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Abstract 

Planning for realistic problems in a static and deterministic environ
ment with complete information faces exponential search spaces and, more 
often than not, should produce plans comprehensible for the user. This 
article introduces new planning strategies inspired by proof planning ex
amples in order to tackle the search-space-problem and the structured
plan-problem. Island planning and refinement as well as subproblcm 
refinement are integrated into a general planning framework and some 
exemplary control knowledge suitable for proof planning is given. 

Introduction 

Refinement planning as unguided search is notoriously hard because of the com
binatorial search involved. For realistic planning problems the intractable search 
space prevents many current refinement planning techniques from being success
ful. For a discussion see, for instance [10, 22J. Another problem we face in some 
domains is the need for structured plans that are intelligible for the user. In or
der to restrict the search space, planning in abstraction spaces by precondition
abstraction, for instance in [29, 23, 5], and hierarchical task network planning 
(HTN) [30, 8] have been suggested. The latter also serves to structure plans. 

The search-space-problem applies to theorem proving and proof plarming as 
well. As a result, rippling - a specific meta-Ievel control - is used in GYM [6J 
for planning inductive proofs [4, 16J. One step towards solving the structured
plan-problem in proof planning is the definition of operators that provide a 
sequence of calculus-level proof steps! when executed. In this way, proof plans 
are abstract representations of calculus-level proofs. 

Our experience in proof planning gives rise, however, to additional ideas 
to cope with the two problems: A controlled mixture of planning strategies 
integrated into a basic architecture for multiple planning strategies can help to 
reduce the search space. Establishing smaller problems, such as subproblems 
and abstracted problems, can help to reduce the search space. Structured proof 
plan construction can be supported by defining subproblems. We think that 
these ideas Cl-re more widely applicable in planning. 

le.g. of the Natural Deduction (ND) calculus 
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ment with complete information faces exponential search spaces and,  more
often than not, should produce plans comprehensible for the user. This
article introduces new planning strategies inspired by  proof planning ex-
amples in order to  tackle the search-space-problem and the structured-
plan-problem. Island planning and refinement as well as subproblem
refinement are integrated into a general planning framework and some
exemplary control knowledge suitable for proof planning is given.

1 Introduction

Refinement planning as unguided search is notoriously hard because of the com-
binatorial search involved. For realistic planning problems the intractable search
space prevents many current refinement planning techniques from being success-
ful. For a discussion see, for instance [10, 22]. Another problem we face in  some
domains is the need for structured plans that are intelligible for the user. In  or-
der to  restrict the search space, planning i n  abstraction spaces by  precondition-
abstraction, for instance in [29, 23, 5], and hierarchical task network planning
(HTN) [30, 8] have been suggested. The latter also serves to structure plans.

The search-space-problem applies to theorem proving and proof planning as
well. As a result, rippling — a specific meta-level control — is used in CIAM [6]
for planning inductive proofs [4, 16]. One step towards solving the structured-
plan-problem in proof planning is the definition of operators that provide a
sequence of calculus-level proof steps! when executed. In this way, proof plans
are abstract representations of calculus-level proofs.

Our experience in proof planning gives rise, however, to additional ideas
to cope with the two problems: A controlled mixture of planning strategies
integrated into a basic architecture for multiple planning strategies can help to
reduce the search space. Establishing smaller problems, such as subproblems
and abstracted problems, can help to reduce the search space. Structured proof
plan construction can be supported by defining subproblems. We think that
these ideas are more widely applicable in  planning.

e.g. o f  the Natural  Deduction (ND) calculus
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The paper is organized as follows. First, we define some basic notions by ex
tending Kambhampati's framework [21, 19J for unifying several planning strate
gies that may serve to integrate our island planning and refinement. We briefly 
review proof planning. Then a motivating example leads to island planning and 
refinement as well as subproblem refinement. These strategies are introduced 
as refinement operations. Some exemplary control knowledge is given. 

Planning as Refinement Search 

A planning problem is a tripel (1, G, Ops) with the initial state description 1,2 
a set G of goals, and a set Ops of operators. As usual, operators have precon
ditions (pre) and postconditions (post). A (ground) operator sequence S is a 
solution for a problem, if S can be executed from the 1 such that the goals from 
G are satisfied. 

A partial plan 7r is a tuple (T, 0, B, S, Aux, ST), where T is a set of steps3 in 
the plan containing to and too, ST maps step names to operators. to is mapped 
to start and too to finish, where start and finish are the only operators 
of so-called null plans with to -< too. 0 is a partial order over T, B is a set of 
binding and prohibited binding constraints on variables. We introduce S as a set 
of subproblems each of which has a plan that is a connected subplall of 7r. That 
is, for any tl, t2 E Tsub , if h -< t -< t2, then t E Tsub. Aux is a set of auxiliary 
constraints. Kambhampati [19] includes the following auxiliary constraints in 
order to unify state-space and plan-space refinement on one representation of 
partial plans: 

• Interval preservation constraints specified by triples (t, p, t') 
• Point truth constraints specified by pairs (p, t) 
• Contiguity constraints specified by the relation ti * tj between two 

steps that demands no step intervene between ti and tj. 
u In addition, we define the auxiliary constraint 

• Abstraction constraints represented by abs(gi, gj) for goals/assumptions
 
gi, gj. This constraint temporarily identifies gi with gj in constraints
 
and in relations to steps. Thereby abstract steps are integrated into
 
the partial plan temporarily. Semantically, this constrains all candi

dates of the partial plan to those for which 9i and 9j are identified.
 

Some derived notions important for state-space refinement are the header - the 
maximal sequence of steps to, ... tu with to * ... * tlI, the head step tIl, and 
the head-state which is the state resulting from the application of the steps in 
the header t.o the initial state. Similarly, trailer, tail steps, and tail-state are 
defined. 

Semantically, a partial plan 7r is a set of instantiated ground operator se
quences t.hat are consist.ent with the constraints. This set is called the candi
date set. ((7r)) of 7r. Refinement planning starts wit.h a null plan defined by the 
planning problem. Its candidate set is the set of all ground operator sequences. 

2In proof planning called set of assumptions
 
3i.e., instantiated operators
 

2 

The paper is organized as follows. First, we define some basic notions by ex-
tending Kamblıampati’s framework [21, 19] for unifying several planning strate-
gies that may serve to  integrate our island planning and refinement. We briefly
review proof planning. Then a motivating example leads to  island planning and
refinement as well as subproblem refinement. These strategies are introduced
as refinement operations. Some exemplary control knowledge is given.

2 Planning as Refinement Search
A planning problem is a tripel ( I ,G,  Ops) with the initial state description 1,2
a set G of goals, and a set Ops of operators. As usual, operators have precon-
ditions (pre) and postconditions (post). A (ground) operator sequence S is a
solution for a problem, i f  S can be executed from the I such that the goals from
G are satisfied.

A partial plan x is a tuple (T', 0 ,  B ,  S, Auz,  ST), where T is a set of steps? in
the plan containing to and too, ST  maps step names to  operators. tp is mapped
to  start  and t ,  to  f i n i sh ,  where start  and f i n i sh  are the only operators
of  so-called null  plans wi th  tg < t o .  O is a partial order over T', B is a set of
binding and prohibited binding constraints on variables. We introduce S as a set
of subproblems each of which has a plan that is a connected subplan of 7 .  That
is, for any t1,t2 € Tsup, i f  t1  < t  < 2 ,  then t € Tsub.  Aux is a set of  auxiliary
constraints. Kambhampati [19] includes the following auxiliary constraints in
order to unify state-space and plan-space refinement on  one representation of
partial plans:

e Interval preservation constraints specified by triples (¢,p,t')
e Point truth constraints specified by pairs (p,t)
e Contiguity constraints specified by the relation ¢; * £; between two

steps that demands no step intervene between ¢; and ¢;.
u In addition, we define the auxiliary constraint

e Abstraction constraints represented by abs(g;, g;) for goals/assumptions
9i ,9 ; -  This constraint temporarily identifies g;  with g;  in  constraints
and in  relations to steps. Thereby abstract steps are integrated into
the partial plan temporarily. Semantically, this constrains all  candi-
dates of the partial plan to those for which g; and g; are identified.

Some derived notions important for state-space refinement are the header - the
maximal sequence of  steps t o , . . . t y  with to * . . .  * t y ,  the head step ty ,  and
the head-state which is the state resulting from the application of  the steps in
the header to the initial state. Similarly, trailer, tail steps, and tail-state are
defined.

Semantically, a partial plan 7 is a set of instantiated ground operator se-
quences that are consistent with the constraints. This set is called the candi-
date set ((7)) of 7 .  Refinement planning starts with a null plan defined by the
planning problem. I ts  candidate set is  the set of  al l  ground operator sequences.

2In proof planning called set of  assumptions
3 j . e . ,  instantiated operators



Syntactically, refinement planning successively refines a plan by adding con
straints until a solution can be picked from a candidate set. Semantically, a re
finement operation maps a partial plan 7r to a set of partial plans {7rd such that 
((7r)) C ((7ri)) for all cPi. Kambhampati and Srivastava [21] define refinement 
operations for (forward and backward) state-space and plan-space refinement. 
They say that the control for choosing a refinement strategy has to be designed 
in the near future. In this paper we shall define additional refinement strategies 
and propose exemplary control knowledge used in proof planning. 

2.1 Specifics of Proof Planning 

To make a long story short, we give some essentials of proof planning only. For 
more details about the state of the art see [26]. For proof planning two roads 
join, (1) the use of tactics and (2) meta-Ievel control. As opposed to traditional 
automated theorem that applies calculus-level inference rules, Le. low level infer
ences, proof planning relies on tactics [14]. Tactics are procedures that produce 
a (not necessarily fixed) sequence of calculus-level inferences when executed. 
Operators, are defined as specifications of tactics by pre- and postconditions. 
You can imagine, e.g., an operator ApplyEquality that (backwardly) applies 
an equation e : LHS = RHS to the current goal 9 by substituting a subterm 
of 9 that equals a(RHS) by a(LHS) for a substitution a.4 ApplyEquality(e) 
has the precondition F(a(LHS)) and the postcondition F(a(RHS)) for a meta
variable F. 

Characteristics of proof planning compared to planning in other domains are 

•	 The objects are (mathematical) objects such as numbers, lists, or trees 
and operators manipulate formulas describing objects and their relations 
and functions. In proof planning there is no goal interaction in the object
level sense because the application of a sequence of logical inference rules 
does not destroy object-level preconditions. 

•	 Typically, the solutions are deep. 

• Infinite branching can occur for the instantiation of existentially quantified 
variables, for lemma speculation, etc.5 This makes control even more vital. 

•	 Often, infinitely many potential bindings have to be considered. Therefore, 
the control of bindings and an elaborate handling of B is needed. 

•	 The knowledge about the mathematical world is complete and certain 
rather than incomplete and uncertain as in many real world applications 
of planning. I.e., proof planning is classical planning which means planning 
in a static and deterministic environment with complete information. 

4For the moment we do not care about the position of the subterm in g.
 
sOne reason is that the cut rule, i.e., the backwardly applied rule
 

r,B I- A r I- B 

rI-A 

not avoidable in general. For an analysis see [24J 
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Syntactically, refinement planning successively refines a plan by adding con-
straints until  a solution can be picked from a candidate set. Semantically, a re-
finement operation maps a partial plan 7 to a set of partial plans { r ; }  such that
({m)) € ((m:)) for all ¢;. Kambhampati and Srivastava [21] define refinement
operations for (forward and backward) state-space and plan-space refinement.
They say that the control for choosing a refinement strategy has to be designed
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e The objects are (mathematical) objects such as numbers, lists, or trees
and operators manipulate formulas describing objects and their relations
and functions. In  proof planning there is no goal interaction in  the object-
level sense because the application of a sequence of logical inference rules
does not destroy object-level preconditions.
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e Infinite branching can occur for the instantiation of existentially quantified
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•	 Structured plans are clearly preferred by humans, see e.g. [25] . 

• Difference reduction techniques proved to be useful for planning inductive 
and equational proofs [18J. 

Planning strategies employed so far in the proof planners CIftM [6] or 
OMEGA [15] respectively, are forward .and backward state-space refinement, 
HTN-like planning, and precondition abstraction. HTN-like operators can be 
expanded to subplans. E.g., the method induction-strategy in the proof plan
ner ClJ1.M [3] and diagonal-method in OMEGA are operators expanding to sub
plans. In OMEGA, a fixed precondition abstraction of operators is possible that 
postpones the achievement of a particular precondition to a hierarchically lower 
planning level. For instance, a more elaborate ApplyEquality(e) abstracts from 
the precondition that is an antecedent of an essentially equational formula e. 

2E.g., if e is (x E T -+ x = a), then ApplyEquality(e) applies (x2 = a) and 
leaves (x E T) as a precondition to be satisfied in a lower hierarchical level. 

Island Planning and Refinement 

Similar to [21.], we combine several planning (refinement) strategies in a general 
planning algorithm. Table 1 shows the top-level control of the planner. The 
new strategies island planning, island refinement, and subproblem refinement 
are described in later subsections. The selected strategy is applied to the partial 
plan 1l" to generate refinements. As in [21J, we could have routines accomplishing 
the control, as for instance pick-refinement. Instead, we encode the control 
knowledge declaratively into control-rules and indicate their use by.. Both 
ways have their advantages. 

Planning Algorithm PLAN(1r)/* Returns refinements of 1l"*! 
Parameters: sol procedure for picking solution candidates 

1.	 Termination Check: If sol(1l") returns a solution, return it and 
terminate. If it returns fail, fail. Otherwise continue. 

2.	 Refinement: Pick one of the following refinement strategies. and 
refine(1l"): (Not a backtrack point) 

• forward-state-space refinement, called progression, 
•	 backward-state-space refinement, called regression, 
• island-planning, 
•	 island-refinement, 
• subproblem-refinernent. 

3.	 Consistency Check (optional): If partial plan is inconsistent, prune 
it. 

4.	 Recursive Invocation: Call PLAN on the refined plan. 

Table 1: Algorithm outline for classical multistrategy planning 

Now we give an example from proof planning. It naturally leads to island 
planning and refinement strategies and their combination with subproblem re
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e Structured plans are clearly preferred by  humans, see e.g. [25].

es Difference reduction techniques proved to be useful for planning inductive
and equational proofs [18].

Planning strategies employed so far in the proof planners CIAM [6] or
OMEGA [15] respectively, are forward .and backward state-space refinement,
HTN-like planning, and precondition abstraction. HTN-like operators can be
expanded to subplans. E.g., the method induction-strategy in  the proof plan-
ner CIAM [3] and diagonal-method in  OMEGA are operators expanding to  sub-
plans. In OMEGA, a fixed precondition abstraction of  operators is possible that
postpones the achievement of  a particular precondition to  a hierarchically lower
planning level. For instance, a more elaborate ApplyEqual i ty(e)  abstracts from
the precondition that is an antecedent of  an essentially equational formula e.
Eg, if e i s  (x € T + z? = a), then ApplyEquality(e) applies (z? = a) and
leaves (z € T)  as a precondition to  be satisfied in a lower hierarchical level.

3 Island Planning and Refinement
Similar to [21], we combine several planning (refinement) strategies in  a general
planning algorithm. Table 1 shows the top-level control of the planner. The
new strategies island planning, island refinement, and subproblem refinement
are described in  later subsections. The selected strategy is applied to the partial
plan 7 to  generate refinements. As in  [21], we could have routines accomplishing
the control, as for instance p ick-ref inement .  Instead, we encode the control
knowledge declaratively into control-rules and indicate their use by & .  Both
ways have their advantages.

Planning Algorithm PLAN(7)/* Returns refinements of  7* /
Parameters: so l  procedure for picking solution candidates

1. Termination Check: If so l ( r )  returns a solution, return it and
terminate. I f  i t  returns fail, fail. Otherwise continue.

2. Refinement: Pick one of the following refinement strategies & and
refine(w): (Not a backtrack point)

e forward-state-space refinement, called progression,
e backward-state-space refinement, called regression,
e island-planning,
e island-refinement,
e subproblem-refinement.

3. Consistency Check (optional): I f  partial plan is inconsistent, prune
i t .

4. Recursive Invocation: Call  PLAN on the refined plan.

Table 1: Algorithm outline for classical multistrategy planning

Now we give an example from proof planning. I t  naturally leads to island
planning and refinement strategies and their combination with subproblem re-



finement. In particular, we learn about the need to integrate several planning 
strategies and about some control knowledge to guide the choice of planning 
strategies. 

3.1 Example 

Suppose we plan a proof of theorem 7.5.7 from Deussen's book "Halbgruppen
 
und Automaten" [9] that states that the mapping <P from an F-semimodul T l
 

to an F-semimodul Tt is a homomorphism,6 where <PifYt = ifY2 holds for two ho

momorphisms ifYt ; S M Tl , ifY2 : S M T2 . The proof assumptions (initial state)
 
include:
 
ifYl is surjective; ifYl is a homomorphism in the F -semimodul Tl ; ifY2 is a homo

morphism in the F-semimodul T2 • The formal goal (theorem) is
 

Vf,x(x E T l /\ f E F -+ <P(f. x) = f· <p(x». (1) 

State-space planuing, progression and regression, is applied until we reach the 
subgoal 

<P(f. a) = f· <p(a) (2) 

for a constant a, and among others the (derived7) assumptions in the head state 

f E F /\ YES -+ ifY2 (f . Y) = f . ifY2 (Y), (3) 

f E F /\ YES -+ ifYl (f . Y) = f . ifYl (Y), (4) 

x E S -+ <P(ifYl(X» = ifY2(X), (5) 

f E F /\ x E S -+ ifYl (f. x) = f· ifYl (x). (6) 

and 
yE Tl -+ 3x(x E S /\ ifYl(X) = y) (7) 

Progression is blocked and further regression would fail to find a step applicable 
to (2). From a more abstract point of view, the goal (2) requires to move f· 
from a position PI wrt. <p(a) to the position P2 wrt. <p(a). The meta-reasoning 
suggests that presumably, a lemma has to be introduced to prove this (sub)goal. 

To narrow the gap between the goal and the assumptions8 , the domain 
control knowledge suggests to plan at an abstract level in order to find an island 
node from which it is possible to progressively plan to (2). If we abstract 
the goal aud t.he assumptions to the ]Jositions of the context rela.tive to some 

6Definition: Let Sand T be P-semimoduls. A mapping 4> : F f-t If is called a homomor
phism from S to T) iff 'Vf, YU E F 1\ YES -+ 4>U . Y) == f . 4>(Y». 

7E.g., quantifiers are removed, definition expanded. 
8The gap corresponds to a missing lemma 
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finement. In particular, we learn about the need to integrate several planning
strategies and about some control knowledge to guide the choice of  planning
strategies.
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V iz ( zeTWAfEF  —» & ( f - z )= f -® (z ) ) .  (1)
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FEFAY ES ¢ ( f -Y )  = f  oY), (3)
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fEFAzeS  A l f :  x) = f -  (x) .  (6)
and

yeT;— 3 I s ( x € SA (x) = y) (7)

Progression is blocked and further regression would fail to find a step applicable
to (2). From a more abstract point of  view, the goal (2) requires to move f -
from a position p ;  wrt .  $ (a )  to the position pz wrt .  $ (a) .  The meta-reasoning
suggests that presumably, a lemma has to  be introduced to  prove this (sub)goal.

To narrow the gap between the goal and the assumptions®, the domain
control  knowledge suggests to  plan at  an abstract level in  order to  find an island
node from which i t  is possible to progressively plan to (2). If we abstract
the goal and the assumptions to the positions of the context relative to some

SDefinition: Let S and T be F-semimoduls. A mapping ¢ : F + H is called a homomor-
phism from S to  T)  i f  VE Y( fEFAY € S23 ¢ ( f -Y )  = f -¢ (Y) ) .

"E .g . ,  quantifiers are removed, definition expanded.
8The gap corresponds t o  a missing lemma



skeleton,9 we obtain the abstracted goal @(j.@) = f·@ from (2) where @(j.@) 
and f . @ describe positions of the context f· relative to the skeleton <p(a). 
Similarly, the abstraction of the assumption (3) is @(j . @) = f· @.10 Applying 
this abstraction of (3) to the abstraction of (2) by anoperatorApplyEquality 
reduces the abstract goal to @(J . @) = @(J . @) which is an instantiation of 
the postcondition x = x of the operator elementary that has the precondition 
true. 

In other words, by planning for an abstracted problem we find that at some 
point ApplyEquality(3) and elementary have to be applied. We name this 
planning island planning. The LHS of Figure 1 depicts the described situa
tion. Rectangulars represent steps and ovals indicate goals/assumptions. Sa 

is an abstracted step. 9a denotes the abstraction of the goal 9. The LHS of 
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Figure 1: Island Planning and Refinement 

the figure demonstrates how abs(g, ga) allows to integrate the abstract step 
Sa into the overall plan. The RHSof Figure 1 depicts the mapping back 
of the abstract level steps and goals which is called island refinement. This 
refinement produces island nodes at the ground level from nodes at the ab
stract level by mapping back the operator, its preconditions, and its postcon
ditions. For instance, ApplyEquation(@(J . @) = f· @) with the precondition 
@(J . @) = @(J. @) and postcondition @(J . @) = f ',_@ is mapped back to the 
island step ApplyEquation(J E F 1\ YES --t (/J2(J. Y) = f· cP2(Y» the precon
dition Fo = rP2 (J . Y) and the postcondition Fo = f . rP2 (Y) for a meta-variable 
FoY In the RHS of Figure 1, Sa is mapped back to mb(sa) = S which has the 

9In an equation, equivalence, or implication a skeleton is a term that occurs on the LHS 
and on the RHS - in (2), e.g. the skeleton is <fl(a). The corresponding context is constructed 
from the remaining parts of the formula - in (2) the corresponding context is I·. The notions 
skeletonand context were coined by Hutter and Bundy for rippling in [16,4]. 

lOThe antecendent is abstracted away. 
11 For simplicity we do not replace Y by aY. Actually, the postcondition of 

ApplyEquat ion(J E F 1\ YES -t 1>2 (J . Y) = f . <P2 (Y)) is Fo = Fl (1)2 (f . Y)) and the 
precondition Fo = Fl(1)2(f' Y)) for meta-variables Fo,Fl' The meta variable Fl can be 
instantiated to the identity function because the RHS of the abstract postcondition is f . @. 
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skeleton,? we obtain the abstracted goal @(f-@) = f -@  from (2) where @(f-@)
and f - @ describe positions of the context f -  relative to the skeleton ®(a).
Similarly, the abstraction of  the assumption (3) is @(f - @) = f-@.1% Applying
this abstraction of (3) to the abstraction of (2) by anoperatorApplyEquality
reduces the abstract goal to @(f - @) = @(f - @) which is an instantiation of
the postcondition x = x of the operator elementary that has the precondition
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In  other words, by  planning for an  abstracted problem we find that at  some
point ApplyEquality(3) and elementary have to be applied. We name this
planning island planning. The LHS of Figure 1 depicts the described situa-
tion. Rectangulars represent steps and ovals indicate goals/assumptions. s ,
is an abstracted step. g, denotes the abstraction of the goal g. The LHS of
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Figure 1: Island Planning and Refinement

the figure demonstrates how abs(g,g,) allows to integrate the abstract step
Sa  into the overall plan. The RHS of Figure 1 depicts the mapping back
of the abstract level steps and goals which is called island refinement. This
refinement produces island nodes at the ground level from nodes at the ab-
stract level by  mapping back the operator, i ts preconditions, and i ts  postcon-
ditions. For instance, ApplyEquation(@(f-@) = f - @) with the precondition
Q( f -@)  = @(f - @) and postcondition @(f - @) = f - @ is mapped back to the
island step ApplyEquation(f € FAY  € S = ¢2( f :Y )  = f -¢2(Y))  the precon-
dition Fy = ¢ ( f  -Y )  and the postcondition Fy = f - ¢2(Y") for a meta-variable
Fo. In the RHS of Figure 1, s ,  is mapped back to mb(s,) = s which has the

9In an equation, equivalence, or implication a skeleton is a term that occurs on the LHS
and on the RHS - i n  (2), e.g. the skeleton is  ®(a). The corresponding contest is constructed
from the remaining parts of the formula - i n  (2) the corresponding context is f - .  The notions
skeletonand context were coined by Hutter and Bundy for rippling i n  [16, 4].

10The antecendent is abstracted away.
For  simplicity we do not replace Y by oY .  Actually, the postcondition of

ApplyEquation(f € FAY  € S = ¢2 ( f  YY) = f - ¢2 (Y ) )  is Fo = F i (d2( f  - Y) )  and the
precondit ion Fo  = F i ( ¢2 ( f  : Y) )  for meta-variables Fy, F i .  The meta variable F i  can be
instantiated to the identity function because the RHS of  the abstract postcondition is f -  @.



postcondition g] and precondition g2. 
The ground-level plan contains a gap between the goal (2) (g in Figure 1) 

and the postcondition (g] in the figure) 

Fo = f . rP2(Y) (8) 

This gap constitutes a new subproblem (subt}. Further subplan refinement 
tries to solve this new problem by progression from (8) because, as mentioned 
above, progression has to be chosen for planning from the goal (2): The control 
knowledge used in planning for the subproblem subl includes the rule 
"If the goal is equational (or an equivalence or implication) and if the signature 
of the goal and the distinguished assumption differ in their multisets SI and 
S2 of (maximal) symbols, then try to apply equations (or an equivalence or 
implication) that introduce a (large) subset of S] or removes a (large) subset of 
S2" [17]. 
This motivates the choice of the step ApplyEquation(5) that gives 

Fo = f . 1> (,pI (Y)). (9) 

beeause rP2 is a maximal syrnuol defined by (5). IIence the multisets are {'1', (/Jt}, {(!>2} 
and the application of (5) serves exactly the related introduction of phi2 and 
removal of <T>, rPl. Note that this control-reasoning again amounts to an abstrac
tion. We use this abstraction in the control at ground level only rather than 
producing an island node by island planning. This control applies because (5) is 
directly applicable at the ground level and no other (nested) differences between 
the goal and the distinguished assumption occur The subproblem planning for 
sub1 can be completed by instantiating Fo to <T>(f . a) and by introducing the 
lemma 

3Y.rPl (Y) =a (10) 

by a step LemmaSuggestion. Then the next island refinement yields a subprob
lem (sub2) with the goal g2: 

(11) 

and the initial state containing true. Control knowledge to be employed here 
for choosing a step is the same as explicated for subl . This time, regression for 
sub2 applies ApplyEquation(5) giving 

1>(f. a) = 1>(rPl (f. Y)). (12) 

The additional control knowledge 
"If a goal is equational (or an equivalence or implication) and has to be reduced 
to true, then the different contexts of the LHS and RHS have to be rippled-out 
or rippled-inl2 by annotated rewrite rules. If only one side has a context, then 

12rippling-in and rippling-out are notations from rippling[16] 
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above, progression has to be chosen for planning from the goal (2): The control
knowledge used in  planning for the subproblem sub; includes the rule
“If the goal is equational (or an equivalence or implication) and i f  the signature
of the goal and the distinguished assumption differ in  their multisets S;  and
Sy of (maximal) symbols, then t ry to apply equations (or an equivalence or
implication) that introduce a (large) subset of  S; or removes a (large) subset of
Sp” [17].
This motivates the choice of the step ApplyEquation(5) that gives

Fo = f -2 ( (Y) )  (9)
because @, is a maximal symbol defined by (5). Ilence the multiscts are {®, ¢ ,  } ,  {42}
and the application of (5) serves exactly the related introduction of phi ;  and
removal of ®, #1. Note that this control-reasoning again amounts to  an abstrac-
tion. We use this abstraction in the control at ground level only rather than
producing an island node by island planning. This control applies because (5) is
directly applicable at the ground level and no other (nested) differences between
the goal and the distinguished assumption occur The subproblem planning for
sub; can be completed by instantiating Fp to ® ( f  - a) and by introducing the
lemma

IYA(Y )=  a (10)

by a step LemmaSuggestion. Then the next island refinement yields a subprob-
lem (sub2) with the goal g2:

S( fa )=d2 ( f -Y )  (11)

and the initial state containing true. Control knowledge to be employed here
for choosing a step is the same as explicated for sub;. This time, regression for
sub, applies ApplyEquation(5) giving

( f a )  = (SF ) .  (12)

The additional control knowledge
“I f  a goal is equational (or an equivalence or implication) and has to  be reduced
to  true, then the different contexts of  the LHS and RHS have to  be rippled-out
or rippled-in'? by annotated rewrite rules. If only one side has a context, then

12rippling-in and rippling-out are notations from rippling[16]



choose rippling-in rewrites as instantiations of ApplyEquali ty" 
then forces to choose the step ApplyEquation(6) which gives 

iJl(J . a) = iJl(j . (Pt (Y)). (13) 

The application of the lemma (10) results in the subgoal 

iJl(J . a) = iJl(J . a) (14) 

which is reduced to true by the operator elementary. 

3.2 Island Planning 

Island planning means planning at an abstract level that is established by prob
lem abstraction. The construction of an abstracted problem abstracts a goal g, 
the head state, and the operators of the original problem by a mapping am. 
Island planning as illustrated with the example is realized by the refinement 
strategy given in Table 2. Routines or the interpretation of control-rules for 

Algorithm backward-island-planning(?T)/* Returns refinements of ?T*! 
Parameters: sol procedure for picking solution candidates 
insert procedure for inserting an abstract plan into ?T. 

1.	 Goal selection: Pick a goal 9 tf,. Not a backtrack point. 

2.	 Abstraction: From 9 and the current head stateconstruct an abstracted 
problem P abs by an abstraction mapping am ,,-. Introduce the auxiliary 
constraint abs(g, ga) for am(g) = 9a. 
backtrack point for d~fJerent possible abstractions 

3.	 Plane?Tabs) for problem Pabs. This involves 

• Termination check:	 If SOl(?Tabs) returns a solution, return it and 
terminate planning(?Tabs. 

• Refine?Tabs using some refinement strategy, 

• Recursion on refined plan ?TalJS. 

4.	 insert ?Tabs into ?T. 

Table 2: Backward Island Planning 

picking a goal and choosing an appropriate abstraction are needed and indi
cated by ,,-. 

Island planning is a refinement operation because the (abstract) steps and 
their constraints are introduced into the partial plan and restict the solution 
candidates. The LUS of Figure 1 shows how the auxiliary constraint abs(g, ga) 
gives rise to "connect" the ground level steps with abstract level steps. 
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choose rippling-in rewrites as instantiations of  ApplyEquali ty”
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terminate planning (7s.
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e Recursion on  refined plan wap .

4. inser t  Tabs into 7 .

Table 2: Backward Island Planning

picking a goal and choosing an appropriate abstraction are needed and indi-
cated by & .

Island planning is a refinement operation because the (abstract) steps and
their constraints are introduced into the partial plan and restict the solution
candidates. The LHS of Figure 1 shows how the auxiliary constraint abs(g, ga)
gives rise to “connect” the ground level steps with abstract level steps.



In the example of section 3.1, the goal 9 is picked and abstracted to aa' The 
abstracted problem P abs has an initial state that includes the abstracted proof 
assumptions and operators that take abstract instantiations. Planning for P ab. 

inserts the operators ApplyEquation(abs(3» and elementary. insert depends 
on abs(gi, gj). In the example, ApplyEquation(am(3)) * op, elementary * 
ApplyEquation(am(3)), and elementary -< op are introduced into 7r. 

Island planning as described in Table 2 is a multi-step planning that involves 
nested application of planning strategies in step 3. Since the abstraction belongs 
to the refinement procedure, the island planning has to accomplish the whole 
planning for the abstracted problem and this in turn may need several planning 
steps. Alternatively to the described procedure, the problem abstraction can be 
separated (which is not a plan refinement operation) and the usual refinement 
planning applies to the abstract plan. Then the relationship between plans at 
different levels of abstraction would have to be specified. 

3.3 Backward Island Refinement 

The abstract steps have to be refined in order to obtain a ground-level plan 
consisting of ground steps only. Island refinement does this job. 

Algorithm backward-island-refinement(7l')/* Returns refinements of 7r*/ 
Parameters: introduce-subproblem procedure 

1.	 Step selection: Pick abstract step Sa .. with abs(g, post(sa)) and 
remove the constraint abs(g,post(Sa)) for some g. 
Not a backtrack point 

2.	 Island instantiation: Replace Sa in 7r by a mapped-back" step 
mb(sa). For any t this involves 

•	 replacing Sa * t by mb(sa) -< t and t * Sa by t -< mb(sa) 
Sa -< t by mb(sa) -< t and t -< Sa by t -< mb(sa) 

•	 introducing auxiliary constraints: for each precondition 
prek of Sa introduce abs(prek(mb(sa)),pred. 
Backtrack point; all possible mb have to be considered. 

3.	 Subproblem construction: introduce-subproblem introduces 
into S a problem P s1tb with G = 9 and post(mb(sa» E I. 

Table 3: Backward Island Refinement 

The choice of the abstract step Sa is subject to control knowledge. The 
introduce-subproblem routine depends on the domain characteristics. In 
proof planning, the constructed subproblem has the initial state head_state U 
post(mb(sa)) (hecause no element of the head state is destroyed by any operator 
application), the goal g, and OPSsl1h = Ops for the original set of operators Ops. 

In general, different mappings mb might be possible. In order to reduce 
backtracking, we allow for meta-variables rather than fully instantiating goals 
where terms or formulae cannot completely be specified. The instantiation of 
these meta-variables is successively restricted by a constraint solver processing 
the bindings and prohibited bindings in B. 
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For an illustration of island refinement see the RHS of Figure 1, where the 
step Sa is picked. The dashed lines indicate removed and introduced abstraction 
constraints, respectively and the dotted line indicates mapping back of the step 
Sa' The ground step S is introduced into the plan 7f, Sa * op is replaced by 
S ~ op. abs(g, ga) is removed and for pre(s) = {g2}, the auxiliary constraint 
abs(g2' g2a) is introduced. The procedure introduce-subproblem returns the 
problem sub l and its null plan. 

3.4 Subproblem Refinement 

Subproblem refinement takes subproblems, resulting, e.g., from island refine
ment or given by the user, plans for these subproblems, and inserts new con
straints into the partial plan 7f. The insertion involves at least replacing to and 

Algorithm subproblem-refinement(7f)/* Returns refinements of 7f*/. 
Parameters: sol procedure, insert-subproblem procedure 

1.	 Pick-subproblem: A subproblem P sub is chosen •.
 
Not a backtrack point
 

2.	 Planning by refining 7fsub. This involves 

•	 Checking termination: if sOl(7fsub) finds a solution of Psub , re
turn it, and then terminate. 

•	 Refining 7fsub by some planning strategy, 

•	 Recursively call planning for 7fsub. 

3.	 insert-subproblem 7fsub into 1r. 

Table 4: Subproblem Refinement 

too in 7fsub by steps of 7f. sol is the routine for picking solution candidates from 
the candidate set of the partial subplan. In case sol does not return a solution, 
the algorithm fails for the current branch or is continued, respectively. 

As island planning, subproblem refinement is a multistep planning with 
nested planning strategies because it involves inserting the completed subplan 
into 7f. This multistep planning is all right for proof planning. III order to 
avoid multiple steps in subproblem planning for other domains, an alternative 
subproblem refinement algorithm involves 

1. Pick subproblem P sub with current plan 7fsub, 

2.	 Refine 7fsub. 

3.	 Propagate auxiliary, binding constraints, and order constraints of 7fsub to 
7f by a propagate-constraints routine. 

In our example, the plan of the subproblem sub l is refined by progression that in
serts ApplyEquation and LemmaSuggestion. The subplan is inserted 'between' 
the steps sand op. Similarly, regression erfines the plan of the subproblem sub2 • 

A constraint solver for the constraints of B eagerly computes instantiations of 
meta-variables Fo, Fl . 
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4 Control 

Control knowledge consists of (domain dependent) heuristics concerning deci
sions at choice points. They can be encoded into compiled procedures or as 
declarative control-rules. Depending on the strictness of a heuristic, differ
ent types of control-rules can be designed: choose, don't-choose, and prefer 
rules [27]. 

For applying the state-space refinement strategies other kinds of control 
knowledge can be used, as practiced, e.g., in Prodigy [27]. This knowledge 
supports the decisions: 

•	 Choose-goal 
•	 Choose-bindings 
•	 Choose-operator 
• Apply-operator 

Corresponding to the decisions to be made in the planning described in the 
previous sections, the additional classes of control knowledge need to be consid
ered: 

•	 Pick-refinement 
•	 Choose-abstraction 
•	 Pick-subproblem 
•	 Pick-goal to be abstracted 
•	 Pick-abstract-step to work on 
Finally, in order to give an idea of what the control knowledge may look 

like in proof planning, we propose some exemplary control-rules formulated in 
natural language here. In particular, we extracted some rules from the proof 
planning example in section 3.1: 

1.	 Pick-refinement control knowledge 

•	 If there is an abstract step in the plan, then prefer island-refinement. 

•	 If lemma speculation needed, then prefer island-planning and mark 
current goal with f. 

•	 If the goal in P s,d, is marked with f, choose progression in the plan
ning for 1rsub, 

2. Choose-abstraction control knowledge. 

•	 If the current goal is an equational formula and the LHS and 
RHS differ in the occurring function symbols, then prefer the 
abstraction to maximal..symbolJIlultisets13 described in [17]. 

•	 If the current goal is an equational formula and the LHS and 
RHS differ in the (position of a) context only, then prefer an 
abstraction to the position of the context relative to the skeleton. 

•	 If the current goal is an equational formula and the LHS and 
RHS differ in the number of function occurrences, then prefer 
the # function-occurrence abstraction [7]. 

13 used in the subproblem refinements above 
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5 

Clearly, the meta control-rules has to be formalized in a meta-Ievellanguage that 
can express properties of the planning state, the planning history, the partial 
constraint solution, and measures of the progress of global control that might 
be explicitly encoded into annotations of goals and of assumptions. 

Conclusion and Related Work 

From an AI planning point of view, we introduced new planning strategies that 
support a reduction of the search space and that help to structure plans. From 
a proof planning point of view, we introduced a formal framework to make 
planning strategies explicit and to integrate them into a systematic, unified 
planning framework rather than hiding them in code. This framework also 
helps to explicate, where which kind of control knowledge is needed. That is, 
we bring together ideas from different origins, namely planning, proof planning, 
and abstraction. 

We have learned from proof planning examples the need for defining and in
tegrating different planning strategies. Therefore, we propose several planning 
strategies that can be invoked in a planning framework, among them, island 
planning and island refinement. These strategies cope with abstracted prob
lems or subproblems. Establishing smaller problems, such as subproblems and 
abstracted problems, can help to reduce the search space. Furthermore, the 
construction of well-structured proof plans can be supported by defining sub
problems and integrating their solutions into the overall plan in an isolatedway 
only. 

Allowing for different planning strategies adds a choice point to the general 
planning algorithm. Hence we need control knowledge on when to choose which 
planning strategy in addition to the control knowledge used within planning 
strategies. For proof planning we have presented exemplary control knowledge. 

Work on combining different strategies within one planning framework has 
been published by Kambhampati et al. [19, 20, 2:1.] and for Prodigy in [ll]. There 
is a variety of ideas about abstraction. Problem abstraction to guide problem 
solving has, for instance, been addressed in [23, 13, 3:1.]. More specifically in the
orem proving a classical paper is Plaisted's [28]. In ABSFOL [12] the mapping 
back is supported for user-provided abstractions. Hutter and Autexier proposed 
concrete abstractions for equational theorem proving such as maximaL used in 
our example above, patILto_commOILskelton_parts, rewriting...abstraction in [18, 
1, 17] for particular problems in theorem proving. In planning, declarative 
control-rules for choosing goals, operators, and bindings are used in Prodigy [27] 
and such a control is also described in [2]. 

References 
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Clearly, the meta control-rules has to be formalized in  a meta-level language that
can express properties of  the planning state, the planning history, the partial
constraint solution, and measures of the progress of global control that, might
be  explicitly encoded into annotations of  goals and of  assumptions.
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planning strategies explicit and t o  integrate them into a systematic, unified
planning framework rather than hiding them in code. This framework also
helps to explicate, where which kind of control knowledge is needed. That is,
we bring together ideas from different origins, namely planning, proof  planning,
and abstraction.

We have learned from proof  planning examples the need for defining and in-
tegrating different planning strategies. Therefore, we propose several planning
strategies that can be invoked i n  a planning framework, among them, island
planning and island refinement. These strategies cope with abstracted prob-
lems or subproblems. Establishing smaller problems, such as subproblems and
abstracted problems, can help to reduce the search space. Furthermore, the
construction of  well-structured proof plans can be supported by  defining sub-
problems and integrating their solutions into the overall plan in  an isolatedway
only.

Allowing for different planning strategies adds a choice point to the general
planning algorithm. Hence we need control knowledge on when to choose which
planning strategy in addition to the control knowledge used within planning
strategies. For proof  planning we have presented exemplary control knowledge.

Work on combining different strategies within one planning framework has
been published by Kambhampati et al. [19, 20, 21] and for Prodigy in  [11]. There
is a variety of ideas about abstraction. Problem abstraction to guide problem
solving has, for instance, been addressed in  [23, 13, 31]. More specifically in  the-
orem proving a classical paper is Plaisted’s [28]. In  ABSFOL [12] the mapping
back is supported for user-provided abstractions. Hutter and Autexier proposed
concrete abstractions for equational theorem proving such as maximal_ used in
our example above, path_to_common skelton_parts, rewriting.abstraction in  [18,
1, 17] for particular problems in theorem proving. In planning, declarative
control-rules for choosing goals, operators, and bindings are used in  Prodigy [27]
and such a control is also described in [2].
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