
/ann/qnd/op qs-Tun- sa Annsf//:d33q M
M

M
A

N
V

IN
H

E
D

N
E

IM
O

Q
U

E
U

V
V

S
 17099-d

M
ILVIN

H
O

AN
I H

O
IF

Y
d

d
H

OVA
SH

AN
VTU

VVS SEC
 LY

LIS
H

H
A

IN
N

o
o

Q
O

Ee=

S
e

C
lo

t 
+

o
w

n

S
S

28S
a

ir8
.8E

e
]

r
ovo S
=a

:a

H
oday |M

IS

8==,

:&®i

~H©<au
n+=Q5)

~[a<<=u





The Mechanization of the Diagonalization Proof Strategy

Lassaad Cheikhrouhou
Fachbereich Informatik

Universitat des Saarlandes
D-66041 Saarbriicken, Germany

l assaad@cs .un i - sb .de
http://jswww.cs.uni-sb.de/"lassaad

Abstract

We  present an  empirical study of  mathematical proofs by  diagonalization, the aim is
their mechanization based on  proof  planning techniques. We  show that these proofs can
be constructed according to  a strategy that (i) finds an indexing relation, (ii) constructs
a diagonal element, and (iii) makes the implicit contradiction of the diagonal element
explicit. Moreover we suggest how diagonal elements can be represented.

1 Introduction

In  classical (automated) theorem proving the reasoning process is carried out at the object
level, i.e. the level of the (first order) logic representation of the mathematical objects
under study. Searching for a proof means applying calculus inference rules to manipulate
the initial problem situation which at the beginning consists of  the negated theorem to  be
proved and the given assertions (definitions, axioms, and other theorems) in  order to find a
final situation, for instance 1 .  This guarantees that the theorem is a logical consequence of
the given assertions. Tactical theorem proving applies tactics, i.e. composition of calculus
inference rules. The reasoning remains however at the object level.

Proof planning [Bun91] is the search for a sequence of tactics (a proof plan) which can be
applied to  construct an  object level proof. The used operators (methods) are specifications
of tactics represented in  a meta-language. They state in this meta-language when a tactic
can be applied and what its effects are. Reasoning is therefore carried out at a meta
level. The two main aspects, that make this approach interesting, can be  demonstrated for
inductive theorem proving in CLAM [BvHHS90] as follows.

The first aspect of  proof planning is that the search for a proof  plan is often done in the
context of  a well known mathematical proof technique such as induction or diagonalization.
Such a proof technique characterizes a whole proof schema which is then instantiated to a
sequence of  planning steps (which in turn generate object level proofs). Similar to specifi-
cations of  basic tactics, these proof schemata are called (proof) methods in  the terminology
of  CLAM. As a mathematical proof technique implicitly comprises instructions on  how to
globally perform the associated part of a proof, we want to extend the proof schema. in  the
representation of  a technique with additional knowledge which expresses such instructions.
In  our approach we call these structures for the representation of mathematical proof tech-
niques proof strategies, whereas specifications of  basic tactics which correspond to ground



2 

proof plan steps are called proof methods as in CLAM. For instance an induction proof 
strategy consists of 

•	 the induction method which computes an induction schema and reduces the theorem 
to the well-known subgoals of the base and the step case, 

•	 some basic methods, for instance the symbolic evaluation method, and eventually the 
induction proof strategy to prove the subgoals of the base case, 

•	 the rippling proof strategy to rewrite the subgoal of a step case, which corresponds 
to an induction conclusion, so that an induction hypothesis can be used to close this 
proof path. Wave methods choose the appropriate rewriting rules. 

•	 and some basic methods, for instance the fertilize method, to close the proof path of 
the step case employing induction hypothesis. 

The second aspect of proof planning is the abstraction from mere logical manipulation 
of formulae by calculus inference rules. For instance the task of proving an induction 
conclusion in CLAM is treated as reducing the syntactical differences to an induction 
hypothesis by the rippling proof strategy with the intention of employing this to close the 
proof path. 

The point of proof planning is to analyze proof techniques in order to determine their 
typical proof steps and to find a suitable control to perform these steps within the proof 
planning process. In this report we present some properties of the diagonalization strategy 
which we noticed from an empirical study of several well-known proofs, that are based 
on the diagonalization principle. We give the essential proof steps of the diagonalization 
technique and suggest how to implement these steps in a proof planning environment. 

Cantor· Diagonalization 

In order to show the main principles of the diagonalization technique, consider the Cantor 
theorem. This is where the diagonalization technique was first invented and it is therefore 
often called Cantor diagonalization [Kle43]. This theorem states that the power set of each 
set M has greater cardinality than the set itself, which is equivalent to ,the conjecture that 
there is no surjective function from the set into its power set: 

VM. -,3f.surj(J, M, 2M ) 

To prove the above conjecture, we assume that there is a surjective function fo from 
some set Mo into its power set 2Mo and deduce a contradiction by diagonalization. In 
[DSW94] a proof by diagonalization is described as follows: 

The diagonalization method turns on the demonstration of two assertions of 
the following sort: 

1.	 A certain set A can be enumerated in a suitable fashion. 

2.	 It is possible, with the help of the enumeration, to define an object b that 
is different from every object in the enumeration, i.e. b ~ A. 

2 

proof plan steps are called proof methods as in CLAM. For instance an induction proof
strategy consists of

e the induction method which computes an induction schema and reduces the theorem
to  the well-known subgoals of the base and the step case,

¢ some basic methods, for instance the symbolic evaluation method, and eventually the
induction proof strategy to  prove the subgoals of  the base case,

e the rippling proof strategy to rewrite the subgoal of a step case, which corresponds
to an induction conclusion, so that an induction hypothesis can be used to close this
proof path. Wave methods choose the appropriate rewriting rules.

e and some basic methods, for instance the fertilize method, to close the proof path of
the step case employing induction hypothesis.

The second aspect of proof planning is the abstraction from mere logical manipulation
of formulae by  calculus inference rules. For instance the task of  proving an induction
conclusion in CLAM is treated as reducing the syntactical differences to an induction
hypothesis by the rippling proof strategy with the intention of employing this to close the
proof path.

The point of proof planning is to analyze proof techniques in order to determine their
typical proof steps and to find a suitable control to  perform these steps within the proof
planning process. In this report we present some properties of  the diagonalization strategy
which we noticed from an empirical study of several well-known proofs, that are based
on the diagonalization principle. We give the essential proof steps of  the diagonalization
technique and suggest how to implement these steps in  a proof planning environment.

2 Cantor Diagonalization

In  order to show the main principles of the diagonalization technique, consider the Cantor
theorem. This is where the diagonalization technique was first invented and it is therefore
often called Cantor diagonalization [Kle43]. This theorem states that the power set of  each
set M has greater cardinality than the set itself, which is equivalent to  the conjecture that
there is no  surjective function from the set into i ts  power set:

YM.  -3f.surj(f, M ,  2M)

To prove the above conjecture, we assume that there is a surjective function fy from
some set Mp into its power set 2% and deduce a contradiction by diagonalization. In
[DSW94] a proof by diagonalization is described as follows:

The diagonalization method turns on the demonstration of  two assertions of
the following sort:

1. A certain set A can be enumerated in a suitable fashion.
2. It is  possible, with the help of  the enumeration, to define an  object b that

is different from every object in the enumeration, i.e. b ¢ A .



Below is the diagonalization part of the Cantor proof, where 2Mo is the enumerable 
set. This set can be enumerated with the help of the indexing relation fo and the diagonal 
element D is the object which is defined with the help of the enumeration. It is different 
from every object fo(x) in the enumeration: 

The set D = {x E Molx ~ fo(x)} belongs to 2Mo , there is also an element Yo 
of Mo which is the index of D in Mo (D = fo(Yo) with Yo E Mo). By the 
definition of D Yo belongs to D iff Yo is in Mo and does not belong to fo(Yo), 
This is obviously a contradiction to D = fo(Yo). 

In order to formulate the characteristic proof steps of the above diagonalization proof, 
we consider the formal proof in Figure 1 of the Cantor theorem which was interactively 
constructed in the D-MKRP environment [HKK+94] using the problem description in Ta
ble 1 1. This proof was interactively constructed at the level of the natural deduction (ND) 
calculus, i.e. was generated by the application of ND rules [Gen35]. It is then abstracted 
to the so-called assertion level [Hua94], where assertions, in addition to ND rules, can be 
used as justifications. 

TND 
=-Refl 
=-Equiv 
Surj-Def 

PSet-Def 
C-Def 

VXoo x V..,x 
VXoox = x 
Vxoo Vyoo x = Y -t [x f+ y] 
Vf.-+(.-+o)o Va.-+ o' Vb(.-+o)-+oo surj(f, a, b) f+ 

VXHO' X E b -t 3y•• yEa A x = f(y) 
Va.-+oo Vx.-+ o' x E P(a) f+ x ~ a 
Va.-+oo Vb.-+o' a C b f+ Vx.o x E a -t x E b 

Powerset VMHo' ..,3fH(.-+0)0 surj(f, M, P(M)) 

Table 1: A formulation of the 'Powerset' problem 

The key steps in the diagonalization part of the proof in Figure 1 are: 

•	 the property, that the diagonal element belongs to the power set, is stated in line 9, 

•	 the application of the definition of surjectivity ('Surj-Def) in line 10 to prove the 
existence of an index for the diagonal element, which is assumed to be Yo, is stated 
in line 11, 

• applying the diagonal element, which is a function, on the index Yo is done in line 14 
to obtain an implicit contradiction in line 16, . 

•	 the contradiction is made explicit by a case analysis in lines 17 .. 25. 

Analyzing the above key proof steps we now want to suggest a systematic way, how to 
search for a diagonalization proof: 

The central point of diagonalization is the construction of the diagonal element. In 
Figure 1 the diagonal element is represented by a lambda expression that has the indexing 
function fo as a sub-term (see line 9). It is therefore convenient to search for the indexing 
function first before trying to construct the diagonal element. 

IThis example is taken from [HKC95]. 

3 

Below is the diagonalization part of the Cantor proof, where 2% is the enumerable
set. This set can be enumerated with the help of the indezing relation fo and the diagonal
element D is the object which is defined with the help of the enumeration. It is different
from every object fo(x) in  the enumeration:

The set D = {x  € Molz ¢ fo(z)}  belongs to 2%, there is also an  element yo
of  My which is the index of  D in My (D = fo(yo) with yo € My). By  the
definition of  D yo belongs to D iff ya is in  My and does not belong to fo(yo)-
This is obviously a contradiction to D = f (y ) .

In order to formulate the characteristic proof steps of the above diagonalization proof,
we consider the formal proof in Figure 1 of the Cantor theorem which was interactively
constructed in the Q-mkrp environment [HKK*94] using the problem description in Ta-
ble 1 1. This proof was interactively constructed at  the level of  the natural deduction (ND)
calculus, i.e. was generated by the application of ND  rules [Gen35]. It is then abstracted
to the so-called assertion level [Hua94], where assertions, in addition to  ND  rules, can be
used as justifications.

IND  = VzezV-z
=-Refl V ipz==z
=-Equiv VzeVy .z=9 - [ z  & 3]
Surj-Def V is  ( o )  Va, os  Vb(—s0)—s0n surj (f ,  a ,  b) ©

VIZ ,  €b—  yey  Canz = f (y)
PSet-Def Va , onV I ,  0.7 € Pla)  & zCa
C-Def Va, 30  Vbizom a Cb Vaz  €a—>2€D
Powerset VM, ou If, ( i o )  surj(f,  M ,P(M))

Table 1: A formulation of the ‘Powerset’ problem

The key steps in the diagonalization part of the proof in  Figure 1 are:

e the property, that the diagonal element belongs to the power set, is stated in  line 9,

e the application of  the definition of  surjectivity (‘Surj-Def’) in line 10 to prove the
existence of  an  index for the diagonal element, which is assumed to  be  yo, is stated
in  line 11,

® applying the diagonal element, which is a function, on the index yp is done in  line 14
to obtain an implicit contradiction in  line 16,

e the contradiction is made explicit by  a case analysis in  lines 17 .. 25.

Analyzing the above key proof steps we now want to suggest a systematic way, how to
search for a diagonalization proof:

The central point of diagonalization is the construction of the diagonal element. In
Figure 1 the diagonal element is represented by a lambda expression that has the indexing
function f j  as a sub-term (see line 9). I t  is therefore convenient to search for the indexing
function first before trying to construct the diagonal element.

This example is taken from [HKC95).



1. 1 r- 3f. surj(f, Mo, P(Mo»	 (Hyp) 
2. 1,2 r- surj(fo, Mo, P(Mo»	 (Hyp) 
3. 3 r- x E AZ. [z E Mo 1\ .[z E fo(z)]]	 (Hyp) 
4. 3 r- [x E Mo 1\ .[x E fo(x)]]	 (LambdaE3) 
5. 3 r- x E Mo	 (AndE 4) 
6. r- [x E AZ. [z E Mo 1\ .[z E fo(z)]] -t x E Mo]	 (ImpI5 3) 
7.	 r- "Ix. x E [AZ. [z E Mo 1\ .[z E fo(z)]] -t X E Mo] (ForalII 6) 
8. r- AZ. [z E Mo 1\ .[z E fo(z)]] ~ Mo	 (~-Def 7) 
9.	 r- AZ. [z E Mo 1\ .[z E fo(z)]] E P(Mo) (PSet-Def 8) 

Proof of 16 
10. 1,2 r- 3y. [y E Mo 1\ AZ. [z E Mo 1\ .[z E fo(z)]] = fo(Y)]	 (Surj-Def 2 9) 
11. 1,2,11 r- [yO E Mo 1\ AZ. [z E Mo 1\ .[z E fo(z)]] = fo(yo)]	 (Hyp) 
12. 1,2,11 r- AZ. [z E Mo 1\ .[z E fo(z)]] = fo(yo)	 (AndE 11) 
13. r- Yo E fo(yo) = Yo E fo(Yo)	 (=-Refl) 

14. 1,2,11 r- yo E '\z~ [z E Mo 1\ ..,[z E fo(z)]] = yo E fo(yo)	 (=-Subst 12 13) 
15. 1,2,11 r- [YO E '\z. [z E Mo 1\ ..,[z E fo(z)]] B yo E fo(yo)]	 (=-Equiv 14) 

16.	 1,2,11 r- [[YO E Mo 1\ "'[YO E fo(yo)]] B yo E fo(yo)] (LambdaE 15) 
CaseI 

17. 1,2,11,17 r- yo E fo(yo)	 (Case 1) 
18. 1,2,11,17 r- "'[YO E fo(yo)]	 (16 17) 
19. 1,2,11,17 r- 1..	 (NotE 18 17) 

Case 2 
20. 1,2,11,20 r- "'[YO E fo(yo)]	 (Case 2) 
21. 1,2,11 r- yo EMo	 (AndE 11) 
22. 1,2,11,20 r- Yo E fo(yo)	 (16 21 20) 
23. 1,2,11,20 r- 11..	 (NotE 20 22) 
24. r- [YO E fo(yo,) V '[YO E fo(yo)]]	 (TND) 
25.	 1,2,11 r- 1.. (OrE 24 19 23) 

End of Case Analysis 
26. 1,2 r- 1..	 (ExistsE 10 25) 
27. 1 r- 1..	 (ExistsE 1 26) 
28. r- "'[3f. surj(f, Mo, P(Mo»]	 (NotI27) 
29. r- VM• ..,[3f. surj(f, M, P(M»]	 (ForallI 28) 

Figure 1: A formal proof of the 'Powerset' example 

In the Cantor proof, the function 10 binds not only the diagonal element but also each 
element of the enumerable set P(Mo) to an element (its index) in Mo. This property 
follows from the surjectivity of the function 10 from Mo into P(Mo) and is represented by 
the formula: 

'7XHO. X E P(Mo) -t 3Yt. yE Mo 1\ x = lo(Y) 

The indexing property provides important information for the specification of the diagonal 
element: its type (a functional type corresponding to the element type of P(Mo)), and its 
domain type (same type as the element type of Mo). 

In addition to these type constraints, the diagonal element must be different from each 
element of the enumerable set P(Mo), Le. from each lo(z). In the Cantor proof this is 
achieved by enforcing that for each z the diagonal element differs from the element lo(z) in 
some property. We call this property the diagonal property which is represented by z E lo(z) 
in the Cantor proof. The diagonal element inverts this diagonal property (occurrence of 
-,z E lo(z) in the lambda expression representing the diagonal element in line 9). 

4 

O
R

N
S

 
E

W
N

1 F 3f.surj(f, Mo,  P(Mo)) (Hyp)
1 ,2  a surj( fo,  Mo,  P(Mo)) (Hyp)
3 FE wE\ze[z  € Mo Az  € fo(z)]] (Hyp)
3 [ xz  € Mo A - f z  € fo(z)]] (LambdaFE 3)
3 Fz  € Mo  (AndE 4)

Fo [x € Azz  € Mo Anz  € fo(2)]] = x € Mo] (ImpI5 3)
Fb Voaz € [Azz  € Mo A f z  € fo(2)]] = x € Mo] (Foralll 6)
FF Azz  € Mo Az  € fo(2)]] € Mo (C-Def 7)
F Az [2 € Mo A =[z € fo(2)]] € P(Mo) (PSet-Def 8)

Proof of 16°
10. 1,2 FE Jyey € Mo A Azz  € Mo A nlz € fo(2)]] = fo(y)] (Surj-Def 2 9)
11. 1,2,11 F [yo € Mo  A Aza[z € Mo  Az  € fo(2)]] = fo(ye)] (Hyp)
12. 1,2,11 F Azz  € Mo  Az  € fo(2)]] = fo(yo) (AndE 11)
13. F yo € fo(yo) = yo € fo(yo) (=-Refl)
14. 1,2,11 kb yo € Aza[z € Mo A =[z € fo(2)]] = yo € fo(yo) (=-Subst 12 13)
15. 1,2,11 F [yo € Aza [2 € Mo  A (z  € fo(2)]] © yo € fo(wo)] (=-Equiv 14)

16. 1,2,11 kb [Iyo € Mo A =[yo € fo(yo)]] + yo € fo(yo)] (LambdaE 15)
Case 1

17. 1,2,11,17 F yo € fo(yo) (Case 1)
18. 1,2,11,17 kb [yo € folyo)] (16 17)
19. 1,2,11,17 FL  (NotE 18 17)

Case 2
20. 1,2,11,20 kb [yo € fo(yo)] (Case 2)
21. 1,211 Fy  €M (AndE 11)
22. 1,2,11,20 F yo € foo) ( 16  21 20)
23. 1,2,11,20 EL  (NotE 20 22)
24. F [yo € fo(yo) V [yo € fo(yo)]] (TND)
25. 1,2,11 FL  (OrE 24 19 23)

End of Case Analysis
26. 1,2 FOL  (ExistsE 10 25)
27. 1 FL  (ExistsE 1 26)
28. FE —[3f.suri(f, Mo, P(Mo))] (NotI 27)
29. F VM.-[Af-surj(f, M ,  P(M))] (ForallI 28)

Figure 1: A formal proof of  the ‘Powerset’ example

In the Cantor proof, the function fy binds not only the diagonal element but also each
element of the enumerable set P(Mp) to an element (its index) in Mo. This property
follows from the surjectivity of the function fo from Mo into P(Mp) and is represented by
the formula:

V I , 0 z € P(Mp) = yy  € Mg Az  = fo(y)

The indexing property provides important information for the specification of  the diagonal
element: its type (a functional type corresponding to the element type of  P(My)),and its
domain type (same type as the element type of Mo).

In  addition to these type constraints, the diagonal element must be different from each
element of the enumerable set P(Mp), i.e. from each fo(z). In the Cantor proof this is
achieved by enforcing that for each z the diagonal element differs from the element fo(z) in
some property. We call this property the diagonal property which is represented by z € fo(z)
in the Cantor proof. The diagonal element inverts this diagonal property (occurrence of
-2z € fo(2) in the lambda expression representing the diagonal element in  line 9).



In order to get a contradiction, the diagonal element is constructed in such a way, that 
it belongs to the enumerable set P(Mo) (occurrence of Z E Mo in the lambda expression 
representing the diagonal element in line 9). Consequently, the diagonal element has an 

.index yo and the diagonal property for this element of Mo (yo E fo(Yo)) is contradicted 
according to the construction principle of the diagonal element. 

To summarize, a diagonalization proof can be carried out in the following way: 

1. First we search for an indexing property by ensuring that the formula schema 

matches a provable formula. 

2.	 Then we construct a function D (the diagonal element) that belongs to P and inverts 
the diagonal property F(x)(x). It is not necessary that the function D inverts the 
property F (x) (x) for each x from the set of indices Q, but it is sufficient to invert 
the proposition F(i)(i) where i is the index of D in Q. The inverting property of D 
can therefore be formulated as: 

D(i) ++ .P(i)(i) 

The lambda expression schema >'x. R[F(x), x] for a higher-order variable R partially 
specifies the diagonal element D. Its actual term structure is constructed by in
stantiating the meta-variable R so that it belongs to P and satisfies the inverting 
property. 

3.	 Finally, we consider the index i of the diagonal element, which exists due to the 
indexing property. We make the implicit contradiction in D explicit by a case analysis 
with the cases F(i)(i) and .F(i)(i): One has to deduce .P(i)(i) from F(i)(i) and 
P(i)(i) from .P(i)(i) using the equality D(i) = P(i)(i) and the inverting property 
D(i) ++ .F(i)(i). 

Next let us now look at some other diagonalization examples in order to verify the 
observations of this section and patch the suggested proof construction. 

3 Other Diagonalization Examples 

In this section we consider other diagonalization proofs for which the diagonalization ar
gument is somewhat different from that of the Cantor theorem. These differences are 
important, as we want to extend the diagonalization strategy as suggested in the previous 
section. 

3.1 The Halting Problem 

The Halting theorem states that there is no binary computable function (there is no h with 
Tz(h)) which decides for unary computable functions, whether they halt or not. Formally 

2A term of the form X[Yll .. , Yn] stays for the lambda expression schema (..«AZll .. , Zn. X)(yd) ..)(Yn), 
where the higher-order variable X denotes a not yet instantiated meta-variable. Whereas a term of the form 
X(Yl, .. , Yn) stays for the application (.. «AZ1, .. , Zn. X)(Yl)) .. )(Yn), where X denotes a term of the object 
level. 

5
 

In order to get a contradiction, the diagonal element is constructed in  such a way, that
it belongs to the enumerable set P(Mj) (occurrence of z € M j  in the lambda expression
representing the diagonal element in  line 9). Consequently, the diagonal element has an

‚index yp and the diagonal property for this element of  Mp  (yo € fo(yo)) is contradicted
according to the construction principle of the diagonal element.

To summarize, a diagonalization proof can be carried out in the following way:

1. First we search for an indexing property by ensuring that the formula schema

YZ pePlz] = yee Qy] A z = Fly] 2

matches a provable formula.

2. Then we construct a function D (the diagonal element) that belongs to P and inverts
the diagonal property F(z)(z). It is not necessary that the function D inverts the
property F(z)(z) for each x from the set of indices Q, but it is sufficient to invert
the proposition F( i ) ( i )  where 7 is the index of D in  Q. The inverting property of D
can therefore be formulated as:

D(i )  & »F(i)( i)

The lambda expression schema Az. R[F(z), x] for a higher-order variable R partially
specifies the diagonal element D .  Its actual term structure is constructed by  in-
stantiating the meta-variable R so that it belongs to P and satisfies the inverting
property.

3. Finally, we consider the index i of the diagonal element, which exists due to the
indexing property. We make the implicit contradiction in  D explicit by  a case analysis
with the cases F( i ) ( i )  and —F(i)(z): One has to deduce -F(i)(¢) from F( i ) ( i )  and
F(i)(3) from -F(i)( i) using the equality D(i) = F(i)(i) and the inverting property
D(i )  & ~F(i)(5).

Next let us now look at some other diagonalization examples in order to verify the
observations of this section and patch the suggested proof construction.

3 Other Diagonalization Examples

In this section we consider other diagonalization proofs for which the diagonalization ar-
gument is somewhat different from that of the Cantor theorem. These differences are
important, as we want to extend the diagonalization strategy as suggested in the previous
section.

3.1 The Halting Problem

The Halting theorem states that there is no binary computable function (there is no h with
T>(h)) which decides for unary computable functions, whether they halt or  not. Formally

2A term of the form X[y ı ,  .., yn] stays for the lambda expression schema (..((Az1,.., Zne X)(yı))..)(yn),
where the higher-order variable X denotes a not yet instantiated meta-variable. Whereas a term of the form
X(y1, . - ,  yn) stays for the application (..((Az1,.., Zne  X)(y1))..)(yn), where X denotes a term of the object
level.



TND 
Ext. 
Godel 
ifComp 

ifDef 

dermed 

VXo.x V...,x 
VfN-+U. VgN-+U. VXN. f =9 -+ f(x) = g(x) 
VtN-+u.T1(t) -+ 3nN.e(n) = t 
Vf«N-+U),N)-+B. T2 (f) -+ 

Vxu. VW. T1()..ZN. if(f(e(z) , z) = 0, x, y)) 
VPo. VXU. Vyu. P -+ if(P, x, y) = xl\. 

...,p -+ if(P, x, y) = y 
...,defined(u) I\. defined(O) 

Halting ...,3h«N-+U),N)-+B. T2 (h) I\. VtN-+U. T1(t) 
-+ VXN. defined(t(x)) t-t h(t, x) =0 

Table 2: A formulation of the Halting problem 

expressed: defined(t(x» iff h(t,x) = 0 for all t with Tl(t) and for all x in N. The problem 
is formulated in Table 2 3. In this formalization we use the following sorts: N denotes the 
set of natural numbers. The symbol u represents the non-terminating function. U is the 
union of N and {u}. B denotes the set {O, I}. 

In order to prove the theorem, we need the Godel enumeration theorem which states that 
there is an enumeration function e so that for every unary computable function t there is a 
natural number n so that e(n) corresponds to t. The application of e to any natural number 
is always a computable function. Furthermore, we use some obvious definitions and the 
lemma that for a total and computable function f, the function AZN. if(J(e(z), z) = 0, x, y) 
is computable too, where "if(condition,then,else)" has the usual semantics. 

Figure 2 shows a formal proof at the assertion level of the Halting problem as formalized 
in Table 2. This proof was interactively constructed in f2-MKRP. In the first proof steps (lines 
3,4) we assume that there is a computable function halt which returns 0 iff a function t halts 
on an input x. The rest of the proof consists of inferring a contradiction by diagonalization. 
We want to examine this part of the proof to find the key proof steps noticed in the Cantor 
diagonalization: 

1.	 The indexing relation is given by the Godel lemma. This delivers the enumerable 
set Tl, the indexing function e, and the set of indices N. 

2.	 The diagonal element in line 6 is represented by a lambda expression that has e(z) 
and z as sub-terms. Here the term e(x)(x) does not denote a proposition, the diagonal 
property is therefore a predicate defined on this term (defined(e(x)(x))).The invert
ing property of the diagonal element is guaranteed by the conventional semantics of 
if and the properties: 

•	 V'x. halt(e(x), x) = 0 t+ defined(e(x)(x» which implies after substituting Yo for 
x the conjecture halt(e(yo), Yo) = 0 t+ defined(e(yo)(Yo» in line 13, 

•	 ...,defined(u) (in line 1), and 

•	 defined(O) (in line 2). 

3.	 With the help of the last three properties and of the equality in line 10, the implicit 
contradiction in the diagonal element is made explicit in the case analysis (lines 14 .. 
29). 

3This formalization is taken from [HKC95]. 

6 

TND Voz  Vx
Ext . ViNaUs VIN usVEN. f = g = f (z)  = g(x)
Godel Vinous T1(t) = Inn. e (n )= t
ifComp Vf(N-v)Ny=pT2(f) =

Vz.  Yyın Ti(Azne.if(f(e(2), 2) = 0, 2,¥))
ifDef VP,  Vzy.Yyy: P = i f(P,  x,y) = zA

-P = i f (Pz , y )  =y
defined —defined(u) A defined(0)
Halting - 3h (Nov ) ,N ) -Bs  T2(h) A Venus Ti  (2)

— Van. defined (#(z)) & h(t,z) =0

Table 2: A formulation of  the Halting problem

expressed: defined(t(z)) iff h(t,  x) = 0 for all ¢ with Ti(t) and for all z in  N.  The problem
is formulated in  Table 2 3. In this formalization we use the following sorts: N denotes the
set of natural numbers. The symbol u represents the non-terminating function. U is the
union of N and {u}.  B denotes the set {0,1}.

In  order to prove the theorem, we need the Godel enumeration theorem which states that
there is an  enumeration function e so that for every unary computable function ¢ there is a
natural number 7 so that e(n) corresponds to £. The application of e to any natural number
is always a computable function. Furthermore, we use some obvious definitions and the
lemma that for a total and computable function f ,  the function Azn. if(f(e(2),  2) = 0,z,y)
is computable too, where “if(condition,then,else)” has the usual semantics.

Figure 2 shows a formal proof at  the assertion level of  the Halting problem as formalized
in  Table 2. This proof was interactively constructed in  Q-mkrp. In  the first proof steps (lines
3,4) we assume that there is a computable function halt which returns 0 iff a function ¢ halts
on an input x. The rest of  the proof consists of inferring a contradiction by diagonalization.
We want to examine this part of the proof to find the key proof steps noticed in  the Cantor
diagonalization:

1. The indexing relation is given by the Godel lemma. This delivers the enumerable
set Ti, the indexing function e, and the set of  indices N .

2. The diagonal element in  line 6 is represented by a lambda expression that has e(z)
and z as sub-terms. Here the term e(z)(z) does not denote a proposition, the diagonal
property is therefore a predicate defined on  this term (defined(e(z)(z))). The  invert-
ing property of the diagonal element is guaranteed by the conventional semantics of
i f  and the properties:

e Vz.halt(e(z),z) = 0 + defined(e(z)(z)) which implies after substituting yo for
x the conjecture halt(e(yo),yo) = 0 ++ defined(e(yo)(yo)) in  line 13,

e —defined(u) (in line 1), and
eo defined(0) (in line 2).

3. With the help of the last three properties and of the equality in  line 10, the implicit
contradiction in the diagonal element is made explicit in  the case analysis (lines 14 ..
29).

3This formalization is taken from [HKC95].



1. 1 f- -'[defined(u)]	 (Hyp) 
2. 2 f- defined(O)	 (Hyp) 
3. 3 f- 3h.[T2(h) 1\ 'Vt.[Tl(t) ~ 'Vx.[h(t,x) = 0 ++ defined(t(x))]]] (Hyp) 
4. 4 f- [T2(halt) 1\ 'Vt.[Tl(t) ~ 'Vx.[halt(t, x) = 0 ++ defined(t(x))]]] (Hyp) 
5. 4 f- T2(halt)	 ( 4) 
6.	 4 f- T1(.Az.if(halt(e(z), z) = 0, u, 0)) (ifComp 5) 

Proof of 10' and 13 
7. 4 f- 3n.e(n) = .Az.if(halt(e(z), z) = 0, u, 0)	 (GodeI6) 
8. 8 f- e(yo) = .Az.if(halt(e(z), z) = 0, u, 0)	 (Hyp) 
9. 8 f- e(yo)(yo) = (.Az.if(halt(e(z),z) = O,u,O»(Yo)	 (Ext 8) 
10. 8 f- e(yo)(yo) = if(halt(e(yo), yo) = 0, u, 0)	 (LambdaE 9) 
11. 8 f- .Az.if(halt(e(z), z) = 0, u, 0) = e(yo)	 (=Com 8) 
12. 4,8 f- T1(e(yo»	 (=Subst 11 6) 
13.	 8,4 f- [halt(e(yo),yo) = 0 ++ defined(e(yo)(yo»] (4 12) 

CaseI 
14. 14 f- halt(e(yo), yo) = 0	 (Case 1) 
15. 14 f- if(halt(e(yo), yo) = 0, u, 0) = u	 (ifDef 14) 
16. 14,8 f- e(yo)(yo) = u	 (=Trans 10 15) 
17. 8,14 f- u = e(yo)(yo)	 (=Com 16) 
18. 1,14,8 f- -,[defined(e(yo)(yo))]	 (=Subst 17 1) 
19. 14,4,8 f- defined(e(yo) (yo»	 (++SubE 13 14) 
20.	 8,4,14,1 f- 1- (NotE 18 19) 

Case 2 
21. 21 f- -'[halt(e(yo), yo) = 0]	 (Case 2) 
22. 21 f- if(halt(e(yo),yo) = O,u,O) = 0	 (ifDef 21) 
23. 21,8 f- e(yo)(yo) = 0	 (=Trans 10 22) 
24. 8,21 f- o= e(yo)(yo)	 (=Com 23) 
25. 2,21,8 f- deflned(e(yo)(yo))	 (=Subst 24 2) 
26. 21,4,8 f- -,[defined(e(yo) (yo»]	 (++SubE 13 21) 
27. 8,21,2,4 f- 1-	 (NotE 26 25) 
28. f- [halt (e(yo), yo) = 0 V -'[halt(e(yo), yo) = 0]]	 (TND) 
29.	 4,2,8,1 f- 1- (OrE 28 20 27) 

End of Case Analysis 
30. 1,2,4 f- 1-	 (ExistsE 7 29) 
31. 2,1,3 f- 1-	 (ExistsE 3 30) 
32. 1,2 f- -,[3h.[T2(h) 1\ 'Vt.[Tl(t) ~ 'Vx.[h(t,x) = 0 ++ defined(t(x))]]]] (NotI31) 

Figure 2: A formal proof of the Halting example 

Compared to the proof of the Cantor theorem, the inverting property of the diagonal el
ement is more complicated here. The diagonal element is represented by an if-term, whose 
condition-sub-term halt(e(z), z) = 0 is equivalent to the diagonal property defined(e(x)(x)). 
The else-sub-term 0 belongs to the relation of the diagonal property predicate, but the 
then-sub-term u does not. 

Consequently, we can specify the diagonal element, in case the term F(x)(x) does not 
denote a proposition, by the lambda expression schema .xx. if(R[F(x), x], Y[x], Z[x)). The 
inverting property holds if the following three properties can be satisfied: 

• R[F(i), i] t-7 U[F(i)(i)] where U[F(x)(x)] denotes the diagonal property, 

• -'U[Y[i]], and 

• U[Z[i]]. 

7 

1 1 F  -[defined(u)] (Hyp)
2 2 FE  defined(0) (Hyp)
3 3 FE 3h.[T2(h) AVE[TL(E) = Vz.[h(t, 2) = 0 ++ defined(¢(z))]]] (Hyp)
4 4 E [T2(halt) A Vt.[Ti(t) — Vz.[halt(Z, z )  = 0 ++ defined(t(z))]]] (Hyp)
5 4 + To(halt) (4)
6 4 FE T;(Az.if(halt(e(z),z) = 0,%,0)) (ifComp 5)

Proof of 10  and 13
7. 4 FE 3In.e(n) = Az.if(halt(e(z), z) = 0, u, 0) (Gödel 6)

8 FE e(yo) = Az.if(halt(e(z), z) = 0, u, 0) (Hyp)
9. 8 FE e(yo)(yo) = (Az.if(halt(e(z),z) = 0, w, 0))(yo) (Ext 8)
10. 8 F e(yo)(yo) = if (halt(e(yo), yo) = 0,  4 ,0)  (LambdaE 9)
11. 8 F  Azif(halt(e(z), 2) = 0,%,0) = e(yo) (=Com 8)
12. 48  FE Ti(e(vo)) (=Subst 11 6)
13. 84  FH  [halt(e(yo),yo) = 0 ++ defined(e(yo)(yo))] ( 4  12)

Case 1
14. 14 F halt(e(yo),yo)= 0 (Case 1)
15. 14 + if(halt(e(yo),yo)= 0, uw, 0) = u (ifDef 14)
16 14,8 F e(yo)(yo) = u (=Trans 10 15)
17 8,14 Fu  =e(yo)(yo) (=Com 16)
18 1,14,8 FE  —[defined(e(yo)(y0))] (=Subst 17 1)
19 14,4,8 + defined(e(yo)(yo)) (++SubE 13 14)
2.   8,4,14,1 FL  (NotE 18 19)

Case 2
21. 21 F ([halt(e(yo),yo)= 0] (Case 2)
22. 21 FE if(halt(e(yo),yo)= 0, uw, 0) = 0 (ifDef 21)
23. 21,8 E e(yo)(yo)= 0 (=Trans 10 22)
24. 8,21 F 0=  e(yo)(yo) (=Com 23)
25. 2,21,8 + defined(e(ya)(yo)) (=Subst 24 2)
26. 21,48 + —[defined(e(yo)(¥o))] (+&SubE 13 21)
27. 82124  FOL  (NotE 26 25)
28. + [halt(e(yo), yo) = 0 V —[halt(e(yo), yo) = 0]] (TND)
29. 4,2,8,1 FL  (OrE 28 20 27)

End of Case Analysis
30. 1,24 FOL  (ExistsE 7 29)
3l. 2,13 Fo l  (ExistsE 3 30)
32 1,2 E =[3h.[T2(h) A Vt.[Ti(£t) = Vz.[h(t, 2) = 0 & defined (¢(z))]]]] (NotI 31)

Figure 2: A formal proof of the Halting example

Compared to the proof of the Cantor theorem, the inverting property of the diagonal el-
ement is more complicated here. The diagonal element is represented by an i f-term, whose
condition-sub-term halt(e(z), z) = 0 is equivalent to  the diagonal property defined(e(z)(z)).
The else-sub-term 0 belongs to the relation of the diagonal property predicate, but the
then-sub-term u does not.

Consequently, we can specify the diagonal element, in  case the term F(z)(z) does not
denote a proposition, by the lambda expression schema Az. if(R[F(z),z],Y[z],  Z[z]). The
inverting property holds if the following three properties can be satisfied:

e R[F( i ) , i ]  +> U[F(i)(i)] where U[F(z)(z)] denotes the diagonal property,

e =U[Y(i]l, and
e U[Z[i]]-



In the above formulae, i denotes the index of the diagonal element. Note that R[F(x), x] 
and U[F(x)(x)] can be instantiated with the same object term. 

3.2 The 'Total' Problem 

Consider the theorem 'Total': 

The set TOT = {x E NIV'yo defined(~(x, y))} of indices for total computable 
functions is not recursively enumerable. ~ denotes the universal function which 
takes two natural numbers x, and y as arguments and delivers the result of 
the call of the x th computable function in the Godel enumeration with y as 
argument. 

The informal proof of this theorem is given in [DSW94], page 90. This theorem is formalized 
in Table 3 and a formal proof is given in Figure 3. 

TOTdefl VnNo TOT(n) -+ totcomp(AxNo <"P(n, x» 
TOTdef2 VfN-+Resototcomp(f) -+ 3nNoTOT(n) I\f = AXNo<"P(n,x) 
totcompl VfN-+Reso totcomp(f) f-t VXNo defined(f(x» 
totcomp2 VfN-+Reso totcomp(f) -+ totcomp(AxNo f(x) + 1) 
r.e.Lem VSN-+oor.e.(s) I\nempty(s)-+ 

3gN-+N~VXNoS(9(X» 1\ VYNoS(Y) -+ 3ZNoY = g(z) 
nempty nempty(TOT) 
=Axiom VXReso ...,(x + 1 =x) 
Total ...,r.e.(TOT) 

Table 3: A formulation of the 'Total' problem 

After assuming that the set TOT is r.e. (line 2) and after applying the lemma r.e.Lem 
to get the conjecture in line 3, a contradiction is derived using the diagonalization technique 
as follows: 

•	 Construct the diagonal element and show that this belongs to the set totcomp(line 
15). The function AXo Ay. q, (g (y ), x) is the indexing function. 

• Prove the existence of an index i for the diagonal element (lines 16 .. 22). 

• Deduce the equality in line 25 which contradicts the equality axiom =Axiom from 
the equality in line 22. 

The diagonalization part of the proof in Figure 3 differs from that of the Cantor problem 
and Halting problem in two aspects: First, the actual indexing property in this example is 
represented by the conjecture 

(1) 

and therefore cannot be directly proved by the application of an assertion from the problem 
description. Although the assertion TOTdef2 satisfies the property of an indexing relation, 
the second conjunct in line 4 of Figure 3 allows the deduction of a second possible indexing 
property (1). Consequently, we have to deal with problem situations when there is more 
than one indexing property. Moreover the examination of the hypotheses in the problem 

8
 

In the above formulae, 7 denotes the index of the diagonal element. Note that R[F(z),z]
and U[F(z)(z)] can be instantiated with the same object term.

3 .2  The ‘Total’ Problem

Consider the theorem ‘Total’:

The set TOT = {z € N|Vy.defined(®(z,y))} of indices for total computable
functions is not recursively enumerable. ® denotes the universal function which
takes two natural numbers z, and y as arguments and delivers the result of
the call of the x ”  computable function in the Godel enumeration with y as
argument.

The informal proof of this theorem is given in  [DSW94], page 90. This theorem is formalized
in Table 3 and a formal proof is given in  Figure 3.

TOTdefl Vnn.TOT(n) — totcomp(Azn. $(n, z))
TOTdef2 Vfn-+Res« totcomp(f) = Inn. TOT(n) A f = Azne O(n, x)
totcompl VfN_Res totcomp(f) + Vn.  defined(f(z))
totcomp2 VfN_yRes- totcomp(f) — totcomp(Azns. f (z)  +1 )
r.e.Lem VSN—soeI.€.(s) A nempty(s) +

AgN-sNe YZ Na 8(g(2)) A Vyne 8(y) = zn  y = g(2)
nempty nempty (TOT)
=Axiom ViIpe-—{(z+1=12)
Total -r.e.(TOT)

Table 3: A formulation of the “Total’ problem

After assuming that the set TOT  is r.e. (line 2) and after applying the lemma r.e.Lem
to  get the conjecture in  line 3, a contradiction is derived using the diagonalization technique
as follows:

e Construct the diagonal element and show that this belongs to the set totcomp (line
15). The function Az. Ay. ®(g(y), x) is the indexing function.

e Prove the existence of an index i for the diagonal element (lines 16 .. 22).

e Deduce the equality in line 25 which contradicts the equality axiom =Axiom from
the equality in line 22.

The diagonalization part of the proof in  Figure 3 differs from that of the Cantor problem
and Halting problem in two aspects: First, the actual indexing property in this example is
represented by  the conjecture

V fN-sRes- totcomp(f) — Inn. f = Az. 8(go(n),7) (1)

and therefore cannot be directly proved by the application of an assertion from the problem
description. Although the assertion TOTdef2 satisfies the property of  an  indexing relation,
the second conjunct in  line 4 of  Figure 3 allows the deduction of  a second possible indexing
property (1). Consequently, we have to deal with problem situations when there is more
than one indexing property. Moreover the examination of  the hypotheses in the problem



I. 1 I- nempty(TOT)	 (Hyp) 
2. 2 I- r.e.(TOT)	 (Hyp) 
3. 1,2 I- 3g.[Vx.TOT(g(x)) 1\ Vy.[TOT(y) -t 3z.y =g(z)]]	 (r.e.Lem 2 1) 
4. 4 I- [Vx.TOT(go(x)) AVy.[TOT(y) -t 3z.y =go(z)]]	 (Hyp) 
5. 4 I- TOT(go(yo))	 ( 4) 
6. 4 I- totcomp(Ax.<p(go(yo), x))	 (TOTdefl 5) 
7. 4 I- Vy.totcomp(Ax.<p(go(y), x))	 (VI 6) 
8. 4 I- totcomp(Az.<p(gO(xo), z))	 ('lE 7) 
9. 4 I- defined«Az. <I? (gO (xo), z))(xo))	 (totcomp1 8) 
10. 4 I- defined(<I?(go(xo) , xo))	 (LambdaE 9) 
11. 4 I- defined«Ay.<P(go(y), y))(xo))	 (Lambda! 10) 
12. 4 I- Vx.defined( (Ay.<P(gO(Y) ' y))(x))	 (VI 11) 
13. 4 I- totcomp(Ay.<p(gO(Y), y))	 (totcomp1 12) 
14. 4 I- totcomp(Ax.(Ay.<P(go(y),Y))(x) + 1)	 (totcomp2 13) 
15.	 4 I- totcomp(Ax.<I?(gO(x), x) + 1) (LambdaE 14) 

Proof of 24 
16. 4 I- 3p.[TOT(P) A AX.<P(go(x),x) + 1 =AX.<P(P,X)]	 (TOTdef2 15) 
17. 17 I- [TOT(po) A AX.<P(go(x), x) + 1 = AX.<P(Po, x)]	 (Hyp) 
18. 17 I- TOT(po)	 (AE 17) 
19. 17 I- AX.<P(gO(x),x) + 1 = AX.<I?(PO,x)	 (AE 17) 
20. 4,17 I- 3z.po = go(z) (L818) 
2I. 21 .. I- po = go(i) (Hyp) 
22. 17,21 I- AX.<I?(gO(x), x) + 1 = Ax.<p(go(i), x)	 (=Subst 21 19) 
23. 17,21 I- VX.(AX.<P(gO(x), x) + l)(x) = (Ax.<I?(go(i), x))(x)	 (Ext-I22) 
24.	 17,21 I- (AX.<P(go(x), x) + l)(i) = (Ax.<p(go(i), x)) (i) ('lE 23) 

Explicit Contradiction 
25. 17,21 I- <I? (gO (i), i) + 1 = <I? (gO (i), i)	 (LambdaE 24) 
26. I- "[<I?(go(i), i) + 1 = <I?(go(i) , i)]	 (=Axiom) 
27.	 17,21 I- 1- (.,E 26 25) 

End of explicit Contradiction 
28. 4,17 I- 1-	 (3E 20 27) 
29. 4 I- 1-	 (3E 16 28) 
30. 1,2 I- 1- (3E 3 29) 
3I. 1 I- "[r.e.(TOT)] (.,1 30) 

Figure 3: A formal proof of the 'Total' example 

description to verify whether one of them can assert (can be used as assertion to prove) an 
indexing property is incomplete relative to this task. That is, it is not enough to check the 
availability of an indexing relation in the problem situation. 

The second difference concerns the construction of the implicit contradiction in the 
diagonal element: In the first two examples the diagonal element should contradict the 
diagonal property (the term U[F(x)(x)] with type 0), but in this example the type of the 
diagonal term F(x)(x) is different from the truth value type o. The diagonal element 
should be a term containing F(x)(x) as a sub-term and never equal F(x)(x). Actually, 
it is enough to satisfy the inequality of the diagonal element to the term F(x) (x) only at 
the position (F(i), i) in the diagonal, where i denotes the index of the diagonal element. 
This means the diagonal element should be represented by the lambda expression schema 
AX. G[F(x)(x)] and satisfy the inequality G[F(i)(i)] ;j: F(i)(i). In general, this alternative 
has to be taken into account for the construction of a diagonal element. 

9 

©
 O

N
D

 
h

w

1 F  nempty(TOT) (Hyp)
2 F re . (TOT) (Hyp)
1,2 F  3¢.[Vz.TOT(g(z)) A Vy.[TOT(y) + 3z.y = g(2)]] (r.e.Lem 2 1)
4 F Vz.  TOT(go(z)) A Vy.[TOT(y) = 3z.y = go(2)]] (Hyp)
4 F TOT(go(yo)) ( 4
4 FE  totcomp(Az.®(go(yo),z)) (TOTdefl 5)
4 FE Vy.totcomp(Az.$(go(y),x)) (VI 6)
4 F totcomp(Az.$(go(zo),z)) (VE 7)
4 F defined((\z.$(go(zo), z))(zo)) (totcompl 8)

10. 4 + defined(®(go(zo),zo)) (LambdaE 9)
11. 4 F defined((Ay.®(go(y), y))(zo)) (Lambdal 10)
12. 4 + Veo.defined((Ay.®(go(y),¥))(z)) (VI 11)
13. 4 FE  totcomp(Ay.8(g0(y), ¥)) (totcompl 12)
14. 4 F totcomp(Az.(Ay.S(go(y), y))(z) +1 )  (totcomp?2 13)
15. 4 FE  totcomp(Az.B(go(z), x )  +1 )  (LambdaE 14)

Proof of 24
16. 4 F  3p.[TOT(p) A Az.8(go(z),x)+ 1 = Az.B(p,z)] (TOTdef2 15)
17. 17 F [TOT(po) A Xz. ®(go(z), 2)  + 1 = Az.% (po, z)] (Hyp)
18. 17 F  TOT(po) (AE 17)
19. 17 FH Az.8(go(z) ,2) + 1 = Az.8(po,x) (AE 17)
20. 4,17 FE 3z.po = go(2) (L8 18)
21. 21 ‚FE po = golf) (Hyp)
22. 17,21 Fb Az.®(go(z),z) +1 = Az.8 (go(3), x) (=Subst 21 19)
23. 17,21 FE Vz.(Az.®(g0(z) ,x) + 1)(z) = (Az .B(go(3), z))(z) (Ext-1 22)
24. 17,21 FE (Az.®(go(z),x)+ 1)(i) = (Az.@(g90(3), 2))(3) (VE 23)

Explicit Contradiction —— WA —
25. 1721 F S(goli),i) +1 = S(go(i),i) (LambdaE 24)
26. Fo =[®(go(d),1) + 1 = S(go(8), 4)] (=Axiom)
27. 17,21 FL  (-E 26 25)

End of explicit Contradiction
28. 4,17 FL  (3E 20 27)
2 .  4 FOL  (3E  16 28)
30. 1,2 FL  (3E 3 29)
al. 1 F  ~[r.e.(TOT)] (=I 30)

Figure 3: A formal proof of the “Total’ example

description to verify whether one of them can assert (can be used as assertion to  prove) an
indexing property is incomplete relative to this task. That is, it is not enough to  check the
availability of an indexing relation in the problem situation.

The second difference concerns the construction of the implicit contradiction in the
diagonal element: In the first two examples the diagonal element should contradict the
diagonal property (the term U[F(z)(z)] with type o), but in this example the type of the
diagonal term F(z)(z) is different from the truth value type o. The diagonal element
should be a term containing F(z)(z) as a sub-term and never equal F(z)(z). Actually,
i t  is enough to satisfy the inequality of the diagonal element to the term F(z)(z) only at
the position (F(2),1) in the diagonal, where 7 denotes the index of the diagonal element.
This means the diagonal element should be  represented by  the lambda expression schema
Az. G[F(z)(z)] and satisfy the inequality G[F(i)(i)] # F( i )( i ) .  In  general, this alternative
has to  be taken into account for the construction of  a diagonal element.



3.3 The 'Kset' problem , 

We consider the theorem 'Kset': 

The set K = {x E NI-.defined(<I?(x,x))} is not recursively enumerable (an 
exercise from [DSW94], page 94). 

The formalization of this theorem and the necessary assertions is given in Table 4. 

Kdef V'nNoK(n) +-t ...,defined(<p(n,n)) 
compLem V' fN-tReso comp(f) --+ 3nNo f = AXNo <P(n, x) 
r.e.Def V'SN-too r.e.(s) +-t 

3gN-tReso comp(g) 1\ V'XNo sex) +-t defined(g(x)) 
TND V'4;00 4; V ...,4; 
Kset ...,r.e.(K) 

Table 4: A formulation of the 'Kset' problem 

Figure 4 shows a formal proof of the 'Kset' problem at the assertion level, that was con
structed interactively in D-MKRP. After assuming that the set K is recursively enumerable 
(line 1) andapplying the recursive enumerability definition (line 2) we show a contradiction 
by diagonalization as follows: 

• We state that the diagonal element go belongs to the set camp (line 4), 

• We prove the existence of an index no for the diagonal element (lines 5,6), and 

• We deduce the obvious contradiction in line 11 with the help of the equality in line 
6, the second conjunct in line 3, and the definition Kdef. 

The diagonalization proof part in Figure 4 differs from the previous diagonalization 
proofs in that the diagonal element (the function go) is directly given by the problem 
situation and does not need to be constructed. Consequently such an alternative should 
be taken into account when searching for a diagonal element. The lambda expression 
schemata, that were suggested in the previous examples to specify the diagonal element 
D, can be instantiated to a function symbol which belongs to the enumerable set. The 
inverting property of D can be stated if one of the conjectures U[D(i)] ++ -.U[F(i)(i)] and 
D(i) =F F(i)(i) can be proved from the current hypotheses. U is a meta-variable, F denotes 
the indexing function, and i is the index of the diagonal element D. 

More examples are given in the appendix. 

A Diagonalization Strategy 

In this section we summarize the properties of the presented diagonalization proofs. First, 
we give the essential proof steps and then suggest how these steps can be performed and 
implemented within a proof planning process. 

The goal of the diagonalization strategy is a contradiction, Le. ..L. A diagonalization 
proof plan can now be constructed in the following way: 

10 

4 

3 .3  The ‘Kset ’  problem _

We  consider the theorem ‘Kset ’ :

The set K = {z € Nj—defined(®(z,z))} is not recursively enumerable (an
exercise from [DSW94], page 94).

. The formalization of this theorem and the necessary assertions is given in  Table 4.

Kdef Vnne K(n)  ++ ~defined(®(n,n))
compLlem Vf N_ Ress cOmp(f) — InN.  f = Azn- $(n,  x)
r.e.Def VEN zo  T.e.(S) &

JgN—+ Rese cOmp(g) A VzN« 3(z) «> defined(g(z))
IND  You  dV  00
Kset -r.e.(K)

Table 4: A formulation of the ‘Kset’  problem

Figure 4 shows a formal proof of  the ‘Kset’  problem at  the assertion level, that was con-
structed interactively in Q-mxrp. After assuming that the set K is recursively enumerable
(line 1) and applying the recursive enumerability definition (line 2) we show a contradiction
by diagonalization as follows:

e We state that the diagonal element go belongs to the set comp (line 4),

e We prove the existence of an index ng for the diagonal element (lines 5,6), and

e We deduce the obvious contradiction in line 11 with the help of the equality in  line
6, the second conjunct in  line 3, and the definition Kdef.

The diagonalization proof part in Figure 4 differs from the previous diagonalization
proofs in that the diagonal element (the function go) is directly given by the problem
situation and does not need to be constructed. Consequently such an alternative should
be taken into account when searching for a diagonal element. The lambda expression
schemata, that were suggested in the previous examples to specify the diagonal element
D ,  can be instantiated to a function symbol which belongs to the enumerable set. The
inverting property of D can be stated if  one of the conjectures U[D(i)] + -U[F(i)(¢)] and
D(i) # F( i ) ( i )  can be proved from the current hypotheses. U is a meta-variable, F denotes
the indexing function, and i is the index of the diagonal element D .

More examples are given in the appendix.

4 A Diagonalization Strategy

In  this section we summarize the properties of  the presented diagonalization proofs. First,
we give the essential proof steps and then suggest how these steps can be performed and
implemented within a proof planning process.

The goal of the diagonalization strategy is a contradiction, i.e. 1 .  A diagonalization
proof plan can now be  constructed in the following way:

10



1. 1 f- r.e.(K)	 (Hyp) 
2. 1 f- 3g.[comp(g) A 'v'x.[K(x) H defined(g(x))]]	 (r.e.Def 1) 
3. 3 f- [comp(go) A 'v'x.[K(x) H defined(go(x))]]	 (Hyp) 
4.	 3 I- comp(go) ( 3) 

Proof of 11 
5. 3 f- 3n.go = Ax.<l>(n,x)	 (compLem 4) 
6. 6 I- go = Ax.<l>(no, x)	 (Hyp) 
7. 3 I- [K(no) H defined(go(no))]	 ( 3) 
8. 3,6 f- [K(no) H defined«Ax.<l>(no,x))(no))]	 (=Subst 6 7) 
9. 3,6 I- [K(no) H defined(<l>(no,no))]	 (LambdaE 8) 
10. I- [K(no) H -'[defined(<l>(no, no))]]	 (Kdef) 
11.	 3,6 I- [defined(<l>(no, no)) H -,[defined(<l>(no, no)))] (HSubE 9 10) 

CaseI 
12. 12 f- defined(<l>(no, no))	 (Case 1) 
13. 3,6,12 f- -'[defined(<l>(no, no))]	 (HSubE 11 12) 
14.	 3,6,12 I- 1. (-,E 13 12) 

Case 2 
15. 15 f- -,[defined(<l>(no, no))]	 (Case 2) 
16. 3,6,15 f- defined(<l>(no, no))	 (HSubI 11 15) 
17. 3,6,15 ' f- 1.	 (-,E 15 16) 
18. f- [defined(<l>(no, no)) V -,[defined(<l>(no, no))]]	 (TND) 
19.	 3,6 f- 1. (VE 18 14 17) 

End of Case Analysis 
20. 3 I- 1.	 (3E 5 19) 
21. 1 I- 1.	 (:lE 2 20) 
22. I- -,[r.e.(K)]	 (-,1 21) 

Figure 4: A formal proof of the 'Kset' example 

l.	 Verify that the formula schema 

VXa -+{3o P[x] -t 3Yao Q[y] /\ x = F[y] 

matches a provable formula from the hypotheses in order to obtain an indexing prop
erty, 

2.	 Check whether a function D (the diagonal element) belongs to P and satisfies an 
inverting property relative to the term F(x)(x). The specification of D and the 
corresponding inverting property for the index i of D depend on the type of P in this 
construction: 

•	 If the type of Pis (0 -t 0) -t 0, Le. the term F(x)(x) denotes a proposition, then 
D is a predicate and must unify the lambda expression schema AXao R[F (x), x]. 
The inverting property of D is ensured by the formula D(i) ++ -,F(i)(i). 

•	 Otherwise, D is a function and must unify either: 

- a lambda expression of the form AXao if(R[F(x), x], Y[x], Z[x]); The invert
ing property of D is guaranteed by the formulae: R[F(i), i] ++ U[F(i)(i)], 
-'U[Y[i]], and U[Z[i]], 

- or a lambda expression of the form AXao G[F(x)(x)], where G differs from the 
identity AX{3o Xj The inverting property is satisfied if one of the conjectures 
D(i) i= F(i)(i) and U[D(i)] ++ -,U[F(i)(i)] can be proven. 

11 

1. 1 FE re(K) (Hyp)
2. 1 F 3g.Jcomp(g) A Vz.[K(z) + defined(g(z))]] (r.e.Def 1)
3. 3 + [comp(go) A Vz.[K(2) ++ defined(go(z))]] (Hyp)
4. 3 LE comp(go) ( 3 )

Proof of 11
3 F 3In.go = Az. $(n, x)  (compLem 4)
6 F go = Az.®(no, z )  (Hyp)
3 F  [K(no) + defined(go(no))] ( 3 )
3,6 FE [K(no) + defined((Axz.$(no, z))(no))] (=Subst 6 7)
3,6 F  [K(no) © defined(®(no,no))] (LambdaE 8)

0. F [K(no) + —[defined(®(no, no))]] (Kdef)
1. 3,6 F [defined($(no,no))+ -[defined($(no,no))]] (+SubE 9 10)

Case 1
12. 12 F defined($(no,no)) (Case 1)
13. 36,12 FE [defined($(no,no))] (&SubE 11 12)
14. 3,6,12 FL  ’ (-E 13 12)

Case 2
15. 15 E —[defined(®(no,no))] (Case 2)
16. 3,6,15 F defined($(no,no)) (&SubI  11 15)
17. 36,15 FL  (-E 15 16)
18. I [defined(®(no,m0)) V [defined (®(no, no))]] (TND)
19. 3,6 FL  (VE 18 14  17)

End of Case Analysis
20. 3 FL  (3E 5 19)
21. 1 FOL  (3E 2 20)
22. Fo lre.(K)] (=I 21)

Figure 4: A formal proof of the ‘Kset’  example

1. Verify that the formula schema

Vzosp. Plz] = yas Qy]  Az  = Fy]

matches a provable formula from the hypotheses in  order to obtain an indexing prop-
erty,

2. Check whether a function D (the diagonal element) belongs to P and satisfies an
inverting property relative to the term F(z)(z). The specification of D and the
corresponding inverting property for the index i of D depend on the type of P in this
construction:

e If  the type of P is (a  — 0) — 0 ,  i.e. the term F(z)(z) denotes a proposition, then
D is a predicate and must unify the lambda expression schema Az,. R[F (z),  x).
The inverting property of D is ensured by the formula D(i)  ++ »F(i)(i).

e Otherwise, D is a function and must unify either:
— a lambda expression of the form Az.  if (R{F(z),  7], Y [x], Z[z]); The invert-

ing property of D is guaranteed by the formulae: R[F( i) , i ]  + U[F(i)(i)],
-U[Yé]],  and U[Z[i]],

— or a lambda expression of the form Azq. G[F(z)(z)], where G differs from the
identity Azg. x ;  The inverting property is satisfied if one of the conjectures
D(i) # F(i)(3) and U[D(7)] & ~U[F(3)(¢)] can be proven.

11



3.	 Find the proof plan for making the implicit contradiction of the diagonal element 
explicit; the structure of this plan can be determined from the instantiation of the 
diagonal element and the corresponding inverting property, 

4.	 Generate a proof plan for the whole diagonalization proof by using the partial plans 
computed in the previous three steps. 

The success of the diagonalization proof strategy depends mainly on the first and the 
second proof step, Le. on the existence of an indexing property and the existence of a 
function (the diagonal element) that satisfies an inverting property relative to the term 
F(i)(i) ( i is the index of this diagonal element.) and belongs to the enumerable set P. 
Depending on the task at hand we need special methods for the special planning task. 
Furthermore, we need control knowledge to solve conflict situations, Le. situations with 
many applicable methods. 

Verifying the existence of an indexing property amounts to the general and complex task 
whether a formula schema matches a provable formula from the hypotheses. It is difficult to 
obtain all provable formulae which match the schema. We suggest therefore to restrict this 
task to find the formulae which can be proved by assertion application of the hypotheses 
and which match the schema. The methods to be used for planning assertion applications 
should specify whether a hypothesis can be an assertion to prove a formula schema and 
should specify the resulted subgoals, Le. the premises of this assertion application. 

Assertion application alone is not enough to determine all possible indexing properties. 
For instance, in the 'Total' example one has to combine several assertions to get the 
right indexing property. Therefore we must extend the procedure of assertion application 
with the possibility to combine assertions. For this purpose we must investigate how an 
indexing property could be proved by combining assertions. Moreover we must provide 
control knowledge to choose one indexing property, if several are available. A control rule 
could state that hypotheses which do not belong to the original proof assumptions (Le. 
which are introduced during the proof) are more important in proving the current goal 
if this goal depends on them: Indexing properties whose proof involves such hypotheses 
should be preferred. 

The second main step in a diagonalization proof is the construction of the diagonal 
element. In the given diagonalization strategy, the function that corresponds to the diagonal 
element is partially specified. It must be an element of the enumerable set P, it has to 
unify with some lambda expression schemata, and finally a proposition that depends on it, 
Le. the inverting property, must hold. We suggest to use middle out reasoning [KBB93] for 
the construction of this function. The goals in this process are the formula schema P(D), 
where P is the enumerable set and D is the meta-variable which represents the function to 
be constructed, and finally the conjectures that specify the inverting property. 

We suggest to prove these goals by assertion application and higher order unification. 
For instance, in the Halting problem, the membership of the diagonal element D to the 
enumerable set TI , Le. the formula schema TI (D), can be reduced by applying the assertion 
ifComp 

Vf«N--+U),N)--+B' T2(f) -+ Vxu. Vyu. TI(AZN' if(f(e(z), z) = 0, x, V)) 

after unifying D with AZN' if(FI (e(z), z) = 0, x, V), to the subgoal T2(FI ). F I is a meta
variable which can be instantiated while proving the resulted subgoal T2(Fd. 

12
 

3. Find the proof plan for making the implicit contradiction of the diagonal element
explicit; the structure of  this plan can be determined from the instantiation of  the
diagonal element and the corresponding inverting property,

4. Generate a proof plan for the whole diagonalization proof by using the partial plans
computed in  the previous three steps.

The success of  the diagonalization proof strategy depends mainly on  the first and the
second proof step, i.e. on the existence of an indexing property and the existence of a
function (the diagonal element) that satisfies an inverting property relative to the term
F(i) ( i )  ( 4 is the index of this diagonal element.) and belongs to the enumerable set P.
Depending on the task at hand we need special methods for the special planning task.
Furthermore, we need control knowledge to  solve conflict situations, i.e. situations with
many applicable methods.

Verifying the existence of an indexingproperty amounts to the general and complex task
whether a formula schema matches a provable formula from the hypotheses. It is difficult to
obtain all  provable formulae which match the schema. We suggest therefore to restrict this
task to  find the formulae which can be  proved by  assertion application of  the hypotheses
and which match the schema. The methods to be used for planning assertion applications
should specify whether a hypothesis can be an assertion to prove a formula schema and
should specify the resulted subgoals, i.e. the premises of  this assertion application.

Assertion application alone is not enough to determine all  possible indexing properties.
For instance, in the ‘Total’ example one has to combine several assertions to  get the
right indexing property. Therefore we must extend the procedure of  assertion application
with the possibility to  combine assertions. For this purpose we must investigate how an
indexing property could be  proved by  combining assertions. Moreover we must provide
control knowledge to choose one indexing property, if several are available. A control rule
could state that hypotheses which do not belong to the original proof assumptions (i.e.
which are introduced during the proof) are more important in proving the current goal
if this goal depends on  them: Indexing properties whose proof involves such hypotheses
should be preferred.

The second main step in a diagonalization proof is the construction of the diagonal
element. In  the given diagonalization strategy, the function that corresponds to the diagonal
element is partially specified. It must be an element of the enumerable set P ,  it has to
unify with some lambda expression schemata, and finally a proposition that depends on it,
i.e. the inverting property, must hold. We suggest to use middle out reasoning [KBB93] for
the construction of  this function. The goals in this process are the formula schema P(D),
where P is the enumerable set and D is the meta-variable which represents the function to
be constructed, and finally the conjectures that specify the inverting property.

We suggest to  prove these goals by  assertion application and higher order unification.
For instance, in the Halting problem, the membership of the diagonal element D to the
enumerable set 13, i.e. the formula schema. 73(D), can be reduced by applying the assertion
ifComp

V f((N->0),Ny B» T2(f) = Voy. Vyu. Ti (Aen. i f ( f  (e(2), 2) = 0, z,y))

after unifying D with Azy. i f (F ı(e(z),z)  = 0,z,vy), to the subgoal T>(F}). Fi  is a meta-
variable which can be instantiated while proving the resulted subgoal T3(F1).

12



5 

In general, assertion application is not enough to fully instantiate all the meta-variables 
that occur in the considered subgoals. There can be subgoals that cannot be proven from 
any assertion. In such situations, instantiation alternatives need to be suggested in order 
to satisfy the goal at hand and continue the search process. We suggest to provide the 
instantiation alternatives using special heuristics which satisfy a goal by proposing some 
possible bindings of its higher-order variables. For instance, one heuristic can satisfy the 
formula schema \Ix. R[F(x), x] ~ Mo(x) by instantiating the higher-order variable R to 
).x.).y.Mo(y) I\ R l[X,y]. 

Conclusion and Future Work 

In this report we presented an empirical study of proofs by diagonalization and exploited 
their similarities to suggest a diagonalization proof strategy. In order to effectively plan 
diagonalization proofs the following should be done: 

• Methods have to be designed and implemented for the proof of an indexing property 
by application of assertions, and control knowledge has to be developed to apply these 
methods within a planning process. (Or a procedure has to be implemented to search 
for an indexing property using the current hypotheses.) 

•	 Methods and heuristics for the construction of the diagonal element by middle out 
reasoning have to be designed and implemented. Planning with such methods involves 
the use of higher-order unification which in general delivers many solutions some of 
which are not useful at all. Preferred solutions should be formally described and 
specified in order to apply approaches which restrict the solutions of higher-order 
unification (similar say to the use of HOL-unification in linguistic analysis [GK96]). 

Other questions that need to be answered are whether an indexing property could 
be formulated using other proof schemata and whether there is another specification for 
diagonal elements (In three other diagonalization examples, which are presented in the 
Appendix, the suggested diagonalization proof strategy can be successfully applied.). To 
answer these questions, more examples and especially other problem descriptions from the 
literature should be empirically examined. 

Moreover, we want to design a general framework for proof planning where proof strate
gies in addition to methods can be declaratively represented (including control knowledge) 
in an interactive proof development system such as n-MKRP. 

References 

[Bun91]	 Alan Bundy. A Science of Reasoning. In Computational Logic: Essays in honor 
of Alan Robinson. MIT Press, 1991. also presented at the 10th CADE 1990 as 
extended abstract. 

[BvHHS90]	 Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The 
OYS'lER-CTMv1 system. In Mark E. Stickel, editor, Proceedings of the 10th 
CADE, pages 647-648, Kaiserslautern, Germany, 1990. Springer Verlag, Berlin, 
Germany, LNAI 449. 

13
 

In  general, assertion application is not enough to fully instantiate all the meta-variables
that occur in the considered subgoals. There can be subgoals that cannot be proven from
any assertion. In such situations, instantiation alternatives need to be suggested in order
to satisfy the goal at hand and continue the search process. We suggest to provide the
instantiation alternatives using special heuristics which satisfy a goal by  proposing some
possible bindings of its higher-order variables. For instance, one heuristic can satisfy the

_ formula schema Vz. R[F(z),z] = Mo(x) by instantiating the higher-order variable R to
Az. Ay. Mo(y) A Rılz, yl-

5 Conclusion and Future Work

In this report we presented an empirical study of proofs by diagonalization and exploited
their similarities to suggest a diagonalization proof strategy. In order to effectively plan
diagonalization proofs the following should be done:

e Methods have to be designed and implemented for the proof of an indexing property
by application of assertions, and control knowledge has to be developed to  apply these
methods within a planning process. (Or a procedure has to  be implemented to  search
for an indexing property using the current hypotheses.)

e Methods and heuristics for the construction of the diagonal element by middle out
reasoning have to be designed and implemented. Planning with such methods involves
the use of higher-order unification which in general delivers many solutions some of
which are not useful at all. Preferred solutions should be formally described and
specified in order to apply approaches which restrict the solutions of  higher-order
unification (similar say to the use of HOL-unification in  linguistic analysis [GK96]).

Other questions that need to be answered are whether an indexing property could
be formulated using other proof schemata and whether there is another specification for
diagonal elements (In three other diagonalization examples, which are presented in the
Appendix, the suggested diagonalization proof strategy can be successfully applied.). To
answer these questions, more examples and especially other problem descriptions from the
literature should be empirically examined.

Moreover, we want to design a general framework for proof planning where proof strate-
gies in  addition to methods can be declaratively represented (including control knowledge)
in an interactive proof development system such as Q-MKRP.

References

[Bun91] Alan Bundy. A Science of Reasoning. In  Computational Logic: Essays in  honor
of Alan Robinson. MIT Press, 1991. also presented at the 10th CADE 1990 as
extended abstract.

[BvHHS90] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The
OYSTER-CI#M system. In Mark E.  Stickel, editor, Proceedings of the 10th
CADE,  pages 647-648, Kaiserslautern, Germany, 1990. Springer Verlag, Berlin,
Germany, LNAI 449.

13



[DSW94] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complex
ity, and Languages: Fundamentals of Theoretical Computer Science. Academic 
Press, second edition, 1994. 

[Gen35] Gerhard Gentzen. Untersuchungen iiber das logische Schlie:Ben I. Mathematis
che Zeitschrift, 39:176-210, 1935. 

[GK96] Claire Gardent and Michael Kohlhase. Higher-order coloured unification and 
natural language semantics. In Proceedings of the 34th Annual Meeting of the 
Association for Computational Linguistics. ACL, Santa Cruz, 1996. 

[HKC95] Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adapta
tion of declaratively represented methods in proof planning. SEKI Report 
SR-95-12, Fachbereich Informatik, Universitat des Saarlandes, Im Stadtwald, 
Saarbriicken, Germany, 1995. 

[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne
smith, Jern Richts, and Jerg Siekmann. f2-MKRP: AProof Development Envi
ronment. In Alan Bundy, editor, Proceedings of the 12th CADE, pages 788-792, 
Nancy, 1994. Springer Verlag, Berlin, Germany, LNAI 814. 

[Hua94] Xiaorong Huang. Reconstructing proofs at the assertion level. In Alan Bundy, 
editor, Proceedings of the 12th CADE, pages 738-752, Nancy, France, 1994. 
Springer Verlag, Berlin, Germany, LNAI 814. 

[KBB93] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for program synthesis. 
In P. Szeredi, editor, Proceedings of the 10-th International Conference on Logic 
Programming. MIT Press, 1993. 

[Kle43] Stephen C. Kleene. Recursive predicates and quantifiers. In Martin Davis, ed
itor, The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable 
Problems And Computable Functions, pages 254-287. Raven Press, Hewlett, 
New York, 1965, 1943. 

14
 

[DSW94]

[Gen35]

[GK96]

[HKC95]

[HKK +94]

[Hua94]

[KBB93]

[Kle43]

Martin D .  Davis, Ron Sigal, and Elaine J. Weyuker. Computability, Complez-
ity, and  Languages: Fundamentals of  Theoretical Computer Science. Academic
Press, second edition, 1994.

Gerhard Gentzen. Untersuchungen über das logische Schließen I .  Mathematis-
che Zeitschrift, 39:176-210, 1935.

Claire Gardent and Michael Kohlhase. Higher-order coloured unification and
natural language semantics. In  Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics. ACL,  Santa Cruz, 1996.

Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adapta-
t ion of declaratively represented methods in proof planning. SEKI Report
SR-95-12, Fachbereich Informatik, Universitit des Saarlandes, Im  Stadtwald,
Saarbriicken, Germany, 1995.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-
smith, Jörn Richts, and Jorg Siekmann. Q2-Mkrp: A Proof Development Envi-
ronment. In  Alan Bundy, editor, Proceedings of  the 12th CADE,  pages 788-792,
Nancy, 1994. Springer Verlag, Berlin, Germany, LNAI 814.

Xiaorong Huang. Reconstructing proofs at the assertion level. In  Alan Bundy,
editor, Proceedings of the 12th CADE, pages 738-752, Nancy, France, 1994.
Springer Verlag, Berlin, Germany, LNAT 814.

I .  Kraan, D.  Basin, and A .  Bundy. Middle-out reasoning for program synthesis.
In  P.  Szeredi, editor,  Proceedings of  the 10-th International Conference on  Logic
Programming. MIT  Press, 1993.

Stephen C. Kleene. Recursive predicates and quantifiers. In  Martin Davis, ed-
itor, The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable
Problems And Computable Functions, pages 254-287. Raven Press, Hewlett,
New York, 1965, 1943.

14



Appendix A: Three additional examples 

In this appendix we present three more theorems whose proofs are mainly based on the di
agonalization technique and we reflect upon the proof steps of the suggested diagonalization 
strategy in the given formal proofs. 

A.I The 'NatReal' problem 

The theorem in Table 5 whose formalization is taken from [HKC95] states that there is no 
surjective function from the natural numbers onto the interval [0,1]. In its formal proof, 
which is shown in Figure 5, we assume that there is such a surjective function fa and then 
we prove a contradiction by diagonalization, where the indexing property follows from the 
surjectivity of fa. The diagonal element is represented by an if-construct (line 17). The 
membership of the diagonal element to the interval [0,1] is shown in lines 4 .. 17. In the 
proof part from line 18 to line 23 an implicit contradiction is derived by first applying 
the indexing property (the surjectivity of fa) in order to get an index Yo for the diagonal 
element and then applying the diagonal element to this index to deliver the equality in line 
23 which embodies the implicit contradiction. This contradiction is made explicit by a case 
analysis (lines 25 .. 37). 

TND 
surjDef 

[O,I]Def 
digits 
=A.xiom 
ifDef 

Vxo.x V...,x 

Vf£-+(,-+£). VD,-+o' VC(£-+L)-+O' 
surj(f, D, C) t+ 

VYH£' Y E C -+ 3xL• X E D /\ Y = f(x) 
Vh'-+L' hE [0,1] t+ (Vn,. n E N -+ dig(h(n))) 
dig(O) /\ dig(l) 
0#1 
VPo' Vx,. Vy,. P -+ if(P, x, y) =x/\ 

...,p -+ if(P,x,y) = y 
NatReal ...,3f,-+(£-tt). surj(f, N, [0, 1]) 

Table 5: A formulation of the 'NatReal' problem 

The diagonalization proof in this example corresponds to the type of the diagonalization 
strategy as presented in section 4 where the diagonal element is represented by the lambda 
expression schema AXao if(R[F(x) , x], Y[x], Z[x]). The meta-variables R, Y, and Z are to 
be instantiated respectively by AX. Ay. x(y) = 1, AX.O, and AX.1. The meta-variable U in 
the inverting property R[F(i), i] ++ U[F(i)(i)] should be instantiated to AX. x = 1. 

A.2 The 'totFn' problem 

We consider the theorem that there is no enumeration fa, ft, 12, ... of all total unary 
functions on N (an exercise from [DSW94], page 94). This theorem is equivalent to the 
conjecture that there is no surjective function from the set of natural numbers N onto the 
set tfn of total unary functions on N which is formalized with the necessary assertions in 
Table 6. In the assertion level proof of this theorem, shown in Figure 6, we assume the 
existence of such a function go and then prove a contradiction by diagonalization. The 
diagonal element corresponds to the function AZ. s(go(z)(z)) (line 10) and the indexing 

15
 

Appendix A :  Three additional examples

In this appendix we present three more theorems whose proofs are mainly based on  the di-
agonalization technique and we reflect upon the proof steps of the suggested diagonalization
strategy in the given formal proofs.

A .1  The 'NatReal’ problem

The theorem in Table 5 whose formalization is taken from [HKC95] states that there is no
surjective function from the natural numbers onto the interval [0,1]. In  its formal proof,
which is shown in  Figure 5, we assume that there is such a surjective function fy and then
we prove a contradiction by diagonalization, where the indexing property follows from the
surjectivity of fo. The diagonal element is represented by an if-construct (line 17). The
membership of the diagonal element to the interval [0,1] is shown in lines 4 .. 17. In the
proof part from line 18 to line 23 an implicit contradiction is derived by first applying
the indexing property (the surjectivity of fo) in order to get an index yo for the diagonal
element and then applying the diagonal element to this index to deliver the equality in  line
23 which embodies the implicit contradiction. This contradiction is made explicit by a case
analysis (lines 25 .. 37).

TND VZouz V2
surjDef Vf, ( ue  VD,  VC(t t )  on

surj(f,  D,C) +
Vysuy€C + 3z .2€  DAY  = f (z)

[0,1]Def Vh ı—he  [0,1] & (Vn.n € N — dig(h(n)))
digits dig(0) A dig(1)
=Axiom 01
ifDef VP,  Vz,  Vy,  P — if(P, x,y)  = ZA

-P  — i f (Pz , y )=y
NatReal =I  f i s )  surj(f ,  N ,  [0,  1 ] )

Table 5: A formulation of  the ‘NatReal’ problem

The diagonalization proof in  this example corresponds to the type of the diagonalization
strategy as presented in  section 4 where the diagonal element is represented by the lambda
expression schema Az,  if(R[F(z), z],Y[z], Z[z]). The meta-variables R, Y,  and Z are to
be instantiated respectively by Az. Ay. z(y) = 1, Az. 0, and Az. 1. The meta-variable U in
the inverting property R[F( i ) , ]  & U[F(i)(i)] should be instantiated to Az.z = 1.

A.2  The ’ totFn’  problem

We consider the theorem that there is no enumeration fo, f i ,  f2, ... of all total unary
functions on N (an exercise from [DSW94], page 94). This theorem is equivalent to the
conjecture that there is no surjective function from the set of  natural numbers N onto the
set tfn of  total unary functions on  N which is formalized with the necessary assertions in
Table 6. In the assertion level proof of  this theorem, shown in Figure 6, we assume the
existence of such a function go and then prove a contradiction by diagonalization. The
diagonal element corresponds to the function Az. s(go(2)(z)) (line 10) and the indexing

15



l. 1 f- "'[0 = 1]	 (Hyp) 
2. 2 f- 3f.surj(f, N, [0, 1])	 (Hyp) 
3. 3 r surj (fo, N, [0,1])	 (Hyp) 
4. f- [fo(n)(n) = 1 V"'[fo(n)(n) = 1]]	 (TND) 
5. 5 f- fo(n)(n) = 1	 (Case 1) 
6. 5 f- if(fo(n)(n) = 1,0,1) = °	 (illef 5) 
7. f- dig(O)	 (digits) 
8. 5 f- dig(if(fo(n)(n) =	 1,0,1)) (=Subst 6 7) 
9. 9 f- "'[fo(n)(n) = 1]	 (Case 2) 
10. 9 f- if(fo(n)(n) = 1,0,1) = 1 (illef 9) 
1l. f- dig(l) (digits) 
12. 9 f- dig(if(fo(n)(n) = 1,0,1))	 (=Subst 10 11) 
13. f- dig(if(fo(n)(n) =	 1,0,1)) (VE 4 8 12) 
14. f- dig(AZ.if(fo(z)(z) = 1,0, l)(n))	 (Lambda! 13) 
15. f- [n E N ~ dig(Az.if(fo(z)(z) = 1,0, 1)(n))]	 (~I 14) 
16.	 f- Vn.[n E N ~ dig(AZ.if(fo(z)(z) = 1,0, l)(n))] (VI 15) 
17.	 f- Az.if(fo(z)(z) = 1,0,1) E [0,1] ([O,I]Def 16) 

Proof of 24 
18. 3 f- 3y.[y E N 1\ Az.if(fo(z)(z) = 1,0,1) = fo(y)]	 (surjDef 3 17) 
19. 19 f- [yo E N 1\ Az.if(fo(z)(z) = 1,0,1) = fo(yo)]	 (Hyp) 
20. 19 f- Az.if(fo(z)(z) = 1,0,1) = fo(yo) (I\E 19) 
2l. 19 f- Vy.Az.if(fo(z)(z) = 1,0, 1)(y) = fo(yo)(y) (Ext-I20) 
22. 19 f- Az.if(fo(z)(z) = 1,0, 1)(yo) = fo(Yo)(yo)	 (VE 21) 
23. 19 f- if(fo(yo)(yo) = 1,0,1) = fo(yo)(yo)	 (LambdaE 22) 
24.	 19 f- fo(yo)(yo) = if(fo(Yo)(yo) = 1,0,1) (=Com 23) 

CaseI 
25. 25 f- fo(yo)(Yo) = 1	 (Case 1) 
26. 25 f- if(fo(yo)(yo) = 1,0,1) = 0	 (illef 25) 
27. 25 f- 1 = fo(yo)(yo)	 (=Com 25) 
28. 19,25 f- 1 = if(fo(Yo)(yo) = 1,0,1)	 (=Trans 27 24) 
29. 19,25 f- 1=0	 (=Trans 28 26) 
30. 19,25 f- 0=1 (=Com 29) 
3l. 1,19,25 f- ..L (..,EI30) 

Case 2 
32. 32 f- "'[fo(yo)(yo) = 1]	 (Case 2) 
33. 32 f- if(fo(yo)(yo) = 1,0,1) = 1	 (illef 32) 
34. 19,32 f- fo(yo)(yo) = 1	 (=Trans 24 33) 
35. 19,32 f- ..L	 (..,E 32 34) 
36. f- [fo(yo)(yo) = 1 V "'[fo(yo)(yo) = 1]]	 (TND) 
37.	 1,19 f- ..L (VE36 31 35) 

End of Case Analysis 
38. 1,3 f- ..L	 (3E 18 37) 
39. 1,2 f- ..L	 (3E 2 38) 
40. 1 f-: ..,[3f.surj(f, N, [0, 1])]	 (..,139) 

Figure 5: A formal proof of the 'NatReal' example 

property follows from the surjectivity of 90. The membership of the diagonal element to 
the set tfn is proved in lines 3 .. 10. In lines 11 and 12 an index Yo of the diagonal element 
is determined by applying the surjectivity definition to the formula in line 10. With the 
help of the extensionality property we obtain from the function equality in line 12 the 
equality in line 16 which consists of an implicit contradiction. This implicit contradiction 
is made explicit in lines 17 .. 2l. 

The diagonalization proof part here corresponds to the type of the diagonalization strat 

16 

(Hyp)
(Hyp)
(Hyp)
(TND)
(Case 1)
(ifDef 5)
(digits)
(=Subst 6 7)
(Case 2)
(ifDef 9)
(digits)
(=Subst 10 11)
(VE 4 8 12)
(Lambda 13)
(=I 14)
(VI  15)
([0,1]Def 16)

(surjDef3 17)
(Hyp)
(AE 19)
(Ext-I 20)
(VE 21)
(LambdaE 22)
(=Com 23)

(Case 1)
(ifDef 25)
(=Com 25)
(=Trans 27 24)
(=Trans 28 26)
(=Com 29)
(~E 1 30)

(Case 2)
(ifDef 32)
(=Trans 24 33)
( -E 32 34)
(TND)
(VE 36 31 35)

1.  1 FE { ( 0=  1]
2. 2 + 3f.surj(f, N,  [0, 1])
3. 3 + surj(fo,N,  [0, 1])
4 F [foln)(n) = 1 V -{fo(n)(n) = 1]
5. 5 Fo fo ln ) (n)=1
6. 5 FE if(fo(n)(n) =1 ,0 ,1 )  = 0
7. kb dig(0)
8. 5 FE dig(if(fo(n)(n) = 1,0,1))

“ 9 .  9 kb [fo(n)(n) = 1]
10. 9 FE if(fo(n)(n) =1 ,0 ,1 )=1
11. kb dig(1)
12. 9 FE dig(if(fo(n)(n) = 1,0,1))
13. F dig(if(fo(n)(n) = 1,0,  1))
14. bo dig(\z.if(fo(z)(z) = 1,0,1)(n))
15. F [ ne  N — dig(Az.if(fo(z)(z) = 1,0,  1)(n))]
16. E Vn.{n € N — dig(Az.if(fo(2)(2) = 1, 0, 1)(n))]
17. FE Azif(fo(z)(z) = 1,0,1) € [0,1]

Proof of  24
18. 3 FE 3y.fy € NArz i f ( fo (2 ) (2 )  = 1,0,1) = fo(y)]
19. 19 F [yo € NAAMif( fo(2)(2)  = 1,0,  1) = folyo)]
20. 19 kb Azif(fo(2)(2) = 1,0, 1) = fo(yo)
21. 19 Fb Vy.Azäf(fo(z)(z) = 1,0,  1)(y) = fo(yo)(y)
22. 19 kb Azif( fo(2)(2) = 1,0,  1)(yo) = fo(yo)(yo)
23. 19 F if(fo(yo)(yo) = 1,0,1)  = fo(yo)(yo)
24. 19 FE fo(yo)(yo) = if(fo(yo)(yo) = 1,0,1)

Case 1
25. 25 kb fo(yo)(yo) = 1
2 .  25 FE if(fo(yo)(yo) = 1,0,1) =0
27. 25 Fb 1=  fo(yo)(yo)
28. 19,25 F 1=if(fo(yo)(yo) = 1,0,1)
29. 19,25 F 1=0
30. 19,25 F 0=1
31. 1,19,25 FL

Case 2
32. 32 kb [ fo(yo)(yo)  = 1]
33. 32 Fo if(fo(yo)(yo) = 1,0,1) = 1
34. © 19,32 Fo fo(yo)(yo) = 1
35. 19,32 EL
36. kb [fo(yo)(yo) = 1 V =[fo(yo)(yo) = 1]]
37. 1,19 FL  g

End of Case Analysis
38. 1,3 FL
39. 12  FOL
40. 1 k ~[3f.suri(f, N,  (0, 1))]

Figure 5: A formal proof of the ‘NatReal’ example

(3E 18 37)
(3E 2 38)
( I  39)

property follows from the surjectivity of  go. The membership of  the diagonal element to
the set {fn is proved in  lines 3 .. 10. In  lines 11 and 12 an index yo of the diagonal element
is determined by applying the surjectivity definition to the formula in line 10. With the
help of the extensionality property we obtain from the function equality in line 12 the
equality in  line 16 which consists of an implicit contradiction. This implicit contradiction
is made explicit in  lines 17 .. 21.

The diagonalization proof part here corresponds to the type of the diagonalization strat-

16



tfnDef 'V fHt' tfn(j) f-+ ('Vx L• X E N -+ f(x) EN) 
surjDef VfL-t(L-tL)' VDL-to' VC(L-tL)-tO' 

surj(j, D, C) f-+ 

(VYHL' yE C -+ 3xL • X E D /\ Y = f(x))/\ 
(VzL• zED -+ fez) E C) 

succAxI vxL.x E N -+ sex) EN 
succAx2 VxL.x E N -+ sex) i- x 
totFn 

Table 6: A formulation of the 'totFn' problem 

egy given in section 4 where the diagonal element is represented by the lambda expression 
schema Axa• G[F(x)(x)]. The meta-variable G has to be instantiated to Ax. sex). 

1. 1 I- 3g.surj(g, N, tfn)	 (Hyp) 
2. 2 I- surj(gO, N, tfn)	 (Hyp) 
3. 3 I- yEN	 (Hyp) 
4. 2,3 I- tfn(go(y))	 (surjDef 2 3) 
5. 2,3 I- go(y)(y) E N	 (tfnDef 4 3) 
6. 2,3 I- s(go(y)(y)) E N	 (succAx15) 
7. 2,3 I- AZ.S(gO(z)(z))(y) EN	 (Lambda! 6) 
8. 2 I- [y E N --+ >.z.s(go(z)(z))(y) E N]	 (--+1 7) 
9. 2 I- Vy.[y E N --+ >.z.s(go(z)(z))(y) EN]	 ('118) 
10.	 2 I- tfn(Az.s(gO(z) (z))) (tfnDef 9) 

Proof of 16 
11. 2 I- 3y.[y E Nil AZ.S(gO(z)(z)) =go (y)]	 (surjDef 2 10) 
12. 12 I- [YO EN 11 AZ.S(gO(z)(z)) =go(yo)]	 (Hyp) 
13. 12 I- yo EN	 (AE 12) 
14. 12 I- AZ.S(gO(z)(z)) =go(yo)	 (liE 12) 
15. 12 I- Vy.AZ.S(gO(z)(z))(y) =go(yo)(y)	 (Ext-I14) 
16.	 12 I- AZ.S(gO(z)(z))(yo) =go(yo)(yo) ('lE 15) 

Explicit Contradiction 
17. 2,12 I- tfn(go(yo) )	 (surjDef 2 13) 
18. 2,12 I- go(yo)(yo) E N	 (tfnDef 17 13) 
19. 2,12 I- ..,[s(go(yo)(yo)) =go(yo)(yo)]	 (succAx2 18) 
20. 12 I- s(go(yo)(yo)) =go(yo) (yo)	 (LambdaE 16) 
21.	 2,12 I- 1. (-.E 19 20) 

End of explicit Contradiction 
22. 2 I- 1.	 (3E 11 21) 
23. 1 I- 1.	 (3E 1 22) 
24. I- ..,[3g.surj(g, N, tfn)]	 (-.1 23) 

Figure 6: A formal proof of the 'totFn' example 

A.3 The 'Aset' problem 

Let us finally look at the theorem which states that the set A = {x E Nldefined(<I> (x, x)) /\ 
<"P(x, x) > x} is not recursive (an exercise from [DSW94], page 94). The formalization of 
this problem is listed in Table 7. In the formal proof in Figure 7 we assume that the set 
A is recursive and then prove a contradiction by diagonalization. The diagonal element is 
represented by the if-construct Ay. if(po(Y) = yes, id(y), s(y)) in line 12 and the indexing 

17
 

tfnDef V f ,  tfn(f) & (Vz..z2€ N = f(z) € N)
surjDef V ft =  (0—1)» VD, 00  VC (imi) o r

su r j ( f ,D ,C)  &
Mypsuy €C  2 I zze  DAY = f (Z)A
(Vzuz€ D — f(z) € €)

succAxl Vz . ze€N  = s (z )eN
succAx2 Vz , . z€N  > s ( z )#z
totFn gu )  SUri(g,N,  tfn)

Table 6: A formulation of the ‘ totFn’  problem

egy given in  section 4 where the diagonal element is represented by the lambda expression
schema Azq. G[F(z)(z)]. The meta-variable G has to be instantiated to Az. s(z).

1. 1 + 3g.suri(g, N ,  tfn) (Hyp)
2. 2 FE  surj(go, N,  thn) (Hyp)
3. 3  yeN  (Hyp)
4. 2,3 F t£fn(go(y)) (surjDef 2 3)
5. 2,3 FE go l y ) ( y )EN  (tfuDef 4 3)
6. 2,3 Fo s(go(y)(y)) € N (succAx1 5)
7. 2,3 Fo Az.s(go(2)(z))(y) € N (Lambdal 6)
8. 2 kb yeN-—  Az.s(go(z)(z))(y) € N] (—I 7)
9. 2 FE  Vy.[y € N = Az.s(go(z)(z))(y) € N]  (vI 8)
10. 2 Fk tfn(Az.s(go(z)(z))) (tfnDef 9)

Proof of 16
11. 2 FE  3y.[y € N A Xz.5(go(2)(2)) = go(y)] (surjDef 2 10)
12. 12 F [yo € N A Xz.5(g0(2)(2)) = go(yo)] (Hyp)
13. 12 F ypeN  (AE 12)
14. 12 F Az.s(go(z)(z)) = go(yo) (AE  12)
15. 12 kb WVy.Az.s(go(z)(z))(y) = go(yo)(y) (Ext-I 14)
16. 12 b Az.s(go(z)(z))(yo) = go(yo)(yo) (VE 15)

Explicit Contradiction ————m— — —
17. 212 LE tfn(go(yo)) (surjDef 2 13)
18. 2,12 F go(yo)(yo) € N (tfnDef 17 13)
19. 2,12 b =[s(g0(y0)(y0)) = go(yo)(yo)] (succAx2 18)
20. 12 FE s(go(yo)(yo)) = go(ya)(yo) (LambdaE 16)
21. 2,12 FL  , (E19  20)
- End of explicit Contradiction
22. 2 FL  (3Z  11  21)
23. 1 FL  (3E  1 22)
24. FE [Ag.surj(g,N, tfn)] (=7 23)

Figure 6: A formal proof of the ‘totFn’  example

A .3  The ’Aset ’  problem

Let us finally look at the theorem which states that the set A = {z  € N|defined(®(z,z)) A
®(z,z) > x}  is not recursive (an exercise from [DSW94], page 94). The formalization of
this problem is listed in Table 7. In the formal proof in Figure 7 we assume that the set
A is recursive and then prove a contradiction by diagonalization. The diagonal element is
represented by the if-construct Ay. if(po(y) = yes , i d ( y ) ,  s(y)) in  line 12 and the indexing

17



property follows from the definition of the total computability 'tcompDef'. The total 
computability of the diagonal element is shown in lines 6 .. 12. In the proof part from line 
13 to line 18 an implicit contradiction is obtained by first applying the total computability 
definition in order to get an index Yo for the diagonal element and then applying the 
diagonal element to this index to deliver the equality in line 18. This equality embodies 
the implicit contradiction which is made explicit by a case analysis in the lines 19 .. 39. 

TND Vxo- x V..,X
 
ADef VXN_X E A ++ def(<li(x,x» /\ <li(x,x) > X
 
recDef VUN ....to" rec(u) ++ 3PN-+dig- [tcomp...p(p) /\ VXN_ X E u ++ p(x) = yes]
 
grterAx VXN_ id(x) ;t x /\ sex) > X
 
idAx VXN- def(id(x»)
 
succAx VXN_ def(s(x»
 
tcompDef V/N-ms- tcomp(f) ++ [3nN- 1= "\XN- <lien, x) /\ VYN- def(f(y))]
 
tcompIf VPN-tdig- V/N-+res- VgN-tres

[tcomp...p(p) /\ VYN- def(f(y» /\ VZN' def(g(z»] -+ 
tcomp("\xN_ if(P(x) = yes, I(x), g(x))) 

ifDef vPo- VXres-"lYres- P -+ if(P, x, y) = xII 
..,p -+ li(P, x, y) = y 

Aset ..,rec(A) 

Table 7: A formulation of the 'Aset' problem 

The diagonalization proof in this example corresponds to the type of the diagonalization 
strategy described in section 4 where the diagonal element is represented by the lambda 
expression schema Axa_if(R[F(x),x],Y[x],Z[x]). The meta-va.riables R, Y, and Z are to 
be instantiated respectively to AX_ Ay.PO(Y) = yes, AX_ id(x), andAx_ s(x). The meta
variable U in the inverting property R[F(i) , i] B U[F(i) (i)] should be instantiated to 
AX. defined(x) /\ x> Yo. 

18
 

property follows from the definition of the total computability *tcompDef’. The total
computability of  the diagonal element is shown in  lines 6 . .  12. In the proof  part from line
13 to line 18 an implicit contradiction is obtained by first applying the total computability
definition in order to get an index yo for the diagonal element and then applying the
diagonal element to this index to deliver the equality in line 18. This equality embodies
the implicit contradiction which is made explicit by a case analysis in  the lines 19 .. 39.

TND VZoez V2
ADef Vinez € A + def(®(z,z)) A B(z,2) > x
recDef VuN os  Tec(u) ++ Ipn-dig= [tcomp.p(p) A VZN.Z € u p(T) = yes]
grterAx  Vzn.id(z) pz  As(z) > =
idAx Vz.  def(id(z))
succAx Vz.  def(s(z))
tcompDef Vfn-jrese tcomp(f) © Ann. f = zn.B(n,  x) A Vyna def(f(¥))]
tcomplf Von—dig" VfN-sress VIN-res«

[tcomp_p(p) A yn.  def( f (y))  A Van. def(g(2))] —
tcomp(Azn. if (p(z) = yes, f(x),  g(z)))

ifDef VPos VIrese Virose P + if(P, 2,9) = ZA
-~P — i f (P r , y )=y

Aset =rec(A)

Table 7: A formulation of the ‘Aset’  problem

The diagonalization proof in  this example corresponds to  the type of  the diagonalization
strategy described in section 4 where the diagonal element is  represented by the lambda
expression schema Azq. i f (R[F(z) ,z ] ,Y[x],Z[z]). The meta-variables R, Y ,  and Z are to
be instantiated respectively to Az. Ay.po(y) = yes, Az.id(z), and Az.s(z). The meta-
variable U in the inverting property R[F(i),i] + U[F(i)(¢)] should be instantiated to
Az. defined(z) Az  > yp.

18



l. 1 I- 'v'y.defined(id(y))	 (Hyp) 
2. 2 I- 'v'y.defined(s(y»	 (Hyp) 
3. 3 I- ree(A)	 (Hyp) 
4. 3 I- 3p.[teomp_p(p) /\ 'v'y.[A(y) ++ p(y) = yes]]	 (reeDef 3) 
5. 5 I- [teomp_p(po) /\ 'v'y.[A(y) ++ po(y) = yes]]	 (Hyp) 
6. 5 I- teomp_p(po)	 (5) 
7. 1 I- 'v'y.defined(id(y))	 (Abu 1) 
8. 2 I- 'v'z.defined(s(z»	 (Abu 2) 
9. 1,2 I- ['v'y.defined(id(y»	 /\ 'v'z.defined(s(z»] (/\l 7 8) 
10. 1,2,5 I- [teomp_p(po) /\ ['v'y.defined(id(y» /\ 'v'z.defined(s(z»]] (/\l 6 9) 
1l. I- [[teomp_p{po) /\ ['v'y.defined(id(y» /\ 'v'z.defined(s(z»)]] -+ (teomplf) 

teomp('\y.if(Po(y) = yes, id(y), s(y»)] 
12.	 1,2,5 I- teomp('\y.if(Po(y) = yes,id(y),s(y») (-+E 10 11) 

Proof of 18 
13. 1,2,5 I- 3n.'\y.if(po(y) = yes, id(y), s(y)) = ,\y. <I> (n, y)	 (teompDef 12) 
14. 14 I- .xy.if(po(y) = yes, id(y), s(y» = .xy.<I>(yO, y)	 (Hyp) 
15. 14 I- 'v'y..xy.if(po(y) = yes, id(y), s(y»(y) = '\y.<I>(yO, y)(y) (Ext-I14) 
16. 14 I- .xy.if(po(y) = yes, id(y), s(y»(yo) = .xy.<I> (YO, y)(yo) ('v'E 15) 
17. 14 I- if(po(yo) = yes, id(yo), s(yo» = <I>(yO, yo)	 (LambdaE 16) 
18.	 14 I- <I>(yO, yo) = if(po(yo) = yes, id(yo), s(yo» (=Com 17) 

CaseI 
19. 19 I- A(yo)	 (Case 1) 
20. 5,19 I- po(yo) = yes (5 19) 
2l. 5,19 I- if(po(yo) = yes, id(yo), s(yo» = id(yo) (ifDef 20) 
22. 5,14,19 I- <p(yO, yo) = id(yo)	 (=Trans 18 21) 
23. I- -'[id(yo) > yo]	 (grterAx) 
24. 5,14,19 I- -'[<I>(yo, YO) > yo]	 (=Subst 22 23) 
25. 5,14,19 I- -,[A(yo)]	 (ADef 24) 
26.	 1,2,3,5,14,19 I- l. (-,E 25 19) 

Case2 
27. 27 I- -,[A(yo)]	 (Case 2) 
28. 1,2,5 I- defined(.xy.if(Po(y) = yes, id(y), s(y»(yo»	 (teompDef 12) 
29. 1,2,5 I- defined(if(po(yo) = yes, id(yo), s(yo)))	 (LambdaE 28) 
30. 1,2,5,14 I- defined(<I> (YO, YO» (=Subst 17 29) 
3l. 5,27 I- -,[po(yo) = yes] (5 27) 
32. 5,27 I- if(po(yo) = yes, id(yo), s(yo» = s(yo)	 (ifDef 31) 
33. 5,14,27 I- <I>(yO, yo) = s(yo)	 (=Trans 18 32) 
34. I- s(yo) > yo	 (grterAx) 
35. 5,14,27 I- <I>(yO, YO) > Yo	 (=Subst 33 34) 
36. 1,2,3,5,14,27 I- A(yo)	 (ADef 30 35) 
37. 1,2,3,5,14,27 I- l.	 (-,E 27 36) 
38. I- [A(yo) V -,[A(yo)]]	 (TND) 
39.	 1,2,3,5,14 I- l. (VE 38 26 37) 

End of Case Analysis 
40. 1,2,3,5 I- l. (3E 13 39) 
4l. 1,2,3 I- l. (3E 4 40) 
42. 1,2 I- -,[ree(A)]	 (-,1 41) 

Figure 7: A formal proof of the 'Aset' example 

19
 

1. 1 F  Vy.defined(id(y)) (Hyp)
2. 2 FE  Vy.defined(s(y)) (Hyp)
3. 3 + rec(4) (Hyp)
4. 3 FE  3p.[tcomp.p(p) A Vy.[A(y) + p(y) = yes]] (recDef 3)
5. 5 FE [tcomp_p(po) A Vy.[A(y) + poly) = yes]| (Hyp)
6. 5 + tcomp_p(po) (5)
7. 1 FE Vy.defined(id(y)) (Abu  1)
8. 2 L- Vz.defined(s(z)) (Abu 2)
9. 1,2 LE [Vy.defined(id(y)) A Vz.defined(s(z))] (A I7  8)
10. 1,2,5 FE [tcomp.p(po) A [Vy.defined(id(y)) A Vz.defined(s(z))]] (AT6 9)
11. F [[tcomp_p(po) A Vy.defined(id(y)) A Vz.defined(s(z))]] = (tcomplf)

tcomp(Ay.if(po(y) = yes,id(y), s(y)))]
12. 1,2,5 F tcomp(Ay.if(po(y) = yes, id(y), s(y))) (—+E 10 11)

Proof of  18
13. 1,2,5 FF 3n)y.if(po(y) = yes, id(y),  s(¥)) = Ay.S(n, y) (tcompDef 12)
14. 14 FF Ay.i£f(po(y) = yes, id(y),  s(y)) = Ay.S(yo, y)  (Hyp)
15. 14 Fo Vy.Ayif(po(y) = yes, id(y),  s(y))(y) = Ay-2(yo, y)(y) (Ext-I 14)
16. 14 Fo Ayif(po(y) = yes, id(y), s(y)) (yo) = Ay-2(yo,¥)(yo) (VE 15)
17. 14 FE if(po(yo) = yes, id(yo), s(yo)) = ®(yo, yo) (LambdaE 16)
18. 14 F (yo,  yo) = if (Po(yo) = yes, id(yo), s(yo)) (=Com 17)

Casel
19. 19 F Ayo) (Case 1)
20. 5,19 + po(ye) = yes (5 19)
21. 5,19 F  if(po(yo) = yes, id(yo), s(yo)) = id(yo) (ifDef 20)
22. 5,14,19 FE (yo ,  yo) = id(yo) (=Trans 18 21)
23. FE [id(yo) > yo] (grterAx)
24. 5,14,19 F =[®(yo,yo) > yo] (=Subst 22 23)
25.  5,14,19 Fo -[A(yo)] (ADef 24)
26. 1,2,3,5,14,19 FL  (=E 25 19)

Case2
27. 27 FE [A(yo)] ' (Case 2)
28. 1,2,5 F defined(Ay.if(po(y) = yes, id(y), s(y))(yo)) (tcompDef 12)
29. 1,2,5 FE de f ined(if (po(yo) = yes, 1d(yo), s(yo))) (LambdaE 28)
30. 125,14 + defined(®(yo,yo)) (=Subst 17 29)
3 l .  527  + =[po(yo) = yes] (5 27)
32. 5,27 FE  if(po(yo) = yes, id(yo),  s(yo)) = s(yo) (ifDef 31)
33. 5,14,27 FE (yo, yo) = (yo) (=Trans 18 32)
34. F sy) > yo (grterAx)
35. 51427 FH S(yo,yo) > yo (=Subst 33 34)
36. 12351427  + A(yo) (ADef 30 35)
37. 12351427 + 1 (E27  36)
38. kb [A(yo) V -[A(wo)]] (TND)
39. 1,2,3,5,14 +L  (VE 38 26 37)

End of Case Analysis
40. 1235 FL  (3E  13 39)
4 .  123  Fo l  (GE 4 40)
42. 1,2 FE rec(A)] (—I 41)

Figure 7: A formal proof of the ‘Aset’  example

19


	BB_0011.jpg
	SEKI-Report-SR-96-14_Cheikhrouhou_The-Mechanization-of-the-Diagonalization-Proof-Strategy-3.png



