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Abstract

An  algorithm for constructing Gröbner bases for right and for two-sided ideals
in nilpotent group rings is presented.

1 Int roduct ion

In 1965 Buchberger introduced the theory of Gröbner bases for polynomial ideals in
commutative polynomial rings over fields (see [Bu65]). I t  established a rewriting ap-
proach to  the theory of polynomial ideals. Polynomials can be used as rules by  giving
an admissible term ordering on the terms and using the largest monomial according to
this ordering as a left hand side of a rule. “Reduction” as defined by  Buchberger then
can be  compared t o  division of  one polynomial by  a set of  finitely many polynomials. A
Gröbner basis G is a set of polynomials such that every polynomial in  the polynomial
r ing has a unique normal form wi th  respect to  reduction using the polynomials i n  G as
rules (especially the polynomials in  the ideal generated by G reduce to zero using G).
Buchberger developed a terminating procedure to  transform a finite generating set of
a polynomial ideal into a finite Grobner basis of the same ideal.
Since the theory of Grobner bases turned out to be of outstanding importance for
polynomial r ings,  extensions of  Buchberger’s ideas t o  other  algebras followed, for ex-
ample to free algebras ([Mo85, M094]), Weyl algebras ([La85]), enveloping fields of Lie
algebras ([ApLa88]), solvable r ings ([KaWe90, Kr93}), skew polynomial r ings ([We92]),
free group r ings ( [Ro93] )  and monoid and group r ings ( [MaRe93b)).

I n  [MaRe93a] we have combined the ideas of string rewriting and polynomial rewriting
in  the field of monoid rings and generalized the concept of Grobner bases to  these rings.
We assumed that our monoids were presented by  finite convergent semi-Thue systems
and ordered with the completion ordering of the presentation. This approach is of
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course valid for groups, but it makes no use of the additional structural information we 
have for groups. Group rings have been studied for special classes of groups, and e.g. 
for free, Abelian, nilpotent or polycyclic groups the congruence problem for right ideals 
is known to be solvable (see e.g. [Ro93, BaCaMi81, Si94]). In [Re95] we have enclosed 
how using group presentations, which make use of the structural composition of the 
respective groups, lead to algorithms to construct finite Grobner bases for right ideals 
for special classes of groups: the class of finite groups, the class of free groups, the 
class of plain groups, the class of context-free groups, and the class of nilpotent groups. 
In this report we want to present our results on nilpotent groups and how they can 
be extended to solve the membership problem in two-sided ideals. It is a well-known 
,.fact that every finitely generated nilpotent group 9 is an extension of a torsion-free 
nilpotent group lV by a finite group £. Therefore it can be presented by confluent 
semi-Thue systems of a special form. Due to this presentation we can define a concept 
of "commutative prefixes" on the group elements which captures the known fact that 
in the commutative polynomial ring a divisor of a term is also a commutative prefix of 
this term. This concept can be used to define a Noetherian reduction in the group ring. 
Since our structure is. no longer commutative we study a special form of right reduction 
called quasi-commutative (qc- )reduction and at first right ideals. Later on we then show 
how Grobner bases of two-sided ideals can be characterized by right Grobner bases 
additionally requiring that the right ideal generated coincides with the ideal generated. 
For Abelian groups the latter is obvious and for nilpotent groups we can give additional 
conditions when this holds. Since we have no admissible ordering, reduction steps 
are not preserved under multiplication with group elements, i.e., if a polynomial p is 
reducible using a polynomial f, a multiple p*w for some group element w need no longer 
be reducible using f. Remember that this was essential in Buchberger's approach as it 
implies that in case P ~F 0 we can conclude p * w ~F O. Furthermore, qc-reduction 
does not express the right ideal congruence. We introduce different techniques to repair 
these defects. For a set of polynomials F the set {f *elf E F, e E £} is called the 
£-closure of F, and F is called lV-saturated, if for all f E F, wEN we have that the 
right multiple f * w is in one step qc-reducible to zero using F. Using these concepts 
we give a characterization of a right Grobner basis by s-polynomials and present an 
algorithm to compute finite right Grobner bases. This approach then is extended to 
compute Grobner bases of two-sided ideals. 

Basic Definitions 

Let 9 be a group with binary operation' 0 and identity>'. The elements of a group 
ring K[Q] over a field K can be presented as polynomials f = EgE9 a g • g where only 
finitely many coefficients are non-zero. Addition and multiplication for two polynomials 
f = EgE9 a g . g and h = L gE9 {3g . g are defined as f + h = L gE9(a9 + {3g) . g and 
f * h = EgE9 /g . g with /g = Lxoy=gE9 a x . {3y. For a subset F of K[9] we call the set 
idealr(F) = {Ei=1 ai . fi * Wi I n E N, ai E K, fi E F, Wi E 9} the right ideal and 
ideal(F) = {E?=1 ai' Ui * fi * Wi In E N,ai E K,fi E F,Ui,Wi E 9} the two-sided 
ideal generated by F. Notice that we have three different multiplications which will 
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be denoted in different ways: . denotes multiplication with elements in K, 0 denotes 
multiplication in Q and * stands for the multiplication of polynomials in the group 
ring. 

As we are interested in constructing Grobner bases for ideals in K[Q], we need a pre
sentation of the group Q in order to do computations. Since Q is a finitely generated 
nilpotent group, we can apply knowledge on its structurel

. Our approach makes use 
of the well-known fact that a finitely generated nilpotent group Q is an extension 
of a torsion-free nilpotent group N by a finite group e. Now torsion-free nilpotent 
groups and finite groups have special group presentations by finite convergent semi
Thue systems2 and these can be combined to group presentations of extensions. Next 
we give the technical details of such presentations for nilpotent groups which are neces-

I 

sary to understand the proofs of the lemmata and theorems. It is important that these. 
presentations allow to treat the elements of Q as special ordered group words and to de
fine a tuple ordering on these representatives which can be used to define a Noetherian 
reduction. Let us start by giving a presentation of a torsion-free nilpotent group N. Let 
E = {aI, all, ... , an, a~l} be a finite alphabet where ail is called the formal inverse of 
the letter ai. For 1 ::; k ::; n we define the subsets Ek = {ai, ail I k ::; i ::; n}, En+! = 0. 
Using the precedence all >- al >- ... ail >- ai >- ... >- a~l >- an we can define the 
set of ordered group words ORD(E) = ORD(EI) recursively by ORD(En+d = {A}, 
and ORD(Ed = {w E Et I w =uv for some u E {ail"' U {ail}*,v E ORD(Ei+!)p. 
The semi-Thue system TNC U T[ over E where TNC = {aJaf -----+ afaJz I j > i, h, h' E 

{l,-l},z E ORD(Ej+d}, T[ = {aiail -----+ A,ailai -----+ A /1 ::; i::; n} is a presen
tation of a torsion-free nilpotent group N. By [Wi89] there exist such presentations 
which are convergent with respect to the syllable ordering induced by the precedence 
on E as defined below. Multiplication of two elements u, v E ORD(E), I.e., u 0 v, 
corresponds to computing the normal form of the word uv. 

Definition 1 Let E be an alphabet and >- a partial ordering on E*. We define an 
ordering >-lex on m-tuples over E* as follows: (uo, ... , um) >-lex (vo, ... , vm) if and 
only if there exists 0 ::; k ::; m such that Ui = Vi for all 0 ::; i < k and Uk >- Vk. 
Let a E E. Then every W E E* can be uniquely decomposed with respect to a as 
W = WOawI ... aWk, where Iwla = k ~ 0 and Wi E (E\{a})*. Given a total precedence 
>- on E we can then define U >syll(E) V if and only if Iula > Ivla or lula= Ivl a and 
(uo, ... ,um) >~~ll(E\{a}) (vo, ... ,vm) where a is the largest letter in E according to >
and (uo, ... , um), (vo, ... , vm) are the decompositions of u and v with respect to a in 

case lula= Ivl a = m. 

The irreducible elements representing the elements in N are ordered group words. 
R~strict.ing the syllable ordering to ordered group words we find that a~l ... a~n <syll 
ail ... a~n if and only if for some 1 ::; d ::; n we have i/ = j/ for all 1 ::; 1 ::; d - 1 and 

1 E.g. see [KaMe79] for more information on this subject. .
 
2E.g. see [BoOt93] and [Wi89] for more information on this subject.
 
3Note that == will be used to denote identity of elements as words.
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be denoted in  different ways: - denotes multiplication with elements in K ,  o denotes
multiplication in  G and * stands for the multiplication of polynomials in  the group
ring.

As we are interested in  constructing Grobner bases for ideals in  K[G], we need a pre-
sentation of the group G in  order to do computations. Since G is a finitely generated
nilpotent group, we can apply knowledge on its structure’. Our approach makes use
of the well-known fact that a finitely generated nilpotent group G is an extension
of a torsion-free nilpotent group N by a finite group £. Now torsion-free nilpotent
groups and finite groups have special group presentations by finite convergent semi-
Thue systems? and these can be combined to group presentations of extensions. Next
we give the technical details of  such presentations for nilpotent groups which are neces-
sary to  understand the  proofs of the  lemmata and theorems. I t  i s  important that these
presentations allow to  treat the elements of G as special ordered group words and to  de-
fine a tuple ordering on these representatives which can be used to define a Noetherian
reduction. Let us start by giving a presentation of a torsion-free nilpotent group N .  Let
X = {a1 ,a7 ' , . . . , a , , a ; ' }  be a finite alphabet where a ;  is called the formal inverse of
the letter a;. For 1<k<LA we define the subsets X , = {a a7} | k <7  <n } , Intı = 0.
Using the precedence a7! > a; > ...a;! > a; = . . .  >= a7} > a,  we can define the
set of ordered group words ORD(E) = ORD(X,) recursively by ORD(Z.41) = {A},
and ORD(Z; ) = {w  € E t  | w = uv  for someu € {a;}*  U {a7 ! } * ,v  € ORD(Z: ;1)}°
The semi-Thue system Tyc U Tr  over X where Ino == {a%a}J a? az  | 7 >1 ,6 ,8  €
{ 1 ,—1} ,z € ORD(Z ;11 ) } ,Tr = {a;a7! — X,a ; 'a ;  — A | 1 < i  < n }  is a presen-
tation of a torsion-free nilpotent group A .  By  [Wi89] there exist such presentations
which are convergent wi th  respect to  the syllable ordering induced by the precedence
on X as defined below. Multiplication of two elements u,v € ORD(X), i.e., u ov ,
corresponds to  computing the normal form of the word uv.

Definition 1 Let X be an alphabet and > a partial ordering on X*. We define an
ordering = on m-tuples over X* as follows: (ug,...,umn) > (vo,...,  vy) if and
only if there exists 0 < k < m such that u ;  = v; for all 0 < i < k and up > vg.
Let a € X .  Then every w € X* can be uniquely decomposed with respect to a as
w = woaw ı  . . . aws ,  where w l ,  = k 2 0 and  w ;  € ( £ \ { a } ) * .  Given a to ta l  precedence
> on  X we can then define u >,yu(z) v if and  only if u l ,  > |v la  o r  | u | .  = | v ] ,  and
(oy++  Um)  > (EV a)  (vo,...,Um) where a is the largest letter in X according to >
and (uo,..., Un),  (Vo,. om) are the decompositions of  u and v with respect to a in
case | u | ,=Jol.  =m .  ©

The irreducible elements representing the elements in N are ordered group ‘words.
Restricting the syllable ordering to  ordered group words we find that ai’ . . . a®  <un
a l l .  „air i f  and only i f  for some 1 < d <n  we have iy = j i  fo ra l l  1 <1  < d— 1 and

1E.g. see [KaMe79] for more information on  this subject. .
2E.g. see [BoOt93] and [Wi89] for more information on this subject.
3Note that = will be  used to  denote identity of  elements as words.
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a 2:: 0 and f3 < 0 
a <z f3 iff a 2: 0, f3 > 0 and a < f3

{ 
a < 0, f3 < 0 and a > f3 

where::; is the usual ordering on Z. We then will call the letter ad the distinguish
ing letter of the two elements. Now the following lemma from [Wi89] gives some 
insight how special multiples influence the representation of the element representing 
the product. It will be used extensively in the proofs later on. 

Lemma 1 Let 9 have a convergent presentation (E, TNc U Tr). Further for some 
1 ::; j < i ::; n let Wl E ORD(E\Ej ), W2 E ORD(Ei+d. Then we have ai 0 Wl =WlaiZl 
and W2 0 ai = aiz2 for some Zt, Z2 E ORD(Ei+d. In particular the occurrence of the 
letter ai is not affected by these multiplications. 0 

Let us proceed to give a presentation of 9 in terms of Nand £ by assuming that £ is 
presented by its multiplication tableS and N is presented by (E, TNC UTr ) as described 
above. For all e E £ let <Pe : E --+ N be a function such that <P>' is the inclusion 
and for all a E E, <Pe(a) = inv(e) Og a Og e. For all et,e2 E £ let zel,e2 E N'such 
that Zel,>' = Z>.,el = A and for all et, e2, e3 E £ with el 0e e2 =e e3, el 09 e2 - e3zel,e2' 
Assuming (£\{A} ) n E = 0, let f = (£\{A} ) U E and let T consist of the sets of rules 
TNc and T[, and the following additional rules: 

ele2 --+ e3zel,e2 for all el,e2 E £\{A},e3 E £ such that el 0e e2 =e e3, 
I 

ae --+ e<pe(a) for all e E £\ {A}, a E E. 

Then (f, T) is a convergent presentation of 9 as an extension of N by £. Every element 
in 9 has a representative of the form eu where e E £ and U E N. We can specify a 
total well-founded ordering )- on our group by combining a total well-founded ordering 
~e on £ and the syllable ordering 2::syll on N: For elUl, e2U2 E 9 we define elUl )- e2u2 
if and only if el )-e e2 or (el = e2 and Ul >syll U2)' Furthermore, we ~an define a 
tuple ordering on 9 as follows: For two elements W = ea~l ... a~n ,v - eai1 ... a~n, we 
define W 2::tup v if for each 1 ::; 1 ::; n we have either jl = 0 or sgn(i l ) = sgn(jr) and 
lid 2:: lill where sgn(i) is the sign of the non-zero integer i. Further we define W >tup v 
if W 2::tup v and lid > lid for some 1 ~ 1 ~ n and we define W 2::tup A for all W E g. 
According to this ordering we call v a (commutative) prefix of W if v ::;tup w. Notice 
that this ordering captures the fact that a divisor of a term in the ordinary polynomial 
ring is also a commutative prefix of the term. The tuple ordering is not total on 9 but 
we find that v ::;tup W implies v :::; w. Now using such presentations we can state the 
following lemma which later on will enable a Noetherian definition of reduction. 

Lemma 2 Let w, v, v E 9 with W 2::tup v and v )- v. Then for U E 9 such that 
W = v 0 u, we get W >- v 0 u. Notice that since 9 is a group, U always exists and is 
unique, namely U = inv(v) 0 w. Moreover, if v =I A, then U EN. 

4This ordering corresponds to 0 < 1 < 2 < ... < -1 < - 2 < ....
 
5Similar approaches are possible for other presentations of £ by convergent semi-Thue systems,
 

e.g. nilpotent presentations of the finite group. 
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tq <z ja with*
a>0and  <0

a<z  Bif f  { a>0 ,>0and a<p
a<0 , f<0anda>pf

where < is  the usual ordering on  Z .  We  then will call the letter ag the dist inguish- -
ing letter of the two elements. Now the following lemma from [Wi89] gives some
insight how special multiples influence the representation of the element representing
the product. It will be used extensively in  the proofs later on.

Lemma 1 Let G have a convergent presentation (X,Tnc U Tr). Further for some
1 < j< i<n le tw  € ORD(E\L; ) ,  w,  € ORD(Z;41). Then we have a ;0 w ı  = wya;z
and w ;  © a;  = a;z; for some z ı , z ı  € ORD(X;41) .  In  particular the occurrence of  the
letter a; is not affected by these multiplications. =
Let us proceed to give a presentation of G in terms of N and £ by assuming that £ is
presented by  i ts  multiplication table® and N is presented by  (X ,  Twc UTT) as described
above. For all e € £ let ¢ .  : X — N be a function such that ¢ ,  is the inclusion
and for all a € X, ¢.(a) = inv(e) og a og e. For all e1,e2 € E let z,,,, € N such
that z . ,»  = 2) ,  = A and for all e1,e2,e3 € £ with e ;  og €2  =¢  €3 ,  €1  0g €2  = €32¢, .e5-

Assuming (E\{A})  NE  =0 ,  let T = (£ \ { ) } )  UZ  and let T consist of the sets of rules
Tne and Tr, and the following additional rules:

e re  — €3Z¢ , . ,  for all e ; , e ;  € E \ {A } ,  e3 € E such that e ı  og e2 =¢  e3,
ae — eg.(a) fo ra l lee  E \ { \ } , a  € X.

Then (T', T )  is a convergent presentation of G as an extension of N by £. Every element
i n  G has a representative of the form eu where e € £ and u € N .  We can specify a
total well-founded ordering > on our group by  combining a total well-founded ordering
>g  on  E and the syllable ordering ><yn on  N :  For e1u1,e2u2 € G we define e1u1 > eau;
i f  and only i f  e ;  >¢  ez or (e ;  = ez and uy >eu ug). Furthermore, we can define a
tuple ordering on G as follows: For two elements w = ea} . . .a l r ,v  = ea] . . .a l r ,  we
define w > v i f  for each 1 < I < n we have either j ;  = 0 or sgn(z;) = sgn(ji) and
|%1] > [7:1] where sgn(3) is the sign of the non-zero integer i .  Further we define w > ,up  v
i f  w Z,up v and [ij] > | i ]  for some 1 < | < n and we define w > ,  A for all w € G.
According to this ordering we  call v a (commutative) prefix of w i f  v <i,  w. Notice
that this ordering captures the fact that a divisor of a term in  the ordinary polynomial
ring is also a commutative prefix of the term. The tuple ordering is not total on  G but
we find that v <p  w implies v X w. Now using such presentations we can state the
following lemma which later on will enable a Noetherian definition of reduction.

Lemma 2 Let w , v ,ü  € G with w Sup v and v > ©. Then for u € G such that
w= vou ,  we get w > ou .  Notice that since G is a group, u always ezists and  is
unique, namely u = inv(v) o w. Moreover, i f  v# A, thenu EN .

“This ordering corresponds to 0 <1  <2< . . . <  - 1< -2< . . . .
SSimilar approaches are possible for other presentations of £ by convergent semi-Thue systems,

e.g. nilpotent presentations of  the finite group.



Proof: Without loss of generality6 let us assume that the £-part of w, v and v is A, 
i.e., w, v, v E ORD(~). Let w, v, v, U E 9 be presented by ordered group words, i.e., 

= Wt Wn = Vt Vn -, = VI Vn d = Un 'th . . -. . EUtW	 _ a l '" an ,v - a l ... an , t. - a l .•. an ,an U - a l ••• an Wl w., v" v" u, 

Z. 
Further let ad be the distinguishing letter between v and V, i.e., Vd >Z Vd. Since 
the commutation system only includes rules of the form a~af ~ afa~z, j > i, z E 
ORD(~j+I)' 8, 8' E {I, -I} and we have no P-rules, we can conclude 

Vd sd ud Wd' + + IT'£or some Si E Z . Moreover, ad 0 ad 0 ad = ad , I.e., Vd Sd Ud = Wd. .LO prove 
Wd >Z Vd + Sd + Ud and hence W >syll V 0 u, we have to take a closer look at Vd and Vd. 

1.	 In case Vd > 0 this implies Wd > 0 as W ~tup v. Therefore, Vd + Sd + Ud = Wd 

and Wd ~ Vd > 0 give us Sd + Ud ~ O. Now V >syll V and Vd > 0 imply that 
Vd > vd ~ 0, as otherwise Vd ~Z Vd would contradict our assumption. Hence we 

get Vd + Sd + Ud < Wd, implying W >syll V 0 u. 

2.	 In case Vd < 0 this implies Wd < 0, IWdl ~ IVdl and thus Vd + Sd +Ud = Wd yields 
Sd + Ud :s; O. Further we know IVdl + ISd + udl = IWdl. We have to distinguish two 
cases: 

(a)	 In case Vd :s: 0, then V >syll V implies IVdl > IVdl. Therefore, we get IVdl + 
ISd + udl < IWdl and W >syll V 0 u. 

(b)	 In case Vd > 0, as Sd + Ud :s; 0 we have to take a closer look at Vd + Sd + Ud. 

In case Vd + Sd + Ud ~ 0 we are done as this implies W >syll v 0 u. In case 

Vd+Sd+Ud < 0 we get that Vd < ISd+Udl implying IVd+Sd+Udl < ISd+Udl < 
IWdl and hence W >syll v0 u. 0 

Notice that assuming £ is presented by a convergent semi-Thue system (~, R) in the 
definition of the tuple ordering we might be able to use additional information we have 
on the representatives of the elements in £ or the rules in R to refine this ordering in 
order to allow more multiples for reduction later on. When doing so one has to ensure 
that the refinements only allow multiplications which are compatible in the sense of 
the previous lemma. 

3 Reduction in Nilpotent Group Rings 

Given a non-zero polynomial p in K[91, the so-called head term HT(p) is the largest 
term in p with respect to >-, HC(p) is the coefficient of this term and the head monomial 

6This assumption can be made as for w == el w', v == e2v', V == e3v' with w', v', v' E ORD(~), 

w ;:::tup v implies el =e2 and v >- ii either implies el >- e3 and we are done as u EN' or el =e3. 
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Proof  : Without loss of generality® let us assume that the £-part of w , v  and © is A,
ie . ,  w ,v ,ö  € ORD(X). Let w,v,%,u € G be presented by ordered group words, i.e.,
w=a . . . a¥ ,  v=  a ‚ a l ,  t =a l . . . a¥ ,  and u = a } * . . . a¥  with w ; , vi, Di  u €
Z.
Further let ay be the distinguishing letter between v and ©, i.e., vg >z Da. Since
the commutation system only includes rules of the form alaf — af alz, J] > t  2€
ORD(E;+1), 6,8’ € {1,—1} and we have no P-rules, we can conclude

v1 Vd—1 uy  Ud1  _ 1 Vd—1 uy  Ud—1 — wun Wd—1 34g s
aq  . « . .Aq_1  0a ,  FR  =a ,  eee@g_q  Od ;  . . .Aq_ ı  = ay  eee  Qg_q  a ,  RNY

for some s ;  € Z .  Moreover, ay? 0 a }  0 ay? = ay? i .e.,  va + Sa + ug  = wy. To  prove
wg >z Da + Sq  + ud and hence w > ;  © 0 u ,  we have to take a closer look at vq and 9g.

1. In case vg > 0 this implies wg > 0 as w Zep v .  Therefore, vg + sa + ud = wy
and wy > vg > 0 give us sa + ug > 0. Now v >gp  © and vg > 0 imply that
va > © > 0 ,  as otherwise ¥y >z  vg would contradict our assumption. Hence we
get Da + Sa + ug < Wa, implying w >gm © 0 u .

2. In case vq < 0 this implies wy < 0, |wg| > |v4| and thus va + sa + ug = wa yields
8d  + ug <0 .  Further we know |vg| + |sg + ua| = |wa|. We have to distinguish two
cases:

— ?(a) In case 54  < 0, then v >syn  © implies [vg] > |Sa4|. Therefore, we get |54] +
|84 + ud| < |wa| and w >on  DO u .

(b) In case 54 > 0, as sa + ug < 0 we have to take a closer look at ¥4 + sq + ug.
In  case 9g + sa + ug  > 0 we are done as this impl ies w >qy © ou .  In case
Datsa tud  < 0 we  get that Da < | sa+ud l  implying | 0g + sa + ua ]  < | sa+ud l  <
|wa| and hence w Sgn © 0 u.  0

Notice that assuming € is presented by  a convergent semi-Thue system (A ,  R)  in the
definition of  the tuple ordering we  might be  able t o  use additional information we  have
on the representatives of the elements in  £ or the rules in R to  refine this ordering in
order to allow more multiples for reduction later on. When doing so one has to ensure
that the refinements only allow multiplications which are compatible in  the sense of
the previous lemma.

3 Reduction in Nilpotent Group Rings

Given a non-zero polynomial p in  K[G], the so-called head term HT(p) is the largest
term in  p with respect to  > ,  HC(p) is the coefficient of  this term  and the head monomial

SThis assumption can be made as for w = e w ’ , v  = e2v ,ö  = ezU with w ' , v ' , 5  € ORD(Z),
Ww Sup v implies e;  = e2 and v > © either implies e ı  > e3 and we are done as u € N or e ;  = 63 .
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is HM(p) = HC(p) . HT(p). T(p) is the set of terms occurring in p. The ordering on 9 
can be lifted to a partial ordering on K[Q] by setting p > q if and only if HT(p) >- HT(q) 
or (HM(p) = HM(q) and p - HM(p) > q - HM(q)). Now using the head monomial of 
a polynomial as a left hand side of a rule, we can define reduction. Frequently in 
polynomial rings reduction is defined in case the head term of the polynomial is a 
divisor of the term of the monomial to be reduced. Now in groups every element t is a 
divisor of every other elements since to (inv(t) 0 s) = s holds. But defining reduction 
requiring only divisibility would not be Noetherian as the following example shows. 

Example 1 Let E = {a, a-I} and T = {aa- I --+ ,x, a-I~ --+ ,x} be a presentation of 
a nilpotent group Q. Suppose we simply require divisibility of the head term to allow 
reduction. Then we could reduce the polynomial a2 +1 E Q[Q] at the monomial a2 by 
the polynomial a-I + a as a2 = a-I 0 a3 • This would give 

3 a 2 + 1--+a- 1+aa 2 + 1 - (a- I + a) * a = _a 4 + 1 

and the polynomial-a4 +1 likewise would be reducible by a-I +a at the monomial _a4 

causing an infinite reduction sequence. <> 

Hence we will give additional restrictions on the divisibility property required to allow 
reduction. Since Q in general is not commutative, we will restrict ourselves to right 
multiples to define reduction. 

Definition 2 Let p, f be two non-zero polynomials in K [9]. 
We say f quasi-commutatively (qc-)reduces p to q at a monomial a· t of p in one 
step, denoted by p --+r q, if 

(aJ t 2:tup HT(J), and 

(b)	 q = p - a· HC(J)-I . f * (inv(HT(J)) 0 t). 

Quasi-commutative reduction by a set F ~ K[Q] is denoted by p --+p q and abbreviates 
p --+er q for some f E F. <> 

Notice that if f qc-reduces p at a· t to q, then t no longer is a term in q and by lemma 
2 p > q holds. This reduction is effective, as it is possible to decide, whether we have 
t 2:tup HT(J). Further it is Noetherian and the translation lemma holds. 

Lemma 3 
Let F be a set of polynomials in K[9] and p, q, h E K[9] some polynomials. 

1.	 Let P - q --+p h. Then there are p', q' E K[Q] such that p ~'}c p', q ~p q' and 
h = p' - q'. 

2.,	 Let 0 be a normal form of p - q with respect to --+p.c. Then there exists a 
polynomial 9 E K[91 such that p ~fr 9 and q ~fr g. 
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is HM(p) = HC(p) - HT(p). T(p) is the set of terms occurring i n  p. The ordering on G
can be lifted to  a partial ordering on K[G]  by setting p > q i f  and only i f  HT(p) > HT(g)
or (HM(p) = HM(q) and p — HM(p) > ¢ — HM(q)) .  Now using the head monomial of
a polynomial as a left hand side of a rule, we can define reduction. Frequently in
polynomial rings reduction is defined in case the head term of the polynomial is a
divisor of the term of the monomial to  be reduced. Now in  groups every element ¢ is a
divisor o f  every other element s since t o ( i nv ( t )  os )  = s holds. But  defining reduction
requiring only divisibility would not be Noetherian as the following example shows.

Example 1 Let X = {a,a7! }  and T = {aa™! — A ,a ”la  — A} be a presentation of
a nilpotent group G. Suppose we simply require divisibility of  the head term to allow
reduction. Then we could reduce the polynomial a? + 1 € Q[G] at the monomial a? by
the polynomial a7! + a as a? = a7! 0 a®. This would give

a? +1—,  aa ’  +1— (a +a )xa®=—a+1

and the polynomial —a*  +1 likewise would be reducible by a=! + a at the monomial —a*
causing an infinite reduction sequence. ©

Hence we will give additional restrictions on the divisibility property required to  allow
reduction. Since G in  general is not commutative, we will restrict ourselves to right
multiples to  define reduction.

Definition 2 Let p,  f be two non-zero polynomials in K[G].
We say f quasi-commutatively (qc-)reduces p to ¢ at a monomial a - t  of  p in one
step, denoted by p—% q, if

(a) t 2p  HT(f) ,  and

(b) qg=p- a HC(f)-!. f  (inv(HT(f)) 0%).

Quasi-commutative reduction by a set F C K[G] is denoted by p—% q and abbreviates
p—% q for some f € F .  o

Notice that if f qc-reduces p at a - t  to ¢ ,  then t no longer is a term in  g and by lemma
2 p > q holds. This reduction is effective, as i t  is possible to decide, whether we have
t 2¢up HT( f ) .  Further i t  is Noetherian and the translation lemma holds.

Lemma 3
Let F be a set of  polynomials in  K[G] and p,q,  h € K[G] some polynomials.

1. Let p— q—¥ h .  Then there are p',  q' € K|G] such that p—%  p ' ,q  —%  ¢' and
h=p  —¢.

2.  Let 0 be a normal form of  p — q with respect to —3 . Then there exists a
polynomial g € K[G] such that p—F g and q — 9.



Proof: 

1.	 Let p-q--/Ji h = p-q-a· f*w, where a E K*,f E F,w E 9 and HT(J)ow = 
t 2::tup HT(J), i.e. a· HC(J) is the coefficient of t in p - q. We have to distinguish 
three cases: 

(a)	 t E T(p) and t E T(q): Then we can eliminate the term t in the polynomials 
p respectively q by qc-reduction. We then get p ----+er p - al . f *w = p' and 
q ----+'t q - a2' f *w = q', with al - a2 = a, where al . HC(J) and a2' HC(J) 
are the coefficients of t in p respectively q. 

(b)	 t E T (p) and t ~ T(q): Then we can eliminate the term t in the polynomial 
p by qc-reduction and get p ----+'t p - a . f *w = p' and q = q'. 

(c)	 t E T(q) and t ~ T(p): Then we can eliminate the term t in the polynomial 
q by qc-reduction and get q ----+'t q + a . f * w = q' and p = p'. 

In all cases we have p' - q' = p - q - a· f *w = h. 

2.	 We show our claim by induction on k, where p - q _!:-/Ji o. In the base case k = 0 
there is nothing to show. Hence, let p - q ----+}C h -~-/Ji O. Then by (1) there are 
polynomials p', q' E K [9] such that p -~-/Ji p' , q -~-/Ji q' and h = p' - q'. Now 

the induction hypothesis for p' - q' _!:_-/Ji 0 yields the existence of a polynomial 
g E K [9] such that p _!--/Ji p' _!-./j;.c g and q _!._+'ji q' _.!._+'ji g. 

o 

But qc-reduction does not capture the right ideal congruence. One reason is that a 
reduction step is not preserved under right multiplication with elements of 9. 

Example 2 Let 9 be the group given in example 1. Then for the polynomials p = a2+a 
and f = a + oX we find that p is qc-reducible by f. This is no longer true for the multiple 
p * a-2 = (a2 + a) * a-2 = oX + a-I. Notice that, since a-I + oX E idealr(p) we have 
a-I + oX =idealr(p) 0, but a-I + oX ~p 0 does not hold. <> 

As we have seen in this example, different terms of a polynomial can come to head 
position by right multiplication with group elements. This is due to the fact that the 
well-founded ordering on 9 is not compatible with right multiplication7• The next" 
lemma states that N-right-multiples which bring other terms to head position can be 
constructed in case they exist. 

Lemma 4 Let p be a non-zero polynomial in K[9]. In case there exists an element 
wEN such that HT(p * w) = tow for some t E T(p), let ad be the distinguishing 
letter between t and HT(p). Then one can construct an element v E ORD(Ed) such 
that HT(p * v) = t 0 v. 

7No total, well-founded ordering with this property can exist for a group due to the existence of 
mverses. 
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Proof :

1. Let p—q—F h=p—g—a-  f*w,wherea € K* , f € F,w € G and HT( f ) ow  =
t > iup  HT( f ) ,  i.e. a -HC( f )  is the coefficient of t in  p — q. We have to  distinguish
three cases: i

(a) t € T(p) and t € T(q) :  Then we can eliminate the term ¢ in the polynomials
p respectively g by qc-reduction. We then get p—F p—ay« f *w  =p ’  and
q—f ¢— ayf *w  = ¢', with oq — a2 = a ,  where a;  - HC( f )  and a2 - HC( f )
are the coefficients of  ¢ in  p respectively gq.

(b) t € T(p) and t & T(q): Then we can eliminate the term ¢ in  the polynomial
p by gc-reduction and get p—7° 'p—a-  f *w  =p  and q=d .

(c) t € T(q) and t € T(p): Then we  can eliminate the term ¢ in  the polynomial
q by  qc-reduction and get q — faq +a - f *+w=dg  and p=1p' .

In all cases we have p’ —¢' =p—q—a-  f +w=h .

2. We show our claim by  induction on  k ,  where p—gq LAY  0. In the base case k = 0
there is nothing to show. Hence, let p — ¢ —F A ge  0. Then by (1) there are
polynomials p‘,qg' € K[G] such that p——¥ p',¢g —% ¢’  and h = p’ — q'. Now
the induction hypothesis for p’ — ¢’LAC  0 yields the existence of a polynomial
g € K[G]  such that pp ’  5% g and ¢ —F ¢' — 9.

Od

But gc-reduction does not capture the right ideal congruence. One reason is that a
reduction step is not preserved under right multiplication with elements of G.

Example 2 Let G be the group given in example 1. Then for the polynomials p = a *+a
and f = a+ A we find thatp is gc-reducible by f .  This is no longer true for the multiple
pxa?  = (a? +a ) *  a7? = \ + a " ! .  Notice that, since a ” !  +X  € ideal (p) we have
a7 !  + )  S igea l(5) 0 ,  but a7? + A,  0 does no t  hold. ©

As we have seen in this example, different terms of a polynomial can come to head
position by right multiplication with group elements. This is due to the fact that the
well-founded ordering on G is not compatible with right multiplication”. The next
lemma states that A -right-multiples which bring other terms to head position can be
constructed in  case they exist.

Lemma 4 Let p be a non-zero polynomial in K[G] .  In case there exists an element
w € N such that HT(p * w) = t o w for some t € T(p), let aq be the distinguishing
letter between t and HT(p). Then one can construct an element v € ORD(Z,) such
that HT(p xv)  =touw.

“No total, well-founded ordering wi th  this property can exist for a group due to  the existence of
inverses.



Proof: We show that for all polynomials q E {p * ulu E g} the following holds:
 
In case HT(q * w) = ti 0 w for some w E g, ti E T(q) then one can construct an
 
element v E ORD(~d) where ad is the distinguishing letter between ti and HT(q), and
 
HT(q * v) = ti 0 v.
 
This will be done by induction on k where d = n - k. Without loss of generality8 let us
 
assume that the £-part of the terms in p is ..\, i.e., for all t E T(p) we have t E ORD(E).
 
In the base case let k = 0, i.e., an is the distinguishing letter between HT(q) = t1 =
 
al11 In d t - i1 in HI' £ 11 1 < J. < 1 an n >z Zn·., .. an an i = a1 .,. an' ence j = Zj lor a _ _ n - d 1 

By our assumption there exists w E 9 such that HT(q * w) = t i 0 w, with w =w'a~n, 

w' E ORD(E\En), and there exist k1, ... , kn - 1, x E Z such that t 1 0 w = a~1 ... a~n 0 
1n 1 ln ln 1 ln+wn k1 kn 1a1n+xw = all an-I 0 w 0 an = (all a n-I 0 w') 0 an - a an-l1 ... - I .. , - = l' .. n and 

t . - 11 1,.-1 in _ 11 In-1 in _ (11 1,.-1 ') in+wn = tOW - a1 ... an-I an 0 w - al .. , an_IOW 0 an - al ." an_IOW 0 an 
k1 kn- 1 in+x Th 1 + < . + t h Id L t t - -In ~XT ha1 ... an-I an . US n X Z Zn X mus 0 . e us se v = an . vve s ow 

that for all tj E T(q)\{td we have ti 0 v >- tj 0 v. Note that for all tj with prefix 
it jn-1 11 1"-1 h t t . ht It' I' t' 'th - -Ina1 ... an- 1 -< a1 ... an- 1 we ave jOV -< iOV, as fIg mu lp lca Ion WI v = an 

only changes the exponent of an in the respective term, It remains to look at those 
'th j1 j,.-1 - 11 HItterms t j WI al' . ,an-I = al ... an-I'In -1 ence, e us assume that there eXlS. t sa term 

t j such that tj 0 v >- ti 0 v, i.e., jn - In >z in - In. 

Since HT(q *w) = ti 0 W we know jn + X <z in + X and In + X <z in + x. Furthermore, 
as t 1 = HT(q) we have In >z in and In >z jn. We prove that tj 0 v >- ti 0 v yields 
in + X >z in + X contradicting our assumption by analysing the possible cases for these 
exponents. 

First suppose that In < 0 and thus In + X <z in + X implies X 2 11nI > 09
. Then in 

case in ~ 0 this gives us 11nl > linl. Now in - In >z in - In > 0 and jn - In > 0 yield 
either jn > 0 or Un ~ 0 and linl < linl), both implying jn + y > in + y for all y ~ 11n l, 
especially for y = x. 
In case in > 0 as before jn - In >z in - In > 0 and jn - In > 0 imply jn > in and for 
all y 2 11nl we get in + y > in + y, especially for y = x. 
Hence let us assume that In > 0 and thus In + X <z in + X implies x < 0 and Ix I > in, 

since In > in ~ 0 and In > in ~ O. 
Now in - In >z in - In and in - In < 0 imply jn - In < 0 and lin - 1nl < lin - 1n l. 
Hence we get jn < in and for all y < 0 with Iyl > in we have in + y >z in + y, especially 

for y = X as Ixl > in > in. 
In the induction step let us assume that for all polynomials q E {p*ulu E g} and W E g 
with HT(q *w) = ti 0 w, if the distinguishing letter ad between HT(q) and ti has index 
d ~ n - (k - 1) there exists an element v' E ORD(Ed) such that HT(q * v') = ti 0 v'. 
Now for q E {p * ulu E g}, W E g with HT(q * w) = ti 0 W let us assume that the 
distinguishing letter between HT(q) and ti has index d = n - k. 
Since HT(q * w) = ti 0 w, for w _ w'a~dw" with w' E ORD(E\Ed), w" E ORD(Ed+I), 

8This can be done as N-right-multiples do not change the £-part of a term.
 
9 X < 0 would imply In + X < in + X and In + X < 0, hence In + X >Z in + x.
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Proof : We show that for all polynomials ¢ € {p *  ulu € G} the following holds:
In case HT(q * w) = t ;  o w for some w € G, t ;  € T(g) then one can construct an
element v € ORD(X,) where aq is the distinguishing letter between t;  and HT(g), and
HT(q*v )  = t ;  ov .
This will  be done by induction on k where d = n — k .  Without loss of generality? let us
assume that the £-part of the terms in  p is  A, i.e., for all t € T(p) we have t € ORD(X).
In  the base case let k = 0, i.e., a,  is the distinguishing letter between HT (gq) = t ;  =
a i * . . .a i *  and t ;  = a f . . . a ” ,  Hence 1, = i ;  for all 1 < j  <n—1and l ,  >z  in.
By  our assumption there exists w € G such that HT(g * w) = ¢; 0 w,  with w = war”,
w’ € ORD(X\X,), and there exist k , . . . ,kn_y,z  € Z such that t ow  =a } ' . . . ak "o

l n  I n -  — knw = a l . . . a 7 owoa l r  = (a ' . . . a ; "3  ow! )  o a lm  = a f t . . .  a," al"  and
1 1n-ı 4 

1 ,  : 1 .  . —
t i ow=a ' . . . a ar  ow  = a ; ' . . . a"7 owoay  = (a ' . . . a , "7 0 w')o  a t  =

kn_ı i . -af... a "  ai*t?. Thus 1 ,  + z <z  i ,  + = must hold. Let us set v = a1» .  We show
that for all t; € T(q ) \ { t ; }  we have t ;  0 v > t; ov .  Note that for all t; with prefix
a l l . . .  a in <a l ' . . . a ”7  we have t ; 0v  < t;0v, as right multiplication with v = a ! "
only changes the exponent of a ,  i n  the respective term. It remains to  look at those
terms ¢; with  a? . . .  a in = a l . . .  a } .  Hence, let us assume that there exists a term
tj such that t j o v  > t ;  0 v, Le., jp — I n  >Z i n  — I n .

Since HT ( g *w )  = t ;  ow  we know j ,  +z  <z  i n  +z  and 1 ,  +z  <g  i ,  + x .  Furthermore,
as t ;  = HT(q) we have 1 ,  >z  i ,  and 1,, >z  j , .  We prove that t;  ov  > ¢ ;  ov  yields
Jn+T  >Z  In  + z  contradicting our assumption by  analysing the possible cases for these
exponents.
First suppose that 1 ,  < 0 and thus 1 ,  + z <z  in  + = implies z > |1,,| > 0° .  Then i n
case t ,  < 0 this gives us [1,| > |in|. Now jo, — 1 ,  >7  i n  — I n  > 0 and j ,  — 1 ,  > 0 yield
either j ,  > 0 or (j, <0  and | j . |  < [2,]), both implying 7,  + y  > i ,  + y for all y > [1,.],
especially for y = x.
In case i ,  > 0 as before j ,  — 1 ,  >% tn — 1 ,  > 0 and j ,  — 1 ,  > 0 imply j ,  > ¢, and for
all y > |1,.| we get jn  +y  > i ,  + y ,  especially for y = =z.
Hence let us assume that 1 ,  > 0 and thus 1 ,  + z <z  i ,  +z  implies z < 0 and |z| > I n ,

since 1 ,  > 1,  > 0 and 1,, > j ,  > 0.
Now j ,  — 1 ,  >Z  i n  — 1 ,  and i ,  — 1 ,  < 0 imply jn  — I n  < 0 and | i ,  — 1 ]  < [jn — Lal.
Hence we get j ,  < i ,  and for all y < 0 with |y| > jn  we have j ,  +y  >z  in, +y ,  especially
f o ry =z  as |x| > i n  > ja.
In  the induction step let us assume that for all polynomials g € {p*uju € G} and w € G
with HT(g * w) = t ;  ow, if the distinguishing letter ag between HT (gq) and t ;  has index
d 2 n — (k  — 1) there exists an element v ’  € ORD(X4) such that HT(g * v') = ¢ ;  0 vl.
Now for ¢ € {p *u lu  € G}, w € G with HT(g * w) = ¢ ;  o w let us assume that the
distinguishing letter between HT (gq) and ¢; has index d =n  — k .
Since HT(g * w) = t ;  o w,  for w = w'aj*w” with w’ € ORD(E\Za), w”  € ORD(Za41),

8This can be done as N-right-multiples do  not change the £-part of  a term.
9x < 0 would imply 1p + 2 < i n  +z  and 1 , + z <0 ,  hence 1 ,  +z  > i n  +2 .
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we know that there exist kt, ... ,kd-l,X E Z and ZI,Z"ZI E ORD(Ed+l) such that 
- 11 In _ °11 Id-1 , Id - - k1 kd_1 Id+X d"l 1t 1 0 w- al an °W - al .. , ad-l °woad °ZI = al ... ad-l an zl an Slml ar y 

t, ° w = a~l a~~11 a~d+X Zi. As Id =J id then Id + x' <z id + x must hold and we can 
- -Idset Vd = an . 

We have to show that for all t j E T(q) \ {ti} there exists v E 0 R0 (Ed) such that we 
have ti ° v ~ tj ° v. Note that for all tj with prefix a{l ... a~~11 -< a~l ... a~~11 we have 
tj °Vd -< ti ° Vd, as right multiplication with Vd =a~ld has no influence on the prefix in 
ORD(E\Ed). 

r 't . t °1 k t th t t 'th it jd-l - 11 Id_l L t Therelore, I remaIns 0 00 a ose erms j Wl al' .. ad_1 = a1 ... ad-I' e us 

assume that there exists a term tj such that tj °Vd ~ t, °Vd, i.e., id - Id 2':z id -Id. We 
will show that then id = id and hence our induction hypothesis can be applied since 

for the polynomial q * Vd the distinguishing letter between HT(q * Vd) and ti 0 Vd is of 
index d' > d = n - k and by our assumption there exists inv(Vd) owE g such that 

HT((q *Vd) * (inv(vd) °w)) = HT(q *w) = ti °W = t, °(inv(vd) °w). Hence there exists 
v E ORD(Edl) such that HT(q*Vd*V) = tiovdOV and we set V =VdV E ORD(Ed) and 
are done. 
It remains to show that jd = id must hold. We know jd+X :S;Z id+x and ld+X <z id+x 

since HT(q *w) = ti °w. Next we prove that tj °V ~ ti °V implies jd = id by analysing 
the possible cases. 

First suppose that Id < 0 and thus Id + x <z id + x implies x 2': Ildl > 0 as before. 
Then in case id S 0 this gives us Ildl > lidl. Now id -Id 2':z id -Id> 0 and jd -Id> 0 
yield either jd > 0 or (jd S 0 and lidl :s; lid!), both implying id + Y 2': id + y for all 
y 2': Ildl· Thus as x 2:: Ildl we get jd. + x 2:: id + x yielding id = id. 
In case id > 0 as before id - Id 2':z id - Id > 0 and id - Id > 0 yield id 2': id, and for all 
y 2': Ilnl we get id + Y 2': id + y. Thus as x 2': Ildl, id + x 2': id + x again yields jd = id. 
Therefore, let us assume that Id > 0 and thus Id + x <z id + x implies x < 0 and 

Ixl > id, since Id > id 2:: 0 and Id 2:: jd 2:: O. Now jd - Id 2::z id - Id and id - Id < 0 

imply jd - Id < 0 and lid - ldl :s; lid - ldl. Hence we get id S id and for all y < 0 with 

Iyl > jd, we have id + y 2':z id + y. Thus as Ixl > id 2': jd, then id + x 2':z id + x yields 
id = id. 

Notice that the proof of this lemma shows that there is an algorithm which computes 
some V E ORD(Ed) as desired in case it exists and that the element w need not be 
known for this computation. 

Remark 1 The element v constructed in the proof of the previous lemma can be 
made "minimal" among all elements having this property by modifying the construction 
slightly. In case for the distinguishing letter ad we have id 2:: 0 > Id or 0 2': id > Id 
we still use Vd = ad Id in the construction. For the other case Id > id 2:: 0 we then use 

-id-l
Vd =ad <> 

For a polynomial p and a term t E T(p) we call a term s in a multiple p *w a t-term if 
s = tow. The following lemma states that if in two N-right-mu.1tiples of a polynomial 
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0 

we know that there exist ky , . . . , k4—1,2  € Z and z ı , z i ,Zi € ORD(Z441) such that
’ 14 -  ~ ka-ı 1 oe

t how=a l ' . . . a l r ow=a l ' . . . a !F  ow oad  o f  =a...a7  att"2 and similarly
ky  ka—1 tq+xt i ow=a" .  a l  ai4%2. As 14 +# is  then 1 ;  + = <z i g  + x must hold and we can

set vq
We have to show that for all t; € T(q)\{t;} there exists v € ORD(X,) such that we
have t; ov > t;  o v .  Note that for all ¢; with prefix af! . . .a%*! <a l ' . . . a } ; '  we have
t j  ovg  < t ;  0 vg, as right multiplication wi th  va = a, 4 has no  influence on  the prefix i n
ORD(Z\X.).
Therefore, i t  remains to look at those terms t; with aj! . . .  a t  = a l . . .  a ;  . Let us
assume that there exists a term ¢; such that ¢;ovs > t;0v4,  i.e., jg— 14 27  ta — 14. We
will show that then j; = i g  and hence our induction hypothesis can be applied since
for the polynomial ¢q * va the distinguishing letter between HT(g * va) and t; o vg is of
index d’ > d = n — k and by our assumption there exists inv(vs) o w € G such that
HT ((q * va) * (inv(va) © w)) = HT(g*  w) = t ;  ow = ¢ ;  0 (inv(vg) ow).  Hence there exists
? € ORD(Z4) such that HT(g *  vg +* ©) = t ;  00400  and we set v = vg  € ORD(X4) and
are done.
I t  remains t o  show that ja = ig  must hold. We  know j a+x  <z  i g+z  and 1442  <gz i 4+z
since HT(g * w) = t ;  ow. Next we prove that t; ov  > ¢; o v  implies ja = ia  by  analysing
the possible cases.
First suppose that 1 ;  < 0 and thus 14 + x <z  ia  + z implies z > |14| > 0 as before.
Then in case i g  < 0 this gives us |14| > [24]. Now ja— l a  2z  ia—1a > 0 and j4—12 > 0
yield either ja > 0 or (ja < 0 and |ja| < |24]), both implying ja + y > ia  + y for all
y > |14|. Thus as z > |14| we get ja  + 2 > ia + z yielding ja = i4.
In  case i g  > 0 as before jg — 14 >7  14 — 15 > 0 and jg  — 14 > 0 yield ja > ia, and for all
y > |1a| we get j a+y  > ia +y .  Thus as x > [14], Ja + = > ia + = again yields jg  = 74.
Therefore, let us assume that 14 > 0 and thus 14 + ¢ <z  ia + z implies z < 0 and
| z |  > 2a, s ince 1g > 24 > 0 and 14 > ja  > 0.  Now ja — 14 27  t g—1 lgand  i g — l a  <0
imply ja — 14 < 0 and [ig — 14] < |ja — 14]. Hence we get ja < ia and for all y < 0 with
ly| > ja, we have ja +y  >z  2a + y. Thus as |z| > ia > ja, then ja + © >z  a + x yields
Jd = i d .  0

IN S

Notice that the proof of this lemma shows that there is an algorithm which computes
some v € ORD(X4) as desired in case i t  exists and that the element w need not be
known for this computation.

Remark 1 The element v constructed in  the proof of  the previous lemma can be
made “minimal” among al l  elements having this property by modifying the construction
slightly. In  case for the distinguishing letter ag we have ig > 0 > 14 o r  0 > ig  > 14
we stil l  use vg = az  in the construction. For the other case 13 > i y  > 0 we then use
va =a ;  0

For a polynomial p and a term t € T(p) we call a term s in  a multiple p*w  a t-term if
s = tow.  The following lemma states that if in  two A -right-multiples of a polynomial
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the head terms result from the same term t, then there is also a right multiple of the 
polynomial with a t-term as head term which is in some sense a common comLlUtative 
prefix of the head terms of the original two multiples. In example 2 for p * >. = a 2 + a 

and p * a-I = a + A, both head terms result from the term a2 and the head term a of 
p * a-I is a commutative prefix of the head term a2 of p * A. 

Lemma 5 For u, v E N, let p * u and p * v be two right multiples of a non-zero 
polynomial pE K[Q] such that for some term t E T(p} the head terms are t-terms, i.e., 
HT(p * u) = to u =ea~l ... a~n and HT(p * v) = to v == ea{l ... a~n. Then there exists a 
term t ~tup eail ... a~n where 

sgn(il)· min{li11, lid} sgn(il) = sgn(jl)
PI - { 0	 otherwise 

and an	 element zEN such that HT(p * z) t 0 z = t. In particular, we have 
qc 0 d qc 0 p * U ---+p*z an p * v ---+p*z . 

Proof: Let p, p * u and p * v be as described in the lemma and let the letters 
corresponding to our presentation be L; = {a1'.'" an, alt, ... , a;;l}. Without loss of 
generality10 let us assume that the £-part of the terms in p and q is A, i.e., for all 
t E T({p, q}) we have t E ORD(L;). 
We show the existence of z by constructing a sequence Zl, ... ,Zn E Q, such that for 
1 ~ 1 ~ n we have HT(p * ZI) = t 0 ZI =a~l ... a;lrl with rl E ORD(L;I+l) and 
a~l ... a;l ~tup ail ... afl. Then for z = Zn our claim holds. 
Let us start by constructing an element Zl E Q such that HT(p * Zl) = to Zl = a~lrl, 

r1 E ORD(L;2) and a~l ~tup ail. 
In case i1 = j1 or i1 = 0 we can set Zl = v and SI = i1 = PI since HT(p * v) = to v = 
ail ... a~n. Similarly in case i1 = 0 we can set Zl = u and SI = i1 = 0 = PI since 
HT(p * u) = to u == a;2 ... a~ E ORD(L;2)' Hence let us assume i1 =1= i1 and both are 
non-zero. 

First suppose that sgn(i1) = sgn(it). Then if li11~ li11 we again set Zl = v since for 
SI = i1 = PI our claim holds. In case li11 > li11we set Zl = u because for SI = i1 = PI 

our claim holds. 
Now let us proceed with the case sgn(i1) =1= sgn(j1)' i.e., we construct Zl E Q such that 
HT(p * zd = to Zl E ORD(L;2) as PI = O. We claim that the letter a1 has the same 
exponent for all terms in T(p), say b. In case this holds, no term in the polynomial 
p * al 

b will contain the letter a1 and the distinguishing letter between HT(p * al 
b) and 

the term to al b is at least of index 2. Furthermore we know HT((p * al b) * (at 0 v)) = 
HT(p * v) = t 0 v. Thus by lemma 4 there exists an element r E ORD(L;2) such 

bthat HT((p * al 
b) * r) = to al 0 r E ORD(L;2) and thus we can set Zl = albr and 

SI = 0 = PI' 
Hence it remains to prove our initial claim. Suppose we have the representatives 

10As before this can be done as N-right-multiples do not change the E-part of a term. 
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the head terms result from the same term t ,  then there is also a right multiple of the
polynomial with  a t-term as head term which is in some sense a common comr.iutative
prefix of the head terms of the original two multiples. In example 2 fo rpx  A =a ’+a
and p *a~ !  = a+ A, both head terms result from the term a? and the head term a of
p*  a !  is a commutative prefix of  the head term a? of  p * A.

Lemma 5 For u , v  € N ,  let px  u and p x v be two right multiples of  a non-zero
polynomialp € K[G]  such that for some term t € T(p)  the head terms are t-terms, i.e.,
HT(pxu )= tou=  eay . . . a»  and HT ( p * v )  = t ov  = eal . . . a i r .  Then there exists a
term € <tup cat !  . . . a l "  where :

p=ne  sgn(ir) - m in { [ i i ,  |jı]} ~~ sgn(i) = sgn(jı)
0 otherwise

and an element % € N such that HT(p * 2) = t o  3 = {. In particular, we have
p ru—e:0  and p *v — 0 .

Proof : Let p, p*u  and p * v be as described in the lemma and let the letters
corresponding to  our presentation be X = {a1 , . . . , an ,a7 } , . . . , a ; ' } .  Without loss of
generality!® let us assume that the £-part of the terms in  p and g is A, i.e., for all
t € T({p,q}) we havet € ORD(Z).
We show the existence of # by constructing a sequence 2 i , . . . , 2 ,  € G, such that for
1 <1  <nwehave  HT(p*xz )  = t o  z = a f  . . . a ' r  with r ı  € ORD(Z141) and
ait . . . a '  <p  a7" . . . a f ‘ .  Then for Z = z,  our claim holds.
Let us start by  constructing an element zı € G such that HT(p * 21 )  = t 0 2 ;  = airy,
r 1  € ORD(X , )  and af ’  <iup a f ’ .
In  case i ;  = j ;  or  j ;  = 0 we can set 2 ;  = v and 8 ;  = j ;  = p ı  since HT(p *v )  = tov  =
al! . . .a in ,  Similarly in  case i j  = 0 we can set z ı  = u and s ı  = i ;  = 0 = p;  since
HT(p*u )  = t ou  = a? . . . a i r  € ORD(Z,). Hence let us assume 4, # j i  and both are
non-zero.

First suppose that sgn(i;) = sgn(j1). Then if |¢1| > [1] we again set 2 ;  = v since for
81  = J1 = p ı  our claim holds. In  case [j1| > [¢1] we set zı  = u because for s ı  = 2; = py
our claim holds.
Now let us proceed with the case sgn(z,) # sgn(j1), i.e., we construct z; € G such that
HT(p * 21 )  = to  2 ,  € ORD(E;) as p1  = 0. We claim that the letter a ,  has the same
exponent for all terms i n  T(p), say b. In case this holds, no term in  the polynomial
p*  a7? will contain the letter a ;  and the distinguishing letter between HT(p * a7?) and
the term t 0 a7? is at least of index 2. Furthermore we know HT((p * ai?) * (a? 0v) )  =
HT(p * v) = t ov .  Thus by lemma 4 there exists an element r € ORD(X;) such
that HT((p * a7?) * r )  = t 0 ay® o r € ORD(X;) and thus we can set z ı  = ay ’ r  and
S$ = 0=  P i .

Hence i t  remains to prove our initial claim. Suppose we have the representatives

1045 before this can be done as AN-right-multiples do not change the £-part of  a term.
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Sf =a~" Xa', ba' E Z, Xa' E ORD(E2) for the terms Sf E T(p) and HT(p) = S =a~'Xa' 
Then we know ba 2:z bt since t E T(p). 
Hence in showing that the case ba >z bt is not possible we find that the exponents of 
al in sand t are equal. To see this, let us study the possible cases. If bs > 0 we have 
ba > bt 2: 0 and hence there exists no x E Z such that bt + x > ba + x 2: O. On the 
other hand ba < 0 either implies bt > 0 or (bt ::; 0 and Ibal > Ibtl). In both cases there 
exists no x E Z such that bt + x < 0 and Ibt + xl > Iba + xl. Hence bt = ba must hold 
as we know that t can be brought to head position by u respectively v such that the 
exponents of al in HT(p * u) respectively HT(p *v) have different sign. 
It remains to show that there cannot exist a term Sf E T(p) with ba' <z ba = bt • Let 
us assume such .an Sf exists. Since HT(p * u) = t.o u = a;l ... a~n and HT(p * v) = 

t 0 v =a{l ... a~n there then must exist Xl, X2 E Z such that ba' +Xl <z. bt + Xl = il and 
bs' + X2 <z bt + X2 = jl' Without loss of generality let us assume i l > 0 and it < 0 
(the other case is symmetric). In case bt < 0 we get that bt + Xl = il > 0 implies 

Xl > Ibtl > O. Now, as bs' <z bt either implies bs' > 0 or (bs' ::; 0 and Iba,1 < Ibtl), we 
find ba' + Xl > bt + Xl contradicting ba' + Xl <z b t + Xl. On the other hand, in case 
bt > 0 we know bt > bs ' 2: O. Furthermore, bt +X2 = jl < 0 implies X2 < 0 and IX21 > bt • 

Hence we get bs' + X2 < 0 and Iba' + x21 > Ibt + x21 contradicting ba' + X2 <z bt + X2. 

Thus let us assume that for the letter ak-l we have constructed Zk-l E 9 such that 
- t - SI ak-1 - SI ak-l lk f 'th ORD('" ) HT(p * Zk-l ) - 0 Zk-l = al ... ak_l rk-l = al ... ak_l ak r WI rk-l E LJk , 

r' E 0 RD(Ek+l ) and a? ... a~"-11 ::;tup ail ... aZ"-ll. We now show that we can find 
Zk = Zk-l 0 W E 9 such that HT(p * Zk) = to Zk = a~l ... a~krk with rk E ORD(Ek+I) 

SI Sk < PI Pkand a l ... a k _tup a l ... ak . 

This will be done in two steps. First we show that for the polynomials p*u and P*Zk-1 

with head terms a;l ••• a~n respectively a~l .•. a~_11 atr' we can find an element WI E 9 
such that HT(p * Zk-l * wd = to Zk-l 0 WI =a~l •.. a~"-llatkf, f E ORD(Ek+I) and 

Sk < Pk "thak _tup ak WI 

sgn(ik) . min{likl, Ilk/} sgn(ik) = sgn(lk) 
o otherwise. 

Then in case a~k ~tup a~k we are done and set Zk = Zk-l 0 WI and Sk = Sk. Else we can 
similarly proceed for the polynomials p * v and p *Zk-l * WI with head terms ail ... a~n 

respectively a~l ... a~_ll a~kf and find an element W2 E 9 such that for Zk = Zk-l OWl OW2 

we have HT(p * Zk) = t 0 Zk = a~l ... a~krk, rk E ORD(Ek+d and a~k ::;tup a~~ with 

sgn(jk) = sgn(sk) 
otherwise. 

Then we can conclude a~k .~tup a~k as in case Sk = 0 we are immediately done and 
otherwise we get sgn(jk) = sgn(sk) = sgn(Pk) = sgn(ik) and min{likl, ISkl, Ijk\l ~ 

min{likl,ljkl}· 
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8 = zn ,  by € Z ,  Ty  € ORD(Z;) for the terms s’ € T(p) and HT(p) = s = a¥'z,.
Then we know b, >z  b; since t € T(p).
Hence in showing that the case b, >z  b; is not possible we find that the exponents of
a;  in  s and t are equal. To see this, let us study the possible cases. If b, > 0 we have
b, > bı > 0 and hence there exists no  z € Z such that b; + z > b,  + z > 0.  On  the
other hand b, < 0 either implies b; > 0 or (b; < 0 and |b;| > |&|). In both cases there
exists no x € Z such that b; + z < 0 and |b; + z |  > |bs + =|. Hence b; = b, must hold
as we know that ¢ can be brought to head position by  u respectively v such that the
exponents of  a ;  in  HT(p  * u) respectively HT (p * v )  have different sign.
It remains to  show that there cannot exist a term s’ € T(p) with by <z  bs = b;. Let
us assume such ‚an s’  exists. Since HT(p * u )  = t ou  = af  . . . a l r  and HT(p*v)  =
t ov  = all . . .  an  there then must exist z ; , z ;  € Z such that by +z ,  <z.b;+ 2,  = i ;  and
by + x2 <z  bi + x2 = j i .  Without loss of generality let us assume ¢; > 0 and j i  < 0
(the other case is  symmetric). In case b; < 0 we get that b; + xz1 = 7; > 0 implies
z ı  > |b ]  > 0. Now, as by <z  b; either implies by > 0 or (by < 0 and |by| < |be]), we
find bs + z ;  > be + x ;  contradicting by + x ;  <z  be + 1 .  On  the other hand, in case
b; > 0 we know b; > by > 0. Furthermore, bs + z ;  = j ;  < 0 implies z2 < 0 and |z2| > de.
Hence we get by + 22  < 0 and |by + z2| > |b; + z2| contradicting by + z2 <z  b + x».
Thus let us assume that for the letter az ;  we have constructed zx_; € G such that
HT(p * zk—1)  = to  zp  = a . . .  ap r ey  = a'.. a a lk  with r , - ;  € ORD(Z;),
r € ORD(Zk41) and aft ...ap Stop a f ' . . . a%; ' .  We now show that we can find
zr = z ı-1  0 W € G such that HT(p * zz) = t o  2x = a7’... ay ry with 7 ,  € ORD(Z41)
and a !  ...a;* Sep a f . . .  aß.
This will  be done in two steps. First we show that for the polynomials pxu  and px  2 ;_ ;

with head terms ai! . . .  air respectively a f  ...a;*3 alr ’  we can find an element w ı  € §
such that HT(p * ze_1  * wy) = t o  zp  0 wy = al... La l  afk, 7 € ORD(Xg41) and
alt <p  al* with

p=  {5060 mn)  s i )  = sen)
0 otherwise.

Then in case alk <Ztup ai" we are done and set zx = 2x_ ;  0 w;  and s ;  = § ; .  Else we can
similarly proceed for the polynomials p * v and p * z;_;  * w;  with head terms al! . . . a l r
respectively ap’... ay a t  and find an  element w2 € G such that for zz = z ;_ j ow ;  ow,

we have HT (p* zz) = t o  zr =)  ... a r k ,  re € ORD(Z41 )  and a r  Sep  alk with

= sgn(J jk )- min{|jx|, [3k|} sgn( jx)= sgn(5x)
k 0 otherwise.

Then we can conclude a r  <;up ak“ as in  case sy = 0 we are immediately done and
otherwise we get sgn(jx) = sgn(3x) = sgn(px) = sgn(ix) and min{ | i k | ,[Su], |7x]} <
min{[ikl,  |7k[}-
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=
Let us hence show how to construct Wl. Remember that HT(p * u) = to u ail . .. a~n 
and HT(p * Zk-l) = t 0 Zk-l =a~1 .•. a~~11a~r' for some r' E ORD(Ek+I)' In case 
ik = Ik or Ik = 0 we can set Wl = ,\ and Sk = 1k = Pk as HT(p * zk-d = t 0 Zk-l = 

SI Sk-l Ik 'H 1 t" ../.. 1 d 1 ../.. 0a1 ••• ak-l ak r. ence e 'tk I k an k I . 

First let us assume that sgn(ik) = sgn(lk)' Then in case likl 2: Ilkl we are done by setting 
\ 'HT( ) t SI 8k-l Ik , "11 d 'th ~ 1 Wl = 1\ as agaIn p * Zk-l = 0 Zk-l =al '" ak-l ak r Wl 0 Wl Sk = k = Pk. 

Therefore, let us assume that Ilkl > likl. Then we consider the multiple P*Zk-l *a;;lk+ik, 

i,e., the exponent ofthe letter ak in the term to Zk-l 0 a;;lk+ik will be ik . If HT (p *Zk-l * 
-Ik+ik ) t - -Ik+ik d b th t -Ik+ik "I "k-l i k ~ a k = 0 Zk-l 0 ak we are one ecause en 0 Zk-l 0 a k =al .. , a k- 1 ak rk 

for some rk E ORD(Ek+d and we can set Wl = a;;lk+ik and Sk = ik = Pk. Otherwise we 
show that the t-term to Zk-l 0 a;;lk+ik in this multiple can be brought to head position 
using an element r E ORD(Ek+l) thus allowing to set Sk = ik = Pk and Wl = a;;lk+ik r 

"I Sk_l Ik' -Ik+ik_ as then we have HT(p * Zk-l * Wl ) = t 0 Zk-l 0 Wl = a 1 ••• a k- 1 a k r 0 ak r = 
SI "k-l i k - h Ik , -Ik+ik ik ~11 Th' £ 11 . d' t 1 'fa 1 •• , ak_l ak r were a k r 0 ak r =ak r. IS 0 ows Imme la e y 1 we can 

prove that the exponent of ak in the term HT(p*Zk_l *a;;lk+ik ) is also ik. Then we can 
apply lemma 4 to the polynomial p * Zk-l * a;;lk+ik and the term to Zk-l 0 a;;lk+ik. Note 
that HT(p * Zk-l * a;;lk+ik ) and t 0 Zk-l 0 a;;lk+ik have then distinguishing letter of at 

least index k+1 and further HT«p*zk_l*a;;lk+ik)*a;;ldik) = HT(p*Zk-d = tozk_l' 

Therefore, we show that the exponent of ak in the term HT(p * Zk-l * a;;/dik) is also 

ik • Let a~1 , , ,a~".:il atkr" with r" E ORD(Ek+d be the term in p * Zk-l that became 
12' "I 810""71 bk " -Ik+ik - "I 8k-l Ck 81 Sk-l ik = head. term ,l.e" a 1 ." ak_l ak r 0 ak = al ". ak_l ak x >- a l .. , ak-l ak Y 

to Zk-l 0 a;;lk+ik for some x, Y E ORD(Ek+d and therefore Ck 2:z ik , Then by lemma 

1 there exist Zl E ORD(E\Ek-d and Z2 E ORD(Ek) such that a~1 . , ,a~".:ila~ky 0 Zl = 
i 1 i k_1 ik+Jk f ORD(" ) d ik+Jk - i k ik+l in'al ." ak-l a k z or some Z E L.Jk+l an ak Z 0 Z2 = ak ak+l •. , an' Le" 

Z2 == a;;!k z~ for some z~ E 0 RD(Ek+d, Note that the t- term is brought to head 
position by this multiplication, Now multiplying HT(p *Zk-l * a;;lk+ik) by ZlZ2 we find 

"I "k-l Ck i 1 ik-l Ck+!k-!k - f ~ ORD(" ) Th' ,a l .,. a k_ a k x 0 ZlZ2 =a l ... a k_ 1 ak x or some x E L.Jk+l' IS gIves us l 

Ck :S;Z ik and thus ik :S;z Ck yields Ck = ik , 

Finally, we have to check the case that sgn(ik) -I sgn(lk) and 1k -I 0, Let us take a 
look at the polynomial p * Zk-l * a;;lk , i.e., the exponent of the letter ak in the term 

-Ik '11 b 0 S HT( -Ik ) SI "k-l ck £ tt o Zk-l 0 ak Wl e. uppose p * Zk-l * ak =al .. , ak_l ak x, or some erm 

s = a~1 ". a~':..11at·x" E T(p * Zk-d, x, x" E ORD(Ek+t}, i.e" Ck = b" - 1k • In case this 
head term is already the corresponding t-term to Zk-l 0 a;;\ we are done and we set 
Wl = a;;l k and Sk = 0 = Pk. Now if we can show Ck = 0, by lemma 4 the i-term 
tozk_l oa;;lk can be brought to head position using an element in ORD(Ek+l) since the 
distinguishing letter between HT(p *Zk-l *a;;lk ) and the term to Zk-l 0 a;;lk then has at 

least index k+l and we know HT«p*Zk-l *a;;lk)*a~) = HT(p*Zk-t} = tozk_l' Hence, 
in showing that Ck = 0 we are done. As before there exist Zl E ORD(E\Ek-l) and 

llNote that the product of two elements in ORD(Ej) is again an element in ORD(Ei)' 
12Note that a candidate in T(p * Zk-l) for the head term in p * Zk-l * a;lk+ik must have prefix 

a~l ... a~':..-ll since HT(p* Zk-l) == a~l ... a~':..-ll rk-l and multiplication with a;lk+ik only involves rk-l· 
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Let us hence show how to construct w;.  Remember that HT (p *u )  = tou  = a l  . . .a in
and HT(p * zx—1) = t o  zp; = a f  a ra  for some r’  € ORD(Zx41). In case
ik  = In or ly = 0 we can set wy, = X and $ = I; = px as HT(p* ze_1) = t o  zx; =
a i  . . . ap  alr .  Hence let iz # I and I; # 0.
First let us assume that sgn(ix) = sgn(lx). Then in  case |ig| > | l i |  we are done by setting
wy = X as again HT(p * ze_1) = t o  zp;  = af... a f  a l r ’  will do with & = lx = j;.
Therefore, let us  assume that | lg |  > | i x | .  Then we  consider the multiple p*2x-1  wap k t

i.e., the exponent of  the letter a ;  in  the term t oz ;_ ;0  aj F t  will be iz. I£ HT (p*  zg -1  *
arkt ik)  = to2,_;  0a ; * we are done because then tozz_, 0a, t k  = a f l . . .  ap}  aly
for some 7 € ORD(Z%41) and we can set w ı  = a; kk  and 3 = 1x = px. Otherwise we
show that the t-term t o  z,_;  0 ay KH in this multiple can be  brought to  head position
using an element r € ORD(Xk41) thus allowing to set 8 = tx = fx and wy = ap k i p
as then we  have HT(p  * zz_1 * wy) = t o  zy  0 wy = al... a l  a lk  ° ap K ip
ai l  . . . ap *  a f  where apr’ o apk t i kp  = af*#1'. This follows immediately if we  can
prove that the exponent of  ax in  the term HT ( p *  zx_1  x ay F ix )  is also zx. Then we can
apply lemma 4 to  the  polynomial p*  zx, * ap t is and the term t o  zg;  0 ap Ft ,  Note
that HT(p * 2 ,_ ;  * a;' ***)  and t o  z ,_ ,  0 a;**** have then distinguishing letter of  at

least index k + 1 and further HT((p* 25-1 * a; k ik )  * a; vt) = HT(p* 2k -1 )  = t0  2g1 .

Therefore, we show that the exponent of a;  in the term HT(p * 2x_1  * a ;***) is also
i r .  Let a !  . . .ap 7a r "  with r” € ORD(Zk41) be the term in p * zg_1  that became
head term!?, i.e., a !  . . . a *  ar"  0 ag*t*  = a . . . a  afr > al... aay  =
t ozg_ i0  a j  x t  for some z , y  € ORD(XZ41) and therefore cx >z  ix.  Then by  lemma
1 there exist z ı  € ORD(X\Xk-_1) and 2,  € ORD(Xk) such that a7 .. apr a t y  oz  =
ail ...ap aH,  for some z € ORD(E;41)  and a f * f *z  oz ,  = apap ı ı . . . a lP ,  i e ,

zy = apf*z} for some z, € ORD(Zi41). Note that the t-term is brought to  head
position by this multiplication. Now multiplying HT(p * zx—1 * az") by 212 ;  we find
all . . . a *  az  0 212  = al l . . .  a aX I 3 for some % € ORD(Z441). This gives us
ck <Z  tx and thus ix  <gz ci  yields cr”, = is.
Finally, we have to check the case that sgn(ix) # sgn(lk) and Ix # 0. Let us take a
look at the polynomial p * zg_1  * ag '*, i.e., the exponent of the letter a j  in  the term

- . _ akt 0 21 -1  0 ax * will be  0. Suppose HT(p * ze; * ar * )=  ai!  . . . ap ıa fz ,  for some term

s=a . . . ap7  dz, € T(p* 21 -1 ) ,  7 ,2 ,  € ORD(Zx41), Le., cx = bs — l i .  In case this
head term is already the corresponding ¢-term f o  zx; © ay’,  we are done and we set
wy, = ap and 5;  = 0 = ße. Now if we can show ¢ ;  = 0, by lemma 4 the t-term
tozj-10a;™* can be brought to head position using an element in ORD (E441) since the
distinguishing letter between HT (p*  zy  * az’)  and the term t o  zg -1  © ah  then has at
least index k+1  and we know HT ((p* zx—1 xa * ) *a l )  = HT (p*zk-1) = tozx-1. Hence,
i n  showing that cx = 0 we are done. As before there exist zı € ORD(E\Xk-1) and

1 Note that the product of  two elements in ORD(E;) is again an  element in ORD(Z;).
12Note that a candidate in T(p * zz_1) for the head term in p * zp )  * ap x t  must have prefix

—1 _ ede  . _T  44 .
a3  . . .a;*  since HT(p+z;_1) = a } ' . . . a } *  7 r e ;  and multiplication wi th  a ++  only involves rg_j.

12



Z2 E ORD(~k) such that tozk_loa"k1"OZl = a~I ... a~".:;a£"z forsomez E ORD(Ek+d and 

akhe ZOZ2 -= aki" ... anin', I.e., Z2 =- ak-!k+i" Z2I £or some Z2I E ORD(~. LJk+l.) Remember that th'IS 

multiplication brings the t-term to head position. Hence multiplying HT(p*Zk_1 *a"k1
,,) 

SI 8"_1 c" . i 1 i k_1 Ck+ik - £ - ORD(~ )by ZlZ2 we find a l ... ak-l ak x 0 ZlZ2 =al ... ak-l ak x or some x E LJk+l . 
Thus we know Ck + ik :S;Z ik. To see that this implies Ck = 0 we have to distinguish 
three cases. Remember that Ck = bs - h and since our head term is an s-term so a"k1k 

for some s E T(p * zk-d we know ba :S;Z lk. In case ik = 0, we have Ck :S;Z 0 implying 
Ck = O. In case ik > 0 then Ck + ik = ba - h + ik :S;Z ik implies 0 :s; ba - lk + ik :s; ik. 
Furthermore, as h < 0 we have -lk+ik > ik implying ba < 0 and hence Ibal :s; Ilkl. But 
then bs - lk ~ 0 and 0 :s; bs - lk + ik :s; ik yields Ck = bs - lk = O. On the other hand, 
ik < 0 and lk > 0 imply 0 :s; ba :s; lk and hence ba-lk+ik < 0 yielding Iba-lk+ikl :s; likl. 
Since ba - lk :s; 0 this inequation can only hold in case Ck = ba - lk = O. 0 

These two lemmata now state that given a polynomial, we can construct additional 
polynomials, which are in fact N-right-multiples of the original polynomial, such that 
every N-right-multiple of the polynomial is qc-reducible to zero in one step by one of 
them. This property is called N-saturation. In example 2 the multiples p* a-I = a +). 

and p * a-2 = a-I + ). give us a N-saturating set for p = a2 +a. 

Definition 3 A set S ~ {p*w IwEN} is called an N-saturating set for a non-zero 
polynomial p in K[Q], if for all wEN, p * w -----+§c O. A set of polynomials F ~ K[Q] 
is called N-saturated, if for all f E F and for all wEN, f * w -----+j;.c o. 0 

A further consequence of the previous lemmata is that finite N-saturating sets exist 
and that they can be computed. 

Procedure SATURATION 

Given: A non-zero polynomial p E K [Q]. 
Find: SAT(p), an N-saturating set for p. 

for all t E T(p) do 
St := 0; 
if t can be brought to head position 

then compute q = p * w with HT(p * w) = tow 
Ht := {s E Q I HT(q) ~tup s}; 
% These are candidates for "smaller" polynomials with t-head termsl3 

q := min{p * (inv(t) 0 s) Is E Ht, HT(p * (inv(t) 0 s)) = s}; 
St := {q}; 

endif 
endfor 
SAT(p) := UtET(p) St % S contains at most IT(p)1 polynomials 

13More structural information can be used to rule out unnecessary candidates from the set Ht to 
make this procedure more efficient. 
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zz € ORD(Z)  such that tozx_j0a;"oz= ai! ... a }  al*z for somez € ORD(X,41) and
altzoz, = a j * . . . a i ni .e.  2 ; = ap ++  2! for some 2}, € ORD(X141). Remember that this
multiplication brings the t-term to  headposition. Hence multiplying HT (p* 2x1  * a; * )
by  z12 ;  we  find a t  . . . a * az  0 2120 = a } .  a f  l a f  t i g  for some & € ORD(Z441).
Thus we know cr + tx <z  i x .  To  see that this implies cz = 0 we have to dist inguish
three cases. Remember that cx = bs — li and since our head term is an s-term so  ap’
for some s € T(p * 2x1)  we know b, <z  lx. In case ix  = 0, we have ¢ ;  <z  0 implying

. ck =0 .  In  case t x  > 0 then cx + i x  = bs — lx + 1x <z  t x  implies 0 < bs — I} + 1x < 7g.

Furthermore, as ly  < 0 we have —li +3 ;  > tx implying b; < 0 and hence |b,| < | x | .  But
then b, — lz > 0 and 0 < b, — I; + 7x < i x  yields ¢x  = bs — lx = 0.  On  the other hand,
tx < 0 and lx > 0 imply0 < b, < Ix and hence b ,—lx +2x < 0 yielding |b, — lp  +2 | < [ix].
Since b,  — I; < 0 this inequation can only hold in case cr = by; — Il; = 0. a

These two lemmata now state that given a polynomial, we can construct additional
polynomials, which are in fact A -right-multiples of the original polynomial, such that
every N-right-multiple of the polynomial is qc-reducible to zero in  one step by  one of
them. This property is  called A -saturation. In  example 2 the multiples pxa™ = a+  A
and p * a7? = a ” !  + A give us a N-saturating set for p = a? + a.

Definition 3 A set S C {p*w  | w € N} is called an N-saturating set for a non-zero
polynomial  p in K [G ] ,  if  for all w € N ,  px  w—F 0. A set o f  polynomials F C K [G]
is called N-saturated, if for all f € F and for all we N ,  f * w—F0. ©

A further consequence of the previous lemmata is that finite A-saturating sets exist
and that they can be computed.

Procedure SATURATION

Given: A non-zero polynomial p € K[G].
Find: SAT(p),  an  N-saturating set for p.

for all t € T(p) do
Se : =  0;
i f  ¢ can be brought to head position

then compute ¢ = p*  w with HT (p *w)  = tow
Hy; : =  { s  € G | HT(q) 2wp s } ;
% These are candidates for “smaller” polynomials with #-head terms
q : =  min{p * (inv(t) os) | s € Hy, HT(p* (inv(2) 0 s)) = s};
St = {q} ;
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endif
endfor
SAT(p) : =  UseT(p) St % S contains at most |T(p)| polynomials

13More structural information can be  used to rule out unnecessary candidates from the set H ;  to
make this procedure more efficient.
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Grobner bases as defined by Buchberger can now be specified for right ideals in this 
setting as follows. 

Definition 4 A set G ~ K[Q] is said to be a right Grobner basis, if ~(j 
=idealr(G)' and for all 9 E idealr(G) we have 9 ~(j 0.14 

We can now characterize such bases by so-called s-polynomials corresponding to qc
reduction. 

Definition 5 For P1,P2EK[Q] such that HT(p1)=ea~1 . .. a~n and HT(P2)=ea{1 .. . a~n 
with either il = 0 or jl = 0 or sgn(il) = sgn(jl) for 1 ::; 1 ::; n we can define an 
s-polynomial, and setting 

i1 = 0 
otherwise 

the situation eail.max{lill.lill} ... a~n.max{linl.linl} = HT(pt} 0 W1 HT(P2) 0 W2 for some 
Wll W2 E N gives us 

o 

Notice that HT(pi) ::;tup eail.max{lill,ljll} ... a~n.max{linl.linl} for i E {1,2} holds in case 

such an s-polynomial exists. Furthermore, if there exists a term t such that t ;::::tup 

HT(P1) _ ea~l ... a~n and t ;::::tup HT(P2) = ea{l ... a~n an s-polynomial always exists15 

and we even have t ;::::tup eail.max{!ill,lill} ... a~n.max{linl.linl}. For every e E E let the 

mapping 'l/Je : K[Q] ----t K[9] be defined by 'l/Je(J) = f * e for f E K[Q]. We now can 
give a characterization of a right Grobner basis in a familiar way after transforming a 
generating set for the right ideal using these mappings. 

Theorem 1 Let F, G ~ K [9] such that 

(i) idealr(F) = ideal r(G) 

(ii) {'l/Je(J)lf E F, e E £} ~ G 

(iii) G is N - saturated. 

Then the following statements are equivalent: 

1. For all polynomials 9 E idealr(F) we have 9 ~{j O. 

14Notice that on first sight this is the definition of a weak Grobner basis. Since the translation 
lemma holds for qc-reduction it also defines a strong Grobner basis. 

15Notice that the condition for the existence of an s-polynomial is fulfilled as the tupel-ordering 
requires that the exponent of a letter at in the smaller term is either zero or has the same sign as the 
exponent of at in the tupel-larger term. 

14 

Gröbner bases as defined by Buchberger can now be specified for right ideals in this
setting as follows.

Definition 4 A set G © KI[G] is said to be a right Gröbner basis, i f A =

ideal,(G) and  for all g € ideal(G)  we have g-— 0 . 14 °

We can now characterize such bases by  so-called s-polynomials corresponding to qc-
reduction.

Definition 5 For  pı,p2€ K[G] such that HT (p;) =ea ...a¥r and HT (p;)=eal  . . . a f r
with either iz = 0 or f i = 0 or sgn( i ; )= sgn(ji) for 1 £1  < n we can define an
s-polynomial,and setting

p=  { sgn(jı) u=0
sgn ( r )  otherwise

the situation eat ™> b ia l }  geemextlinblinl} — HT  (51) 0 wy = HT(p2) 0 wy for some
wy, wg € N gives us

spo l (p1 ,p2 )= HC(p1)™"+ pr + w i — HC(p2)™" - p2 * wa.

©

Notice that HT (p;) < iup  cal!max{liz filial} a f max{linhlinl} f o r ;  € {1,2} holdsi n  case
such an s-polynomial exists. Furthermore, if there exists a term ¢ such that ? Zuup
HT(pi) = ea l.. ai» and t 2p  HT (p2) = ea l .  . a /  an s-polynomial always exists'®
and we even have t > ,  ea”max{lialnl} Labmalin,linl} For every e € £ let the
mapping ¢ . : K[G] — K][G] be defined by bof) = f *e fo r  f € K[G]. We now can
give a characterization of  a right Grobner basis i n  a familiar way after transforming a
generating set for the right ideal using these mappings.

Theorem 1 Let F ,G  © K[G] such that

(i) ideal ( F )  = ideal .(G)

(ii) {Ye(f)If € Fe€  £} CG

(iii) G is N -  saturated.

Then the following statements are equivalent:

1 .  For a l l  polynomials g € ideal .(F) we have g —& 0 .

4Notice that on first sight this is the definition of a weak Gröbner basis. Since the translation
lernma holds for qc-reduction i t  also defines a strong Grobner basis.

15Notice that the condition for the existence of an s-polynomial is fulfilled as the tupel-ordering
requires that the exponent of  a letter a;  in  the smaller term is either zero or has the same sign as the
exponent of a; in  the tupel-larger term.

14



2. For all polynomials fk,!1 E G we have spol(fk, !l) ~~c o. 

Proof:
 
1 ==} 2 : By definition 5 in case for !k,!1 E G the s-polynomial exists we get
 

and then SPOI(Jk' !I) ~~c o. 
2 ==} 1 : We have to show that every non-zero element 9 E ideaVF) is --+b -reducible 
to zero. Without loss of generality we assume that G contains no constant polynomials, 
as then we are done at once. Remember that for h E idealr(F) = idealr(G), h --+b h' 
implies h' E idealr(G) = idealr(F). Thus as --+~c is Noetherian it suffices to show 

that every 9 E idealr(F) \ {O} is --+b -reducible. Let 9 = ET=l Qj . Ji * Wj be a 
representation of a non-zero polynomial 9 such that Qj E K*, Ji E F, Wj E g. Further 

for all 1 ::; j ::; m, let Wj = ejuj, with ej E E, Uj E N. Then, we can modify 

our representation of 9 to 9 = ET=l Qj . tPej(Ji) * Uj. Since G is N-saturated and 
tPej(Ji) E G by definition 3 there exists gj E G such that tPej(Ji) * Uj --+i~ 0 and 
hence we can assume 9 = ET=l Qj . gj * Vj, where Qj E K*, gj E G, Vj E Nand 
HT(gj * Vj) = HT(gj) 0 Vj ~tup HT(gj). Depending on this representation of 9 and 
our well-founded total ordering on 9 we define t = max{HT(gj) 0 Vj I j E {1, ... m}} 
and K is the number of polynomials gj * Vj containing t as a term. Then t t HT(g) 
and in case HT(g) = t this immediately implies that 9 is --+~c -reducible. Otherwise 
we show that 9 has a special representation (a standard representation corresponding 
to qc-reduction) where all terms are bounded by HT(g), as this implies that 9 is top
reducible using G. This will be done by induction on (t, K), where (t', K') < (t, K) 
if and only if t' -< t or (t' = t and K' < K)16. In case t >- HT(g) there are two 
polynomials gk,gl in the corresponding representation17 such that t = HT(gk) 0 Vk = 
HT(gl) 0 VI and we have t ~tup HT(gk),t ~tup HT(gl)' Hence by definition 5 there exists 
an s-polynomial SpOI(gk,gl) = HC(gk)-l . gk * Zl - HC(gl)-l . gl * Z2 and HT(gk) 0 Vk = 

HT(gl) 0 VI = .HT(gk) 0 Zl 0 W = HT(gl) 0 Z2 0 W ~tup HT(gk) 0 Zl = HT(gl) 0 Z2 for 
some ZI,Z2,W EN. Let us assume SPOI(9k,91) =f 018. Hence, SpOI(gk,gl) ~~cO implies 

SpOI(gk' gl) = Ei=l bi . hi * v~, bi E K*, hi E G, v~ E N19, where the hi are due to 
the qc-reduction of the s-polynomial and all terms occurring in the sum are bounded 

by HT(spol(gk,gl))' By lemma 2, since t = HT(gk) 0 Zl 0 W ~tup HT(gk) 0 Zl and 
HT(gk) 0 Zl >- HT(spol(gk,gl)), we can conclude that t is a proper bound for all terms 

occurring in the sum Ei=l bi . hi * vi * w. Since wEN and G is N-saturated, without 
loss of generality we can assume that the representation has the the required form. We 

16Note that this ordering is well-founded since ~syll is and KEN. 
17Not necessarily g/ i= gk· 

181n case SpOI(gk' gz) = 0, just substitute 0 for E:=1 6i . hi * v~ in the equations below. 
19Note that the case v~ E E cannot occur as it implies that hi is a constant polynomial and we 

assumed that G does not contain constant polynomials. 
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2. For all polynomials fi, fi € G we have spol(fi, fi) — 0.

Proof :
1 =>  2 :  By  definition 5 in  case for fi, fi € G the s-polynomial exists we get

spol ( fx, fi) = HC(f)™! + fr * w ı  — HC(f i )™fi + wa € ideal (G) = ideal (F),

and then spol(fx,  fi) —&  0.
2 =>  1 : We have to show that every non-zero element g € ideal (F') is —& -reducible
to zero. Without loss of  generality we assume that G contains no constant polynomials,
as then we are done at once. Remember that for h € ideal (F )  = ideal .(G), h —& h '
implies h’ € ideal (G) = ideal (F) .  Thus as — is Noetherian it suffices to show
that every g € ideal (F ) \ {0 }  is —&  -reducible. Let g = 7 .  o j  - f; * w; be a
representation of a non-zero polynomial g such that a;  € K * ,  f; € F,w; € G. Further
for all 1 < j < m,  let w; = e ju ; ,  with e; € E, u; € N.  Then, we can modify
our representation of  g to g = ¥71, a;  - ¥.,(f;) * u j .  Since G is N-saturated and
Ye; (fj) € G by  definition 3 there exists g;  € G such that ¥; ( f ; )  * u;  —350 and
hence we can assume g = 7 ,  «; - gj  * v j ,  where a; € K*,g ;  € G,v; € N and
HT (g; * v;) = HT(g;) 0 vj; 2¢up HT(g;). Depending on this representation of g and
our well-founded total ordering on  G we define t = max{HT(g;) ov ;  | j € { 1 , . . .m } }
and K is the number of polynomials g; * v; containing t as a term. Then t > HT(g)
and in case HT(g) = ¢ this immediately implies that g is —& -reducible. Otherwise
we show that g has a special representation (a standard representation corresponding
to qc-reduction) where all terms are bounded by HT(g), as this implies that g is top-
reducible using G. This will be done by induction on ( t , K), where (¥,  K’) < (t ,  K )
if and only if  < t o r  (# = t and K ’  < K ) ' .  In case t > HT(g) there are two
polynomials g i , ¢; in  the corresponding representation!” such that t = HT (gx) o vx =
HT (gi) © vi and we have t >¢up HT (gk),t twp HT (91). Hence by  definition 5 there exists
an s-polynomial spo l (gx ,gı)= HC(gk)™ - gx * 21  — HC(gı)7! - gı * za and HT (gx) 0 vr =
HT(gi) © vi = HT(gx) 0 zs ow  = HT(gı) 0 zz 0 w up  HT (gk) 0 21  = HT (gi) 0 za for
some 21 ,  22 ,  w € N .  Let us assume spol(gx, gı) # 08 .  Hence, spol(gx, gi) —& 0 implies
spol (gk,gi) = 0 ,6  « hi  x vl,6; € K * hb; € G,v!  € N ,  where the h; are due to
the qc-reduction of the s-polynomial and all terms occurring i n  the sum are bounded
by HT(spol(gk,¢:)). By  lemma 2, since t = HT(gx) 0 zı  0 w >¢up HT(gx) 0 zı and
HT (gk) © z1 > HT(spol(gk, gı)), we can conclude that ¢ is a proper bound for all terms
occurring in  the sum X ,  6; + h;  * v! x w. Since w € N and G is NV-saturated, without
loss of  generality we can assume that the representation has the the required form. We

16Note that this ordering is well-founded since >4yy is and K EN.
17Not necessarily g ı  # gx.
181n case spol(gk, gi) = 0, just substitute 0 for y i ,  6 + h;  * v4 in the equations below.
19Note that the case v! € £ cannot occur as it implies that h; is a constant polynomial and we

assumed that G does not contain constant polynomials.
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now have: 

ak . gk *Vk + a~ . rh .gk * Vk - a~ . f3k . gk *Vk +a~ . f3i . gi *Vi
" y ., 

=0 

(ak + a~. f3k)· gk * Vk - a~· (f3k· gk *Vk - f3i· gl *Vi), ... ~ 

== spol (gk ,gd*w 
n 

(ak + a~ . f3k) . gk *Vk - a~ . (I>5'i . hi * v: *w) (1) 
i==l 

where f3k = HC(gk)-t, f3i = HC(gl)-l and a~ . f31 = ai.By substituting (1) in our 
representation of 9 either t disappears or in case t remains maximal among the terms 
occurring in the new representation of g, K is decreased. 0 

On first sight this characterization might seem artificial. The crucial point is that in 
losing the property "admissible" for our ordering, an essential lemma in Buchberger's 
context, namely that p ~F 0 implies p * w ~F 0 for any term w no longer holds. 
Defining reduction by restricting ourselves to commutative prefixes we gain enough 
structural information to weaken this lemma, but we have to do additional work to 
still describe the right ideal congruence. One step is to close the set of polynomials 
generating the right ideal with respect to the finite group E: For a set of polynomials 
F using the E-closure Fe = {'!feU) I f E F, e E E} we can characterize the right ideal 
generated by F as a set of N-right-multiples since idealr(F) = U:::=l ai . fi *Ui Iai E 
K, fi E Fe, Ui EN}. If we additionally incorporate the concept of N-saturation, qc
reduction can be used to express the right ideal congruence and then a right Grobner 
basis can be characterized as usual by s-polynomials. Now, using the characterization 
given in theorem 1 we can state a procedure which enumerates right Grobner bases in 
nilpotent group rings: 

Procedure RIGHT GROBNER BASES IN NILPOTENT GROUP RINGS 

Given: F ~ K[9] and a presentation of 9 by E and N as specified above 
Find: GBr(F), a right Grobner basis of idealr(F). 

G := {'!feU) If E F, e E E}; % G contains Fe 
G := UgEG SAT(g); % G is N-saturated and idealr(F) = idealr(G) 
B:= {(qt,qz) I qt,qz E G,ql #- qz}; 
while B #- 0 do % Test if statement 2 of theorem 1 is valid 

(qt, qz) := remove(B); % Remove an element using a fair strategy 
if h:= spol (qt, q2) exists 

then h':= normalform(h, ~{;C); % Compute a normal form 
if h' #- 0 % The s-polynomial does not reduce to zero 

then G:= G U {g I9 E SAT(h')}; 
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now have:

og  Ik  * Vk + aus gr xu

= / / /
= ar Ik * UP + Op: Pk gr * Up — Are Bic ge 4 UK tay Bis g i v

=0

= (ax +0  Br)  “Gk * vk — op (Br gk * vk — B i r  gi xv i )

=spol(gk.gt)+w
n

= ( r+ )  Br) gr * vr — 0 (D6  h i * v *w )  (1)
i=1

where 8, = HC(gx)™?, Bi = HC(gı)“! and of - Bi = aı. By  substituting (1) in our
representation of  g either ¢ disappears or  i n  case t remains maximal among the terms
occurring in the new representation of  g ,  K is decreased. 0

On first sight this characterization might seem artificial. The crucial point is that in
losing the property “admissible” for our ordering, an essential lemma in Buchberger’s
context, namely that p —— 0 implies p * w —>0  for any term w no  longer holds.
Defining reduction by restricting ourselves to  commutative prefixes we gain enough
structural information to weaken this lemma, but we have to do additional work to
st i l l  describe the right ideal congruence. One step is  t o  close the set  o f  polynomials
generating the right ideal wi th  respect to  the finite group E: For a set of  polynomials
F using the &-closure Fg = {¢. ( f )  | f € F ,e  € £ }  we can characterize the right ideal
generated by  F as a set of A/-right-multiples since ideal (F)  = { IF  ai f i x  ui  | ar €
K,  f; € Fe,u; € N } .  If we additionally incorporate the concept of A -saturation, qc-
reduction can be used to express the right ideal congruence and then a right Grobner
basis can be characterized as usual by s-polynomials. Now, using the characterization
given in theorem 1 we can state a procedure which enumerates right Grébner bases in
nilpotent group rings:

Procedure RIGHT GROBNER BASES IN NILPOTENT GROUP RINGS

Given: FC  K[G] and a presentation of G by £ and NV as specified above
Find: GB,(F'), a right Grobner basis of ideal, (F).

G := {Y ( f ) |  f e  Fe€&} ;  % G contains Fe
G :=  U,eq SAT(9); % G is N-saturated and ideal (F)  = ideal (G)
B :=  {(q1,9) | 01.92 € G,  1 # 92};
while B # 0 do % Test if statement 2 of  theorem 1 is  valid

(q1,42) i =  remove(B); % Remove an  element using a fair strategy
i f  h : =  spol(g1,q2) exists

then h ' : =  normalform(h, —¢  ) ;  % Compute a normal form
i f  h ' £0  % The s-polynomial does not reduce to zero

then G :=GU{g |g  € SaT(h’)};
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% G is .iV-saturated and idealr(F) = i,dealr(G) 
B := B U {(f,g) If E G,g E SAT(h')}; 

endif 
endif 

endwhile 
GBr(F):= G 

The set G enumerated by this procedure fulfills the requirements of theorem 1, i.e., we 
have Fe ~ G and the set G at each stage generates the right ideal idealr(F) and is N
saturated. Using a fair strategy to remove elements from the test set B ensures that for 
all polynomials entered into G the s-polynomial is considered in case it exists. Hence, 
in case the procedure terminates, it computes a right Grobner basis. Later on we will 
see that every right Grobner basis contains a finite one and hence this procedure must 
terminate. Let us first continue to show how similar to the case of solvable polynomial 
rings or skew polynomial rings ([Kr93, We92]), Grobner bases of two-sided ideals can 
be characterized by right Grobner bases which have additional properties. We will call 
a set of polynomials a Grobner basis of the two-sided ideal it generates, if it fulfills 
one of the equivalent statements in the next theorem. 

Theorem 2 For a set of polynomials G ~ K[g], assuming that 9 is presented by 
(r, T) as described above, the following properties are equivalent: 

1. G is a right Grobner basis and idealrCG) = ideal(G). 

2. For all 9 E ideal (G) we have 9 ~(;c o. 
3. G is a right Grobner basis and for all wE g, 9 E G we have w *9 E idealr(G). 

4. G is a right Grobner basis and for all a E r, 9 E G we have a *9 E idealr(G). 

Proof: 

1 ==> 2 : Since 9 E ideal (G) = ideal r(G) and G is a right Grobner basis, we are done. 

2 ==> 3 : To show that G is a right Grobner basis we have to prove ~& = =idealr(G) 

and for all 9 E idealr(G), 9 ~& o. The latter follows immediately since idealr(G) ~ 

ideal(G) and hence for all 9 E idealr(G) we have g~{;cO. The inclusion ~b ~ 

=idealr(G) is obvious. Hence let f =idealr(G) g, i.e., f - 9 E ideal r(G). But then we 
have f - 9 ~& 0 and hence by lemma 3 there exists a polynomial h E K[g] such that 

f ~& hand 9 ~(;c h, yielding f ~& g. Finally, w * f E ideal(G) and w * f ~& 0 

implies w * f E ideal r(G). 

3 ~ 4 : This follows immediately. 

4 ==> 1 : Since it is obvious that ideal r(G) ~ ideal (G) it remain,s to show that ideal (G) ~ 

idealr(G) holds. Let 9 E ideal(G), i.e., 9 = Ei=l cri . Ui * gi * Wi for some cri E K, 
9i E G and Ui, Wi E Q. We will show by induction on IUil that for Ui E Q, 9i E G, 
Ui*gi E idealrCG) holds. Then 9 also has a representation in terms of right multiples and 
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% G is N-saturated and ideal,(F) = ideal.(G)
. B :=BU{ ( f , 9 ) | f eG ,g€  SaT(h ) } ;

endif
endif

endwhile
GB, (F ) :=G

The set G enumerated by  this procedure fulfills the requirements of theorem 1, i.e., we
have Fe C G and the set G at each stage generates the right ideal ideal .(F') and is N -
saturated. Using a fair strategy to remove elements from the test set B ensures that for
all polynomials entered into G the s-polynomial is considered in case it exists. Hence,
in case the procedure terminates, i t  computes a right Grébner basis. Later on we will
see that every right Grobner basis contains a finite one and hence this procedure must
terminate. Let us first continue to  show how similar to  the case of  solvable polynomial
rings or skew polynomial rings ([Kr93, We92]), Grobner bases of two-sided ideals can
be characterized by right Grobner bases which have additional properties. We will call
a set of polynomials a Grobner basis of the two-sided ideal i t  generates, i f  i t  fulfills
one of the equivalent statements in  the next theorem.

Theorem 2 For a set of  polynomials G © K|[G], assuming that G is presented by
(T,T) as described above, the following properties are equivalent:

1. G is a right Grébner basis and ideal, (G) = ideal (G).

2. For al lg € ideal(G) we have g —&  0.

3. G is a right Grébner basis and for all w € G, g € G we have w * g € ideal .(G).

4. G is a right Grobner basis and for all a ET, g € G we have a * g € ideal .(G).

Proof  :
1 =>  2 :  Since g € ideal(G) = ideal .(G) and G is a right Gröbner basis, we are done.

2 =>  3 : To show that G is a right Grobner basis we have to prove — = Z idea l  (G)

and for all g € ideal (G), g — 0. The latter follows immediately since ideal,.(G) €
ideal(G) and hence for all g € ideal (G) we have g — 0. The inclusion —»  C
=ideal (¢) is obvious. Hence let f =ideal (6) g, i.e., f —g € ideal (G). But then we
have f —g —& 0 and hence by  lemma 3 there exists a polynomial h € K[G]  such that
f— Eh and g —F h, yielding f «—¥  g. Finally, w * f € ideal(G) and w * f HL  0
implies w * f € ideal (G).

3 =>  4 : This follows immediately.

4 =>  1 : Since i t  is  obvious that ideal .(G) C ideal(G) i t  remains to  show that ideal(G) C
ideal,(G) holds. Let g € ideal(G), i .e ,  g = XL,  a; Wi * gi * w; for some a;  € K ,
gi  € G and u; ,w;  € G. We will show by induction on  |u;| that for u ;  € G, gi  € G,
u;xg; € ideal (G) holds. Then g also has a representation in  terms of  right multiples and
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hence lies in the right ideal generated by G as well. In case IUi I= 0 we are immediately 
done. Hence let us assume Ui = ua for some a E f and by our assumption we know 
a*gi E idealr(G). Let a*gi = ET=l (3j'gj*Vj for some (3j E K, gj E G and Vj E g. Then 

we get Ui *gi = ua *gi = U* (a *gi) = U* (Ei==l (3j . gj *Vj) = ET=l (3j . (u *gi) *Vj and 
by our induction hypothesis U * gj Eidealr(G) holds for every 1 :::; j :::; m. Therefore, 
we can conclude Ui * gi E idealr(G). 0 

Statement 4 enables a constructive approach to use procedure RIGHT GROBNER BASES 

IN NIL POTENT GROUP RINGS in order to compute Grobner bases of two-sided ideals 
and item 2 states that such bases can be used to decide the membership problem for 
the two-sided ideal by using qc-reduction. The following corollary of the previous two 
theorems will be the foundation of a procedure to compute two-sided Grobner bases. 

Corollary 1 Let F, G ~ K [9] such that 

(i) ideal(F) = ideal(G) 

(ii) {VJe(J)lf E F, e E £} ~ G 

(iii) G is N - saturated. 

Then the following statements are equivalent: 

1. For all polynomials 9 E ideal(F) we have 9 ~{;cO. 

2. (a) For all polynomials fk,fl E G we have SpOI(Jk,fd ~{;cO. 

(b) For all a E f, 9 E G we have a *9 ~{;c O. 

Proof:
 

1 ===> 2 : By definition 5 we find that in case for fk, fl E G an s-polynomial exists,
 

and then SPOI(Jk, fl) ~b O. Similarly, since 9 E G implies a * 9 E ideal(G) = ideal(F) 
for all a E f, we have a * 9 ~{;c O. 

2 ===> 1 : We have to show that every non-zero element 9 E ideal(F) is ----+b -reducible 
to zero. Without loss of generality we assume that G contains no constant polynomials, 

as then we are done at once. Let 9 = ET=l Q'.j' Uj *h *Wj be a representation of such a 
non-zero polynomial 9 such that Q'.j E K*, h E F, Uj, Wj E 9 and suppose for 1 :::; j :::; m 
we have Wj =ejVj with ej E £ and Vj EN. Then we can modify this representation to 

9 = ET=l Q'.j' Uj *VJej (h) *Vj as VJej (h) E G by our assumption. Next we will show that 
every multiple Uj*VJej (h) has a representation Uj*'l/Jej (h) = L:7,;1 {3i·gi*V: with {3i E K*, 
gi E G and v: E N. More general, we will show that this is true for every multiple 

U * g, U E Q, 9 E G. As in the previous theorem this will be done by induction on lul. 
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hence lies in  the right ideal generated by G as well. In  case |u;| = 0 we are immediately
done. Hence let us assume u ;  = ua for some a € T and by our assumption we know
a*g ;  € ideal (G ) .  Let axg ;  = X71,  B ; -g ) * v ;  for some B;  € K ,  gi  € G and v; € G .  Then
we get u ; xg ;  =ua*xg ;  =ux * (axg )=u* (T i ,  B i - g i * v ; )  = ,  Bi  ( ug ! ) *v; and
by our induction hypothesis u * gi € ideal (G)  holds for every 1 < j < m .  Therefore,
we can conclude u;  * g; € ideal (G). oO

Statement 4 enables a constructive approach to  use procedure RIGHT GROBNER BASES
IN NILPOTENT GROUP RINGS in  order to  compute Grobner bases of two-sided ideals
and item 2 states that such bases can be used to decide the membership problem for
the two-sided ideal by using qc-reduction. The following corollary of the previous two
theorems will be the foundation of a procedure to compute two-sided Grébner bases.

Corollary 1 Let F ,G  © K[G] such that

(i) ideal(F) = ideal (G)

(ii) {¢e(f)If € Fee  E} CG

(iit) G is N -  saturated.

Then the following statements are. equivalent:

1. For all polynomials g € ideal (F)  we have g —& 0.

2. (a) For al l  polynomials fx , f i  € G we have spo l (fi, fi) — 0.
(b) For a l la  €T ,  g € G we have a x g—¢ 0.

Proof  :
1 =>  2 :  By  definition 5 we find that in  case for fi, fi € G an s-polynomial exists,

spol (fx, fi) = HC(fx)7* + f i  x wy — HC(fi)) fi x wp € ideal(G) = ideal (F),

and then spol ( fx ,  fi) — 0. Similarly, since g € G implies a * g € ideal (G) = ideal (F)
for all a € T, we have a * g —&0.
2 =>  1 : We have to  show that every non-zero element g € i dea l (F') is —& -reducible
to zero. Without loss of generality we assume that G contains no constant polynomials,
as then we are done at once. Let g = 3-7, a; u;  * f; * w;  be a representation of such a
non-zero polynomialg such that a; € K * ,  f ;  € F ,u ; ,w ;  € G and suppose for 1 < j  <m
we have w;  = e;v; with e; € £€ and v; € N .  Then we can modify this representation to
9 = Xie ou i  * pe (f;)  * v ;  as ¥.;(f;) € G by our assumption. Next we will  show that
every multiple u;*%.;(f ;)  has a representation u;*. ,( f ;)  = 5 Bi-gixvl with  8; € K*,
gi € G and v! € N .  More general, we will show that this is true for every multiple
uxg ,u  €G ,  g€G.  As in the previous theorem this will be done by  induction on |u|.
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0 

The case lul = 0 is obvious. Hence let u =u'a for some a E r. By our assumption 
we know a *9 ~~c 0 and as we assume that G does not contain constant polynomials, 

this reduction sequence results in a representation a *9 = E7=1 ii . gi *vi' with ii E K*, 
, E G d" E l rH' , ( ) , (",k ''') ",k (' ') "gi an Vi .IV. ence, u*g = u * a*g = u * L...,i=1 ii'gi*vi = L...,i=1 ii' u *gi *Vi 

and now our induction hypothesis can be applied to each multiple u' * gi, and since 
products of elements in N are again in N, we are done. Therefore, we find that 9 has 

a representation 9 = E7=1 aj . fj * wj where aj E K*, fj E G, wj EN and now we can 
proceed as in theorem 1 to prove our claim. 

Procedure GROBNER BASES IN NILPOTENT GROUP RINGS 

Given: F ~ K[Q] and a presentation (r, T) of Q by E and N as specified above.
 
Find: GB(F), a Grobner basis of ideal(F).
 

G := {tPe(J) I f E F, e E E}; % G contains Fe and ideal(F) = ideal(G)
 
G := UgEG SAT(g); % G is N-saturated
 
B := {(q1, q2) I qI, q2 E G, q1 # q2};
 
M := {a * f I f E G, a Er};
 
while M # 0 or B # 0 do
 

if M # 0 
then	 h:= remove(M); % Remove an element using a fair strategy 

h' := normalform(h, ---+~); 

if h' # 0 
then	 G:= G U SAT(h' ); 

% G is N-saturated and ideal(F) = ideal(G) 
B := B U {(J,g) If E G,g E SAT(h')}; 
M := {a * 9 I a E r,g E SAT(h')}; 

endif
 
endif
 
if B # 0
 

then (qI,q2) := remove(B);% Remove an element using a fair strategy 
if h:= spol (qI, q2) exists 

then h':= normalform(h, ---+~); 

if h' # 0 % The s-polynomial does not reduce to zero 
then	 G:= G U SAT(h'); 

% G is N-saturated and ideal(F) = ideal(G) 
B := B U {(J,g) If E G,g E SAT(h')}; 
M := {a * 9 Ia E r,g E SAT(h' )}; 

endif 
endif 

endif 
endwhile 
GB(F):= G 
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The case |u| = 0 is obvious. Hence let u = u'a for some a € T. By our assumption
we know a *g — + 0 and as we assume that G does not contain constant polynomials,
this reduction sequence results in  a representation a*g  = X ,  v;  - gf + ut  with 4; € K*,
gl € Gand  v EN .  Hence, u*g = u '+(a*g) = WS,  gegen?) = TF,  yi  (u '*g)) #0!
and now our induction hypothesis can be  applied to  each multiple u’  * g!, and since
products of elements in  N are again in  N’, we are done. Therefore, we find that g has
a representation g = 7 .1  a  f} * w}  where of  € K* ,  f}  € G ,w ;  € N and now we can
proceed as i n  theorem 1 to  prove our claim. m

Procedure GRÖBNER BASES IN NILPOTENT GROUP RINGS

Given: F C K[G]  and a presentation (T',T) of G by  £ and N as specified above.
Find: GB(F), a Grobner basis of ideal (F).

G:= {Y ( f ) |  fEF,e€E}; % G contains Fg and ideal (F) = ideal (G)
G :=  Upec SAT(g9); % G is N-saturated
B:=  {(q1,902) | q1,92 € G,q1 # 92};
M:= {ax f | f €G ,acT }
while M # Q or B # 0 do

i f  M#£0D
then A := remove(M) ;  % Remove an element using a fair strategy

h' : =  normalform(h, —¢  );
i f  A#0

then G :=  GUSAT(h');
% G is N-saturated and ideal(F) = ideal(G)
B:=BU{ ( f , 9 ) |  f € G ,g  € SAT(H)};
M:= {axg |a€eT l , geSaT(h ) } ;

endif
endif
i f  B#0

then (q1,¢2) : =  remove(B); % Remove an element using a fair strategy
i f  Ah : =  spo l (q ,qa) exists

then A’ : =  normalform(h, —& );
i f  h '+#0 % The s-polynomial does not reduce to zero

then G :=  GUSAT(}) ;
% G is N-saturated and ideal (F) = ideal (G)
B:=BU{ ( f , 9 ) |  f € G ,g  € SAT(H')};
M:= {axg |aeT ,geSar (h ) } ;

endif
endif

endif
endwhile
GB(F ) :=G
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Correctness of this procedure follows from corollary 1. For the set G enumerated by this 
procedure we have Fe ~ G and the set G at each stage generates the ideal ideal(F) 
and is N-saturated. Using a fair strategy to remove elements from the test sets B 
and M ensures that for all polynomials entered into G the existing s-polynomials and 
the critical left multiples are considered. To show termination we need the following 
theorem which makes use of Dickson's lemma due to the special representatives of the 
group elements. 

Theorem 3 Every (right) Griibner basis contains a finite one. 

Proof: Let F be a subset of K[9] and G a Grobner basis20 of ideal(F), i.e., ideal(F) = 
ideal(G) = idealr(G) and for all 9 E ideal(F) we have 9 ~bcO. We can assume that 
G is infinite as otherwise we are done. Further let H = {HT(g) I9 E G} ~ 9. Then 
for every polynomial f E ideal(F) there exists a term t E H such that HT(J) ;::::tup t. 
H can be decomposed into H = UeEe He where He contains those terms in H starting 
with e. For each element of eu E He the element u then can be viewed as an n
tuple over Z as it is presented by an ordered group word. But we can also view it 
as a 2n-tuple over N by representing each element u E N by an extended ordered 
group word u =aliI a{l ... a:;;ina~n, where ir, jt E N and the representing 2n-tuple is 
(it, jt, ... , in, jn). Notice that at most one of the two exponents it and jt is non-zero. 
Now only considering the ordered group word parts of the terms, each set He can 
be seen as a (possibly infinite) subset of a free commutative monoid 72n with 2 . n 

generators. Thus by Dickson's lemma there exists a finite subset Be of He such that 
for every w E He there is a b E Be with W ~tup b. Now we can use the sets Be to 
distinguish a finite Grobner basis in G as follows. To each term t E Be we can assign 
a polynomial gt E G such that HT(gt) = t. Then ·the set GB ={gt I t E Be,.e E £} 
is again a Grobner basis sinc~ for every polynomial f E idea I(F) there still exists a 

polynomial gt now in GB such that HT(J) ;::::tup HT(gt) = t. Hence all polynomials in 
ideal(F) are qc-reducible to zero using GB. 0 

Since both procedures enumerate respective GrobIier bases and the sets enumerated 
contain finite Grobner bases, the procedures terminate as soon as all polynomials of 
the contained bases are entered into G. Therefore we now are able to solve problems 
related to right and two-sided ideals in nilpotent group rings using reduction similar 
to Buchberger's approach to commutative polynomial rings. 

4 Concluding Remarks 

One problem of this approach is that computing the £-closure of a set involves 1£1 
multiplications in case £ is presented by its multiplication table. Many finite groups 
allow more compact convergent presentations. We close this paper by sketching how 

2
0The proof for the existence of a finite right Grobner basis for idealr(F) is similar. 
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Correctness of this procedure follows from corollary 1. For the set G enumerated by this
procedure we have Fr C G and the set G at each stage generates the ideal ideal(F)
and is N-saturated. Using a fair strategy to remove elements from the test sets B
and M ensures that for all polynomials entered into G the existing s-polynomials and
the critical left multiples are considered. To show termination we need the following
theorem which makes use of Dickson’s lemma due to the special representatives of the
group elements.

Theorem 3 Every (right) Gröbner basis contains a finite one.

P roo f :  Let F be a subset of K[G] and G a Grobner basis” of ideal (F), i.e., ideal (F') =
ideal (G) = ideal (G) and for all g € ideal(F') we have g —&  0. We can assume that
G is infinite as otherwise we are done. Further let H = {HT(g )  | g € G }  © G.  Then
for every polynomial f € ideal(F') there exists a term t € H such that HT( f )  2p  t .
H can be decomposed into H = {J.c¢ He where H,  contains those terms in H starting
with e. For each element of eu € H,  the element u then can be viewed as an n-
tuple over Z as it is presented by an ordered group word. But we can also view i t
as a 2n-tuple over N by representing each element u € N by an extended ordered
group word u = ay "  all ...apninais, where i ; , j ;  € N and the representing 2n-tuple is
(*15J15+ + + ny  Jn). Notice that at most one of the two exponents i ;  and j is non-zero.
Now only considering the ordered group word parts of the terms, each set H,  can
be seen as a (possibly infinite) subset of a free commutative monoid Tz, with 2 - n
generators. Thus by  Dickson’s lemma there exists a finite subset B.  of H ,  such that
for every w € H,  there is a b € Be with w > ,  b. Now we can use the sets B,  to
distinguish a finite Grobner basis in G as follows. To each term t € B.  we can assign
a polynomial g; € G such that HT(g;) = t .  Then the set Gg = {g: | t € Be,e € € }
is again a Gröbner basis since for every polynomial f € ideal(F) there still exists a
polynomial ¢g; now in  Gg such that HT( f )  >¢p  HT(g:) = t .  Hence all polynomials in
ideal (F') are qc-reducible to zero using Gp. a

Since both procedures enumerate respective Grobner bases and the sets enumerated
contain finite Grobner bases, the procedures terminate as soon as all polynomials of
the contained bases are entered into G.  Therefore we now are able to  solve problems
related to  right and two-sided ideals in  nilpotent group rings using reduction similar
to  Buchberger’s approach to commutative polynomial rings.

4 Concluding Remarks

One problem of this approach is that computing the £-closure of a set involves |£|
multiplications in case £ is presented by its multiplication table. Many finite groups
allow more compact convergent presentations. We close this paper by sketching how

20The proof for the existence of  a finite right Grobner basis for ideal,(F)  is similar.
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information on such a presentation can be used. Let (6., R) be a convergent presenta
tion of £ and (E, TNC U T[) a presentation of N as described before. Th~n assuming 
6. n E = 0, we get a convergent presentation of 9 by setting r = 6. U E and T besides 
the rules in T[ and TNC includes the following additional rules 

u ------+ vw for all (u, v) E R, w E ORD(E), [u]g =VW, 

ae ------+ e4>e(a) for all e E 6., a E E. 

Now we can refine the definition of the tuple ordering to allow further multiplications 
for reduction which are compatible on the representative of the £ part of the group 
element. Further, information on the representatives and the rules can be used to 
reduce the number of the polynomials needed. For example if we assume that £ is 
presented by a convergent PCNI-presentation 6. = {bt , bit, ... bm, b;;.l}, R = {bi' ------+ 

Wi, bil ------+ wi I Wi E ORD(E\E i ), wi E ORD(E\Ei-d, Si E N} U RNC (compare 
[Wi89]), then we can combine prefix and quasi-comutative reduction to improve the 
results given here. 

Notice that we require a presentation ofa finitely generated nilpotent group as an 
extension of a torsion-free nilpotent group by a finite group. A related question is, how 
we can compute such a presentation when given an arbitray presentation of a nilpotent 
group. 

The approach given in this paper describes and computes Grobner bases of two-sided 
ideals using qc-reduction. Another way to describe them is in terms of two-sided 
reduction, but then one again has to find suitable restrictions on the multiples allowed 
for reduction in order to keep the number of s-polynomials. small. 

In [Re95] we have shown how the theory of Grobner bases in monoid and group rings 
over fields can be lifted to monoid and group rings over reduction rings fulfilling special 
axioms, e.g., allowing to compute finite Grobner bases for ideals in the coefficient do
main. Hence the results of this paper also hold for nilpotent group rings over reduction 
rings, e.g., the integers Z. 
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information on  such a presentation can be  used. Let (A ,  R )  be  a convergent presenta-
tion of  £ and (¥,Tnc  U Tr) a presentation of  N as described before. Then assuming
ANY = 0, we get a convergent presentation of G by setting I' = AU  X and T besides
the rules in  Tr and Tne includes the following additional rules

u — vw for all (u,v) € R,  w € ORD(X), [ug = vw,
ae — ep.(a) foral le€ A ,a  €}.

Now we can refine the definition of the tuple ordering to  allow further multiplications
for reduction which are compatible on the representative of the £ part of the group
element. Further, information on the representatives and the rules can be used to
reduce the number of the polynomials needed. For example i f  we assume that £ is
presented by a convergent PC NI-presentation A = {b1,b7*,...bm, 671}, R=  {bf —
wi , by! — wi  | wi  € ORD(E\Z ; ) ,w !  € ORD(E\Z i -1 ) ,s ;  € N }  U Ryc (compare
[Wi89]), then we can combine prefix and quasi-comutative reduction to  improve the
results given here.
Notice that we require a presentation of a finitely generated nilpotent group as an
extension of a torsion-free nilpotent group by  a finite group. A related question is, how
we can compute such a presentation when given an arbitray presentation of  a nilpotent
group.
The approach given in this paper describes and computes Gröbner bases of two-sided
ideals using qc-reduction. Another way to describe them is in  terms of two-sided
reduction, but then one again has to find suitable restrictions on the multiples allowed
for reduction i n  order to  keep the number of s-polynomials small.

In [Re95] we have shown how the theory of Gröbner bases in monoid and group rings
over fields can be lifted to  monoid and group rings over reduction rings fulfilling special
axioms, e.g., allowing to  compute finite Gröbner bases for ideals in the coefficient do-
main. Hence the results of this paper also hold for nilpotent group rings over reduction
rings, e.g., the integers Z.
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