
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t
K

ai
se

rs
la

ut
er

n
D

-6
76

63
 K

ai
se

rs
la

ut
er

n
SE

KI
 -

R
EP

O
R

T

Towards Full Automation o f
Deduction: A Case Study

Matthias Fuchs
SEKI Report SR-96-07

Towards Full Automation of Deduction: A Case
Study*

Matthias Fuchs

Centre for Learning Systems and Applications (LSA)

Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, 67653 Kaiserslautern

Germany

E-mail: fuchs@informatik.uni-kl.de

October 4, 1996

Abstract

We present first steps towards fully automated deduction that merely requires
the user to submit proof problems and pick up results. Essentially, this necessi
tates the automation of the crucial step in the use of a deduction system, namely
choosing and configuring an appropriate search-guiding heuristic. Furthermore,
we motivate why learning capabilities are pivotal for satisfactory performance.
The infrastructure for automating both the selection of a heuristic and integra
tion of learning are provided in form of an environment embedding the "core"
deduction system.

We have conducted a case study in connection with a deduction system based
on condensed detachment. Our experiments with a fully automated deduction
system 'AUTOCoDE' have produced remarkable results. We substantiate Au
ToCoDE's encouraging achievements with a comparison with the renowned the
orem prover OTTER. AUTOCoDE outperforms OTTER even when assuming very
favorable conditions for OTTER.

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

1

mailto:fuchs@informatik.uni-kl.de

2 1 INTRODUCTION

1 Introduction

Automated deduction is-at its lowest level-a search problem that spans huge search
spaces. The general undecidability of problems connected with (automated) deduction
entails an indeterminism that has to and can only be tackled with heuristics. Besides
the availability of powerful search-guiding heuristics, also knowledge about when and
how to apply a certain heuristic must be accessible. This knowledge is mostly provided
by the user.

The ultimate goal of anyone designing automated deduction systems is a system which
is fully automated in the sense that a user merely needs to specify the proof problems
and pick up results, and everything else is taken care of. In particular the crucial
choice of the search-guiding heuristic and its parameter settings should in the end not
be left to the user, because a judicious choice on that score largely depends on intensive
experience with the respective system.

In other words, a "user-friendly" deduction system is embedded in an environment
which takes over all the steps after being given the problem(s). These steps are only
a burden to a user who is not interested in the detailed mechanisms of automated
deduction, but merely in its results (i.e., proofs).

Several works regarding learning in connection with automated deduction have demon
strated that-quite expectedly in view of the pivotal role learning plays in human prob
lem solving-substantial improvements can be attained through learning (e.g., [13], [2],
[15], [4], [3], [7]). Thus, learning-or exploiting past proof experience-must be con
sidered as an essential part of a powerful deduction system. Therefore, it stands to
reason to integrate learning capabilities into the environment, which of course necessi
tates components and mechanisms for handling proof experience, and thus complicates
matters. But we shall see that even under these harder conditions attempts to achieve
fully automated and powerful deduction systems are not necessarily doomed to failure.

Most existing systems derive their powerfulness from sophisticated search-guiding heu
ristics that do not (explicitly) exploit past experience. However, these heuristics and
the knowledge when and how to employ them go back to the learning capabilities and
experience of their designers. Hence, these systems lack an essential part of automation
that puts off potential, but unexperienced users of deduction systems. The well-known
theorem prover OTTER alleviates this problem with its 'autonomous mode' (cp. [10])
that attempts to pick an appropriate search-guiding heuristic after analyzing the cur
rent problem. But the "selection heuristic" is built-in and hence inflexible in the sense
that it encodes the knowledge its designers had at some point in time.

We conducted a case study regarding full automation of deduction in the area of con
densed detachment (CD), also known as "substitution and detachment" (cf. [17]' [9]).
The main reason for this choice is the fact that there is a large number of such problems
within a wide spectrum of difficulty, almost continuously ranging from (nearly) trivial
to (very) challenging. This constellation is important if we want to tackle problems
with methods that involve previous proof experience. Furthermore, problems in the
area of CD are widely acknowledged as prominent test sets for automated deduction
systems and their search-guiding heuristics (cp. [18], [11]), and they have received con

3

siderable attention, in particular in connection with serious experimental evaluations
of existing deduction systems (e.g., [12], [18], [11], [14]' [19]).
[7] presented several methods for learning from past experience that were experimen
tally evaluated in connection with CD. These methods will also be employed here. We
shall show that a central problem for utilizing past experience not addressed in [7]
namely which piece(s) of past experience to make use of in order to solve the current
problem-could be coped with automatically and satisfactorily in this case study. We
substantiate our results by comparing them with the results of the renowned OTTER
that were published in [11].
This report essentially aims at demonstrating two things: First, (machine) learning
techniques of some form are indispensable to obtain full automation and powerfulness.
Second, the additional complications learning causes (in particular the question when
and how to exploit past experience) can-at least in this case study-be overcome.
The report is organized as follows. First, sections 2 and 3 introduce the basics concern
ing CD, the deduction system 'CODE' and its s'earch-guiding heuristics. Then, section 4
outlines the architectural principles of the environment allowing for fully automated
deduction, before section 5 presents a concrete realization 'AUTOCoDE' of the pro
posed environment. Experimental results are given in section 6. Finally, a discussion
in section 7 concludes the report.

2 Condensed Detachment with CODE

In this section we present the study of logic calculi as a research area that can be
tackled with automated deduction systems. (See [17] and [9] for motivation and a
detailed theoretical background.) Furthermore, we also introduce such a system named
'CODE'.

The inference rule 'condensed detachment' (CD) is the central part of the different logic
calculi we are going to investigate. This inference rule manipulates first-order terms
which we shall also call facts. The set of terms (facts) Term(F, V) is defined a~ usual,
involving a finite set F of function symbols and an enumerable set V of variables.

CD (in its basic form) is defined for a distinguished binary function symbol f E F,
allowing to deduce the fact O"(t) from two given facts f(s, t) and s', where 0" is the
most general unifier of sand s'. (CD can consequently be seen as a generalized version
of the well-known modus ponens.) f(s, t) and s' are the immediate ancestors of the
descendant O"(t). A proof problem A = (Ax, AG) consists in deducing a certain given
fact AG (the goal) from an also given set Ax of facts (the axioms) by applying CD.

A very common principle to solve such proof problems algorithmically is employed by
most deduction systems based on resolution or the Knuth-Bendix completion proce
dure. It also constitutes the core of CoDE. Essentially, CODE maintains a set FP of
so-called potential facts from which it selects and removes one fact A at a time. A is
put into the set FA of activated facts, or discarded if it is subsumed by an already
existing activated fact X E FA (forward subsumption, denoted by X <l A, which here
means that there is a match 0" so that O"(A') == A). Activated facts are, unlike poten
tial facts, allowed to produce new facts via CD, which then are put into FP. At the

4

3

3 SEARCH-GUIDING HEURISTICS FOR CODE

beginning, FA = 0 and FP = Ax. The indeterministic selection or activation step is
realized by heuristic means. To this end, a selection heuristic H associates a natural
nnmber H(A) E IN with each A E FP, which is referred to as "weighting A with H(A)".
Subsequently, that A E FP with the smallest weight H(A) is selected. Ties are broken
according to the FIFa-strategy.

The search-guiding heuristic H is crucial for the efficiency of the proof procedure just
described. CODE is in so far a "standard" theorem prover in that it expects the user to
select a search-guiding heuristic and to set its parameters, or otherwise uses a default
heuristic and default settings regardless of the problem given. The following section
concisely describes the heuristics available for CODE, while sections 4 and 5 explain
how CODE can be embedded in an environment that takes this crucial and difficult
task off the back of the user.

Search-guiding Heuristics for CODE

CODE has three heuristics w, WF, and WFR&F at its disposal. The "basic" heuristic W

does not make use of past experience. It is indispensable in the beginning to establish
a basis of proof experiences heuristics W F and W F R&F that do exploit past experience
can build on. Furthermore, W serves as a foundation for WF and WFR&F (see below).

W computes the weight of a fact A as the weighted sum Co . c5(A) + Cw . W(A) of A'S
level c5(A) and term weight W(A). The coefficients Co and cw-often given as a ratio
Co : cw--are the parameters of w. The term weight W(A) of), is two times the number
of function symbols plus the number of variables occurring in A. The level 8(A) of A
is 0 if A is an axiom. Otherwise, c5(A) is the maximum of the levels of its immediate
ancestors plus 1. In particular taking into account the level makes W considerably
p()werful. (See [5] or [6] for more details and experimental evaluation of w.)

We already emphasized the importance of learning in section 1. Naturally, there are
various ways of learning. We chose to design heuristics that exploit past proof ex
perience given by a source problem solved previously in order to conduct the search
for the proof of the target problem at hand more efficiently by activating less facts
that do not contribute to the proof eventually found (cp. [7]). Two basic methods are
available, namely a feature-based approach and flexible re-enactment. Both approaches
depend on past experience (i.e., solutions of previously solved problems) being repre
sented in form of a search protocol 5 that was produced when solving (source) problem
A = (Ax, AC). 5 simply records the sequence AI; ... ;An of facts that were activated
when searching for a proof of Ac using heuristic H. We assume here that 5 is the
protocol ofa successful search yielding a proof, i.e., An <l AC (An subsumes Ac). By
tracing back ancestor/descendant relations starting with An, all positive facts P can
be identified that actually contribute to deducing An. All other facts occurring in 5
are referred to as negative facts N. (Note that being a negative or positive fact is not
a global property, but must be seen in the context of the given particular search pro
tocoI5.) Past proof experience I is represented by triples I = (A, H, 5), ftom which
all necessary information-mainly positive and negative facts-can be extracted.

5

We now briefly sketch the feature-based approach and flexible re-enactment as well as
the heuristics WF and WFR&F that derive from these approaches.

Features are used to achieve a certain degree of abstraction by representing (mostly
syntactic) properties of facts with, say, numbers from the set 71.. of integers (cp. [13],
[15]). Given k ~ 1 features f1, ... ,fk, our feature-based approach centers on the k sets
V1 , .. . , Vk of permissible feature values, where each Vi = {fi(A+) I A+ E P} collects the
feature values of positive facts P with respect to feature k P stems from I associated
with a selected source problem. Given a fact). to be weighted, the minimal feature
value differences ~i (A) = min({IJi (A) - Vi I I Vi E Vi}) are made use of by cornputing
a weight penalty WF(A) = 2:7=1 Ci . ~i(A), where Ci ~ 0 for all 1 :::; i :::; k. (Note that
~i(A+) = 0 for all A+ E P.) This weight penalty is added to the weight computed
by w, i.e., WF(A) = W(A) +WF(A). The coefficients Cl,"" ck are determined based on
positive and negative facts obtainable from I. To this end, algorithm CFC is employed
that is described in detail in [5] or [7].

Flexible re-enactment centers on the observation that similarity between two proof
problems is often reflected by the respective sets of positive facts sharing many facts.
Therefore, given a set P of positive facts associated with a selected source problem,
flexible re-enactment favors (i.e., associates small weights with) facts A deduced when
searching for a proof of the target problem that are "similar" to a).+ E P. Such a fact A
is considered similar to a A+ E P if A <l A+. Besides these focus facts A that subsume
a A+ E P, also the descendants of focus facts are preferred, becau~se they are the most
likely to allow for concluding the proof. The preference given to a A, however, decreases
with its distance d(~) from the closest ancestors that are focus facts, where "distance"
essentially corresponds to "the number of inference steps that separate ancestors and
descendant" .

The details of d are described in [5] and [7]. Basically, d(A) is minimal (i.e., 0) if A
is a focus fact, and increases gradually with the remoteness of the "nearest" ancestor
that is a focus fact. Two parameters q1 and q2 allow to control the rate of increase.
A further parameter p ~ 0 controls the impact of d(A) on the final weight of A, which
is-in the case of "pure" flexible re-enactment-computed by WFR(A) = (d(A) + p) .
W(A). Experiments documented in [5] and [7] have shown that WFR does not offer a
significant advantage compared to a combination of features and flexible re-enactment
WFR&F(A) = (d(A) +p). WF(A). We therefore use here only WFR&F as a representative
of flexible re-enactment.

4 An Environment for Full Automation

Achieving full automation of deduction necessitates that the crucial step in the use
of an automated deduction system, namely choosing a search-guiding heuristic and
determining its parameters, is no more the responsibility of the user. Anyone who
has been working with an automated deduction system will agree that an appropriate
choice on that score cannot be made deterministically. The best one can expect is
some form of "intuition" ensuing from experience that eventually allows a user to
make a good choice after, say, at most two or three failures in the majority of cases

6 4 AN ENVIRONMENT FOR FULL AUTOMATION

AUSER

tstatus(A)

~
PROBLEMS &

STATUS

A

status(A) (updated)

status(A) ICH
'------+ CHOOSE

HEURISTIC

A L~
r---_---:..H"---_--., D EDUCTION

f--~L=im=i=ts'_____+_i SYSTEM

A

-
(A,H,S

PROOF

EXPERIENCES

Figure 1: The fundamental architecture of an environment for a fully automated and
user-friendly deduction system. The arrows denote the flow of information (i.e., proof
problems, status, etc.). See text for a description.

("trial and error"). Therefore, it would be unreasonable to assume that this choice
can be automated in a way so that the first choice (almost) always leads to success.
Consequently, the central idea of a supportive environment for a deduction system
(CODE in this case) is to test a sensible number of alternatives-rather than merely a
single search-guiding heuristic-which are deployed in some order. That is, alternative
heuristics are "tried out" sequentially.

Apart from a component deciding on (alternative) search-guiding heuristics, the envi
ronment must also provide a component that can store and retrieve proof experiences,
because we want to apply heuristics centered on these experiences. Moreover, the
component for choosing a heuri.stic may use proof experience to support its decision
making. Obviously, the component for handling proof experiences must be connected
with the deduction system itself (in order to obtain input) and with the component for
choosing heuristics (in order to supply it with the necessary information).

Figure 1 depicts the fundamental architecture of the environment for a user-friendly
deduction system. Naturally, the deduction system itself and a component that allows
to store proof problems-so to speak the user interface-are two further components.

The interplay of the four components is as follows (cp. figure 1): The user presents
proof problems A = (Ax ,).c) to the component PS for storing proof problems. Com
ponent CH is responsible for choosing a heuristic H so as to solve a proof problem A
received from PS. In order to realize a (sequential) test of alternatives, status informa
tion status(A) associated and stored along with each proof problem A records the

7

5

history of heuristics already applied to solve A and the respective outcomes. In par
ticular, status(A) provides information on whether or not problem A could be solved
so far. This information is also fed back to the user in order to brief him regarding the
current status (in particular proved / not proved) of problems submitted to ps. The
decisions CH has to make are supported by the database of proof experiences PE. To
this end, CH can consult PE in order to acquire information I related to the current
proof problem A (which is prese'nted to PE as kind of a "search key"). Consultation
of PE especially concerns heuristics that utilize past proof experience in some form,
because the information supplied by PE is indispensable for such heuristics.
Once the decision is made which of the alternative heuristics to employ in order to
solve A, both the chosen heuristic 1{ and problem A are given to the actual deduction
system os. Besides supplying 1{ and A, CH restricts the resources of os in a suitable
way. This essentially means that a maximal run time (a time-out) is imposed on OS,
which is the most effective way to anticipate failure (i.e., failure to solve a problem
in "reasonable" time) in many cases. In case of success or failure (due to time-out),
status(A) is updated correspondingly. If a proof of A was found, then all relevant
information concerning the proof and the search for it (namely (A, 1{, S), cp. section 3)
is int~grated with the current contents of the database PE.

Please note that the alternative heuristics to be used to solve some given problem A
cannot be determined once and for all at a certain point in time. Since the alternatives
(in part) depend on PE, new alternatives may become possible with every dynamic
change of PE resulting from proofs that are found gradually.
Having outlined the fundamental architecture, the subsequent section describes an
implementation'AUTOCoDE' of an environment embedding CODE based on this very
architecture.

AUTOCoDE: An Environment for CODE

The fundamental architecture for an environment allowing for user-friendly, fully auto
mated deduction proposed in the previous section comprises four components, namely

1.	 ps: The user interface that stores proof problems of condensed detachment given
in the standard form A = (Ax, AC) along with their respective status;

2.	 PE: A database of proof experiences;

3.	 CH: The component that receives an unsolved proof problem A from PS, chooses
and configures a heuristic 1{ (possibly based on information I acquired from PE),
and supplies the deduction system os with the necessary input A and 1{ (plus
constraints for resources);

4.	 os: The actual deduction system;

In our particular case here, CODE is the deduction system os. CODE and its search
guiding heuristics are described in sections 2 and 3. We shall therefore concentrate
here on the remaining three components ps, CH, and PE. First, we examine components
CH and PS in order to determine the demands on component PE.

8 5 AUTOCODE: AN ENVIRONMENT FOR CODE

5.1 Components CH and PS

For reasons explained in section 4, component CH determines a sequence (or list) of
alternative heuristics .c(A) == HI;"'; H m for each problem A (using information
from PE). For each Hi, CH can choose between w, WF, and WFR&F. In connection
with WFR&F, we always set the parameters q1 = 0.75, q2 = 0.25, and p = 20 (cp. [5] or
[7]). The remaining parameters of these heuristics are set as described below.

The Hi E .c.(A) are tried out in the order given by .c.(A). An attempt to solve A with Hi
is granted a maximal run time Ti . Note again that the sequence is not static. It can
grow or may be modified as proof experience accumulates in PE. At the outset, of course
only variations of the basic heuristic W can be employed, because there is no proof
experience (yet). The basic heuristic anyway plays an important role as a "starter"
providing a basis of proof experiences which is necessary to gradually build up more
and more experience by WF and WFR&F profiting from each other in a bootstrapping
manner. Moreover, the basic heuristic is appropriate to sort out simpler problems for
which it does not make sense to apply WF or WFR&F , and to take the risk of failure
because an inappropriate source problem is picked. (Understandably, a comparatively
small time-out Ti will be imposed on a basic heuristic.)

For both reasons, basic heuristics are applied at first and exhaustively. This means
that, on the one hand, only the first j ::; m heuristics of .c.(A) == HI; ... ; H m are basic
heuristics (i.e., W with various parameter settings). On the other hand, a heuristic
involving past experience (i.e., WF or WFR&F) is only applied to a problem A if for all
unsolved problems in PS all basic heuristics (listed in the respective list of alternatives)
have been tested already.

Component CH determines partially with the help of PE the heuristics constituting .c.(A)
according to their (estimated) appropriateness for solving A. CH does not consult PE
in order to decide on the basic heuristics which are at the head of the list. On the
one hand, doing without the information of PE in connection with basic heuristics is
possibly unavoidable, because there is not yet any information available. On the other
hand, our experiments with W have shown (see [5] or [6]) that there are very few
parameter settings for Co and cw-i.e., ratios Co : cw-that work satisfactorily well for
a large number of problems, so that the parameters Co and Cw of W can be set sensibly
without falling back on past experience. We decided on two ratios, namely 2 : 1 and
4 : 1. Hence, the first two heuristics HI and H 2 to be tested are (for all problems)
w[2: 1] and w[4 : 1]. (Henceforth, we shall use the notation H[P] to denote parameter
settings p of heuristic H which do not derive from context.)

In connection with heuristics WF and WFR&F, PE is in part necessary to determine the
parameters Co and Cw ' For reasons explained in [5], Co : Cw is set to 0 : 1 regardless
of past experience if WFR&F is to be used. In case WF utilizes a source problem Ai,
the history of ~ determines Co : cw . Each source problem ~ has a unique history
of source problems that contributed to its proof. The history of Ai is a sequence of
source problems 8 1 , ... , 8 k , where 8 k == Ai. 8 1 was proved with a basic heuristic, and
each 8i+1 was proved with either WF or WFR&F using 8 i as source. Hence, the source
problem 8 1 which started the history was proved using w[co : cw]. This very ratio is
also set by WF.

5.1 Components CH and PS 9

To put it another way, past experience can be viewed as a collection of trees (because
a proof of a problem in PE involves at most one source problem). The nodes of a tree
represent proof problems, and the vertices represent source/target dependencies. At
the root of each tree (the tree possibly merely consists of the root problem), there is a
problem solved with a basic heuristic. All other nodes of the tree represent problems
solved either with WF or with WFR&F using the problem represented by the ancestor
node as source. The history of a problem Ai hence is the list of nodes (problems)
occurring on the branch from the root to Ai, starting with the root. (If we make the
reasonable assumption that there is exactly one proof for each problem in PE, then the
history of each Ai is indeed unique.) Whenever WF is employed with source problem Ai,
W F sets the ratio Co : Cw that was also set by the basic heuristic W when proving the
root problem of the tree Ai belongs to.
Component PE becomes indispensable as soon as WF or WFR&F are to be employed
to tackle A. PE supplies the crucial positive facts and feature coefficients Cl, ... , ck

required by WF and WFR&F. To this end, problem A is presented to PE, whereupon
PE selects a set of source problems currently in its database which are similar to A.
For each selected source problem, the associated set P of positive facts and the feature
coefficients FC form pairs (P, FC). These pairs are collected in the set RpE(A) and
returned.
With the help of I = RpE(A) retrieved by PE, component CH can set up the heuristics
WF and WFR&F that (explicitly) exploit past experience. For each pair (P, FC) E I,
two heuristics are configured, namely wF[P, FC] and WFR&F[P, FC]. These heuristics
are appended to the current list of heuristics L:(A) in that order unless they are already
a member of L:(A). (The ratio Co : Cw is set as described earlier in this section.)
Component CH receives unproved target problems from PS. PS submits unproved prob
lems (one at a time) according to the lexicographic ordering of their names. PS contin
ues to submit problems (upon request from CH) over and over again as long as there are
unproved target problems for which not all alternative heuristics have been tried out.
In order to ensure that basic heuristics are applied at first and exhaustively, PS does
not submit any problem to CH for which all (i.e., both) basic heuristics w[2 : 1] and
w[4 : 1] have failed, as long as there are other unproved target problems for which
attempts with a basic heuristic are still pending.
The status status(A) associated and stored together with each target problem A
comprises the list of heuristics L:(A). For each novel problem A, L:(A) is the empty
list E. When CH receives a target problem A from PS with L:(A) == E (i.e., for the first
time), CH sets L:(A) == HI; H 2 , where HI == w[2 : 1] and H 2 == w[4 : 1]. The first
heuristic is immediately applied to prove A. status(A) is updated correspondingly.
After that, CH accepts another target problem. When A is presented to CH for the
second time, an attempt to prove A with H 2 is started.
In case L:(A) = HI;"'; H m , m 2 2, and both HI and H 2 have already been tried
out, then CH consults PE by presenting A to PE, and obtains I = RpdA) as an answer.
L:(A) is then extended as described above, resulting in L:(A) == HI;"'; Hm" m :::; m'.
The "new" Hi (m < i :::; m') are successively employed to prove A before accepting the
next target problem from PS. (The successive application of new Hi stops of course as
soon as one of these Hi succeeds.)

10 5 AUTOCODE: AN ENVIRONMENT FOR CODE

By now we have outlined how component CH (gradually) composes and tries out a list
of heuristics for each target problem. We have also described how CH interacts with
component PS in order to obtain target problems. Furthermore, the role of PE was
sketched which consists of supplying CH with information I on past experience. The
following subsection explains how component PE determines the information I required
by CH.

5.2 Component PE

The database PE stores proof experience in the format I = (A, H, S) advocated in
section 3, namely the (source) problem A, the heuristic H (including its parameter
settings) employed by CODE in order to prove A, thereby producing the search proto
col S. For efficiency reasons, in practice the set of positive facts P extricable from S
is also stored along with A, H, and S so as to avoid computing (extracting) it each
time it is required. Furthermore, feature coefficients FC are stored together with each
source I. These coefficients are computed according to algorithm CFC presented in [5]
and [r]-involving the sets P and N of positive and negative facts extricable from S-ij
heuristic H is the basic heuristic w (applied with some ratio Cb : cw). Otherwise, if
H is one of WF or WFR&F, then the feature coefficients are simply a copy of the ones
associated with the respective source employed by H. Since any source in PE either was
solved with the basic heuristic or goes back (possibly over several stages) to a problem
solved with the basic heuristic, it is ensured that there are feature coefficients for all
sources in PE.

Hence, PE maintains packages (A, H, S, P, FC) of information on previous experience,
extending (for efficiency reasons) the "minimal" information (A, H, S) with the set P
of positive facts (extracted from S) and the feature coefficients Fe (inherited from or
computed for the "root" problem).

The main task of PE is to find source problems which are similar to a target prob
lem A presented to PE by CH. l In order to accomplish this, a suitable similarity mea
sure sim must be available which assesses the similarity sim(A, Ai) of target prob
lem A and source problems Ai stored as information packages (Ai, Hi, Si, Pi, FCi)
in PE. Given sim, PE returns the set RpE(A) as information I, where

Condition cond-which will be described shortly-determines whether or not the sim
ilarity between target problem A and source problem Ai is acceptable.

sim computes a similarity measure based on the similarity of target and source axiom
atizations as well as on the similarity between target and source goals. Considering
that a target problem A = (Ax, Ac) is proved by virtue of a proof of a source problem
Ai = (AXi, Ai) if all axioms of the source problem are subsumed by axioms of the target

lStoring source problems is simply done by adding the respective information package to the
database. Measures aiming at minimizing the database are possible, but they are currently not
applied, because in connection with our experiments the computational effort for retrieving is so low
that elaborate methods for reducing the amount of data stored do not payoff.

5.2 Component PE 11

problem (i.e., VA E AXi 3A' E Ax : A' <l A), and the target goal is subsumed by the
source goal (i.e., Ai <l AC), the following realization of sim suggests itself.

Definition 5.1 (Similarity Measure) Let A = (Ax, AC) be a target problem, and
Ai = (AXi, Ai) a source problem. The similarity of target and source problem is
sim(A, Ai) = (SI, S2, S3) E JN~oo (JNlOO = {a, 1, ... , lOO}), where

I{A E AXil 3A' E Ax : A' <l A} I
·100

IAXi I
I{A E Ax I 3A' E AXi : A <l A'} I

IAxl ·100

lOO, .\ <l AC
{ 0, otherwise.

sim actually computes three measures 81, 82 and 83.
2

81 represents the percentage of
source axioms that are subsumed by target axioms, so to speak a "coverage". 82 rep
resents the percentage of target axioms which account for subsuming source axioms.
83 expresses the fact that the source goal subsumes (or does not subsume) the target
goal with 100 (or 0). (A finer grained measure may be desirable for 83, but we content
ourselves with this "Boolean" version for the time being.)

A perfect similarity is there if 81 = 82 = 83 = 100. In this case, all source axioms
are subsumed by target axioms, and the source goal subsumes the target goal. As
a consequence, the target is proved simply because of the existence of a proof of the
source problem. 82 = 100 merely states that there are no additional (unnecessary)
target axioms. This is anyway the sole purpose of 82: Identifying target axioms which
do not have an obvious correspondence with source axioms. Such target axioms are
likely to be superfluous (in particular if 81 = 100), and hence might unnecessarily
complicate the search by bloating up the search space.

The similarity measure sim is utilized to determine RpdA). For a sensible use of
the information provided by RpdA) , this information should be reliable and sparse,
i.e., only "sufficiently similar" and few source problems should qualify. In order to
accomplish this, we have to formalize notions like "minimal similarity" and "more
similar than" .

First of all recall that two problems are considered the more similar the higher the
measures 81, 82 and 83 are. Thus, a minimal 8imilarity ms can be defined by

2The similarity between two problems is centered on subsumption and consequently on syntactic
structure. (Recall that "AI subsumes A2", i.e., Al <l A2, here simply means that there is a match a so
that a(Ad == '\2,) Therefore, '<l' is computed modulo renaming of function symbols (and variables),
i.e., modulo an arity-preserving signature match. Since the source problem is to be employed to solve
the target problem, the target should not be modified. For this reason, a signature match is applied
to the source. The simplicity of problems here entails that there is at most one signature match
from source to target, and we therefore refrain from explicitly integrating signature matching with
our notation. (If no signature match from source to target exists, then we obtain SI = S2 = S3 = 0.)

12 5 AUTOCODE: AN ENVIRONMENT FOR CODE

where aI, a2, a3 E IN, and l E IN is the threshold. Considering that the coverage of
source axioms is the most important criterion for the similarity of proof problems,
and the existence of "superfluous" target axioms is comparatively insignificant, we set
a1 = 3, a2 = 1, and a3 = 2. Using a threshold l = 100, a coverage of one third,
or no superfluous target axioms, or the "same" goal each suffice alone to reach the
threshold. So, a necessary criterion for a source problem Ai to qualify for RpE(A) is
3 . 81 + 1 . 82 + 2 . 83 ~ 100.

Naturally, only the "most similar" source problems should contribute to RpE(A). For
this purpose, a comparison of, or a "better-than" relation >- on similarity measures
must be defined. In the sequel, this relation >- is developed gradually with the help of
orderings », > D and > p.

Given two source problems Ai and A j , it certainly makes sense to consider target
problem A more similar to Ai than to A j if sim(A, Ai) beats sim(A, A j) in every
respect:

Definition 5.2 (Ordering»)
Let sim(A, Ai) = (Sl,82,83) and sim(A,Aj) = (S~,8~,8~).

The second ordering> D centers on the "difficulty" of the source problem measured
in terms of the length ISI of the associated search protocol S. The longer the search
protocol is, the more difficult a problem is considered to be. Since more can be learned
from more difficult problems, more difficult problems supersede less difficult ones.

Definition 5.3 (Ordering> D) Let Si and Sj be the search protocols associated with
source problems Ai and A j , respectively.

Ordering> p takes into account whether or not Ai was proved with the help of A j , i.e.,
whether or not A j was used as a source problem in the history of Ai, i.e., a sequence of
source problems B1 , ... ,Bk with properties as outlined above. Ai is said to be proved
with the help of Aj-denoted by PW(Ai, Aj)-if A j E {B1 , ... ,Bk - 1 }. If Ai actually
was proved with the help of A j , then it is reasonable to assume that at least as much
can be learned from a proof of Ai as can be learned from a proof of A j . (Recall that
feature coefficients are passed on anyway.)

Definition 5.4 (Ordering > p, ~ p) Let PW(Ai, A j) denote that Ai was proved with
the help of A j .

sim(A, Ai) ~p sim(A, A j) denotes that neither PW(Ai, A j) nor PW(Aj , Ai), z.e.,
sim(A, Ai) and sim(A,Aj) cannot be compared with >p.

5.2 Component PE 13

Evidently, ordering» is the most important for deciding whether one source problem
is more similar to the target problem than another source problem. Orderings > D

and > p play a minor role in that they are consulted only if both similarity measures
are equal. If this is the case, ordering > p should be given priority over > D, because
a problem 8 that can be proved with the help of some source problem 8' often has
a shorter search protocol. Consequently, problem 8' would be preferred if > D were
given priority over> p. Nonetheless, problem 8 must be considered as more difficult,
because a proof of 8' was needed to prove 8. The difficulty is simply not reflected by
the length of the search protocol, because the search protocol could be kept short on
account of the experiences made in connection with 8'.

Relation >- therefore is a lexicographic combination of », > p and> D that is defined
as follows.

Definition 5.5 ("Better-than" Relation >- on Similarity Measures) Let A be
a target problem, and Ai and A j two source problems. A is more similar to Ai than
to A j if and only if sim(A, Ai) >- sim(A, A j), where sim(A, Ai) >- sim(A, A j) if
and only if

sim(A, Ai) » sim(A, A j)

V sim(A,Ai)=sim(A,Aj) 1\ sim(A, Ai) >p sim(A,Aj)

V sim(A, Ai)=sim(A, A j) 1\ sim(A,Ai) ~p sim(A,Aj) 1\ sim(A, Ai) >D sim(A,Aj)

(Note that >- is not an ordering, because it is not transitive due to ~p.)

Condition cond which determines if a source problem is acceptable for RpE(A) is now
given by

Note that there can be several source problems that qualify for RpE(A) (which is rea
sonable considering that the parameter 'source problem' is-as all other parameters
mostly determined by mere intuition and expertise that may be treacherous). But our
experiments have shown that >- allows us to restrict the number of source problems to
very few (mostly one or two).

Readers who are familiar with case-based reasoning (CBR) will have noticed the close
relation of PE and (problem-solving) CBR (cp. [8]). The information packages (A, H, S)
(or their extended counterparts) correspond to cases, and PE hence represents a case
base. The major processes of CBR, namely case storage and case retrieval, are also
present. Case retrieval is accomplished by computing an explicit similarity measure
which is deployed to select the cases that appear to be most similar and hence most
appropriate to tackle a current problem. Solutions to "old" problems of the case base
are utilized as a heuristic guideline as opposed to being explicitly reused. Therefore,
adaptation-the process of adjusting an old solution to fit a new situation-is not
necessary (except for a signature match). Also, criticism and evaluation of solutions
(proofs) are merely intimated by > D and > p.

We have now outlined how past experience is made available by PE and used by CH
in order to create, update, and apply a list of heuristics in order to pr0ve the target

14 6 EXPERIMENTAL RESULTS

problems submitted by PS. The next section presents experimental results obtained
with AUTOCoDE which demonstrate the feasibility and excellent performance of fully
automated deduction with learning capabilities in the area of condensed detachment.

6 Experimental Results

We experimented with AUTOCoDE in the light of problems from the MV and CN
calculus (cp. [11]). All problems considered here are taken from [11]. The name of a
problem is composed of the abbreviation of the calculus it belongs to and of the contin
uous numbering used in [ll]. More specifically, we consider problems cnl, ... ,cn33 and
problems mv55, ... ,mv62, which correspond to problems LCL040-l, ... ,LCL072-l and
LCLl09-l,.o" ,LCLl16-1 in the TPTP problem library ([16]) version 1.2.0, respectively.

First, AUTOCoDE (i.e., component PS) was given the eight problems mv55, ... ,mv62 of
the MV calculus. Second, 33 problems of the CN calculus, namely cnl, ... ,cn33, had
to be tackled. In both cases, AUTOCoDE started with an empty database PE of proof
experiences. The maximal run time granted to basic heuristics was 20 seconds. For
WF and WFR&F, the run time was restricted to 60 and 240 seconds, respectively.

vVe compare our results obtained with AUTOCoDE with the results of OTTER pub
lished in [11] in order to substantiate AUTOCoDE'S achievements. It must be empha
sized that CODE (i.e., the "core deduction machine") is a purely experimental program
(implemented in C). Its core was developed in a couple of weeks as opposed to the well
renowned OTTER which has been improved over several years. CODE does not use
sophisticated indexing techniques. These are crucial for efficient (forward) subsump
tion which is exhaustively needed in connection with CD. CODE might be faster at
very early stages of the search (if at all) because of a specialized implementation of CD,
which OTTER "simulates" with hyper-resolution. But efficiency increasing techniques
like flat terms a:nd indexing cause OTTER to surpass CODE (in terms of inferences per
second) after these early stages. Consequently, faster run times of AUTOCoDE (or
CODE) can only stem from a suitable use of powerful heuristics.

Table 1 summarizes the experiment conducted with problems mv55, ... ,mv62. The first
and second column display the target and source problem, respectively. The target
problems are listed in the order in which they were proved by AUTOCoDE. 3 The
entry '*' in the column 'Source Problem' signifies that no source problem was made
use of, because a basic heuristic was applied. The heuristic which finally allowed to
prove the target problem is specified in column 3 (H[. ..]). (Recall that WFR&F always
sets the ratio 0 : 1.) The fourth column lists the number of failed attempts to prove the
target (due to a time-out) in the form 'B / L', where Band L correspond to the number
of failures of a basic heuristic (w) and a learning heuristic (wF or W F R&F), respectively,
before finally proving the target. The fifth column displays the time spent on failed
attempts which is the sum of the respective time-outs. The sixth column shows the run
time of the (final) successful attempt. Run times are CPU time in seconds, obtained on

3This order in parts depends on the lexicographic order of problem names and of course on the
difficulty of the problems, in particular on source/target dependencies.

15

Table 1: AUTOCoDE and the MY Calculus

Target
Problem

Source
Problem

H[.. .] Failures
B/L

Run Time
Failures

Run Time
Success

Total
Time

OTTER
(best)

mv56 * w[2: 1] 0/0 Os 0.7s 0.7s 2s
mv57 * w[2: 1] 0/0 Os 1.1s 1.1s 5s
mv58 * w[2: 1] 0/0 Os 0.7s 0.7s 2s
mv59 * w[2: 1] 0/0 Os 13s 13s 1468s
mv61 * w[2: 1] 0/0 Os 18s 18s 7s
mv60 mv61 wF[2 : 1] 2/0 40s 50s 108s 2035s
mv62 mv60 WFR&F 2/1 lOOs 17s 225s 2041s
mv55 - - 2/4 640s 00 00 00

a SPARCstation ELC. An entry '00' denotes that no proof was found. (According to
[11] OTTER operated with a time-out of 4 hours.) The seventh column shows the total
run time spent on solving the target problem which is composed of the time spent
on failed attempts (column 5) and the time for the successful attempt. For target
problems proved with WF or WFR&F, the total time needed to prove the respective
source problem is also included. The last column lists the best results of OTTER
(obtained on a SPARCstation 1+ that is comparable to a SPARCstation ELC).

An example should clarify how to interpret table 1. Consider target problem mv62.
Problem mv62 was proved with WFR&F using source problem mv60. The two attempts
with basic heuristics (namely w[2 : 1] and w[4 : 1]) and one attempt with WF (using
source problem mv60) failed before (hence the entry '2 / l' in column 'Failures B /
L'). These three failures account for 100 seconds CPU time (2 . 20s + 1 . 60s). The
attempt with WFR&F succeeded after 17 seconds. Taking into account the total time
of 108 seconds needed to prove the source problem mv60, the total time for mv62 is
lOOs + 17s + 108s = 225s.

At this point we would like to point out that the run times given are only the time spent
by CODE itself, i.e., component DS. The effort for retrieving/storing proof experience
(component PE), setting up a list of alternative heuristics (component CH) etc. is neg
ligible, although brute-force algorithms are employed for the respective components,
which are.in parts implemented as UNIX shell scripts (e.g., [1]).

Table 1 reveals that AUTOCoDE performs significantly better than OTTER even when
the total time-which includes failed attempts and the total time needed to prove
source problems-is taken into account. Note that AUTOCoDE achieved this without
any interaction on the parts of the user. A comparison of AUTOCoDE and OTTER is
also given by figure 2. This figure displays the percentage of problems mv55, ... ,mv62
solved depending on the time spent by AUTOCoDE and OTTER. In case of Au
ToCoDE, this time is the accumulated run time of all failed and successful attempts
undertaken by AUTOCoDE. While the graph related to AUTOCoDE depicts the actual
performance of AUTOCoDE as observed during our experiment, we made the following

16 6 EXPERIMENTAL RESULTS

100%

AUTOCoDE

75%
~

50%

2.5%

OTTER

10s lOOs 1000s 10000s

Figure 2: Performance of AUTOCoDE and OTTER for problems of the MV calculus.
Performance is measured in percentage of problems solved (y-axis) vs. accumulated run
time (x-axis, logarithmic scale). AUTOCoDE solves 87.5% of the problems (seven out
of eight) within 881 seconds. OTTER solves (the same) 87.5% of the problems within
5560 seconds if very generous assumptions are made in favor of OTTER.

very optimistic and favorable assumptions regarding OTTER: OTTER always picks the
most suitable heuristic. Moreover, OTTER does not spend any time on problems which
it cannot solve (here only mv55). The graph related to OTTER hence depicts accumu
lated run times of the best successful runs for each problem. Problems are considered
according to the ascending order of their run times.

Despite these (unrealistic and very generous) assumptions, OTTER spends significantly
more time-namely 5560 seconds-on solving seven out of the eight problems than
AUTOCoDE which solves the same seven problems within 881 seconds. Note that
these 881 seconds include 640 seconds that are spent on six futile attempts to solve
mv55. 4 (Recall that basic heuristics are applied first and exhaustively. To be more
exact, the first basic heuristic w[2 : 1] is applied to all target problems, and then the
second basic heuristic w[4 : 1] is applied to all remaining unproved target problems.
Considering that problem mv55 is the first target problem since problems are ordered
lexicographically according to their names, AUTOCoDE spends the first 20 seconds
on a failed attempt to prove mv55 with w[2 : 1], and the last 300 seconds on failed

4To our knowledge, problem mv55 has not (yet) been proved by an (unassisted) automated deduc
tion system.

17

Table 2: AUTOCoDE and the CN Calculus

Target
Problem

Source
Problem

H[.. .] Failures
B/L

Run Time
Failures

Run Time
Success

Total
Time

OTTER
(best)

cn12 * w[2: 1] 010 Os 10s 10s 74s
cn25 * w[2: 1] 010 Os 19s 19s 89s

I cn26 * w[2: 1] 010 Os 2s 2s Is
cn6 * w[4: 1] 1 I 0 20s lIs 31s 1467s
cn1 cn25 wF[2: :1.] 2 I 2 340s 8s 367s 16s
cn19 cn12 WFR&F 2 I 1 lOOs 33s 143s 423s
cn21 cni9 wF[2: 1] 2 I 0 40s 41s 224s 447s
cn22 cn21 WFR&F 2 I 1 lOOs 194s 518s 00

cn23 cn22 WFR&F 2 I 1 lOOs Is 619s 00

cn29 cn26 wF[2: 1] 2 I 0 40s 25s 67s 257s
cn3 cn6 wF[4: 1] 2 I 0 40s 20s 91s 3657s
cn32 cn29 wF[2: t] . 2/0 40s 48s 155s 511s
cni5 cn23 WFR&F 2 I 3 400s 14s 1033s 00

cn24 - - 2 I 4 640s 00 00 00

attempts using WF and WFR&F; cp. figure 2.)

On the one hand, this first experiment with the MV calculus is encouraging and promis
ing. On the other hand, it did not really put to a test the components which are to
replace user interaction, i.e., components PE and CH (and PS). (But it did re-confirm
the powerfulness of the heuristics WF and WFR&F.) All problems mv55, ... ,mv62 have
the same axiomatization (and different goals). Consequently, » does not play a role
for >-. Therefore, similarity is decided with the help of > p and> D only, which both
have a minor potential of being misleading compared to ». The following experi
ment with the eN calculus is more challenging. First, there are much more problems,
namely cni, ... ,cn33. Second, there are several groups of problems with differing ax
iomatizations (cp. [1:1.] or [5]), possibly having the same goal. Consequently, finding
a sufficiently similar source problem becomes much more difficult, this time definitely
involving ».
Table 2 lists the results of the experiment with the CN calculus. Table 2 is organized
like table 1. In order to keep the size of the table manageable, we omitted all those
target problems which could be proved with the first basic heuristic w[2 : 1] and did not
play a role as a source problem. (Those problems could all be proved within 15 seconds.
See [5] for details.)

Once again table 2 demonstrates that AUTOCoDE outperforms OTTER even with re
spect to the total time required to solve a target problem.5 The only exception is prob
lem cni. The main reason are two failed attempts with WF and WFR&F-accounting
for 300 seconds spent in vain-when using the evidently inappropriate source problem

5In particular, AUTOCoDE solves problems that OTTER cannot solve.

18 7 DISCUSSION

cn11. (Recall that each source problem selected by PE entails two heuristics-namely
WF and WFR&F using the respective source problem-set up by CH.) Problems cn1 and
cn11 have the same goal, but do not share any axioms, whereas cn25 and cn1 do share
some axioms (but have different goals). Both problems qualify as source problems for
cni. Source problem cn11 is made use of first simply because it occurs before cn25 in
the lexicographic order of names. This example suggests possible refinements of Au
ToCoDE, e.g., determining the order in which source problems come into play with
the help of more elaborate methods (for instance, "sharing axioms" should be preferred
to "having the same goal, but sharing less (no) axioms").

Similar to cn1, the first source problem PE selected in connection with cn15-namely
cn12-did not prove useful. But this time, PE cannot be blamed for the failure, because
at the time a source problem for cn15 was requested for the first time, the appropriate
source cn23 was not yet proven. Due to the lexicographic order in which target prob
lems are processed, cn15 was dealt with before cn19. Problem cn19 could be proved
with the help of source problem cn12, and cn19 was useful to prove cn21, which in
turn allowed to prove cn22, and cn22 made it possible to prove cn23. (This chain of
source/target dependencies is a good example for the bootstrapping qualities of learn
ing heuristics.) So, when a source problem was requested for cn15 (for the second time)
after cn23 had been proved, the "right" source cn23 was picked. (If cn15 had not been
processed before cn19, cn21, cn22 and cn23, then the right choice would have been
made by PE, and the unsuccessful attempts involving cn12 would have been avoided.)

But these little "flaws" are acceptable in view of the overall performance of AUTOCoDE
depicted by figure 3. (Its interpretation is analogous to the interpretation of figure 2.)
AUTOCoDE proves 32 out of the 33 problems (ca. 97%) within 2358 seconds-three
more than OTTER can solve (ca. 88%) within 8098 seconds. Again, ngure 3 displays
AUTOCoDE's actual performance including failed attempts,6 whereas only the best re
sults excluding time spent on failed attempts are considered in connection with OTTER.
(Similar to the MV calculus, AUTOCoDE gets off to a bad start with a failed attempt
to prove cn1. Furthermore, AUTOCoDE "wastes" 300 seconds on futile attempts to
prove cn24 right before terminating. 7

)

As a general result of the experiment with the CN calculus, components PE and CH
have demonstrated satisfactory performance. The excellent (overall) performance of
AUTOCoDE illustrated by figure 3 must, however, also be accredited in parts to the
powerfulness of our basic and learning heuristics which allowed us to operate with
comparatively small time-outs, and hence allowed to keep the time spent on failures
down at an acceptable level.

7 Discussion

We have presented first steps towards fully automated and powerful deduction systems.
We consider a deduction system to be fully automated if a user merely has to submit

6The overhead due to component PE and CH (and PS) is again negligible, and is therefore ignored.
7To our knowledge, problem cn24 has not (yet) been proved by an (unassisted) automated deduc

tion system.

19

100%

80%

60%

40%

20%

AUTOCoDE

~

OTTER

10s lOOs 1000s 10000s

Figure 3: Performance of AUTOCoDE and OTTER for 33 problems of the CN calculus.
Performance is measured in percentage of problems solved (y-axis) vs. accumulated run
time (x-axis, logarithmic scale). AUTOCoDE solves ca. 97% of the problems (32 out
of 33) within 2358 seconds. OTTER solves ca. 88% of the problems (29 out of 33-a
subset of the problems solved by AUTOCoDE) within 8098 seconds, again assuming
very favorable conditions for OTTER.

proof problems and pick up results. This essentially means that the crucial step in the
use of a deduction system, namely choosing an appropriate search-guiding heuristic,
must be automated.

We have also motivated why learning capabilities are indispensable to attain satis
factory performance. The necessary infrastructure for both automatically selecting a
search-guiding heuristic and learning is provided in form of an environment embedding
the "core" deduction system.

We have conducted a case study in the area of condensed detachment. A fully au
tomated deduction system 'AUTOCoDE' for problems of condensed detachment was
created by integrating the core system 'CODE' into the proposed environment. Our
experiments with AUTOCoDE have shown that fully automated deduction is not nec
essarily science fiction. Furthermore, the success and design of AUTOCoDE underline
that a "little pragmatism" can be beneficial and can make a difference. Our results

20 7 DISCUSSION

demonstrate that fully automated deduction can be a serious competitor for automated
deduction with user interaction, in particular when learning capabilities are present as
it is the case with AUTOCoDE. Naturally, certain (obvious) rules must be obeyed.
For instance, problems of increasing difficulty should be posed. To put it another
way, a learning (fully) automated system should not be confronted with hard prob
lems without having had the chance to gain experience with simpler problems. But
this probably goes without saying, since it is the general and reasonable way in which
human researchers proceed.

21 REFERENCES

References

[1]	 Bourne, S.R.: The UNIX System, Bell Telephone Laboratories, Addison-Wesley,
1982.

[2]	 Brock, B.; Cooper, S.; Pierce, W.: Analogical reasoning and proof discovery,
Proc. CADE-9, Argonne, IL, USA, 1988, LNCS 310, pp. 454-468.

[3]	 Denzinger J.; Schulz, S.: Learning Domain Knowledge to Improve Theorem
Proving, Proc. CADE-13, New Brunswick, NJ, USA, 1996, LNAI 1104, pp. 62-76.

[4]	 Fuchs, M.: Learning proof heuristics by adapting parameters, Proc. 12th ICML,
Tahoe City, CA, USA, 1995, pp. 235-243.

[5]	 Fuchs, M.: Experiments in the Heuristic Use of Past Proof Experience, SEKI
Report SR-95-10, University of Kaiserslautern, 1995, obtainable via WWW at the
URL http://www .uni-kl. delAG-AvenhausMadlener/fuchs. html.

[6]	 Fuchs, M.: Powerful Search Heuristics Based on Weighted Symbols, Level and
Features, Proc. FLAIRS '96, Key West, FL, USA, 1996, pp. 449-453.

[7]	 Fuchs, M.: Experiments in the Heuristic Use of Past Proof Experience, Proc.
CADE-13, New Brunswick, NJ, USA, 1996, LNAI 1104, pp. 523-537.

[8]	 Kolodner, J.L.: An Introduction to Case-Based Reasoning, Artificial Intelligence
Review 6, pp. 3-34, 1992.

[9]	 Lukasiewicz, J.: Selected Works, L. Borkowski (ed.), North-Holland, 1970.

[10]	 McCune, W.W.: OTTER 3.0 reference manual and guide, Techn. report ANL
94/6, Argonne Natl. Laboratory, 1994.

[11]	 McCune, W.; Wos, L.: Experiments in Automated Deduction with Condensed
Detachment, Proc. CADE-11, Saratoga Springs, NY, USA, 1992, LNAI 607, pp.
209-223.

[12]	 Peterson, G.J.: An automatic theorem prover for substitution and detachment
systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1, January 1976,
pp. 119-122.

[13]	 Slagle, J.R.; Farrell, C.D.: Experiments in automatic learning for a multipur
pose heuristic program, Communications of the ACM, Vol. 14, NI. 2, 1971, pp.
91-99.

[14]	 Slaney, J.: SCOTT: A Model-Guided Theorem Prover, Proc. IJCAI '93, Cham
bery, FRA, 1993, pp. 109-114.

[15]	 Suttner, C.; Ertel, W.: Automatic acquisition of search-guiding heuristics,
Proc. CADE-10, Kaiserslautern, FRG, 1990, LNAI 449, pp. 470-484.

22 REFERENCES

[16]	 Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library, Proc.
CADE-12, Nancy, FRA, 1994, LNAI 814, pp. 252-266.

[17]	 Tarski, A.: Logic, Semantics, Metamathematics, Oxford University Press, 1956.

[18]	 Wos, L.: Meeting the Challenge of Fifty Years of Logic, JAR 6, 1990, pp. 213-232.

[19]	 Wos, L.: Searching for Circles of Pure Proofs, JAR 15, 1995, pp. 279-315.

	BB_0005.jpg

