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Abstract 

Proof planning is an alternative methodology to classical automated theorem proving based 
on exhaustive search that was first introduced by Bundy [8]. The goal of this paper is to extend 
the current realm of proof planning to cope with genuinely mathematical problems such as the 
well-known limit theorems first investigated for automated theorem proving by Bledsoe. The 
report presents a general methodology and contains ideas that are new for proof planning and 
theorem proving, most importantly ideas for search control and for the integration of domain 
knowledge into a general proof planning framework. \Ve extend proof planning by employing 
explicit control-rules and supermethods. \Ve combine proof planning with constraint solving. 
Experiments show the influence of these mechanisms on the performance of a proof planner. 
For instance, the proofs of LIM+ and LIM* have been automatically proof planned in the 
extended proof planner OMEGA. 

In a general proof planning framework we rationally reconstruct the proofs of limit theo
rems for real numbers (R) that were first computed by the special-purpose program reported 
in [6]. Compared with this program, the rational reconstruction has several advantages: It re
lies on a general-purpose problem solver; it provides high-level, hierarchical representations of 
proofs that can be expanded to checkable ND-proofs; it employs declarative contol knowledge 
that is modularly organized. 

Introduction 

While humans can cope with long and complex proofs and have strategies to avoid less promis
ing proof paths, traditional automated theorem proving suffers from exhaustive search in super
exponential search spaces. As a potential solution to this problem, proof planning has been 
introduced by Bundy in [8] as an alternative to the methodology of classical automated theorem 
proving. It employs high-level planning operators rather than calculus-level rules and global con
trol as opposed to the more local search heuristics which are used for search control in automated 
theorem proving (see, e.g. [28]). 

However, there are classes of theorems that are difficult or impossible to prove by state-of-the
art proof planners such as C£4M[lO] or OMEGA [3]. For instance, the limit theorem LIM* was 
beyond the capabilities of theorem provers and proof planners. For many problems, the available 
control means in these systems do not sufficiently reduce the search or the difficulties are caused 
by the need to construct mathematical objects with certain properties rather than searching for 
them. Such constructions occur, for example, in the Gram-Schmidt orthogonalization process [25] 
and in proving theorems about limits. Therefore, we investigate proof planning for the well-known 
class of limit theorems, using them as a "Drosophila" 1 of proof planning. There are more reasons 
why we have chosen the class of limit theorems: 

• The limit theorems are well-known. 

• Some of the knowledge engineering work was done already in	 [6]. We encode some of the 
heuristics employed there in our methods. 

• The limit theorems are genuinely mathematical problems that are at the edge or beyond the 
capabilities of the current fully automated theorem provers of the classical type. 

We investigate a general methodology with new features of proof planning mathematical 
theorems that manifest in planning limit theorems. Consequently, we suggest an extended ar
chitecture for proof planners. The resulting extensions of OMEGA go beyond the needs for a 
particular class of theorems. They address the following general tasks. 

• Representing domain knowledge explicitly which includes methods, control-rules, and domain
dependent constraint solvers. Here, domain means "mathematical theory" , such as set the
ory, group theory, integers, etc. 

1 Drosophila is a fly that has intensively been investigated in molecular biology in order to find scientific expla
nations/results for more complex systems too. 
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• Combining proof planning with constraint solving mechanisms. 

• Integrating modularly represented, declarative, high-level control into proof planning. 

• Designing planning strategies and complex methods to reduce the search. 

Our goal is to rise to Bledsoe's challenge to "pay attention to mathematician's great deal of 
direction' rather than 'cover the eyes with blinders and hunt through a cornfield for a diamond
shaped grain of corn" issued in 1986 [4]. 

1.1 The Class of Limit Theorems 

The class oflimit theorems includes the well-known theorem LIM+ from calculus that states that 
the limit of the sum of two functions in R is the sum of their limits. Other theorems in this class 
are, e.g., LIM- and LIM*, similar theorems about differences and products, COMPOSITE that 
states that the composition of two continous functions is continous, CONTINOUS that states 

2that a function having a derivative at a point is continuous there, and theorems like lim x2 = a • 
X~a 

These theorems are formulated in the theory of the real numbers R. One of the simplest of these 
theorems, LIM+, is proposed as a challenge problem in [5] and given next. 

Urn f(x) =£1 1\ lim g(x) =£2 ~ lim f(x) + g(x) =£1 + £2, (1) 
x~a x~a x~a 

which, after expansion of the definition of lim, is
 
V€1:JlhVX1(O < €1 --+ 0 < 81 /\ IX1 - al < 81 --+ If(xr) - L11< Er) /\
 
V€2:J02VX2(O < €2 --+ 0 < 02 /\ IX2 - al < 02 --+ If(X2) - L11 < €2)
 
--+ VdO'v'x(O < € --+ 0 < 0/\ Ix - al < 0 --+ l(f(x) + g(x)) - (L1 + L2)1 < €) .
 

The typical way a mathematician goes about to prove such a theorem is to (incrementally) 
invent an instantiation of 8 that depends on E, 81 , and 82 . This is a non-trivial thing to do and 
difficult for students as reported in [25]. 

In their textbook [2] Bartle and Sherbert describe the incremental restriction of a number n in 
the context of a proof about limits of the sequences that corresponds to the 8 above: In their proof 
for products of limits of the sequences X = (xn) and Y = (Yn) by using intermediately introduced 
variables M 1 , lvI, K ll and K 22 upon which n depends. "According to Theorem 3.2.2. there exists 
a real number lvII > 0 such that Ixnl :::; M1 for all n E N and we set M = sup{M1, lyl}. Hence, 
we have the estimate 

IXnYn - xyl :::; M * IYn - yl + M * IXn - xl. 
From the convergence of X and Y we conclude that if f > 0 is given, then there exist natural 
numbers K 1 and K 2 such that if K 1 :::; n, then IXn - xl < f/2M, and if K2 :::; n, then IYn - yl < 
f/2M. Now let K(E) =sup{K1 , K 2}, then if K(f) :::; n we infer that 

IXnYn - xyl ::; M(f/2M) + M(E/2M) = f. 

Since f is arbitrary, this proves that the sequence X * Y converges to x * y" [2]. 
Inspired by a similar mathematical idea, Bledsoe, Boyer, and Henneman presented a special

purpose theorem prover for limit theorems, IMPLY [6]. It attempts to prove formulae of the form 
IAI < f1 f-IBI < f by representing B as a linear combination of A, B = k * A + 1, and by proving 
the simpler formulae Ikl < M, IAI < 2~J' and III < ~, containing a new variable M. The IMPLY 
prover employed this heuristic and a number of other rules to restrict the value of the variable 
8. It seems that this work is not as well recognized nowadays in the field - maybe because of its 
special-purpose character. 
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1.2 Objectives of the Report 

Planning inductive proofs with the proof planner C.£4.NJ[lO] and the first planning attempts in 
OMEGA [3], have been steps towards proof planning. Our goal is to extend the general method
ology and the realm of proof planning and to show a more general direction. 

In order to demonstrate the potential of extended proof planning, the report shows how to 
automatically plan limit theorems, Le., theorems that are at the edge and beyond the capabilities 
of other current automated systems. For this purpose, we rationally reconstruct and extend 
IMPLY heuristics in the proof planning framework by designing frequently used proof planning 
operators. In addition, we enlarge the domain knowledge and extend the architecture of proof 
planners in order to make use of declarative control-rules that considerably restrict the search. 
The domain knowledge is also employed to solve constraints in proof planning. 

Compared to Bledsoe's original special-purpose prover, the rational reconstruction exhibits the 
following advantages 

•	 We use a general methodology, namely proof planning. 

•	 We use a general-purpose proof planner. 

•	 Most of the methods employed belong to the theory base or ordered-field rather than being 
specific for the limit-class of theorems. The control makes feasible to pick the right methods 
from a large collection of methods. 

•	 Proof plans are expandable to Natural Deduction (ND) proofs that can be proof checked. 

•	 As exercised with the reconstruction of Nqthm in proof planning [8], proof planning allows 
for a more flexible use of methods than special-purpose theorem provers with a fixed sequence 
of routines, e.g., Nqthm's waterfall. 

• Declarative global control knowledge restricts the search. 

•	 Proof planning results in a high-level, hierarchical representation of proofs. The rational 
reconstruction makes explicit the methods and the control knowledge and explicates the 
structure of limit proofs. This is important for an interactive system (for the user's proof 
understanding), for learning methods and control knowledge, and for reusing proofs. 

This paper is organized as follows. After a brief introduction to the state-of-the-art proof 
planning, we characterize the extensions of proof planning that give rise to the new architecture of 
our proof planner. Then we present the knowledge that belongs to the limit domain theory - being 
part of OMEGA's hierarchically structured theory knowledge base. This knowledge comprises 
methods, a constraint solver, and control knowledge available for proof planning the limit theorems. 
We then provide details of the proof planning for LIM+. Results of experiments show how the 
new mechanisms influence the feasibility and performance of proof planning limit theorems. A 
summary, related, and future work conclude the paper. 

In the remainder, we use the following naming conventions: METHODS names in capital letters 
denote supermethods, names with the capital initial letter denote Methods, and names written in 
small letters denote procedures. As for symbol's meaning, div, *, +, -, val denote the division, 
multiplication, addition, subtraction, and absolute value function in R, respectively. We use (j for 
substitutions and abbreviate the result of applying (j to F by FIj. 

2 Brief Review of Proof Planning 

Automated theorem proving currently witnesses a change: classical techniques based on search at 
the calculus level are augmented by. a knowledge-intensive, more abstract and high-level planning 
of a proof. 

Proof planning employs intelligent guidance of proofs and high-level planning operators rather 
than calculus-level rules. The Edinburgh group pioneered proof planning as a technique by building 

4 

1.2 Objectives of  the Report
Planning inductive proofs with the proof planner CIAM[10] and the first planning attempts in
OMEGA [3], have been steps towards proof planning. Our goal is to extend the general method-
ology and the realm of  proof planning and to  show a more general direction.

In order to  demonstrate the potential o f  extended proof planning, the report shows how to
automatically plan limit theorems, i.e., theorems that are at the edge and beyond the capabilities
of other current automated systems. For this purpose, we rationally reconstruct and extend
IMPLY heuristics in the proof planning framework by designing frequently used proof planning
operators. In addition, we enlarge the domain knowledge and extend the architecture of proof
planners in order to make use of declarative control-rules that considerably restrict the search.
The domain knowledge is also employed to solve constraints in proof planning.

Compared to  Bledsoe’s original special-purpose prover, the rational reconstruction exhibits the
following advantages

e We use a general methodology, namely proof planning.

oe We use a general-purpose proof planner.

e Most of the methods employed belong to  the theory base or ordered-field rather than being
specific for the limit-class of theorems. The control makes feasible to pick the right methods
from a large collection of methods.

e Proof plans are expandable to Natural Deduction (ND) proofs that can be proof checked.

e As exercised with the reconstruction of  Nqthm in proof planning [8], proof planning allows
for a more flexible use of methods than special-purpose theorem provers with a fixed sequence
of routines, e.g., Nqthm’s waterfall.

e Declarative global control knowledge restricts the search.

e Proof planning results in a high-level, hierarchical representation of  proofs. The rational
reconstruction makes explicit the methods and the control knowledge and explicates the
structure of limit proofs. This is important for an interactive system (for the user’s proof
understanding), for learning methods and control knowledge, and for reusing proofs.

This paper is organized as follows. After a brief introduction to the state-of-the-art proof
planning, we characterize the extensions of proof planning that give rise to  the new architecture of
our proof  planner. Then we present the  knowledge that belongs to  the  limit domain theory — being
part of OMEGA'’s hierarchically structured theory knowledge base. This knowledge comprises
methods, a constraint solver, and control knowledge available for proof planning the limit theorems.
We then provide details of the proof planning for LIM+. Results of experiments show how the
new mechanisms influence the feasibility and performance of proof planning limit theorems. A
summary, related, and future work conclude the paper.

In  the remainder, we use the following naming conventions: METHODS names in  capital letters
denote supermethods, names with the capital initial letter denote Methods, and names written in
small letters denote procedures. As for symbol’s meaning, div,*, + ,  —, va l  denote the division,
multiplication, addition, subtraction, and absolute value function in  R ,  respectively. We use o for
substitutions and abbreviate the result of applying o to  F by Fe.

2 Brief  Review of  Proof  Planning
Automated theorem proving currently witnesses a change: classical techniques based on search at
the calculus level are augmented by a knowledge-intensive, more abstract and high-level planning
of  a proof.

Proof planning employs intelligent guidance of  proofs and high-level planning operators rather
than calculus-level rules. The Edinburgh group pioneered proof planning as a technique by building



the proof planner GYM [10]. Yet, GL4.M has not been sufficiently acknowledged by the theorem 
proving community, maybe because it is specialized to inductive proofs and by and large did not 
perform much better than other state-of-the-art theorem provers, e.g., than Nqthm [7]. Many 
people from the theorem proving community mistakenly perceived proof planning as restricted 
to the difference reduction technique rippling, but there is more to proof planning indeed, see, 
e.g. [9]. 

The basic idea of proof planning is that of classical planning in Artificial Intelligence (AI): 
Operators represent actions and specify preconditions and effects of the action's application. In 
STRIPS notation, the effects are captured in add and delete lists [14]. The add-list contains 
the literals (or more general the elements) that are introduced into a state by the operator's 
application, and the delete list contains those elements that are deleted from the state by the 
operator's application. A planning problem consists of an initial state and goals. A solution is a 
sequence of actions, i.e., of instantiated operators, that transforms the initial state into a state 
in which the goals hold. Backward planning starts with the conjecture as an open goal 9 and 
with assumptions. The planner searches for an operator3 Gp that proves 9 and introduces a node 
annotated with Gp into the plan. The subgoals gi produced by the application of Gp become the 
new open subgoals and 9 now has the status closed. The planner continues to search for operators 
applicable to one of the open subgoals and terminates if there are no more open goals. 

A cognitive motivation for proof planning is the fact that mathematicians tend to plan proofs. 
Several empirical sources [31, 1, 23] provide evidence that mathematicians use specific methods 
(e.g., diagonalization) and plan a proof during the proof discovery process. E.g., the German 
mathematician Faltings, who proved Mordell's Conjecture, described in [13] that 

"We know from experience that certain inferences are usually successful under 
certain prerequisites. So first we ponder about a reasonable way to proceed to prove 
the theorem. In other words, we roughly plan: If we get a certain result the next result 
will follow and then the next etc. Afterwards we have to fill in the details, and to check 
whether the plan really works." 

These insights make proof planning intriguing for interactive as well as for automated theorem 
proving. 

A computational motivation for proof planning is the restriction of search which is necessary to 
cope with potentially infinite branching, long solutions, and numerous, even irrelevant, available 
axioms in theorem proving. Proof planning tries to avoid huge search spaces 

1.	 by taking larger steps and 

2.	 by employing global search control, as opposed to the more local search heuristics which are 
used for search control in automated theorem proving. That is, instead of making separate 
decisions at each choice point of proving at the (low) level of logical inferences, based on 
local clues, proof planning has some sense of the overall direction of the proof. 

As for large steps, proof planning builds on tactics inherited from tactical theorem proving [15]. 
The operators in proof planning (called methods) have two aspects: On the one hand, they repre
sent planning operators with declarative preconditions and effects. On the other hand, a method 
specifies a tactic, where a tactic executes a number of logical inferences. Thereby, larger chunks 
of proof steps are encapsulated in methods and thereby proof plans are an abstract representation 
of proofs. 

The global control can be realized in several ways. In GIJlM, the step-case subproofs of 
inductive proofs are guided by the rippling heuristic [11, 20] which is well-suited for guiding proofs 
based on difference reduction. Below, we present control-rules and supermethods as other means 
of control in (extended) OMEGA. 

3In the following we say operator instead of instantiated operator. 
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(e.g., diagonalization) and plan a proof during the proof discovery process. E.g., the German
mathematician Faltings, who proved Mordell’s Conjecture, described in [13] that

“We know from experience that certain inferences are usually successful under
certain prerequisites. So first we ponder about a reasonable way to  proceed to prove
the theorem. In other words, we roughly plan: If  we get a certain result the next result
will follow and then the next etc. Afterwards we have to fill in  the details, and to  check
whether the plan really works.”

These insights make proof planning intriguing for interactive as well as for automated theorem
proving.

A computational motivation for proof planning is the restriction of  search which is necessary to
cope with potentially infinite branching, long solutions, and numerous, even irrelevant, available
axioms in theorem proving. Proof planning tries to  avoid huge search spaces

1. by taking larger steps and

2. by  employing global search control, as opposed to  the more local search heuristics which are
used for search control in automated theorem proving. That is, instead of making separate
decisions at each choice point of proving at the (low) level of logical inferences, based on
local clues, proof planning has some sense of the overall direction of the proof.

As for large steps, proof planning builds on tactics inherited from tactical theorem proving [15].
The operators in  proof planning (called methods) have two aspects: On the one hand, they repre-
sent planning operators with declarative preconditions and effects. On  the other hand, a method
specifies a tactic, where a tactic executes a number of logical inferences. Thereby, larger chunks
of proof steps are encapsulated in  methods and thereby proof plans are an abstract representation
of  proofs.

The global control can be realized in several ways. In CIAM, the step-case subproofs of
inductive proofs are guided by the rippling heuristic [11, 20] which is well-suited for guiding proofs
based on  difference reduction. Below, we present control-rules and supermethods as other means
of control in  (extended) OMEGA.

3In the following we say operator instead of  instantiated operator.



2.1 Proof Planning in CYlvI 

In order to enable a combination of tactical theorem proving with meta-Ievel control, Bundy [8] 
introduced methods as (partial) specifications of tactics that specify in a meta-Ianguage the pre
conditions and effects of its application. In Figure 1 the structure of GYM's methods is depicted. 
The methods serve as planning operators whose application yields the sequents from the output 
slot as subgoals. 

name: Prolog term 
input: sequent H==>G, 

H set of hypotheses, G goal 
precondition: list of conjuncts in 

meta-level language 
postcondition: list of conjuncts in 

meta-level language 
output: list of sequents 
tactic: Prolog term 

Figure 1: The method data structure in GYM. 

The meta-level control came into play by (a) recognizing common proof plan patterns in families 
of proofs, for instance in proofs by mathematical induction or in diagonalization proofs, and by (b) 
discovering abstract goals and abstract heuristics that can guide the search for proofs. Proofs by 
mathematical induction reveal a common general structure displayed in Figure 2. This pattern is 

Induction 

Base-case 

SYITlbolic evaluation 

SiITlplification 

Tautology checking 

Step-case 

Rippling 

Fertilization 

Figure 2: Structure of proofs by mathematical induction 

roughly to first find an appropriate induction schema and then to prove the conjecture for the base
case, e.g., for n = 0, and for the step case, where the conjecture for a "successor" of the induction 
variable, e.g. of n, (called the induction conclusion) is proved provided the conjecture for the 
induction variable itself (which is called the induction hypothesis) holds. The step case pattern 
includes some kind of "fertilization", i.e., of applying the induction hypothesis to a rewritten 
induction conclusion such that a true formula results. This rewriting is subject to the abstract 
heuristic rippling. A meta-level goal in the step case is to reduce the differences between induction 
conclusion and induction hypothesis in order to enable a final fertilization. These differences are 
represented by annotations, e.g., colours, to the induction conclusion. Axioms and definitions that 
belong to the initial state and which can be used to reduce the differences are annotated similarly. 

The abstract search heuristic for proofs by mathematical induction, rippling, was introduced 
by Bundy [8] and Hutter [20]. It describes a systematic way to remove the differences, for example 
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2 .1  Proof  Planning in CAM
In order to  enable a combination of  tactical theorem proving with meta-level control, Bundy [8]
introduced methods as (partial) specifications of  tactics that specify in a meta-language the pre-
conditions and effects of its application. In  Figure 1 the structure of C'’IAM’s methods is depicted.
The methods serve as planning operators whose application yields the sequents from the output
slot as subgoals.

name: Pro log term
input:  sequent H==>G,

H se t  o f  hypotheses,  G goal
precond i t ion :  l i s t  o f  conjuncts in

meta- level  language
postcondi t ion:  l i s t  o f  conjuncts in

meta- level  language
output:  l i s t  o f  sequents
tac t i c :  Pro log term

Figure 1: The method data structure in CIAM.

The meta-level control came into play by (a) recognizing common proof plan patterns in  families
of  proofs, for instance in  proofs by  mathematical induction or in  diagonalization proofs, and by  (b)
discovering abstract goals and abstract heuristics that can guide the search for proofs. Proofs by
mathematical induction reveal a common general structure displayed in  Figure 2. This pattern is

Induction

Base-case
Symbolic evaluation
Simplification
Tautology checking

Step-case

Rippl ing
Fertilization

Figure 2: Structure of proofs by mathematical induction

roughly to first find an appropriate induction schema and then to  prove the conjecture for the base-
case, e.g., for n = 0 ,  and for the step case, where the conjecture for a “successor” of  the induction
variable, e.g. of n ,  (called the induction conclusion) is proved provided the conjecture for the
induction variable itself (which is called the induction hypothesis) holds. The step case pattern
includes some kind of “fertilization”, i.e., of applying the induction hypothesis to a rewritten
induction conclusion such that a true formula results. This rewriting is subject to the abstract
heuristic rippling. A meta-level goal in the step case is to  reduce the differences between induction
conclusion and induction hypothesis in  order to  enable a final fertilization. These differences are
represented by annotations, e.g., colours, to  the induction conclusion. Axioms and definitions that
belong t o  the initial state and which can be  used to  reduce the differences are annotated similarly.

The abstract search heuristic for proofs by mathematical induction, rippling, was introduced
by Bundy [8] and Hutter [20]. It describes a systematic way to  remove the differences, for example



by moving the differences outward until the induction hypothesis can be applied to an inner part 
of the rewritten induction conclusion. For example, in proving the conjecture 

'r/x, y, z. x + (y + z) = (x + y) + z (2) 

the induction hypothesis is 
x + (y + z) = (x + y) + z (3) 

and the conclusion is 
IS(J<) 1+ (y +z) = (I S(J<) 1+ y) +z (4) 

The boxes, excluding the underlined terms, denote the differences. The non-differences are called 
the skeleton. Rippling works by successively applying skeleton preserving definitions and axioms 
to the induction conclusion. 

2.2 Original Proof Planning in OMEGA 

In OMEGA, domain knowledge is stored in a hierarchically organized theory knowledge base. 
So far, proof planning in OMEGA employed axioms, definitions, and methods as the only domain 
knowledge. Theories may have parents they can inherit from. For instance, the theory ordered
field inherits, among others, from the theory base and a parent of the theory limit is ordered-field. 

OMEGA's methods are frame-like structures specified in [19]. More specifically, these methods 
have the following slots: declaration of types, (annotated) premises and conclusions, constraints, 
proof schema, and procedure. From a logical (static) point of view, premises are sequents4 from 
which the method logically derives the conclusions, and conclusions are sequents which the method 
is designed to prove. In Refutation, e.g., (.6., -,F f--..l) is used to derive (.6. f-- F). 

The constraints are formulated in a meta-Ianguage and restrict the applicability of a method 
and the instantiations of parameters. If available, a proof schema is filled with a declarative 
schematic representation of a proof whose lines contain a label, a sequent, and a line-justification. 
This proof relies on the Natural Deduction (ND) calculus rules, on invoking tactics, or on invoking 
classical automated theorem provers such as OTTER [26]. Therefore, the line-justification consists 
of the name of an ND-rule, the name of a tactic or a prover, a variable, or OPEN in case the 
sequent is to be planned for. Additionally, the line-justification may include supporting lines. For 
instance, in Refutation 
3. .6. f- F (-,E;2)
 
states that the sequent .6. f- F is derived from the sequent in line 2 by the ND-rule -,E. In what
 
follows, names of lines abbreviate the corresponding sequents.
 

The program in the slot procedure is a special purpose procedure. The function eval that 
may occur in the constraint slot - see section 3.1 - returns true for an instantiation of variables, 
if its first argument is true before the procedure runs and if its third argument is true after the 
procedure's run. The second argument of eval is bound to the procedure's output.5 

An example for a method is Refutation. Its annotations $, e of premises and conclusions 
roughly indicate add ($) and delete (e) effects in STRIPS terminology, respectively. See a more 
detailed explanation below. The methods below omit some obvious details in order to make them 
more readable. 

4Sequents P = (~ r- F), are pairs of a set ~ of formulas and a formula F in an object language that is extended 
by meta-variables for functions, relations, formulas, sets of formulas, and terms. The semantic of a sequent (~ r- F) 
is that F can be inferred from ~. 

5Binding meta-formulae (X f-- A) evaluate to true. 
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by moving the differences outward until the induction hypothesis can be applied to an inner part
of the rewritten induction conclusion. For example, in proving the conjecture

Va ,y ız .  z2+ (y+z )= (z+y )+ZzZ  (2)

the induction hypothesis is
z+ (y+z )= (z+y )+zZ  (3)

[s@]+@+2)=(s@] +)  +2  (4)

The boxes, excluding the underlined terms, denote the differences. The non-differences are called
the skeleton. Rippling works by successively applying skeleton preserving definitions and axioms
to the induction conclusion.

and the conclusion is

2.2 Original Proof  Planning in OMEGA
In OMEGA, domain knowledge is stored in  a hierarchically organized theory knowledge base.
So far, proof planning in OMEGA employed axioms, definitions, and methods as the only domain
knowledge. Theories may have parents they can inherit from. For instance, the theory ordered-
field inherits, among others, from the  theory base and a parent of  the  theory limit is  ordered-field.

OMEGA’s methods are frame-like structures specified in [19]. More specifically, these methods
have the following slots: declaration of types, (annotated) premises and conclusions, constraints,
proof schema, and procedure. From  a logical (static) point of  view, premises are sequents* from
which the  method logically derives the conclusions, and conclusions are sequents which the  method
is designed to prove. In  Refutation, e.g., (A ,  - F  HL) is used to derive (A  F F).

The constraints are formulated in a meta-language and restrict the applicability of a method
and the instantiations of parameters. If available, a proof schema is filled with a declarative
schematic representation of a proof whose lines contain a label, a sequent, and a line-justification.
This proof relies on the Natural Deduction (ND) calculus rules, on invoking tactics, or on invoking
classical automated theorem provers such as OTTER [26]. Therefore, the line-justification consists
of  the name of  an  ND-rule, the name of  a tactic or  a prover, a variable, or  OPEN in case the
sequent is to  be planned for. Additionally, the line-justification may include supporting lines. For
instance, in  Refutation
3. AFF  (=E;2)
states that the sequent A + F is derived from the sequent in line 2 by the ND-rule »E.  In what
follows, names of lines abbreviate the corresponding sequents.

The program in  the slot procedure is a special purpose procedure. The function eval that
may occur in the constraint slot — see section 3.1 — returns true for an instantiation of variables,
if its first argument is true before the procedure runs and if its third argument is true after the
procedure’s run. The second argument of eval is bound to the procedure’s output.’

An example for a method is Refutation. Its annotations ©, © of premises and conclusions
roughly indicate add (©) and delete (©) effects in STRIPS terminology, respectively. See a more
detailed explanation below. The methods below omit some obvious details in order to make them
more readable.

4Sequents P = (A  F F ) ,  are pairs of  a set A of  formulas and a formula F in  an object language that is extended
by  meta-variables for functions, relations, formulas, sets of  formulas, and terms. The semantic of  a sequent (A  + F)
is that F can be inferred from A .

Binding meta-formulae (X « A) evaluate t o  true.



method: Refutation 

declaration term: F 

EB L1 

e L3 

L1.~, ~F 

L2. ~, 

L3. ~ 

I
I
l

..L 
~~F 

F 

(OPEN) 
(..,1,1) 
(..,E;2) 

premises 

conclusions 

constraints 

proof schema 

procedure 

The Planning Process in OMEGA 

OMEGA's planning process searches the space of planning states, hence it is a state-space planning 
process as opposed to plan-space planning. A planning state contains a set of sequents represented 
by proof lines that is divided into open lines (goals) and closed lines (assumptions). Open lines 
are indicated by? and closed lines by !. A proof planning problem is defined by an initial state 
specified by the proof assumptions) and the goal specified by the theorem to be proved. The 
planner searches for a solution, i.e., a sequence of methods that transforms the initial state into a 
state with no open lines. 

Ignoring the EB, e annotations, premises and conclusions provide a purely logical description of 
a method. For proof planning, however, we need to know how it changes the planning state and 
how to introduce a method into the plan, e.g., by forward or backward planning. That is, it is 
important to specify which sequents can be used as inputs (preconditions in STRlPS notation) 
for a planning operator and which are outputs (effects with add and delete lists in STRIPS 
notation) of the method. Therefore, a translation of methods to a STRIPS-like representation of 
operators, used in OMEGA's planning, is derived from the annotated premises and conclusions of 
the method in the following way [33]: 

•	 not annotated premises become !-lines in the preconditions, 

• e annotated premises are translated to I-preconditions and to I-elements of the delete list 
of the operator, 

•	 EB premises are introduced as ?-lines into the add list of the operator, 

•	 not annotated conclusions become ?-preconditions, 

• e	 conclusions are translated to ?-preconditions and introduced as ?-elements into the 
delete list of the operator, 

•	 EB conclusions are introduced as I-lines into the add list of the operator. 

The operator corresponding to Refutation, for example, has the precondition 7L3, the add-list 
(7L1), and the delete-list (7L3). Hence, its input is 7L3 and its output 7L1. That is, Refutation 
is a backward operator (reducing a goal L3 to a subgoal L1). The following planning algorithm 
(in pseudo code) has been presented in [33] and will be extended in the sequel of this paper. 

8
 

method: Refutation
declaration term: F

premises 8 11
conclusions eL3

constraints
L l .A ,  oF  F I  (OPEN)
L2.  A ,  b mF  (~1,1)proof schema L3 .A  FF  (-E;2)

procedure

The Planning Process in OMEGA

OMEG A’’s planning process searches the space of  planning states, hence i t  is  a state-space planning
process as opposed to  plan-space planning. A planning state contains a set of sequents represented
by proof lines that is divided into open lines (goals) and closed lines (assumptions). Open lines
are indicated by ? and closed lines by !. A proof planning problem is defined by an initial state
specified by the proof assumptions) and the goal specified by the theorem to be proved. The
planner searches for a solution, i.e., a sequence of  methods that transforms the initial state into a
state with no open lines.

Ignoring the @, © annotations, premises and conclusions provide a purely logical description of
a method. For proof planning, however, we need to  know how it changes the planning state and
how to  introduce a method into the plan, e.g., by  forward or backward planning. That is, it is
important t o  specify which sequents can be  used as inputs (preconditions in STRIPS notation)
for a planning operator and which are outputs (effects with add and delete lists in STRIPS
notation) of the method. Therefore, a translation of methods to a STRIPS-like representation of
operators, used in OMEGA'’s planning, is derived from the annotated premises and conclusions of
the method in  the following way [33]:

e not annotated premises become !-lines in the preconditions,

e © annotated premises are translated to  l-preconditions and to  !-elements of  the delete list
of  the operator,

e & premises are introduced as ?-lines into the add list of the operator,

e not annotated conclusions become ?-preconditions,

e © conclusions are translated to ?-preconditions and introduced as ?-elements into the
delete list of the operator,

e @ conclusions are introduced as !-lines into the add list of the operator.

The operator corresponding to  Refutation,  for example, has the precondition ?L3, the add-list
(?L1), and the delete-list (?L3). Hence, its input is ?L3 and its output ?L1. That is, Refutation
is a backward operator (reducing a goal L3 to a subgoal L1). The following planning algorithm
(in pseudo code) has been presented in [33] and will be extended in the sequel of  this paper.
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While there are ?-lines in the planning state 

•	 Find all applicable instantiated operators: 

- Select an operator NI, 

- find all matchings from NI's preconditions with (7 and !) elements of the 
current planning state. For each instantiation 

- evaluate the constraints of the instantiated M. This may further reduce the 
instantiations. An instantiated M is applicable, if the constraints evaluate 
to true for the instantiation. 

• Select the best applicable instantiated operator M*. (backtracking point) 

•	 Apply M* to the planning state by 

- inserting the sequents from the add slot of M* into the planning state, 

- deleting the sequents from the delete slot of M* from the planning state. 

Successively expand meth()ds of the complete plan to ND-subproofs. 

The 'best' method M* is chosen according to a numeric rating of methods. Once a proof plan 
is found, all methods are successively expanded in order to obtain a calculus-level (ND) proof. For 
the expansion of methods, expansion functions are defined that are not discussed in this report. 
Sometimes, one expansion of methods yields plans that contain steps that are not ND-rules. Then 
these steps can be expanded further. The recursive expansion yields a hierarchical representation 
of a proof plan that is captured by the PDS (Plan Data Structure) data structure in OMEGA. 

Our Extensions of OMEGA: Domain Knowledge and Ar
chitecture 

Our experience with planning limit theorems and theorems from other domains [27], leads us to 
an extension of OMEGA's proof planner along the following dimensions. These extensions general 
rather than specific for OMEGA. 

1.	 The domain specific knowledge to be employed for proof planning must include6 (i) 
methods, (ii) control knowledge (control-rules), and (iii) constraint solvers. These extensions 
are discussed in sections 3.1, 3.2, and 3.3. 

2.	 The architecture of OMEGA's planner must include the above knowledge sources and the 
planner has to be guided by a control unit that receives information from a monitor and 
that interpretes control-rules. 

3.	 The planner should have multiple refinement strategies at its disposal (This is not discussed 
in this paper but in [27]). 

The extended architecture of the proof planner is shown in Figure 3. Note the meaning of the 
different kinds of arrows in Figure 3: dashed arrows indicate choices, e.g., the control unit chooses 
a method. Solid black topped arrows indicate refinements, e.g., the application of a method 
refines the PDS. Solid white topped arrows indicate information delivery, e.g., the monitor delivers 
information to the control unit. 

•	 The original planner architecture consists of a planning algorithm and a domain (theory) 
knowledge base that contains axioms, definitions, and methods. The application of methods 
can change the planning state. 

6apart from the obvious knowledge base with axioms, definitions, lemmata, previously proved theorems 
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While there are ?-lines in the planning state

e Find all applicable instantiated operators:

— Select an operator M ,
— find all matchings from M’s preconditions with (? and !) elements of the

current planning state. For each instantiation
— evaluate the constraints of  the instantiated M.  This may further reduce the

instantiations. An  instantiated M is  applicable, i f the constraints evaluate
to  true for the instantiation.

e Select the best applicable instantiated operator M*. (backtracking point)

e Apply M*  to  the planning state by

— inserting the sequents from the add slot of  M*  into the planning state,
— deleting the sequents from the delete slot of M*  from the planning state.

Successively expand methods of  the complete plan to  ND-subproofs.

The ‘best’ method M*  is chosen according to  a numeric rating of methods. Once a proof plan
is found, all  methods are successively expanded in order to  obtain a calculus-level (ND) proof. For
the expansion of methods, expansion functions are defined that are not discussed in this report.
Sometimes, one expansion of methods yields plans that contain steps that are not ND-rules. Then
these steps can be expanded further. The recursive expansion yields a hierarchical representation
of a proof plan that is captured by the PDS (Plan Data Structure) data structure in OMEGA.

3 Our  Extensions of  OMEGA:  Domain Knowledge and Ar-
chitecture

Our experience with planning limit theorems and theorems from other domains [27], leads us to
an extension of OMEGA’s proof planner along the following dimensions. These extensions general
rather than specific for OMEGA.

1. The domain specific knowledge to be employed for proof planning must include® (i)
methods, (ii) control knowledge (control-rules), and (iii) constraint solvers. These extensions
are discussed in sections 3.1, 3.2, and 3.3.

2. The architecture of OMEGA’s planner must include the above knowledge sources and the
planner has to be guided by a control unit that receives information from a monitor and
that interpretes control-rules.

3. The planner should have multiple refinement strategies at its disposal (This is not discussed
in  this paper but in [27]).

The extended architecture of the proof planner is shown in Figure 3. Note the meaning of the
different kinds of arrows in Figure 3: dashed arrows indicate choices, e.g., the control unit chooses
a method. Solid black topped arrows indicate refinements, e.g., the application of a method
refines the PDS. Solid white topped arrows indicate information delivery, e.g., the monitor delivers
information to the control unit.

e The original planner architecture consists of  a planning algorithm and a domain (theory)
knowledge base that contains axioms, definitions, and methods. The application of methods
can change the planning state.

apart from the obvious knowledge base wi th  axioms, definitions, lemmata, previously proved theorems



• First,	 we add a control unit to the planner architecture and control-rules to the domain 
knowledge. The control unit interpretes control-rules in order to restrict the choices of 
methods and of goals before the planner decides about the applicability of methods, see 
§ 3.3. 

While there are ?-lines in the planning state 

- admissible methods := interpretation(control-rules, methods) 

- for each admissible method M 

* find all matchings from M's preconditions with (? and !) elements of the 
current planning state. For each instantiation 

* evaluate the constraints of the instantiated M. An instantiated M is appli
cable, if the constraints evaluate to true for the instantiation. 

- Select (best) applicable instantiated operator M*. (backtracking point)
 

- Apply M* to the planning state by
 

* inserting the sequents from the add slot of M* into the planning state, 

* deleting the sequents from the delete slot of M* from the planning state. 

Successively expand methods of the complete plan to ND-subproofs. 

• The control works	 on the basis of information provided by a monitor that inspects the 
constraint state, resources, the planning state, and the planning history. 

• Secondly, we add a constraint solver to the domain knowledge, see §3.2 for an explanation. 
Thereby we can take advantage of a lot of work performed in the eLP community. The 
constraint solver can be accessed via methods and can transform a constraint state. It pro
vides answers to the application-conditions of methods too (about entailment or consistency 
of constraints). 

Now the domain knowledge (methods, control-rules, special constraint solvers) belongs to a 
theory in the theory knowledge base. 

• Thirdly, the planning algorithm is changed such that it can invoke several refinement strate
gies rather than just one. Possible candidate strategies are: forward refinement, backward 
refinement, expansion, island planning, analogy, and refinement by the user [27]. In different 
ways, the different strategies introduce methods into the plan. 

The control unit supports the choice of refinement strategies in the planning process too. 
We do not discuss this extension here. 

The flexible use of the expansion strategy turned out to be most interesting for planning 
limit theorems: Rather than always expanding methods when a complete plan is found or always 
expanding a supermethod instantaneously, the expansion strategy is picked flexibly according to 
the planning situation. This flexibility can be achieved by devising control knowledge that is 
evaluated according to the history, the current planning state, and the available resources. 

The currently implemented expansion of supermethods as described in section 3.1.2 is less 
elaborate. Since the multistrategy-planning is not implemented yet, a program associated with 
supermethods expands a supermethod when it is introduced into the plan. 

3.1 Methods for Planning Limit Theorems 

The first examples of proof planning in OMEGA employed methods that were nothing else than 
(schematic) partial plans resulting from dividing (ND) proofs into subproofs. While this is fine 
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e First,  we add a control unit to the planner architecture and control-rules to the domain
knowledge. The control unit interpretes control-rules in order t o  restrict the choices of
methods and of  goals before the planner decides about the applicability of  methods, see
8 3.3.

While there are ?-lines in the planning state

— admissible methods : =  interpretation(control-rules, methods)

— for each admissible method M

* find all matchings from M’s preconditions with (? and!) elements of the
current planning state. For each instantiation

* evaluate the constraints of  the instantiated M .  An  instantiated M is appli-
cable, if the constraints evaluate to  true for the instantiation.

~ Select (best) applicable instantiated operator M*.  (backtracking point)

— Apply M*  to the planning state by

* inserting the sequents from the add slot of M*  into the planning state,
* deleting the sequents from the delete slot of M*  from the planning state.

Successively expand methods of the complete plan to  ND-subproofs.

e The control works on the basis of information provided by a monitor that inspects the
constraint state, resources, the planning state, and the planning history.

e Secondly, we add a constraint solver t o  the domain knowledge, see 83.2 for an  explanation.
Thereby we can take advantage of  a lot of  work performed in the CLP community. The
constraint solver can be  accessed via  methods and can transform a constraint state. It pro-
vides answers to  the application-conditions of methods too (about entailment or consistency
of constraints).
Now the domain knowledge (methods, control-rules, special constraint solvers) belongs to a
theory in the theory knowledge base.

¢ Thirdly, the planning algorithm is changed such that it can invoke several refinement strate-
gies rather than just one. Possible candidate strategies are: forward refinement, backward
refinement, expansion, island planning, analogy, and refinement by the user [27]. In  different
ways, the different strategies introduce methods into the plan.
The control unit supports the choice of refinement strategies in the planning process too.
We do not discuss this extension here.

The flexible use of the expansion strategy turned out to be most interesting for planning
limit theorems: Rather than always expanding methods when a complete plan is found or always
expanding a supermethod instantaneously, the expansion strategy is picked flexibly according to
the planning situation. This flexibility can be achieved by devising control knowledge that is
evaluated according to  the history, the current planning state, and the available resources.

The currently implemented expansion of supermethods as described in section 3.1.2 is less
elaborate. Since the multistrategy-planning is not implemented yet, a program associated with
supermethods expands a supermethod when it is introduced into the plan.

3.1 Methods for Planning Limit Theorems
The first examples of proof planning in OMEGA employed methods that were nothing else than
(schematic) partial plans resulting from dividing (ND) proofs into subproofs. While this is fine
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Multistrategy-Planning Algorithm PLAN(rr) 
Parameters: sol procedure for picking solutions 

1.	 Termination Check: If sol(rr) returns a solution, return it and terminate. If 
it returns fail, fail. Otherwise continue. 

2.	 Refinement: Pick one of the following planning strategies that refine rr: 

• forward-state-space 
• backward-state-space 
• expansion 
• analogical-driven proof plan construction 
• island-planning. 
• refinement by the user 

3.	 Recursive Invocation: Call PLAN on the refined plan. 

Table 1: Outline for multistrategy planning. 

for a first attempt such as [29], in general, methods may cover a much wider range than fixed 
ND-subproofs. 

In this section, the relevant methods that belong to the limit domain theory or to its parent 
theories are presented. Note that LimHeuristic is the only method that is used exclusively 
for planning proofs for limit theorems. All other methods described below, are methods widely 
applicable at least for planning problems from ordered fields. 

LimHeuristic is the central method in planning limit theorems. Foremost, the application of 
the other methods prepares the application of the LimHeuristic or prove inequalities. Depending 
on the particular problem, the LimHeuristic has to be applied a different numbers of times. For 
instance, in planning LIM+ it is applied once and for LIM* it is applied three times. 

In the following, we consider basic methods and supermethods. We present them in a format 
that is still close to the actual implementation, in this technical report. Supermethod is a subclass 
of the method data structure that currently simulates planning with a restricted set of methods 
and control-rules. In the near future, the application of supermethods will, in a conceptually clean 
way, be associated with an expansion strategy of the planner. 

3.1.1 Basic Methods 

The basic methods that are employed for proof planning limit theorems are the methods Same, 
Same=, AndI, AndE, ImpI, ImpI, EquivE, EquivI, Skolem-b, Skolem-f, Mp-b, Backchain, Increase
Hyps, Focus, RemoveFocus, from the theory base, 7, the methods Solve<b, Solve<f, Solve=b, 
Solve*, Solve*<b from the theory ordered-field, and LimHeuristic from the theory limit. In 
the method names, the annotations band f indicate the direction of the method application: 
forward and backward, respectively. Backward methods are applied to goals whereas forward 
methods are applied to the assumptions of a planning state. 

The LimHeuristic Method 

The LimHeuristic method is a reconstruction of Bledsoe's limit heuristic in [6]. Similar to the 
mathematician's behavior described above, each application of LimHeuristic introduces a new 
auxiliary variable M upon which 8 depends finally. M restricts the range of the object 8 and 
its range is restricted by (1), (2), and (3) in turn. For instance, in planning LIM+, thm is 
.6. f- val(f(x1) - h) < El ~ val(J(x) + g(x) - (ll + [2)) < to and the subgoals are 

7Many of these correspond to ND-rules. 
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Multistrategy-Planning Algorithm PLAN(7)
Parameters: so l  procedure for picking solutions

1. Termination Check: If so l ( r )  returns a solution, return i t  and terminate. If
it returns fail, fail. Otherwise continue.

2. Refinement: Pick one of the following planning strategies that refine m:
forward-state-space
backward-state-space
expansion
analogical-driven proof plan construction
island-planning.
refinement by the user

3. Recursive Invocation: Call PLAN on the refined plan.

Table 1: Outline for multistrategy planning.

for a first attempt such as [29], in general, methods may cover a much wider range than fixed
ND-subproofs.

In  this section, the relevant methods that belong to the limit domain theory or to  its parent
theories are presented. Note that LimHeuristic is the only method that is used exclusively
for planning proofs for limit theorems. All  other methods described below, are methods widely
applicable at least for planning problems from ordered fields.

LimHeuristic is the central method in planning limit theorems. Foremost, the application of
the other methods prepares the  application of  the LimHeuristic or  prove inequalities. Depending
on  the particular problem, the LimHeuristic has t o  be  applied a different numbers of  times. For
instance, in planning LIM+ it is applied once and for LIM* it is applied three times.

In the following, we consider basic methods and supermethods. We present them in a format
that is still close to the actual implementation, in  this technical report. Supermethod is a subclass
of the method data structure that currently simulates planning with a restricted set of methods
and control-rules. In  the near future, the application of  supermethods will, in a conceptually clean
way, be associated with an expansion strategy of the planner.

3 .1 .1  Basic Methods

The basic methods that are employed for proof planning limit theorems are the methods Same,
Same=, Andl,  AndE, Impl,  Impl,  EquivE, Equivl,  Skolem-b, Skolem-f, Mp-b, Backchain, Increase-
Hyps, Focus, RemoveFocus, from the theory base, 7, the methods So lvecb,  So l ve . f ,  Solve-b,
So lve* ,  So lve*<b  from the theory ordered-field, and LimHeuristic from the theory limit. In
the method names, the annotations b and f indicate the direction of  the method application:
forward and backward, respectively. Backward methods are applied to goals whereas forward
methods are applied to the assumptions of a planning state.

The LimHeuristic Method

The LimHeuristic method is a reconstruction of Bledsoe’s limit heuristic in [6]. Similar to the
mathematician’s behavior described above, each application of LimHeuristic introduces a new
auxiliary variable M upon which § depends finally. M restricts the range of the object § and
its range is restricted by (1), (2), and (3) in turn. For instance, in planning LIM+-, thm is
At  val(f(z1) — hh) < Ey — val(f(z) + g(x) — (I1 + 12)) < € and the subgoals are

"Many of these correspond t o  ND-rules.
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1. ~ I- val(l) < M 
2. val(f(X1 ) -ll) < El I- val(f(x) -ld < div(E,2· M) 
3. ~ I- val(g(x) - l2) < div(E, 2) 
M is used to propagate range restrictions between the known constants and variables and 8 as 

explained in section 3.2. LimHeuristic reduces a goal 

val(a) < e1 -+ val(b) < E, 

e.g., val(ft(x) -ll) < El -7 val(ft(x) + h(x) - (it + l2)) < E, to three simpler subgoals (1), (2), 
and (3). 

method: LimHeuristic 

declaration term: a, b, el, E, k, 1 var: M 

$(1),$ (2), $(3) 

ethm, , $(0) 

eval(true, (k,l,a), (k,l,a) #1.) 
(0). (0) I val(a) < el 

(1). b.. f val(ku ) < M 
(2).(0) I val(au ) < div(E, 2 * M) 
(3). b.. I val(lu) < div(E, 2) 
11. I- b = ku * au + 117 

Ill.b.. (0) I val(b) < E 

thm.6. I val(a) < el -t val(b) < E 

extract(a, b) 

(HYP) 
(OPEN) 
(OPEN) 
(OPEN) 
(CASextract) 
(fixjll,(1) ,(2),(3» 
(-tI;I1l) 

premises 

conclusions 

constraints 

proof schema 

procedure 

The application condition reads as follows. If there exists (k, l, a) such that extract(a, b)= 
(k,l,a), then the method can be applied with the resulting instantiations of k, l, and a. 

The line-justification CASextract names a computer algebra tactic that can justify the equation 
b = ku * a u + lu, where k, l, and a are computed by the oracle extract (see below) and a u , kO', lu 
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1. Ak  val(1) <M
2. val(f(X1) — lL) < Ei  Fua l ( f (z )  — 1ı) < div(e,2- M )
3. AF  val(g(xz) — 12) < div(e, 2)
M is used to  propagate range restrictions between the known constants and variables and § as

explained in  section 3.2. LimHeuristic reduces a goal

val(a) < e ı  — val(b) <e,

e.g, val( f i (z)  — lL) < E1 = val(f i(z)  + f2(z) — (lh + 12) < € ,  to three simpler subgoals (1), (2),
and (3).

method: LimHeuristic

declaration term: a,b, e ; , e  k , l  var: M

premises (1),@ (2), &(3)
conclusions | ©thm, , ®(0)
constraints eval(true, ( k , l ,0 ) , (k , l ,0 )  AL )

(0). (0) F wval(a) < e ı  (HYP)
1 ) .A  F val(ke) < M (OPEN)

(2). (0) b val(ax) < div(e, 2x  M)  (OPEN)
3 ) .A  (a Ur) < div(e, 2 (OPEN

p roof schema © + pale) i n l  ) CA  Smaract)
HLA (0) + wval(b) <e  (fix;11,(1),(2),(3))
thmA + wval(a) < e ı  — val(b) < € (5111)

procedure extract(a, b)

The application condition reads as follows. If there exists (k, l ,0)  such that extract(a,  b)=
(k ,  1,0), then the method can be applied with the resulting instantiations of  k ,  { ,  and v0.

The line-justification CASextract names a computer algebra tactic that can justify the equation
b=k ,  * a ,  + l ,  where k , l ,  and o are computed by  the oracle extract (see below) and ag,  k s ,lo
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result from applications of (j to a, k, and l. During the expansion of LimHeuristic, CASextract 
produces a proof plan for this computation. The "fix" justification is an abbreviation for a fix 
subproof that proves the sequent in line 111 from the given support lines. '-tI' is the ND-rule 
implication introduction. 

For planning purposes, the compact proof schema shown in the method is sufficient. For the 
interested reader, we give a more detailed proof schema. This level of detail illustrates why a fixed 
proof schema is possible for deriving thm from (1), (2), and (3). 

NNo S;D Formula Reason 
(0). (0) f- val(a) < et (HYP) 
(1). Ll f- val(k".) < !vI (OPEN) 
(2). (0) f- val(a".) < div(€,2* M) (OPEN) 
(3). Ll f- val(l".) < div(€,2) (OPEN) 
12. f- val(b) ::; val(k". * a".) + val(l".)	 (triang;11) 
13. f- val(b) ::; val(k".) * val(a".) + val(l".)	 (Mval;12) 
14. Ll f- val(k".) * val(a".) + val(l".) ::; !vI * val(a".) + val(l".) (mult::;;(l» 
15. Ll f- val(b) ::; M * val(a".) + val(l".)	 (trans::;iI3 ,14) 
16. (0) f- M * val(a".) < !vI * div(€, 2 * !vI)	 (mult<;(2» 
17. (0) f- M * val(a".) + val(l".) < !vI * div(€, 2 * M) + val(l".) (add<;16) 
18. Ll (0) f- val(b).< M * div(€, 2 * M) + val(l".)	 (trans<;15,17) 
19. Ll f- M * div(€, 2 * M) + val(l".) < M * div(e, 2 * M) + div(e, 2Xadd<i(3» 
110. Ll (0) f- val(b) < M * div(€, 2 * M) + div(€, 2) (trans< ;18,19) 
Ill. Ll (0) f- val(b) < € (fix1iI10) 
thm. Ll f- val(a) < et -+ val(b) < € (-+I;111) 

How to read the more detailed proof schema? 
'fix1' is an abbreviation for a fix arithmetic subproof that proves the sequent in line 111 from the 
given support lines. 'triang' means the application of the triangle inequality, 
'Mval' means the application of A::; val(B * C) + D :::} A ::; val(B) *val(C) + D, 
mult::; means the application of A < B :::} A *C + D ::; B *C + D for positive A, C, 
'trans::;' means the application of the transitivity of::;, 'mult< means the application of A < B :::} 
A *C < B *C for positive C, 
'add<' means the application of A < B:::} A + C < B + C. 

Characteristically, the use of domain axioms and definitions belonging to the theory of R is 
encoded into the method rather than being visible at the proof planning level. Therefore, a search 
for applicability among the different axioms is not necessary. 

How does the planner handle LimHeuristic? 

•	 If a goal in the planning state matches thm, then LimHeuristic's parameter, a, b, € , el are 
instantiated by the matcher. Then 

•	 constraints is evaluated. That is, since the first argument of eval is true, the procedure 
extract (a, b) is invoked. The procedure extract(a, b) works as an oracle and outputs a list 
(k, I, (j), where k and l are terms and (j is a substitution, such that b can be represented as 
a linear combination of a, i.e., b = ku * au + lu. The substitution (j computed by extract 
leaves b unchanged. For instance, if a is g(X2) -l2 and b is (l(x) + g(x) - (h + l2)), then 
extract (a, b) returns the list (1, (g(X2) -l2), [X2/x]). 

If extract runs successfully (i.e., result #1.), then the method is applicable and au , ku , lu 
are bound to terms resulting from applications of (j to a, k, l. 

•	 The goal, thm, can logically be inferred from this linear combination and from the subgoals 
(1), (2), and (3), as shown in the detailed proof schema. Therefore, the application of 
LimHeuristic, removes the goal and introduces the new goals (1), (2), and (3). 

The Solve Methods 
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result from applications of o to a,k,  and I .  During the expansion of LimHeuristic, CASextract
produces a proof plan for this computation. The “fix” justification is an abbreviation for a fix
subproof that proves the sequent in  line 111 from the given support lines. ‘~ I ’  is the ND-rule
implication introduction.

For planning purposes, the compact proof schema shown in the method is sufficient. For the
interested reader, we give a more detailed proof schema. This level of detail illustrates why a fixed
proof schema is possible for deriving thm from (1), (2), and (3).

NNo S;D Formula Reason
(0). (0) FE wal(a) <e r  (HYP)
1 .  A Fo oval(ks) <M  (OPEN)
(2). (0) & wval(ag) < div(e,2* M)  (OPEN)
(3). A Fo val( ly)  < div(e,2) (OPEN)
12. F val(d) < val(ks * ao) + val( ls)  (triang;11)
13. F wal(b) < val(ke) * val{as) + val(ls) (Mval;12)
14. A FE  wal(ks) * val(as) + val(le) < M * vall(ay) + val(ls) (mult<;(1))
15. A F  wval(b) < M x val(as) + val(ls) (trans<;13,4)
16. (0) FE M *va l (ay)<  M * div(e,2 = M )  (muit<;(2))
17. (0) FF M *val(ay) + val le)  < M * div(e,2 * M )  + val( ly) (add <;i6)
18. A (0) &E val(h).< M * div(e,2 * M )  + val( ls)  (trans<;15,17)
19. A FM *div(e,2 x M )  + val(ls) < M * div(e,2 * M )  + div(e, 2Xadd<;(3))
110. A (0) & val(b) < M x div(e,2 * M )  + div(e,2) (trans<;18,19)
111. A (0) Fo wallb)<e (fix1;110)
thm. A F walla) < ey — val(b) <<  (—Gl11)

How to  read the more detailed proof schema?
‘fix1’ is an abbreviation for a fix arithmetic subproof that proves the sequent in line 111 from the
given support lines. ‘triang’ means the application of  the triangle inequality,
‘Mval’ means the application of A <va l (B  = C)  + D = A < val(B) *xval(C) + D ,
mult< means the application of A< B=  A*C  + D < BC  + D for positive 4 ,C ,
‘trans<’ means the application of the transitivity of  < ,  ‘mult< means the application of A < B =
Ax  C < Bx  C for positive C,
‘add<’  means the application of  A< B=> A+C  < B+C.

Characteristically, the use of  domain axioms and definitions belonging to the theory of R is
encoded into the method rather than being visible at the proof planning level. Therefore, a search
for applicability among the different axioms is not necessary.

How does the planner handle LimHeuristic?

e If a goal in the planning state matches thm, then LimHeuristic’s parameter, a,b, ¢, e ;  are
instantiated by the matcher. Then

e constraints is evaluated. That is, since the first argument of  eval is true, the procedure
extract(a,  b) is invoked. The procedure extract(a,b) works as an oracle and outputs a list
( k , l , 0 ) ,  where k and [ are terms and o is a substitution, such that b can be  represented as
a linear combination of a,  i.e., b = ko * a,  + l , .  The substitution ¢ computed by extract
leaves b unchanged. For instance, if a is g(X2) — Iz and b is ( f (z)  + g(z) — ( I  + I2)), then
extract(a,b) returns the list (1, (9(X2) — l2),[X2/z]).
If extract runs successfully (i.e., result #1 ) ,  then the method is applicable and ag, k s ,ls
are bound to  terms resulting from applications of ¢ to  a, k , l .

e The goal, thm, can logically be inferred from this linear combination and from the subgoals
(1), (2), and (3), as shown in the detailed proof schema. Therefore, the application of
LimHeuristic, removes the goal and introduces the new goals (1), (2), and (3).

The Solve Methods
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The methods Solve<b, Solve:b, Solve*, Solve*<b, and Solve<f handle goals and assump
tions, respectively, that involve linear equalities or inequalities. The methods Solve<b, Solve*<b, 
and Solve<f call the functions tell< or ask< that provide an interface between the methods 
and the constraint solver LINEQ, see section 3.2. tell(a < b) returns .1 if (a < b) is inconsistent 
with the current constraint store. ask(a < b) returns .1 if (a < b) is not entailed by the constraint 
store. In this case, the Solve method is not applied. Similar to the Solve< methods, we define 
a Solve: method that employs the function tell:. The method's application can remove a goal 
(a < b) from the state. The method Solve<b has no preconditions, i.e., it produces no subgoals. 

method: Solve<b 

declaration term: a, b var: result 

eLl 
eval(~(occurs(a,b)), 

if var-in(a < b) then result 
result t- askda < b), 
(result #..1.)) 

Ll. ~ I (a < b) 

tellda < b), askda < b) 

t- tell< (a < b) else 

(solverCS) 

premises 

conclusions 

constraints 

proof schema 

procedure 

The method Solve<b is applied to a goal (a < b). Its application condition can be read as 
follows: In case the occurs-check for a, b fails (first argument of eval) , the second argument of eval 
is evaluated: If a variable occurs in the goal (a < b), then the function tell< is invoked that 
checks whether its argument (a < b) is consistent with the current constraint store. Then LINEQ 
integrates (a < b) into the constraint store and tell< returns true for result. Otherwise, result 
is .1. If no variable occurs in (a < b), then the function ask< is invoked with argument (a < b). 
It checks whether the current constraint store entails (a < b) already. If it does, then the result is 
true, otherwise .i. If the output of the invoked function is not .1 (third argument of eval) , then 
the method is applicable. 

In proof schema, the line-justification solverCS names a tactic that can recompute (a < b) 
from the constraint store. During the expansion of Solve<b, this tactic runs and provides a proof 
plan for its computation. 

The method Solve<f is applied to assumptions (a < b), Le., forward. It does not change the 
planning state, except for the constraint store. Since the assumption in L1 is not removed from 
the planning state, Solve<f should be applied to an assumption only once. A second application 
would be redundant, see section 3.3. 

method: Solve<f 

declaration term: a, b var: result 

L1 

eval(~(occurs(a,b)), result, (result 1=.1)) 
Ll. ~ I- a < b (solverCS) 

tellda < b) 

premises 

conclusions 

constraints 

proof schema 

procedure 

The application condition of Solve<f reads as follows. If the occurs check for a, b fails, then 
the function tell is invoked that checks whether (a < b) is consistent with the current constraint 
store. If it is, tell returns true, otherwise .i. The method is applicable if tell returns true only. 
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The  methods So lve<b,  So l ve „b ,  So l ve * ,  So l ve *<b ,  and So lve . f  handle goals and assump-
tions, respectively, that involve linear equalities or  inequalities. The  methods Solve<b,  Solve*<b,
and Solvef call the functions te l l .  or ask. that provide an interface between the methods
and the constraint solver LINEQ, see section 3.2. t e l l ( a  < b) returns 1 i f  (a < b) is inconsistent
with the current constraint store. ask(a < b) returns L i f  (a < b) is not entailed by the constraint
store. In this case, the Solve method is not applied. Similar to the Solve.  methods, we define
a Solve— method that employs the function tel l .  The method’s application can remove a goal
(a  < b) from the state. The method So lve<b  has no  preconditions, i.e., i t  produces no  subgoals.

method: Solvecb
declaration term: a ,b  var: result

premises

conclusions eLl
eval(~(occurs(a, b)),
if var-in(a < b) then result + te l l . (a  < b) else

constraints result + ask.(a <b),
(result #.1))

proof schema | L1. A F (a <b)  (solverCS)

procedure te l l c (a  <b ) ,  ask<(a < b)

The method Solvecb is applied to a goal ( a  < b). I ts  application condition can be read as
follows: In case the occurs-check for a, b fails (first argument of eval), the second argument of  eval
is evaluated: If a variable occurs in the goal (a < b), then the function te l ls  is invoked that
checks whether its argument (a  < b) is consistent with the current constraint store. Then LINEQ
integrates (a < b) into the constraint store and te l l .  returns true for result. Otherwise, result
is L .  If no variable occurs in  (a < b), then the function ask,  is invoked with argument (a < b).
It checks whether the current constraint store entails (a < b) already. If  it does, then the result is
true, otherwise 1 .  If  the output of  the invoked function is not L (third argument of  eval), then
the method is applicable.

In proof schema, the line-justification solverCS names a tactic that can recompute (a < b)
from the constraint store. During the expansion of Solve<b, this tactic runs and provides a proof
plan for its computation.

The method Solve. f  is applied to assumptions (a < b), i.e., forward. It does not change the
planning state, except for the constraint store. Since the assumption in  L1  is not removed from
the planning state, So lve. f  should be applied to an assumption only once. A second application
would be redundant, see section 3.3.

method: Solvef

declaration term: a ,b  var: result

premises L1

conclusions

constraints eval(~(occurs(a,b)), result, (result #.1))
L i .  A HF a<b  (solverCS)proof schema

procedure te l l c (a  <b )

The application condition of  Solvef  reads as follows. If the occurs check for a,b fails, then
the function te l l  is invoked that checks whether (a < b) is consistent with the current constraint
store. If  i t  is, te l l  returns true, otherwise L .  The method is applicable i f  te l l  returns true only.
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The next method, Solve*b, removes an inequality subgoal (a' < c) (L3), if an assumption 
(a < b) (L1) exists in the current planning state for which a and a' are unifyable. Solve*b returns 
a disjunctive subgoal (L2) and a subgoal (L4) which is a conjunction of equations derived from a 
substitution a. For instance, if a = (a/x, b/y), then =conjunct is (a = x 1\ b = y). =conjunct is 
produced by the procedure subst-to-=conjunct. 

method: Solve*b 

declaration term: a, at, b, c var: =conjunct 

L1 $L2 $ L4 

eL3 
eval((a =termmgu(aa'»& subset(~I,Ll2), 
=conjunct, 
bq +- substapply(ab)& Cq +- substapply(ac)) 

premises 

conclusions 

constraints 

proof schema 

Ll. L).! f (a < b) (j) 
L2. L).2 f (bq < co') V (boo == co') (OPEN) 
L3. L).2 f (a' < c) (arithjLl,L2,L4) 
L4.0 f ==conjunct (OPEN) 

sUbst-to-=conjunct(a)procedure 

The application condition of Solve* reads as follows. If there is a most general unifier a of a 
and a' and if Al ~ 602, then the method is applicable with the particular instantiations of bq , Cq , 

and =conjunct (the latter being the result of subst-to-=conjunct(a)). 
The 'arith' justification in line L3 of proofschema denotes a fix arithmetical subproof of (a' < c) 

from (a < b), (bq < cq ), and =conjunct. 

A disjunctive subgoal (a < bV a = b) can be removed by the following method Solve*<b if it 
is applicable. Solve*<b yields either no new subgoal or the subgoal (a = b). 

method: Solve*<b 

declaration term: a, b var: result, L 

EBL 

eLl 
eval('"""occurs(a b), 
if var-in(a < b) then result +-tellda < b) else 
result +- askda < b), 
if (result #.1) then L +- emptylist, else L +- (L2)) 

premises 

conclusions 

constraints 

proof schema 
Ll. L). f (a <bVa==b) (solverCS) 
L2. L). I (a==b) (OPEN) 

tellda < b)procedure 

The application conditions can be read as follows. When the occurs check on (a, b) failed and 
tellda < b) (entailda < b), respectively) succeeded, i.e., if the invoked function did not return 
1-, then Solve*<b produces no subgoals. Otherwise, the method yields the new subgoal (a = b). 
This is expressed by the third argument of eval in constraintthat binds the meta-variable L to the 
empty list (no subgoals) or to L2 (subgoal a = b). 

Methods from the Theory base 

Some methods are applicable in all domains and therefore they belong to the theory base. Since 
most of them are well-known from the corresponding ND-rules, we describe only selected methods. 
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The next method, Solve*b, removes an inequality subgoal (a' < c) (L3), if an assumption
(a < b) (L1) exists in  the current planning state for which a and a’ are unifyable. Solve*b returns
a disjunctive subgoal (L2) and a subgoal (L4) which is a conjunction of equations derived from a
substitution o. For instance, if 0 = (a/z,b/y),  then =conjunct is (a = x Ab  = y). =conjunct is
produced by the procedure subst-to-=conjunct.

method:  Solvexb

declaration term: a,a’,b,¢ var: =conjunct

premises Ll1 ©L2 © L4

conclusions eL3
eval((o =termmgu(aa’))& subset(A1, A2),

constraints =conjunct,
de + substapply(eh)& ¢ ,  + substapply(cc))
LL  A l  F (a  <b )  6 )
L2. A2  F (be < co) V (br = co) (OPEN)

proof schema | 13. A2 F (a  <e¢) (arith;L1,L2,L4)
L4.0 I =conjunct (OPEN)

procedure subst-to-=conjunct(c)

The application condition of Solve* reads as follows. If there is a most general unifier o of a
and a’ and if A1  € A2, then the method is applicable with the particular instantiations of bg, c, ,
and =conjunct (the latter being the  result of subst-to-=conjunct(s)).

The ‘arith’ justification in  line L3  of proofschema denotes a fix arithmetical subproof of (a’ < ¢)
from (a < b), (bs < Co) ,  and =conjunct.

A disjunctive subgoal (a < bV a = b) can be removed by the following method Solvexb if  it
is applicable. Solvexb yields either no new subgoal or the subgoal (a = b).

method: So lve*<b

declaration term: a ,b  var: result, L

premises @L
conclusions oLl

eval(~occurs(a b),
if var-in(a < b) then result + te l lc (a  < b) else

constraints result + ask<(a <b ) ,
if (resultAL)  then L + emptylist, else L «+ (L2))
L1. A F (a<bVa=b )  (solverCS)

proof schema | L2. A F (a=b)  (OPEN)

procedure te l l c (a  <b )

The application conditions can be read as follows. When the occurs check on (a,b) failed and
te l lq (a  < b) (entai l . (a <b ) ,  respectively) succeeded, i.e., if  the invoked function did not return
1 ,  then Solve*b  produces no subgoals. Otherwise, the method yields the new subgoal (a = b).
This is expressed by the third argument of eval in constraintthat binds the meta-variable L to  the
empty list (no subgoals) or to  L2 (subgoal a = b).

Methods from the Theory base

Some methods are applicable in all domains and therefore they belong to the theory base. Since
most of them are well-known from the corresponding ND-rules, we describe only selected methods.

15



•	 IncreaseHyp enlarges the set of hypotheses 6.0 of an assumption. This is logically legal for 
any superset 6. of 6.0. However, one is not interested in arbitrary sets 6.. In the opposite, 
the infinite branching in search that is caused by almost arbitrary instantiations of 6. needs 
to be avoided, see section 3.3. 

method: IncreaseHyp 

declaration term: F 

L1 

EB L2 

subset(6.0,6.) 
Ll. ~o r- F 
L2.~ r- F 

(j) 
(weaken 
1.11 

premises 

conclusions 

constraints 

proof schema 

procedure 

• Backchain is the ND-version of Bledsoe's "backchain" handling of assumptions [6]. 

method: Backchain 

declaration term: F i ,F2 

8L1, EBL2 

EBL3 

subset(6. i , 6.) 
Ll. ~l r- Fl -t F2 
L2. ~ r- Fl 
L3. ~ r F2 

(j) 
(OPEN) 
(-tEjLl,L2) 

premises 

conclusions 

constraints 

proof schema 

procedure 

Backchain takes an implicational assumption 6. i f- F i -t F2 as input and yields a simpler 
assumption 6. f- F2 and an additional goal 6. f- F i as output. Since Backchain may increase 
the search space unnecessarily, the choice of this method has to be controlled strictly. 

•	 The method Modus Ponens backward (Mp-b) belongs to the base theory. MP-b takes an 
assumption 6. f- F i and a goal 6. f- F2 and returns the new goal 6. f- F i -t F2 while removing 
6. f- F2 . Obviously, the application of MP-b has to be controlled strictly; otherwise it can 
produce new goals Fi! -t (Fi2 -t (... F2 ) •••) infinitely often. 

method: MP-b 

declaration term: F i ,F2 

EBL1, L2 

8L3 

subset(6. i ,6.) 
Ll. ~ r- Fl -t F2 
L2. ~l r- Fl 
L3. ~ f F2 

(OPEN) 
(j) 
(-tEjl1,12) 

premises 

conclusions 

constraints 

proof schema 

procedure 
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e IncreaseHyp enlarges the set of hypotheses AQ of an assumption. This is logically legal for
any superset A of  AO. However, one is not interested in arbitrary sets A .  In the opposite,
the infinite branching in search that is caused by almost arbitrary instantiations of A needs
to  be avoided, see section 3.3.

method: IncreaseHyp

declaration term: F
premises L1

conclusions © L2
constraints subset{A0, A)

L1 .  AO FF  6)
proof schema | L2. A FF  (weaken

L1 )

procedure

e Backchain  is the ND-version of  Bledsoe’s “backchain” handling of  assumptions [6].

method: Backchain

declaration term: Fy , Fr

premises ©L1, aL2

conclusions ©L3

constraints subset(A;, A)
L l .  A ;  EFF  (4)

proof schema | 13°A |p) (OELLLD)
procedure

Backchain takes an implicational assumption A ;  F Fi  — Fb as input and yields a simpler
assumption A | F;  and an  additional goal A FE F ;  as output. Since Backchain may  increase
the search space unnecessarily, the choice of  this method has t o  be controlled strictly.

e The method Modus Ponens backward (Mp-b) belongs to the base theory. MP-b takes an
assumption A | F) and a goal A + F; and returns the new goal A + Fi — Fa while removing
A |} F;. Obviously, the application of MP-b has to be controlled strictly; otherwise it can
produce new goals Fj; — (Fiz + ( . . .  Fy)  . . . )  infinitely often.

method: MP-b

declaration term: Fy ,F,

premises o l l ,  L2

conclusions SL3

constraints subset(A;, A )
L1 .A  FE = 2 (OPEN)

proof schema | 13° A" £ m Cen)
procedure
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• Same=b takes an assumption (tl = tz), a goal L3, and an assumption L1, where L1's formula 
results from L3's formula by replacing t l by tz. The method removes the goal L3. 

method: Same= 

declaration term: F, Fl , tl, tz 

L1,L2 

8L3 
F1 = (termrploccs xFy) V F l = (termrploccs yFx) & 
subset(~l,~) & subset(~z,~) 
Ll. ~1 I F U1) 
L2. ~2 I tl = t2 U2) 
L3.~ f- Fl (subst

applyjL1,L2) 

premises 

conclusions 

constraints 

proof schema 

procedure 

The application condition of Same=b reads as follows. If Fl results from F by replacing tl 
by t2 or vice versa and if ~ contains ~l and ~2, then the method is applicable. 

3.1.2 Supermethods 

Hierarchical decomposition of methods is desirable in proof planning because restricting the search 
space by planning at a higher level without loosing the opportunity to expand it to a lower level 
plan can save search. Furthermore, a hierarchical presentation of the proof plan is easier to grasp 
by the user. The following decomposition techniques are known from the literature: 

• Hierarchical	 task network planning (HTN) [36] that introduces abstract operators into a 
plan and then replaces the abstract operator by one of its reduction schemas. (The simplest 
form is planning with macro-operators [24] that represent fixed sequences of operators.) For 
proof planning, HTN planning cannot be used in exactly the same way because here the 
right decomposition may be computed from the planning situation rather than being one of 
the schemas fixed in advance. 

•	 The proof planner C IftM [10], uses so-called supermethods that have a limited pool of opera
tors they can invoke. For instance, the supermethod step-case has the submethods ripple, 
fertilize, and elementary. These, supermethods are expanded during the planning. 

We want the decision when to expand a supermethod to depend on the planning situation, the 
available resources, and on the method itself. Hence, we extend the notion of supermethods. This 
extension takes into account that supermethods have two faces: One that exhibits the features 
of a method and another that amounts to, possibly complicated,S control knowledge. Therefore, 
our supermethods are methods that have premises and conclusions and at the same time provide 
control knowledge on how to build the expansion of the supermethod. Importantly, the control 
knowledge guiding the construction of the subplan can be specific for a particular supermethod 
because supermethods have the slot submethods and the slot control, as in the examples below. 

How does the expansion of supermethods work currently? 
A problem is created (containing one goal only). Then the planner is called with the set of meth
ods given in the slot submethods. The sequence of methods in 'submethods' is the one in which 
the application of submethods is tried. Instead of the usual backtracking in planning, the super
method's planning stops when nO method is applicable. It returns the eventual resulting changes 
of the planning state. Supermethods for planning the limit-class theorems are: 

Sat least more complicated than the ordering of submethods as in CIPM. 
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o Same=b takes an  assumption ( t ,  = 2»), a goal L3 ,  and an  assumption L1 ,  where L1’s  formula
results from L3’s formula by replacing ¢; by tz. The method removes the goal L3.

method:  Same= Co

declaration term: F,  F ı , t ı , t 2

premises L1 ,  L2

conclusions eL3
F ı= (termrploces zFy)  V Fi= (termrploces yFz) &

constraints | ob  set(A1, A )  & subset(Aa, A)
L I .  A l  FF  (1)
L2. A2  F t  = t2  (42)

proof schema | L3. A FR  (subst-
apply;L1,L2)

procedure

The application condition of Same=b reads as follows. If F ı  results from F by replacing ¢ ;

by t2 or vice versa and if A contains A ;  and A j ,  then the method is applicable.

3.1.2 Supermethods

Hierarchical decomposition of  methods is  desirable in  proof planning because restricting the search
space by planning at a higher level without loosing the opportunity to expand it to  a lower level
plan can save search. Furthermore, a hierarchical presentation of the proof plan is easier to  grasp
by  the user. The following decomposition techniques are known from the literature:

e Hierarchical task network planning (HTN) [36] that introduces abstract operators into a
plan and then replaces the abstract operator by  one of  i ts  reduction schemas. (The simplest
form is planning with macro-operators [24] that represent fixed sequences of  operators.) For
proof planning, HTN planning cannot be used in exactly the same way because here the
right decomposition may be computed from the planning situation rather than being one of
the schemas fixed in advance.

e The proof planner CIAM  [10], uses so-called supermethods that have a limited pool of opera-
tors they can invoke. For instance, the supermethod s tep-case  has the submethods ripple,
fer t i l i ze ,  and elementary. These, supermethods are expanded during the planning.

We want the decision when to  expand a supermethod to  depend on the planning situation, the
available resources, and on the method itself. Hence, we extend the notion of supermethods. This
extension takes into account that supermethods have two faces: one that exhibits the features
of  a method and another that amounts to ,  possibly complicated,® control knowledge. Therefore,
our supermethods are methods that have premises and conclusions and at the same time provide
control knowledge on how to  build the expansion of the supermethod. Importantly, the control
knowledge guiding the construction of the subplan can be specific for a particular supermethod
because supermethods have the slot submethods and the slot control, as in the examples below.

How does the expansion of supermethods work currently?
A problem is created (containing one goal only). Then the planner is called with the set of meth-
ods given in the slot submethods. The sequence of methods in ‘submethods’ is the one in which
the application of submethods is tried. Instead of the usual backtracking in planning, the super-
method’s planning stops when no method is applicable. It returns the eventual resulting changes
of the planning state. Supermethods for planning the limit-class theorems are:

Sat least more complicated than the ordering of  submethods as in  CIAM.
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name submethods control-rules 
SOLVE-b Solve<b AndI 
SOLVE-f Solve<f AndE dismiss-a<b 
SOLVE* Solve* AndI Solve=b Solve*<b 
NOR1IAL ImpI EquivI Skolem-b AndI 
UNWRAPHYP Focus IncreaseHyp AndE Skolem-f 

Backchain 
choose-focus 
increase-hyps attack-focus 

NORMAL unpacks a goal similarly to simplification tactics . NORMAL is applicable if the input 
goal sequent's formula is not atomic. 

supermethod: NORMAL 

character unpredictable 

meta-var: LIST term: 1J1 

EBLIST 

eLl 

1J1 = formula(L1) & '" atom(lli) 

declaration 

premises 

conclusions 

appl-cond. 

submethods ImpI EquivI Skolem-b AndI 

control 0 
SOLVE-b integrates unpacking and solving conjunctive inequality goals. Its applicability con

dition reads as follows. If < occurs in the formula of L1, then try to apply the method. 

supermethod: SDLVE-b 

character unpredictable 

declaration meta-var: LIST term: F, 

premises EBLIST 

conclusions eLl 

appl-cond. F= formula(Ll) & ",(termoccs(< F) = emptylist) 

submethods (Solve< b AndI) 

control 0 
More interestingly, Solve* integrates all steps that are necessary to remove an inequality goal 

with the help of a similar assumption. The application condition says that a and a' from the 
assumption ... I- a < b and from the goal ... I- a' < c have to be unifyable. 

supermethod: SOLVE* 

character unpredictable 

declaration term: a,a' ,b,c meta-var: LIST 

premises L1, EBLIST 

conclusions eL2 

appl-cond. 
formula(L1)'- a < b & 
formula(L2)= a' < b & 
a+- termmgu(a'a) 

submethods Solve* AndI Solve= Solve*<b 

control 0 
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name submethods control-rules
SOLVE-b Solve<b Andl
SOLVE-f Solvef AndE dismiss-a<b
SOLVE* Solve* AndI  Solve=b Solve*b
NORMAL Impl Equivl  Skolem-b Andl
UNWRAPHYP | Focus IncreaseHyp AndE Skolem-f | choose-focus

Backchain increase-hyps attack-focus

NORMAL unpacks a goal similarly to  simplification tactics . NORMAL is applicable if the input
goal sequent’s formula is not atomic.

supermethod: NORMAL
character unpredictable
declaration | meta-var: LIST term: ¥
premises LIST
conclusions | eL1
appl-cond. | ¥ = formula(L1) & ~ atom(¥)

submethods | Impl EquivI Skolem-b AndI

control 0

SOLVE-b integrates unpacking and solving conjunctive inequality goals. Its applicability con-
dition reads as follows. If < occurs in the formula of L1, then try to  apply the method.

supermethod: SOLVE-b

character unpredictable

| declaration | meta-var: LIST term: F ,

premises LIST
conclusions | SL1

appl-cond. | F=  formula(L1) & ~(termoccs(< F) = emptylist)
submethods | (Solve<b And)
control 0

More interestingly, So lve*  integrates all steps that are necessary to  remove an  inequality goal
with the help of  a similar assumption. The application condition says that a and a’ from the
assumption . . .  a < b and from the goal . . .  I a’  < ¢ have to be unifyable.

supermethod: SOLVE

character unpredictable

declaration | term: a,a’,b,c meta-var: LIST

premises L1 ,  ®LIST

conclusions | ©L2
formula(Ll)=a <b  &

appl-cond. | formula(L2)=ad' <b  &
o + termmgu{a’a)

submethods | Solve* AndI Solve= Solve*<b

| control ()
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Our most interesting supermethod is UNWRAPHYP. It decomposes an assumption such that a 
particular subformula 5 is extracted. In order to focus the attention to 5, Focus has to color 
5. The decomposition is continued until 5 is obtained, Le., an assumption that is all colored. 
As opposed to 'unpredictable', the 'predictable' classification means that the main output can be 
anticipated without actually expanding the supermethod. For UNWRAPHYP this holds because the 
eventually resulting assumption is marked by a focus before applying UNWRAPHYP. However, the 
anticipation may not be reliable and in particular, it does not provide the subgoals LIST that 
arise during the full expansion. 

supermethod: UNWRAPHYP (ass, pos, goal) 

character predictable 

term: F, meta-var: LIST declaration 

premises eLl 

EBLIST 

(Focus, IncreaseHyp, AndE Skolem-f Backchain) 

conclusions 

appl-cond. 

submethods 

control (choose-focus, increase-hyps, attack-latest) 

In a multi-strategy planner, the expansion of supermethods can be one of the refinement strate
gies available to the planner. This expansion strategy yields the subplan that is introduced into 
the PDS at a hierarchically lower level, under the supermethod node. In case the invocation of re
finement strategies is controlled by control-rules, the expansion can be invoked flexibly ,depending 
on the planning state and history as well as on resources and properties of the respective super
method. For instance, the supermethod UNWRAPHYP does not have to be expanded immediately 
because a main output can be determined before actually expanding the method. However, an 
expansion could be preferred if enough resources are available and if the user wants to check the 
ND-proof. However, for some supermethods none of the resulting goals and assumptions can be 
predicted without actually expanding the method. In this case, an expansion will take place right 
away. 

3.2 Combination of Proof Planning with Constraint Solving 

In many mathematical proofs, logical steps are naturally combined with specialized reasoning such 
as computing integrals, solving polynomial equations, and finding instantiations of existentially 
quantified variables. For the construction of mathematical objects with certain properties, for 
example the existentially quantified 8 in LIM+, pure proof planning can be difficult because 
infinitely many potential instantiations of the variable (the "object") may exist. A way to delay 
the instantiation (until the plan is completed) is the incremental restriction of the range of the 
variable by a domain-specific constraint solver that is combined with the planner. 

Some of the advantages of integrating constraint solving are 

• Logic	 and planning, respectively, provide very general data structures. Often, however, it 
is convenient to represent objects by specialized data types that can be efficiently handled, 
e.g., for rational and real numbers [17] . 

•	 For many constraints there exist very efficient specialized procedures for constraint solving 
(consistency check, entailment check, and simplification), e.g., for finite integer domains [16], 
for sets [35], etc. 
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Our most interesting supermethod is UNWRAPHYP. It decomposes an assumption such that a
particular subformula S is extracted. In order to focus the attention to S, Focus has to color
S. The decomposition is continued until S is obtained, i.e., an assumption that is all colored.
As opposed to ‘unpredictable’, the ‘predictable’ classification means that the main output can be
anticipated without actually expanding the supermethod. For UNWRAPHYP this holds because the
eventually resulting assumption is marked by  a focus before applying UNWRAPHYP. However, the
anticipation may not be reliable and in particular, i t  does not provide the subgoals LIST that
arise during the full expansion.

| supermethod: UNWRAPHYP (ass, pos, goal)

character predictable

declaration | term: F ,  meta-var: LIST

premises ell
conclusions | @LIST

appl-cond.

submethods | (Focus, IncreaseHyp, AndE Skolem-f Backchain)

| control (choose-focus, increase-hyps, attack-latest)

In  a multi-strategy planner, the expansion of  supermethods can be  one of  the  refinement strate-
gies available to  the planner. This expansion strategy yields the subplan that is introduced into
the PDS at a hierarchically lower level, under the supermethod node. In  case the invocation of  re-
finement strategies is controlled by control-rules, the expansion can be invoked flexibly ,depending
on  the planning state and history as well as on  resources and properties of  the respective super-
method. For instance, the supermethod UNWRAPHYP does not have to  be expanded immediately
because a main output can be determined before actually expanding the method. However, an
expansion could be  preferred if enough resources are available and if the user wants to  check the
ND-proof. However, for some supermethods none of the resulting goals and assumptions can be
predicted without actually expanding the method. In this case, an expansion will take place right
away.

3.2 Combination of  Proof  Planning with Constraint Solving
In  many mathematical proofs, logical steps are naturally combined with specialized reasoning such
as computing integrals, solving polynomial equations, and finding instantiations of existentially
quantified variables. For the construction of mathematical objects with certain properties, for
example the existentially quantified § in LIM+, pure proof planning can be difficult because
infinitely many potential instantiations of the variable (the “object”) may exist. A way to delay
the instantiation (until the plan is completed) is the incremental restriction of the range of the
variable by  a domain-specific constraint solver that is  combined with the planner.

Some of the advantages of integrating constraint solving are

e Logic and planning, respectively, provide very general data structures. Often, however, it
is convenient to  represent objects by specialized data types that can be efficiently handled,
e.g., for rational and real numbers [17].

e For many constraints there exist very efficient specialized procedures for constraint solving
(consistency check, entailment check, and simplification), e.g., for finite integer domains [16],
for sets [35], etc.
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3.2.1 General Framework for Constraint Solving 

Jaffar and Maher suggest an abstract procedural semantics for constraint solvers in [21]. We 
briefly review9 this framework and then we present below our self-made constraint solver LINEQ 
that implements the necessary operations. 

A constraint solver acts upon a constraint state, (C, S), where C and S are multisets of con
straints. C is the set of so-called active constraints (constraint store) and S is the set of so-called 
passive constraints. There is one other state denoted by fail. Constraint solving is modeled by a 
transition system that is parametrized by a predicate consistent and a function infer. Three 
transitions of the constraint state are -7c, -7i, -7 8 , 

(C, S) -7c (C, SUe) 

if c is a constraint told to the constraint solver, 

(C,S) -7i (C',S') 

if (C',S') = infer(C,S). 
(C, S) -7 8 (C, S) 

if consistent(C) or else 
(C, S) -7 8 fail. 

The -7c transitions introduce constraints into the constraint solver, -78 transitions test whether 
the constraint store is consistent, and -7i transitions infer more active constraints (and possibly 
modify the passive ones). 

A tell c constraint is handled by -7Ci8 transitions; and an ask constraint c is handled by -7ci 

transitions with (C, S) -7i (C, S - {c}). ask constraints are tested for entailment from C only. 
For instance, in planning LIM+, the ask constraint (0 « 1) is entailed by (0 < D) and (D < d1 ) 

from the constraint store. 
In order to implement the abstract operational model of constraint solvers, several operations 

have to be implemented. These include: a satisfiability test to implement consistent and 
infer and the projection of the constraint state onto a set of variables to compute an answer 
constraint from the final store. For the extraction of answer, the problem at hand is to obtain a 
useful representation of the projection of constraints C w.r.t. a given set of variables. Usability 
usually means conciseness and readability [21]. 

Most constraint solving systems represent constraints in C in a solved form which is a conve
nient representation of the projection of the solution space with respect to any set of variables. 
Usually, solved form means a format in which satisfiability of C is evident. 

3.2.2 Combining Proof Planning with Constraint Solving 

In proof planning, the constraint-handling component serves two main purposes: Firstly, it is used 
during the process of proof planning to determine whether a Solve method can be legally applied. 
This is realized by checking consistency or entailment of a constraint with the constraint store. 
Secondly, after the completion of the proof plan, the constraint store is condensed into an answer 
assertion answer about the values of variables. answer is the starting assumption for the final 
textbook style proof as discussed in section 5. It justifies inequalities and equalities that follow 
from the final constraint store. 
Interface 
An interface between proof planning and constraint solving can be provided by methods. For 
proof planning limit theorems, the most important methods at the interface between the proof 
planning and constraint-handling component are Solve<b, Solve<f, Solve=b, and Solve*<b. 
Their purpose is to remove an equational or an inequality goal by adding it to the constraint 

9The review is simplified because we do not consider constraint states that include formulae that are not 
constraints because we do not combine logical and constraint inferences in one calculus. 
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3 .2 .1  General Framework for Constraint Solving

Jaffar and Maher suggest an abstract procedural semantics for constraint solvers in  [21]. We
briefly review? this framework and then we present below our self-made constraint solver LINEQ
that implements the necessary operations.

A constraint solver acts upon a constraint state, (C ,S ) ,  where C and S are multisets of  con-
straints. C is the set of so-called active constraints (constraint store) and $ is the set of so-called
passive constraints. There is one other state denoted by fail. Constraint solving is modeled by a
transition system that is parametrized by a predicate consistent and a function in fer .  Three
transitions of  the constraint state are —. ,  —; ,  —s,

(C,S8) =:  (C,Suc)
i f  c is a constraint told to the constraint solver,

( € ,8 )  =:  (C ' ,  8")

if (C",S') = infer(C,S).
(C,S) = ,  (C, 8)

if consistent(C) or else
(C,S) = ;  fail.

The —.  transitions introduce constraints into the constraint solver, — transitions test whether
the constraint store is consistent, and —;  transitions infer more active constraints (and possibly
modify the passive ones).

A te l l  c constraint is handled by  —. ; ,  transitions; and an  ask constraint c is handled by  —¢;

transitions with (C,S) —; (C,S — {c}). ask constraints are tested for entailment from C only.
For instance, in  planning LIM+,  the ask constraint (0 < &,) is entailed by (0 < D)  and (D  < d;)
from the constraint store.

In order to  implement the abstract operational model of constraint solvers, several operations
have to be implemented. These include: a satisfiability test to implement consis tent  and
infer and the projection of  the constraint state onto a set of  variables to compute an answer
constraint from the final store. For the extraction of answer, the problem at hand is to  obtain a
useful representation of  the projection of  constraints C w.r . t .  a given set of  variables. Usability
usually means conciseness and readability [21].

Most constraint solving systems represent constraints in C in a solved form which is  a conve-
nient representation of the projection of the solution space with respect to  any set of variables.
Usually, solved form means a format in  which satisfiability of C is evident.

3.2.2 Combining Proof  Planning with Constraint Solving

In  proof planning, the constraint-handling component serves two main purposes: Firstly, it is  used
during the process of  proof planning to determine whether a Solve method can be legally applied.
This is realized by checking consistency or entailment of a constraint with the constraint store.
Secondly, after the completion of the proof plan, the constraint store is condensed into an answer
assertion answer about the values of variables. answer is the starting assumption for the final
textbook style proof as discussed in section 5 .  It justifies inequalities and equalities that follow
from the final constraint store.
Interface
An  interface between proof planning and constraint solving can be provided by methods. For
proof planning limit theorems, the most important methods at the interface between the proof
planning and constraint-handling component are So lvecb,  So lvec f ,  Solve=b, and Solve*,b.
Their purpose is to remove an equational or an inequality goal by adding it to the constraint

9The review is simplified because we do not consider constraint states that include formulae that are not
constraints because we do not combine logical and constraint inferences in  one calculus.
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state. Each of the Solve methods is applicable only if the function called returns true. In this 
case, it will later be possible to derive the proved inequality from the final constraint store. 

The functions tell and ask, respectively, are invoked by the Solve methods and access the 
constraint solver. Which function to call depends on the kind of constraint. tell(c) checks the 
consistency of c with the current constraint store C and may add the (in)equality to C, whereas 
ask(c) checks whether (c) is entailed by C. 

Through the application conditions Solve<b,Solve=b, and Solve*b determine whether a goal 
(a < b) or (a = b), respectively, is a tell-constraint or ask-constraint. The access of the con
straint solver via tell is chosen when the inequality at hand contains a (existentially quantified) 
variable that can be solved for. Otherwise, ask is chosen. The reason is that an (in)equality goal 
(a < b) that contains constants and universally quantified variables only, e.g. 0 < 01, cannot be 
introduced into the constraint store without a loss of generality of the proof, whereas implicitly 
existentially quantified variables can. For an assumption the situation is different, of course. It 
can be introduced into the constraint store in any case. For instance, for an assumption like 
VOl (<51 > 0 --t ...), 01 is universally quantified; its restriction (01 > 0) is assumed as a hypothesis 

3.2.3 The Constraint Solver LINEQ 

For the first experiments we used our own constraint solver LINEQ that is capable of handling 
value constraints that are expressed by linear equalities and inequalities over R that may contain 
terms val(x) for a variable or constant x. LINEQ was motivated by a particular application, so 
the general-purpose domain RLin 10 has been extended by the ad-hoc addition of the absolute 
value function val and an internal handling of this interpreted function. For instance, valet) < 0 
is trivially invalid. 

For tell-constraints LINEQ checks the consistency of an input with the constraint store and 
propagates value restrictions. In the process of planning a proof, the constraint state will be mod
ified with every application of Solve<b or similar methods. Every time a new inequality is passed 
to LINEQ, it is necessary to immediately decide the consistency of the original store with the 
new inequality. This situation calls for a representation of the constraint store by a solved form 
in which every constraint of a variable that can possibly be propagated is stored explicitly. The 
explicit representation of the constraint stores also facilitates backtracking to earlier PDS nodes 
(or planning states) by storing complete constraint stores in nodes. 

Constraint Representation 
In order to be able to handle equalities as well as inequalities, we consider "equality classes" of 
terms that have been claimed to be equal at some point in the planning process by adding a 
respective equality. The constraint store is represented as a (disjunctive) list of branches, each of 
which contains (for every known equality class) lists of terms that denote upper and lower bounds. 
This representation allows for case splits: For example, the solution of the inequality a· x < 1 for x 
has two branches, one where a is negative and one where it is positive. In such a pase, the branch 
of the constraint store that has been worked on would be split in two, each of them containing 
one of the solutions. 

Every time a new tell-constraint (equality or inequality) is added, the constraints is prop
agated until no new information can be extracted. This is necessary for a consistency check, 
anyway, and ensures that the constraint store is always represented explicitly. 

Some Functions of LINEQ 
LINEQ has functions to initialize the constraint state, to check the (in)consistency of a constraint 
store, to solve a linear (in)equality for a variable, to propagate constraints, and to project a 
constraint store onto a set of variables. 

The constraint store component of the first planning state is initialized with { [ ] }, Le., the 
constraint store that only contains the empty branch. 

lOnLin denotes the domain of linear arithmetic over the real numbers with the function symbol + and the 
predicate symbols =, <,::;. 
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state. Each of  the Solve methods is applicable only i f  the function called returns true. In this
case, it will later be possible to derive the proved inequality from the final constraint store.

The functions te l l  and ask,  respectively, are invoked by  the Solve methods and access the
constraint solver. Which function to call depends on the kind of constraint. te l l (c)  checks the
consistency of  c with the current constraint store C and may add the (in)equality to  C ,  whereas
ask(c) checks whether (c) is entailed by C.

Through the application conditions Solveb,Solve_b,  and Solve*b determine whether a goal
(a < b) or (a = b), respectively, is a tell-constraint or ask-constraint. The access of the con-
straint solver via te l l  is chosen when the inequality at hand contains a (existentially quantified)
variable that can be solved for. Otherwise, ask is chosen. The reason is that an (in)equality goal
(a < b) that contains constants and universally quantified variables only, e.g. 0 < §;, cannot be
introduced into the constraint store without a loss of generality of the proof, whereas implicitly
existentially quantified variables can. For an  assumption the situation is different, of  course. It
can be introduced into the constraint store in any case. For instance, for an assumption like
Vd,(6; > 0 = . . . ) ,  6; is universally quantified; its restriction (4; > 0) is assumed as a hypothesis

3.2.3 The Constraint Solver LINEQ

For the first experiments we used our own constraint solver LINEQ that is capable of handling
value constraints that are expressed by  linear equalities and inequalities over R that may contain
terms val(z) for a variable or constant x .  LINEQ was motivated by a particular application, so
the general-purpose domain R ı i n !®  has been extended by  the ad-hoc addition of the absolute
value function val and an internal handling of this interpreted function. For instance, val(t) <0
is  trivially invalid.

For tell-constraints LINEQ checks the consistency of an input with the constraint store and
propagates value restrictions. In the process of  planning a proof, the constraint state wil l  be mod-
ified with every application of  Solve.b or similar methods. Every time a new inequality is passed
to LINEQ, i t  is necessary to immediately decide the consistency of the original store with the
new inequality. This situation calls for a representation of the constraint store by a solved form
in which every constraint of  a variable that can possibly be  propagated is stored explicitly. The
explicit representation of the constraint stores also facilitates backtracking to  earlier PDS nodes
(or planning states) by storing complete constraint stores in nodes.

Constraint Representation
In order to  be able to  handle equalities as well as inequalities, we consider “equality classes” of
terms that have been claimed to be equal at some point in the planning process by adding a
respective equality. The constraint store is represented as a (disjunctive) list of branches, each of
which contains (for every known equality class) lists of terms that denote upper and lower bounds.
This representation allows for case splits: For example, the solution of the inequality a-z  < 1 for z
has two branches, one where a is negative and one where it is positive. In  such a case, the branch
of  the constraint store that has been worked on would be split in  two, each of  them containing
one of  the solutions.

Every time a new tell-constraint (equality or inequality) is added, the constraints is prop-
agated until no new information can be extracted. This is necessary for a consistency check,
anyway, and ensures that the constraint store is always represented explicitly.

Some Functions o f  LINEQ
LINEQ has functions to  initialize the constraint state, to  check the (in)consistency of a constraint
store, to solve a linear (in)equality for a variable, to propagate constraints, and to project a
constraint store onto a set of variables.

The constraint store component of  the first planning state is initialized with { [ J } ,  i.e., the
constraint store that only contains the empty branch.

10R,;.,» denotes the domain of linear arithmetic over the real numbers with the function symbol + and the
predicate symbols = ,  <,<.

21



The add-inequality and add-equality functions tell new information to the store and prop
agate it. Applying the Solve<b method in a planning state calls the add-inequality' function, 
passing as arguments the old constraint store and an inequality. If these are consistent with 
each other, the function returns a new constraint store that contains all information that could 
be propagated from them. The Solve=b method uses the add-equality' function in the same 
manner. The algorithm to add an inequality to the constraint store is described in the following 
pseudocode. 

Adding an inequality a < b to a branch B: 
add-inequality (B. a < b. H): 

IF a < b is trivially invalid THEN RETURN { } 
ELSE IF a < b is trivially valid THEN RETURN { B } 
ELSE IF a < b contains no variables THEN RETURN { } 
ELSE IF a < b appears in the history H THEN RETURN { } 
ELSE 

R := \emptyset 
FOR every variable x in a and b DO 

Solve a < b for x 
FOR every possible solution DO 

B' := B 
B" := \emptyset 
IF the solution yields an upper bound u for x THEN 

IF the upper bound is not already entailed by the branch THEN 
Upper (x) := Upper(x) \cup {u} (in B') 
S' := { B' } 
FOR every lower bound 1 of x DO 
S' := add-inequality'(S', 1 < u, H \cup { a < b }) 

FOR every side condition C of the solution DO 
S' := add-inequality'(S', C. H \cup { a < b }) 

IF the solution yields a lower bound 1 for x THEN 
(analogously) 

R := R \cup B" 
RETURNR 

Adding an equality a = b to a branch B: 
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The add-inequality  and add-equality functions tell new information to the store and prop-
agate i t .  Applying the Solve.b  method in  a planning state calls the add-inequality”’ function,
passing as arguments the old constraint store and an inequality. If these are consistent with
each other, the function returns a new constraint store that contains all information that could
be  propagated from them. The Solve—b method uses the add-equal i ty’  function in the same
manner. The algorithm to add an inequality to  the constraint store is described in the following
pseudocode.

Adding an inequality a < b to a branch B:
add-inequal i ty(B, a < b ,  H ) :

IF a < b i s  tr iv ial ly invalid THEN RETURN { }
ELSE IF a < b i s  t r iv ia l ly  valid THEN RETURN { B }
ELSE IF a < b contains no variables THEN RETURN { }
ELSE IF a < b appears in  the history H THEN RETURN { }
ELSE
R :=  \emptyset
FOR every variable x in  a and b DO

Solve a < b fo r  x
FOR every poss ib le  solut ion DO

B? :=B
B’? : =  \emptyset
IF  the solut ion y ie lds an upper bound u fo r  x THEN

IF the upper bound i s  not already entai led by  the branch THEN
Upper ( x )  : =  Upper(x)  \cup {u} ( i n  B?)
S ’  : = {B ” }
FOR every lower bound 1 of  x DO

S$’ : =  add- inequa l i t y ’ (S ’ ,  1 <u ,  H\cup{ a<b } )
FOR every s ide condi t ion C of  the solut ion DO

S’  :=  add- inequa l i ty ’ (8 ’ ,  C, H\cup { a  <b  } )
IF  the solut ion y ie lds a lower bound 1 for  x THEN

(analogously)
R :=  R \cup B ” ’

RETURN R

Adding an equality a = b to a branch B:
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add-equality(B, a = b): 
IF a = b is trivially invalid THEN RETURN { } 

ELSE IF a = b is trivially valid THEN RETURN { B } 
ELSE IF a = b contains no variables THEN RETURN { } 
ELSE 

FOR every variable x in a and b DO 
RHS := Solve=(a = b, x) 
Ex := equality class of x in B 
IF RHS doesn't appear in Ex THEN 
IF RHS is in the equality class of another variable THEN 

; merge the ECs 
Er := equality class of RHS in B 
B' := remove Er from B 
FOR every r in Er DO 

B' := add-equality(B', x = r) 
S' := { B' } 
FOR every upper bound u of Ex and every lower bound 1 of Er DO 
S' := add-inequality'(S', 1 < u) 

FOR every lower bound 1 of Ex and every upper bound u of Er DO 
S' := add-inequality'(S', 1 < u) 

RETURN S' 
ELSE 

B' := add r to the equality list of x 
S' := { B' } 
FOR every member t of Ex except for x and t DO 

S' := add-equality'(S', r = t) 
FOR every upper border u of Ex DO 

S' := add-inequality' (S', r < u) 

FOR every lower border 1 of Ex DO 
S' := add-inequality'(S', 1 < r) 

RETURN S' 

The add-inequality function takes as arguments an inequality and a branch of a constraint 
store; it returns a list of branches that describe all possible situations satisfying both the old 
branch and the new inequality. The add-inequality' function is its extension that takes an 
entire list of branches and executes add-inequality on each branch. 

First, some conditions about the consistency or inconsistency of the inequality are testedll ; 

moreover, we test if the inequality appears in a history list Hto avoid loops. Then the inequality 
is solved for each variable that it contains. A solution of a linear inequality is an upper or lower 
bound for the variable along with a number of side conditions. (Side conditions discriminate 
among different branches of the solution. In the example of a . x < 0 above, one solution would 
have a side condition of a < 0 and a lower bound of 0 for x, the other would have a side condition 
of a> 0 and an upper bound of 0 for x.) If this bound is not already known (if, for example, we 
obtain an upper bound that is a number greater than another number that already appears in the 
list of upper bounds), it is inserted into the appropriate bound list for the variable and compared 
against the bounds of the other side. This comparison produces several new inequalities that are 
recursively added to the constraint store. Afterwards, all side conditions are added to the store. 
These steps can produce several new branches, one for every branch of the inequality's solution. 
A branch can be closed, Le. removed from the constraint store, if it contains an inconsistency 
(for example, inequalities of the form x < x or 0 < -1 are trivially invalid). A constraint store is 
inconsistent if it contains no more open branches. 

The add-equality function, which takes as argument an equality and a branch and returns 

11 Of course, we can only employ a number of heuristics to test for obvious situations; general validity of arithmetic 
inequalities is undecidable. 
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add-equal i ty (B,  a = b ) :
IF a = b i s  t r iv ia l ly  inval id THEN RETURN { }

ELSE IF  a = b i s  t r iv ia l ly  va l id  THEN RETURN { B }
ELSE IF  a = b contains no var iables THEN RETURN { }
ELSE

FOR every var iable x in  a and b DO
RHS :=  Solve=(a = b ,  x )
Ex : =  equali ty c lass o f  x i n  B
IF  RHS doesn ’ t  appear in  Ex THEN
IF RHS i s  in  the equali ty c lass o f  another variable THEN

; merge the ECs
Er :=  equality c lass  of  RHS in  B
B ’  : =  remove Er  f rom B
FOR every r in  Er  DO
B ’  : =  add-equa l i t y (B ’ ,  x = r )

8 ’  : = {B }
FOR every upper bound u o f  Ex and every lower bound 1 of  Er  DO

S’  : =  add- inequa l i t y ’ (S ’ ,  1 < u)
FOR every lower bound 1 o f  Ex and every upper bound u of  Er  DO

S’  : =  add- inequa l i t y ’ (S ’ ,  1 < u)
RETURN S°’

ELSE
B ’  : =  add r t o  the equality l i s t  o f  x
S’ : = {B ’ }
FOR every member t o f  Ex  except for  x and t DO

S ’  : =  add-equal i ty ’ (S8’ ,  r = t )
FOR every upper border u of  Ex DO

8 ’  : =  add - i nequa l i t y ’ (S ’ ,  r < u)
FOR every lower border 1 o f  Ex DO

S ’  : =  add - i nequa l i t y ’ (S ’ ,  1 < r )
RETURN S ’

The add-inequality function takes as arguments an inequality and a branch of a constraint
store; it returns a list of branches that describe all possible situations satisfying both the old
branch and the new inequality. The add-inequality’ function is its extension that takes an
entire list of branches and executes add-inequality on each branch.

First, some conditions about the consistency or inconsistency of the inequality are tested!!;
moreover, we test i f  the inequality appears in a history list H to  avoid loops. Then the inequality
is solved for each variable that it contains. A solution of a linear inequality is an upper or lower
bound for the variable along with a number of side conditions. (Side conditions discriminate
among different branches of the solution. In the example of a - x < 0 above, one solution would
have a side condition of a < 0 and a lower bound of 0 for z ,  the other would have a side condition
of a > 0 and an upper bound of 0 for x.) If this bound is not already known (if, for example, we
obtain an  upper bound that is a number greater than another number that already appears in  the
list of upper bounds), it is inserted into the appropriate bound list for the variable and compared
against the bounds of  the other side. This comparison produces several new inequalities that are
recursively added to the constraint store. Afterwards, all side conditions are added to the store.
These steps can produce several new branches, one for every branch of the inequality’s solution.
A branch can be closed, i.e. removed from the constraint store, if it contains an inconsistency
{for example, inequalities of the form x < z or 0 < —1 are trivially invalid). A constraint store is
inconsistent if  i t contains no  more open branches.

The add-equality function, which takes as argument an equality and a branch and returns

110f  course, we can only employ a number o f  heuristics to  test for obvious situations; general validity of  arithmetic
inequalities is undecidable.
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a list of branches, is extended to the function add-equality' operating on lists of branches in 
the same manner as add-inequality is extended to add-inequality'. After some preliminary 
tests for obvious validity and invalidity of the argument equality, it is solved for every variable x 
it contains. This time, a solution is simply a term, called RHS in the pseudocode. There are three 
possible cases for RHS. 

1.	 RHS is already known to be equal to x, i.e. it is a member of its equality list. Then we are 
already done. 

2.	 RHS is in the equality list of any other variable. Then we successively add every member 
of RHS's equality list to x's equality list. Every time we add a new member, we obtain a 
number of new equalities (to the former members of the equality list) and inequalities (to the 
upper and lower bounds of x), which are recursively added to the store. We also recursively 
add all inequalities of the form l < u, where l is a lower bound of either x or RHS and u is 
an upper bound of the other class. 

3. RHS	 isn't in the equality list of any other variable. Then we add it to the equality list of 
x, obtaining a number of new equalities (to the former members of the equality list) and 
inequalities (to the upper and lower bounds), just like in the previous case. 

The Projection Function 
In constraint solvers, the projection of a constraint Co onto variables x to obtain a constraint 
Cl such that R F Cl t+ 3x.Co. The projection aims at computing the simplest Cl with fewest 
quantifiers. (In general it is not possible to eliminate all uses of the existential quantifier.) 

In a ND-proof that can be produced from the proof plan, every goal that was removed by a 
Solve method by planning must be logically justified. As we said above, we achieve this by at the 
beginning of the proof asserting the formula answer that is a projection of the final constraint store 
w.r.t. the (implicitly existentially quantified) variables. From this formula, every line that was 
justified by adding an (in)equality to the constraint store follows by means of logic and arithmetic. 
This formula answer can be extracted from the final constraint store in a very straightforward 
way: Without loss of generality, choose on of the branches of the constraint store and transform 
it into a conjunction of (in)equalities. 

Example 
Let us consider an example. In the proof of the LIM+ theorem, the following constraints are told 
to the constraint solver in a row: 0 < D, 1 < M,El < div(€,2 * M),x = X l ,E2 < div(€,2),x = 
X 2 , D < 82 , D < 81 . From the constraints 1 < M and El < div(€,2 * M), for instance, the new 
upper bound div(€,2) of El is propagated. 

This leads to several applications of the add-inequality' and add-equality' functions and 
to a final constraint store that looks as follows: 

0< E2 < div(€, 2);
 
0< D < 82 ,81 ;
 

0< El < div(€, (2 * M», div(€, 2);
 
1 < M < div(€, (2 *Ed)
 
- 00 < Xl = X =X 2 < +00
 

That is, a lower bound for E2 is 0 and an upper bound for E2 is 1/2 * €; a lower bound for D 
is 0 and an upper bounds are 81 ,82 , etc. The above constraint store contains a single branch that 
contains information about five equality classes, most of which only contain a single variable; x, 
Xl, and X2, however, have been collected in one equality class. 

Suppose we wanted to introduce another inequality M < El: Both variables are existentially 
quantified, so this would add El to the list of upper bounds of M and recursively add the inequality 
1 < El (which, in turn, will produce inequalities 1 < u for every upper bound u of Ed. Likewise, 
we would have to add M to the list of lower bounds of El and recursively add, for every upper 
bound u of El, the inequality M < u. 

24 

a list of branches, is extended to the function add-equali ty’  operating on lists of branches in
the same manner as add-inequali ty is extended to  add~inequal i ty ’ .  After some preliminary
tests for obvious validity and invalidity of  the argument equality, i t  is solved for every variable x
i t  contains. This time, a solution is simply a term, called RHS  in the pseudocode. There are three
possible cases for RHS.

1. RHS is already known to be equal to  z ,  i.e. it is a member of its equality list. Then we are
already done.

2. RHS is in the equality list of any other variable. Then we successively add every member
of RHS’s equality list to  z’s equality list. Every time we add a new member, we obtain a
number of new equalities (to the former members of  the equality list) and inequalities (to the
upper and lower bounds of z),  which are recursively added to the store. We also recursively
add all inequalities of the form / < u ,  where [ is a lower bound of either z or RHS and u is
an upper bound of the other class.

3. RHS isn’t  in the equality list of  any other variable. Then we add it t o  the equality list of
z,  obtaining a number of new equalities (to the former members of the equality list) and
inequalities (to the upper and lower bounds), just like in the previous case.

The Projection Function
In constraint solvers, the projection of a constraint co onto variables T to obtain a constraint
¢ such that R |= c ı  & IT.co. The projection aims at computing the simplest c ı  with fewest
quantifiers. (In general it is not possible to  eliminate all uses of the existential quantifier.)

In a ND-proof that can be produced from the proof plan, every goal that was removed by a
Solve  method by  planning must be  logically justified. As  we said above, we achieve this by  at  the
beginning of the proof asserting the formula answer that is a projection of the final constraint store
w.r.t. the (implicitly existentially quantified) variables. From this formula, every l ine that was
justified by  adding an (in)equality t o  the constraint store follows by  means of  logic and arithmetic.
This formula answer can be extracted from the final constraint store in a very straightforward
way: Without loss of generality, choose on of the branches of the constraint store and transform
it into a conjunction of (in)equalities.

Example
Let us consider an example. In the proof of  the LIM+ theorem, the following constraints are told
to the constraint solver in a row: 0 < D ,1  < M ,  E ;  < d i v (e ,2 *  M ) , z  = X i , Ey < div(e,  2 ) ,  =
X2 ,D  < 82 ,0  < 4; .  From the constraints 1 < M and E;  < div(e,2 * M), for instance, the new
upper bound div(e, 2) of E,  is propagated.

This leads to  several applications of the add-inequality’ and add-equality’ functions and
to  a final constraint store that looks as follows:

0 < EB; < div(e,  2);
0<D<  682,6;
0 < Ey < div(e, (2 x M)), div(e, 2);
1<  M <div(e, (2 * Eı))
—00< X i  =15=X5<+00

That is, a lower bound for E,  is 0 and an upper bound for E;  is 1/2  * ¢ ;  a lower bound for D
is 0 and an upper bounds are 01,02, etc. The above constraint store contains a single branch that
contains information about five equality classes, most of  which only contain a single variable; z ,
Tp ,  and z2 ,  however, have been collected in one equality class.

Suppose we wanted to  introduce another inequality M < E; :  Both variables are existentially
quantified, so this would add FE; to  the list of  upper bounds of M and recursively add the inequality
1 < E;  (which, in turn, will produce inequalities 1 < u for every upper bound u of Ey). Likewise,
we would have to  add M to  the list of  lower bounds of  E ,  and recursively add, for every upper
bound u of  Ej, the inequality M < u .
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From the final constraint store of the LIM+ plan, our current projection algorithm that is 
similar to Bledsoe's SupInf, computes the answer w.r.t. El, E2 , D 
o< E2 1\ E2 < ~ 1\ 0 < D 1\ D < 82 1\ D < 81 1\ 0 < El 1\ El < ~ 1\ 
which contains the core assumption a mathematician would make in the proof, namely, "Let 
€l < ~,€2 < ~,8 < min{82 , <5d·" Sometimes an answer contains conjuncts that are not relevant 
for the proof. 

Using a more General Constraint Solver 
Actually, we could have taken off-the-shelf a constraint solver for linear arithmetic over the real 
numbers, e.g., CLP(R.) [22]. In this case we would have to take care of so-called non-basic con
straints containing the interpreted absolute value function val. This can be done by employing 
lemmata about the interpreted (or user-defined) function, e.g., 0 :::; x ~ Ixl = x, as guarded 
constraints [32] or as user-defined propagators with a as done in Oz [30]. (BTW, This is similar 
to the augmentation module known from the integration of Linear Arithmetic into Nqthm.) 

In our proof planning framework, the introduction/employment of a lemma can be achieved 
in the following way: If c is a non-basic constraint that cannot be solved because it contains an 
interpreted function term t, then the constraint solver puts c into the S-part (passive constraints) 
of the constraint state (C, S). c is activated only if a lemma exists in the planning state that can 
be used to rewrite c into a basic constraint. If the lemma can be used only to rewrite c into a 
non-basic constraint c', then c is replaced in S by c'. A control-rule has to be devised that looks 
at S and, in the simplest case, selects Solve<f or Solve=f with an instantiation of its parameter 
whose lhs or rhs matches t. By applying the respective method, an (in)equality is told to the 
constraint solver that helps to solve the constraint c. That is, as opposed to constraint solvers, 
the control lives outside and is not predefined for each lemma separately. 

Suppose, for example, (val(U) < M) is a passive constraint, the assumption (0 :::; X ~ X = 
val(X)) is in the planning state, and (0 :::; U) E C. Then the constraint (U = val(U)) is told to 
the constraint solver and (val(U) < M) becomes activated, which results in the basic constraint 
(U < M) in C. 

3.3 Mathematical Control Knowledge 

In planning, several decisions have to be made. There are choices between alternatives for strate
gies, methods, goals to work on, and instantiations of variables. Control knowledge in proof 
planning is devised to reduce the alternatives and to prefer certain user-friendly proof plans. 
E.g., having certain steps belonging together as neighboring steps in a sequence may be better 
comprehensible for a user. 

Numerous experiences indicate the superiority of a separate representation of control knowl
edge by control-rules for the user's comprehension, for experiments with different rules, for mod
ifications, and for learning control knowledge. This modular and declarative representation of 
control-rules, that is similar to a small expert system, has been useful, provided the interpreta
tion works efficiently. For efficient algorithms see, e.g., the Rete-Algorithm in OPS5 or, more 
recently [12]. For a summary and evaluation, see [39]. 

In this report, we describe a control-rule mechanism. Our control-rules contain decidable 
meta-predicates, encoded in LISP functions, that inspect the current planning state, the planning 
history, resources, and the current partial proof plan. 

3.3.1 Syntax of Control-Rules 

Currently, we distinguish the following classes (kinds) of control-rules that correspond to the 
different decisions of the planner. 

• strategy 

• method 
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From the final constraint store of  the LIM+ plan, our current projection algorithm that is
similar to  Bledsoe’s SupInf, computes the answer w.r . t .  E ı ,E2 ,D
0<E2AE2z<58A0<DAD<öz2AD<656 , AOE AE <3A
which contains the core assumption a mathematician would make in the proof, namely, “Let
€ < §,62 < $ ,ö  < min{ö2,0ö1}.” Sometimes an  answer contains conjuncts that are not relevant
for the proof.

Using a more General Constraint Solver
Actually, we could have taken off-the-shelf a constraint solver for linear arithmetic over the real
numbers, e.g., CLP(R) [22]. In this case we would have to take care of so-called non-basic con-
straints containing the interpreted absolute value function val. This can be done by employing
lemmata about the interpreted (or user-defined) function, e.g., 0 < x — |z| = z ,  as guarded
constraints [32] or as user-defined propagators with a as done in Oz [30]. (BTW, This is similar
t o  the augmentation module known from the integration of  Linear Arithmetic into Nqthm.)

In our proof planning framework, the introduction/employment of a lemma can be achieved
in  the following way: If ¢ is a non-basic constraint that cannot be solved because it contains an
interpreted function term ¢ ,  then the constraint solver puts c into the S-part (passive constraints)
of the constraint state (C,S). c is activated only if  a lemma exists in the planning state that can
be used to rewrite c into a basic constraint. If the lemma can be used only to rewrite c into a
non-basic constraint ¢ ’ ,  then c is replaced in S by  ¢/. A control-rule has to  be devised that looks
at S and, in the simplest case, selects Solve<f  or Solve_f with an instantiation of  its parameter
whose lhs or rhs matches t .  By  applying the respective method, an (in)equality is told to the
constraint solver that helps to solve the constraint c. That is, as opposed to constraint solvers,
the control lives outside and is not predefined for each lemma separately.

Suppose, for example, (val(U) < M) is a passive constraint, the assumption (0 < X > X =
val(X)) is in  the planning state, and (0 < U)  € C.  Then the constraint (U  = val(U)) is told to
the constraint solver and (val(U) < M)  becomes activated, which results in the basic constraint
(U  <M)  in C.

3.3 Mathematical Control Knowledge
In  planning, several decisions have to  be made. There are choices between alternatives for strate-
gies, methods, goals to work on, and instantiations of variables. Control knowledge in proof
planning is devised to  reduce the alternatives and to  prefer certain user-friendly proof plans.
E.g., having certain steps belonging together as neighboring steps in a sequence may be better
comprehensible for a user.

Numerous experiences indicate the superiority of  a separate representation of  control knowl-
edge by  control-rules for the user’s comprehension, for experiments with different rules, for mod-
ifications, and for learning control knowledge. This modular and declarative representation of
control-rules, that is similar to a small expert system, has ‚been useful, provided the interpreta-
tion works efficiently. For efficient algorithms see, e.g., the Rete-Algorithm in OPS5 or, more
recently (12]. For a summary and evaluation, see [39].

In this report, we describe a control-rule mechanism. Our control-rules contain decidable
meta-predicates, encoded in LISP functions, that inspect the current planning state, the planning
history, resources, and the current partial proof plan.

3 .3 .1  Syntax o f  Control-Rules

Currently, we distinguish the following classes (kinds) of control-rules that correspond to the
different decisions of the planner.

® strategy

eo method
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• sequent, with the subclasses goal and assumption, 

Other kinds, such as abstraction are conceivable and planned as well as rules with an extended 
syntax that allows for a more complicated control structure. 

The syntax of control-rules in (extended) OMEGA is defined as 

Control-rule:= (control-rule <Name> 
(kind <Kind» 
(if <If-part» 
(then 

«To-do-part» 
(side-effect <Side-effect-part»)) 

The syntactic definitions are as follows 

<Name> := lisp-symbol 
<Kind> := method I sequent binding 
<If-part> := <Meta-predicate> (and <If-part> <If-part» 
<Meta-predicate> := LISP expression 
<To-do-part> := () I <Choice> I 

(and <To-do-part> <To-do-part» 
<Choice> := select <Alternative-list> I 

reject <Alternative-list> I 
prefer <Alternative-list> I 
iterate <Alternative-list> I 

<Alternative-list> := list of strategies I list of methods 
list of sequents I list of bindings 

<Side-effect-part> := () I conjunction of side-effects 

Meta-predicates return all satisfying binding alternatives in case an argument is not instan
tiated; otherwise they return a truth value. Examples for meta-predicates are current-goal(x) 
and last-method(x) which yield instantiations for x, if x is a variable. Otherwise they return the 
truth value, e.g., of current-goal(a) for the instantiation (a/x). Meta-predicates can be written 
by the user but some frequent ones are available in (extended) OMEGA. 

Choice refers to different strengths of the restriction. select and reject are stronger than prefer. 
Note that select and reject rules can result in an incompleteness ofthe planner. The iterate mode 
is an extended prefer mode. It allows for sequencing several methods by means of a control-rule. 
This mode can avoid a repeated expensive evaluation of the if-part of control-rules. Side-effects 
are LISP functions that can set flags etc. 

Interpretation of Control-Rules 

Before matching the preconditions of operators with lines of the current state, the planner presents 
a list of alternatives of a certain kind to the control-rule interpreter via an interface. The interpreter 
returns a (reduced) list of alternatives via the interface. That is, the matching and the search 
effort decreases. 

Given a list of alternatives of kind k, the interpreter processes the control-rules of kind k in the 
sequence in which they are stored. The if-parts are evaluated as long as no conjunct evaluates to 
false for at least one instantiation. select(list) returns an (ordered) list, list, of alternatives which 
is then intersected with the current list of alternatives. prefer(x) reorders the list of alternatives 
such that x is the first element if it was in the list before. reject(list) removes list from the 
current list of alternatives. i terate(list) determines the next method choices in the planning 
process according to list. 
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® sequent, with the subclasses goal  and assumption,

Other kinds, such as abstraction are conceivable and planned as well as rules with an extended
syntax that allows for a more complicated control structure.

The syntax of control-rules in (extended) OMEGA is defined as

Control-rule : =  (control-rule <Name>
(kind <K ind>)
( i f  <If-part>)
(then

(<To-do-part>)
(s ide-e f fec t  <Side-effect~part>)))

The syntactic definitions are as follows

<Name> :=  lisp-symbol
<Kind> method | sequent | binding
<I f -par t> = <Meta-predicate> | (and <I f -par t> < I f -par t>)
<Meta-predicate> :=  LISP expression
<To-do-part> : =  ( )  | <Choice> |

(and <To-do-part> <To-do-part>)
<Choice> :=  se lect  <Alternat ive- l ist> |

r e j ec t  <Al ternat ive- l is t> |
prefer  <Alternat ive- l is t> |
i terate <A l te rna t ive- l i s t> |

<Alternat ive- l ist> : =  l i s t  o f  s t ra teg ies  | l i s t  o f  methods |
l i s t  of  sequents | l i s t  o f  bindings

<Side-effect-part> i =  ( )  | conjunction of  s ide-ef fects

Meta-predicates return all satisfying binding alternatives in case an argument is not instan-
tiated; otherwise they return a truth value. Examples for meta-predicates are current-goal(z)
and last-method(z) which yield instantiations for z,  if  x is a variable. Otherwise they return the
truth value, e.g., of current-goal(a) for the instantiation (a/z). Meta-predicates can be written
by the user but some frequent ones are available in (extended) OMEGA.

Choice refers to  different strengths of  the restriction. select and reject are stronger than prefer.
Note that select and reject rules can result in an  incompleteness of  the planner. The i terate mode
is an extended prefer  mode. It allows for sequencing several methods by means of a control-rule.
This mode can avoid a repeated expensive evaluation of the if-part of control-rules. Side-effects
are LISP functions that can set flags etc.

Interpretation of  Control-Rules

Before matching the preconditions of operators with lines of  the current state, the planner presents
a list of alternatives of a certain kind to  the control-rule interpreter via an interface. The interpreter
returns a (reduced) list of  alternatives via the interface. That is, the matching and the search
effort decreases.

Givena list of alternatives of  kind k ,  the interpreter processes the control-rules of kind k in  the
sequence in which they are stored. The if-parts are evaluated as long as no conjunct evaluates to
false for at  least one instantiation. select(list) returns an (ordered) list, list, of alternatives which
is then intersected with the current list of  alternatives. prefer(x)  reorders the list of alternatives
such that x is the first element if i t  was in the list before. reject(list) removes list from the
current list of alternatives. iterate(list) determines the next method choices in the planning
process according to  list.
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3.3.2 Control-Rules for Planning Limit Theorems 

In the following, we present a set of control-rules that produced a satisfying search behavior in 
planning limit theorems as documented in section 6. With the given control-rules, we want to . 
demonstrate the line of reasoning for designing control-rules rather than competing for the most 
efficient control. Most of the following rules are designed in order to capture the following global 
control story: 
First the goal is normalized. Linear inequality goals can be satisfied by Solve<b, SOLVE*, or by 
LimHeuristic. The latter requires some preparation by UNWRAPHYP and MP-b. In planning the 
limit theorems, UNWRAPHYP extracts a particular subformula s from an assumption in order to 
afterwards employ s as an antecedent in a goal that can be reduced by LimHeuristic. In order to 
guide the unwrapping of s of an assumption, Focus annotates s and thereby puts a local focus on 
this subformula. The purpose of this focus is to concentrate operator applications on extracting 
the colored formula. 

Now the control-rules together with some explanation of their intended purpose follow. 

(control-rule attack-goal 
(kind method) 
(if (and (goal-matches ("goal" (less (val "x") "y"))) 

(most-similar-subterm-in ("goal" 
"ass" 
"pos")))) 

(then 
(prefer «Solve<b "goal") 

(SOLVE* "goal") 
(UNWRAPHyp 0 ("ass") ("goal")))))) 

The intention of attack-goal is an attempt to apply Solve<b or alternatively SOLVE* if a goal 
is of the form val(x) < y, and if these two fail to be applicable, to move on to the preparations 
for LimHeuristic by UNWRAPHYP. 

The evaluation of the meta-predicate most-similar-subterm-in returns for each previously 
resulting instantiation of "goal", most-similar-subterm-in returns instantiations of "ass" and 
"pos". The meta-predicate computes the formula s at position pos in some assumption ass such 
that s is most similar to the goal. The similarity is measured by function symbol occurrences 
and characterizes the suitability of antecedents for LimHeuristic to succeed. The evaluation 
of most-similar-subterm-in is expensive. A repeated evaluation of this meta-predicate can 
be avoided by designing a different set of control-rules including one that iterates over Focus, 
Increase-Hyp and UNWRAPHYP. 

After UNWARPHYP stopped and returns an assumption that is all colored (unwrapped), the un
wrapping business is completed by removing the color altogether because it is no longer necessary. 
This is expressed in the rule after-UNWRAPHYP (We did not integrate RemoveFocus into UNWARPHYP 
because RemoveFocus is applied to a particular assumption, the unwrapped one, and hence deter
mines the assumption, "ass", that is one argument for the then following Mp-b method.) 

(control-rule after-UNWRAPHYP 
(kind method) 
(if (and (last-method UNWARPHYP) 

(and (latest-assumption "ass") 
(unwrapped-focus "ass")))) 

(then 
(select «RemoveFocus 0 ("ass")))))) 

After the unwrapping extracted an assumption focus(F) and the color removal provided the 
uncolored assumption F, SOLVE* or alternatively Mp-b - the last preparation for LimHeuristic 
- are tried to be applied as formulated in the next control-rule. SOLVE* is tried first because it 
produces simple or no subgoals as opposed to LimHeuristic preceeded by Mp-b. 
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3.3.2 Control-Rules for Planning Limit Theorems

In the following, we present a set of control-rules that produced a satisfying search behavior in
planning limit theorems as documented in section 6. With the given control-rules, we want to
demonstrate the line of reasoning for designing control-rules rather than competing for the most
efficient control. Most of  the following rules are designed in order to  capture the following global
control story:
First the goal is normalized. Linear inequality goals can be satisfied by Solvecb, SOLVE*, or by
LimHeuristic. The latter requires some preparation by UNWRAPHYP and MP-b. In planning the
limit theorems, UNWRAPHYP extracts a particular subformula s from an assumption in order to
afterwards employ s as an antecedent in a goal that can be reduced by LimHeuristic. In order to
guide the  unwrapping of  s of  an  assumption, Focus annotates s and thereby puts a local focus on
this subformula. The purpose of this focus is to concentrate operator applications on extracting
the colored formula.

Now the control-rules together with some explanation of their intended purpose follow.

(control-rule attack-goal
(k ind method)
( i f  (and (goal-matches ( "goa l  ( l ess  (val  " x " )  " y " ) ) )

(most-similar~subterm-in ( "goa l "
Wass ”

"pos™) ) ) )

(then
(prefer ((Solve<b "goa l " )

(SOLVE "goa l " )
(UNWRAPHyp ( )  ( "ass")  ( " goa l " ) ) ) ) ) )

The intention of  attack-goal is an  attempt to  apply Solvecb or alternatively SOLVE# if a goal
is of the form val(r) < y, and if these two fail to  be applicable, to move on to the preparations
for LimHeuristic by UNWRAPHYP.

The evaluation of  the meta-predicate most-similar-subterm-in returns for each previously
resulting instantiation of "goal" ,  most-similar-subterm-in returns instantiations of "ass" and
"pos" .  The meta-predicate computes the formula s at  position pos in some assumption ass such
that s is most similar to the goal. The similarity is measured by function symbol occurrences
and characterizes the suitability of antecedents for LimHeuristic to succeed. The evaluation
of most-similar-subterm~in is expensive. A repeated evaluation of this meta-predicate can
be avoided by designing a different set of control-rules including one that iterates over Focus,
Increase-Hyp and UNWRAPHYP.

After UNWARPHYP stopped and returns an  assumption that is all colored (unwrapped), the un-
wrapping business is completed by removing the color altogether because it  is no longer necessary.
This is expressed in  the rule af ter-UNWRAPHYP (We did not integrate RemoveFocus into UNWARPHYP
because RemoveFocus is applied to  a particular assumption, the unwrapped one, and hence deter-
mines the assumption, "ass", that is one argument for the then following Mp~b method.)

(control-rule after-UNWRAPHYP
(k ind method)
( i f  (and ( las t -method UNWARPHYP)

(and (latest-assumption "ass")
(unwrapped-focus "ass " ) ) ) )

( then
(se lec t  ((RemoveFocus ( )  ( " ass " ) ) ) ) ) )

After the unwrapping extracted an assumption focus(F) and the color removal provided the
uncolored assumption F, SOLVE#* or alternatively Mp-b — the last preparation for LimHeuristic
— are tried to be applied as formulated in the next control-rule. SOLVE=* is tried first because it
produces simple or no subgoals as opposed to  LimHeuristic preceeded by Mp-b.
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(control-rule attack-unwrapped 
(kind method) 
(if (and (last-method RemoveFocus "ass") 

(last-UNWRAP "ass" "goal"»» 
(then 
(select ((SDLVE* "goal" 0) 

(Mp-b "goal" ("ass"»))) 

Mp-b is exclusively applied in order to provide a goal that LimHeuristic can handle afterwards. 

(control-rule choose-LimHeuristic 
(kind method) 
(if (last-method Mp-b "goal"» 
(then 

(prefer ((LimHeuristic "goal" 0»») 

The next rule can be read as: Solve<f should be applied to an assumption only once because 
a second application is redundant. 

(control-rule dismiss-a<b 
(kind sequent) 
(if (and (already-applied (Solve<f "ass"» 
(then 
(reject-sequents (0 ("ass") »» 

Finally, we have control-rules that belong to the control of supermethods. For instance, the 
three following control-rules govern the planning in the expansion of supermethod UNWRAPHYP. 
First Focus is choosen with paramters. choose-focus selects the subformula of an assumption 
to focus on. Then IncreaseHyp is preferred in order to adjust the hypotheses set of the picked 
assumption sequent to the hypotheses set of the goal sequent. Finally, only assumptions that were 
derived latest and that carry a focus are admitted as an input of the next UNWRAPHYP submethods. 
attack-latest 

control-rule choose-focus 
(kind method) 
(if (and (no-focus) 

(most-similar-subterm-in ("goal" 
"ass" 
"pos"»» 

(then 
(select ((Focus 0 ("ass") ("pos"»»» 

(control-rule increase-hyps 
(kind method) 
(if (and (last-method Focus) 

(and (latest-assumption "ass") 
(and (current-goal "goal") 

(hyps-of "goal" "hyps"»») 
(then 

(prefer ((IncreaseHyp 0 (" ass") ("hyps,,»»)) 

(control-rule attack-latest 
(kind sequent) 
(if (sub-of-latest-assumption(focus "ass"» 
(then 
(select-sequents (0 ("ass"»») 
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(control - ru le attack-unwrapped
(kind method)
( i f  (and ( last-method RemoveFocus "ass " )

(last-UNWRAP "ass "  "goa l " ) ) ) )
( then
(se lect  ((SDLVE* "goal"  ( ) )

(Mp-b "goa l "  ( " ass " ) ) ) ) ) )

Mp-b is exclusively applied in  order to  provide a goal that LimHeuristic can handle afterwards.

(control-rule choose-LimHeuristic
(kind method)
( i f  (last-method Mp-b "goa l " ) )
(then

(prefer ((LimHeurist ic "goal "  ( ) ) ) ) ) )

The next rule can be  read as: Solver  should be  applied to  an  assumption only once because
a second application is redundant.

(control-rule dismiss-a<b
(kind sequent)
( i f  (and (already-applied (Solve<f "ass"))
( then
(re ject -sequents ( ( )  ( " ass " )  ) ) ) )

Finally, we have control-rules that belong to the control of  supermethods. For instance, the
three following control-rules govern the planning in the expansion of supermethod UNWRAPHYP.
First Focus is choosen with paramters. choose-focus selects the subformula of an assumption
to focus on. Then IncreaseHyp is preferred in order to adjust the hypotheses set of the picked
assumption sequent to  the hypotheses set of  the goal sequent. Finally, only assumptions that were
derived latest and that carry a focus are admitted as an input of the next UNWRAPHYP submethods.
attack-latest

control- ru le choose- focus
(kind method)
( i f  (and (no- focus)

(most-similar-subterm-in ( "goa l "
" ass  1 "

"pos™) ) ) )

(then
( se lec t  ( (Focus  ( )  ( " ass " )  ( " pos " ) ) ) ) ) )

(control-rule increase-hyps
(kind method)
( i f  (and (last-method Focus)

(and (latest-assumption "ass")
(and (current-goal goa l " )

( hyps -o f  " goa l "  " hyps " ) ) ) ) )

(then
(prefer  ( ( IncreaseHyp ( )  ( " ass " )  ( " hyps " ) ) ) ) ) )

(control-rule at tack- latest
(kind sequent)
( i f  (sub-of-latest-assumption(focus "ass") )
(then
(select-sequents ( ( ) ( " ass " ) ) ) ) )

28



4 Exemplary Proof Planning for LIM+ 
LIM+ is a limit theorems with a relative simple proofs. Since an exemplary detailed description 
should be comprehensible and not too boring, we present LIM+ rather than, say, LIM*. A proof 
plan for the more difficult proof of LIM* is provided, however, in Figure 4. 

Planning for LIM+ starts with the goal 
of- 'v'E1301 'v'Xl (0 < El -+ 0 < 01/\ val(X1 - a) < 01 -+ val(J(X1) -ld < Ed /\ 

'v'E2302'v'X2(0 < E2 -+ 0 < 02/\ val(xz - a) < Oz -+ val(J(X2) -ld < fz) 
-+ 'v'dO'v'x(O < E -+ 0 < 0/\ val(x - a) < 0 -+ val((J(x) + g(x)) - (l1 + l2)) < E) After all the 
skolemizations, we use the Prolog notation: E is a constant, 01, OZ, x are Skolem functions, and 
El, Ez,D, Xl, Xz are variables. 

1.	 The NORMAL application consists of 

(a) ImpI results in: 
'v'E1301\:IX1 (0 < El -+ 0 < 01 /\ val(x1 - a) < 01 -+ val(J(x1) -ll) < Ed /\ 

'v'fz302'v'X2(0 < EZ -+ 0 < Oz/\ val(x2 - a) < 02 -+ val(J(xz) -ld < EZ) 
f- 'v'dO'v'x(O < E-+ 0 < 0/\ val(x - a) < 0 -+ val((J(x) + g(x)) - (l1 + l2)) < E) and the 
new assumption H f- H for H: 

'v'E1301 'v'Xl(O < El -+ 0 < 01/\ val(x1 - a) < 01 -+ val(J(x1) - h) < El) /\ 

'v'Ez30z'v'xz(0 < EZ -+ 0 < 02 /\ val(x2 - a) < 02 -+ val(g(x2) -lz) < E2)' 

(b)	 Skolem-b is applied to the goal, giving the subgoal H f- 0 < E -+ 0 < D(E)/\val(x(D)
a) < D(E) -+ val((J(x(D)) + g(x(D))) - (ll + lz)) < E). 
In the following, we abbreviate by omitting the Skolem function arguments. After all 
the skolemizations, we use the Prolog notation: E is a constant, 01, Oz, x are Skolem 
functions, and E1 ,E2 ,D,X1 ,X2 are variables. 

(c)	 ImpI , ImpI is applied to the current goal. It moves the antecedent (0 < E) and then 
(0 < D /\ val(x - a) < D) from the conclusion to the hypotheses giving a subgoal with 
the resulting conclusion 

of- val((J(x) + g(x)) - (ll + l2)) < E 

and with the set of hypotheses
 

A = I{H, (0 < E), (0 < D /\ val(x - a) < D)}
 
and giving the new assumptions
 

i.	 (0 < E) f- (0 < E) and 

ii. 0 < D /\ val(x - a) < D) f- 0 < D /\ val(x - a) < D). 

2.	 Solve-f is applied to l(c)i. 

3.	 SOLVE<f iterates over AndE, Solve<f on l(c)ii. For 

V= IHO < D /\val(x - a) < D)} I 
the resulting new assumptions are 

(a)	 V f- 0 < D which is processed by Solve<f. This adds 0 < D to the constraint store. 

(b)	 V f- val(x - a) < D 

4. Guided by a control-rule, now UNWRAPHYP, RemoveFocus, Mp-b, LimHeuristic are applied 
in a row. 

5.	 The goal is of the form A f- val(B) < E. Therefore, the control suggests UNWRAPHYP with the 
focus on the H's subformula val(J(x1) - h) < El that is most similar to the goal and that 
has hypotheses contained in A. On the input H f- H, IncreaseHyp outputs the assumption 
A f- H. 
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4 Exemplary Proof Planning for L IM+
LIM+ is a limit theorems with a relative simple proofs. Since an exemplary detailed description
should be comprehensible and not too boring, we present LIM+ rather than, say, LIM*. A proof
plan for the more difficult proof of LIM* is provided, however, in Figure 4.

Planning for L IM+ starts with the goal
OH Ve361921(0 < 6g = 0 < 8; Aval(zy — a) <6  = val(f(z1) - ı )  <a )  A
Ve23ö2Vz2(0 <€e230<62A  va l (z2  — a )  < by = va l ( f ( z2 )  _— h )  < €2)
— VeddVz(0 < € = 0 < § Aval(z — a) < § — val((f(z) + g(z)) — (lh +12 )  < €) After all the
skolemizations, we use the Prolog notation: e is a constant, é;,d2,z are Skolem functions, and
E ı ,  E , ,D , X, ,X2 are variables.

1. The NORMAL application consists of

(a)

(b)

(c)

ImpI results in:
Ve  36,  Vz; ( 0  <e681 Z0<6_iN va l ( z ,  -— a) <b  = val(f(z1) — 1 )  < € )  A

Veadd2V2(0 < €2 = 0 < 83 Ava l ( zg  — a) < dz = val ( f (z2)  — hh) < €2)
F VeaoVz(0 < € — 0 < 8 A val(z — a) < 8 — val((f(z) + g(zx)) — (ls + 12)) < €) and the
new assumption H + H for H :
Ver30,  Vz,  ( 0  <e  H0<H  A va l (z ;  - a) <d  = va l (  f ( x y )  - Lh) < € )  A
Ve23ö2Vzz(0 < €2 + 0 < d2 Ava l l z2  — a) < da = vallg(xz2) — Io) < €2).

Skolem-b is applied to  the goal, giving the subgoal H FH 0 <e-—>0 < D(e)  Ava l (z (D)  —
a) < D(e) = val((f(z(D)) + g(z(D))) — (lh +12) < 6).
In the following, we abbreviate by  omitting the Skolem function arguments. After all
the skolemizations, we use the Prolog notation: € is a constant, d;,02,z are Skolem
functions, and E i ,  Eq, D ,  X1 , X72 are variables.
ImpI,  ImpI is applied to the current goal. It moves the antecedent (0 < e) and then
(0 < D Awal(z — a) < D)  from the conclusion to the hypotheses giving a subgoal with
the resulting conclusion

OF val((F(z) + g(x)) — (h +12) <e
and with the set of hypotheses
A =|{H,(0<¢),(0 < DAval(z — a) < D)} |
and giving the new assumptions

i .  ( 0<e )F(0 < €) and
ii. 0 < DAva l ( z—a) <D)F 0 <D  Aval(z— a)  < D).

2. Solve-f is applied to 1(c)i.

3. SOLVE. iterates over AndE, Solve<f on 1(c)ii. For
= [ { (0<  D Aval(z — a) < D)}|

the resulting new assumptions are

(a)
(b)

VF  0 < D which is processed by Solve. f .  This adds 0 < D to the constraint store.
Vk  wva l (z— a)  < D

4. Guided by a control-rule, now UNWRAPHYP, RemoveFocus, Mp~b, LimHeuristic are applied
in a row.

5. The goal is of the form A + val(B) < E .  Therefore, the control suggests UNWRAPHYP with the
focus on the H’s  subformula va l ( f (z ; )  — 1 )  < € ;  that is most similar to  the goal and that
has hypotheses contained in A .  On  the  input H F H ,  IncreaseHyp outputs the assumption
AFH.

29



(a)	 AndE is applied to the assumption H giving the two assumption 

i.	 .6.1- 'v'€136 l 'v'Xl(O < €l --+ 0 < 61 Aval(xl - a) < 61 --+ val(j(xl) -ll) < €d and 
ii.	 .6.1- 'v'€23<>2'v'X2(0 < €2 --+ (0 < <>2 A val(X2 - a) < <>2 --+ val(g(X2) -12) < €2». 

(b)	 Skolem-f is applied to the assumption 5(a)i gives 

i. .6. I- 0 < El --+ 0 < dl A val(Xl - a) < dl --+ val(J(Xl ) -Id < El, and 

(c)	 Backchain on 5(b)i gives 

i.	 the goal .6. I- 0 < El 

ii.	 the assumption .6. I- 0 < dl A val(Xl - a) < dl --+ val(J(Xl ) - h) < El 

(d)	 Backchain on 5(c)ii gives 

i.	 the goal .6. I- 0 < d l A val(Xl - a) < d l and 
ii.	 the assumption .6. I- val(J(Xl ) - Id < El with an unwrapped focus. This focus is 

removed. 

6.	 MP-b can now establish the subgoal
 
.6. I- val(J(Xl ) - h) < El --+ val(J(x) + g(x) - (h + 12» < € .
 

7.	 Now LimHeuristic is applicable. Its procedure extract yields the list and (1, (g(x) 
12), [X/Xl]). LimHeuristic yields a new assumption and three subgoals with the new meta
variable M that becomes an argument of the Skolem functions dl , d2 , x: 

(a)	 ~ I- val(l) < M 

(b)	 val(J(Xl ) -ld < El I- val(J(x) -Id < div(€, 2 *M) 

(c)	 .6.1- val(g(x) -12) < div(€,2) 

(d) assumption (val(J(Xl ) -ll) < El I- val(J(Xl ) - h) < El (HYP» 

8.	 7a is satisfied by Solve<b on M. This adds val(l) < M to the constraint store. 

9.	 7b is satisfied by SOLVE*: first Solve* produces the subgoal El < div(€, 2 * M) V El = 
div(€, 2*M) and the subgoal01- X = Xl. The latter is satisfied by Solve=b that produces the 
assumption 0 I- X = Xl. Then Solve<b closes the first subgoal and adds El < div(€, 2 * M) 
to the constraint store. 

10.	 7c has the following larger subproof guided by control-rules: UNWRAPHYP, RemoveFocus, and 
then SOLVE*. 

(a)	 UNWRAPHYP iterates over the submethods: Focus, Skolem-f, Backchain. IncreaseHyp 
does not change anything. 

i.	 Skolem-f applied to the assumptions 5(a)ii gives 
~ I- 0 < E2 --+ 0 < d2 A val(X2 - a) < d2 --+ val(g(X2) -12) < E2. 

ii.	 Backchain on this assumption yields 

A.	 the subgoal 6. I- 0 < E 2 that is proved later by Solve<b adding 0 < E2 to the 
constraint store, and 

B.	 the new assumption ~ I- 0 < d2 A va1(X2 - a) < d2 --+ va1(g(X2) - 12) < E2 
iii.	 Backchain decomposes assumption 10(a)iiB into: 

the subgoal 6. I- 0 < d2 A val(X2 - a) < d2 and the assumption 
6. I- val(g(X2) -12) < E2 which is unwrapped now. The focus is removed. 

(b) This assumption	 6. I- val(g(X2) - 12) < E2 now serves to prove the subgoal 7c ~ I
val(g(x) - h) < div(€, 2) by SOLVE*: iterates over Solve*, Solve=, and Solve*<b 
which yield the constraint E2 < div(€, 2) and the subgoal 0 I- X = X 2 turned into an 
assumption by Solve=. 
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10.

(a) AndE is applied to  the assumption H giving the two assumption
i .  AFVe36V21(0 < e1 = 0 < 81 Ava l l z ı  — a) < 8 — val(f(z1) — l i )  < eı) and
fi. AF  Vead62V22(0 < e2 = (0 < 83 Aval(zs — a) < 82 = vallg(x2) — Io) < €2)).

(b) Skolem-f is applied to the assumption 5(a)i gives
i. AFO< By =» 0<d ;  Ava l (X;  —a) < di — va l ( f (X1 ) -  11) < Ey, and

(c) Backchain on 5(b)i gives
i .  the goal AF 0<  Ei
i i .  the assumption AF  0 < dj Ava l (X,  — a) < di — val(f(X1) =U)  < Ey

(d) Backchain on 5(c)ii gives
i .  the goal AF 0 < dy Ava l (X;  — a) < di and

i i .  the assumption A F val ( f (X;)  — 1 )  < E;  with an unwrapped focus. This focus is
removed.

MP-b can now establish the subgoal
AF  val(f(X1) — 4 )  < Ey — val(f(z) + g(z) — (Lh + 12) <e.

Now LimHeuristic is applicable. Its procedure extract yields the list and (1, (g(z) —
lz), [z/z1]). LimHeuristic yields a new assumption and three subgoals with the new meta-
variable M that becomes an  argument of  the Skolem functions d ; ,  dz, z :

(a) A val(1) <M
(b) val(f(X1) — l i )  < Ei  Fua l ( f (z )  — 11) < div(e,2 * M )
(c) AF  val(g(x) — 1)  < div(e, 2)
(d) assumption (val(f(X1) — U1) < Ei  Fva l ( f (X , )  — 4)  < E ı  (HYP))

. Ta is satisfied by Solve<b on M .  This adds val(1l) < M to the constraint store.

. Tb is satisfied by SOLVE*: first Solve* produces the subgoal E i  < div(e,2* M )V  E;  =
div(e, 2+ M)  and the subgoal 0 |} z = X ; .  The latter is satisfied by Solve=b that produces the
assumption 0 | x = X ; .  Then Solvecb closes the first subgoal and adds E ;  < d iv (e ,2*  M )
to the constraint store.

7c has the following larger subproof guided by control-rules: UNWRAPHYP, RemoveFocus, and
then SOLVE*.

(a) UNWRAPHYP iterates over the submethods: Focus,  Skolem-f ,  Backchain. IncreaseHyp
does not change anything.

i .  Skolem-f applied to the assumptions 5(a)ii gives
AFO< Es»  0<dyAva l (Xo—a)  <d2 — val(g(X2) — 12) < Es.

i i .  Backchain on this assumption yields
A. the subgoal A } 0 < E that is proved later by Solve<b adding 0 < E2 to  the

constraint store, and
B.  the new assumption A FH 0 < dy A val(X;  — a) < da = val(g(X2) — lo) < Es

il i .  Backchain decomposes assumption 10(a)iiB into:
the subgoal A + 0 < dx Aval(Xs — a) < da and the assumption
AF  val(g(X2) — Is) < E2 which is unwrapped now. The focus is removed.

(b) This assumption A F val(g(X2) — lo) < Ez now serves to prove the subgoal 7c A F
val(g(z) — la) < div(e,2) by SOLVE*: iterates over Solve,  Solve=, and Solve*<b
which yield the constraint E;  < div(e, 2) and the subgoal 0 F x = X2 turned into an
assumption by Solve=.
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11.	 The subgoal from 10(a)iii is decomposed by AndI into the subgoals:
 
.6. f-- 0 < d2
 

.6. f-- val(X2 - a) < d2.
 

(a)	 Solve<backward removes subgoal 0 < d2 and adds it to the constraint store because 
it can be inferred from the existing store. 

(b)	 .6. f-- val(X2 - a) < d2 satisfied by SOLVE*: Solve* applied to assumption V f-- val(x
a) < D and then Solve*<b (3b) yield the constraint (D < d2 ). Solve* yields the 
additional subgoal 0 f-- x = X 2 which is changed to an assumption by Solve=. 

12.	 The goal 5(d)i .6. I- 0 < dl /\ val(XI - a) < dl is closed by AndI (part of SOLVEd that 
yields three subgoals: 

•	 .6. f-- 0 < dl closed by Solve< because it can be inferred from the constraint store. 

•	 A f-- val(XI -a) < dl closed by SOLVE*: Solve* with the assumption V f-- val(x-a) < 
D (3b) and then Solve*<b passes the goal D < d1 to the constraint store. The 
additional subgoal 01- x = Xl is removed by Solve=. 

The final constraint store is: 

{	 [ 0 < E2 < div(E, 2); 
o < D < D2, Dl; 
o < El < div(E, (2 * M)), div(E, 2);
 
1 < M < div(E,(2 * El)) ] }
 

From this state the proof assumption 0 < D < min(dl d2 ) can be extracted for a textbook style 
proof presentation discussed in the next section. 
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11. The subgoal from 10(a)iii is decomposed by AndI into the subgoals:
AF0<d ,
AF val(Xs — a)  < da.

(a) Solvecbackward removes subgoal 0 < dz and adds i t  to the constraint store because
i t  can be inferred from the existing store.

(b) AF  val(Xz — a) < da satisfied by SOLVE: Solvex* applied to assumption V + val(z —
a) < D and then Solve*<b (3b) yield the constraint (D < dz). Solve* yields the
additional subgoal 0 F x = X>  which is changed t o  an  assumption by  Solve...

12. The goal 5(d)i A F 0 < dj Ava l (X ,  — a) < d ı  is closed by AndI (part of SOLVE) that
yields three subgoals:

eo A}  0 < dj; closed by Solve.  because i t  can be inferred from the constraint store.
e A}  val(X;  —a) < dy closed by  SOLVE*: Solve#* with the assumption V + val(z—a) <

D (3b) and then Solve b passes the goal D < dy to the constraint store. The
additional subgoal 0  z = X ,  is removed by Solve=.

The final constraint store is:

{ [ 0  <E2<d i v (E ,  2 ) ;
0 <D  < D2, D i ;
0 < E1  < d i v (E ,  ( 2  * M) ) ,  d i v (E ,  2 ) ;
1 <Mc<d i v (E , (2  * EU)  1 }

From this state the proof assumption 0 < D < min(did;) can be extracted for a textbook style
proof presentation discussed in  the next section.
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Figure 4: Proof plan of LIM* 
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5 

SOLVE-b 

SOLVE* UNWRAPHYP 

SOLVE* 

Figure 5: Proof plan of LIM+ 

Extracting a Proof from the Plan 

Leron [25] points out that there are two ways of presenting a proof that involves constructions: one 
that states the definition of an object and another that provides the construction of the object. 
The latter communicates more information and should, hence, be preferred in teaching proofs. 
Hence, we want to provide two different styles of proof presentation: 

1. one that starts with the final constraint state (let ...) and 

2. another that captures the constraint solving, i.e., the construction of 8 as given by the proof 
plan (extended by the constraint annotations). 

The second (construction style) presentation follows the proof plan whose nodes are annotated by 
constraint states because this plan is a high-level description on how to find a proof. 

The first presentation (textbook style) still needs to be extracted from the annotated proof 
plan. It is achieved in the following way. The expansion of the proof plan methods yields a proof. 
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5 Extracting a Proof from the Plan
Leron [25] points out that there are two ways of  presenting a proof that involves constructions: one
that states the definition of  an  object and another that provides the construction of  the object.
The latter communicates more information and should, hence, be preferred in teaching proofs.
Hence, we want to  provide two different styles of  proof  presentation:

1. one that starts with the final constraint state (let . . . )  and

2. another that captures the constraint solving, i.e., the construction of § as given by the proof
plan (extended by the constraint annotations).

The second (construction style) presentation follows the proof plan whose nodes are annotated by

emoveFocug
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constraint states because this plan is a high-level description on  how to  find a proof.
The first presentation (textbook style) still needs to  be extracted from the annotated proof

plan. It is achieved in the following way. The expansion of the proof plan methods yields a proof.
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6 

This proof has to be augmented by a (conjunctive) assumption line that captures the final state 
of the constraint store. We mentioned the procedure for extracting this formula <I> in section 
3.2. The resulting ND-Ievel proof is the basis for OMEGA's natural language presentation by 
PROVERB [18] which then produces a textbook style proof with the beginning 'Let IS be ..'. In such 
a proof presentation, however, the information on how IS has been constructed is not present any 
more. 

Experiments and Results 

The extended OMEGA can proof plan for limit theorems, including 

• LIM+, LIM-, 

• LIM*, 

• COMPOSITE that states that the composition of two continous functions is continous, 

• CONTINOUSifDeriv: a function having a derivative at a point is continuous there, 

• SUMcont: the sum of two continous functions is continous, 

• PRODUCTcont: the product of two continous functions is continous, 

• UNIFcont: a uniformly continous function is continous 

2 2• Theorems like lim x = a • 
x-+a 

Our hypothesis has been, among others, that the use of control-rules and of supermethods 
with their particular control makes proof planning feasible. In order to test this hypothesis and to 
demonstrate the effect of control-rules on the search space, we devised and conducted the following 
experiments for planning LIM+ and LIM* in the following control contexts: 

1.	 Basic methods only with an intelligent numeric rating; We tested a rating of methods that 
provides the following order of methods: 

• Same, Same= 

• Solve= 

• Solve<f 

• Solve<b 

• Solve*<b 

• Solve* 

• LimHeuristic 

• AndE, AndI, ImpI, EquivI, Skolem 

•	 Backchain 

•	 Mp-b, IncreaseHyp, Focus, RemoveFocus 

OMEGA's proof planner did not succeed in planning a proof for LIM+ using these rated 
methods but no control-rules. The rating is devised by an experienced human proof planner 
but still we expect a potentially infinite search because of methods such as Mp-b, Solve<f, 
and IncreaseHyp. This expectation was met. The planner did not succeed with LIM+. 

2.	 Using supermethods; we expect the creation of subplans to reduce the search space in general. 
We tested the following rating of supermethods and methods that provides the following 
order of methods: 
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This proof has to  be augmented by a (conjunctive) assumption line that captures the final state
of the constraint store. We mentioned the procedure for extracting this formula ® in  section
3.2. The resulting ND-level proof is the basis for OMEGA’s natural language presentation by
PROVERB [18] which then produces a textbook style proof with the beginning ‘Let ö be ..’. In  such
a proof presentation, however, the information on how ö has been constructed is not present any
more.

6 Experiments and Results
The extended OMEGA can proof plan for limit theorems, including

eo LIM+, LIM-,

se LIM*,

e COMPOSITE that states that the composition of two continous functions is continous,

e CONTINOUSifDeriv: a function having a derivative at a point is continuous there,

e SUMcont: the sum of  two continous functions is continous,

es PRODUCTcont: the product of two continous functions is continous,

¢ UNIFcont: a uniformly continous function is continous

» Theorems like lim z2 = a2.
ze

Our hypothesis has been, among others, that the use of  control-rules and of supermethods
with their particular control makes proof planning feasible. In  order to  test this hypothesis and to
demonstrate the effect of  control-rules on  the search space, we devised and conducted the following
experiments for planning LIM+ and LIM* in  the following control contexts:

1. Basic methods only with an intelligent numeric rating; We tested a rating of methods that
provides the following order of methods:

e Same, Same=

e Solve=
e Solve.f
e Solve<b
e Solve*.b
e Solve*
e LimHeuristic
e AndE, Andl, Impl, EquivI, Skolem
e Backchain
e Mp-b, IncreaseHyp, Focus, RemoveFocus

OMEGA'’s proof planner did not succeed in planning a proof for LIM+ using these rated
methods but no control-rules. The rating is devised by an experienced human proof planner
but still we expect a potentially infinite search because of methods such as Mp-b, Solve<f,
and IncreaseHyp. This expectation was met. The planner did not succeed with LIM +.

2. Using supermethods; we expect the creation of  subplans to  reduce the search space in  general.
We tested the following rating of supermethods and methods that provides the following
order of methods:
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• Same, Same= 

• Solve= 

• SOLVE<f 

• SOLVE<b 

• SOLVE* 

• LimHeuristic 

• NORMAL 

• UNWRAPHYP 

•	 Mp-b, RemoveFocus 

OMEGA's proof planner did not succeed in planning a proof for LIM+ using these rated 
supermethods and methods but no control-rules. 

3.	 Using explicit control-rules; we expect to exclude infinite search by control-rules. This 
hypothesis proved true as described below. 

The experiments on planning LIM+ and LIM* with the control-rules presented in section 3.3 
show that the search guided by control':rules succeeded in planning for LIM+ and LIM*. We 
express the experimental results in terms of search space exploration rather than in terms of 
CPU time because the current performance of the matcher and the overall planning algorithm 
is not the topic of this report. 

With the presented control-rules no backtracking is necessary to plan LIM+. For planning 
LIM+, 216 matching attempts for methods' inputs were performed. For planning LIM*, 
336 matching attempts for methods' inputs were performed. The search performed in 
supermethods is counted in in this figure. This is a reason for the relatively high number 
of matching attempts that resulted despite of no backtracking. The matching and the 
evaluation of the methods' application condition restrict again the actual choice of a method. 
Therefore, no backtracking is necessary in planning LIM+ and LIM*. 

The potential availability of all the methods of parent theories is a notable progress. This large 
set of methods can be restricted by a control-rule that belongs to the limit domain. 

Conclusion and Related Work 

Proof planning is an alternative to classical automated theorem proving techniques that has been 
successfully used in limited areas of theorem proving so far. The vision behind our 'limit' enterprise, 
which we have chosen as a prototypical area, has been to make proof planning a more widely usable 
technique in automated theorem proving and to foster even more the application of AI-techniques 
in theorem proving. Based on AI-planning experience and on the specifity of theorem proving, we 
have gained a deeper understanding of proof planning and have extended the methodology and 
the applicability of proof planning to new mathematical domains. 

The paper has shown directions to follow in proof planning such as extending the domain knowl
edge by modularly represented control-rules and by constraint solving, encoding existing heuristics 
into planning operators, and employing different flexibly applicable planning strategies. Including 
this domain knowledge seems to be even cognitively adequate since mathematicians specialize in a 
particular mathematical area and then they have this diverse domain-specific knowledge in addi
tion to general problem solving competence. Integrating domain knowledge into a general problem 
solving framework is a well established AI principle and more often than not in AI, problem solvers 
are divided into general reasoners with general heuristics and domain-specific components such as 
constraint solvers. 

The class of limit theorems can be considered a prototype for classes of theorems whose proofs 
involve the construction of objects or require high-level control. 
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e Same, Same=

e Solve=
eo SOLVE.f{
e SOLVEb
eo SOLVE*
se LimHeuristic

e NORMAL
e UNWRAPHYP
e Mp-b, RemoveFocus

OMEGA'’s proof planner did not succeed in planning a proof for LIM+ using these rated
supermethods and methods but no  control-rules.

3. Using explicit control-rules; we expect to exclude infinite search by control-rules. This
hypothesis proved true as described below.
The experiments on planning LIM+ and LIM* with the control-rules presented in  section 3.3
show that the search guided by control-rules succeeded in  planning for LIM+ and LIM*. We
express the experimental results in terms of  search space exploration rather than in terms of
CPU  time because the current performance of  the matcher and the overall planning algorithm
is not the topic of this report.
With the presented control-rules no  backtracking is necessary to  plan LIM+. For planning
LIM+,  216 matching attempts for methods’ inputs were performed. For planning LIM*,
336  matching attempts for methods’ inputs were performed. The search performed in
supermethods is counted in in  this figure. This is a reason for the relatively high number
of matching attempts that resulted despite of no backtracking. The matching and the
evaluation of the methods’ application condition restrict again the actual choice of a method.
Therefore, no backtracking is necessary in  planning LIM+ and LIM*.

The potential availability of all the methods of  parent theories is a notable progress. This large
set of  methods can be restricted by  a control-rule that belongs to the limit domain.

7 Conclusion and Related Work

Proof planning is an alternative to  classical automated theorem proving techniques that has been
successfully used in  limited areas of theorem proving so far. The vision behind our ‘limit’  enterprise,
which we have chosen as a prototypical area, has been to  make proof planning a more widely usable
technique in automated theorem proving and to  foster even more the application of Al-techniques
in theorem proving. Based on Al-planning experience and on the specifity of theorem proving, we
have gained a deeper understanding of proof planning and have extended the methodology and
the applicability of  proof planning to  new mathematical domains.

The paper has shown directions to  follow in  proof planning such as extending the domain knowl-
edge by modularly represented control-rules and by constraint solving, encoding existing heuristics
into planning operators, and employing different flexibly applicable planning strategies. Including
this domain knowledge seems to  be even cognitively adequate since mathematicians specialize in  a
particular mathematical area and then they have this diverse domain-specific knowledge in addi-
tion to  general problem solving competence. Integrating domain knowledge into a general problem
solving framework is a well established A I  principle and more often than not in  Al,  problem solvers
are divided into general reasoners with general heuristics and domain-specific components such as
constraint solvers.

The class of  l imit theorems can be  considered a prototype for classes of  theorems whose proofs
involve the construction of objects or require high-level control.
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The fact that we have succeeded in automatically planning a proof of LIM* with our general 
purpose proof planner shows that these techniques can be successfully used now for highly nontriv
ial mathematical theorems. While LIM+ represents the limit of what current theorem provers and 
planners could handle, LIM* is certainly beyond the capabilities of other current proof planners 
and theorem provers. 

As in most complex planning domains (see, e.g. [37]), the design of methods and control 
knowledge is crucial for the success of planning and requires a good deal of domain understanding 
and of knowledge engineering work. We designed methods encapsulating ideas from the special
purpose program [6J. Hence, our proof planning combines a general-purpose proof planner with 
specific domain knowledge. 

Advantages of the proof planning framework are: the resulting high-level, hierarchical repre
sentation of proofs, the flexible invocation of methods, the use of explicit global control knowledge, 
and the possible expansion of plans to checkable proofs. Expanding computations or constructions 
to a checkable logical proof typically yields proofs of enormous length. That is, in many situations 
it may be desirable to have a plan only rather than expanding it or constructing calculus-level 
proofs in the first place. 

By using appropriate methods, the theorems and axioms from the theory of R,12 such as the 
triangle inequality or the transitivity of <, do not need to be referred to explicitly. This seems 
to be similar to mathematician's way of doing things. This advantage was already mentioned 
by Bledsoe who qualified proofs without the inclusion of axioms as desirable "because, for most 
automatic theorem proving programs, the axioms have to be selected by humans for each theorem 
being proved." [6] 

Related Work 

Clearly, proof planning in CIftM is related to proof planning in OMEGA. There are several
 
differences and similarities. For instance, as opposed to our hiding of axioms, CL4lvI with colered
 
rippling [38] proved LIM+ by explicitly using the proof assumptions
 
(Xl + X2) - (Yl - Y2) = (Xl - Yl) + (X2 - Y2)
 
val(x + y) < w {= val(x) + val(y) < w
 
x+y < w {= X < div(w, 2) Ay < div(w,2)
 
q -t Pl AP2 {= (q -t pd A (q -t P2)
 
VX(Pl A P2) {= VX.Pl AVx.P2
 
3<5.~(u < <5 -t Pl AP2) {= 3<5.~(u < <5 -t pd A 3<5.~(u < <5 -t P2)
 
0< E -t P A q {= 0 < div(E, 2) -t P A 0 < div(E, 2) -t q,
 
where some of these assumptions stem from [5].
 

Similar to the rippling heuristic developed for inductive proofs and used to guide proof planning 
in CL4M, some of our control-rules have a focusing purpose. The control-rule mechanism presented 
is, however, more general than rippling. While rippling [11, 20] is a powerful search heuristic for 
difference reduction, it is not universal enough for other mathematical proofs. As far as we know, 
LIM* could not been proved by rippling, for instance. 

A new universe appears to opens up when combining theorem proving with constraint solving. 
This relates particularly to work in constraint logic programming, see [16, 21]. For related work 
see also [34, 35J. 

Acknowledgement 
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Alexander designed and implemented the constraint solver, Carsten implemented the control-rule 

12some inherited from parent theories 
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The fact that we have succeeded in automatically planning a proof of LIM* with our general
purpose proof  planner shows that these techniques can be  successfully used now for highly nontriv-
ial mathematical theorems. While LIM+ represents the  l imit  of  what current theorem provers and
planners could handle, LIM* is certainly beyond the capabilities of  other current proof planners
and theorem provers.

As in most complex planning domains (see, e.g. [37]), the design of methods and control
knowledge is crucial for the success of planning and requires a good deal of domain understanding
and of knowledge engineering work. We designed methods encapsulating ideas from the special-
purpose program [6]. Hence, our proof planning combines a general-purpose proof planner with
specific domain knowledge.

Advantages of the proof planning framework are: the resulting high-level, hierarchical repre-
sentation of proofs, the flexible invocation of methods, the use of explicit global control knowledge,
and the possible expansion of plans to checkable proofs. Expanding computations or constructions
to a checkable logical proof typically yields proofs of  enormous length . That is, in  many situations
it may be desirable to  have a plan only rather than expanding it or constructing calculus-level
proofs in the first place.

By  using appropriate methods, the theorems and axioms from the theory of  R,!? such as the
triangle inequality or the transitivity of < ,  do not need to be referred to explicitly. This seems
to  be similar to  mathematician’s way of  doing things. This advantage was already mentioned
by Bledsoe who qualified proofs without the inclusion of axioms as desirable “because, for most
automatic theorem proving programs, the axioms have to  be selected by humans for each theorem
being proved.” [6]

Related Work

Clearly, proof planning in CIAM is related to proof planning in OMEGA. There are several
differences and similarities. For instance, as opposed to  our hiding of axioms, CIAM with colored
rippling [38] proved LIM+ by explicitly using the proof assumptions
(@1 + 22 )  — (yı — yo) = (x1 — 31) + ( 22  — yo)
val(z + y) < w < val(z) + val(y) < w
z4+y <w  Ez  <div(w,2) Ay  < div(w,2)
g—>p1Apr <= (q + p1) A (9 + P2)
Vz(p1 Ape) € Vz.pı AVz.po
3ö.$(u < 8 =p  Ap )  € V.S(u  < 65 =p )  A30.2(u <0  — p2)
0<e—=>pAg<0<d i v (e ,2 )  + pAD<d i v (e ,2 )  — gq,
where some of these assumptions stem from [5].

Similar to the rippling heuristic developed for inductive proofs and used to  guide proof planning
in  CIAM, some of our control-rules have a focusing purpose. The control-rule mechanism presented
is, however, more general than rippling. While rippling [11, 20] is a powerful search heuristic for
difference reduction, i t  is not universal enough for other mathematical proofs. As far as we know,
LIM* could not been proved by rippling, for instance.

A new universe appears to  opens up when combining theorem proving with constraint solving.
This relates particularly to work in constraint logic programming, see [16, 21]. For related work
see also [34, 33].
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