Fachbereich Informatik

Universitat Kaiserslautern
D-67663 Kaiserslautern

SEKI - REPORT

Informal Proceedings of the Annual
Meeting of “GI-Fachgruppe
‘Deduktionssysteme’” in

Kaiserslautern, 1993

J. Avenhaus, J. Denzinger (eds.)
SEKI Report SR-93-11 (SFB)

Informal Proceedings of the Annual
Meeting of “GI-Fachgruppe
‘Deduktionssysteme’” in
Kaiserslautern, 1993

J. Avenhaus, J. Denzinger (eds.)
SEKI Report SR-93-11 (SFB)

Preface

This report contains a collection of abstracts for talks given at the “Deduktionstreffen”
held at Kaiserslautern, October 6 to 8, 1993. The Deduktionstreffen is the annual meet-
ing of the Fachgruppe Deduktionssysteme in the Gesellschaft fiir Informatik (GI). This
Fachgruppe represents the German community of researchers in the area of automated

reasoning.

The topics of the talks range from theoretical aspects of term rewriting systems and
higher order resolution to descriptions of practical proof systems in various applications.
They are grouped together according the following classification: Distribution and
Combination of Theorem Provers, Termination, Completion, Functional Programs,
Inductive Theorem. Proving, Automated Theorem Proving, Proof Presentation.

It is a tradition of the Deduktiontreffen that mainly the groups at the organizing
university present their work. Besides that, talks from the German speaking community
are given. It is the aim of the meeting to present and discuss ongoing research. In
general, the final versions of the results presented will be submitted to journals and
conferences later on. So this report may give an impression what is going on for the
moment in the organizing department and - to a small extent - in Germany in the field
of automated reasoning.

We look forward to have an interesting meeting and fruitful discussions.

Jirgen Avenhaus
Klaus Madlener

Program

Distribution and Combination of Theorem Provers

Jorg Denzinger : 8
Distributed knowledge-based theorem proving by team work '
Stephan Schulz :) 24
Analysis and transformation of equational proofs in a distributed environment
B.I. Dahn : 7

Integration of logic functions

Termination

Joachim Steinbach . 25
On the Automatic Generation of Polynomial Orderings for Proving the Termination of
Term Rewriting Systems

Jochen Nessel : 17
Generation and Modification of Transformation Orderings

Klaus Becker : .)
Proving Termination of Rewriting Modulo a Built-in Algebra

Patricia Johann . Rolf Socher : 14

Solving Sitmplification Ordering Constraints

Functional Programs

Bernhard Gramlich : 11
A Unifying Framework for Different Function Definition Formalisms Based on Rewrit-
ing Techniques

Jirgen Avenhaus , Carlos Loria-Saenz : 4
On conditional rewrite systems with extra variables and deterministic logic programs
Jochen Burghardt : 6

A fine grain sort discipline and its application to program construction

Inductive Theorem Proving I

Ulrich Kihler et al. : ’ 27
Positive/Negative-Conditional Equational Specifications :
Claus-Peter Wirth et al. : 27
Notions of Inductive Validity

Klaus Schmid : 23

Groundreducibilitytests — Even for Nonlinear Term Rewriting Systems

Inductive Theorem Proving II

Thomas Kolbe . Christoph Walther :

Optimizing Proof Search by Machinc Learning Techniques
Martin Protzen :

Lazy Generation of Induction Hypotheses

Stefan Gerberding :

A Formal Comparison of Implicit and Explicit Induction

Completion / Proof Presentation

Birgit Reinert , Klaus Madlener :

On Grobner Bases in Monoid and Group Rings

Andrea Sattler-Klein et al. :

On the Problem of Generating Small Convergent Systems
Xiaorong Huang :

A Reconstructive Approach towards Proof Presentation

Automated Theorem Proving I
Thomas Rath et al. :

Das Beweissystem KoMel

Bertram Fronhofer :

Matrices and Sequent Systcms

Jorg Hudelmaier :

Entscheidungsverfahren fiir modale Logiken

Automated Theorem Proving II
Christian Prehofer :

Decidable Higher-Order Unification and Second-Order Narrowing

Michael Kohlhase :

Higher-Order Resolution with Combinators
Christoph Weidenbach :

Minimal Resolution

16

19

10

21

22

12

20

13

18

15

On conditional rewrite systems with extra variables and
deterministic logic programs

Jurgen Avenhaus . Carlos Loria-Saenz
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049 , 67653 Kaiserslautern
Email : {avenhaus . loria}@informatik.uni-kl.de

Abstract

Conditional rewrite systems are widely used as a high-level language to
write functional programs. Often one wants to prove that such a system
R is canonical, i.e. terminating and confluent. This guarantees that for
any input all possible computations stop and give the same result. There
are well-known methods to prove termination and confluence if no extra
variables are allowed. (A variable in a rule p is called an extra variable if
it does not appear in the left-hand side of p.)

Functional programming naturally demands for the where-construct and
this construct can be incorporated into the rewrite system approach only
by allowing extra variables. But extra variables should be allowed only in a
very restricted form since it is not clear how to instantiate them when only
the variables in the left-hand side of a rule are instantiated for rewriting. So
in this paper we restrict to deterministic rewrite rules: We require that the
extra variables are "input bounded’. It is known that — g is computable and
terminating if R is quasi-reductive. We prove that — g is confluent if R is
in ‘addition strongly deterministic and all proper critical pairs are joinable.
Note that no paramodulation pairs (overlapping into the conditions) and
no resolution pairs (factoring of a condition) need to be computed. These
pairs may be harmful for arbitrary conditional rewrite systems with extra
variables. As far as critical pairs are concerned, we neither need to consider
variable overlappings nor overlappings of a rule with itself on top level.
(Both are needed if I? is not strougly deterministic.).

For many strongly deterministic rewrite systems R encountered in prac-
tice it can be proved that all proper critical pairs are either unfeasible or
context-joinable. Then R will be confluent, provided it is quasi-reductive.

If R is a standard conditional rewrite system that is confluent then R is
logical, i.e. <~ g equals the R-equality =g. This is not true for a strongly
deterministic R. one needs in addition the termination of R or a restriction
on the right-hand sides of the condition in the rules that is more restrictive
than strong determinism.

It is known that well-moded Horn clause programs can be translated
into this class of rewrite systems. We show how to provethat a well-moded
program is uniquely terminating. i.e.. any derivation starting with a well-
moded query stops and all refutations give the same answer substitution.

J. Avenhaus. C. Loria-Saenz: (‘anonical conditional rewrite systems con-
taining extra variables, SEKI-Report SR-93-03, Univ. Kaiserslautern.

Proving Termination of Rewriting Modulo a Built-in Algebra

Ixlaus Becker
Universitat INaiserslautern
Erwin-Schrédinger-Str. |, 67663 Kaiserslautern
klbecker@informatik.uni-kl.de

Abstract

The termination problem to be considered arises with the rewrite op-
erationalization of a specification with built-in algebra. Such a specifica-
tion consists of two parts, a “base” part that introduces the predefined
data types and a “top” part that partially defines new operations over the
predefined data types. Formally, such a specification is given as a triple
SP = (L, R.A). where & = ¥y + ¥, is a signature enrichment (such that
¥, introduces no new sorts for simplicity), R is a system of directed equa-
tions of type. v = u = v (where 5 is a Ygp-formula and u, v are £-terms such
that u involves at least one new function symbol) and A is a term-generated
Yo-algebra. The intuition to be associated with such a specification is that
A fixes the interpretation of the base symbols from ¥y and that the system
R is to partially define the new function symbols from ¥; over the built-in
algebra A.

In order to model partiality we use an order-sorted algebra construction.
The order-sorted algebras of interest contain an isomorphic copy of A as
a base part. Furthermore they introduce (if necessary) auxiliary elements
besides the base elements to artificially make total all new functions. The
latter is achieved by introducing so-called error sorts. The auxiliary char-
acter of the non-base elements is reflected by the fact that variables are
instantiated by hase elements only.

In order to reason about such a specification (e.g. inductive theorem
proving) we use a rewrite relation — 5, that is defined on X-ground
terms as follows: Let s —— . t iff there exist T-ground terms ', ¢,
aruley = u = v € R and a Yy-ground substitution 7 such that (i)
s ~p 8 =S [r(u)] - r(v)] =t ~4 t and (ii) A = 7(y). Here ~4 de-
notes the least congruence relation on the ¥-ground terms that extends the
structure induced by A on the Yg-ground terms. This rewrite relation has a
well-behaved theory. For instance one easily shows that the usual syntactic
critical pair lemma carries over to the semantically enriched context.

Our goal is to develop termination criteria for this rewrite relation mod-
ulo A. For that purpose we generalize notions and ideas from usual syntac-
tic rewriting. In particular we define a notion of reduction ordering system
that provides a partial ordering >{*) for every So-formula 4. The relation
— ;4 can be shown to be terminating whenever the compatibility con-
dition u > v is satisfied for all y = u = v € R for a given reduction
ordering system. To give an example of a reduction ordering system we
generalize the well-known recursive path ordering construction such that
knowledge about the built-in algebra A can be integrated into the con-
struction. Details and examples can be found in:

J. Avenhaus and K. Becker. Conditional rewriting modulo a built-in

algebra. SEKI Report SR-92-11.

A fine grain sort discipline and its application to program
construction

Jochen Burghardt
GMD Forschungsstelle
Vincenz-Priefnitz-Strafle 1
D-76131 Karlsruhe
EMail: burghard@karlsruhe.gmd.de

Abstract

A discipline of “extensional” sorts is presented allowing the introduction
of a sort by recursive definition of its set of ground constructor terms in an
initial algebra. During a proof, new sorts can be dynamically introduced
to describe newly occurring terms. Algorithms for computing intersection,
union, and difference of two sorts are given as well as for deciding the
subsort and the sort equivalence property.

The signature of a non-constructor function needs not be provided ex-
ternally but may be computed from its defining equations depending on
the actual argument sorts. thus leading to a potentially infinite overloading
and hence a corresponding precision. The signature calculation is based
on a kind of “sort rewriting” similar to term rewriting, and loop checking,
recognizing certain inductive invariants of a function.

Often, a non-constructor function f maps inputs starting with different
constructors into disjoint range sets which are, however, too sophisticated
for ordinary sort disciplines to separate them. Yet, our sort discipline does
not only allow in many cases to express the range sets as disjoint sorts but
is also able to compute resp. estimate them from the function equations.
Thus, when solving an equation f(z) = t, one can determine from the sort
of the term ¢ the starting constructor of the solution for z, that is, which
defining equation of f to use in a narrowing step.

It can be shown that an unsorted narrowing calculus remains complete
if its rules are extended by appropriate sort restrictions. The extended
calculus is able to cut off infinite branches of the search space, justifying
the overhead for sort calculation. i

Following the paradigm of program synthesis by equation solving this
means that derivation steps contributing to the solution term may be found
automatically by sort considerations. As an example, the use of the sort
discipline in the implementation of sets of lists by n-ary trees with son and
brother pointers is sketched.

Finally, the formalism is generalized to describe infinite sets of ground
substitutions instead of ground terms, resulting in a sort discipline able to
reflect variable bindings in terms. i.e. z + x and = + y may have different
sorts.

G

Integration of logic functions

B. [. Dahn
Institut fiir Reine Mathematik der Humboldt-Universitat
Ziegelstr. 13a
D-10099 Berlin
dahn@hubinf.informatik.hu-berlin.de

Abstract

Within the framework ol the project " Deduction and lattice-ordered
groups”, provers developed within the DFG-Schwerpunkt ™ Deduktion”
(DISCOUNT and SETHEO) and domain specific methods developed and
implemented independently, have been integrated into one system ILF.

DISCOUNT (Univ. of Kaiserslautern) specializes in proving equations,
SETHEQO (TU Munich).represents a general resolution prover and the do-
main specific methods contain special proof tactics as well as the possibility
of solving proof problems by testing in special structures.

All these svstems work together in the framework of proof tactics. The
resulting possibilities have been utilized in the construction of proofs from
the theory of lattice-ordered groups. Among others there is a proof tactic
that takes automatically any subproblem produced by the user and passes
it to an appropriate tool.

It turned out that DISCOUNT is able to prove automatically simple
equations whose proof is toilsome for man. It was not necessary to restrict
the applied theories for this purpose. In order to apply SETHEO success-
fully, it was necessary - even for simple equations that could be handled
by DISCOUNT - to reduce the theories used. However, due to its general
characteristics. SETHEOQ could also be applied to advanced problems that
use conditional equations.

In a next step, special tactics allowing the user to concentrate on essen-
tial steps in the construction of a proof were developed. For this, relatively
small knowledge bases were formed and made available to the automated
system working in the background. Now, in addition to the problem to be
solved, the user could provide the system with a series of special further
axioms, which were thus available for automatically proving the statement
besides the general knowledge base. A special configuration of the knowl-
edge base was possible. too. . g.. by restricting to monotonicity statements
it could be achieved that SETHEO could be used as an efficient tool for
proofs by estimation. ,

Recently possibilities for running proof tactics in the background have
been implemented. Thus the background can be used as one large spccially
configured automated theorem prover that may change it’s behaviour de-
pending on the problems produced by the user.

Distributed Lkuowledge-hased theorem proving by team work

Jorg Denzinger
FB Informatik
Universitat Kaiserslautern
67653 Kaiserslautern
denzinge@informatik.uni-kl.de

Abstract

Distributing the theorem proving task to several experts is a promising
idea. Our approach. the team work method, allows cooperation as well
as competition between several heuristics (or pieces of control knowledge)
in form of so called experts. The experts work independantly for a while
and then they are forced to cooperate by means of a so called team meet-
ing. Each expert has a referee that judges the work done by the expert
(competition) and that selects useful results of his expert (thus achieving
cooperation) prior to the team meeting. During the team meeting the ref-
erees report to a supervisor that uses all results of the best expert and the
selected results of the other experts to generate a new starting input for a
next round. This is repeated until a proof is found. All components use
knowledge : Experts use different tactical control knowledge, referees use
assessment knowledge and the supervisor is based on strategical control
knowledge. :

We used the team work method to distribute equational theorem prov-
ing based on unfailing completion ([BDP89]). Experiences showed that for
many examples remarkable (i.e. "super-linear”) speed-ups can be achieved.
We have shown completeness of this team work completion even if experts
are used with heuristics that are far away from being complete themselves
(see [AD93]). This allowed the development and use of goal-directed heuris-
tics for completion that have proven to be quite sucessful in cooperation
with standard strategies.

References:
[AD93] Avenhaus, J. ; Denzinger, J. :
" Distributing equational theorem proving,
SEKI-Report SR-93-06. Universitat Kaiserslautern, 1993.
[BDP39] Bachmair. L. : Dershowitz. N. : Plaisted, D.A. :
Completion without Failure,
Coll. on the Resolution of Equations in Algebraic Structures,
Austin(1937). Academic Press, 1989.

oL

Matrices and Sequent Systems

Bertram Fronhofer
Institut fir Informatik. Technische Universitit Miinchen
Arcisstr. 21
D-80290 Minchen
{ronhoef ¢informatik.tu-muenchen.de

Abstract

So-called ‘Linear Connection Proofs’—a restriction of the Connection
Method—were proposed in 1936 by W. Bibel as a logical approach to plan
generation which does not suffer under the frame problem. Pretty soon
an hypothesié came up, which suggested that ‘Linear Connection Proofs’
correspond to contraction free proofs in sequent systems. On the other
hand a relationship with Girard’s Linear Logic was suspected.

Pursuing these hypotheses/suspicions. we arrived at the following the-
orem which characterizes some substructural logics by means of matrices.
(Note that we have to employ here matrices which allow multiple occur-
rences of subrows (and subcolumns) in the same subcolumn (resp. in the
same subrow), which coincides with a multiset view of situations in plan-
ning.)

Theorem
o A formula F has a multiplicative dertvation® iff the translation of F into a
multiset-matrix together with the set of all connections is a complementary
matrix.

e A formula £ has a contraction-free multiplicative derivation iff the trans-
lation of F' into a multiset-matrix together with a suitable subset S of the
set of all connections is a complementary matrix, which in addition is linear
(no literal is connected twice) and satisfies a special acyclicity condition.

o A formula F has a contraction-free and weakening-free multiplicative
derivation iff the translation of F' into a multiset-matrix together with a
suitable subset S of the set of all connections is a complementary matrix,
which apart from being linear and acvclic, connects all literals and is min-
imal.

The third equivalence in the theorem above gives a classification of the
multiplicative fragment of pure linear logic. This is one of the answers to
various questions concerning the relationship between linear logic and linear
connection proofs.

The theorem above can be simplified considerably if we limit ourselves to
the language fragment of ‘Horn clauses with conjunctive heads’ which seems
to be reasonable for the specification of plan generation problems: In this
case the acyclicity condition can be dropped and theorems with contraction-
free derivations are characterized by linear complementary matrices.

This means that the multiplicative sequent rules together with exchange. contraction and weak-
ening are used.

A Formal Comparison of Implicit and Explicit Induction

Stefan Gerberding
Technische Hochschule Darmstadt, Fachbereich Informatik
Alexanderstrafle 10
642383 Darmstadt
gerberdinginlerenzsysteme.informatik.th-darmstadt.de

Abstract

Automated mathematical induction is based on two competing para-
digms: Variants of implicit induction by inductive completion resp. proof
by consistency (Dershowitz, Fribourg, Huet, Hullot, Kapur, Musser and
others) vs. explicit induction (Aubin, Boyer, Bundy, Moore, Walther and
others). .

After adjusting some formalisms we intend to clarify whether one of the
two paradigms leads to a “better” automation of induction than the other.

Criteria have to be developed for comparing proofs in the different
methodologies. These criteria have to consider the strength of the com-
puted induction axioms (stronger hypotheses, easier proof obligations) and
the (heuristic) mechanisms for selecting one of the several possible induc-
tions.

First we compare explicit induction heuristics (e.g. those of Boyer &
Moore and of Aubin) with the implicit method. The (implicit) method of
Fribourg is quite similar to explicit induction with regard to the induction
heuristic. Fribourgs criteria demand a kind of evaluability for a certain
defined function symbol. We found that in general the explicit induction
heuristics do not meet these criteria.

We also compare the induction orderings used in the different approaches.
While explicit induction makes the induction ordering “explicit”, implicit
induction rather hides the ordering. For certain term rewriting systems
the ordering can be represented by the union of the reduction orderings
belonging to the rewriting systems each of which defines one function.

The comparison of the different refutation procedures is much easier
obtained as thev all rely on the discovery of an inconsistency witness. Ap-
parently their main difference is that procedures based on the completion
method retain the equivalence induced by the rewriting systems and the
equations (up to the last step of the refutation) whereas the methods of
explicit induction often use generalization techniques.

10

A Unifying Framework for Different Function Definition Formalisms
Based on Rewriting Techniques

Bernhard Gramlich
Faclibereich Informatik. Uuniversitat INalserslautern
Erwin-Schroedinger-Str.. 67663 Kaiserslautern, Germany
gramlich@informatik.uni-kl.de

Abstract

Recently we have shown some abstract relations between restricted and
general termination and confluence properties of term rewriting systems
(TRSs for short) (cl. [Gra92]). In particular, we have proved that any
innermost terminating overlay svstem with joinable critical pairs is termi-
nating and confuent. This result provides interesting possibilities of estab-
lishing general termination and confluence of TRSs since it can significantly
facilitate the task of verifying termination and confluence. Here we show
that this result enables us to bridge the gap between different notions of
termination and confluence in different frameworks. This is particularly
interesting for the theoretical foundation and comparison of various func-
tion definition formalisms which are described in literature and used e.g. in
inductive theorem provers. It turns out that what is meant by termination
of function definitions. for instance in [BM79] and [Wal88], corresponds ex-
actly to termination of innermost rewriting within an equational framework.
This relationship and its consequences in theory and practice are discussed.
Moreover we sketch the extension and application of our basic results to
the analysis of hierarchically structured equational specifications/TRSs (cf.
[Gra93]) as well as to the more general case of conditional TRSs.

References

[BM79] R.S. Bover and I.5. Moore. A Computational Logic. Academic Press, 1979.

[Gra92] B. Gramlich. Relating innermost. weak. uniform and modular termination of term
rewriting svstems. In A. Voronkov. editor. International Conference on Logic Pro-
gramming and Automated Reasoning. St. Petersburg, volume 624 of Lecture Notes
in Artificial Intelligence. pages 285-296. Springer- Verlag, 1992.

[Gra93] B. Gramlich. Relating innermost. weak, uniform and modular termination of term
rewriting svstems. SEKI-Report SR-93-09. Fachbereich Informatik, Univ. Kaisers-
lautern, 1993. l

[Wal88] C. Walther. Argument bounded algorithms as a basis for automated termination
proofs. In E. Lusk and R. Overbeek. editors, Proc. of the 9th Int. Conf. on Auto-
mated Deduction. volume 310 of Lecture Notes in Computer Science, pages 601-622.
Springer-Verlag. 1935,

11

A Reconstructive Approach towards Proof Presentation

Xiaorong Huang
Fachbereich Informatik, Universitat des Saarlandes
Postfach 1150
66041 Saarbricken
huangcs.uni-sh.de

Abstract

Most automated theorem provers suffer from the problem that they can
produce proofs only in formalisms difficult to understand even for experi-
enced mathematicians. Efforts have been made to transform such machine
generated proofs into natural deduction (ND) proofs. Although the sin-
gle steps are now easy to understand, the entire proof is usually at a low
level of abstraction. containing too many tedious steps. Therefore, it is not
adequate as input to natural language generation systems.

In this work. we propose a new intermediate representation, called ND
style proofs at the assertion level. Based on a computational model for ¢n-
formal mathematical reasoning, assertion level deduction steps are designed
to capture more semantic derivations, which intuitively speaking, follow by
applying a previous result or definition. We further show that the assertion
level steps can be justified by domain-specific inference rules, and that these
rules can be represented compactly in a tree structure. Using assertion level
constructs as the goal language. a procedure is devised which substantially
shortens N1) proofs by abstiacting them to the assertion level. Technically,
such abstraction involves a reconstruction of the proof using assertion level
constructs.

The above mentioned algorithm is implemented in a proof presentation
system called PROVERB, and tested within the proof development envi-
ronment Q-MKRP. Despite its simpleness, the current algorithm substan-
tially shortens input ND proofs of a broad class. Most significant reduction
is observed with input proofs which are essentially direct proofs, but con-
taining machine genecated detours and redundancies. As a typical example,
a machine generated NI proof with 134 lines is abstracted to a proof of 15
lines. The algorithim also works well on neatly structured ND proofs. In
these cases. the reduction factor depends on the average depth of the terms
in the definitions and theorems involved in the proof. Since mathemati-
cians usually avoid using both too trivial and too complicated definitions
and theorems, a quite stable reduction factor (about two thirds in length)
is normally achieved. Finally, the algorithm performs very poorly on ma-
chine generated proofs which are mainly indirect, i.e., in most of the lines
only bottom is derived. Despite of a reduction factor of about one third
in length. the remaining proof lines are still largely at the level of calculus
rules and the proof is therefore still too tedious.

12

Entscheidungsverfahren fiir modale Logiken

Jorg Hudelmaier
WSI. Universitat Tubingen
Sand 13
Tibingen
joergalogik.informatik.uni-tuebingen.de

Abstract

We present improved decision procedures for the well known PSPACE-
complete modal logics K, T and S4. The decision procedures are based on
so called contraction free sequent calculi, i.e. calculi for which all possible
deductions of a given sequent are bounded in depth by a recursive function
in the length of that sequent. The growth rate of the recursive function then
yields an upper bound for the space complexity of the logic considered. Us-
ing reduction of the sequents to modal sequents we obtain linearly growing
recursive functions for the logics K and T and a quadratically growing func-
tion for S4. For K and T the calculi we use for obtaining these bounds are
straightforward adaptations of well known (e.g. Tableaux-) calculi. But
for S4 adapting the usual calculus would not result in a contraction free
sequent calculus. We therefore have to consider a completely different cal-
culus which comes in two versions, the first one having rules with arbitrarily
many premisses and dealing with clausal sequents only, the second one be-
ing derived from it. but of more traditional shape, i.e. with at most two
premiss rules and using the full language.

13

Solving Sinplification Ordering Counstraints

Patricia Johann and Rolf Socher
FB Informatik. Universitat Saarbricken and MPI Informatik
Im Stadtwald, 66123 Saarbricken ‘
pjoliann ¢es.uni-sb.de. socher@mpi-sh.mpg.de

Abstract

The concept of well-founded orderings plays an important role in Au-
tomated Deduction and Term Rewriting. It is fundamental for the de-
velopment of termination proofs or theorem proving strategies that serve
to restrict the search space in saturation processes such as Ixnuth-Bendix
Completion or Ordered Resolution.

During the last vears, there has been an increasing interest in the use
of constraint techniques in Automated Deduction. They proved useful as
a means to separate the indeterministic proof search from deterministic
computations like unification. order sorted unification. or computations in
models such as thie reals. Most recently, also ordering constraints have been
used in deduction systems (Nieuwenhuis & Rubio, CADE 92).

The basic constraint problem is: Given a set

of termpairs over a signature sug. is there a substitution ¢ and an ordering
> such that s;0 > t;o holds for : = 1,....n?7 Depending on the underlying
signature sig. two cases can be distinguished: the fired signature case where
0 is a stg-substitution. and the extended signature case where o ranges over
an arbitrary extension of sig. For instance, given the signature consisting of
a single constant «. the constraint (z.a) is unsolvable in the fixed signature
case. In the extended signature case, however, a new constant b may be
introduced such that the substitution {x ~ b} together with an ordering
> that satisfies ¢ > b solves the problem.

Comon (LICS 1990) showed that the problem is decidable if > is inter-
preted as a lexicographic path ordering (LPQO). Unfortunately, his method
1s of double exponential time complexity. Other. less complex methods to
solve LPO-constraints have heen proposed, but it seems that the problem
is inherently NP-complete. The major advantage of using simplification or-
dering constraints vather than LPO constraints is the polynomial complex-
ity of the constraint solving algorithm. In this talk, we provide a simple
decision procedure that has polynomial time complexity in the extended
sigrature case. Moreover, we show that the problem is NP-complete if >
is restricted to total simplification orderings. Finally, we give a constraint
solving procedure for the fixed signature case.

H

Higher-Order Resolution with Combinators

Michael Kohlhase
Fachbereich Informatik, Universitat des Saarlandes
lim Stadtwald
66041 Saarbriicken
kohlhase@Qcs.uni-sb.de

Abstract

In this talk we present a machine-oriented calculus for higher-order logic
that is based on C'urry’s combinatory logic. This logic System CL is a for-
mulation of higher-order logic that is equivalent to Church’s simply typed
A-calculus L£C. which in contrast to £C does not need bound variables.
Unfortunately this formulation is very difficult to read; but there are well-
known transformations between the systems. Thus a user need only ma-
nipulate £C formulae even when using CL as a working language for a
deductive system,

In recent vears Dougherty and Johann have developed a series of uni-
fication algorithms for CL. which we will use for our calculus. Instead of
- as these authors suggest - using these algorithms as part of a LC prover
which necessitates transforming the relevant formulae before and after each
unification step. we present a resolution calculus totally inside CL so that
only the input formulae and the completed proof for a deductive system
have to be transformed.

We expect that a higher-order deduction system for CL can be realized
with the technology developed for first-order deduction systems and there-
fore has great advantages from the implementation point of view. However
the practical efficiency of a CL deduction system has still to be investigated
by experimentation. ‘

There is reasonable hope, that the unification algorithms mentioned
above will be more suitable for integrating techniques from unification the-
ory for first-order languages than the algorithms for £C. This fact possi-
bly constitutes a great potential for development of deduction systems for
higher-order logic.

mailto:kohlhase@cs.uni-sb.de

Optimizing Proot Search by Machine Learning Techniques

Thomas Kolbe, Christoph Walther
Technische Hochschule Darmstadt, Fachbereich Informatik
Alexanderstr. 10
64283 Darmstadt
{kolbe.walther} Gdinferenzsysteme.informatik.th-darmstadt.de

Abstract

This research aims to develop a learning component for an induction
theorem prover. After a system has computed an induction axiom for a
given conjectufe. the induction formulas, i.e. the base and step cases, have
to be proved. This requires some search control for selecting useful formulas
among the given axioms and lemmata, and also for deciding where and
in which proof step a selected formula and/or an induction hypothesis is
applied. There are several proposals to solve this control problem, e.g.
support by a human user by means of “hints” and “rewrite lemmata”,
the “rippling technique™ (developed in Alan Bundy’s research group) or
Dieter Hutter’s “('-term method™ which both look for similarities of certain
patterns in the conjecture and the available axioms and lemmata to guide
the proof.

Our idea for tackling this problem is to analyse a proof of a conjecture
and then to compute the relevant features of this proof in terms of “applied”
axioms and lemmata. This means that “abstractions™ of the leafs of a proof
tree are computed. where the key of success lies in the generality of these
“abstractions™. The approach follows closely the paradigm of explanation
based learning. where a learning component computes solution schemas by
analysing the outcomes of some problem solver. The problem solver is an
induction theorem prover in our application, which may be supported in
part or completely by a human. If.a new conjecture has to be proved, it is
tested firstly whether the new conjectureis “similar” to a previously proved
conjecture, and in this case it is attempted to verify the instances of the
features learned from the previous proof instead of verifying the original
conjecture.

The usefulness of our proposal depends on the frequency of proof-reuses
in realistic applications. and therefore the question for usefulness can be
answered only alter experiments of appropriate size have been carried out
with an mmplemeuntation (which is in preparation). To date we have studied
only theorem proving problems which are quite easily solved by completion
based systems. However. results obtained by manual experiments seem to
be promising. These results are based on our proof analysis technique, on
our notion of abstracting formulas and on our representation of previously
computed proofs. \

16

Generation and Modification of Transformation Orderings

Jochen Nessel
Fachbereich Informatik
Postlach 3049
67653 INaiserslautern
e-mail: nessel ¢informatik.uni-kl.de

Abstract

The subject of this abstract is the proof of termination of Term Rewrit-
ing Sytems (TRS) R. This can be done using two other TRS, S and T, such
that SUT terminates by a Recursive Path Ordering > (RPO). S together
with T and >gpo defines an instance of a Transformation Ordering (TO),
if certain conditions are fulfilled. The proof for R is done by checking each
rule | — r of R in the lollowing wav. Both sides of the rule are reduced
to their respective normal forms using T. These normal forms are then
compared using cither — 5 or > ppo.

So the problem is to find suitable S and T for a given R. There exist im-
plementations to find S. whenever T and R are given, but usually it is more
difficult to find the “transformation’ T. We developed and implemented a
heuristic based algorithm A to partially solve this problem. Its only input
is the TRS R. If it halts with output S, T, >gpo, then SUT terminates
by >grpo. S and T have the required properties and R is terminating. The
proceeding is very intuitive: A first checks every | = r € R with >ppo. If
this succeeds. then | — r is put into S. If the test fails. r will be analysed
and the subterms preventing an orientation will be identified. Then for
each such subtermr a transforming rule will be created. The orientation
of the transformed rule is achieved by introducing new (minimal) function
symbols. The transformations are then added to T. When all rules in R
are oriented using this technique, the resulting TRS S and T will be mod-
ified to fulfill the required restrictions. This process need not terminate,
but if does. 5 and T prove the termination of R. This simple approach was
already successful for some quite hard-to-prove TRS. Nevertheless it failed
on other TRS which are orientable with TO. So we developed several addi-
tional heuristics to improve the power of the algorithm. Some of these new
heuristics and a known one were implemented.

Another question raises when one investigates TO: Is it possible to
weaken the counditions. i.e. has T to be variable preserving and left linear?
[t is possible to drop left linearity when the definition of TO is slightly
changed. but S now has to be right linear and confluent, among other re-
strictions. With the left linearity droped, it is for example possible to prove
the rule f(0.1.x)—f(x.x.x) terminating with T = {f(x,x,x) — q(x) } and S
= {f(0.1.x) — q(x)}. A

o . . E
“References are given in Jochen Nessel. Implementierung und Erweiterung eines Verfah-
rens zur Erzeugung von Transformationsordnnngen. Diplomarbeit, Univ. Kaiserslautern, 1993.

L7

Decidable Higher-Order Unification and Second-Order Narrowing

Christian Prehofer
~Institut fir Informatik
Technische Universitat Munchen
30290 Manchen
E-mail: prelofer @informatik.tu-muenchen.de

Abstract

Second-order unification is undecidable in general. Dale Miller showed
that unification of so-called higher-order patterns is decidable and uni-
tarv. A simply tyvped A-term s is a higher-order pattern, if all its free
variables only have distinct bound variables as arguments. For instance,
Ar. oy Fx. y) A f(G(Az.x{z))) are patterns, but Az, y.F(a,y), \e.G(H(z))
are not. We show that the unification of a linear higher-order pattern
s with an arbitrary second-order term that shares no variables with s is
decidable and finitary. The [lirst step of the proof is a termination order-
ing for the known higher-order pre-unification algorithms with some mi-
nor modifications. If this algorithm succeeds, there can remain equations
with variables as outermost symbols on both sides (flex-flex pairs), e.g.
Az y. Fa.y) = Av,y.G(H(x)). In the general case, there can be infinitely
many incomparable solutions to flex-flex pairs, but there always exists a
solution. In our case these pairs fall into a certain class and can be finitely
solved.

We show that some extensions of this unification problem are still de-
cidable, but may not finitary. For instance, if the arguments to free vari-
ables are ground second-order terms and not only bound variables, the
pre-unification problem is still solvable and finitary. Unifying two second-
order terms, where one term is linear, is undecidable if the terms contain
bound variables and decidable if they don’t.

An interesting application of these results is to attempt second-order
narrowing with decidable unification. This could be the basis for second-
order functional logic programming languages. For instance, we can easily
express differentiation by rules like (sin(F'(2)))dr — cos(F(z))* (F(z)dz),
where [is a variable of functional type. We will show that narrowing
cannot be extended in the straightforward manner to the second-order A-
calculus; we have to cope with the conversions of A-calculus and with vari-
ables of higher type.

Other areas of applications are theorem provers which work with higher-
order unification and possibly second-order unification problems arising in
type inference.

Lazy Generation of Induction Hypotheses

Martin Protzen
Technische Hochschule Darmstadt. Fachbereich Informatik
Alexanderstr. 10
642383 Darmstadt
protzen ¢inferenzsystemeanformatik.th-darmstadt.de

Abstract

The degree of mechanization of an inductive theorem prover depends
on the prover’s ability to generate relevant induction hypotheses. Auto-
mated induction proofs following the explicit induction paradigm (as op-
posed to the implicit induction paradigm which evolved from the Knuth-
Bendix Completion Procedure) have since the fundamental work of Boyer
& Moore [Bover&Moore 79] constructed inductions schemes by

- collecting induction schemes suggested by recursive functions.
- manipulating induction schemes (heuristically).
- combining different induction schemes, and finally

- selecting one of the surviving schemes.

Although successful this process involves many difficulties and can lead
to either waste of resources or decisions which prevent that a proof for
(inductively) true formulas can be found. Recent research [Walther 92,
Stevens 89] has proposed enhancements but sometimes the conventional
techniques still {ail to provide relevant induction hypotheses.

The proposed method delays the computation of hypotheses until they
are applicable —— and this is the reason to call the method “lazy”. First,
an induction heuristic selects appropriate subterms of the proposition to
prove and evaluates these symbolically. Subsequently the evaluated propo-
sition is manipulated by techniques similar to the rippling method [Bundy
92] (or the context approach [Hutter 90]) until the manipulated proposi-
tion matches a generalized template for induction hypotheses. The rippling
method is extended by using induction variables as additional sinks, al-
though only to a limited extent. Thus, not only induction schemes which
are suggested in the conventional approach can be generated, but also addi-
tional ones. The well-foundedness of the computed schemes can be proved
reusing termination proofs [or the [unctions involved in the proposition. Fi-
nally, the method can be extended to include goal-directed generalizations
of the proposition when the rippling process becomes blocked.

The approach successfully generates induction hypotheses even tor hard
problems. e.g. the Gilbreath Card Trick [Gardner 60].

19

Das Beweissyvstem Kopel
Thomas Rath. Stefan Briming. Wolfgang Bibel, Uwe Egly

FG Intellektik,
FB Informatik. Technische Hochschule Darmstadt
Alexanderstrafie 10, D-64283 Darmstadt (Germany)
E-mail: thomas,stebr,bibel,uwe®@intelliektik.informatik.th-darmstadt.de

Abstract

KoMel ist ein vollstandiges und konsistentes Beweissystem fur die Pra-
dikatenlogik erster Stufe. Das bei der Konzeption und Entwicklung von
KoMel verfolgte Ziel, ist es ein berechnungsadiaquates Beweissystem zu er-
halten, das grob gesagt einfache Theoreme schneller beweist als schwierige.
Ein Beweissystem. das dieses Kriterium erfiillen soll, muB verschiedenste
Mechanismen zur Behandlung unterschiedlicher Problemklassen enthalten.
Die konzeptionell erstrebenswerte Einheitlichkeit wird durch eine Einbet-
tung dieser verschicdenen Mechauismen in die Konnektionsmethode erre-
icht. Hierzu gehoren die Ausnutzung von Reduktionen, Indizierungstech-
niken, Verfaliren zur Smlnduml)(‘bcluanl\um, verschiedene Suchstrategien,
der Emsa,Lz von Theoriekonnektionen, die Ver wendung von Induktion, eine
effiziente Lemmabehandlung, die Berticksichtigung von Beweisplanen sowie
die Generierung von Beispielen und Gegenbeispielen. Da das Zusammen-
spiel all dieser verschiedenen Mechanismen nicht nur theoretisch, sondern
auch experimentell erforscht werden mu8, ist es von besonderer Bedeutung,
moglichst leicht Modifikationen am System KoMel durchfiihren zu konnen.
Hieraus ergibt sich auch. dal KoMel betont prototypischer Natur ist. Die
Techniken. die sich in KopMel als besonders vorteilhaft erweisen, konnen an-
schlieBend in einer programmiertechnisch optlmlerten Form in bestehende
Systeme wie z.B. SETHEO integriert werden.

SchwerpunktmaBig wurden bisher Reduktionen, Indizierungstechniken,
Verfahren zur Suchraumbeschrankung, verschiedene Suchstrategien, der Ein
satz von Theoriekonnektionen (Gleichheit) und die Verwendung von Induk-
tion untersucht. Im Augenblick enthalt KoMel neben einem Modul zur Nor-
malformtransformation einen umfangreichen Satz an Reduktionen. Weit-
erhin ist es mit Hilfe von Datenbanktechniken moglich, alinliche Teile einer
Formel zusammenzulassen und im anschlieBenden Beweis gemeinsam zu
bearbeiten. Bekannte Verlahren zur Suchraumbeschrankung, verschiedene
Suchstrategicn. sowie cine aul Paramodulation beruhende Variante der Gle-
ichheitsbehandlung sind ebenfalls verfliigbar. Desweiteren ist es moglich,
Beweise mit Hilfe von struktureller Induktion {iber dem Standardmodell
der natirlichen Zahlen zu fihren. In der nachsten Zeit ist vor alleni daran
gedacht, eine effiziente Behandlung von Lemmata, weitere Suchstrategien

und Theorien, sowie eine komfortable Benutzeroberfliche in KoMel zu inte-
grieren.

Oun Grobner Bases i Mounoid and Group Rings

Klaus Madlener
Birgit Reinert
Fachbereich Informatik, Universitat Kaiserslautern
W-67653 Kaiserslautern, Germany
email: madlenerwinformatik.uni-kl.de. reinert@informatik.uni-kl.de

Abstract

Following Buchberger's approach to computing a Grobner basis of a
polynomial ideal in polynomial rings, a completion procedure for finitely
generated right ideals in Z[H] is given, where M is an ordered monoid
presented by a finite, convergent semi—Thue system (X,7T). Taking a finite
set ' C Z[H] we get a (possibly infinite) basis of the right ideal generated
by F, such that usiug this basis we have unique normal forms for all p €
Z[H] (especially the normal form is 0 in case p is an element of the right
ideal generated by F'). As the ordering and multiplication on H need not
be compatible. reduction has to be defined carefully in order to make it
Noetherian. lurther we no longer have p-a— 0 for p € Z[H],z € H.
Similar to Buchberger's s-polynomials, confluence criteria are developed
and a completion procedure is given. In case T = @ or (X, T') is a convergent,
2-monadic presentation of a group providing inverses of length 1 for the
generators or (X,7') is a convergent presentation of a commutative monoid,
termination can be shown. So in this cases finitely generated right ideals
admit finite Grébner bases. The connection to the subgroup problem is
discussed.

References
[MaRe93a] K. Madlener and B. Reinert. On Grébner Bases in Monoid and Group
Rings. SERI Report SR-93-08. Universitat Kaiserslautern.

[MaRe93b] K. Madlener and B. Reinert. Computing Grobner Bases in Monoid and
Group Rings. Proc. ISSAC’93. pp 254-263.

On the Problem of Generating Small Convergent Systems

IKlaus Madlener . Andrea Sattler-Klein
Fachbereich Informatik. Universitat Kaiserslautern

Iriedrich Otto
Fachbereich Mathematik/Informatik. Gesamthochschule Kassel
D-34109 Kassel. Germany

Abstract

Given a finite string-rewriting svstem R on some alphabet ¥ and an
admissible total well-lounded ordering > on ©* as input, the Knuth-Bendix
completion procedure triés to transform the system R into an equivalent
finite system S such that S is convergent and compatible with the given
ordering. Since it is undecidable in general whether or not such a system
S exists termination of the completion procedure is undecidable as well.
This means that there is no recursive function that can serve as an apriori
upper bound for the running time of the completion procedure for those
inputs (R.>) that lead to termination. Hence, for each recursive function
f + IN — IN. there exists a sequence of finite string-rewriting systems
(T) nen such that. given the system T, and the ordering > as input, the
completion procedure will terminate eventually, but it will perform more
than f(size(I,)) steps until then. One obvious reason for this phenomenon
to occur is the fact that the resulting finite convergent system S, that is
generated from 7}, can be extremely large. We will show, however, that even
in the case that the resulting finite convergent system S, is small, i.e., it is
approximately of the size of the input system T}, the completion procedure
may perform extremely many steps. More precisely, we will construct a -
sequence (R, .,.), e of normalized string-rewriting systems on a fixed
finite alphabet ¥ such that. for all n.m € IN,
1. R, contains Ll rules. it is ol size O(n+m), and 1t is compatible with
a length-lexicographical ordering > on &~ but

2. given the system R, ,, and the ordering > as input, the Knuth-Bendix
completion procedure will generate more than A(n,m) intermediate
rules before a finite convergent system S, ., of size O(n + m) is ob-
tained. Here A denotes Ackermann’s function.

'

References

- [1] K. Madlener, F. Otto. A. Sattler-Klein. Generating small convergent systems can
be extremely hard. Proc. 3rd International Symposium on Algorithms and Compu-
tation, Nagoya. Japan. December 1992, LNCS 650, 299-308.

[2] K. Madlener. A. Sattler-Klein. IF. Otto. On the problem of generating small con-
vergent systems. Journal Symbolic Computation, (to appear).

(S
8]

Groundreducibilitytests -
Even for Noulinear Terin Rewriting Svstems

InJaus Schinid
FB Informatik
Universitat Kaiserslautern
67653 Kaiserslautern

Abstract

A new method lor generating ground recluction test sets that works even
for nonlinear and many-sorted rewriting systems is proposed. It combines
the efficient process of generation as suggested by Bindgen with small test
sets as generated by the method of Kapur, Narendran and Zhang.

This method has been extended to cover nonlinear term rewriting sys-
tems, too. The influence that nonlinear variables have on the form of the
test set is described using so-called “constraints”. They are an adaption of
inequalities — as they have been proposed by Comon — to this particular
problem. For resolving these constraints the notion of transnormality as
proposed by Nounalis hias been significantly reworked and refined. There-
fore a completely new theory had to be created showing the correctness
of these ideas. Moreover. this theory covers the described method for lin-
ear term rewriting systems guaranteeing a seamless transition between the
treatment of linear and nonlinear term rewriting systems.

Other advantages include simple treatment of many-sorted rewriting
systems and an explicit discrimination between criteria necessary during
the generation process and conditions necessary for the applicability of the
resulting test sets.

We expect that an implementation of this method would be very efficient
because no usage ol test sets in the process of generation is required.

Analysis and transformation of equational proofs in a distributed
environment

Stephan Schulz
FB Informatik
Universitat INaiserslautern
67653 Kkaiserslautern

Abstract

With the advent of more powerlul computers and better algorithms au-
tomatic proof systems have heen used to prove more and more difficult prob-
lems. However. while the power of these proof systems has risen steadily,
the general acceptance of proofs generated by them still leaves a lot to be
desired. In this talk we try to introduce a way to present completion based
equational proofs in a way that can be read and understood by most people
with a minimal mathematical background. -

To transform the proof into this easy to read format we first obtain a
complete step by step listing of the proof process in a language called PCL
(proof communication language). While this is a simple task for a sequen-
tial proof system it is in no way trivial for a distributed theorem prover,
because the necessarily extensive output interferes with timing considera-
tions. However it is well worth the effort. By analysing the proof listings,
valuable information regarding the proof process and the heuristics of the
prover can be gained. ‘

PCL listings can be structured to reveal important proof steps by intro-
ducing lemmata. We develop several different criteria to recognize potential
lemmata. The structured PCL listings can then be transformed into a cal-
culus using only equational chains. Proofs in this calculus can bhe easily
adapted to conform with human reading conventions.

On the Automatic Generation of Polynomial Orderings
for Proving the Termination of Term Rewriting Systems

Joachim Steinbach
SFB 314 (D4), Universitat Kaiserslautern
Postfach 3049
67653 Kaiserslautern
steinba@informatik.uni-kl.de

Abstract

As programs term rewriting systems (TRSs) have a very simple syntax
and their semantic is based on equalities that are used as reduction rules
with no explicit control. For this purpose it is essential that a TRS has the
property of termination . Most of the various methods for proving termi-
nation of TRSs are based on reduction orderings which are well-founded,
compatible with the structure of terms and stable wrt substitutions. One
way of constructing reduction orderings consists of the specification of a
well-founded set (W.>) and a mapping ¢ from the set of terms into W,
such that p(s) > »(1) whenever { can be derived from s. Polynomial order-
ings are based on the set of polynomials over IN (= W) where ¢ denotes a
polynomial interpretation and > represents an ordering on polynomials.

One of the main problems concerning polynomial orderings is the choice
of the right interpretation for a given TRS. The object of this paper is to
present new insights into the automatic generation of termination proofs
using polynomial orderings. We have developed an algorithm based on the
method of complete description (a linear programming technique) for find-
ing a polynomial interpretation of a given TRS provided that this system
can be oriented using polynomials of a special form. This technique is re-
stricted to so-called simple-mized polynomials because it is very difficult to
compare two general polynomials. However, since 96% of the interpreta-
tions used for the orientation of the 320 tested examples (more than 1700
reduction rules) are simple-mixed it is an acceptable restriction. According
to the algorithm of U.Martin for generating an appropriate weight func-
tion for the Knuth-Bendix ordering, we transform the set of rules into a
set of linear inequalities based on the coefficients of the interpretations wrt
common variables. Then there exists a relatively simple algorithm, the
so-called method of complete description for deciding whether a system of
linear inequalities has a solution. Unfortunately, we do not have linear in-
equalities. initially. In order to apply the method of complete description
we will transform more general inequalities to linear ones by 1. approxi-
mating each side to exactly one product and then 2. applying a logarithmic
function to the resulting products.

We have implemented the algorithm discussed above. The implementa-
tion does not require any user interactions. Note that the presented tech-
nique is not a decision procedure. However, it is very useful in practice as
confirmed by the following statistics: We have applied the algorithm to 242
TRSs (which are all orientable with the help of simple-mixed polynomials).
For 228 TRSs (91.29) the method was successful.

25

mailto:steinba@informatik.uni-kl.de

Minimal Resolution

Christoph Weidenbach
Max-Planck-Institut fiir Informatik
[im Stadtwald
66123 Saarbriicken
weidenba@mpi-sh.mpg.de

Abstract

The idea of minimal resolution is to restrict the resolution rule and the
factorization rule to operate only on “minimal” literals. This idea is not new
and is e.g. implemented by lock resolution or ordered resolution. For lock
resolution the minimal literal of a clause is the one with the lowest index.
For ordered resolution the minimal literals of a clause are the smallest
literals wrt. a term ordering.

I assume an abstract. total function which maps a clause to its set of
minimal literals. Application of resolution is restricted to the minimal liter-
als of the parent clauses. The factorization rule is applicable to a minimal
literal of the parent clause and a different one. If the minimality func-
tion satisfies certain conditions wrt. instantiation of clauses, splitting of
clauses, resolution, and factorization minimal resolution is complete. The
completeness of lock resolution and ordered resolution are instances of this
result. In addition, I present some new minimality criteria and show their
completeness.

Counstructor-Based Inductive Validity in -
Positive/Negative-Conditional Equational Specifications

Claus-Peter Wirth, Bernhard Gramlich, Ulrich Kihler, Horst Prote.
Fachbereich Informatik, Universitat Kaiserslautern,
D-67663 Kaiserslautern, Germany.
wirth@informatik.uni-kl.de

Abstract

We present results from our SEKXI-Report SR-93-05 in two talks:

1. Positive/Negative-Conditional Equational Specifications

(Ulrich Kihler)

. Notions of Inductive Validity
(Claus-Peter Wirth)

Both talks deal with algebraic specifications given by finite sets R of
positive/negative-conditional equations (i. e. universally quantified first-
order implications with a single equation in the succedent and a conjunc-
tion of positive and negative (i. e. negated) equations in the antecedent).
The class of models of such a specification R does not contain in gen-
eral a minimum model in the sense that it can be mapped to any other
model by some homomorphism. We present a constructor-based approach
for assigning appropriate semantics to such specifications. We introduce
two syntactic restrictions: firstly, for a condition to be fulfilled we require
the evaluation values of the terms of the negative equations to be in the
constructor sub-universe which contains the set of evaluation values of all

[SV]

constructor ground terms: secondly, we restrict the constructor equations
to have “Horn”-form and to be “constructor-preserving”. A reduction rela-
tion for R is defined. which allows to generalize the fundamental results for
positive-conditional rewrite systems, which does not need to be noetherian
or restricted to ground terms, and which is monotonic w. r. t. consistent
extension of the specification. Under the assumption of confluence, the
factor algebra of the term algebra modulo the congruence of the reduction
relation is a minimal model which is (beyond that) the minimum of all
models that do not identify more objects of the constructor sub-universe
than necessary and which establishes one of the four notions of inductive
validity of Gentzen clauses we discuss.

(SN
~1

