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Abstract 

A lot of the human ability to prove hard mathematical theorems can be ascribed 
to a problem-specific problem solving know-how. Such knowledge is intrinsically 
incomplete. In order to prove related problems human mathematicians, however, 
can go beyond the acquired knowledge by adapting their know-how to new related 
problems. These two aspects, having rich experience and extending it by need, can be 
simulated in a proof planning framework: the problem-specific reasoning knowledge is 
represented in form of declarative planning operators, called methods; since these are 
declarative, they can be mechanically adapted to new situations by so-called meta
methods. In this contribution we apply this framework to two prominent proofs in 
theorem proving, first, we present methods for proving the ground completeness of 
binary resolution, which essentially correspond to key lemmata, and then, we show 
how these methods can be reused for the proof of the ground completeness of lock 
resolution. 

Introduction 

Machine-oriented theorem provers like those based on resolution, paramodulation, or re
writing have been successfully applied in different fields of logic and mathematics (see, 
e.g., [22, chapters 9,10]). The strength of these systems is remarkable, but the general 
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complexity results demonstrate clearly that no algorithm can be constructed to practically 
solve arbitrary tasks, even propositional logic is in a class that is generally considered 
intractable. The success of human mathematicians can be largely ascribed to the fact 
that they are generally specialised in some fields and can rely on domain-specific problem 
solving techniques they have accumulated throughout their professional experiences. This 
kind of problem solving behaviour has been first supported in interactive theorem proving 
systems (e.g. LCF [11] or Nuprl [9]), which contain specific problem solving knowledge 
called tactics. In order to model the dynamic search process as well, tactics have been 
extended to so-called methods by adding specifications. Intuitively speaking, a method 
contains a piece of knowledge for solving or simplifying problems or transforming them 
into a form that is easier to solve. Specifications of methods essentially consist of pre- and 
postconditions for the method to allow connecting them to proof plans. These proof plans 
are the basic elements of a more general planning framework (e.g. elt-M [7, 8, 6]). 

The reasoning power of such plan-based systems is not derived from a (theoretically) 
complete underlying reasoning calculus, but relies on domain-specific problem solving 
knowledge. Indeed the methods may be theoretically complete, practically this is of minor 
importance. What matters is, whether a problem solver, either human or computer, has 
the necessary domain-specific problem solving knowledge that offers the chance to solve the 
problem with a reasonable amount of search. Such domain-specific knowledge is, however, 
for non-trivial domains inevitably limited and hence practically incomplete. This leads to 
a limited reasoning power of the corresponding system. While this holds for plan-based 
systems and human mathematicians alike, the latter often go beyond their specialised 
knowledge. They have the ability to adapt existing methods to novel situations, which 
is one of the main features contributing to our problem solving competence (see [19] for 
mathematical reasoning and [21] for general problem solving). Although very important, 
this issue remains widely unaddressed in proof planning systems. Actually in a framework 
where tactics are described purely procedurally, this task is quite formidable and equals to 
the problem of mechanically modifying procedures. 

In previous work, we have developed a declarative approach for representing methods 
that enables a mechanical modification and adaptation to novel tasks [15, 16]. In the 
following section we shortly recall the general framework (the description of the formal 
framework as well as parts of this introduction are based on [13]) and then present the 
user-written methods for proving the ground completeness of binary resolution. In doing 
so we follow Bledsoe's formalisation of the problem [3], in particular we use the lemmata 
proposed there for working out the main theorem. This proof is the most advanced case 
study that has been done with the Q-MKRP proof development environment [14] up to now 
and is first described in [20]. In this work we show that our general framework can not only 
be applied to specify and automatically solve this problem, but that this proof can even be 
transferred to a similar problem, namely the ground completeness of lock resolution. The 
general idea of using the first proof as a guideline for the second has been investigated by 
Bledsoe [3] too. We discuss the differences between the two approaches in Section 3, where 
we present the two examples in detail. Before doing so we recapitulate in the next section 
our proof planning framework. 
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2 A Declarative Approach toward Proof Planning 

In this section we present our approach to proof planning and show how methods can be 
declaratively represented and mechanically modified. 

The Planning Framework 

The work in this paper should be understood in the setting of a computational model 
that casts the entire process of theorem proving, from the analysis of a problem up to the 
completion of a proof, as an interleaving process of proof planning, method execution and 
verification. In particular, this model ascribes a problem solver's reasoning competence to 
the existence of methods together with a planning mechanism that uses these methods for 
proof planning. 

To understand the proof planning process, please remember that the goal of proof 
planning is to fill gaps in a given partial proof tree by forward and backward reasoning [15]. 
Thus from an abstract point of view the planning process is the process of exploring the 
search space of planning states generated by the plan operators in order to find a complete 
plan (i.e. a sequence of instantiated plan operators) from a given initial state to a terminal 
state. 

Concretely a planning state contains a subset of proof lines which are formulated in 
Gentzen's natural deduction (ND for short) calculus in the current partial proof that 
corresponds to the boundaries of a gap in the proof-note that we adopted a linearised 
version of ND proofs as introduced in [2]. This subset can be divided into open lines (that 
must be proved to bridge the gap) and support lines (that can be used as premises to bridge 
it). The initial planning state consists of all lines in the initial problem; the assumptions 
are the support lines and the conclusion is the only open line. The terminal planning state 
is reached when there is no more open line in the planning state. 

A Declarative Representation for Methods 

In order to have the possibility to adapt methods mechanically, we represent methods 
in a mainly declarative manner, only an almost constant "procedural content" is non
declarative. Formally, a method in our approach is defined as a 6-tuple with the compo
nents: 

Declarations: A signature that declares the meta-variables used in the method, 

Premises: Schemata of proof lines which are used by this method to prove the conclusions, 

Constraints: Additional restrictions on the premises and the conclusions, which can not be 
formulated in terms of proof line schemata (for a detailed description of the constraint 
language see [16]), 

Conclusions: Schemata of proof lines which this method is designed to prove, 
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Declarative Content: A piece of declarative knowledge interpreted by the procedural con
tent. This slot is currently restricted to schemata of partial proofs, 

Procedural Content: Either a standard procedure interpreting the declarative content, or 
a special purpose inference procedure. 

Method 

Speci
fication 

Tactic 

Declarations 

Premises 

Constraints 

Conclusions 

Declarative 
Content 

Procedural 
Content 

Declar
ative 
Part 

Proce
dural 
Part 

Methods can be very general, for instance consist essentially of one application of a 
rule at the calculus level. More specific methods comprise proof ideas, for instance, to use 
a homomorphy property, to apply mathematical induction or to use diagonalisation. Such 
methods are typically formulated in terms of proof schemata. The most specific methods 
-consist of full proofs for specific problems. In order to clarify this notion, let us look at a 
trivial example. It is derived from a calculus level rule, namely implication introduction. 

Method: implies-i 

Declarations 

L 1 , L 2 , L 3 : prln; 
H 2;H3 : list(prln); 
w,<I> : term; 
ffiL2 

H 2 +- listcons(L1, H 3 ) 

eL3 , ffiL 1 

L 1 · (L1 ) r- <I> (Hyp) 
L 2 . H 2 r- W (OPEN) 

L 3 · H3 r <I>-+W (-+1 L 2 ) 

schema  interpreter 
'-

Premisses 

Constraint 

Conclusions 

Declarative 

Content 

Procedural 

Content 

Figure 1: The implies-i method 
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Declarative Content: A piece of declarative knowledge interpreted by the procedural con-
tent. This slot is currently restricted to  schemata of  partial  proofs,
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a special purpose inference procedure.
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Methods can be very general, for instance consist essentially of one application of a
rule at the calculus level. More specific methods comprise proof ideas, for instance, to  use
a homomorphy property, to  apply mathematical induction or to  use diagonalisation. Such
methods are typically formulated in terms of  proof schemata. The most specific methods
consist of full proofs for specific problems. In order to clarify this notion, let us look at a
trivial example. It is derived from a calculus level rule, namely implication introduction.

Method : impl ies- i
Ly ,  La ,  Ls  : p r i n ;

Declarations Hy,  H j  : list(prin);
vv, : term;

Premisses BL
Constraint H ,  + listcons(L1, H3)
Conclusions SL3 ,©L ;

A L i .  ( I ) +@ (Hyp)
Oseharakive L,, Hy FU  (OPEN)

omen  Ly. H i  +b ® 50  (=I  Ly)
Procedural .schema — interpreter
Content “

Figure 1: The impl ies- i  method



This method proposes to prove an implication that matches £3 (q> and Ware meta
variables that can match with arbitrary formulae, all meta-variables are declared in the 
"Declarations" slot.) by introducing a hypothesis (method line Lr) and the succedent 
formula as a new goal in method line L 2 • L 1 and L 2 are newly introduced into the current 
planning state by this method; this is indicated by the label EEl. In the same way we label 
L 3 with a e, since it can be deleted from the planning state. In addition to the existence 
of L 3 in the current planning state, the constraint of this method has to be fulfilled, what 
is trivial in this case, since the constraint just binds the assumption list of line L 2 (bound 
to the meta-variable H2 ) to the result of appending the line L 1 to the assumption list of 
the line £3 (for a detailed description of the constraint language see [16]). 

Planning with Methods 

The key feature of our method language is that the planning operator is directly derived 
from the specification of a method. However, the specification only gives a static view 
(viewed from the completed proof) of the method which is inadequate for describing the 
dynamic behaviour needed in proof planning. Statically a method derives its conclusions 
from its premises. Dynamically, it is important to declare which lines in the specification 
have to be present in the planning state for the method to be applicable (we call them 
required lines), and which are constructed by the method. The first are lines without an 
annotation and they will not be modified by the method in which they occur (e.g. lines 
with a definition or a lemma). The latter are lines annotated by the label "EEl" in the 
method specification. In contrast to these, we have lines that are no longer useful for the 
planner and which can be deleted from the current planning state. They are annotated by 
the label "e". 

From such an operator, it is easy to construct a STRIPS plan operator that has three 
slots: the precondition list, the delete list, and the add list. 

Method name 
Premises PI, .. , , Pn p 

ePI' ... , ep-_ 
+ ~ E9PI , .. . , E9pn p 

+ 

Constraint "IJ1 
Conclusions Cl, ... , Cne 

ecl , '" , ec-_ 
+ ~eE9CI , ... , E9c + 

ne 

STRIPS-Op name 
Pre: (!) PI, , (!) Pn p 

(!) PI' , (1) P-~ 
n p 

(?) Cl, , (?) Cne 
(?) Cl, , (?) c-_ 

, ne 
"IJ1 

Del: (!) PI' ... , (!) P-_ 
n p 

(?) Cl' ... , (?) c-_ 
ne 

Add: (?) pt, ... , (?) p++
n 

(!) ct, ... , (1) C++ 
p 

ne 

Figure 2: Generation of STRIPS operators from methods 

While in Figure 2 the most general case of such a translation is represented, usually 
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have to be present in the planning state for the method to be applicable (we call them
required lines), and which are constructed by the method. The first are lines without an
annotation and they will not be modified by the method in which they occur (e.g. lines
with a definition or a lemma). The latter are lines annotated by the label “®” in the
method specification. In contrast to these, we have lines that are no longer useful for the
planner and which can be deleted from the current planning state. They are annotated by
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From such an operator, it is easy to  construct a STRIPS plan operator that has three
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STRIPS-Op name
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not all possible labelings are used in a single method. The unlabelled lines in a method 
go to the preconditions slot and the lines with a "E9" to the add slot. The lines labelled 
with "9" are moved to the precondition slot and to the delete slot. In the preconditions 
and the delete slot the premises become support lines and the conclusions become open 
lines. In the add slot it is the other way round. The content of the constraint slot W is 
inserted into the preconditions slot of a STRIPS operator. Note that W is not a proof line 
that is present in the planning state, but a formula specifying an additional applicability 
condition. 

For our case study we essentially use a variant of the following planning algorithm: 

While there are still open lines in the planning state 

1.	 Find all possibilities of an application of the methods 

(a)	 Select a method M. 

(b)	 Find all possibilities of matching the lines in M's precondition 
slot with lines in the planning state. 

(c) Evaluate the constraint of lvI with the bindings established in 
l(b). 

2.	 Select the "best" method M (this is the choice point for the back
tracking mechanism and the point where some heuristic control can 
take 'place) 

3.	 Apply the plan operator M to the planning state 

(a) Insert the lines in the add slot of M into the planning state. 

(b) Remove the lines in	 the delete slot of M from the planning 
state. 

Note that backward planning is not possible from the viewpoint of this algorithm which 
uses the translated STRIPs-operators since the terminal state is defined by the absence of 
open lines. However, in the static model, that is, in the space of proof lines, we can model 
by this planning approach reasoning forwards from the assumptions towards the open lines 
as well as reasoning backwards from the open lines towards the support lines. During 
the matching of the lines in the preconditions slot and the evaluation of the constraint all 
meta-variables should have been bound to object level entities. Therefore, the new lines of 
step 3.(a) can be constructed by simply instantiating the meta-variables. 

Once a complete proof plan is found, all methods (i.e. their tactics) in the proof plan are 
successively executed in order to construct a calculus level proof. The verification phase, 
which follows the application of the methods, may result in a recursive call to the planner 
or in backtracking. While a recursive call refines a plan and models hierarchical planning, 
the backtracking rejects the plan and calls the proof planner in order to find an alternative 
one. 
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Modification of Methods 

The standard practice of proof planning is to use a fixed repertoire of methods in order to 
produce a proof plan [6]. Difficulties arise when new problems are encountered exceeding 
the power of the existing methods. To overcome this, a main feature contributing to the 
problem solving competence of mathematicians becomes crucial, namely that they can 
extend their current problem solving repertoire by adapting existing methods to suit novel 
situations. 

By adopting a declarative approach for formulating methods, it is firstly possible to 
extract methods from proofs, secondly it is also feasible to formulate meta-methods adapt
ing existing methods. Currently, a meta-method is essentially a procedure which takes as 
input some methods and some additional parameters, and pr<?duces a new method. We 
have already identified a variety of meta-methods such as: the generalisation of methods 
in order to apply them in less specific situations or the syntactic adaptation of methods to 
bridge syntactic gaps, for instance, arities of predicates. 

One potential criticism is that we should instead construct more general methods which 
cover large classes of problems. Although general methods are definitely needed for effective 
proof planning systems, this by no means excludes the need of modification. It is very 
difficult, for instance, to come up with a single method covering all possible cases which 
a human mathematician would intuitively consider as an instance of homomorphy. A 
well-known example is the rippling method developed in Bundy's group, which has been 
extended from rippling-out [5] to a method covering a wide range of related problems [6]. 

The intention of our work can be compared to Ireland's approach of proof critics [17]. 
While proof critics are specific and attached to single methods, meta-methods embody 
general problem independent procedures for adapting arbitrary methods which meet some 
applicability conditions. The related work of Giunchiglia and Traverso [10] to represent 
tactics in a logical meta-Ianguage has a similar motivation as well, namely to mechanically 
adapt existing tactics. Their formalism is more expressive since they can represent proce
dural aspects like loops on a logical meta-Ievel too. In our approach, the declarative part of 
methods basically consists of a proof schema. This leads to a more natural representation 
and enables an easier transformation in some cases. 

Two Completeness Proofs as Case Study 

In this section we want to illustrate our proof planning framework by the example of proving 
the refutation completeness of binary and locking ground resolution. First, a proof plan 
for the completeness of the binary resolution is constructed, and then this proof plan is 
reused and adapted to a proof plan for the completeness of lock. 

In order to give a formal proof of this theorem we follow Bledsoe's encoding [3]. In this 
work, Bledsoe describes how a proof of the completeness of lock resolution can be derived 
by analogy from a given proof plan for binary resolution. Although we use the same logical 
encoding, there are some differences in the approaches. Firstly, our notion of a proof plan 
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produce a proof plan [6]. Difficulties arise when new problems are encountered exceeding
the power of the existing methods. To overcome this, a main feature contributing to  the
problem solving competence of mathematicians becomes crucial, namely that they can
extend their current problem solving repertoire by adapting existing methods to suit novel
situations.

By  adopting a declarative approach for formulating methods, i t  is firstly possible to
extract methods from proofs, secondly it is also feasible to  formulate meta-methods adapt-
ing  existing methods. Currently, a meta-method is essentially a procedure which takes as
input some methods and some additional parameters, and produces a new method. We
have already identified a variety of meta-methods such as: the generalisation of methods
in  order to  apply them in less specific situations or the syntactic adaptation of  methods t o
bridge syntactic gaps, for instance, arities of predicates.

One potential criticism is that we should instead construct more general methods which
cover large classes of problems. Although general methods are definitely needed for effective
proof planning systems, this by no means excludes the need of modification. I t  is very
difficult, for instance, to  come up with a single method covering all possible cases which
a human mathematician would intuitively consider as an instance of homomorphy. A
well-known example is the rippling method developed in Bundy’s group, which has been
extended from rippling-out [5] to a method covering a wide range of related problems [6].

The intention of our work can be compared to  Ireland’s approach of proof critics [17].
While proof critics are specific and attached to  single methods, meta-methods embody
general problem independent procedures for adapting arbitrary methods which meet some
applicability conditions. The related work of Giunchiglia and Traverso [10] to  represent
tactics in a logical meta-language has a similar motivation as well, namely to mechanically
adapt existing tactics. Their formalism is more expressive since they can represent proce-
dural aspects like loops on a logical meta-level too. In our approach, the declarative part of
methods basically consists of a proof schema. This leads to  a more natural representation
and enables an easier transformation in  some cases.

3 Two Completeness Proofs as Case Study
In  this section we want to  illustrate our proof planning framework by  the example of  proving
the refutation completeness of binary and locking ground resolution. First, a proof plan
for the completeness of the binary resolution is constructed, and then this proof plan is
reused and adapted to  a proof plan for the completeness of  lock.

In  order to give a formal proof of this theorem we follow Bledsoe’s encoding [3]. In this
work, Bledsoe describes how a proof of the completeness of lock resolution can be derived
by analogy from a given proof plan for binary resolution. Although we use the same logical
encoding, there are some differences in  the approaches. First ly,  our  not ion o f  a proof  p lan



is different from Bledsoe's: In his framework a proof plan is a list of valid logical theorems, 
whereas in our framework a proof plan is a list of plan operators, the methods. Secondly, 
Bledsoe assumes a proof plan for binary resolution to be given (as Bledsoe we assume the 
lemmata to be given and don't dig into their proofs), we, however, generate this plan by a 
semi-automated planning process. Thirdly, Bledsoe uses abduction to derive the analogous 
proof plan for lock resolution, while we use procedures, the so-called meta-methods, to 
adapt the planning operators in the proof plan for binary resolution completeness to a 
proof plan for lock resolution. 

The Completeness Proof of Ground Resolution 

The refutation completeness of ground resolution is well known and can be stated as follows 
(cf. [18]): 
Theorem: If 8 is a finite, unsatisfiable set of ground clauses, then there is a derivation 
of the empty clause 0 by applying resolution to 8, i.e., :3n.D E Res (8, n), where Res(8, n) 
is inductively defined for all n E U\I as 

8, ifn = 0, 
Res (8, n) = .W {R I R is resolvent of Cl fj C2 , Cl E Res(8, i), C2 E Res(8, j)}, else{ 

~,J<n 

The proof of this theorem is an inductive argument on the k-parameter exl(8) (also called 
excess literal number) of a set of clauses 8 which is defined as the number of occurrences 
of literals in every clause of 8 minus the number of clauses in 8. More formally, it can be 
written as: exl(8) = [LeES ICI] - 181, where ICI is the number of literals in the clause C 
and 181 is the number of clauses in the clause set 8 (this so-called k-parameter technique 
was introduced in [1]). 

We now turn to the proof of the completeness of binary ground resolution. The basic' 
idea is to use an inductive argument on the excess literal number of the clause set 8. We 
do not describe the base easel, but we will concentrate on finding a proof plan for the 
inductive step. 

The initial planning state is displayed in Figure 3. The lemmata LEMO through LEM8 

are exactly the lemmata given in Bledsoe's paper [3]. In addition, we need in our formu
lation lemmata for dealing with sets, lemmata SUBS-Sl-S and SUBS-S2-S are two subsumption 
properties of two special clause sets (see [20] for detailed proof plans for them); the other 
hypotheses are standard definitions and properties of set theory. In Bledsoe's approach 
these hypotheses are not necessary, since they are basic to the Str-t-ve-Prover [12] for set 
theory. These properties are easy properties of the subset relation and can straightfor
wardly be proved either by calling an automated theorem prover or by further planning 
processes. The support lines are marked with "(!)", the only open line is marked with 

1In the case exl(S) < 0, 0 must be in S = Res(S, 0). If we have exl(S) = 0, but 0 (j. S, the set of 
clauses S consists entirely of unit clauses. Since a set of unit clauses is only unsatisfiable, if it contains 
two complementary units, the empty clause can derived by an application of the resolution rule to a pair 
of such units, that is, 0 E Res(S, 1). . 
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lemmata to  be given and don’t dig  into their proofs), we, however, generate this plan by  a
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of the empty clause O by applying resolution to S,  i.e., In .  € Res(S,n), where Res(S,n)
is inductively defined for alln € N as

S, if  n=0 ,
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The proof of this theorem is an inductive argument on the k—parameter ez!/(S) (also called
excess literal number) of a set of clauses S which is defined as the number of occurrences
of literals in every clause of S minus the number of  clauses in S.  More formally, i t  can be
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and |S| is the number of clauses in the clause set S (this so-called k—parameter technique
was introduced in [1]).

We now turn to  the proof of the completeness of  binary ground resolution. The basic
idea is to use an inductive argument on the excess literal number of the clause set S. We
do not describe the base case!, but we will concentrate on finding a proof plan for the
inductive step.

The initial planning state is displayed in  Figure 3. The lemmata LEMo through LEMS
are exactly the lemmata given in Bledsoe’s paper [3]. In addition, we need in our formu-
lation lemmata for dealing with sets, lemmata suss-si-s and SUBS-S2-S are two subsumption
properties of two special clause sets (see [20] for detailed proofplans for them); the other
hypotheses are standard definitions and properties of set theory. In Bledsoe’s approach
these hypotheses are not necessary, since they are basic t o  the Str+ve-Prover [12] for set
theory. These properties are easy properties of the subset relation and can straightfor-
wardly be proved either by calling an automated theorem prover or by further planning
processes. The support lines are marked with “(1)”, the only open line is marked with

I n  the case ezl(S) < 0, O must be  in § = Res(S,0). If we have ezl(S) = 0,  but  O ¢ S ,  the set of
clauses S consists entirely of unit clauses. Since a set of unit clauses is only unsatisfiable, if it contains
two complementary units, the empty clause can derived by an application of  the resolution rule to  a pair
of such units, that is, O € Res(S, 1).



(!) SUBS-SI-S. SUBS-Sl-S f-VS.VC.VL.subsumes(S \{C} U {C \cdL}},S) (Hyp) 

(!) SUBS-S2-S. SUBS-S2-S f-VS.VC.VL.[L E C-+ (Hyp) 

subsumes(S \{C} U {O Uct {L}}, S)] 
(!) LEM-13. LEM-13 f-VS.VS'.VC.[[C E S /\ S' ~ S] -+ S' U {Cl ~ S] (Hyp) 
(!) LEM-14. LEM-14 f-vs.vs'.vc.[[C E S /\ S ~ S'] -+ C E S'] (Hyp) 
(!) ~-Thans. ~-Trans f-VS1 .vs2.vSd[Sl ~ S2 /\ S2 ~ S3] -+ SI ~ S3] (Hyp) 

(!) U-Def. U-Def f-VS.VC.VC'.[C' E Su {Cl ++ [C' E SV C' = Cl] (Hyp) 

(!) \-Def. \-Def f-VS.VC.VC'.[C' E S \{C} ++ [C' E S /\-.[C' = C]]] (Hyp) 

(1) Ucl-Def. Ucl-Def f-VC.VL.VL'.[L' E CUct {L} ++ [L' E Cv L' = L]] (Hyp)
 

(!) \cl-Def. \cl·Def 'rVC.VL.VL'.[L' E C \ct{L} ++ (Hyp)
 

[L' E C /\ -.[L' = L]]]
 
(!) C-Propl. C-Propl f-VC.VL.[L E C -+ C \ct{L} ~ C] (Hyp)
 

(!) C-Prop2. C-Prop2 'rVS.VC.VL.S \{C} U {C \cl{L} Uct {L}} = S (Hyp)
 

(!) C-Prop3. C-Prop3 'rVC.VL.[[nonunit(C) /\ LE C] -+ 0 Ucl {L} ~ C] (Hyp)
 

(!) ~-Def. ~.Def 'rVS1 ,VS2.[Sl ~ S2 ++ VC.[C E SI -+ C E S2]] (Hyp)
 

(!) ~-Def. ~-Def 'rVC1.VCdC1 ~ C2 ++ VL.[L E Cl -+ L E C2]] (Hyp)
 
(!) LEMO. LEMO 'r VS.VS'.[[finite(S) /\ [unsat(S)/\ (Hyp)
 

subsumes(S', S)]] -+ (finite(S') /\ unsat(S')]] 
(!) LEMl. LEMl f-VS.VC.VL.Vn.[O E Res(S U {C},n)-+ (Hyp) 

[0 E Res(S U {C Ucl {L}}, n)V 
o Ucl {L} E Res(S U {C Ucl {L}}, n)]] 

(!) LEM2. LEM2 'rVS.[[-.[O E S] /\ 0 < exl(S)] -+ (Hyp) 
:3C.:3£.[C E S /\ [nonunit(C) /\ LE Cm 

(!) LEM2A. LEM2A 'rVS.Vc.VL.[[C E S /\ [nonunit(C) /\ LE Cn -+ (Hyp) 

:3S1.:3S2.:3C1.:3CdC1 = C \cl{L}/\ 
[C2 = 0 Ucl {L} /\ [SI ~ S \{C} U {Cd 

/\ S2 = S \{C} U {C2}]]]] 
(!) LEM3. LEM3 'rVS.VC.VC'.[[C E S 1\ C' ~ C] -+ (Hyp) 

exl(S \ {C} U {C'}) < exl(S)] 
(!) LEM4. LEM4 f- VS.Vn.S ~ Res(S, n) (Hyp) 

(!) LEM5. LEM5 f-VS.VS'.Vn.[S ~ S' -+ Res(S,n) ~ Res(S',n)] (Hyp) 

(!) LEM6. LEM6 'rVS.Vn1.Vn2.Res(Res(S,nr),n2) = Res(S,n1 +n2) (Hyp) 

(!) LEM7. LEM7 'rVS.VS'.(VC.[C E s-+ (Hyp) 

:3C' .[C' E S' 1\ C' ~ Cl] -+ subsumes(S' , S)] 
(!) LEM8. LEM8 f-VC.VC'.[[C ~ c' 1\ -.[C' ~ Cn -+ C ~ C'] (Hyp) 
(?) THM. 'H.l 'r VS. [(finite(S) 1\ [unsat(S) 1\ [0 < exl(S)/\ (OPEN) 

[-.[0 E S] /\ VS'. [(finite(S') 1\ [unsat(S')/\ 
exl(S') < exl(S)]J -+ 3n'.D E Res(S', n')]]]]] 

-+ :3n.O E Res(S, n)] 

Figure 3: The initial planning state for the completeness of binary ground resolution 
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(!) SUBS-S1-S.  suss-si-s FVS.VC.VL.subsumes(S \ {C}  U {C \a{L}},S) (Hyp)
(!) SUBS-S2-S.  susss2s FVSVCOML. [LEC— (Hyp)

subsumes(S \ {C}  U {OUy {L} } ,  S)]
(!) LEM-13. LEM-13 FVYSVS'VC[[Ce SAS CSS Uu{C}CS] (Hyp)
(!) LEM-14. LEM-14  FVYSVS'VC [Ce SASCS|=  Ces  (Hyp)
(!) C-Trans. C-Trans FVS5; VS .  VS3.[[S1 CSAS C Ss] SC  Ss] (Hyp)
(!) U-Def, U-Def  FYSVYCVC'[C'e SU{C}&  [C'e SVC' =C]] (Hyp)
(1) \-Def. \ -Def  FYSVYCYC'.[C' € S\{C} & [C' € SA-[C' =C]]] (Hyp)
(1) Ugr-Def. Ua-De t   FYCVLVL.[L'€e CUg{L }  + [L 'e  CVL =L ] |  (Hyp)
(1) \er-Def. \et-Def FYCVLVL'.[L' € C\a {L }  & (Hyp)

[L' € C A I  = L]]
(!) C-Propl. c -p rop t  FYCVL.[L  € C — C \a {L }  CC] (Hyp)
(!) C-Prop2. C-Prop2z FVSVYCVL .S \ {C }U{C \a {L }Ua  {L } }=S  (Hyp)
(!) C-Prop3. c -p rop3   FYCVL. [ [nonun i t (C)AL  € C]  + OU,  { L }  CC] (Hyp)
(1) C-Def. C-Def FVS1.VS5:.[S1 © Sa «+ VC.[C € S ı  = C € 8S) (Hyp)
(!) C-Def. C-Def FVYC,.VCa.[Cy © Co + VL. [Le  Cy + LE  C.] (Hyp)
(!) LEMO. LEMO FVS.VS'.[[finite(S) A [unsat(S)A (Hyp)

subsumes(S’, S)]] = [finite(S’) A unsat(S")]]
(!) LEM1. LEM1 FVSVCVLYVn.[O€ Res(SU {C},n) = (Hyp)

[A € Res(SU {C  Uy  {L}},n)V
OUa {L}  € Res(SU {C  Ua {L}},n)]]

(!) LEM2. LEM2 FVS.[ - [O € S ]A0  < ezl(S)] = (Hyp)
3C3L.[C € S A [nonunit(C) AL € C]]]

(1) LEM2A. LEM2ZA FVSVCVL.[C € S A [nonunit(C) AL € C]] = (Hyp)
35 , .35 , .3C,  3C, . [Cy =C  \aa{L}IA
[Co=0ug  {L }  A[S ı  =S \ {C }u  {C i }

AS; = S\{C}U{Ca}]l]]
(!) LEM3. LEM3 FYSYCNC' [ [Ce  SAC CC] = (Hyp)

exl(S \ {C }U  {C'}) < ezl(S)]
( )  LEM4. LEM4 FVS.¥n.S © Res(S,n) (Hyp)
(!) LEMS. LEMS FVSVS'.Vn.[S CS ’  + Res(S,n) © Res(S',n)] (Hyp)
(!) LEMS. LEMS FVS.Vn;.¥n..Res(Res(S,n1), na) = Res(S,nı  +n2) (Hyp)
(!) LEMT. LEM? FVSVS.VC. [CeS  — (Hyp)

3C'.[C" € S' AC" € C]] — subsumes(S’,S)]
(!) LEMS. LEMS FYCYC'.[[CCC' ARC’ CC l»  CCC (Hyp)
(7) THM. Hy  FVS.[[finite(S) A [unsat(S) A [0 < ezl(S)A (OPEN)

[-[O € S] AVS .[[finite(S’) A [unsat(S)A
ezl(S") < ezl(S)]) = 3n’.0 € Res(S’, n’)]]]]]

= In .0  € Res(S,n)]

Figure 3: The initial planning state for the completeness of binary ground resolution



"(?)" which is the theorem to prove. The hypotheses of the theorem, abbreviated as HI, 
are all supporting lines, that is, all lines except the theorem itself. In addition to the initial 
planning state we have a set of methods which can be selected as planning operators within 
the planning process. 

In the example of the resolution completeness proof, we can figure out different kinds 
of methods: The one category of methods corresponds to the usual ND inference rules 
(e.g., forall-i, implies-i, and and-e. For implies-i see Figure 1). The other category 
of methods are specialised methods for the application of the given lemmata2

• One such 
method can be seen in Figure 4. vVhen different methods are applicable the proof planner 
prefers the more specialised one of the second category over the general ones of the first 
category. Intuitively, the method has the following meaning: The lemma 2 (method line 
LEM2) is applied to the open line L 13 which is replaced by the open line L 11 in the 
current planning state. In addition, the supporting lines L 8 through LlD are inserted into 
the planning state representing the partitioning of the clause set 5: Select a non-unit clause 
C in 5 and create two clause sets 51 and 52, where 51 is built from 5 by replacing the 
non-unit clause C by deleting a literal L from it, and 52 by replacing C by the unit clause 
with the single literal L. The key idea of the completeness proof is the application of the 
induction hypothesis to these two clause sets 51 and 52' The derivations of the empty 
clause resulting from 51 and 52 can be concatenated resulting in a derivation of the empty 
clause starting with 5 (the concatenation is correct, since we have no free variables in the 
derivations) . 

·When applying the planning procedure to the initial state using the methods above, 
we get the following proof plan: 

(forall-i, implies-i, and-e, and-e, and-e, and-e, apply-lem2, apply-lem2A, 
apply-lemO, apply-lem3, apply-lemO, apply-lem3, apply-ind, apply-ind, 
apply-lem1;rewrite-set, apply-lem4, apply-lem13, apply-lem5,apply-lem6, 
apply-lem14) 

After executing this plan we obtain an ND proof for the original problem where five lines 
representing lemmata still have to be proved (this can be done by another call of the 
planner reflecting hierarchical planning or by calling an automated theorem prover). The 
full proof contains 94 steps and can be found in the appendix A. 

The Completeness Proof of Ground Lock Resolution 

Next we want to prove the completeness of lock resolution. Lock resolution is a refinement 
of binary resolution where an index referring to an ordering is assigned to each literal in a 
clause and only resolving on minimal literals respecting the ordering is allowed (cf. [4, 18]). 

20f course it would be very useful to have one single general method for the application of arbitrary 
definitions or lemmata. It is, however, a non-trivial problem to consider all possibilities, in particular, 
when applying an ND rule for quantified formulae, a special treatment for the hypotheses is needed. For 
instance, the eigenvariable condition must be met. Until these problems are solved, the task of generating 
methods from lemmata has mainly to be fulfilled by a human user. 
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of binary resolution where an index referring to  an ordering is assigned to  each literal in a
clause and only resolving on minimal literals respecting the ordering is allowed (cf. [4, 18]).

20f  course i t  would be very useful to  have one single general method for the application of arbitrary
definitions or lemmata. It is, however, a non-trivial problem to consider all possibilities, in  particular,
when applying an  ND  rule for quantified formulae, a special treatment for the hypotheses is needed. For
instance, the eigenvariable condition must be met. Until these problems are solved, the task of generating
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Method: apply-lem2 

Declarations 

LEM2, L1, L2 , Ls, L4 , L5 , L6 , L7 , Ls, L9 , L lO , L11 , L12 , LIS: prln; 
HI, H2 , Hs, H4 : list(prln); 
J1, J2 : just; 
S' S" n C" L"' var', " , . , 
S, C, L: const 

eLEM2, eL2 , eLs, EBL11 

C +-- newconst(termtype(C")) & L +-- newconst(termtype(L")) & 
Hs +-- listcons(L6 , H2) & H4 +-- listcons(L7 , Hs) & 
/\listcons(LEM2,Hl) X: prln.termoccs(C, prlnformula(X)) . 0& 
/\H3 X : prln.termoccs(L, prlnformula(X)) ....:... 0 

eLlS, EBL1 , EBL4 , EBL5 , EBL6 , EBL7 , EBLs, EBL9 , EBL lO , EBL12 
LEM2. LEM2 f- vs .[[--.[0 E Sf] /\ 0 < exl(Sft)] ~ (Hyp) 

3Ctf .3Lft .[Cft E Sft /\ 
[nonunit(Ctf 

) /\ L ft E Cft]]] 
Ll· LEM2 f- [[-,[0 E S] /\ 0 < exl(S)] ~ 3Cft .3Lft . ("lE LEM2) 

[Cft E S /\ [nonunit(Cft ) /\ L ft E Cft]]] 
L2. HI f- 0 < exl(S) (h) 
L3. Hl f- --.[0 E S] (h) 
L4. HI f- HO E S] /\ 0 < exl(S)] (/\l L3,L2) 
L5. HI, f- 3Cft .3Lft .[Cft E S /\ [nonunit(Cft ) /\ L ft E Cft]] (~E L4,Ld 

LEM2 
L6· H3 f- 3Lft .[C E S /\ [nonunit(C) /\ L ft E C]] (Hyp) 
L7. H4 f- [C E S /\ [nonunit(C) /\ LE C]] (Hyp) 
L8. H4 f-CES (/\E* L7) 
L9· H4 f nonunit (C) (/\E* L7) 
LlO. H4 f-LEC (/\E* L 7) 
L11. H4 f- 3n.D E Res(S, n) (OPEN) 
L12. H3 f- 3n.0 E Res(S,n) (3E L6,L11) 
L13· H2 f- 3n.D E Res(S, n) (3E L5,LI2) 

schema  interpreter 

Premisses 

Constraint 

Conclusions 

Declarative 

Content 

Procedural 

Content 

Figure 4: The apply-lem2 method 
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Method : apply-lem2
LEM?2,L,,Ly, Ls, La, Ls, Lg, I r ,  Lg, Lg, L1g ,  L11 ,  L12 ,  L13 :  prin;
Hy, Hy, Hs, Ha: list(prin);

Declarations Jy, Ja: jus t ;

S',S§" n,C",  L"  : var;
S,C,  L :  const

Premisses ©LEM?2,6L, ,6L3,  BL
C + newconst(termtype(C")) & L + newconst(termtype(L")) &

Constraint H j  + l istcons(Lg,Ho) & Hy + l istcons(Ly,H3) &
onstrain Alisteons(LEM2,Hı) X, r i n  termoccs(C, prinformula(X)) = () &

APx: prin.termoccs(L, prinformula(X)) = ()
Conclusions ©L13 ,®L , ,  DLs ,  DLs ,  ®Le ,  DL7,D Lg ,  ®Lg,BL1g,  BL ı2

LEM?2. LEM2 r+ VS".[-[0€ S” ]  A0  < ezi(S")] = (Hyp)
3C".3L" [CT € SA

[nonunit(C") AL "  € C"]]]
I n .  LEM2 } (OD € S] AO < ezl(S)] — 3C°3L' .  (VE LEM?)

[C” € S A [nonunit(C”) AL ”  € C"]]]
L , .  Hy k 0 < exl(S) , (J1)
Lj. H,  FO € S] (Ja)

Declarati La. H ı  FE SD € S ]A0  < ezi(S)] (A I  Ls ,  Ls)
eclarative Ls .  H i ,  F3C"3L" . [C "  €S  A[nonuni t (C")  AL "  € C"] ]  (E  La ,L ı )

Content LEM?
Leg. H j  F 3L". [C € S A [nonunit(C) AL" € CC] (Hyp)
Ly. Hy F [C € S A [nonunit(C) AL  € C]] (Hyp)
Ls. Hy  FCesS  (AEx  Lz )
Ly. Hy + nonunit(C) {AE*  Ly)
L io .  Hy  FLeC (AE*  L t )
Lu .  Ha  F 3n .0  € Res(S,n) (OPEN)
La .  H j  F 3n .0  € Res(S,n) ( 3E  Le ,  L11)
Liz. H2  + 3n .0  € Res (S ,n )  ( 3E  Ls ,  L192)

Procedural .Content schema — interpreter

Figure 4: The apply-lem2 method
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The completeness proof also uses the k-parameter technique and is almost the same as 
in the case of binary resolution. The only exception is that one uses a maximal literal to 
partition the clause set 5. Therefore an additional predicate Q(5, L) has to be added to the 
lemmata 1,2, and 2A which describes the maximality property of the selected literal. More 
formally, Q(5, L) is an abbreviation of VC'.VL'.[C' E 5 A nonunit(C') -+ i(L') ~ i(L)], 
where i is the index of the given literal. Bledsoe's precondition prover returns a weaker 
definition of Q(5, L) (cf. [3]) sufficient for the proof but this is less intuitive. 

The initial planning state is just that displayed in Figure 3 where the constant unsat 
is replaced by unsat-L and Res to Res-L reflecting that unsatisfiability and the resolution 
rule have to be taken with respect to locking. The altered lemmata 1, 2, and 2A have the 
following form: 

(!) LEMl. LEMl f-- V5.VCVL.Vn.[[D E Res-L(5 U {C}, n) A Q(5, L)] --+ (Hyp) 

[0 E Res-L(5 U {C Ucl {Ln, n)V 
o Ucl {L} E Res-L(5 U {C Ucl {L}}, n)]] 

(!) LEM2. LEM2 f-- "15.[[.....,[0 E 5] A 0 < exl(5)] -+ 3C.3L.[CE 5A (Hyp) 

[nonunit(C) A [L E CA Q(5, L)]]]] 
(!) LEM2A. LEM2A f-- V5.VC.VL.[[C E 5 A [nonunit(C)A (Hyp) 

[L E CA Q(5, L)]]]-+ 
351.352.3Cl.3C2'.[Cl = C \cl{L}A 

[C2 = 0 Ucl {L} A [51 = 5 \{C} U {C1}A 
52 = S \{C} U {C2}]]]] 

Now we do not start a search for a new plan for proving the completeness of lock 
resolution, but we try to patch the already found proof plan for binary resolution. The 
adaptation of the original proof to lock resolution can be achieved by the following meta
methods: 

•	 Map the constants unsat to unsat-L and Res to Res-L in all methods used in the 
proof plan, 

•	 Add in the methods with the schematic lines for the lemmata 1, 2 and 2A the 
additional predicate Q(5, L). 

The first step can be done by an analogical syntactic mapping, whereas the second 
needs further refinement. Since the lemmata 1, 2, and 2A ar~ applied in the corresponding 
methods apply-leml, apply-lem2, and apply-lem2A, these methods must be patched as 
follows: For the first method, the apply-leml method, the predicateQ(5, L) must be 
added to the method lines where the preconditions of lemma 1 are used. For the second, 
the apply-lem2, we have altered the method lines stemming from apply-lem2 to the lines 
which are all marked with a prime sign (cf. Figure 5). Additionally, a new schematic 
method line, namely line L~o, was inserted into the declarative content of the method. 
Note, that this additional line is inserted as a supporting line into the planning state 
representing the fact that the predicate Q(5, L) must hold, when this method is applied. 
For the third method, the apply-lem2A method, a similar adaptation takes place which 
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needs further refinement. Since the lemmata 1, 2, and 2A are applied in the corresponding
methods apply-leml, apply-lem2, and apply-lem2A, these methods must be patched as
follows: For the first method, the apply-leml method, the predicate Q(S,L) must be
added to the method lines where the preconditions of lemma 1 are used. For the second,
the apply-lem2, we have altered the method lines stemming from apply-lem2 to  the lines
which are all marked with a prime sign (cf. Figure 5). Additionally, a new schematic
method line, namely line L7,, was inserted into the declarative content of the method.
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Method: apply-lock-lem2 I 

Declarations 

LElvI2, L~, L2 , L3, L4 , L~, L~, L~, L~, L~, L~o, L~o, Lu , L 12 , L~3: prln; 
HI, H 2 , H 31 H 4 : list(prln); 
J1 , J2 : just; 
Sf S" n C" L"· var', " , . , 
S, C, L: const 

8LEM2, 8L2 , 8L3, EBLu 
C +- newconst(termtype(C ff 

)) & L +- newconst(termtype(L")) & 
H3 +- listcons(L~, H 2) & H 4 +- listcons(L~, H3) & 
/\listcons(LEM2,Hd X: prln.termoccs(C, prlnformula(X)) .-:... 0 & 
/\ H3 X : prln.termoccs(L, prlnformula(X)) .-:... 0 
8L~3' EBL~, EBL41 EBL~, EBL~, EBL~, EBL~, EBL~, EBL~o, EBL~o, EBL12 

Premisses 

Constraint 

Conclusions 

Declarative 

Content 

LEM2. LEM2 f- VS" .[[-,[0 E S"] A 0 < exl(S")] --t (Hyp) 
3C".3L".[C" E S"A 
[nonunit(C")A 

[L" E C" A Q(S", L")JJ]] 
L~. LEM2 f- [HO E S] A 0 < exl(S)] --t (VE LEM2) 

3C" .3L". [C" E S"A 
[nonunit(C")A 

[L" E C" A Q(S, L")]]]) 
L2. H1 f- 0 < exl(S) (h) 
L3. H1 f- -,(0 E S] (h) 
L4· H1 f- 0 < exl(S) A -,(0 E S] (AI L2, L3) 
L~. H1, f- 3C".3L".(C" E SA [nonunit(C")A (--tE L4, L~) 

LEM2 (L" E C" A Q(S, L")JJ] 
L~. H3 f- 3L".[C E S /\ [nonunit(C)/\ (Hyp) 

[L" E CA Q(S, L")]]) 
L~. H4 f- (C E S /\ [nonunit(C)/\ (Hyp) 

(L E C /\ Q(S,L)]]] 
L~. H4 f-CES (/\E* L~) 

L~. H4 f- nonunit(C) (AE* L~) 

L~o' H4 f-LEC (AE* L~) 

L~o' H4 f- Q(S,L) (/\E* L~) 
Lu. H4 f- 3n.0 E Res-L(S,n) (OPEN) 
L12. H3 f- 3n.0 E Res-L(S, n) (:lE L6, Lu) 
L~q. H2 f- 3n.0 E Res-L(S, n) (3E L~, Ld 

schema  interpreter
Procedural 

Content 

Figure 5: The apply-lock-lem2 method 
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Method : apply-lock-lem2
LEM?2 ,L } ,  Ly ,  Ls ,  Ly, 5» Lg ,  7 8» hs Yo) Los  L11 ,  Laz ,  L i  : prin;
H, ,  Hy ,  Hs, Ha:  l ist(prin);

Declarations J1, Ja :  just;

S,8 "  n ,C "  L " :  var;
S,C,  L :  const

Premisses OLEM2,8L , , 6L3 ,®Lq ;
C + newconst(termtype(C")) &L  + newconst(termtype(L")) &

. H j  + listcons(Lg, Hy) & Hy + listcons(L-, H3) &
Constraint  listcon (LEM?2 H yo  7/\'stcons “ 1X :  prin.termoces(C, prinformula(X)) = () &

A#2z: prin.termoccs(L, prinformula(X)) = ()
Conclusions | SL i ; ,  ®L } ,®Ls ,  BL,  ®L; ,  LF ,  ®Ly,  ®Lg ,  DL}, BLY, ®L1o

LEM2.   LEM2 FVS" . [ - [ 0€  STA0<Z  (ST  > (Hyp)
3c "  . aL ” . c ”  € S "A

[nonunit(C')A
[L” eC”  AQ(s” ,  L I

I .  LEM?2 + [ [ - [ 0€  S )A0<  ezl(S)] — (VE LEM?2)
3c ”  aL " .  [ c ”  € SA

[nonunit(C’”)A
z n i y  i € Cc" A Q(S, L I }  -

2 1 < ex  1

La  Hy  F - [Oe  S] ( Jo )
Decl . Ly  H ı  FO  < ezl(S) A - [D  € S] (A I  La,  L3)

eclarative 4 Hi ,  F3C"3L " . [C "  € SA  [nonunit(C")A (=F  Ly ,  I )
Content LEM? [L”  eC"  AQ(S, L”)]Il

Ly Hs FE 3L".[C € S A [nonunit(C)A (Hyp)
[L" € CAQ(S,L I

74 Hy F [C € S A [nonunit(C)A (Hyp)
z a r c  [LS CAQ(S,  LN (AB« ZU)

& € AEx  L!

Ze. Hy  + nonunit(C) (AE*  ZZ)
Ll.  Ha FLEC (AEx L%)
Lr.  Ha FQ(S ,L )  (AB« LY)
L i .  Ha + 3n.0  € Res-L(S,n) (OPEN)
L ia .  Hs  F 3n.0) € Res-L(S,n) ( 3E  Le ,  L11)
I s :  H2 Fb 3n .0  € Res-L(S,n) ( 3E  LL ,  L12)

d .oe  ure schema — in terpreter
nen

Figure 5: The apply-lock-lem2 method
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4 

we omit here. In contrast to the adaptation of apply-lem2 the predicate Q(S, L) must 
hold before the method apply-lock-lem2A is applicable, that is, a supporting line with 
this predicate must already be in the actual planning sta.te. This means for the method 
apply-lock-lem2A that an unmarked schematic line, like L~o in apply-lock-lem2, must 
be added to the specification. 

After this interactive adaptation, we can try to execute the new proof plan in order 
to generate a proof for lock resolution. This proof plan can be successfully executed and 
generates a completeness proof for lock resolution without any search at all. That is, in 
our framework it is possible to transfer the first proof to the second with some few user 
interactions only. 

Conclusion and Future Development 

The problem solving competence of a mathematician relies heavily on his/her ability to 
adapt problem solving knowledge to new situations where existing methods are not directly 
applicable. Up to now this has not received enough attention in the field of automated 
theorem proving. In order to mechanise parts of this ability, in earlier work we have 
proposed a declarative extension to the proof planning approach developed by Bundy. 

This paper is aimed to provide evidence that our goal can be achieved with our declar
ative approach. To do this, we have presented methods, by which a proof planner can 
automatically generate a proof plan that can show the ground completeness of resolution. 
These methods form the basic repertoire that can be used to generate proofs in the meta
theory of resolution. Finding such a kind of reasoning know-how is a particularly hard 
task and requires a lot of genuine creativity. vVe did not address the problem how such 
major breakthroughs can be made automatically. In our framework the task of providing 
these methods has to be fulfilled by the human user; speaking in terms of knowledge-based 
systems, the basic knowledge in an area has to be acquired by knowledge engineers using 
the expertise of people working in the area. But the knowledge should be applicable in a 
wider range of examples than for what it was originally acquired. In the concrete example, 
the first proof can be generated fully automatically in the interactive setting of S'2-M KRP, 
once these methods are given. The five lemmata about the properties of C can be proved 
by calling an automated theorem prover. In addition to automatically proving the first 
problem with the given methods, we were able to show that most of the methods can be 
reused and that the proof of ground completeness of resolution can be easily transferred 
with some user interactions only. 

To enlarge the problem solving strength of the system, a comprising repertoire of meth
ods is necessary. To come up with novel methods, meta-methods can be incorporated into 
the planning algorithm. To do this, first it must be decided when to interrupt the process 
of planning with methods, in order to create a new method with meta-methods. Second, 
for the current proof situation an adequate pair of a method and a meta-method has to be 
chosen from the knowledge base. We believe that there can hardly be any general answer 
to this problem and we have to rely on heuristics. In an interactive proof development en
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vironment like Q-MKRP [14] users might want to make this choice by themselves while the 
system provides only heuristic support. Even more challenging would be an automation, 
of course. A trivial answer would be to apply all existing meta-methods on all existing 
methods and then choose heuristically the best. Such a procedure can be fairly expensive 
applied to a large knowledge base. The first two heuristics for choosing a method to adapt 
we will investigate are: first, organise methods in a hierarchy of mathematical theories and 
prefer methods that belong to the same theory as the current problem or whose theory is 
close to that of the problem in the hierarchy. Second, use general conflict solving strategies 
like those of OPS5, for instance, favour the methods and meta-methods with the most 
specific specification. Of course only successful methods generated in a short-term memory 
are integrated into the permanent knowledge base of methods. 

Admittedly, the heuristic control concerning the choice of methods and meta-methods 
with a specific instantiation, as well as the interleaving of planning and meta-level planning, 
remain as open problems. 
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declarative approach to proof planning. In addition, we would like to thank Erica Melis 
for many discussions on proof planning and for pointing us to Bledsoe's work about the 
automation of the proof of ground completeness of resolution. 

A The proofs for resolution completeness 

In the following we present the proofs found by the planning system which is integrated
 
into the proof development environment Q-IVIKRP. The first proof shows the completeness
 
of binary resolution in the variable-free case.
 
L1. 11.1 r- [[jinite(Cd /\ [unsat(Cl ) /\ [0 < exl(Cl ) /\ [-,[[] E Cl ]/\ (--'t1 L3)
 

'v'S'.[[jinite(S') /\ [unsat(S') /\ exl(S') < exl(Cl )]] -+ 
3n'.0 E Res(S',n')]]]]] -+ 3n.D E Res(Cl,n)] 

L2. L2 r- [jinite(Cl ) /\ [unsat(Cd /\ [0 < exl(Cl )/\ (Hyp) 
[-,[0 E Cl] /\·'v'S'.[[jinite(S') /\ [unsat($')/\ 

exl(S') < exl(CdJ] -+ 3n'.0 E Res(S',n')]]]]] 
L3. 11.2 r- 3n.0 E Res(Cl,n) (3E L14,L21) 

L4. L2 r- finite(Cd (AE L2) 

L5. L2 r- [unsat(Cl ) /\ [0 < exl(Cl ) /\ [-,[0 E Cl ]/\ (AE L2) 

'v'S'.[[jinite(S') /\ [unsat(S') /\ exl(S') < exl(Cd]] 
-+ 3n'.D E Res(S',n')]]]] 

L6. L2 r- unsat(Cd (AE L5) 

L7. L2 r- [0 < exl(Cd /\ [-,[0 E Cd /\ 'v'S'.[[jinite(S')/\ (AE L5) 

[unsat(S') /\ exl(S') < exl(Cl )]] -+ 
3n'.o E Res(S', n')]]] 
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are integrated into the permanent knowledge base of methods.

Admittedly, the heuristic control concerning the choice of  methods and meta-methods
with a specific instantiation, as well as the interleaving of  planning and meta-level planning,
remain as open problems.

Acknowledgements
We would like to  thank our colleagues, especially Xiaorong Huang and Lassaad Cheikhrou-
hou, for many fruitful and inspiring discussions as well as for the joint development of the
declarative approach to  proof planning. In addition, we would like to thank Erica Melis
for many discussions on proof planning and for pointing us to  Bledsoe’s work about the
automation of the proof of ground completeness of resolution.

A The proofs for resolution completeness
In the following we present the proofs found by the planning system which is integrated
into the proof development environment 2-MKRP. The first proof shows the completeness
of binary resolution in the variable-free case.
L l .  F [[finite(C1) A [unsat(Cy) A [0 < ezl(Cy) A[-[D € Ci]A (= I  L3)

VS" [[finite(S’) A [unsat(S") A ezl(S') < exl(Ch)]] =
In'’.0 € Res(S',n')]]]]] = 3n.0 € Res(C1,n)]

L2. 2 F [finite(C1) A [unsat(Cy) A [0 < ezl(C)A (Hyp)
SD € Ci]  AVS .[[finite(S') A [unsat(S')A
ezl(S") < ezl(C1)]] = In ' .0 € Res(S’, n’)]]]]]

L3. Hz F 3n.0  € Res (C , ,n )  (3E  L14,L21)

L4. u F finite(Ch) (AE L2)

L5. 12 F [unsat(Cy) A [0 < ezl(C1) A [ - [D € Ci]A (AE L2)
VS’[[finite(S’) A [unsat(S") A ezl(S') < exzl(C;)]]

— 3n'.0 € Res(S',n')]]]]
L6. 2 F unsat(Ch) (AE L5)

L7. L2  F [0 < ezl(Ch) A SD € Ci] AVS[[finite(S")A (AE L5)
[unsat(S’) A ezl(S') < ezl(Cy)]] =
3n' .0  € Res(S',n')]]]
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L8. L2 I- 0 < exl(Cd (/\E L7) 

L9. L2 f- [-.[0 E cd /\ VS'. [[finite (S') /\ [unsat(S')/\ (/\E L7) 
exl(S') < exl(Ct}]] ~ 3n'.D E Res(S',n')]] 

LID. L2 I- -.[0 E Cd (/\E L9) 

L11. L2 I- 'v'S'.[[finite(S') /\ [unsat(S') /\ exl(S') < exl(Cd]] (/\E L9) 
~ 3n'.D E Res(S',n')] 

L12. LEM2 I- [[-.[0 E Cl] /\ 0 < exl(Cd] ~ ("lE LEM2) 
3C.3L.[C E Cl /\ [nonunit(C) /\ LE C]]] 

L13. L2 I- [-.[0 E Cl] /\ 0 < exl(Cl )] (/\l LlO,L8) 

L14. LEM2, I- 3C.3L.[C E S /\ [nonunit(C) /\ LE Cl] (-+E L13,L12) 
L2 

L15. 1£3 I- 3L'[C2 E Cl /\ [nonunit(C2) /\ LE C2]] (Hyp)
 

L16. 1£4 I- [C2 E Cl /\ [nonunit(C2) /\ Cs E C2]] (Hyp)
 

L17. 1£4 I- C2 E Cl (/\E* L16)
 

L18. 1£4 I- nonunit(C2) (/\E* L16)
 

L19. 1£4 I- Cs E C2 (/\E* L16)
 

L20. 1£4 I- 3n.0 E Res(Cl,n) (3E L24,L33)
 

L2l. 1£3 I- 3n.DERes(Cl ,n) (3E L15,L20)
 

L22. LEM2A I- [[C2 E Cl /\ [nonunit(C2) /\ Cs E C2]] ~ (VE* LEM2A)
 

3Sl .3S2.3Cl .3CdCl = C2 \cl{CS}/\ , 
[C2 = 0 Ucl {CS} /\ [SI = Cl \{C2} U {Cd/\ 
S2 = Cl \{C2} U {C2}]]]] 

L23. 1£4 I- [C2 E Cl /\ [nonunit(C2) /\ Cs E C2]] (/\b L17,L18,L19) 

L24. 1£4 I- 3Sl.3S2.3Cl.3C2.[Cl = C2 \cl{Cs}/\ (-+E L23,L22) 

[C2 = 0 Uet {CS} /\ [SI = Cl \{C2 } U {Cd/\ 
S2 = Cl \{C2} U {C2}]]] 

L25. 1£5 I- 3S2.3Cl .3CdCl ~ C2 \cl{Cs} /\ [C2 = 0 Ucl {Cs}/\ (Hyp) 

[C6 = Cl \{C2} U {Cd /\ S2 = Cl \{C2} U {C2}]]] 
L26. 1£6 I- 3Cl .3CdCl = C2 \et{Cs} /\ [C2 = 0 Uet {Cs}/\ (Hyp) 

[C6 = Cl \{C2} U {Cd /\ C7 = Cl \{C2} U {C2}]]] 
L27. 1£7 I- 3C2'[C4 = C2 \cl{CS} /\ [C2 = 0 Ucl {Cs}/\ (Hyp) 

[C6 = Cl \{C2} U {C4 } /\ C7 = Cl \{C2} U {C2}]]] 
L28. 1£8 I- [C4 =C2 \cl{C3} /\ [CS =0 Ucl {C3}/\ (Hyp) 

[C6 = Cl \{C2} U {C4 } /\ C7 =Cl \{C2} U {CS}]]] 
L29. 1£8 I- C4 =C2 \ct{Cs} (/\E* L28) 

L30. 1£8 I- Cs = 0 Ucl {CS} (/\E* L28) 

L3l. 1£8 I- C6 = Cl \{C2} U {C4 } (/\E* L28) 

L32. 1£8 I- C7 = Cl \{C2} U {CS} (/\E* L28) 

L33. 1£8 I- 3n.0 E Res(Cl,n) (3E L59,L67) 

L34. LEMO I- [[finite(Cd /\ [unsat(Cl )/\ (VE* LEMO) 

subsumes(Cl \{C2} U {C2 \et{Cs}}, Cl)]] ~ 

[finite(Cl \{C2} U {C2 \ct{Cs}})/\ 
unsat(Cl \{C2} U {C2 \et{Cs}})]] 

L35. 1£8 I- subsumes(Cl \{C2} U {C2 \cl{CS}}'Cl ) (OPEN L19, SUBS-S1-S, 
SUBS-S2-S) 
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L8.

Lo .

L10.

L11.

L12.

L13.

L14.

L15.

L16,

L17.

L18.

L19.

1.20.

L21.

L22.

L23.

L24.

L25.

L26.

L27.

L28.

L29.

L30.

L31.

L32.

L33.

L34.

L35.

L2

L2

F 0 < ezl(Ci)
F [~[0 € Ci]  A VS" [[finite(S") A [unsat(S)A

ezl(S") < ezl(C1)]] = 3n'.00 € Res(S’,n’)]]
+ = [O  € Ci]

F VS'.[[finite(S") A [unsat(S") A ezl(S') < ezl(C1)]]
— 3n'.00 € Res(S',n’)]

F [ 0  € Ci]  AO < ezl(Ci)] =
3AC.3L.[C € Ci A [nonunit(C) AL  € C]]]

F {OD € Ci] AD < ezl(Ch))
F AC3L.IC € S A [nonunit(C) AL € C]]

F 3L.[C; € Ci  A [nonunit(C2) AL € C2)
b [C2 € Cy A [nonunit(C2) A Cs € Cs]
F Cre
F nonunit(C,)
F Cs  € Cy

F 3n.0 € Res(C1,n)
+ 3n.0 € Res(Cy,n)
F [[Cs € C1 A [nonunit(C2) ACs € Co]] =

35, .38, .3C; .3C, .  [Ch = Co \ea t {C3}A  ;

[C2 =0Uy  {C3} A [S1 =C i  \ {C2 }  U {Ci}IA
Sa = C1 \{C2} U {C}]]]]

F [C2 € Ci  A [nonunit(C2) A Cs € Ca]]
+ 35 , .35 , .3C, .3C: . [Cy  = Cs  \et{C3}IA

(Ca = U Us  {Cs}  A [Si =C \ {C2 }  U {CL }A
Sz = C1 \{C2}  U {C2}]]]

+ 38 , .3C, .3C, . [Ch  = Cy  \ a {C3 }  A [Ca =0Ugy  {C3 }A

[Ce = C1 \{C2} U {C1} AS2 = C1 \{C2} U {C2}]]]
F 3C1.3C2.[Ci = C2 \et{C3} A [C2 = OU {C3}A

[Cs = Ci  \ {C2}  U {C1} A Cr = Ci  \{C2}  U {C I
bb 3C2.[Ca4 = Cs  \ a {C3 }  A [C2 =0Ugy  {C3}A

[Ce = C1 \{C2} U {Ca} A Cr = C1 \{C2} U {C2}]]]
F [Ca = Co \a {C3}  A [Cs =0Uy  {C3}A

[Ce = C1 \{C2} U {Cu} A Cr = Ci \{C2} U {C5}]]]
F Cy = Ca \u{C3}
F Cs  =0Ug  {Cs }

FE Cs = C1 \{C2}  U {C4}
F Cr = Ci  \{C2}  U {Cs}
kb 3n.0 € Res(C1,n)
F [[finite(Cy) A [unsat(C1)A

subsumes(Cy \{C2} U {C2 \a{C3}},C1)]] —
[finite(Cy \ {C2}  U {C2 \ e {C3}  PA
unsat(Cy \{C2} U {C2 \e{C3}})]]

F subsumes(Cy \{C2}  U {C2 \ai{C3}},  Ci)
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(AE  LT)

(AE  LT)

(AE  L9)

(AE L9)

(VE LEM2)

(AT L10,L8)

(—=E L13,L12)

(Hyp)

(Hyp)

(AEx L16)

(AEx L16)

(AE* L16)

(3E  L24,133)

(3E  L15,L20)

(VE* LEM2A)

(A Ix  L17,L18,119)

(—E  L23,L22)

(Hyp)

(Hyp)

(Hyp)

(Hyp)

(AEx  128)

(AE=* L28)

(AEx L28)

(AE+ L28)

(3E  L59,L67)

(VEx LEMO)

(OPEN  119, SUBS-51-S,
SUBS-52-5)



L36. 1£8 f [finite(Cd /\ [unsat(Cd/\ (/\l* L4,L6,L35) 

subsumes(Cl \{C2} U {C2 \cl{C3 }}, Cl)]] 
L37. 1£8 f [finite(Cl \{C2} U {C2 \cl{C3 }})/\ (-+E L36,L34) 

unsat(Cl \{C2} U {C2 \eL{C3 }})] 

L38. 1£8 f finite(Cl \{C2} U {C2 \eL{C3 }}) (I\E L37) 

L39. 1£8 f- unsat(Cl \{C2} U {C2 \cl{C3 }}) (I\E L37) 

L40. LEM3 f [[C2 E Cl /\ C2 \eL{C3 } ~ C2] ~ ('7E* LEM3) 

exl(Cl \{C2} U {C2 \eL{C3 }}) < exl(Cl )] 

L41. 1£8 f C2 \cl{C3 } ~ C2 (OPEN L19,L18, 
C-Propl,C-Prop3, 
~-Def,\-Def) 

L42. 1£4 f [C2 E Cl /\ C2 \cl{C3 } ~ C2] (/\l L17,L41) 

L43. 1£4 f exl(Cl \{C2} U {C2 \cl{C3 }}) < exl(Cd (-+E L42,L40) 

L44. LEMO f [[finite(Cd /\ [unsat(Cd/\ ('7E* LEMO) 

subsumes(C1 \{C2} U {D Ucl {C3 }}, Cd]] ~ 

[finite(C1 \{C2} U {D Ucl {C3 }})/\ 

unsat(C1 \{C2} U {D Uez{C3 }})]] 

L45. 1£8 f subsumes(C1 \{C2} U {D Ucl {C3 }}, Cl) (OPEN L19,SUBS-Sl-S, 
SUBS-S2-S) 

L46. 1£8 I- [finite(C1 ) /\ [unsat(Cd/\ (/\l* L4,L6,L45) 

subsumes(C1 \{C2} U {O Uel {C3 }}, Cl)]] 

L47. 1£8 f [finite(C1 \{C2} U {D Ucl {C3 }})/\ (-+E L46,L44) 

unsat(C1 \{C2} U {O Uez{C3 }})] 

L48. 1£8 f finite(C1 \{C2} U {D Ucl {C3 }}) (I\E L47) 

L49. 1£8 I- unsat(Cl \{C2}U{OUcl {C3 }}) (I\E L47) 

L50. LEM3 f [[C2 E Cl /\ 0 Ucl {C3 } ~ C2] ~ ('7E* LEM3) 

exl(C1 \{C2}U{DUcl {C3 }}) < exl(Cd] 
L51. 1£8 f- D Ucl {C3 } ~ C2 (OPEN L19,L18, 

C-Propl,C-Prop3, 
~-Def,\-Def) 

L52. 1£4 f [C2 E Cl /\ DUel {C3 } ~ C2] (/\l L17,L51) 

L53. 1£4 f exl(Cl \{C2} U {D Uet{C3 }}) < exl(C1 ) (-+E L52,L50) 

L54. L2 I- [[finite(C1 \{C2} U {D Uez{C3 }})/\ ('7E Lll) 

[unsat(C1 \{C2} U {D Uez{C3 }})/\ 

exl(C1 \{C2} U {O Ucl {C3 }}) < exl(C1 )]] ~ 

::In'.D E Res(C1 \{C2} U {D Ucl {C3 }}, n')] 

L55. 1£4 f [fiilite(C1 \{C2}U{DUcl {C3 }})/\ (/\l* L48 ,L49,L53) 

[unsat(C1 \{C2} U {D Ucl {C3 }})/\ 

exl(C1 \{C2} U {O Uel {C3 }}) < exl(Cd]] 
L56. 1£4 f ::In'.DERes(C1 \{C2}U{DUcl{C3 }},n') (-+E L55,L54) 

L57. L2 f [[finite(C1 \{C2} U {C2 \eL{C3 }})/\ ('7E Lll) 

[unsat(C1 \{C2} U {C2 \cl{C3 }})/\ 

exl(C1 \{C2} U {C2 \edC3 }}) < exl(Cl )]] ~ 

::In'.D E Res(C1 \{C2} U {C2 \cl{C3 }}, n')] 

L58. 1£4 f [finite(C1 \{C2} U {C2 \cl{C3 }})/\ (I\h L38,L39,L43) 

[unsat(C1 \ {C2} U {C2 \edCs}})/\ 
exl(Cl \{C2} U {C2 \edCS}}) < exl(Cd]] 

L59. 1£4 f ::In'.D E Res(C1 \{Cz } U {Cz \cl{C3 }},n') (-+E L58,L57) 
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L36.

L37.

L38.

L39.

L40.

L41.

L42.

L43.

L44.

L45.

L486.

L47.

L48.

1.49.

L50.

L51.

L52.

L53.

L54.

155.

L56.

L57.

L58.

L59.

F [finite(C1) A [unsat(C1)A
subsumes(Cy \{C2}  U {C2 \u{C3}},C1)]]

F [finite(C1 \{C2} U {C2 \a{C3}})A
unsat(C; \{C2} U {C2 \a:{C3}})]

b finite(Cy \ {C2 }  U {C2 \e{Cs3}} )

F unsat(C, \{C2}U {C2 \a{C3}})
F [Co € Ci  AC  \a{C3} © Ca] =

ezl(C1 \{C2} U {C2 \a{C3}}) < ezHC1)]
F Cy \a{C3} CC

F [C2 € CL AC2 \ a {C3 }  C Co]

kb ezl(C1 \ {C2}  U {C2 \a {Cs } } )  < ezl(Ch)
F [[finite(Ci) A [unsat(C1)A

subsumes(Cy {C2 }  u {DO Uer {C3 } } ,  a l l  —

[finite(Cy \{Ca} U { 0  Ve {C3} 1)A
unsat(Cy \ {C2 }  U {OD Uet {C ID

F subsumes(Cy \{C2} U {OU {C5}}, Ci )

 [finite(C1) A [unsat(C1)A
subsumes(C1 \{C2} U {OU {C3}}, C1)]]

F [finite(C1 \{C2}  U {OU {C3}})A
unsat(Cy \{C2} U {3  Uy  {C3}})]

F finite(C1 \{C2}  U { 0  Ua {C5}})
F unsat(Cy \{C2}  U {OU {C3}})
F [[C2 € Ci  AOUg {Cs} © Co] +

ezl(Cy \ {C3}  U {O  Yet {C3 } } )  < exl(Ch)]
FOUg{C3}  CC

F [C2 E Cy  AOUgy {Cs }  C Cs)

F ezl(Cy \ {C2}  U {OD Uer {C3}})  < ezl(Cy)
F [[finite(Cy \{C2}  U {OD Ue {C3}HA

[unsat(C; \{C2}  U {OU {C3}HA
exH(C1 \{C2}  U {O0 Ver {C3}}) < ezl(Cy)]] =
3n’.D € Res(C, \{C2} U {OD Ve: {Cs}},n")]

} [finite(Cy \{C2}U { 0  Ue {C3}PA
[unsat(C, \ {C2}  U {OU {C3}})A

ezl(Cy \ {C2}U {DUe: {C3}}) < ez4(C1)]]
F 3n ' .0  € Res(C, \ {C2}  U {OD Ve {C3}},  n')

b [[finite(C1 \{C2} U {C2 \a{C3}HA
[unsat (Cy \ {C2 }  U {Cs \ a {Cs }  HA

ezl(Cy \ {C2 }  u {C2 \ a {C5 } } )  < ezl(Ch)]] —+

3n’ .0  € Res(C, \ {C2}  U {C2 \at{C3}},n')]
F [finite(C1 \{C2} U {C2 \a{C3}})A

[unsat  (Cy \ {C2 }  U {C2 \ a {C3 }  HA

ezl(C1 \{C2} U {C2 \e{C3}})  < ezl(C1)]]
F In’'.D € Res(Cy \{C2} U {C2 \a {C3} } ,n')
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(AI* L4,L6,L35)

(—+E L36,L34)

(AE  L37)

(AE  L37)

(VEx LEM3)

(OPEN L19,L18,
C-Propl,C-Prop3,
C-Def,\-Def)
(A I  L17,L41)

(—E  L42,L40)

(VE* LEMO)

(OPEN  L19,SUBS-S1-S,
SUBS-52-8)
(A I *  L4,16,L45)

(= E 146,144)

(AE  L47)

(AE  147)

(VE+ LEM3)

(OPEN  L19,L18,
C-Propl,C-Prop3,
C-Def,\-Def)
(A I  L17,L51)

(+E  L52,L50)

(VE L11)

(ATs 148,149,153)

(—E  L55,L54)

(VE L11)

(A I x  138,139,143)

(—E  L58,L57)



L60. 1£9 I- 0 E Res(Cl \{Cz} U {Cz \cz{C3}} , CS) (Hyp) 

L61. LEM1 f [0 E Res(Cl \{Cz} U {Cz \cl{C3 }},CS) --+ (VE* LEMl) 
[0 E Res(Cl \{Cz} U {Cz \el{C3} Uel {C3}}, Cs)v 
DUel {C3} E Res(Cl \{Cz} 

U {Cz \cz{C3} Ucl {C3}}, Cs))] 
L62. 1£9 I- [0 E Res(Cl \{Cz} U {Cz \el{C3} Uel {C3 }},CS)V (--+E L60,L61) 

DUel {C3} E Res(Cl \{Cz } 
U {Cz \el{C3} Uel {C3}}, CS)] 

L63. 1£10 I- 0 E Res(Cl \{Cz} U {Cz \el{C3} Uel {C3}}, CS) (Case 1) 

L64. 1£10 I- 3n.0 E Res(Cl,n) (31 L70) 

L65. 1£11 I- 0 Uel {C3} E Res(Cl \{Cz } U {Cz \cz{C3} (Case 2) 

Ucl {C3}}, Cs) 
L66. 1£11 I- 3n.o E Res(Cl,n) (3E L56,L84) 

L67. 1£9 I- 3n.0 E Res(Cl,n) (vE L62,L64,L66) 

L68. C-PropZ I- Cl \{Cz } U {CZ \el{C3 } Uel {C3}} = Cl (VE* C-Prop2) 

L69. 1£10 I- 0 E Res(Cl,CS) (=Subst L68,L63) 

L70. 1£10 I- OERes(Cl,CS) (Same L69) 

L7l. LEM4 I- Cl ~ Res(Cl , Cs) (VE* LEM4) 

L72. 1£11 I- VV3.'v%.% \ {V4 } ~ V3 (OPEN ~-Def,\-Def) 

L73. 1£11 I- Cl \{Cz} ~ Cl (VE* L72) 

L74. 1£11 I- [Cl \{Cz } ~ Cl /\ Cl ~ Res (Cl , Cs)] (M L73,L71) 

L75. ~-Trans I- [[Cl \{Cz} ~ Cl /\ Cl ~ Res(Cl,CS)]--+ (VE* ~-Trans) 

Cl \{Cz} ~ Res (Cl , CS)] 
L76. 1£11 I- Cl \{Cz } ~ Res(Cl,CS) (--+E L74,L75) 

L77. LEM-13 I- [[0 Uel {C3} E Res(Cl,CS)/\ (VE* LEM-13) 

Cl \{Cz } ~ Res(Cl , CS)] -+ 
Cl \{Cz} U {IJ Uel {C3}} ~ Res(Cl,CS)) 

L78. 1£11 I- DUel {C3 } E Res(Cl,CS) (=Subst L68,L65) 

L79. 1£11 I- [0 Uel {C3} E Res (Cl , Cs) 1\ Cl \{Cz } ~ Res(Cl , CS)] (/\I L78,L76) 

L80. 1£11 I- Cl \{Cz } U {O Uel {C3}} ~ Res (Cl , CS) (--+E L79,L77) 

L8l. 1£8 I- C7 = Cl \{Cz } U {O ucdC3 }} (=Subst L30,L32) 

L82. 1£11 I- C7 ~ Res(Cl , Cs) (=Subst L81,L80) 

L83. 1£12 I- 0 E Res (Cl , C9 ) (Hyp) 

L84. 1£12 I- 3n.o E Res(Cl,n) (31 L92) 

L85. LEM5 I- [C7 ~ Res(Cl , CS) -+ (VE* LEM5) 

Res(C7 , C9 ) ~ Res(Res(Cl , CS), C9 )] 

L86. 1£11 I- Res(C7 , C9 ) ~ Res(Res(Cl , Cs), C9 ) (--+E L82,L85) 

L87. 1£12 I- 0 E Res(C7 , C9 ) (=Subst L81,L83) 

L88. LEM6 I- Res(Res(Cl , Cs), C9 ) = Res (Cl , Cs + C9 ) (VE* LEM6) 

L89. 1£11 I- Res(C7 , C9 ) ~ Res(Cl , Cs + C9 ) (=Subst L88,L86) 

L90. LEM-14 I- [[0 E Res(C7 , C9 ) /\ Res(C7 , C9 ) ~ Res(Cl , Cs + C9 )] (VE* LEM-14) 

--+ 0 E Res(Cl,CS +C9 )) 

L9l. 1£12 I- OERes(Cl ,CS +C9 ) (OPEN L87,L89,L90) 
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L60.

Lé1.

L62.

L63.

L64.

L65.

L66.

L67.

L68. ‘

L69.

L70.

L71.

L72.

L73.

L74.

L75.

L786.

L77.

L78.

L79.

L80.

L81.

L82.

L83.

L84.

L85.

L86.

L87.

L88.

L89.

L90.

L91.

Im

FF

+
T 

T
T

T 
T 

T
T

 ¢
vY

 T
T

 
T

T
 

T
T

 
T 

T
T

TT
 

TT
T 

T
T

 
T

v 
T

T
 

T 
T

T
T 

T 
T

T
T

T

OD € Res(C, \{C2} U {C2 \ a {C3 } } ,Cs)
[O € Res(C1 \{C2} U {C2 \e t {C3} } ,Cs) —

[0 € Res(Cy \{C2} U {Ca \e{C3} Ua {C3}},Cs)V
O Ug  {Cs }  € Res(Cy \ {C2 }

U {C2 \a{C3} Ua {C3}}, Cs)l|
[D € Res(Cy \{C2} U {C2 \a{C3} Ver {C3}},Cs)V

O Ug  {Cs }  € Res(C} \ {C2}

U {C2 \at{Cs} Vet {C3} } ,  Cs)
Oe Res(C}  \ {C : }  u {C2 \ a {C3 }  Uet {C3}},Cs)

In.0 € Res(Cy,n)
OU {C3} € Res(C1 \ {C2 }  U {C2 \a {C3}

Ue {C3 } } ,  Cs )  )

In .0  € Res(Cy,n)
In .0  € Res(Cy,n)

C1 \ {C2}  U {C2 \a {Cs}  Vet {C5}} = Ci
O € Res(Cy,Cs)
OD € Res(C1,Cs)
C1 € Res(C,, Cs)
Ya WL. Vs \{Va} C Va
Ci \ {C }  € Ci
[C1 \{C2} € Ci  AC) € Res(C,, Cs)]
[ [Ci \ {C2 }  CC ACLE Res (C , ,Cs ) ]  +

C1 \{C2} © Res(C1,Cs))
C1 \{C2} © Res(C1,C3s)
[[OUq {C3} € Res(Cy,Cs)A

Ci  \ {C}  C Res (C i ,Cs ) ]  —

Ci  \ {C2 }  u { 3  Vet {C3 } }  - Res(C1,Cs)]
BD Ug  {C3} € Res(Cy,Cs)
[OU  {C3} € Res(C1,Cs) A C1 \{C2} C Res(C1,Cs)]
Ci  \ {C - }  u {GO Ua  {Cs3}} C Res(C,; ,Cs)

Cr = C1 \{C2} U {OD Va {Cs}}
Cr  Cc Res(Ch, Cs )

OD € Res(C1, Co)
In.0 € Res(Ci,n)
[Cr C Res (C i ,  Cs )  —

Res(C+,  Co) Cc Res (Res (C1 ,  Cs), Cs)]

Res(C7, Co) © Res(Res(C1,Cs), Co)
Oe Res (C+ ,  Co )

Res(Res(C,, Cs), Co) = Res(C,, Cs + Cp)
Res(C7, Co) C Res(C, ,Cs + Co)

([O € Res(C7, Co) A Res(C7,Co) © Res(Cy, Cs.+ Co)]
— [J € Res (C i ,Cs  + Co)]

D € Res (C i ,Cs  + Co)
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(Hyp)
(VE* LEM1)

(—+E L60,L61)

(Case 1)

(37  L70)

(Case 2)

( 3E  L56,L84)

(VE  L62,L64,L66)

(VE* C-Prop2)

_ (=Subst L68,L63)

(Same L69)

(VE* LEM4)

(OPEN C-Def,\-Def)

(VEx L72)

(A I  L73,L71)

(VE+* C-Trans)

(=E  L74,L75)

(VEx LEM-13 )

(=Subst L68,L65)

(A I  L78,L76)

(—E  L79,L77)

(=Subst L30,L32)

(=Subst L81,L80)

(Hyp)

(37 L92)

(VE+ LEM5)

(—E  L82,185)

(=Subst L81,L83)

(VE* LEMS)

(=Subst L88,L86)

(VE+ LEM-14)

(OPEN  L87,L89,L90)



L92. 1{.12 I- OERes(C1 ,CS +Cg ) (Same L91) 

THM. 1{.1 I- 'v'S.[[finite(S) 1\ [unsat(S) 1\ [0 < exl(S) 1\ [..,[0 E S]I\ (Vh L1) 

'v'S'.[[finite(S') 1\ [unsat(S') 1\ exl(S') < exl(S)]] -t 
3n'.0 E Res(S',n')J]]]] -t 3n.0 E Res(S,n)] 

The hypotheses of the proof lines are abbreviated as follows: tl1 are all axiom lines of 
the proof; tl2 = tl 1 , L2; tl3 = tl2 , L15; tl4 = tl3 , L16; tls = tl4 , L25; tl6 = tls, L26; tl7 

= tl6 , L27; tls = tl7 , L28; tl g = tls, L60; tl lO = tl9 , L63; tln = tl9 , L65; tl 12 = tln , 
L83; 

Note that in the proof above there are still unproved open lines: L35, L41, L45, L51, 
L72, and L91. But these depend only on a small set of hypotheses and can either be 
proved by calling an automated theorem prover (e.g. OTTER) interactively, or by a hier
archical planning process which takes each open line and its corresponding hypotheses as 
independent planning subproblems. 

The proof shown next is the proof generated by applying the altered proof plan to the 
initial state for locking resolution. 
L1. 1{.1 

L2. L2 

L3. 

L4. L2 

LS. L2 

L6. L2 

L7. L2 

LS. L2 

L9. L2 

L10. L2 

Ll1. L2 

L12. LEM2 

L13. L2 

L14. LEM2, L2 

LIS. 

L16. 

L17. 

I- [[finite(ClO ) 1\ [unsat-L(ClO ) 1\ [0 < exl(ClO)1\ 
[..,[0 E ClO] 1\ 'v'S'. [[finite (S') 1\ [unsat-L(S')I\ 

exl(S') < exl(C10)J] -t 3n'.o E Res-L(S',n')]]]]] -t 
3n.o E Res-L(ClO ,n)] 

I- [finite(ClO ) 1\ [unsat-L(ClO ) 1\ [0 < exl(ClO)1\ 
[..,[0 E ClO] 1\ 'v'S'. [[finite (S') 1\ [unsat-L(S')I\ 

exl(S') < exl(ClO )]] -t 3n'JJ E Res-L(S',n')]]]]] 
I- :In.o E Res-L(ClO ,n) 

I- finite(ClO ) 

I- [unsat~L(ClO) 1\ [0 < exl(ClO ) 1\ [..,[0 E ClO]1\ 
'v'S'.[[finite(S') 1\ [unsat-L(S') 1\ exl(S') < exl(ClO )]] 

-t 3n'.o E Res-L(S' , n')]]]] 
I- unsat-L(ClO ) 

I- [0 < exl(ClO ) 1\ [..,[0 E ClO] 1\ 'v'S'.[[finite(S')1\ 
[unsat-L(S') 1\ exl(S') < exl(ClO)J] -t 
3n'.o E Res-L(S', n')]]] 

I- 0 < exl(ClO ) 

I- ["'[0 E ClO] 1\ 'v'S'.[[finite(S') 1\ [unsat-L(S')I\ 
exl(S') < exl(ClO )]] -t 3n'.0 E Res-L(S',n')]] 

I- ..,[0 E ClO] 

I- 'v'S'.[[finite(S') 1\ [unsat-L(S') 1\ exl(S') < exl(ClO )]] -t 
3n'.o E Res-L(S',n')] 

I- [[..,[0 E ClO] 1\ 0 < exl(ClO )] -t :lC.:lL. 
[C E ClO 1\ [nonunit(C) 1\ [L E C 1\ Q(ClO,L)]]]] 

I- [..,[0 E ClO] 1\ 0 < exl(ClO )] 

I- 3C.3L.[C E S 1\ [nonunit(C) 1\ [L E C 1\ Q(S,L)]]] 

I- :lL.[Cu E ClO 1\ [nonunit(Cu ) 1\ [L E Cul\ Q(ClO , L)]]] 

I- [Cu E ClO 1\ [nonunit(Cu )1\ [C12 E Cu I\Q(ClO ,C12 )]]] 

I- Cll E ClO 

(-+1L3) 

(Hyp) 

(3E L14,L22)
 

(/\E L2)
 

(/\E L2)
 

(/\E LS)
 

(/\E LS)
 

(/\E L7) 

(/\E L7) 

(/\E L9) 

(/\E L9) 

(VE LEM2) 

(/\I L10,LS)
 

(-+E L13,LI2)
 

(Hyp)
 

(Hyp)
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L92. H ız  F Oe  Res (Cq ,Cs  + Co)

THM. x ;  F VS.[[finite(S) A [unsat(S) A [0 < ezl(S) A [-[D € SIA
VS'.[[finite(S') A [unsat(S’) A exl(S') < ezl(S)]] —

dn’.0 € Res(S',n')]]]]] = In .0  € Res(S,n))

independent planning subproblems.

initial state for locking resolution.
L l .

L2.

L3.
L4.

LS.

L6.

L7.

L8.

L9.

L10.

L11.

L12.

L13.

L14.

L15.

L16.

L17.

Ha F [[finite(C1o) A [unsat-L(C10) A [0 < ezl(Cro)A
[-[O € Cio) AVS'.[[finite(S") A [unsat-L(S)A
exl(S') < exl(Cio)]] = 3n'.0 € Res-L(S', n)]]]]] =
In .0  € Res-L(Cio,n)]

L2  F [finite(C1o) A [unsat-L(Cio) A [0 < ezl(Cig)A
SD € Cio] AVS[[finite(S') A [unsat-L(S")A
ezl(S') < exl(Cyo)]] = 3n’.0 € Res-L(S',n")]]]]]

Ha F 3n.0 € Res-L{Cio,n)
L2  + finite(C1o)

L2  bb [unsat-L(C10)  A [0 < exl(Cyo) A {OD € Co]  A

VS’.[[finite(S') A [unsat-L(S') A ezl(S') < ezl(C10)]]
— 3n'.0 € Res-L(S',n/)]]]]

L2  kb unsat-L(Cio)
L2  F [0 < exl(Cio) A[=[O € Cig] AVS".[[finite(S')A

[unsat-L(S’) A exl(S') < ezl(Chp)]] =
In ’ .0  € Res-L(S',n"}]]]

L2  F 0 < exzl(Ci0)
L2  F [SD € Cio) AVS'.[[finite(S") A [unsat-L(S’)A

ezl(S') < ezl(Cio)]] = In ' .0  € Res-L(S',n')]|
L2  F [DO € Cio)

L2  F VS'.[[finite(S') A [unsat-L(S’) A ezi(S') < ezl(Ci0)]] =
3In'.0 € Res-L(S',n')]

LEM2 FE [SD € Cio] AO < exl(Cho)] = 3C.3L.
[C € Cio A [ronunit(C) A [L € C A Q(Chro, L)]I]

L2  F SD € Cio] AO < exl(Cio)]
LEM2,L2  * 3C.3L.[C € SA [nonunit(C) A[L € C AQ(S,L)]]]
Ha F 3L.[C11 € Cio A[nonunit(Ci1)  A [L  € C11  A Q(Cho, L)]]]

Ha F [C11 € Cro A [nonun i t (C r1 )  A [C i z  € Cr i  AQ(Cro ,  C i2 ) I ] ]
Ha F Cy  € Cro
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(Same L91)

(vI*  L1 )

The hypotheses of the proof lines are abbreviated as follows: H ;  are al l  axiom lines of
the proof; Hs  = H i ,  L2 ;  Hs  = Ho ,  L15 ;  Hy  = Hs, L16 ;  Hs  = Ha ,  L25 ;  Hg  = Hs ,  L26 ;  Ho

= He, L27; Hs  = H r ,  L28; He = Hs,  L60; H ıo = Ho, L63; H ı r  = Hse, L65; H ız = His,
L83;

Note that in the proof above there are still  unproved open lines: L35, L41, L45, L51,
L72, and L91. But  these depend only on a small set of hypotheses and can either be
proved by calling an automated theorem prover (e.g. OTTER) interactively, or by a hier-
archical planning process which takes each open line and i ts corresponding hypotheses as

The proof shown next is the proof generated by applying the altered proof plan to the

(= I  L3)

(Hyp)

( 3E  L14,L22)

(AE  L2)

(AE  L2)

(AE  L5)

(AE L5)

(AE LT)

(AE LT)

(AE  L9)

(AE  L9)

(VE  LEM?)

(A I  L10,L8)

(SE  L13,L12)

(Hyp)

(Hyp)
(AEx  L186)



L18. ?i4 I- nonunit(Cll ) (AE* L16) 
L19. ?i4 I- C12 E Cll (AE* L16) 
L20. ?i4 I- Q(ClO , C12 ) (AE* L16) 
L21. ?i4 I- 3n.O E Res-L(ClO ,n) (:lE L25,L34) 

L22. ?i3 I- 3n.o E Res-L(ClO , n) (:lE LI5,L21) 

L23. LEM2A I- [[Cll E ClO /\ [nonunit(Cll ) /\ [C12 E Cll /\ (VE* LEM2A) 
Q(ClO , C12 )]]] --+ 35l .3S2.3Cl . 
3C2.[Cl = Cll \cl{C12 } /\ [C2 = 0 Ucl {C12 }!', 

[51 = ClO \{Cll} U {Cd/\ 
52 = ClO \{Cll} U {C2 }]]]] 

L24. ?i4 I- [Cll E ClO /\ [nonunit(Cll ) /\ [C12 E Cll /\ Q(ClO , C12 )]]] (Ah LI7,LI8,LI9,L20) 

L25. ?i4 I- 35l .352.:JCl .3Cdcl = Cll \cl{C12 }/\ (-+E L24,L23) 
[C2 = 0 Ucl {C12} /\ [51 = ClO \{Cll } U {Cd/\ 
52 = ClO \{Cll } U {C2 }]]] 

L26. ?is I- 352.3Cl .3C2,[Cl = Cll \cziC12 } /\ [C2 = 0 Ucl {C12 }/\ (Hyp) 

[C15 = ClO \{Cll } U {Cd/\ 
52 = ClO \{Cll } U {C2 }]]] 

L27. ?i6 I- 3Cl .3C2.[Cl = Cll \cl{C12 } /\ [C2 = [J Ucl {C12 }/\ (Hyp) 

[C15 = ClO \{Cll } U {Cd/\ 
C16 = ClO \{Cll } U {C2 }]]] 

L28. ?i7 I- 3cdc13 = Cll \cl{C12 } /\ [C2 = 0 UcC {C12}/\ (Hyp) 

[C15 = ClO \{Cll} U {C13}/\ 
C16 = ClO \{Cll } U {C2 }]]] 

L29. ?is I- [C13 = Cll \cl{C12 } /\ [C14 = 0 Uc/ {C12 }/\ (Hyp) 

[C15 = ClO \{Cll } U {C13}/\ 
C16 = ClO \{Cll } U {Cl4 }]]] 

L30. ?is I- C13 = Cll \cl{C12 } (AE* L29) 

L31. ?is I- Cl4 = 0 Ucl {C12 } (AE* L29) 

L32. ?is I- C15 = ClO \{Cll} U {C13} (AE* L29) 

L33. ?is I- C16 = ClO \{Cll } U {C14 } (AE* L29) 

L34. ?is I- 3n.o E Res-L(ClO,n) (:lE L60,L68) 

L35. LEMO I- [[finite (ClO ) /\ [unsat-L(ClO )/\ (VE* LEMO) 
subsumes(ClO \{Cll } U {Cll \cl{C12 }}, ClO)]] --+ 

[finite(ClO \{Cll } U {Cll \cc{C12 }})/\ 
unsat-L(ClO \{Cll } U {Cll \cc{C12 }})]] 

L36. ?is I- subsumes(ClO \{Cll } U {Cll \cl{C12 }}, ClO ) (OPEN LI9,SUBSUMES
SI-S,SUBSUMES-S2-S) 

L37. ?is I- [finite(Clo ) /\ [unsat-L(Clo )/\ (Ah L4,L6,L36) 
subsumes(ClO \{Cll } U {Cll \cc{C12 }}, ClO)]] 

L38. ?is I- [finite(ClO \{Cll } U {Cll \cl{C12 }})/\ (-+E L37,L35) 
unsat-L(ClO \{Cll } U {Cll \cl{C12 } })] 

L39. ?is I- finite(ClO \{Cll } U {Cll \cl{C12 }}) (AE L38) 

L40. ?is I- unsat-L(ClO \{Cll } U {Cll \cc{Cld}) (AE L38) 

L41. LEM3 I- [[Cll E ClO /\ Cll \cc{C12 } ~ Cll ] --+ (VE* LEM3) 
exl(ClO \{Cll } U {Cll \cl{C12 }}) < exl(ClO )] 
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L18.

L19 .

L20.

L21.

L22.

L23.

L24.

L25.

L26.

L27.

L28.

L29.

L30.

L31.

L32.

L33.

L34.

L35.

L386.

L37.

L38.

L39.

L40.

L41. LEM3

nonunit(C11)
C12 € Ch1

Q(Ci0, Ci2)
3n.D € Res-L(Cio,n)

In.0  € Res-L(C,0,n)

T
O

T
O

T
 

T 
T

T

Cis = Cu  \a{C12}
Cia =0Uy  {C12}

In .0  € Res-L(Cyo,n)

T
T

 
T

T
 

T
T

F [finite(C1o) A [unsat-L(Cio)A
subsumes(Cio \{C11} U {C11 \a{C12}}, Cio)]]

F [finite(Cio \{C11} U {C11 \a t {Ci2}DA
unsat-L{C1o \ {C11} U {C11 \at{C12}})]

+ finite(C1g \ {C11 }  U {Cu  \ e t {C12 } } )

F unsat-L(Cio \ {C11} U {C11 \at{C12}})
F [[Ci € Cro A C11  \at{Cr2} © Cui] =

ezl(C10 \{C11} U {C11 \at{C12}}) < ezl(C1o)]

[C11 € Cio A [nonunit(C11) A [C12 € C11A
Q(C io ,  C i2 ) ] ] ]  — 35,.38,.3C;.

3C,.[C1 = C11  \et{C12} A [C2 = O Ug  {C12}A
[S1=  Cio \ {Cu}  U {C1}A

Sa = Cyo \ {Cu}  U{C:}]]]]
[m [Ciı1 E CoA  [nonun i t (C11)  A [Ciz eC Q(Cho, Ci12)]]]

F 351 .35 , .3C , .3C : . [Ch  = O1  \e i {C i2 }A
[C2 =0Ug  {C12} A[S1 = Cio \ {Cua} U {C1}A
Sa = Cro \{C1} U {C2}]]]

+ 35 , .3C, .3C, . [Cy  = Cu  \ u {C12 }  A [C2 =0Ugy  {C12 }A
[C15 = Cio \{Cu} U{C1}A
Sa = C10 \ {C11} VU {C2}]]]

FF 3C1.3C2. [C1 =Cn  \ e t {C i2 }  A [Co = Ug  {C12 }A
[Cis = Cio \ {C11} VU {C1}A
Cis = C10 \ {C11} U {C I

F 3C2.[Ci3 = C11  \ a  {C12} A [C2 = O Ug  {C i2 }A
[Cis = C10 \{C11} U{C13}A
Cie = C10 \{C11} U {C2}]]]

F [C13 = C11 \a{Ci2} A [C14 = O Ug  {Ci2}A
[C15 = C10 \ {C11} U {C13}A
Cis = Cro \ {C11} U {C14}]]]

Cis = C10 \{Cu1} U {C13}
Cie = C10 \{C11} U {C14}

[[finite(C10) A [unsat-L(C1o)A
subsumes(C1o \{C11} U {C11 \e{Ci2}},  Cio)]] =
[finite(Cro \ {C11} U {C11 \ci{Cr2}}A
unsat-L(Cro \ {C11} U {C11 \ar{C12}})]]

F subsumes(Clo \{C1u} U {Cu \ e t {C i2 } } ,  Cio)

(AEx* L16)
(AE*  L16)

(AE+ L16)

(3E  L25,L34)

( 3E  L15,L21)

(VE* LEM2A)

(A Ix  L17,L18,L19,L20)

(—E  124,123)

(Hyp)

(Hyp)

(Hyp)

(Hyp)

(AE*  L29)

(AE*  129)

(AEx 129)

(AE*  L29)

(3E  160,168)

(VE+ LEMO)

(OPEN  L19,SUBSUMES-
$1-5,SUBSUMES-52-S)
(A I *  L4,L6,L36)

(—E  L37,L35)

(AE L38)

(AE  L38)

(VE* LEM3)



L42. lls f- Cu \cdC1Z } ~ Cu 

L43. 114 f- [CU E ClO /\ Cu \cl{C1Z } ~ CU] 

L44. 114 f- exl(ClO \{CU} U {CU \cl{C1Z }}) < exl(ClO ) 

L45. LEMa f- [[finite(C1O ) /\ [unsat-L(C1O )/\ 

subsumes(C1O \{Cu } U {O Ucl {C1Z }}' ClO)]] -+ 
[finite (C10 \ {Cu } U {O Ucl {C1Z }})/\ 
unsat-L(ClO \{Cu } U {O Ucl {C1Z }})]] 

L46. lls f- subsumes(ClO \{Cu } U {O Ucl {C1Z }}, ClO ) 

L47. lls f- [finite(ClO ) /\ [unsat-L(ClO )/\ 
subsumes(ClO \{Cu } U {O Ucl {C1Z }}, ClO )]] 

L48. lls f- [finite(ClO \{Cll}u{OUcdC1Z }})/\ 

unsat-L(ClO \{Cu } U {O Ucl {C1Z }})] 
L49. lls f- finite(ClO \{Cu } U {O ucdC1Z }}) 

L50. lls f- unsat-L(ClO \{CU}U{OUcl {C1Z }}) 

L5l. LEM3 f- [[Cu E ClO /\ 0 Ucl {C1Z } ~ Cu] -+ 
exl(ClO \{Cu } U {O Ucl {C1Z }}) < exl(ClO )] 

L52. lls f- 0 Ucl {C1Z } ~ Cu 

L53. 1-/.4 f- [Cu E ClO /\ 0 Ucl {C1Z } ~ CU] 

L54. 114 f- exl(ClO \{Cu } U {O Ucl {C1Z }}) < exl(ClO ) 

L55. L2 f- [[finite(ClO \{CU}U{OUcl {C1Z }})/\ 
[unsat-L(ClO \{Cu } U {O Ucl {C1Z }})/\ 

exl(ClO \{Cll } U {O Ucl {C1Z }}) < exl(ClO )]] -+ 
3n'.0 E Res-L(ClO \{Cu } U {O Ucl {C1z}},n')] 

L56. 114 f- [finite(C1O \{Cn } U {O Ucl {C1Z }})/\ 
[unsat-L(C1O \{Cll } U {O Ucl {C1Z }})/\ 

exl(ClO \{Cll } U {O Ucl {C1Z }}) < exl(ClO )]] 
L57. 114 f- 3n'.o E Res-L(ClO \{Cu } U {O Ucl {C1z}},n') 

L58. L2 f- [[finite(ClO \{Cu } U {Cu \cl{C1Z }})/\ 
[unsat-L(C10 \{Cll } U {Cll \cz{C1Z}})/\ 

exl(ClO \{Cll } U {Cll \cl{C1Z }}) < exl(ClO )]] -+ 
3n'.o E Res-L(ClO \{Cn } U {Cll \cl{C1z }},n')] 

L59. 114 f- [finite(ClO \{Cll } U {Cn \cl{C1Z }})/\ 
[unsat-L(ClO \{Cll } U {Cll \cdC1z }})/\ 

exl(ClO \{Cu } U {Cu \cl{C1Z }}) < exl(C1O )]] 

L60. 114 f- 3n'.0 E Res-L(ClO \{Cu } U {Cll \cl{C1z}},n') 

L6l. llg f- [0 E Res-L(ClO \{CU}U{Cll \cl{ClZ }},C17 )/\ 

Q(ClO ,C1Z )] 

(OPEN L19, L18, 
SUBSET-PROP1, 
SUBSET-PROP3, 
SUBSETEQ-DEF, 
SETDIFF-DEF) 

(M L17, L42) 

(~E L43,L41) 

(VE* LEMO) 

(OPEN L19,SUBSUMES
Sl-S,SUBSUMES-S2-S) 

(M* L4,L6,L46) 

(~E L47,L45) 

(/\E L48) 

(/\E L48) 

(VE* LEM3) 

(OPEN L19,L18,SUBSET
PROPl,SUBSET
PROP3,SUBSETEQ
DEF,SETDIFF-DEF) 
(/\1 L17,L52) 

(~E L53,L51) 

("lE Lll) 

(/\1* L49,L50,L54) 

(~E L56,L55) 

("lE Lll) 

(/\h L39,L40,L44) 

(~E L59,L58) 

(Hyp) 
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L42.

L43.

L44.

L45.

1.46.

L47.

L48.

L49.

L50.

L51.

L52.

L53.

L54.

L55.

L56.

L57.

L58.

L59.

1.60.

L61.

F Cu  \a{€12} € Cu

F [Cia € Cig AC11  \e t {C12}  Cc Cui]

F ezl(Cio \{C11} U {C11 \a{C12}}) < ezl(C1o)
F [[finite(C1o) A [unsat-L(C1o)A

subsumes (Cio \ {C11} U {Od U4 {C12}}, C10)]] =
[finite(Cho \ {C i1 }  u {O  Uel  {C i2 }HA
unsat-L(C1o \{C11} U {OU {C12} } ]

F subsumes(Cro \{C11} U {OU {Ci2}},  Cho)

F [finite(Cio) A [unsat-L(C1o)A
subsumes(Cio \ {C11} U {BO Ve: {C12}}; Cio)]]

[finite(C1o \ {C1 }  U {O  Ue  {C2 }  A
unsat-L(Cyo \{C11} U {OU {C12}})]

F finite(Cro \{C11} U {OUq  {C12}})
F unsat-L(C1o \ {C11} U {OU {C12}})
F [Cia € Cio ANDOU, {C12}  Cc Cu)  —

exl(Ci0 \ {C11 }  U {a  Uet  {C12 } } )  < ezl(C1o))
F OU {C12} € C i

F [C11 € Cio AD Ug  {C12} € Cui]
ezl{Cro \ {Cu }  u {ad Ua  {C12 } } )  < exl(Cio)

+ ([finite(C1o \ {Cu }  U {0  Ua  {C2 }
[unsat-L(Cio \ {C11} U {OD Ux {C12} })A

ezl(Cho \ {Cu1 }  u { 0  Uel {C12 } } )  < exl(Cho)]] —
In’.0 € Res-L(Ci0 \{C11} U { 0  Ug  {C12}},n")]

F [finite(Cio \{C11} U {OU {Cr2}})A
[unsat-L(C1o \ {C11} U {OD Ua {Ci2}})A

ezl(Cro \{C11} U { 0Uu  {C12}}) < ex4(C10)]]
+ 3n ' .0  € Res-L{C1o \{C11} U {OU {C i2 } } , n )
F [[finite(C1o \{C11} U {C11 \a{Ci2}PA

[unsat-L(C1o \ {Cu }  u {Cu \ a  {C12}  PA
ezl(C1o \{C11} U {C11 \ct{C12}}) < ezl(Cho)]] =
In ' .0  € Res-L(C10 \{C11}  U {C11 \a{C12}},7n')]

F [finite(Cio \{C11} U {C11 \at{Ci2}HA
(unsat-L(C1o \{C11} U {C11 \a{Cr2}})A

exl(Cio \{C11} U {C11 \at{C12}}) < ex4(C10)]]
F3In'.0e Res-L(Cyo \ {Cu1 }  u {Cu \ a {C12 } } ,  2 ’ )

F [OD € Res-L(C10 \{C1u}  U {C11 \ e {C i2 } } ,  C17)A
Q(Cio, Ci2)]
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(OPEN  L19, L18,
SUBSET-PROP1,
SUBSET-PROP3,
SUBSETEQ-DEF,
SETDIFF-DEF)
(A I  L17, L42)

(—E  L43,141)

(VE* LEMO)

(OPEN  1.19,SUBSUMES-
S1-S,SUBSUMES-S2-8)
(AI*  L4,L6,146)

(—E  147,145)

(AE  148)

(AE  L48)

(VE* LEM3)

(OPEN  L19,L18,SUBSET-
PROP1,SUBSET-
PROP3,SUBSETEQ-
DEF,SETDIFF-DEF)
(A I  L17,L52)

(—E  L53,L51)

(VE L11)

(A I  L49,L50,L54)

(—+E L56,L55)

(VE L11)

(A I x  L39,L40,L44)

(—+E L59,158)

(Hyp)



L62. LEMl 

L63. 11.9 

L64. 11.10 

L65. 11.10 

L66. 11.11 

L67. 11.11 

L68. 11.9 

L69. SUBSET
PROP2 

L70. 11.10 

L71. 11.10 

L72. LEM4 

L73. 11.11 

L74. 11.11 

L75. 11.11 

L76. SUBSETEQ
TRANS 

L77. 11.11 

L78. LEM-13 

L79. 11.11 

L80. 11.11 

L8!. 11.11 

L82. 11.8 

L83. 11.11 

L84. 11.12 

L85. 11.12 

L86. LEM5 

L87. 11.11 

L88. 11.12 

L89. LEM6 

L90. 11.11 

f- [[0 E Res-L(ClO \{Cll } U {Cll \el{C12}}, CI7)/\ 
Q(ClO ,C12 )] -+ [0 E Res-L(ClO \{Cu }
 

U {Cll \el{CI2 } Uel {C12 }}, C17)v
 
DUel {CI2 } E Res-L(ClO \{Cll }
 

U {Cll \edC12 } Uel {CId}, CI7)]] 
f- [0 E Res-L(ClO \{Cll } U {Cll \el{CI2 } 

Uel {CI2 }}, C17)v 
DUel {C12 } E Res-L(ClO \{Cu } U {Cll \el{C12 } 

Uel {CI2 }}, C17 )] 

f- 0 E Res-L(ClO \{Cll } U{Cll \el{CI2 } Uet{CI2 }},C17) 

f- 3n.0 E Res-L(ClO,n) 

f- 0 Ucl {CI2 } E Res-L(ClO \{Cll } U {Cll \edC12 } Uel 
{CI2 }},C17) 

f- 3n.o E Res-L(ClO , n) 

f- 3n.o E Res-L(ClO,n) 

f- ClO \{Cu } U {Cu \el{CI2 } Uel {CI2 }} = ClO 
f- 0 E Res-L(ClO , C17 ) 

f- oERes-L(ClO ,CI7 ) 

f- ClO ~ Res-L(ClO ,CI7 ) 

f- VVI5·VVI6.VI5 \{VI6 } ~ VI5 

f- ClO \{Cll} ~ ClO 

f- [ClO \{Cu } ~ ClO /\ ClO ~ Res-L(ClO ,C17 )] 

f- [[ClO \{Cu } ~ CIO /\ ClO ~ Res-L(ClO , C17 )] -t 

ClO \{Cu } ~ Res-L(ClO ,C17 )] 

f- ClO \{Cu } ~ Res-L(ClO ,CI7 ) 

f- [[0 Ucl {CI2 } E Res-L{ClO ,C17 )/\ 

ClO \{Cu } ~ Res-L(ClO , CI7 )] -+ 
ClO \{Cu } U {o Uel {C12 }} ~ Res-L(ClO , CI7 )] 

f- DUel {CI2 } E Res-L(ClO ,C17 ) 

f- [0 Uel {C12 } E Res-L(ClO , CI7)/\ 
ClO \{Cu } ~ Res-L(ClO ,CI7 )] 

f- ClO \{Cll}U {DUel {CI2 }} ~ Res-L(CIO ,C17 ) 

f- CI6 = ClO \{Cu } U {DUel {CI2 }} 

f- CI6 ~ Res-L(ClO ,CI7 ) 

f- 0 E Res-L(ClO,CIs ) 

f- 3n.o E Res-L(ClO , n) 

f- [C16 ~ Res-L(ClO , C17 ) -t 

Res-L(CI6 , CIS ) ~ Res-L(Res-L(ClO , C17 ), CIS )] 
f- Res-L(CI6 , CIS) ~ Res-L(Res-L(ClO , CI7 ), CIS ) 

f- 0 E Res-L(C16 , C IB ) 

f- Res-L(Res-L(ClO , C17 ), CIB ) = Res-L(ClO , CI7 + CIS ) 

f- Res-L(CI6 , CIS ) ~ Res-L(ClO , C17 + CIS) 
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(VE* LEM1) 

(-tE L61,L62) 

(Case 1)
 

(3/ L71)
 

(Case 2)
 

(3E L57,L85)
 

(VE L63,L65,L67)
 

(VE* SUBSET-PROP2)
 

(:::Subst L69,L64)
 

(Same L70)
 

(VE* LEM4)
 

(OPEN SUBSETEQ
DEF,SETDIFF-DEF)
 

(VE* L73)
 

(M L74,L72)
 

(VE* SUBSETEQ-TRANS)
 

(-tE L75,L76)
 

(VE* LEM-13)
 

(:::Subst L69,L66)
 

(M L79,L77)
 

(-tE L80,L78)
 

(:::Subst L31,L33)
 

(:::Subst L82,L81)
 

(Hyp)
 

(3/ L93)
 

(VE* LEM5)
 

(-tE L83,L86)
 

(=Subst L82,L84)
 

(VE* LEM6)
 

(:::Subst L89,L87)
 

L62.

L63.

L64.

L65.

L66.

L67.

L68.

L69.

L70.

L71.

L72.

L73.

L74.

L75.

L76.

L77.

L78.

L79.

L80.

L81.

L82.

L83.

L84.

L85.

L86.

L87.

L388.

L89.

L90.

LEM1

SUBSET-
PROP2

H ıo

SUBSETEQ-
TRANS

Hi

LEM-13

+

=

FO € Res-L(Cio \ {C11} U {C11 \c1 {C12} Uct {C12}}, C17)
=

=

+

FF

=

=

+

+

=

+

F

FF

T

I

ID  € Res-L(C1o \ {C11} U {C11 \c:{Ci2}},  Ci7)A
Q(C10 ,C12 ) ]  — a € Res-L(Cho \ {C11 }

U {C11 \ e {C i2 }  Ya  {C12}},  C17)V
OU {C12 }  € Res-L(C1o \ {C11 }

U {C11 \ e {C i2 }  Ua  {C i2 } } ,  Ci7)]]
DO € Res-L(Ci0 \ {C11 }  U {Cu \ e t {C i2 }

Ver {C12}}, C17)V
OU {C12} € Res-L(Cio \ {C1 }  U {C11 \e{Ci2}

Uet {C12}} ,  Cir) ]

In.0 € Res-L(Ci0,n)

O Ua {C12} € Res-L(Cio \{C11} U {C11 \a{C12} Ua
{C12}}, Chr)
In .0  € Res-L(Chp,n)
In .0  € Res-L(Cip,n)

Cio \ {C11} U {C11 \ct{C12} Ver {C12}} = Cro
Oe Res-L(C\o, C17)

D € Res-L(Ci0, C17)
Cio © Res-L(Ci09, C17)

VVıs.VVi6-Vis \{Vie} C Vis

C10 \{C11} € Cio
[C10 \{C11} € Cio A Cio € Res-L(C10, Cır)]
[C10 \{C11} € Cio A Cio C Res-L(Chp, C17)] =

Cio \{C11} © Res-L(Cyo, C17)]
Ciro \{C11} © Res-L(Cho, Cır)
[OU  {C12} € Res-L(Cio, C17)A

Cio \{C11} © Res-L(Cio, Cir7)] =
Cio \{C11} U {O Ver {Cr2}} © Res-L(Cio, Ci7)]

[m Ug  {C12}  € Res-L(Cio:  C i7)

[BU  {C12} € Res-L(C10, C17)A
Cro \{C11} C Res-L(C10, C17)]

Cio \{C11} U { 0  Ua {C12}} © Res-L(C10, C7)
Cis = C10 \{C11} U {0  Ux {Ci2}}
Cie C Res -L (C10 ,  C i )

OD € Res-L(Ci0 ,  C13)

Jn0e  Res -L {Cyq ,n )

[C is  Cc Res-L{Chy, C17 )  —

Res-L(Ci16, C i s )  C Res-L{Res-L(Cho, C i r ) ,  Cis)]

Res -L (C i6 ,  C ıs )  Cc Res -L (Res -L (C1o ,  C11 ) ,  C i s )

Oe Res-L(Chs, Cis)

Res-L(Res-L(C1o, C i z ) ,  Cis) = Res-L(Co,  C ır + Cis )

Res-L(C}s, Cis) Cc Res-L(Cho, C i?  + C i s )
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(VE* LEM1)

(—E  L61,L62)

(Case 1)

(37 L71)

(Case 2)

(3E L57,185)

(VE L63,L65,L67)

(VE+ SUBSET-PROP2)

(=Subst L69,L64)

(Same L70)

(VEx LEM4)

(OPEN SUBSETEQ-
DEF  ,SETDIFF-DEF)
(VE* L73)

(A I  L74,L72)

(VE+ SUBSETEQ-TRANS)

(—E  L75,L76)

(VEx LEM-13)

(=Subst L69,L66)

(A I  L79,L77)

(—E  L80,L78)

(=Subst L31,L33)

(=Subst L82,L81)

(Hyp)
(37 L93)

(VEx LEMS5)

(—E  L83,L86)

(=Subst L82,L84)

(VE* LEMS)

(=Subst L89,L87)



L91. LEM-14 \- ([0 E Res-L(GI6 , GIS )/\ CvE* LEM-14) 
Res-L(GI6 , GIS ) ~ Res-L(GlO , Gn + GIS )] -+ 
o E Res-L(GlO , Gn + GIS )] 

L92. 1£12 \- 0 E Res-L(GlO , Gn + GIS) (OPEN LSS,L90,L91) 

L93. 1£12 \- 0 E Res-L(GlO , GI7 + GIS ) (Same L92) 

THM. 1£1 \- 'v'S.[[finite(S) /\ [unsat-L(S) /\ [0 < exl(S) /\ [..... [0 E S]/\ (Vh L1) 
'v'S'.([finite(S') /\ [unsat-L(S') /\ exl(S') < exl(S)]] 

-+ 3n'.D E Res-L(S',n')]]]]] -+ 3n.0 E Res-L(S,n)] 

In this proof the hypotheses are: 1£1 is the set of all axiom lines (as in the example of 
the binary resolution proof); 112 = 1£1, L2; 1£3 = 1£2, L15; 114 = 1l3 , L16; 1ls = 1£4, L26; 
116 = 1ls, L27; 1£7 = 1£6, L28; 1ls = 1£7, L29; 1£9 = 1£s, L61; 1£10 = 1£9, L64; 1£11 = 1£9, 

L66; 1£12 = 1£11, L84; 
As in the proof of binary resolution completeness there are also open lines here which 

must be shown: L36, L42, L46, L52, L73, and L92. But they can be proved interactively 
or by further planning processes, too. 
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L91. remus  Fk [[0 € Res-L(Cis ,  C i s )A  (VE* LEM: 14)

Res-L(Ci6,C18) © Res-L(Cio,C17 + Cis) =
Oe Res-L(Cho, C i r  + C i8 ) ]

L92. H ız  FO € Res-L (C i0 ,C i r  + Cis) (OPEN  L88,L90,L91)

L93. H i s  F Oe  Res-L(Cho, C i r  + Cis)  (Same L92)

THM. # ,  F VS.[finite(S) A [unsat-L(S) A [0 < ezl(S) A [ - [D € SIA (vIx LI)
VS’[[finite(S') A [unsat-L(S’) A ezl(S') < ezl(S)]]

— 3n ' . 0  € Res-L(S',n/)]])]] = 3n .0  € Res-L(S, n) ]

In this proof the hypotheses are: # ;  is the set of all axiom lines (as in the example of
the binary resolution proof);  Ha  = H i ,  L2; Hs  = Ha, L15; Ha  = Hs ,  L16; Hs  = Ha,  L26;
He = Hs,  L27 ;  H r  = Hs,  L28 ;  Hs  = Hr,  L29; Ho  = Hs,  L61 ;  Ho  = Hg,  L64 ;  H i  = Ho ,

L66 ;  H ız  = Hi ,  L84 ;

As in the proof of  binary resolution completeness there are also open lines here which
must be shown: L36, L42, L46, L52, L73, and L92. But they can be proved interactively
or by further planning processes, too.
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