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Abstract 

We investigate the usage of so-called inference rights. We point out the prob
lems arising from the inflexibility of existing approaches to heuristically control 
the search of automated deduction systems,. and we propose the application of 
inference rights that are well-suited for controlling the search more flexibly. More~ 

over, inference rights allow for a mechanism of "partial forgetting" of facts that 
is not realizable in the most controlling aproaches. We study theoretical founda
tions of inference rights as well as the integration of inference rights into already 
existing inference systems. Furthermore, we present possibilities to control such 
modified inference systems in order to gain efficiency. Finally, we report on 
experimental results obtained in the arev~ of condensed detachment. 
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1 INTRODUCTION 

Introduction 

The original task of a theorem prover is to check efficiently if a goal is a logic conse
quence of a given set of axioms. If we want to use generating calculi (e.g. resolution) 
to fulfill this task the usual proceeding is to modify the gIven start state of facts (the 
axioms and the goal) with rules for generation and deletion of facts until a designated 
end state is reached. A common way to control the application of the rules of a calculus 
is to use heuristic methods. Experiments in several calculi have shown that heuristic 
control of the search is a viable approach (see, e.g., [5]). 

In spite of this fact some problems still remain: unfortunately experience tells us 
that even automated theorem provers with good heuristics do many more unnecessary 
steps than are needed for a proof. Performing unnecessary inference steps in order to 
delete or to manipulate facts increases the run time a little bit, but does not lead to a 
dramatic change of the proof run. The generation of useless facts, however, can entail 
aggravating consequences. Since usually it cannot be tested whether facts are really 
needed in order to prove the goal such facts persist throughout the search. Because of 
the fact that these generated facts can take part in further inferences more unnecessary 
facts can and will be generated. This way the number of facts that are not needed for 
a proof grows dramatically and often makes it impossible for the prover to prove the 
goal within given limits of time or space. 

One method that is-in our opinion-well-suited to deal with the mentioned problems 
is the integration of so-called inference rights into existing inference systems. Thus, 
certain inferences can only take place if all facts involved in it have the right to perform 
it. By utilizing inference rights it is possible to refine the common saturation strategies 
and to control inferences more flexibly. Especially the problems previously mentioned 
can be tackled with inference rights. It is possible, e.g., to prevent facts that possibly 
do not contribute to the proof from generating inferences. This way, such inferences 
are delayed for a certain period of time and possibly unnecessary offspring cannot 
be generated. This shows that by means of inference rights some kind of "partial 
forgetting" can be realized. Facts that possibly do not contribute to a proof are not 
deleted and hence totally forgotten, but only certain inferences where such facts could 
be involved in are omitted. 

In the sequel, we shall describe at first basics of generating theorem provers and es
pecially the area of condensed detachment we chose to experiment in with inference 
rights. After that, we introduce in section 3 inference rights and give some remarks 
on the way in which they can be incorporated into already existing inference systems. 
Furthermore, we propose a method well-suited for controlling such modified inference 
systems. In section 4 we instantiate our abstract framework in the area of condensed 
detachment. Experimental results obtained with these techniques are presented in this 
section, too. We conclude the report with a summary of our work and propose some 
possible future extensions. 

2 1 INTRODUCTION

1 Introduct ion

The original task of a theorem prover is to  check efficiently i f  a goal is a logic conse-
quence of a given set of axioms. I f  we want to use generating calculi (e.g. resolution)
to fulfill this task the usual proceeding is to modify the given start state of facts (the
axioms and the goal) with rules for generation and deletion of facts until a designated
end state is reached. A common way t o  control the application of  the  rules of  a calculus
is to use heuristic methods. Experiments i n  several calculi have shown that heuristic
control of the search is a viable approach (see, e.g., [5]).

In  spite of this fact some problems still remain: unfortunately experience tells us
that even automated theorem provers with good heuristics do  many more unnecessary
steps than are needed for a proof. Performing unnecessary inference steps i n  order t o
delete or to  manipulate facts increases the run time a l i t t le  b i t ,  but does not lead to a
dramatic change of the proof run. The generation of useless facts, however, can entail
aggravating consequences. Since usually i t  cannot be tested whether facts are really
needed i n  order to  prove the goal such facts pers is t  throughout t he  search. Because o f
the fact that these generated facts can take part i n  further inferences more unnecessary
facts can and will be generated. This way the number of facts that are not needed for
a proof grows dramatically and often makes i t  impossible for the prover to prove the
goal within given limits of time or space.

One method that is—in our opinion—well-suited to  deal with the mentioned problems
is the integration of so-called inference rights into existing inference systems. Thus,
certain inferences can only take place i f  all facts involved i n  i t  have the right to perform
i t .  By utilizing inference rights i t  is possible to refine the common saturation strategies
and to control inferences more flexibly. Especially the problems previously mentioned
can be tackled with inference rights. It is possible, e.g., to prevent facts that possibly
do not contribute to the proof from generating inferences. This way, such inferences
are delayed for a certain period of time and possibly unnecessary offspring cannot
be generated. This shows that by means of inference rights some kind of “partial
forget t ing” can be  real ized. Facts that  possibly do  not contr ibute t o  a proof are not
deleted and hence totally forgotten, but  only certain inferences where such facts could
be involved in  are omitted.

I n  the sequel, we shall describe at first basics of generating theorem provers and es-
pecially the area of condensed de tachment  we  chose t o  experiment i n  with inference
rights. After that, we introduce in  section 3 inference rights and give some remarks
on the way i n  which they can be incorporated into already existing inference systems.
Furthermore, we propose a method well-suited for controlling such modified inference
systems. I n  section 4 we instantiate our abstract framework i n  the area of  condensed
detachment. Experimental results obtained with these techniques are presented in  this
section, too. We conclude the report wi th a summary of our work and propose some
possible future extensions.
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2 Basics of Automated Theorem Provers 

2.1 Fundamentals 

The problem in automated theorem proving is given as follows: Given a set of facts Ax 
(axioms), is a further fact AC (goal) a logic consequence of the axioms? A fact may be 
a clause, equation, or a general first or higher-order formula. The definition of "logic 
consequence" depends heavily on the concrete problem one is interested in. 

Commonly, automated theorem provers utilize certain calculi for accomplishing the 
task mentioned above. Analytic calculi attempt to recursively break down and trans
form a goal into sub-goals that can finally be proven immediately with the axioms. 
Generating calculi go the other way by continuously producing logic consequences 
from Ax until a fact covering the goal appears. We shall here concentrate on generat
ing calculi. 

Typically a generating calculus contains several inference rules which can be applied 
to a subset of the given facts (search state). Expansion inference rules are able to syn
thesize a new fact from known ones and add these facts to the current set. Contracting 
inference rules allow for the deletion of facts or replacing facts by other ones. 

A common principle to solve proof problems algorithmically with a generating calculus 
is employed by most systems (algorithm GTP: generating theorem prover): Essentially, 
a theorem proveI' maintains a set FP of so-called potential or passive facts from which 
it selects and removes one fact A at a time. After the application of some contracting 
inference rules on A, it is put into the set FA of activated facts, or discarded if it 
was deleted by a contracting rule (forward subsumtion). Activated facts are, unlike 
potential facts, allowed to produce new facts via the application of expanding inference 
rules. The inferred new facts are put into FP. We assume the expanding rules to 
be exhaustively applied on the elements of FA. Initially, FA = 0 and FP = Ax. 
The indeterministic selection or activation step is realized by heuristic means resulting 
in a search. To this end, a search-guiding heuristic 1i associates a natural number 
H( A) E IN with each AE FP. Subsequently, that AE FP with the smallest weight H( A) 
is selected. Ties are usually broken according to the FIFO-strategy ("first in-first out"). 

2.2 Condensed Detachment 

A typical example for generating calculi is the inference system CD which contains the 
inference rule condensed detachment (CondDet) (see [14] and [7] for motivation and a 
theoretical background). Since CD contains only one expanding and one contracting 
inference rule it is very simple. But nevertheless resulting proof problems can be very 
challenging. Therefore, condensed detachment was chosen as a test domain by several 
researchers before ([10], [8], [11], [15]) and the choice of condensed detachment as our 
test domain surely is justified. The rules of the inference system CV manipulate first
order terms. These terms are defined as usual, involving a finite set :F of function 
symbols and an enumerable set of variables V. The inference system CV is defined as 
follows: 

2 Basics o f  Automated Theorem Provers

2.1 Fundamentals

The problem in  automated theorem proving is given as follows: Given a set of facts Ax
(axioms), is a further fact Ag (goal) a logic consequence of the axioms? A fact may be
a clause, equation, or a general first or higher-order formula. The definition of “logic
consequence” depends heavily on the concrete problem one is interested in.
Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans-
form a goal into sub-goals that can finally be proven immediately wi th the axioms.
Generating calculi go the other way by continuously producing logic consequences
from Az  until a fact covering the goal appears. We shall here concentrate on generat-
ing calculi.
Typically a generating calculus contains several inference rules which can be applied
to a subset of the given facts (search state). Expansion inference rules are able to syn-
thesize a new fact from known ones and  add these facts to  the  current set.  Contract ing
inference rules allow for the deletion of facts or replacing facts by other ones.
A common principle to solve proof problems algorithmically with a generating calculus
is employed by  most systems (algorithm GTP: generating theorem prover): Essentially,
a theorem prover maintains a set FP  of so-called potential or passive facts from which
i t  selects and removes one fact A at a time. After the application of some contracting
inference rules on J ,  i t  is put into the set F4  of activated facts, or discarded i f  i t
was deleted by a contracting rule (forward subsumtion). Activated facts are, unlike
potential facts, allowed to  produce new facts via the application of expanding inference
rules. The inferred new facts are put into F'¥. We assume the expanding rules to
be exhaustively applied on the elements of FA. Initially, F4 = § and FF  = Ax.
The indeterministic selection or activation step is realized by  heuristic means resulting
i n  a search. To this end, a search-guiding heuristic H associates a natural number
H( ) )  € IN  with each A € FP. Subsequently, that A € FF  with the smallest weight H(A)
i s  selected. Ties are usually broken according t o  the  F IFO-st ra tegy  (“first in-first ou t ” ) .

2 .2  Condensed Detachment

A typical example for generating calculi is the inference system CD  which contains the
inference rule condensed detachment (CondDet) (see [14] and [7] for motivation and a
theoretical background). Since CD contains only one expanding and one contracting
inference rule i t  is very simple. But  nevertheless resulting proof problems can be very
challenging. Therefore, condensed detachment was chosen as a test domain by several
researchers before ([10], [8], [11], [15]) and the choice of condensed detachment as our
test domain surely is justified. The rules of the inference system CD  manipulate first-
order terms. These terms are defined as usual, involving a finite set F of function
symbols and an  enumerable set  o f  variables V. The inference sys tem  CD is defined as
follows: |



4 2 BASICS OF AUTOMATED THEOREM PROVERS 

Definition 2.1 (The inference system CV) 
Let f E F be a distinguished binary function symbol. Then CD contains the rules 

(Subsum) A U {s, t} r- A U {s};:J substitution a: a-(s) == t 

(CondDet) A U {5, t} I- A U {s, t, u}; 5 == f(s', u'), a = mgu(s', t), u == a(u') 

We denote A I- A' if A' can be derived from A by the application of one inference 
rule. A sequence (Adi2:a with Aj I- Aj+1 (j ;:: 0) is called a CD-derivation. A 
term t is CD-derivable from Aa if (and only if) a CD-derivation (Ai)i~a and an in
dex j exist such that t E Aj . t is called CD-provable from Aa iff a CD-derivable term 
i' and a substitution a exist such that a(t') = t. A proof problem gJ = (Ax, t) is 
solvable iff t is CV-provable from Ax. An important property of CV-derivations is the 
fairness: we call a CV-derivation (Adi2:a fair iff for each CV-derivable term t aj, a ex
ists such that t' E Aj and a( t') == t. In the case that an algorithm only produces 
fair CD-derivations each solvable proof problem can be solved with the help of the 
algorithm. 
We have described before how to solve proof problems algorithmically. It is interesting 
in which way algorithms or heuristics have to be construed in order to produce only 
fair CV-derivations. The following theorem formulates demands on a heuristic H. 

Theorem 2.1 (Fairness of a CD-derivation) 
The algorithm GTP produces fair CV-derivations if the associated heuristic guarantees 
that each fact being passive at one moment is activated or subsumed and discarded after 
a finite period of time. 
Proof: We have to show that for each Aa and for each term t which is CV-derivable 

from Aa holds: The algorithm computes a CV-derivation (Ai)iEN such that t' E Aj for 
a j and a(t') =t for a substitution a. Therefore) we show: t' is passive at a fixed 
moment. Let t be a term. Let l'vIt = {t 1 , ... , t n } be a minimal set of terms---CV
derivable from Aa-that is needed to derive t. 1 We apply induction over n: 
11 = 0 : Then t E Ao) i.e. at the beginning passive. 

11 > 0 : Since M t is a (minimal) set needed to infer t, there are terms tj, tk E "MfJ such 
that t can be derived from tj and tk via CondDet. Since tj and tk are CV-derivable from 
Aa and IMt)l, IMtkl < 11 holds) there are two moments Tj and Tk such that tj and tk 
are passive. For these terms it holds that aj(tj) == t j and a-k(tU == tk. Because of our 
precondition tj and tk do not remain infinitely long in FP) i.e. there are moments Tj and 

Tk after that tj and t~ are not passive any longer. Hence, at the moment max( {Tj, Tk} ) 

there exist two active facts fJ and fk with <ij (tj) == tj and <ik(fk) == tk. Because of the 

fact that a term t' with the required properties can be derived from tj and t~ via CondDet 
and because of the fact that the rule CondDet is exhaustively applied on the active facts 
t' is passive at a moment. 0 

Such heuristics can be construed quite easily, e.g. a heuristic H is fair if the set lVIz = 
P E Term(F, V) : H()") = z} is finite for each natural number z. It is to be empha
sized that the efficiency of the algorithm strongly depends on the heuristic and that 
the quality of heuristics depends on the giv:en proof problem. 

1Minimal means in this context that there is no set with fewer elements from which t can be 
derived. 
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Definition 2.1 (The inference system CD)
Let f € F be a distinguished binary function symbol. Then CD contains the rules

(Subsum) AU  {s , t }  = AU  {s};  3 substitution 0 :  o(s) = t
(CondDet) AU {s,t} FH AU {s,t,u};s = f (s ,  u'),0 = mgu(s,t),u = o(u)

We denote A F A’ i f  A’ can be derived from A by the application of one inference
rule. A sequence (A;)i»o wi th A;  | A j  ( j  > 0) is called a CD-derivation. A
term t is CD-derivable from Ap i f  (and only i f )  a CD-derivation (A;);>o and an in-
dex j exist such that t € A;. t is called CD-provable from Aq iff a CD-derivable term
t '  and a substitution o exist such that o(¢/) = t. A proof problem p = (Az,t)  is
solvable iff ¢ is CD-provable from Az.  An  important property of CD-derivations is the
fairness: we call a CD-derivation (A;);>o fair iff for each CD-derivable term ¢ a j ,  0 ex-
ists such that ’ € A; and o(¢') = t. In the case that an algorithm only produces
fair CD-derivations each solvable proof problem can be solved with the help of the
algorithm.
We have described before how to  solve proof problems algorithmically. I t  is interesting
i n  which way algorithms or heuristics have to be construed in  order to produce only
fair CD-derivations. The following theorem formulates demands on a heuristic H.

Theorem 2.1 (Fairness o f  a CD-derivation)
The algori thm GTP produces fair CD-der iva t ions  i f  the associated heur is t ic  guarantees
that each fact being passive at one moment is activated or  subsumed and discarded after
a finite period of  time.
Proof: We have to show that for each Ag and for each term t which is CD-derivable
from Ao holds: The algorithm computes a CD-derivation (Aj);en such that t '  € A; for
a j and o(t') = t for a substitution o. Therefore, we show: t '  is passive at a fixed
moment. Let t be a term. Let M;  = { t , , . . . , t , }  be a minimal set of terms—CD-
derivable from Ao—that is needed to derive t . !  We apply induction over n :
n=0 :  Then t € Aq, Le. at the beginning passive.
n > 0 :  Since M;  is a (minimal) set needed to infer ¢, there are terms t ; , t ,  € My, such
thatt can be derived from t ;  and ty, via CondDet. Since t ;  and tx are CD-derivable from
Ao and |My |,|M;,| < n holds, there are two moments 7;  and 7)  such that t; and t }
are passive. For these terms i t  holds that o;(t}) = t ;  and oy(t}) = tx. Because of our
precondition t) and t), do not remain infinitely long in  FP, i.e. there are moments 7; and
Ti after that  t ;  and  ti, are not passive any longer. Hence, a t  the moment  max({7;, 7x } )
there exist two active facts t ;  and tx with 6;(t;). = t ;  and Gx(tx) = t},. Because of the
fact that a term t '  with the required properties can be derived from {; and fj via CondDet
and because of  the fact that the rule CondDet is exhaustively applied on the active facts
t '  is passive at a moment. O

Such heuristics can be construed quite easily, e.g. a heuristic H is fair i f  the set M ,  =
{A € Term(F,V):  H(A) = z} is finite for each natural number z. I t  is to be empha-
sized that the efficiency of the algorithm strongly depends on the heuristic and that
the quality of heuristics depends on the given proof problem.

Minimal means i n  this context that  there is no set w i th  fewer elements from which £ can be
derived
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3 Basics of Inference Rights 

3.1 Discussion of the Algorithm GTP 

If we take a closer look at GTP we can at first recognize that the algorithm allows for a 
clear and simple control of applications of the inference rules. Furthermore, GTP facili
tates the control of rule applications because only one decision point exists-the choice 
of the next potential fact-which can easily be controlled by heuristic means. Thus, 
it is possible to develop very specialized heuristics (see, e.g. [2]) and therefore very 
specialized theorem provers. Moreover, GTP facilitates the development of distributed 
theorem provers. Constructing different cooperating heuristics, i.e. different cooperat
ing incarnations of GTP, allows for a distributed theorem prover with a performance 
that is clearly superior to sequential implementations of GTP ([1]). Furthermore, it is 
possible to employ learned knowledge for controlling the indeterministic activation step 
which can improve the algorithm in many cases (see [6], [4]). 

Nevertheless, the simple and inflexible scheme of GTP has some disadvantages. Because 
of the fact that the next fact to be activated is selected out of an ever gr9wing set of 
facts and that only a few of these facts contribute to a proof, it is very probable that an 
unnecessary fact is selected and activated. Such a fact ,\ remains in the set FA which 
often has serious consequences. On the one hand more unnecessary facts are generated 
because ,\ can be involved in a lot of applications of expanding inference rules in future. 
Thus, a lot of computation time is wasted. On the other hand, if such unnecessary 
descendants of ,\ are activated in future the number of facts that do not contribute to 
a proof can grow enormously. Since a large number of facts entails a high demand for 
memory and computation time it is possible that the proof is unnecessarily delayed or 
even not found. 

Another main disadvantage of GTP is that no further investigation of activated facts
e.g. with another heuristic or with respect to new information-takes place. Thus, no 
a posteriori knowledge can be incorporated into the algorithm. The following example 
gives a rough overview of how such a posteriori knowledge could be utilized: Usually 
a lot of different proofs for a given proof problem exist. Thus, it is reasonable to 
search for short proof runs, i.e. proof runs where only few steps not contributing to 
the proof are performed. In the case that a fact ,\ has been activated which is involved 
in the application of many expanding inference steps it possibly does not contribute 
to short proof runs because a lot of possibly unnecessary "offspring" is generated. A 
modification of the search state which, e.g., forces ,\ to be involved only in contracting 
but not in expanding inferences could be the right way to cope with this problem. 
Tltis is not an option in GTP, however, because all kinds of inferences are exhaustively 
applied to elements of FA. 
All in all it is sensible to preserve the main principles of GTp-the division of the inferred 
facts into FA and FP and the use of heuristics in order to activate facts-because of the 
advantages mentioned before. To deal with the disadvantages the. two following'aspects 
should be integrated into the algorithm: In order to integrate a posteriori knowledge 
the facts ,\ E FA should be analyzed periodically. This way it should be possible to 
detect unnecessary facts, i.e. facts which do not contribute to any proof, or at least 

3 Basics of  Inference Rights

3.1 Discussion o f  the  Algorithm GTP

I f  we take a closer look at GTP we can at first recognize that the algorithm allows for a
clear and simple control of applications of the inference rules. Furthermore, GTP facili-
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i t  is possible to develop very specialized heuristics (see, e.g. [2]) and therefore very
specialized theorem provers. Moreover, GTP facilitates the development of distributed
theorem provers. Constructing different cooperating heuristics, i.e. different cooperat-
ing incarnations of GTP, allows for a distributed theorem prover with a performance
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possible to  employ learned knowledge for controlling the indeterministic activation step
which can improve the  algor i thm in  many cases (see [6], [4]).
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unnecessary fact is selected and activated. Such a fact \ remains in  the set F4  which
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because A can be involved in  a lot of applications of expanding inference rules in  future.
Thus, a lot of computation time is wasted. On the other hand, i f  such unnecessary
descendants of A are activated i n  future the number of facts that do not contribute to
a proof can grow enormously. Since a large number of facts entails a high demand for
memory and computation time i t  is possible that the proof is unnecessarily delayed or
even not found.
Another main disadvantage of GTP is that no further investigation of activated facts—
e.g. with another heuristic or with respect to new information—takes place. Thus, no
a posteriori knowledge can be incorporated into the algorithm. The following example
gives a rough overview of how such a posteriori knowledge could be utilized: Usually
a lot  of different proofs for a given proof problem exist. Thus, i t  is reasonable to
search for short proof runs, i.e. proof runs where only few steps not contributing to
the proof are performed. In the case that a fact A has been activated which is involved
in  the application of many expanding inference steps i t  possibly does not contribute
to short proof runs because a lot of possibly unnecessary “offspring” is generated. A
modification of the search state which, e.g., forces A to be involved only in  contracting
but not i n  expanding inferences could be the right way to cope with th is problem.
This is not an option i n  GTP, however, because all kinds of inferences are exhaustively
applied to elements of FA.
A l l i n  all i t  is sensible to  preserve the main principles of GTP—the division of the inferred
facts into F4  and FF  and the use of heuristics i n  order to  activate facts—because of the
advantages ment ioned  before. To  deal w i th  t he  disadvantages the  two fol lowing aspects
should be integrated into the algorithm: In  order to integrate a posteriori knowledge
the facts A € F'4 should be analyzed periodically. This way i t  should be possible to
detect unnecessary facts, i.e. facts which do not contribute to any proof, or at least

N
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fa.cts that possibly do not contribute to short proof runs. The second step should be 
the "restructuring" of the current search state so as to avoid generating too many 
facts. Nevertheless, such a restructuring must neither destroy the simplification power 
of the system of activated facts nor the completeness. The latter means that finally 
all inferences that are, e.g., delayed for a certain period of time, will take place if they 
are needed to conclude the proof. .Such a restructuring could be achieved by "partial 
forgetting" of unnecessary facts. This means that the information on the activation 
of unnecessary facts is not totally forgotten, i.e. possibly unnecessary facts are not 
deleted, but such facts are forgotten in such a manner that they cannot take part in 
certain inferences. 

We will only sketch the first aspect because the detection of unnecessary facts depends 
heavily on the concrete calculus (see section 4) and so-called T'efeT'ees ([3]) are known 
to be fairly well-suited for judging facts. In the sequel, we shall hence concentrate 
on the second aspect, i.e. on the question how partial forgetting and hence a better 
control-especially of expanding inference rules-can be achieved. Our solution to this 
very issue are inference T'ights which allow for a finer grained control of inferences. 

3.2 Inference Rights 

The main idea of inference rights is to enrich the facts an inference system works on 
with rights to perform inferences. The intended use of these rights is as follows: If a 
fact is assumed to be possibly unnecessary or not contributing to short proof runs the 
generation power of this fact is restricted. This can be achieved by retracting the right 
to take part in expanding inferences. Additional conditions on the algorithm, however, 
are necessary to guarantee that finally all necessary inferences are performed. Thus, 
in the inf~rence system it should be possible to recover rights to perform inferences. 

Our method to model inference rights is to use annotations to a fact that determine 
the inferences in which a fact is allowed to be involved in: 

Definition 3.1 (Inference Right, Fact with Inference Right) 
Let I be an infeT'ence system, and I be the set of infeT'ence T'ules. Let A be a fact. An 
inference right w. r.t. I is a set e ~ I. 
A fact with inference T'ight is a paiT' (A, C). In the sequel, we wT'ite Ale instead of 
(A. C). 

vVe give some remarks on the way inference rights can be incorporated into already 
existing inference systems. At first, inference rules do not work on sets of facts A 
any longer but on facts with rights A'R. The rights stem from the original inference 
system and are subsets of the original inference rules. They restrict the applicability 
of inference rules. The expanding inference rule 

(Exp) 

could be, e.g., modified in the following manner: 
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facts that possibly do not contribute to  short proof runs. The second step should be
the “restructuring” of the current search state so as to avoid generating too many
facts. Nevertheless, such a restructuring must neither destroy the simplification power
of the system of activated facts nor the completeness. The latter means that finally
all  inferences that are, e.g., delayed for a certain period of time, will take place i f  they
are needed to  conclude t he  proof .  "Such a res t ruc tur ing could be  achieved by  “partial
forgetting” of unnecessary facts. This means that the information on the activation
of unnecessary facts is not totally forgotten, i.e. possibly unnecessary facts are not
deleted, but such facts are forgotten i n  such a manner that they cannot take part in
certain inferences.
We will only sketch the first aspect because the detection of unnecessary facts depends
heavi ly on  the concrete calculus (see section 4) and so-called referees ([3]) are known
to be fairly well-suited for judging facts. In the sequel, we shall hence concentrate
on the second aspect, i.e. on the question how partial forgetting and hence a better
control—especially of expanding inference rules—can be achieved. Our solution to this
very issue are inference rights which allow for a finer grained control of inferences.

3.2 Inference Rights

The main idea of inference rights is to enrich the facts an inference system works on
with rights to  perform inferences. The intended use of these rights is as follows: I f  a
fact is assumed to be possibly unnecessary or not contributing to short proof runs the
generation power of this fact is restricted. This can be achieved by retracting the right
to take part in  expanding inferences. Additional conditions on the algorithm, however,
are necessary to guarantee that finally all necessary inferences are performed. Thus,
i n  the inference system i t  should be possible to recover rights to perform inferences.
Our method to model inference rights is to use annotations to a fact that determine
the inferences in  which a fact is allowed to  be involved in:

Definition 3.1 (Inference Right,  Fact wi th  Inference Right)
Let I be an inference system, andI be the set of inference rules. Let A be a fact. An
inference right w.r.t. I is a set C CT .
A fact with inference right is a pair (A,C). In the sequel, we write A\|C instead of
(A.C).

We give some remarks on the way inference rights can be incorporated into already
existing inference systems. At  first, inference rules do not work on sets of facts A
any longer but on facts wi th  rights A®. The rights stem from the original inference
system and are subsets of the original inference rules. They restrict the applicability
of inference rules. The expanding inference rule

(Exp) AU{Ap . . . ,An }F  AU  {AMy . . . ,An, A}; Cond(A1,..., An)

could be, e.g., modified in  the following manner:
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AR U {Al!C\, ... , An/Cn} f- AR U {A1IC1, ... , An/Cn, AII}; Cond(Al"'" An)/\ 
Vi,l S; i S; n : Exp E C i 

So, facts can only be involved in an inference if they have the right to perform it. 
Moreover, further rules are necessary which are only needed to handle right~. Such 
rules could be for instance: 

(RetractR) AR U {AID} f- AR U {AIC}; C c D 

(RecoverR) AR U {AIC} f- AR U {AID}; C =f. I /\ C .c D 

The rule Retract R is needed, e.g., to forbid facts to perform the generation of facts. 
The rule RecoverR is needed to add rights. In the area of condensed detachment this 
is necessary to allow fair derivations (cL section 4). 

Note that inference rights offer only an abstract framework to enrich facts with further 
information. An important question is now in which way such an extended inference 
system should be controlled. Such a control should allow for a gain of efficiency in 
comparison with the original inference mechanism. Moreover, completeness should be 
guaranteed. Since these aspects depend mainly on the concrete inference system one 
is interested in, we will discuss them in the following section in more detail. 

In the sequel, we will nevertheless give a rough idea of how inference rights could be 
used. Algorithm GTpR-utilizing inference rights-is an extension of GTP, i.e. it divides 
the facts into the sets FA and FP and performs inferences as described before. The 
main difference is that active facts are periodically judged and a certain number of bad 
facts is determined. Then, inference rule Retract R is applied to these facts in order 
to forbid them to produce new ones via expanding inference rules ("deactivati~n"). 
This way, certain facts are partially forgotten and not allowed to generate new facts. 
If we deactivate facts that really do not contribute to any proof unnecessary offspring 
of these facts is avoided. If we deactivate facts that are able to generate a lot of facts 
it is possible that shorter proof runs occur. In order to preserve completeness it is 
necessary that all inferences (needed for completeness) which are delayed for a certain 
period of time finally take place. To this end, it is convenient to note which facts 
were involved in an application of the rule RetractR. Thus, it is possible to apply 
RecoverR on such facts after a certain period of time and to perform the inferences 
that were delayed before. The technical realization could be as follows: We introduce 
a recover set F R and move, after the application of RetractR on an active fact A, 
this fact from FA to FR. The facts from F R can be utilized for contracting but not 
for expanding inferences. Furthermore, the facts from FR are possible candidates for 
activation steps, i.e. facts are not only selected from FP but also periodically from FR. 
If a fact A E F R is selected its inference rights is set to I via RecoverR. After that it 
is processed analogously to a selected potential fact, i.e. inferences delayed previously 
can be performed. 

A crucial step with regard to performance is the selection of facts from FR. If we select 
facts too frequently, i.e. they are not forgotten for a long time, expanding inferences 
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(Exp) ARUD4|Cy-..5An[Cn} FE ARU {MICH An [Cn  AIT}; Cond(Ay, . . . ,  Ap)A
V i ,1< :<n :ExpeC;

So, facts can only be involved in  an inference if they have the right to perform it.
Moreover, further rules are necessary which are only needed to  handle rights. Such
rules could be for instance:

(Retract™) ARU{AD}FARU{ ) \C } ;  CCD

(Recover) ARU{MNC}FARU{AD} ;C#£ IACCD

The rule Retract™ is needed, e.g., to  forbid facts to  perform the generation of facts.
The rule Recover”  is needed to add rights. In  the area of condensed detachment this
is necessary to allow fair derivations (cf. section 4).
Note that inference rights offer only an abstract framework to enrich facts with further
information. An  important question isnow i n  which way such an extended inference
system should be controlled. Such a control should allow for a gain of efficiency in
comparison with the original inference mechanism. Moreover, completeness should be
guaranteed. Since these aspects depend mainly on the concrete inference system one
is interested in ,  we wi l l  discuss them i n  the following section in  more detail.
In  the sequel, we wi l l  nevertheless give a rough idea of how inference rights could be
used. Algorithm GTP®—utilizing inference rights—is an extension of GTP, i.e. i t  divides
the facts into the sets FA  and FP  and performs inferences as described before. The
main difference is that active facts are periodically judged and a certain number of bad
facts is determined. Then, inference rule Retract™ is applied to  these facts i n  order
to forbid them to  produce new ones via expanding inference rules (“deactivation”).
This way, certain facts are partially forgotten and not allowed to generate new facts.
I f  we deactivate facts that really do not contribute to  any proof unnecessary offspring
of these facts is avoided. If we deactivate facts that are able to generate a lot of facts
i t  is possible that shorter proof runs occur. In order to preserve completeness i t  is
necessary that all inferences (needed for completeness) which are delayed for a certain
period of time finally take place. To this end, i t  is convenient to  note which facts
were involved in  an application of the rule Retract®. Thus, i t  is possible to apply
Recover”® on such facts after a certain period of time and to perform the inferences
that were delayed before. The technical realization could be as follows: We introduce
a recover set FF” and move, after the application of Retract™ on an active fact A,
this fact from F4  to  FE.  The facts from FF  can be utilized for contracting but not
for expanding inferences. Furthermore, the facts from FF  are possible candidates for
activation steps, i.e. facts are not only selected from FP  but also periodically from FE.
If  a fact A € FF  is selected its inference rights is set to ZT via Recover™. After that i t
is processed analogously to  a selected potential fact, i.e. inferences delayed previously
can be performed.
A crucia l  s tep  with regard t o  performance i s  the  se lect ion  of  facts from FE .  If  we  select
facts too frequently, i.e. they are not forgotten for a long time, expanding inferences
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where bad facts are involved in are delayed for a short time only, and we hence can
not expect to gain much efficiency. But if we select facts from F R only very seldom 
and deactivate a fact that really contributes to a proof it is possible that important 
inferences are delayed for a long time and hence the runtime increases. Thus, a good 
compromise between these extremes has to be achieved. At least it is necessary that 
all facts from F R are finally selected in order to preserve completeness (cf. section 4). 

I 

4 Inference Rights and Condensed Detachment 

So far we have introduced inference rights as a general framework to modify inference 
systems. This modification is necessary in order to achieve a better control especially of 
the expanding inference rules. Since the concrete realization depends on the calculus 
one is interested in we have only given a few remarks on the way how to control 
such an inference system. Therefore, this section describes more precisely in which 
way inference rights can be utilized in the area of condensed detachment. We chose 
condensed detachment as a first test domain because the inference system CV used in 
this area is quite typical for generating provers. 

At first it is necessary to integrate inference rights into the inference system CV result
ing in a new inference system CVR . The next step is to present a concrete algorithm 
for controlling CVR . Note that we are still interested in solving CV proof problems and 
need an algorithm that is able to solve them. We describe a basic algorithm-using 
an abstract function f3 in order to detect unnecessary facts-and give sufficient condi
tions on the algorithm to guarantee that it only produces fair derivations. Finally, we 
introduce a possible realization of function f3 for judging facts and use this function in 
some experiments. 

4.1 The Inference System CDR 

The inference system CVR is an extension of CV. Therefore, the inference rules 
CondDet and Subsum must be adapted in order to work with facts with inference 
rights. Furthermore, the rules RetractRand RecoverR are necessary to deal with 
rights (cf. section 3). In this context the set of inference rights is given as n = 
{M : 1\1£ ~ I = {CondDet, Subsum} }. The following definition introduces the inference 
system C'VR . 

Definition 4.1 (The inference system CVR )
 

Let .f E F be a distinguished binary function symbol. Then CVR contains the rules
 

(SubsumR) AR U {s\Cl,tICz} f- AR U {sICd; 30": O"(s) =t 1\ Subsum E Cl 

(CondDetR) AR U {sICl , tlCz} f- AR U {sICl , tlCz, uII}; (s == 1(s', u'), 0" = mgu(s', t), 
u == cr(u')) /\ Conddet E Cl, Cz 

(RecoverR ) AR U {slCd f- AR U {sICz}; Cl of. I/\ Cl C C2 

(RetractR 
) A

R 
U {slCd f- A

R 
U {sICz};Cz C Cl 
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where bad facts are involved i n  are delayed for a short time only, and we hence can-
not expect to gain much efficiency. But i f  we select facts from FT  only very seldom
and deactivate a fact that really contributes to a proof i t  is possible that important
inferences are delayed for a long time and hence the runtime increases. Thus, a good
compromise between these extremes has to  be achieved. At  least i t  is necessary that
all facts from FR are finally selected i n  order t o  preserve completeness (cf. sect ion 4).

4 Inference Rights and Condensed Detachment

So far we  have in t roduced inference r ights as a general framework t o  modify inference
systems. This modification is necessary in  order to  achieve a better control especially of
the expanding inference rules. Since the concrete realization depends on the calculus
one is interested in we have only given a few remarks on the way how to control
such an inference system. Therefore, this section describes more precisely in  which
way inference rights can be utilized i n  the area of condensed detachment. We chose
condensed detachment as a first test domain because the inference system CD  used i n
this area is quite typical for generating provers.
At  first i t  i s  necessary t o  integrate  inference r ights  in to  t he  inference system  CD result-
ing  i n  a new inference system CD®. The next step is to present a concrete algorithm
for controlling CD. Note that we are stil l  interested in  solving CD  proof problems and
need an algorithm that is able to solve them. We describe a basic algorithm—using
an abstract function § i n  order to detect unnecessary facts—and give sufficient condi-
tions on the algorithm to  guarantee that i t  only produces fair derivations. Finally, we
introduce a possible realization of function 8 for judging facts and use this function in
some experiments.

4 .1  The Inference System CD?

The inference system CD® is an extension of CD. Therefore, the inference rules
CondDet and Subsum must be adapted i n  order to  work wi th facts wi th inference
rights. Furthermore, the rules Retract® and Recover” are necessary to deal with
rights (cf. section 3). In this context the set of inference rights is given as R =
{M  : M CT  = {CondDet, Subsum}}. The following definition introduces the inference
system CDR.

Definition 4.1 (The inference system CD)
Let f € F be a distinguished binary function symbol. Then CD? contains the rules

(Subsum®) AR U {5|C1,1|Co} F AR U {5]|C1}; 30  : o(s) = t A Subsum € C;

(CondDet™) AR U {s|Cy,t|Co} FE AR U {s|Cy,t|Ca,u|T}; (s = f ( s ' , u ' ) ,0 = mgu(s,1),
u = o(u')) A Conddet € Cy,C;

(Recover”) ARU{s |C }  F AR U {SICH  C1 # I ANCL C Cy

(Retract”™) AR U {s |C i }  FE AR U {s|C2}; Ca © Cy
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Inference system CDR follows exactly the principles pointed out in section 3. The 
expanding inference rule CondDet R can only be applied if both facts that take part in 
it have the right to perform it. In order to subsume a fact it is only necessary to have 
the subsumtion right. Note that it is not required that the fact to be subsumed has 
this inference right. Inference rules RetractR and RecoverR are exactly the same as 
described before. 

In analogy to section 2 we write AF I-- A~l if A~l can be derived from AF by the 
application of one inference rule. (AFk:::o is called a CDR-derivation iff Af I-- AfHVj 2: 
O. A fact with inference right tiC is CDR-derivable from A'{f iff a CDR-derivation 
(AFk:.o and an indexj exist such that tiC E AY. We call aCDR-derivation (AFk:.o fair 
iff for each CD-derivable fact t there exists a j, CJ" such that t'le E Af and CJ"(t') = t. 
Note that by means of fair CDR-derivations it is possible to solve CD proof problems. 
It is only necessary to perform CDR-derivations until a fact appears that subsumes the 
goal. The right is ignored in that case since it is only· needed to circumvent certain 
inferences during the inference process. It would be unwise to consider the right if a fact 
subsuming the goal is found because in such a case the proof might be unnecessarily 
delayed. 

4.2 An Algorithm for Controlling CVR 

In the sequel, we introduce an algorithm that allows to control CDR easily and to solve 
CD proof problems very efficiently. It is to be emphasized that our algorithm is only 
one of a lot of different possible ones. In general, there might be many different ways 
in which way the new rules provided by the inference system can be utilized. 

Basic Algorithm: In order to construe an algorithm for controlling CDR it is sensible 
to employ the algorithm GTpR as described in section 3. Thus, it is still possible to 
perform the activation steps heuristically. Therefore, techniques like learning or goal 
orientation ([2]) can still be utilized. As described in section 3, GTp R employs the 
inference rights to restrict the applicability of inference rules. This restriction takes 
place in such a manner that activated facts which do not appear to be contributing to 
a proof or only contribute to long proof runs are "deactivated" periodically. Thus, they 
are not allowed to be involved in expanding, but only in contracting inferences. To this 
end, a function f3 is needed that determines the active facts that behave "badly" w.r.t. 
a certain criterion. More exactly, f3(F A) = {AliI, ... , AmII} ~ FA, i.e. f3 selects a fixed 
number of active facts. The realization of algorithm' GTpR-well-suited for proving CD 
proof problems-uses f3 to determine the facts to be deactivated (see figure 1). 

As one can see, algorithm GTpR is instantiated in the following aspects: The periodical 
deactivation of facts is realized in such a manner ~hat the function f3 determines-after 
a fixed number n of activation steps-a fixed number m of active facts that should 
not take part in expanding inferences any longer. In our experiments we employed a 
number m that is a certain percentage d of the number of activation steps n. The 
deactivation is achieved via the inference rule RetractR. The fact Ale originating 
from the application of RetractR is moved from the set FA to the recover .set FR. 
After that, it can only take part in SubsumR but not in CondDet R. In order to achieve 
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Inference system CD” follows exactly the principles pointed out in section 3. The
expanding inference rule CondDet™ can only be applied i f  both facts that take part in
i t  have the right to  perform i t .  In order to  subsume a fact i t  is only necessary to  have
the subsumtion right. Note that i t  is not required that the fact to be subsumed has
t h i s  inference r igh t .  Inference rules Retract”™ and Recover ”  are exactly the same as
described before.
I n  analogy t o  sect ion 2 we  wri te AF + AR, i f  AR, can be  der ived from AR by the
application of one inference rule. (AR);>0 is called a CDR-derivation iff AT + AR Vj  >
0. A fact with inference right t|C is CD®-derivable from AR iff a CD®-derivation
(AR)i>0 and an index j exist such that ¢|C € AR. We call a CDR-derivation (AF)iso fair
iff for each CD-derivable fact £ there exists a j , o  such that IC  € AR and o(t') = ¢.

Note that by means of fair CD™-derivations i t  is possible to solve CD  proof problems.
It is only necessary to  perform CD™-derivations until a fact appears that subsumes the
goal. The right is ignored in that case since i t  is only needed to circumvent certain
inferences during the inference process. I t  would be unwise to consider the right i f  a fact
subsuming the goal is found because in  such a case the proof might be unnecessarily
delayed.

4.2  An  Algorithm for Control l ing CD?

In  the sequel, we introduce an algorithm that allows to control CD”  easily and to solve
CD  proof problems very efficiently. I t  is to be emphasized that our algorithm is only
one of a lot of different possible ones. In  general, there might be many different ways
in  which way the new rules provided by the inference system can be utilized.
Basic Algor i thm:  In  order to construe an algorithm for controlling CD” i t  is sensible
t o  employ the algorithm GTP™ as described i n  section 3. Thus, i t  is st i l l  possible t o
perform the activation steps heuristically. Therefore, techniques like learning or goal
orientation ([2]) can still be utilized. As described in section 3, GTP® employs the
inference rights to restrict the applicability of inference rules. This restriction takes
place in  such a manner that activated facts which do not appear to be contributing to
a proof or only contribute to  long proof runs are “deactivated” periodically. Thus, they
are not allowed to  be involved i n  expanding, but  only i n  contracting inferences. To this
end, a function f is needed that determines the active facts that behave “badly” w.r.t.
a certa in  cr i ter ion.  More exactly,  B(F4) = {M|Z,...,  \n|Z} © F4 ,  i .e.  8 selects a fixed
number of active facts. The realization of algorithm GTP™—well-suited for proving CD
proof problems—uses ß to  determine the  facts t o  be  deact ivated (see figure 1).
As one can see, algorithm GTP? is instantiated in  the following aspects: The periodical
deactivation of facts is realized i n  such a manner that the function 8 determines—after
a fixed number n of activation steps—a fixed number m of active facts that should
not take part in  expanding inferences any longer. In our experiments we employed a
number m that is a certain percentage d of the number of activation steps n .  The
deactivation is achieved via the inference rule. Retract®. The fact A\|C originating
from the  appl icat ion of  Ret rac t® i s  moved from the set F* t o  the  recover set  FR ,
After that, i t  can only take part i n  Subsum” but not i n  CondDet™. In order to  achieve
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begin 
F A := 0,FR:= 0,FP := {axII: ax E Ax},cnt:= 0 
while FP U FR i= 0 

if cnt = n
 
S := f3(FA)
 
forall AII E S 

FA := FA \ {AII}, F R := F R U {AII \ {CondDet}} 
cnt := 0 

select Ale E FP U F R with minimal H(A) 
if AIC E FP : FP := FP \ {AIC} 
else F R := F R 

\ {AIC}, C := I 
if /\IC was selected from FP 1\ ::L\'ID E FA U F R , 0: o(X) == A: 

delete AIC 
else 

if f-L(A) == AG for a f-L: "proof found" 
.M := {X: A' CondDet descendant of A,;; ;!I E FA} 
pP := FP U {XII: X E M} 
FA := FA U {A!C},cnt := cnt + 1 

"proof failed" 
end 

Figure 1: Algorithm GTpR 

that expanding inferences were A is involved in are only delayed for a certain period 
of time but not strictly forbidden, infer~nce rule RecoverR must be applied later, i.e. 
AIC has to be activated again. To this end it is sensible to select the facts that should 
be activated from FP U FR. As we have mentioned previously the duration a fact AIC 
remains in F R influences heavily the performance of a prover. We chose the search
guiding heuristic H for accomplishing the task of selecting facts from pR. Thus, we 
prefer small facts w.r.t. H that are possibly more important for the proof. Moreover, 
utilizing H for selection of facts allows to preserve completeness (see below). It is 
reasonable, however, to change the heuristic weight 'H( A) of a fact A E pR to I . H( A), 
I E IN, I > 1. Otherwise it might be often the case that a fact that was deactivated 
is activated immediately. 

Fairness of CDR-derivations: In order to guarantee fairness of CD-derivations
performed by algorithm GTP-we had to cope with the following two aspects. At first 
we formalized theoretical demands on algorithm GIP which were sufficient to achieve 
fairness, namely that potential facts must not remain passive infinitely long. Further
more. ,ye gave remarks on the way how these demands could be realized. Thus, we 
formalized some conditions on the heuristic responsible for the activation of facts. In 
the sequel, we will hence deal with the same aspects w.r.t. CVR and GTpR . 

Intuitively, the following precondition should be sufficient to preserve fairness of deriva
tions: In order to guarantee that all inferences are finally performed potential facts 
must not stay in FP infinitely long. But since GIpR allows for the deactivation of 
active facts, i.e. to insert them into the recover set pR, we must also guarantee that 
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begin
FA:=0 ,FR :=0 ,FF  :=  {az |T: ax  € Az } ,  cent : =0
while FFU FR £

i fent =n
S i =  B(FA)
forall AZ  € §

FA = FA \  {MT} ,FR : =  FRU {AZ  {CondDet}}
ent : =0

select MC € FP  U FE  with minimal H ( ) )
if \]C € FP:  FP :=  FP \ {MC}
else FR :=  FR \  { ) \ |C} ,C :=T
if A|C was selected from FE A IN |D  € FAU  FE, go: o(N) = A:

delete A|C
else

i f  (A )  = Ag for a pu: “proof found”
M :=  {N  : N CondDet descendant of  A, A; ÄIZ € F4 }
FP :=FPU{NZ :N  eM}
FA:=  FAU {MC} ,  ent : =cn t  +1

“proof failed”
end

Figure 1: Algorithm GTP?

that expanding inferences were A is involved in  are only delayed for a certain period
of t ime but not strictly forbidden, inference rule Recover” must be applied later, i.e.
A|C has to be activated again. To this end i t  is sensible to select the facts that should
be activated from F¥  U FR, As we have mentioned previously the duration a fact A|C
remains in  FR  influences heavily the performance of a prover. We chose the search-
guiding heuristic H for accomplishing the task of selecting facts from FE.  Thus, we
prefer small facts w.r.t. H that are possibly more important for the proof. Moreover,
utilizing H for selection of facts allows to preserve completeness (see below). I t  is
reasonable, however, t o  change the heuristic weight H (A )  o f  a fact A € FF  t o  v -  H ( } ) ,
v € IN, v > 1. Otherwise i t  might be often the case that a fact that was deactivated
is activated immediately.
Fairness of  CD"*-derivations: In  order to guarantee fairness of CD-derivations—
performed by algorithm GTP—we had to cope with the following two aspects. At  first
we formalized theoretical demands on algorithm GTP which were sufficient to achieve
fairness, namely that potential facts must not remain passive infinitely long. Further-
more, we gave remarks on the way how these demands could be realized. Thus, we
formalized some conditions on the heuristic responsible for the activation of facts. In
the sequel, we wi l l  hence deal wi th the same aspects w.r.t. CD® and GTP".
Intuitively, the following precondition should be sufficient t o  preserve fairness of deriva-
tions: In order to guarantee that all inferences are finally performed potential facts
must not stay i n  FF  infinitely long. But  since GTPR allows for the deactivation of
active facts, i.e. to  insert them into the recover set FE,  we must also guarantee that
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these facts do not remain in F R infinitely long. Furthermore, we have to consider 
the following problem: If an infinite cycle of activation and deactivation of two facts 
occur, i.e. each time one fact is deactivated before the other fact is activated, possibly 
necessary descendants of these facts will never be generated. In order to circumvent 
such infinite cycles it has to be forbidden that a fact is deactivated infinitely often. We 
formalize this in the following definition. 

Definition 4.2 (The Precondition P) 
The precondition P on algorithm GTpR is defined as follows: P holds true iff the al
gorithm is constructed in such a way (the heuristic and the deactivation function f3 
are realized in such a manner) that no fact-being element of FP or FR at a certain 
point in time-stays infinitely long in FP or F R, respectively, and that no fact ,\II is 
deactivated infinitely often. 

Precondition P is indeed sufficient to entail fair derivations. However, the proof of 
this property is more complex than the proof in section 2. We need one lemma that 
formalizes certain properties of algorithm GTpR. In order to describe such properti~s 
we use numbers of activations to refer to certain periods of time, i.e. a moment 7 

corresponds to a number of activations nT • This is possible because the search state 
remains unchanged between two activation steps sand s + 1. 

The lemma shows that for a fact ,\[ C, ,\1 C E FA U F R at a moment 7, there is a moment 
T :::: 7 such that '\jI remains in FA for all moments following T. 

Lemma 4.1 
Let P be fulfilled. Let (AF )i>a be the CDR -derivation produced by algorithm GTpR. Let 
tiC be a fact element of y4 U FR at moment 7. Then exists a moment 7' :::: 7 such 
that for all moments T :::: 7' holds: t II is active. 
Proof: Since no fact being active or element of the recover set can be deleted, at each 
moment T :::: 7 we have: tlI E FA or tlG E FR. Moreover, if at the moment T :::: 7 the 
fact tiC with such a property exists, there is at each moment f :::: T the fact tiC such 
that it holds: tiC t tiC where 

tlG>-- tiC iff tiC E y4 and tiC' E F R or the number of deactivations 
of tiC is higher as the respective number of tlG 

Because of the fact that >-- is Noetherian a moment T :::: 7 and a fact with right tlG E 
FA U F R exists that is >-- -minimal. M ore exactly, P guarantees that G = I and t II E FA 
(no fact remains in F R infinitely long). Moreover, this fact will never be deactivated 
because it is >---minimal. 0 

Utilizing this lemma we can show-in analogy to section 2-that algorithm GTpR pro
duces only fair derivations if precondition P is fulfilled. 

Theorem 4.1 (Fairness of a CDR-derivation) 
Let P be fulfilled. Then algorithm GTpR produces only fair CVR -derivations.
 
Proof: We have to show that for each Aa and for each term t which is CD-derivable
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these facts do not remain i n  FP  infinitely long. Furthermore, we have to  consider
the following problem: If an infinite cycle of activation and deactivation of two facts
occur, i.e. each time one fact is deactivated before the other fact is activated, possibly
necessary descendants of these facts will never be generated. In  order to circumvent
such infinite cycles i t  has to be forbidden that a fact is deactivated infinitely often. We
formalize this in  the following definition.

Definition 4 .2  (The  Precond i t ion  P )
The precondition P on algorithm GTPF is defined as follows: P holds true iff the al-
gorithm is constructed in  such a way (the heuristic and the deactivation function ß
are realized in  such a manner) that no fact—being element of FX or FR  at a certain
point i n  time—stays infinitely long in  FF  or FR, respectively, and that no fact AT  is
deactivated infinitely often.

Precondition P is indeed sufficient to entail fair derivations. However, the proof of
this property is more complex than the proof in  section 2. We need one lemma that
formalizes certain properties of algorithm GTP. In  order to  describe such properties
we use numbers of activations to  refer to  certain periods of t ime,  i.e. a moment 7

corresponds to  a number of activations n , .  This is possible because the search state
remains unchanged between two activation steps s and s + 1. -
The lemma shows that for a fact A\|C, MC  € FAUFZF at a moment 7 ,  there is a moment
# > 7 such that A\|Z remains i n  F'4 for all moments following 7.

Lemma 4 .1
Let P be fulfilled. Let (AR);>0 be the CD” -derivation produced by algorithm GTP®. Let
t |C be a fact element of  FA U FR at moment 7 .  Then exists a moment t '  > T such
that for all moments ¥ > 7 ’  holds: t|T is active.
Proof: Since no fact being active or element of the recover set can be deleted, at each
moment + > T we have: t |T  € F* or  t |C  € FE .  Moreover, if at the moment 7 > 7 the
fact t|C with such a property exists, there is at each moment + > 7 the fact t|C such
that it  holds: t|C > t|C where

t|IC > IC  i f  t |C € F*  and t|C € FR or the number of deactivations
of t |C  is higher as the respective number of t |C

Because of  the fact that = is Noetherian a moment # > 7 and a fact with right t |C  €
FAUFR exists that is >-minimal. More exactly, P guarantees that C = T and t|T € FA
(no fact remains i n  FT  infinitely long). Moreover, this fact wil l never be deactivated
because i t  is >-minimal. 0

Utilizing this lemma we can show—in analogy to section 2—that algorithm GTP® pro-
duces only fair derivations i f  precondition P is fulfilled.

Theorem 4.1 (Fairness of a CD"®-derivation)
Let P be fulfilled. Then algorithm GTPR produces only fair CD? -derivations.
Proof:  We have to show that for each Ag and for each term t which is CD-derivable
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jrom Aa it is true that the algorithm computes a CDR -derivation (AF k~o such that =t'IC E AJ jor a j and (J(t') t jor a suostitution (J. Therejore, we show: t'II with 
(J(t') == t is passive at a certain moment. Let t be a term. Let Mt = {tl, ... ,tn } be a 
minimal set oj terms-CD-derivable jrom Aa -that is needed to CD-derive t. We apply 
induction over n: 
n = 0 : Then tlI E A{}, i.e. at the beginning passive. 
n > 0 : Since Mt is a (minimal) set needed to injer t, terms tj, tk E lvIt exist, such that 
t can be derived from tj and tk via CondDet. Since tj and tk are CD-derivable from 
Aa and I!vIt}I, IlvItk I < n holds, there are two moments Tj and Tk such that tj II and 
t~II are passive. For these terms it holds that (Jj(tj) == tj and (Jk(t~) - tk. Because 
oj our precondition tjlI and t~II do not remain infinitely long in :FP, i.e. there are 
moments TJ and i k ajter that tj II and t~II are not passive any longer. Hence, at the 
moment max({ij , id) two facts tjlGj and t:IGk exist, both are elements of pA U pR, 
with dj(tj) == tj and dk(t:) == t~! Cj, Ck ~ I. Lemma 4.1 guarantees that there is a 
moment T such that the jacts fj II and {k II stay active. With the help oj these two jacts 
it is possible to derive via CondDet a jact t'II that subsumes t. Because oj the jact that. 
ij and t: have rights to perform all inferences and all CondDet descendants are hence 
generated, t'II is passive at a certain moment. 0 

In order to fulfill precondition P it is at first necessary to employ a heuristic H which 
finally selects all of the potential facts and the facts from the recover set. In section 
2 we showed in which way we can construct such heuristics. Moreover, we must avoid 
that an active fact AII is deactivated infinitely often. To this end, it is sensible to 
enrich each fact with a natural number that counts how often the respective fact has 
been deactivated. If a threshold of Cmax is exceeded (3 is not allowed to select A. Hence, 
A cannot be deactivated in future. 

Determination of bad facts: As we have described before (3 selects-after a fixed 
number of n activations-a set of facts {AliI, ... , Am II} from the current set of active 
facts. It is reasonable to forbid f3 to select the following kinds of facts: At first facts 
whose number of deactivations has exceeded a certain threshold must not be selected 
for fairness reasons (see before). Furthermore, our experiments have shown that it is 
wise to forbid the deactivation of axioms. In the sequel, we will describe in which way 
f3 determines bad facts among the remaining ones. Remember, that we denote facts as 
bad if they contribute to no or only long proof runs. 

Facts being involved in a lot of expanding inferences but only in a few contracting 
inferences contribute with a high probability to long proof runs. This is mainly because 
of the fact that they generate a lot of offspring. If this offspring is not needed for the 
proof the proveI' is forced to waste a lot of computation time to handle such facts. 
Hence. facts that possibly contribute to long proof runs can be detected by counting 
the inferences they were involved in. 

The detection of facts that are not needed in any proof is much more difficult. It is 
to be emphasized that it is in general undecidable to predict if a fact contributes to a 
proof of a goal. Despite of the undecidability the probability is rather high to detect 
facts that are unnecessary for proving the goal. This is mainly due to the fact that in 
successful proof runs usually only a few activated facts « 5%) are needed. Moreover, 
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t ' |C € APR for a j and o(t ' )  = t for a substitution o .  Therefore, we show: t ’ |T with
o ( t ' )  = t i s  passive at a certain moment. Let  t be a term. Let My = { t 1 , . . . , t , }  be a
minimal set of  terms—CD-derivable from Aq—that is needed to CD-derive t .  We apply
induction over n :
n=  0 :  Then t|T € A} ,  i.e. at the beginning passive.
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moment 7 such that the facts £;|T and £x|Z stay active. With the help of these two facts
i t  is possible to derive via CondDet a fact t ' |T that subsumes t .  Because of the fact that.
¢; and tx have rights to perform all inferences and all  CondDet descendants are hence
generated, t'|T is passive at a certain moment. 0

I n  order to  fulfill precondition P i t  is at first necessary to employ a heuristic H which
finally selects all of the potential facts and the facts from the recover set. In section
2 we showed i n  which way we can construct such heuristics. Moreover, we must avoid
that an active fact A|Z is deactivated infinitely often. To this end, i t  is sensible to
enrich each fact with a natural number that counts how often the respective fact has
been deactivated. If a threshold of cmax  is exceeded 3 is not allowed to  select A. Hence,
A cannot be deactivated in  future.
Determinat ion of  bad facts: As we have described before (3 selects—after a fixed
number of  n activations—a set of  facts { \ | Z , . . . ,A , |Z }  from the current set of  act ive
facts. I t  is reasonable to forbid J to select the following kinds of facts: At first facts
whose number of deactivations has exceeded a certain threshold must not be selected
for fairness reasons (see before). Furthermore, our experiments have shown that i t  is
wise to  forbid the deactivation of axioms. In the sequel, we wi l l  describe in  which way
3 determines bad facts among the remaining ones. Remember, that we denote facts as
bad i f  they contribute to no or only long proof runs.
Facts being involved in a lot of expanding inferences but only in a few contracting
inferences contribute wi th  a high probability to  long proof runs. This is mainly because
of the fact that they generate a lot of offspring. If this offspring is not needed for the
proof the prover is forced to waste a lot of computation time to  handle such facts.
Hence. facts that possibly contribute to long proof runs can be detected by counting
the inferences they were involved in.
The detection of facts that are not needed i n  any proof is much more difficult. I t  is
to  be emphasized that i t  is in  general undecidable to predict i f  a fact contributes to a
proof of a goal. Despite of the undecidability the probability is rather high to detect
facts that are unnecessary for proving the goal. This is mainly due t o  the fact that in
successful proof runs usually only a few activated facts (<  5%) are needed. Moreover,
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experiments have shown that facts needed for a proof are often quite general, i.e. they 
subsume a lot of deduced facts, and often have a small weight according to the heuristic 
of the prover ([3]). If we choose facts that have not subsumed many other facts or have 
a high weight according to the heuristic it is very probable that these facts are not 
needed for a proof. If we assume that we want to select facts periodically after n 
activations, i.e. at the moments TO,n, Tl,n, ... , we can define the function (3 = (3Ti,n 2 for 
the selection of bad facts at moment Ti,n as follows. Let 'H be the used heuristic, let 
Igen.6.Ti,n (A) I 'and Idel.6.Ti,n (A) I be the number of facts that were generated and discarded, 
respectively, with the help of A in the period between Ti-l,n and Ti,n' Then set 

A small value of (3Ti,n is a sign that a fact A behaves badly because a lot of facts have 
been generated but only a few facts have been subsumed. 

This technique can be refined by considering facts A as negative which contain terms 
f(x, if) as subterms. In particular we must take the position such subterms occur at 
into consideration. If A == f( x, if) we can derive a lot of terms with A immediately,

f
but if A == f(s,f(x,i )), e.g., i.e. this special subterm occurs in a deeper position, 
f(x, if) might be derived via CondDet and is only able to generate a lot of terms if it 
is activated later. Thereby the occurrence of f(x, if) is less negative as before. The 
concrete technical realization is as follows: Let O(A) be the set of positions in A, i.e. 
t E O(A), if A == f(i 1 , ... , in) and p E O(ii) (1 :::; i :::; n) then ip E O(A). Furthermore, 
Alp denotes the subterm of A at position p, i.e. Alt == A, if A == f(t 1 , ••. , in) and 
p E O(td (1 :::; i :::; n) then Alip == iilp· Furthermore, let M E IN, M > 1. Then we 
can measure the depth of an occurrence of the subterm f(x, t f

) in A with the following 
function: 

B(A) _ { min({lpl: Alp == f(x, if)}) , if Alp == f(x, if) for a term if and p E O(A) 
- M otherwise 

If ~ denotes the non-negative difference, i.e. a ~ b = 0 if a < b, we can refine the 
definition of (3Ti.n to 

vVith the help of the parameter .M we can decide until which depth subterms f(x, if) 
are considered. Note that e is usually only needed to break ties between facts that 
have the same weight according to (3T"n' Therefore facts are assessed mainly by means 
of statistical and not heuristical criteria. 

Although this definition of function (3 is rather simple our results (cf. section 4.3) were 
fairly satisfactory. Nevertheless, it would be interesting to examine whether a more 
complex definition of (3 entails better results. 

2Note that the function f3 depends strongly on the moment it is applied on the set of active facts. 
However, we make this dependency explicit only if it is necessary to avoid confusion. 
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been generated but only a few facts have been subsumed.
This technique can be refined by considering facts A as negative which contain terms
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but i f  A = f (s ,  f(z,t')), e.g., i.e. this special subterm occurs in  a deeper position,
f ( z , t') might be derived via CondDet and is only able to generate a lot of terms i f  i t
is activated later. Thereby the occurrence of f ( x , t ' )  is less negative as before. The
concrete technical realization is as follows: Le t  O()A) be  the set of  positions i n  A, i .e.
e€  O(N),  i f  A= f l t ı , . . . , t n )  and p € O( t ; )  ( 1  < ¢ < n )  then ip  € O(N). Furthermore,
Alp denotes the subterm of A at position p, i.e. Ale = A, i f  A = f ( t ı , . . . , tn )  and
p € O(t;) (1 <1  <n )  then A|ip = tilp. Furthermore, let M € IN, M > 1. Then we
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I f  — denotes the non-negative difference, i.e. a — b = 0 i f  a < b, we can refine the
definition of 8,,, to
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With the help of the parameter M we can decide unt i l  which depth subterms f(zx,t’)
are considered. Note that 9 is usually only needed to  break ties between facts that
have the same weight according to 3 , ,. Therefore facts are assessed mainly by  means
of statistical and not heuristical criteria.

Although this definition of function ß is rather simple our results (cf. section 4.3) were
fairly satisfactory. Nevertheless, i t  would be interesting to  examine whether a more
complex definition of 7 entails better results.

?Note that the function 3 depends strongly on the moment i t  is applied on the set of  active facts.
However, we make this dependency explicit only if i t  is necessary to  avoid confusion.
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Example 
GTP(ro) 

time activ. 
GTpR(d == 10%) 
time activ. 

GTp/"(d == 20%) 
time activ. 

GTP'/<:(d == 30%) 
time activ. 

OTTER 

LCLOO6-1 43 544 36 534 32 532 27 528 244 
LCL016-1 47 554 41 557 34 541 30 466 151 I 

LCL045-1 60 670 53 665 43 644 32 615 1467 
LCL058-1 59 710 54 710 46 708 37 703 423 
LCL060-1 63 733 59 733 49 733 40 726 509 
LCL068-1 121 982 109 983 89 977 148 1217 257 
LCL069-1 80 773 73 774 61 774 25 501 5 
LCL070-1 55 715 47 715 37 693 21 568 480 
LCL071-1 55 687 51 687 36 665 33 656 511 
LCL072-1 95 826 84 826 72 825 39 613 224 
LCL111-1 79 852 68 852 56 835 45 832 5 
LCL113-1 64 737 55 737 46 731 37 725 1468 
LCL115-1 48 616 45 622 38 617 29 592 7 

Table 1: GIP vs. GIpR 

4.3 Experimental Results 

In order to perform an experimental evaluation we used the program CODE ([5]) as 
our basic proveI'. We integrated into this program that originally used algorithm GIP 
inference rights employing the techniques presented in section 4. We applied CODE to 
proof problems stemming from the area of logic calculi which McCune and Wos tackled 
in [8] with their renowned proveI' OTTER. These problems can also be found in the 
TPTP library ([13]) version 1.2.1, namely in the LCL domain. In order to show that 
the speed-ups we achieved with our techniques are not due to the weakness of our basic 
proveI' we compare the results obtained with CODE with those of OTTER. The results 
with CODE were obtained on a SPARCstation ELC, the results with OTTER on a 
SPARCstation 1+ which is a comparable machine. The results of OTTER depicted in 
the following table 1 are those presented in [8], and were achieved by the best of up to 
six different heuristics. The results of CODE were obtained with heuristic tV explained 
in [5]. 

Results: In the sequel, we shall investigate whether speed-ups can be achieved if 
we use algorithm GIp R instead of algorithm GIP. Deactivation of facts was performed 
after n = ,50 activation steps. At each of these moments m facts were deactivated, with 
m = d% ofn (d can be found in table 1). The parameter M that denotes the maximal 
penalty that can be given due to syntactical properties of a term was set to M = 5, 
the parameter I to the value 2. 

The table 1 compares the results obtained with CODE and OTTER. Columns 2 and 3 
show the run time (in seconds) and the number of activations needed by heuristic tV, the 
next six columns show the corresponding values if we deactivate a certain percentage 
d of the activated facts. Column 10 gives the run time needed when using OTTER. 
Table 1 shows that algorithm GIp R which utilizes inference rights outperforms GIP. If 
we deactivate only a small percentage of the activated facts the speed-ups are rather 
low, but if we increase the number of deactivated facts we can achieve higher speed-ups. 
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GTP(= )  GTPR(d = 10%) | GTP™(d = 20%) | GTP"(d  = 30%)
Example time | ac t i v .  | t ime | ac t iv .  | t ime | ac t iv .  | t ime [ act iv .  OTTER
LCLO06-1 | 43 544 36 534 32 532 27 528 244
LCLO16-1 | 47 554 41 557 34 541 30 466 151
LCL045-1  | 60 670 53 665 43 644 32 615 1467
LCLO58-1 | 59 | 710 | 54 | 710 | 46 | 708 | 37 | 1703 423
LCLO60-1 | 63 | 733  59 733 49 733 40 726 509
LCLO68-1 | 121 | 982 109 983 89 977 148 1217 257
LCLO69-1 | 80 773 73 774 61 774 25 501 5
LCLO70-1 | 55 | 715 47 715 37 693 21 568 480
LCLO71-1 | 55 687 51 687 36 665 33 656 511
LCLO72-1 | 95 826 84 826 72 825 39 613 224
LCL111-1 | 79 852 68 852 56 835 45 832 5
LCL113-1 | 64 737 55 737 | 46 731 37 725 1468
LCL115-1 | 48 616 45 622 1 38 617 29 592 7

Table 1: GTP vs. GTP?

4.3 Experimental Results

In  order to perform an experimental evaluation we used the program CODE ([5]) as
our basic prover. We integrated into this program that originally used algorithm GTP
inference rights employing the techniques presented i n  section 4. We applied CODE to
proof problems stemming from the area of logic calculi which McCune and Wos tackled
in  [8] with their renowned prover OTTER. These problems can also be found in  the
TPTP library ([13]) version 1.2.1, namely in  the LCL domain. In order to show that
the speed-ups we achieved wi th  our techniques are not due to  the weakness of our basic
prover we  compare the  resu l ts  obtained w i th  CODE  wi th  those of  OTTER.  The results
with CODE were obtained on a SPARCstation ELC, the results with OTTER on a
SPARCstation 14+ which is a comparable machine. The results of OTTER depicted in
the following table 1 are those presented in  [8], and were achieved by the best of up to
six different heuristics. The results of CODE were obtained with  heuristic @ explained
i n  [5].
Results: In the sequel, we shall investigate whether speed-ups can be achieved i f
we use algorithm GTP” instead of algorithm GTP. Deactivation of facts was performed
after n = 50 activation steps. A t  each of  these moments m facts were deact ivated, w i th
m = d% of n (d  can be found i n  table 1). The parameter M that denotes the maximal
penalty that can be given due to syntactical properties of a term was set to M = 5,
the parameter y to the value 2.
The table 1 compares the results obtained with CODE and OTTER. Columns 2 and 3
show the run time (in seconds) and the number of activations needed by heuristic @, the
next six columns show the corresponding values i f  we deactivate a certain percentage
d of the activated facts. Column 10 gives the run time needed when using OTTER.
Table 1 shows that algorithm GTP™ which utilizes inference rights outperforms GTP. I f
we deactivate only a small percentage of the activated facts the speed-ups are rather
low, but i f  we increase the number of deactivated facts we can achieve higher speed-ups.
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In table 1 we can find one problem where deactivation of facts causes longer run-times 
because important facts were deactivated. But such a situation is quite improbable and 
the proof could still be found because we do not loose completeness by deactivation. 

Evaluation: If we take a closer look at the problems where we achieved speed-ups we 
can recognize that in nearly all cases the "real" proof of the goal did not change. As 
the real proof we denote the sequence of activated facts, ordered w.r.t. the moment of 
their activation, that were really necessary for proving the goal. This way it is obvious 
that our deactivation function is indeed well-suited in judging facts. Although the 
real proof did not change we could achieve speed-ups. These speed-ups stem from the 
following two aspects: On the one hand table 1 shows that when using GTpR instead 
of GIP often less activation steps had to be performed. This is mainly due to the fact 
that after the deactivation of unnecessary facts their unnecessary offspring was not 
generated and hence not activated. On the other hand we find some examples where 
we achieved speed-ups although the number of activation steps did not decrease. This 
is possible because if we use GTpR instead of GTP the period of time needed for one 
activation step is shorter: The periodical deactivation of facts entails that the number 
of facts that take part in time consuming expanding inferences increases only slightly 
in comparison to conventional approaches. 

5 Conclusion and Future Work 

Automated deduction systems have reached a considerable level of performance. Never
theless, the use of conventional approaches to control deduction systems-heuristic con
trol of the search and exhaustive application of inference rules (saturation strategy)-is 
sometimes problematic. Because of the difficulty to discover an appropriate heuristic 
for a lot of different examples it is very probable to employ a heuristic which activates 
many facts not contributing to a proof. This entails much overhead due to the common 
saturation strategy. 

Our approach of controlling the search by means of inference rights can help to deal 
better with these problems. Integration of inference rights into already existing infer
ence systems makes it possible to achieve a more flexible control of the search and hence 
to reduce the amount of time for processing unnecessary facts. Inference rights allow 
to introduce an efficient mechanism for forgetting of facts what usually is not an option 
in generating theorem provers. Despite of the fact that they cause a small overhead 
our experimental results in the area of condensed detachment were fairly satisfactory. 
Substantial speed-ups in comparison to standard methods were achieved. 

In order to substantiate our work with further results future work should deal with 
experiments in different calculi. In particular we have to consider the fact that most 
calculi contain more inference rules as only one rule for generating and one rule for 
deleting of facts. Hence, further research is necessary to find out whether the restriction 
of the applicability of such rules via inference rights is sensible. 
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experiments i n  different calculi. In particular we have to  consider the fact that most
calculi contain more inference rules as only one rule for generating and one rule for
deleting of facts. Hence, further research is necessary to find out whether the restriction
of the applicability of such rules via inference rights is sensible.
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