
U
N

IV
ER

SI
TÄ

T
D

ES
 S

AA
R

LA
N

D
ES

FA
CH

RI
CH

TU
NG

IN
FO

R
M

AT
IK

D
—

6
6

1
2

3
S

A
A

R
B

R
Ü

C
K

E
N

G
ER

M
AN

Y
W

W
W

:
h t

tp
/ I

m
m

ga
m

ni
—

sb
do

l

S
E K

I-
R

E
P

O
R

T
IS

S
N

1
4

3
7

—
4

4
4

7

A Dialogue Manager for the DIALOG
Demonstrator

Mark Buckley and Christoph Benzmüller
Dept. of Computer Science, Saarland University

{markbl chrisNags . uni—sb .de
SEKI Report SR—2004—06

This SEKI Report was internally reviewed by:
Dimitra Tsovaltzi
FR Informatik, Universität des Saarlandes, D—66123 Saarbrücken, Germany
E-mail: tsovaltziQags ‚un i - sb . de
WWW: http : //www . ags .uni-sb . de/"tsovaltzi/

Editor of SEKI series:
Claus—Peter Wirth
FR Informatik, Universität des Saarlandes, D—66123 Saarbrücken, Germany
E-mail: cags . uni-sb . de
WWW: http : //www . ags .uni-sb . de/"cp/welcome .html

A Dialogue Manager for the DIALOG Demonstrator

Mark Buckley and Christoph Benzmiiller
Dept. of Computer Science, Saarland University

{markblchris}©ags . uni—sb . de

November 30, 2004

Abstract

The DIALOG project investigates flexible natural language tutorial dialogue in math-
ematics, and as such i t is essential that the system includes a dedicated module t o
facilitate and control interaction with the tutor . In this report we present the de-
sign and implementation of the dialogue manager for the demonstrator system of the
DIALOG project. We begin with a brief survey of some approaches to dialogue man-
agement, followed by an overview of the system and a description of the modules _
which are part of the demonstrator. The dialogue manager is an information state up-
date based manager built on a platform for dialogue management applications called
Rubin. We describe the functionality of the Rubin platform before giving the specifi-
cation of the dialogue manager itself, including its input rules and the structure of the
information s ta te . Finally we discuss some aspects of the system, i ts implementation,
and the pros and cons of using the Rubin platform.

1 Introduction

In this report we present and discuss the design and implementation of the dialogue manager
for the demonstrator system of the DIALOG project1 [4, 16, 17, 18]. This system was built for
demonstration purposes by the DIALOG team2 at Saarland University for the review of the
Collaborative Research Centre 378 on June 8, 2004. The goal of the DIALOG project is to
investigate flexible natural language tutorial dialogue in mathematics; our particular focus
is on tutoring mathematical proofs in naive set theory. Since the medium of communication
is natural language dialogue, and since tutorial dialogues are by nature both flexible and
unpredictable (from the standpoint of the tutor) , i t is essential to include a sophisticated,
dedicated dialogue manager to handle the interaction between student and the system
modules.

l h t t p : //www . ags ‚un i - sb . de/"chr is /d ia log/ , http : //www. co l i .uni—sb.de/sfb/
2The DIALOG team is: Christoph Benzmiiller, Ivana Kruijif-Korbayova, Manfred Pinkal, Jörg Siekmann,

Dimitra Tsovaltzi, Quoc Bao Vo, Magdalena A. M. Wolska, Serge Autexier, Armin Fiedler, Erica Melis,
Beata Biehl, Mark Buckley, Oliver Culo, Sreedhar Ellisetty, Hussain Syed Saj jad, Andrea Schuh, Jochen
Setz, Michael Wirth. '

There are a number of candidate approaches to dialogue management which could be
suitable for DIALOG. Finite-state methods, such as the CSLU toolkit [13, 24], are suited to
situations where a certain set of data must be collected by an agent in order to carry out
some action, or where the number of possible dialogues is relatively small. Such systems
are characterised by a finite state machine which contains all possible dialogues; dialogues
are hard-wired and system—driven. Such methods are not sufficient for DIALOG because of
our interest in flexible, natural tutorial dialogues.

The form-filling approach, such as in the AUTOTUTOR system [9], is more adaptable
than finite-state. The information that the system seeks is stored in slots in a form which
is incrementally filled until the required amount of information is reached. This allows the
system to be more flexible in relation to the order in which information is elicited from
the user. However, even this flexibility does not reach the level required by DIALOG. Also,
form-filling is more suited to situations in which the information flow is mainly in the
direction of the system, for instance in personal banking applications, whereas the dialogue
manager for DIALOG must support flexible information exchange in both directions.

The solution we decided on is the Information State Update approach. In this design the
dialogue manager maintains a description of the state of the discourse and i ts participants, '
which then forms a framework for communication between the external modules associated
with the system.

This report begins with an outline of the functionality that a dialogue manager for the
DIALOG project should support and a brief description of the overall architecture. We then
describe Rubin, the development platform that the dialogue manager is built on, followed
by the specification of the dialogue manager itself. Finally we discuss some aspects of the
manager, of Rubin, and of system development as a whole.

1.1 The Sample Dialogue

The DIALOG demonstrator has been developed to illustrate the functionality of the DIALOG
system at hand of a few dialogues from the project’s Wizard-of—Oz corpus [6]. Here we
concentrate on dialog did16k. The task that the student is asked to prove is theorem (1).

(1) K((AUB)fl(CUD)) = (K(A)flK(B))U(K(C)nK(D))

The examples in this report of information exchange between modules are all taken from
this sample dialogue.

Some of the modules are still only simulated in our demonstrator; our emphasis so far
has been on the development of the input analyser, proof manger, tutorial manager, natural
language generator and graphical user interface.

2 The Dialogue Manager

The function of the dialogue manager in DIALOG is to handle interaction between stu-
dent and system, and to facilitate communication between system modules. The following
modules are connected t o the system (see also Figure 1):

Tutorial
Manager

r \

Dialog Management Platfo
(Rubin)

' GUI

Dialog Move
Recogniser

Input
Analyser Dialog

Manager

- ~ \ J
Figure 1: Architecture

Proof
Manager

Domain Info
Manager

GUI The graphical user interface that the student uses. So far we assume only typed input
in the project.

Input Analyser This is the sentence analyser which parses the student’s utterance and
determines its linguistic content and an underspecified representation of the proof step
(the mathematical content of the utterance) that the student performed, including
for instance the formula in the utterance and the type of inference.

Dialog Move Recogniser This module identifies the function (i.e. dialogue moves) of
utterances, based on the current state of the dialogue.

Proof Manager The proof manager is based on QMEGA—CORE, and evaluates student
input and monitors and maintains the proof state.

Domain Info Manager This module uses mathematical and tutorial knowledge to de-
termine the mathematical information of the proof step at hand, which is potentially
relevant to the tutorial manager and the natural language generator.

Tutorial Manager The tutorial manager provides and applies pedagogical knowledge
which specifies generic and domain—specific teaching strategies, including didactic
and socratic teaching methods, and hinting dialog moves.

NL Generator This module creates a natural language realisation of the dialogue move
with which the system responds.

The system modules will be described in detail in Section 3.

The design of the dialogue manager is based on the Information State Update approach
used in the SIRIDUS and TRINDI projects [19, 20, 26], and implemented in TrindiKit [25].
The Information State (IS) is a central data structure storing information about the current
state of the dialog and about the internal states of modules participating in the dialogue.

I t is divided into “private” system information, “public” information shared between the
system and the user, and information which is neither private nor fully public, bu t rather
shared between certain system modules. The IS stores both dialogue-level knowledge, such
as the user’s last speech act or an evaluation of the utterance, as well as meta—information
about the dialogue, such as an utterance history.

2 .1 Dialogue Move Selection

At its simplest level, the function of a dialogue manager is to receive a dialogue move from
the linguistic analysis module, and, based on the current IS, decide on the most appropriate
dialogue move to respond with. A dialogue move is a notion which extends that of a speech
act. I t consists of a number of dimensions, each of which encode a different aspect of
the information contained in the utterance. For example, the forward-looking dimension
corresponds to the notion of a speech act, and the backward-looking dimension accounts
for the relationship of the utterance to the dialogue up to that point. Dimensions can
themselves contain hierarchical structure. In this way a single dialogue move can account
for the many functions that an utterance may have. Consider example (2) from the corpus
of the DIALOG Wizard-of—Oz experiments [28] (translated from German):

(2) “Can you explain that in more detail?”

This utterance is a request for information, it refers back to a previous utterance (the
anaphor “that”) which the system made, and it introduces an obligation on the system to
explain that utterance.

Each of the functions of an utterance are encoded in the dimensions of its dialogue
move. The taxonomy of dialogue moves used in DIALOG is described in [27]; it is an adap—
tation and extension of the DAMSL taxonomy [1]. DAMSL is a standard and application—
independent annotation scheme for dialogue tagging, and the taxonomy used in DIALOG is
therefore tailored t o account for the types of moves found in tutorial dialogues, as well as
the management of tutorial dialogue in general. Dialogue moves consist of 6 dimensions:

Forward-looking This characterises the effect an utterance has on the subsequent dia-
logue.

Backward-looking This dimension captures how the current utterance relates t o the pre-
vious discourse.

Task In contrast t o the DAMSL design, here the task content of an utterance constitutes
a separate dimension. It captures functions that are specific to the task at hand and
its manipulation. This dimension is particularly important for the genre of tutorial
dialogues, and has itself an inner structure.

Communication management This concerns utterances that manage the structure of
the dialogue, for instance to begin or end a subdialogue.

Task management This dimension captures utterances that address the management
of the task at hand, for instance beginning a case distinction or declaring a proof
complete.

Communicative status This dimension concerns utterances which have unusual features,
‘such as non-interpreted utterances. '

What dialogue move the system produces is determined based on information supplied
by each of the modules mentioned above. The first source of information is the content of the
user’s utterance. This comes from the input analyser in the form of linguistic meaning of the
utterance and its proof step, and from the dialogue move recogniser, which determines the
dialogue move representing the utterance. The linguistic meaning can impose obligations
on the system; for instance if the user poses a question, the system should create a dialogue
move which answers the question, thereby discharging the obligation. In order to decide
on the mathematical content of its reply, the system combines information from the proof
manager, the tutorial manager and the domain information manager. Given the proof step
that the user’s utterance contained, the proof manager determines whether in the context
of the proof that the user is constructing the’ proof step is correct, if it has the appropriate
level of detail, if it is relevant, etc. With this information the dialogue manager can decide
for example to confirm a correct step, signal incorrectness, o r ask the tutorial manager to
add a hinting aspect to the response dialogue move. The tutorial manager contributes the
whole task dimension of the system’s dialogue move. This may include a hint, which is
typically to supply the user with a mathematical concept (given by the domain information
manager) that should help the user progress in the current proof state. '

The final step is to pass the now complete response dialogue move, along with any extra
specifications required, to the generation module to be verbalised, the resulting utteranCe
is outputted, and the turn passes to the user. At this point the system waits for the next
user utterance to be received. This results in a sequence of dialogue moves according to
the model of the dialogue.

2 .2 Inter—module communication

The second responsibility of the dialogue manager is to be the communication link between
modules. Modules are not able to pass messages directly to each other, for design as well
as technical reasons. The design of the system is such that the dialogue manager is the
mediator of all communication between system modules, and in this way is able to control
all message passing and thus the order of module execution. Because the dialogue manager
is based on information state updates, each result computed by a module needs to be stored
in the IS. Since the dialogue manager receives the results of each module’s computation,
it has the opportunity to immediately make the corresponding information state update,
and has full control of top-level system execution. On the technical side, the design of the
system in Figure 1 shows that it is a star type architecture. Each module is connected
only to the central server (the dialogue manager) and there is no link between modules
themselves.

The result of this is that all information must first be sent to the dialogue manager,
where it can be stored in the IS, and is then passed on to the modules that require it. For
instance, to make appropriate decisions on hinting moves in the case of an uttered proof
step, the tutorial manager needs to know the evaluation of the proof step; i.e. whether it
was correct, incorrect, correct but irrelevant, etc. This information is passed through the
dialogue manager and the IS. First it is stored in the IS having been received from the

proof manager. When the tutorial manager needs this piece of information, i t can be read
by the dialogue manager from the IS and sent to the tutorial manager.

Here we would like to stress that there are two different notions of a dialogue manager,
depending on what is seen t o be i ts main task. One is that a dialogue manager has the func-
tion of computing a dialogue move based on the partial dialogue leading up to the current
move, and the contents of the information s ta te . This is the view that was introduced in
Section 2.1. The other notion of a dialogue manager is a platform which supports the devel-
opment of a dialogue-based application, often one which implements the information-state
approach. In this sense the dialogue manager provides features such as communication
between modules, an information state , and a language to define update rules, etc. This
is the approach described in section 2.2. The DIALOG demonstrator contains subsystems
which fulfil both of these tasks, and in this report we concentrate on the second notion of
dialogue management — the development platform for dialogue applications.

2 .3 Implementation Platform

The dialogue manager is built on Rubin [8], a platform for developing dialogue management
applications from CLT company, which is described in section 4.

3 Modules connected to the DIALOG System

As shown in the diagram of the system in Figure 1, the dialogue manager acts as the
communications centre for each module that is connected to i t , and i t in turn accesses the
information state. In this section we detail the functions of each of the seven modules which
are connected to the dialogue manager. Information enclosed in chain brackets represents
a structure, information in round brackets is a list. See section 4.1 for details of the Rubin
data structures. Each of the examples of input and output to or from a module relates to
the computation involved in responding to the student utterance “Nach deMorgan-Regel-2
i s tK((AUB)fl (CUD))=(K(AUB)UK(CUD))” ; s eea l soF igu re2 .

3 .1 Graphical User Interface

The GUI of the demonstrator program is an extension of the DiaWoZ tool [6], which has
been developed in the DIALOG project at the very beginning to support the Wizard-of-Oz
experiments in which we collected our corpus. The GUI is presented in Figure 2. In the
lower text field the user types his input, which when submitted, appears in the upper text
field, or conversation field. System utterances also appear in this field. At the top of the
GUI is a row of buttons for mathematical symbols which do not typically appear on a key-
board. In the GUI for the demonstrator there are two extra buttons and an input field, as
shown in the Figure. These are used to set the tutorial mode, i.e. minimal, didactic or so-
cratic, and to delete the last turn. They were added to allow the demonstrator t o show the
full functionality of the system within a single sample dialogue. The GUI is implemented
in Java.

, v! fi r ”im „„ “ J “W mat-M-

Bitte zeigen Sie . K((AVeremigung B) Durchschnm (C Veremlgung D)) = (K(A) Durchschnm K(B)) Veremlgung (K(C) Durchschnitt K(D))
USER: nach deMorgan-Regel—Z ist K((AUB)n(CUD)) - (K(AUB)U(K(CUD))
Das Ist richtig !
USER: K(AU B) ist laut DeM organ -1 K(A)nK(B)
Das ist richtig !
USER: B enthält Kein xeA
Das ist nicht richtig !
USER: Aund B müssen disjunkt sein.
Das Ist nicht richtig !

ie muessen die Vereinigung betrachten.
USER: A=K(K(A))
Das ist richtig aber im Moment uninteressant.

Figure 2: The DiaWoz tool, extended for the DIALOG demonstrator, showing the first 5
moves of the sample dialogue.

Inpu t :3 A string (the system utterance),’which is then displayed in the conversation field,
e.g.: “Das ist richtig!”
Output : The user utterance (st_input), the tutorial mode if it was set since the last user
utterance (mode), and a boolean flag (delete) indicating whether a deletion of the last turn
is to be carried out: "

{ st_input : “Nach deMorgan-Regel—2 ist K ((A U B) fl (C U D)) = (K (A
‘ UB)UK(CUD))”
mode : “min”,
delete : false }

3 .2 Input Analyser

The input analyser receives the user’s utterance and determines i ts linguistic meaning and
proof content. Input is syntactically parsed using the openCCG parser [15], and its linguistic
meaning is represented using Hybrid Logic Dependence Semantics (HDLS) [3].

Input: The user’s utterance in a string (see st_input in the output of the GUI above).
Output : A structure containing the linguistic meaning (LM) represented in HDLS and the
underspecified proof s tep contained in the utterance, in an ad-hoc LISP-like representation

3The notion of input/output depends on point of view: the results that a module computes are i ts
output , which then become the input to the dialogue manager. In this section we take the point of view of
the module, that is, input is the data which it receives from the dialogue manager, and output is the result
of its computation which is then sent back to the dialogue manager.

(LU). This is a language in the spirit of the proof representation language described in [2],
but designed 'for the inter-module communication requirements of the DIALOG project:

{ LM = @h1(holds A <CRITERION>(d1 A deMorgan—Regel-Z) A <PATIENT>(f l A FOR-
MULA))

LU = (input (label 1_1)
(formula (= (complement (in t e r sec t ion (union a b)

(union c d)))
(union (complement (union a b))

(complement (union c d)))))
(type ?) '
(direction ?)
(j u s t i f i c a t i ons (j u s t

(reference demorgan-2)
(formula ?)
(subst i tu t ion ?)
(ro le : f rom))))

3.3 Dialog Move Recogniser '

The dialogue move recogniser determines the values of the six dimensions of the dialogue
move associated with the user’s utterance. It does this based on the linguistic meaning
outputted by the input analyser.

Input: The linguistic meaning of the user’s utterance, which is the LM element in the
output of the Input Analyser.

Output: A dialogue move or set of dialogue moves corresponding to the student’s utter-
ance:

{ fwd = “Assert”,
bwd = “Address_statement”,
commm : “”,
taskm : “”,
comms : “”,
task : “Domain_contribution” }

This dialogue move encodes the student’s utterance in the forward-looking (fwd), backward-
looking (bwd), and task (task) dimensions. “Assert” in the forward dimension means that
the speaker has made a claim about the world, and introduced an obligation on the bearer
to respond to the claim. In the backward dimension, “Address_statement” means simply
that the utterance addresses a preceding statement, here the statement which posed the
problem at hand to the student. The task dimenSion “Domain_contribution” describes a
dialogue move which is concerned with resolving the domain task for the session. In this
case, the utterance is a domain contribution because the student proposes t o apply the
de-Morgan rule, and in doing so contributes to the task of building a proof.

3 .4 Proof Manager

The proof manager is the mediator between the dialogue manager and the mathematical
proof assistant OMEGA—CORE [21, 22]. The proof manager replays and stores the status
of the partial proof which has been built by the student so far, and based on this partial
proof, i t analyses the soundness and relevance of a next proof step. It also investigates,
based on a user model, whether the proof step has the appropriate granularity, i.e., if the
step is too detailed or too abstract, and'whether it is relevant. The proof manager also tries
t o resolve ambiguity and underspecification in the representation of the proof s tep uttered
by the student. In doing this the proof manager ideally accesses mathematical knowledge
stored in MBase [12]-and the user model in ActiveMath [14], and also deploys a domain
reasoner, usually a theorem prover. These tasks for the proof manager are very ambitious;
some first solutions are presented in [2, 11].

The proof manager receives the underspecified proof step which was extracted from
the user’s utterance by the input analyser.“ This is encoded} in the proof representation
language LU [2] (LU in the output of the input analyser (3.2)) The proof manager is able to
reconstruct the proof step that the student has made using mathematical knowledge, its own
representation of the partially constructed proof so far and the potentially underspecified
representation of the user proof step. It then outputs the fully specified representation of
the user proof step, along with the step category, (e.g. correct, incorrect, irrelevant, etc)
and whether the proof was completed by the step. It also includes a number of possible
completions for the proof that the student is building (stored in completeProofs). This
is used by the domain information manager and the tutorial manager t o determine what
mathematical concept to either give away to or elicit from the student.
Input: The underspecified proof s tep outputted by the input analyser (LU in Section 3.2).

Output: An evaluation of the proof step.

((KEY 1 -1) - ->
((Eva lua t ion

(expStepRepr
(label 1_1)
(formula (= (complement (in te r sec t ion(un ion(A B) union(C D)))

union(complement(union(A B)) complement(union(C D))))))
(type inference) '
(direction forward)
(j u s t i f i c a t i on (

(reference demorgan—2)
(formula n i l) .
(subs t i tu t ion ((X union(A B) Y union(C D))))
(ro le n i l))))

(StepCat co r r ec t)))
(ProofCompleted f a l se)
(completeProofs))

This example shows the similarity of the proof manager’s output t o the underspecified
proof step that i t receives from the input analyser. In this case, the proof manager was able

10

to resolve a number of underspecified elements of the proof step, namely type, direction and
substitution. “It was also able to determine that the proof step was correct (the StepCat
item), and added “ProofStepCompleted false”, meaning that after this proof step has been
integrated into the student’s partial proof plan, the proof is still not complete.

3.5 Domain Information Manager

The domain information manager determines which domain information is essentially ad-
dressed in the attempted proof s tep and assigns the value of the domain information to the
expected proof s tep specified by the proof manager. It receives both the underspecified and
evaluated proof s tep in order t o categorise the user input in more detail.

Input : The proof s tep from the input analyser and its evaluation from the proof manager.

Output : Proof s tep information:

{ domConCat: “correct”,
proofCompleted: false,
proofstepCompleted: true,
proofStep: “”,
relConU: true,
hponU: true,
domRelU: ‘ false,
iRU: true,
relCon: ‘ “fl”,
hpon: “U”,
domRel: “”,
iR: “deMorgan—Regel-2”}

3 .6 Tutorial Manager

The job of the tutorial manager is t o use pedagogical knowledge to decide on how to
give hints t o the user [7], and this decision is based on the proof step category (correct,
irrelevant, etc), the expected step, a naive student model and the domain information used
or required. The tutorial manager can decide for instance to elicit or give away the right
level of information, e.g., a mathematical concept, or t o simply accept o r reject the proof
step in the case that i t is correct or incorrect, respectively. This decision is influenced by
the tutorial mode, which can be “min”, for minimal feedback, “did”, for a didactic tutorial
strategy, or “soc” for socractic.

Input: The tutorial mode, the task dimension of the user’s dialogue move, which is deter-
mined by the dialog move recogniser, and the proof step information, which is the whole
output from the domain information manager. This includes the evaluation of the user’s
proof step, and the possibilities for the next proof step, according to the proof manager.

Output : A tutorial move specification, that is, the tutorial mode and the ' task content of
the system dialogue move.

11

l

E
.

={ mode
task : (signalAccept;

{proofStep= “” relCon= “”; hpon= “”; domRel: “”; iR= “”; taskSet=)

“”; completeProof= “”})
}

The task dimension captures functions that are particular to the task at hand and its
manipulation. That is, i t encodes aspects of a dialogue move that talk “about” the theorem
proving process, since this is the task in a mathematical tutorial dialogue. Here the task
dimension value is “signalAccept”, which confirms the correctness of a domain contribution.

The remaining values in the task dimension are parameters for different hint categories,
a subset of which was used for the demonstrator. For each of the hint categories (which
are defined in a domain ontology [27]) certain parameters are passed to the generation
module. When a proof step is t o be given away, the value of the parameter proofStep is
the formal proof step. Similarly for a relevant concept (relCon) or a hypotactical concept
(hpon) . domRel refers t o a domain relation which is t o be mentioned in a hint, and iR
is an inference rule (such as a DeMorgan Law). The task which was set for the tutorial
session is stored in taskSet, and completeProof contains a representation of the complete
proof that the user has built. This is used for example when a recapitulation is given at
the end of a tutorial dialogue. In this example each parameter has an empty string as its
value because the task dimension move “signalAccept” does not need any parameters. It
simply expresses confirmation that the last user proof s tep was correct.

3 .7 NL Generator

The natural language generation system used in DIALOG is P. ren: [5]. Press is designed to
present complete proofs in natural language, and has been adapted for the DIALOG project.
In a dialogue setting utterances are produced separately and sequentially, not as a complete
coherent text. Also, referents of anaphors are constantly changing as the dialogue model
develops. As well as this, Brew was designed for English language generation, and the
DIALOG system conducts dialogues in German.

The NL Generator receives a dialogue move and returns an utterance whose function
captures each dimension of the move.

Input : A system dialogue move specification, that is, a six-dimensional dialogue move
along with the current tutorial mode, e.g.:

{ mode = “min”;
fwd = “Assert”;
bwd = “Address_statement”;
task : (“signalCorrect”, {proofStep: “”, relCon: “”, hpon= “”,

domRel:“”, iR= “”, taskSet= “”, completeProof= “”});
comms : “”;
commm : “”;
taskm : “”}

The value of the task dimension of the dialogue move and the tutorial mode is taken from
the output of the tutorial manager. The other 5 dimensions are computed by the dialogue

12

manager itself, based on the dialogue move of the student’s utterance. For instance, the
“Address_statement” in the backward-looking dimension is in response to the “Assert” in
the forward-looking dimension of the student’s dialogue move.
Output : The natural language utterances that correspond to the system dialogue moves.
These then become the input to the GUI, e.g. “Das ist richtig!”.

4 Rubin

Rubin is a platform for building dialogue management applications developed by the CLT
company [23]. I t uses an information state based approach to dialogue management, and
allows quick prototyping and integration of external modules (called “devices”). The de-
veloper of a dialogue application writes a dialogue model describing the dialogue manager,
which is then able to handle device communication, parSe and interpret input , fire input
rules based on messages received from clients, and execute dialogue plans.

4 .1 The Rubin Dialogue Model

The Rubin term “dialogue model” refers t o a user—defined specification of system behaviour.
It should be noted that this does not refer t o the model of domain objects, salience, and
discourse segments, etc, as in other theories of discourse. It consists of the following sections:

dialogue_ model := IS
device_ declaratlon*
[grammar]
support_functi0n"_‘
plan,“
input“ rule*

Information State The IS in Rubin is implemented as a set of freely—defined typed global
variables (called slots) which are internally visible in the dialogue manager. Slots can
have any of Rubin’s internal datatypes: boo l , in t , r ea l , s t r ing, l i s t or s t ruc t .
The IS is specified by the following syntax:-

IS := slot*
slot := label [: type][= value]
type 6 {b001 , i n t , r ea l , s t r i ng , l i s t , s t ruc t}

where label is any variable name, and value is an object which has the correct type
in its context, e.g. a quoted string for a variable of type s t r ing . l i s t and s t ruct
objects are specified as follows:

list := [] [[value {, value}*]
struct := {sl0t*}

13

For a slot of type s t ruc t , i t is possible t o either directly specify the slot as having the
‘type s t ruc t , or t o specify the exact structure of slots within the struct, for example:

location : { city : string
airport : string }

External Devices Arbitrary modules that send and receive data can be connected t o
the Rubin server, for example a speech recogniser or a graphical user interface. A
connection is specified by a unique device name and a port number over which com—
munication takes place:

device_ declaration := device_ name : port__ number ;

Connecting a module as a device is described in section 4.3.

Grammar Using a grammar written in the Speech Recognition Grammar Format (SRGF),
i t is possible to preprocess (i.e. parse and interpret) natural language input from
a device before performing further computations within the dialogue manager, or
sending the input t o another module. The grammar is context-free with semantic
tags. It takes a string as input and returns either the corresponding semantic tagging,
or the string which was recognised, if no semantic tags are given.

For instance, a grammar could be used to parse a natural language utterance con-
taining the t ime of day before sending the utterance t o a sentence analysis module
for further processing. In this case a grammar would parse strings like “four fifteen
pm.” or “a quarter past four” and determine a semantic representation such as:

{h=16,m=15}

In DIALOG we do not make use of a grammar, since input analysis is handled by our
own input analyser.

Support Functions Auxiliary functions can be defined in Rubin for use within the dia-_
logue manager, and these are globally visible. These can perform operations on the
internal datatypes used in the dialogue model, and the syntax is nearly identical to
ANSI C:

support__function := {type | void} name({type label}*) {statement* }

where the first occurrence of type is the return type of the function, name is a label
which begins with a small letter, the labels are the arguments of the function, and a
statement is a C—style statement, including assignment, variable declaration, if, while,
etc. Statements can also set the value of slots in the information state, and make
calls t o devices.

14

Plans These are special functions with return type Boolean. A plan has positive and
negative preconditions which are tested for the duration of its execution. If at any
point a positive precondition is fulfilled, execution is interrupted and the plan returns
true. This is used when the goal of a plan is t o elicit some piece of information;
when that piece of information is found, the plan exits successfully. If a negative
precondition evaluates t o true, execution is interrupted and the plan returns false.
Plans are defined according to the following syntax:

plan := name({ type label}*)
preconditions
{statement* }

preconditions := [] | [precondition {, precondition}*]
precondition := pos_precon I neg_precon
pos_precon ' = : condition
neg_precon := !: condition .
condition := slot_ name{ == | != } value

~ Here a statement is similar t o a statement in a support function. I t can make changes
to the IS and call other devices.

Input Rules These are rules which carry out arbitrary actions based on input from devices
connected t o the dialogue manager, and are specified with the following syntax:

input_ rule = IS_ constraints {_|device_ name} input_ pattern : {statement’k}
IS_ constraints := _ | {matching*}
input_ pattern := _ | label | listpattern | structpattern
listpattern = [] | [pattern {, pattern}*]
structpattern '= {pattern {, pattern}*}
pattern ' 2 matching | label
matching := slot = value

When input is received from some device a rule can be fired based on the content of
the fields in i ts header. IS_ constraints is a set of constraints (which may be empty)
on values in the IS which must hold for the rule t o fire. That is, for the constraint

{ x = 3 }

the value of the slot x in the information state must be 3 for the rule t o fire. de-
vice_ name must be the same as the unique name of the device from which the input
came. If “_” is given as the device name, the rule can match input from any device.
The input_ pattern must match4 with the input from the device. A side effect of
this matching is that the input becomes bound to the variables which are implicitly
declared in the input pattern. For example, the rule

4Here we speak of matching as opposed to unification. In Rubin it i s not possible to have variables in
the information state, so matching is sufficient t o decide on the applicability of rules and to bind input to
local variable names.

15

_, "SA", { LM = typeof_lm, LU = input} : { . . . }

will only match on input from the device called “SA” with input of type s t ruc t , where
the structure contains 2 slots, LM and LU. This rule puts no constraints on the type of
the values in these two slots. When the rule fires, the values in the slots are bound to
the labels typeof_lm and input respectively, and these labels are visible in the body
of the rule. The first rule in the dialogue model whose IS constraints, device name
and input patterns match is executed.

The most precise formal definition of an input rule that is available, taken from a
presentation made by the designers of the Rubin system, is that “rule bodies are just
inlined plans that can update IS, push other plans etc.” Thus given a data object as
input, a rule can make changes to the IS, to the plan stack, or to both.

In general an input rule denotes a function f :

fEASxPSxInpu t seASxPS

where

AS = set of all assignments of IS slots
PS : set of all possible states of the plan stack
Inputs = the set of Rubin data objects

An input rule f (as ,ps‚ input) may fire when as is an assignment of IS slots which
satisfies the IS constraints of the rule and input matches with the input pattern of
the rule.

4 .2 Rubin’s Graphical User Interface

The Rubin graphical user interface shows details of all communication to and from the
Rubin server and the current values in the IS (see Figure 3). The current values of the
IS slots are displayed in the upper left window, and in this windows i t is possible to alter
the values of slots in-place at runtime. This is useful for rapid prototyping, debugging and
testing. The bottom left area is the server output for each input rule that fires. For each
rule execution it shows the input and the header of the rule which is fired. In the top right
window is a list of the devices that are connected and their ports. For each device the GUI
displays the most recent input and output . The current plan stack appears in the lower
right area.

4 .3 Connecting a Module

Rubin offers a simple way to connect external modules to the dialogue manager. It provides
the Java abstract class C l i en t , from which wrapper classes for each module can be derived,
and this wrapper acts as the link between Rubin and the module itself. The wrapper must
implement the callback output (Value v) , which receives data from the Rubin server, and
it sends data back to Rubin with the function send (Value v) (see Figure 4). Both of these

16

student_tasi< string 'Domain_contribution“ „
user_input string "nach dm2 ist K((A#@B746#...
input_lm string "dumalncontribution"
input_dsl string undefined
input_lu string “(Input (label 0_0) (formula (.
|nput_eval string undefined
dla_move string undefined
tut_move string undefined
move_content string undefined

. tut_mnde string "min"
@ @ current_move
; string undefined

stn‘ng "'
t 1-,

,

. * lnput after postprocessing:
student_input - "settask“, mode - "min“, delete = false)

3 Matches rule: _, GUI, (student_input - stinput, mode - tmode, delete - d) :
if nput after postprocessing:
5;. mode . “min“, task - ["initiateTask“, (iR - "', hpon - “, prootStep - ", domRei - "",

~ askSer = "K((AVereinigung 8) Durchschnitt (C Vereinigung D)) = (K(A) Durchschnitt K(B))
» ereinlgung (K(C) Durchschnitt K(D))', completeProot - "', reiCon - “")])
‘Ma tches ruie: _, TutMan, input :
‘ input after postprocessing:
' Bitte zeigen Sie : K((AVereinigung 8) Durchschnitt (C Vereinigung D)) - (K(A) Durchschnitt
K(B)) Vereinigung (K(C) Durchschnitt K(D))"

. Matches rule: _, Gen, input :
i lnput after postprocessing:
in student_input - "nach dmz ist
‘ €K((M@8746#B)#@8745#(C#@8746#D)) - (KM8746#B)#@8746#K(C#@8746#D)) " ‚ mode

: _____________________________„__„___
‘ ,

Figure 3: The Rubin GUI, showing the beginning of a session with the DIALOG demon-
strator.

. output (v) na t i ve
RUbln , da tas t ruc tu re

Server send ‘v ’

Figure 4: Wrapper communication between Rubin and a module.

functions accept only Value objects, which is the internal data type used in communication
with the Rubin server and in the dialogue model. Communication is implemented via an
XML protocol over a TCP/IP socket connection. Since the wrapper is written in ordinary
Java (as opposed to the Rubin—internal syntax of the dialogue model), the full expressivity
of the language is available in the wrapper class, for instance t o use an existing program’s
interface functions, to connect to another programming language, or to perform operation
on the incoming data from Rubin, such as translation into a native data structure, before
making a call to the module itself. Modules are assigned a unique name and a communica—
tion port in the wrapper, and these must match the name and port specified in the dialogue
model.

17

Slot Name Type Description and example
student_task string The task-level content of the student’s last dialogue move.

“Domain_contribution”
user_input string The user’s last utterance.

“A und B miissen disjunkt sein.”
input_lm string Linguistic meaning of the utterance, from sentence analyser

“domaincontribution”
input_1u s t r ing Underspecified representation of the user’s proof step

(input (label 1_1) (formula .) (see Section 3.2)
tut_mode s t r ing The current tutorial mode

“did”, “soc” or “min”
current_move struct The six dimensions of the dialogue move just performed by

the user.
{fwd = “Assert”, bwd : “Address_statement”, commm : “”,
task : “Domain_contribution”, . . . } (see Section 3.3)

complete_proof s t r ing The complete user proof, outputted by the proof manager
when the proof has been completed.
((KEY 1_1) —> ((Evaluation (expStepRepr (label 1_1) (for-

, mula . . .) (see Section 3.4)
deleting boo l A flag which is set t o true when the latest user/system turn

is to be undone. (true/ false) -

Table 1: The IS slots in the dialogue model.

5 The Dialogue Model

The dialogue model for the DIALOG demonstrator contains the specification of the IS slots,
the device connections, the update rules t o capture input from modules, and plans for
unparsable input . The slots that make up the IS in our example are listed in Table 1.

The modules described in Section 3 are assigned a port number for socket communica-
t ion:

TutMan
SA
GUI
ProofMan
DomainInfoMan
Gen
DMR

: 2701 ;
: 2702;
: 2703 ;
: 2705 ;
: 2706;
: 2707 ;
: 2710;

Since our linguistic analysis is performed entirely by a more advanced sentence analyser
(the analysis of mixed natural language and mathematical formulas is one of the core
issues of the DIALOG project), the dialogue model does not use the grammar functionality
provided by Rubin.

A support function is used to implement the choice of dialogue move for the system
(this is still a simulated module in the demonstrator). It is a function which takes as input

18

the dialogue move corresponding to the student utterance, specified by its 6 dimensions,
and tries t o match i t against a list of hard-coded dialogue moves. For each possible student
dialogue move i t returns the dialogue move representing the appropriate system response.
This move is underspecified in the sense that the pedagogical knowledge of the tutorial
manager has not yet been added.

Plans are used to handle unparsable input, since in this case no mathematical or ped-
agogical knowledge is required by the dialogue manager, and these modules therefore do
not need to be called. When the dialogue manager receives input from the sentence anal-
yser stating that the user’s utterance was uninterpretable, t he dialogue manager sends the
generation module a ready-made dialogue move which has in its backward dimension an
encoding of why the utterance was not parsed (e.g. due to a parenthesis mismatch). This
information can be used in the verbalisation of the move in order t o tell the user what was
wrong with the input, and to help them correct their error.

5 . 1 Input Rules

The rules section of the dialogue contains the following rules (only the rule headers are
listed):

"Gen" , i npu t : { . . . }
_ , ”GUI", { s tudent_input = s t i npu t , ‘

mode = tmode ,
delete = d} : { . . . }

"SA“, { LM = typeof_lm‚ LU = input} : { . . . }
"DMR", input : { . . . }
"P roo fMan" , input : { . . . }
"DomainInfoMan", input : { . . . }

_ , "TutMan" , input : { . . . }

!

For each module connected to the dialogue manager there is a rule t o capture i ts input
to the Rubin server. None place any constraints on values in the IS. Where the input needs
to be analysed to decide on what action the dialogue manager takes, a pattern is used to
bind elements of the input to specific variable names.

The input rules in the dialogue model are the concrete realisation of the communication
function of the dialogue manager. Because an input rule is specified for each device, the
dialogue manager can accept data from each device at any time. In each rule there is a
call to the output function, which passes data t o another device. In this way, the dialogue
manager uses its input rules t o create an input / output framework, in which each rule stores
its input in the IS, and based on conditional tests, sends output to another module.

As an example consider the rule for input from the GUI, shown in Figure 5. This rule
fires only on input where the object which is received is a structure with the field labels
student_input , mode, and de l e t e . This is exactly the structure that the GUI sends each
time the user submits an utterance. In the header of the rule matching takes place on the
input pattern, and the values in the structure become bound to the local variables s t input ,
tmode and d. Line 2 shows access to the IS, where the user utterance (a string) is stored in

19

1. _, "GUI" , { student_input = stinput, mode = tmode, delete = d} : {
2. slots.user_input = s t input ;
3. //check if the tutorial task is being set
4. if (stinput == "settask") {
5. slots.tut_mode = tmode;
6. // send complete structure with null values to TutMan
7. output_struct(TutMan, GUI, {delete = false, mode = tmode, ...});
8. }e1se if (d==true) {
9. //what to do if delete
10. slots.de1eting = true;
11. output_string(SA, GUI, stinput);
12. }e1se {
13. if (tmode != "")
14. slots.tut_mode = tmode;
15. output_string(SA,.GUI, stinput);
16. }
17. }

Figure 5: The input rule for data received from the GUI.

the IS slot user_input. This makes it available to other modules for future computations.
In this line, slots refers to the structure in the dialogue model which contains each of the
IS slots.

The next step in this rule is to determine if the user has just started a new dialogue
with the system. A new dialogue is started in the demonstration system simply by setting
the tutorial mode. In this situation, the token “settask” is sent as the user utterance (even
though the user did not really say this), and control switches directly to the tutorial manager
to set the task (Line 7). The tutorial manager receives a structure which is empty except
for the tutorial mode. In this way the tutorial manager knows that a dialogue is being
initialised and in What tutorial mode.

The if—clause in Line 8 tests if the user has decided to delete a move. In this case, the
flag deleting in the IS is set to true, and control passed to the input analyser (with the
device name “SA”) by sending it the user utterance which is in the variable stinput. The
final check is in Line 13, where the rule tests if the tutorial mode has changed. In this case
the new tutorial mode is simply stored in the IS, and control passes to the input analyser
as usual.

~ The functionality to delete a pair of user/system turns is also implemented in our
dialogue model. When the GUI’s output contains the flag delete = true, then this value is
stored in the IS slot deleting to be later passed to the tutorial manager. This is necessary
to keep the tutorial manager’s model up to date, for instance, of which concepts have been
given away, or how many hints have been given.

20

is start of
session?

i s domain
contribution?

Figure 6: Information flow in the DIALOG demonstrator for a single system turn .

5 .2 Information Flow '

The input rules described in the previous section give rise to a strict flow of information
for each system turn. This is illustrated in Figure 6. The diagram shows that when
the user’s utterance contains no domain contribution, that is, when the user makes no
statement about the proof itself, the proof manager,.domain information manager (PSM5)
and tutorial manager are not called for the system response. This reflects the fact that
when an utterance has no proof relevant content, there is no need to-involve the modules
which deal with respective domain knowledge. I t suffices to create the system response
solely based on discourse level knowledge, which is encoded in the dialogue manager, the
input analyser, dialogue move recogniser, and the NL generator.

What is not so clear from the information flow diagram is that each arrow is actually
5Proo f step manager, a previous name for the domain information manager.

21

a transfer of control facilitated by the dialogue manager’s communication function. As
mentioned above, each rule in the dialogue model embodies an “input, process data , output”
step, and these steps are shown in the diagram as arrows connecting modules. For instance,
when the dialogue move recogniser outputs data, the dialogue manager performs the “is
domain contribution?” test , and based on this, passes control to either the proof manager
or to itself.

6 Discussion

6 .1 Module Simulation

Because the DIALOG demonstrator is at a relatively early stage of development, a number
of modules which are not yet fully implemented had to be simulated. The natural language
generation module had to be simulated because the foreseen generation system, Pres ,

. has not yet been adapted for the DIALOG system, or for German language output. The
generation module uses a “canned-text” style. It contains a mapping of dialogue moves to
strings, and given a set of dialogue moves, returns the corresponding utterance(s).

The domain information manager receives the linguistic meaning and the user proof
step from the sentence analyser, as well as the evaluation of the proof step from the proof
manager. I t matches these together against hard—coded lists of input, and outputs the
assigned values for the specification of the task dimension of the dialogue move.

The dialogue move recogniser receives the linguistic meaning from the sentence analyser
and returns the dialogue move that corresponds to that utterance by matching against 5
possible types of linguistic meaning. These are: domain contribution, request for assistance,
and uninterpretable utterance due to bad grammar, parenthesis mismatch, or a word not
in the lexicon. ‘

The wrapper communication with the Rubin server made module simulation quite
straightforward, since the matching algorithms could be implemented directly in the wrap-
per class. When a module is then later implemented, i t is easy t o build it in to the system,
because the wrapper already exists. In this way internal changes in modules are insu-
lated away from the dialogue manager itself, and only the output (v) function needs to be
reimplemented to interface with the new real module.

6 .2 Implementation Issues

A difficulty in achieving a stable, running demonstrator program was interfacing between
programming languages in order to connect all modules to the dialogue manager. Rubin,
and therefore the dialogue manager built on i t , is written in Java, which means that any
module to be connected as a device must interface with Java. The GUI and the simulated
modules are already written in Java, but the sentence analyser is written in both Java and
Perl, and the tutorial manager and proof manager, as well as the MPA QMEGA—CORE are
written in LISP.

The solution we decided on for communication with the dialogue manager was t o use
socket communication, in a similar way to the connection between Rubin and i ts devices.

22

Using sockets a string can be written to a stream in one programming language and then
read from the same stream in another language running as a different process. This allows
any two languages to exchange data as long as they support streams and sockets. The
disadvantage of this solution is that only strings can be passed through a socket. Each
piece of data must be first translated into a string by the sender and then parsed by the
receiver, adding an extra layer of complexity t o the inter—module communication.

The socket connections are also prone to random failures, where strings sent into a
stream are not received at the other end. When this happens the process of the module
involved must be stopped, and can only be restarted when the operating system has freed
the port, which can take up to a few minutes. In practice this forces a system restart,
because modules cannot be dynamically added or removed, and leads to system instability.

An implementation issue with the sentence analyser was the use of OpenCCG in Linux.
Development of the sentence analyser was done in a Microsoft Windows development en-
vironment. When we attempted to move the application t o Suse GNU/ Linux for use with
the demonstrator, the use of Java user preferences in the OpenCCG package led t o runtime
errors in the sentence analyser. As a consequence of this the sentence analyser was run
separately to the rest of the system for demonstration purposes.

6.3 Using Rubin

Using the Rubin tool as the platform to build the dialogue manager on had a number of
advantages and disadvantages.

Advantages

Since Rubin is written in Java, i t is easy t o design prototypes for modules, and to connect
modules to the dialogue manager. It also runs on any platform on which the Java 2 JVM
is installed. Rubin supports rapid prototyping, and makes it possible to quickly set up a
basic dialogue manager which contains an information state, dialogue plans, grammar and
update rules, and is therefore suited to a system like DIALOG which is still at an early
development stage.

Disadvantages

The Rubin tool turns out not to support certain functionalities which are necessary for
application of ISU—based dialogue management to the domain of tutorial dialogue. In a
dialogue manager built on Rubin, it is not the IS which is the driving force of system
behaviour, but rather the rules that accept module input. This is because modules have
no direct read or write access to IS slots, and the only way to invoke system action is by
causing a rule to fire. This has a number of consequences.

Flow of control l ies in input rules
Since system action is triggered by input from a module which causes an input rule to fire,
then if there is no input and no plans on the plan stack, the system stops. This means that

23

in each input rule, the dialogue manager has t o pass control t o some module which i t knows
will return some data, and forces a design in which each input rule finishes with a call to
output some data t o a module so that execution does not stop. This is necessary because
the intelligence of the DIALOG system lies in the modules, not in the dialogue model, and
it is the modules which carry out the real computation. The set of input rules thus forms a
chain of invocations, and the sequence of actions within the dialogue manager for each turn
is quite-rigid. At all times only one module is executing, and all others must wait to be sent
information from the dialogue manager before they can execute, even if the information
they require has already been assembled within the IS.

An example of the inflexibility of the input rules is shown in Figure 7. In the figure,
an arrow from X to Y represents an input rule which fires on input from module X, and
finishes by making a call to module Y, thus forming a link in the chain of module invoca-
tions. Part (a) shows the rules as used in the dialogue model for the demonstrator. Here
the input from the dialogue move recogniser triggers the invocation of either the domain
information manager, the NL generator or the proof manager, depending on the category
of the student’s utterance. For instance, if the utterance was unparsable, the NL generator
is called immediately to signal non-understanding. If there is no proof step addressed in
the utterance, the proof manager does not need to be called. If the student has made a
request for assistance, the domain information manager can be called directly. This condi-
tional branching takes place in the input rule for the dialogue move recogniser. However,
this decision is not based on the input from the dialogue move recogniser, but rather on
information which came from the input analyser, and could have taken place in the input
rule for the input analyser. In this sense the rule for the dialogue move recogniser is not
well motivated, and the conditional branching should take place in the rule for the input
analyser.

Part (b) shows the scientifically better motivated structure, including rules which it was
not possible to use in the demonstrator. For instance, the proof manager could have been
called directly after the input analyser. This was not possible because the results of the
input analyser have two effects: a Call t o the proof manager and a call t o the dialogue
move recogniser. Due to the strict information flow in the dialogue model one of these
modules has to “wait” for the other to return before it can be called, leading to the non-
motivated rule in (a). So although the computation that the proof manager carries out is
not dependent on the results of the dialogue move recogniser, i t is forced to wait until this

, module finishes i ts computation.

Overall, this restriction on input rules forces the designer of the dialogue manager to
mix information state updates with declarations about the flow of control, since input rules
must encode both at the same time. A more intuitive-way to define system behaviour would
be t o declare rules for information state updates and rules for controlling system execution
separately, thereby making the definition of both simpler.

No IS update triggers
In Rubin there are no triggers on IS updates. That is, there is no way to state, “When
slot A in the IS is updated (by any rule, plan, function), read its new value and take some
conditional action”, or even “When slot A is written, broadcast this event to all devices” so
that they can all read the new value. If rules of this type were available, it would obviate

24

Dom Info Man21)

Input Analyser DMR
. . NL Generator

Proof Manager

b) . Dom Info Man

Input Analyser/JMR

& ‚. NL Generator

Proof Manager

% Input rule

779 non—motivated input mle

Figure 7: A section of the information flow, showing (a) scientifically less well motivated
input rules and (b) the equivalent well-motivated input rules.

the need to pass control to some module at the end of each update rule. Instead, each
module could simply watch the IS until all the information i t needs is there (i.e. has been
updated since the last system utterance), and then execute.

With IS update triggers i t would also be possible for modules to use partial informa-
tion to concurrently compute partial results without having to take full control of system
execution. In this situation input rules would simply write values to the IS, and pro-active
modules, or “agents” acting on their behalf, would be the main guides of system behaviour.

No runtime changes t o the dialogue model
One other cause of inflexibility in Rubin is the stat ic nature of the dialogue model. The IS,
input rules and all other definitions that make up the dialogue model are specified before
runtime, and thereafter cannot be changed. That means i t is not possible t o change how
the dialogue manager responds to certain input while the system is executing. This would
be a desirable feature for example to rearrange the ordering of input rules, ‘or to alter the
IS constraints in the header of a rule. It is also not possible t o register new modules or
exchange modules at runtime. This could be a very useful feature for a dialogue system,
as it would then be possible for instance t o change language from German to English by
replacing the natural language generation module, or to dynamically add and remove math-
ematical databases depending on the domain which is being taught.

Statically defined plans
Part of the dialogue model is a definition of dialogue plans. Plans are statically defined
along with their preconditions before the dialogue is run, and cannot be changed at runtime.
While this is a good approach to information-gathering or database-linked dialogues, i t is

25

not very suitable for the genre of tutorial dialogue. In a dialogue system where information
is elicited, such as timetable queries, Rubin’s plans allow a degree of adaptivity in that the
same information will not be requested twice. This is done by specifying a precondition on
the plan such as “IS slot as is undefined”, so that if the required information is already in
slot x , the plan will not execute. However for tutorial dialogue, this does not offer enough
flexibility. In the theorem proving dialogues conducted by the DIALOG demonstrator, IS
slots are repeatedly overwritten, so the “undefined” test on slots is not a reliable indication
of what the student has said. Since i t is impossible t o know or predict the whole range of
possible student utterances, i t is a much more viable approach to begin a tutorial dialogue
with a sketchy high-level dialogue plan which places as few as possible constraints on the
course of the dialogue [29]. Due to the static nature of the plans it is not possible to refine
dialogue planning at runtime in Rubin, and for tutorial dialogues, i t is not possible t o drive
the system by dialogue plans alone.

N o meta—level t o control rule firing
In Rubin there IS no meta-level which controls execution of input rules. The choice of input
rule 13 determined by the order 1n which the rules are declared 1n the dialogue model, and
as described above, this order is predefined and cannot be changed at runtime. To achieve
a more flexible and adaptable control over rule firing, a meta-level is necessary in which
more sophisticated criteria could be used to choose the most appropriate next rule. This
is not possible in the current demonstrator. Such a meta-level would bring a number of
benefits t o the DIALOG system:

Heurist ic control Heuristics for controlling overall system execution could be imple-
mented in the meta-level, for instance, the decision of what module to invoke at
what t ime .

Comparison of IS updates A meta-level could compare different possible IS updates
which are triggered by module input . In this situation, an IS update would not simply
be made when the first rule fires, rather a number of updates could be computed and
compared for appropriateness based on heuristics in the meta-level. The heuristically
most appropriate one would then be selected.

Decoupling of IS updates from information flow Since information flow (i.e. what
module t o call after an IS update) would be determined solely in the meta-level, the
definition of IS updates could be made without needing to also define in the rule the
effect that the update has on overall system execution. This would greatly simplify
the design of input rules, because there would be no need to decide on the “next step”
of the system within the rule itself.

In summary, i t turns out that a dialogue manager built on Rubin is not truly ISU based,
because its behaviour is not determined by events in the IS. Rather the system behaviour
is determined by its input rules. Coupled with the fact that modules have no access to the
IS slots, the IS becomes little more than a storage area for the dialogue manager, rather
than providing the impetus for system action, and the dialogue manager is left to rely on
sequential calls to modules in order t o collect all the necessary information to create a
dialogue move.

26

6 .4 Summary

In this report we have presented the design and implementation of a dialogue manager based
on Rubin for the DIALOG demonstrator program. As a motivation for the implemented
version we described the basic functionality the dialogue manager should provide, and
described i ts role in the overall system. We introduced the Rubin tool and its characteristics,
and presented the implementation of the dialogue manager within this framework. In the
final section we discussed some aspects of the concrete system, as well as some pros and
cons of using the Rubin platform.

Acknowledgements

This work was supported in part by the DAAD (German Academic Exchange Service), grant
number A/ 03 / 15283, and by the Collaborative Research Centre 378 for Resource-adaptive
Cognitive Processes.

We would like to thank all of the members of the DIALOG team for their input into this
report, and for their helpful suggestions and comments on initial drafts. '

References

[1] James Allen and Mark Core. Draft of DAMSL: Dialogue act markup in several layers.
DRI: Discourse Research Initiative, University of Pennsylvania, 1997.

[2] Serge Autexier, Christoph Benzmiiller, Armin Fiedler, Helmut Horacek, and Bao Quoc
Vo. Assertion-level proof representation with under-specification. Electronic in Theo-
retical Computer Science, 935—23, 2003.

[3] Jason Baldridge and Geert-Jan M. Kruijfi'. Coupling CCG with Hybrid Logic Depen-
dency Semantics. In Proceedings of the 40th Annual Meeting of the'Association of
Computational Linguistics (A CL ’02), June 7-12, University of Pennsylvania, Philadel—
phia, 2002. '

[4] Christoph Benzmüller, Armin Fiedler, Malte Gabsdil, Helmut Horacek, Ivana Kruijfil
Korbayova, Manfred Pinkal, Jörg Siekmann, Dimitra Tsovaltzi, Bao Quoc Vo, and
Magdalena Wolska. Tutorial dialogs on mathematical proofs. In Proceedings of IJCAI—
03 Workshop on Knowledge Representation and Automated Reasoning for E-Learning
Systems, pages 12—22, Acapulco, Mexico, 2003.

[5] Armin Fiedler. Dialog-driven adaptation of explanations of proofs. In Bernhard Nebel,
editor, Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI), pages 1295—1300, Seattle, WA, 2001. Morgan Kaufmann.

[6] Armin Fiedler and Malte Gabsdil. Supporting progressive refinement of Wizard-of—Oz
experiments. In Carolyn Penstein Rosé and Vincent Aleven, editors, Proceedings of
the ITS 2002 — Workshop on Empirical Methods for Tutorial Dialogue Systems, pages
62—69, San Sebastian, Spain, 2002. \

27

[7] Armin Fiedler and Dimitra Tsovaltzi. Automating hinting in mathematical tutorial
dialogue. In Proceedings of the EA CL-03 Workshop on Dialogue Systems: Interaction,
Adaptation and Styles of Management, pages 45—52, Budapest, 2003.

[8] Gerhard Fliedner and Daniel Bobbert. A framework for information-state based di-
alogue (demo abstract). In Proceedings of the 7th. workshop on the semantics and
pragmatics of dialogue DiaBruck, Saarbrücken, 2003.

[9] A. C. Graesser, K. Wiemer-Hastings, P. Wiemer-Hastings, and R. Kreuz. Autotutor:
A simulation of a human tutor. Cognitive Systems Research, 1:35—51, 1999.

[10] B.J. Grosz and C.L. Sidner. Attention, intention and the structure of discourse. Com-
putational Linguistics, 12(3):175-204, 1986.

[11] Malte Hübner, Serge Autexier, Christoph Benzmüller, and Andreas Meier. Interactive
theorem proving with tasks. Electronic Notes in Theoretical Computer Science, 103,
2004. To appear. '

[12] M. Kohlhase and A. Franke. Mbase: Representing knowledge and context for the inte-
gration of mathematical software systems. Journal of Symbolic Computation; Special
Issue on the Integration of Computer Algebra and Deduction Systems, 32(4):365—402,
September 2001.

[13] Michael McTear. Modelling spoken dialogues with state transition diagrams: Experi-
ences with the CSLU toolkit. In Proceedings of the 5th International Conference on
Spoken Language Processing, Sydney, Australia, 1998.

[14] E . Melis, E . Andres, A. Franke, G . Goguadse, M. Kohlhase, P. Libbrecht, M. Pollet,
and C. Ullrich. A generic and adaptive web-based learning environment. In Artificial
Intelligence and Education, pages 385—407, 2001.

[15] openCCG. http://openccg.sourceforge.net/.

[16] Manfred Pinkal, Jörg Siekmann, and Christoph Benzmiiller. Projektantrag Teilprojekt
MI3 —— DIALOG: Tutorieller Dialog mit einem mathematischen Assistenzsystem. In
Fortsetzungsantrag SFB 378 — Ressourcenadaptive kognitue Prozesse, Universität des
Saarlandes, Saarbrücken, Germany, 2001.

[17] Manfred Pinkal, Jörg Siekmann, and Christoph Benzmiiller. Dialog: Tutorial dia-
log with an assistance system for mathematics. Project report in the Collaborative
Research Centre SFB 378 on Resource-adaptive Cognitive Processes, 2004.

[18] Manfred Pinkal, Jörg Siekmann, Christoph Benzmüller, and Ivana Kruijff-Korbayova.
Dialog: Natural language-based interaction with a mathematics assistance system.
Project proposal in the Collaborative Research Centre SFB 378 on Resource-adaptive
Cognitive Processes, 2004. '

[19] Siridus project. http://www.ling.gu.se/projekt/siridus/ .

[20] Trindi project. http://www.1ing.gu.se/research/projects/trindi/ .

28

[21] J . Siekmann and C. Benzmiiller. Omega: Computer supported mathematics. In Pro-
ceedings‘of the 27th German Conference on Artificial Intelligence (KI 2004), Ulm,
Germany, 2004.

[22] Jörg Siekmann, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Immanuel Nor-
mann, and Martin Pollet. Proof Development in OMEGA: The Irrationality of Square
Root of 2, pages 271—314. Kluwer Applied Logic series (28). Kluwer Academic Pub-
l ishers, 2003. ISBN 1-4020-1656—5.

[23] CLT Sprachtechnologie. http://www.clt-st.de/.

[24] CSLU Toolkit. h t t p : / / c s lu . c se .og i . edu / too lk i t / .

[25] David Traum, Johan Bos, Robin Cooper, Staffan Larsson, Ian Lewin, Colin Mathe-
son, and Massimo Poesio. A model of dialogue moves and information state revision.
Technical report TRINDI project deliverable D2.1, University of Gothenburg, 1999.

[26] David Traum and Staffan Larsson. The information state approach to dialogue man-
agement. In J . van Kuppevelt and R . Smith, editors, Current and new directions
in discourse and dialogue. Kluwer, 2003. h t tp : / /www. i c t . u sc . edu / ”traum/ Papers/
t r aumla r s son .pdf .

[27] Dimitra Tsovaltzi and Elena Karagjosova. A view on dialogue move taxonomies for
tutorial dialogues. In Proceedings of 5th SI Gdial Workshop on Discourse and Dialogue,
Boston, USA, 2004.

[28] M. Wolska, B. Quoc Vo, D. Tsovaltzi, I. Kruijfi-Korbayova, E. Karagjosova, H. Ho-
racek, M. Gabsdil, A. Fiedler, and C. Benzmüller. An annotated corpus of tutorial
dialogs on mathematical theorem proving. In Proceedings of International Conference
on Language Resources and Evaluation (LREC 2004), Lisbon, Potugal, 2004. ELDA.

[29] Claus Zinn, Johanna D. Moore, and Mark G. Core. A 3-tier planning architecture
for managing tutorial dialogue. In Proceedings of Intelligent Tutoring Systems, SIxth
International Conference, Biarritz, France, 2002.

	BB_0020.jpg

