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Introduction 
In this poster we shall illustrate a work in progress aimed at developing an integrated system for planning first 
attack to forest fires. It is based on two major techniques: case based reasoning and constraint reasoning. The 
architecture we propose is part of a more extended system that is aimed at supporting the user in the whole 
process of forest fires management. The novelty of the proposed system is niainly due to the use of advanced 
techniques for the development of the man/machine interface based on the representation of the user tasks' 
structure, the integration of more traditional techniques for data analysis with up to date techniques for data 
classification developed in the AI community, the extensive application of the Case Based paradigm to the 
planning of the first attack and the integration of the case based reasoner with a contraint solver, mainly in 
charge with temporal reasoning. 
Many computerised systems have been proposed and developed to help the responsible organisations in dealing 
with some of the phases offorest fire management: prevention, suppression, control. A part from many 
systems based on traditional techniques (GIS, Spreading fire models, resources management with data base) very 
few AI rooted applications have been developed. We cannot avoid quoting the Phoenix project [CGHH89], 
which is real-time adaptive planner that manages forest fires in a simulated environment, and the system 
developed by P. Kourtz that addresses the problem of dispatching waterbombers, helicopters and crews for fire 
control in Quebec [Kourtz87]. None of them use CBR techniques, the first one is a research on the design of 
intelligent agents and the second is a classification system based on rules implemented in PROLOG. 
In this extended abstract we shall illustrate the operational context in wich the system will be deployed and the 
intervention planning approach. At the moment we are terminating the design phase and we shall start the 
develoment in the next September. 

The operational context 
In this subsection we shall address the operational context in which the system will be deployed. This 
description will make the reader aquainted with the typical tasks in charge to the user. The user of the system is 
the controller based in a provincial centre. His tools are: a workstation, a dedicated line to acquire data from 
infrared sensors and meteo sensors, a radio, a fax, a telephone and a printer. The system running on the 
workstation comprises a Geographic information System, a graphical simulator of the fire evolution, tools for 
territorial, meteo and resource assessment and a module for supporting the intervention planning and control. 

When a new fire is reported, the alarm is promptly validated and the situation assessed by the user possibly 
running the propagation module. On the screen the operator can look at the output of the propagation module 
and access, through a graphical interaction, information on the graphical symbols showed by the map. At the 
end of this phase the operator has acquired enough information for drawing on the map a number of line sectors 
that subdivide the original fire front. The system runs a set of functions that compute the relevant data for each 
sector. The system presents t!}ese data to the operator and the operator may confirm this segmentation or revise 
his choice. . 
Once the sector has been identified on the map the operator is now looking for a plan to fight the fire in each 
sector and that achieves some objectives. The plan may use air forces and/or ground means, and they have to 
adopt a specific scheme of work. Searching in a data base of past sector plans, the system retrieves a set of 
plans that achieves these objectives. Follows ~ modification phase t6 fit these plans to the current situation. 
The plans are showed to the operator by means of a predefined form. After this phase of sector plan evaluation 
the operator may choose to repair a plan editing some subpart. Otherwise he may propose a new one, that 
seems applicable, based on his experience. The system will provide to check the numeric consistency of the 
repaired plan: that is verify the constraint on temporal relation, water quantity and resource availability. 

The operator now has a set of alternative sector plans for each sector. The system may suggest some 
combinations and may also verify the combination chosen by the operator. The operator composes on the 
screen the sector plans using the system as a constraint checker. Furthermore we may also require the system to 
propose complete plans and to compare different approaches. The system does not select a unique plan, but list 
a number of plans that differ on the cost, on the expected territory burned by the fire, on the use of specific 
resources such as water bomber or helicopters. 

IThe research was supported by the Esprit project CHARADE n. 6095. 
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In t roduct ion
In this poster we shall illustrate a work in progress aimed at developing an integrated system for planning first
attack to forest fires. It is based on two major techniques: case based reasoning and constraint reasoning. The
architecture we propose i s  part Of a‘ more extended system that is aimed at supporting the user in the whole
process of forest fires management. The novelty of the preposed system is mainly due to the use of advanced
techniques for the development of the man/machine interface based on the representation of  the user tasks'
structure, the integration of more traditional techniques for data analysis with up to date techniques for data
classification developed in the AI community, the extensive application of the Case Based paradigm to the
planning of the first attack and the integration of the case based reasoner with a contraint solver, mainly in
charge with temporal reasoning.
Many computerised systems have been proposed and develOped to help the responsible organisations in dealing
with some of the phases of forest fire management: prevention, suppression, control. A part from many
systems based on traditional techniques (GIS, Spreading fire models, resources management with data base) very
few AI  rooted applications have been developed. We cannot avoid quoting the Phoenix project [CGHH89],
which is  real-time adaptive planner that manages forest fires in a simulated environment, and the system
developed by P. Kourtz that addresses the problem of dispatching waterbombers, helicopters and crews for fire
control in Quebec [Kourt287]. None Of them use CBR techniques, the first one is a research on the design of
intelligent agents and the second is  a classification system based on rules implemented in PROLOG.
In this extended abstract we shall illustrate the operational context in wich the system will be deployed and the
intervention planning approach. At the moment we are terminating the design phase and we shall start the
develoment in the next September.

The  operational context
In this subsection we shall address the operational context in which the system will be deployed. This
description will make the reader aquainted with the typical tasks in charge to the user. The user of the system is
the controller based in a provincial centre. His tools are: a workstation, a dedicated line tO acquire data from
infrared sensors and meteo sensors, 3 radio, a fax, a telephone and a printer. The system running on the
workstation comprises a Geographic information System, a graphical simulator of the fire evolution, tools for
territorial, meteo and resource assessment and a module for supporting the intervention planning and control.

When a new fire is  reported, the alarm is promptly validated and the situation assessed by the user possibly
running the propagation module. On the screen the operator can look a t  the Output of the propagation module
and access, through a graphical interaction, information on the graphical symbols showed by the map. At the
end of this phase the operator has acquired enough information for drawing on the map a number of line sectors
that subdivide the original fire front The system runs a set of functions that compute the relevant data for each
sector. The system presents these data to the Operator and the operator may confirm this segmentation or revise
his choice.
Once the sector has been identified on the map the Operator is  now looking for a plan to fight the fire in each
sector and that achieves some objectives. The plan may use air forces and/or ground means, and they have to
adopt a specific scheme of work. Searching in a data base of past sector pl-,ans the system retrieves a set of
plans that achieves these objectives. Follows a modification phase to fit these plans to the current situation.
The plans are showed to the Operator by means of a predefined form. After this phase Of sector plan evaluation
the Operator may choose to repair a plan editing some subpart. Otherwise he may propose a new one, that
seems applicable, based on his experience. The system will provide to check the numeric consistency Of the
repaired plan: that is  verify the constraint on temporal relation, water quantity and resource availability.

The operator-now has a set Of alternative sector'plans for each sector. The system may suggest some
combinations and may also verify the combination chosen by the Operator. The Operator composes on the
screen the sector plans using the system as  a conStraint checker. Furthermore we may also require the system to
propose complete plans and to compare different approaches. The system does not select a unique plan, but list
a number of plans that differ on the cost, on the expected territory burned by the fire, on the use of Specific
resources such as water bomber or helicopters.

1The research was supported by the Esprit project CHARADE n.  6095.
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At this poin the operator has to assign specific actions to specific means. He selects the squads, choosing the 
base and the leader, he must assign to each squad the necessary means. He sets up a contact with the external 
organisations that are needed for help. He requests the cooperation of the Regional Centre asking for state owned 
air resources and further resources from other Provinces or Compartments. He requests the cooperation of the 
Prefecture for the intervention of the Army. He assures himself of their readiness to help. The operator finally 
takes a decision: selects a plan and sends the appropriate orders to the bases closing the planning of the first 
intervention. , 

The Intervention planning approach 
The intervention planning system rests on a CBR module integrated with a Constraint Reasoner module.It 
works on sector plans whose representation consists of two main parts. The first one allows to efficiently 
associate the current situation to an old, similar one among those recorded in the historical database of 
interventions. The second one contains a description of the structure of the plan in terms of action and their 
temporal relations. Constraint propagation techniques are applied to this part of the plan representation in order 
to' support adaptation and repairing of a sector plan. Moreover constraint reasoning techniques support 
composition of sector plans into a global plan and resource allocation providing a plan instance specific to the 
current situation. 
In the following we shall discuss provisional representational choices for plan representation and describe how 
the system will support the main decisional steps of the planning process above stated. 

Sector plans 
A sector plan is defined by a set of features describing the physical environment and by the structured set of 
actions that have to be performed, as depicted in Figure la. 
The sector plan features include a description of the scenario and the goal. The scenario is defined by a set of fire 
parameters, the most critical to evaluate the fire danger, the meteo conditions, the topography of fire location 
and the available resources that are located in the bases close to the fire. The goal includes three basic objectives 
of the global plan: the intervention deadline, the water equivalent of the fire fight, the targets of the fire. The 
intervention deadline is the maximum time in which the plan has to be completed. The water equivalent of the 
fire fight is an estimate done by the fife expert to dimensionate the global intervention. The targets of the fire 
are a set of valuable things to protect, for instance a building or a well. 
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Figures 1a, 1b 

The scenario corresponds to the initial condition and the goal to the final condition in classical planning 
formulation. Sector plan actions identify the fire fighting tasks that should be performed by a set of squads with 
appropriate equipment or means, see picture lb. Fire suppression by ground attack using noozles or air attack 
with helicopters are typical examples of fire fighting actions. The structured set of actions describes 'the 
temporal dimension of the plan. It contains information on action durations, possible time constraints respect 
to the starting and ending times of the plan, and temporal relation between actions. We represent it by a graph 
whose nodes correspond to starting and ending times of actions and whose arcs are labelled with the temporal 
relation between the connected nodes following the approaches presented in [DMP91], [vanBeek92]. We shall 
call this structure action net (see Figure 1c for an example). For instance the arc connecting to and the starting 
time of the action Al is labelled with {<, =} representing the information that A 1 must start at or after to. The 
arc connecting the starting time of Al with its ending time is labeHed by the interval [1 1:30] meaning that the 
duration of A1 will take a value belonging to that interval, i.e. 1 :s; tend - tstart :s; 1:30 hours. 

236 

At this poin the Operator has to assign specific actions to specific means. He selects the squads, choosing the
base and the leader, he must assign to each squad the necessary means. He sets up a contact with the external
organisations that are needed for help. He requests the cooperation of the Regional Centre asking for state owned
air resources and further resources from other Provinces or Compartments. He requests the cooperation of the
Prefecture for the intervention of the Army. He assures himself of their readiness to help. The operator finally
takes a decision: selects a plan and sends the appropriate orders to the bases closing the planning of the first
intervention. . _

The  Intervention planning approach
The intervention planning system rests on a CBR module integrated with a Constraint Reasoner module.It
works on sector plans whose representation consists of two main parts. The first one allows to efficiently
associate the current situation to an old, similar one among those recorded in the historical database of
interventions. The second one contains a description of the Strucmre of the plan in terms of action and their
temporal relations. Constraint propagation techniques are applied to this part of the plan representation in order
to support adaptation and repairing of a sector plan. Moreover constraint reasoning techniques support
composition of sector plans into a global plan and resource allocation providing a plan instance specific to the
current situation.
In the following we shall discuss provisional representational choices for plan representation and describe how '
the system will support the main decisional steps of the planning process above stated

Sector plans
A sector plan i s  defined by a set of features describing the physical environment and by the structured set of
actions that have to be performed, as depicted in Figure la .
The sector plan features include a description of the scenario and the goal. The scenario is defined by a set of fire
parameters, the most critical to evaluate the fire danger, the meteo conditions, the tepography of fire location
and the available resources that are located in the bases close to the fire. The goal includes three basic objectives
of the global plan: the intervention deadline, the water equivalent of the fire fight, the targets .of the fire. The
intervention deadline is the maximum time in which the plan has to be completed. The water equivalent of the
fire fight is an estimate done by the fire expert to dimensionate the global intervention. The targets of the fire
are a set of valuable things to protect, for instance a building or a well.
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Figures la, 1b

The scenario corresponds to the initial condition and the goal to the final condition in classical planning
formulation. Sector plan actions identify the fire fighting tasks that should be performed by a set of squads with
appropriate equipment or means, see picture l b  Fire suppression by ground attack using noozles or air attack
with helicopters are typical examples of fire fighting actions. The structured set of actions describes the
temporal dimension of the plan. I t  contains information on action durations, possible time constraints respect
to the starting and ending times of the plan, and temporal relation between actions. We represent it by a graph
whose nodes correspond to starting and ending times of actions and whose arcs are labelled with the temporal
relation between the connected nodes following the approaches presented in {DB/IP91], [vanBeek92]. We shall
call this structure action net (see Figure 1c for an example). For instance the are connecting to and the starting
time of the action A1 is labelled with {<, =} representing the information that A1  must start a t  or after to. The
arc connecting the starting time of  A1 with its ending time is labelled by the interval [1 1:30] meaning that the
duration of A1 will take a value belonging to that interval, i.e. l S [end — [start 5 1:30 hours.
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The intervention planning steps 
In the following we shall describe how the system supports the main decisional steps of the planning process, 
as illustrated in Figure 2 and described in a previous section. The first four steps are a direct derivation of the 
reference schema of CBR planning architecture developed by Hammond in [Hammond89]. The Figure 2 also 
highlights the fact that constraint reasoning techniques are continuosly exploited in all the reasoning steps a 
part from the retrieval. 
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t> Control 

The Retrieval and the Adaptation of an old plan.
 
The fire front segmentation performed by the operator as described above produces the description of one or
 
more sectors in terms of a scenario and the related goal. This description drives the search, into the plan
 
memory, of similar cases where the same kind of goal in a similar scenario has been dealt with.
 

The search process is performed by using a partial matching algorithm which computes and compares
 
similarities among features of the plan description. It is only possible a partial match because of the typical
 
incompleteness of the information gathered during the alarm verification.
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The intervention planning steps
In the following we shall describe how the system supports the main decisional steps of the planning process,
as illustrated in Figure 2 and described in a previous section. The first four steps are a direct derivation of the
reference schema of CBR planning architecture developed by Hammond in [Hammond89]. The Figure 2 also
highlights the fact that constraint reasoning techniques are continuosly exploited in all the reasoning steps a
part from the retrieval.
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Figure 2

The Retrieval and the Adaptation of an old plan.
The fire from segmentation performed by the operator as described above produces the description of one or
more sectors in terms of a scenario and the related goal. This description drives the search, into the plan
memory, of similar cases where the same kind of goal in a similar scenario has been dealt with.

The search process is  performed by using a partial matching algorithm which computes and compares
similarities among features of the plan description. It is  only possible a partial match because of the typical
incompleteness of the information gathered during the alarm verification.
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In fact this is a common problem in applying CBR techniques. This problem is taken into account in some 
CRR systems, among these we are analysing the COBWEB system [FisherS7] which seems the most 
appropriate to our application. COBWEB is based on an category utility function that identifies a trade-off 
between intra-class similarity and inter-class dissimilarity of cases. Intra-class similarity is the probability that 
two cases in the same category share their values and inter-class dissimilarity is the the probability that two 
cases In different category share their values. 

But, since some features are more relevant then others, this kind of match does not guarantee that the plan 
associated to the most similar case is the most appropriate to the current situation. This calls for an 
enhancement of this method introducing a supplementary technique in order to take into account also the partial 
order relation among the features that describe the scenario. 

The retrieval process on each sector produces a set of old sector plans. A further selection phase refines this set 
yielding a subset of plans that implement structurally different fire fighting strategies. Two strategies are 
structurally different if they don't use the same actions or if they order the actions differently. 

According to the reference case-based planning architecture a modification phase follows the retrieval. A specific 
set of constraint, based on the domain knowledge, are associated to the features describing the old plan actions 
and the new current scenario. These constraints represents for instance how ~he number of squads, the type of 
action (role) they perform and the sector length define a constraint on the action duration. Adapting an old sector 
plan means to change some action parameter values according to the features of the current scenario and then to 
recompute the constraints involving them. At this level constraints are mainly used fOr deducing consistent 
values for constrained parameters. 
Constraint propagation and consistency check guarantee the respect of the goal statements (for example deadline 
and water quantity). 

Usually in the full automated case-based planner the plan validation is performed by simulation. It is out of the 
scope of our work to address the complex problem of simulating actions and environment evolution in the 
forest fire domain (see [CGHH89] for a significant work in this direction). The expert, on the base of his 
experience and the data on the current situation, is generally able to repair the plan. He can,perform changes into 
the plan structure using a sector plan editor. For example substituting an action with a different one or changing 
the temporal relation between two actions. Repairer is supported by the system running constraint propagation 
algorithms on the modified action net. These two last steps, evaluator and repairer, can be repeated till a 
satisfiable sector plan is obtained. 

The composition of a global plan and its resource scheduling. 
Sector plans are merged into a global plan during the,composition phase. At this level the operator can decide to 
consider only the highest risk sectors among the originally planned sectors, in order to avoid resource 
allocation failure. This merging process corresponds to the composition of the single sector action nets into a 
global, time consistent, net. 

The scheduling phase deals with the selection and allocation of the resources to the resulting global plan. This 
process starts by considering the action time net of the global plan from the point of view of the resource 
requests associated to each action. In other words the action time net is mapped to the corresponding resource 
time net where the variables are the resources required by each action. The temporal constraints representing 
action durations in the action net are mapped to constraints on the duration of the allocation status of the 
associated resources. Additional constraints representing resource characteristics (such as shifts or maximum 
operating periods) will enrich the resource time net. Appropriate resource schedules for the global plan are 
solutions of this constraint network which will be obtained by running Constraint Satisfaction Problem 
solution algorithms driven by heuristic criteria on resource selection (see for instance [Fox87] 
[VanHentenryck92]). Possible failures are taken into account and could require to consider a different global plan 
(i.e. redo the composition step) or require the user to make extra resource available for instance releasing them
 
from different fires or requesting them to the Regional Centre.2
 
The resulting resource schedule will be represented by a resource time map where the allocation period of each
 
resource instance is recorded as well as their relative dependencies (for: instance between squad n.l and tanktruck
 
n.3 which will support its activity). The resource time map will support the plan control activities which could
 
require to consult and update it.
 
At this stage also the CBR process closes storing all the adaped sector plans which have been composed inlo
 
the succesfuHy scheduled global plan.
 

2 A precise definition of the failure that will be dealt is still object of discussion. 
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appropriate to our application. COBWEB is  based on an category utility function that identifies a trade-off
between intra—class similarity and inter-class dissimilarity of cases. Inna-class similarity is the probability that
two cases in the same category share their values and inter-class dissimilarity is the the probability that two
cases in different category share their values.

But, since some features are more relevant then others, this kind of match does not guarantee that the plan
associated to the most similar case i s  the most appropriateto the current situation. This calls for an
enhancement of this method introducing a supplementary technique in order to take into account also the partial
order relation among the features that describe the scenario.

The retrieval process on each sector produces a set of old sector plans. A further selection phase refines this set
yielding a subset of plans that implement structurally different fire fighting strategies”. Two strategies are
structurally different if they don‘t use the same actions or if they order the actions differently.

According to the reference case-based planning architecture a modification phase follows the retrieval. A specific
set of constraint, based on the domain knowledge, are associated to the features describing the old plan actions
and the new current scenario. These constraints represents for instance how the number of squads, the type of
action (role) they perform and the sector length define a constraint on the action duration. Adapting an old sector
plan means to change some action parameter values according to the features of the current scenario and then to
recompute the constraints involving them. At this level constraints are mainly used for deducing consistent
values for constrained parameters.
Constraint propagation and consistency check guarantee the reSpect of the goal statements (for example-deadline
and water quantity).

Usually in the full automated case-based planner the plan validation is  performed by simulation. I t  is out of the
scope of our work to address the complex problem of simulating actions and environment evolution in the
forest fire domain (see [CGHH89] for a significant work in this direction). The expert, on the base of his
experience and the data on the current situation, is generally able to repair the plan. He can‘perform changes into
the plan structure using a sector plan editor. For example substituting an action with a different one or changing
the temporal relation between two actions. Repairer is  supported by the system running constraint propagation
algorithms on the modified action net. These two last steps, evaluator and repairer, can be repeated till a
satisfiable sector plan is obtained.

The composition of a global plan and i ts resource scheduling.
Sector plans are merged into a global plan during the,composition phase. At this level the operator can decide to
consider only the highest risk sectors among the originally planned sectors, in order to avoid resource
allocation failure. This merging process corresponds to the composition of the single sector action nets into a
global, time consistent, net.

The scheduling phase deals with the selection and allocation of the resources to the resulting global plan. This
process starts by considering the action time net of the global plan from the point of view of the resource
requests associated to each action. In Other words the action time net is mapped to the corresponding resource
time net where the variables are the resources required by each action. The temporal constraints representing
action durations in the action net are mapped to constraints on the duration of the allocation status of the
associated resources. Additional constraints representing resource characteristics (such as shifts or maximum
Operating periods) will enrich the resource time net. Appmpriate resource schedules for the global plan are
solutions of this constraint network which will be obtained by running Constraint Satisfaction Problem
solution algorithms driven by heuristic criteria on resource selection (see for instance [Fox87]
[VanHentenryck92]). Possible failures are taken into account and could require to consider a different global plan
(i.e. redo the composition step) or require the user to make extra resource available for instance releasing them
from different fires or requesting them to the Regional Centre.2
The resulting resource schedule will be represented by a resource time map where the allocation period of each
resource instance is recorded as well as their relative dependencies (for instance between squad n.1 and tanktruck
n.3 which will support its activity). The resource time map will support the plan control activities which could
require to consult and update it.
At this stage also the CBR process closes storing all the adaped sector plans which 'have been composed into
the succesfull y scheduled global plan.

2 A precise definition of the failure that will be dealt is still object of  discussion.
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1 Introduction 

Due to the open-ended nature of all synthesis problems, a design problem can appear in different forns. There is 
a general acceptance that design problems can be classified as being routine design, innovative design or 
creative design. These predicates, routine, innovative and creative can be applied either to the process of 
problem solving or to the fmal product, or to both. 

In [Brown, Chandrasekaran 89], the proposed classification criteria are oriented towards the design process and 
the primary focus is set on the distinction between routine design processes and non-routine design processes. In 
[Rosenman, Gero 93], on the other side, design problems are categorized according to the kind of solution 
obtained and the authors' main interest is to distinguish between creative and non-creative design by an 
examination of the result of a design process. 

Routine design is generally characterized by the presumption that all design functions (goals and requirements) 
as well as all available structures of the artefact are fully specified and given beforehand. The process required 
for problem solving is one of mapping functions to structures. In an innovative design process, one may get 
confronted with functions or structures not known a priori. Innovative design is therefore accepted as being a 
process of going beyond the known structures and functionality and leading to a product which extends the set 
of known solutions. 

Creative design, as dermed in [Rosenman, Gero 93], "incorporates innovative design but involves the creation 
ofproducts that have Uttle obvious relationships to existing products". Creative designs can be achieved, as 
proposed in [Rosenman, Gero 93], by applying one of the following methods: combination of existing designs 
to a new one, mutation of an existing design, drawing an analogy and designing from first principles using 
building blocks. 

If we accept the above characterization of creative design, then the use of CBR in design problem solving, as in 
e.g. [Domeshek 92] [Domeshek, Kolodner 92] [Hinrichs 92], would often lead to creative design as a product 
because CBR uses two methods classified as leading to creative designs: the combination of existing designs to 
a new one and the adaptation (mutation) of an old solution to get a proper solution for the problem at hand. We 
will return to this topic later. 

Our objectives for the discussion of CBR in design problem solving in this paper are as follows. First we will 
describe the use of CBR for the development of a building-design support system. We discuss our point of view 
of categorization of design tasks as being innovative or creative and circumscribe the role of CBR in the context 
of this classification of design tasks. Finally we will show with an example from our application domain the 
necessity to use both routine and innovative CBR together with other problem solving methods in an 
environment which is open for user interactions that can bring in the creative solutions we cannot produce by 
software. 

•This work was partially supported by the German Ministry for Research and Technology (BMFl') within the joint project 
FABEL under contract no. 01 IW 104. Project partners in FABEL are German National Research Center of Computer 
Science (GMD) Sankt Augustin, BSR Consulting GmbH Munchen, Technical University of Dresden, HTWK Leipzig, 
University of Freiburg, and University of Karlsruhe. 
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problem solving or to the final product, or to both.

In [Brown, Chandrasekaran 89], the proposed Classification criteria are oriented towards the design process and
the primary focus is set on the distinction between routine design processes and non-routine design processes. In
[Rosenman, Gero 93], on the other side, design problems are categorized according to the kind of solution
obtained and the authors' main interest is to distinguish between creative and non-creative design by an
examination of the result of a design process.

Routine design is generally characterized by the presumption that all design functions (goals and requirements)
as well as all available structures of the artefact are fully specified and given beforehand. The process required
"for problem solving is one of mapping functions to structures. In an innovative design process, one may get
confronted with functions or structures not known a priori. Innovative design is therefore accepted as being a
process of going beyond the known structures and functionality and leading to a product which extends the set
of known solutions.

Creative design, as defined in [Rosenman, Gero 93], "incorporates innovative design but involves the creation
of products that have little obvious relationships to existing products". Creative designs can be achieved, as
proposed in [Rosenman, Gero 93], by applying one of the following methods: combination of existing designs
to a new one, mutation of an existing design, drawing an analogy and designing from first principles using
building blocks.

If we accept the above characterization of  creative design, then the use of CBR in design problem solving, as in
e.g. [Domeshek 92] [Domeshek, Kolodner 92] [Hinn'chs 92], would often lead to creative design as a product
because CBR uses two methods classified as leading to creative designs: the combination of existing designs to
a new one and the adaptation (mutation) of an old solution to get a propersolution for the problem at hand. We
will return to this topic later.

Our objectives for the discussion of CBR in design problem solving in this paper are as follows. First we will
describe the use of CBR for the development of a building-design support system. We discuss our point of view
of categorization of design tasks as being innovative or creative and circumscribe the role of CBR in the context
of this classification of design tasks. Finally we will show with an example from our application domain the
necessity to use both routine and innovative CBR together with other problem solving methods in an
environment which is open for user interactions that can bring in the creative solutions we cannot produce by
software.

’(This work was partially supported by the German Ministry for Research and Technology (BMb'l‘) within the joint project
FABEL under contract no. 01 IW 104. Project partners in FABEL are German National Research Center of Computer
Science (GMD) Sankt Augustin, BSR Consulting GmbH München, Technical University of Dresden, HTWK Leipzig,
University of Freiburg, and University of Karlsruhe.
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2 Characterization of the Problem Type 

In the project FABEL [FABEL 92], weare concerned with a building design problem which primarily focusses 
on the support of mechaniCal constructions using a method called ARMILLA [Hailer 92]. ARMILLA includes 
design guidelines as well as template models for designing mechanical subsystems. Building-design integrates 
architectural as well as mechanical and technical design aspects, e.g. air conditioning, lighting, etc.* 

The design process is strongly affected by different types of knowledge and building-design problem solving is 
characterized by a thriving interaction between these types of knowledge, e.g. functional knowledge, 
to.mlogical knowledge and geometrical knowledge. Some knowledge occurs in the form of former layouts, 
other knowledge in the form of design patterns for designing mechanical subsystems. In addition, there are 
guidelines, standards, heuristics etc. 

The question of how to find an adequate knowledge representation has to deal with good comprehensibility, an 
appropriate formal representation and the efficiency of the problem solving methods needed. In order to 
represent the knowledge adequate, we kept close to the natural manner of the types of knowledge and represent 
them in the form of cases, template models, heuristics, constraints, etc. Representing some knowledge in the 
form of cases seems to be an appriopriate and efficient way of knowledge representation, although it is not the 
only one. 

In fact, human expert~se variations of former layouts, but mostly as a source of inspiration and they adapt 
former layouts rather partially than completely. To design a new building does certainly not require new 
discoveries about statics or geometrics or to circumvent standards and constraints being established. But the 
building-design problem solving process continues to confront the architects and the technical engineers with 
problems that never occured before in exactly the same constellation and therefore need creative ideas to solve 
the particular problem within the given context. 

As we got more involved in the development of the building-design support system, the following question 
raised up: Do we need a problem solving method using CBR tb support routine design, innovative design or 
even creative design? Using CBR is actually a conservative way of reasoning~ because it mainly deals with 
problems solved at least once before. But the adaptation needed to make a former solution applicable can lead to 
an innovative solution and therefore right into innovative design. In contrast to this, in [Hua et al. 92] adaptation 
is seen as follows: "Adaptation ofcases are mostly used to generate routine design". 

In our opinion, we should make a difference between adjusting and adapting an old solution to the problem at 
hand. Adjustment certainly leads to a routine design as solution, because it deals with marginal modifications 
and is mainly restricted to the change of the coordinates of former solutions. One important aspect of supporting 
building-design problem solving deals with the routine type of design problems, due to standards and template 
models and some established constraints. Standards and established constraints must be taken into account 
while designing the mechanical subsystems and the template models should also be considered. 

Routine design can thus be obtained by applying standard AI-methods like rule-based reasoning or constraint 
satisfaction or - as an alternative - by applying case-based reasoning with adjustment, but without major 
adaptation. Adaptation, as we understand it, modifies an old solution in an essential way. This has to be done on 
the basis of non-trivial domain knowledge and adaptation procedures. One important aspect of adaptation is that 
it always leaves behind a certain risk that the adapted solution might not be acceptable with respect to the 
context of the building or the architect's assessment. 

For example, applying ARMILLA-guidelines leads to a significant adaptation of the former design and 
produces a new design. The obtained solutions can be regarded as a mutation of former layoutS due to the 
available knowledge. According to the above characterization we obtain a novel, innovative design. 

Another method of achieving innovative design is, as mentioned above, the combination of cases [Faltings 91]. 
There is a distinction drawn in [Hua et al. 92] between crossing cases and composing cases: "In crossing, we 
combine properties ofcases, while in composition, we assemble pieces ofstructures represented in cases". 

* A CAD system for ARMILLA which is used in the project FABEL as a fIrst prototype is called A4 [Hovestadt 93]. 

241
 

2 Characterization of the Problem Type

In the project FABEL [FABEL 92], we  are concerned With a building design problem which pfimarily focusses
on the support of mechanical constructions using a method called ARMILLA [Haller 92]. ARMILLA includes
design guidelines as well as template models for designing mechanical subsystems. Building- design integrates
architectural as well as mechanical and technical design aspects, e.g. air conditioning,-lighting, etc.*

The design process is strongly affected by different types of knowledge and building-design problem solving is
characterized by a thriving interaction between these types of knowledge, e.g. functional knowledge,
topological knowledge and geometrical knowledge. Some knowledge occurs in the form of former layouts,
other knowledge in the form of design patterns for designing mechanical subsystems. In addition, there are
guidelines, standards, heuristics etc.

The question of how to find an adequate knowledge representation has to deal with good comprehensibility, an
appropriate formal representation and the efficiency of the problem solving methods needed. In order to
represent the knowledge adequate, we kept close to the natural manner of the types of knowledge and represent
them in the form of cases, template models, heuristics, constraints, etc. Representing some knowledge in the
form of cases seems to be an appriopriate and efficient way of knowledge representation, although it is not the
only one.

In fact, human expertspse variations of former layouts, but mostly as a source of inspiration and they adapt
former layouts rather partially than completely. To design a new building does certainly not require new
discoveries about statics or geometn’cs or to circumvent standards and constraints being established. But the
building-design problem solving process continues to confront the architects and the technical engineers with
problems that never occured before in exactly the same constellation and therefore need creative ideas to solve
the particular problem within the given context.

As we got more involved in the development of the building-design support system, the following question
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In our opinion, we should make a difference between adjusting and adopting an old solution to the problem at
hand. Adjustment certainly leads to a routine design as solution, because it deals with marginal modifications
and is mainly restricted to the. change of the coordinates of former solutions. One important aspect of supporting
building-design problem solving deals with the routine type of design problems, due to standards and template
models and some established constraints. Standards and established constraints must be taken into account
while designing the mechanical subsystems and the template models should also be considered.

Routine design can thus be obtained by applying standard AI-methods like rule~based reasoning or constraint
satisfaction or - as an alternative - by applying case-based reasoning with adjustment, but without major
adaptation. Adaptation, as we understand it, modifies an old solution in an essential way. This has to be done on
the basis of non-trivial domain knowledge and adaptation procedures. One important aspect of adaptation is that
it always leaves behind a certain risk that the adapted solution might not be acceptable with respect to the
context of the building or the architect’ s assessment.

For example, applying ARMILLA-guidelines leads to a significant adaptation of the former design and
produces a new design. The obtained solutions can be regarded as a mutation of former layouts” due to the
available knowledge. According to the above-characterization we obtain a novel, innovative design.

Another method of achieving innovative design is, as mentioned above, the combination of cases [Faltings 91].
There is a distinction drawn in [Hua et al. 92] between crossing cases and composing cases: "In crossing, we
combine properties of cases, while in composition, we assemble pieces of structures represented in cases".
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If we want to cross or compose several cases, we need compatibility knowledge, which may be acquired and 
represented in some kind of knowledge representation schemes. Applying this kind of knowledge in order to get 
a correct new design can be seen as obtaining an innovative design. 

As we are concerned with developing a building-design support system, the flexibility of human expert 
behaviour has to be supported by the adaptability of the problem solving process. This means the ability to 
change between different kinds of knowledge and problem solving approaches in order to solve the problem at 
hand. Designing buildings is therefore an integrated cooperative activity between architects and engineers aimed 
at creating a new design. 

3 The Application of Case-based Reasoning and other Problem Solvers 

We have outlined above that our application can be seen as a conglomeration of different subproblems, e.g. 
building construction, duct layout, lightening cabellayout, etc., which range from routine to innovative design. 
Designing buildings is a holistic process and control is managed interactively. Therefore, all solutions of 
subproblems, e.g. duct layout, are taken preliminary as long as there are other unsolved (sub-)problems whose 
solvability or whose solutions may affect not only the local neighbourhood but also principal design decisions 
made in the early stages of the planning process. Therefore all (sub-)problem solving is preliminary and subject 
to change if new requirements arise.* 

For the subproblems involved which can be classified as routine design problems. we have some freeQom to 
decide which method of problem solving we want to use. Former prototypes of ARMILLA-based design 
problem solvers [Drach 93] used different rule-oriented AI-approaches. These approaches led to some progress 
concerning small subproblems but became much too complex for larger contexts. From these experiments we 
know that we can use rule packages or constraint problem solvers to obtain solutions for small and completely 
specified subproblems. namely routine designs. 

Another choice for this kind of subproblem solving is case-based reasoning. In the FABEL project we have 
done some experiments with different similarity functions to test the case-based problem solving approach for 
cases of different complexity [Coulon et. al. 93]. The results show that case-based reasoning is an applicable 
alternative to the established AI methods. The speed of problem solving and the quality of the results heavily 
depend on the contents of the case library. Therefore the two types of problem solving approaches are difficult 
to compare. 

What we learn from this mixed approach is that 'routine'now has two meanings: 

•	 being a known type of problem which can be completely modeled. de- and recomposed and not being 

too large to be solved by a strong AI method or 

•	 having predecessor problems which have lead to entries in the case library and which are retrievable 

through a similarity function and can be adjusted to the problem at hand. 

For those subproblems which can be classified as innovative design problems. our classical AI methods are not 
so easily applicable. Here the CBR approach is at the moment our best chance to solve these problems by 
software. As innovative solutions range over a wider spectrum than routine solutions. it is less probable that the 
case library already contains a solution that fits exactly and adaptation becomes more and more important 

An essential source of adaptation knowledge are design-guidelines which help both to structure and to reduce 
the amount of possible transformations. In the next section we give an example of how a design process can 
proceed in rather little steps using different kinds of knowledge and specialized little problem solvers which 
bave the form of completion and transformation functions for architectural designs. 

* The problem addressed here is that of the recomposition of subproblems to a fmal solution. In our opinion we cannot avoid 
this problem by using CBR in hardly decomposible application domains such as ours, as it is stated in [Kolodner 92]. This 
problem is currently one of our ongoing research subjects. 
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represented in some kind of knowledge representation schemes. Applying this kind of knowledge in order to get
a correct new design can be seen as obtaining an innovative design.

As we are concerned with deve10ping a building-design support system, the flexibility of human expert
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so easily applicable. Here the CBR approach is at the moment our best chance to solve these problems by
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the amount of possible transformations. In the next section we give an example, of how a design process can
proceed in rather little steps using different kinds of knowledge and Specialized little problem solvers which
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* The problem addressed here is that of the recomposition of subproblems to a final solution. In our opinion we cannot avoid
this problem by using CBR in hardly decomposible application domains such as ours, as it is stated in [Kolodner 92]. This
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We classify all our transformation steps as being routine or innovative steps for the following reasons: 

•	 We do not agree with [Rosenman, Gero 93] that the usage of combination, mutation or anology is 

sufficient to lead to a creative design. Instead we classify our design results from combination and 
mutation as being innovative. We do not use analogy so far but even if we would draw analogies 
between different aspects it would remain innovative from our point of view. 

•	 What we consider to be creative design is beyond all our software problem solving abilities. To bring
 

in creative solutions is a role which remains with the architect. This distribution of problem solving
 
capabilities is highly acceptable for the architects we work with. They would have had serious 
problems with giving away the 'inventory J?hases' to a software system. 

The more adaptation is needed the higher rises the risk that the produced solution causes conflicts with the 
surrounding context or other preliminary solutions already achieved. Therefore we have decided to develop so 
called quality-assessment functions [SiIverman 92] which check the coherence of the embedding of new 
solutions into the designed environment. These assessment functions are a good example of how the degree of 
automated problem solving decreases when the need of innovation or even creativity to solve the problem at 
hand increases. This form of openness has two main advantages: 

•	 the system does not prevent the architect from being really creative and 

•	 the system is able to catch the creative solution found by the architect, to store it in the case library and 

to use it as an innovative solution the next time it is applicable. 

This gives both the architect and the software system a chance to improve their performance. 

4AnExample 

The following example illustrates a design process where a rather abstract sketch is subsequently refmed and 
completed by a cooperative interaction between different problem solving paradigms. It shows how a 
cooperative interaction between the agents involved in the design process can lead to a more informative and 
useful stage of a design arrangement at hand. The design process can proceed, even if not all agents are able to 
deal with the design arrangement and if no accurate problem description is given. 

The architect can for example draw three columns and call the system for assistance. Please note that the 
arrangement given is no proper problem description and there is no concrete goal articulated. 

1-2: Applying a design guideline leads to the' following: Every column in a building has to be connected by 
beams. According to the distance given in figure I, the columns get connected as shown in figure 2. 

2-3: As there are no standard beams of the length given (figure 2), the beams have to get adjusted. The length of 
the beams becomes standardized as shown in figure 3. 

3-4: At this stage the design process can be continued by CRR. The most similar former layout found in the case 
library is shown in figure 4. 
Our similarity function works with abstract graph representations of the layouts. Similarity between the 
new case and an old case means that the old case is the smallest graph found in the case library which 
subsumes the new one completely. The graph matching is done on the basis of an application specific 
normal form which is obtained by abstracting away deviations from a MIDI-specific grid, absolute 
coordinates and effec~s from rotation or reflection. 

4-5: Now the design guideline from 1-2 is applied again and the stand alone column is connected properly 
(figure 5). 
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We classify all our transformation steps as being routine or innovative steps for the following reasons:

o We do not agree with [Rosenman, Gero 93] that the usage of combination, mutation or anology is
sufficient to lead to a creative design. Instead we classify our design results from combination and
mutation as being innovative. We do not use analogy so far but even if we would draw analogies
between different aspects it  would remain innovative from our point of view.

o What we consider to be creative design is beyond all our software problem solving abilities. To bring
in creative solutions is a role which remains with the architect. This distribution of problem solving
capabilities is highly acceptable for the architects we work with. They would have had serious
problems with giving away the ’inven'tory phases’ to a software system.

The more adaptation is needed the higher rises the risk that the produced solution causes conflicts with the
surrounding context or other preliminary solutions already achieved. Therefore we have decided to develop so
called quality-assessment functions [Silverman 92] which check the coherence of the embedding of new
solutions into the designed environment. These assessment functions are a good example of how the degree of
automated problem solving decreases when the need of innovation or even creativity to solve the problem at
hand increases. This form of Openness has two main advantages:

o the system does not prevent the architect from being really creative and

. the system is able to catch the creative solution found by the architect, to store it in the case library and
to use it as an innovative solution the next time it  is applicable.

This gives both the architect and the software system a chance to improve their performance.

4 An Example

The following example illustrateS a design process where a rather abstract sketch is subsequently refrned and
completed by a c00perative interaction between different problem solving paradigms. It shows how a
cmperative interaction between the agents involved in the design process can lead to a more informative and
useful stage of a design arrangement at hand. The design process can proceed, even if not all agents are able to
deal with the design arrangement and if no accurate problem description is given.

The architect can for example draw three columns and call the system for assistance. Please note that the
arrangement given is no proper problem description and there is no concrete goal articulated.

1-2: Applying a design guideline leads to the following: Every column in a building has to be connected by
beams. According to the distance given in figure 1, the columns get connected as shown in figure 2 .

2—3: As there are no standard beams of the length given (figure 2), the beams have to get adjusted. The length of
the beams becomes standardized as. shown in figure 3.

3-4: At this stage the design process can be continued by CBR. The most similar former layout found in the case
library is shown in figure 4 .
Our similarity function works with abstract graph representations of the layouts. Similarity between the
new case and an old case means that the old case is the smallest graph found in the case library which
subsumes the new one completely. The graph matching is done on the basis of an application specific
normal form which is obtained by abstracting away deviations from a MIDI-specific grid, absolute
coordinates and effects from rotation or reflection.

4—5: Now the design guideline from 1-2 is applied again and the stand alone column is connected properly
(figure 5)..
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5-6: The standards applied change the plan to figure 6. The reason for this is that the kind of connecting 
columns in figure 5 would not stand the weight on it. There have to be added two more columns, otherwise 
the whole construction built on this arrangement would be in danger to collapse. 

6-7: Proceeding the design process with applying CBR a second time leads to a new arrangement. shown in 
figure 7, which is again symmetric. 

7-8: One of the design guidelines gives the advice: if.ever possible, make your design regular. 
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Fig. l. Example for a design process 
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5 Outlook 

In the above example, we focussed on a single-stream design task, although building-design is an integrative 
discipline covering several design processes concurrently. This has the consequence that in the future we will 
have to deal with interactions and mutual influences between concurrent design processes. 
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Summary 

A building design problem can be viewed according to many diffe~ent abstractions. For example, an ar
chitect views a building as a collection of spaces with particular properties, while a civil engineer might 
consider it as a structure made up of load-bearing elements. For design, it is. important to combine these 
different viewpoints into a single coherent object. Difficulties associated with combining viewpoints lead 
to what is termed the integration problem. Case-based design (CBD) is a recently developed technique 
for knowledge-based design systems. This paper shows how the technique can help solve the integra
tion problem. Cases of previous design solutions already proyide solutions for the integration of several 
abstractions into a single object. When novel designs are created by adapting cases, integrity can be 
maintained through careful formulation of the adaptation procedures. We describe a prototype design 
system, CADRE, which applies CBD to several examples of building design. 

1 Introduction 

Integration is one of the central issues for large scale engineering design problems. For example, in 
building design many design abstractions are considered in order to define an artifact that satisfies 
multiple functions. The integration problem in the domain of building design has been traditionally 
solved with a blackboard control structure. IBDE [18] and ICADS[14] are examples of such systems. 
Blackboard control helps reduce the search space in these systems. However, it might result in loops, or 
even diverge. Blackboard architectures are still used in large scale engineering systems because engineering 
design is too complex to be processed in a single model. Recently developed case-based reasoning(CBR) 
technology[17, 12] provides a natural solution to the integration problem, since cases themselves are 
integrated solutions to particular design contexts. Creative use of design cases through adaptation and 
combination may provide solutions for new design specifications. We have developed a prototype design 
assistant called CADRE. In this system, the processes and representations are divided into two levels: 
dimensional and topological. In this paper, adaptation based on dimensional models of design is studied 
for integration of building design including structure, spaces and circulation pattern. 

Adaptation of a design case was addressed in Julia[9], a system that interactively designs the presen
tation and menu of a meal. The system implicitly achieves integration by satisfying multiple, interacting 
constraints. In our research, we are studying a more complex domain: building design. A building design 
involves thousands of parameters, even for a simple house. Building design is an ill-structured problem 
where domain theories can not be formalized. Building design requires integration of different abstraCtions 
which are in entirely different domains. In building design, shape and geometry are important. Building 
design poses a challenge to the CBR technique, conceptually and computationally. 

Our contribution lies in using case-based reasoning techI).ology to solve large scale engineering design 
problems where geometry and dimensional information are important. This paper describes our research 
on integration of building design through case-based reasoning. We achieve integration most effectively 
at the dimensional level of designs. 

2 Integration 

Any physical artifact can be viewed according to many different abstractions. For example, a building 
can be: 

an ingenious civil engineering structure of beams and columns. 
a magnificent way of creating architectural spaces. 
a practical arrangement of functions for its occupants. 
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building design many design abstractions are considered in order t o  define an artifact that satisfies
multiple functions. The integration problem in the domain of building design has been traditionally
solved with a blackboard control structure. IBDE [18] and ICADS[14] are examples of such systems.
Blackboard control helps reduce the search space in these systems. However, it might result in loops, or
even diverge. Blackboard architectures are still used in large scale engineering systems because engineering
design is too complex to be processed in a single model. Recently deve10ped case-based reasoning(CBR)
technology[17, 12] provides a natural solution to the integration problem, since cases themselves are
integrated solutions to particular design contexts. Creative use of design cases through adaptation and
combination may provide solutions for new design specifications. We have developed a prototype design
assistant called CADRE. In this system, the processes and representations are divided into two levels:
dimensional and topological. In this paper, adaptation based on dimensional models of design is studied
for integration of building design including structure, spaces and circulation pattern.

Adaptation of a design case was addressed in J ulia[9], a system that interactively designs the presen-
tation and menu of a meal. The system implicitly achieves integration by satisfying multiple, interacting
constraints. In our research, we are studying a more complex domain: building design. A building design
involves thousands of parameters, even for a simple house. Building design is an ill-structured problem
where domain theories can not be formalized. Building design requires integration of different abstractions
which are in entirely different domains. In building design, shape and geometry are important. Building
design poses a challenge t o  the CBR technique, conceptually and computationally.

Our contribution lies in using case—based reasoning technology to solve large scale engineering design
problems where geometry and dimensional information are important. This paper describes our research
on integration of building design through case-based reasoning. We achieve integration most effectively
at the dimensional level of designs.

2 Integration

Any physical artifact can be  viewed according to  many different abstractions. For example, a building
can be:

— an ingenious civil engineering structure of beams and columns.
-— a magnificent way of creating architectural spaces.
-— a practical arrangement of functions for its occupants.

246



Structure Spaces Circulation 

. .£._.... 

e--" 
e-..-J-..j 

e 
"-'.-~"-r--". .... 

!! f...·lI 

.J. 

~ 
bfdJ 

Fig. 1. A building represents an integration of many different abstractions, including structure, spaces and circu
lation pattern. 

Designing a building is difficult because it has to integrate satisfactory solutions in each abstraction: the 
structure designed by the civil engineer, the spaces laid out by the architect, and the circulation pattern 
desired by the user are part of one single structure (Fig. 1). 

Disagreements and misunderstandings between architects and civil engineers are recognized as sources 
of many problems in construction l

. Producing and documenting designs on a CAD system, preferably an 
intelligent CAD system, help detect problems during the design phase by checking consistency between 
the designs produced 'by different people. Research efforts such as IBDE [18] have already proposed 
computer tools for integrating designs generated in different abstractions. 

P2 
C2: x*y = 20 

l-----__r Cl: xJy=2 

o PI 

Fig. 2. Pt/Ct and P2/C2 represent parameters and constraints in structural and architectural abstractions. When 
discrepancies in each abstraction are corrected in isolation, the process may go into cycles as indicated by the 
arrows. 

In IBDE, seven different modules correspond to different abstractions and communicate via a common 
data representation called a blackboard. Inconsistencies are detected by critics and cause reactivation of 
certain modules in order to eliminate the problem. Since corrections are constructed locally, this process 
may well cycle or even diverge. For example, in Figure 2, constraint Cl is a constraint in structure 
abstraction which specifies that the length of beam x in a rectangular space is two times of the length of 
beam y in the space. The two beams span directions oflength and width in the space. C2 is an architectural 
constraint specifying that the area of the space is 20. PI and P2 are two parameters corresponding to 
the length and width of this space. Supposing that the starting point is (20,10) which is on line :z: = 2y, 
but not on curve :z: * y =20, the module fqr the architectural abstraction may revise values to (20,1) by 
adjusting parameter P2 to satisfy constraint C2. Since (20,1) does not satisfy constraint Cl, blackboard 
control shifts to the structural abstraction and adjusts parameter PI to satisfy constraint Cl by moving 
to point (2,1). This process cycles. In general, correcting the discrepancies by locally adjusting either PI 
to satisfy Cl or P2 to fall onto C2 leads to a cycle which may not converge to the solution. Only through 
simultaneous consideration of all abstractions can such problems be avoided. 

Achieving integration in a classical knowledge-based system framework is in principle possible, but 
extremely difficult because there are few general principles which hold over all abstractions. Attempts to 

1 Disagreements involving occupants are probably even more frequent, but rarely communicated to the designers. 
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Fig.  1 .  A building represents an integration of many difierent abstractions, including structure, spaces and circu-
lation pattern.

Designing a building is difficult because it has to integrate satisfactory solutions in each abstraction: the
structure designed by the civil engineer, the spaces laid out by the architect, and the circulation pattern
desired by the user are part of one single structure (Fig. 1).

Disagreements and misunderstandings between architects and civil engineers are recognized as sources
of many problems in constructionl. Producing and documenting designs on a CAD system, preferably an
intelligent CAD system, help detect problems during the design phase by checking consistency between
the designs produced -by different people. Research efforts such as IBDE [18] have already proposed
computer tools for integrating designs generated in different abstractions.

P2 1
i C2: x*y == 20

0 Pi

Fig. 2 .  PI/CI and P2/C2 represent parameters and constraints in structural and architectural abstractions. When
discrepancies in each abstraction are corrected in isolation, the process may go into cycles as indicated by the
arrows.

In IB DE, seven different modules correspond to  different abstractions and communicate via a common
data representation called a blackboard. Inconsistencies are detected by critics and cause reactivation of
certain modules in  order to eliminate the problem. Sincecorrections are constructed locally, this process
may well cycle or even diverge. For example, in Figure 2, constraint C l  is a constraint in structure
abstraction which specifies that the length of beam a.: in a rectangular space is two times of the length of
beam y in the Space. The . two beams span directions of length and width in the space. CZ is an architectural
constraint specifying that the area of the space is 20. P l  and P2 are two parameters corresponding to
the length and width of this space. Supposing that the starting point is (“20, 10) which is on line a: = 2y,
but not on curve z: * y = 20, the module for the architectural abstraction may revise values to  (20, 1) by
adjusting parameter P2 to  satisfy constraint C2 .  Since (20, 1) does not satisfy constraint C l ,  blackboard
control shifts to the structural abstraction and adjusts parameter P1 to satisfy constraint C l  by moving
to point (2, 1). This process cycles. In general, correcting the discrepancies by locally adjusting either P l
to satisfy C l  or P2 to fall onto C2 leads to a cycle which may not converge to  the solution. Only through
simultaneous consideration of all abstractions can such problems be avoided.

Achieving integration in a classical knowledge-based system framework is in principle possible, but
extremely difficult because there are few general principles which hold over all abstractions. Attempts to

1 Disagreements involving occupants are probably even more frequent, but rarely communicated t o  the designers.
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formulate knowledge in an integrated way exist. For example, Alexander [1] has produced a handbook 
which defines principles of good design that consider several abstractions simultaneously. A striking fact 
about his work is that the rules he defines are actually prescriptions for particular buildings in particular 
environments, with little generality. The lesson from this observation is: 

Integrating design knowledge from many abstractions amounts to formulating particular cases of 
good design. 

This observation leads to the formulation of design knowledge as prototypes [5] which are generalized 
versions of particular structures. However, since prototypes still require tedious formulations of the gen
eralizations that apply, design by reusing previous cases is of interest. In this paper, we show how this 
paradigm of case-ba.sed reasoning can be applied to solve the integration problem in building design. 

Adaptation 

Case-based reasoning originates from psychological models of human memory structure [17, 12]. A case
based problem solver consists of mainly two processes: indezing to find a suitable precedent, and adapta
tion to use .it in the new problem context. For case-based design, adaptation is essential; no two design 
problems are ever identical. Since indexing can be carried out by user interaction and since indexing 
schemes may depend upon characteristics of adaptation strategies, we have focused dur research on the 
adaptation of cases to new problems. 

Design cases Design requires knowledge in order to synthesize structures. For building design problems 
of realistic size, formulating such synthesis knowledge is very tedious, since conflicting goals lead to many 
tradeoffs. This knowledge is more easily accessible in the form of cases of existing buildings, and each 
case incorporates a large amount of synthesis knowledge. A case defines a set of "good" ways of achieving 
functions in different abstractions, and a way to integrate them into a single building. 

A case-based design system can be characterized by its dependence on cases as the main knowledge 
source. Following discussions in the literature [8, 2, 15] regarding the distinction between "surface" and 
"deep" features and their relative merits in indexing cases, we distinguish two kinds of cases: sha.llow and 
deep. A shallow case is a model of an existing building without any further information about how it was 
obtained. In contrast, a deep case is augmented by a trace of the process which devised the design. Since 
such design trace can not be easily acquired in engineering design, we attempt to limit our research to 
cases which are as shallow as possible in order to test how far this approach is applicable. 

A shallow case defines an actual artifact, represented for example as a CAD model of the actual build
ing. In our implementation, we use AutoCAD as a tool for representing and rendering this information 
plus a set of basic constraints(first principle constraints) to translate the AutoCAD model into shallow 
cases. 

A good building design is an example of successful integration of functions from different abstractions. 
These functions are modeled by a symbolic vocabulary appropriate to the corresponding abstraction, and 
mapped to constraints formulated on the common CAD model. The CAD model thus serves as a basis 
for integrating different abstractions. 

Case adaptation Applying a case to a new problem requires changing the structure while maintaining 
the integration of the abstractions that has been achieved in the case. We divide the process into two 
layers: topological and dimensional. Dimensional adaptations are changes in geometry that do not involve 
the removal or addition of elements and spaces. In its simplest form, dimensional adaptation reduces to 
scalings. Topological adaptations are changes which involve a modification of space or element topology. 
Dimensional integration can be achieved in a domain indep'endent way. Topological integration requires 
explicit design functions and constraints, which means extra design knowledge in addition to the case. 

Integration of multiple abstractions of design can be achieved during dimensional adaptation. In case
based design, dimensional constraints from a shallow case and a specification for a new design problem 
at dimensional level give a set of dimensional constraints. Constraints include equalities and inequalities, 
and constraints can be linear or non-linear. Therefore, an integration of multiple abstractions corresponds 
to a simultaneous solution to these constraints. Our methodology for integration of design at dimensional 
level can be described as follows: 

Parameterize the case and new design specifications with first principle knowledge' for each design 
abstraction. 
Perform dimensionality analysis with equalities. 

- If the equalities are over-constrained, either resolve the conflict by dimensionality ezpansion to intro
duce new design dimensions or relax constraints. 
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ing. In our implementation, we use AutoCAD as a tool for representing and rendering this information
plus a set of basic constraints(first principle constraints) t o  translate the AutoCAD model into shallow
cases.

A good building design is an example of successful integration of functions from different abstractions.
These functions are modeled by a symbolic vocabulary appropriate to the corresponding abstraction, and
mapped to constraints formulated on the common CAD model. The CAD model thus serves as a basis
for integrating different abstractions.

Case adaptation Applying a case to a new problem requires changing the structure while maintaining
the integration of the abstractions that has been achieved in the case. We divide the process into two
layers: t0pological and dimensional. Dimensional adaptations are changes in geometry that do not involve
the removal or addition of elements and spaces. In i ts  simplest form, dimensional adaptation reduces to
scalings. Topological adaptations are changes which involve a modification of space or element topology.
Dimensional integration can be  achieved in a domain independent way. Topological integration requires
explicit design functions and constraints, which means extra design knowledge in addition to the case.

Integration of multiple abstractions of design can be achieved during dimensional adaptation. In case-
based design, dimensional constraints from a shallow case and a specification for a new design problem
at dimensional level give a set of dimensional constraints. Constraints include equalities and inequalities,
and constraints can be linear or  non-linear. Therefore, an integration of multiple abstractions corresponds
to a simultaneous solution t o  these constraints. Our methodology for integration of design at dimensional
level can be described as follows:

—- Parameterize the case and new design specifications with first principle knowledge. for each design
abstraction.

— Perform dimensionality analysis with equalities.
- If the equalities are over-constrained, either resolve the conflict by dimensionality eapansion to  intro—

duce new design dimensions or relax constraints.
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If the equalities are under-constrained, use the process of dimensionality reduction to define the 
variability of the case under new design specification with the free variables. 
Propagate the adaptation among the inequality constraints in the dimensionality-reduced space to 
check its validity. 
If the adaptation is not valid, go back to a new parameterization. 

With these steps, integration of design at dimensional level can be achieved. 

Parameterization Parameterization is achieved through the base-parameterization of the CAD model of 
the case plus constraints in first principles and constraints interactively posted by users. 

Dimensionality analysis Dimensionality analysis is the process that decides if a given constraint system 
is under-constrained, over-constrained or has exactly one solution. 

Dimensionality Ezpansion Dimensionality expansion is used to introduce new degrees of freedom. Con
straints should not be dropped when they an, in conflict since they represent certain design requirements. 
The method of dimensionality expansion was originally used in 1stPRINCIPLE, a program that does 
creative mechanical design through monotonic analysis of design parameters to the object function [3]. 
We use the method to solve conflicts by introducing new design parameters, for example, to free some 
of the parameters that are originally fixed as constants in base parameterization. Dimensionality expan
sion sometimes implies the modification of the structure of the case by introducing new elements. Each 
step of dimensionality expansion will give at least one more degree of freedom. Dimensionalityexpansion 
provides a link between dimensional and topological adaptations. 

Dimensionality Reduction The concept of dimensionality reduction is adopted from the recoding method 
in the reduction of dimensionality of multivariate data in statistics [13]. This idea was developed further 
by Saund [16] in image recognition. 

The concept of dimensionality reduction was first introduced to case-based design by Faltings [6]. In 
integrated case-based design, this method is used to simplify dimensional adaptation of case by finding 
the exact degrees of freedom that can be changed for the case in a given new situation and by defining 
all the other design variables in terms of a small set of adaptation parameters. 

Inequalities Dimensionality reduction only applies to equalities. Among inequalities, we can distinguish 
two types: critical inequalities which are limitations exploited to the maximum and just satisfied in the 
case, and non-critical ones which are satisfied by a large margin. If the case is sufficiently close to the 
new solution, critical-constraint sets can be assumed to remain the same in spite of the adaptation. 
Thus, critical inequalities can be replaced by equalities to which dimensionality reduction applies. Non
critical inequalities are constraints on new parameter values and are handled by a constraint propagation 
mechanism. 

Topological changes In our system, when adaptation at dimensional level fails, topological adaptation of 
the case starts. For topological c!J,anges, we have not yet succeeded in defining an analog to dimensionality 
reduction; in fact, such an analog may not exist. Thus, we cannot ensure that integration is maintained 
throughout a topological modification. However, case adaptation still offers advantages over generation: 
if the case is sufficiently close to a feasible solution, the number of topological changes that are required, 
and may destroy the integration, is much smaller than what would be entailed by generating the building 
from scratch. 

Topological changes require explicit functionalities and associated constraints for all the abstractions 
of the case. Generalized design knowledge for each aspect of design and knowledge about tradeoffs among 
the design abstractions should be used to achieve integration of design at the topological level. Integration 
during case adaptation at the topological level can be formulated as a dynamic constraint satisfaction 
problem(DCSP). Topological changes are triggered by dimensionality expansion. At the topological level, 
relations and functional attributes are represented by constraints with conditions for each design ab
straction. Integration of all the abstractions after modification at topological level requires combination 
of constraint networks. When topological adaptation is performed in one abstraction, integrity of the 
case can be destroyed. Knowledge about integration will be required to re-establish integration of all the 
abstractions. Such knowledge can come from user interaction during the adaptation as with the CADRE 
~~. , 

Computational models for DCSP in case-based design can be realized by a combination oftraditional 
constraint satisfaction algorithms plus truth maintenance systems. In topological adaptation, when a: 
physical constraint should be retracted, a new design case will be considered. DCSP is hot suitable for di
mensional adaptations. In our approa~h, we use DCSP for topological adaptation (symbolic computation) 
and dimensionality reduction/expansion (numerical computation) for dimensional adaptation. 
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relations and functional attributes are represented by constraints with conditions for each design ab-
straction. Integration of all the abstractions after modification at topological level requires combination
of constraint networks. _When topological adaptation is performed in one abstraction, integrity of the
case can be  destroyed. Knowledge about integration will be  required t o  re-establish integration of all the
abstractions. Such knowledge can come from user interaction during the adaptation as with the CADRE
system. ‘ '

Computational models for DCSP in case—based design can be  realized by a combination of traditional
constraint satisfaction algorithms plus truth maintenance systems. In topological adaptation, when a’
physical constraint should be  retracted, a new design case will be considered. DCSP is not suitable for di-
mensional adaptations. In our approach, we use DCSP for topological adaptation (symbolic computation)
and dimensionality reduction / expansion (numerical computation) for dimensional adaptation.
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4 CADRE, a prototype design system 

Case	 Adaptation of the case 

Fig. 3. Example of case adaptation 

In order to explore the adaptation of cases in design, we have implemented a CAse-based spatial Design 
REasoning system(CADRE) [6, 10, 11]. One example treated by CADRE is shown in Figure 3. It is 
a U-shaped building (the Felder house in Lugano, Switzerland, [4]) adapted'to a slightly different site. 
CADRE modified both the dimensions and the topology of the case in order to obtain a solution that 
preserves the functionalities and tradeoffs in the case. 

Computationally, the processes in CADRE are divided into two layers: a symbolic layer and a nu
mericallayer. They correspond to the topological and dimensional models of the case. CADRE focuses 
on case adaptation, leaving case selection to the user. The adaptation is conducted with the following 
procedure: 

1.	 Evaluation of the existing case in the original and new environments in order to find discrepancies. 
Insertion of the case into the new design context so that a maximum coincidence is achieved, subject 
to constraints posted by the user. In the example of Figure 3, opening of U was placed on the ragged 
edge of the new lot. 

2.	 If there are dimensional discrepanci\!s, identify the violated constraints and the parameters which are 
involved in them. Complete the set of applicable parameters and constraints with all those which 
are related to the original ones through links in the constraint network. This defines the complete 
base set of parameters and constraints related to the discrepancies. In the example of Figure 3, these 
parameters and constraints are located in the right wing. 

3.	 Apply dimensionality reduction to the base set of parameters and constraints to define an adapta
tion parameterization which is guaranteed to avoid conflicts. In the example, most parameters are 
represented by a few parameters that decide the change of the right wing. 

4. Modify the dimensions using the parameters resulting from dimensionality reduction. Users control 
the process by asserting additional constraints or manually identifying suitable values. 

5. Check the validity of the adaptation by verifying inequality constraints in the base set that were not 
critical and thus not treated by the dimensionality reduction. 

6.	 If there is no solution at the dimensional level for the new design problem, trigger topological trans
formation rules which relax constraints in the related constraint set. If there is a transformation which 
preserves design features of the case, go back to step 1, otherwise the case is not suitable. 

Tests on several real examples, along with discussions with practicing engineers and architects lead 
us to believe that the procedure described above is complementary to their activities. 

CADRE was implemented in Common-Lisp, C and AutoCAD. It runs on Unix based workstations 
and could be migrated to any platforms which possess the same software environment. 

Conclusions 

We have argued that case-.based.reasoning offers assistance for integrating different abstractions in design. 
Our prototype system, CADRE, illustrates the usefulness of the approach for practically interesting designs. 
The paradigm of case-based design fits very well with the observation that human designers like to work 
by reusing cases of previous designs. The considerations we have presented in this paper may be an 
explanation for why this is the case: integration of abstractions may be the main reason why designers 
reuse previous cases. Adaptation of single cases is suitable for routine design. For innovation, we have to 
address the combination of cases; this is the topic of our current research. 
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In order t o  explore the adaptation of cases in design, we have implemented a CAse—based spatial Design
REasoning system(CADRE) [6, 10, 11]. One example treated by CADRE is shown in Figure 3. It is
a U-shaped building (the Felder house in Lugano, Switzerland, [4]) adapted‘ to a slightly different site.
CADRE modified both the dimensions and the topology of the case in order to  obtain a solution that
preserves the functionalities and tradeofi's in the case.

Computationally, the processes in CADRE are divided into two layers: a symbolic layer and a nu—
merical layer. They correspond to the tepological and dimensional models of the case. CADRE focuses
on case adaptation, leaving case selection to  the user. The adaptation is conducted with the following
procedure:

1. Evaluation of the existing case in the original and new environments in order to find discrepancies.
Insertion of the case into the new design context so that a maximum coincidénce is achieved, subject
to constraints posted by the user. In the example of Figure 3, opening of U was placed on the ragged
edge of the new lot .

2.  If there are dimensional discrepancies, identify the violated constraints and the parameters which are
involved 1n them. Complete the set of applicable parameters and constraints with all those which
are related to the original ones through links in the constraint network. This defines the complete
base set  of parameters and constraints related to  the discrepancies. In the example of Figure 3, these
parameters and constraints are located in the right wing.

3 .  Apply dimensionality reduction to  the base set of parameters and constraints to define an adapta-
tion parameterization which is guaranteed to  avoid conflicts. In: the example, most parameters are
represented by a few parameters that decide the change of the right wing.

4. Modify the dimensions using the parameters resulting from dimensionality reduction. Users control
the process by asserting additional constraints or manually identifying suitable values.
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critical and thus not treated by the dimensionality reduction.

6 .  If there is no solution at the dimensional level for the new design problem, trigger topological trans—
formation rules which relax constraints in the related constraint set. If there is a transformation which
preserves design features of the case, go back to  step 1,  otherwise the case is not suitable.

Testson several real examples, along with discussions with practicing engineers and architects lead
us to  believe that the procedure described above is complementary to their activities.

CADRE was implemented in Common-Lisp, C and AutoCAD. It runs on Unix based workstations
and could be  migrated to  any platforms which possess the same software environment.
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We have argued that case-.basedleasoninvg offers assistance for integrating different abstractions in design.
Our prototype system, CADRE, illustrates the usefulness of the approach for practically interesting designs.
The paradigm of case—based design fits very well with the observation that human designers like to work

.by  reusing cases of previous designs. The considerations we have presented in this paper may be an
explanation for why this is the case: integration of abstractions may be  the main reason why designers
reuse previous cases. Adaptation of single cases is suitable for routine design. For innovation, we have to
address the combination of cases; this is the topic of our current research.
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Abstract. Case-based reasoning can aid complex design tasks, however a cooperative paradigm for 
case-based design is needed. The paper argues for computational mechanisms for retrieving design 
cases but cooperative assistants to aid designers to understand and adapt retrieved designs. This 
necessitates multi-disciplinary research in case-based reasoning. 

1 Introduction 

Case-based reasoning can aid complex design by retrieving and customising old designs to similar problems (e.g. 
[1]). It mimics the behaviour of expert designers who recall old solutions to structure and complete new designs 
(e.g. [2,3]). This capability to solve ill-structured problems and designs [41] distinguishes case-based reasoning 
from previous artificial intelligence paradigms. However, effective case-based design requires cooperation between 
tool and designer to maximise their reasoning capabilities and the knowledge available [4]. This paper proposes a 
cooperative, case-based design paradigm founded on complex analogical reasoning mechanisms for case retrieval 
and explanation, and cognitive models of designer's analogical reasoning to inform design of tools which aid 
adaptation of retrieved designs. The paper has four parts. First, arguments for cooperation during case-based 
design are outlined. Second, conclusions from two projects which investigated case-based design in software 
engineering are followed by implications for case-based design in other disciplines. Finally, future research is 
discussed. 

2 Cooperation During Case-Based Design 

Case-based reasoning has the potential to aid design practice, however many case-based reasoning tools only 
support diagnosis tasks such as electric circuit repair [5] and computer help desks [6,7]. Case-based design 
introduces two problems: (i) retrieval of complex designs from ill-defined problem statements, and (ii) adaptation 
of retrieved solutions to fit the new design. Design retrieval is difficult due to the ill-structured nature of design 
tasks, and complex designs such as office blocks or software systems cannot be retrieved by simple categorisation 
or faceted classification schemes (e.g. [8]). Furthermore, retrieved designs must be customised by the designer. 
However, empirical evidence indicates that understanding and adapting old solutions is problematic. Studies of 
physics [9] and mathematical [10] problem solving revealed solution copying and comprehension avoidance as a 
short cut to cognitively demanding tasks. Design adaptation requires good understanding, so cooperative 
assistance is needed to explain cases to the designer and guide the adaptation task. 

This paper argues for cooperation between tool and designer throughout case-based design. Division of tasks is 
achieved by viewing case-based design as a complex analogical reasoning task. Ami!ogical reasoning is defined as 
the transfer of knowledge from past problem solving episodes to solve new problems that share significant 
aspects with corresponding past experience [11], a definition which can be applied to complex case-based design 
tasks. Analogical reasoning has been investigated by artificial intelligence researchers [12,13) and cognitive 
scientists [14,15,16], therefore the strengths and weaknesses of human and tool-based analogical reasoning are 
known. The following task division is proposed: 

• computational mechanisms for design retrieval and explanation; 
• design selection and adaptation by the designer who is assisted by computational mechanisms. 

Computational models of analogical reasoning exploit partial domain knowledge to retrieve complex cases and 
form analogical mappings with cases [17,18]. This contrasts with the complete domain knowledge needed to 
adapt complex designs. Computational retrieval mechanisms have several advantages over information retrieval 
strategies. First, computational models of analogical reasoning are robust and can retrieve analogical cases from 
ill-defined problems typical in complex design tasks. Second, inferred analogical mappings between designs can 
improve the explanation of retrieved cases. Third, analogical reasoning exploits the structure inherent in most 
designs to reduce dependence on domain-specific indices or keywords (e.g. [19,20)). On the other hand, designers 
possess greater domain knowledge and are better analogical reasoners with single cases than are design tools, 
although difficulties do arise. Therefore, computational mechanisms must aid case adaptation by designers rather 
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2 Cooperation During Case-Based Design

Case-based reasoning has the potential to aid design practice, however many case-based reasoning tools only
support diagnosis tasks such as electric circuit repair [5] and computer help desks [6,7]. Case-based design
introduces two problems: (i) retrieval of complex designs from ill-defined problem statements, and (ii) adaptation
of retrieved solutions to fit the new design. Design retrieval is difficult due to the ill-structured nature of design
tasks, and complex designs such as office blocks or software systems cannot be retrieved by simple categorisation
or faceted classification schemes (e.g. [8]). Furthermore, retrieved designs must be customised by the designer.
However, empirical evidence indicates that understanding and adapting old solutions is problematic. Studies of
physics [9] and mathematical [10] problem solving revealed solution copying and comprehension avoidance as a
short cut to cognitively demanding tasks. Design adaptation requires good understanding, so cooperative
assistance is needed to explain cases to the designer and guide the adaptation task.

This paper argues for cooperation between tool and designer throughout case—based design. Division of tasks is
achieved by viewing case-based design as a complex analogical reasoning task. An ogical reasoning is defined as
the transfer of knowledge from past problem solving episodes to solve new problems that share significant
aspects with corresponding past experience [11], a definition which canbe applied to complex case-based design
tasks. Analogical reasoning has been investigated by artificial intelligence researchers [12,13] and cognitive
scientists [14,15,16], therefore the strengths and weaknesses of human and tool-based analogical reasoning are
known. The following task division is proposed:

- computational mechanisms for design retrieval and explanation;
- design selection and adaptation by the designer who is assisted by computational mechanisms.

Computational models of analogical reasoning exploit partial domain knowledge to retrieve complex cases and
form analogical mappings with cases [17,18]. This contrasts with the complete domain knowledge needed to
adapt complex designs. Computational retrieval mechanisms have several advantages over information retrieval
strategies. First, computational models of analogical reasoniiig are robust and can retrieve analogical cases from
ill-defined problems typical in complex design tasks. Second, inferred analogical mappings between designs can
improve the explanation of retrieved cases. Third, analogical reasoning exploits the structure inherent in most
designs to reduce dependence on domain-specific indices or keywords (e.g. [19,20]). On the other hand, designers
possess greater domain knowledge and are better analogical reasoners with single cases than are design tools,
although difficulties do arise. Therefore, computational mechanisms must aid case adaptation by designers rather
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than adapt designs themselves. Their design must be informed by how designers understand and adapt old designs. 
This paper argues that effective tool design should be founded on cognitive models of analogical reasoning during 
design reuse. Cognitive science provides an empirical basis for these models, however the case-based reasoning 
community lacks evidence of difficulties which arise during these tasks. To answer some of these questions, 
cooperative, case-based design paradigm was introduced to aid requirement and specification of software systems. 

3 Ca<ie-Based DeSign in Software Engineering 

The SERC 'AIR' and ESPRIT 'Nature' projects have investigated retrieval and adaptation of cases, including 
analogical specifications and domain abstractions, to aid specification of new software systems [2l]. ExperienCed 
software engineers' tend to recall mental abstractions when modelling new domains which permit them to 
perceive meaningful patterns in domains (e.g. [22,23]), therefore reuse of domain abstractions representing the 
fundamental behaviour, structure and functions of software engineering domains mimics expert design behaviour. 
Human [14] and computational models [24] of analogical reasoning also exploit mental and computational 
abstractions. This suggests the need for domain-lipecific models of analogical reasoning [25], in contrast to earlier 
domain-independent, quantitative theories. Therefore, the broad paradigm applies to all design disciplines, 
however the abstractions are specific to the design discipline. 

Case retrieval uses a computational model of analogical reasoning to match cases which have semantically
equivalent goals, which share knowledge structures and which instantiate a domain abstraction [26], see Figure 1. 
Furthermore, software systems are ill-defined during specification and design, so well-articulated queries for case 
retrieval are unlikely. Incremental system specification is aided by retrieval of domain abstractions, similar to the 
approach proposed in [27]. Therefore, case-based design is in two parts. First, retrieval of domain abstractions 
provides feedback for problem reformulation and understanding. Second, analogical specifications are retrieved and 
explained to permit case adaptation and redesign. 
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AIR, a prototype tooIkit to aid system specification has been implemented and evaluated [21,28]. It consists of 6 
components which is discussed in further detail to expl3in retrieval and customisation of analogical cases: 

• the requirements capturer guides acquisition of the fundamental behaviour, structure and functional requirements 
of software systems as a basis for retrieving existing cases [28]; 

• the domain matcher is a computational mode~ of analogical reasoning which retrieves cases and infers 
mappings to inform explanation [29]; 

•	 the requirements critic explains retrieved domain abstractions to encourage validation of new specifications 
through detection of problem situations such as incompleteness, inconsistencies, ambiguities and 
overspecification; 

• the problem classifier reasons with retrieved cases to detect problems in new specifications; 
• the specification advisor explains retrieved analogical specifications, guides their transfer to construct a new 

specification and promotes specification validation by cross-mapping with retrieved specifications [21]; 
• the dialogue controller controls interaction with the software engineer. It controls mixed-initiative dialogue 

permitting tool initiative to direct the design task and retrieve and explain cases when necessary. 

3.1 Aruiogical Cltie Retrieval 

The domain matcher [29] is a computational model of analogical reasoning ·which exploits partial domain 
knowledge to retrieve cases (17,18]. It matches a set of fundamental problem features to domain abstractions and 
analogical specifications. Domain abstractions are retrieved from a domain specialisation hierarchy. The domain 
matcher maps the new problem to a high-level domain abstraction then specialising this match to specialisations 
of the domain abstraction until no further specialisation is possible. Structure matching is used to establish an 
initial match with a high-level domain abstraction which may be specialised to lower-level domain abstractions, 
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than adapt designs themselves. Their design must be informed by how designers understand and adapt old designs.
This paper argues that effective tool design should be founded on cognitive models of analogical reasoning during
design reuse. Cognitive science provides an empirical basis for these models, however the case-based reasoning
community lacks evidence of difficulties which arise during these tasks To answer some of these questions,
cooperative, case-based design paradigm was introduced to aid requirement and specification of  software systems.

3 Case-Based Design in Software Engineering

The SERC 'AIR' and ESPRIT 'Nature' projects have investigated retrieval and adaptation of cases, including
analogical specifications and domain abstractions, to aid specification of new software systems [21]. Experienced
software engineers' tend to recall mental abstractions when modelling new domains which permit them to
perceive meaningful patterns in domains (e.g. [22,23]), therefore reuse of domain abstractions representing the
fundamental behaviour, structure and functions of software engineering domains mimics expert design behaviour.
Human [14] and computational models [24] of analogical reasoning also exploit mental and computational
abstractions. This suggests the need for domain-specific models of analogical reasoning [25], in contrast to earlier
domain-independent, quantitative theories. Therefore, the broad paradigm applies to all design disciplines,
however the abstractions are specific to the design discipline.

Case retrieval uses a computational model of analogical reasoning to match cases which have semantically-
equivalent goals, which share knowledge structures and which instantiate a domain abstraction [26], see Figure 1.
Furthermore, software systems are ill-defined during specification and design, so well-articulated queries for case
retrieval are unlikely. Incremental system specification is aided by retrieval of domain abstractions, similar to the
approach proposed in [27]. Therefore, case—based design is in two parts. First, retrieval of domain abstractions
provides feedback for problem reformulation and understanding. Second, analogical specifications are retrieved and
explained to permit case adaptation and redesign.
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AIR, a prototype toolkit to aid system specification has been implemented and evaluated [21 ,28]. It consists of 6
components which lS discussed 1n further detail to explain retrieval and customisation of analogical cases:

- the requirements capturer guides acquisition of the fundamental behaviour, structure and functional requirements
of software systems as a basis for retrieving existing cases [28];

° the domain matcher is a computational model of analogical reasoning which retrieves cases and infers
mappings to inform explanation [29];

° the requirements critic explains retrieved domain abstractions to encourage validation of new specifications
through detection of problem situations such as incompleteness, inconsistencies, ambiguities and
overspecification;

-. the problem classifier reasons with retrieved cases to detect problems in new specifications;
- the specification advisor explains retrieved analogical Specifications, guides their transfer to construct a new

specification and promotes Specification validation by cross-mapping with retrieved specifications [21];
- the dialogue controller controls interaction with the software engineer. It controls mixed-initiative dialogue

permitting tool initiative to direct the design task and retrieve and explain cases when necessary.

3.1 Analogical Case Retrieval

The domain matcher [29] i s  a computational model of analogical reasoning “which exploits partial domain
knowledge to retrieve cases [17,18]. It matches a set of fundamental problem features to domain abstractions and
analogical specifications. Domain abstractions are retrieved from a domain specialisation hierarchy. The domain
matcher maps the new problem to a high-level domain abstraction then specialising this match to specialisations
of the domain abstraction until no further specialisation is possible. Structure matching is used to establish an
initial match with a high-level domain abstraction which may be specialised to lower-level domain abstractions,
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Fig 2. Analogical retrieval of domain abstractions from the domain specialisation hierarchy 

therefore it is only called once during the matching process. Rule-based matching then specialises this match by 
mapping the new problem to lower-level domains which specialise the original domain abstraction, see Figure 2. 
Analogical specifications are retrieved using structure matching to the new problem and the retrieved domain 
abstraction. Therefore, case retrieval exploit partial domain knowledge representing fundamental domain features 
to retrieve domain abstractions before more complex analogical specifications. 
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Structure matching uses domain semantics and pattern matching to retrieve software specifications. First, local 
mappings between fundamental domain features are inferred from the theoretical model of domain abstraction. 
This model uses application-independent lexicons to detect semantic equivalence between domain features. 
Structure mapping then determines an interrelated knowledge structure possessed by both domains from these 
inferred lOCal mappings. There is insufficient space in this paper to describe the matching algorithm, however an 
example of structure matching is shown in Figure 3. State transitions and object structures represent the 
fundamental behaviour and structure of software engineering domains which is used to match system 
specifications. Local mappings are inferred between object relations rather than attributes to allow matching 
between different application domains. The algorithms are defined in [29]. The rule-based matcher implements the 
same structure matching algorithm, however it maps a smaller number of facts in the context of an existing 
structure match. These isolated concepts more amenable to rule-based matching, thus improving the 
computatiorial efficiency of the retrieval mechanism. 
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Fig 3. Graphical illustration of structured matching 

The implemented architecture and algorithms of the domain matcher are described in [29]. Implementation is on a 
SparcStation IPX using BIMprolog as part of Nature's concept demonstrator [30]. 

3.2 Coopemtive Case Acq>~ion 

Cooperative tools which aid comprehension and adaptation of retrieved specifications are informed by empirical 
studies of specification reuse of software engineers (e.g. [31]). Analogical understanding is needed for effective 
adaptation of retrieved cases, and people understand analogies by forming mental abstractions representing shared 
features. However, understanding retrieved software specifications proved difficult, especially for less~experienced 

software engineers who have most to gain from case-based design: 

• inexperienced software engineers exhibited mental laziness manifest as copying as a short cut to avoid 
understanding [31], a result also reported by [32]. Understanding complex and unfamiliar specifications proved 
difficult despite use of graphical notations (see Figure 4) which aid specification comprehension [21]. Indeed, 
these notations enabled direct understanding without understanding; 

• inexperienced software engineers did not recognise mappings with domain abstractions [33J. This led to poor 
reuse because software engineers could not perceive similarities with cases and hence the benefits from reuse; 

• problems during case understanding discouraged adaptation [33] because software engineers failed to see benefits 
from case-based design; 

• inexperienced software engineers did not adapt retrieved domain abstractions unless structured notations were 
provided to enable direct transfer of the abstraction [33]. 
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therefore it is only called once during the matching process. Rule-based matching then specialises this match by
mapping the new problem to lower-level domains. which specialise the original domain abstraction, see Figure 2.
Analogical specifications are retrieved using structure matching to the new problem and the retrieved domain
abstraction. Therefore, case retrieval exploit partial domain knowledge representing fundamental domain features
to retrieve domain abstractions before more complex analogical specifications.
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Structure matching uses domain semantics and pattern matching to retrieve software specifications. First, local
mappings between fundamental domain features are inferred from the theoretical model of domain abstraction.
This model uses application- independent lexicons to detect semantic equivalence between domain features.
Structure mapping then determines an interrelated knowledge structure possessed by both domains from these
inferred local mappings. There i s  insufficient space in this paper to describe the matching algorithm, however an
example of structure matching is shown in Figure 3.  State transitions and object structures represent the
fundamental. behaviour and structure of software engineering domains which is  used to match system
specifications. Local mappings are inferred between object relations rather than attributes to allow matching
between different application domains. The algorithms are defined in [29]. The rule—based matcher implements the
same structure matching Walgorithm however it maps a smaller number of facts in the context of an existing
structure match. These isolated concepts more amenable to rule-based matching, thus improving the
computational efficiency of the retrieval mechanism.
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The implemented architecture and algorithms of the domain matcher are described in [29]. Implementation is on a
SparcStation IPX using BIMprolog as part of Nature's concept demonstrator [30].

3.2 Cooperative Cme Admtaion

Cooperative tools which aid comprehension and adaptation of retrieved specifications are informed by empirical
studies of specification reuse of software engineers (e.g. [31]). Analogical understanding is needed for effective
adaptation of retrieved cases, and people understand analogies by forming mental abstractions representing shared
features. However, understanding retrieved software specifications proved difficult, especially for less-experienced
software engineers who have most to gain from case-based design:

- inexperienced software engineers exhibited mental laziness manifest as copying as a short cut to avoid
understanding [31], a result also reported by [32]. Understanding complex and unfamiliar specifications proved
difficult despite use of graphical notations (see Figure 4) which aid specification comprehension [21]. Indeed,
these notations enabled direct understanding without understanding;

. inexperienced software engineers did not recognise mappings with domain abstractions [33]. This led to poor
reuse because software engineers could not perceive similarities with cases and hence the benefits from reuse;

- problems during case understanding discouraged adaptation [33] because software engineers failed to see benefits
from case-based design;

~ inexperienced software engineers did not adapt retrieved domain abstractions unless structured notations were
provided to enable direct transfer of the abstraction [33].
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To overcome these problems, retrieved cases were explained [34] using the following strategies: 

• visualisation of domain abstractions can aid understanding and hence adaptation. Gick & Holyoak [14] reported 
better learning of abstractions from spatial diagrams representing fundamental features during analogical 
problem solving. Diagrams are annotated and supported by text descriptions to aid recognition and 
understanding of domain abstractions [33]; 

•	 simple prototypical examples can also aid understanding of domain abstractions and more complex analogical 
specifications. Empirical studies revealed that abstraction induction required presentation of two or more 
analogical instances [14]. Indeed, people often understand new concepts using prototypical examples [35]; 

•	 domain abstractions can be animated using dynamic illustrations of domain behaviour, similar to animations of 
computer algorithms proposed by [36]. Studies demonstrated thatanimations improved learning of declarative 
knowledge, although it also needed text and diagrammatic explanations to consolidate learning. Domain 
animations are interactive and permit playback and pause facilities to aid exploration; 

•	 tool-based guidance can aid formation of mappings between domain abstractions, analogical, specifications and 
the new problem. Notations which guide analbgical mappings include tabular definition of object mappings; 

•	 guided exposure to cases can discourage copying and aid mental model formation, therefore these strategies are 
integrated during controlled explanation of cases. 

Case adaptation was assisted by strategies derived from empirical studies (e.g. [21]): 

• experienced software engineers used graphical notations to guide knowledge transfer and adaptation. These 
structured notations lead to systematic adaptation of the specification to maximise advantages and avoid 
omissions; 

• guided exposure to cases supported this systematic transfer and adaptation by discouraging copying and drawing 
attention to exposed features of the specification; 

• guided exposure is combined with explanation strategies to encourage incremental understanding and adaptation, 
following the practice of successful and experienced software engineers. 

Furthermore, mixed initiative dialogue permits passive and active guidance durng case adaptation. Active guidance 
intervenes at the right time to explain retrieved cases and detected problems at the right level of abstraction, 
following the definitions in [27]. Passive guidance detects problem situations but the assistant does not 
intervene. Rather, detected problem situations are recorded on a problem notepad containing issues to be resolved. 
Problems can be browsed and acted upon by the software engineer when appropriate. 

3.3 Summary 

Case-based design has been shown to aid specification and high-level design of complex computer systems. Cases 
are retrieved using a computational model of analogical reasoning. User studies with AIR have revealed the 
effectiveness of retrieval of domain abstractions during problem formulation and system specification. Studies 
have also shown that anlllogical specification reuse can improve completeness of new specifications, although 
difficulties arise which necessitate cooperative assistance. Results have implications for case-based design in other 
disciplines. 

4 Case-B~ed Design in Other Disciplines 

Case-based design of children's bedrooms [37] was chosen to investigate whether these findings generalise to 
other design disciplines. It was chosen because of the effect of cases on design practice does not require domain 
experts who are difficult and expensive to acquire. This research is ongoing and its directions are two-fold. 

Domain analysis of the design discipline is needed to determine fundamental domain features for Case retrieval. 
This analysis differs from domain analysis in software engineering (e.g. [38]) because it must detect design 
categories (e.g. bedroom designs for different ages, budgets) and discriminating features of these categories. 
Knowledge acquisition from domain experts is needed to derive design categories using card sort and laddering [39] 
techniques. Results from this analysis identify design abstractions which can direct analogical rytrieval of cases. 
Furthermore, structure matching between discriminating features using AIR's structure matching algorithm can 
enable retrieval of incomplete and inconsistent designs. Therefore, a similar computational model of analogical 
reasoning can retrieve bedroom designs, however the discriminating features change. This computational model is 
being designed. 

Second, design understanding and adaptation will remain problematic due to the complexity of designs and lack of 
relevant domain knowledge. Comprehension avoidance and design copying is possible because designs are 
represented using graphical notations to define floor plans (bedroom design), architectural design (office blocks), 
circuit boards (electronics) and concrete stress fractures (civil engineering). An example ofa bedroom floor plan is 
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To overcome these problems, retrieved cases were explained [34] using the following strategies:

. visualisation of domain abstractions can aid understanding and hence adaptation. Gick & Holyoak [14] reported
better learning of abstractions from spatial diagrams representing fundamental features during analogical
problem solving. Diagrams are annotated and supported by text descriptions to aid recognition and
understanding of domain abstractions [33];

- simple prototypical examples can also aid understanding of domain abstractions and more complex analogical
specifications. Empirical studies revealed that abstraction induction required presentation of two or more
analogical instances [14]. Indeed, people often understand new concepts using prototypical examples [35];

- domain abstractions can be animated using dynamic illustrations of domain behaviour, similar to animations of
computer algorithms proposed by [36]. Studies demonstrated that animations improved learning of declarative
knowledge, although it also needed text and diagrammatic explanations to consolidate learning. Domain
animations are interactive and permit playback and pause facilities to aid exploration;

° tool-based guidance can aid formation of mappings between domain abstractions, analogical, specifications and
the new problem. Notations which guide analbgicai mappings include tabular definition of object mappings;

- guided exposure to cases can discourage copying and aid mental model formation, therefore these strategies are
integrated during controlled explanation of cases.

Case adaptation was assisted by strategies derived from empirical studies (e.g. [21]):

. experienced software engineers used graphical notations to guide knowledge transfer and adaptation. These
structured notations lead to systematic adaptation of the specification to maximise advantages and avoid
omrssrons; .

- guided exposure to cases supported this systematic transfer and adaptation by discouraging copying and drawing
attention to exposed features of the specification;

° guided exposure is combined with explanation strategies to encourage incremental understanding and adaptation,
following the practice of successful and experienced software engineers.

Furthermore, mixed initiative dialogue permits passive and active guidance dumg case adaptation. Active guidance
intervenes at the right time to explain retrieved cases and detected problems at the right level of abstraction,
following the definitions in [27]. Passive guidance detects problem situations but the assistant does not
intervene. Rather, detected problem situations are recorded on a problem notepad containing issues to be resolved.
Problems can be browsed and acted upon by the software engineer when appropriate.

3.3 Summary

Case-based design has been shown to aid specification and high-level design of complex computer systems. Cases
are retrieved using a computational model of  analogical reasoning. User studies with AIR have revealed the
effectiveness of retrieval of domain abstractions during problem formulation and system specification. Studies
have also shown that analogical specification reuse can improve completeness of new specifications, although
difficulties arise which necessitate cooperative assistance. Results have implications for case-based design in other
disciplines.

4 Case-Based Design in Other Disciplines

Case-based design of children‘s bedrooms [37] was chosen to investigate whether these findings generalise to
other design disciplines. It was chosen because of the effect of cases on design practice does not require domain
experts who are difficult and expensive to acquire. This research is ongoing and its directions are two-fold.

Domain analysis of the design discipline is needed to determine fundamental domain features for case retrieval.
This analysis differs from domain analysis in software engineering (e.g. [38]) because it must detect design
categories (e.g. bedroom designs for different ages, budgets) and discriminating features of these categories.
Knowledge acquisition from domain experts is  needed to derive design categories using card sort and laddering [39]
techniques. Results from this analysis identify design abstractions which can direct analogical retrieval of cases.
Furthermore, structure matching between discriminating features using AIR's structure matching algorithm can
enable retrieval of incomplete and inconsistent designs. Therefore, a similar computational model of analogical
reasoning can retrieve bedroom designs, however the discriminating features change. This computational model is
bein g designed.

Second, design understanding and adaptation will remain problematic due to the complexity of designs and lack of
relevant domain knowledge. Comprehension avoidanée and design copying is possible because designs are
represented using graphical notations to define floor plans (bedroom design), architectural design (office blocks),
circuit boards (electronics) and concrete stress fractures (civil engineering). An example of a bedroom floor plan is
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shown in Figure 4 [37]. Complex designs which require effort to.understand may not reveal the degree of 
similarity with the new problem can discourage design adaptation. Case-based reasoning research has paid little 
attention to cooperative assistance. Design tools for case-based bedroom design is assisted by explanation and 
adaptation strategies. These strategies were derived from reported findings during case-based software specification. 
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Fig 4. Floor plan of a toddler's bedroom (based on Lott 1989) 

5 Future Work 

Case-based design can be problematic. Therefore, computational models of analogical reasoning are needed to 
retrieve designs and cooperative assistance and aid designers to understand and adapt designs. Retrieval 
mechanisms can be informed by existing computational models of analogical reasoning [17,18]. Design of 
cooperative assistants for case adaptation can be informed in two ways. First, empirical studies of design 
understanding and adaptation can be undertaken. Studies provide domain-specific findings with implications for 
detailed design of assistants. Second, case understanding and adaptation can be informed by findings from other 
research disciplines. Cognitive studies of analogicalreasoning reveal problems during similarity-based reasoning. 
The psychology of program comprehension and reuse has also revealed a rich seam of relevant findings [42]. The 
case-based reasoning community can benefit from findings in these other research disciplines. 

Furthermore, cooperative assistants must be designed to support mixed initiative dialogue with designers. Design 
can involve complex activities including communication and negotiation. Designs are social objects in which 
different people find meaning. Therefore, cooperative assistants permit three-way interaction between assistant, 
designer and design user by using explanations to facilitate design negotiation by explaining design scenarios. 
Furthermore,retrieved and explained designs can provide common understanding and communication between 
designer and others, similar to cliches in program understanding [40]. Therefore, viewing case-based design as a 
cooperative process provides additional roles for design cases which WaITant further investigation. 
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5 Future Work

Case-based design can be problematic. Therefore, computational models of analogical reasoning are needed to
retrieve designs and cooperative assistance and aid designers to understand and adapt designs. Retrieval
mechanisms can be informed by existing computational models of analogical reasoning [17,18]. Design of
c00perative assistants for case adaptation can be informed in two ways. First, empirical studies of design
understanding and adaptation can be undertaken. Studies provide domain-specific findings with implications for
detailed design of assistants. Second, case understanding and adaptation can be informed by findings from other
research disciplines. Cognitive studies of analogicalreasoning reveal problems during similarity-based reasoning.
The psychology of program comprehension and reuse has also revealed a rich seam of relevant findings [42]. The
case-based reasoning community. can benefit from findings in these other research disciplines.

Furthermore, cooperative assistants must be designed to support mixed initiative dialogue with designers. Design
can involve complex activities including communication and negotiation. Designs are social objects in which
different peeple find meaning. Therefore, cooperative assistants permit three-way interaction between assistant,
designer and design user by using explanations to facilitate design negotiation by explaining design scenarios.
Furthermore, retrieved and explained designs can provide common understanding and communication between
designer and others, similar to cliches in program understanding [40]. Therefore, viewing case-based design as a
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Abstract. Designers are limited in exploiting a catalog knowledge base of design cases because they may be 
unable to articulate what they are looking for, or be unaware that potentially useful catalog examples exist 
Km (Knowing-In-Design), a domain-oriented, knowledge-based design enviro~ent for the kitchen floor 
plan design, integrates the use of the catalog-base with its design tools. The information given through 
KmSPECIFICATION (for specifying a design requirement) and K!DCONSTRUcnON (for graphically constructing 
a floor plan) provides representations of the designers' task at hand, and recorded design rationale in its 
argumentation-base is used to infer the relevance of cataIog examples to the task at hand. The 
CASE-DEUVERER component orders catalog examples according to the partial' specification, and the 
CATALOGExl'LORER subsystem allows designers to explore further the catalog space in terms of the task at 
hand. The study and assessment of the mechanisms have revealed that delivered cases helped designers 
reframe both a problem and a solution, and encouraged designers to articulate a new portion of design 
knowledge, which addresses the knowledge acquisition problem. 

1 Introduction 

Domain-oriented, knowledge-based design environments are computer systems that provide design tools and 
knowledge repositories that designers use for understanding, reflecting on, and framing their designs [6]. The 
environments augment skills of designers in managing and communicating with complexity of a design space, 
instead of modeling the cognitive processes of designers and automating them. This paper presents research 
efforts in embedding the use of a eatalog base as a case library in such an environment to aide designers to 
exploit previously constructed design cases. 

Design is ill-defined [16]. Specifying a problem and consttueting a solution are intertWined. Every transfor
mation of the specification of the problem provides the direction in which a partial solution is to be transformed, 
and every transformation of the consttucted solution determines the direction in which the partial specification is 
to be transformed. While coevolving the specification and consttuction, designers gradually gain the under
standing of the correspondence between a partial specification and a partial consttuction. 

For example, let us take the kitchen design domain as an object-to-thi1rk-with. Kitchen designers gain their 
expertise through practice. They identify new heuristics by solving specific design tasks. In our preliminary 
study, while designing a floor plan for two cooks, a professional kitchen designer identified a new portion of 
design knowledge that a dishwasher door should not interfere with the work space for a stove because one 
working with the stove may step over the dishwasher door while the other is installing dishes in the dishwasher. 

The design environments provide two types of design knowledge: (1) an argumentation-base stores heuristics 
that have been accumulated via recording design rationale, and (2) a catalog-base stores previously consttucted 
design cases. For example, using the design environment, the above knowledge can be accumulated by storing 
design rationale as a form of argumentation (i.e., Where should adi$hwasher be? - A dishwasher $hould not 
face a stove. - If the kitchen is for two cooks, it is dangerous because one may step over the dishwasher door 
while using the stove), and a design case in a eatalog-base (i.e., a consttucted floor plan for two cooks, which has 
a dishwasher not facing a stove). 

Thus, using the design environment, designers could access such useful case-based design knowledge that solved 
problems similar to their own and a way to assess their partial solutions when no algorithmic method is available 
for evaluation [8]. However, the designers are limited in exploiting the design knowledge because they may be 
unable to articulate what they are looking for, or be unaware that potentially useful catalog examples exist. With 
the above example, in order to access useful catalog examples, designers who want to design a kitchen for two 
cooks have to know ,which stored floor plans are designed for two cooks, and how they are useful for solving 
their problem. 

By integrating the knowledge bases with a specification component (for specifying design requirements) and a 
construction component (for constructing a floor plan), the design environment supports designers to access the 
catalog examples relevant to their task at hand. In this paper, first I describe problems of location of useful cases 
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Abstract. Designers are limited in exploiting a catalog knowledge base of design cases because they may be
unable to articulate what they are looking for, or be unaware that-potentially useful catalog examples exist.
KID (Knowing-.m-Design), a domain-oriented, knowledge—based design environment for the kitchen floor
plan design, integrates the use of the catalog-base with its design tools. The information given through
KDSPBCIFICATION (for specifying a design requirement) and KmCONSI‘RUCI'ION (for graphically constructing
a floor plan) provides representations of the designers’ task at hand, and recorded design rationale in its
argumentation-base is used to infer the relevance of catalog examples to the task at hand. The
CASE-DEUVERER component orders catalog examples according to the partial specification, and the
CATALOGEXPLORER subsystem allows designers to explore further the catalog space in terms of the task at
hand. The study and assessment of the mechanisms have revealed that delivered cases helped designers
reframe both a problem and a solution, and encouraged designers to articulate a new portion of design
knowledge, which addresses the knowledge acquisition problem.

1 Introduction

Domain-oriented, knowledge-based design environments are computer systems that provide design tools and
knowledge repositories that designers use for understanding, reflecting on, and framing their designs [6]. The
environments augment skills of designers in managing and communicating with complexity of a design space,
instead of modeling the cognitive processes of designers and automating them. This paper presents research
efforts in embedding the use of a catalog base as a case library in such an environment to aide designers to
exploit previously constructed design cases.
Design is ill-defined. [16]. Specifying a problem and constructing a solution are intertwined. Every transfor-
mation of the specification of the problem provides the direction in which a partial solution is to be transformed,
and every transformation of the constructed solution determines the direction in which the partial specification is
to be transformed. While coevolving the specification and construction, designers gradually gain the under-
standing of the correspondence between a partial specification and a partial construction.
For example, let us take the kitchen design domain as an object-to—thihk-wirh. Kitchen designers gain their
expertise through practice. They identify new heuristics by solving specific design tasks. In our preliminary
study, while designing a floor plan for two cooks, a professional kitchen designer identified a new portion of
design knowledge that a dishwasher door should not interfere with the work space. for a stove because one
working with the stove may step over the dishwasher door while the other is installing dishes in the dishwasher.
The design environments provide two types of design knowledge: (1) an argumentation—base stores heuristics
that have been accumulated via recording design rationale, and (2) a catalog-baSe stores previously constructed
design cases. For example, using the design environment, the above knowledge can be accumulated by storing
design rationale as a form of argumentation (i.e., Where should a dishwasher be? —— A dishwasher should not
face a stove. — If the kitchen is for two cooks, it is dangerous because one may step over the dishwasher door
while using the stove), and a design casein a catalog-base (i.e., a constructed floor plan for two cooks, which has
a dishwasher not facing a stove). "
Thus, using the design environment, designers could access such useful case-based design knowledge that solved
problems similar to their own and a way to assess their partial solutions when no algorithmic method is available
for evaluation [8]. However, the designers are limited in exploiting the design knowledge because they may be
unable to articulate what they are looking for, or be unaware that potentially useful catalog examples exist. With
the above example, in order to access useful catalog examples, designers who want to design a kitchen for two
cooks have to know ‚which stored floor plans are designed for two cooks, and how they are useful for solving
their problem.
By integrating the knowledge bases with a specification component (for specifying design requirements) and a
construction component (for constructing a floor plan), the design environment supports designers to access the
catalog examples relevant to their task at hand. In this paper, first I describe problems of location of useful cases
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in general, and presents a knowledge delivery paradigm as an approach. Then, I describe the mechanisms in 
terms of KID (Knowing-In-Design), an integrated, domain-oriented knowledge-based design environment for a 
kitchen floor plan design. Finally, I briefly discuss the result of user observations and assess the approach. 

2 Retrieval of Useful Case Knowledge 

2.1 Problem 

Traditional information retrieval techniques cannot simply be applied to support the location of useful design 
cases. Problems and challenges of locating useful cases include: . 

• Interdependency between information needs and problem-solving. Designers cannot com
pletely specify a design problem before starting to solve it. Designers cannot understand a problem 
without information about its context, but designers cannot meaningfully search for information 
without the orientation of a partial solution [15J. 

• Difficulty of derIDing a set of indexes that will become useful later. Different design situations 
may need to view. a piece of knowledge differently. It is impossible to anticipate all possible design 
situations a priori [17], which makes a static indexing scheme for design cases inapplicable. 

• Need for integrating information search in design activities. Information needs arise through a 
design task. Designers want to access information to solve a current design task, and should be able 
to retain the context of their current task. 

• Unawareness of the existence of potentially useful cases. Designers are limited in making use of 
information because of the large and growing discrepancy between the amount of potentially 
relevant information and the amount anyone designer can know and remember [5]. When designers 
are neither aware of the existence of potentially useful information nor aware of their information 
needs, no attempt will be made to access the information. 

2.2 Approach: Knowledge Delivery 

In human-human collaborative problem solving, both participants can adapt their own behavior according to the 
characteristics of the partners and by gradually gaining shared understanding. The shared understanding enables 
the partners to improve the communication process, to accelerate the discovery of either common or conflicting 
goals, to optimizethe efficiency of the communication, and to increase the satisfaction of the partners [IlJ. 

A knowledge delivery mechanism is an instantiation of applying this idea to the collaboration between designers 
and design environments. Knowledge delivery mechanisms deliver Hthe right knowledge, in the context of a 
problem or Cl service, at the right moment for designers to consider" [3J. The mechanisms infer a designer's 
task at hand, detect the designer's information need, then present stored knowledge for the designer, who may be 
unaware of the existence of such useful design knowledge in the system.· This paper describes design and 
implementation of a delivery mechanism, which delivers catalog examples in a design environment using the 
shared knowledge about a design task provided by a partial specification and construction. The mechanism is 
illustrated in the context of the KID (Knowing-In-Design) design environment for the kitchen floor plan design 
[1OJ. The system is implemented in the CLOS programming language, and runs on Symbolics Genera 8.l. 

KID consists of: 

1. KIDSPECIFICATION, which enables an ~xpIicit representation of the designer's goals and intentions 
with respect to the current design; 

2. K!DCoNSTRUCTION, which provides designers with a palette of domain abstractions and supports 
them to construct artifacts using direct manipulation styles; 

3. the argumentation-base, which stores design rationale represented in the IBIS structure [2J (i.e., a 
network of nodes, consisting of issues, answers and arguments); and 

4. the catalog-base, which stores completed floor plans (construction) together with associated 
specifications. 

KIDSPECIFICATION and KIDCONSTRUCTION provide the explicit representations of a problem specification and a 
solution construction, which allow designers to coevolve a problem and a solution. Iriformation given through 
the two components increases the system's shared understanding about the designers' intentions for the current 
task. Using the shared understanding about the task at hand, KID can deliver task-relevant information for the 
designers' perusal. The relevance is dynamically computed using heuristics (called specification-linking rules) 
identified through stored design rationale in the argumentation-base. 

Two subsystems, CASE-DELIVERER and CATALOGExPLORER, support designers to locate useful cataIog ex: 
amples. Cases stored in the catalog-base of KID are represented in the KANDOR knowledge base [12J, including a 
construction (a floor plan) and a specification (a set of issue-answer pairs). In addition to access mechanisms 
provided by CATALOGExPLORER [6] (such as retrieval by matching specification, retrieval by matching con
struction, and query-based search), CASE-DELIVERER automatically orders catalog examples according to the 
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in general, and presents a knowledge delivery paradigm as an approach. Then, I describe the mechanisms in
terms of KID (Knowing-In-Design), an integrated, domain-oriented knowledge—based design environment for a
kitchen floor plan design. Finally, I briefly discuss the result of user observations and assess the approach.

2 Retrieval of Useful Case Knowledge

2.1 Problem

Traditional information retrieval techniques cannot simply be applied to support the location of useful design
cases. Problems and challenges of locating useful cases include: '

. Interdependency between information needs and problem-solving. Designers cannot com-
pletely specify a design problem before starting to solve it. Designers cannot understand a problem
without information about its context, but designers cannot meaningfully search for information
without the orientation of a partial solution [15].

o Difficulty of defining a set of indexes that will become useful later. Different design situations
may need to view, a piece of  knowledge differently. It is impossible to anticipate all possible design
situations a priori [l7], which makes a static indexing scheme for design cases inapplicable.

. Need for integrating information search in design activities. Information needs arise through a
design task. Designers want to access information to solve a current design task, and should be able
to retain the context of their current task.

o Unawarenws of the existence of potentially useful cases. Designers are limited in making use of
information because of the large and growing discrepancy between the amount of potentially
relevant information and the amount any one designer can know and remember [5]. When designers
are neither aware of the existence of potentially useful information not aware of their information
needs, no attempt will be made to access the information.

2.2 Approach: Knowledge Delivery

In human—human collaborative problem solving, both participants can adapt their own behavior according to the
characteristics of the partners and by gradually gaining shared understanding. The shared understanding enables
the partners to improve the communication process, to accelerate the discovery of either common or conflicting
goals, to Optimize the efficiency of the communication, and to increase the satisfaction of the partners [1 ].].
A knowledge delivery mechanism is an instantiation of applying this idea to the collaboration between designers
and design environments. Knowledge delivery mechanisms deliver “the right knowledge, in the context of a
problem or a service, at the right moment for designers to consider” [3]. The mechanisms infer a designer’s
task at hand, detect the designer’s information need, then present stored knowledge for'the designer, who may be
unaware of the existence of such useful design knowledge in the system. This paper describes design and
implementation of a delivery mechanism, which delivers catalog examples in a design environment using the
shared knowledge about a design task provided by a partial specification and construction. The mechanism is
illustrated in the context of the KID (Knowing—In—Design) design environment for the kitchen floor plan design
[10]. The system is implemented in the CLOS programming language, and runs on Symbolics Genera 8.1.

KID consists of:

l .  KIDSPBCIFICATION, which enables an implicit representation of the designer’s goals and intentions
with respect to the current design;

2. KIDCONSTRUCHON, which provides designers with a palette of domain abstractions and supports
them to construct artifacts using direct manipulation styles;

3. the argumentation-base, which stores design rationale represented in the IBIS structure [2] (Le, a
network of nodes, consisting of issues, answers and argtnnents); and

4. the catalog-base, which stores completed floor plans (construction) together with associated
specifications.

KIDSPECIFICATION and KmCONSTRUCI'ION provide the explicit representations of a problem specification and a
solution construction, which allow designers to coevolve a problem and a solution. Information given through
the two components increases the system’s shared understanding about the designers’ intentions for the current
task. Using the shared understanding about the task at hand, KID can deliver task-relevant information for the
designers’ perusal. The relevance is dynamically computed using heuristics (called specification-linking rules)
identified through stored design rationale in the argumentation-base.
Two subsystems, CASE-DELIVERER and CATALOGEXPLORER, support designers to locate useful catalog ex:
amples. Cases stored in the catalog-base of KID are represented in the KANDOR knowledge base [12], including a
construction (a floor plan) and a specification (a set of issue-answer pairs). In addition to access mechanisms
provided by CATALOGEXPLORER [6] (such as retrieval by matching specification, retrieval by matching con-
struction, and query-based search), CASE-DELIVERER automatically orders catalog examples according to the
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partial specification provided through KIDSPECIFICATION. In the next section, I briefly describe the mechanism. 

3 KID: Design Environments for Kitchen Design 

Various knowledge representations used in KID is linked through the design rationale stored in the 
argumentation-base; that is, a network of nodes consisting of issues, answers, and arguments. A pair of issue and 
answer represents a design decision in terms of function, structure, or behavior at various levels of abstraction. 
An interdependency between two design decisions (i.e., issue-answer pairs) can be captured through the as
sociated argument. KID uses specification-linking rules to represent such interdependencies. 

KmSPECIFICATION. The representation for a specification is a set of issue-answer pairs, designed after 
analyzing questionnaires used by professional kitchen designers to elicit design requirements from clients. 
KIDSPECIFICATION has been built as a hypertext interlace, built on top of the argumentation base. Using 
KIDSPECIFICATION, designers can specify their design priorities by selecting and annotating alternative design 
decisions documented in the argumentation-base. Figure I shows an example of a specification. 

Current Specifications for: 
Type: kitchen Na"e: "at-kitchen 

• Size of fanily? 
3~One 

• Is the prinary cook right-handed or 
left-handed? 

9........-...jo1 left handed 
• Do you need a dishwasher? 

1--+-t yes 

Figure 1: A Partial Specification in KIDSPECIFICATION 

The summary of currently selected answers in KIDSPECIFlCATION is provided in this window. Users can assign
weights of relative importance to selected answers by moving associated sliders. In this figure. the user has put 
most importance to ilie lefi-handedrequirement (Le.• 9 in the 1-10 scale) and little importance to the single
person.household requirement (i.e.• 3). The state ~f the specification component (Le.• a set of selected answers 
with assigned weights) is referred to as the current jJartial specification. 

Although many of such issue-answer pairs have already been articulated through previoUs design efforts and 
accumulated by recording design rationale in the argumentation-base., if no prestored alternatives express their 
position. designers can add or modify information in the underlying argumentation-base using a property sheet. 
Designers can assign weights to the selected answers to articulate the relative importance of specified iteIJ!S. 

Specification-Linking Rules. A specification-linking rule represents a computable interdependency between 
two issue-answer pairs; for example. "Size-of-family=one ~ Type-of-sink=Single-bowl-sink"impliesthat there 
is a relation between the size of a household and the type of a sink to be used in the kitchen design. This rule is 
based on the associated argument to the selection of the type of a sink, which says that a single-bowl-sink is 
enough for a single-person house-hold. 

Specification-linking rules are derived by a mech1U1ism (~ Figure 2) that calculates the design constraints 
implied by a partial specification. The above rule is derived by finding issue-answer pairs that are implicated by 
the specification of "Size-of-family=one." In this case, the answer, "Type-of-sinko=Single-bowl-sink," to the 
issue. "Which type of sink should be used, " is implied because it is supported by an argument "A single bowl 
sink is enough for a single-person household. " which is associated with "Size-of-family=one." The mechanism 
is described further in Nakakoji [1993]. 

Link. to KIDCONSTRUcnON. Some of the issue-answer pairs of KIDSPECIFICATION are related to construction 
situations, such as a need for a dishwasher. or a type of sink. In order to link the text representation of 
KIDSPECIFICATION to a graphic representation of KIDCONSTRUcnON, the system provides pre-defined predicates 
over the construction. The representation of a construction includes a list of design units used in a partially 
designed floor plan and their configuration information. The predicates determine whether a condition is 
satisfied in the partial construction. such as checking the existence of a single-bowI-sink. Using a property sheet 
provided by KIDSPECIFICATION. users can associate one of such pre-stored predicates with an issue-answer pair 
in the textual representation of KIDSPECIFICATION. Users are allowed to define a new predicate by using the 

,MODIFIER system [7], if necessary. ' 

Thus. when either an antecedent or a consequent of a specification-linking rule represents a construction situa
tion, the rule provide a partial mapping between a specification requirement and a feature in the construction, 
forming a dependency network. 
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partial specification provided through KIDSPECIFICATION. In the next section,.I briefly describe the mechanism.

3 KID: Design Environments for Kitchen Design

Various knowledge representations used in KID is linked through the design rationale stored in the
argumentation-base; that is,. a network of nodes consisting of issues, answers, and arguments. A pair of issue and
answer represents a design decision in terms of function, structure, or behavior at various levels of abstraction.
An interdependency between two design decisions (i.e., issue—answer pairs) can be captured through the as-
sociated argument. KID uses specification-linking rules to represent such interdependencies.

KIDSPECIHCATION. The representation for a specification is a set of issue-answer pairs, designed after
analyzing questionnaires used by professional kitchen designers to elicit design requirements fi'om clients.
KIDSPECIFICATION has been built as a hypertext interface, built on top of the argumentation base. Using
KIDSPECIFICATION, designers can specify their design priorities by selecting and annotating alternative design
decisions documented, in the argumentation-base. Figure 1 shows an example of a specification.

Current Specifications for:
Type :  k i t chen  Hana :  ha t -k i t chen

. Size  o f  Fan i ly?
3*  Une

' I s  the  p r imary  cook r igh t -handed  o r
l e f t -handed?

9r—-——fi Lef t  handed
° Do you  need  a d i shwashe r?

?r——|—u yes

Figure 1: A Partial Specification in KmSPECIFICATION

The summary of currently selected answers in KHJSPECIFICATION is provided in this window. Users can assign
weights of relative imponance to selected answersby movin associated sliders. In this figure. the user has put
most importance to the left-handed requirement (1.e., 9 in e 1-10 scale) and little importance to the single—
personhousehold requirement (La, 3). The state of the specification component (i.e., a set of selected answers
with assigned weights) is referred to as the current partial specification.

Although many of such issue-answer pairs have already been articulated through previous design efforts and
accmnulated by recording design rationale in the argumentation—base, if no prestored alternatives express their
position. designers can add or modify information in the underlying argumentation-base using a property sheet.
Designers can assign weights to the selected answers to articulate the relative importance of specified items.

Specification-Linking Rules. A specification—linking rule represents a computable interdependency between
two issue-answer pairs; for example, “Size-ofifamily=one -—> Type-o -sink=Single-bowl-rink’"implies that there
is a relation between the size of a household and the type of a sink to-be used in the kitchen design. This rule is
based on the associated" argument to the selection of the type of a sink, which says that a single-bowl-sink is
enough for a single-person house-hold.
Specification-linking rules are derived by a mechanism (see Figure 2) that calculates the design constraints
implied by a partial specification. The above rule is derived by finding issue-answer pairs that are implicated by
the specification of “Size-of-familyzone. ” In this case, the answer, "Type—of—sink-‚a-Single-bowl-sink, ” to the'
issue, “Which type of sink should be used. ” is implied because it is supported by an argument “A single bowl
sink is enough for a single—person household, ” which is associated with “Size~of~family=one. ” The mechanism
is described further in Nakakoji [1993].

Link to KIDCONSTRUCIION. Some of the issue-answer pairs of KmSPECII-‘IGATION are related to construction
situations, such as a need for a dishwasher, or a type of sink. In order to link the text representation of
KmSPECIFICATION to a graphic representation of KIDCONSTRUCI'ION, the system provides pre-defined predicates
over the construction. The representation of a‘ construction includes a list of design units used in a partially
designed floor plan and their configuration information. The predicates determine whether a condition is
satisfied in the partial construction. such as checking the existence of a single-bowI—sink. Using a property sheet
provided by KIDSPECIFICATION, users can associate one of such pie-stored predicates with an issue—answer pair
in the textual representation of KIDSPECIFICATION. Users are allowed to define a new predicate by using the

.MODII-‘IER system [7], if necessary. '

Thus, when either an antecedent or a consequent of a specification—linking rule represents a construction situa—
tion, the rule provide a partial mapping between a specification requirement and a feature in the construction,
forming a dependency network.
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Figure 2: Integration of Components in KID 

Specification-linking rules are derived from tbe argumentation, and the applicability is de~ennined with a partial 
specification. CASE:DEUVERER uses the derived iules to order the cataIog examples according to the partial 
specification. In addition, the specification-linking rules are used to make suggestJons in KIDSPECIFICATION, to 
show a related argument in the argumentation base, to identify relevant critics as specific critics, and to evaluate 
a cataIog example using the specific critics [10]. 

CASE-1>ELIvEREK. A collection of consequents of rules represents required features for a construction inferred 
from the partial specification. When designers tentatively finish using KIDSPECIFICATION by using one of the 
other subsystems or explicitly reques~ for retrieving usefulcatalog examples, CASE-DELIVERER uses the com
puted consequents to order the catalog examples in the catalog-base according to the "appropriateness" to the 
partial specification. The algorithm used by CASE-DELIVERER is briefly described below. The detail is described 
in Nakakoji [1993]. 

1. Frrst. the system identifies the collective of specification-linking roles relating to the partial 
specification (i.e., a .set of selected' answers) using a forward chaining inference engine to the 
multiple depths of the dependency network (the depth can be changed by users). While collecting 
these rules, the system assigns a weight as relative importance to a consequent of each role' 
according to the weights assigned to the selected answers in KIDSPECIFICATION (see Figure 1) and 
the number of inference steps involved, in order to prioritize potentially conflicting consequents. 

2. Consequents (i.e., issue~answer pairs) that are associated with predicates over the construction are 
identified. If the same consequent appears more than once, they are combined and the assigned 
importance values are summed 

3. For each floor plan (construction) of the catalog examples, CASE-DELIVERER determines whether 
or not each of the identified predicates is satisfied in the floor plan, and sums the assigned 

.. importance values of the satisfied predicates as an appropriateness value of the catalog example. 

4. CASE-DELIVERER orders the catalog examples according to these values, and redisplay a list of 
catalog example names in the Catalog wmdows of KIDSPECIFICATION and KIDCONSTRUCTION. 

CATALOGExpLORER. CATALOGExPLORER allows designers to further: explore the catalog space. The system 
describes why and how catalog examples are ordered by CASE-DELIVERER, and allows them to retrieve examples 
in terms of the task at hand. 

Consequents of the specification-linking rules that are used to order catalog examples can be displayed with the 
Show Delivery Rationale command in CATALOGExPLORER; for example, "A single-bowl sink should be used." 
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Specification—Hum rules are derived from the argumentation, and the applicability is determined with a partial
specification. CASE- W uses the derived rules to order the catalog examples according to the partial
s 'fication. In addition, the specification-linking rules are used to make suggestions in KIDSPECIFICA'HON, to
SE: a related argument in the ar mentation base, to identify relevant critics as specific critics, and to evaluate
a catalog example using the speci c critics [10].

CASE-DEW A collection of consequents of rules represents required features for a construction inferred
fi'om the partial specification. When designers tentatively finish using KmSPECtFICA'HON by using one of the
other subsystems or explicitly request for retrieving useful .catalog examples, CASE-DELIVERER uses the com-
puted consequents to order the catalog examples in the catalog-base according to the “appropriateness” to the
partial Specification. The algorithm used by CASE-D&IVERER is briefly described below. The detail is described
in Nakakoji [1993].

l .  First, the system identifies the collective of specification-linking rules relating to the partial
specification (i.e., a ‚set of selected" answers) using a forward chaining inference engine to the
multiple depths of the dependency network (the depth can be changed by users). While collecting
these rules, the system assigns a weight as relative importance to a consequent of each rule‘-
according to the weights assigned to the selected answers in KIDSPECIFICATION (see Figure 1) and
the number of inference steps involved, in order to prioritize potentially conflicting consequents.

2.  Consequents (i.e., issue-answer pairs) that are associated with predicates over the construction are
identified. If the same consequent appears more than once, they are combined and the assigned
importance values are summed.

3.  For each floor plan (construction) of the catalog examples, CASE-DRIVERER determines whether
or not each of the identified predicates is satisfied in the floor plan, and sums the assigned

—— importance values of the satisfied predicates as an appropriateness value of the catalog example.
4.  CASE—DEIJVERER orders the catalog examples. according to these values, and redisplay a list of

catalog example names in the Catalog windows of KIDSPECIFICAT‘ION and KIDCONSTRUCHON.

CATALOGEXPLOR‘ER. CATALOGEXPLORER allows designers to further- explore the catalog space. The system
describes why and how catalog examples are ordered by CASE-DELIVERER, and allows them to retrieve examples
in terms of the task at hand.
Consequents of the specification-linking rules that are used to order catalog examples can be displayed with the
Show Delivery Rationale command in  CATALOGEXPLORER; for example, “A single-bowl sink should be use . ”
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Each of these messages is a mouse-sensitive link to the location of related arguments (see .FiguTe 2). Selecting 
the message with a mouse accesses the related argumentation, and provides a starting point for browsing the 
argumentation-base. The Evaluate Example command allows designers to evaluate a catalog example in terms of 
the current specification by using critics [4]. 

Fmally, CATALOGExPLORER allows designers to search the catalog space with more control over search. The 
Retrieval by Matching Specification and Retrieval by Matching Construction commands allow designers to 
retrieve catalog examples that have similar features. The detail is provided in Fischer. Nakakoji [1991J. 

4 User Study: Knowledge Construction Facilitated by CASE-DELIVERER 

Km has been studied by observing several subjects, including both domain-expens and novices in using the 
system. Test sessions were videotaped and the protocols were analyzed. ' 

When pr~sented with the ordered catalog examples, the subjects often used CATALooExpLORER, and either 
started to examine the example located at the top of the list, or asked for further explanations about why Km 
judged the example as the best example for their specification by accessing the underlying argument associated. 
with the listed delivery rationale. Their response could be classified in the following three ways: (1) applied the 
delivered cases to reframe their partial design, (2) explored the related information space to the delivered cases, 
or (3) articulated new design knowledge by arguing against the underlying delivery rationale. 

The reflection on their current partial construction and specification was often triggered by ordered catalog 
examples. Delivery of sometimes unexpected information was 'found to be an ·effective way to trigger the 
subjects to reflect on their task at hand. The subjects often discovered new features, which were breakdowns or 
important considerations they had not been aware of before, in catalog examples presented by CASE-DEUVERER. 

Delivered cataIog examples encouraged the subjects to further search the catalog-base. They often wanted to 
retrieve catalog examples that had the same feature discovered in one of the delivered catalog examples. There is 
evidence that people search longer for answers to questions when they believe they know the answer [14J. Thus. 
highfeelings ofknowing correlate with longer search time. When Km delivered information that was relevant to 
the task at hand, but not quite right, then they gained this "feeling of knowing," which made their information 
search longer. 

The subjects often reacted· to delivered knowledge and argued against the delivered knowledge in terms of their 
task at hand. When being given an object to think with. people start thinking about it and trace associations. 
which may be linked to tacit part of design knowledge [13]. Thus, it was easier for the subjects to become able 
to articulate new design knowledge than given no context. 

5 Discussion 

HaVing the cataIog-base. KID can be viewed as a case-based design aiding system [9]. Embedding the use of the 
case-base within a design environment addresses several issues in the case-retrieval research. FIrst, Km 
retrieves useful cases according to the explicit representation of designers' problem-solving goal provided by 
KIDSPECIFICATION, in addition to retrieving structurally similar cases. Second, instead of indexing cases at 
storage time by defining features a priori, the specification-linking rules are used to perform analo~cal matching 
to the users' task at hand. Third, the specification-linking rules are dynamically derived from the argumentation 
base. When designers add a new argument, the rules are immediately recomputed. Moreover, the rules are 
weighted according to the relative importance, or weights, that designers associate with selected answers. Thus, 
designers have more control over the retrieval. 

In summary, CASE-DELNERER of Km has the following characteristics. 

• Cases delivered help designers to reframe a partial problem as well as a solution.	 Delivered 
knowledge is relevant to the task at hand, in terms of a partial specification and construction. By 
looking ill the delivery rationale (why this knowledge is r~levant to their partial problem specifica
tion), designers are often triggered to reframe not only a partial solution (which most case-based 
design assistant systems support) but also a partially framed problem. 

• Cases delivered facilitate learning-on-demand.	 Because the specification-linking rules used to 
order catalog examples are derived from the argumentation base. KID can provide an explanation as 
to why some catalog examples are judged to be relevant to their task at hand. Designers have access 
not only to case-based information itself. but also to the underlying delivery rationale. Because the 
delivered knowledge is situated, it is easier for designers to understand the information. 

• Cases delivered facilitate knowledge .acquisition. Delivered knowledge encourages designers to 
articulate a new portion of design knowledge. Delivering knowledge to designers can be a 
knowledge-attractor, or a knowledge elicitation method [1], which encourages and helps designers 
to articulate and 'store design knowledge into the system, addressing the knowledge acquisition 
problem. '. 

Since various types of design knowledge stored in KID are linked together, designers can easily explore the 
knowledge base relevant to their problem context. Embedded CASE-DELNERER enables KID to be an intelligent 
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Each of these messages is a mouse-sensitive link to the location of related arguments (see Figure 2). Selecting
the message with a mouse accesses the related argumentation, and provides a starting point for browsing the
argumentation-base. The Evaluate Example command allows designers to evaluate a catalog example 1n terms of
the current specification by using critics [4].
Finally, CATALOGEXPLORER allows designers. to search the catalog space with more control over search. The
Retrieval by Matching Specification and Retrieval by Matching Construction commands allow designers to
retrieve catalog examples that have similar features. The detail is provided in Fischer, Nakakoji [1991].

4 User Study: Knowledge Construction Facilitated by CASE-DELIVERER

KID has been studied by observing several subjects, including both domain-experts and novices in using the
system. Test sessions were videotaped and the protocols were analyzed.
When presented with the ordered catalog examples, the subjects often used CATALOGEXPLORER, and either
started to examine the example located at the top of the list, or asked for further explanations about why KID
judged the example as the best example for then specification by accessing the underlying argument associated-
with the listed delivery rationale. Their response could be classified in the following three ways: (1) applied the
delivered cases to reframe their partial design, (2) explored the related information space to the delivered cases,
or (3) articulated new design knowledge by arguing against the underlying delivery rationale.
The reflection on their current partial construction and specification was often triggered by ordered catalog
examples. Delivery of sometimes unexpected information was ‘found to be an effective way to trigger the
subjects to reflect on their task at hand. The subjects often disCovered new features, which were breakdowns or
important considerations they had not been aware of before, in catalog examples presented by CASE—DEUVERER.
Delivered catalog examples encouraged the subjects to fitrther search the catalog-base. They often wanted to
retrieve catalog examples that had the same feature discovered in one of the delivered catalog examples. There is
evidence that people search longer for answers to questions when they believe they know the answer [14]. Thus.
high feelings of knowing correlate with longer search time. When KID delivered information that was relevant to
the task at hand, but not quite right, then they gained this "feeling of knowing," which made their information
search longer.
The subjects often reacted to delivered knowledge and argued against the delivered knowledge in terms of their
task at hand. When being given an object to think with, people start thinking about it and trace associations,
which may be linked to tacit part of design knowledge [13]. Thus, it was easier for the subjects to become able
to articulate new design knowledge than given no context.

5 Discussion

Having the catalog—base, KID can be viewed as a case-based design aiding system [9]. Embedding the use of the
case—base within a design environment addresses several issues in the case—retrieval research. First, KID
retrieves useful cases according to the explicit representation of designers’ problem-solving goal provided by
KIDSPECIFICATION, in addition to retrieving structurally similar cases. Second, instead of indexing cases at
storage time by defining features a priori, the specification—linking rules are used to perform analogical matching
to the users’ task at hand. Third. the specification-linking rules are dynamically derived from the argumentation
base. When designers add a new argument, the rules are immediately recomputed. Moreover, the rules are
weighted according to the relative importance, or weights, that designers associate with selected answers. Thus,
designers have more control over the retrieval.
In summary, CASE—DELIVERER of KID has the following characteristics.

. Cases delivered help designers to reframe a partial problem as well as a solution. Delivered
knowledge is relevant to the task at hand, in terms of a partial specification and construction. By
looking at the delivery rationale (why this knowledge is relevant to their partial problem specifica-
tion), designers are often triggered to reframe not only a partial solution (which most case-based
design assistant systems support) but also a partially framed problem.

. Cases delivered facilitate leaming-on-demand. Because the specification-linking rules used to
order catalog examples are derived from the argumentation base, KID can provide an explanation as
to why some catalog examples are judged to be relevant to their task at hand. Designers have access
not only to case—based information itself, but also to the underlying delivery rationale. Because the
delivered knowledge is situated, it is easier for designers to understand the information.

. Cases delivered facilitate knowledge acquisition. Delivered knowledge encourages designers to
articulate a new portion of design knowledge. Delivering knowledge to designers can be a
knowledge-attractor: or a knowledge elicitation method [1-], which encourages and helps designers
to articulate and “store design knowledge into the system, addressing the knowledge acquisition
problem.

Since various types of design knowledge stored in KID are linked together, designers can easily explore the
knowledge base relevant to their problem context. Embedded CASE-DELIVERER enables KID to be an intelligent
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design assistant by having shared understanding about a designer's task at hand given through 
KIDSPECIFICATION and KIDCONSTRUCTION. Thus, KID increases the chance that designers will encounter useful 
design cases stored in the system. Such design cases can be accumulated by using the design environment, and 
the rules used for the case retrieval are derived from design rationale, which can also be accumulated by using 
KID, addressing the knowledge acquisition problem., 
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1 Introduction 

In this paper, we present an application of case-based reasoning to the research of strategies in 
the context of organic synthesis planning. The main objective of organic synthesis planning 
is to build new molecular structures using a goal-directed problem solving approach. 'Two 
main kinds of reasoning processes are employed in the system that we are developing for 
building new molecular structures. Classification-based reasoning is used for tactic purposes, 
to achieve local goals (or subgoals), e.g. selection of transformations that can be applied to 
modify specific parts of a molecular structure. Case-based reasoning is used for strategic 
purposes, to achieve global goals, e.g. selection of an adequate memorized synthesis plan on 
which can rely the building of a molecular structure. The study presented here can be also 
considered as an illustration of the possible integration of classification-based and case-based 
reasonings, in the context of organic synthesis planning (both kinds of reasoning rely on 
reminding). 

2 An Object-Based Approach to Organic Synthesis 

2.1 A Brief Introduction to Computer-Aided Synthesis Planning 

One of the main object of organic synthesis is to build up molecules, called' target molecules, 
from readily available starting materials [Corey et al., 1985]. Once a target molecule has been 
chosen, the chemist searches for a retrosynthetic plan, which is constituted by a sequence of 
transformations leading from the target molecule to starting materials. A transformation is 
used to break down the target structure into (usually) simpler structures, called precursors. 
This problem solving approach, called the retrosynthetic mode, continues until the precursors 
are recognized as readily available starting materials. From a computing point of view, the 
retrosynthetic mode is similar to a goal-directed problem solving process. More precisely, the 
retrosynthetic mode depends on the perception of structural features of the target molecule, 
called functional group or retrons 1 , that condition the application of transformations. A 

1 From a chemical point of view, there is a difference between retrons and functional groups, but this 
difference will not be taken in account in the paper. 
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1 Introduction

In this paper, we present an application of case—based reasoning to the research of strategies in
the context of organic synthesis planning. The main objective of organic synthesis planning
is to build new molecular structures using a goal—directed problem solving approach. ‘Two
main kinds of reasoning processes are employed in the system that we are developing for
building new molecular structures. Classification-based reasoning is used for tactic purposes,
to achieve local goals (or subgoals), e.g. selection of transformations that can be applied to
modify specific parts of a molecular structure. Case-based reasoning is used for strategic
purposes, to  achieve global goals, e.g. selection of an adequate memorized synthesis plan on
which can rely the building of a molecular structure. The study presented here can be  also
considered as an illustration of the possible integration of classification-based and case-based
reasonings, in the context of organic synthesis planning (both kinds of reasoning rely on
reminding).

2 An Object-Based Approach to  Organic Synthesis

2 .1  A Brief Introduction to  Computer-Aided Synthesis Planning

One of the main object of organic synthesis is to  build up molecules, called- target molecules,
from readily available starting materials [Corey et al., 1985]. Once a target molecule has been
chosen, the chemist searches for a retrosynthetz'c plan, which is constituted by a sequence of
transformations leading from the target molecule to starting materials. A transformation is
used to  break down the target structure into (usually) simpler structures, called precursors.
This problem solving approach, called the retrosynthetz'c mode, continues until the precursors
are recognized as readily available starting materials. From a computing point of view, the
retrosynthetic mode is similar to  a goal-directed problem solving process. More precisely, the
retrosynthetic mode depends on the  perception of structural features of the target molecule,
called functional group or retransl ,  that condition the application of transformations. A

1From a. chemical point of View, there is a difference between retrons and functional groups, but this
difference will not be taken in account in the paper.
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functional group is a particular molecular substructure that determines a chemical function 
- the functionality of the molecule - and usually characterizes a family of molecules. Thus, 
functional groups are of primary importance for the categorization of molecular structures, 
according to their chemical properties. 

The concepts of the retrosynthetic mode have been used as guidelines for the construc
tion of a series of computer programs, usually called computer-aided synthesis systems. The 
main goal of these programs is to assist the chemist working on complex synthesis problems. 
Classically, the chemist is responsible for choosing strategies, e.g. choosing one transforma
tion among several, and for deciding which precursors should be submitted to the system for 
further simplification. The system is responsible for selecting the actual transformations to 
be used and for displaying the precursors that result from these transformations. Thus, one 
of our goals is to automate the selection of strategies, using case-based reasoning. 

2.2 A Classification-Based Approach to Organic Synthesis Planning 

Our approach to organic synthesis planning relies on object-based formalisms, the emphasis 
being placed on the description of molecular structures and substructures such as functional 
groups [Napoli, 1990] [Napoli, 1992a]. Atoms and bonds are the prim~ry chemical objects, 
and they are the components of the molecular structures, namely molecules and functional 
groups. Primary objects and molecular structures are implemented as frames [Masini et 
al., 1991] and lay in an inheritance hierarchy called the 'chemical taxonomy. Frames are 
used to describe chemical objects, while transformations are implemented as operations 
attached to frames representing functional groups. All molecular structures are manipulated 
by classification-based reasoning as explained in the following. 

Solving a synthesis problem relies on the retrieval of specific substructures, the functional 
groups, lying in a target molecule. Thus, the recognition of these substructures is an opera
tion of primary importance underlying the retrosynthetic mode. To retrieve this information, 
the system uses a specific classification-based reasoning, according to a particular substruc
ture/structure inclusion. Relying on the works done about subsumption in terminological 
logics [Nebel, 1990], we have defined a subsumption relation on molecular structures and their 
components, namely atoms and bonds [Napoli, 1992b]. This subsumption relation depends 
on the chemical type of atoms and bonds, and on the graph associated with the molecular 
structure. Briefly stated, a molecular structure Ml subsumes a molecular structure M2 if 
there exists an isomorphism between the graph associated with Ml and a subgraph asso
ciated with a substructure M'2 of M2., and if the atoms and bonds in Ml subsumes the 

, corresponding atoms and bonds in M'2 (according to their types and environments). 

Thus, contrasting the chemical taxonomy, a second tangled hierarchy reflects the sub
sumption relations holding between memorized functional groups. This second hierarchy 
constitutes the functionalpartonomy, and can be seen as orthogonal to the chemical taxon
omy. On the one hand, the inheritance relation determines the chemical taxonomy and is 
used for code factorization and property sharing between frames. On the other hand, the sub
sumption relation is used to organize functional substructures in the functional partonomy 
according to' substructure/structure inclusion, and, as well, to guide a classification-based 
process producing synthesis plans. 

More precisely, the process underlying the design of the synthesis plan of a target molecule 
relies on a classification cycle that makes explicit the dependencies holding between a new 
molecular structure, say TARGET, and the functional substructures lying in the functional 
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on the chemical type of atoms and bonds, and on the graph associated with the molecular
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there exists an isomorphism between the graph associated with M1 and a subgraph asso—
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corresponding atoms and bonds in M ’2 (according to  their types and environments).

Thus, contrasting the chemical taxonomy, a second tangled hierarchy reflects the sub—
sumption relations holding between memorized functional groups. This second hierarchy
constitutes the functional ' partonomy, and can be seen as orthogonal to the chemical taxon—
omy. On  the one hand, the inheritance relation determines the chemical taxonomy and is
used for code factorization and pr0perty sharing between frames. On the other hand, the sub—
sumption relation is used to  organize functional substructures'in the  functional partonomy
according to-substructure/  structure inclusion, and, as well, to guide a classification-based
process producing synthesis plans.

More precisely, the process underlying the design of the synthesis plan of a target molecule
relies on a classification cycle that makes explicit the'dependencies holding between a new ’
molecular structure, say TARGET, and the functional substructures lying in the functional
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partonomy. The classification cycle proceeds with three main steps: 

•	 Instantiation: the target molecule is represented by the new object TARGET . 

•	 Classification: TARGET is classified in the functional partonomy. The .system first 
searches for the most specific subsumers of TARGET (MSS), then, for the most general 
subsumees of TARGET (MGS). At last, TARGET is inserted in the functional partonomy, 
under its MSS and above its MGS. The subsumers of TARGET determine the functional 
groups lying in TARGET • 

•	 Operations: the set of valid transformations that can be applied to TARGET is calculated 
according to a property sharing rule (this property sharing rule will not be described 
here but details are given in.[Napoli, 1992aJ and [Napoli, 1992b]). One transformation 
is chosen and is applied to simplify the target molecule into precursors. The precursors 
become new targets if they are not recognized as readily available starting materials, 
and the cycle continues. 

The classification cycle modelizes the retrosynthetic mode and relies on a functional 
group-oriented approach, Le. the application of a transformation depends on the functional 
groups included in the target molecule. However, more than one transformation can be 
selected during the second step of the classification cycle, leading to a classic "conflict set 
problem": what is the best transformation that must be choseIl according to the the current 
target molecule and the actual chemical context? The choice of a transformation must be 
controlled by a synthesis strategy. In the following, we show how case-based reasoning is 
used to automate the selection of transformations. 

3 Planning Syntheses with Case-based Reasoning 

3.1 The Modelization of Synthesis Strategies 

A synthesis strategy can be seen as an ordered sequence of goals or objectives, that correspond 
to the applications of transformations. Objectives usually are associated with transforma
tions modifying the structure of a target molecule. lIowever, in practice, there is usually 
a partial match between the target structure and the retron for a transformation. In this 
case, a single, or, more often, several subgoals related with a modification of the function
ality of the target molecule2 , will rectify the mismatch and allow the transformation to be 
performed. Thus, the application of a transformation associated with a synthesis strategy 
can be conditioned by an ordered sequence of subgoals. Choosing a strategy instead of an
other means that an ordered sequence of actions to be performed is preferred among a set of 
other ordered sequen:ces of actions. Classically, in computer-aided synthesis systems, strat
egy selection is usually fixed or left up to the chemist. An automated selection of strategies 
involve identification of substructures that suggest a specific approach, an ordering of the 
chosen approaches, a possible interactive verification done by the chemist, and, at last, the 
execution of the "best" strategy. 

In our approach, strategies are represented as temporal objects, called retrosynthetic 
routes [Lauren<;o et al., 1990]. A strategy consists in a sequence ({ Oi}, {Ti}), where {Oi} 

2 Modifying the structure of a target molecule means breaking or building a bond, while modifying the. 
functionality means substituting a functional group for another. 
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partonomy. The classification cycle proceeds with three main steps:
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searches for the most specific subsumers of TARGET (MSS), then, for the most general
subsumees of TARGET (MGS). At last, TARGET is inserted in the functional partonomy,
under its M83 and above its MGS. The subsumers of TARGET determine the functional
groups lying in TARGET.

. Operations: the set of valid transformations that can be applied to TARGET is calculated
according to a property sharing rule (this property sharing'rule will not be described
here but details are given inlNapoll, 1992a] and [Napoli, 1992b]). One transformation
is chosen and is applied to simplify the target molecule into precursors. The precursors
become new targets if they are not recognized as readily available starting materials, '
and the cycle continues. ,

The classification cycle modelizes the retrosynthetic mode and relies on a functional
group-oriented approach, i.e. the application of a transformation depends on the functional
groups included in the target molecule. However, more than one transformation can be
selected during the second step of the classification cycle, leading to a classic “conflict set
problem”: what is the best transformation that must be chosen. according to the the current
target molecule and the actual chemical context? The choice of a transformation must be
controlled by a synthesis strategy. In the following, we show how case-based reasoning is
used to automate the selection of transformations.

3 Planning Syntheses with Case-based Reasoning

3.1 The Modelization of  Synthesis Strategies

A synthesis strategy can be seen as an ordered sequence of goals or objectives, that correspond
to the applications of transformations. Objectives usually are associated with transforma—
tions modifying the structure of a target molecule. However, in practice, there is usually
a partial match between the target structure and the retron for a transformation. In this
case, a single, or ,  more often, several subgoals related with a modification of the function-
ality of the target moleculez, will rectify the mismatch and allow the transformation to be
performed. Thus, the application of a transformation associated with a synthesis strategy
can be  conditioned by an ordered sequence of subgoals. Choosing a strategy instead of an—
other means that an ordered sequence of. actions to be  performed is preferred among a set of
other ordered sequences of actions. Classically, in computer-aided synthesis systems, strat-
egy selection is usually fixed or left up to  the chemist. An automated selection of strategies
involve identification of substructures that suggest a specific approach, an ordering of the
chosen approaches, a possible interactive verification done by the chemist, and, at last ,  the
execution of the “best” strategy.

In our approach, strategies are represented as temporal objects, called retrosynthetz'c
routes [Laurengo et al., 1990]. A strategy consists in a sequence ({02'}, {Ti}), where {Oi}

2Modi fy ing  the  structure of a target molecule means breaking or building a bond,  while modifying the
functionality means substituting a functional group for another.
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is a subsequence of objectives and {Ti} is a subsequence of transformations associated with 
these objectives. Roughly, a retrosynthetic route can be seen as a tree whose root is the 
objective 01 and whose nodes are the different objectives included in {Oil (i:j:. 1), obtained 
by application of the transformations included in {Ti}. Actually, there are a vertical and a 
horizontal temporal dimensions in a retrosynthetic route. The first consists in a sequence 
of temporal levels describing the temporal steps of the retrosynthetic route, leading from 
the root 01 until the leaves of the tree; these leaves correspond to the last objectives of 
the considered retrosynthetic route. The second dimension is used to differentiate the nodes 
within a temporal level. 

Given a target molecule TARGET, the. choice of a retrosynthetic route relies on the similar
ity existing between an abstraction of TARGET and the root 01 associated with memorized 
retrosynthetic routes. This similarity is determined using the subsumption relation defined 
on molecular structures. As more than one strategy can be selected, retrosynthetic routes 
must be classified according to their specific chemical characteristics. Thus, we define a 
subsumption relation for retrosynthetic routes that is inspired by works done on plan-based 
terminological reasoning [Devanbu and Litman, 1991] [Weida and Litman, 1992]. Briefly 
stated, a retrosynthetic route RS1 subsumes a retrosynthetic route RS2 if the tree as
sociated with RS1 corresponds to a subtree RS'2 of RS2, such that every node of RS1 
subsumes every corresponding node of RS'2. Note that nodes are molecular structures, and 
thus "subsumption" refers to molecular subsumption. Given two retrosynthetic routes, the 
most specific route (regarding the subsumption relation defined on routes) will be preferred. 

At present, the work on the representation and handling of retrosynthetic routes is still in 
progress. However, we present in the following the current simplified transformation selection 
process, that applies to one-step routes and relies on a case-based reasoning approach. 

3.2 The Handling of One-Step Retrosynthetic Routes 

In the following, retrosynthetic routes are only one-step path corresponding to the application 
of a single transformation. Then, selecting a strategy means searching for a transformation 
T that can be applied to the target molecule TARGET, according to the similarity existing 
between TARGET and the functional groups guiding the application of T. The set of trans
formations lay in a specific base of transformations that can be seen, in this context, as 
the "memory of cases". The representation of a transformation T includes three main lists 
of characteristics, that are used to build an index associated with the transformation (for 
transformation retrieval). [Lieber, 1993J.[Napoli and Lieber, 1993]: 

•	 ACTIVE(T) is a list of active functional groups, that play an actual role in T, i.e. if Ig 
is in ACTIVE(T), then at least one bond of Ig is modified by the transformation T (see 
BONDS(T) below). 

•	 INACTIVE(T) is a list of inactive functional groups, i.e. they do not play any role in the 
application of T. However, the inactive functional groups are taken in account because 
they can play a secondary role in a (more complete) retrosynthetic route, e.g. they can 
be used to reach a local subgoal for example. 

•	 BO NDS (T) is a list of bonds modified by the transformatio~ T. This list contains 
quadruplets (a1 a2 b1 b2) describing a single bond, where a1 and a2 are the atoms 
at the extremities of the bond, bi and b2 respectively denoting the type of the bond 
before and after the application of T. 
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these objectives. Roughly, a retrosynthetic route can be  seen as a tree whose root is the
objective 0]  and whose nodes are the different objectives included in {02'} ( i  76 1) ,  obtained
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of temporal levels describing the temporal steps of the retrosynthetic route, leading, from
the root 0 ]  until the leaves of the tree; these leaves correspond to  the last objectives of
the considered retrosynthetic route. The second dimension is used to differentiate the nodes
within a temporal level.

Given a target molecule TARGET, the choice of a retrosynthetic route relies on the similar-
ity existing between an abstraction of TARGET and the root 01 associated with memorized
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thus “subsumption” refers to molecular subsumption. Given two retrosynthetic routes, the
most specific route (regarding the subsumption relation defined on routes) will be  preferred.

At present, the  work on the representation and handling of retrosynthetic routes is still in
progress. However, we present in the following the current simplified transformation selection
process, that applies to  one-step routes and relies on a case—based reasoning approach.

3 .2  The Handling of One-Step Retrosynthetic Routes

In the following, retrosynthetic routes are only one-step path corresponding to the application
of a single transformation. Then,  selecting a strategy means searching for a transformation
T that can be  applied to the target molecule TARGET, according to  the similarity existing
between TARGET and the functional groups guiding the application of T .  The set of trans—
formations lay in a specific base of transformations that can be seen, in this context, as
the “memory of cases”. The representation of a transrmation T includes three main lists
of characteristics, that are used to build an index associated with the transformation (for
transformation retrieval).[Lieber, 1993]_ [N apoli and Lieber, 1993]:

o ACTIVE(T) is a list of active functional groups, that play an actual role in T,  i.e. if fg
is in ACTIVE(T), then at least one bond of fg is modified by the transformation T (see
BONDS(T) below). -

. INACTIVE(T) is a list of inactive functional groups, i.e. they do not play any role in the
application of T. However, the inactive functional groups are taken in account because
they can play a secondary role in a (more complete) retrosynthetic route, e.g. they can
be  used to  reach a local subgoal for example.

. BOND.S(T) is a list of bonds modified by the transformation T. This list contains
quadruplets (a] a2 b] b2) describing a single bond, where a]  and (12 are the atoms
at the extremities of the bond, bl  and b2 respectively denoting the type of the bond
before and after the application of T.
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In the following, we briefly explain how is calculated the similarity between the target 
molecule TARGET and the functional groups ACTIVE(T) conditioning the transformation T. 

This similarity depends on the functionality, described by the list FUNCTIONS(TARGET), 

and the structure, described by the list STRUCTURE(TARGET), of the target molecule TAR

GET. The list FUNCTIONS(TARGET) includes the functional groups of TARGET (in fact, they 
are given by the classification of TA RG ET in the functional partonomy). The second list 
STRUCTURE(TARGET) memorizes the connections of the carbon atoms of TARGET (skeleton 
of TARGET). Then, the global similarity existing between TARGET and ACTIVE(T) is calcu
lated according to a formula that will not be detailed in this abstract (for more details, see 
[Lieber, 1993]). When the similarity is greater than a given threshold, the transformation T 

can be chosen, i.e. the retrosynthetic route materialized by T can be selected, and applied to 
TARGET. Relying on the matchings existing between TARGET and ACTIVE(T), the transfor
mations of atoms and bonds in TARGET are performed according to the list of bonds changes 
given in BONDS(T) associated with T. Further, the ID;atchings between atoms of TARGET and 
atoms of ACTIVE(T) do not need to be exact, and can depend on adegree of similarity. 

Summarizing the above process in terms of a case-based reasoner [Riesbeck and Schank, 
1989] [Hammond, 1990a] [Hammond, 1990b], the base of known transformations can be seen 
as the memory of cases. In this base, a transformation T can be reduced to the triplet 
(ACTIVE(T) INACTIVE(T) BONDS(T)), the index of the transformation T being ACTIVE(T). 

The pair (FUNCTIONS(TARGET) STRUCTURE(TARGET)) associated with the target molecule 
TARGET can be seen as the set of features characterizing TARGET, the index of the target 
molecule being FUNCTIONS(TARGET). Thus, searching for a case (a transformation T) in the 
memory relies on the matching existing between the index of the case, Le. ACTIVE(T),. and 
the index of the target molecule TARGET, Le. FUNCTIONS(TARGET). At last, the adaptation 
step depends on the similarity of the atoms and bonds included in ACTIVE(T), Le. involved 
in the transformation T, and the corresponding atoms and bonds in FUNCTIONS(TARGET) 

[Napoli and Lieber, 1993]. 

At present, we are extending this simplified process to more complicated retrosynthetic 
routes including more than one step. As one can see, much work must still be done for this 
real-world, complex and very interesting application. 
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Abstract. Generalization can serve as means for the selection of cases and for the adaption of selected 
cases to fit the current problem. We present an approach which tackles both tasks in an integrated 
manner. Cases are matched against the current problem specification. The case selection is based on the 
structure of the configured entities. If necessary, the case knowledge is generalized. It can be shown that 
the resulting generalized case knowledge can always be used as a basis for a configuration process which 
generates a fully specified solution. 

1. Introduction 

Human experts use case-based reasoning in a variety of different domains; e.g. in the field of law [1] or in 
medicine (9). In this paper we address case-based reasoning in the field of tecbnicill configuration. To configure 
an artefact means to compose a configuration from a set of objects. Restrictions upon objects and attribute 
values have to be met. Typically, the resulting search space is huge. This is an important difference to 
diagnosis. By the integration of cases into the configuration process we hope to decrease the search space so that 
e.g. the presentation of "ad hoc" solutions becomes possible. 

It is necessary to define how a case can be identified that is useful for solving the current problem. Usually 
this is achieved by some kind of similarity metric. If it is not proposed that selected cases do fit the current 
problem directly, a modification procedure has to be available. The modification of case knowledge is typical for 
configuration tasks. 

With our approach we aim at a faster generation of possible solutions by search space reduction. If the 
presentation of one or more solutions in' a timely fashion is possible, the usability of a configuration system is 
increased significantly. The user can then choose among alternatives in the form of concrete suggestions. The 
neccessity to decide about parameters in an early stage of the configuration process with unforseeable 
consequences for the whole configuration decreases. Whether this goal can be met depends highly on the 
employed methods for the case-based reasoning process and the structure of the domain proce\sed. 

In our configuration system all objects of the application domain and their interdependencies are described in 
a conceptual hierarchy and a constraint system (4). Concepts form a taxonomic hierarchy that is used to represent 
classes and generalizations (superclasses) of objects and to specify their properties. The "Closed-World
Assumption" is valid, e.g., we assume that the part of the world described is complete. We may safely do so 
because the application is restricted to configuration in technical domains, where all objects and the possible 
attribute values are known in advance. 

- PC 
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-- I --....... ....- /." '" ---------.
 

Hard Disk / Graphics "" Case 
/ Board " 

/ / ", 
Controller Motherboard Tower Slimline 

Case Case~. 
/' ........
 

A~ /' I .........
us- SCSI-
Controller Controller /' I " has-parts

CPU RAM relation 

I 
is-a relation CPU-Cooler 

Figure 1: Partial conceptual hierarchy with is-a and has-parts relations 

1 This work has been partially supported by the BMFf (German Federal Ministry for Research and Technology) 
within the PROKON-project, grant no. ITW9101A6. 
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manner. Cases are matched against the current problem specification. The case selection is based on the
structure of the configured entities. If necessary, the case knowledge is generalized. It can be shown that
the resulting generalized case knowledge can always be used as a basis for a configuration process which
generates a fully specified solution.

1 .  Introduction

Human experts use case-based reasoning in a variety of different domains,'e.g. in the field of law [1 ]  or in ‘
medicine [9]. In this paper we address case-based reasoning in the field of technical configuration. To configure
an artefact means to compose a configuration from a set of objects. Restrictions upon objects and attribute
values have to be met. Typically, the resulting search space is huge. This is an important difference to
diagnosis. By  the integration of cases into the configuration process we hope to decrease the search space so that
e.  g. the presentation of "ad hoc" solutions becomes possible.

It is necessary to define how a case can be identified that is  useful for solving the current problem. Usually
this is achieved by some kind of similarity metric. If it is not proposed that selected cases do fit the current
problem directly, a modification procedure has to be available. The modification of case knowledge is typical for
configuration tasks.

With our approach we aim at a faster generation of possible solutions by search space reduction. If the
presentation of one or more solutions in'a timely fashion is possible, the usability of a configuration system is
increased significantly. The user can then choose among alternatives in the form of concrete suggestions. The
neccessity to decide about parameters in an early stage of the configuration process with unforseeable
consequences for the whole configuration decreases. Whether this goal can be met deegends highly on the
employed methods for the case-based reasoning process and the structure of the domain procese

In our configuration system all objects of the application domain and their interdependencies are described in
a conceptual hierarchy and a constraint system [4]. Concepts form a taxonomic hierarchy that is used to represent
classes and generalizations (superclasses) of  objects and to Specify their properties. The "Closed- World-
Assumption" is valid, 6. g ,  we assume that the part of the world described is complete. We may safely do so
because the application is restricted to configuration'1n technical domains, where all objects and the possible
attribute values are known in advance.
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The part-of I has-parts relation forms a compositional hierarchy in addition to the taxonomic hierarchy. It 
describes the decomposition Of configuration objects into components. It is thus a major guideline for the 
generation of a configuration. The has-parts relation is represented by set-valued attributes. The set descriptions 
contain references to concepts of components, optionally associated with number restrictions. 

The composilional hierarchy together with the taxonomic hierarchy describes the set of all admissible 
configurations. Fig. 1 illustrates the taxonomical and compositional hierarchy for a simple example, the 
configuration of a personal computer. The solution of a configuration task is a correct instantiation of the 
conceptual hierarchy, e.g., a network of instances of concepts interconnected by has-parts / part-of relations with 
fully specified values for all attributes. 

Dependencies between configuration objects are represented by constraints. These are maintained during the 
configuration process by means of a constraint net [13]. To configure a solution for a given problem instances 
are generated and successively specialized. The attribute values of these instances are specialized to terminal 
values,e.g. the hard disk capacity ranging from 20 to 1000 megabytes initially is specialized to 200 megabytes. 

An important step in case-based configuration is the modification of selected cases to fit the current 
situation. This applies to planning as well [7]. This step is of minor importance for analytic problems like 
diagnosis but it is essential for synthesis tasks. We show how case selection can be combined with the 
modification of case knowledge. The exploitation of the internal structure of the cases [11] is the basis for a 
straightforward integration of the modified cases into the configuration process. 

2. Case Selection 

We give a defintion for generalization in the configuration context. First of all we introduce several necessary 
configuration related terms. 

The d011Ulin model is an explicit description of all concepts of the domain. These are arranged in a 
conceptual hierarchy [6] which consists of is-a and has-parts relations (e.g. Fig. I). 
A configuration is defined as a set of instances ordered by a has-parts relation, e.g. a PC which consists 
of the parts motherboard, hard disk, contoIler, keyboard, monitor etc. 
If the instances a configuration consists of are not fully specialized, we describe a ~ of possible fUlly 
specialized configurations, e.g. a set of hard disks with capacities ranging from 40 to 250 megabytes. We 
call these sets partial configurations. 
The current task specification is represented as an initial partial configuration, e.g. a PC with a 200 
megabytes hard disk and a 14" color monitor. . 
The goal object is the root of the compositional hierarchy of an initial partial configuration (e.g. a PC). 
It is a complete task specification already. Such a task specification can be expanded by further objects 
and specialized attribute values. 
A case is a fully specialized configuration, which has been successfully created as a solution of an old 
configuration problem (e.g. Fig. 3). 
A partial configuration PI subsumes another partial configuration P2 if all fully specified 
configurations described by P2 are also members of the set of fully specified configurations described by 

PI· 

For the selection of a case from the case-base, each case is tested as to whether it is subsumed by the initial 
partial configuration or not. If this is true, the case is a possible solution. Subsumption holds if the case is an 
element of the set of fully specialized configurations described by the initial partial configuration. This 
corresponds to KL-ONE. There subsumtion is defined as a subset relationship between the extensions of two 
concepts [2, 14]. . 

If no case fits directly, each case is generalized [3, 8, 10] together with the initial partial configuration (Fig. 
2). In contrast to the intuitive approach to use the old and the new task specifications for case selection, the old 
solution (the case) and the current task specification are used here [12]. 

~S.SOlut~ 

Case Bas~e:.-_,-__ 

CaseCn urr. Task Specificatio 

Figure 2: Generalization ofsingle cases and the current task specification 
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The compositional hierarchy together with the taxonomic hierarchy describes the set of all admissible
configurations Fig. 1 illustrates the taxonomical and compositional hierarchy for a simple example, the
configuration of a personal computer. The solution of a configuration task is  a correct instantiation of the
conceptual hierarchy, e.g., a network of  instances of concepts interconnected by has-parts / part-of relations with
fully specified values for all attributes.

Dependencies between configuration objects are represented by constraints. These are maintained during the
configuration process by means of a constraint net [13]. To configure a solution for a given problem instances
are generated and successively specialized. The attribute values of these instances are specialized to terminal
values,e. g. the hard disk capacity ranging from 20 to 1000 megabytes initially i s  specialized to 200 megabytes.

An important step in ease-based configuration is the modification of selected cases to fit the current
situation. This applies to planning as well [7]. This step is  of minor importance for analytic problems like
diagnosis but i t  i s  essential for synthesis tasks. We show how case selection can be combined with the
modification of case knowledge. The exploitation of the internal structure of the cases [11] is the basis for a
straightfowvard integration of the modified cases into the configuration process.

2. Case Selection

We give a defintion for generalization in the configuration context. First of all we introduce several necessary
configuration related terms.

The domain model is an explicit description of all concepts of the domain. These are arranged in a
conceptual hierarchy [6] which consists of 1s-a and has-parts relations (e.  g .  Fig. 1 ) .

. A configuration is  defined as a set of instances ordered by a has—parts relation, e.g. a PC which consists
of the parts motherboard, hard disk, contoller, keyboard, monitor etc.

' If the instances a configuration consists of are not fully specialized, we describe a set of  possible fully
specialized configurations, e.g. a set of hard disks with capacities ranging from 40 to 250 megabytes. We
call these sets partial configurations.

° The current task specification is represented as an initial partial configuration, 6. g.  a PC with a 200
megabytes hard disk and a 14" color monitor

' The goal object is the root of the compositional hierarchy of an initial partial configuration (e.g. a PC).
It is a complete task specification already. Such a task specification can be expanded by further objects
and specialized attribute values.

' A case is a fully specialized configuration, which has been successfully created as a solution of an old
configuration problem (e. g.  Fig. 3).

° A partial configuration P1  subsumes another partial configuration P2 if all fully specified
configurations described by P2 are also members of the set of fully specified configurations described by
P1.

For the selection of a case from the case-base, each case is tested as to whether it is subsumed by the initial
partial configuration or not. If this is true, the case is  a possible solution. Subsumption holds if the case is an
element of the set of fully specialized configurations described by  the initial partial configuration. This
corresponds to KL- ONE. There subsumtion is defined as a subset relationship between the extensions of two
concepts [2,14].

' If no case fits directly, each case is generalized [3, 8 ,  10] together with the initial partial configuration (Fig.
2). In contrast to the intuitive approach to Use the old and the new task specifications for case selection, the old
solution (the case) and the current task specification are used here [12].
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The case selection process consists of three steps: 
1.	 The goal object of the current task description and the goal object of the has-parts hierarchy of the case are 

compared. If the goal object does not subsume the root object, the case is rejected. 
2.	 For each of the elements (instances) of the current task description, an object of the case must be found that 

is subsumed by it. If this is not possible for a certain object, this object is processed further in step 3. All 
objects of the case that have been used once are no longer available for another subsumption test. 

3.	 Each object that could not be handled by step 2 is generalized with one of the remaining objects of the case. 
The generalization takes place on the basis of the domain model. A generalization that violates existing 
constraints is rejected. 

To select one of the case's remaining instances for generalization, the set of available instances is tested for an 
instance that belongs to the same concept as the current instance of the initial partial configuration. If such an 
instance exists, generalization is realized as application of the union operator to the attribute values. If more then 
one instance exists, depth first search is applied. 

If an instance of the same concept is not available, the most special common superconcept of the tasks 
instance and the case's instance is identified. From the set of most special co~on superconcepts which are 
derived from all available instances of the case, the most special one is selected. If there is no single most special 
concept, a concept can be chosen selectively if additional knowledge is available. The attribute values of a new 
instance of this concept are specialized to the union of the values of the two original instances. Because of the 
monotonous nature of the is-a relation it is always ensured that these values are a subset of the generalized 
concepts own values in the domain model. If at any point throughout the generalization process a corresponding 
instance of the case cannot be found, the case is rejected. 

The result of the generalization process is a set of generalized cases, suitable for the solution of the current 
configuration problem. If the set is empty, no case passed the selection process. If more then one case was 
found, a case can be chosen. The selection can be based upon additional knowledge about the expected solution 
quality or the estimated modification costs. Another way is to leave the decision among the qualified cases to the 
user. In a more implementation-oriented notation the case selection process looks like this: 

-function selecCcase (initial_partial_configuration,case_base,domain_model) 

qualified3ases <- 0 
for each element c in case base do 

it is_a (root (c), goaLobject (initiaLpartiaLconfiguration))
 
case_instances <. instances_oCcase (c)
 
instances_to_generalize <

instances_not_subsumed (case_instances,initiaLpartiaLconfiguration) 
qualified_cases <-qualified_cases u 

generalize_iCnecessary (c,instances_to_generaJize,case_instances,domain_model) 
endif 

endfor 
return qualified_cases 

fu nction generalize_iCnecessary (c,instances_to_generalize,case_instances, 
domain_model) 

case_ok <- 0 

if instances_to_generalize =0 
case_ok <- c 

else 
for each element e in instances_to_generalize do
 

solved <- false
 
for each element i in casejnstances do
 

if concept-of (e) = concept-of (i)
 
replace (i,generalize_attributes (instantiate (concept-of (i)),e,i),c)
 
case_instances <- case_instances \ i
 
solved <- true
 
exit for
 

endit
 
endfor
 
if not solved
 

moscspecial <- generaLconcept
 
besUnstance <- 0
 
for each element i in case instances do
 

if subsumep (most_special,most_special_superconcept (e,i,domain_model)) 
mosCspecial <- moscspecial_superconcept (e,i,domain_model) 
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The case selection process consists of three steps:
1. The goal object of the current task description and the goal object of the has-parts hierarchy of the case are

compared. If the goal object does not subsume the root object, the case i s  rejected.
2 .  For each of the elements (instances) of the current task description, an object of the case must be found that

is subsumed by it. If this is not possible for a certain object, this object is processed further in step 3. All
objects of the case that have been used once are no longer available for another subsumption test.

3 . Each object that could not be handled by step 2 is generalized with one of the remaining objects of the case.
The generalization takes place on the basis of the domain model. A generalization that violates existing
constraints is rejected.

To select one of the case's remaining instances for generalization, the set of available instances is tested for an
instance that belongs to the same concept as the current instance of the initial partial configuration. If such an
instance exists, generalization is realized as application of the union operator to the attribute values. If more then
one instance exists, depth first search is applied.

If an instance of the same concept is not available, the most special common superconcept of the tasks
instance and the case's instance is identified. From the set of most special common superconcepts which are
derived from all available instances of the case, the most special one is selected. If there is  no single most special
concept, a concept can be chosen selectively if additional knowledge is available. The attribute values of a new
instance of this concept are Specialized to the union of the values of the two original instances. Because of the
monotonous nature of the is-a relation it is  always ensured that these values are a subset of  the generalized
concepts own values in the domain model. If at any point throughout the generalization process a corresponding
instance of the case cannot be found, the case is rejected.

The result of the generalization process is a set of generalized cases, suitable for the solution of the current
configuration problem. If the set is empty, no case passed the selection process. If more then one case was
found, a case can be chosen. The selection can be based upon additional knowledge about the expected solution
quality or the estimated modification costs. Another way is  to leave the decision among the qualified cases to the
user. In a more implementation—oriented notation the case selection process looks like this:

Junct ion se lect_case  ( init ia l_part ial_configuration,case_base,domain_model)

qualified_cases <~ @
for each element c in case_base do

if is_a (root (c), goal_object (initia|_partial_configuration))
case_instances <- instances_of__case (c)
instances_to__generalize <-

instances_not__subsumed (case_instances,initiaLpartiaLconfiguration)
qualified_cases <-  _qualified_ca-ses u

generalize_if_necessary (c,instances__‚to_generaIize,case_instances,domain_model)
endif

endfor
return quaiified_cases

fu  notion general ize_ i f_necessary  (c , instances_to_general ize ,case_instances ,
do  main_model )

case_ok <- ®
if instances_to_generalize = @

case_ok <- c
else

for each element e in instances_to_generalize do
solved <- false
for each element i in case_instances do

if concept--of ( e ) :  concept--of (i)
replace (i, generalize_attributes (instantiate (concept-of (i)), e ,  i), c)
case_instances <— case_instances \ I
solved <- true
exit for

endif
endior
if not solved

most__specia| <- general_concept
bestflinstance <- @
for each element i in case_instances do

if subsumep (most_special,most__special__superconcept (e,i,domain_model))
most_special <- most_speciaI__superconcept (e,i,domain_model)
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besUnstance <- i 
endif
 

endfor
 
replace (i,generalize_attributes (instantiate (mosCspecial),e,i),c)
 

endif
 
endfor
 
if no_constraint_affected (c)
 

case_ok <- c 
endif 

endif 

The functions goaLobject, root, concepLof, is_a and instantiate are trivial. They will not be describeQ any 
further. instances_noLsubsumed checks for all instances, whether replace exchanges an instance of a structure 
(e.g. a case) for another instance (e.g. a generalized instance). The function mosLspeciaLsuperconceptextraets 
the most special common ancestor of two "instances out of an is_a hierarchy (e.g. a domain model). 
generalize_attributes applies the union operator to all attribute values of the instances passed to the function. 
The function no_constrainLaffectedis used to distinguish between generalization with and without impact on 
existing constraints. 

Out of the set of qualified cases only those are taken into account which can be integrated into the 
configuration process straightforward. This is true for those generalizations which are not connected to other 
parts of the whole configuration via relations except is-a and has-parts. 

An example is given below. The case base consists of only two cases (Fig. 4 and 5). With respect to the 
initial partial configuration given in Fig. 3, both cases do not fit directly. In case 1 generalization is necessary 
because the SCSI-controller does not match the AT-bus-controller in the current task specification. In case 2 the 
tower case has to be generalized. 

PC 
...... 

,""--> ... ... ... 
AT-Bus Slimline 

Controller Case 

Figure 3: Initial partial configuration 
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 ~ 
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CPU-66MHZ I 
I 

Rel~ CPU~OOler 
has-parts relation 

Figure 4: Case I 

Controller and hard disk have to be of the same type (here SCSI). This is modelled by the relation k (Relk). A 
generalization of the controller (or the hard disk) would affect the other part if the type SCSI (and the relation k) 
does not remain. The generalization is therefore rejected. A generalization of the slimline case on the other hand 
would not affect any other parts of the configuration. The generalization is accepted. The case knowledge that is 
integrated into the configuration process is the generalized case 2 (Fig. 6). 
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best_instance <- i
endfl

endfor
replace (i,generalize__attributes (instantiate (most_specia|),e.i),c)

end"
endfor
if no‚_constraint___afiected (c)

case_ok <-  c
end”

endit

return case_ok

The functions goaLobject‘, root, concept_of, is_a and instantiate are trivial. They will not be described any
further. instances__not_subsumed checks for all instances, whether replace exchanges an instance of a structure
(e.g. a case) for another instance (e.g.. a generalized instance). The function mosLspeciaLsupemonceptextracts
the most special common ancestor of two instances out of  an is_a hierarchy (e.g. a domain model).
generalize_attributes applies the union operator to all attribute values of the instances passed to the function.
The function no_constraint_affected is used to distinguish between generalization with and without impact on
existing constraints.

Out of  the set of qualified cases only those are taken into account which can be integrated into the
configuration process straightforward. This is true for those generalizations which are not connected to other
parts of the whole configuration via relations except is—a and has-parts.

An example is given below. The case base consists of only two cases (Fig. 4 and 5). With respect to the
initial partial configuration given in Fig. 3, both cases do not fi t  directly. In case 1 generalization is necessary
because the SCSI-controller does not match the AT-bus-controller in the current task specification. In case 2 the
tower case has to be generalized.
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Figure 3: Initial partial configuration
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Figure 4: Case 1

Controller and hard disk have to be of the same type (here SCSI). This is modelled by the relation k (Relk). A
generalization of the controller (or the hard disk) would affect the other part if the type SCSI (and the relation k)
does not remain. The generalization is therefore rejected. A generalization of the slimline case on the other hand
would not affect any other parts of the configuration. The generalization is accepted. The case knowledge that is
integrated into the configuration process is the generalized case 2 (Fig. 6).
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PC 
... '( ....,.4lf .......,} ...
 ........ ,~, ... - ......
 

- ..... - , I' .........
 

, " 
120MB-ATBus , Graphics " " Case
 

Hard Disk , Board "
 , " 
~ ATB:S- MO:h'erboard
 

Rein Controller ,..
 
,~ .. , ... ... , ... , ... 

CPU·33MHz RAM 
. 

has-parts relation 

Figure 6: Generalizedcase 2 

Generally speaking a consequence of this approach is that a case cannot be used if a generalization of a value is 
required that is connected with other values of the case via an arbitrary relation. On the other hand, the selection 
process will possibly offer a multitude of cases if the initial partial configuration is specified in a very general 
manner (e.g. just a PC). 

3. Using Case Knowledge 

We define configuration as search in the search space given by the domain model (see section 1). The search 
starts with the initial partial configuration. This configuration is. successively refined until a fully specialized 
configuration is reached. If the initial partial configuration is su1;>stituted by generalized case knowledge, the 
search space is reduced. What is left of the original search space depends on the generalization (Fig. 7). 

The search space that still remains has to be searched, e.g. depth first to reach a fully specified solution for 
the original task specification. This process can be interpreted as model-based configuration with an expanded 
task specification [5]. If a case can be used directly, no further search is necessary. 

The integration of generalized case knowledge into the configuration process is always possible because a 
generalized case describes a set of fully specified. solutions ~hich is the same as a partial configuration. 
Consistency with the domain model is enforced via the constraint'net. 

4. Summary and outlook 

We have shown how case selection can be combined with the modification of case knowledge. The output of the 
case selection process is a generalized case which is nothing else but a partial configuration describing a set of 
possible configurations. The partial configuration is .then used as basis for the remaining configuration steps 
(Fig. 7). The reduction of the search space depends on the depth of the generalization. The search space can be 
reduced substantially if moderately generalized case knowledge is available (see section 3). 
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Generally speaking a consequence of this approach is that a case cannot be used if a generalization of a value is
required that is connected with other values of the case via an arbitrary relation. On the other hand, the selection
processwill possibly offer a multitude of cases if the initial partial configuration is specified in a very general
manner (e.g. just a PC).

3. Using Case Knowledge

We define configuration as search in the search space given by the domain model (see section 1). The search
starts with the initial partial configuration. This configuration is. successively refined until a fully specialized
configuration is reached. If the initial partial configuration is substituted by generalized case knowledge, the
search space is reduced. What is left of the original search space depends on the generalization (Fig. 7).

The search space that still remains has to be searched, e. g. depth first to reach a fully specified solution for
the original task specification. This process can be interpreted as model-based configuration with an expanded
task specification [5]. If a case can be used directly, no further search is necessary.

The integration of generalized case knowledge into the configuration process i s  always possible because a
generalized case describes a set of fully specifiedsolutions which is the same as a partial configuration.
Consistency with the domain model is enforced via the constraint'net.

4. Summary and outlook

We have shown how case selection can be combined with the modification of case knowledge. The output of the
case selection process is a generalized case which is  nothing else but a partial configuration describing a set of
possible configurations. The partial configuration isthen used as basis for the remaining configuration steps
(Fig. 7). The reduction of the search space depends on the depth of the generalization. The search space can be
reduced substantially if moderately generalized case knowledge is available (see section 3).
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Figure 7: Integration o/Generalized Case Knowledge into the Configuration Process 

With this approach the use of a similarity metric can be avoided. A disadvantage in this context is that only a set 
of qualified cases can be identified, but not a single best case. We argue that it does not really matter which case 
out of the set of qualified cases is selected because the generalizations employed do not affect the configuration as 
a whole. 

The solutions created with our case-based approach are implicitly represented in the domain model. A case 
not covered by the domain model will never be selected. Therefore the knowledge acquisition process is still 
necessary. However, the search through the space of possible configurations is guided by the selected case. In 
this view a case represents domain dependent control knowledge. This knowledge need not be fonnulated in 
general terms anymore, which makes knowledge acquisition easier. 

A higher solution quality can be achived if the case-based approach offers better heuristics for single 
decisions then available in the domain model. Only if the available control knowledge as part of the domain 
model is incomplete, the solution quality can be improved by a case-based approach. 

The restrictions upon our domain model are rather strict due to the fact that a complete model is required. 
Our future work aims at a more flexible approach which includes learning from cases that describe solutions 
outside the solution space given by the domain model. 
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With this approach the use of a similarity metric can be avoided. A disadvantage in this context is that only a set
of qualified cases can be identified, but not a single best case. We argue that it does not really matter which case
out of the set of qualified cases is selected because the generalizations employed do not affect the configuration as
a whole.

The solutions created with our case-based approach are implicitly represented in the domain model. A case
not covered by the domain model will never be selected. Therefore the knowledge acquisition process is still
necessary. However, the search through the space of possible configurations i s  guided by the selected case. In
this view a case represents domain dependent control knowledge. This knowledge need not be formulated in
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A higher solution quality can be achived if the case-based approach offers better heuristics for single
decisions then available in the domain model. Only if the available control knowledge as part of the domain
model is incomplete, the solution quality can be improved by a case-based approach.
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Abstract. A method for integrated case-based and generalization-based reasoning and learning is 
described. The primary role of general domain knowledge is to proVIde explanatory support for the case
based processes. A general explanation engine - the ACTIVATE-EXPLAIN-FOCUS cycle - utilizes a presum
ably rIch, multirelatlOnal knowledge model in producing context-dependent explanations. 

1. Introduction 

Case-based reasoning covers a wide variety of methods. While some methods emphasize problem solving and 
learning by use of specific cases instead ofgeneral domain knowledge, others use general knowledge! combined 
with cases. Among the laller, various approaches to what types of general knowledge to incorporate, as well as 
to how general knowledge is used, are taken. General knowledge may be used for an additional problem solving 
method, e.g. a method that is applied if the case-based method fails, and/or it may be used within the case-based 
method itself. The general knowledge may be of a shallow, associational type (e.g. a set of heuristic rules), or 
deeper, more principled knowledge (e.g. a model combining causal, functional and componential knowledge ). 

This paper addresses the use of general domain knowledge within a case-based method. The focus is on the 
integrated utilization of case-specific and general knowledge. Our work aims at improved AI methods for 
knowledge-based decision-support in real world, open and weak theory domains2 • Examples of such domains 
include medical diagnosis, law, corporate planning, economical assessment, and most engineering domains. A 
counter-example would be a mathematical domain, or a closed technical domain. A strong motivation for a case
based approach lo this problem is the need for adaptive behaviour of our systems, i.e. the ability to continually 
learn from each problem solving experience. General knowledge is needed in order to achieve an acceptable degree 
of competence and robustness of a case-based reasoner's problem solving and learning .capability. As domains get 
more open and complex, the more important it will become to base, e.g., the matching of cases, the 
modification of solutions, and the learning of new cases, on an understanding of the current problem within its 
problem solving context. This is different from relying solely on general and global criteria and metrics. It is in 
the tight coupling of case-based and generalization-based approaches we find' the strongest potential for realizing 
the competent and flexible behaviour we would like to see in fulure AI systems. This is the hypothesis we 
investigate. 

The fact that a domain is open and has a weak theory does not necessarily imply that there is little general 
knowledge available. More often it implies that the general knowledge of the domain is theoretically uncertain 
and incomplete. Such knowledge may be interpreted and processed by methods that are able to draw plausible 
inferences from a combination of the various types of knowledge available. This is here viewed as an abductive 
explanation process3 - both at the top level where the goal for example is to explain a patient's symptoms in 
terms of the disease that causes them, and at a more detailed level, such as explaining why a particular diagnostic 
hypothesis should be preferred over another. The approach is based on the CREEK4 architecture [Aamodt-90a, 
Aamodt-90b], and may be viewed as partly a specialization and concretion, partly an extension of this system as 
initially specified in [AamodF9l], 

The next chapter introduces the notion of explanation-driven case-based reasoning, and presents the basic model. 
This is followed by an outline of how case knowledge and general knowledge is represented in our system, and a 
more detailed description of the explanation-driven reasoning method, specified for each of the CBR tasks 
Retrieval, Reuse, and Learning. Finally, this approach is discussed by comparing it to some related methods. 

2. Explanation-Driven Case-Based Reasoning 

Core tasks of a case-based reasoner arc the extrdction of relevant features to describe a problem, the assessment of 
similarity between a new problem and previous cases, the adaptation of a previous solution within a new 
context, the identifying what to retain from a case just solved, and the learning of indexes for memorizing new 
cases. Earlier CBR systems (e.g. [Kolodner-83, Carbonell-86, Rissland-87J) adopted largely global and context
independent strategies for dealing with these problems, such as a fixed set of problem features, and syntax-

IThroughoutthis paper. the tenn 'general knowledge' refers to general - or generalized - domain knowledge. If general knowledge in 
the sense of domain-independent (e.g. common sense) knowledge is meant, this is explicity Slated. 

2An open domain is a domain which cannot be realistically modelled unless relationships between the target system (artifact or 
natural system) and the external, changing world are included. A weak lheory domain is a domain in which important relations between 
concepts are uncertain. 

3Abduction is here viewed as an "inference to lhe best explanation" (see, e.g. [Thagaard-88]), and covers bOlh the generation and 
evaluation of hypotheses. 

4Case-based Reasoning through Extensive Explicit Knowledge 
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described. The primary role of eneral domain knowledge is to prov1de explanatory support for the case-
based processes. A general exp anation en inc - the ApTlVATB-EXPLAIN~FOCUS c cle - utilizes a presum-
ably rich, multirclational knowledge mode in producmg context—dependent exp anations.

1 .  I n t roduc t ion

Case-based reasoning covers a wide variety of methods. While some methods emphasize problem solving and
learning by use of  specific cases instead of general domain knowledge, others use general knowledge1 combined
with cases. Among the latter, various approaches to what types of general knowledge to incorporate, as  well as
to how general knowledge is used, are taken. General knowledge may be used for an additional problem solving
method, e.g. a method that is applied if the case-based method fails, and/or it may be used within the case-based
method itself. The general knowledge may be of  a shallow, associational type (e.g. a set of heuristic rules), or
deeper, more principled knowledge (e.g. a model combining causal, functional and componential knowledge ).

This paper addresses the use of general domain knowledge within a case-based method. The focus is on the
integrated utilization of case-specific and general knowledge. Our work aims at  improved AI methods for
knowledge-based decision-support in real world, open and weak theory domains2 . Examples of such domains
include medical diagnosis, law, corporate planning, economical assessment, and most engineering domains. A
counter-example would be a mathematical domain, or a closed technical domain. A strong motivation for a case-
based approach to this problem is the need for adaptive behaviour of our systems, i.e. the ability to continually
learn from each problem solving experience. General knowledge is needed in order to achieve an acceptable degree
of competence and robustness of a case based reasoner's problem solving and learning capability. As domains get
more Open and complex, the more important it  will become to base, e.g., the matching of cases, the
modification of solutions, and the learning of new cases, on an understanding of the current problem within its
problem solving context. This is different from relying solely on general and global criteria and metrics. It is in
the tight coupling of  case-based and generalization-based approaches we find'the strongest potential for realizing
the competent and flexible behaviour we would like to see in future AI systems. This is  the hypothesis we
investigate.

The fact that a domain is open and has a weak theory does not necessarily imply that there is little general
knowledge available. More often it implies that the general knowledge of the domain is theoretically uncertain
and incomplete. Such knowledge may be interpreted and processed by methods that are able to draw plausible
inferences from a combination of the various types of knowledge available. This is here viewed as an abductive
explanation process3 - both at the top level where the goal for example is to explain a patient's symptoms in
terms of the disease that causes them, and at a more detailed level, such as explaining why a particular diagnostic
hypothesis should be preferred over another. The approach is based on the CREEK4 architecture [Aamodt-90a,
Aamodt-90b], and may be viewed as partly a specialization and concretion, partly an extension of this system as
initially specified in [Aamodt491]. .

The next chapter introduces the notion of explanation-driven case-based reasoning, and presents the basic model.
This is  followed by an outline of how case knowledge and general knowledge is represented in our system, and a
more detailed description of the explanation-driven reasoning method, specified for each of the CBR tasks
Retrieval, Reuse, and Leaming. Finally, this approach is discussed by comparing it to some related methods.

2 .  Exp lana t ion-Dr iven  Case-Based  Reason ing

Core tasks of a case—based reasoner are the extraction of relevant features to describe a problem, the assessment of
Similarity between a new problem and previous cases, the adaptation of a previous solution within a new
context, the identifying what to retain from a case Jus t  solved, and the learning of indexes for memorizing new
cases. Earlier CBR systems (e. g. [Kolodner-83, Carbonell-86, Rissland-87D adopted largely global and context-
independent strategies for dealing With these problems, such as a fixed set of problem features, and syntax-

I'l'ht'ougl'iout this paper. the term 'general knowledge' refers to general - or generalized — domain knowledge. If general knowledge in
the sense of domain—independent (e.g. common sense) knowledge is meant, this is explicity stated.

2An  open domain is a domain which cannot be realistically modelled unless relationships between the target system (artifact or
natural system) and the external, changing world are included. A weak theory domain is  a domain in which important relations between
concepts are uncertain.

Abduction is  here viewed as an “inference to the best explanation" (see, e.g. [Thagaard—SSD, and covers both the generation and
evaluation of hypotheses.
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oriented similarity measures and storage schemes. This is analogous to the earlier days of the rule-based expert 
systems field, when emphasis was on associational knowledge in terms of compiled or empirical rules. The 
deficiency of this approach in terms of problem solving competence and robustness lead to the notion of "second 
generation expert systems", where deep models are used to support and extend rule-based reasoning. 

In CBR we have also seen a recent up-growth of methods that - to a varying degree - combine case-based 
reasoning with reasoning from explicit models of general knowledge [e.g. Hammond-86, Kolodner-87, Koton
89, Schank-89, Porter-90, Branting-91). Our work follows up on this line of research, but put an even stronger 
emphasis on the role of general knowledge within the CBR methods. The emphasis is on identifying general 
principles and basic methods for how this synergy can be achieved and utilized within all reasoning tasks and for 
all levels and types of problems to solve. 

Note that the word 'problem' is used in a general sense in this paper. For example, solving a problem may be to 
find the fault of a car (solving a diagnosis problem), as well as to assess a legal situation in a court (solving an 
interpretation problem)l. A problem is defined by a goal (what to achieve) which in turn sets up one or more 
tasks (what to do). To distinguish between external, application related tasks of a problem solver, and tasks set 
up by the systems own reasoning process, the first will be referred to as application tasks, while the latter are 
named reasoning tasks. Hence, learning tasks are also reasoning tasks. A task gets done by applying a method to 
it [Steels-90). 

In the following a method that utilizes general knowledge extensively as an integrated part of a case-based 
reasoning system is described. The primary role of general domain knowledge is to produce explanations to 
support and control the case-based processes, which is why we refer to the approach as explanation-driven case
based reasoning. A generic mechanism, callcd the "cxphmation engine", constitutes the fundamental reasoning 
method. It splits a reasoning task into the three subtasks ACTIVATE, EXPLAIN, and FOCUS - as illustrated in 
figure 1. . 

Goal 
- Appl. task defined 
Situation 
~ Findings listed 
- Constraints specified 

Goal 
- Appl. task accomplished 
Situation 
. Findings explained 
- Constraints confirmed 

Figure 1. The Three Subtasks of the Explanation Engine 

The reasoning methods of these tasks get a significant part of their power from the underlying representation 
system, a densely coupled semantic network where nodes as well as relations are represented as frame concepts. 
AIJ knowledge, general as well as case specific, are represented as frame structures. At the low level, the frame 
interpreter makes use of basic inference methods such as various forms of property inheritance, low level frame 
matching, and constraint propagation. In addition to the system's own model of general domain knowledge, the 
explanation engine also assumes that there is a competent user at the terminal. Hence it will interact with the 
user in order to confirm conclusions, solve explanation conflicL<;, etc., whenever general knowledge is missing or 
contrad ictory. 

The methods underlying the three above tasks operate briefly as follows: 

ACTIVATE takes a problem specification in terms of a goal and a situation description and generates a set of 
concepts suggested as relevant for further processing. Two methods are used to achieve this: Spreading activation 
along appropriate relations in the semantic network, and reminding by following earlier established case links. 
The appropriate spreading relations are determined as part of the knowledge acquisition process. 

EXPLAIN is the core method that builds up support for concepts identified by ACTJVATE. These concepts may 
be of any kind, e.g. an inferred feature, a proposed solution, a failure repair, an inference action to take, or a new 
case to be learned. The method of generating and evaluating explanations searches through activated parts of the 
semantic network, and follows the paths of cumulatively highest explanatory strength. In assessing this 
strength, it makes use of default explanatory strengths attached to each semantic relation and each meaningful 
combination of two successive relations. A 'strength-and-dependency table' for the semantic relations is defined as 
parl of the knowledge acquisition and modeling process2• The strengths may have contextual constraints attached 
to them. Further, the EXPLAIN method has at its disposal a set of explanation evaluation strategies in the form 
of decision rules. An algorithm computes the resulting explanatory strength as the search proceeds. 

lIt is sometimes also useful to view learning as a type of problem solving (i.e. solving a learning problem), particularly when explicitly 
modeling the bebaviour of systems. Ilowever, in accordance with the history of CBR, problem solvmg and learnmg are here VIewed as 
differenl tasks. 

2The basic method of utilizing combined relational strengths for search and evaluation of explanatory paths was implementcd in thc 
KNOWn system, delivcred 10 ESA as a prototype for knowledge-based information retrieval [S01vberg-92]. 
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generation expert systems", where deep models are used to support and extend rule—based reasoning.

In CBR we have also seen a recent up—growth of methods that — to a varying degree - combine case-based
reasoning with reasoning from explicit models of general knewledge [e.g. Hammond—86, Kolodner—87, Koton—
89, Schank-89, Porter-90, Branting-9l]. Our work follows up on this line of research, but put an even stronger
emphasis on the role of general knowledge within the CBR methods. The emphasis i s  on identifying general
principles and basic methods for how this synergy can be achieved and utilized within all reasoning tasks and for
all levels and types of problems to solve.

Note that the word 'problem' is used in a general sense in this paper. For example, solving a problem may be to
find the fault of  a car (solving a diagnosis problem), as well as to assess a legal situation in a court (solving an
interpretation problem)‘. A problem is defined by a goal (what to achieve) which in turn sets up one or more
tasks (what to do). To distinguish between external, application related tasks of a problem solver, and tasks set
up by the systems own reasoning process, the first will be referred to as application tasks, while the latter are
narged {erasooning tasks. Hence, learning tasks are also reasoning tasks. A task gets done by applying a method to
i t  [ tee s -  ] .

In the following a method that utilizes general knowledge extensively as an integrated part of a case—based
reasoning system is described. The primary role of general domain knowledge is  to produce explanations to
support and control the case—based processes, which is why we refer to the approach as explanatiomdriven case-
based reasoning. A generic mechanism, called the "expltmation engine", constitutes the fundamental reasoning
method. I t  splits a reasoning task into the three subtasks ACTIVATE, EXPLAIN,  and FOCUS - as illustrated in
figure 1 .  ‘ -
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l — Appl. task defined l- - Appt. task accomplished

Situation Situation
— Findings listed - Findings explained
- Constraints specified - Constraints confirmed

Figure 1. The Three Suhtasks of the Explanation Engine

The reasoning methods of these tasks get a significant part of their power from the underlying representation
system, a densely coupled semantic network where nodes as well as  relations are represented as frame concepts.
All knowledge, general as well as case specific, are represented as frame structures. At the low level, the frame
interpreter makes use of basic inference methods such as  various forms of property inheritance, low level frame
matching, and constraint propagation. In addition to the system's own model of  general domain knowledge, the
explanation engine also assumes that there is a competent user at the terminal. Hence it will interact with the
user in order to confirm conclusions, solve explanation conflicts, etc., whenever general knowledge is missing or
contradictory.

The methods underlying the three above tasks Operate briefly as follows:

ACTIVATE takes a problem specification in terms of a goal and a situation description and generates a set of
concepts suggested as relevant for further processing. Two methods are used to achieve this: Spreading activation
along appropriate relations in the semantic network, and reminding by following earlier established case links.
The appropriate spreading relations are determined as  part of the knowledge acquisition process.

EXPLAIN is the core method that builds up support for concepts identified by ACTIVATE. These concepts may
be of any kind, e.g. an inferred feature, a proposed solution, a failure repair, an inference action to take, or a new
case to be learned. The method of generating and evaluating explanations searches through activated parts of the
semantic network, and follows the paths of cumulatively highest explanatory strength. In assessing this
strength, it makes use of default explanatory strengths attached to each semantic relation and each meanmgful
combination of two successive relations. A ’strength-and-dependency table‘ for the semantic relations is defined as
part of the knowledge acquisition and modeling process? The strengths may have contextual constraints attached
to them. Further, the EXPLAIN method has at its disposal a set of explanation evaluation strategies in the form
of decision rules. An algorithm computes the resulting explanatory strength as  the search proceeds.

1I t  is sometimes also useful to view learning as a type of problem solving (Le. solving a learning problem), particularly when explicitly
modeling the behaviour of systems. I-lowever, in accordance with the history of CBR, problem soivmg and leamtng are here Viewed as
different tasks.

2The basic method of utilizing combined relational strengths for search and evaluation of explanatory paths was implemented in the
KNOWI'!‘ system, delivered to ESA as a prototype for knowledge-based information retrieval [Selvberg-92].
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FOCUS makes the final selection among competing concepts, when that is needed. It uses info about given 
priorities, and/or knowledge about the reasoning goal and possible constraints of content or form of the resulting 
concept. These constraints are typically external, pragmatic constraints defined by the application environment 
and current problem solving situation. 

3. Knowledge Representation 

The main representational concern of CBR research has been the representation of case knowledge, i.e. the 
contents and form of a case, the memory structures and indexes. For an explanation-driven approach, however, 
the representation of general knowledge is equally important. 

The CREEK architecture combines case-based and generalization-based knowledge within an integrated system 
design. All types of knowledge are represented within the same representation system, a frame-based language 
called CreekL. This is an open frame system of the FRL [Roberts-77] and KRL style, implemented in 
CommonLisp. Concepts are represented as 4-level structures of slots, facets, value expressions, and value fields. 
CreekL also incorporates features of CYCL [Lenat-89], such as the explicit representation of relations as 
concepts and inverses for all relations. Each relation (slot) and symbolic value (filler) defining a concept (frame) 
is defined in its own frame. This resuILs in a densely coupled knowledge model that integrates concept 
definitions, rules and cases, and object-level as .well as control level knowledge. The architecture contains explicit 
knowledge models at the control level for application problem solving strategies and task structures, as well as 
for internal control of reasoning methods and learning. This enables a reflective system that reasons about its 
own methods. 

Below, a frame representing the concept car is shown (as a pretty-printed lisp structure with most parentheses 
removed) with its slots, facets and values. Facets are mainly used to represent specific value types (e.g. defauILs, 
value-dimensions or ranges), constraints on the values of a particular frame-slot combination (e.g. a class 
specification for legal slot values), and demons - Lisp functions that returns a value or performs an operation (if
needed, if-added, etc.). 
car 

subclass-of value motorized-vehicle means-of-transportation sporting-gear 
has-colour value-elass colour 
has-number-of-wheels default 4 
has-age value-dimension years 

if-needed (time-difference 'current-year' self.has-production-year) 

The frames, interconnected by their slots, form a semantic network of concept nodes and relation links. Figure 2 
illustrates this perspective to the CreekL knowledge structure, and shows - for a small excerpt of a knowledge 
base - the tight integration between general and case-specific knowledge. Example concepts are taken from a 
domain of car starting problems. 

thing 

Figure 2: The Semantic Network Structure of CreekL Knowledge 

Relation names are left out in the figure, and so are some node names. The interconnected, unified structure is 
emphasized. The links represent a wide range of relations, such as taxonomic, functional, and causal relations 
(has-subclass. has-instance, has-part. has-function. has-state, causes), and differential links 
between cases (has-differential-case). 

In CreekL, concepts are described by their typical properties, which are inherited by more specialized concepts 
and instances. Inheritance is not limited to subclass and instance relations only, but may be described as a 
property of any semantic relation or combination of relations. For example, a spatial relationship expressed by a 
located-in relation (A located-in B) may be inherited along a has-part relation (A has-part C, inferring C 
located-in B). This would express that components of an object are located in the same place as the object itself 
- which is not universally true, but dependent on the context. The context dependency can be represented as a 
type of constraints on the slot inheritance-relation-for in the has-part frame. 

An explanation in CREEK is a structure consisting of a single relationship or a chain of relationships. The 
supporting strengths of an explanation is evaluated and assigned a numeric strength value. Explanations are 
stored within the frame of the concept to which the explanation belongs. For example, an explanation for why a 
starter motor will not turn is represented as: 
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FOCUS makes the final selection among competing concepts, when that is needed. It uses info about given
priorities, and/or knowledge about the rea sorting goal  and possible constraints of content or form of the resulting
concept. These constraints are typically external, pragmatic constraints defined by the application environment
and current problem solving situation.

3 .  Knowledge Represen t a t i on

The main representational concern of CBR research has been the representation of case knowledge, i.e. the
contents and form of a case, the memory structures and indexes. For an explanation—driven approach, however,
the representation of  general knowledge IS equally important.

The CREEK architecture combines case-based and generalization-based knowledge within an integrated system
design. All types of knowledge are represented within the same representation system, a frame-based language
called CreekL. This is an open frame system of the FRL [Roberts— 77] and KRL style, implemented in
CommonLisp. Concepts are represented as 4-  level structures of slots, facets, value expressions, and value fields.
CreekL also incorporates features of CYCL [Lenat-89], such as the explicit representation of  relations as
concepts and inverses for all relations. Each relation (slot) and symbolic value (filler) defining a concept (frame)
is defined in its own frame. This results in a densely coupled knowledge model that integrates concept
definitions, rules and cases, and object-level as well as control level knowledge. The architecture contains explicit
knowledge models a t  the control level for application problem solving strategies and task structures, as well as
for internal control of reasoning methods and learning. This enables a reflective system that reasons about its
own melhods.

Below, a frame representing the concept car is shown (as a pretty-printed lisp structure with most parentheses
removed) with its slots, facets and values. Facets are mainly used to represent specific value types (e.g. defaults,
value-dimensions or ranges), constraints on the values of a particular frame— slot combination (e.  g a class
specification for legal slot values), and demons- Lisp functions that returns a value or performs an Operation (if-
needed, if-added, etc”)

car
subclass-of value motorized-vehicle means-of—transportation sporting-gear
has-colour valueclass colour
has-number—of—wheels default 4
has-age value—dimension years

if-needed (time-difference *current—year“ self.has—production—year)

‚The frames, interconnected by their slots, form a semantic network of concept nodes and relation links. Figure 2
illustrates this perspective to the CreekL knowledge structure, and shows - for a small excerpt of  a knowledge
base - the tight integration between general and case-specific knowledge. Example concepts are taken from a
domain of car starting problems.

thing

f—ignition-key
does-not- turn

Figure  2: 'The Seman t i c  Ne twork  S t ruc tu re  of  CreekL  Knowledge

Relation names are left out in the figure, and so are some node names. The interconnected, unified structure is
emphasized. The links represent a wide range of relations, such as  taxonomic, functional, and causal relations
(has-subclass, has-instance, has-part, has-function, has-state”, causes),  and  differential links
between cases (has-differential-case) .

In CreekL, concepts are described by their typical properties, which are inherited by more specialized concepts
and instances. Inheritance is not limited to subclass and instance relations only, but may be described as a
property of  any semantic relation or combination of relations. For example, a spatial relationship expressed by a
located-in relation (A located-in B) may be inherited along a has-part  relation (A has-part C ,  inferring C
located-in B). This would express that components of an object are located in the same place as the object itself
- which  is  not universally true, bu t  dependent on the context. The context dependency can be represented a s  a
type of constraints on the slot inheritance-relation‘for in the has-part frame.

An explanation in CREEK is a structure consisting of a single relationship or a chain of relationships. The
supporting strengths of an explanation is evaluated and assigned a numeric strength value. Explanations are
stored within the frame of the concept to which the explanation belongs. For example, an explanation for why a
Starter motor will not turn is represented as:
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starter-motor-1 
instance-of value starter-motor 
part-of value car-! 
has-tuming-status expected-value (turns) 

value (does-not-turn 
(0.9	 (baltery-1.has-voltage.very-low) 

(baltery-1.instance-of.baltery) 
«battery.has-voltage. very-Iow) causes 
(starter-motor.has-turning-status.does-not-tum» 
(starter-motor-1.instance-of.starter-motor))) 

Explanations are also stored in cases, for successful as well as for failed solutions. A stored case is a rich source 
of information, containing the following slot types (example from diagnostic domain): 

problem goal successful diagnosis expl.of successful diagnosis
 
relevant lindings successful repair expl. of successful repair
 
differential findings failed diagnosis expl. of failed diagnosis
 
differential cases failed repair expl. of failed repair
 

In addition, a case also contains 'book-keeping' information like its status in the problem solving and learning 
process, time reference, Lhe number of times it has been used to solve new problems, etc. Three slot types of a 
case serve the role as index links for initial case retrieval: relevant findings (favours retrieval), differential 
findings (disfavours retrieval), and solutions (e.g. faults and repairs). 

5. Case Retrieval, Reuse and Learning 

At the top level, a case-based reasoning process is captured by the three tasks Retrieval, Reuse, and Learning. 
Retrieval captures the subtasks up to identification of the best matching case. Reuse includes possible 
modifications of a past solution as well as solution evaluation. Learning is the process that follows the 
successful or failed attempt to solve an application problem. The explanation engine utilizes its ACTIVATE
EXPLAIN-FOCUS method to combine case-based and generalization-based reasoning in all the three subtasks. 
Below, its main reasoning tasks and mechanisms are outlined: 

Retrieval 
The goal is to return the best matching case from the case base. Its input is whatever is known about the 
problem to be solved. 

ACTIVATE has two subtasks. One is to de/ermine a relevant broad context for the problem. We are assuming a 
large knowledge base, and want to activate just the part of this knowledge base that is potentially relevant. The 
broad context is determined by a method called goal-focused spreading activation. This method first activates all 
goal relevant concepts, i.e. the goal itself as well as concepts linked to the goal by taxonomic, causal, and 
functional relations. By spreading recursively along such relations, this produces a sphere of concepts relevant to 
the problem goal. Then a similar spreading process starts out from the problem findings. All concepts within the 
goal sphere or findings sphere, as well as concept,> that lie on paths which directly or indirectly connect any two 
concepts in the two spheres, are marked as activated. The set of activated concepts constitute the part of the 
knowledge base that will be used for further inferencing. The other subtask of Activate uses the findings as 
indexes to the case base to retrieve a se/ of cases whose matching strength is above a certain threshold. A concept 
classified as a finding has a slot called relevant-finding-for which holds a list of cases and a computed 
relevance factor for the finding with respect to each case. 

EXPLAIN is the task to evaluate the matching between the cases in set and the current problem. This basically 
means to explain the relevance to the problem for findings that matches well, and to explain away mismatches in 
findings. The latter is the most challenging, and is performed by a search for explanation paths in the general 
knowledge, by starting out from the finding and the sqlution of the retrieved case. This may introduce constraints 
on the solution of the problem, since a mismatch may be explained away only if some conditions are fulfilled. 
The user may be consulted here. 

FOCUS makes the final selection of the best case, or rejects all of them. The case with the strongest explanatory 
justification of its findings will normally be selected. If in doubt, other pragmatic or external criteria are applied. 

Reuse 
The goal is to use the solution of a previous case in solving a new problem, usually involving some kind of 
modification of the past solution. 

ACTIVATE starts out from the solution of the best matching case, and spreads activation to concepts 
representing expected findings not already accounted for. Spreading relations typically include causal and 
functional relations, as well as direct associations (e.g. implies and cooccurs-with relations). In addition, 
possibly risky consequences of applying the solution are also activated. 

EXPLAIN has two main subtasks. One is to evaluate the solution proposed. It starts by attempting to justify 
Lhat there is no danger for effccL~ of risky consequences. Next, expccted findings are explained as either relevant 
or irrelevant to the current problem context. An attempt is made to infer the relevant expectations (explain Lheir 
presence in the current problem) before asking the user. If the expectations are covered for, control is given to the 
Focus task. If not, the second Explain task, modification of the solution, is triggered. An attempt is made to 
produce an explanation structure Lhat justifies a replacement or tweaking of the solution. For example: In our 
car-sLarting domain findings are that the engine turns, but the car will not sLart. The solution of the retrieved case 
is faulty carburettor valve. An explanation path to the findings is carburettor-valve-stuck causes too
rich-gas-mixture-in-cylinder causes no-chamber-ignition causes engine-does-not-fire. However, the 
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starter-motor—1
instance-of value starter—motor
Kart-of value car— i
as-tuming—status expected-value (turns)

value (does-not—tu rn
{0.9 (battery-1 .has—voltage.very-Iow)

(battery—1 .in stance-oi.battery)
((battery.has-voltage.very-low) causes
(starter-motor.has-turning-status.does-not-turn))

(starter—mote r-1 .instance-of.starter-motor»)

Explanations are also stored in cases, for successful as well as for failed solutions. A stored case i s  a rich source
of information, containing the following slot types (example from diagnostic domain):

problem pal successful diagnosis expl.of successful diagnosis
relevant indin s successful repair expl. of successful repair
differential fin mgs failed diagnosis expl. of failed diagnosis
differential cases failed repair exp]. of failed repair

In addition, 'a case also contains 'book-keeping' information like its status in the problem solving and learning
process, time reference, the number of times i t  has been used to solve new problems, etc. Three slot types of a
case serve the role as index links for initial case retrieval: relevant findings (favours retrieval), differential
findings (disfavours retrieval), and solutions (cg. faults and repairs).

5 .  Case Retrieval, Reuse and Learning

At the top level, a case-based reasoning process is captured by the three tasks Retrieval, Reuse, and Learning.
Retrieval captures the subtasks up to identification o f  the best matching case. Reuse includes possible
modifications of a past solution as well as solution evaluation. Learning is the process that follows the
successful or failed attempt to solve an application problem. The explanation engine utilizes its ACTIVATE-
EXPLAIN-FOCUS method to combine case-based and generalization-based reasoning in all the three subtasks.
Below, its main reasoning tasks and mechanisms are outlined:

Re t r i eva l
The goal is to return the best matching case from the case base. Its input is whatever is known about the
problem to be solved.

ACTIVATE has two subtasks. One is to determine a relevant broad context for the problem. We are assuming a
large knowledge base, and want to activate just the part of  this knowledge base that is potentially relevant. The
broad context is determined by a method called goal-focused spreading activation. This method first activates all
goal relevant concepts, i.e. the goal itself as well as concepts linked to the goal by taxonomic, causal, and
functional relations. By spreading recursively along such relations, this produces a sphere of concepts relevant to
the problem goal. Then a similar Spreading process starts out from the problem findings. Al l  concepts within the
goal sphere or findings sphere, as well as concepts that lie on paths which directly or indirectly connect any two
concepts in the two spheres, are marked as activated. The set o f  activated concepts constitute the part o f  the
knowledge base that wi l l  be used for further inferencing. The other subtask of Activate uses the findings as
indexes to the case base to retrieve a set of cases whose matching strength is above a certain threshold. A concept
classified as a finding has a slot called relevant-finding-for which holds a list o f  cases and a computed
relevance factor for the finding with respect to each case.

EXPLAIN is the task to evaluate the matching between the cases in set and the current problem. This basically
means to explain the relevance to the problem for findings that matches well, and to explain away mismatches in
findings. The latter is the most challenging, and is performed by a search for explanation paths in the general
knowledge, by starting out from the finding and the solution of  the retrieved case. This may introduce constraints
on the solution of the problem, since a mismatch may be explained away only i f  some conditions are fulfilled.
The user may be consulted here.

FOCUS makes the final selection of the best case, or rejects all o f  them. The case with the strongest explanatory
justification of  its findings wil l  normally be selected. I f  in  doubt, ether pragmatic or external criteria are applied.

Reuse
The _goal is to use the solution o f  a previous case in solving a new problem, usually involving some kind of
modification of  the past solution.

ACTIVATE starts out from the solution of the best matching case, and spreads activation to concepts
representing expected findings not already accounted for. Spreading relations typically include causal and
functional relations, as well as direct associations (cg. implies and cooccurs-with relations). In addition,
possibly risky consequences of  applying the solution are also activated.

EXPLAIN has two main subtasks. One is to evaluate the solution proposed. It starts by attempting to justify
that there is  no danger for offeels of  risky consequences. Next, expected findings are explained as either relevant
or irrelevant to the current problem context. An attempt is made to infer the relevant expectations (explain their
presence in the current problem) before asking the user. I f  the expectations are covered for, control is given to the
Focus task. I f  not, the second Explain task, modification of the solution, is triggered. An attempt is made to
produce an explanation structure that justifies a replacement or tweaking of  the solution. For example: In our
car-starting domain findings are that the engine turns, but the car will not start. The solution of  the retrieved case
is faulty carburettor valve. An explanation path to the findings is carburettor—valve-stuck causes too-
rich-gas-mixture-in~cy|inder causes no-chamber-ignition causes engine-does-not-fire. However, the
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carburellor turns out to be OK. By searching backwards along this explanation path, looking for other 
explanations of its states, it turns out that no-chamber-ignition is also caused by water-in-gas-mixture. 
The control is passed back to Activate which derives the expected finding water-in-gas-tank. This is then 
confirmed by the user. 

FOCUS is usually a small task, unless the explanation process comes out with several solutions. It checks 
whether a proposed solution confirms with external requirements, and proposed its suggested solution to the 
user. 

Learning
The goal is to capture the experience from the problem just solved, by constructing a new case and/or modifying 
pans of the knowledge base. 

ACTIVATE here works on the structure activated by Retrieve and Reuse, and extracts potential concepts and 
structures for learning. This primarily means possible contents of a new case, but new or modified concepL~ that 
may have been introduced by the user is also marked for the learning process. 

EXPLAIN has three subtasks. The first is to justify whether a new case needs to be constructed or not. It is done 
if no similar past case was found, if a retrieved solution needed significant modification, or if the set of relevant 
problem findings are sufficiently different from that of the case. The two latter criteria involves explanation 
processes, to assess the significance of a modification or of feature differences. Learning of generalizations does 
not play a strong role in this method, but a lazy generalization of values for findings is done if justified by an 
explanation or by the user. Given that a new case is to be stored, the second subtask is to assess the importance 
(degree of necessity) and predictive strength (degree of sufficiency) of case findings, in order to compute their 
relevance factors. 

FOCUS is the task of putting together the new structures into a case frame, and actually storing the new or 
modified case and its indexes. Following this, a test is run by entering the same problem a second time, and 
checking whether its solution procedure is improved. 

5. Discussion 

Case-based reasoning has shown to be a powerful problem solving and learning paradigm for a varity of 
application domains. Characteristics of the domain type being addressed is important in determining the type of 
CBR method to use. In closed and well-defined domains, the need for supportive general knowledge is much less 
than in open domains, and may often be compiled beforehand into global metrics of similarity and other general 
operators [Richter-9l}. When explicit general knowledge is integrated into the CBR processes, two synergy 
effects are immediately seen: One is to provide explanation-based control and guidance to the case processes, by, 
e.g., focusing on particular goals and tasks, constraining search, and supporting proposed hypotheses. As 
previously stated, this is the synergy effect aimed for here. The other synergy effect is the kind of 'inverse' effect 
achieved by using the cases within the explanation process itself, i.e. a case-driven explanation process (as in the 
SWALE system [Schank-89J). Methods developed from the latter motivation may also be useful to achieve the 
former effect, but this is not presently part of our method. 

Several methods have been developed that make use of explicit models of general knowledge in its case-based 
processes [e.g. Hammond-86, Kolodner-87, Koton-89, Porter-90, Branting-91]. However, although representing 
very important contributions to this research, methods that have been proposed typically focus on one or a small 
subset of the CBR tasks. An exception is CASEY [Koton-89], but that approach relies on a strong knowledge 
model, and leaves out the interactive cooperation with the user which is needed in open and weak iheory 
domains. In a sense, our approach shares the widespread use of general knowledge with CASEY and the 
interactive role of the user with PROTOS [Bareiss-88]. Recent suggestions for integrated architectures [Althoff
91, Ram-92, Plaza-93, Manago-93] represent interesting work towards more unified methods, but so far the 
problem has been addressed only partly, at a high and abstracted level, or for closed domains. The MOLTKE 
system [Althoff-91] is an exa!nple of the latter. 

The knowledge-intensive approach we have taken has forced us to pay a lot of attention to the knowledge 
representation problem. Related methods have also had to address this issue to some extent. CASEY [Koton-89] 
uses a pre-existing causal model of general knowledge, represented as a causal network augmented with 
probability estimates for mere. associations between features and diagnostic states. Cases are held in a separate 
structure, organized as a Schank/Kolodner type of dynamic memory. PROTOS [Bareiss-88] has an integrated 
structure consisting of a semantic network of domain categories linked by a variety of relations (causal, 
functional, associational, etc.), in which cases are linked as exemplars of diagnostic categories. The CREEK 
approach is most similar to PROTOS in this respect, but there are significant differences in the way cases are 
integrated with general knowledge, as well as how they are indexed and used. 

Modeling and representation of knowledge in the explanation-driven CBR approach is in general viewed as a 
knowledge engineering problem. As such it is subject to the problems, methods and tools addressed by the 
knowledge acquisition community. Unlike some other motivations, for example PROTOS', we do not advocate 
CBR as an alternative answer to the initial knowledge modeling problem, rather as an approach to the problem 
of continuous knowledge maintenance. Hence, a view of knowledge modelling as basically a top-down modcling 
process [Steels-90, Chandra-92, Wielinga-92] is here merged with the bottom-up oriented view provided by 
learning from experience [Van de Velde-92]. The dominant role of top down modeling is weakened in favour of a 
more iterative development process for knowledge-based systems. 
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carburettor turns out to be OK. By searching backwards along this explanation path, looking for other
explanations of its states, i t  turns out that no-chamber-ignition is also caused by water-in-gas-mixture.
The control is passed back to Activate which derives the expected f ind ing water- in-gas- tank.  This is  then
confirmed by the user.

FOCUS is usually a small task, unless the explanation process comes out with several solutions. .It checks
whether a proposed solution confirms wrth external requirements, and proposed us suggested solution to the
user.

Learning
The goal is to capture the experience from the problem just solved, by constructing a new case and/or modifying
parts o f  the knowledge base.

ACTIVATE here works on the structure activated by Retrieve and Reuse, and extracts potential concepts and
structures for learning. This primarily means possible contents of  a new case, but new or modified concepts that
may have been introduced by the user is also marked for the learning process.

EXPLAIN has three subtasks. The first is to justify whether a new case needs to be constructed or not. I t  is done
if  no similar past case was found, i f  a retrieved solution needed significant modification, or i f  the set of relevant
problem findings are sufficiently different from that of the case. The two latter criteria involves explanation
processes, to assess the significance of a modification or of  feature differences. Learning of  generalizations does
not play a strong role in this method, but a lazy generalization of values for findings is done i f  justified by an
explanation or by the user. Given that a new case is to be stored, the second subtask is to assess the importance
(degree of  necessity) and predictive strength (degree of sufficiency) of  case findings, in order to compute their
relevance factors.

FOCUS is the task_of'putting together the new structures into a case frame, and actually storing the new or
modified case and its indexes. Followmgthts, a test IS run by entering the same problem a second tune, and
checking whether its solution procedure is improved.

5 .  D i scuss ion

Case-based reasoning has shown to be a powerful problem solving and learning paradigm for a varity of
application domains. Characteristics of  the domain type being addressed is important in determining the type of
CBR method to use. In closed and well—defined domains, the need for supportive general knowledge is much less
than in open domains, and may often be compiled beforehand into global metrics of  similarity and other general
operators [Richter-91]. When explicit general knowledge is integrated into the CBR processes, two synergy
effects are immediately seen: One is to provide explanation-based control and guidance to the case processes, by,
e.g., focusing on particular goals and tasks, constraining search, and supporting proposed hypotheses. As
previously stated, this is the synergy effect aimed for here. The other synergy effect is the kind of 'inverse' effect
achieved by using the cases within the explanation process itself, i.e. a case-driven explanation process (as in the
SWALE system [Schank—89D. Methods developed from the latter motivation may also be useful to achieve the
former effect, but this is not presently part o f  our method.

Several methods have been developed that make use of explicit models of  general knowledge in its case—based
processes [c.g. Hammond-86, Kolodner-87, Kaum-89, Porter-90, Branting-Ql]. However, although representing
very important contributions to this research, methods that have been proposed typically focus on one or a small.
subset o f  the CBR tasks. An exception is CASEY [Keim—89], btit that approach relies on a strong knowledge
model, and leaves out the interactive cooperation with the user which is needed in Open and weak iheory
domains. In a sense, our approach shares the wideSprcad use of general knowledge with CASEY and the
interactive role of  the user with PROTOS [Bareiss-SS]. Recent suggestions for integrated architectures [Althoff-
91, Ram-92, Plaza—93, Manage-93] represent interesting work towards more unified methods, but so far the
problem has been addressed only partly, at a high and abstracted level, or for closed domains. The MOLTKE
system [Althoff-91] is an example of  the latter.

The knowledge-intensive approach we have taken has forced us to pay a lot of attention to the knowledge
representation problem. Related methods have also had to address this issue to some extent. CASEY [Koton-89]
uses a pre-existing causal model o f  general knowledge, represented as a causal network augmented with
probability estimates for mere. associations between features and diagnostic states. Cases are held in a separate
structure, organized as a Schank/Kolodner type of  dynamic memory. PROTOS [Bareiss-88] has an integrated
structure consisting of  a semantic network of  domain categories linked by a variety of relations (causal,
functional, associational, etc.), in which cases are linked as exemplars of diagnostic categories. The CREEK
approach is most similar to PROTOS in this respect, but there are significant differences in the way cases are
integrated with general knowledge, as well as how they are indexed and used.

Modeling and representation of  knowledge in the explanation—driven CBR approach is in general viewed as a
knowledge engineering problem. As such i t  is subject to the problems, methods and tools addressed by the
knowledge acquisition community. Unlike some other motivations, for example PROTOS', we do not advocate
CBR as an alternative answer to the initial knowledge modeling problem, rather as an approach to the problem
of continuous knowledge maintenance. Hence, a view of  knowledge modelling as basically a top-down modeling
process [Steels-90, Chandra—92, Wielinga-92] is here merged with the bottom-up oriented view provided by
learning from experience [Van de Velde-92]. The dominant role of  top down modeling is weakened in favour of a
more iterative deveIOpment process for knowledge—based systems.
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6. Status and Further Work 

The system described here is under implementation in our deparunent. An experimental evaluation of the method 
will therefore have to wait. It's plausibility, however, is supported by the integration of two approaches which 
each has a lot of merit, and the fact that exisiting approaches to knowledge-intensive CBR has shown promising 
results. 

All CBR systems use indexes in one way or another for case retrieval, but there are a lot of unresolved problems 
here. Research issues include what type of indexing terms to use, the actual index vocabulary, the way indexes 
are linked to cases, possible inter-case indexes, whether indexes are direct pointers to cases or parts of an index 
structure, the combination of indexes during retrieval, and the assessment criteria for case similarity. A problem 
with too heavy reliance on indexing, however, is that indexes are a kind of pre-compIied knowledge. A 
characteristic of case-based learning is that the generalization process is not made when learned knowledge is 
stored, but when this knowledge is used, i.e. during problem solving. Indexing works in the opposite direction 
to this, since it anticipates and pre-sets the future use of case knowledge. The alternative approach to case 
retrieval is search, which is time consuming, and often difficult to guide in the wanted direction. Elaborate 
reasoning within an extensive and rather deep model of general knowledge, is a cost demanding process. The 
problem, then, is to find a suitable balance between the two. An explanation-driven approach enables a search 
procedure which is constrained by general domain knowledge related to the context of the actual problem. We 
have started to study how this may allow a system to weaken its reliance on abstract indexes, in favour of 
making abstractions within the context of the actual problem. 

Currently, the ACTIVATE-EXPLAIN-FOCUS engine uses only its general knowledge to produce explanations. 
A case in the CreekL representation is a rich structure, and the utilization of the cases themselves in the 
explanation process is a natural extension we want to look into. 
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6 .  Status and  Further  Work

The system described here is under implementation in our department. An experimental evaluation of the method
will therefore have to wait. It's plausibility, however, is supported by the integration of two approaches which
each has a lot of merit, and the fact that exisiting approaches to knowledge-intensive CBR has shown promising
results.

All CBR systems use indexes in one way or another for case retrieval, but there are a lot of unresolved problems
here. Research issues include what type of indexing terms to use, the actual index vocabulary, the way indexes
are linked to cases, possible inter-case indexes, whether indexes are direct pointers to cases or parts of an index
structure, the combination of  indexes during retrieval, and the assessment criteria for case similarity. A problem
with too heavy reliance on indexing, however, is that indexes are a kind of pie-complied knowledge. A
characteristic of case—based learning is that the generalization process is not made when learned knowledge is
stored, but when this knowledge is used, i.e. during problem solving. Indexing works in the opposite direction
to this, since it anticipates and pre—sets the future use of case knowledge. The alternative approach to case
retrieval is search, which is time consuming, and often difficult to guide in the wanted direction. Elaborate
reasoning within an extensive and rather deep model of general knowledge, is a cost demanding process. The
problem, then, is to find a suitable balance between the two. An explanation-driven approach enables a search
procedure which is constrained by general domain knowledge related to the context of the actual problem. We
have started to study how this may allow a system to weaken its reliance on abstract indexes, in favour of
making abstractions within the context of the actual problem.

Currently, the ACTIVATE-EXPLAIN-FOCUS engine uses only its general knowledge to produce explanations.
A case in the CreekL representation is a rich structure, and the utilization of the cases themselves in the
explanation process is a natural extension we want to look into. ‘
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Abstract. This report presents work in progress on combining case-based. reasoning with task
specific architectures. The theoretical starting point of this work is the Generic Tasks of Chan
drasekaran [5], while the implementation starting point is a commercially available product for 
building technical diagnosis systems called Diagnostic Master (tm) [1]. While the Generic Task 
approach eases the knowledge acquisition bottleneck by providing a task structure with which to 
model expertise, it does not take advantage of the fact that experts often feel comfortable telling 
'war stories', or specific cases that they f~und interesting or instructive in the past. Typically these 
cases involve exceptions to well-known principles or new and unusual concepts, which may have 
been overlooked during knowledge acquisition. 

Generic Tasks 

Recent trends in knowledge acquisition have moved away from a knowledge mining point of view (de
termine what the expert knows) to a knowledge modeling point of view (model how the expert uses the 
knowledge). One popular style of modeling is by using Generic Tasks [5] as building blocks. This is not the 
place for a complete description of the meaning and interpretation of generic tasks, but a brief description 
of their features as they apply to case based reasoning is necessary. 

The basic insight behind Generic Tasks it is necessary to know something about the use to which 
knowledge will be put in order to model it. A particular Generic Task is characterized by input/output 
relationships, and the type of knowledge needed to perform the task. Once a Generic Task has been 
identified for some expert behavior, knowledge acquisition proceeds by eliciting the particular type of 
knowledge needed for the task. This is in contrast with general-purpose expert system shells, in which 
knowledge is represented in the same fashion for all tasks, and it is left to the knowledge engineer to 
program the control. A half dozen particular tasks have been identified; for this paper, we are only 
interested in two of them, HIERARCHICAL CLASSIFICATION and ABDUCTION. The life cycle for expert 
system development in such an architecture is to decide, based on the input/output description of the 
expert task, which Generic Task is appropriate, then use information already worked out about this task 
(possibly in the form of automated support) to build the system. 1 

Hierarchical classification is an appropriate model when the task involves selecting a category from a 
pre-enumerated set of possibilities, in which the some possibilities are more general than others. In the 
terms outlined in the last paragraph, Hierarchical Classification is a Generic Tasks characterized by an 
input which is a description of some situation, the output is a particular class from a pre-enumerated 
set of known classes, and the knowledge that supports this classification is organized in a hierarchy of 
general/specific classes. Hierarchical classification is particularly useful in diagnostic settings, in which 
lab tests or measurements are the description of the situation, the known diseases (malfunctions) are 
the pre-enumerated categories, and these diseases (malfunctions) are hierarchically summarized in more 
general malfunction catego~ies, which are in turn summarized into still more general categories, and 
so on. Knowledge acquisition for hierarchical classification proceeds by requesting categories from the 
expert, and a means for determining whether a particular case falls in each category. Once knowledge has 
been acquired in this form, any number of strategies can be used to 'run' the knowledge base. Both the 
knowledge acquisition phase and the run phase can be automated by a 'task-specific shell'; for acquisition 
this consists of an active browser for constructing the hierarchy, for running the knowledge this consists 
of some algorithm for searching the tree. Such a shell is intentionally less versatile than a general-purpose 
programming language. The test of success of a generic task and accompanying shell is whether (1) the 
shell is capable of solving an application problem despite its lack of flexibility, and (2) the increased 
guidance given by the more restrictive language makes it easier to build systems than by programming a 
general-purpose language. 

1 in [6] a recursive version of this life-cycle is described. 
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Recent trends in knowledge acquisition have moved away from a knowledge mining point of view (de—
termine what the expert knows) to a knowledge modeling point of view (model how the expert uses the
knowledge). One popular style of modeling is by using Generic Tasks [5] as building blocks. This is not the
place for a complete description of the meaning and interpretation of generic tasks, but a brief description
of their features as they apply to  case based reasoning is necessary.

The basic insight behind Generic Tasks it is necessary to know something about the use to which
knowledge will be put in order to model it. A particular Generic Task is characterized by input/ output
relationships, and the type of knowledge needed to  perform the task. Once a Generic Task has been
identified for some expert behavior, knowledge acquisition proceeds by eliciting the particular type of
knowledge needed for the task. This is in contrast with general-purpose expert system shells, in which
knowledge is represented in the same fashion for all tasks, and it is left to the knowledge engineer to
program the control. A half dozen particular tasks have been identified; for this paper, we are only
interested in two of them, HIERARCHICAL CLASSIFICATION and ABDUCTION. The life cycle for expert
system development in such an architecture is to decide, based on the input/ output description of the
expert task, which Generic Task is appropriate, then use information already worked out about this task
(possibly in the form of automated support) to build the system. 1

Hierarchical classification is an appropriate model when the task involves selecting a category from a
pre—enumerated set of possibilities, in which the some possibilities are more general than others. In the
terms outlined in the last paragraph, Hierarchical Classification is a Generic Tasks characterized by an
input which is a description of some situation, the output is a particular class from a pro-enumerated
set, of known classes, and the knowledge that supports this classification is organized in a hierarchy of
general /specific classes. Hierarchical classification is particularly useful in diagnostic settings, in which
lab tests or measurements are the description of the situation, the known diseases (malfunctions) are
the pre—enumerated categories, and these diseases (malfunctions) are hierarchically summarized in more
general malfunction categories, which are in turn summarized into still more general categories, and
so on.  Knowledge acquisition for hierarchical classification proceeds by requesting categories from the
expert, and a means for determining whether a particular case falls in each category. Once knowledge has
been acquired in this form, any number of strategies can be used to ‘run’ the knowledge base. Both the
knowledge acquisition phase and the run phase can be  automated by a ‘task-specific shell’; for acquisition
this consists of an active browser for constructing the hierarchy, for running the knowledge this consists
of some algorithm for searching the tree. Such a shell is intentionally less versatile than a general—purpose
programming language. The test of success of a generic task and accompanying shell is whether (1) the
shell is capable of solving an application problem despite i ts  lack of flexibility, and (2) the increased
guidance given by the more restrictive language makes it easier to  build systems than by programming a
general-purpose language.

1 in [6] a recursive version of this life-cycle is described.
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2 Case-Based Reasoning and Diagnosis 

Diagnostic Master is just such a shell for Hierarchical classification. Its commercial success to date has 
resulted from the fact that it has succeeded on the two points above - that is, it has been successfully 
applied to a number of applications, and has provided sufficient guidance in system construction that it 
was possible for these applications to be built by users who are not trained as knowledge engineers, or 
even as programmers. 

Golding and Rosenbloom [9] argue convincingly that the strength of a rule-based approach to expert 
system construction can be augmented by using a case-based method for handling exceptions. Those ar
guments apply equally weU to generic tasks based approaches. Feret and Glasgow [8] have already applied 
a similar method to use case-based reasoning to enhance diagnosis performed by structural decomposi
tion. Structural decomposition performs diagnosis on a tree similar to the hierarchical classification tree 
- hence these techniques should apply here as well. 

We have examined two application domains to determine the applicability of the current Diagnostic 
Master, and the utility of these extensions. We have devised an architecture that takes advantage of the 
knowledge acquisition powers of DM, as well as the case extensibility of these case-based approaches. 

3 Application Domains 

3.1 Windows 

In [11], Lauriston gives over 60 cases of problems using Windows 3.1. These cases are expressed in natural 
language, with features that range over functions of a dozen different software applications that run with 
Windows 3.1. Any particular case only refers to a few (mayb~ even only two) of these features. In order 
to process these cases, we must first determine how we will represent them. 

One of the main problems in case retrieval is to determine when a new case is relevantly similar to an 
old case. For example, a common pattern of problem was the following: 

- Some enhancement of a program is not supported by a particular platform (harware or operating 
system), 

- The system being diagnosed uses that platform, 
- The solution is to disable the enhancement. ? 

Once one such case has been seen (say, 386E not supporting fast paste), then further similar cases 
(386E does not support multiprocessing features) should be identified as similar to this case. Notice that 
a simple match offeatures will not show the similarities between these cases - the multiprocessing features 
are used in a completely different application and context than the paste features. 

Protos [3] deals with this problem by allowing for a very sophisticated match between features. Causal, 
structural, and functional relationships between features are recorded with each case. Protos performs a 
heuristic search to find a match between the features of the current case and a stored case. 

But such a match is underinformed in the current situation - the fact that a particular multiprocessing 
feature matches fast paste in this situation is only because they are both unsupported features of the 
386E. This match is relevant only if both cases involve the 386,E. A single feature match, which does not 
also check that the platforms match, cannot possibly determine when the match is important. 

The Dudu system [2] uses more information in its matching process, and is more in the spirit of EBG 
[12], in that the reason why a particular feature supports a particular conclusion is utilized in the matching 
process. We propose an architecture that will perform this sort of intentional match. In particular, rather 
than trying to find a simple match between the features of one case and another, we search the new case 
for a feature that plays the same role in the new case as pla;ved by a feature in the old. In this case, 
the fact that fast paste was an unsupported feature of the 386E (which is the explanation of the failure) 
would commence a search for an unsupported feature of the 3886E in the new case. 

3.2 Textiles 

In cooperation with the Swiss Federal Laboratories for Materials Testing and Research (EMPA), we have 
obtained a number of cases of failures in textile manufacture. The cases are unusual in that the data 
from the cases do not come from the machinery itself, but rather from the product, that is, the woven 
goods. Typical errors are d~rk stripes along the fabric, small holes in the fabric, and single threads under 
tension. The problem is to determine whether the fault comes from the spinning, weaving, or finishing 
process. Each of these represents a different company, who have their own experts who argue that the 
fault could not lie in their process. EMPA acts as an impartial agent to decide these cases. 
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4 

The cases follow a pattern similar to that described in [4], in that a typical case consists of a short 
description of the faulty sample, followed by a number of te~ts performed on the sample to determine the 
source of the flaw. Unlike the cases examined in [4], the set of all possible tests is not known in advance. 
Furthermore, many of the tests are politically motivated - sometimes a certain hypothesis is pursued not 
because it is deemed most likely, but because it is deemed most desirable by the customer. In the long 
run, this does not affect the accuracy of the expert's decision (false hypotheses are ruled out, even ifthey 
are highly desirable), but it does affect the order in which tests ?-re carried out. 

Most case-based algorithms presume that the case is expressed in terms of features and values for 
those features. For these cases, some knowledge engineering is necessary before the case can be expressed 
in this form. For example, a number of the measurments are taken at intervals measured from a dark/light 
band. The placement of these measurements depend on the size and density of the band. Some appropriate 
representation of the case (e.g. in terms of 'yarn gauge deviation between dark and light bands' as opposed 
to simply 'yarn gauge') need to be worked out. These categories must be relevant to the task at hand, 
which itself must be determined. That is, in order to use the cases at all, a knowledge engineering phase 
supported by GTs must be carried out. 

A combined Architecture for CBR and GT 

The aim of this project is to experiment with various possibilities for combining the advantages of case
based reasoning and task-specific knowledge engineering. The architecture presented here is not final, but 
is intended as a workbench on which to test different ways of combining these. 

The architecture follows quite simply from the two examples shown above, and the experiences found 
in the literature. Figure 1 shows the basic system architecture. 

Since a DM tree captures general regularities in a system as provided by the expert, the overall 
structure of the system resembles the current DM tree. Nodes higher in the tree correspond to more 
general failures, nodes farther down in the tree more specific failures. A node is connected to a node 
higher up in the tree if it corresponds to a specialization of the concept at the higher node. This means 
that the tree can be searched using an establish-refine strategy, that is, establishing the relevance of the 
top node, and then refining this answer by establishing the relevance of the nodes beneath. This is the 
current state of Diagnostic Master. 

I 
I, 
~ 
-;7 

Fig. 1. Square nodes are DM concepts as in the current system. Each node corresponds to a diagnostic category, 
and has associated with it knowledge for establishing the validity of that category. Tip nodes correspond to 
diagnostic conclusions. Exceptional cases are stored in tip nodes, along with an explanation of why they should 
have been classified differently. 

At each tip node (which, as in the case of structural decomposition [8], correspond to final diagnostic 
categories), the knowledge base can be extended by storing exceptional cases. In a spirit similar to Golding 
and Rosenbloom [9]' we do not want to follow an exceptional case unless there is a compelling reason 
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At each tip node (which, as in the case of structural decomposition [8], correspond to final diagnostic
categories), the knowledge base can be  extended by storing exceptional cases. In a spirit similar'to Golding
and Rosenbloom [9], we do not want to follow an exceptional case unless there is a compelling reason
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to do so. They use inductive methods for determing how compelling a case is. We propose the use of 
explanation-based methods, described in more detail below. 

Thus, the system construction cycle in this architecture will proceed as follows: knowledge engineering 
will commence as it currently does in DM. In the current version of DM, the system must be refined 
using the same DM architecture until its performance is satisfactory. In the new system, the features 
acquired by the construction of the DM case will be used to describe other cases that are particularly 
interesting or difficult. Rather than trying to modify the DM structure to handle all the exceptional 
cases, the case-based system will take over. When a particular case is misclassified, the expert explains 
the correct classification, and enters it in the system. In this manner, the DM tree serves as an index into 
the case base, or in Protos terms, as an elaborate reminding structure. 

4.1 Supporting Explanations 

When an exceptional case is recorded, the expert is asked for an explanation of why the case should 
be classified differently. The 'Tips for a teacher of Protos' [7] shows that experts are usually good at 
providing explanations, though the explanations they provide are not necessarily of a uniform nature. 
Thus it is necessary to provide the expert some assistance in structuring the explanations. This is again 
provided by the Generic Task structure of the problem. 

Since at this point the expert is doing explanation rather than classification, the Generic Task HI
ERARCHICAL CLASSIFICATION is no longer the appropriate one, rather ABDUCTION. ABDUCTION is the 
process of inference to the best explanation. In [10], Josephson provides an inference form for abduction. 
That is, they provide a list of what things must be satisfied by an abductive argument in order for it to 
be valid: Given a set of data D to be explained, one is justified in concluding a hypothesis H as the best 
explanation of D when one satisfies the five following criteria: 

H explains D, 
H is a priori plausible, 
Sufficient alternatives to H have been considered, 
H surpasses these alternatives by a sufficient amount, and 

- The data D is reliable. 

This description leaves as undefined a large number of terms, like plausible, e:tplain, sufficient, etc. 
Details of the uses of these words, and how they affect the confidence in the abductive conclusion, can 
be found in [10]. 

This form will be used to help the expert structure explanations. That is, in order to claim that 
something is a best explanation, it is necessary to elaborate all five of these conditions. This will both 
prevent the expert from making incomplete explanations, and impose a uniformity on the complete 
explanations. 

With cases represented in this way, the question of deciding whether a new situation matches the 
old case is to construct an abductive justification, again using Josephson's form. The parts of the new 
justification will be constructed from fragments found in the previous explanations. For example, a 
common finding in these cases is that the fault does not occur in the raw .fabric. If the leading hypothesis 
implies that the fault must occur in the raw fabric, perhaps we should doubt this datum. In a past case, 
doubt about this datum was pursued by simulating the finishing process on a sample of the raw fabric. 
If the fault appears, then it really was present in the raw fabric, and this datum can be safely neglected. 
This test can then be ordered in the present case. 

Once such an abductive justification is built up, not only will we have an answer to the diagnostic 
problem, but an explanation of why the answer is considered correct. This is particularly important in 
our textile application, since the local experts will not accept a judgement without justification. 

5 Advantages 

One of the main advantages of case-based systems over expert systems is the reduced reliance on knowl
edge engineering, which has been called the bottleneck of expert system construction. Since cases are 
readily available, case-based reasoning alleviates this bottleneck by allowing a number of cases to replace 
expert effort. Unfortunately, as we have seen in the textile example above, often cases cannot be used as 
raw data, they need some structuring before they can be reasonably used. 

A Generic Tasks approach to expert system construction also alleviates the knowledge acquisition 
bottleneck by providing some structure into which to fit the knowledge. The proposed architecture takes 
advantage of this structure in two ways: 
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implies that the fault must occur in the raw fabric, perhaps we should doubt this datum. In a past case,
doubt about this datum was pursued by simulating the finishing process on a sample of the raw fabric.
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readily available, case-based reasoning alleviates this bottleneck by allowing a number of cases to replace ‘
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6 

1. As in the current DM tool, the generic task structure can be used to capture the well-known general 
trends in the domain, for which cases are unnecessary, and 

2.	 a task structure can be used to determine a vocabulary for explanation of the particular cases. 

Questions 

The architecture described here is not final. There are a number of experiments we intend to carry out 
with our,domain data. 

Perhaps one of the advantages listed in the last section will outweigh the other, for example, it could be 
the case that there is no reason to perform explanation-based generalization to classify the exceptional 
cases. In this case, the generic task structure will be used for the first phase of the classification, and 
to structure the cases, but not to structure an explanation of the correct classifications. 
It could also be the case that there are more exceptions than cases that follow the general trends of 
the domain, in which case the main problem will be to describe the case. In this case, the thrust of the 
system will be to use the task structure exclusively for the construction of explanations as described 
in section 4.1. 
Evaluate the possibility of using cases to correct faults higher in the classification tree. If a case was 
incorrectly classified, a systematic fault in the DM tree might be responsible. The obvious place to 
look for such a problem is at the most specific common generalization node of the correct classification 
and the misclassification. 

The prototype of this system is currently under development. From the results of these (and other) 
experiments, we plan to integrate case based reasoning into a future release of the DM tool. 
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Abstract. We analyze the CHEF system at the knowledge level following the Commet methodology. This 
methodology has been used fOl" the design and construction of KBS applications. We have applied it to 
analyze the learning methods of existing systems at the knowledge level. We claim that this sort of analysis 
can be a first step to the integration of different learning methods. 

Introduction 

We offer a succinct analysis of CHEF system so as to show a c.oncrete example of knowledge level analysis 
applied to a learning method. In [3] there are the analysis and comparison of CHEF, PROTOS and CASEY and 
the resulting common task structure from them. We think conceptual frameworks like KADS [9] or Cornmet [8] 
that redefine the notion of "knowledge level" from the original Newell's definition [6] may prove to be more 
interesting to Machine Learning theory than using the Newell's knowledge level in ML methods analysis was 
done by Dietterich [4]. Furthermore, having a uniform description ofKBS, knowledge acquisition, and learning 
processes can be very useful for achieving an understanding of the issues involved in their integmtion in 
knowledge engineering. A previous conceptual study on CBR systems was made by Aamodt [1]. Aamodt 
decomposes CBR systems in tasks both the reasoning and- the learning processes. Our study is similar but it is 
more formal in the sense that we try to find a common formalization for all the tasks and to analyze the 
knowledge used by each one. We have already made a similar study for EBL methods [2] obtaining a common 
structure of tasks, and models having the same conceptual information (although they have different 
implementations). With the study of CRR systems we try to complete the analysis of learning methods at the 
knowledge level. 

Problem Solving 

Fig. 1. Task Structure of the CHEF system'at the knowledge Level 

CHEF at the Knowledge Level 

The analysis of CHEF at the knowledge level is made following the Commet methodology [8]. Commet 
ontology is composed of tasks, models and methods. A task is a set of goals that have to be solved. A model 
contains the relevant knowledge to achieve some task goals. A method is a procedure organizing and executing 
the activities of the construction models. According to this methodology CHEF has produced the structure of 
tasks in the fig. 1. In the following we analyze some of the tasks emphasizing their goal, the input and output 
models and the method used to solve each task. The complete analysis can be found in [3]. 

290 

2 

Case -based  Reason ing  a t  the  Knowledge  Leve l :  An
Analys i s  o f  CHEF

Eva Armen gol Enric Plaza

Institut d’Inves—tigacié en Intel-ligéncia Artificial , C.S.I.C.
Cami de Santa Barbara, 17300 Blaues, Catalunya, Spain.

{ plaza I eva}@ceab.es

Abstract. We analyze the CHEF system at the knowledge level following the Commet methodology. This
methodology has been used for the design and construction of KBS applications. We have applied it to
analyze the learning methods of existing systems at the knowledge level. We claim that this sort of analysis
can be a first step to the integration of different learning methods.

1 Introduction

We offer a succinct analysis of CHEF system so as to Show a concrete example of knowledge level analysis
applied to a learning method. In [3] there are the analysis and comparison of CHEF, PROTOS and CASEY and
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that redefine the notion of “knowledge level” from the original. Newell’s definition [6] may prove to be more
interesting to Machine Learning theory than using the Newell’s knowledge level in ML methods analysis was
done by Dietterich [4]. Furthermore, having a uniform description of KBS, knowledge acquisition, and learning
processes can be very useful for achieving an understanding of the issues involved in their integration in
knowledge engineering. A previous conceptual study on CBR systems was made by Aamodt [ l ] .  Aamodt
decomposes CBR systems in tasks both the reasoning and the learning processes. Our study is  similar but it is
more formal in the sense that we try to find a common formalization for all the tasks and to analyze the
knowledge used by each one. We have already made a similar study for EBL methods [2] obtaining a common
structure of tasks, and models having the same conceptual information (although they have different
implementations). With the study of CBR systems we try to complete the analysis of learning methods at the
knowledge level.
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Fig. 1. Task Structure of the CHEF system‘at the knowledge Level
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2 CHEF at the Knowledge Level

The analysis of CHEF at the knowledge level i s  made following the Commet methodology [8]  Commet
ontology is composed of tasks, models and methods. A task 18 a set of goals that have to be solved. A model
contains the relevant knowledge to achieve some task goals. A method'IS a procedure organizing and executing
the activities of  the construction models. According to this methodology CHEF has produced the structure of
tasks in the fig. 1. In the following we analyze some of the tasks emphasizing their goal, the input and output
models and the method used to solve each task. The complete analysis can be found in [3].
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CHEF-Task. This task is solved using the CHEF-Method that decomposes it in two subtasks: Problem-Solving
Task and Learning-Task. Problem-Solving-Task solves the problem and proposes a plan. Learning-Task 
executes the plan and learns from plan failure or success. Input models are Goals, Memory of Plans and Memory 
of Failures. Goals model contains the set of goals that have to achieve the plan. Memory of Plans model contains 
a discrimination network containing all the plans that the system has produced until now indexed by predictive 
features. The output models are New Memory of Plans that is the memory of the existing plans to which the new 
plan has been added; and New Memory of Failures containing the new failure (if any has been produced). In the 
fig. 2 can be viewed the representation of the CHEF-Task at the knowledge level, the decomposition produced 
by the CHEF-Method and the models that it uses. 

CHEF-Task 
Goal: To improve the system behaviour. 
Input: Goals, Memory of Plans and Memory of Failures models. 
Output: A New Memory of Plans and New Memory of Failures model. 
Method: CHEF-Method. 

Problem Solving. 

Memory of Plans 

Memory of Failures 

Fig. 2. Representation at the Knowledge Level, Task Structure and Models of the CHEF-Task 

Problem-Solving-Task. The goal of this task is to propose a plan achieving all the goals in Goals model and 
without any predictable problem. CH-Problem-Solving-Method (fig. 3) is a task decomposition method that 
decomposes Problem-solving-Task in two subtasks: Retrieve-Task and Adaptation-Task. Retrieve-Task retrieves 
a past plan achieving a subset of goals contained into the Goals model. Adaptation-Task modifies the retrieved 
plan in order to achieve all the desired goals. Input models are those of the CHEF-Task. Output model, 
Proposed Plan, contains a plan achieving all the input goals. 

Problem-Solving-Task 
Goal: To obtain a plan achieving all the goals in Goals model. 
Input: Goals, Memory of Plans and Memory of Failures models. 
Output: A Proposed Plan model. 
Method: CH-Problem-Solving-Method. 

c:::> Task 

o Model 

Memory of Failures 

Fig. 3. Knowledge Level Representation, Task Structure and models of the Problem-Solving-Task 

Retrieve-Task. The goal of this task is to retrieve a plan achieving the maximum number of important goals and 
which has not any predictable failure. ClI-Retrieve-Method is a task decomposition method that decomposes 
Retrieve-Task in two subtasks: Anticipation-Task and Selection-Task. Anticipation-Task analyzes the planning 
goals and the situation in which they are evolved and decide if there are some states or goals predicting some 
problem. For the sake of simplicity it is not be explained here. Selection-Task selects a plan avoiding the 
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CHEF-Task. This task is solved using the CHEF-Method that decomposes it in two subtasks: Problem-Solving-
Task and Leaming-Task. Problem-Solving—Task solves the problem and proposes a plan. Learning-Task
executes the plan and learns from plan failure or success. Input models are Goals, Memory of Plans and Memory
of Failures. Goals model contains the set of goals that have to achieve the plan. Memory of Plans model contains
a discrimination network containing all the plans that the system has produced until now indexed by predictive
features. The output models are New Memory of Plans that is the memory of the existing plans to which the new
plan has been added; and New Memory of Failures containing the new failure (if any has been produced). In the
fig. 2 can be viewed the representation of the CHEF-Task at the knowledge level. the decomposition produced
by the CHEF-Method and the models that it uses.
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Problem-Solving-Task. The goal of this task i s  to propose a plan achieving all the goals in Goals model and
without any predictable problem. CH-Problem-Solving-Method (fig. 3) is a task decomposition method that
decomposes Problem-solving-Task in two subtasks: Retrieve—Task and Adaptation-Task. Retrieve—Task retrieves
a past plan achieving a subset of goals contained into the Goals model. Adaptation—Task modifies the retrieved
plan in order to achieve all the desired goals. Input models are those of the CHEF-Task. Output model,
Proposed Plan, contains a plan achieving all the input goals.

Problem-Solving-Task
Goal: To obtain a plan achieving all the goals in Goals model.
Input: Goals, Memory of  Plans and Memory of  Failures models.
Output: A Proposed Plan model.
Method: CH—Problem-Solving-Method.
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Fig. 3. Knowledge Level Representation, Task Structure and models of the Problem—Solving-Task

Retrieve-Task. The goal of this task is  to retrieve a plan achieving the maximum number of important goals and
which has not any predictable failure. CH-Retn'eve-Method is a task decomposition method that decomposes
Retrieve-Task in two subtasks: Anticipation-Task and Selection-Task. Anticipation—Task analyzes the planning
goals and the situation in which they are evolved and decide if there are some states or goals predicting some
problem. For the sake of simplicity it is  not be explained here. Selection-Task selects a plan avoiding the
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predicted problems and achieving the maximum number of goals in the Goals model. Input models are the same 
of the Problem-Solving-Task. Output model, Retrieved Plan, contains a plan that both avoids all the anticipated 
problems and achieves input goals that are considered important. Important goals are those goals that are either 
difficult to achieve or difficult to incorporate toa plan. In the fig. 4 can be· viewed the knowledge level 
representation of the Retrieve-Task. 

Retrieve-Task 
Goal: To obtain a plan without any predictable problems achieving a 

" set of goals in Goals model. 
Input: Goals, Memory of Plans and Memory of Failures models. 
Output: A Retrieved Plan model. 
Method: CH-Retrieve-Method. 

Memory 
of Plans 

Goal 
Value 

Hierarchy 

Fig. 4. Knowledge Level Representation, Task Structure and Models of the Retrieve-Task 

Selection-Task. This task has to retrieve the best past plan avoiding all the predicted problems and achieving a 
set of input goals. Ideally it would be desirable that the retrieved plan achieves all the goals but in general this is 
not possible. The usual situation is to have several plans achieving a subset of goals (different for each plan). It is 
necessary to have a metric evaluating the similarity of the goals and a hierarchy of goals evaluating the relative 
utility of each plan in respect to a set of goals. The goals considered as more important are those that are difficult 
either to achieve or to incorporate into a plan. Input models are Goals, Predicted Problems, Memory of Plans, 
Goal Value Hierarchy and Goal Similarity Metric. Goal Value Hierarchy model contains the is-a hierarchy 
which nodes are sets of goals considered as similar. This hierarchy obtains the importance that a plan achieves 
certain goals. Goal Similarity Metric model contains an abstraction hierarchy allowing know if a plan satisfies 
partially a goal. The output model, Retrieved Plan, is a plan that both avoids all the predicted problems' 
Anticipation-Task and achieves most of the Goals model. CH-Select-Method uses the Predicted Problems model, 
the goals and the abstractions of goals as indexes to access to the memory of plans. Then it uses the importance 
of the different goals to decide the choose between different competitor plans. It has to find a unique plan 
satisfying the maximum number of goals into Goals model taking account that both there are goals that are more 
important than others and some goals cannot be satisfied directly but only partially. In this case it must found a 
past plan satisfying similar goals and to modify it to obtain a unique plan achieving exactly the goals contained 
in Goals model. The representation of the Selection-Task at the knowledge level is the following: 

Selection-Task 
Goal: To obtain a plan achieving a subset of goals. 
Input: Goals, Predicted Problems, Memory of Plans, Goal Value Hierarchy and Goal 

Similarity Metric models. 
Output: A Retrieved Plan model. 
Method: CH-Selection-Method. 

Adaptation-Task. The goal of this task is to modify the plan contained into Retrieved Plan model in order to 
achieve all the goals into Goals model. To do this adaptation CHEF uses a set of modification rules and a set of 
critics containing specific information about the domain. Input models are Retrieved Plan, Modification Rules 
and Critics. Modification Rules model contains a library of rules that are steps that can be added to particular 
plans to achieve particular goals. Critics model contains knowledge about domain objects and geneml plans. The 
output model, Proposed Plan, contains the best plan that the system has found to achieve the Goals model. The 
representation of Adaptation-Task at the knowledge level is the following: 

Adaptation-Task 
Goal: To propose a plan achieving the input goals. 
Input: Retrieved Plan, Modification Rules and Critics models. 
Output: A Proposed Plan model. 
Method: CH-Adaptation-Method. 
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predicted problems and achieving the maximum number of goals in the Goals model. Input models are the same
of the Problem-Solving-Task. Output model, Retrieved Plan, contains a plan that both avoids all the anticipated
problems and achieves input goals that are considered important. Important goals are those goals that are either
difficult to achieve or difficult to incorporate to .a plan. In the fig. 4 can be'viewed the knowledge level
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Output: A Retrieved Plan model.
Method: CH—Retrieve-Method.

I Goals ' J Retrieved Plan

Predicted Problems

. Memory _ Goal
Memory of Failures of Plans ' similarity

Metric
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Selection-Task. This task has to retrieve the best past plan avoiding all the predicted problems and achieving a
set of input goals. Ideally it would be desirable that the retrieved plan achieves all the goals but in general this is
not possible. The usual situation is to have several plans achieving a subset of goals (different for each plan). It is
necessary to have a metric evaluating the similarity of the goals and a hierarchy of goals evaluating the relative
utility of each plan in respect to a set of goals. The goals considered as more important are those that are difficult
either to achieve or to incorporate into a plan. Input models are Goals, Predicted Problems, Memory of Plans,
Goal Value Hierarchy and Goal Similarity Metric. Goal Value Hierarchy model contains the is-a hierarchy
which nodes are sets of goals considered as similar. This hierarchy obtains the importance that a plan achieves
certain goals. Goal Similarity Metric model contains an abstraction hierarchy allowing know if a plan satisfies
partially a goal. The output model, Retrieved Plan, is a plan that both avoids all the predicted problems
Anticipation—Task and achieves most of the Goals model. CH—Sel-ect-Method uses the Predicted Problems model,
the goals and the abstractions of goals as indexes to access to the memory of plans. Then it uses the importance
of the different goals to decide the choose between different competitor plans. It has to find a unique plan
satisfying the maximum number of goals into Goals model taking account that both there are goals that are more
important than others and some goals cannot be satisfied directly but only partially. In this case it must found a
past plan satisfying similar goals and to modify it to obtain a unique plan achieving exactly the goals contained
in Goals model. The representation of the Selection-Task at the knowledge level is the following:

Selection-Task
Goal: To obtain a plan achieving a subset of goals. _
Input: Goals, Predicted Problems. Memory of Plans, Goal Value Hierarchy and Goal

Similarity Metric models.
Output: A Retrieved Plan model.
Method: CH—Selection-Method.

Adaptation-Task. The goal of this task is to modify the plan contained into Retrieved Plan model in order to
achieve all the goals into Goals model. To do this adaptation CHEF uses a set of modification rules and a set of
critics containing specific information about the domain. Input models are Retrieved Plan, Modification Rules
and Critics. Modification Rules model contains a library of rules that are steps that can be added to particular
plans to achieve particular goals. Critics model contains knowledge about domain objects and general plans. The
output mode], Proposed Plan, contains the best plan that the system has found to achieve the Goals model. The
representation of Adaptation-Task at the knowledge level is  the following:

Adaptation-Task
Goal: To propose a plan achieving the input goals.
Input: Retrieved Plan, Modification Rules and Critics models.
Output: A Proposed Plan model.
Method: CH-Adaptation-Method.

292



Learning-Task. Learning-Task has to check if the proposed plan works as it is desired. If it is correct only will 
be necessary to incorporate the plan indexing it by the goals and the predicted failures. Otherwise it has to repair 
the plan. CH-Learning-Method is a task decomposition method that decomposes Learning-Task in three 
subtasks: Test-Task, Leaming-from-Success-Task and Leaming-from-Failure-Task. Test-Task checks if the 
proposed plan produces the desired result and activates Leaming-from-Success-Task or Learning-from-Failure
Task according to the result. Input models are Goals and Predicted Problems from Anticipation-Task, Proposed 
Plan, Memory of Plans and Memory of Failures. The output models are those of the CHEF-Task, that is to say, 
New Memory of Plans and New Memory of Failures. 

Learning-Task 
Goal: To incorporate new knowledge (plans and failures) to the system in order to 

improve its behaviour. 
Input: Goals, Predicted Problems, Proposed Plan, Memory of Plans and Memory of 

Failures models. 
Output: A New Memory of Plans and a New Memory of Failures model. 
Method: CH-Learning-Method. 

Fig. 5. Knowledge Level Representation, Task Structure and Models of the Learning-Task 

Test-Task. To check if the proposed plan achieves the goals into Goals model, Test-Task makes a simulation 
and then the outcome is compared to the desired one. Test-Task uses as input models Proposed Plan and 
Inference Rules. Inference Rules model contains inference rules indicating the effects of each step in the domain 
of each object. Output models are Errors and Explanations models. Errors model contains which is the problem 
that has been occurred describing the state that defines the failure, the step where the failure is produced and the 
predictive conditions of the failure. Explanations model contains the state defining the failure, the step where the 
failure is produced and the conditions that have to be accomplished to produce the failure. Thus CH-Test
Method is a task decomposition method decomposing Test-Task in two subtasks: Simulation-Task and Analysis
Task. Simulation-Task simulates a plan execution. Analysis-Task compares the obtained states and the desired 
ones and allows to obtain the produced errors. This method requires strong introspective capabilities and a theory 
for deciding blame assignment to the system parts and decisions. The representation at the knowledge level ant 
the decomposition of Test-Task produced by CH-Test-Method is that of the fig. 6. 

Test-Task 
Goal: To check if the plan accomplishes the input goals. 
Input: Proposed Plan and Inference Rules models. 
Output: An Explanations and the Errors models. 
Method: CH-Test-Method. 

Explanations 

Fig. 6. Representation at the Knowledge Level, Task Structure and Models of the Test-Task 
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Inference Rules. Inference Rules model contains inference rules indicating the effects of each step in the domain
of each object. Output models are Errors and Explanations models. Errors model contains which is  the problem
that has been occurred describing the state that defines the failure, the step where the failure is  produced and the
predictive conditions of the failure. Explanations model contains the state defining the failure, the step where the
failure is produced and the conditions that have to be accomplished to produce the failure. Thus CH—Test-
Method is a task decomposition method decomposing Test-Task in two subtasks: Sim ulation-Task and Analysis-
Task. Simulation-Task simulates a plan execution. Analysis—Task compares the obtained states and the desired
ones and allows to obtain the produced errors. This method requires strong introspective capabilities and a theory
for deciding blame assignment to the system parts and decisions. The representation at the knowledge level ant
the decomposition of Test-Task produced by CH—Test-Method is that of the fig. 6.

Test-Task
Goal: To check if the plan accomplishes the input goals.
Input: Proposed Plan and Inference Rules models.
Output: An Explanations and the Errors models.
Method: CH-Test—Method.

| Proposed PlanJ

| Inference Rules I Goals Tfprglggy

Fig. 6 .  Representation at the Knowledge Level, Task Structure and Models of the Test-Task
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Learning-from-Success-Task. If the plan has worked as it is desired, this task is activated. Learning-from
Success-Task incorporate to the memory of plans the new plan indexing it by the goals and failures that it avoids 
ordered by order of importance. To index the plan are also used the generalizations of the goals. A plan is not 
generalized because it can be used in several situations. Only the goals are generalized. The explanation serves to 
generalize goals. Learning-from-Success-Task has as input models Proposed Plan, Explanations, Goals, Memory 
of Plans. The output model is a New Memory of Plans. The representation of Learning-from-Success-Task at the 
knowledge level is the following: 

Learning-from-Success-Task 
Goal: To improve the system behaviour by incorporation of the new plan. 
Input: Proposed Plan, Explanations, Goals and Memory of Plans models. 
Output: A New Memory of Plans model. 
Method: CH-Learning-from-S uccess-Method. 

Learning-from-Failure-Task. This task is activated when a failure is detected in the proposed plan. Learning
from-Failure-Task have to repair a plan and incorporate it to the memory of plans. It must also to incorporate to 
the memory of failures all those features predicting the failure. The used models are the Proposed Plan, 
Explanations, Errors, Goals, Memory of Plans and Memory of Failures as input models. The output models are a 
New Memory of Plans and a New Memory of Failures that incorporate the new case and the produced failure. In 
the fig. 7 can be viewed the models used by Learning-from-Failure-Task and how it can be decomposed. 

Learning-from-Failure-Task 
Goal: To improve the system behaviour by incorporation of the new 

plan and the predictive features of the produced failure. 
Input: Proposed Plan, Explanations, Errors, Goals, Memory of Plans, 

Memory of Failures models. 
Output: A New Memory of Plans and a New Memory of Failures models. 
Method: CH-Learning-from-Success-Method. 

Fig. 7. Knowledge Level Representation, Task Slructure and Models of the Learning-from-Failure-Task 

Conclusions 

Knowledge level analysis (KLA) permits to make explicit the relation oflearning with problem solving. We take 
a unified approach for inference in learning and problem solving and we propose that KLA may be useful tool 
for understanding learning, problem solving and their relationship in architectures that integrate learning and 
problem solving. Using KBS conceptual frameworks for describing both is useful conceptually, as we have tried 
to show here, but may be very fruitful also at the practical level of building KBS applications. 
Our last goal is to have a representation of different learning methods in order to represent them into a cognitive 
architecture. So, as well as CHEF, we have analyzed at the knowledge level PROTOS and CASEY systems [3]. 
From this analysis we have obtained a common task structure for them. A similar analysis about EBL methods 
[2] produces a structure containing knowledge level tasks that are common to the most representative EBL 
systems. We claim that from the obtained knowledge level common task structure (obtained applying the 
Commet methodology) and an adequate characterization of the models that they use, the more appropriate 
methods to solve a task can be chosen. This can be a first step for the learning methods integration, 
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knowledge level is  the following:
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Method: CH-Learning-from-Success-Method.

Learning-from-Failure-Task. This task is activated when a failure is  detected in the proposed plan. Learning-
from-Failure-Task have to repair a plan and incorporate it to the memory of plans. It must also to incorporate to
the memory of failures all those features predicting the failure. The used models are the Proposed Plan,
Explanations, Errors, Goals, Memory of Plans and Memory of Failures as input models. The output models are a
New Memory of Plans and a New Memory of Failures that incorporate the new case and the produced failure. In
the fig. 7 can be viewed the models used by Learning-from-Failare-Task and how it can be decomposed.
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3 Conclusions

Knowledge level analysis (KLA) permits to make explicit the relation of learning with problem solving. We take
a unified approach for inference in learning and problem solving and we propose that KLA may be useful tool
for understanding learning, problem solving and their relationship in architectures that integrate learning and
problem solving. Using KBS conceptual frameworks for describing both is useful conceptually, as we have uied
to show here, but may be very fruitful also at the practical level of building KBS applications.
Our last goal is to have a representation of different learning methods in order to represent them into a cognitive
architecture. So, as well as CHEF, we have analyzed at the knowledge level PROTOS and CASEY systems [3].
From this analysis we have obtained a common task structure for them. A similar analysis about EBL methods
[2] produces a structure containing knowledge level tasks that are common to the most representative EBL
systems. We claim that from the obtainéd knowledge level common task structure (obtained applying the
Commet methodology) and an adequate characterization of the models that they use, the more appmpriate
methods to solve a task can be chosen. This can be a first step for the learning methods integration.
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Abstract. In cased based reasoning the preselection of interesting cases to get an efficient case 
comparison is most important. In large case-bases the search for cases will be very expensive 
especially by using external data bases. Looking for another way to handle the preselection, we 
examine several inductive learning methods which generate heuristic rule knowledge out of a given 
case-base. Those rules can be interpreted very efficiently during the reasoning process. In this paper 
we compare three inductive learning approaches (BUBE, ID3/C4 and UNIMEM) for the usage with 
our existing case-based reasoning tool CcC+ to improve the overall perfonnance. Finally, we 
propose a possible integration between CcC+ and the best ~ne of the comparison. 

1 Introduction 

Cases are the fundament of many problem solving approaches. Two main categories may be 
distinguished: 

I. Cases are used directly for problem solving. 
11. Cases are pre-processed to generate the problem solving knowledge later used. 

Members of the first category have the advantage that the problem solving process can start 
immediately after a case-base had been acquired. Furthermore newly acquired cases can be 
directly integrated into the inference process. With the case-base growing, however, the time 
for problem solving exceeds, depending on high search and retrieval costs. In contrary, the 
second category first needs much more time to generate the real problem solving knowledge, 
e.g. decision trees, heuristic rules, etc. The advantage of those methods is the generation of a 
knowledge structure which can be used very efficiently during the inference process. 

In this paper we outline representatives of both categories and show why it will be 
successful to combine them to gain a better performance. 

2 Different Approaches 

All CBR-tools like CcC+ [Puppe&Goos91] and PATDEX [Wess93] belong to the first 
category. The characteristic features are: 
•	 The basis of the problem solving process are cases stored in a database and additional 

knowledge about similarity between symptom-values, abnormalities of symptom-values and 
dynamic weighting of symptoms. 

•	 The problem solving process consists of two steps. The first step is a preselection of 
possible candidates to reduce the search space. The second step is the comparison of every 
candidate with the search case to compute the most similar one. 

•	 Both an adaptation of the similarity measure and an adaptation of the found solution with 
extra knowledge is possible to improve the problem solving process. 

Approaches of the second category are inductive leaming methods, like BUBE [Bamberger92, 
93], ID3/C4 [Quinlan86, 90], and UNIMEM [Lebowitz90]. The features are: 

ad BUBE: . 
•	 The aim of BUBE is to generate a heuristic knowledge base. Therefore BUBE uses causal 
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especially by using external data bases. Looking for another way to handle the preselection, we
examine several inductive learning methods which generate heuristic rule knowledge out of a given
case-base. Those rules can be interpreted very efficiently during the reasoning process. In this paper
we compare three inductive learning approaches (BUBE, ID3/C4 and UNIMEM) for the usage with
our existing case-based reasoning tool CcC+ to improve the overall performance. Finally, we
propose a possible integration between CcC+ and the best one of the comparison.

1 Introduction

Cases are the fundament of many problem solving approaches. Two main categories may be
distinguished:

1. Cases are used directly for problem solving.
11. Cases are pre-processed to generate the problem solving knowledge later used .

Members of the first category have the advantage that the problem solving process can start
immediately after a case-base had been acquired. Furthermore newly acquired cases can be
directly integrated into the inference process. With the case-base growing, however, the time
for problem solving exceeds, depending on high search and retrieval costs. In contrary, the
second category first needs much more time to generate the real problem solving knowledge,
e.g.  decision trees, heuristic rules, etc. The advantage of those methods is the generation of a
knowledge structure which can be used very efficiently during the inference process.

In this paper we outline representatives of both categories and show why it will be
successful to combine them to- gain a better performance.

2 Different Approaches

All CBR-tools like CcC+ [Puppe&Goos91] and PATDEX [Wess93] belong to the first
category. The characteristic features are:
° The basis of the problem solving process are cases stored in a database and additional

knowledge about similarity between symptom—values, abnormalities of symptom-values and
dynamic weighting of symptoms.

° The problem solving process consists of two steps. The fi1st step is a preselection of
possible candidates to reduce the search space. The second step is the comparison of every
candidate with the search case to compute the most similar one.

' Both an adaptation of the similarity measure and an adaptation of the found solution with
extra knowledge is possible to improve the problem solving process.

Approaches of the second category are inductive learning methods, like BUBE [Bam‘berger92,
93], ID3/C4 [Quinlan86, 90],  and UNIMEM [Lebowitz90]. The features are:

ad BUBE: '
° The aim of BUBE is to generate a heuristic knowledge base. Therefore BUBE uses causal
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knowledge about the object dependencies to generate the rule structure. The necessary rule 
evidences are gained by a statistical evaluation of the case-base. To improve the quality of 
the generated rules an automatic heuristic adaptation is possible. 

•	 To solve a case, the heuristic problem solver ME02 [Puppe et al. 92] is used to interpret the 
derived rules. 

ad 103, C4 (empirical learning): 
•	 Both methods work only on the base of cases without any additional knowledge. 
•	 Before the problem solving process can start these approaches generate a decision tree. 103 

is limited to discrete values in the domain. C4 is the successor of 103 and allows numerical 
values. The numerical values are handled by using a threshold to divide the range into two 
parts. The leafs of a tree are the learned solution classes. 

•	 The task of the problem solving process is to find a path in the tree which corresponds to the 
symptom values in the cun'ent case. 

ad UNIMEM (similarity based learning): 
•	 UNIMEM uses cases and additional knowledge about similarities between symptom values. 
•	 The goal is to take similar cases and abstract them to form a hierarchy of generalisations that 

will be used to organize the case-base. The generation of the concept tree is expensive 
because of the incremental treatment of the cases. Therefore it may often be necessary to 
update the tree structure. 

•	 The problem solving process uses the hierarchical organisation of the concept tree to classify 
the search case. 

Comparison 

To determine the perfOlmance of the different methods we compared them in seven points. The 
result of this analysis is shown in tabular 1. 

The tabular shows that no approach is perfect, but the different approaches have different 
strengths and weaknesses. An integration of two or more approaches is advisable to minimize 
the costs and optimize the performance of inference. CcC+ seems to be the most powerful 
approach. The great advantage of explainability, competence assessment and incremental 
extension of the case-base is only diminished by the costs of the preselection during the 
inference process. UNIMEM, which seems to be very similar to CcC+ at first sight, causes 
more costs when altering the case-base and has a weak competence assessment. Therefore an 
integration of CcC+ and UNIMEM does not seem to be advisable, because a performance 
increase of the resulting system cannot be expected. 

The ID3 system cannot handle all. kinds of information such as numerical or unknown 
values. Because such values are used in CcC+, 103 is not a powerful enough partner for 
linking the two. The problems of representation are overcome with C4, the successor of ID3. 
The quality of the derived decision tree is dependent on the con'ectness of the cases. In addition 
to C4, BUBE uses causal knowledge to deal with the effect that statistical evaluation of cases 
could make believe object correlations which are not real. Normally the cases have different 
relevance and quality. Using additional causal knowledge might be very helpful to remove these 
uncertainties respecting the object correlations. A further advantage of BUBE is that the 
structure of causal knowledge can also be used in the learning step to structure the heuristic 
knowledge. Because the domain expert already knows this structure the rules produced by 
BUBE can be better understood than the decision tree completely automatically produced by 
103/C4. Since BUBE is the only system with this capabilities an integration of CcC+ and 
BUBE promises the greatest success. 
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knowledge about the object dependencies to generate the rule structure. The necessary rule
evidences are gained by a statistical evaluation of the case-base. To improve the quality of
the generated rules an automatic heuristic adaptation is possible.

° To solve a case, the heuristic problem solver MED2 [Puppe et al. 92] is used to interpret the
derived rules.

ad ID3, C4 (empirical learning):
° Both methods work only on the base of cases without any additional knowledge.
' Before the problem solving process can start these approaches generate a decision tree. ID3

is limited to discrete values in the domain. C4  is the successor of ID3 and allows numerical
values. The numerical values are handled by using a threshold to divide the range into two
parts. The leafs of a tree are the learned solution classes.

° The task of the problem solving process is to find a path in the tree which corresponds to the
symptom values in the current case.

ad UNIMEM (similarity based learning):
_° UNIMEM uses cases and additional knowledge about similarities between symptom values.
° The goal is to take similar cases and abstract them to form a hierarchy of generalisations that

will be used to organize the case-base. The generation of the concept tree is expensive
because of the incremental treatment of the cases. Therefore it may often be necessary to
update the tree structure.

' The problem solving process uses the hierarchical organisation of the concept tree to classify
the search case.

3 Comparison

To determine the performance of the different methods we compared them in seven points. The
result of this analysis is shown in tabular 1.

The tabular shows that no approach is perfect, but the different approaches have different
strengths and weaknesses. An integration of two or more approaches is advisable to minimize
the costs and optimize the performance of inference. CcC+ seems to be the most powerful
approach. The great advantage of explainability, competence assessment and incremental
extension of the case—base is only diminished by the costs of the preselection during the
inference process. UNIMEM, which seems to be very similar to CcC+ at first sight, causes
more costs when altering the case—base and has a weak competence assessment. Therefore an
integration of CcC+ and UNIMEM does not seem to be advisable, because a performance
increase of the resulting system cannot be expected.

. The ID3 system cannothandle all. kinds of information such as numerical or unknown
values. Because such values are used in CcC+, ID3 is not a powerful enough partner for
linking the two. The problems of representation are overcome with C4, the successor of ID3.
The quality of the derived decision tree is dependent on the correctness of the cases. In addition
to C4, BUBE uses causal knowledge to deal with the effect that statistical evaluation of cases
could make believe object correlations which are not real. Normally the cases have different
relevance and quality. Using additional causal knowledge might be very helpful to remove these
uncertainties respecting the object correlations. A further advantage of BUBE is that the
structure of causal knowledge can also be used in the learning step to structure the heuristic
knowledge. Because the domain expert already knows this structure the rules produced by
BUBE can be better understood than the decision tree completely automatically produced by
ID3/C4. Since BUBE is the only system with this capabilities an integration of CcC+ and
BUBE promises the greatest success.
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4 

Costs with 
stable and large 
case-bases 

Costs with 
altering large 
case-bases. 

Problem 
solving with 
incomplete 
cases (some 
symptoms are 
not known or 
not asked) 

Background 
knowledge 

Case-based Inductive Learnin~ 

CcC+ 

The time for the pre
selection grows lin
ear with the size of 
the case-base. Using 
K-D-trees to pre-se
lect could reduce the 
costs to log(#cases). 
The detailed similar
ity computation per 
case is linear to the 
number of symp
toms in the case. 

No additional costs. 
Improves directly the 
problem solving pro
cess. 
A solution is possi
ble with a ranking to 
decide the usefulness. 

Detailed knowledge 
of the similarity 
measure and symp
tom importances. 

BUBE 

Generation of the 
rules is linear to the 
case-base. The addi
tional causal knowl
edge allows to focus 
on the really relevant 
symptoms. Duration 
of the inference pro
cess is linear to the 
given symptoms. 

Recompilation of the 
complete case-base 
after each alteration. 

There is no knowl
edge about the 
quality of the solving 
proposal. The com
puted result can be 
too rough, lacking of 
enough datas to fur
ther specialize it. 
Only causal rela
tions. 

Acquiring causal 
dependencies is quite 
straightforward 
Weak. 

ID3/C4 

The generation of the 
decision tree depends 
on the number of 
symptoms. High 
costs to calculate the 
entropy of the symp
toms. No possibility 
to check for bogus 
causalities. The 
effort of the inference 
process is propor
tional to the tree 
depth. 
Recompilation of the 
complete case-base 
after each alteration. 

In ID3 the decision 
of the possible 
branch is very diffi
cult. C4 uses the 
probabilistic valua
tion to come to a de
cision. 

No. 

No. 

Weak. 

UNIMEM 
The generation of the 
decision tree depends 
on the number of 
symptoms. The ef
fort of the inference 
process is propor
tional to the tree 
depth. 

Additional costs to 
insert the new case in 
the existing concept 
hierarchy. 
Missing values in an 
actual case are no 
problem being every 
node a possible solu
tion. 

Detailed knowledge 
of the similarity 
measure. 

Similarity measure 
may be hard to for
mulate. 
Weak. 

Background 
knowledge 
acquisition 

Similarity measure 
may be hard tQ for
mulate. 
Well, with relation Competence as

sessment to the maximal simi
laritv 

Explainability Excellent. Direct ac
cess to the pre-se
lected cases and their 
similarities is possi
ble. 

The possibilities of 
the heuristic explana
tion are limited. No 
backtracking to the 
underlying case-base 
is possible. 

The possibilities of 
the explanation are 
limited. No back
tracking to the under
lying case-base is 
possible. 

By the path through 
the concept hierar
chy. The training 
cases are available for 
further explanations. 

Tab. 1: ComparIson of representatives of the two categorIes. 

Integration 

The main effect of an integration should be to optimize the costly preselection in CcC+. This 
can be achieved by using the generated heuristic rules of BUBE to derive a set of possible 
solutions. The cases corresponding to this solution set are used by CcC+ for a detailed 
similarity computation. Other preselection techniques; e.g. K-O-trees, have been proposed in 
the literature [Friedmann77]. They offer an efficient indexed search, but cannot be used with a 
dynamic similmity measure which may be specified in CcC+. 

For a successful integration a common representation und communication level is the prior 
condition. The representation level is already realized by a so-called base terminology. This 
common base terminology is defined in the environment, where the case-based, heuristic and 
causal problem solvers are embedded [03]. Each kind of knowledge consists of two parts: the 
structure of the domain knowledge expressed in the base terminology completed with the 
problem solver dependent knowledge (Fig. 1). The layer architecture supports the consistency 
and the exchange of datas as each component works on the same central base tenninology. 
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Cost s

case -bases

Cos t s  w i th
a l t er ing  large
case -bases .

Prob lem
so lv ing
incomple te
cases  ( some
symptoms  are
not  known or
not asked)

with

Background
knowledge

Background
knowledge
acqu i s i t i on
Competence as-
se s sment

Expla inab i l i ty

wi th  The time for the pre-
sta'ble and large selection grows lin-

Case -based
CcC+

ear with the size of
the case-base. Using
K—D-trees to pre—se-
lect could reduce the
costs to log(#cases).
The detailed similar-
ity computation per
case is linear to the
number of symp-
toms in the case.

No additional costs.
Improves directly the
problem solving pro-
cess.
A solution is possi-
ble with a ranking to
decide the usefulness.

Detailed knowledge
of  the similarity
measure and symp-
tom importances.
Similarity measure
may be hard to for-
mulate.
Well, with relation
to the maximal simi-
larity
Excellent. Direct ac-
cess to the pre-se-
lected cases and their
similarities is possi-
ble.

BUBE
Generation o f  the
rules is linear to the
case-base. The addi-
tional causal knowl-
edge allows to focus
on the really relevant
symptoms. Duration
of the inference pro-
cess i s  linear to the
given symptoms.

Recompilation of the
complete case-base
after each alteration.

There i s  no knowl-
edge  about  the
quality of the solving
proposal. The com-
puted result can be
too rough, lacking of
enough datas to fur-
ther specialize it.
Only causal rela-
tions.

Acquiring causal
dependencies is quite
straightforward
Weak.

The possibilities of
the heuristic explana-
tion are limited. No
backtracking to the
underlying case-base
is possible.

Tab. 1: Comparison o f  representatives of the two categories.

4 Integration

Induct ive  Learning
ID3 /C4

The generation of the
decision tree depends
on the number of
symptoms.  High
costs to‘ calculate the
entrepy of the symp-
toms. No possibility
to check for bogus
causa l i t i es .  The
effort of the inference
process i s  propor-
tional to the tree
depth.
Recompilation of the
complete case-base
after each alteration.

In ID3 the decision
of  the poss ib le
branch is very diffi-
cult. C4 uses the
probabilistic valua-
tion to come to a de-
cision.

No.

No.

Weak.

The possibilities of
the explanation are
limited. No back-
tracking to the under—
lying case-base is
possible.

UN IMEM
The generation of the
decision tree depends
on the number of
symptoms. The ef—
fort of the inference
process i s  propor-
tional to the tree
depth.

Additional costs to
insert the new case in
the existing concept
hierarchy.
Missing values in an
actual case are no
problem being every
node a possible solu-
t ion.

Detailed knowledge
of  the  s imilarity
measure.

Similarity measure
may be hard to for-
mulate.
Weak.

By the path through
the concept hierar-
chy. The training
cases are available for
further explanations.

The main effect of an integration should be to Optimize the costly preselection in CcC+. This
can be achieved by using the generated heuristic rules of BUBE to derive a set of  possible
solutions. The cases corresponding to this solution set are used by CcC+ for a detailed
similarity computation. Other preselection techniques, e. g. K—D—trees, have been proposed in
the literature [Friedmann77]. They offer an efficient indexed search, but cannot be used with a
dynamic similarity measure which may be specified in CcC+.

For a successful integration a common representation und communication level is the prior
condition. The representation level is already realized by a so-called base terminology. This
common base terminology is defined in the environment, where the case—based, heuristic and
causal problem solvers are embedded [D3]. Each kind of knowledge consists of two parts: the
structure of the domain knowledge expressed in the base terminology completed with the
problem solver dependent knowledge (Fig. 1). The layer architecture supports the consistency
and the exchange of datas as each component works on the same central base terminology.
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Fig. 1: Integrated knowledge representatioll. The knowledge of the single methods is divided into general, 
mainly terminological classification knowledge (lower part of the figure) and into knowledge specific one for the 
method (upper part). Cased based and heuristical knowledge use the same terminology, while set covering classification 
knowledge is based on its own terminology. Case data can not only be supplied by the expert, but is collected by the 
end users as well even in a larger number. The base terminology and the problem solver specific knowledge is entered 
using the graphical knowledge acquisition workbench CLASSlKA. BUBE uses the base tenninology together with the 
specific knowledge of the set-covering and case-based problem solver to generate heuristic knowledge. 

Connecting different modules on the communication level means that every component 
defines an interface making an external synchronisation possible. The idea is that a problem 
solving process will be influenced by messages about partial results of other problem solvers. 
These messages are used to control and to improve its own problem solving process. That 
means for our special module CcC+ and the heuristic problem solver MED2 that the 
preselection mechanism of CcC+ is supported by the possible partial results of MED2. 

In the following we show a way to support CcC+' preselection using heuristic rules. The 
c~ses used by CcC+ and BUBE consist of a tupel of symptoms with values and a set of 
intermediate and final diagnoses as the result of a case. 

The way CcC+ manages its preselection is to look for a choice of symptoms out of the 
given search case. All cases of the case-base satisfying the choice are taken into the preselection 
set. The choice criteria is defined, so that the preselection set covers all relevant cases. 
Additionally, an arbitrary number of in-elevant cases might be present in the set. The reason is, 
that, in spite of a possible dynamic weighting, the examination of the symptoms by themselves 
is not case specific enough. The goal is to find a stronger criteria to minimize the number of 
irrelevant cases. 

The heuristic problem solver MED2 also starts with a set of symptoms and derives 
intermediate and/or final diagnoses with efficient heuristic rules. To derive an intermediate 
diagnoses one or more symptoms are necessary. So, the intermediate diagnosis reflects a 
combination of symptoms, which is more solution specific than the raw symptom for itself. 
That's the reason why those diagnoses are used in MED2 to reduce the search space for 
requesting additional symptoms. 

The preselection of CBR can profit from the same effect. Using the intermediate diagnoses 
as the choice criteria, a better focus on the relevant cases is possible. Since the number of the 
intermediate diagnoses are much lower than the former number of raw symptoms, the costs for 
the preselection is automatically reduced. Besides, the resulting lower number of cases in the 
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Fig. 1:  Integrated knowledge representation. The knowledge of  the single methods is divided into general,
mainly terminological classification knowledge (lower part o f  the figure) and into knowledge specific one for the
method (upper part). Cased based and heuristical knowledge use the same terminology, while set covering classification
knowledge is based on its own terminology. Case data can not only be supplied by the expert, but is  collected by the
end users as well even in a larger number. The base terminology and the problem solver specific knowledge is entered
using the graphical knowledge acquisition workbench CLASSIKA. BUBE uses the base terminology together with the
specific knowledge of  the set—covering and case-based problem solver to generate heuristic knowledge.

Connecting different modules on the communication level means that every component
defines an interface making an external synchronisation possible. The idea is that a problem
solving process will be influenced by messages about partial results of other problem solvers.
These messages are used to control and to improve its own problem solving process. That
means for our special module CcC+ and the heuristic problem solver MED2 that the
preselection mechanism of CcC+ is supported by the possible partial results of MED2.

In the following we show a way to support CcC+’ preselection using heuristic rules. The
cases used by CcC+ and BUBE consist of a tupel of symptoms with values and a set of
intermediate and final diagnoses as the result of a case.

The way CcC+ manages its preselection is to look for a choice of symptoms out of the
given search case. All cases of the case-base satisfying the choice are taken into the preselection
set. The choice criteria is defined, so that the preselection set covers all relevant cases.
Additionally, an arbitrary number of irrelevant cases might be present in the set. The reason is,
that, in spite of a possible dynamic weighting, the examination of the symptoms by themselves
is  not case specific enough. The goal is to find a stronger criteria to minimize the number of
irrelevant cases.

The heuristic problem solver MED2 also starts with a set of symptoms and derives
intermediate and/0r final diagnoses with efficient heuristic rules. To derive an intermediate
diagnoses one or more symptoms are necessary. So, the intermediate diagnosis reflects a
combination of symptoms, which is more solution specific than the raw symptom for itself.
That's the reason why those diagnoses are used in MED2 to reduce the search space for
requesting additional symptoms.

The preselection of CBR can profit from the same effect. Using the intermediate diagnoses
as the choice criteria, a better focus on the relevant cases is possible. Since the number of the
intermediate diagnoses are much lower than the former number of raw symptoms, the costs for
the preselection is automatically reduced. Besides, the resulting lower number of cases in the
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5 

preselection set also reduces the costs for the following exact comparison. Thus, the above 
mentioned goal is reached. 

To realise the new preselection mechanism, CcC+ has to be synchronized with the inference 
process of MED2. To do this, CcC+ asks MED2 for the actually derived intermediate 
diagnoses. If there exist any, they are used, otherwise the conventional mechanism with the 
raw symptoms is used. First tests showed a performance improvement from 10 to 30 percent. 
The more raw symptoms are neccessary and/or collected in a saved case, the greater is the gain 
using intennediate diagnoses. 

Conclusion 

In this paper we presented a way to integrate a case-based reasoning and inductive learning 
system. With the comparison of three different kind of inductive learning systems (BUBE, 
ID3/C4 and UNIMEM). The result is, that each of those systems has different advantages and 
disadvantages. Overall, BUBE takes advantage of different kind of knowledge and is therefore 
the most flexible approach for an integration with the CBR-tool CcC+. The synergy effect is, 
that the response time of the inference process is minimized while the full quality of explanation 
and competence assessment is kept. Both CcC+ and BUBE are completely implemented. A 
prototypically integration on the communication level (the representation level is fully 
supported) is realized. A first evaluation showed that the cost reduction may reach up to 30 
percent without loosing the quality of the result. Currently we are about to evaluate the 
integration in a larger study. 
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preselection set also reduces the costs for the following exact comparison. Thus, the above
mentioned goal is reached.

To realise the new preselection mechanism, CcC+ has to be synchronized with the inference
process of MED2. To do this, CcC+ asks MED2 for the actually derived intermediate
diagnoses. If there exist any, they are used, otherwise the conventional mechanism with the
raw symptoms is used. First tests showed a performance improvement from 10 to 30 percent.
The more raw symptoms are neccessary and/or collected in a saved case, the greater is the gain
using intermediate diagnoses.

5 Conc lus ion

In this paper we presented a way to integrate a case-based reasoning and inductive learning
system. With the comparison of three different kind of inductive learning systems (BUBE,
IDB/C4 and UNIMEM). The result is, that each of those systems has different advantages and
disadvantages. Overall, BUBE takes advantage of different kind of knowledge and is therefore
the most flexible approach for an integration with the CBR-tool CcC+. The synergy effect is,
that the response time of the inference process is minimized while the full quality of explanation
and competence assessment is kept. Both CcC+ and BUBE are completely implemented. A
prototypically integration on the communication level (the representation level is fully
supported) is realized. A first evaluation showed that the cost reduction may reach up to 30
percent without loosing the quality of the result. Currently we are about to evaluate the
integration in a larger study.
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Abstract 

Case-based problem solving can be significantly improved by applying domain knowledge (not problem 
solving knowledge) which can be acquired with reasonable effort to derive explanations of the cases' 
correctness. Such explanations, constructed on several levels of abstraction, can be employed as 
the basis for similarity assessment as well as for adaptation by solution refinement. This paper 
presents a general approach for explanation-based similarity and exemplarily shows it's application 
for a diagnosis and a planning task. 

Introduction and Motivation 

The underlying principle of case-based reasoning is the idea to remember solutions to already known 
problems for their reuse during novel problem solving. The case which is most similar to the current 
problem is retrieved from a case base and it's solution is modified to become a solution to the current 
problem. One of the aspired benefits of case-based reasoning is to reduce the need to acquire and explicitly 
represent general knowledge of the problem domain and thereby to overcome the knowledge acquisition 
bottleneck. Due to the avoidance of explicit domain knowledge, the similarity between two cases is mostly 
assessed by a numeric computation of selected surface features of the problem description and results 
in a single number which reflects all aspects of the similarity. All knowledge about problem similarity 
is implicitly encoded into a formula which defines a similarity measure. Besides this, less attention was 
paid on case adaptation since this would also require a large amount of knowledge - it was even argued 
that for classification and diagnostic tasks case adaptation is not necessary. 

We want to argue against the idea to avoid all kinds of explicitly represented knowledge. Knowledge 
which can be acquired with reasonable effort should be used for similarity assessments as well as for 
solution adaptation. Such additional knowledge is required for planning as well as for diagnosis tasks, 
in order to achieve more powerful and domain-justified case-based problem solvers. From the current 
experience in knowledge acquisition for "traditional" knowledge based systems, we can at least distinguish 

, two different types of knowledge [Newell,' 1982]: Domain knowledge and problem solving knowledge 
[Wielinga et al., 1992]. Problem solving knowledge describes the process of problem solving in terms of 
steps (i.e. basic inferences or subtasks as in KADS) that should to be performed to (efficiently) derive a 
problem's solution. This kind of knowledge is the central target of KADS-like modeling approaches which 
reflects the high difficulty in it's acquisition. Unlike problem solving knowledge, domain knowledge is the 
knowledge about the "components" that are available to construct a problem solution and their interaction 
within the solution to a problem. Domain knowledge is therefore sufficient to determine whether a 
proposed solution really solves a given problem. This kind of knowledge is much easier to acquire 
than probl€m solving knowledge, €specially in technical domains. Specific domain tailored knowledge 
acquisition tools have already been built to support the elicitation and formalization of such domain 
knowledge (e.g. [Musen et al., 1987; Schmidt and Zickwolff, 1992]). Using this knowledge, an explanation 
of a case can be constructed. On several levels of abstraction, this explanation shows how the case's 
solution solves the case's problem. Based on such explanations, the similarity between two cases can be 
assessed and the adaptation process can also be focused to the relevant portions of the solution. 

In the rest of this paper we will describe the approach in more detail and show it's application for a 
diagnosis and a planning task, which are both prototypically implemented. 
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Abstract

Case-based problem solving can be significantly improved by applying domain knowledge (not  problem
solving knowledge) which can be acquired with reasonable effort to derive explanations of the cases’
correctness. Such explanations, constructed on several levels of abstraction, can be employed as
the basis for similarity assessment as well as for adaptation by solution refinement. This paper
presents a general approach for explanation-based similarity and exemplarily shows it’s application
for a diagnosis and a planning task.

1 Introduction and Motivation

The underlying principle of case—based reasoning is the idea to remember solutions to  already known
problems for their reuse during novel problem solving. The case which is most similar to the current
problem is retrieved from a case base and it’s solution is modified to become a solution to  the current
problem. One of the aspired benefits of case—based reasoning is to  reduce the need to  acquire and explicitly
represent general knowledge of the problem domain and thereby to overcome the knowledge acquisition
bottleneck. Due to  the avoidance of explicit domain knowledge, the similarity between two cases is mostly
assessed by a numeric computation of selected surface features of the  problem description and results
in  a single number which reflects all aspects of the similarity. All knowledge about problem similarity
is implicitly encoded into a formula which defines a similarity measure. Besides this, less attention was
paid on case adaptation since this would also require a large amount of knowledge -— i t  was even argued
that for classification and diagnostic tasks case adaptation is not necessary.

We want to argue against the  idea to  avoid all kinds of explicitly represented knowledge. Knowledge
which can be acquired with reasonable effort should be  used for similarity assessments as well as for
solution adaptation. Such additional knowledge is required for planning as well as for diagnosis tasks,
in order to achieve more powerful and domain—justified case-based problem solvers. From the current
eXperience in knowledge acquisition for “traditional” knowledge based systems, we can at least distinguish
two different types of knowledge [Newell,' 1982]: Domain knowledge and problem solving knowledge
[Wielinga et al., 1992]. Problem solving knowledge describes the process of problem solving in terms of
steps (i.e. basic inferences or subtasks as in  KADS) that should to be performed to (efficiently) derive a
problem’s solution. This kind of knowledge is the central target of KADS-like modeling approaches which
reflects the high difficulty in it’s acquisition. Unlike problem solving knowledge, domain knowledge is the
knowledge about the “components” that are available to  construct a problem solution and their interaction
within the solution to a problem. Domain knowledge is therefore sufficient to determine whether a
proposed solution really solves a given problem. This kind of knowledge is much easier to acquire
than problem solving knowledge, especially in technical domains. Specific domain tailored knowledge
acquisition tools have already been built to support the elicitation and formalization of such domain
knowledge (e.g. [Musen ct al., 1987; Schmidt and Zickwolff, 1992]). Using this knowledge, an explanation
of a case can be  constructed. On several levels of abstraction, this  explanation shows how the case’s
solution solves the  case’s problem. Based on such explanations, the similarity between two cases can be
assessed and the adaptation process can also be  focused to the relevant portions of the solution.

In the rest of this paper we will describe the approach in  more detail and show it’s application for a
diagnosis and a planning task, which are both prototypically implemented.
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2 Explanation-based Similarity for Diagno~is and Planning 

The core idea of our approach is to use domain knowledge - which can be acquired relatively easy - to set 
the similarity assessment and the adaptation on a more profound basis founded on an explanation of a 
case. Such an explanation does not describe how a solution is derived (this would require problem solving 
knowledge) but that a solutions really solves a given problem, i.e. an explanation of the correctness of 
the solution. It is really important to keep this distinction in mind since it make our approach different 
from derivational analogy [Carbonell and Veloso, 1988]. On the other hand, the domain knowledge we 
employ for explaining a case is stronger than just causal relations like in other approaches [Barletta and 
Mark, 1988; Koton, 1988] and may be best compared to the knowledge employed at the object level of 
CREEK [Aamodt, 1991]. 

The similarity of two cases can be judged according to the similarity of their explanations. This 
requires that a knowledge base containing relevant domain knowledge is built on several levels of abstrac
tion. An explanation on a lower level of abstraction is a more specific explanation and is consequently 
composed of a larger number of specific rules than an explanation on a higher level of abstraction. There
fore, the explanations of two cases can differ very much on a lower level of abstraction but will be identical 
on a higher level of abstraction. This observation leads us to a rating of the similarity of two explanations: 
The lower the level of abstraction is on which two explanations are identical, the higher is the assessment 
of their similarity. 

2.1 Representation of Explanations and Similarity assessment 

In diagnosis as well as in planning, an explanation on one level of abstraction can be represented in a 
graph structure (see figure 1) with two different kinds of labeled nodes: rule-nodes and fact-nodes. Each 
rule which is used in an explanation is represented by a rule-node, labeled with the name of the rule. 
Fact-nodes represent case specific facts in an explanation which are either given (e.g. from a problem 
description) or which are derived by a rule. Fact-nodes and rule-nodes are linked by directed edges. 
Incoming edges into a rule-node (starting at a fact-node) reflect the premisses of the rule and outgoing 
edges, leading to fact-nodes, stand for their conclusions. 

Two explanations on one level of abstraction are called identical, if the graphs are identical except for 
the labeling of the fact-nodes which can vary. Correspondirig rule-nodes must be labeled with the same 
name of the rule 1. 

Explanations on two consecutive levels of abstraction are linked by abstraction mappings, which can 
relate several level Leveln fact-nodes to a single level Leveln +l fact-node. Additionally, a subgraph 
containing several rule-nodes can be mapped onto a single more abstract rule on the next higher level 
of abstraction. The similarity between two complete multi-level explanations can now be determined 
according to the level of abstraction on which the explanations are identical. The higher the level of 
abstraction the lower is the similarity rating. 

The definition of explanation-based similarity presented so far requires complete explanations for both 
cases to be compared. For the similarity assessment within a case-based reasoning process, a complete 
case from the case-base (including an explanation) has to be compared with the - currently not solved 
- problem description not containing an explanation. To allow similarity assessment nevertheless, the 

1 Finer differentiations in explanation similarity can be reached if a similarity rating between rules can be provided. 

.... _
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Figure 1: Multi—level explanation structure

2 Explanation-based Similarity for Diagnosis and Planning
The core idea of our approach is to use domain knowledge —- which can be acquired relatively easy — to set
the similarity assessment and the adaptation on a more profound basis founded on an explanation of a
case. Such an explanation does not  describe how a solution is derived (this would require problem solving
knowledge) but  that a solutions really solves a given problem, i.e. an explanation of the correctness of
the solution. It is really important to keep this distinction in mind since it make our'approach different
from derivational analogy [Carbonell and Velbso, 1988]. On the  other hand, the domain knowledge we
employ for explaining a case is stronger than just causal relations like in other approaches [Barletta and
Mark, 1988; Koton, 1988] and may be  best compared to the knowledge employed at the object level of
CREEK [Aamodt,  1991].

The similarity of two cases can be  judged according to the  similarity of their explanations. This
requires that a knowledge base containing relevant domain knowledge is built on several levels of abstrac-
tion. An explanation on a lower level of abstraction is a more specific explanation and is consequently
composed of a larger number of specific rules than an explanation on a higher level of abstraction. There—
fore, the  explanations of two cases can differ very much on a lower level of abstraction but  will be  identical
on a higher level of abstraction. This observation leads us to a rating of the similarity of two explanations:
The lower the level of abstraction is on which two explanations are identical, the higher is the assessment
of their similarity. -'

2.1 Representation of Explanations and Similarity assessment
In diagnosis as well as in planning, an explanation on one level of abstraction can be  represented in a
graph structure (see figure 1) with two different kinds of labeled nodes: rule-nodes and fact-nodes. Each
rule which is used in an explanation is represented by a rule-node, labeled with the name of the rule.
Fact-nodes represent case specific facts in  an explanation which are either given (e.g. from a problem
description) or which are derived by a rule. Fact—nodes and rule-nodes are linked by directed edges.
Incoming edges into a rule—node (starting at a fact-node) reflect the premisses of the rule and outgoing
edges, leading to  fact»nodes, stand for their conclusions.

Two explanations on one level of abstraction are called identical, if the graphs are identical except for
the  labeling of the  fact—nodes which can vary. Corresponding rule-nodes must be  labeled with the same
name of the rule 1 .

Explanations on  two consecutive levels of abstraction are linked by abstraction mappings, which can
relate several level Leveln fact—nodes to a single level Leveln+1 fact—node. Additionally, a subgraph
containing several rule-nodes can be  mapped onto a single more abstract rule on the next higher level
of abstraction. The similarity between two complete multilevel explanations can now be  determined
according to the  level of abstraction on which the eXplanations are identical. The higher the level of
abstraction the  lower is the similarity rating.

The definition of explanation-based similarity presented so far requires complete explanations for both
cases to be compared. For the similarity assessment within a caseebased reasoning process, a complete
cafse from the case-base (including an explanation) has to be compared with the — currently not solved
« problem description not containing an explanation. To allow similarity assessment nevertheless, the

1 Finer differentiations i n  explanation similarity can be reached if a. similarity rating between rules can be  provided.
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Figure 2: Two cases from a technical diagnostic domain 

explanation of the case in the case base is mapped to the current problem description as far as possible. 
Starting at the highest level of abstraction, it is checked whether the current problem description meets 
the requirements of the case's explanation at that level 2 . If this is the case, the explanation and thereby 
also the case's solution is mapped and this process proceeds with next, more concrete level. The level at 
which the explanation cannot be mapped any more will then indicate the degree of similarity between 
the case and the current problem. Note, that by the described way of similarity assessment one step of 
a solution adaptation (mapping of components) has already been performed. An additional adaptation 
step is required to refine the abstract solution towards the aspired level of detail, which can be achieved 
by 'a limited search in the space of possible solutions. The computational cost for the search strictly 
depends on the number of abstraction levels which have to be bridged and consequently on the degree of 
similarity between the current problem and the case in the case base. If the similarity is not high enough, 
the search space which had to be traversed can become so large, that no solution can be found. Such a 
situation is a strong indication that a new case has to be added to the case base. 

2.2 An Example from a Diagnostic Domain 

This general idea will now be applied for a diagnostic domain. The goal of diagnostic problem solving 
is to identify one or sometimes more than one faulty components (call diagnosis) of a system that shows 
some unintended behavior. The (partially unintended) system's behavior is usually described by a set 
of symptoms. A complete case consists of a collection of known symptoms (the problem description) 
together with a diagnosis (solution) which is sufficient to explain all of the observed symptoms. In order to 
explain the diagnosis domain knowledge about the correct functioning of the system components and their 
interaction within the system is required. Moreover, th~ hierarchical part-of decomposition of the system 
leads to a natural description of the component's behavior on multiple levels of abstraction. Another 
way for abstracting components is provided by a hierarchical structure abstracting single components 
and component-groups. An abstraction of Relay as well as of Valve might be Switch. 

A simplified example from a technical domain is shown in figure 2. A generator G1 supplies via a wire 
and a relay an electric bulb L2 (see case 1). If the wire breaks, even if the relay is shut the lamp will stay 
dark. A similar case (case 2) appears by replacing the bulb by a motor Hi. A description of a machine 
component will include information about the component's in- and outputs, especially about the value 
range and the component's behavior. A wire, for example, can be described as follows: It can transmit 
voltages between OV and 20,000V (value range). If the wire functions co~rectly, any input-value will be 
transfered to the output, but if it is broken, voltage at the output will always be zero (behavior). In an 
explanation, a certain input- or output-value will be represented as a fact. The actual behavior of the 
device transforming input ~alues into output values will be represented as a rule. For our two example 
cases, this way of modeling leads to explanation structures as shown in figure 3. 

The two level-1 explanation structures turn out to be not identical because on the considered abstrac
tion level the rules describing the behavior of a motor and the behavior of a bulb are different. But if we 
look at the explanation the next higher level of abstraction, the behavior of the both different components 
can be condensed into a single rule which reflects a doesn J t operate behavior. So, the explanations of 
both cases are identical at the second level of abstraction. 

If we now consider the case-based diagnosis process involving the mapping of the level-2 explanation 
from case 1 to the problem description of case 2 (generator works, relay is shut, but bulb stays dark) 
we already achieve the mapping of the faulty component (wire18) from case 1 to the related component 
(wire6S). In this situation we can see, that the required diagnosis adaptation is completely performed by 
the explanation mapping. In general, however, an adapted abstract solution needs to be refined towards 
a concrete diagnosis as it will be shown in section 3.1. 

The presented approach has been completely implemented as the MoCAS-system [Pews et al., 1992; 
Pews and Wess, 1993] which performs a case-based diagnosis task including the described type of solution 
adaptation for a machine consisting of about 100 components. 

2Even if the complexity for graph matching is very high [Read and Corneil, 1977J, the fact that our nodes are typed by 
the names of the rules drastically reduces this complexity. 
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eXplanation of the  case in the case base is mapped to the current problem description as far as possible.
Starting at the highest level of abstraction, i t  is checked whether the current problem description meets
the requirements of the case’s explanation at tha t  level 2 . If this is the case, the explanation and thereby
also the case’s solution is mapped and this process proceeds with next,  more concrete level. The level at
which the explanation cannot be  mapped any more will then indicate the degree of similarity between
the case and the current problem. Note, that by the  described way of similarity assessment one step of
a solution adaptation (mapping of components) has already been performed. An additional adaptation
step is required to refine the abstract solution towards the aspired level of detail, which can be achieved
by a limited search in the space of possible solutions. The computational cost for the search strictly
depends on the number of abstraction levels which have to be bridged and consequently on the degree of
similarity between the current problem and the case in the case base. If the similarity is not high enough,
the search space which had to be  traversed can become so large, that no solution can be found. Such a
situation is a strong indication that a new case has to be added to the case base.

2.2  An  Example from a Diagnostic Domain
This general idea will now be  applied for a diagnostic domain. The goal of diagnostic problem solving
is to identify one or sometimes more than one faulty components (call diagnosis) of a system that shows
some unintended behavior. The (partially unintended) system’s behavior is usually described by a set
of symptoms. A complete case consists of a collection of known symptoms (the problem description)
together with a diagnosis (solution) which is sufficient to explain all of the observed symptoms. In order to
explain the diagnosis domain knowledge about the correct functioning of the system components and their
interaction within the system is required. Moreover, the hierarchical part-of decomposition of the system
leads to a natural description of the component’s behavior on multiple levels of abstraction. Another
way for abstracting components is provided by a hierarchical structure abstracting single components
and component-groups. An abstraction of Relay as well as of Valve might be  Switch.

A simplified example from a technical domain is shown in figure 2. A generator G1 supplies via a wire
and a relay an electric bulb L2 (see case 1). If the wire breaks, even if the relay is shut the lamp will stay
dark. A similar case (case 2) appears by replacing the bulb by a motor H1. A description of a machine
component will include information about the component’s in— and outputs, especially about the value
range and the component’s behavior. A wire, for example, can be described as follows: It can transmit
voltages between OV and 20,000V (value range). If the wire functions correctly, any input-value will be
transfered to the output ,  but  if i t  is broken, voltage at the output will always be zero (behavior). In an
explanation, a certain input— or output-value will be  represented as a fact. The actual behavior of the
device transforming input values into output values will be  represented as a rule. For our two example
cases, this way of modeling leads to explanation structures as shown in figure 3.

The two level-1 explanation structures turn out to be  not identical because on the considered abstrac-
tion level the  rules describing the behavior of a motor and the behavior of a bulb are different. But if we
look at the explanation the next higher level of abstraction, the behavior of the both different components
can be  condensed into a single rule which reflects a doesn ’ t  operate behavior. So, the explanations of
both cases are identical at the second level of abstraction.

If we now consider the case-based diagnosis process involving the mapping of the level—2 explanation
from case 1 to the problem description of case 2 (generator works, relay is shut ,  but bulb stays dark)
we already achieve the mapping of the faulty component (wire18) from case 1 to the related component
(wire65) .  In  this situation we can see, that the required diagnosis adaptation is completely performed by
the explanation mapping. In general, however, an adapted abstract solution needs to  be  refined towards
a concrete diagnosis as i t  will be  shown in section 3.1.

The presented approach has been completely implemented as the MoCAS—system [Pews et al., 1992;
Pews and Wess, 1993] which performs a case—based diagnosis task including the described type of solution
adaptation for a machine consisting of about 100 components.

2Even  if the complexity for graph matching is very high [Read and Corneil, 1977], the fact that our nodes are typed by
the names of the rules drastically reduces this complexity.
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Figure 3: Explanation structures for two diagnostic cases 

2.3 An Example from a Planning Domain 

In planning, the goal of problem solving is to derive a sequence of actions (or operators), which, when , 
applied, transform a given initial state into a desired goal state. Initial state and goal state together 
constitute the description of a planning problem and the operator sequence forms the desired solution. 
The domain knowledge required to explain the correctness of.a problem's solution must describe the 
effects of each available operator in terms of a state transformation function. The operators of a domain 
can be described on several levels of abstraction, an idea already intensively investigated in research on 
hierarchical planning [Sacerdoti, 1974]. A plan on a higher level of abstraction consists of fewer, less 
detailed operators and corresponds to an abstract explanation. 

To demonstrate the application of the explanation-based similarity approach for case-based planning, 
we will employ the well known Towers-of-Hanoi (ToH) domain. A plan which solves a given ToH problem 
is a sequence of legal single disk move actions. The rules required to explain the correctness of such a 
plan are the STRIPS representations ofthe available operator Kove(Source ,Destination). Additionally, 
operator descriptions on higher levels of abstractions are required such as: MoveLargeDisk, SplitTover, 
or JoinTower. To achieve the correspondence between the two levels of abstraction, knowledge about 
plausible abstraction mappings is included, describing, for example, which grouping of single disks on the 
concrete level forms a tower on the abstract. This entire multi-level modeling is based on an elaborated 
plan abstraction methodology published elsewhere [Bergmann, 1992]. 

For the two-disk ToH-case Gpl (move the two disks from peg a to peg c), the two-level explanation 
structure is presented in figure 4. Each rule node in this structure reflects one operation of the solution 
plan. The fact-nodes show the states of the different pegs during the execution of the plan. The ex
planation at the abstract level is composed of three, more abstract rules, each of which representing an 
abstract operation. 

If we want to assess the similarity between the case Gpl and a new problem Gp2 in which the two disks 
have to be moved from peg b to peg a, we can see that the explanation given in figure 4 can be completely 
mapped for the new problem. The only difference between the explanations for the two problems is the 

+ + + +
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Figure 4: An explanation structure for the Towers-of-Hanoi plan 
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Figure 3 :  Explanation structures for two diagnostic cases

2.3 An Example from a Planning Domain
In planning, the goal of problem solving is to derive a sequence of actions (or operators), which, when
applied, transform a given initial state into a desired goal s'tate. Initial state and goal state together
constitute the description of a planning problem and the operator sequence forms the desired solution.
The domain knowledge required to  explain the correctness of .a problem’s solution must describe the
effects of each available operator in terms of a state transformation function. The operators of a domain
can be  described on several levels of abstraction, an idea already intensively investigated in research on
hierarchical planning [Sacerdoti, 1974]. A plan on a higher level of abstraction consists of fewer, less
detailed operators and corresponds to an abstract explanation.

To demonstrate the application of the explanation-based similarity approach for case—based planning,
we will employ the well known Towers-of—Hanoi (ToH) domain. A plan which solves a given ToH problem
is a sequence of legal single disk move actions. The rules required to explain the correctness of such a
plan are the STRIPS representations of the available operator Hove(Source  ,Dest inat  i on ) .  Additionally,
operator descriptions on higher levels of abstractions are required such as: MoveLargeDisk, SplitTower,
or JoinTower.  To achieve the correspondence between the two levels of abstraction, knowledge about
plausible abstraction mappings is included, describing, for example, which grouping of single disks on the
concrete level forms a tower on the abstract. This entire multi—level modeling is based on an elaborated
plan abstraction methodology published elsewhere [Bergmann, 1992].

For the two—disk ToH-case Cpl (move the two disks from peg a to peg c), the two-level explanation
structure is presented in figure 4. Each rule node in this structure reflects one operation of the solution
plan. The fact-nodes show the states of the different pegs during the execution of the plan.  The ex-
planation at the abstract level is composed of three, more abstract rules, each of which representing an
abstract operation.

If we want to assess the similarity between the case Cpl and a new problem Cpg in which the two disks
have to  be  moved from peg b to peg a, we can see that the  explanation given in figure 4 can be completely
mapped for the  new problem. The only difi‘erence between the explanations for the two problems is the
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Figure 4: An explanation structure for the Towers-of—Hanoi plan
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Figure 5: Refinement adaptation for the 3-disk Towers-of-Hanoi problem 

labeling of the face-nodes which reflect the·alteration of the source and destination pegs. But the fact 
labels are irrelevant for determining the similarity between two explanation graphs. By comparing case 
Gpl to a third problem Gp3 in which three disks have to be moved from peg a to peg c, it turns out 
that the explanation at the abstract level can be mapped (a complete abstract tower does now consists 
of all three disks), while the concrete-Ievei explanation cannot be mapped. So, the cases Gpl and Gp2 
are more similar than the cases Gpl and Gp3. 

3 Case Adaptation 

The result of the up to now described similarity assessment process is not only a (numeric) rating of the 
similarity, but also a partial mapping of the explanation structure from a case in the case base to the 
current problem. The computational effort required to achieve a full concrete-level solution (a specific 
diagnosis or a plan composed of concrete operators) highly depends on the level of concreteness that could 
be reached by the attempt to map the explanation structure. The more similar the case in the case base, 
the lower is the required amount of search for solution adaptation. The possibility of solution refinement 
significantly extends the scope of case reuse with respect the standard case-based and explanation-based 
approaches. 

3.1 Refinement Adaptation III Diagnosis 

In case-based diagnosis, the refinement of a diagnosis means specializing a known fault of a more complex 
component to one (or more) faults in it's sub-components. This only requires a limited search for a 
potentially faulty sub-components to those which belong to the already known faulty component. As an 
example, we recall our example cases from figure 2 and consider a third case which differs from case 1 
in that the wire is replaced by a more complex transmission component such as an infrared-sender and 
receiver including several amplifiers. 

An explanation mapping at an appropriate level of abstraction will now lead to the identification of 
the compound component with the broken wire and results therefore in the diagnosis that the compound 
component might be damaged. The search will now be focussed on the sub-components the compound 
component consists of; the solution needs to be refined by model-based techniques using the model 
knowledge already explored during the similarity assessment. Fortunately, in real life it is very often not 
necessary to identify which sub-part of a component causes the defect when the whole component can 
simply be replaced. 

3.2 Refinement Adaptation III Planning 

In case-based planning, refinement adaptation means specializing each operator of the abstract solution 
plan to a sequence of concrete operators. This is merely a planning task, but performed in a limited 
search space and consequently assumed to be tractable if the similarity is high enough. If we look, for 
example, at the adaptation which is required for refining the mapped explanation from the planning 
case Gpl to the problem Gp3 defined in section 2.3, all of the three abstract operations must be refined 
as shown in figure 5. An experiment showed that 36 nodes at the concrete level search space had to 
be visited for this refinement task. 2785 nodes where required to adapt the 2-disk ToH solution for a 
4-disk problem. More complexity results for different ToH-problems can be found in [Bergmann, 1993; 
Surmann, 1993]. 
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labeling of the face—nodes which reflect the 'al terat ion of the source and destination pegs. But the fact
labels are irrelevant for determining the similarity between two explanation graphs. By comparing case
Cpl to  a third problem Cp3 in which three disks have to be moved from peg a to peg c, i t  turns out
that the  explanation at the  abstract level can be  mapped ( a  complete abstract tower does now consists
of all three disks), while the  concrete-level explanation cannot be  mapped. So, the cases C pl and C 122
are more similar than the cases Cpl and (7193.

3 Case Adaptation
The result of the up to now described similarity assessment process is not only a (numeric) rating of the
similarity, but  also a partial mapping of the explanation structure from a case in the case base to  the
current problem. The computational effort required to achieve a full concrete-level solution ( a  specific
diagnosis or a plan composed of concrete operators) highly depends on the level of concreteness that could
be reached by the attempt to map the explanation structure. The more similar the case in the case base,
the lower is the  required amount of  search for solution adaptation. The possibility of solution refinement
significantly extends the scope of case reuse with respect the standard case-based and explanation-based
approaches.

3.1 Refinement Adaptation in Diagnosis
In case—based diagnosis, the refinement of a diagnosis means specializing a known fault of a more complex
component to one (or more) faults in it’s sub-components. This only requires a limited search for a
potentially faulty sub-components to those which belong to the already known faulty component. As an
example, we recall our example cases from figure 2 and consider a third case which differs from case 1
in that the wire is replaced by a more complex transmission component such as an infrared-sender and
receiver including several amplifiers.

An explanation mapping at an appropriate level of abstraction will now lead to the identification of
the compound component with the  broken wire and results therefore in the diagnosis that the compound
component might be  damaged. The search will now be  focussed on the  sub—components the compound
component consists of; the  solution needs to be  refined by model—based techniques using the model
knowledge already explored during the similarity assessment. Fortunately, in real life i t  is very often not
necessary to identify which sub-part of a component causes the defect when the whole component can
simply be  replaced.

3 .2  Refinement Adaptation in Planning
In case-based planning, refinement adaptation means specializing each operator of the abstract solution
plan to  a sequence of concrete operators. This is merely a planning task, but  performed in a limited
search space and consequently assumed to be  tractable if the similarity is high enough. If we look, for
example, at the adaptation which is required for refining the mapped explanation from the planning
case Cpl to the problem 0193 defined in section 2.3, all of the three abstract operations must be  refined
as shown in figure 5 .  An experiment showed that 36 nodes at the concrete level search space had to
be  visited for this refinement task. 2785 nodes where required to adapt the 2-disk ToH solution for a
4-disk problem. More complexity results for different ToH-problems can be  found in [Bergmann, 1993;
Surmann, 1993].
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4 Discussion 

The presented task-independent approach allows for an integration of domain knowledge - which is 
relatively easy to acquire - into the case-based reasoning process for similarity assessment and solution 
adaptation. Dependent on the degree of similarity between the current problem and a case in the case 
base, the system behaves more like a case-based reasoning system or a like model-based reasoning system. 
As a consequence, the scope for which a case can be employed is increased dependent on the amount 
of domain knowledge that is entered into the system. A knowledge engineer applying this method can 
decide whether to enter more cases into the case base or whether to spend additional domain knowledge 
on more elaborated levels of abstraction to achieve the same competence. 

Currently, there are a few other approaches which favor the integration of additional problem solving 
knowledge knowledge (e.g. [Carbonell and Veloso, 1988]) or more simple causal relationships (e.g. [Bar
letta and Mark, 1988; Koton, 1988; Janetzko et al., 1992]) into case-based problem solving, while others 
aim at the integration of different reasoning paradigms (e.g. [Aamodt, 1991]) but mostly in a task-specific 
manner. In [Birnbaum and Collins, 1988] an approach is described with some similarities with respect to 
the use of abstraction hierarchies for solution adaptation but with the focus on cross-domain transfer. 
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4 Discussion

The presented task-independent approach allows for an integration of domain knowledge ~ which is
relatively easy to acquire —— into the  case-based reasoning process for similarity assessment and solution
adaptation. Dependent on  the degree of similarity between the current problem and a case in the case
base, the system behaves more like a case-based reasoning system or a like model-based reasoning system.
As a consequence, the  scope for which a case can be  employed is increased dependent on the amount
of domain knowledge that is entered into the system. A knowledge engineer applying this method can
decide whether to enter more cases into the case base or whether to  spend additional domain knowledge
on more elaborated levels of abstraction to achieve the same competence.

Currently, there are a few other approaches which favor the integration of additional problem solving
knowledge knowledge (e.g. [Carbonell and Veloso, 1988]) or more simple causal relationships (e.g. [Bar-
letta and Mark, 1988; Koton, 1988; J anetzko et al., 1992]) into case-based problem solving, While others
aim at the  integration of different reasoning paradigms (e.g. [Aamodt, 1991]) but mostly in a task-specific
manner. In  [Birnbaum and Collins, 1988] an approach is  described with some similarities with respect to
the use of abstraction hierarchies for solution adaptation but  with the focus on cross-domain transfer.
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This paper presents a fault diagnosis design which builds in Model-Based, Case-Based and Rule-Based 
Reasoning techniques. Within the Model-Based Reasoning layer, the system to be diagnosed is described under 
functional, structural and causal aspects; basic principles operating on this technical model allow to follow a 
systematic diagnostic process. Within the Case-Based Reasoning layer, the MBR or Expert's resolutions of past 
incidents are organized and indexed so that they can be quickly reused and possibly adapted by a four steps CBR 
engine; a hierarchy of symptoms and some" adaptation principles are also defined. Within the Rule-Based 
Reasoning layer, the solutions of the most frequent incidents are synthesized into rules which can be either 
manually supplied or automatically generated. Combining these techniques in a predefined but suitable 
resolution strategy improves the efficiency of the target Knowledge-Based System and increases the scope of 
its initial competences. 

1. Introduction 

Technical diagnosis is one of the most active application fields in AI research. Building diagnostic tools for 
real world systems is both an industrial need and a research challenge. As the application domains get more and 
more complex, the assessment of the right diagnosis demands more and more sophisticated techniques. Hardware 
detector devices can be early inserted in the design of such systems in order to track their abnormal behaviors. 
Assistance tools supported by various AI techniques can be in addition developed for performing faster and more 
precise diagnoses. While proposing solutions for those complex problems, existing AI techniques are refined and 
rationale principles in Knowledge-Based System (KBS) design [5) created. 

2. Motivations 

Our work consists in developing a KBS dedicated to the diagnosis of a complex sub-system of the Ariane
4 launcher. From the detailed study of this application under the supervision of a domain expert, three keypoints 
were identified. First, we observed that different types of knowledge are available for supporting diagnostic 
performance [18), especially technical documentation, incident forms, general and specific electrical principles... 
Second, we noted that the expert sometimes calls on personal experience to empirically optimize and confirm his 
diagnostic conclusions. Finally, we noticed that the resolution of frequent incidents seems to involve surface 
knowledge whereas the resolution of unusual ones demands a deeper knowledge [12]. Taking these facts into 
account led us to design what is labelled a «Hybrid Knowledge-Based System» for technical diagnosis [2). An 
implementation of this design is currently being developed. 

3. Ariane-4 Vehicle Equipment Bays' 

The Vehicle Equipment Bays (VEB) of the Ariane-4 launcher are assembled in the Matra-Marconi Space 
center based in Toulouse. A VEB must schedule the launcher night by computing guidance actions, telemetry 
emissions, order diffusions... Engineer teams are in charge of the assembling of their various equipments (On
board computer, electronic sequencing unit, interface unit, telemetry modules...) before running out exhaustive 
electrical tests. In the course of these test procedures, a huge amount of VEB parameters is acquired by surveillance 
devices (relay state control mechanisms, analogical and digital acquisitions, equipment status word generations...) 
situated either in the VEB or in the test bench. These parameters arc sent to a ground computer which automatically 
detects branchings between effective and expected values. Specific anomaly messages are then reported on a listing 
so that human operators can start their investigations. 

4. Combining rules, cases and a technical model 

We have just presented the main issues of our expertise domain i.e., the availability of different knowledge 
sources, the limits of a systematic diagnostic process and the heterogeneous complexity of the treated incidents. 
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performance [18], especially technical documentation, incident forms, general and specific electrical principles...
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Although the nominal running of the VEB is perfectly defined, we in short noticed that it is insufficient for 
deducing its disfunctioning behavior. In this context, neither pure Model-Based Reasoning [20] nor pure Expert 
System [15] techniques are convenient. Consequently we chose to combine different techniques, namely Model
Based (MBR), Case-Based (CBR) and Rule-Based (RBR) Reasonings as partially discussed in [1], [8], [14]. 
Relying on their different representation formal isms, we include in a single KBS a detailed technical model, a 
memory of encountered incidents and a set of shorcutting rules. 

5. Model-Based Reasoning layer 

The basic layer of our KBS is MBR and assigned to three major purposes: it characterizes the domain 
concepts into hierarchies; it describes in a technical model some functional. causal and structural aspects of the 
YEB [11]; it provides some heavy and slow propagation principles to operate on the technical model [7]. The 
domain concepts are available for the CBR and RBR layers to fill the description of the cases and the premisses of 
the rules. The technical model can be used at different phases of the CBR resolution, especially retrieval and 
adaptation time. The diagnostic capabilities of this layer are activated as long as the RBR and CBR layers fail in 
providing a satisfying solution to a given incident. 

5.1. Domain concepts 

The technical vocabulary of the VEB is organized into classes of equipments (relays, fuses. sensing units...), 
functions Le. equipment roles (transmission, acquisition, alimentation...),jlows i.e. spreading information (orders, 
status words...), parameters (cycles, voltage values...), anomaly messages (telemetry, analogical acquisitions...)... 
Methods for computing functioning details, testing specific equipments, asserting message dependencies... are also 
proposed. 

5.2. Technical model 

From the functional point of view, an equipment is split into its different functions which must reflect its 
Input/Output (IOs) dependencies and its roles within the VEB. As complex functions are implemented by lower 
ones, significant functions are often difficult to extract from the VEB design. Therefore many function classes and 
decompositions have to be distinguished. Nominal behavior can be expressed for producing expected outputs from 
expected inputs. , 

Causal knowledge is gathered in a set ofcausal links. A causal link stresses a relation between one or several 
anomaly messages and a function breakdown. As detector hardware devices are placed along some of the spreading 
flows, some causality links can be directly deduced from the structure of the VEB. This primary causal knowledge 
is not yet sufficient to precisely and reliably localize the guilty function. This type of knowledge must therefore be 
improved in the light of incident cases while real faults imply real symptoms. 

From the structural aspect, equipment functions are connected by buses, wires or cables. Any function 
whether it is complex or atomic, its subsequent and following neighbors and the connection type are therefore 
mentioned. This knowlegde allows to quickly retrieve the path of a given flow. CBR adaptation mechanisms can 
also use this information to transform the solution of a similar case. 

5.3. Diagnosis capabilities 

The resolution capabilities of the MBR layer are first supported by a straightforward principle: the fault 
must be in the intersection set of the functions placed upstream the ones which have sent an anomaly message. 
Then, improved or primary causal knowledge can be applied to discard a suspected function F : if the anomaly 
messages observed in a past case involving F do not reappear, then F is suppressed; the alternate way to discard F 
is to verify that one of its dowstream detector functions has not emitted. Finally, a reduced number of manual tests 
has to be performed to fix the right diagnosis. Consequently, the resolution process we adopted is split into two 
main phases : we first delimit a minimal space of hypotheses;. we then compare each function expected and 
received IOs to find out the faulty one. Expected values must be computed by the MBR functioning knowledge 
whereas received values are given by the user. 

6. Case-Based Reasoning layer 

The second layer of our KBS is case-oriented and works on four different types of case. It stores in solved 
cases the resolutions processed by the MBR solver so that they can be quickly recalled for forthcoming incidents. 
During learning dialogues with an instructor, it retains in unexplained cases the solution of the diagnoses the MBR 
layer does not succeed in solving because they include temporal aspects or demand too deep technical information; 
this task can create and update the causal knowledge since new relations belween faults and symptoms are 
discovered. It stores exception cases which diagnosis is different from the one deduced by a diagnostic rule which 
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premisses nevertheless match the case description. Finally, it can generate situation cases which organize under 
labelled situations a collection ofcases which shares a set of common indexes. A four phases CBR engine operating 
on a dedicated case structure and memory organization is activated to attempt to give the solution to the RBR 
unsolved incidents. 

6.1. Case structure 

For our requirements, we structure a diagnostic case under six attributes. Its description consists in the list 
of its observed anomaly messages. Its situmion may attach the case to a more prototypical one i.e. a situation case. 
Its process represents the ordered list of the proceeded tests and associated results. Its diagnosis then establishes 
the function which was in fault and the state of its IOs. Unexplained cases may contain specific details in the 
context attribute instead of a list of proceeded tests. The repair attribute is filled with the actions to be taken. 

6.2. Case memory 

Our diagnostic cases are organized in a hierarchy [19], [17] of situation cases Le., more or less abstract 
classifications of incident lypes. In the first levels of the hierarchy, the cases are stored according to their 
description. Two diagnosis cases with at least one similar anomaly message may be placed under a situational case 
indexed by the commom symptoms. Situation cases representing prediagnostic conclusions drawn by the expert 
out of well-known combinaitions of symptoms can be manually added [21]. Otherwise, the symptom presence, 
importance or absence are taken into account to automatically construct consistent clusters. The intermediate levels 
of the hierarchy systematically divide the situational cases according to test results and functioning conditions. 
Then, the leaves of the hierarchy contain diagnosis cases with their associated diagnosis and repair actions. 

Indexes relating one or several symptoms to a case have either a positive or negative influence on the 
associated diagnosis. Positive indexes can be of remembrance, sufficiency, necessity or equivalence types : 
remembrance index allows to extract a case from the memory; a sufficiency index allows to retain a case for 
presentation; a necessity index allows to discard a retrieved case which does not present the associated symptoms. 
Negative indexes can be of inhibition or exclusion types [4] : an inhibition index decreases the remembrance 
strength of a case; an exclusion index definitively discard a case for consideration. 

6.3. Retrieval phase 

The two phases of the MBR diagnostic process also underlie the CBR resolution. First, positive indexes are 
first used to recall a plausible set ofcases. Negative and necessity ones can reduce this hypothesis set. The strength 
of the useful indexes are combined to form a ranked list ofcases. If the hypothesis list is empty, indexes containing 
symptoms that share the same superclass [IQ] with the observed ones are attempted. Then, once an a priori 
satisfying situation case is assessed, the intermediate levels of the hierarchy support the systematic comparison 
between the past case configuration and the present problem. If several sub-cases compete, their appearance rating 
determines the presentation order. As a leave is reached, its diagnosis is proposed for approval. If a solved case is 
directly retrieved, it is proposed before any concurrent situational case. If a MBR unexplained case is retrieved, the 
applicability of its context is checked before presenteation. 

6.4. Adaptation phase 

As the CBR retriever may have retained some cases with symptoms different from the current ones, 
..	 adaptation is sometimes required to transform the past solutions. Wc have defined a very limited set of adaptation 

principles since it seems rather incoherent to manipulate the diagnosis of a source case which does not share the 
same symptoms than the target. The first principle is applicable when only one symptom is present: we can then 
interchange the past detector function with the new onc and propose it for diagnosis. The second principle is 
applicable when two correlated symptoms are present: their common upstream contributors can then be proposed. 
The last principle is rather an escape clause: considering that breakdowns on neighbor functions may yield the 
same symptoms, subsequent or following functions may become the right diagnoses. This convenient technique 
allows to traverse the hierarchies of cases. For future reuse, those patched successes can be stored in branching 
links. If available, an explicit mean of distinction may fill the branching link. 

6.S. Approval phase 

Three significant CBR inferences must be presented to the user for approval. First and if available, the 
primary situational levels must be approved since they define the set of diagnostic cases which arouses suspicion. 
Second, the diagnosis process must be fully applied to verify that the suspected functions have the same 10 states 
as they did: the effective IOs of the functions to be tested and the comparisons to the expected IOs are asked and 
presented. Finally, it must be proved by manual tests that the incriminated function has got correct inputs and 
abnormal outputs. If the user is not expert, the first approval can be avoided: this will only have a possible impact 
on the number of cases the system will try before reaching the right solution. 
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6.6. Storage phase 

Once the diagnosis has been established by the CBR or MBR layers or by the instructor, the target case has 
to be stored in the hierarchy. In the most favorable situation, it can be merged to the source case: the strength of 
its indexes can be appreciably increased; if it is dependant of a situational case, the appearance rating is also 
augmented. If a failure occurs but is successfully adapted, branching links are created. If the system proposes an 
incorrect case, negative indexes can be placed or positive indexes can be decreased. If the right diagnosis is not 
proposed, maybe it is possible that new tests only need to be added to cnd up at the solution. If the instructor decides 
on his own that the case brings to the fore a new situation, he must enter new indexes, resolution stepS and 
diagnosis. If the case is finally unexplained, the instructor supplies some more context precisions and its solution. 

7. Rule-Based Reasoning layer 

The last layer of our KBS consists in a set of shorcutting rules. Its purpose is to retain the solution of the 
incidents which often reappear. Diagnosis rules can be manually supplied to catch well-known situations and then 
to refme, generate and validate their associated hypotheses. Factual rules conclude with any intermediate results of 
a diagnosis rule. They are defined in the MBR layer for establishing the function states and dependencies between 
messages. Diagnosis rules can also be generated by the index analyser from index evolutions. For instance, as soon 
as a remembrance index strength exceeds the sufficiency threshold, an attempt ismade to convert it into a suspicion 
rule of its associated situation. During next interactive sessions, exception cases weakening this rule can 
nevertheless be encountered. Before activating the competences of the CBR layer, the diagnosis rules of the RBR 
layer are tried. 

8. RBR, CBR and MBR interactions 

The knowledge of our KBS is shared out among MBR, CBR and RBR layers. Diagnosis rules can be 
initially provided by the domain expert or automatically created by the index analyser out of sufficency, exclusion, 
necessity and equivalence indexes. Exception cases are created as soon as the conclusion of a fired rule does not 
turn out to be the right diagnosis. Solved cases are associated to the incidents successfully treated by the MBR 
layer. Unexplained cases diagnosis and context are provided by the expert when the MBR solver reports a failure. 
Situation cases are proposed for creation to the expert as soon as several diagnosis cases share a common set of 
symptoms. Causal knowledge is. extracted from diagnosis cases or YEB design and is used by the MBR layer for 
hypothesis suppression. Figure 1 sums up the possible relationships between the three layers. 

The strategy including the RBR, the CBR and the MBR competences is fixed. Solving a target incident 
consists in a sequential activation of the RBR. the eBR and the MBR competences. Within the RBR layer, the 
solution can be provided by a diagnostic rule or an exception case. If the RBR layer fails, a solved or unexplained 
case of the CBR layer may give the solution. Otherwise, the MBR capabilities inspect each of the functions 
involved in a minimal set. If the diagnosis is not yet found, the instructor has to supply the solution. From the 
cognitive point of view, we claim that this global strategy tends to reflect our expert's resolution process: if the 
incident keeps recurring, he can automatically recognize its situation; if the problem already occurred, he can recall 
its past global or partial resolution. Otherwise, he must activate a heavier process based on a technical 
representation of the equipment to be diagnosed. 

Exception cases

with defective rule
 

Solved cases
 
with diagnostic process
 

Unexplained cases

with context prccisions
 

Situation cases
 
with sub-cases
 

Figure I : The relationships between the rule base, the case base and the technical model. 

310
 

6.6. Storage phase

Once the diagnosis has been established by the CBR or MBR layers or by the instructor, the target case has
to be stored‘in the hierarchy. In the most favorable situation, it can be merged to the source case : the strength of
its indexes can be appreciably increased; if it is dependant of a situational case, the appearance rating is also
augmented. If a failure occurs but is  successfully adapted, branching links are created. If the system preposes an
incorrect case, negative indexes can be placed or positive indexes can be decreased. If the right diagnosis is not
proposed, maybe it is possible that new tests only need to be added to end up at the solution. If the instructor decides
on his own that the case brings to the fore it new situation, he must enter new indexes, resolution steps and
diagnosis. If the case is finally unexplained, the instructor supplies some more context precisions and its solution.

7. Rule-Based Reasoning layer

The last layer of our KBS consists in a set of shorcutting rules. Its purpose is to retain the solution of the
incidents which often reappear. Diagnosis rules can be man ually supplied to catch well-known situations and then
to refine, generate and validate their associated hypotheses. Factual rules conclude with any intermediate results of
a diagnosis rule. They are defined in the MBR layer for establishing the function states and dependencies between
messages. Diagnosis rules can also be generated by the index analyser from index evolutions. For instance, as soon
as a remembrance index strength exceeds the sufficiency threshold, an attempt ismade to convert it into a suspicion
rule of its associated situation. During next interactive sessions, exception cases weakening this rule can
nevertheless be encountered. Before activating the competences of‘ the CBR layer, the diagnosis rules of the RBR
layer are tried.

8. RBR, CBR and MBR interactions

The knowledge of our KBS is shared out among MBR, CBR and RBR layers. Diagnosis rules can be
initially provided by the domain expert or automatically created by the index analyser out of su fficency, exclusion,
necessity and equivalence indexes. Exception cases are created as soon as the conclusion of a fired rule does not
turn out to be the right diagnosis. Solved cases are associated to the incidents successfully treated by the MBR
layer. Unexplained cases diagnosis and context are provided by the expert when the MBR solver reports a failure.
Situation cases are proposed for creation to the expert as soon as several diagnosis cases share a common set of
symptoms. Causal knowledge is. extracted from diagnosis cases or VEB design and is used by the MBR layer for
hypothesis suppression. Figure 1 sums up the possible relationships between the three layers.

The strategy including the RBR, the CBR and the MBR competences is fixed. Solving a target incident
consists in a sequential activation of the RBR, the CBR and the MBR conipetences. Within the RBR layer, the
solution can be provided by a diagnostic rule or an exception case. If the RBR layer fails, a solved or unexplained
case of the CBR layer may give the solution. Otherwise, the MBR capabilities inspect each of the functions
involved in a minimal set. If the diagnosis is not yet found, the instructor has to supply the solution. From the
cognitive point of view, we claim that this global strategy tends to reflect our expert’s resolution process : if the
incident keeps recurring, he can automatically recognize its situation; if the problem already occurred, he can recall
its past global or partial resolution. Otherwise, he must activate a heavier process based on a technical
representation of the equipment to be diagnosed.

x TechnicalE pert Case-Base model
AnalySis

Knowledge Interactive Causality
Acquisition Resolutions Extractor

l
Exception cases

Ind With defective rule
‘ ‘ ex

Diagiliostic Analysis . Solved eases
“1 es With diagnostic process _ _

U 1 _ (.1 Diagnostic
nex ame cases -

Fired Rule with coir-next precisions Report
Analysis I Situation cases

with sub-cases

Figure 1 : The relationships between the rule base, the case base and the technical model.

310



9. LOIR (Lisp Objet Inference Reflexe) 

We are developing our KBS with LaIR, a hybrid language realized by a team [3] of the IRIT laboratory. It 
provides various functionalities such as a Common Lisp layer, a reOex inference engine, a frame-based formalism, 
pattern matching mechanisms and a dialogue and action models. Frames are convenient to describe the technical 
vocabulary of the VEB. Our cases are implemented in dedicated frames accessed by typicaIly CBR methods: 
retrieval, indexing, adaptation... Any kind of rule is triggered with backward, forward or mixed inferences. AIl the 
methods managing objects are Lisp written. 

10. Related works 

The main originality of our research is to integrate in a technical diagnosis system Rule-Based, Case-Based 
and Model-Based Reasonings whereas most of the CBR systems only combine rules and cases or cases and a 
model. The Casey system [14] also offers the possibility to build solutions from scratch by activating its MBR 
solver. However, the MBR layer only reasons whh a pure causal knowledge relating patient's states to others states 
or diseases. The Cabaret design [22] provides sophisticated heuristics for controlling and interleaving reasoning 
with cases and reasoning with rules. We only retained the possibility to activate an exception case within the rule
based layer. The Mud-Creek system [I] exploits functional and structural links at retrieval time in order to enhance 
the intial set of findings. We thought it better to use this knowledge type within the exhaustive diagnostic process 
of our model-based layer. 

11. Conclusion and future works 

Diagnostic tasks in real world applications cannot be properly described in a unified and clear-cut manner. 
Combining different reasoning techniques seems to be a significant and promising way to build more powerful 
KBS. By including MBR paradigm, the domain concepts and some basic functioning principles can be expressed. 
By including CBR paradigm, the system can learn and improve its competences in the course of being used. By 
including RBR paradigm, shorcutting rules can quickly provide the diagnosis of well-known incidents. The design 
we presented in this paper attempts to make its contribution to this hot topic research. 

Although many implementation problems still retain our current efforts, we have already stressed two 
design points to improve: 

• The different layers neither confront nor cooperate: the first validated solution stops the search 
process and only the supplier layer worked. Therefore, the knowledge base may become inconsistent while 
new cases are learned. To limit these inconsistency risks, the different formalisms could be unified in a more 
complex case notion which would include systematic rules, past situations and hesitant processes as 
discussed in [16, 13]. However, we claim first that the relative independence of the presented layers allows 
an incremental development and second that the layer competences may remain complementary. 

• The domain dependent concepts and most of the technical aspects are definitively fixed: the CBR 
and RBR layers could not work without this prerequisited knowledge. How did we a priori decide which 
knowledge would be significant for our coming CBR and RBR needs? This complex task was in fact 
manually performed out of acquisition phases. Moreover, many past incidents influenced our decisions to 
define the boundaries of the domain knowledge. Improving problem solving competences cannot be 
therefore separated from learning strategic knowledge [9,6) as well as domain knowledge [4). 
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Induction and Reasoning from Cases
 
Michel MANAGO (l), Klaus-Dieter ALTHOFF (2), Eric AURIOL (1), Ralph TRAPHONER (3), 

Stefan WESS (2), Noel CONRUYT (1), Frank MAURER (2) 

1 Introduction 

We present the INRECA european project (ESPRIT 6322) on integration of induction and case
based reasoning (CBR) technologies for solving diagnostic tasks. A key distinction between 
case-based reasoning and induction is given in [1]: "In case-based methods, a new problem is 

solved by recognising its similarities to a specific known problem then transferring the solution 
of the known problem to new one (...) In contrast, other methods of problem solving derive a 
solution either from a general characterisation of a group of problems or by search through a 
still more general body of knowledge". In this paper, we distinguish between a pure inductive 
approach and a case-based one on the basis that induction first computes an abstraction of the 
case database (ex: a decision tree or a set of rules) and then uses this general knowledge for 
problem solving. During the problem solving stage, the system does not access the cases 

2 INRECA '8 Inductive and Case-Based Approaches 

Induction is a technology that automatically extracts general knowledge from training cases. 
KATB is the inductive component of INRECA. It builds a decision tree from the cases by using 
the same search strategy, hill-climbing, and same preference criteria that is based on Shannon's 
entropy as ID3 [2]. Unlike most induction algorithms, KATB can handle complex domains 
where cases are represented as structured objects with relations and it can use background 
knowledge. At each node, KATB generates the set of relevant attributes of objects for the 
current context and selects the one that yields the highest information gain. For instance, an 
attributes such as "pregnant" for a patient whose sex is known to be "male" further up in the 
decision tree is eliminated before the information gain computation. Background domain 
knowledge and class descriptions allow to constrain the search space during induction [3]. 

Case-based reasoning is a technology that makes direct use of past experiences to solve a new 
problem by recognising its simi.larity with a specific known problem and by applying the 
known solution to the new problem. PATDEX is the case-based component of INRECA. It 

consists of two case-based reasoning subcomponents for classification and test selection. A 
procedure that dynamically partitions the case base enables an efficient computation and 

updating of the similarity measures used by the CBR subcomponents. For the classification 
subcomponent, the applied similarity measures are dynamic. The underlying evaluation 
function is adapted using a connectionist learning technique (competitive learning). For the test 
selection, the adaptation of similarity measures is based on an estimation of the average costs 
for ascertaining symptoms using an A*-like procedure. PATDEX can deal with redundant, 
incomplete, and incorrect cases and inCludes the processing of uncertain knowledge through 
default values. PATDEX is described in [4J and [5J. 

(1) AcknoSoft , 58a rue du Dessous des Berges, 75013 Paris - France. (2) University of Kaiserslautem, Dept. of Computer 
Science, PO Box 3049, 67653 Kaiserslautern - Germany. (3) teclnno GmbH, Sauerwiesen 2,67661 Kaiserslautern - Germany. 
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current context and selects the one that yields the highest information gain. For instance, an
attributes such as “pregnant” for a patient whose sex is known to be “male” further up in the
decision tree is eliminated before the information gain computation. Background domain
knowledge and class descriptions allow to constrain the search space during induction [3].

. Case-based reasoning is a technology that makes direct use of past experiences to solve a new
problem by recognising its similarity with a specific known problem and by applying the
known solution to the new problem. PATDEX is the case-based component of INRECA. It
consists of two case-based reasoning subcomponents for classification and test selection. A
procedure that dynamically partitions the case base enables an efficient computation and
updating of the similarity measures used by the CBR subcomponents. For the classification
subcomponent, the applied similarity measures are dynamic. The underlying evaluation
function is adapted using a connectionist learning technique (competitive learning). For the test
selection, the adaptation of similarity measures is  based on an estimation of the average costs
for ascertaining symptoms using an A*-like procedure. PATDEX can deal with redundant,
incomplete, and incorrect cases and includes the processing of uncertain knowledge through
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3 The Need for Integration 

INRECA integrates induction and case-based reasoning so that they can collaborate and provide 
better solutions than they would individually. Before describing how integration is perfonned, 
we first state why the two approaches are complementary. Induction presents some limitations 
for building an identification system that can handle missing values during consultation. 
Consider the following case base drawn from an application that identifies marine sponges 
developed at the Museum of Natural History in Paris. 

CASE CLASS SHAPE(BODY) TEETH-TIP(MACRAMPHIDISQUES) ., . 
Exl 
Ex2 
Ex3 
... 

PARADISCONEMA 
COSCINONEMA 
mRYNONEMA 

... 

ELLIPSOID 
mNICAL 

ELLIPSOID 
... 

LARGE 
LANcer-SHAPE 
LANcer-SHAPE 

... 

... 

... 

... 

... 
Table 1 - A database ofcases for an application which identifies marine sponges 

KATE works in two steps: it first learns a decision tree and then uses the tree to identify the 
unknown class of a new incoming sponge. Consider what happens when the user does not 
know how to answer the first question asked during consultation of the tree of figure 1. 

teeth-tip(macramphidisques) =???When the user answers "un
known", KATE proceeds by 
following both branches "lancet
shape" and "large" and combines 
the conclusions found at the 
leaves. In the "large" branch, it 
reaches the "Paradisconema" leaf 
node. In the "lancet-shape" 
branch, it reaches a test node and the user is queried for the value of the "shape" of the object 
"body". He answers "conical". KATE reaches the "Coscinonema" leaf and combines the two 
leaves to conclude that the current case is a "Paradisconema" with a probability of 0.5 or a 
"Coscinonema" with a probability of 0.5. Consider case ex1 at the "Paradisconema" leaf node. 
The feature "shape(body)" of exl has the value "ellipsoid" unlike the current case where it is 

"conical". Thus, the current case is closer to ex2 than to ex1 and the correct conclusion is 
"Coscinonema" with a probability of 1. Unfortunately, the infonnation about the "body shape" 
of exl was generalized away during induction and is no longer available during consultation. 

Note that there are other methods for handling unknown values during consultation of a tree. 
Instead of combining branches, one can assign a probability to the branches [6] and follow the 
most probable one. However, this does not remove the problem presented above. This problem 
is not caused by a flaw of the particular induction algorithm used by KATB since we could have 
used another algorithm and encounter a similar problem. It is not a flaw of the decision tree 
representation formalism since we could have used production rules generated automatically or 

manually and still run into this same problem. It is caused by the fact that we are reasoning 
using an abstraction of the training cases and have generalized away and thus lost some 
discriminant information. If the consultation system is to handle any configuration of unknown 

values, such as for applications that deal with photo-interpretation of objects whose features 
may be hidden in any combinations, case-based reasoning will always perform better than ru1e
based, decision tree-based or even neural network-based identification systems. 
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Figure 1: A consultation of the decision tree learned by KATE 
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Consider the following case base drawn from an application that identifies marine sponges
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know how to answer the first question asked during consultation of the tree of figure 1.

When the  user  answers  "un -  teeth-tip(macramphi'disq-ues)= ???

known", KATE proceeds by lancebshape
following both branches "lancet-
shape" and ”large" and combines
the conclusions found at the
leaves. In the "large” branch, it corynonemazex3
reaches the "Paradisconema" leaf
node. In the "lancet-shape"
branch, i t  reaches a test node and the user is queried for the value of the "shape" of the object
"body". He answers ”conical". KATE reaches the "Coscinonema" leaf and combines the two
leaves to conclude that the current case is a "Paradisconema" with a probability of 0.5 or a
"Coscinonema" with a probability of 0.5. Consider case ex l  at the "Paradisconema" leaf node.
The feature "shape(body)" of ex l  has the value "ellipsoid" unlike the current case where it is
”conical". Thus, the current case is closer to ex2 than to exl  and the correct conclusion is
"Coscinonema" with a probability of 1. Unfortunately, the information about the “body shape”
of exl  was generalized away during induction and is no longer available during consultation.

shape(body) = conical

ellipsoid

Figure 1 :  A consultation of the decision tree learned by KATE

Note that there are other methods for handling unknown values during consultation of a tree.
Instead of combining branches, one can assign a probability to the branches [6] and follow the
most probable one. However, this does not remove the problem presented above. This problem
is not caused by a flaw of the particular induction algorithm used by KATE since we could have
used another algorithm and encounter a similar problem. It is not a flaw of the decision tree
representation formalism since we could have used production rules generated automatically or
manually and still run into this same problem. It is caused by the fact that we are reasoning
using an abstraction of the training cases and have generalized away and thus lost some
discriminant information. If the consultation system is to handle any configuration of unknown
values, such as for applications that deal with photo-interpretation of objects whose features
may be hidden in any combinations, case-based reasoning will always perform better than rule-
based, decision tree-based or even neural network-based identification systems.
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This has been confirmed by a set of experiments conducted using PATDEX. We have 
measured its ability to reach a correct solution when the working case is incomplete (i.e. 

contains unknown values). Experiments have been conducted with a training set of one 
hundred cases. The test set also consists of one hundred cases. For every test case the number 
of known symptom values has been stepwise reduced. Classification accuracy is measured 
against reduction of the presented information. The results are shown in table 1. Here, a 
reduced information of 70% means that every case is classified based on 30% of its known 
symptom values (where 60% of such cases have been correctly classified). 

Reduced information (%) 0 10 20 30 40 50 60 70 80 90 100 
Classification accuracy (%) 100 99 97 96 91 90 76 60 28 11 0 

Table 2 - Measuring Correctness against Reduction ofInformation 

As confirmed by this set of experiments, up to a certain limit, classification accuracy is not 
significantly decreased by reducing the number of known attribute values in the current case. 
For instance, when half of the values are missing the system still correctly identifies 90% of the 
test cases. When using induction, a single missing value for an attribute in the decision tree 
(this corresponds to a 0.5% reduction in the information available) yields a loss of 50% in 
accuracy. When a feature is unknown, a case-based reasoning tool looks for alternative features 
to identify the current case. CBR reacts dynamically and exploit all the information available. In 
addition, a CBR system is more resilient to errors made by the user during consultation since it 
computes a similarity measure from the global description of the cases and not a minimal subset 
like with the inductive approach. It can confirm the conclusions by asking additional questions 
that modify the similarity measure accordingly. 

This does not imply that CBR always performs better than induction. During the first year of 
INRECA, we have defined a catalog of industrial criteria to conduct experiments and compare 
the two technologies. Our criteria catalog does not merely adresses technical issues such as 
performance and effectiveness, but also ergonomic and economic aspects such as user 
acceptance of the technology (domain specialist, naive end-user, data clerk, case engineer etc.), 
ease to build, validate and maintain the application and so on. After analysis, we claim that 
induction and CBR are complementary techniques and that integrating these will improve their 
standalone capabilities. Our comparison is summarized in the next section. The criterias have 

been introduced in hierarchical weighted grids to compare in an objective and exhautive manner 
the induction and CBR components of INRECA as well as other existing tools. 

Comparision of Induction and CBR 

We summarize the respective merits of the techniques in the following table. Although the 
experiments have been conducted using PATDEX and KATE, the conclusions drawn are 
applicable to the underlying technologies in general. Note that according to the distinction 
between induction and CBR that has been explained in the introduction, we view tools that 
access the training cases to incrementally maintain the induced rules or trees as CBR tools. 
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This has been confirmed by a set of experiments conducted using PATDEX. We have
measured its ability to reach a correct solution when the working case is incomplete (i.e.
contains unknown values). Experiments have been conducted with a training set of one
hundred cases. The test set also consists of one hundred cases. For every test case the number
of known symptom values has been stepwise reduced. Classification accuracy is measured
against reduction of the presented information. The results are shown in table 1. Here, a
reduced information of 70% means that every case is  classified based on 30% of its known
symptom values (where 60% of such cases have been correctly classified).

Reduced information (%) 0 10 20 30 40 so ' 60 70 so 90 100
Classification accuracy (%) 100 99 97  96 91  90 76 60 28 11  0

Table 2 - Measuring Correctness against Reduction of Information

As confirmed by this set of experiments, up to a certain limit, classification accuracy is not
significantly decreased by red'ucin g the number of known attribute values in the current case.
For instance, when half of the values are missing the system still correctly identifies 90% of the
test cases. When using induction, a single missing value for an attribute in the decision tree
(this corresponds to a 0.5% reduction in the information available) yields a loss of 50% in
accuracy. When a feature is unknown, a case-based reasoning tool looks for alternative features
to identify the current case. CBR reacts dynamically and exploit all the information available. In
addition, a CBR system is more resilient to errors made by the user during consultation since it
computes a similarity measure from the global description of the cases and not a minimal subset
like with the inductive approach. It can confirm the conclusions by asking additional questions
that modify the similarity measure accordingly.

This does not imply that CBR always performs better than induction. During the first year of
INRECA, we have defined a catalog of industrial criteria to conduct experiments and compare
the two technologies. Our criteria catalog does not merely adresses technical issues such as
performance and effectiveness, but also ergonomic and economic aspects such as user
acceptance of the technology (domain specialist, naive end-user, data clerk, case engineer etc.),
ease to build, validate and maintain the application and so on. After analysis, we claim that
induction and CBR are complementary techniques and that integrating these will improve their
standalone capabilities. Our comparison is  summarized in the next section. The criterias have
been introduced in hierarchical weighted grids to compare in an objective and exhautive manner

' the induction and CBR components of INRECA as well as other existing tools.

4 Comparision of- Induction and CBR

We summarize the respective merits of the techniques in the following table. Although the
experiments have been conducted using PATDEX and KATE, the conclusions drawn are
applicable to the underlying technologies in general. Note that according to the distinction
between induction and CBR that has been explained in the introduction, we view tools that
access the training cases to incrementally maintain the induced rules or trees as CBR tools.
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Advanta2es of PATDEX (eRR) Advanta2es of KATE (Induction) 
The application is always up-to-date because CBR can The consultation is consistent: what is true today will 
work incrementally. be true tomorrow (unless the tree has been updated). 
CBR handles missing values during consultation and The decision tree can be compiled into a runtime that 
makes optimal use of the information available. does not require the case base to do diagnosis. It can 

be easilv intel!I'ated in the customer's environment. 
CBR can widen the set of current hypothesis whereas The system supports exploratory data analysis and 
induction only shrinks it. does consistency checks in the data base. 
The CBR consultation is more flexible for the user of The domain specialist can influence or even impose 
the consultation system. It can be driven by the user how the consultation is done by modifying the tree by 
who supply the information he wants instead of being hand. He controls the consultation process. 
guided step by step through a decision tree. It can 
handle sensor input and react dynamically to the data. 
The CBR consultation is more resilient to errors. A classification of the data can be constructed based on
 
After finding a conclusion, the current solutions can I the information contained in the tree.
 
be confIrmed or refuted.
 
Analogies can be made based on the whole case
 Induction produces a generalisation of the cases and 
descriotion instead of a minimal subset. turns data into knowled~e. 

The similarity measure used by PATDEX can evolve 
over time and is adaotable. 
The current consultation can be explained to the user The current consultation can be explained to the user 
by oresenting orevious cases. by presenting the classification rule. 
CBR interprets cases dynamically. The consultation of the learnt tree is more performant 

than the CBR consultation 

Table 3 - Cost-Benefit Analysis ofInduction and CBR 

5. Integrating Induction and CBR 

Four critical levels of integration have been identified. For the first level, the two techniques are 

seating side-by-side and are provided as stand-alone modules that work on the same case data 

expressed in the CASUEL object-oriented language (toolbox strategy). This is useful 

because a single technique may match the user's needs for a particular application, while a 

combination of both may not. In addition, a decision tree produced by induction allows to 

detect the inconsistencies of a case database before its use by a case-based reasoning module. 

For the second level of integration, the two techniques are able to exchange results via the 

CASUEL representation language (cooperative strategy). The results of one may help to 

improve the efficiency and to extend the classification capabilities of the other. More precisely, 

a decision tree produced by induction can speed up the consultation by the case-based reasoner. 

The case-based reasoner can supplement the decision tree when choosing among different 

conclusions (case~basedreasoning is started at the end of the consultation of the tree or during 

consultation when encountering unknown values). The third level of integration allows the 

combination of individual modules of the tools (workbench strategy). For instance, the 

information gain measure module may be used to choose the next attribute to be asked during 

an interactive CBR consultation. The last level fulfils the final goal of INRECA (seamless 

integration) by mixing the most relevant parts of the two technologies in a single system. 

Two critical modules are identified: the information gain computation module for the induction 

technique, and the similarity computation module for the case-based reasoning technique. 

Our main point is that a single system will never meet the needs of everyone. INRECA offers 

several integration possibilities and must be configured to meet the requirements of a particular 

application or of a particular category of users. For instance, a naive end-user must be guided 
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Advantages of PATDEX (CBR)
The application is always up-to—date because CBR can
work incrementally.
CBR handles missing values during consultation and
makes optimal use of the information available.

CBR can widen the set of current hypothesis whereas
induction only shrinks it.
The CBR consultation is more flexible for the user of
the consultation system. It can be driven by the user
who supply the information he wants instead of being
guided step by step through a decision tree. It can-
handle sensor input and react dynamically to the data.
The CBR consultation i s  more resilient to errors.
After finding a conclusion, the current solutions can
be confirmed or refuted.
Analogies can be made based on the whole case
desiription instead of a minimal subset.
The similarity measure used by PATDEX can evolve
over time and is adgptable.
The current consultation can be explained to the user
by presentigng previous cases.
CBR interprets cases dynamically.

Advantages of KATE (Induction)
The consultation is consistent: what is true today will
be true tomorrowjunless the treflai beengpdafl).
The decision tree can be compiled into a runtime that
does not require the case base to do diagnosis. It can
beflsily integrated in the customer's environment.
The system supports exploratory data analysis and
does consisten_cy checks in the thugbase.
The domain specialist can influence or even impose
how the consultation is  done by modifying the tree by
hand. He controls the consultation process.

A classification of the data can be constructed based on
the information contained in the tree.

Induction produces a generalisation of the cases and
turns data into knowledge.

The current consultation can be explained to the user
by presenting the classifigation rule.
The consultation of the learnt tree is  more performant
than the CBR consultation

Table 3 - Cost—Benefit Analysis of Induction and CBR

5 .  Integrating Induction and CBR
Four critical levels of integration have been identified. For the first level, the two techniques are
seating side—by-side and are provided as stand-alone modules that work on the same case data
expressed in the CASUEL object-oriented language (toolbox strategy).  This is useful
because a single technique may match the user’s needs for a particular application, while a
combination of both may not. In addition, a decision tree produced by induction allows to
detect the inconsistencies of a case database before its use by a case-based reasoning module.
For the second level of integration, the two techniques are able to exchange results via the
CASUEL representation language (cooperative strategy). The results of one may help to
improve the efficiency and to extend the classification capabilities of the other. More precisely,
a decision tree produced by induction can speed up the consultation by the case-based reasoner.
The case-based reasoner can supplement the decision tree when choosing among different
conclusions (casefbased reasoning is started at the end of the consultation of the tree or during
consultation when encountering unknown values). The third level of integration allows the
combination of individual modules of  the tools (workbench strategy).  For instance, the
information gain measure module may be used to choose the next attribute to be asked during
an interactive CBR consultation. The last level fulfils the final goal of INRECA (seamless
integration) by mixing the most relevant parts of the two technologies in a single system.
Two critical modules are identified: the information gain computation module for the induction
technique, and the similarity computation module for the case—based reasoning technique.

Our main point is that a single system will never meet the needs of everyone. INRECA offers
several integration possibilities and must be configured to meet the requirements of a particular
application or of a particular category of users. For instance, a naive end-user must be guided
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Figure 2. Four integration levels between Kate and Patdex 

step-by-step by the consultation system in a decision-tree like fashion. On the other end, a 

domain specialist wants to directly supply whatever information he feels is relevant and remain 
in control of the consultation system. Moreover, what may be viewed as an advantage of a 
technology in a given context may turn out to be a drawback in another. For instance, 
incrementality can be seen as an advantage of CBR over induction to maintain the consulation 
system automatically and keep up with the knowledge that workers learn through their daily 
experience. On the other end, we are currently working with an equipement manufacturer who 
distributes the diagnostic system to his customers and who wants to control the advices that are 
given to the users (let it be for legual reasons). Thus, he prefers a system that does not evolve 
permanently and that behaves in a predictable way. In that context, the incrementality is a 
drawback since he wants to compile the case data into an induction tree that is maintained by 
him periodically. Finally, one technique may be better adapted at a specific stage of the 
application life cycle (for example, CBR at the begining to enrich the case database) but not at a 
later stage (for example, induction can compile the case database when it becomes too big and 
when efficiency becomes a problem). Thus, INRECA provides several options for the four 
levels of integration and can be configurated by the application developper . In the next section, 
we present an architecture that deals with the problem of handling unknown values using CBR, 
but that pre-index the cases using a decision tree for efficiency. 

6. An Integration Archicture to Handle Missing Values Efficiently 

As stated in section 3, one main drawback of a decision tree consultation occurs if the user 
answers "unknown" to a test. Unknown values propagate an uncertainty along all the branches 
of the "unknown node" - we define an unknown node as a node where the user answers 
"unknown" during the consultation of the tree although a subsequent test may remove this 

uncertainty. Moreover, the final diagnosis is probabilistic which is confusing for a non expert 
user. One way to deal with unknown values in the consultation of a tree is to switch to a case
based reasoning procedure after consulting the tree. When an unknown value is encountered, 
the consultation of the tree is stopped and the case-based reasoner is used to choose the next 
tests. The probabilistic diagnoses delivered by Kate may also be refined by using the similarity 
measure of the case-based reasoner. A workbench integration is needed. The procedure when 
encountering an unknown value in the consultation of the decision tree is presented below: 
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Figure 2. Four integration levels between Kate and Patdex

step-by-step by the consultation system in a decision-tree like fashion. On the other end, a
domain specialist wants to directly supply whatever information he feels is relevant and remain
in control of the consultation system. Moreover, what may be viewed as an advantage of a
technology in a given context may turn out to be a drawback in another. For instance,
incrementality can be seen as an advantage of CBR over induction to maintain the consulation
system automatically and keep up with the knowledge that workers learn through their daily
experience. On the other end, we are currently working with an equipement manufacturer who
distributes the diagnostic system to his customers and who wants to control the advices that are
given to the users (let it be for legual reasons). Thus, he prefers a system that does not evolve
permanently and that behaves in a predictable way. In that context, the incrementality is a
drawback since he wants to compile the case data into an induction tree that is  maintained by
him periodically. Finally, one technique may be better adapted at a specific stage of the
application life cycle (for example, CBR at the begining to enrich the case database) but not at a
later stage (for example, induction can compile the case database when it becomes too big and
when efficiency becomes a problem). Thus, INRECA provides several options for the four
levels of integration and can be configurated by the application developper . In the next section,
we present an architecture that deals with the problem of handling unknown values using CBR,
but that pre-index the cases using a decision tree for efficiency.

6 .  An Integration Archicture to Handle Missing Values Efficiently
As stated in section 3, one main drawback of a decision tree consultation occurs if the user
answers “unknown” to a test. Unknown values propagate an uncertainty along all the branches
of the “unknown node” - we define an unknown node as a node where the user answers
“unknown” during the consultation of the tree although a subsequent test may remove this
uncertainty. Moreover, the final diagnosis is probabilistic which is confusing for a non expert
user. One way to deal with unknown values in the consultation of a tree is to switch to a case-
based reasoning procedure after consulting the tree. When an unknown value is  encountered,
the consultation of the tree is stopped and the case-based reasoner is used to choose the next
tests. The probabilistic diagnoses delivered by Kate may also be refined by using the similarity
measure of the case-based reasoner. A workbench integration is needed. The procedure when
encountering an unknown value in the consultation of the decision tree is presented below:
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1.	 Get the current situation given by the first tests 
of the tree. 

2.	 Get the current subset of the cases listed under the 
unknown node. 

3.	 Switch to Patdex by using the current situation and 
the current set of cases. 

Procedure for Switching between Kate and Patdex 

This procedure combines the advantages of both techniques for efficiency and correctness. In 
the worst case, the user answers unknown at the root node and we are left with a classical CBR 
consultation. In the best case, the user never answers unknown and we are left with a classical 
decision tree traversal mechanism that is very efficient. 

Conclusions 

Induction and case-based reasoning are complementary.approaches fo! developing experience
based diagnostic systems. Induction compiles past experiences into general knowledge used to 
solve problems. Case-based reasoning directly interprets past experiences. Both technologies 
complement each other. Induction is used for detecting inconsistencies in the case data base, 
case-based reasoning is used during consulation to retrieve similar cases when there are missing 
values. The induction system can compute a tree to index cases on a predefined number of 

levels in order to improve the efficiency of case-based reasoning. After traversing that partial 
tree (interactive consultation), we are left at a leaf node with an initial candidate set that can be 
passed to the case-based reasoning system. As a consequence, the case-based reasoner works 
on a much smaller set of candidates. The partial decisions can be confirmed or refuted by the 
case-based reasoner. In the latter case the tree needs to be updated. 
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complement each other. Induction is used for detecting inconsistencies in the case data base,
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Abstract 
A new method is proposed for combining rule-based and case-based systems, especially in domains in which 

precise and exceptionless rules are known to be unavailable. When the result ofexecution ofa rule is not satisfactory, 

the system stores the name of the executed rule, the conditions under which the rule was executed, the evaluation of 

the execution, the attributes and values to be modified, and hypothesized alternatives, as a case. The next time the 

rule is to be executed under the same or similar conditions, the relevant attributes and values are temporarily modi

fied, by replacement by their hypothesized alternatives. After a certain number of such experiments, the maintainer 

of the system can reconstruct the whole rule base by referring to the stored cases. This methodology is implemented 

as a system, A LA CARTE, in the domain of cooking. 

1 The Problem 

In many domains such as controlling objects, rules are preferred because of their performance. Such rules, how

ever, may be not precise and exceptionless from the first because the number and variety of contingencies are 

simply too great to be reduced to algorithmically realizable order [5]. In such domains, we are faced with the 

problem of trying to construct and apply a rule base in an essentially experimental, trial-and-error manner. One 

effective way to assist in the construction of the rule base is to acquire knowledge as cases [4,5]. Although we can 

not start out with nothing, it is often difficult or not useful to use the cases of other people because the background 

knowledge is different. We can sometimes refer to some textbook knowledge of the domain as general rules of how 

to execute certain procedures. Even then, we may start out with what we know to be not very reliable rules of 

procedure, the successful application of which is contingent on various not clearly foreseen conditions. 

Thus, as we construct and revise a rule-base for such an application, we must generate hypotheses about relevant 

parameters through trial and error. To take an example, in the domain of cooking, we may not know in advance 

what kind of recipes will please us, nor how various conditions, both external to us---like the weather---and inter

nal---how tired we are---may affect our enjoyment of certain dishes. To obtain more and more detailed and reliable 

information about all these things, we must run experiments, that is, actually cook and eat various dishes. 

2 An Approach to the Problem 

Our approach to this problem is to tune the rules step by step and on line by using cases which store improprieties 

and their hypothetical alternatives of the rules. 

When the result of the execution of a rule is not satisfactory, the user stores in the case base the name of the 

executed rule, the relevant conditions, an overall evaluation, and a representation of what the user judges to be the 

factors of the rule that account for the unsatisfactory performance together with his/her judgment as to what modi

fications are required. The next time the rule is to be executed under the same condition, the case base is searched 

for a relevant case. If there is no such case stored, the rule is executed without modification. If the most relevant 

case is decided, the relevant elements are modified by reference to the alternatives in the case. If the result of the 

execution of the modified rule is not satisfactory again, another alternatives are proposed as a new case. 
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precise and exceptionless rules are known to be unavailable. When the result of execution of arule is not satisfactory,
the system stores the name of the executed rule, the conditions under which the rule was executed, the evaluation of
the execution, the attributes and values to be modified, and hypothesized alternatives, as a case. The next time the

rule is to be executed under the same or similar conditions, the relevant attributes and values are temporarily modi-
fied, by replacement by their hypothesized alternatives. After a certain number of  such experiments, the maintainer
of the system can reconstruct the whole rule base by referring to the stored cases. This methodology is implemented
as a system, A LA CARTE, in the domain of cooking.

1 The Problem
In many domains such as controlling objects, rules are preferred because of their performance. Such rules, how-

ever, may be not precise and exceptionless from the first because the number and variety of contingencies are

simply too great to be reduced to algorithmically realizable order [5]. In such domains, we are faced with the

problem of trying to construct and apply a rule base in an essentially experimental, trial-and-error manner. One

effective way to assist in the construction of the rule base is to acquire knowledge as cases [4, 5]. Although we can

not start out with nothing, it  is often difficult or not useful to use the cases of other people because the background

knowledge is  different. We can sometimes refer to some textbook knowledge of the domain as general rules of how

to execute certain procedures. Even then, we may start out with what we know to be not very reliable rules of

procedure, the successful application of which is contingent on various not clearly foreseen conditions.

Thus, as we construct and revise a rule-base for such an application, we must generate hypotheses about relevant

parameters through trial and error. To take an example, in the domain of cooking, we may not know in advance

what kind of recipes will please us, nor how various conditions, both external to usmlike the weather--—and inter-

nal-“how tired we are—«may affect our enjoyment of certain dishes. To obtain more and more detailed and reliable

information about all these things, we must run experiments, that is, actually cook and eat various dishes.

2 An Approach to the Problem
Our approach to this problem is to tune the rules step by step and on line by using cases which store improprieties

and their hypothetical alternatives of the rules.

When the result of the execution of a rule is not satisfactory, the user stores in the case base the name of the

executed rule, the relevant conditions, an overall evaluation, and a representation of what the user judges to be the

factors of the rule that account for the unsatisfactory performance together with his/her judgment as to what modi-

fications are required. The next time the rule is to be executed under the same condition, the case base is searched

for a relevant case. If there is no such case stored, the rule is executed without modification. If the most relevant

case is decided, the relevant elements are modified by reference to the alternatives in the case. If the result of the

execution of the modified rule is not satisfactory again, another altematives are proposed as a new case.
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We must consider possible complicated interaction among rules [6]; if we presume that the original rule base is in 

a consistent state, we don't want to run the risk of rendering it into an inconsistent one. Moreover, revision hypoth

eses may not be always true. Our method doesn't change the rules in the rule base at all. The rule to be executed is 

copied into the working memory and the copied rule is temporarily modified by reference to the case. After the 

modified copy is executed, this copy is removed from the working memory. After enough cases to realize a satis

factory rule base are obtained, the system maintenance people can update the whole rule base. 

Although this method has the advantages described above, it does require a flexible mechanism for temporarily 

modifying rules. We must decide what should be stored in the cases, which attributes and values are to be modified 

and how to modify the rules by using such cases. We present a solution to these problems below. 

Our approach suggests a general architecture. In order to show the effectiveness of this method, we adopt this 

framework to the domain of cooking. We present the architecture in section 3. In section 4, an example from the 

cooking domain is presented in some detail. In section 5, we compare our framework with related works. 

3 The Architecture 

3.1 Rules 

Rules are presumed to be represented as shown in Figure 1 . The first element is the rule name. The second is the 

list of conditions under which the rule is to be executed. When no conditions are specified, the rule can be applied 

under any conditions whatsoever. The third and the forth elements are the lists of resources and tools used in 

executing the rule. The fifth element is the list of procedures to be executed. Each procedure is represented by a list 

of its order in the sequence of procedures, the type of action, the target upon which the action is executed, and 

relevant parameters of the action, such as how long it is to be performed. The position of the procedure in the order 

can be mentioned as an argument in other procedures, in the form: actn. Such terms refer to the result of the nth step 

in the list. Each procedure is executed sequentially when the rule( <rule name>, 
rule name and the conditions match the working memory. [<condition>, ], 

[<resource>, ],
Figure 2 gives an example of a rule in the domain of cook [<tool>, ...], 

ing. This rule shows a recipe for broccoli with tofu (see [4]). [<procedure>, ...] ). 

According to the condition: "hot," this rule can be applied in Fig.1 Rule representation 
hot weather. The ingredient in the second list: [cpepper, 

rule( broccoli_with_tofu, 
piece, 6] means six pieces of red pepper is needed. The third [hot], 

[(tofu, Ib, 0.5], list contains the tools used in executing the recipe. The proce
[soy-sauce, tablespoon, I], 

dure: [6, stirjry, [act5, cpepper], I] means that the sixth step 

[broccoli, lb, 1],in this recipe is to stir-fry the result of the fifth step together 
[r_pepper, piece, 6]], 

with the red peppers for one minute. [[bowl], 
[cutting_board], 

3.2 Cases [flaupatula)], 
[(1, divide, broccoli, small_flowret], Cases are stored when the evaluation of a rule execution is 
[2, boil, [actI, salted_water], 2), 

judged to be not satisfactory. Alternative hypotheses as to 

[6, stir_fry, [act5, cpepper], I),which of the elements of the rule are 'to blame for' the unsatis
[7, add, actl, act6), 

factory evaluation must be proposed by a human user or a sys [8, stirjry, act7, 3]) ). 

tem component. These hypotheses are represented as a combi
Fig.2 Example of a rule representation 

nation of replacement. addition, and deletion of certain ele
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in the list. Each procedure is executed sequentially when the rule( <rule name>,
rule name and the conditions match the working memory. [<condition>, ...],

[<resource>, ...],
[<tool>, ...],
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Figure 2 gives an example of a rule in the domain of cook-

Accordmg to the condition: hot, this rule can be applied m Fig.1 Rule representation
hot weather. The ingredient in the second list: [r_pepper, _ .
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piece, 6] means six pieces of red pepper is needed. The third [hot],

[[tofu, lb, 0.5],list contains the tools used in executing the recipe. The proce-
[soy_sauce, tablespoon, 1],
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with the red peppers for one minute. ‘ [[bowl],
[cutting_board],
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3.2 Cases [flat_spatula]],
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ments of the conditions and/or the procedures of the rule. 

Figure 3 presents a case representation, consisting of the case name, the target rule name, the condition list, the 

evaluation, and a set of quadruples. The condition list may include conditions other than those listed in the rule 

base, which are the result of the user's judgments as to causal relevance. The last element is a list of quadruples: 

[<attr current-val> case-val hyp-alt reason]. The first element is an attribute-value pair taken from the rule based 

on the result of the user's judgments as to causal relevance. The second is the actual value of the attribute with 

which the rule was executed this time; the third is the value to be used next time---as judged by the user, and the 

fourth is the reason why this value is to be modified, again as hypothesized by the user. 

Figure 4 gives an example of the case in the domain of cooking. The target rule is the rule for broccoli with tofu. 

What this case represents is an occasion on which the user, suffering from a fever, made broccoli with tofu, in 

accordance with the recipe in the rule base, except that he used 4 pieces of red pepper rather than the required 6. The 

results were not too satisfactory, let us say 6 on a range of 0-10. The dish was adjudged both too spicy and insuffi

ciently crispy. Moreover, the user hypothesized that his having a fever when he ate the meal played some part in the 

unsatisfactoriness of the occasion. Finally, the case represents the user's judgment that, given that he has a fever, if 

he wants broccoli with tofu, the recipe should be altered as follows: cut the amount ofa red pepper to 3 pieces and 

reduce the time for the final mixture to be stir fried to one minute. 

case( case4, 
broccoli_with_tofu, case( <case name>, 
[fever],<target rule name>, 
6,[<condition>, ...], 
[[[r...Pepper, piece, 6], <evaluation>, 

[r_pepper, piece, 4], [( <original attribute-value>, 
[cpepper, piece, 3],<the present value of the attribute>, 
too_spicy],<the hypothesized value of the attribute>, 

[[8, stir_fry, act?, 3],<reason for modification> }, 
[8, stir_fry, act?, 3],... ] ). 
[8, stir_fry, act?, 1], 
more3rispy]] ). Fig.3 Case representation 

FigA Example of case representation 

3.3 Rule Tuning Algorithm 

The central idea of our approach is realized by the following process. The current conditions are represented in the 

working memory. 

Until the problem is solved do: 

1. Select the target rule to be executed. 

2. Find the case most relevant to the current condition. 

3. If such a case as (2) is found, then 

(a) copy the rule, modify the copy using the case, and execute the modified rule; else 

(b) execute the rule. 

4. If the copy is executed, then remove the copy. 

5. Evaluate the result. If further modifications are needed, these are hypothesized and a new case is created. 

The most relevant case is decided as follows: (1) All cases with the target rule name are selected. (2) Among them, 

the cases whose conditions match the condition of the working memory are selected. (3) If more than one cases is 

found, the latest is selected. The older cases can be referred to as the history of modification of a rule. 
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What this case represents is an occasion on which the user, suffering from a fever, made broccoli with tofu, in
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results were not too satisfactory, let us say 6 on a range of 0-10. The dish was adjudged both too spicy and insuffi-

ciently crispy. Moreover, the user hypothesized that his having a fever when he ate the meal played some part in the

unsatisfactoriness of the occasion. Finally, the case represents the user's judgment that, given that he has a fever, if

he wants broccoli with tofu, the recipe should be altered as follows: cut the amount of a red pepper to 3 pieces and

reduce the time for the final mixture to be stir fried to one minute.

case( case4,
casc( <case mung) brOCCOIi_With_tOfu,

<target rule name>, [fever],
[<condition>, ...], 

6. .
<evaluation>, [[[r_pepper‚ piece, 6],
[{ <0n'ginal attribute-value>, [r_pepper, piece, 4] .

<the present value of the attribute>, [r_pepper, plece, 3] :

too_sp1cy],<the hypothesized value of the attribute>,
<reason for modification> }, [[8, Stir__fry‚ act7‚ 3].
. . . ] ) .  [& st1r_fry‚ act7, 3],

[S, stir__fry, act7, 1],

Fig.3 Case representation more_crispy]] ) '

Fig.4 Example of case representation

3.3 Rule Tuning Algorithm

The central idea of our approach is  realized by the following process. The current conditions are represented in the

working memory.

Until the problem is solved do:
1. Select the target rule to be executed.
2. Find the case most relevant to the current condition.
3. If such a case as (2) is found, then

(a) c0py the rule, modify the copy using the case, and execute the modified rule; else
(b) execute the rule.

4 .  If the copy is executed, then remove the copy.
5 .  Evaluate the result. If further modifications are needed, these are hypothesized and a new case is created.

The most relevant case is decided as follows: (1) All cases with the target rule name are selected. (2) Among them,
the cases whose conditions match the condition of the working memory are selected. (3) If  more than one cases is

found, the latest is selected. The older cases can be referred to as the history of modification of a rule.
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3.4 Rule Tuning Example 

Figure 5 shows an example of rule tuning. » denotes a prompt for user input The user wants to make broccoli 

with tofu. He/she has a fever. First, the original recipe (Figure 2) is retrieved because the recipe under the condition 

of having a fever is not found. Next, the system searches for the most relevant case (case 4). The copied rule is 

modified based on this case. Because the result is judged to be still too spicy, a new case (case 11) is entered, with 

a hypothesized value of two pieces of red pepper. Note that another hypothesis about the time for the final mixture 

is kept in the new case. 

3.5 Tuning Operators 

When the rule is modified temporarily by referring to the relevant case, we allow three kinds of rule modification: 

replacement, addition, and deletion. In multiple modifications, we execute addition and deletion first and replace

ment last. This execution order is important because addition and deletion of a resource may be accompanied by 

modifications of other procedures and such modifications can effect replacement The targets of modifications 

involves alL elements of the rules. In particular, addition or deletion of a procedure may require updating of the 

numerical indices of other procedures, especially as they occur in actn terms within procedures. 

3.6 Evaluation 

After executing the rule, the result must be evaluated. This evaluation may be done either by the human user or by 

Dish» broccoli_with_tofu. Case name »casel!. 
Condition [list] » [fever]. Selection 

1. Modify an attribute-value pair 
!! Original recipe is retrieved !! 2. Add a new ingredients 

3. Add a new procedure 
** Relevant cases ** 4. Remove an ingredient 

Case name: case4 5. Remove a procedure 
Dish: broccoli_with_tofu 6. Information 
Condition: [fever] 7. End 
Evaluation: 7 » 1. 

#Target attr~bute: [red_pepper, piece, 6] 
Previous value: 6 Target attribute [list] » [r_pepper, piece, 3]. 
Hypothesized value: 3 Hypothesized value »2. 
Viewpoint: too_spicy Viewpoint » too_spicy. 

#Target attribute: [8, sticfry, act7, 3] 
Previous value: 3 Selection
 
Hypothesized value: 1 1. Modify an attribute-value pair
 
Viewpoint: more3rispy
 

»7. 
** Rule Execution ** 

Dish: broccoli_with_tofu ** Ne\y case: easel 1 ** 
Condition: [fever] Dish: broccoli_with_tofu 
Ingredients: Condition: [fever] 

[tofu, lb, 0.5]	 Evaluation: 8 
#Target attribute: [red_pepper, piece, 6] 

[cpepper, piece, 3] Previous value: 3 
Procedures: Hypothesized value: 2 

[1, divide, broccoli, small_flowret] Viewpoint: too_spicy 
#Target attribute: [8, stir_fry, act7, 3] 

[8, stirjry, act7, 1] Previous value: 3 
Hypothesized value: 1 

Evaluation [0-10] » 8. Viewpoint: more3 rispy 

Fig. 5 Example of rule modification 
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with tofu. He/she has a fever. First, the original recipe (Figure 2) is retrieved because the recipe under the condition

of having a fever is not found. Next, the system searches for the most relevant case (case 4). The copied rule is

modified based on this case. Because the result is  judged to be still too spicy, a new case (case 11) is entered, with

a hypothesized value of two pieces of red pepper. Note that another hypothesis about the time for the final mixture

is  kept in the new case.

3.5 Tuning Operators

When the rule is modified temporarily by referring to the relevant case, we allow three kinds of rule modification:

replacement, addition, and deletion. In multiple modifications, we execute addition and deletion first and replace-

ment last. This execution order is important because addition and deletion of a resource may be accompanied by

modifications of other procedures and such modifications can effect replacement. The targets of modifications

involves allelements of the rules. In particular, addition or deletion of a procedure may require updating of the .

numerical indices of other procedures, especially as they occur in actn terms within procedures.

3.6 Evaluation

After executing the rule, the result must be evaluated. This evaluation may be done either by the human user or by

Dish >> broccoli_with_tofu.
Condition [list] >> [fever].

Case name >> easel ] .
Selection

1. Modify an attribute-value pair
2. Add a new ingredients!! Original recipe is retrieved !!

. 3. Add a new procedure
**  Relevant cases ** 4. Remove an ingredient

Case name: case4 5.  Remove a procedure
Dish: broccoli__with_tofu 6.  Information
Condition: [fever] 7.  End
Evaluation: 7 ->> 1.

#Target attribute: [redmpeppen piece, 6]

vious value: 6 ? Target attribute [list] >> [r_pepper, piece, 3].
Hypothesized value: 3 Hypothesized value >> 2.
Viewpoint: too_spicy Viewpbint >> too_spicy.

#Target attribute: [8, stir__fry, act7, 3]
Previous value: 3 Selection
Hypothesized value: 1 1. Modify an attribute-value pair
Viewpoint: more_crispy . . . . . . . .

**  Rule Execution **
>> 7 .

Dish : broccoli_with_tofu ** New case: casell **
Condition : [fever] Dish : broccoli_with_tofu
Ingredients: Condition : [fever]

[tofu, lb, 0.5] Evaluation: 8
. . . . . . .  #Target attribute : [red_pepper, piece, 6]

[r_pepper, piece, 3] Previous value: 3
Procedures: Hypothesized value: 2

[1, divide, broccoli, small__flowret] Viewpoint: too_spicy
. . . . . . .  #Target attribute: [8, stir__fry, act“), 3]

[& stir_fry‚ 80t7‚ 1]  Previous value: 3
Hypothesized value: 1

Evaluation [0-10] >> 8. VieWpoint: more_crispy

Fig. 5 Example of rule modification
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a system component. For our cooking examples, we have imagined that the measure of evaluation is single-dimen

sional and scalar (a range of 0-10). We assume that hypotheses are generated by the user. 

3.7 Analogical Problem Solving 

If there are no rules or cases which match the current conditions completely, our method executes analogy-based 

(similarity-based) modifications of the rule. We consider five cases when such analogical modification is needed: 

1. When no rules satisfy the conditions of the working memory completely. A rule with similar conditions is 

selected. Anyone of a number of similarity metrics might be used. 

2. When no cases satisfy the conditions of th~ working memory completely. Cases are searched for which match 

the various components of the conditions. Again various similarity metrics might be used. 

3. When there are conditions that remain unsatisfied by any cases. The user can command the system to replace 

them by similar conditions. 

4. When the condition of the working memory says that the necessary resources or tools for executing the 

relevant rule are not available. Appropriately equi-functional resources are proposed. For example, when broc

coli is unavailable, the system might propose asparagus---another green vegetable---as a similar resource. 

5. When the user specifies the rule name to be executed that is not found in the rule-base. Another rule with a 

similar name is selected and is executed with the relevant rule elements modified. For example, when a user

specified recipe asparagus_with_tofu cannot be found, broccoli_with_tofu is proposed as the similar dish. 

The concepts used in the conditions, resources and tools are represented as a list of attribute-value pairs. Figure 6 

shows the resource representation. Here, attributes are ordered according to their importance in classifying them in 

the domain. When deciding on replacement for an unavailable resource r, the candidate sharing the most attribute

value pairs with r is selected. 

resource( <name>, [[<attribute>, <value>], ...] ). 

Fig.6 Representation of resources and tools 

4 Application: A LA CARTE 

A LA CARTE (A LeArnable CAse-based Rule TunEr) is a prototype system of our method [7]. Its target domain 

is cooking. Each recipe is represented in a single rule. The user evaluates the results of rule execution and comes up 

with rule-modification hypotheses of the resulting dish. In order to support this modification task, A LA CARTE 

offers the history of modification of a rule, which helps the user decide which conditions, resources, tools, and/or 

procedures are to be modified. A LA CARTE is implemented on the engineering workstation written in Prolog. 

The basic operation of A LA CARTE is as follows: First, th~ user specifies a dish and the current conditions. 

Second, A LA CARTE searches for a recipe for the dish in the rule-base and presents the recipe. The case base is 

then searched for cases in which the recipe was executed under the most similar conditions. Depending on the most 

relevant case, A LA CARTE modifies the copied recipe. The user executes the modified recipe, evaluates the 

result, and perhaps suggests further modifications. 

5 Related Work 
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4 Application: A LA CARTE
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is cooking. Each recipe is represented in a single rule. The user evaluates the results of rule execution” and comes up

with rule-modification hypotheses of the resulting dish. In order to support this modification task, A LA CARTE

offers the history of modification of a rule, which helps the user decide which conditions, resources, tools, and/or
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CHEF is a pure case-based planner in the domain of Szechwan cooking [4]. Its task is to build a new recipe based 

on the user's request for certain ingredients and tastes. CHEF's recipes are represented as cases which include 

ingredients and actions. CHEF searches for cases relevant to the request, integrates them into a new dish to meet 

the request, and stores that in a case base. The advantage of CHEF is that it has variety of functions which create 

and adapt new recipes. Its disadvantage is that its ability to revise the original recipes is limited. 

There are some types of methods for combining rule-based reasoning and case-based reasoning. Anapron 

supplements the rule-based systems by using cases as a library of exceptions [3]. If there is a contradictory case to 

the selected rule, the procedures of the case are executed; otherwise the rule is executed. This method requires a less 

complex problem-solving mechanism than that of A LA CARTE. GREBE uses cases to reduce the problem of 

matching specific case conditions with open textured terms in rules to the problem of matching two sets of cases 

[2]. Rules, in turn, are used for term reformulation and infering facts that are not stated in the case. The advantage 

of this method is the flexible use of rules and cases. However, these methods require the existence of a body of 

cases at the beginning of reasoning. Moreover, the cases are not used in the process of rule modification. The 

method, whose rules are derived from generalized cases [I], requires some primary problem-solving mechanism 

independent of the rules. 

6 Discussion 

A new method is proposed for tuning a rule base by cases in domains in which precise and exceptionless rules are 

known to be unavailable. When the result of execution of a rule is not satisfactory, the system stores the name of the 

rule, the conditions under which the rule was executed, the evaluation of the execution, the rule element to be 

modified, and hypothesized alternatives, as a case. The next time the rule is to be executed, the relevant rule 

elements are temporarily modified, by replacement by their hypothesized alternatives. After a certain number of 

such experiments, the maintainer of the system can reconstruct the whole rule base by refering to the stored cases. 

This method is implemented as a system named A LA CARTE in the domain of cooking. 

We have notpresented any experiments. This is really a prototype proof of our concept. Directions for future 

work involve applying this framework to more complex rule-base, introducing a stronger measures ofsimilarity, 

and constructing an automatic hypothesizer for rule modification. 
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Abstract 

Calculating similarity by comparing syntactical features is a quite common approach for case-based 
reasoning systems for diagnostic applications. In this paper, we present an approach which uses a 
similarity assessment based on a qualitative model of the technical system under consideration. This 
provides the capability of classifying the system's behavior, leading to an improved retrieval and case 
adaptation process. Furthermore, the case-base can be used more efficiently. The knowledge used by 
this approach is employed in model-based diagnostics; there, qualitative simulation of the technical 
system leads to a diagnosis. This model-based approach is known to have a very huge search space 
and thus, to be very expensive in computation. Our approach is an attempt to cut down the search 
space of model-based diagnostics by using appropriate heuristics: cases. 

Motivation 

Human experts are using different kinds of problem-solving strategies and knowledge sources. In research, 
this is reflected by the development of rule-based, model-based and case-based systems. Rule-based and 
model-based approaches for diagnostic applications have been a matter of research for a longer period 
of time till now, whereas the interest on case-based techniques has quite recently increased e.g. CASEY 
[7J, PROTOS [4], CREEK [IJ and PATDEX [3J. The main point in case-based reasoning is to decide if 
certain items (such as objects, situations, problems) are similar or not. Here, similarity means, similarity 
concerning certain criteria which often are not explicitly described but implicitly determined by the items 
context. (For instance, among a set of triangles, a blue circle and a red circle rather are considered to be 
similar, but not among a set of colored circles). In case-based diagnosis, searching for similarity means 
searching for a case with a solution (diagnosis) that is useful for guiding the search for a solution for the 
current problem at hand. Unfortunately, usefulness can only be estimated a posteriori and therefore a 
retrieval process based on this aspect is impossible. 

Some CBR systems use a numeric similarity measurement to determine similarity, presupposing that 
a syntactical similarity of features implies this utility. Syntactical comparison is easy to perform and, in 
general, seams not to expect much background knowledge. Nevertheless, the assumption that syntactical 
identity implies utility needs not to be true. In fact, this assumption will only be justified if a large 
amount of domain knowledge was used in coding the cases. The person who brought the cases from the 
real world into a syntactic description will have made certain abstractions and selected only a few of all 
possible features which could be selected. This person has to find a way between over-abstraction on the 
one hand (which makes it easy to find similar cases, but reduces the information contained in the case 
and the solution it can offer) and over-specialization on the other hand which enables the system only to 
find identical cases1 . So, there are a lot of disadvantages which normally occur in surface-based similarity 
assessments, e.g.: 

•	 Structural similarity will not be detected. If two objects of the same kind but with different names 
show similar features, identification will not be possible. 

•	 Solution transformation and adaptation is not supported by the assessment process. 

•	 The formula for calculating the similarity value cannot be controlled and modified easily. 

1 Identity, here of course, means identity on a certain abstraction level. IT a situation is coded mentioning, for example, 
time or the position of the object relative to the sun, identity would lead to never finding a case in the case-base. 
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Abstract

Calculating similarity by comparing syntactical features is a quite common approach for case-based
reasoning systems for diagnostic applications. In this paper,  we present an approach which uses a
similarity assessment based on a qualitative mode] of the  technical system under consideration. This
provides the capability of classifying the system’s behavior, leading to  an improved retrieval and case
adaptation process. Furthermore, the case-base can be used more efficiently. The knowledge used by
this approach is employed in model-based diagnostics; there, qualitative simulation of the technical
system leads to  a diagnosis. This model-based approach is known to  have a very huge search space
and thus ,  to be  very expensive in computation. Our approach is an attempt to cut down the search
space of model—based diagnostics by using appropriate heuristics: cases.

1 Motivation

Human experts are using different kinds of problem-solving strategies and knowledge sources. In research,
this is reflected by the development of rule—based, model-based and case-based systems. Rule—based and
model—based approaches for diagnostic applications have been a matter of research for a longer period
of time till now, whereas the interest on case-based techniques has quite recently increased e.g. CASEY
[7], PROT-OS [4], CREEK [1] and PATDEX [3]. The main point in case—based reasoning is to decide if
certain items (such as objects, situations, problems) are similar or not .  Here, similarity means, similarity
concerning certain criteria which often are not explicitly described but implicitly determined by the items
context. (For instance, among a set of triangles, a blue circle and a red circle rather are considered to be
similar, bu t  not among a set of colored circles). In case-based diagnosis, searching for similarity means
searching for a case with a solution (diagnosis) that is useful for guiding the search for a solution for the
current problem at hand. Unfortunately, usefulness can only be  estimated a posteriori and therefore a
retrieval process based on this aspect is impossible.

Some CBR systems use a numeric similarity measurement to determine similarity, presupposing that
a syntactical similarity of features implies this utility. Syntactical comparison is easy to perform and, in
general, seams not to  expect much background knowledge. Nevertheless, the assumption that syntactical
identity implies utility needs not to be  true. In fact, this assumption will only be  justified if a large
amount of domain knowledge was used in coding the cases. The person who brought the cases from the
real world into a syntactic description will have made certain abstractions and selected only a few of all
possible features which could be  selected. This person has to find a way between over—abstraction on the
one hand (which makes i t  easy to find similar cases, but  reduces the information contained in the case
and the solution it can offer) and over-specialization on the other hand which enables the system only to
find identical casesl.  So, there are a lot of disadvantages which normally occur in surface-based similarity
assessments, e.‘g.:

o Structural similarity will not be  detected. If two objects of the same kind but  with different names
show similar features, identification will not be possible.

. Solution transformation and adaptation is not supported by the assessment process.

. The formula for calculating the similarity value cannot be  controlled and modified easily.
1Iden t i t y ,  here of course, means identity on a certain abstraction level. If a situation is  coded mentioning, for example,

time or the position of the object relative to  the sun, identity would lead to  never finding a case in the case-base.
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•	 For satisfying results, the case base has to be rather large. 

• To reduce retrieval time, the case base should be small. 

•	 Knowing just the similarity value, it is not possible to decide whether a solution is significant or 
not, i.e. to provide a good explanation. 

• Similarity, relevance	 and abstraction are context-dependent. Even syntactically identical features 
may have different semantics. 

To avoid these well known problems our approach is to combine a structural similarity assessment with 
a model-based diagnostic system to support case retrieval and adaptation. The importance of detecting 
structural similarity and therefore supporting case adaptation in technical domains becomes clear when 
looking at a domain where our approach is being used: technical diagnosis for .!;.omputerized !!umerical 
.!;.ontrol (CNC) machines. 

• ~Sdl 

• 
__Hd2

Hd1_ 

Figure 1: An example from a CNC domain: a grip 

In figure 1, an example from this domain is given. It shows a grip which can be moved on bars in the x-, 
y- and z-direction. Of course, the drive systems for all directions are identical in structure, only the used 
components will have different names. In fact, there are several possibilities of adapting and transforming 
one case into another: 

1.	 A symptom a implies another Symptom b. The symptom a is part of Case-I, symptom b is men
tioned in Case-2. Adapting cases means to detect that a match between the symptoms a and b in 
the two cases is allowed. 

2.	 Case-I describes a fault that occurred when moving the grip in x-direction. Case-2 describes the 
same fault occurring when moving the grip in z-direction. Here, adaptation of cases means to 
detect that the parts which are described by the symptoms are similar and can be identified with 
each other. Capability to perform such an adaptation can dramatically reduce the amount of cases 
needed in the System. For the grip-domain this means a reduction by factor 3. Considering that 
grip movements forward and backward will be perforqled by similar drive systems, the factor rises 
to 6. 

3. Syntactically different values can be semantically identical.	 In certain situations, variations of a 
symptom value can be tolerated (e.g. voltage variations between 4.5V and 5.5V), while this might 
not be possible in other situations. 

A model-based approach for structural similarity assessment 

Before defining a model-based approach to similarity assessment it is necessary to look closely at the 
diagnostics domain first. To find a diagnosis means to identify faulty behavior of some components. 
Sometimes this behavior can be observed directly, sometimes this behavior has to be inferred from the 
state a component· is in, showing only the final state which the behavior led to. From this point of 
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For satisfying results, the case base has to be rather large.

0 To reduce retrieval t ime,  the case base should be small.

o Knowing just the similarity value, i t  is not possible to decide whether a solution is significant or
not ,  i.e. to provide a good explanation.

o Similarity, relevance and abstraction are context-dependent. Even syntactically identical features
may have different semantics.

To avoid these well known problems our approach is to  combine a structural similarity assessment with
a model—based diagnostic system to  support case retrieval and adaptation. The importance of detecting
structural similarity and therefore supporting case adaptation in technical domains becomes clear when
looking at a domain where our approach is being used: technical diagnosis for gomputerized numerical
gontrol (CNC) machines.
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Figure 1:  An example from a CNC domain: a grip

In figure 1, an example from this domain is given. It shows a grip which can be moved on bars in the x—,
y— and z-direction. Of  course, the drive systems for all directions are identical in structure, only the used
components will have different names. In fact, there are several possibilities of adapting and transforming
one case into another:

1 .  A symptom a implies another Symptom 6. The symptom or is part of Case—1, symptom b is men—
tioned in  Case-2. Adapting cases means to detect that a match between the symptoms a and b in
the two cases is allowed.

2. Case—1 describes a fault that occurred when moving the grip in x—direction. Case-2 describes the
same fault occurring when moving the grip in z—direction. Here, adaptation of cases means to
detect that  the parts which are described by the symptoms are similar and can be  identified with
each other. Capability to  perform such an adaptation can dramatically reduce the amount of cases
needed in the  System. For the grip—domain this means a reduction by factor 3 .  Considering that
grip movements forward and backward will be  performed by similar drive systems, the factor rises
to 6.

3.  Syntactically different values can be  semantically identical. In certain situations, variations of a
symptom value can be  tolerated (e.g. voltage variations between 4.5V and 5.5V), while this might
not be  possible in other situations.

2 A model-based approach for structural similarity assessment
Before defining a model-based approach to  similarity assessment i t  is necessary to look closely at the
diagnostics domain first.  To find a diagnosis means to identify faulty behavior of some components.
Sometimes this  behavior can be  observed directly, sometimes this behavior has to be inferred from the
state a component is in, showing only the final state which the behavior led to .  From this point of
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view diagnostics can be interpreted as a kind of classification of components behavior. To estimate its 
relevance, it is important to know if a certain behavior was intended or not. Unintended does not mean 
faulty - an electric bulb which stays dark because of a broken wire surely shows unintended behavior 
though the bulb is not faulty. So, we can figure out some criteria which should be fulfilled for relevant 
components in similar cases: 

Components: The components themselves should be similar. 
Behavior: The behavior of the components should be similar. 
Topological context: The components should be connected in a similar way. 
Intentional context: The components are expected to behave similar. 

Dealing with these criteria requires additional knowledge of the domain, describing the domain up to 
a certain abstraction level and containing information concerning structure and functionality of the 
technical system under consideration. 

•	 Object knowledge: This knowledge describes the components of which the domain consists of and 
how these components can be joined to more complex components. 

•	 Topological knowledge: This knowledge specifies, how the single components are connected to each 
other and therefore their causal effects on each other. 

•	 Functional knowledge: This knowledge defines how the components can or should behave. 

•	 Abstraction knowledge: This knowledge describes how objects and an object's behavior can be 
described on a more abstract level. 

This knowledge is normally used in model-based diagnostics [5, 7]; there, simulation on some abstraction 
level leads to a solution. This model-based approach is known to have an very large search space and so to 
be very expensive. Thus, our approach is an attempt to cut the search space of model-based diagnostics 
by using appropriate heuristics: cases. This does not mean to use a case-based problem solver and a 
model-based problem solver side by side, but to seamlessly join both approaches into one single approach. 

2.1 Assessing similarity between cases, components and behavior 

Calculating similarity in our approach bases on the principle that similarity means identity on a higher 
level of abstraction. The levels of abstraction induced by the above described criteria imply an ordering 
of similarity: The lower the level of abstraction, the higher the similarity. An example for abstraction 
levels is: A certain transistor BCI07 can be viewed as a transistor in general, as a switch, as a machine 
component and finally as a thing. The process of assessing similarity between a case and a certain 
situation can be divided into the following steps: 

Symptom expansion The given Symptoms have to be interpreted and propagated. If two components 
are connected with each other, values will be propagated via this connection. Value equivalents 
on higher abstraction levels are calculated. Finally, the shown behavior will be determined (if 
possible). For example, if the input of a wire is 3A and the output is 3A, this means that the 
behavior transmit takes place. 

Relevance determination The symptom's relevance is estimated. Components which show unintended 
behavior are more relevant than those with intended behavior. Further, unintended behavior of 
components which is not based on other components' unintended behavior is of high relevance for 
the similarity assessment. To identify unintended behavior, the intended behavior of the component 
is simulated and compared to the actually given behavior of the components. 

Retrieval/Hypothesis generating and testing This step will be iterated on several levels of abstrac
tion till satisfying hypotheses have been generated. The abstraction level started with is the lowest 
(most concrete) one. If retrieval fails, the next higher level will be chosen. . 

•	 Retrieval: Only relevant values will be used for retrieval. If similar components show similar 
behavior (similarity here means identity on the current level of abstraction), 

•	 Hypothesis generating takes place. Similar parts are identified with each other, using topolog
ical knowledge. A fail of hypothesis generating means a fail of retrieval. 

•	 Hypothesis testing Test, if the assumed behavior of the hypothesis' component can cause the 
actually given symptoms. 
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3 

Test	 selection The Retrieval step normally generates several different hypotheses; one hypothesis has 
to be selected (considering statistical data of former failures). 

Learning The situation can be added as a case to the case base. 

It is obvious that a component will be similar to any other component (at least at the highest abstraction 
level) and that abstraction levels do not build a simple hierarchy (different abstractions of certain aspects 
are possible) so that it is not possible to tell if similarity basing on a certain abstraction is higher than 
abstraction basing on a·different abstraction. This process for calculating the preferred level of abstraction 
can be seen as a search for the Minimal Common Generalization [8] of a case and the actual situation 
with respect to the given model of the technical system. 

Summary 

This approach to similarity assessment and case adaptation has been successfully realized in MoCAS 
(Model-based Case Adaptation System) which is used in combination with the PATDEX system [11] in 
the domain of fault diagnostics for CNC machines. The proposed approach provides advantages like: 
case adaptation and transformation. The results (hypotheses) are all proved by the used model of the 
technical system under consideration and therefore plausible and consistent. They can be explained 
using the domain model, describing the causal relations be~ween the components [9], and by the case 
base, explaining why the current situation is similar to the cases the hypotheses are generated from 
(similar components, topology, behavior) to make it clear why just a few of all possible hypotheses 
were picked out. On the other hand, this approach requires a qualitative model of the domain. In the 
actual implementation MoCAS is able to use the knowledge of the model-based component [10] of the 
MOLTKE-Workbench [2] for diagnostic applications. In fact such a model which is used by MoCAS is 
easy to obtain in strong technical domains. In domains where the knowledge of components and their 
causal interactions is more vague, like in medical diagnosis, the proposed approach is not usable. 
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Test selection The Retrieval step normally generates several different hypotheses; one hypothesis has
to be selected (considering statistical data of former failures).

Learning The situation can be added as a case to the case base.
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easy to obtain in  strong technical domains. In domains where the knowledge of components and their
causal interactions is more vague, like in medical diagnosis, the proposed approach is not usable.
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Abstract. In this paper we will discuss the role of case-based reasoning and learnillg as a tool for 
integrating different methods of inference and different methods of learning. The Massive Memory 
Arcnitecture, an experimental frame\york for experience-based learnmg and reasoning, is 
described. Its reflectIve capabilities are described and we put forth the hypothesis that learning 
methods are inference methods able to inspect the.problem solving process and modify the system 
itself so as to improve its behavior. Therefore, learning methods require a self-model of the system. 
Self-models and method implementation are based on conceptual, knowledge-level descriptIons of 
inference. 

1 Introduction 
In this paper we will discuss the role of case-based reasoning and learning as a tool for integrating 
different methods of inference and different methods of learning. Case-based reasoning (CBR) 
systems offer the advantage of an integrated framework for both problem solving and learning. 
However, every CBR system combines in a peculiar way several specific inference methods and 
associated learning methods. Research toward a conceptual and computational framework able to 
encompass disparate CBR systems can be very important for theoretical understanding and practical 
applications. 

In a companion paper [Armengol 93] we show how a conceptual framework like the Components of 
Expertise [Steels 90] can be used to describe at the knowledge level the reasoning and learning 
methods of several classic CBR systems. It can be then observed that CBR systems share a common 
pattern of task/subtask decomposition and they differ by the methods chosen to perform each task 
and subtask. Needless to say, this election is determined by the kind of application for which the CBR 
system has been developed. The knowledge level analysis show that CBR systems can be unified at 
least conceptually, and .this we think is independent of the conceptual framework used, that is to say 
KADS [Wielinga 92] or Generic Task analysis IChandrasekaran 89] would show the same. Another 
analysis of this kind is [Aamodt 90]. 

In this paper we present how this analysis can be implemented in a computational framework that 
supports task/subtask decomposition, the Massive Memory Architecture (MMA). The MMA is an 
experimental framework for experience-based learning and reasoning. It is based on memorisation of 
past episodes of problem solving and in a default behavior that resorts to analogous past cases to 
solve new situations. This 'is a. default behavior in the sense that it is used when no concrete domain 
knowledge is available. The analogical inference is modelled as an inference pattern Retrieve / Select 
/ Adapt. This pattern is reified into an analogical inference method object, where different retrieve or 
select methods can be used. The fact that inference methods are first class objects means that inference 
methods can be programmed also. 

In our approach, learning methods are just inference methods able to inspect the problem solving 
process and modify the system itself so as to improve its behavior. Therefore a learning system 
requires reflective capabilities able to self-inspect the system and a theory of the system that specify 
how it can be modified in order to be improved. In section 3 we develop the self-model used in MMA 
for case-based learning and reasoning, but first a description of the architecture is necessary. 

2 The Massive Memory Architecture 
Inference methods in MMA are methods that follow a Retrieve/Select/Adapt pattern. Thus, an 
inference method is a reification of the basic inference pattern of the architecture. Analogical methods 
are inference methods that follow a Retrieve by similarity methods and then may have Select 
methods also of similarity or using domain-based, knowledge-intensive methods. Inheritance is also 
represented and implemented by explicit inference methods that use a retrieve method that follows a 
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Expertise [Steels 90] can be used to describe at the knowledge level the reasoning and learning
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least conceptually, and this we think is independent of the conceptual framework used, that is to say
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analysis of this kind is [Aamodt 90].
In this paper we present how this analysis can be implemented in a computational framework that
supports task/subtask decomposition, the Massive Memory Architecture (MMA). The MMA is an
experimental framework for experience—based learning and reasoning. It is based on memorisation of
past episodes of problem solving and in a default behavior that resorts to analogous past cases to
solve new situations. This ‘is a. default behavior in the sense that it is used when no concrete domain
knowledge is available. The analogical inference is modelled as an inference pattern Retrieve / Select
/ Adapt. This pattern is reified into an analogical inference method object, where different retrieve or
select methods can be used. The fact that inference methods are first class objects means that inference
methods can be programmed also.
In our approach, learning methods are just inference methods able to inspect the problem solving
process and modify the system itself so as to improve its behavior. Therefore a learning system
requires reflective capabilities able to self-inspect the system and a theory of the system that specify
how it can be modified in order to be improved. In section 3 we develop the self-model used in MMA
for case-based learning and reasoning, but first a description of the architecture is necessary.

2 The Massive Memory Architecture
Inference methods in MMA are methods that follow a Retrieve/ Select/ Adapt pattern. Thus, an
inference method is  a reification of the basic inference pattern of the architecture. Analogical methods
are inference methods that follow a Retrieve by similarity methods and then may have Select
methods also of similarity or using domain-based, knowledge—intensive methods. Inheritance is also
represented and implemented by explicit inference methods that use a retrieve method that follows a
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link (e.g. the type link, but other inheritance methods are used, like the sped es link that accesses 
knowledge in a homo-sapiens theory). In this approach, analogy and inheritance are integrated into 
a uniform.architecture. 

2.1 Episodic Memory 

Every episode of problem solving of MMA is represented and stored as an episode in memory. This 
is the main point of the reification process: create the objects that can be usable for learning and 
improving future behavior. MMA records memories of sticcesses and failures of using methods for 
solving tasks. Since inference methods are also methods, learning can be applied to different types of 
retrieval methods and selection methods used in the process of searching and selecting sources of 
knowledge in the form of precedents. 

----:.;RE:'B=R;;.;;I;;;;,;EVE~=__..... PAM (plausibly[Task j I 
applicable 

( Task j 3} R IPAM I 
17I\ I s 

4---=:;===----1 methods)· 

Figure 1. Task decomposition by methods. Any query engages the system into a task. First of 
aIr, a method has to oe selected from available methods for that kmd of task. A method is 
decomposed into subtasks (queries to other objects) recursively, until some method is direct. 
Method failure engages backtracking to other available methods. 

2.2 Analogical Inference 

Analogical methods are inference methods that follow a task decomposition of 
Retrieve/Select/Adapt. Since different methods can be used for these subtasks, multiple methods of 
case based reasoning can be integrated. Moreover they can be indexed in different tasks where they 
are appropriate. The characteristic of analogical methods is that the Retrieve method uses a 
similarity-based method. Sehet methods can also be based on similarity or can be domain-based, 
knowledge-intensive methods. All inference methods are such because they are able to search for 
sources from which some knowledge may be retrieved. The types of knowledge retrieved is either 
domain knowledge (as methods) and experiential knowledge (situations of failure and success). 
Experiential knowledge is used by MMA to bias the preferences of future actions using precedent 
cases stored in past episodes. The uniform nature of MMA (every query to an object engages a task) 
supports learning at all decision points of the system. 

( Task ....!R,!!,E'-'-TR~I~EV....E"'----I.... I PAM (plausibly 
~======~ SELECT applicable inference 

14----=.=~--1methods)l.----:.f'o;;:---' L ----' 

Select 
Method 

Figure 2. Task decomposition of a CBR method. A CBR method for solving a task is
implemented by the specific methods for retrieveing precedent cases, selecting the most 
appropriate case, and adapting its solution for the current task. 
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2.3 The Abstract Inference Process 

The Massive Memory Architecture is implemented in the frame-based representation language 
NOOS. The basic inference process of NOOS follows the Retrieve / Select / Adapt pattern. The other 
notion needed to explain the inference process are impasses. When a query like (» father of 
John) is evaluated a new task is started. Then either 
(0 task "father(John)" has a method to compute that value like 

(» husband mother of self), or 
(ii) a no-method impasse occurs. 
Case (i) is called spontaneous inference and occurs at the base level. However, in (ii) the impasse causes 
NOOS to search at a meta-level for possible methods to use. Impasses are handled by metaobjects, 
that is to say MMA is an impasse-driven reflective architecture. The architecture specifies which type 
impasses can appear, and which kind of metaobject will handle them (see Table 2). The no-method 
impasse in a task is handled by its metafunction (set of applicable methods). Applicable methods can 
be retrieved and selected (maybe trying them out) and the solution is cached in the task-object (see 
Fig, 3). Every impasse is an opportunity for learning and the reification process creates and stores the 
objects needed to represent the situation (so that it can be useful in the future). In the task-object 
example, the information stored is the successful method and the methods that failed. 

Deliberate Inference 
Meta Plausibly 

selec~Level Applicable • Method 
Methods 

•• 
Impasse 

Learning Result 

" 
,. 

Base Task ... caChinr Solution
Level 

.. 
Figure 3. The Abstract Inference Process in NOOS./mpasse, Learning and Result are themselves Inference 
Processes due to the reflective nature of inference and representation m NOOS. Methods come in two types,
namely Inference Methods and Domain Methods. 

The inference can be more complex, e.g. maybe the applicable methods for a task 
(» father of John) are unknown. This is a new kind of impasse: the no-metafunctlon 
impasse and is handled by the metatheory of John that possesses inference methods able to search, 
retrieve and select methods in other objects. Currently several inheritance and case-based methods 
are implemented as inference methods. The inference theories specify when each method is 
applicable or likely to be useful in solving a task. 

TABLE 2. Impasse and response to impasses 

Impasse Type Handled by Metaobject Processing Level 
No method for F(U) Meta(UF(U)") Metafunction Domain Methods 
Multiplicity of Methods Select Theory Strategic Cliche Preference Methods 
No metafunction for F(U) Meta(UU") Inference Theory Inference Methods 
Multiplicity of Infer. Methods Select Theory Strategic Cliche Preference Methods 

The point to notice is that the uniformity of NOOS treats all situations in the same way. Table 2 
summarizes the impasses recognised by NOOS and the corresponding metaobject to handle them. As 
in Soar, every impasse arises from lack of knowledge: either because the system does not know what 
to do, or it has several possibilities to act and has to decide among them. The first type of impasses is 
handled by inference methods that know how to retrieve sources of knowledge. Multiple possibilities 
are handled by strategic cliches, objects that know about preferencing and selecting among choices. 
The long paper in the proceedings will include an example of case-based and explanation-based 
reasoning for a technical diagnosis task. 
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The inference can be more complex, e.g. maybe the applicable methods for a task
(>> Father  of  John)  are unknown. This i s  a new kind of impasse: the no—metafunc t ion
impasse and is handled by the metatheory of John that possesses inference methods able to search,
retrieve and select methods in other objects. Currently several inheritance and case—based methods
are implemented as inference methods. The inference theories specify when each method is
applicable or likely to be useful in solving a task.
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The point to notice is that the uniformity of NOOS treats all situations in the same way. Table 2
summarizes the impasses recognised by NOOS and the corresponding metaobject to handle them. As
in Soar, every impasse arises from lack of knowledge: either because the system does not know what
to do, or it has several possibilities to act and has to decide among them. The first type of impasses is
handled by inference methods that know how to retrieve sources of knowledge. Multiple possibilities
are handled by strategic clichés, objects that know about preferencing and selecting among choices.
The long paper in the proceedings will include an example of case-based and explanation-based
reasoning for a technical diagnosis task.
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3 Reflection and Self-models 

The reflection principles specify the relationship between a theory 'J and its meta-theory rt'J. The 
upward principles specify the reification process that encodes some aspects of 'J into ground facts of 
rt'J. That is to say, reification constructs a particular model of'J in the language used by M/T. The 
nature of reification and the model constructed is open, Le. it depends on the purpose for which the 
coding is made. We will use in MMA a knowledge-level model of task/method/theory 
decomposition (explained in §2) as a meta-model of the base-level inference. We follow a framework 
similar to the Components of Expertise [Steels 90] and the task-decomposition framework of 
[Chandrasekaran 89]. However, we do not follow them strictly, except in the general idea of using as 
"elements of inference" goals, methods, and theories. A similar approach is taken in [Akkermans et al 
93] where the meta-model is the KADS modelling framework [Wielinga 92] for expert systems. The 
meta-theory contents knowledge that allows to deduce how to extend this model deducing new facts 
about it. This deduction process is called meta-level inference, and the content of this theory is again 
specific to the purpose at hand (the meta-theory is indeed no more than a theory). Finally, downward 
principles specify the reflection process that given a new, extended model of'J has to transform the 
theory 'J to a new theory 'J' that complies to that new model. A more detailed explanation of the 
reflective principles and of the semantics of NODS can be found in [Plaza 92]. 

Meta-Theory 11.'T 
to.. 

Meta-level 
... Extended 

( Model of T] Inference Model of T 

~ ~ 
I 

Reification Reflection 

~ r 
Base Theory T Base Theory T' 

Figure 4. Reification constructs a model of a theory T. Metalevel inference deduces new facts or takes new 
decisions that extend (or modify) this model using a meta-theory MT. Finally, reflection constructs a new 
theory T' that faithfully realises the extended model of T. 

Our hypothesis is that different types of learning methods would require different self-models of the 
architecture. The current implementation of MMA has a model of the methods used for each task: 
methods that have been proposed (by an inference method), methods that have been tried but failed, 
and the method that has succeeded. This information is indexed therefore for each slot-query made 
and is stored in an object called task-object. In the following we will use quotes "X" to designate 
the reification of X. For instance: 

Age(John) denotes the query (» age of John) 
whose result is 32 years, while 

"Age(John)" denotes the query (» rei fy (» age of John)) 
i.e. the object reifying the task (» age of John) whose print-name is: 

#<task-object [age of John]> 
The task-object reifies the current state of the process solving the task; specifically the system can 
know the following about the current state: 

Access-Name("Age(John)") => "Age" 
Domain("Age(John)") 
Method("Age(John)") 
Fat led("Age(John)") 
Referent("Age(John)") 

=> 
=> 
=> 
=> 

#<John> 
#<Method Age-method-3> 
#<Method Age-method-5> 
#<32-Years> 

This self-model is used by inference methods to retrieve and transfer the metafunction (containing the 
available methods) from a task solved into a precedent case to a task in the present problem, and for 
inferring preferences over method selection based on their success or failure in those precedents. For 
instance, the MMA can obtain the method that successfully computed the age of John using this 
query: 
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(» method reify (» age of John)) => #<Method Age-method-3> 
Other learning methods that we are incorporating to MMA (see [Plaza 93]) use this self-model but 
also require its extension. This is as expected because of our Self-model Hypothesis implies that every 
learning method may need to know different aspects of the architecture. We are then in a process 
where an analysis of those learning methods elucidate which aspects of NOOS that are hidden or 
internal to its implementation are to be reified and made accessible to the architecture. 

4 Related Work 
Our work on architectures is related to cognitive architectures like SOAR [Newell 90], THEO [Mitchell 
91], and PRODIGY [Carbonell 91]. At first sight, MMA language resembles THEO since NOOS is a 
frame language with caching, TMS, and "available methods" for slots. However, THEO does not 
provide a clear metaobject definition, does not reason about preferences over methods, and does not 
incorporate analogical reasoning or explicit inference methods. At a deeper level MMA resembles 
Soar in that MMA is a uniform, impasse-driven architecture with a built-in learning method. The 
differences are that spontaneous learning here is episode memorization and that our "learning as 
metalevel inference" hypothesis shapes another approach to inference and learning by the use of 
reification, self-models and the explicit representation of inference methods. 

The introspective use of meta-explanations in Meta-AQUA [Ram 92] is also related to MMA approach 
that exploits the reflective approach to learning. Meta-AQUA is not impasse-driven but proposes a 
mapping between classes of situations and learning methods that can improve the system. Meta
Router [Stroulia 92] combines planning and case-based reasoning in a task-decomposition framework 
(based on [Chandrasekaran 89]) and defines a typology of errors and methods for repair. 

Related work on reflection is [Kiczales 91], [Giunchilia 90], and [Smith 85], and specially related 
viewpoints of inference-level reflection are projects like REFLECf and KADS-II [Akkermans et al 93]. 
Meta-level architectures have been used for strategic reasoning [Godo 89] [Lopez 93], for non
monotonic reasoning [Sierra 93] [Treur 91], and for modelling expert systems [Akkermans et a1 93]. 
Precedents on using reflection for learning are [Ram 92HLopez 93]. Our current NOOS language is to 
be considered a descendant of languages RLL-1 [Lenat 80] and KRS [van Marcke 87]. 

Related work on knowledge-level modelling of AI systems includes the Commet (or components of 
expertise) framework [Steels 90] , and the KADS methodology [Akkermans et al 93]. Our approach is 
closer to the Commet in that the ontology of models, tasks and methods proposed by Commet is 
related to MMA's ontology of theories, methods and tasks. However, NOOS considers two layers: 
base-level domain theories and methods, and meta-Ievel inference theories and methods, while the 
Commet approach is not reflective and only is concerned with the domain layer. This is reasonable, 
since Commet is intended as a prescriptive framework for expert systems where all options searched for 
in MMA are dictated by the expert's knowledge through the process of knowledge engineering. 
Although this may involve lack of flexibility in general, it has evident advantages regarding efficiency 
in most expert system applications. The KADS methodology is much more different but they have 
used a reflective framework to describe the KADS four-layer architecture. Their reflective framework, 
called "knowledge-level reflection" use~ the KADS model to specify the system self-model of 
structure and process, very much like our inference-level model of theories, tasks, and methods 
allows MMA to have a self-model. However, neither Commet nor KADS have been used to perform 
learning tasks, and in fact MMA is the first attempt to apply knowledge level analysis to learning 
tasks and to develop a computational architecture that embodies that approach. 
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(» method reify (» age o f  John))  => #<Method Age-method-3>
Other learning methods that we are incorporating to MMA (see [Plaza 93]) use this self-model but
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learning method may need to know different aspects of the architecture. We are then in a process
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1 Introduction 

The use of Case-Based Reasoning (CBR) plays a fundamental role in many important 
AI tasks like diagnostic problem solving [8] or planning [5], since in many situations 
it can mimic the capability of human experts in solving a new case by retrieving 
similar cases solved in the past. The suitability of CBR to solve complex problems 
has been widely discussed in the last few years and this led to the combination of 
case-based reasoning with more traditional problem solving approaches like r-ule
based [2], prototypical [12J and model-based reasoning (MBR) [4, 10J. In domains 
where a strong model is present (Le. where a precise domain theory is available), the 
use of CBR could seem less obvious, however it can still provide advantages when the 
precise computation of a solution is very complex; this has been studied in tasks like 
design [4J, planning [7] and diagnosis [10J. The identification of previously analyzed 
problems can be a useful tool for improving the performance of a model-based system 
by using experience in problem solving. There are two basic possibilities in combining 
CBR and MBR: 1) CBR is the main problem solving method and MBR is just used 
to provide guidance to it; 2) CBR is used to focus MBR in the attempt to augment 
the basic mechanisms of MBR by taking experience into account. 

In this paper we will concentrate on the second aspect and in particular .on 
adaptation criteria that can be used in a diagnostic system combining case-based 
and model-based reasoning. Such adaptation criteria strictly rely on well-defined 
formal notions of diagnostic problem and diagnostic solution and their adoption can 
be viewed as a focusing technique for the model-based inference engine!. 

2 Outline of System Architecture 

In the diagnostic system we can identify the following basic components: (1) a case 
memory with an E-Mop-based organization of cases [9]; each case represents a diag
nostic problem already solved and it is composed of a set of atoms feature(value) 
together with the solution of the problem; (2) a module able to store and retrieve 
cases from the case memory and to evaluate the degree of match between the current 
case to be solved and the retrieved ones; (3) a knowledge base, represented through 
a causal model identifying the faulty behavior of the system to be diagnosed; (4) 

1 Another important aspect that will not be discussed here concerns the organization of the 
case memory that can greatly influence the system performance (see [1] for a discussion 
of this aspect in the use of the CASEY system). 
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1 In t roduct ion

The use of Case—Based Reasoning (CBR) plays a fundamental role in  many important
AI tasks like diagnostic problem solving [8] or planning [5], since in many situations
i t  can mimic the capability of human experts in solving a new case by retrieving
similar cases solved in the past .  The suitability of CBR to  solve complex problems
has been widely discussed in the last few years and this led to the combination of
case—based reasoning with more traditional problem solving approaches like rule—
based [2], prototypical [12] and model-based reasoning (MBR) [4, 10]. In domains
where a strong model is present (i.e. where a precise domain theory is  available), the
use of CBR could seem less obvious, however i t  can still provide advantages when the
precise computation of a solution is very complex; this has been studied in tasks like
design [4], planning [7] and diagnosis [10].'The identification of previously analyzed
problems can be a useful tool for improving the  performance of a model—based system
by using experience in  problem solving. There are two basic possibilities in combining
CBR and MBR: 1) CBR is the main problem solving method and MBR is just used
to provide guidance to it; 2) CBR is used to focus MBR in the attempt to augment
the basic mechanisms of MBR by taking experience into account.

In this paper we will concentrate on  the  second aspect and in particular „on
adaptation criteria that can be used in a diagnostic system combining case-based
and model-based reasoning. Such adaptation criteria strictly rely on well-defined
formal notions of diagnostic problem and diagnostic solution and their adoption can
be viewed as a focusing technique for the model-based inference enginel .

2 Outl ine of System Archi tec ture

In the diagnostic system we can identify the following basic components: (1) a case
memory with an E—MOP-based organization of cases [9]; each case represents a diag-
nostic problem already solved and it is composed of a set of atoms feature(va.lue)
together with the solution of the problem; (2) a module able t o  store and retrieve
cases from the case memory and to  evaluate the  degree of match between the current
case to be solved and the retrieved ones; (3) a knowledge base, represented through
a causal model identifying the  faulty behavior of the  system to  be  diagnosed; (4)

1 Another important aspect that  will not  be  discussed here  concerns the organization of the
case memory that can greatly influence the system performance (see [1] for a discussion
of this aspect in the  use of the  CASEY system).
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a model-based reasoner able to perform diagnostic reasoning on the causal model 
in the form of abduction with consistency constraints [3]; (5) a module performing 
adaptation on retrieved solutions and able to invoke the model-based reasoner if 
adaptation criteria fail to provide a solution. 

The diagnostic system, when presented with a new case, first invokes the case
based reasoner in order to retrieve the most similar cases solved in the past and 
then it tries to use the solutions of retrieved cases in order to focus the model-based 
reasoner in the search for the actual solution. The emphasis of the paper is on the 
adaptation strategies working on the solutions retrieved from the case memory. 

Let us briefly discuss the causal model formalism, while in the next section we 
will address the problem of the formal characterization of diagnostic problems upon 
which the model-based reasoner performs its task. A causal model is composed by a 
set of logical formulae which express different kinds of relationships among entities 
belonging to different types2 . We identify the following entities: states represent 
non-observable internal states of the modeled system; findings represent observable 
parameters (manifestations) in the modeled system and are the features that are 
used to characterize cases; initiaLcauses represent the initial perturbations (initial 
states) that may lead .the system to a given behavior. Each one of these entities is 
characterized by a set of admissible values so that we can identify different instances 
of them. Two main types of relationships are defined in the model: causal relationship 
represents a cause-effect relation among states, while ham (has as a manifestation) 
relationship is an ordered relation from a state S to a finding M and represents 
the fact that the finding M is an observable manifestation of the internal state 
S. Relationships can be either necessary or possible. In the second case they are 
modelled introducing a new entity, named assumption, that is put in conjunction 
with the rest of the precondition and represents the incompletness in the specification 
of the relation [H]. 

3 Characterization of Diagnostic Problems 

In [3] a formal theory of model-based diagnosis is proposed from a logical point of 
view; this theory defines a logical spectrum of definitions able to capture classical 
notions of model-based diagnosis, i.e. consistency-based and abduetive diagnosis (see 
[3] for more details). In the present work we rely on such a theory in order to precisely 
define a notion of diagnosis on causal models and exploiting such a framework in the 
adaptation of a retrieved solution. A diagnostic problem DP can be described as 
a triple < T, HYP, < lP+ ,lP- >>, where: T is the set of logical formulae constituting 
the causal model; HYP is a set of ground atoms denoting the initial causes in terms 
of which diagnostic hypotheses have to be expressed; lP+ is a set of ground atoms 
denoting the set of findings that must be- accounted for in the case under examination; 
lP- is a set of ground atoms denoting the set of findings that are known to be false 
in the case under examination. 

It follows from this definition that if OES is the set of all the observed data in 
the current case, lP+ S;; OES while 1Jt- will contain, for each observed finding, all 

2	 The formalism is actually more structured than as presented here (see [11]); we will 
sketch here only what is relevant for our discussion. 
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a. model—based reasoner able to perform diagnostic reasoning on the  causal model
in the form of abduction with consistency constraints [3]; (5) a module performing
adaptation on retrieved solutions and' able to invoke the  model-based reasoner if
adaptation criteria fail to provide a solution.

The diagnostic system, when presented with a new case, first invokes the case-
based reasoner in order to  retrieve the most similar cases solved in the past and
then it tries to  use the solutions of retrieved cases in  order to  focus the model-based
reasoner in  the search for the actual solution. The emphasis of the paper is on the
adaptation strategies working on the  solutions retrieved from the case memory.

Let us briefly discuss the  causal model formalism, while in the next section we
will address the  problem of the formal characterization of diagnostic problems upon
which the model-based reasoner performs i t s  task. A causal model  is composed by a
set  of logical formulae which express different kinds of relationships among entities
belonging to different typesz. We identify the following entities: states represent
non—observable internal states of the modeled system; findings represent observable
parameters (manifestations) in the modeled system and are the  features that are
used to characterize cases; initial-causes represent the initial perturbations (initial
states) that may lead the system to  a given behavior. Each one of these entities is
characterized by a set of admissible values so that we can identify different instances
of them. Two main types of relationships are defined in the model: causal relationship
represents a cause-effect relation among states, while ham (has as a manifestation)
relationship is an ordered relation from a state S t o  a finding M and represents
the fact that the finding M is an observable manifestation of the internal state
S .  Relationships can be either necessary or possible. In  the second case they are
modelled introducing a new entity, named assumption, that is put  in conjunction
with the  rest of the  precondition and represents the  incompletness in the  specification
of the relation [11.].

3 Characterization of Diagnost ic  Problems

In [3] a formal theory of model-based diagnosis is proposed from a logical point of
view; this  theory defines a logical spectrum of definitions able to capture classical
notions of model-based diagnosis, i.e. cansistencg- based and abductioe diagnosis (see
[3] for more details). In the present work we rely on such a theory in order to precisely
define a notion of diagnosis on causal models and exploiting such a framework in the
adaptation of a retrieved solution. A diagnostic  problem DP can be described as
a triple < T, H YP, < W‘l', SI" >> ,  where: T is the  set of logical formulae constituting
the causal model; H YP is a set of ground atoms denoting the initial causes in terms
of which diagnostic hypotheses have t o  be expressed; 'I’+ is‘a set of ground atoms
denoting the set of findings that must  be  accounted for in the case under examination;
!P'" is a set of ground atoms denoting the  set of findings that  are known to  be  false
in the case under examination.

I t  follows from this definition that if OBS is the  set  of all the observed data in
the current case, SW" g OBS while SI" will contain, for each observed finding, all

2 The formalism is actually more s t ruc tured  than  as presented here  (see [11]); we will
sketch here only what  is relevant for our  discussion.
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the instances of such a finding that have not been observed. Since we abstract from 
time, we impose that a finding cannot have more than one (normal or abnormal) 
value. This means that a conjunction of atoms representing different instances of the 
same entity of the causal model yields an inconsistency, so the consistency check is 
done through the set 1Ji-. 

Given a diagnostic problem DP=< T, HYP, < 1Ji+, 1Ji- », a set H ~ HYPis 
a solution for DP (alternatively an explana~ion for the observations) if and only if: 

Vm E 1Ji+ Tu H I- m and Vn E 1Ji- T U H Ii n 

This means that H has to account for all observations in 1Ji+ l while no atom in 1Ji
must be deduced from H. It should be clear that a solution H identifies a ground 
causal chain on the causal model T, starting from the initial causes mentioned in 
H and containing all their causal consequences. Such a chain is stored in the case 
structure and is used as the starting point of the model-based inference engine when 
the case is retrieved. 

Adaptation Strategies 

The goal we pursue in adding a case-based component to a model-based reasoner 
concerns the possibility of guiding the latter in the search for a solution to a new 
problem, by reminding solutions to similar problems already solved. Unless the un
usual situation when the case under examination is characterized by exactly the 
same features of the retrieved one, the domain theory is invoked to check whether 
the retrieved solution is suitable for the case under examination. In particular, we 
precisely characterize the notion of "suitability" by adopting the formal notion of 
consistency of a diagnostic solution; this corresponds to put into set 1Ji-, for each 
observed finding, every instantiation of such findings different than the observed one. 

If consistency is verified, then the retrieved solution can be used as potential 
solution for the new case under examination, unless the user requires that some 
findings, that are not covered by the retrieved solution, have to be covered in the 
current case (Le. they have to be put into 1Ji+). In this situation or in the case when 
the consistency check fails, adaptation strategies are needed in order to single out a 
solution taking into account all the requirements (both consistency and covering). 

We identify some basic adaptation mechanisms such that the whole adaptation 
process can be obtained by- suitably invoki:pg them; such mechanisms can be viewed 
as processes of removing inferences that are responsable for inconsistency and pro
cesses building explanations for data to be covered. We will describe how these 
mechanisms work by providing two simple examples (a more formal treatment in
dependent on the particular example will be included in the final version of the 
paper). 

Let us consider the following causal model T representing a small fragment of a 
more detailed model in the domain of car faults; 

causes((al' eng _mileage(betw_50000_and_100000.J:m)), piston_ring _wear(moder)) 
causes((al' eng_mileage(more_than_100000.J:m)), piston_ring _wear( severe)) 
causes(piston_ring _wear(moder) , oiLconsumpt(low)) 
causes(piston_ring _wear(severe), oiLconsumpt(high)) 
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the instances of such a finding that have not  been observed. Since we abstract from
time, we impose that a finding cannot have more than one (normal or abnormal)
value. This means that a conjunction of atoms representing different instances of the
same entity of the causal model yields an inconsistency, so the  consistency check is
done through the set EP“.
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a solution for DP (alternatively an explanation for the observations) if and only if:

VmESW' TUHl—m and VnEEF' TUHI7’n
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H and containing all their causal consequences. Such a chain is stored in the case
structure and is used as the starting point of the model-based inference engine when
the case is retrieved.

4 Adaptation Strategies

The goal we pursue in adding a case-based component to a model-based reasoner
concerns the possibility of guiding the latter in the search for a solution to a new
problem, by reminding solutions to  similar problems already solved. Unless the un—
usual situation when the case under examination is characterized by exactly the
same features of the retrieved one, the domain theory is invoked to  check whether
the retrieved solution is suitable for the case under examination. In particular, we
precisely characterize the  notion of “suitability” by adopting the  formal notion of
consistency of a diagnostic solution; this corresponds t o  put  into set 97“, for each
observed finding, every instantiation of such findings different than the observed one.

If consistency is verified, then the retrieved solution can be  used as potential
solution for the new case under examination, unless the user requires that some
findings, that are not covered by the retrieved solution, have t o  be covered in the
current case (i.e. they have to  be put  into ETH”). In this si tuation or in the  case when
.the consistency check fails, adaptation strategies are needed in order t o  single out  a
solution taking into account all the requirements (both consistency and covering).

We identify some basic adaptation mechanisms such that the  whole adaptation
process can be  obtained by'suitably invoking them; such mechanisms can be  viewed
as processes of removing inferences that are responsable for inconsistency and pro-
cesses building explanations for data to  be  covered. We will describe how these
mechanisms work by providing two simple examples ( a  more formal treatment in—
dependent on the particular-example will be included in the final version of the
paper) .

Let us consider the following causal model T representing a small fragment of a
more detailed model in  the domain of car faults;
causes-((al , eng _mi l eage (be tw_50000_a ‚nd_100000_km)) ,  pistonJing _wear(moder))
causes((a1 , eng..mileage(more_than_1000OOJcm)), pistonming -wear(severe))
causes(piston_ring _wear(moder), oil_consumpt(low))
causes(piston_ring _wea.r( severe), oil_consumpt(hig h))
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causes((02. eng_rnileage(betw_50000...and_lOOOOO...km)), piston_wear(moder))
 
causes((02, eng_mileage (more_than_lOOOOO...km)), piston_wear (severe))
 
causes(piston_wear(moder), oiLconsumpt(low))
 
causes(piston_wear( severe), oiLconsumpt(high))
 
causes(oiLconsumpt( low), oiUack(medium))
 
causes(oiLconsumpt(high) , oiUack(high))
 
causes«03, key(turned_on)), engine(on))
 
causes( (04. road..£ondition(uneven), ground_clearance( low)), oiLsump(holed)
 
causes(oiLsump(holed), oiUack(high))
 
causes« oiUack(medium), engine(on)), engine_temp(high))
 
causes« oiUack(high), engine(on)), engine_temp(very_high))
 

ham(piston_ring_wear(moder) , state_of_piston_rings(worn)
 
ham(piston_ring_wear( severe), state_of_piston_rings(very_worn))
 
ham(oiLconsumpt( low), exhausLsmoke(grey))
 
ham(oiLconsumpt(high); exhausLsmoke(black))
 
ham(piston_wear(moder) , state_of_pistons(worn)
 
ham(piston_wear(severe) , state_of_pistons (very_worn))
 
ham(oiUack(medium), oiLwarning Jight(yellow))
 
ham(oiUack(high), oiLwarning_light(red))
 
ham(engine_temp(high), temp_indic(yellow))
 
ham(engine_temp(very_high), temp_indite red))
 
ham(oiLsump(holed), hole_in_oiLsump(present))
 

A causal relation is represented by a causes predicate whose first argument represents 
its precondition involving a conjunction of states, initiaLcauses and assumptions (in
dicated with Oi) and the second argument represents the effect. A "ham" relation 
is represented by a ham predicate; the first argument of a ham predicate is a state 
instance whose observable manifestation is represented by the second argument. 
In this causal model the set of hypotheses HY P consists of the ground initial causes 
eng _mileage (betw_50000...and_lOOOOO...km), eng _mileage(more_than_lOOOOO...km), 
key(turned_on) , road_condition(uneven) , ground_clearance(low) and the assump
tions 01, 02, 03, 04. 

Example 1. Let us suppose that the case under examination is characterized by 
the following observations: 

oBS1 = {exhausLsmoke(black), temp_indic( red), oiLwarning Jight( red)} 

Let us also suppose to retrieve the following case from the case memory: 

{state_of_pistons(very_worn), exhausLsmoke(black), oiLwarningJight(red)} 

with associated solution consisting in the conjunction of the ground initial cause 
eng_mileage(more_than_lOOOOOkm) and the assumption 02. From this conjunction 
and from the domain theory it is easily·to derive piston_wear(severe) (whose mani
festation is state_of_pistons(very_worn)), oiLconsumpt(high) (whose manifestation 
is exhausLsmoke(black)) and oiUack( high) (whose manifestation is 
oiLwarning Jig ht(red)). 
Since the manifestations in the retrieved case differ from those in 0 B S 1, consistency 
check occurs; consistency is checked by using the model T and by putting into lJ!
the following manifestation instances (i.e. all the manifestations that are alternatives 
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causes((a2 , enn'Ieage(betw_50000_and_100000_km)), piston„wear(moder))
causesuag , eng_milea‚ge(more_than_100000_km))‚ piston_wear(severe))
causes(piston_wear(moder), oil -consumpt( 1010))
causes(piston_wear(severe), oil_consumpt(high)]
causes(oil_consumpt(low), oiLlack (mediumD
causes(oil-consumpt(hig h), oi1_lack(hig h))
causes((a3, key(turned_on)), engine(on))
causes-(W4, roadxonditionmneven), ground_c.lea‚ra‚nce_(low)), oil_sump( holed)
causes(oil-sump(holed), oil_lack(high))
causes((oil-lack(medium), engine(on)), engine-temp(high))
causes((oél..lack(high), engine(on)), engine_temp(very_high))
ham(piston_ring _wear(moder)‚ state_of_piston_rings(worn)
ham(piston_ring -wear(severe),  state _o f _piston_r£ngs(very_worn))
ham(oil_consumpt(low), emhaust-smoke(grey))
ham(oil -consumpt(hig h) , emhausLsmoke (black ))
ham(piston_wea‚r(moder), state_of _pistons(worn)
ham(piston‚wear(severe ), state_of_p-istons(very_worn))
ham(oil-lack(medium), oilrwarning Jig  ht(yellow))
ham(oil_lack(high) , oiLwarning Jig ht(red))
ham(engine_temp(high), temp_indic(yellow))
ham(engine_temp(very_high), temp-indi-‘c(red))
ham(oil-sump(holed), hole_in_oil_sump(present))
A causal relation is represented by a causes predicate whose first argument represents
its precondition involving a conjunction of states, initiaLcau-ses and assumptions (in-
dicated with a i )  and the second argument represents the effect. A “ham" relation
is represented by a ham predicate; the  first argument of a ham predicate is a state
instance whose observable manifestation is represented by the  second argument.
In this  causal model the  set of hypotheses H YP consists of the ground initial causes
eng__mileage(betw„50000_and_1000OOJcm), eng_mileage(more_tha.n_100000_km)‚
key(turned-on), road_condition(une'ven), groundßlearanceflow) and the assump-
tions a l ,  0:2, 0:3, :14.

Example 1 .  Let us suppose that  the  case under examination is characterized by
the following observations:

0331 : {eahaust_smoke(black)‚ temp_indic(red), oil_warning_light(red)}
Let us also suppose to  retrieve the following case from the  case memory:

{state-of_pistons(11ery_worn), exhaust_smoke[black), oil_warning_light(red)}
with associated solution consisting in the  conjunction of the  ground initial cause
eng_mileage(more_than_lOOOOOkm) and the  assumption az .  From this conjunction
and from the domain theory it is easily'to derive piston_wear(severe) (whose mani-
festation is state_of .pistons(very_worn)),  oil_consumpt(high) (Whose manifestation
is emhaust-smoke(black)) and oilJacMhigh) (whose manifestation is
oil-warninglight(red)).
Since the  manifestations in the  retrieved case differ from those in OBSI ,  consistency
check occurs; consistency is checked by using the  model T and by putting into EF“
the following manifestation instances (i.e. all the  manifestations that are alternatives
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with respect to the observed ones): exhausLsmoke(normal), exhausLsmoke(grey), 
oiLwarning Jight(normal), oiLwarning Jight(yellow) l temp_indic(green), 
temp_indic(yellow). It is easy to see that consistency check succeds, therefore the 
retrieved solution can be considered a solution also for the case described by OBS l 

in case the user does not require stronger notion of explanation based on covering. 
Example 2. The role of adaptation strategies is made clear by the following 

example where we assume the case under examination to be characterized by the 
following observations: ' 

OBS2 = {-'state_o j _pistons(very_worn), ex hausLsmoke(black), temp_indic( red), 
oiLwarning Jig ht(red)} 

Let us also suppose that the case retrieved from the case memory is the same of
 
Example 1. We can immediately notice that the solution of the retrieved case (i.e.
 
{eng _mileage(more_than_lOOOOOkm), a2} )is not consistent with OBS2, since it de

rives the manifestation state_oj_pistons(very_worn) that is negated in the case un-

der examination; for this reason adaptation is required. '
 
Let us suppose that the set q;+ is formed by exhausLsmoke(black), temp_indic(red)
 
and oiLwarningJight(red)j the adaptation strategy first tries to disprove the causal
 
chain having state_oj_pistons(very_worn) as a final conclusion. In particular, by
 
removing the assumption a2, the state piston_wear (severe) and the manifesta

tion state_oj_pistons(very_worn) are no longer supported and consistency is re

established. Since oiLconsumpt(high) is necessary to account for manifestation
 
exhausLsmoke(black) and it is not supported after removing a2, adaptation mech

anisms have to find out an alternative cause for it.
 
Looking at the causal model, piston_ring_wear(severe) can be used to support
 
oiLconsumpt(high) and then, by adding assumption aI, part of the retrieved solu

tion (Le. eng_mileage(more_than_lOOOOOkm)) can be reused.
 
Notice that no additional work is needed in order to cover exhausLsmoke(black)
 
and oiLwarningJight(red) which are the findings that are common to both cases.
 
Finally, in order to complete the adaptation, we have to find a cause accounting
 
for temp_indic(red) which is present in the case under examination and not in the
 
retrieved one.
 
This is accomplished by assuming the initiaLcause key(turned_on) and the assump

tion 03 which allows one to infer engine(on) that in conjunction with oiUack(high)
 
allows one to derive engine_temp(very_high) that explains temp_indic(red).
 
In conclusion, the solution'to the current 'case is represented by the initial causes
 
eng_mileage(more_than_lOOOOOkm), key(turned_on) and the assumptions aI, a3.
 

Notice that the adaptation of the retrieved solution saves significant amount of 
work with respect to a diagnostic process that do not exploit retrieved cases. This 
saving occurs not only when the solutions of the actual and the retrieved case are 
quite similar, but also when they have significant differences. Example 2 shows that 
the retrieved solution can be actually used as a focusing mechanism even when the 
differences in the features characterizing retrieved and current case havea significant 
impact on the solution of the current case. In such an example, if the solution had 
to be computed without exploiting case-based mechanisms, the diagnostic system 
would reach the same conclusion, but the computational effort would be significantly 
greater because the system had no guide in choosing among multiple alternatives 
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with respect t o  the observed ones): emhaust-smoke(normal),  emhaust-smoke(grey),
oil_warning_light(normal), oiLwarning_light(yellow), temp_indic(green)‚
temp_indic(yellow). I t  is easy to  see that consistency check succeds, therefore the
retrieved solution can be  considered a solution also for the case described by 0331
in  case the user does not  require stronger notion of explanation based on covering.

Example 2 .  The role of adaptation strategies is made clear by the following
example where we assume the case under examination to  be  characterized by the
following observations:

OBS; : {fistate_of_pistons(very_worn), emhaust_smoke(black), tempindicüed),
oz'1_warning.light(red)}

Let us also suppose that the  case retrieved from the  case memory is the same of
Example 1. We can immediately notice that  the solution of the retrieved case (i.e.
{eng_mileage(more_than_1000OOkm), C!2})IS not consistent with 0852 ,  since it de—
rives the manifestation state_o f .pistons(very_worn) that is negated in the case un—
der examination; for this reason adaptat ion is required. I
Let us suppose that the set SI” is formed by emhaust_smoke(black)‚ temp_indic(red)
and oil_warm°ng_light(red); the adaptation strategy first tries t o  disprove the causal
chain having state_of_pistons(very_worn) as a final conclusion. In  particular, by
removing the assumption az ,  the state piston_wear(severe) and the manifesta-
tion state_of_pistons(very_worn) are no longer supported and consistency is re-
established. Since oil_consumpt(high) is necessary to  account for manifestation
emhaust-smoke(bla.ck) and i t  is not supported after removing 0:2, adaptation mech—
anisms have to find out an alternative cause for i t .
Looking at the causal model, piston-ring-wear(severe) can be  used to support
oil_consumpt(high) and then,  by adding assumption a l ,  part  of the retrieved solu-
tion (i.e. eng_mileage(more_than_100000km)) can be reused.
Notice that no additional work is needed in order t o  cover emhaust-smoke(bla.ck)
and oiLwarningJighthed) which are the findings that are common to both cases.
Finally, in order t o  complete the adaptat ion,  we have to  find a cause accounting
for temp_indic(red) which is present in the case under examination and not in the
retrieved one.
This is accomplished by assuming the  initiaLcause key(turned_on) and the assump-
tion ag which allows one t o  infer engine(on) that in conjunction with oil_la‚ck(h£gh)
allows one to derive engine_temp(very_high) that explains temp_indic(red).
In conclusion, the solution‘ t o  the current case is represented by the initial causes
eng.mileage(more_than_lOOOOOkm), key(turned-on) and the  assumptions a1 ,  ag .

Notice that the adaptation of the  retrieved solution saves significant amount of
work with respect t o  a diagnostic process that do not  exploit retrieved cases. This
saving occurs not  only when the solutions of the actual and the  retrieved case are
quite similar, but also when they have significant differences. Example 2 shows that
the retrieved solution can be  actually used as a focusing mechanism even when the
differences in the features characterizing retrieved and current case havea significant
impact on the solution of the  current case. In such an example, if the  solution had
to  be computed without exploiting case-based mechanisms, the diagnostic system
would reach the same conclusion, bu t  the computational effort would be significantly
greater because the system had no guide in choosing among multiple alternatives
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5 

present in the causal model. 

Discussion 

The system described in the present paper is similar in some aspects to the CASEY 
system [10], however a major difference concerns the fact that we rely on a well
defined characterization of diagnostic problems and on a precise and general theory 
of model-based diagnosis. The paper reports an ongoing research; one of the topics 
that is currently actively investigated concerns the design of opportunistic control 
strategies for deciding how far it is worth to proceed in adapting the tentative 
solution of a retrieved case with respect to the soluti~ns provided by other retrieved 
cases. Such control strategies should decide to abandon adaptation in some special 
cases when most of the retrieved solution has to be refused. In such situations the 
"pure" model-based reasoner should be in charge of the computation of the solution. 
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Integrating Rule-Based and Case Based Reasoning with Information 
Retrieval: The IKBALS Project. 

John Zeleznikow1 Daniel Hunter2 George Vossos3 

1.	 Introduction 

Over the past decade there has been a growing emphasis on reasoning from experience (case 
based reasoning). It is our view that intelligent systems need to reason with both rules (given as 
in statutes, or modelled as in heuristics) and experience (such as legal precedents or medical 
cases). Because medicine and the law provide excellent examples of the need to integrate rule
based and case-based reasoning, we use both of them as our application domains. 

Whilst this project is concerned with multi-modal reasoning in legal knowledge based systems, 
most of the issues we discuss can easily be generalised to application domains other than law. 
Indeed the project can be more accurately represented as one concerned with integrating rule
based reasoning, case-based reasoning and intelligent information retrieval. 

The main features of our integrated system are: 

•	 The use of cooperating agents; 
•	 The use of an Application Programming Interface to act as a bridge between the agents in 

the IKBALS III system and the Artificial Intelligence kernel in the Knowledge Base; 
•	 The use of a customised induction algorithm that generates the indices into the case base; 
•	 The use of background information to supplement the induction process; 
•	 A method for converting the decision tree produced by the induction algorithm into 

quantitative knowledge based rules; 
•	 The heuristics used to justify explanations; 
•	 The query facility that enables users to investigate the relationship between cases and 

arguments in the system. 

These features are pertinent to the construction of general integrated reasoning systems. A paper 
discussing our work on the integration of case-based reasoning and rule-based reasoning in health 
care planning can be found in the proceedings of this conference.4 

The goal of this research project is to investigate ways of reducing the problems associated with 
modelling law using a strictly heuristic rule-based expert system approach. A heuristic rule
based legal expert system suffers from many problems including explanation deficiencies and 
control. Our approach to modelling legal reasoning involves integrating a case-based reasoning 
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John Zeleznikow1 Daniel Hunter2 George Vossos3

1. Introduction

Over the past decade there has been a growing emphasis on reasoning from experience (case
based reasoning). It is our view that intelligent systems need to reason with both rules (given as
in statutes, or  modelled as in heuristics) and experience (such as legal precedents or medical
cases). Because medicine and the law provide excellent examples of the need to integrate rule-
based and case-based reasoning, we use both of them as our application domains.

Whilst this project is concerned with multi-modal reasoning in legal knowledge based systems,
most of the issues we discuss can easily be generalised to application domains other than law.
indeed the project can be more accurately represented as one concerned with integrating rule-
based reasoning, case-based reasoning and intelligent information retrieval.

The main features of our integrated system are:

0 The use of cooperating agents;
o The use of an Application Programming Interface to act as a bridge between the agents in

the IKBALS III system and the Artificial Intelligence kernel in the Knowledge Base;
The use of a customised induction algorithm that generates the indices into the case base;
The use of background information to supplement the induction process;

o A method for converting the decision tree produced by the induction algorithm into
quantitative knowledge based rules;
The heuristics used to justify explanations;

' The query facility that enables users to investigate the relationship between cases and
arguments in the system.

These features are pertinent to the construction of general integrated reasoning systems. A paper
discussing our work on the integration of case-based reasoning and rule-based reasoning in health
care planning can be found in the proceedings of this conference.4

' The goal of this research project is to investigate ways of reducing the problems associated with
modelling law using a strictly heuristic rule-based expert system approach. A heuristic rule-
based legal expert system suffers from many problems including explanation deficiencies and
control. Our approach to modelling legal reasoning involves integrating a case-based reasoning
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module into a knowledge-based system. Briefly, this multi-modal approach to the problem of 
modelling legal reasoning has the following advantages over a strict rule-based approach: 

•	 It improves the problem solving performance of a rule-based reasoner. Case-based 
reasoning can assist a legal rule-based reasoning module represent and reason with open 
textured statutory predicates. Open textured legal predicates contain questions that 
cannot be structured in the form of production rules or in logical predicates and which 
require some legal knowledge on the part of the user in order to answer. 

•	 It improves the explanation facilities of the system. Case-based reasoning can enhance 
the legal rule-based reasoning module's explanation by identifying and analysing 
relevant case(s) and argument(s) that support a particular categorisation. 

Our work provides a methodology and architecture for constructing such legal knowledge-based 
reasoning systems. The framework developed provides developers of legal knowledge-based 
systems with a .unified approach to the problem of combining legal rule-base reasoning with 
case-base reasoning. The IKBALS (Intelligent Knowledge BAsed Legal System) system is an 
application developed using this framework which aims to provide interactive knowledge
acquisition tools that aid developers of legal knowledge-based systems design and test both 
their case-bases and their rule-bases. A separate run-time module allows end-users to run 
consultations with the knowledge-base developed above. The system itself is comprised of 
intelligent cooperating objects (agents) which combine to solve tasks by reasoning with symbolic 
representations. The system establishes a common communication protocol that agents use when 
sending messages across the system. 

The development module of the current system consists of a Case Based Reasoning Editor and an 
Rule Based Reasoning Editor. The Case Based Reasoning Editor uses a customised inductive 
learning algorithm INDUCE2 to index cases in the case-base. Cases are not discarded by the 
inductive algorithm but are used to provide an explanation-based analysis. In addition, the 
algorithm takes advantage of any background information provided by the developer. This 
background information concerns attributes included in the learning task, and is used by the 
algorithm to build better decision trees. Background information is stored as symbol hierarchies 
in the knowledge-base. The decision tree produced by INDUCE2 is converted into quantitative 
production rules which are then used by IKBALS III to locate relevant similar cases in the case
base. Reasoning with arguments is also supported. These arguments are brought into the legal 
analysis during Case Based Reasoning explanation. Finally, a query facility is provided that 
enables either the developer or the end-user of the run-time system to investigate the 
relationship between cases / arguments in the knowledge-base. 
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5 Rissland, EL and Skalak, D.B., 1991, 'CABARET: Rule Interpretation in a Hybrid Architecture', 34 
Int' J. Man-Machine Studies p839. 

6 Walker,RF., Oskamp,A., Schrickx,J.A., Opdorp,G.J., Berg,PH. van den, 1991, 'PROLEXS: Creating 
Law and Order in a Heterogeneous Domain', 35 Int'l !.Man-Machine Studies p35 
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cannot be structured in the form of production rules or in logical predicates and which
require some legal knowledge on the part of the user in order to answer.

° It improves the explanation facilities of the system. Case-based reasoning can enhance
the legal rule-based reasoning module’s explanation by identifying and analysing
relevant case(s) and argument(s) that support a particular categorisation.
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This project commenced with the construction of a purely production rule-based system IKBAlS 17 

which was constructed using the Goldworks environment. The IKBALS 118 prototype used a 
blackboard approach to integrating rule-based and case based reasoning in the domain of 
Workers' Compensation. Our latest prototype IKBALS I119 also integrates rule-based and case
based reasoning, but this time using a distributed agent approach. Using the domain of the Credit 
Act (Victoria, Australia), we have constructed and optimised the operation of a rule-based 
reasoning module (used. to model legislation) using class / object structures. The rule-based. module 
of IKBAlS III has been used in a commercial system..10 We show how these class/object structures 
can be further used by a case-based reasoning module that retrieves and analyses similar relevant 
cases from a case-library using induction. 

The Case Based Reasoning module of IKBALS III comprises a number of separate agents. There 
are three active agents in our system: the Case Based Reasoning Editor agent, the Rule based 
deductive agent and the Case based agent. Each of these agents has been designed and 
implemented separately and they themselves decide whether they want to communicate with 
any other agent, via a Common Communication Layer. Our system has been designed to adhere to 
the principles of Distributed Artificial Intelligence by supporting design autonomy and 
communication autonomy. 

2. The Case Based Reasoning Editor 

The Case Base Reasoning Editor uses a series of interactive editors which allow developers to 
define their case-based reasoning modules. The Editor itself is comprised of several distinct 
utility agents that cooperate to represent and index cases, as well as providing facilities that 
enhance explanation via access to deep domain models. All sub-editors are comprised of agents 
that coordinate to solve specific problems. The Index Generator editor, for example, schedules 
agents to handle the task of induction. . 

The Case Base Reasoning Editor comprises several modules: the Schema Editor, the Case Editor, 
Background Information Editor, the Causal Editor and the Index Generator. The Schema and 
Case Editor allow the user to specify the structure of the case base. The Index Generator uses 
induction to automatically index cases in the case base. It makes extensive use of any background 
information provided by the user as entered into the Background Information Editor. The Causal 
Knowledge Editor allows the developer to represent adversarial reasoning by defining legal 
arguments. 

Our experiments with IKBALS II indicated that dynamic generation of indices suffers from the 
following problems. 

7 Vossos, G., Dillon, T., Zeleznikow, J. and Taylor, G., 1991a, 'The Use of Object Oriented Principles to 
Develop Intelligent Legal Reasoning Systems', 23 Australian Computer Journal, pp 2-10 

8 Vossos, G., Zeleznikow, J., DilIon, T. and Vossos, V., 1991b, 'An Example of Integrating Legal Case 
Based Reasoning with Object Oriented Rule-Based Systems - IKBALS IT', Proceedings of the Third 
International Conference on Artificial Intelligence and Law, ACM Press, pp 91-101.and Vossos, G., 
Zeleznikow, J. and Hunter, D., 1993, 'Designing Intelligent Litigation Support Tools - the IKBALS 
Perspective', Law. Computers and Artificial Intelligence 2(1) pp. 77-93, 1993. 

9 Zeleznikow, J., Vossos, G. and Hunter, D., 'The IKBALS Project: Multi-modal reasoning in Legal 
Knowledge Based Systems' to appear in AI and Law: An International Journal 

10 Vossos, G., Zeleznikow, J., Moore, A. and Hunter, D., 1993b, 'The Credit Act Advisory System 
(CAAS): Conversion From an Expert System Prototype to a C++ Commercial System', Proceedings 
of the Fourth International Conference on Artificial Intelligence and Law, ACM Press, pp 180-183. 
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can be further used by a case-based reasoning module that retrieves and analyses similar relevant
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The Case Based Reasoning module of IKBALS III comprises a number of separate agents. There
are three active agents in our system: the Case Based Reasoning Editor agent , the Rule based
deductive agent and the Case based agent. Each of these agents has been designed and
implemented separately and they themselves decide whether they want to communicate with
any other agent, via a Common Communication Layer. Our system has been designed to adhere to
the principles of Distributed Artificial Intelligence by supporting design autonomy and
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2. The Case Based Reasoning Editor

The Case Base Reasoning Editor uses a series of interactive editors which allow developers to
define their case-based reasoning modules. The Editor itself is comprised of several distinct
utility agents that cooperate to represent and index cases, as well as providing facilities that
enhance explanation via access to deep domain models. All sub—editors are comprised of agents
that coordinate to solve specific problems. The Index Generator editor, for example, schedules
agents to handle the task of induction.

The Case Base Reasoning Editor comprises several modules: the Schema Editor, the Case Editor,
Background Information Editor, the Causal Editor and the Index Generator. The Schema and
Case Editor allow the user to specify the structure of the case base. The Index Generator uses
induction to automatically index cases in the case base. It  makes extensive use of any background
information provided by the user as entered into the Background Information Editor. The Causal
Knowledge Editor allows the developer to represent adversarial reasoning by defining legal
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•	 Such a system displaces control from the knowledge engineer / expert and places it in the 
hands of end-users. In a sense, the end-user is required to perform the knowledge
modelling. This transfer of responsibility is clearly undesirable; 

•	 Lack of validation. If the system's knowledge-base is left open to modification by the 
end-user, then it cannot be validated. This causes concerns over the long-term correctness 
of the system, and, within commercial environments, a lack of acceptance since no one is 
willing to accept liability for the system behaviour. 

•	 It diminishes performance. Having to process cases sequentially at run-time may have 
diabolical consequences for the performance of a system comparing cases in very large 
databases. 

Allowing the developer to pre-index cases in the case-base using the method of induction was the 
preferred approach taken in the IKBALS ill project. Unlike other induction algorithms however, 
IKBALS III uses supplementary background information to guide the generation of the index. 
Further, the object knowledge-base is used to represent both cases and background information. In 
order to provide a facility for reasoning with arguments, IKBALS ill provides editors to represent 
and reason with legal argument. Hence, the contents of a legal case in IKBALS ill are jointly 
represented by a factual case description as entered in the Case Editor as well as the arguments 
for and against the credit provider. These arguments, are indexed separately by IKBALS III and 
are used by the memorandum generator in producing its explanation. 

3.	 Machine Learning in IKBALS III 

There were three main practical reasons why we did not adopt the ID3 algorithm. 

•	 The agents in our system do not themselves contain data-structures. Instead, all data 
structures used to generate the decision tree are represented in the external knowledge
base. Conventional inductive algorithms execute recursive calls that generate structures 
internally. Hence such algorithms would have to be re-written to reflect this fact; 

•	 Standard inductive algorithms provide no facility to incorporate background information 
into the learning process. The ability to access this type of information in a uniform way 
meant that such algorithms were unsuitable for use in our system; 

•	 ID3 code is not object-oriented and thus would have to be re-written for our purposes. 

For these reasons, we designed our customised inductive learning algorithm, INDUCE2. 

The INDUCE2 algorithm uses a similar selection criteria to ID3 in subdividing the example set 
at each step. It uses a top-down, divide and conquer strategy that partitions the given set of 
examples into smaller and smaller subsets in step with the growth of the decision tree. The order 
of presentation of the examples is not important. INpUCE2 uses the object knowledge-base to 
store the structures it processes when constructing the decision tree. The decision tree itself is also 
represented as an object-hierarchy in the IKBALS III knowledge-base. The nodes of the decision 
tree correspond to questions, answers and category nodes. The INDUCE2 algorithm represents its 
acquired knowledge initially as a decision tree in the form described, and then converts the 
decision tree into rules. 
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' Such a system displaces control from the knowledge engineer / expert and places it in the
hands of end-users. In a sense, the end—user is required to perform the knowledge-
modelling. This transfer of responsibility is clearly undesirable;

. Lack of validation. If the system’s knowledge-base is left open to modification by the
end-user, then it cannot be validated. This causes concerns over the long-term correctness
of the system, and, within comrhercial environments, a lack of acceptance since no one is
willing to accept liability for the system behaviour.

0 It diminishes performance. Having to process cases sequentially at run-time may have
diabolical consequences for the performance of a system comparing cases in very large
databases.

Allowing the developer to pre—index cases in the case-base using the method of induction was the
preferred approach taken in the IKBALS III project. Unlike other induction algorithms however,
IKBALS III uses supplementary background information to guide the generation of the index.
Further, the object knowledge-base is used to represent both cases and background information. In '
order to provide a facility for reasoning with arguments, IKBALS IH provides editors to represent
and reason with legal argument. Hence, the contents of a legal case in IKBALS III are jointly
represented by a factual case description as entered in the Case Editor as well as the arguments
for and against the credit provider. These arguments, are indexed separately by IKBALS III and
are used by the memorandum generator in producing its explanation.

3. Machine Learning in IKBALS III

There were three main practical reasons why we did not adopt the ID3 algorithm.

0 The agents in our system do not themselves contain data-structures. Instead, all data
structures used to generate the decision tree are represented in the external knowledge-
base. Conventional inductive algorithms execute recursive calls that generate structures
internally. Hence such algorithms would have to be re-written to reflect this fact;

. Standard inductive algorithms provide no facility to incorporate background information
into the learning process. The ability to access this type of information in a uniform way
meant that such algorithms were unsuitable for use in our system;

° ID3 code is not object-oriented and thus would have to be re-written for our purposes.

For these reasons, we designed our customised inductive learning algorithm, INDUCE2.

The INDUCE2 algorithm uses a similar selection criteria to ID3 in subdividing the example set
at each step. It uses a top-down, divide and conquer strategy that partitions the given set of
examples into smaller and smaller subsets in step with the growth of the decision tree. The order
of presentation of the examples is not important. INDUCE2 uses the object knowledge-base to
store the structures it processes when constructing the decision tree. The decision tree itself is also
represented as an object-hierarchy in the IKBALS III knowledge-base. The nodes of the decision
tree correspond to questions, answers and category nodes. The INDUCE2 algorithm represents its
acquired knowledge initially as a decision tree in the form described, and then converts the
decision tree into rules.
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Given a number of facts, generalisation can be performed in many different directions.11 In order 
to constrain a generalisation process and extract interesting rules from a case-base, learning 
should be directed by background knowledge, such as knowledge contained in concept hierarchies. 
Concept hierarchies can provide valuable information for inductive learning. By organising 
different levels of concepts into a taxonomy, rules can be restricted to a form which comply to 
certain syntaxes. This is often referred to as conceptual bias.l2 The net result of rules described by 
higher level concepts is that the domain is then represented in a simple and explicit form. 

Knowledge about concept hierarchies in IKBALS III is directly provided by domain experts. 
Each concept hierarchy relates to a specific attribute in the domain and is organised from the 
most general to the specific. The most general point in the concept hierarchy is the name of the 
attribute itself (the root) with the leaf nodes corresponding to the actual values of the attribute 
as found in the case-base. 

The UseBacklnfo agent supplements the normal operation of the INDUCE2 learning algorithm by 
providing additional information concerning the attributes used in the learning task. This 
handler attempts to prune the branching factor occurring out of any node in the decision tree. It 
does this by trying to generalise the values of an attribute if the total number of values for an 
attribute exceeds the threshold. The algorithm traverses the attribute's symbol hierarchy one 
level at a time, searching for a concept that generalises the values of the attribute to less than or 
equal to the threshold. The algorithm performs this function by referring to previously stored 
background information. This background information is defined by the domain expert and 
encoded by the developer using the Background Editor. The background information is stored in a 
separate class hierarchy in the knowledge-base. 

The strength of the overall approach taken lies in its ability to convert the decision tree into 
rules and incorporate background information. This approach differ from other inductive 
algorithms in that it accesses a domain model during the building of the decision tree in an 
attempt to reduce noise and compact the decision tree. Weaknesses of this approach include the 
possibilities of generating large decision trees and univariate splits. 

4. The Use of Causal Information in IKBALS III 

The IKBALS III program assumes that open-textured rule predicates do not have one right 
answer. Instead, the program assumes that there will be competing reasonable arguments. Its 
analysis of these arguments involves distinguishing which side particular arguments favour, as 
well as establishing a mechanism for being able to compare these arguments symbolically. 

Legal arguments are represented in IKBALS III by justification heuristics which are in turn 
represented in the knowledge-base by a causal network. Agents in the Causal Editor allow 
developers to define justification heuristics along with explanatory and analytical information 
which is then used by the Report Generator to compare the relative strengths and weaknesses of 
similar cases. Like all ofour reasoning structures, justification heuristics are stored and accessed 
by agents using the Application Program Interface. 

11 Dietterich, T. G. & Michalski, R.S., "A comparative review of selected methods for learning from 
examples", in Michalski, R.S. et al., Eds., Machine Learning: An Artificial Intelligence Approach, 
Vol. 1, Los Altos, CA: Morgan Kaufmann, 1983, pp. 41-82. 

12 Genesereth, M. and Nilsson, N., "Logical Foundation of Artificial Intelligence", Los Altos, CA, 
Morgan Kaufmann, 1987 
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as found'1n the case-base.

The UseBackInfo agent supplements the normal operation of the INDUCE2 learning algorithm by
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handler attempts to prune the branching factor occurring out of any node in the decision tree. It
does this by trying to generalise the values of an attribute if the total number of values for an
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level at a time, searching for a concept that generalises the values of the attribute to less than or
equal to the threshold. The algorithm performs this function by referring to previously stored
background information. This background information is defined by the domain expert and
encoded by the developer using the Background Editor. The background information is stored in a
separate class hierarchy in the knowledge—base.

The strength of the overall approach taken lies in its ability to convert the decision tree into
rules and incorporate background information. This approach differ from other inductive
algorithms in that it accesses a domain model during the building of the decision tree in an
attempt to reduce noise and compact the decision tree. Weaknesses of this approach include the
possibilities of generating large decision trees and univariate splits.

4. The Use of Causal Information in  IKBALS III

The IKBALS III program assumes that open-textured rule predicates do not have one right
answer. Instead, the program assumes that there will be competing reasonable arguments. Its
analysis of these arguments involves distinguishing which side particular arguments favour, as
well as establishing a mechanism for being able to compare these arguments symbolically.

Legal arguments are represented in IKBALS III by justification heuristics which are in turn
represented in the knowledge-base by a causal network. Agents in the Causal Editor allow
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which is then used by the Report Generator to compare the relative strengths and weaknesses of
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by agents using the Application Program Interface.
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Justification heuristics serve to represent the various legal arguments used by lawyers to justify a 
particular outcome. Justification heuristics represent a useful index into cases for the purpose of 
retrieval. Instead of associating justification heuristics directly to cases at development time, a 
mechanism was required that would identify potentially relevant arguments given a description 
of the case which is being examined at run time. Such an approach cross indexes the relevant case 
instance(s) which meet the requirements of the justification heuristics. These cases are then 
indexed by the justification heuristics(s) that applied to it. Relationships between cases and 
arguments are then be investigated by agents using the Application Program Interface. 

In order to facilitate for case comparison and analysis, one slot from the list of conditions is 
selected as the critical slot. This slot is used by the report agent as the basis of comparing the 
relative strengths and weaknesses of particular arguments. This approach to legal analysis 
corresponds to Ashley's 'dimensional' approach.13 If the conditions of a justification heuristic 
are met, the justification heuristic rule cross indexes the case instance(s) as an instance of that 
justification heuristic. By late binding justification heuristics at run-time the developer can 
change the composition of the cases in the case-base without affecting the applicability of 
justification heuristics. 

5. The IKBALS III Run-time System 

The IKBALS III run-time system consists of several modules. Most of these modules are concerned 
with the control of the rule-based reasoning aspect of the system. Two of the modules are 
dedicated to providing the case-based reasoning support. 

The issue of integration is somewhat simplified in IKBALS III , due mainly to the Application 
Program Interface bridge between the application and knowledge-base. Since the knowledge 
structures used by both the case-based reasoning module and the rule-based reasoning module 
coexist in an external object knowledge-base, the agents of both modules gain access to this rich 
pool of knowledge by communicating via the Application Program Interface. 

Agents in the IKBALS III system are autonomous; once activated by a user event, agents execute 
their specific task without requiring intervention. Control is hard wired directly into those 
agents which are then responsible for planning, scheduling and executing their tasks. Agents are 
able to create, modify and delete class, object and rule definitions as well as to control the 
reasoning process via access to the inference engine. 

6. Conclusion 

We have described an object-oriented integrated rule-basedfcase-based reasoning system, which 
provides for intelligent case indexing, retrieval and reasoning with an induction algorithm. It 
provides for cooperating agents, making for flexible and simple modification and amendment. Its 
case-based reasoning agents allow for induction, and indexing on heuristic matching strategies. 
Though our system operates within a legal domaiIf, we believe that the methodology and 
architecture is of general application to domains other than law. 

Ashley, K. D., 1991,Modelling Legal Argument: Reasoning with Cases and Hypotheticals, MIT 
Press. 
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dedicated to providing the case-based reasoning support.

The issue of integration is somewhat simplified in IKBALS III , due mainly to the Application
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their specific task without requiring intervention. Control is hard wired directly into those
agents which are then responsible for planning, scheduling and executing their tasks. Agents are
able to create, modify and delete class, object and rule definitions as well as to control the
reasoning process via access to the inference engine.
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Abstract This paper proposes a model of problem solving for the case-based reasoning. This 
modelisation uses the KADS formalism. As other knowledge acquisition methods, KADS offers a 
representation and structuration framework which try to respect the semantic and the role of the 
knowledge. The possession of models of problem solving method can facilatate the knowledge 
acquisition process by specifying the role that the knowledge plays during the problem solving 
process. 

1 Introduction 

Founded whether on rules or cases, a knowledge based system uses the domain knowledge to solve a problem. 
Whatever the choice, we are led to analyse this knowledge and to select the most relevant one for the problem 
solving. This selection assumes that we know how to organize and to exploit this knowledge. So, a close link 
emerges between the knowledge acquisition and the problem solving. Indeed, it isn't easy to assess what a 
knowledge can bring and how to structure it if we don't know what it will be used for. 

Often considered as a constructive modelling process, the knowledge acquisition aims to construct 
conceptual models. These models are important as much as they can point out the problem progress term to its 
solution by showing, in every stage, the necessary knowledge to elicit. Considered as problem solving 
methods, these models are generic and so independent of domain. Case-based reasoning can be one of these 
methods. It may be used, a priori, for different kinds of tasks. 

The purpose of this paper is to propose an interpretation model based on KADS(l) for this case-based 
reasoning. This interpretation model is susceptible to help knowledge engineer. It indicates him, notably, what 
knowledge types ought to be acquired and what roles to attribute to problem solving process. 

A short preview of the modelling in knowledge acquisition is presented in Section 2. The Section 3 
describes the KADS method. We put stress on the interpretation models assimilated to models of problem 
solving methods. Section 4 contains our modelisation of the case-based reasoning using the KADS formalism. 
The last section concludes about the use of the case-based reasoning in the Knowledge-Based system (cooperation 
& complementarity). 

2 Knowledge Acquisition and Modelling 

A wide consensus takes shape to the research workers in the knowledge acquisition. It consists in recognizing 
that the knowledge acquisition passes beyond the frame of expertise transcription to become a modelling 
process[2]. Indeed, after the introduction of the Newell's knowledge level notion [3], some works have shown 
the interest of describing the domain knowledge in a conceptual level, which is a level of knowledge 
interpretation. Many approaches have been proposed. We are interested more particularly in interpretation 
models of KADS method. 

1- KADS, Knowledge Acquisition and Design Structuring, is a methodology for the development of knowledge 
based systems (ESPRIT I, IT project). 
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Abstrac t  This paper proposes a model of  problem solving for the case-based reasoning. This
modelisation uses the KADS formalism. As other knowledge acquisition methods, KADS offers a
representation and structuration framework which try to respect the semantic and the role of the
knowledge. The possession of models of problem solving method can facilatate the knowledge
acquisition process by specifying the role that the knowledge plays during the problem solving
process .

1 Introduction

Founded whether on rules or cases, a knowledge based system uses the domain knowledge to solve a problem.
Whatever the choice, we are led to analyse this knowledge and to select the most relevant one for the problem
solving. This selection assumes that we know how to organize and to exploit this knowledge. So, a close link
emerges between the knowledge acquisition and the problem solving. Indeed, it isn’t easy to assess what a
knowledge can bring and how to structure it if we don't know what it will be used for.

Often considered as a constructive modelling process, the knowledge acquisition aims to construct
conceptual models. These models are important as much as they can point out the problem progress term to its
solution by showing, in every stage, the necessary knowledge to elicit. Considered as problem solving
methods, these models are generic and so independent of  domain. Case-based reasoning can be one of these
methods. It may be used, a prion} for different kinds of tasks.

The purpose of this paper is to propose an interpretation model based on KADS“) for this case-based
reasoning. This interpretation model is susceptible to help knowledge engineer. It  indicates him, notably, what
knowledge types ought to be acquired and what roles to attribute to problem solving process.

A short preview of the modelling in knowledge acquisition is  presented in Section 2. The Section 3
describes the KADS method. We put stress on the interpretation models assimilated to models of problem
solving methods. Section 4 contains our modelisation of the case—based reasoning using the KADS formalism.
The last section concludes about the use of the case-based reasoning in the Knowledge-Based system (cooperation
& complementarity).

2 Knowledge Acquisition and Modelling

A wide consensus takes shape to the research workers in the knowledge acquisition. It consists in recognizing
that the knowledge acquisition passes beyond the frame of expertise transcription to become a modelling
process[2]. Indeed, after the introduction of the Newell’s knowledgellevel notion [3], some works have shown
the interest of describing the domain knowledge in a conceptual level, which is  a level of  knowledge
interpretation. Many approaches have been proposed. We are interested more particularly in interpretation
models of KADS method.
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The notion of interpretation models defined by the KADS concepters allows to guide the knowledge 
engineer at the time of the data analysis. The interpretation models contain an abstract description of the 
characteristics of the different generic tasks. By describing the problem solving process independently of the 
domain, these models want to be reusable and then quite generic. They produce conceptual models of the futur 
system when instantiated with domain knowledge. 

3 KADS 

KADS is a model-driven methodology. It is a "language" of european researchers community in knowledge 
acquisition. It's based on construction and transformation of models. Each model emphasises some aspects of 
the system to be built and abstracts from others [6]. KADS separates the knowledge analysis phases from their 
representation. 

Issued from the analysis phase, the construction of the conceptual model is a central activity in the process 
of knowledge-based-system construction. To construct this model, KADS offers a four layers structure: from 
the less abstract level describing the domain concepts to the most abstract level representing the system 
behaviour [1] 

The domain layer : this level describes the domain concepts and the relation between them. 

The inference layer : this level describes the inference structure, which is a description of inferencing 
capability based upon knowledge at the domain layer. The inference structure specifies the problem solving 
competence of the target system. It comprises a diagram consisting of knowledge sources and metaclasses : 

• The knowledge source is a representation of a single inference at the inference layer. It consumes one or 
more metaclasses as input, and produces one metaclass as output. The process by which this 
transformation is achieved is based on the methods which constitute the internal contents of the knowledge 
source. 

• The metaclass is a representation of the role that may be played by a domain concept during the problem 
solving. 

The task layer : this level describes the decomposition on subtasks whose organize and control these 
primitive inferences. It represents the reasoning stages (goals) and how to reach them. A task indicates how 
to follow an inference structure. 

The strategy layer : this level allows to specify the choice of several tasks if these coexist. 

To facilitate the interpretation of verbal data obtained from the expert, KADS provides a library of 
interpretation models that consist of a task and an inference layer. An interpretation model is an abstract 
description of a problem solving method. It gives the knowledge engineer strong indications of what domain 
knowledge is needed because the metaclasses and knowledge source indicated in this model must have domain 
specific equivalents. 

KADS proposes a classification of generic tasks. For each task, one or more problem solving method are 
proposed. "Integrate" case-based reasoning model is important as much as this method is often used by the 
expert to solve a problem. Then, it is more easy to "collect" expert experience in cases form. In addition, cases 
provide some aspects of the context, which can facilitate the problem solving. Moreover, with several problem 
methods in the library, the knowledge engineer can select one or several problem methods according to the kind 
of the problem. These methods can complement each other and/or cooperate. 

4 An Interpretation Model for the Case-Based Reasoning 

In this section, we present our modelisation of a case-based reasoning, according to the KADS formalism. We 
give the inference and the task layers, which represent the two essential constituents of the KADS interpretation 
models. 
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capability based upon knowledge at the domain layer. The inference structure specifies the problem solving
competence of the target system. It comprises a diagram consisting of knowledge sources and metaclasses :

' The knowledge source i s  a representation of a single inference at the inference layer. It consumes one or
more metaclasses as  input, and produces one metaclass as output. The process by which this
transformation is achieved is based on the methods which constitute the internal contents of the knowledge
source.
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The task layer : this level describes the decomposition on subtasks whose organize and control these
primitive inferences. It represents the reasoning stages (goals) and how to reach them. A task indicates how
to follow an inference structure.

The strategy layer : this level allows to specify the choice of several tasks if these coexist.

To facilitate the interpretation of verbal data obtained from the expert, KADS provides a library of
interpretation models that consist of a task and an inference layer. An interpretation model is an abstract
description of a problem solving method. It gives the knowledge engineer strong indications of what domain
knowledge is needed because the metaclasses and knowledge source indicated in this model must have domain
specific equivalents.

KADS proposes a classification of generic tasks. For each task, one or more problem solving method are
proposed. "Integrate" case-based reasoning model is important as much as this method is often used -by the
expert to solve a problem. Then, it i s  more easy to "collect" expert experience i n  cases form. In addition, cases
provide some aspects of the context, which can facilitate the problem solving. Moreover, with several problem
methods in the library, the knowledge engineer can select one or several problem methods according to the kind
of the problem. These methods can complement each other and/or cooperate.

4 An Interpretation Model for the Case-Based Reasoning

In this section, we present our modelisation of a case-based reasoning, according to the KADS formalism. We
give the inference and the task layers, which represent the two essential constituents of the KADS interpretation
models.
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4.1 The Inference Layer 

The Inference Structure. 

The following diagram (fig.!.) shows the set of inference steps. 

select 

modification 
Knowledge 

improvement 
knowledgeimprove 

modify 

meta classes (i.e. roles) 

Knowledge sources (i.e. operators) 

Fig.I. An inference structure for the case-based reasoning 

The Knowledge Sources Description. 

The knowledge source "represent" translates the new problem (Le. new event) on a case; so it will be 
comparable with previously stored cases. This process will be facilitated by the feature indexation of the new 
event. 
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The Inputs of the knowledge source "retrieve" are the current case and the organised library of past cases. The 
function of this knowledge source is to research the most relevant cases by using the library of cases. 

"Select" allows to decide which case is more like the current situation. This process is possiple with the help 
of the knowledge about similarity. 

The next step consists in the adaptation (i.e. modification) of the old solution to satisfy the requirements of the 
new problem. This process is facilatated by using the various features of the new context. 

The knowledge source "test" evaluates the proposed solution. If this solution complies the new event 
constraints then it is proposed for the user and put away the library of cases. "Improve" allows to explain and 
to correct the failure of test. 

"Update" updates the cases library, in consequence of new cases informations. 

4.2 The Task Layer 

This layer represents an other constituent of the interpretation model. At this layer, the task structure is 
described. We remind that the task structure is the procedural overlay on the inference structure that shows the 
sequence of knowledge source invocation [1]. In the following figure, we present the task structure for the 
inference structure showed in Figure 1. 

find (problem -> solution) 
represent (problem -> current case) 
retrieve (organized library of past cases, current case -> relevant past cases) 
select (Knowledge about similarity, relevant past cases -> selected past case) 
modify (selected past case, modification Knowledge -> proposed solution) 
While (test (proposed solution, improved solution -> tested solution) = bad 

solution) 
(improve (improvement knowledge, tested solution -> improved solution» 

EndWhile 
update (tested solution -> organized library of past cases) 

T : Find solution 

Represent Research Modify Improve Update 

retrieve Select 

Fig.2. A task strucure for the Case ~Based Reasoning 

Conclusion 

Leaning on the case-based reasoning modelisation according to KADS, we have tried to study the different 
necessary types of knowledge and their interactions. 

It is interesting to insert this solving problem method in the library of KADS interpretation models. We 
stress the importance of using several methods to benefit from the mutual contribution approaches. For 
example, on the case-based reasoning research phase, an acceptable solution for the current case may not be 
obtained. In this case, the system can use an other method to find an available solution instead of returning an 
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Leaning on the case-based reasoning modelisation according to KADS, we have tried to study the different
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It is  interesting to insert this solving problem method in the library of KADS interpretation models. We
stress the importance of using several methods to benefit from the mutual contribution approaches. For
example, on the case—based reasoning research phase, an acceptable solution for the current case may not be
obtained. In this case, the system can use an other method to find an available solution instead of  returning an
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echec message. 

The model, presented in this paper, shows the different phases that a case-based reasoning system can 
satisfy. For each phase, the necessary knowledge has been indicated. Moreover the case-based reasoning is used 
for different kinds of tasks [4] (e.g., diagnosis, conception and planning). A preliminary study of the different 
techniques used for each case-based reasoning phase showed that an appropriate technique can be found for each 
specific task. It is perhaps early to give a such conclusion, but a further studies should confirm it. In this case, 
the appropriate techniques should allow to understand better what kinds of knowledge are really used and hence to 
be acquired. Moreover, a deep analysis of knowledge allows a more efficient cases representation, which could 
improve the selection of the most relevant cases and adaptation processes. 
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CBR and Case Memory Systems 

The process of solving a problem using Case-based Reasoning (CBR) has been 
described as a sequence of steps as follows: 

1. analyse the current situation; 

2. generate a set of indices; 

3. retrieve and order a set of stored cases; 

4. select one or more cases to work with; 

5. adapt the chosen case to fit the new situation; 

6. test the adapted case and repair any failures. 

A number of CBR systems have been constructed in which the first three steps 
are handled by separable ·software modules, Commercial products which sup
port only these three steps have achieved notable success (for example [5]), 
Software systems that capture these first three steps may be described as Case 
Memory Systems (eMS). The concern of this paper is to develop a model for 
Case Memory Systems that may be used in the analysis of existing systems and 
the design of new ones. 
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1 CBR and Case Memory Systems
The process of solving a problem using Case-based Reasoning (CBR) has been
described as a sequence of steps as follows:

1. analyse the current situation;

2. generate a set  of indices;

3.  retrieve and order a set of stored cases;

4. select one or more cases to work with;

5 .  adapt the chosen case to fit the new situation;

6. test the adapted case and repair any failures.

A number of CBR systems have been constructed in which the first three steps
are handled by separable software modules. Commercial products which sup—
port  only these three steps have achieved notable success (for example [5]).
Software systems that capture these first three steps may be  described as Case
Memory Systems (CMS). The concern of this paper is t o  develop a model for
Case Memory Systems that may be  used in the analysis of existing systems and
the  design of new ones.
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1.1 Why a Model is Needed 
For a software engineer attempting to apply a CMS to a new domain the 
primary sources of information are previous case studies. The engineer is faced 
with the problem of finding the case study which most closely reflects the 
important features of the new domain and applying it appropriately. 

In order to select between different CMS designs software engineers require a 
model that will enable them to make an objective assessment of the alternative 
design possibilities. The model must be capable of expressing important sim
ilarities and differences between CMS, and should allow the software engineer 
to reason about properties of proposed designs as well as completed systems. 

1.2 The Advantages of a Formal Model 

For example, previous discussions of properties of CMS, e.g. [2J, have identi
fied a number of potential indexing terms. However the terms proposed are 
unreliable because: 

•	 properties are described by reference to its application to a particular do
main of knowledge, and via a particular knowledge representation, rather 
than being abstracted to a domain independent level; 

•	 it is not possible from this information alone to examine whether a par
ticular algorithm does or does not satisfy selected properties; 

•	 it is not possible to discover whether any of the properties described are 
interrelated. 

By using a domain independent notation, the software engineering notation 
Z [7J, we have produced a general model of CMS which can be used to explicate 
important distinctions between CMS reported in the literature. This model: 

•	 is abstracted away from particular domains and tasks; 

•	 can be used to relate different properties; 

•	 can be used to verify or refute claims about the capabilities of different 
algorithms 

We are currently working on an extension to the model to explore distinc
tions that may arise when considering how a human user might interact with 
a Co-operative CMS (CCMS). 

2 The Basic Model 
A CMS is modelled using sets in three domains. 

A set of Problem Statements (PS), representing queries input to the sys
tem. 

A set of Descriptions (D), each description being a set of attribute-value 
pairs. Descriptions are used to index the case base. 
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1.1 Why a Model  is  Needed
For a software engineer attempting to apply a CMS to  a new domain the
primary sources of information are previous case studies. The engineer is faced
with the  problem of finding the case study which most closely reflects the
important features of the new domain and applying i t  appropriately.

In order to select between different CMS designs software engineers require a
model that will enable them to  make an objective assessment of the alternative
design possibilities. The model must be  capable of expressing important sim—
ilarities and differences between CMS, and should allow the  software engineer
to reason about properties of proposed designs as well as completed systems.
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main of knowledge, and 'uz'a a particular knowledge representation, rather
than being abstracted to  a domain independent level;

. i t  is not possible from this information alone to examine whether a par-
ticular algorithm does or does not satisfy selected properties;

0 it is not possible to discover whether any of the properties described are
interrelated.

By using a domain independent notation, the software engineering notation
Z [7], we have produced a general model of CMS which can be used to explicate
important distinctions between CMS reported in the literature. This model:
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2 The  Basic Mode l
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A set of Problem Statements (PS), representing queries input to the sys-
tem.

A set of Descriptions (D),  each description being a set of attribute-value
pairs. Descriptions are used to index the case base.
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A set of Reports (R), which represent the information content of a case. 

A Case Base (CB) is characterised as a function between Descriptions and Re
ports. Hence an individual case is a unique Description-Report pair. Querying 
a CB involves inputing a Problem Statement, translating the Problem State
ment to generate a Description, then using the Description, and perhaps other 
elements of the Problem Statement, to produce an ordering over the set of cases. 
A CMS is modelled by a translation function T (from Problem Statements to 
Descriptions) and a higher-order function from CBs to Problem Statements to 
orderings of cases. 

CMS _ 

T:P-+D 

CMS : (D -+ R) -+ PS -+ (Cases <-+ Cases) 

VC: D -+ R; Vp : PS • 

CMS( C, p) E Orderings 

The orderings permitted are lattices of equivalence classes of cases. 

2.1 Comments on the Basic Model 

The model allows for many different representations of the case content or for 
the input to a CMS. The sets of problem statements and reports could be 
anything at all. Modelling the indexing terms as attribute-value pairs also 
allows for systems where indexing is based on lists of atomic features. The 
definition of Orderings as lattices of equivalence classes allows for systems which 
select one case, systems that use numerical scores, as well as systems such as 
HYPO [1] which generate complex partial orderings. 

To date we have not found any CMS which cannot be related to the basic 
model. However, the model does assume that the problem statement is static, 
and does not change, thus it cannot distinguish properties ~hat are important 
to CCMS. The modelling of such systems is discussed in section 4 below. 

3 Distinguishable Properties in the Model 
Using the model a number of properties that have been discussed in the liter
ature can be mad~ explicit. 

3.1 Directable CMS 

Kolodner in [2][p77] argues that if a reasoner is pursuing a particular goal, this 
goal will be important in similarity assessment. Goals may be used as indexing 
terms, but in general it is not possible to predict the full set of goals for which 
a case might be relevant. Instead the reasoner's goal is used to indicate other 
features that are important to match. We can distinguish this property by 
considering the role of the translation function T. If a system is able to use 
part of the input ProbleIlLStatement, which is not used for indexing cases then 
it must be possible to find two problem statements, which translate to the same 
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A set of Reports (R), which represent the information content of a case.

A Case Base (CB) is characterised as a function between Descriptions and Re-
ports. Hence an individual case is a unique Description-Report pair.  Querying
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3 Distinguishable Properties in the Model
Using the model a number of properties that have been discussed in the liter—
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description, but which (for some case bases) result in different case orderings. 
Formally: 

Directable-CMS _ 
CMS 

:3 Pl, pz : P; :3 C : D -+ R I T(pd = T(pz) • 
CMS(C,Pl) # CMS(C,pz) 

As we are interested in a general model we prefer to avoid terms such as 
Goal-directed which may be specific to planning domains, and prefer the term 
directable to describe systems which might have this property. 

3.2 Sensitivity to Context 

Ashley [2Hp74] argues that similarity assessment should recognise the signif
icance of particular combinations of factors, rather than considering each at
tribute independently. 

If we imagine an input Problem Statement, Pl, to a CMS which results 
in an ordering which prefers a case (d1 , rl) over (dz, rz). If the attributes are 
considered independently, then changing the problem statement to Pz, where 
pz translates to a superset of Pl, should only change to ordering of (d1 , rl) and 
(dz, rz) if these cases differ with respect to the newly acquired attributes in 
T(pz)\ T(Pl). Conversely if we can find a CMS, and cases where this does not 
hold then the CMS must be modelling some interdependence of attributes, i.e. 
the significance of individual factors depends on their context. 

Formally attribute interdependent CMS satisfy the schema: 

Attribute-InterdependenLCMS _ 
CMS 

:J C : D -+ R; :J Pl, pz : P; :J As : lP' Attributes I 
dom T(Pl) ~ T(pz) 1\ As = dom T(Pl)\ dom T(pz) • 
(:J( d1 , rd, (dz, rz) : C I As <l d1 = As <I dz • 
((d1 , rl),·(dz, rz)) E CM5.(C,pd 1\ -,((d1 , rl), (dz, rz)) E CMS(C,pz)) 

Here the symbol <I indicates domain restriction: 

B <l A = {(x, y) : A I x E B} 

3.3 Other Properties 

We have also used the model to analyse different mechanisms for taking past ex
perience into account in determining similarity. In particular we have identified 
three ways in which this might occur: 

Report Examination - the use of the content of the individual cases to 
affect similarity assessment, e.g~ by marking particular features of a case 
as salient. 
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Domain Content Sensitivity - the use of the distribution of features 
amongst the indexing Descriptions to indicate the relative significance of 
attributes, e.g. by weighting in favour of evenly distributed features. 

Report History Sensitivity - the use of the content of the set of stored 
reports to affect similarity assessment, e.g. by identifying features which 
are highly discriminating amongst the set of reports. 

3.4 Relating Properties 

Because the Z notation includes a formally defined semantics, the model can 
support reasoning about the relationships between different properties. For 
example, it is possible to prove that for a system to be directable it must be 
attribute interdependent. The proof of this result follows by considering the 
case of attribute interdependence when the the set As is empty. 

3.5 Analysing Algorithms and Systems 

A detailed analysis of a single system is beyond the scope of this short paper. 
However, the Z notation is designed to support such analysis and we have ap
plied the model in analysing properties of a number of systems. The interested 
reader is referred to [4]. 

4 Modelling Co-operative CMS 

The basic model of CMS assumes that the Problem Statement is static and 
is completely known in advance. In many domains, such as diagnostic help 
desks [3] this is not a valid assumption. A Co-operative CMS (CCMS) is a 
CMS which supports a human user in gradually refining their understanding 
of the current problem. Examples of CCMS are CBR Express [5] and the case 
delivery component of KID [6]. 

Many knowledge based systems (KBS) projects have failed because inade
quate attention was paid to human-computer interaction. By constructing a 
formal model of the option space for CCMS we hope to support software en
gineers in generating interface designs which are appropriate for the particular 
task or environment in which the CCMS it to be used. 

Below we list and describe (informally) some of the properties we are cur
rently investigating. 

Flexibility : A CCMS must provide operations which allow a user to 
change the value of the current PS. In any given state there will be a set 
of problem statements to which the system is prepared to move in a single 
operation. We name this set the ready set for the eCMS. The larger the 
ready set the more flexible the interaction with the eeMS may be. 

Advice and Initiative: A CCMS should provide advice to the user on 
ways in which the problem statement might be refined. The relationship 
between the advice and the ready set will be important in characterising 
initiative in the dialogue. If a eCMS is to provide a mixed-initiative 
dialogue, the ready set must be larger than the advice set. 
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5 

Presentation and Initiative: The way in which the system presents 
cases to the user also involves choices about system-, user- and mixed
initiative presentation. Since only a limited number of cases can be pre
sented at anyone time, the choice of how much detial about cases is given 
may lie with the system or the user at various times during a consulation. 

Advisory Strategies: Sequences of refinement advice given by a CCMS 
may be designed to lead the user to converge on some case or set of cases 
which are in some sense the 'most useful' for the user's current problem. 
Alternatively the advice given may be designed to partition the currently 
'most useful' set. 

Conclusion 

To be useful to software engineers a model of CMS or CCMS should be in
dependent of particular knowledge domains or tasks; should support precise 
reasoning about the properties of individual designs or systems; and should 
allow investigation of the relationships between different properties. Such a 
model could be used by sofware engineers in analysing the requirements of a 
particular application, in locating similar previous designs, and in verifying the 
properties of completed systems. 

We have presented a formal model for the option space of CMS which sat
isfies these criteria We aim to generate a similar model for the option space of 
CCMS. 
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Abstract 

In knowledge acquisition and system design there are strong interactions between the tasks 
the system has to fulfill, the methods chosen, and the knowledge needed. In this paper, we 
will present an introductory analysis of these interactions. An example is taken from the 
domain of building design to elucidate the problem of designing supply nets. Additionally, 
we will present an inference structure that serves as a basis for system design. Both the 
example and the corresponding inference structure will be used to spell out and exploit the 
interactions between tasks, methods, and knowledge in knowledge acquisition and system 
design. 

Introduction 

A major problem in building knowledge-based systems arises if the interaction between knowl
edge acquisition and system design is neglected. There are a number of pitfalls resulting from 
that interaction. One of them is knowledge acquisition that does not feed into system design. 
Another negative effect of that interaction is system design that enforces using a particular kind 
of knowledge that mayor may not be relevant for mo.deling a task. Although these problems 
are widely known, there is still a need for a methodological framework that provides guidelines 
for the application of methods and knowledge once a particular main task ought to be modeled 
and decomposed .. The goal of this paper is to specify the interactions between tasks, methods, 
and knowledge. 

The sections of this abstract may be summarized as follows. First, we present a view on knowl
edge acquisitioll and system design that rests upon the notions of tasks, methods, and knowledge. 
Second. all example is used that permits to analyze the interactions introduced. The example 
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Abstract

In knowledge acquisition and system design there are strong interactions between the tasks
the  system has to fulfill, t he  methods chosen, and the  knowledge needed. In this paper, we
will present an introductory analysis of these interactions. An example is taken from the
domain of building design to elucidate the problem of designing supply nets. Additionally,
we will present an inference s t ructure  that serves as a basis for system design. Both the
example and the  corresponding inference structure will be  used to  spell out and exploit the
interactions between tasks, methods,  and knowledge in knowledge acquisition and system
design.

1 Introduction

A major problem in building knowledge—based systems arises if the interaction between knowl-
edge acquisition and system design is neglected. There are a number of pitfalls resulting from
that interaction. One of them is knowledge acquisition that does not feed into system design.
Another negative effect of that interaction is system design that enforces using a particular kind
of knowledge that may or may not  be  relevant for modeling a task. Although these problems
are widely known. there is still a need for a methodological framework that provides guidelines
for the application of methods and knowledge once a particular main task ought to  be  modeled
and decomposed. The goal of this paper is to specify the interactions between tasks, methods,
and knowledge.

The sections of this abstract may be  sunn‘narized as follows. First ,  we present a View on knowl—
edge acquisi t ion and system design that rests upon the  notions of tasks, methods,  and knowledge.
Second. an example is used that  permits to  analyze the interactions introduced. The example
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addresses the design of supply nets, which is a task in building design. Third, we present a 
computational framework by using MoMo [5] to build an inference structure. This structure 
allows for a specification of the interactions for conceptual modeling of design and planning 
tasks taken from the domain of supply nets. Finally, we present a short outlook on the analysis 
of interactions to be presented in the extended version of this paper. 

2 Tasks, Methods, and Knowledge 

Tasks, methods, and knowledge form the three basic buildings-blocks involved in knowledge 
acquisition and system design [4], [3]. In this section, we first introduce each of these three 
notions and give an outline of interactions between them. In addition, we will point out the 
relationships between the notions task, methods, knowledge, and the concepts in MoMo, which 
is the conceptualmodeling language we ·use. 

Tasks play an important role in modeling problem solving [6], [1]. Examples of tasks are word 
processing, job scheduling, and fault diagnosis. Tasks refer to the things to be achieved. To 
make tasks come true methods and knowledge are needed. If a task cannot be achieved by a 
single method it has to be decomposed. In MoMo [5], the equivalence of task is called action or 
(MoMo-) task. 

Methods are procedures that implement abstract problem solving models. Methods provide the 
active part in reasoning that carries out problem solving. Methods mediate between tasks and 
knowledge. Which method is chosen and applied to the task hinges on criteria like availability 
of knowledge. computational costs, and reliability of the solution. A method which is applied 
at one level of a task structure may be applied at another level of the same task structure, too. 
In MoMo, the equivalence of method is referred to as a generic function. 

Knowledge is used here in a technical sense and refers to the input and output of tasks. In this 
way, knowledge provides the material methods employ for their operations. In MoMo, knowledge 
of a defined type is represented in places that hold the input and output of actions. Whenever 
two concepts among the building blocks tasks, methods, and knowledge are fixed, there are only 
a few possibilities left to fix the third one. Thus, if the task to be modeled and the methods 
that are applied to the task are selected the appropriate type of knowledge can hardly be freely 
chosen. This focusing effect may be exploited in knowledge acquisition. Having selected design 
as the top-level task and case-based reasoning as the general problem solving method exercises 
a pressure to use cases, concept hierarchies to support indexing, and similarity assessment and 
rules to support modification. Vice versa, it is very well possible to start with selecting the task 
and the knowledge to be used, thereby constraining the selection of a suitable method. 

3 An Example 

Our example shows how .a task in the design of a supply air network of an office building is 
modeled by using case-based reasoning as the general problem solving method.The next section 
is concerned with providing an inference structure that serves as a basis for a computational 
modeling of problems of that kind. 

In Fig. 1 there is a detailed survey of the steps required to plan and design supply nets in 
buildings. Note, that each step mentioned in Fig. 1 presents an intermediate result which can 
be depicted visually and may be captlll'ed by an inference structlll'e. Both are presented in Fig. 
2. The ellipses shown in the left part of Fig. 2 provide information on a sketch level of design. 
To use ellipses instead of rectangles is a very useful graphical trick: Ellipses overlap only in a few 
points. Thus, information on different levels of abstraction can be displayed simultaneouslyl. 
In the left part of Fig. 2 each intermediate result is shown visually. In the right part of Fig. 2 

J For a detailed introduction into this representation scheme, the reader is referred to [2] 
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each int.ermediat.e result is depicted as a MoMo place. In addition, the actions which are linked 
to t.hese places are shown. Each figure in t.he left. part. of Fig. 2 has an equivalent part in the 
MoMo inference structure on the right.. 

A Computational Framework 

Case-based reasoning has been chosen for the general problem solving method since in this 
domain the reuse of previous solut.ions is a common practice. As a consequence, problem solving 
in t.his domain is made up of a number of tasks specific to eBR. These tasks, in turn, have to be 
tackled by specific methods which need a particular kind of knowledge [3]. These tasks would 
not have been used in this way if a different general problem solving method (like rule-based 
reasoning) had been employed. 

MoMo is used as a language to represent and operationalize a conceptual model of systems. We 
use it for a model of CBR problem-solving in constructing supply nets. In MoMo, the control 
flow is defined on the task layer by using tasks. The data flow is specified on the inference layer 
in terms of places, actions, and types. Actions refer to inferences directed toward a particular 
task. Places are" containers" holding the input and output of an action. This kind of knowledge 
has to be specified by assigning it. t.o a particular type. To represent MoMo models graphically, 
e.g. an inference st.ructure, boxes are used t.o represent actions and ovals are used to represent 
places. 

The overall problem in a domailllike construct.ing supply nets in building design is divided into a 
planning and a design phase. Planning refers to the selection and sequential ordering of subgoals 
that have t.o be achieved in order to achieve a main goal. That means, planning provides an 
answer t.o t.he question when and wh'ich problem ought to be solved. Design, on the other side, 
gives information how t.his problem should be solved. Again, decomposing the overall building 
design t.ask into planning a~ld design tasks calls for specific methods t.hat furt.her confine the 
kind of appropriate knowledge. 

,The	 planning phase t.akes as input a complex situation-description, known subgoals, and 
state-subgoal-pairs. The out.put. of the planning phase is a distinct problem identification 
which is worked out. in t.he desigll phase. In our example, the complex situation may be compared 
t.o a snapshot of problem solving at a certain point in time showing that parts of a supply 
net are already fixed while other parts still have to be planned and designed. The places 
known-subgoals and state-subgoal-pairs are occupied by knowledge that is used for goal
set.ting. The place state-subgoal-pairs contains rules that fulfill two purposes. Firstly, they 
help discerning a particular stat.e among a complex situation description. Secondly, they help 
pointing out which subgoal ought to be pursued given a particular state. Both the isolated state 
and the identified subgoal are t.hen combined. In this way part of the situation, i.e. a state, 
is turned into a problem which can be tackled. The place known-subgoals, on the other side, 
holds t.hose goals t.hat. are already achieved. Thus, known-subgoals is a means to control which 
subgoals are already achieved. 

The desiyn phase llS(~S pre-select t.o ret.rieve an appl'opriate case of the case-base. This re
sults in a set. of ('alldidate cases called case-set which seem to be useful to solve the actual 
problem. Select. i.e. a tiecond selection, is required for further confining this subset. This 
action produces et reduced tiet. of candidate cases referred to as best-ease-subset. Having 
completed the selection of appropriate cases the solution found is transferred to the problem
descript.ioll. The result is all expanded state, i.e. the problem-description is enlarged by 
elements found in previous caties. If t.he solution transferred from another case does not fulfill 
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each intermediate result is depicted as a MoMo place. In addition, the actions which are linked
to  these places are shown. Each figure in the left part of Fig. 2 has an equivalent part in the
MoMo inference structure on the right.

4 A Computational Framework

Case-based reasoning has been chosen for the general problem solving method since in this
domain the reuse of previous solutions is a common practice. As a consequence, problem solving
in  this domain i s  made up of a number of  tasks specific to CBR. These tasks,  in turn, have to  be
tackled by specific methods which need a particular kind of knowledge [3]. These tasks would
not have been used in this way if a different general problem solving method (like rule—based
reasoning) had been employed.

MoMo is used as a language to  represent and operationalize a conceptual model of systems. We
use it  for a model of CBR problem-solving in constructing supply nets. In MoMo, the control
flow is defined on the task layer by using tasks. The data flow is specified on the inference layer
in terms of places, actions, and types. Actions refer t o  inferences directed toward a particular
task. Places are ”containers” holding the input and output of an action. This kind of knowledge
has to be  specified by assigning i t  to  a particular type. To represent MoMo models graphically,
e.  g. an inference structure, boxes are used to represent actions and ovals are used to  represent
places.

The overall problem in a domain like constructing supply nets in building design is divided into a
planning and a design phase. Planning refers t o  the selection and sequential ordering of subgoals
that have to  be  achieved in order to achieve a main goal. That means, planning provides an
answer to  the question when and which problem ought to be  solved. Design, on the other side,
gives information how this problem should be solved. Again, decomposing the overall building
design task into planning and design tasks calls for specific methods that further confine the
kind of appropriate knowledge.

.The  planning phase takes as input a complex s i tua t ion-descr ip t ion ,  known subgoals ,  and
s ta te—subgoa l -pa i r s .  The output of the planning phase is a distinct problem identification
which is worked out in the design phase. In our example, the complex situation may be  compared
to a snapshot of problem solving at a certain point in time showing that parts of a supply
net are already fixed while other parts still have to be  planned and designed. The places
known-subgoals and s ta te-subgoal-pairs  are occupied by knowledge that is used for goal-
sett ing.  The place s t a t  e -subgoal-pai rs  contains rules that fulfill two purposes. Firstly, they
help discerning a particular state among a complex situation description. Secondly, they help
pointing out which subgoal ought to be  pursued given a particular state. Both the isolated state
and the identified subgoal are then combined. In this way part of the situation, Le. a state,
is turned into a problem which can be  tackled. The place known-subgoals,  on the other side,
holds those goals that are already achieved. Thus, known-subgoals is a means to control which
subgoals are already achieved.

The design. phrase uses pre—selec t  to  retrieve an appropriate case of the case—base. This re»
sults in a set of candidate cases called ca se - se t  which seem to  be  useful to  solve the actual
problem. Se l ec t .  i.e. a second selection, is required for further confining this subset.  This
action produces a reduced set of candidate cases referred to as bes t - case - subse t .  Having
completed the selection of appropriate cases the solution found is transferred to the problem-
description. The result is an expanded s t a t e ,  i.e. the problem-descr ip t  i on  is enlarged by
elements found in previous cases. If the solution transferred from another case does not fulfill
the requirements of the  problem description an adaptation of the transferred solution is nec—
essary. To this purpose. the expanded s t a t e  together with adaptation-knowledge enter the
action adapt which produces an adapted s t a t e .  Subsequently, two actions are performed in
order to  test  the result. Ju s t i fy ,  the first of the testing actions, is used to find out if the
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situation description: This place refers to an early stage in design, when the princi
ples of a supply air system are designed. 

known subgoals: Each object of the situation is connected with a goal to produce and 
controllllore detailed informations. The objects with unsatisfied goals are displayed bold
ly. These are mainly the objects with the most detailed informations. 

problem description: Given a complex situation, there may be many problems to be 
solved. This figure shows the problem with the first priority. In this example it is the 
object for one supply air network. The selected problem can be isolated from the situation 
and needs only a few other objects (state): the six mid-sized circles represent the rough 
location of the supply air outlet in the ceiling of one floor in the office building. The small 
circle represents the vertical duct. The selected problem is to connect the outlets with the 
vertical duct. 

case base: The case base shows several prior solutions to the same problem. The ducts 
we are looking for and which connect the outlets with the vertical duct are represented by 
the ellipses. 

case set: The case set consists of a few cases which are most similar to the selected 
problem. 

best case subset: This is the case the solution of which needs minimal adaptation to 
fit the demands of the selected problem. 

expanded state: This figure shows the best case subset in the background and the state 
in the foreground, in order to prepare the adaptation. 

adapted state: In this example the state needs no change, but the horizontal ducts of 
the best case subset were added and one duct needs shortening. 

justified state: Some simple checks can be made, e.g. the overall length of the ducts 
or the number of direction changes are restricted. 

evaluated situation: Some more checks might be necessary before the selected prob
lem can be merged to the situation. e.g. the spatial coordination of the supply air ducts 
and the return air ducts. 

situation*: If no test fails, the state can be merged to the situation, which now contains 
more detailed information. 

known subgoals*: The known subgoals are updated as well. In comparison to the illus
t.ration of the subgoals at the beginning of this example, one can see that the lower left 
network is no longer displayed by a bold circle. The three sketches of the supply air ducts 

I we added to the situation formulate new subgoals for the following design steps. 

case base*: The justified state can be added to the case base which can be seen in the 
lower left case of this illustration. 

I 

Figure 1: eRR-Problem Solving in Building Design 
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adapted state as such is free from errors. That is, justify is taking only the isolated state 
produced so far into account. Justify uses highly specialized test-predicates that check 
locally for common errors. There are test predicates for unconnected or conflicting pipes etc. 
The output of justify is a justified-state. This is a problem solving state which is error
free when viewed in isolation. Evaluate, the second global testing action, is used to find out 
if the justified-state may still be referred to as error-free once it is embedded into to the 
more complex situation-description. Again, highly specialized test-predicates may be 
employed. Once the problem-description together with the state that has been adopted from 
another case and adapted to the current requirements has passed both testing actions, the action 
update is used to add the new case to the case-base. 

Conclusions 

Interactions between tasks, methods, and knowledge may be exploited to improve knowledge 
acquisition and system design. We investigated these interactions by generating and discussing 
variants of the inference structme of our implementation. The top level task taken from the 
domain of building design remained the same across all investigations of interactions. These 
investigations proceed by systematically replacing lower level tasks and methods by alternative 
ones which results in different knowledge needs. In short, variants of inference strucutres are 
generated and the int.eractions between tasks, methods, and knowledge are investigated. As a 
result various triples of tasks, methods, and knowledge are obtained that reflect interactions 
between them. This will be presented in the extended version of this paper. Although these 
results are experimental in nature they pave the way to a more principled account of knowledge 
acquisition and system design in CBR-systems. 
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1.0 Introduction 
Knowledge acquisition is a bottleneck of expert system development. Thereby, a special pro
blem is the reuse of available methods. To overcome this problem, KADS [6] supports a 
library of interpretation models. Currently, this library contains only a few models so that 
humans are able to find an appropriate interpretation model for their task. In the future, expert 
system developer (or more general: software developers) will use huge libraries. Then the 
question of how to retrieve a model which is useful will raise. Our hypermedia-based knowl
edge engineering tool CoMo-Kit [1,2] tries to solve this question with a similarity-based or 
case-based approach. 

To search for an interpretation model CoMo-Kit will use a similarity-based matching of 
graphs. We extend ideas from the PATDEX system [3, 5] to an object-oriented matching The 
work described within this paper are first ideas and should not be taken as finished research. 

In chapter 2 we define cases and the similarity of cases. Chapter 3 deals with the retrieval of 
interpretation models. 

2.0 Case descriptions 
In our approach, a case represents a task with an associated method. The Method is described 
as a inference structure. Task descriptions which shall be reused are stored in a library and we 
call "interpretation models", in analogy to KADS. In contrast to KADS, our cases are not 
generic descriptions of tasks but domain specific structures. Every model of a domain which 
comes out as the result of a modelling process can be stored in the library. 

The structure of a task (e.g. the data and control flow) is represented asa graph. Nodes and 
links of this graph are associated with types. In figure 1 a task structure is shown. Ellipses rep
resent inferences (functions) whereas rectangles describe concept classes (data structures). 

A knowledge engineer is able to build new task structures by using a set of predefined task 
types. Figure 2 shows the hierarchy of task types which is currently supported by CoMo-Kit.! 

1. If needed, the set of task types can easily be extended. 
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In the following, we define nodes and links. Nodes are objects and can be connected via 
directed links. The similarity of two links depends on the type of the link and the source and 
destination object. 

Definition 1: Node class 

A node class defines 

• a superclass 

• the attributes al,'" an of instances 

• the types tl"" In of the attributes 

•	 the similarity of nodes of the same class: 

simc(S,1) E [0,1] (EQ 1) 

The class Object does not have any attributes and is the root of the class hierarchy. The simi
larity of instances of Object is always zero: 

(EQ2)simObjeciS,1) = ° 
Definition 2: Node instance 

An instance associates a value with every attribute ~. The value must be included in the type 
of the attribute or it must be "unknown". . 

(EQ 3) 

Definition 3: Link 

A link is an directed arc between a source and a destination object. Links are typed, e.g. every 
link is an instance of a link class. For every link class a similarity function is defined. 

simL(Linkl(S, 1), Link2(S', T'» E [0,1] (EQ4) 

Definition 4: Case 

A case consists of a set of node and link instances. We cannot distinguish between problem 
description and solution. A problem description is a part of a graph. The solution is the rest. l 

For every object of a case a weight is defined. Every case has an unique name. 

(EQ5) 

"i/0i E Case(Name): Weight(Oi) E [0,1]	 (EQ6) 

2.1 The similarity of cases 

To compute the similarity we see a case as a rule and the new problem description as the work
ing memory. The algorithm computes the similarities for every binding «Matching» of the 
objects of the problem description to the objects of the case. The similarity of a case to the 
problem description is the weighted sum of the node and link similarities. 

1.	 The impossibility to define which parts of a graph will be used as a problem description and which as 
the solution is the reason why an inductive approach is not applicable. 
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simCase(C, Graph)<Matching>= 

L Weight(CO i) . simC/L(CO i' Graph «Matching») (EQ 7) 

i 
A matching network is used to speed up the computation of the similarity. The matching net
work reduces the number of bindings which must be tested. Because of the typing not every 
node of a case must be matched with every node of the problem description. Only objects of 
the same class are compared. It is easy to extend this by matching also the instances of sub
classes. The speed-up of the matching process is increased if the case-matching is incremental. 
This is the case for our application: We want to model a part of a task and then search for a 
similar case. If the retrieved case is not appropriate, the knowledge engineer extends the model 
and starts the search again. 

3.0 Retrieval of Interpretation Models 
Interpretation models are stored as graphs in a library, e.g. the matching network. To query the 
network for a similar case the user draws parts of a task structure (figure I shows the graphical 
interface). The defined node and link instances are propagated to the matching network and the 
similarity values of the stored cases are updated. The system presents a list of all retrieved 
interpretation models to the user who is able to choose one for his further work. 

We used a similar approach for the retrieval of CAD drawings in architectural design (see [4]). 

4.0 State of Realization 
The knowledge engineering tool CoMo-Kit is fully implemented and allows to define task 
hierarchies, inference structures, classes with attributes, and instances. We now work on the 
implementation of the library. The tools for similarity-based retrieval of interpretation models 
are, as mentioned in the introduction, are up to now only ideas. 
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Extended Abstract 

1.	 Introduction 
Before people can decide whether to rely on a Case-Based Reasoning (CBR) system's advice, they 

must understand the criteria according to ~hich the system asserts that a case is relevant to a problem 
and more relevant than any other cases. In our application, tutoring students to reason with cases, our 
intelligent tutoring system, CATO, needs to explain its relevance criteria and illustrate them with examples. 
Moreover, it needs to deal with a variety of relevance criteria, some of which involve relations among multiple 
cases. The system designers, and eventually, teachers and students, need to be able to understand, use 
and modify the program's concepts for assessing case relevance and constructing case-based arguments. 
A logical representation of the relevance criteria provides the expressiveness and flexibility to make that 
possible. 

At first blush, the choice of a logic representation to support case-based reasoning may seem odd. 
Case-based reasoning has often been contrasted with logical reasoning. First, logical deduction employs a 
formal inference mechanism like modus ponens to apply general rules to a specific problem. By contrast, 
a case-based reasoner draws inferences by comparing the problem to specific past cases and may use a 
variety of comparison methods [Ashley, 1993]. Second, CBR is nonmonotonic. For instance, a reasoner 
that could apply rules and cases might find that a problem matched not only a rule's antecedents but also 
an exception to the rule, leading it to abandon the rule's conclusion [Golding and Rosenbloom, 1991]. 
Third, in our domain of legal reasoning, logical representations are not ideal for representing statu
tory and court-made rules where concepts are open textured and usually there is no one right answer 
[Sergot et al., 1986, Gardner, 1987]. Case-based reasoners have employed cases to represent the meanings 
of such terms and to generate <lompeting reasonable arguments comparing the problem to conflicting cases 
[Rissland and Skalakl991, Branting, 1991]. 

On reflection, however, these valid objections do not imply that logic may have no role in implementing 
CBR systems. At an operational level, a CBR program needs to compute the relevance of cases. Although 
in most CBR programs to date, relevance concepts have been operationalized by structuring a program's 
memory (e.g., as a discrimination net) and building procedures to sort, select and filter cases (e.g., see 
[Koton, 1988, Sycara, 1987]), such concepts can be expressed in first-order logic and implemented by a 
deductive pattern-matcher. In developing CATO, we have employed the knowledge representation system 
Loom [MacGregor, 1991] to represent relevance and argument concepts declaratively in logic expressions. 
As long as the computational efficiency of the logically implemented relevance concepts is comparable to 
that of procedural representations, the advantages of a logic representation may be considerable. 

The declarative logical representation offers important advantages for our CBR tutoring application, 
allowing us to: (1) Specify relevance criteria in terms of relationships among multiple cases, (2) Deal with 
multiple relevance criteria, (3) Communicate relevance criteria and illustrate them with examples, and (4) 
Support user queries of the case base. The primary significance of this work, however, has to do with 
explanation in CBR systems. We are beginning to address the question: how can case-based reasoners 
explain their reasoning and convince users of the plausibility of the system's conclusions? 

In this paper we discuss these advantages and report on an experiment that we undertook to evaluate 
the computational efficiency of case retrieval with declaratively-defined relevance concepts. 

2.	 Our Application: Tutoring with Cases 
We are studying how to instruct law students to reason with cases, in particular, to evaluate problems 

by comparing them to past cases and to justify their legal conclusions by drawing analogies to selected 
precedents. The skills we instruct are important not only for attorneys in the American and English 
legal systems, where arguing by analogy to precedents is standard, but possibly also for reasoners in other 
disciplines, such as practical ethics, business and political science, where experts also reason with cases. 

lThis work is supported by an NSF Presidential Young Investigator Award and grants from the National Center for 
Automated Information Research and Digital Equipment Corporation. 
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[Koton, 1988, Sycara, 1987]), such concepts can be expressed in first-order logic and implemented by a
deductive pattern-matcher. In developing CATO, we have employed the knowledge representation system
Loom [MacGregor, 1991.] to represent relevance and argument concepts declaratively in logic expressions.
As long as the computational efficiency of the logically implemented relevance concepts is comparable to
that of procedural representations, the advantages of a logic representation may be considerable.

The declarative logical representation offers important advantages for our CBR tutoring application,
allowing us to: (1) Specify relevance criteria in terms of relationships among multiple cases, (2) Deal with
multiple relevance criteria, (3) Communicate relevance criteria and illustrate them with examples, and (4)
Support user queries of the case base. The primary significance of this work, however, has to  do with
explanation in CBR systems. We are beginning to address the question: how can case-based reasoners
explain their reasonn and convince users of the plausibility of the system’s conclusions?

In this paper we discuss these advantages and report on an experiment that we undertook to  evaluate
the computational efficiency of case retrieval with declaratively-defined relevance concepts.

2. Our Application: Tutoring with Cases
We are studying how to instruct law students to reason with cases, in  particular, to evaluate problems

by comparing them to past cases and to justify their legal conclusions by drawing analogies to  selected
precedents. The skills we instruct are important not only for attorneys in the American and English
legal systems, where arguing by analogy to precedents is standard, but  possibly also for reasoners in other
disciplines, such as practical ethics, business and political science, where experts also reason with cases.

1This  work is supported by an NSF Presidential Young Investigator Award and grants from the National Center for
Automated Information Research and Digital Equipment Corporation.
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Criteria for defining relevance and comparing cases may vary among and even within domains. For 
our domain, trade secrets law, we have defined relevant similarities and differences in terms of factors. 
Trade secrets law involves disputes in which a corporation (the plaintiff) complains in a law suit that a 
competitor or a former employee (the defendant) has gained an unfair competitive advantage by obtaining 
the corporation's confidential product development information, its trade secrets. A factor is a collection 
of facts that typically tends to strengthen or weaken the strength of the plaintiff's argument. Experts can 
list factors that typically strengthen a plaintiff's argument that the defendant misappropriated plaintiff's 
confidential information, as well as other factors that strengthen a defendant's argument. 

An important class of legal arguments are about the importance of factors in particular circumstances: 
to what extent should certain factors determine the outcome of a problem. The attorney needs a method for 
resolving the conflict among the factors. In law, however, there are no authoritative weights of factors with 
which to resolve such conflicts [Ashley and Rissland, 1988, Ashley, 1990]. Instead, attorneys use certain 
rhetorical tools - we call them Dialectical Examples - to convince people that certain factors are more impor
tant. We have identified five standard ways of arguing with cases. Each Dialectical Example enables one to 
support or attack an assertion that a particular set offactors justifies a decision [Ashley and Aleven, 1992]. 

We introduce some basic argument building blocks and their associated relevance and argument concepts 
in Figure 1, a brief, annotated legal argument. The plaintiff (11') in the Structuml Dynamics fact situation 
argues by analogy to a representative example, the Analogic case, which has no trumping counterexample 
(defined below). The defendant (6) responds with a ceteris paribus comparison. Experienced arguers 
understand these concepts and have developed skill in applying them. Among other things, they know 
how to: identify factors, draw analogies to cases in terms of factors, point out relevant differences, cite 
counterexamples to a case, avoid picking a case to cite which is irrelevant or was won by the other side, 
prefer to cite more on point representative examples for which there are no trumping counterexamples, 
cover the opponent's bases and make ceteris paribus comparisons. We will say more about the building 
blocks in the final paper. For purposes of this extended abstract, let us focus on the defendant's use of a 
ceteris paribus comparison. A ceteris paribus comparison requires two cases with different outcomes that 
differ from each other only by a single factor, present in the problem. The single factor should be such that 
its presence can explain the difference in outcome between the two cases. As a rhetorical tool, a ceteris 
paribus comparison can be useful in justifying an assertion that a particular factor is important enough to 
justify a particular outcome in the problem. In Figure 1, the defendant uses the ceteris paribus comparison 
to argue that one factor, the employee's being a sole developer of the the product, is important. 

To instruct law students in these argumentation skills, we use small, carefully selected combinations 
of cases, called Argument Contexts. Argument Contexts illustrate the Dialectical Examples and present 
concrete circumstances in which to practice and develop the skills. For instance, a law instructor could use 
two cases, related in just the right way, to illustrate the concept of a ceteris paribus comparison. Also, the 
Argument Context shown in Figure 2 can be used to instruct students about the kind of representative 
example to choose to cite for the plaintiff in the argument shown in Figure 1. It is in the form of a 
Claim Lattice, a knowledge structure developed for the HYPO program [Ashley, 1990, pp.55-57]. The root 
node represents the Structural Dynamics case and the set of all of its applicable factors. Each case in the 
body of the Claim Lattice shares some subset of that set of factors; the nodes are ordered in terms of the 
inclusiveness of that set. That is, Eastern Marble has a subset of Amoco's set and therefore is less on point 
than Amoco. The same is true of Schulenburg and Analogic. With this Argument Context, and instructor 
could ask the student, "Which case should the plaintiff cite?" Three of the cases were won by plaintiffs, 
so there are three possibilities. If the plaintiff cites Eastern Marble, however, the defendant could respond 
by citing Amoco as a trumping counterexample. It was won by defendant, shares everything with the cfs 
that Eastern Marble does, but also shares an additional factor, F3. Analogic is the best case to cite. It 
is more on point than Schulenburg and cannot be trumped. In a preliminary experiment, we employed 
program-generated Argument Contexts manually to teach basic argument skills to first year law students 
with good results [Aleven and Ashley, 1992]. The program that generated the Argument Contexts is one 
module of a future case argument tutoring system, CATO. 

3.	 A Declarative Representation for CBR 
As the above example suggests, we teach students how to use comparisons of a problem to past cases 

as warrants in arguments justifying assertions about the problem. In our domain and task the relevance 
criteria are part of the warrant. In order to perceive the force of an argument comparing a problem to a 
precedent, one needs to understand the sense in which an arguer regards the case as relevant. That is why 
we need an express, explainable representation for the relevance criteria. 

Our program, CATO, uses an explicit representation of relevance concepts to support its case retrieval 
functions: To find cases or combinations of cases that an arguer can use in an argument or that a law 
teacher can use as examples to illustrate lessons about argumentation (Argument Contexts). Currently, 
CATO's case base contains 31 legal cases which will soon be increased to one hundred cases. Individual 
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cases are represented as lists of factors. This has proven adequate for selecting most types of Argument 
Contexts. 

CATO's relevance concepts are defined in a knowledge base implemented in Loom [MacGregor, 1991]' 
a KL-ONE style knowledge representation system. As is typical for systems of this family, Loom offers 
a terminological language for defining structured concepts and relations, as well as reasoning facilities 
including automatic classification of concepts and automatic recognition of the instances of concepts. In 
Loom, one can also express definitions for concepts or relations in Loom's first-order logic query language. 
CATO uses all these reasoning modes, but relies mostly on the facility to state and apply definitions 
expressed in first-order logic. 

Some of the concepts and relations in CATO's knowledge base are listed in Figure 3. Figures 4 and 5 
show examples of relevance criteria expressed in Loom's query language. All terms (predicates) that are 
referred by these definitions are also defined in the knowledge base. In the final paper, we will illustrate 
other concepts and relations and their definitions. Suffice it to point out that that the logical expressions 
are a natural way for describing the crucial relationships among cases and factors. 

Case retrieval is a matter of finding cases that instantiate a given relevance criterion. Once a relevance 
criterion has been expressed declaratively, as a Loom definition, Loom's query interpreter takes care of 
the rest. It searches the case base for cases (or combinations of cases) that satisfy the definition. No 
additional coding is necessary to implement case retrieval2 . For example, Loom can apply the definitions 
shown in Figures 4 and 5 to find best untrumped cases or ceteris paribus comparisons. One interesting 
aspect of the representation is this: In queries, each argument of the relation can be, but does not have 
to be, instantiated. Therefore, retrieving ceteris paribus comparisons relevant to a given factor is just as 
easy as retrieving all such comparisons that can be found in the case base. For a student developing an 
argument, the former query is more useful, for a law teacher looking for training examples, the latter. 

A teacher can also employ more\complex queries for Argument Contexts to use as training examples. 
The query used to retrieve the five-case Argument Context of Figure 2 is shown in Figure 6. We have 
implemented an Argument Context generation program, which was mentioned in the previous section. For 
certain very useful queries, like this one, this program presents menus of parameters for the user to fill out, 
generates a version of the query based on the parameter values, retrieves cases and then enables the user 
to filter and rank cases. 

Ultimately, our goal is to develop a tutoring system that teaches law students the argumentation skills 
described in the previous section. Currently, CATO has no pedagogical capabilities other than the gen
eration of Argument Contexts. It cannot produce natural language explanations of relevance concepts 
or give a student feedback and advice in developing an argument. However, we believe that the express 
representation of relevance concepts makes it easier to develop these functions. 

4.	 Merits of Our Declarative Representation 
The declarative logical representation offers important advantages for our CBR tutoring application. 

Our goal is to develop a program that teaches students to use cases in arguments to justify legal conclusions, 
based on a model of reasoning with Dialectical Examples. We need to deal with relevance criteria in ways 
that have been relatively unusual in CBR work so far, but which we anticipate will become increasingly 
useful. 

Specifying relevance criteria in terms of relationships among multiple cases. Many of the 
Dialectical Examples, such as the ceteris paribus comparison, involve comparisons of multiple cases. The 
relationships among the cases effect the nature and quality of the warrant. A ceteris paribus comparison is 
more convincing if the factor of interest is the only difference between two caseS with opposite results. A case 
is the best untrumped case to cite only ifit has no trumping counterexamples. Relevance criteria, therefore, 
are naturally expressed in terms of the relationships among multiple cases and factors. These relationships 
among multiple cases can be conveniently expressed in first-order logic. For example, the requirement that 
the two caSes in a ceteris paribus comparison must have each other's pro-winner factors can be concisely 
stated (see above). One can also quite naturally specify a relationship that should not be present among 
any cases in the database. For instance, the definition of an untrumped best case in Figure 4 states that 
for every case in the database it shall not be a counterexample to the best case. Complex conditions that 
involve any number of cases interrelated by multiple relationships can be expressed easily. 

Dealing with multiple relevance criteria. The Dialectical Examples illustrate just a handful of the 
many different ways a comparison with past cases can be used to justify a conclusion about a problem. 
Each comparison uses cases related in ways specific to that comparison. Therefore, CATO needs to deal 

2Loom evaluates a query by translating it into Lisp code that implements an exhaustive search. It thenexecutes this code 
to find all values for the query variable(s) that satisfy the query constfaints. 
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Specifying relevance criteria in '  terms of ‘ relationships among multiple cases. Many of the
Dialectical Examples, such as the cetcris paribus comparison, involve comparisons of multiple cases. The
relationships among the cases effect the nature and quality of the warrant. A ceterz's paribus comparison is
more convincing if the factor of interest is the only difference between two cases with opposite results. A case
is the best untrumped case t o  cite only if i t  has no trumping counterexamples. Relevance criteria, therefore,
are naturally expressed in terms of the relationships among multiple cases and factors. These relationships
among multiple cases can be conveniently expressed in first—order logic. For example, the requirement that
the two cases in a cetcrz's pan‘bus comparison must have each other’s pro-winner factors can be  concisely
stated (see above). One can also quite naturally specify a relationship that should not be present among
any" cases in the database. For instance, the definition of an untrumped best case in Figure 4 states that
for every case in the database it shall not be a counterexample to the best case. Complex conditions that
involve any number of cases interrelated by multiple relationships can be  expressed easily.

Dealing with multiple relevance criteria. The Dialectical Examples illustrate just a handful of the
many different ways a comparison with past cases can be used to justify a conclusion about a problem.
Each comparison uses cases related in  ways specific to that comparison. Therefore, CATO needs to deal

2Loom evaluates a query by translating i t  into Lisp code that implements an exhaustive search. It  thenexecutes this code
to find all values for the query variable(s) that satisfy the query constraints.
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with multiple criteria for case relevance. Also, as we identify additional ways of arguing with cases, new 
relevance criteria need to be defined. The declarative representation facilitates the implementation of 
multiple relevance criteria and the prototyping of new relevance criteria, because relevance criteria can be 
expressed concisely and conveniently in first-order logic and can be modified easily. 

It should also be easy to modify a relevance criterion to adapt to particular circumstances. Given 
certain problems and certain case databases, a relevance criterion may be too strict or too loose. If too 
loose, too many cases may satisfy the criterion. If too strict, nb case may satisfy the constraints. Yet, 
a suitably relaxed relevance criterion might retrieve cases which are nearly as useful. A declarative logic 
representation is very flexible: It allows one easily to formulate looser or stricter queries by removing, 
adding or modifying conditions. For instance, the initial versions of the ceteris paribus criterion were too 
strict, so we relaxed the constraints to allow the cases to differ by more than one factor. 

Communicating relevance criteria and illustrating them with examples. Our system needs to 
explain relevance criteria because students have to learn them. Since relevance criteria serve as components 
of warrants they need to be defined in symbolic terms, not numerically. Since an arguer may be compelled 
to defend his assertion that a case is relevant, the significance of the relevant similarities and differences 
had better not have been converted into numbers. Defining the terms symbolically in terms of a declarative 
logical representation makes them easier to communicate and explain to the user. In part, this is because 
logically-defined definitions are easier for the user to understand. In addition, however, we have found that 
they are easier to illustrate with examples. 

We illustrate relevance criteria with various types of example's. In order to illustrate a relevance criterion, 
we can search for collections of a problem and cases that instantiate the relevance criterion. This means 
that CATO can retrieve all instances of best untrumped cases to cite, of ceteris paribus comparisons, or 
of cover-the-opponent's-bases situations involving any case in the case base as problem situation. For most 
CBR systems, this kind of retrieval would not be possible. We use these as examples in exercises (these 
examples are Argument Contexts) to illustrate the relevance criterion and instruct students by example 
how to employ them. 

Supporting user queries of case base. We intend the student users to query the case database. Using 
CATO, we want to teach them to formulate better queries for relevant cases (a skill we expect will transfer 
to other legal information retrieval systems like Lexis, Westlaw and West's natural language query system, 
WIN). In addition, a student's queries serve as a test of his/her understanding of the relevance criteria. 
It follows that queries need to be easy to understand, express, modify, and execute. In addition, our 
system needs to be able to deal with a range of queries that cannot be anticipated completely in advance. 
We believe a declarative logical representation is the most likely of all the available alternatives to be 
manipulable by student users. We plan to design a simplified and specialized query language for student 
users. This language can be implemented by translating the student queries into first-order logic queries. 

Explanation in CBR systems. We think the advantages of a declarative logical representation have 
significance for CBR beyond our tutoring application. The CBR community has not adequately addressed 
the question: how can case-based reasoners explain their reasoning and convince users of the plausibility 
of the system's conclusions? (See [Ashley, 1993].) There are at least five ways: 

1.	 Show the user a similar precedent. Such an explanation may involve mapping and adapting an explana
tion from the precedent to the problem as in SWALE [Kass et al., 1986], CASEY [Koton, 1988], GREBE 
[Branting, 1991], or integrating the precedent into a rule-based explanation as in CABARET [Rissland and 
Skalak,1991]. The precedent, however, is only part of the warrant represented by the case comparison. 

2.	 Some CBR programs, like CASEY, can justify why the precedent matches the original. 
3.	 In addition, a program could explain why the particular precedent is a better match then other candidates 

(HYPO); 

4.	 In addition, the program could explain its criterion for justifying the match or for considering one case tp be 
better than another. 

5.	 In addition, the program could explain why the criterion matters in terms of the theory of the domain and 
task. 

This work on CATO focuses on the third and fourth methods. By representing relevance criteria 
declaratively, we have made some progress in enabling a program to explain aspects of its relevance criteria 
by example. The approach can be related to another CBR program. CASEY justifies a match between a 
new case and a past case on the basis of its "evidence principles", domain-independent rules for adapting 
causal explanations. Would it be useful for CASEY to illustrate a given evidence principle by retrieving 
two cases which this evidence principle justifies calling similar? For purposes of tutoring or explanation, 
we believe so. For instance, a user might say: "I don't understand your explanation. Why is this past case 
a good match?" A simple example of a match justified by the evidence principle would help make a good 
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5.	 Empirical Efficiency Analysis 
We conducted an experiment to evaluate the efficiency of case-based reasoning with declaratively repre

sented relevance concepts. We collected timing information for various queries using (synthetic, computer
generated) case bases ranging in size from 26 to 250 cases. The queries that we used represent the whole 
spectrum that we have described in this paper and include queries for best untrumped cases, ceteris paribus 
comparisons, and 5-case Argument Contexts. (The queries were very similar-though not identical-to the 
ones shown in Figures 4, 5, and 6.) In this experiment, we used two techniques to to speed up the query 
for 5-case Argument Contexts. We added constraints to the query in order to reduce the amount of search 
("query reformulation"). Also, we precomputed certain often-referenced information and stored it in tables, 
thus trading space for time ("tables"). 

The run times that we measured are shown in Figure 7. (The results were obtained running Loom 1.4.I. 
on a DECstation 5000/240.) When Loom evaluates a query, it searches for all cases (or combinations of 
cases) that satisfy the query. In other words, it performs an exhaustive search. The timing results should be 
interpreted with this in mind. Not suprisingly, the observed run times correspond to the asymptotical time 
complexity of the queries, which is O(N2) for. best untrumped cases, O(N3 

) for ceteris paribus comparisons, 
and O(N5) for 5-case Argument Contexts, where N is the number of cases in the case base. The standard 
CBR operation of retrieving the cases that are most relevant to a given problem (best untrumped cases) 
took less than 20 seconds with a 250-case database. While some of the other retrieval times times may 
seem rather long, it should be noted that the queries for ceteris paribus comparisons and 5-case Argument 
Contexts, when run with the larger case bases, retrieved thousands of case combinations. This is more 
than a law instructor looking for examples could possibly need. Clearly, exhaustive search is not necessary 
for these queries. Therefore, we conclude that case retrieval based on declaratively represented relevance 
concepts is not prohibitively expensive. In the final paper, we will discuss the experiment in greater depth. 

6.	 Conclusion 
Our application, tutoring students to reason with cases, necessitated adopting a declarative represen

tation of case-based relevance concepts. Using Loom's first-order logic query language, relevance concepts 
can be conveniently expressed in terms of relations among multiple cases. Loom's query interpreter is used 
to do case retrieval. This has turned out not to be prohibitively expensive computationally. 

Representing relevance criteria in first-order logic has considerable advantages. First, the declarative 
representation facilitates the use of multiple, changing relevance criteria, since it allows the criteria to be 
expressed and/or modified with great ease. Second, students using CATO will eventually express their 
own queries for CATO to interpret. We expect that the development of a simplified and specialized 
query language for this purpose will be greatly facilitated by a declarative representation of the underlying 
relevance concepts. 

Finally, by representing relevance criteria declaratively, we have made some progress in enabling a 
program to explain aspects of its relevance criteria by example. Our work on CATO focuses on enabling a 
program to explain why the particular precedent is a better match then other candidates and to explain its 
criteria for justifying the match or for considering one case to be better than another. We believe that as 
CBR system designers confront the problem of building programs that can explain their results, a logical 
representation of relevance concepts will be useful. 
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Abstract 

In the Case-Based Reasoning paradigm cases are often given initially in natural 
language in the fonn of a "story". While this textual fonn is appropriate for humans, it 
is often not suitable for direct application by a computer. Our paper uses the legal 
domain of sentencing for criminal offences to illustrate an approach to indexing, 
knowledge representation of stories and their application in quantitative reasoning. This 
approach extends the well-known concept of Explanation Patterns. 

Keywords: CBR, Explanation Patterns, Legal Applications. 

1. Introduction. 

Our object of interest is the domain of 'stories' (see, e.g., [Schank90] for a detailed discussion of this 
concept). When a human reasons about a situation in the present, he is often reminded of stories that he has 
heard or actually experienced himself in the past. He may then attempt to understand and explain the case at hand 
based on those stories. 

Our basic idea is to apply this explanatory approach to a domain where explanations of previous cases lead 
to a quantitative result. Such a domain is the area of criminal sentencing. Judges are often reminded of previous 
cases with similar features when passing sentence. Indeed, the sentences of some previous cases (precedents) are 
even of binding importance. The cases are of course our 'stories', and the sentence itself is the quantitative result 
attached to the story. 

We are motivated by our desire to build a computer system that may support a judge in deciding which 
sentence to hand down in a new case. The areas we have considered are Robbery and Rape (and some other sexual 
offences). Both are areas with maximum sentences (according to the Israeli law) of twenty years. 

Such a system should not supply its user with a single, definite answer (Le., a proposed sentence). No 
judge would appreciate that. We propose an intelligent decision support system, where several approaches and 
ways of reasoning will be produced for the user, but the final choice will be his only. 

The questions we shall deal with are: How should such stories be represented in a computer, and how may 
they be retrieved by a case-based reasoner in order to obtain such a quantitative result also for a new story? The 
actual, quantitative application of the retrieved 'stories will not be dealt with in this paper. 

The layout of the paper is as follows. In section two we shall consider previous work relating to the 
representation and use of stories. In section three we shall propose a generalization of one such approach and its 
adaption to our domain. This will establish the theoretical background relating to the knowledge representation 
and retrieval in a practical system which is at present under implementation by us. Section four will summarize 
the paper and suggest future developments. 

2. Background. 

2.1 An Example. 

Consider the following (true) story: 

A couple is standing on a nice summer-day on the beach in Natanya (an Israeli seaside resort). They are in 

1 This work is in partial fullfilment of the requirements towards the degree of Ph.D. by the second author under the 
supervision of the first author. 
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representation and use of stories. In section three we shall propose a generalization of one such approach and its
adaption to our domain. This will establish the theoretical background relating to the knowledge representation
and retrieval in a practical system which is at present under implementation by us. Section four will summarize
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Consider the following (true) story:
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bathing suits, and the woman is wearing a gold-chain around her neck. The chain is rather thin and quite 
inexpensive. A youngster rides up to them on a horse (I), bends down, takes hold of the chain, tears it off the 
woman and gallops away. He is eventually apprehended and found guilty of robbery (crime never really does 
pay). His sentence is' relatively heavy: Two and a half years in prison. The judge explains that this kind of 
robbery is usually not considered a serious crime. The main reason for the sentence is that the sheer audacity of 
the young robber is taken to be as an aggravating circumstance: To snatch the chain in broad daylight on a public 
beach must be considered the height of insolence. 

For the purpose of this research we have been conducting interviews with judges from the District and 
Appeals Court in Tel-Aviv. We usually prompt a judge by asking him to tell us any story that comes into his 
mind relating to robbery or rape (and sentencing). In this particular case the judge reacted to our prompt by 
saying: "Oh, I shall tell you about the impudent youngster on the horse". In almost all our interviews the judges 
have automatically given titles to their stories at some stage of the story-telling. We have taken such a title to 
indicate the index for retrieval of the story, as indeed it appears to be in the case just described: The insolence of 
the robber was considered the main feature in the judge's reasoning leading to the detennination of the sentence. 

In this case the index indicates aggravating circumstances, while other stories and their title may indicate 
mitigating circumstances. Our assumption is that when the judge mentioned above (and perhaps also other 
judges familiar with the story) encounters another case involving an audacious crime, he will be reminded of this 
story. He will also remember the severity of the sentence - or rather the reasoning behind that sentence as a factor 
(possibly among others), that may contribute to the decision in the case at hand. . 

In other words, in the present case he will choose such a sentence that it may be explained on the basis of 
the previous story or stories. This is explanation-based retrieval and reasoning. We shall supply further 
justification for this approach below, in sec~on 3.1. 

This assumes, of course, that judges are consistent in their sentence-passing. While some undoubtly are, 
others may not be so. The general public feels that judgments and sentencing should be consistent and unifonn, 
and it is our suggestion that a computer system of the kind described here may contribute to attain such 
unifonnity. We do not attempt to build psychological models, or perfonn cognitive simulation. However, we 
believe that the actual use of such a system will ensure that a judge is in possession of relevant background 
infonnation (precedents). 

2.2 Related Work 

A 'story' is often considered as consisting of a sequence of episodes, Le. events, actions, situations, etc, 
and the relationships among such episodes. It is dynamic with little or no hierarchical structure. Classical 
knowledge structures like semantic networks cannot in themselves suffice for representing stories. Such basic 
structures are appropriate for representing certain static aspects of the stories, but cannot cover the overall 
picture. 

A script ([Schank77]) may actually be an appropriate fonn for knowledge representation for the legal 
process itself, as it may be used to describe ordinary and routine activities. However, scripts are not appropriate 
for describing the reasoning leading to the sentence imposed by a judge. 

Also the Memory Organization Packet (MOP) (see [Schank82], [Kolodner83])), which generalizes the 
script describes stereotypical events and does not enable the kind of explanations we seek. 

Narrative understanding systems, e.g., CYRUS ([Koloqner81]), BORIS ([Lehnert83], [Dyer83]), and 
MEDIATOR ([Kolodner85]) are not applicable here, as our object is not natural-Iaguage understanding or story
understanding, but the application of understood stories to a new story, which needs to be explained. 

One could possibly use various kinds of logics, e.g. Episodic Logic ([Schubert89]). However, as the 
originators of such logics usually acknowledge themselves, much work remains to be done on these logics 
before they become applicable in practical systems. 

JUDGE is a case-based system in the legal domain, which attempts to model the behaviour of judges, 
when passing sentence ([Bain89]). As such, it is of course very relevant to our work. All the conclusions drawn 
by Bain concerning the behaviour of judges are supported by our own experience. However, the aims of our work 
differs from his~ 
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Bain's system computes sentences by essentially mapping a partial ordering of crime heinousness onto a 
partial ordering of sentence type and durations ([Bain89], p.113). It operates in the area of murder, manslaughter 
and assault. The method is to infer the motives of the actors of the crime and decide on the degree to which each 
was justified in acting. No other parameters besides heinousness are taken into account, while our object is to 
address the general problem. 

JUDGE uses a single precedent. If the new case is similar to the old one in all the predefined aspects - the 
same sentence is decided upon. If not, the system decides whether the new case has aggravating or mitigating 
features with respect to the old case. Such features can be: Unprovoked Violence, Self Defence, etc. The system 
then modifies the old sentence accordingly, e.g., it may add or subtract 25% of the old sentence. 

Our approach is different. Firstly, our indexing scheme is explanation based. Secondly, we propose that the 
system should attempt to reason with several related cases, and consider several parameters. It should not deliver 
one [mal answer, but rather present the user with several arguments, that may even be conflicting. As we have 
already stressed, the purpose is to construct a sentencing support system, and not a sentencing system. 

2.3 Swale and Abe. 

Swale ([Kass86a], [Kass86b)) is a computer system which produces creative explanations for non-standard 
stories. Abe ([Kass89)) is both a simplified and extended version of Swale. The system defines the concept of an 
'explanation pattern' (XP) for a story. It uses the explanation patterns for stories in the database to explain a 
'gap' in the explanation of a new story. If these explanations cannot be applied in a straightforward manner, the 
system has a number of adaptation strategies. 

As a concrete example, assume that the database contains the following two stories (originally given by 
Kass, and here considerably shortened) and their XPs: 

(1) A famous sportsman suddenly collapsed and died. The XP is: Unknown to everybody he had a weak heart. 
(2) A otherwise healthy lady suddenly died. The XP is: Her husband killed her in order to obtain the insurance 
money. 

We now consider a new story, based on an actual case: A famous racehorse (called Swale) suddenly 
collapsed and died The 'gap' here is why the horse died suddenly. The system will adapt and apply the two 
previous XPs and suggest two possible explanations for the gap: 

(1) Unknown to the owner and trainer the horse had a weak heart. 
(2) The owner killed the horse in order to obtain the insurance money. 

The use of an XP in connection with a gap can actually work two ways. Given a story with a gap one can 
look for stories with an XP to explain the gap. Conversely, given a gap and its explanation one can look for an 
appropriate XP in order to justify the explanation. 

A similar situation also occurs in the legal domain. Sometimes a judge will decide on a sentence after 
considering the old stories. Sometimes he will decide on a sentence, and then see how to justify it (both to 
himself and to the world), by finding the appropriate precedents. This latter possibility is well-known and 
acknowledged by the judges themselves (they sometimes say they have a 'gut-feeling' of what the sentence 
should be). 

3. Our Knowledge Structures. 

3.1 Indexing by Explanations. 

One may suppose that predictive explanations ([Schank86], p.32) would be appropriate in the sentencing 
domain. This, however, would necessitate extensive knowledge about the judges themselves, their outlook, 
behavioural patterns, etc. Indeed, this approach seems to be the one taken in JUDGE (see section 2.3). We do not 
believe such information to be readily available or dependable, and have chosen a different approach. 

Intent explanations ([Schank86], p.32) are given when one has to interpret the behaviour of agents 
according to their motives. This is the approach we have chosen. We must therefore decide how to index our 
stories accordingly. 
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In section 2.1 we explained how the indexing was actually supplied by the judges themselves, when they 
chose names for their stories. Thus "The impudent youngster on the horse" yields an index called aggravation
through-insolent-behaviour (of offender). Most of those indices were of a general tyPe, but some were unique for 
the tyPe of crime (robbery, rape, etc.) 

We were not, however, satisfied with this approach alone. Independently we elicited knowledge about the 
sentencing process from a judge not involved in the story-telling. This knowledge was used in creating a 
discrimination tree. It then became apparent that the nodes in the discrimination tree and the indices derived from 
the story titles were identical. A further correspondence was also obtained by considering results obtained from 
expert criminologists and jurists. They have supplied us with what they call 'sentencing parameters', which are 
essentially equivalent to our explanatory indices. 

A final test of the indices has been planned, but not yet carried out. We intend to use statistical data about 
criminal offenders and their sentences over the last ten years, as compiled by the Israeli police. Our hypothesis is 
that there is a strong correlation between sentences and our indices. 

3.2 Judicial XPs 

An explanation pattern includes the following aspects: (1") facts, (2) beliefs, (3) purpose, (4) plan, (5) 
action (behaviour). The XPs developed by Kass et al. (see section 2.4) have this structure, which we shall also 
adopt: 

(1) Facts: These are the indices, as explained in the previous section. 
(2) Beliefs: Additional relevant knowledge. 
(3) Purpose: We here consider the criminological approach: Retribution, Prevention, Deterrence or 

Rehabilitation as the purpose behind a given sentence. 
(4) Plan: We aim at using the explanations of aggravating or mitigating factors according to facts and beliefs. 
(5) Action: The sentence itself, or rather its deviation from the standard (tariff). 

An example will here be in order: 

A man was arrested and found guilty of indecent exposure (paragraph 349 aleph of the Israeli criminal law). 
He had no previous offences, and received a suspended sentence of three months. This is an exceptionally light 

sentence relative to the average sentence for infraction of paragraph 349 aleph. 

MOP: XP: 'The First-Timer' 

accused according to 349 aleph facts: first offence 
found guilty beliefs: not dangerous to public 
standard sentence: 1 month purpose: retribution 
maximal sentence: 1 year plan: light sentence 

action: Jeduce standard sentence 

Decision: 3 months (suspended) 

When a (decided) case is entered into the case-base, its XP is detennined either by the justification always 
given for written precedents, or by the explanations supplied by. the judge, who told the 'story'. For a new case 
the facts and beliefs are supplied by the judge about to pass sentence in the case. He also supplies the purpose, 
but would presumably want to experiment interactively with different criminological approaches. The plan-slot 
is then filled out on a temporary basis: mitigation or aggravation. Only the action is left to be decided. 

This approach is somewhat naive. It appears that a single XP cannot represent all the different facets and 
intricacies of a case, and we shall see in the next section that the retrieval is actually carried out according to a 
more detailed structure than the XP. 

3.3 Judicial MXPs. 

The concept of an XP appears to be insufficient for the kind of explanations we aim at creating. It cannot 
cope with the detail and complexity of most legal cases, as illustrated by the following (true) 'story': 
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In section 2.1 we explained how the indexing was actually supplied by the judges. themselves, when they
chose names for their stories. Thus ”The impudent youngster on the horse” yields an index called aggravation-
through-insolent—behaviour (of offender). Most of those indices were of a general type, but some were unique for
the type of crime (robbery, rape, etc.)

We were not, however, satisfied with this approach alone. Independently we elicited knowledge about the
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criminal offenders and their sentences over the last ten years, as compiled by the Israeli police. Our hypothesis is
that there is a strong correlation between sentences and our indices.

3.2 Judicial XPS
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adopt:
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(3) Purpose: We here consider the criminological approach: Retribution, Prevention, Deterrence or

Rehabilitation as the purpose behind a given sentence.
(4) Plan: We aim at using the explanations of aggravating or mitigating factors according to facts and beliefs.
(5) Action: The sentence itself, or rather its deviation from the standard (tariff).

An example will here be in order:

A man was arrested and found guilty of indecent eXposure (paragraph 349 aleph of the Israeli criminal law).
He had no previous offences, and received a suspended sentence of three months. This is an exceptionally light
sentence relative to the average sentence for infraction of paragraph 349 aleph.

MQP: __XB: ‘The First-Timer’

accused according to 349 aleph facts: first offence
found guilty beliefs: not dangerous to public
standard sentence: 1 month purpose: retribution
maximal sentence: 1 year plan: light sentence

action: reduce standard sentence

Decision: 3 months (suspended)

When a (decided) case is entered into the case-base, its XP is determined either by the justification always
given for written precedents, or by the explanations supplied by_ the judge, who told the ‘story’. For a new case
the facts and beliefs are supplied by the judge about to pass sentence in the case. He also supplies the purpose,
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is then fflled out on a temporary basis: mitigation or aggravation. Only the action is left to be decided.

This approach is  somewhat naive. It appears that a single XP cannot represent all the different facets and
intricacies of a case, and we shall see in the next section that the retrieval is actually carried out according to a
more detailed structure than the XP.

3.3 Judicial MXPs.

The concept of an XP appears to be insufficient for the kind of explanations we aim at creating. It cannot
cope with the detail and complexity of most legal cases, as illustrated by the following (true) ‘story’:

382



A young woman met a young man one evening in Tel-Aviv, and they decided to have fun together. After 
some dancing in a nightclub they ended up in a hotel room, where they spent the rest of the night in activities, 
which apparently were mutually enjoyable. The next evening they met again, and after some preliminary dancing 
they went down to the beach. Despite the girl's protests the boy repeated the performance of the previous night, 
with the result that the girl accused him of rape the next morning. When the girl told her story in court, the judge 
asked her why she complained to the police after having agreed to sleep with the boy the first night. "Why that is 
obvious", said the girl, "I do not mind sleeping with him in a fancy hotel, but not on the beach!". The boy eventually 
got off with a light prison sentence: 4 months. 

Obviously there are many elements in this kind of story, and we have therefore constructed the following 
multi-structure, called an MXP, which is made up of several XPs. We shall first show it for the above story. 

MXP: 'Not on the beach' 

MOP: XP-l: 

accused according t
found guilty 
standard sentence: 6 
maximal sentence: 

o 345 

years 
16 years 

facts: first offence 
beliefs: not dangerous to public 
purpose: punishment, prevention, 

should be given a second chance 
plan: extreme mitigation 
action: reduce standard sentence 

facts: confessed facts: victim agreed on previous occasion 
beliefs: seems trustworthy beliefs: not as serious as standard rape-situation 

not dangerous to public 
purpose: retribution, no overload of prisons purpose: retribution 
plan: mitigation plan: extreme mitigation 
action: reduce standard sentence action: reduce standard sentence 

An MXP consists of three parts: (i) A MOP, which contains general information about the story described 
by the MXP. (ii) A set of XPs. Each of these XPs describes one aspect of the given case relative to one of the 
indices found in the story. It has the layout shown above, with the index, given in the facts-slot. (iii) A 
quantitative conclusion from the individual XPs, i.e., the actual sentence (not shown above). 

The case-base actually stores MXPs (and not XPs) for each member (case). The sentence in an old case is 
derived by the judge through consideration of the individual XPs of its MXP. Obviously this is not done using 
some kind of mathematical formula, so while the sentence is known and supplied in (iii), its derivation is only 
indicated in the plan- and action-slots. 

An MXP is thus a structure, which gives an interpretation and explanation of a 'story' (legal case) 
according to the relevant legal aspects. Each such aspect is represented by an XP in part (ii), and general 
knowledge of importance is stored in parts (i) and (iii). The MXP does not represent the story from a narrative 
point of view - e.g., there is no time sequence of events. It represents the story as seen from the various legal 
viewpoints. 

Based on the facts and beliefs of the new case it is possible to construct its MXP. The user of the system 
must supply the value of the purpose-slot, and the plan-slots are automatically filled according to the index of 
the individual XP, depending whether it is a mitigating or aggravating feature. 

The retrieval is then of all MXPs which have any index in common with the new case. These MXPs may 
now be arranged in a lattice, according to the number of indices common with the indices of the new case. This 
is similar to the so-called claim-lattice of HYPO (see [Ashley90l, p.40-42). 

At this stage the XPs belonging to the 'most-on-point' MXPs are selected. The 'most-on-point' MXPs are 
those MXPs in the lattice that have greatest overlap of common indices with the new case. 
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according to the relevant legal aspects. Each such aspect is represented by an XP in part (ii), and general
knowledge of importance is stored in parts (i) and (iii). The MXP does not represent the story from a narrative
point of view - e.g., there is no time sequence of events. It represents the story as seen from the various legal
viewpoints.

Based on the facts and beliefs of the new case it is possible to construct its MXP. The user of the system
must supply the value of the purpose-slot, and the plan-slots are automatically filled according to the index of
the individual XP, depending whether it is a mitigating or aggravating feature.

The retrieval is then of all MXPs which have any index in common with the new case. These MXPs may
now be arranged in a lattice, according to the number of indices common with the indices of the new case. This
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One could conceivably argue that those XPs belonging to retrieved MXPs, which do not have an index in 
common with the case at hand, ought to be discarded. However, those XPs undoubtly contribute and influence 
the final outcome (sentence) of the case where they aPPear. We therefore use this dissimilarity to impose a fine 
structure on the 'most-on-point' MXPs. The more non-relevant XPs a given MXP has, the less relevant it is 
judged to be to the given case (see [Tversky77]). 

We may thus finally define the set of 'most-most-on-point' MXPs as those with the largest numoor of 
indices common with the new case, and the smallest nilmber of indices different from the indices of the new case. 
These MXPs are retrieved, and support the judge in his decision in the new case. 

A qualitative approach to weighing of the MXPs and the individual XPs, including a cut-off thfeshold for 
controlling the number of retrieved MXPs is under development, and will not be considered here. 

4. Summary. 

The problems we have discussed in this paper relates to quantitative use of 'stories' .Our concern has been 
to choose and adapt an appropriate knowledge representation and retrieval method. We decided to adapt and 
generalize a knowledge representation structure: XP, which is convenient for giving explanations for stories. In 
our case these explanations are not related to episodic events, 'but to the deliberations and decisions of the 
judiciary. 

The reason we adopted this approach is our wish to build a decision support system for sentencing. Such a 
system should not propose just a single sentence, but supply several possible ways of passing sentence in such a 
way that the justification of the sentence is evident. Our solution uses the MXP knowledge-structure discussed in 
the previous paragraph. 
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Abstract: Starting from cognitive psychology findings concerning interindividual differences 
in learning from cases, we suggest strategies to optimize the learners' case processing 
capabilities by art appropriate design of the tutoring system. We introduce the systems 
CABAT (giving remindings in simulation environments), AXE (modeling effective case 
processing strategies) artd CACHET (teaching effective processing strategies for cases of 
different origin). 

It is well known that· the acqmsltlOn of a problem solving skill (e.g., learning to program) or the 
understanding of an abstract principle (e.g., the concept of force in physics) is at least in its initial stages highly 
dependent on information about concrete, illustrative examples. These specific examples help learners to perform 
their first steps in using new procedures and applying new principles. Thus, they can be the basis for the 
development of more abstracted and generalized representations of skill and principles. 

Not surprisingly, then, teaching strategies involving cases have been an area of active research, resulting in a 
number of promising tutoring systems covering domains such as instructional planning (Kolodner, 1991; Du & 
McCalla, 1991), natural sciences (Murray et al. 1990; Edelson 1991), business (Ferguson et aI., 1991), and many 
more. 

However, it was observed that just solving tutorial cases does not necessarily foster competence (Grasel, 
Prenzel & Mandl, 1993). Crucial for successful later retrieval is a rich mental indexing structure of the cases that 
counteracts against the consequences of biasing and failures of retention. The more the learner is able to connect 
a new case to existing knowledge, the more he profits for later problem solving. In instructional settings, 
maximizing this connection should be supported by a tutorial module. We attempt to give this support in two 
ways that are explained in the following: one is to remind the learner of a previous case that is similar to the 
current one, and the other is to teach him effective case processing strategies. 

Our suggestions are based on empirical work concerning interindividual differences in learning from 
examples. For instance, Chi, Bassok, Lewis, Reimann, and Glaser (1989) analyzed how students acquire problem 
solving knowledge concerning mechanics by studying worked-out examples. The study revealed important 
differences between successful and less successful students, success measured in terms of correct solutions to 
problems. Successful students mentioned more often that they didn't understand a certain part of the worked-out 
example. Besides this difference in monitoring understanding of the example text, successful students also 
engaged in a series of activities to overcome their problems: They elaborated on the relations between a 
particular step in the example and the goals behind that step. They further attempted to come up with a 
specification of conditions that could explain why the operator under question was applied. Finally, they 
elaborated on the effects the application of an operator had beyond those mentioned in the example. The less 
successful students displayed either none or considerably less of these elaborative inferences. 

This so-called "self-explanation effect" has been reconstructed several times both in physics domains 
(VanLehn, Jones & Chi, 1992, Reimann, Wichmann & Schult, 1993) and programming (pirolli & Recker, 1991). 
Besides its psychological relevance, we want to stress the importance of these empirical findings for research on 
intelligent tutoring systems. Building on these studies and the respective cognitive models, we try to foster the 
effectiveness of case-based teaching in two respects: Using remindings instead of predefined cases, and teaching 
case elaboration strategies. 

1. Remindings in Simulation Environments 

Simulation based learning environments have become an established tutoring system architecture (see de 
long, 1991, for an overview). Communicating with reactive systems of this kind leaves the control of the 
interaction to the learner, which is a part of the "discovery learning" philosophy usually underlying these 
systems. Often it was mentioned that this form of teaching requires some guidance to prevent the student from 
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ways that are explained in the following: one is to remind the leamer of a previous case that is similar to the
current one, and the other is to teach him effective case processing strategies.

Our suggestions are based on empirical work concerning interindividual differences in learning from
examples. For instance, Chi, Bassok, Lewis, Reimann, and Glaser (1989) analyzed how students acquire problem
solving knowledge concerning mechanics by studying worked—out examples. The study revealed important
differences between successful and less successful students, success measured in terms of correct solutions to
problems. Successful students mentioned more often that they didn’t understand a certain part of the worked—out
example. Besides this difference in monitoring understanding of the example text, successful students also
engaged in a series of activities to overcome their problems: They elaborated on the relations between a
particular step in the example and the goals behind that step. They further attempted to come up with a
specification of conditions that could explain why the operator under question was applied. Finally, they
elaborated on the effects the application of an operator had beyond those mentioned in the example. The less
successful students displayed either none or considerably less of these elaborative inferences.

This so-called “self-explanation effect” has been reconstructed several times both in physics domains
(VanLehn, Jones & Chi, 1992, Reimann, Wichmann & Schult, 1993) and programming (Pirolli & Recker, 1991).
Besides its psychological relevance, we want to stress the importance of these empirical findings for research on
intelligent tutoring systems. Building on these studies and the respective cognitive models, we try to foster the
effectiveness of case-based teaching in two respects: Using remindings instead of predefined cases, and teaching
case elaboration strategies.

1. Remindings in Simulation Environments

Simulation based learning environments have become an established tutoring system architecture (see de
Jong, 1991, for an overview). Communicating with reactive systems of this kind leaves the control of the
interaction to the learner, which is a part of the “discovery learning” philosophy usually underlying these
systems. Often it was mentioned that this form of teaching requires some guidance to prevent the student from
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getting lost in the space of possible situations (Elsom-Cook, 1990, Bredeweg & Winkels, 1991). Helping the 
student in organizing the interaction is one way to supply this guidance, but it is seldom provided. This help can 
also optimize the connections between cases and background knowledge, a requirement for effective indexing, as 
mentioned above. 

Simulation environments (and tutoring systems in general) provide the means to work on a single problem at 
a time, but mostly they do not support comparing two or more problems. If they do, they provide help in 
analyzing a series of events, e.g. with a spreadsheet-like tool for recording simulation states and cognitive 
activities of the learner (Reimann, 1992). Still it is up to student to decide which events to consider and how to 
perform the comparison. This task can be supported by a case-based teaching component which serves as an 
external memory assistant for the student. 

How can this support be given? Up tonow, case-based tutors always use predefined cases for teaching. But in 
simulation environments, specifying cases in advance may not fit to the discovery learning philosophy. 
Presenting cases without restricting the student unnecessarily can' be achieved by, using the interaction itself as a 
case repository that is exploited by a memory assistant that reminds the learner of previous problems similar to 
the current one. This approach allows the learner to interact with the simulation environment as usual, but 
provides the opportunity for her to transfer from a prior to the current situation and to generalize across, the two 
cases. Furthermore, we suppose that remindings activate elaborations produced when the reminded event first 
took place, and that the current case can be elaborated more thoroughly by relating it with the problem solving 
episode the system reminds of. In the light of the findings of the Chi et al. (1989) study, there should be more 
effective learning from the cases dealt with. 

The system CABAT (Schult, 1993) puts forward a method of generating such remindings. CABAT was used 
as a component of a microworld learning environment in which students can design and run simulated 
experiments concerning elastic impacts, and it seems to be applicable to other domains that are formula-based. 
The central idea of CABAT is to store all experiments performed by the learner as cases. This episodic 
knowledge is put to use whenever the student encounters a situation that is similar to a previous one: Then the 
system reminds her of this previous case and explains the particular kind of similarity, so that at least parts of the 
prior solution can be transferred and adapted to the present case. In order to define similarity appropriately for 
this task, CABAT integrates an algebraic analysis of the domain formulas with a domain-independent theory of 

Fig. 1. A part of the graphical representation of a concept of similarity gained by CABJU in 
the domain of elastic impacts of disks 
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a time, but mostly they do not support comparing two or more problems. If they do, they provide help in
analyzing a series of events, e.g. with a spreadsheet-like tool for recording simulation states and cognitive
activities of the learner (Reimann, 1992). Still it is up to student to decide which events to consider and how to
perform the comparison. This task can be supported by a case-based teaching component which serves as an
external memory assistant for the student.

How can this support be given? Up tonow, case-based tutors always use predefined cases for teaching. But in
simulation environments, specifying cases in advance may not fit to the discovery learning philosophy.
Presenting cases without restricting the student unnecessarily can’ be achieved byusing the interaction itself as a
case repository that is  exploited by a memory assistant that reminds the learner of previous problems similar to
the current one. This approach allows the learner to interact with the simulation environment as usual, but
provides the opportunity for her to transfer from a prior to the current situation and to generalize across‘the two
cases. Furthermore, we suppose that remindings activate elaborations produced when the reminded event first '
took place, and that the current case can be elaborated more thoroughly by relating it with the problem solving
episode the system reminds of. In the light of the findings of the Chi et a1. (1989) study, there should be more
effective learning from the cases dealt with.

The system CABAT (Schult, 1993) puts forward a method of generating such remindings. CABAT was used
as a component of a microworld learning environment in which students can design and run simulated
experiments concerning elastic impacts, and it seems to be applicable to other domains that are formula-based.
The central idea of CABAT is to store all experiments performed by the learner as cases. This episodic
knowledge is put to use whenever the student encounters a situation that is similar to a previous one: Then the
system reminds her of this previous case and explains the particular kind of similarity, so that at least parts of the
prior solution can be transferred and adapted to the present case. In order to define similarity appropriately for
this task, CABAT integrates an algebraic analysis of the domain formulas with a domain—independent theory of

Fig. 1 .  A part of the graphical representation of a concept of similarity gained by CABAT in
the domain of elastic impacts of disks



different types of similarity. This theory classifies cases by structural and superficial features, preferring the 
former. 

2. Modeling Case Elaboration Strategies 

The long term goal of the AXE project ("Active Example Elaborations", Reimann & Schult, 1991; Reimann, 
Schult & Wichmann, i. pr.,) is to develop a computer program that helps studentS with learning from cases that 
have the form of worked-out examples. The program will receive the same example as a human student and will 
try to comprehend it, aided by domain-specific knowledge and an explicit strategy for example elaboration. The 
process and the outcome of the example understanding attempts should form the basis for an interaction between 
the machine and the human student, where the system tries to help the student in elaborating effectively. Both to 
generate output that is potentially meaningful for the student and to enable the program to follow the student 
through her elaboration activities, it needs information about example comprehension strategies as put to use by 
human learners. Therefore, a prerequisite for the above tutorial scenario are computational models of elaboration 
strategies and the knowledge they process. In the AXE architecture, we incorporated elaboration processes found 
in the subjects of the Chi et al. (1989) study when reading the mechanics examples, among others. 
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Representation 
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Problems 

AXE has two components: An example understander that takes as input a worked-out example text (not in 
natural language form) and produces as output an enriched case representation of the information contained in 
the example, and a problem solver that takes as input a problem description and produces a sequence of solution 
steps, relying mainly on the knowledge gained by the example understander (i.e., cases). This design allows us to 
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evaluate the quality of different learning methods by observing their impact on problem solving. Within an 
instructional application, this will allow us to demonstrate to students the relative merits of different learning 
from examples methods in terms of problem solving gain. Since AXE is geared towards modeling (and later 
supporting) the initial stages of knowledge acquisition from examples for learners with little domain specific 
knowledge, it is equipped with example elaboration strategies that can be employed by agents with varying 
degrees of domain knowledge. These elaboration strategies (basically, methods for solution enhancement and 
plan recognition) are not domain-dependent. but belong to the standard repertoire of normal adult learners. 
Depending on whether AXE is to be used for descriptive modeling (e.g., to capture characteristics of a poor 
learner) or for prescriptive purposes (e.g., to serve as an example learning model that should be imitated) it can 
be equipped with more advanced example study methods one finds only in more active human learners and 
readers. Running AXE in various configurations, we found clear relations between example study performance 
and later (case-based) problem solving. 

3. An Integrated Case-Based Teaching Environment 

Building on the insights gained from the AXE project, we are now using these results for instructional 
purposes: To demonstrate to students the value of knowledge-based elaborations of worked-out examples and to 
give them a first model of how to elaborate on these cases in an active, expectation-driven way. This case-based 
strategy tutor should help students in the initial phase of learning, a phase in which many students experience 
more frustration than insight. 

Thus, we are concerned not just with communicating domain knowledge. but also with teaching effective 
case processing methods. Beside this focus on strategy training, we want to integrate cases of different origin: 
predefined cases (as in common case-based tutoring systems), reminded cases (as in CABAl) and on-line 
generated cases. As the student should not be overwhelmed with cases, this requires a selective dynamic 
scheduling process that determines in each situation an appropriate case to be presented (or none at all). 

The domain chosen for the first prototype is chess endgames, an area which is usually taught by cases. 
Eventually, the system CACHET ("Case-Based Chess Endgame Tutor") will support the learner with various 
methods: 

During the example study phase, it should 

•	 Provide an interface so that student-generated elaborations can become part of the case representation 

•	 Point out (remind) similiarities between examples (parts of examples) 

•	 Demonstrate a good example processing strategy and the elaboration methods involved in a way that can be 
understood/copied by human learners 

• Give direct advice on example processing procedures 

During (case-based) problems solving, it should 

•	 Remind the learner of similar examples or problems solved already (problems the student solved successfully 
become example cases, unsuccessful solutions can serve as counterexamples; both are treated as cases); 

•	 Provide additional examples that were not produced by the student 

•	 Support case modification 

• Give hints and advice. 
Our first goal with CACHET is to implement a tutor that supports all phases of case-based reasoning and learning 
with worked-out examples: encoding of examples, indexing, retrieval, modification, and learning (of new 
indices). The first phase (encoding) is an issue often ignored in research on case-based reasoning where the 
assumptions is that cases "are there", whereas we stress that cases need to be produced. The second goal is to 
combine several instructional strategies, ranging from non-directive forms (such as pointing out a similarity or 
difference to the student without further comments) over semi-directive (modeling good behavior) to rather 
directive forms (giving concrete advice). How and when these strategies are to be used depends on the general 
pedagogical strategy (e.g., stressing exploration vs. stressing immediate feedback) and on characteristics of the 
student, both general ones (such as domain knowledge already acquired or a preference to first work on ones 
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Fig. 3. Enriching a presented case step by elaborating it 

own) and specific ones (e.g., the state of knowledge after three examples). We intend to use methods of 
opportunistic planning to account for the various factors that will influence the details of the tutorial strategy. 

A prerequisite for all these forms of tutorial interaction is that the tutorial program and the student have a 
shared language to denote objects, relations and pheno~ena in the domain under study. In our case, the tutorial 
discourse pertains to two levels: the object level examples and problem solutions (together: cases) and a meta
level, i. e., methods of elaborating example solutions and using them for problem solving. 

Over the last months, we have been developing a first version of an interface that provides student and system 
with a common language fo~ the object level moves and reasons for moves in simple chess endgames. One 
should note that such an interface already constitutes an instructional manipulation: The student is provided with 
a case description language, and using it to describe chess endgame positions, moves and plans may already 
result in a deeper processing of examples (and counter-examples). 

The case description langullge was developed mainly by an analysis of available textbooks on endgames. At 
each step of the presented example, the learner is offered a set of domain specific elaborations ranging from 
paraphrazing comments as "check" to more higher level elaborations as "avoid opposition". Currently we are 
evaluating the effects of such a elaboration environment on learning. The next step will be to add a retrieval 
component and a case memory indexed by the elaborations, so that elaborating is not only a prerequisite for the 
learner's remembering of important situations, but also enables the system to remind the learner, if appropriate. 

To summarize: Psychological research provides us with an increasing number of observations that show how 
humans make use of specific instances and cases, both for problem solving and learning. In order to develop 
forms of computer-based instruction that take these findings into account, research on case-based reasoning 
seems to provide the right sort of modeling techniques. We illustrated with three examples how these techniques 
can be put to use for instructional purposes. 
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own) and specific ones (e.g., the state of knowledge after three examples). We intend to use methods of
opportunistic planning to account for the various factors that will influence the details of the tutorial strategy.

A prerequisite for all these forms of tutorial interaction is  that the tutorial program and the student have a
shared language to denote objects, relations and phenomena in the domain under study. In our case, the tutorial
discourse pertains to two levels: the object level examples and problem solutions (together: cases) and a meta-
level, i. e., methods of elaborating example solutions and using them for problem solving.

Over the last months, we have been deveIOping a first version of an interface that provides student and system
with a common language for the object level moves and reasons for moves in simple chess endgames. One
should note that such an interface-already constitutes an instructional manipulation: The student is provided with
a case description language, and using it to describe chess endgame positions, moves and plans may already
result in a deeper processing of examples (and counter-examples).

The case description language was develOped mainly by an analysis of available textbooks on endgames. At
each step of the presented example, the learner is offered a set of domain specific elaborations ranging from
paraphrazing comments as “chec ” to more higher level elaborations as “avoid opposition”. Currently we are
evaluating the effects of such a elaboration environment on learning. The next step will be to add a retrieval
component and a case memory indexed by the elaborations, so that elaborating is not only a prerequisite for the
learner’s remembering of important situations, but also enables the system to remind the learner, if appropriate.

To summarize: Psychological research provides us with an increasing number of observations that show how
humans make use of specific instances and cases, both for problem solving and learning. In order to develop
forms of computer-based instruction that take these findings into account, research on case-based reasoning
seems to provide the right sort of modeling techniques. We illustrated with three examples how these techniques
can be put to use for instructional purposes.
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Abstract. ELM is a case-based learning system that interprets, stores, and reuses solutions to programming 
tasks. Information from an episodic learner model can be used to reduce the effort creating explanations of 
how and why a solution to a programming problem produced by a programmer is buggy or suboptimal. 
Program recognition adapted to a particular programmer can be used by tutoring and help systems to 
individualize help and to improve tutorial activities adapted to the users needs, 

1 Introduction 

In intelligent tutoring systems or knowledge-based help systems, simulating how novices understand and code 
programs can be useful to build a valid, cognitive student model. Up to now, approaches to program recognition 
and program debugging based on cognitive models (e.g., the CMU-LISP-tutor [1]) do not adapt to the 
programmer, that is, they do not learn how a particular programmer typically solves programming problems. 
Information resulting from program diagnosis can be used in many systems to build a student model, but 
information from such a model is used only for tutorial and remedial purposes and not for triggering or 
improving the diagnostic process itself. So, each diagnosis begins from the scratch. 

From a CBR point of view, this seems not to be optimal. Programmers use examples and previous problem 
solutions when solving new programming problems. They search for solutions to analog problems and alter 
existing code (11, 13]. Therefore, results from previous analyses of program code demonstrated in examples or 
coded by the same programmer can effectively be reused when diagnosing the current program code. 
Considering these findings, we have developed the ELM system (11]. Similar to the model-tracing approach in 
the CMU-LISP-tutor [2], ELM tries to automatically generate the same code the novice programmer has 
produced as a solution to a problem solving task. When generating the code, the system can reuse solutions to 
subgoals and corresponding plans stored in the episodic learner model (ELM) according to case-based 
reasoning. 

2 Description of ELM 

The CBR-approach employed in ELM differs from many other CBR systems in some important aspects. ELM 
relies on a rule-based problem solving system being able to analyze program code by its own without 
considering pre-stored cases. As it is a case-based learning system, ELM learns about an individual learner from 
creating cases from explanation structures that result from analyzing examples and problem solutions. With a 
growing case-base, information from these cases can be used to shorten the problem solving process of the 
diagnostic component by reusing previous solutions and by avoiding dead ends during search. As the system 
does not start with pre-stored cases, the rule-based diagnostic process will be described first. Second, we will 
introduce and demonstrate how cases are created, stored, indexed, and used. 

2.1 The Diagnostic Process 

Diagnosing program code in ELM works as follows. Novices programming in the ELM-programming 
environment (12] code function definitions in a structured LISP-editor [5], so their function code is at least 
syntactically correct. The cognitive analysis of the program code employs an explanation-based generalization 
(EBG) method [7]. It starts with a task description related to higher concepts (general and LISP-specific 
programming concepts, plans, and schemata) in the knowledge base. Every concept comprises plan 
transformations and rules describing different ways to solve the goal given by the current plan. Applying a rule 
results in comparing the plan description to the corresponding part of the student's code. In the plan description, 
further concepts may be addressed. The cognitive diagnosis is called recursively. It terminates when a function 
name, a parameter, or a constant are matched. The cognitive diagnosis results in a derivation tree built from all 
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Abstract. ELM is a case—based learning system that interprets, stores, and reuses solutions to programming
tasks. Information from an episodic learner model can be used to reduce the effort creating explanations of
how and why a solution to a programming problem produced by a programmer is buggy or suboptimal.
Program recognition adapted to a particular programmer can be used by  tutoring and help systems to
individualize help and to improve tutorial activities adapted to the users needs.

l Introduction

In intelligent tutoring systems or knowledge-based help systems, simulating how novices understand and code
programs can be useful to build a valid, cognitive student model. Up to now, approaches to program recognition
and program debugging based on cognitive models (e.g., the CMU-LISP—tutor [1]) do not adapt to the
programmer, that is, they do not learn how a particular programmer typically solves programming problems.
Information resulting from program diagnosis can be used in many systems to build a student model, but
information from such a model is used only for tutorial and remedial purposes and not for triggering or
improving the diagnostic process itself. So, each diagnosis begins from the scratch.

From a CBR point of view, this seems not to be optimal. Programmers use examples and previous problem
solutions when solving new programming problems. They search for solutions to analog problems and alter
existing code [ I I ,  13]. Therefore, results from previous analyses of program code demonstrated in examples or
coded by the same programmer can effectively be reused when diagnosing the current program code.
Considering these findings, we have developed the ELM system [11]. Similar to the model-tracing approach in
the CMU-LISP-tutor [2], ELM tries to automatically generate the same code the novice programmer has
produced as a solution to a problem solving task. When generating the code, the system can reuse solutions to
subgoals and corresponding plans stored in the episodic learner model (ELM) according to case-based
reasoning.

2 Description of ELM

The CBR-approach employed in ELM differs from many other CBR systems in some important aspects. ELM
relies on a rule-based problem solving system being able to analyze program code by its own without
considering pre-stored cases. _As it is a case-based learning system, ELM learns about an individual learner from
creating cases from explanation structures that result from analyzing examples and problem solutions. With a
growing case—base, information from these cases can be used to shorten the problem solving process of the
diagnostic component by reusing previous solutions and by avoiding dead ends during search. As the system
does not start with pre-stored cases, the rule-based diagnostic process will be described first. Second, we will
introduce and demonstrate how cases are created, stored, indexed, and used.

2.1 The Diagnostic Process

Diagnosing program code in ELM works as follows. Novices programming in the ELM-programming
environment [12 ]  code function definitions in  a structured LISP—editor [5 ] ,  so their function code i s  at least
syntactically correct. The cognitive analysis of the program code employs an explanation-based generalization
(EBG) method [7]. It starts with a task description related to higher concepts (general and LISP-specific
programming concepts, plans, and schemata) in the knowledge base. Every concept comprises plan
transformations and rules describing different ways to solve the goal given by the current plan. Applying a rule
results in comparing the plan description to the corresponding part of the student's code. In the plan description,
further concepts may be addressed. The cognitive diagnosis is called recursively. It terminates when a function
name, a parameter, or a constant are matched. The cognitive diagnosis results in a derivation tree built from all
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Fig. 1. Partial derivation tree explaining the code (equa 1 (car 1 i) nil) for the plan 
(NIL-TEST (FIRST-ELEMENT (PARAMETER ?LIST))). 

Legend: ITALIC-CAPITALS: plans, CAPITALS: concepts, Italics: rules, bold: LISP code. 

concepts and rules identified to explain the student's solution. This derivation tree is an explanation structure in 
the sense of EBG. 

The interpretation of a derivation tree can be best demonstrated by an example. Let us assume that a 
programmer had to code a function definition containing a case decision. In one of the cases of this case decision 
he or she had to test whether the first element of a list that is bound to a local variable from the parameter list of 
the function definition has the truth-value NIL. The programmer coded (equal (car li) nil) asa 
solution to the plan (NIL-TEST (FIRST-ELEMENT (PARAMETER ?LIST))). This plan addresses the concept 
NIL-TEST which indexes some rules describing how such a plan may be solved. As a best interpretation the 
Equal-NIL-Test-Rule was applied transforming the current plan into the equivalent plan (EQUALITY (FIRST
ELEMENT (PARAMETER ?LIST)) (TRUTH-VALUE NIL)) testing for the truth-value NIL by directly comparing 
the first element of the list to the truth-value NIL. This plan addresses the programming concept EQUALITY 
that can be solved by coding an appropriate operator for the equality operation and then solving the subplans for 
both arguments of the equality operation. This procedure is called recursively and results in the derivation tree 
shown in Figure 1. 

2.2 Creating, Indexing, and Using Cases 

Concepts addressed in the derivation tree are the basis for creating episodic frames. These frames are integrated 
into the knowledge base as instances of their concepts. Therefore, cases are not stored and indexed as a whole. 
They are distributed regarding subplans used during problem solving. If an episodic frame is the first instance 
under a concept of the knowledge base, this single case is generalized from structural and semantic aspects in the 
data. This generalization mechanism is comparable to single-case generalization in EBG. Additionally, 
similarity-based· generalization of data and plans can occur. With increasing knowledge about a particular 
learner, hierarchies of generalizations and instances are built under the concepts and rules of the knowledge 
base. 

An example of small hierarchies after inserting frames from two cases into the knowledge base is shown in 
Fig. 2. Episodic instances and generalizations constitute the episodic learner model. As information about the 
learner is directly related to the expert-like domain knowledge, this learner model is a type of "overlay model" 
[3]. Information from episodic instances can be used in further diagnoses if the current part of the code matches 
a solution to a similar plan stored in the episodic learner model. Two different cases of matching can be 
distinguished. First, if the current plan including all nested subplans matches the plan stored with the episodic 
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concepts and rules identified to explain the student’s solution. This derivation tree is an explanation structure in
the sense of EEG.

The interpretation of a derivation tree can be best demonstrated by an example. Let us assume that a
programmer had to code a function definition containing a case decision. In one of the cases of this case decision
he or she had to test whether the first element of a list that is bound to a local variable from the parameter list of
the function definition has the tru-th—value NIL. The programmer coded ( equa l  ( ca r  l i )  nil) as a
solution to the plan (NIL-TEST (FIRST—ELEMENT (PARAMETER ?LIST))). This plan addresses the concept
NIL-TEST which indexes some rules describing how such a plan may be solved. As a best interpretation the
Equal-NIL-Test-Rule was applied transforming the current plan into the equivalent plan (EQUALITY (FIRST-
ELEMENT (PARAMETER ?LIST)) ( TRUTH -VALUE NIL )) testing for the truth-value NIL by directly comparing
the first element of the list to the truth-value NIL. This plan addresses the programming concept EQUALITY
that can be solved by coding an appropriate operator for the equality operation and then solving the subplans for
both arguments of the equality operation. This procedure is called recursively and results in the derivation tree
shown in Figure 1.

2.2 Creating, Indexing, and Using Cases

Concepts addressed in the derivation tree are the basis for creating episodic frames. These frames are integrated
into the knowledge base as instances of their concepts. Therefore, cases are not stored and indexed as a whole.
They are distributed regarding subplans used during problem solving. If an episodic frame is the first instance
under a concept of the knowledge base, this single case is generalized from structural and semantic aspects in the
data. This  generalization mechanism is comparable to single-case generalization in EEG.  Additionally,
similarity-based generalization of data and plans can occur. With increasing knowledge about a particular
learner, hierarchies of generalizations and instances are built under the concepts and rules of the knowledge
base.

An example of small hierarchies after inserting frames from two cases into the knowledge base is shown in
Fig. 2. Episodic instances and generalizations constitute the episodic learner model. As information about the
learner is directly related to the expert-like domain knowledge, this learner model is a type of “overlay model"
[3]. Information from episodic instances can be used in further diagnoses if the current part of the code matches
a solution to a similar plan stored in the episodic learner model. Two different cases of matching can be
distinguished. First, if the current plan including all nested subplans matches the plan stored with the episodic
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Fig. 2. Hierarchy of episodic instances and generalizations after inserting episodic frames 
for concepts from the derivation tree (Fig. 1) as a second episode into the knowledge base. 

instance and if the currently considered part of the code exactly' matches the code stored with the episodic 
instance then the previous explanation can easily be reconstructed from episodic frames belonging to the same 
episode. This refers to directly reusing explanations from previous cases. Second, if subplans and/or code match 
only partially then the diagnostic process is triggered using information from the episodic frames. That is, rules 
that were successfully applied in previous cases are tried first. So, the CBR-method is used in the sense of 
'shortcuts' [4] while constructing a new explanation. 

2.3 Relation to Other Systems 

ELM is, up to date, one of the few approaches to automated diagnosis in a tutoring or help system employing a 
CBR method. Another CBR approach to diagnosis of program code is realized in the newest version of SCENT 
[6], but it differs from ELM in several aspects. In SCENT, pre-analyzed cases are stored as a whole regarding a 
static granularity hierarchy that expresses aggregation and abstraction dimensions. These cases are used during 
analysis of the student's code to give detailed advice. In ELM, only examples from the course materials are pre
analyzed and the resulting explanation structures are stored in the individual case base of the learner model. 
Elements from the explanation structures are stored as instances of their corresponding concepts from the 
domain knowledge base, so cases are distributed in the form of instances of concepts. Generalization hierarchies 
of instances are built up from explanations of the program code that a student produced to solve programming 
problems. Therefore, generalization hierarchies reflect the process of knowledge acquisition for a particular 
student. 

3 Evaluation Studies 

3.1 Reduction of Computational Effort 

In a first study, we analyzed interaction protocols obtained from 11 subjects while working on exercises in 
ELM-PE [12] during the first six lessons of our introductory programming course. In the first six lessons, these 
students worked on 36 - 40 different programming tasks producing and evaluating among 46 and 77 function 
definitions. The more function definitions students evaluated and tested to solve a problem the more errors they 
made during programming. Altogether 697 cases were observed and analyzed by the cognitive diagnosis. The 
median case required 76 rules to be tested when no episodic information was used. This number reduced to a 
median of 29 rules tested per case when episodic information was used. The same results can be looked at in a 
different way. In 91 % of all cases (632 out of 697) applying episodic information reduced computational effort. 
In only 11 cases (1.6 %), taking episodic information into account resulted in additional computations. 

3.2 Predicting Individual Problem Solutions 

In a further simulation study, we automatically predicted the program code that 20 novice programmers 
produced solving recursive programming problems during three lessons about recursion of our introductory 
programming course. This was done with and withoUl considering information from the individual case base of 
ELM. For every new task, we compared the first complete function definition the programmer coded to the 

, During matching names of local variables and recursive function calls are unified. 
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instance and if the currently considered part of the code exactly1 matches the code stored with the episodic
instance then the previous explanation can easily be reconstructed from episodic frames belonging to the same
episode. This refers to directly reusing explanations from previous cases. Second, if subplans and/or code match
only partially then the diagnostic process is triggered using information from the episodic frames. That is, rules
that were successfully applied in previous cases are tried first. So, the CBR-method is used in the sense of
'shortcuts' [4] while constructing a new explanation.

2.3 Relation to Other Systems

ELM is, up to date, one of the few approaches to automated diagnosis in a tutoring or help system employing a
CBR method. Another CBR approach to diagnosis of program code is realized in the newest version of SCENT
[6], but it differs from ELM in several aspects. In SCENT, pre—analyzed cases are stored as a whole regarding a
static granularity hierarchy that expresses aggregation and abstraction dimensions. These cases are used during
analysis of the student's code to give detailed advice. In ELM, only examples from the course materials are pre—
analyzed and the resulting explanation structures are stored in the individual case base of the learner model.
Elements from the explanation structures are stored as instances of their corresponding concepts from the
domain knowledge base, so cases are distributed in the form of instances of concepts. Generalization hierarchies
of instances are built up from explanations of the program code that a student produced to solve programming
problems. Therefore, generalization hierarchies reflect the process of knowledge acquisition for a particular
student.

3 Evaluation Studies

3.1 Reduction of Computational Effort

In a first study, we analyzed interaction protocols obtained from 11 subjects while working on exercises in
ELM-PE [12] during the first six lessons of our introductory programming course. In the first six lessons, these
students worked on 36 - 40 different programming tasks producing and evaluating among 46 and 77 function
definitions. The more function definitions students evaluated and tested to solve a problem the more errors they
made during programming. Altogether 697 cases were observed and analyzed by the cognitive diagnosis. The
median case required 76' rules to be tested when no episodic information was used. This number reduced to a
median of 29 rules tested per case when episodic information was used. The same results can be looked at in a
different way. In 91% of all cases (632 out of 697) applying episodic information reduced computational effort.
In only 11 cases (1.6 %), taking episodic information into account resulted in additional computations.

3.2 Predicting Individual Problem Solutions

In a further simulation study, we automatically predicted the program code that 20 novice programmers
produced solving recursive programming problems during three lessons about recursion of our introductory
programming course. This was done with and without considering information from the individual case base of
ELM. For every new task, we compared the first complete function definition the programmer coded to the

1During matching names of local variables and recursive function calls are unified.
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Tab. 1. Number and percentage of different predictions for code with and without considering individual cases 
for 302 recursive function definitions produced by 20 Subjects for up to 17 different programming tasks. 

Cases Number of Predicted Solutions 

Case-based Canonical 

Exact prediction 127 87 
(42.1%) (28.8%) 

Exact prediction except exchanging arguments 23 19 
in commutative functions (7.6%) (6.3%) 

Prediction correct except for a coding error 68 64 
(22.5%) (21.2%) 

Bad or incorrect prediction 84 132 
(27.8%) (43.7%) 

function code generated by the diagnostic component. Considering episodic information from the case base 127 
out of 302 cases (42.1 %) were exactly predicted (Column 'Case-based' in Tab. 1). That is, the predicted code 
totally matched the observed code, except for names of local variables and self-defined functions. In 11 of these 
cases, even an error was predicted that was observed from the programmer in a previous task. Predicting the 
expected code for a new task without considering individual cases (Column 'CanoHical' in Tab. 1) resulted in 87 
cases (28.8%) where the code was predicted exactly. In 23 vs. 19 of all cases, the code was exactly predicted 
except for exchanging arguments in commutative functions. In 68 vs. 64 of all cases, the code was predicted in 
the correct direction, that is, Subjects produced an error that was not predicted by the system. However, it was 
the same algorithm and the rest of the code did match. In 84 (27.8%) vs. 132 (43.7%) of all cases the system's 
prediction was bad or even completely false. 

One may wonder why there are so many cases where the code produced by the programmer could be 
predicted correctly by the system, whether considering episodic information or not. This result can be put down 
to the fact that programming novices often try to reuse code from examples and from previous solutions (Weber 
& Bogelsack, in press). Therefore, algorithms and code used to solve similar programming problems do not 
differ so much from expected, canonical solutions. The chance to correctly predict code drastically decreases 
when programmers have experiences in other programming languages and use different programming concepts 
and different algorithms. To predict such code correctly their experiences with other programming languages 
must have been included into the knowledge base by formulating appropriate programming concepts and rules 
and creating cases from their prior experiences. These experiences are not known to the system, so it will often 
fail to predict their solutions. 

In 200 of all 302 cases (66.2%), predictions with and without considering cases did not differ. This number 
may appear very high, but one must consider, that only for a small number of examples from the materials cases 
were stored in the case base. All other cases were built up individually when analyzing code produced by the 
programmer. So, there is only a chance [or episodic information to trigger the diagnosis or the automatic 
generation of code if deviations from the expected, canonical way of programming were observed in previous 
cases and could be applied in the current case. In 102 of all predictions this case happened. In 74 of these 102 
cases (72.5%), considering information from the case base resulted in a good prediction that was better than the 
canonical prediction. In 15 cases (14.7%) the canonical prediction (without considering individual cases) made a 

.better prediction, and in 13 cases (12.7%) both simulation types failed to make a good prediction. 

3.3 Comparing ELM to Analogy-based Systems 

Another advantage of an individualized, episodic learner model stems from its potential to find analogies and 
remindings to examples from the learning materials and to solutions from previous programming episodes. For 
this purpose, we have developed a fast, explanation-based retrieval algorithm (EBR, [9]). We compared our 
EBR-method to the ARCS-model (8). Our simulation showed that in most cases the EBR method retrieved 
analogs as well as the ARCS-method and in some cases the EBR-method outperformed the ARCS-method [9J. 

In a related experiment, we compared finding analogies by the EBR-method and the ARCS-model with 
similarity ratings judged by programming novices and by advanced programmers [lOJ. In this cxperiment, too, 
retrieving analogs by the EBR-method showed a slightly higher concordance with subjects' ratings than results 
from simulations with the ARCS-method. For both models, however, results from simulations were in higher 
concordance with ratings from the "Advanced" group compared to "Novices'" ratings. These findings are typical 
for user or learner models that are based on overlay models as they reflect knowledge about a learner from an 
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for 302 recursive function definitions produced by 20 Subjects for up to 17  different programming tasks.

Cases Number of Predicted Solutions
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Prediction correct except for a coding error 68 64
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Bad or incorrect prediction 84 132
(27.8%) (43.7%)

function code generated by the diagnostic component. Considering episodic information from the case base 127
out of 302 cases (42.1%) were exactly predicted (Column 'Case—based‘ in Tab. 1). That is, the predicted code
totally matched the observed code, except for names of local variables and self-defined functions. In 11 of these
cases, even an error was predicted that was observed from the programmer in a previous task. Predicting the
expected code for a new task without considering individual cases (Column 'Canonical' in Tab. 1) resulted in 87
cases (28.8%) where the code was predicted exactly. In 23 vs. 19 of all cases, the code was exactly predicted
except for exchanging arguments in commutative functions. In 68 vs. 64 of all cases, the code was predicted in
the correct direction, that is, Subjects produced an error that was not predicted by the system. However, it was
the same algorithm and the rest of the code did match. In 84 (27.8%) vs. 132 (43.7%) of all cases the system's
prediction was bad or even completely false.

One may wonder why there are so many cases where the code produced by the programmer could be
predicted correctly by the system, whether considering episodic information or not. This result can be put down
to the fact that programming novices often try to reuse code from examples and from previous solutions (Weber
& Bogelsack, in press). Therefore, algorithms and code used to solve similar programming problems do not
differ so much from expected, canonical solutions. The chance to correctly predict code drastically decreases
when programmers have experiences in other programming languages and use different programming concepts
and different algorithms. To predict such code correctly their experiences with other programming languages
must have been included into the knowledge base by formulating appropriate programming concepts and rules
and creating cases from their prior experiences. These experiences are not known to the system, so  it will often
fail to predict their solutions.

In 200 of all 302 cases (66.2%), predictions with and without considering cases did not differ. This number
may appear very high, but one must consider, that only for a small number of examples from the materials cases
were stored in the case base. All other cases were built up individually when analyzing code produced by the
programmer. So, there is only a chance for episodic information to trigger the diagnosis or the automatic
generation of code if deviations from the expected, canonical way of programming were observed in previous
cases and could be applied in the current case. In 102 of all predictions this case happened. In 74 of these 102
cases (72.5%), considering information from the case base resulted in a good prediction that was better than the
canonical prediction. In 15 cases (14.7%) the canonical prediction (without considering individual cases) made a

,better prediction, and in 13 cases (12.7%) both simulation types failed to make a good prediction.

3.3 Comparing  ELM to Analogy-based Systems

Another advantage of an individualized, episodic learner model stems from its potential to find analogies and
remindings to examples from the learning materials and to solutions from previous programming episodes. For
this purpose, we have developed a fast, explanation-based retrieval algorithm (EBR, [9]). We compared our
EBR-method to the ARCS-model [8]. Our simulation showed that in most cases the EBR method retrieved
analogs as  well as the ARCS-method and in some cases the EBR-method outperformed the ARCS-method [9].

In a related experiment, we compared finding analogies by the EBR-method and the ARCS-model with
similarity ratings judged by programming novices and by advanced programmers [10]. In this experiment, too,
retrieving analogs by the EBR-method showed a slightly higher concordance with subjects' ratings than results
from simulations with the ARCS-method. For both models, however, results from simulations were in higher
concordance with ratings from the "Advanced" group compared to "Novices'" ratings. These findings are typical
for user or learner models that are based on overlay models as they reflect knowledge about a learner from an
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4 

expert-like point of view. This may be an advantage in case of a tutoring system where appropriate examples 
and analogies must be found by the system guiding the learner to expert-like programming. 

Conclusion 

The CBR-approach in ELM offers several advantages over more traditional approaches to cognitive diagnosis 
and user modeling. First, considering information from similar cases during the diagnostic process can reduce 
the computational effort according to shortcuts [4]. Second, knowledge about a particular programmer being 
typical for him or her reflects his or her individual programming style. Such information can be utilized to 
predict the programming behavior and to show up analogies and remindings to examples and previous cases. 
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expert-like point of view. This may be an advantage in case of a tutoring system where appmpriate examples
and analogies must be found by the system guiding the learner to expert-like programming.

4 Conclusion

The CBR-approach in ELM offers several advantages over more traditional approaches to cognitive diagnosis
and user modeling. First, considering information from similar cases during the diagnostic process can reduce
the computational effort according to shortcuts [4]. Second, knowledge about a particular programmer being
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Abstract 

This paper deals with the automatic retrieval of objects, only based on their 2-dimensional image. 
The resulting method should be used to support an architect using already designed supply nets 
for a new design. In order to be accepted by the architect the retrieval process must be very fast. 
Besides this strict requirement the automatic retrieval may suggest more than just the most similar 
supply nets, but also some silly ones. The different sections of this paper describe the solutions of 
the problems which occured during the development of the retrieval method. 

Introduction 

One complex subtask of the design of buildings is the design of supply nets. Figure 1 shows two different 
supply nets, which should be recogniz~d as similar. The idea of the developed retrieval method is to 
simulate some kind of "Watching from distance". This is done by scaling the 2-dimensional images of the 
compared objects to different images of reduced resolutions. In the second step the images are turned to 
the same position before they are compared in the last step. 

--~--.....~ 
similar to 

8x8 

Figure 1: The Idea: Watching from distance 

'This research was supported by the Gennan Ministry for Research and Technology (BMFT) within the joint project 
FABEL under contract no. 413-4001cOllW104. Project partners in FABEL are Gennan National Research Center of 
Computer Science (GMD), Sankt Augustin, BSR Consulting GmbH, Miinchen, Technical University of Dresden, HTWK 
Leipzig, University of Freiburg, and University of Karlsruhe. 
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The resulting method should be  used to support an architect using already designed supply nets
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Besides this strict requirement the automatic retrieval may suggest more than just the most similar
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simulate some kind of “Watching from distance“. This is done by scaling the 2-dimensional images of the
compared objects to different images of reduced resolutions. In the second step the images are turned to
the same position before they are compared in  the last step.

N
'. ~ ."

similar to

V11: scaling & turn-{y

8x8

' Figure 1: The Idea: Watching from distance

"'This research was supported by the German Ministry for Research and Technology (BMFT) within the joint project
FABEL under contract no.  413-4001-011W104. Project partners in FABEL are German National Research Center of
Computer Science (GMD) ,  Sankt Augustin, BSR Consulting GmbH, München, Technical University of Dresden, HTWK
Leipzig, University of Freiburg, and University of Karlsruhe.

399



2 

3 

Scaling process 

By reducing the resolution of the representations two advantages are reached. First, different objects have 
the same 2-dimensional image, depending on the chosen resolution. Second, the amount of information 
to compare is reduced extremely. In order to make the scaling process as fast as possible, it should be 

(A) 

-

-

(B) (C) 

Figure 2: First Task: Scaling to an handable resolution 

based on scaling routines of the chosen computer system. This leads to a tradeoff between speed and 
the usability of the resulting scaled image. The most efficient scaling method found so far is explained 
in figure 2: 

Let the (A),(B) and (C) be pixel-maps of parts of a larger image. Each of them has to be scaled 
to one pixel. If one pixel inside the inner box of each part is black, the resulting pixel is black, too. 
The parameter to refine this method is the distance between the inner box and the border. As shown 
in pixel-maps (B) and (C) there are still results, which seem to be unwanted. Even so the results are 
acceptable (figure 4). 

Normalizing the position 

Supply nets should be still recognized as identical if the same structure appears after turning by multiples 
of 90 degrees or mirrored. In order to avoid a comparison for each of the eight possible transformations 
the scaled images are transformed to a "normalized" position. This position should be the same, even 
for similar, but not identical images. Also it must be definite. Figure 3 describes two possible methods. 
Method (A) weights each pixel-map by an matrix, who's highest values are at the left top. If two 
transformations are weighted the same, the one with the most top left black pixel is chosen. Method 
(B) reduces each pixel-map to a triangle and counts the black pixels reduced to the same position. This 
second method involves a loss of information, which increases the number of identical representations of 
different objects. 

a) 
Maximize 
Weight 

22 ~O 1816 10 8 
21 1917 7 
70 18 
19 

3 
16 4 2 
15 13 5 3 1 

b) 

Figure 3: Second Task: Finding one normalized position 

Organization of case-base 

In order to reduce the number of images a new image has to be compared with, the case-base is organized 
like a tree. In figure 4 you see a part of the case-base. This part consists of the images belonging to 
five cases. At the level of a 12x12 resolution all images are already different. The two most left cases 
consist of slightly different sized supply pipes. Their 6x6 image is identical and their 7x7 and 8x8 images 
differ by one pixel only. A retrieval process starts at the root node and follows the connections until the 
number of possible similar cases is reduced to a previously defined limit. 
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for similar, but not identical images. Also it must be definite. Figure 3 describes two possible methods.
Method (A) weights each pixel-map by an matrix, who’s highest values are at the left top.  If two
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4 Organization of  case—base
In order to reduce the number of images a new image has to be  compared with, the case-base is organized
like a tree.  In figure 4 you see a part of the case—base. This part  consists of the images belonging to
five cases. At the  level of a 12x12 resolution all images are already different. The two most left cases
consist of slightly different sized supply pipes. Their 6x6 image is identical and their 7x7 and 8x8 images
differ by one pixel only. A retrieval process starts at the root node and follows the connections until the
number of possible similar cases is reduced to  a previously defined limit.
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Figure 4: Third Task: Building the case tree 

Comparison 

Like the scaling process, the comparison process should be as fast as possible. Two pixel-maps can be 
easily compared by merging both together using the "xor" function and counting the black-pixels of the 
resulting pixel-map. This process is very fast. More complex comparison methods, like comparing also 
the surrounding of each pixel, did not lead to better results so far. 
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Figure 4: Third Task: Building the case tree

5 Comparison

Like the scaling process, the comparison process should be  as fast as possible. Two pixel—maps can be
easily compared by merging both together using the ”xor” function and counting the black—pixels of the
resulting pixel-map. This process is very fast. More complex comparison methods, like comparing also
the surrounding of each pixel, did not lead to better results so far.
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6 Possible extensions 

Motivated from neurophysiological results we took up the idea to simulate one property of the human 
visual system. Focusing on one area of an image, the resolution decreases from this area to the border. 
Actually we try to simulate this by using a resolution like shown in figure 5. This stresses a problem we 

Figure 5: Extension: Thinking about the human visual system 

did not elaborate so far. We will have do some more knowledge-acquisition, to find out which areas of an 
image are focussed by the architect, and which of the focused area lead to the recognition of similarity. 
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ABSTRACf. Image-based techniques are mostly used for the detennlnation of defects in materials and 
components in nondestnlctive testing. In the fonner time, it has been not possible to come up with an sufficient 
approach for an automatic inspection system based on statistical or knowledge-based classifiers. The nature 
of the problem shows that case-based reasoning would be an appropriate method for an automatic inspection 
system in nondestnlctive testing. In the paper we discuss eBR for image interpretation based on an example 
ofultra sonic inspection. We describe the case representation, the problem of similarity over pictures and at 
least, we discuss the necessary features which a case-based system for image interpretation should have. The 
aim of the paper Is not to describe a particular realization rather than to outline the tasks and problems which 
are related to case-based reasoning for image interpretation. 

1 INTRODUCTION 

Image-based techniques are mostly used for the determination of defects in materials and components in 
nondestructive testing. Usually this techniques do not give a unique image of the real defect image. Also, 
there does not exist a correlation formulized in a analytical or numerical model between the input image 
and the output image. Therefore, the interpretation of the output image is the task of an operator. 
Although, image-based techniques do not provide a good image of the defect an experienced operator is 
able to determine the type, the location and the size of the defect. 
The operator uses for the interpretation of the image knowledge from past experiences, knowledge of the 
ultra sonic physics and knowledge which he acquired during the qualification of the image-based 
technique at test-bodies. 

To aquire knowledge about the imaging behavior of the image-based technique by a particular test 
situation is a common procedure in nondestructive testing. This procedure is used where a model about 
the test physics did not provide sufficient results or for test techniques which are based on unknown 
physical effects. Under economical reasons, it is only possible to built one test-body. On the basis of the 
acquired knowledge it is possible to perform an interpretation based on analogical reasoning. 

In case the costs seem to be reasonable then a defect catalogue is prepared for the particular test 
situation. Such catalogues do exist I.e. for the x-ray inspection of welding seams. The catalogues are used 
for operators training or they are taken by the interpretation of difficult cases. Then, the operator selects 
from the catalogue by the help of a nomenclatur one or more cases which are similar to the real case and 
determines by the following image comparison the case which is the closest one to the actual case. 
Because of the broad variety of the defect gestalt and the technical cost for the preparation of the 
catalogue they do not contain for every possible defect a defect image. Therefore, we have to consider the 
catalogue as an inhomogenious solution space. 

In the past, there has been a lot of effort to come up with a numerical classifier for x-ray image 
interpretation /11 based on this catalogues. Also for ultra sonic image interpretation, a statistical classifier 
/2/ was built based on a class of trajectories derived from an numerical ultra sonic modeL But the quality 
is not sufficient caused by the inhomgenous solution space. 
A knowledge-based system for x-ray inspection is described in /3/. It performs in a cbr-like manner. Well 
known defects are stored as templates by attributes and attribute values (which are more general than a 
case) in the knowledge base. A decision is done by comparing the real defect with the templates. In case 
there is no match between a new situation and a template a confidence-factor based classification is 
carried out in the second phase. 

The nature of the problem shows us that case-based reasoning can be an appropriate method for image 
interpretation in nondestructive testing. 
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there does not exist a correlation formulized in a analytical or  numerical model between the input image
and the output image. Therefore, the interpretation of the output image is the task of an operator.
Although, image-based techniques do not provide a good image of  the defect an experienced operator is
able to determine the type, the location and the size of the defect.
The operator uses for the interpretation of the image knowledge from past experiences, knowledge of the
ultra sonic physics and knowledge which he acquired during the qualification of the image-based
technique at test-bodies.

To aquire knowledge about the imaging behavior of the image-based technique by a particular test
situation is a common procedure in nondestructive testing. This procedure is used where a model about
the test physics did not provide sufficient results or for test techniques which are based on unknown
physical effects. Under economical reasons, it is only possible to built one test-body. On the basis of the
acquired knowledge it is possible to perform an interpretation based on analogical reasoning.

In case the costs seem to be reasonable then a defect catalogue is prepared for the particular test
situation. Such catalogues do exist tie. for the x-ray inspection of  welding scams. The catalogues are used
for operators training or they are taken by the interpretation of  difficult cases. Then, the operator selects
from the catalogue by the help of a nomenclatur one or more cases which are similar to the real case and
determines by the following image comparison the case which is the closest one to the actual case.

' Because of the broad variety of the defect gestalt and the technical cost for the preparation of the
catalogue they do not contain for every possible defect a defect image. Therefore, we have to consider the
catalogue as an inhomogenious solution space.

In the past, there has been a lot of  effort to come up with a numerical classifier for x-ray image
interpretation Ill based on this catalogues. Also for ultra sonic image interpretation, a statistical classifier
I2! was built based on a class of  trajectories derived from an numerical ultra sonic model. But the quality
is not sufficient caused by the inhomgenous solution space.
A knowledge-based system for x-ray inspection is described in [3]. It performs in a cbr-like manner. Well
known defects are stored as templates by attributes and attribute values (which are more general than a
case) in the knowledge base. A decision is done by comparing the real defect with the templates. In case
there is no match between a new situation and a template a confidence-factor based classification is
carried out in the second phase.

The nature of  the problem shows us that case-based reasoning can be an appropriate method for image
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It should be possible to come up with a classifier based on the catalogue and to design the classifier with 
the ability to learn from new test cases. 

In the paper we want to discuss case-based reasoning for image interpretation based on an example for 
ultra sonic image inspection. First, we give an introduction to the test process. Then, we describe the case 
representation. The aim of the paper is not to describe a particular realization rather than to outline the 
tasks and problems which are related to case-based reasoning for image interpretation. This should give 
a guidance for other image related CBR tasks. 

2 PHASES OF THE TEST PROCESS 

The test process consists of the following phases: 

Test Preparation Planing&Design 
Test Execution Manipulation 
Test Evaluation Classification&Interpretation. 

Every test process is started by test process preparation. A configuration of the image inspection system 
has to ·be done in accordance to the minimal defect size, the condition of the component to inspected and 
the expected defect type. That means for an ultra sonic system to determine the right sensor with the 
parameter appertur angle, frequency, mode type etc.. Also, it is to plan the ·path of the sensor over the 
component and it is to adjust the data acquisition unit. 
An ultra sonic sensor are moved over a test-component either by hand or by an manipulator. This 
manipulator has to be controlled by an control unit. 
The last phase of the test process is the test evaluation meaning the determination of the type , the 
location and the size of the defect. 

A more detailed description of the test process is given in /4/. Now we want to look at an ultra sonic 
image and determine the type of knowledge in an image. 

3 EXAMPLE OF ULTRA SONIC IMAGES 

A sketch of an ultra sonic Bscan image taken from /5/ is shown in Figure 2. A sketch of the test situation 
shows Figure 1. 

The defect inside the material is a volumetric defect located near the outer wall (distance H) of the 
material. The ultra sonic sensor has an appertur angle of 45 and a diameter D»d (d-diameter of the 

404 

._, 
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An ultra sonic sensor are moved over a test-component either by hand or  by an manipulator. This
manipulator has to be controlled by an control unit.
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location and the size of  the defect.
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3 EXAMPLE OF ULTRA SONIC IMAGES

A sketch of  an ultra sonic Bscan image taken from IS! is shown in Figure 2. A sketch of the test situation
shows Figure 1.

The defect inside the material is a volumetric defect located near the outer wall (distance H) of the
material. The ultra sonic sensor has an appertur angle of  45 and a diameter D>>d (d-diameter of the
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defect) and with H<D.
 
The ultra sonic image of an volumetric defect can be described as follow:
 
The image shows 4 objects.
 
Object A is obtained by direct reflection of the ultra sound at the real defect. It is located directly behind
 
the upper point of the real defect. By the location of object A in the image we can determine the real
 
location of the defect inside the material.
 
Object B is left-behind object A caused by the corner effect. Because ofH<D the corner effect caused by
 
the outer wall at the left side ofthe sensor and the right side of the sensor cames together to one reOexion
 
point. The size of the object is approximately two times larger then the size of the object A.
 
Object C is located behind object A and right-behind object B. Object C is caused by beam rotation.
 
Object D is located left-behind object A, B and less left-behind object C.
 

The sketch in Figure 1 shows an ideal ultra sonic image of a volumetric defect. A real image would be
 
more distorted.
 
There are also different types of e.g. volumetric and crack like defects.
 

D : Beam Diameter 

~' Path B : comer effect 

H: ligament 

Outer Surface 

Path C : Beam Rotation 
, ,A.' Path D : Reflection + Mirror Effect 

Y 
Fig. 2 : Expected Bscan for a 2 mm SDH H D 

4 CASE DESCRIPTION 

From Sect. 2 and 3, we caD derive a case desciption which contains the following information: 

- an image acquisition protocol: 
sensor parameters, the parameters of the amplifier 

- an protocol about the type or the characteristic of the test component: 
In the example described above the component is a flat material with an welding seam (V-seam). 
and 

- an image protocol: 
A structural description of an image consists of objects,their attributes and their relation. It may be 
represented in a graph-like manner. In the above described situation the objects are to consider relative 
to the beam angle and the track position of the sensor. The important information are: 
* the number of object, 
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the upper point of  the real defect. By the location of  object A in the image we can determine the real
location of the defect inside the material.
Object B is left-behind object A caused by the corner effect. Because of  H<D the corner effect caused by
the outer wall at the left side of  the sensor and the right side o f  the sensor cames together to one reflexion
point. The size of the object is approximately two times larger then the size of the object A.
Object C is located behind object A and right-behind object B. Object C is caused by beam rotation.
Object D is located left-behind object A, B and less left-behind object C.

The sketch in Figure ] shows an ideal ultra sonic image of  a volumetric defect. A real image would be
more distorted.
There are also different types of  e.g. volumetric and crack like defects.

DzBeamDiameter

Path A : Direct Reflection
sw 45° #,

_ ßePattomaeffect

H : Ligament \ ]

Outer Surface

Fig.2:Expectescanfora2mmSDH HD

4 CASE DESCRIPTION

. From Sect. 2 and 3, we can derive a case desciption which contains the following information:

- an image acquisition protocol:
sensor parameters, the parameters of the amplifier

- an protocol about the type or  the characteristic of the test component:
In the example described above the component is a flat material with an welding seam (V-seam).
and

- an image protocol:
A structural description of an image consists of objects,their attributes and their relation. It may be
represented in a graph-like manner. In the above described situation the objects are to consider relative
to the beam angle and the track position of the sensor. The important information are:
* the number of object,
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" the spatial relationship between the objects, like "above", "behind" 
"attributes like the grey level ofthe object which corresponds to the reflection factor, the size and the 
location of the object 

" the shape is in a very simple manner a feature, like more longelongated or more round. 

The information about the image acquisition parameter and the component very much constrain the 
hypotheses about defect types. This knowledge may be used for control over the case base. 

Before we can use the symbols resulting in the image protocol for reasoning we have to extract the 
information from the image by image analysis. Procedures for the identification of an object and their 
description by attributes are described in /6/. In the next chapter we want to consider the qualitative 
description of the spatial knowledge and how we can extract this knowledge from an image. 

5 RELATIVE REPRESENTATION OF SPATIAL KNOWLEDGE 

For expressing the spatial representation in a qualitative manner like "aboye" or "above left" we need 
a functional.model fo~ space. 
In the above described example we can think of a coordinate system which is zero in the center of mass 
of object A and aligned to the beam angle. Then we can describe "behind" and "above". The 4 square 
of the coordinate system give the spezialization "left-behind", "right-behin~" and "left-above","right
above". We can shift the coordinate system from one object to another object and then look from that 
point of view to the spatial relations. This model would allow to describe all spatial relations concemd 
with the example above. It is very coarse and does not include all spatial relation like e.g. projection. The 
projection encloses such spatial relations like "contain" or "overlap". Therefore, Hemadez /14/ 
introduced an abstract map containing for each object in a scene a data structure called rpon (for relative 
projection and orientation node). Such an data structure can be visualized as an octagon-shaped figure, 
which describes also such spatial relations like e.g. "contain" and "overlap". It leads to a more complete 
model with respect to a concept of spatial relation. 
Similar to that, Chang 17/ proposed a 2-D String for image retrieval in pictoral databases for spatial 
representation like orientation. 
The approaches described above allows only a hard decision based on the proposed intervals. Ifan object 
is located inside of one of the parts of the rpon than it gives the spatial representation decribed by the 
particular area e.g. "right-back". It can not be "more-" or "less right-back". This unsharp information 
would require a representation of an fuzzy area /9/. 

6 SIMILARITY OVER PICTURES 

Which similarity is performed first seem to be very application dependent. Given a picture of an 
unknown person's face, we will first match the shape of each individual object and then the relative 
spatial relationship between eyes, nose and mouth /8/. 
Different perceptions for images from different applications require to handle similarity in a flexible and 
adaptable manner. 
As it has shown before, for our application it is important the number of objects and their spatial 

relations. 
oDly one reflection point and the second reflection point parallel shifted behind the first reflection point 
indicates that the defect is more volumetric-like but not crack-like. The spatial relations of the other 
reflection points to the first points confirms the hypotheses about the defect type. Because it can happen 
that the reflection points are caused by appertur the reflecfion factor which is proportional to the grey 
level gives the rmal conformation about the defect type. To perform similarity by the spatial relationship 
first and then by the attributes of the objects seem to be adequate in our application. 

A good overview about similarity measures is given in 113/. Here we want to discuss structural similarity. 

A flexible way to view similarity seems to be in terms of their structure. A concept "shape" will have a 
certain structure which shows the relationship between the different types of shape. Also an image can 
be described in terms of their structure (see Cha.4 ) and a concept derived from various images has also 
a structure. Therefore we need a concept for structural similarity. 
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An image or a concept may be represented by a graph or a graph-like structure. 

Def"mition 1: 

A graph G(p,R) consists of a set of nodes 
P = {PI'Pz, ... , Pm} , m: number of nodes 

and a set of edges 
R = {rl,rZ,...,r.} , n: number of edges, 

which connect two nodes of the graph 
rl = (Pi,Pj) ER, Pi,pjEP, 1=1,...,0. 

The general problem is to f"md structural identity or similarity between two structures. 

Def"mition 2: 

A graph G1 corresponds to a graph Gz if there exists an mapping f: G1 - Gz such that 
(Pit, Pjl) = r, E RGI - (f(Pu),(Pjz» = r k E RG2' 

The nodes and the edges of the graph may be labeled by attributes which mayor may not exact 
correspond to the attributes of another graph. Therefore, we need a compatibility measure which takes 
into account the differences between the attributes. 

There are several matching techniques [6](11]: 

- graph matching 
- constraint search and 
- relaxation. 

The search for graph isomorphisms or graph homomorphisms is an NP-complete problem, meaning the 
algorithm is very time-consuming. The search for graph isomorphisms is only then successfull ifthere are 
no missing components. The tolerance of the algorithm against differences in the attributes and the 
relations depends from the accuracy of the calculation. 
The advantage of the constraint search is that not all correspondences between a graph 1 and a graph 2 
have to be considered. Thus, an reduction in the complexity is reached. But the result of the matching 
process strongly depends from the choosen constraints. Relaxation methods, especially probabilistic 
relaxation seem to be appropriate when there are uncertainty in the data. 

It is clear that the complexity is much higher if we have to consider the whole case base. In order to 
reduce the complexity of the matching procedures it seems be usefull to establish a partial order of the 
cases. Therefore, Glasgow [9] describes a technique, called image subsumption. In a first step, an initial 
subsumption hierarchy is built up by an nonincremental concept learning procedure. This hierarchy is 
ref"med then during the use of the system by an incremental concept learning procedure. The 
subsumption hierarchay is build up by searching for part indentity of a case image and the new image 
which should be stored in the case base. A new concept is establish if cases stored in the case base do 
not subsumbe the new image completely. In that way, a concept hierarchy is built up step by step and 
dynamically changed according to the observation. 
A feature based indexing schema is proposed in [8]. Other indexing schemes which are related to graph 
theory are the connectivity index, indexing based on path number and weighted path. Our intension for 
fuerther investigation is to give a more structured overview about structural similarity measures. 

7 FEATURES OF A CASE-BASED REASONING SYSTEM FOR IMAGE 
INTERPRETATION 

A eBR-system for image classification needs to have some particular features with respect to images. This
 
features result from:
 
- the special requirements by visual knowledge acquisition (image-language problem) and
 
- the need to transform the numerical data of an image in a symbolic description.
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A feature based indexing schema is proposed in [8]. Other indexing schemes which are related to graph
theory are the connectivity index, indexing based on path number and weighted path. Our intension for
fuerther investigation is to give a more structured overview about structural similarity measures.

7 FEATURES OF A CASE-BASED REASONING SYSTEM FOR IMAGE
INTERPRETATION

A CBR-system for image classification needs to have some particular features with respect to images. This
features result from:
- the special requirements by visual knowledge acquisition (image-language problem) and
- the need to transform the numerical data of  an image in a symbolic description.
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The main problem with images and their translation in a language is that the knowledge about the image
 
is usually implicit represented in humans mind. To make the knowledge explicit is often hard. Sometimes
 
the meaning of the word does not ret1ect right the meaning of the image. Therefore it is necessary to
 
support the operator in an efficient way. Therefore a CBR system for image interpretation should have
 
a special case acquisition tool. For a more detailed description of that problem the interested reader is
 
refered to /l0/.
 
The problem of signal-to-symbol transformation we have already described in Section 4.
 

Therefore a CBR-system for image interpretation should have besides the common feature of an CBR

system:
 

- CASE ACQUISITION TOOL, 
which supports the user by specifying the important feature of a case, 

- VISUALIZATION FUNCTION, 
which allows the user to inspect images and compare them, 

- PLANNING MODULE for the image processing algorithm 
- INTERFACE to an IMAGE PROCESSING UNIT and 
- IMAGE DATA BASE, 

where images can be stored, retrieved and displayed. 

8 CONCLUSION 

In the paper, case based reasoning for image interpretation in nondestructive testing has been discussed.
 
The case description and the requirements to the system were described based on an example for an ultra
 
sonic image inspection problem.
 
In opposition to other CBR-systems there are special requirements to the case acquisition unit. The case
 
acquisition unit should support the user by describing an image.
 
An automatic image inspection system based on CBR needs also an image processing unit for the signal

to-symbol transformation.
 
The aim of the paper was not to describe a special realization more then it should be described the
 
problems concerned with CBR for image interpretation. Therefore, similarity over pictures as well as the
 
problem of signal-to-symbol transformation for spatial information has been discussed briefly.
 
Our intension for further work is to study in more detail the opportunities of the methods statistical
 
classification, knowledge-based classification and case-based classification for image inspection in
 
nondestructive testing.
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is usually implicit represented in humans mind. To make the knowledge explicit is often hard. Sometimes
the meaning of  the word does not reflect right the meaning of  the image. Therefore it is necessary to
support the operator in an efficient way. Therefore a CBR system for image interpretation should have
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8 CONCLUSION

In the paper, case based reasoning for image interpretation in nondestructive testing has been discussed.
The case description and the requirements to the system were described based on an example for an ultra
sonic image inspection problem.
In opposition to other CBR-systems there are special requirements to the case acquisition unit. The case
acquisition unit should support the user by describing an image.
An automatic image inspection system based on CBR needs also an image processing unit for the signal-
to-symbol transformation.
The aim of the paper was not to describe a special realization more then it should be described the
problems concerned with CBR for image interpretation. Therefore, similarity over pictures as well as the
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Abstract 

In this paper, the development of an object oriented case representation environment 
and indexing techniques are being discussed. The shell development is designed to handle 20 
and 3D image data. It includes a visual programming environment. The environment has an 
object oriented pictorial album, its corresponding textual interpretation details (Context 
Knowledge) and the spatial measurable features (statistical attribute data) with low level vision 
techniques. Knowledge based indexing and Nearest Neighbourhooq (NN) indexing techniques 
are used for retrieval and storage of the cases. Indexing is by a two tiered scheme with a primary 
and secondary key. The test-bed for the shell evaluation is done with remotely sensed data. 

1.0 Introduction 

Image interpretation of remotely sensed data is an open textured problem that lacks a 
strong domain model. A moulding of rule based techniques and Case Based Reasoning 
techniques is being attempted in our Rule - Rule - Case based system (RRC) to work in an 
interactive fashion. The central idea is to apply the rules to the target problem of the scene 
identification to get a first approximation of results. Later, another rule based technique and a 
case based technique are used to identify or classify objects in the scene. An agenda based 
controller schedules the rule and case based reasoning mechanism. This multi - level 
processing utilizes both bottom up (data driven) and top down (case driven) approaches in order 
to acquire sufficient knowledge to accept or reject any hypothesis for matching or recognizing the 
objects in the given image. The environment frame comprises of a case library of chips of 
images, a set of display routines, image enhancement routines, image edge extraction 
algorithms etc., Additionally, it has an icon editor to add or delete an interpreted chip of image or 
any 3D data for the corresponding 20 image chip. Programmable Hieararchial Interactive 
Graphics System (PHIGS) software handles the 3D image data for visualizing the image in 
parallel and perspective views in all possible angles, scale and view planes. This complete 
development is under the X-Window environment on Sun Workstation. 

2.0 Image Analysis 

Image analysis or image understanding refers to knowledge based interpretation of a 
scene which has been sensed by any sensor by computers [1]. Remotely sensed images refer to 
those which have been obtained from either an aircraft or spacecraft. Analysis is an 
interdiscipilinary research which includes different domains like image processing, statistical and 
syntatic pattern recognition and artificial intelligence techniques. While image processing deals 
with well defined mathematical convolutions image interpretation is an ill structured complex 
domain. Image interpretation refers to the correspondence (Le mapping) between the description 
of the scene' and the structure of the image. The scene is described in terms of objects in the 
world, while the structure of the image is described in terms of image features. There exists a 
wide gap between these two levels of information. the' goal of image understanding syatems is to 
bridge the gap by computation and reasoning techniques. Hence, image analysis stresses 
knowledge representation and reasoning methods for scene interpretation. A semantic 
representation of the objects and their inter-relations is a first approximation knowledge 
representation schema that is possible. Rule based methods in conjunction with a case based 
reasoning techniques is an ideal solution for image interpretation. 
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are used for retrieval and storage of the cases. Indexing is by a two tiered scheme with a primary
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1.0 Introduction

Image interpretation of remotely sensed data is an open textured problem that lacks a
strong domain model. A moulding of rule based techniques and Case Based Reasoning
techniques is being attempted in our Rule - Rule - Case based system (RRC) to work in an
interactive fashion. The central idea is to apply the rules to the target problem of the scene
identification to get a first approximation of results. Later, another rule based technique and a
case based technique are used to identify or classify objects in the scene. An agenda based
controller schedules the rule and case based reasoning mechanism. This multi - level
processing utilizes both bottom up (data driven) and top down (case driven) approaches in order
to acquire sufficient knowledge to accept or reject any hypothesis for matching or recognizing the
objects in the given image. The environment frame comprises of a case library of chips of
images, a set of display routines, image enhancement routines, image edge extraction
algorithms etc., Additionally, it has an icon editor to add or delete an interpreted chip of image or
any 30  data for the corresponding 2D image chip. Programmable Hieararchial Interactive
Graphics System (PHIGS) software handles the 3D image data for visualizing the image in
parallel and perspective views in all possible angles, scale and view planes. This complete
development is under the X—Window environment on Sun Workstation.

2.0 Image Analysis

Image analysis or image understanding refers to knowledge based interpretation of a
scene which has been sensed by any sensor by computers [1]. Remotely sensed images refer to
those which have been obtained from either an aircraft or spacecraft. Analysis is an
interdiscipilinary research which includes different domains like image processing, statistical and
syntatic pattern recognition and artificial intelligence techniques. While image processing deals
with well defined mathematical convolutions image interpretation is an ill structured complex
domain. Image interpretation refers to the correspondence (Le mapping) between the description
of the scene- and the structure of the image. The scene is described in terms of objects in the
world, while the structure of the image is described in terms of image features. There exists a
wide gap between these two levels of information. the-goal of image understanding syatems is to
bridge the gap by computation and reasoning techniques. Hence, image analysis stresses
knowledge representation and reasoning methods for scene interpretation. A semantic
representation of the objects and their inter-relations is a first approximation knowledge
representation schema that is possible. Rule based methods in conjunction with a case based
reasoning techniques is an ideal solution for image interpretation.
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3.0 Case Based Reasoning Approach 

Case Based Reasoning (CBR) is an alternative way to problem solving that offers 
solutions to the problem of brittleness and knowledge acquisition bottleneck [2,3]. Image 
understanding is an apt domain for case based reasoning as rule based systems alone have 
proved to be very brittle and knowledge acquisition and representation is never complete in 
description of semantics. The major problems with CBR approach are the choice of proper 
indexing technique, storage and retrieval. 

3.1 Case Based Shell Development 

The shell developed has a CBR environment clubbed with Image processing software 
making it a total domain for image understanding (Figs.1 and 2). This system supports two 
modes of operation viz., a Development mode and a Consultation mode. During the 
development mode, the domain specific expert populates the case base. His supporting 
knowledge like which image processing toof is useful for the image under consideration, what are 
the steps involved etc can be added into a text file which is linked to each icon. The auxiliary 
context information can be stored in a context file. During the consultation mode this case base 
is used for interpretation. Images of size upto a maximum of 256x256 pixels can be stored in the 
base with a display facility of four images per page. The images are classified with respect to the 
objects and are stored in a hierarchical manner. The images along with its attribute data are 
arranged in an object oriented pictorial database. Analysis reports in textual form are also tagged 
to each ima e in the database. 

Fig. 1 R - R - C structure for Image Analysis 
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Images from any sensor (satellite or aerial or medical) can be stored in an object 
oriented pictorial (OOP) structured manner in a picture album. The OOP structure is based on 
the sensor and object indices. 20 image data and 3D data if any to the corresponding 20 image 
can be stored in the picture album. Display and manipulation of 3D data like the 3D structure lay 
out of a refinery for example is handled by PHIGS software. Parallel and perspective views with 
scaling and rotation can be handled very effeciently by PHIGS. 

Image Processing tool box comprises of various tools like Image display where in one 
can display an image, convert file formats, obtain histogram and statistics of an image and 
Image editing is supported. Image enhancement option allows the user to perform various image 
enhancements both in the spatial as well an in the frequency domain. Edge analysis contains 
tools for obtaining a single pixel width edge map. On Screen Oigitization (OSO) allows us to draw 
lines, circles, polygons etc and add text. This is used as an overlay file. Image restoration 
contains basis restoration algorithms. Image Math can be used to add, subtract, multiply are 
divide a pair of registered imaged, This also allows one to add or subtract a constant to an 
image. Feature extraction module allows us to extract shape features like area, perimeter, 
centroid, geometric moments, orientation, bounding ellipse, bounding rectangle and corner 
points. The input to this module is a single pixel width contour. The set of features is written on to 
a database. Classification module contains unsupervised classification techniques. Any of these 
modules can be applied on the image for interpretation before the case library is searched for 
similar cases or for populating the case library. 

Fig. 2 . Case Base Reasoning Tool overview 
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3.2 Case Description 

Majority of the pictorial information in an image cannot be fully described by textual and 
numerical information due to its essential limitations in expressing power. Two level semantic 
knowledge descriptor is used for knowledge representation and index key generation. Each 
schema is represented by a graph where nodes are associated to different objects and the 
pointing arrows represent relationships between the two objects. 

The first level of semantic network allows the user to represent knowledge about the 
sensor and the image characteristics. Rule based system forward chains this data to arrive at the 
primary key index (Fig 2). Each entity in the sematic network is of an OOP structure. 

The second level of semantic representation, geometrical shapes, spatial information 
and spectral properties of the object are dealt with. The semantic network grows with the type of 
input the user answers at each node of the" network. The second rule based system looks at the 
fact values and forward chains to fire a rule or set of rules deciding the secondary indexing key. 

The two rule bases mentioned above eleminate the necessity of storing the geometrical 
and spectral descriptions of imges in the case library. 

3.3 Indexing 

The indexing of an image assignes to the image a set of descriptions that can provide an 
indication of the controls of the image and a means of retrivial from the two levels. The basis of 
image indexing is a semantic representation of the images. A primary key from the first semantic 
level and the secondary key from the spectral I spatial semantic level together determine the 
indexing key (figs 3 and 4 ). Knowledge indexing and sometimes a combination of knowledge 
indexing and nearest neighbour method are the two methods of image indexing. Knowledge 
indexing refers to finding relevent pieces of facts in a knowledge base with the help of a set of 
descriptive properties called index. Forming an index involves the combination of intensities, 
shape and textural properties of the segmented regions. In general, regions will very likely 
extend over more than one semantic object and regions derived from different features may 
spatially overlap. While some regions may refer to good indices others may fail to do so. 
Choosing an indexing technique that can provide efficient retrival of relevant cases from the 
memory is a difficult task. Indexing techniques are often domain specific and task specific and 
thus limit the general purpose utility of the memory. 

3.4 Image Retrieval 

The query language in the system is a combination of retrieval by examplatory image 
and by textual description of the image content. When a user's request can be expressed in 
terms of the extracted image description, there is no need to retrieve and process the original 
images. If however, the textual information is not sufficient, all images are processed at the 
picture level to compare them with the image example. Since the image retrieval by example is 
the present mode of operation for retrieval in our system. 

3.5 Learning 

Updation of the interpreted images into the case library is possible in the development 
mode of operation. The interpreted data (text and attribute values) along with the images are 
classified and stored in the case base. 
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Construct: Image IS-A Aerial Image OF Nadir_Look 

NADIR LOOK AERIAL IMAGE 

Fig. 3 Semantic Level 1 
4.0 Conclusion 

A tool for image analysis of any image with Case Based Reasoning, Image Processing 
and Knowledge based system is presented. Knowledge indexing and sometimes along with 
nearest neighbourhood indexing are needed for indexing the images for storage and retrieval. 
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