
/n
a

n
/q

n
d

/s
p

qe-pum sa aanal//:d33g A
M

M

A
N

V
IN

Y
E

D
N

IID
O

Y
G

E
V

V
S

 1P099-G
M

ILV
W

Y
O

A
N

I H
O

IH
H

AEH
O

VA
S

A
A

N
V

TY
V

Y
S

 SAA LY
.LIS

H
A

A
IN

N

oo

R
CA=|

5A
g

w
w

 2
So 5
=

®
A

&

oy ©
S

qa
8

S
C

S
S

a
BH

+
2[72]

0<

S
i

<

H
oday [M

IS
Serge Autexier

SEKI Report SR-97-05

An Abstraction for Proof Planning:
The S-Abstraction

Serge Autexier
Fachbereich 14, Informatik,

Postfach 15 11 50,
66041 Saarbrücken, Germany

E-mail: au tex ie r@cs.un i -sb .de

Contents

1 Introduction 1

2 Preliminaries 3

3 Syntax 5

3.1 S-terms 5

3.2 S-equations 8

4 Semantic Considerations 10

5 S-substitutions 14

5.1 Definition and Properties 14

5.2 Soundness of the S-substitution . 19

6 S-matching 20

6.1 S-matching Algorithm 20

7 S-Calculus 26

7.1 Preprocessing......... 27

7.2 Consequences . 30

7.3 Properties of the S-Calculus . 33

8 Conclusion and Future Works 34

Bibliography 36

Index 37

Contents

1 Introduction

2 Preliminaries

3 Syntax
C2 TS + TJ

4 Semantic Considerations

5 &-substitutions
5.1 Definition and Properties i i i i eee

5.2 Soundness of the S-substitution i e . . .

6 S-matching
6.1 S-matching Algorithm eee .

7 &-Calculus
7.1 Preprocessing oo i i i i i eee ee ee ee ee eee

7.2 CONSEQUENCES . « + vv tv vv ve vo a a e t vs a t t oma e t ea RR

7.3 Properties of the S-Calculus « i i i i eee

8 Conclusion and Future Works

Bibliography

Index

Abstract

This paper presents a new kind of abstraction, which has been developed for the purpose of proof

planning. The basic idea of this paper is to abstract a given theorem and to find an abstract

proof of it. Once an abstract proof has been found, this proof has to be refined to a real proof

of the original theorem. We present a goal oriented abstraction for the purpose of equality proof

planning, which is parameterized by common parts of the left- and right-hand sides of the given

equality. Therefore, this abstraction technique provides an abstract equality problem which is
more adequate than those generated by the abstractions known so far. The presented abstraction

also supports the heuristic search process based on the difference reduction paradigm. We give a

formal definition of the abstract space including the objects and their manipulation. Furthermore,

we prove some properties in order to allow an efficient implementation of the presented abstraction.

Abstract

This paper presents a new kind of abstraction, which has been developed for the purpose of proof
planning. The basic idea of this paper is to abstract a given theorem and to find an abstract
proof of it. Once an abstract proof has been found, this proof has to be refined to a real proof
of the original theorem. We present a goal oriented abstraction for the purpose of equality proof
planning, which is parameterized by common parts of the left- and right-hand sides of the given
equality. Therefore, this abstraction technique provides an abstract equality problem which is
more adequate than those generated by the abstractions known so far. The presented abstraction
also supports the heuristic search process based on the difference reduction paradigm. We give a
formal definition of the abstract space including the objects and their manipulation. Furthermore,
we prove some properties in order to allow an efficient implementation of the presented abstraction.

Chapter 1

Introduction

The background of the work presented in this paper is the domain of proof planning. The idea of
proof planning got a strong enhancement by the introduction of explicit proof plans by A. Bundy

([Bundy, 1987]). The idea is to define tactics, which where firstly introduced in the LCF system

([Gordon et al., 1979]), as plan operators (also called methods) with 'pre- and postconditions to

generate a part of a proof. These tactics allow to achieve certain goals (formulated by the postcon

ditions) under certain conditions (preconditions). The search process for a proof plan is mainly
the task to find a plan composed of these operators, allowing to prove a given theorem under

certain conditions (axioms).

On the other hand syntactical abstractions of formulas have been used to guide the proof search.

The underlying idea is to abstract a given theorem P to an abstract theorem Q, to prove Q and to

refine the abstract solution into a proof of the original theorem P. E. g. Plaisted ([Plaisted, 1981])
used propositional abstractions of first order logic formulas to generate a propositional proof plan
for a first order logic theorem. Abstractions used for the purpose of proof planning have to satisfy

certain properties, and thus, among other things, Giunchiglia and Walsh presented a theory of

abstraction where the required properties are formally defined.

Several abstractions like Plaisted's propositional abstraction have already been presented for

the purpose of proof planning, but none of them had a real success. This is due to the fact,

that the proposed abstractions are not goal oriented and subsequently for some problems the ab

straction is too abstract where for some others it is not abstract enough. Therefore, we present

a goal oriented abstraction for the purpose of equality proof planning, where the abstraction of

an equality is parameterized by common parts of the left- and right-hand sides of a given equation.

The proposed abstraction for equations s = t is based on common subterms of sand t and

expresses some structural differences between sand t with respect to these common subterms. For

example, fix, b) and g(a,x) share x as a common subterm (a, b being constants, f and g unary.
function symbols). While in the first term x occurs in the first argument of f, it occurs in the
second argument of g in the second term. Thus, a characteristic of the equation

\Ix. fix, b) = g(a, x) (1.1)

is that it behaves like "moving" x from the first argument of f into the second argument of g, or

1

Chapter 1

Introduction

The background of the work presented in this paper is the domain of proof planning. The idea of
proof planning got a strong enhancement by the introduction of explicit proof plans by A. Bundy
([Bundy, 1987]). The idea is to define tactics, which where firstly introduced in the LCF system
([Gordon et al., 1979]), as plan operators (also called methods) with pre- and postconditions to
generate a part of a proof. These tactics allow to achieve certain goals (formulated by the postcon-
ditions) under certain conditions (preconditions). The search process for a proof plan is mainly
the task t o find a plan composed of these operators, allowing t o prove a given theorem under
certain conditions (axioms).

On the other hand syntactical abstractions of formulas have been used to guide the proof search.
The underlying idea is to abstract a given theorem P to an abstract theorem Q, to prove Q and to
refine the abstract solution into a proof of the original theorem P. E . g. Plaisted ([Plaisted, 1981])
used propositional abstractions of first order logic formulas to generate a propositional proof plan
for a first order logic theorem. Abstractions used for the purpose of proof planning have to satisfy
certain properties, and thus, among other things, Giunchiglia and Walsh presented a theory of
abstraction where the required properties are formally defined.

Several abstractions like Plaisted’s propositional abstraction have already been presented for
the purpose of proof planning, but none of them had a real success. This is due to the fact,
that the proposed abstractions are not goal oriented and subsequently for some problems the ab-
straction is too abstract where for some others it is not abstract enough. Therefore, we present
a goal oriented abstraction for the purpose of equality proof planning, where the abstraction of
an equality is parameterized by common parts of the left- and right-hand sides of a given equation.

The proposed abstraction for equations s = t is based on common subterms of s and t and
expresses some structural differences between s and t with respect to these common subterms. For
example, f(x,b) and g (a ,x) share x as a common subterm (a, b being constants, f and g unary _
function symbols). While in the first term x occurs in the first argument of f , i t occurs in the
second argument of g in the second term. Thus, a characteristic o f the equation

x . f (x , b) = g (a ,x) (1.1)

is that it behaves like “moving” x from the first argument of f into the second argument of g, or

vice versa. Ignoring any other subterms, this is expressed by the following notation

(1.2)

which is a concise representation of the structural behavior of '1x.f(x,b) = g(a,x). In order to

find a proof of an equality problem s = t, an abstraction of it is build, which is an equational

problem between the structures of 5 and t. Then the abstractions of the axioms, like (1.2), are

used to equalize the structural abstractions of 5 and t. If such an abstract proof has been found,

it is refined in order to obtain a proof of the actual equality problem 5 = t. Consider for example

the equality problem '1y.f(y,e) = g(a,y) (e being a constant symbol like a and b): The equation

is abstracted with respect to the common subterm y yielding the abstract equality problem

(1.3)

The arising task is then to move the first argument of f into the second argument of g, or vice

versa. This is achieved by the application of (1.2), yielding a trivial equality problem. Thus,

the plan for the proof of '1y. f(y, c) = g(a, y) is to apply an equation which behaves like specified

by (1.2). In order to enable the application of 'Ix. f(x, b) = g(a,x) from left to right on f(y, c),

some work has to be done, which is to equalize f(y,c) = cr(f(x,b)), for some substitution cr. This

is achieved by an equation

b=c (1.4)

and then the application of 'Ix. f(x, b) = g(a,x) succeeds yielding a trivial equality problem. The
relationship between the abstract proof and the concrete proof is viewed in figure 1.1.

(1.2)
W}y = (g2}y)'~ (g2}y = (g2}y

/f ~ +
/ , I

Abstraction // ',Abstraction I
/ , Abstraction I
/, J

/ ,
/ (1.4)' (1.1) I

Vy.f(y,c)=g(a,y))' Vy.f(y,b)=g(a,y))' Vy.g(a,y)=g(a,y)

Actual Theorem

Figure 1.1: Proof and abstract proof

In the rest of this report we give a definition of the objects of the abstraction, namely the

abstractions of terms and equations (Chapter 3) and try to provide a better understanding of

the problems and advantages of this abstraction by some semantic considerations (Chapter 4).

The remaining parts of the report are concerned with the definition of a calculus to specify the

manipulation of the objects of the abstraction. Thus, a notion of substitution is introduced

(Chapter 5) together with a matching algorithm for two objects of the abstraction (Chapter 6).

Furthermore, a rewrite calculus is introduced which defines the manipulations of the objects

(Chapter 7). Additionally, we establish some properties of the abstraction which enables an

efficient implementation. Finally, we summarize the main results of this report and give an outline

of some future works (Chapter 8).

2

vice versa. Ignoring any other subterms, this is expressed by the following notation

(f x = (g%)« (1.2)

which is a concise representation of the structural behavior of Vx . f (x ,b) = g{a,x). In order to
find a proof of an equality problem s = t , an abstraction of i t is build, which is an equational
problem between the structures of s and t . Then the abstractions of the axioms, like (1.2), are
used to equalize the structural abstractions of s and t . If such an abstract proof has been found,
i t is refined in order to obtain a proof of the actual equality problem s = t . Consider for example
the equality problem Vy .f(y,c) = g(a,y) (c being a constant symbol like a and b): The equation
is abstracted with respect to the common subterm y yielding the abstract equality problem

(f l y = (e%)y (1.3)

The arising task is then to move the first argument of f into the second argument of g, or vice
versa. This is achieved by the application of (1.2), yielding a trivial equality problem. Thus,
the plan for the proof of Vy.f(y,c) = gla,y) is to apply an equation which behaves like specified
by (1.2). In order t o enable the application of Vx . f (x ,b) = g(a,x) from left to right on f (y ,c) ,
some work has to be done, which is to equalize f (y ,c} = o(f(x,b)), for some substitution co. This
is achieved by an equation

b=c (14)

and then the application of ¥x.f(x,b) = g (a ,x) succeeds yielding a trivial equality problem. The
relationship between the abstract proof and the concrete proof is viewed in figure 1.1.

1 2 1 .2) 2 2
{ f y = (8%) > (g°)y = (&°)y

bstraction , NAbstraction Abstraction !

/ \)
/ \

I (1.4) \ (1 .1) !

Vy . f (y,c) = g(a,y) —> Vy.f(y,b) =g la ,y) —> Vy.gla,y) =g(a,y)
Actual Theorem

Figure 1.1: Proof and abstract proof

In the rest of this report we give a definition of the objects of the abstraction, namely the
abstractions of terms and equations (Chapter 3) and try to provide a better understanding of
the problems and advantages of this abstraction by some semantic considerations (Chapter 4).
The remaining parts of the report are concerned with the definition of a calculus to specify the
manipulation of the objects of the abstraction. Thus, a notion of substitution is introduced
(Chapter 5) together with a matching algorithm for two objects of the abstraction (Chapter 6).
Furthermore, a rewrite calculus is introduced which defines the manipulations of the objects
(Chapter 7). Additionally, we establish some properties of the abstraction which enables an
efficient implementation. Finally, we summarize the main results of this report and give an outline
of some future works (Chapter 8).

Chapter 2

Preliminaries

In this chapter we introduce the notations used throughout this paper. These are the classical

notations, as they are defined in [Huet and Qppen, 1980]. Then a new notion is introduced, the

concept of enriched occurences, which is an extension of the classical notion of an occurence.

Fn The set of function symbols of arity n

Pn The set of predicate symbols of arity n

E = ((F;)i=O...n, (P;)i=O... m) A first order Signature

V A set of first order variables

nE, V) The set of well formed first order terms over

E and V

Eq(E, V) The set of well formed first order equations

over E and V

V(t) The variables occurring in t.

occ(t) The set of all valid occurrences of t

depth(t) The de...'~h of the term t, where depth(t) = 0

if t E VU Fo. I. e. the depth() of a term is the

length of the longest valid occurrence of this

term.

size(t) The size of the term t, where size(t) = 1 if t E

VU Fo. I. e. the size() of a term is number of

symbols occurring in this term.

t/mv The replacement of the subterm t/1C oft by v,

if 'It E occ(t).

Id the identity substitution; for any substitution

(J' it holds: (J" Id = (J' and Id . (J' = (J'.

(J'~"t The substitution (J' is more general than "t, Le.

there exists a substitution p, such that p. (J' =
"t.

2M the power set of the set M

As mentioned in the introduction, we are interested in an extension of occurrences. The idea of

the extension is to add function symbols to the argument positions of an occurrence. Consider the

3

Chapter 2

Preliminaries

In this chapter we introduce the notations used throughout this paper. These are the classical
notations, as they are defined in [Huet and Oppen, 1980]. Then a new notion is introduced, the
concept of enriched occurences, which is an extension of the classical notion of an occurence.

Fa The set of function symbols of arity n
Pa The set of predicate symbols of arity n
Z = ((F;)i=0...n» [Pi)i=0...m) | A first order Signature
V A set of first order variables
T(Z,V) The set of well formed first order terms over

YandV
Eq(Z,V) The set of well formed first order equations

over Z and V
V(t) The variables occurring in t .
occlt) The set o f all valid occurrences of t
depth(t) The de,:;h of the term t , where depth(t) = 0

i f t € VUFo. I . e. the depth() of a term is the
length of the longest valid occurrence of this
term.

size(t) The size of the term t , where size(t) = 1 ift €
V UFg. Le . the size() of a term is number of
symbols occurring in this term.

t rev The replacement of the subterm t , of t by v ,
i f m € occ(t).

Id the identity substitution; for any substitution
o i t holds: o - l d=cand id -o=o0 .

o<1 The substitution ¢ is more general than , i.e.
there exists a substitution p , such that p - co =
T .

2M the power set of the set M

As mentioned in the introduction, we are interested in an extension of occurrences. The idea of
the extension is t o add function symbols to the argument positions of an occurrence. Consider the

term f(g(x),a): (1,1) is a valid occurrence of this term denoting the subterm x. This occurrence

specifies a path from the top level of f(g(x), a) down to x. The function symbols occurring in

f[g(x), a) along this path are f and g. Thus, adding these function symbols to the occurrence (1,1)

yields W, gl). This is called an enriched occurrence and contains both the information about the
path down to the occurrence of x and the function symbols along this path. Note that a similar

extension is used for term-indexing techniques.

Definition 1 [Enriched Occurrences]

Let t be a term and let (il , , in) E occ(t) be a valid occurrence oft. Then, (f~I, ... , f~n) is called

an enriched occurrence of (i l , , in) if[Vl :::; k:::; n it holds that tl(ilik - 1) is of the form fk(. ..).

Notations: An enriched occurrence corresponding to an occurrence 7t and a term t is given

by enrich (t, 7t). The inverse function computing the corresponding occurrence to an enriched

occurrence ft is given by 1ft I.

Enriched occurrences play a major role throughout this paper. That for, some notational

conventions are introduced providing a better readability. Firstly, given two enriched occurrences

ft = (fl, g2) and ft' = (hl , gl, f2), we agree that (ft, ft') denotes the enriched occurrence

Furthermore, we agree that (h l , ft) denotes the enriched occurrence

and that (ft, hl) denotes

Enriched occurrences have a strong analogy to lists and thus the notions of prefix and suffix of an

enriched occurrence can be defined. For example W, g2) is a prefix of W, g2 ,f2) and (g2, f2) is a

suffix of it.

Definition 2 [Prefix, Suffix of an enriched occurrence]

Given two enriched occurrences ft, ft', then ft' is a prefix offt, if[there exists an enriched occurrence

ft/, such that (it', ft/) = ft. Similarly, ft' is a suffix of ft, if[there exists an enriched occurrence

ftll, such that (ftll, ft') = ft.

Furthermore, let Prefixes(ft) denote the set ofall prefixes offt and Suffixes(ft) the set of all suffixes.

Note that for some enriched occurrence ft, the only enriched occurrence, being both a prefix and

a suflix of ft is ft itself.

4

term f(g(x), a): (1,1) is a valid occurrence of this term denoting the subterm x. This occurrence
specifies a path from the top level of f (g (x) ,a) down to x. The function symbols occurring in
f(g(x),a) along this path are f and g. Thus, adding these function symbols to the occurrence (1,1)
yields (f!,g?). This is called an enriched occurrence and contains both the information about the
path down to the occurrence of x and the function symbols along this path. Note that a similar
extension is used for term-indexing techniques.

Definition 1 [Enriched Occurrences]
Let t be a term and let (iy, . . . , iy) € occ(t) be a valid occurrence of t . Then, (fr, . . . , f i) is called
an enriched occurrence of (iy, . . . , i s) iff V1 < k < n i t holds that t ; ; , ,._; _,) is of the form fi{...).
Notations: An enriched occurrence corresponding to an occurrence Tt and a term t is given
by enr ich(t ,x). The inverse function computing the corresponding occurrence to an enriched
occurrence % is given by |%].

Enriched occurrences play a major role throughout this paper. That for, some notational
conventions are introduced providing a better readability. Firstly, given two enriched occurrences
ft = (f ,g?) and ft’ = (ht, g',f%), we agree that (7, 7’) denotes the enriched occurrence

7 it!
~~ ya ran,

(£2 , g? , h i , g t , f?)

Furthermore, we agree that (h l ,7) denotes the enriched occurrence

*
~~

(h ' , f , 8%)

and that (7, h!) denotes
——

(f } , g2,h*).

Enriched occurrences have a strong analogy to lists and thus the notions of prefix and suffix of an
enriched occurrence can be defined. For example (f!,g2) is a prefix of (f ! , g2,f?) and (g2,f?) is a
suffix of i t .

Definition 2 [Prefix, Suffix of an enriched occurrence]
Given two enriched occurrences it, 7t', then 7t' is a prefix offt, iff there exists an enriched occurrence
#t", such that (X ' , * ") = %. Similarly, 7t' is a suffix of #, iff there exists an enriched occurrence
it", such that (ft",®') =f.
Furthermore, let Prefixes(7t) denote the set of all prefixes of 7t and Suffixes(7t) the set of all suffixes.
Note that for some enriched occurrence 7, the only enriched occurrence, being both a prefix and
a suffix of % is % itself.

With this definition, the S-term construction can be defined as follows:

Definition 6.

Given a n-ary function symbol f and S-terms Ti, ... ,T", we define:

n

f(7i, ... ,T,,) := Ufi.T;
;=1

For example the S-term Ti := {(gl)x} is a structural representation of g(x) with respect to x and

the S-term ~ := {W)a} is a structural representation off(a, b) with respect to a. Then the"S-term

is a structural representation off (g(x), f(a, b)).

In the previous paragraphs we often mentioned, that a S-term represents the structure of a

term. \Ve now want to formulate this notion formally.

Definition 7 [Abstractions of a Term]

AS-term 7 is an abstraction of a term t, iff for all its E 7 both Iit lE oee(t) and t/1iiI = 5 hold.

S7(t) denotes the set of all abstractions oft.

Thus, in the example above the S-term {W, gl)x, W, f1)a} is an abstraction of the term f(g(x), f(a, b)).

We now want to explore the relation between the subset relationship of two S-terms and the ab

stractions S7(t) of a given term t. It turns out to be a rather simple relation: If as-term 7' is

a subset of as-term 7, then for each first order term t with structural representation 7 (i.e. an

abstraction), also 7' is a structural representation of t.

Lemma 8.

Given two S-terms 7, T, such that 7' ~ 7 and a te.rm t, then 7 E S7(t) implies 7' E ST(t).

Proof. For all its E 7' it holds, that its E 7, and therefore I it lE oee(t) and t/1iiI = s. Thus,

7' E S7(t) holds by definition.

Analogously to the notion of a subterm of a first order term, the notion of a S-subterm is

introduced. For example is the S-term {(gl)x} a S-subterm of

at the enriched occurrence W). Formally, a S-subterm is defined by:

Definition 9 [S-subterm]

Given 7 E S7(r., V) and it E OCC(7). Then the S-subterm of7 denoted by it is defined by:

T;7c := {n; I (it, it')t E n·
By abuse of notation, if 'Tt is an occurrence and there is an it E OCC(7), such that litl= 'Tt, then

we define T;7t := T;7c'

In order to enable induction proofs, the notions of depth and size of a S-term are introduced.

These are defined similarly to their corresponding notions over first order terms.

7

0

With this definition, the S-term construction can be defined as follows:

Definition 6 .
Given a n-ary function symbol f and S-terms Ty, . . . ,T,, we define:

f (T .) = JF
i =1

For example the S-term 77 := {(g!)x} is a structural representation of g(x) with respect to x and
the S-term 73 := { { f !) , } is a structural representation of f(a, b) with respect to a. Then the-S-term

f (T , Ta) = f TLJP To = { (f } ,g l)x ,(F2, F1)a}

is a structural representation of f(g(x),f(a,b)).

In the previous paragraphs we often mentioned, that a S-term represents the structure of a
term. We now want to formulate this notion formally.

Definition 7 [Abstractions of a Term]
A S-term T isan abstraction of a term t , iff for all % € T both | f t |€ occ(t) and t y = s hold.
ST I(t) denotes the set of all abstractions of t .

Thus, in the example above the S-term {(f*, g !) , (f?, f*) .} is an abstraction of the term f(g(x), f(a, b)).
We now want to explore the relation between the subset relationship of two S-terms and the ab-
stractions ST (t) of a given term t . It turns out to be a rather simple relation: If a S-term T ' is
a subset of a S-term T, then for each first order term t with structural representation 7 (i.e. an
abstraction), also 7 ’ is a structural representation of t .

Lemma 8 .
Given two S-terms T ,T ' , such that T ' CT and a term t , then T € ST (t) implies T ' € ST (t).

Proof. For all %, € T ' i t holds, that ®t; € T, and therefore | A |€ occ(t) and t /w = s. Thus,
T ' € ST (t) holds by definition. a

Analogously to the notion of a subterm of a first order term, the notion of a S-subterm is
introduced. For example is the S-term {(g!),} a S-subterm of

{ { (ft, gx (f 2 , f 1)a }

at the enriched occurrence (f !) . Formally, a S-subterm is defined by:

Definition 9 [S-subterm)]
Given T € ST(X,V) and 7t € OCC(T). Then the S-subterm of T denoted by % is defined by:

Tra = {A | (R, 7K") € T }

By abuse of notation, if x is an occurrence and there is an & € OCC(T), such that |7t|= =, then
we define Tyr := Tx .

In order to enable induction proofs, the notions of depth and size of a S-term are introduced.
These are defined similarly to their corresponding notions over first order terms.

Definition 10 [Depth]

The depth of a S-term is the ma.ximum depth of its elements, where the depth of an element is

the sum of the length of the enriched occurrence and the depth of the first order term. Thus:

depth(7):= !.llax(length(it) +depth(s)).
1tsET

Definition 11 [Size]

The size of a S-term is the sum of the sizes of each element in this S-term. The size of a element

is defined by the'sum of the length of the enriched occurrence and the size of the first order term.

Thus:

size(7):= L. (Iength(it) + size(s)).

itsET

To define S-equations (cf. section 3.2) we need to know the set of terms with respect to which

a given S-term 7 has been constructed. For example has the S-term

been constructed with respect to occurrences of a and b. Another example is the S-term

{(fl)g(xl' W, fi)a}, which has been constructed with respect to g(x) and a. Thus, we need a function

Terms computing the set of these terms:

Definition 12.

The terms occurring in 7 E S7(r., V) are denoted by the function Terms: S7(r., V) -4 2T (1:,vl,

which is defined by: Terms(T) := {t Iitt E T}.

In the rest of this report we will also call the elements of Terms(7) the subterms of T

3.2 S-equations

Basically, the structural representation of a first order equation is an equation between two s
terms. Since the abstractions of equations are especially used to provide a manipulation of the

enriched occurrences to the selected subterms, we only consider those abstract equations, which

left- and right-hand side S-terms share the same subterms. This restriction is taken into account

during the definition of the so-called S-equations. Take f(g(x), f(a, b)) = g(f(x, a)) as an example:

Then the equation

is a valid S-equation, whereas

are not valid S-equations, since they do not share the same subterms. Formally, the set SEq(r., V)

of valid S-equations is defined by:

Definition 13 [S-equations]

The set ofS-equations over a given signature r. and a set of variables V is defined by:

SEq(r., V) := {Q = R I Q, RE ST(L, V) and Terms(Q) = Terms(Rn

8

Definition 10 [Depth]
The depth of a S-term is the maximum depth of i ts elements, where the depth of an element is
the sum of the length of the enriched occurrence and the depth of the first order term. Thus:

depth(7") := max (length(7t) + depth(s)).
TseT

Definition 11 [Size]
The size of a S-term is the sum of the sizes of each element in this S-term. The size of a element
is defined by the sum of the length of the enriched occurrence and the size of the first order term.
Thus:

s ize (7) :=)_ (length(%) + size(s)).
HET

To define S-equations (cf. section 3.2) we need to know the set of terms with respect to which
a given S-term 7 has been constructed. For example has the S-term

{(F*, g")a, (F2)u}

been constructed with respect to occurrences of a and b. Another example is the S-term
{{f*)g(x)» (2 , f1),}, which has been constructed with respect to g(x) and a. Thus, we need a function
Terms computing the set of these terms:

Definition 12 .
The terms occurring in T € ST(Z,V) are denoted by the function Terms : ST(Z,V) — 27150 ,

which is defined by: Terms(T) : = { t | 7 € T}.

In the rest of this report we will also call the elements of Terms(7") the subterms of T.

3.2 S-equations

Basically, the structural representation of a first order equation is an equation between two S-
terms. Since the abstractions of equations are especially used to provide a manipulation of the
enriched occurrences to the selected subterms, we only consider those abstract equations, which
left- and right-hand side S-terms share the same subterms. This restriction is taken into account
during the definition of the so-called S-equations. Take f (g (x) ,f(a, b)) = g(f(x,a}) as an example:
Then the equation

{ (f , g!)x) = {(g", f)u}

is a valid S-equation, whereas

{ f ea } = ((g*,f*)x} and {(f*, g')x} = ((g*,f”)a}

are not valid S-equations, since they do not share the same subterms. Formally, the set SEq(Z,V)
of valid S-equations is defined by:

Definition 13 [S-equations]
The set of S-equations over a given signature X. and a set of variables V is defined by:

SEq (Z ,V) := {Q=R | Q ,R € ST(L,V)and Terms(Q) = Terms(R)}

Analogously to the definition of the abstractions of a first order term, the abstractions of a first

order equation is defined.

Definition 14 [Abstractions of an Equation]

Given q = r E Eq(l:, V) and Q = n E SEq(l:, V), then Q = n is an abstraction of q = r, iff

Q E S7(q) and n E ST(r). The set of all abstractions of an equation q = r is denoted by

SEq(q = r).

9

Analogously to the definition of the abstractions of a first order term, the abstractions of a first
order equation is defined.

Definition 14 [Abstractions o f an Equation]
Given q = r € Eq(Z,V) and Q = R € SEq(Z, V), then Q = R is an abstraction o f q =r, iff
Q € ST(g) and R € ST(r). The set of all abstractions of an equation q = r is denoted by
SEq(q =r).

Chapter 4

Semantic Considerations

The aim of this chapter is to provide a better understanding of the S-abstraction and the problems

occurring in using this abstraction. That for possible semantics for S-terms and S-equations are

defined according the intuition on S-terms and the encountered problems are analyzed.

The intuition underlying the definition of the S-abstraction is to represent sets of first order

terms by S-terms. The idea is that all first order terms sharing a specific structure can be denoted

by a single S-term. Thus, a first attempt towards a semantics of S-terms is to define which set of

terms is denoted by a given S:'term. Consider as-term {(f2,gl)x}, where f is a binary and g is a

unary function symbol. This S-term represents any term t in which x occurs in the first argument

of g and g itself occurs in the second argument of f. Therefore, f(a, g(x)) and f(f(x, a), g(x)) can

both be represented by {W, gl)x} and thus both are elements of the so-called representation set

of the S-term {W,gl)x}' The function assigning the corresponding representation set to a given

S-term is
I: S/(L., V) ---72T (2:,vl

Formally, the representation set is defined by:

Definition 15 [Representation Set]

Given as-term /, then the representation set of / is given by the function I : S/(r., V) ---7 2T (2:,Vj

and is defined by: I(I) := {t 1/ E S/(t)}.

The interpretation of a S-term as a representation of a set of first order terms already allows

one to establish some properties about S-terms. For example, a lemma can be stated, establishing

a relationship between the subset relation of two S-terms and their respective representation sets.

Consider for instance the S-terms

The first S-term represents all terms, in \vhich x occurs in the first argument of g and g itself

occurs in the second argument of f. The second S-term represents a subset of these terms with

the additional constraint, that a occurs in the second argument of f and f itself occurs in the

first argument of another f. Thus, the first S-term represents more terms than the second, and

furthermore the terms represented by the second S-term are a subset of the terms represented by

the first. Thus, the statement is, that if /' is a subset of /, then the representation set of / is a

subset of T'.

10

Chapter 4
-

Semantic Considerations

The aim of this chapter is to provide a better understanding of the S-abstraction and the problems
occurring in using this abstraction. That for possible semantics for S-terms and S-equations are
defined according the intuition on S-terms and the encountered problems are analyzed.

The intuition underlying the definition of the S-abstraction is to represent sets of first order
terms by S-terms. The idea is that all first order terms sharing a specific structure can be denoted
by a single S-term. Thus, a first attempt towards a semantics of S-terms is to define which set of
terms is denoted by a given S-term. Consider a S-term {(f2, g!)«}, where f is a binary and g is a
unary function symbol. This S-term represents any term t in which x occurs in the first argument
of g and g itself occurs in the second argument of f . Therefore, f (a , g(x)) and f(f (x,a),g(x}) can
both be represented by {(f?,g*),} and thus both are elements of the so-called representation set
of the S-term {(f2,g')s}. The function assigning the corresponding representation set to a given
S-term is

Z :ST(Z ,V) — 2TEV)

Formally, the representation set is defined by:

Definition 15 [Representation Set]
Given a S-term T, then the representation set of T is given by the function T : ST (Z ,V) — 2T(2V)
and is defined by: Z(T) : = { t | T € ST (t)}.

The interpretation of a S-term as a representation of a set of first order terms already allows
one to establish some properties about S-terms. For example, a lemma can be stated, establishing
a relationship between the subset relation of two S-terms and their respective representation sets.
Consider for instance the S-terms

{ (? , g")x} and {(f?, g")x, (f*, f?)a}.

The first S-term represents all terms, in which x occurs in the first argument of g and g itself
occurs in the second argument of f . The second S-term represents a subset of these terms with
the additional constraint, that a occurs in the second argument of f and f itself occurs in the
first argument of another f . Thus, the first S-term represents more terms than the second, and
furthermore the terms represented by the second S-term are a subset of the terms represented by
the first. Thus, the statement is, that if 7 ’ is a subset of 7, then the representation set of T is a
subset of 7’.

10

Lemma 16.

Given T,T' E ST(L, V), then it holds:

T' <;; T =} I(T) <;; I(T')

Proof. Let t E T(L, V) be a term. If T E ST(t), then by lemma 8 T' E ST(t). Therefore,

{t IT E ST(t)} <;; {t I T' E ST(t)}.

This relationship already yields a notion of generality of a S-term. Indeed, does T <;; T'
express, that T is more general than T', since T represents more terms than T'. Unfortunately,

this notion of generality is not complete enough. For example, the S-term {(fl , fl) a} is more general

than {W>t(a,b)' W)b}, a and b being constants and f a binary function symbol, although the first

term is not a subset of the second. Hence, in order to obtain a complete definition of generality,

we define the set of subsuming S-terms of a given S-term:

Subsuming(T) := {T' E ST(L, V) II(T) <;; I(T')}

for all T E ST(L, V). This set is composed of all S-terms representing a part of the struc

ture information represented by T. Consider again the example above: It holds, that {W, fl)a} E

Subsuming({(fl)f(a,b), Wh})· Thus, given as-term T, each S-term T' E Subsuming(T) is more
general than T. Note that the relation "is more generaf' is reflexive by definition, i. e. T E

Subsuming(T) for any S-term T.

The introduction of I already allowed one to state some properties about S-terms and especially

allowed the definition of an S-term to be more general than another. But, this is still not a

semantics in a classical understanding. A classical semantics for a set of first order axioms of

a given signature L = ((Fili=o...n, (Pj)j=O...m) (Sf''' [Loeckx et al., 1996]) is an algebra A, which is

composed of a set A of individuals and a mappi,.g

A: Fa ~ A

from constant symbols of the signature into the set of individuals. Additionnally, the non

constant function symbols are mapped onto total functions over this set of individuals. By abuse

of notation, this is also accomplished by the function Aj Le. for a given n-ary function symbol f,

A(f) is a function of An ~ A. Thus, it is possible to assign to each ground term a single individual,

which is the semantics of this term. The semantics of a ground term t is denoted by A(t). In the

case of non-ground terms, additionally an assignment b : V ~ A of the variable symbols onto the

set of individuals is provided, and a term is evaluated with respect to a given variable binding.

The semantics of a non-ground term t is then denoted by A[b](t). Furthermore, n-ary predicate

symbols are mapped onto n-ary relations over the set of individuals and one defines, that an n-ary

predicate holds for n terms, if and only if the semantics of these terms are in the relation assigned

to this predicate. Thus, again by abuse of notation, for a given n-ary predicate symbol P, A(P)

denotes a subset of An.

Then the semantics of S-terms is defined as follows:

11

0

Lemma 16 .
Given T,T' € ST(X,V), then i t holds:

T 'CT=> I (T) C IT)

Proof. Let t € T (L ,V) be a term. If T € ST(t) , then by lemma 8 T ' € ST(t) . Therefore,
TEST} C IT EST (t)}. a

I s

This relationship already yields a notion of generality of a S-term. Indeed, does 7 C 7 '
express, that 7 is more general than T", since 7 represents more terms than 7 ’ . Unfortunately,
this notion of generality is not complete enough. For example, the S-term { (f ! , f !) , } is more general
than {(f)¢(a.b), (F?)b}, a and b being constants and f a binary function symbol, although the first
term is not a subset of the second. Hence, in order to obtain a complete definition of generality,
we define the set of subsuming S-terms of a given S-term:

Subsuming(T) := {T ' € ST(Z,V) | Z(T) C Z(T")}

for all 7 € ST(X,V). This set is composed of all S-terms representing a part of the struc-
ture information represented by 7 . Consider again the example above: It holds, that { (f * , f !) , } €
Subsuming({ { f *)¢(a,p)>{f2)b}). Thus, given a S-term 7, each S-term 7 € Subsuming(7") is more
general than T. Note that the relation “is more general’ is reflexive by definition, i . e. 7 €
Subsuming(7") for any S-term 7.

The introduction of Z already allowed one t o state some properties about S-terms and especially
allowed the definition of an S-term to be more general than another. But, this is still not a
semantics in a classical understanding. A classical semantics for a set of first order axioms of
a given signature Z = ((Fi)i=o...n, (Pj)j=0...m) (see [Loeckx et al., 1996]) is an algebra A, which is
composed of a set A of individuals and a mappi..g

A:Fo—A

from constant symbols of the signature into the set of individuals. Additionnally, the non-
constant function symbols are mapped onto total functions over this set of individuals. By abuse
of notation, this is also accomplished by the function A; i.e. for a given n-ary function symbol f ,
A(f) is a function of A" — A. Thus, it is possible to assign to each ground term a single individual,
which is the semantics of this term. The semantics of a ground term t is denoted by A(t) . In the
case of non-ground terms, additionally an assignment b : V — A of the variable symbols onto the
set of individuals is provided, and a term is evaluated with respect to a given variable binding.
The semantics of a non-ground term t is then denoted by A[b](t). Furthermore, n-ary predicate
symbols are mapped onto n-ary relations over the set of individuals and one defines, that an n-ary
predicate holds for n terms, if and only i f the semantics of these terms are in the relation assigned
to this predicate. Thus, again by abuse of notation, for a given n-ary predicate symbol P , A(P)
denotes a subset of A".

Then the semantics of S-terms is defined as follows:

11

Definition 17 [Semantics of S-terms]

Given a first order signature r: = ((Fdi=O...n, (Pj)j=O...m), A an algebra to Land b an assignment,

then the semantics of the S-terms ofST(r., V) with respect to A and b is defined by:

• A[b] (0) := A.

• A[b]({()t}) := {A[b](t)}, for each term t.

• A[b](f(71, ... ,'7;;)):= {A(f)(a1, ... ,an) I (a1, ... ,an) E A[b](71) x ... x A[b]('7;;)}, 71, .. ·,'7;;
being S-terms and f E Fn •

Note that the semantics of a S-term is the set of the semantics of the terms which it represents.

This definition is conforming the intuitional semantics underlying the development of the ab

straction. But a problem arises for the definition of the semantics of a S-equation. At first, one

would define the semantics of = by the equality relation over the power-set of A. Then consider

the following equation

1+0=1 (4.1)

and the natural numbers N as a semantics of the signature ({0, 1, +}, {=}). An abstraction of

this equation is

(4.2)

The semantics of the left S-term of (4.2) is the set N \ {a}, and not only {1} as is the semantics

of 1 + 0. On the other hand is the semantics of the right S-term the singleton {I}, like the original

term 1. The problem now is, that while N(I + °= 1) holds, since N(1 + 0) == N(1) == {I}, the

semantics of N({(+lh}) == N \ {a} and N({()!1) == {I} are different. Thus, the semantics of = can
not be defined as the equality relation over 2N . This is not a surprising fact, since we get a degree

of freedom for the semantics of the left S-term with respect to the original term, which we did not

got for the second S-term. To illustrate this, we compare the computing of the semantics of the

right S-term with respect to the computing of the semantics of it~ original term:

N[b]({(+l)!1) .- {N(+)(a1,an) I (a1,a2) E N[b]()d x N[b](0)}

.- {N(+)(a1,an) I (a1,a2) E {1} x N}

.- {N(+)(1,x) Ix EN}

.- N \ {a}

N[b](1+0) .- N(+)(I'J(I), I\J(O))

.- N(+)(1,0)

.- 1

Note that in both cases, the semantics of the first order term is an element of the semantics

of its abstraction, i. e. N(I + 0) E N({(+lh}) and N(1) E N({()!1). Based on this observation,

we could define the semantics A(=) as follows: Two S-terms Sand T are equal with respect to

an algebra A and an assignment b, iff the intersection of the semantics of Sand T is not empty,

i. e. if A[b](S) n A[b](T) i 0. This definition would express, that an abstract equality S = T
holds with respect to A and b, whenever there is at least one valid equation 5 = t with respect

to A and b where 5 E I(S) and t E I(T). The advantage of this semantics of = is that it is

strongly conforming the intuition underlying the definition of S-terms and especially the one of

S-equations. Formally this semantics of = can be defined as follows:

12

Definition 17 [Semantics o f S-terms]
Given a first order signature Z = ((F;)i=0...n, (Pj)j=0...m), A an algebra to Z and b an assignment,
then the semantics of the S-terms of ST{Z,V) with respect to A and b is defined by:

° A [b] (0) = A .

o ABI ({ (: }) := {Albl(t)} , for each term t .

o ADI(f(71,. . . ,Th)) = {A(f)(a1,.. . ,an) | (a1,.. . ,an) € Albl{T;) x . . . x Alb{T;)} T i . . . Tn
being S-terms andf € F,.

Note that the semantics of a S-term is the set o f the semantics o f the terms which i t represents.

This definition is conforming the intuitional semantics underlying the development of the ab-
straction. But a problem arises for the definition of the semantics of a S-equation. At first, one
would define the semantics of = by the equality relation over the power-set of A. Then consider
the following equation

1+0=1 (4.1)

and the natural numbers N as a semantics of the signature ({0, 1, +},{=}). An abstraction of
this equation is

{+n} ={01 } (4.2)

The semantics of the left S-term of (4.2) is the set IN \ {0}, and not only {1} as is the semantics
of 1+ 0 . On the other hand is the semantics of the right S-term the singleton {1}, like the original
term 1. The problem now is, that while N (1 +0 = 1) holds, since N (1 + 0) = N(1) = {1}, the
semantics of N({{+*)1}) = N \ {0} and N({();}) = {1} are different. Thus, the semantics of = can
not be defined as the equality relation over 2M. This is not a surprising fact, since we get a degree
of freedom for the semantics of the left S-term with respect to the original term, which we did not
got for the second S-term. To illustrate this, we compare the computing of the semantics of the
right S-term with respect t o the computing of the semantics of its original term:

NDbI({(+)1}) = {N{+)(a1,24) | (21,32) € N[b]({)z) x N[b](9)}
== {N(+)(a1,an) | (21 ,22) € {1} x N }
= {N(+)({1,x) | x € N }
= N\{0}

N[bJ(1+0) = N(+)(N(1),N(0))
= N(+)(1,0)
= 1

Note that in both cases, the semantics of the first order term is an element of the semantics
of i ts abstraction, i . e. N {1 +0) € N ({ (+ !) : }) and N(1) € N({()1}). Based on this observation,
we could define the semantics A(=) as follows: Two S-terms S and 7 are equal with respect to
an algebra A and an assignment b, iff the intersection of the semantics of S and 7 is not empty,
i . e. if Alb](S) NM A[b](T) # 0. This definition would express, thatan abstract equality S = T
holds with respect to A and b, whenever there is at least one valid equation s = t with respect
to A and b where s € Z(S) and t € Z(T). The advantage of this semantics of = is that it is
strongly conforming the intuition underlying the definition of S-terms and especially the one of
S-equations. Formally this semantics of = can be defined as follows:

12

For all S-terms Sand T (A[b](SJ, A[b](T)) E A(=) ifJ A[b](S) n A[b](T) =I 0. We

denote this by A, b F S = T.

Unfortunately, the defined semantics of = is not an equivalence relation, since it does not

satisfy the transitivity property. Take for example the two S-equations S = T and T = U: If for

a given algebra A and a given assignment b both

A, b F S = T and A, b F T = U

hold, then we only know, that there exists 5 E I(S), t, t' E I(T) and u E I(UJ, for which it

holds

A, b F 5 = t and A, b Ft' = u.

But this does not imply, that A, b F 5 = u, since we do not know anything about the validity

of t = 1'. This is the reason why using this abstraction leads to false proof plans. Indeed, if we

apply S-equations as if the semantics of = would be a congruence relation, we implicitly assume

that we always can prove the equality of two terms 5 and t both belonging to a same S-term T,
like the equality of t and t' in the example above. Of course this assumption is wrong and thus

we may obtain false proof plans when using this abstraction. The interesting point here is, that

this wrong assumption is the only reason why we may get false proof plans.

We have shown, that it is not reasonable to provide a formal semantics for S-terms in the

classical meaning. But we think, that both the attempt of a formal definition of a semantics and

the analysis of the occurring problems provided a better understanding of the given abstraction

to the reader.

13

For all S-terms S and T (AbI(S),Ab)(T)) € A(=) iff Alb](S) N Alb}(T) 0. We
denote this by A ,bkS=T .

Unfortunately, the defined semantics of = is not an equivalence relation, since it does not
satisfy the transitivity property. Take for example the two S-equations S = T and T =U : If for
a given algebra A and a given assignment b both

AbES=TandAbET=U

hold, then we only know, that there exists s € Z(S), t , t ’ € Z (T) and u € Z (U) , for which it
holds

Ab lks= tand Ab t =u

But this does not imply, that A ,b Fs = u, since we do not know anything about the validity
of t = t ’ . This is the reason why using this abstraction leads to false proof plans. Indeed, if we
apply S-equations as if the semantics of = would be a congruence relation, we implicitly assume
that we always can prove the equality of two terms s and t both belonging to a same S-term T,
like the equality of t and t ’ in the example above. Of course this assumption is wrong and thus
we may obtain false proof plans when using this abstraction. The interesting point here is, that
this wrong assumption is the only reason why we may get false proof plans.

We have shown, that i t is not reasonable to provide a formal semantics for S-terms in the
classical meaning. But we think, that both the attempt of a formal definition of a semantics and
the analysis of the occurring problems provided a better understanding of the given abstraction
to the reader.

13

Chapter 5

S-substitutions

In this section the notion of substitutions on S-terms and S-equations is defined. These so called

S-substitutions have to address the facilities of classical first order logic substitutions, in effect the

substitution of variables by first order terms, and further the instantiation of variables by S-terms.
Consider the S-term {W,gl)x}, where x is a variable, f a binary and g a unary fu~ction symbol.

This S-term is an abstraction of f(g(x), b), b being a constant function symbol. We want to have

the possibility to instantiate x by a term, say g(a), in order to get the S-term

This S-term is an abstraction off(g(g(a)), b). That for, we need a classical first order substitution

part in an S-substitution. On the other hand we want the possibility of instantiating x by another

S-term, say {W)a} which would yield

{(ft, gl, f2)a},

which is an abstraction of f(g[f(b,a)), b). That for, in a S-substitution we need a part in order

to instantiate variables by S-terms. Thus, as-substitution ie composed by a classical first order

logic substitution (Tv and a so called pure S-substitution (T~, which is defined in the following

section. Furthermore we have to ensure, that classical substitution and the pure S-substitution

are compatible in that there is no x in the domain of the classical substitution, which is in the

domain of the pure S-substitution too.

5.1 Definition and Properties

Pure S-substitutions have to address the instantiation of variables by S-terms. Therefore, a pure

S-substitution is defined as a partial function (T~ : V Y ST(E, V) mapping variables onto S-terms.

This function has to be a partial function, since the variables, which remain unchanged by the

pure S-substitution, can not be mapped into ST(E, V).

Definition 18 [Pure S-substitution]
Given a partial function (T~: V y ST(E, V). The domain dom((T~) of this partial function is the

subset of V, for which (T~ is defined. Ifdom((T~) is finite, then (T~ is called a pure S-substitution.

A S-substitution is composed of a first order logic substitution (Tv and a pure S-substitution (T~ .

The domains of both substitutions are required not to share same variables, since as-substitution

has to be a function.

14

Chapter 5

S-substitut ions

In this section the notion of substitutions on S-terms and S-equations is defined. These so called
S-substitutions have to address the facilities of classical first order logic substitutions, in effect the
substitution of variables by first order terms, and further the instantiation of variables by S-terms.
Consider the S-term {(f, g!),}, where x is a variable, f a binary and g a unary function symbol.
This S-term is an abstraction of f(g(x),b), b being a constant function symbol. We want to have
the possibility to instantiate x by a term, say g(a), in order to get the S-term

{ff} g !) g (a) } -

This S-term is an abstraction of f (g(g(a)) , b) . That for, we need a classical first order substitution
part in an S-substitution. On the other hand we want the possibility of instantiating x by another
S-term, say {(f2),} which would yield

{ (f ,8% f2)ah
which is an abstraction of f(g(f(b,a)),b). That for, in a S-substitution we need a part in order
to instantiate variables by S-terms. Thus, a S-substitution is composed by a classical first order
logic substitution 0” and a so called pure S-substitution o¥, which is defined in the following
section. Furthermore we have to ensure, that classical substitution and the pure S-substitution
are compatible in that there is no x in the domain of the classical substitution, which is in the
domain of the pure S-substitution too.

5 .1 Definition and Properties

Pure S-substitutions have to address the instantiation of variables by S-terms. Therefore, a pure
S-substitution is defined as a partial function ¢¥ : V — ST(Z, V) mapping variables onto S-terms.
This function has to be a partial function, since the variables, which remain unchanged by the
pure S-substitution, can not be mapped into ST (ZX, V).

Definition 18 [Pure S-substitution)]
Given a partial function 0% : V — ST(Z,V). The domain dom(c¥) of this partial function is the
subset of V, for which 0% is defined. I f dom(o%) is finite, then 0% is called a pure S-substitution.

A S-substitution is composed of a first order logic substitution 0 ” and a pure S-substitution 0% .
The domains of both substitutions are required not t o share same variables, since a S-substitution
has to be a function.

14

Definition 19 [S-substitution]

A S-substitution is defined as a pair of functions (av, a~), where aV : V ~ T(r., V) is a first
order logic substitution and a~ is a pure S-substitution, such that dom(av) n dom(a~) = 0. The
domain of the S-substitution (av, a~) is defined by dom((aV , a~)) := dom(aV) U dom(aX). For

S-substitutions a notation analogous to the one of first order logic substitution is introduced: A

S-substitution (aV, a~), where dom(aV) = {Xl,' .. , xn} and dom(aX) = {YI' ... ,Ym}, is denoted by

([Xl f- aV(xd, ... ,Xn f- aV(Xn)], [YI f- a~ (Yl), ... , Ym f- a~ (Ym)])

The notion of as-substitution av c'an be homomorphically extended to a function a: Snr., V) ~

ST(r., V). The application of the homomorphic extension a = (aV, a~) on as-term T is divided

into five cases. This complexity in the definition results from the problem of mixing the notions of

first order logic substitutions and pure S-substitutions. The first case deals with S-terms which

are either empty or are composed of a single Ot, where there are no variables in t belonging to the
domain of (aV,a~). In this case the S-term remains unchanged.

The second case deals with S-terms, which are composed of a single (h, where in t occur only

variables of the domain of the first order substitution aV • In this case the application of a applies

aV on t and yields Wo-V(t)}.

The third case deals with S-terms composed of a single Ox, where X is a variable symbol

occurring in the domain of the pure substitution part a~ of a. In this case the substituted S-term
of X by a~ is the result of the application of u.

The fourth case deals with S-terms of the form {Of(tltn }}, where variables of the domain

of the pure substitution a~ of u occur in f(tl,"" tn). In this case, f(tl,"" t n) is decomposed
into S-terms {Od and the substitution is· recursively applied on them. Thus, the result of the

application of a is f (a({Od), ... ,u({ (hJ)).
The fifth and last case deals with S-terms which are composed of more than one pair. This

implies, that the S-term must be of the form f (1i, ... ,T;,). In this case a is recursively applied on

the 1i and yields f (u(1i), ... ,u(T;,)).

Definition 20 [Homomorphic Extension of S-substitutions to S-terms]

The homomorphic extension of as-substitution (aV, a~) is a function

a: ST(r., V) ~ ST(r., Vj,

which application on as-term T is defined by

iET = 0 or T = (Od and V(t) n dom(cr) = 0
iET = {(}t) and V(t) n dom(crv) # 0 and V(t) n

dom(O'¥l = 0
o'~ (x), iE T = {Ox}, x E dom(cr~)

f(O'({OIJl. ... ,O'({(}t.})l, iET={Of(ll ln)}, V(t)ndom(O'~) #0
f(O'(1il, ... , 0'('7;;)), iET = f(1i, , '7;;).

Similarly, the application of u on as-equation U = n yields the S-equation a(U) = urn).

The following lemma ensures that the definition of the homomorphic extension of as-substitution

is complete, i.e., that the homomorphic extension is defined for every S-term T.

Lemma 21.

The definition of the homorphic extension u of (UV , a~) is complete.

15

Definition19 [S-substitution]
A S-substitution is defined as a pair of functions (ov, 0%), where oV : V — T(XZ,V) is a first
order logic substitution and 0% is a pure S-substitution, such that dom(cY) Ndom(c¥) = 0. The

domain of the S-substitution (0 ” , 0%) is defined by dom((o”, 0%)) := dom(gV) U dom(c¥). For
S-substitutions a notation analogous to the one of first order logic substitution is introduced: A
S-substitution (¢Y, 0%), where dom(6Y) ={xy,...,xa} and dom(0%) ={y1,...,ym}, is denoted by

(x1 &— 0Y (x1) , Xn &— 6Y(xa)], [yr &— 0%(¥1) , - -+, Ym — TE(Ym)])

The notion of a S-substitution oy can be homomorphically extended to a function ¢ : ST (Z,V) —
ST(Z,V). The application of the homomorphic extension 6 = (¢¥, 0%) on a S-term T is divided
into five cases. This complexity in the definition results from the problem of mixing the notions of
first order logic substitutions and pure S-substitutions. The first case deals with S-terms which
are either empty or are composed of a single (),, where there are no variables in t belonging to the
domain of (oY, 0%). In this case the S-term remains unchanged.

The second case deals with S-terms, which are composed of a single (),, where in t occur only
variables of the domain of the first order substitution 0” . In this case the application of ¢ applies
oV on t and yields {{)gv(n}-

The third case deals with S-terms composed of a single ()x, where x is a variable symbol
occurring in the domain of the pure substitution part 6% of 0. In this case the substituted S-term
of x by 0 is the result of the application of o .

The fourth case deals with S-terms of the form {(}¢(s,,...+,)}, Where variables of the domain
of the pure substitution o¥ of o occur in f (t ; , . . . , t ;) . In this case, f (t ; , . . . , t ,] is decomposed
into S-terms {()+,} and the substitution is recursively applied on them. Thus, the result of the
application of o is f(o({()s,}),.-., o{{{}e.}))-

The fifth and last case deals with S-terms which are composed of more than one pair. This
implies, that the S-term must be of the form f (7 ; , . . . , 7 ,) . In this case o is recursively applied on
the 7; and yields f (o (71) , . . . ,0 (7a)) -

Definition 20 [Homomorphic Extension of S-substitutions to S-terms]
The homomorphic extension of a S-substitution (cv , c¥%) is a function

o :ST(X,V) =» ST(X,V),

which application on a S-term T is defined by

T fT =0o0rT = { () : } and V(t) Ndom(c)=0
{0ov i y } i f T = {{)x} and V(t) N dom(c”¥) # 0 and V(t) N

dom(c¥) = 0
o%(x), i f T ={()x} , x € dom{c})

f lol{Oul,-- 0021) , FT = (O f t . . .) V(t) N dom(c¥) #0
f (o (T i) , . . . , o (T)) , f T =FT , T) .

Similarly, the application of ¢ on a S-equation U = R yields the S-equation o(U) = o{R).

The following lemma ensures that the definition of the homomorphic extension of a S-substitution
is complete, i.e., that the homomorphic extension is defined for every S-term 7.

Lemma 21 .
The definition of the homorphic extension © of (0”,0%) is complete.

15

Proof. The proof is done by induction over the size of as-term T.

Base case 1 - size(T) = 0: This means, that T = 0, and cr is defined for empty S-terms in its
first case.

Base case 2 - size(T) = 1: Thus, T = {()a}, where a is either a variable or a constant. If a is a
constant or a variable not occurring in the domain of cr then cr is defined on it in its first
case. If it is a variable occurring in the domain of cr, then it occurs either in the domain of

Vcr or in the domain of cr~. In both cases the application of cr is defined.
y

Induction step - size(T) > 1: In this case T is either composed of more than one pair and cr is

defined on it in its fifth case, or it is composed of a single pair (f(tl,"" tnJ, (»). Then, either
there is not any variable in f (tl, ... , tn) occurring in the domain of cr, or there are variables

Voccurring either in the domain of cr or cr~. In all three cases the application of cr is defined,

respectively the first, the second and the fourth case. 0

For sake of simplicity the homomorphic extension of S-substitution (crv , cr~) will be denoted by

(cr, crs). Furthermore, a S-substitution and its homomorphic extension are no longer differentiated.

The following lemma ensures the soundness of definition 20, in that it states that the result of

the application of a S-substitution on a S-term also is as-term.

Lemma 22 [Soundness of Definition 20]

For every T E ST(r., V), every U = RE SEq(r., V) and every S-substie-ution cr it holds:

(a) cr(T) E ST(r., V) and

(b) cr(U = R) E SEq(r., V).

Proof of 22. (a). In each non-recursive case of the application of a S-substitution a valid S-term
is yielded. In each recursive case, assuming the recursive cases yield S-terms, a valid S-term is

yielded. Thus, the definition is sound. 0

Proof of 22. (b). From 22.(a) it is known, that cr(U), cr(R) E ST(r., V). It remains to prove, that

Terms(cr(U)) = Terms(cr(R)). That for, we will first prove that

Terms(cr(T)) =	 {t E Terms(T) I V(t) n dom(cr) = 0}u
{crV(t) It E Terms(T), V(t) n dom(cr) oF 0, V(t) n dom(cr~) = 0}u
{s E Terms(cr~({(}t})J It E Terms(TJ, V(t) n dom(cr) oF 0,

V(t) n dom(cr~) oF 0}

from which follows the attended statement directly. That for let cr = (crv , cr~) be as-substitution.

The proof will be done by induction over the size of T.

Base case 1 - .size(T) = 0: In this case T = 0 and thus cr(T) = 0 and the statement holds

trivially.

Base case 2 - size{T) = 1: In this case T is of the form Wa}, where a is either a variable or a

constant and Terms(T~ = {a}. If a is a constant or a variable not occurring in the domain

of cr, then the right hand side reduces to {a}. On the other hand cr(T) = T and thus

16

Proof. The proof is done by induction over the size of a S-term T.

Base case 1 — size(T) =0 : This means, that T = 0, and ¢ is defined for empty S-terms in i ts
first case.

Base case 2 — size(T) = 1: Thus, T = { () . } , where a is either a variable or a constant. I f a is a
constant or a variable not occurring in the domain of ¢ then ¢ is defined on i t in its first
case. If i t is a variable occurring in the domain of o, then i t occurs either in the domain of
oY or in the domain of 0%. In both cases the application of ¢ is defined.

Induction step — size(T) > 1: In this case T is either composed of more than one pair and vo is
defined on jt in its fifth case, or i t is composed of a single pair (f(t1,...,ta), ()). Then, either
there is not any variable in f (t 1 , . . . , t ,) occurring in the domain of o , or there are variables
occurring either in the domain of 0 ” or 0%. In all three cases the application of ¢ is defined,
respectively the first, the second and the fourth case. a

For sake of simplicity the homomorphic extension of S-substitution (cv, a¥) will be denoted by
(os, 0 s) . Furthermore, a S-substitution and i ts homomorphic extension are no longer differentiated.

The following lemma ensures the soundness of definition 20, in that it states that the result of
the application of a S-substitution on a S-term also is a S-term.

Lemma 22 [Soundness of Definition 20]
For every T € ST (Z ,V) , every U = R € SEq (Z ,V) and every S-substitution ¢ i t holds:

(a) o(T) € ST(Z ,V) and

(b) o(U =R) € SEq{L,V).

Proof of 22.(a). In each non-recursive case of the application of a S-substitution a valid S-term
is yielded. In each recursive case, assuming the recursive cases yield S-terms, a valid S-term is
yielded. Thus, the definition is sound. |

Proof of 22.(b). From 22.(a) i t is known, that o(U),c(R) € ST(Z,V). It remains to prove, that
Terms(o(U)) = Terms(o(R)}). That for, we will first prove that

Terms(o{T)) = {t € Terms(7T) | V{ t) N dom(o) = QU
{o¥(t) | t € Terms(T),V(t)Ndom(c) # B, V(t) N dom(0%) = BJU
{s € Terms(c%({(}:})) | t € Terms(7), V(t) N dom(o) #0 ,

V(t) N dom(0%) # 0}

from which follows the attended statement directly. That for let 0 = (0V,o%) be a S-substitution.
The proof will be done by induction over the size of T .

Base case 1 — size(7) = 0: In this case T = 0 and thus o(T) = 0 and the statement holds
trivially.

Base case 2 — size(T) = 1 : In this case T is of the form {() . } , where a is either a variable or a
constant and Terms(T) = {a}. I f a is a constant or a variable not occurring in the domain
of a, then the right hand side reduces to {a}. On the other hand o(7) = T and thus

16

Terms(a(T)) = {a}, which proves the statement. If a is a variable occurring in the domain

of aV, then the right hand side reduces to {aV(a)}. On the other hand is a(T) = {()aV(al),
and thus Terms(a(T)) = {aV(a)}, which proves the statement. Ifa occurs in the domain of

a~, then the right hand side reduces to Terms(a~({()a}). On the other hand Terms(a(Tll =

Terms(a({ (}a})), which proves the statement.

Induction step - size(T) > 1: In this case T is either of the form f(7i, ...• ?;;) or of the form

{(}f(tl,... ,tn)}. In the first case a(T) = f(a(7i)' ... , a(?;;)), and thus

Terms(arT)) = Terms(a(7i)) u ... U Terms(a(?;;)).

Applying the induction hypothesis on the 1i and simplifying proves the statement. In the

second case ifV(f(tl,"" tnllndom(a) = 0, the statement holds trivially. IfV(f(tl,"" tnlln

dom(a) =fi 0 and V(f(tl,"" tnll n dom(a~) = 0, then arT) = {()aV(f(tl ,tnll) and thus
Terms(a(T)) = {aV(f(tl, ...• t n))}. Simplifying the right hand side of the statement also

yields {aV(f(tl •... , tn))}, which proves the statement.

In the last case V(f(tl,"" t n)) n dom(a) =fi 0 and V(f(tl,"" tnll n dom(a~) =fi 0, arT) =

f(a(7i)' ...• a(?;;)) and thus Terms(a(Tll = Terms(a(7i)) U... UTerms(a(?;; ll. Applying the
induction hypothesis on the 1i and simplifying proves the statement. 0

After the definition of a S-substitution, we have to prove its soundness on S-terms and

S-equations. The soundness of the application of a S-substitution states that whenever a S

substitution a is applied on as-term T, then it holds, that for every first order logic term t of

which T is an abstraction, there is a first order substitution a', such that arT) is an abstraction

of art). Consider the S-term

as an example, where x is a variable, g a unary and f a binary function symbol. This S-term is

an abstraction off(g(x),y), y being another variable. The application of the S-substitution

yields {W, gl. f2)a}. Take further the substitution [x +- fib, a), y +- b], b being a constant symbol.

The application of this substitution onto f(g(x), y) yields f(g(f(b, a)), b). The S-term resulting from

the application of the S-substitution onto the given S-term is an abstraction of this term. This is

due to the fact, that the S-term {W)a} substituted for x by the S-substitution is an abstraction

of the term f(b, a) substituted to x by the substitution. Thus, we need a relationship between a

S-substitution and a substitution, expressing the fact, that the S-substitution is an abstraction

of the substitution. That for the notion of a representation set I(a) of a S-substitution a is

introduced, which defines I(a) as a set of first order substitutions a'. The relationship between a

and one of these a' is that for every t E I(T) it holds: a'(t) E I(a(Tll. Furthermore, in order to

prove the soundness of the S-substitution application, we need a lemma establishing a relationship

between as-term T and one of its instantiations arT).

Definition 23 [Representation set of as-substitution]

Given a S-substitution a = (erV , er~). The representation set of er is the set I(u) of first order

substitutions a', for which it holds:

aV
::; a(dom(aVl and er'(x) E I(er~(x)), 'v'x E dom(a~)

17

Terms(0(7)) = {a}, which proves the statement. If a is a variable occurring in the domain
of ov, then the right hand side reduces to {cV(a)}. On the other hand is 6(T) = {{)ov(a)},
and thus Terms(o(T)) = {oY (a)}, which proves the statement. I f a occurs in the domain of
0%, then the right hand side reduces to Terms(o%({{)a}). On the other hand Terms(o(T)) =
Terms{o({(),})), which proves the statement.

Induction step — size(T) > 1: In this case T is either of the form f(T7i1,..., Ta) or of the form
{Otxy,....t.)}. In the first case o(T) =f (o(T1}, . . . ,0(Th)) , and thus

Terms(o({T")) = Terms(o(7;)) U . . .U Terms(o(T;)).

Applying the induction hypothesis on the T; and simplifying proves the statement. In the
second case if V(f(ty,...,ts)}Ndom(c) = 0, the statement holds trivially. If V(f(ts,..., ta))N
dom(o) # ® and V (f (t y , . . . , t)) Ndom(c%) = 0, then o(T) = {{}ov(s(r,....r.))} and thus
Terms(a(7)) = {oY (f (t , . . . , t s)) } . Simplifying the right hand side of the statement also
yields {cY(f(t1,...,ta))}, which proves the statement.
In the last case V(f(t1,...,t,)) Ndom(o) # 0 and V(f(ty,...,ts)) Ndom(c%) # 6, o(T) =
f(o(T1),...,0(73)) and thus Terms(o(7)) = Terms(o(71))U...UTerms(o(7,)). Applying the
induction hypothesis on the T; and simplifying proves the statement. a

After the definition of a S-substitution, we have to prove its soundness on S-terms and
S-equations. The soundness of the application of a S-substitution states that whenever a S-
substitution o is applied on a S-term 7, then i t holds, that for every first order logic term t of
which 7 is an abstraction, there is a first order substitution o ’ , such that o(7) is an abstraction
of c (t) . Consider the S-term

{ f g }

as an example, where x is a variable, g a unary and f a binary function symbol. This S-term is
an abstraction of f (g(x),y) , y being another variable. The application of the S-substitution

(Id, x « {(f?)2)])

yields { (f ' , g!, f2),}. Take further the substitution [x « f(b,a),y + bl, b being a constant symbol.
The application of this substitution onto f (g(x) , y) yields f (g(f (b,a)) , b). The S-term resulting from
the application of the S-substitution onto the given S-term is an abstraction of this term. This is
due to the fact, that the S-term {(f?),} substituted for x by the S-substitution is an abstraction
of the term f (b , a) substituted to x by the substitution. Thus, we need a relationship between a
S-substitution and a substitution, expressing the fact, that the S-substitution is an abstraction
of the substitution. That for the notion of a representation set Z(o) of a S-substitution o is
introduced, which defines Z (o) as a set of first order substitutions ¢ ’ . The relationship between 6
and one of these ¢ ’ is that for every t € Z (T) it holds: ¢ ' (t) € Z{o(T)) . Furthermore, in order to
prove the soundness of the S-substitution application, we need a lemma establishing a relationship
between a S-term 7 and one of i ts instantiations o(7).

Definition 23 [Representation set of a S-substitution]
Given a S-substitution 0 = (oY, 0%). The representation set of o is the set T {o) of first order
substitutions 0 ’ , for which i t holds:

0Y < Oyom(ov) and 0”(x) € Z (0%(x)) ,Vx € dom(0%)

17

Using this notion of a representation set of a S-substitution, the needed lemma for the proof of
the soundness of S-substitutions can be stated.

Lemma 24.

Given as-term T E ST(r., V), U = RE SEq(r., V) and as-substitution cr = (crv , cr~), it holds:

(a) I(cr(T)) = {cr/(t) It E I(T) and cr' E I(cr)}

(b) I(cr(U = R)) = {cr/(u = r) I u = r E I(U = R) and cr' E I(cr)}

Proof of 24. (a). The proof will be done by induction over the size of as-term T:

Base case 1 - size(T) = 0: In this case T = 0 and thus cr(T) = 0 holds for every S-substitution
cr. By definition, I(0) = T(r., V), which proves the statement.

Base case 2 - size(T) = 1: In this case T = {()a}, where a is either a constant or a variable. If
a is a constant or a variable not occurring in the domain of cr, then cr(T) = T and for each

cr' E I(cr) it holds: cr/(a} = a. Thus,

{cr/(t) It E I(T)andcr' E I(cr)} = {cr/(t) It E {a}andcr' E I(cr)}

= {cr'(a) I cr' E I(cr)}

= {a}

= I(T)

On the other hand, if a is a variable occurring in the domain of cr but not in the domain of

cr~ then cr(T) = {()aV(al} and for each substitution cr' E I(cr) it holds: cr'(a) = crV(a). Thus:

{cr/(t) It E I(T) and cr' E I(cr)} {cr/(t) It E {a}andcr' E I(cr)}

= {cr' (a) I cr' E I(cr)}

= {crv(a)}

= I(cr(T))

Induction Step: size(T) > 1: In this case T is either of the form f(7i, ... , 7;,) or of the form

{()f(tl •... ,tnl}. In the first case cr(T) = f(cr(7i •... , cr(7;,)) and it holds:

{cr'(f(tl, , t n)) I f(tl, ... , t n) E I(T) andcr' E I(cr)}

= {f(cr'(td, ,cr'(tn)) I tj EI('T;),Vl:::; i:::; n, andcr' EI(cr)}

= {f(t~, ,t~) I t{ E I(cr('T;)), VI:::; i :::; n}

= {f(t~ , t~) E I(cr(T))}

= I(cr(T))

In the second case, ifV(f(tl, ... , t n)) n dom(cr~) = 0, then

cr(T) = {()aV(f(tl, ... ,tnll}

and the proof is analogous to the last case of the. second base case. Otherwise, it follows

from definition that

cr(T) = f(cr({(hJ),··., cr({()dll

and the proof is similar to the proof in the first case of the induction step. o

Proof of 24. (b). Follows directly from part (a) of the lemma. o

18

Using this notion of a representation set of a S-substitution, the needed lemma for the proof of
the soundness of S-substitutions can be stated.

Lemma 24 .
Given a S-term T € ST(Z,V), U = R € SEq(Z,V) and a S-substitution o = (¢¥, 0%), i t holds:

(a) Z(o {T)) = { c ’ { t) |t € Z(T) and ¢ ’ € I (0) }

(b) Z(o(U =R)) = { c ' (u= r) ju=re I (U =R)and ¢ ' € I (0)}

Proof of 24.(a). The proof will be done by induction over the size of a S-term T:

Base case 1 — size(T) = 0: In this case T = 0 and thus o(T) = 0 holds for every S-substitution
0 . By definition, Z(0) = T(Z,V), which proves the statement.

Base case 2 — size(T) = 1 : In this case T = { () . } , where a is either a constant or a variable. I f
a is a constant or a variable not occurring in the domain of o, then o (7) = T and for each
o ' € I (o) i t holds: o'(a) = a. Thus,

{o’(t) I t € Z(T) and ¢ ' € Z(0}} { o ' (t) | t € {a}and 0 ’ € Z(0) }

= {o’(a) l o ’ € 7(9) }

{a}
= I(T)

On the other hand, if a is a variable occurring in the domain of ¢ but not in the domain of
o¥ then o(T) ={ ()ov (a) } and for each substitution ¢ ' € Z(o) i t holds: ¢'(a) = o¥ (a). Thus:

{o’(t) |t € Z(T)ando’ € Z(0)} = { o ' (t) | t € {a}and o ’ € Z(0)}

= {o ’ (a) | o ’ € Z(o)}

= {o ” (a) }

= Z (o (7))

Induction Step: size(7) > 1 : In this case T is either o f the form f(Ti,..., Ta) or o f the form
{Of(t......t.)}- In the first case o(T) =f (0(T; , . . . ,0{TA)) and i t holds:

{c ' (f (ts , . . . , ta)) | f (t1 , . . . , ta) € Z(T) and0’ € Z(o)}

= {f(a'(t1),. . . ,0'(tn)) | ; € Z(T7),V1 < i <n , and ¢ ’ € Z(o)}

= { f (t } , . . . , t ;) I t € Z(a(T)) ,V1 < i <n }

{ f (t 1 , . . . ,ts) € Z(0(7))}

= Z(0(7))
In the second case, if V (f (t1 , . . . , t a)) N dom(c¥) = (@, then

o(T) ={0ov rts... ta00}

and the proof is analogous to the last case of the second base case. Otherwise, i t follows
from definition that

o(T) = f (o {Qu Ds. 063)
and the proof is similar to the proof in the first case of the induction step. oO

Proof of 24.(b). Follows directly from part (a) of the lemma. oO

18

5.2 Soundness of the S-substitution

The intended meaning of the soundness of S-substitutions is, that whenever a S-substitution er

is applied on as-term T, which is an abstraction of a first order term t, then there exists a

substitution er', such that er(T) is an abstraction of er' (t). This property is important for the

soundness of the calculus which is defined in section 7 and formulated by the following theorem:

Theorem 25 [Soundness on S-terms]

Given T E ST(r., Vj, t E T(r., Vj, it holds:

Proof. Follows directly from 24.(a). o

Obviously, the soundness of the S-substitution also holds for S-equations, which is the object

of the following corollary.

Corollary 26 [Soundness on S-equations]

Given U = nE SEq(r., V) and u = v E Eq(l:, V), it holds:

u = v E I(U = 'R) -1 Ver3er'. er'(u = v) E I(er(U = 'R))

Proof. Follows directly from 24.(b). o

19

5 .2 Soundness o f the S-substitution

The intended meaning of the soundness of S-substitutions is, that whenever a S-substitution ©

is applied on a S-term 7, which is an abstraction of a first order term t , then there exists a
substitution ¢ ’ , such that o(7) is an abstraction of ¢’(t). This property is important for the
soundness of the calculus which is defined in section 7 and formulated by the following theorem:

Theorem 25 [Soundness on S-terms]
Given T € ST(L,V) , t € T(L,V), i t holds:

t € I (T) = VYo3o'.o'(t) € Z(o(T))

Proof. Follows directly from 24.(a). a

Obviously, the soundness of the S-substitution also holds for S-equations, which is the object
of the following corollary.

Corollary 26 [Soundness on S-equations]
Given UY = R € SEq(X,V) and u =v € Eq(Z,V), i t holds:

u=veZ IU=R)—>Vo io ' . oc ' (u=v)eZ I (c l d =R))

Proof. Follows directly from 24.(b). a

19

Chapter 6

S-matching

Like in first order logic, a notion expressing the matching of a S-term onto another is introduced.

Analogeously to the first order notion of matching, the S-matching of as-term T onto as-term

S holds, if there exists as-substitution 0", such'that the application of 0" on T yields exactly S.

Definition 27 [S-matching]

Let be T,S E ST(r., V). Then T S-matches S, iffthere is as-substitution 0", such that O"(T) = S.

Such as-substitution 0" is called an S-matcher ofT onto S.

Now, again like in first order logic, a procedure is required, which computes whether as-term

S-matches another and if so, what the required S-substitution is. This procedure is called the
S-matching algorithm and is defined in the following section.

6.1 S-matching Algorithm

The S-matching algorithm is given by a set of transformation rules, each transforming a pair of

sets (E, M) into a new pair (E', M'). The set E is a set of first order equations and the set M is a
set of S-equations. This is due to the two parts of a S-substitution: The set E will contain the
classical first order substitution and M the pure S-substitution. A pair (E, M) is in a solved form,

if all equations in E are of the form x = t, x E V and all S-equations in E are of the form {(}x} = U,

x E V. Furthermore, these variables x have to occur only once in E and M. The problem whether

as-term T S-matches as-term S is encoded by (0,{T = S}}. The rules defining the S-matching
algorithm are:

S-Term-Decomposition:

(E,{f(7i, ... ,7,;) = f(Sl,'" ,Snn U M}
(E, {7i = S1, ... T" = Sn} U M}

S-Variable-Elimination:

(E,{{(}x} = nU M}
(E, {{Ox} = T) U M[x to- 71)

if x E V, x ~ V(T), T =10, x ~ V(E) and x occurs1in M

IThe requirement that x must occur in M is only needed to prove the termination of the S-matching algorithm.

20

Chapter 6

S-matching

Like in first order logic, a notion expressing the matching of a S-term onto another is introduced.
Analogeously to the first order notion of matching, the S-matching of a S-term 7 onto a S-term
S holds, if there exists a S-substitution o, such that the application of o on T yields exactly S.

Definition 27 [S-matching]
Let be T ,S € ST(Z, V). Then T S-matches S, iff there is a S-substitution o, such that o(T) =S.
Such a S-substitution o is called an S-matcher of T onto S .

Now, again like in first order logic, a procedure is required, which computes whether a S-term
S-matches another and if so, what the required S-substitution is. This procedure is called the
S-matching algorithm and is defined in the following section.

6.1 S-matching Algorithm

The S-matching algorithm is given by a set of transformation rules, each transforming a pair of
sets (E, M) into a new pair (E’,M’). The set E is a set of first order equations and the set M is a
set of S-equations. This is due to the two parts of a S-substitution: The set E will contain the
classical first order substitution and M the pure S-substitution. A pair (E, M) is in a solved form,
if all equations in E are of the form x = t , x € V and all S-equations in E are of the form {{) , } =U ,
x € V. Furthermore, these variables x have to occur only once in E and M. The problem whether
a S-term 7 S-matches a S-term S is encoded by (0 , {7 = S}). The rules defining the S-matching
algorithm are:
S-Term-Decomposition:

EAT. . . Ta) =£(S1,..., SIUM)
ETi=81,T, =SaJUM)

S-Variable-Elimination:

(E,{{(x}=TIUM)
(E,{{Ox} = T }U Mbx — TT)

i f xeV ,xg€V(T) ,T #0 , x g V{E) and x occurs!in M

1The requirement that x must occur in M is only needed to prove the termination of the S-matching algorithm.

20

S-Tautology-Elimination:

(E,{f = f}U M)
(E, M)

"Bridge" :

(E,{{(h} = {()s}}U M)
({t = s} U E, M)

where t f/. v.

Term-Decomposition:

({f(tl, ... ,tn) =f(Sl, ... ,snnUE,M)
({tl = 51, ... ,tn = sn} U E, M)

Variable-Elimination:

({x = t} U E, M)
({x = t} U E[x f- t], M [x f- tJ)

if x E V, x f/. V (t) and x E E U M.

Tautology-Elimination:

({t = t} U E, M)
(E, M)

Consider the S-terms {(fl)g(x» (f2,f1)y} and {(fl)g(a),(f2,f1,f2)b}, where x and y are variables,

a and b constants, g a unary and f a duary function symbol. These two S-terms are respectively

abstractions of f(g(x),f(y,a)) and f(g(a),f(f(a,b),a)). The S-matching algorithm is given the

following pair:

The S-matching algorithm transforms this pair as follows:

---- S-term-Decomposition ---

---- S-term-Decomposition ---

------ "Bridge" -----

---- Term-Decomposition ---

21

S-Tautology-Elimination:

(E {T = T }UM)
(E, M)

“Bridge”:

(E, {{0:} = (0 : UM)
{{t =s} U E,M)

wheret gg V.

Term-Decomposition:

{f(ta, . vos t n) = f (sy , . . „,Sa)} U E , M)

{ts =S1 , . . . , t n = Sa) UE, M)

Variable-Elimination:

g (x = t }UE ,M)
({x = t }UE [x « t], Mix « t])

i f xeV ,xg V(t) and x € EUM.

Tautology-Elimination:

{ t = t }UE ,M)
(E,M)

Consider the S-terms {(f*)g(x), (f?,f*)y} and {{f')g(a), (f2,f*,f?)p}, where x and y are variables,
a and b constants, g a unary and f a duary function symbol. These two S-terms are respectively
abstractions of f (g(x) , f (y,a)) and f {g(a) , f (f (a ,b) ,a)) . The S-matching algorithm is given the
following pair:

(0,4) en, (FF) = UfDga, (FFL, E2001)

The S-matching algorithm transforms this pair as follows:

(0,{{F gp (F2,Fy} = {g ray (2 , F1,F2))))

S-term-Decomposition

0, {0g00} = {Og ((F*)y} = {(f*, f e)

S-term-Decomposition

(0, { 000 } = { 0g } {Oy} = {(F)e}})

“Bridge”

(g (x) = g(a) } , {Oy } = {{Fo}})

Term-Decomposition

(x = aL{ {y } = {FD}

21

Thus, the S-matcher of {(fl)g(xj, W, fl)y} on {(fl)g{a), W, fl, f2)b} is

([x ~ aJ, [y ~ {W)b}])

Since the S-matching algorithm is intended to be a decision procedure about whether as-term

S-matches another, a few facts need to be established. The first fact is the termination of the

algorithm, since otherwise it would not be a decision procedure. Furthermore, in order to be sure

of always getting a correct answer, its soundness and completeness have to be established. aa

Theorem 28 [Termination of the S-JIlatching-AIgorithm]

The S-matching algorithm terminates for every pair of finite sets (E, M).

Proof. The statement is proved by mapping each pair (E, M) into a triple (k, I, m) of natural

numbers. Then it will be shown that each rule reduces the adjoined triple with respect to the

lexicographic ordering over tupe1s.

The components of the triple adjoined to a pair (E, M) are defined as follows:

k: the size of the set

V((E, M»)\ { x I	 x occurs only once in E and M, either in an equation
of the kind x = t in E or in a S-equation of the kind

{()x} = n in M. }

where V((E, M») is the set of variables occurring in E in M.

1: The sum of the sizes of the 1eft- and right-hand sides of the S-equations in M.

m: The sum of the sizes of the 1eft- and right-hand sides of the equations in E.

Then it is easy to see, that the S-Term-Decomposition and the S-Tauto1ogy-Elimination reduce
the second component, without changing the first component. The Term-Decomposition and the

Tautology-Elimination reduce the third component, without affecting the others. The S-Variab1e

Elimination and the Variable-Elimination reduce the first component and the "Bridge" rule reduces
the second component, without affecting the first, which completes the proof of the termination

of the S-matching algorithm. 0

In order to make the statements about the soundness and completeness of the S-matching

algorithm, the notion of a S-matcher of a pair (E, M) must be defined. This notion splits, like the

notion of a S-substitution, into two parts: The first part is a classical first order matcher of a set

of first order equations and belongs to the set E.

Definition 29 [Matcher of a set of equations]

A substitution crV is a matcher ofa set E of equations, iff for each t =sEE it holds, that crV(t) = s.

The second part is a pure S-substitution cr~ belonging to the set M. Unfortunately, it can

not be stated that for each S-equation U = V, cr~ (U) = V holds, since it does not take into
account the required first order substitutions. Therefore, the notion of a pure S -matcher of a set

of S-equations has to be defined relatively to a first order substitution.

Definition 30 [Pure S-matcher of a set of S-equations]

Given a first order substitution crv , a pure S-substitution cr~ is a pure S-matcher with respect to

Vcr of a set M of S-equations, iff for each T = nE M it holds, that (crV , cr~)(T) = S.

22

Thus, the S-matcher of {(f!)gx1, (f2,f1)y} on {(f!)g(2), (2 , £1, £2) is

(k + al, ly « {(f2)u}])

Since the S-matching algorithm is intended t o be a decision procedure about whether a S-term
S-matches another, a few facts need to be established. The first fact is the termination of the
algorithm, since otherwise it would not be a decision procedure. Furthermore, in order to be sure
of always getting a correct answer, its soundness and completeness have to be established. aa

Theorem 28 [Termination of the S-ynatching-Algorithm)]
The S-matching algorithm terminates for every pair o f finite sets (E, M).

Proof. The statement is proved by mapping each pair (E,M) into a triple (k,1,m) of natural
numbers. Then it will be shown that each rule reduces the adjoined triple with respect to the
lexicographic ordering over tupels.
The components of the triple adjoined to a pair (E,M) are defined as follows:

k: the size of the set -

V({(E,M)\ { x | x occurs only once in E and M, either in an equation
of the kind x = t in E or in a S-equation of the kind
{Ox } =T} in M . }

where V((E,M)) is the set of variables occurring in E in M.

I: The sum of the sizes of the left- and right-hand sides of the S-equations in M.

m: The sum of the sizes of the left- and right-hand sides of the equations in E.

Then i t is easy to see, that the S-Term-Decomposition and the S-Tautology-Elimination reduce
the second component, without changing the first component. The Term-Decomposition and the
Tautology-Elimination reduce the third component, without affecting the others. The S-Variable-
Elimination and the Variable-Elimination reduce the first component and the “Bridge” rule reduces
the second component, without affecting the first, which completes the proof of the termination
of the S-matching algorithm. Oo

In order to make the statements about the soundness and completeness of the S-matching
algorithm, the notion of a S-matcher of a pair (E, M) must be defined. This notion splits, like the
notion of a S-substitution, into two parts: The first part is a classical first order matcher of a set
of first order equations and belongs to the set E.

Definition 29 [Matcher of a set of equations]
A substitution cV is a matcher of a set E of equations, iff for each t = s € E i t holds, that oV(t) =s.

The second part is a pure S-substitution c¥ belonging to the set M. Unfortunately, it can
not be stated that for each S-equation U = V , c l (U) = V holds, since it does not take into
account the required first order substitutions. Therefore, the not ion of a pure S-matcher of a set
of S-equations has to be defined relatively to a first order substitution.

Definition 30 [Pure S-matcher of a set o f S-equations]
Given a first order substitution ¢¥, a pure S-substitution ¢¥ is a pure S-matcher with respect to
oY of a set M of S-equations, iff for each T = R € M i t holds, that (c¥,6%)(T) = S.

22

Now the notion of a S-matcher of a pair (E, M) can be defined as follows:

Definition31 [S-matcher ofa pair (E,M)]

AS-substitution cr = (crv , crX) is a S-matcher of (E, M), iff crV is a matcher of E and crX is a pure

S-matcher of M with respect to crv.

The S-matcher of a pair (E, M) which is in a solved form can be extracted from E and M in a

canonical way: Each equation in E is of the form x = t, where x is a variable not occurring in t and

any other equation of E or any S-equation of M. Similarly, every S-equation in M is of the form

{Ox} = T, where x is a variable not occurring in T or any other S-equation in M or any equation
in E. Thus the S-matcher for (E, M) is as-substitution cr = (crv , crX) defined by:

Vcr	 = {x f- t Ix = tEE}

Obviously, cr is a S-matcher of (E, M) and thus if the S-matching algorithm terminates in a solved

form, an S-matcher can be extracted from it. By the soundness and completeness of the S

matching algorithm, which will be established in the next paragraph, this S-matcher also is a

S-matcher of the original matching problem.

In order to proof the soundness and completeness of the S-matching algorithm, a lemma is
required, which states, that if a pair (E, M) is not in a solved form, but no rule of the S-matching

algorithm is further applicable, then there does not exist a S-matcher for (E, M).

Lemma32.

Given a pair (E, M), then ifno rule of the S-matching algorithm is applicable on (E, M) and (E, M)

is not in a solved form, then there does not exist a S-matcher for (E, M).

Proof. If no rule is applicable on (E, M) and (E, M) is not in a solved form, then (E, M) must be

of one of the following forms:

1.	 (E, MU{f(7i, ... , Tn) = g(Sl •... ,Srn)}): Obviously, there can not exist anyS-matcher in this

case, since if so, cr(f(7i, ... ,Tn)) = g(Sl •... ,Srn) should hold, which is impossible.

2.	 (E, Mu{{Os} = f(7i, ... ,Tn)}), s rt V: Again, there can not exist any S-matcher in this case.

3.	 (E U {f(tl,"" t n) = g(Sl, ... ,srn)}, M): The statement holds trivially.

4.	 (Eu{a = t}, M), where t:f. a: Again, the statement holds trivially, which completes the proof

of the lemma. 0

After these preliminaries, the soundness and the completeness of the S-matching algorithm

can be stated. The completeness of the S-matching algorithm is proved by case analysis over the

rules defining the algorithm. The following theorem states for each rule transforming (E, M) into

(E', M/), that whenever as-substitution cr is a S-matcher of (E, M) then it is also a S-matcher of
(E', M')'. Together with the lemma above it follows that if the S-matching algorithm terminates
with (E I, M') not in a solved form, then the original S-matching problem does not have a solution.

Theorem 33 [Completeness of the S-matching-AIgorithm]

Given (E,M), (E/,M /), such that (E,M) results from (E/,M /) by the application of one of the

S-matching rules above. Then every S-matcher cr = (crv , crX) of (E, M) is a S-matcher of (E', M/).

23

Now the notion of a S-matcher of a pair (E, M) can be defined as follows:

Definition 31 [S-matcher of a pair (E, M)]
A S-substitution o = (06V, 0%) is a S-matcher of (E, M), iff ov is a matcher of E and o¥ is a pure
S-matcher of M with respect to 0’ .

The S-matcher of a pair (E, M) which is in a solved form can be extracted from E and M in a
canonical way: Each equation in E is of the form x = t , where x is a variable not occurring in t and
any other equation of E or any S-equation of M. Similarly, every S-equation in M is of the form
{x } = T , where x is a variable not occurring in 7 or any other S-equation in M or any equation
in E. Thus the S-matcher for (E ,M) is a S-substitution ¢ = (oY, c%) defined by:

oV={x—t | x= teE }

o¥ =x T{ (}=T eM}
Obviously, o is a S-matcher of (E, M) and thus i f the S-matching algorithm terminates in a solved
form, an S-matcher can be extracted from i t . By the soundness and completeness of the S-
matching algorithm, which will be established in the next paragraph, this S-matcher also is a
S-matcher of the original matching problem.

In order t o proof the soundness and completeness of the S-matching algorithm, a lemma is
required, which states, that if a pair (E, M) is not in a solved form, but no rule of the S-matching
algorithm is further applicable, then there does not exist a S-matcher for (E, M).

Lemma 32.
Given a pair (E,M), then if no rule of the S-matching algorithm is applicable on (E, M) and (E, M)
is not in a solved form, then there does not exist a S-matcher for (E, M).

Proof. I f no rule is applicable on (E,M) and (E,M) is not in a solved form, then (E,M) must be
of one of the following forms:

1. (E,MU{f (T i , . . . , Ta) = g(Sı,.-.., Sm): Obviously, there can not exist any S-matcher in this
case, since if so, o(f(Ti,..., Ta)) = g(Sı,...,Sm) should hold, which is impossible.

2. (E ,MU{(s}= f (T1, . . . ,Th) }) , s € V: Again, there can not exist any S-matcher in this case.

3. (EU{f (ty , . . . , ta) =8&(51,...,5m)}, M) : The statement holds trivially.

4. (EU{a = t} ,M), where t # a: Again, the statement holds trivially, which completes the proof
of the lemma. 0

After these preliminaries, the soundness and the completeness of the S-matching algorithm
can be stated. The completeness of the S-matching algorithm is proved by case analysis over the
rules defining the algorithm. The following theorem states for each rule transforming (E, M) into
(E ’ , M ’) , that whenever a S-substitution o is a S-matcher of (E, M) then i t is also a S-matcher of
(E’, M’) . Together with the lemma above i t follows that if the S-matching algorithm terminates
with (E’, M’) not in a solved form, then the original S-matching problem does not have a solution.

Theorem 33 [Completeness o f the S-matching-Algorithm]
Given (E,M), (E’ ,M’) , such that (E,M) results from (E’,M’) by the application of one of the
S-matching rules above. Then every S-matcher 0 = (6V, 6%) of (E,M) is a S-matcher of (E', M’).

23

Proof. The proof is done by case analysis over the rules:

S-Term-Decomposition: I.e. E = E' and MI = MU{1i = S1 ... Tn = Sn}. If 0" is a S-matcher of

(E, {f(1i, ... , Tn 1= f(S1, ... ,SnnU M), then O"V is a matcher of E and O"~ is a pure S-matcher
of M with respect to O"v. Furthermore, it holds

O"(f(1i, ... , Tn II = f(S1,'" ,Sn)

and thus it holds O"('T;) = Si, for all 1 ~ i ~ n. Thus, 0" is a S-matcher of (E, M U {1i =
S1 ... Tn = Sn}.

S-Variable-Elimination: If0" is a S-matcher of(E, {{ Ox} = nUM), then it holds, that O"~ ({ Ox}1=

T, and thus 0" 0 (0, [x f-- 7ll = 0", which proves the statement.

S-Tautology-Elimination: The statement holds trivially in this case.

"Bridge": In this case it must hold, that O"({Ot1) = {Os}. Since t f/. V, it must hold that O"V (tl = 5,
and thus 0" is a S-matcher of (E U{t = s}, M).

Term-Decomposition: Since 0" is a S-matcher of

(E,{f(t1,"" tnl = f(S1,'" ,sn)} U M),

it holds that O"V(f(t1,"" tnll = f(S1,'" ,sn), and thus O"V(t;) = Si for each 1 ~ i ~ nand 0" is

a S-matcher of (E U{t1 = 51, ... , tn = sn}).

Variable-Elimination: O"V (x) = t, and thus 0" 0 ([x f-- t], 0) = 0" and thus 0" is an S-matcher of

({x = t} U E[x f-- t], M[x f-- t]).

Tautology-Elimination: The statement holds trivially in this case. o

The above theorem implies the completeness of the S-matching algorithm; indeed, we already

showed the termination of the S-matching algorithm. Thus,a S-matching problem (E, M) is

transformed in finitely many steps into a S-matching problem (E', M'). If (E', M') is in a solved

form, then (E', M') has a unique S-matcher; otherwise there does not exist any S-matcher for

(E',M '). Thus, if the original problem (E,M) has a S-matcher it follows by induction over the

transformation steps and from the theorem above, that (E', M') has a S-matcher and thus must

be in a solved form. Therefore, the S-matching algorithm is complete.

The soundness of the S-matching algorithm is also proved by case analysis over the rules

defining the S-matching algorithm. On contrary to the completeness, it is proved that given

(E, M) and (E', M') if (E, M) does not have a S-matcher and (E', M') results by the application of

a transformation rule to (E, M), then (E', M') does not have a S-matcher too.

Theorem 34 [Soundness of the S-matching-AIgorithm]

Given (E, M), (E', M'), such that (E, M) results from (E', M') by the application of one of the

S-matching rules above. Then every S-matcher 0" = (O"v, O"~) of (E', M') is a S-matcher of (E, M).

Proof. The proof is done by case analysis over the rules:

24

Proof. The proof is done by case analysis over the rules:

S-Term-Decomposition: Le. E= E ’andM '=MU{T1=S i . . . T i = Su}. If 0 is a S-matcher of
(E,{ f(T1,. . . , Ta) = f (S1 , . . . , 8 .) }UM) , then ¢V is a matcher o f E and 0% is a pure S-matcher
of M with respect to 0 ” . Furthermore, i t holds

o (f (T1 , . . . ,Ta) = f (S1 , . . . ,Sn)

and thus i t holds o(Ti) = Si, for all 1 < i < n. Thus, o is a S-matcher of (E ,MU{T =
Si... To = Sa}.

S-Variable-Elimination: If 0 is a S-matcher of (E,{{()x} = TJUM), then i t holds, that o¥({{)x}) =
T, and thus oo (0, x « 7]) = 0, which proves the statement.

S-Tautology-Elimination: The statement holds trivially in this case.

“Bridge”: In this case i t must hold, that o({{).}) = {()s}. Sincet ¢ V, i t must hold that o¥ {t) =s,
and thus o is a S-matcher of (EU {t = s}, M).

Term-Decomposition: Since o is a S-matcher of

(E , {f(t1, . . . ‚tn) = f (s ı , oes ‚Sa)} U M) ,

i t holds that o(f (t y , . . . , t s)) = f (S1 , . . . , 5n) , and thus oV(t;) =s; foreach 1 < i< nando is
a S-matcher of (EU{ t ; =s1 , . . . , t y =S5q})-

Variable-Elimination: ov (x) = t , and thus oo (x + t],0) = ¢ and thus o is an S-matcher of
{x = t } UE[x + t] , Mx « t]).

Tautology-Elimination: The statement holds trivially in this case. a

The above theorem implies the completeness of the S-matching algorithm; indeed, we already
showed the termination of the S-matching algorithm. Thus, a S-matching problem (E,M) is
transformed in finitely many steps into a S-matching problem (E’,M’). If (E’,M’) is in a solved
form, then (E’, M’) has a unique S-matcher; otherwise there does not exist any S-matcher for
(E’,M’). Thus, if the original problem (E,M) has a S-matcher i t follows by induction over the
transformation steps and from the theorem above, that (E’,M’) has a S-matcher and thus must
be in a solved form. Therefore, the S-matching algorithm is complete.

The soundness of the S-matching algorithm is also proved by case analysis over the rules
defining the S-matching algorithm. On contrary to the completeness, it is proved that given
(E,M) and (E’, M ’) if (E,M) does not have a S-matcher and (E’, M’) results by the application of
a transformation rule to (E, M), then (E’,M’) does not have a S-matcher too.

Theorem 34 [Soundness of the S-matching-Algorithm)]
Given (E,M), (E’,M’), such that (E,M) results from (E’,M’) by the application of one of the
S-matching rules above. Then every S-matcher o = (¢¥,0%) of (E’,M’) is a S-matcher of (E, M).

Proof. The proof is done by case analysis over the rules:

24

S-Term-Decomposition: If CT is a S-matcher of (E,{7i = Sl,"" T;, = Sn} U M), then CY~(7i) =

Si for each 1 :S i :S n. Thus CY~(f(7i, ... ,T;,)) = f(Sl, ... ,Sn) and CY is a S-matcher of
(E, {f(7i, ... , T;,) = f(Sl, ... ,Sn)} U M).

S-Variable-Elimination: Since CT({()x}) = T, CT 0 (0, [x l- 1]) = CY. Thus, CY is a S-matcher of

(E, {{ Ox} =T} U M) too.

S-Tautology-Elimination: The statement holds trivially.

"Bridge": It holds that cyV(t) = s. Therefore, CT({()t1) = {Os} and thus CT is a S-matcher of

(E, {{()t} = {Os}} U M) too.

Term-Decomposition: Since CTV(t;J = Si for each 1 :S i :S n, it holds that cyV(f(tl,"" tnll =

f(Sl, ... ,sn)' Thus, CT is a S-matcher of

Variable-Elimination: Since CTV (x) = t, it holds that CT = CTo ([x l- t], 0). Thus, CT is a S-matcher

of(EU{x=t},M).

Tautology-Elimination: The statement holds trivially. o

We now show that this theorem implies the soundness of the S-matching algorithm. Assume

again that the original S-matching problem (E, M) is transformed by finitely many steps into a

(E', M') on which no further transformation rules are applicable. Thus, if (E, M) does not have a

S-matcher, then (E', M') does not have a S-matcher and thus must be in an unsolved form. Thus,

the S-matching algorithm is sound.

25

S-Term-Decomposition: I f ¢ is a S-matcher o f (E,{T1 =Sı,..., Tan = Sa} UM) , then o%(T7) =
Si for each 1 < i < n. Thus oX (f (T i , . . . ,Ta)) = f(S1,... ,8.) and o is a S-matcher of
(E , { f (T1 , . - . . Ta) = f (S1 , ves ‚Sa)} U M) .

S-Variable-Elimination: Since o({()x}) = T, co (0 , x — T]) = o. Thus, oc is a S-matcher of
(E,{()x} = 7}U M) too.

S-Tautology-Elimination: The statement holds trivially.

“Bridge”: It holds that o” (t) = s. Therefore, o({()ı}) = {();} and thus o is a S-matcher of

(E, {0er} = {Qs} UM) too.

Term-Decomposition: Since oV(t;) = si for each 1 < i < n, i t holds that ¢¥(f(ts,...,ta)) =
f(s1,...,84). Thus, o is a S-matcher of

(EU{ f (t s , . . . ,ta) =Ff(s1, . . . ,sn)} ,M).

Variable-Elimination: Since oY (x) = t, i t holds that ¢ = oo([x « t],0). Thus, ¢ is a S-matcher
of (EU {x = t}, M).

Tautology-Elimination: The statement holds trivially. [m]

We now show that this theorem implies the soundness of the S-matching algorithm. Assume
again that the original S-matching problem (E,M) is transformed by finitely many steps into a
(E’, M’) on which no further transformation rules are applicable. Thus, if (E,M) does not have a
S-matcher, then (E’, M’) does not have a S-matcher and thus must be in an unsolved form. Thus,
the S-matching algorithm is sound.

25

Chapter 7

S-Calculus

In this section a calculus for the S-abstraction is introduced, the so-called S-Calculus. This

calculus is a rewrite calculus and has only a single rule. This rewrite rule describes how an S
equation can be applied on aS-term. In order to define this rule, the notion of replacement of a

subterm of an S-term by another is introduced.

Definition 35 [S-subterm-Replacement]

Given T, RE SI(r., V) and it E VCC(/), the replacement ofTlft by R is defined by

• if it = (), then Tlo~n =R,

• if it = (fi , it') and I = f('li, ... ,7,;)' then

TI(f;.ftl)~n = f('li, ... , 1iift/~n, .. ·, 7,;).

Later on the soundness of the abstract rewrite rule is stated and for its proof the soundness

of the S-subterm-replacement is required. The soundness property of the S-subterm-replacement

states, that if two terms t and r are respectively in I(/) and I(R), then the term tlrTiiH is in the

S-term resulting from the replacement of Tlft by R.

Lemma36 [Soundness of the S-subterm-Replacement]

Given I, RE ST(r., V), t, r E I(r., V) and it E VCC(/), it holds:

I(Tlft~n) = {tlrrq~r It E I(I) and rE I(R)}

Proof. The proof is done by induction over the length of it.

Base Case length(it) = 0: i.e. it = () and Tlft = r. Then 1= R and T,fr~n = R, and thus the

statement holds trivially.

Induction Step length(ii:) > 0: i.e. it = (fi,it'). Then let be If := TI(f;). Then the induction

hypotheses applies on T' with it' and it holds:

26

Chapter 7

S-Calculus

In this section a calculus for the S-abstraction is introduced, the so-called S-Calculus. This
calculus is a rewrite calculus and has only a single rule. This rewrite rule describes how an S-
equation can be applied on a S-term. In order to define this rule, the notion of replacement of a
subterm of an S-term by another is introduced.

Definition 35 [S-subterm-Replacement]
Given T ,R € ST(Z,V) and 7t € OCC(T), the replacement of 7% by R is defined by

o i f f t=(), then T i r =R ,

o i f f t= (f ,A ") and T = f (T1 , . . . , Tn), then

Tie myer = Ti... Tisrery +++» Tn):

Later on the soundness of the abstract rewrite rule is stated and for its proof the soundness
of the S-subterm-replacement is required. The soundness property of the S-subterm-replacement
states, that i f two terms t and r are respectively in Z(7") and Z(R) , then the term t j , is in the
S-term resulting from the replacement of 7% by R.

Lemma 36 [Soundness of the S-subterm-Replacement]
Given T ,R € ST(L,V), t , r € T(Z,V) and 7 € OCC(T), i t holds:

(Tar) = {tiger | t € I (T) andr € I (R)}

Proof. The proof is done by induction over the length of &t.

Base Case length(7t) =0 : i e 7t=() and Tx =T . Then T =R and Ta r = R , and thus the
statement holds trivially.

Induction Step length(%) > 0: ie. 7 = (f , # ') . Then let be T ' := Ts. Then the induction
hypotheses applies on T ' with %' and i t holds:

t ' € Z (TYAr € Z(R) > tz , € Z(T z r)

26

Let be T" := 7j~I-'R' Then the induction hypotheses applies on T with (fi) and it holds

furthermore:

t E I(T) 1\ t" E I(T") =? tl(i)H" E I(Ti(f;)I-I")

Given t E I(T) and r E R. Then t is of the form f(tl,"" t n) and ti E I(T'). Thus, by the

first implication, til17t11-r E I(T~'I-'R), and by the second implication, it holds:

which compl!Jtes the prooL

Based on the notion of S-subterm-replacement, the S-Rewriting can be defined. Analogously

to the first order rewriting, the S-Rewriting is a combination of S-matching and S-subterm

replacement.

Definition 37 [S-Rewriting]

Given T E ST(r., V), U = R E SEq(r., V) and fr E OCC(T), then U = R is applicable on T at

the enriched occurence fr, iff there is as-substitution cr, such that Tin = cr(U). The result of the

application is Tinl-O"(V)'

TheoreIll38 [Soundness of S-Rewriting]

Given T E ST(r., V), U = R E SEq(r., V), t E T(r., V), u = r E Eq(r., V), fr E OCC(T) and a

S-substitution cr, such that cr(U) = Tin, then it holds:

t E I(T) 1\ u = r E I(U = R) =? tlb'ill-O"'(r) E I(TinI-O"('R)),

where r E I(R) and cri E I(cr).

Proof. The statement follows from corollary 26 and lemma 36.

Note that in the theorem above it does not hold in genera)., that cr'(u) = tlb;!> since only the

abstractions of tlb'il and cr'(u) are equal.

The problem arising when trying to apply an S-equation U = R on an S-term T is that U

may not be abstract enough to be applied on T. Indeed, it could be possible that there exists an

S-substitution cr, such that T ~ cr(U). But since the S-matching has been defined as the equality

of cr(U) and T, we need a technique which allows to compute an abstraction U' of U, such that if

T ~ cr(U) holds, then cr(U') = T holds. It will be showed that U' is unique and may be computed
before the S-matching process. The computation of U' up from U is called preprocessing.

7.1 Preprocessing

The preprocessing algorithm is given by a set of transformation rules. The algorithm takes two

S-terms T and S as arguments and yields in case of success an abstraction of T which is the

only abstraction of T possibly S-matching S. The transformation rules are operating on sets
of triples (T', S', fr), where fr is the enriched occurence of T' in the original S-term T. Thus,
the preprocessing algorithm starts with {(T,S, O)} and transforms this set until no further rule

application is possible. We say that a set M of such triples is in a solved form, if for each (T' , S', fr)

of M it holds:

27

Let be T " := T r : Then the induction hypotheses applies on T with (fi) and it holds
furthermore:

t e Z(T) A t " e Z r " = t ü r € I (T isyer r)

Givent € Z (T) andr € R . Then t is of the form f (t y , . . . , t ,) and t; € Z (T ') . Thus, by the
first implication, t r € Z(T47:_x), and by the second implication, i t holds:

Y@etymne € T ies)
which completes the proof.

Based on the notion of S-subterm-replacement, the S-Rewriting can be defined. Analogously
to the first order rewriting, the S-Rewriting is a combination of S-matching and S-subterm-
replacement.

Definition 37 [S-Rewriting)
Given T € ST(Z,V), U = R € SEq(Z,V) and 7 € OCC(T), then U = R is applicable on T at
the enriched occurence %, iff there is a S-substitution o, such that Tix = o(U). The result of the
application is Tzeo(v)-

Theorem 38 [Soundness o f S-Rewriting]
Given T € ST(L,V) , U =R € SEq(L,V), t € T(L ,V) , u = r € Eq(%,V), % € OCC(T) and a
S-substitution o, such that o(U) = Ty, then i t holds:

t e I (T)Au= re€ IU =R) = t i f eo ' (r) € Z(Ta—o(r))s

wherer € Z(R) and ¢ ’ € Z{o).

Proof. The statement follows from corollary 26 and lemma 36.

Note that in the theorem above it does not hold in general, that o’(u) = t|;5, since only the
abstractions of t z and o’(u) are equal.

The problem arising when trying to apply an S-equation U = R on an S-term T is that U
may not be abstract enough to be applied on 7. Indeed, it could be possible that there exists an
S-substitution o, such that 7 C o{U/). But since the S-matching has been defined as the equality
of o(U) and T, we need a technique which allows to compute an abstraction U ’ of U , such that if
T € o(U) holds, then o i ’) = T holds. It will be showed that &/’ is unique and may be computed
before the S-matching process. The computation of U ’ up from U is called preprocessing.

7.1 Preprocessing

The preprocessing algorithm is given by a set of transformation rules. The algorithm takes two
S-terms 7 and S as arguments and yields in case of success an abstraction of 7 which is the
only abstraction of 7 possibly S-matching S. The transformation rules are operating on sets
of triples {7 ' ,S ’ ,®) , where % is the enriched occurence of 7 ’ in the original S-term 7. Thus,
the preprocessing algorithm starts with { (7 , S,{))} and transforms this set unti l no further rule
application is possible. We say that a set M of such triples is in a solved form, if for each (7, 8’, 7)
of M it holds:

27

• S =I- () and

• either 7' is of the form {(}f(tl •...•tnl} and S is not of the form f(SI,'" ,Sn),

• or 7' is of the form {()a} and a is either a constant or a variable.

Otherwise, if no further rule application on M is possible and M is not in a solved form, then

it is in an unsolved form. Three properties of the algorithm will be proved: First, it is shown

that the algorithm terminates. Then, the soundness of the algorithm is proved, which garantees,

that whenever for a given input {(7,S, ()} the algorithm terminates in a solved form M, then M r

is an abstraction of 7, Le. M E S7(7). Third, the completeness is proved, which ensures that

whenever for the given input an unsolved form M is reached, then there is not any abstraction of

7 (7 included) which S-matches S.

The transformation rules of the preprocessing algorithm are as follows:

S-term-decomposition:

{(f (1i, ... , In), f (SI, ... ,Sn), it)} U M

{(1i, SI, (itY», . .. , (In, Sn, (it, fn)}} U M

Term-decomposition:

Abstraction:

{(7,0,it}}u M
M

Consider the problem of S-matching {(fl}g(x),WY}y} onto {(fl,gl}a,W,fl,f2h}, where x and y

are variables, a and b constants, g a unary and f a duary function symbol. The preprocessing

algorithm is given the following set

which is transformed as follows:

---- S-term-Decomposition ---

---- S-term-Decomposition ---

---- Term-Decomposition ---

------ Rebuild* -----

28

e §# () and

o either 7 ’ is of the form {()¢(s,,...1,)} and S is not of the form f(Sı,..., Sn);

e or T ’ is of the form { {) , } and a is either a constant or a variable.

Otherwise, i f no further rule application on M is possible and M is not in a solved form, then
it is in an unsolved form. Three properties of the algorithm will be proved: First, it is shown
that the algorithm terminates. Then, the soundness of the algorithm is proved, which garantees,
that whenever for a given input {(7,S, ())} the algorithm terminates in a solved form M, then M _
is an abstraction of 7 , i.e. M € ST(T) . Third, the completeness is proved, which ensures that
whenever for the given input an unsolved form M is reached, then there is not any abstraction of
T (T included) which S-matches S.

The transformation rules of the preprocessing algorithm are as follows:

S-term-decomposition:

{ (f (T , . . Ta) , f(S1,. . . Sn) , A } U M

{(71, S i , (A , f *)) , y (Tas Sa , (71, "Hu M

Term-decomposition:

{ {Osty . . .60 1 F (S1 , . . . » Sn) , TO} uM

{Ou } S i (6,)) , {Oe} , Sn (7,FP) IUM

Abstraction:

{ (T ,0 ,) } UM
M

Consider the problem of S-matching {(f')g(x), (f2,f!)y} onto {(f*, g!)., (f?,f*,f?)p}, where x and y
are variables, a and b constants, g a unary and f a duary function symbol. The preprocessing
algorithm is given the following set

{Uf gro, (FE)1 {CF 81a, (2 , f*,f2) OD),

which is transformed as follows:

{ l g (FF) L(Y, 80a, (FF, F205), OD)

S-term-Decomposition

{Ogu -Kg?ah (FI), (LF)1 {FL F2)u1),(f2))}

S-term-Decomposition

{{Ogahi(ghal, (£13), Oy LLF), (2, £00}

Term-Decomposition

{OH {0a} (F181), Oy 1{Fe (F2,F110}

Rebuild*

(fg) (2. FL)

28

The S-matching algorithm of the resulting S-term, which is an abstraction of

yields the S-matcher

([x +- aJ, [y +- {Wh}])

Now, as discussed above, we first prove the termination of the preprocessing algorithm.

Theorem 39 [Termination of the Preprocessing Algorithm] r

Given a set M of triples as defined above, then the preprocessing algorithm terminates either in a

solved or in an unsolved form.

Proof. The preprocessing algorithm may be viewed as being splitted into two parts: In the first
part only the rules "S-term-decomposition" and "term-decomposition" are applied, until none of

these can be further applied. In the second part only the "Abstraction"-rule is applied. Then let
size(M) be the sum of the sizes of all left- and right-hand sides of the S-equations in M. Obviously,

the "S-term-decomposition" and "term-decomposition" reduces this size and therefore the first
part terminates. On the other hand let S-Eq(M) be the amount of S-equations in M. Again it is
obvious to see, that the "Abstraction"-rule reduces the amount of S-equations and therefore the
second part of the preprocessing algorithm also terminates. Since both parts terminate, the entire

preprocessing algorithm terminates. 0

The next property to be proven is the soundness of the preprocessing algorithm. It states that

whenever for a given input {(T,S, ())} the preprocessing algorithm terminates in a solved form M,
then M E S/(T).

Theorem40 [Soundness of the Preprocessing Algorithm]

Given two S-terms T and S, if the preprocessing algorithm terminates on input {(T,S, ())} in a

solved form M, then M E ST(T) holds.

Proof. ne define a set M of triples of being "adequate" with respect to a given S-term T, if and

only if for each element of M hold:

•	 if the triple {(U, R, it)} does not fulfill the solved form properties, then it . U must be an
element ofST(T) or

•	 if the element is a triple ({to, R, it) fulfilling the solved form properties, then {itt } E ST(T)

must hold.

and the enriched occurences of all triples in M must be compatible, in that none is a prefix of any

other.

For a gi\'en S-matching problem of T onto S the input {(T,S, (»)} is adequate with respect

to T since T E ST(T). Now it is easy to see, that each transformation rule transforms a set
M, which is adequate with respect to T into a set MI, which also is adequate with respect to r.
Thus, if the preprocessing terminates in a solved form M, each element of M is an abstraction of

T. Furthermore, since M is adequate, the enriched occurences of the pairs in M are compatible
and M is a S-term and an abstraction of T. 0

29

The S-matching algorithm of the resulting S-term, which is an abstraction of

{ (fYg i x)» (£2 , £1) , } ,

yields the S-matcher
(x & al, [y &— {(F)u)])

Now, as discussed above, we first prove the termination of the preprocessing algorithm.

Theorem 39 [Termination o f the Preprocessing Algorithm]
Given a set M of triples as defined above, then the preprocessing algorithm terminates either in a
solved or in an unsolved form.

Proof. The preprocessing algorithm may be viewed as being splitted into two parts: In the first
part only the rules “S-term-decomposition” and “term-decomposition” are applied, until none of
these can be further applied. In the second part only the “Abstraction”-rule is applied. Then let
size(M) be the sum of the sizes of all left- and right-hand sides of the S-equations in M. Obviously,
the “S-term-decomposition” and “term-decomposition” reduces this size and therefore the first
part terminates. On the other hand let S-Eq(M) be the amount of S-equations in M. Again it is
obvious to see, that the “Abstraction”-rule reduces the amount of S-equations and therefore the
second part of the preprocessing algorithm also terminates. Since both parts terminate, the entire
preprocessing algorithm terminates. a

The next property to be proven is the soundness of the preprocessing algorithm. It states that
whenever for a given input { (7 , S , ())} the preprocessing algorithm terminates in a solved form M,
then M € ST(T).

Theorem 40 [Soundness o f the Preprocessing Algorithm]
Given two S-terms T and S, if the preprocessing algorithm terminates on input {(T,S,())} in a
solved form M, then M € ST (T') holds.

Proof. We define a set M of triples of being “adequate” with respect to a given S-term T, if and
only if for each element of M hold:

e i f the triple {(U,R,%)} does not fulfill the solved form properties, then 7 - { must be an
element of ST(T) or

e i f the element is a triple ({ t (y , R,) fulfilling the solved form properties, then {f} € ST (T)
must hold.

and the enriched occurences of all triples in M must be compatible, in that none is a prefix of any
other.

For a given S-matching problem of T onto S the input { (T ,S , (}) } is adequate with respect
to T since T € ST(T) . Now i t is easy to see, that each transformation rule transforms a set
M, which is adequate with respect to T into a set M ' , which also is adequate with respect to T .
Thus, if the preprocessing terminates in a solved form M, each element of M is an abstraction of
T. Furthermore, since M is adequate, the enriched occurences of the pairs in M are compatible
and M is a S-term and an abstraction of T . [m

29

Finally, the completeness of the preprocessing algorithm is proved. The completeness property

ensures that whenever the preprocessing algorithm terminates in an unsolved form, then there

does not exist any abstraction T' of T, such that T' S-matches S.

Theorem 41 [Completeness of the Preprocessing Algorithm]

Given two S-terms T and S, if the preprocessing algorithm terminates on input {(T,S, O)} in an

unsolved form then it holds, that every abstraction T' E ST(T), T' does not S-match S.

Proof. If the preprocessing algorithm terminates in an unsolved form M then there must be at

least one triple in M being either of the form

(f(7i, ...• 'Tn)' g(Sl, ... , Sn), n)

or of the form

wheref :f:. g. Thus, there can not be any abstraction T' ofT, such that 7i~ S-matches g(Sl, ... ,Sn).

o

7.2 Consequences

The preprocessing algorithm and its properties have nice consequences for the implementation of

the S-abstraction. Indeed, for a given equation 5 = t not all abstractions have to be computed,

but only the "least abstract" one. It holds, that any abstraction of some 5 = t is more abstract

than the "least abstract" abstraction of 5 = t. For a formal definition of this notion, a concept of

maximal common subterms of two terms is required.

Definition42 [Maximal Common Subterms]

Given two term 5 and t, then their maximal common subterms are two sets of occurences Maxs ~

occ(s) and Maxt ~ occ(t), for which it holds:

•	 For each (7t, i) E Maxs S7t does not occur in t. To illustrate this consider the following partial

tree representation of 5:

Thus, S(7t,i} is a maximal common subterm, if[the term "preceding" S(7t.i} in the tree does

not occur in t, but S(7t.i} does.

•	 For each (7t, i) E Maxt t 7t does not occur in 5 and

•	 For each subterm occurring in both sand t at the respective occurences 7ts and 7tt it holds,

that either 7ts or a prefix of it has to be in Maxs and that either 7tt or a prefix of it has to be

in Maxt.

Now the least abstract S-equation can be formally defined as follows:

30

Finally, the completeness of the preprocessing algorithm is proved. The completeness property
ensures that whenever the preprocessing algorithm terminates in an unsolved form, then there
does not exist any abstraction 7 ” of T, such that 7 ’ S-matches S.

Theorem 41 [Completeness of the Preprocessing Algorithm]
Given two S-terms T and S, if the preprocessing algorithm terminates on input {(T,S,())} in an
unsolved form then i t holds, that every abstraction T ' € ST(T) , T ' does not S-match S.

Proof. I f the preprocessing algorithm terminates in an unsolved form M then there must be at
least one triple in M being either of the form

f (T1 , . . . , 72), 8 (S1 , . . . , Sn) , RO)

or o f the form

{O# i t 1 ,e . t i) g (S i , see Sa) ; %),

wheref # g. Thus, there can not be any abstraction T ' ofT, such that 7; S-matches g(S1,...,Sn\)-
O

7.2 Consequences

The preprocessing algorithm and its properties have nice consequences for the implementation of
the S-abstraction. Indeed, for a given equation s = t not all abstractions have to be computed,
but only the “least abstract” one. It holds, that any abstraction of some s = t is more abstract
than the “least abstract” abstraction of s = t . For a formal definition of this notion, a concept of
mazimal common subterms of two terms is required.

Definition 42 [Maximal Common Subterms]

Given two term s and t , then their maximal common subterms are two sets of occurences Maxs C
occ(s) and Max, € occ(t), for which i t holds:

e For each (m,i) € Max, sn does no t occur in t . To illustrate this consider the following partial
tree representation of s:

S(m. i

Thus, s (x ; is a maximal common subterm, iff the term “preceding” s (n ; in the tree does
not occur in t , bu t s ry does.

e For each (m,i) € Max, tx does not occur in s and

e For each subterm occurring in both s and t a t the respective occurences 7; and 7 it holds,
that either x, or a prefix of i t has to be in Max; and that either mi or a prefix of i t has to be
i n Max,.

Now the least abstract S-equation can be formally defined as follows:

30

Definition 43 [Least Abstract S-equation]

Given an equation s = t, then the least abstract S-equation of this equation is its abstraction with

respect to all maximal common subterms ofs and t. We denote this S-equation by least-abs(s = t).

Furthermore, a binary relation "is less abstract as" can be defined over S-equations. It will be

shown, that this relation is a noetherian partial order over the S-equations.

Definition 44 [Partial Order on S-equations]

Given two S-equations S = T and U = V, we define the partial order -< over S-equations by

S = T -< U = V :# I(S = T) c I(U = V)

Thus, S = T is less abstract than U = V, HI it represents less terms than U = V. The reflexive
pendant ~ of -< is defined by

S = T -< U = V :# I(S = T) ~ I(U = V)

Theorem 45 [-< is a noetherian partial order]

The binary relation -< is a partial order over SEq(I:, V).

Proof. The statement follows from the definition and the fact, that C is a noetherian partial order

on sets. 0

Now it will be shown, that for a given first order equation s = t, least-abs(s = t) is minimal in

SEq(s = t) with respect to -< .

Lemma 46.

Given a first order equation s = t, least-abs(s = t)~S = T holds for each S = T E SEq(s = t).

Proof. Let n s and n t be the sets ofmaximal common subterms ofsand t as defined in definition 42.

Furthermore, let n~ :={Iitll it E OCC(S)} andn: :={Iitll it E OCCtT)F. Since n s andnt are the

sets of maximal common subterms, it holds that

• for alln' E n~ there exists an Ens such that n is a prefix ofn' and

• for all n' E n: there exists a n E nt such that n is a prefix of n'.

Thus, S = T E SEq(least-abs(s = t)) holds. This implies that SEq(S = T) ~ SEq(least-abs(s =
t)). By the equivalence relation between SEq and I it follows that I(least-abs(s = t)) ~ I(S = T)

and thus least-abs(s = t)~S = T holds. 0

Since the preprocessing allows to reach any abstraction of a given S-equation, it follows from

this lemma that for a given set <1l of first order equations only the least abstractions need to

be computed. Therefore, the cardinality of the set of needed abstractions of <1> is at most the

cardinality of <1>. It is now shown that in general the cardinality is less; indeed it is shown that

there exists for every set <1> a subset Kernel(<1l), which contains the minimal set of equations for

which the least abstractions have to be computed. Then it is shown, that from it any other S

equation may be reached by the preprocessing algorithm. We first give the definition of the set
Kernel (<1» and then show that this set fulfills the required properties.

1 Note, that n; and n: only denote common subterms of 5 and t by definition of S-equations.

31

Definition 43 [Least Abstract S-equation]
Given an equation s = t , then the least abstract S-equation o f this equation is i ts abstraction with
respect to all maximal common subterms ofs and t . We denote this S-equation by least-abs(s = t).

Furthermore, a binary relation “is less abstract as” can be defined over S-equations. It will be
shown, that this relation is a noetherian partial order over the S-equations.

Definition 44 [Partial Order on S-equations]
Given two S-equations S =T and U = V, we define the partial order < over S-equations by

S=T<KU=VEILS=T)C IU=YV)

Thus, S = T is less abstract than U = V, iff it represents less terms than U = V. The reflexive
pendant < of < is defined by

S=T<U=VEIS=T)C IU=Y)
-

Theorem 45 [< is a noetherian partial order]
The binary relation < is a partial order over SEq(Z,V).

Proof. The statement follows from the definition and the fact, that C is a noetherian partial order
on sets. O

Now it will be shown, that for a given first order equation s = t , least-abs(s = t) is minimal in
SEq(s = t) with respect to < .

Lemma 46.
Given a first order equation s = t, least-abs(s = t)<S = 7 holds for each S = T € SEq(s =t).

Proof. Let Tls and TT, be the sets o fmaximal common subterms o fs and t as defined in definition 42.
Furthermore, let TT! := {| | | € OCC(S)} and TT! := {| ft|| ft € OCC{T)} . Since Ts and TI; are the
sets o f maximal common subterms, i t holds that

eo for all ' € TI} there exists a mt € IT; such that 7 is a prefix o f © ’ and

e for all © ’ € T{ there exists a x € TT; such that x is a prefix o f rt’.

Thus, S = T € SEq(least-abs(s = t)) holds. This implies that SEq(S = T) C SEq(least-abs(s =
t)). By the equivalence relation between SEq and I i t follows that Z(least-abs(s = t)) CZ(S=T)
and thus least-abs(s = t)<S = T holds. ul

Since the preprocessing allows to reach any abstraction of a given S-equation, it follows from
this lemma that for a given set © of first order equations only the least abstractions need to
be computed. Therefore, the cardinality of the set of needed abstractions of ® is at most the
cardinality of ©. It is now shown that in general the cardinality is less; indeed it is shown that
there exists for every set @ a subset Kernel(®), which contains the minimal set of equations for
which the least abstractions have to be computed. Then it is shown, that from it any other S-
equation may be reached by the preprocessing algorithm. We first give the definition of the set
Kernel(®) and then show that this set fulfills the required properties.

INote, that TI} and TT only denote common subterms of s and t by definition o f S-equations.

31

Definition 47 [Kernel of a Set of Equations]

Given a set of first order equations <I> , then the kernel Kernel (<I» of <I> is the smallest subset of <I>

fulfilling the following properties:

• For all e,e' E Kernel(<1» where e:l e' it holds

least-abs(e) I. least-abs(e') and

• For all e E <1> there exists an e' E Kernel (<1», such that

least-abs(e'l ~Ieast-abs(el.

Note that if <1> is a finite set, then its kernel may be computed statically, since only the least

abstractions of the equations of <1> have to be compared. This is especially an important property

to provide an efficient implementation of the S-abstraction.

'We now prove, that the definition of the kernel of <1> is sound, Le. that whenever <1> is a non

empty set of first order equations then Kernel(<1» is not empty as well.

Theorem 48 [Soundness of Definition 47]

Given a non empty set <1> of first order equations, then Kernel (<1> 1:I 0 holds.

Proof. The proof is done by induction over the cardinality n of <1>.

Base Case - n = 1: Thus Kernel (<1» = <1> and Kernel (<1» fulfills both required properties of a

kernel.

Induction Step - n ~ n + 1: Thus <1> = <1>' U {e}, e f/. <1>' and by induction hypothesis it follows

that Kernel (<1>') is defined and not empty. Iffor all e' E Kernel(<1>') least-abs(e')-< least-abs(e),

then define Kernel(<1» := Kernel(<1>') and the statement holds trivially. Otherwise define

Kernel(<1»:=	 (Kernel(<1>') U {e})

\{e' E Kernel(<1>') Ileast-abs(e)-< least-abs(e')}

and the statement holds as well.	 o

The final theorem expresses that for each S-equation belonging to an equation of <1> there is a

least abstraction least-abs(e), e E Kernel (<1», such that least-abs(e) is less than the S-equation with

respect to -< . This implies that the S-equation may be reached from least-abs(el by preprocessing,

if required.

Theorem 49 [Minimality of the Least Abstractions of Kernel (<1>)]

Given a set <1> of first order equations, it holds:

Ye E <1> YE E SEq(e) 3e' E Kernel(<1» . least-abs(e'bE

Proof· Given e E <1> and E E SEq(e), it follows from lemma 46, that least-abs(ebE. If e E

Kernel (<1>), then the statement of the theorem holds trivially. Otherwise, it follows from the
definition of Kernel(<1» that there is an e' E Kernel(<1>), such that least-abs(e'bleast-abs(e). By

the transitivity of -< it follows that least-abs(e')~E, which proves the statement.

32

0

Definition 47 [Kernel of a Set of Equations]
Given a set of first order equations © , then the kernel Kernel(®) of ® is the smallest subset of ©
fulfilling the following properties:

e For all e,e’ € Kernel(®) where e # e ' i t holds

least-abs{e) £ least-abs(e’) and

oe For all e € ® there exists an e’' € Kernel(®), such that

least-abs(e’) <least-abs(e).

Note that if © is a finite set, then its kernel may be computed statically, since only the least
abstractions of the equations of ® have to be compared. This is especially an important property
to provide an efficient implementation of the S-abstraction.

We now prove, that the definition of the kernel of ® is sound, i.e. that whenever © is a non
empty set of first order equations then Kernel(®) is not empty as well.

Theorem 48 [Soundness o f Definition 47]
Given a non empty set ® of first order equations, then Kernel(®) # 0 holds.

Proof. The proof is done by induction over the cardinality n of ©.

Base Case — n = 1 : Thus Kernel{®) = ® and Kernel(®) fulfills both required properties of a
kernel.

Induction Step —n — n+ 1: Thus ® = ®’' U{e}, e g ® ' and by induction hypothesis i t follows
that Kernel(®’) is defined and not empty. If for alle’ € Kernel(®') least-abs(e’)< least-abs(e),
then define Kernel(®) := Kernel(®’) and the statement holds trivially. Otherwise define

Kernel(®) := (Kernel(®’) U {e})
\{e’ € Kernel(®') | least-abs(e)~< least-abs(e’)}

and the statement holds as well. 0

The final theorem expresses that for each S-equation belonging to an equation of © there is a
least abstraction least-abs(e), e € Kernel(®], such that least-abs(e] is less than the S-equation with
respect to < . This implies that the S-equation may be reached from least-abs(e) by preprocessing,
if required.

Theorem 49 [Minimality o f the Least Abstractions of Kernel(®)]
Given a set © of first order equations, i t holds:

Ve € ® VE € SEq(e) Je ’ € Kernel(®) . least-abs(e’)<E

Proof. Given e € ® and E € SEq(e), i t follows from lemma 46, that least-abs(e)<E. I f e €
Kernel(®), then the statement of the theorem holds trivially. Otherwise, i t follows from the
definition of Kernel(®) that there is an e ’ € Kernel(®), such that least-abs(e’)<least-abs(e). By
the transitivity of < i t follows that least-abs(e’)<E, which proves the statement. [m

32

The significance of the existence of a kernel for each <1> is that the equations of the kernel
share the structure information of all equations of <1>. For example does the equation f(x, y) =
g(x,y) somewhat "subsume" the structure information off(x,a) = g(x,b). Indeed, all structure

manipulations encoded into the equations of <1> may already be performed if only the equations of

Kernel (<1» would be under consideration. Thus, the notion of a kernel of a set <1> provides, from a

structural point of view, a redundancy criteria for the equations of <1>.

7.3 Properties of the S-Calculus

The S-Calculus is not sound in the understanding that each proof performed by the S-Calculus

may be refined to a first order logic proof. But it is complete in the understanding that whenever

there exists a rewrite proof for a first order logic equality problem, then there exists an abstract

rewrite proof. This implies that whenever there exists a first order logic rewrite proof, if all

abstract proofs for the abstract equality problem could be listed, then at least one of these can

be refined to a first order logic rewrite proof. Obviously, this is ,beyond practicability. That for

heuristics are used to guide the proof search and the quality measure of these heuristics is the
percentage of refinable abstract proofs. However, the used heuristics for the proof search guidance

are not complete. These results are already known from [Autexier, 1996] and thus their proofs are

omitted in this report.

33

The significance of the existence of a kernel for each ® is that the equations of the kernel
share the structure information of all equations of ® . For example does the equation f (x ,y) =
g(x,y) somewhat “subsume” the structure information of f(x,a) = g(x,b). Indeed, all structure
manipulations encoded into the equations of © may already be performed if only the equations of
Kernel(®) would be under consideration. Thus, the notion of a kernel of a set © provides, from a
structural point of view, a redundancy criteria for the equations of © .

7.3 Properties of the S-Calculus

The S-Calculus is not sound in the understanding that each proof performed by the S-Calculus
may be refined to a first order logic proof. But i t is complete in the understanding that whenever
there exists a rewrite proof for a first order logic equality problem, then there exists an abstract
rewrite proof. This implies that whenever there exists a first order logic rewrite proof, if all
abstract proofs for the abstract equality problem could be listed, then at least one of these can
be refined to a first order logic rewrite proof. Obviously, this is beyond practicability. That for
heuristics are used to guide the proof search and the quality measure of these heuristics is the
percentage of refinable abstract proofs. However, the used heuristics for the proof search guidance
are not complete. These results are already known from [Autexier, 1996] and thus their proofs are
omitted in this report.

33

Chapter 8

Conclusion and Future Works

We presented the formal definition of an abstraction of first order terms, the so-called S-abstraction.

The idea of the abstraction is to focusize on the paths to some selected subterms of a given term.

Furt.hermore, we proved several properties of this abstraction, some of which are very helpful for

a space efficient implementation of the abstraction. Additionally, some obscure points, like the
matching of two S-terms, have been cleared out by a formal analysis of some properties. Therefore,

the formal definition and analysis of the S-abstraction provided a more efficient implementation

of the abstraction. Especially, the properties of the preprocessing algorithm lead to a space ef

ficient representation of the abstractions of a given equation database. This feature has been
used for the implementation of the S-abstraction into the INKA-system ([Biundo et al., 1986,
Hutter and Sengler, 1996]).

The presented abstraction does not fit into the class of abstractions defined by Giunchiglia and

Walsh [Giunchiglia and Walsh, 1992] since it is a parameterized abstraction and merely describes

by itself an entire class of abstractions in the understanding of Giunchiglia and Walsh. In order
to analyze the properties of the abstraction, a theoretical trick has to be used, such that the
abstraction fits into the class of abstractions defined by Giunchiglia and Walsh. The idea is to

define for a given first order signature a formal system for pairs (s, n), where s is a term of 7(1:, V)

and n a set of occurences belonging to s. The intention of n is to denote the parts of s which are

preserved during the abstraction process. Then we could define an abstraction which maps pairs
(s, n) into the corresponding S-term. This abstraction is an abstraction in the understanding of

Giunchiglia and Walsh and we can analyze its properties. Observe that the first order logic is an

abstraction of the formal system for pairs (s, n). Thus, we get the following diagramm:

S-abstraction

FOLJ
Pairs(s, n)

Thus, a future work is to establish the properties defined in [Giunchiglia and \Yalsh, 1992] of

the S-abstraction. Another future work on this abstraction is the integration of techniques for
a better support of the heuristics based on the difference reduction paradigm. Since difference
reduction techniques try to preserve common parts while trying to adapt non common parts, the

34

Chapter 8

Conclusion and Future Works

We presented the formal definition of an abstraction of first order terms, the so-called S-abstraction.
The idea of the abstraction is to focusize on the paths to some selected subterms of a given term.
Furthermore, we proved several properties of this abstraction, some of which are very helpful for
a space efficient implementation of the abstraction. Additionally, some obscure points, like the
matching of two S-terms, have been cleared out by a formal analysis of some properties. Therefore,
the formal definition and analysis of the S-abstraction provided a more efficient implementation
of the abstraction. Especially, the properties of the preprocessing algorithm lead to a space ef-
ficient representation of the abstractions of a given equation database. This feature has been
used for the implementation of the S-abstraction into the INKA-system ([Biundo et al., 1986,
Hutter and Sengler, 1996]).

The presented abstraction does not fit into the class of abstractions defined by Giunchiglia and
Walsh [Giunchiglia and Walsh, 1992] since it is a parameterized abstraction and merely describes
by itself an entire class of abstractions in the understanding of Giunchiglia and Walsh. In order
to analyze the properties of the abstraction, a theoretical trick has to be used, such that the
abstraction fits into the class of abstractions defined by Giunchiglia and Walsh. The idea is to
define for a given first order signature a formal system for pairs (s, IT), where s is a term of T(X,V)
and IT a set of occurences belonging to s. The intention of TT is to denote the parts of s which are
preserved during the abstraction process. Then we could define an abstraction which maps pairs
(s ,IT) into the corresponding S-term. This abstraction is an abstraction in the understanding of
Giunchiglia and Walsh and we can analyze its properties. Observe that the first order logic is an
abstraction of the formal system for pairs (s, IT). Thus, we get the following diagramm:

S-abstraction

FOL

Pairs(s, IT)

Thus, a future work is to establish the properties defined in [Giunchiglia and Walsh, 1992] of
the S-abstraction. Another future work on this abstraction is the integration of techniques for
a better support of the heuristics based on the difference reduction paradigm. Since difference
reduction techniques try t o preserve common parts while trying to adapt non common parts, the

34

introduction of an annotation like colors in the C-Logic of Hutter ([Hutter, 1991, Hutter, 1994])
or rippling ([Bundy et al., 1990]) would provide a strong support of the heuristics. Therefore, the

definition of a colored S-abstraction is one future work. Another interesting future work is the

incorporation of structural abstractions of general formulae into the S-abstraction. Obviously,

this seems to be a rather simple task, although it has to be cleared out, whether formulas may

be abstracted with respect to subterms, subformulas or both. The heuristics have also to be

adapted to be able to deal with general abstract formulae. One possibility would be to use
structural abstractions of implications together with heuristics similar to those used for S-equations

in [Autexier, 1996].

35

introduction of an annotation like colors in the C-Logic of Hutter ([Hutter, 1991, Hutter, 1994])
or rippling ([Bundy et al., 1990]) would provide a strong support of the heuristics. Therefore, the
definition of a colored S-abstraction is one future work. Another interesting future work is the
incorporation of structural abstractions of general formulae into the S-abstraction. Obviously,
this seems to be a rather simple task, although it has to be cleared out, whether formulas may
be abstracted with respect to subterms, subformulas or both. The heuristics have also to be
adapted to be able to deal with general abstract formulae. One possibility would be to use
structural abstractions of implications together with heuristics similar to those used for S-equations
in [Autexier, 1996].

Bibliography

Autexier, S. (1996). Heuristiken zum Beweisen von Gleichungen. Diplomarbeit der Universitat

des Saarlandes FB14 (Siekmann), Universitat des Saarlandes, Saarbrucken.

Biundo, S., Hummel, B., Hutter, D., and Walther, C. (1986). The Karlsruhe Induction Theorem

Proving System. In Siekmann, J., editor, Proceedings of the 8"h International Conference on

Automated Deduction (CA DE), LNCS , pages 672-674. Springer.

Bundy, A. (1987). The use of explicit plans to guide inductive proofs. DAI Research Report 349,
Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh
EH11HN, Scotland.

Bundy, A., van Harmelen, F., Smaill, A., and Ireland, A. (1990). Extension to the rippling-out

tactic for guiding inductive proofs. In Stickel, M. E., editor, Proceedings l(fh International

Conference on Automated Deduction (CADE), volume 449 of LNAI, pages 132-146, Kaisers

lautern, Germany. Springer.

Giunchiglia, F. and Walsh, T. (1992). A Theory of Abstraction. Journal of Artificial Intelligence,

56(2-3):323-390. Also as technical report IRST-Technical Report 9001-14.

Gordon, M. J., Milner, A. J., and Wadsworth, C. P. (1979). Edinburgh LCF - A mechanised logic

of computation. Springer Verlag. LNCS 78.

Huet, G. and Oppen, D. C. (1980). Equations and Rewrite Rules: A Survey. Formal Language

Theory: Perspectives and Open Problems.

Hutter, D. (1991). Mustergesteuerte Strategien zum Beweisen von Gleichheiten. PhD thesis,
Universitat Karlsruhe, Karlsruhe.

Hutter, D. (1994). Colouring terms to control equational reasoning. Journal of Automated Rea

soning. to appear.

Hutter, D. and Sengler, C. (1996). INKA - The Next Generation. In McRobbie, M. A. and Slaney,
J. K., editors, Proceedings of the l:fh International Conference on Automated Deduction

(CADE), volume 1104 of LNCS , New Brunswick, N. Y. Springer.

Loech, J., Ehrig, H.-D., and Wolf, M. (1996). Specification of Abstract Data Types. Teubner,

Chichester;New York;Brisbane. ISBN 3-519-02115-3.

Plaisted, D. (1981). Theorem Proving with Abstractions. Journal of Artificial Intelligence, 16:47

108.

36

Bibliography

Autexier, S. (1996). Heuristiken zum Beweisen von Gleichungen. Diplomarbeit der Universität
des Saarlandes FB14 (Siekmann), Universität des Saarlandes, Saarbrücken.

Biundo, S., Hummel, B., Hutter, D., and Walther, C. (1986). The Karlsruhe Induction Theorem
Proving System. In Siekmann, J., editor, Proceedings of the 8" International Conference on
Automated Deduction (CADE), LNCS , pages 672-674. Springer.

Bundy, A . (1987). The use of explicit plans to guide inductive proofs. DAI Research Report 349,
Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh
EH1 1HN, Scotland.

Bundy, A., van Harmelen, F., Smaill, A., and Ireland, A. (1990). Extension to the rippling-out
tactic for guiding inductive proofs. In Stickel, M . E., editor, Proceedings 10*" International
Conference on Automated Deduction (CADE), volume 449 of LNAI , pages 132-146, Kaisers-
lautern, Germany. Springer.

Giunchiglia, F . and Walsh, T . (1992). A Theory of Abstraction. Journal of Artificial Intelligence,
56(2-3):323-390. Also as technical report IRST-Technical Report 9001-14.

Gordon, M . J., Milner, A . J., and Wadsworth, C. P. (1979). Edinburgh LCF - A mechanised logic
of computation. Springer Verlag. LNCS 78.

Huet, G . and Oppen, D . C . (1980). Equations and Rewrite Rules: A Survey. Formal Language
Theory: Perspectives and Open Problems.

Hutter, D . (1991). Mustergesteuerte Strategien zum Beweisen von Gleichheiten. PhD thesis,
Universitit Karlsruhe, Karlsruhe.

Hutter, D . (1994). Colouring terms to control equational reasoning. Journal of Automated Rea-
soning. to appear.

Hutter, D . and Sengler, C . (1996). INKA - The Next Generation. In McRobbie, M . A . and Slaney,
J. K . , editors, Proceedings of the 13" International Conference on Automated Deduction
(CADE), volume 1104 of LNCS , New Brunswick, N . Y. Springer.

Loeckx, J., Ehrig, H.-D., and Wolf, M . (1996). Specification of Abstract Data Types. Teubner,
Chichester;New York;Brisbane. ISBN 3-519-02115-3.

Plaisted, D . (1981). Theorem Proving with Abstractions. Journal of Artificial Intelligence, 16:47
108.

36

Index

Sy~bols

depth

Depth

Id
Kernel

least-abs

occ -
OCC
Prefixes

j

-<
SEqp:, V)

SEq

size

Size

ST(r., V)

ST
Subsuming

Suffixes

T(r., V)
Terms

V

Terminology

A
abstraction

least

minimality

of a term

of an equation

algorithm

preprocessing

C

completeness

of the S-matching algorithm
preprocessing algorithm

D
depth

3 of a term 3
7 of as-term 7
3

31 E

30 enriched occurrence 4

3 notation 4

6 of as-term 6

4 prefix 4

31 suffix 4

31 equation

8 abstractions 9

9 equations

3 kernel of , 31

8

5 F

7 false proof plan 13

11
K

4

3
kernel of equations 31

8 L
3 least abstraction 30

minimality 32

M
maximal common subterms 30

30 N
32 notation

7 enriched occurrence 4
9

o
27 occurrence

enriched 4

p

23 partial order

30 S-equation 31

37

Index

Symbols

dep th . . . 3
Depth . oovee i i i 7

3
Kerne l . . . 31
l eas t -abs coo i i i i i i i i i i i i a 30
Too anne E ERREGER EEE 3
OCC... eee , 6
Prefixes. . . . oooe ie i n i i n i i i i i . 4
nS 31
eee 31
SEZ, VY) ce i 8
SEQ. i i i eee 9
L372 K RER K ER KEG 3
1iZE a re R RER KG 8
ST(EV) e reeeee re ren e rnennen RER 5
ST ee eee 7
Subsuming c co i i i i i i i i i i i i i eee . 11
SuffixeS «o t i 4
VE 3
Terms ce eee 8
Ye eee 3

Terminology

A
abstraction

least coo r eae 30
m in ima l i t y . 32

o fa te rm coo i i i i i i i i i i i i enn . 7
of an equation..............c.oenunnnn 9

algorithm
Preprocessing oeee iev iaenenn . 27

C
completeness

of the S-matching algor i thm.. 23
preprocessing algorithm 30

37

D
depth

of a t e rm c i i i i i i i n i i nn iennnn 3
o faS- te rm essen 7

E
enriched occu r rence c coovv i i nnnnn . . 4

NOtat iON HANNA 4

o faS- te rm een 6
prefix . cooveee i i i 4
Suffix. co i eee 4

equation
abs t rac t i ons covv i i i i i i nnn . 9

equations
kernel of . oov i vv i i i i i i i 31

F
false proof p l an cc . . . 13

K
kernel of equa t i ons . 31

L
least abstractiON......00000000000000000000 30

minimality 00000000000 r0 ren 32

M
maximal common sub te rms 30

N
notation

enriched occurrence 4

Oo
occurrence

en r i ched c covv i i v i i i n i i i nn . . 4

P
partial order

S-eqUALION 00000000000000000000 31

prefix
preprocessing algorithm

completeness

soundness

termination

pure S-substitution

R
replacement

of an S-subterm

soundness
Representation Set
Representation set

of as-substitution

S
S-Calculus
semantics
S-equation

partial order

syntax

size
of a term

of as-term

S-matcher

S-matching
algorithm

completeness

soundness

termination

transformation rules

soundness
of the S-matching algorithm
preprocessing algorithm

S-Rewriting

S-substitution

S-subterm

replacement

S-Rewriting

soundness

S-substitution

pure
Representation set

soundness
synta.x

4 S-subterm 7
27 replacement 26
30 soundness 26

29 S-term

29 depth 7

14 enriched occurrences 6

size 8

S-subterm 7

subterms ; 8
26 syntax 5
26 subsuming S-terms
10 of as-term 11

subterms
17 maximal common 30

of as-term 8

26
suffix ' 4

10
syntax 5

8 of as-substitution 14

31
of S-equations 8

8
of S-terms 5

T
3 term
8 abstractions 7

20 depth 3
20 size 3
20 termination
23 preprocessing algorithm 29
24 S-matching algorithm 22
22

20

24
29

27

17

26

27

27

14

14
17

17
14

38

preprocessing a l go r i t hm. 27
completeness........cveeereiinnennns 30
SOUNANESS a rena en 29
terminäatiON 000000000000000000 29

pure S-substitutiON 0 . . 00 .000000 .0000 14

R
replacement -

of an S -sub te rm. .26
SOUNANesS o i v i e rnnene rnn rennns 26

Representation Set 0 . . 000000000000000 10
Representation set

of a S-subst i tu t ion. 17

Ss
S-Calculus 000000000000000000 0000000 26
SCEMANTtICS 2e r eek eek a ka kAnGEEEG 10
S-equation c coe ie i i i i i i i i i i eeneens . 8

pa r t i a l o rde r oe iennnn . 31
SYNEAX r e r 8

size
ofaterm.ocvv i iv i i i r incnnnnannn 3
of aS-term . . c co i ve i i i i i i i i nnnnnnnns 8

S-matcherocovv i i i i i i i i i i i i i ea . , 20
DT EN 20

algorithm 0000000000000 r nr 0 00000 20
completenNeSS..........0.0.000000000023
SOUNAIESS. . cvcv rneean r r reveonnnnes 24
terminäatiON 000000000000000040 22

transformation r u l es 20
soundness

of the S-matching algor i thm.. 24
preprocessing algorithm 29
S-Rewritinf......0.000000000000000000 27
S-SubstitutioN.........0.0.0000000000400 17
S-subterm

replacement......0.0.0000.000000000000 26
S-Rewriting 00 .0000000000000000000 0000 27

SOUNÄNESS ve rs r r ek K KARA AAG27
S-SubstitutioN 000000000 r en neun14

5101 CA 14
Representation set 0 . 0000 17
SOUNdNESS a rena 17
32 (17:5 SA 14

38

S-sub te rm coee i i i i i i i i i i i i i i en i a . . 7
replacement 0000000000004 26

SOUNdNESS a s0000 sehen e rkenne 26
S-term

4 13 +]1 7
enriched occurrences c 6
J E RE EREKGS 8
S-subterm00000000000000 000000000 7
subterms..coeei ieni i in ieenannn. 8
£74 $11:1 s ie r eee re ieen een 5

subsuming S-terms
of a S-term . . . covv inv i n rnnnn in i nnns 11

subterms
maximal common 30
ofaS-term covvv i i i n i i i i i i i n i nns 8

suf f ixA 4
SYNtEX 0e r e rnennen nn 5

of a S-subst i tu t ion. 14
of S-equatioNS........00.000000000000000 8
of S-terms ovv r i i i i i i i i i en rnenens 5

T
term

abstractioNS 000 .000000000000000004 7
GE 3
C12 3

termination
preprocessing algorithm 29
S-matching algorithm 22

	UR_0008.jpg
	SR-1997-05-1.png

