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Abstract 

The reasoning power of human-oriented plan-based reasoning systems is primarily 
derived from their domain-specific problem solving knowledge. Such knowledge is, how
ever, intrinsically incomplete. In order to model the h¥man ability of adapting existing 
methods to new situations we present in this work a declarative approach for represent
ing methods, which can be adapted by so-called meta-methods. Since apparently the 
success of this approach relies on the existence of general and strong meta-methods, 
we describe several meta-methods of general interest in detail by presenting the prob
lem solving process of two familiar classes of mathematical problems. These examples 
should illustrate our philosophy of proof planning as well: besides planning with the 
current repertoire of methods, the repertoire of methods evolves with experience in 
that new ones are created by meta-methods which modify existing ones. 

Introduction 

Machine-oriented theorem provers like those based on resolution, paramodulation, rewrit
ing have been successfully applied in different fields of logic and mathematics (see, e.g., 
[WOLB84, chapters 9,lD]). The strength of these systems is truly remarkable, but the 
general complexity results demonstrate clearly that no algorithm can be constructed to 
practically solve arbitrary tasks, even propositionallogic is in a class that is generally con
sidered intractable. The success of human mathematician is.largely ascribed to the fact that 
they are generally specialized in some fields and can rely on domain-specific problem solv
ing techniques they have accumulated throughout their professional experiences. This kind 
of problem solving behavior is first supported in interactive theorem proving systems (e.g. 
LOF [GMW79] or Nuprl [00n86]), which contain specific problem solving knowledge called 
tactics. In order to model the dynamic search process as well, tactics have been extended to 
so-called methods by adding specifications. Methods, in turn, have been successfully incor
porated into a planning framework (e.g. CIt\M [BvHHS90, BSvH+93]). Intuitively speaking, 
a method contains a piece of knowledge for solving or simplifying problems or transforming 
them into a form that is easier to solve. 

The reasoning power of such systems is not derived from a complete underlying rea
soning calculus, but relies on domain-specific problem solving knowledge. Such knowledge 
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Abstract

The reasoning power of human-oriented plan-based reasoning systems is primarily
derived from their domain-specific problem solving knowledge. Such knowledge is, how-
ever, intrinsically incomplete. In  order to  model the hyman ability of adapting existing
methods to  new situations we present in  this work a declarative approach for represent-
ing methods, which can be adapted by so-called meta-methods. Since apparently the
success of this approach relies on the existence of general and strong meta-methods,
we describe several meta-methods of  general interest in detail by  presenting the prob-
lem solving process of two familiar classes of  mathematical problems. These examples
should illustrate our philosophy of proof planning as well: besides planning with the
current repertoire of methods, the repertoire of methods evolves with experience in
that new ones are created by meta-methods which modify existing ones.

1 Introduction

Machine-oriented theorem provers like those based on  resolution, paramodulation, rewrit-
- ing have been successfully applied in different fields of logic and mathematics (see, e.g.,

[WOLBS84, chapters 9,10]). The strength of these systems is truly remarkable, but the
general complexity results demonstrate clearly that no algorithm can be constructed to
practically solve arbitrary tasks, even propositional logic is in a class that is generally con-
sidered intractable. The success of human mathematicianis  largely ascribed to  the fact that
they are generally specialized in some fields and can rely on domain-specific problem solv-
ing techniques they have accumulated throughout their professional experiences. This kind
of  problem solving behavior is first supported in  interactive theorem proving systems (e.g.
LCF [GMWT79] or Nuprl [Con86]), which contain specific problem solving knowledge called
tactics. In  order to  model the dynamic search process as well, tactics have been extended to
so-called methods by  adding specifications. Methods, in turn,  have been successfully incor-
porated into a planning framework (e.g. CIAM [BvHHS90, BSvH*93]). Intuitively speaking,
a method contains a piece of  knowledge for solving or simplifying problems or transforming
them into a form that is easier to solve.

The reasoning power of such systems is not derived from a complete underlying rea-
soning calculus, but relies on domain-specific problem solving knowledge. Such knowledge
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is, however, inevitably incomplete, which leads to a limited reasoning power of the corre
sponding systems. While this holds for plan based systems and human mathematicians 
alike, the latter often go beyond their specialized knowledge. They have the ability to 
adapt existing methods to novel situations, which is one of the main features contributing 
to our problem solving competence (see [P6145] for mathematicai reasoning and [Van89] for 
general problem solving). Although very important, this issue remains widely unaddressed 
in traditional proof planning systems. Actually in a previous framework where tactics are 
pure procedures, this task is quite formidable and equals to the problem of mechanically 
modifying procedures. 

In this work we present a declarative approach in order to address the mechanical 
adaptation of methods. The key idea is to decIaratively represent methods,. and thereby 
to enable their mechanical adaptation by so-called meta-methods. The success of this 
approach heavily relies on the existence of general and strong meta-methods. Therefore, 
besides the theoretical framework, we describe in detail several of them with the help of 
the problem solving process of two familiar classes of mathematical problems. These trace 
protocols of problem solving should illustrate our philosophy of proof planning: instead 
of using a strong but fixed set of methods, the repertoire of methods evolves with the 
experience. 

The technical report proceeds as. follows: in the next section we introduce the basic 
ideas of our approach. In section 3 we present our first example showing how methods can 
be adapted to not directly fitting situations. We start with a proof for the theorem that 
the non-empty intersection of two subsemi-groups of a semi-group remains a subsemi-group. 
Then we modify the corresponding method by the meta-method connective-to-quantifier 
in order to come up with a method for proving that the non-empty intersection of a family 
of subsemi-groups of a semi-group remains a subsemi-group. We briefly illustrate how the 
approach is realized in the r2-MKRP system. In section 4 we exemplify our approach by 
describing the evolution of diagonalization methods. This example class is interesting be
cause of its historical importance in mathematics. In particular, although it will be difficult 
for a proof planning system to invent a famous method as Cantor did in this case, it is 
an interesting test if it can carry out the subsequent modifications expected from a math
ematician with some training. We start with the proof of the theorem that the powerse~ 

of a set has a greater cardinality than the set itself. Then we stepwise modify the corre
sponding method to cope with the proofs of the theorem that the continuum has a greater 
cardinality than the natural numbers and of the halting problem. Besides generating new 
specific methods for new problems, meta-methods are also applied to generalize existing 
methods. In section 5 we discuss the results and briefly describe the future development. 

A Declarative Approach toward Proof Planning 

In this section we present our approach to proof -planning, show ~ow methods can be 
declaratively represented and mechanically modified. 

The Planning Framework 

The work in this technical report should be understood in the setting of a computational 
lmodel that casts the entire process of theorem proving, from the analysis of a problem up 
to the completion of a proof, as an interleaving process of proof planning, method execution 
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sponding systems. While this holds for plan based systems and human mathematicians
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adapt existing methods to  novel situations, which is one of  the main features contributing
to  our problem solving competence (see [P6145] for mathematical reasoning and [Van89] for
general problem solving). Although very important, this issue remains widely unaddressed
in traditional proof planning systems. Actually in a previous framework where tactics are
pure procedures, this task is quite formidable and equals to the problem of mechanically
modifying procedures.

In this work we present a declarative approach in order to address the mechanical
adaptation of methods. The key idea is to declaratively represent methods,and thereby
to enable their mechanical adaptation by so-called meta-methods. The success of  this
approach heavily relies on the existence of general and strong meta-methods. Therefore,
besides the theoretical framework, we describe in detail several of them with the help of
the problem solving process of  two familiar classes of mathematical problems. These trace
protocols of  problem solving should illustrate our philosophy of proof planning: instead
of using a strong but fixed set of methods, the repertoire of methods evolves with the
experience.

The technical report proceeds as follows: in the next section we introduce the basic
ideas of  our approach. In  section 3 we present our first example showing how methods can
be adapted to not directly fitting situations. We start with a proof for the theorem that
the non-empty intersection of two subsemi-groups of a semi-group remains a subsemi-group.
Then we modify the corresponding method by the meta-method connective-to-quantifier
in  order to come up  with a method for proving that the non-empty intersection of  a family
of  subsemi-groups of  a semi-group remains a subsemi-group. We briefly illustrate how the
approach is realized in the Q-MKRP system. In section 4 we exemplify our approach by
describing the evolution of  diagonalization methods. This example class is interesting be-
cause of  its historical importance in  mathematics. In  particular, although it will  be difficult
for a proof planning system to invent a famous method as Cantor did in this case, it is
an interesting test if  it can carry out the subsequent modifications expected from a math-
ematician with some training. We start with the proof of the theorem that the powerset
of a set has a greater cardinality than the set itself. Then we stepwise modify the corre-
sponding method to cope with the proofs of the theorem that the continuum has a greater
cardinality than the natural numbers and of the halting problem. Besides generating new
specific methods for new problems, meta-methods are also applied to  generalize existing
methods. In section 5 we discuss the results and briefly describe the future development.

2 A Declarative Approach toward Proof  Planning

In this section we present our approach to proof-planning, show how methods can be
declaratively represented and mechanically modified.

The Planning Framework

The work in this technical report should be understood in the setting of a computational
model that casts the entire process of theorem proving, from the analysis of a problem up
to  the completion of  a proof, as an interleaving process o f  proof  planning, method execution|
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and verification. In particular, this model ascribes a reasoner's reasoning competence to 
the existence of methods together with a planning mechanism that uses these methods for 
proof planning. 

To understand the proof planning process, please remember that the goal of proof 
planning is to fill gaps in a given partial proof tree by forward and backward reason
ing [HKKR94]. Thus from an abstract point of view the planning process is the process 
of exploring the search space of planning states that is generated by the plan operators in 
order to find a complete plan (that is a sequence of instantiated plan operators) from a 
given initial state to a terminal state. 

Concretely a planning state contains a subset of lines in the current partial proof that 
correspond to the boundaries of a gap in the proof. This subset' can be divided into open 
lines (that must be proved to bridge the gap) and support lines (that can be used as 
premises to bridge it). The initial planning state consists of all lines in the initial problem; 
the assumptions are the support lines and the conclusion is the only open line. The terminal 
planning state is reached when there is no more open line in the planning state. 

A Declarative Representation for Methods
 

Formally, a method in our approach is defined as a 6-tuple with the components:
 

Method 

Speci
fication 

Tactic 

Declarations 

Premises 

Constraints 

Conclusions 

Declarative 
Content 

Procedural 
Content 

I- 

I+-

I- 

I+--


Declar
ative 
Part 

Proce
dural 
Part 

Declarations: A signature that declares the meta-variables used in the method,
 

Premises: Schemata of proof lines which are used by this method to prove the conclusions,
 

Constraints: Additional restrictions on the premises and the conclusions, which can not be
 
formulated in terms of proof line schemata (described in [HKRS94]), 

Conclusions: Schemata of proof lines which this method is designed to prove, 

Declarative Content: A piece of declarative knowledge interpreted by the procedural con
tent. This slot is currently restricted to schemata of partial proofs, 

Procedural Content: Either a standard procedure interpreting the declarative content, or a 
special purpose inference procedure. 
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the existence of  methods together with a planning mechanism that uses these methods for
proof planning.
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formulated in terms of proof line schemata (described in  [HKRS94]),

Conclusions: Schemata of  proof lines which this method is designed to prove,

Declarative Content: A piece of  declarative knowledge interpreted by  the procedural con-
tent. This slot is currently restricted to schemata of  partial proofs,

Procedural Content: Either a standard procedure interpreting the declarative content, or a
special purpose inference procedure.
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Methods can be very general, for instance consist essentially of one application of a rule 
at the calculus level. More specific methods comprise proof ideas, for instance, to use a 
homomorphy property, to apply mathematical induction or to use diagonalization. Such 
methods are typically formulated in terms of proof schemata. The most specific methods 
consist of full proofs for specific problems. 

Modification of Methods 

The standard practice of proof planning is to use a fixed repertoire of methods in order 
to produce a proof plan [BSvH+93]. Difficulties arise when new problems are encountered 
exceeding the power of the existing methods. To overcome this, a main feature contributing 
to the problem solving competence of mathematicians becomes crucial, namely that they 
can extend their current problem solving repertoire by adapting existing methods to suit 
novel situations. 

The intention of our work can be compared to Ireland's approach of proof critics [Ire92]. 
While proof critics are specific and attached to single methods, meta-methods embody 
general problem independent procedures for adapting arbitrary methods which meet some 
applicability conditions. The work of Giunchiglia and Traverso [GT94] to represent tactics 
in a logical meta-language has a similar motivation as well, namely to mechanically adapt 
existing tactics. Their formalism is more expressive since they can represent procedural 
aspects like loops on a logical meta-level too. In our approach, the declarative part of 
methods basically consists of a proof schema. This leads to a more natural representation 
and enables an easier transformation in some cases. 

By adopting a declarative approach for formulating methods, it is firstly possible to 
extract methods from proofs, secondly it is also feasible to formulate meta-methods adapt
ing existing methods. Currently, a meta-method is essentially a procedure which takes as 
input some methods and some additional parameters, and produces a new method. We 
have already identified a variety of meta:"methods such as: the generalization of methods 
in order to apply them in less specific situations or the syntactic adaptation of methods 
to bridge syntactic gaps, for instance, arities of predicates. In this technical report we 
examine the meta-methods connective-ta-quantifier, Cut-Submethod, Abstract, and 
set2func. 

From Conjunctions to Universal Quantifications 

In this section we illustrate a concrete modification, which translates connectives into quan

tifiers. The initial method has been extracted from a proof showing that the intersection
 
of two subsemi-groups remains a subsemi-group:
 
Let U and V be subsemi-groups of a semi-group G, then the intersection U n V is also a
 
subsemi-group of G, if the intersection is not empty.
 
The informal proof goes as follows:
 

u,v E un V-+ u,v E U t\u,v E V 
-+u·vEUt\u·vEV 
-+u,vEUnV 

In a previous work [Ker89], we have presented informally how this proof can be trans
formed into a corresponding proof concerning an arbitrary number of subsemi-groups. A 
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Methods can be very general, for instance consist essentially of  one application of  a rule
at the calculus level. More specific methods comprise proof ideas, for instance, to use a
homomorphy property, to apply mathematical induction or to use diagonalization. Such
methods are typically formulated in terms of proof schemata. The most specific methods
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existing tactics. Their formalism is more expressive since they can represent procedural
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methods basically consists of a proof schema. This leads to a more natural representation
and enables an easier transformation in  some cases.

By adopting a declarative approach for formulating methods, i t  is firstly possible to
extract methods from proofs, secondly it is also feasible to  formulate meta-methods adapt-
ing existing methods. Currently, a meta-method is essentially a procedure which takes as
input some methods and some additional parameters, and produces a new method. We
have already identified a variety of meta-methods such as: the generalization of methods
in order to apply them in less specific situations or the syntactic adaptation of methods
to bridge syntactic gaps, for instance, arities of predicates. In this technical report we
examine the meta-methods connective-to~quantifier, Cut-Submethod, Abstract, and
set2func.

3 From Conjunctions to  Universal Quantifications

In  this section we illustrate a concrete modification, which translates connectives into quan-
tifiers. The initial method has been extracted from a proof showing that the intersection
of  two subsemi-groups remains a subsemi-group:
Let U and V be subsemi-groups of a semi-group G,  then the intersection UNV is also a
subsemi-group of  G,  if the intersection is not empty.
The informal proof goes as follows:

wv eUNVoauve lUAuyveV
—“u-veEUAu-veV
—-u-ve lnv
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Declarations -
Premises n-Def,SubSGrpDef,NonemptyDef 

-
33 

2. 2 I subsemigrp(Uo, Go,') 1\ subsemigrp(Vo, Go,·) 1\ 

nonempty(Uo n Vo) 
3. 3 I xo E (Uo n Vo) 1\ Yo E (Uo n Vo) 
5. 3 I xo E Uo 1\ Xo E Vo 
6. 3 I- Xo E Uo 
7. 3 I- Xo E Vo 
9. 3 I yo E Uo 1\ yo e Vo 
10. 3 I yo E Uo 
11. 3 I- Yo e Vo 
14. 2 I 'rIx.'rIy.x e Uo 1\ y e Uo -t x . y e Uo 
17. 2 I 'rIx.Vy.x e Vo 1\ ye Vo -t x· ye Vo 
20. 2,3 I XO' Yo e Uo 
21. 2,3 I XO' yo E Vo 
22. 2,3 I- Xo . yo e Uo 1\ Xo . yo e Vo 
33. I VG,·, U, V. (subsemigrp(U, G,') 1\ 

subsemigrp(V, G,·) 1\ nonempty(U n V» 
-t subsemigrp(U n V, G,') 

schema-interpreter 

Hyp 

Hyp 
n-Def(4) 
And-E(5) 
And-E(5) 
n-Def(4) 
And-E(9) 
And-E(9) 
SubSGrpDef(13 
SubSGrpDef(16 
14(6,10) 
17(7,11) 
And-I(20,21) 
Forall-I(32) 

Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

Figure 1: Method subsemigroup-conjunction 

method solving the first problem is given in the method in figure 1, which basically consists 
of a proof generated within the proof development environment n-MKRP [HKK+94] (to 
abstract away from details we only show the key steps). In the following we illustrate how 
this method can be transforriled by a meta-method to a method for the case of arbitrarily 
many subsemi-groups. The new theorem can be viewed as a generalization of the previous 
one: 
Let {Ui : i E I} be a family of subsemi-groups of a semi-group G, then the intersection 
n Ui is also a subsemi-group of G, if the intersection is not empty. 

iEI 
Actually, the proof of this theorem is analogous to the one above. The analogy can be 

derived from the correspondence between "/\" and "n" on the one hand and "V" and "n" 
on the other hand. The proof can therefore be sketched as: 

u,v E n Ui-+ Vi E I.u,v E Ui 
iEI 

-+ Vi E I.u· v E Ui 
-+u·v E n Ui 

iEI 

The corresponding method for this proof is given in figure 2 and can be constructed 
out of the method subsemigroup-conjunction in figure 1 by applying the meta-method 
connective-to-quantifier, which contains the following parts!: 

• parameters: a (possibly empty) list of pairs of related formula patterns 

1Meta-variables are indicated by overlining. 
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Figure 1: Method subsemigroup-conjunction

method solving the first problem is given in  the method in  figure 1, which basically consists
of a proof generated within the proof development environment Q-MKRP [HKK*94] (to
abstract away from details we only show the key steps). In the following we illustrate how
this method can be transformed by a meta-method to a method for the case of  arbitrarily
many subsemi-groups. The new theorem can be viewed as a generalization of the previous
one:
Let {U; : i € I }  be a family of subsemi-groups of a semi-group G,  then the intersection
N U; is also a subsemi-group of G,  if the intersection is not empty.
i €I

Actually, the proof of  this theorem is analogous to the one above. The analogy can be
derived from the correspondence between “A” and “N” on the one hand and “VW” and 4 ”

on the other hand. The proof can therefore be sketched as:

u ,v  € NUi—~ V ie  Lu , veU ;
ie l

—u-ve  NU;
ie l

The corresponding method for this proof is given in figure 2 and can be constructed
out of  the method subsemigroup-conjunction in figure 1 by  applying the meta-method
connective-to-quantifier, which contains the following parts’:

e parameters: a (possibly empty) list of pairs of related formula patterns

!Meta-variables are indicated by  overlining.
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Premises n-Def,SubSGrpDef,NonemptyDef 

-
33 

1. 1 I Vn-subsemigrp(Uo(n), G,') /\ nonempty(n Uo) 
2. 2 I- Xo E n Uo /\ yo E nUo 
5. 2 I Vn-xo E Uo(n) 
6. 2 I- Xo E Uo(no) 
7. 2 I Vn-yO E Uo(n) 
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20. 1,2 I- Xo . yo E Uo(no) 
21. 1,2 I Vn-xo' Yo E Uo(n) 
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nonempty(n U» -+ subsemigrp(n U, G,') 

schema-interpreter 

Hyp 
Hyp 
n-Def(3) 
Forall-E(5) 
n-Def(4) 
Forall-E(7) 
SubSGrpDef(12 
13(6,8) 
Forall-I(20) 
Forall-I(32) 

Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

Figure 2: Method subsemigroup-univ-quantification 

•	 transformation rules: 

1.	 Merge two proof lines with formulae which are different only for one single 
constant or variable, that is, with formulae t/J(U] and t/J[V], where t/J[U] = 
subst(t/J[V], U, V). t/J(U] denotes that U occurs in 7J;: 

L1 7J;[U]} - 
L2 7J;[V] ~ L3 t/J[U(n)] 

2.	 Transform certain conjunctions into universal quantifications and certain dis
junctions into existential quantifications in formulae: 

L 1 ~[rp[UJ /\ cp[V]] ~ L2 ~[Vn.cp[U(n)]]
 

L1 <p(rp(U] V cp[V]] t-+ L2 <p[3n.cp[U(n)]]
 

3.	 Execute the transformation according to the formula patterns in the parameter 
slot. 

The last transformation rule gives the user the possibility to specify additional problem
specific transformations, here (U n V t-+ nU), which results in the transition 

Such optional transformation is not always necessary, please see the different formulations 
of the pigeon-hole principle (KP96]. 

We have not mentioned the adaptation of the justification in the transformation rules 
above. In general the elimination rules of logical connectives are transformed into the 
corresponding rules for the instantiation of quantifications. The justification And-E(5) in 
the first method becomes Forall-E(5) in the second, for instance. 

The transformation above does not formulate an unambiguous characterization of the 
mappings to be carried out, since the first rule may be applied to wrong candidates, such 
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7. 2 FE VYn.yo € Up(n) (}Def(4)

Declarative |8. 2 F yo € Vo(na) Forall-E(7)
Content 13. 1 F Vz,y.(z € Us(no) Ay  € Vo(no)) = = - y € Uo(no) SubSGrpDef(12)

20. 1,2 F zo -yo  € Up(no) RN 13(6,8)
21. 1,2 kb Vruzo- yo € Un(n) Forall-1(20)
33. F VG,:, Us{Vnesubsemigrp(U(n), G, -)A Forall-1(32)

nonempty({}U)) — subsemigrp((U,G,")

Procedural schema-interpreterContent interp

Figure 2: Method subsemigroup-univ-quantification

e transformation rules:

1. Merge two proof lines with formulae which are different only for one single
constant or  variable, that is, with formulae [U] and %[V], where [U] =
subst(¥[V], U,V). [U] denotes that U occurs in  3 :

Li WO =VAN bo m WR
2. Transform certain conjunctions into universal quantifications and certain dis-

junctions into existential quantifications in formulae:

Ly 3p[U) AV Z2 Sm. )
Ly SU]  v l ]  Ly SERpUG)]]

3. Execute the transformation according to  the formula patterns in the parameter
slot.

The last transformation rule gives the user the possibility to specify additional problem-
specific transformations, here (U  NV  = (TU), which results in  the transition

L i  ¥UnV ]~L ;  S I .

Such optional transformation is not always necessary, please see the different formulations
of the pigeon-hole principle [KP96).

We have not mentioned the adaptation of the justification in the transformation rules
above. In general the elimination rules of logical connectives are transformed into the
corresponding rules for the instantiation of  quantifications. The justification And-E(5) in
the first method becomes Forall-E(5) in the second, for instance.

The transformation above does not formulate an unambiguous characterization of the
mappings to be  carried out, since the first rule may be  applied to  wrong candidates, such
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as lines 6 & 10, as well as to right one, such as lines 6 & 7. Which lines should be merged 
by this rule, can be determined by traversing the proof tree backwards from the theorem. 
Whenever a line having a conjunction (or a disjunction) as formula is justified by applying 
a connective introduction to the two conjuncts (or disjuncts, respectively) dual lines of the 
corresponding subproofs are considered. Identical dual lines modulo the specified difference 
by the rule are merged. The rest of these subproofs should be cut and the premise list of 
the method should be accordingly adapted. 

The result of applying this meta-method with the additional transformation pattern 
as argument is the method in figure 2. The four pairs of lines (6,7), (10,11), (14,17), and 
(20,21) are merged by rule one to the new lines 6, 8, 13, and 20. For instance 

6 Xo E Uo And-E(5) } ( ) (
7 Xo E Vo And-E(5) t-+ 6 Xo E Uo no Forall-E 5) 

Rule three is applied to lines 2, 3, and '1', thereby we get from line 3 in the source proof 
line 2 in the target proof (the other two lines are also manipulated by rule two). By rule 
two, lines 2, 5, 9, 22, and '1' are mapped to lines 1, 5, 7, 21, and '1', respectively. 

We have encoded the method subsemigroup-conjunction in the n-MKRP system 
[HKK+94] and implemented the meta-method connective-to-quantifier as described 
above. n-MKRP uses a typed higher-order input language which corresponds roughly to 
Church's A-calculus [Chu40], and a natural deduction calculus as its main output proof for
malism. This meta-method creates the method subsemigroup-univ-quantification by 
adapting the previous method. Concerning the control, up to now we have to manually in
terrupt the planning process and provide the meta-methods with appropriate instantiations . 
for meta-variables. 

As can be seen from the example above, further automation is possible by comparing the 
source and the target theorems: The correspondence of the subformula subsemigrp(U, G, .)/\ 
subsemigrp(V, G,') in the first theorem and the subformula 'v'n.subsemigrp(U(n), G,') in 
the second theorem suggests to apply the meta-method connective-to-quantifier. In 
the same manner the parameter can be constructed from the remaining differences of the 
two theorems by mapping the term Un V to nu. 

Diagonalization 

Since the diagonalization method is well-studied in mathematics and since it applies to a 
class of problems of different syntactical strl1cture, we have used it from the very beginning 
as a non-trivial example serving as a guideline to conceptualize our approach [HK91]. 

Proofs as Methods 

First we illustrate how our first diagonalization method is extracted from a successful proof, 
constructed with the proof development environment n-MKRP. The first diagonalization 
problem we examine is the powerset theorem stating that the cardinality of the powerset 
of a set is greater than the cardinality of the set itself. 

The whole problem consists of six assumptions and the conclusion Powerset. 
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as lines 6 & 10, as well as to  right one, such as lines 6 & 7. Which lines should be merged
by this rule, can be determined by traversing the proof tree backwards from the theorem.
Whenever a line having a conjunction (or a disjunction) as formula is justified by applying
a connective introduction to the two conjuncts (or disjuncts, respectively) dual  lines of  the
corresponding subproofs are considered. Identical dual lines modulo the specified difference
by the rule are merged. The rest of these subproofs should be cut and the premise list of
the method should be accordingly adapted.

The result of applying this meta-method with the additional transformation pattern
as argument is the method in figure 2. The four pairs of lines (6,7), (10,11), (14,17), and
(20,21) are merged by rule one to  the new lines 6, 8, 13, and 20. For instance

6 zo € Up And-E(5)7 zo € Vo And-E(5) | — 6 zo € Up(ng) Forall-E(5)

Rule three is applied to lines 2, 3, and T,  thereby we get from line 3 in  the source proof
line 2 in the target proof (the other two lines are also manipulated by rule two). By  rule
two, lines 2, 5, 9, 22, and T are mapped to  lines 1, 5, 7, 21, and T ,  respectively.

We have encoded the method subsemigroup-conjunction in the Q-MKRP system
[HKK +94] and implemented the meta-method connective-to-quantifier as described
above. Q-MKRP uses a typed higher-order input language which corresponds roughly to
Church’s A-calculus [Chu40], and a natural deduction calculus as its main output proof for-
malism. This meta-method creates the method subsemigroup-univ-quantification by
adapting the previous method. Concerning the control, up to  now we have to manually in-
terrupt the planning process and provide the meta-methods with appropriate instantiations
for meta-variables.

As can be seen from the example above, further automation is possible by comparing the
source and the target theorems: The correspondence of the subformula subsemigrp(U, G,  :)A
subsemigrp(V, G , )  in the first theorem and the subformula Yn.subsemigrp(U(n),G,-) in
the second theorem suggests to apply the meta-method connective-to-quantifier. In
the same manner the parameter can be constructed from the remaining differences of the
two theorems by mapping the term UNV to NU .

4 Diagonalization

Since the diagonalization method is well-studied in mathematics and since it applies to  a
class of  problems of different syntactical structure, we have used it from the very beginning
as a non-trivial example serving as a guideline to conceptualize our approach [HK91].

Proofs as Methods

First we illustrate how our first diagonalization method is extracted from a successful proof,
constructed with the proof development environment Q-MKRP. The first diagonalization
problem we examine is the powerset theorem stating that the cardinality of  the powerset
of a set is greater than the cardinality of the set itself.

The whole problem consists of six assumptions and the conclusion Powerset.



TND VXooX V-,x
 
=-Ref Vxoox = x
 
'-:"-Equiv VxooVyoox = y ~ [x t+ y]
 
Surj-Def Vft-+(HO)O Vat-+oo Vb(t-+o)-+oosurj(j, a, b) t+
 

(VxHoox E b~ (3YLO (y E a A x = f(y)))) 
PSet-Def Vat-+OoVxL-+Oox E P(a) ++ x ~ a 
C-Def Vat-+OoVbL-+Ooa Cb t+ VxLox E a -+ x E b 
Powerset 

Note that based on the .A-calculus, n-MKRP makes no distinction between predicates 
and sets. x E a is only syntactic sugar for a(x). "Tertium non datur", two obvious 
properties about equality, quite standard definitions of surjectivity, powerset, and subset 
are included in this formulation as premises. The theorem states that there is·no surjective 
function f from a set M into the powerset P(M). To improve readability we do not 
present the examples in the U-M KRP input syntax, but use a special 'lEX output facility of 
Q-MKRP. In particular we suppress the type information in the proofs. In figure 3 a proof 
of the powerset problem can be found. It was first interactively generated with n-MKRP 
at the level of a higher-order natural deduction calculus and subsequently abstracted onto 
the so-called assertion level [Hua94], where justifications are largely given in terms of the 
application of assertions (such as definitions or theorems). By doing so, the current proof 
of 29 lines shown in figure 3 is obtained from the original one of 69 lines. 

Although at a much more appropriate level of abstraction, this abstracted proof is still 
a full proof of this particular theorem. On account of this we can hardly expect that every 
step of such a particular proof will be useful for another proof. More likely, only some key 
ideas of an existing proof can be borrowed to solve a related new problem. The key steps 
in the current proof are listed below: 

•	 the theorem (line 29), the three initial steps of simplifying the theorem by forall
introduction, not-introduction, and exists-elimination generating lines 28, 1, 27, 2, 
and 26, 

•	 the central property that the diagonal is in the powerset (line 9), which is a key step 
in the indirect proof, and the two following lines, where the surjectivity definition is 
applied (lines 10 and 11), and 

• line 16, which contains the contradiction in a concise form and the important lines of 
the case analysis in order to make the contradiction explicit (lines 17, 19, 20, 23, 24, 
and 25). 

Eliminating the other intermediate steps particular to this problem we get the method 
Diag-l in figure 4. 

Note that this method contains all essential steps in the original proof, and it is quite 
easy to fill the gaps automatically by some automated theorem prover or by further proof 
planning. 

The task to write the initial methods has still to be carried out by the user (as in the 
Clt'M system where all methods are user written). In our approach, there are mainly two 
ways to do this. Firstly a user can write them by hand. Many typical methods in our 
framework are written this way, such as the application of a definition, of a theorem, or 
of a certain property like homomorphy. Secondly initial methods can often be extracted 
from successful proofs. Although up to now this is done by the user too; this is quite easy, 
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TND YZ  Vz
=-Ref VI I  =z
=-Equiv  Vz,.Vy.z =y  = [ z+  y]
Surj-Def V f11-30)» VA, 0 :  Vi ,  0)» on SUKI ( f a , b )  &

(VZı—o2 € b=  (yee (y Ea Az  = f(3))))
PSet-Def Va,, oVT , 0.5 € Pla)  ++ x Ca
C-Def Var orVbi_o0 Ch Vz  €a—+z€D
Powerset VMıos“3f,(ı0):SUuri(f, M ,  P(M))

Note that based on the A-calculus, Q-MKRP makes no distinction between predicates
and sets. x € a is only syntactic sugar for a{z). “Tertium non datur”, two obvious
properties about equality, quite standard definitions of surjectivity, powerset, and subset
are included in  this formulation as premises. The theorem states that there is no surjective
function f from a set M into the powerset P(M).  To improve readability we do not
present the examplesi n  the Q-MKRP input syntax, but use a special TEX output facility of
Q-MKRP. In  particular we suppress the type informationi n  the proofs. In  figure 3 a proof
of the powerset problem can be found. It was first interactively generated with Q2-MKRP
at the level of a higher-order natural deduction calculus and subsequently abstracted onto
the so-called assertion level [Hua94], where justifications are largely given in terms of the
application of assertions (such as definitions or theorems). By  doing so, the current proof
of 29 lines shown in figure 3 is obtained from the original one of  69 lines.

Although at a much more appropriate level of  abstraction, this abstracted proof is still
a full proof of this particular theorem. On account of  this we can hardly expect that every
step of such a particular proof will be useful for another proof. More likely, only some key
ideas of  an existing proof can be borrowed to solve a related new problem. The key steps
in the current proof are listed below:

e the theorem (line 29), the three initial steps of simplifying the theorem by forall-
introduction, not-introduction, and exists-elimination generating lines 28, 1, 27, 2,
and 26,

® the central property that the diagonal is in the powerset (line 9), which is a key step
in the indirect proof, and the two following lines, where the surjectivity definition {is

applied (lines 10 and 11), and
e line 16, which contains the contradiction in a concise form and the important lines of

the case analysis in order to make the contradiction explicit (lines 17, 19, 20, 23, 24,
and 25).

Eliminating the other intermediate steps particular to  this problem we get the method
Diag-1  in figure 4.

Note that this method contains all essential steps in the original proof, and it is quite
easy to fill the gaps automatically by some automated theorem prover or by further proof
planning.

The task to write the initial methods has still to be carried out by the user (as in the
CIAM system where all methods are user written). In our approach, there are mainly two
ways to do this. Firstly a user can write them by hand. Many typical methods in our
framework are written this way, such as the application of  a definition, of  a theorem, or
of a certain property like homomorphy. Secondly initial methods can often be extracted
from successful proofs. Although up  t o  now this is  done by  the user too; this is quite easy,
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l. 1 f- 3/osurj(j, Mo, P(Mo))	 (Ryp) 
2. 1,2 f- surj(jo, Mo, P(Mo))	 (Ryp) 
3. 3 f- x E AZo[Z E Mo /\ -,[z E lo(z)]]	 (Ryp) 
4. 3 f- [x E Mo /\ -,[x E lo(x)]}	 (LambdaE 3) 
5. 3 I- xEMo	 (AndE 4) 
6. f- [x E AZo [z E Mo /\ -,[z E lo(z)]] -l- X E Mo]	 (ImpI53) 
7. f- Vxox E [AZo[Z E Mo /\ -,[z E lo(z)]]-l- x E Mo] (ForaIlI 6) 
8. f- AZ.[Z E Mo /\ -,[z E lo(z)]] ~ Mo	 (~-Def 7) 
9. f- AZ.[Z E Mo /\ -,[z E lo(z)]] E P(Mo)	 (PSet-Def 8) 

10. 1,2 f- 3yo.[yo E Mo /\ AZ.[Z E Mo /\ -,[z E lo(z)]] = lo(yo)] (Surj-Def 2 9) 
11. 1,2,11 I- [yo E Mo /\ AZ.[Z E Mo /\ -,[z E lo(z)]] =lo(yo)] (Ryp) 
12. 1,2,11 f- AZ.[Z E Mo /\ -,[z E lo(z)]] = lo(yo)	 (AndE 11) 
13. f- yo E fo(yo) = yo E fo(yo)	 (=-Ref) 

14. 1,2,11 f- Yo E ..xz.[z E Mo /\ -,[z E lo(z)]] = yo E lo(yo) (= 12 13) 
15. 1,2,11 f- [YO E AZ. [z E Mo /\ -,[Z E lo(z)]] t+ yo E lo(yo)] (=-Equiv 14) 

16.	 1,2,11 f- [[YO E Mo /\ -'[YO E lo(yo)]] t+ yo E lo(yo)] (LambdaE 15) 
CaseI 

17. 1,2,11,17 I- Yo E fo(Yo)	 (Case 1) 
18. 1,2,11,17 f- -,[yo E 10(Yo)]	 (16 17) 
19. 1,2,11,17 f- 1-	 (NotE 18 17) 

Case 2
 
20. 1,2,11,20 f- -,[yo E lo(yo)] (Case 2) 
2l. 1,2,11 f- Yo E Mo (AndE 11) 
22. 1,2,11,20 I- yo E lo(yo)	 (16 21 20) 
23.	 1,2,11,20 f- 1- (NotE 20 22)
 

End of Case 2
 
24. f- [YO E lo(yo) V -'[YO E fo(yo)]]	 (TND) 
25.	 1,2,11 f- 1- (OrE 24 19 23) 

End of Case Analysis 
26. 1,2 I- 1-	 (ExistsE 10 25) 
27. 1 f- 1-	 (ExistsE 1 26) 
28. f- -.[3f.surj(j, Mo, P(Mo»]	 (NotI27) 
29. f- VM.-.[3j.surj(j, M, P(M))]	 (ForallI 28) 

Figure 3: ND-Proof of the Powerset Example 

since in our approach methods essentially consist of a specification and a declaratively rep
resented tactic. Such initial methods are then modified by meta-methods to suit analogous 
situations. 

4.1 The First Generalization 

In order to show how such a modification can be performed, let us look now at our second 
diagonalization example, namely the theorem stating that there is no surjective function 
from the natural numbers onto the interval [0,1]. The problem can be formalized as follows: 
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1. 1 + 3f.suxj(f, Mo,P(Mo)) (Hyp)
2 .  1 ,2  F surj( fo,  Mo, P(Mo)) (Hyp)
3. 3 bz  € Aze[z € Mo Az  € fo(z)]] (Hyp)
4. 3 F [xz € Mo A [ x  € fo(z)]] (LambdaE 3)
5. 3 F TE  Mo (AndE 4)
6. [ x  € Az.[z € Mo A =[z € fo(2)]] = z € Mo] (Impl 5 3)
7. bo Vox € [A2s[2 € Mo A =[z € fo(2)]] = x € Mo] (ForallI 6)
8. & Aze[z € Mo Az  € fo(2)]] € Mo (C-Def 7)
9. FE Aza[z € Mo A [ z  € fo(2)]] € P(Mo) (PSet-Def 8)

10. 1,2 F Iyoe(ya € Mo A Aze[z € Mo A =[z € fo(z)]] = fo(yo)] (Surj-Def 2 9)
11. 1,2,11 FE [yo € Mo A Azı[z € Mo A =z  € fo(2)]] = fo(yo)] (Hyp)
12. 1,2,11 F Aze[z € Mo A i z  € fo(z)]] = fo(yo) (AndE 11)
13. F yo € fo(yo) = yo € fo(yo) =-Ref)
14. 1,2,11 F yo € Azz  € Mo A (z  € fo(2)]] = yo € fo(yo) (=  12 13)
15. 1,2,11 F [yo € Az. [z € Mo A [ 2  € fo(z)]] «> yo € fo(yo)] (=-Equiv 14)

16. 1,211 + [[yo € Mo  A =[yo € fo(yo)]] ++ yo € fo(yo)] (LambdaE 15)
Case 1

17. 1,211,17 + yo € fo(yo) (Case 1)
18. 12 ,1117  + [yo € fo(yo)] (16 17)
19. 1,2,11,17 + L (NotE 18 17)

Case 2
20. 1,2,11,20 F [yo € fo(yo)] (Case 2)
21. 1,211 + yo €Mo  (AndE 11)
22. 1,2,11,20 F yo € fo(yo) (16 21 20)
23. 1,21120 + L (NotE 20 22)

End of Case 2
24. F [yo € fo(yo) V [yo € fo(yo)]] (TND)
25. 1,211 + 1 (OrE 24 19 23)

End of Case Analysis
2 .  1,2 FOL  (ExistsE 10 25)
27. 1 FL  (ExistsE 1 26)
28. FE [Af.surj(f, Mo,  P(Mo))] (NotI 27)
29. F YMa—[3fusuri(f, M ,  P(M))] (Foralll 28)

Figure 3: ND-Proof of the Powerset Example

since in our approach methods essentially consist of  a specification and a declaratively rep-
resented tactic. Such initial methods are then modified by meta-methods to suit analogous
situations.

4 .1  The First Generalization

In  order to show how such a modification can be performed, let us look now at our second
diagonalization example, namely the theorem stating that there is no surjective function
from the natural numbers onto the interval [0,1]. The problem can be formalized as follows:



Declarations -
Premises Surj-Def 

-
16 
1. 1 I 3f.surj(j, Mo, P(Mo» 
2. 1,2 I surj(jo, Mo, P(Mo» 
3. 1,2 I AZ.[Z E Mo 11. ..,[z E fo(z)]] E P(Mo) 

4. 1,2 I 3yo.[yo E MoII.Az.[z E MolI.",[z E fo(z)]] = fo(yo)] 
5. 1,2,5 I [YO E Mo 11. AZ. [z E Mo 11. ..,[z E fo(z)]J = fo(yo)] 
6. 1,2,5 I [[YO E Mo 11. -'[YO E fo(yo)]] t4 yo E fo(yo)] 

CaseI 
7. 1,2,5,7 I yo E fo(yo) 
8. 1,2,5,7 I J.. 

Case 2 
9. 1,2,5,9 I -,[yo E fo(yo)] 
10. 1,2,5,9 I J.. 

End of Case 2 
1l. I [yO E fo(yo) V -{yo E fo(yo)]] 
12. 1,2,5 I J.. 

End of Case Analysis 
13. 1,2 I 1
14. 1 I J.. 
15. I -.[3f.surj(j, Mo, P(Mo»] 
16. I 'VM.-.[3f.surj(f, M, P(M»] 

schema-interpreter 

(Hyp) 
(Hyp) 
(PLAN) 

(Surj-Def 2 3) 
(Hyp) 
(PLAN 5) 

(Case 1) 
(PLAN 67) 

(Case 2) 
(PLAN 6 9) 

(TND) 
(OrE 11 810) 

(ExistsE 4 12) 
(ExistsE 1 13) 
(Not! 14) 
(ForallI 15) 

Constraint 

Conclusions 

Declarative 
Content 

Procedural 
Content 

Figure 4: Method Diag-i 

TND 
=-Ref 
Surj-Def 

Digits-O-l 
Orf1 
[O,l]-Def 

'ixo.X V-,X 

'ixt.x = x 
'ift-..(t ....H). 'iat-..o•'ib(t-..t)-..o. surj(f, a, b) f-t 

[Vxt.x E a -+ f(x) E b 11. 
('ixt-..t.x E b -+ (3Yt. (y E a 1\ x = fey))))] 

dig(0) 1\ dig(l) 
Orf1 
'ihHt.h E [0,1] f-t ('int.n E IN -+ dig(h(n») 

NatReal 

In this formulation, the interval [0,1] is defined as the set of all functions from the 
natural numbers into the digits, which corresponds to a decimal or binary representation 
of the real numbers.depending on how many digits you use. (Indeed the proof is independent 
of the number of digits. We neglect here the problem of periods in the largest digit.) 

The method Diag-l is not directly applicable to this problem since the conclusions do 
not match each other. Here we want to show ..,3ft.-+(t-H).Surj(j, IN, [0, 1]), while method 
Diag-l proves \fM•..,[3j.surj(j, M, P(M))]. Now we want to see how the proof fragment 
in method Diag-l can be transformed in order to cope with the second problem. 

Reformulation ofDiag-l to Diag-l': First we have to apply the meta-method Cut-Sub
method which recognizes that the new theorem is similar to line 15 in methodDiag-l, an 
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Declarations | —
Premises Surj-Def
Constraint | —
Conclusions | 16

1. 1 F 3f.surj(f, Mo, P(Mo)) (Hyp)
2. 1,2 FE surj(fo, Mo , P(Mo)) (Hyp)
3. 1,2 F Azz  € Mo A =lz € fo(z)]] € P(Mo) (PLAN)

4. 1,2 F Iyo [yo € MoAAz[z € MoAz  € fo(2)]] = fo(yo)] (Surj-Def 2 3)
5. 1,255 * [yo € MoA lz ı [ z  € Mo A i z  € fo(z)]] = fo(yo)] (Hyp)
6. 1,25 + [[yo € Mo A —[yo € fo(yo)]} © yo € fo(yo)] (PLAN 5)

Case 1 -
7. 1 ,257  + yo € fo(yo) (Case 1)
‘8. 1 , 257  FL  (PLAN 6 7)

Declarative Case 2
Content 9. 1 ,259+ [yo € fo(wo)] (Case2)

10. 1,259 + L (PLAN 6 9)
——————— End of Case 2

11. F [yo € fo(yo) V [yo € fo(yo)]] (TND)
12 .125  FL  (OE 11  8 10)

End of  Case Analysis
13. 1,2 FL  (ExistsE 4 12)
14. 1 FL  (ExistsE 1 13)
15. F =[3f.surj(f, Mo,  P(Ma))] (NotI 14)
16. F VM.-(3f.surj(f, M ,  P(M))] (Foralll 15)

Procedural schema-int e t
Content chema-interpreter

Figure 4: Method Diag-1

TND VZpezZ V x
=-Ref Vezr=23z
Surj-Def Vf, (iau)e Vaio00YOu) onSUTi(f,  a,b) &

Vz .z€a—  f(z) €bA
(Vz  €b  = (Fy (y €a nz  = f(y))))]

Digits-0-1 dig(0) A dig(1)
0#1  0%1
[0,1)-Def Vhıruh € [0,1] & (Vn.n € N — dig(h(n)))
NatReal f ee )  SUrj(£, N ,  (0,  1 ] )

In this formulation, the interval [0,1] is defined as the set of all functions from the
natural numbers into the digits, which corresponds to a decimal or binary representation
of  the real numbers depending on how many digits you use. (Indeed the proof is independent
of  the number of digits. We neglect here the problem of periods in the largest digit.)

The method Diag-1  is not directly applicable to this problem since the conclusions do
not match each other. Here we want to show =3f,_,(‚)=Suri(f, n, [0, 1]), while method
Diag-1 proves VM.—[3f.surj(f,  M ,  P(M))] .  Now we want to see how the proof fragment
in method Diag-1  can be transformed in  order to cope with the second problem.
Reformulation of  Diag-1  t o  Diag-1’: First we have to apply the meta-method Cut-Sub-
method which recognizes that the new theorem is similar to  line 15 in method Diag-1, an
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Declarations -
Premises Surj-Def,bool,value 

-
15 

l. 1 I- 3fosurj(f, IN, [0, ID 
2. 1,2 I- surj(fo, (11, [0, ID 
3. 1,2 I- AZINovalue(-.[bool(fo(z)(z»)]) E [0,1.] 

4. 1,2 I- 3YINo,AzINovalue(-.[bool(fo(z)(z»D = lo(y) 
5. 1,2,5 I- ,AZINovalue(-.[bool(fo(z)(z»)]) = fo(yo) 
6. 1,2,5 I- -.bool(fo(yo)(yo» ++ bool(fo(yo)(Yo» 

CaseI 
7. 1,2,5,7 I- bool(fo(yo)(yo» 
8. 1,2,5,7 I- ..1. 

Case 2 
9. 1,2,5,9 I- -.bool(fo(Yo) (yo» 

(Hyp) 
(Hyp) 
(PLAN) 

(Surj-Def 2 3) 
(Hyp) 
(PLAN 5) 

(Case 1) 
(PLAN 6 7) 

(Case 2) 

Constraint 
Conclusions 

Declarative 
Content 

10. 1,2,5,9 I- ..1. 
End of Case 2 

11. I- bool(fo(Yo)(Yo» V -.bool(fo(yo)(yo» 
12. 1,2,5 I- ..1. 

End of Case Analysis 
13. 1,2 I- ..1. 
14. 1 I- ..1. 
15. I- -.[3fosurj(f, IN, [0, 1])] 

schema-interpreter 

(PLAN 6 9) 

(TND) 
(OrE 11 8 10) 

(ExistsE 4 12) 
(ExistsE 1 13) 
(Not! 14) 

Procedural 
Content 

Figure 5: Method Diag-2 

intermediate conclusion of Diag-1. Cut-Submethod creates a new method Diag-l' from 
Diag-l by deleting the last line in the declarative content and by updating the conclusions 
slot: 16 becomes 15. 

The meta-method Cut-Submethod looks in a breadth first search in the proof tree of 
an available method fora node that corresponds to an open line of the partial proof of 
the current problem (here the target theorem). Since this meta-method can be applied in 
many cases it is important to heuristically 'restrict its application, for instance by limiting 
the depth of the node in the proof tree of the method or by considering only lines without 
assumptions. 

Reformulation ofDiag-l' to Diag-2: This reformulation is carried out by a meta-method 
called set2func. Intuitively it transforms certain sets occurring in a method into functions. 
In this example, the set of sets (powerset) is transformed to a set of functions (the interval 
[0,1]). The first step carries out the parallel term mapping established by matching the 
two conclusion lines, specified below (the last two are the main reformulations, while the 
others are just type adjustments). 

• f~-+(~-+o) Ho ft-'t(~-+~) 

• surj(~-+(~-+o)) X (~-+o) x «~-+o)-+o)-+o Ho surj(~-+(~-+~» x (t-+o) x«t-+~)-+o)-+o 

• Mo~-+o Ho (II~-+o 
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Declarations | —
Premises Surj-Def,bool,value
Constraint | —
Conclusions | 15

1 .  1 + 3f.surj(f, N ,  [0, 1]) (Hyp)
2. 1,2 + surj(fo,N,[0,1]) (Hyp)
3. 1,2 F Azıy» value(=[bool(fo(z)(z))]) € [0,1] (PLAN)

4. 1,2 F Iyın- Azın- value(-[bool( fo(z)(z))]) = fo(y) (Surj-Def 2 3)
5. 1,2,55 * Azınevalue(-(bool(fo(z)(z))]) = fo(yo) (Hyp)
6. 1,25 + bool(fo(yo)(yo)) + bool(fa(yo)(yo)) (PLAN 5)

Case 1
7. 1,2,5,7 + bool(fo(yo)(yo)) (Case 1)

Declarative |? 1257 F 1 (PLAN 6 7)

Content Case 29. 12,59 + -bool(fo(yo)(yo)) (Case 2)
10. 1 ,259 + 1 (PLAN 6 9)

End of Case 2
11. + bool(fo(yo)(yo))V ~bool(fa(yo)(yo)) (TND)
12 .125  FL  (OrE 11  8 10)

End of Case Analysis
13. 1,2 FL  (ExistsE 4 12)
14. 1 FL  (ExistsE 1 13)
15. F =[3f.surj(f,N, [0,1])] (NotI 14)

Procedural .Content schema-interpreter

Figure 5: Method Diag-2

intermediate conclusion of Diag-1. Cut-Submethod creates a new method Diag~1’ from
Diag-1  by  deleting the last line in the declarative content and by  updating the conclusions
slot: 16 becomes 15.

The meta-method Cut-Submethod looks in a breadth first search in the proof tree of
an available method for a node that corresponds to an open line of the partial proof of
the current problem (here the target theorem). Since this meta-method can be applied in
many cases i t  is important to  heuristically restrict its application, for instance by  limiting
the depth of  the node in the proof tree of  the method or by  considering only lines without
assumptions.

Reformulation o f  Diag-1’ to  Diag-2: This reformulation is carried out by a meta-method
called set2func. Intuitively i t  transforms certain sets occurring in  a method into functions.
In  this example, the set of sets (powerset) is transformed to a set of functions (the interval
[0,1]). The first step carries out the parallel term mapping established by matching the
two conclusion lines, specified below (the last two are the main reformulations, while the
others are just type adjustments).

® f is t )  7 fims(iou)

® SUTj(, 1 (1 0 ) ) x  (10) x (10)  +0) —>0 FF SUL, (10) x (1-30) X ((t-32)—0)—0

® Moı->o0 > Numso

11



• P(MO)(L-tO)-tO 1--+ [0, IJ(HL)-to 

Furthermore the constant fo (which instantiates the variable f) must be transformed 
in the same way. These mappings, however, may introduce type inconsistencies which can 
be eliminated by introducing new function symbols adapting the types. In our example we 
use the procedures term2formula and formula2term which introduce the function symbols 
"bool" and "value" for this adaptation. 

The procedure term2formula replaces a term t with bool(t). Semantically, the function· 
symbol "bool" maps some specific L-terms to some corresponding truth values, namely the 
meta-variable A (of type L, later instantiated to 1) to true and the meta-variable B (also 
of type" and later instantiated to 0) to false. This is accompanied by inserting the extra 
axiom bool(A) /\ ...,bool(B). For other elements "bool" is not specified. 

The procedure f ormula2term replaces a formula cp with value(cp). The function symbol 
"value" maps true to the element A and false to the element B. This can be specified by 
the formula V'xo.(x +7 value(x) = A) /\ (...,x +7 value(x) = B). 

The specification of bool and value are not represented in the method Diag-2 directly, 
but for its applicability they have to be available in the background theory just as the 
definition of the surjectivity. 

Furthermore we use a procedure predicate2sort. It creates new sort symbols from 
predicate symbols and can be considered as the inverse of the relativization. In our example 
the expression 

AZ. [1N(z) /\ ...,[bool(jo(z) (z»] E [0,1] 

is transformed to 
AZIN. (...,[bool(jo(z)(z»))) E [0,1]. 

Now, the meta-method set2func is basically a saturation algorithm iterating the three 
procedures above through the proof tree and the term tree in the proof nodes in a bottom
up way. Refinements have to be incorporated for handling indeterminism. For instance, the 
first two procedures are always both applicable in the case of an equality with disagreeing 
term types. We are also investigating an alternative approach, where only formula2term 
is used. Although this alternative eliminates the indeterminism mentioned above, it has 
the drawback that the function Ax.value(-,(bool(x»), fixpoint-free on the digits, cannot be 
automatically synthesized (lines 3, 4, and 5 in Diag-2). 

Concretely, by eliminating the type inconsistencies related to fo(z)(z) and fo(Yo)(Yo) 
(they are of type L but in order to be used as proposition they have to be of type 0) with 
the procedure. term2formula in the lines 3, 4, 5, 6, 7, 9 and 11 we get: 

3.... I- .\z. [IN(Z) f\ -,[bool(Jo(z)(z»]] E [O,lJ 
4. '" I- 3Y.[IN(Y) f\ .\Z.[IN(z) f\ -,[bool(Jo(z)(z»]] = lo(Y)]
 
5 f- N(yo) f\ .\Z.[IN(Z) /\ -,[bool(Jo (z) (z»)]J = lo(Yo)
 
6 f- [N(Yo) f\ .,bool(fo(Yo)(Yo»] f-t bool(fo(Yo)(Yo»
 
7. '" f- bool(fo(yo)(Yo»
 
9 f- -,bool(fo(Yo)(Yo»
 

11. f- bool(fo(Yo)(Yo» V -.bool(fo(Yo)(Yo» 

After handling the type inconsistencies related to fo(Y) and fo(Yo) with the procedure 
predicate2sort and formula2term, the lines 4 and 5 above become: 

4 f- 3YIN•.\ZIN.value(...,[bool(fo(z)(z»)]) = lo(Y) 
5 I- .\ZIN.value(...,[bool(fo(z)(z»)]) = lo(Yo) 
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® P(Mo)(ı->0)->0 — [0,  1]c ı—>0)—0

Furthermore the constant fo (which instantiates the variable f )  must be transformed
in  the same way. These mappings, however, may introduce type inconsistencies which can
be eliminated by introducing new function symbols adapting the types. In  our example we
use the procedures term2formula and formula2term which introduce the function symbols
“bool” and “value” for this adaptation.

The procedure term2formula replaces a term ¢ with  bool() .  Semantically, the function -
symbol “bool” maps some specific :-terms to some corresponding truth values, namely the
meta-variable A (of type ı, later instantiated to 1) to true and the meta-variable B (also
of type ¢ and later instantiated to 0) to false. This is accompanied by inserting the extra
axiom bool(A) A =bool(B). For other elements “bool” is not specified.

The procedure formula2term replaces a formula w with value(y). The function symbol
“value” maps true to the clement A and false to the element B .  This can be specified by
the formula Vz,.(z © value(z) = A) A (-z + value(z) = B).

The specification of bool and value are not represented in  the method Diag-2 directly,
but for its applicability they have to be available in the background theory just as the
definition of  the surjectivity.

Furthermore we use a procedure predicate2sort .  It  creates new sort symbols from
predicate symbols and can be considered as the inverse of the relativization. In  our example
the expression

Az.[N(z) A =[bool(fo(2)(2))] € [0,1]

is transformed to
Azıne (=[bool(fo(2)(2))]) € [0,1].

Now, the meta-method set2func is basically a saturation algorithm iterating the three
procedures above through the proof tree and the term tree in  the proof nodes in  a bottom-
up  way. Refinements have to be incorporated for handling indeterminism. For instance, the
first two procedures are always both applicable in  the case of an equality with disagreeing
term types. We are also investigating an  alternative approach, where only formula2term
is used. Although this alternative eliminates the indeterminism mentioned above, it has
the drawback that the function Az.value(—(bool(z))), fixpoint-free on the digits, cannot be
automatically synthesized (lines 3, 4, and 5 in  Diag-2).

Concretely, by eliminating the type inconsistencies related to fo(2)(z) and fo(ye) (yo)
(they are of  type ı but in order to  be used as proposition they have to be of type 0) with
the procedure term2formula in  the lines 3, 4, 5, 6, 7, 9 and 11  we get:

... FE Az  [N(z) A S[bool(fo(2)(2))]] € [0,1]
- F 3y.[N(y) A Az.[N(z) A =[bool(fo(2)(2))]] = fo(y)]
„  N(yo) A Az.[IN(z) A =[bool(fo(2)(2))]] = fo(yo)

wr  F [N(yo) A =bool(fo(yo)(ya))] ++ bool(fo(yo)(yo))
- E bool(fo(yo)(yo))

- . .  F —bool(fo(yo)(yo))
-.. = bool(fo(yo)(yo)) V -bool(fo(yo)(yo))

After handling the type inconsistencies related to fo(y) and fo(yo) with the procedure
predicate2sort and formula2term, the lines 4 and 5 above become:

«we  F Syme Azın- value(=[bool(fo(2)(2))]) = fol)
5. ... FE Azjysvalue(=[bool(fo(2)(2))]) = fo(vo)

O
N

O
 

o
R
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Declarations X,Y,Z,non 
Premises Surj-Def 

-
15 

l. 1 I 3f·surj(f,X, Y) 
2. 1,2 I surj(fo, X, Y) 
3. 1,2 I Azx.iiOii{Z(fo(z)(z))) E Y 

4. 1,2 I 3Yx- AZx. iiOii(Z(fo(z)(z))) = fo(Y) 
5. 1,2,5 I AZX.iloii(Z(fo(z)(z))) = fo(yo) 
6. 1,2,5 I -,Z(fo(yo)(Yo» ++ Z(fo(yo)(yo)) 

CaseI 
7. 1,2,5,7 I- Z(fo{yo)(yo)) 
8. 1,2,5,7 I 1

Case 2 
9. 1,2,5,9 I -'Z(fo (yo) (yo)) 
10. 1,2,5,9 I l. 

End of Case 2 
11. I- Z(fo{yo)(yo)) V -.Z(fo{yo)(yo)) 
12. 1,2,5 I 1

End of Case Analysis 
13. 1,2 I l. 
14. 1 I 1
15. I -.[3f·surj(f,X, Y)] 

schema-interpreter 

(Hyp) 
(Hyp) 
(PLAN) 

(Surj-Def 2 3) 
(Hyp) 
(PLAN 5) 

(Case 1) 
(PLAN 6 7) 

(Case 2) 
(PLAN 69) 

(TND) 
(OrE 11 8 10) 

(ExistsE 4 12) 
(ExistsE 1 13) 
(NotI14) 

Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

Figure 6: Method Diag-1-2 

The type inconsistency related to [0,1] in line 3 can be eliminated by predicate2sort 
and formula2term again: 

3.... f- AZIN.value(-.[bool(fo(z)(z))]) E [0,1] 

Finally we get the method Diag-2 in figure 5. When creating it from Diag-l' by the 
meta-method set2func the meta-variables A and B are instantiated to 1 and O. 

To avoid the explosion of the method base and to abstract away from concrete proofs, 
meta-methods are also incorporated to extract more general methods from existing ones. 
In this example, we want to construct a method Diag-1-2, which covers the first two cases. 
This can be done by the meta-method Abstract that essentially abstracts the disagreeing 
tenns in Diag-l' and Diag-2 to meta-variables (see also [BW93]). 

By the generation of the most specific generalization of -,[3f.surj(f, Mo, P(Mo))] and 
-,[3f.surj(f, IN, [0, 1])], we get the generalized conclusion -,[3f.surj(f, X, Y)]. Note that 
meta-variables are overlined. In the same way fo(Yo)(Yo) in Diag-l' and bool(fo(Yo)(Yo)) 
in Diag-2 are generalized to Z(Jo(Yo)(Yo)), Finally "-," in Diag-l and "valueo-," in Diag-2 
are abstracted to a new meta-variable non. With these generalizations, we get the method 
Diag-1-2, shown in figure 6. 

The following instantiations can be used to obtain the first two methods. 
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Declarations | X ,Y ,  Z,  non
Premises Surj-Def
Constraint | —
Conclusions | 15

1. 1 F 3f.surj(f, X,Y) (Hyp)
2. 1,2 FE surj(fo, X,Y) (Hyp)
3. 1,2  F Azzmon(Z(fo(2)(2))) € Y (PLAN)

4 1,2 F 3yge deg 000(Z(fo(2)(2))) = fo(y) (Surj-Def2 3)
5. 1,25 Fk Aex.5en(Z(fo(z)(2))) = fo(yo) (Hyp)
6. 1,25 Fk -Z(fo(yo)(yo)) + Z(fo(yo)(yo)) (PLAN 5)

Case 1 | .

7. 1,2,5,7 F Z(fo(yo)(vo)) (Case 1)
Declarative |& 125,7 F 1 (PLAN6 7)

Content — Case 2
9 .  1 ,2 ,5 ,9  Lg =Z(fa(yo)(yo)) (Case 2 )
10. 1 ,259 + L (PLAN6 9)

End of  Case 2

11. F Z( fo(yo)(yo))V ~Z(fo(yo)(yo)) (TND)
12 .125  FL  (OrE 11  8 10)

End of Case Analysis — ——
13. 1,2 FL  (ExistsE 4 12)
14. 1 FL  (ExistsE 1 13)
15. F ~[3fusurj(£, X,  Y)] (NotI 14)

Procedural schema-interpreter
Content I p

Figure 6: Method Diag-1-2

The type inconsistency related to [0,1] in  line 3 can be eliminated by predicate2sort
and formula2term again:

3. ... F Az  value(=[bool(fo(2)(=))]) € [0,1]

Finally we get the method Diag-2 in figure 5. When creating i t  from Diag-1’ by the
meta-method set2func the meta-variables A and B are instantiated to 1 and 0.

To avoid the explosion of  the method base and to abstract away from concrete proofs,
meta-methods are also incorporated to extract more general methods from existing ones.
In  this example, we want to construct a method Diag-1-2, which covers the first two cases.
This can be done by the meta-method Abstract that essentially abstracts the disagreeing
terms in  Diag-1’ and Diag-2 to meta-variables (see also [BW93]).

By  the generation of the most specific generalization of  =[3f.surj(f,  My,  P(M;))] and
~[3f.surj(f, N, [0,1])], we get the generalized conclusion —[3f.surj(f,X,Y)]. Note that
meta-variables are overlined. In the same way fo(yo)(yo) in  Diag-1' and bool(fo(yo)(yo))
in  Diag-2 are generalized to Z(fo(yo)(yo)). Finally “=”  in  Diag-1  and “valueo—" in  Diag-2
are abstracted to a new meta-variable non. With these generalizations, we get the method
Diag-1-2, shown in  figure 6.

The following instantiations can be used to obtain the first two methods.

13



I Diag-1-2 I first method I second method I 
X Mo IN 
y P(Mo) [O,lJ 
z AX.X AX. bool(x) 
non ...... AX. value(...... (x)) 

4.2 The Second Generalization 

While the first two problems are closely re~ated, this example should illustrate how the 
previous method can be adapted to a fairly distinct problem, namely the Halting Problem. 
The theorem states that there is no binary computable function(there is no h with T2(h)) 
which decides for unary computable functions (Turing machines), whether they halt or not 
(that is, defined(t(x)) iff h(t, x) =°for all t with T1(t) and for all x in IN). We are pointed 
to this third example by our colleague Melis, another formulation of the problem can be 
found in [Me194]. 

We formalize the problem in the following way: 

TND 
Ext 
Godel 
if-Comp 

if-Def 

dermed 

Vxo.x V-,x 
VfIN-tU.'V91N-tU.'VXIN.f = 9 -+ f(x) = g(x) 
'VtIN-tU.Tl(t) -+ 3nIN.e(n) = t 

'Vf«IN-tu),IN)-tD.T2 (J) -+ 
'Vxu,VYu.T1(.XZIN.if(J(e(z),z) = O,x,y)) 

VPo.VXu.Vyu.P -+ if(P,x,y) =x/\ 
-,p -+ if(P,x,y) = y 

-,defined(u) /\ defined(O) 
Halting -,3h((lN-tU),IN)-tD·T2(h) 1\ 'VtIN-tU.T1(t) 

-+ VXIN.defined(t(x)) f+ het, x) = 0 

In this formali~ation we use the following sorts: III denotes the set of natural numbers. 
The symbol u represents the non-terminating function. U is the union of IN and {u}. D 
denotes the set {O,l}. 

In order to prove the theorem we need the Godel enumeration theorem that there is an 
enumeration function e so that for every unary computable function t there is a natural 
number n with e(n) corresponding to t. In addition the application of e to any natural 
number is always a computable function. Furthermore, we use some obvious definitions 
and the lemma that for a total and computable function 1 the function AZIN.if(J(e(z), z) = 
O,x,y) is computable too, where "if(condition,then,else)" has the usual semantics. 

In order to generate a method Diag-1-2-3 from the method Diag-1-2 for solving the 
Halting Problem, we employ the meta-method Abstract again, which has been used to 
produce method Diag-1-2 from the methods Diag-l' and Diag-2. This meta-method can 
be applied to a single method and a problem specification as well. Since less information 
is given in a specification of a problem then in a method, this mode requires more user
guidance. In order to perform this abstraction generalizations like the following two are 
applied. 

• split-symbol replaces different occurrences of one symbol (in this case 10) by two 
. different meta-variables (here "9 and h). This is necessary in our example, since in 
Diag-1-2 fo serves both as the function assumed in the theorem as well as the surjec
tive function which is used to derive the membership of the diagonalization element. 
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| D iag-1-2  | first method| second method

X Mo  N

Y P(Mo) [0,1]
Zz ATI  Az.bool(z)
non = Az. value(—(z))

4 .2  The Second Generalization

While the first two problems are closely related, this example should illustrate how the
previous method can be adapted to  a fairly distinct problem, namely the Halting Problem.
The theorem states that there is  no binary computable function {there is no h with T3(h))
which decides for unary computable functions (Turing machines), whether they halt or not
(that is, defined (t(z)) iff h(t,  x) = O for all ¢ with 7 (£) and for all z in nN). We are pointed
to this third example by our colleague Melis, another formulation of  the problem can be
found in [Mel94].

We formalize the problem in the following way:

IND  VZouz Vz
Ext Vfinnu=V9n-u Vz f = 9 + f(z) = g(2)
Gödel V ino  Tit) + Snynee(n) = t
if-Comp Vfiunou),Ny—p-T2(f) =

Vzy.Yyu.Ti  (Aein=if(f (e(2), 2) = 0,  x ,  y ) )
if-Def VP,.VzyVyy.P — if(P, z ,y )  = ZA

=P — if(P,z,y) = y
defined —defined(u) A defined(0)
Halting  —3h(iNov) iN)—0-T2(R) A V in u T(E)

— Vzy.defined(t(z)) & h(t,  z)  =0

In this formalization we use the following sorts: N denotes the set of  natural numbers.
The symbol u represents the non-terminating function. U is the union of N and {u} .  D
denotes the set { 0 ,1 } .

In  order to prove the theorem we need the Godel enumeration theorem that there is an
enumeration function e so that for every unary computable function t there is a natural
number n with e(n) corresponding to t .  In addition the application of e to any natural
number is always a computable function. Furthermore, we use some obvious definitions
and the lemma that for a total and computable function f the function Az.if(f(e(2),  z) =
0, z ,y )  is computable too, where “if(condition,then,else)” has the usual semantics.

In order to generate a method Diag~1-2-3 from the method Diag-1-2 for solving the
Halting Problem, we employ the meta-method Abstract again, which has been used to
produce method Diag-1-2 from the methods Diag-1’ and Diag-2. This meta-method can
be applied to a single method and a problem specification as well. Since less information
is given in a specification of a problem then in a method, this mode requires more user-
guidance. In order to perform this abstraction generalizations like the following two are
applied.

e split-symbol replaces different occurrences of one symbol (in this case fo) by two
. different meta-variables (here g and h). This is necessary in our example, since in
Diag-1-2 fo serves both as the function assumed in  the theorem as well as the surjec-
tive function which is used to derive the membership of  the diagonalization element.
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Declarations X, Y, Z, App, non, f,g, h, F, F', J 
Premises -

F' = applysubst(f Ho g, F) 
15 

l. 1 I 3f·F 
2. 1,2 l- F' 
3. 1,2 I .\zx.iloii(Z(App(h(z), z))) E Y 

4. 1,2 I- 31JX.h(y) = Azx.non(Z(App(h(z), z))) 
5. 1,2,5 I- h(yo) = Azx.iloii(Z(App(h(z), z))) 
6. 1,2,5 I ....Z(App(h(yo) , yo)) ++ Z(App(h(yo), yo)) 

CaseI 
7. 1,2,5,7 I- Z(App(h(yo),yo)) 
8. 1,2,5,7 I J. 

Case 2 
9. 1,2,5,9 I ""Z(App(h(yo), yo)) 
10. 1,2,5,9 I J. 

End of Case 2 
11. J- Z(App(h(yo), yo)) V ....Z(App(h(yo), yo)) 
12. 1,2,5 I J. 

End of Case Analysis 
13. 1,2 I J. 
14. 1 I J. 
15. I ....[3].:F] 

schema-interpreter 

(Hyp) 
(Hyp) 
(PLAN 2) 

(J 2 3) 
(Hyp) 
(PLAN 5) 

(Case 1) 
(PLAN 6 7) 

(Case 2) 
(PLAN 6 9) 

(TND) 
(OrE 11 8 10) 

(ExistsE 4 12) 
(ExistsE 1 13) 
(NotI14) 

Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

Figure 7: Method Diag-1-2-3 

In the third problem, however, the second role is played by Godel's enumeration 
function e. 

• generalize-application maps an application x(y) to an expression App(x, y). 

We finally arrive at the method Diag-1-2-3, see figure 7. 
Informally the proof of the Halting Problem contains the following key steps. Sup

pose that there is a function "halt", this corresponds to line 1 and 2 in the method 
above. We get a unary computable function AZIN.if(halt(e(z), z) = 0, U, 0) (line 3). Ac
cording to the G6del enumeration theorem there is a natural number Yo so that e(yo) = 
AZIN.if(halt(e(z), z) = 0, u, 0) (line 4 and 5). With the extensionality theorem we deduce 
that e(yo)(Yo) = if(halt(e(yo),Yo) = O,u,O), what can be used to derive line 6, which leads 
to a contradiction. 

Finally we have arrived at a general method covering all three diagonalization problems 
discussed in this section. Nevertheless some problem specific information has been lost 
during the abstraction. If a planner is confronted with a concrete problem, it has to 
instantiate the meta-variables of the method. The instantiations for the three examples 
are summarized in the table displayed in figure 8. 

It is worth comparing the two distinct modes of meta-planning allowed in our approach. 
First, existing methods can be generalized to more general methods, which in turn are used 
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Declarations | X ,  Y ,Z ,  pp, non, f ,g ,h,F,  F',J
Premises — a

Constraint | F ’  = applysubst(f — 9,F)
Conclusions | 15

1 .1  F 3FF (Hyp)
2. 1,2 FF  (Hyp)
3 1,2 Fb Azx.don(Z(App(h(2),2))) € Y (PLAN 2)

4. 1,2 F Sygeh(y) = Azz -non(Z(App(h(z), 2))) ( 723 )
5. 1,25 + (yo) = Azz.non(Z(App(h(z),z))) (Hyp)
6. 1,25 + -Z(App(h(yo),yo)) & Z(App(h(yo),yo)) _ (PLAN 5)

Case 1
7. 1 ,257 + Z(App(h(yo),yo)) (Case 1)

Declarative | & 125,7 F L (PLAN 6 7)

Content — Case 2
9 .  12 ,59  + -~Z(App(h(yo), yo) )  (Case 2 )
10. 1 ,259  + L (PLAN6 9)

m Endof Case 2
11. + Z(App(h(yo) ,yo)) V -Z(App(h(yo), yo)) (TND)
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Figure 7: Method Diag-1-2-3

In the third problem, however, the second role is played by Gddel’s enumeration
function e.

e generalize-application maps an application z(y) to an expression App(z,y).

We finally arrive at the method Diag-1-2-3,  see figure 7.
Informally the proof of  the Halting Problem contains the following key steps. Sup-

pose that there is a function “halt”, this corresponds to line 1 and 2 in the method
above. We get a unary computable function Azın.if(halt(e(z),z) = 0,u,0) (line 3). Ac-
cording to the Godel enumeration theorem there is a natural number yo so that e(yg) =
Azn.if  (halt{e(z), z) = 0,u,0) (line 4 and 5). With the extensionality theorem we deduce
that e(yo)(yo) = if(halt(e(yo), yo) = 0,u,0), what can be used to derive line 6, which leads
to  a contradiction.

Finally we have arrived at a general method covering all three diagonalization problems
discussed in this section. Nevertheless some problem specific information has been lost
during the abstraction. If a planner is confronted with a concrete problem, it has to
instantiate the meta-variables of the method. The instantiations for the three examples
are summarized in the table displayed in figure 8.

It is worth comparing the two distinct modes of meta-planning allowed in  our approach.
First, existing methods can be generalized to  more general methods, which in  turn are used
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IDiag 1-2-3 I first method I second method I third method 

X Mo IN 'IN 

Y P(Mo) [0,1] Tl 
Z .xx. x .xx. bool(x) .xx.x = 0 

App .xx•.xy.x(y) .xx•.xy.x(y) .xx•.xy.halt(x, y) 
non -, .Ax. value(-,(x)) .xx.if(x, u, 0) 
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9 10 10 halt 
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Figure 8: Instantiations of Meta-variables in Diag-1-2-3 

as starting points for solving further problems. For instance, the method Diag-1-2-3 may 
be obtained and instantiated to solve concrete problems. Second it also supports the 
adaptation of concrete methods like Diag-l by meta-methods. The first procedure has the 
advantage that in the long run the method base will be populated by very general methods. 
There is a significant disadvantage as well, however, that important information may get 
lost. For instance, to solve the first problem with the method Diag-1-2-3, you must 
know (or retrieve the information) that the variable Z is bound to .xx.x. Moreover, such 
information is not only crucial for a direct application. From this binding it is comparatively 
easier to come to the binding .xx. bool(x) in the second example by adapting the concrete 
method Diag-1. Therefore, one point offuture investigation is to store binding informations 
such as the table in figure 8 along with generalized methods, so that it can be reused in 
the planning process. 

Conclusion and Future Development 

The problem solving competence of a mathematician relies heavily on his/her ability to 
adapt problem solving knowledge to new situations where existing methods are not directly 
applicable. Up to now this has not received enough attention in the field of automated 
theorem proving. In order to mechanize parts of this ability, we propose a declarative 
extension to the proof planning approach developed by Bundy. 

This technical report is aimed to provide evidence that our goal can be achieved with 
our declarative approach. To do this, we have presented how methods making use of 
conjunctions can be transformed to those making use of universal quantifications and how 
a class of diagonalization methods can be represented in our framework. In the case of the 
diagonalization method, we have presented a detailed trace protocol of the evolution: first 
an initial method is extracted from a concrete proof. This initial method is then adapted 
for the subsequent problems, and more general methods can be obtained by abstracting 
existing methods. Most interestingly we come up with a fairly abstract method capable of 
dealing with all the three problems, since it captures the very key idea of diagonalization. 
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as starting points for solving further problems. For instance, the method Diag-1-2~3 may
be obtained and instantiated to solve concrete problems. Second it also supports the
adaptation of  concrete methods like Diag-1  by  meta-methods. The first procedure has the
advantage that in the long run the method base will be  populated by  very general methods.
There is a significant disadvantage as well, however, that important information may get
lost. For instance, to solve the first problem with the method Diag-1-2-3, you must
know (or retrieve the information) that the variable Z is bound to Az.z. Moreover, such
information is not only crucial for a direct application. From this binding i t  is comparatively
easier to come to the binding Az.bool(z) in  the second example by adapting the concrete
method Diag-1. Therefore, one point of future investigation is to store binding informations
such as the table in figure 8 along with generalized methods, so that it can be reused in
the planning process.

5 Conclusion and Future Development

The problem solving competence of a mathematician relies heavily on his/her ability to
adapt problem solving knowledge to new situations where existing methods are not directly
applicable. Up  to now this has not received enough attention in the field of automated
theorem proving. In order to mechanize parts of this ability, we propose a declarative
extension to  the proof  planning approach developed by  Bundy.

This technical report is aimed to provide evidence that our goal can be achieved with
our declarative approach. To do this, we have presented how methods making use of
conjunctions can be transformed to those making use of universal quantifications and how
a class of  diagonalization methods can be represented in our framework. In the case of  the
diagonalization method, we have presented a detailed trace protocol of  the evolution: first
an initial method is extracted from a concrete proof. This initial method is then adapted
for the subsequent problems, and more general methods can be obtained by abstracting
existing methods. Most interestingly we come up with a fairly abstract method capable of
dealing with all the three problems, since i t  captures the very key idea of  diagonalization.
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The modifications used are, of course, sensitive to the representation of the problems. If the 
formulations are more different then the chosen ones, the reformulation efforts will increase. 
Note that, however, the meta-methods used do not rely on any particular properties of 
diagonalization and most of them have been employed already in other contexts. 

Meta-methods can be incorporated into a planning algorithm. To do this, first it must 
be decided when to interrupt the planning with methods, in order to create a new method 
with meta-methods. Second for the current proof situation an adequate pair of a method 
and a meta-method have to be chosen from the knowledge base. We believe that there 
can hardly be any general answer to this problem and we have to rely on heuristics. In an 
interactive proof development environment like Q-MKRP [HKK+94] the user might want 
to make this choice himself. Therefore our main emphasis lies in the task of providing the 
user with heuristic support for this choice. Even more challenging would be an automation, 
of course. A trivial answer would be to apply all existing meta-methods on all existing 
methods and then choose heuristically the best. Such a procedure can be fairly expensive 
with a large knowledge base. The first heuristics for choosing a method to adapt we will 
investigate are listed below: 

•	 Organize methods in a hierarchy of mathematical theories and prefer methods that 
belong to the same theory as the current problem or whose theory is close to that of 
the problem in the hierarchy. 

• Use general confl.ict solving strategies like those of ops5, for instance, favor the meth
ods and meta-methods with the most specific specification. 

Of course only successful methods generated in a short-term memory are integrated into 
the permanent base of methods. Another way to reduce the cost of the operation would be 
to create only the specification of the methods to be generated, select one for application 
and create the tactic part by need. 

Admittedly, the heuristic control concerning the choice of methods and meta-methods 
with a specific instantiation, as well as the interleaving of planning and meta-Ievel planning, 
remain as open problems. 

References 

[BSvH+93] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and Alan 
Smail!. Rippling: A heuristic for guiding inductive proofs. Artificial Intelli
gence, 62:185-253, 1993. 

[BvHHS90] Alan Bundy, Frank van Harmelen, Christian Horn, and Alan Smaill. The 
OYSTER-Cft\M system. In Mark E. Stickel, editor, Proceedings of the 10th CADE, 
pages 647-6481 Kaiserslautern, Germany, 1990. Springer Verlag, Berlin, Ger
many, LNAI 449. 

[BW93] David Basin and Toby Walsh. Difference unification. In Ruzena Bajcsy, ed
itor, Proceedings of the 13th IJCAI, pages 116-122, Chambery, France, 1993. 
Morgan Kaufmann, San Mateo, California, USA. 

[Chu40] Alonzo Church. A formulation of the simple theory of types. 
Symbolic Logic, 5:56-68, 1940. 

The Journal of 

17 

The  modifications used are, of  course, sensitive to  the representation of  the problems. If the
formulations are more different then the chosen ones, the reformulation efforts will increase.
Note that, however, the meta-methods used do not rely on any particular properties of
diagonalization and most of them have been employed already in other contexts.

Meta-methods can be  incorporated into a planning algorithm. To  do  this, first it must
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