
Erica Melis

SEKI Report SR-96-10

+sQ
C

=©Ss
=©az==«bo
5=aiL[a~

~=5Nm

faaa/qud/ep qs-ıum
 sa m

nm
s(//:d3ay pA M

M

AN
VIN

ED
NAMONUYEQUVVS 7099-0

MILVINHOANI H
O

ITH
AG

H
O

VA
SEANVTEVVS SEA IV.LISH

IAIN
A

uodsy IM
3S

1

Island Planning and Refinement

Erica Melis

Fachbereich Informatik, Universitat des Saarlandes

66041 Saarbriicken, Germany

Abstract

Planning for realistic problems in a static and deterministic environ
ment with complete information faces exponential search spaces and, more
often than not, should produce plans comprehensible for the user. This
article introduces new planning strategies inspired by proof planning ex
amples in order to tackle the search-space-problem and the structured
plan-problem. Island planning and refinement as well as subproblcm
refinement are integrated into a general planning framework and some
exemplary control knowledge suitable for proof planning is given.

Introduction

Refinement planning as unguided search is notoriously hard because of the com
binatorial search involved. For realistic planning problems the intractable search
space prevents many current refinement planning techniques from being success
ful. For a discussion see, for instance [10, 22J. Another problem we face in some
domains is the need for structured plans that are intelligible for the user. In or
der to restrict the search space, planning in abstraction spaces by precondition
abstraction, for instance in [29, 23, 5], and hierarchical task network planning
(HTN) [30, 8] have been suggested. The latter also serves to structure plans.

The search-space-problem applies to theorem proving and proof plarming as
well. As a result, rippling - a specific meta-Ievel control - is used in GYM [6J
for planning inductive proofs [4, 16J. One step towards solving the structured
plan-problem in proof planning is the definition of operators that provide a
sequence of calculus-level proof steps! when executed. In this way, proof plans
are abstract representations of calculus-level proofs.

Our experience in proof planning gives rise, however, to additional ideas
to cope with the two problems: A controlled mixture of planning strategies
integrated into a basic architecture for multiple planning strategies can help to
reduce the search space. Establishing smaller problems, such as subproblems
and abstracted problems, can help to reduce the search space. Structured proof
plan construction can be supported by defining subproblems. We think that
these ideas Cl-re more widely applicable in planning.

le.g. of the Natural Deduction (ND) calculus

1

Island Planning and Refinement
Erica Melis

Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany

Abstract

Planning for realistic problems in a static and deterministic environ-
ment with complete information faces exponential search spaces and, more
often than not, should produce plans comprehensible for the user. This
article introduces new planning strategies inspired by proof planning ex-
amples in order to tackle the search-space-problem and the structured-
plan-problem. Island planning and refinement as well as subproblem
refinement are integrated into a general planning framework and some
exemplary control knowledge suitable for proof planning is given.

1 Introduction

Refinement planning as unguided search is notoriously hard because of the com-
binatorial search involved. For realistic planning problems the intractable search
space prevents many current refinement planning techniques from being success-
ful. For a discussion see, for instance [10, 22]. Another problem we face in some
domains is the need for structured plans that are intelligible for the user. In or-
der to restrict the search space, planning i n abstraction spaces by precondition-
abstraction, for instance in [29, 23, 5], and hierarchical task network planning
(HTN) [30, 8] have been suggested. The latter also serves to structure plans.

The search-space-problem applies to theorem proving and proof planning as
well. As a result, rippling — a specific meta-level control — is used in CIAM [6]
for planning inductive proofs [4, 16]. One step towards solving the structured-
plan-problem in proof planning is the definition of operators that provide a
sequence of calculus-level proof steps! when executed. In this way, proof plans
are abstract representations of calculus-level proofs.

Our experience in proof planning gives rise, however, to additional ideas
to cope with the two problems: A controlled mixture of planning strategies
integrated into a basic architecture for multiple planning strategies can help to
reduce the search space. Establishing smaller problems, such as subproblems
and abstracted problems, can help to reduce the search space. Structured proof
plan construction can be supported by defining subproblems. We think that
these ideas are more widely applicable in planning.

e.g. o f the Natural Deduction (ND) calculus

2

The paper is organized as follows. First, we define some basic notions by ex
tending Kambhampati's framework [21, 19J for unifying several planning strate
gies that may serve to integrate our island planning and refinement. We briefly
review proof planning. Then a motivating example leads to island planning and
refinement as well as subproblem refinement. These strategies are introduced
as refinement operations. Some exemplary control knowledge is given.

Planning as Refinement Search

A planning problem is a tripel (1, G, Ops) with the initial state description 1,2
a set G of goals, and a set Ops of operators. As usual, operators have precon
ditions (pre) and postconditions (post). A (ground) operator sequence S is a
solution for a problem, if S can be executed from the 1 such that the goals from
G are satisfied.

A partial plan 7r is a tuple (T, 0, B, S, Aux, ST), where T is a set of steps3 in
the plan containing to and too, ST maps step names to operators. to is mapped
to start and too to finish, where start and finish are the only operators
of so-called null plans with to -< too. 0 is a partial order over T, B is a set of
binding and prohibited binding constraints on variables. We introduce S as a set
of subproblems each of which has a plan that is a connected subplall of 7r. That
is, for any tl, t2 E Tsub , if h -< t -< t2, then t E Tsub. Aux is a set of auxiliary
constraints. Kambhampati [19] includes the following auxiliary constraints in
order to unify state-space and plan-space refinement on one representation of
partial plans:

• Interval preservation constraints specified by triples (t, p, t')
• Point truth constraints specified by pairs (p, t)
• Contiguity constraints specified by the relation ti * tj between two

steps that demands no step intervene between ti and tj.
u In addition, we define the auxiliary constraint

• Abstraction constraints represented by abs(gi, gj) for goals/assumptions

gi, gj. This constraint temporarily identifies gi with gj in constraints

and in relations to steps. Thereby abstract steps are integrated into

the partial plan temporarily. Semantically, this constrains all candi

dates of the partial plan to those for which 9i and 9j are identified.

Some derived notions important for state-space refinement are the header - the
maximal sequence of steps to, ... tu with to * ... * tlI, the head step tIl, and
the head-state which is the state resulting from the application of the steps in
the header t.o the initial state. Similarly, trailer, tail steps, and tail-state are
defined.

Semantically, a partial plan 7r is a set of instantiated ground operator se
quences t.hat are consist.ent with the constraints. This set is called the candi
date set. ((7r)) of 7r. Refinement planning starts wit.h a null plan defined by the
planning problem. Its candidate set is the set of all ground operator sequences.

2In proof planning called set of assumptions

3i.e., instantiated operators

2

The paper is organized as follows. First, we define some basic notions by ex-
tending Kamblıampati’s framework [21, 19] for unifying several planning strate-
gies that may serve to integrate our island planning and refinement. We briefly
review proof planning. Then a motivating example leads to island planning and
refinement as well as subproblem refinement. These strategies are introduced
as refinement operations. Some exemplary control knowledge is given.

2 Planning as Refinement Search
A planning problem is a tripel (I ,G, Ops) with the initial state description 1,2
a set G of goals, and a set Ops of operators. As usual, operators have precon-
ditions (pre) and postconditions (post). A (ground) operator sequence S is a
solution for a problem, i f S can be executed from the I such that the goals from
G are satisfied.

A partial plan x is a tuple (T', 0 , B , S, Auz, ST), where T is a set of steps? in
the plan containing to and too, ST maps step names to operators. tp is mapped
to start and t , to f i n i sh , where start and f i n i sh are the only operators
of so-called null plans wi th tg < t o . O is a partial order over T', B is a set of
binding and prohibited binding constraints on variables. We introduce S as a set
of subproblems each of which has a plan that is a connected subplan of 7 . That
is, for any t1,t2 € Tsup, i f t1 < t < 2 , then t € Tsub. Aux is a set of auxiliary
constraints. Kambhampati [19] includes the following auxiliary constraints in
order to unify state-space and plan-space refinement on one representation of
partial plans:

e Interval preservation constraints specified by triples (¢,p,t')
e Point truth constraints specified by pairs (p,t)
e Contiguity constraints specified by the relation ¢; * £; between two

steps that demands no step intervene between ¢; and ¢;.
u In addition, we define the auxiliary constraint

e Abstraction constraints represented by abs(g;, g;) for goals/assumptions
9i ,9 ; - This constraint temporarily identifies g; with g; in constraints
and in relations to steps. Thereby abstract steps are integrated into
the partial plan temporarily. Semantically, this constrains all candi-
dates of the partial plan to those for which g; and g; are identified.

Some derived notions important for state-space refinement are the header - the
maximal sequence of steps t o , . . . t y with to * . . . * t y , the head step ty , and
the head-state which is the state resulting from the application of the steps in
the header to the initial state. Similarly, trailer, tail steps, and tail-state are
defined.

Semantically, a partial plan 7 is a set of instantiated ground operator se-
quences that are consistent with the constraints. This set is called the candi-
date set ((7)) of 7 . Refinement planning starts with a null plan defined by the
planning problem. I ts candidate set is the set of al l ground operator sequences.

2In proof planning called set of assumptions
3 j . e . , instantiated operators

Syntactically, refinement planning successively refines a plan by adding con
straints until a solution can be picked from a candidate set. Semantically, a re
finement operation maps a partial plan 7r to a set of partial plans {7rd such that
((7r)) C ((7ri)) for all cPi. Kambhampati and Srivastava [21] define refinement
operations for (forward and backward) state-space and plan-space refinement.
They say that the control for choosing a refinement strategy has to be designed
in the near future. In this paper we shall define additional refinement strategies
and propose exemplary control knowledge used in proof planning.

2.1 Specifics of Proof Planning

To make a long story short, we give some essentials of proof planning only. For
more details about the state of the art see [26]. For proof planning two roads
join, (1) the use of tactics and (2) meta-Ievel control. As opposed to traditional
automated theorem that applies calculus-level inference rules, Le. low level infer
ences, proof planning relies on tactics [14]. Tactics are procedures that produce
a (not necessarily fixed) sequence of calculus-level inferences when executed.
Operators, are defined as specifications of tactics by pre- and postconditions.
You can imagine, e.g., an operator ApplyEquality that (backwardly) applies
an equation e : LHS = RHS to the current goal 9 by substituting a subterm
of 9 that equals a(RHS) by a(LHS) for a substitution a.4 ApplyEquality(e)
has the precondition F(a(LHS)) and the postcondition F(a(RHS)) for a meta
variable F.

Characteristics of proof planning compared to planning in other domains are

•	 The objects are (mathematical) objects such as numbers, lists, or trees
and operators manipulate formulas describing objects and their relations
and functions. In proof planning there is no goal interaction in the object
level sense because the application of a sequence of logical inference rules
does not destroy object-level preconditions.

•	 Typically, the solutions are deep.

• Infinite branching can occur for the instantiation of existentially quantified
variables, for lemma speculation, etc.5 This makes control even more vital.

•	 Often, infinitely many potential bindings have to be considered. Therefore,
the control of bindings and an elaborate handling of B is needed.

•	 The knowledge about the mathematical world is complete and certain
rather than incomplete and uncertain as in many real world applications
of planning. I.e., proof planning is classical planning which means planning
in a static and deterministic environment with complete information.

4For the moment we do not care about the position of the subterm in g.

sOne reason is that the cut rule, i.e., the backwardly applied rule

r,B I- A r I- B

rI-A

not avoidable in general. For an analysis see [24J

3

Syntactically, refinement planning successively refines a plan by adding con-
straints until a solution can be picked from a candidate set. Semantically, a re-
finement operation maps a partial plan 7 to a set of partial plans { r ; } such that
({m)) € ((m:)) for all ¢;. Kambhampati and Srivastava [21] define refinement
operations for (forward and backward) state-space and plan-space refinement.
They say that the control for choosing a refinement strategy has to be designed
in the near future. In this paper we shall define additional refinement strategies
and propose exemplary control knowledge used in proof planning.

2.1 Specifics of Proof Planning
To make a long story short, we give some essentials of proof planning only. For
more details about the state of the art see [26]. For proof planning two roads
join, (1) the use of tactics and (2) meta-level control. As opposed to traditional
automated theorem that applies calculus-level inference rules, i.e. low level infer-
ences, proof planning relies on tactics [14]. Tactics are procedures that produce
a (not necessarily fixed) sequence of calculus-level inferences when executed.
Operators, are defined as specifications of tactics by pre- and postconditions.
You can imagine, e.g., an operator ApplyEquality that (backwardly) applies
an equation e : LHS = RHS to the current goal g by substituting a subterm
of g that equals o(RHS) by o(LHS) for a substitution 0.* ApplyEquality(e)
has the precondition F(o(LHS)) and the postcondition F(o(RHS)) for a meta-
variable F .

Characteristics of proof planning compared to planning in other domains are

e The objects are (mathematical) objects such as numbers, lists, or trees
and operators manipulate formulas describing objects and their relations
and functions. In proof planning there is no goal interaction in the object-
level sense because the application of a sequence of logical inference rules
does not destroy object-level preconditions.

e Typically, the solutions are deep.

e Infinite branching can occur for the instantiation of existentially quantified
variables, for lemma speculation, etc.” This makes control even more vital.

e Often, infinitely many potential bindings have to be considered. Therefore,
the control of bindings and an elaborate handling of B is needed.

e The knowledge about the mathematical world is complete and certain
rather than incomplete and uncertain as in many real world applications
of planning. I.e., proof planning is classical planning which means planning
in a static and deterministic environment w i th complete information.

4For the moment we do not care about t he pos i t ion of t he subterm i n g .
50ne reason is that the cut rule, i.e., the backwardly applied rule

IBFATFB
' -A ’

not avoidable in general. For an analysis see [24]

3

•	 Structured plans are clearly preferred by humans, see e.g. [25] .

• Difference reduction techniques proved to be useful for planning inductive
and equational proofs [18J.

Planning strategies employed so far in the proof planners CIftM [6] or
OMEGA [15] respectively, are forward .and backward state-space refinement,
HTN-like planning, and precondition abstraction. HTN-like operators can be
expanded to subplans. E.g., the method induction-strategy in the proof plan
ner ClJ1.M [3] and diagonal-method in OMEGA are operators expanding to sub
plans. In OMEGA, a fixed precondition abstraction of operators is possible that
postpones the achievement of a particular precondition to a hierarchically lower
planning level. For instance, a more elaborate ApplyEquality(e) abstracts from
the precondition that is an antecedent of an essentially equational formula e.

2E.g., if e is (x E T -+ x = a), then ApplyEquality(e) applies (x2 = a) and
leaves (x E T) as a precondition to be satisfied in a lower hierarchical level.

Island Planning and Refinement

Similar to [21.], we combine several planning (refinement) strategies in a general
planning algorithm. Table 1 shows the top-level control of the planner. The
new strategies island planning, island refinement, and subproblem refinement
are described in later subsections. The selected strategy is applied to the partial
plan 1l" to generate refinements. As in [21J, we could have routines accomplishing
the control, as for instance pick-refinement. Instead, we encode the control
knowledge declaratively into control-rules and indicate their use by.. Both
ways have their advantages.

Planning Algorithm PLAN(1r)/* Returns refinements of 1l"*!
Parameters: sol procedure for picking solution candidates

1.	 Termination Check: If sol(1l") returns a solution, return it and
terminate. If it returns fail, fail. Otherwise continue.

2.	 Refinement: Pick one of the following refinement strategies. and
refine(1l"): (Not a backtrack point)

• forward-state-space refinement, called progression,
•	 backward-state-space refinement, called regression,
• island-planning,
•	 island-refinement,
• subproblem-refinernent.

3.	 Consistency Check (optional): If partial plan is inconsistent, prune
it.

4.	 Recursive Invocation: Call PLAN on the refined plan.

Table 1: Algorithm outline for classical multistrategy planning

Now we give an example from proof planning. It naturally leads to island
planning and refinement strategies and their combination with subproblem re

4

e Structured plans are clearly preferred by humans, see e.g. [25].

es Difference reduction techniques proved to be useful for planning inductive
and equational proofs [18].

Planning strategies employed so far in the proof planners CIAM [6] or
OMEGA [15] respectively, are forward .and backward state-space refinement,
HTN-like planning, and precondition abstraction. HTN-like operators can be
expanded to subplans. E.g., the method induction-strategy in the proof plan-
ner CIAM [3] and diagonal-method in OMEGA are operators expanding to sub-
plans. In OMEGA, a fixed precondition abstraction of operators is possible that
postpones the achievement of a particular precondition to a hierarchically lower
planning level. For instance, a more elaborate ApplyEqual i ty(e) abstracts from
the precondition that is an antecedent of an essentially equational formula e.
Eg, if e i s (x € T + z? = a), then ApplyEquality(e) applies (z? = a) and
leaves (z € T) as a precondition to be satisfied in a lower hierarchical level.

3 Island Planning and Refinement
Similar to [21], we combine several planning (refinement) strategies in a general
planning algorithm. Table 1 shows the top-level control of the planner. The
new strategies island planning, island refinement, and subproblem refinement
are described in later subsections. The selected strategy is applied to the partial
plan 7 to generate refinements. As in [21], we could have routines accomplishing
the control, as for instance p ick-ref inement . Instead, we encode the control
knowledge declaratively into control-rules and indicate their use by & . Both
ways have their advantages.

Planning Algorithm PLAN(7)/* Returns refinements of 7* /
Parameters: so l procedure for picking solution candidates

1. Termination Check: If so l (r) returns a solution, return it and
terminate. I f i t returns fail, fail. Otherwise continue.

2. Refinement: Pick one of the following refinement strategies & and
refine(w): (Not a backtrack point)

e forward-state-space refinement, called progression,
e backward-state-space refinement, called regression,
e island-planning,
e island-refinement,
e subproblem-refinement.

3. Consistency Check (optional): I f partial plan is inconsistent, prune
i t .

4. Recursive Invocation: Call PLAN on the refined plan.

Table 1: Algorithm outline for classical multistrategy planning

Now we give an example from proof planning. I t naturally leads to island
planning and refinement strategies and their combination with subproblem re-

finement. In particular, we learn about the need to integrate several planning
strategies and about some control knowledge to guide the choice of planning
strategies.

3.1 Example

Suppose we plan a proof of theorem 7.5.7 from Deussen's book "Halbgruppen

und Automaten" [9] that states that the mapping <P from an F-semimodul T l

to an F-semimodul Tt is a homomorphism,6 where <PifYt = ifY2 holds for two ho

momorphisms ifYt ; S M Tl , ifY2 : S M T2 . The proof assumptions (initial state)

include:

ifYl is surjective; ifYl is a homomorphism in the F -semimodul Tl ; ifY2 is a homo

morphism in the F-semimodul T2 • The formal goal (theorem) is

Vf,x(x E T l /\ f E F -+ <P(f. x) = f· <p(x». (1)

State-space planuing, progression and regression, is applied until we reach the
subgoal

<P(f. a) = f· <p(a) (2)

for a constant a, and among others the (derived7) assumptions in the head state

f E F /\ YES -+ ifY2 (f . Y) = f . ifY2 (Y), (3)

f E F /\ YES -+ ifYl (f . Y) = f . ifYl (Y), (4)

x E S -+ <P(ifYl(X» = ifY2(X), (5)

f E F /\ x E S -+ ifYl (f. x) = f· ifYl (x). (6)

and
yE Tl -+ 3x(x E S /\ ifYl(X) = y) (7)

Progression is blocked and further regression would fail to find a step applicable
to (2). From a more abstract point of view, the goal (2) requires to move f·
from a position PI wrt. <p(a) to the position P2 wrt. <p(a). The meta-reasoning
suggests that presumably, a lemma has to be introduced to prove this (sub)goal.

To narrow the gap between the goal and the assumptions8 , the domain
control knowledge suggests to plan at an abstract level in order to find an island
node from which it is possible to progressively plan to (2). If we abstract
the goal aud t.he assumptions to the]Jositions of the context rela.tive to some

6Definition: Let Sand T be P-semimoduls. A mapping 4> : F f-t If is called a homomor
phism from S to T) iff 'Vf, YU E F 1\ YES -+ 4>U . Y) == f . 4>(Y».

7E.g., quantifiers are removed, definition expanded.
8The gap corresponds to a missing lemma

5

finement. In particular, we learn about the need to integrate several planning
strategies and about some control knowledge to guide the choice of planning
strategies.

3 .1 Example
Suppose we plan a proof of theorem 7.5.7 from Deussen’s book “Halbgruppen
und Automaten” [9] that states that the mapping ® from an F-semimodul Ty
to an F-semimodul T i is a homomorphism,’ where ®¢; = ¢- holds for two ho-
momorphisms ¢ ; : S = T i , ¢2 : S — Ty. The proof assumptions (initial state)
include:
¢ , is surjective; ¢ ; is a homomorphism in the F-semimodul T3; ¢2 is a homo-
morphism in the F-semimodul 752. The formal goal (theorem) is

V iz (zeTWAfEF —» & (f - z)= f -® (z)) . (1)

State-space planning, progression and regression, is applied unti l we reach the
subgoal

@(f-a) =f: (a) (2)
for a constant a, and among others the (derived’) assumptions in the head state

FEFAY ES ¢ (f -Y) = f oY), (3)

feFAYeES+A(fF-Y)=f- AV), (4)

zES-+ &(¢1()) = a (a) , (5)

fEFAzeS A l f : x) = f - (x) . (6)
and

yeT;— 3 I s (x € SA (x) = y) (7)

Progression is blocked and further regression would fail to find a step applicable
to (2). From a more abstract point of view, the goal (2) requires to move f -
from a position p ; wrt . $ (a) to the position pz wrt . $ (a) . The meta-reasoning
suggests that presumably, a lemma has to be introduced to prove this (sub)goal.

To narrow the gap between the goal and the assumptions®, the domain
control knowledge suggests to plan at an abstract level in order to find an island
node from which i t is possible to progressively plan to (2). If we abstract
the goal and the assumptions to the positions of the context relative to some

SDefinition: Let S and T be F-semimoduls. A mapping ¢ : F + H is called a homomor-
phism from S to T) i f VE Y(fEFAY € S23 ¢ (f -Y) = f -¢ (Y)) .

"E .g . , quantifiers are removed, definition expanded.
8The gap corresponds t o a missing lemma

skeleton,9 we obtain the abstracted goal @(j.@) = f·@ from (2) where @(j.@)
and f . @ describe positions of the context f· relative to the skeleton <p(a).
Similarly, the abstraction of the assumption (3) is @(j . @) = f· @.10 Applying
this abstraction of (3) to the abstraction of (2) by anoperatorApplyEquality
reduces the abstract goal to @(J . @) = @(J . @) which is an instantiation of
the postcondition x = x of the operator elementary that has the precondition
true.

In other words, by planning for an abstracted problem we find that at some
point ApplyEquality(3) and elementary have to be applied. We name this
planning island planning. The LHS of Figure 1 depicts the described situa
tion. Rectangulars represent steps and ovals indicate goals/assumptions. Sa

is an abstracted step. 9a denotes the abstraction of the goal 9. The LHS of

,-----.
,.... , :: ,.......

~ ~I-----11 s ir----(ga)
~~/ I a I ' ,

I 1 ',..
L I :

I
I
I
I
I
I,

Q-Q

,'----,

,'~'II----jl
I

s i
I

(~-'I
\UL~ I a I \.~/

''''' I I I\ L __ I I
\ I

\ I

\ ,
\ I

, I

, I

\ I

\~ I.l t;! ~-Q
suhz ~~ sub) TI

Island planning Island refinement

Figure 1: Island Planning and Refinement

the figure demonstrates how abs(g, ga) allows to integrate the abstract step
Sa into the overall plan. The RHSof Figure 1 depicts the mapping back
of the abstract level steps and goals which is called island refinement. This
refinement produces island nodes at the ground level from nodes at the ab
stract level by mapping back the operator, its preconditions, and its postcon
ditions. For instance, ApplyEquation(@(J . @) = f· @) with the precondition
@(J . @) = @(J. @) and postcondition @(J . @) = f ',_@ is mapped back to the
island step ApplyEquation(J E F 1\ YES --t (/J2(J. Y) = f· cP2(Y» the precon
dition Fo = rP2 (J . Y) and the postcondition Fo = f . rP2 (Y) for a meta-variable
FoY In the RHS of Figure 1, Sa is mapped back to mb(sa) = S which has the

9In an equation, equivalence, or implication a skeleton is a term that occurs on the LHS
and on the RHS - in (2), e.g. the skeleton is <fl(a). The corresponding context is constructed
from the remaining parts of the formula - in (2) the corresponding context is I·. The notions
skeletonand context were coined by Hutter and Bundy for rippling in [16,4].

lOThe antecendent is abstracted away.
11 For simplicity we do not replace Y by aY. Actually, the postcondition of

ApplyEquat ion(J E F 1\ YES -t 1>2 (J . Y) = f . <P2 (Y)) is Fo = Fl (1)2 (f . Y)) and the
precondition Fo = Fl(1)2(f' Y)) for meta-variables Fo,Fl' The meta variable Fl can be
instantiated to the identity function because the RHS of the abstract postcondition is f . @.

6

skeleton,? we obtain the abstracted goal @(f-@) = f -@ from (2) where @(f-@)
and f - @ describe positions of the context f - relative to the skeleton ®(a).
Similarly, the abstraction of the assumption (3) is @(f - @) = f-@.1% Applying
this abstraction of (3) to the abstraction of (2) by anoperatorApplyEquality
reduces the abstract goal to @(f - @) = @(f - @) which is an instantiation of
the postcondition x = x of the operator elementary that has the precondition
true.

In other words, by planning for an abstracted problem we find that at some
point ApplyEquality(3) and elementary have to be applied. We name this
planning island planning. The LHS of Figure 1 depicts the described situa-
tion. Rectangulars represent steps and ovals indicate goals/assumptions. s ,
is an abstracted step. g, denotes the abstraction of the goal g. The LHS of

J PR

IN i : I ge ; ; N
= 1 L 1g ! ‘eg ' 4 i g1a f , — Ms AA1 v ~~ ’ ! Vv

bac .) H \ [YS | 4

[] \ l[] \ H)' \ : 1H \ H '
1 \ : |H N H 1: \ : H

AY .

\ |

0 C © C :0 sub, sub ©

Island planning Island refinement

Figure 1: Island Planning and Refinement

the figure demonstrates how abs(g,g,) allows to integrate the abstract step
Sa into the overall plan. The RHS of Figure 1 depicts the mapping back
of the abstract level steps and goals which is called island refinement. This
refinement produces island nodes at the ground level from nodes at the ab-
stract level by mapping back the operator, i ts preconditions, and i ts postcon-
ditions. For instance, ApplyEquation(@(f-@) = f - @) with the precondition
Q(f -@) = @(f - @) and postcondition @(f - @) = f - @ is mapped back to the
island step ApplyEquation(f € FAY € S = ¢2(f :Y) = f -¢2(Y)) the precon-
dition Fy = ¢ (f -Y) and the postcondition Fy = f - ¢2(Y") for a meta-variable
Fo. In the RHS of Figure 1, s , is mapped back to mb(s,) = s which has the

9In an equation, equivalence, or implication a skeleton is a term that occurs on the LHS
and on the RHS - i n (2), e.g. the skeleton is ®(a). The corresponding contest is constructed
from the remaining parts of the formula - i n (2) the corresponding context is f - . The notions
skeletonand context were coined by Hutter and Bundy for rippling i n [16, 4].

10The antecendent is abstracted away.
For simplicity we do not replace Y by oY . Actually, the postcondition of

ApplyEquation(f € FAY € S = ¢2 (f YY) = f - ¢2 (Y)) is Fo = F i (d2(f - Y)) and the
precondit ion Fo = F i (¢2 (f : Y)) for meta-variables Fy, F i . The meta variable F i can be
instantiated to the identity function because the RHS of the abstract postcondition is f - @.

postcondition g] and precondition g2.
The ground-level plan contains a gap between the goal (2) (g in Figure 1)

and the postcondition (g] in the figure)

Fo = f . rP2(Y) (8)

This gap constitutes a new subproblem (subt}. Further subplan refinement
tries to solve this new problem by progression from (8) because, as mentioned
above, progression has to be chosen for planning from the goal (2): The control
knowledge used in planning for the subproblem subl includes the rule
"If the goal is equational (or an equivalence or implication) and if the signature
of the goal and the distinguished assumption differ in their multisets SI and
S2 of (maximal) symbols, then try to apply equations (or an equivalence or
implication) that introduce a (large) subset of S] or removes a (large) subset of
S2" [17].
This motivates the choice of the step ApplyEquation(5) that gives

Fo = f . 1> (,pI (Y)). (9)

beeause rP2 is a maximal syrnuol defined by (5). IIence the multisets are {'1', (/Jt}, {(!>2}
and the application of (5) serves exactly the related introduction of phi2 and
removal of <T>, rPl. Note that this control-reasoning again amounts to an abstrac
tion. We use this abstraction in the control at ground level only rather than
producing an island node by island planning. This control applies because (5) is
directly applicable at the ground level and no other (nested) differences between
the goal and the distinguished assumption occur The subproblem planning for
sub1 can be completed by instantiating Fo to <T>(f . a) and by introducing the
lemma

3Y.rPl (Y) =a (10)

by a step LemmaSuggestion. Then the next island refinement yields a subprob
lem (sub2) with the goal g2:

(11)

and the initial state containing true. Control knowledge to be employed here
for choosing a step is the same as explicated for subl . This time, regression for
sub2 applies ApplyEquation(5) giving

1>(f. a) = 1>(rPl (f. Y)). (12)

The additional control knowledge
"If a goal is equational (or an equivalence or implication) and has to be reduced
to true, then the different contexts of the LHS and RHS have to be rippled-out
or rippled-inl2 by annotated rewrite rules. If only one side has a context, then

12rippling-in and rippling-out are notations from rippling[16]

7

postcondition g; and precondition ga.
The ground-level plan contains a gap between the goal (2) (g in Figure 1)

and the postcondition (g; in the figure)

Fo = f - (Y) (8)

This gap constitutes a new subproblem (suby). Further subplan refinement
tries to solve this new problem by progression from (8) because, as mentioned
above, progression has to be chosen for planning from the goal (2): The control
knowledge used in planning for the subproblem sub; includes the rule
“If the goal is equational (or an equivalence or implication) and i f the signature
of the goal and the distinguished assumption differ in their multisets S; and
Sy of (maximal) symbols, then t ry to apply equations (or an equivalence or
implication) that introduce a (large) subset of S; or removes a (large) subset of
Sp” [17].
This motivates the choice of the step ApplyEquation(5) that gives

Fo = f -2 ((Y)) (9)
because @, is a maximal symbol defined by (5). Ilence the multiscts are {®, ¢ , } , {42}
and the application of (5) serves exactly the related introduction of phi ; and
removal of ®, #1. Note that this control-reasoning again amounts to an abstrac-
tion. We use this abstraction in the control at ground level only rather than
producing an island node by island planning. This control applies because (5) is
directly applicable at the ground level and no other (nested) differences between
the goal and the distinguished assumption occur The subproblem planning for
sub; can be completed by instantiating Fp to ® (f - a) and by introducing the
lemma

IYA(Y)= a (10)

by a step LemmaSuggestion. Then the next island refinement yields a subprob-
lem (sub2) with the goal g2:

S(fa)=d2 (f -Y) (11)

and the initial state containing true. Control knowledge to be employed here
for choosing a step is the same as explicated for sub;. This time, regression for
sub, applies ApplyEquation(5) giving

(f a) = (SF) . (12)

The additional control knowledge
“I f a goal is equational (or an equivalence or implication) and has to be reduced
to true, then the different contexts of the LHS and RHS have to be rippled-out
or rippled-in'? by annotated rewrite rules. If only one side has a context, then

12rippling-in and rippling-out are notations from rippling[16]

choose rippling-in rewrites as instantiations of ApplyEquali ty"
then forces to choose the step ApplyEquation(6) which gives

iJl(J . a) = iJl(j . (Pt (Y)). (13)

The application of the lemma (10) results in the subgoal

iJl(J . a) = iJl(J . a) (14)

which is reduced to true by the operator elementary.

3.2 Island Planning

Island planning means planning at an abstract level that is established by prob
lem abstraction. The construction of an abstracted problem abstracts a goal g,
the head state, and the operators of the original problem by a mapping am.
Island planning as illustrated with the example is realized by the refinement
strategy given in Table 2. Routines or the interpretation of control-rules for

Algorithm backward-island-planning(?T)/* Returns refinements of ?T*!
Parameters: sol procedure for picking solution candidates
insert procedure for inserting an abstract plan into ?T.

1.	 Goal selection: Pick a goal 9 tf,. Not a backtrack point.

2.	 Abstraction: From 9 and the current head stateconstruct an abstracted
problem P abs by an abstraction mapping am ,,-. Introduce the auxiliary
constraint abs(g, ga) for am(g) = 9a.
backtrack point for d~fJerent possible abstractions

3.	 Plane?Tabs) for problem Pabs. This involves

• Termination check:	 If SOl(?Tabs) returns a solution, return it and
terminate planning(?Tabs.

• Refine?Tabs using some refinement strategy,

• Recursion on refined plan ?TalJS.

4.	 insert ?Tabs into ?T.

Table 2: Backward Island Planning

picking a goal and choosing an appropriate abstraction are needed and indi
cated by ,,-.

Island planning is a refinement operation because the (abstract) steps and
their constraints are introduced into the partial plan and restict the solution
candidates. The LUS of Figure 1 shows how the auxiliary constraint abs(g, ga)
gives rise to "connect" the ground level steps with abstract level steps.

8

choose rippling-in rewrites as instantiations of ApplyEquali ty”
then forces to choose the step ApplyEquation(6) which gives

(f a) = $ (f -@1(Y))- (13)

The application of the lemma (10) results in the subgoal

(f a) =%(f a) (14)

which is reduced to true by the operator elementary.

3.2 Island Planning
Island planning means planning at an abstract level that is established by prob-
lem abstraction. The construction of an abstracted problem abstracts a goal g ,
the head state, and the operators of the original problem by a mapping am.
Island planning as il lustrated with the example is realized by the refinement
strategy given in Table 2. Routines or the interpretation of control-rules for

Algorithm backward-island-planning(n)/* Returns refinements of 7%/

Parameters: so l procedure for picking solution candidates
inser t procedure for inserting an abstract plan into m.

1. Goal selection: Pick a goal g & . Not a backtrack point.

2. Abstraction: From g and the current head stateconstruct an abstracted
problem Pp, by an abstraction mapping am & . Introduce the auxiliary
constraint abs(g, ga) for am(g) = ga-
backtrack point for different possible abstractions

3. Plan{mgss) for problem Pass. This involves

e Termination check: If sol(mqps) returns a solution, return i t and
terminate planning (7s.

e Refine ass using some refinement strategy,
e Recursion on refined plan wap .

4. inser t Tabs into 7 .

Table 2: Backward Island Planning

picking a goal and choosing an appropriate abstraction are needed and indi-
cated by & .

Island planning is a refinement operation because the (abstract) steps and
their constraints are introduced into the partial plan and restict the solution
candidates. The LHS of Figure 1 shows how the auxiliary constraint abs(g, ga)
gives rise to “connect” the ground level steps with abstract level steps.

In the example of section 3.1, the goal 9 is picked and abstracted to aa' The
abstracted problem P abs has an initial state that includes the abstracted proof
assumptions and operators that take abstract instantiations. Planning for P ab.

inserts the operators ApplyEquation(abs(3» and elementary. insert depends
on abs(gi, gj). In the example, ApplyEquation(am(3)) * op, elementary *
ApplyEquation(am(3)), and elementary -< op are introduced into 7r.

Island planning as described in Table 2 is a multi-step planning that involves
nested application of planning strategies in step 3. Since the abstraction belongs
to the refinement procedure, the island planning has to accomplish the whole
planning for the abstracted problem and this in turn may need several planning
steps. Alternatively to the described procedure, the problem abstraction can be
separated (which is not a plan refinement operation) and the usual refinement
planning applies to the abstract plan. Then the relationship between plans at
different levels of abstraction would have to be specified.

3.3 Backward Island Refinement

The abstract steps have to be refined in order to obtain a ground-level plan
consisting of ground steps only. Island refinement does this job.

Algorithm backward-island-refinement(7l')/* Returns refinements of 7r*/
Parameters: introduce-subproblem procedure

1.	 Step selection: Pick abstract step Sa .. with abs(g, post(sa)) and
remove the constraint abs(g,post(Sa)) for some g.
Not a backtrack point

2.	 Island instantiation: Replace Sa in 7r by a mapped-back" step
mb(sa). For any t this involves

•	 replacing Sa * t by mb(sa) -< t and t * Sa by t -< mb(sa)
Sa -< t by mb(sa) -< t and t -< Sa by t -< mb(sa)

•	 introducing auxiliary constraints: for each precondition
prek of Sa introduce abs(prek(mb(sa)),pred.
Backtrack point; all possible mb have to be considered.

3.	 Subproblem construction: introduce-subproblem introduces
into S a problem P s1tb with G = 9 and post(mb(sa» E I.

Table 3: Backward Island Refinement

The choice of the abstract step Sa is subject to control knowledge. The
introduce-subproblem routine depends on the domain characteristics. In
proof planning, the constructed subproblem has the initial state head_state U
post(mb(sa)) (hecause no element of the head state is destroyed by any operator
application), the goal g, and OPSsl1h = Ops for the original set of operators Ops.

In general, different mappings mb might be possible. In order to reduce
backtracking, we allow for meta-variables rather than fully instantiating goals
where terms or formulae cannot completely be specified. The instantiation of
these meta-variables is successively restricted by a constraint solver processing
the bindings and prohibited bindings in B.

9

In the example of section 3.1, the goal g is picked and abstracted to g , . The
abstracted problem Pass has an initial state that includes the abstracted proof
assumptions and operators that take abstract instantiations. Planning for Pass
inserts the operators ApplyEquation(abs(3)) and elementary. insert depends
on abs(g;,g;). In the example, ApplyEquation(am(3)) * op, elementary *
ApplyEquation{am(3)), and elementary < op are introduced into 7 .

Island planning as described i n Table 2 is a multi-step planning that involves
nested application of planning strategies in step 3. Since the abstraction belongs
to the refinement procedure, the island planning has to accomplish the whole
planning for the abstracted problem and this in turn may need several planning
steps. Alternatively to the described procedure, the problem abstraction can be
separated (which is not a p lan refinement operation) and the usual refinement
planning applies to the abstract plan. Then the relationship between plans at
different levels of abstraction would have t o be specified.

3 .3 Backward Island Refinement

The abstract steps have to be refined in order to obtain a ground-level plan
consisting of ground steps only. Island refinement does this job.

Algorithm backward-island-refinement{r)/* Returns refinements of 7*/
Parameters: int roduce-subproblem procedure

1. Step selection: Pick abstract step sa & with abs({g, post(s,)) and
remove the constraint abs(g,post(s,)) for some g.
Not a backtrack point

2. Island instant iat ion: Replace s , in m by a mapped-back & step
mb(s,). For any t this involves

e replacing sa * t by mb(s,) < t and t x 5 , by t < mb(s,)
Sa < t by mb(s,) < t and t < sa by t < mb(s,)

e introducing auxiliary constraints: for each precondition
preg of sa introduce abs(prex(mb(s,)),prex).
Backtrack point; a l l possible mb have to be considered.

3. Subproblem construction: introduce-subproblem introduces
into S a problem P , , ; w i th G = g andpost(mb(s,)) € I .

Table 3: Backward Island Refinement

The choice of the abstract step sa is subject to control knowledge. The
introduce-subproblem routine depends on the domain characteristics. In
proof planning, the constructed subproblem has the initial state head_state U
post(mb(s,)) (because no element of the head state is destroyed by any operator
application), the goal g, and Opssw6 = Ops for the original set of operators Ops.

In general, different mappings mb might be possible. In order to reduce
backtracking, we allow for meta-variables rather than fully instantiating goals
where terms or formulae cannot completely be specified. The instantiation of
these meta-variables is successively restricted by a constraint solver processing
the bindings and prohibited bindings in B .

For an illustration of island refinement see the RHS of Figure 1, where the
step Sa is picked. The dashed lines indicate removed and introduced abstraction
constraints, respectively and the dotted line indicates mapping back of the step
Sa' The ground step S is introduced into the plan 7f, Sa * op is replaced by
S ~ op. abs(g, ga) is removed and for pre(s) = {g2}, the auxiliary constraint
abs(g2' g2a) is introduced. The procedure introduce-subproblem returns the
problem sub l and its null plan.

3.4 Subproblem Refinement

Subproblem refinement takes subproblems, resulting, e.g., from island refine
ment or given by the user, plans for these subproblems, and inserts new con
straints into the partial plan 7f. The insertion involves at least replacing to and

Algorithm subproblem-refinement(7f)/* Returns refinements of 7f*/.
Parameters: sol procedure, insert-subproblem procedure

1.	 Pick-subproblem: A subproblem P sub is chosen •.

Not a backtrack point

2.	 Planning by refining 7fsub. This involves

•	 Checking termination: if sOl(7fsub) finds a solution of Psub , re
turn it, and then terminate.

•	 Refining 7fsub by some planning strategy,

•	 Recursively call planning for 7fsub.

3.	 insert-subproblem 7fsub into 1r.

Table 4: Subproblem Refinement

too in 7fsub by steps of 7f. sol is the routine for picking solution candidates from
the candidate set of the partial subplan. In case sol does not return a solution,
the algorithm fails for the current branch or is continued, respectively.

As island planning, subproblem refinement is a multistep planning with
nested planning strategies because it involves inserting the completed subplan
into 7f. This multistep planning is all right for proof planning. III order to
avoid multiple steps in subproblem planning for other domains, an alternative
subproblem refinement algorithm involves

1. Pick subproblem P sub with current plan 7fsub,

2.	 Refine 7fsub.

3.	 Propagate auxiliary, binding constraints, and order constraints of 7fsub to
7f by a propagate-constraints routine.

In our example, the plan of the subproblem sub l is refined by progression that in
serts ApplyEquation and LemmaSuggestion. The subplan is inserted 'between'
the steps sand op. Similarly, regression erfines the plan of the subproblem sub2 •

A constraint solver for the constraints of B eagerly computes instantiations of
meta-variables Fo, Fl .

10

For an i l lustration o f island refinement see the RHS of Figure 1, where the
step 8a is picked. The dashed lines indicate removed and introduced abstraction
constraints, respectively and the dotted line indicates mapping back of the step
Sa . The ground step s is introduced into the plan 7 , sa * op is replaced by
s < op. abs(g,ga) is removed and for pre(s) = {gz}, the auxiliary constraint
abs(ga, gaa) is introduced. The procedure introduce-subproblem returns the
problem sub; and its null plan.

3.4 Subproblem Refinement
Subproblem refinement takes subproblems, resulting, e.g., from island refine-
ment or given by the user, plans for these subproblems, and inserts new con-
straints into the partial plan x . The insertion involves at least replacing tp and

Algorithm subproblem-refinement(7)/* Returns refinements of7*/.
Parameters: so l procedure, insert-subproblem procedure

1. Pick-subproblem: A subproblem P,,s is chosen é.
Not a backtrack point

2. Planning by refining 73.6. This involves

e Checking termination: if sol(msy) finds a solution of Py, re-
turn i t , and then terminate.

e Refining 7,45 by some planning strategy,
oe Recursively call planning for 7sub .

3. inser t -subproblem 73,5 into 7 .

Table 4: Subproblem Refinement

too in " sub by steps of x . so l is the routine for picking solution candidates from
the candidate set of the partial subplan. In case so l does not return a solution,
the algorithm fails for the current branch or is continued, respectively.

As island planning, subproblem refinement is a multistep planning with
nested planning strategies because i t involves inserting the completed subplan
into 7 . This multistep planning is all right for proof planning. In order to
avoid multiple steps i n subproblem planning for other domains, an alternative
subproblem refinement algorithm involves

1. Pick subproblem P,,; wi th current plan Tsub -

2. Refine Tsub.

3. Propagate auxiliary, binding constraints, and order constraints of my to
mt by a propagate-constraints routine.

In our example, the plan of the subproblem sub, is refined by progression that in-
serts ApplyEquation and LemmaSuggestion. The subplan is inserted ‘between’
the steps s and op. Similarly, regression erfines the plan of the subproblem subs.
A constraint solver for the constraints of B eagerly computes instantiations of
meta-variables Fg, Fi.

10

4 Control

Control knowledge consists of (domain dependent) heuristics concerning deci
sions at choice points. They can be encoded into compiled procedures or as
declarative control-rules. Depending on the strictness of a heuristic, differ
ent types of control-rules can be designed: choose, don't-choose, and prefer
rules [27].

For applying the state-space refinement strategies other kinds of control
knowledge can be used, as practiced, e.g., in Prodigy [27]. This knowledge
supports the decisions:

•	 Choose-goal
•	 Choose-bindings
•	 Choose-operator
• Apply-operator

Corresponding to the decisions to be made in the planning described in the
previous sections, the additional classes of control knowledge need to be consid
ered:

•	 Pick-refinement
•	 Choose-abstraction
•	 Pick-subproblem
•	 Pick-goal to be abstracted
•	 Pick-abstract-step to work on
Finally, in order to give an idea of what the control knowledge may look

like in proof planning, we propose some exemplary control-rules formulated in
natural language here. In particular, we extracted some rules from the proof
planning example in section 3.1:

1.	 Pick-refinement control knowledge

•	 If there is an abstract step in the plan, then prefer island-refinement.

•	 If lemma speculation needed, then prefer island-planning and mark
current goal with f.

•	 If the goal in P s,d, is marked with f, choose progression in the plan
ning for 1rsub,

2. Choose-abstraction control knowledge.

•	 If the current goal is an equational formula and the LHS and
RHS differ in the occurring function symbols, then prefer the
abstraction to maximal..symbolJIlultisets13 described in [17].

•	 If the current goal is an equational formula and the LHS and
RHS differ in the (position of a) context only, then prefer an
abstraction to the position of the context relative to the skeleton.

•	 If the current goal is an equational formula and the LHS and
RHS differ in the number of function occurrences, then prefer
the # function-occurrence abstraction [7].

13 used in the subproblem refinements above

11

4 Control

Control knowledge consists of (domain dependent) heuristics concerning deci-
sions at choice points. They can be encoded into compiled procedures or as
declarative control-rules. Depending on the strictness of a heuristic, differ-
ent types of control-rules can be designed: choose, don’t-choose, and prefer
rules [27].

For applying the state-space refinement strategies other kinds of control
knowledge can be used, as practiced, e.g., in Prodigy [27]. This knowledge
supports the decisions:

e Choose-goal
e Choose-bindings
e Choose-operator
e Apply-operator

Corresponding to the decisions to be made in the planning described in the
previous sections, the additional classes of control knowledge need to be consid-
ered:

e Pick-refinement
e Choose-abstraction
e Pick-subproblem
e Pick-goal to be abstracted
e Pick-abstract-step to work on
Finally, in order to give an idea of what the control knowledge may look

like in proof planning, we propose some exemplary control-rules formulated in
natural language here. In particular, we extracted some rules from the proof
planning example in section 3.1:

1. Pick-refinement control knowledge

e If there is an abstract step in the plan, then prefer island-refinement.
e If lemma speculation needed, then prefer island-planning and mark

current goal with f .
e If the goal in Psup is marked with £, choose progression in the plan-

ning for Tsub -

2. Choose-abstraction control knowledge.
e If the current goal is an equational formula and the LHS and

RHS differ in the occurring function symbols, then prefer the
abstraction to maximal symbol multisets'® described in [17].

e If the current goal is an equational formula and the LHS and
RHS differ in the (position of a) context only, then prefer an
abstraction to the position of the context relative to the skeleton.

e If the current goal is an equational formula and the LHS and
RHS differ in the number of function occurrences, then prefer
the # function-occurrence abstraction [7].

13ysed i n t he subproblem refinements above

11

5

Clearly, the meta control-rules has to be formalized in a meta-Ievellanguage that
can express properties of the planning state, the planning history, the partial
constraint solution, and measures of the progress of global control that might
be explicitly encoded into annotations of goals and of assumptions.

Conclusion and Related Work

From an AI planning point of view, we introduced new planning strategies that
support a reduction of the search space and that help to structure plans. From
a proof planning point of view, we introduced a formal framework to make
planning strategies explicit and to integrate them into a systematic, unified
planning framework rather than hiding them in code. This framework also
helps to explicate, where which kind of control knowledge is needed. That is,
we bring together ideas from different origins, namely planning, proof planning,
and abstraction.

We have learned from proof planning examples the need for defining and in
tegrating different planning strategies. Therefore, we propose several planning
strategies that can be invoked in a planning framework, among them, island
planning and island refinement. These strategies cope with abstracted prob
lems or subproblems. Establishing smaller problems, such as subproblems and
abstracted problems, can help to reduce the search space. Furthermore, the
construction of well-structured proof plans can be supported by defining sub
problems and integrating their solutions into the overall plan in an isolatedway
only.

Allowing for different planning strategies adds a choice point to the general
planning algorithm. Hence we need control knowledge on when to choose which
planning strategy in addition to the control knowledge used within planning
strategies. For proof planning we have presented exemplary control knowledge.

Work on combining different strategies within one planning framework has
been published by Kambhampati et al. [19, 20, 2:1.] and for Prodigy in [ll]. There
is a variety of ideas about abstraction. Problem abstraction to guide problem
solving has, for instance, been addressed in [23, 13, 3:1.]. More specifically in the
orem proving a classical paper is Plaisted's [28]. In ABSFOL [12] the mapping
back is supported for user-provided abstractions. Hutter and Autexier proposed
concrete abstractions for equational theorem proving such as maximaL used in
our example above, patILto_commOILskelton_parts, rewriting...abstraction in [18,
1, 17] for particular problems in theorem proving. In planning, declarative
control-rules for choosing goals, operators, and bindings are used in Prodigy [27]
and such a control is also described in [2].

References

[1]	 S. Autexier. Heuristiken zum Beweisen von Gleichungen. Master's thesis,
FB Informatik, Universitat des Saarlandes, 1996.

12

Clearly, the meta control-rules has to be formalized in a meta-level language that
can express properties of the planning state, the planning history, the partial
constraint solution, and measures of the progress of global control that, might
be explicitly encoded into annotations of goals and of assumptions.

5 Conclusion and Related Work

From an A I planning point of view, we introduced new planning strategies that
support a reduction of the search space and that help to structure plans. From
a proof planning point of view, we introduced a formal framework to make
planning strategies explicit and t o integrate them into a systematic, unified
planning framework rather than hiding them in code. This framework also
helps to explicate, where which kind of control knowledge is needed. That is,
we bring together ideas from different origins, namely planning, proof planning,
and abstraction.

We have learned from proof planning examples the need for defining and in-
tegrating different planning strategies. Therefore, we propose several planning
strategies that can be invoked i n a planning framework, among them, island
planning and island refinement. These strategies cope with abstracted prob-
lems or subproblems. Establishing smaller problems, such as subproblems and
abstracted problems, can help to reduce the search space. Furthermore, the
construction of well-structured proof plans can be supported by defining sub-
problems and integrating their solutions into the overall plan in an isolatedway
only.

Allowing for different planning strategies adds a choice point to the general
planning algorithm. Hence we need control knowledge on when to choose which
planning strategy in addition to the control knowledge used within planning
strategies. For proof planning we have presented exemplary control knowledge.

Work on combining different strategies within one planning framework has
been published by Kambhampati et al. [19, 20, 21] and for Prodigy in [11]. There
is a variety of ideas about abstraction. Problem abstraction to guide problem
solving has, for instance, been addressed in [23, 13, 31]. More specifically in the-
orem proving a classical paper is Plaisted’s [28]. In ABSFOL [12] the mapping
back is supported for user-provided abstractions. Hutter and Autexier proposed
concrete abstractions for equational theorem proving such as maximal_ used in
our example above, path_to_common skelton_parts, rewriting.abstraction in [18,
1, 17] for particular problems in theorem proving. In planning, declarative
control-rules for choosing goals, operators, and bindings are used in Prodigy [27]
and such a control is also described in [2].

References

[1] S. Autexier. Heuristiken zum Beweisen von Gleichungen. Master’s thesis,
FB Informatik, Universitit des Saarlandes, 1996.

12

[2]	 A. Barrett, K. Golden, J.S. Penberthy, and D. Weld. USPOP User's Man
ual, Version 2.0. Dept.of Computer Science and Engineering, University of
Washington, 1993. Technical Report 93-09-06.

[3]	 A. Bundy. The use of explicit plans to guide inductive proofs. In E. Lusk
and R Overbeek, editors, Proc. 9th International Conference on Automated
Deduction (CA DE) , volume 310 of Lecture Notes in Computer Science,
pages 111-120, Argonne, 1988. Springer.

[4]	 A. Bundy, Stevens A, F. Van Harmelen, A. Ireland, and A. Smaill. A
heuristic for guiding inductive proofs. Artificial Intelligence, 63:185-253,
1993.

[5]	 A. Bundy, F. Giunchiglia, R Sebastiani, and T. Walsh. Computing ab
straction hierarchies by numerial simulation. In Proceedings of the 13th
National Conference on AI, pages 523-529. AAAI, 1996.

[6]	 A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with
proof plans for induction. .J01trnal of Automated Reasoning, 7:303-324,
1991.

[7]	 J. Cleve and D. Hutter. A methodology for equational reasoning. In J.F.
Nunamaker and RH. Sprague, editors, Hawaii International Conference
on System Sciences. IEEE Computer Society Press, 1994.

[8]	 K.W. Currie and A. Tate. a-plan: The open planning architecture. Arti
ficial Intelligence, 52(1), 1991.

[9]	 P. Deussen. Halbgru,ppen und Automaten, volume 99 of Heidelberger
Taschenbiicher. Springer, 1971.

[10]	 M. Drummond. On precondition achievement and the computational eco
nomics of automatic planning. In Current Trends in AI Planning, pages
6-13. lOS Press, 1994.

[11]	 E. Fink and M. Veloso. Formalizing the Prodigy planning algorithm. In
M. Ghallab and A. Milani, editors, New Directions in Planning, pages 261
272. IOS Press, Amsterdam, Oxford, 1996. Extended version as technical
report CMU-CS-94-123, 1994.

[12]	 F. Giunchiglia and A. Villafiorita. ABSFOL: a Proof Checker with Ab
straction. In , editor, Pmceedings of the 13th International Conference on
Automated Deduction (CADE-13), pages -, 1996. To appear in proceed
ings ofthe the 13th Conference on Automated Deduct-ion (CADE-13). Also
IRST-Technical Report 9602-20, m,ST, Italy and DIST-Technical Report
96-0036, DIST, University of Genova, Italy.

[13]	 F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial Intelli
gence, 57:323-390, 1992.

13

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

A. Barrett, K . Golden, J.S. Penberthy, and D. Weld. USPOP User’s Man-
ual, Version 2.0. Dept.of Computer Science and Engineering, University of
Washington, 1993. Technical Report 93-09-06.

A. Bundy. The use of explicit plans to guide inductive proofs. In E. Lusk
and R. Overbeek, editors, Proc. 9th International Conference on Automated
Deduction (CADE), volume 310 of Lecture Notes in Computer Science,
pages 111-120, Argonne, 1988. Springer.

A. Bundy, Stevens A, F . Van Harmelen, A. Ireland, and A. Smaill. A
heuristic for guiding inductive proofs. Artificial Intelligence, 63:185-253,
1993.

A. Bundy, F . Giunchiglia, R. Sebastiani, and T. Walsh. Computing ab-
straction hierarchies by numerial simulation. In Proceedings of the 13th
National Conference on Al, pages 523-529. AAAI, 1996.

A. Bundy, F . van Harmelen, J. Hesketh, and A. Smaill. Experiments with
proof plans for induction. Journal of Automated Reasoning, 7:303-324,
1991.

J. Cleve and D. Hutter. A methodology for equational reasoning. In J.F.
Nunamaker and R.H. Sprague, editors, Hawaii International Conference
on System Sciences. IEEE Computer Society Press, 1994.

K.W. Currie and A. Tate. O-plan: The open planning architecture. Arti-
ficial Intelligence, 52(1), 1991.

P. Deussen. Halbgruppen und Automaten, volume 99 of Heidelberger
Taschenbücher. Springer, 1971.

M . Drummond. On precondition achievement and the computational eco-
nomics of automatic planning. In Current Trends in A I Planning, pages
6-13. 10S Press, 1994.

E. Fink and M. Veloso. Formalizing the Prodigy planning algorithm. In
M. Ghallab and A. Milani, editors, New Directions in Planning, pages 261
272. 10S Press, Amsterdam, Oxford, 1996. Extended version as technical
report CMU-CS-94-123, 1994.

F . Giunchiglia and A. Villafiorita. ABSFOL: a Proof Checker with Ab-
straction. In , editor, Proceedings of the 13th International Conference on
Automated Deduction (CADE-13), pages —, 1996. To appear in proceed-
ings of the the 13th Conference on Automated Deduction (CADE-13). Also
IRST-Technical Report 9602-20, IRST, Italy and DIST-Technical Report
96-0036, DIST, University of Genova, Italy.

F. Giunchiglia and T . Walsh. A theory of abstraction. Artificial Intelli-
gence, 57:323-390, 1992.

13

[14]	 M. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation. Lecture Notes in Computer Science 78. Springer,
Berlin, 1979.

[15]	 X. Huang, M. Kerber, M. Kohlhase, and J. Richts. Methods - the basic
units for planning and verifying proofs. In Proceedings of Jahrestagung fur
Kunstliche Intelligenz KI-94, Saarbriicken, 1994. Springer.

[16]	 D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proc. of
10th International Conference on Automated Deduction (CA DE), volume
Lecture Notes in Artificial Intelligence 449. Springer, 1990.

[17]	 D. Hutter. Equalising terms by difference reduction techniques. RP-,
Univ. of Edinburgh, Department of AI, Edinburgh, 1996.

[18]	 D. Hutter. Using rippling for equational reasoning. In KI-96: Advances in
Artificial Intelligence. 20th Annual German Conference on Artificial Intel
ligence, volume 1137 of LNAI, pages 121-133. Springer, 1996.

[19J	 S. Kambhampati. A comparative analysis of partial-order planning and task
reduction planning. ACM SIGART Bulletin, Special Section on Evaluating
Plans, Planners, and Planning Agents, 6(1):16-25, 1995.

[20]	 S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement
search: A unified framework for evaluating design tradeoffs in partial-order
planning. Artificial Intelligence, special issue on Planning and Scheduling,
76:*, 1995.

[21]	 S. Kambhampati and B. Srivastava. Universal classical planner: An algo
rithm for unifying state-space and plan-space planning. In M. GhaHab and
A. Milani, editors, New Directions in AI Planning, pages 61-78. IOS Press,
Amsterdam, Oxford, 1996.

[22J	 H. Kautz and B. Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the AAAI-96, pages 1194
1201. Morgan Kaufmann, 1996.

[23J	 C. A. Knoblock. Automatically generating abstractions for planning. Ar
tificial Intelligence, 68:243-302, 1994.

[24]	 G. Kreisel. Mathematical logic. In T. Saaty, editor, Lect1Lres on Modern
Mathematics, volume 3, pages 95-195. J. WHey & Sons, 1965.

[25]	 U. Leron. Structuring mathematical proofs. The American Mathematical
Monthly, 90:174-185, 1983.

[26]	 E. Melis and A. Bundy. Planning and proof planning. In S. Biundo, ed
itor, ECAI-96 Workshop on Cross-Fertilization in Planning, pages 37-40,
Budapest, 1996.

14

[14] M . Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation. Lecture Notes in Computer Science 78. Springer,
Berlin, 1979.

[15] X. Huang, M . Kerber, M . Kohlhase, and J. Richts. Methods - the basic
units for planning and verifying proofs. In Proceedings of Jahrestagung fiir
Künstliche Intelligenz KI-94, Saarbrücken, 1994. Springer.

[16] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proc. of
10th International Conference on Automated Deduction (CADE), volume
Lecture Notes in Artificial Intelligence 449. Springer, 1990.

[17] D . Hutter. Equalising terms by difference reduction techniques. RP —,
Univ. of Edinburgh, Department of AI, Edinburgh, 1996.

[18] D. Hutter. Using rippling for equational reasoning. In KI-96: Advances in
Artificial Intelligence. 20th Annual German Conference on Artificial Intel-
ligence, volume 1137 of LNAI, pages 121-133. Springer, 1996.

[19] S. Kambhampati. A comparative analysis of partial-order planning and task
reduction planning. ACM SIGART Bulletin, Special Section on Evaluating
Plans, Planners, and Planning Agents, 6(1):16-25, 1995.

[20] S. Kambhampati, C. Knoblock, and Q. Yang. Planning as refinement
search: A unified framework for evaluating design tradeoffs in partial-order
planning. Artificial Intelligence, special issue on Planning and Scheduling,
76:*, 1995.

[21] S. Kambhampati and B. Srivastava. Universal classical planner: An algo-
rithm for unifying state-space and plan-space planning. In M. Ghallab and
A. Milani, editors, New Directions in A I Planning, pages 61-78. I0S Press,
Amsterdam, Oxford, 1996.

[22] H. Kautz and B . Selman. Pushing the envelope: Planning, propositional
logic, and stochastic search. In Proceedings of the AAAI-96, pages 1194-
1201. Morgan Kaufmann, 1996.

[23] C. A. Knoblock. Automatically generating abstractions for planning. Ar-
tificial Intelligence, 68:243-302, 1994.

[24] G. Kreisel. Mathematical logic. In T . Saaty, editor, Lectures on Modern
Mathematics, volume 3, pages 95-195. J. Wiley & Sons, 1965.

[25] U. Leron. Structuring mathematical proofs. The American Mathematical
Monthly, 90:174-185, 1983.

[26] E . Melis and A. Bundy. Planning and proof planning. In S. Biundo, ed-
i tor, ECAI-96 Workshop on Cross-Fertilization in Planning, pages 37-40,
Budapest, 1996.

14

[27]	 S. Minton, C. Knoblock, D. Koukka, Y. Gil, R. Joseph, and J. Carbonell.
PRODIGY 2.0: The Manual and Tutorial. School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1989. CMU-CS-89-146.

[28]	 D. Plaisted. Theorem proving with abstraction. Artificial Intelligence,
16:47-108,1981.

[29]	 E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[30]	 A. Tate. Generating project networks. In Proceedings of the Fifth Interna
tional Joint Conference on Artificial Intelligence, pages 888-893. Morgan
Kaufmann, 1977.

[31]	 R. Washington and B. Hayes-Roth. Incremental abstraction planning for
limited-time situations. In M. Ghallab and A. Milani, editors, New Direc
tions in Planning, pages 91-102. IOS Press, Amsterdam, Oxford, 1996.

15

[27] S. Minton, C. Knoblock, D . Koukka, Y . Gil, R. Joseph, and J. Carbonell.
PRODIGY 2.0: The Manual and Tutorial. School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1989. CMU-CS-89-146.

[28] D . Plaisted. Theorem proving with abstraction. Artificial Intelligence,
16:47-108, 1981.

[29] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial
Intelligence, 5:115-135, 1974.

[30] A. Tate. Generating project networks. In Proceedings of the Fifth Interna-
tional Joint Conference on Artificial Intelligence, pages 888-893. Morgan
Kaufmann, 1977.

[31] R. Washington and B. Hayes-Roth. Incremental abstraction planning for
limited-time situations. In M . Ghallab and A. Milani, editors, New Direc-
tions in Planning, pages 91-102. IOS Press, Amsterdam, Oxford, 1996.

15

	BB_0008.jpg

