CB Cjin .c(p) x {1} (.c(p) = .c. (CB, u)) 

Under both semantics, there is no universal similarity measure u being symmetric which allows to repre­
sent every proper pattern language by a finite number of its words considered as positive cases. 

Theorem 5 

-,3u E 'L, [u symmetric t\ 'rip E PP3CB Cjin .c(p) x {1} [.c(p) = .c. (CB, u)]] 

Under standard semantics as well as under competing semantics, there is a universal similarity measure 
u allowing to represent every pattern language by a finite case-base CB of both examples and counter­
examples considered as positive and negative cases, respectively. 

Theorem 6 

3u E 'L,'rIp E P3GB Cjin .c(p) x {1} U .c(p) x {O} (.c(p) = .c. (GB, u)) 

At the very moment, it is still open whether or not Theorem 6 is valid, if it is required that the 
corresponding similarity measure u is symmetric. We conjecture that there does not exist any symmetric 
similarity measure u which allows to represent the class of all pattern languages using positive and 
negative cases under any of the two semantics investigated. 

4 Case-Based Learning of Pattern Languages 

Because of the lack of space, we can provide a list of annotated results, only. 

4.1 Learning Scenario 

All the formalisms may be found in [11]. It is sufficient to understand the basic scenario. Some pattern 
language is learnable from text or informant under one of the semantics introduced, if there is a universal 
learning device able to collect cases from any text or informant, respectively, such that it is collecting a 
case base in the limit, which is only finite, and which describes the target language correctly under the 
assumed semantics. Any similarity concept is assumed. 

4.2 Learnability Results 

Theorem 4 and Theorem 6 circumscribe the possibilities of case-based learning of pattern languages. 
Again, every theorem will be paraphrased for the readers convenience. 

For the class of proper pattern languages, there are universal case-based learning algorithms based on text 
for both semantics considered. 

Theorem 7 
(1) pp E S - GBL.TXT 
(2) pp E G - GBL.TXT 

Corollary 

(1) pp E S - GBL.INF 
(2) pp E G - GBL.INF 

Under competing semantics, the whole class of pattern languages P is case-based learnable from positive 
and negative examples. 

Theorem 8 
PEG - GBL.INF 
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Under standard semantics, there is some universal similarity measure 0' which allows to  represent every
pattern language by a finite number of cases, where the words of these cases are not restricted t o  be taken
from the target language itself.

Theorem 3

30' e zvp 6 race cm A+ x {1} (£(p) .-_- mos, a))

Under both semantics, there is a universal similarity measure a which allows to  represent every proper
pattern language by a finite number of its words considered as positive cases.

Theorem 4
30' E EVP € ’P’PEICB Cyan, £(p) x {1} (£(p) = £..(C'B, cr))

Under both semantics, there is no  universal similarity measure a being symmetric which allows to  repre-
sent every’proper pattern language by a finite number of its words considered as positive cases.

Theorem 5

flag E 2 [o symmetric A Vp € 'P'PEICB Cf in  £(p) x {1}  [ß(p) = C,. (CB, (7)1]

Under standard semantics as well as under competing semantics, there is  a universal similarity measure
cr allowing to represent every pattern language by a finite case-base CB of both examples and counter-
examples considered as positive and negative cases, respectively.

Theorem 6

30 E EVp E ’PEICB Cfin [.(p) x {1} U £(p) x {O}(£(p) = £...(CB, a))

At the very moment, it is still open whether or not Theorem 6 is valid, if i t  is required that the
corresponding similarity measure a" is symmetric. We conjecture that there does not exist any symmetric
similarity measure 0‘ which allows to represent the class of all pattern languages using positive and
negative cases under any of the two semantics investigated.

4 Case-Based Learning of Pattern Languages
Because of the lack of space, we can provide a list of annotated results, only.

4.1 Learning Scenario
All the formalisms may be found in [11]. It is sufficient to understand the basic scenario. Some pattern
language is learnable from text or informant under one of the semantics introduced, if there is a universal
learning device able to collect cases from any text or informant, respectively, such that it is collecting a
case base in the l imit ,  which is only finite, and which describes the target language correctly under the
assumed semantics. Any similarity concept is assumed.

4 .2  Learnability Results
_ Theorem 4 and Theorem 6 circumscribe the possibilities of case-based learning of pattern languages.

Again, every theorem will be  paraphrased for the readers convenience.
For the class of preper pattern languages, there are universal case—based learning algorithms based on text
for both semantics considered.

Theorem 7
(1)  ’P’P E S — CBL.TXT
(2) 17p 6 C _— CBL.TXT

Corollary

(1)797) E S -— CBL. INF
(2) P’P E C— CBLJNF

Under competing semantics, the whole class of pattern languages 7’ is case—based learnable from positive
and negative examples.

Theorem 8
? € C — CBLJNF
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5 Discussion 

The results above and their corresponding proofs are raising a considerable number of questions about 
the interplay of semantics, types of similarity measures, and learnability concepts. Because of the lack of 
space, we can mention only three of them: 

•	 The proofs of the Theorems 3, 4, and 6 invoke similarity measures which do not meet human 
intuition quite well. What is the expressiveness of similarity concepts reflecting certain human ideas 
of similarity of strings under particular semantics? 

•	 If one chooses standard semantics in Theorem 7, {O, 1}-valued similarity measures are sufficiently 
expressive. This does not hold under competing semantics. How to characterize similarity concepts 
which admit {O, 1}-valued similarity measures? 

•	 Until now, it is still open whether a result similar to Theorem 8 can be achieved under standard 
semantics, too. 
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Abstract 

This paper compares the performance of a typical case-based learner to search- and comprehension­
based learning systems. Various Tower of Hanoi tasks are used as a testbed for evaluating the strengths 
and potential shortcomings of the three different learning schemes. The amount and types of know­
ledge that are required for the successful performance will be identified for each of the three systems. 
In addition, the performance of the three learning systems is compared to respective data from a 
psychological experiment. 

Case-, Search- and Comprehension-based Learning 

Case-based planners (Hammond, 1989) acquire additional kllOwledge bystoring new cases (i.e. the specific 
plans for different problems); search-based systems like SOAR or PRODIGY learn by chunking the result 
of a search process (Rosenbloom et al., 1991a; Minton et al., 1989), by compilation (Anderson, 1987), 
and by forming macro-opemtors (Korf, 1985). The chunking mechanism of SOAR, which resembles 
or is identical to explanation-based generalization, is also capable of learning at the knowledge level 
(Rosenbloom et al. 1991b). This technique is known as data-chunking. It enables SOAR to memorize 
declarative structures (e.g. plans or prior problem solving experiences) explicitly which is a necessary 
ability to model the behavior of case-based systems. This memorizing is conducted by an operator and 
thus is a knowledge-based and deliberate act. Generally, SOAR productions are better thought of as 
memory retrievers than as· operators or pwcedures (Rosenbloom et al., 1991a). The mapping from a 
case-based system onto SOA R as a search-based system is therefore rather straightforward, as Was just 
outlined by Akyurek (1992): Suppose there is a plan for achieving some goal. The chunking mechanism 
adds this plan which is indexed by its (generalized) goal conditions to the long-term recognition memory. 
Confronted with a similar task this declarative structure can be retrieved and be used as a template for 
achieving the task. Plan modification and repairs are both accomplished by the default problem-solving 
capabilities of SOAR. The resulting new plan again can be stored with the data-chunking mechanism 
for later recall. The gain for cognitive modeling using this approach is twofold. First, you have to make 
explicit which part of a present case will be memorized and what can serve as its retrieval cue. Note that 
beside generalization which results automatically from the chunking mechanism, also abstracted versions 
of the cases at hand can stored. All necessary knowledge for doing this abstraction process (e.g. prior 
known concepts) has to be part of the model. Second, you need to have a theory about when this case 
storing event will happen. 

Comprehension-based systems (Mannes & Kintsch, 1991; Wharton & Kintsch, 1991) offer a third 
possibility for learning: From specific problem solving experiences (cases) and a related problem descrip­
tion (text) some coarse-grained abstract representation is constructed, that may initially be inconsistent 
and redundant. By holistic integration processes a coherent and consistent procedure schema is subse­
quently formed. Such a proced~re schema can be reused for obtaining solutions to problems which are 
quite different at the concrete level, but have been comprehended to share abstract commonalities. The 
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Abstract

This paper compares t he  performance of a typical case—based learner to search— and comprehension-
based learning systems. Various Tower of Hanoi tasks are used as a testbed for evaluating the strengths
and potential shortcomings of the  three difl’erent learning schemes. The amount and types of know—
ledge that  are required for the  successful performance will be identified for each of the  three systems.
In  addition, the performance of t he  three learning systems is compared to respective data  from a
psychological eXperiment.

1 Case—, Search— and Comprehension—based Learning

Case-based planners (Hammond, 1989) acquire additional knowledge by‘storing new cases (i.e. the specific
plans for different problems); search—based systems like SOAR or  PRODIGY learn by chunking the result
of a search process (Rosenbloom et  al. ,  1991a; Minton e t  al. ,  1989), by compilation (Anderson, 1987),
and by forming macro-operators (Korf, 1985). The chunking mechanism of SOAR, which resembles
or is identical to explanation-based generalization, is also capable of learning at the knowledge level
(Rosenbloom et  al. 1991b). Th i s  technique is known as data—chunking. I t  enables SOAR to memorize
declarative structures (e.g. plans or prior problem solving experiences) explicitly which is a necessary
ability to model the  behavior of case—based systems. This memorizing is conducted by an operator and
thus is a, knowledge—based and deliberate act. Generally, SOAR productions are better thought of as
memory retrievers than asoperators  or procedures (Rosenbloom et al., 1991a). The mapping from a

' case—based system onto SOAR as a search—based system is therefore rather straightforward, as was just
outlined by Akyurek (1992): Suppose there is a plan for achieving some goal. The chunking mechanism
adds this plan which is indexed by its (generalized) goal conditions to the long—term recognition memory.
Confronted with a similar task this  declarative structure can be  retrieved and be  used as a template for
achieving the  task. Plan modification and repairs are both accomplished by the default problem—solving
capabilities of SOAR.  The resulting new plan again can be stored with the data—chunking mechanism
for later recall. The gain for cognitive modeling using this approach is twofold. First, you have to make
explicit which part  of a present case will be memorized and what can serve as its retrieval cue. Note that
beside generalization which results automatically from the chunking mechanism, also abstracted versions
of the cases at hand can stored. All necessary knowledge for doing this abstraction process (e.g. prior
known concepts) has to be part  of the  model. Second, you need to have a theory about when this case
storing event will happen.

Comprehension—based systems (Mannes & Kintsch, 1991; Wharton &; Kintsch, 1991) offer a third
possibility for learning: From specific problem solving experiences (cases) and a related problem descrip-
tion (text) some coarse-grained abstract representation is constructed, that may initially be inconsistent
and redundant.  By holistic integration processes a coherent and consistent procedure schema is subse-
quently formed. Such a. procedure schema can be reused for obtaining solutions to problems which are
quite different at the concrete level, but  have been comprehended to share abstract commonalities. The
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importance of forming a.nd reformulat.ing abstract representations has recently also been pointed out by 
Clancey (1989). 

2	 Different Tower of Hanoi Problems as a Testbed 

The Tower of Ha.noi task (Simon, 1975) requires that a tower of n disks which are graded in size is 
transferred from a start peg (say peg A) to some goal peg, (say peg C). At the outset, all the disks are 
arranged pyramidically on peg A. An additional peg (say peg B) may be used as an auxiliary location. 
The following rules must be observed: At any time only a single disk may be moved and a larger disk 
must never be put on top of a snialler disk. 

A problem ~olving syst,em will represent the individual disks in a concrete description language. A 
problem state of the Tower of Hanoi problem can be represented by a list. The initial states of the 3-, 4-, 
and 5- disk problems are thus represented by [[123] IJ IJ), [[1 234] 0DJ and [[1 2 345] 0DJ respectively: 
1 refers to the smallest disk, 2 to the second smallest disk and so on. 

For the 3 different types of learning systems, the acquisition and utilization of knowledge was tested 
in the following way: Each system (case-, search-, and comprehension-based) was alternatively trained 
with three different case-data (3-, 4-, and 5- disk problems): The utilization of the acquired knowledge 
was then tested with the 4-disk pl'Oblem. 

3	 Practical Results Concerning the Comparison of the 3 
Approaches 

For the Tower of Hanoi ta.sks t.he comparison of the acquisition and utilization of knowledge in case-based, 
search-based, and comprehension-based systems yields the following results: A case-based planner stores 
the specific experiences and utilizes these experiences by adapting them to new problems. The specific 
solutions of 5-disk (odd number of disks) and 4-disk problems (even number of disks) are quite diffe­
rent (Simon, 1975). A ca.se-based system with a 5-disk training required a substantial amount of new 
knowledge for refitting the solution of the 5-disk pl'Oblem for solving 4-disk problems. Search-based 
systems acquire new knowledge by searching a problem space and forming macro-operators or chunks. 
Since the Tower of Hanoi task results in an ill-suited problem decomposition, macro-operators are for­
med which yield quite inefficient problem solutions (Korf, 1985). Quite often, these macro-operators 
cannot be transferred between problems with a different number of disks. When multiple levels of des­
criptions are available like in SOAR, more useful chunks of problem solving experiences can be formed 
(Ruiz.& NewelI, 1989). 

A SOAR model whi.ch learns chunks as a result of a lookahead-search combined with a goal-de­
composition strategy ("move biggest disk not-on-C to C") predicts only positive transfer from a 4-disk 
training to the 4-disk criterion ta<;k. Transfer from an odd-numbered training task to an even-numbered 
task is negative. 

A second SOAR model which uses the cased-based approach described above for memorizing small 
episodes (cases) during solving the training problems predicts better transfer from a 5-disk training to 
a 4-disk criterion task due to more opportunities for storing episodes. This model which is influenced 
by the concurrent protocol analysis recently reported by VanLehn (1991) stores abstracted experiences 
acquired during the "major moves" \vhich form a stable pattern of 4k + 1 moves in the protocol. At first 
the abstraction process uses the prior known concept of a pyramid and then secondly, learns to conceive 
the size of the pyramid a further relevant concept. 

With a comprehension·-based approach an abstract procedure schema is formed in terms of situation 
knowledge. The same ahstract. schema is thus acquired for all Tower of Hanoi tasks with more than 4 disks. 
The schema acquired from the ~~- and 4-disk problems is still similar but less elaborated. Comprehension­
based learning from a 5-disk training therefore even produces better solutions for the 4-disk criterion 
task than a 4-disk training. 

4	 Empirical Results from a Psychological Experiment 

In order to evaluate the psychological validity of case-, search-, and comprehension-based learning, an 
experiment with human subjects was performecl. In three different conditions (30 subjects each), subjects 
had to solve two 3-clisk, two 4-clisk, or two 5 disk-problems in a row and their number of moves was 
recorded. The two consecutive problems were similar. The first time the tower of disks was on peg A in 
the initial state. The second time it was located on peg B. Both times, it had to be transferred to peg C. 
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episodes (cases) during solving the training problems predicts better transfer from a 5—disk training to
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by the concurrent. protocol analysis recently reported by VanLehn (1991) stores abstracted experiences
acquired during the “major moves” which form a stable pattern of 4k + 1 moves in the protocol. At first
the abstraction process uses the prior known concept of a pyramid and then secondly, learns to conceive
the  size of the pyramid a further relevant concept.

With a comprehension—based approach an abstract procedure schema is  formed in terms ofsituation
knowledge. The same abstract  schema. is thus acquired for all  Tower of Hanoi tasks with more than 4 disks.
The schema acquired from the 3-— and 4—disk problems is still similar but less elaborated. Comprehension-
based learning from &. 5—disk training therefore even produces better solutions for the 4—disk criterion
task than a 4—disk training.
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In order to evaluate the psychological validity of case—, search—, and comprehension—based learning, an
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the initial s ta te .  The  second t ime i t  was located on peg B.  Both times, i t  had to be  transferred to peg C .
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Thereafter, the knowledge which they had acquired from these problem solving episodes was tested. In 
order to obtain a more complete assessment of their knowledge with respect to the 4-disk problem, which 
served as the criterion· task, all subjects were presented with the 81 different states of the four disk 
problem, one at a time. Rather than completely solving the Tower of Hanoi problem, the subject had to 
select the best move for each of the 81 different problem states, which were randomly divided in three 
sets of 27 states. For selecting a move, subjects were allowed 15, 30 or 45 seconds. The allowed processing 
time and the three sets of 27 states were counterbalanced by a Latin-Square design. 

Tabclle 1. Average number of moves in three different training tasks 

Mean number 3-disk 4-disk 5-disk 

of moves problem problem problem 

first problem 11.1 30.9 66.0 

second problem 9.1 21.4 55.0 

Table 1 shows the average number of moves for two similar problems with 3, 4 or 5 disks. Clearly, 
fewer moves were required when solving the problem for the second time as compared to the first time. 
Table 2 shows the performance in the 4-disk criterion task. The average number of correct moves is 
shown as a function of the allowed processing time (15, 30, or 50 seconds) and the three types of training 
(solving 3-, 4-, or 5- disk problems). 

Tabelle 2. Percentage of optimal moves in the 4-disk criterion task as a function of pretraining and 
processing time 

Time (s) 

Pretraining 

3-disks 4-disks 5-disks 

15 63 68 70 

30 69 75 77 

45 69 76 81 

Independent of the specific processing time which was allowed for selecting the best move from a given 
state, the subjects with the 5-disk problem solving experience performed better than the subjects with 
the 4- or 3-disk problem solving experiences. We may thus conclude that the subjects did not solely store 
the problem solving moves for the specific Tower of Hanoi problem nor solely compiled solution knowledge 
for it. Instead subjects must have also utilized background knowledge which allowed them to form a more 
abstract representation from the problem solving episodes, that could be efficiently transferred from the 
5-disk training task to the 4-disk test task. Since more elaborate abstractions can be acquired from the 
5-disk problem, the subjects ~;ith this training performed better in the criterion task than the subjects 
with the 4- or 3-disk training. 

References 

Akyurek, A. (1992). On a computational model of human planning. In J. A. Michon & A. Akyurek (Eds.), 
Soar: A cognitive architecture in perspective (pp. 81-108). Dodrecht, The Netherlands: Kluwer. 

Anderson, J. R. (1987). Skill Acquisition: Compilation of weak-method problem solutions. Psychological 
Review 94(2):192-210. 

Clancey, W.J. (1989). The knowledge level reinterpreted: Modeling how systems interact Machine Lear­
ning 4:285-291. 

Hammond, K. (1989). Ca8e-based planning. London: Academic Press. 
Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial Intelligence 26:35-77. 
Mannes, S. M., and Kintsch, Vv'. (1991). Routine computing tasks: Planning as understanding. Cognitive 

Science 15:305-342. 
Minton, T. M., Carbonell, J. G., Knoblock, C. A" Kuokka, D. R., Etzioni, 0., and Gil, Y. (1989). 

Explanation-based learning: A problem solving perspective. Artificial Intelltgence 40:63-118. 

147
 

Thereafter, the knowledge which they had acquired from these problem solving episodes was tested. In
order to  obtain a more complete assessment of their knowledge with respect to the 4—disk problem, which
served as the cri terion' task,  all subjects were presented with the 81 different states of the four disk
problem, one at a t ime. Rather than completely solving the Tower of Hanoi problem, the subject had to
select the best move for each of the  81 different problem states, which were randomly divided in three
sets of 27 states. For selecting a move, subjects were allowed 15, 30 or 45 seconds. The allowed processing
time and the three sets of 27 states were counterbalanced by a Latin—Square design.

Tabelle 1. Average number of moves in three different training tasks

Mean number  3-disk 4—disk 5-disk

of moves problem problem problem
first problem - 11.1 30.9 66.0

second problem 9.1 21.4 55.0

Table 1 shows the average number of moves for two similar problems with 3, 4 or 5 disks. Clearly,
fewer moves were required when solving the  problem for the second time as compared to the first time.
Table 2 shows the performance in the 4—disk criterion task. The average number of correct moves is
shown as a function of the allowed processing time (15, 30, or 50 seconds) and the three types of training
(solving 3—, 4-, or 5— disk problems).

Tabelle 2. Percentage of optimal moves in the 4-disk criterion task as a function of pretraining and
processing t ime

Pretraining

Time  (s) 3—disks 4—disks 5—disks

15 63 68 70
30 69 .. 75 77
45 t 69 76 81

Independent of the specific processing t ime which was allowed for selecting the best move from a given
state,  the subjects with the 5—disk problem solving experience performed better than the subjects with
the 4-— or 3—disk problem solving experiences. We may thus conclude that the subjects did not solely store
the problem solving moves for the specific Tower of Hanoi problem nor solely compiled solution knowledge
for it. Instead subjects must have also utilized background knowledge which allowed them to form a more
abstract representation from the problem solving episodes, that could be efficiently transferred from the
5-disk training task to the  4—disk test task, Since more elaborate abstractions can be  acquired from the
5—-disk problem, the subjects with this training performed better in the criterion’task' than the subjects
with the 4— or 3—disk training.
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Abstract. The concept of K-Nearest Neighbours (KNN) traced back to early fifties and during the last 
years it is investigated deeply by the statistical community. Case-Based Reasoning (CBR), which is very 

similar to KNN is rather new. Besides KNN and CBR one can use other statistical procedures like regres­

sion analysis or Box-Jenkins methods to perform the prediction tasks. Furthermore, it is possible to use 

the procedures based on neural networks and symbolic machine learning. Although learning prediction 

of time series is a very important task in different scientific disciplines, there is no comprehensive study 

in the literature which compares the performance of CBR with the performance of the other alternative 

approaches. The aim of this paper is to contribute to this debate from a theoretical and empirical point 

of view. 

1. Introduction 

Learning prediction of time series is a very important task in different scientific disciplines. In Statistics 

there are several, partly sophisticated, methods to perform this task. Generally, these procedures use the 

information available about the behaviour of the time series in the past to predict its development in the 

future. Box-Jenkins ARMA and ARIMA models are well-known examples for this type of procedures 

(Henery and Nakhaeizadeh (1993». 

Besides the information about the past values of the time series itself, one can also use other information 

based on the exogenous indicators which have an impact on the development of the time series. K­

Nearest-Neighbours and regression analysis can be mentioned as examples for such procedures. Recently, 

t.he attention is focused also on the application of Neural Networks (Graf and Nakhaeizadeh (1993». 
Some of symbolic machine learning algorithms based on ID3-concept can be used to predict the deve­

lopment of time series as well (Merkel and Nakhaeizadeh (1992». It should be mentioned that although 

CBR, which is very similar to KNN, has found several applications for examples in classification, planning 

and design (see Althoff et lil. (1992», ver~ little attention has been paid to the application of CBR to 

,	 time series prediction. An exception is the work of Quinlan (1993) which applies both CBR-based and 

model based learning approaches to prediction. 

The above facts show that several alternative approaches can be applied to prediction of time series. The 

aim of this study is to evaluate, firstly, these alternative approaches from a theoretical point of view and, 

secondly, to compare their performance iri dealing with real-world prediction problems arise in industry 

and commerce. We will refer also to some results achieved within an Esprit-Project funded by the Euro­

pean Community. 

2. A Short Description of the Applied Alternative Approaches 

Before we give a summary about the theoretical aspects of different approaches which can contribute to 

prediction of development of time series, we should mention here a general problem exists in dealing with 

a large number of time series. This is the limited number of available cases. In many circumstances, 
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1 . Introduction

Learning prediction of time series is a very important task in different scientific disciplines. In Statistics
there are several, partly sophisticated, methods to perform this task. Generally, these procedures use the
information available about the behaviour of the time series in the past to predict its development in the
future. Box-Jenkins ARMA and ARIMA models are well-known examples for this type of procedures
(Henery and Nakhaeizadeh (1993)).

Besides the information about the past values of the time series itself, one can also use other information
based on the exogenous indicators which have an impact on the development of the time series. K-
Nearest-Neighbours and regression analysis can be mentioned as examples for such procedures. Recently,
the attention is focused also on the application of Neural Networks (Graf and N akhaeizadeh (1993)).
Some of symbolic machine learning algorithms based on lD3—concept can be  used to predict the deve-
lopment of time series as well (Merkel and Nakhaeizadeh (1992)). It should be mentioned that although
CBR,  which is very similar to KN  N, has found several applications for examples in classification, planning
and design (see Althoff et a1. (1992)), very little attention has been paid to the application of CBR to
time series prediction. An exception is the work of Quinlan (1993) which applies both CBR-based and
model based learning approaches to prediction.

The above facts show that several alternative approaches can be  applied to prediction of time series. The
aim of this study is to evaluate, firstly, these alternative approaches from a theoretical point of view and,
secondly, to compare their performance in dealing with real-world prediction problems arise in  industry
and commerce. We will refer also to some results achieved within an Esprit-Project funded by the Euro-
pean Community.

2 .  A Short Description of the Applied Alternative Approaches

Before we give a summary about the theoretical aspects of different approaches which can contribute to
prediction of development of time series, we should mention here a general problem exists in dealing with
a large number of time series. This is the limited number of available cases. In many circumstances,
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there is no information at all about the far past values of the time series.. On the other hand, if such 

a dataset is available, it is not always suggestive to use it because too far past values have only a weak 

impact on the future development of the time series. It means, in dealing with time series the learning 
task has 110 be performed by using only a limited number of training data. Having this fact in mind, we 
will give in following a short description of different approaches. 

Linear Regression Analysis and Box-.Jenkins Approach 

Denoting Yi as a time series in period t, a linear regression model can be described by the equation 

n 

Yi =a +I: hiXit 
i=1 

In the above equation, X it denotes the value of exogenous variable Xi in the period t. The value Yt+l in 
the period t + 1 can be predicted simply as: 

) 

n 

Yi~1 = a+I: biX'(t+l) 
i=1 

where a and b~ are the estimations for a and hi and can be calculated using least-squares or maximum­

likelihood method. Of course, one can use instead of a linear regression a nonlinear model as well. In 

this case, the parameters a and hi can be estimated using numerical procedures. The regression analysis 

is theoretically well investigated and it is very simple to apply. One disadvantage of this method is the 

problem of model selection. A lot of other statistical approaches have the same disadvantage as well. The 

other problem is that the calculation of Yi~1 is only possible when all X i (t+1) are known for the period 

t + 1 in advance, which is in praxis not always the case. 

Concerning the Box-Jenkins approach, one can describe an ARMA (autoregressive moving average) model 

as: 

where Et are independent normal distributed random variables. 

If the parameters a or f3 are zero, the above model will be reduced to a MA (moving average) or AR 

(autoregressive) process, respectively. 

The main assumption in the ARMA model is that the time series Yi is stationary. A time series is 

stationary if its means and variance remain unchanged with the time. For a lot of real world time series, 

this assumption is not valid. In such cases, the time series should be transformed for example by taking 

successive differences so long as necessary to make the resulting series stationary. In this case, the ori­

ginal series is called an integrated ARMA process, i.e. an ARIMA process. Although the Box-Jenkins 

approach has some advantages, one needs a lot of experience to be able to apply it efficiently (see Henery 

and Nakhaeizadeh (1993». 

Symbolic Machine Learning and Neural Networks 

Most of the symbolic machine learning algorithms are more appropriate to perform the classification 

tasks. But between the ID3-type algorithms, CART and NEWID can also be used for prediction because 

they can handle continuous-valued classes as well. In contrast to other approaches, the predictor derived 

from these learning algorithms consists of a decision tree which can be transformed to production rules. 

Furthermore, these learning algorithms apply a single attribute at each level of the tree and this is in 
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this assumption is not valid. In such cases, the time series should be  transformed for example by taking
successive differences so long as necessary to make the resulting series stationary. In this case, the ori-
ginal series is called an integrated ARMA process, i.e. an ARIMA process. Although the Box-Jenkins
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Most of the symbolic machine learning algorithms are more appropriate to perform the classification
tasks. But between the IDS-type algorithms, CART and N EWID can also be  used for prediction because
they can handle continuous-valued classes as well. In contrast to other approaches, the predictor derived
from these learning algorithms consists of a decision tree which can be transformed to production rules.
Furthermore, these learning algorithms apply a single attribute at each level of the tree and this is in
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contrast to the most statistical and neural learning algorithms which consider all attributes to make a 

decision. 

The main advantage of symbolic machine learning approach is that it is possible very easily to involve 

other available information in prediction process, for example, by including the background knowledge of 

experts. However, like other approaches, prediction algorithms based on symbolic machine learning have 

also some shortcomings. Generally, they can not predict the values beyond the range of training data. 

Regarding the fact that, especially, a lot of time series have an increasing (decreasing) trend component, 

it can be seen that by using just the raw class values, one can never achieve a predicted value which is 

outside the range of the class values used for training. This can be avoided by taking differences of the 

class values as it was the case in Box-Jenkins approach. 

In the recent years, one can also see in literature some efforts put to apply Neural Networks to prediction 

of time series. Although the development of Neural Networks at early stage was stimulated by mod~l­

ling of learning process in human brain, the further development of this technology shows a very strong 

similarity with statistical approaches. There are some studies which compare the Neural Networks with 
some statistical procedures like nonlinear regression from a theoretical point of view (see for example 

Arminger (1993». However, it should be mentioned that the ability of adaptive learning which charac­

trizes the most of Neural Networks is not implemented in statistical procedures like regression analysis 

and Box-Jenkins approach. 

The main problem in using Neural Networks for prediction consists of finding the optimal network archi­

tecture. To realize this task, one has to devide the available time series data into two training and test 

sets. Regarding the problem of limited number of observations in time series data which is dicussed at 

the beginning of this section, d~viding the whole series into two training and test sets leads to an still 

smaller training dataset, in many circumstances. 

K-Nearest Neighbours and Case-Based Reasoning 

Although the concept of KNN traced back to early fifties (see for example Fix & Hodges (1951», the 

studies on CBR are rather new and are mostly due to Artificial Intelligence researchers. Regarding the 

prediction task, KNN and CBR try to find the patterns in the past data which have the most similarity 

to the recent pattern Yt-k, ... ,Yt-l, Yt . The prediction value for the recent pattern is then simply the 

average of the prediction values of the most similar patterns in the past. 

There is a controversial discussion if KNN and CBR can be regarded at all as inductive learning me­

thods. The reason for this controversy is that the learning task in the most inductive systems generates, 

in contrast to CBR, a general concept which can be used later for predicting the class of unseen cases. 

On the other hand, it is true that in CBR one uses the information given by the cases. This information 

is applied, however, to measure a pre-defined distance function but it is not applied to find a general 

prediction concept which is the main part of inductive learning. The learning task in CBR and KNN is 

limited to finding similarities. Formalization of the relation between CBR and inductive concept learning 

is discussed by J antke (1992). 

The problems mentioned in the case of Neural Networks exist in application of CBR and KNN as well. 

Especially, finding the optimal length of the searched pattern and determining the number of considered 

patterns (K) need again using a separate test dataset which reduces the number of available training 

cases. 
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3. Empirical Evaluation Results 

There are some studies in literature which compare the performance of different statistical approaches
 

using the time series data (Makridakis et al (1984». But, there is no comprehensive study which includes
 

the recent developed prediction approaches based on the AI-methodology like CBR, Neural Networks
 

and Symbolic Machine Learning. An exception is the attempts put on this task within the Esprit-Project
 
StatLog. In this Project three real time series datasets are applied to compare the performance of diffe­

rent learning algorithms.
 

As it mentioned before, although a lot of learning algorithms can perform the classification task, they
 
can not be applied to prediction, directly, because they can not handle the 'continuous-valued classes. It
 

is, however, possible to consider the prediction task as classification by an appropriate discretization of
 
the class values.
 

The first application used in the project StatLog deals with prediction of development of interest rates
 

on successive trading days. The empirical results for this dataset are ambiguous. On one hand, some
 

symboJjc machine learnig algorithms like CN2 deliver very precise predictions. On the other hand, the
 

performance of the other machine learning algorithms like NEWID and C4.5 are very poor. CBR-type
 

and Neural Networks algorithms are not evaluated for this dataset. The second and the third datasets are
 

two versions of an real-world application which is in interest of the marketing department of Mercedes­


Benz AG, Stuttgart. This appli.cation deals with prediction of number of registered cars and trucks in
 

France. While the performace of Box-Jenkins method and NEWID are the best for this application, the
 

prediction power of a CBR-type algorithm based on the KNN-concept is very poor. Other statistical
 

and neural networks learning algorithms deliver an average performance (see Henery and Nakhaeizadeh
 

(1993) for more detail).
 

Besides the results we have achieved within the project StatLog, some other empirical works has be done
 

by the Machine Learning Group at the Ressort Research and Technology of Daimler-Benz AG in DIm.
 

Besides the prediction of number of cars and trucks for the other countries, we have evaluated different
 

learning algorithms by using another real-world application which deals with prediction of daily exchange
 

rates of US-Dollar against D-Mark. Work on this application is in progress. The first results show that
 

the performance of CBR, Neural Networks and Symbolic Machine Learning algorithms are almost the
 

same. But they are still too far from the accuracy rates which one can get for example by using classical
 

chart analysis.
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There are some studies in literature which compare the performance of different statistical approaches
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the class values. ° '

The first application used in the project StatLog deals with prediction of development of interest rates
on successive trading days. The empirical results for this dataset are ambiguous. On  one hand, some
symbolic machine learnig algorithms like CN2 deliver very precise predictions. On  the other hand, the
performance of the other machine learning algorithms like NEWID and 01.5 are very poor. CBR—type
and Neural Networks algorithmsare not evaluated for this dataset. The second and the third datasets are
two versions of an real-world application which is in interest of the marketing department of Mercedes-
Benz AG, Stuttgart. This application deals with prediction of number of registered cars and trucks in
France. While the performace of Box-Jenkins method and N EWID are the best for this application, the
prediction power of a CBR—type algorithm based on the KN N—concept is very poor.  Other statistical
and neural networks learning algorithms deliver an average performance (see Henery and Nakhaeizadeh
(1993) for more detail). '

Besides the results we have achieved within the project StatLog, some other empirical works has be  done
by the Machine Learning Group at the Ressort Research and Technology of Daimler—Benz AG in Ulm.
Besides the prediction of number of cars and trucks for the other countries, we have evaluated different
learning algorithms by using another real-world application which deals with prediction of daily exchange
rates of US-Dollar against D—Mark. Work on this application is in progress. The first results show that
the performance of CBR, Neural Networks and Symbolic Machine Learning algorithms are almost the
same. But they are still too  far from the accuracy rates which one can get for example by using classical
chart analysis.

References

Althoif, K. D, Wess, S. Bartsch-Sporl, B. and J anetzko D. (Hrsg.) (1992). Proceedings of the Workshop:.
Ähnlichkeit von Fallen beim fallbasierten Schließen. University of Kaiserslautern. Fachbereich Informa-
tik. .
Arminger, G .  (1993). Ökonometrische Schätzmethoden für Neuronale Netze. To appear in Bol, G .  Nak-
haeizadeh, G .  and Vollmer K .  H.  (Eds).  Proceedings of the Fourth Econometric WorkshOp. Physica
Verlag, Heidelberg.
Fix, E .  and Hodges J .L .  (1951). Discriminatory Analysis, Nonparametric estimation: Consistency Pro-

perties. Report no 4, UASF Scholl of Aviation Medicine, Texas.

Graf. J .  and Nakhaeizadeh, G.  (1993). Application of Neural Networks and Symbolic Machine Learning
to'Predicting Stock Prices. To appear in : Plantamura, V. L. Soucek, B:  and Visaggio, G. (Eds). Logistic

152



and Learning for Quality Software, Management ana Manufacturing. Wiley & Sons, New York.
 

Henery, R. and Nakhaeizadeh, G. (1993). Forecasting of Time Series. Mimeo, University of Strathclyde,
 
Glasgow.
 
Jantke, K. P. (1992). Formalizations in Case-Based Reasoning. In : Althoff, K. D, Wess, S. Bartsch­

Sporl, B. and Janetzko D. (Hrsg.) (1992). Proceedings of the Workshop: Ahnlichkeit von Fallen beim
 

fallbasierten SchlieBen. University of Kaiserslautern. Fachbereich Informatik, 9-14.
 

Makridakis, S. Andersen, A. Carbone, R. Fildes, R. Hibon, M. Lewandowski, R. Newton, J. Parzen, E.
 

and Winkler, R. (1984). The Accuracy of Extrapolation ( Time Series) Methods: Results of a forecasting
 
competition. In : Makridakis, S. (Ed.). The Forecasting Acuuracy of Major Time Series Methods. Wiley
 
& Sons. 103-166.
 

Merkel, A.and Nakhaeizadeh, G. (1992). Application of Artificial Intelligence Methods to Prediction of
 

Financial Time Series. In: Gritzmann, p. et a1. ( Hrsg.). Operations Research 91, 557-559.
 

Quinlan, J. R. (1993). Combining instance-:based and model-based learning. Proceedings of the Tenth
 

International Conference on Machine Learning, 236-243. Morgan Kaufmann Publishers.
 

153
 

and Learning for Quality Software, Management and, Manufacturing. Wiley & Sons , New York.
Henery, R .  and Nakhaeizadeh, G .  (1993). Forecasting of Time Series. Mimeo, University of Strathclyde,
Glasgow.
Jantke, K .  P. (1992). Formalizations in Case-Based Reasoning. In : Althoff, K .  D ,  Wess, S .  Bartsch-
Spörl, B. and J anetzko D. (Hrsg.) (1992). Proceedings of the Workshop: Ähnlichkeit von Fällen beim
fallbasierten Schließen. University of Kaiserslautern. Fachbereich Informatik, 9-14.
Makridakis, S. Andersen, A. Carbone, R. Fildes, R. Hibon, M. Lewandowski, R. Newton, J .  Parzen, E.
and Winkler, R. (1984). The Accuracy of Extrapolation ( Time Series) Methods: Results of a forecasting
competition. In  : Makridakis, S .  (Ed..)  The Forecasting Acuuracy of Major Time Series Methods. Wiley
& Sons. 103-166.
Merkel, A .  and Nakhaeizadeh, G .  (1992). Application of  Artificial Intelligence Methods to  Prediction of
Financial Time Series. In: Gritzmann, p. et al. ( Hrsg.). Operations Research 91, 557-559.
Quinlan, J .  R.  (1993). Combining instance-‘based and model—based learning. Proceedings of the Tenth
International Conference on Machine Learning, 236-243. Morgan Kaufmann Publishers.

153



1 

Incorporating (Re)-Interpretation in Case-Based
 
Reasoning
 

Scott O'Hara and Bipin Indurkhya 

College of Computer Science
 
Northeastern University
 

Boston, MA. 02115, USA
 
Email: {bipinlohara}@ccs.neu.edu
 

Tel: 617-373-5204; Fax: 617-373-5121
 

Introduction 

One advantage of case-based reasoning over rule-based reasoning that has been advocated is that cases 
can be interpreted differently, whereas once a rule has been abduced from cases, there is no possibility 
of reinterpreting the cases. Eor instance, Riesbeck and Schank (19.89, pp. 9-14) compare and contrast 
three modes of reasoning: 1) reasoning with ossified cases (rules or abstract principles), 2) reasoning 
with paradigmatic cases (cases ,with a given interpretation), an~ 3) reasoning with stories (cases with 
many possible interpretations and capable of re-interpretation). They argue that it is the third mode of 
reasoning that displays the most flexibility and power of having a knowledge base containing cases. 

However, most of the existing work on case-based reasoning remains confined to the second mode or 
to a version of the third mode where cases have a number of fixed interpretations. Almost all existing 
case-based reasoning systems associate dimensions. (also called indices) with every case in a case-base, 
and use these dimensions for similarity assessment and retrieval. Consider, for instance, the system Hypo 
that applies case-based reasoning to law (Ashley 1990). At the time each case is entered in the case base, 
one must determine the possible ways in which that case might be relevant, and each relevant factor that 
is found is assigned a dimension. As an example, take the domain of home-office tax deduction that is 
discussed in Rissland and Skalag (1991). Upto a point in time, the courts were consistently ruling that 
the statutory predicate 'principal place of business' means the place where the most important part of 
the business is carried out, which would mean classroom for a teacher, concert stage for a musician etc. 
However, in one particular case the court decided that this was an unfair test, and decided to consider 
the place where the taxpayer spends the most amount of their time as the principal place of business, 
which could be home-office for a teacher, if she spends most of her time there in preparing for lectures, 
grading, etc. This decision, however, introduces a fresh dimension, for now we must consider the place 
where the taxpayer spends most time in arguing a case, and citing a precedent. If this dimension was not 
included in the cases that are already in the case base, the retrieval mechanism will miss out OD many 
relevant precedents. 

Of course, one solution is to include a large number of diI:nensions with each case. But then this will 
have the disadvantage that many irrelevant ·cases will be retrieved, not to mention the fact that there is 
always the possibility that, no matter how large the initial set of dimensions, a new dimension becomes 
necessary that was not foreseen before and hence not included in the initial set. 

This point is best illustrated with the domain of geometric figures. Consider Fig. 1. Suppose this 

Figure 1: A figure included in a case base. 

154 

Incorporating (Re)-Interpretation in Case-Based
Reasoning

Scott O’Hara and Bipin Indurkhya.

College of Computer Science
* Northeastern University

Boston, MA. 02115, USA
Email: {bipinlohara}@ccs.neu.edu

Tel: 617-373-5204; Fax: 617-373-5121

1 Introduction

One advantage of case-based reasoning over rule-based reasoning that has been advocated is that cases
can be  interpreted differently, whereas once a rule has been l abduced  from cases, there is no possibility
of reinterpreting the cases. Eor instance, Riesbeck and Schank (1989, pp. 9-14) compare and contrast
three modes of reasoning: I )  reasoning with ossified cases (rules or abstract principles), 2) reasoning
with paradigmatic cases (cases with a given interpretation), and 3) reasoning with stories (cases with
many possible interpretations and capable of reinterpretation). They argue that it  is the third mode of
reasoning that displays the most flexibility and power of having a knowledge base containing cases.

However, most of the existing work on case-bad reasoning remains confined to the second mode or
to a version of the third mode where cases have a number of fixed interpretations. Almost all existing
case-based reasoning systems associate dimensionslalso called indices) with every case in a case—base,
and use these dimensions for similarity assessment and retrieval. Consider, for instance, the system Hypo
that applies case-based reasoning to law (Ashley 1990). At the time each case is entered in the case base,
one must determine the possible ways in which that case might be relevant, and each relevant factor that
is found is assigned a dimension. As an example, take the domain of home-office tax deduction that is
discussed in Riseland and Skalag (I991). Upto a point in time, the courts were consistently ruling that
the statutory predicate ‘principal place of business’ means the place where the most important part of
the business is carried out, which would mean classroom for a teacher, concert stage for a musician etc.
However, in one particular case the court decided that this was an unfair test, and decided to consider
the place where the taxpayer spends the most amount of their time as the principal place of business,
which could be home-office for a teacher, if she spends most of her time there in preparing for lectures,
grading, etc. This decision, however, introduces a fresh dimension, for now we must consider the place
where the taxpayer spends most time in arguing a case, and citing a precedent. If this dimension was not
included in the cases that are already in- the case base, the retrieval mechanism will miss out on many
relevant precedents-

Of course, one solution is to include a large number of dimensions with each case. But then this will
have the disadvantage that many irrelevant‘cases will be retrieved, not to mention the fact that there is
always the possibility that, no matter how large the initial set of dimensions, a new dimension becomes
necessary that was not foreseen before and hence not included in the initial set.

This point is best illustrated with the domain of geometric figures. Consider Fig. 1. Suppose this

K
Figure 1: A figure included in a case base.
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Figure 2: Another figure to be interpreted in terms of Fig. 1.
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Figure 3: A proportional analogy including Fig. 1. 

figure is to be included in a case base. Bow should we dimension it? Perhaps one obvious way is to 
dimension it is as a figure consisting of four triangles. But then Fig. 2 would not be seen as similar to 
Fig. 1 at all, whereas, given the right context (Fig. 3) the similarity betW=een the two becomes obvious. 
Moreover, no matter how many dimensions were used in the initial representation of Fig. 1, we can always 
produce another figure that is similar to it, but requires a new dimension. 

It is dear that what is necessary is a way to interpret the figure differently depending on the context, 
and create new dimensions or indices as appropriate. This is the ultimate promise of case-based reasoning, 
as rightly emphasized by Riesbeck and Schank, that is yet to be delivered. 

We have been working towardS fulfilling the promise of case-based reasoning. One of the authors 
(Indurkhya 1991, 1992) has been working on formalizing the process of reinterpretation in an algebraic 
framework, and on articulating the crucial role it plays in many aspects of cognition. The other author 
(O'Bara 1992) has been implementing a system PAN that models this reinterpretation process in the 
domain of geometric figures. PAN is designed to solve proportional analogy relations of geometric figures 
that involve reinterpretation. We will present an outline of the architecture of PAN in Section 2. In 
Section 3 we discuss briefly how the reinterpretation mechanism a la PAN can be incorporated in a 
conventional case-based reasoning system. In Section 4, we point out the further research questions that 
are raised by our approach. 

The Architecture of PAN 

PAN (for Proportional ANalogy) is a program being developed to solve geometric proportional analogy 
problems. The input to PAN consists of three geometric figures A, B and C made up of straight line 
segments. The output of PAN is a new geometric figure D such that the four figures, A, B, C and D satisfy 
the proportional analogy relation: A is to B as C is to D. PAN creates the answer figure D by constructing 
descriptions of the figures A, B and C. These descriptions are at a higher "conceptual-level" than the 
initialline--segment input and involve rotations, translations, repetitions, convex polygons, symmetry etc. 
A key feature of PAN is that the descriptions of the figures are constructed "in tandem" permitting the 
figures and their descriptions to act as contexts for each other during their construction. 

The architecture of PAN is illustrated by the diagram in Fig. 4 and is essentially that of a production 
system. In the diagram, circular and oval shapes represent data structures and rectangular shapes 
represent processes. The input to PAN is represented by the oval containing the geometric figures in the 
lower-left part of the diagram. The input is simply a set of line segments representing the figures A, B and 
C. The first task performed by PAN is to preprocess the raw input data into a graph-like structure that 
makes computations easier and allows PAN to keep track of what part of the figure has been described 
and what Dart remains to be described. One such lI;raoh is constructed for each of filEUres A. B and C. 

.~ 
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figure is to be included in a case base. How should we dimension it? Perhaps one obvious way is to
dimension it is as a figure consisting of four triangles. But then Fig. 2 wpuld not be seen as similar to
Fig. 1 at all, whereas, given the right context (Fig. 3) the similarity between the two becomes obvious.
Moreover, no matter how many dimensions were used in the initial representation of Fig. 1 ,  we can always
produce another figure that is similar to it, but requires a new dimension.

It is clear that what is necessary is a way to interpret the figure differently depending on the context,
and create new dimensions or indices as appropriate. This is the ultimate promise of case-based reasoning,
as rightly emphasized by _R.iesbeck and Schank, that is yet to be delivered.

We have been working towards fulfilling the promise of case-based reasoning. One of the authors
(Indurkhya 1991, 1992) has been working on formalizing the process of reinterpretation in an algebraic
framework, and on articulating the crucial role i t  plays in many aspects of cognition. The other author
(O’Hara 1992) has been implementing a system PAN that models this reinterpretation process in the
domain of geometric figures. PAN is designed to solve proportional analogy relations of geometric figures
that involve reinterpretation. We will present an outline of the architecture of PAN in Section 2. In
Section 3 we discuss briefly how the reinterpretation mechanism a la PAN can be incorporated in a
conventional case-based reasoning system. In Section 4 ,  we point out the further research qumtions that
are raised by our approach.

2 The Architecture of PAN

PAN (for Proportional ANalogy) is a program being developed to solve geometric proportional analogy
problems. The input to PAN consists of three geometric figures A, B and C made up of straight line
segments. The output of PAN is a new geometric figure D such that the four figures, A, B, C and D satisfy
the proportional analogy relation: A is to B as C is to D .  PAN creates the answer figure'D by constructing
descriptions of the figures A, B and C. Thme descriptions are at a higher “conceptual-level” than the
initial line-segment input and involve rotations, translations, repetitions, convex polygons, symmetry etc.
A key feature of PAN is that the descriptions of the figures are constructed “in tandem” permitting the
figures and their descriptions to act as contexts for each other during their construction.

The architecture of PAN is illustrated by the diagram in Fig.  4 and is essentially that of a production
system. In the diagram, circular and oval shapes represent data structures and rectangular shapes
represent processes. The input to PAN is represented by the oval containing the geometric figures in the
lower-left part of the diagram. The input is simply a set of line segments representing the figures A,  B and
C. The first task performed by PAN is to preprocess the raw input data into a graph-like structure that
makes computations easier and allows PAN to keep track of what part of the figure has been described
and what part remains to be  described. One such graph is constructed for each of figures A.-B and C .
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After PAN finishes the preprocessing step, it enters into a search process that builds the descriptions 
of the figures. This process is represented by the block called the description-building engine. The 
description-building engine takes as input the contents of the work area and a data base of condition­
action rules called the description-building rule database (or rule database for short). The work area 
consists of partial descriptions of figures A, B and C (initially, the descriptions are null), the figure 
graphs constructed by the preprocessor, and a vector of state variables which are tested in the condition 
part of the rules and used to indicat,e what task should be done next in the work area. 

The description-building engine checks the conditions of the rules against the contents of the work area 
and then modifies the contents of the work area by applying the actions of a matched rule. Typically, 
the actions of a rule will do three things: (1) extend a description in the work area, (2) update the 
corresponding figure graph to reflect that more of the figure has been described, and (3) modify the state 
variables to indicate what should be done next. This process continues until all figures are completely 
described, at which point the fourth figure D is generated. In general, the description-building engine 
will find more than one rule that applies. These options are tried one by one, backtracking whenever an 
option fails or proves to be too complicated. 

The overall search process executed by the description-building engine is guided by an iterative­
deepening search strategy (Korf 1985). Iterative-deepening visits the nodes of a search tree by executing 
a series of bounded depth-first searches to an ever increasing depth in the tree. The depth in the tree 
to which the depth-first search goes is specified by a depth variable. This variable is first set to one 
so the first depth-first search just visits the root node. If the goal is not found, the depth variable is 
incremented so that the next depth-first search visits the root node and all the children of the root. The 
depth variable is repeatedly incremented and depth-first searches are repeatedly performed until a goal 
node is obtained. While this strategy appears to be wasteful since it covers the same nodes over and over 
again, it actually performs much better than a breadth-first search and is guaranteed to find a shortest 
path to a goal node. 

In the description-building engine, the depth variable represents the overall complexity of the descrip­
tions in the work area which is measured by the description complexity function. This function is defined 
on the positive integers and can be arbitrarily large. At present, the description complexity function 
is a count of the number of different description elements that appear in the descriptions in the work 
area. Combinatorial explosion is delayed by placing a limit on the size of each individual description and 
by limiting the number of "combinatorial" description elements that may appear in anyone description. 
This approach of preferring the least complex descriptions is similar to the approach of van der Helm, van 
Lier and Leeuwenberg (1992) who deal with the description of individual geometric figures. While van 
der Helm et al. have focused on the problem of finding the least complex description for single figures, 
our approach focuses on finding the least-complex overall description of a proportional analogy. In our 
framework, it is possible that the description of an individual geometric figure will be different depending 
on the proportional analogy in which it occurs. 

The description language in which the geometric figures are represented is an algebra-like construction, 
consisting of a set of primitive objects (polygons and broken line-segments) and a set of operations which 
transform geometric objects into new ones. There are three broad classes of operators that we use: (1) 
iterative processes which make multiple copies of a figure. For example, in Fig. 1, the top two triangles 
might be obtained by applying an iterative process to the upper-left triangle. The entire figure can be 
obtained by applying another iterative process to the top two triangles obtaining the bottom two triangles; 
(2) join operators are multiple-argument operators which combine two or more geometric figures into a 
single composite figure. A join operator will typically require that argument figures have some particular 
relationship to one another and may require that an argument be of a particular type such as ,a polygon. 
For example, Fig. 2 is constructed by applying an 'inside' join operator to a square and the cross figure; 
(3) global operators are single argument operators that act on a figure as a whole. Examples of these 

, operators are:	 rotate, scale, stretch etc. These three classes of operators were arrived at. empirically by 
examining a number of typical proportional analogies. 

A description of a geometric figure is modeled as a description tree with exterior nodes labeled with 
objects and interior nodes labeled with operators. The object described by a description tree is found by 
recursively evaluating the tree. A description tree is essentially a. possible history of how the geometric 
figure might have been constructed. When forming a proportional analogy, descriptions of figures A and 
B are related to one another by substituting, inserting and deleting operators in description A to form 
description B. Des<;riptions A and C must be isomorphic. 

The production rules in PAN come in several varieties. We illustrate these rules by means of two 
examples. Consider how PAN might solve the proportional analogy in Fig. 3. The first thing that PAN 
mi.e;ht do is reco.e;nize the square in fi.e;ure A. Next, a new rule would detect that the square in fiK\lre A 
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After PAN finishes the preprocessing step, it enters into a search process that builds the descriptions
of the figures. This process is represented by the block called the description-building engine. The
description-building engine takes as input the contents of the work area and a data base of condition-
action rules called the description-building rule database (or rule database for short). The work area
consists of partial descriptions of figures A, B and C (initially, the descriptions are null), the figure
graphs constructed by the preprocessor, and a vector of state variables which are tested in the condition
part of the rules and used to indicate what task should be done next in the work area.

The description-building engine checks the conditions of the rules against the contents of the work area
and then modifies the contents of the work area by applying the actions of a matched rule. Typically,
the actions of a rule will do three things: (I)  extend a description in the work area, (2) update the
corresponding figure graph to reflect that more of the figure has been described, and (3) modify the state
variables to indicate what should be done next. This process continues until all figures are completely
described, at which point the fourth figure D is generated. In general, the description-building engine
will find more than one rule that applies. These options are tried one by one, backtracking whenever an
option fails or proves to be too complicated.

The overall search process executed by the description-building engine is guided by an iterative-
deepening search strategy (Korf 1985). Iterative-deepening visits the nodes of a search tree by executing
a series of bounded depth-first Searches to an ever increasing depth in the tree. The depth in the tree
to‘ which the depth-first search goes is specified by a depth variable. This variable is first set to one
so the first depth—first search just visits the root node. If the goal is not found, the depth variable is
incremented so that the next depth—first search visits the root node and all the children of the root. The
depth variable is repeatedly incremented and depth-first searches are repeatedly performed until a goal
node is obtained. While this strategy appears to be wasteful since it  covers the same nodes over and over
again, i t  actually performs much better than a breadth-first search and is guaranteed to find a shortest
path to a goal node.

In the description-building engine, the depth variable represents the overall complexity of the descrip-
tions in the work area which is measured by the description complexity function. This function is defined
on the positive integers and can be arbitrarily large. At present, the description complexity function
is a count of the number of different description elements that appear in the descriptions in the work
area. Combinatorial explosion is delayed by placing a limit on the size of each individual description and
by limiting the number of “combinatorial” description elements that may appear in any one description.
This approach of preferring the least complex descriptions is similar to the approach of van der Helm, van
Lier and Leeuwenberg (1992) who deal with the description of individual geometric figures. While van
der Helm et al. have focused on the problem of finding the least complex description for single figures,
our approach focuses on finding the least-complex overall description of a proportional analogy. In our
framework, it is possible that the description of an individual geometric figure will be difi'erent depending
on the proportional analogy in which it occurs.

The description language in which the geometric figures are represented is an algebra-like construction-
consisting of a set of primitive objects (polygons and broken line—segments) and a set of operations which
transform geometric objects into new ones. There are three broad classes of operators that we use: (1)
iterative processes which make multiple copies of a figure. For example, in Fig. 1, the top two triangles
might be obtained by applying an iterative process to the upper-left triangle. The entire figure can be
obtained by applying another iterative process to the tap two triangles obtaining the bottom two triangles;

. (2) join operators are multiple-argument Operators which combine two or more geometric figures into a
single composite figure. A join operator will typically require that argument figures have some particular
relationship to one another and may require that an argument be of a particular type such as ra polygon.
For example, Fig.  2 is constructed by applying an ‘inside’ join operator to a square and the cross figure;
(3) global operators are single argument operators that act on a figure as a whole. Examples of these

, operators are: rotate, scale, stretch etc. These three classes of operators were arrived at empirically by
examining a number of typical proportional analogies.

A description of a geometric figure is modeled as a description tree with exterior noda labeled with
objects and interior nodes labeled with operators. The object described by a description tree is found by
recursively evaluating the tree. A description tree is essentially a possible history of how the geometric
figure might have been constructed. When forming a proportional analogy, descriptions of figures A and
B are related to one another by substituting, inserting and deleting operators in description A to form
description B .  Descriptions A and C must be isomorphic.

The production rules in PAN come in several varietim. We illustrate these rules by means of two
examples. Consider how PAN might solve the proportional analogy in Fig. 3. The first thing that PAN
might do is recognize the square in figure A .  Next, a new rule would detect that the square in figure A
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Figure 5: Another proportional analogy involving Fig .1. 

is similar to the square in figure B. Figures A and B are then partially described as containing squares. 
Next, PAN might notice that the cross in figure A is similar to the cross in figure B. The descriptions of 
A and B are then expanded to reflect this. Given that there are two objects noticed so far in A, a rule 
may be applied to determine what their relationship is. In this case, a 'inside' join operator would be 
inserted into A's description. Similarly, a 'left-of' join operator would be inserted into B's description. 
Notice that both A and B are fully described, so there is nothing else to do but for the description of A to 
interact with figure C. Given that figure A is currently described as a cross inside a square, PAN might 
then attempt to describe figure C similarly. PAN, using a projection procedure attached to the 'inside' 
concept, decomposes C into a "containing" polygon and an inner figure (the diamond.) From these full 
desciptions of A, B and C, the figure D is generated. 

Figure. 5 shows a proportional analogy that would result in a different description of figure C. After 
preprocessing figures A, B and C, the first thing that PAN might do in this example is to find a the 
left-hand rectangle in A. Next, a new rule would detect that the left-hand rectangle in A is similar to 
the left-hand rectangle in B. An iterative process now might be inserted above the left-hand rectangle, in 
A providing a description of the whole figure A. Similarly, a different iterative process might be inserted 
above the left-hand rectangle in B providing a description of the the whole figure B. Figures A and B are 
now fully described, so the description of A must now interact with figure C. PAN uses a the projection 
procedure attached to the iterative process in A to decompose C. (The behavior of this procedure is 
rather involved, so we will leave it to the full paper to describe.) C is now described as two hour-glass 
figures that have been pulled apart. 

In~erpretation in Case-Based Reasoning 

In the introduction, we articulated the need for a reinterpretation component in case-based reasoning. 
We do not propose it as an alternative to the conventional approach using dimensions (or indices) but in 
addition to it. It should be clear from our brief description of the PAN architecture in the last section 
that it is a computationally expensive process. Moreover, when an aspect of a case is deemed relevant, 
and turned into a dimension, it is usually because it is considered to have more general appeal than just 
as an idiosyncracy of that case. Therefore it seems quite likely that many new problems could be solved 
using conventional dimensions, which allow a fast retrieval of similar past cases. 

So it would be prudent to continue to encode the cases in terms of dimensions depending on what 
aspects of it seem relevant at the time the case is entered in the case base. But then we could provide an 
interpretation module that is evoked when the retrieval based on conventional dimensions is not helpful. 
This could be because the retrieved cases, even though they are similar to the problem, do not have 
solutions that can be easily adapted to solve the problem (Bomer 1993), or it could be because the 
problem at hand requires attention to an aspect that was not considered relevant so far, and is therefore 
not included in. the dimensions. In all such situations, the reinterpretation mechanism is called, which 
alters the similarity metric (as manifested by existing dimensions) so that the cases in the case base are 
made to look similar to the new problem, like making Fig. 2 seem similar to Fig. l. 

It may seem at first that the reinterpretation process is rather like a runaway horse, retrieving a. 
horde of useless. cases from the case base, for almost anything could be made to look similar to anything 
else. However, a careful analysis in any domain shows that there are sufficient top-down, goal-directed 
constraints to keep the reins on reinterpretation. For instance, in the domain of geometric proportional 
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is similar to the square in figure B. Figures A and B are then partially described as containing squares.
Next, PAN might notice that the cross in figure A is similar to the cross in figure B. The descriptions of
A and B are then expanded to reflect this. Given that there are two objects noticed so far in A, a rule .
may be applied to determine what their relationship is. In this case, a ‘insi'de’ join operator would be
inserted into A’s description. Similarly, a ‘left-of’ join operator would be inserted into B’s description.
Notice that both A and B are fully described, so there is nothing else to do but for the description of A to
interact with figure C. Given that figure A is currently described as a cross inside a square, PAN might
then attempt to describe figure C similarly. PAN, using a projection procedure attached to the ‘inside’
concept, decomposes C into a “containing" polygon and an inner figure (the diamond.) From these full
desciptions of A, B and C, the figure D is generated.

Figure. 5 shows a proportional analogy that would result in a different description of figure C. After
preprocessing figures A, B and C, the first thing that PAN might do in this example is to find a the
left-hand rectangle in A. Next, a new rule would detect that the left-hand rectangle in A is similar to
the left-hand rectangle in B. An iterative process now might be inserted above the left-hand rectangle. in
A providing a description of the whole figure A. Similarly, a different iteratiVe process might be inserted
above the left-hand rectangle in B providing a description of the the whole figure B. Figures A and B are
now fully described, so the description of A must now interact with figure C. PAN uses a the projection
procedure attached to the iterative process in A to decompose C. (The behavior of this procedure is
rather involved, so we will leave it to the full paper to describe.) C is now described as two hour-glass
figures that have been pulled apart.

3 Interpretation in Case-Based Reasoning
In the introduction, we articulated the need for a reinterpretation component in case-based reasoning.
We do not propose it as an alternative to the conventional approach using dimensions (or indices) but in
addition to it. It should be clear from our brief description of the PAN architecture in the last section
that it is a computationally expensive process. Moreover, when an aspect of a case is deemed relevant,
and turned into a dimension, it is usually because it is considered to have more general appeal than just
as an idiosyncracy of that case. Therefore it seems quite likely that many new problems could be solved
using conventional dimensions, which allow a fast retrieval of- similar past cases.

So it would be prudent to continue to encode the cases in terms of dimensions depending on what
aspects of i t  seem relevant at the time the case is entered in the case base. But then we could provide an
interpretation module that is evoked when the retrieval based on conventional dimensions is not helpful.
This could be because the retrieved cases, even though they are similar to the problem, do not have
solutions that can be easily adapted to solve the problem (Börner 1993), or i t  could be because the
problem at hand requires attention to an aspect that was not considered relevant so far, and is therefore
not included in the dimensions. In all such situations, the reinterpretation mechanism is called, which
alters the similarity metric (as manifested by existing dimensions) so that the cases in the case base are
made to look similar to the new problem, like making Fig. 2 seem similar to Fig. 1.

It may seem at first that the reinterpretation process is rather like a runaway horse, retrieving a
horde of uselesscases from the case base, for almost anything could be made to look similar to anything
else. However, a careful analysis in any domain shows that there are sufficient tbp-down, goal-directed
constraints to keep the reins on reinterpretation. For instance, in the domain of geometric proportional
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analogy, the context provided by the other figures acts as a powerful constraint to focus the search for 
new dimensions in the right direction. In the domain of legal reasoning, which one of the authors has 
been exploring and where there is a crucial need for reinterpretation mechanism, we have found that the 
goals of the arguer serve as a beacon to keep the search for new dimensions and relevant precedents from 
growing exponentially (Jantezko and Indurkhya, in preparation). 

4 Conclusions and Further Research 

We have argued in this paper for a need to incorporate a reinterpretation mechanism in case-based 
reasoning systems, and have outlined an approach to it. Obviously, we are just crossing the threshold 
into a new realm where a lot of exploration needs to take place. Our work on modeling reinterpretation 
in geometric proportional analogies and legal reasoning is only a beginning of this exploration. We hope, 
however, that other researchers working on case-based reasoning would also realize the need to address 
the process of reinterpretation and join this exploration. Only then we will be able to realize the full 
potential of case-based reasoning. 

Acknowledgements. The work described in this paper was supported by National Science Foundation 
grant IRI-9105806. 

5 References 

Ashley KD., 1990, Modeling Legal Argument: Reasoning with Cases and Hypotheticals, MIT Press, 
Cambridge, Mass. 

Borner K., 1993, "Structural-Similarity as Guidance in Case-Based Design," submitted to European 
Workshop on Case-Based Reasoning. 

Indurkhya B., 1991, "On the Role of Interpretive Analogy in Learning," New Generation Computing 8, 
No. 4, pp. 385-402. 

Indurkhya B., 1992, Metaphor and Cognition, Kluwer Academic Publishers, Dordrecht, The Netherlands. 

Janetzko D. and Indurkhya B., in preparation, "Toward a Model of Reinterpretation in Legal Reasoning." 

Korf, R. E., 1985, "Depth-first iterative deepening: An optimal admissible tree search," Artificial Intel­
ligence, 27(1):97-109. 

van der Helm, P. A., van Lier, R. J., and Leeuwenberg, E. L. J., 1992, "Serial Pattern Complexity: 
Irregularity and Hierarchy," Perception, Volume 21, pp. 517-544. 

O'Hara S., 1992, "A Model of the 'Redescription' Process in the Context of Geometric Proportional 
Analogy Problems;" in KP. Jantke (ed.) Analogical and Inductive Inference, Lecture Notes in 
Artificial Intelligence 642, Springer~Verlag, Berlin, Germany, pp. 268-293. 

Riesbeck C.K and Schank R.C., 1989, Inside Case-Based Reasoning, Lawrence Erlbaum and Associates, 
Hillsdale, New Jersey. 

Rissland E.L. and Skalag D.B., 1991, "Cabaret: Rule Interpretation in a Hybrid Architecture," Interna­
tional Journal of Man-Machine Studies 34, pp. 839-887. 

159
 

analogy, the context provided by the other figures acts as a powerful constraint to focus the search for
new dimensions in the right direction. In the domain of legal reasoning, which one of the authors has
been exploring and where there is a crucial need for reinterpretation mechanism, we have found that the
goals of the arguer serve as a beacon to keep the search for new dimensions and relevant precedents from
growing exponentially (Jantezko and Indurkhya, in preparation).

4 Conclusions and Further Research

We have argued in this paper for a need to incorporate a reinterpretation mechanism in case-based
reasoning systems, and have outlined an approach to it. Obviously, we are just crossing the threshold
into a new realm where a lot of exploration needs to take place. Our work on modeling reinterpretation
in geometric proportional analogies and legal reasoning is only a beginning of this exploration. We hope,
however, that other researchers working on case-based reasoning would also realize the need to address
the process of reinterpretation and join this exploration. Only then we will be able to realize the full
potential of case—based reasoning.

Acknowledgements. The work described in this paper was supported by National Science Foundation
grant Nil-9105806.

5 References

Ashley K.D. ,  1990, Modeling Legal Argument: Reasoning with Cases and Hypotheticals, MIT Press,
Cambridge, Mass.

Börner K., 1993, “Structural-Similarity as Guidance in Case-Based Design,” submitted to European
Workshop on Case—Based Reasoning.

Indurkhya B., 1991, “On the Role of Interpretive Analogy in Learning,” New Generation Computing 8,
No. 4, pp. 385-402.

Indurkhya B. ,  1992, Metaphor and Cognition, Kluwer Academic Publishers, Dordrecht, The Netherlands.

Janetzko D .  and Indurkhya B. ,  in preparation, “Toward a Model of Reinterpretation in Legal Reasoning.”
Korf, R. E., 1985, “Depth-first iterative deepening: An optimal admissible tree search,” Artificial Intel-

ligence, 27(1)‘:97-109.
van der Helm, P. A . ,  van Lier, R. J., and Leeuwenberg, E .  L. J . ,  1992, “Serial Pattern Complexity:

Irregularity and Hierarchy,” Perception, Volume 21, pp. 517-544.

O’Hara S., 1992, “A Model of the ‘Redescription’ Process in the Context of Geometric Proportional
Analogy Problems,” in K.P. Jantke (ed.) Analogical and Inductive Inference, Lecture Notes in
Artificial Intelligence 642, Springer—Verlag, Berlin, Germany, pp. 268-293.

Riesbeck C.K. and Schank R.C., 1989, Inside Case-Based Reasoning, Lawrence Erlbaum and Associates,
Hillsdale, New Jersey.

Rissland EL.  and Skalag D.B., 1991, “Cabaret: Rule Interpretation in a Hybrid Architecture,” interna-
tional Journal of Man-Machine Studies 34, pp. 839-887.

159



PBL: Prototype-Based Learning Algorithm 

Kuniaki Uehara, Masayuki Tanizawa and Sadao Maekawa
 
uehara@jedi.seg.kobe-u.ac.jp
 

Department of Computer Science and Systems Engineering
 
Kobe University
 

Nada, Kobe 657, Japan
 

Abstract 

In this paper, we will int.roduce an inductive learning algorit.hm called Prot.otype-Based Learning 
(PBL). PBL learns a concept. descript.ion, which consist.s of both prototypical att.ributes and attribute 
inlport.ances, by using a distance met.ric based on prototype-theory and information-theory. PBL can 
learn the concept. description from even a small set of t.raining cases and is tolerallt of inappropriate 
cases. Furthermore. even the at.tribute importance differs depending on the combinations of the other 
att.ribut.e-value pairs present describing the case, PBL can learn t.he concept descript.ion and highly 
utilize it. so as to do the accurate classification. Finally, PBL can learn indexing knowledge directly 
from the concept description, which is useful for a human expert t.o understand and verify the concept 
description generated by the learning algorithm. 

1 Introduction 

This paper describes an overview of the approach we are taking to machine learning within a continuing 
research project. The project is concerned with developing a cognitively based symbolic concept learning 
algorithm. In contrast, the type of machine learning that has attracted most attention in the AI literature 
is the leariling of minimum discrimination rules to classify a new case into an appropriate category. In 
this type of machine learning, if a training set involves inappropriate cases (i.e. noisy cases, incomplete 
cases, or exception cases), the approach of extracting discrimination rules may generate too complex and 
failure rules. On the other hand, our approach is to classify a new case into nearest categories by use 
of a distance metric based on prototype-theory [6J and information-theory. More precisely, our approach 
extracts a concept description. which consists of both prototypical attributes and attribute importances, 
from the set of training cases. As a result, our approach can learn the concept description from even 
a small set of training cases and is. tolerant of inappropriate cases. Furthermore. even the attribute 
importance is context-sensitive, our approach can extract and highly utilize the concept description so as 
to do the accurate classification. Finally. our approach can learn indexing knowledge directly from the 
concept description, which is useful for a human expert to understand and verify the concept description 
generated by the learning algorithm. 

2 Basic Ideas 

2.1 Prototypicality Ratings 

PBLl is the simplest prototype-based learning algorithm. The learning task of PELl is inductive learning 
or learning by examples. Especially, we will focus on probabilistic approach to inductive learuingin which 
the only input. is a sequence of cases. Each case is assumed to be represented by a set of attribute-value 
pairs and its category. For example. if the j-th case I j has the n attribute:o; al. a2, ... , an and the 
category i:o; c. the case Ij i:o; represented as follows: 

where j rallges over the ca:o;es in the trailling set. 
The primary outjlut of PELl is a concept description. This is a function that maps cases to categories. 

The concept. descriptioll i:o; represent.ed by a distance metric called prototypicalit.y ratings. Prototypical­
ity ratin!!:s provide a partial ordering on calldidate categories. That is, prototypicality is a rating of the 
repre:O;CIltativ(~llessof a Case with respect to a category. Thus. the category which has the highest. family 
resemblance is the most prototypical. During das:o;ificatioll, PBLl uses prototypicality ratings to deter­
mine the category which is the most likely to match the new case. To compute prototypicali~y ratings. 

160
 

PBL: Prototype—Based Learning Algorithm
Kuniaki Uehara, Masayuki Tanizawa and S‘adao Maekawa

ueha raed i . s eg .kobe -u . ac . j p
Department of Computer Science and Systems Engineering

Kobe University
Nada, Kobe 657, Japan

Abstract

In this paper, we will introduce an inductive learning algorithm called Prototype-Based Learning
(PBL) .  PBL learns a concept description, which consists of both prototypical attributes and attribute
importances, by using a distance metric based on prototype-theory and information-theory. PBL can
learn the concept description from even a small set of training cases and is tolerant of inappropriate
cases. Furthermore. even the attribute importance differs depending on the combinations of the other
attribute-value pairs present describing the case, PBL can learn the concept description and highly
utilize it so as to do the accurate classification. Finally, PBL can learn indexing knowledge directly
from the  concept description, which is useful for a human expert to  understand and verify the concept
description generated by the learning algorithm.

1 Introduction

This paper describes an overview of the  approach we are taking to  machine learning within a continuing
research project. The project is concerned with developing a cognitively based symbolic concept learning
algorithm. In contrast,  the  type of machine learning that has attracted most attention in the AI literature
is the learning of minimum discrimination rules t o  classify a new case into an appropriate category. In
this type of machine learning, if a training set involves inappropriate cases (i.e. noisy cases, incomplete
cases, or exception cases), the approach of extracting discrimination rules may generate too complex and
failure rules. On  the o ther  hand, our approach is t o  classify a new case into nearest categories by use
of a distance metric based on prototype—theory [6] and information-theory More precisely, our approach
extracts a concept description, which'consists of both  prototypical attributes and attr ibute importances,
from the set of training cases. As a result, our  approach can learn the concept description from even
a small set of training cases and is, tolerant of inappropriate cases. Furthermore. even the  attr ibute
importance is context-sensitive, our approach can extract and highly utilize the  concept description so  as
to  do the accurate classification. Finally. our  approach can learn indexing knowledge directly from the
concept description, which is useful for a human expert t o  understand and verify the  concept description
generated by the learning algorithm.

2 Basic Ideas

2 .1  Prototypicality Ratings
PBLl  is t he  simplest prototype-based learning algorithm. The learning task of PBLl  is inductive learning
or  learning by examples. Especially, we will focus on probabilistic approach to  inductive learningin which
the  only input  is a sequence of cases. Each case is assumed to  be  represented by a set  of attribute—value
pairs and i ts  category. For example. if t he  j - t h  case Ij has the  n attributes a1, a2, , an and the
category is c. the  case Ij is represented as follows:

Ij = ( c . a ‚1 j , a2 j .  . , an j )

where j ranges over the cases in the training set.
The  primary ou tpu t  of PBLl  is a concept description. This is a function that maps cases t o  categories.

The concept description is represented by “a distance metric called prototypicality ratings. Prototypical—
it-y ratings provide a partial  ordering on candidate categories. That is, prototypicality is a rating of the
representativeness of a case with respect to  a category. Thus .  thecategory which has the  highest family
resemblance is the most prototypical. During classification, PBLl  uses prototypicality ratings t o  deter-
mine the  category which is the  most likely to match the  new case. To compute prototypicality ratings.
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PBL1 counts the frequency of each value that. the attribute can take OIL If the new ca!>e I new is given, 
thc prototypicality rating!> cau be computed as follows: 

",N 
. . ~n L-; -1 j(a"aij)

prototypu;al1.ty(c.Ine1O ) = L...i=l ' N 

if ai = aij 

otherwise 

where -i ranges over the attributes. (l,i is the value of the case I ne10 on attributc -i. j ranges over the cases 
in the ca~egory (;. N is the total Il111nber of cases in c. 

2.2 Empirical Studies with PBLl 

Fig. 1 prescnts the experimental evidence for the performance of PBL1. In thi~ experimcnt. the pet·for­
mance accuracy of PBL1 was comparect to ID3 [5] on the "famous" soybean database which contains the 
diagnosis of soybean diseases. The database contains 289 cases and 17 categories (diagnoses). Diagnoses 
are described by 50 attributes (plant and environmental descriptors). We used 145 cases as the training 
set and 144 cases as the test set. The training and test sets were always disjoint. These cases were drawn 
randomly from the database. All results reported in Fig. 1 were averaged over 20 trials. 
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Figure 1: Performance accuracy of PBL1 and ID3. 

Fig. 1 shows that PBL1 behaves well, but the performance accuracy of ID3 becomes greater than 
that of PBL1 as the number of cases for each category increases. Furthermore, performance accuracy 
of PBLl does not increase even if the number of cases increases, whereas performance accuracy of ID3 
increases as the number of cases increases. From this experimental result, we will not argue that PBL1 
is superior to the more sophisticated algorithm ID3, but the result shows that it behaves well even the 
number of cases for each category is small. Thus, PBLl is a promising learning algorithm that deserves 
more intensive extension. 

3 Some Extensions to Prototype-Based Learning 

.3.1 Attribute Importance 

PBL1 differs from ID3 in the following important respect. PBLl learns salient (prototypical) attributes 
while ID3 learns discriminant attributes. Salient attributes represent what cases in a single category 
have in common. Discriminant attributes represent distinguishing attributes of two or more categories. 
When PBL1 computes the prototypicality ratings, it is learning the salient attributes of a category. 
However, PBL1 assigns the same weight setting to each attribute, and does not pay attention to the 
relative importances of attributes. Thus, PBL1 performs poorly if the training set involves large numbers 
of irrelevant attributes. This leads to the development of PBL2, which learns the relative importances 
of attributes, represented as attribute weight settings, for the purpose of computing accurate similarity 
assessments. 

Now we will introduce an information-theoretic approach and augment the prototypicality ratings 
described in Section 2. PBL2 examines all attributes and computes the expected information for each 
attribute. Intuitive basis for this approach is that an attribute distributed in many categories has high 
expected information, whereas an attribute occurring in only one or two categories has lower expected 
information. Therefore we use the expected information as a measure of attribute importance. However, 
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PBL1  counts the  frequency of each value tha t  the at t r ibute can take on. If t he  new case In“, is given,
the prototypicality ratings can be computed as follows:

. . " zh ; l f ( anaü )prototypzcalztyk.Imam) = 25:1 _ N

where flag-, (bij) = {
1 I f  (I.,; = 0.7;,-

0 otherwrse

where  1? rann over the  a t t r i lmtes .  a..- is t he  value of  t he  case [new on a t t r ibu te  i .  j ranges over the cases
in the category c. N is t he  total  number of cases in c.

2.2  Empirical Studies with PBL1
Fig. 1 presents the  experimental evidence for the performance of PBL1. In this  experiment. the  perfor-
mance accuracy of PBLl was compared to ID3 [5] on the “famous“ soybean database which contains the
diagnosis of soybean diseases. The  database contains 289 cases and 17  categories (diagnoses). Diagnoses
are described by 50 at t r ibutes (plant and environmental descriptors). We used 145 cases as the  training
set and 144 cases as the test set. The  training and tes t  sets were always disjoint. These cases were drawn
randomly from the database. All results reported in Fig. 1 were averaged over 20 trials.
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Figure 1: Performance accuracy of PBL1 and ID3.

Fig. 1 shows that PBL1 behaves well, but  the performance accuracy of ID3 becomes greater than
that of PBL1  as the  number of cases for each category increases. Furthermore, performance accuracy
of PBLl  does not  increase even if the  number of cases increases, Whereas performance accuracy of ID3
increases as t he  number of cases increases. From this  experimental resul t ,  we will no t  argue that PBL1
is superior t o  the  more sophisticated algorithm ID3, but the result shows that  i t  behaves. well even the
number of cases for each category is small. Thus,  PBL1  is a promising learning algorithm that deserves
more intensive extension.

3 Some Extensions t o  Prototype—Based Learning

3.1 Attribute Importance
PBL1 differs from ID3 in the  following important respect. PBL1 learns salient (prototypical) attributes
while ID3 learns discriminant at t r ibutes .  Salient attributes represent what cases in a single category
have in common. Discriminant attributes represent distinguishing attributes of two or  more categories.
When PBL1  computes the pro-totypicality ratings, it is learning the salient attributes of a category.
However, PBL1  assigns the  same weight setting to each attribute, and does not pay attention to  the
relative importances of attributes. Thus,  PBL1 performs poorly if the training set involves large numbers
of irrelevant at tr ibutes.  This leads t o  the development of PBL2,  which learns the reiative importances
of at tr ibutes,  represented as attr ibute weight settings, for the  purpose of computing accurate similarity
assessments. .

Now we will introduce an information-theoretic approach and augment the  prototypicality ratings
described in  Section 2. PBL2 examines all attributes and computes the expected information for each
attribute.  Intuitive basis for this  approach is that an attribute distributed in many categories has high
expected information, whereas an attribute occurring in only one or two categories has lower expected
information. Therefore we use  t he  expected information as a measure of  a t t r ibute  importance. However,
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since an unimportant attribute for the purpose of accurate classification, that is, an attribute distributed 
in many categories, should be ignored, the attribute weight setting should have a low value, whereas the 
important attribute should be assigned the greater attribute weight setting. Thus, the attribute weight 
setting is defined as follows: 

where I ranges over the categories. p(Cda;) means the probability that the observed case with attribute 
ai will be determined to belong to the category Cl and L: p(Cdai) = 1. Furthermon;, the range of w(ail 
is [0,1]: w(ail = 1 means the maximum attribute weight setting. 

Now that we have defined the attribute weight settings, we will augment the definition of prototypi­
cality ratings introduced in Section 2.1. The definition of augmented prototypicality rating is defined as 
follows: 

. . "n L:N_l!(ai,aij)
prototypl,calzty(c, I new ) = LJi'=l J N x w(a;) 

I if ai = aij
where !(ai,aij) = 0 t} .{ o lerWlse 

Fig. 2 shows that PBL2 outperforms PBLl and ID3. To some extent, the experiment shown in Fig. 2 
also indicates that PBL2can tolerate irrelevant attributes better than PBLl, which effectively assigns 
the same (static) attribute weight setting to each attribute. This is because PBL2 learns a separate set 
of attribute weight settings for each category. Since attribute weight setting is used as the similarity 
function, learning attribute weight setting is in effect learning a separate similarity function for each 
category. Therefore, even if the given case includes sOlile irrelevant attributes, their attribute weight 
settings are relatively low and do not affect the similarity assessments. 
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Figure 2: Performance accuracy of PBL1. PBL2 and ID3. 

3.2 Attribute Importance in Context 

PBL2 will not perform particularly well where attribute importance is context sensitive, in the sense that 
the attribute importance differs depending on the candidate categories under consideration. Consider 
the following example, a taxonomy of vehicles: 

superordinate: vehicles 
subordinate: bicycle. moped, motorcycle, passenger cars, 

van, pickup, ... 

In this situation. the attribute ·two-wheels· would be expected to be important, if we discriminate between 
'motorcycle' and 'passeuger car.' However, this attribute should be assigned lower importance, if we 
discriminate between 'lllotorcycle' and 'bicycle.' That is. we cannot assign a single attribute weight to 
each attribute alwad of time: instead. the weight must be re-calculated with respect to ,the candidate 
categories under consideration. 

Context sensitive attribute weight settings are required to derive appropriate attribute importance 
iil applications where a.ttribute importance is context-dependent. Since PBL2 adopts one-shot approach 
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since an unimportant attribute for the  purpose of accurate classification, that is, an attribute distributed
in many categories, should be ignored, the attribute weight setting should have a low value, whereas the
important attribute should be  assigned the greater attribute weight setting. Thus, the  attribute weight
setting is defined as follows:

“' _ Pic |a,-)log P(C'|Gi)) _
(1} (aé )  = 2 ( Zine-C ‘ 2 ‘ «: Hp(c l la£ )P(c l l ae )

where l ranges over the categories. p(c;|a.,-) means the probability that the  observed case with attribute
a,- will be  determined to  belong to the category c; and Z: p(c;|a,~) = 1. Furthermore, the  range of w(a,,-)
is [0,1]: wma-) : 1 means the maximum attribute weight setting.

Now that we have defined the  at tr ibute weight settings, we will augment the  definition of prototypi-
cality ratings introduced in Section 2.1. The definition of augmented prototypicality rating is defined as
follows:

. . n Z}? flame)prototyptcalztyk,Law) : Eid =1 N >< w(a,-)

where f(a.;,a,-j) = { 1 if a,- = (L,—‚;,-
0 otherwise

Fig. 2 shows that PBL2 outperforms PBLl  and ID3. To some extent, the  experiment shown in Fig. 2
also indicates that PBL2 can tolerate irrelevant attributes bet ter  than PBLl ,  which effectively assigns
the same (static) attribute weight setting to each attribute. This is because PBL2 learns a separate set
of attribute weight settings for each category. Since attribute weight setting is used as the similarity
function, learning attribute weight setting is in effect learning a separate similarity function for each
category. Therefore, even if the given case includes some irrelevant attributes,  their attribute weight
settings are relatively low and do not  affect the similarity assessments.
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3 .2  Attribute Importance in Context
PBL2 will not perform particularly well where attribute importance is context sensitive, in the sense that
the  at tr ibute importance differs depending on the candidate categories under consideration. Consider
the following example. a taxonomy of vehicles: ,

superordinate:  vehicles
subordinate: bicycle. moped, motorcycle, passenger cars,

van, pickup,

In this si tuation. the  at tr ibute 'two-wheels' would be  expected to  be important,  if we discriminate between
‘motorcycle‘ and “passenger car.” However, this attr ibute should be  assigned lower importance, if we
discriminate between ‘motorcycle~ and ‘bicycle.’ That is. we cannot  assign a single a t t r ibute  weight t o
each attr ibute ahead of time: instead, the weight must  be re-calculated with respect t o  the  candidate
categories under consi('leration.

Context sensitive attr ibute weight settings are required to  derive appropriate at tr ibute importance
in applications where attribute importance is context-dependent. Since PBL2 adopts one-shot approach
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which considerfl all training casefl and computefl both prototypicality ratings and attribute weight flettings 
at onc time, PBL2 cannot deal with the context senflitive problem. 

Now wc will propose the two-step approach to prototype-based learning algorithm nanlP.d PBL3. The 
first stage of PBL3 is quite similar to PBL2 in that it considers all training cases at onc time. but it also 
provides a partial ordering on categories bascd on prototypicality ratings. In the sccond stage, PBL3 
selects the most promising categories (i.e. the category whose prototypicality ratil~g is the highest and 
its nearest neighbors) anll rccompu t.es the prot.otypicality ratings among t.hem. Prototypicality rat.ings in 
the second stage of PBL3 is modified so as t.o amplify the attribute importance. The modified definition 
is as follows: 

where the range of the amplifier :I: is [1,4]. In other words, the first stage of the classification process 
is to learn a prototype for each category, The second stage is to use these prototypes so as to discrim­
inate among the similar candidate categories. Fig. 3 shows the performance accuracy of PBL3 and its 
ancestor PBL2. The results of the comparison shows that PBL3 outperforms PBL2 and achieves a high 
classification accuracy as the number of cases fm' each category increases. 
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Figure 3: Performance accuracy of PBL2 and PBL3. 

3.3 Some Experimental Results 

The performance accuracies of PBL2 and PBL3 were compared to PROTO-TO [2]' C4 (ID3), and 
Bayesian classifier [1] on eight databases. All databases except soybean data were taken from the DCI 
database collection [3]. The results of the comparison are shown in Table L Each experiment was re­
peated 50 times so the numbers are averages. The experimental results of PROTO-TO and C4 (ID3) 
were borrowed from [2]. . 

Table 1: Comparison of performance accuracy. 

Name PBL3 PBL2 PRO TO-TO C4 (ID3) Bayesiarl classifier­
glass 45 - 55 % 43 - 50 % 48.0 % 65.5 % o/a 
ht'patit.is 84.2 , 84.2 'fO 79.9 , 79.8 , 8·1..8 )\ 

house-vote 92.1 % 92.1 % 90.4 % 95.3 % 90.5 % 
SO)' bli'an data 97.1 % 96.3 '70 n a (82.3) , 91.5 ':70 
breast cancer 95.2 % 95.2 % n/a; ola 97.2 % 
iris 9·'L4 % 95.4 % 96.0 % 94.2" % 95.3 % 
zoo 92.8 % 93.0 'fiJ Dla 93.8 % 
tic-tac-toe 72.9 % 72.9 % 67.7 % 

Table 1 shows that PBL3 recorded higher accuracies than the others in the five domains. However, 
in the t.wo of the domains, such as 'hepatitis' and 'tic-tac-toe,' PBL3 performed slightly poorly, although 
PBL3 is a.t least as accurate as Bayesian classifier. In the 'glass' domain, PBL3 performed relatively 
poorly in comparison to t.he other algorithms, since the 'glass' database consists of continuous attributes 
instead of nominal attributes. Note that all the continuous attributes were pre-processed by using a 
clustering algorithm (i.e. k-means method) to ensure that they are treated with equal importance by the 
prototypicality ratings of both PBL2 and PBL3. Furthermore, since some databases contain only two 
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which considers all training cases and computes both  prototypicality ratings and at tr ibute weight settings
at one time. PBL2 cannot deal with the context sensitive problem.

Now we will propose the two-step approach to  prototype-based learning algorithm named PBL3. The
first stage of PBL3 is quite  similar t o  PBL2 in  that  i t  considers all training cases at one time. but  it also
provides a partial ordering on categories based on prototypicality ratings. In  the  second stage.  PBL3
selects the most promising categories (i.e. t he  category whose prototypicality rating is the highest and
its nearest neighbors) and recomputes the  prototypicality ratings among them. Prototypicality ratings in
the second stage of PBL3 is modified so as to  amplify the  at t r ibute  importance. The  modified definition
is as follows:

. . n 21:; f(a.-,a.-J-)prototyptcaltty(c.Imw) = 25:1 "' N x ”(Mix

where the range of the amplifier .7: is [1, 4]. In other words, the first stage of the classification process
is t o  learn a prototype for each category. The  second stage is to use these prototypes so as t o  discrim-
inate among the similar candidate categories. Fig. 3 shows the  performance accuracy of PBL3 and i t s
ancestor PBL2.  The results of the  comparison shows ' that PBL3 outperforms PBL2 and achieves a high
classification accuracy as the  number of cases for-each category increases.
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Figure 3: Performance accuracy of PBL2 and PBL3.

3 .3  Some Experimental Results
The performance accuracies of PBL2 and PBL3 were compared to PROTO-TO [2], C4 (ID3), and
Bayesian classifier [1] on eight databases. All databases except soybean data were taken from the UCI
database collection [3]. The results of the comparison are shown in Table 1. Each experiment was re-
peated 50 times so the numbers are averages. The experimental results of PROTO-TO and C4 (ID3)
were borrowed from [2]. . '

Table 1: Comparison of performance accuracy.

Name  PBL3  PBL2  PHOTO-TO 04  ( IDS)  Bayes i an  c l a s s i f i e r
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Table 1 shows that  PBL3 recorded higher accuracies than the others in the  five domains. However,
in the two of the domains, such as ‘hepatitis" and ‘tic-tac—toe,’ PBL3 performed slightly poorly, although
PBL3 is at least as accurate as Bayesian classifier. In the ‘glass‘ domain, PBL3 performed relatively
poorly in comparison to  the other algorithms, since the  ‘glass’ database consists of continuous attributes
instead of nominal at tr ibutes.  Note that all the  continuous attributes were pro-processed by using a
clustering algorithm (i.e. k-means method) t o  ensure that they are treated with equal importance by the
prototypicality ratings of both PBL2 and PBL3.  Furthermore, since some databases contain only two

163



4 

categories (i.e., hepatitis, house-vote, breast cancer, tic-tac-toe), the performance accuracies of PBL3 are 
same as those of PBL2 on these databases. 

Learning Indexing Knowledge 

The last problem we have to consider is to learn indexing knowledge from cases. In a domain-specific 
system that uses case-based learning algorithm, the efficient use of cases during classification requires 
that they should be indexed so that they can be efficiently retrieved when they are likely to be similar 
to a new case. One. of PBLs' primary learning tasks is the acquisition of indexing knowledge from cases. 

Three types of indexing knowledge can be obtained directly from the concept description generated by 
PBLs: confirmatory index, attribute-to-category index, and category-ta-attribute index. These indices 
can be extracted from both the prototypicality ratings and attribute weight settings in the following 
ways: 

1.	 If the prototypicality is equal to 1 and the attribute weight setting is also equal to 1, then extract 
the category Cj and the attribute ai. These category-attribute pairs are called confirmatory indices. 
Confirmatory indices associate attributes with categories and they are foolproof. That is, confir­
matory index from ai to Cj suggests that Cj is the reliable classificatioli for cases described with ai 

and that every case in Cj has the attribute ai without uncertainty. 

2.	 If the prototypicality rating is less than 1 and the attribute weight setting is equal to 1. then the 
attribute-to-category index is extracted. Attribute-to-category index also associates the attribute 
ai with the category Cj, but it is not foolproof. That is, the attribute-to-category index simply 
enumerates a set of possible classifications for the new case described with ai. 

3.	 If the prototypicality is equal to 1 and the attribute weight setting is less than 1, then the category­
to-attribute index is extracted. Category-ta-attribute index associates a category with an attributes. 
This is opposite to the direction of an attribute-to-category index. In other words. category-to­
attribute indices can produce what may be called "prototypical" cases by creating a case that has 
the most frequent value for each attribute. 

The following are examples of indexing knowledge for soybean diseases. The right hand side of the 
index is a triple of the form: 

[attribute=value, prototypicality, attribute weight] 

•	 confirmatory index: 

powdery mildew ..... [leaf mildew growth =on upper leaf surface, 1.0, 1.0]. 

•	 attribute-to-category index: 

phytophthora +- [external decay of stem =watery and soft, 0.88,1.0].
 
phytophthora +- [external stem discoloration = dark browI,l' 0.88, 1.0].
 

•	 category-to-attribute index: 

phyllost.icta --; [leaf spot colol' = tan, 1.0, 0.501.
 
phyllostiet.a --; [leaf spot growth =from edge of leaf inward, 1.0, 0.G5].
 

By index transformation. wc extracted 2 confirmatory indices, 27 attribute-to-category indices, and 30 
category-to-attribute indices from the soybean database. Note that, in the category-to-attribute index, 
the number of indices depends on the threshold of the attribute weight setting. In the above example, 
the threshold is set to 0.3, that is, 0.3 ::s; w( ai) < 1.0. If we decrease the threshold from 0.3 to 0.2, we can 
extract 125 category-to-attribute indices, although some of them are 'weak' category-to-attribute indices. 
However, an experiment was conducted in the domain of soybean disease to determine the effect of 
providing 'weak' category-ta-attribute indices. Table 2 shows that category-to-attribute indices provided 
important evidence during the classification process. Consequently, removing 'weak' category-to-attribute 
indices actually hurt the performance accuracy of the system. 

Learning indexing knowledge from cases has already been proposed by Protos [4]. Protos elicits and 
refines domain knowledge by interacting with a human expert in the context of problem-solving failures: 
failures to classify cases and failures to explain its classification. Although Protos' knowledge acquisition 
process is rather systematic, such a process is still very time and effort consuming for the human expert. 
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categories (i.e., hepatitis. house—vote. breast cancer, tic-tac-toe), the performance accuracies of PBL3 are
same as those of PBLZ on these databases.

4 Learning Indexing Knowledge
The last problem we have to  consider is t o  learn indexing knowledge from cases. In a domain—specific.
system that uses case—based learning algorithm, the efficient use of cases during classification requires
that they should be indexed so that they can be  efficiently retrieved when they are likely t o  be  similar
to a new case. One, of PB‘Ls' primary learning tasks is the  acquisition of- indexing knowledge from cases.

Three types of indexing knowledge can be  obtained directly from the concept description generated by
PBLs: confirmatory index, attribute-to—category index. and category-to-attribute index. These indices
can be extracted from both  the prototypicality ratings and attribute weight settings in the  following
ways:

1. If the prototypicality is equal t o  1 and the  attribute weight setting is also equal to 1, then extract
the category 03- and the attribute a i .  These category-attribute pairs are called confirmatory indices.
Confirmatory indices associate attributes with categories and they. are foolproof. That is, confir-
matory index from a,- to c}- suggests that c,- is the reliable classification" for cases described With a,-
and that every case in cj has the attribute a ,  without uncertainty.

2. If the prototypicality rating is less than 1 and the attribute weight setting is equal to 1. then the
attribute—to—category index is extracted. Attribute-to—category index also associates the attribute
ct,- with the category cj ,  but  it is not foolproof. That is, the  attribute-to-category index simply
enumerates a set  of possible classifications for the  new case described with a i .

3. If the  prototypicality is equal t o  1 and the attribute weight setting is less than 1. then the  category-
to-attribute index is extracted. Categor'y-to—attribute index associates a category with an attribute-s.
This is opposite to the  direction of an attribute—to—category index. In other words. category-to—
attr ibute indices can produce what may be  called “prototypical” cases by creating a case that has
the most frequent value for each attribute.

The following are examples of indexing knowledge for soybean diseases. The right hand side of the
index is a triple of the  form:

[attributezvalua prototypicality, attribute weight]

o confirmatory index:

powdery mildew +—> [leaf mildew growth = on upper leaf surface, 1.0, 1.0].

. attribute—to-category index:

phytophthora +— [external decay of stem = watery and soft ,0.88,  1.0].
phytophthora <— [external stem discoloration : dark brown, 0.88, 1.0].

o category-to—attribute index:

phyllosticta —> [leaf spot color = tan, 1.0,0.50].
phyllosticta —> [leaf spot growth : from edge of leaf inward, 1.0, 0.65].

By index transformation, we extracted 2 confirmatory indices, 27 attribute-to—category indices. and 30
category—tonattribute indices from the  soybean database. Note that ,  in the category-to-attribute index,
the number of indices depends on the  threshold of the attribute weight setting. In the  above example,
the threshold is set to 0.3. that is. 0.3 S w(a,-) < 1.0. If we decrease the threshold from 0.3 to 0.2, we can
extract 125 category-to—attribute indices, although some of them are ‘weak‘ category-to-attribute indices.
However, an experiment was conducted in the  domain of soybean disease to determine the  effect of
providing "weak‘ categor-y-to-attribute indices. Table 2 shows that category—to—attribute indices provided
important evidence during the  classification process. Consequently, removing “weak” category-to-attribute
indices actually hur t  the  performance accuracy of the system.

Learning indexing knowledge from cases has already been prdposed by Protos [4]. Protos elicits and
refines domain knowledge by interacting with a human expert in the  context of problem—solving failures:
failures to  classify cases and failures to  explain i ts  classification. Although Protos” knowledge acquisition
process is ra ther  systematic, such a process is still very time and effort consuming for the  human expert .
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Table 2: Contribution of category-to-attribute indices to performance accuracy. 

thl''''5huhl vnluE.' of ..... (ai' ... ·) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 
number of indirf's -1:l7 Ll.'j 30 13 8 4 o 
performance xi % ton % ~4 % 79 % 76 % 77 % 70 % 

... Furthermore, when Protos assigns the strength to each index, Protos relies heavily on the heuristic 
.... processing of explanations. which are ba::;ed on a large number of underlying assumptions. This kind of 

approarch may be failed. if the appropriate knowledge for understanding the explanation could not be 
made generally available to the system a prior·i. 

Concluding Remarks 

In this artide. we described one of the inductive learning paradigm called PBL. The PBL paradigm 
supports relatively robust leaming algorithms. They can tolerate noisy and irrelevant attributes and 
can represent both probabilistic and symbolic concept descriptions. The PBL paradigm is a promising 
approach and is rich with opportunities for additional research. 

Firstly, we have not yet studied how the PBL approach can use continuously-valued attributes to 
classify a case which consists of the values of either unordered or totally-ordered attributes. We are 

- now developing a labeling procedure for the continuous attributes. The labeling procedure divides all 
numerical data into several clusters, and labels a new nominal attribute for each chister. The labeling 
procedure will be unified into the PBL algorithm so that each numerical attribute is directly translated 
into the nominal attribute. 

Secondly, the PBL paradigm lacks the mechanism to deal with information about which combinations 
of attributes comprise realizable cases of a category. The PBL paradigm also cannot represent knowledge 
of correlated groups of attributes nor knowledge about the acceptable ranges of values for individual 
attributes. This limitation confronting the PBL paradigm is problematic, and constructive induction 
approach may be useful to solve the problem. 

Thirdly, one of the limitations of the PBL paradigm comes from the attribute-value representation 
for cases. The PBL algorithms cannot learn in knowledge-rich domains that require more elaborate 
and complex case representations. Applications involving higher-order attribute relationships, such as 
planning and reasoning, are not amenable to current PBL algorithms. 

Finally, additional study of the PBL paradigm in the context of a large-scale database is necessary. 
PBL algorithms perform well in a small domain, but its storage requirements increases, since we must 
store the prototypicality rating and attribute weight setting for each attribute-value pair, although their 
required space is rather sparse. For example, 3,451 prototypicality ratings must be stored for soybean 
database. although about 2,000 ratings are equal to O. In order to reduce storage requirements, we can 
make use of indexing knowledge extracted from the concept description. Protos also proposed the method 
for learning indexing knowledge from classification and discrimination failures. We cannot adopt Protos' 
approach directly, since it leams the indexing knowledge by being told from the human expert. However, 
learning the indexing knowledge from failures is an interesting topic for future research. 
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5 Concluding Remarks

In this article. we described one of the inductive learning paradigm called PBL.  The  PBL paradigm
supports  relatively robust learning algorithms. They can tolerate noisy and irrelevant attributes and
can represent both probabilistic and symbolic concept descriptions. The PBL paradigm is a promising
approach and is rich with opportunities for additional research.

Firstly, we have not yet studied how the PBL approach can use continuously—valued at tr ibutes t o
classify a case which consists of t he  values of either unordered or totally—ordered at tr ibutes.  We are

' now developing a labeling procedure for the continuous at tr ibutes.  The  labeling procedure divides all
numerical data  into several clusters, and labels a new nominal attribute for each cluster. The labeling
procedure will be  111‘1ified into the PBL algorithm so that each numerical attribute is directly translated
into the  nominal a t t r ibute .

Secondly, the PBL paradigm lacks the  mechanism to  deal with information about which combinations
of attributes comprise realizable cases of a category. The  PBL paradigm also cannot represent knowledge
of correlated groups of attributes nor  knowledge about the acceptable ranges of values for individual
at tr ibutes.  This limitation confronting the PBL paradigm is problematic, and constructive induction
approach may be  useful t o  solve the  problem.

Thirdly, one of the  limitations of the PBL paradigm comes from the  attribute-value representation
for cases. The PBL algorithms cannot learn in knowledge-rich domains that require more elaborate
and complex case representations. Applications involving higher-order attribute relationships, such as
planning and reasoning, are not amenable to  current PBL algorithms. .

Finally, additional s tudy of the  PBL paradigm in the context of a large-scale database is necessary.
PBL algorithms perform well in a small domain, bu t  i ts storage requirements increases, since we must
store the  prototypicality rating and attribute weight sett ing for each attribute~value pair, although their
required space is rather sparse. For example, 3,451 prototypicality ratings must be  stored for soybean
database. although about 2,000 ratings are equal t o  0. In order to reduce storage requirements, we can
make use of indexing knowledge extracted from the concept description. Protos also proposed the  method
for learning indexing knowledge from classification and discrimination failures. We cannot adopt Protos‘
approach directly, since i t  learns the indexing knowledge by being told from the  human expert. However,
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extended abstract 

This paper describes an application of case based reasoning in the field of health care 
planning. The process is modelled in the FLORENCE expert system, an experimental 
prototype which models the reasoning of an expert clinician in advising on the three basic 
planning tasks of diagnosis, prognosis and prescription within a Nursing domain. We have 
developed an empirical approach which models the reasoning processes of expert clinicians. 
Both rule-based and case-based reasoning are used where appropriate. It has been found 
that case-based reasoning is especially appropriate to situations where decisions must be 
made about the progress of cases over time. 

Diagnosis is defined as the process of evaluating health status by making a set of 
observations. This meaning should be differentiated from the common medical meaning of 
diagnosis as the identification of the cause of a fault or disease. The diagnostic module of 
FLORENCE is essentially rule-based being structured around the "health patterns" of Gordon 
[1]. However, the diagnostic module generates records of cases containing numerical 
indicators which form the indices for retrieval of suitable cases in the other two modules. The 
numerical indicators produced represent the health status of a client. The essential 
diagnostic process is one of reducing the task of evaluating the large, general health patterns 
of Gordon's model to one of evaluating easily observable client parameters. Repeated 
observations may then serve as a basis for measuring change of status and/or evaluating 
the effects of treatments. 

Gordon defines a pattern as "a sequence of behaviour across time" and delineates eleven 
areas in which such behaviours may be observed. Examples of these patterns are: activity­
exercise pattern, nutritional-metabolic pattern and elimination pattern. For each health 
pattern, sub-concepts were chosen in consultation with experienced clinical nurses. Figure 1 
shows the activity-exercise pattern which has 9 associated sub-concepts. Each sub-concept 
is related to critical indicators; these are the observable parameters that may be assessed by 
the clinician in regard to a particular client. For any sub-concept, the .critical indicators are 
not necessarily extensive; it being more important to identify those that most accurately 
predict health status. Figure 2 shows the sub-concept mobility and its associated indicators. 
Any indicator may relate to one or more sub-concepts ; for any given sub-concept, the 
indicators may vary in significance. 
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This paper describes an application of case based reasoning in the field of health care
planning. The process is modelled in the FLORENCE expert system, an experimental
prototype which models the reasoning of an expert clinician in advising on the three basic
planning tasks of diagnosis, prognosis and prescription within a Nursing domain. We have
developed an empirical approach which models the reasoning processes of expert clinicians.
Both rule-based and case-based reasoning are used where appropriate. It has been found
that case-based reasoning is especially appropriate to situations where decisions must be
made about the progress of cases over time.

Diagnosis is defined as’ the process of evaluating health status by making a set of
observations. This meaning should be differentiated from the common medical meaning of
diagnosis as the identification of the cause of a fault or disease. The diagnostic module of
FLORENCE is essentially rule-based being structured around the "health patterns" of Gordon

However, the diagnostic module generates records of cases containing numerical
indicators which form the indices for retrieval of suitable cases in the other two modules. The
numerical indicators produced represent the health status of a client. The essential
diagnostic process is one of reducing the task of evaluating the large, general health patterns
of Gordon’s model to one of evaluating easily observable client parameters. Repeated
observations may then serve as a basis for measuring change of status and/or evaluating
the effects of treatments.

Gordon defines a pattern as "a sequence of behaviour across time" and delineates eleven
areas in which such behaviours may be observed. Examples of these patterns are: activity-
exercise pattern, nutritional—metabolic pattern and eiimination pattern. For each health
pattern, sub-concepts were'chosen in consultation with experienced clinical nurses. Figure 1
shows the activity—exercise pattern which has 9 associated sub-concepts. Each sub-concept
is related to critical indicators; these are the observable parameters that may be assessed by
the clinician in regard to a particular client- For any sub-concept, the “crit ical  indicators are
not necessarily extensive; it being more important to identify those that most accurately
predict health status. Figure 2 shows the sub—concept mobility and its associated indicators.
Any indicator may relate to one or more sub-concepts ; for any given sub-concept, the
indicators may vary in significance.
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pattern: activity-exercise 

sub-concepts: 
exercise tolerance 
mobility 
occupation/recreation 
self-care 
home maintenance 
airways clearance 
breathing pattern 
cardiac output
 
tissue perfusion
 

figure 1 ; the activity-exercise pattern 

sub-concept: mobility 

health pattern: activity-exercise 

indicator weighting 

physical movement 5 
motor function 4 
conscious state 3 
musculo-skeletal dev. 3 
happiness 1 

fiaure 2; the mobilitv sub-concept 

. The varying significance of the indicators tS represented by a weighting system which 
allocates an indicator a score on a scale of 5 ,. 1, where a score of 5 denotes major 
significance and a score of 1 denotes minor significance. Essentially, this weighting, 
answers the question, "to what extent does indicator X predict the health status of sub­
concept Y?". Figure 2 also shows the weightings of the mobility sub-concept indicators. 

The user enters his/her observations of the indicator in the client. Indicators in a client are 
assessed by observation as being on a scale of +2 .. 0.. -2, where +2 indicates very 
satisfactory ("well above average"), 0 indicates normal ("average") and -2 indicates very 
unsatisfactory ("well below average"). "Average" is taken as meaning the usual level of this 
indicator in the general population. 

When entry of the observation is complete a numerical evaluation of client status is 
calculated. The client score on an indicator is related to the weighting of that indicator, 
giving a contribution to the sub-concept status. In turn, each sub-concept score of a pattern 
may be combined to give a total numerical score for that pattern. In addition to the 
calculation of these numerical indicators, FLORENCE reports on the presence of any 
specific problems ("nursing diagnoses") displayed by the client. The diagnostic system, on 
request from the user, writes to the client record information about: 

i. abnormal indicators detected. 
ii. nursing diagnoses made 
iii. progressive changes within the health parameters. 

Repeated observation allows accumulation of progressive data about a client's changing 
health status. A client record or "case" comprises a series of timed observations together 
with the derived numerical indicators. A bank of completed client cases provides the basis 
for reasoning about change over time which is fundamental to the other two tasks - prognosis 
and prescription. 

FLORENCE defines prognosis as the prediction of changes in health status, simulating the 
real life activity of "remembering" similar real cases in the past. Briefly, if completed cases 
can be found that, at some time in their development, were similar to the present new 
(incomplete) case the new case is extrapolated forward in time on the assumption that it will 
follow a similar course to the retrieved cases. The process may be considered as having two 
stages: (i) finding similar cases and (ii) formulating future projection(s). 

A major problem in any system using case based reasoning is the retrieval of cases from a 
case base within a reasonable time. It is our aim to avoid the use of abstract indices, rather 
allowing case features to form their own indices. However, it is obviously undesirable to 
search every case on a multitude of features. The method used in FLORENCE retrieves, on 

170
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occu patron/recreation
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airways clearance conscious state 3
breathing pattern musculo-skeletal dev. 3
cardiac output happiness 1
tissue perfusion

_fi_gure 1 :the aetivfly-exercisipattern figure 2: the mobility sub-concept J

. The varying significance of the indicators is represented by a weighting system which
allocates an indicator a score on a scale of 5 _.. 1, where —a score of 5 denotes major
significance and a score of 1 denotes minor significance. Essentially, this weighting,
answers the question, "to what extent does indicator X predict the health status of sub-
concept Y?". Figure 2. also shows the weightings of the mobility sub-concept indicators.

The user enters his/her observations of the indicator in the client. Indicators in a client are
assessed by observation as being on a scale of +2 .. 0.. -2, where +2 indicates very
satisfactory ("well above average“), 0 indicates normal ("average") and -2 indicates very
unsatisfactory ("well below average“). "Average" is taken as meaning the usual level of this
indicator in the general population .

When entry of the observation is complete a numerical evaluation of client status is
calculated. The client score on an indicator is related to the weighting of that indicator.
giving a contribution to the sub-concept status. In turn, each sub—concept score of a pattern
may be combined to give a total numerical score for that pattern. “In addition to the
calculation of these numerical indicators, FLORENCE reports on the. presence of any
specific problems ("nursing diagnoses") displayed by the client. Thediagnostic system, on
request from the user, writes to the client record information about:

i. abnormal indicators detected.
ii. nursing diagnoses made
iii. progressive changes within the health parameters.

Repeated observation allows accumulation of progressive data about a client's changing
health status. A client record or "case" comprises a series of timed observations together
with the derived numerical indicators. A bank of completed client cases provides the basis
for reasoning about change overtime which is fundamental to the other two tasks - prognosis
and prescription.

FLORENCE defines prognosis as the prediction of changes in health status, simulating the
real life activity of "remembering" similar real cases in the past. Briefly, if completed cases
can be found that. at some time in their development, were similar to the present new
(incomplete) case the new case is extrapolated forward in time on the assumption that it will
follow a similar course to the retrieved cases. The process may be considered as having two
stages: (i) finding similar cases and (ii) formulating future projection(s).

A major problem in any system using case based reasoning is the retrieval of cases from a
case base within a reasonable time. It is our aim to avoid the use of abstract indices, rather
allowing case features to form their “own i-ndices. However, it is obviously undesirable to
search every case on a multitude of features. The method used in FLORENCE retrieves, on
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an initial pass through the case base, a subset of cases on a single indexing feature; this 
subset may be expected to contain all relevant cases. This, in itself, is a not inconsiderable 
task. The FLORENCE prototype has about 30 cases each containing between 7 and 10 
days of records. The current prototype is developed in HyperTalk; it is anticipated that a 
system for use in the real world would need re-engineering to maximise efficiency. 

The initial parameter used for case retrieval is the overall health score for a particular day. 
All cases are retrie·ved which have any day with a health score "close" to the health score of 
the current day in the new case. "Close" is experientially defined; we have found that to 
seek a score within 0.5 of the current day score retrieves a useful, but manageable, selection 
of cases. The old case name and the day are entered into a list of possible similarities. 

The pool of retrieved case-days will contain all similar days. However, it is possible that it. 
may contain case-days that have similar health scores but, as the total health score is an 
average of concept scores, quite different distributions of concept scores. Therefore, 
further similarity metrics are applied to the retrieved cases. 

For each case-day a difference score is calculated. This provides a numerical estimation of 
the differences between concept distributions of the old case-day and the new case-day. 
The difference score gives a much closer approximation of similarity between case-days 
then a simp'le comparison of health scores. Those case days with the lowest difference 
scores are most similar. 

There is also provision to refine the process further and consider similarity at sub-concept 
level. Although sub-concept scores are calculated during the diagnostic process, these are 
regarded as intermediary scores and 'are not retained in the permanent client record. 
However, a record is kept of abnormal clinical features along with their commencement and 
conclusion days; abnormal clinical features relate directly to sub concepts. Therefore, a 
measure of sub concept similarity may be approximated by calculating the number of 
abnormal features that old-ease-day and new-ease-day have in common giving a feature 
score. 

On the basis of the difference scores and feature scores, cases can be ranked into order of 
similarity. A rank score is calculated by ranking all difference scores in inverse order, 
ranking all feature scores in ascending order and taking an average 9f the two rankings 

Projections into the future based on similar cases may now be made. Initially it was our 
intention to make a composite projection based on several similar cases. This may be 
viewed conceptually as the formulation of a prototypical or "average" case. However, 
difficulty with the development, and hence usage, of a prototypical case was the confounding 
effects of different treatments. What we would really like to know from a prototypical case is 
"what will happen if nothing is done?". However, it is rare to see a case, especially one 
showing abnormal features, in which some treatment is not given. It is obviously unethical to 
withhold well accepted interventions in order to see what will happen without them. 
Therefore, we modified the system to formulate several individual projections. This would 
also have the effect of allowing comparisons of differing treatments to be made. 

The user selects the desired case days, from the pool of ranked days, on which to perform a 
projection. This user input allows the elective choice, if desired, of early days in an old 
case; these may not always be the "best" days but are more likely to allow a lengthy 
projection. In addition, the user may utilise "hunch" type knowledge, which may be based on 
the memory of specific persons. 
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may contain case-days that have similar health scores but, as the total health score is an
average of concept scores, quite different distributions of concept scores. Therefore,
further similarity metrics are applied to the retrieved cases.

For each case-day a difference score is calculated. This provides a numerical estimation of
the differences between concept distributions of the old case-day and the new case-day.
The difference score gives a much closer approximation of similarity between case-days
then a simple comparison of health scores. Those case days with the lowest difference
scores are most similar.

There is also provision to refine the process further and consider similarity at sub-concept
level. Although sub—concept scores are calculated during the diagnostic process, these are
regarded as intermediary scores and ‘are not retained in the permanent client record.
However, a record is kept of abnormal clinical features along with their commencement and
conclusion days; abnormal clinical features relate directly to sub concepts. Therefore, a
measure of sub concept similarity may be approximated by calculating the number of
abnormal features that old-case-day and new-case-day have in common giving a feature
score.

On the basis of the difference scores and feature scores, cases can be ranked into order of
similarity. A rank score is calculated by ranking all difference scores in inverse order,
ranking all feature scores in ascending order and taking an average of the two rankings

Projections into the future based on similar cases may now be made. initially it was our
intention to make a composite projection based on several similar cases. This may be
viewed conceptually as the formulation of a prototypical or "average" case. However,
difficulty with the development, and hence usage, of a prototypical case was the confounding
effects of different treatments. What we would really like to know from a prototypical case is
"what will happen if nothing is’done?". However, it is rare to see a case, especially one
showing abnormal features, in which some treatment is not given. It is obviously unethical to
withhold well accepted interventions in order to see what will happen without them.
Therefore, we modified the system to formulate several individual projections. This would
also have the effect of allowing comparisons of differing treatments to be made.

The user selects the desired case days, from the pool of ranked days, on which to perform a
projection. This user input allows the elective choice, if desired, of early days in an old
case; these may not always be the "best" days but are more likely to allow a lengthy
projection. In addition, the user may utilise "hunch" type knowledge, which may be based on
the memory of specific persons.
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The projection process commences by comparing the overlapping days (the current day and 
the retrieved old case day). For each health pattern, a correction factor is calculated to align 
the score of the old day with that of the current. The current case is then projected forwards 
by applying the correction factors to each pattern of the subsequent old case days. 
Experiments with te system show that the process well replicates the prognoses formulated 
by an experienced clinician. When used to project on real cases in which the outcome is 
known, close matches do occur but, in a minority of cases, the outcome is quite different 
from that projected; this is to be expected as a result of the large number of variables that 
may affect human health status. The function of the prognosis module may be mainly 
viewed as one of asking "what if?" questions about case development. 

Prescription is defined as implementing interventions that affect the environmental factors 
impinging on the health status in such a way as to influence health change in a positive 
direction. The effects of treatments can only be reasonably determined retrospectively by 
noting changes in observations. However, it is obviously important to predict in advance 
which treatments are likely to be useful for a particular client. .Again, this may be performed 
by utilising expert knowledge about the likely uses and effects of treatments. FLORENCE 
actually incorporates an essentially rule-based adviser which groups treatments relevant to 
promotion and cure indifferent health areas. This is seen as inadequate because of the 
many treatment choices and combinations of choices within and between health areas. We 
have, therefore, developed an advisory module which suggests appropriate treatments on 
the basis of experience in real past cases. 

The input to this prescription advisory module consists of the single case projections 
developed in the prognosis module. The process is one of selecting the best treatments for 
each health concept by considering individual health concept outcomes ih each case. This 
provides a pool of treatments which have been shown to be effective in similar cases. The 
problem here is that, because these treatments are derived from several different cases, 
some may be mutually incompatible. Our approach is to examine the occurrence of 
treatments within their original cases and dynamically derive constraints on their interactions. 
For example, such constraints may derived as never having two treatments together in the 
same case or of one treatment always preceding another. With these constraints, the 
selected "best" treatments are then projected onto a temporal prescription plan which 
suggests which treatments should be used, at what times and in what combinations. 

From pool of "projection" cases the "best" cases are selected for each of the health patterns. 
A "best': case is the one that shows the greatest improvement in pattern score from the day 
of projection start until the end of the case. Then for each concept, the treatments that were 
used in each of the best cases are collected including the commencement and completion 
times of each treatment. This collection forms the basis of the suggested treatment plan. 

Next the embryonic plan is rationalised to ensure that recommendations for conflicting 
therapies are not made. Therapies may conflict by inappropriate occurrence (eg. 
prescription of two therapies whose effects negate each other; prescription of multiple 
therapies of which the cumulative effect is negative) within the same case, or by temporal 
conflict (allowing therapies to overlap inappropriately or prescribing therapies in an 
inappropriate sequence). 

Certain modifications are made to the plan without the necessity of consulting the case base. 
Firstly, rare events are eliminated; a treatment that is derived from less than half of the 
contributing cases is defined as a rare event. It is assumed possible that this treatment is 
uncommon, possibly specific to some unusual case. These rare events are eliminated from 
the treatment fist. Secondly, duplications are resolved. It is possible that the same treatment 
was prescribed in two or more of the source cases. In this case, the treatment is initially 
retained , commencement and completion times being taken as the mean of those of the 
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the retrieved old case day). For each health pattern, a correction factor is calculated to align
the score of the old day with that of the current. The current case is then projected forwards
by applying the correction factors to each pattern of the subsequent old case days.
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by an experienced clinician. When used to project on real cases in which the outcome is
known, close matches do occur but, in a minority of cases, the outcome is quite different
from that projected; this is to be expected as a result of the large number 'of variables that
may affect human health status. The function of the prognosis module may be mainly
viewed as one of asking "what if?" questions about case deveIOpment.

Prescription is defined as implementing interventions that affect the environmental factors
impinging on the health status in such a way as to influence health change in a positive
direction. The effects of treatments can only be reasonably determined retrospectively by
noting changes in observations. However, it is obviously important to predict in advance
which treatments are likely to be useful for a particular client. “Again, this may be performed ‘
by utilising expert knowledge about the likely uses and effects of treatments. FLORENCE
actually incorporates an essentially rule—based adviser which groups treatments relevant to
promotion and cure in different health areas. This is seen as inadequate because of the
many treatment choices and combinations of choices within and between health areas. We
have, therefore, developed an advisory module which suggests appropriate treatments on
the basis of experience in real past cases.

The input to this prescription advisory module consists of the single case projections
developed in the prognosis module. The process is one of selecting the best treatments for
each health concept by considering individual health concept outcomes i‘n each case. This
provides a pool of treatments which have been shown to be effective in similar cases. The
problem here is that, because these treatments are derived from several different cases,
some may be mutually incompatible. Our approach is to examine the occurrence of
treatments within their original cases and dynamically derive constraints on their interactions.
For example, such constraints may derived as never having two treatments together in the
same case or of one treatment always preceding another. .W i t h  these constraints, the
selected "best" treatments are then projected onto a temporal prescription plan which
suggests which treatments should be used, at what times and in what combinations.

From pool of "projection" cases the "best" cases are selected for each of the health patterns.
A "best'f case is the one that shows the greatest improvement in pattern score from the day
of projection start until the end of the case. Then for each concept, the treatments that were
used in each of the best cases are collected including the commencement and completion
times of each treatment. This collection forms the basis of the suggested treatment plan.

Next the embryonic plan is rationalised to ensure that recommendations for conflicting
therapies are not made. Therapies may contlict by inappropriate occurrence (eg.
prescription of two therapies whose effects negate each other; prescription of multiple
therapies of which the cumulative effeCt is negative) within the same case, or by temporal
conflict (allowing therapies to overlap inappropriately or prescribing therapies in an
inappropriate sequence).

Certain modifications are made to the plan without the necessity of consulting the case base.
Firstly, rare events are eliminated; a treatment that is derived from less than half of the
contributing cases is defined as a rare event. It is assumed possible that this treatment is
uncommon, possibly specific to some unusual case. These rare events are eliminated from
the treatment list. Secondly, duplications are resolved. it is possible that the same treatment
was prescribed in two or more of the source cases. In this case, the treatment is initially
retained . commencement and completion times being taken as the mean of those of the

172



contributing cases for that treatment. Remaining treatments are then sorted in order of 
commencement time. 

The main danger to be considered in a plan developed from multiple sources is that 
treatments may be given in harmful combinations. FLORENCE handles this problem by 
searching the full case base to ascertain which treatments remaining in the plan have either 
never been given together in the same case or have never overlapped in any case. With 
this derived knowledge, incompatibilities in the plan are resolved. One of two mutually 
exclusive treatments is eliminated; comparison of surviving treatments is continued until all 
su rvivors can be shown to be compatible with each other. Compatible, but non-overlap 
treatments have start and stop times as necessary to produce compatibility. This means that 
the final prescription plan will be safe although it may not necessarily be the optimum plan. 

The prescription module of FLORENCE is the in some ways the least satisfactory. Even in a 
prototypical system with a small case base, the search time involved in deriving the 
exclusion and overlap constraints is considerable. The difficulty is that. for the derivation of 
accurate constraints, a really large case base is desirable but increasing case. base size 
increases search time. Current work is being undertaken in the development of a sub­
system, separate from the prescription module, to "learn" the constraints; the prescription 
module may then simple look up a record of learned constraints about any treatment. Of 
some concern also is the usefulness of detailed plan generated for future use in a changing 
environment. However, the possibility of generating and comparing multiple plans make 
prescription, as with prognosis, a useful "what if" exercise. 

In summary, the FLORENCE system provides advice to the health care planner on the tasks 
of diagnosis, prognosis and prescription. A feature of the system is the calculation of 
statistical parameters representing various aspects of health care status. These are stored, 
along with the observed features and prescribed treatments in a client case which provides 
a record of the ongoing health profile. These old client cases may then be used to predict 
likely outcomes and to suggest suitable treatments in a new case. 
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module may then simple look up a record of learned constraints about any treatment. Of
some concern also is the usefulness of detailed plan generated for future use in a changing
environment. However, the possibility of generating and comparing multiple plans make
prescription, as  with prognosis, a useful "what if" exercise.

In summary, the FLORENCE system provides advice to the health care planner on the tasks
of diagnosis, prognosis and prescription. A feature of the system is the calculation of
statistical parameters representing various aspects of health care status. These are stored,
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A ca••-Ba••cl a.a.oning (CBR) .y.t_ prototype for managing the 
u.. of f.rtiliz.r. on farm land ha. been d.v.lop.d, adapting the 
CBR t.abniqu.. u••d in CHIllI', the plennin~ .yat_ in the cooking 
domain (ca••-ba••d Planning. Kriatian J.BaIIlIIlond. Acaa~c Pr••• 
1989) . Th. prototype or.at.. f.rtilil£ation plan. for citru. 
farma by acc•••ing a ca•• library of citru.-tr•• f.rtilil£ation. 
It adar..... the _in i ••u.. of the CBR t.chniqu•• : r.pr•••nting 
and ind.xing pa.t aa•••, r.tri.ving and modifying old· plan. and 
explaining and l.arning from failur•• in f.rtilization .ah.dul••. 
D.veloping that prototype i. a .t.p toward. under.tending how CBR 
.y.t_ could b. u••d to aid h~. in .olving probl_ proc••• in 
the agricultural domain. 

1. The Domain 

Modern intensive agricu1ture typica1ly uses large quantities of nutrients 
to achieve high leve1s of production. When these nutrients escape the agri ­
cu1tura1 system (e.g.,nitrate 1eaching), nutrient use efficiency is 10wered 
and po11ution may resu1t. A correct ferti1ization shou1d return the amount 
of nutrient removed from the p1ant-soi1 system during vegetative and repro­
ductive orchard growth. Know1edge of soi1 properties, soi1 nutrient avai1a­
bi1ity, c1imatic conditions, orchard perfor.mance and cropping operation is 
needed for identifying causes of nutritiona1 ~a1ance and suggesting cor­
rect ferti1ization. Antagonistic and synergistic re1ationships between p1ant 
nutrients musta1so be taken into account. 
In order to make sound ferti1izer recommendations, it is necessary to relat~ 

the diagnostic indexes to the amount of nutrients required for opt~um 

yields. In many instances, rules-of-thumb as well as experience of the 
agronomist or extension specia1ists can provide a usefu1 mean for planning 
fertilizations. Suggestions from past cases often he1p citrus experts to de­
fine ferti1ization schedu1es, by recai1ing a previous schedu1e and adapting 
the old solution to the new scenario in terms of soil properties, nutrients 
balance, climate and weather forecast. 
The fact that citrus experts use experience with previous ferti1ization 
p1ans to define the new ones, makes case-based reasoning particu1arly appro­
priate for decision support system in managing and planning ferti1ization 
schedules. 

2. Case-based Planning: the Chef Model and our Prototype 

Case-based p1anning is planning from experience [1]. The basic idea is that 
a machine planner shou1d use its own experience in developing ne" p1ans. 
Past successes are reca11ed and modified to create ne" p1ans, memories of 
past fai1ures are used to avoid having same prob1ems again and past repairs 
are remainded to s01ve them [2]. Successful p1ans are stored in memory, in­
dexed by the goals they satisfy and the problems that they avoid. I'ailures 
are also stored, indexed by the features that predict them. By storing fai ­
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ABSTRACT

A Case—Based. Reasoning (can) system prototype for managing the
use of fertilizers on farm land has been developed, adapting the
CBR techniques used in CHEF, the planning system in the cooking
domain (Case-based Planning. Kristian J.Hsmond. Academic Press
1989)  . The prototype creates fertilization plane for citrus
farms by accessing a case library of citrus-tree fertilisation .
It addresses the main issues of the CBR techniques: representing
and indexing'past oases, retrieving and modifying old plans and
explaining and learning from failures in fertilization schedules.
Developing that prototype is  a step towards understanding how CBR
system could be used to aid humans in solving problem process in
the agricultural domain .

l .  The Domain

Modern intensive agriculture typically uses large quantities of  nutrients
to  achieve high levels of  production. When these nutrients escape the agri-
cultural system (e .g . ,n i t ra te  leaching):  nutrient use efficiency i s  lowered
and pollution may result .  A.correct  fertilization should return the amount
of nutrient removed from.the  plant-soil system.during vegetative and repro- _
ductive orchard growth. Knowledge of  soil properties, soil nutrient availa-
bility, climatic conditions, orchard performance and cropping operation i s
needed for identifying causes of  nutritional imbalance and suggesting cor-
rect fertilization. Antagonistic and synergistic relationships between plant
nutrients mus t -a l so  be taken into account.
In order to make sound fertilizer recommendations, it i s  necessary to  relate
the diagnostic indexes to the amount of  nutrients required for optimum
yields. In  many instances, ruleswof-thumb as well as experience of  the
agronomist or extension specialists can provide a useful mean for planning
fertilizations. Suggestions from.past  cases often help citrus experts to de-
fine fertilization schedules, by recalling a previous schedule and adapting
the old solution to the new scenario in terms of soil properties, nutrients
balance, climate and weather forecast .
The fact that citrus experts use experience with previous fertilization
plans to  define the new ones, makes case—based reasoning particularly appro-
priate for decision support sys tem. in  managing and planning fertilization
schedules. /

2 .  Case-based Planning: the Chef 'Model  and .our  Prototype

Case-based planning i s  planning from experience [1]. The basic idea is  that
a machine planner should use its own experience in developing new plans.
Past successes are recalled and.modified to create new plans, memories of
past failures are used to avoid having same problems again and past repairs
are remainded to  solve them [2]. Successful plans are stored in. memory, in—
dexed by the goals they satisfy and the problems that they avoid. Failures
are also stored, indexed by the features that predict them” By storing fai-
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lures as wellas successes, the planner is able to anticipate and avoid fu­

ture plan failure [3].
 
This planning theory has been implemented in HlIDIIDOnd's system Chef, which
 
creates new plans, using the old ones, in the Szechwan cooking domain.
 
Our prototype's goal is to plan a citrus fertilization schedule given a set
 
of slots which describe cultivar, tree age, soil properties, visual symp­

toms, cropping operation, orchard perfomance and leaf analysis data, if
 
available. We have built a case library containing citrus fertilization
 
schedules. Each case, represented by the MOP (Memory OrganJ.zation Packed)
 
structure [4], consists of a set of slot describing the citrus orchard fea­

tures and state, and the planned fertilization schedule expressed in te~ 

of steps. As a recipe the schedule consists of a set of steps that citrus 
growers should follow to achieve high quality yield and control the ferti ­
lizer inputs (fig.1). 

(DBFMOP I-M-SCHEDULE1 (M-SCHEDULB) 
(CULT:tVAR :t-M--NAVEL) ,; 
(AGE I-M-20) 
(SOIL I-M-CLAYEY-SOIL) 
(LEAI' I-M-LEAI'-StJRFACB) 
(LEAI'-COLOR I-M-YELLOWISH) 
(LEAI' I-M-CENTRAL-VEINATION) 
(PART-COLOR I-M-YELLOW) 
(CHEM I-M-LOW-STANDARD) 
(EL-CHEM I-M-N) 
(FRUIT-QUART I-M-HIGH) 
(FRUIT-SIZE I-M-SMALL) 
(PROD I-M-100-Q/HA) 
(ADVICE M-ADVICE-STEPS 

(DEF-AM-STEPS M-STEP-GROUP 
(1 M-DEF-AM-STEP (OBJECT I-M-NITRATE) 

(QUARTXTY I-M-200-ICG/HA») 
(SPLIT-AM-STEPS M-STEP-GROUP 

(1 M-SPLIT-AM-STEP (DOSAGE M-AN:>UNT-GROUP 
(1 I-M-100-ICG/HA) 
(2 I-M-SO-ICG/HA) 
(3 I-M-SO-ICG/HA»» 

(SPLXT-TZME-STEPS M-STBP-GROUP 
(1 M-SPLXT-TZME-STEP (DATE M-DATE-GROUP 

(1 I-M-APRIL) 
(2 I-M-1SJON-31AUG) 

. (3 I-M-1SJtJN-31AUG»» 
(TREAT-STEPS I-M-EMP'l'Y-GROUP) 
(:[RRIGATION-STEPS X-M-EMP'l'Y-GROUP») 

Fig.1 A case from the memory. 

Like Chef's' architecture [1], our prototype is composed of processes and 
knowledge structures, it consists of the modules: anticipator, retriever, 
modifier, repairer, storer and the assigner. Goals are handed to the antici ­
pator, which tries to predict any problems that might arise while planning 
for them. Xf a problem is predicted, a goal to avoid it is added to the 
initial goals. The retriever identifies the most appropriate cases in the 
case memory and presents them to the modifier. The simplest way to identify 
the most similar case is to use nearest-neighbor search [5]. But this is an 
expensive operation and its cost grows with the size of the case base. To 
avoid such an exhaustive comparison without compromising accuracy, we have 
organized cases in memory using indices, generally the most discriminating 
features of the cases. The retriever compares only the indices with the new 
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lures as wellas successes, the planner is able to anticipate and avoid fu-
ture plan failure [3].
This planning theory has been implemented in Hammond’s system. Chef, which
creates new plans, using the old ones, in the Srechwan cooking domain.

Our prototype’s goal is to plan a citrus fertilisation schedule given a set
of slots which describe cultivar, tree age, soil properties, visual symp--
toms, cropping operation, orchard perfomance and leaf analysis data, if
available. we have built a case library containing citrus fertilization
schedules. Each case, represented.by the mc? (Memory' Organization Packed)
structure [4], consists of a set of slot describing the citrus orchard fea-
tures and state, and the planned fertilization schedule expressed in terms
of steps. As a recipe the schedule consists of a set of steps that citrus
growers should follow to achieve high quality yield and control the ferti-
lizer inputs (£ig.1).
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Fig.1.h case from the memory.

Like Chef's‘ architecture [1], our prototype is composed of processes and
knowledge structures, it consists of the modules: anticipator, retriever,
modifier, repairer, storer and the assigner. Goals are handed to the antici-
pator, which tries to predict any problems that might arise while planning
for them. If a problem.is predicted, a goal to avoid it is added to the
initial goals. The retriever identifies the most appropriate cases in the
case memory and.presents them.to the modifier. The simplest way to identity
the most similar case is to use nearest—neighbor search [5]. But this is an
expensive operation and its cost grows with the sire of the case base. To
avoid such an exhaustive comparison without compromising accuracy, we have
organized cases in.memory using indices, generally the most discriminating
features of the cases. The retriever compares only the indices with the new
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prob~em and retrieves those cases whose indices match the new prob~em. To 
~rove the performance of this process, indices are organized hierarchica~­
~y [6]. After retrieving cases based on indices, the retriever searches the 
best.match comparing the new prob~em features with those of thecaseinstan­
ces·under the matched index. 
The retriever can on~y find and suggest past schedu~. for new situations: it 
cannot do anything about modifying these schedu~es. The modifier a:dapts the 
retrieved schedu~e to satisfy goa~s not a1ready satisfied. Xn order to adapt 
the o~d schedu~e the modifier needs know~edge about the soi~ properties, how 
and how much nutrients can be uptaken by the different soi~ type. For exam­
p1e, if the soi~ tyPe in the retrieved case was a sandy soi1, but the cur­
rent soi~ type is a sandy-~oam the nitrate amount is sp~itted in different 
steps and the dose is ca~cu~ated by a formuJ.a. The modifier to han~e the 
changes uses a ~ibrary of modification ru1es and domain know1edge that out­
1ines how. it shou~d adapt specific domain features whi~e using its more ge­
nera~ ru~es. 

The bui~t p~an is run and the resu~ts are checked against the p1anner's ini­
tia1 goa1s. The p~anner runs a schedu~e s~u~ation and uses the resu~ts to 
diagnose errors. Xt can even ask an outside source if the p~an behavior is 
what expected. Xn that way some unpredictab~e events as rainfa~~ or insects 
pressure can be taken into account when a ferti~ization is p~anned. The plan 
s~ulation is done by using a mode~. The model [7], considering climate data 
(rain, temperature, evaporation), water holding capacity of the current soil 
type and infor.mation re1ated on p1a~~ phisi010gy, estimates the chemical 
losses and verifies if the nutrient ~unts in the modified schedule return 
the plant requirements. Checking whether the defined schedu~e is a success 
or a fai~ure means to verify that the initial goals have been satisfied. 
Thus, the system searches if there is a goa~ violation in the events chain 
occured during the s~ulation and then goes backword to identify the step 
that caused the failure, if any. Successful schedu1e is handed to the storer 
and placed in memory indexed by the same features that will be used to ac­
cess it. The indices used to store schedules are satisfied goa~s. Xf there 
is a fai~ure the p~an is given to the repairer that builds a causal descrip­
tionof why a ferti~ization has failed. The explanation pointing to the ac­
tions that caused the failure, provides the focus as to what parts of a p~an 

have to be changed. The system uses the explanation to find a structure in 
memory that organizes a set of strategies for so~ving the prob~em. 

These structures ca1led TOP (Tematic Organizatin Packed) [4] are general in­
dices for a set of repair strategies. For examp~e, e~en though Potassium and 
Magnesium were given in the right amount, a deficiency of one cou~d result. 
The deficient nutrient should not be given to the plant, being present in 
the soi~, because the interactions between those nutrients prevent the tree 
to uptake both. The explanation leads to the TOP labeled: side effect disa­
bled condition concurrent [3]. Under that TOP there is the repair strategy 
that wi~l fix the deficiency by de1eting the schedule step in which the de­
ficient nutrient is suggested to be given. ~h. repaired schedu~e. will be 
placed in memory indexed by the avoi~Qd problems as we~~ as the achieved 
goals. Whi1e the repairer is fixingtt.e schedule, the assigner decides wich 
features caused the fai1ure. Then it can extrap01ate from these to the fea­
tures in ~ater situations that could arise again. The assigner's output is 
not a plan, but is a knowledge base of possible prob~ems that can arise and 
the circumstances that predict them. :Its output can be a set of inference 
rules that are fired in the ear~y stages of p~anning (e.g., if it is winter 
t~, no nitrate should be used because the rain may leaching it). The anti­
cipator modu~e which anticipate prob~ems on the basis of features marked by 
the assigner has to take these rules and making predictions befo.re other 
p1anning is done. 
We are sti1~ imp~ementing the assigner and anticipator modules. 
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problem.and retrieves those cases whose indices match the new problem. To
improve the performance of this process, indices are organized hierarchical-
ly [6 ] .  After retrieving cases based on indices, the retriever searches the.
best match comparing the new problem features with those of the . case - ins tan~
ces 'under  the matched index.
The retriever can only find and suggest past schedule for new situations: it
cannot do anything about modifying these schedules. The modifier adapts the
retrieved schedule to satisfy goals not already satisfied. In order to adapt
the old schedule the modifier needs knowledge about the soil properties, how
and how-much nutrients can be uptaken by the different soil type. For exams
ple, i f  the soil type in the retrieved case was a sandy soil, but the cur—
rent soil type i s  a sandy—loam.the nitrate amount i s  splitted in different
steps and the dose i s  calculated by a formula. The modifier to  handle the
changes uses a library of modification rules and domain knowledge that out—
lines how it should adapt specific domain features while using its more ge—
neral rules.
The built plan i s  run and the results are checked against the planner's ini-
tial goals .  The planner runs a schedule simulation and uses the results to
diagnose errors.  It can even ask an outside source if  the plan behavior i s
what expected. In that way some unpredictable events as rainfall or insects
pressure can be taken into account when a fertilization i s  planned. The plan
simulation i s  done by using a model. The model [7], considering climate data
(rain, temperature, evaporation), water holding capacity of the current soil

type and information related on plant phisiology, estimates the chemical
losses and verifies i f  the nutrient amounts in the modified schedule return
the plant requirements. Checking whether the defined schedule i s  a success
or  a failure means to  verify that the initial goals have been satisfied.
Thus, the system.searches i f  there i s  a goal violation in the events chain
occured during the simulation and then goes backword to identify the step
that caused . the  failure, i f  any.  Successful schedule i s  handed to  the storer
and placed in.memory indexed by the same features that will be used to  ac-
cess  i t .  The indices used to  store schedules are . sat i s f ied  goals .  I f  there
is  a failure the plan is  given to the repairer that builds a causal descrip—
tion of why a fertilization has failed. The explanation.pointing to the ac-
tions that caused the failure, provides the focus as  to what parts of  a plan
have to  be changed. The system.uses  the explanation to  find a structure in
memory that organizes a set of  strategies for solving the problem.
These structures called TOP (Tematic Organizatin Packed) [4 ]  are general in-
dices for a set of  repair strategies. For example, even though Potassium and
.Magnesium.were given in the right amount, a deficiency of  one could result.
The deficient nutrient should not be given to  the plant, being present in
the soi l ,  because the interactions between those nutrients prevent the tree
to  uptake both.  The explanation leads to the TOP labeled: side effect disa-
bled condition concurrent [3 ]  . Under that TOP there i s  the repair strategy
that wil l  fix the deficiency by deleting the schedule step in which the de-
ficient nutrient i s  suggested to  be given. The repaired schedule, will be
placed in.memory indexed by the avoided problems as  well as  the achieved
goals .  While the repairer i s  f ixing'the schedule, the assigner decides wich
features caused the fai lure.  Then it  can extrapolate from these to  the fea—
tures in later situations that could arise again. The ass igner’s  output i s
not a plan, but i s  a knowledge base of possible problems that can arise and
the circumstances that predict theme Its  output can be a set of  inference
rules that are fired in the early stages of planning ( e .g . ,  i f  it i s  winter
time, no nitrate should be used because the rain may leaching i t ) .  The anti—
cipator module which anticipate problems on the basis of features marked by
the assigner has to  take these rules and.making predictions before other
planning i s  done.
we are still implementing the assigner and anticipator modules.
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3.	 Results and Discussion 

When we started this work, we examined different case-based syst.ems [81 and 
det.eJ:lllined t.hat., of avail.abl.e case-based reasoning p.aradigms, t.hat. devel.oped 
by	 K. Hammond for t.he Chef system woul.d be most. effect.ive for agricul.t.ural. 
domain. 
Working on t.he cit.rus fertil.izat.ion pl.anner we det.eJ:lllined t.he key ways in 
which t.he agricul.t.ural. domain differs ,;,~rom t.he recipe domain of t.he original. 
Chef program, and the modificat.ions n~cessary t.o adapt. Chef t.o our domain. 
Principal. among t.hese differences are: 1) the fact t.hat. in t.he agricul.t.ural. 
domain t.he out.come of a pl.an may not mat.ch t.hat. expected due t.o unant.icipa­
t.ed effect. (e.g.,heavy rainfal.l., fungie or insect. pressure, et.c.), and modi­
ficat.ions t.o pl.anner must. be made t.o hel.p t.o ant.icipat.e t.hese effect.s or at. 
l.east. respond t.hem in fut.ure sit.uat.ions; 2) modify t.he adaptat.ion process so 
t.hat pieces of different ol.d schedul.es t.hat. partial.l.y mat.ch t.he new ones can 
be	 used. 
The protot.ype devel.opment demonst.rated how case-based reasoning and a ~airl.y 

l.arge case base can be used for pl.anning agricul.tural. crop management. Much 
work st.il.l. remains. 
Our first. priorit.y is to buil.d a ful.l. system. We al.so need t.o invest.igat.e 
t.he effect.iveness of simul.ation model.s and t.he similarit.y assessment. among 
the ret.rieved cases. rinal.ly, we pl.an t.o int.egrate t.he ca.e-ba.ed syst.em 
with a rul.e-based expert syst.em t.o creat.e a useful. decision support system 
for extension specialist.s and cit.rus growers. 
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3 .  Results and Discussion

When we started this  work, we examined different case-based systems [8 ]  and
determined that, of  available case-based reasoning paradigms, that developed
by K .  Hammond fo: the Chef system would be most effective for agricultural
domain.
working on the citrus fertil ization.planner we determined the key ways in
which the agricultural domain differsfifirom'the recipe domain o f  the original
Chef program, and the:modifications necessary to adapt Chef to  our domain.
Principal among these differences are :  l )  the fact that in the agricultural
domain the outcome of a p lan.may not match that expected due to unanticipa-
ted effect ( e .g . ,heavy  rainfall, fungie or insect pressure, e t c . ) ,  and.modi-
fications to planner must be made to help to anticipate these effects or at
least respond them in future situations; 2 )  modify the adaptation process so
that pieces o f  different old schedules that partially match the new ones can
be used.
The prototype development demonstrated how case-based reasoning and a fairly
large case base can be used for planning agricultural crop management. .Much
work sti l l  remains.
Our first priority i s  to build a full system" we also need to  investigate
the effectiveness of  simulation.models and the similarity assessment among
the retrieved cases .  Finally, we plan to  integrate the case-based system
with a rule—based.expert systemLto create a useful decision support system
for extension specialists and citrus growers.
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Using CBR techniques to detect plagiarism 
in computing assignments 

Padraig Cunningham 

Department ofComputer Science, Trinity College Dublin 
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Abstract. The problems of case retrieval in CBR and plagiarism detection ha,ve in common a need to 
detect close but not exact matches between exemplars. In this paper we describe a plagiarism detection 
system that has been inspired by ideas from eBR research. In particular this system can detect 

/ similarities between programs without performing exhaustive comparisons on all exemplars. Our 
.. analysis of similarity in this well controlled domain offers some insights into the kinds of profiles that 

can be used in similarity assessment in general. We argue that the choice of a perspicuous profile is 
crucial to any classification task and determining the best predictive features may require significant 
analysis of the pmblem domain. 

1 Introduction 
The problem of detecting plagiarism in computing assignments depends on being able to identify similar 
programs in large populations. This emphasis on similarity, on identifying close matches, is reminiscent of the 
problem of case retrieval in CBR. In this paper we will concentrate on the appHcation of CBR techniques in 
Cogger*, a.system for detecting plagiarism. We will discuss what this novel domain informs us about retrieval 
in CBR and about the automatic assessment of similarity in general. Our considerations on similarity in this 
well controlled domain offer some insighlS inw the alternatives of statistical and knowledge based classification. 

Since the idea of similarity can be considered along several dimensions it is often difficult for humans to 
agree on when cases, or programming assignments, are similar. In this research the programs under consideration 
have complicated structure and programs are considered to be similar if their function call structure is similar. 
This involves the determination of the similarity of function call trees; the mechanisms we use are described in 
Appendix I. 

Before examining the problem of plagiarism for a CBR perspective we will introduce some theoretical 
issues in CBR that are relevant. In section 3 we discuss similarity in general and in section 4 we consider the 
issue of problem representation that must be considered before any similarity can be determined. We believe that 
a basic tenet of the majority of CBR research is that similar cases can be retrieved from the case-base 
inexpensively; in section 5 we consider what kinds of representations are required to support this. 

2 Theoretical Issues 
Currently in AI there is a view that knowledge representation is unsuccessful and knowledge acq\lisition is 

fraught with problems. Consequently there is a move towards an AI paradigm that avoids these issues. This new 
AI is based on statistics and weights rather than symbolic knowledge representation [l). The current popularity 
of connectionism is evidence of this. Closer to CBR, Memory Based Reasoning (MBR) is an approach to AI 
that wishes wavoid knowledge acquisition and domain modelling [2]. The great attraction of neural networks and 
MBR is the contention that expert performance can be achieved without knowledge level analysis of the problem 
domain. This is in sharp contrast with the conventional view in AI; the view that "In the knowledge lies the 
power" and the knowledge must be represented explicitly. 

CBR is a methodology that can serve both of these paradigms. Case-Based Reasoning systems can be 
information theoretic or knowledge-based. CBR systems for simple tasks like diagnosis or property 
valuation can be set up with little analysis of the problem domain. At the other end of the spectrum systems for 
more complex tasks like design require a complex domain model in order to process retrieved cases. 

The main theme of this paper is the implications that these issues have on determining similarity in case 
retrieval. Is it possible to establish the similarity of two cases in a system that does not have a strong domain 
model? How far can we go with shallow index features in case retrieval? To this end we will analyse similarity 
in the context of detecting plagiarism in computing assignments. This is not really a CBR problem but we will 
argue that the issues of similarity are the same nonetheless. 

* "Cogging" is an anglo-irish slang word for copying homework or other exercises. 
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system that has been inspired by ideas from CBR research. In particular this system can detect

/ similarities between programs without performing exhaustive comparisons on all exemplars. Our
" analysis of similarity in this well controlled domain offers some insights into the kinds of profiles that

can be used in similari assessment in general. We argue that the choice of a perspicuous profile i s
crucial to any classification task and determining the best predictive features may require significant
analysis of the problem domain.

1 Introduction-
The problem of detecting plagiarism in computing assignments depends on being able to identify similar
programs in large pepulations. This emphasis on similarity, on identifying close matches, is  reminiscent of the
problem of case retrieval in CBR. In this paper we will concentrate on the application of CBR techniques in
Cogger*, asystem for detecting plagiarism. We will discuss what this novel domain informs us about retrieval
in CBR and about the automatic assessment of similarity in general. Our considerations on similarity in this
well controlled domain offer some insights into the alternatives of statiStical and knowledge based classification.

Since the idea of similarity can be considered along several dimensions it is often difficult for humans to
agree on when cases, or programming assignments, are similar. In this research the programs under consideration
have complicated structure and programs are considered to be similar if their function call structure is similar.
This involves the determination of the similarity of function call trees; the mechanisms we use are described in
Appendix I.

Before examining the problem of plagiarism for a CBR perspective we will introduce some theoretical
issues in CBR that are relevant. In section 3 we discuss similarity in general and in section 4 we consider the
issue of problem representation that must be considered before any similarity can be determined. We believe that
a basic tenet of the majority of CBR research is that similar cases can be retrieved from the case-base
inexpensively; in section 5 we consider what kinds of representations are required to support this.

2 Theoretical Issues
Currently in Al there is a view that knowledge representation is unsuccessful and knowledge acquisition is

fraught with problems. Consequently there is a move towards an AI paradigm that avoids these issues. This new
AI is  based on statistics and weights rather than symbolic knowledge representation [1]. The current popularity
of connectionism is  evidence of this. Closer to CBR, Memory Based Reasoning (MBR) is an approach to AI
that wishes to avoid knowledge acquisition and domain modelling [2]. The great attraction of neural networks and
MBR is the contention that expert performance can be achieved without knowledge level analysis of the problem
domain. This is in sharp contrast with the conventional view in AI; the view that "In the knowledge lies the
power" and the knowledge must be represented explicitly.

CBR is a methodology that can serve both of these paradigms. Case-Based Reasoning systems can be
informat ion theoret ic  or knowledge -based .  CBR systems for simple tasks like diagnosis or property
valuation can be set up with little analysis ‘of the problem domain. At the other end of the spectrum systems for
more complex tasks like design require a complex domain model in order to process retrieved cases.

The main theme of this paper is the implications that these issues have on determining similarity in case
retrieval. Is it possible to establish the similarity of two cases in a system that does not have a strong domain
model? How far can we go with shallow index features in case retrieval? To this end we will analyse similarity
in the context of detecting plagiarism in computing assignments. This is not really a CBR problem but we will
argue that the issues of similarity are the same nonetheless.

* "Cogging" is an angle—irish slang word for copying homework or other exercises.
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3 Similarity in eBR and in Plagiarism Detection 
The standard approach to the problem of detecting plagiarism is to produce a profile reflecting the use of 

keywords and identifiers and to use this signature to produce a table describing the 'distance' between different 
programs (see [3][4][5] for instance). Research in CBR and machine learning has developed methods for assessing 
similarity in large populations that are more sophisticated than this so in this paper we apply CBR insights on 
similarity to the plagiarism detection problem. 

In CBR the objective in noticing similarity is to allow for reuse of old solutions in new situations. In 
plagiarism the object is to identify similarity that betrays a common origin. In CBR similarity may be based on 
surface features or on features that are more abstract and structural. In plagiarism detection attempts will have 
been made to conceal superficial similarity and detection must be able to identify systematic or structural 
similarities. 

3.1 A Brief overview of eBR 

In attempting to apply CBR techniques in this domain our understanding of the stages in CBR are as follows:-

Case Representation
 
Case Indexing/Retrieval
 
Mapping
 
Adaptation
 

A fundamental idea in much of CBR research is that the identification of the best matching case from the case­
base should be a two stage process [6]. Base filtering is the first stage where a set of candidate cases are 
selected from an indexed case-base. The case-base will often be organised as a discrimination net to facilitate this. 
The second stage (Case Selection) will select a case from this candidate set based on a more detailed 
comparison of the cases. A mapping between the base and target cases may also be produced at this stage. Such a 
selection that does llil1 involve an exhaustive search of the case"base is a novel idea in plagiarism detection. 

For plagiarism detection we will concentrate first on producing a representation of the programs for 
mapping, before analysing the mapping process itself. More than anything this exercise in plagiarism detection 
highlighted the importance of this parameterisation process. 

4 Representation 
The first phase in the development of a CBR system involves deciding on a representation of the cases in the 
-system (Fig. 1). This phase is crucial because the perspicuousness of the representation greatly influences the 
success of the subsequent phases. It is important to note that the contribution of neural networks in tasks of this 
type is in the classification process that operates on the chosen representation (see the mushroom classification 
task in [7] for instance. However we are arguing that the crucial phase in this problem solving process is 
choosing the correct representation in the first place. Indeed given a good predictive representation it may be 
possible to classify inputs using traditional cluster analysis techniques. 

Profile 

Classification 

Retrieval 

Mapping 

Fig.I. Characterisation involves producing a profile that represents real world problem for use in classification, etc. 

From a problem solving perspective it is useful to characterise indexing features along a continuum from 
shallow to deep (Fig. 2). Shallow features are the obvious surface features of a case and can be determined 
without much analysis. Deep features are more predictive in the context of the problem in hand but require more 
analysis to determine. It should be clear that when two cases are very similar they will share surface features. 
However, when the similarity is more abstract shallow indexes may be different and the similarity may only be 
indicated in more abstract features. We believe that the plagiarism detection problem that we will describe offers 
some useful insights in this regard. 
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3 Similarity in CBR and in Plagiarism Detection
The standard approach to the problem of detecting plagiarism is to produce a profile reflecting the use of

keywords and identifiers and to use this signature to produce a table describing the 'distance' between different
programs (see [3][4] [5] for instance). Research in CBR and machine learning has developed methods for assessing
similarity in large populations that are more sephisticated than this so in this paper we apply CBR insights on
similarity to the plagiarism detection problem.

In CBR the objective in noticing similarity is to allow for reuse of old solutions in new situations. In
plagiarism the object IS to identify similari that betrays a common origin. In CBR similarity may be based on
surface features or on features that are more abstract and structural. In plagiarism detection attempts will have
been made to conceal superficial similarity and detection must be able to identify systematic or structural
similarities.

3 . 1 A Brief overview of CBR

In attempting to apply CBR techniques in this domain our understanding of the stages in CBR are as follows:—

- Case Representation
' Case Indexing/Retrieval
. Mapping
- Adaptation

A fundamental idea in much of CBR research is  that the identification of the best matching case from the case-
base should be a two stage process [6]. Base filtering is the first stage where a set of candidate cases are
selected from an indexed case-base. The case—base will often be organised as a discrimination net to facilitate this.
The second stage (Case Selection) will select a case from this candidate set based on a more detailed
comparison of the cases. A mapping between the base and target cases may also be produced at this stage. Such a
selection that does not involve an exhaustive search of the ease-base is a novel idea in plagiarism detection.

For plagiarism detection we will concentrate first on producing a representation of the programs for
mapping, before analysing the mapping process itself. More than anything this exercise in plagiarism detection
highlighted the importance of this parameterisation process.

4 Representation
The first phase in the development of a CBR system involves deciding on a representation o f  the cases in the
system (Fig. 1). This phase is  crucial because the perspicuousness of  the representation greatly influences the
success of the subsequent phases. It is important to note that the contribution of  neural networks in tasks of this
type is in the classification process that operates on the chosen representation (see the mushroom classification
task in [7] for instance. However we are arguing that the crucial phase in this problem solving process is
choosing the correct representation in the first place. Indeed given a good predictive representation it may be
possible to classify inputs using traditional cluster analysis techniques.
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Fig.1. Characterisation involves producing a profile that represents real world problem for use, in classification, etc.

From a problem solving perspective it is useful to characterise indexing features along a continuum from
shallow to deep (Fig. 2). Shallow features are the obvious surface features of a case and can be determined
without much analysis. Deep features are more predictive in the context of the problem in hand but require more
analysis to determine. It should be clear that when two cases are very similar they will share surface features.
However, when the similarity is more abstract shallow indexes may be different and the similarity may only be
indicated in more abstract features. We believe that the plagiarism detection problem that we will describe offers
some useful insights in this regard.
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Fig.2. Indexing features can be shallow or deep depending on their semantic content. 

5 Base Filtering 
What we require form base filtering is a computationally inexpensive means of selecting a small set of candidates 
from the case-base that are likely to be similar to our target case. This is essentially a classification problem and 
as such there are several different approaches that can be adopted. One important criteria in categorising 
techniques is whether classification involves an exhaustive search of the case-base. Nearest neighbour techniques 
are of this type and involve comparing the target case with each base case in turn using a global distance metric. 
In these cases retrieval is O(n) where n is the number of cases in the case-base. More promising case retrieval 
techniques structure the case-base as a decision tree and retrieval is O(log(n)) since it does not involve visiting 
every case in the case-base. '" 

The most common means of supporting base filtering in CBR is to organise the case-base as a decision tree 
that will support rough remindings without the need for exhaustive comparisons. Two approaches were 
considered for Cogger:­

Information theoretic: Using Gennari's Classit algorithm [8]. This method takes a case 
represented as a vector of numeric attributes and can incrementally locate the case in a classification 
hierarchy. In case retrieval this classification can produce the candidate set required from base 
filtering. The main advantage of Classit is that it is incremental, unlike other cluster analysis 
techniques in statistics. 

Knowledge based: Discrimination networks (D-nets). The indexing features are ordered according 
to importance and the case-base is structured as a taxonomy based on this feature ordering. Cases 
are classified by locating them in this taxonomy. 

D-nets have the advantage that, with redundancy, they can support different types of remindings. However, the 
use of D-nets commits the user to a knowledge level evaluation of the problem domain and to an ordering of the 
indices to reflect their priorities. For this reason Gennari's incremental clustering algorithm was used to perform 
the base filtering in Cogger. 

Experiments with this base filtering indicate that no cases are slipping though the net. In no situation has 
the base filtering failed to capture known similar cases in the candidate sel. 

5.1 Experiments in Cogger 

One of the very simplest profiles that can be used as the basis for similarity assessment in plagiarism detection 
is an ordered frequency count of identifiers in the programs. Matching is done based on comparing ranked 
frequency counts. Table 1 shows an example of two such profiles. This profile is at the very shallow end of the 
continuum shown in Figure 2. It is easy to construct without any knowledge of what is going on. in the 
program. This profile is adequate for spotting blatant plagiarisms as is the case here. However, a few simple 
changes to the programs will fool any similarity metric based on this profile. 

'" There are also connectionist techniques for classification and similarity that have not been considered here. In 
particular spreading activation and constraint satisfaction have been used in ARCS [9] and SAARCS [10]. These are 
localist connectionistsystems and are different to other approaches mentioned in this paper. 
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5 Base Filtering
What we require form base filtering is a computationally inexpensive means of selecting a small set of candidates
from the case-base that are likely to be similar to our target case. This is essentially a classification problem and
as such there are several different approaches that can be adopted. One important criteria in categorising
techniques is whether classification involves an exhaustive search of the case—base. Nearest neighbour techniques
are of this type and involve comparing the target case with each base case in turn using a global distance metric.
In these cases retrieval is 0(n) where n is  the number of cases in" the case-base. More promising case retrieval
techniques structure the case-base as a decision tree and retrieval is 0(log.(n)) since i t  does not involve visiting
every case in the case-based"

The most common means of supporting base filtering in CBR is to organise the case-base as a decision tree
that will support rough remindings without the need for exhaustive comparisons. Two approaches were
considered for Coggerz—

- Information theoretic: Using Gennari‘s Classit algorithm [8]. This method takes a case
represented as a vector of numeric attributes and can incrementally locate the case in a classification
hierarchy. In case retrieval this classification can produce the candidate set required from base
filtering. The main advantage of Classit is  that i t  is incremental, unlike other cluster analysis
techniques in statistics.

- Knowledge based: Discrimination networks (D-nets). The indexing features are ordered according
to importance and the case—base is structured as a taxonomy based on this feature ordering. Cases
are classified by locating them in this taxonomy.

D—nets have the advantage that, with redundancy, they can support different types of remindings. However, the
use of D-nets commits the user to a knowledge level evaluation of the problem domain and to an ordering of the
indices to reflect their priorities. For this reason Gennari's incremental clusterin g algorithm was used to perform
the base filtering in Cogger.

Experiments with this base filtering indicate that no cases are slipping though the net. In no situation has
the base filtering failed to capture known similar cases in the candidate set.

5.1 Experiments in Cogger
One of the very simplest profiles that can be used as the basis for similarity assessment in plagiarism detection
is an ordered frequency count of identifiers in the programs. Matching is done based on comparing ranked
frequency counts. Table 1 shows an example of two such profiles. This profile is  at the very shallow end of the
continuum shown in Figure 2. It is easy to construct without any knowledge of what is going m in  the
program. This profile is adequate for spotting blatant plagiarisms as is the case here. However, a few simple
changes to the programs will fool any similarity metric based on this profile.

* There are also connectionist techniques for classification and similarity that have not been considered here. In
particular spreading activation and constraint satisfaction have been used in ARCS [9]  and SAARCS [10]. These are
localist connectionist-systerns and are different to other approaches mentioned in this paper.
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Table 1. Frequency counts of identifiers in two programs 

Program stut Pro2ram stu3 
19 close 20 close 
11 pipea 10 pipea 
10 pipeb 10 pipeb 

4 hold 4 num 
4 dup 4 dup 
3 wait 3 wait 
3 fork 3 fork 
3 execlp 3 execlp 
2 squasherpd 2 squasherpd 
2 readerpd 2 readerpd 
2 pipe 2 formatterpd 
2 formatterpd 

A rudimentary understanding of the programming language suggests a improved profile based on counts of 
reserved keywords only. This profile better reflects the actual structure of the program since keywords like do 
and if indicate specific control structures. Similarity metrics based on this profile can spot less obvious 
similarities. 

Table 2. Profiles based on counts of reserved identifiers. 

Program staOS Program sta09 
4 char 2 char 

1 do 
38 else 41 else 

1 float 1 float 
19 for 14 for 
52 if 56 if 

4 int 9 int 
21 return 22 return 

1 sizeof 1 sizeof 
2 struct 2 struct 

22 void 27 void 
9 while 8 while 

In the terms introduced in Fig. 2 this is an improved surface profile or a rudimentary structural profile. The 
profile that we actually used in Cogger is a further improvement on this. Some of the less predictive keywords 
have been dropped and some structural parameters of the programs have been included. For instance; the first 
parameter (top width) is the number of function calls from the top level of the program, the depth is the 
maximum depth of function calls. 

Table 3. Profiles based on structural paramters and counts of reserved identifiers. 

Program sta05 Program sta09 
39 top width 9 top width 

6 depth 6 depth 
39 max width 31 max width 
13 user defined 14 user defined 
13 system def. 12 system def. 

0 recursive 1 recursive 
0 do 1 do 

19 for 14 for 
52 if 56 if 

9 while 8 while 
21 return 22 return 
38 else 41 else 

0 case 0 case 
0 switch 0 switch 

6 Evaluation and Conclusions 
We have tested these profiles on three data sets containing from 6 to 35 program profiles. When programs are 
very similar it shows up in all profiles as would be expected. When the plagiarism is more Subtle and surface 
features have been altered the similarity is notcvident in the surface profile but shows up in the structural profile 
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3 fork 3 fork
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2 squasherpd 2 squasherpd
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A rudimentary understanding of the programming language suggests 3 improved profile based on counts of
reserved keywords only. This profile better reflects the actual structure of the program since keywords like do
and i f  indicate specific control structures. Similarity metrics based on this profile can spot less obvious
similarities.

Table 2. Profiles based on counts of reserved identifiers.

Program sta05 Program staO9
4 cha r  2 cha r

1 do
38  e l s e  41  e l s e
l f l oa t  1 f l oa t

19  fo r  l 4  fo r
52 ‘  i f  56  i f
4 i n t  9 i n t

21  re tu rn  22  r e tu rn
l s i zeo f  1 s i zeo f
2 s t ruc t  2 struct

22  void 27  v o i d
9 while 8 while

In the terms introduced in Fig. 2 this i s  an improved surface profile or a rudimentary structural profile. The
profile that we actually used in Cogger is a further improvement on this. Some of the less predictive keywords
have been dropped and some structural parameters of the programs have been included. For instance; the first
parameter ( top  width)  is the number of function calls from the top level of the program, the dep th  is the
maximum depth of function calls.

Table 3. Profiles based on structural paramters and counts of  reserved identifiers.

Program staOS Program sta09
39  top  w id th  9 t op  wid th

6 ' dep th  6 dep th
39  max width 31  max width
13  u s e r  defined 14  use r  de f ined
13  sys t em de f .  12  sys t em de f .

0. r ecurs ive  1 r ecurs ive
0 do ' 1 do

19  fo r  ‘ 14  fo r
52  i f  ' 56  i f
9 while 8 while

21  return 22  return
38  e l s e  41  e l s e

0 case  0 case
0 swi t ch  0 swi t ch

6 Evaluat ion and  Conclusions
We have tested these profiles on three data sets containing from 6 to 35 pregram profiles. When programs are
very similar it shows up in all profiles as would be expected. When the plagiarism is more Subtle and surface
features have been altered the similarity is notevident in the surface profilc but shows up in the structural profile
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(see Table 3). Determining the appropriate features for this profile required some analysis. So we conclude that 
for more difficult classification tasks surface profiles are not adequate and the more abstract profiles are more 
expensive to set up. 

From the perspective of the plagiarism detection task, the main novelty of this system is that it operates 
without doing exhaustive comparisons. Cogger performs similarity assessment as a two stage process; the first 
stage uses the Classitalgorithm [8] to produce the candidate set of cases. The second stage performs expensive 
comparisons of the program structures to produce a metric of similarity (see Appendix I for details). The main 
conclusions from this exercise are as follows:-

Effective profiling is crucial: no amount of cleverness in matching and retrieval can compensate for 
poor case representation. Figure 1 depicts the characterisation process that produces the regular case 
representation for classification etc. Settling on the best predictive features was a non-trivial task in 
Cogger and would be expected to be more difficult in less formal domains. 

Cogger performs very well at identifying similarities in programs; however, it must be 
acknowledged that using the function tree structure as the basis of the mapping' process is{;rucial to 
this success. 
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Appendix I 
Ultimately, the similarity of two programs is judged on the amount of common structure in their function trees. 
Computationally, this is a difficult task, increasing rapidly with the size of the trees. The solution adopted in 
Cogger is to convert the tree structure to a string representation and find common sub-strings. This string 
matching is complicated by what the strings represent and the character of the similarity that should be detected. 
Consider the following example C program:­

#include <stdio.h> main () 
#include <math.h> ( 

float pi = 3.1415926; do_it(); 
if (1) 

void do_it (void) printf("END \n"); 
( else 
printf("Hello. world\n"); fprintf(stdout."END\n"); 
printf("cos(pi/4) = H\n".cos(pl/4)); 

} 

This programme has the tree structure shown in Figure 3. 

main.O.l 

r-I-----1---------" 
do it.O.l printf.O.O fprintf.O.O

--1-----" 
cos.O.O printf.O.Oprintf.O.O 

Fig.3 A typical function call structure shown as a tree. 

This is converted to the following string format for processing:­

main.0.3.0.0 -- do_it.1.3.0.1 -- printf.2.0.0.0 -- cos.2.0.0.0 -- printf.2.0.0.0 --printf.1.0.0.0 -- fprintf.1.0.0.0 

In this format each node has three attributes; its level in the tree, the number of branches, depth of recursion, a 
flag to indicate whether it is user defined or not. This string representation is used in the matching process; the 
measure used is as follows:-

Lmatched substrings 

total length 

Nodes are considered to match if they are user defined and match on the recursion and branching flags or if they 
are system defined and have an identical name. Substrings match only if the change in the level attribute between 
nodes is consistent.' . 
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Ultimately, the similarity of two programs is  judged on the amount of common structure in their function trees.
Computationally, this is a difficult task increasing rapidly with the size of the trees. The solution adopted 1n
Cogger is  to convert the tree structure to a string representation and find common sub-strings. This string
matching is complicated by what the strings represent and the character of the similarity that should be detected.
Consider the following example C program:-

# inc lude  <s td io .h>  ma in t )
# inc lude  <ma th .h>  {
f loa t  p i '=  3.1415926: ' do_it():

i f  ( I )
void do_it(void) printf(“END \n");

{ _ else
printf("Hello‚ wor ld \n" ) ;  fprintf(stdout‚"END\n");

pr in t f ( "cos (p i /4 )  = %f\n" , cos (p i /4 ) ) ;  }

}

This programme has the tree structure shown in Figure 3.
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l l ‘ I
printf.0.0 cos.0.0 Printf-U-O
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In this format each node has three attributes; its level in the tree, thenumber of branches, depth of recursion, a
flag to indicate whether it is  user defined or not. This string representation is used in the matching process; the
measure used is as follows:-

Z matched substrings
total length

Nodes are considered to match if they are user defined and match on the recursion and branching flags or if they
are system defined and have an identical name. Substrings match only if the change 1n the level attribute between
nodes is consistent
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Abstract 

The aim of this research is to develop a case-based system to provide decision support fo;r diagnosis 
of cases of dysmorphic syndromes, and increase the scope of syndrome analysis with respect to rare cases 
through its learning capability. An interactive case-based model has been designed t? facilitate diagnosis 
through classification, and learning through reorganisation. 

Dysmorphic syndromes describe morphological disorders and patterns of morphologic defects l . An 
example is Down Syndrome which can be described in terms of characteristic clinical and radiographic 
manifestations such as mental retardation, sloping forehead, a flat nose, short broad hands and generally 
dwarfed physique [4]. There are currently about two thousand registered syndromes which affect about 
7 in 1000 children. The primary goal of medical specialists is to diagnose a patient to a recognised 
syndrome. Firm diagnosis enables prediction of abnormal developmental processes. This may promote 
a course of treatments that reduce the effects of the disease, or allow genetic counceling to be given in 
the case of a hereditary disease. However, firm (or even tentative) diagnosis is not always possible. A 
case may resemble a syndrome but exhibit (or lack) significant features resulting in sufficient doubt for 
a firm diagnosis. About forty percent of cases remain undiagnosed with respect to known syndromes. 
A secondary task concerns analysis of rare cases ~ith a view to establishing new syndrome descriptions 
along with retrospective analysis (and possible reorganisation) of current syndrome categories. Case­
based reasoning (CBR) provides an intuitive model for addressing these performance tasks. Diagnosis is 
in essence a classification task. Conceptually this may be considered as the problem of locating a specific 
case within a strudured case memory in which generalised cases represent syndrome descriptions. The 
secondary learning task may be 'Considered a reorganisation problem. This may be facilitated by the 
dynamic properties of a structured case based memory. 

An interactive case-based model has been designed to incorporate these two performance tasks. Such 
an approach was favoured due partly to the weakness of tlIe domain theory [3] and to offer a realistic 
scope for system performance. Both diagnosis of a case and recognition of anew syndrome or pattern 
of malformations are llighly subjective and ultimately require clinical or radiological investigation rather 
than symbolic comparison. The scope of the case-based system is to assist in researching similarly 
affected cases and to focus the attention of an expert towards possible reorganisations. Two particular 
areas of interest have presented themselves with respect to CBR theory and have greatly influenced the 
design of this model. The first concerns the actual structure of syndrome categories as they are currently 
understood which has ramifications upon representational issues of memory and cases along with the 
subsequent indexing mechanism. The second concerns the general concept of similarity which in this 
domain is complex and can involve a number of competing factors. 

The domain theory is weak in terms of well defined hierarchical categories. Some recognised syndrome 
families exist, but many syndromes (and cases) stand isolated. Categories are not necessarily clearly 

1A syndrOIne can be defined as a pattern of multiple anomalies thought to be pathogenetically related. 
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Abstract

The aim of this research is to develop a case-based system to  provide decision support for diagnosis
of cases of dysmorphic syndromes, and increase the scope of syndrome analysis with respect to rare cases
through its learning capability. An interactive case-based model has been designed to facilitate diagnosis
through classification, and learning through reorganisation.

Dysmorphic syndromes describe morphological disorders and patterns of morphologic defectsl. An
example is Down Syndrome which can be described in terms of characteristic clinical and radiographic
manifestations such as mental retardation, sloping forehead, a. flat nose, short broad hands and generally
dwarfed physique [4]. There are currently about two thousand registered syndromes which affect about
7 in 1000 children. The primary goal of medical specialists is to  diagnose a patient to a recognised
syndrome. Firm diagnosis enables prediction of abnormal developmental processes. This may promote
a course of treatments that reduce the effects of the disease, or allow genetic counceling to be given in
the case of a hereditary disease. However, firm (or even" tentative) diagnosis is not always possible. A
case may resemble a syndrome but exhibit (or lack) significant features resulting in sufficient doubt for
a firm diagnosis. About forty percent of cases remain undiagnosed with respect to  known syndromes.
A secondary task concerns analysis of rare cases with a view to  establishing new syndrome descriptions
along with retrospective analysis (and possible reorganisation) of current syndrome categories. Case-
based reasoning (CBR) provides an intuitive model for addressing these performance tasks. Diagnosis is
in essence a classification task. Conceptually this may be considered as the problem of locating a specific
case within a structured case memory in which generalised cases represent syndrome descriptions. The
secondary learning task may be “considered a reorganisation problem. This may be facilitated by the
dynamic properties of a. structured case based memory.

An'interactive case-based model has been designed t o  incorporate these two performance tasks. Such
an approach was favoured due partly to  the weakness of the domain theory [3] and to offer a realistic
scepe for system performance. Both diagnosis of a case and recognition of a’new syndrome or pattern
of malformations are highly subjective and ultimately require clinical or radiological investigation rather
than symbolic comparison. The scope of the case—based system is to assist in researching similarly
affected cases and to  focus the attention of an expert towards possible reorganisations. Two particular
areas of interest have presented themselves with respect to  CBR theory and have greatly influenced the
design of this model. The first concerns the actual structure of syndrome categories as they are currently
understood which has ramifications upon representational issues of memory and cases along with the
subsequent indexing mechanism. The second concerns the general concept of similarity which in this
domain is complex and can involve a number of competing factors.

The domain theory is weak in terms of well defined hierarchical categories. Some recognised syndrome
families exist, but many syndromes (and cases) stand isolated. Categories are not necessarily clearly

1 A syndrome can be  defined as a pattern of multiple anomalies thought to  be  pathogenetically related.
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disjoint, or mutually exclusive. Standard CBR indexing mechanisms that rely on hierarchical memory 
structures cannot therefore be employed. Another consideration, which also affects similarity, is that 
experts interpret case features differently and case descriptions vary in detail. Non-uniform featural 
descriptions affect both representation and similarity with respect to learning [2]. A distributed approach 
has been adopted for case memory representation. A memory item (case or syndrome) is a structured 
object with nodes representing only those abnormal clinical or skeletal regions that are described. In 
this way the overall shape to the item will vary according to the abnormalities that exist with respect to 
clinical and skeletal regions. Each type of clinical and skeletal object is stored relative to other objects 
of the same type (from different memory items) within memory. This fragmented representation has a 
number of advantages. Firstly it caters for non-uniform data as objects are only instantiated for those 
features described in the medical record. Whether a case .is described by 30 features or 3 features will be 
reflected in the shape of the resulting structured object. This representation facilitates confined search 
without the requirement of a hierarchical memory structure. Once indexes have been chosen they can 
probe the respective regional clusters without the need to traverse a network structure. A further aspect 
under consideration when choosing the representation was similarity assessment. As described below 
matching does not necessarily involve an overall assessment of similarity and only a small number of 
regions may be involved. The structured nature of the representation aids such focus. 

Of major interest is the similarity assessment performed by medical specialists. Similarity of cases 
can be biased by a number of different influences. In one sense similarity assessment may be considered 
as 'goal or task driven. Experts often have an initial diagnosis in mind which causes them to focus on 
a small set of similar features around certain regions of the body rather than examining the overall 
match. During this time dissimilarities may be regarded as insignificant to the degree that they will 
not count against a match (ie, overlooked provided they carry minor significance). In contrast if the 
goal is retrospective analysis of a category with respect to a new case, focus will be on dissimilarities 
and the interpretation of their respective significance may increase. Feature interdependencies can also 
be an important factor. These may comprise of combinations of abnormalities that simply appear to 
commonly occur, or are known to be radiologically or clinically interdependent. Matching may have a 
number of different temporal aspects and the temporal status (ie, if the patient is alive, or if dead the age 
of the patient at death) can be very diagnostic. Temporal development is important in some syndromes, 
for example in Noonan Syndrome clinical appearance and characteristic features change significantly 
with age. The temporal development of bone and cartilage is important for matching cases of skeletal 
dysplasias2 which form a relatively well understood subset of syndromes. 

An initial similarity metric utilised domain knowledge offeature weights (from the London Dysmor­
phology Database [6]). These weights reflect the diagnostic significance of abnormal features. However, 
significance can vary depending on the goal of the matching process ie, indexing or general similarity 
assessment. For example, mental retardation occurs in over 600 syndromes and so does not provide a 
good retrieval index. However, in terms of diagnosis against some syndromes it is a vital feature and 
so for general similarity assessment may have high significance. This aspect of matching would lead to 
problems in an unsupervised system in which indexing and matching operate in tandem. The interac­
tive model separates indexing from general matching and allows the user to adjust feature weights to 
his interpretation of significance with respect to the current group under analysis and the goal of the 
matching process. 

There would seem to be a trade off between the utilisation of a numerical similarity metric based 
on feature sets and weights' ([1]) against a difficult and time consuming elicitation of detailed match­
ing knowledge aIld cognitive processes. This research has so far favoured a generalised set theoretical 
approach to similarity assessment [5J. A model of similarity has been designed based on the general 
matching principles described above that relate to this domain. It establishes a number of different 
operators that may play a part in overall matching to varying degrees. A matching operator exists for 
the performance goal ie, whether the performance task is diagnosis or retrospective analysis. This will 
influence which item (of the two being matched) forms the subject and which forms the referent. This 
idea coincides with Tversky's opinion that similarity can be directional, or asymmetric. The weights 
of similarities and dissimilarities are increased or decreased according to the direction of similarity as­

2 A dysplasia i. an abnormal organisation of cells into tissue(s) and its morphological result(s). 
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disjoint, or mutually exclusive. Standard-r CBR indexing mechanisms that rely on hierarchical memory
' structures cannot therefore be employed. Another consideration, which also affects similarity, is that

experts interpret case features differently and case descriptions vary in detail. Non-uniform featural
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under consideration when choosing the representation was similarity assessment. As described below
matching does not necessarily involve an overall assessment of similarity and only a small number of
regions may be involved. The structured nature of the representation aids such focus.
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match. During this time dissimilarities may be regarded as insignificant to the degree that they will
not count against a match (ie, overlooked provided they carry minor significance). In contrast if the
goal is retrospective analysis of a category with respect to a new case, focus will be on dissimilarities
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significance can vary depending on the goal of the matching process ie, indexing or general similarity
assessment. For example, mental retardation occurs in over 600 syndromes and so does not provide a
good retrieval index. However, in terms of diagnosis against some syndromes it is a vital feature and
so for general similarity assessment may have high significance. This aspect of matching would lead to
problems in an unsupervised system in which indexing and matching operate in tandem. The interac-

. tive model separates indexing from general matching and allows the user to adjust feature weights to
his interpretation of significance with respect to the current group under analysis and the goal of the
matching process. -

There would seem to be a trade off between the utilisation of a numerical similarity metric based
on feature sets and weights ([1]) against a difficult and time consuming elicitation of detailed match-
ing knowledge and cognitive processes. This research has so far favoured a generalised set theoretical
approach to  similarity assessment [5]. A model of similarity has been designed based on the general
matching principles described above that relate to this domain. It establishes a number of different
operators that may play a part in overall matching to varying degrees. A matching operator exists for
the performance goal ie, whether the performance task is diagnosis or retrospective analysis. This will
influence which item (of the two being matched) forms the subject and which forms the referent. This
idea coincides with Tversky’s opinion that similarity can be directional, or asymmetric. The weights
of similarities and dissimilarities are increased or decreased according to  the. direction of similarity as-
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sessment which is in turn defined by the performance go-al. Operators also exist to focus on temporal 
matching, interdependencies and for matching normal regions (currently syndrome descriptions only 
incorporate abnormalities, but normal regions can be significant in matching). 

In conclusion, practical issues have guided the system design towards an interactive case-based model. 
Interactive control is provided to the user to allow flexibility in retrieval and reorganisation of the case 
memory, and to offer an aid rather than a solution. The user can control indexing through adjustment of 
feature weights to account for his own interpretation of significance, and allow him to account for featural 
equivalences due to the non-uniformity of case descriptions. Following the application of a generalised 
similarity model to the retrieved memory objects the user is prompted to analyse the similarity mappings 
produces by the system in order to either confirm a diagnosis or accept (or reject) a proposed link between 
memory objects or a reorganisation. 
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incorporate abnormalities, but normal regions can be significant in matching).

In conclusion, practical issues have guided the system design towards an interactive case-based model.
Interactive control is provided to the user to allow flexibility in retrieval and reorganisation of the case
memory, and to offer an aid rather than a solution. The user can control indexing through adjustment _of
feature weights to account for his own interpretation of significance, and allow him to account for featural
equivalences due to the non-uniformity of case descriptions. Following the application of a generalised
similarity model to the retrieved memory objects the user is prompted to analyse the similarity mappings

' produces by the system in order to either confirm a diagnosis or accept (or reject) a proposed link between
memory objects or a reorganisation. -

I Acknowledgments
This research has been possible due to the assistance of Dr R Winter and Dr J A Maat-Kient (Institute of
Child Health, London), Prof D L Rimoin and Dr R Lachman (Ceders-Sinai Medical Center, Department
of Pediatrics, UCLA), and Dr C Hall (Great Ormond Street Hospital for Sick Children, London).

References

[1] David W.  Aha. Casio—based learning algorithms. In Proceedings of the DARPA Case-Based Reasoning
Workshop. Morgan Kaufmann, 1991.

[2] Ray Bareiss and James A. King. Similarity assessment in case-based reasoning. In Proceedings of the
DARPA Case-Based Reasoning Workshop. Morgan Kaufmann, 1989.

[3] Bruce -W. Porter, Ray Bareiss, and Robert C. Holte. Concept learning and heuristic Classification in
weak theory domains. Artificial Intelligence, 45, 1990.

[4] Hooshang Taybi and Ralph S. Lachman. Radiology of Syndromes, Metabolic Disorders, and Skeletal
Dysplasias, 3rd Edition. Year Book Medical Publishers, Inc, 1990.

[5] Amos Tversky. Features of similarity. Psychological Review, 84(4):327—352, 1977.

[6] R. M. Winter, M. Baraitser, and J. M. Douglas. A computerised data base for the diagnosis of rare
dysmorphic syndromes. Journal of Medical Genetics, 21:121—-123, 1988.



Facilitating Sales Consultation through Case-Based 
Reasoning 

Achim G. Hoffmann; Sunil Thakar 
Daimler-Benz AG
 

Research and Technology
 

Systems Technoiogy
 

Alt-Moabit 91b
 

Berlin 10559, Germany
 

email: achim@DBresearch-berlin.de
 

email: thakar@DBresearch-berlin.de
 

Abstract. In this paper, we not only describe the sales advisory system - which uses case based 
reasoning - but also how we tackled both issues of indexing and case adaptation in a novel, intelligent 
and effective way. Here we propose a multidimensional indexing technique, which is capable of 
incremental adaptation to the requirements derived from newly occurred cases. We also suggest 
and advocate in favor of composition of multiple cases or parts ofcases. A solution is wmposed from 
multiple cases which are similar to the new case with respect to different indexing dimensions. The 
developed case-based reasoning technique for adapting case indexing is multidimensional and generic 
in nature. Furthermore, we also provide an analysis of the cognitive task of sales consultation. 

1 Introduction 

In present business environment especially in the manufacturing industry the functions of sales organiza­
tions have become complex as products are becoming multi-variant'and customer requirements(wishes) 
high and specific [11]. Due to the increased complexity of sales situations a strong, competent and effi­
cient sales consultation is often required. Thus to facilitate and accelerate the sales consultation process 
the advisory systems are of utmost importance. Sales consultants usually improve their skills through 
practice. During the sales dialogue, consultants often use the experience from previous consultation ses­
sions, which help improve their understanding of the needs of the new customer. Moreover, usually first 
the consultant tries to clarify the most important points for a decision and fater to suggest trade-offs 
among less important points, if necessary. Hence, a case-based reasoning approach to sales consultation 
appears promising, although the known techniques seem to be insufficient for adequately treating the 
consultation task. 
In this paper, we not only describe the sales advisory system (in section 3) - which uses case based 
reasoning - but also how w'e tackled both issues of indexing and case adaptation in a novel, intelligent 
and effective way. Here we propose a multidimensional indexing technique, which is capable of incremental 
adaptation to the requirements derived from newly occurred cases. '-IVe also suggest and advocate in favor 
of composition of multiple cases or parts of cases, A solution is composed from multiple cases which are 
similar to the new case with respect to different indexing dimensions (see section 2). The developed 
case-based reasoning te.chnique for adapting case indexing is multidimensional and generic in nature. 
Furthermore, we also provide an analysis of the cognitive task of sales consultation. 

1.1 The Problem Domain: Sales Consultation 

In this context, let us consider the following scenario: 

Scenario 

A customer presently owns a small transport company and is close to exceeding the load/volume capacity 
of his present fleet. He can increase his load/volume capacity by either: 

•Author's present Address: School of CS & Eng. University of New South Wales, p.a. Box 1, Kensington, NSW 2033, 
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Abstract .  In  this paper, we not only describe the sales advisory system - which uses case based
reasoning - but also how we tackled both issues of indexing and case adaptation in a novel, intelligent
and effective way. Here we propose a multidimensional indexing technique, which is capable of
incremental adaptation to the  requirements derived from newly occurred cases. We also suggest
and advocate in favor of composition of multiple cases or  parts of  cases. A solution is composed from
multiple cases which are similar to the new case with respect to  different indexing dimensions. The
developed case-based reasoning technique for adapting case indexing is multidimensional and generic
in nature. Furthermore, we also provide an analysis of the cognitive task of sales consultation.

1 Introduction

In present business environment especially in the manufacturing industry the functions of sales organiza—
tions have become complex as products are becoming multi—variant'and customer requirements(wishes)
high and specific [11]. Due to  the increased complexity of sales situations a strong, competent and effi-
cient sales consultation is often required. Thus to facilitate and accelerate the sales Consultation process
the advisory systems are of utmost importance. Sales consultants usually improve their skills through
practice. During the sales dialogue, consultants often use the experience from previous consultation ses-
sions, which help improve their understanding of the needs of the new customer. Moreover, usually first
the consultant tries to clarify the most important points for a decision and later tosuggest  trade-offs
among less important points, if necessary. Hence, a case—based reasoning approach to sales consultation
appears promising, although the known techniques seem to  be  insufficient for adequately treating the
consultation task.
In this paper, we not only describe the sales advisory system (in section 3 )  - which uses case based
reasoning — but also how we tackled both issues of indexing and case adaptation in a novel, intelligent
and effective way. Here we propose a multidimensional indexing technique, which is capable of incremental
adaptation to the requirements derived from newly occurred cases. We also suggest and advocate in favor
of composition of multiple cases or parts of cases. A solution is composed from multiple cases which are
similar to  the new case with respect to  different indexing dimensions (see section 2). The developed
case-based reasoning technique for adapting case indexing is multidimensional and generic in nature.
Furthermore, we also provide an analysis of the cognitive task of sales consultation.

1 .1  The Problem Domain:  Sales  Consultat ion

In this context, let us consider the following scenario:

Scenario

A customer presently owns a small transport company and is close to exceeding the load  / volume capacity
of his present fleet. He can increase his load/  volume capacity by either:
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1) Buying/adding new trucks or 2) Leasing some more trucks or 3) A sensible combination of two or 4)
 
Reorganizing his present activities + buying/leasing new trucks.
 
Consider a situation, where he still is not able to find an optimal mix on his own. In this situation what
 
he requires is an able consultant. ,
 
He walks into a local sales office of a leading truck manufacturer. After the pleasantries, sales represen­

tative proceeds systematically; querying the customer to determine the customer's requirements, then
 
mapping requirements to the actual product/component leading finally to a product. While doing so the
 
sales person generally falls back upon the prior sales cases.
 

1.2 Desiderata fpr a Sales Consultation System 

A close look at the scenario above shows the complexity involved in such decision making situations. 
The question is not simply to optimize some specific objective but any proposed solution will be the 
result of balancing competing goals. There are not only technical issues, but financial and organizational 
objectives should be considered as well. Merely a solution would be insufficient; rather explanations are 
required to persuade and convince the decision maker that the proposed solution is reasonable. 
The present situation in this field is that the sales person does everything from requirements analysis to 
product configuration; from present organizational & financi';l.l situation analysis to suggesting an appro­
priate solution etc. manually. This task requires an enormous amount of knowledge and experience of a 
sales person in various subfields ranging from product component/ configuration knowledge to financial 
marketing etc. Todays ever changing product development and financial market situations do not allow 
all sales person to have the same degree of experience and knowledge about every subfield involved in 
the decision making. Often, a proposed configuration is technically impossible, which is figured out by 
the technical staff and results in unpleasant additional costly consultation sessions. A computer support 
in this situation can be of great help. 
The motivation for the current work is not only to facilitate and accelerate the sales consultation process 
but to improve upon the quality of the consultation as well. We mean quality of the sales consultation 
in terms of a large number of alternative solutions considered in less time and in terms of the outcome of 
the consultation i.e. how well does the sales object offered to the customer fits into his/her environment 
or to his/her specific needs. 

2 A CBR approach to sales consultation 

Case-based Reasoning (CBR) [7] is a method of using previous episodes to suggest solutions to new 
problems. CBR allows a reasoner to solve problems efficiently when previous similar experiences are 
available. Problem solving using case-based reasoning usually involves retrieving relevant previous cases, 
adapting the solution(s) from the previous case(s), if necessary, to solve the problem, and storing the 
current episode as a new case to be used in the future [9]. 
Kolodner (in [8)) distinguishes two styles - problem-solving and interpretive - of CBR. In the problem­
solving style of the case-based reasoning, solutions to new problems are derived using old solutions as a 
guide. CBR of this type supports a variety of problem-solving tasks, including planning, diagnosis and 
design. In the interpretive style new situationsare evaluated in the context of old situations. This styl~ 

is generally useful for situation classification; the evaluation of solution; argumentation; the justification 
of a solution, interpretation or plan; and the projection of effects of a decision or plan. 
All of the CBR systems developed to date [10] fall under such 'natural' domains like medicine or law, 
which are historically suited to this style of reasoning. What makes our domain different - and somewhat 
unconventional- from the traditional domains of CBR is that, in our application no 'exact' solutions exist 
('identical' customers may want different solutions) and any proposed solution can always be modified. 
What is important here is that a good approximation/consensus with the customer, should be reached in a 
fewer negotiation steps, i.e. the system should produce a short list of high quality suggested configurations. 

2.1 The domain of sales consultation 

The customer's choices of particular options will not be arbitrary or unpredictable, since the choices 
usually depend on the customer's needs, desires and preferences in terms which are more abstract than 
technical features (e.g. particular options). 
Our approach tries t6 identify characteristic properties of customer needs which are suitable to determine 
most of the possible choices in most cases. 
One source of knowledge which guides the identification process of the characteristic properties of cus­
tomer needs are previous cases of sales consultation. However, since the number of cases will be relatively 
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The motivation for the current work is not only to  facilitate and accelerate the sales consultation process
but  to  improve upon the quality of the consultation as well. We mean quality of the sales consultation
in  terms of a large number of alternative solutions considered" in less t ime and in  terms of the outcome of
the consultation i .e .  how well does the sales object offered to the customer fi ts  into his/her environment
or to his/  her Specific needs.

2 A CBR approach to  sales consultation
Case-based Reasoning (CBR) [7] is a method of using previous episodes to suggest solutions to new
problems. CBR allows a reasoner to solve problems efficiently when previous similar experiences are
available. Problem solving using case-based reasoning usually involves retrieving relevant previous cases,
adapting the solution(s) from the previous case(s), if necessary, to solve the problem, and storing the
current episode as a new case to be used in the future [9].
Kolodner (in [8]) distinguishes two styles — problem-solving and interpretive - of CBR. In the problem—
solving style of the case—based reasoning, solutions to new problems are derived using old solutions as a
guide. CBR of thistype supports a variety of problem-solving tasks, including planning, diagnosis and
design. In  the interpretive style new situations 'are evaluated in the context of old situations. This style
is generally useful for situation classification; the evaluation of solution; argumentation; the justification
of a solution, interpretation or plan; and the projection of effects of a decision or plan.
All of the CBR systems deveIOped to  date [10] fall under such ’natural’ domains like medicine or law,
which are historically suited t o  this style of reasoning. What makes our domain different — and somewhat
unconventional — from the traditional domains of CBR is that, in our application no ’exact’ solutions exist
(’identical’ customers may want different solutions) and any proposed solution can always be  modified.
What is important here is that a good approximation / consensus with the customer, should be reached in a
fewer negotiation steps, i.e. the system should produce a short list of high quality suggested configurations.

2 .1  The  domain o f  sales  consultat ion

The customer’s choices of particular options will not  be  arbitrary or unpredictable, since the choices
usually depend on the customer’s needs, desires and preferences in terms which are more abstract than
technical features (e.g. particular options).
Our approach tries t o  identify characteristic properties of customer needs which are suitable to  determine
most of the possible choices in most cases.
One source of knowledge which guides the identification process of the characteristic properties of cus—
tomer needs are previous cases of sales consultation. However, since the number of cases will be relatively
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small compared to the number of possible sales objects (in the case of truck configurations more than 
1010°), additional knowledge is necessary which guides the interpretation of the stored cases. This kind 
of knowledge should determine the assumed interdependencies between the choice of options. In our 
approach, it defines groups of attributes for which typically fixed interdependencies among their values 
exist. E.g. for a given color of a car, usually only very few colors for the interior will be desired by a 
customer, which could be derived from previous consultation cases. 
If these assumed interdependencies do not hold in the particular sales case, it does not result in an 
insufficient choice of the sales object but in a prolongation of the consultation session. 

2.2 Multidimensional indexing 

The rather abstract characteristic properties of the customer needs are used in our approach as case 
indexing for retrieving similar cases. They are called high level features (in short HLFs) and are considered 
as additional features of the sales objects. I.e. they are supposed to describe how well a given sales object 
meets certain customer requirements. 
In order to retrieve previous sales cases which are similar to the customer's requirements catalogue, the 
HLFs are used as indices for case-based reasoning. Since the values of different HLFs are partly logically 
independent, it is useful to index the cases according to multiple criteria. 

2.3 Composing solutions from multiple cases 

As a consequence, the proposed solution is composed from different cases, where each case is similar to 
the case with respect to another HLF. The HLF which serve as indices for the cases are conceived to be 
initially provided by an expert, usually an experienced sales consultant. However, since it is unrealistic to 
assume that the sales consultant will provide the definition of an optimal set of HLFs, our approach uses 
case-based reasoning in order to detect suboptimal indexing and to propose optimizing modifications of 
the used indices (see 3.2.3 for details). 
Since the optimality does not solely depend on the sold objects, but also on the cognitive structure of 
the sales consultant and the customers, the expert has to judge each proposed modification. Moreover, 
he is in charge to give cognitively adequate names to the possibly modified HLFs. 

3 System Description 

The target of the sales consultation can be viewed as the determination of a possibly empty class X a ~ X 
of acceptable sales objects. 
However, as already explained, we cannot presuppose that the customer is able to determine the class 
X a by his/her own. Hence, it is not sufficient to query for the desired value of each technical feature of 
the sales objects. 

3.1 The representation of cases 

The representation of the possible sales objects is frame based. The basic slots contain all possible 
technical features of the sales objects. 
In addition to these slots the frame contains slots for HLFs. These HLFs are' represented as slots with 
associated sets of possible values. To each HLF is a dependence set associated, which is a set of basic 
slots. For the dependence set of slots each value of the HLF defines default values. Hence by choosing a 
specific value for a HLF, one automatically chooses a set of default values for the basic slots; i.e. a set of 
technical features. See figure 1. 

3.1.1 The formal description of the sales cases 

We consider the following representation of sales objects. The representation of the cases for our case­

based reasoning approach is grounded on the sales object representation:
 
Each object Xi is characterized by a vector of attribute-value combinations:
 

Each attribute has a finite number of range values that can be chosen. The set of range values is denoted 
by V(ai)' I.e. 
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X a by his/  her own. Hence, i t  is not sufficient to query for the desired value of each technical feature of
the sales objects. ’

3.1 The representation of cases
The representation of the possible sales objects is frame based. The basic slots contain all possible
technical features of the sales objects. \

_ In addition to these slots the frame contains slots for HLFs. These HLFs are represented as slots with
associated sets of possible values. To each HLF is a dependence se t  associated, which is a set of basic
slots. For .the dependence set of slots each value of the HLF  defines default values. Hence by choosing a
specific value for a HLF, one automatically chooses a set of default values for the basic slots; i.e. a set of
technical features. See figure 1 .

3.1.1 The formal description of the sales cases

We consider the following representation of sales objects. The representation of the cases for our case—
based reasoning approach is grounded on the sales object representation:
Each object :3,- is characterized by a vector of attribute-value combinations:

33»; = ( (0111131) ,  ( a2 :  ”52 ) !  ' ' ' 3 ( an !  v in ) )

Each attribute has a finite number of range values that can be chosen. The set of range values is denoted
by V(a,-). I.e.

V2 V015)  : {v1 , .  . . , ? )n} .
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Dependence sets 

Figure 1: Schema of the frame representation of cases. Technical features and HLFs which are used for 
indexing the cases in multiple dimensions. 
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Figure 2: The system architecture of ASe. The arrows depict the major flow of information. 

Then, the complete set of possible objects X is given by: 

3.1.2 High level features (HLFs) 

A HLF is formally the same as a property, i.e. an attribute with a set of possible values. To each HLF Pi 
is a dependence set of attributes D(Pi) associated. The set of values Vp, ={Vl, ... ,vn } of Pi determines 
default values for the attributes in the dependence set of Pi. 
I.e. there is a mapping Att : Mp -> 2A which determines the dependence set of attributes of each HLF. 
The mapping Defpi determines the default values for the attributes in Att(Pi ) for each possible value of 
Pi. I.e. VV(Pi) there is a specified mapping 

De fp, : V(Pi) -> V(al,p,) x ... x V(aIAtt(Pi)/,p,),where {al,p" ... ,aIAtt(Pi)I,P,} = Att(Pi). 

One should note, that it is allowed to have nondisjoint sets of attributes associated to different HLF. This 
can be useful, if different high level features of the customer's needs respectively of the sales objects affect 
the same detailed sales object features. However, this nondisjointness may also cause conflicts between 
the default values assigned to attributes in the intersection of two HLF dependence sets. The resolution 
of such conflicts is explained later on. 

3.2	 Architeetureand Operation of ASC - Automated Sales Consultation sys­
tem 

Figure 2 shows the principal architecture of ASe. ASe consists basically of two modules, Set of P08sible 
Sales Objects and the Case Base, which have just a retrieval function within the system. Three further 
modules, Set up, Consultation and Update, are responsible for the diff~rellt modes of operation of ASe. 

3.2.1 The set up mode of ASC 

All basic slots of the case representation are specified and named together with the range of admissible 
slot values. Furthermore, all initial HLFs are defined, named and their respective dependence set of basic 
slots are specified. The default value sets for the allowed HLF values are determined as well. 
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Then, the complete set of possible objects X is given by:

X = {mm 5 ,- s n) e Wan}.
3.1.2 High level features (HLFs)

A HLF is formally the same as a property, i.e. an attribute with a set of possible values. To each HLF P,-
is a dependence set of attributes D(P,:) associated. The set of values Vp, = {m,  . . . , an} of P,- determines
default values for the attributes in the dependence set of Pi.
I.e. there is a mapping Att : Mp --> T1 which determines the dependence set of attributes of each HLF.
The mapping De  fp, determines the default values for the attributes in Att(P,) for each possible value of
Pi. I.e. VV(P,-) there is a specified mapping

Defp, : V(Pz') ——> V(a1‚p‚ - )  X . . . X V(a lAt t (pé ) | ,p i ) ,Whe7‘e  {a l ‚p ‚ . ‚  . . . , a lAt t (P i ) | ,P i }  : AttUDg).

One should note, that it  is allowed to  have nondisjoint sets of attributes associated to different HLF. This
can be useful, if different high level features of the customer’s needs respectively of the sales objects affect
the same detailed sales object features. However, this nondisjointness may also cause conflicts between
the default values assigned to attributes in the intersection of two HLF dependence sets. The resolution
of such conflicts is explained later on.

3 .2  Architecture and Operation of  ASC - Automated Sales Consultation sys-
tern

Figure 2 shows the principal architecture of ASC. ASC consists basically of two modules, Set of Possible-
Sales Objects and the Case Base, which have just a retrieval functionwithin the system. Three further
modules, Set up, Consultation and Up-date, are responsible for the different modes of operation of ASC.

3 .2 .1  The se t  up mode of ASC

All basic slots of the case representation are specified and named together with the range of admissible
slot values. Furthermore, all initial HLFs are defined, named and their respective dependence set of basic
slots are specified. The default value sets for the allowed HLF values are determined as well.
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3.2.2 The consultation mode 

The consultation mode of ASC is conceived to support the sales person in asking the right questions at 
the right time. Thus, ASC poses questions which should be answered by the customer after discussing 
it with the sales person. ASC tries to minimize the number of questions which are necessary in order to 
guarantee an appropriate choice of the sales object. 
For that purpose, ASC starts with querying for the value of the first RLF among the RLFs of highest 
degree. Consecutively, ASC proceeds by querying for the yet unknown values of all HLFs of the highest 
level. As long as no conflicts among the assigned default values for the (basic) slots appear, it is up to 
the sales person to determine, when the assigned default values to the slots of the respective dependence 
set are verified. Verification, here, means that the assigned values are shown to the customer for either 
acknowledging or modifying the assigned values. 
After each modification of an assigned slot value, ASC checks whether the currently assigned slot value 
combination of the dependence set of all RLFs becomes more similar to iLnother HLF value. If so, this is 
indicated to the user and a change of the HLF value is performed together with the replacement of the 
default values for the slots of the dependence set, which have not yet been acknowledged or modified. 
This procedure continues until all basic slot values have been assigned and acknowledged or modified 
explicitly. 

3.2.3 The update mode 

The update mode contains the case-based reasoner of ASC. It is invoked after a successful sales consul­

tation. Since it requires a lot of computational effort, it would thus preferably be run in the batch mode
 
over night.
 
The case-based reasoner is used in order to determine - from prior consultation sessions - an adequate
 
query strategy for the sales consultation process.
 
The query strategy can be modified in the following ways:
 

a)	 Modifying the default values for the dependence set associated to a value of a HLF: 
Assume the number of cases, in which a set of default values associated to a RLF-value - chosen by 
the customer - has been modified. If it is significantly greateJ" than the number of cases where the 
complete default value set has been acknowledged, then this dominating modification of the default 
values is chosen as the new set of default values associated to the respective RLF value. 

b)	 Extending the set of values of a HLF/the creation of a new default value combination 
for the dependence set: Assume the number of cases, in which the set of default values for 
the dependence set of a HLF is modified towards the same resulting slot value set. If it is greater 
than a prespecified threshold, then this dominating modification of the default values is chosen as 
a proposal for introducing a new RLF value, which has as its associated default values the above 
mentioned values. 

c)	 Modifying the dependence sets of the currently defined HLFs: If particular slot values 
are often modified after they have been set to a default value due to the choice of RLF set of the 
respective HLF, then the inclusion of slots into a dependence set works as follows: If the finally 
chosen values of a slot s, in known cases, correlate significantly stronger with the values of a new 
RLF Pn than with the old HLF Po, ir whose dependence set s is contained, then ASC proposes to 
include s into the new RLF Pn . 

d)	 Extending the set of HLFs: ASC suggests the creation of new RLFs if a large number of the 
same slots is modified in a significant fraction of consultation sessions. Here, ASC lists the respective 
slots and proposes to create a new HLF covering the listed slots. 

All modifications of the HLF structure are subject to expert's (in our case the sales consultant) confir­
mation. New HLFs or new HLF values must be properly named by the sales consultant, e.g. security 
of transport is very important, or minimal price is requested. This is to make the meaning of the HLF 
values cognitively accessible for the sales consultant as well as for the customer who has finally to decide 
among different values. 

4 Conclusions 

A new technique of case-based reasoning has been described, which makes possible to use CBR in areas 
where only very few cases are available. Multidimensional indexing as well as composing a solution from 
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b) Extending the set of values of a HLF/the creation of a new default value combination
for the dependence se t :  Assume the number of cases, in which the  set of default values for
the dependence set of a HLF is modified towards the  same resulting slot value set .  If i t  is greater
than a prespecified threshold, then this dominating modification of the default values is chosen as
a proposal for introducing a new HLF value, which has as i ts  associated default values the above
mentioned values.

c) Modifying the dependence sets of the currently defined HLFs:  If particular slot values
are often modified after they have been set to a default value due to the choice of HLF set of the
respective HLF, then the inclusion of slots into a dependence set works as follows: If the finally
chosen values of a slot .9, in known cases, correlate significantly stronger with the values of a new
HLF Pn than with the old HLF P0, in whose dependence set .9 is contained, then ASC proposes to
include s into the new HLF P".

d )  Extending the set of HLFS: ASC suggests the creation of new HLFs if a large number of the
same slots is modified in a significant fraction of consultation sessions. Here, ASC lists the respective
slots and proposes to create a new HLF covering the listed slots.

All modifications of the  HLF structure are subject to expert’s (in our case the sales consultant) confir-
mation. New HLFs or new HLF values must be properly named by the sales consultant,  e.g. security
of transport z's very important, or minimal price i s  requested. This is to make the meaning of the HLF
values cognitively accessible for the sales consultant as well as for the customer who has finally t o  decide
among different values.

4 Conclusions

A new technique of case-based reasoning has been described, which makes possible to use CBR in  areas
where only very few cases are available. Multidimensional indexing as well as composing a solution from
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multiple cases have been proposed. The possible modification of the indexing structure by modifying the 
dependence set of a RLF allows the implicitly used similarity measure to be asymmetric which appears 
to be psychologically much more plausible than symmetric similarity measures. So far, only symmetric 
similarity measures have been used in CBR. Moreover, the cognitive structure of sales consultation 
has been analyzed insofar, that the sales consultant can be strongly supported ~y an automatic sales 
consultation system. 
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Abstract. This paper describes the application of case based reasoning techniques to a complex domain, 
namely, mesh specification for finite element analysis. The case base provides a high-level store of 
information extracted through CPU-intensive numerical error analysis of previously solved problems, making 
it available for mesh specification before the simulation of new similar problems. Using this information, a 
near-to-optimum mesh is specified as input to the simulation engine, avoiding time-consuming computation 
during simulation. The paper describes the system, case representation, organisation and retrieval, and 
compares the CBR approach with the more usual rule-based approaches to this application domain. 

1 Background 

Finite element analysis (FEA) l7] is a powerful tool for solving engineering problems described by differential 
equations. In FEA, the continuous physical characteristics (for example temperature, pressure, fluid flow) of 
interest to the engineer, are approximated by a discrete model, in which a grid of mesh elements is generated 
across the geometrical domain and the numerical values for the physical characteristics are calculated at the grid 
points (usually referred to as the nodes). The values within the elements are approximated by piecewise 
continuous 'interpolation' functions. A typical problem from heat analysis is shown in Figure 1. (This problem 
will be used to explain our lcchnique, and will be referred to from now on as Problem 1.) 

D C 

A 

E 

8 

Figure I : Heat Conduction over a Flat Plate 

The accuracy of the finite element model is highly dependent on the mesh. The greater the number of 
nodes used, the greater the accuracy. However, as the number of nodes is increased, the time required to 
complete the simulation also increases. There is therefore a trade-off between accuracy and efficiency and it is 
very important to find an optimum between the two. 

Spccifying appropriatc densities for thc 111esh so that solution features are properly captured, is one of the 
most difficult tasks facing users (jf FEA. This issue is illustrated in Problem I, in which the linear steady-state 2­
dimensional heat conduction problem has a severe discontinuity in the boundary conditions in the lower right­
hand corner (labelled by B in the diagram). The temperature profile shows a steep gradient due to this 
discontinuity between the points E and B. This will be correctly modelled only if a fine mesh density is used 
cJose to the corner. A much coarser mesh density will suffice further away from the corner (see Figure 2). Note 
that a priori knowledge of the temperature profile is required in order to correctly specify the mesh. Since, for 
most complex problems, time and memory limitations preclude the placement of a fine mesh over the whole 
domain, it is desirable to find an optimum mesh, with the mesh density throughout the domain varying 
according to local requirements. However, tar many practical problems, it is not immediately obvious to the 
engineer or analyst where a fine mesh may be required. 

The numerical approach to this problem is called adaptive finite element analysis. Essentially, the strategy 
is to solve the finite element problem a number of times, each time improving the quality of the mesh, until a 
satisfactory solution is l'ound. An error estimator applied after each simulation locates the areas of high error and 
the mesh is refined in those areas. The process is repeated until a satisfactory error tolerance is obtained. 

While the basic adaptive strategy is to start with a coarse uniform mesh throughout the domain, leaving the 
task or locating local phenomena which require mesh refinement completely to the error estimator, it has been 
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The accuracy of the finite element model is highly dependent on the mesh. The greater the number of
nodes used, the greater the accuracy. However, as the number of nodes is  increased, the time required to
complete the simulation also increases. There is therefore a trade-off between accuracy and efficiency and it is
very important to find an optimum between the two.

Specifying appropriate densities for the mesh so that solution features are properly captured, is one of  the
most difficult tasks facing users (if FEA. This issue is illustrated in Problem 1, in which the linear steady-state 2-
dimensional heat conduction problem has a severe discontinuity in the boundary conditions in the lower right-
hand corner (labelled by B in the diagram). The temperature profile shows a steep gradient due to this
discontinuity between the points E and B. This will be correctly modelled only if a fine mesh density is used
close to the corner. A much coarser mesh density will suffice further away from the comer (See Figure 2). Note
that a priori  knowledge of the temperature profile is required in order to correctly specify the mesh. Since, for
most complex problems, time and memory limitations preclude the placement of a fine mesh over the whole
domain, it is  desirable to find an optimum mesh, with the mesh density throughout the domain varying
according to local requirements. However, for many pracrical problems, it  is  not immediately obvious to the
engineer or analyst where a fine mesh may be required.

The numerical approach to this problem is called adaptive finite element analysis. Essentially, the strategy
is to solve the finite element problem a number of times, each time improving the quality of the mesh, until a
satisfactory solution is found. An error estimator applied after each simulation locates the areas of high error and
the mesh is refined in those areas. The process is repeated until a satisfactory error tolerance is obtained.

While the basic adaptive strategy is to start with a coarse uniform mesh throughout the domain, leaving the
task of locating local phenomena which require mesh refinement completely to the error estimator, it has been
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Figure 2 : Modelling the Temperature Distribution 

observed (e.g. in [5]) that the effectiveness of adaptive strategies can be dependent on the initial mesh. In any 
case, it is desirable to avoid many iterations during the adaptive p'rocess, and one way to achieve this is to use a 
priori knowledge to set a near-to-optimum initial mesh. In practise, a priori techniques tend to be heuristic in 
nature, with the engineer or analyst relying on past experience to determine where a fine mesh will be required 
for a given problem. 

In this paper; the application of case based reasoning techniques to the task of setting an initial mesh for an 
adaptive finite element simulator is described. Given a differential equation problem to solve, the system forms 
a solution strategy by accessing a case base' of previously solved problems and matching the current problem 
with similar solved problems. The case base serves to augment a priori knowledge of a given problem by 
making available knowledge gained through a posteriori error analysis of previously solved, similar problems. 

2 System Overview 

Briefly, a case base of differential equation problems is stored, with each case containing a set of problem 
features and a set of solution profile features, extracted from the numerical solution. Solution features include 
any qualitative characteristics, for example, high gradient, which can be extracted from the numerical results 
data, (and which can only be modelled properly through the use of local mesh refinement). A frame 
representation of the problem (target case) is formed, and the problem features in this representation are matched 
against the problem features of the base cases. From the retrieved cases, a set of predicted solution features for 
the target case is formed. Meshing strategy routines generate the initial mesh given the predicted solution 
features. The adaptive finite element simulator solves the problem, refining the mesh, if necessary. The problem 
(with its solution) is then added to the case base. 

3 Related Work 

Much interest has focused in recent years on the application of knowledge-based techniques to the creation of 
problem solving environments for engineering and mathematical analysis. However, most of this work has 
considered rule-based approaches only. Within this body of work, rule-based mesh generation and adaptation 
systems have been considered. Expert systems to aid the geometrical problem of mesh generation (i.e. to ensure 
that elements are well-shaped) include the EZGrid system [IJ. Tackling the issue of mesh adaptation, an expert­
system for deciding when and how to refine or coarsen a mesh is described in [2]; Rank and Babuska [5] propose 
an expert system approach for selection of mesh adaptation strategies; and a blackboard architecture expert 
system, which makes use of boundary conditions and loading \nformation to design a mesh refined at critical 
points, is described in 13]. Also of note is the work by Macedo et al. 14J who propose a knowledge-based 
approach to the selection of error indicators for mesh refinement schemes, based on a case analysis of several 
characteristic problems. 

The case-based approach adopted in this research is motivated by the desire to create a flexible system 
which can augment its knowledge-base as more knowledge becomes available. In fact the importance of 
accumulating experience in knowledge-based engineering design/analysis systems has already been noted (e.g. 
in [6]). While a rule-based approach can provide a good coverage of well-understood problems, it will fail when 
new problems outside this coverage are presented. A rule-base which predicts the behaviour of simulation 
problems needs to take into account not only all the many features that these problems may exhibit, butalso how 
these features interact. This is particularly difficult, since the behaviour when two features are present may be 
conlplctcly different to the behaviour when either one is present without the other. 

lt is felt that the case-based approach can propose solutions even when only partial knowledge is available, 
since it forms strategies based on similarity, without requiring this similarity la be grounded in explicit domain 
knowledge. Furthermore, the adaptive simulation engine at the back-end of the system can act as a teacher, 
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observed (e.g. in [5]) that the effectiveness of adaptive strategies can be dependent on the initial mesh. In any
case, it is desirable to avoid many iterations during the adaptive process, and one way to achieve this is to use a
priori  knowledge to set a near-to-optimum initial mesh. In practise, a priori techniques tend to be heuristic in

. nature, with the engineer or analyst relying on past experience to determine where a fine mesh will be required
for a given problem.

In this paper,- the application of case based reasoning techniques to the task of setting an initial mesh for an
adaptive finite element simulator is described. Given a differential equation problem to solve, the system forms
a solution strategy by accessing a case base of previously solved problems and matching the current problem
with similar solved problems. The case base serves to augment a priori knowledge of a given problem by
making available knowledge gained through a posteriori error analysis of previously solved, similar problems.

2 System Overview

Briefly, a case base of differential equation problems is stored, with each case containing a set of problem
features and a set  of solut ion profile features, extracted from the numerical solut ion.  Solut ion features include
any qualitative characteristics, for example, high gradient, which can be extracted from the numerical results
data, (and which can only be modelled properly through the use of local mesh refinement). A frame
representation of the problem (target case) is formed, and the problem features in this representation arematched
against the problem features of the base cases. From the retrieved cases, a set of predicted solution features for
the target case is  formed. Meshing strategy routines generate the initial mesh given the predicted solution
features. The adaptive finite element simulator solves the problem, refining the mesh, if necessary. The problem
(with its solution) is then added to the case base.

3 Related Work

Much interest has focused in recent years on the application of knowledge-based techniques to the creation of
problem solving environments for engineering and mathematical analysis. However, most of  this work has
considered rule-based approaches only. Within this body of work, rule—based mesh generation and adaptation
systems have been considered. Expert systems to aid the geometrical problem of mesh generation (Le. to ensure
that elements are well-shaped) include the EZGrid system [I] .  Tackling the issue of mesh adaptation, an expert-
system for deciding when and how to refine or coarsen a mesh is described in [2]; Rank and Babuska [5] propose
an expert syStem approach for selection of mesh adaptation strategies; and a blackboard architeCLure expert
system, which makes use of boundary condition-s and loading information to design a mesh refined at critical
points, is described in [3]. Also of note is the work by Maccdo e t  al. [4] who propose a knowledge-based
approach to the selection of error indicators for mesh refinement schemes, based on a case analysis of several
characteristic problems.

The case-based approach adopted in this research is motivated by the desire to create a flexible system
which can augment its knowledge-base as more knowledge becomes available. In fact the importance of
accumulating experience in knowledge-based engineering design/analysis systems has already been noted (e.g.
in [6]). While a rule-based approach can provide a good coverage of well-understood problems, it  will fail when
new problems outside this coverage are presented. A rule-base which predicts the behaviour of simulation
problems needs to take into account not only all the many features that these problems may exhibit, butalso how
these features interact.  Th i s  i s  particularly diff icult ,  s ince  the behaviour when two features are present may be
completely different to the behaviour when either one is present without the other.

It is felt that the case—based approach can propose solutions even when only partial knowledge is available,
since it forms strategies based on similarity, without requiring this similarity to be grounded in explicit domain
knowledge. Furthermore, the adaptive simulation engine at the back—end of the system can act as a teacher,
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correcting the initial mesh design proposed by the front-end, and providing the means by which case indices can 
be improved to avoid the same pitfalls in later problem-solving episodes. 

4 Case Representation and Retrieval 

The solution profile from a finite element simulation is influenced by three categories of features, namely 
equationfearures, geometry features, and boundary condition features. By equation features, we mean equation 
types such as parabolic, hyperbolic or elliptic, 1 as well as characteristics such as non-linearity, size of 
coefficients, inclusion of sources, etc. Boundary condition features include the type of boundary condition (e.g. 
insulated or fixed flux) as well as size of coefficients, etc. Geometrical features include cracks, corners, 
protrusions, obstacles, etc. Since there is a large body of differential equations, describing many different 
behaviours, it is necessary to focus on some sub-class of problems. We are applying our techniques to steady­
state diffusion and advection heat transfer problems, that is, the class of problems described by the following 
partial differential equation: ' 

-V.(k(x,y)V<p)+v.V<p=q(x,y) (1) 

In the context of heat transfer, <p represen~ the temperature profile, k(x,y) the material conductivity, v the 
(fixed) flow field, and q(x,y), the heat source or sink. Associated with this problem, there are four categories 
of boundary condition, namely, 

Fixed Temperature: The temperature is prescribed on the boundary, 
Fixed Flux: A fixed heat nux is maintained across the boundary, 
Insulated: No heat transfer across the boundary, 
Convection: Convection to the ambient temperature. 
Work is focusing on determining mesh densities for different combinations of these equation and boundary 

condition features. 
Each case contains a full problem description, consisting of the equation to be solved, the domain over 

which it is solved and the boundary conditions on each boundary. Such a description is shown in Figure 3. 

(pde-problem 
(geometry (a (point (0 0))) 

(ab (line a b)) 

(rl (polygon ab be cd da))) 
regiOnS rl) . 
boundaries ab be cd da) 

. variables (IT))
 
equation]
! >~Jiffuse IT) 0) 

(bcondl (= IT 100) on ab) 

(bcond4 (= (ngrad TT) 0) on da)))) 

Figure 3 : Problem Description 

To devise a scheme for matching target and base cases, we note the following: 
(i) Relationships between case features are important. This is illustrated by Problem 1. The high gradient 

prQfile at corner B results not because of a single feature; rather it is due to the relative location of the 
Convection and Fixed Temperature boundary conditions. 

(ii) A qualitative representation of the problem does not suffice. It is important to establish the significance 
of features on the overall solution profile, and this can only be accomplished if the strength of the feature's effect 
is taken into account. 

Comparing relative strengths of features between different problems requires that the problems be 
normalised in some manner. This may be achieved by calculating a characteristic length of the domain, and 
using engineering approximations to estimate the average temperature and heat nux on the domain, based on the 
initial data. or interest from a meshing point of view are those local areas of the domain where the heat flux is 
much greater than the average. 

To facilitate matching, a taxonomy of problem features and feature relationships is maintained (see Figure 
4). The case indices consist of specific relationships between the problem features coupled with specific solution 
behaviours. For example, the case corresponding to Problem 1, would be indexed by the predicate 

Connected-at (bcondl, bcond2, B) 
where bcondl and bcond2 are the two boundary conditions which meet at the point B, coupled with the 
solution predicate 

Close-to(soln-featurel, B) 

1This terminology refers to the order oi' the various spatial and time derivatives in the equations. 
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correcting the initial mesh design proposed by the front-end, and providing the means by which case indices can
be improved to avoid the same pitfalls in later problem-solving episodes.

4 Case Representation and Retrieval

The solution profile from a finite element simulation is influenced by three categories of features, namely
equation features, geometry features, and boundary condition features. By equation features, we mean equation
types such as  pa rabo l i c ,  hyperbolic or elliptic,1 a s  well a s  characteristics such as  non-linearity, size of
coefficients, inclusion of sources, etc. Boundary condition features include the type of boundary condition (eg.
insulated or fixed flux) as well as size of  coefficients, etc. Geometrical features include cracks, corners,
protrusions, obstacles, etc. Since there is a large body of differential equations, describing many different
behaviours, it is necessary to focus on some subclass of problems. We are applying our techniques to steady-
state diffusion and advection heat transfer problems, that is, the class of problems described by the following
partial differential equation : '

—V.(k(x‚y)V<P) + \ ) . p  = q(x‚y) (1)
In the context o f  heat transfer, cp represents the temperature profile, k (x ,  y) the material conduCtivity, v the

(fixed) flow field, and q(x,  y ) ,  the heat source or sink. Associated with this problem, there are four categories
of boundary condition, namely,

Fixed Temperature : The temperature is prescribed on the boundary,
Fixed F lttx : A fixed heat flux is maintained across the boundary,
Insulated : No heat transfer across the boundary,
Convecrion : Convection to the ambient temperature.
Work is focusing on determining mesh densities for different combinations of these equation and boundary

condition features.
Each case contains a' full problem description, consisting of the equation to be solved, the domain over

which it is solved and the boundary conditions on each boundary. Such a description is shown in Figure 3.

(pde-problem
(geometry (a (point (0 0)))

(ab (line a b))

_ (rl (polygon ab bc cd  da)))
regions r l  .

, boundaries ab bc cd  da)
variables (TU)
equation] TF)_

= (diffuse Tl") O
bcondl (= TI" 1 0) on ab)

'(‘b'cond4 
(= (n grad TT) 0) on da))))

Figure 3 : Problem Description

To devise a scheme for matching target and base cases, we note the following:
(i) Relationships between case features are important. This is illustrated by Problem 1. The high gradient

profile at  corner B results not because of a single feature; rather it is due to the relative location of the
Convection and Fixed Temperature boundary conditions.

(ii) A qualitative representation of the problem does not suffice. It is important to establish the significance
' of features on the overall solution'profile, and this can only be accomplished if the strength of the feature's effect

is taken into account.
Comparing relative strengths of features between different problems requires that the problems be

normalised in some manner. This may be achieved by calculating a characteristic length of the domain, and
using engineering approximations to estimate the average temperature and heat flux on the domain, based on the
initial data. Of interest from a meshing point of view are those local areas of the domain where the heat flux is
much greater than the average. _

To facilitate matching, a taxonomy of problem features and feature relationships is  maintained (see Figure
4.). The case indices consist of specific relationships between the problem features coupled with specific solution
behaviours. For example, the case corresponding to Problem 1,  would be indexed by the predicate

Connec t ed -a t (bcond l ,  bcondZ ,  B)
where beond l  and bcondZ  are the two boundary conditions which meet at  the point B, coupled with the
solution predica te  ,

Close~ to ( so ln—fea tu re l ,  B)

1Th i s  terminology refers to the order of the various spatial and time derivatives in the equations.

195



Concept 

~.\~ 
RelationshipB~EqU~ 
~ 

Flux Diffusion Equation Spatial Relationshi 

/\~	 I 
Fixed Temp Convection Fixed Flux Insulated Connected-at 

Prescri ed Temp 
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where soln-feat urel is the solution feature corresponding to the high gradient at the point B. Associated 
with each solution feature, the case holds a mesh density parameter which indicates how much the mesh needs to 
be refined in order to capture the feature properly. In essence, the index corresponds to a rule which is true for 
the specific case to which it is attached. Complex cases may contain many such indices if more than one 
solution feature appears in the solution profile.	 . 

Case retrieval proceeds by firstly extracting all the relationships which hold 'in the target case. Cases are 
stored in a hierarchy which classifies them according to the equation type e.g. linear-diffusion-case or 
di f fus ion -advect ion -case etc., and the type of problem features which occur in their indices e.g. 
fixed-temp-case, or convection-case. Matching is performed only against those cases which are 
concerned with the same equation type and whos,e indices contain problems features which also appear in the 
target case. Partial matching may be achieved by generalisation and specialisation of the index components 
along their taxonomic hierarchies. Many cases may be retrieved for one given target case, corresponding to 
matches against different target relationships. If more than one case matches a particular target relationship, then 
quantitative information is taken into account. For the abov.e example, the numerical values of the boundary 
conditions are examined, and the case for which the numerical values agree most closely is preferred. 

5	 Simulation and Learning 

Once the mesh design is processed by the mesh generaLOr, the problem is simulated and the mesh is adapted 
using numerical techniques. It is possible that the problem may exhibit behaviours which were not predicted by 
the case-based pre-processor, in which case a new index to account for this behaviour should be generated. 
Methods for accomplishing this task still need to be investigated, but at least this can be done through user 
consultation. The other possible error is that predicted solution features are not actually present in the actual 
solution profile. This requires not only that the index in the original target case, but also that the index in the 
base case with which it was matched be modified. One method is to search for specialisations of the base case 
index which do not hold for the target case. For example, in Problem 1, the high gradient feature results not just 
because the boundaries are connected, but, more exactly, because they are incompatible i.e. there is a 
discontinuity at the corner. The specialisation to the incompatible relationship will be necessary when, in a 
new problem solving episode, a target with the same boundary condition features is found not to exhibit the high 
gradient feature in its solution profile. By adjusting its indices in this manner, the system can learn to avoid 
mistakes it has made in the past. 

6 Conclusions 

A case-based reasoning system for mesh design of finite element problems has been described. The system is 
currently under implementation. It is believed that this approach has certain important advantages over more 
traditional rule-based approaches to this domain, in particular, its' ability to deal with problems where a complete 
a priori understanding of possible behaviours is not possible, and its ability to learn from past problem-solving 
episodes. 
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where so ln—fea tu re l  is the solution feature corresponding to the high gradient at  the point B. Associated
with each solution feature, the case holds a mesh density parameter which indicates how much the mesh needs to
be refined in order to capture the feature properly. In essence, the index corresponds to a rule which is  true for
the specific case to which it is attached. Complex cases may contain many such indices if more than one
solution feature appears in thesolution profile. _

Case retrieval proceeds by firstly extracting all the relationships which hold in  the target case. Cases are
stored in a hierarchy which classifies them according to the equation type e.g. l i nea r—di f fus ion—case  or
d i f  f u s ion—advec t ion -case  etc., and the type of problem features which occur in their indices e.g.
f i xed - t emp-case ,  or convec t ion -case .  Matching is performed only against those cases which are
concerned with the same equation type and whose indices contain problems features which also appear in the
target case. Partial matching may be achieved by generalisation and specialisation of the index components
along their taxonomic hierarchies. Many cases may be retrieved for one given target case, corresponding to
matches against different target relationships. If more than one case matches a particular target relationship, then
quantitative information is taken into account. For the above example, the numerical values of the boundary
conditions are examined, and the case for which the numerical values agree most closely is preferred.

5 Simulation and  Learning

Once the mesh design is processed by the mesh generator, the problem is simulated and the mesh is adapted
using numerical techniques. It is possible that the problem may exhibit behaviours which were not predicted by
the case—based pre-processor, in which case a new index to account for this behaviour should be generated.
Methods for accomplishing this task still need to be investigated, but at leasr this can be done through user
consultation. The other possible error is that predicted solution features are not actually present in the actual
solution profile. This requires not only that the index in the original target case, but also that the index in the
base case with which it was matched be modified. One method is to search for specialisations of the base case
index which do not hold for the target case. For example, in Problem I ,  the high gradient feature results not just
because the boundaries are connected, bu t ,  more exact ly,  because they are incompat ib le  i .e .  there i s  a
discontinuity at  the comer. The specialisation to the i ncompa t ib l e  relationship will be necessary when, in a
new problem solving episode, a target with the same boundary condition features is found not to exhibit the high
gradient feature in its solution profile. By adjusting its indices in this manner, the system can learn to avoid
mistakes it has made" in the past.

6 Conclusions

A case-based reasoning system for mesh design of finite element problems has been described. The system is
currently under implementation . It is believed that this approach has certain important advantages over more
traditional rule-based approaches to this domain, in particular, its ability to deal with problems where a complete
a priori understanding of possible behaviours is not possible, and its ability to learn from past problem-solving
episodes.
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Abstract 

Help desk syst.ems are ,one of t.he most. successful applicat.ion areas of case-based reasoning. How­
ever, case-basedl'easoning techniques cover only parts of th~ whole help ·desk scenario. One missing 
part. is providing access t.o t.he t.echnical documentation. Combining these becomes especially impor­
tant. in the area of service support. systems, where t.he service person has no access to the printed 
document.ation. This paper presents a concept how t.o integrat.e CBR and t.eclmical documentation 
for service support systems. . 

1 Introduction 
One of the most successful applicat.ion areas of Case-Based Reasoning l is the domain of so-called 'Help 
Desk Systems'. 'Service Support Syst.ems' essent.ially serve t.he same purpose but. in a slightly different 
environment. In this paper we investigate extensions to 'classic' CBR t.hat are needed for service support 
systems. Therefore we first explain how we want t.o understand the terms help desk syst.em and service 
support system and then define some requirements for service support systems. In the remainder we 
describe a concept for a CBH based service support system that meets t.hese requirements. 

2 Help Desk Systems 
With the development of the personal computer in the early 80s the need for support.ing new kind of users, 
i. e. managers, technicians, secret.aries, arose. Therefore many companies created Information Centers, 
to assist. and control t.he use of PCs wit.hin t.he company. 

The first. syst.ems used by the Informat.ion Centers were database management. syst.ems t.o help with 
the informat.ion about t.he client.s hard- and software. With the advent of expert syst.ems int.elligent 
job aids for Informat.ion Cent.ers could be developed. Thus expert. system t.heorists called this systems 
diagnostic f.1.Pfr-t sy.stem.~, t.raining assist.ant.s called t.hem intelligent job (jid.~, and t.he people at TIs 
Informat.ion Cent.er2 called t.hem help desks. 

First. used for comput.er-related problems, help desks ·t.oday can refer t.o any computer-based syst.em 
that. aids people in providing assistance via phone. Users needing advice cont.act.3 a human operator 
or Customer Service Represent.ative4 . In a simple operation the CSR list.ens t.o the user describing the 
problem, and then provides a recommendat.ion based on his experience. 

Unfort.unat.ely, such operators are hard to find. Moreover, as equipment get.s more complex, it.'s hard 
t.o find anyone t.o man a help desk who really underst.ands everyt.hing a user might. ask about.. Most. CSRs 
know how to deal with t.he st.andard, frequent. questions and rely on manuals and notes to come up wit.h 
a solut.ion for ha.rder, less frequent problems. 

2.1 Requirements 
Creat.ing a help desk syst.em therefore is t.he task t.o assist. t.he CSR wit.h ret.rieving and storing wit.h t.he 
following kinds of informat.ion. 

Inforlllatioll about events and users This means storing and retrieving records of lIser configura­
tions, cont.acts, et.c. 

1 we will ahlm,viat.e this as eBB ill th" following 
2TI devp.loped such ~YSt.P.IIl~, e.g. t.he: Hot.line: Advisor for iLs:--ist.ing ("\lst.oIHer SllppO.°t. people in solving ClJsto.ners pl'oblerns 

related to printers 
.3 IIonllally hy 1'1101'" 
4 a bl>reviat"d as CSR below 
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Abstract

Help desk systems are ‚one of the most successful application areas of case-based reasoning. How—
ever, case-based reasoning techniques cover only parts of the whole help desk scenario. One missing
part is  providing access to the technical documentation. Combining these becomes especially impor-
tant in the area of service support systems, where the service person has no access to  the printed
documentation. This paper presents a concept how to  integrate CBR. and technical documentation
for service support systems. ‘ ‘

1 Introduction
One of the most. successful. application areas of Case-Based Reasoning1 is the domain of so-called ‘Help
Desk Systems’. ‘Service Support Systems’ essentially serve the same purpose but  in a slightly different
environment. In  this paper we investigate extensions to ‘classic’ CBR that are needed for service support
systems. Therefore we first explain how we want to understand the terms help desk system and service
support system and then define some requirements for service support  systems. In the remainder we
describe a concept for a CBR based service support system that  meets these requirements.

2 Help Desk Systems
With the development of the personal computer in the early 805 the need for supporting new kind of users,
i .  e .  managers, technicians, secretaries, arose. Therefore many companies created Information Centers,
to assist and control t he  use of PCs within the company.

The first systems used by the Information Centers were database management systems to help with
the information about t he  clients hard— and software. With the advent of expert systems intelligent
job aids for Information Centers could be developed. Thus expert system theorists called this systems
diagnostic expert systems, training assistants called them intelligent job aids, and the people at TIs
Information Center2 called them help desks.

First used for computer-related problems, help desks today can refer to any computer-based system
that aids people in providing assistance v ia  phone. Users needing advice contact?’ a human operator
or Customer Service Representative“. In  a simple operation the  CSR. listens to the user describing the
problem, and then provides a recommendation based on his experience.

Unfortunately, such operators are hard to  find. Moreover, as equipment gets more complex, it’s hard
to find anyone to man a help desk who really understands everything a user might ask about .  Most CSRS
know how to  deal with the  standard,  frequent questions and rely on manuals and notes to come up  with
a solution for harder, less frequent. problems.

2 .1  Requirements
Creating a help desk system therefore is the task to assist the CSR. with retrieving and storing with the
following kinds of information.

Information about  events and users This means storing and retrieving records of user configura-
tions, contacts, etc.

1-we  will abbreviate this as CBR in the following
2TI  developed such  sys t ems ,  eng. t he  Hot l ine  Advisnr  for assist ing customer support  people in  so lv ing  customers problems

related to  printers
3marma l ly  by p lume
4abbrev i a t ed  as CSR. below
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Information ahout products and services Informat.ion of t.hat. kind is providf'd wit.h t.hf' t.f'chnical 
docul11f'nt.ation of tlw products, such as a manual dpscribing tlw part. structurf' or a diagnostic 
manual etc. 

Inforlnation about known problems This is the information gainf'd 111 past calls to tllf' hdp desk 
and often stored as notes or protocols of the calls. 

Knowledge about how to solve problems Knowledge about problem solutions5 consists of proce­
dural knowledge,i. e. how to procepd in a certain situation, heuristic knowledge or behavioral 
models. 

Assisting the first kind of information is often done wit.h convent.ional dat.a-base techniques, where 
the second could be supported by information retrieval and online document retrieval. The third item 
is best assisted by casf'-based reasoning systems, whereas the fourth is due to rule-based or model-based 
diagnostic expert. syst.ems. 

For that reason, most CBR systems used in the field of help desk syst.ems provide the CSR with 
information about previous calls, replacing the paper-based notes and protocols. The other kinds of 
information arf' providpd by othpr sort.s of syst.pms lih dat.abasps or informat.ion ret.rieval systems. 

3 Service Support SysteulS 
A sit.uation similar t.o hdp df'sk systems is given if one is to assist. t.he work of a service man or t.echnician 
on location. But besidp the task of support.ing the technician in finding the right. diagnosis, a service 
support. system has to sprvp him in somp ot.hpr part.s of his work as well. 

3.1 Additional Requirements 
Planning visits Bpcausp of thp differpnt. tasks of a t.echnician and the steadily increasing palette of 

machines (and t.hpir variants) it is impossible for him t.o rpmember all inst.allations he is responsible 
for. Regular maint.f'nance of thf' machinf' including the determinat.ion of critical parameter values 
and t.he pxchangp of wparing componpnts is often part of the contract for complex machines. 

In ordpr to plan a visit to a cnstol1lf'r the technician has to know the details of the installation, i.e. 
to take the right componpnt.s with him. A service support system has to provide the technician 
with this informat.ion. This cOlwsponds to the information about users in a help desk system. 

Online Teclmical DOClllnentation It is impossible for the technician to carry the whole technical 
documentation for a large varipty of machines. Thus a service support. system has to provide the 
technical docnmentation as well as the experiences. Therefore including facilities to access the 
documentation is mandatory for a service support system. 

Protocols To document his job the technician has to writ.e report.s of his visit.s. In contrast. t.o pure help 
desk syst.ems not only thp failurps are interest.ing but. also the values of certain parameters over 
time, e.g. to fulfill some If'gal constraints. Thf'se protocols have to be stored by a service support 
system. 

3.2 System Design 
Another import.ant. point is the f'mphasis on support in service support system as opposed to automatic 
operation. This is motivatf'd by the following t.wo observations: 

Due to their job, tf'chnicians are uSf'd to work alone. They are the ones to make decisions and to 
take the responsibility for it. Thereforf', every kind of tutorship has negative impact. 

Syst.ems which makf' decisions, e. g. a diagnosis, by themselves, typically make faults. When these 
decisions arf' t.rpated too offensively by t.he system, the technician will soon refut.e t.he system6 . 

A service support. syst.em therf'fore has to If'ave the initiative t.o the technician, it. serves as a system 
that provides the informat.ion t.he technician want.s to have in a particular sit.uation. This is in contrast. 
t.o a mood whf'rp tlw initiat.ivp belongs to t.hf' syst.em and the user is to provide the information which 
the syst.em cannot. df'Cluce. 

SThe distinction betwp.en illfnl'Ination and knowlpdge about proLlerns is a Lit fuzzy
 
6This observations arp. general, hut in the (,Ollt~Xt. of serviCf~ support systerns their irnpacts are crucial
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Information about products  and services Information of tha t  kind is provided with the  technical
documentation of the  In -oduc t s ,  such as a manual describing the  part  s tructure or a diagnostic
manual  etc. .

Information abou t  known problems This  is the  information gained in past calls to  the  help desk
and often stored as notes or protocols of the  calls.

Knowledge about  how to  solve problems Knowledge about problem solutions5 consists of proce—
dural  knowledge,i. e. how to proceed in a certain situation, heuristic knowledge or behavioral
model s .

Assisting the  first kind of information is often done with conventional data-base techniques, where
the second could be  supported by information retrieval and online document retrieval. The third i tem
is best assisted by case—based reasoning systems, whereas the  fourth is  due  to rule-based or model—based
diagnostic expert systems

For that  reason, most  CBR. systems used in the  field of help desk systems provide the  CSR with
information about previous calls, replacing the  paper-based notes and protocols. The other kinds of
information are provided by other sorts of systems like databases or  information retrieval systems.

3 Service Support Systems
A situation similar to help desk systems is given if one is to assist the work of a. service man or technician
on location. But  beside the task of supporting the technician in finding the right diagnosis, a service
support system has to  serve him in some other parts  of his work as well.

3 .1  Add i t i ona lRequ i r emen t s
Planning visits Because of the different tasks of a technician and the steadily increasing palette of

machines (and their variants) i t  is impossible for him to remember all installations he is responsible
for. Regular maintenance of the  machine including the determination of critical parameter values

.and the exchange of wearing components is often part  of the contract for complex machines.
In  order to plan a visit to a customer the  technician has to  know the details of the installation, i.e.
to  take the  right components with him. A service support system has to  provide the technician
with this information. This  corresponds to the information about users in a help desk system.

Online Technical Documentation I t  is impossible for the technician to  carry the  whole technical
documentation for a large variety of machines. Thus a service support system has to provide the
technical documentation as well as the  experiences. Therefore including facilities to access the
documentation is mandatory for a service support system.

Protocols  To document his job  the technician has, to  write reports of his visits. In  contrast to pure help
desk systems not only the  failures are interesting bu t  also the values of certain parameters over
t ime,  egg. t o  fulfill some legal constraints. These protocols have to  be stored by a service support
sys tem.

3 .2  System Design
Another important  point is the emphasis on support in service support system as opposed to automatic
operation. This  is motivated by the  following two observations:

Due to their job, tecl'n'iicians are used to work alone. They are the ones to make decisions and to
take the  responsibility for i t .  Therefore, every kind of tutorship has negative impact .

Systems which make decisions, e. g. a diagnosis, by themselves, typically make faults. When these
decisions are treated too offensively by the  system, the  technician will soon refute the systems.

A service support  system therefore has to  leave the initiative to‘ the technician, i t  serves as a system
that provides the  information the technician wants to  have in a particular situation. This  is in contrast
to a. model where the  initiative belongs to the  system and the user is to  provide the  information which
the system cannot deduce.

5The  distinction between information and knowledge about problems is a bit fuzzy
E 'Th i s  observations are. genera l ,  bu t  i n  t he  contex t  of service  suppor t  sys tems  the i r  impac t s  are c ruc ia l
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4 A CBR Based Service Support System 

4.1 Classic CBR approaches 

There are several papers describing the state of the art in CBR[8, 4, 1]. We therefore only give a short 
description of a classic CBR approach in technical domains and especially help desk systems. 

Case Representation In most systems cases are represented as attribute7-value vectors with some 
basic value types such as TlumlJers (intervals), strings and sets of symbols describing nominal or ordinal 
types. 

Feature Similarity The single attribute similarit,y is mostly obtained by equality testing. Some sys­
tems allow ranges and deviations for features involving numbers, and implement some spell checking 
routin~s and substring testing for string features. 

Similarity Measure The similarity measure comparing the current situation with a stored case is 
often a function combining single attribute similarities to a value in the interval [0 ... 1] (or [-1 ... 1]). 
This is often a weighted sum of the single att.ribute similarities, or a function based on the contrast rule 
by Tversky[9]. 

Retrieval In a first step a set of relevant cases is selected, often on a selection of those cases that contain 
mandatory features. Then cases are sorted according to a similarity measure in a second step, determining 
t.he nearest. neighbors of the present.ed case. Following steps eventually involve the modification of the 
most similar case according to t.he given sitnat.ion, but there are few implemented systems and especially 
in the domain of classification8 this step is often not needed. 

In this kind of CBR systems there is no way to represent the structure of a machine as well as 
the history of the features over the time. Additionally there are no means of integrating the technical 
documentation. In the following we will describe a concept for a system realizing these requirements. 

4.2 Structured CBR - The AMS Appraoch 
Normally cases are represented by flat feature-value vectors. But often, and especially in the field of 
help desk or service support systems, there is knowledge about the structure of the domain, i. e. about 
machines and plants to be supported. 

ldefcOllCE!pt. 'filtE..>r 'plant-pl'l.rt 
((size (conc~pt :filter-siz~) 

(manufacturer 
(concept: f i1 ter-manuf:'tcturer) 

(ca.paC'ity (:corlcept filt,er-flow) 
... )1 

(defconcept 'pressure-filter' filter 
«(pr~ssure (:COTlcetJt filter-pr€ssure)))) 

(defconcept 'f i 1 t.er-size 'qu,'\I1t i tat i ve-pa.rameter-slot 
({qu,:mtita.tive {Om2 10m2]))) 

(defeo!lcept 'fi 1 t.er -m,<tntlfacturer 'strirlg-parameter-slot 
(string (:c:orlCet.>t t~xt)) 

(defc~orlc:ept . filter-flow 'qualitative-p(uameter-slot 
((qualitative (:one-of 'low 'normal 'high») 

'(defcotlc€IJt 't,l<'lt,t 't.';'trt 
«(b''lsirl.':': (:co,wet.,t pl,":IIlt-b,'isitl)) 

(filters (:coucept p1allt-filter) 
.. » 

(defcoucet-'t . p13l1t -b,Cisin 'part -slot 
({set (:Sf:'t (:$orne (:corlcept basill) 0 ~,»))) 

(defcollcept ·1'lnl11: -filter 'I.';1.rt.-slot 
((set (;SE't {:~~(Jmt' (:,coTlceI,'t filtf:'r 0 2)))) 

Fig1ll'~ 1: Part.s of t.he domain structure of AMS 

This knowl~dg~ ellables liS t.o model the st.ructure of t.he domain via i.s-a and par·t-of relations as in 
frame knowledge rppre~ent.at.ioll sy:4ems like KL-ONE or KEE[:WI

. Wit.ll t.his killd of st.ructure we can for 
example repr~sent t.he fact. that. a milling machine is a kind of a machining t.ool, or t.hat a pressure-filter 
is a kind of filter. Wit.h the part.-of relation we can describe that a manllfaet.uring plant has, among 
o'ther, some basills for the c1Itting fluid, some filters to separate chips and dirt from the cutting fluid, 
some machinillg tools etc. (se~ Figure 1). 

7or feat ure! para.lJl~tp.r 
Ri.e. finding· a diagnosis 
9 EL-ONE and KEE a .." dlOs"n among t.lJ" va..i"t.y of f..am" .."p.."sent.at.ion syst.ems 1.0 illustrat.e t.he design spaC'e of frame 

rep..e~ent.at.inn syst.e:nls 
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4 A CBR Based Service Support System
4 .1  Classic CBR approaches
There are several papers describing the state of the art in CBR[8, 4, ].]. We therefore only give a short
description of a classic CBR approach in  technical domains and especially help desk systems.
Case Representation In most systems cases are represented as attribute7«value vectors with some
basic value types such as numbers (intervals), strings and sets of symbols describing nominal or ordinal
types.

Feature Similarity The single attribute similarity is mostly obtained by equality testing. Some sys—
tems allow ranges and deviations for features involving numbers, and implement some spell checking
routines and substring testing for string features.
Similarity Measure The similarity measure comparing the  current situation with a. stored case is
often a function combining single attribute similarities to a value in the interval [0. . . 1] (or [—1 . . . 1])
This is often a weighted sum of the single attribute similarities, or a function based on the contrast rule
by Tversky[9].
Retrieval In a first s tep a set of relevant cases is selected, often on a selection of those cases that contain
mandatory features. Then cases are sorted according to  a s imilari ty measure in  a second s tep ,  determining
the nearest neighbors of the presented case. Following steps eventually involve the  modification of the
most similar case according to the given situation, but  there are few implemented systems and especially
in the domain of classification8 this step is often not needed.

In this kind of CBR systems there is  no  way to represent the structure of a machine as well as
the history of the features over the time. Additionally there are no means of integrating the technical
documentation. In the following we will describe a concept for a system realizing these requirements.

4 .2  Structured CBR — The AMS Appraoch
Normally cases are represented by flat feature-value vectors. But  often, and eSpecially in the field of
help desk or service support  systems, there is knowledge about the structure of the domain,  i. e .  about
machines and plants to be supported.

Ide fconcep t  ‘ f i l t e r  ‘ p l anc—par t
( ( s i ze  (concept  : t - ‘ i l t e r—size i )
(manufac tu re r

( concep t :  f i l t e r—manufac tu re r )
( capac i ty  ( : concep t  f i l t e r—Elam)

. . . } i
(defconcept  ' p r e s su re - f i l t e r  “filter

( (p re s su re  ( : concep t  f i l t e r  —pres su re} l  H

is.-a hierarchy

Filter ' Mach ine

(clefconcrept ' f i l c e r—s ize  'quantitative—parameter—slot
“quantitative {Om2 10m2] 1)  i

(defczcmceept 'filterkmanufac-turer ‘string—parameter—slot
Milling-Machine ( (string (:czoncept t ex t )  ) })

“_“ { t i e f concep t  f i l t e r -« f low ' qua i l i t a t iVe rpa rame te r - s lo t
{ (qua l i t a t iVe  (:one—of ' l ow  ' no rma l  ' h igh ) ) ) )

Pressure-Filler

put-oi hierarchy' ( de f c ' oncep t  'plant ‘pa r t
( {bas in s  ( : c ' onc ' ep t  plant —basin) )

( f i l t e r s  ( :conc 'ept  1::1ant—fi1ter) )

(defconcrept ‘plant -ba .s in  ' pa r t  ~ s lo t
{ ( se t .  { : s e t  ( : some  ( : concep t  ba s in}  0 5') ) ) ) }

{de fconcep t  'plant - f i 1 t e r  ' ) ; ‚ a r t - s lo t
( ( s e t  ( : s e t  ( : some  l i co ru ' ep t  f i l t e r  0 2) } ) ) )

Figure 1: Parts of the  domain structure of AMS

This  knowledge enables us to model the  structure of the domain via als-a and part-of relations as in
frame knowledge representation systems like KL—ONE or  KEE[3]9. With  this kind of structure we can for
example represent the  fact t ha t  a milling machine is  a kind of a machining tool, or that a pressure—filter
is a kind of filter. Wi th  the part-of relation we can describe that  a manufacturing plant has, among
other, some basins for t he  cutt ing fluid, some filters to  separate chips and dir t  from the cutt ing fluid,
some machining tools etc. (see Figure 1).

7or  feature, parameter
a i . e .  find ing  a d iagnos i s
9KL-ONE and  KEE are  t‘lll'mfill among the  variety of frame representation systems to i l lus t ra te  the  design space of frame

representa t i rm sys tems
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Figure 2: A Schematic Plant History 

Recent CBH. projfd.s like AMS 10[2] and INRECA[5] therefore use frame-representation languages to 
structure the domain. . 

Domain Structuring The domain is structured via the above mentioned is-a and part-of relations. 
One defines concepts ff~pff~senting domain objects and states relations between them. 

For example one might. define a conrept. filter as a kind of plant-part with the measurable para­
meters size, grammes-per-square-meter, capacity et.c. It. is a leaf node in the part-of hierarchy and 
contains no part slots. Special filt.ers as a pressure-f ilter would then be defined as subconcepts of 
filter e. g. by adding a paral1wter-slot. pressure. 

Measurable parameters are defined as subconcepts of the class parameter-slot. They can contain 
nominal, qualitative (ordinal) and quantitative values as well as texts u . part-slots are relations with 
a range that is a subconr.ept of part. They might have number restrictions as known by KL-ONE: 

Case Representation As stated in section ;~, a service support system has to store and retrieve the 
normal values of some ff'aturf's as well as the feature values determihf'd during the diagnostic process. 

Machine and Plant Histories In order t.o store feature values of a certain machine the t.echnician 
has first to entf'r tlH~ structnrf' of thf' machine, i.e. he has t.o instant.iate the domain concept.s in order to 
get concret.e illstalll·es. Thf' slots of these instances are t.hf'n fillf'd by t.he feature values. 

When a new feature value is f'nterf'd, it corresponds to an observutioll made ·by the service man. 
An observation is a qua.druple (obju:l, slot, val1u:, time), so t.hat the slot value of a feature is a list. of 
pairs (Jealur'e, time), represf'ntillg the bistory of this feat.ure. The plullt history is then t.he collection of 
t.hefmture histor·ies. 

Diagnostic cases Diaguostic cases are represented as (n;ference, char'acterization, situation, diagnosis) 
where reference is a point.er to the plant. the failnred occured on, characterization is a (short) textual 
description of t.he failure, whereas situation is a set of previously made observations, and diagnosis is a 
list of diagnosis-steps. diag'/l.osis-steps themselves are triples (hypothesis, test, result) with hypothesis 
as a hypothet.ical observation, test an evaluation method and result an observation confirming or refusing 
the hypothesis. . 

Feature Similarity In order to allow a rather broad scope of queries, including exact matches, we 
define a set of comparillg relat.ions for each basic type A. The relations are themselve partially ordered in 
the sense of set inclusion. The minimal delilent of t.his ordering is t.he diagonal relation id?(a, b) consisting 
only of the pairs {(a, (J.) la EA}, whereas the maximal relation is the all relation all (a, b) =A 2 .1 2 

For some types one f,hen can define other relat.ions as is?(a, b) meaning set inclusion for sets of symbols 
or range inclusion for intf'rvals. For st.rings is?(a, b) could be interpreted as substring occurrence. Anot.her 
st.ep in this relation hierarchy conld be sect? ((J., b) meaning a non-empty section between two sets or ranges. 
Furthermore nW,'/'?(a, b) conld be defined, specifying that a is not too far apart from b in the sense of a 
distance measure based on t.he t.ype the difference in the case of numbers, or something like a hamming 
distance13 in the case of strings. The difff'rent stages of feat.ure relat.ions provide a first way to generalize 
from a given situatioll ill order to perform a similarity search. 

Instance Silnilarity Allother dimension of gf'nera.lization is provided by the domain st.ruct.nre, in t.hat 
we can generalizf' within the j.~-u or par'l-of hif'rarchy. The approach is best described by t.he rough 

10 AMS is a ca..s~-lJas,~cl SUI'POI·t syste.IU d~vdnpp.d l,y t.he author at Universit.y of H''lIuhurg's Artificial Intelligence Labo­
ratory in cooperat.ion wit.h a manufaet.urer of cooling lul..rkant.s in order t.o aid it's t.echnical st.aff. 

11 in AMS dimensions can he ddlned and used in quant.it.ative Slot.s 
12Because SOllle of the COIn paring relations are 110 equivalence relations (e. g. they are not transitive) the relations could 

not be embe<lded in the latt.ice of the equivalence relat.ions over A. 
13 i.e. allowing a certain nmnher of insertions, deletions and wrong charact.ers when searching t.he substring a in t.he string 

b. This would implement a kind of spell checking function 
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Recent CBR. projects like AMSIÜ[2] and IN R.ECA[5] therefore use frame~representation languages to
structure the domain. '
Domain Structuring The domain is structured via the above mentioned is-a and part-of relations.
One defines concepts representing domain objects and states relations between them.

For example one might define a concept f i l t e r  as a kind of plant-part with the  measurable para-
meters s i ze ,  grammes—per-square-meter,  capac i ty  etc.  I t  is a leaf node in the part-of hierarchy and
contains no part slots. Special filters as a p r e s su re—f i l t e r  would then be defined 'as subconcepts of
filter e .  g .  by adding a. parameter-slot p r e s su re .

Measurable parameters are defined as subconcepts of the  class parameter—slot .  They can contain
nominal, qualitative (ordinal) and quantitative values as well as texts“.  part—slots are relations with
a range that  is a subconcept of pa r t .  They might have number restrictions as known by KL-ONE.‘

Case Representation As stated in section 3, a service support system has to store and retrieve the
normal values of some features as well as the feature values determined during the diagnostic process.

Machine and Plant Histor ies  In order to  store feature values of a certain machine the technician
has first to enter the structure of the machine, i.e. he has to instantiate the  domain concepts in order to
get concrete instances. The  slots of these instances are then filled by the  feature values.

When a new feature value is entered, i t  corresponds to  an  observation made by the service man.
An observation is a quadruple (object, slot, m ine , t ime) ,  so that  the slot value of a feature is a list of
pairs ( f ea tu re ,  t ime) ,  representing the history of this feature. The plant  history is then the  collection of
thefeatu re his-tori es  .

Diagnostic  cases Diagnostic cases are represented as (reference, characterization, situation, diagnosis)
where reference  is a pointer to  the  plant the  failured occured on, characterization is a (short) textual
description of the failure, whereas s i tuat ion is a set of previously made observations, and diagnosis is a
list of diagnosis—steps. diagrmsis-steps themselves are triples (hypothesis , test ,  resul t )  with hypothesis
as a hypothetical observation, test an evaluation method and resul t  an observation confirming or refusing
the hypothesis. '

Feature Similari ty In order to allow a rather broad scope of queries, including exact matches, we
define a set of comparing relations for each basic type A. The relations are themselve partially ordered in
the sense of set inclusion. The minimal  element of this ordering is the diagonal relation id?(a,  b) consisting
only of the pairs {(a, a.)|u. E A}, whereas the maximal relation is the all relation all(a, b) : A2.12

For some types one then can define other relations as is?(a,  b) meaning set inclusion for sets of symbols
or range inclusion for intervals. For strings is?(a,, b) could be interpreted as substring occurrence. Another
s tep  in this relation hierarchy could be sect'?(a., b) meaning a non-empty section between two sets or ranges.
Furthermore nem*‘?(a, b) could be defined, specifying tha t  a is not  too far apart from b in the sense of a
distance measure based on the  type the difference in the case of numbers, or  something like a hamming
distance13 in the  case of strings. The different stages of feature relations provide a first way to generalize
from a given situation in order to perform a similarity search.

Instance Similari ty Another dimension of generalization is provided by the  domain structure, in tha t
we can generalize within the is—a or part—of hierarchy. The approach is best described by the  rough

mAMS i s  a case—based suppor t  sys tem deve loped  Ivy the  au tho r  at Univers i ty  of l—lambnrg’s Ar t ific ia l  In te l l igence Labo-
ratory in ccmperatinn with a manufacturer of cmiling lulu-icants in order t o  aid it’s technical staff.

“ in  AMS d imens ions  can  be  defined and  used in  quan t i t a t i ve  S lo t s
12Beer - ruse  some  of t he  compar ing  re la t ions  are no  equivalence  re la t ions  ( e .  g .  they  are no t  t rans i t ive)  t he  relations could

not be  embedded in the  l a t t i c e  of t he  equiva lence  relat ions over A .
l 3 i . e .  allowing a certain number of insertions, deletions and wrong characters when searching the  substring a. in the  string

b. This would implement a kind of spell checking function
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definition that. 'similarity is equalit.y on a more abstract. (or general) level' and corresponds to the set­
theoretic semantic of concepts in KL-ONE[3]. This can overcome t.he limitat.ion of flat. feature vectors 
when det,ermining for example, t.hat, Relais-l and Relais-2 are synt.act.ically different attributes, but 
have semant.ically t.he same function in funct.ionally and st.ructural ident.ical subparts of a machine[6]. 

The specification of a pressure-filter in a certain query can t.hen be replaced by a filter allowing 
to match all ot.her kinds of filters. This could be accomplished by defining relations similar to the ones 
presented in t.he previous section over the set of all concepts. The relations between instances are then 
defined by the relations of their corresponding concepts. 

For example, t.he diagonal relation id?(a, b) is fulfilled if the instances a and b are instances of the 
same concept, whereas is?(a, b) would have the semantics that the set of subconcepts14 of a is a subset 
of the set. of subconcepts of b, or to say it in another way, if a is a subconcept of b. In a similar way, 
near?(a, b) maybe defined as the path length between two concepts in the hierarchy. 

Retrieval Retrieval is performed by formulaling queries, i. e. conjunctions or disjunetions of patterns 
of observations, hypotheses etc., resulting in sets of machine histories or diagnostic cases that, contain 
observations etc. that mat,ch this query. 

One of the requirements made in section 3 was a user centered system design. This includes the 
specification of the similarity measure used in order to answer a certaiil query. The user can specify 
different comparing relations on the feature as well as on the instance level, where the default similarity 
measure used is testing the various parts of the observation via the is?(!/., b) relation resulting in a kind 
of subsumpt.ion test,. 

Thils t.he retrieval cycle is as follows: 

1.	 Foruutlate In a specific situation, the user formulates a query and retrieves the items matching 
this query. 

2.	 Inspect He/she inspects some of the retrieved cases. If he get.s too many or too few matches he 
may reformulate the query, specializing or generalizing it, respectively. 

,3.	 Adapt If he finds an interesting match, he adopts t.his match to t.he current. situation and proceeds. 

5 Incorporating the Technical Documentatio'n 
The concept described in the last section solves the t.asks of storing and t.o retrieving the structure of 
machines as well as t.heir history and diagnostic ca.'les associated wit.h them. It does not yet, provide any 
means to incorporate t.he t.echnical documentation. 

Additional Basic Types The main idea for incorporating the technical document.at.ion is t.o broaden 
t.he range of basic feat.ure t.Ypf's. Adding t.ypes used in hypermedia syst.ems, such as sound, picfuT'es and 
video allows us to store the documentation. Because t.he st.ructure of t.he documentation is similar t.o t.hat 
of t.he clefined domain st.l'1Icture15 

, moreover, the domain stl'1lct.ure often is derived and acquired from the 
documentation, it. is easy to inr:orporat.e the documentat.ion int.o t.his structure, for example by providing 
the relevant. parts of a components manual as additional slot.s of the concept describing t.hat component. 

Structure as Hypertext Having incorporat.ed t.he technical documentation int.o t.he concept t.axonomy 
and partonomy, onf' can lISf' the is-a and part-of hierarchies as a link st.ructure similar to a hypertext 
system, allowing t.hf' lIser t.o easily navigate t.hrough t.he so const.ructed online manual. 

The new basic t.ypes can not only be used t.o incorporate t.he documentation, t.hey are also useful in' 
modeling t.he domain it.self. 

NOluinal and ordinal pal'allleters There are a lot, of situat.ions, where it is much easier for a user 
t.o have sounds or pict.ll1'f>s descrihing ordinal or nominal value types than the normally used symbol 
sets. For example, OIW eau use sOllnd t.ci illustrate different noises of a part. representing correct and 
false behavior. Anotlwr example arf> dip slides t.hat are used to measnre t.he pH-value or pict.ures of 
bacteriological cuItnrf>s to dpt,f>rmine a gf>rmination indf>x. 

Visualization Videos and Pictnres conld be used t.o visualize a cert.aih test., e. g. how to replace a 
defect. part. 

6 CBR -and IllforIuation Retrieval 
Closely relat.ed t.o eBB. is thf> fif>ld of Information Ret.rieval [7], which is mainly the t.ask of ret.rieving a 
set. of documf>nt.s similar to a list of keywords (or another document). This is often accomplished by the 

14 including the concept,
 
l!ji.e. the struct.ure of tna,hine lnau\1als (dlaptf':r, sect.ions etc.) c()rr~spond to the part str-t1cture of the Inachine
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definition that ‘similarity is equality on a more abstract (or general) level’ and corresponds to  the set-
theoretic semantic of concepts in KL~ONE[3]. This can overcome the limitation of flat feature vectors
when determining for example, that  Relais-1 and Relais—2 are syntactically different attributes, but
have semantically the  same function in functionally and structural identical subparts of a machine[6].

The specification of a p re s su re—fi l t e r  in a certain query can then be  replaced by a f i l t e r  allowing
to match all other kinds of filters. This could be accomplished by defining relations similar to the ones
presented in the previous section over the set of all concepts. The relations between instances are then
defined by the relations of their corresponding concepts.

For example, the diagonal relation id?(a‚ 6) is fulfilled if the instances a and b are instances of the
same concept, whereas is?(a, I)) would have the semantics that the set of subconcepts14 of a. is a subset
of the set of subconcepts of b, or to say i t  in another way, if a is a subconcept of b. In a similar way,
near?(a ,  6) maybe defined as the path length between two concepts in the hierarchy.

Retrieval Retrieval is performed by formulal'ing queries,  i .  e. conjunctions or disjunctions of patterns
of observations, hypotheses etc.,  resulting in  sets of machine histories or diagnostic cases that, contain
observations etc. that match this query.

One of the requirements made- in  section 3 was a user centered system design. This includes the
specification of the similarity measure used in  order to answer a certain query. The user can specify
different comparing relations on the feature as well as on the instance level, where the default similarity
measure used is  testing the various parts of the  observation via  the is?(a ,  b) relation resulting in a kind
of subsumption test.

Thus the retrieval cycle is as follows:

1 .  Formulate In a specific situation, the user formulates a query and retrieves the i tems matching
this query.

2 .  Inspect He/  she inspects some of the retrieved cases. If he gets too many or too few matches he
may reformulate the query, specializing or generalizing i t ,  respectively.

5:
2

. Adapt If he  finds an interesting match,  he adopts this match to  the current situation and proceeds.

5 Incorporating the  Technical Documentation
The concept described in the last section solves the tasks of storing and to retrieving the structure of
machines as well as their history and diagnostic cases associated with them. I t  does not yet provide any
means to incorporate the  technical documentation.
Addit ional  Bas ic  Types The main idea‘for incorporating the  technical documentation is to broaden
the range of basic feature types. Adding types used in hypermedia systems, such as sound, pictures and
video allows us  to store the documentation. Because the structure of the  documentation is  similar to  that
of the defined domain s t ruc ture” ,  moreover, the  domain structure often is derived and acquired from the
documentation, i t  is easy to incorporate the documentation into this structure, for example by providing
the relevant parts of a components manual  as additional slots of the concept describing. that  component.

S t ruc ture  as Hypertext  Having incorporated the technical documentation into the  concept. taxonomy
and partonomy, one  can use  . t he  is-a  and part-af hierarchies as a l i nk  s t ruc ture  s imi la r  to  a hypertext
system, allowing the user to easily navigate through the so constructed online manual .

The new basic types can not only be used to  incorporate the  documentation, they are also useful in’
modeling the  domain itself.

Nominal and ordinal parameters There are a lot of situations. where it is much easier for a user
to have sounds or pictures describing ordinal or nominal value types than the  normally used symbol
sets. For example, one can use sound to  illustrate different noises of a part representing correct and
false behavior. Another example are d ip  slides that  are used to measure the  pH-valu'e or  pictures of
bacteriological cultures to determine a germination index.
Visualization Videos and Pictures could be used to visualize a certain test,  e .  g .  how to replace a
defect par t .

6 CBR‘and  Information Retrieval
Closely related to CBR. is the field of Information Retrieval [7], which is mainly .the task of retrieving a
set of documents similar to a list of keywords (or another document). This is often accomplished by the

” including the concept
:- . . ' '1"Le .  the structure of machine manuals (chapter, sections etc.) correspond to the part structure of the machine
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use of inde.u:rJ tf'.1:t.~ .Tlwy aff~ an alt.ernatiw t.o t.he .string t.ype when larger t.ext.s need t.o be st.ored and 
ret.rieved. They allow the efficient. ret.rieval of similar t.ext.s, and t.he met.hod of relevance feedback[7] used 
to improve a query in informat.ion ret.rieval fit.s int.o t.he main ret.rieval loop ment.ioned in 4.2. Moreover 

. many information rdrieval syst.ems also have different. ret.rieval modes ranging from boolean retrieval to 
complex similarity flllwt.ions similar t.o t.he relat.ion hierarchy in 4.2 and 4.2. 

Indexed text.s than can assist in overcoming a problem of CBH projects, t.he problem of inadequate 
descript.ions of old cases. When st.art.ing a CBH project one is often t.old th~t there' are lots of cases 
already acquired. But. when it. comes t.o t.he point. of getting the cases t.here are fewer than previously 
said, and they are in t.he wrong format., mostly prot.ocols. 

Protocols have t.o be convert.ed int.o t.he more st.ructured form of cases, which is a t.ime consuming 
process. Wit.h indexed texts, protocols can be used directly for retrieval. For example t.he characterization 
part. of a diagnost.ic case could be an indexed text.. Then old cases, or cases the service man has no pos­
sibilit.y or time t.o enter the formal descript.ion, could be first given in an t.extual description (and turned 
int.o a formal one lat.er). Indexed texts t.herefore provide a migration path from unstructured to structured 
represent.at.ion of cases and should be added as anot.her basic type. 

Summary & Outlook 
In this paper we int.roduced service support. syst.ems as user-cent.ered syst.ems relat.ed t.o help desk systems 
and presented a concept. for realizing t.hem. This concep~ differs from other CBH syst.ems in that it uses 
knowledge about. t.he domain t.o stmct.ure the cases. Addit.ionally it. support.s t.wo t.ypes of cases: machine 
hist.ories and diagnost.ic cases. The ret.rieval methods are based on a semantic similarity measure different 
from t.he more synt.actic measnres in classic CBH systems. The user itself can modify the similarity 
measure for a certain Cjuestion to broadf'n or confine the retrieval. 

Adding indexed t.ext.s, sound, pictures, and video as basic types allows us to integrate t.he technical 
documentation,which is often missing in normal CBH based help desk systems. They also allow to 
describe the cases in a more natural way and facilit.ate the process of convert.ing existing paper-based 
case descript.ions. 

Nothing has been said about. case adapt.ion and learning. How this can be done using the classification 
and recognition capabilit.ies of KL-ONE is part of current research. 
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Abstract' 

This paper presents CABATA, a hybrid case-based' reasoning system that has been developed at the 
Department of Computer Science, Humboldt-University, Berlin. The most characteristic feature of 
the system is the combination of model-based and case-based reasoning within a hybrid architecture. 

1 Introduction 

Within the framework of CBR research at the Department of Computer Science at Humboldt-University, 
Berlin, the CABATA-system has been - and is still being - developed. The system was designed to pay 
particular attention to the combination of domain-specific knowledge and classical CBR methods within 
a hybrid architecture. The cooperation of both, the rule-based and the case-based reasoning strategy, is 
expected to show significant improvements concerning all phases of CBR: 

• efficient case retrieval (using indexing), 
• the matching of cases, 
• storage of cases and meory organization, 
• learning beyond the scope of CBR. 

The key features of the CABATA-system are 

• integration of user-defined rules guiding the inference within the CBR-like inference engine 
• dynamic similarity assessment of feature values via user-given context graphs 
• incremental classification by subsequently modifying similarity knowledg-: 
• EBL-like acquisition of domain knowledge. 

The ouJline of the paper is as follows: Section 2 gives a short introduction to the domain chosen to serve 
as an example to demonstrate the hybrid architecture. Section 3 describes the way domain-specific rules 
can be defined and are used within the CABATA-system. Section 4 sketches the usage of context graphs 
to assess the similarity between symbolic feature values. Section 5 shows two ways efficient indexing can 
be implemented, section 6 describes a first attempt to implement learning strategies. Section 7 shortly 
discusses the CABATA-system in relation to important work in the literature (7.1) and lists some of the 
research topics (7.2) within the CABATA-system in the near future. During the whole paper a basic 
knowledge of case based reasoning methods is assumed. 

The CABATA-system has been implemented using C++- Currently, CABATA runs on a PC 386/486 
and requires Microsoft Windows©3.1. 

2 The chosen domain' 

The simulation of a travel agency was chosen to serve as an example to demonstrate the CABATA 1 

architecture. However, all parts of the inference engine have been implemented independently of the 
domain under consideration". The task of CABATA is to choose one of its stored cases describing past 
holiday trips as a suggestion for a new trip satisfying user-specified conditions. These conditions are 
given as case descriptions and include features such as 

1CABATA = CAse BAsed Travel Agency
 
2 In fact, all parts of the whole program except for the graphical user interface.
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integration of user—defined rules guiding the inference within the CBR—like inference engine
dynamic similarity assessment of feature values via user-given context graphs
incremental classification by subsequently modifying similarity knowledge
EBL—like acquisition of domain knowledge.

The outline of the paper is as follows: Section 2 gives ashort  introduction to  the domain chosen to serve
as an example to  demonstrate the hybrid architecture. Section 3 describes the way domain-specific rules
can be  defined and are used within the CABATA—system. Section 4 sketches the usage of context graphs
to  assess the similarity between symbolic feature Values. Section 5 shows two ways efficient indexing can
be implemented, section 6 describes a first a t tempt  to  implement learning strategies. Section 7 shortly
discusses the CABATA-system in relation to important work in the literature (?.1) and lists some of the
research topics (7.2) within the  CABATA—system in the near future. During the whole paper a basic
knowledge of case based reasoning methods is assumed.

The CABATA—system has been implemented using C++ .  Currently, CABATA runs on a PC  386/486
and requires Microsoft Windows©3.1.

2 The chosen domain!
The simulation of a travel agency was chosen to serve as an  example to  demonstrate the CABATA1
architecture. However, all parts  of the  inference engine have been implemented independently of the
domain under consideration? The task of CABATA is to choose one of i ts  stored cases describing past
holiday trips as a suggestion for a new trip satisfying user—Specified conditions. These conditions are
given as case descriptions and include features such as

1CABATA : CAse BAsed Travel Agency
2 In fact, all parts of the whole program except for the graphical user interface.

204



3 

•	 the type or aim of holiday (e.g. recreation, sporting activity, language course etc.), 
•	 the chosen region (both general descriptions such as mountains or sea, and particular countries, 

cities or areas), 
•	 the wanted means of transport (e.g. coach, car, train or plane), 
•	 the season or month of the holiday trip, 
•	 the maximal price, 

• 
While some features are numerical ones, others may take symbolic values. This will be of particular 
importance in section 4. 

It seams important to point out here the difference to other CBR systems dealing mainly with technical 
diagnosis (e.g. [3,4,5,6,7, 17]): 

1.	 In contrast to technical devices no causal relations guiding the inference are available. 
2.	 The terminology describing the domain is not well defined: Such terms as "Recreation" are highly 

ambigous. 
3.	 The diagnosis of a case itself is not an atomic object, such as a fault number or a descriptional 

string. Rather it is a structured object: A proposal of a new holiday trip similarly structured as 
other cases. 

The process of selecting the best applicable case from memory is designed to be an incremental one. 
i.e. after a suggestion has been made by the system, the user may modify the set of conditions and the 
matching knowledge to adapt the solution. 

Integration of domain-specific rules 

Rules within the CABATA-system have the form 
IF <feature1> <reIl> <valuel> THEN <feature2> <re12> [<value2>]. 

where 
feature1 contains the feature of the case description that - when satisfying the given condition 

- implies a certain modification of the inference. 
rel1	 describes the relation between feature1 and value1. This may be one of the ordinary
 

arithmetic relations (=, f, <, > etc.), or a relation named isA to express if the value
 
belongs to a certain type hierarchy, i.e. is a sub-type of value1.
 

valuel is the value to which feature1 is compared using rel1.
 
feature2 contains the feature of the case description for which a certain condition must hold.
 
re12 states the relation to value2 thas must hold for feature2. Here two types are
 

possible: Firstly, as above it may be one of the ordinary arithmetic relations or the 
isA relation. Secondly, it may be a statement indicating the importance of feature2 
when comparing two cases (reaching from not important to most important). In 
the latter case value2 cannot be selected. 

value2	 gives the value to which feature2 is compared using re12. 

On the basis of this scheme, rules may be used in two different ways: 

1.	 The dynamic similarity assessment may be influenced by increasing or decreasing the importance 
of particular features if certain conditions hold, e.g. 

IF HOLIDAY_TYPE = CITY THEN SEASON IS OF LESS INTEREST.
 
stating that, when planning to visit a particular city, the season is less important than usually.
 

2.	 These rules may. serve as restrictions (constraints) when demanding that a particular feature be of 
a certain value, for example 

IF REGION isA SEA THEN REGION MUST NOT BELONG TO~~OUNTAINS.
 

helps to avoid anomalies caused by the propagation of similarity values through the context graphs
 
(see section 4) as:
 

•	 The Alps have something in common with Italy3 . 
•	 Italy has something in common with the Mediterranean Sea. 

3To have something in common expresses that the similarity value between the mentioned feature values is different 
from 0, the actual value is of no importance here. 
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of particular features if certain conditions hold, e.g.
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•	 Hence: The Alps have something in common with the Mediterranean Sea. 

Thus, in combination with the simihuity graphs described in section 4 the integration of rules allows 
for a similarity assessment which depends on the context of the comparison of the attribute values. 

4 Context graphs 

For every symbolic feature being part of the case description a context graph is constructed containing 
information about both 

•	 generalization and specialization 

•	 similarities 

between all possibile4 attribute values. 
These graphs have to be defined using binary relations between particular feature values. To serve as 

an aid during this process, a tool has been constructed - first of all to allow larger p~rts of the graphs 
to be displayed and edited. Thus the risk of local acceptable changes leading to global inconsistencies5 

is reduced (see the example above). 
The similarity between two values of a feature itself is expressed using a number of measures ranging 

from nothing in common via similar to identical thus giving reasonable flexibility to describe domain 
knowledge. 

At run time, that is when classification of a case is requested, this context graph is used to determine 
the similarity between different values of symbolic case attribute6 . If the corresponding nodes of the two 
attribute values are connected, i.e. if a binary relation has been specified for these two value~. a numerical 
equivalence for this relation is returned. If they are not directly connected the similarities are propagated 
through the graph. Thus the larger the distance between two nodes the weaker the similarity. 

5 Indexing 

To implement an efficient case retrieval, CABATA is designed to employ a twofold indexing strategy: 

1.	 By applying a passive indexing to the case database stored cases are excluded from the classification 
if they do not satisfy certain conditions required by the case to be classified. 

2.	 On the contrary, active indexing directly searches for cases with certain attribute values. 

To give an example how both strategies work together, imagine that the current problem case expresses 
that somebody wants to go on a sporting activity holiday to Italy in winter: 

•	 Passive indexing should exclude all cases dealing with city trips (wrong type of holiday), other 
destinations, taking place from April to September etc. However, a reference case describing a 
bathing holiday in October at the Mediterranean Sea could not definitely be excluded. 

•	 Active indexing, on the other hand, could assume that the customer actually wants to go skiing. 
Thus cases describing holiday trips to the Italien Alps from October to March could be searched 
for. 

So active indexing can be seen as a more sophisticated method using implicit assumptions not ex­
pIicitely given in the description of the problem case. However, it is not yet clear how these implicit 
assumptions can be derived. Probably the attempt of learning determmatlOn rules (section 6.2) will give 
useful hints. Currently, only passive indexing is applied within CABATA. 

6 Learning 

One objective of CABATA was to investigate methods that could enable the system to learn beyond the 
mere storing of cases. Currently. two approaches are taken into account: . 

40f course. during run time the set of all possible values of a feature may be modified. 
5 For instance, an acceptable modification of a single binary relation between two feature values may resulcin completely 

different values being similar to some extent. This is due to propagation of similarities through the graphs. 
6Numerical values are compared by employing a sigmoid function. 
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Thus cases describing holiday trips to the Italien Alps from October to March could be searched
for.

So active indexing can be seen as a more SOphisticated 'method using implicit assumptions not ex—
plicitely given in the description of the  problem case. However, i t  is not yet clear how these implicit
assumptions can be derived. Probably the attempt of learning determination rules (section 6.2) will give
useful hints. Currently, only passive indexing is applied within CABATA.

6 Learning
One objective of CABATA was to  investigate methods that could enable the  system to learn beyond the
mere storing of cases. Currently. two approaches are taken into account:

4Of  course, during run time the set of all possible values of a feature may be modified.
5 For ins tance ,  an acceptable modification of  a single binary relation between two  feature values may resul t l in  completely

different values being similar to  some extent. This is due to  propagation of similarities through the graphs.
5Numer i ca l  values are compared by  employing a sigmoid function.
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6.1 Modified Explanation-Based Learning 

Since pure explanation based learning ([10, 11, 12]) seams not applicable7 , a slightly modified strategy is 
applied: Similar to [13] the user is asked for matching knowledge when a diagnosis is finally selected for 
a case and discrepancies concerning that diagnosis are detected (i.e. a user-defined constraint is violated 
or there are other cases regarded significantly more similar). 

6.2 Modified Learning from Examples 

In a later stage, a knowledge acquisition based on the Machine Learning paradigm of learning from 
examples ([1, 2, 16]) will be applied to the case dat.abase. While other CBR researchers. (mainly when 
dealing wit'h technical diagnosis) heavily rely on this, the assumption of a very weak domain theory again 
requires a modified strategy. Either the weak domain theory will prevent the detection of rules leading 
directly to a diagnosis for a given descriptionS, or these rules will be applicable only in very restricted 
circumstances, i.e. only for very few problem cases. Furthermore, it might be desirable to extract weaker 
regularities - heuristics -, too. This is somewhat difficult when using the generalization based methods. 

The idea is, not to learn production rules or decision trees, but to derive determination rules as 
described in [9]: How certain attribute values influence other attributes of the case or, possibly, the 
diagnosis. An example of such a determination rule has already been shown in section 3: If somebody 
wants to go on a bathing holiday he'll have to go to the sea. On the other hand, a general rule enabling 
the system to determine the destination for a given type of holiday can not be derived. 

However, this part of CABATA is currently being investigated and it is not yet clear how these deter­
mination rules can be learned efficiently. 

7 Discussion 

7.1 Relation to other work 

Due to the restricted place here only a few authors can be mentioned - far away from being complete. 

The two systems that were of particular importance for the development of CABATA will be discussed 
in the next sections. 

7.1.1 The CcC+-system 

The CcC+-system ([15, 14]) employs a quite similar idea of using rules to modify the importance of case 
attributes. Since the domain is not technical diagnosis, an adaption of the way rules are integrated was 
necessary. Furthermore, the following modifications lead to a much more powerful architecture: 

1.	 Not only the diagnosis of the reference case is taken into account - rather all attributes of a case 
may trigger rules. 

2.	 The restricted similarity schemes provided .in CcC+ have been designed much more powerful in 
CABATA by using context graphs (see section 4). 

3. While the problem of automatic acquisition of classification knowledge in CcC+ remains completely 
unsolved, CABATA at least in some situations explicitely asks for this kind of knowledge (section 6.1). 

7.1.2 The PRoTos-system 

The PRoTos-system ([13]), was also motivated by a weak domain theory disabling a pure model-based 
approach. To compare different feature values, PROTOS, too, uses matching knowledge to be given to 
the system in a predefined language: 

1.	 Featural importances are used similar to the way rules may be used within CABATA (see section 3). 
2.	 Structural knowledge explains relations among different attributes of a case. This is similar to the 

use of rules as constraints (see section 3). 

However, both systems differ significantly in the way this knowledge is applied. While CABATA allows 
interactions between different case attributes (determinatiuon rules - see section 6.2), PROTOS focusses 
mainly on the target classification, for example (taken from [13]): 

'This is due to the assumption of an existing domain theory in EBL.
 
8ln fact, if t.his were not the case, the whole problem could be solved using the rule-based approach only.
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ad 1: A seat is essential for the class chair while wheels are spurious. 
ad 2: A pedestal enables the chair to hold a person, as do legs. 

In the latter case PROTOS additionally employs a much richer language describing functional relations. 
This might be integrated in CABATA by enriching the context graph (section 4) with semantic relations. 
However, these will be highly domain-dependent. 

The attempt to learn from a classification by letting the user explain the discrepancies is extended in 
CABATA by checking whether previously defined constraints were violated. What's more, in PROTOS the 
explanations are only used to justify a classification while in CABATA domain knowledge may be tought 
this way. 

Another difference between both systems is the structure of the classification: While CABATA con­
structs a proposal, PROTOS simply chooses one of previously defined diagnostic categories. This, too, 
is the main reason for the above mentioned differences: The task of CABATA is problem solving'-.l while 
PROTOS is used to classify problem cases: 

7.1.3 Other research 

Concerning the problem of learning of matching knowledge AHA et. al. ([1, 2]) suggest various algorithms 
to be applied in a case-based reasoning context. However, for all algorithms a concept description is 
required. Thus these algorithms are hardly applicable for weak-theory domains. 

BARLETTA and MARK [8] suggest Explanation Based Indexing as a method to use domain-specific 
knowledge for an efficient memory management. This could be of use in future work on CABATA. However, 
it has to be extended to be more flexible and context-sensitive. 

Another project dealing with technical diagnosis is the MOLTKE workbench ([3, 4, 5, 6, 7, 17]). Here, 
too, context graphs are used to represent experience knowledge and an attempt is made to combine 
various sources of knowledge and inference strategies. However, it is not clear, whether all results can be 
simply adapted to other domains (e.g. decomposition of tasks, use of causal knowledge). 

RrSSLAND and SKALAK ([18]) employ a mixed paradigm approach: Their CABARET system consists 
of two co-reasoners, a rule-based and a case-based one. Both are capable of running in a stand-alone 
manner - in CABARET they work together using an agenda-based controller. Though CABARET 
is applied to legal reasoning, it should be well-suited for the technical domain, too: There are rules, 
underlying causalities etc., and the case-based part could enable the system to work more efficiently by 
envoking the right part of the rule base. Again, how this approach could be applied to weak-theory 
domains remains an open question - here the rule-based part is much to restricted to be capable of 
running as a stand-alone machine. 

7.2 Future work 

Future work on the CABATA-system will include 

•	 improvement of the algorithms used to propagate similarities through context graphs to avoid 
certain anomalies, 

•	 research about the possibilities to integrate Machine Learning techniques to allow learning beyond 
the storage of cases, i.e. on the level of domain knowledge, 

•	 integration of methods for efficient memory organization and case retrieval (e.g. indexing). 
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Abstract 

This extended abstract adresses part of our architecture of individual agent in multiagent 
environment: the identification process. This process allows to understand the actual situation 
and select the goal or action that best suits the situation. To achieve this, we are developing 
a testbed in which the identification is based on past situations of many agents. This type of 
identification is described in this short paper. 

Introduction 

We are currently developing the architecture of an intelligent entity that can evolve in a 
multiagent environment [CHAI92, CHAI93]. A multiagent environment is a system in which 
evolve many entities that are more or less intelligent and more or less specialized. These 
entities are called " agents" . To conceptualize the notion of agent, one can think of a factory 
where several robots realize different tasks individually or in group. These robots can be seen 
as agents. The multiagent theory is derived from distributed AI and may be used in several 
domains, among which are: distributed problem solving, decision aiding, process control, 
etc. We presently elaborate the architecture of an agent that would be ideally adaptable to 
any application domain. To reach this goal, several components must be integrated into the 
architecture [CHAI93}. Our agent is made up of those components: 

•	 The Perception module: it is used to sense the environment. 

•	 The Identification module: its purpose is to understand the meaning of the sensed data. 

•	 The Deliberative module: it is used to evaluate the consequences of several potential 
goals or actions, using a cognitive map. 

•	 The Planning module: it builds plans to realize the agent's goals. 

·This research is supported in part by the Natural Sciences and Engineering Research Council of Canada 
(NSERC). 
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where several robots realize different tasks individually or in group. These robots can be seen
as agents. The multiagent theory is derived from distributed AI and may be used in several
domains, among which are: distributed problem solving, decision aiding, process control,
etc. We presently elaborate the architecture of an agent that would be ideally adaptable to
any application domain. To reach this goal, several components must be integrated into the
architecture [CHAI93]. Our agent is made up of those components:

. The Perception module: it is used to sense the environment.

. The Identification module: its purpose is to understand the meaning of the sensed data.
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2 

• The Action module: it simply executes the actions commanded by the other components. 

Our aim in this paper is to detail the Identification module. The task of this module is to 
understand the situation and select the goal or action that best suits the situation. 

We are developing a testbed simulating the behaviour of several vehicles automated with 
our architecture. In this case, the task of the Identification component is· to analyze the 
perceived situation, which may be composed of several elements like traffic lights, vehicles, 
walls, etc. According to the situation, the process has to choose among various actions such 
as slow down, break, turn left, etc. 

In a simulated world, it is possible to anticipate every situation that an agent can face. 
So, in this case, it is feasible to settle the behaviour of an agent with rules like: 

IF <vehicle in front is too close> THEN <slow down>
 
or
 
IF <traffic light is red> THEN <stop>.
 

However, in the real world, the combination of individual elements may produce situations 
that are very complex and it is quite hard to define an adequate behaviour for every possible 
situation with such rules. 

Therefore, we feel that case-based reasoning is more appropriate than rule-based reasoning 
to fit the needs of the Identification module. Case-based reasoning allows to refer to past 
sit~ations if a specific action is not specifically defined for the current situation. It is not 
a static process like rule-based reasoning; it allows the agent to. acquire experience (that is, 
learn from new cases) and adapt itself to new situations. 

However, case-based reasoning is much harder to implement than rule-based reasoning. 
Furthermore, the use of case-based reasoning in conjunction with multiagent theory is not a 
very well documented topic, so we had to take our inspiration from work purely dedicated 
to case-based reasoning, as [RIES89] [HA:MM90] [GOL9I] [KOL093]. Thus, we present in 
the next sections a design for a case-based reasoner that meets the needs of the Identification 
module. We. named this process Case-based Identification. 

The Case-Based Identification Process 

As mentioned in the previous section, the Identification module receives as input a situation 
description and has to s~lect an action that is well suited for this situation. 

However, the action is not chosen ~nly accordingly to the situation, but also accordingly 
to the mental state of the agent. The mental state of an agent consists of the knowledge, 
beliefs and goals of the agent. 

For example, if an agent has the goal reduce fuel consumption and another agent has 
the goal reach destination as fast as possible, they will reaetdifferently if there is a 
vehicle in front of them: the first agent will probably choose to follow the vehicle in front of 
him and slow down if needed, while the second agent is very likely going to pass the vehicle. 
Thus, we see the impact of the mental state on the choice of an action. 

We are now ready to describe in detail the case-based identification process, depicted on 
fig. 1. 
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Figure 1: The Gase-based Identification Process 

The lVatcher receives as input a situation description and the current mental state of the 
agent. Its task is to retrieve from the Cases database the case that best matches the current 
input. The cases database initially contains a set of cases obtained experimentally or defined 
by the designer. A case description is made up of ~ situation description, a mental state 
description and the action associa.ted with this case. 

Sometimes, the ~fatcher retrieves a case identical to the current one, but often, there is 
no identical case in the database. In this situation, the :Matcher uses similarity metrics to 
compare the current mental state and current situation to stored cases. The case that is the 
most similar to the current case is selected and the action associated with it constitutes the 
Selected action. The new case is then link,ed to the Selected action and stored in the Cases 
database by the Storer. 

The similarity metrics are dependent from the application domain and are determined 
according to the requirements of the application. 

Following the storage of the case, the Selected action is sent to the Action module to be 
executed. 

Ideally, the Selected action would always have the expected effects. However, due to the 
lack of pertinent cases, the Selected action may not be appropriate for the current situa­
tion and have undesired consequences for the agent himself or for the community. In those 
circumstances, the Repairer receives the description pf a Failed case. 

The Repairer analyses the Failed case, using a database containing a description of the 
Consequences of the actions. It then tries to select a more suitable action for this case and 
sends the Repaired case to the Storer, which stores it into the. Cases database. 

But, for the Repairer to receive such a feedback telling him that a certain action went 
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wrong, someone must have realized that this action had undesirable consequences. This 
feedback can come from the agent himself or from_ an other agent. For example, the Selected 
action may cause effects that go against the own goals of the agent or, for some reason, the 
agent may be unable to execute the action. In these cases, the agent himself is in position to 
understand what is going wrong and give the description of a Failed case to the Repairer. 

However, since the agent evolves in a multiagent environment, the feedback may come from 
an other agent. An advantage of evolving with other entities is that you may get experience 
from more specialized (or more competent) agents. So, if the actions undertaken by an agent 
harm an other agent or the community in general, the agent in the wrong might receive a 
message from someone else containing the description of a Failed case. 

Indexing of the Cases 

For certain application domains, the Cases database may become huge. So, it is important to 
use a storage scheme that will allow for a quick retrieval of stored cases and an efficient use 
of memory. We think that MOPs (Memory Organization Packages) are well suited for this. 
The concept of MOP has been introduced by Roger Schank as a way to structure and index 
scenes. He defined a scene as: 

"A memory structure that groups together actions with a shared goal, that oc­
curred at the same time. It provides a sequence of general actions. Specific 
memories are stored in scenes, indexed with respect to how they differ from the 
general action in the scene." [SCHA82] 

Since this concept of scene is very close to our concept of situation, it naturally follows that 
we can use MOPs to adequately index situations. In the same work, we find the following 
definition for a MOP: 

"A MOP consists of a set of scenes directed towards the achievement of a goal. 
A MOP always has one major scene whose goal is the essence or purpose of the 
events organized by the MOPs." [SCHA821 ' 

Thus, we can use MOPs to link situatiops relating to the same context, that is, situations 
sharing identical elements. The major scene (or, in our case, major situation) of a MOP con­
tains the elements shared by all the situations related to that MOP. The situations are indexed 
by their differences from: the major situation. This kind of organization provides an almost 
immediate access to all situations present in memory and an appreciable saving of memory [?1. 

Conclusion 

In this paper, we presented a method of case-based reasoning that allows an agent to identify 
a situation in a multiagent environment and act consequently. Using this method, an agent 
can get experience by storing new cases and can learn fro.\n his mistakes th,rough the repair 
of failed cases. 
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When we designed the agent architecture, we tried to make it psychologically valid. From 
this point of view, a process of case-based reasoning fits well in our architecture, since this 
process stays at a very cognitive level. The concept of MOP, which is used to represent 
cases in memory, also respects the criterion of psychological validity, since it is based on the 
functioning of human memory. 

We feel that case-based reasoning is a powerful concept and we plan to integrate it into 
other components of our agent architecture. The planning module, for one, will use a process 
of case-based planning to elaborate the agent's plans. 
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Abstract. Even though today case based reasoning is applied in a wide range of different areas, there 
are only few systems which make use of case based techniques for network management. In this paper, 
we outline the domain of network management and highlight consequences for the application of 
problem solvers operating in this domain. After this, we present a case based prototype performing a 
task ofcIosed-loop network management upon a simulated computer network together with first results. 

1 The Domain of Network Management 

Network Management covers the operations and strategies for designing, installing, maintaining and operating 
computer and telecommunication networks. Whereas design and installation of networks both take place off-line, 
operation and maintenance have to be done during the network's operational phase. 

In this brief introduction we will focus upon the latter tasks which are intended to guarantee the desired quality of 
network services to the user and to collect and evaluate information. 

In order to guarantee quality of service, one has to optimize performance, manage configuration and faults and the 
system has to be kept secure. Information has to be gathered for the purposes of accounting and for gaining 
information for future network design. 

The actions mentioned above all rely on the elementary tasks of monitoring the network's state, reasoning about 
this state and controlling the network (see fig. 1). 

Monitoring provides information about the state of the devices forming the network. After information retrieval, 
reasoning takes place in order to plan actions to be taken, e.g. for keeping a connection's throughput at a desired 
level. The reasoning task includes 'storing information for future use or learning about the network's behaviour. 
Finally, if the managed network's state has been recognized as optimizeable, undesirable or even critical, adequate 
control actions have to be taken in order to drive the network back into a desir~d state. Each of those elementary 
tasks may be automatted up to a certain degree. 

Learning & Reasoning 

Monitoring Control 
Design 

& Install 

Network 

Figure1: Basic actions in network management 

In early network installations it was necessary for operators to log in to every single computer system attached 
to the network for retrieving and changing its network oriented behaviour. Devices without remote access, like 
hubs, bridges and routers had to be monitored and controlled by lamps and switches or by special control 
terminals. With this kind of installation, network management could be regarded as an adventure, where both the 
running and the thinking had to be done by network operators. 
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In early network installations it was necessary for operators to log in to every single computer system attached
to the network for retrieving and changing its network oriented behaviour. Devices without remote access, like
hubs, bridges and routers had to be monitored and controlled by lamps and switches or by special control
terminals. With this kind of installation, network management could be regarded as an adventure, where both the
running and the thinking had to be done by network operators.
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Because of growing network complexity the need for systems taking over the "running" part from the network 
operator emerged. This led to the development of todays management systems. While there are still many 
problems to solve, those systems provide a uniform access to a large number of different network devices, 
including computers as well as devices uniquely dedicated to network operation. This is accomplished by making 
use of standardized management information formats and standardized protocols for the exchange of such 
information [RFC 1157] [ISO 10040]. Every device that implements an agent, thereby providing access to its 
management information may be managed by programs taking over a manager role. There exist various 
structuring principles for management systems consisting of agents and managers, but explaining these would be 
out of the scope of this paper. 

Network
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Manager" 

Management 
Protocol 

Agent 

Figure 2: Basic components and structure of a management architecture 

Many of today's management systems provide mechanisms giving the operator a better overview of the managed 
network. They comprise: 

• graphical network maps with indication of the site where a problem occurs 

• filters which allow for hiding of less interesting network events 

• tresholds which can be set for performance parameters which trigger alarms, if exceeded 

• execution of shell scripts or simple actions when an alarm occurs in the managed network 

Nevertheless, in todays network management systems the reasoning has still to be done by human experts. This 
task becomes increasingly difficult with growing network complexity and calls for intelligent support. 

2 Case-Based Reasoning applications in Network Management 

Network management is a good domain for application of knowledge based techniques. The knowledge 
acquisition bottleneck is not as severe as in other domains, given that many network experts have a computer 
science background and thus may easier express their knowledge in a form adequate for knowledge representation. 
Even so, it is relatively easy to motivate network operators to test new approaches. 

2.1 Existing Systems 

A number of efforts have already been undertaken to support network operators by means of knowledge based 
systems [Goyal 91]. Quite a few rule based expert systems for network fault diagnosis, network design and 
decision support in network topics have been developed so far, but until now there are only two publicated 
approaches making use of case based reasoning in network management. 
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Many of today's management systems provide mechanisms giving the operator a better overview of the managed
network. They comprise: -.
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' tresholds which can be set for performance parameters which trigger alarms, if exceeded

° execution of shell scripts or simple actions when an alarm occurs in the managed network

Nevertheless, in todays network management systems the reasoning has still to be done by human experts. This
task becomes increasingly difficult with growing network complexity and calls for intelligent support.

2 Case-Based Reasoning applications in  Network Management

Network management is a good domain for application of knowledge based techniques. The knowledge
acquisition bottleneck i s  not as severe as in other domains, given that many network experts have a computer
science background and thus may easier express their knowledge in a form adequate for knowledge representation.
Even so, it is  relatively easy to motivate network Operators to test new approaches.

2 . 1 Ex i s t ing  Systems

A number of efforts have already been undertaken to support network operators by means of knowledge based
systems [Goyal 91]. Quite a few rule based expert systems for network fault diagnosis, network design and
decision support in network topics have been developed so far, but until now there are only two publicated
approaches making use of case basedreasoning in network management.
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NETTRAC [Brandau 91] is a case-based network management assistant. It is concerned with traffic management 
in telecommunication networks and is designed to advise network operators of problems, and to recommend sets 
of controls that would alleviate those problems. Cases represent a complete history of a single network,problem 
and the control actions that alleviated the problem. 

CRITTER [Lewis 93] is a case-based trouble ticketing system. When an operator solves a network problem, he 
fills in a so called trouble ticket. The ticket, consisting of a problem description and a solution is entered into a 
case base and may be retrieved when a similar problem is entered to the system, later on. 

The systems mentioned above have in common, that user interaction is mandatory, that is, there are no 
knowledge based systems which automatically accomplish a closed-loop network management task, performing 
monitoring, reasoning and controlling. 

2.2 Requirements for Network Management Expert Systems 

The requirements to be fulfilled by an expert system performing closed-loop management are: 

• real time response 

• work with minimal information 

self control 

• easy knowledge acquisition and adaptability 

self adaptation 

The task of network management often requires fast reaction on problems for minimizing the effects of network 
component failures or local bottlenecks. Therefore it is necessary that an efficient reasoning technique comes to 
use and that it be implemented in an efficient way. Because of good scalability of case based approaches, it seems 
easier to build a case based expert system that is both fast and compact at a time, than to build a rule based 
system meeting the same requirements. 

Whereas telecommunication networks often have separate lines for passing on management information, in most 
computer networks the same lines are used for user communication and for passing on management information. 
Thus, in order to keep the additional overhead of network management small, it is important that an expert 
system performing closed-loop management solves problems based on as little information as possible. It would 
be helpful, if the problem solver could deal with imprecise information, thereby allowing to increase the time 
between information updates. 

When operating in a closed-loop mode, i.e. monitoring, reasoning and control tasks are to be accomplished 
without human interaction during normal operation, it is important that problem solvers operate in a pessimistic 
manner. That is, control actions have to be verified in case of uncertainty before applying them to the managed 
network. This can either be achieved by simulations previewing the results of corrective actions or by reporting 
intended actions to human operators for verification. 

A network management system has to operate in a rapidly changing domain. It is thus crucial that the expert 
system's knowledge base can be easily set up and adapted to new environments. In the domain of network 
management, it is possible to automatically acquire knowledge by monitoring network operation and by 
evaluating simulation runs. To make use of these and also to facilitate knowledge acquisition through network 
experts a simple knowledge representation is needed, likely to be encountered in the area of case based reasoning. 

If the environment in which the expert system operates changes, e.g. a new site is connected to a wide area 
network, changing the network's topology as well as traffic patterns, the expert system must adapt itself to the 
new situation. This is easily done when using case based techniques relying on graded matches and on treshold 
values that can automatically be modified. 

3 A Case-Based Problem Solver for Closed-Loop Network Management 

The requirements mentioned in the previous section, together with previous experience in the field of case based 
reasoning, led us to try a case based approach before investigating other knowledge based techniques for 
automating network management. 

The ExSim Prototype which will be described here, consists of three parts. First, there is a simulation program, 
simulating a wide area network to be managed. The network is composed of gateways which exchange messages, 
using static routing techniques. Due to this simple routing strategy, local overload may occur decreasing the 
network's performance, if routing information is not changed by means of management. This task is delegated to 
a case based reasoner which detects bottlenecks and malfunctions through classification of network states by 
comparing them to the problem parts of cases stored in its case base. 
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Figure 3: Structure of the ExSim-Prototype, performing closed-loop network management 

3.1 Knowledge Representation 

A case consists of four parts. It is composed of a problem description, a solution description, a unique name and 
two treshold values, 0. and O. Problems and solutions are described by sets of feature/value pairs. Each feature 
describes an aspect of a possible network component's state. 

A problem description consists of a set of gateway routing tables joined into one feature, load information on 
every network link (i.e. output queue lengths), a topology table and gateway states (i.e. a gateway can be 'up' or 
'down'). The domain of the routing table feature is a set of integer matrices, the link load feature's domain is the 
set of positive floating point numbers and node state features are associated with the domain {'up', 'down'}. Our 
approach naturally allows for arbitrary domains, but they are not used in the prototypes implementation. 

A solution description only consists of a set of routing tables for the managed network's gateways represented by 
a single feature, like above. 

The tresholds 0. and 0 are used for deciding wheter a case is a candidate for problem solution at all ot if a case's 
solution may be applied to the current network problem, respectively. The property 0 < 0. < 0 < 1 is always 
assured by the system. Whenever a case's similarity to the current problem exceeds its a-treshold, it is added to 
the list of problem solving candidates. If similarity exceeds the o-treshold, too, following system policy, its 
solution may be applied to the current problem. Thus, it is possible to influence the probability of cases being 
chosen for problem solving by adjusting 0. and O. 

3.2 The Similarity Measure 

The similarity measure applied for matching cases against network state descriptions is based on the ratio model 
by Tversky [Tversky 77]. We calculate the ratio between evidences indicating commonalities and all evidences 
recorded, by means of the function sim, where 

. ( ) a . common E [0 1] slm state, case = a . common + b . different ,. 

common means the number of features present as well in the network state description as in the case's problem 
Idescription and whose values are classified as similar. Two values are classified as similar if their similarity 
:exceeds a global treshold t. different is the count of features which are present in the network state description and 
in the case's problem description but whose values are classified as not similar. 

~ifferent feature relevances are dealt with by making it more difficult to be classified as similar for values 
~djoined to highly relevant features than for values adjoined to less relevant features. 
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describes an aspect of a possible network component's state. '

A problem description consists of a set of gateway routing tables joined into one feature, load information on
every network link (i.e. output queue lengths), a topology table and gateway states (i.e. a gateway can be 'up' or
'down'). The domain of the routing table feature is a set of integer matrices, the link load feature's domain is the
set of positive floating point numbers and node state features are associated with the domain {'up', 'down'}. Our
approach naturally allows for arbitrary domains, but they are not used in the prototypes implementation.

A solution description only consists of a set of routing tables for the managed network's gateways represented by
a single feature, like above.

The tresholds on and 8 are used for deciding wheter a case is a candidate for problem solution at all or if a case's
solution may be applied to the current network problem, reSpectively. The property 0 < a < 8 < 1 is always
assured by the system. Whenever a case's similarity to the current problem exceeds its oc-treshold, it is added to
the list of problem solving candidates. If similarity exceeds the ö-treshold, too, following system policy, its
solution may be applied to the current problem. Thus, it is possible to influence the probability of cases being
chosen for problem solving by adjusting ’0c and 6.

3 .2  The Similari ty Measure

The similarity measure applied for matching cases against network state descriptions is based on the ratio model
by Tversky [Tversky 77]. We calculate the ratio between evidences indicating commonalities and all evidences
recorded, by means of the function sim, where

a ‘ common

a - common  + b . differentE [0,1].
sim(state, case) :

common means the number of features present as well in the network state description as in the case's problem
‘description and whose values are classified as similar. Two values are classified as similar if their similarity
lexceeds a global treshold t. dtfi’erent IS the count of features which are present in the network state description and
“in the case's problem description but whose values are classified as not similar.

ifferent feature relevances are dealt with by making it more difficult to be classified as similar for values
adjoined to highly relevant features than for values adjoined to less relevant features.

; -

218



At present, network state descriptions always contain the same features as the problem description parts of cases. 
So it is not necessary to deal with features contained in the cases problem description but not in the network 
state description, and vice versa. Later on, this will be accomplished with a slight modification to the above 
function (see [WeB 91]). 

To implement a pessimistic strategy, we set the value of coefficient a to 1 and chose 2 as value for coefficient b. 

Each feature domain has its own similarity function. Node state values have similarity I if either both values are 
'up' or both values are 'down'. Else their similarity is O. Values describing network topology must be identical to 
be assigned similarity 1, else similarity 0 is assigned. To compute similarity of two routing tables, the number 
of coinciding entries is counted and divided by the total number of entries in the routing table. Two link load 
values are similar if they both exceed a treshold C, thereby representing critical link loads, or if they both do not 
represent critical link loads. C is adjusted according to the maximum and minimum link loads occuring in the 
network state for guaranteeing specifity of the similarity measure. Thus, link load features are not treated 
independently by the matcher. 

3.3 The Problem Solving Strategy 

Critical network states are recognized by the reasoner either by receiving a network alarm message indicating an 
overload in one of the network's gateways and including network state information or by explicitely polling the 
network state. Network state information consists of a set of gateway routing tables, load information on the 
network's links (i.e. output queue lengths), topology information and gateway states (Le. a gateway can be 'up' 
or 'down'). Upon reception it is compared to the problem parts of cases stored ,in case memory by means of the 
similarity measure, described above. 

If a matching case is found, the solution contained in the best matching case is 'sent to the active network 
components, hopefully alleviating the critical situation. A solution consists of a new set of routing tables for 
the gateways concerned by the overload or being the source of it. 

Should the best matching case's solution already be in use upon occurrence of a network alarm, the case is 
penalized by increasing its <X and 0 tresholds, thereby reducing the case's competetiveness in future matches. 

Finding no matching cases may have different meanings, depending on if the problem solver was triggered by a 
network alarm, or not. In the latter case it indicates, that in terms of the problem solvers knowledge, the network 
is operating correctly, and no action has to be taken. In the former case, it means, that for an existing network 
problem there is no solution to be found in case memory. Thus, new knowledge has to be acquired. This is done 
by passing network state information to a program simulating a network similar to the one being controlled, 
with the sole difference, that'a dynamic load dependent routing strategy (e.g. shortest path routing) is 
implemented in that network. After the simulation run has ended, resulting in a set of routing tables applicable 
to the managed network, these are combined with the description of the current network problem, yielding a new 
case. This case is put into the case memory and its solution part is passed on to the managed network. 

3.4 First Results 

We compared the ExSim prototype's performance to the perf9rmance of a variant of the shortest path routing 
algorithm, embedded into the same testing framework. Comparisons were carried out for several different network 
topologies, as well as for two classes of test scenarios. Class 1 scenarios assumed heavily loaded networks 
(average load of each link is about 75% of its maximum capacity), class 2 contained scenarios assuming an 
average network load of 75% maximum capacity with peaks resulting from single batch transmissions. 

The results for a network consisting of eight gateways and ten full-duplex links were as follows. 

Problem solving with the shortest path routing algorithm was generally about 10 times faster than with the case 
based reasoner. Implemented in C++ and running on a Sun Sparc 1+ workstation, typical problem solving 
duration for the case based reasoner was 0.5 seconds if no case had to be learned and I second if a new case had to 
be created. Under the same circumstances typical problem solving duration for the shortest path routing 
algorithm was 0.08 seconds. Nevertheless, the case based reasoner with a simulation program serving as 
knowledge source kept the managed network stable, almost whenever the shortest path algorithm did (We call a 
network stable, if local overloads may be alleviated by rerouting and average link load does not increase over 
time, given that traffic characteristics do ·not change substantially). In about 10% of these cases, network 
behaviour wasn't as good as after solving the same problem by directly using the shortest path algorithm. This 
is due to the increased problem solving duration as well as to the unverified graded match applied for case 
retrieval. 

To solve by retrieval 60% of the problems occurring in a class 2 scenario with three batch jobs inserted to the 
network at different times, a case~base with about 100 cases is necessary. A larger number of cases is necessary, 
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based reasoner. Implemented in C++ and running on a Sun Sparc 1+ workstation, typical problem solving
duration for the case based reasoner was 0.5 seconds if no case had to be learned and 1 second if a new case had to
be created. Under the same circumstances typical problem solving duration for the shortest path routing
algorithm was 0.08 seconds. Nevertheless, the case based reasoner with a simulation program serving as
knowledge source kept the managed network stable, almost whenever the shortest path algorithm did (We call a
network stable, if local overloads may be alleviated by rerouting and average link load does not increase over
time, given that traffic characteristics do not  change substantially). In about 10% of these cases, network
behaviour wasn't as good as after solving the same problem by directly using the shortest path algorithm. This
is due to the increased problem solving duration as well as to the unverified graded match applied for case
retrieval.

To solve by retrieval 60% of the problems occurring in a class 2 scenario with three batch jobs inserted to the
network at different times, a case-base with about 100 cases is necessary. A larger number of cases is necessary,
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to solve by retrieval the same amount of problems in a class 1 scenario. The reason for this behaviour is, that in 
class 1 scenarios all kinds of problems are equally like to occur whereas occurring problems are much more 
specific for class 2 scenarios. Note, that because we didn't implement a mechanism for discarding cases, the case 
base always tends to grow over time. However, only about one third of cases contained in the case base are 
frequently reused, so that a significant improvement can be made here. 

Whereas the ExSim prototype meets real-time requirements imposed by the particular test domain, performs well 
for the intended purpose and adapts well to changes, some of the requirements for network management expert 
systems are not taken into account, at all. The -implemented prototype doesn't verify the appropriateness of. 
solutions before applying them to the network. Also, in the approach chosen, complete state information for 
every' network component is needed for problem solving. In a real system this would lead to an enormous 
overhead by network management traffic dramatically decreasing network capacity. ' 

4 Conclusion 

There are many application areas for case based techniques in the field of network management. Test results of 
the prototype described in this paper show, that case based problem solvers may even be efficient enough to 
perform tasks of closed-loop management of computer networks. This may be especially valuable, when solving 
problems which can't be solved by standard algorithms. 

5 References 

[Brandau 91] Richard Brandau, Alan Lemmon, Carol Lafond, Experience with Extended Episodes: Cases 
with Complex Temporal Structure in: proc. DARPA Workshop on case-based reasoning, 
Washington, 1991 

[Goya191] Shri K. Goyal, Knowledge technologies for evolving networks in: proc. IFIP TC6/WG6.6 
Second International Symposium on Integrated Network Management, Crystal City, 
Washington D.C., 1991 

[Lewis 93] Lundy Lewis, A case-based reasoning approach to the resolution of faults in 
communication networks, in: proc. IFIP TC6/WG6.6 Third International Symposium on 
Integrated Network Management, San Francisco, 1993 

[OS110040] International Standard ISOIIEC 10040:1992(E). Information technology - Open Systems 
Interconnection - Systems management overview. 

[RFC 1157] Request for Comments 1157, A Simple Network Management Protocol, DDN Network 
Information Center, SRI International, May 1990 

[Tversky 77] A. Tversky, Features of Similarity in: Psychological Review, Vol. 84, pp. 327-352, 1977 

[WeB 91] Stefan WeB, PATDEXI2: Ein System zum adaptiven, fallfokussierenden Lernen in 
technischen Diagnosesituationen, SEKI-Working-Paper SWP91101, Dept. of computer 
science, University of Kaiserslautern, Germany, 1991 . 

220
 

to solve by retrieval the same amount of problems in a class 1 scenario. The reason for this behaviour is, that in
class 1 scenarios all kinds of problems are equally like to occur whereas occurring problems are much more
specific for class 2 scenarios. Note, that because we didn't implement a mechanism for discarding cases, the case
base always tends to grow over time. However, only about one third of cases contained in the case base are
frequently reused, 'so that a significant improvement can be made here.

Whereas the ExSim prototype meets real—time requirements imposed by the particular test domain, performs well
for the intended. purpose and adapts well to changes, some of the requirements for network management expert
systems are not taken into account, at all. The implemented prototype doesn't verify the appropriateness of «
solutions before applying them to the network. Also, in the approach chosen, complete state information for
every‘ network component is  needed for problem solving. In a real system this would lead to an enormous
overhead by network management traffic dramatically decreasing network capacity.

4 Conclus ion

There are many application areas for case based techniques in the field of network management. Test results of
the prototype described in this paper show, that case based problem solvers may even be efficient enough to
perform tasks of closed-leop management of  computer networks This may be especially valuable, when solving
problems which can't be solved by standard algorithms.

5 References

[Branden 91] Richard Brandau, Alan Lemmon, Carol Lafond, Experience with Extended Episodes: Cases
with Complex Temporal Structure in: proc. DARPA Workshop on case-based reasoning,
Washington, 1991

[Goyal 91]  Shri K. Goyal, Knowledge technologies for evolving nelworks in: proc. IFIP TC6/WG6.6
Second International Symposium on Integrated Network Management, Crystal City,
Washington D.C., 1991

[Lewis 93] Lundy Lewis, A case—based reasoning approach to the resolution of faults in
communication networks, in: proc. IFIP TC6/WG6.6 Third International Symposium on
Integrated Network Management, San Francisco, 1993 ‘-

[OSI 10040] International Standard ISO/IEC 10040:1992(E). Information technology -— Open Systems
Interconnection -- Systems management overview.

[RFC 1157] Request for Comments 1157, A Simple Network Management Protocol , DDN Network
Information Center, SRI International, May 1990

[Tversky 77] A. Tversky, Features of Similarity in: Psychological Review, Vol. 84, pp. 327-352, 1977

[Weß 91]  Stefan Weß, PATDEX/Z: Ein System zum adaptiven, fallfokussierenden Lernen in
technischen Diagnosesituationen, SEKI-Working-Paper SWP9 1/01, Dept. of computer
science, University of Kaiserslautern, Germany, 1991

220



Case-Based Reasoning in a Simulation Environment for Biological Neural 

Networks 

Oliver Wendel
 
University of Kaiserslautem
 
Dept. of Computer Science
 

p.a. Box 3049
 
67653 Kaiserslautem
 

wendel@informatik.uni-kl.de
 

Abstract. This paper presents a case-based simulation 'environment devised to assist neurophysiologists in 
the design and analysis of simulation experiments with biologically oriented neural networks. We describe the 
problem domain and our specific notion of a case, discuss the complex structure of such cases and present a 
method to automatically transform the numerical raw data derived from simulations into a symbolic behavioral 
description that can be used for further inferences. 

1 Introduction 
MOBIS - Modeling of Biological Systems - is a case-based, interactive simulation environment devised to assist 
neurophysiologists in the design and analysis of simulation experiments with biological neural networks.In such 
a complex problem domain the problem parameters are highly interdependent and solutions are experimental 
setups fine-tuned through an iterative process of design, simulation, and analysis. Utilizing existing solutions for 
new problems and for the comparison of simulation experiments thus becomes an interesting issue. The capture 
and automated use of this type of problem-solving suggests the use of case-based reasoning (CBR) methods. 
Although this paper presents an AI application in neurophysiology, we omit an in-depth introduction to biological 
neural networks, the electra-chemical processes in neurons and synapses that are modelled in our simulator and 
the like. Instead we assume a basic understanding of these processes and, where necessary, provide sufficient 
detail along the following sections so that the non-biologist can understand the rest of the paper. 

The next two sections discuss the problem domain and the simulation life-cycle. We show where the experience 
and expertise of a neurophysiologist performing simulation experiments can be assisted by CBR-methods. Our 
notion of a case in this specific context is described in section 4. Section 5 presents a method to automatically 
transform the numerical raw data derived from simulations into a symbolic behavioral description that can be 
used for further inferences by the system itself. In section 6 we briefly show the interpretation of neural behavior 
as a pattern language and finally we summarize and give an outlook on future activities. 

2 A Model Neuron 
The underlying mathematical model of a neuron that we use in our simulations is the classical cable model as 
proposed by Hodgkin and Huxley ([8]) and others ([9]). A neuron and its components are interpreted as parts of 
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Fig. 1: A neuron (a) and its compartmental model with electrical diagram of the passive properties (b). The corre­
sponding differential equations are numerically computed in each simulation time step. (c) An example network with 
four neurons created with the interactive graphical network editor. 

an electrical circuit which is described in terms of differential equations that are numerically computed for each 
simulation time step. Fig. I shows an example of such a model neuron and some of its parameters. These 
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Abstract. This paper presents a case-based simulation'environment devised to assist neui'ophysiologists in
the design and analysis of simulation experiments with biologically oriented neural networks. We describe the
problem domain and our specific notion of a case, discuss the complex structure of such cases and present a
method to automatically transform the numerical raw data derived from simulations into a symbolic behavioral
description that can be used for further inferences.

1 Introduction
MOBIS — Modeling of Biological Systems — is a case—based, interactive simulation environment devised to assist
neurophysiologists in the design and analysis of simulation experiments with biological neural networks, In such
a complex problem domain the problem parameters are highly interdependent and solutions are experimental
setups fine—tuned through an iterative process of design, simulation, and analysis. Utilizing existing solutions for
new problems and for the comparison of simulation experiments thus becomes an interesting issue. The capture
and automated use of this type of problem-solving suggests the use of case-based reasoning (CBR) methods.
Although this paper presents an AI appliCation in neurophysiology, we omit an in-depth introduction to biological
neural networks, the electrochemical processes in neurons and synapses that are modelled in our simulator and
the like. Instead we assume a basic understanding of these processes and, where necessary, provide sufficient
detail along the following sections so that the non-biologist can understand the rest of the paper.
The next two sections discuss the problem domain and the simulation life-cycle. We show where the experience
and expertise of a neumphysiologist performing simulation experiments can be assisted by CBR-methods. Our
notion of a case in this specific context is described in section 4. Section 5 presents a method to automatically
transform the numerical raw data derived from simulations into a symbolic behavioral description that can be
used for further inferences by the system itself. In section 6 we briefly show the interpretation of neural behavior
as a pattern language and finally we summarize and give an outlook on future activities.

2 A Model Neuron

The underlying mathematical model of a neuron that we use in our simulations is the classical cable model as
prOposed by Hodgkin and Huxley ([8]) and others ([9]). A neuron and its components are interpreted as parts of
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Fig. 1; A neuron (_a ) and its compartmental model with electrical diagram of the passive preperties (b). The corre-
sponding (inferential equations are numerically computed in each simulation time step. (c) An example network with
four neurons created with the interactive graphica! network editor.

an electrical circuit which is  described in terms of differential equations that are numerically computed for each
simulation time step. Fig. 1 shows an example of such a model neuron and some of its parameters. These
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parameters are to be set by the human experimenter in order to achieve a specific behavior of the single neuron. 
We implemented an interactive graphical editor to design assemblies of such neurons and to compose small neural 
networks (see Fig. 1). 

3 Simulation Life-Cycle 

In a process called the design-simulation-analysis-cycie (c.f. [16]) the human experimenter has to fine-tune a 
variety of parameters for the network to show a certain, desired behavior. 

3.1 Design 

Typically, he starts off with a baseline experiment, whose outcome reminds him of the desired behavior of the to­
be-created experiment. He has to define the topology of the network and the neurons' connectivity, he has to 
choose values for a multitude of parameters for each neuron and each synapse, and for the whole network. The 
experimenter also forms hypotheses about the expected result of the simulation, Le. the expected activity pattern 
of the neurons. But since many parameter settings are involved in designing a network, exhaustive search on all 
possible parameter combinations is intractable. At this step, case-based reasoning imitates the use of experience 
and expertise a human experimenter has acquired: old experimeJ;lts may have shown interesting outcomes and 
results that could be exploited in the current situation of designing a new experiment. Thus, experience with old 
experiments that exhibited similar behavior might be a promising base to start off. 

3.2 Simulation 

Typically, simulations of biological neural networks produce only numerical raw data, as e.g. in the simulation 
system GENESIS ([17]). Our simulation, too, is done numerically by computing the differential equations that 
describe the network. The behavior of each neuron can be observed by visualizing the numerical outcome as a 
membrane potential trace. 

3.3 Analysis 

But for a neurophysiologist it turns out that certain qualitative features of the simulation (e.g. the presence of 
spikes, or the fact that a neuron remains inactive during a certain period of time whilst another neuron shows 
activity) represent the main results of a simulation. In this case we would like a computer program to provide (and 
understand) a representation of the results that includes these qualitative features. Simply graphing the results is 
helpful but not sufficient for these purposes: a plotting routine does serve to summarize data for the user, but it 
fails to provide .that summarized data in a more abstract and symbolic form that may then be further examined by 
the computer itself (c.f. [6]). Fig. 2 (a) shows a typical plot of neural activity within a network. We developped 
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Fig. 2: (a) Neural activity plot with time [msec] and amplitude [mV] axes (the figure shows two subsequent bursts). 
(b) Automatically generated symbolic textual description of this neural activity pattern. (c) Features in the membrane 
potential ofa neuron. EPSP=excitatory postsynaptic potential, IPSP=inhibitory postsynaptic potential. 

algorithms and a data structure (called episode structure) enabling us to represent an overall qualitative 
description of the results of a simulation or of real digitized experiment recordings. Fig. 2 (b) gives an example of 
an automatically generated symbolic description which has been textualized. In the analysis phase of the 
simulation life-cycle, the experimenter has to answer questions like the following: . 

•	 Did the network show the desired or expected behavior (hypothesis evaluation)? 

•	 Are there any important behavioral patterns within this very special experiment (intra-experiment analysis)? 

•	 What are the observable effects of parameter changes along the line of experiment sequences (inter-experi­
ment analysis, trajectory analysis, sensitivity analysis)? 

•	 Is it possible to cluster networks or experiments in classes (e.g. oscillators, rhythm generators)? 

•	 Can we identify topological substructures within a complex network that are responsible for certain behavioral 
aspects? 

\IAside from having appropriate utilities to graph and statistically interpret the numerical data, the system should 
[supply assistance to answer the questions listed above and propose experiment modifications fQr a new 
experiment design. When addressing the problem of automated experiment analysis, the key issue is to construct 
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parameters are to be set by the human experimenter in order to achieve a specific behavior of the single neuron.
We implemented an interactive graphical editor to design assemblies of such neurons and to compose small neural
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algorithms and a data structure (called episode structure) enabling us to represent an overall qualitative
description of the results of a simulation or of real digitized experiment recordings. Fig. 2 (b) gives an example of
an automatically generated symbolic description which has been textualized. In the analysis phase of the
simulation life-cycle, the experimenter has to answer questions like the following: '
' Did the network show the desired or expected behavior (hypothesis evaluation)?
. Are there any important behavioral patterns within this very special experiment (intra-experiment analysis)?
° What are the observable effects of parameter changes along the line of experiment sequences (inter-experi-

ment analysis, trajectory analysis, sensitivity analysis)?

0 Is it possible to cluster networks or experiments in classes (e.g. oscillators, rhythm generators)?
! Can we identify topological substructures within a complex network that are responsible for certain behavioral

aspects?

[Aside from having appropriate utilities to graph and statistically interpret the numerical data, the system should
supply assistance to answer the questions listed above and propose experiment modifications for a new
lexperiment design. When addressing the problem of automated experiment analysis, the key issue is to construct
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a qualitative history of membrane potential plots. This is described later in section 5. The next section discusses 
the use of CBR, in the design and analysis phase and it presents our notion of a case. 

4 Case-Base Reasoning 

Case-based reasoning is a general paradigm to reason from experience that can be represented as cases. It 
comprises a memory model to represent, index, and organize past experience and a process model to retrieve, 
integrate, and modify cases. [2] and [IDJ provide an introductory overview on CBR. [13J gives a comprehensive 
compilation on actual activities in this area. 

4.1 General Considerations 

Expertise mainly consists of experience. A neurophysiologist doing many computer simulations of neural 
networks becomes an expert in this domain. He remembers, which experiments he already did and knows about 
their results. He knows which experiments were successful with regard to a certain aim, which experiments failed, 
and he has an idea of how to tune parameters in order to validate hypotheses associated with specific networks. 
Thus, from a CBR point of view, in our domain the notions case and experiment are identical. 

4.2 Cases with Complex Structural and Behavioral Component 

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the behavior 
of this structure (see Fig. 3 (a) and [5J, [14J, [15]). The structure comprises the topology of the neural network 

(a) (b) 
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Fig. 3: (a) Simulation experiments as cases. They consist of complex structural and behavioral components. (b) 
Retrieval ofneuronal structures with similar behavior. 

induced by the various neurons and their synaptic connectIvity, their specific parameter values (such as 
capacitances, transmitter release thresholds etc.), and, optionally, stimulus functions applied to a neuron's soma or 
dendritic compartments. The behavior exhibited by such a network is the computed soma membrane potential 
traced for each neuron over the whole duration of the simulation. These recordings are transfonned into a 
qualitative description using attributed domain-dependent features which contain further information like 
duration, amplitude, and freql)ency. This symbolic description represents the neuronal behavior at a much higher 
abstraction level than the data-intensive outco'me of the numerical simulation and yet is fine-grained enough to 
capture the most significant features and can be further examined and analyzed by the system itself (see sections 5 
~~	 , 

4.3 Using Cases 

After a simulation run, each experiment (now consisting of the network structure and the qualitative behavioral 
description) is stored and integrated into a memory structure called case memory. Old experiments are used in two 
distinct ways: 

1.	 Design: Prior cases provide a baseline network and 'set of parameters that are to be modified for new experi­
ments in an iterative cycle of parameter testing, analysis, and parameter adjustment until the desired behavior 
of a neural network is achieved. 

2.	 Analysis: Prior cases are examined to identify network topologies with similar behavior, but possibly very dif­
ferent structure. 

A very challenging issue is the analysis of causal relationships between structure and behavior. Digitized 
membrane recordings of real in-vivo experiments that have been appropriately transfonned, into a symbolic 
description could be matched against experiments stored in the case base to identify experimental setups where 
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a qualitative history of membrane potential plots. This is described later in section 5. The next section discusses
the use of CBRin the design and analysis phase and it presents our notion of  a case.

4 Case-Base Reasoning
Case-based reasoning is a general paradigm to reason from experience that can be represented as cases. It
comprises a memory model to represent, index, and organize past experience and a process model to retrieve,
integrate, and modify cases. [2] and [10] provide an introductory overview on CBR. [13] gives a comprehensive
compilation on actual activities in this area.

__4.1 General Considerations

Expertise mainly consists of experience. A neur0physiologist doing many computer simulations of neural
networks becomes an expert in this domain. He remembers, which experiments he already did and knows about
their results. He knows which experiments were successful with regard to a certain aim, which experiments failed,
and he  has an idea of how to tune parameters in order to validate hypotheses associated with specific networks.
Thus, from a CBR point of view, in our domain the notions case and experiment are identical.

4.2 Cases with” Complex Structural and Behavioral Component

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the behavior
of this structure (see Fig. 3 (a) and [S], [14], [15]). The structure comprises the topology of the neural network
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Fig. 3: (a) Simulation experiments as cases. They consist of complex structure! and behavioral components. (b)
Retrieval of neuronal structures with similar behavior.

induced by the various neurons and their synaptic connectivity, their specific parameter values (such as
capacitances, transmitter release thresholds etc.), and, optionally, stimulus functions applied to a neuron ’s soma or
dendritic compartments. The behavior exhibited by such a network is the computed soma membrane potential
traced for each neuron over the whole duration of the simulation. These recordings are transformed into a
qualitative description using attributed domain-dependent features which contain further information like
duration, amplitude, and frequency. This symbolic description represents the neuronal behavior at a much higher
abstraction level than the data-intensive outcome of the numerical simulation and yet is fine-grained enough to
capture the most significant features and can be further examined and analyzed by the system itself (see sections 5
and 6). ' ‘

4.3 Using Cases
After a simulation run, each experiment (now consisting of the network structure and the qualitative behavioral
description) is stored and integrated into a memory structure called case memory. Old experiments are used in two
distinct ways:
1. Design: Prior cases provide a baseline network and 'set of parameters that are to be modified for new experi-

ments in an iterative cycle of parameter testing, analysis, and parameter adjustment until the desired behavior
of a neural network is achieved.

2. Analysis: Prior cases are examined to identify network topologies with similar behavior, but possibly very dif-
ferent structure.

A very challenging issue is the analysis of causal relationships between structure and behavior. Digitized
membrane recordings of real in-vivo experiments that have been appropriately transformed into a symbolic
description could be matched against experiments stored in the case base to identify experimental setups where

223



neurons exhibited similar behavior. Fig. 3 (b) illustrates this idea. This use of cases will assist the human 
, experimenter by giving hints as to which structure might be found in an organism, given the observable behavior. 

5 Transformational Steps in Experiment Analysis 

The simulation results as obtained by the simulator's output have to be transformed into a symbolic 
representation. Thus they can be interpreted by the system and used for further inferences (c.f. [6], [11], and [12]). 
The final representation called episode-structure has the following properties: a) It is a qualitative description of a 
simulation result with descriptional primitives used by the human experimenter. b) It simultaneously realizes 
data-abstraction and data-compression. c) It can be input to other inference processes. We give a short description 
of these transformational steps in the subsequent subsections. 

5.1 Segmentation into Intervals: Scale Space and Interval Tree 

For segmenting membrane potential functions into meaningful intervals, various kinds of points (such as extrema 
of a function and its derivatives) can serve as boundaries. Out of this set of candidates, significant segmentation 
points are to be selected, generally by application of a digital filter. An automated function segmentation is 
supposed to extract significant segmentation points and to comply'with the following requirements: Omission of 
noise and unimportant details but preservation of characteristic phenomena, applicability to arbitrarily shaped 
functions, and significance of interval boundaries based on comparison with the local neighborhood. 

These demands introduce the problem of scale and impose the use oCa variable and adaptive filter parameter, that 
filters the function at each point with respect to the local neighborhood. Segmenting the function with different 
scales is achieved by a variable filter parameter and continuuos smoothing. Maxima and minima vanish at a 
certain scale. Extrema whose scale exceeds a threshold cr partition the function into intervals. For different filters 
cr, these intervals are subdivided into subintervals so that the whole function can be interpreted as hierarchical tree 
structure: the root node is the whole function, offsprings represent subintervals with corresponding scales. A 
stability criterion determines, which segmentation is to be taken. 

5.2 Feature-Classification 

Feature classification is the transformational step where domain-dependent knowledge is introduced for the first 
time. Features represent typically shaped regions within a function where a domain-specific interpretation can be 
directly associated with (see Fig.2 c). Features are detected by a simple rule interpreter, which classifies 
sequences of function segments according to certain properties (e.g. length, slope, curvature etc.). For different 
types of functions, separate rule sets are applied. 

5.3 Grouping into Repetitions 

Some phenomena as e.g. spikes often appear in packets (this phenomenon is called burst). Especially repetitions 
can be analytically exploited by asking "how does a property of a feature change from one occurrence in a 
repetition to the next?". Thus it makes sense to think of repetitions of features (or combinations of them) as 
episodes rather than of single features themselves. Our system finds the shortest possible description in terms of 
repetitions; these repetitions also can be nested. For example, if A, B, C are features, then the descriptions of the 
sequences ABABCAB C and AAABCAAABC become AB(AB Cr and (A3BCY, respectively. 

5.4 Symbolic Description 

Within our system, the treatment and recognition of repetitions ,represents the final step towards a "symbolic" 
function description. As shown in Fig. 2 (b), the description can be visualized in textual form and integrated in an 
automatically generated analysis report. Experiments frequently are performed in series with slight variation of 
parameters or conditions. From one simulation to another, potential plots of involved neurons look very similar. 
Thus the episode sequences can be mapped onto each other, and analogous episodes can be identified. We 
implemented a matching algorithm for episode structures, which finds a relation with maximum total time of 
overlapping similar episodes. Two episodes are considered similar, if both are features of the same type or both 
are repetitions of similar patterns. Thus, e.g. bursts with 5 or 8 spikes can be matched. The differences between 
identified episodes (e.g. a change in the average frequency of a burst, the strength of a repetition of epsps and so 
on) are particularly relevant for experiment analysis. Thus the matching algorithm can be used to discover 
dependencies between experiment parameters and neuron behavior. The user may define formulae constructed of 
episode parameters. Similar episodes within the experiment series are matched, consequently the variation of the, 
specified formula can be traced automatically, hence supporting the neurophysiologist's analysis. The generated 
dependency function could be submitted to the same transformation process and be described symbolically. 
Moreover, it can be used for predicting experiment results by means of correlation analysis. 

224 

‚ v
. .

.

neurons exhibited similar behavior. Fig. 3 (b) illustrates this idea. This use of cases will assist the human
experimenter by giving hints as to which structure might be found in an organism, given the observable behavior.

5 Transformational Steps in Experiment Analysis
The simulation results as obtained by the simulator’s output have to be transformed into a symbolic
representation. Thus they can be interpreted by the system and used for further inferences (c.f. [6], [1].], and [12]).
The final representation called episode—structure has the following properties: a) It  is a qualitative description of a
simulation result with descriptional primitives used by the human experimenter. b) It simultaneously realizes
data-abstraction and data-compression. c) It can be input to other inference processes. We give a short description
of these transformational steps in the subsequent subsections.

5.1 Segmentation into Intervals: Scale Space and Interval Tree

For segmenting membrane potential functions into meaningful intervals, various kinds of points (such as extrema
of a function and its derivatives) can serve as boundaries. Out of this set of candidates, significant segmentation
points are to be selected, generally by application of a digital filter. An automated function segmentation is
supposed to extract significant segmentation points and to comply'with the following requirements: Omission of
noise and unimportant details but preservation of characteristic phenomena, applicability to arbitrarily shaped
functions, and significance of interval boundaries based on comparison with the local neighborhood.

These demands introduce the problem of scale and impose the use of 'a variable and adaptive filter parameter, that
filters the function at each point with respect to the local neighborhood. Segmenting the function with different
scales is achieved by a variable filter parameter and continuuos smoothing. Maxima and minima vanish at a
certain scale. Extrema whose scale exceeds a threshold 0' partition the function into intervals. For different filters
6, these intervals are subdivided into subintervals so that the whole function can be interpreted as hierarchical tree
structure: the root node is the whole function, offSprings represent subintervals with corresponding scales. A
stability criterion determines, which segmentation is to be taken.

5.2 Feature-Classification

Feature classification is the transformational step where domain-dependent knowledge is introduced for the first
time. Features represent typically shaped regions within a function where a domain-specific interpretation can be
directly associated with (see F ig .2  c). Features are detected by a simple rule interpreter, which classifies
sequences of function segments according to certain properties (e.g. length, slepe, curvature etc.). For different
types of  functions, separate rule sets are applied.

5.3 Grouping into Repetitions

Some phenomena as e.g. spikes often appear in packets (this phenomenon is called burst). Especially repetitions
can be analytically exploited by asking “how does a property of a feature change from one occurrence in a
repetition to the next?”. Thus it makes sense to think of repetitions of features (or combinations of them) as
episodes rather than of single features themselves. Our system finds the shortest possible description in terms of
repetitions; these repetitions also can be nested. For example, if A, B ,  C are features, then the descriptions of the
sequences ABAB CABC and AAABCAAABC become AB(ABC)2 and (A3302, respectively.

5.4 Symbolic Description
Within our system, the treatment and recognition of repetitions represents the final step towards a “symbolic”
function description. As  shown in Fig. 2 (b), the description can be visualized in textual form and integrated in an
automatically generated analysis report. Experiments frequently are performed in series with slight variation of
parameters or conditions. From one simulation to another, potential plots of involved neurons look very similar.
Thus the episode sequences can be mapped onto each other, and analogous episodes can be identified. We
implemented a matching algorithm for episode structures, which finds a relation with maximum total time of
overlapping similar episodes. Two episodes are considered similar, if both are features of the same type or both
are repetitions of similar patterns. Thus, e. g .  bursts with 5 or 8 spikes can be matched. The differences between
identified episodes (e.g. a change in the average frequency of a burst, the strength of  a repetition of epsps and so
on) are particularly relevant for experiment analysis. Thus the matching algorithm can be used to discover
dependencies between experiment parameters and neuron behavior. The user may define formulae constructed of
episode parameters. Similar episodes within the experiment series are matched, consequently the variation of the ,
Specified formula can be traced automatically, hence supporting the neurophysiologist’s analysis. The generated
dependency function could be submitted to the same transformation process and be described symbolically.
Moreover, i t  can be used for predicting experiment results by means of correlation analysis.
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NeuronpotentiaJs as Pattern Language? 
Another interesting issue we are currently investigating is the interpretation of the symbolic representation of 
transformed neuron potentials as a sentence S of a pattern language L "spoken" by the neuron. An interesting 
question thus could be: "What is the underlying grammar G of a neuron's language L with L = L(G)" and is it 
possible to inductively infer this grammar by presenting sufficient example sentences? 
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Fig. 4: (a) Simultaneous presentation of the neural activity pattern ofall four neurons Nl-N4 ofthe example network. 
The generated corresponding episode structure is superimposed in this illustration. (b) Pattern description ofthe neu­
ral activity. s=spike, i=ipsp, e=epsp, r=rising, f=falling; *=repetition. Arrows indicate in which direction to read the 
tuples, the oval around the first tuple in (b) corresponds with the oval in (a). 

The overall behavior of the entire network can be expressed using tokens of vectors consisting of episodes that 
occur simultaneously in different neurons. In the example of Fig. 4 (a), which shows the neural activity of the 4­
neuron network of Fig. 1 (c), the behavior can be described by the pattern in Fig. 4 (b), where each 4-tupel of 
simultaneous episodes is regarded as attributed character. Several observations can be made using this 
representation: for example, in the first tuple [s *, i ~,r, r]T, a spike in neuron NI (s*) occurs with an ipsp in 
neuron N2 (i*). Neurons NI and N2 exhibit a similar behavior five tuples later, inducing the hypothesis of 
inhibitory coupling between these two neurons. The characteristic property of this type of network is the existence 
of three distinct states, where only one of the neurons can fire. Another approach we are currently investigating is 
the use of tree grammars to describe the resulting episode structure. Fu and others ([4], [7]) propose techniques, 
how to inductively induce tree grammars from tree examples that are presented to the system. 

Summary and Conclusion 

MOBIS is a case-based, interactive simulation environment devised to assist neurophysiologists in the design and 
analysis of simulation experiments with biologically oriented neural networks. In such a complex problem 
domain the problem parameters are highly interdependent and solutions are experimental setups fine-tuned 
through an iterative process of design, simulation, and analysis. 

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the behavior 
of this structure. The structure comprises the topology for the neural network induced by the various neurons and 
their synaptic connectivity and their specific parameter values. The behavior exhibited by such a network is the 
computed soma membrane potential traced for each neuron over the whole duration of the simulation. These 
recordings are transformed into a qualitative description using attributed domain-dependent features. This 
symbolic description represents the neuronal behavior at a much higher abstraction level than the data-intensive 
outcome of the numerical simulation and yet is fine-grained enough to capture the most significant features and 
can be further examined and analyzed by the system itself. After a simulation run, each experiment is stored and 
integrated into the case memory. Prior cases provide a baseline set of parameters that are to be modified for new 
experiments in an iterative cycle of parameter testing, analysis, and parameter adjustment. The case-based 
approach is' consistent with psychological models of human experimentation performance: expertise and 
experience are essential in the search for appropriate baseline cases, for the parameter adjustment to meet new 
requirements, and for the result interpretation. The MOBIS system bases its activities on its past experiences and 
includes the human experimenter in the design-simulate-analyze cycle. 

The simulator with the underlying neuron model is fully implemented and can be used as a stand-alone system. It 
is written in C and runs under OSF/MOTIF on Unix workstations. The simulation evironment is implemented in 
Objectworks/Smalltalk-80, running on a variety of different platforms. Both systems communicate via files 
allowing for a shallow coupling of simulator and intelligent experimentation environment. 
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6 Neuronpotentials as Pattern Language?
Another interesting issue we are currently investigating is the interpretation of the symbolic representation of
transformed neuron potentials as a sentence S of a pattern language L “spoken” by the neuron. An interesting
question thus could be: “What is the underlying grammar G of a neuron’s language L with L = L(G)” and is- it
possible to inductively infer this grammar by presenting sufficient example sentences?
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The overall behavior of the entire network can be expressed using tokens of vectors consisting of episodes that
occur simultaneously in different neurons. In the example of Fig. 4 (a), which shows the neural activity of the 4-
neuron network of Fig. l (c), the behavior can be described by the pattern in Fig. 4 (b), where each 4-tupel of
simultaneous episodes is regarded as attributed character. Several observations can be made using this
representation: for example, in the first tuple [ s* ,  im  13, IF, a spike in neuron N1  (3*) occurs with an ipsp in
neuron N2 (i*). Neurons N1 and N2 exhibit a similar behavior five tuples later, inducing the hypothesis of
inhibitory coupling between these two neurons. The characteristic property of  this type of network is the existence
of three distinct states, where only one of the neurons can fire. Another approach we are currently investigating is
the use of tree grammars to describe the resulting episode structure. Fu and others ([4], [7]) propose techniques,
how to inductively induce tree grammars from tree examples that are presented to the system.

7 Summary and Conclusion
M OBIS is a case-based, interactive simulation environment devised to assist neurophysiologists in the design and
analysis of simulation experiments with biologically oriented neural networks. In such a complex problem
domain the problem parameters are highly interdependent and solutions are experimental setups fine-tuned
through an iterative process of design, simulation, and analysis.

A simulation experiment (or case) consists of a neuronal structure and, after running the simulation, the behavior
of this structure. The structure comprises the topology for the neural network induced by the various neurons and
their synaptic connectivity and their specific parameter values. The behavior exhibited by such a network is the
computed soma membrane potential traced for each neuron over the whole duration of the simulation. These
recordings are transformed into a qualitative description using attributed domain-dependent features. This
symbolic description represents the neuronal behavior at a much higher abstraction level thanthe data-intensive
outcome of the numerical simulation and yet is fine-grained enough to capture the most significant features and
can be further examined and analyzed by the system itself. After a simulation run, each experiment is stored and
integrated into the case memory. Prior cases provide a baseline set of parameters that are to be modified for new
experiments in an iterative cycle of parameter testing, analysis, and parameter adjustment. The case-based
approach is  ’consistent with psychological models of human experimentation performance: expertise and
experience are essential in the search for appmpriate baseline cases, for the parameter adjustment to meet new
requirements, and for the result interpretation. The MOBIS system bases its activities on its past experiences and
includes the human experimenter in the design-simulate—analyze cycle.
The simulator with the underlying neuron model is fully implemented and can be used as a stand-alone system. It
is written in C and runs under OSF/MOTIF on Unix workstations. The simulation evironment is implemented in
Objectworks/Smalltalk-80, running on a variety of different platforms. Both systems communicate via files
allowing for a shallow couplingof simulator and intelligent experimentation environment.
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The system is being developed and used in collaboration with a neurophysiology project in the Kaiserslautern 
Department of Biology investigating the neurophysiological grounds of the femur-tibia junction and the central 
flight pattern generator of stick insects (c.f. [3]). Future work will investigate on the applicability of pattern 
languages and their corresponding grammars such as tree grammars ([4], [7]) in our particular domain. We then 
would be able to describe, compare and classify neuronal behavior in terms of grammars. A problem still would 
be the description of temporal relationships between activity patterns in different neurons. Here we will evaluate 
Allen's time interval relations mD. The case memory and appropriate indexing and retrieval structures are 
currently being defined and will be implemented soon. 
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Department of Biology investigating the neurOphysiological grounds of" the femur-tibia junction and the central
flight pattern generator of stick insects (c.f. [3]). Future work will investigate on the applicability of pattern
languages and their corresponding grammars such as tree grammars ([4], [7]) in our particular domain. We then
would be able to describe, compare and classify neuronal behavior in terms of grammars. A problem still would
be the description of temporal relationships between activity patterns in different neurons. Here we will evaluate
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Abstract. Some commercial shells are available to simplify the development of case-based 
systems. We describe how the process model of case-based reasoning (CBR) is realized by 
these shells. Furthermore, we examine if a standard real-world and ill-structured diagnostic 
application can be realized using CBR shells: recommending a strategy type in management 
consultation. We compare implementations using a CBR shell with a rule-based approach in 
this domain. Finally, we give a qualitative assessment offour shells with regard to business 
consultation applications. . 

Introduction 

Shells can be regarded as an indicator of the degree of generalization achieved in a particular area of 
knowledge-based systems. To support case-based reasoning, several commercial PC-based shells are available: 
ART-IM, CBR Express, ReMind, ESTEEM and INDUCE-IT [1,4,5]. After a short look at ,how the process 
model of CBR is realized by these shells, we report on our efforts to implement a strategy consultant as a real 
world test application for the shells. 

Common processes ina case-based system can be described by the following cycle [3]: 

1.	 Input of a problem description, given a case memory that is not empty 
2.	 Provision of several possibly relevant previous cases from the case memory using a similarity measure 
3.	 Selection of the most similar case(s) 
4.	 Adaptation of these case to the current situation 
5.	 Internal test and critique of the adapted solution 
6.	 External evaluation and feedback 
7.	 Learning by updating the memory or the similarity measure 

The first generation shells mentioned above support this process model for CBR in similar ways: 

Input: Cases are represented as attribute-value pairs, where the values are numerical or symbolical. 

Provision and Selection: These two steps are replaced by a one step retrieval process in all these shells. 
Previous cases are selected by nearest neighbor retrieval, counting the weighted results of the comparison of the 
relevant attributes. For each attribute, predefined criteria for a partial match can be selected. In this way, 
numbers or texts differing only slightly are recognized as similar. For each attribute one has to specify if it is 
supposed to influence the similarity of cases. Then, the kind of match is determined, together with the 
numerical weight of the resulting similarity. Only ESTEEM permits user-defined rules to compare the values· 
and to determine the weight. 

Adaptation: With the exception of CBR Express, it is possible to adapt a retrieved similar case to the current 
situation. This may be achieved by using a rule language that allows for an adaptation according to value 
differences in certain attributes. 

The subsequent steps of the process model are not supported by these shells. With regard to functionality in 
the first four phases, shells can be partitioned in two groups: 

•	 Simple shells (ART-IM, CBR Express): flat case structure, feature matching using predefined alternatives, 
fixed weights. 

•	 Advanced shells (ESTEEM, ReMind, Induce-It): hierarchical case structure allowing derived features, 
user-defined matching procedures, runtime.weighting (not all shells), user-defined adaptation. . 
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Common processes in-a case-based system can be described by the following cycle [3]:

Input of a problem description, given a case memory that is not empty
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The first generation shells mentioned above support this process model for CBR in similar ways:

Input: Cases are represented as attribute-value pairs, where the values are numerical or symbolical.

Provision and Selection: These two steps are replaced by a one step retrieval process in all these shells.
' Previous cases are selected by nearest neighbor retrieval, counting the weighted results of the comparison of the

relevant attributes. For each attribute, predefined criteria for a partial match can be selected. In this way,
numbers or texts differing only slightly are recognized as similar. For each attribute one has to specify if it is
supposed to influence the similarity of cases. Then, the kind of match is determined, together with the
numerical weight of the resulting similarity. Only ESTEEM permits user-defined rules to compare the values
and to determine the weight.

Adaptation: With the exception of CBR Express, it is possible to adapt a retrieved similar case to the current
situation. This may be achieved by using a rule language that allows for an adaptation according to value
differences in certain attributes.

The subsequent steps of the process model are not supported by these shells. With regard to functionality in
the first four phases, shells can be partitioned in two groups:

' Simple shells (ART—IM, CBR Express): flat case structure, feature matching using predefined alternatives,
fixed weights.

0 Advanced shells (ESTEEM, ReMind, Induce-It): hierarchical case structure allowing derived features,
user-defined matching procedures, runtimeweighting (not all shells), user-defined adaptation.
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The goal of our work was to examine if despite these restrictions concerning knowledge representation and 
process model a standard real-world and ill-structured diagnostic application can be realized using CBR shells. 

The Domain: Management Strategy Consultation 

The objective of the domain chosen (management strategy consultation) is a comprehensive evaluation of the 
ethical values of the management, the capabilities of the employees and the performance of the administrative 
systems in order to develop a well-suited corporate strategy. In order to fulfill all these requirements. the 
management consultants have to take into consideration a lot of data. 

A great deal of work has been done in analyzing general or generic types of company planning situations, 
and buliding structural models for developing general strategies and focus in any situation [7,8]. 
Industry types have been classified for strategic planning purposes as emerging, declining, mature, or 
fragmented. Within each of these industry types, there are various possible external factors affecting planning, 
such as the comp;u-ative company and competitor position relative to opportunities and criticai success factors 
(which can be affected by buyer and customer strength, by the likelihood of the introduction of substitute 
products, and by the threat ofnew entrants), special company markets, organizational and financial factors, and 
competitors' size and number. Different types of company positions (dominant company, low share of the 
market, locally concentrated) have also been identified. Based OR a study of these characteristics Porter [7, 8] 
and others have identified a variety of possible generic strategies. . 

As a consequence, a dependency framework for strategy planning was developed. Dependencies within this 
framework are often represented as heuristic if-then relationships. For example, if a specific industry type, 
company, competition, and specific market conditins are given in a situation, then a certain type of general 
strategy might be worthwhile to consider. 

This approach to developing strategies reflects the way many strategic planners work during the initial 
stages of a project. Additionally, for a preliminary analysis of a situation planners often review their past 
experience in search for similar patterns that may be useful in solving the situation. 

When reviewing a situation, the planner observes, for instance, that the present siuation under study 
involves a mature industry, where several large competitors are dominant in the market, and where the 
company being planned for is a relatively small player. The human planner would review any experience with 
other mature industries to search analogous factors that might suggest possible solution patters, useful to 
explore in the present. So empirical know-how and experience are the guidance for successful strategic 
planning, making it a candidate for case-based reasoning, as there doesn't exist a causal model. For a prototype 
implementation we chose a subtask of the planning process, Le., the classification of a recommended strategy 

. type of strategic business units (SBU) [7, 8]. Additionally, we try to evaluate the different shells concepts with 
respect to this classification task. 

Marketing 

Distribution 

Figure 1. Attribute dependencies in the strategy classification domain 
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The goal of our work was to examine if despite these restrictions concerning knowledge representation and
process model a standard real-world and ill—structured diagnostic application can be realized using CBR shells.
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framework are often represented as heuristic if-then relationships. For example, if a specific industry type,
company, competition, and specific market conditins are given in a situation, then a certain type of general
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This approach to developing strategies reflects the way many strategic planners work during the initial
stages of a project. Additionally, for a preliminary analysis of a situation planners often review their past
experience in search for similar patterns that may be useful in solving the situation.
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involves a mature industry, where several large competitors are dominant in the market, and where the
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explore in the present. So empirical know-how and experience are the guidance for successful strategic
planning, making it a candidate for case-based reasoning, as there doesn't exist a causal model. For a prototype
implementation we chose a subtask of the planning process, i.e., the classification of a recommended strategy

‚type of strategic business units (SBU) [7 , 8]. Additionally, we try to evaluate the different shells concepts with
respect to this classification task.
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The domain was modeled in a standard rule-based fashion by the system CASA ("Computer Aided Strategy 
Audit", [2]) that is currently in routine use. CASA analyzes three strategic dimensions that influence the 
success of an enterprise: corporate culture, market and competitive situation, and strategic cost position. We 
tried to organize the case-based prototype along CASA's market and competitive situation analysis. 
Additionally, we built on the CASA system while determining the relevant attributes and their influences on 
the classification task. Figure 1 shows a model of how to gain strategic recommendations from business data. 
This general approach provides a useful starting point for developing a prototype case-based decision support 
system in the strategy planning area. In general, three possible generic strategies can be identified: 

•	 Cost leadership: The products or services of the SBU are offered to all or most industrial customers. There 
is an aggressive investment in productive assets, and a minimization of costs in corporate sectors like 
Research & Development, service, sales staff, marketing, etc. in order to reach an extensive cost advantage. 

•	 Differentiation: The products or services of the SBU are unlike others in the industry. The overall goal is to 
make them unique in the industry. Customers honour the outstanding benefit to be offered by the products 
or services. 

•	 Focus: In general, the SBU doesn't have" a strong position, but it has some special strength in certain 
products or services. The goal is to focus its resources on the area of its strenght 

The CASA system was implemented using a rule-based expert system shell. Based on the data requested from 
the user, data abstractions and strategy types shown in Figure I are computed by rules. 

Case-Based Versions of the Strategy Consultant: First Results 

Our long-term goal is to assess and compare rule-based and case-based approaches in the domain chosen. For a 
proper comparison, independent judgements on the quality of the respective solutions is necessary. At the 
moment, we do not have these judgements yet. Therefore, we describe the performance of versions of our case­
based alternative named CASTRAC ("Case-Based Strategy Consultation") only with respect to the rule-based 
system, thus regarding CASA as the reference system. 

Several versions of CASTRAC were implemented using the shells ESTEEM and ReMind. By keeping track 
of the shell features used, we are able to estimate if a given version can be reimplemented using simpler shells. 
The CASlRAC versions implemented first contain extremely simple similarity measures. They regard all case 
attributes as equally relevant, without assigning individual weights to the attributes. 

CASlRAC's recommendations were compared in three different ways with those of the rule-based CASA 
system. First order agreement requires the CASA solution to be exactly the strategy type of the most similar 
case retrieved by CASlRAC. Second order agreement allows the CASA solution to be the strategy type of the 
most similar or second most similar case retrieved by CASTRAC, third order agreement is defmed 
analogically. 

We tested the versions with a case base of 30 consultation cases with solutions generated by CASA. 10 
problems had to be solved case-based by CASlRAC. The results are surprising: The simple CASTRAC version 
performed quite well, resulting in a 80% flrst order agreement and a 100% second (and third) order agreement 
with the CASA judgements. As the knowledge engineering complexity of the CASTRAC system was only a 
small fraction of that of the CASA system, we conclude that for decision support systems simple case-based 
retrieval mechanisms can be effective if the user is competent enough to assess the cases retrieved. 

Furthermore, we tested versions where derived attributes were considered in addition to the problem data. 
These derived features can be supplied by the user or (as we did) by CASA. However, a certain amount of 
domain knowledge is needed for an adaquate derivation. However, the quality of the solutions could not be 
improved by taking into account these additional attributes. 

Currently, we are exploring if CASTRAC can be improved by allowing partial matches of attributes. We 
tried to realize this by ordering attribute values and deflning similarity according to this ordering. However, we 
found the solution quality to decrease, which we cannot explain. Further efforts are needed to accomplish better 
results. 

In addition to that, we are preparing experiments with a human strategy consultation expert in order to 
assess the quality of the case-based and rule-based version with respect to human experience. As the rule-based 
version may also be deflcient with respect to human judgement, we might have to revise the evaluation results 
obtained so far. 
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Several versions of CASTRAC were implemented using the shells ESTEEM and ReMind. By keeping track
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problems had to be solved case-based by CASTRAC. The results are surprising: The simple CASTRAC version
performed quite well, resulting in a 80% first order agreement and a 100% second (and third) order agreement
with the CASA judgements. As the knowledge engineering complexity of the CASTRAC system was only a
small fraction of that of the CASA system, we conclude that for decision support systems simple case-based
retrieval mechanisms can be effective if the user is competent enough to assess the cases retrieved.
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These derived features can be supplied by the user or (as we did) by CASA. However, a certain amount of
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Currently, we are exploring if CASTRAC can be improved by allowing partial matches of attributes. We
tried to realize this by ordering attribute values and defining similarity according to this ordering. However, we
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4 Suitability of CBR Shells for Management Support Systems 

In the following, we try to give a provisional qualitative assessment of the suitability of four shells with respect 
to business consultation tasks and with -respect to an integration in common software environments. We 
distinguish between the technical, the organizational, and the functional dimension. The results are shown in 
Figure 2­

Technical Aspects 

ESTEEM ReMind CRR-Express ART-IM 

Flexibility @ @ ® ® 

Speed ® @ @ @ 

Presentation ® ® ® ® 
Tuning @ © "® ® 

Organizational Aspects 

Developer @ @. © ® 
End user @ @ © ® 
Inte2ration @ @ ® ® 

Functional Aspects 

Modeling @ @ ® @ 

Cases @ @ ® ® 
Similarity © @ ® ® 

Adaption @ @ ® @ 

Feedback ® @ ® ® 
Learniol! ® ® ® ® 

Figure 2. Qualitative assessments of four CBR shells 

Concerning the technical assessment, we take four aspects into consideration: 

•	 Flexibility: Is an application easily adaptable to changing demands, e.g., when interface or functionality 
requirements change? 

•	 Speed: How long does it take to transfer, process and present data? 
•	 Presentation: Are there tools to present data as common business charts? 
• Tuning: After first results were obtained, is there a variety of ways to tune an application? 

Three organizational aspects are regarded: 

•	 Developer: Does creating an application require advanced programming skills? Is it even possible for 
non-programmers? 

•	 End user: Is the user interface difficult to handle 
• Integration: Can the CBR application be integrated easily in a conventional software environment? 

Finally, we assess the shells with regard to six aspects of functionality: 

•	 Modeling: Is it possible to model even complex domains? 
•	 Cases: What kinds of case structures are possible? Are nested cases and cases of variable length allowed? 
•	 Similarity: Is it just possible 10 choose a similarity measure from a set of predefined building blocks, or 

can the measure be completely user-defined? 
•	 Adaptation: How well does the shell support the adaptation of retrieved cases to the current situation? 
•	 Feedback: How difficult is it to integrate user feedback concerning the quality of the solution? 
•	 Learning: Beside augmenting the case base, is learning possible, e.g. by an adaptation of the similarity 

measure with regard to feedback? 
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5 

INDUCE-IT was left out of the comparison as we did not have enough time to evaluate it due to the diffi~ulty to 
find a suitable MS-Excel version INDUCE-IT operates with. 

We should stress that the gradings for ART-IM refer only to the case-based functionality. In contrary to the 
other shells, ART-IM is a hybrid development environment for knowledge-based systems with a rich 
functionality, but offers only basic support for CBR compared to dedicated case-based reasoning shells. 
Finally, we tried to aggregate the performance assessments with regard to the three dimensions (technical, 
organizational, functional). The results are shown in Figure 3. 

Organizational
 
Aspects
 

high 

•	 CBR-Express 

_ESTEEM 
ReMind 

medium 

• ART-IM 

poor Technical 
Aspects 

poor medium	 high 

Figure 3. Overview of shell characteristics
 
(circle diameters correspond to success in functional dimensions)
 

Discussion 

Schult and Janetzko [6] examine how the case-based process model is realized by these first generation CBR 
shells and identify elements of the model that are not supported sufficiently, even though generalized methods 
are known. Based on these shortcomings, they characterize demands on the secood generation of case-based 
expert system shells, in order to make them an adequate environment for com~x case-based knowledge 
engineering. 

, Here, we just want to add two'demands obtained in the management consultation domain: 

•	 The consultant should have the choice whether derived attributes are computed or entered by hand. If 
they are computed, a flexible language should be provided for that task. 

•	 The system should allow for a change of th~ similitary measure taking the consultation context into 
account (e.g., if a quick, but not optimal solution is to be fOUQd). 

In summary, applications using CBR shells may be a means to ease knowledge acquisition in classification 
domains. Even without advanced CBR techniques, a prototype with a good performance in the domain of 
management strategy consultation could be realized. However, CBR solutions might not be as reliable as rule­
based or model-based ones. Therefore, we see the role of such a cOllsultaJlt as supporting the expert rather than 
taking decisions on its own. 
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5 Discussion
Schult and Janetzko [6] examine how the case-based process model is realized by these first generation CBR
shells and identify elements of the model that are not supported sufficiently, even though generalized methods
are known. Based on these shortcomings, they characterize demands on the second generation of case-based
expert system shells, in order to make them an adequate environment for complex case-based knowledge
engineering.

. Here, we just want to add two'demands obtained in the management consultation domain:

. The consultant should have the choice whether derived attributes are computed or entered by hand. If
they are computed, a flexible language should be provided for that task.

o The system should allow for a change of the similitary measure taking the consultation context into
account (e. g., if a quick, but not optimal solution is to be found).

In summary, applications using CBR shells may be a means to ease knowledge acquisition in classification
domains. Even without advanced CBR techniques, a prototype with a good performance in the domain of
management strategy consultation could be realized. However, CBR solutions might not be as reliable as rule—
based or model—based ones. Therefore, we see the role of such a consultant as supporting the expert rather than
taking decisions on its own.
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