
ulaine|siasiey] £
9

9
/9

-
UJ3INE|SIISIEY JBU

SID
AIU

N
M

E
 W

I0JU| Yd1aiaqyde

Dirk Fuchs

SEKI Report SR-96-12

fod
ESS=b

o2Q©=[+]
Sm

&s[ant

N|&©

= 3
r=o

Bd
(>)

55QN

9
o 2
S

H
oO

 ab
g =5

6
0

5Ss&©

1R
-IO

d3 - A
S

.Inference Rights for Controlling Search In
Generating Theorem Provers

Dirk Fuchs*

Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049

67653 Kaiserslautern

Germany

E-mail: dfuchs@informatik.uni-kl.de

December 20, 1996

Abstract

We investigate the usage of so-called inference rights. We point out the prob
lems arising from the inflexibility of existing approaches to heuristically control
the search of automated deduction systems,. and we propose the application of
inference rights that are well-suited for controlling the search more flexibly. More~

over, inference rights allow for a mechanism of "partial forgetting" of facts that
is not realizable in the most controlling aproaches. We study theoretical founda
tions of inference rights as well as the integration of inference rights into already
existing inference systems. Furthermore, we present possibilities to control such
modified inference systems in order to gain efficiency. Finally, we report on
experimental results obtained in the arev~ of condensed detachment.

"The author was supported by the Deu'sche Forschungsgemeinschaft (DFG).

1

Inference Rights for Controlling Search in
Generating Theorem Provers

Dirk Fuchs*
Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany
E-mail: d fuchs@in fo rma t i k . un i - k l . de

December 20, 1996

Abstract

We investigate the usage of so-called inference rights. We point out the prob-
lems arising from the inflexibility of existing approaches t o heuristically control
the search of automated deduction systems,.and we propose the application of
inference rights that are well-suited for controlling the search more flexibly. More-
over, inference rights allow for a mechanism of “partial forgetting” of facts that
is not realizable in the most controlling aproaches. We study theoretical founda-
tions of inference rights as well as the integration of inference rights into already
existing inference systems. Furthermore, we present possibilities to control such
modified inference systems in order t o gain efficiency. Finally, we report on
experimental results obtained in the area of condensed detachment.

“The author was supported by the Deutsche Forschungsgemeinschaft (DFG).

1

mailto:dfuchs@informatik.uni-kl.de

2

1

1 INTRODUCTION

Introduction

The original task of a theorem prover is to check efficiently if a goal is a logic conse
quence of a given set of axioms. If we want to use generating calculi (e.g. resolution)
to fulfill this task the usual proceeding is to modify the gIven start state of facts (the
axioms and the goal) with rules for generation and deletion of facts until a designated
end state is reached. A common way to control the application of the rules of a calculus
is to use heuristic methods. Experiments in several calculi have shown that heuristic
control of the search is a viable approach (see, e.g., [5]).

In spite of this fact some problems still remain: unfortunately experience tells us
that even automated theorem provers with good heuristics do many more unnecessary
steps than are needed for a proof. Performing unnecessary inference steps in order to
delete or to manipulate facts increases the run time a little bit, but does not lead to a
dramatic change of the proof run. The generation of useless facts, however, can entail
aggravating consequences. Since usually it cannot be tested whether facts are really
needed in order to prove the goal such facts persist throughout the search. Because of
the fact that these generated facts can take part in further inferences more unnecessary
facts can and will be generated. This way the number of facts that are not needed for
a proof grows dramatically and often makes it impossible for the prover to prove the
goal within given limits of time or space.

One method that is-in our opinion-well-suited to deal with the mentioned problems
is the integration of so-called inference rights into existing inference systems. Thus,
certain inferences can only take place if all facts involved in it have the right to perform
it. By utilizing inference rights it is possible to refine the common saturation strategies
and to control inferences more flexibly. Especially the problems previously mentioned
can be tackled with inference rights. It is possible, e.g., to prevent facts that possibly
do not contribute to the proof from generating inferences. This way, such inferences
are delayed for a certain period of time and possibly unnecessary offspring cannot
be generated. This shows that by means of inference rights some kind of "partial
forgetting" can be realized. Facts that possibly do not contribute to a proof are not
deleted and hence totally forgotten, but only certain inferences where such facts could
be involved in are omitted.

In the sequel, we shall describe at first basics of generating theorem provers and es
pecially the area of condensed detachment we chose to experiment in with inference
rights. After that, we introduce in section 3 inference rights and give some remarks
on the way in which they can be incorporated into already existing inference systems.
Furthermore, we propose a method well-suited for controlling such modified inference
systems. In section 4 we instantiate our abstract framework in the area of condensed
detachment. Experimental results obtained with these techniques are presented in this
section, too. We conclude the report with a summary of our work and propose some
possible future extensions.

2 1 INTRODUCTION

1 Introduct ion

The original task of a theorem prover is to check efficiently i f a goal is a logic conse-
quence of a given set of axioms. I f we want to use generating calculi (e.g. resolution)
to fulfill this task the usual proceeding is to modify the given start state of facts (the
axioms and the goal) with rules for generation and deletion of facts until a designated
end state is reached. A common way t o control the application of the rules of a calculus
is to use heuristic methods. Experiments i n several calculi have shown that heuristic
control of the search is a viable approach (see, e.g., [5]).

In spite of this fact some problems still remain: unfortunately experience tells us
that even automated theorem provers with good heuristics do many more unnecessary
steps than are needed for a proof. Performing unnecessary inference steps i n order t o
delete or to manipulate facts increases the run time a l i t t le b i t , but does not lead to a
dramatic change of the proof run. The generation of useless facts, however, can entail
aggravating consequences. Since usually i t cannot be tested whether facts are really
needed i n order to prove the goal such facts pers is t throughout t he search. Because o f
the fact that these generated facts can take part i n further inferences more unnecessary
facts can and will be generated. This way the number of facts that are not needed for
a proof grows dramatically and often makes i t impossible for the prover to prove the
goal within given limits of time or space.

One method that is—in our opinion—well-suited to deal with the mentioned problems
is the integration of so-called inference rights into existing inference systems. Thus,
certain inferences can only take place i f all facts involved i n i t have the right to perform
i t . By utilizing inference rights i t is possible to refine the common saturation strategies
and to control inferences more flexibly. Especially the problems previously mentioned
can be tackled with inference rights. It is possible, e.g., to prevent facts that possibly
do not contribute to the proof from generating inferences. This way, such inferences
are delayed for a certain period of time and possibly unnecessary offspring cannot
be generated. This shows that by means of inference rights some kind of “partial
forget t ing” can be real ized. Facts that possibly do not contr ibute t o a proof are not
deleted and hence totally forgotten, but only certain inferences where such facts could
be involved in are omitted.

I n the sequel, we shall describe at first basics of generating theorem provers and es-
pecially the area of condensed de tachment we chose t o experiment i n with inference
rights. After that, we introduce in section 3 inference rights and give some remarks
on the way i n which they can be incorporated into already existing inference systems.
Furthermore, we propose a method well-suited for controlling such modified inference
systems. I n section 4 we instantiate our abstract framework i n the area of condensed
detachment. Experimental results obtained with these techniques are presented in this
section, too. We conclude the report wi th a summary of our work and propose some
possible future extensions.

3

2 Basics of Automated Theorem Provers

2.1 Fundamentals

The problem in automated theorem proving is given as follows: Given a set of facts Ax
(axioms), is a further fact AC (goal) a logic consequence of the axioms? A fact may be
a clause, equation, or a general first or higher-order formula. The definition of "logic
consequence" depends heavily on the concrete problem one is interested in.

Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans
form a goal into sub-goals that can finally be proven immediately with the axioms.
Generating calculi go the other way by continuously producing logic consequences
from Ax until a fact covering the goal appears. We shall here concentrate on generat
ing calculi.

Typically a generating calculus contains several inference rules which can be applied
to a subset of the given facts (search state). Expansion inference rules are able to syn
thesize a new fact from known ones and add these facts to the current set. Contracting
inference rules allow for the deletion of facts or replacing facts by other ones.

A common principle to solve proof problems algorithmically with a generating calculus
is employed by most systems (algorithm GTP: generating theorem prover): Essentially,
a theorem proveI' maintains a set FP of so-called potential or passive facts from which
it selects and removes one fact A at a time. After the application of some contracting
inference rules on A, it is put into the set FA of activated facts, or discarded if it
was deleted by a contracting rule (forward subsumtion). Activated facts are, unlike
potential facts, allowed to produce new facts via the application of expanding inference
rules. The inferred new facts are put into FP. We assume the expanding rules to
be exhaustively applied on the elements of FA. Initially, FA = 0 and FP = Ax.
The indeterministic selection or activation step is realized by heuristic means resulting
in a search. To this end, a search-guiding heuristic 1i associates a natural number
H(A) E IN with each AE FP. Subsequently, that AE FP with the smallest weight H(A)
is selected. Ties are usually broken according to the FIFO-strategy ("first in-first out").

2.2 Condensed Detachment

A typical example for generating calculi is the inference system CD which contains the
inference rule condensed detachment (CondDet) (see [14] and [7] for motivation and a
theoretical background). Since CD contains only one expanding and one contracting
inference rule it is very simple. But nevertheless resulting proof problems can be very
challenging. Therefore, condensed detachment was chosen as a test domain by several
researchers before ([10], [8], [11], [15]) and the choice of condensed detachment as our
test domain surely is justified. The rules of the inference system CV manipulate first
order terms. These terms are defined as usual, involving a finite set :F of function
symbols and an enumerable set of variables V. The inference system CV is defined as
follows:

2 Basics o f Automated Theorem Provers

2.1 Fundamentals

The problem in automated theorem proving is given as follows: Given a set of facts Ax
(axioms), is a further fact Ag (goal) a logic consequence of the axioms? A fact may be
a clause, equation, or a general first or higher-order formula. The definition of “logic
consequence” depends heavily on the concrete problem one is interested in.
Commonly, automated theorem provers utilize certain calculi for accomplishing the
task mentioned above. Analytic calculi attempt to recursively break down and trans-
form a goal into sub-goals that can finally be proven immediately wi th the axioms.
Generating calculi go the other way by continuously producing logic consequences
from Az until a fact covering the goal appears. We shall here concentrate on generat-
ing calculi.
Typically a generating calculus contains several inference rules which can be applied
to a subset of the given facts (search state). Expansion inference rules are able to syn-
thesize a new fact from known ones and add these facts to the current set. Contract ing
inference rules allow for the deletion of facts or replacing facts by other ones.
A common principle to solve proof problems algorithmically with a generating calculus
is employed by most systems (algorithm GTP: generating theorem prover): Essentially,
a theorem prover maintains a set FP of so-called potential or passive facts from which
i t selects and removes one fact A at a time. After the application of some contracting
inference rules on J , i t is put into the set F4 of activated facts, or discarded i f i t
was deleted by a contracting rule (forward subsumtion). Activated facts are, unlike
potential facts, allowed to produce new facts via the application of expanding inference
rules. The inferred new facts are put into F'¥. We assume the expanding rules to
be exhaustively applied on the elements of FA. Initially, F4 = § and FF = Ax.
The indeterministic selection or activation step is realized by heuristic means resulting
i n a search. To this end, a search-guiding heuristic H associates a natural number
H()) € IN with each A € FP. Subsequently, that A € FF with the smallest weight H(A)
i s selected. Ties are usually broken according t o the F IFO-st ra tegy (“first in-first ou t ”) .

2 .2 Condensed Detachment

A typical example for generating calculi is the inference system CD which contains the
inference rule condensed detachment (CondDet) (see [14] and [7] for motivation and a
theoretical background). Since CD contains only one expanding and one contracting
inference rule i t is very simple. But nevertheless resulting proof problems can be very
challenging. Therefore, condensed detachment was chosen as a test domain by several
researchers before ([10], [8], [11], [15]) and the choice of condensed detachment as our
test domain surely is justified. The rules of the inference system CD manipulate first-
order terms. These terms are defined as usual, involving a finite set F of function
symbols and an enumerable set o f variables V. The inference sys tem CD is defined as
follows: |

4 2 BASICS OF AUTOMATED THEOREM PROVERS

Definition 2.1 (The inference system CV)
Let f E F be a distinguished binary function symbol. Then CD contains the rules

(Subsum) A U {s, t} r- A U {s};:J substitution a: a-(s) == t

(CondDet) A U {5, t} I- A U {s, t, u}; 5 == f(s', u'), a = mgu(s', t), u == a(u')

We denote A I- A' if A' can be derived from A by the application of one inference
rule. A sequence (Adi2:a with Aj I- Aj+1 (j ;:: 0) is called a CD-derivation. A
term t is CD-derivable from Aa if (and only if) a CD-derivation (Ai)i~a and an in
dex j exist such that t E Aj . t is called CD-provable from Aa iff a CD-derivable term
i' and a substitution a exist such that a(t') = t. A proof problem gJ = (Ax, t) is
solvable iff t is CV-provable from Ax. An important property of CV-derivations is the
fairness: we call a CV-derivation (Adi2:a fair iff for each CV-derivable term t aj, a ex
ists such that t' E Aj and a(t') == t. In the case that an algorithm only produces
fair CD-derivations each solvable proof problem can be solved with the help of the
algorithm.
We have described before how to solve proof problems algorithmically. It is interesting
in which way algorithms or heuristics have to be construed in order to produce only
fair CV-derivations. The following theorem formulates demands on a heuristic H.

Theorem 2.1 (Fairness of a CD-derivation)
The algorithm GTP produces fair CV-derivations if the associated heuristic guarantees
that each fact being passive at one moment is activated or subsumed and discarded after
a finite period of time.
Proof: We have to show that for each Aa and for each term t which is CV-derivable

from Aa holds: The algorithm computes a CV-derivation (Ai)iEN such that t' E Aj for
a j and a(t') =t for a substitution a. Therefore) we show: t' is passive at a fixed
moment. Let t be a term. Let l'vIt = {t 1 , ... , t n } be a minimal set of terms---CV
derivable from Aa-that is needed to derive t. 1 We apply induction over n:
11 = 0 : Then t E Ao) i.e. at the beginning passive.

11 > 0 : Since M t is a (minimal) set needed to infer t, there are terms tj, tk E "MfJ such
that t can be derived from tj and tk via CondDet. Since tj and tk are CV-derivable from
Aa and IMt)l, IMtkl < 11 holds) there are two moments Tj and Tk such that tj and tk
are passive. For these terms it holds that aj(tj) == t j and a-k(tU == tk. Because of our
precondition tj and tk do not remain infinitely long in FP) i.e. there are moments Tj and

Tk after that tj and t~ are not passive any longer. Hence, at the moment max({Tj, Tk})

there exist two active facts fJ and fk with <ij (tj) == tj and <ik(fk) == tk. Because of the

fact that a term t' with the required properties can be derived from tj and t~ via CondDet
and because of the fact that the rule CondDet is exhaustively applied on the active facts
t' is passive at a moment. 0

Such heuristics can be construed quite easily, e.g. a heuristic H is fair if the set lVIz =
P E Term(F, V) : H()") = z} is finite for each natural number z. It is to be empha
sized that the efficiency of the algorithm strongly depends on the heuristic and that
the quality of heuristics depends on the giv:en proof problem.

1Minimal means in this context that there is no set with fewer elements from which t can be
derived.

4 2 BASICS OF AUTOMATED THEOREM PROVERS

Definition 2.1 (The inference system CD)
Let f € F be a distinguished binary function symbol. Then CD contains the rules

(Subsum) AU {s , t } = AU {s}; 3 substitution 0 : o(s) = t
(CondDet) AU {s,t} FH AU {s,t,u};s = f (s , u'),0 = mgu(s,t),u = o(u)

We denote A F A’ i f A’ can be derived from A by the application of one inference
rule. A sequence (A;)i»o wi th A; | A j (j > 0) is called a CD-derivation. A
term t is CD-derivable from Ap i f (and only i f) a CD-derivation (A;);>o and an in-
dex j exist such that t € A;. t is called CD-provable from Aq iff a CD-derivable term
t ' and a substitution o exist such that o(¢/) = t. A proof problem p = (Az,t) is
solvable iff ¢ is CD-provable from Az. An important property of CD-derivations is the
fairness: we call a CD-derivation (A;);>o fair iff for each CD-derivable term ¢ a j , 0 ex-
ists such that ’ € A; and o(¢') = t. In the case that an algorithm only produces
fair CD-derivations each solvable proof problem can be solved with the help of the
algorithm.
We have described before how to solve proof problems algorithmically. I t is interesting
i n which way algorithms or heuristics have to be construed in order to produce only
fair CD-derivations. The following theorem formulates demands on a heuristic H.

Theorem 2.1 (Fairness o f a CD-derivation)
The algori thm GTP produces fair CD-der iva t ions i f the associated heur is t ic guarantees
that each fact being passive at one moment is activated or subsumed and discarded after
a finite period of time.
Proof: We have to show that for each Ag and for each term t which is CD-derivable
from Ao holds: The algorithm computes a CD-derivation (Aj);en such that t ' € A; for
a j and o(t') = t for a substitution o. Therefore, we show: t ' is passive at a fixed
moment. Let t be a term. Let M; = { t , , . . . , t , } be a minimal set of terms—CD-
derivable from Ao—that is needed to derive t . ! We apply induction over n :
n=0 : Then t € Aq, Le. at the beginning passive.
n > 0 : Since M; is a (minimal) set needed to infer ¢, there are terms t ; , t , € My, such
thatt can be derived from t ; and ty, via CondDet. Since t ; and tx are CD-derivable from
Ao and |My |,|M;,| < n holds, there are two moments 7; and 7) such that t; and t }
are passive. For these terms i t holds that o;(t}) = t ; and oy(t}) = tx. Because of our
precondition t) and t), do not remain infinitely long in FP, i.e. there are moments 7; and
Ti after that t ; and ti, are not passive any longer. Hence, a t the moment max({7;, 7x })
there exist two active facts t ; and tx with 6;(t;). = t ; and Gx(tx) = t},. Because of the
fact that a term t ' with the required properties can be derived from {; and fj via CondDet
and because of the fact that the rule CondDet is exhaustively applied on the active facts
t ' is passive at a moment. O

Such heuristics can be construed quite easily, e.g. a heuristic H is fair i f the set M , =
{A € Term(F,V): H(A) = z} is finite for each natural number z. I t is to be empha-
sized that the efficiency of the algorithm strongly depends on the heuristic and that
the quality of heuristics depends on the given proof problem.

Minimal means i n this context that there is no set w i th fewer elements from which £ can be
derived

5

3 Basics of Inference Rights

3.1 Discussion of the Algorithm GTP

If we take a closer look at GTP we can at first recognize that the algorithm allows for a
clear and simple control of applications of the inference rules. Furthermore, GTP facili
tates the control of rule applications because only one decision point exists-the choice
of the next potential fact-which can easily be controlled by heuristic means. Thus,
it is possible to develop very specialized heuristics (see, e.g. [2]) and therefore very
specialized theorem provers. Moreover, GTP facilitates the development of distributed
theorem provers. Constructing different cooperating heuristics, i.e. different cooperat
ing incarnations of GTP, allows for a distributed theorem prover with a performance
that is clearly superior to sequential implementations of GTP ([1]). Furthermore, it is
possible to employ learned knowledge for controlling the indeterministic activation step
which can improve the algorithm in many cases (see [6], [4]).

Nevertheless, the simple and inflexible scheme of GTP has some disadvantages. Because
of the fact that the next fact to be activated is selected out of an ever gr9wing set of
facts and that only a few of these facts contribute to a proof, it is very probable that an
unnecessary fact is selected and activated. Such a fact ,\ remains in the set FA which
often has serious consequences. On the one hand more unnecessary facts are generated
because ,\ can be involved in a lot of applications of expanding inference rules in future.
Thus, a lot of computation time is wasted. On the other hand, if such unnecessary
descendants of ,\ are activated in future the number of facts that do not contribute to
a proof can grow enormously. Since a large number of facts entails a high demand for
memory and computation time it is possible that the proof is unnecessarily delayed or
even not found.

Another main disadvantage of GTP is that no further investigation of activated facts
e.g. with another heuristic or with respect to new information-takes place. Thus, no
a posteriori knowledge can be incorporated into the algorithm. The following example
gives a rough overview of how such a posteriori knowledge could be utilized: Usually
a lot of different proofs for a given proof problem exist. Thus, it is reasonable to
search for short proof runs, i.e. proof runs where only few steps not contributing to
the proof are performed. In the case that a fact ,\ has been activated which is involved
in the application of many expanding inference steps it possibly does not contribute
to short proof runs because a lot of possibly unnecessary "offspring" is generated. A
modification of the search state which, e.g., forces ,\ to be involved only in contracting
but not in expanding inferences could be the right way to cope with this problem.
Tltis is not an option in GTP, however, because all kinds of inferences are exhaustively
applied to elements of FA.
All in all it is sensible to preserve the main principles of GTp-the division of the inferred
facts into FA and FP and the use of heuristics in order to activate facts-because of the
advantages mentioned before. To deal with the disadvantages the. two following'aspects
should be integrated into the algorithm: In order to integrate a posteriori knowledge
the facts ,\ E FA should be analyzed periodically. This way it should be possible to
detect unnecessary facts, i.e. facts which do not contribute to any proof, or at least

3 Basics of Inference Rights

3.1 Discussion o f the Algorithm GTP

I f we take a closer look at GTP we can at first recognize that the algorithm allows for a
clear and simple control of applications of the inference rules. Furthermore, GTP facili-
tates the control of rule applications because only one decision point exists—the choice
of the next potential fact—which can easily be controlled by heuristic means. Thus,
i t is possible to develop very specialized heuristics (see, e.g. [2]) and therefore very
specialized theorem provers. Moreover, GTP facilitates the development of distributed
theorem provers. Constructing different cooperating heuristics, i.e. different cooperat-
ing incarnations of GTP, allows for a distributed theorem prover with a performance
that is clearly superior to sequential implementations of GTP ([1]). Furthermore, i t is
possible to employ learned knowledge for controlling the indeterministic activation step
which can improve the algor i thm in many cases (see [6], [4]).
Nevertheless, the simple and inflexible scheme of GTP has some disadvantages. Because
of the fact that the next fact t o be act ivated i s selected out of an ever growing set o f
facts and that only a few of these facts contribute to a proof, i t is very probable that an
unnecessary fact is selected and activated. Such a fact \ remains in the set F4 which
often has serious consequences. On the one hand more unnecessary facts are generated
because A can be involved in a lot of applications of expanding inference rules in future.
Thus, a lot of computation time is wasted. On the other hand, i f such unnecessary
descendants of A are activated i n future the number of facts that do not contribute to
a proof can grow enormously. Since a large number of facts entails a high demand for
memory and computation time i t is possible that the proof is unnecessarily delayed or
even not found.
Another main disadvantage of GTP is that no further investigation of activated facts—
e.g. with another heuristic or with respect to new information—takes place. Thus, no
a posteriori knowledge can be incorporated into the algorithm. The following example
gives a rough overview of how such a posteriori knowledge could be utilized: Usually
a lot of different proofs for a given proof problem exist. Thus, i t is reasonable to
search for short proof runs, i.e. proof runs where only few steps not contributing to
the proof are performed. In the case that a fact A has been activated which is involved
in the application of many expanding inference steps i t possibly does not contribute
to short proof runs because a lot of possibly unnecessary “offspring” is generated. A
modification of the search state which, e.g., forces A to be involved only in contracting
but not i n expanding inferences could be the right way to cope with th is problem.
This is not an option i n GTP, however, because all kinds of inferences are exhaustively
applied to elements of FA.
A l l i n all i t is sensible to preserve the main principles of GTP—the division of the inferred
facts into F4 and FF and the use of heuristics i n order to activate facts—because of the
advantages ment ioned before. To deal w i th t he disadvantages the two fol lowing aspects
should be integrated into the algorithm: In order to integrate a posteriori knowledge
the facts A € F'4 should be analyzed periodically. This way i t should be possible to
detect unnecessary facts, i.e. facts which do not contribute to any proof, or at least

N

6 3 BASICS OF INFERENCE RIGHTS

fa.cts that possibly do not contribute to short proof runs. The second step should be
the "restructuring" of the current search state so as to avoid generating too many
facts. Nevertheless, such a restructuring must neither destroy the simplification power
of the system of activated facts nor the completeness. The latter means that finally
all inferences that are, e.g., delayed for a certain period of time, will take place if they
are needed to conclude the proof. .Such a restructuring could be achieved by "partial
forgetting" of unnecessary facts. This means that the information on the activation
of unnecessary facts is not totally forgotten, i.e. possibly unnecessary facts are not
deleted, but such facts are forgotten in such a manner that they cannot take part in
certain inferences.

We will only sketch the first aspect because the detection of unnecessary facts depends
heavily on the concrete calculus (see section 4) and so-called T'efeT'ees ([3]) are known
to be fairly well-suited for judging facts. In the sequel, we shall hence concentrate
on the second aspect, i.e. on the question how partial forgetting and hence a better
control-especially of expanding inference rules-can be achieved. Our solution to this
very issue are inference T'ights which allow for a finer grained control of inferences.

3.2 Inference Rights

The main idea of inference rights is to enrich the facts an inference system works on
with rights to perform inferences. The intended use of these rights is as follows: If a
fact is assumed to be possibly unnecessary or not contributing to short proof runs the
generation power of this fact is restricted. This can be achieved by retracting the right
to take part in expanding inferences. Additional conditions on the algorithm, however,
are necessary to guarantee that finally all necessary inferences are performed. Thus,
in the inf~rence system it should be possible to recover rights to perform inferences.

Our method to model inference rights is to use annotations to a fact that determine
the inferences in which a fact is allowed to be involved in:

Definition 3.1 (Inference Right, Fact with Inference Right)
Let I be an infeT'ence system, and I be the set of infeT'ence T'ules. Let A be a fact. An
inference right w. r.t. I is a set e ~ I.
A fact with inference T'ight is a paiT' (A, C). In the sequel, we wT'ite Ale instead of
(A. C).

vVe give some remarks on the way inference rights can be incorporated into already
existing inference systems. At first, inference rules do not work on sets of facts A
any longer but on facts with rights A'R. The rights stem from the original inference
system and are subsets of the original inference rules. They restrict the applicability
of inference rules. The expanding inference rule

(Exp)

could be, e.g., modified in the following manner:

6 3 BASICS OF INFERENCE RIGHTS

facts that possibly do not contribute to short proof runs. The second step should be
the “restructuring” of the current search state so as to avoid generating too many
facts. Nevertheless, such a restructuring must neither destroy the simplification power
of the system of activated facts nor the completeness. The latter means that finally
all inferences that are, e.g., delayed for a certain period of time, will take place i f they
are needed to conclude t he proof . "Such a res t ruc tur ing could be achieved by “partial
forgetting” of unnecessary facts. This means that the information on the activation
of unnecessary facts is not totally forgotten, i.e. possibly unnecessary facts are not
deleted, but such facts are forgotten i n such a manner that they cannot take part in
certain inferences.
We will only sketch the first aspect because the detection of unnecessary facts depends
heavi ly on the concrete calculus (see section 4) and so-called referees ([3]) are known
to be fairly well-suited for judging facts. In the sequel, we shall hence concentrate
on the second aspect, i.e. on the question how partial forgetting and hence a better
control—especially of expanding inference rules—can be achieved. Our solution to this
very issue are inference rights which allow for a finer grained control of inferences.

3.2 Inference Rights

The main idea of inference rights is to enrich the facts an inference system works on
with rights to perform inferences. The intended use of these rights is as follows: I f a
fact is assumed to be possibly unnecessary or not contributing to short proof runs the
generation power of this fact is restricted. This can be achieved by retracting the right
to take part in expanding inferences. Additional conditions on the algorithm, however,
are necessary to guarantee that finally all necessary inferences are performed. Thus,
i n the inference system i t should be possible to recover rights to perform inferences.
Our method to model inference rights is to use annotations to a fact that determine
the inferences in which a fact is allowed to be involved in:

Definition 3.1 (Inference Right, Fact wi th Inference Right)
Let I be an inference system, andI be the set of inference rules. Let A be a fact. An
inference right w.r.t. I is a set C CT .
A fact with inference right is a pair (A,C). In the sequel, we write A\|C instead of
(A.C).

We give some remarks on the way inference rights can be incorporated into already
existing inference systems. At first, inference rules do not work on sets of facts A
any longer but on facts wi th rights A®. The rights stem from the original inference
system and are subsets of the original inference rules. They restrict the applicability
of inference rules. The expanding inference rule

(Exp) AU{Ap . . . ,An }F AU {AMy . . . ,An, A}; Cond(A1,..., An)

could be, e.g., modified in the following manner:

3.2 Inference Rights 7

AR U {Al!C\, ... , An/Cn} f- AR U {A1IC1, ... , An/Cn, AII}; Cond(Al"'" An)/\
Vi,l S; i S; n : Exp E C i

So, facts can only be involved in an inference if they have the right to perform it.
Moreover, further rules are necessary which are only needed to handle right~. Such
rules could be for instance:

(RetractR) AR U {AID} f- AR U {AIC}; C c D

(RecoverR) AR U {AIC} f- AR U {AID}; C =f. I /\ C .c D

The rule Retract R is needed, e.g., to forbid facts to perform the generation of facts.
The rule RecoverR is needed to add rights. In the area of condensed detachment this
is necessary to allow fair derivations (cL section 4).

Note that inference rights offer only an abstract framework to enrich facts with further
information. An important question is now in which way such an extended inference
system should be controlled. Such a control should allow for a gain of efficiency in
comparison with the original inference mechanism. Moreover, completeness should be
guaranteed. Since these aspects depend mainly on the concrete inference system one
is interested in, we will discuss them in the following section in more detail.

In the sequel, we will nevertheless give a rough idea of how inference rights could be
used. Algorithm GTpR-utilizing inference rights-is an extension of GTP, i.e. it divides
the facts into the sets FA and FP and performs inferences as described before. The
main difference is that active facts are periodically judged and a certain number of bad
facts is determined. Then, inference rule Retract R is applied to these facts in order
to forbid them to produce new ones via expanding inference rules ("deactivati~n").
This way, certain facts are partially forgotten and not allowed to generate new facts.
If we deactivate facts that really do not contribute to any proof unnecessary offspring
of these facts is avoided. If we deactivate facts that are able to generate a lot of facts
it is possible that shorter proof runs occur. In order to preserve completeness it is
necessary that all inferences (needed for completeness) which are delayed for a certain
period of time finally take place. To this end, it is convenient to note which facts
were involved in an application of the rule RetractR. Thus, it is possible to apply
RecoverR on such facts after a certain period of time and to perform the inferences
that were delayed before. The technical realization could be as follows: We introduce
a recover set F R and move, after the application of RetractR on an active fact A,
this fact from FA to FR. The facts from F R can be utilized for contracting but not
for expanding inferences. Furthermore, the facts from FR are possible candidates for
activation steps, i.e. facts are not only selected from FP but also periodically from FR.
If a fact A E F R is selected its inference rights is set to I via RecoverR. After that it
is processed analogously to a selected potential fact, i.e. inferences delayed previously
can be performed.

A crucial step with regard to performance is the selection of facts from FR. If we select
facts too frequently, i.e. they are not forgotten for a long time, expanding inferences

3.2 Inference Rights 7

(Exp) ARUD4|Cy-..5An[Cn} FE ARU {MICH An [Cn AIT}; Cond(Ay, . . . , Ap)A
V i ,1< :<n :ExpeC;

So, facts can only be involved in an inference if they have the right to perform it.
Moreover, further rules are necessary which are only needed to handle rights. Such
rules could be for instance:

(Retract™) ARU{AD}FARU{) \C } ; CCD

(Recover) ARU{MNC}FARU{AD} ;C#£ IACCD

The rule Retract™ is needed, e.g., to forbid facts to perform the generation of facts.
The rule Recover” is needed to add rights. In the area of condensed detachment this
is necessary to allow fair derivations (cf. section 4).
Note that inference rights offer only an abstract framework to enrich facts with further
information. An important question isnow i n which way such an extended inference
system should be controlled. Such a control should allow for a gain of efficiency in
comparison with the original inference mechanism. Moreover, completeness should be
guaranteed. Since these aspects depend mainly on the concrete inference system one
is interested in , we wi l l discuss them i n the following section in more detail.
In the sequel, we wi l l nevertheless give a rough idea of how inference rights could be
used. Algorithm GTP®—utilizing inference rights—is an extension of GTP, i.e. i t divides
the facts into the sets FA and FP and performs inferences as described before. The
main difference is that active facts are periodically judged and a certain number of bad
facts is determined. Then, inference rule Retract™ is applied to these facts i n order
to forbid them to produce new ones via expanding inference rules (“deactivation”).
This way, certain facts are partially forgotten and not allowed to generate new facts.
I f we deactivate facts that really do not contribute to any proof unnecessary offspring
of these facts is avoided. If we deactivate facts that are able to generate a lot of facts
i t is possible that shorter proof runs occur. In order to preserve completeness i t is
necessary that all inferences (needed for completeness) which are delayed for a certain
period of time finally take place. To this end, i t is convenient to note which facts
were involved in an application of the rule Retract®. Thus, i t is possible to apply
Recover”® on such facts after a certain period of time and to perform the inferences
that were delayed before. The technical realization could be as follows: We introduce
a recover set FF” and move, after the application of Retract™ on an active fact A,
this fact from F4 to FE. The facts from FF can be utilized for contracting but not
for expanding inferences. Furthermore, the facts from FF are possible candidates for
activation steps, i.e. facts are not only selected from FP but also periodically from FE.
If a fact A € FF is selected its inference rights is set to ZT via Recover™. After that i t
is processed analogously to a selected potential fact, i.e. inferences delayed previously
can be performed.
A crucia l s tep with regard t o performance i s the se lect ion of facts from FE . If we select
facts too frequently, i.e. they are not forgotten for a long time, expanding inferences

8 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

where bad facts are involved in are delayed for a short time only, and we hence can
not expect to gain much efficiency. But if we select facts from F R only very seldom
and deactivate a fact that really contributes to a proof it is possible that important
inferences are delayed for a long time and hence the runtime increases. Thus, a good
compromise between these extremes has to be achieved. At least it is necessary that
all facts from F R are finally selected in order to preserve completeness (cf. section 4).

I

4 Inference Rights and Condensed Detachment

So far we have introduced inference rights as a general framework to modify inference
systems. This modification is necessary in order to achieve a better control especially of
the expanding inference rules. Since the concrete realization depends on the calculus
one is interested in we have only given a few remarks on the way how to control
such an inference system. Therefore, this section describes more precisely in which
way inference rights can be utilized in the area of condensed detachment. We chose
condensed detachment as a first test domain because the inference system CV used in
this area is quite typical for generating provers.

At first it is necessary to integrate inference rights into the inference system CV result
ing in a new inference system CVR . The next step is to present a concrete algorithm
for controlling CVR . Note that we are still interested in solving CV proof problems and
need an algorithm that is able to solve them. We describe a basic algorithm-using
an abstract function f3 in order to detect unnecessary facts-and give sufficient condi
tions on the algorithm to guarantee that it only produces fair derivations. Finally, we
introduce a possible realization of function f3 for judging facts and use this function in
some experiments.

4.1 The Inference System CDR

The inference system CVR is an extension of CV. Therefore, the inference rules
CondDet and Subsum must be adapted in order to work with facts with inference
rights. Furthermore, the rules RetractRand RecoverR are necessary to deal with
rights (cf. section 3). In this context the set of inference rights is given as n =
{M : 1\1£ ~ I = {CondDet, Subsum} }. The following definition introduces the inference
system C'VR .

Definition 4.1 (The inference system CVR)

Let .f E F be a distinguished binary function symbol. Then CVR contains the rules

(SubsumR) AR U {s\Cl,tICz} f- AR U {sICd; 30": O"(s) =t 1\ Subsum E Cl

(CondDetR) AR U {sICl , tlCz} f- AR U {sICl , tlCz, uII}; (s == 1(s', u'), 0" = mgu(s', t),
u == cr(u')) /\ Conddet E Cl, Cz

(RecoverR) AR U {slCd f- AR U {sICz}; Cl of. I/\ Cl C C2

(RetractR
) A

R
U {slCd f- A

R
U {sICz};Cz C Cl

8 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

where bad facts are involved i n are delayed for a short time only, and we hence can-
not expect to gain much efficiency. But i f we select facts from FT only very seldom
and deactivate a fact that really contributes to a proof i t is possible that important
inferences are delayed for a long time and hence the runtime increases. Thus, a good
compromise between these extremes has to be achieved. At least i t is necessary that
all facts from FR are finally selected i n order t o preserve completeness (cf. sect ion 4).

4 Inference Rights and Condensed Detachment

So far we have in t roduced inference r ights as a general framework t o modify inference
systems. This modification is necessary in order to achieve a better control especially of
the expanding inference rules. Since the concrete realization depends on the calculus
one is interested in we have only given a few remarks on the way how to control
such an inference system. Therefore, this section describes more precisely in which
way inference rights can be utilized i n the area of condensed detachment. We chose
condensed detachment as a first test domain because the inference system CD used i n
this area is quite typical for generating provers.
At first i t i s necessary t o integrate inference r ights in to t he inference system CD result-
ing i n a new inference system CD®. The next step is to present a concrete algorithm
for controlling CD. Note that we are stil l interested in solving CD proof problems and
need an algorithm that is able to solve them. We describe a basic algorithm—using
an abstract function § i n order to detect unnecessary facts—and give sufficient condi-
tions on the algorithm to guarantee that i t only produces fair derivations. Finally, we
introduce a possible realization of function 8 for judging facts and use this function in
some experiments.

4 .1 The Inference System CD?

The inference system CD® is an extension of CD. Therefore, the inference rules
CondDet and Subsum must be adapted i n order to work wi th facts wi th inference
rights. Furthermore, the rules Retract® and Recover” are necessary to deal with
rights (cf. section 3). In this context the set of inference rights is given as R =
{M : M CT = {CondDet, Subsum}}. The following definition introduces the inference
system CDR.

Definition 4.1 (The inference system CD)
Let f € F be a distinguished binary function symbol. Then CD? contains the rules

(Subsum®) AR U {5|C1,1|Co} F AR U {5]|C1}; 30 : o(s) = t A Subsum € C;

(CondDet™) AR U {s|Cy,t|Co} FE AR U {s|Cy,t|Ca,u|T}; (s = f (s ' , u ') ,0 = mgu(s,1),
u = o(u')) A Conddet € Cy,C;

(Recover”) ARU{s |C } F AR U {SICH C1 # I ANCL C Cy

(Retract”™) AR U {s |C i } FE AR U {s|C2}; Ca © Cy

4.2 An Algorjthm for Controlling CDR 9

Inference system CDR follows exactly the principles pointed out in section 3. The
expanding inference rule CondDet R can only be applied if both facts that take part in
it have the right to perform it. In order to subsume a fact it is only necessary to have
the subsumtion right. Note that it is not required that the fact to be subsumed has
this inference right. Inference rules RetractR and RecoverR are exactly the same as
described before.

In analogy to section 2 we write AF I-- A~l if A~l can be derived from AF by the
application of one inference rule. (AFk:::o is called a CDR-derivation iff Af I-- AfHVj 2:
O. A fact with inference right tiC is CDR-derivable from A'{f iff a CDR-derivation
(AFk:.o and an indexj exist such that tiC E AY. We call aCDR-derivation (AFk:.o fair
iff for each CD-derivable fact t there exists a j, CJ" such that t'le E Af and CJ"(t') = t.
Note that by means of fair CDR-derivations it is possible to solve CD proof problems.
It is only necessary to perform CDR-derivations until a fact appears that subsumes the
goal. The right is ignored in that case since it is only· needed to circumvent certain
inferences during the inference process. It would be unwise to consider the right if a fact
subsuming the goal is found because in such a case the proof might be unnecessarily
delayed.

4.2 An Algorithm for Controlling CVR

In the sequel, we introduce an algorithm that allows to control CDR easily and to solve
CD proof problems very efficiently. It is to be emphasized that our algorithm is only
one of a lot of different possible ones. In general, there might be many different ways
in which way the new rules provided by the inference system can be utilized.

Basic Algorithm: In order to construe an algorithm for controlling CDR it is sensible
to employ the algorithm GTpR as described in section 3. Thus, it is still possible to
perform the activation steps heuristically. Therefore, techniques like learning or goal
orientation ([2]) can still be utilized. As described in section 3, GTp R employs the
inference rights to restrict the applicability of inference rules. This restriction takes
place in such a manner that activated facts which do not appear to be contributing to
a proof or only contribute to long proof runs are "deactivated" periodically. Thus, they
are not allowed to be involved in expanding, but only in contracting inferences. To this
end, a function f3 is needed that determines the active facts that behave "badly" w.r.t.
a certain criterion. More exactly, f3(F A) = {AliI, ... , AmII} ~ FA, i.e. f3 selects a fixed
number of active facts. The realization of algorithm' GTpR-well-suited for proving CD
proof problems-uses f3 to determine the facts to be deactivated (see figure 1).

As one can see, algorithm GTpR is instantiated in the following aspects: The periodical
deactivation of facts is realized in such a manner ~hat the function f3 determines-after
a fixed number n of activation steps-a fixed number m of active facts that should
not take part in expanding inferences any longer. In our experiments we employed a
number m that is a certain percentage d of the number of activation steps n. The
deactivation is achieved via the inference rule RetractR. The fact Ale originating
from the application of RetractR is moved from the set FA to the recover .set FR.
After that, it can only take part in SubsumR but not in CondDet R. In order to achieve

4.2 An Algorithm for Controlling CDR | 9

Inference system CD” follows exactly the principles pointed out in section 3. The
expanding inference rule CondDet™ can only be applied i f both facts that take part in
i t have the right to perform i t . In order to subsume a fact i t is only necessary to have
the subsumtion right. Note that i t is not required that the fact to be subsumed has
t h i s inference r igh t . Inference rules Retract”™ and Recover ” are exactly the same as
described before.
I n analogy t o sect ion 2 we wri te AF + AR, i f AR, can be der ived from AR by the
application of one inference rule. (AR);>0 is called a CDR-derivation iff AT + AR Vj >
0. A fact with inference right t|C is CD®-derivable from AR iff a CD®-derivation
(AR)i>0 and an index j exist such that ¢|C € AR. We call a CDR-derivation (AF)iso fair
iff for each CD-derivable fact £ there exists a j , o such that IC € AR and o(t') = ¢.

Note that by means of fair CD™-derivations i t is possible to solve CD proof problems.
It is only necessary to perform CD™-derivations until a fact appears that subsumes the
goal. The right is ignored in that case since i t is only needed to circumvent certain
inferences during the inference process. I t would be unwise to consider the right i f a fact
subsuming the goal is found because in such a case the proof might be unnecessarily
delayed.

4.2 An Algorithm for Control l ing CD?

In the sequel, we introduce an algorithm that allows to control CD” easily and to solve
CD proof problems very efficiently. I t is to be emphasized that our algorithm is only
one of a lot of different possible ones. In general, there might be many different ways
in which way the new rules provided by the inference system can be utilized.
Basic Algor i thm: In order to construe an algorithm for controlling CD” i t is sensible
t o employ the algorithm GTP™ as described i n section 3. Thus, i t is st i l l possible t o
perform the activation steps heuristically. Therefore, techniques like learning or goal
orientation ([2]) can still be utilized. As described in section 3, GTP® employs the
inference rights to restrict the applicability of inference rules. This restriction takes
place in such a manner that activated facts which do not appear to be contributing to
a proof or only contribute to long proof runs are “deactivated” periodically. Thus, they
are not allowed to be involved i n expanding, but only i n contracting inferences. To this
end, a function f is needed that determines the active facts that behave “badly” w.r.t.
a certa in cr i ter ion. More exactly, B(F4) = {M|Z,..., \n|Z} © F4 , i .e. 8 selects a fixed
number of active facts. The realization of algorithm GTP™—well-suited for proving CD
proof problems—uses ß to determine the facts t o be deact ivated (see figure 1).
As one can see, algorithm GTP? is instantiated in the following aspects: The periodical
deactivation of facts is realized i n such a manner that the function 8 determines—after
a fixed number n of activation steps—a fixed number m of active facts that should
not take part in expanding inferences any longer. In our experiments we employed a
number m that is a certain percentage d of the number of activation steps n . The
deactivation is achieved via the inference rule. Retract®. The fact A\|C originating
from the appl icat ion of Ret rac t® i s moved from the set F* t o the recover set FR ,
After that, i t can only take part i n Subsum” but not i n CondDet™. In order to achieve

10 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

begin
F A := 0,FR:= 0,FP := {axII: ax E Ax},cnt:= 0
while FP U FR i= 0

if cnt = n

S := f3(FA)

forall AII E S

FA := FA \ {AII}, F R := F R U {AII \ {CondDet}}
cnt := 0

select Ale E FP U F R with minimal H(A)
if AIC E FP : FP := FP \ {AIC}
else F R := F R

\ {AIC}, C := I
if /\IC was selected from FP 1\ ::L\'ID E FA U F R , 0: o(X) == A:

delete AIC
else

if f-L(A) == AG for a f-L: "proof found"
.M := {X: A' CondDet descendant of A,;; ;!I E FA}
pP := FP U {XII: X E M}
FA := FA U {A!C},cnt := cnt + 1

"proof failed"
end

Figure 1: Algorithm GTpR

that expanding inferences were A is involved in are only delayed for a certain period
of time but not strictly forbidden, infer~nce rule RecoverR must be applied later, i.e.
AIC has to be activated again. To this end it is sensible to select the facts that should
be activated from FP U FR. As we have mentioned previously the duration a fact AIC
remains in F R influences heavily the performance of a prover. We chose the search
guiding heuristic H for accomplishing the task of selecting facts from pR. Thus, we
prefer small facts w.r.t. H that are possibly more important for the proof. Moreover,
utilizing H for selection of facts allows to preserve completeness (see below). It is
reasonable, however, to change the heuristic weight 'H(A) of a fact A E pR to I . H(A),
I E IN, I > 1. Otherwise it might be often the case that a fact that was deactivated
is activated immediately.

Fairness of CDR-derivations: In order to guarantee fairness of CD-derivations
performed by algorithm GTP-we had to cope with the following two aspects. At first
we formalized theoretical demands on algorithm GIP which were sufficient to achieve
fairness, namely that potential facts must not remain passive infinitely long. Further
more. ,ye gave remarks on the way how these demands could be realized. Thus, we
formalized some conditions on the heuristic responsible for the activation of facts. In
the sequel, we will hence deal with the same aspects w.r.t. CVR and GTpR .

Intuitively, the following precondition should be sufficient to preserve fairness of deriva
tions: In order to guarantee that all inferences are finally performed potential facts
must not stay in FP infinitely long. But since GIpR allows for the deactivation of
active facts, i.e. to insert them into the recover set pR, we must also guarantee that

10 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

begin
FA:=0 ,FR :=0 ,FF := {az |T: ax € Az } , cent : =0
while FFU FR £

i fent =n
S i = B(FA)
forall AZ € §

FA = FA \ {MT} ,FR : = FRU {AZ {CondDet}}
ent : =0

select MC € FP U FE with minimal H ())
if \]C € FP: FP := FP \ {MC}
else FR := FR \ {) \ |C} ,C :=T
if A|C was selected from FE A IN |D € FAU FE, go: o(N) = A:

delete A|C
else

i f (A) = Ag for a pu: “proof found”
M := {N : N CondDet descendant of A, A; ÄIZ € F4 }
FP :=FPU{NZ :N eM}
FA:= FAU {MC} , ent : =cn t +1

“proof failed”
end

Figure 1: Algorithm GTP?

that expanding inferences were A is involved in are only delayed for a certain period
of t ime but not strictly forbidden, inference rule Recover” must be applied later, i.e.
A|C has to be activated again. To this end i t is sensible to select the facts that should
be activated from F¥ U FR, As we have mentioned previously the duration a fact A|C
remains in FR influences heavily the performance of a prover. We chose the search-
guiding heuristic H for accomplishing the task of selecting facts from FE. Thus, we
prefer small facts w.r.t. H that are possibly more important for the proof. Moreover,
utilizing H for selection of facts allows to preserve completeness (see below). I t is
reasonable, however, t o change the heuristic weight H (A) o f a fact A € FF t o v - H (}) ,
v € IN, v > 1. Otherwise i t might be often the case that a fact that was deactivated
is activated immediately.
Fairness of CD"*-derivations: In order to guarantee fairness of CD-derivations—
performed by algorithm GTP—we had to cope with the following two aspects. At first
we formalized theoretical demands on algorithm GTP which were sufficient to achieve
fairness, namely that potential facts must not remain passive infinitely long. Further-
more, we gave remarks on the way how these demands could be realized. Thus, we
formalized some conditions on the heuristic responsible for the activation of facts. In
the sequel, we wi l l hence deal wi th the same aspects w.r.t. CD® and GTP".
Intuitively, the following precondition should be sufficient t o preserve fairness of deriva-
tions: In order to guarantee that all inferences are finally performed potential facts
must not stay i n FF infinitely long. But since GTPR allows for the deactivation of
active facts, i.e. to insert them into the recover set FE, we must also guarantee that

4.2 An Algorithm for controlling CDR 11

these facts do not remain in F R infinitely long. Furthermore, we have to consider
the following problem: If an infinite cycle of activation and deactivation of two facts
occur, i.e. each time one fact is deactivated before the other fact is activated, possibly
necessary descendants of these facts will never be generated. In order to circumvent
such infinite cycles it has to be forbidden that a fact is deactivated infinitely often. We
formalize this in the following definition.

Definition 4.2 (The Precondition P)
The precondition P on algorithm GTpR is defined as follows: P holds true iff the al
gorithm is constructed in such a way (the heuristic and the deactivation function f3
are realized in such a manner) that no fact-being element of FP or FR at a certain
point in time-stays infinitely long in FP or F R, respectively, and that no fact ,\II is
deactivated infinitely often.

Precondition P is indeed sufficient to entail fair derivations. However, the proof of
this property is more complex than the proof in section 2. We need one lemma that
formalizes certain properties of algorithm GTpR. In order to describe such properti~s
we use numbers of activations to refer to certain periods of time, i.e. a moment 7

corresponds to a number of activations nT • This is possible because the search state
remains unchanged between two activation steps sand s + 1.

The lemma shows that for a fact ,\[C, ,\1 C E FA U F R at a moment 7, there is a moment
T :::: 7 such that '\jI remains in FA for all moments following T.

Lemma 4.1
Let P be fulfilled. Let (AF)i>a be the CDR -derivation produced by algorithm GTpR. Let
tiC be a fact element of y4 U FR at moment 7. Then exists a moment 7' :::: 7 such
that for all moments T :::: 7' holds: t II is active.
Proof: Since no fact being active or element of the recover set can be deleted, at each
moment T :::: 7 we have: tlI E FA or tlG E FR. Moreover, if at the moment T :::: 7 the
fact tiC with such a property exists, there is at each moment f :::: T the fact tiC such
that it holds: tiC t tiC where

tlG>-- tiC iff tiC E y4 and tiC' E F R or the number of deactivations
of tiC is higher as the respective number of tlG

Because of the fact that >-- is Noetherian a moment T :::: 7 and a fact with right tlG E
FA U F R exists that is >-- -minimal. M ore exactly, P guarantees that G = I and t II E FA
(no fact remains in F R infinitely long). Moreover, this fact will never be deactivated
because it is >---minimal. 0

Utilizing this lemma we can show-in analogy to section 2-that algorithm GTpR pro
duces only fair derivations if precondition P is fulfilled.

Theorem 4.1 (Fairness of a CDR-derivation)
Let P be fulfilled. Then algorithm GTpR produces only fair CVR -derivations.

Proof: We have to show that for each Aa and for each term t which is CD-derivable

4.2 An Algorithm for controlling CD” 11

these facts do not remain i n FP infinitely long. Furthermore, we have to consider
the following problem: If an infinite cycle of activation and deactivation of two facts
occur, i.e. each time one fact is deactivated before the other fact is activated, possibly
necessary descendants of these facts will never be generated. In order to circumvent
such infinite cycles i t has to be forbidden that a fact is deactivated infinitely often. We
formalize this in the following definition.

Definition 4 .2 (The Precond i t ion P)
The precondition P on algorithm GTPF is defined as follows: P holds true iff the al-
gorithm is constructed in such a way (the heuristic and the deactivation function ß
are realized in such a manner) that no fact—being element of FX or FR at a certain
point i n time—stays infinitely long in FF or FR, respectively, and that no fact AT is
deactivated infinitely often.

Precondition P is indeed sufficient to entail fair derivations. However, the proof of
this property is more complex than the proof in section 2. We need one lemma that
formalizes certain properties of algorithm GTP. In order to describe such properties
we use numbers of activations to refer to certain periods of t ime, i.e. a moment 7

corresponds to a number of activations n , . This is possible because the search state
remains unchanged between two activation steps s and s + 1. -
The lemma shows that for a fact A\|C, MC € FAUFZF at a moment 7 , there is a moment
> 7 such that A\|Z remains i n F'4 for all moments following 7.

Lemma 4 .1
Let P be fulfilled. Let (AR);>0 be the CD” -derivation produced by algorithm GTP®. Let
t |C be a fact element of FA U FR at moment 7 . Then exists a moment t ' > T such
that for all moments ¥ > 7 ’ holds: t|T is active.
Proof: Since no fact being active or element of the recover set can be deleted, at each
moment + > T we have: t |T € F* or t |C € FE . Moreover, if at the moment 7 > 7 the
fact t|C with such a property exists, there is at each moment + > 7 the fact t|C such
that it holds: t|C > t|C where

t|IC > IC i f t |C € F* and t|C € FR or the number of deactivations
of t |C is higher as the respective number of t |C

Because of the fact that = is Noetherian a moment # > 7 and a fact with right t |C €
FAUFR exists that is >-minimal. More exactly, P guarantees that C = T and t|T € FA
(no fact remains i n FT infinitely long). Moreover, this fact wil l never be deactivated
because i t is >-minimal. 0

Utilizing this lemma we can show—in analogy to section 2—that algorithm GTP® pro-
duces only fair derivations i f precondition P is fulfilled.

Theorem 4.1 (Fairness of a CD"®-derivation)
Let P be fulfilled. Then algorithm GTPR produces only fair CD? -derivations.
Proof: We have to show that for each Ag and for each term t which is CD-derivable

12 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

jrom Aa it is true that the algorithm computes a CDR -derivation (AF k~o such that =t'IC E AJ jor a j and (J(t') t jor a suostitution (J. Therejore, we show: t'II with
(J(t') == t is passive at a certain moment. Let t be a term. Let Mt = {tl, ... ,tn } be a
minimal set oj terms-CD-derivable jrom Aa -that is needed to CD-derive t. We apply
induction over n:
n = 0 : Then tlI E A{}, i.e. at the beginning passive.
n > 0 : Since Mt is a (minimal) set needed to injer t, terms tj, tk E lvIt exist, such that
t can be derived from tj and tk via CondDet. Since tj and tk are CD-derivable from
Aa and I!vIt}I, IlvItk I < n holds, there are two moments Tj and Tk such that tj II and
t~II are passive. For these terms it holds that (Jj(tj) == tj and (Jk(t~) - tk. Because
oj our precondition tjlI and t~II do not remain infinitely long in :FP, i.e. there are
moments TJ and i k ajter that tj II and t~II are not passive any longer. Hence, at the
moment max({ij , id) two facts tjlGj and t:IGk exist, both are elements of pA U pR,
with dj(tj) == tj and dk(t:) == t~! Cj, Ck ~ I. Lemma 4.1 guarantees that there is a
moment T such that the jacts fj II and {k II stay active. With the help oj these two jacts
it is possible to derive via CondDet a jact t'II that subsumes t. Because oj the jact that.
ij and t: have rights to perform all inferences and all CondDet descendants are hence
generated, t'II is passive at a certain moment. 0

In order to fulfill precondition P it is at first necessary to employ a heuristic H which
finally selects all of the potential facts and the facts from the recover set. In section
2 we showed in which way we can construct such heuristics. Moreover, we must avoid
that an active fact AII is deactivated infinitely often. To this end, it is sensible to
enrich each fact with a natural number that counts how often the respective fact has
been deactivated. If a threshold of Cmax is exceeded (3 is not allowed to select A. Hence,
A cannot be deactivated in future.

Determination of bad facts: As we have described before (3 selects-after a fixed
number of n activations-a set of facts {AliI, ... , Am II} from the current set of active
facts. It is reasonable to forbid f3 to select the following kinds of facts: At first facts
whose number of deactivations has exceeded a certain threshold must not be selected
for fairness reasons (see before). Furthermore, our experiments have shown that it is
wise to forbid the deactivation of axioms. In the sequel, we will describe in which way
f3 determines bad facts among the remaining ones. Remember, that we denote facts as
bad if they contribute to no or only long proof runs.

Facts being involved in a lot of expanding inferences but only in a few contracting
inferences contribute with a high probability to long proof runs. This is mainly because
of the fact that they generate a lot of offspring. If this offspring is not needed for the
proof the proveI' is forced to waste a lot of computation time to handle such facts.
Hence. facts that possibly contribute to long proof runs can be detected by counting
the inferences they were involved in.

The detection of facts that are not needed in any proof is much more difficult. It is
to be emphasized that it is in general undecidable to predict if a fact contributes to a
proof of a goal. Despite of the undecidability the probability is rather high to detect
facts that are unnecessary for proving the goal. This is mainly due to the fact that in
successful proof runs usually only a few activated facts « 5%) are needed. Moreover,

12 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

from Ag i t is t rue that the algorithm computes a CD” -derivation (AR);>0 such that
t ' |C € APR for a j and o(t ') = t for a substitution o . Therefore, we show: t ’ |T with
o (t ') = t i s passive at a certain moment. Let t be a term. Let My = { t 1 , . . . , t , } be a
minimal set of terms—CD-derivable from Aq—that is needed to CD-derive t . We apply
induction over n :
n= 0 : Then t|T € A} , i.e. at the beginning passive.
n> 0 : Since M i is a (minimal) set needed to infer t , terms t;,t;, € Mi, exist, such that
t can be derived from t; and t , via CondDet. Since t; and t ; are CD-derivable from
Ao and |My|,| My,| < n holds, there are two moments 7; and 7; such that t ; | I and
te|Z are passive. For these terms it holds that o;(t}) = t; and ox(t}) = tx. Because
of our precondition t';|Z and t } | I do not remain infinitely long i n F” , i.e. there are
moments 7; and Ty, after that ¢3|T and t1|T are not passive any longer. Hence, at the
moment max({7;,x}) two facts {;|C; and £;|Cy exist, both are elements of F4U FR,
with &;(t;) = t% and Gi(fx) = t i , C j , Cr © I . Lemma 4.1 guarantees that there is a
moment 7 such that the facts £;|T and £x|Z stay active. With the help of these two facts
i t is possible to derive via CondDet a fact t ' |T that subsumes t . Because of the fact that.
¢; and tx have rights to perform all inferences and all CondDet descendants are hence
generated, t'|T is passive at a certain moment. 0

I n order to fulfill precondition P i t is at first necessary to employ a heuristic H which
finally selects all of the potential facts and the facts from the recover set. In section
2 we showed i n which way we can construct such heuristics. Moreover, we must avoid
that an active fact A|Z is deactivated infinitely often. To this end, i t is sensible to
enrich each fact with a natural number that counts how often the respective fact has
been deactivated. If a threshold of cmax is exceeded 3 is not allowed to select A. Hence,
A cannot be deactivated in future.
Determinat ion of bad facts: As we have described before (3 selects—after a fixed
number of n activations—a set of facts { \ | Z , . . . ,A , |Z } from the current set of act ive
facts. I t is reasonable to forbid J to select the following kinds of facts: At first facts
whose number of deactivations has exceeded a certain threshold must not be selected
for fairness reasons (see before). Furthermore, our experiments have shown that i t is
wise to forbid the deactivation of axioms. In the sequel, we wi l l describe in which way
3 determines bad facts among the remaining ones. Remember, that we denote facts as
bad i f they contribute to no or only long proof runs.
Facts being involved in a lot of expanding inferences but only in a few contracting
inferences contribute wi th a high probability to long proof runs. This is mainly because
of the fact that they generate a lot of offspring. If this offspring is not needed for the
proof the prover is forced to waste a lot of computation time to handle such facts.
Hence. facts that possibly contribute to long proof runs can be detected by counting
the inferences they were involved in.
The detection of facts that are not needed i n any proof is much more difficult. I t is
to be emphasized that i t is in general undecidable to predict i f a fact contributes to a
proof of a goal. Despite of the undecidability the probability is rather high to detect
facts that are unnecessary for proving the goal. This is mainly due t o the fact that in
successful proof runs usually only a few activated facts (< 5%) are needed. Moreover,

4.2 An Algorithm for controlling CVR 13

experiments have shown that facts needed for a proof are often quite general, i.e. they
subsume a lot of deduced facts, and often have a small weight according to the heuristic
of the prover ([3]). If we choose facts that have not subsumed many other facts or have
a high weight according to the heuristic it is very probable that these facts are not
needed for a proof. If we assume that we want to select facts periodically after n
activations, i.e. at the moments TO,n, Tl,n, ... , we can define the function (3 = (3Ti,n 2 for
the selection of bad facts at moment Ti,n as follows. Let 'H be the used heuristic, let
Igen.6.Ti,n (A) I 'and Idel.6.Ti,n (A) I be the number of facts that were generated and discarded,
respectively, with the help of A in the period between Ti-l,n and Ti,n' Then set

A small value of (3Ti,n is a sign that a fact A behaves badly because a lot of facts have
been generated but only a few facts have been subsumed.

This technique can be refined by considering facts A as negative which contain terms
f(x, if) as subterms. In particular we must take the position such subterms occur at
into consideration. If A == f(x, if) we can derive a lot of terms with A immediately,

f
but if A == f(s,f(x,i)), e.g., i.e. this special subterm occurs in a deeper position,
f(x, if) might be derived via CondDet and is only able to generate a lot of terms if it
is activated later. Thereby the occurrence of f(x, if) is less negative as before. The
concrete technical realization is as follows: Let O(A) be the set of positions in A, i.e.
t E O(A), if A == f(i 1 , ... , in) and p E O(ii) (1 :::; i :::; n) then ip E O(A). Furthermore,
Alp denotes the subterm of A at position p, i.e. Alt == A, if A == f(t 1 , ••. , in) and
p E O(td (1 :::; i :::; n) then Alip == iilp· Furthermore, let M E IN, M > 1. Then we
can measure the depth of an occurrence of the subterm f(x, t f

) in A with the following
function:

B(A) _ { min({lpl: Alp == f(x, if)}) , if Alp == f(x, if) for a term if and p E O(A)
- M otherwise

If ~ denotes the non-negative difference, i.e. a ~ b = 0 if a < b, we can refine the
definition of (3Ti.n to

vVith the help of the parameter .M we can decide until which depth subterms f(x, if)
are considered. Note that e is usually only needed to break ties between facts that
have the same weight according to (3T"n' Therefore facts are assessed mainly by means
of statistical and not heuristical criteria.

Although this definition of function (3 is rather simple our results (cf. section 4.3) were
fairly satisfactory. Nevertheless, it would be interesting to examine whether a more
complex definition of (3 entails better results.

2Note that the function f3 depends strongly on the moment it is applied on the set of active facts.
However, we make this dependency explicit only if it is necessary to avoid confusion.

4.2 An Algorithm for controlling CD? 13

experiments have shown that facts needed for a proof are often quite general, i.e. they
subsume a lot of deduced facts, and often have a small weight according t o the heuristic
of the prover ([3]). I f we choose facts that have not subsumed many other facts or have
a high weight according to the heuristic i t is very probable that these facts are not
needed for a proof. If we assume that we want to select facts periodically after n
activations, i.e. a t the moments 7g, 71 ,5 , . . . , We can define the function 8 = Br, 2 for
the selection of bad facts at moment 7; , as follows. Let H be the used heuristic, le t
|genar, „(A)land |dela,,„ (A)] be the number of facts that were generated and discarded,
respectively, wi th the help of A i n the period between 7 ;_ ; , and 7; , . Then set

Brin(A) i = |delar, ,(N)] — lgenar,,(A)| — H(A)

A small value of fr,, is a sign that a fact A behaves badly because a lot of facts have
been generated but only a few facts have been subsumed.
This technique can be refined by considering facts A as negative which contain terms
f (z , t ') as subterms. I n part icular we must take the pos i t ion such subterms occur at
into consideration. I f A = f (z , t ’) we can derive a lot of terms with \ immediately,
but i f A = f (s , f(z,t')), e.g., i.e. this special subterm occurs in a deeper position,
f (z , t') might be derived via CondDet and is only able to generate a lot of terms i f i t
is activated later. Thereby the occurrence of f (x , t ') is less negative as before. The
concrete technical realization is as follows: Le t O()A) be the set of positions i n A, i .e.
e€ O(N), i f A= f l t ı , . . . , t n) and p € O(t ;) (1 < ¢ < n) then ip € O(N). Furthermore,
Alp denotes the subterm of A at position p, i.e. Ale = A, i f A = f (t ı , . . . , tn) and
p € O(t;) (1 <1 <n) then A|ip = tilp. Furthermore, let M € IN, M > 1. Then we
can measure the depth of an occurrence of the subterm f (z , t ’) i n A wi th the following
function:

00 _ J min({]pl : Alp = f (x , t) }) , i f Alp = f (z , t ') for a term ¢' and p € O(})
M , otherwise

I f — denotes the non-negative difference, i.e. a — b = 0 i f a < b, we can refine the
definition of 8,,, to

Bre = Br; - (M — (A)

With the help of the parameter M we can decide unt i l which depth subterms f(zx,t’)
are considered. Note that 9 is usually only needed to break ties between facts that
have the same weight according to 3 , ,. Therefore facts are assessed mainly by means
of statistical and not heuristical criteria.

Although this definition of function ß is rather simple our results (cf. section 4.3) were
fairly satisfactory. Nevertheless, i t would be interesting to examine whether a more
complex definition of 7 entails better results.

?Note that the function 3 depends strongly on the moment i t is applied on the set of active facts.
However, we make this dependency explicit only if i t is necessary to avoid confusion.

14 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

Example
GTP(ro)

time activ.
GTpR(d == 10%)
time activ.

GTp/"(d == 20%)
time activ.

GTP'/<:(d == 30%)
time activ.

OTTER

LCLOO6-1 43 544 36 534 32 532 27 528 244
LCL016-1 47 554 41 557 34 541 30 466 151 I

LCL045-1 60 670 53 665 43 644 32 615 1467
LCL058-1 59 710 54 710 46 708 37 703 423
LCL060-1 63 733 59 733 49 733 40 726 509
LCL068-1 121 982 109 983 89 977 148 1217 257
LCL069-1 80 773 73 774 61 774 25 501 5
LCL070-1 55 715 47 715 37 693 21 568 480
LCL071-1 55 687 51 687 36 665 33 656 511
LCL072-1 95 826 84 826 72 825 39 613 224
LCL111-1 79 852 68 852 56 835 45 832 5
LCL113-1 64 737 55 737 46 731 37 725 1468
LCL115-1 48 616 45 622 38 617 29 592 7

Table 1: GIP vs. GIpR

4.3 Experimental Results

In order to perform an experimental evaluation we used the program CODE ([5]) as
our basic proveI'. We integrated into this program that originally used algorithm GIP
inference rights employing the techniques presented in section 4. We applied CODE to
proof problems stemming from the area of logic calculi which McCune and Wos tackled
in [8] with their renowned proveI' OTTER. These problems can also be found in the
TPTP library ([13]) version 1.2.1, namely in the LCL domain. In order to show that
the speed-ups we achieved with our techniques are not due to the weakness of our basic
proveI' we compare the results obtained with CODE with those of OTTER. The results
with CODE were obtained on a SPARCstation ELC, the results with OTTER on a
SPARCstation 1+ which is a comparable machine. The results of OTTER depicted in
the following table 1 are those presented in [8], and were achieved by the best of up to
six different heuristics. The results of CODE were obtained with heuristic tV explained
in [5].

Results: In the sequel, we shall investigate whether speed-ups can be achieved if
we use algorithm GIp R instead of algorithm GIP. Deactivation of facts was performed
after n = ,50 activation steps. At each of these moments m facts were deactivated, with
m = d% ofn (d can be found in table 1). The parameter M that denotes the maximal
penalty that can be given due to syntactical properties of a term was set to M = 5,
the parameter I to the value 2.

The table 1 compares the results obtained with CODE and OTTER. Columns 2 and 3
show the run time (in seconds) and the number of activations needed by heuristic tV, the
next six columns show the corresponding values if we deactivate a certain percentage
d of the activated facts. Column 10 gives the run time needed when using OTTER.
Table 1 shows that algorithm GIp R which utilizes inference rights outperforms GIP. If
we deactivate only a small percentage of the activated facts the speed-ups are rather
low, but if we increase the number of deactivated facts we can achieve higher speed-ups.

14 4 INFERENCE RIGHTS AND CONDENSED DETACHMENT

GTP(=) GTPR(d = 10%) | GTP™(d = 20%) | GTP"(d = 30%)
Example time | ac t i v . | t ime | ac t iv . | t ime | ac t iv . | t ime [act iv . OTTER
LCLO06-1 | 43 544 36 534 32 532 27 528 244
LCLO16-1 | 47 554 41 557 34 541 30 466 151
LCL045-1 | 60 670 53 665 43 644 32 615 1467
LCLO58-1 | 59 | 710 | 54 | 710 | 46 | 708 | 37 | 1703 423
LCLO60-1 | 63 | 733 59 733 49 733 40 726 509
LCLO68-1 | 121 | 982 109 983 89 977 148 1217 257
LCLO69-1 | 80 773 73 774 61 774 25 501 5
LCLO70-1 | 55 | 715 47 715 37 693 21 568 480
LCLO71-1 | 55 687 51 687 36 665 33 656 511
LCLO72-1 | 95 826 84 826 72 825 39 613 224
LCL111-1 | 79 852 68 852 56 835 45 832 5
LCL113-1 | 64 737 55 737 | 46 731 37 725 1468
LCL115-1 | 48 616 45 622 1 38 617 29 592 7

Table 1: GTP vs. GTP?

4.3 Experimental Results

In order to perform an experimental evaluation we used the program CODE ([5]) as
our basic prover. We integrated into this program that originally used algorithm GTP
inference rights employing the techniques presented i n section 4. We applied CODE to
proof problems stemming from the area of logic calculi which McCune and Wos tackled
in [8] with their renowned prover OTTER. These problems can also be found in the
TPTP library ([13]) version 1.2.1, namely in the LCL domain. In order to show that
the speed-ups we achieved wi th our techniques are not due to the weakness of our basic
prover we compare the resu l ts obtained w i th CODE wi th those of OTTER. The results
with CODE were obtained on a SPARCstation ELC, the results with OTTER on a
SPARCstation 14+ which is a comparable machine. The results of OTTER depicted in
the following table 1 are those presented in [8], and were achieved by the best of up to
six different heuristics. The results of CODE were obtained with heuristic @ explained
i n [5].
Results: In the sequel, we shall investigate whether speed-ups can be achieved i f
we use algorithm GTP” instead of algorithm GTP. Deactivation of facts was performed
after n = 50 activation steps. A t each of these moments m facts were deact ivated, w i th
m = d% of n (d can be found i n table 1). The parameter M that denotes the maximal
penalty that can be given due to syntactical properties of a term was set to M = 5,
the parameter y to the value 2.
The table 1 compares the results obtained with CODE and OTTER. Columns 2 and 3
show the run time (in seconds) and the number of activations needed by heuristic @, the
next six columns show the corresponding values i f we deactivate a certain percentage
d of the activated facts. Column 10 gives the run time needed when using OTTER.
Table 1 shows that algorithm GTP™ which utilizes inference rights outperforms GTP. I f
we deactivate only a small percentage of the activated facts the speed-ups are rather
low, but i f we increase the number of deactivated facts we can achieve higher speed-ups.

15

In table 1 we can find one problem where deactivation of facts causes longer run-times
because important facts were deactivated. But such a situation is quite improbable and
the proof could still be found because we do not loose completeness by deactivation.

Evaluation: If we take a closer look at the problems where we achieved speed-ups we
can recognize that in nearly all cases the "real" proof of the goal did not change. As
the real proof we denote the sequence of activated facts, ordered w.r.t. the moment of
their activation, that were really necessary for proving the goal. This way it is obvious
that our deactivation function is indeed well-suited in judging facts. Although the
real proof did not change we could achieve speed-ups. These speed-ups stem from the
following two aspects: On the one hand table 1 shows that when using GTpR instead
of GIP often less activation steps had to be performed. This is mainly due to the fact
that after the deactivation of unnecessary facts their unnecessary offspring was not
generated and hence not activated. On the other hand we find some examples where
we achieved speed-ups although the number of activation steps did not decrease. This
is possible because if we use GTpR instead of GTP the period of time needed for one
activation step is shorter: The periodical deactivation of facts entails that the number
of facts that take part in time consuming expanding inferences increases only slightly
in comparison to conventional approaches.

5 Conclusion and Future Work

Automated deduction systems have reached a considerable level of performance. Never
theless, the use of conventional approaches to control deduction systems-heuristic con
trol of the search and exhaustive application of inference rules (saturation strategy)-is
sometimes problematic. Because of the difficulty to discover an appropriate heuristic
for a lot of different examples it is very probable to employ a heuristic which activates
many facts not contributing to a proof. This entails much overhead due to the common
saturation strategy.

Our approach of controlling the search by means of inference rights can help to deal
better with these problems. Integration of inference rights into already existing infer
ence systems makes it possible to achieve a more flexible control of the search and hence
to reduce the amount of time for processing unnecessary facts. Inference rights allow
to introduce an efficient mechanism for forgetting of facts what usually is not an option
in generating theorem provers. Despite of the fact that they cause a small overhead
our experimental results in the area of condensed detachment were fairly satisfactory.
Substantial speed-ups in comparison to standard methods were achieved.

In order to substantiate our work with further results future work should deal with
experiments in different calculi. In particular we have to consider the fact that most
calculi contain more inference rules as only one rule for generating and one rule for
deleting of facts. Hence, further research is necessary to find out whether the restriction
of the applicability of such rules via inference rights is sensible.

15

In table 1 we can find one problem where deactivation of facts causes longer run-times
because important facts were deactivated. Bu t such a situation is quite improbable and
the proof could still be found because we do not loose completeness by deactivation.
Evaluation: If we take a closer look at the problems where we achieved speed-ups we
can recognize that in nearly all cases the “real” proof of the goal did not change. "As
the real proof we denote the sequence of activated facts, ordered w.r.t. the moment of
their activation, that were really necessary for proving the goal. This way i t is obvious
that our deactivation function is indeed well-suited in judging facts. Although the
real proof did not change we could achieve speed-ups. These speed-ups stem from the
following two aspects: On the one hand table 1 shows that when using GTP® instead
of GTP often less activation steps had to be performed. This is mainly due to the fact
that after the deactivation of unnecessary facts their unnecessary offspring was not
generated and hence not activated. On the other hand we find some examples where
we achieved speed-ups although the number of activation steps d id not decrease. This
is possible because if we use GTP instead of GTP the period of time needed for one
activation step is shorter: The periodical deactivation of facts entails that the number
of facts that take part i n time consuming expanding inferences increases only slightly
i n comparison to conventional approaches.

5 Conclusion and Future Work

Automated deduction systems have reached a considerable level of performance. Never-
theless, the use of conventional approaches to control deduction systems—heuristic con-
trol of the search and exhaustive application of inference rules (saturation strategy)—is
sometimes problematic. Because of the difficulty to discover an appropriate heuristic
for a lot of different examples i t is very probable to employ a heuristic which activates
many facts not contributing to a proof. This entails much overhead due to the common
saturation strategy.
Our approach of controlling the search by means of inference rights can help to deal
better with these problems. Integration of inference rights into already existing infer-
ence systems makes i t possible to achieve a more flexible control of the search and hence
to reduce the amount of time for processing unnecessary facts. Inference rights allow
to introduce an efficient mechanism for forgetting of facts what usually is not an option
i n generating theorem provers.. Despite of the fact that they cause a small overhead
our experimental results in the area of condensed detachment were fairly satisfactory.
Substantial speed-ups i n comparison to standard methods were achieved.
In order to substantiate our work wi th further results future work should deal wi th
experiments i n different calculi. In particular we have to consider the fact that most
calculi contain more inference rules as only one rule for generating and one rule for
deleting of facts. Hence, further research is necessary to find out whether the restriction
of the applicability of such rules via inference rights is sensible.

16 REFERENCES

References

[1]	 Denzinger, J.: Knowledge-Based Distributed Search Using Teamwork, Proc.
ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[2]	 Denzinger, .J.; Fuchs, M.: Goal-oriented equational theorem proving using
teamwork, Proc. 18th Kl-94, Saarbriicken, LNAl 861, 1994, pp. 343-354.

[:3]	 Denzinger, J.; Fuchs, D.: Referees for Teamwork, Proc. FLAlRS '96, Key
West, FL, USA, 1996, pp. 454-458.

[4]	 Denzinger, J.; Schulz, S.: Learning Domain J(nowledge to Improve Theorem
Proving, Proc. CADE-13, New Brunswick, NJ, USA, LNAl 1104, 1996, pp. 62-76.

[.5]	 Fuchs, M: Powerful Search Heuristics Based on Weighted Symbols) Level and
Features, Proc. FLAlRS '96, Key West, FL, USA, 1996, pp. 449-453.

[6]	 Fuchs, M.: Experiments in the Heuristic Use of Past Proof Experience, Proc.
CADE-13, New Brunswick, NJ, USA, LNAl 1104,1996, pp. 523-537.

[7]	 Lukasiewicz, J.: Selected Works, 1. Borkowski (ed.), North-Holland, 1970.

[8]	 McCune, W.; Wos, L.: Experiments in Automated Deduction with Condensed
Detachment, Proc. CADE-ll, Saratoga Springs, NY, USA, 1992, LNAl 607, pp.
209-223.

[9]	 McCune, W.: OTTER 3.0 Reference Manual and Guide, Techn. Report ANL
94/6, Argonne Natl. Laboratory, 1994.

[10]	 Peterson, G.J.: An automatic theorem prover for substitution and detachment
systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1, January 1976,
pp. 119-122.

[11]	 Slaney, J.: SCOTT: A Model-Guided Theorem Prover, Proc. I.JCAI '93, Cham
bery, FRA, 1993, pp. 109-114.

[12]	 Sutcliffe, G.: A Heterogeneous Parallel Deduction System, Technical Report
lCOT TM-1184, Proceedings of FGCS'92 Workshop \\13, 1992.

[1:3]	 Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library, Proc.
CADE-12, Nancy, FRA, 1994, LNAl 814, pp. 252-266.

[14]	 Tarski, A.: Logic) Semantics) Metamathematics, Oxford University Press, 19.56.

[1.5]	 Wos, L.: Searching for Circles of Pure Proofs, JAR 15, 1995, pp. 279-315.

16 ; REFERENCES

References

[1] Denz inger , J . : Knowledge-Based Distributed Search Using Teamwork, Proc.
ICMAS-95, San Francisco, AAAI-Press, 1995, pp. 81-88.

[2] Denz inger , J . ; Fuchs, M . : Goal-oriented equational theorem proving using
teamwork, Proc. 18 ‘ KI-94, Saarbrücken, LNA I 861, 1994, pp. 343-354.

[3] Denzinger, J . ; Fuchs, D . : Referees for Teamwork, Proc. FLAIRS '96, Key
West, FL, USA, 1996, pp. 454-458.

[4] Denzinger, J.; Schulz, S.: Learning Domain Knowledge to Improve Theorem
Proving, Proc. CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp. 62-76.

[5] Fuchs, M : Powerful Search Heuristics Based on Weighted Symbols, Level and
Features, Proc. FLAIRS 96, Key West, FL , USA, 1996, pp. 449-453.

[6] Fuchs, M . : Ezperiments in the Heuristic Use of Past Proof Experience, Proc.
CADE-13, New Brunswick, NJ, USA, LNAI 1104, 1996, pp. 523-537.

[7] Lukasiewicz, J. : Selected Works, L. Borkowski (ed.), North-Holland, 1970.

[8] McCune, W. ; Wos, L . : Ezperiments in Automated Deduction with Condensed
Detachment, Proc. CADE-11, Saratoga Springs, NY, USA, 1992, LNAI 607, pp.
209-223.

[9] McCune, W. : OTTER 3.0 Reference Manual and Guide, Techn. Report ANL-
94/6, Argonne Natl. Laboratory, 1994.

[10] Peterson, G.J.: An automatic theorem prover for substitution and detachment
systems, Notre Dame Journal of Formal Logic, Vol. 19, Number 1, January 1976,
pp- 119-122.

[11] Slaney, J . : SCOTT: A Model-Guided Theorem Prover, Proc. IJCAI ’93, Cham-
bery, FRA, 1993, pp. 109-114.

[12] Sutcliffe, G . : A Heterogeneous Parallel Deduction System, Technical Report
[COT TM-1184, Proceedings of FGCS’92 Workshop W3, 1992.

[13] Sutcliffe, G.; Suttner, C.; Yemenis, T . : The TPTP Problem Library, Proc.
CADE-12, Nancy, FRA, 1994, LNAI 814, pp. 252-266.

[14] Tarski, A . : Logic, Semantics, Metamathematics, Oxford University Press, 1956.

[15] Wos, L . : Searching for Circles of Pure Proofs, JAR 15, 1995, pp. 279-315.

	BB_0009.jpg

