LEWCBR-93

First European Workshop on
Case-Based Reasoning

Posters and Presentations
- Volume II -

. M. M. Richter, S. Wess,
i K.-D. Althoff, F. Maurer (Eds.)

1 - 5 November 1993

. University of Kaiserslautern (Germany)

L

german

EccAal &%) sre314 WER

EWCBR-93

First European Workshop on
Case-Based Reasoning

Posters and Presentations
- Volume IT -

M. M. Richter, S. Wess,
K.-D. Althoff, F. Maurer (Eds.)

1 - 5 November 1993

. University of Kaiserstautern (Germany)

german

EccAl *%) srB34 W IS4

First European Workshop on
Case-Based Reasoning (EWCBR)
Presentations and Posters
Volume I1

Michael M. Richter, Stefan Wess,
Klaus-Dieter Althoff, Frank Maurer (Eds.)

SEKI Report SR-93-12 (SFB 314)
Fachbereich Informatik
Universitat Kaiserslautern
Postfach 3049
D-67653 Kaiserslautern

Germany

Program Chair

Prof. Dr. Michael M. Richter
University of Kaiserslautern
Department of Computer Science

P.O. Box 3049

D-67653 Kaiserslautern, Germany

Program Committee

Agnar Aamodt
Jaime G. Carbonell
Thomas Christaller
Boi V. Faltings
Klaus P. Jantke
Mark T. Keane
Janet L. Kolodner
Michel Manago

(Trondheim, Norway)
(Pittsburgh, U.S.A.)

(Sankt Augustin, Germany)

(Lausanne, Switzerland)
(Leipzig, Germany)
(Dublin, Ireland)
(Atlanta, U.S.A)
(Paris, France)

Ramon Lopez de Mantaras (Blanes, Spain)

Bernd Neumann
Bruce W. Porter
Frank Puppe
Lorenza Saitta
Derek Sleeman

Gerhard Strube
Walter Van de Velde

(Hamburg, Germany)
(Austin, U.S.A)
(Wiirzburg, Germany)
(Torino, Italy)
(Aberdeen, UK)
(Freiburg, Germany)
(Brussels, Belgium)

Additional Reviewers

Klaus-Dieter Althoff
Kerstin Dautenhahn
Pete Edwards
Wolfgang Grather
Thomas Hemmann
Beatriz Lopez

Frank Maurer
Riidiger Oehimann
Enric Plaza

Luigi Portinale .
Barbara Schmidt-Belz
Jurgen Walter

Stefan Wess

(Kaiserslautern, Germany)
(Sankt Augustin, Germany)
(Aberdeen, UK)

(Sankt Augustin, Germany)
(Sankt Augustin, Germany)
(Blanes, Spain)
(Kaiserslautern, Germany)
(Aberdeen, UK)

(Blanes, Spain)

(Torino, Italy)

(Sankt Augustin, Germany)
(Sankt Augustin, Germany)
(Kaiserslautern, Germany)

Organizing Committee

Stefan Wess, Klaus-Dieter Althoff, Frank Maurer
University of Kaiserslautern

Department of Computer Science

P.O. Box 3049

D-67653 Kaiserslautern, Germany

Tel.: +49 631 205 3360 (3362,3356,3363)

Fax: +49 631 205 3357

email: ewcbr@informatik.uni-kl.de

Organization

EWCBR-93 is organized by
the Expert System Section of the German Society for Computer Science (GI),
the Special Interest Group on Case-Based Reasoning (AK-CBR),

in cooperation with

the European Coordinating Committee for AT (ECCAT),

the German Chapter of the Association for Computing Machinery (ACM),
the Computer Science Department of the University of Kaiserslautern,

the German Special Research Investigation on Artificial Intelligence

and Knowledge-Based Systems (SFB 314) of the DFG,

the German Research Center on Artificial Intelligence (DFKI), Kaiserslautern

mailto:ewcbr@informatik.uni-kl.de

Contents

I Volumel

iv
1 Retrieval, Similarity and Indexing 1
1.1 ANAIS: A Case-Based Reasoning System in a Problem Solving Environment (Nathalie
Beauboucher, France) 3
1.2 A Similarity Metric for Retrieval of Cases - Imperfectly Described and Explamed (Carlos
Bento, Ernesto Costa, Portugal) 8
1.3 Structural Similarity as Guidance in Case-Based Design (Katy Borner, Germany) 14
1.4 An Under-Lying Memory Model to Support Case Retrieval (Mike G. Brown, UK) 20
1.5 Similarity Measures for Structured Representations (H. Bunke, B. T. Messmer, Switzerland) 26
1.6

System and Processing View in Similarity Assessment (Dietmar Janetzko, Erice Melis
Stefan Wess, Germany)

..................................... 32
1.7 Similarity Assessment and Case Representation in Case-Based Design (Markus Knauff,
Christoph Schlieder, Germany) L ... 37
1.8 Applications of Case Based Reasoning to the Law the Problems of Multiple Case Reasoning
and Indexing (Mohammadali Montazeri, Alison E. Adam, UK} 43
1.9 Massively Parallel Case-Based Reasoning with Probabilistic Similarity Metrics {(Petri Myl-
lymdki, Henry Tirri, Finland)o 48
1.10 Similarity in Legal Case Based Reasoning as Degree of Matching between Conceptual
Graphs: Work in Progress (Jonathan Poole, UK) 54
1.11 A similarity-assessment algorithm based on comparisons between events (Sophie Rougegrez,
France) e e e 59
1.12 A Rule-Based Similarity Measure (Michele Sebag, Marc Schoenauer, France) 65
1.13 Case-Based Information Retrieval (Malika Smail, France) 71
1.14 Retrieving Adaptable Cases:- The Role of Adaptation Knowledge in Case Retrieval (Barry
Smyth, Mark T. Keane, Ireland) 76
1.15 Improving the Retrieval Step in Case-Based Reasoning (Stefan Wess, Klaus-Dieter Althoff,
Guido Derwand, Germany} 83.
1.16

Using a High-Level, Conceptual Knowledge Representation Language for Visualizing Effi-
ciently the Internal Structure of Complex ”Cases” (Gian Piero Zarri, France)

Adaptation and Analogy

2.1 An Analogical Reasoning Engine for Heuristic Knowledge Bases (Jorge E. Caviedes, USA) 97
2.2 Adaptation through Interpolation for Time-Critical Case-Based-Reasoning (N. Chatierjee,

JoA Campbell, UK) e 103
2.3 Knowledge Engineering Requirements in Derivational Analogy (Padraig Cunningham, Sean

Slattery, Ireland) L 108
2.4 Modelling of Engineering Thermal Problems - An unplementatmn using CBR with Deriva-

tional Analogy (Donal Finn, Sean Slattery, Padraig Cunningham, Ireland) 114
2.5 Reformulation in Analogical Reasoning (Erica Melis, Germany) 120
2.6

Similarity-based Adaptation and its Application to the Case-based Redesign of Local Area
Networks (Frank Zeyer, Michael Weiss, Germany)

......................

Positioning Case-Based Reasoning

3.1 Case-Based and Symbolic Classification Algorithms - A Case Study Using Version Space
(Christoph Globig, Siefan Wess, Germany)

Case-Based Representation and Learning of Pattern Languages (Klaus P. Jantke, Steffen
Lange, Germany)

A Comparison of Case-Based Learning to Search-Based and Comprehension-Based Systems
(Josef Krems, Josef Nerb, Franz Schmalhofer, Bidjan Tschaitschian, Germany)

3.2

3.3

3.4 Learning Prediction of Time Series. A Theoretical and Empirical Comparison of CBR
with some other Approaches (Gholamreza Nakhaeizadeh, Germany) 149
3.3 Incorporating (Re)-Interpretation in Case-Based Reasoning (Scott O'Hara, Bipin Indurkhya,
USA) e .. 154
3.6 PBL: Prototype-Based Learning Algorithm (Kuniaki Uehara, Masayuki Tanizawa, Sadao
Maekawa, Japan) e 160
4 Case-Based Decision Support Case-Based Diagnosis 167
4.1 The Application of Case Based Reasoning to the Tasks of Health Care Planning (Carol -
Bradburn, John Zelezmikow, Australia) o 169
4.2 Case-Based Reasoning: Application to the Agrlcultural Domain, a Prototype (K. C. Chiri-
atts, R. E. Plant, Raly) e 174
4.3 Using CBR techniques to detect plagiarism in computing assignments (Padraig Cunning-
ham, Ireland)ol 178
4.4 Case-Based Learning of Dysmorphic Syndromes (Carl Evans, UK) 184
4.5 Facilitating Sales Consultation through Case-Based Reasoning (Achim G. Hoffmann, Sunil
Thekar, Germany) e e e 187
4.6 A priori Selection of Mesh Densities for Adaptive Finite Element Analys1s using a Case
Based Reasoning Approach (Neil Hurley, Ireland). 193
4.7 Integrating Semantic Structure and Technical Documentation in Case-Based Service Sup-
port Systems (Gerd Kemp, Germany) 198
4.8 CABATA - A hybrid CBR system (Mario Lenz, Germany) 204
4.9 Towards a Case-Based Identification Process (Eric Paquei, Brahim Chatb-draa, S. Lizotte,
Canade) e 210
4.10 Case-Based Reasoning for Network Management (Mickael Stadler, Germany) 215
4.11 Case-Based Reasoning in a Simulation Environment for Biological Neural Networks (Oliver
Wendel, Germany) e 221
4.12 Management Strategy Consultation Using a Case-Based Reasoning Shell (Ansgar Woller-
ing, Thomas J. Schult, Germany) 227
II Volume II ii
5 Case-Based Design / Case-Based Planning 233
5.1 Combining CBR and Constraint Reasoning in Planning Forest Fire Fighting (P. Avesant,
A. Perini, F. Ricci, Italy) e 235
5.2 Our Perspective on Using CBR in Design Problem Solving (Shirin Bakhilari, Brigiite
Bartsch-Spérl, Germany) 240
5.3 Integrated Case-Based Building Design (Kefeng Hua, Ian Smith, Boi Faltings, Switzerland)246
5.4 Case-Based Reasoning in Complex Design Tasks (Neil A. M. Maiden, UK) 252
5.5 Case-Deliverer: Making Cases Relevant to the Task at Hand (Kumiyo Nakakoji, USA) . . 258
5.6 Finding Strategies in Organic Synthesis Planning with Case-Based Reasoning (Amedeo
Napoli, Jean Lieber, France). i i 264
5.7 Case-Based Configuration in Technical Domains: Combining Case Selection and Modifi-
cation (Thomas Vielze, Germany) . . . - . . . o v i i i 270
6 Integrated Problem Solving and Learning Architectures 277
6.1 Explanation-Driven Retrieval, Reuse and Learning of Cases (Agnar Aamodt, Norway)} . . 279
6.2 Case-Based Reasoning and Task-Specific Architectures (Dean Allemang, Switzerland) . . 285
6.3 Case-based Reasoning at the Knowledge Level: An Analysis of CHEF (Eva Armengol,
Enrric Plaza, Spain). e e 290
6.4 Integration of Case-based Reasoning and Inductive Learning Methods (Stefan K. Bam-
berger, Klaus Goos, Germany) 296
6.5 Explanation-based Similarity for Case Retrieval and Adaptation and its Application to
Diagnosis and Planning Tasks (Ralph Bergmann, Gerd Pews, Germany) 301
6.6 A Hybrid KBS for Technical Diagnosis Learning and Assistance (David Macchion, Dink-
Phuwoc Vo, France) e 307
6.7 Induction and Reasoning from Cases (Michel Manago, Klaus-Dieter Althoff, Eric Auriol,
Ralph Traphoner, Stefan Wess, Noel Conruyt, Frank Maurer, France) 313
6.8 Tuning Rules by Cases (Yoshio Nakatani, David Israel, Japan) 319

6.9 Combining Case-Based and Model-Based Approaches for Diagnostic Applications in Tech-
nical Domains (Gerd Pews, Stefan Wess, Germany)
6.10 A Reflective Architecture for Integrated Memory-based Learning and Reasoning {Enric
Plaza, Josep-Lluis Arcos, Spain)
6.11 Using Case-Based Reasoning to Focus Model-Based Diagnostic Problem Solving (Luig:
Portinale, Pieiro Torasso, Carlo Ortalda, Antonio Giardino, Italy)
6.12 Integrating Rule-Based and Case Based Reasoning with Information Retrieval: The TK-
BALS Project (John Zeleznikow, Daniel Hunter, George Vossos, Australia)

Knowledge/Software Engineering and Case-Based Reasoning

7.1 Model of Problem Solving for the Case-Based Reasoning (Ikram Cheikhrouhou, France)

7.2 A Software Engineering Model for Co-operative Case Memory Systems (Andrew M. Dear-
den, Michael D. Harrison, UK) i

7.3 Toward a Task-oriented Methodology in Knowledge Acquisition and System Design in

CBR (Dietmar Janetzko, Katy Bérner, Carl-Helmut Coulon, Ludger Hovestadt, Germany) 360

7.4 Similarity-based Retrieval of Interpretation Models (Frank Maurer, Germany).

Case-Based Explanation / Case-Based Tutoring
8.1 Using Logic to Reason with Cases (Kevin D. Ashley, Vincent Aleven, USA)
8.2 Multiple Explanation Patterns (Uri J. Schild, Yaakov Kerner, Israel)

366

371
373
379

8.3 Making Case-Based Tutoring More Effective (Thomas J. Schult, Peter Reimann, Germany)385

8.4 ELM: Case-based Diagnosis of Program Code in a Knowledge-based Help System {Gerhard
Weber, Germany).

Case-Based Image Processing

9.1 Image Retrieval without Recognition {Carl-Helmut Coulon, Germany)

9.2 Case-Based Reasoning for Image Interpretation in Non-destructive Testing {Petra Perner,
Germany) e

9.3 A Rule-Rule-Case Based System For Image Analysis (S. Venkataraman, R. Krishnan,
Kiron K. Rao, India) e e e

Chapter 5

Case-Based Design / Case-Based
Planning

233

Combining CBR and Constraint Reasoning in Planning
Forest Fire Figthing!

P. Avesani, A. Perini and F. Ricci
Istituto per la Ricerca Scientifica ¢ Tecnologica
38050 Povo (TN)

Ttaly
e.mail: {avesani,periniricci }@irst.it

Introduction

In this poster we shall illustrate a work in progress aimed at developing an integrated system for planning first
attack to forest fires. It is based on two major techniques: case based reasoning and constraint reasoning. The
architecture we propose is part of a more extended system that is aimed at supporting the user in the whole
process of forest fires management. The novelty of the proposed system is mainly duc to the use of advanced
techniques for the development of the man/machine interface based on the representation of the user tasks'
structure, the integration of more traditional techniques for data analysis with up to date techniques for data
classification developed in the Al community, the extensive application of the Case Based paradigm to the
planning of the first attack and the integration of the case based reasoner with a contraint solver, mainly in
charge with temporal reasoning.

Many computerised systems have been proposed and developed to help the responsible organisations in dealing
with some of the phases of forest fire management: prevention, suppression, control. A part from many
systems based on traditional techniques (GIS, Spreading fire models, resources management with data base) very
few Al rooted applications have been developed. We cannot avoid quoting the Phoenix project [CGHH89],
which is real-time adaptive planner that manages forest fires in a simulated environment, and the system
developed by P. Kourtz that addresses the problem of dispatching waterbombers, helicopters and crews for fire
control in Quebec [Kourtz87]. None of them use CBR techniques, the first one is a research on the design of
intelligent agents and the second is a classification system based on rules implemented in PROLOG.

In this extended abstract we shall illustrate the operational context in wich the system will be deployed and the
intervention planning approach. At the moment we are terminating the design phase and we shall start the
develoment in the next September.

The operational context

In this subsection we shall address the operational context in which the system will be deployed. This
description will make the reader aquainted with the typical tasks in charge to the user. The user of the system is
the controller based in a provincial centre. His tools are: a workstation, a dedicated line to acquire data from
infrared sensors and meteo sensors, a radio, a fax, a telephone and a printer. The system running on the
workstation comprises a Geographic information System, a graphical simulator of the fire evolution, tools for
territorial, meteo and resource assessment and a module for supporting the intervention planning and control.

When a new fire is reported, the alarm is promptly validated and the situation assessed by the user possibly
running the propagation module. On the screen the operator can look at the output of the propagation module
and access, through a graphical interaction, information on the graphical symbols showed by the map. Al the
end of this phase the operator has acquired enough information for drawing on the map a number of line sectors
that subdivide the original fire front. The system runs a set of functions that compute the relevant data for each
sector. The system presents these data to the operator and the operator may confirm this segmentation or revise
his choice.

Once the sector has been 1dent1fxcd on the map the operator is now looking for a plan to fight the fire in each
sector and that achieves some objectives. The plan may use air forces and/or ground means, and they have to
adopt a specific scheme of work. Searching in a data base of past sector plans, the system retrieves a set of
plans that achieves these objectives. Follows a modification phase to fit these plans to the current situation.
The plans are showed to the operator by means ‘of a predefined form. After this phase of sector plan evaluation
the operator may choose o repair a plan editing some subpart. Otherwise he may propose a new one, that
seems applicable, based on his experience. The system will provide to check the numeric consistency of the
repaired plan: that is verify the constraint on temporal relation, water quantity and resource availability.

The operator now has a set of alternative sector plans for each sector. The system may suggest some
combinations and may also verify the combination chosen by the operator. The operator composes on the
screen the sector plans using the system as a constraint checker. Furthermore we may also require the system to
propose complete plans and to compare different approaches. The system does not select a unique plan, but list
a number of plans that differ on the cost, on the expected territory burned by the fire, on the use of specific
resources such as water bomber or helicopters.

1The research was supported by the Esprit project CHARADE n. 6095.

235

At this poin the operator has to assign specific actions to specific means. He selects the squads, choosing the
base and the leader, he must assign to each squad the necessary means. He sets up a contact with the external
organisations that are needed for help. He requests the cooperation of the Regional Centre asking for state owned
air resources and further resources from other Provinces or Compartments. He requests the cooperation of the
Prefecture for the intervention of the Army. He assures himself of their readiness to help. The operator finally
takes a decision: selects a plan and sends the appropriate orders to the bases closing the planning of the first
intervention.

The Intervention planning approach

The intervention planning system rests on a CBR module integrated with a Constramt Reasoner module.It
works on sector pians whose representation consists of two main parts. The first one allows to efficiently
associate the current situation to an old, similar one among those recorded in the historical database of
interventions. The second one contains a description of the structure of the plan in terms of action and their
temporal relations. Constraint propagation techniques are applied to this part of the plan representation in order
to support adaptation and repairing of a sector plan. Moreover constraint reasoning techniques support
composition of sector plans into a global plan and resource allocation providing a plan instance specific to the
current situation.

In the following we shall discuss provxslonal representational choices for plan representation and describe how
the system will support the main decisional steps of the planning process above stated.

Sector plans

A sector plan is defined by a set of features describing the physical environment and by the structured set of
actions that have to be performed, as depicted in Figure 1a.

The sector plan features include a description of the scenario and the goal. The scenario is defined by a set of fire
parameters, the most critical to evaluate the fire danger, the meteo conditions, the topography of fire location
and the available resources that are located in the bases close to the fire. The goal includes three basic objectives
of the global plan: the intervention deadline, the water equivalent of the fire fight, the targets of the fire. The
intervention deadiine is the maximum time in which the plan has to be completed. The water equivalent of the
fire fight is an estimate done by the fire ¢xpert to dimensionate the global intervention. The targets of the fire
are a set of valuable things to protect, for instance a building or a well.

_ | o [Fir)
E | 8 | Meteo : /1L Role
‘2 8 ' Topography S pSuip
2 « Besource Squad Type
£ [= Deadline £ € | Squad Number
e |8 J -
= S | Water E Means
2 Targets £ | Equipment
< 1% | Action ltem & | Water Quantity
O |8 _
A« | Action Net R Water Supply

Figures la, 1b

The scenario corresponds to the initial condition and the goal to the final condition in classical planning
formulation. Sector plan actions identify the fire fighting tasks that should be performed by a set of squads with
appropriate equipment or means, see picture 1b. Fire suppression by ground attack using noozles or air attack
with helicoptérs are typical examples of fire fighting actions. The structured set of actions describes the
temporal dimension of the plan. It contains information on action durations, possible time constraints respect
10 the starting and ending times of the plan, and temporal relation between actions. We represent it by a graph
whose nodes correspond to starting and ending times of actions and whose arcs are labelled with the temporal
relation between the connected nodes following the approaches presented in {DMP91], [vanBeck92]. We shall
call this strocture action net (see Figure 1c for an example). For instance the arc connecting to and the starting
time of the action A7 is labelled with {<, =} representing the information that Aj must start at or after 1. The
arc connecting the starting time of A1 with its ending time is labelled by the interval [1 1:30] meaning that the

duration of A1 will take a value belonging o that interval, 1.6. 1 < fend - tstart < 1:30 hours.

236

' ‘; Action Item <= before, equal [min,max) Duration

......

Action Net

Figures 1c

The intervention planning steps

In the following we shall describe how the system supports the main decisional steps of the planning process,
as illustrated in Figure 2 and described in a previous section. The first four steps are a direct derivation of the
reference schema of CBR planning architecture developed by Hammond in [Hammond89]. The Figure 2 also
highlights the fact that constraint reasoning techniques are continuosly exploited in all the reasoning steps a

part from the retrieval.
Sector 4 A .
| o =;[Scenario] Ssessmen
Partial

2
§ Matching Retriever
hs:. Algorithm Old Sector
§ V= Plan
ng Modify
& Rules Madifier
o
S Imemlreter (" Adapted
= tor Pl
Sulled Sector Plans
Operator Evaluator
Evaluation (" TFailed
—————
User _ Sector Plan
Sector Plan Repairer
Editing (" Instanciable
M Sector Plans
Sector
Plans Composer

A

Merging
Global Plan j
\§

Resource Scheduler

Allocation
Deliverable D
Global Plan Control

Figure 2

Constraint Reasoning,

The Retrieval and the Adaptation of an old plan.

The fire front segmentation performed by the operator as described above produces the description of one or
more scctors in terms of a scenario and the related goal. This description drives the search, into the plan
memory, of similar cases where the same kind of goal in a similar scenario has been dealt with.

The search process is performed by using a partial matching algorithm which computes and compares

similarities among features of the plan description. It is only possible a partial match because of the typical
incompleteness of the information gathered during the alarm verification.

237

In fact this is a common problem in applying CBR techniques. This problem is taken into account in some
CBR systems, among these we are ana]ysmg the COBWEB system [Fisher87] which seems the most
appropriate to our application. COBWEB is based on an category utility function that identifies a trade-off
between intra-class similarity and inter-class dissimilarity of cases. Intra-class similarity is the probability that
two cases in the same category share their values and inter-class dissimilarity is the the probability that two
cases in different category share their values.

But, since some features are more relevant then others, this kind of match does not guarantee that the plan
associated to the most similar case is the most appropriate to the current situation. This calls for an
enhancement of this method introducing a supplementary technique in order to take into account also the partial
order relation among the features that describe the scenario. s

The retrieval process on each sector produces a set of old sector plans. A further selection phase refines this set
yielding a subset of plans that implement structurally different fire fighting strategies. Two strategies are
structurally different if they don't use the same actions or if they order the actions differently.

According to the reference case-based planning architecture a modification phase follows the retrieval. A specific
set of constzaint, based on the domain knowledge, are associated to the features describing the old plan actions
and the new current scenario. These constraints represents for instance how the number of squads, the type of
action {role) they perform and the sector length define a constraint on the action duration. Adapting an old sector
plan means {o change some action parameter values according to the features of the current scenario and then to
recompute the constraints involving them. At this level constraints are mainly used for deducing consistent
values for constrained parameters.

Constraint propagation and consistency check guarantee the respect of the goal statements (for example deadline
and water quantity).

Usually in the full automated case-based planner the plan validation is performed by simulation. It is out of the
scope of our work to address the complex problem of simulating actions and environment evolution in the
forest fire domain (sece [CGHH89] for a significant work in this direction). The expert, on the base of his
experience and the data on the current situation, is generally able to repair the plan. He can perform changes into
the plan structure using a sector plan editor. For example substituting an action with a different one or changing
the temporal relation between two actions. Repairer is supported by the system running constraint propagation
algorithms on the modified action net. These two last steps, evaluator and repairer, can be repeated till a
satisfiable sector plan is obtained.

The composition of a global plan and its resource scheduling.

Sector plans are merged into a global plan during the composition phase. At this level the operator can decide to
consider only the highest risk sectors among the originally planned sectors, in order to avoid resource
allocation failure. This merging process corresponds to the composition of the single sector action nets into a
global, time consistent, net.

The scheduling phase deals with the selection and allocation of the resources to the resulting global plan. This
process starts by considering the action time net of the global plan from the point of view of the resource
requests associated to each action. In other words the action time nét is mapped to the corresponding resource
time net where the variables are the resources required by each action. The temporal constraints representing
action durations in the action net are mapped to constraints on the duration of the allocation status of the
associated resources. Additional constraints representing resource characteristics (such as shifts or maximum
operating periods) will enrich the resource time net. Appropriate resource schedules for the global plan are
solutions of this constraint network which will be obtained by running Constraint Satisfaction Problem
solution algorithms driven by heuristic criteria on resource selection (see for instance [Fox87]
[VanHentenryck92]). Possible failures are taken into account and could require to consider a different global plan
(i.e. redo the composition step) or require the user to make extra resource available for instance releasing them
from different fires or requesting them to the Regional Centre.2

The resulting resource schedule will be represented by a resource time map where the allocation period of each
resource instance is recorded as well as their relative dependencies (for instance between squad n.1 and tanktruck
n.3 which will support its activity). The resource time map will support the plan control activities which could
require to consult and update it.

At this stage also the CBR process closes storing all the adaped sector plans which have been composed into
the succesfully scheduled global plan.

2aA precise definition of the failure that will be dealt is still object of discussion.

238

Bibliography

[Bareiss-King89] Ray Bareiss, JamesA. King. Similarity Assessment in Case-Based Reasoning., in Proceedings
of Case-Based Reasoning Workshop. Florida, 1989.

[CGHHS89] Paul R. Cohen, Michael L. Greenberg, David M. Hart, and Adele E. Howe. Trial by fire:
Understanding the design requirements for agents in complex environments., in The Al Magazine, 10(3):32--48,
1989.

[DMPI1] R. Dechter, 1. Meiri, and J. Pearl. Temporal Constraint Networks., in Artificial Intelligence J.49,
1991.

[Fisher87] Douglas H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clustering., in Machine
Learning 2, 1987.

[Fox87] M.S. Fox, Constraint-Directed Search: A Case Study of Job-Shop Scheduling. Morgan Kaufmann
Publishers, Inc., 1987. :

[Hammond 89] Kristian J. Hammond. Case-Based Planning: viewing planning as a memory task. Academic
Press, 1989.

[Kolodner89] Janet L. Kolodner. Judging Which is the "Best” Case for a Case-Based Reasoner. , in Proceedings
of Case-Based Reasoning Workshop. Florida, 1989.

[Kourtz87] Kourtz, Peter, Expert System Dispatch of Forest Fire Control Resources, in Al Applications, vol
19, n. 1, 1-8, 1987. '

[vanBeek92] Peter van Beek. Reasoning about qualitative temporal information. in Artificial Intelligence J..

58, 297-326, 1992.

[VanHentenryck92] P. Van Hentenryck, Constraint satisfaction using constraint logic programming, in
Artificial Intelligence J. 58: 113-159, 1992,

239

Our Perspective on Using CBR in Design Problem Solving *

Shirin Bakhtari, Brigitte Bartsch-Spor]

BSR Consulting GmbH
Wirtstrafle 38
81539 Miinchen
Germany

1 Introduction

Due to the open-ended nature of all synthesis problems, a design problem can appear in different forms. There is
a general acceptance that design problems can be classified as being routine design, innovative design or .
creative design. These predicates, routine, innovative and creative can be applied either to the process of
problem solving or to the final product, or to both.

In [Brown, Chandrasekaran 89}, the proposed classification criteria are oriented towards the design process and
the primary focus is set on the distinction between routine design processes and non-routine design processes. In
(Rosenman, Gero 93], on the other side, design problems are categorized according to the kind of solution
obtained and the authors” main interest is to distinguish between creative and non-creative design by an
examination of the result of a design process.

Routine design is generally characterized by the presumption that all design functions (goals and requirements)
as well as all available structures of the artefact are fully specified and given beforehand. The process required
‘for problem solving is one of mapping functions to structures. In an innovative design process, one may get
confronted with functions or structures not known a priori. Innovative design is therefore accepied as being a
process of going beyond the known structures and functionality and leading to a product which extends the set
of known solutions.

Creative design, as defined in [Rosenman, Gero 93], "incorporates innovative design but involves the creation
of products that have little obvious relationships to existing products”. Creative designs can be achieved, as
proposed in [Rosenman, Gero 93], by applying one of the following methods: combination of existing designs
to a new one, mutation of an existing design, drawing an analogy and designing from first principles using
building blocks.

If we accept the above characterization of creative design, then the use of CBR in design problem solving, as in
¢.g. [Domeshek 92] [Domeshek, Kolodner 927 {Hinrichs 92], would often lead to creative design as a product
because CBR uses two methods classified as leading to creative designs: the combination of existing designs to
anew one and the adaptation (mutation) of an old solution to get a proper.solution for the problem at hand. We
will return to this topic later.

Our objectives for the discussion of CBR in design problem solving in this paper are as follows. First we will
describe the use of CBR for the development of a building-design support system. We discuss our point of view
of categorization of design tasks as being innovative or creative and circumscribe the role of CBR in the context
of this classification of design tasks. Finally we will show with an example from our application domain the
necessity to use both routine and innovative CBR together with other problem solving methods in an
environment which is open for user interactions that can bring in the creative solutions we cannot produce by
software.

" This work was partially supported by the German Ministry for Research and Technology (BMFET) within the joint project
FABEL under contract no. 01 TW 104. Project partners in FABEL are German National Research Center of Computer
Science (GMD) Sankt Augustin, BSR Consulting GmbH Miinchen, Technical University of Dresden, HTWK Leipzig,
University of Freiburg, and University of Karlsruhe.

240

2 Characterization of the Problem Type

In the project FABEL [FABEL 92], we are concerned with a building design problem which primarily focusses
on the support of mechanical constructions using a method called ARMILLA [Haller 92]. ARMILLA includes
design guidelines as well as template models for designing mechanical subsystems. Building-design integrates
architectural as well as mechanical and technical design aspects, e.g. air conditioning, lighting, etc.*

The design process is strongly affected by different types of knowledge and building-design problem solving is
characterized by a thriving interaction between these types of knowledge, e.g. functional knowledge,
top(\)logical knowledge and geometrical knowledge. Some knowledge occurs in the form of former layouts,
other knowledge in the form of design patterns for designing mechanical subsystems. In addition, there are
guidelines, standards, heuristics etc.

The question of how to find an adequate knowledge representation has to deal with good comprehensibility, an
appropriate formal representation and the efficiency of the problem solving methods needed. In order to
represent the knowledge adequate, we kept close to the natural manner of the types of knowledge and represent
them in the form of cases, template models, heuristics, constraints, etc. Representing some knowledge in the
form of cases seems to be an appriopriate and efficient way of knowledge representation, although it is not the
only one.

In fact, human experts use variations of former layouts, but mostly as a source of inspiration and they adapt
former layouts rather partially than completely. To design a new building does certainly not require new
discoverics about statics or geomefrics or to circumvent standards and constraints being established. But the
building-design problem solving process continues to confront the architects and the technical engineers with
problems that never occured before in exactly the same constellation and therefore need creative ideas to solve
the particular problem within the given context.

As we got more involved in the development of the building-design support system, the following question
raised up: Do we need a problem solving method using CBR to support routine design, innovative design or
even creative design? Using CBR is actually a conservative way of reasoning, because it mainly deals with
problems solved at least once before. But the adaptation needed o make a former solution applicable can lead to
an innovative solution and therefore right into innovative design. In contrast to this, in [Hua et al. 92] adaptation
is seen as follows: "Adaptation of cases are mostly used to generate routine design”.

In our opinion, we should make a difference between adjusting and adapting an old solution to the problem at
hand. Adjustment certainly leads to a routine design as solution, because it deals with marginal modifications
and is mainly restricted to the change of the coordinates of former solutions. One important aspect of supporting
building-design problem solving deals with the routine type of design problems, due to standards and template
models and some established constraints. Standards and established constraints must be taken into account
while designing the mechanical subsystems and the template models should also be considered.

Routine design can thus be obtained by applying standard Al-methods like rule-based reasoning or constraint
satisfaction or - as an alternative - by applying case-based reasoning with adjustment, but without major
adaptation. Adaptation, as we understand it, modifies an old solution in an essential way. This has to be done on
the basis of non-trivial domain knowledge and adaptation procedures. One important aspect of adaptation is that
it always leaves behind a certain risk that the adapted solution might not be acceptable with respect to the
context of the building or the architect’s assessment. ’

For example, applying ARMILLA-guidelines leads to a significant adaptation of the former design and
produces a new design. The obtained solutions can be regarded as a mutation of former layouts” due to the
available knowledge. According to the above characterization we obtain a novel, innovative design.

Another method of achieving innovative design is, as mentioned above, the combination of cases [Faltings 91].
There is a distinction drawn in [Hua et al. 92] between crossing cases and composing cases: “In crossing, we
combine properties of cases, while in composition, we assemble pieces of structures represented in cases".

* A CAD system for ARMILLA which is used in the project FABEL as a first prototype is called A4 [Hovestadt 93).

241

If we want to cross or compose several cases, we need compatibility knowledge, which may be acquired and
represented in some kind of knowledge representation schemes. Applying this kind of knowledge in order to get
a correct new design can be seen as obtaining an innovative design.

As we are concerned with developing a building-design support system, the flexibility of human expert
behaviour has to be supported by the adaptability of the problem solving process. This means the ability to
change between different kinds of knowledge and problem solving approaches in order to solve the problem at
hand. Designing buildings is therefore an integrated cooperative activity between architects and engineers aimed
at creating a new design.

3 The Application of Case-based Reasoning and other Problem Seolvers

We have outlined above that our application can be seen as a conglomeration of different subproblems, e.g.
building construction, duct layout, lightening cabel layout, etc., which range from routine to innovative design.
Designing buildings is a holistic process and control is managed interactively. Therefore, all solutions of
subproblems, e.g. duct layout, are taken preliminary as long as there are other unsolved (sub-)problems whose
solvability or whose solutions may affect not only the local neighbourhood but also principal design decisions
made in the early stages of the planning process. Therefore all (sub-)problem solving is preliminary and subject
to change if new requirements arise.*

For the subproblems involved which can be classified as routine design problems, we have some freedom to
decide which method of problem solving we want to use. Former prototypes of ARMILLA-based design
problem solvers [Drach 93] used different rule-oriented Al-approaches. These approaches led to some progress
concerning small subproblems but became much too complex for larger contexts. From these experiments we
know that we can use rule packages or constraint problem solvers to obtain solutions for small and completely
specified subproblems, namely routine designs.

Another choice for this kind of subproblem solving is case-based reasoning. In the FABEL project we have
done some experiments with different similarity functions to fest the case-based problem solving approach for
cases of different complexity [Coulon et. al. 93]. The results show that case-based reasoning is an applicable
alternative to the established Al methods. The speed of problem solving and the quality of the results heavily
depend on the contents of the case library. Therefore the two types of problem solving approaches are difficult
to compare.

What we learn from this mixed approach is that ‘routine now has two meanings:

e being a known type of problem which can be completely modeled, de- and recomposeﬁ and not being
too large to be solved by a strong Al method or

e having predecessor problems which have lead to entries in the case library and which are retrievable
through a similarity function and can be adjusted to the problem at hand.

For those subproblems which can be classified as innovative design problems, our classical AI methods are not
so easily applicable. Here the CBR approach is at the moment our best chance to solve these problems by
software. As innovative solutions range over a wider spectrum than routine solutions, it is less probable that the
case library already contains a solution that fits exactly and adaptation becomes more and more important.

An essential source of adaptation knowledge are design-guidelines which belp both to structure and to reduce
the amount of possible transformations. In the next section we give an example of bow a design process can
proceed in rather little steps using different kinds of knowledge and specialized little problem solvers which
‘have the form of completion and transformation functions for architectural designs.

* The problem addressed here is that of the recomposition of subproblems to a firal solution. In our opinion we cantot avoid
this problem by using CBR in hardly decomposible application domains such as ours, as it is stated in [Kolodner 92]. This
problem is currently one of our ongoing research subjects.

242

We classify all our transformation steps as being routine or innovative steps for the following reasons:

e We do not agree with [Rosenman, Gero 93] that the usage of combination, mutation or anology is
sufficient to lead to a creative design. Instead we classify our design results from combination and
mutation as being innovative. We do not use analogy so far but even if we would draw analogies
between different aspects it would remain innovative from our point of view.

o What we consider to be creative design is beyond all our software problem solving abilities. To bring
in creative solutions is a role which remains with the architect. This distribution of problem solving
capabilities is highly acceptable for the architects we work with. They would have had serious
problems with giving away the "inventory phases’ 10 a software system.

The more adaptation is needed the higher rises the risk that the produced solution causes conflicts with the
surrounding context or other preliminary solutions already achieved. Therefore we have decided to develop so
called quality-assessment functions [Silverman 92] which check the coherence of the embedding of new
solutions into the designed environment. These assessment functions are a good example of how the degree of
automated problem solving decreases when the need of innovation or even creativity to solve the problem at
hand increases. This form of openness has two main advantages:

o the system does not prevent the architect from being really creative and

o the system is able to catch the creative solution found by the architect, to store it in the case library and
to use it as an innovative solution the next time it is applicable.

This gives both the architect and the software system a chance to improve their performance.

4 An Example

The following example illustrates a design process where a rather abstract sketch is subsequenily refined and
completed by a cooperative interaction between different problem solving paradigms. It shows how a
cooperative interaction between the agents involved in the design process can lead 10 a more informative and
useful stage of a design arrangement at hand. The design process can proceed, even if not all agents are able to
deal with the design arrangement and if no accurate problem description is given.

The architect can for example draw three columns and call the system for assistance. Please note that the
arrangement given is no proper problem description and there is no concrete goal articulated.

1-2: Applying a design guidéljne leads to the following: Every column in a building has to be connected by
beams. According to the distance given in figure 1, the columns get connected as shown in figure 2.

2-3: As there are no standard beams of the length given (figure 2), the beams have to get adjusted. The length of
the beams becomes standardized as shown in figure 3.

3-4: At this stage the design process can be continued by CBR. The most similar former layout found in the case
[ibrary is shown in figure 4.
Our similarity function works with abstract graph representations of the layouts. Similarity between the
new case and an old case means that the old case is the smallest graph found in the case library which
subsumes the new one completely. The graph matching is done on the basis of an application specific
normal form which is obtained by abstracting away deviations from a MIDI-specific grid, absolute
coordinates and effects from rotation or reflection.

4-5: Now the design guideline from 1-2 is applied again and the stand alone column is connected properly
(figure 5).

243

5-6: The standards applied change the plan to figure 6. The reason for this is that the kind of connecting
columns in figure 5 would not stand the weight on it. There have to be'added two more columns, otherwise

the whole construction built on this arrangement would be in danger to collapse.

6-7: Proceeding the design process with applying CBR a second time leads to a new arrangement, shown in
figure 7, which is again symmetric.

7-8: One of the design guidelines gives the advice: if ever possible, make your design regular.

ARMILLA Design
Guideline
) 5
O O Sl
7‘ZZ:I7‘2
ARMILLA Design 16.8 ARMILLA Template
Guideline ' Model
O 160 96 72
78 72 ' ' 12
96 72
CBR
Standards of MIDI
3) 7
O 1 6.8 7'2 7,2
7.2 72 ’ ' 72
7.2 72
CBR ARMILLA Advisory
Guideline for regularity
4 8) >
)
O 16.8 72 72
72 ‘ 72 | ’ 72
\\ 72 72

Fig. 1. Exainple for a design process

244

5 Outlook

In the above example, we focussed on a single-stream design task, although building-design is an integrative
discipline covering several design processes concurrently. This has the consequence that in the future we will
have to deal with interactions and mutual influences between concurrent design processes.

Acknowledgement

We thank Ludger Hovestadt for his cooperation and his contribution according to the example.

References

Brown, D.C.; Chandrasekaran, B.: Design Problem Solving: Knowledge Structures and Control Strategies.
Pitman, London 1989.

Coulon, C.H. (ed.).: Ahnlichkeitsansdtze. FABEL-Report No. 13. To appear. GMD St. Augustin 1993.

Domeshek, E.A.: Using Cases for Design Aiding. International Conference on Artificial Intelligence in Design.
Carnegie Mellon University, Pittsburg, USA 1992,

Domeshek, E.A.; Kolodner, J.L.: Toward a Case-Based Aid for Conceptual Design. International Journal of
Expert Systems.

Drach, A.: Flexible Werkzeuge fiir die Integrierte Gebdudeplanung. Dissertation. Institut fiir industrielle
Bauproduktion. Universitit Karlsruhe 1993.

FABEL-Consortium: Survey of FABEL. FABEL-Report No.2. GMD St. Augustin 1992,

Faltings, B.: Case-based Representation of Architectural Design Knowledge. DARPA Case-based Reasoning
Workshop 1991.

Haller, F.: Integrale Planung - Seminarbericht. Fakultit fir Architektur, Universitit Karlsruhe 1992,
Hovestadt, L.: A4 - Digitales Bauen. Dissertation. Fakultit fiir Architektur, Universitit Karlsruhe 1993.

Hinrichs, T.R.: Using Case-Based Reasoning for Plausible Design Tasks. Second International Conference on
Artificial Intelligence in Design. Carnegie Mellon University, Pittsburg, USA 1992,

Hua, K.; Schmitt, G.; Faltings, B.:. What Can Case-based Design do? Second International Conference on
Artificial Intelligence in Design. Camegie Mellon University, Pittsburg, USA 1992,

Kolodner, J.: CBR for Design. Second International Conference on Artificial Intelligence in Design. Carnegie
Mellon University, Pittsburg, USA 1992,

Rosenman, M.A_; Gero, 1.S.: Creativity in Design Using a Design Prototype Approach. In: Gero, J.S.; Maber,
M.L.(eds.): Modelling Creativity and Knowledge-Based Creative Design. Lawrence Erlbaum,
Hillsdale, New Jersey 1993,

Silverman, B.G.: Survey of Expert Critiquing Systems: Practical and Theoretical Frontiers. Communications of
the ACM. Vol. 35, No. 4 1992,

245

Integrated Case-Based Building Design

Kefeng Hua, Ian Smith and Boi Faltings

Artificial Intelligence Laboratory
Swiss Federal Institute of Technology
1015 Lausanne, Switzerland

Summary

A building design problem can be viewed according to many different abstractions. For example, an ar-
chitect views a building as a collection of spaces with particular properties, while a civil engineer might
consider it as a structure made up of load-bearing elements. For design, it is important to combine these
different viewpoints into a single coherent object. Difficulties associated with combining viewpoints lead
to what is termed the integration problem. Case-based design (CBD) is a recently developed technique
for knowledge-based design systems. This paper shows how the technique can help solve the integra-
tion problem. Cases of previous design solutions already provide solutions for the integration of several
abstractions into a single object. When novel designs are created by adaptling cases, integrity can be
maintained through careful formulation of the adaptation procedures. We describe a prototype design
system, CADRE, which applies CBD to several examples of building design.

1 Introduction

Integration is one of the central issues for large scale engineering design problems. For example, in
building design many design abstractions are considered in order to define an artifact that satisfies
multiple functions. The integration problem in the domain of building design has been traditionally
solved with a blackboard control structure. IBDE [18] and ICADS[14] are examples of such systems.
Blackboard control helps reduce the search space in these systems. However, it might result in loops, or
even diverge. Blackboard architectures are still used in large scale engineering systems because engineering
design is too complex to be processed in a single model. Recently developed case-based reasoning(CBR)
technology[17, 12] provides a natural solution to the integration problem, since cases themselves are
integrated solutions to particular design contexts. Creative use of design cases through adaptation and
combination may provide solutions for new design specifications. We have developed a prototype design
assistant called CADRE. In this system, the processes and representations are divided into two levels:
dimensional and topological. In this paper, adaptation based on dimensional models of design is studied
for integration of building design including structure, spaces and circulation pattern.

Adaptation of a design case was addressed in Julia[9], a system that interactively designs the presen-
tation and menu of a meal. The system implicitly achieves integration by satisfying multiple, interacting
constraints. In our research, we are studying a more complex domain: building design. A building design
involves thousands of parameters, even for a simple house. Building design is an iil-structured problem
where domain theories can not be formalized. Building design requires integration of different abstractions
which are in entirely different domains. In building design, shape and geometry are important. Building
design poses a challenge to the CBR technique, conceptually and computationally.

Our contribution lies in using case-based reasoning technology to solve large scale engineering design
problems where geometry and dimensional information are important. This paper describes our research
on integration of building design through case-based reasoning. We achieve integration most effectively
at the dimensional level of designs.

2 Integration

Any physical artifact can be viewed according to many different abstractions. For example, a building
can be:

— an ingenious civil engineering structure of beams and columns.
— a magnificent way of creating architectural spaces.
— a practical arrangement of functions for its occupants.

246

Structure Spaces Circulation

L d
il
-. -
-4

Fig. 1. A building represents an integration of many different abstractions, including structure, spaces snd circu-
lation pattern.

Designing a building is difficult because it has to integrate satisfactory solutions in each abstraction: the
structure designed by the civil engineer, the spaces laid out by the architect, and the circulation pattern
desired by the user are part of one single structure (Fig. 1).

Disagreements and misunderstandings between architects and civil engineers are recognized as sources
of many problems in construction®. Producing and documenting designs on a CAD system, preferably an
intelligent CAD system, help detect problems during the design phase by checking consistency between
the designs produced -by different people. Research efforts such as IBDE [18] have already proposed
computer tools for integrating designs generated in different abstractions.

P2
C2: x*y =20

-~ C1: X/y=2

i

o P1

Fig. 2. P1/C1 and P2/C?2 represent parameters and constraints in structurel and architectural abstractions. When
discrepancies in each abstraction are corrected in isolation, the process may go into cycles as indicated by the

arrows.

In IBDE, seven different modules correspond to different abstractions and communicate via a common
data representation called a blackboard. Inconsistencies are detected by critics and cause reactivation of
certain modules in order to eliminate the problem. Since corrections are constructed locally, this process
may well cycle or even diverge. For example, in Figure 2, constraint C1 is a constraint in structure
abstraction which specifies that the length of beam z in a rectangular space is two times of the length of
beam y in the space. The two beams span directions of length and width in the space. C2 is an architectural
constraint specifying that the area of the space is 20. P1 and P2 are two parameters corresponding to
the length and width of this space. Supposing that the starting point is (20, 10) which is on line z = 2y,
but not on curve @ * y = 20, the module for the architectural abstraction may revise values to (20,1) by
adjusting parameter P2 to satisfy constraint C2. Since (20, 1) does not satisfy constraint C1, blackboard
control shifts to the structural abstraction and adjusts parameter P1 to satisfy constraint C1 by moving
to point (2, 1). This process cycles. In general, correcting the discrepancies by locally adjusting either P1
to satisfy C1 or P2 to fall onto C2 leads to a cycle which may not converge to the solution. Only through
simultaneous consideration of all abstractions can such problems be avoided.

Achieving integration in a classical knowledge-based system framework is in principle possible, but
extremely difficult because there are few general principles which hold over all abstractions. Attempts to

! Disagreements involving occupants are probably even more frequent, but rarely communicated to the designers.

247

formulate knowledge in an integrated way exist. For example; Alexander [1] has produced a handbook
which defines principles of good design that consider several abstractions simultaneously. A striking fact
about his work is that the rules he defines are actually prescriptions for particular buildings in particular
environments, with little generality. The lesson from this observation is:

Integrating design knowledge from many abstractions amounts to formulating particular cases of
good design.

This observation leads to the formulation of design knowledge as prototypes [5] which are generalized
versions of particular structures. However, since prototypes still require tedious formulations of the gen-
eralizations that apply, design by reusing previous cases is of interest. In this paper, we show how this
paradigm of case-based reasoning can be applied to solve the integration problem in building design.

3 Adaptation

Case-based reasoning originates from psychological models of human memory structure {17, 12]. A case-
based problem solver consists of mainly two processes: indezing to find a suitable precedent, and edapta-
tion to use it in the new problem context. For case-based design, adaptation is essential; no two design
problems are ever identical. Since indexing can be carried out by user interaction and since indexing
schemes may depend upon characteristics of adaptation strategies, we have focused our research on the
adaptation of cases to new problems.

Design cases Design requires knowledge in order to synthesize structures. For building design problems
of realistic size, formulating such synthesis knowledge is very tedious, since conflicting goals lead to many
tradeoffs. This knowledge is more easily accessible in the form of cases of existing buildings, and each
case incorporates a large amount of synthesis knowledge. A case defines a set of “good” ways of achieving
functions in different abstractions, and a way to integrate them into a single building.

A case-based design system can be characterized by its dependence on cases as the main knowledge
source. Following discussions in the literature [8, 2, 15] regarding the distinction between “surface” and
“deep” features and their relative merits in indexing cases, we distinguish two kinds of cases: shallow and
deep. A shallow case is a model of an existing building without any further information about how it was
obtained. In contrast, a deep case is augmented by a trace of the process which devised the design. Since
such design trace can not be easily acquired in engineering design, we attempt to limit our research to
cases which are as shallow as possible in order to test how far this approach is applicable.

A shallow case defines an actual artifact, represented for example as a CAD model of the actual build- .
ing. In our implementation, we use AutoCAD as a tool for representing and rendering this information
plus a set of basic constraints(first principle constraints) to translate the AutoCAD model into shallow
cases.

A good building design is an example of successful integration of functions from different abstractions.
These functions are modeled by a symbolic vocabulary appropriate to the corresponding abstraction, and
mapped to constrainis formulated on the common CAD model. The CAD model thus serves as a basis
for integrating different abstractions.

Case adaptation Applying a case to a new problem requires changing the structure while maintaining
the integration of the abstractions that has been achieved in the case. We divide the process into two
layers: topological and dimensional. Dimensional adaptations are changes in geometry that do not involve
the removal or addition of elements and spaces. In its simplest form, dimensional adaptation reduces to
scalings. Topological adaptations are changes which involve a modification of space or element topology.
Dimensional integration can be achieved in a domain independent way. Topological integration requires
explicit design functions and constraints, which means extra design knowledge in addition to the case.

Integration of multiple abstractions of design can be achieved during dimensional adaptation. In case-
based design, dimensional constraints from a shallow case and a specification for a new design problem
at dimensional level give a set of dimensional constraints. Constraints include equalities and inequalities,
and constraints can be linear or non-linear. Therefore, an integration of multiple abstractions corresponds
to a simultaneous solution to these constraints. Our methodology for integration of design at dimensional
level can be described as follows:

— Parameterize the case and new design specifications with first principle knowledge for each design
abstraction.

— Perform dimensionality analysis with equalities.

— If the equalities are over-constrained, either resolve the conflict by dimensionality ezpansion to intro-
duce new design dimensions or relax constraints.

248

— If the equalities are under-constrained, use the process of dimensionality reduction to define the
variability of the case under new design specification with the free variables.

— Propagate the adaptation among the inequality constraints in the dimensionality-reduced space to
check its validity.

— If the adaptation is not valid, go back to a new parameterization.

With these steps, integration of design at dimensional level can be achieved.

Parameterization Parameterization is achieved through the base-parameterization of the CAD model of
the case plus constraints in first principles and constraints interactively posted by users.

Dimensionality analysis Dimensionality analysis is the process that decides if a given constraint system
is under-constrained, over-constrained or has exactly one solution.

Dimensionalily Ezpansion Dimensionality expansion is used to introduce new degrees of freedom. Con-
straints should not be dropped when they are in conflict since they represent certain design requirements.
The method of dimensionality expansion was originally used in 1stPRINCIPLE, a program that does
creative mechanical design through monotonic analysis of design parameters to the object function [3].
We use the method to solve conflicts by introducing new design parameters, for example, to free some
of the parameters that are originally fixed as constants in base parameterization. Dimensionality expan-
sion sometimes implies the modification of the structure of the case by introducing new elements. Each
step of dimensionality expansion will give at least one more degree of freedom. Dimensionality expansion
provides a link between dimensional and topological adaptations.

Dimenstonality Reduction The concept of dimensionality reduction is adopted from the recoding method
in the reduction of dimensionality of multivariate data in statistics [13]. This idea was developed further
by Saund [16] in image recognition.

The concept of dimensionality reduction was first introduced to case-based design by Faltings [6]. In
integrated case-based design, this method is used to simplify dimensional adaptation of case by finding
the exact degrees of freedom that can be changed for the case in a given new situation and by defining
all the other design variables in terms of a small set of adaptation parameters.

Inequalities Dimensionality reduction only applies to equalities. Among inequalities, we can distinguish
two types: critical inequalities which are limitations exploited to the maximum and just satisfied in the
case, and non-critical ones which are satisfied by a large margin. If the case is sufficiently close to the
new solution, critical-constraint sets can be assumed to remain the same in spite of the adaptation.
Thus, critical inequalities can be replaced by equalities to which dimensionality reduction applies. Non-
critical inequalities are constraints on new parameter values and are handled by a constraint propagation
mechanism.

Topological changes In our system, when adaptation at dimensional level fails, topological adaptation of
the case starts. For topological changes, we have not yet succeeded in defining an analog to dimensionality
reduction; in fact, such an analog may not exist. Thus, we cannot ensure that integration is maintained
throughout a topological modification. However, case adaptation still offers advantages over generation:
if the case is sufficiently close to a feasible solution, the number of topological changes that are required,
and may destroy the integration, is much smaller than what would be entailed by generating the building
from scratch.

Topological changes require explicit functionalities and associated constraints for all the abstractions
of the case. Generalized design knowledge for each aspect of design and knowledge about tradeoffs among
the design abstractions should be used to achieve integration of design at the topological level. Integration
during case adaptation at the topological level can be formulated as a dynamic constraint satisfaction
problem(DCSP). Topological changes are triggered by dimensionality expansion. At the topological level,
relations and functional attributes are represented by constraints with conditions for each design ab-
straction. Integration of all the abstractions after modification at topological level requires combination
of constraint networks. When topological adaptation is performed in one abstraction, integrity of the
case can be destroyed. Knowledge about integration will be required to re-establish integration of all the
abstractions. Such knowledge can come from user interaction during the adaptation as with the CADRE
system. \ '

Computational models for DCSP in case-based design can be realized by a combination of traditional
constraint satisfaction algorithms plus truth maintenance systems. In topological adaptation, when a
physical constraint should be retracted, a new design case will be considered. DCSP is not suitable for di-
mensional adaptations. In our approach, we use DCSP for topological adaptation (symbolic computation)
and dimensionality reduction/expansion (numerical computation) for dimensional adaptation.

249

4 CADRE, a prototype design system

Case Adaptation of the case

Fig. 3. Ezample of case adaptation

In order to explore the adaptation of cases in design, we have implemented a CAse-based spatial Design
REasoning system(CADRE) [6, 10, 11]. One example treated by CADRE is shown in Figure 3. It is
a U-shaped building (the Felder house in Lugano, Switzerland, [4]) adapted to a slightly different site.
CADRE modified both the dimensions and the topology of the case in order to obtain a solution that
preserves the functionalities and tradeoffs in the case.

Computationally, the processes in CADRE are divided into two layers: a symbolic layer and a nu-
merical layer. They correspond to the topological and dimensional models of the case. CADRE focuses
on case adaptation, leaving case selection to the user. The adaptation is conducted with the following
procedure:

1. Evaluation of the existing case in the original and new environments in order to find discrepancies.
Insertion of the case into the new design context so that a maximum coincidénce is achieved, subject
to constraints posted by the user. In the example of Figure 3, opening of U was placed on the ragged
edge of the new lot.

2. If there are dimensional discrepancies, identify the violated constraints and the parameters which are
involved in them. Complete the set of applicable parameters and constraints with all those which
are related to the original ones through links in the constraint network. This defines the complete
base set of parameters and constraints related to the discrepancies. In the example of Figure 3, these
parameters and constraints are located in the right wing.

3. Apply dimensionality reduciion to the base set of parameters and constraints to define an adapta-
tion parameterization which is guaranteed to avoid conflicts. In the example, most parameters are
represented by a few parameters that decide the change of the right wing.

4. Modify the dimensions using the parameters resulting from dimensionality reduction. Users control
the process by asserting additional constraints or manually identifying suitable values.

5. Check the validity of the adaptation by verifying inequality constraints in the base set that were not
critical and thus not treated by the dimensionality reduction.

6. If there is no solution at the dimensional level for the new design problem, trigger topological trans-
formation rules which relax constraints in the related constraint set. If there is a transformation which
preserves design features of the case, go back to step 1, otherwise the case is not suitable.

Tests on several real examples, along with discussions with practicing engineers and architects lead
us to believe that the procedure described above is complementary to their activities.

CADRE was implemented in Common-Lisp, C and AutoCAD. It runs on Unix based workstations
and could be migrated to any platforms which possess the same software environment.

5 Conclusions

We have argued that case-based.reasoning offers assistance for integrating different abstractions in design.
Our prototype system, CADRE, illustrates the usefulness of the approach for practically interesting designs.
The paradigm of case-based design fits very well with the observation that human designers like to work
by reusing cases of previous designs. The considerations we have presented in this paper may be an
explanation for why this is the case: integration of abstractions may be the main reason why designers
reuse previous cases. Adaptation of single cases is suitable for routine design. For innovation, we have to
address the combination of cases; this is the topic of our current research.

250

Acknowledgements

This work is a result of collaborative research with CAAD(Computer-Aided Architectural Design), ETH
Ziirich, and ICOM(Steel Structures), EPF Lausanne. Discussions and collaboration with professor Ger-
hard Schmitt (CAAD) have been most valuable. We would also like to thank the collaborators Shen-Guan
Shih and Simon Bailey for their work on implementation of the ideas described herein, and to whom the
credit for many of the details of the work is due. We also thank the Swiss National Science Foundation for
funding this research as part of the National Research Program 23 on Artificial Intelligence and Robotics.

References

10.

11.

12.

13.
14.

15.

16.

17,

18.

. Alexander, C. “Notes on the synthesis of form” Harvard University Press, Cambridge, Mass, 1964
. Birnbaum, L. And Collins, G. “Remindings and engineering design themes: a case study in indexing

vocabulary” Proceedings of workshop on case-based reasoning. 1989, pp47-51.

. Cagan, J. And Agogino, A.M. “Dimensional variable expansion — a formal approach to innovative

design” Research in engineering design, Springer-Verlag New York Inc., 1991, vol. 3, pp75-85

. Mario Campi - Franco Pessina “Architects”, Rizzoli International Publications, New York, 1987
. Balachandran, M., Gero, J. “Role of prototypes in integrated expert systems and CAD systems”

International conference on artificial intelligence in engineering, Boston, 1990

. Faltings, B. “Case-based representation of architectural design knowledge” Computational Intelligence

2, North-Holland, 1991

. Faltings, B. And Haroud, J. And Smith, I. “Dynamic constraint propagation with continuous

variables” Intelligent Computer Aided Design, 1991

. Hammond, K.J. “On functionality motivated vocabularies: an apologia” Proceedings of workshop on

case-based reasoning. 1989, pp52-56

. Hinrichs, T. R.. and Kolodner, J. L. “The Roles of Adaptation in Case-based Design” in: DARPA

Case-based Reasoning Workshop, Butterworth, 1991, pp.121-132

Hua, K., Smith, I., Faltings, B., Shi, S. And Schmitt, G. “Adaptation of spatial design cases”
in: Artificial intelligence in design’92. Kluwer Academic Publishers, 1992, pp559-575

Hua, Kefeng and Faltings, Boi “Exploring case-based design: CADRE” Artificial Intelligence for
engineering design, analysis and manufacturing, 7(2):135-144, 1993.

Kolodner, J. L. “Retrieval And Organizational Strategies in Conceptual Memory: A Computer °
Model” Hillsdale, NJ: Lawrence Earlbaum Associates, 1984.

Krishnaiah, P. And Kanal, L. “Handbook on statistics” North-Holland, Amsterdam, vol. 2, 1982
Mbyers, L., Pohl, J., and Chapman, A. “The ICADS expert design advisor: concepts and directions”
in: Artificial intelligence in design ’91, J.S. Gero (ed.), Butterworth 1991. pp. 897-920

Owens, C. “Plan transformations as abstract indices.” Proceedings of workshop on case-based rea-
soning. 1989, pp62-65. '

Saund, E. “Configurations of shape primitives specified by dimensionality-reduction through energy
minimization” IEEE spring symposium on physical and biological approaches to computational vision,
Stanford, March 1988

Schank, R. “Reminding and memory” chapter 2 in: Dynamic memory - a theory of reminding and
learning in computers and people, Cambridge University Press, 1982

Schmitt, G. “IBDE, VIKA, ARCHPLAN: architectures for design knowledge representation, acquisi-
tion and application” in H. Yoshikawa, T. Holden (Eds.): Intelligent CAD i, North Holland, 1990

Case-Based Reasoning in Complex Design Tasks

Neil A.M. Maiden

Centre for Human-Computer Interface Design
City University
Northampton Square
London EC1V OHB
Tel: +44-71-477-8412
E-Mail: N.A M Maiden@city.ac.uk

Abstract, Case-based reasoning can aid complex design tasks, however a cooperative paradigm for
case-based design is needed. The paper argues for computational mechanisms for retrieving design
cases but cooperative assistants to aid designers to understand and adapt retrieved designs. This
necessitates multi-disciplinary research in case-based reasoning,

1 Introduction

Case-based reasoning can aid complex design by retrieving and customising old designs to similar problems (e.g.
[1]). It mimics the behaviour of expert designers who recall old solutions to structure and complete new designs
(e.g. [2,3]). This capability to solve ill-structured problems and designs [41] distinguishes case-based reasoning
from previous artificial intelligence paradigms. However, effective case-based design requires cooperation between
toot and designer to maximise their reasoning capabilities and the knowledge available [4]. This paper proposes a
cooperative, case-based design paradigm founded on complex analogical reasoning mechanisms for case retrieval
and explanation, and cognitive models of designer’s analogical reasoning to inform design of tools which aid
adaptation of retrieved designs. The paper has four parts. First, arguments for cooperation during case-based
design are outlined. Second, conclusions from two projects which investigated case-based design in software
engineering are followed by implications for case-based design in other disciplines. Finally, future research is
discussed.

2 Cooperation During Case-Based Design

Case-based reasoning has the potential to aid design practice, however many case-based reasoning tools only
support diagnosis tasks such as electric circuit repair [5] and computer help desks [6,7]. Case-based design
introduces two problems: (i) retrieval of complex designs from ill-defined problem statements, and (i) adaptation
of retrieved solutions to fit the new design. Design retrieval is difficult due to the ill-structured nature of design
tasks, and complex designs such as office blocks or software systems cannot be retrieved by simple categorisation
or faceted classification schemes (e.g. [8]). Furthermore, retrieved designs must be customised by the designer.
However, empirical evidence indicates that understanding and adapting old solutions is problematic. Studies of
physics [9] and mathematical [10] problem solving revealed solution copying and comprehension avoidance as a
short cut to cognitively demanding tasks. Design adaptation requires good understanding, so cooperative
assistance is needed to explain cases to the designer and guide the adaptation task.

This paper argues for cooperation between tool and designer throughout case-based design. Division of tasks is
achieved by viewing case-based design as a complex analogical reasoning task. Analogical reasoning is defined as
the transfer of knowledge from past problem solving episodes to solve new problems that share significant
aspects with corresponding past experience [11], a definition which can be applied to complex case-based design
tasks. Analogical reasoning has been investigated by artificial intelligence researchers [12,13] and cognitive
scientists [14,15,16], therefore the strengths and weaknesses of human and tool-based analogical reasoning are
known. The following task division is proposed:

+ computaticnal mechanisms for design retrieval and explanation;
+ design selection and adaptation by the designer who is assisted by computational mechanisms.

Computational models of analogical reasoning exploit partial domain knowledge to retrieve complex cases and
form analogical mappings with cases [17,18]. This contrasts with the complete domain knowledge needed 1o
adapt complex designs. Computational retrieval mechanisms have several advantages over information retrieval
strategies. First, computational models of analogical reasoning are robust and can retrieve analogical cases from
ill-defined problems typical in complex design tasks. Second, inferred analogical mappings between designs can
improve the explanation of retrieved cases. Third, analogical reasoning exploits the structure inherent in most
designs to reduce dependence on domain-specific indices or keywords (e.g. [19,20]). On the other hand, designers
possess greater domain knowledge and are better analogical reasoners with single cases than are design tools,
although difficulties do arise. Therefore, computational mechanisms must aid case adaptation by designers rather

252

than adapt designs themselves. Their design must be informed by how designers understand and adapt old designs.
This paper argues that effective tool design should be founded on cognitive models of analogical reasoning durmg
design reuse. Cognitive science provides an empmcal basis for these models, however the case-based reasoning
community lacks evidence of difficulties which arise during these tasks. To answer some of these questions,
cooperative, case-based design paradigm was introduced to aid requirement and specification of software systems.

3 Case-Based Design in Software Engineering

The SERC 'AIR' and ESPRIT 'Nature' projects have investigated retrieval and adaptation of cases, including
analogical specifications and domain abstractions, to aid specification of new software systems [21]. Experienced
software engineers' tend to recall mental abstractions when modelling new domains which permit them to
perceive meaningful patterns in domains (e.g. [22,23]), therefore reuse of domain abstractions representing the
fundamental behaviour, structure and functions of software engineering domains mimics expert design behaviour,
Human [14] and computational models [24] of analogical reasoning also exploit mental and computational
abstractions. This suggests the need for domain-specific models of analogical reasoning [25], in contrast to earlier
domain-independent, quantitative theories. Therefore, the broad paradigm applies to all design disciplines,
however the abstractions are specific to the design discipline.

Case retrieval uses a computational model of analogical reasoning to match cases which have semantically-
equivalent goals, which share knowledge structures and which instantiate a domain abstraction [26], see Figure 1.
Furthermore, software systems are ill-defined during specification and design, so well-articulated queries for case
retrieval are unlikely. Incremental system specification is aided by retrieval of domain abstractions, similar to the
approach proposed in [27]. Therefore, case-based design is in two parts. First, retrieval of domain abstractions
provides feedback for problem reformulation and understanding. Second, analogical specifications are retrieved and
explained to permit case adaptation and redesign.

domain abstractions

retrieve
xplain ’

retrieve

‘ axpln - a
new problem analf)gxc_al
specifications

Fig 1. Overview of the case-based design paradigm for software specification

AIR, a prototype toolkit to aid system specification has been implemented and evaluated [21,28]. It consists of 6
components which is discussed in further detail to explain retrieval and customisation of analogical cases:

« the requirements capturer guides acquisition of the fundamental behaviour, structure and functional requirements
of software systems as a basis for retrieving existing cases [28];

» the domain matcher is a computational model of analogical reasoning which retrieves cases and infers
mappings to inform explanation [29];

+ the requirements critic explains retrieved domain abstractions to encourage validation of new specifications
through detection of problem situations such as incompleteness, inconsistencies, ambiguities and
overspecification;

» the problem classifier reasons with retrieved cases to deiect problems in new specifications;

» the specification advisor explains retrieved analogical specifications, guides their transfer to construct a new
specification and promotes specification validation by cross-mapping with retrieved specifications [21];

« the dialogue controller controls interaction with the software engineer. It controls mixed-initiative dialogue
permitting tool initiative to direct the design task and retrieve and explain cases when necessary.

3.1 Analogical Case Retrieval

The domain matcher [29] is a computational model of analogical reasoning which exploits partial domain
knowledge to retrieve cases [17,18]. It matches a set of fundamental problem features to domain abstractions and
analogical specifications. Domain abstractions are retrieved from a domain specialisation hierarchy. The domain
matcher maps the new problem to a high-level domain abstraction then specialising this match to specialisations
of the domain abstraction until no further specialisation is possible. Structure matching is used to establish an
initial match with a high-level domain abstraction which may be specialised to lower-level domain abstractions,

253

-

therefore it is only called once during the matching process. Rule-based matching then specialises this match by
mapping the new problem to lower-level domains which specialise the original domain abstraction, see Figure 2.
Analogical specifications are retrieved using structure matching to the new problem and the refrieved domain
abstraction. Therefore, case retrieval exploit partial domain knowledge representing fundamental domain features
to retrieve domain abstractions before more complex analogical specifications.

structure
‘_ matcher
domain .
specialisation
hierarchy

<
' rule-based
! matchet
<4

Fig 2. Analogical retrieval of domain abstractions from the domain specialisation hierarchy

Structure matching uses domain semantics and pattern matching to retrieve software specifications. First, local
mappings between fundamental domain features are inferred from the theoretical model of domain abstraction.
This model uses application-independent lexicons to detect semantic equivalence between domain features.
Structure mapping then determines an interrelated knowledge structure possessed by both domains from these
inferred local mappings. There is insufficient space in this paper to describe the matching algorithm, however an
example of structure matching is shown in Figure 3. State transitions and object structures represent the
fundamental behaviour and structure of software engineering domains which is used to match system
specifications. Local mappings are inferred between object relations rather than attributes to allow matching
between different application domains. The algorithms are defined in [29]. The rule-based matcher implements the
same structure matching algorithm, however it maps a smaller number of facts in the context of an existing
structure match. These isolated concepts more amenable to rule-based matching, thus improving the
computational efficiency of the retrieval mechanism.

KEY
B state transition

@ object structure -

. object

new problem domain abstraction analogical specification
Fig 3. Graphical illustration of structured matching

‘The implemented architecture and algorithms of the domain matcher are described in [29]. Implementation is on a
SparcStation IPX using BIMprolog as part of Nature's concept demonstrator [30].

3.2 Coopenative Case Adaptation

Cooperative tools which aid comprehension and adaptation of retrieved specifications aré¢ informed by empirical
studies of specification reuse of software engineers (e.g. [31]). Analogical understanding is needed for effective
adaptation of retrieved cases, and people understand analogies by forming mental abstractions representing shared
features. However, understanding retrieved software specifications proved difficult, especially for less-experienced
software engineers who have most to gain from case-based design:

- inexperienced software engineers exhibited mental laziness manifest as copying as a short cut to avoid
understanding [31], a result also reported by [32]. Understanding complex and unfamiliar specifications proved
difficult despite use of graphical notations (see Figure 4) which aid specification comprehension [21]. Indeed,
these notations enabled direct understanding without understanding;

- inexperienced software engineers did not recognise mappings with domain abstractions {33]. This led to poor
reuse because software engineers could not perceive similarities with cases and hence the benefits from reuse;

+ problems during case understanding discouraged adaptation [33] because software engineers failed to see benefits
from case-based design;

» inexperienced software engineers did not adapt retrieved domain abstractions unless structured notations were
provided to enable direct transfer of the abstraction [33].

254

To overcome these problems, retrieved cases were explained [34] using the following strategies:

« visualisation of domain abstractions can aid understanding and hence adaptation. Gick & Holyoak [14] reported
better learning of abstractions from spatial diagrams representing fundamental features during analogical
problem solving. Diagrams are annotated and supported by text descriptions to aid recognition and
understanding of domain abstractions [33};

» simple prototypical examples can also aid understanding of domain abstractions and more complex analogical
specifications. Empirical studies revealed that abstraction induction required presentation of two or more
analogical instances [14]. Indeed, people often understand new concepts using prototypical examples [35];

 domain abstractions can be animated using dynamic illustrations of domain behaviour, similar to animations of
computer algorithms proposed by [36). Studies demonstrated that animations improved learning of declarative
knowledge, although it also needed text and diagrammatic explanations to consolidate learning. Domain
animations are interactive and permit playback and pause facilities to aid exploration;

« tool-based guidance can aid formation of mappings between domain abstractions, analogical specifications and
the new problem. Notations which guide analogical mappings include tabular definition of object mappings;

» guided exposure to cases can discourage copying and aid mental model formation, therefore these strategies are
integrated during controlled explanation of cases.

Case adapiation was assisted by strategies derived from empirical studies (e.g. [21]):

« experienced software engineers used graphical notations to guide knowledge transfer and adaptation. These
structured notations lead to systematic adaptation of the specification to maximise advantages and avoid
Omissions; ,

= guided exposure to cases supported this systematic transfer and adaptation by discouraging copying and drawing
attention to exposed features of the specification;

« guided exposure is combined with explanation strategies to encourage incremental understanding and adaptation,
following the practice of successful and experienced software engineers.

Furthermore, mixed initiative dialogue permits passive and active guidance durng case adaptation. Active guidance
intervenes at the right time to explain retrieved cases and detected problems at the right level of abstraction,
following the definitions in [27]. Passive guidance detects problem situations but the assistant does not
intervene. Rather, detected problem situations are recorded on a problem notepad containing issues to be resolved.
Problems can be browsed and acted upon by the software engineer when appropriate.

3.3 Summary

Case-based design has been shown to aid specification and high-level design of complex computer systems. Cases
are retrieved using a computational model of analogical reasoning. User studies with AIR have revealed the
effectiveness of retrieval of domain abstractions during problem formulation and system specification. Studies
have also shown that analogical specification reuse can improve completeness of new specifications, although
difficulties arise which necessitate cooperalive assistance. Results have implications for case-based design in other
disciplines.

4 Case-Based Design in Other Disciplines

Case-based design of children's bedrooms [37) was chosen to investigate whether these findings generalise to
other design disciplines. It was chosen because of the effect of cases on design practice does not require domain
experts who are difficult and expensive to acquire. This research is ongoing and its directions are two-fold.

Domain analysis of the design discipline is needed to determine fundamental domain features for case retrieval.
This analysis differs from domain analysis in software engineering (e.g. {38]) because it must detect design
categories (e.g. bedroom designs for different ages, budgets) and discriminating features of these categories.
Knowledge acquisition from domain experts is needed to derive design categories using card sort and laddering (39]
techniques. Results from this analysis identify design abstractions which can direct analogical retrieval of cases.
Furthermore, structure matching between discriminating features using AIR's structure matching algorithm can
enable retrieval of incomplete and inconsistent designs. Therefore, a similar computational model of analogical
reasoning can retrieve bedroom designs, however the discriminating features change. This computational model is
being designed.

Second, design understanding and adaptation will remain problematic due to the complexity of designs and lack of
relevant domain knowledge. Comprehension avoidance and design copying is possible because designs are
represented using graphical notations to define floor plans (bedroom design), architectural design (office blocks),
circuit boards (electronics) and concrete stress fractures (civil engineering). An example of a bedroom floor plan is

255

i S

shown in Figure 4 [37]. Complex designs which require effort to,understand may not reveal the degree of
similarity with the new problem can discourage design adaptation. Case-based reasoning research has paid little
attention to cooperative assistance. Design tools for case-based bedroom design is assisted by explanation and
adaptation strategies. These strategies were derived from reported findings during case-based software specification.

pinboard
bed with oj— waredrobe
guardrai with low
hanging
rail
inon-slip chest of
rug drawers

1

stacking bookshelf
toy boxes

Fig 4. Floor plan of a toddler's bedroom (based on Lott 1989)

5 Future Work

Case-based design can be problematic. Therefore, computational models of analogical reasoning are needed to
retrieve designs and cooperative assistance and aid designers to understand and adapt designs. Retrieval
mechanisms can be informed by existing computational models of analogical reasoning [17,18]. Design of
cooperative assistants for case adaptation can be informed in two ways. First, empirical studies of design
understanding and adaptation can be undertaken. Studies provide domain-specific findings with implications for
detailed design of assistants. Second, case understanding and adaptation can be informed by findings from other
research disciplines. Cognitive studies of analogical reasoning reveal problems during similarity-based reasoning.
The psychology of program comprehension and reuse has also revealed a rich seam of relevant findings [42]. The
case-based reasoning community can benefit from findings in these other research disciplines.

Furthermore, cooperative assistants must be designed to support mixed initiative dialogue with designers. Design
can involve complex activities including communication and negotiation. Designs are social objects in which
different people find meaning. Therefore, cooperative assistants permit three-way interaction between assistant,
designer and design user by using explanations to facilitate design negotiation by explaining design scenarios.
Furthermore, retrieved and explained designs can provide common understanding and communication between
designer and others, similar to clichiés in program understanding [40]. Therefore, viewing case-based design as a
cooperative process provides additional roles for design cases which warrant further investigation.

References

1. Pearce M., Goel A.X., Kolodner J.L., Zimring C., Sentosa L & Billington R.: Case-Based Design Support,

IEEE Expert October, 14-20 (1992). \

Akin O.: Psychology of Architectural Design, Pion Ltd, 1986.

Guindon R.: Designing the Design Process: Exploiting Opportunistic Thoughts, Human-Computer

Interaction 5, 305-344 (1990) ,

4. Kolodner J.L.: Improving Human Decision Making through Case-based Decision Aiding, Al Magazine 12
Summer, 52-68 (1991).

5. Oehlmann R., Sleeman D. & Edwards P.: Case-Based Planning.in an Exploratory Discovery System,
Proceeding of Case-Based Reasoning Colloquium, IEE Digest No: 1993/036, February 1993. »

6. Simoudis E.: Using Case-Based Retrieval for Customer Technical Support, IEEE Expert, October, 7-12
(1992).

7. Dearden A.M.: Interacting With a Case Memory, Proceeding of Case-Based Reasoning Colloquium, IEE
Digest No: 1993/036, February 1993.

8. Prieto-Diaz R. & Freeman P.: Classifying Software for Reusability, IEEE Software, January, 6-16 (1987).

9. Chi M.T.H., Bassok M., Lewis M.W., Reimann P. & Glaser R.: Self-Explanations: How Students Study
and Use Examples in Learning to Solve Problems, Cognitive Science 13, 145-182 (1989).

10. Novick L.R.: Analogical Transfer, Problem Similarity, and Expertise, Journal of Experimental Psychology:
Learning, Memory and Cognition 14(3), 510-520 (1988).

we

256

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,

. Russell $.J.: The Use of Knowledge in Analogy and Induction, Pitman (London) 1989,
26.

217

28.
29.
30.

3L

32.
33.

34.
35.

36.
37.
38.
39.
40.

41.
42.

Carbonell J.C.: Derivational Analogy: A Theory of Reconstructive Problem Solving and Expertise
Acquisition, Technical Report CMU-CS-85-115, Computer Science Department, Carnegie-Mellon
University, March 198S.

Kedar-Cabelli S.: Towards a Computational Model of Purpose-directed Analogy, Analogica, Pitman
(London) 1988, 89-105

Hall R.P.: Computational Approaches to Analogical Reasoning: A Comparative Analysis, Artificial
Intelligence 39, 39-120 (1989).

Gick M.L. & Holyoak K.J.: Schema Induction and Analogical Transfer, Cognitive Psychology 15, 1-38
(1983).

Ross B.H.: This is Like That: The Use of Earlier Problems and the Separation of Similarity Effects, Journal
of Experimental Psychology: Learning, Memory and Cognition 13(4), 629-639 (1987).

Novick L.R. & Holyoak K.J.: Mathematical Problem Solving by Analogy, Journal of Experimental
Psychology: Learning, Memory, and Cognition 17(3), 398-415 (1991).

Falkenhainer B., Forbus K.D. & Gentner D.: The Structure-Mapping Engine: Algorithm and Examples,
Artificial Intelligence 41, 1-63 (1989).

Holyoak K.J. & Thagard P.: Analogical Mapping by Constraint Satisfaction, Cognitive Science 13, 295-
355 (1989).

Leake D.B.: An Indexing Vocabulary for Case-Based Explanation, Proceedings of AAAI'91, AAAI
Press/MIT Press, 10-15 (1991).

Domeshek E.: Indexing Stories as Social Advice, Proceedings AAAI'S1, AAAIT Press/MIT Press, 16-21
(1991).

Maiden N.A.M. & Sutcliffe A.G.: Exploiting Reusable Specifications Through Analogy, Communications
of the ACM. 34(5), 55-64 (1992).

Rich C.: Inspection Methods in Programming, Technical Report TR-604, Cambridge MA, Artificial
Intelligence Laboratory, MIT, 1981.

Soloway E. & Enrlich K.: Empirical Studies of Programming Knowledge, IEEE Transactions on Software
Engineering 10(5), 595-609 (1984).

Greiner R.: Learning by Understanding Analogies, Artificial Intelligence 35, 81-125 (1988).

Maiden N.AM & Sutcliffe A.G.: Analogical Matching for Specification Retrieval, Proceedings 6th
Knowledge-Based Software Engineering Conference, IEEE Computer Society Press, 108-116 (1991).
Fischer G., Nakakaji K., Otswald J., Stahl G. & Sumner T.: Embedding Computer-Based Critics in the
Contexts of Design, Proceedings of INTERCHI'93, ed. S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel
& T. White, ACM Press, 157-163 (1993).

Maiden N.A.M. & Sutcliffe A.G.: Requirements Engineering by Example: An Empirical Study, Proceedings
of IEEE Symposium on Requirements Enginecring, IEEE Computer Society Press, 104-112 (1993).
Maiden N.A.M. & Sutcliffe A.G.: The Domain Matcher: Architecture and Algorithms, Nature Report CU-
93-00D, Department of Business Computing, City University (1993).

Jarke M., Pohl K., Jacobs S., Bubenko J., Assenova P., Holm P., Wangler P., Rolland C., Plihon V., J.
Schmitt, Sutcliffe A.G., Jones S., Maiden N.AM, Till D., Vassilou Y., Constantopoulos P. &
Spandoudakis G.: Requirements Engineering: An Integrated View of Representation, Proceedings 4th
European Software Engineering Conference, Garmesh-Partenkirchen, September 1993.

Suicliffe A.G. & Maiden N.A.M.: Software Reusability: Delivering Productivity Gains or Short Cuts,
Human Computer Interaction: Proceedings of INTERACT'90, edited by D. Diaper, D. Gilmore, G. Cockton
& B. Shackel, North-Holland, 895-901 (1990).

Lange B.M. & Moher T.G.: Some Strategies of Reuse in an Object-Oriented Programming Environment,
Proceedings of CHI'89, ed. K. Bice & C.-Lewis, ACM Press, 69-73 (1989).

Maiden N.A.M. & Tyndale D.E., Reuse of Domain Abstractions During Requirements Engineering: an
Explanation is Required, submltted

Maiden N.A.M. & Sutcliffe A.G., Requirements Critiquing Using Domain Abstractions, submitted.
Riesbeck C.K. & Schank R.C.: Inside Case-based Reasoning, Lawrence Erlbaum Associates, Hillsdale NJ
(1989).

Stasko J., Badre'A. & Lewis C.: Do Algorithms Assist Learning ? an Empirical Study and Analysis,
Proceedings INTERCHI'93, ed. S. Ashlund, K. Mullet, A. Henderson , E. Hollnagel & T. White, ACM
Press, 61-66 (1993). ,

Lott J.; Children’s Bedrooms, Conran Octopus, 1989,

Prieto-Diaz R.: Domain Analysis: An Introduction, ACM SIGSOFT Software Engineering Notes 15(2),
April 1990, 47-54,

Rugg G. & McGeorge P.: On Laddering, Technical Report LG-4-92, Department of Psychology, University
of Aberdeen, 1992, ’

Rich C. & Waters R.C.: The Programmer's Apprentice: A Research Overview, IEEE Computer, November
1988, 10-25.

Simon H.A.: The Structure of 1ll-Structured Problems, Artificial Intelligence 4, 181-201 (1973).
Kocnemann-Belliveau J., Moher T.G. & Robertson S.P., Empirical Studies of Programmers, 4th
Workshop,, Ablex, Norwood NI, 1992,

257

CASE-DELIVERER: Making Cases Relevant to the Task at Hand

Kumiyo Nakakoji
Department of Computer Science and Institute of Cognitive Science
University of Colorado

Campus Box 430
Boulder, Colorado 80309-0430; and

Software Engineering Laboratory
Software Research Associates, Inc., Tokyo, Japan

E-mail: kumiyo@cs.colorado.edu

Abstract. Designers are limited in exploiting a catalog knowledge base of design cases because they may be
unable to articulate what they are looking for, or be unaware that potentially useful catalog examples exist.
Kb (Knowing-In-Design), a domain-oriented, knowledge-based design environment for the kitchen floor
plan design, integrates the use of the catalog-base with its design tools. The information given through
KIDSPECIFICATION (for specifying a design requirement) and KIDCONSTRUCTION (for graphically constructing
a floor plan) provides representations of the designers’ task at hand, and recorded design rationale in its
argumentation-base is used to infer the relevance of catalog examples to the task at hand. The
CASE-DELIVERER component orders catalog examples according to the partial specification, and the
CATALOGEXPLORER subsystem allows designers to explore further the catalog space in terms of the task at
hand. The study and assessment of the mechanisms have revealed that delivered cases helped designers
reframe both a problem and a solution, and encouraged designers to articulate a new portion of design
knowledge, which addresses the knowledge acquisition problem.

1 Introduction

Domain-oriented, knowledge-based design environments are computer systems that provide design tools and
knowledge repositories that designers use for understanding, reflecting on, and framing their designs [6]. The
environments augment skills of designers in managing and communicating with complexity of a design space,
instead of modeling the cognitive processes of designers and automating them. This paper presents research
efforts in embedding the use of a catalog base as a case library in such an environment to aide designers to
exploit previously constructed design cases.

Design is ill-defined [16]. Specifying a problem and constructing a solution are intertwined. Every transfor-
mation of the specification of the problem provides the direction in which a partial solution is to be transformed,
and every transformation of the constructed solution determines the direction in which the partial specification is
to be transformed. While coevolving the specification and construction, designers gradually gain the under-
standing of the correspondence between a partial specification and a partial construction.

For example, let us take the kitchen design domain as an object-to-think-with. Kitchen designers gain their
expertise through practice. They identify new heuristics by solving specific design tasks. In our preliminary
study, while designing a floor plan for two cooks, a professional kitchen designer identified a new portion of
design knowledge that a dishwasher door should not interfere with the work space for a stove because one
working with the stove may step over the dishwasher door while the other is installing dishes in the dishwasher.

The design environments provide two types of design knowledge: (1) an argumentation-base stores heuristics
that have been accumaulated via recording design rationale, and (2) a catalog-base stores previously constructed
design cases. For example, using the design environment, the above knowledge can be accumulated by storing

+ design rationale as a form of argumentation (i.e., Where should a dishwasher be? — A dishwasher should not
face a stove. — If the kitchen is for two cooks, it is dangerous because one may step over the dishwasher door
while using the stove), and a design case in a catalog-base (i.e., a constructed floor plan for two cooks, which has
a dishwasher not facing a stove). ‘

Thus, using the design environment, designers could access such useful case-based design knowledge that solved
problems similar to their own and a way to assess their partial solutions when no algorithmic method is available
for evaluation [8]. However, the designers are limited in exploiting the design knowledge because they may be
unable to articulate what they are looking for, or be unaware that potentially useful catalog examples exist. With
the above example, in order to access useful catalog examples, designers who want to design a kitchen for two
cooks have to know which stored floor plans are designed for two cooks, and how they are useful for solving
their problem.

By integrating the knowledge bases with a specification component (for specifying design requirements) and a
construction component (for constructing a floor plan), the design environment supports designers to access the
catalog examples relevant to their task at hand. In this paper, first I describe problems of location of useful cases

258

in general, and presents a knowledge delivery paradigm as an approach. Then, I describe the mechanisms in
terms of KID (Knowing-In-Design), an integrated, domain-oriented knowledge-based design environment for a
kitchen floor plan design. Finally, I briefly discuss the result of user observations and assess the approach.

2 Retrieval of Useful Case Knowledge

2.1 Problem

Traditional information retrieval techniques cannot simply be applied to support the location of usefu! design
cases. Problems and challenges of locating useful cases include:)

e Interdependency between information needs and problem-solving. Designers cannot com-
pletely specify a design problem before starting to solve it. Designers cannot understand a problem
without information about its context, but designers cannot meaningfully search for information
without the orientation of a partial solution [15].

o Difficulty of defining a set of indexes that will become useful later. Different design situations
may need to view a piece of knowledge differently. It is impossible to anticipate all possible design
sityations a priori {17], which makes a static indexing scheme for design cases inapplicable.

e Need for integrating information search in design activities. Information needs arise through a
design task. Designers want to access information to solve a current design task, and should be able
to retain the context of their current task.

e Unawareness of the existence of potentially useful cases. Designers are limited in making use of
information because of the large and growing discrepancy between the amount of potentiaily
relevant information and the amount any one designer can know and remember [5]. When designers
are neither aware of the existence of potentially useful information nor aware of their information
needs, no attempt will be made to access the information.

2.2 Approach: Knowledge Delivery

In human-human collaborative problem solving, both participants can adapt their own behavior according to the
characteristics of the partners and by gradually gaining shared understanding. The shared understanding enables
the partners to improve the communication process, to accelerate the discovery of either common or conflicting
goals, to optimize the efficiency of the communication, and to increase the satisfaction of the partners [11].

A knowledge delivery mechanism is an instantiation of applying this idea to the collaboration between designers
and design environments. Knowledge delivery mechanisms deliver ‘“the right knowledge, in the context of a
problem or a service, at the right moment for designers to consider’’ [3]. The mechanisms infer a designer’s
task at hand, detect the designer’s information need, then present stored knowledge for the designer, who may be
unaware of the existence of such useful design knowledge in the system.. This paper describes design and
implementation of a delivery mechanism, which delivers catalog examples in a design environment using the
shared knowledge about a design task provided by a partial specification and construction. The mechanism is
illustrated in the context of the KID (Knowing-In-Design) design environment for the kitchen floor plan design
[10]. The system is implemented in the CLOS programming language, and runs on Symbolics Genera 8.1.

KD consists of:

1. KIDSPECIFICATION, which enables an explicit representation of the designer’s goals and intentions
with respect to the current design;

2. KIDCONSTRUCTION, which provides designers with a palette of domain abstractions and supports
them to construct artifacts using direct manipulation styles;

3. the argumentation-base, which stores design rationale represented in the IBIS structure [2] (ie., a
network of nodes, consisting of issues, answers and arguments); and

4. the catalog-base, which stores completed floor pléms (construction) together with associated
specifications.

KmSPECIFICATION and KIDCONSTRUCTION provide the explicit representations of a problem specification and a
solution construction, which allow designers to coevolve a problem and a solution. Information given through
the two components increases the system’s shared understanding about the designers’ intentions for the current
task. Using the shared understanding about the task at hand, KID can deliver task-relevant information for the
designers’ perusal. The relevance is dynamicaily computed using heuristics (called specification-linking rules)
identified through stored design rationale in the argumentation-base.

Two subsystems, CASE-DELIVERER and CATALOGEXPLORER, support designers to locate useful catalog ex-
amples. Cases stored in the catalog-base of KID are represented in the KANDOR knowledge base [12], including a
construction (a floor plan) and a specification (a set of issue-answer pairs). In addition to access mechanisms
provided by CATALOGEXPLORER [6] (such as retrieval by matching specification, retrieval by matching con-
struction, and query-based search), CASE-DELIVERER automatically orders catalog examples according to the

259

partial specification provided through KIDSPECIFICATION. In the next section, I briefly describe the mechanism.

3 KID: Design Environments for Kitchen Design

Various knowledge representations used in KID is linked through the design rationale stored in the
argumentation-base; that is, a network of nodes consisting of issues, answers, and arguments. A pair of issue and
answer represents a design decision in terms of function, structure, or behavior at various levels of abstraction.
An interdependency between two design decisions (i.e., issue-answer pairs) can be captured through the as-
sociated argument. KID uses specification-linking rules to represent such interdependencies.

KIDSPECIFICATION. The representation for a specification is a set of issue-answer pairs, designed after
analyzing questionnaires used by professional kitchen designers to elicit design requirements from clients.
KIDSPECIFICATION has been built as a hypertext interface, built on top of the argumentation base, Using
KIDSPECIFICATION, designers can specify their design priorities by selecting and annotating alternative design
decisions documented in the argumentation-base. Figure 1 shows an example of a specification.

Current Specifications for:
Type: kitchen Name: nat-kitchen

= Size of family?
Y S—
= Is the primary cook right-handed or
Teft-handed?
9!-* Left handed
* Do you need a dishwasher?

7 pe—t— YOS

Figure 1: A Partial Specification in KIDSPECIFICATION

The summary of currently selected answers in KIDSPECIFICATION is provided in this window. Users can assign
weights of relative importance to selected answers by moving associated sliders. In this figure, the user has put
most importance to the left-handed requirement (i.e., 9 in the 1-10 scale) and little importance to the single-
person household requirement (i.e., 3). The state of the specification component (i.e., a set of selected answers
with assigned weights) is referred to as the current partial specification.

Although many of such issue-answer pairs have already been articulated through previous design efforts and
accumulated by recording design rationale in the argumentation-base, if no prestored alternatives express their
position, designers can add or modify information in the underlying argumentation-base using a property sheet.
Designers can assign weights to the selected answers to articulate the relative importance of specified items.

Specification-Linking Rules. A specification-linking rule represents a computable interdependency between
two issue-answer pairs; for example, ‘‘Size-of-family=one — Type-of-sink=Single-bowl-sink’’ implies that there
is a relation between the size of a household and the type of a sink to be used in the kitchen design. This rule is
based on the associated argument to the selection of the type of a sink, which says that a single-bowl-sink is
enough for a single-person house-hold.

Specification-linking rules are derived by a mechanism (see Figure 2) that calculates the design constraints
implied by a partial specification. The above rule is derived by finding issue-answer pairs that are implicated by
the specification of ‘‘Size-of-family=one.”” In this case, the answer, ‘‘Type-of-sink=Single-bowl-sink,”’ to the
issue, ‘‘Which type of sink should be used,’’ is implied because it is supported by an argument ‘A single bowl
sink is enough for a single-person household,’’ which is associated with ‘‘Size-of-family=one.’’ The mechanism
is described further in Nakakoji [1993].

Link to KIDCONSTRUCTION. Some of the issue-answer pairs of KIDSPECIFICATION are related to construction
situations, such as a need for a dishwasher, or a type of sink. In order to link the text representation of
KIDSPECIFICATION to a graphic representation of KIDCONSTRUCTION, the system provides pre-defined predicates
over the construction. The representation of a construction includes a list of design units used in a partiaily
designed floor plan and their configuration information. The predicates determine whether a condition is
satisfied in the partial construction, such as checking the existence of a single-bowl-sink. Using a property sheet
provided by KIDSPECIFICATION, users can associate one of such pre-stored predicates with an issue-answer pair
in the textual representation of KIDSPECIFICATION. Users are allowed to define a new predicate by using the
MODIFIER system [7], if necessary. '

Thus, when either an antecedent or a consequent of a specification-linking rule represents a coastruction situa-
tion, the rule provide a partial mapping between a specification requirement and a feature in the construction,
forming a dependency network.

260

Argumentation-Base
Size of family?
One

.y Determines T Which : ; ?
oo applicability Issues ch type of sink should be used
«Three Angwar: A single bowl sink.
| L= Domain Distinctiem: type-of-sink=single-bowl-sink]
]
l Axgumenta: (oxos] A single bowl sink is enough for
! a single person house hold.

*Which type of sink should be used?
*A single bowl sink. -]

*A double bowl sink.
A _/

r— Damain Distinctionm: size-of-family=one *

Relates

Specification-linking Rule
size-of-family=one —> type-of-sink=single-bowl-sink

Rule Deliverer

(_ Specific Critics: A single bowl sink is not used,

Figure 2: Integration of Components in KID

Spcciﬁcation—linkin%mles are derived from the argumentation, and the applicability is determined with a partial
specification. CASE-DELIVERER uses the derived rules to order the catalog examples according to the partial
specification. In addition, the specification-linking rules are used to make suggestions in KIDSPECIFICATION, to
show a related argument in the argumemation base, to identify relevant critics as specific critics, and to evaluate
a catalog example using the specific critics [10].

CASE-DELIVERER. A collection of consequents of rules represents required features for a construction inferred
from the partial specification. When designers tentatively finish using KIDSPECIFICATION by using one of the
other subsystems or explicitly request for retrieving useful .catalog examples, CASE-DELIVERER uses the com-
puted consequents to order the catalog examples in the catalog-base according to the *‘appropriateness’™ to the
partial specification. The algorithm used by CASE-DELIVERER is briefly described below. The detail is described
in Nakakoji [1993].

1. First, the system identifies the collective of specification-linking rules relating to the partial
specification (i.e., a set of selected answers) using a forward chaining inference engine to the
multiple depths of the dependency network (the depth can be changed by users). While collecting
these rules, the system assigns a weight as relative importance to a consequent of each rule
according to the weights assigned to the selected answers in KIDSPECIFICATION (see Figure 1) and
the number of inference steps involved, in order to prioritize potentially conflicting consequents.

2. Consequents (i.e., issue-answer pairs) that are associated with predicates over the construction are
identified. If the same consequent appears more than once, they are combined and the assigned
importance values are summed.

3. For each floor plan (construction) of the catalog examples, CASE-DELIVERER determines whether
or not each of the identified predicates is satisfied in the floor plan, and sums the assigned

- importance values of the satisfied predicates as an appropriateness value of the catalog example.

4. CASE-DELIVERER orders the catalog examples according to these values, and redisplay a list of
catalog example names in the Catalog windows of KIDSPECIFICATION and KIDCONSTRUCTION.

CATALOGEXPLORER. CATALOGEXPLORER allows designers to further explore the catalog space. The system
describes why and how catalog examples are ordered by CASE-DELIVERER, and allows them to retrieve examples
in terms of the task at hand.

Consequents of the specification-linking rules that are used to order catalog examples can be displayed with the
Show Delivery Rationale command in CATALOGEXPLORER; for example, ‘A single-bow! sink should be used.’’

261

Each of these messages is a mouse-sensitive link to the location of related arguments (see Figure 2). Selecting
the message with a mouse accesses the related argumentation, and provides a starting point for browsing the
argumentation-base. The Evaluate Example command allows designers to evaluate a catalog example in terms of
the current specification by using critics [4].

Finally, CATALOGEXPLORER allows designers to search the catalog space with more control over search. The
Retrieval by Matching Specification and Retrieval by Matching Construction commands allow designers to
retrieve catalog examples that have similar features. The detail is provided in Fischer, Nakakoji [1991].

4 User Study: Knowledge Construction Facilitated by CASE-DELIVERER

KD has been studied by observing several subjects, including both domain-experts and novices in usmo the
system. Test sessions were videotaped and the protocols were analyzed.

When presented with the ordered catalog examples, the subjects often used CATALOGEXPLORER, and either
started to examine the example located at the top of the list, or asked for further explanations about why KID
judged the example as the best example for their specification by accessing the underlying argument associated.
with the listed delivery rationale. Their response could be classified in the following three ways: (1) applied the
delivered cases to reframe their partial design, (2) explored the related information space to the delivered cases,
or (3) articulated new design knowledge by arguing against the underlying delivery rationale.

The reflection on their current partial construction and specification was often triggered by ordered catalog
examples. Delivery of sometimes unexpected information was found to be an -effective way to trigger the
subjects to reflect on their task at hand. The subjects often discovered new features, which were breakdowns or
important considerations they had not been aware of before, in catalog examples presented by CASE-DELIVERER.

Delivered catalog examples encouraged the subjects to further search the catalog-base. They often wanted to
retrieve catalog examples that had the same feature discovered in one of the delivered catalog examples. There is
evidence that people search longer for answers to questions when they believe they know the answer [14]. Thus,
high feelings of knowing correlate with longer search time. When KID delivered information that was relevant to
the task at hand, but not quite right, then they gained this "feeling of knowing,” which made their information
search longer.

The subjects often reacted to delivered knowledge and argued against the delivered knowledge in terms of their
task at hand. When being given an object to think with, people start thinking about it and trace associations,
which may be linked to tacit part of design knowledge [13]. Thus, it was easier for the subjects to become able
to articulate new design knowledge than given no context.

5 Discussion

Having the catalog-base, KID can be viewed as a case-based design aiding system [9]. Embedding the use of the
case-base within a design environment addresses several issues in the case-retrieval research. First, KID
retrieves useful cases according to the explicit representation of designers’ problem-solving goal provided by
KIDSPECIFICATION, in addition to retrieving structurally similar cases. Second, instead of indexing cases at
storage time by defining features a priori, the specification-linking rules are used to perform analogical matching
to the users’ task at hand. Third, the specification-linking rules are dynamically derived from the argumentation
base. When designers add a new argument, the rules are immediately recomputed. Moreover, the rules are
weighted according to the relative importance, or weights, that designers associate with selected answers. Thus,
designers have more control over the retrieval.

In summary, CASE-DELIVERER of KID has the following characteristics.

» Cases delivered help designers to reframe a partial problem as well as a solution. Delivered
knowledge is relevant to the task at hand, in terms of a partial specification and construction. By
looking at the delivery rationale (why this knowledge is relevant to their partial problem specifica-
ton), dcswners are often triggered to reframe not only a partial solution (which most case-based
design assistant systems support) but also a partially framed problem.

e Cases delivered facilitate learning-on-demand. Because the specification-linking rules used to
order catalog examples are derived from the argumentation base, KID can provide an explanation as
to why some catalog examples are judged to be relevant to their task at hand. Designers have access
not only to case-based information itself, but also to the underlying delivery rationale. Because the
delivered knowledge is situated, it is easier for designers to understand the information.

e Cases delivered facilitate knowledge acquisition. Delivered knowledge encourages designers to
articulate a new portion of design knowledge. Delivering knowledge to designers can be a
knowledge- artractor, or a knowledge elicitation method [1], which encourages and helps designers
to articulate and ‘store design knowledge into the system, addressing the knowledge acquisition
problem.

Since various types of design knowledge stored in KID are linked together, designers can easily explore the
knowledge base relevant to their problem context. Embedded CASE-DELIVERER enables KID to be an intelligent
262

design assistant by having shared understanding about a designer’s task at hand given through
KIDSPECIFICATION and KIDCONSTRUCTION. Thus, KiD increases the chance that designers will encounter useful
design cases stored in the system. Such design cases can be accumulated by using the design environment, and
the rules used for the case retrieval are derived from design rationale, which can also be accumulated by using
K, addressing the knowledge acquisition problem.

Acknowledgements

1 thank the HCC group at the University of Colorado, who contributed to the conceptual framework and the
systems discussed in this paper. I also thank Barbara Gibbons of Kitchen Connection at Boulder, Colorado, for
her valuable time and commenting on the work. The research was supported by: the National Science Foun-
dation under grants No. IRI-9015441 and MDR-9253425; the Colorado Advanced Software Institute under
grants in 1990/91, 1991/92, 1992/93; US West Advanced Technologies; NYNEX Science and Technology
Center, and by Software Research Associates, Inc. (Tokyo).

References
1. N. Bonnardel. Knowledge Elicitation Through Project Transfer: An Experimental Study. The International
Review: Behavior and Information Technology (1993). (forthcoming).

2. J.Conklin, M. Begeman. gIBIS: A H%gertext Tool for Exploratory Policy Discussion. Transactions of
Office Information Systems 6, 4 (October 1988), 303-331.

3. Computer Science and Technology Board. The National Challenge in Computer Science and Technology.
National Academy Press, Washington, D.C., 1988.

4. G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, T. Sumner. Embedding Computer-Based Critics in the
Contexts of Design. Human Factors in Computing Systems, INTERCHI’93 Conference Proceedings,
ACM, 1993, pp. 157-164.

5. Q. Fischer, S. Henninger, K. Nakakoji. DART: Integrating Information Delivery and Access Mechanisms.
Unpublished Manuscript.

6. G. Fischer, K. Nakakoji. Empowering Designers with Integrated Design Environments. In J. Gero (Ed.),
Artificial Intelligence in Design’91, Butterworth-Heinemann Ltd, Oxford, England, 1991, pp. 191-209.

7. A. Girgensohn. End-User Modifiability in Knowledge-Based Design Environments. Ph.D. Thesis, Depart-
ment of Computer Science, University of Colorado, Boulder, CO, 1992. Also available as TechReport
CU-CS-595-92.

8. JL.Kolodner. What is Case-Based Reasoning?. In AAAT’90 Tutorial on Case-Based Reasoning, pp. 1-32.

9. J.L. Kolodner. Improving Human Decision Making through Case-Based Decision Aiding. Al Magazine
12, 2 (Summer 1991), 52-68.

10. K. Nakakoji. Increasing Shared Understanding of a Design Task between Designers and Design Environ-
ments: The Role of a Specification Component. PhD. Thesis, Department of Computer Science, University
of Colorado, Boulder, CO, 1993. Also available as TechReport CU-CS-651-93.

11. R. Oppermann. Adaptively Supported Adaptability. Sixth European Conference on Cognitive Ergonomics,
gsusmg‘%Computer Interaction: Tasks and Organization (Balatonfuered, Hungary), September, 1952, PpP-

12. PF. Patel-Schneider. Small Can Be Beautiful in Knowledge Representation. Al Technical Report 37,
Schlumberger Palo Alto Research, October, 1984.

13. M. Polanyi. The Tacit Dimension. Doubleday, Garden City, NY, 1966.
14. LM. Reder, F.E. Ritter. What Determines Initial Feeling of Knowing? Familiarity With Question Terms,
1(‘{(;&9 g;ith the Answer. Journal of Experimental Psychology: Learning, Memory, and Cognition 18,3

15. H.WJ. Rittel, M.M. Webber. Planning Problems are Wicked Problems. In N. Cross (Ed.), Developments
in Design Methodology, John Wiley & Sons, New York, 1984, pp. 135-144.

16. H.A. Simon. The Sciences of the Artificial. The MIT Press, Cambridge, MA, 1981.
17. L.A. Suchman. Plans and Situated Actions. Cambridge University Press, Cambridge, UK, 1987.

263

Finding Strategies in Organic Synthesis Planning with
Case-based Reasoning

Amedeo Napoli and Jean Lieber
CRIN CNRS - INRIA Lorraine
B.P. 239 - 54506 Vandceuvre-les-Nancy Cedex ~ France

(e-mail: napoli@loria.fr — lieber@loria.fr)

(Exten&ed abstract)

1 Introduction

In this paper, we present an application of case-based reasoning to the research of strategies in
the context of organic synthesis planning. The main objective of organic synthesis planning
is to build new molecular structures using a goal-directed problem solving approach. Two
main kinds of reasoning processes are employed in the system that we are developing for
building new molecular structures. Classification-based reasoning is used for tactic purposes,
to achieve local goals (or subgoals), e.g. selection of transformations that can be applied to
modify specific parts of a molecular structure. Case-based reasoning is used for strategic
purposes, to achieve global goals, e.g. selection of an adequate memorized synthesis plan on
which can rely the building of a molecular structure. The study presented here can be also
considered as an illustration of the possible integration of classification-based and case-based
reasonings, in the context of organic synthesis planning (both kinds of reasoning rely on
reminding).

2 An Object-Based Approach to Organic Synthesis

2.1 A Brief Introduction to Computer-Aided Synthesis Planning

One of the main object of organic synthesis is to build up molecules, called target molecules,
from readily available starting materials [Corey et al., 1985]. Once a target molecule has been
chosen, the chemist searches for a retrosynthetic plan, which is constituted by a sequence of
transformations leading from the target molecule to starting materials. A transformation is
used to break down the target structure into (usually) simpler structures, called precursors.
This problem solving approach, called the retrosynthetic mode, continues until the precursors
are recognized as readily available starting materials. From a computing point of view, the
retrosynthetic mode is similar to a goal-directed problem solving process. More precisely, the
retrosynthetic mode depends on the perception of structural features of the target molecule,
called functional group or retrons!, that condition the application of transformations. A

!From a chemical point of view, there is a difference between retrons and functional groups, but this
difference will not be taken in account in the paper.

264

mailto:napoli@loriaJr-lieber@loria.fr

functional group is a particular molecular substructure that determines a chemical function
— the functionality of the molecule — and usually characterizes a family of molecules. Thus,
functional groups are of primary importance for the categorization of molecular structures,
according to their chemical properties.

The concepts of the retrosynthetic mode have been used as guidelines for the construc-
tion of a series of computer programs, usually called computer-aided synthesis systems. The
main goal of these programs is to assist the chemist working on complex synthesis problems.
Classically, the chemist is responsible for choosing strategies, e.g. choosing one transforma-
tion among several, and for deciding which precursors should be submitted to the system for
further simplification. The system is responsible for selecting the actual transformations to
be used and for displaying the precursors that result from these transformations. Thus, one
of our goals is to automate the selection of strategies, using case-based reasoning.

2.2 A Classification-Based Approach to Organic Synthesis Planning

Qur approach to organic synthesis planning relies on object-based formalisms, the emphasis
being placed on the description of molecular structures and substructures such as functional
groups [Napoli, 1990] [Napoli, 1992a]. Atoms and bonds are the primary chemical objects,
and they are the components of the molecular structures, namely molecules and functional
groups. Primary objects and molecular structures are implemented as frames [Masini et
al., 1991] and lay in an inheritance hierarchy called the chemical tazonomy. Frames are
used to describe chemical objects, while transformations are implemented as operations
attached to frames representing functional groups. All molecular structures are manipulated
by classification-based reasoning as explained in the following.

Solving a synthesis problem relies on the retrieval of specific substructures, the functional
groups, lying in a target molecule. Thus, the recognition of these substructures is an opera-
tion of primary importance underlying the retrosynthetic mode. To retrieve this information,
the system uses a specific classification-based reasoning, according to a particular substruc-
ture/structure inclusion. Relying on the works done about subsumption in terminological
logics [Nebel, 1990}, we have defined a subsumption relation on molecular structures and their
~ components, namely atoms and bonds [Napoli, 1992b]. This subsumption relation depends
on the chemical type of atoms and bonds, and on the graph associated with the molecular
structure. Briefly stated, a molecular structure M! subsumes a molecular structure M2 if
there exists an isomorphism between the graph associated with M! and a subgraph asso-
ciated with a substructure M’2 of M2, and if the atoms and bonds in M1 subsumes the
corresponding atoms and bonds in M’2 (according to their types and environments).

Thus, contrasting the chemical taxonomy, a second tangled hierarchy reflects the sub-
sumption relations holding between memorized functional groups. This second hierarchy
constitutes the functional partonomy, and can be seen as orthogonal to the chemical taxon-
omy. On the one hand, the inheritance relation determines the chemical taxonomy and is
used for code factorization and property sharing between frames. On the other hand, the sub-
sumption relation is used to organize functional substructures in the functional partonomy
according to-substructure/structure inclusion, and, as well, to guide a classification-based
process producing synthesis plans.

More precisely, the process underlying the design of the synthesis plan of a target molecule
relies on a classification cycle that makes explicit the dependencies holding between a new -
molecular structure, say TARGET, and the functional substructures lying in the functional

265

partonomy. The classification cycle proceeds with three main steps:

o Instantiation: the target molecule is represented by the new object TARGET.

o Classification: TARGET is classified in the functional partonomy. The system first
searches for the most specific subsumers of TARGET (Mss), then, for the most general
subsumees of TARGET (MGS). At last, TARGET is inserted in the functional partonomy,
under its Mss and above its MGs. The subsumers of TARGET determine the functional
groups lying in TARGET.

o Operations: the set of valid transformations that can be applied to TARGET is calculated
according to a property sharing rule (this property sharing rule will not be described
here but details are given in.[Napoli, 1992a] and [Napoli, 1992b]). One transformation
is chosen and is applied to simplify the target molecule into precursors. The precursors
become new targets if they are not recognized as readily available starting materials, -
and the cycle continues. '

The classification cycle modelizes the retrosynthetic mode and relies on a functional
group-oriented approach, i.e. the application of a transformation depends on the functional
groups included in the target molecule. However, more than one transformation can be
selected during the second step of the classification cycle, leading to a classic “conflict set
problem”: what is the best transformation that must be chosen according to the the current
target molecule and the actual chemical context? The choice of a transformation must be
controlled by a synthesis strategy. In the following, we show how case-based reasoning is
used to automate the selection of transformations.

3 Planning Syntheses with Case-based Reasoning

3.1 The Modelization of Synthesis Strategies

A synthesis strategy can be seen as an ordered sequence of goals or objectives, that correspond
to the applications of transformations. Objectives usually are associated with transforma-
tions modifying the structure of a target molecule. However, in practice, there is usually
a partial match between the target structure and the retron for a transformation. In this
case, a single, or, more often, several subgoals related with a modification of the function-
ality of the target molecule?, will rectify the mismatch and allow the transformation to be
performed. Thus, the application of a transformation associated with a synthesis strategy
can be conditioned by an ordered sequence of subgoals. Choosing a strategy instead of an-
other means that an ordered sequence of actions to be performed is preferred among a set of
other ordered sequences of actions. Classically, in computer-aided synthesis systems, strat-
egy selection is usually fixed or left up to the chemist. An automated selection of strategies
involve identification of substructures that suggest a specific approach, an ordering of the
chosen approaches, a possible interactive verification done by the chemist, and, at last, the
execution of the “best” strategy.

In our approach, strategies are represented as temporal objects, called refrosynthetic
routes [Laurengo et al., 1990]. A strategy consists in a sequence ({Oi}, {Ti}), where {Oi}

2Modifying the structure of a target molecule means breaking or building a bond, while modifying the .
functionality means substituting a functional group for another.

266

is a subsequence of objectives and { T4} is a subsequence of transformations associated with
these objectives. Roughly, a retrosynthetic route can be seen as a tree whose root is the
objective OI and whose nodes are the different objectives included in { Oi} (¢ # 1), obtained
by application of the transformations included in {T%}. Actually, there are a vertical and a
horizontal temporal dimensions in a retrosynthetic route. The first consists in a sequence
of temporal levels describing the temporal steps of the retrosynthetic route, leading from
the root OI until the leaves of the tree; these leaves correspond to the last objectives of
the considered retrosynthetic route. The second dimension is used to differentiate the nodes
within a temporal level.

Given a target molecule TARGET, the choice of a retrosynthetic route relies on the similar-
ity existing between an abstraction of TARGET and the root OI associated with memorized
retrosynthetic routes. This similarity is determined using the subsumption relation defined
on molecular structures. As more than one strategy can be selected, retrosynthetic routes
must be classified according to their specific chemical characteristics. Thus, we define a
subsumption relation for retrosynthetic routes that is inspired by works done on plan-based
terminological reasoning [Devanbu and Litman, 1991] [Weida and Litman, 1992]. Briefly
stated, a retrosynthetic route RS1! subsumes a retrosynthetic route RS2 if the tree as-
sociated with RS! corresponds to a subtree RS’2 of RS2, such that every node of RSI
subsumes every corresponding node of R5’2. Note that nodes are molecular structures, and
thus “subsumption” refers to molecular subsumption. Given two retrosynthetic routes, the
most specific route (regarding the subsumption relation defined on routes) will be preferred.

At present, the work on the representation and handling of retrosynthetic routes is still in
progress. However, we present in the following the current simplified transformation selection
process, that applies to one-step routes and relies on a case-based reasoning approach.

3.2 The Handling of One-Step Retrosynthetic Routes

In the following, retrosynthetic routes are only one-step path corresponding to the application
of a single transformation. Then, selecting a strategy means searching for a transformation
T that can be applied to the target molecule TARGET, according to the similarity existing
between TARGET and the functional groups guiding the application of T. The set of trans-
formations lay in a specific base of transformations that can be seen, in this context, as
the “memory of cases”. The representation of a transformation T includes three main lists
of characteristics, that are used to build an index associated with the transformation (for
transformation retrieval). [Lieber, 1993] [Napoli and Lieber, 1993]:

e ACTIVE(T) is a list of active functional groups, that play an actual role in T, i.e. if fg
is in ACTIVE(T), then at least one bond of fg is modified by the transformation T (see
BONDS(T) below).

e INACTIVE(T) is alist of inactive functional groups, i.e. they do not play any role in the
application of T. However, the inactive functional groups are taken in account because
they can play a secondary role in a (more complete) retrosynthetic route, e.g. they can
be used to reach a local subgoal for example.

e BONDS(T) is a list of bonds modified by the transformation T. This list contains
quadruplets (af a2 bl b2) describing a single bond, where a! and a2 are the atoms
at the extremities of the bond, 51 and 52 respectively denoting the type of the bond
before and after the application of T.

267

In the following, we briefly explain how is calculated the similarity between the target
molecule TARGET and the functional groups ACTIVE(T) conditioning the transformation T.
This similarity depends on the functionality, described by the list FUNCTIONS(TARGET),
and the structure, described by the list STRUCTURE(TARGET), of the target molecule TAR-
GET. The list FUNCTIONS(TARGET) includes the functional groups of TARGET (in fact, they
are given by the classification of TARGET in the functional partonomy). The second list
STRUCTURE(TARGET) memorizes the connections of the carbon atoms of TARGET (skeleton
of TARGET). Then, the global similarity existing between TARGET and ACTIVE(T) is calcu-
lated according to a formula that will not be detailed in this abstract (for more details, see
[Lieber, 1993]). When the similarity is greater than a given threshold, the transformation T
can be chosen, i.e. the retrosynthetic route materialized by T can be selected, and applied to
TARGET. Relying on the matchings existing between TARGET and ACTIVE(T), the transfor-
mations of atoms and bonds in TARGET are performed according to the list of bonds changes
given in BONDS(T) associated with T. Further, the matchings between atoms of TARGET and -
atoms of ACTIVE(T) do not need to be exact, and can depend on a degree of similarity.

Summarizing the above process in terms of a case-based reasoner [Riesbeck and Schank,
1989] [Hammmond, 1990a] [Hammond, 1990b), the base of known transformations can be seen
as the memory of cases. In this base, a transformation T can be reduced to the triplet
(ACTIVE(T) INACTIVE(T) BONDS(T)), the index of the transformation T being ACTIVE(T).
The pair (PUNCTIONS(TARGET) STRUCTURE(TARGET)) associated with the target molecule
TARGET can be seen as the set of features characterizing TARGET, the index of the target
molecule being FUNCTIONS(TARGET). Thus, searching for a case (a transformation T) in the
memory relies on the matching existing between the index of the case, i.e. ACTIVE(T), and
the index of the target molecule TARGET, i.e. FUNCTIONS(TARGET). At last, the adaptation
step depends on the similarity of the atoms and bonds included in ACTIVE(T), i.e. involved
in the transformation T, and the corresponding atoms and bonds in FUNCTIONS(TARGET)
[Napoli and Lieber, 1993].

At present, we are extending this simplified process to more complicated retrosynthetic
routes including more than one step. As one can see, much work must still be done for this
real-world, complex and very interesting application.

References

[Corey et al., 1985] E.J. Corey, A.K. Kong, and S.D. Rubenstein. Computer-Assisted Analysis in
Organic Synthesis. Science, 228:408-418, 1985.

[Devanbu and Litman, 1991] P.T. Devanbu and D.J. Litman. Plan-based Terminological Reasoning.
In Proceedings of the Second International Conference on Principles of Knowledge Representation
and Reasoning (KR’91), Cambridge, Massachusetts, pages 128-138, 1991.

[Hammond, 1990a] K.J. Hammond. Case-Based Planning: A Framework for Plannmg from Experi-
ence. Cognitive Science, 14(3):385-443, 1990.

[Hammond, 1990b] K.J. Hammond. Explaining and Repairing Plans That fail. Artificial Intelligence,
45(1-2):173-228, 1990.

[Laurenco et al., 1990] C. Laurenco, M. Py, A. Napoli, J. Quinqueton, and B. Castro. Représentation
de connaissances en synthése organique a I’aide d’un langage a objets. New Journal of Chemistry,

14(12):921-931, 1990.

[Lieber, 1993] J. Lieber. Etude du raisonnement par cas. Rapport de Recherche 93-R-043, Centre de
Recherche en Informatique de Nancy, 1993.

268

[Masini et al., 1991] G. Masini, A. Napoli, D. Colnet, D. Léonard, and K. Tombre. Object-Oriented
Languages. Academic Press, London, 1991.

[Napoli and Lieber, 1993] A. Napoli and J. Lieber. Classifying Knowledge for Reusability - An
Application to Organic Synthesis Planning. In Proceedings of the IJCAI’93 Workshop “Reuse of
designs: an interdisciplinary cognitive approach”, Chambéry, 1993.

[Napoli, 1990] A. Napoli. Using Frame-Based Representation Languages to Describe Chemical Ob-
jects. New Journal of Chemistry, 14(12):913-919, 1990.

[Napoli, 1992a] A. Napoli. An Object-Based Approach to Computer-Aided Planning of Organic
Syntheses. Rapport de Recherche 92-R-101, Centre de Recherche en Informatique de Nancy, 1992.

[Napoli, 1992b] A. Napoli. Subsumption ahd Classification-Based Reasoning in Object-Based Rep-
resentations. In Proceedings of the 10th European Conference on Artificial Intelligence (ECAI’92),
Vienna, Austria, pages 425-429, 1992.

[Nebel, 1990] B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture Notes
in Computer Science 422. Springer-Verlag, Berlin, 1990.

[Riesbeck and Schank, 1989] C.K. Riesbeck and R.C. Schank. [Inside Case-Based Reasoning.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1989.

[Weida and Litman, 1992] R. Weida and D. Litman. Terminological Reasoning with Constraint Net-
works and an Application to Plan Recognition. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning (KR’92), Cambridge, Massachusetis,
pages 282-293, 1992.

269

Case-Based Configuration in Technical Domains: Combining Case
Selection and Modification!

Thomas Vietze

Universitit Hamburg, FB Informatik
Bodenstedtstr. 16
D-22765 Hamburg
e-mail; vietze@informatik.uni-hamburg.de

Abstract. Generalization can serve as means for the selection of cases and for the adaption of selected
cases to fit the current problem. We present an approach which tackles both tasks in an integrated
manner. Cases are matched against the current problem specification. The case selection is based on the
structure of the configured entities. If necessary, the case knowledge is generalized. It can be shown that
the resulting generalized case knowledge can always be used as a basis for a configuration process which
generates a fully specified solution.

1. Introduction

Human experts use case-based reasoning in a variety of different domains, e.g. in the field of law [1] or in
medicine [9). In this paper we address case-based reasoning in the field of technical configuration, To configure
an artefact means to compose a configuration from a set of objects. Restrictions upon objects and attribute
values have to be met. Typically, the resulting search space is huge. This is an important difference to
diagnosis. By the integration of cases into the configuration process we hope to decrease the search space so that
e.g. the presentation of "ad hoc" solutions becomes possible.

It is necessary to define how a case can be identified that is useful for solving the current problem. Usually
this is achieved by some kind of similarity metric. If it is not proposed that selected cases do fit the current
problem directly, a modification procedure has to be available. The modification of case knowledge is typical for
configuration tasks.

With our approach we aim at a faster generation of possible solutions by search space reduction. If the
presentation of one or more solutions in a timely fashion is possible, the usability of a configuration system is
increased significantly. The user can then choose among alternatives in the form of concrete suggestions. The
neccessity to decide about parameters in an early stage of the configuration process with unforseeable
consequences for the whole configuration decreases. Whether this goal can be met depends highly on the
employed methods for the case-based reasoning process and the structure of the domain proce$sed.

In our configuration system all objects of the application domain and their interdependencies are described in
a conceptual hierarchy and a constraint system [4]. Concepts form a taxonomic hierarchy that is used to represent
classes and generalizations (superclasses) of objects and to specify their properties. The "Closed-Wotld-
Assumption” is valid, e.g., we assume that the part of the world described is complete. We may safely do so
because the application is restricted to configuration in technical domains, where all objects and the possible
attribute values are known in advance.

PC

- [\ T~
e - / . \ —— ———
Hard Disk // Graphics N Case
// Board ~
N\ /\
/ \ . .
Controller Motherboard Tower Slimline
:I: Case Case
ATBus- SCSI- e | <
Controller Controller ~ has-parts
CPU : RAM relation
C PU-Coo]er is-a relation

Figure 1: Partial conceptual hierarchy with is-a and has-parts relations

1 This work has been partially supported by the BMFT (German Federal Ministry for Research and Technology)
within the PROKON-project, grant no. ITW9101A6. '

270

mailto:vietze@informatik.uni-bamburg.de

The part-of / has-parts relation forms a compositional hierarchy in addition to the taxonomic hierarchy. It
describes the decomposition of configuration objects into components. It is thus a major guideline for the
generation of a configuration. The has-parts relation is represented by set-valued attributes. The set descriptions
contain references to concepts of components, optionally associated with number restrictions.

The compositional hierarchy together with the taxonomic hierarchy describes the set of all admissible
configurations. Fig. 1 illustrates the taxonomical and compositional hierarchy for a simple example, the
configuration of a personal computer. The solution of a configuration task is a correct instantiation of the
conceptual hierarchy, e.g., a network of instances of concepts interconnected by has-parts / part-of relations with
fully specified values for all attributes.

Dependencies between configuration objects are represented by constraints. These are maintained during the
configuration process by means of a constraint net [13]). To configure a solution for a given problem instances
are generated and successively specialized. The attribute values of these instances are specialized to terminal
values,e.g. the hard disk capacity ranging from 20 to 1000 megabytes initially is specialized to 200 megabytes.

An important step in case-based configuration is the modification of selected cases to fit the current
situation. This applies to planning as well [7]. This step is of minor importance for analytic problems like
diagnosis but it is essential for synthesis tasks. We show how case selection can be combined with the
modification of case knowledge. The exploitation of the internal structure of the cases [11] is the basis for a
straightforward integration of the modified cases into the configuration process.

2. Case Selection

We give a defintion for generalization in the configuration context. First of all we introduce several necessary
configuration related terms.

+ The domain model is an explicit description of all concepts of the domain. These are arranged in a
conceptual hierarchy [6] which consists of is-a and has-parts relations (e.g. Fig. 1).

» A configuration is defined as a set of instances ordered by a has-parts relation, e.g. a PC which consists
of the parts motherboard, hard disk, contoller, keyboard, monitor etc.

» If the instances a configuration consists of are not fully specialized, we describe a get of possible fully
specialized configurations, e.g. a set of hard disks with capacities ranging from 40 to 250 megabytes. We
call these sets partial configurations.

» The current task specification is represented as an initial partial configuration, e.g. a PC with a 200
megabytes hard disk and a 14" color monitor.

¢ The goal object is the root of the compositional hierarchy of an initial partial configuration (e.g. a PC).
It is a complete task specification already. Such a task specification can be expanded by further objects
and specialized attribute values.

¢ Acase is afully specialized configuration, which has been successfully created as a solution of an old
configuration problem (e.g. Fig. 3).

e A partial configuration P1 subsumes another partial configuration P7 if all fully speCIﬁed
configurations described by P7 are also members of the set of fully specified configurations described by

P1.

For the selection of a case from the case-base, each case is tested as to whether it is subsumed by the initial
partial configuration or not. If this is true, the case is a possible solution. Subsumption holds if the case is an
element of the set of fully specialized configurations described by the initial partial configuration. This
corresponds to KL-ONE. There subsumtion is defined as a subset relationship between the extensions of two
concepts [2, 14].

‘ If no case fits directly, each case is generallzed (3, 8, 10] together with the initial partial configuration (Fig.
2). In contrast to the intuitive approach to use the old and the new task specifications for case selection, the old
solution (the case) and the current task specification are used here [12].

poss. Solutions

Generalization

urr. Task Specificatiol

\

Figure 2: Generalization of single cases and the current task specification

271

The case selection process consists of three steps:

1. The goal object of the current task description and the goal object of the has-parts hierarchy of the case are
compared. If the goal object does not subsume the root object, the case is rejected.

2. For each of the elements (instances) of the current task description, an object of the case must be found that
is subsumed by it. If this is not possible for a certain object, this object is processed further in step 3. All
objects of the case that have been used once are no longer available for another subsumption test.

3. Each object that could not be handled by step 2 is generalized with one of the remaining objects of the case.
The generalization takes place on the basis of the domain model. A generalization that violates existing
constraints is rejected.

To select one of the case's remaining instances for generalization, the set of available instances is tested for an

instance that belongs to the same concept as the current instance of the initial partial configuration. If such an

instance exists, generalization is realized as application of the union operator to the attribute values. If more then
one instance exists, depth first search is applied.

If an instance of the same concept is not available, the most special common superconcept of the tasks
instance and the case’s instance is identified. From the set of most special common superconcepts which are
derived from all available instances of the case, the most special one is selected. If there is no single most special
concept, a concept can be chosen selectively if additional knowledge is available. The attribute values of a new
instance of this concept are specialized to the union of the values of the two original instances. Because of the
monotonous nature of the is-a relation it is always ensured that these values are a subset of the generalized
concepts own values in the domain model. If at any point throughout the generalization process a corresponding
instance of the case cannot be found, the case is rejected.

The result of the generalization process is a set of generalized cases, suitable for the solution of the current
configuration problem. If the set is empty, no case passed the selection process. If more then one case was
found, a case can be chosen. The selection can be based upon additional knowledge about the expected solution
quality or the estimated modification costs. Another way is to leave the decision among the qualified cases to the
user. In a more implementation-oriented notation the case selection process looks like this:

function select_case (initial_partial_configuration,case_base,domain_model)

qualified_cases <- &
for each element ¢ in case_base do
if is_a (root (c), goal_object (initial_partial_configuration))
case_instances <- instances_of_case (¢)
instances_to_generalize <-
instances_not_subsumed (case_instances,initial_partial_configuration}
qualified_cases <- qualified_cases U
generalize_if_necessary (c,instances_to_generalize,case_instances,domain_model)
endif
endfor
return qualified_cases

function generalize_if_necessary {c,instances_to_generalize,case_instances,
domain_model)

case_ok <- @

if instances_to_generalize = &
case_ok <- ¢
else
for each element e in instances_to_generalize do
solved <- false
for each element i in case_instances do
if concept-of {e) = concept-of (i)
replace (i,generalize_attributes (|nstant|ate (concept -of (i)),e,i),c)
case_instances <- case_instances \ i
solved <- true
exit for
endif
endfor
if not solved
most_special <- general_concept
best_instance <- @
for each element i in case_instances do
if subsumep (most_special,most_special_supsrconcept (e,i,domain_model))
most_special <- most_special_superconcept (e,i,domain_model)

272

best_instance <- i
endif
endfor
replace (i,generalize_attributes (instantiate (most_special),e,i).c)
endif
endfor
if no_constraint_affected (c)
case_ok <-C
endif
endif

return case_ok

The functions goal_object, root, concept_of, is_a and instantiate are trivial. They will not be described any
further. instances_not_subsumed checks for all instances, whether repface exchanges an instance of a structure
(e.g. a case) for another instance (e.g. a generalized instance). The function most_special_superconcept extracts
the most special common ancestor of two ‘instances out of an is_a hierarchy (e.g. a domain model).
generalize_attributes applies the union operator to all attribute values of the instances passed to the function.
The function no_constraint_affscted is used to distinguish between generalization with and without impact on
existing constraints.

Out of the set of qualified cases only those are taken into account which can be integrated into the
configuration process straightforward. This is true for those generalizations which are not connected to other
parts of the whole configuration via relations except is-a and has-parts.

An example is given below. The case base consists of only two cases (Fig. 4 and 5). With respect to the
initial partial configuration given in Fig. 3, both cases do not fit directly. In case 1 generalization is necessary
because the SCSI-controlier does not match the AT-bus-controller in the current task specification. In case 2 the
tower case has to be generalized.

Py WY
’ ~
AT-Bus- Slimline
Controller Case

Figure 3: Initial partial configuration

PC
- - d ~ s - ~ o~ ~
=" ’ I S e S -
500MB-SCSI- ,’ Graphics © . Slimline
Hard Disk ’ Board N Case
4
4 s .
SCSI- Motherboard
Relk Controller o -+~
. , [] ~ ~
P ’ 1 o
4 -
CPU-66MHz : RAM

i
Relm CPU-Cooler

has-parts relation
Figure 4: Case 1

Controller and hard disk have to be of the same type (here SCSI). This is modelled by the relation k (Relg). A
generalization of the controller (or the hard disk) would affect the other part if the type SCSI (and the relation k)
does not remain. The generalization is therefore rejected. A generalization of the slimline case on the other hand
would not affect any other parts of the configuration. The generalization is accepted. The case knowledge that is
integrated into the configuration process is the generalized case 2 (Fig. 6).

273

- _ R ~ - -
120MB-ATBus- .’ Graphics ~_ Tower
Hard Disk . ’ Board N Case
’ > “~
’ S
k ATBus- Motherboard
Reln Controller ~
PRSI
-~
L g -~
4 ~
r'd ~
CPU-33MHz RAM

has-parts relation

Figure 5: Case 2

120ME-ATBus- . Graphics N Case
Hard Disk , ’ Board >

’ ~
P ~
\ ATBus- Motherboard
Reln

Controller -~

P
-~
’ ~

~ - e o =

’
CPU-33MHz RAM has-parts relation

Figure 6: Generalized case 2

Generally speaking a consequence of this approach is that a case cannot be used if a generalization of a value is
required that is connected with other values of the case via an arbitrary relation. On the other hand, the selection
process will possibly offer a multitude of cases if the initial partial configuration is specified in a very general
manner (e.g. just a PC).

3. Using Case Knowledge

We define configuration as search in the search space given by the domain model (see section 1). The search
starts with the initial partial configuration. This configuration is successively refined until a fully specialized
configuration is reached. If the initial partial configuration is substituted by generalized case knowledge, the
search space is reduced. What is left of the original search space depends on the generalization (Fig. 7).

The search space that still remains has to be searched, €.g. depth first to reach a fully specified solution for
the original task specification. This process can be mterpreted as model-based configuration with an expanded
task specification [5]. If a case can be used directly, no further search is necessary.

The integration of generalized case knowledge into the configuration process is always possible because a
generalized case describes a set of fully epemﬁed solutions which is the same as a partial configuration.
Consistency with the domain model is enforced via the constraint net.

4. Summary and outlook

We have shown how case selection can be combined with the modification of case knowledge. The output of the
case selection process is a generalized case which is nothing else but a partial configuration describing a set of
possible configurations. The partial configuration is .then used as basis for the remaining configuration steps
(Fig. 7). The reduction of the search space depends on the depth of the generalization. The search space can be
reduced substantially if moderately generalized case knowledge is available (see section 3).

274

initial partial contiguratio|

J

g

generalized
case knowledg
/ \\ reduced
search space

Figure 7: Integration of Generalized Case Knowledge into the Configuration Process

With this approach the use of a similarity metric can be avoided. A disadvantage in this context is that only a set
of qualified cases can be identified, but not a single best case. We argue that it does not really matter which case
out of the set of qualified cases is selected because the generalizations employed do not affect the configuration as
a whole.

The solutions created with our case-based approach are implicitly represented in the domain model. A case
not covered by the domain model will never be selected. Therefore the knowledge acquisition process is still
necessary. However, the search through the space of possible configurations is guided by the selected case. In
this view a case represents domain dependent control knowledge. This knowledge need not be formulated in
general terms anymore, which makes knowledge acquisition easier.

A higher solution quality can be achived if the case-based approach offers better heuristics for single
decisions then available in the domain model. Only if the available control knowledge as part of the domain
model is incomplete, the solution quality can be improved by a case-based approach.

The restrictions upon our domain model are rather strict due to the fact that a complete model is required.
Our future work aims at a more flexible approach which includes learning from cases that describe solutions
outside the solution space given by the domain model.

References

1. W. Bain, Case-Based Reasoning: A Computer Model of Subjective Assessment, PhD thesis, Yale
University, 1986

2. R.J. Brachmann, J.G. Schmolze, An overview of the KL-ONE knowledge representation system,
Cognitive Science, 9(2) p.171-216, April 1985

3. W. Buntine, Generalized subsumption and its applications to induction and redundancy, Artificial
Inteltigence, 36:149-176

4. R. Cunis, Modellierung technischer Systeme in der Begriffshierarchie, in: Das PLAXON-Buch, p. 58-
76, Springer-Verlag, 1991

5. A. Giinter, Kai Pfitzner, Fallbasiertes Konstruieren mit Bibliothekslosungen, in: Das PLAKON-Buch,
p- 131 ff., Springer-Verlag, 1991

6. A. Giinter, R, Cunis, Flexible Control in Expert Systems for Construction Tasks, in: Journal of
Applied Intelligence 2, p. 369-385, Kluwer Academic Publishers, 1992

7. K. Hammond, Case-Based Planning: Viewing Planning as a Memory Task, Academic Press, Boston,
MA, 1989

8. Y. Kodratoff, J. Ganascia, Improving the generalization step in learning, in: R. Michalski, J. Carbonell,
T. Mitchell (editors) Machine Learning - An Artificial Intelligence Approach, p. 215-244, Morgan
Kaufmann, 1986

9. P. Koton, Reasoning about evidence in causal explanation, Los Altos, in: Proc. AAAI p. 256 ff., 1988

10. T. Mitchell, Generalization as Search, Artificial Intelligence, 18(2):203-226

11. J. Paulokat, S. We8, Fallauswahl und fallbasierte Steuerung bei der nichtlinearen, hierarchischen
Planung, in: Arbeitspapiere der GMD, Nr. 723, 1993

12. K. Pfitzner, Die Auswahl von Bibliotheksidsungen mittels induzierter Problemklassen, in: Beitrige zum
4. Workshop Planen und Konfigurieren, Ulm, 1990

13. I. Syska, A. Giinter, R. Cunis, H, Peters, H. Bode, Solving construction tasks with a cooperating
constraint system, in: Proc. Expert Systems 88, p. 199-209, Brighton, 1988

14. X. von Luck, KL-ONE: Eine Einfiihrung, Wissenschaftliches Zentrum der IBM, Institut fiir
Wissensbasierte Systeme, Report 106, Februar 1990

275

Chapter 6

Integrated Problem Solving and
Learning Architectures

277

Explanation-Driven
Retrieval, Reuse and Learning of Cases

Agnar Aamodt

University of Trondheim, Department of Informatics
N-7055 Dragvoll, Norway
agnar@ifi.unit.no

Abstract. A method for integrated case-based and generalization-based reasoning and learning is
described. The primary role of general domain knowledge is to provide explanatory support for the case-
based processes. A general explanation engine - the ACTIVATE-EXPLAIN-FOCUS cycle - utilizes a presum-
ably rich, multirelational knowledge model in producing context-dependent explanations.

1. Introduction

Case-bascd reasoning covers a wide variety of methods. While some methods emphasize problem solving and
learning by use of specific cases instead of general domain knowledge, others use general knowledge! combined
with cases. Among the latter, various approaches to what types of general knowledge to incorporate, as well as
1o how general knowledge is used, are taken. General knowledge may be used for an additional problem solving
method, e.g. a method that is applied if the case-based method fails, and/or it may be used within the case-based
method itself. The general knowledge may be of a shallow, associational type (e.g. a set of heuristic rules), or
deeper, more principled knowledge (c.g. a model combining causal, functional and componential knowledge).

This paper addresses the use of general domain knowledge within a case-based method. The focus is on the
integrated utilization of case-speci{ic and general knowledge. Our work aims at improved Al methods for
knowledge-based decision-support in real world, open and weak theory domains? . Examples of such domains
include medical diagnosis, law, corporate planning, economical assessment, and most engineering domains. A
counter-cxample would be a mathematical domain, or a closed technical domain. A strong motivation for a case-
based approach Lo this problem is the need for adaptive behaviour of our systems, i.e. the ability 1o continually
learn from each problem solving experience. General knowledge is needed in order to achieve an acceptable degree
of competence and robustness of a case-based reasoner's problem solving and learning capability. As domains get
more open and complex, the more important it will become to base, e.g., the matching of cases, the
modification of solutions, and the learning of new cases, on an understanding of the current problem within its
problem solving context. This is different from relying solely on general and global criteria and metrics. It is in
the tight coupling of case-based and gencralization-based approaches we find the strongest potential for realizing
the competent and flexible behaviour we would like o see in future Al systems. This 1s the hypothesis we
investigate.

The fact that a domain is open and has a weak theory does not necessarily imply that there is little general
knowledge available. More often it implies that the general knowledge of the domain is theoretically uncertain
and incomplete. Such knowledge may be interpreted and processed by methods that are able to draw plausible
inferences from a combination of the various types of knowledge available. This is here viewed as an abductive
explanation process® - both at the top level where the goal for example is to explain a patient's symptoms in
terms of the disease that causes them, and at a more detailed level, such as explaining why a particular diagnostic
hypothesis should be preferred over another. The approach is based on the CREEK* architecture {Aamodt-90a,
Aamodt-90b], and may be viewed as partly a specialization and concretion, partly an extension of this system as
initially specified in [Aamodt-91]. .

The next chapter introduces the notion of explanation-driven case-based reasoning, and presents the basic model.
This is followed by an outline of how case knowledge and general knowledge is represented in our system, and a
more detailed description of the explanation-driven reasoning method, specified for each of the CBR tasks
Retrieval, Reuse, and Learning. Finally, this approach is discussed by comparing it to some related methods.

2. Explanation-Driven Case-Based Reasoning

Core tasks of a case-based reasoner are the extraction of relevant features to describe a problem, the assessment of
similarity between a new problem and previous cases, the adaptation of a previous solution within a new
context, the identifying what to retain from a case just solved, and the learning of indexes for memorizing new
cases. Earlier CBR systems (e.g. [Kolodner-83, Carbonell-86, Rissland-87]) adopted largely global and context-
independent strategies for dealing with these problems, such as a fixed set of problem features, and syntax-

I"Throughout this paper, the term ‘general knowledge’ refers to general - or generalized - domain knowledge. If general knowledge in
the sense of domain-independent (e.g. common sense) knowledge is meant, this is explicity stated.

An open domain is a domain which cannot be realistically modelled unless relationships between the target system (artifact or
natural system) and the extemal, changing world arc included. A weak theory domain is a domain in which important relations between
concepts are uncertain.

Abduction is here viewed as an “infergnce 1o the best explanation” (see, e.g. [Thagaard-88]), and covers both the generation and
evaluation of hypotheses.

Case-based Reasoning through Extensive Explicit Knowledge

279

mailto:agnar@ifi.uniLno

oriented similarity measures and storage schemes. This is analogous to the earlier days of the rule-based expert
systems field, when emphasis was on associational knowledge in terms of compiled or empirical rules. The
deficiency of this approach in terms of problem solving competence and robustness lead to the notion of "second
generation expert systems”, where deep models are used to support and extend rule-based reasoning.

In CBR we have also seen a recent up-growth of methods that - to a varying degree - combine case-based
reasoning with reasoning from explicit models of general knowledge [e.g. Hammond-86, Kolodner-87, Koton-
89, Schank-89, Porter-90, Branting-91]. Our work follows up on this line of research, but put an even stronger
emphasis on the role of general knowledge within the CBR methods. The emphasis is on identifying general
principles and basic methods for how this synergy can be achieved and utilized within all reasoning tasks and for
all levels and types of problems to solve.

Note that the word ‘problem’ is used in a general sense in this paper. For example, solving a problem may be to
find the fault of a car (solving a diagnosis problem), as well as to assess a legal situation in a court (solving an
interpretation problem)!. A problem is defined by a goal (what 10 achieve) which in turn sets up one or more
tasks (what to do). To distinguish between external, application related tasks of a problem solver, and tasks set
up by the systems own reasoning process, the first will be referred to as application tasks, while the latter are
nanS)ed lrezé%oning tasks. Hence, learning tasks are also reasoning tasks. A task gets done by applying a method to
it [Steels-90].

In the following a method that utilizes general knowledge extensively as an integrated part of a case-based
reasoning system is described. The primary role of general domain knowledge is to produce explanations to
support and control the case-based processes, which is why we refer to the approach as explanation-driven case-
based reasoning. A generic mechanism, called the "explanation enging”, constitutes the fundamental reasoning
method. It splits a reasoning task into the three subtasks ACTIVATE, EXPLAIN, and FOCUS - as illustrated in

figure 1. :

Goal Goal
L - Appl. task defined L - Appl. task accomplished
Situation Situation
- Findings listed - Findings explained
- Constraints specitied - Constraints confirmed

Figure 1. The Three Subtasks of the Explanation Engine

The reasoning methods of these tasks get a significant part of their power from the underlying representation
system, a densely coupled semantic network where nodes as well as relations are represented as frame concepits.
All knowledge, general as well as case specific, are represented as frame structures. At the low level, the frame
interpreter makes use of basic inference methods such as various forms of property inheritance, low level frame
matching, and constraint propagation. In addition to the system's own mode! of general domain knowledge, the
explanation engine also assumes that there is a compétent user at the terminal. Hence it will interact with the
user in order to confirm conclusions, solve explanation conflicts, etc., whenever general knowledge is missing or
contradictory.

The methods underlying the three above tasks operate bricfly as follows:

ACTIVATE takes a problem specification in terms of a goal and a situation description and generates a set of
concepts suggested as relevant for further processing. Two methods are used to achicve this: Spreading activation
along appropriate relations in the semantic network, and reminding by following earlier established case links.
The appropriate spreading relations are determined as part of the knowledge acquisition process.

EXPLAIN is the core mcthod that builds up support for concepts identified by ACTIVATE. These concepts may
be of any kind, e.g. an inferred feature, a proposed solution, a failure repair, an inference action to take, or a new
case Lo be learned. The method of gencrating and evaluating explanations searches through activated paris of the
semantic network, and follows the paths of cumulatively highest explanatory strength. In assessing this
strength, it makes use of default explanatory strengths atiached to each semantic relation and each mcaningful
combination of two successive relations. A ’strength-and-dependency table' for the semantic relations is defined as
part of the knowledge acquisition and modeling process?. The strengths may have contextual constraints atlached
1o them. Further, the EXPLAIN method has at its disposal a set of explanation evaluation strategies in the form
of decision rules. An algorithm compules the resulting explanatory strength as the search proceeds.

1Tt is sometimes also useful to view leaming as a type of problem solving (i.e. solving a lcaming problem), panticularly when explicitly
modeling the behaviour of systems. However, in accordance with the history of CBR, problem solving and lcaming are here vicwed as

different tasks.]
2The basic method of utilizing combined relational strengths for scarch and cvaluation of explanatory paths was implemented in the
KNOWTIT system, delivered 1o ESA as a prototype for knowledge-based information retrieval [Sglvberg-92).

280

FOCUS makes the final selection among competing concepts, when that is needed. It uses info about given
priorities, andfor knowledge about the reasoning goal and possible constraints of content or form of the resulting
concept. These constraints are typically external, pragmatic constraints defined by the application environment
and current problem solving situation.

3. Knowledge Representation

The main representational concern of CBR research has been the representation of case knowledge, i.e. the
contenis and form of a case, the memory siructures and indexes. For an explanation-driven approach, however,
the representation of general knowledge is cqually important.

The CREEK architecture combines case-based and generalization-based knowledge within an integrated system
design. All types of knowledge are represented within the same representation system, a frame-based language
called CreekL. This is an open frame systcm of the FRL [Roberts-77] and KRL style, implemented in
CommonLisp. Concepts are represented as 4-level structures of slots, facets, value expressions, and value fields.
CreekL also incorporates features of CYCL [Lenat-89], such as the explicit representation of relations as
concepts and inverses for all relations. Each relation (slot) and symbolic value (filler) defining a concept (frame)
is defined in its own frame. This results in a densely coupled knowledge model that integrates concept
definitions, rules and cases, and object-level as well as control level knowledge. The architecture contains explicit
knowledge models at the control level for application problem solving strategies and task structures, as well as
for internal control of reasoning methods and learning. This enables a reflective system that reasons about its
own methods.

Below, a frame representing the concept car is shown (as a pretty-printed lisp structure with most parcntheses
removed) with its slots, faccts and values. Facets are mainly used to represent specific value types {(e.g. defaulis,
value-dimensions or ranges), constrainis on the values of a particular frame-slot combination (e.g. a class
specification for legal slot values), and demons - Lisp functions that returns a value or performs an operation (if-
needed, if-added, etc.).

subclass-of value motorized-vehicle means-of-transportation sporting-gear
has-colour value-class colour
has-number-of-wheels default 4
has-age value-dimension years
if-needed {time-difference *current-year* self.has-production-year)

.The frames, interconnected by their slots, form a semantic network of concept nodes and relation links. Figure 2
illustrates this perspective 10 the CreekL knowledge structure, and shows - for a small excerpt of a knowledge
base - the tight integration between general and case-specific knowledge. Example concepts are taken from a
domain of car starting problems.

thing

domain-concep e

s
Sl \ case#123
L diagnos ""\\\

] ‘ % i i ’
not-confirme
RS
y ﬁ b stic-hy potheses

pf-ignition-key
does-not-turn

Figure 2: The Semantic Network Structure of CreekL Knowledge

Relation names are left out in the figure, and so are some node names. The interconnected, unified structure is
emphasized. The links represent a wide range of relations, such as taxonomic, functional, and causal relations
(has-subclass, has-instance, has-part, has-function, has-state, causes), and differential links
beiween cases (has-differential-case).

In CreekL, concepts are described by their typical properties, which are inherited by more specialized concepts
and instances. Inheritance is not limited to subclass and instance relations only, but may be described as a
property of any semantic relation or combination of relations. For example, a spatial relationship expressed by a
located-in relation (A located-in B) may be inherited along a has-part relation (A has-part C, inferring C
located-in B). This would express that components of an object are located in the same place as the object itself
- which is not universally true, but dependent on the context. The context dependency can be represented as a
type of constraints on the slot inheritance-relation-for in the has-part frame.

An explanation in CREEK is a structure consisting of a single relationship or a chain of relationships. The
supporting strengths of an explanation is evaluated and assigned a numeric strength value. Explanations are
stored within the frame of the concept to which the explanation belongs. For example, an explanation for why a
starter motor will not turn is represented as:

281

starter-motor-1

instance-of value starter-motor
ﬁan-of] value car-1
as-tuming-status expected-value (turns)
value (does-not-turn

(0.9 (battery-1.has-voltage.very-low)
(battery-1.instance-of.battery)
((battery.has-voltage.very-low) causes
(starter-motor.has-turning-status.does-not-turn))
(starter-motor-1.instance-of.starter-motor)))

Explanations are also stored in cases, for successful as well as for failed solutions. A stored case is a rich source
of information, containing the following slot types (example from diagnostic domain):

problem goal successful diagnosis expl.of successful diagnosis
relevant findings successful repair expl. of successful repair
differential findings failed diagnosis expl. of failed diagnosis
differential cases failed repair expl. of failed repair

In addition, a case also contains 'book-keeping’ information like its status in the problem solving and learning
process, time reference, the number of times it has been used 10 solve new problems, etc. Three slot types of a
case serve the role as index links for initial case retrieval: relevant findings (favours retricval), differential
findings (disfavours retrieval), and solutions (e.g. {aults and repairs).

5. Case Retrieval, Reuse and Learning

At the top level, a case-based reasoning process is captured by the three tasks Retrieval, Reuse, and Learning.
Retrieval captures the subtasks up to identification of the best matching case. Reuse includes possible
modifications of a past solution as well as solution evaluation. Learning is the process that follows the
successful or failed attempt to solve an application problem. The explanation engine utilizes its ACTIVATE-
EXPLAIN-FOCUS method to combine case-based and generalization-based reasoning in all the three subtasks.
Below, its main reasoning tasks and mechanisms are outlined:

Retrieval
The goal is to return the best matching case from the case base. Its input is whatever is known about the
problem to be solved.

ACTIVATE has two subtasks. One is to determine a relevant broad context for the problem. We are assuming a
large knowledge base, and want to activate just the part of this knowledge base that is potentially relevant. The
broad context is determined by a method called goal-focused spreading activation. This method first activates all
goal relevant conceplts, i.e. the goal itseil as well as concepts linked to the goal by taxonomic, causal, and
functional relations. By spreading recursively along such relations, this produces a sphere of concepts relevant to
the problem goal. Then a similar spreading process starts out from the probiem findings. All concepts within the
goal sphere or findings sphere, as well as concepts that lie on paths which directly or indirectly connect any two
concepts in the two spheres, are marked as activated. The set of activated concepts constitute the part of the
knowiedgc base that will be used for further inferencing. The other subtask of Activate yses the findings as
indexes to the case base to retrieve a set of cases whose matching strength is above a certain threshold. A concept
classified as a finding has a slot called relevant-finding-for which holds a list of cases and a computed
relevance factor for the finding with respect 10 each case.

EXPLAIN is the task to evaluate the matching between the cases in set and the current problem. This basically
means to explain the relevance to the problem for [indings that matches well, and to explain away mismatches in
findings. The latter is the most challenging, and is performed by a search for explanation paths in the general
knowledge, by starting out from the finding and the sqlution of the retrieved case. This may introduce constraints
on the solution of the problem, since a mismatch may be explained away only if some conditions are fulfilled.
The user may be consulted here.

FOCUS makes the final selection of the best case, or rejects all of them. The case with the strongest explanatory
justification of its findings will normally be selected. If in doubt, other pragmatic or external criteria are applied.

Reuse
The goal is to use the solution of a previous case in solving a new problem, usually involving some kind of
modification of the past solution.

ACTIVATE starts outl from the solution of the best matching case, and spreads activation to concepts
representing expected findings not already accounted for. Spreading relations typically include causal and
functional relations, as well as direct associations (¢.g. implies and cooccurs-with relations). In addition,
possibly risky consequences of applying the solution are also activated.

EXPLAIN has two main subtasks. One is 10 evaluate the solution proposed. It starts by attempting to justify
that there is no danger for cffects of risky conscquences. Next, expected findings are explained as cither relevant
or irrelevant to the current problem context. An auempt is made to infer the relevant expectations (explain their
presence in the current problem) before asking the user. If the expectations are covered for, control is given 1o the
Focus task. If not, the sccond Explain task, modification of the solution, is triggered. An attcmpt is made 0
produce an explanation structure that justifies a replacement or tweaking of the solution. For example: In our
car-slarting domain findings arc that the engine turns, but the car will not start. The solution of the retricved case
is faulty carburcttor valve. An cxplanation path to the [indings is carburettor-valve-stuck causes too-
rich-gas-mixture-in-cylinder causes no-chamber-ignition causes engine-does-not-fire. However, the

282

carburettor turns out to be OK. By searching backwards along this explanation path, looking for other
explanations of its states, it turns out that no-chamber-ignition is also caused by water-in-gas-mixture.
The control is passed back to Activate which derives the cxpected finding water-in-gas-tank. This is then
confirmed by the user.

FOCUS is usually a small task, unless thc explanation process comes out with several solutions. It checks
whether a proposed solution confirms with external requirements, and proposed its suggested solution to the
user.

Learning
The goal is to capture the expericnce from the problem just solved, by constructing a new case and/or modifying

parts of the knowledge base.

ACTIVATE here works on the structure activatcd by Retrieve and Reuse, and extracts potential concepts and
structures for learning. This primarily means possible contents of a new case, but new or modified concepls that
may have been introduced by the user i$ also marked for the leaming process.

EXPLAIN has three subtasks. The first is to justify whether a new case needs to be constructed or not. It is done
if no similar past case was found, if a retrieved solution needed significant modification, or if the set of rclevant
problem findings are sufficiently different from that of the case. The two latter criteria involves explanation
processes, to assess the significance of a modification or of feature differences. Learning of gencralizations does
not play a strong role in this method, but a lazy generalization of values for findings is done if justified by an
explanation or by the user. Given that a new case is to be stored, the second subtask is to asscss the importance
(degree of necessity) and predictive strength (degree of sufficiency) of case findings, in order to compute their
relevance factors.

FOCUS is the task of putting togcther the new structures into a case frame, and actually storing the new or
modified case and its indexes. Following this, a test is run by entering the same problem a second time, and
checking whethcr its solution procedure is improved.

5. Discussion

Case-based reasoning has shown to be a powerful problem solving and learning paradigm for a varity of
application domains. Characteristics of the domain type being addressed is important in determining the type of
CBR method to use. In closed and well-defined domains, the need for supportive general knowledge 1s much less
than in open domains, and may often be compiled beforehand inio global metrics of similarity and other general
operators [Richter-91]. When explicit general knowledge is integrated into the CBR processes, two synergy
effects are immediately scen: One is to provide explanation-based control and guidance to the case processes, by,
e.g., focusing on particular goals and tasks, constraining search, and supporting proposed hypotheses. As
previously stated, this is the synergy effect aimed for here. The other synergy effect is the kind of 'inverse' effect
achieved by using the cases within the explanation process itself, i.e. a case-driven explanation process (as in the
SWALE system [Schank-89]). Mcthods developed from the latter motivation may also be useful to achieve the
former effect, but this is not presently part of our method.

Several methods have been developed that make use of explicit models of general knowledge in its case-based
processes [e.g. Hammond-86, Kolodner-87, Koton-89, Porter-90, Branting-91]. However, although representing
very important contributions to this research, methods that have been proposed typically focus on one or a small
subset of the CBR tasks. An exception is CASEY [Koton-89], but that approach relies on a strong knowledge
model, and leaves out the interactive cooperation with the user which is needed in open and weak fheory
domains. In a sense, our approach shares the widespread use of general knowledge with CASEY and the
interactive role of the user with PROTOS [Bareiss-88]. Recent suggestions for integrated architectures [Althoff-
91, Ram-92, Plaza-93, Manago-93] represent interesting work towards more unified methods, but so far the
problem has been addressed only partly, at a high and abstracted level, or for closed domains. The MOLTKE
system [Althoff-91] is an example of the latter.

The knowledge-intensive approach we have taken has forccd us to pay a lot of attention to the knowledge
representation problem. Related methods have also had to address this issue to some extent. CASEY [Koton-89]
uses a pre-existing causal model of gencral knowledge, represented as a causal network augmented with
probability estimates for mere. associations between features and diagnostic states, Cases are held in a separate
structure, organized as a Schank/Kolodner type of dynamic memory. PROTOS [Bareiss-88] has an integrated
structure consisting of a semantic network of domain categories linked by a variety of relations (causal,
functional, associational, etc.), in which cases are linked as exemplars of diagnostic categories. The CREEK
approach is most similar to PROTOS in this respect, but there are significant differences in the way cases are
integrated with general knowledge, as well as how they are indexed and used.

Modeling and representation of knowledge in the explanation-driven CBR approach is in general viewed as a
knowledge engineering problem. As such it is subject to the problems, methods and tools addressed by the
knowledge acquisition community. Unlike some other motivations, for example PROTOS', we do not advocate
CBR as an alternative answer (o the initial knowledge modeling problem, rather as an approach to the problem
of continuous knowledge maintenance. Hence, a view of knowledge modelling as basically a top-down modeling
process [Steels-90, Chandra-92, Wielinga-92] is here merged with the bottom-up oriented view provided by
leaming from experience [Van de Velde-92). The dominant role of top down modeling is weakened in favour of a
more itcrative development process for knowledge-based systems.

- B

6. Status and Further Work

The system described here is under implementation in our departmeni. An experimental evaluation of the method
will therefore have to wait. It's plausibility, however, is supported by the integration of two approaches which
each has a lot of merit, and the fact that exisiting approaches to knowledge-intensive CBR has shown promising
results.

All CBR systems use indexes in one way or another for case retrieval, but there are a lot of unresolved problems
here. Research issues include what type of indexing terms to use, the actual index vocabulary, the way indexes
are linked to cases, possible inter-case indexes, whether indexes are direct pointers to cases or parts of an index
structure, the combination of indexes during retrieval, and the assessment criteria for case similarity. A problem
with too heavy reliance on indexing, however, is that indexes are a kind of pre-complicd knowledge. A
characteristic of case-based learning is that the generalization process is not made when learned knowledge is
stored, but when this knowledge is used, i.e. during problem solving. Indexing works in the opposite direction
to this, since it anticipates and pre-sets the future use of case knowledge. The alternative approach to case
retrieval is search, which is time consuming, and often difficult to guide in the wanted direction. Elaborate
reasoning within an extensive and rather deep model of general knowledge, is a cost demanding process. The
problem, then, is to find a suitable balance between the two. An explanation-driven approach enables a search
procedure which is constrained by general domain knowledge related to the context of the actual problem. We
have started to study how this may allow a system to weaken its reliance on abstract indexcs, in favour of
making abstractions within the context of the actual problem.

Currently, the ACTIVATE-EXPLAIN-FOCUS engine uscs only its general knowledge to produce explanations.
A case 1n the CreekL representation is a rich structure, and the utilization of the cascs themselves in the
explanation process is a natural extension we want 1o look into. ‘

References

Aamodt-90a Agnar Aamodt: A computational model of knowledge-intensive problem solving and learmning. In:
EKAW-90; Fourth European Knowledge Acquisition for Knowledge-Based Systems Workshop, Amsterdam, June 25,29,
1990.

Aamodt-90b Agnar Aamodu Knowledge intensive case-based reasoning and sustained learning. In: ECAI-90;
Proceedings of the ninth European Conference on Artificial Inteklligence, Stockholm, August, 1990.

Aamodt-91 Agnar Aamodt: A knowledge-intensive approach to problem solving and sustained leaming. Ph.D
Dissertation, University of Trondheim, Norwegian Institute of Technology, May 1991.

Althoff-91 Klaus-Dieter Althoff, Stefan Wess: Case-based knowledge acquisition, learning and problem solving
for real world tasks. Proceedings EKAW-91, European Knowledge Acquisition Workshop, 1991,

Bareiss-88 Ray Bareiss: PROTOS; a unified approach to concept represcntation, classification and
learning. Ph.D Dissertation, University of Texas at Austin, Dep. of Comp. Sci. 1988. Technical Report AI88-83.
Branting-91 Karl Branting: Exploiting the complementaryity of rules and precedents with reciprocity and
faimess. In: Proceedings from the Case-Based Reasoning Workshop 1991, Washington DC, May 1991. Sponsored by
DARPA. Morgan Kaufmann, 1991. pp 39-50.

Carbonell-86 Jaime Carbonell: Derivational analogy. In R.S. Michalski, I.G. Carbonell, T.M. Miichell
(eds.):Machine Learning - An artficial Intelligence Approach,, Vol.2, 1986. Morgan Kaufmann. pp 371-392.
Chandra-92 B. Chandrasckaran: Task-structure analysis for knowledge modeling. Communications of the ACM,
Vol. 35, no. 9, September 1992 (Special issue on modeling), pp. 124-137.

Hammond-86 Kristion J. Hammond: CHEF; a model of case-based planning. Proceedings of AAAI-86. Morgan
Kaufmann, 1986. pp 267-271.

Kolodner-83 Janet Kolodner: Maintaining organization in a dynamic long-term memory. Cognitive Science,
Vol.7, 5.243-280. 1983.

Kolodner-87 Janet Kolodner: Extending problem solver capabilities through case-based inference. Proc. 4th
workshop on Machine Learning, UC-Irvine, June 22-25 1987. pp 167-178.

Koton-89 Phyllis Koton: Using experience in learning and problem solving. Massachusets Institute of
Technology, Laboratory of Computer Science (Ph.D. diss, October 1988). MIT/LCS/TR-441. 1989.
Lenat-89 Doug Lenat, R. Guha: Building Large Knowledge-Based Systems; Representation and Inference in the

CYC Project. Addison-Wesley, 1989.

Manago-93 Michel Manago, Klaus-Dieter Althoff, Ralph Traphoner: Induction and reasoning [rom cases. In:
EggML - European Conference on Machine Learning, Workshop on Intelligent Learning Architectures. Vienna, April
1993.

Plaza-93 Enric Plaza, Josep-Lluis Arcos: Reflection, memory, and learning. Institut d'Investigacio en
Intelligencia Artificial, CSIC/CEAB, Report de Recerca IIIA 93/2. Also in Proceeding from MSL-93 Workshop on
Multistrategy Learning.

Porter-90 Bruce Porter, Ray Barciss, Robert Holte: Concept learning and heuristic classification in weak
theory domains. Artificial Intelligence, vol. 45, no. 1-2, Sceptember 1990. pp 229-263.
Ram-92 Ashwin Ram, Michacl Cox: ... International Machine Learning Conference 1992, Workshop on

integrated architectures for machine laeming and knowledge acquisition.

Richter-91 AM. Richter, S. Weiss: Similarity, uncertainty and case-based reasoning in PATDEX. In R..S.
Boyer (cd.): Automated reasoning, essays in honour of Woody Bledsoe. Kluwer, 1991, pp. 249-265.

Rissland-87 Edwina Rissland, Kevin Ashiey: HYPQ, a case based reasoning system. University of Massachustes,
Amhearst. Dep. of Computer and Information Science. The Counscler Project, Project Memo 18. 1987.

Roberts-77 R. Roberts, 1. Goldstein: The FRL manual. MIT Al Laboratory Memo 409, Cambridge, 1977.

Schank-89 Roger Schank, David Leake: Creativity and learning in a case-based cxplainer. Artificial
Intelligence, Vol. 40, no 1-3, 1989. pp 353-385.
Steels-90 Luc Steels: Components of expertise. Al Magazine, 11(2), Summer 1990. pp. 29-49.

Sgivberg-92 Ingcborg Swlvberg, Inge Nordbg, Agnar Aamodt: Knowledge-based information retrieval. Future
Generation Computer Systems, Vol.7, 1991/92, pp 379-390.

Van de Velde-92: Walter Van de Velde, Agnar Aamodt: Machine learning issues in CommonKADS. KADS-II Report,
KADS-II/TI1.4.3/TR/VUB/002/3.0, Free University of Brussels -VUB, 1992,

Wielinga-92 Bob Wiclinga, Walter van de Velde, Guus Screiber, Hans Akkermans: Towards a unification of
knowledge modelling approaches. In Proceedings of JKAW-92, Japanese Knowledge Acquisition Workshop. 1992

284

Case-Based Reasoning and Task-Specific Architectures

Dean Allemang

Swiss Federal Institute of Technology
CH-1015 Lausanne, Switzerland
allemang@lia.di.epfl.ch

Abstract. This report presents work in progress on combining case-based reasoning with task-
specific architectures. The theoretical starting point of this work is the Generic Tasks of Chan-
drasekaran [5], while the implementation starting point is a commercially available product for
building technical diagnosis systems called Diagnostic Master (tm) [1). While the Generic Task
approach eases the knowledge acquisition bottleneck by providing a task structure with which to
model expertise, it does not take advantage of the fact that experts often feel comfortable telling
‘war stories’, or specific cases that they found interesting or instructive in the past. Typically these

cases involve exceptions to well-known principles or new and unusual concepts, which may have
been overlooked during knowledge acquisition.

1 Generic Tasks

Recent trends in knowledge acquisition have moved away from a knowledge mining point of view (de-
termine what the expert knows) to a knowledge modeling point of view (model how the expert uses the
knowledge). One popular style of modeling is by using Generic Tasks [5] as building blocks. This is not the
place for a complete description of the meaning and interpretation of generic tasks, but a brief description
of their features as they apply to case based reasoning is necessary.

The basic insight behind Generic Tasks it is necessary to know something about the use to which
knowledge will be put in order to model it. A particular Generic Task is characterized by input/output
relationships, and the type of knowledge needed to perform the task. Once a Generic Task has been
identified for some expert behavior, knowledge acquisition proceeds by eliciting the particular type of
knowledge needed for the task. This is in contrast with general-purpose expert system shells, in which
knowledge is represented in the same fashion for all tasks, and it is left to the knowledge engineer to
program the control. A half dozen particular tasks have been identified; for this paper, we are only
interested in two of them, HIERARCHICAL CLASSIFICATION and ABDUCTION. The life cycle for expert
system development in such an architecture is to decide, based on the input/output description of the
expert task, which Generic Task is appropriate, then use information already worked out about this task
(possibly in the form of automated support) to build the system. !

Hierarchical classification is an appropriate model when the task involves selecting a category from a
pre-enumerated set of possibilities, in which the some possibilities are more general than others. In the
terms outlined in the last paragraph, Hierarchical Classification is a Generic Tasks characterized by an
input which is a description of some situation, the output is a particular class from a pre-enumerated
set of known classes, and the knowledge that supports this classification is organized in a hierarchy of
general/specific classes. Hierarchical classification is particularly useful in diagnostic settings, in which
lab tests or measurements are the description of the situation, the known diseases (malfunctions) are
the pre-enumerated categories, and these diseases (malfunctions) are hierarchically summarized in more
general malfunction categories, which are in turn summarized into still more general categories, and
so on. Knowledge acquisition for hierarchical classification proceeds by requesting categories from the
expert, and a means for determining whether a particular case falls in each category. Once knowledge has
been acquired in this form, any number of strategies can be used to ‘run’ the knowledge base. Both the
knowledge acquisition phase and the run phase can be automated by a ‘task-specific shell’; for acquisition
this consists of an active browser for constructing the hierarchy, for running the knowledge this consists
of some algorithm for searching the tree. Such a shell is intentionally less versatile than a general-purpose
programming language. The test of success of a generic task and accompanying shell is whether (1) the
shell is capable of solving an application problem despite its lack of flexibility, and (2) the increased
guidance given by the more restrictive language makes it easier to build systems than by programming a
general-purpose language.

! in [6] a recursive version of this life-cycle is desctibed.

285

mailto:allemang@lia.di.epfl.ch

2 Case-Based Reasoning and Diagnosis

Diagnostic Master is just such a shell for Hierarchical classification. Its commercial success to date has
resulted from the fact that it has succeeded on the two points above - that is, it has been successfully
applied to a number of applications, and has provided sufficient guidance in system construction that it
was possible for these applications to be built by users who are not trained as knowledge engineers, or
even as prograrniers. ‘

Golding and Rosenbloom [9] argue convincingly that the strength of a rule-based approach to expert
system constructien can be augmented by using a case-based method for handling exceptions. Those ar-
guments apply equally well to generic tasks based approaches. Feret and Glasgow [8] have already applied
a similar method to use case-based reasoning to enhance diagnosis performed by structural decomposi-
tion. Structural decomposition performs diagnosis on a tree similar to the hierarchical classification tree
- hence these techniques should apply here as well.

We have examined two application domains to determine the applicability of the current Diagnostic
Master, and the utility of these extensions. We have devised an architecture that takes advantage of the
knowledge acquisition powers of DM, as well as the case extensibility of these case-based approaches.

3 Application Domains

3.1 Windows

In [11], Lauriston gives over 60 cases of problems using Windows 3.1. These cases are expressed in natural
language, with features that range over functions of a dozen different software applications that run with
Windows 3.1. Any particular case only refers to a few (maybe even only two) of these features. In order
to process these cases, we must first determine how we will represent them.

One of the main problems in case retrieval is to determine when a new case is relevantly similar to an
old case. For example, a common pattern of problem was the following:

— Some enhancement of a program is not supported by a particular platform (harware or operating
system),

— The system being diagnosed uses that platform,

— The solution is to disable the enhancement. +

Once one such case has been seen (say, 386E not supporting fast paste), then further similar cases
(386E does not support multiprocessing features) should be identified as similar to this case. Notice that
a simple match of features will not show the similarities between these cases - the multiprocessing features
are used in a completely different application and context than the paste features.

Protos [3] deals with this problem by allowing for a very sophisticated match between features. Causal,
structural, and functional relationships between features are recorded with each case. Protos performs a
heuristic search to find a match between the features of the current case and a stored case.

But such a match is underinformed in the current situation - the fact that a particular multiprocessing
feature matches fast paste in this situation is only because they are both unsupported features of the
386E. This match is relevant only if both cases involve the 386E. A single feature match, which does not
also check that the platforms match, cannot possibly determine when the match is important.

The Dudu system [2] uses more information in its matching process, and is more in the spirit of EBG
[12], in that the reason why a particular feature supports a particular conclusion is utilized in the matching
process. We propose an architecture that will perform this sort of intentional match. In particular, rather
than trying to find a simple match between the features of one case and another, we search the new case
for a feature that plays the same role in the new case as played by a feature in the old. In this case,
the fact that fast paste was an unsupported feature of the 386E (which is the explanation of the failure)
would commence a search for an unsupported feature of the 3886E in the new case.

3.2 Textiles

In cooperation with the Swiss Federal Laboratories for Materials Testing and Research (EMPA), we have
obtained a number of cases of failures in textile manufacture. The cases are unusual in that the data
from the cases do not come from the machinery itself, but rather from the product, that is, the woven
goods. Typical errors are dark stripes along the fabric, small holes in the fabric, and single threads under
tension. The problem is to determine whether the fault comes from the spinning, weaving, or finishing
process. Each of these represents a different company, who have their own experts who argue that the
fault could not lie in their process. EMPA acts as an impartial agent to decide these cases.

286

The cases follow a pattern similar to that described in [4], in that a typical case consists of a short
description of the faulty sample, followed by a number of tests performed on the sample to determine the
source of the flaw. Unlike the cases examined in [4], the set of all possible tests is not known in advance.
PFurthermore, many of the tests are politically motivated - sometimes a certain hypothesis is pursued not
because it is deemed most likely, but because it is deemed most desirable by the customer. In the long
run, this does not affect the accuracy of the expert’s decision (false hypotheses are ruled out, even if they
are highly desirable), but it does affect the order in which tests are carried out.

Most case-based algorithms presume that the case is expressed in terms of features and values for
those features. For these cases, some knowledge engineering is necessary before the case can be expressed
in this form. For example, a number of the measurments are taken at intervals measured from a dark/light
band. The placement of these measurements depend on the size and density of the band. Some appropriate
representation of the case (e.g. in terms of ‘yarn gauge deviation between dark and light bands’ as opposed
to simply ‘yarn gauge’) need to be worked out. These categories must be relevant to the task at hand,
which itself must be determined. That is, in order to use the cases at all, a knowledge engineering phase
supported by GTs must be carried out.

4 A combined Architecture for CBR and GT

The aim of this project is to experiment with various possibilities for combining the advantages of case-
based reasoning and task-specific knowledge engineering. The architecture presented here is not final, but
is intended as a workbench on which to test different ways of combining these.

The architecture follows quite simply from the two examples shown above, and the experiences found
in the literature. Figure 1 shows the basic system architecture.

Since a DM tree captures general regularities in a system as provided by the expert, the overall
structure of the system resembles the current DM tree. Nodes higher in the tree correspond to more
general failures, nodes farther down in the tree more specific failures. A node is connected to a node
higher up in the tree if it corresponds to a specialization of the concept at the higher node. This means
that the tree can be searched using an establish-refine strategy, that is, establishing the relevance of the
top node, and then refining this answer by establishing the relevance of the nodes beneath. This is the
current state of Diagnostic Master.

printed
fabric

Fig. 1. Square nodes are DM concepts as in the current system. Each node corresponds to a diagnostic category,
and has associated with it knowledge for establishing the validity of that category. Tip nodes correspond to
diagnostic conclusions. Exceptional cases are stored in tip nodes, along with an explanation of why they should
have been classified differently.

At each tip node (which, as in the case of structural decomposition (8], correspond to final diagnostic
categories), the knowledge base can be extended by storing exceptional cases. In a spirit similar to Golding
and Rosenbloom [9], we do not want to follow an exceptional case unless there is a compelling reason

287

to do so. They use inductive methods for determing how compelling a case is. We propose the use of
explanation-based methods, described in more detail below.

Thus, the system construction cycle in this architecture will proceed as follows: knowledge engineering
will commence as it currently does in DM. In the current version of DM, the system must be refined
using the same DM architecture until its performance is satisfactory. In the new system, the features
acquired by the construction of the DM case will be used to describe other cases that are particularly
interesting or difficult. Rather than trying to modify the DM structure to handle all the exceptional
cases, the case-based system will take over. When a particular case is misclassified, the expert explains
the correct classification, and enters it in the system. In this manner, the DM tree serves as an index into
the case base, or in Protos terms, as an elaborate reminding structure.

4.1 Supporting Explanations

When an exceptional case is recorded, the expert is asked for an explanation of why the case should
be classified differently. The ‘Tips for a teacher of Protos’ [7] shows that experts are usually good at
providing explanations, though the explanations they provide are not necessarily of a uniform nature.
Thus it is necessary to provide the expert some assistance in structuring the explanations. This is again
provided by the Generic Task structure of the problem.

Since at this point the expert is doing explanation rather than classification, the Generic Task HiI-
ERARCHICAL CLASSIFICATION is no longer the appropriate one, rather ABDUCTION. ABDUCTION is the
process of inference to the best explanation. In [10], Josephson provides an inference form for abduction.
That is, they provide a list of what things must be satisfied by an abductive argument in order for it to
be valid: Given a set of data D to be explained, one is justified in concluding a hypothesis H as the best
explanation of D when one satisfies the five following criteria:

— H explains D,

— H is a prior: plausible,

Sufficient alternatives to H have been considered,

— H surpasses these alternatives by a sufficient amount, and
— The data D is reliable.

1

This description leaves as undefined a large number of terms, like plausible, ezplain, sufficient, etc.
Details of the uses of these words, and how they affect the confidence in the abductive conclusion, can
be found in {10].

This form will be used to help the expert structure explanations. That is, in order to claim that
something is a best explanation, it is necessary to elaborate all five of these conditions. This will both
prevent the expert from making incomplete explanations, and impose a uniformity on the complete
explanations. '

With cases represented in this way, the question of deciding whether a new situation matches the
old case is to construct an abductive justification, again using Josephson’s form. The parts of the new
justification will be constructed from fragments found in the previous explanations. For example, a
common finding in these cases is that the fault does not occur in the raw fabric. If the leading hypothesis
implies that the fault must occur in the raw fabric, perhaps we should doubt this datum. In a past case,
doubt about this datum was pursued by simulating the finishing process on a sample of the raw fabric.
If the fault appears, then it really was present in the raw fabric, and this datum can be safely neglected.
This test can then be ordered in the present case.

Once such an abductive justification is built up, not only will we have an answer to the diagnostic
problem, but an explanation of why the answer is considered correct. This is particularly important in
our textile application, since the local experts will not accept a judgement without justification.

5 Advantages

One of the main advantages of case-based systems over expert systems is the reduced reliance on knowl-
edge engineering, which has been called the bottleneck of expert system construction. Since cases are
readily available, case-based reasoning alleviates this bottleneck by allowing a number of cases to replace -
expert effort. Unfortunately, as we have seen in the textile example above, often cases cannot be used as
raw data, they need some structuring before they can be reasonably used.

A Generic Tasks approach to expert system construction also alleviates the knowledge acquisition
bottleneck by providing some structure into which to fit the knowledge. The proposed architecture takes
advantage of this structure in two ways:

288

1. Asin the current DM tool, the generic task structure can be used to capture the well-known general
trends in the domain, for which cases are unnecessary, and
2. a task structure can be used to determine a vocabulary for explanation of the particular cases.

6 Questions

The architecture described here is not final. There are a number of experiments we intend to carry out
with our .domain data.

— Perhaps one of the advantages listed in the last section will outweigh the other, for example, it could be
the case that there is no reason to perform explanation-based generalization to classify the exceptional
cases. In this case, the generic task structure will be used for the first phase of the classification, and
to structure the cases, but not to structure an explanation of the correct classifications.

— It could also be the case that there are more exceptions than cases that follow the general trends of
the domain, in which case the main problem will be to describe the case. In this case, the thrust of the
system will be to use the task structure exclusively for the construction of explanations as described
in section 4.1.

- Evaluate the possibility of using cases to correct faults higher in the classification tree. If a case was
incorrectly classified, a systematic fault in the DM tree might be responsible. The obvious place to
look for such a problem is at the most specific common generalization node of the correct classification
and the misclassification.

The prototype of this system is currently under development. From the results of these {and other)
experiments, we plan to integrate case based reasoning into a future release of the DM tool.

References

ISE Software AG. Diggnostic Master Benutzerhandbuch. ISE Software AG, Taegerwilen, Switzerland, 1992.
Dean Allemang. Using functional models in automatic debugging. IEEE Ezpert, pages 13-18, 1991.
Ray Bareiss. Ezemplar-Based Knowledge Acquisition. Academic Press, Inc., Boston, 1989.
Ralph Barletta and William Mark. Explanation-based indexing of cases. In Proceedings of the national
conference on Artificial Intelligence, pages 541-546. AAAT Press, 1988.
B. Chandrasekaran. Generic tasks in knowledge-based reasoning. IEEE Ezpert, 1(3):23-30, 1986.
B. Chandrasekaran. Design problem solving: A task analysis. Al Magazine, 11(4):59-71, 1990.
Dan Dvorak. Cl-protos users manual. included with CL-Protos progam, 1991.
M.P. Feret and J. I. Glasgow. Case-based reasoning in model-based diagnosis. In D. E. Grierson, G. Rzevski,
and R. A. Adey, editors, Applications of Artificial Intelligence VII, pages 679-692. Computational Mechanics
Publications, 1992.
9. Andrew Golding and Paul Rosenbloom. Improving rule-based systems through case-based reasoning. In
Proceedings of the 9th national conference on Artificial Intelligence, pages 22-27. AAAT Press, 1991,
10. John Josephson and Susan Josephson. Abductive Inference, Computation, Philosophy, Technology. Cambridge
University Press, Cambridge, 1994.
11. Robert Lauriston. Troubleshooting windows 3.1. PC World, pages 128-145, 1992.
12, Tom Mitchell, Richard Keller, and Smadar Kedar-Cabelli. Explanation-based generalization: A unifying view,
’ Machine Learning, 1:47-80, 1988.

oW

& 3 o W

- B

Case-based Reasoning at the Knowledge Level: An
Analysis of CHEF

Eva Armengol Enric Plaza

Institut &’ Investigacio en Intel-ligéncia Artificial , C.S.1.C.
Cami de Santa Barbara, 17300 Blanes, Catalunya, Spain.
{plaza | eva)@ceab.es

Abstract. We analyze the CHEF system at the knowledge level following the Commet methodology. This
methodology has been used for the design and construction of KBS applications. We have applied it to
analyze the learning methods of existing systems at the knowledge level. We claim that this sort of analysis
can be a first step to the integration of different learning methods.

1 Introduction

We offer a succinct analysis of CHEF system so as to show a concrete example of knowledge level analysis
applied to a learning method. In [3] there are the analysis and comparison of CHEF, PROTOS and CASEY and
the resulting common task structure from them. We think conceptual frameworks like KADS [9] or Commet [8]
that redefine the notion of “knowledge level” from the original Newell’s definition [6] may prove to be more
interesting to Machine Learning theory than using the Newell’s knowledge level in ML methods analysis was
done by Dietterich [4]. Furthermore, having a uniform description of KBS, knowledge acquisition, and leaming
processes can be very useful for achieving an understanding of the issues involved in their integration in
knowledge engineering. A previous conceptual study on CBR systems was made by Aamodt [1]. Aamodt
decomposes CBR systems in tasks both the reasoning and the learning processes. Our study is similar but it is
more formal in the sense that we try to find a common formalization for all the tasks and to analyze the
knowledge used by each one. We have already made a similar study for EBL methods [2] obtaining a common
structure of tasks, and models having the same conceptual information (although they have different
implementations). With the study of CBR systems we try to complete the analysis of learning methods at the
knowledge level.

€

Problem Solving

@ Learning from Learning from
Success Failure

et Cimutaion) omparson > Csgnner> i)

Fig. 1. Task Structure of the CHEF systemat the knowledge Level

Anticipation

Incorporation

2 CHEF at the Knowledge Level

The analysis of CHEF at the knowledge level is made following the Commet methodology [8]. Commet
ontology is composed of tasks, models and methods. A task is a set of goals that have to be solved. A model
contains the relevant knowledge to achieve some task goals. A method is a procedure organizing and executing
the activities of the construction models. According to this methodology CHEF has produced the structure of
tasks in the fig. 1. In the following we analyze some of the tasks emphasizing their goal, the input and output
models and the method used to solve each task. The complete analysis can be found in [3].

290

mailto:eva)@ceab.es

CHEF-Task. This task is solved using the CHEF-Method that decomposes it in two subtasks: Problem-Solving-
Task and Learning-Task. Problem-Solving-Task solves the problem and proposes a plan. Learning-Task
executes the plan and learns from plan failure or success. Input models are Goals, Memory of Plans and Memory
of Failures. Goals model contains the set of goals that have to achieve the plan. Memory of Plans model contains
a discrimination network containing all the plans that the system has produced until now indexed by predictive
features. The output models are New Memory of Plans that is the memory of the existing plans to which the new
plan has been added; and New Memory of Failures containing the new failure (if any has been produced). In the
fig. 2 can be viewed the representation of the CHEF-Task at the knowledge level, the decomposition produced
by the CHEF-Method and the models that it uses. ,

CHEF-Task
Goal: To improve the system behaviour,
Input: Goals, Memory of Plans and Memory of Failures models.
Output: A New Memory of Plans and New Memory of Failures model.
Method: CHEF-Method.

Memory of Memory
Failures of Plans

Proposed Plan
Problem Solving

Memory of Plans

O Task

Memory of Failures [] Model

Fig. 2. Representation at the Knowledge Level, Task Structure and Models of the CHEF-Task

Problem-Solving-Task. The goal of this task is to propose a plan achieving all the goals in Goals model and
without any predictable problem. CH-Problem-Solving-Method (fig. 3) is a task decomposition method that
decomposes Problem-solving-Task in two subtasks: Retrieve-Task and Adaptation-Task. Retrieve-Task retrieves
a past plan achieving a subset of goals contained into the Goals model. Adaptation-Task modifies the retrieved
plan in order to achieve all the desired goals. Input models are those of the CHEF-Task. Output model,
Proposed Plan, contains a plan achieving all the input goals.

Problem-Solving-Task
Goal: To obtain a plan achieving all the goals in Goals model.
Input: Goals, Memory of Plans and Memory of Failures models.
Output: A Proposed Plan model.
Method: CH-Problem-Solving-Method.

: > Problem Solving Proposed Plan
Memory of Plans
Memory of Failures
Retrieve Retrieved Plan Adaptation
Modification ' Critics
Rules

Fig. 3. Knowledge Level Representation, Task Structure and models of the Problem-Solving-Task

Retrieve-Task. The goal of this task is to retrieve a plan achieving the maximum number of important goals and
which has not any predictable failure. CH-Retrieve-Method is a task decomposition method that decomposes
Retrieve-Task in two subtasks: Anticipation-Task and Selection-Task. Anticipation-Task analyzes the planning
goals and the sitnation in which they are evolved and decide if there are some states or goals predicting some
problem. For the sake of simplicity it is not be explained here. Selection-Task selects a plan avoiding the

291

predicted problems and achieving the maximum number of goals in the Goals model. Input models are the same
of the Problem-Solving-Task. Output model, Retrieved Plan, contains a plan that both avoids all the anticipated
problems and achieves input goals that are considered important. Important goals are those goals that are either
difficult to achieve or difficult to incorporate to a plan. In the fig. 4 can be viewed the knowledge level
representation of the Retrieve-Task.

Retrieve-Task
Goal: To obtain a plan without any predictable problems achieving a
set of goals in Goals model.
Input: Goals, Memory of Plans and Memory of Failures models.
Output: A Retrieved Plan model.
Method: CH-Retrieve-Method.

| Goals |

Retrieved Plan

Retrieve

Predicted Problems

b

‘ Memory Goal Goal
Memory of Failures of Plans | | Similarity Value

Metric Hierarchy

Fig. 4. Knowledge Level Representation, Task Structure and Models of the Retrieve-Task
Selection-Task. This task has to retrieve the best past plan avoiding all the predicted problems and achieving a
set of input goals. Ideally it would be desirable that the retrieved plan achieves all the goals but in general this is
not possible. The usual situation is to have several plans achieving a subset of goals (different for each plan). It is
necessary to have a metric evaluating the similarity of the goals and a hierarchy of goals evaluating the relative
utility of each plan in respect to a set of goals. The goals considered as more important are those that are difficult
either to achieve or to incorporate into a plan. Input models are Goals, Predicted Problems, Memory of Plans,
Goal Value Hierarchy and Goal Similarity Metric. Goal Value Hierarchy model contains the is-a hierarchy
which nodes are sets of goals considered as similar. This hierarchy obtains the importance that a plan achieves
certain goals. Goal Similarity Metric model contains an abstraction hierarchy allowing know if a plan satisfies
partially a goal. The output model, Retrieved Plan, is a plan that both avoids all the predicted problems -
Anticipation-Task and achieves most of the Goals model. CH-Select-Method uses the Predicted Problems model,
the goals and the abstractions of goals as indexes to access to the memory of plans. Then it uses the importance
of the different goals to decide the choose between different competitor plans. It has to find a unique plan
satisfying the maximum number of goals into Goals model taking account that both there are goals that are more
important than others and some goals cannot be satisfied directly but only partially. In this case it must found a
past plan satisfying similar goals and to modify it to obtain a unique plan achieving exactly the goals contained
in Goals model. The representation of the Selection-Task at the knowledge level is the following:

Selection-Task
Goal: To obtain a plan achieving a subset of goals. _
Input: Goals, Predicted Problems, Memory of Plans, Goal Value Hierarchy and Goal
Similarity Metric models.
Output: A Retrieved Plan model.
Method: CH-Selection-Method.

Adaptation-Task. The goal of this task is to modify the plan contained into Retrieved Plan model in order to
achieve all the goals into Goals model. To do this adaptation CHEF uses a set of modification rules and a set of
critics containing specific information about the domain. Input models are Retrieved Plan, Modification Rules
and Critics. Modification Rules model contains a library of rules that are steps that can be added to particular
plans to achieve particular goals. Critics model contains knowledge about domain objects and general plans. The
output model, Proposed Plan, contains the best plan that the system has found to achieve the Goals model. The
representation of Adaptation-Task at the knowledge level is the following:

Adaptation-Task
Goal: To propose a plan achieving the input goals.
Input: Retrieved Plan, Modification Rules and Critics models.
Output: A Proposed Plan model.
Method: CH-Adaptation-Method.

292

Learning-Task. Learning-Task has to check if the proposed plan works as it is desired. If it is correct only will
be necessary to incorporate the plan indexing it by the goals and the predicted failures. Otherwise it has to repair
the plan. CH-Learning-Method is a task decomposition method that decomposes Learning-Task in three
subtasks: Test-Task, Learning-from-Success-Task and Learning-from-Failure-Task. Test-Task checks if the
proposed plan produces the desired result and activates Learning-from-Success-Task or Learning-from-Failure-
Task according to the result. Input models are Goals and Predicted Problems from Anticipation-Task, Proposed
Plan, Memory of Plans and Memory of Failures. The output models are those of the CHEF-Task, that is to say,
New Memory of Plans and New Memory of Failures.

Learning-Task
Goal: To incorporate new knowledge (plans and failures) to the system in order to
improve its behaviour.
Input: Goals, Predicted Problems, Proposed Plan, Memory of Plans and Memory of
Failures models.
Output: A New Memory of Plans and a New Memory of Failures model.
Method: CH-Learning-Method.

New Case ; New Memory New Memory
Learning of Plans of Failures
Proposed Plan
Goals
@ Leaming Leamning
from Success from Failure
Explanations | Memory of
Failures
Memory of Plans
Errors

Fig. 5. Knowledge Level Representation, Task Structure and Models of the Leaming-Task

Test-Task. To check if the proposed plan achieves the goals into Goals model, Test-Task makes a simulation
and then the outcome is compared to the desired one. Test-Task uses as input models Proposed Plan and
Inference Rules. Inference Rules model contains inference rules indicating the effects of each step in the domain
of each object. OQutput models are Errors and Explanations models. Errors model contains which is the problem
that has been occurred describing the state that defines the failure, the step where the failure is produced and the
predictive conditions of the failure. Explanations model contains the state defining the failure, the step where the
failure is produced and the conditions that have to be accomplished to produce the failure. Thus CH-Test-
Method is a task decomposition method decomposing Test-Task in two subtasks: Simulation-Task and Analysis-
Task. Simulation-Task simulates a plan execution. Analysis-Task compares the obtained states and the desired
ones and allows to obtain the produced errors. This method requires strong introspective capabilities and a theory
for deciding blame assignment to the system parts and decisions. The representation at the knowledge level ant
the decomposition of Test-Task produced by CH-Test-Method is that of the fig. 6.

Test-Task
Goal: To check if the plan accomplishes the input goals.
Input: Proposed Plan and Inference Rules models.
Output: An Explanations and the Errors models.
Method: CH-Test-Method.

Proposed Plan

| Inference Rules | Goals Tfplz(l);gy

Fig. 6. Representation at the Knowledge Level, Task Structure and Models of the Test-Task

293

Learning-from-Success-Task. If the plan has worked as it is desired, this task is activated. Learning-from-
Success-Task incorporate to the memory of plans the new plan indexing it by the goals and failures that it avoids
ordered by order of importance. To index the plan are also used the generalizations of the goals. A plan is not
generalized because it can be used in several situations. Only the goals are generalizéd. The explanation serves to
generalize goals. Learning-from-Success-Task has as input models Proposed Plan, Explanations, Goals, Memory
of Plans. The output model is a New Memory of Plans. The representation of Learning-from-Success-Task at the
knowledge level is the following:

Learning-from-Success-Task
Goal: To improve the system behaviour by incorporation of the new plan.
Input: Proposed Plan, Explanations, Goals and Memory of Plans models.
Output: A New Memory of Plans model.
Method: CH-Learning-from-Success-Method.

Learning-from-Failure-Task. This task is activated when a failure is detected in the proposed plan. Learning-
from-Failure-Task have to repair a plan and incorporate it to the memory of plans. It must also to incorporate to
the memory of failures all those features predicting the failure. The used models are the Proposed Plan,
Explanations, Errors, Goals, Memory of Plans and Memory of Failures as input models. The output models are a
New Memory of Plans and a New Memory of Failures that incorporate the new case and the produced failure. In
the fig. 7 can be viewed the models used by Learning-from-Failure-Task and how it can be decomposed.

Learning-from-Failure-Task
Goal: To improve the system behaviour by incorporation of the new
plan and the predictive features of the produced failure.
Input: Proposed Plan, Explanations, Errors, Goals, Memory of Plans,
Memory of Failures models.
Output: A New Memory of Plans and a New Memory of Failures models.
Method: CH-Learning-from-Success-Method.

Proposed Plan |~—f,

New Memory
of Plans

Learning from Failure

Assignment

Incorporation

Memory of New Memory ‘ Repaired Memory
Failures of Failures Plan of Plans

Fig. 7. Knowledge Level Representation, Task Structure and Models of the Learning-from-Failure-Task

3 Conclusions

Knowledge level analysis (KLA) permits to make explicit the relation of learning with problem solving. We take
a unified approach for inference in learning and problem solving and we propose that KLA may be useful tool
for understanding learning, problem solving and their relationship in architectures that integrate learning and
problem solving. Using KBS conceptual frameworks for describing both is useful conceptually, as we have tried
to show here, but may be very fruitful also at the practical level of building KBS applications.

Our last goal is to have a representation of different learning methods in order to represent them into a cognitive
architecture. So, as well as CHEF, we have analyzed at the knowledge level PROTOS and CASEY systems [3].
From this analysis we have obtained a common task structure for them. A similar analysis about EBL methods
[2] produces a structure containing knowledge level tasks that are common to the most representative EBL
systems, We claim that from the obtained knowledge level common task structure (obtained applying the
Commet methodology) and an adequate characterization of the models that they use, the more appropriate
methods to solve a task can be chosen. This can be a first step for the learning methods integration.

294

References

L

o

A. Aamodt: A Knowledge-intensive, integrated approach to problem solving and sustained learning. Ph. D.
Dissertation. University of Trondheim (1991)

E. Armengol, E. Plaza: Elements of Explanation-based Learning. Research Repport IIIA 93/9 (1993)

E. Armengol, E. Plaza: Analyzing Case-based Reasoning at the Knowledge Level. Research Report IIIA
93/14 (1993) .

T.G. Diettrich: Learning at the knowledge level. Machine Leaming 3, 287-354 (1986)

K.J. Hammond: Case-Base Planning. Viewing Planning as a Memory Task. Perspectives in Artificial
Intelligence. Volume 1. Academic Press, Inc. 1989.

A. Newell: The Knowledge Level. Artificial Intelligence 18, 87-127 (1982)
E. Plaza, J.L. Arcos: Reflection and Analogy in Memory-based Learning, Proc. Multistrategy
Learning Workshop.

L. Steels: Reusability and configuration of applications by non-programmers. VUB Al-Lab Research
Report (1992)

B. Wielinga, A. Schreiber, J. Breuker: KADS: A modelling approach to knowledge engineering. Knowledge
Acquisition 4(1) (1992)

295

Integration of Case-based Reasoning and
Inductive Learning Methods

Stefan K. Bamberger, Klaus Goos

Universitit Wiirzburg
Lehrstuhl fiir Informatik V1
Allesgrundweg 12
97218 Gerbrunn
bambi/goos @informatik.uni-wuerzburg.de

Abstract. In cased based reasoning the preselection of interesting cases to get an efficient case
comparison is most important. In large case-bases the search for cases will be very expensive
especially by using external data bases. Looking for another way to handle the preselection, we
examine several inductive learning methods which generate heuristic rule knowledge out of a given
case-base. Those rules can be interpreted very efficiently during the reasoning process. In this paper
we compare three inductive learning approaches (BUBE, ID3/C4 and UNIMEM) for the usage with
our existing case-based reasoning tool CcC+ to improve the overall performance. Finally, we
propose a possible integration between CcC+ and the best one of the comparison.

1 Introduction

Cases are the fundament of many problem solving approaches. Two main categories may be
distinguished:

I. Cases are used directly for problem solving.
II. Cases are pre-processed to generate the problem solving knowledge later used .

Members of the first category have the advantage that the problem solving process can start
immediately after a case-base had been acquired. Furthermore newly acquired cases can be
directly integrated into the inference process. With the case-base growing, however, the time
for problem solving exceeds, depending on high search and retrieval costs. In contrary, the
second category first needs much more time to generate the real problem solving knowledge,
e.g. decision trees, heuristic rules, etc. The advantage of those methods is the generation of a
knowledge structure which can be used very efficiently during the inference process.

In this paper we outline representatives of both categories and show why it will be
successful to combine them to gain a better performance.

2 Different Approaches

All CBR-tools like CcC+ [Puppe&Goos91] and PATDEX [Wess93] belong to the first

category. The characteristic features are:

» The basis of the problem solving process are cases stored in a database and additional
knowledge about similarity between symptom-values, abnormalities of symptom-values and
dynamic weighting of symptoms.

* The problem solving process consists of two steps The first step is a preselection of
possible candidates to reduce the search space. The second step is the comparison of every
candidate with the search case to compute the most similar one.

* Both an adaptation of the similarity measure and an adaptation of the found solution with
extra knowledge is possible to improve the problem solving process.

Approaches of the second category are inductive learning methods, like BUBE [Bamberger92,
93], ID3/C4 [Quinlan86, 90], and UNIMEM [Lebowitz90]. The features are:

ad BUBE: -
* The aim of BUBE is to generate a heuristic knowledge base. Therefore BUBE uses causal

296

mailto:bambi/goos@infonnatik.uni-wuerzburg.de

knowledge about the object dependencies to generate the rule structure. The necessary rule
evidences are gained by a statistical evaluation of the case-base. To improve the quality of
the generated rules an automatic heuristic adaptation is possible.

* To solve a case, the heuristic problem solver MED2 [Puppe et al. 92] is used to interpret the
derived rules.

ad ID3, C4 (empirical learning):

* Both methods work only on the base of cases without any additional knowledge.

» Before the problem solving process can start these approaches generate a decision tree. ID3
is limited to discrete values in the domain. C4 is the successor of ID3 and allows numerical
values. The numerical values are handled by using a threshold to divide the range into two
parts. The leafs of a tree are the learned solution classes.

* The task of the problem solving process is to find a path in the tree which corresponds to the
symptom values in the current case.

ad UNIMEM (similarity based learning):

¢ UNIMEM uses cases and additional knowledge about similarities between symptom values.

* The goal is to take similar cases and abstract them to form a hierarchy of generalisations that
will be used to organize the case-base. The generation of the concept tree is expensive
because of the incremental treatment of the cases. Therefore it may often be necessary to
update the tree structure.

» The problem solving process uses the hierarchical organisation of the concept tree to classify
the search case.

3 Comparison

To determine the performance of the different methods we compared them in seven points. The
result of this analysis is shown in tabular 1.

The tabular shows that no approach is perfect, but the different approaches have different
strengths and weaknesses. An integration of two or more approaches is advisable to minimize
the costs and optimize the performance of inference. CcC+ seems to be the most powerful
approach. The great advantage of explainability, competence assessment and incremental
extension of the case-base is only diminished by the costs of the preselection during the
inference process. UNIMEM, which seems to be very similar to CcC+ at first sight, causes
more costs when altering the case-base and has a weak competence assessment. Therefore an
integration of CcC+ and UNIMEM does not seem to be advisable, because a performance
increase of the resulting system cannot be expected.

‘ The ID3 system cannot handle all kinds of information such as numerical or unknown

values. Because such values are used in CcC+, ID3 is not a powerful enough partner for
linking the two. The problems of representation are overcome with C4, the successor of ID3.
The quality of the derived decision tree is dependent on the correctness of the cases. In addition
to C4, BUBE uses causal knowledge to deal with the effect that statistical evaluation of cases
could make believe object correlations which are not real. Normally the cases have different
relevance and quality. Using additional causal knowledge might be very helpful to remove these
uncertainties respecting the object correlations. A further advantage of BUBE is that the
structure of causal knowledge can also be used in the learning step to structure the heuristic
knowledge. Because the domain expert already knows this structure the rules produced by
BUBE can be better understood than the decision tree completely automatically produced by
ID3/C4. Since BUBE is the only system with this capabilities an integration of CcC+ and
BUBE promises the greatest success.

297

Costs with
stable and large
case-bases

It Case-based

Inductive Learning

CcC+

The time for the pre-
selection grows lin-
ear with the size of
the case-base. Using
K-D-trees to pre-se-
lect could reduce the
costs to log(#cases).
The detailed similar-
ity computation per
case is linear to the

BUBE

ID3/C4

Generation of the

rules is linear to the
case-base. The addi-
tional causal knowl-
edge allows to focus
on the really relevant
symptoms. Duration
of the inference pro-
cess is linear to the
given symptoms.

The generation of the
decision tree depends
on the number of
symptoms. High
costs to calculate the
entropy of the symp-
toms. No possibility
to check for bogus
causalities. The
effort of the inference

UNIMEM

The generation of the
decision tree depends
on the number of
symptoms. The ef-
fort of the inference
process is propor-
tional to the tree
depth. ’

number of symp- process is propor-
toms in the case. tional to the tree
depth.
Costs with] No additional costs. | Recompilation of the | Recompilation of the | Additional costs to
altering large|| Improves directly the | complete case-base | complete case-base | insert the new case in
case-bases, problem solving pro- | after each alteration. | after each alteration. | the existing concept
CEss. hierarchy.
Problem A solution is possi- | There is no knowl-| In ID3 the decision | Missing values in an
solving with|ble with a ranking to| edge about the|of the possible]actual case are no
incomplete decide the usefulness. | quality of the solving | branch is very diffi- | problem being every
cases (some proposal. The com- | cult. C4 uses the) node a possible solu-
symptoms are puted result can be | probabilistic valua-| tion.
not known or too rough, lacking of | tion to come to a de-
not asked) enough datas to fur- | cision.
ther specialize it.
Background Detailed knowledge | Only causal rela-| No. Detailed knowledge
knowledge of the similarity | tions. of the similarity
measure and symp- measure.
tom importances.
Background Similarity measure | Acquiring causal| No. Similarity measure
knowledge may be hard to for- | dependencies is quite may be hard to for-
acquisition mulate. straightforward mulate.
Competence as-|| Well, with relation | Weak. Weak. Weak.
sessment to the maximal simi-
) larity
Explainability || Excellent. Direct ac- | The possibilities of | The possibilities of | By the path through
cess to the pre-se-| the heuristic explana- | the explanation are| the concept hierar-
lected cases and their | tion are limited. No | limited. No back-| chy. The training
similarities is possi- | backtracking to the| tracking to the under- | cases are available for
ble. underlying case-base | lying case-base is | further explanations.
is possible. possible.

Tab. 1: Comparison of representatives of the two categories.

4 Integration

The main effect of an integration should be to optimize the costly preselection in CcC+. This
can be achieved by using the generated heuristic rules of BUBE to derive a set of possible
solutions. The cases corresponding to this solution set are used by CcC+ for a detailed
similarity computation. Other preselection techniques, e.g. K-D-trees, have been proposed in
the literature [Friedmann77]. They offer an efficient indexed search, but cannot be used with a
dynamic similarity measure which may be specified in CcC+.

For a successful integration a common representation und communication level is the prior
condition. The representation level is already realized by a so-called base terminology. This
common base terminology is defined in the environment, where the case-based, heuristic and
causal problem solvers are embedded [D3]. Each kind of knowledge consists of two parts: the
structure of the domain knowledge expressed in the base terminology completed with the
problem solver dependent knowledge (Fig. 1). The layer architecture supports the consistency
and the exchange of datas as each component works on the same central base terminology.

298

Casebased
Problem Solver
CeC+

Heuristic
Problem Solver
Med2

Causal
Problem Solver

\ & L 4
Additional Case- e Set-Covering
Case Knowledge Comparison Knowledge Heuristic Knowledge Knowledge

causal or set-covering
state -> staterules
eventually with weights

Symptom -> diagnosis rule s
with evidences

pet casc: symploms Similarity measure

& real solution

Knowledge Acquisition
by Expert/s
CLASSIKA

Terminology Terminology
Symptoms, data abstractions, intermediate & final diagnoses
& General Classifica tion Knowledge
| Dialog guiding knowledge | | Knowledge for deriving data abstractions |
—

Start, intermediat e
& final states

Fig. 1: Integrated knowledge representation. The knowledge of the single methods is divided into general,
mainly terminological classification knowledge (lower part of the figure) and into knowledge specific one for the
method (upper part). Cased based and heuristical knowledge use the same terminology, while set covering classification
knowledge is based on its own terminology. Case data can not only be supplied by the expert, but is collected by the
end users as well even in a larger number. The base terminology and the problem solver specific knowledge is entered
using the graphical knowledge acquisition workbench CLASSIKA. BUBE uses the base terminology together with the
specific knowledge of the set-covering and case-based problem solver to generate heuristic knowledge.

Connecting different modules on the communication level means that every component
defines an interface making an external synchronisation possible. The idea is that a problem
solving process will be influenced by messages about partial results of other problem solvers.
These messages are used to control and to improve its own problem solving process. That
means for our special module CcC+ and the heuristic problem solver MED?2 that the
preselection mechanism of CcC+ is supported by the possible partial results of MED2.

In the following we show a way to support CcC+" preselection using heuristic rules. The
cases used by CcC+ and BUBE consist of a tupel of symptoms with values and a set of
intermediate and final diagnoses as the result of a case.

The way CcC+ manages its preselection is to look for a choice of symptoms out of the
given search case. All cases of the case-base satisfying the choice are taken into the preselection
set. The choice criteria is defined, so that the preselection set covers all relevant cases.
Additionally, an arbitrary number of irrelevant cases might be present in the set. The reason is,
that, in spite of a possible dynamic weighting, the examination of the symptoms by themselves
is not case specific enough. The goal is to find a stronger criteria to minimize the number of
irrelevant cases.

The heuristic problem solver MED2 also starts with a set of symptoms and derives
intermediate and/or final diagnoses with efficient heuristic rules. To derive an intermediate
diagnoses one or more symptoms are necessary. So, the intermediate diagnosis reflects a
combination of symptoms, which is more solution specific than the raw symptom for itself.
That's the reason why those diagnoses are used in MED2 to reduce the search space for
requesting additional symptoms.

The preselection of CBR can profit from the same effect. Using the intermediate diagnoses
as the choice criteria, a better focus on the relevant cases is possible. Since the number of the
intermediate diagnoses are much lower than the former number of raw symptoms, the costs for
the preselection is automatically reduced. Besides, the resulting lower number of cases in the

299

preselection set also reduces the costs for the following exact comparison. Thus, the above
mentioned goal is reached.

To realise the new preselection mechanism, CcC+ has to be synchronized with the inference
process of MED2. To do this, CcC+ asks MED2 for the actually derived intermediate
diagnoses. If there exist any, they are used, otherwise the conventional mechanism with the
raw symptoms is used. First tests showed a performance improvement from 10 to 30 percent.
'The more raw symptoms are neccessary and/or collected in a saved case, the greater is the gain
using intermediate diagnoses.

5 Conclusion

In this paper we presented a way to integrate a case-based reasoning and inductive learning
system. With the comparison of three different kind of inductive learning systems (BUBE,
ID3/C4 and UNIMEM). The result is, that each of those systems has different advantages and
disadvantages. Overall, BUBE takes advantage of different kind of knowledge and is therefore
the most flexible approach for an integration with the CBR-tool CcC+. The synergy effect is,
that the response time of the inference process is minimized while the full quality of explanation
and competence assessment is kept. Both CcC+ and BUBE are completely implemented. A
prototypically integration on the communication level (the representation level is fully
supported) is realized. A first evaluation showed that the cost reduction may reach up to 30
percent without loosing the quality of the result. Currently we are about to evaluate the
integration in a larger study.

References

[D3] (1991). Bamberger, S., Gappa, U., Goos, K., Meinl., A., Poeck, K., & Puppe, F.: Die Diagnostik-Experten-
system-Shell D3. Handbuch. Institut fiir Logik, Komplexitit und Deduktionssysteme der Universitit Karlsruhe.

Bamberger, S. (1992). Teilautomatischer Wissenserwerb fiir die heuristische Klassifikation auf Basis von Fillen
und Fehlermodellen. Diplomarbeit am Institut fiir Logik, Komplexitit und Deduktionssysteme der Universitit
Karlsruhe.

Bamberger, S., Gappa, U., Goos, K., Poeck, K. (1993). Teilautomatische Wissenstransformation zur
Unterstiitzung der Wissensakquisition. 2. Deutsche Tagung Expertensystem (XPS-93), Puppe, F., Giinter, A.,
(Hrsg.), 153-166, Springer.

Friedmann, J.H., Bentley, J.L., Finkel, R.A. (1977). An Algorithm for finding best matches in
logarithmic expected time. ACM Trans. math. Software, 3:209-226.

Lebowitz, M. (1990). The utility of similarity-based learning in a world needing explanation. in Michalsky (ed.):
Machine Learning, An Artificial Intelligence Approach IIf, Morgan Kaufmann 1990.

Puppe, F., & Goos, K. (1991). Improving case-based classification with expert knowledge. 15. Fachtagung fiir
Kiinstliche Intelligenz, GWAI-91, Christaller, Th. (Ed.), 196-205, Informatik-Fachberichte 285, Springer.

Puppe, F., Legleitner, T., and Huber, K. (1991): DAX / MED2 - A Diagnostic Expert System for Quality
Assurance of an Automatic Transmission Control Unit, in Zarri, G. (ed.); Operational Expert Systems in Europe,
Pergamon Press, 1991.

Quinlan, J.R. (1986). Induction of Decision Tree. Machine Learning, Vol. 1, Nr. 1, 81-106, Kluwer Academy
Publisher 1986.

Quinlan, J.R. (1990). Probabilistic Decision Trees. in Michalsky (ed.): Machine Learning, An Artificial
Intelligence Approach III, Morgan Kaufmann 1990. .

Wess, S. (1993). PATDEX — ein Ansatz zur wissensbasierten und inkrementellen Verbesserung von Ahnlichkeits-
bewertungen in der fallbasierten Diagnostik. 2. Deutsche Tagung Expertensystem (XPS-93), Puppe, F., Giinter, A.,
(Hrsg.), 42-55, Springer.

300

Explanation-based Similarity for Case Retrieval and Adaptation
and it’s Application to Diagnosis and Planning Tasks

Ralph Bergmann and Gerd Pews
University of Kaiserslautern
Dept. of Computer Science
P.O. Box 3049
67653 Kaiserslautern, Germany
E-Mail: {bergmann,pews}@informatik.uni-kl.de

Abstract

Case-based problem solving can be significantly improved by applying domain knowledge (not problem
solving knowledge) which can be acquired with reasonable effort to derive explanations of the cases’
correctness. Such explanations, comstructed on several levels of abstraction, can be employed as
the basis for similarity assessment as well as for adaptation by solution refinement. This paper
presents a general approach for explanation-based similarity and exemplarily shows it’s application
for a diagnosis and a planning task.

1 Introduction and Motivation

The underlying principle of case-based reasoning is the idea to remember solutions to already known
problems for their reuse during novel problem solving. The case which is most similar to the current
problem is retrieved from a case base and it’s solution is modified to become a solution to the current
problem. One of the aspired benefits of case-based reasoning is to reduce the need to acquire and explicitly
represent general knowledge of the problem domain and thereby to overcome the knowledge acquisition
bottleneck. Due to the avoidance of explicit domain knowledge, the similarity between two cases is mostly
assessed by a numeric computation of selected surface features of the problem description and results
in a single number which reflects all aspects of the similarity. All knowledge about problem similarity
is implicitly encoded into a formula which defines a similarity measure. Besides this, less attention was
paid on case adaptation since this would also require a large amount of knowledge — it was even argued
that for classification and diagnostic tasks case adaptation is not necessary.

We want to argue against the idea to avoid all kinds of explicitly represented knowledge. Knowledge
which can be acquired with reasonable effort should be used for similarity assessments as well as for
solution adaptation. Such additional knowledge is required for planning as well as for diagnosis tasks,
in order to achieve more powerful and domain-justified case-based problem solvers. From the current
experience in knowledge acquisition for “traditional” knowledge based systems, we can at least distinguish
two different types of knowledge [Newell,” 1982]: Domain knowledge and problem solving knowledge
[Wielinga et al., 1992]. Problem solving knowledge describes the process of problem solving in terms of
steps (i.e. basic inferences or subtasks as in KADS) that should to be performed to (efficiently) derive a
problem’s solution. This kind of knowledge is the central target of KADS-like modeling approaches which
reflects the high difficulty in it’s acquisition. Unlike problem solving knowledge, domain knowledge is the
knowledge about the “components” that are available to construct a problem solution and their interaction
within the solution to a problem. Domain knowledge is therefore sufficient to determine whether a
proposed solution really solves a given problem. This kind of knowledge is much easier to acquire
than problem solving knowledge, especially in technical domains. Specific domain tailored knowledge
acquisition tools have already been built to support the elicitation and formalization of such domain
knowledge (e.g. [Musen et al., 1987; Schmidt and Zickwolff, 1992]). Using this knowledge, an explanation
of a case can be constructed. On several levels of abstraction, this explanation shows how the case’s
solution solves the case’s problem. Based on such explanations, the similarity between two cases can be
assessed and the adaptation process can also be focused to the relevant portions of the solution.

In the rest of this paper we will describe the approach in more detail and show it’s application for a
diagnosis and a planning task, which are both prototypically implemented.

301

Level n+1:

factaq } m - —»| factyy

fact * rule
abstraction) abstraction]

Level n:

Figure 1. Multi-level explanation structure

2 Explanation-based Similarity for Diagnosis and Planning

The core idea of our approach is to use domain knowledge — which can be acquired relatively easy — to set
the similarity assessment and the adaptation on a more profound basis founded on an ezplanation of a
case. Such an explanation does not describe how a solution is derived (this would require problem solving
knowledge) but that a solutions really solves a given problem, i.e. an explanation of the correctness of
the solution. It is really important to keep this distinction in mind since it make our approach different
from derivational analogy [{Carbonell and Veloso, 1988]. On the other hand, the domain knowledge we
employ for explaining a case is stronger than just causal relations like in other approaches [Barletta and
Mark, 1988; Koton, 1988] and may be best compared to the knowledge employed at the object level of
CREEK [Aamodt, 1991].

The similarity of two cases can be judged according to the similarity of their explanations. This
requires that a knowledge base containing relevant domain knowledge is built on several levels of abstrac-
tion. An explanation on a lower level of abstraction is a more specific explanation and is consequently
composed of a larger number of specific rules than an explanation on a higher level of abstraction. There-
fore, the explanations of two cases can differ very much on a lower level of abstraction but will be identical
on a higher level of abstraction. This observation leads us to a rating of the similarity of two explanations:
The lower the level of abstraction is on which two explanations are identical, the higher is the assessment
of their similarity. -

2.1 Representation of Explanations and Similarity assessment

In diagnosis as well as in planning, an explanation on one level of abstraction can be represented in a
graph structure (see figure 1) with two different kinds of labeled nodes: rule-nodes and fact-nodes. Each
rule which is used in an explanation is represented by a rule-node, labeled with the name of the rule.
Fact-nodes represent case specific facts in an explanation which are either given (e.g. from a problem
description) or which are derived by a rule. Fact-nodes and rule-nodes are linked by directed edges.
Incoming edges into a rule-node (starting at a fact-node) reflect the premisses of the rule and outgoing
edges, leading to fact-nodes, stand for their conclusions.

Two explanations on one level of abstraction are called identical, if the graphs are identical except for
the labeling of the fact-nodes which can vary. Corresponding rule-nodes must be labeled with the same
name of the rule !.

Explanations on two consecutive levels of abstraction are linked by abstraction mappings, which can
relate several level Level, fact-nodes to a single level Level,;; fact-node. Additionally, a subgraph
containing several rule-nodes can be mapped onto a single more abstract rule on the next higher level
of abstraction. The similarity between two complete multi-level explanations can now be determined
according to the level of abstraction on which the explanations are identical. The higher the level of
abstraction the lower is the similarity rating.

The definition of explanation-based similarity presented so far requires complete explanations for both
cases to be compared. For the similarity assessment within a case-based reasoning process, a complete
case from the case-base (including an explanation) has to be compared with the — currently not solved
— problem description not containing an explanation. To allow similarity assessment nevertheless, the

I Finer differentiations in explanation similarity can be reached if a similarity rating between rules can be provided.

302

Case 1 Case 2

@—— Wireqg Fﬁm ‘ @7 Wiregs Elays —@

Figure 2: Two cases from a technical diagnostic domain

explanation of the case in the case base is mapped to the current problem description as far as possible.
Starting at the highest level of abstraction, it is checked whether the current problem description meets
the requirements of the case’s explanation at that level 2 . If this is the case, the explanation and thereby
also the case’s solution is mapped and this process proceeds with next, more concrete level. The level at
which the explanation cannot be mapped any more will then indicate the degree of similarity between
the case and the current problem. Note, that by the described way of similarity assessment one step of
a solution adaptation (mapping of components) has already been performed. An additional adaptation
step is required to refine the abstract solution towards the aspired level of detail, which can be achieved
by a limited search in the space of possible solutions. The computational cost for the search strictly
depends on the number of abstraction levels which have to be bridged and consequently on the degree of
similarity between the current problem and the case in the case base. If the similarity is not high enough,
the search space which had to be traversed can become so large, that no solution can be found. Such a
situation is a strong indication that a new case has to be added to the case base.

2.2 An Example from a Diagnostic Domain

This general idea will now be applied for a diagnostic domain. The goal of diagnostic problem solving
is to identify one or sometimes more than one faulty components (call diagnosis) of a system that shows
some unintended behavior. The (partially unintended) system’s behavior is usually described by a set
of symptoms. A complete case consists of a collection of known symptoms (the problem description)
together with a diagnosis (solution) which is sufficient to explain all of the observed symptoms. In order to
explain the diagnosis domain knowledge about the correct functioning of the system components and their
interaction within the system is required. Moreover, the hierarchical part-of decomposition of the system
leads to a natural description of the component’s behavior on multiple levels of abstraction. Another
way for abstracting components is provided by a hierarchical structure abstracting single components
and component-groups. An abstraction of Relay as well as of Valve might be Switch.

A simplified exaraple from a technical domain is shown in figure 2. A generator G1 supplies via a wire
and a relay an electric bulb L2 (see case 1). If the wire breaks, even if the relay is shut the lamp will stay
dark. A similar case (case 2) appears by replacing the bulb by a motor M1. A description of a machine
component will include information about the component’s in- and outputs, especially about the value
range and the component’s behavior. A wire, for example, can be described as follows: It can transmit
voltages between 0V and 20,000V (value range). If the wire functions correctly, any input-value will be
transfered to the output, but if it is broken, voltage at the output will always be zero (behavior). In an
explanation, a certain input- or output-value will be represented as a fact. The actual behavior of the
device transforming input values into output values will be represented as a rule. For our two example
cases, this way of modeling leads to explanation structures as shown in figure 3.

The two level-1 explanation structures turn out to be not identical because on the considered abstrac-
tion level the rules describing the behavior of a motor and the behavior of a bulb are different. But if we
look at the explanation the next higher level of abstraction, the behavior of the both different components
can be condensed into a single rule which reflects a doesn’t operate behavior. So, the explanations of
both cases are identical at the second level of abstraction.

If we now consider the case-based diagnosis process involving the mapping of the level-2 explanation
from case 1 to the problem description of case 2 (generator works, relay is shut, but bulb stays dark)
we already achieve the mapping of the faulty component (wire18) from case 1 to the related component
{wire65). In this situation we can see, that the required diagnosis adaptation is completely performed by
the explanation mapping. In general, however, an adapted abstract solution needs to be refined towards
a concrete diagnosis as it will be shown in section 3.1.

The presented approach has been completely implemented as the MoCAS-system [Pews et al., 1992;
Pews and Wess, 1993] which performs a case-based diagnosis task including the described type of solution
adaptation for a machine consisting of about 100 components.

2Even if the complexity for graph matching is very high [Read and Corneil, 1977}, the fact that our nodes are typed by
the names of the rules drastically reduces this complexity.

303

L2 EINC WourFin o — e
- “off* \ alactrical machine component)
- 1

iCase 2

Figure 3: Explanation structures for two diagnostic cases

2.3 An Example from a Planning Domain

In planning, the goal of problem solving is to derive a sequence of actions (or operators), which, when
applied, transform a given initial state into a desired goal state. Initial state and goal state together
constitute the description of a planning problem and the operator sequence forms the desired solution.
The domain knowledge required to explain the correctness of a problem’s solution must describe the
effects of each available operator in terms of a state transformation function. The operators of a domain
can be described on several levels of abstraction, an idea already intensively investigated in research on
hierarchical planning [Sacerdoti, 1974]. A plan on a higher level of abstraction consists of fewer, less
detailed operators and corresponds to an abstract explanation.

To demonstrate the application of the explanation-based similarity approach for case-based planning,
we will employ the well known Towers-of-Hanoi (ToH) domain. A plan which solves a given ToH problem
is a sequence of legal single disk move actions. The rules required to explain the correctness of such a
plan are the STRIPS representations of the available operator Move (Source,Destination). Additionally,
operator descriptions on higher levels of abstractions are required such as: MoveLargeDisk, SplitTower,
or JoinTower. To achieve the correspondence between the two levels of abstraction, knowledge about
plausible abstraction mappings is included, describing, for example, which grouping of single disks on the
concrete level forms a tower on the abstract. This entire multi-level modeling is based on an elaborated
plan abstraction methodology published elsewhere [Bergmann, 1992].

For the two-disk ToH-case Cp; (move the two disks from peg a to peg c), the two-level explanation
structure is presented in figure 4. Each rule node in this structure reflects one operation of the solution
plan. The fact-nodes show the states of the different pegs during the execution of the plan. The ex-
planation at the abstract level is composed of three, more abstract rules, each of which representing an
abstract operation.

If we want to assess the similarity between the case Cp; and a new problem Cp; in which the two disks
have to be moved from peg b to peg a, we can see that the explanation given in figure 4 can be completely
mapped for the new problem. The only difference between the explanations for the two problems is the

Level 2

} ’ '

[ut)

]
“

Level 1

Figure 4: An explanation structure for the Towers-of-Hanoi plan

304

splitTower(a,b) MoveLargeDisk(a, <) JoinTower (b, ¢)

Abstract plan:

m(a,c) m{a,b) m{c,b) m{a,c) m(b,a) m (b, c)

Refined plan: | 2
3

Figure 5: Refinement adaptation for the 3-disk Towers-of-Hanoi problem

labeling of the face-nodes which reflect the “alteration of the source and destination pegs. But the fact
labels are irrelevant for determining the similarity between two explanation graphs. By comparing case
Cpi to a third problem Cpsz in which three disks have to be moved from peg a to peg ¢, it turns out
that the explanation at the abstract level can be mapped (a complete abstract tower does now consists
of all three disks), while the concrete-level explanation cannot be mapped. So, the cases Cp; and Cpy
are more similar than the cases Cp; and Cps.

3 Case Adaptation

The result of the up to now described similarity assessment process is not only a (numeric) rating of the
similarity, but also a partial mapping of the explanation structure from a case in the case base to the
current problem. The computational effort required to achieve a full concrete-level solution (a specific
diagnosis or a plan composed of concrete operators) highly depends on the level of concreteness that could
be reached by the attempt to map the explanation structure. The more similar the case in the case base,
the lower is the required amount of search for solution adaptation. The possibility of solution refinement
significantly extends the scope of case reuse with respect the standard case-based and explanation-based
approaches.

3.1 Refinement Adaptation in Diagnosis

In case-based diagnosis, the refinement of a diagnosis means specializing a known fault of a more complex
component to one (or more} faults in it’s sub-components. This only requires a limited search for a
potentially faulty sub-components to those which belong to the already known faulty component. As an
example, we recall our example cases from figure 2 and consider a third case which differs from case 1
in that the wire is replaced by a more complex transmission component such as an infrared-sender and
receiver including several amplifiers.

An explanation mapping at an appropriate level of abstraction will now lead to the identification of
the compound component with the broken wire and results therefore in the diagnosis that the compound
component might be damaged. The search will now be focussed on the sub-components the compound
component consists of; the solution needs to be refined by model-based techniques using the model
knowledge already explored during the similarity assessment. Fortunately, in real life it is very often not
necessary to identify which sub-part of a component causes the defect when the whole component can
simply be replaced.

3.2 Refinement Adaptation in Planning

In case-based planning, refinement adaptation means specializing each operator of the abstract solution
plan to a sequence of concrete operators. This is merely a planning task, but performed in a limited
search space and consequently assumed to be tractable if the similarity is high enough. If we look, for
example, at the adaptation which is required for refining the mapped explanation from the planning
case Cpy to the problem Cp;s defined in section 2.3, all of the three abstract operations must be refined
as shown in figure 5. An experiment showed that 36 nodes at the concrete level search space had to
be visited for this refinement task. 2785 nodes where required to adapt the 2-disk ToH solution for a
4-disk problem. More complexity results for different ToH-problems can be found in [Bergmann, 1993;
Surmann, 1993].

305

4 Discussion

The presented task-independent approach allows for an integration of domain knowledge ~ which is
relatively easy to acquire — into the case-based reasoning process for similarity assessment and solution
adaptation. Dependent on the degree of similarity between the current problem and a case in the case
base, the system behaves more like a case-based reasoning system or a like model-based reasoning system:.
As a consequence, the scope for which a case can be employed is increased dependent on the amount
of domain knowledge that is entered into the system. A knowledge engineer applying this method can
decide whether to enter more cases into the case base or whether to spend additional domain knowledge
on more elaborated levels of abstraction to achieve the same competence.

Currently, there are a few other approaches which favor the integration of additional problem solving
knowledge knowledge (e.g. [Carbonell and Veloso, 1988]) or more simple causal relationships (e.g. [Bar-
letta and Mark, 1988; Koton, 1988; Janetzko et al., 1992]) into case-based problem solving, while others
aim at the integration of different reasoning paradigms (e.g. [Aamodt, 1991]) but mostly in a task-specific
manner. In [Birnbaum and Collins, 1988] an approach is described with some similarities with respect to
the use of abstraction hierarchies for solution adaptation but with the focus on cross-domain transfer.
Acknowledgements
This research was partially funded by the Commission of the European Communities (ESPRIT contract P6322, the INRECA

project). The partners of INRECA are AcknoSoft (prime contractor, France), teclnno (Germany), Irish Medical Systems -
(Ireland) and the University of Kaiserslautern (Germany). ' ‘

References

[Aamodt, 1991] Agnar Aamodt. A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained Learning.
PhD thesis, University of Trondheim, 1991.

[Barletta and Mark, 1988] R. Barletta and W. Mark. Explanation-based indexing of cases. In J. Kolodner, editor, Proceed-
ings of the DARPA Workshop on Case-Based Reasoning, pages 50-60, San Mateo, California, 1988. Morgan Kaufmann
Publishers, Inc.

[Bergmann, 1992] R. Bergmann. Learning plan abstractions. In H.J. Ohlbach, editor, GWAI-92 16th German Workshop
on Artificial Intelligence, volume 671 of Springer Lecture Notes on Al, pages 187-198, 1992.

[Bergmann, 1993] R. Bergmann. Integrating abstraction, explanation-based learning from multiple examples and hierarchi-
cal clustering with a performance component for planning. In Enric Plaza, editor, Proceedings of the ECML-93 Workshop
on Integrated Learning Architectures (ILA-93), Vienna, Austria, 1993.

[Birnbaum and Collins, 1988] L. Birnbaum and G. Collins. The transfer of expertise across planning domains through the

acquisition of abstract strategies. In J. Kolodner, editor, Proceedings of the DARPA Workshop on Case-Based Reasoning,
pages 61-79, San Mateo, California, 1988. Morgan Kaufmann Publishers, Inc.

[Carbonell and Veloso, 1988] J. Carbonell and M. Veloso. Integrating derivational analogy into a general problem solving
architecture. In J. Kolodner, editor, Proceedings of the DARPA Workshop on Case-Based Reasoning, pages 104-124,
San Mateo, California, 1988. Morgan Kaufmann Publishers, Inc.

[Janetzko et al., 1992] D. Janetzko, S. Wess, and E. Melis. Goal-driven similarity assessment. In H.J. Ohlbach, editor,
GWAI-92 16th German Workshop on Artificial Intelligence, volume 671 of Springer Lecture Notes on Al 1992.

[Koton, 1988] P. Koton. Reasoning about evidence in causal explanations. In J. Kolodner, editor, Proceedings of the DARPA
Workshop on Case-Based Reasoning, pages 260-270, San Mateo, California, 1988. Morgan Kaufmann Publishers, Inc.

[Musen et ¢l., 1987] M. Musen, L.M. Fagan, D.M. Combs, and E.H. Shortliffe. Use of a domain model to drive an interactive
knowledge-editing tool. Int. J. Man-Machine Studies, 26:105-121, 1987.

[Newell, 1982] Allen Newell. The knowledge level. Artificial Intelligence, 18:87-127, 1982. KIW1.

[Pews and Wess, 1993] G. Pews and S. Wess. Combining model-based approaches and case-based reasoning for similarity
assessment and case adaptation in diagnositc applications. Submitted for EWCBR’93, 1993.

[Pews et al., 1992] G. Pews, F. Weiler, and S. Wess. Bestimmung der Ahnlichkeit in der fallbasierten diagnose mit sim-
ulationsfahigen maschinenmodellen. In K.D. ALthoff, S. Wess, B. Bartsch-Spdrl, and D. Janetzko, editors, Workshop:
Ahnlichkeit von Fdillen beim fallbasierten Schliessen, SEKI WORKING PAPER SWP-92-11, pages 101-106, University
of Kaiserslautern, Germany, 1992.

[Read and Corneil, 1977] R. C. Read and D. G. Corneil. The graph-isomorphism disease. Journal of Graph Theory,
1:339-363, 1977.

[Sacerdoti, 1974] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence, 5:115-135, 1974.

[Schmidt and Zickwolff, 1992] G. Schmidt and M. Zickwolff. Cases, models and integrated knowledge acquisition to formal-
ize operators in manufacturing. In Proceedings of the 7th Knowledge Acguisition for Knowledge-based Systems Workshop
(Banff), 1992.

[Surmann, 1993] D. Surmanm. Implementierung und vergleichende Untersuchung verschiedener Varianten abstraktions-
basierter Planungsverfahren . Projektarbeit, Universitat Kaiserslautern, 1993. in press.

[Wielinga et al., 1992] B. Wielinga, W. VandeVelde, G. Schreiber, and H. Akkermans. Towards a unification of knowledge

modelling approaches. In Proceedings of the 7th Banff Knowledge Acquisition for Knowledge-based Systems Workshop,
1992,

306

A Hybrid KBS for Technical Diagnosis Learning and Assistance

David Macchion(! & Dinh-Phuoc Vo®

(1) IRIT (Research Institute in Computer Science of Toulouse) -ARAMIIHS
(2) MMS-F (Maura-Marconi Space France) -ARAMITHS
31, Rue des Cosmonautes
31077 Toulouse Cedex, France

This paper presents a fault diagnosis design which builds in Model-Based, Case-Based and Rule-Based
Reasoning techniques. Within the Model-Based Reasoning layer, the system to be diagnosed is described under
functional, structural and causal aspects; basic principles operating on this technical model allow to follow a
sysiematic diagnostic process. Within the Case-Based Reasoning layer, the MBR or Expert’s resolutions of past
incidents are organized and indexed so that they can be quickly reused and possibly adapted by a four steps CBR
engine; a hierarchy of symptoms and some’ adaptation principles are also defined. Within the Rule-Based
Reasoning layer, the solutions of the most frequent incidents are synthesized into rules which can be either
manually supplied or automatically generated. Combining these techniques in a predefined but suitable
resolution strategy improves the efficiency of the target Knowledge-Based System and increases the scope of
its initial competences.

1. Introduction

Technical diagnosis is one of the most active application ficlds in Al research. Building diagnostic tools for
real world systems is both an industrial need and a rescarch challenge. As the application domains get more and
more complex, the assessment of the right diagnosis demands more and more sophisticated techniques. Hardware
detector devices can be early inserted in the design of such systems in order to track their abnormal behaviors.
Assistance tools supported by various Al techniques can be in addition devcloped for performing faster and more
precise diagnoses. While proposing solutions for those complex problems, existing Al techniques are refined and
rationale principles in Knowledge-Based System (KBS) design {5] created.

2. Motivations

Our work consists in developing a KBS dedicated to the diagnosis of a complex sub-system of the Ariane-
4 layncher, From the detailed study of this application under the supervision of a domain expert, three keypoints
were identified. First, we observed that different types of knowledge arc available for supporting diagnostic
performance [18], especially technical documcntation, incident forms, gencral and specific electrical principles...
Second, we noted that the expert sometimes calls on personal experience to empirically optimize and confirm his
diagnostic conclusions. Finally, we noticed that the resolution of frequent incidents seems to involve surface
knowledge whereas the resolution of unusual ones demands a deeper knowledge [12]. Taking these facts into
account led us to design what is labelled a «Hybrid Knowledge-Based System» for technical diagnosis [2]. An
implementation of this design is currently being developed.

3. Ariane-4 Vehicle Equipment Bays

The Vehicle Equipment Bays (VEB) of the Ariane-4 launcher are assembled in the Matra-Marconi Space
center based in Toulouse. A VEB must schedule the launcher flight by computing guidance actions, telemetry
emissions, order diffusions... Engineer teams are in charge of the assembling of their various equipments (On-
board computer, electronic sequencing unit, interface unit, iclemetry modules...) before running out exhaustive .
electrical tests. In the course of these test procedures, a huge amount of VEB parameters is acquired by surveillance
devices (relay state control mechanisms, analogical and digital acquisitions, equipment status word generations...)
situated either in the VEB or in the test bench. These parameters arc sent 10 a ground computer which automatically
detects branchings between effective and expected values. Specific anomaly messages are then reported on a listing
so that human operators can start their investigations.

4. Combining rules, cases and a technical model

We have just presented the main issucs of our expertisec domain i.e., the availability of different knowledge
sources, the limits of a systematic diagnostic process and the helcrogencous complexity of the treated incidents.

307

Although the nominal running of the VEB is perfectly defincd, we in short noticed that it is insufficient for
deducing its disfunctioning behavior. In this context, neither pure Model-Based Reasoning {20} nor pure Expert
System [15] techniques are convenient. Consequently we chose to combine different techniques, namely Model-
Based (MBR), Case-Based (CBR) and Rule-Based (RBR) Reasonings as partially discussed in [1], [8], [14].
Relying on their different representation formalisms, we include in a single KBS a detajled technical model, a
memory of encountered incidents and a set of shorcutting rules.

5. Model-Based Reasoning layer

The basic layer of our KBS is MBR and assigned to three major purposes : it characterizes the domain
concepts into hierarchies; it describes in a technical model some functional, causal and structural aspects of the
VEB [11]; it provides some heavy and slow propagation principles 10 operate on the technical model [7]. The
domain concepts are available for the CBR and RBR layers to fill the description of the cases and the premisses of
the rules. The technical model can be used at different phases of the CBR resolution, especially retrieval and
adaptation time. The diagnostic capabilities of this layer are activated as long as the RBR and CBR layers fail in
providing a satisfying solution to a given incident.

5.1. Domain concepts

The technical vocabulary of the VEB is organized into classes of equipments (relays, fuses, sensing units...),
functions i.e. equipment roles (transmission, acquisition, alimentation...), flows i.¢. spreading information (orders,
status words...), parameters (cycles, voltage values...), anomaly messages (telemetry, analogical acquisitions...)...
Methods for computing functioning details, testing specific equipments, asserting message dependencies... are also
proposed. ‘

5.2. Technical model

From the functional point of view, an equipment is split into its different functions which must reflect its
Inpu/Output (I0s) dependencies and its roles within the VEB. As complex functions are implemented by lower
ones, significant functions are often difficult to extract from the VEB design. Therefore many function classes and
decompositions have to be distinguished. Nominal behavior can be expressed for producing expected outputs from
expected inputs.)

Causal knowledge is gathered in a set of causal links. A causal link stresses a relation between one or several
anomaly messages and a function breakdown. As detector hardware devices are placed along some of the spreading
flows, some causality links can be directly deduced from the structure of the VEB. This primary causal knowledge
is not yet sufficient to precisely and reliably localize the guilty function. This type of knowledge must therefore be
improved in the light of incident cases while real faults imply real symptoms.

From the structural aspect, equipment functions are connected by buses, wires or cables. Any function
whether it is complex or atomic, its subsequent and following ncighbors and the connection type are therefore
mentioned. This knowlegde allows to quickly retrieve the path of a given flow. CBR adaptation mechanisms can
also use this information to transform the solution of a similar case.

5.3. Diagnosis capabilities

The resolution capabilities of the MBR layer are first supported by a straightforward principle : the fault
must be in the intersection set of the functions placed upstrecam the ones which have sent an anomaly message.
Then, improved or primary causal knowledge can be applicd to discard a suspected function F : if the anomaly
messages observed in a past case involving F do not reappear, then F is suppresscd; the alternate way to discard F
is to verify that one of its dowstream detector functions has not emitted. Finally, a reduced number of manual tests
has to be performed to fix the right diagnosis. Consequently, the resolution process we adopted is split into two
main phases : we first delimit a minimal space of hypotheses;.we then compare each function expected and
received 10s to find out the faulty one. Expected values must be computed by the MBR functioning knowledge
whereas received values are given by the user.

6. Case-Based Reasoning layer

The second layer of our KBS is case-oriented and works on four different types of case. It stores in solved
cases the resolutions processed by the MBR solver so that they can be quickly recalled for forthcoming incidents.
During learning dialogues with an instructor, it retains in unexplained cases the solution of the diagnoses the MBR
layer does not succeed in solving because they include temporal aspects or demand too deep technical information;
this task can create and update the causal knowledge since new relations between faults and symptoms are
discovered. It stores exception cases which diagnosis is different from the one deduced by a diagnostic rule which

308

premisses nevertheless match the case description. Finally, it can generate situation cases which organize under
labelled situations a collection of cases which shares a set of common indexes. A four phases CBR engine operating
on a dedicated case structure and memory organization is activaled to attempt to give the solution to the RBR
unsolved incidents.

6.1. Case structure

For our requirements, we structure a diagnostic case under six attributes. Its description consists in the list
of its observed anomaly messages. Its situation may attach the case to a more prototypical one i.e. a situation case.
Its process represents the ordered list of the procecded tests and associated results. Its diagnosis then establishes
the function which was in fault and the state of its I0s. Unexplained cases may contain specific details in the
context attribute instead of a list of proceeded tests. The repair atiribute is filled with the actions to be taken.

6.2. Case memory

Our diagnostic cases are organized in a hierarchy [19], [17] of situation cases i.e., more or less abstract
classifications of incident types. In the first levels of the hierarchy, the cases are stored according to their
description. Two diagnosis cases with at least one similar anomaly message may be placed under a situational case
indexed by the commom symptoms. Situation cases representing prediagnostic conclusions drawn by the expert
out of well-known combinaitions of symptoms can be manually added [21]. Otherwise, the symptom presence,
importance or absence are taken into account to automatically construct consistent clusters. The intermediate levels
of the hierarchy systematically divide the situational cases according to test results and functioning conditions.
Then, the leaves of the hierarchy contain diagnosis cases with their associated diagnosis and repair actions.

Indexes relating one or several symptoms {0 a case have either a positive or negative influence on the
associated diagnosis. Positive indexes can be of remembrance, sufficiency, necessity or equivalence types :
remembrance index allows to extract a case [rom the memory; a sufficiency index allows to retain a case for
presentation; a necessity index allows to discard a retrieved casc which does not present the associated symptoms.
Negative indexes can be of inhibition or exclusion types [4] : an inhibition index decreases the remembrance
strength of a case; an exclusion index definitively discard a case for consideration.

6.3. Retrieval phase

The two phases of the MBR diagnostic process also underlic the CBR resolution. First, positive indexes are
first used to recall a plausible set of cases. Negative and necessity oncs can reduce this hypothesis set. The strength
of the useful indexes are combined 1o form a ranked list of cases. If the hypothesis list is empty, indexes containing
symptoms that share the same superclass [10] with the observed ones are attempted. Then, once an a priori
satisfying situation case is assessed, the intermediate levels of the hierarchy support the systematic comparison
between the past case configuration and the present problem. If several sub-cases compete, their appearance rating
determines the presentation order. As a leave is reached, its diagnosis is proposed for approval. If a solved case is
directly retrieved, it is proposed before any concurrent situational case. If a MBR unexplained case is retrieved, the
applicability of its context is checked before presenteation.

6.4. Adaptation phase

As the CBR retriever may have retained some cases with symptoms different from the current ones,
" adaptation is sometimes required to transform the past solutions. We have defined a very limited set of adaptation
_ principles since it seems rather incoherent to manipulate the diagnosis of a source case which does not share the
same symptoms than the target. The first principle is applicablc when only one symptom is present : we can then
interchange the past detector function with the new one and propose it for diagnosis. The second principle is
applicable when two correlated symptoms are present : their common upstream contributors can then be proposed.
The last principle is rather an escape clause : considering that breakdowns on neighbor functions may yield the
same symptoms, subsequent or following functions may become the right diagnoses. This convenient technique
allows to traverse the hierarchies of cases. For future reuse, those patched successes can be stored in branching
links. If available, an explicit mean of distinction may fill the branching link.

6.5. Approval phase

Three significant CBR inferences must be presented to the user for approval. First and if available, the
primary situational levels must be approved since they define the set of diagnostic cases which arouses suspicion.
Second, the diagnosis process must be fully applied to verify that the suspected functions have the same 1O states
as they did . the effective 10s of the functions to be tested and the comparisons to the expected IOs are asked and
presented. Finally, it must be proved by manual tests that the incriminated function has got correct inputs and
abnormal outputs. If the user is not expert, the first approval can be avoided : this will only have a possible impact
on the number of cases the system will try before reaching the right solution.

309

6.6. Storage phase

Once the diagnosis has been established by the CBR or MBR layers or by the instructor, the target case has
to be stored in the hierarchy. In the most favorable situation, it can be merged to the source case : the strength of
its indexes can be appreciably increased; if it is dependant of a situational case, the appearance rating is also
augmented. If a failure occurs but is successfully adapted, branching links are created. If the system proposes an
incorrect case, negative indexes can be placed or positive indexes can be decreased. If the right diagnosis is not
proposed, maybe it is possible that new tests only need to be added 10 cnd up at the solution. If the instructor decides
on his own that the case brings to the fore a new situation, he must enter new indexes, resolution steps and
diagnosis. If the case is finally unexplained, the instructor supplies some more context precisions and its solution.

7. Rule-Based Reasoning layer

The last layer of our KBS consists in a set of shorcutting rules. Its purpose is to retain the solution of the
incidents which often reappear. Diagnosis rules can be manually supplied to catch well-known situations and then
to refine, generate and validate their associated hypotheses. Factual rules conclude with any intermediate results of
a diagnosis rule. They are defined in the MBR layer for establishing the function states and dependencies between
messages. Diagnosis rules can also be generated by the index analyser from index evolutions. For instance, as soon
as aremembrance index strength exceeds the sufficiency threshold, an attempt is made to convert it into a suspicion
rule of its associated situation. During next interactive sessions, exception cases weakening this rule can
nevertheless be encountered. Before activating the competences of the CBR layer, the diagnosis rules of the RBR
layer are tried.

8. RBR, CBR and MBR interactions

The knowledge of our KBS is shared out among MBR, CBR and RBR layers. Diagnosis rules can be
initially provided by the domain expert or automatically created by the index analyser out of sufficency, exclusion,
necessity and equivalence indexes. Exception cases are created as soon as the conclusion of a fired rule does not
turn out to be the right diagnosis. Solved cases are associated 1o the incidents successfully treated by the MBR
layer. Unexplained cases diagnosis and context are provided by the expert when the MBR solver reports a failure.
Situation cases are proposed for creation to the expert as soon as several diagnosis cases share a common set of
symptoms. Causal knowledge is extracted from diagnosis cases or VEB design and is used by the MBR layer for
hypothesis suppression. Figure 1 sums up the possibie relationships between the three layers.

The strategy including the RBR, the CBR and the MBR competences is fixed. Solving a target incident
consists in a sequential activation of the RBR, the CBR and the MBR competences. Within the RBR layer, the
solution can be provided by a diagnostic rule or an exception case. If the RBR layer fails, a solved or unexplained
case of the CBR layer may give the solution. Otherwise, the MBR capabilities inspect each of the functions
involved in a minimal set. If the diagnosis is not yet found, the instructor has to supply the solution. From the
cognitive point of view, we claim that this global strategy tends to reflect our expert’s resolution process : if the
incident keeps recurring, he can automatically recognize its situation; if the problem already occurred, he can recall
its past global or partial resolution. Otherwise, he must aclivale a heavier process based on a technical
representation of the equipment to be diagnosed.

Technical
Expert Case-Basc model
Analysis
Knowledge Interactive Causality
Acquisition Resolutions Extractor
Exception cases
e with defective rule
Diagnostic ex
i Solved cascs
Tules Analysis with diagnoslic process _ i
. Diagnostic
Unexplained cases | Report
Fired Rule with context precisions
Analysis) Siation cases
with sub-cases
Figure 1 : The relationships between the rule base, the case base and the technical model.

310

9. LOIR (Lisp Objet Inférence Réflexe)

We are developing our KBS with LOIR, a hybrid language realized by a team [3] of the IRIT laboratory. It
provides various functionalities such as a Common Lisp layer, a reflex inference engine, a frame-based formalism,
pattern matching mechanisms and a dialogue and action modcls. Frames are convenient to describe the technical
vocabulary of the VEB. Our cases are implemented in dedicated frames accessed by typically CBR methods :
retrieval, indexing, adaptation... Any kind of rule is triggered with backward, forward or mixed inferences. All the
methods managing objects are Lisp written.

10. Related works

The main originality of our research is 1o integrate in a technical diagnosis system Rule-Based, Case-Based
and Model-Based Reasonings whereas most of the CBR systems only combine rulcs and cases or cases and a
model. The Casey system [14] also offers the possibility to build solutions from scratch by activating its MBR
solver. However, the MBR layer only reasons with a pure causal knowledge relating patient’s states to others states
or diseases. The Cabaret design [22] provides sophisticated heuristics for controlling and interleaving reasoning
with cases and reasoning with rules. We only retained the possibility to activate an exception case within the rule-
based layer. The Mud-Creek system [1] exploits functional and structural links at retrieval time in order to enhance
the intial set of findings. We thought it better to use this knowledge type within the exhaustive diagnostic process
of our model-based layer.

11. Conclusion and future works

Diagnostic tasks in real world applications cannot be properly described in a unified and clear-cut manner.
Combining different reasoning techniques seems 10 be a significant and promising way to build more powerful
KBS. By including MBR paradigm, the domain concepts and some basic functioning principles can be expressed.
By including CBR paradigm, the system can learn and improve its competences in the course of being used. By
including RBR paradigm, shorcutting rules can quickly provide the diagnosis of well-known incidents. The design
we presented in this paper attempts 10 make its contribution to this hot 1opic research.

Although many implementation problems still retain our current efforts, we have already stressed two
design points to improve :

« The different layers neither confront nor cooperate : the {irst validated solution stops the search
process and only the supplier layer worked. Therefore, the knowledge base may become inconsistent while
new cases are learned. To limit these inconsistency risks, the different formalisms could be unified in a more
complex case notion which would include systematic rules, past situations and hesitant processes as
discussed in [16, 13]. However, we claim first that the relative independence of the presented layers allows
an incremental development and second that the layer competences may remain complementary.

= The domain dependent concepts and most of the technical aspects are definitively fixed : the CBR
and RBR layers could not work without this prerequisited knowledge. How did we a priori decide which
knowledge would be significant for our coming CBR and RBR needs ? This complex task was in fact
manually performed out of acquisition phases. Morcover, many past incidents influenced our decisions to
define the boundaries of the domain knowledge. Improving problem solving competences cannot be
therefore separated from learning strategic knowledge [9, 6] as well as domain knowledge [4].

12. References

1. A. Aamodt, «A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained
Leaming», Ph.D Thesis of the Trondhcim University, Norway, 1991.

2. K. Althoff & S.Wess, «Case-Based Knowledge Acquisition, Learning and Problem Solving For
Diagnostic Real World Tasks», Procecdings of EKAW, Mat 1991,

3. U. Arronategui & F. Mieulet, «Le langage LOIR : objets, régles et actions pour la
modélisation», Ph.D Thesis of the Toulouse III University, France, June 1992.

4. R. Bareiss, «Exemplar-based knowledge acquisition : A Unified Approach 1o Concept
Representation, Classification, and Lecaming», Academic Press, 1989.

5. J. Breuker, G. Schreiber & B. Wiclinga, «<KADS : A modelling approach to Knowledge
Engeneering», Knowledge Acquisition Vol 4, KADS issues pp.5-53, Summer 1992.

6. G. Carbonell, «Derivational Analogy : A Theory of Reconstructive Problem Solving and
Expertise Acquisition», B, Buchanan & D. Wilkins editors, pp. 727-738, M. Kaufman, 1993.

311

7.

10.

11,

12.

13.

14

15.
16.

17.

18.

19.
20.

21.
22.

R. Davis, «Diagnostic Reasoning Based on Structure and Behavior», Artificial Intelligence 24,
pp-347-410, 1984.

A. Goel, «Integrating Case-Based and Model-Based Reasoning : A Computational Model of
Design Problem Solving», Al MAGAZINE, pp. 50-53, Summer 1992.

T. Gruber, «The Acquisition of Strategic Knowledge», Academic Press Inc, 1989.

K. Hammond, «Case-Based Planning ; Viewing Planning as 2a Mcmory Task», Academic Press,
1989.

A. Keuneke, «Machine Understanding of Devices : Causal Explanation of Diagnostic
Conclusions», Ph.D Thesis of the Colombus Univeristy, Ohio, 1989.

D. Klein & T. Finin, «What’s in a Deep Model ? : A Characterization of Knowledge Depth in
Intelligent Safety Systems» pp. 559-562, IJCAI, 1987.

J. Kolodner, «Towards an understanding of the role of experience in the evolution from novice
to expert», International Journal of Man-Machine Studies No 19, pp. 497-518, Academic Press,
1983.

P. Koton, «Using Experience in Learning and Problem Solving», Technical Report,
Massachussetts Institute of Technology, October 1988,

J. Moustafiadés, «Formation au diagnostic technique : I’apport de I'IA», Masson, 1990.
R.Schank, «Dynamic Memory : A theory of Reminding and Learning in Computers and
People», Cambridge University Press, 1982,)

R. Schank & C. Riesbeck, «Inside Case-Bascd Reasoning», Lawrence Erlbaum Associated,
1989.

F. Schmalhofer & J. Thoben, «The Model-Based Construction of a Case-Oriented Expert
System», AICOM Vol 5 No 1, pp. 3-18, Mai 1992,

P. Sycara, «Case-Based Reasoning», CBR tutorial of the EM2SL, July 1991.

R. Reiter, «A theory of Diagnosis from first Principles», Artificial Intelligence 32, pp. 57-95,
1987.

ReMind™ Functional specifications for REMIND dcvelopment version 1.0

E. Rissland & D. Skalak, «Combining Case-Bascd Reasoning and Rule-Based Reasoning : A
Heuristic Approach», IICAI-89, Vol 1, pp. 20-25, August 1989.

312

Induction and Reasoning from Cases

Michel MANAGO O, Klaus-Dieter ALTHOFF @, Eric AURIOL (), Ralph TRAPHONER ®),
Stefan WESS), Noél CONRUYT (D, Frank MAURER)

1 Introduction

We present the INRECA european project (ESPRIT 6322) on integration of induction and case-
based reasoning (CBR) technologies for solving diagnostic tasks. A key distinction between
case-based reasoning and induction is given in [1]: "In case-based methods, a new problem is
solved by recognising its similarities to a specific known problem then transferring the solution
of the known problem to new one (...) In contrast, other methods of problem solving derive a
solution either from a general characterisation of a group of problems or by search through a
still more general body of knowledge". In this paper, we distinguish between a pure inductive
approach and a case-based one on the basis that induction first computes an abstraction of the
case database (ex: a decision tree or a set of rules) and then uses this general knowledge for
problem solving. During the problem solving stage, the system does not access the cases

2 INRECA’s Inductive and Case-Based Approaches

Induction is a technology that automatically extracts general knowledge from training cases.
KATE is the inductive component of INRECA. It builds a decision tree from the cases by using
the same search strategy, hill-climbing, and same preference criteria that is based on Shannon's
entropy as ID3 [2]. Unlike most induction algorithms, KATE can handle complex domains
where cases are represented as structured objects with relations and it can use background
knowledge. At each node, KATE generates the set of relevant attributes of objects for the
current context and selects the one that yields the highest information gain. For instance, an
attributes such as “pregnant” for a patient whose sex is known to be “male” further up in the
decision tree is eliminated before the information gain computation. Background domain
knowledge and class descriptions allow to constrain the search space during induction [3].

' Case-based reasoning is a technology that makes direct use of past experiences to solve a new
problem by recognising its similarity with a specific known problem and by applying the
known solution to the new problem. PATDEX is the case-based component of INRECA. It
consists of two case-based reasoning subcomponents for classification and test selection. A
procedure that dynamically partitions the case base enables an efficient computation and
updating of the similarity measures used by the CBR subcomponents. For the classification
subcomponent, the applied similarity measures are dynamic. The underlying evaluation
function is adapted using a connectionist learning technique (competitive learning). For the test
selection, the adaptation of similarity measures is based on an estimation of the average costs
for ascertaining symptoms using an A*-like procedure. PATDEX can deal with redundant,
incomplete, and incorrect cases and includes the processing of uncertain knowledge through
default values. PATDEX is described in {4] and [5].

(1) AcknoSoft , 58a rue du Dessous des Berges, 75013 Paris - France. (2) University of Kaiserslautern, Dept. of Computer
Science, PO Box 3049, 67653 Kaiserslautern - Germany. 3) tecInno GmbH, Sauerwiesen 2, 67661 Kaiserslautern - Germany.

313

3 The Need for Integration

INRECA integrates induction and case-based reasoning so that they can collaborate and provide
better solutions than they would individually. Before describing how integration is performed,
we first state why the two approaches are complementary. Induction presents some limitations
for building an identification system that can handle missing values during consultation.
Consider the following case base drawn from an application that identifies marine sponges
developed at the Museum of Natural History in Paris.

CASE CLASS SHAPE(BODY) TEETH-TIP(MACRAMPHIDISQUES)
Ex1 PARADISCONEMA ELLIPSOID LARGE
Ex2 COSCINONEMA CONICAL LANCET-SHAPE
Ex3 CORYNONEMA ELLIPSOID LANCET-SHAPE

Table 1 - A database of cases for an application which identifies marine sponges

KATE works in two steps: it first learns a decision tree and then uses the tree to identify the
unknown class of a new incoming sponge. Consider what happens when the user does not |
know how to answer the first question asked during consultation of the tree of figure 1.

When the user answers "un- teeth-tip(macramphidisques) = 227
known", KATE proceeds by lancet-shape
following both branches "lancet-
shape" and "large" and combines
the conclusions found at the
leaves. In the "large" branch, it ¢orynonema: exs
reaches the "Paradisconema” leaf

node. In the "lancet-shape"

branch, it reaches a test node and the user is queried for the value of the "shape" of the object
"body". He answers "conical”. KATE reaches the "Coscinonema" leaf and combines the two
leaves to conclude that the current case is a "Paradisconema" with a probability of 0.5 or a
"Coscinonema" with a probability of 0.5. Consider case ex1 at the "Paradisconema” leaf node.
The feature "shape(body)" of ex! has the value "ellipsoid" unlike the current case where it is
"conical”. Thus, the current case is closer to ex2 than to ex] and the correct conclusion is
"Coscinonema” with a probability of 1. Unfortunately, the information about the “body shape”
of ex1 was generalized away during induction and is no longer available during consultation.

large

shape(body) = conical

ellipsoid conical

Figure 1: A consultation of the decision iree learned by KATE

Note that there are other methods for handling unknown values during consultation of a tree.
Instead of combining branches, one can assign a probability to the branches [6] and follow the
most probable one. However, this does not remove the problem presented above. This problem
is not caused by a flaw of the particular induction algorithm used by KATE since we could have
used another algorithm and encounter a similar problem. It is not a flaw of the decision tree
representation formalism since we could have used production rules generated automatically or
manually and still run into this same problem. It is caused by the fact that we are reasoning
using an abstraction of the training cases and have generalized away and thus lost some
discriminant information. If the consultation system is to handle any configuration of unknown
values, such as for applications that deal with photo-interpretation of objects whose features
may be hidden in any combinations, case-based reasoning will always perform better than rule-
based, decision tree-based or even neural network-based identification systems.

314

This has been confirmed by a set of experiments conducted using PATDEX. We have
measured its ability to reach a correct solution when the working case is incomplete (i.e.
contains unknown values). Experiments have been conducted with a training set of one
hundred cases. The test set also consists of one hundred cases. For every test case the number
of known symptom values has been stepwise reduced. Classification accuracy is measured
against reduction of the presented information. The results are shown in table 1. Here, a
reduced information of 70% means that every case is classified based on 30% of its known
symptom values (where 60% of such cases have been correctly classified).

Reduced information (%) 0 10 20 30 40 50 » 60 70 80 90| 100

Classification accuracy (%) 100 99 97 96 91 90 76 60 28 11 0

Table 2 - Measuring Correctness against Reduction of Information

As confirmed by this set of experiments, up to a certain limit, classification accuracy is not
significantly decreased by reducing the number of known attribute values in the current case.
For instance, when half of the values are missing the system still correctly identifies 90% of the
test cases. When using induction, a single missing value for an attribute in the decision tree
(this corresponds to a 0.5% reduction in the information available) yields a loss of 50% in
accuracy. When a feature is unknown, a case-based reasoning tool looks for alternative features
to identify the current case. CBR reacts dynamically and exploit all the information available. In
addition, a CBR system is more resilient to errors made by the user during consultation since it
computes a similarity measure from the global description of the cases and not a minimal subset
like with the inductive approach. It can confirm the conclusions by asking additional questions
that modify the similarity measure accordingly.

This does not imply that CBR always performs better than induction. During the first year of
INRECA, we have defined a catalog of industrial criteria to conduct experiments and compare
the two technologies. Our criteria catalog does not merely adresses technical issues such as
performance and effectiveness, but also ergonomic and economic aspects such as user
acceptance of the technology (domain specialist, naive end-user, data clerk, case engineer etc.),
ease to build, validate and maintain the application and so on. After analysis, we claim that
induction and CBR are complementary techniques and that integrating these will improve their
standalone capabilities. Our comparison is summarized in the next section. The criterias have

been introduced in hierarchical weighted grids to compare in an objective and exhautive manner
" the induction and CBR components of INRECA as well as other existing tools.

4 Comparision of Induction and CBR

We summarize the respective merits of the techniques in the following table. Although the
experiments have been conducted using PATDEX and KATE, the conclusions drawn are
applicable to the underlying technologies in general. Note that according to the distinction
between induction and CBR that has been explained in the introduction, we view tools that
access the training cases to incrementally maintain the induced rules or trees as CBR tools.

315

Advantages of PATDEX (CBR)

Advantages of KATE (Induction)

The application is always up-to-date because CBR can
work incrementally.

The consuitation is consistent: what is true today will
be true tomorrow (unless the tree has been updated).

CBR handles missing values during consultation and
makes optimal use of the information available.

The decision tree can be compiled into a runtime that
does not require the case base to do diagnosis. It can
be easily integrated in the customer's environment.

CBR can widen the set of current hypothesis whereas
induction only shrinks it.

The system supports exploratory data analysis and
does consistency checks in the data base.

The CBR consultation is more flexible for the user of
the consultation system. It can be driven by the user

The domain specialist can influence or even impose
how the consultation is done by modifying the tree by

who supply the information he wants instead of being | hand. He controls the consultation process.
guided step by step through a decision tree. It can
handle sensor input and react dynamically to the data.
['The CBR consultation is more resilient to errors.
After finding a conclusion, the current solutions can
be confirmed or refuted.

Analogies can be made based on the whole case
| description instead of a minimal subset.

The similarity measure used by PATDEX can evolve
over time and is adaptable.

The current consultation can be explained to the user
by presenting previous cases.

‘ CBR interprets cases dynamically.

A classification of the data can be constructed based on
the information contained in the tree.

Induction produces a generalisation of the cases and
turns data into knowledge.

The current consultation can be explained to the user
by presenting the classification rule.

The consultation of the learnt tree is more performant
than the CBR consultation

Table 3 - Cost-Benefit Analysis of Induction and CBR

S. Integrating Induction and CBR

Four critical levels of integration have been identified. For the first level, the two techniques are
seating side-by-side and are provided as stand-alone modules that work on the same case data
expressed in the CASUEL object-oriented language (toolbox strategy). This is useful
because a single technique may match the user’s needs for a particular application, while a
combination of both may not. In addition, a decision tree produced by induction allows to
detect the inconsistencies of a case database before its use by a case-based reasoning module.
For the second level of integration, the two techniques are able to exchange results via the
CASUEL representation language (cooperative strategy). The results of one may help to
improve the efficiency and to extend the classification capabilities of the other. More precisely,
a decision tree produced by induction can speed up the consultation by the case-based reasoner.
The case-based reasoner can supplement the decision tree when choosing among different
conclusions (case-based reasoning is started at the end of the consultation of the tree or during
consultation when encountering unknown values). The third level of integration allows the
combination of individual modules of the tools (workbench strategy). For instance, the
information gain measure module may be used to choose the next attribute to be asked during
an interactive CBR consultation. The last level fulfils the final goal of INRECA (seamless
integration) by mixing the most relevant parts of the two technologies in a single system.
Two critical modules are identified: the information gain computation module for the induction
technique, and the similarity computation module for the case-based reasoning technique.

Our main point is that a single system will never meet the needs of everyone. INRECA offers
several integration possibilities and must be configured to meet the requirements of a particular
application or of a particular category of users. For instance, a naive end-user must be guided

316

. Case-based
Toolbox level Induction reasoning
C ive level . Results infCASUEL
ooperative leve Induction o - Case-based
reasoning
Communitation

Workbench level Induction Petween Modules Case-based
e “-T' reasoning

Integrated level Tnduction Qiss%}lﬁsgd

Figure 2. Four integration levels between Kate and Patdex

step-by-step by the consultation system in a decision-tree like fashion. On the other end, a
domain specialist wants to directly supply whatever information he feels is relevant and remain
in control of the consultation system. Moreover, what may be viewed as an advantage of a
technology in a given context may turn out to be a drawback in another. For instance,
incrementality can be seen as an advantage of CBR over induction to maintain the consulation
system automatically and keep up with the knowledge that workers learn through their daily
experience. On the other end, we are currently working with an equipement manufacturer who
distributes the diagnostic system to his customers and who wants to control the advices that are
given to the users (let it be for legual reasons). Thus, he prefers a system that does not evolve
permanently and that behaves in a predictable way. In that context, the incrementality is a
drawback since he wants to compile the case data into an induction tree that is maintained by
him periodically. Finally, one technique may be better adapted at a specific stage of the
application life cycle (for example, CBR at the begining to enrich the case database) but not ata
later stage (for example, induction can compile the case database when it becomes too big and
when efficiency becomes a problem). Thus, INRECA provides several options for the four
levels of integration and can be configurated by the application developper . In the next section,
we present an architecture that deals with the problem of handling unknown values using CBR,
but that pre-index the cases using a decision tree for efficiency.

6. An Integratiori Archicture to Handle Missing Values Efficiently

As stated in section 3, one main drawback of a decision tree consultation occurs if the user
answers “unknown” to a test. Unknown values propagate an uncertainty along all the branches
of the “unknown node" - we define an unknown node as a node where the user answers
“unknown” during the consultation of the tree although a subsequent test may remove this
uncertainty. Moreover, the final diagnosis is probabilistic which is confusing for a non expert
user. One way to deal with unknown values in the consultation of a tree is to switch to a case-
based reasoning procedure after consulting the tree. When an unknown value is encountered,
the consultation of the tree is stopped and the case-based reasoner is used to choose the next
tests. The probabilistic diagnoses delivered by Kate may also be refined by using the similarity
measure of the case-based reasoner. A workbench integration is needed. The procedure when
encountering an unknown value in the consultation of the decision tree is presented below:

317

1. Get the current situation given by the first tests
of the tree.

2. Get the current subset of the cases listed under the
unknown node,

3. Switch to Patdex by using the current situation and
the current set of cases.

Procedure for Switching between Kate and Patdex

This procedure combines the advantages of both techniques for efficiency and correctness. In
the worst case, the user answers unknown at the root node and we are left with a classical CBR
consultation. In the best case, the user never answers unknown and we are left with a classical
decision tree traversal mechanism that is very efficient.

Conclusions

Induction and case-based reasoning are complementary.approaches for developing experience-
based diagnostic systems. Induction compiles past experiences into general knowledge used to
solve problems. Case-based reasoning directly interprets past experiences. Both technologies
complement each other. Induction is used for detecting inconsistencies in the case data base,
case-based reasoning is used during consulation to retrieve similar cases when there are missing
values. The induction system can compute a tree to index cases on a predefined number of
levels in order to improve the efficiency of case-based reasoning. After traversing that partial
ree (interactive consultation), we are left at a leaf node with an initial candidate set that can be
passed to the case-based reasoning system. As a consequence, the case-based reasoner works
on a much smaller set of candidates. The partial decisions can be confirmed or refuted by the
case-based reasoner. In the latter case the tree needs to be updated.

Acknowledgement

Funding for INRECA has been provided by the Commission of the European Communities (ESPRIT contract
P6322). The partners of INRECA are AcknoSoft (prime contractor, France), tecInno (Germany), Irish Medical
Systems (Ireland), the University of Kaiserslautern (Germany). KATE is a trademark of Michel Manago. We
thank Prof. Claude Lévi and Mr Jacques Le Renard at the Museum of Natural History in Paris for providing the
sample application used to illustrate some of the ideas presented here. We also thank Mr Thomas Schultz who
has helped us refine our criteria list and who validated and filled our comparison grids for several CBR tools.

References

(11 Bareiss, R. (1989). Exemplar-Based Knowledge Acquisition. London: Academic Press

2] Quinlan, R, (1983) Learning efficient classification procedures and their application to chess end games. In
R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds), Machine Learning: An Artificial Intelligence
Approach (Vol. 1). Morgan Kaufmann.

[3] Manago M. (1989). "Knowledge Intensive Induction”, proceedings of the sixth "International Machine
Learning workshop", Morgan Kaufmann.

[4] Alihoff, K.-D. & Wess, S. (1991). “Case-Based Knowledge Acquisition, Learning and Problem Solving
in Diagnostic Real World Tasks”. Proc. EKAW-91, Glasgow & Crieff; also: GMD-Studien Nr. 211
(edited by M. Linster and B. Gaines)

[5] Richter, M. M. & Wess, S. (1991). “Similarity, Uncertainty and Case-Based Reasoning in PATDEX".
Automated Reasoning - Essays in Honor of Woody Bledsoe, Kluwer Academic Publishers

[6] Quinlan, J. R. (1989). “Unknown Atribute Values in Induction”. Proceedings. of the Sixth International
Workshop on Machine Learning, pp. 164-168,. Morgan-Kaufmann.

318

Tuning Rules by Cases

Yoshio Nakatani David Israel
Industrial Electronics & Systems Lab. CSLI
Mitsubishi Electric Corp. Stanford University
Amagasaki, Hyogo 661, Japan Stanford, CA 94305-4115, USA
Abstract

A new method is proposed for combining rule-based and case-based systems, especially in domains in which
precise and exceptionless rules are known to be unavailable. When the result of execution of arule is not satisfactory,
the system stores the name of the executed rule, the conditions under which the rule was executed, the evaluation of
the execution, the attributes and values to be nrodified, and hypothesized alternatives, as a case. The next time the
rule is to be executed under the same or similar conditions, the relevant attributes and values are temporarily modi-
fied, by replacement by their hypothesized alternatives. After a certain number of such experiments, the maintainer
of the system can reconstruct the whole rule base by referring to the stored cases. This methodology is implemented
as a system, A LA CARTE, in the domain of cooking.

1 The Problem

In many domains such as controlling objects, rules are preferred because of their performance. Such rules, how-
ever, may be not precise and exceptionless from the first because the number and variety of contingencies are
simply too great to be reduced to algorithmically realizable order [5]. In such domains, we are faced with the
problem of trying to construct and apply a rule base in an essentially experimental, trial-and-error manner. One
effective way to assist in the construction of the rule base is to acquire knowledge as cases [4, 5]. Although we can
not start out with nothing, it is often difficult or not useful to use the cases of other people because the background
knowledge is different. We can sometimes refer to some textbook knowledge of the domain as general rules of how
to execute certain procedures. Even then, we may start out with what we know to be not very reliable rules of
procedure, the successful application of which is contingent on various not clearly foreseen conditions.

Thus, as we construct and revise a rule-base for such an application, we must generate hypotheses about relevant
parameters through trial and error. To take an example, in the domain of cooking, we may not know in advance
what kind of recipes will please us, nor how various conditions, both external to us---like the weather---and inter-
nal---how tired we are---may affect our enjoyment of certain dishes. To obtain more and more detailed and reliable

information about all these things, we must run experiments, that is, actually cook and eat various dishes.

2 An Approach to the Problem
Our approach to this problem is to tune the rules step by step and on line by using cases which store improprieties
and their hypothetical alternatives of the rules.

When the result of the execution of a rule is not satisfactory, the user stores in the case base the name of the
executed rule, the relevant conditions, an overall evaluation, and a representation of what the user judges to be the
factors of the rule that account for the unsatisfactory performance together with his/her judgment as to what modi-
fications are required. The next time the rule is to be executed under the same condition, the case base is searched
for a relevant case. If there is no such case stored, the rule is executed without modification. If the most relevant
case is decided, the relevant elements are modified by reference to the alternatives in the case. If the result of the

execution of the modified rule is not satisfactory again, another alternatives are proposed as a new case.

319

‘We must consider possible complicated interaction among rules [6]; if we presume that the original rule base is in
a consistent state, we don't want to run the risk of rendering it into an inconsistent one. Moreover, revision hypoth-
eses may not be always true. Our method doesn't change the rules in the rule base at all. The rule to be executed is
copied into the working memory and the copied rule is temporarily modified by reference to the case. After the
modified copy is executed, this copy is removed from the working memory. After enough cases to realize a satis-
factory rule base are obtained, the system maintenance people can update the whole rule base.

Although this method has the advantages described above, it does require a flexible mechanism for temporarily
modifying rules. We must decide what should be stored in the cases, which attributes and values are to be modified
and how to modify the rules by using such cases. We present a solution to these problems below.

Our approach suggests a general architecture. In order to show the effectiveness of this method, we adopt this
framework to the domain of cooking. We present the architecture in section 3. In section 4, an example from the

cooking domain is presented in some detail. In section 5, we compare our framework with related works.

3 The Architecture
3.1 Rules

Rules are presumed to be represented as shown in Figure 1 . The first element is the rule name. The second is the
list of conditions under which the rule is to be executed. When no conditions are specified, the rule can be applied
under any conditions whatsoever, The third and the forth elements are the lists of resources and tools used in
executing the rule. The fifth element is the list of procedures to be executed. Each procedure is represented by a list
of its order in the sequence of procedures , the type of action, the target upon which the action is executed, and
relevant parameters of the action, such as how long it is to be performed. The position of the procedure in the order
can be mentioned as an argument in other procedures, in the form: actr. Such terms refer to the result of the nth step
in the list. Each procedure is executed sequentially when the

rule(<rule name>,

rule name and the conditions match the working memory. [<condition>, ...],
[<resource>, ...],
[<tool>, ...],

ing. This rule shows a recipe for broccoli with tofu (see [4]). [<procedure>, ...]).

Figure 2 gives an example of a rule in the domain of cook-

According to the condition: “hot," this rule can be applied in Fig.1 Rule representation

hot weather. The ingredient in the second list: [r_pepper, o
rule(broccoli_with_tofu,

piece, 6] means six pieces of red pepper is needed. The third [hot],
[[tofu, Ib, 0.5],

list contains the tools used in executing the recipe. The proce-
[soy_sauce, tablespoon, 1],

dure: [6, stir_fry, [act5, r_pepper], 1] means that the sixthstep
[broccoli, Ib, 1],
[r_pepper, piece, 611,
with the red peppers for one minute. * [[bowl],

[cutting_board],

in this recipe is to stir-fry the result of the fifth step together

3.2 Cases (flat_spatula]],

[{1, divide, broccoli, small_flowret],
[2, boil, [actl, salted_water], 2],

{6, stir_fry, [act5, r_pepper], 1],

[7, add, actl, act6],

factory evaluation must be proposed by a human user or a sys- (8, stir_fry, act7, 311).

Cases are stored when the evaluation of a rule execution is
Jjudged to be not satisfactory. Alternative hypotheses as to

which of the elements of the rule are 'to blame for' the unsatis-

tem component. These hypotheses are represented as a combi-) .
Fig.2 Example of a rule representation

nation of replacement, addition, and deletion of certain ele-

320

ments of the conditions and/or the procedures of the rule.

Figure 3 presents a case representation, consisting of the case name, the target rule name, the condition list, the
evaluation, and a set of quadruples. The condition list may include conditions other than those listed in the rule
base, which are the result of the user's judgments as to causal relevance. The last element is a list of quadruples:
[<attr current-val> case-val hyp-alt reason]. The first element is an attribute-value pair taken from the rule based
on the result of the user's judgments as to causal relevance. The second is the actual value of the attribute with
which the rule was executed this time; the third is the value to be used next time---as judged by the user, and the
fourth is the reason why this value is to be modified, again as hypothesized by the user.

Figure 4 gives an example of the case in the domain of cooking. The target rule is the rule for broccoli with tofu.
What this case represents is an occasion on which the user, suffering from a fever, made broccoli with tofu, in
accordance with the recipe in the rule base, except that he used 4 pieces of red pepper rather than the required 6. The
results were not too satisfactory, let us say 6 on a range of 0-10. The dish was adjudged both too spicy and insuffi-
ciently crispy. Moreover, the user hypothesized that his having a fever when he ate the meal played some part in the
unsatisfactoriness of the occasion. Finally, the case represents the user's judgment that, given that he has a fever, if
he wants broccoli with tofu, the recipe should be altered as follows: cut the amount of a red pepper to 3 pieces and

reduce the time for the final mixture to be stir fried to one minute.

case(case4,
case(<case name>, broccoli_with_tofu,

<target rule name>, [fever],
[<condition>, ...], 6, '
<evaluation>, [[[r_pepper, piece, 6],
[{ <original attribute-value>, [r_pepper, piece, 4],

<the present value of the attribute>, [r_pepper, piece, 3],

too_spicy],

<the hypothesized value of the attribute>,

<reason for modification> }, (8, stir_fry, act7, 3],
L)) [8, stir_fry, act7, 3],

[8, stir_fry, act7, 1],

Fig.3 Case representation more_crispy]]).

Fig.4 Example of case representation
3.3 Rule Tuning Algorithm
The central idea of our approach is realized by the following process. The current conditions are represented in the

working memory.

Until the problem is solved do:
1. Select the target rule to be executed.
2. Find the case most relevant to the current condition.
3. If such a case as (2) is found, then
(a) copy the rule, modify the copy using the case, and execute the modified rule; else
(b) execute the rule.
4. If the copy is executed, then remaove the copy.
5. Evaluate the result. If further modifications are needed, these are hypothesized and a new case is created.

The most relevant case is decided as follows: (1) All cases with the target rule name are selected. (2) Among them,

the cases whose conditions match the condition of the working memory are selected. (3) If more than one cases is

found, the latest is selected. The older cases can be referred to as the history of modification of a rule.

321

3.4 Rule Tuning Example

Figure 5 shows an example of rulé tuning. >> denotes a prompt for user input. The user wants to make broccoli
with tofu. He/she has a fever. First, the original recipe (Figure 2) is retrieved because the recipe under the condition
of having a fever is not found. Next, the system searches for the most relevant case (case 4). The copied rule is
modified based on this case. Because the result is judged to be still too spicy, a new case (case 11) is entered, with
a hypothesized value of two pieces of red pepper. Note that another hypothesis about the time for the final mixture

is kept in the new case.

3.5 Tuning Operators

When the rule is modified temporarily by referring to the relevant case, we allow three kinds of rule modification:
replacement, addition, and deletion. In muliiple modifications, we execute addition and deletion first and replace-
ment last. This execution order is important because addition and deletion of a resource may be accompanied by
modifications of other procedures and such modifications can effect replacement. The targets of modifications
involves all elements of the rules. In particular, addition or deletion of a procedure may require updating of the ‘

numerical indices of other procedures, especially as they occur in actn terms within procedures.

3.6 Evaluation

After executing the rule, the result must be evaluated. This evaluation may be done either by the human user or by

Dish >> broccoli_with_tofu.
Condition [list] >> [fever].

Case name >> casell.
Selection
1. Modify an attribute-value pair
2. Add a new ingredients
3. Add a new procedure

4. Remove an ingredient

1! Original recipe is retrieved !!

** Relevant cases **

Case name: case4 5. Remove a procedure
Dish: broccoli_with_tofu 6. Information
Condition: [fever] 7. End
Evaluation: 7 : >>1.
#Target attribute: [red_pepper, piece, 6] :
Previous value: 6 : Target attribute [list] >> {r_pepper, piece, 3].
Hypothesized value: 3 Hypothesized value >> 2.
Viewpoint: too_spicy Viewpoint >> 100_spicy.
#Target attribute: [8, stir_fry, act7, 3]
Previous value: 3 Selection
Hypothesized value: 1 1. Modify an attribute-value pair
Viewpoint: more_crispy i ...

** Rule Execution **

>>7.

Dish : broccoli_with_tofu ** New case: casell **
Condition : [fever] Dish : broccoli_with_tofu
Ingredients: Condition : [fever]
[tofu, 1b, 0.5] Evaluation: 8
....... #Target attribute : {red_pepper, piece, 6]
[r_pepper, piece, 3] Previous value: 3
Procedures: Hypothesized value: 2
[1, divide, broccoli, small_flowret] Viewpoint: too_spicy
....... #Target attribute: (8, stir_fry, act7, 3]
[8, stir_fry, act7, 1] Previous value: 3
Hypothesized value: 1
Evaluation [0-10] >> 8. Viewpoint: more_crispy

Fig. 5 Example of rule modification

a system component. For our cooking examples, we have imagined that the measure of evaluation is single-dimen-

sional and scalar (a range of 0-10). We assume that hypotheses are generated by the user.

3.7 Analogical Problem Solving
If there are no rules or cases which match the current conditions completely, our method executes analogy-based

(similarity-based) modifications of the rule. We consider five cases when such analogical modification is needed:

1. When no rules satisfy the conditions of the working memory completely. A rule with similar conditions is
selected. Any one of a number of similarity metrics might be used.

2. When no cases satisfy the conditions of the working memory completely. Cases are searched for which match
the various components of the conditions. Again various similarity metrics might be used.

3. When there are conditions that remain unsatisfied by any cases. The user can command the system to replace
them by similar conditions.

4. When the condition of the working memory says that the necessary resources or tools for executing the
relevantrule are not available. Appropriately equi-functional resources are proposed. For example, when broc-
coli is unavailable, the system might propose asparagus---another green vegetable---as a similar resource.

5. When the user specifies the rule name to be executed that is not found in the rule-base. Another rule with a
similar name is selected and is execuled with the relevant rule elements modified. For example, when a user-

specified recipe asparagus_with_tofu cannot be found, broccoli_with_tofu is proposed as the similar dish.

The concepts used in the conditions, resources and tools are represented as a list of attribute-value pairs. Figure 6
shows the resource representation. Here, attributes are ordered according to their importance in classifying them in

the domain. When deciding on replacement for an unavailable resource r, the candidate sharing the most attribute-

value pairs with r is selected.

resource(<name>, [[<attribute>, <value>], ...]).

Fig.6 Representation of resources and tools

4 Application: A LA CARTE
ALA CARTE(A LeAmable CAse-based Rule TunEr) is a prototype system of our method [7]. Its target domain
is cooking. Each recipe is represented in a single rule. The user evaluates the results of rule execution and comes up
with rule-modification hypotheses of the resulting dish. In order to support this modification task, A LA CARTE
offers the history of modification of a rule, which helps the user decide which conditions, resources, tools, and/or
procedures are to be modificd. A LA CARTE is implemented on the engineering workstation written in Prolog.
The basic operation of A LA CARTE is as follows: First, the user specifies a dish and the current conditions.
Second, A LA CARTE searches for a recipe for the dish in the rule-base and presents the recipe. The case base is
then searched for cases in which the recipe was executed under the most similar conditions. Depending on the most
relevant case, A LA CARTE modifies the copied recipe. The user executes the modified recipe, evaluates the

result, and perhaps suggests further modifications.

5 Related Work

323

CHEF is a pure case-based planner in the domain of Szechwan cooking [4]. Its task is to build a new recipe based
on the user's request for certain ingredients and tastes. CHEF's recipes are represented as cases which include
ingredients and actions. CHEF scarches for cases relevant to the request, integrates them into a new dish to meet
the request, and stores that in a case base. The advantage of CHEF is that it has variety of functions which create
and adapt new recipes. Its disadvantage is that its ability to revise the original recipes is limited.

There are some types of methods for combining rule-based reasoning and case-based reasoning. Anapron
supplements the rule-based systems by using cases as a library of exceptions [3]. If there is a contradictory case to
the selected rule, the procedures of the case are executed; otherwise the rule is executed. This method requires aless
complex problem-solving mechanism than that of A LA CARTE. GREBE uses cases to reduce the problem of
matching specific case conditions with open textured terms in rules to the problem of matching two sets of cases
[2]. Rules, in turn, are used for term reformulation and infering facts that are not stated in the case. The advantage
of this method is the flexible use of rules and cases. However, these methods require the existence of a body of
cases at the beginning of reasoning. Moreover, the cases are not used in the process of rule modification. The
method, whose rules are derived from gencralized cases (1], requires some primary problem-solving mechanism

independent of the rules.

6 Discussion
A new.method is proposed for tuning a rule base by cases in domains in which precise and exceptionless rules are
known to be unavailable. When the result of execution of a rule is not satisfactory, the system stores the name of the
rule, the conditions under which the rule was executed, the evaluation of the execution, the rule element to be
modified, and hypothesized alternatives, as a case. The next time the rule is to be executed, the relevant rule
elements are temporarily modificd, by replacement by their hypothesized alternatives. Afier a certain number of
such experiments, the maintainer of the system can reconstruct the whole rule base by refering to the stored cases.
This method is implemented as a system named A LA CARTE in the domain of cooking.

We have not presented any experiments. This is really a prototype proof of our concept. Directions for future
work involve applying this framework to more complex rule-base, introducing a stronger measures of similarity,

and constructing an automatic hypothesizer for rule modification.

References

1. Allen, J. A. and Langley, P. : "A Unified Framework for Planning and Learning", Proc. of Workshop on Inno-
vative Approaches to Planning, Scheduling, and Control. (1990).

2. Branting, L. K. and Porter, B.W. : "Rules and Precedents as ‘Complememary Warrants", Proc. of AAAI-91
(1991).

3. Golding, A. R. and Rosenbloom, P.S. : "Improving Rule-Based Systems through Case-Based Reasoning”, Proc.
of AAAI-91 (1991).

4. Hammond, K. J. : Case-Based Planning: Viewing Planning as a Memory Task. Academic Press 1989, San
Diego.

5. Kolodner, J. L. : "An Introduction to Case-Based Reasoning”, Artificial Intelligence Review, 6 (1992).

6. Minsky, M. : "Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus Scruffy”, Al
Magazine, SUMMER (1991).

7. Nakatani, Y. and TIsrael D. : An Architecture for Tuning Rules by Cases, Report No. CSLI-92-173, CSLI,
Stanford University (1992).

324

Combining Case-Based and Model-Based Approaches for
Diagnostic Applications in Technical Domains

Gerd Pews and Stefan Wess
University of Kaiserslautern
Dept. of Computer Science
P.O. Box 3049
D-67653 Kaiserslautern, Germany
e-mail: pews,wess@informatik.uni-kl.de

Abstract

Calculating similarity by comparing syntactical features is a quite common approach for case-based
reasoning systems for diagnostic applications. In this paper, we present an approach which uses a
similarity assessment based on a qualitative model of the technical system under consideration. This
provides the capability of classifying the system’s behavior, leading to an improved retrieval and case
adaptation process. Furthermore, the case-base can be used more efficiently. The knowledge used by
this approach is employed in model-based diagnostics; there, gualitative simulation of the technical
system leads to a diagnosis. This model-based approach is known to have a very huge search space
and thus, to be very expensive in computation. Our approach is an attempt to cut down the search
space of model-based diagnostics by using appropriate heuristics: cases.

1 Motivation

Human experts are using different kinds of problem-solving strategies and knowledge sources. In research,
this is reflected by the development of rule-based, model-based and case-based systems. Rule-based and
model-based approaches for diagnostic applications have been a matter of research for a longer period
of time till now, whereas the interest on case-based techniques has quite recently increased e.g. CASEY
[7], ProTOs [4], CREEX [1] and PATDEX [3]. The main point in case-based reasoning is to decide if
certain items (such as objects, situations, problems) are similar or not. Here, similarity means, similarity
concerning certain criteria which often are not explicitly described but implicitly determined by the items
context. (For instance, among a set of triangles, a blue circle and a red circle rather are considered to be
similar, but not among a set of colored circles). In case-based diagnosis, searching for similarity means
searching for a case with a solution (diagnosis) that is useful for guiding the search for a solution for the
current problem at hand. Unfortunately, usefulness can only be estimated a posteriori and therefore a
retrieval process based on this aspect is impossible.

Some CBR systems use a numeric similarity measurement to determine similarity, presupposing that
a syntactical similarity of features implies this utility. Syntactical comparison is easy to perform and, in
general, seams not to expect much background knowledge. Nevertheless, the assumption that syntactical
identity implies utility needs not to be true. In fact, this assumption will only be justified if a large
amount of domain knowledge was used in coding the cases. The person who brought the cases from the
real world into a syntactic description will have made certain abstractions and selected only a few of all
possible features which could be selected. This person has to find a way between over-abstraction on the
one hand (which makes it easy to find similar cases, but reduces the information contained in the case
and the solution it can offer) and over-specialization on the other hand which enables the system only to
find identical cases!. So, there are a lot of disadvantages which normally occur in surface-based similarity
assessments, e.g.:

e Structural similarity will not be detected. If two objects of the same kind but with different names
show similar features, identification will not be possible.

¢ Solution transformation and adaptation is not supported by the assessment process.

o The formula for calculating the similarity value cannot be controlled and modified easily.

11dentity, here of course, means identity on a certain abstraction level. If a situation is coded mentioning, for example,
time or the position of the object relative to the sun, identity would lead to never finding a case in the case-base.

325

[

For satisfying results, the case base has to be rather large.

To reduce retrieval time, the case base should be small.

Knowing just the similarity value, it is not possible to decide whether a solution is significant or
not, i.e. to provide a good explanation.

Similarity, relevance and abstraction are context-dependent. Even syntactically identical features
may have different semantics.

To avoid these well known problems our approach is to combine a structural similarity assessment with
a model-based diagnostic system to support case retrieval and adaptation. The importance of detecting
structural similarity and therefore supporting case adaptation in technical domains becomes clear when
looking at a domain where our approach is being used: technical diagnosis for computerized numerical
control (CNC) machines.

s&-@ 4 vES'”

Hd1 ’ ¢ Hd2

Figure 1: An example from a CNC domain: a grip

In figure 1, an example from this domain is given. It shows a grip which can be moved on bars in the x-,
y- and z-direction. Of course, the drive systems for all directions are identical in structure, only the used
components will have different names. In fact, there are several possibilities of adapting and transforming
one case into another:

1. A symptom a implies another Symptom b. The symptom a is part of Case-1, symptom b is men-
tioned in Case-2. Adapting cases means to detect that a match between the symptoms @ and b in
the two cases is allowed.

2. Case-1 describes a fault that occurred when moving the grip in x-direction. Case-2 describes the
same fault occurring when moving the grip in z-direction. Here, adaptation of cases means to
detect that the parts which are described by the symptoms are similar and can be identified with
each other. Capability to perform such an adaptation can dramatically reduce the amount of cases
needed in the System. For the grip-domain this means a reduction by factor 3. Considering that
grip movements forward and backward will be performed by similar drive systems, the factor rises
to 6.

3. Syntactically different values can be semantically identical. In certain situations, variations of a
symptom value can be tolerated (e.g. voltage variations between 4.5V and 5.5V), while this might
not be possible in other situations.

2 A model-based approach for structural similarity assessment

Before defining a model-based approach to similarity assessment it is necessary to look closely at the
diagnostics domain first. To find a diagnosis means to identify faulty behavior of some components.
Sometimes this behavior can be observed directly, sometimes this behavior has to be inferred from the
state a component is in, showing only the final state which the behavior led to. From this point of

326

view diagnostics can be interpreted as a kind of classification of components behavior. To estimate its
relevance, it is important to know if a certain behavior was intended or not. Unintended does not mean
faulty - an electric bulb which stays dark because of a broken wire surely shows unintended behavior
though the bulb is not faulty. So, we can figure out some criteria which should be fulfilled for relevant
components in similar cases:

Components: The components themselves should be similar.
Behavior: The behavior of the components should be similar.
Topological context: The components should be connected in a similar way.
Intentional context: The components are expected to behave similar.

Dealing with these criteria requires additional knowledge of the domain, describing the domain up to
a certain abstraction level and containing information concerning structure and functionality of the
technical system under consideration.

o Object knowledge: This knowledge describes the components of which the domain consists of and
how these components can be joined to more complex components.

o Topological knowledge: This knowledge specifies, how the single components are connected to each
other and therefore their causal effects on each other.

o Functional knowledge: This knowledge defines how the components can or should behave.

o Abstraction knowledge: This knowledge describes how objects and an object’s behavior can be
described on a more abstract level.

This knowledge is normally used in model-based diagnostics [5, 7]; there, simulation on some abstraction
level leads to a solution. This model-based approach is known to have an very large search space and so to
be very expensive. Thus, our approach is an attempt to cut the search space of model-based diagnostics
by using appropriate heuristics: cases. This does not mean to use a case-based problem solver and a
model-based problem solver side by side, but to seamlessly join both approaches into one single approach.

2.1 Assessing similarity between cases, components and behavior

Calculating similarity in our approach bases on the principle that similarity means identity on a higher
level of abstraction. The levels of abstraction induced by the above described criteria imply an ordering
of similarity: The lower the level of abstraction, the higher the similarity. An example for abstraction
levels is: A certain transistor BC'107 can be viewed as a transistor in general, as a switch, as a machine
component and finally as a thing. The process of assessing similarity between a case and a certain
situation can be divided into the following steps:

Symptom expansion The given Symptoms have to be interpreted and propagated. If two components
are connected with each other, values will be propagated via this connection. Value equivalents
on higher abstraction levels are calculated. Finally, the shown behavior will be determined (if
possible). For example, if the input of a wire is 3A and the output is 3A, this means that the
behavior transmit takes place.

Relevance determination The symptom’srelevance is estimated. Components which show unintended
behavior are more relevant than those with intended behavior. Further, unintended behavior of
components which is not based on other components’ unintended behavior is of high relevance for
the similarity assessment. To identify unintended behavior, the intended behavior of the component
is simulated and compared to the actually given behavior of the components.

Retrieval/Hypothesis generating and testing This step will be iterated on several levels of abstrac-
tion till satisfying hypotheses have been generated. The abstraction level started with is the lowest
(most concrete) one. If retrieval fails, the next higher level will be chosen.

e Retrieval: Only relevant values will be used for retrieval. If similar components show similar
behavior (similarity here means identity on the current level of abstraction),

o Hypothesis generating takes place. Similar parts are identified with each other, using topolog-
ical knowledge. A fail of hypothesis generating means a fail of retrieval.

e Hypothesis testing Test, if the assumed behavior of the hypothesis’ component can cause the
actually given symptoms.

327 B

Test selection The Retrieval step normally generates several different hypotheses; one hypothesis has
to be selected (considering statistical data of former failures).

Learning The situation can be added as a case to the case base.

It is obvious that a component will be similar to any other component (at least at the highest abstraction
level) and that abstraction levels do not build a simple hierarchy (different abstractions of certain aspects
are possible) so that it is not possible to tell if similarity basing on a certain abstraction is higher than
abstraction basing on a-different abstraction. This process for calculating the preferred level of abstraction
can be seen as a search for the Minimal Common Generalization [8] of a case and the actual situation
with respect to the given model of the technical system.

3 Summary

This approach to similarity assessment and case adaptation has been successfully realized in MoCAS
(Model-based Case Adaptation System) which is used in combination with the PATDEX system [11] in
the domain of fault diagnostics for CNC machines. The proposed approach provides advantages like:
case adaptation and transformation. The results (hypotheses) are all proved by the used model of the
technical system under consideration and therefore plausible and consistent. They can be explained
using the domain model, describing the causal relations between the components [9], and by the case -
base, explaining why the current situation is similar to the cases the hypotheses are generated from
(similar components, topology, behavior) to make it clear why just a few of all possible hypotheses
were picked out. On the other hand, this approach requires a qualitative model of the domain. In the
actual implementation MOCAS is able to use the knowledge of the model-based component [10] of the
MovrTkE-Workbench [2} for diagnostic applications. In fact such a model which is used by MoCAS is
easy to obtain in strong technical domains. In domains where the knowledge of components and their
causal interactions is more vague, like in medical diagnosis, the proposed approach is not usable.

References

[1] Agnar Aamodt. Towards Rebust Expert Systems that Learn from Experience. In John Boose, Brian
Gaines, and Jean-Gabriel Ganascia, editors, Proceedings of the 3rd European Knowledge Acquisition Work-
shop EKAW’89, 1989.

[2] K.-D. Althoff, F. Maurer, S. Wess, and R. Traphoner. MOLTKE - an integrated workbench for fault diagnosis
in engineering systems. In S. Hashemi, J.P. Marciano, and G. Gouardetes, editors, Proc. 4th international
conference Artificial Intelligence & Expert Systems Applications (EXPERSYS-92), Paris, October 1992.1.1.t.t
international.

[3] Klaus-Dieter Althoff, Sabine Kockskimper, Frank Maurer, Michael Stadler, and Stefan Wess. Ein System
zur fallbasierten Wissensverarbeitung in technischen Diagnosesituationen. In OGAI, editor, Proceedings 5.
Osterreichische Artificial-Intelligence Tagung, pages 65-70. Springer-Verlag, 1989. Igls, Osterreich.

[4] R. Bareiss, B. W. Porter, and C. C. Wier. PROTOS: An Exemplar-Based Learning Apprentice. In Yves
Kodratoff and Ryszard Michalski, editors, Machine Learning: An Artificial Intelligence Approach, volame
11, pages 12~23. Morgan Kaufmann, 1987.

[5] R. Davis. Diagnostic reasoning based on structure and function. AI-Journal 24, 1984.

{6] Janet L. Kolodner, editor. Proceedings Case-Based Reasoning Workshop, San Mateo, California, 1988.
DARPA, Morgan Kaufmann Publishers. Clearwater Beach, Florida, USA, May 10-13, 1988.

[7] P. Koton. Reasoning about Evidence in Causal Explana.tlon In Kolodner [6], pages 260-170. Clearwater
Beach, Florida, USA, May 10-13, 1988.

(8] Debbie Leishman. Analogy as a constrained partial correspondence over conceptual graphs. In Proc. IJCAI
1989.

[9] Michael J. Pazzani. Creating @ Memory of Causal Relationships. Lawrence Erlbaum Associates Publishers,
Hillsdale, New Jersey, 1990.

[10] R. Rehbold. Deriving Causal Rules from Structure Descriptions in a Technical Diagnosis Domain. In
Proceedings of the Workshop on Ezpert Systems, Avignon, 1989.

[11] M. M. Richter and S. Wess. Similarity, Uncertainty and Case Based Reasoning in PATDEX. In Robert S.
Boyer, editor, Automated Reasoning - Essays in Honor of Woody Bledsoe, pages 249-265. Kluwer Academic
Publishers, 1991.

328

A Reflective Architecture for Integrated
Memory-based Learning and Reasoning

Enric Plaza Josep-Lluis Arcos

Institut d’'Investigacid en Intel-ligéncia Artificial , C.S.1.C.
Cami de Santa Barbara, 17300 Blanes, Catalunya, Spain.
{plaza | arcos}@ceab.es

Abstract. In this paper we will discuss the role of case-based reasoning and learning as a tool for
integrating different methods of inference and different methods of learning. The Massive Memory
Architecture, an experimental framework for experience-based learning and reasoning, is
described. Its reflective caEabilities are described and we put forth the hypothesis that learning
methods are inference methods able to inspect the problem solving process and modify the system
itself so as to improve its behavior. Therefore, learning methods require a self-model of the system.
Self-models and method implementation are based on conceptual, knowledge-level descriptions of
inference.

1 Introduction

In this paper we will discuss the role of case-based reasoning and learning as a tool for integrating
different methods of inference and different methods of learning. Case-based reasoning (CBR)
systems offer the advantage of an integrated framework for both problem solving and learning.
However, every CBR system combines in a peculiar way several specific inference methods and
associated learning methods. Research toward a conceptual and computational framework able to
encompass disparate CBR systems can be very important for theoretical understanding and practical
applications.

In a companion paper [Armengol 93] we show how a conceptual framework like the Components of
Expertise [Steels 90] can be used to describe at the knowledge level the reasoning and learning
methods of several classic CBR systems. It can be then observed that CBR systems share a common
pattern of task/subtask decomposition and they differ by the methods chosen to perform each task
and subtask. Needless to say, this election is determined by the kind of application for which the CBR
system has been developed. The knowledge level analysis show that CBR systems can be unified at
least conceptually, and this we think is independent of the conceptual framework used, that is to say
KADS [Wielinga 92] or Generic Task analysis [Chandrasekaran 89] would show the same. Another
analysis of this kind is [Aamodt 90].

In this paper we present how this analysis can be implemented in a computational framework that
supports task/subtask decomposition, the Massive Memory Architecture (MMA). The MMA is an
experimental framework for experience-based learning and reasoning. It is based on memorisation of
past episodes of problem solving and in a default behavior that resorts to analogous past cases to
solve new situations. This is a default behavior in the sense that it is used when no concrete domain
knowledge is available. The analogical inference is modelled as an inference pattern Retrieve / Select
/ Adapt. This pattern is reified into an analogical inference method object, where different retrieve or
select methods can be used. The fact that inference methods are first class objects means that inference
methods can be programmed also.

In our approach, learning methods are just inference methods able to inspect the problem solving
process and modify the system itself so as to improve its behavior. Therefore a learning system
requires reflective capabilities able to self-inspect the system and a theory of the system that specify
how it can be modified in order to be improved. In section 3 we develop the self-model used in MMA
for case-based learning and reasoning, but first a description of the architecture is necessary.

2 The Massive Memory Architecture

Inference methods in MMA are methods that follow a Retrieve/Select/ Adapt pattern. Thus, an
inference method is a reification of the basic inference pattern of the architecture. Analogical methods
are inference methods that follow a Retrieve by similarity methods and then may have Select
methods also of similarity or using domain-based, knowledge-intensive methods. Inheritance is also
represented and implemented by explicit inference methods that use a retrieve method that follows a

329

mailto:arcos}@ceab.es

link (e.g. the type link, but other inheritance methods are used, like the species link that accesses
knowledge in a homo-sapiens theory). In this approach, analogy and inheritance are integrated into
a uniform architecture.

2.1 Episodic Memory

Every episode of problem solving of MMA is represented and stored as an episode in memory. This
is the main point of the reification process: create the objects that can be usable for learning and
improving future behavior. MMA records memories of successes and failures of using methods for
solving tasks. Since inference methods are also methods, learning can be applied to different types of
retrieval methods and selection methods used in the process of searching and selecting sources of
knowledge in the form of precedents. '

|Task 3 l % PAM (plausibly
applicable -

SELECT .
Method i | €—=="————|methods)

e (e
PAM | PAM ‘
Method [g S Method'| g

FiFure 1. Task decomposition b methods..AnY query engages the system into a task. First of
all, a method has to be selected from available methods for that kind of task. A method is
decomposed into subtasks (queries to other objects) recursively, until some method is direct.
Method failure engages backfracking to other available methods.

2.2 Analogical Inference

Analogical methods are inference methods that follow a task decomposition of
Retrieve/Select/ Adapt. Since different methods can be used for these subtasks, multiple methods of
case based reasoning can be integrated. Moreover they can be indexed in different tasks where they
are appropriate. The characteristic of analogical methods is that the Retrieve method uses a
similarity-based method. Select methods can also be based on similarity or can be domain-based,
knowledge-intensive methods. All inference methods are such because they are able to search for
sources from which some knowledge may be retrieved. The types of knowledge retrieved is either
domain knowledge (as methods) and experiential knowledge (situations of failure and success).
Experiential knowledge is used by MMA to bias the preferences of future actions using precedent
cases stored in past episodes. The uniform nature of MMA (every query to an object engages a task)
supports learning at all decision points of the system.

Task | -RETRIEVE g | ppy (plausibly
applicable inference
CBR Method |4—ELECT | methods)

Retrieve [p Select R | Adapt lR‘
' PAM

PAM PAM
Retrieve S A Select S Adapt S

Method Method Method

Figure 2. Task decomposition of a CBR method, A CBR method for solving a task is
implemented by the specific methods for retrieveing precedent cases, selecting the most
appropriate case, and adapting its solution for the current task.

330

2.3 The Abstract Inference Process

The Massive Memory Architecture is implemented in the frame-based representation language
NOOS. The basic inference process of NOOS follows the Retrieve / Select / Adapt pattern. The other
notion needed to explain the inference process are impasses. When a query like (>> father of
John) is evaluated a new task is started. Then either
(i) task “father(John)” has a method to compute that value like
(>> husband mother of self),or
(ii) a no-method impasse occurs.
Case (i) is called spontaneous inference and occurs at the base level. However, in (ii) the impasse causes
NOOS to search at a meta-level for possible methods to use. Impasses are handled by metaobjects,
that is to say MMA is an impasse-driven reflective architecture. The architecture specifies which type
impasses can appear, and which kind of metaobject will handle them (see Table 2). The no-method
impasse in a task is handled by its metafunction (set of applicable methods). Applicable methods can
be retrieved and selected (maybe trying them out) and the solution is cached in the task-object (see
Fig, 3). Every impasse is an opportunity for learning and the reification process creates and stores the
objects needed to represent the situation (so that it can be useful in the future). In the task-object
example, the information stored is the successful method and the methods that failed.

Deliberate Inference
Meta || p1aysibly
Level || xpplicableT—#(Select Method
Methods
\
Learnin
\ A

Base Task Solution
Level

Figure 3. The Abstract Inference Process in NOOS. Impasse, Learning and Result are themselves Inference
Processes due to the reflective nature of inference and representation in NOOS. Methods come in two types,
namely Inference Methods and Domain Methods.

The inference can be more complex, e.g. maybe the applicable methods for a task
(>> father of John) are unknown. This is a new kind of impasse: the no-metafunction
impasse and is handled by the metatheory of John that possesses inference methods able to search,
retrieve and select methods in other objects. Currently several inheritance and case-based methods
are implemented as inference methods. The inference theories specify when each method is
applicable or likely to be useful in solving a task.

TABLE 2. Impasse and response to impasses

Impasse Type Handled by Metaobject Processing Level

No method for F(U) Meta("F(U)") Metafunction Domain Methods
Multiplicity of Methods Select Theory Strategic Cliché Preference Methods
No metafunction for F(U) Meta(*U") Infarence Theory Inference Methods

Multtiplicity of Infer. Methods Select Theory Strategic Cliché Preference Methods

The point to notice is that the uniformity of NOOS treats all situations in the same way. Table 2
summarizes the impasses recognised by NOOS and the corresponding metaobject to handle them. As
in Soar, every impasse arises from lack of knowledge: either because the system does not know what
to do, or it has several possibilities to act and has to decide among them. The first type of impasses is
handled by inference methods that know how to retrieve sources of knowledge. Multiple possibilities
are handled by strategic clichés, objects that know about preferencing and selecting among choices.
The long paper in the proceedings will include an example of case-based and explanation-based
reasoning for a technical diagnosis task.

331

3 Reflection and Self-models

The reflection principles specify the relationship between a theory T and its meta-theory MT. The
upward principles specify the reification process that encodes some aspects of T into ground facts of
MT. That is to say, reification constructs a particular model of T in the language used by MT. The
nature of reification and the model constructed is open, i.e. it depends on the purpose for which the
coding is made. We will use in MMA a knowledge-level model of task/method/theory
decomposition (explained in §2) as a meta-model of the base-level inference. We follow a framework
similar to the Components of Expertise [Steels 90] and the task-decomposition framework of
[Chandrasekaran 89]. However, we do not follow them strictly, except in the general idea of using as
“elements of inference” goals, methods, and theories. A similar approach is taken in [Akkermans et al
93] where the meta-model is the KADS modelling framework [Wielinga 92] for expert systems. The
meta-theory contents knowledge that allows to deduce how to extend this model deducing new facts
about it. This deduction process is called meta-level inference, and the content of this theory is again
specific to the purpose at hand (the meta-theory is indeed no more than a theory). Finally, downward
principles specify the reflection process that given a new, extended model of T has to transform the

theory T to a new theory T* that complies to that new model. A more detailed explanation of the
reflective principles and of the semantics of NOOS can be found in [Plaza 92].

Meta-Theory ™M7T
Meta-level & Extended
e e Model of T
Model of T Inference
Reification Reflection
Base Theory 7T Base Theory T

Figure 4. Reification constructs a model of a theory T. Metalevel inference deduces new facts or takes new
decisions that extend (or modify) this model using a meta-theory MT. Finally, reflection constructs a new
theory T” that faithfully realises the extended model of T.

Our hypothesis is that different types of learning methods would require different self-models of the
architecture. The current implementation of MMA has a model of the methods used for each task:
methods that have been proposed (by an inference method), methods that have been tried but failed,
and the method that has succeeded. This information is indexed therefore for each slot-query made
and is stored in an object called task-object. In the following we will use quotes “X” to designate
the reification of X. For instance:

Age(John) denotes the query (>> age of John)
whose result is 32 years, while

“Age(John)” denotes the query (>> reify (>> age of John))
i.e. the object reifying the task (>> age of John) whose print-name is:

#<task-object [age of John]>
The task-object reifies the current state of the process solving the task; specifically the system can
know the following about the current state:

Access-Name(“Age(John)™) => “Age”
Domain(“Age(John)”) => #<John>
Method(“Age(John)”) => #<Method Age-method-3>
Failed(“Age(John)™) => #<Method Age-method-5>
Referent(“Age(John)™) => #<32-Years>

This self-model is used by inference methods to retrieve and transfer the metafunction (containing the
available methods) from a task solved into a precedent case to a task in the present problem, and for
inferring preferences over method selection based on their success or failure in those precedents. For
instance, the MMA can obtain the method that successfully computed the age of John using this

query:

332

(>> method reify (>> age of John)) => #<Method Age-method-3>
Other learning methods that we are incorporating to MMA (see [Plaza 93]) use this self-model but
also require its extension. This is as expected because of our Self-model Hypothesis implies that every
learning method may need to know different aspects of the architecture. We are then in a process
where an analysis of those learning methods elucidate which aspects of NOOS that are hidden or
internal to its implementation are to be reified and made accessible to the architecture.

4 Related Work

Our work on architectures is related to cognitive architectures like SOAR [Newell 90], THEO [Mitchell
91], and PRODIGY {Carbonell 91]. At first sight, MMA language resembles THEO since NOOS is a
frame language with caching, TMS, and “available methods” for slots. However, THEO does not
provide a clear metaobject definition, does not reason about preferences over methods, and does not
incorporate analogical reasoning or explicit inference methods. At a deeper level MMA resembles
Soar in that MMA is a uniform, impasse-driven architecture with a built-in learning methed. The
differences are that spontaneous learning here is episode memorization and that our “learning as
metalevel inference” hypothesis shapes another approach to inference and learning by the use of
reification, self-models and the explicit representation of inference methods.

The introspective use of meta-explanations in Meta-AQUA [Ram 92] is also related to MMA approach
that exploits the reflective approach to learning. Meta-AQUA is not impasse-driven but proposes a
mapping between classes of situations and learning methods that can improve the system. Meta-
Router [Stroulia 92] combines planning and case-based reasoning in a task-decomposition framework
(based on [Chandrasekaran 89]) and defines a typology of errors and methods for repair.

Related work on reflection is [Kiczales 91], [Giunchilia 90], and [Smith 85}, and specially related
viewpoints of inference-level reflection are projects like REFLECT and KADS-II [Akkermans et al 93].
Meta-level architectures have been used for strategic reasoning [Godo 89] [Lopez 93], for non-
monotonic reasoning [Sierra 93] [Treur 91], and for modelling expert systems [Akkermans et al 93].
Precedents on using reflection for learning are [Ram 92][Lopez 93]. Our current NOOS language is to
be considered a descendant of languages RLL-1 [Lenat 80] and KRS [van Marcke 87].

Related work on knowledge-level modelling of Al systems includes the Commet (or components of
expertise) framework [Steels 90] , and the KADS methodology [Akkermans et al 93]. Our approach is
closer to the Commet in that the ontology of models, tasks and methods proposed by Commet is
related to MMA'’s ontology of theories, methods and tasks. However, NOOS considers two layers:
base-level domain theories and methods, and meta-level inference theories and methods, while the
Commet approach is not reflective and only is concerned with the domain layer. This is reasonable,
since Commet is intended as a prescriptive framework for expert systems where all options searched for
in MMA are dictated by the expert’s knowledge through the process of knowledge engineering.
Although this may involve lack of flexibility in general, it has evident advantages regarding efficiency
in most expert system applications. The KADS methodology is much more different but they have
used a reflective framework to describe the KADS four-layer architecture. Their reflective framework,
called “knowledge-level reflection” uses the KADS model to specify the system self-model of
structure and process, very much like our inference-level model of theories, tasks, and methods
allows MMA to have a self-model. However, neither Commet nor KADS have been used to perform
learning tasks, and in fact MMA is the first attempt to apply knowledge level analysis to learning
tasks and to develop a computational architecture that embodies that approach.

Acknowledgements

The research reported on this paper has been developed at the IIIA inside the Massive Memory
Project funded by CICYT grant 801/90.

References

[Aamodt 90] Aamodt, A., Knowledge-intensivecase-based reasoning and learning. Proc. ECAI-90,
Stockholm, August 1990.

[Akkermans et al 93] Akkermans, H., van Harmelen, F., Schreiber, G., Wielinga, B., A formalisation of
knowledge-level model for knowledge acquisition. Int Journal of Intelligent Systems forthcoming,.

[Armengol 93] Armengol, E. and Plaza E., Analyzing case-based reasoning at the knowledge level.
European Workshop on Case-based Reasoning EWCBR’93 Preprints.

333

[Carbonell 91] Carbonell, . G., Knoblock, C. A., Minton, S., Prodigﬁ:
i

An integrated architecture for
lanninf and learning. In K Van Kehn (Eds.), Architectures for Intelligence. Lawrence Erlbaum Ass.,
illsdadale, NJ, 1991.

{Chandrasekaran 89] Chandrasekaran, B., Task structures, knowledge acquisition and machine
learning. Machine Learning 2:341-347, 1989.

[Giunchilia 90] Giunchilia, F., and Traverso, P., Plan formation and execution in an architecture of
declarative mg(t)atheories . Proc of METFA-90: 2nd Workshop of Metaprogramming in Logic Programming..
MIT Press, 1990.

[Godo 89] Godo, L., Lopez de Mantaras, R., Sierra, C., Verdaguer, A., MILORD: The architecture and
the management of linguistically expressed uncertainty. Int. |. Intelligent Systems, 4:471-501, 1989.

[Lenat 80] Greiner, R., Lenat, D. RLL-1: A Representation Language Language, HPP-80-9 Comp.
Science dept., Stanford University. Expanded version of the same paper in Proc. First AAAI
Conference., 1980.

[Kiczales 91] Kiczales G., Des Riviéres J., Bobrow D. G., The Art of the Metaobject Protocol, The MIT
Press: Cambridge, 1991.)

[Lopez 93] Lopez, B. and Plaza, E., Case-based planning for medical diagnosis, In Z Ras (Ed.)
Methodologies for Intelligent Systems. Lecture Notes in Artificial Intelligence, 689, p. 96-105. 1993.
Springer-Verlag

[Mitchell 91] Mitchell, T.M., Allen, J., Chalasani, P., Cheng, J., Etzioni, O., Ringuette, M., Schlimmer, J.
C., Theo: a framework for self-improving systems. In K %’an Lenhn (Ed.) Architectures for Intelligence.
Laurence Erlbaum, 1991.

[Newell 90] Newell, A., Unified Theories of Cognition. Cambridge MA: Harvard UniversityPress, 1990.

[Plaza 92] Plaza, E, Reflection for analogy: Inference-level reflection in an architecture for analogical
reasoning. Proc. IMSA’92 Workshop on Reflection and Metalevel Architectures, Tokyo, November 1992, p.
166-171.

[Plaza 93] Plaza, E. Arcos J. L., Reflection and Analogy in Memory-based Learning, Proc. Multistrategy
Learning Workshop., 1993. p. 42-49.

[Ram 92] Ram, A., Cox, M .T., Narayanan, S., An architecture for integrated introspective learning.
fgrgg ML’92 Workshop on Computational Architectures for Machine Learning and Knowledge Acquisition,

[Sierra 93] Sierra, C., and Godo, L. (to appear) Specigin simple scheduling tasks in a reflective and

modular architecture. In J Treur and T Wetter (ds% Formal Specifications Methods for Complex

Reasoning Systems, Ellis Horwood.

[Smith 85] Smith, B. C,, Reflection and semantics in a procedural]all~n<gua§e, In Brachman, R.], and

:I;evesque, H. J. (Eds.) Readings in Knowledge Representation. Morgan Kauffman, California, 1985, pp.
1-40.

[Steels 90] Steels, L., The Components of Expertise, AI Magazine, Summer 1990.

[Stroulia 92] Stroulia, E. and Goel, A. K., An architecture for incremental self-adaptation. Proc. ML-92
Workshop on Computational Architectures for Supporting Machine Learning and Knowledge Acquisition. July
1992: Abeerdeen, Scotland.

[Treur 91] Treur, J., On the use of reflection principles in modelling complex reasoning. Int. J.
Intelligent Systems , 6:277-294, 1991.

[van Marcke 87] van Marcke, K., KRS: An object-oriented representation language, Revue d'Intelligence
Artificielle, 1(4), 43-68, 1987.

[Wielinga 92] Wielinga, B., Schreiber, A., Breuker, J., KADS: A modelling approach to knowledge
engineering. Knowledge Acquisition 4(1), 1992.

334

Using Case-Based Reasoning to Focus
Model-Based Diagnostic Problem Solving

Luigi Portinale, Pietro Torasso, Carlo Ortalda, Antonio Giardino

Dipartimento di Informatica’- Universita’ di Torino '
C.so Svizzera 185 - 10149 Torino (Italy)

1 Introduction

The use of Case-Based Reasoning (CBR) plays a fundamental role in many important
Al tasks like diagnostic problem solving (8] or planning [5], since in many situations
it can mimic the capability of human experts in solving a new case by retrieving
similar cases solved in the past. The suitability of CBR to solve complex problems
has been widely discussed in the last few years and this led to the combination of
case-based reasoning with more traditional problem solving approaches like rule-
based (2], prototypical [12] and model-based reasoning (MBR) [4, 10]. In domains
where a strong model is present (i.e. where a precise domain theory is available), the
use of CBR could seem less obvious, however it can still provide advantages when the
precise computation of a solution is very complex; this has been studied in tasks like
design [4], planning {7] and diagnosis [10]. The identification of previously analyzed
problems can be a useful tool for improving the performance of a model-based system
by using experience in problem solving. There are two basic possibilities in combining
CBR and MBR: 1) CBR is the main problem solving method and MBR is just used
to provide guidance to it; 2) CBR is used to focus MBR in the attempt to augment
the basic mechanisms of MBR by taking experience into account.

In this paper we will concentrate on the second aspect and in particular on
adaptation criteria that can be used in a diagnostic system combining case-based
and model-based reasoning. Such adaptation criteria strictly rely on well-defined
formal notions of diagnostic problem and diagnostic solution and their adoption can
be viewed as a focusing technique for the model-based inference engine?®.

2 Outline of System Architecture

In the diagnostic system we can identify the following basic components: (1) a case
memory with an E-MoP-based organization of cases [9]; each case represents a diag-
nostic problem already solved and it is composed of a set of atoms feature(value)
together with the solution of the problem; (2) a module able to store and retrieve
cases from the case memory and to evaluate the degree of match between the current
case to be solved and the retrieved ones; (3) a knowledge base, represented through
a cousal model identifying the faulty behavior of the system to be diagnosed; (4)

! Another important aspect that will not be discussed here concerns the organization of the

case memory that can greatly influence the system performance (see [1] for a discussion
of this aspect in the use of the CASEY system).

335

a model-based reasoner able to perform diagnostic reasoning on the causal model
in the form of abduction with consistency constraints [3]; (5) a module performing
adaptation on retrieved solutions and able to invoke the model-based reasoner if
adaptation criteria fail to provide a solution.

The diagnostic system, when presented with a new case, first invokes the case-
based reasoner in order to retrieve the most similar cases solved in the past and
then it tries to use the solutions of retrieved cases in order to focus the model-based
reasoner in the search for the actual solution. The emphasis of the paper is on the
adaptation strategies working on the solutions retrieved from the case memory.

Let us briefly discuss the causal model formalism, while in the next section we
will address the problem of the formal characterization of diagnostic problems upon
which the model-based reasoner performs its task. A causal model is composed by a
set of logical formulae which express different kinds of relationships among entities
belonging to different types?. We identify the following entities: states represent
non-observable internal states of the modeled system; findings represent observable
parameters (manifestations) in the modeled system and are the features that are
used to characterize cases; initial_causes represent the initial perturbations (initial
states) that may lead the system to a given behavior. Each one of these entities is
characterized by a set of admissible values so that we can identify different instances
of them. Two main types of relationships are defined in the model: causalrelationship
represents a cause-effect relation among states, while Aam (has as a manifestation)
relationship is an ordered relation from a state S to a finding M and represents
the fact that the finding M is an observable manifestation of the internal state
S. Relationships can be either necessary or possible. In the second case they are
modelled introducing a new entity, named assumption, that is put in conjunction
with the rest of the precondition and represents the incompletness in the specification
of the relation [11].

3 Characterization of Diagnostic Problems

In [3] a formal theory of model-based diagnosis is proposed from a logical point of
view; this theory defines a logical spectrum of definitions able to capture classical
notions of model-based diagnosis, i.e. consistency-based and abductive diagnosis (see
[3] for more details). In the present work we rely on such a theory in order to precisely
define a notion of diagnosis on causal models and exploiting such a framework in the
adaptation of a retrieved solution. A diagnostic problem DP can be described as
atriple < T,HYP,< ¥*+,¥~ >>, where: T is the set of logical formulae constituting
the causal model; HY P is a set of ground atoms denoting the initial causes in terms
of which diagnostic hypotheses have to be expressed; ¥ is a set of ground atoms
denoting the set of findings that must be accounted for in the case under examination;
¥~ is a set of ground atoms denoting the set of findings that are known to be false
in the case under examination.

It follows from this definition that if OB.S is the set of all the observed data in
the current case, ¥+ C OBS while #~ will contain, for each observed finding, all

? The formalism is actually more structured than as presented here (see [11]); we will
sketch here only what is relevant for our discussion.

336

the instances of such a finding that have not been observed. Since we abstract from
time, we impose that a finding cannot have more than one (normal or abnormal)
value. This means that a conjunction of atoms representing different instances of the
same entity of the causal model yields an inconsistency, so the consistency check is
done through the set ¥~

Given a diagnostic problem DP=< T,HYP,< ¥*, ¥~ >>,aset H C HYP is
a solution for DP (alternatively an explanation for the observations) if and only if:

Vmec¥t TUHFm and VYnc¥ TUHYn

This means that H has to account for all observations in #*, while no atom in ¥~
must be deduced from H. It should be clear that a solution H identifies a ground
causal chain on the causal model T, starting from the initial causes mentioned in
H and containing all their causal consequences. Such a chain is stored in the case
structure and is used as the starting point of the model-based inference engine when
the case is retrieved.

4 Adaptation Strategies

The goal we pursue in adding a case-based component to a model-based reasoner
concerns the possibility of guiding the latter in the search for a solution to a new
problem, by reminding solutions to similar problems already solved. Unless the un-
usual situation when the case under examination is characterized by exactly the
same features of the retrieved one, the domain theory is invoked to check whether
the retrieved solution is suitable for the case under examination. In particular, we
precisely characterize the notion of “suitability” by adopting the formal notion of
consistency of a diagnostic solution; this corresponds to put into set ¥, for each
observed finding, every instantiation of such findings different than the observed one.

If consistency is verified, then the retrieved solution can be used as potential
solution for the new case under examination, unless the user requires that some
findings, that are not covered by the retrieved solution, have to be covered in the
current case (i.e. they have to be put into ¥*). In this situation or in the case when
the consistency check fails, adaptation strategies are needed in order to single out a
solution taking into account all the requirements (both consistency and covering).

We identify some basic adaptation mechanisms such that the whole adaptation
process can be obtained by-suitably invoking them; such mechanisms can be viewed
as processes of removing inferences that are responsable for inconsistency and pro-
cesses building explanations for data to be covered. We will describe how these
mechanisms work by providing two simple examples (a more formal treatment in-
dependent on the particular example will be included in the final version of the
paper).

Let us consider the following causal model T representing a small fragment of a
more detailed model in the domain of car faults;

causes({a;, eng mileage{betw_50000_and_100000_km)), piston_ring_wear(moder))
causes((ay, eng_mileage(more_than_100000_km)), piston_ring wear(severe))
causes(piston_ring_wear(moder), oil_consumpt(low))
causes(piston_ring_wear(severe), oil_consumpt(high))

337

causes({oz, eng mileage(betw_50000_and_100000_km)), piston_wear(moder))
causes((az, eng_mileage(more_than_100000_km)), piston.wear(severe))
causes(piston_wear{moder), oil_consumpt(low))
causes(piston_wear(severe), oil_consumpt(high))

causes(oil_consumpt(low), oil_lack(medium})

causes(oil_consumpt(high), oil_lack(high))

causes((as, key(turned_on)), engine(on))

causes({a4, road_condition(uneven), ground_clearance(low)), oil_sump(holed)
causes{otl_sump(holed), oil_lack(high))

causes((oi_lack(medium), engine(on)), engine_temp(high))
causes((oil_lack(high), engine(on)), engine_temp(very_high))

ham(piston_ring_wear(moder), state_of .piston_rings(worn)
ham(piston_ring_wear(severe), state_of piston_rings(very.worn))
ham(oil_consumpt(low), ezhaust_smoke(grey))
ham(oil_consumpt(high), ezhaust_smoke(black))
ham(piston_wear(moder), state_of pistons(worn)
ham(piston_wear(severe), state_of _pistons(very_worn))
ham(oil_lack(medium), oil_warning light(yellow))
ham(oil_lack(high), oil_warning light(red))
ham(engine_temp(high), temp_indic(yellow))
ham(engine_temp(very_high), temp_indic(red))
ham(oil_sump(holed), hole_in_oil_sump(present))

A causal relation is represented by a causes predicate whose first argument represents
its precondition involving a conjunction of states, initial causes and assumptions (in-
dicated with ;) and the second argument represents the effect. A “ham” relation
is represented by a ham predicate; the first argument of a ham predicate is a state
instance whose observable manifestation is represented by the second argument.
In this causal model the set of hypotheses HY P consists of the ground initial causes
eng_mileage(betw_50000_and_100000_km), eng_mileage(more_than_100000_km),
key(turned_on), road_condition(uneven), ground._clearance(low) and the assump-
tions ay, a2, a3, ay.

Example 1. Let us suppose that the case under examination is characterized by
the following observations:

OBS; = {ezhaust.smoke(black), temp_indic(red), oil_warning light(red)}
Let us also suppose to retrieve the following case from the case memory:
{state_of pistons(very_worn), ezhaust_smoke(black), oil_warning light(red)}

with associated solution consisting in the conjunction of the ground initial cause
eng_mileage(more_than_100000km) and the assumption ez. From this conjunction
and from the domain theory it is easily to derive piston_wear(severe) (whose mani-
festation is state_of _pistons(very_worn)), oil_consumpt(high) (whose manifestation
is ezhaust_smoke(black)) and oil_lack(high) (whose manifestation is

oil_warning light(red)).

Since the manifestations in the retrieved case differ from those in OBS}, consistency
check occurs; consistency is checked by using the model 7" and by putting into ¥~
the following manifestation instances (i.e. all the manifestations that are alternatives

338

with respect to the observed ones): ezhaust.smoke(normal), exhaust_smoke(grey),
oil_warning light(normal), oil_warning light(yellow), temp_indic(green),
temp_indic(yellow). It is easy to see that consistency check succeds, therefore the
retrieved solution can be considered a solution also for the case described by OBS,;
in case the user does not require stronger notion of explanation based on covering.

Example 2. The role of adaptation strategies is made clear by the following
example where we assume the case under examination to be characterized by the
following observations:

OBS; = {~state_of pistons(very_worn), ezhaust_smoke(black), temp_indic(red),
oil_warning light(red)}

Let us also suppose that the case retrieved from the case memory is the same of
Example 1. We can immediately notice that the solution of the retrieved case (i.e.
{eng_mileage(more_than_100000km), a3 })is not consistent with OBS,, since it de-
rives the manifestation state_of pistons(very_-worn) that is negated in the case un-
der examination; for this reason adaptation is required. /
Let us suppose that the set ¥ is formed by ezhaust_smoke(black), temp_indic(red)
and oil_warning light(red); the adaptation strategy first tries to disprove the causal
chain having state_of pistons(very_worn) as a final conclusion. In particular, by
removing the assumption g, the state piston_wear(severe) and the manifesta-
tion state_of pistons(very.worn) are no longer supported and consistency is re-
established. Since oil_consumpt(high) is necessary to account for manifestation
ezhaust_smoke(black) and it is not supported after removing a3, adaptation mech-
anisms have to find out an alternative cause for it.
Looking at the causal model, piston_ring_ wear(severe) can be used to support
oil_consumpt(high) and then, by adding assumption «ay, part of the retrieved solu-
tion (i.e. eng_mileage(more_than_100000km)) can be reused.
Notice that no additional work is needed in order to cover exhaust_smoke(black)
and oil_warning_light(red) which are the findings that are common to both cases.
Finally, in order to complete the adaptation, we have to find a cause accounting
for temp_indic(red) which is present in the case under examination and not in the
retrieved one.
This is accomplished by assuming the initial cause key(turned_on) and the assump-
tion a3 which allows one to infer engine(on) that in conjunction with oil_lack{high)
allows one to derive engine_temp(very_high) that explains temp_indic(red).
In conclusion, the solution to the current -case is represented by the initial causes
eng.mileage(more_than_100000km), key(turned_on) and the assumptions o, as.
Notice that the adaptation of the retrieved solution saves significant amount of
work with respect to a diagnostic process that do not exploit retrieved cases. This
saving occurs not only when the solutions of the actual and the retrieved case are
quite similar, but also when they have significant differences. Example 2 shows that
the retrieved solution can be actually used as a focusing mechanism even when the
differences in the features characterizing retrieved and current case have a significant
impact on the solution of the current case. In such an example, if the solution had
to be computed without exploiting case-based mechanisms, the diagnostic system
would reach the same conclusion, but the computational effort would be significantly
greater because the system had no guide in choosing among multiple alternatives

339

present in the causal model.

5 Discussion

The system described in the present paper is similar in some aspects to the CASEY
system [10], however a major difference concerns the fact that we rely on a well-
defined characterization of diagnostic problems and on a precise and general theory
of model-based diagnosis. The paper reports an ongoing research; one of the topics
that is currently actively investigated concerns the design of opportunistic control
strategies for deciding how far it is worth to proceed in adapting the tentative
solution of a retrieved case with respect to the solutions provided by other retrieved
cases. Such control] strategies should decide to abandon adaptation in some special
cases when most of the retrieved solution has to be refused. In such situations the
“pure” model-based reasoner should be in charge of the computation of the solution.

References

1. D.S. Aghassi. Evaluating case-based reasoning for heart failure diagnosis. Technical
report, Dept. of EECS, MIT, Cambridge, MA, 1990.

2. P.P. Bonissone and S. Dutta. Integrating case-based and rule-based reasoning: the
possibilistic connection. In Proc. 6th Conf. on Uncertainty in Artificial Intelligence,
Cambridge, MA, 1990. ’

3. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7(3):133-141, 1991.

4. A. Goel. Integration of case-based reasoning and model-based reasoning for adaptive
design problem solving. Technical report, (PhD Diss.) Dept. of Comp. and Inf. Science,
Ohio Univ., 1989.

5. K.J. Hammond. Case-Based Planning: Viewing Planning as a Memory Task. Aca-
demic Press, 1989.

6. W. Hamscher, L. Console, and J. de Kleer. Readings in Model-Based Diagnosis. Mor-
gan Kaufmann, 1992.

7. E.K. Jones. Model-based case adaptation. In Proc. AAAI 92, pages 673678, San
Jose’, 1992.

8. J. Kolodner and R. Kolodner. Using experience in clinical problem solving: Introduc-
tion and frameowrk. IEEE Trans. on Systems, Man and Cybernetics, 17(3):420-431,
1987.

9. J.L. Kolodner. Retrieval and Organization Strategies in Conceptual Memory: a Com-
puter Model. Lawrence Erlbaum, 1984.

10. P. Koton. Using experience in learning and problem solving. Technical Report
MIT/LCS/TR-441, MIT, Cambridge, MA, 1989.

11. P. Torasso and L. Console. Diagnostic’ Problem Solving: Combining Heuristic, Approz-
tmate and Causal Reasoning. Van Nostrand Reinhold, 1989.

12. P. Torasso, L. Portinale, L. Console, and M. Casassa Mont. Approximate reasoning in
a system combining prototypical knowledge with case-based reasoning. In L.A. Zadeh
and J. Kacprzyk, editors, Fuzzy Logic for the Management of Uncertainty. John Wiley
& Sons, 1992.

340

Integrating Rule-Based and Case Based Reasoning with Information
Retrieval: The IKBALS Project.

John Zeleznikow! Daniel Hunter?2 George Vossos3

1. Introduction

Over the past decade there has been a growing emphasis on reasoning from experience (case
based reasoning). It is our view that intelligent systems need to reason with both rules (given as
in statutes, or modelled as in heuristics) and experience (such as legal precedents or medical
cases). Because medicine and the law provide excellent examples of the need to integrate rule-
based and case-based reasoning, we use both of them as our application domains.

Whilst this project is concerned with multi-modal reasoning in legal knowledge based systems,
most of the issues we discuss can easily be generalised to application domains other than law.
Indeed the project can be more accurately represented as one concerned with integrating rule-
based reasoning, case-based reasoning and intelligent information retrieval.

The main features of our integrated system are:

. The use of cooperating agents;

. The use of an Application Programming Interface to act as a bridge between the agents in
the IKBALS III system and the Artificial Intelligence kernel in the Knowledge Base;

. The use of a customised induction algorithm that generates the indices into the case base;
The use of background information to supplement the induction process;

. A method for converting the decision tree produced by the induction algorithm into
quantitative knowledge based rules;

. The heuristics used to justify explanations;

. The query facility that enables users to investigate the relationship between cases and

arguments in the system.

These features are pertinent to the construction of general integrated reasoning systems. A paper
discussing our work on the integration of case-based reasoning and rule-based reasoning in health
care planning can be found in the proceedings of this conference.*

* The goal of this research project is to investigate ways of reducing the problems associated with
modelling law using a strictly heuristic rule-based expert system approach. A heuristic rule-
based legal expert system suffers from many problems including explanation deficiencies and
control. Our approach to modelling legal reasoning involves integrating a case-based reasoning

1 Database Research Laboratory, Applied Computing Research Institute, La Trobe University,
Bundoora, Victoria Australia 3083 and INFOLAB, Katholike Universiteit Brabant, Tilburg,
Netherlands. E-mail address: johnz@latcsl.lat.oz.au

2 Law School, University of Melbourne, Parkville Victoria, Australia 3052. E-mail address:
dah@rumpole law.unimelb.edu.au

3 Database Research Laboratory, Applied Computing Research Institute, La Trobe University,
Bundoora, Victoria Australia 3083. E-mail address: vossos@latcs].lat.oz.au

4

Bradburn, C. and Zeleznikow, The Application of Case Based Reasoning to the Task of Health
Care Planning'.

341

mailto:address:vossos@latcsl.lat.oz.au
mailto:address:johnz@latcs1.lat.oz.au

module into a knowledge-based system. Briefly, this multi-modal approach to the problem of
modelling legal reasoning has the following advantages over a strict rule-based approach:

. It improves the problem solving performance of a rule-based reasoner. Case-based
reasoning can assist a legal rule-based reasoning module represent and reason with open
textured statutory predicates. Open textured legal predicates contain questions that
cannot be structured in the form of production rules or in logical predicates and which
require some legal knowledge on the part of the user in order to answer.

. It improves the explanation facilities of the system. Case-based reasoning can enhance
the legal rule-based reasoning module’s explanation by identifying and analysing
relevant case(s) and argument(s) that support a particular categorisation.

Our work provides a methodology and architecture for constructing such legal knowledge-based
reasoning systems. The framework developed provides developers of legal knowledge-based
systems with a unified approach to the problem of combining legal rule-base reasoning with
case-base reasoning. The IKBALS (Intelligent Knowledge BAsed Legal System) system is an
application developed using this framework which aims to provide interactive knowledge-
acquisition tools that aid developers of legal knowledge-based systems design and test both
their case-bases and their rule-bases. A separate run-time module allows end-users to run
consultations with the knowledge-base developed above. The system itself is comprised of
intelligent cooperating objects (agents) which combine to solve tasks by reasoning with symbolic
representations. The system establishes a common communication protocol that agents use when
sending messages across the system.

The development module of the current system consists of a Case Based Reasoning Editor and an
Rule Based Reasoning Editor. The Case Based Reasoning Editor uses a customised inductive
learning algorithm INDUCE2 to index cases in the case-base. Cases are not discarded by the
inductive algorithm but are used to provide an explanation-based analysis. In addition, the
algorithm takes advantage of any background information provided by the developer. This
background information concerns attributes included in the learning task, and is used by the
algorithm to build better decision trees. Background information is stored as symbol hierarchies
in the knowledge-base. The decision tree produced by INDUCE2 is converted into quantitative
production rules which are then used by IKBALS III to locate relevant similar cases in the case-
base. Reasoning with arguments is also supported. These arguments are brought into the legal
analysis during Case Based Reasoning explanation. Finally, a query facility is provided that
enables either the developer or the end-user of the run-time system to investigate the
relationship between cases / arguments in the knowledge-base.

In using a distributed approach of cooperating agents to perform the integration of rule-based and

case-based reasoning (rather than the centralised blackboard approaches of CABARET® and
PROLEXS®) we are performing fundamental Artificial Intelligence and Database research on
building multi-modal reasoning systems. This work is readily generalisable to other domains.

5 Rissland, E.L. and Skalak, D.B., 1991, 'CABARET: Rule Interpretation in a Hybrid Architecture’, 34
Int’]J. Man-Machine Studies p839.
6 Walker,RF., Oskamp,A., Schrickx,]J.A., Opdorp,GJ., Berg P.H. van den, 1991, PROLEXS: Creating

Law and Order in a Heterogeneous Domain’, 35 Int'l] Man-Machine Studies p35

342

This project commenced with the construction of a purely production rule-based system IKBALS 14
which was constructed using the Goldworks environment. The IKBALS II8 prototype used a
blackboard approach to integrating rule-based and case based reasoning in the domain of
Workers' Compensation. Our latest prototype IKBALS 119 also integrates rule-based and case-
based reasoning, but this time using a distributed agent approach. Using the domain of the Credit
Act (Victoria, Australia), we have constructed and optimised the operation of a rule-based
reasoning module (used to model legislation) using class /object structures. The rule-based module
of IKBALS III has been used in a commercial system.10 We show how these class/object structures
can be further used by a case-based reasoning module that retrieves and analyses similar relevant
cases from a case-library using induction.

The Case Based Reasoning module of IKBALS III comprises a number of separate agents. There
are three active agents in our system: the Case Based Reasoning Editor agent, the Rule based
deductive agent and the Case based agent. Each of these agents has been designed and
implemented separately and they themselves decide whether they want to communicate with
any other agent, via a Common Communication Layer. Our system has been designed to adhere to
the principles of Distributed Artificial Intelligence by supporting design autonomy and
comumunication autonomy.

2. The Case Based Reasoning Editor

The Case Base Reasoning Editor uses a series of interactive editors which allow developers to
define their case-based reasoning modules. The Editor itself is comprised of several distinct
utility agents that cooperate to represent and index cases, as well as providing facilities that
enhance explanation via access to deep domain models. All sub-editors are comprised of agents
that coordinate to solve specific problems. The Index Generator editor, for example, schedules
agents to handle the task of induction.

The Case Base Reasoning Editor comprises several modules: the Schema Editor, the Case Editor,
Background Information Editor, the Causal Editor and the Index Generator. The Schema and
Case Editor allow the user to specify the structure of the case base. The Index Generator uses
induction to automatically index cases in the case base. It makes extensive use of any background
information provided by the user as entered into the Background Information Editor. The Causal
Knowledge Editor allows the developer to represent adversarial reasoning by defining legal
arguments.

Our experiments with IKBALS II indicated that dynamic generation of indices suffers from the
following problems.

7 Vossos, G., Dillon, T., Zeleznikow, J. and Taylor, G., 1991a, 'The Use of Object Oriented Principles to
Develop Intelligent Legal Reasoning Systems’, 23 Australian Computer Journal, pp 2-10
8 Vossos, G., Zeleznikow, J., Dillon, T. and Vossos, V., 1991b, 'An Example of Integrating Legal Case

Based Reasoning with Object Oriented Rule-Based Systems - IKBALS II', Proceedings of the Third
International Conference on Artificial Intelligence and Law, ACM Press, pp 91-10l.and Vossos, G.,
Zeleznikow, J. and Hunter, D., 1993, 'Designing Intelligent Litigation Support Tools - the [KBALS
Perspective’, Law, Computers and Artificial Intelligence 2(1} pp. 77-93, 1993.

9 Zeleznikow, J., Vossos, G. and Hunter, D., 'The IKBALS Project: Multi-modal reasoning in Legal
Knowledge Based Systems' to appear in Al and Law: An International Journal

10 Vossos, G., Zeleznikow, J.,, Moore, A. and Hunter, D., 1993b, 'The Credit Act Advisory System
(CAAS): Conversion From an Expert System Prototype to a C++ Commercial System’, Proceedings
of the Fourth International Conference on Artificial Intelligence and Law, ACM Press, pp 180-183.

343

. Such a system displaces control from the knowledge engineer / expert and places it in the
hands of end-users. In a sense, the end-user is required to perform the knowledge-
modelling. This transfer of responsibility is clearly undesirable;

. Lack of validation. If the system’s knowledge-base is left open to modification by the
end-user, then it cannot be validated. This causes concerns over the long-term correctness
of the system, and, within commercial environments, a lack of acceptance since no one is
willing to accept liability for the system behaviour.

. It diminishes performance. Having to process cases sequentially at run-time may have
diabolical consequences for the performance of a system comparing cases in very large
databases.

Allowing the developer to pre-index cases in the case-base using the method of induction was the
preferred approach taken in the IKBALS III project. Unlike other induction algorithms however,
IKBALS III uses supplementary background information to guide the generation of the index.
Further, the object knowledge-base is used to represent both cases and background information. In
order to provide a facility for reasoning with arguments, IKBALS III provides editors to represent
and reason with legal argument. Hence, the contents of a legal case in IKBALS III are jointly
represented by a factual case description as entered in the Case Editor as well as the arguments
for and against the credit provider. These arguments, are indexed separately by IKBALS III and
are used by the memorandurm generator in producing its explanation.

3. Machine Learning in IKBALS III
There were three main practical reasons why we did not adopt the ID3 algorithm.

o The agents in our system do not themselves contain data-structures. Instead, all data
structures used to generate the decision tree are represented in the external knowledge-
base. Conventional inductive algorithms execute recursive calls that generate structures
internally. Hence such algorithms would have to be re-written to reflect this fact;

. Standard inductive algorithms provide no facility to incorporate background information
into the learning process. The ability to access this type of information in a uniform way
meant that such algorithms were unsuitable for use in our system;

. 1D3 code is not object-oriented and thus would have to be re-written for our purposes.
For these reasons, we designed our customised inductive learning algorithm, INDUCEZ2.

The INDUCE? algorithm uses a similar selection criteria to ID3 in subdividing the example set
at each step. It uses a top-down, divide and conquer strategy that partitions the given set of
examples into smaller and smaller subsets in step with the growth of the decision tree. The order
of presentation of the examples is not important. INDUCE2 uses the object knowledge-base to
store the structures it processes when constructing the decision tree. The decision tree itself is also
represented as an object-hierarchy in the IKBALS III knowledge-base. The nodes of the decision
tree correspond to questions, answers and category nodes. The INDUCE?2 algorithm represents its
acquired knowledge initially as a decision tree in the form described, and then converts the
decision tree into rules.

344

Given a number of facts, generalisation can be performed in many different directions.!l In order
to constrain a generalisation process and extract interesting rules from a case-base, learning
should be directed by background knowledge, such as knowledge contained in concept hierarchies.
Concept hierarchies can provide valuable information for inductive learning. By organising
different levels of concepts into a taxonomy, rules can be restricted to a form which comply to
certain syntaxes. This is often referred to as conceptual bias.12 The net result of rules described by
higher level concepts is that the domain is then represented in a simple and explicit form.

Knowledge about concept hierarchies in IKBALS III is directly provided by domain experts.

Each concept hierarchy relates to a specific attribute in the domain and is organised from the

most general to the specific. The most general point in the concept hierarchy is the name of the

attribute itself (the root) with the leaf nodes corresponding to the actual values of the attribute
as found in the case-base.

The UseBackInfo agent supplements the normal operation of the INDUCE2 learning algorithm by
providing additional information concerning the attributes used in the learning task. This
handler attempts to prune the branching factor occurring out of any node in the decision tree. It
does this by trying to generalise the values of an attribute if the total number of values for an
attribute exceeds the threshold. The algorithm traverses the attribute’s symbol hierarchy one
level at a time, searching for a concept that generalises the values of the attribute to less than or
equal to the threshold. The algorithm performs this function by referring to previously stored
background information. This background information is defined by the domain expert and
encoded by the developer using the Background Editor. The background information is stored in a
separate class hierarchy in the knowledge-base.

The strength of the overall approach taken lies in its ability to convert the decision tree into
rules and incorporate background information. This approach differ from other inductive
algorithms in that it accesses a domain model during the building of the decision tree in an
attempt to reduce noise and compact the decision tree. Weaknesses of this approach include the
possibilities of generating large decision trees and univariate splits.

4. The Use of Causal Information in IKBALS III

The IKBALS III program assumes that open-textured rule predicates do not have one right
answer. Instead, the program assumes that there will be competing reasonable arguments. Its
analysis of these arguments involves distinguishing which side particular arguments favour, as
well as establishing a mechanism for being able to compare these arguments symbolically.

Legal arguments are represented in IKBALS III by justification heuristics which are in turn
represented in the knowledge-base by a causal network. Agents in the Causal Editor allow
' developers to define justification heuristics along with explanatory and analytical information
which is then used by the Report Generator to compare the relative strengths and weaknesses of
similar cases. Like all of our reasoning structures, justification heuristics are stored and accessed
by agents using the Application Program Interface.

1 Dietterich, T. G. & Michalski, R.S., “A comparative review of selected methods for learning from
examples”, in Michalski, R.S. et al., Eds., Machine Learning: An Artificial Intelligence Approach,
Vol. 1, Los Altos, CA: Morgan Kaufmann, 1983, pp. 41-82.

12 Genesereth, M. and Nilsson, N., “Logical Foundation of Artificial Intelhgence” Los Altos, CA,
Morgan Kaufmann, 1987

345

Justification heuristics serve to represent the various legal arguments used by lawyers to justify a
particular outcome. Justification heuristics represent a useful index into cases for the purpose of
retrieval. Instead of associating justification heuristics directly to cases at development time, a
mechanism was required that would identify potentially relevant arguments given a description
of the case which is being examined at run time. Such an approach cross indexes the relevant case
instance(s) which meet the requirements of the justification heuristics. These cases are then
indexed by the justification heuristics(s) that applied to it. Relationships between cases and
arguments are then be investigated by agents using the Application Program Interface.

In order to facilitate for case comparison and analysis, one slot from the list of conditions is
selected as the critical slot. This slot is used by the report agent as the basis of comparing the
relative strengths and weaknesses of particular arguments. This approach to legal analysis
corresponds to Ashley’s ‘dimensional’ approach.13 If the conditions of a justification heuristic
are met, the justification heuristic rule cross indexes the case instance(s) as an instance of that
justification heuristic. By late binding justification heuristics at run-time the developer can
change the composition of the cases in the case-base without affectmg the applicability of

justification heuristics. '

5. The IKBALS III Run-time System

The IKBALS III run-time system consists of several modules. Most of these modules are concerned
with the control of the rule-based reasoning aspect of the system. Two of the modules are
dedicated to providing the case-based reasoning support.

The issue of integration is somewhat simplified in IKBALS III , due mainly to the Application
Program Interface bridge between the application and knowledge-base. Since the knowledge
structures used by both the case-based reasoning module and the rule-based reasoning module
coexist in an external object knowledge-base, the agents of both modules gain access to this rich
pool of knowledge by communicating via the Application Program Interface.

Agents in the IKBALS III system are autonomous; once activated by a user event, agents execute
their specific task without requiring intervention. Control is hard wired directly into those
agents which are then responsible for planning, scheduling and executing their tasks. Agents are
able to create, modify and delete class, object and rule definitions as well as to control the
reasoning process via access to the inference engine.

6. Conclusion

We have described an object-oriented integrated rule-basedy case-based reasoning system, which
provides for intelligent case indexing, retrieval and reasoning with an induction algorithm. It
provides for cooperating agents, making for flexible and simple modification and amendment. Its
case-based reasoning agents allow for induction, and indexing on heuristic matching strategies.
Though our system operates within a legal domain, we believe that the methodology and
architecture is of general application to domains other than law.

13 Ashley, K. D., 1991,Modelling Legal Argument: Reasoning with Cases and Hypotheticals, MI1T
Press.

346

Chapter 7

Knowledge/Software Engineering
and Case-Based Reasoning

347

Model of Problem Solving for the Case-Based Reasoning

Ikram CHEIKHROUHOU

LAFORIA-IBP, Université Paris VI
Tour 46/00, Boite 169
4, place Jussieu
F- 75252 Paris Cedex 05

e-mail : ikram@1]aforia.ibp.fr

Abstract This paper proposes a model of problem solving for the case-based reasoning. This
modelisation uses the KADS formalism. As other knowledge acquisition methods, KADS offers a
representation and structuration framework which try to respect the semantic and the role of the
knowledge. The possession of models of problem solving method can facilatate the knowledge
acquisition process by specifying the role that the knowledge plays during the problem solving
process.

1 Introduction

Founded whether on rules or cases, a knowledge based system uses the dorain knowledge to solve a problem.
Whatever the choice, we are led to analyse this knowledge and to select the most relevant one for the problem
solving. This selection assumes that we know how to organize and to exploit this knowledge. So, a close link
emerges between the knowledge acquisition and the problem solving. Indeed, it isn't easy to assess what a
knowledge can bring and how to structure it if we don't know what it will be used for.

Often considered as a constructive modelling process, the knowledge acquisition aims to construct
conceptual models. These models are important as much as they can point out the problem progress term to its
solution by showing, in every stage, the necessary knowledge to elicit. Considered as problem solving
methods, these models are generic and so independent of domain. Case-based reasoning can be one of these
methods. It may be used, a priori, for different kinds of tasks.

The purpose of this paper is to propose an interpretation model based on KADS() for this case-based
reasoning. This interpretation model is susceptible to help knowledge engineer. It indicates him, notably, what
knowledge types ought to be acquired and what roles to attribute to problem solving process.

A short preview of the modelling in knowledge acquisition is presented in Section 2. The Section 3
describes the KADS method. We put stress on the interpretation models assimilated to models of problem
solving methods. Section 4 contains our modelisation of the case-based reasoning using the KADS formalism.
The last section concludes about the use of the case-based reasoning in the Knowledge-Based system (cooperation
& complementarity).

2 Knowledge Acquisition and Modelling

A wide consensus takes shape to the research workers in the knowledge acquisition. It consists in recognizing
that the knowledge acquisition passes beyond the frame of expertise transcription to become a modelling
process[2]. Indeed, after the introduction of the Newell’s knowledge level notion [3], some works have shown
the interest of describing the domain knowledge in a conceptual level, which is a level of knowledge

interpretation. Many approaches have been proposed. We are interested more particularly in interpretation
models of KADS method.

1- KADS, Knowledge Acquisition and Design Structuring, is a methodology for the development of knowledge
based systems (ESPRIT 1, II project).

349

mailto:ikram@laforia.ibpJr

The notion of interpretation models defined by the KADS concepters allows to guide the knowledge
engineer at the time of the data analysis. The interpretation models contain an abstract description of the
characteristics of the different generic tasks. By describing the problem solving process independently of the
domain, these models want to be reusable and then quite generic. They produce conceptual models of the futur
system when instantiated with domain knowledge.

3 KADS

KADS is a model-driven methodology. It is a "language" of european researchers community in knowledge
acquisition. It's based on construction and transformation of models. Each model emphasises some aspects of
the system to be built and abstracts from others [6]. KADS separates the knowledge analysis phases from their
representation.

Issued from the analysis phase, the construction of the conceptual model is a central activity in the process
of knowledge-based-system construction. To construct this model, KADS offers a four layers structure : from
the less abstract level describing the domain concepts to the most abstract level representing the system
behaviour [1] . : '

The domain layer : this level describes the domain concepts and the relation between them.

The inference layer : this level describes the inference structure, which is a description of inferencing
capability based upon knowledge at the domain layer. The inference structure specifies the problem solving
competence of the target system. It comprises a diagram consisting of knowledge sources and metaclasses :

» The knowledge source is a representation of a single inference at the inference layer. It consumes one or
more metaclasses as input, and produces one metaclass as output. The process by which this
transformation is achieved is based on the methods which constitute the internal contents of the knowledge
source.

* The metaclass is a representation of the role that may be played by a domain concept during the problem
solving.

The task layer : this level describes the decomposition on subtasks whose organize and control these
primitive inferences. It represents the reasoning stages (goals) and how to reach them. A task indicates how
to follow an inference structure.

The strategy layer : this level allows to specify the choice of several tasks if these coexist.

To facilitate the interpretation of verbal data obtained from the expert, KADS provides a library of
interpretation models that consist of a task and an inference layer. An interpretation model is an abstract
description of a problem solving method. It gives the knowledge engineer strong indications of what domain
knowledge is needed because the metaclasses and knowledge source indicated in this model must have domain
specific equivalents.

KADS proposes a classification of generic tasks. For each task, one or more problem solving method are
proposed. "Integrate” case-based reasoning model is important as much as this method is often used by the
expert to solve a problem. Then, it is more easy to "collect” expert experience in cases form. In addition, cases
provide some aspects of the context, which can facilitate the problem solving. Moreover, with several problem
methods in the library, the knowledge engineer can select one or several problem methods according to the kind
of the problem. These methods can complement each other and/or cooperate.

4 An Interpretation Model for the Case-Based Reasoning
In this section, we present our modelisation of a case-based reasoning, according to the KADS formalism. We

give the inference and the task layers, which represent the two essential constituents of the KADS interpretation
models.

350

4.1 The Inference Layer

The Inference Structure.

The following diagram (fig.1.) shows the set of inference steps.

problem

represent

current case

organized library of
past cases

relevant past
cases
update | Kn about
similarity
selected
past case
modification
Knowledge
proposed
solution
improved solution
B] tested solution | . improvement
improve knowledge
1 meta classes (i.e. roles)

[i) Knowledge sources (i.e. operators)

Fig.1. An inference structure for the case-based reasoning

The Knowledge Sources Description.

The knowledge source “represent” translates the new problem (i.e. new event) on a case ; so it will be
comparable with previously stored cases. This process will be facilitated by the feature indexation of the new
event.

351

The Inputs of the knowledge source “retrieve® are the current case and the organised library of past cases. The
function of this knowledge source is to research the most relevant cases by using the library of cases.

“Select” allows to decide which case is more like the current situation. This process is possible with the help
of the knowledge about similarity.

The next step consists in the adaptation (i.e. modification) of the old solution to satisfy the requirements of the
new problem. This process is facilatated by using the various features of the new context.

The knowledge source “fest evaluates the proposed solution. If this solution complies the new event
constraints then it is proposed for the user and put away the library of cases. “Improve* allows to explain and
to correct the failure of test.

“Update'* updates the cases library, in consequence of new cases informations.

4.2 The Task Layer

This layer represents an other constituent of the interpretation model. At this layer, the task structure is
described. We remind that the task structure is the procedural overlay on the inference structure that shows the
sequence of knowledge source invocation [1]. In the following figure, we present the task structure for the
inference structure showed in Figure 1.

find (problem -> solution)
represent (problem -> current case)
retrieve (organized library of past cases, current case -> relevant past cases)
select (Knowledge about similarity, relevant past cases -> selected past case)
modify (selected past case, modification Knowledge -> proposed solution)

While (test (proposed solution, improved solution -> tested solution) = bad
solution)
(improve (improvement knowledge, tested solution -> improved solution))

EndWhile

update (tested solution -> organized library of past cases)

T : Find solution

Represent Research Modify Test Improve Update

N

retrieve Select

Fig.2. A task strucure for the Case -Based Reasoning

5 Conclusion

Leaning on the case-based reasoning modelisation according to KADS, we have tried to study the different
necessary types of knowledge and their interactions.

It is interesting to insert this solving problem method in the library of KADS interpretation models. We
stress the importance of using several methods to benefit from the mutual contribution approaches. For
example, on the case-based reasoning research phase, an acceptable solution for the current case may not be
obtained. In this case, the system can use an other method to find an available solution instead of returning an

352

echec message.

The model, presented in this paper, shows the different phases that a case-based reasoning system can
satisfy. For each phase, the necessary knowledge has been indicated. Moreover the case-based reasoning is used
for different kinds of tasks [4] (e.g., diagnosis, conception and planning). A preliminary study of the different
techniques used for each case-based reasoning phase showed that an appropriate technique can be found for each
specific task. It is perhaps early to give a such conclusion, but a further studies should confirm it. In this case,
the appropriate technigues should allow to understand better what kinds of knowledge are really used and hence to
be acquired. Moreover, a deep analysis of knowledge allows a more efficient cases representation, which could
improve the selection of the most relevant cases and adaptation processes.

References

[1] F.R. HICKMAN, J.L. KILLIN, L. LAND, T. MULHALL, D. PORTER and R.M. TAYLOR: Analysis
for knowledge-Based systems, a practical guide to the Kads methodology. Ellis Horwood, (1989).

[2] J1.P. KRIVINE and J.M. DAVID: L'acquisition des connaissances vue comme un processus de
modélisation : méthodes et outils. In: Intellectica, numéro spécial : expertise et sciences cognitives, n°
12, pp. 101-138, (1992).

(3] A.NEWELL: The Knowledge Level. In: Attificial Intelligence 18, pp. 87-127, (1982).

[4] Proceedings of Case-Based Reasoning Workshop. Sposered by DARPA, (1989)

[51 S.SLADE: Case-Based Reasoning : a research paradigm. In : Al Magazine 12, n° 1, pp. 42-55, (1991).

[6] B.J. WIELINGA, A. Th. SHREIBER and J.A. BREUKER: KADS : a modelling Approach to
Knowledge Ingineering. In : Knowledge Acquisition 4, n° 1, pp. 5-53, (1992).

353

A Software Engineering Model for Co-operative
Case Memory Systems

Andrew M. Dearden* and Michael D. Harrison
Department of Computer Science
University of York
Heslington
YO1 5DD
UK
email: andyd@minster.york.ac.uk

mdh@minster.york.ac.uk
tel: (44)-904-432765

August 26, 1993

1 CBR and Case Memory Systems

The process of solving a problem using Case-based Reasoning (CBR) has been
described as a sequence of steps as follows:

1. analyse the current situation;

2. generate a set of indices;

3. retrieve and order a set of stored cases;
select one or more cases to work with;

adapt the chosen case to fit the new situation;

o o

test the adapted case and repair any failures.

A number of CBR systems have been constructed in which the first three steps
are handled by separable software modules. Commercial products which sup-
port only these three steps have achieved notable success (for example [5]).
Software systems that capture these first three steps may be described as Case
Memory Systems (CMS). The concern of this paper is to develop a model for
Case Memory Systems that may be used in the analysis of existing systems and
the design of new ones.

*Supported by a CASE studentship from SERC and BTplc

354

mailto:mdh@minster.york.ac.uk
mailto:andyd@minster.york.ac.uk

1.1 Why a Model is Needed

For a software engineer attempting to apply a CMS to a new domain the
primary sources of information are previous case studies. The engineer is faced
with the problem of finding the case study which most closely reflects the
important features of the new domain and applying it appropriately.

In order to select between different CMS designs software engineers require a
model that will enable them to make an objective assessment of the alternative
design possibilities. The model must be capable of expressing important sim-
ilarities and differences between CMS, and should allow the software engineer
to reason about properties of proposed designs as well as completed systems.

1.2 The Advantages of a Formal Model

For example, previous discussions of properties of CMS, e.g. [2], have identi-
fied a number of potential indexing terms. However the terms proposed are
unreliable because:

" e properties are described by reference to its application to a particular do-
main of knowledge, and via a particular knowledge representation, rather
than being abstracted to a domain independent level;

e it is not possible from this information alone to examine whether a par-
ticular algorithm does or does not satisfy selected properties;

e it is not possible to discover whether any of the properties described are
interrelated.

By using a domain independent notation, the software engineering notation
Z [7], we have produced a general model of CMS which can be used to explicate
important distinctions between CMS reported in the literature. This model:

e is abstracted away from particular domains and tasks;
e can be used to relate different properties;

e can be used to verify or refute claims about the capabilities of different
algorithms

We are currently working on an extension to the model to explore distinc-
tions that may arise when considering how a human user might interact with

a Co-operative CMS (CCMS).

2 The Basic Model

A CMS is modelled using sets in three domains.

A set of Problem Statements (PS), representing queries input to the sys-
tem.

A set of Descriptions (D), each description being a set of attribute-value
pairs. Descriptions are used to index the case base.

355

A set of Reports (R), which represent the information content of a case.

A Case Base (CB) is characterised as a function between Descriptions and Re-
ports. Hence an individual case is a unique Description-Report pair. Querying
a CB involves inputing a Problem Statement, translating the Problem State-
ment to generate a Description, then using the Description, and perhaps other
elements of the Problem Statement, to produce an ordering over the set of cases.
A CMS is modelled by a translation function T (from Problem Statements to
Descriptions) and a higher-order function from CBs to Problem Statements to
orderings of cases.

— CMS
T:P—D
CMS : (D — R) — PS — (Cases — Cases)
VC:D—R;VYp:PSe
CMS(C,p) € Orderings

The orderings permitted are lattices of equivalence classes of cases.

2.1 Comments on the Basic Model

The model allows for many different representations of the case content or for
the input to a CMS. The sets of problem statements and reports could be
anything at all. Modelling the indexing terms as attribute-value pairs also
allows for systems where indexing is based on lists of atomic features. The
definition of Orderings as lattices of equivalence classes allows for systems which
select one case, systems that use numerical scores, as well as systems such as
HYPO [I] which generate complex partial orderings.

To date we have not found any CMS which cannot be related to the basic
model. However, the model does assume that the problem statement is static,
and does not change, thus it cannot distinguish properties that are important
to CCMS. The modelling of such systems is discussed in section 4 below.

3 Distinguishable Properties in the Model

Using the model a number of properties that have been discussed in the liter-
ature can be made explicit.

3.1 Directable CMS

Kolodner in [2][p77] argues that if a reasoner is pursuing a particular goal, this
goal will be important in similarity assessment. Goals may be used as indexing
terms, but in general it is not possible to predict the full set of goals for which
a case might be relevant. Instead the reasoner’s goal is used to indicate other
features that are important to match. We can distinguish this property by
considering the role of the translation function T. If a system is able to use
part of the input Problem_Statement, which is not used for indexing cases then
it must be possible to find two problem statements, which translate to the same

356

description, but which (for some case bases) result in different case orderings.
Formally:

Directable_CMS

FCMS

3p1,p2: P;3C:D —R| T(p) = T(pa) @
CMS(C,p1) # CMS(C,p2)

As we are interested in a general model we prefer to avoid terms such as
Goal-directed which may be specific to planning domains, and prefer the term
directable to describe systems which might have this property.

3.2 Sensitivity to Context

Ashley [2][p74] argues that similarity assessment should recognise the signif-
icance of particular combinations of factors, rather than considering each at-
tribute independently.

If we imagine an input Problem Statement, p;, to a CMS which results
in an ordering which prefers a case (d1, n) over (dz,r2). If the attributes are
considered independently, then changing the problem statement to ps, where
py translates to a superset of p;, should only change to ordering of (d;,) and
(da, mo) if these cases differ with respect to the newly acquired attributes in
T(p2)\T(p1). Conversely if we can find a CMS, and cases where this does not
hold then the CMS must be modelling some interdependence of attributes, i.e.
the significance of individual factors depends on their context.

Formally attribute interdependent CMS satisfy the schema:

__ Attribute_Interdependent_CMS
CMS

AC:D — R; Apy,pa: P; TAs : P Attributes |

dom T'(p1) C T(p2) A As = dom T(py)\ dom T(p3) e
(3(d1,), (d2,m2) : C | As <1 dy = As<ady e

((dy,m),(dy, 72)) € CMS(C, p1) A =((d1,11), (dz, 1)) € CMS(C, p2))

Here the symbol <« indicates domain restriction:

B«qA={(z,y): A|z € B}

3.3 Other Properties

We have also used the model to analyse different mechanisms for taking past ex-
perience into account in determining similarity. In particular we have identified
three ways in which this might occur:

Report Examination - the use of the content of the individual cases to
affect similarity assessment, e.g. by marking particular features of a case
as salient.

357

Domain Content Sensitivity - the use of the distribution of features
amongst the indexing Descriptions to indicate the relative significance of
attributes, e.g. by weighting in favour of evenly distributed features.

Report History Sensitivity - the use of the content of the set of stored
reports to affect similarity assessment, e.g. by identifying features which
are highly discriminating amongst the set of reports.

3.4 Relating Properties

Because the Z notation includes a formally defined semantics, the model can
support reasoning about the relationships between different properties. For
example, it is possible to prove that for a system to be directable it must be
attribute interdependent. The proof of this result follows by considering the
case of attribute interdependence when the the set As is empty.

3.5 Analysing Algorithms and Systems

A detailed analysis of a single system is beyond the scope of this short paper.
However, the Z notation is designed to support such analysis and we have ap-
plied the model in analysing properties of a number of systems. The interested
reader is referred to [4].

4 Modelling Co-operative CMS

The basic model of CMS assumes that the Problem Statement is static and
is completely known in advance. In many domains, such as diagnostic help
desks [3] this is not a valid assumption. A Co-operative CMS (CCMS) is a
CMS which supports a human user in gradually refining their understanding
of the current problem. Examples of CCMS are CBR Express [5] and the case
delivery component of KID [6].

Many knowledge based systems (KBS) projects have failed because inade-
quate attention was paid to human-computer interaction. By constructing a
formal model of the option space for CCMS we hope to support software en-
gineers in generating interface designs which are appropriate for the particular
task or environment in which the CCMS it to be used.

Below we list and describe (informally) some of the properties we are cur-
rently investigating.

Flexibility : A CCMS must provide operations which allow a user to
change the value of the current PS. In any given state there will be a set
of problem statements to which the system is prepared to move in a single
operation. We name this set the ready set for the CCMS. The larger the
ready set the more flexible the interaction with the CCMS may be.

Advice and Initiative : A CCMS should provide advice to the user on
ways in which the problem statement might be refined. The relationship
between the advice and the ready set will be important in characterising
initiative in the dialogue. If a CCMS is to provide a mixed-initiative
dialogue, the ready set must be larger than the advice set.

358

Presentation and Initiative: The way in which the system presents
cases to the user also involves choices about system-, user- and mixed-
initiative presentation. Since only a limited number of cases can be pre-
sented at any one time, the choice of how much detial about cases is given
may lie with the system or the user at various times during a consulation.

Advisory Strategies: Sequences of refinement advice given by a CCMS
may be designed to lead the user to converge on some case or set of cases
which are in some sense the ‘most useful’ for the user’s current problem.
Alternatively the advice given may be designed to partition the currently
‘most useful’ set.

5 Conclusion

To be useful to software engineers a model of CMS or CCMS should be in-
dependent of particular knowledge domains or tasks; should support precise
reasoning about the properties of individual designs or systems; and should
allow investigation of the relationships between different properties. Such a
model could be used by sofware engineers in analysing the requirements of a
particular application, in locating similar previous designs, and in verifying the
properties of completed systems.

We have presented a formal model for the option space of CMS which sat-
isfies these criteria We aim to generate a similar model for the option space of

CCMS.

References

[1] Ashley KD, Rissland EL. A case-based approach to modeling legal expertise.
IEEE Expert, 3(3):70 - 77, 1988.

[2] R. Bareiss et al. . Panel discussion on indexing vocabulary. In DARPA
Case based reasoning workshop 1989, pp 66 — 84. Morgan Kaufmann, 1989.

[3] Bridge DG, Dearden AM. Knowledge based systems support for help desk
operations: A reference model. Int. J. Systems Research and Information
Science, 5:217 — 234, 1992. -

[4] Dearden AM. The engineering of co-operative case memory systems. 2nd
year DPhil report, Dept. of Computer Science, University of York, 1993.

[5] Klahr P, Vrooman G. Commercialising case based reasoning technology. In
Graham IM, Milne RW (eds), Research and Development in Expert Systems
VIIL, pp 18 ~ 24. Cambridge University Press, 1991.

[6] Nakakoji K. Increasing shared understanding of a design task between
designers and design environments: The role of a specification component.
PhD thesis, Dept. of Computer Science, University of Colorado, Boulder,
1993.

[7] Spivey JM. The Z notation: A reference manual. Prentice-Hall Interna-
tional, 1988.

359

Toward a Task-oriented Methodology in Knowledge Acquisition
and System Design in CBR *

Dietmar Janetzko
University of Freiburg
Institute of Computer Science
and Social Research

D-79098 Freiburg, FRG

dietmar@cognition.lig.uni-freiburg.de

Carl-Helmut Coulon
Gesellschaft fiir Mathematik
und Datenverarbeitung
D-53757 Sankt Augustin 1
P.O. Box 1316

coulon@gmd.de

Katy Borner
HTWK Leipzig
Department of Informatics
P. O. Box 66

D-04251 Leipzig, FRG
katy@informatik.th-leipzig.de

Ludger Hovestadt
University of Karlsruhe
Department of Architecture
Englerstr. 7

D- 76128 Karlsruhe
ludger@ifib.uni-karlsruhe.de

Abstract

In knowledge acquisition and system design there are strong interactions between the tasks
the system has to fulfill, the methods chosen, and the knowledge needed. In this paper, we
will present an introductory analysis of these interactions. An example is taken from the
domain of building design to elucidate the problem of designing supply nets. Additionally,
we will present an inference structure that serves as a basis for system design. Both the
example and the corresponding inference structure will be used to spell out and exploit the
interactions between tasks, methods, and knowledge in knowledge acquisition and system
design.

1 Introduction

A major problem in building knowledge-based systems arises if the interaction between knowl-
edge acquisition and system design is neglected. There are a number of pitfalls resulting from
that interaction. Omne of them is knowledge acquisition that does not feed into system design.
Another negative effect of that interaction is system design that enforces using a particular kind
of knowledge that may or may not be relevant for modeling a task. Although these problems
are widely kunown, there is still a need for a methodological framework that provides guidelines
for the application of methods and knowledge once a particular main task ought to be modeled
and decomposed. The goal of this paper is to specify the interactions between tasks, methods,
and knowledge.

The sections of this abstract may be sumimarized as follows. First, we present a view on knowl-
edge acquisition and system design that rests upon the notions of tasks, methods, and knowledge.
Sccond. an example is used that permits to analyze the interactions introduced. The example

*This rescarch was supported by the German Ministry for Research and Technology (BMFT) within the joint
project FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German National Research
Center of Computer Science (GMD). Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of
Dresden, HTWIK Leipzig. University of Freiburg, and University of Karlsruhe.

360

mailto:ludger@ifib.uni-karlsruhe.de
mailto:cOlllon@gmd.de

addresses the design of supply nets, which is a task in building design. Third, we present a
computational framework by using MoMo [5] to build an inference structure. This structure
allows for a specification of the interactions for conceptual modeling of design and planning
tasks taken from the domain of supply nets. Finally, we present a short outlook on the analysis
of interactions to be presented in the extended version of this paper.

2 Tasks, Methods, and Knowledge

Tasks, methods, and knowledge form the three basic buildings-blocks involved in knowledge
acquisition and system design [4], [3]. In this section, we first introduce each of these three
notions and give an outline of interactions between them. In addition, we will point out the
relationships between the notions task, methods, knowledge, and the concepts in MoMo, which
is the conceptual modeling language we use.

Tasks play an important role in modeling problem solving [6], [1]. Examples of tasks are word
processing, job scheduling, and fault diagnosis. Tasks refer to the things to be achieved. To
make tasks come true methods and knowledge are needed. If a task cannot be achieved by a
single method it has to be decomposed. In MoMo [5], the equivalence of task is called action or
(MoMo-) task.

Methods are procedures that implement abstract problem solving models. Methods provide the
active part in reasoning that carries out problem solving. Methods mediate between tasks and
knowledge. Which method is chosen and applied to the task hinges on criteria like availability
of knowledge. computational costs, and reliability of the solution. A method which is applied
at one level of a task structure may be applied at another level of the same task structure, too.
In MoMo, the equivalence of method is referred to as a generic function.

Knowledge is used here in a technical sense and refers to the input and output of tasks. In this
way, knowledge provides the material methods employ for their operations. In MoMo, knowledge
of a defined type is represented in places that hold the input and output of actions. Whenever
two concepts among the building blocks tasks, methods, and knowledge are fixed, there are only
a few possibilities left to fix the third one. Thus, if the task to be modeled and the methods
that are applied to the task are selected the appropriate type of knowledge can hardly be freely
chosen. This focusing effect may be exploited in knowledge acquisition. Having selected design
as the top-level task and case-based reasoning as the general problem solving method exercises
a pressure to use cases, concept hierarchies to support indexing, and similarity assessment and
rules to support modification. Vice versa, it is very well possible to start with selecting the task
and the knowledge to be used, thereby constraining the selection of a suitable method.

"3 An Example

Our example shows how a task in the design of a supply air network of an office building is
modeled by using case-based reasoning as the general problem solving method.The next section
is concerned with providing an inference structure that serves as a basis for a computational
modeling of problems of that kind.

In Fig. 1 there is a detailed survey of the steps required to plan and design supply nets in
buildings. Note, that each step mentioned in Fig. 1 presents an intermediate result which can
be depicted visually and may be captured by an inference structure. Both are presented in Fig.
2. The ellipses shown in the left part of Fig. 2 provide information on a sketch level of design.
To use ellipses instead of rectangles is a very useful graphical trick: Ellipses overlap only in a few
points. Thus, information on different levels of abstraction can be displayed simultaneously!.
In the left part of Fig. 2 each intermediate result is shown visually. In the right part of Fig. 2

!'For a detailed introduction into this representation scheme, the reader is referred to [2]

361

each intermediate result is depicted as a MoMo place. In addition, the actions which are linked
to these places are shown. Each figure in the left part of Fig. 2 has an equivalent part in the
MoMo inference structure on the right.

4 A Computational Framework

Case-based reasoning has been chosen for the general problem solving method since in this
domain the reuse of previous solutions is a common practice. As a consequence, problem solving
in this domain is made up of a number of tasks specific to CBR. These tasks, in turn, have to be
tackled by specific methods which need a particular kind of knowledge [3]. These tasks would
not have been used in this way if a different general problem solving method (like rule-based
reasoning) had been employed.

MoMo is used as a language to represent and operationalize a conceptual model of systems. We
use it for a model of CBR problem-solving in constructing supply nets. In MoMo, the control
flow is defined on the task layer by using tasks. The data flow is specified on the inference layer
in terms of places, actions, and types. Actions refer to inferences directed toward a particular
task. Places are ”containers” holding the input and output of an actioni. This kind of knowledge
has to be specified by assigning it to a particular type. To represent MoMo models graphically,
e.g. an inference structure, boxes are used to represent actions and ovals are used to represent
places.

The overall problew in a domain like constructing supply nets in building design is divided into a
planning and a design phase. Planning refers to the selection and sequential ordering of subgoals
that have to be achieved in order to achieve a main goal. That means, planning provides an
answer to the question when and which problem ought to be solved. Design, on the other side,
gives information how this problem should be solved. Again, decomposing the overall building
design task into planning and design tasks calls for specific methods that further confine the
kind of appropriate knowledge.

.The planning phase takes as input a complex situation-description, known subgoals, and
state-subgoal-pairs. The output of the planning phase is a distinct problem identification
which is worked out in the design phase. In our example, the complex situation may be compared
to a snapshot of problem solving at a certain point in time showing that parts of a supply
net are already fixed while other parts still have to be planned and designed. The places
known-subgoals and state-subgoal-pairs are occupied by knowledge that is used for goal-
setting. The place state-subgoal-pairs contains rules that fulfill two purposes. Firstly, they
help discerning a particular state among a complex situation description. Secondly, they help
pointing out which subgoal ought to be pursued given a particular state. Both the isolated state
and the identified subgoal are then combined. In this way part of the situation, i.e. a state,
is turned into a problenmi which can be tackled. The place known-subgoals, on the other side,
holds those goals that are alrcady achieved. Thus, known-subgoals is a means to control which
subgoals are already achieved.

The destgn phase uses pre~select to retrieve an appropriate case of the case-base. This re-
sults in a set of candidate cases called case-set which seem to be useful to solve the actual
problem. Select. i.e. a secoud selection, is required for further confining this subset. This
action produces a reduced set of candidate cases referred to as best-case-subset. Having
completed the selection of appropriate cases the solution found is transferred to the problem-
description. The result is an expanded state, i.e. the problem~description is enlarged by
elements found in previous cases. If the solution transferred from another case does not fulfill
the requirements of the problem description an adaptation of the transferred solution is nec-
essary. To this purpose. the expanded state together with adaptation-knowledge enter the
action adapt whichi produces an adapted state. Subsequently, two actions are performed in
order to test the result. Justify, the first of the testing actions, is used to find out if the

362

situation description: This place refers to an early stage in design, when the princi-
ples of a supply air system are designed.

known subgoals: Each object of the situation is connected with a goal to produce and
control more detailed informations. The objects with unsatisfied goals are displayed bold-
ly. These are mainly the objects with the most detailed informations.

problem description: Given a complex situation, there may be many problems to be
solved. This figure shows the problem with the first priority. In this example it is the
object for one supply air network. The selected problem can be isolated from the situation
and needs only a few other objects (state): the six mid-sized circles represent the rough
location of the supply air outlet in the ceiling of one floor in the office building. The small
circle represents the vertical duct. The selected problem is to connect the outlets with the
vertical duct.

case base: The case base shows several prior solutions to the same problem. The ducts
we are looking for and which connect the outlets with the vertical duct are represented by
the ellipses.

case set: The case set consists of a few cases which are most similar to the selected
problem.

best case subset: This is the case the solution of which needs minimal adaptation to
fit the demands of the selected problem.

expanded state: This figure shows the best case subset in the background and the state
in the foreground, in order to prepare the adaptation.

adapted state: In this example the state needs no change, but the horizontal ducts of
the best case subset were added and one duct needs shortening.

justified state: Some simple checks can be made, e.g. the overall length of the ducts
or the number of direction changes are restricted.

evaluated situation: Some more checks might be necessary before the selected prob-
lem can be merged to the situation, e.g. the spatial coordination of the supply air ducts
and the return air ducts. .

situation*: If no test fails, the state can be merged to the situation, which now contains
more detailed information.

known subgoals*: The known subgoals are updated as well. In comparison to the illus-
tration of the subgoals at the beginning of this example, one can see that the lower left
network is no longer displayed by a bold circle. The three sketches of the supply air ducts
we added to the situation formulate new subgoals for the following design steps.

case base*: The justified state can be added to the case base which can be seen in the
lower left case of this illustration.

Figure 1: CBR-Problem Solving in Building Design

363

known subgoals
:subgoal-type

situation-description
<, Situation-
Sationtype

state-subgoa]-]pairs

indenify-problem ‘state-subgoal-type

problem-description
:problem-type

preselect 4

best-case-subset
case-lype

transfer-solution
@m
 Sate-type
adaption knowledge
:adagggn-knowldedgg-lype
adapled state
‘state-type
L JHesl-predicates ™
[ﬂ predicate-type

/7 justifiedstate
S Matetype)

—] edest-predicates
- evaluate ‘—@>

\,

(evaluated situation)
. Situation-ype
v

.
update

Figure 2: MoMo Inference Structure applied to building design

364

adapted state as such is free from errors. That is, justify is taking only the isolated state
produced so far into account. Justify uses highly specialized test-predicates that check
locally for common errors. There are test predicates for unconnected or conflicting pipes etc.
The output of justify is a justified-state. This is a problem solving state which is error-
free when viewed in isolation. Evaluate, the second global testing action, is used to find out
if the justified-state may still be referred to as error-free once it is embedded into to the
more complex situation-description. Again, highly specialized test-predicates may be
employed. Once the problem-description together with the state that has been adopted from
another case and adapted to the current requirements has passed both testing actions, the action
update is used to add the new case to the case-base.

5 Conclusions

Interactions between tasks, methods, and knowledge may be exploited to improve knowledge
acquisition and system design. We investigated these interactions by generating and discussing
variants of the inference structure of our implementation. The top level task taken from the
domain of building design remained the same across all investigations of interactions. These
investigations proceed by systematically replacing lower level tasks and methods by alternative
ones which results in different knowledge needs. In short, variants of inference strucutres are
generated and the interactions between tasks, methods, and knowledge are investigated. As a
result various triples of tasks, methods, and knowledge are obtained that reflect interactions
between them. This will be presented in the extended version of this paper. Although these
results are experimental in nature they pave the way to a more principled account of knowledge
acquisition and system design in CBR-systems.

Acknowledgments

This research has been strongly inspired by work done in the project FABEL the general objec-
tive of which is the integration of case-based and model-based approaches in knowledge-based
systems. We owe thanks to Gerhard Strube, Oliver Jeschke, Markus Knauff, Matthias Niickles
for fruitful discussions about the ideas introduced in this paper. Nonetheless, the paper reflects
our personal view to specific questions and tasks involved in knowledge acquisition and system
development.

References

[1] B. Chandrasekaran, T. R. Johnson, and J. W. Smith. Task-structure analysis for modeling
domain knowledge and problem solving for knowledge system construction. Peper presented
on « Workshop on Problem-Solving Methods, Stanford, July 9-11, 1992.

[2] L. Hovestadt. Armilla4 - an integrated building model based on visualisation. In Proc.
EuropIA°93, Delft, The Netherlands, to appear.

[3] D. Janetzko and K. Bérner. Tasks-methods-knowledge interdependencies in CBR-systems.
FABEL-Report No. 9, Gesellschaft fiir Mathematik und Datenverarbeitung (GMD). 1993.

[4] L. Steels. Components of expertise. AI Magazine, 11(2):28-49, 1990.

[5] J. Walther, A. Voff, M. Linster, Th. Hemmann, H. Vof}, and W. Karbach. Momo. Technical
report, Gesellschaft fiir Mathematik und Datenverarbeitung (GMD), 1992.

[6] B. Wielinga, A.T. Schreiber, and J.A. Breuker. KADS: A modelling approach to knowledge
engineering. Knowledge Acquisition, 4:5-53, 1992.

365

Similarity-based Retrieval of
Interpretation Models

Frank Maurer
University of Kaiserslautern
AG Prof. Richter
P. O. Box 3049
6750 Kaiserslautern
Germany
e-Mail: maurer@informatik.uni-kl.de

1.0 Introduction

Knowledge acquisition is a bottleneck of expert system development. Thereby, a special pro-
blem is the reuse of available methods. To overcome this problem, KADS [6] supports a
library of interpretation models. Currently, this library contains only a few models so that
humans are able to find an appropriate interpretation model for their task. In the future, expert
system developer (or more general: software developers) will use huge libraries. Then the
question of how to retrieve a model which is useful will raise. Our hypermedia-based knowl-
edge engineering tool CoMo-Kit [1,2] tries to solve this question with a similarity-based or
case-based approach.

To search for an interpretation model CoMo-Kit will use a similarity-based matching of
graphs. We extend ideas from the PATDEX system [3, 5] to an object-oriented matching The
work described within this paper are first ideas and should not be taken as finished research.

In chapter 2 we define cases and the similarity of cases. Chapter 3 deals with the retrieval of
interpretation models.

2.0 Case descriptions

In our approach, a case represents a task with an associated method. The Method is described
as a inference structure. Task descriptions which shall be reused are stored in a library and we
call “interpretation models”, in analogy to KADS. In contrast to KADS, our cases are not
generic descriptions of tasks but domain specific structures. Every model of a domain which
comes out as the result of a modelling process can be stored in the library.

The structure of a task (e.g. the data and control flow) is represented asa graph. Nodes and
links of this graph are associated with types. In figure 1 a task structure is shown. Ellipses rep-
resent inferences (functions) whereas rectangles describe concept classes (data structures).

A knowledge engineer is able to build new task structures by using a set of predefined task
types. Figure 2 shows the hierarchy of task types which is currently supported by CoMo-Kit.!

1. If needed, the set of task types can easily be extended.

Similarity-based Retrieval of Interpretation Models

366

mailto:maurer@informatik.uni-ktde

Task structure

®
(Fte v) (eait v) (view v) (Language 7)

Liste atler Symptome|
Liste der Fehlerbeschretbungen

Erhebe Anfangssymplome

Liste der mitialen Symptome|

Bestimme Grobdiagnose

Reparaturanieitung|

Fehlemeseitigung

Fragestategle festlegen

Eingrenzen des Fehlers

Erfragen voh Symptomen \

Liste der

Figure 1: The method of a task

Task

Selection Iransfer Transformation Truth Computation
task assessment
split sort . abstract complex specific compute
| structure structure structure /\
match best | first /\ /\

.) compare check-
focus last abstract rank specify instantiate | constraints
first-fit classify compare-

norm
ropose
p lp assemble
. . /‘\ ri
obtain-with- .. . verify
defaults compose join associate |
/\ | update
. combine
propose- obtain
change

Figure 2: Taxonomy of predefined tasks

Similarity-based Retrieval of Interpretation Models

367

In the following, we define nodes and links. Nodes are objects and can be connected via
directed links. The similarity of two links depends on the type of the link and the source and
destination object.

Definition 1: Node class

A node class defines

¢ asuperclass

¢ the attributes ay,.., a, of instances

¢ the types ty,.., t,, of the attributes

 the similarity of nodes of the same class:

sim(S, T) € [0,1] EQU

The class Object does not have any attributes and is the root of the class hierarchy. The simi-
larity of instances of Object is always zero:

SimgpieedS, T) = 0 EQ2)

Definition 2: Node instance

An instance associates a value with every attribute a;. The value must be included in the type
of the attribute or it must be “unknown”. '

W, (a)) € t; U {unknown} (EQ3)

Definition 3: Link

A link is an directed arc between a source and a destination object. Links are typed, e.g. every
link is an instance of a link class. For every link class a similarity function is defined.

simy; (Link,(S, T), Linky(S', T")) € [0,1] EQ4H

Definition 4: Case

A case consists of a set of node and link instances. We cannot distinguish between problem
description and solution. A problem description is a part of a graph. The solution is the rest.!

For every object of a case a weight is defined. Every case has an unique name.
Case(Name) — {Node,, ..., Node,, Link,, ..., Link,} EQS)

VO, € Case(Name): Weight(0)) € [0,1] (EQ6)

2.1 The similarity of cases

To compute the similarity we see a case as a rule and the new problem description as the work-
ing memory. The algorithm computes the similarities for every binding (<Matching>) of the
objects of the problem description to the objects of the case. The similarity of a case to the
problem description is the weighted sum of the node and link similarities.

1. The impossibility to define which parts of a graph will be used as a problem description and which as
the solution is the reason why an inductive approach is not applicable.

Similarity-based Retrieval of Interpretation Models

368

simeg..(C, Graph)<Matching>=

ZWeight(COi) - simgy; (CO,, Graph (<Matching>)) EQ7)
i

A matching network is used to speed up the computation of the similarity. The matching net-
work reduces the number of bindings which must be tested. Because of the typing not every
node of a case must be matched with every node of the problem description. Only objects of
the same class are compared. It is easy to extend this by matching also the instances of sub-
classes. The speed-up of the matching process is increased if the case-matching is incremental.
This is the case for our application: We want to model a part of a task and then search for a
similar case. If the retrieved case is not appropriate, the knowledge engineer extends the model
and starts the search again.

3.0 Retrieval of Interpretation Models

Interpretation models are stored as graphs in a library, e.g. the matching network. To query the
network for a similar case the user draws parts of a task structure (figure 1 shows the graphical
interface). The defined node and link instances are propagated to the matching network and the
similarity values of the stored cases are updated. The system presents a list of all retrieved
interpretation models to the user who is able to choose one for his further work.

We used a similar approach for the retrieval of CAD drawings in architectural design (see [4]).

4.0 State of Realization

The knowledge engineering tool CoMo-Kit is fully implemented and allows to define task
hierarchies, inference structures, classes with attributes, and instances. We now work on the
implementation of the library. The tools for similarity-based retrieval of interpretation models
are, as mentioned in the introduction, are up to now only ideas.

5.0 References

1. E Maurer: CAKE: Computer-Aided Knowledge Engineering, IICAI 91 WS “Software
Engineering for Knowledge-Based Systems”, Sydney 1991, also: SEKI Report SR-91-
09

2. F. Maurer, G. Pews: A Distributed Operationalization of Conceptual Models, in: Proc.
EKAW-93

3. M.M. Richter, S. WeB: Similarity, Uncertainty and Case-Based Reasoning in PATDEX,
in: R.S. Boyer (ed.), Automated Reasoning, Essays in Honor of Woody Bledsoe, Klu-
wer Academic Press, also: SEKI Report SR-91-01 (SFB), Uni Kaiserslautern

4. A. Rippel: Ahnlichkeitsbasiertes Retrieval in Netzen (Similarity-based retrieval in net-
works), Diplomarbeit Universitéit Kaiserslautern, 1993

5. S. Wefi: PATDEX/2: Ein System zum adaptiven, falifokussierenden Lernen in technis-
chen Diagnosesituationen (PATDEX/2: A System for adaptive case-focussed learning in
technical diagnosis), SEKI Working Paper SWP-1-91, Uni Kaiserslautern

6. B.J. Wielenga, A.Th. Schreiber, J.A. Breuker: KADS: A Modelling Approach to Know-
ledge Engineering, Knowledge Acquisition Joumnal Special Issue on KADS, 1992

Similarity-based Retrieval of Interpretation Models

369

Chapter 8

Case-Based Explanation /
Case-Based Tutoring

371

Using Logic to Reason with Cases!

Kevin D. Ashley and Vincent Aleven
University of Pittsburgh
Intelligent Systems Program,

School of Law, and Learning Research and Development Center
Pittsburgh, Pennsylvania 15260
ashley@vms.cis.pitt.edu, aleven+@pitt.edu
(412) 648-1495, 624-7039

Ertended Abstract

1. Introduction

Before people can decide whether to rely on a Case-Based Reasoning (CBR) system’s advice, they
must understand the criteria according to which the system asserts that a case is relevant to a problem
and more relevant than any other cases. In our application, tutoring students to reason with cases, our
intelligent tutoring system, CATO, needs to explain its relevance criteria and illustrate them with examples.
Moreover, it needs to deal with a variety of relevance criteria, some of which involve relations among multiple
cases. The system designers, and eventually, teachers and students, need to be able to understand, use
and modify the program’s concepts for assessing case relevance and constructing case-based arguments.
A logical representation of the relevance criteria provides the expressiveness and flexibility to make that
possible.

At first blush, the choice of a logic representation to support case-based reasoning may seem odd.
Case-based reasoning has often been contrasted with logical reasoning. First, logical deduction employs a
formal inference mechanism like modus ponens to apply general rules to a specific problem. By contrast,
a case-based reasoner draws inferences by comparing the problem to specific past cases and may use a
variety of comparison methods [Ashley, 1993]. Second, CBR is nonmonotonic. For instance, a reasoner
that could apply rules and cases might find that a problem matched not only a rule’s antecedents but also
an exception to the rule, leading it to abandon the rule’s conclusion [Golding and Rosenbloom, 1991].
Third, in our domain of legal reasoning, logical representations are not ideal for representing statu-
tory and court-made rules where concepts are open textured and usually there is no one right answer
[Sergot et al., 1986, Gardner, 1987]. Case-based reasoners have employed cases to represent the meanings
of such terms and to generate competing reasonable arguments comparing the problem to conflicting cases
[Rissland and Skalak1991, Branting, 1991].

On reflection, however, these valid objections do not imply that logic may have no role in implementing
CBR systems. At an operational level, a CBR program needs to compute the relevance of cases. Although
in most CBR programs to date, relevance concepts have been operationalized by structuring a program’s
memory (e.g., as a discrimination net) and building procedures to sort, select and filter cases (e.g., see
[Koton, 1988, Sycara, 1987]), such concepts can be expressed in first-order logic and implemented by a
deductive pattern-matcher. In developing CATO, we have employed the knowledge representation system
Loom [MacGregor, 1991] to represent relevance and argument concepts declaratively in logic expressions.
As long as the computational efficiency of the logically implemented relevance concepts is comparable to
that of procedural representations, the advantages of a logic representation may be considerable.

The declarative logical representation offers important advantages for our CBR tutoring application,
allowing us to: (1) Specify relevance criteria in terms of relationships among multiple cases, (2) Deal with
multiple relevance criteria, (3) Communicate relevance criteria and illustrate them with examples, and (4)
Support user queries of the case base. The primary significance of this work, however, has to do with
explanation in CBR systems. We are beginning to address the question: how can case-based reasoners
explain their reasoning and convince users of the plausibility of the system’s conclusions?

In this paper we discuss these advantages and report on an experiment that we undertook to evaluate
the computational efficiency of case retrieval with declaratively-defined relevance concepts.

2. Our Application: Tutoring with Cases

We are studying how to instruct law students to reason with cases, in particular, to evaluate problems
by comparing them to past cases and to justify their legal conclusions by drawing analogies to selected
precedents. The skills we instruct are important not only for attorneys in the American and English
legal systems, where arguing by analogy to precedents is standard, but possibly also for reasoners in other
disciplines, such as practical ethics, business and political science, where experts also reason with cases.

1This work is supported by an NSF Presidential Young Investigator Award and grants from the National Center for
Automated Information Research and Digital Equipment Corporation.

373

Criteria for defining relevance and comparing cases may vary among and even within domains. For
our domain, trade secrets law, we have defined relevant similarities and differences in terms of factors.
Trade secrets law involves disputes in which a corporation (the plaintiff) complains in a law suit that a
competitor or a former employee (the defendant) has gained an unfair competitive advantage by obtaining
the corporation’s confidential product development information, its trade secrets. A factor is a collection
of facts that typically tends to strengthen or weaken the strength of the plaintiff’s argument. Experts can
list factors that typically strengthen a plaintiff’s argument that the defendant misappropriated plaintiff’s
confidential information, as well as other factors that strengthen a defendant’s argument.

An important class of legal arguments are about the importance of factors in particular circumstances:
to what extent should certain factors determine the outcome of a problem. The attorney needs a method for
resolving the conflict among the factors. In law, however, there are no authoritative weights of factors with
which to resolve such conflicts [Ashley and Rissland, 1988, Ashley, 1990]. Instead, attorneys use certain
rhetorical tools — we call them Dialectical Ezamples — to convince people that certain factors are more impor-
tant. We have identified five standard ways of arguing with cases. Each Dialectical Example enables one to
support or attack an assertion that a particular set of factors justifies a decision [Ashley and Aleven, 1992].

We introduce some basic argument building blocks and their associated relevance and argument concepts
in Figure 1, a brief, annotated legal argument. The plaintiff (7) in the Structural Dynamics fact situation
argues by analogy to a representative example, the Analogic case, which has no trumping counterexample
(defined below). The defendant () responds with a ceteris paribus comparison. Experienced arguers
understand these concepts and have developed skill in applying them. Among other things, they know
how to: identify factors, draw analogies to cases in terms of factors, point out relevant differences, cite
counterexamples to a case, avoid picking a case to cite which is irrelevant or was won by the other side,
prefer to cite more on point representative examples for which there are no trumping counterexamples,
cover the opponent’s bases and make ceteris paribus comparisons. We will say more about the building
blocks in the final paper. For purposes of this extended abstract, let us focus on the defendant’s use of a
ceterts paribus comparison. A celeris peribus comparison requires two cases with different outcomes that
differ from each other only by a single factor, present in the problem. The single factor should be such that
its presence can explain the difference in outcome between the two cases. As a rhetorical tool, a ceferis
paribus comparison can be useful in justifying an assertion that a particular factor is important enough to
justify a particular outcome in the problem. In Figure 1, the defendant uses the ceteris paribus comparison
to argue that one factor, the employee’s being a sole developer of the the product, is important.

To instruct law students in these argumentation skills, we use small, carefully selected combinations
of cases, called Argument Contexls. Argument Contexts illustrate the Dialectical Examples and present
concrete circumstances in which to practice and develop the skills. For instance, a law instructor could use
two cases, related in just the right way, to illustrate the concept of a ceteris paribus comparison. Also, the
Argument Context shown in Figure 2 can be used to instruct students about the kind of representative
example to choose to cite for the plaintiff in the argument shown in Figure 1. It is in the form of a
Claim Lattice, a knowledge structure developed for the HYPO program [Ashley, 1990, pp.55-57]. The root
node represents the Structural Dynamics case and the set of all of its applicable factors. Each case in the
body of the Claim Lattice shares some subset of that set of factors; the nodes are ordered in terms of the
inclusiveness of that set. That is, Fastern Marble has a subset of Amoco’s set and therefore is less on point
than Amoco. The same is true of Schulenburg and Analogic. With this Argument Context, and instructor
could ask the student, “Which case should the plaintiff cite?” Three of the cases were won by plaintiffs,
so there are three possibilities. If the plaintiff cites Fastern Marble, however, the defendant could respond
by citing Amoco as a trumping counterexample. It was won by defendant, shares everything with the cfs
that Eastern Marble does, but also shares an additional factor, F3. Analogic is the best case to cite. It
is more on point than Schulenburg and cannot be trumped.. In a preliminary experiment, we employed
program-generated Argument Contexts manually to teach basic argument skills to first year law students
with good results [Aleven and Ashley, 1992]. The program that generated the Argument Contexts is one
module of a future case argument tutoring system, CATO.

3. A Declarative Representation for CBR

As the above example suggests, we teach students how to use comparisons of a problem to past cases
as warrants in arguments justifying assertions about the problem. In our domain and task the relevance
criteria are part of the warrant. In order to perceive the force of an argument comparing a problem to a
precedent, one needs to understand the sense in which an arguer regards the case as relevant. That is why
we need an express, explainable representation for the relevance criteria.

Our program, CATO, uses an explicit representation of relevance concepts to support its case retrieval
functions: To find cases or combinations of cases that an arguer can use in an argument or that a law
teacher can use as examples to illustrate lessons about argumentation (Argument Contexts). Currently,
CATO’s case base contains 31 legal cases which will soon be increased to one hundred cases. Individual

374

cases are represented as lists of factors. This has proven adequate for selecting most types of Argument
Contexts.

CATO’s relevance concepts are defined in a knowledge base implemented in Loom [MacGregor, 1991],
a KL-ONE style knowledge representation system. As is typical for systems of this family, Loom offers
a terminological language for defining structured concepts and relations, as well as reasoning facilities
including automatic classification of concepts and automatic recognition of the instances of concepts. In
Loom, one can also express definitions for concepts or relations in Loom’s first-order logic query language.
CATO uses all these reasoning modes, but relies mostly on the facility to state and apply definitions
expressed in first-order logic. _

Some of the concepts and relations in CATO’s knowledge base are listed in Figure 3. Figures 4 and 5
show examples of relevance criteria expressed in Loom’s query language. All terms (predicates) that are
referred by these definitions are also defined in the knowledge base. In the final paper, we will illustrate
other concepts and relations and their definitions. Suffice it to point out that that the logical expressions
are a natural way for describing the crucial relationships among cases and factors.

Case retrieval is a matter of finding cases that instantiate a given relevance criterion. Once a relevance
criterion has been expressed declaratively, as a Loom definition, Loom’s query interpreter takes care of
the rest. It searches the case base for cases (or combinations of cases) that satisfy the definition. No
additional coding is necessary to implement case retrieval?. For example, Loom can apply the definitions
shown in Figures 4 and 5 to find best untrumped cases or ceteris paribus comparisons. One interesting
aspect of the representation is this: In queries, each argument of the relation can be, but does not have
to be, instantiated. Therefore, retrieving ceteris paribus comparisons relevant to a given factor is just as
easy as retrieving all such comparisons that can be found in the case base. For a student developing an
argument, the former query is more useful, for a law teacher looking for training examples, the latter.

A teacher can also employ more complex queries for Argument Contexts to use as training examples.
The query used to retrieve the five-case Argument Context of Figure 2 is shown in Figure 6. We have
implemented an Argument Context generation program, which was mentioned in the previous section. For
certain very useful queries, like this one, this program presents menus of parameters for the user to fill out,
generates a version of the query based on the parameter values, retrieves cases and then enables the user
to filter and rank cases.

Ultimately, our goal is to develop a tutoring system that teaches law students the argumentation skills
described in the previous section. Currently, CATO has no pedagogical capabilities other than the gen-
eration of Argument Contexts. It cannot produce natural language explanations of relevance concepts
or give a student feedback and advice in developing an argument. However, we believe that the express
representation of relevance concepts makes it easier to develop these functions.

4. Merits of Our Declarative Representation

The declarative logical representation offers important advantages for our CBR tutoring application.
Our goal is to develop a program that teaches students to use cases in arguments to justify legal conclusions,
based on a model of reasoning with Dialectical Examples. We need to deal with relevance criteria in ways
that have been relatively unusual in CBR work so far, but which we anticipate will become increasingly
useful.

Specifying relevance criteria in' terms of relationships among multiple cases. Many of the
Dialectical Examples, such as the ceteris paribus comparison, involve comparisons of multiple cases. The
relationships among the cases effect the nature and quality of the warrant. A ceteris paribus comparison is
more convincing if the factor of interest is the only difference between two cases with opposite results. A case
is the best untrumped case to cite only if it has no trumping counterexamples. Relevance criteria, therefore,
are naturally expressed in terms of the relationships among multiple cases and factors. These relationships
among multiple cases can be conveniently expressed in first-order logic. For example, the requirement that
the two cases in a ceteris paribus comparison must have each other’s pro-winner factors can be concisely
stated (see above). One can also quite naturally specify a relationship that should nof be present among
any:cases in the database. For instance, the definition of an untrumped best case in Figure 4 states that
for every case in the database it shall not be a counterexample to the best case. Complex conditions that
involve any number of cases interrelated by multiple relationships can be expressed easily.

Dealing with multiple relevance criteria. The Dialectical Examples illustrate just a handful of the
many different ways a comparison with past cases can be used to justify a conclusion about a problem.
Each comparison uses cases related in ways specific to that comparison. Therefore, CATO needs to deal

2Loom evaluates a query by translating it into Lisp code that implements an exhaustive search. It thenexecutes this code
to find all values for the query variable(s) that satisfy the query constraints.

375

with multiple criteria for case relevance. Also, as we identify additional ways of arguing with cases, new
relevance criteria need to be defined. The declarative representation facilitates the implementation of
multiple relevance criteria and the prototyping of new relevance criteria, because relevance criteria can be
expressed concisely and conveniently in first-order logic and can be modified easily.

It should also be easy to modify a relevance criterion to adapt to particular circumstances. Given
certain problems and certain case databases, a relevance criterion may be too strict or too loose. If too
loose, too many cases may satisfy the criterion. If too strict, no case may satisfy the constraints. Yet,
a suitably relaxed relevance criterion might retrieve cases which are nearly as useful. A declarative logic
representation is very flexible: It allows one easily to formulate looser or stricter queries by removing,
adding or modifying conditions. For instance, the initial versions of the ceteris paribus criterion were too
strict, so we relaxed the constraints to allow the cases to differ by more than one factor.

Communicating relevance criteria and illustrating them with examples. Our system needs to
explain relevance criteria because students have to learn them. Since relevance criteria serve as components
of warrants they need to be defined in symbolic terms, not numerically. Since an arguer may be compelled
to defend his assertion that a case is relevant, the significance of the relevant similarities and differences
had better not have been converted into numbers. Defining the terms symbolically in terms of a declarative
logical representation makes them easier to communicate and explain to the user. In part, this is because
logically-defined definitions are easier for the user to understand. In addition, however, we have found that
they are easier to illustrate with examples. ‘)
We illustrate relevance criteria with various types of examples. In order to illustrate a relevance criterion,
we can search for collections of a problem and cases that instantiate the relevance criterion. This means
that CATO can retrieve all instances of best untrumped cases to cite, of ceteris paribus comparisons, or
of cover-the-opponent’s-bases situations involving any case in the case base as problem situation. For most
CBR systems, this kind of retrieval would not be possible. We use these as examples in exercises (these
examples are Argument Contexts) to illustrate the relevance criterion and instruct students by example
how to employ them.

Supporting user queries of case base. We intend the student users to query the case database. Using
CATO, we want to teach them to formulate better queries for relevant cases (a skill we expect will transfer
to other legal information retrieval systems like Lexis, Westlaw and West’s natural language query system,
WIN). In addition, a student’s queries serve as a test of his/her understanding of the relevance criteria.
It follows that queries need to be easy to understand, express, modify, and execute. In addition, our
system needs to be able to deal with a range of queries that cannot be anticipated completely in advance.
We believe a declarative logical representation is the most likely of all the available alternatives to be
manipulable by student users. We plan to design a simplified and specialized query language for student
users. This language can be implemented by translating the student queries into first-order logic queries.

Explanation in CBR systems. We think the advantages of a declarative logical representation have
significance for CBR beyond our tutoring application. The CBR community has not adequately addressed
the question: how can case-based reasoners explain their reasoning and convince users of the plausibility
of the system’s conclusions? (See [Ashley, 1993].) There are at least five ways:

1. Show the user a similar precedent. Such an explanation may involve mapping and adapting an explana-
tion from the precedent to the problem as in SWALE [Kass et al., 1986], CASEY [Koton, 1988], GREBE
[Branting, 1991}, or integrating the precedent into a rule-based explanation as in CABARET [Rissland and
Skalak, 1991]. The precedent, however, is only part of the warrant represented by the case comparison.

2. Some CBR programs, like CASEY, can justify why the precedent matches the original.

3. In addition, a program could explain why the particular precedent is a better match then other candidates

(HYPO);

4. In addition, the program could explain its criterion for justifying the match or for considering one case to be
better than another.

5. In addition, the program could explain why the criterion matters in terms of the theory of the domain and
task.

This work on CATO focuses on the third and fourth methods. By representing relevance criteria
declaratively, we have made some progress in enabling a program to explain aspects of its relevance criteria
by example. The approach can be related to another CBR program. CASEY justifies a match between a
new case and a past case on the basis of its “evidence principles”, domain-independent rules for adapting
causal explanations. Would it be useful for CASEY to illustrate a given evidence principle by retrieving
two cases which this evidence principle justifies calling similar? For purposes of tutoring or explanation,
we believe so. For instance, a user might say: “I don’t understand your explanation. Why is this past case
a good match?” A simple example of a match justified by the evidence principle would help make a good

376

5. Empirical Efficiency Analysis

We conducted an experiment to evaluate the efficiency of case-based reasoning with declaratively repre-
sented relevance concepts. We collected timing information for various queries using (synthetic, computer-
generated) case bases ranging in size from 26 to 250 cases. The queries that we used represent the whole
spectrum that we have described in this paper and include queries for best untrumped cases, ceteris paribus
comparisons, and 5-case Argument Contexts. (The queries were very similar—though not identical—to the
ones shown in Figures 4, 5, and 6.) In this experiment, we used two techniques to to speed up the query
for 5-case Argument Contexts. We added constraints to the query in order to reduce the amount of search
(“query reformulation”). Also, we precomputed certain often-referenced information and stored it in tables,
thus trading space for time (“tables”).

The run times that we measured are shown in Figure 7. (The results were obtained running Loom 1.4.1.
on a DECstation 5000/240.) When Loom evaluates a query, it searches for all cases (or combinations of
cases) that satisfy the query. In other words, it performs an ezhaustive search. The timing results should be
interpreted with this in mind. Not suprisingly, the observed run times correspond to the asymptotical time
complexity of the queries, which is O(N?) for best untrumped cases, O(N3) for ceteris partbus comparisons,
and O(N®) for 5-case Argument Contexts, where N is the number of cases in the case base. The standard
CBR operation of retrieving the cases that are most relevant to a given problem (best untrumped cases)
took less than 20 seconds with a 250-case database. While some of the other retrieval times times may
seem rather long, it should be noted that the queries for ceteris paribus comparisons and 5-case Argument
Contexts, when run with the larger case bases, retrieved thousands of case combinations. This is more
than a law instructor looking for examples could possibly need. Clearly, exhaustive search is not necessary
for these queries. Therefore, we conclude that case retrieval based on declaratively represented relevance
concepts is not prohibitively expensive. In the final paper, we will discuss the experiment in greater depth.

6. Conclusion

Our application, tutoring students to reason with cases, necessitated adopting a declarative represen-
tation of case-based relevance concepts. Using Loom’s first-order logic query language, relevance concepts
can be conveniently expressed in terms of relations among multiple cases. Loom’s query interpreter is used
to do case retrieval. This has turned out not to be prohibitively expensive computationally.

Representing relevance criteria in first-order logic has considerable advantages. First, the declarative
representation facilitates the use of multiple, changing relevance criteria, since it allows the criteria to be
expressed and/or modified with great ease. Second, students using CATO will eventually express their
own queries for CATO to interpret. We expect that the development of a simplified and specialized
query language for this purpose will be greatly facilitated by a declarative representation of the underlying
relevance concepts.

Finally, by representing relevance criteria declaratively, we have made some progress in enabling a
program to explain aspects of its relevance criteria by example. Our work on CATO focuses on enabling a
program to explain why the particular precedent is a better match then other candidates and to explain its
criteria for justifying the match or for considering one case to be better than another. We believe that as
CBR system designers confront the problem of building programs that can explain their results, a logical
representation of relevance concepts will be useful.

References

Aleven, Vincent and Ashley, Kevin D. 1992. Automated Generation of Examples for a Tutorial in Case-Based
Argumentation. In C. Frasson, G. Gauthier, and G.I. and McCalla (eds.), Proceedings of the Second International
Conference on Intelligent Tutoring Systems, 576-584. Berlin, Springer-Verlag.

Ashley, Kevin D. and Aleven, Vincent 1992. Generating Dialectical Examples Automatically. In Proceedings
AAAI-92, 654-660. Menlo Park, CA: AAAI Press.

Ashley, Kevin D. and Rissland, Edwina L. 1988. Waiting on Weighting: A Symbolic Least Commitment Approach.
In Proceedings AAAI-88, 239-244. Distributed by Morgan Kaufmann, San Mateo, CA.

Ashley, Kevin D. 1990. Modeling Legal Argument: Reasoning with Cases and Hypotheticals. MIT Press, Cambridge.

Ashley, Kevin D. 1993. Case-Based Reasoning and its Implications for Legal Expert Systems. Artificial Intelligence
and Law 1(2).

Branting, L. Karl 1991. Building Explanations from Rules and Structured Cases. International Journal of Man-
Machine Studies 34(6):797-837.

Gardner, A. vdL. 1987. An Artificial Intelligence Approach to Legal Reasoning. MIT Press, Cambridge.

Golding, Andrew R. and Rosenbloom, Paul S. 1991. Improving Rule-Based Systems through Case-Based Reasoning.
In Proceedings AAAI-91, 22-27. Menlo Park, CA: AAAI Press.

Kass, A. M.; Leake, D.; and Owens, C. C. 1986. Swale: A Program that Explains. In Roger C. Schanck (ed.),
Ezplanation Patterns: Understanding Mechanically and Creatively. Hillsdale, NJ: Lawrence Erlbaum.

377

Koton, Phyllis 1988. Using Experience in Learning and Problem Solving. Ph.D. Dissertation, MIT.

MacGregor, Robert 1991. The Evolving Technology of Classification-Based Knowledge Representation Systems. In
John F. Sowa (ed.), Principles of Semantic Networks: Ezplorations in the Representation of Knowledge, 385-400.

San Mateo, CA:

Morgan Kaufmann.

Rissland, Edwina L. and Skalak, David B. 1991. CABARET: Statutory Interpretation in a Hybrid Architecture.
International Journal of Man-Machme Studies 34(6):839-887.

Sergot, M. J.; Sadr, F.; Kowalski, R. A.; Kriwaczek, F.; Hammond, P.; and Cory, H. T. 1986. The British

Nationality Act as a Logic Program. Communications of the ACM 29(5).370 -386.

Sycara, Katia 1987. Resolving Adversarial Conflicts: An Approach Integrating Case-Based and Analytic Methods.

Ph.D. Dissertation, Georgia Institute of Technology. School of Information and Computer Science, Technical
Report No. 87-26.

Cite most on point
representative examples
possible. Avoid cases
with counterexamples.

m: In Structural Dynamics, since 1t
took security measures, b agreed
not to disclose, products were iden-
tical and 5 took 's development

—>

Show factor is
important with ceferis
paribus comparisons.

If there are weaknesses,
cite conflict resolving
cases in your favor, or
cover opponent’s bases,

——>

tools, 7 should win as in Analogic.

5: But the employee was a sole devel-
oper of the product, always a
strong factor for 8. For instance,
Amoco and Eastern Marble were
identical but for that factor which
explains why & won in Amoco.

n: I need a sole developer case

or cite counterexamples.

-— where 1 won nevertheless.

Figure 1: Dialectical Examples as Building Blocks

Structural Dynamics

F3 Employee-Sole-Developer (5)
F4 Agreed-Not-To-Disclose (n)

Amoco (5)

F3 Employee-Sole-Developer (3}
F4 Agreed-Not-To-Disclosa (r)
F5 Agreement-Not-Specific (5}
F& Securily-Measures (r)

Eastern Marble ()

F4 Agreed-Not-To-Disclose (r)
Fs Agreement-Not-Specific (5)
F6 Security-Measures ()

F5 Agreement-Not-Specific (8)

F6 Sacurity-Measures (r)
F7 Brought-Tools ()
F18 idonfical-Products ()

FB

Analoglc (n)

Schulenburg (r)

F18 Identical-Products ()

F4 Agroeed-Not-To-Disclose {x) (—wl £7 Brought-Tools (x)
i (]

7 Brought-Tools (x)
F18 Identical-Products ()

Figure 2: Argument Context for “Select Best Case” task.

(defrelation ceteris-paribus
:is (:satisfies (?ci ?c2 ?f)
(:and (Case ?cl)

(defrelation untrumped-best-case

:domains (Precedent Case)

:range Side

;18 (:satisfies (?c ?cfs ?8)

(:and {Case ?c)
(Case ?cfs)
(8ide ?2)

{best-case-

to-cite ?c ?cfs ?8)

(:for-all ?cex
(:implies
(Case 7cex)
{:not (trumping-cex

:attributes

?cax ?c ?cfB))))})

:multiple-valued)

“Case ?c is an untrumped best case for side

?8, with respect to problem situation ?cfs,

if ?c is a best case to cite for ?s, and if for
every case ?cex, ?cex 1is nota trumping

counterexample for ?¢”

Figure 4: Definition of Untrumped Best Case.

(Case ?c2)
(Pactor ?f)
(opposite (outcome ?cl)
{outcoma ?c2))

{pro-winner-factor ?cl ?f)
(:not (applicable-factor ?c2 ?f))
(:for-all ?£f1

{:implies

(:and (Factor ?f1)

(pro-winner-factor ?7cl ?f1)

(neq ?£1 ?£))
(applicable-factor ?c2 ?f1)))}
(:for-all 7f1
(:implies
(:and (Pactor ?f1)

{pro-winner-factor ?c2 ?£f1))
{applicable-factor ?cl ?f1))}))}

“Cases ?c1 and ?c2 make a ceteris paribus comparison
for factor ?£, if: zc1 and ?c2 have opposite outcomes;
?f isapro-winner factor of ?c1 but does not apply in ?c2;

all pro-winner factors of ?c1, except ?£, also apply in

?c2; vice versa.”

Concepts and Relations]
Primitive Concepts | Relevance Concepts Pedagogical Concepts
Case Relevantly Similar Vanilia Case
Factor Citable Packed Case
Side (7 or 5) Best Case to Cite Conflicting Factors
Outcome Untrumped Best Case Case
Applicable Factor Trumping Counterexample | Unordered
Favors Ceteris Paribus efc.
Cover the Bases
etc.
Facts
For 20 factors: For 31 cases:
— name - name, cite
- side that it favors | — applicable factors
- outcome (m or &)

Figure 3: Knowledge Base for Case-Based Argumentation

Figure 5: A definition of ceteris paribus comparison.

Run time (seconds)
3500

{retrieve (?cfs ?cl ?c2 ?7c3 ?c¢c4)

(:and
{Pro-pP-Case ?ci)
{Pro-P-Case ?c2)
{Pro-P-Case ?c3)
(Pro-D-Cases ?cd)
(Case ?cfs)
(citable ?cl 7cfs plaintiff)
{citable ?c2 ?cfs plaintiff)
(citable 7¢3 ?cfs plaintiff)
(more-on-point ?c2 ?c3 ?cfs)
(trumping-cex ?c4 ?cl ?cfs)
(unordered ?cl ?c¢2 ?cfs)
(unordered ?c) ?c4 ?cfs}))

“Retrieve cases ?cfs, ?cl, ?c2,
?¢3, ?c4 suchthat: ?ci, ?c2,
and ?c3 are citable for the plaintiff;
?c2 is more on point than ?c3;
7c4 is a trumping counterexample
for ?c1; cases ?7c2 and 7c3 are
in a different branch than ?c1 and
7céd.”

Figure 6: Query to retrieve 5-case
Argument Contexts.

3000 —
2500 —
2000 —

40 60 80 100 150 200
Number of cases

®® Untrumped Best Cases
%% Ceteris Paribus

*% 5~Case Argument Contexts
G© 5-Case ACs, tables

5-Case ACs, query
reformulation

[c a3

AA

5-Case ACs, tables and

250 query reformulation

Figure 7: Efficiency of various queries as a function of case base size

378

Multiple Explanation Patterns

Uri J. Schild, Yaakov Kerner

Department of Mathematics and Computer Science
Bar Ilan University, Ramat-Gan 52900, Israel

schild@bimacs.biu.ac.il

Abstract

In the Case-Based Reasoning paradigm cases are often given initially in natural
language in the form of a “story”. While this textual form is appropriate for humans, it
is often not suitable for direct application by a computer. Our paper uses the legal
domain of sentencing for criminal offences to illustrate an approach to indexing,
knowledge representation of stories and their application in quantitative reasoning. This
approach extends the well-known concept of Explanation Patterns.

Keywords: CBR, Explanation Patterns, Legal Applications.

1. Introduction.

Our object of interest is the domain of ‘stories’ (see, €.g., [Schank90] for a detailed discussion of this
concept). When a human reasons about a situation in the present, he is often reminded of stories that he has
heard or actually experienced himself in the past. He may then attempt to understand and explain the case at hand
based on those stories.

Our basic idea is to apply this explanatory approach to a domain where explanations of previous cases lead
to a quantitative result. Such a domain is the area of criminal sentencing. Judges are often reminded of previous
cases with similar features when passing sentence. Indeed, the sentences of some previous cases (precedents) are
even of binding importance. The cases are of course our ‘stories’, and the sentence itself is the quantitative result
attached to the story.

We are motivated by our desire to build a computer system that may support a judge in deciding which
sentence t0 hand down in a new case. The areas we have considered are Robbery and Rape (and some other sexual
offences). Both are areas with maximum sentences (according to the Israeli law) of twenty years.

Such a system should not supply its user with a single, definite answer (i.e., a proposed sentence). No
judge would appreciate that. We propose an intelligent decision support system, where several approaches and
ways of reasoning will be produced for the user, but the final choice will be his only.

The questions we shall deal with are: How should such stories be represented in a computer, and how may
they be retrieved by a case-based reasoner in order to obtain such a quantitative result also for a new story? The
- actual, quantitative application of the retrieved stories will not be dealt with in this paper.

The layout of the paper is as follows. In section two we shall consider previous work relating to the
representation and use of stories. In section three we shall propose a generalization of one such approach and its
adaption to our domain. This will establish the theoretical background relating to the knowledge representation

and retrieval in a practical system which is at present under implementation by us. Section four will summarize
the paper and suggest future developments.

2. Background.
2.1 An Example,

Consider the following (true) story:

A couple is standing on a nice summer-day on the beach in Natanya (an Israeli seaside resort). They are in

! This work is in partial fullfilment of the requirements towards the degree of Ph.D. by the second author under the
supervision of the first author.

379

mailto:schild@bimacs.biu.ac.i1

bathing suits, and the woman is wearing a gold-chain around her neck. The chain is rather thin and quite
inexpensive. A youngster rides up to them on a horse {!), bends down, takes hold of the chain, tears it off the
woman and gallops away. He is eventually apprehended and found guilty of robbery (crime never really does
pay). His sentence is " relatively heavy: Two and a half years in prison. The judge explains that this kind of
robbery is usually not considered a serious crime. The main reason for the sentence is that the sheer audacity of
the young robber is taken to be as an aggravating circumstance: To snatch the chain in broad daylight on a public
beach must be considered the height of insolence.

For the purpose of this research we have been conducting interviews with judges from the District and
Appeals Court in Tel-Aviv. We usually prompt a judge by asking him to tell us any story that comes into his
mind relating to robbery or rape (and sentencing). In this particular case the judge reacted to our prompt by
saying: “Oh, I shall tell you about the impudent youngster on the horse”. In almost all our interviews the judges
have automatically given titles to their stories at some stage of the story-telling. We have taken such a title to
indicate the index for retrieval of the story, as indeed it appears to be in the case just described: The insolence of
the robber was considered the main feature in the judge’s reasoning leading to the determination of the sentence.

In this case the index indicates aggravating circumstances, while other stories and their tifle may indicate
mitigating circumstances. Our assumption is that when the judge mentioned above (and perhaps also other
judges familiar with the story) encounters another case involving an audacious crime, he will be reminded of this
story. He will also remember the severity of the sentence - or rather the reasoning behind that sentence as a factor
(possibly among others), that may contribute to the decision in the case at hand.

In other words, in the present case he will choose such a sentence that it may be explained on the basis of
the previous story or stories. This is explanation-based retrieval and reasoning. We shall supply further
Justification for this approach below, in section 3.1.

This assumes, of course, that judges are consistent in their sentence-passing. While some undoubtly are,
others may not be so. The general public feels that judgments and sentencing should be consistent and uniform,
and it is our suggestion that a computer system of the kind described here may contribute to attain such
uniformity. We do not attempt to build psychological models, or perform cognitive simulation. However, we
believe that the actual use of such a system will ensure that a judge is in possession of relevant background
information (precedents).

2.2 Related Work

A ‘story’ is often considered as consisting of a sequence of episodes, i.e. events, actions, situations, etc,
and the relationships among such episodes. It is dynamic with little or no hierarchical structure. Classical
knowledge structures like semantic networks cannot in themselves suffice for representing stories. Such basic
structures are appropriate for representing certain static aspects of the stories, but cannot cover the overall
picture.

A script ([Schank77]) may actually be an appropriate form for knowledge representation for the legal
process itself, as it may be used to describe ordinary and routine activities. However, scripts are not appropriate
for describing the reasoning leading to the sentence imposed by a judge.

Also the Memory Organization Packet (MOP) (see [Schank82], [Kolodner83])), which generalizes the
script describes stereotypical events and does not enable the kind of explanations we seek.

Narrative understanding systems, e.g., CYRUS ([Kolodner81]), BORIS ([Lehnert83], [Dyer831), and
MEDIATOR ([Kolodner85]) are not applicable here, as our object is not natural-laguage understanding or story-
understanding, but the application of understood stories to a new story, which needs to be explained.

One could possibly use various kinds of logics, e.g. Episodic Logic ([Schubert89]). However, as the
originators of such logics usually acknowledge themselves, much work remains to be done on these logics
before they become applicable in practical systems.

JUDGE is a case-based system in the legal domain, which attempts to model the behaviour of judges,
when passing sentence ([Bain89]). As such, it is of course very relevant to our work. All the conclusions drawn
by Bain concerning the behaviour of judges are supported by our own experience. However, the aims of our work
differs from his.

380

Bain’s system computes sentences by essentially mapping a partial ordering of crime heinousness onto a
partial ordering of sentence type and durations ([Bain89], p.113). It operates in the area of murder, manslaughter
and assault. The method is to infer the motives of the actors of the crime and decide on the degree to which each
was justified in acting. No other parameters besides heinousness are taken into account, while our object is to
address the general problem.

JUDGE uses a single precedent, If the new case is similar to the old one in all the predefined aspects - the
same sentence is decided upon. If not, the system decides whether the new case has aggravating or mitigating
features with respect to the old case. Such features can be: Unprovoked Violence, Self Defence, etc. The system
then modifies the old sentence accordingly, e.g., it may add or subtract 25% of the old sentence.

Our approach is different. Firstly, our indexing scheme is explanation based. Secondly, we propose that the
system should attempt to reason with several related cases, and consider several parameters. It should not deliver
one final answer, but rather present the user with several arguments, that may even be conflicting. As we have
already stressed, the purpose is to construct a sentencing support system, and not a sentencing system.

2.3 Swale and Abe.

Swale ([Kass86a], [Kass86b]) is a computer system which produces creative explanations for non-standard
stories. Abe ([Kass89]) is both a simplified and extended version of Swale. The system defines the concept of an
‘explanation pattemn’ (XP) for a story. It uses the explanation patterns for stories in the database to explain a
‘gap’ in the explanation of a new story. If these explanations cannot be applied in a straightforward manner, the
system has a number of adaptation strategies.

As a concrete example, assume that the database contains the following two stories (originally given by
Kass, and here considerably shortened) and their XPs:

(1) A famous sportsman suddenly collapsed and died. The XP is: Unknown to everybody he had a weak heart.
(2) A otherwise healthy lady suddenly died. The XP is: Her husband killed her in order to obtain the insurance
money.

We now consider a new story, based on an actual case: A famous racehorse (called Swale) suddenly
collapsed and died. The ‘gap’ here is why the horse died suddenly. The system will adapt and apply the two
previous XPs and suggest two possible explanations for the gap:

(1) Unknown to the owner and trainer the horse had a weak heart.
(2) The owner killed the horse in order to obtain the insurance money.

The use of an XP in connection with a gap can actually work two ways. Given a story with a gap one can
look for stories with an XP to explain the gap. Conversely, given a gap and its explanation one can look for an
appropriate XP in order to justify the explanation.

A similar situation also occurs in the legal domain. Sometimes a judge will decide on a sentence after
. considering the old stories. Sometimes he will decide on a sentence, and then see how to justify it (both to
himself and to the world), by finding the appropriate precedents. This latter possibility is well-known and
acknowledged by the judges themselves (they sometimes say they have a ‘gut-feeling® of what the sentence
should be).

3. Our Knowledge Structures.
3.1 Indexing by Explanations.

One may suppose that predictive explanations ([Schank86], p.32) would be appropriate in the sentencing
domain. This, however, would necessitate extensive knowledge about the judges themselves, their outlook,
behavioural patterns, etc. Indeed, this approach seems to be the one taken in JUDGE (see section 2.3). We do not
believe such information to be readily available or dependable, and have chosen a different approach.

Intent explanations ([Schank86], p.32) are given when one has to interpret the behaviour of agents

according to their motives. This is the approach we have chosen. We must therefore decide how to index our
stories accordingly.

381

In section 2.1 we explained how the indexing was actually supplied by the judges themselves, when they
chose names for their stories. Thus “The impudent youngster on the horse” yields an index called aggravation-
through-insolent-behaviour (of offender). Most of those indices were of a general type, but some were unique for
the type of crime (robbery, rape, etc.)

We were not, however, satisfied with this approach alone. Independently we elicited knowledge about the
sentencing process from a judge not involved in the story-telling. This knowledge was used in creating a
discrimination tree. It then became apparent that the nodes in the discrimination tree and the indices derived from
the story titles were identical. A further correspondence was also obtained by considering results obtained from
expert criminologists and jurists. They have supplied us with what they call ‘sentencing parameters’, which are
essentially equivalent to our explanatory indices.

A final test of the indices has been planned, but not yet carried out. We intend to use statistical data about
criminal offenders and their sentences over the last ten years, as compiled by the Israeli police. Our hypothesis is
that there is a strong correlation between sentences and our indices.

3.2 Judicial XPs

An explanation pattern includes the following aspects: (1) facts, (2) beliefs, (3) purpose, (4) plan, (5)
action (behaviour). The XPs developed by Kass et al. (see section 2.4) have this structure, which we shall also
adopt:

(1) Facts: These are the indices, as explained in the previous section.

(2) Beliefs: Additional relevant knowledge.

(3) Purpose: We here consider the criminological approach: Retribution, Prevention, Deterrence or
Rehabilitation as the purpose behind a given sentence.

(4) Plan: We aim at using the explanations of aggravating or mitigating factors according to facts and beliefs.

(5) Action: The sentence itself, or rather its deviation from the standard (tariff).

An example will here be in order:
A man was arrested and found guilty of indecant expoéure (paragraph 349 aleph of the Israeli criminal law).

He had no previous offences, and received a suspended sentence of three months. This is an exceptionally light
sentence relative to the average sentence for infraction of paragraph 349 aleph.

MQP: XP: ‘The First-Timer’
accused according to 349 aleph facts: first offence

found guilty beliefs: not dangerous to public
standard sentence: 1 month purpose: retribution

maximal sentence: 1 year plan: light sentence

action: reduce standard sentence
Decision: 3 months (suspended)

When a (decided) case is entered into the case-base, its XP is determined either by the justification always
given for written precedents, or by the explanations supplied by the judge, who told the ‘story’. For a new case
the facts and beliefs are supplied by the judge about to pass sentence in the case. He also supplies the purpose,
but would presumably want to experiment interactively with different criminological approaches. The plan-slot
is then filled out on a temporary basis: mitigation or aggravation. Only the action is left to be decided.

This approach is somewhat naive. It appears that a single XP cannot represent all the different facets and
intricacies of a case, and we shall see in the next section that the retrieval is actually carried out according to a
more detailed structure than the XP.

3.3 Judicial MXPs.
The concept of an XP appears to be insufficient for the kind of explanations we aim at creating. It cannot

cope with the detail and complexity of most legal cases, as illustrated by the following (true) ‘story’:

382

A young woman met a young man one evening in Tel-Aviv, and they decided to have fun together. After
some dancing in a nightclub they ended up in a hotel room, where they spent the rest of the night in activities,
which apparently were mutually enjoyable. The next evening they met again, and after some preliminary dancing
they went down to the beach. Despite the girl's protests the boy repeated the performance of the previous night,
with the result that the girl accused him of rape the next morning. When the girl told her story in court, the judge
asked her why she complained to the police after having agreed to sleep with the boy the first night. “Why that is
obvious”, said the girl, “| do not mind sleeping with him in a fancy hotel, but not on the beach!”. The boy eventually
got off with a light prison sentence: 4 months.

Obviously there are many elements in this kind of story, and we have therefore constructed the following
multi-structure, called an MXP, which is made up of several XPs. We shall first show it for the above story.

MXP: ‘Not on the beach’

MOQP: . XP-1:

accused according to 345 facts: first offence

found guilty beliefs: not dangerous to public

standard sentence: 6 years purpose: punishment, prevention,
maximal sentence: 16 years should be given a second chance

plan: extreme mitigation
action: reduce standard sentence

P-2; XP-%
facts: confessed facts: victim agreed on previous occasion
beliefs: seems trustworthy beliefs: not as serious as standard rape-situation

not dangerous to public
purpose: retribution, no overload of prisons purpose: retribution
plan: mitigation plan: extreme mitigation
action: reduce standard sentence action: reduce standard sentence

An MXP consists of three parts: (i) A MOP, which contains general information about the story described
by the MXP. (ii) A set of XPs. Each of these XPs describes one aspect of the given case relative to one of the
indices found in the story. It has the layout shown above, with the index, given in the facts-slot. (iii) A
quantitative conclusion from the individual XPs, i.e., the actual sentence (not shown above).

The case-base actually stores MXPs (and not XPs) for each member (case). The sentence in an old case is
derived by the judge through consideration of the individual XPs of its MXP. Obviously this is not done using
some kind of mathematical formula, so while the sentence is known and supplied in (iii), its derivation is only
indicated in the plan- and action-slots.

An MXP is thus a structure, which gives an interpretation and explanation of a ‘story’ (legal case)
according to the relevant legal aspects. Each such aspect is represented by an XP in part (ii), and general
knowledge of importance is stored in parts (i) and (iii). The MXP does not represent the story from a narrative
point of view - e.g., there is no time sequence of events. It represents the story as seen from the various legal
viewpoints.

Based on the facts and beliefs of the new case it is possible to construct its MXP. The user of the system
must supply the value of the purpose-slot, and the plan-slots are automatically filled according to the index of
the individual XP, depending whether it is a mitigating or aggravating feature.

The retrieval is then of all MXPs which have any index in common with the new case. These MXPs may
now be arranged in a lattice, according to the number of indices common with the indices of the new case. This
is similar to the so-called claim-lattice of HYPO (see [Ashley90], p.40-42).

At this stage the XPs belonging to the ‘most-on-point” MXPs are selected. The ‘most-on-point” MXPs are
those MXPs in the lattice that have greatest overlap of common indices with the new case.

383

One could conceivably argue that those XPs bblonging to retrieved MXPs, which do not have an index in
common with the case at hand, ought to be discarded. However, those XPs undoubtly contribute and influence
the final outcome (sentence) of the case where they appear. We therefore use this dissimilarity to impose a fine
structure on the ‘most-on-point’ MXPs. The more non-relevant XPs a given MXP has, the less relevant it is
judged to be to the given case (see [Tversky77]).

We may thus finally define the set of ‘most-most-on-point” MXPs as those with the largest numbeér of
indices common with the new case, and the smallest number of indices different from the indices of the new case.
These MXPs are retrieved, and support the judge in his decision in the new case.

A qualitative approach to weighing of the MXPs and the individual XPs, including a cut-off threshold for
controlling the number of retrieved MXPs is under development, and will not be considered here.

4. Summary.

The problems we have discussed in this paper relates to quantitative use of ‘stories’ .Our concern has been
to choose and adapt an appropriate knowledge representation and retrieval method. We decided to adapt and
generalize a knowledge representation structure: XP, which is convenient for giving explanations for stories. In
our case these explanations are not related to episodic events, but to the deliberations and decisions of the '
Jjudiciary.

The reason we adopted this approach is our wish to build a decision support system for sentencing. Such a
system should not propose just a single sentence, but supply several possible ways of passing sentence in such a
way that the justification of the sentence is evident. Our solution uses the MXP knowledge-structure discussed in
the previous paragraph.

5. References.

[Ashley90] Ashley KD. Modeling Legal Argument The MIT Press, Cambridge, Mass, 1990.

[Bain89] Bain WM. JUDGE in: Riesbeck C.K., Schank R.C Inside Case-Based Reasoning Lawrence
Erlbaum Assoc., Hillsdale, NJ, 1989, p.93-163.

[Dyer83] Dyer M.G. In-Depth Understanding ~ MIT Press, Cambridge, Mass., 1983

[Kass86a] Kass A.M., Leake D.B., Owens C.C. Swale: A Program that Explains
in: Schank R.C. Explanation Patterns: Understanding Mechanically and Creatively Lawrence

Erlbaum Assoc., Hillsdale, NJ, 1986, p.232-254. ,

[Kass86b] Kass AM. Modifying Explanations to Understand Stories Proc.Eighth Annual Conference of the
Cognitive Science Society Ambherst, MA, 1986.

[Kass89] Kass AM. Adaption-Based Explanation: Extending Script/Frame Theory to handle Novel Input
IJCAI-89, 1989, p.141-147.

[Kolodner81] Kolodner JL. Organization and Retrieval in a Conceptual Memory for Events IJCAI-81, 1981,
p.227-233.

[Kolodner83] Kolodner JIL. Maintaining Organization in a Conceptual Memory for Events Cognitive Science, 7,
1983, p.281-328.

[Kolodner85] Kolodner J.L., Simpson R.L., Sycara-Cyranski K. A Computer Model of Case-Based Reasoning in
Problem Solving 1JCAI-85, 1985, p.284-290.

[Leake92] Leake D. Evaluating Explanations: A Content Theéljy Lawrence Erlbaum Assoc., Hillsdale, NJ, 1992.

[Lehnert83] Lehnert W, Dyer M.G,, Johnson P., Yang C., Harley S. BORIS - An Experiment in In-Depth
Understanding of Narratives Artificial Intelligence, 20, 1983, p.15-62.

{Schank77] Schank R.C., Abelson R.P. Scripts, Plans, Goals and Understanding: An Inquiry into Human
Knowledge Structures Lawrence Erlbaum Assoc., Hillsdale, NJ, 1977.

[Schank80] Schank R.C. Language and Memory Cognitive Science, 4 (3), 1980, p.243-284.

[Schank82] Schank R.C. Dynamic Memory = Cambridge University Press, 1982.

[Schank89] Schank R,C., Leake D. Creativity and Learning in a Case-Based Explainer Artificial Intelligence, 40,
1989.

[Schank90] Schank R.C. Tell me a Story - A New Look at Real and Artificial Memory Charles Scribner’s Sons,
Macmillan Publ. Co., New York, 1990.)

[Schubert89] Schubert L.K., Hwang C.E. An Episodic Knowledge Representation for Narrative Texts First Int.
Conf. on Principles of Knowledge Rep. and Reasoning Toronto, Canada, 1989, p.444-458.

[Tversky77] Tversky A. Features of Similarity = Psychological Review, 84, 4, 1977, p.327-352.

384

Making Case-Based Tutoring More Effective

Thomas J. Schult & Peter Reimann
Dept. of Psychology, University of Freiburg, 79085 Freiburg,
e-mail: schult@psychologie.uni-freiburg.de

Abstract: Starting from cognitive psychology findings concerning interindividual differences
in leamning from cases, we suggest strategies to optimize the learners’ case processing
capabilities by an appropriate design of the tutoring system. We introduce the systems
CABAT (giving remindings in simulation environments), AXE (modeling effective case
processing strategies) and CACHET (teaching effective processing strategies for cases of
different origin).

It is well known that the acquisition of a problem solving skill (e.g., learning to program) or the
understanding of an abstract principle (e.g., the concept of force in physics) is at least in its initial stages highly
dependent on information about concrete, illustrative examples. These specific examples help learners to perform
their first steps in using new procedures and applying new principles. Thus, they can be the basis for the
development of more abstracted and generalized representations of skill and principles.

Not surprisingly, then, teaching strategies involving cases have been an area of active research, resulting in a
number of promising tutoring systems covering domains such as instructional planning (Kolodner, 1991; Du &
McCalla, 1991), natural sciences (Murray et al. 1990; Edelson 1991), business (Ferguson et al., 1991), and many
more.

However, it was observed that just solving tutorial cases does not necessarily foster competence (Grisel,
Prenzel & Mandl, 1993). Crucial for successful later retrieval is a rich mental indexing structure of the cases that
counteracts against the consequences of biasing and failures of retention. The more the learner is able to connect
a new case to existing knowledge, the more he profits for later problem solving. In instructional settings,
maximizing this connection should be supported by a tutorial module. We attempt to give this support in two
ways that are explained in the following: one is to remind the leamer of a previous case that is similar to the
current one, and the other is to teach him effective case processing strategies.

Our suggestions are based on empirical work concerning interindividual differences in learning from
examples. For instance, Chi, Bassok, Lewis, Reimann, and Glaser (1989) analyzed how students acquire problem
solving knowledge concerning mechanics by studying worked-out examples. The study revealed important
differences between successful and less successful students, success measured in terms of correct solutions to
problems. Successful students mentioned more often that they didn’t understand a certain part of the worked-out
example. Besides this difference in monitoring understanding of the example text, successful students also
engaged in a series of activities to overcome their problems: They elaborated on the relations between a
particular step in the example and the goals behind that step. They further attempted to come up with a
specification of conditions that could explain why the operator under question was applied. Finally, they
elaborated on the effects the application of an operator had beyond those mentioned in the example. The less

successful students displayed either none or considerably less of these elaborative inferences.

This so-called “self-explanation effect” has been reconstructed several times both in physics domains
(VanLehn, Jones & Chi, 1992, Reimann, Wichmann & Schult, 1993) and programming (Pirolli & Recker, 1991).
Besides its psychological relevance, we want to stress the importance of these empirical findings for research on
intelligent tutoring systems. Building on these studies and the respective cognitive models, we try to foster the
effectiveness of case-based teaching in two respects: Using remindings instead of predefined cases, and teaching
case claboration strategies.

1. Remindings in Simulation Environments

Simulation based learning environments have become an established tutoring system architecture (see de
Jong, 1991, for an overview). Communicating with reactive systems of this kind leaves the controi of the
interaction to the learner, which is a part of the “discovery learning” philosophy usually underlying these
systems. Often it was mentioned that this form of teaching requires some guidance to prevent the student from

385

mailto:schult@psychologie.uni-freiburg.de

getting lost in the space of possible situations (Elsom-Cook, 1990, Bredeweg & Winkels, 1991). Helping the
student in organizing the interaction is one way to supply this guidance, but it is seldom provided. This help can
also optimize the connections between cases and background knowledge, a requirement for effective indexing, as
mentioned above.

Simulation environments (and tutoring systems in general) provide the means to work on a single problem at
a time, but mostly they do not support comparing two or more problems. If they do, they provide help in
analyzing a series of events, e.g. with a spreadsheet-like tool for recording simulation states and cognitive
activities of the learner (Reimann, 1992). Still it is up to student to decide which events to consider and how to
perform the comparison. This task can be supported by a case-based teaching component which serves as an
external memory assistant for the student.

How can this support be given? Up to now, case-based tutors always use predefined cases for teaching. But in
simulation environments, specifying cases in advance may not fit to the discovery learning philosophy.
Presenting cases without restricting the student unnecessarily can be achieved by.using the interaction itself as a
case repository that is exploited by a memory assistant that reminds the learner of previous problems similar to
the current one. This approach allows the learner to interact with the simulation environment as usual, but
provides the opportunity for her to transfer from a prior to the current situation and to generalize across the two
cases. Furthermore, we suppose that remindings activate elaborations produced when the reminded event first
took place, and that the current case can be elaborated more thoroughly by relating it with the problem solving
episode the system reminds of. In the light of the findings of the Chi et al. (1989) study, there should be more
effective learning from the cases dealt with.

The system CABAT (Schult, 1993) puts forward a method of generating such remindings. CABAT was used
as a component of a microworld learning environment in which students can design and run simulated
experiments concerning elastic impacts, and it scems to be applicable to other domains that are formula-based.
The central idea of CABAT is to store all experiments performed by the learner as cases. This episodic
knowledge is put to use whenever the student encounters a situation that is similar to a previous one: Then the
system reminds her of this previous case and explains the particular kind of similarity, so that at least parts of the
prior solution can be transferred and adapted to the present case. In order to define similarity appropriately for
this task, CABAT integrates an algebraic analysis of the domain formulas with a domain-independent theory of

Fig. 1. A part of the graphical representation of a concept of similarity gained by CABAT in
the domain of elastic impacts of disks

different types of similarity. This theory classifies cases by structural and superficial features, preferring the
former.

2. Modeling Case Elaboration Strategies

The long term goal of the AXE project (“Active Example Elaborations”, Reimann & Schult, 1991; Reimann,
Schult & Wichmann, i. pr.,) is to develop a computer program that helps students with learning from cases that
have the form of worked-out examples. The program will receive the same example as a human student and will
try to comprehend it, aided by domain-specific knowledge and an explicit strategy for example elaboration. The
process and the outcome of the example understanding attempts should form the basis for an interaction between
the machine and the human student, where the system tries to help the student in elaborating effectively. Both to
generate output that is potentially meaningful for the student and to enable the program to follow the student
through her elaboration activities, it needs information about example comprehension strategies as put to use by
human learners. Therefore, a prerequisite for the above tutorial scenario are computational models of elaboration
strategies and the knowledge they process. In the AXE architecture, we incorporated elaboration processes found
in the subjects of the Chi et al. (1989) study when reading the mechanics examples, among others.

Textbook (Halliday & Resnick)

Text Example Probl Variations
(Physics & Math Contents) Solutions oblems of
Problems
Representation
N

- Static Knéwledge

Elaborated
Solution Step

 Episodic Knowledge

Solution Attempt

Fig. 2. Main components of AXE

AXE has two components: An example understander that takes as input a worked-out example text (not in
natural language form) and produces as output an enriched case representation of the information contained in
the example, and a problem solver that takes as input a problem description and produces a sequence of solution
steps, relying mainly on the knowledge gained by the example understander (i.e., cases). This design allows us to

387

evaluate the quality of different learning methods by observing their impact on problem solving. Within an
instructional application, this will allow us to demonstrate to students the relative merits of different learning
from examples methods in terms of problem solving gain. Since AXE is geared towards modeling (and later
supporting) the initial stages of knowledge acquisition from examples for learners with little domain specific
knowledge, it is equipped with example elaboration strategies that can be employed by agents with varying
degrees of domain knowledge. These elaboration strategies (basically, methods for solution enhancement and
plan recognition) are not domain-dependent, but belong to the standard repertoire of normal adult learners.
Depending on whether AXE is to be used for descriptive modeling (e.g., to capture characteristics of a poor
learner) or for prescriptive purposes (e.g., to serve as an example learning model that should be imitated) it can
be equipped with more advanced example study methods one finds only in more active human learners and
readers. Running AXE in various configurations, we found clear relations between example study performance
and later (case-based) problem solving.

3. An Integrated Case-Based Teaching Environment

Building on the insights gained from the AXE project, we are now using these results for instructional
purposes: To demonstrate to students the value of knowledge-based elaborations of worked-out examples and to
give them a first model of how to elaborate on these cases in an active, expectation-driven way. This case-based
strategy tutor should help students in the initial phase of learning, a phase in which many students experience
more frustration than insight.

Thus, we are concerned not just with communicating domain knowledge, but also with teaching effective
case processing methods. Beside this focus on strategy training, we want to integrate cases of different origin:
predefined cases (as in common case-based tutoring systems), reminded cases (as in CABAT) and on-line
generated cases. As the student should not be overwhelmed with cases, this requires a selective dynamic
scheduling process that determines in each situation an appropriate case to be presented (or none at all).

The domain chosen for the first prototype is chess endgames, an area which is usualiy taught by cases.
Eventually, the system CACHET (“Case-Based Chess Endgame Tutor™) will support the learner with various
methods:

During the example study phase, it should
* Provide an interface so that student-generated elaborations can become part of the case representation
* Point out (remind) similiarities between examples (parts of examples)

¢ Demonstrate a good example processing strategy and the elaboration methods involved in a way that can be
understood/copied by human learners

¢ Give direct advice on example processing procedures
During (case-based) problems solving, it should

¢ Remind the learner of similar examples or problems solved already (problems the student solved successfully
become example cases, unsuccessful solutions can serve as counterexamples; both are treated as cases);

¢ Provide additional examples that were not produced by the student
¢ Support case modification

® Give hints and advice.

Our first goal with CACHET is to implement a tutor that supports all phases of case-based reasoning and learning
with worked-out examples: encoding of examples, indexing, retrieval, modification, and learning (of new
indices). The first phase (encoding) is an issue often ignored in research on case-based reasoning where the
assumptions is that cases ““are there”, whereas we stress that cases need to be produced. The second goal is to
combine several instructional strategies, ranging from non-directive forms (such as pointing out a similarity or
difference to the student without further comments) over semi-directive (modeling good behavior) to rather
directive forms (giving concrete advice). How and when these strategies are to be used depends on the general
pedagogical strategy (e.g., stressing exploration vs. stressing immediate feedback) and on characteristics of the
student, both general ones (such as domain knowledge already acquired or a preference to first work on ones

388

Schachdisplay V 1.0 Res
System Brett Datei
TR

R \
R zt\?-:\\-.\\.x R 3 DEIEANN
SEIEEN PR X
R e

%3
R

Turm {weil) hiht Kinig [schwarz) auf Bereich mit den Ecken aB, c6
Kiinig fweiB] deckt Turm [weifl]
weiB dringt Kinig {schwarz2) in Richtung Linie/n a, 8

<Kein Kommentar>
bedrohen
Bedrehung
beherrschen

bleiben

decken

dringen

einzig maglicher Zug

halten

Opposition suchen

Opposition vermeiden

Patt suchen

Patt iden

Schach bieten

Schachgebot ichen

Schachmatt setzen

sich entiernen

sich nshern

Zug chne erkennbaren strategischen Grund

[Py

Fig. 3. Enriching a presented case step by elaborating it

own) and specific ones (e.g., the state of knowledge after three examples). We intend to use methods of
opportunistic planning to account for the various factors that will influence the details of the tutorial strategy.

A prerequisite for all these forms of tutorial interaction is that the tutorial program and the student have a
shared language to denote objects, relations and phenomena in the domain under study. In our case, the tutorial
discourse pertains to two levels: the object level examples and problem solutions (together: cases) and a meta-
level, i. ., methods of elaborating example solutions and using them for problem solving,

Over the last months, we have been developing a first version of an interface that provides student and system
with a common language for the object level moves and reasons for moves in simple chess endgames. One
should note that such an interface already constitutes an instructional manipulation: The student is provided with
a case description language, and using it to describe chess endgame positions, moves and plans may already
result in a deeper processing of examples (and counter-examples).

The case description language was developed mainly by an analysis of available textbooks on endgames. At
each step of the presented example, the learner is offered a set of domain specific elaborations ranging from
paraphrazing comments as “check” to more higher level elaborations as “avoid opposition”. Currently we are
evaluating the effects of such a elaboration environment on learning. The next siep will be to add a retrieval
component and a case memory indexed by the elaborations, so that elaborating is not only a prerequisite for the
learner’s remembering of important situations, but also enables the system to remind the leamer, if appropriate.

To summarize: Psychological research provides us with an increasing number of observations that show how
humans make use of specific instances and cases, both for problem solving and learning. In order to develop
forms of computer-based instruction that take these findings into account, research on case-based reasoning
seems to provide the right sort of modeling techniques. We illustrated with three examples how these techniques
can be put to use for instructional purposes.

389

References:

Bredeweg, B. & Winkels, R. (1991). Teaching according to GARP. In L. Birnbaum (Ed.), The international
conference-on the learning sciences. Charlottesville, VA: AACE.

Chi, M.T.H., Bassok, M., Lewis, M., Reimann, P,, & Glaser, R. (1989). Self-explanations: How students
study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.

de-Jong, T. (Ed.) (1991). Computer simulations in an instructional context. Education and Computing 6.
Amsterdam: Elsevier,

Du, Z. & McCalla, G. (1991). CBMIP - A case-based mathematics instructional planner. In L. Birnbaum
(Ed.), The international conference on the learning sciences. Charlottesville, VA: AACE.

Edelson, D.C. (1991). Why do cheetahs run fast? Responsive questioning in a case-based teaching system. In
L. Birnbaum (Ed.), The international conference on the learning sciences. Charlotitesville, VA: AACE.

Elsom-Cook (Ed.) (1990). Guided discovery tutoring. London: Paul Chapman,

Ferguson, W., Bareiss, R., Osgood, R.'& Bimbaum, L. (1991). ASK systems: An approach to story-based
teaching. In L. Bimbaum (Ed.), The international conference on the learning sciences. Charlottesville, VA:
AACE.

Grisel, C., Prenzel, M. & Mandl, H. (1993). Konstruktionsprozesse beim Bearbeiten eines fallbasierten
Computerlernprogramms (Research Reports, No. 13). Miinchen: Ludwig-Maximilians-Universitit, Institut fiir
Empirische Pidagogik und Pidagogische Psychologie.

Kolodner, J. (1991). Helping teachers teach science better: Case-based decision aiding for science education.
In L. Birnbaum (Ed.), The international conference on the learning sciences. Charlottesville, VA: AACE.

Murray, T., Schultz, K., Brown, D. & Clement, J. (1990). An analogy-based computer tutor for remediating
physics misconceptions. Interactive Learning Environments 1,2, 79-101.

Pirolli, P,, & Recker, M. (1991). The role of examples, self-explanation, practice, and reflection. Berkeley:
University of California at Berkeley.

Reimann, P. (1992). Elicitating hypothesis-driven learning in a computer-based discovery environment. In A.
Tiberghien & H. Mandl (Eds.), Knowledge acquisition in the domain of physics and intelligent learning
environments. Berlin: Springer.

Reimann, P. & Schult, T.J. (1991). Modeling example elaboration strategies. In L. Birnbaum (Hrsg.), The
International Conference on the Learning Sciences. Charlottesville, VA: Assoc. for the Advancement of
Computing in Education.

Reimann, P., Schult, T.J. & Wichmann, S. (i. pr.), Understanding and Using Worked-Out Examples. In G.
Strube & K.F. Wender (Hrsg.), The cognitive psychology of knowledge. Amsterdam: Elsevier.

Reimann, P, Wichmann, S. & Schult, T. J. (1993). A learning strategy model for worked-out examples. In
Proceedings of the World Conference on Artificial Intelligence in Education 1993. Charlottesville, VA: Assoc.
for the Advancement of Computing in Education.

Schult, T.J. (1993), Tutorial remindings in a physics simulation environment. In Proceedings of the World
Conference on Artificial InteHligence in Education 1993. Charlottesville, VA: Assoc. for the Advancement of
Computing in Education.

VanLehn, K., Jones, R.M., & Chi, M.T.H. (1992). A model of the self-explanation effect. Journal of the
Learning Sciences, 2, 1-59.

390

ELM: Case-based Diagnosis of Program Code in a
Knowledge-based Help System

Gerhard Weber

FB I - Psychology, University of Trier
54286 Trier, FRG

Abstract. ELM is a case-based learning system that interprets, stores, and reuses solutions to programming
tasks. Information from an episodic learner model can be used to reduce the effort creating explanations of
how and why a solution to a programming problem produced by a programmer is buggy or suboptimal.
Program recognition adapted to a particular programmer can be used by tutoring and help systems to
individualize help and to improve tutorial activities adapted to the users needs.

1 Introduction

In intelligent tutoring systems or knowledge-based help systems, simulating how novices understand and code
programs can be useful to build a valid, cognitive student model. Up to now, approaches Lo program recognition
and program debugging based on cognitive models (e.g., the CMU-LISP-tutor {1]) do not adapt to the
programmer, that is, they do not learn how a particular programmer typically solves programming problems.
Information resulting from program diagnosis can be used in many systems to build a student model, but
information from such a model is used only for tutorial and remedial purposes and not for triggering or
improving the diagnostic process itself. So, each diagnosis begins from the scratch.

From a CBR point of view, this seems not to be optimal. Programmers use examples and previous problem
solutions when solving new programming problems. They search for solutions to analog problems and alter
existing code [11, 13]. Therefore, results from previous analyses of program code demonstrated in examples or
coded by the same programmer can effectively be reused when diagnosing the current program code.
Considering these findings, we have developed the ELM system {11]. Similar to the model-tracing approach in
the CMU-LISP-tutor [2], ELM tries to automatically generate the same code the novice programmer has
produced as a solution to a problem solving task. When generating the code, the system can reuse solutions to
subgoals and corresponding plans stored in the episodic learner model (ELM) according to case-based
reasoning.

2 Description of ELM

The CBR-approach employed in ELM differs from many other CBR systems in some important aspects. ELM
relies on a rule-based problem solving system being able to analyze program code by its own without
considering pre-stored cases. As it is a case-based learning system, ELM learns about an individual learner from
creating cases from explanation structures that result from analyzing examples and problem solutions. With a
growing case-base, information from these cases can be used to shorten the problem solving process of the
diagnostic component by reusing previous solutions and by avoiding dead ends during search. As the system
does not start with pre-stored cases, the rule-based diagnostic process will be described first. Second, we will
introduce and demonstrate how cases are created, stored, indexed, and used.

2.1 The Diagnostic Process

Diagnosing program code in ELM works as follows. Novices programming in the ELM-programming
environment [12] code function definitions in a structured LISP-editor [5], so their function code is at least
syntactically correct. The cognitive analysis of the program code employs an explanation-based generalization
(EBG) method [7]. It starts with a task description related to higher concepts (general and LISP-specific
programming concepts, plans, and schemata) in the knowledge base. Every concept comprises plan
transformations and rules describing different ways to solve the goal given by the current plan. Applying a rule
results in comparing the plan description to the corresponding part of the student’s code. In the plan description,
further concepts may be addressed. The cognitive diagnosis is called recursively. It terminates when a function
name, a parameter, or a constant are matched. The cognitive diagnosis results in a derivation tree built from all

391

(NIL-TEST (FIRST-ELEMENT (PARAMETER ?LIST)))
I

NIL-TEST
I
Equal-NIL-Test-Rule

(EQUALITY (FIRST-ELEMENT (PARAMETER ?LIST)) (TRUTH-VALUE NIL))
1
EOU{\LITY
Binary-Func-Rule

(EQUAL-OP) (FIRST-ELEMENT (PARAMETER ?LIST)) (TRUTH-VALUE NIL)
I I I
EOUPI‘L—OP FIRST-EILEM ENT TRLITHI-VALUE
Correct-Op-Rule Unary-Func-Rufe Correct-Unquoted-Datum-Rule
equal (FIRST-ELEM-OP) (PARAMETER ?7LIST) nil
I I
FIRST-EILEM-OP PARAIYIETER
Correct-Op-Rule Correct-Param-Rule
car li

Fig. 1. Partial derivation tree explaining the code (equal (car 1i) nil) for the plan
(NIL-TEST (FIRST-ELEMENT (PARAMETER ?LIST))).
Legend: ITALIC-CAPITALS: plans, CAPITALS: concepts, ltalics: rules, bold: LISP code.

concepts and rules identified to explain the student’s solution. This derivation tree is an explanation structure in
the sense of EBG.

The interpretation of a derivation tree can be best demonstrated by an example. Let us assume that a
programmer had to code a function definition containing a case decision. In one of the cases of this case decision
he or she had to test whether the first element of a list that is bound to a local variable from the parameter list of
the function definition has the truth-value NIL. The programmer coded (equal (car 1i) nil) asa
solution to the plan (VIL-TEST (FIRST-ELEMENT (PARAMETER ?LIST))). This plan addresses the concept
NIL-TEST which indexes some rules describing how such a plan may be solved. As a best interpretation the
Equal-NIL-Test-Rule was applied transforming the current plan into the equivalent plan (EQUALITY (FIRST-
ELEMENT (PARAMETER ?LIST)) (TRUTH-VALUE NIL)) testing for the truth-value NIL by directly comparing
the first element of the list to the truth-value NIL. This plan addresses the programming concept EQUALITY
that can be solved by coding an appropriate operator for the equality operation and then solving the subplans for
both arguments of the equality operation. This procedure is called recursively and results in the derivation tree
shown in Figure 1.

2.2 Creating, Indexing, and Using Cases

Concepts addressed in the derivation tree are the basis for creating episodic frames. These frames are integrated
into the knowledge base as instances of their concepts. Therefore, cases are not stored and indexed as a whole.
They are distributed regarding subplans used during problem solving. If an cpisodic frame is the first instance
under a concept of the knowledge base, this single case is generalized from structural and semantic aspects in the
data. This generalization mechanism is comparable to single-case generalizanion in EBG. Additionally,
similarity-based: generalization of data and plans can occur. With increasing knowledge about a particular
learner, hierarchies of generalizations and instances are built under the concepts and rules of the knowledge
base.

An example of small hierarchies after inserting frames from two cases into the knowledge base is shown in
Fig. 2. Episodic instances and generalizations constitute the episodic learner model. As information about the
learner is directly related to the expert-like domain knowledge, this learner model is a type of “overlay model”
(3]). Information from episodic instances can be used in further diagnoses if the current part of the code matches
a solution to a similar plan stored in the cpisodic learner model. Two different cases of maiching can be
distinguished. First, if the current plan including all nested subplans matches the plan stored with the episodic

392

NULL-TEST-1
NULL-TEST — NULL-TEST-EBG-1<C

NULL-TEST-2
ZERO-TEST
Y TEST T-TEST
NIL-TEST —— NIL-TEST-EBG-2—— NIL-TEST-2

ELSE-TEST-1
ELSE-TEST-2

ELSE-TEST — ELSE-TEST-EBG-1 <

Fig. 2. Hierarchy of episodic instances and generalizations after inserting episodic frames
for concepts from the derivation tree (Fig. 1) as a second episode into the knowledge base.

instance and if the currently considered part of the code exactlyl matches the code stored with the episodic
instance then the previous explanation can easily be reconstructed from episodic frames belonging to the same
episode. This refers to directly reusing explanations from previous cases. Second, if subplans and/or code match
only partially then the diagnostic process is triggered using information from the episodic frames. That is, rules
that were successfully applied in previous cases are tried first. So, the CBR-method is nsed in the sense of
‘shortcuts' [4] while constructing a new explanation.

2.3 Relation to Other Systems

ELM is, up to date, one of the few approaches to automated diagnosis in a tutoring or help system employing a
CBR method. Another CBR approach to diagnosis of program code is realized in the newest version of SCENT
[6], but it differs from ELM in several aspects. In SCENT, pre-analyzed cases are stored as a whole regarding a
static granularity hierarchy that expresses aggregation and abstraction dimensions. These cases are used during
analysis of the student's code to give detailed advice. In ELM, only examples from the course materials are pre-
analyzed and the resulting explanation structures are stored in the individual case base of the learner model.
Elements from the explanation structures are stored as instances of their corresponding concepts from the
domain knowledge base, so cases are distributed in the form of instances of concepts. Generalization hierarchies
of instances are built up from explanations of the program code that a student produced to solve programming
problems. Therefore, generalization hierarchics reflect the process of knowledge acquisition for a particular
student.

3 Evaluation Studies
3.1 Reduction of Computational Effort

In a first study, we analyzed interaction protocols obtained from 11 subjects while working on exercises in
ELM-PE [12] during the first six lessons of our introductory programming course. In the first six lessons, these
students worked on 36 - 40 different programming tasks producing and evaluating among 46 and 77 function
definitions. The more function definitions students evaluated and tested to solve a problem the more errors they
made during programming. Altogether 697 cases were observed and analyzed by the cognitive diagnosis. The
median case required 76 rules to be tested when no episodic information was used. This number reduced to a
median of 29 rules tested per case when episodic information was used. The same results can be looked at in a
different way. In 91% of all cases (632 out of 697) applying episodic information reduced computational effort.
In only 11 cases (1.6 %), taking episodic information into account resulted in additional computations.

3.2 Predicting Individual Problem Solutions

In a further simulation study, we automatically predicted the program code that 20 novice programmers
produced solving recursive programming problems during three lessons about recursion of our introductory
programming course. This was done with and without considering information from the individual case base of
ELM. For every new task, we compared the first complete function definition the programmer coded 1o the

lDuring matching names of local variables and recursive function calls are unified.

393

Tab. 1. Number and percentage of different predictions for code with and without considering individual cases
for 302 recursive function definitions produced by 20 Subjects for up to 17 different programming tasks.

Cases Number of Predicted Solutions
Case-based Canonical
Exact prediction 127 87
(42.1%) (28.8%)
Exact prediction except exchanging arguments 23 19
in commutative functions (7.6%) (6.3%)
Prediction correct except for a coding error 68 64
(22.5%) (21.2%)
Bad or incorrect prediction 84 132
(27.8%) (43.7%)

function code generated by the diagnostic component. Considering episodic information from the case base 127
out of 302 cases (42.1%) were exactly predicted (Column 'Case-based' in Tab. 1). That is, the predicted code
totally matched the observed code, except for names of local variables and self-defined functions. In 11 of these
cases, even an error was predicted that was observed from the programmer in a previous task. Predicting the
expected code for a new task without considering individual cases (Column 'Canonical’ in Tab. 1) resulted in 87
cases (28.8%) where the code was predicted exactly. In 23 vs. 19 of all cases, the code was exactly predicted
except for exchanging arguments in commutative functions. In 68 vs. 64 of all cases, the code was predicted in
the correct direction, that is, Subjects produced an error that was not predicted by the system. However, it was
the same algorithm and the rest of the code did match. In 84 (27.8%) vs. 132 (43.7%) of all cases the system's
prediction was bad or even completely false.

One may wonder why there are so many cases where the code produced by the programmer could be
predicted correctly by the system, whether considering episodic information or not. This result can be put down
to the fact that programming novices often try 1o reuse code from examples and from previous solutions (Weber
& Bogelsack, in press). Therefore, algorithms and code used to solve similar programming problems do not
differ so much from expecied, canonical solutions. The chance to correctly predict code drastically decreases
when programmers have experiences in other programming languages and use different programming concepts
and different algorithms. To predict such code correctly their experiences with other programming languages
must have been included into the knowledge base by formulating appropriate programming concepts and rules
and creating cases from their prior experiences. These experiences are not known to the system, so it will often
fail to predict their solutions.

In 200 of all 302 cases (66.2%), predictions with and without considering cases did not differ. This number
may appear very high, but one must consider, that only for a small number of examples from the materials cases
were stored in the case base. All other cases were built up individually when analyzing code produced by the
programmer. So, there is only a chance for episodic information to trigger the diagnosis or the automatic
generation of code if deviations from the expected, canonical way of programming were observed in previous
cases and could be applied in the current case. In 102 of all predictions this case happened. In 74 of these 102
cases (72.5%), considering information from the case base resulted in a good prediction that was better than the
canonical prediction. In 15 cases (14.7%) the canonical prediction (without considering individual cases) made a

‘better prediction, and in 13 cases (12.7%) both simulation types failed to make a good prediction.

3.3 Comparing ELM to Analogy-based Systems

Another advantage of an individualized, episodic learner mode! stems from its potential to find analogies and
remindings to examples from the learning materials and to solutions from previous programming cpisodes. For
this purpose, we have developed a fast, explanation-based retrieval algorithm (EBR, [9]). We compared our
EBR-method to the ARCS-model [8). Our simulation showed that in most cases the EBR method retrieved
analogs as well as the ARCS-method and in some cases the EBR-method outperformed the ARCS-method [9].
In a related experiment, we compared finding analogies by thec EBR-method and the ARCS-model with
similarity ratings judged by programming novices and by advanced programmers [10]. In this experiment, 100,
retrieving analogs by the EBR-method showed a slightly higher concordance with subjects’ ratings than results
from simulations with the ARCS-method. For both models, however, results from simulations were in higher
concordance with ratings from the "Advanced" group compared to "Novices'™" ratings. These findings are typical
for user or learner models that are based on overlay models as they reflect knowledge about a learner from an

394

expert-like point of view. This may be an advantage in case of a tutoring system where appropriate examples
and analogies must be found by the system guiding the learner to expert-like programming.

4 Conclusion

The CBR-approach in ELM offers several advantages over more traditional approaches 10 cognitive diagnosis
and user modeling. First, considering information from similar cases during the diagnostic process can reduce
the computational effort according to shortcuts [4]. Second, knowledge about a particular programmer being
typical for him or her reflects his or her individual programming style. Such information can be utilized to
predict the programming behavior and to show up analogies and remindings o examples and previous cases.

References

1. J. R. Anderson, F.G. Conrad, A.T. Corbett: Skill acquisition and the LISP tutor. Cognitive Science 13, 467-
505 (1989)

2. JR. Anderson, B.J. Reiser: The LISP tutor. Byte 10(4), 159-175 (1985)

3. B. Carr, L. Goldstein: Overlays: A theory of modelling for computer aided instruction (Al Memo 406).
Cambridge, MA: Massachusetts Institute of Technology, Al Laboratory (1977)

4. K.J. Hammond (ed.): Proceedings of the Second Workshop on Case-Based Reasoning. San Mateo, CA:
Morgan Kaufmann Publishers (1989)

5. A. Kohne, G. Weber: STRUEDI: A LISP-structure editor for novice programmers. In: H.J. Bullinger, B.
Schackel (eds.): Human-Computer Interaction INTERACT '87. Amsterdam: North-Holland 1987, pp. 125-
129

6. G. McCalla, J. Greer: Helping novices learn recursion: Giving granularity-based advice on strategies and
providing support at the mental model level. In: E. Lemut (ed.): Cognitive models and intelligent
environments for learning programming. Berlin: Springer-Verlag (in press)

7.T.M. Mitchell, R.M. Keller, S.T. Kedar-Cabelli: Explanation-based generalization: A unifying view.
Machine Learning 1, 47-80 (1986)

8. P. Thagard, K.J. Holyoak, G. Nelson, D. Gochfeld: Analog retrieval by constraint satisfaction. Artificial
Intelligence 46, 259-310 (1990)

9.G. Weber: Explanation-based retrieval in a case-based learning model. Proceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, Chicago, IL. Hillsdale, NJ: Cognitive Science Society
1991, pp. 522-527

10. G. Weber: Analogies in an intelligent programming environment for learning LISP. In: E. Lemut (ed.):
Cognitive models and intelligent environments for learning programming. Berlin: Springer-Verlag (in
press)

11. G. Weber, A. Bogelsack: Representation of programming episodes in the ELM model. In: K.F. Wender, F.
Schmalhofer, H.D. Bocker (eds.): Cognition and computer programming. Norwood, NJ: Ablex Publishing
Corporation (in press)

12. G. Weber, A. Méllenberg: ELM-programming environment: A tutoring system for LISP beginners. In: K.F.
Wender, F. Schmalhofer, H.D. Bocker (eds.): Cognition and computer programming. Norwood, NJ: Ablex
Publishing Corporation (in press)

13. G. Weber, G. Waloszek, K.F. Wender: The role of episodic memory in an intelligent tutoring system. In: J.
Self (ed.): Artificial intelligence and human learning: Intelligent computer-aided instruction. London:
Chapman & Hall. 1988, pp. 141-155

395

Chapter 9

Case-Based Image ProceSsing ;

397

Image Retrieval without Recognition*

Carl-Helmut Coulon
German National Research Center for Computer Science
Schloss Birlinghoven 53757 Sankt Augustin

Abstract

This paper deals with the automatic retrieval of objects, only based on their 2-dimensional image.
The resulting method should be used to support an architect using already designed supply nets
for a new design. In order to be accepted by the architect the retrieval process must be very fast.
Besides this strict requirement the automatic retrieval may suggest more than just the most similar
supply nets, but also some silly ones. The different sections of this paper describe the solutions of
the problems which occured during the development of the retrieval method.

1 Introduction

One complex subtask of the design of buildings is the design of supply nets. Figure 1 shows two different
supply nets, which should be recognized as similar. The idea of the developed retrieval method is to
simulate some kind of “Watching from distance®. This is done by scaling the 2-dimensional images of the
compared objects to different images of reduced resolutions. In the second step the images are turned to
the same position before they are compared in the last step.

similar to

Ymg scaling & mm!V

8x8

" Figure 1: The Idea: Watching from distance

*This research was supported by the German Ministry for Research and Technology (BMFT) within the joint project
FABEL under contract no. 413-4001-01IW104. Project partners in FABEL are German National Research Center of
Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of Dresden, HTWK
Leipzig, University of Freiburg, and University of Karlsruhe.

399

2 Scaling process

By reducing the resolution of the representations two advantages are reached. First, different objects have
the same 2-dimensional image, depending on the chosen resolution. Second, the amount of information
to compare is reduced extremely. In order to make the scaling process as fast as possible, it should be

(A) (B) (<€)
Figure 2: First Task: Scaling to an handable resolution

based on scaling routines of the chosen computer system. This leads to a tradeoff between speed and
the usability of the resulting scaled image. The most efficient scaling method found so far is explained
in figure 2:

Let the (A),(B) and (C) be pixel-maps of parts of a larger image. Each of them has to be scaled
to one pixel. If one pixel inside the inner box of each part is black, the resulting pixel is black, too.
The parameter to refine this method is the distance between the inner box and the border. As shown
in pixel-maps (B) and (C) there are still results, which seem to be unwanted. Even so the results are
acceptable (figure 4).

3 Normalizing the position

Supply nets should be still recognized as identical if the same structure appears after turning by multiples
of 90 degrees or mirrored. In order to avoid a comparison for each of the eight possible transformations
the scaled images are transformed to a “normalized“ position. This position should be the same, even
for similar, but not identical images. Also it must be definite. Figure 3 describes two possible methods.
Method (A) weights each pixel-map by an matrix, who’s highest values are at the left top. If two
transformations are weighted the same, the one with the most top left black pixel is chosen. Method
(B) reduces each pixel-map to a triangle and counts the black pixels reduced to the same position. This
second method involves a loss of information, which increases the number of identical representations of
different objects.

32T
R2R0O[18[16 10| 8 [0/0|0
R11917 7 314
PO[L8 7
él-ﬂ- o A
a) b) 1
Maximize 3 /
Weight [6 412
1513 5131

Figure 3: Second Task: Finding one normalized position

4 Organization of case-base

In order to reduce the number of images a new image has to be compared with, the case-base is organized
like a tree. In figure 4 you see a part of the case-base. This part consists of the images belonging to
five cases. At the level of a 12x12 resolution all images are already different. The two most left cases
consist of slightly different sized supply pipes. Their 6x6 image is identical and their 7x7 and 8x8 images
differ by one pixel only. A retrieval process starts at the root node and follows the connections until the
number of possible similar cases is reduced to a previously defined limit.

400

7x7

P

8x8

12x12

=)

64x64

Figure 4: Third Task: Building the case tree

5 Comparison

Like the scaling process, the comparison process should be as fast as possible. Two pixel-maps can be
easily compared by merging both together using the ”xor” function and counting the black-pixels of the
resulting pixel-map. This process is very fast. More complex comparison methods, like comparing also

EF"-'Ij

&

£

| S

the surrounding of each pixel, did not lead to better results so far.

401

6 Possible extensions

Motivated from neurophysiological results we took up the idea to simulate one property of the human
visual system. Focusing on one area of an image, the resolution decreases from this area to the border.
Actually we try to simulate this by using a resolution like shown in figure 5. This stresses a problem we

I
" ""J i- ravanN i
s ot It
ot i

——

Figure 5: Extension: Thinking about the human visual system

PR

oy
=
£

did not elaborate so far. We will have do some more knowledge-acquisition, to find out which areas of an
image are focussed by the architect, and which of the focused area lead to the recognition of similarity.

402

CASE-BASED REASONING FOR IMAGE INTERPRETATION IN NON-
DESTRUCTIVE TESTING

PETRA PERNER
HWTK Leipzig, Department of Computer Science
Postfach 66, 04277 Leipzig, Germany
petra@informatik. th-leipzig.de

ABSTRACT. Image-based techniques are mostly used for the determination of defects in materials and
components in nondestructive testing. In the former time, it has been not possible to come up with an sufficient
approach for an automatic inspection system based on statistical or knowledge-based classiffers. The nature
of the problem shows that case-based reasoning would be an appropriate method for an automatic inspection
system in nondestructive testing. In the paper we discuss CBR for image interpretation based on an example
of ultra sonic inspection. We describe the case representation, the problem of similarity over pictores and at
least, we discuss the necessary features which a case-based system for image interpretation should have. The
aim of the paper is not to describe a particular realization rather than to outline the tasks and problems which
are related to case-based reasoning for image interpretation.

1 INTRODUCTION

Image-based techniques are mostly used for the determination of defects in materials and components in
nondestructive testing. Usually this techniques do not give a unique image of the real defect image. Also,
there does not exist a correlation formulized in a analytical or numerical model between the input image
and the output image. Therefore, the interpretation of the output image is the task of an operator.
Although, image-based techniques do not previde a good image of the defect an experienced operator is
able to determine the type, the location and the size of the defect.

The operator uses for the interpretation of the image knowledge from past experiences, knowledge of the
ultra sonic physics and knowledge which he acquired during the qualification of the image-based
technique at test-bodies.

To aquire knowledge about the imaging behavior of the image-based technique by a particular test
situation is a common procedure in nondestructive testing. This procedure is used where a model about
the test physics did not provide sufficient results or for test techniques which are based on unknoewn
physical effects. Under economical reasons, it is only possible to built one test-body. On the basis of the
acquired knowledge it is possible to perform an interpretation based on analogical reasoning.

In case the costs seem to be reasonable then a defect catalogue is prepared for the particular test
situation. Such catalogues do exist f.e. for the x-ray inspection of welding seams. The catalogues are used
for operators training or they are taken by the interpretation of difficult cases. Then, the operator selects
from the catalogue by the help of a noemenclatur one or more cases which are similar to the real case and
determines by the following image comparison the case which is the closest one to the actual case.
Because of the broad variety of the defect gestalt and the technical cost for the preparation of the
catalogue they do not contain for every possible defect a defect image. Therefore, we have to consider the
catalogue as an inhomogenious solution space.

Im the past, there has been a lot of effort to come up with a numerical classifier for x-ray image
interpretation /1/ based on this catalogues. Alse for ultra senic image interpretation, a statistical classifier
12/ was built based on a class of trajectories derived from an numerical ultra sonic model. But the quality
is not sufficient caused by the inhomgenous selution space.

A knowledge-based system for x-ray inspection is described in /3/. It performs in a cbr-like manner. Well
known defects are stored as templates by attributes and attribute values (which are more general than a
case) in the knowledge base. A decision is done by comparing the real defect with the templates. In case
there is no match between a new situation and a template a confidence-factor based classification is
carried out in the second phase.

The nature of the problem shows us that case-based reasoning can be an appropriate methed for image
interpretation in nondestructive testing.

403

mailto:petm@infonnatikth-Ieipzig.de

It should be possible to come up with a classifier based on the catalogue and to design the classifier with
the ability to learn from new test cases.

In the paper we want to discuss case-based reasoning for image interpretation based on an example for
ultra sonic image inspection. First, we give an introduction to the test process. Then, we describe the case
representation. The aim of the paper is not to describe a particular realization rather than to outline the
tasks and problems which are related to case-based reasoning for image interpretation. This should give
a guidance for other image related CBR tasks.

2 PHASES OF THE TEST PROCESS

The test process consists of the following phases:

Test Preparation Planing&Design
Test Execution Manipulation
Test Evaluation Classification& Interpretation.

Every test process is started by test process preparation. A configuration of the image inspection system
has to be done in accordance to the minimal defect size, the condition of the compenent to inspected and
the expected defect type. That means for an ultra sonic system to determine the right sensor with the
parameter appertur angle, frequency, mode type etc.. Also, it is to plan the'path of the sensor over the
component and it is to adjust the data acquisition unit.

An ultra sonic sensor are moved over a test-component either by hand or by an manipulator. This
manipulator has to be controlled by an contrel unit.

The last phase of the test process is the test evaluation meaning the determination of the type , the
location and the size of the defect.

A mere detailed description of the test process is given in /4/. Now we want to look at an ultra sonic
image and determine the type of knowledge in an image.

Focused Transducer
< —_—

\ Cladding

\\ Weld
\

Defect near the
Outer Wall

Fig. 1 Examination Method

3 EXAMPLE OF ULTRA SONIC IMAGES

A sketch of an ultra sonic Bscan image taken from /S/ is shown in Figure 2. A sketch of the test situation
shows Figure 1.

The defect inside the material is a volumetric defect located near the outer wall (distance H) of the
material. The ultra sonic sensor has an appertur angle of 45 and a diameter D>>d (d-diameter of the

404

defect) and with H<D.

The ultra sonic image of an volumetric defect can be described as follow:

The image shows 4 objects.

Object A is obtained by direct reflection of the ultra sound at the real defect. It is located directly behind
the upper point of the real defect. By the location of object A in the image we can determine the real
location of the defect inside the material.

Object B is left-behind object A caused by the corner effect. Because of H<D the corner effect caused by
the outer wall at the left side of the sensor and the right side of the sensor cames together to one reflexion
point. The size of the object is approximately two times larger then the size of the object A.

Object C is located behind object A and right-behind object B. Object C is caused by beam rotation.
Object D is located left-behind object A, B and less left-behind object C.

The sketch in Figure 1 shows an ideal ultra sonic image of a volumetric defect. A real image would be
more distorted.
There are also different types of e.g. volumetric and crack like defects.

D : Beam Diameter

Path A : Direct Reflection

1

SW 45° /
‘/PathB:comereffect
H : Ligament /
Outer Surface

Path C : Beam Rotation
4 Path D : Reflection + Mirror Effect

Fig. 2 : Expected Bscan fora2 mm SDH HD

4 CASE DESCRIPTION

. From Sect. 2 and 3, we can derive a case desciption which contains the following information:

- an image acquisition protocol:
sensor parameters, the parameters of the amplifier

- an protocol about the type or the characteristic of the test component:

In the example described above the component is a flat material with an welding seam (V-seam).
and

- an image protocol:
A structural description of an image consists of objects,their attributes and their relation. It may be
represented in a graph-like manner. In the above described situation the objects are to consider relative
to the beam angle and the track position of the sensor. The important information are:
* the number of object,

405

* the spatial relationship between the objects, like "above"”, "behind"

*attributes like the grey level of the object which corresponds to the reflection factor, the size and the
location of the object

* the shape is in a very simple manner a feature, like more longelongated or more round.

The information abeut the image acquisition parameter and the component very much constrain the
hypotheses about defect types. This kmowledge may be used for contrel over the case base.

Before we can use the symbols resulting in the image protocol for reasoning we have to extract the
information from the image by image analysis. Procedures for the identification of an object and their
description by attributes are described in /6/. In the next chapter we want to consider the qualitative
description of the spatial knowledge and how we can extract this kmowledge from an image.

S RELATIVE REPRESENTATION OF SPATIAL KNOWLEDGE

For expressing the spatial representation in a qualitative manner like "above” or "above left” we need
a functional model for space.

In the above described example we can think of a coordinate system which is zero in the center of mass
of object A and aligned to the beam angle. Then we can describe "behind" and "above". The 4 square
of the coordinate system give the spezialization "left-behind", "right-behind" and "left-above”,"right-
above”. We can shift the coordinate system from one object to another object and then look from that
point of view to the spatial relations. This model would allow to describe all spatial relations concernd
with the example above. It is very coarse and does not include all spatial relation like e.g. projection. The
projection encloses such spatial relations like "contain" or "overlap". Therefore, Hernadez /14/
introduced an abstract map containing for each object in a scene a data structure called rpon (for relative
projection and erientation node). Such an data structure can be visualized as an octagon-shaped figure,
which describes aiso such spatial relations like e.g. "contain" and "overlap". It leads to a more complete
model with respect to a concept of spatial relation.

Similar te that, Chang /7/ proposed a 2-D String for image retrieval in pictoral databases for spatial
representation like orientation.

The approaches described above allows only a hard decision based on the proposed intervals. If an object
is located inside of one of the parts of the rpon than it gives the spatial representation decribed by the
particular area e.g. "right-back”. It can net be "more-" or "less right-back". This unsharp information
would require a representation of an fuzzy area /9/.

6 SIMILARITY OVER PICTURES

Which similarity is performed first seem to be very application dependent. Given a picture of an
unknown person's face, we will first match the shape of each individual object and then the relative
spatial relationship between eyes, nose and mouth /8/.

Different perceptions for images from different applications require to handle similarity in a flexible and
adaptable manner.

As it has shown before, for our application it is important the number of objects and their spatial
relations.

Only one reflection point and the second reflection point parallel shifted behind the first reflection point
indicates that the defect is more volumetric-like but not crack-like. The spatial relations of the other
reflection points te the first points confirms the hypotheses about the defect type. Because it can happen
that the reflection points are caused by appertur the reflection facter which is proportional to the grey
level gives the firal conformation about the defect type. To perform similarity by the spatial relationship
first and then by the attributes of the objects seem to be adequate in our application.

A good overview about similarity measures is given in /13/. Here we want to discuss structural similarity.
A flexible way to view similarity seems te be in terms of their structure. A concept "shape" will have a
certain structure which shows the relationship between the different types of shape. Also an image can

be described in terms of their structure (see Cha.4) and a concept derived from various images has also
a structure. Therefore we need a concept for structural similarity.

406

An image or a concept may be represented by a graph or a graph-like structure.
Definition 1:

A graph G(P,R) censists of a set of nodes

P = {p,spss - 5 Pu} » M: Nnumber of nodes
and a set of edges

R = {r;,r.r,} , n: number of edges,
which connect two nodes of the graph

n= (Pi,Pj) €ER, pbijP’ I=1,..n.

The general problem is to find structural identity or similarity between twe structures.
Definition 2:

A graph G, corresponds to a graph G, if there exists an mapping f: G,~ G, such that
Pus>Pp)=nE¢€ Rg = (f(Pn)a(sz)) =r, €Rg,

The nodes and the edges of the graph may be labeled by attributes which may or may not exact
correspond to the attributes of another graph. Therefore, we need a compatibility measure which takes
into account the differences between the attributes.

There are several matching techniques [6][11]:

- graph matching
- constraint search and
- relaxation.

The search for graph isomorphisms or graph homomerphisms is an NP-complete problem, meaning the
algorithm is very time-consuming. The search for graph isomorphisms is only then successfull if there are
no missing components. The tolerance of the algorithm against differences in the attributes and the
relations depends from the accuracy of the calculation.

The advantage of the constraint search is that not all correspondences between a graph 1 and a graph 2
have to be considered. Thus, an reduction in the complexity is reached. But the result of the matching
process strongly depends from the choosen constraints. Relaxation methods, especially probabilistic
relaxation seem to be appropriate when there are uncertainty in the data.

It is clear that the complexity is much higher if we have to consider the whole case base. In order to
reduce the complexity of the matching procedures it seems be usefull to establish a partial order of the
cases. Therefore, Glasgow [9] describes a technique, called image subsumption. In a first step, an initial
subsumption hierarchy is built up by an nonincremental concept learning procedure. This hierarchy is
refined then during the use of the system by an incremental concept learning procedure. The
subsumption hierarchay is build up by searching for part indentity of a case image and the new image
which should be stored in the case base. A new concept is establish if cases stored in the case base do
" not subsumbe the new image completely. In that way, a concept hierarchy is built up step by step and
dynamically changed according to the observation.

A feature based indexing schema is proposed in [8]. Other indexing schemes which are related to graph
theory are the connectivity index, indexing based on path number and weighted path. Our intension for
fuerther investigation is to give a more structured overview about structural similarity measures.

7 FEATURES OF A CASE-BASED REASONING SYSTEM FOR IMAGE
INTERPRETATION

A CBR-system for image classification needs to have some particular features with respect to images. This
features result from:

- the special requirements by visual knowledge acquisition (image-language problem) and
- the need to transform the numerical data of an image in a symbolic description.

407

The main problem with images and their translation in a language is that the knowledge about the image
is usually implicit represented in humans mind. To make the knowledge explicit is often hard. Sometimes
the meaning of the word does not reflect right the meaning of the image. Therefore it is necessary to
support the operator in an efficient way. Therefore a CBR system for image interpretation should have
a special case acquisition tool. For a more detailed description of that problem the interested reader is
refered to /10/.

The problem of signal-to-symbol transformation we have already described in Section 4.

Therefore a CBR-system for image interpretation should have besides the commeon feature of an CBR-
system:

- CASE ACQUISITION TOOL,
which supports the user by specifying the important feature of a case,
- VISUALIZATION FUNCTION,
which allows the user to inspect images and compare them,
- PLANNING MODULE for the image processing algorithm
- INTERFACE to an IMAGE PROCESSING UNIT and
- IMAGE DATA BASE,
where images can be stored, retrieved and displayed.

8 CONCLUSION

In the paper, case based reasoning for image interpretation in nondestructive testing has been discussed.
The case description and the requirements to the system were described based on an example for an ultra
sonic image inspection problem.

In opposition to other CBR-systems there are special requirements to the case acquisition unit. The case
acquisition unit sheuld support the user by describing an image.

An automatic image inspection system based on CBR needs also an image processing unit for the signal-
to-symbol transformation.

The aim of the paper was not to describe a special realization more then it should be described the
problems concerned with CBR for image interpretation. Therefore, similarity over pictures as well as the
problem of signal-to-symbol transformation for spatial information has been discussed briefly.

Our intension for further work is to study in more detail the opportunities of the methods statistical
classification, knowledge-based classification and case-based classification for image inspection in
nondestructive testing.

ACKNOWLEDGEMENT

The autor would like to thank Prof, Kroening for the opportunity te make studies in ultra sonic image
inspection at the Fraunhofer-Institut of Nondestructive Testing Saarbruecken. Part of this work has been
supported by the German Scientific Foundation (DFG),grant no. Pe-465/1-1, within the framework of the
subject "A methodology for the development of knowledge-based system for image interpretation in:
nondestructive testing".

REFERENCES

/1/ L. Froehlich et. all,"Rechnergestuetzte Diagnose von Schweissnahtfehlern,” BHM, 136. Jg. (1991),
Heft 1,8.37-42.

12/ G. Weinfurter,"Materialindentifikation mit Ultraschall aufgrund charakteristischer Merkmale
gestreuter Impulse,” Beitraege zur Jahrestagung der DGzfP, Kiel 25-27.09.89.

13/ A. Kehoe, G.A. Parker,” An IKB defect classification system for automated industrial radiographic
inspection,” Expert Systems, Aug. 1991, vol.8,No.3, pp.149-157.

/4/ P. Perner et. all,"Qualifiziertes Pruefen - Eine methodische Betrachtung der Intelligenz des
Pruefens,"DGzfP-Jahrestagung Luzern 6.5.-8.5.91.

408

pu}

/51 M.S. J. Petitgand, D. Champigny, J.-C. Cocquillay," Ultrasonic examination of Defects Close To
The Outer Surface,” Report 1990

16/ CL-E. Liedtke, M. Ender,Wissensbasierte Bildverarbeitung, Springer Verlag 1989.

/7/ C.C. Chang, S.Y. Lee,"Retrieval Of Similar Pictures On Pictorial Databases,” Pattern Recognition,
col. 24, No. 7, pp. 675-680, 1991.

/8/ T.-Y, Hou et. all," A centent-based indexing techniqu using relative geometry features," SPIE Vol.
1662 Image Storage and Retrieval Systems 1992, pp. 59-68.

19/ D. Conklin, J. Glasgow," Spatial Analegy and Subsumption,” To appear in Machine Learning: Proc.
of the Ninth International Conference (ML92), Morgan Kaufmann.

/16/ P. Perner,"A Repertory Grid Based Knowledge Acquisition Tool for Visual Inspection Tasks,"
submitted to IEEE expert Dec.1992.

/11/ H. Niemann, Pattern analysis and understanding, Second Edition, Springer Verlag 1990

/12/ D. Hernandez,"Relative Representation of Spatial Knowledge: The 2-D Case," Report FKI-135-90,
Aug. 1990, TU Muenchen.

/13/ St. Wess,"PATDEX/2-ein system zum adaptiven, fall-fokussierenden Lernern in technischén
Diagnesesituationen,"” SEKI Working Paper SWP-91-01 (SFB)

409

A Rule - Rule - Case Based System For Image Analysis

8. Venkataraman , R. Krishnan and Kiron K. Rao
Advanced Data Processing Resaerch Institute
203, Akbar Road , Tarbund
Secunderabad - 500 003 , INDIA

Abstract

In this paper, the development of an object oriented case representation environment
and indexing techniques are being discussed. The shell development is designed to handle 2D
and 3D image data. It includes a visual programming environment. The environment has an
object oriented pictorial album, its corresponding textual interpretation details (Context
Knowledge) and the spatial measurable features (statistical attribute data) with low level vision
techniques. Knowledge based indexing and Nearest Neighbourhood (NN) indexing techniques
are used for retrieval and storage of the cases. Indexing is by a two tiered scheme with a primary
and secondary key. The test-bed for the shell evaluation is done with remotely sensed data.

1.0 Introduction

image interpretation of remotely sensed data is an open textured problem that lacks a
strong domain model. A moulding of rule based techniques and Case Based Reascning
techniques is being attempted in our Rule - Rule - Case based system (RRC) to work in an
interactive fashion. The central idea is to apply the rules to the target problem of the scene
identification to get a first approximation of results. Later, another rule based technique and a
case based technique are used to identify or classify objects in the scene. An agenda based
controller schedules the rule and case based reasoning mechanism. This multi - level
processing utilizes both bottom up (data driven) and top down (case driven) approaches in order
to acquire sufficient knowledge to accept or reject any hypothesis for matching or recognizing the
objects in the given image. The environment frame comprises of a case library of chips of
images, a set of display routines, image enhancement routines, image edge extraction
algorithms etc., Additionally, it has an icon editor to add or delete an interpreted chip of image or
any 3D data for the corresponding 2D image chip. Programmable Hieararchial Interactive
Graphics System (PHIGS) software handles the 3D image data for visualizing the image in
parallel and perspective views in all possible angles, scale and view planes. This complete
development is under the X-Window environment on Sun Workstation.

2.0 Imaqe Analysis

Image analysis or image understanding refers to knowledge based interpretation of a
scene which has been sensed by any sensor by computers [1]. Remotely sensed images refer to
those which have been obtained from either an aircraft or spacecraft. Analysis is an
interdiscipilinary research which includes different domains like image processing, statistical and
syntatic pattern recognition and artificial intelligence techniques. While image processing deals
with well defined mathematical convolutions image interpretation is an ill structured compiex
domain. image interpretation refers to the correspondence (i.e mapping) between the description
of the scene' and the structure of the image. The scene is described in terms of objects in the
world, while the structure of the image is described in terms of image features. There exists a
wide gap between these two levels of information. the-goal of image understanding syatems is to
bridge the gap by computation and reasoning techniques. Hence, image analysis stresses
knowledge representation and reasoning methods for scene interpretation. A semantic
representation of the objects and their inter-relations is a first approximation knowiedge
representation schema that is possible. Rule based methods in conjunction with a case based
reasoning techniques is an ideal solution for image interpretation.

410

3.0 Case Based Reasoning Approach

Case Based Reasoning (CBR) is an alternative way to problem solving that offers
solutions to the problem of brittleness and knowledge acquisition bottleneck [2,3]. Image
understanding is an apt domain for case based reasoning as rule based systems alone have
proved to be very brittle and knowledge acquisition and representation is never complete in
description of semantics. The major problems with CBR approach are the choice of proper
indexing technique, storage and retrieval.

3.1 Case Based Shell Development

The shell developed has a CBR environment clubbed with Image processing software
making it a total domain for image understanding (Figs.1 and 2). This system supports two
modes of operation viz., a Development mode and a Consultation mode. During the
development mode, the domain specific expert populates the case base. His supporting
knowledge like which image processing tool is useful for the image under consideration, what are
the steps involved etc can be added into a text file which is linked to each icon. The auxillary
context information can be stored in a context file. During the consultation mode this case base
is used for interpretation. Images of size upto a maximum of 256x256 pixels can be stored in the
base with a display facility of four images per page. The images are classified with respect to the
objects and are stored in a hierarchical manner. The images along with its attribute data are
arranged in an object oriented pictorial database. Analysis reports in textual form are also tagged

Fig. 1 R - R- C structure for Image Analysis

411

Images from any sensor (satellite or aerial or medical) can be stored in an object
oriented pictorial (OOP) structured manner in a picture album. The OOP structure is based on
the sensor and object indices. 2D image data and 3D data if any to the corresponding 2D image
can be stored in the picture album. Display and manipulation of 3D data like the 3D structure lay
out of a refinery for example is handled by PHIGS software. Parallel and perspective views with
scaling and rotation can be handied very effeciently by PHIGS.

Image Processing tool box comprises of various tools like Image display where in one
can display an image, convert file formats, obtain histogram and statistics of an image and
Image editing is supported. Image enhancement option allows the user to perform various image
enhancements both in the spatial as well an in the frequency domain. Edge analysis contains
tools for obtaining a single pixel width edge map. On Screen Digitization (OSD) allows us to draw
lines, circles, polygons etc and add text. This is used as an overlay file. Image restoration
contains basis restoration algorithms. Image Math can be used to add, subtract, multiply are
divide a pair of registered imaged, This also allows one to add or subtract a constant to an
image. Feature extraction module allows us to extract shape features like area, perimeter,
centroid, geometric moments, orientation, bounding ellipse, bounding rectangle and corner
points. The input to this module is a single pixel width contour. The set of features is written on to
a database. Classification module contains unsupervised classification techniques. Any of these
modules can be applied on the image for interpretation before the case library is searched for
similar cases or for populating the case library.

.Case Based Reasoning Toal For Image Analysis
S 3 e {@3“

IP Tocls

Fig. 2 . Case Base Reasoning Tool overview

412

3.2 Case Description

Majority of the pictorial information in an image cannot be fully described by textual and
numerical information due to its essential limitations in expressing power. Two level semantic
knowledge descriptor is used for knowledge representation and index key generation. Each
schema is represented by a graph where nodes are associated to different objects and the
pointing arrows represent relationships between the two objects.

The first level of semantic network allows the user to represent knowledge about the
sensor and the image characteristics. Rule based system forward chains this data to arrive at the
primary key index (Fig 2). Each entity in the sematic network is of an OOP structure.

The second level of semantic representation, geometrical shapes, spatial information
and spectral properties of the object are dealt with. The semantic network grows with the type of
input the user answers at each node of the network. The second rule based system looks at the
fact values and forward chains to fire a rule or set of rules deciding the secondary indexing key.

The two rule bases mentioned above eleminate the necessity of storing the geometrical
and spectral descriptions of imges in the case library.

3.3 Indexin

The indexing of an image assignes to the image a set of descriptions that can provide an
indication of the controls of the image and a means of retrivial from the two levels. The basis of
image indexing is a semantic representation of the images. A primary key from the first semantic
level and the secondary key from the spectral / spatial semantic ievel together determine the
indexing key (figs 3 and 4). Knowledge indexing and sometimes a combination of knowledge
indexing and nearest neighbour method are the two methods of image indexing. Knowledge
indexing refers to finding relevent pieces of facts in a knowledge base with the help of a set of
descriptive properties called index. Forming an index involves the combination of intensities,
shape and textural properties of the segmented regions. In general, regions will very likely
extend over more than one semantic object and regions derived from different features may
spatially overlap. While some regions may refer to good indices others may fail to do so.
Choosing an indexing technique that can provide efficient retrival of relevant cases from the
memory is a difficult task. Indexing techniques are often domain specific and task specific and
thus limit the general purpose utility of the memory.

3.4 Image Retrieval

The query language in the system is a combination of retrieval by examplatory image
and by textual description of the image content. When a user's request can be expressed in
terms of the extracted image description, there is no need to retrieve and process the original
images. If however, the textual information is not sufficient, all images are processed at the
picture level to compare them with the image example. Since the image retrieval by example is
the present mode of operation for retrieval in our system.

3.5 Learning
Updation of the interpreted images into the case library is possible in the development

mode of operation. The interpreted data (text and attribute values) along with the images are
classified and stored in the case base.

413

Construct : Image 18-A Aerial Image OF Nadir_Look

PRIMARY : NADIR LOOK AERIAL |MAGE
INDEX sy o

Fig. 3 Semantic Level 1
4.0 Conclusion

A tool for image analysis of any image with Case Based Reasoning, Image Processing
and Knowledge based system is presented. Knowledge indexing and sometimes along with
nearest neighbourhood indexing are needed for indexing the images for storage and retrieval.

Acknowledgement

We gratefully acknowledge the encouragement and critical reviews provided by A.K.S.
Gopalan , Director, ADRIN, during the various stages of this project.

414

- index Point
index Point Index Point

fConstruct : Circles ARE Many AND Are Well Laid IN Matrix e
9 Circles HAVE Shadows Pixel Value : 128
Circles ARE of Bright Soots OF Pixel 128
SECONDARY REFINERIES OR PETROCHEMICAL PLANTS
INDEX OR POL STORAGE FACILITIES OR NPP

Fig.4 Spatial / Spectral Semantic Network
5.0 References

[Matsdyama T and Hwang Vincent S , SIGMA, 'A knowledge based aerial image
understanding system"”, Plenum Press, NY (1990).

[2] Barletta, R, "An introduction to Case Based Reasoning”, Al Expert, pp 43 - 49, Aug 1991.

[3] Kolodner, J, "Improving Human Decision making through Case Based decisien aiding”, Al
magazine, Vol 12, No. 2, pp 52 - 68, AAAI Press, Summer 1991.

415

	1993-neu.pdf
	1993-neu-2
	1993-neu-3

