
W
SINE]SAISIEM

 £€99/9-C
UIDINE|SIISIEY) IBIISID

AIU
N

W
iew

soju yarriagqyde

5FE022x :52=

8 8R
-]

=g‚Si
=32943A35a

1dO
ddel - M

S

1

How to Prove Ground Confluence

Klaus Becker

Universitat Kaiserslautern,67663 Kaiserslautern, Germany
email: klbecker@informatik. uni -kl.-de

Abstract

We show how to prove ground confluence of term rewrite relations that are
induced by reductive systems of clausal rewrite rules. According to a well-known
critical pair criterion it suffices for such systems to prove ground joinability of
a suitable set of 'critical clauses'. We outline how the latter can be done in a
systematic fashion, using mathematical induction as a key concept of reasoning.

Introduction and Motivation

The notion of (ground) confluence is of great importance in the field of term rewriting:
If the rewrite relation in focus is (ground) confluent, then one knows that term rewriting
- considered as a computation mechanism - provides unique computation results'.
Note that the supplement "ground" is added if term rewriting is considered on ground
terms (i.e. terms without variables) only. This restricted notion of confluence suffices
in many applications/situations. Generally, ground confluence is easier to achieve than
full confluence: There are rewrite systems inducing a rewrite relation which is ground
confluent, but not confluent. However, ground confluence is much harder to prove than
confluence: Even in the case of finite Noetherian unconditional rewrite systems, ground
confluence is an undecidable notion (see [KN090]), whereas confluence can easily be
tested by a critical pair criterion.

This paper is about how to prove ground confluence. We assume that we are given a
system R of positive/negative conditional rewrite rules (we call them clausal rules), in
ducing a terminating rewrite relation on the ground terms of the specification language.
Due to a well-known critical pair criterion it then suffices to prove ground joinability
of the set of "critical" clauses induced by R. Our approach is based on this criterion,
providing techniques in order to verify ground joinability of a set of clauses. These
techniques are mainly based on the following reasoning concepts: (1) case splitting, (2)
induction based reasoning, (3) contextual simplification and elimination. We briefly
illustrate the relevance of these reasoning techniques for the problem of discourse by
some simple examples.

The first example is to demonstrate case splitting and inductive reasoning.

1

How to Prove Ground Confluence

Klaus Becker

Universität Kaiserslautern,67663 Kaiserslautern, Germany
email: klbecker@informatik.uni-kl.de

Abstract

We show how to prove ground confluence of term rewrite relations that are
induced by reductive systems of clausal rewrite rules. According to a well-known
critical pair criterion i t suffices for such systems to prove ground joinability of
a suitable set of ‘critical clauses’. We outline how the latter can be done in a
systematic fashion, using mathematical induction as a key concept of reasoning.

1 Introduction and Motivation

The notion of (ground) confluence is of great importance in the field of term rewriting:
If the rewrite relation in focus is (ground) confluent, then one knows that term rewriting
— considered as a computation mechanism — provides unique computation results.
Note that the supplement “ground” is added if term rewriting is considered on ground
terms (i.e. terms without variables) only. This restricted notion of confluence suffices
in many applications/situations. Generally, ground confluence is easier to achieve than
full confluence: There are rewrite systems inducing a rewrite relation which is ground
confluent, but not confluent. However, ground confluence is much harder to prove than
confluence: Even in the case of finite Noetherian unconditional rewrite systems, ground
confluence is an undecidable notion (see [KNO90]), whereas confluence can easily be
tested by a critical pair criterion.

This paper is about how to prove ground confluence. We assume that we are given a
system R of positive/negative conditional rewrite rules (we call them clausal rules), in-
ducing a terminating rewrite relation on the ground terms of the specification language.
Due to a well-known critical pair criterion i t then suffices to prove ground joinability
of the set of “critical” clauses induced by R . Our approach is based on this criterion,
providing techniques in order to verify ground joinability of a set of clauses. These
techniques are mainly based on the following reasoning concepts: (1) case splitting, (2)
induction based reasoning, (3) contextual simplification and elimination. We briefly
illustrate the relevance of these reasoning techniques for the problem of discourse by
some simple examples.

The first example is to demonstrate case splitting and inductive reasoning.

1

mailto:klbecker@informatik.uni-kl.-de

Example 1 Let R consist of the following rewrite rules:

(RI) :::} even(O) --+ t

(R2) even(x) i= t :::} even(s(x)) --+ t

(R3) :::} even(s(s(x))) --+ even(x)

\

This rewrite system induces the critical clause C: :::} even(x) = t, even(s(x)) = t.
The comma is to be understood as a logical 'V'. Proving ground joinability of this
clause C cannot be done in a uniform 'schematized' fashion, using the same reduction
steps for all ground instances of C. E.g., concerning the instantiation x H 0, the first
equation is joinable whereas the second equation is not. Concerning the instantiation
x H s(O), the second equation is joinable whereas the first equation is not. One can
directly see that different ground instances of C require different joinability proofs. Our
proof method consists in generating a finite number of cases such that (i) there is a
schematized joinability proof for every case and (ii) every (relevant) ground instance is
covered by one of the cases. In the present example it is convenient to consider the case
splitting {x H 0, x H s(x')}. Below we briefly comment on the completeness of such
case splittings. The first case has already been discussed above. So we only have to
consider the second one. Instantiation of C with x H s(x') leads to the clause C': :::}
even(s(x')) = t, even(s(s(x'))) = t. In order to simplify C' we perform a schematized
rewrite step using R3. One obtains the clause Cif: :::} even(s(x')) = t, even(x') = t.
This clause Cif has the same structure as the original clause C. Thus, we have traced
back every instance of C wrt. an instantiation x H s(x') to an instance of C wrt. an
instantiation x H x'. Using an inductive argument - in the paper we are going to
develop the related theory - we can complete the proof.

In order to show the relevance of contextual simplification techniques, we briefly outline
another example.

Example 2 Let R consist of the following rules:

(RI) :::} even (0) --+ t
(R2) even(x) i= f :::} even(s(x)) --+ f
(R3) even(x) i= t :::} even(s(x)) --+ t

The critical clause induced by R is C: :::} f = t, even(x) = f, even(x) = t. First
note that the equation f = t can be eliminated because no rewrite step is possible. We
consider the cases x H 0 and x H s(x'). The first case is simple. The second one leads
to the clause C': :::} even(s(x')) = f, even(s(x')) = t. We want to use the rewrite
rule R2 in order to simplify the first conclusion equation and thus to finish the proof.
To do so we have to verify that the (suitably instantiated) condition of R2 is satisfied
within the present proof context. In the paper we show that it suffices to verify ground
joinability of the "condition" clause Cif: even(x') = f :::} even(s(x')) = t. This
can be understood by writing Cif in the (logically equivalent) form even(s(x')) i= t :::}
even(x') i= f: One has to show that within the context even(s(x')) i= t, the condition
even(x') i= t of R2 is satisfied. Actually, this can be done successfully by the means
described above (see also the appendix for a complete discussion).

2

Example 1 Let R consist of the following rewrite rules:

(R1) = even(0) — 1
(R2) even(z) # t = even(s(z)) — t
(R3) = even(s(s(z))) — even(z)

This rewrite system induces the critical clause C : = even(z) = t , even(s(z)) = t .
The comma is to be understood as a logical ‘Vv’. Proving ground joinability of this
clause C cannot be done in a uniform ‘schematized’ fashion, using the same reduction
steps for all ground instances of C. E.g., concerning the instantiation z — 0, the first
equation is joinable whereas the second equation is not. Concerning the instantiation
z — s(0), the second equation is joinable whereas the first equation is not. One can
directly see that different ground instances of C require different joinability proofs. Our
proof method consists in generating a finite number of cases such that (i) there is a
schematized joinability proof for every case and (ii) every (relevant) ground instance is
covered by one of the cases. In the present example i t is convenient to consider the case
splitting {z — 0,2 — s(z')}. Below we briefly comment on the completeness of such
case splittings. The first case has already been discussed above. So we only have to
consider the second one. Instantiation of C with x — s(z') leads to the clause C' : =
even(s(z')) = t , even(s(s(z’))) = t . In order to simplify C' we perform a schematized
rewrite step using R3. One obtains the clause C” : = even(s(z)) = t, even(z') = t.
This clause C” has the same structure as the original clause C. Thus, we have traced
back every instance of C wrt. an instantiation x — s(z') to an instance of C' wrt. an
instantiation x — x’. Using an inductive argument — in the paper we are. going to
develop the related theory — we can complete the proof.

In order to show the relevance of contextual simplification techniques, we briefly outline
another example.

Example 2 Let R consist of the following rules: '

| (R1) = even(0) — |
(R2) even(z)# f = even(s(z)) — f
(R3) even(z)#t = even(s(z)) — t

The critical clause induced by R i s C : = f = t,even(z) = f, even(z) = t . First
note that the equation f = t can be eliminated because no rewrite step is possible. We
consider the cases z — 0 and z + s(x’). The first case is simple. The second one leads
to the clause C' : = even(s(z')) = f , even(s(z')) = t . We want to use the rewrite
rule R2 in order to simplify the first conclusion equation and thus to finish the proof.
To do so we have to verify that the (suitably instantiated) condition of R2 is satisfied
within the present proof context. In the paper we show that i t suffices to verify ground
joinability of the “condition” clause C" : even(z') = f = even(s(z')) = t. This
can be understood by writing C” in the (logically equivalent) form even(s(z')) # t =
even(z') # f : One has to show that within the context even(s(z')) # t , the condition
even(z') # t of R2 is satisfied. Actually, this can be done successfully by the means

~ described above (see also the appendix for a complete discussion).

2

To summarize, our - even very simple - examples show that one needs strong rea
soning concepts in order to infer ground confluence of the rewrite relation in focus.
Next we briefly comment on the problems which arise with these reasoning concepts
and on our solutions.

Firstly, the generation of case splitting is a non-trivial problem. The main difficulty is
the verification of its completeness (i.e.: all relevent instantiations have to be covered).
In this paper we describe the case splittings of interest on a rather abstract level such
that the techniques developed in the literature (like narrowing with n into a condition
equation) are covered. In our examples (see e.g. above) we make use of the fact
that our approach is hierarchical, using "constructor-based" instantiations. But, our
approach is not limited to such restricted instantiations, it is also applicable if one
is interested in arbitrary instantiations. One possibility is to show additionally that
the non-constructor operations are totally defined wrt. the constructor domains. This
can be done with the same reasoning techniques we employ in order to show ground
joinability of clauses (see e.g. [Be93]). Another possibility is to declare all operations
to be constructors.

Secondly, equational simplification steps may cause problems when verifying joinability:
To see this note that correctness proofs for the transformation steps usually proceed
indirectly by showing that one does not lose all counterexamples (for the respective
notion). Now let C : s = t ~ 0 be a given ground clause. We assume that C is
not joinable wrt. the given rewrite relation -----+. Thus s = t is joinable wrt. -----+. If
we perform a rewrite step s -----+ s' in order to simplify C, then s' = t may not be
joinable wrt. -----+ because -----+ need not be ground confluent. As a consequence, the
resulting clause C' : s' = t ~ 0 may become joinable wrt. -----+. Thus, by choosing
the wrong rewrite path one may lose a counterexample for joinability. In order to
solve this problem we are going to introduce the concept of "confluence below a given
bound": If -----+ is known to be confluent below a bound b and if C is bounded by b in
the sense that every term occuring in C is smaller than b, then C' is a counterexample
for joinability too. In the paper we develop a theory on how to handle such confluence
bounds. Note that we have to handle them carefully as we assume confluence (up to
such bounds) in order to show confluence.

Thirdly, the design of correct simplification techniques causes problems (additionally
to those discussed above) because one has to combine equational reasoning, induction
based reasoning and contextual reasoning. The combination of these techniques is
known from inductive theorem proving. But, due to the necessity of handling conflu
ence bounds, one is faced with more complex argumentations. In order to facilitate
them and to make things more transparent, we develop an abstract framework for
inductive reasoning which enables one as well to model contextual reasoning on a con
ceptual level. This framework allows different "concrete" instantiations, of which one
is well suited for our purposes. More precisely, the framework developed in the paper
abstractly models a method which allows one to prove a property P (wrt. certain

. syntactic constructs) by mathematical induction wrt. a given well-founded ordering
?-i. Once the framework is developed, we only have to instantiate it in the right way
in order to obtain a method for proving ground joinability of a set of clauses. E.g., the

3

To summarize, our — even very simple — examples show that one needs strong rea-
soning concepts in order to infer ground confluence of the rewrite relation in focus.
Next we briefly comment on the problems which arise with these reasoning concepts
and on our solutions.
Firstly, the generation of case splitting is a non-trivial problem. The main difficulty is
the verification of its completeness (i.e.: all relevent instantiations have to be covered).
In this paper we describe the case splittings of interest on a rather abstract level such
that the techniques developed in the literature (like narrowing with R into a condition
equation) are covered. In our examples (see e.g. above) we make use of the fact
that our approach is hierarchical, using “constructor-based” instantiations. But, our
approach is not limited to such restricted instantiations, i t is also applicable if one
is interested in arbitrary instantiations. One possibility is to show additionally that
the non-constructor operations are totally defined wrt . the constructor domains. This
can be done with the same reasoning techniques we employ in order to show ground
joinability of clauses (see e.g. [Be93]). Another possibility is to declare all operations
to be constructors.

Secondly, equational simplification steps may cause problems when verifying joinability:
To see this note that correctness proofs for the transformation steps usually proceed
indirectly by showing that one does not lose all counterexamples (for the respective
notion). Now let C : s = t = 0 be a given ground clause. We assume that C is
not joinable wrt. the given rewrite relation —. Thus s = t is joinable wrt. —. I f
we perform a rewrite step s — s’ in order to simplify C , then s’ = t may not be
joinable wrt . — because — need not be ground confluent. As a consequence, the
resulting clause € : 8 = t = 0 may become joinable wrt. —». Thus, by choosing
the wrong rewrite path one may lose a counterexample for joinability . In order t o
solve this problem we are going to introduce the concept of “confluence below a given
bound”: If — is known to be confluent below a bound b and if C is bounded by b in
the sense that every term occuring in C' is smaller than b, then C’ is a counterexample
for joinability too. In the paper we develop a theory on how to handle such confluence
bounds. Note that we have to handle them carefully as we assume confluence (up to
such bounds) in order to show confluence.
Thirdly, the design of correct simplification techniques causes problems (additionally
to those discussed above) because one has to combine equational reasoning, induction-
based reasoning and contextual reasoning. The combination of these techniques is
known from inductive theorem proving. But, due to the necessity of handling conflu-
ence bounds, one is faced with more complex argumentations. In order to facilitate
them and to make things more transparent, we develop an abstract framework for
inductive reasoning which enables one as well to model contextual reasoning on a con-
ceptual level. This framework allows different “concrete” instantiations, of which one
is well suited for our purposes. More precisely, the framework developed in the paper
abstractly models a method which allows one to prove a property P (wrt. certain

syntactic constructs) by mathematical induction wrt. a given well-founded ordering
> ; . Once the framework is developed, we only have to instantiate i t in the right way
in order to obtain a method for proving ground joinability of a set of clauses. E.g., the

concretization of the predicate P captures the fact that a ground clause C is joinable
wrt. the rewrite relation -----+(EO,'R) provided this rewrite relation -----+(EO,'R) is conflu
ent below the bound b related to C. The performance of contextual reasoning is also
solved on the abstract level. We design a calculus which uses conditional rerivations
as a tool for modeling strong contextual reasoning. We follow here the idea (see the
example above) that contextual simplification techniques are transparently designed
by handling conditions - which are to be verified contextually - as additional "verifi
cation goals". The latter goals then can be treated in just the same way as the original
"verification goals" .

To summarize, our approach handles the complexity of the matter by designing a proof
method in a strict conceptual and top-down fashion. For that purpose we develop new
conceptual tools like 'abstract inductive theorem proving' and 'contextual simplification
by conditional derivations'. These tools allow one to design a method for verifying
ground confluence of clausal (positive/negative conditional) rewriting which is, on the
one hand, transparent and, on the other hand, very powerful.

We briefly comment on related work. Note that we do not consider syntactic confluence
criteria here (see [Wi95] for a recent overview). There is only little special work on
proving ground confluence in the literature. In [PI85] one can find a semantic method
which is in principle very powerful, which however indicates no way to automatize
the ground confluence test. [Fr86, Ga87] use Knuth-Bendix-like completion. This
method has the disadvantage of producing often too many new consequences which
are not needed for a successful proof. The work in [G087, KoRu91, Be93] is based
on mathematical induction. This method seems to be most adequate for the problem
of discourse. In the present paper we follow the latter direction. We improve the
techniques developed in [G087, KoRu91, Be93] such that proofs can be performed
which are not possible in [G087, KoRu91, Be93]. On the one hand, we extend the
range of the proof method to the very general class of clausal rewrite systems. On the
other hand, we refine the proof techniques presented in [G087, KoRu91, Be93].

The paper is organized as follows. Section 2 introduces the basic notions and results.
In section 3 we develop an abstract framework for proofs by mathematical induction.
This abstract framework is suitably instantiated in section 4 for the purpose of proving
ground joinability of clauses. We assume that the reader is familiar with the basic
notions of term rewriting (see e.g. [DeJ090, Av95]).

2 Basic notions and results

2.1 Syntactic notions

A signature is "a triple ~ = (5, F, a) consisting of a set 5 of sort symbols, a set F of
function symbols and a mapping a that assigns to every function symbol f E F an
arity declaration f : SI, ... ,Sn --+ S (with Si, S E 5). Whenever ~ is a given signature,
we assume that we are given a system (Vs)sES of disjoint sets of variables for the sorts

4

concretization of the predicate P captures the fact that a ground clause C is joinable
wrt. the rewrite relation — z, provided this rewrite relation —, =) is conflu-
ent below the bound b related to C . The performance of contextual reasoning is also
solved on the abstract level. We design a calculus which uses conditional derivations
as a tool for modeling strong contextual reasoning. We follow here the idea (see the
example above) that contextual simplification techniques are transparently designed
by handling conditions — which are to be verified contextually — as additional “verifi-
cation goals”. The latter goals then can be treated in just the same way as the original
“verification goals”.
To summarize, our approach handles the complexity of the matter by designing a proof
method in a strict conceptual and top-down fashion. For that purpose we develop new
conceptual tools like ‘abstract inductive theorem proving’ and ‘contextual simplification
by conditional derivations’. These tools allow one to design a method for verifying
ground confluence of clausal (positive/negative conditional) rewriting which is, on the
one hand, transparent and, on the other hand, very powerful.

We briefly comment on related work. Note that we do not consider syntactic confluence
criteria here (see [Wi95] for a recent overview). There is only little special work on
proving ground confluence in the literature. In [P185] one can find a semantic method
which is in principle very powerful, which however indicates no way to automatize
the ground confluence test. [Fr86, Ga87| use Knuth-Bendix-like completion. This
method has the disadvantage of producing often too many new consequences which
are not needed for a successful proof. The work in [Go87, KoRu91, Be93] is based
on mathematical induction. This method seems to be most adequate for the problem
of discourse. In the present paper we follow the latter direction. We improve the
techniques developed in [Go87, KoRu91, Be93| such that proofs can be performed
which are not possible in [Go87, KoRu91, Be93]. On the one hand, we extend the
range of the proof method to the very general class of clausal rewrite systems. On the
other hand, we refine the proof techniques presented in [Go87, KoRu91, Be93|.
The paper is organized as follows. Section 2 introduces the basic notions and results.
In section 3 we develop an abstract framework for proofs by mathematical induction.
This abstract framework is suitably instantiated in section 4 for the purpose of proving
ground joinability of clauses. We assume that the reader is familiar wi th the basic
notions of term rewriting (see e.g. [DeJo90, Av95]).

2 Basic notions and results

2.1 Syntactic notions

A signature is a triple X = (5, F, a) consisting of a set S of sort symbols, a set F of
function symbols and a mapping a that assigns to every function symbol f € F an
arity declaration f : s1 , . . . , 8 , — s (with s;,s € §) . Whenever X is a given signature,
we assume that we are given a system (V;)ses of disjoint sets of variables for the sorts

4

of L Let V be the union of all these sets of variables. Furthermore, we assume that
we are given a sub-signature Eo = (5, Fo, ajFo) of E. The latter is to provide the
'constructors'. Let T(E, V) (resp. T(Eo, V)) denote the set of terms induced by E
(resp. Eo) and V and let T(E) (resp. T(Eo)) denote the set of ground terms induced
by E (resp. Eo). In addition to the terms induced by E and V we assume that there
are two pseudo-ground terms T and.L The latter are introduced for technical reasons.

Equational formulae over a given signature E are defined in terms of multisets. An
equation E (over E) is a multiset {s, t}, usually written E : s = t, consisting of two
terms of the same sort. A clause C (over L:) is a pair (1), \]!) of multisets of equations,
written C : 1> =} \]!. We call 1> the antecedent and \lI the succedent of the clause 1> =} \]!.

In the sequel we write 1>1, 1>2 and 1>, L instead of 1>1 u 1>2 and 1> U {L}. A clause
AI, ... , Am =} B 1 , ... , Bn represents an implication A 1 /\ .. ·/\ Am =} B 1 V ... V B n. We
denote the empty multiset by D. SO 0 =} \]! denotes a clause with an empty antecedent.
We also write such a clause in the form =} \]! or even simply \]!. Finally, if C : 1> =} \]!

is a given clause, then Mutt (C) denotes the multiset of all terms s with sEA E 1>, \]!.

A directed equation (over E) is a pair (u, v) of terms of the same sort, written u -----+ v.
A directed clause (over E) is obtained from a clause by directing exactly one succedent
equation. We write r =} u -----+ v, 6. to indicate such a directed clause. Here u -----+ v is the
particular directed succedent equation. The term u = lhs(R) is called the left-hand side
of R : r =} u -----+ v, 6.. A clausal rule (over E) is a directed clause R : r =} u -----+ v, 6..
Note that- clausal rules are often presented in a positive/negative conditional fashion
(turning succedent equations into antecedent disequations). A term rewriting system
(or briefly TRS) is a pair (E, R), consisting of a signature E and a system R of clausal
rules over E.

Term rewriting is captured abstractly by a binary relation on T(L:). The definition
of the concrete rewrite relation will be given in section 2.2, here we introduce some
frequently used notions and notations. Let ------t denote a binary relation on T(E).
Then +----+ denotes the reflexive closure of ------t and ------t * denotes the transitive reflexive
closure of ------to We write s -!- t for s, t E T(L:) iff there is some w E T(E) such that
s ------t * wand t ------t * w. The relation ------t is said to be terminating iff there is no infinite
reduction sequence So ------t SI ------t We say that ------t is (locally) ground confluent
iff for all s, SI, S2 E T(L:), whenever s ------t* Si (i = 1,2) (resp. s ------t Si (i = 1,2)),
then SI J. S2· A ground equation s = t is joinable (wrt. ------t) iff s -!- t. A ground
clause 1> =} \]! is joinable (wrt. ------t) iff the following implication holds: Whenever
A is joinable for all A E 1>, then there exists BE\]! such that B is joinable. As a
consequence, 1> =} \]! is not joinable iff every A E 1> and no BE\]! is joinable.

A E-substitution is a substitution with codomain T(E, V). If C is some construct
(like a clause or a rule), then a L:-substitution for C is a E-substitution the domain
of which contains all variables occuring in C. Let Glnst(L:, C) denote the set of all
ground instances r(C) where r is a E-ground substitution for C. The latter means
that r(x) is a ground term for all variables x occuring in C. An arbitrary clause C
is E-ground joinable iff every ground instance from Glnst(E, C) is joinable. Finally, a
set C of clauses is E-ground JOInable iff every element of C is L:-ground joinable. Just

5

of X. Let V be the union of all these sets of variables. Furthermore, we assume that
we are given a sub-signature Yo = (S ,Fo ,a l r) of X. The latter is to provide the
‘constructors’. Let T(X,V) (resp. T'(Xo,V)) denote the set of terms induced by X
(resp. Xo) and V and let T'(X) (resp. T(XZo)) denote the set of ground terms induced
by © (resp. Xp). In addition to the terms induced by X and V we assume that there
are two pseudo-ground terms T and L . The latter are introduced for technical reasons.

Equational formulae over a given signature X are defined in terms of multisets. An
equation E (over X) is a multiset {s, t} , usually written E : s = t, consisting of two
terms of the same sort. A clause C (over X) is a pair (®, ¥) of multisets of equations,
written C : ® = ¥ . We call ® the antecedent and ¥ the succedent of the clause ® = WU.
In the sequel we write ® ; ,® ; and ®, L instead of ® , U ®; and ® U {L } . A clause
Ai,..., Am = Bı,..., By, represents an implication A ; A . . .AA , , = B;V . . .VB , . We
denote the empty multiset by O. So O = ¥ denotes a clause with an empty antecedent.
We also write such a clause in the form = ¥ or even simply VW. Finally, if C : & = ¥
is a given clause, then Mult(C) denotes the multiset of all terms s with s € A € ¢ , VU.
A directed equation (over X) is a pair (u,v) of terms of the same sort, written u — v.
A directed clause (over X) is obtained from a clause by directing exactly one succedent
equation. We write I" = u — v, A to indicate such a directed clause. Here u — v is the
particular directed succedent equation. The term u = lhs(R) is called the left-hand side
of R:T' = u — v,A. A clausal rule (over X) is a directed clause R : I" = u — v, A.
Note that clausal rules are often presented in a positive/negative conditional fashion
(turning succedent equations into antecedent disequations). A term rewriting system
(or briefly TRS) is a pair (X, R) , consisting of a signature X and a system R of clausal
rules over X.
Term rewriting is captured abstractly by a binary relation on T (X) . The definition
of the concrete rewrite relation will be given in section 2.2, here we introduce some
frequently used notions and notations. Let — denote a binary relation on T(X).
Then +— denotes the reflexive closure of — and —* denotes the transitive reflexive
closure of —. We write s | t for s , t € T(X) iff there is some w € T (X) such that
s —* w and t —* w . The relation — is said to be terminating iff there is no infinite
reduction sequence sg — s ı — ---. We say that — is (locally) ground confluent
iff for all s , s1 , s , € T(X), whenever s —* 5; (i = 1,2) (resp. s — s; (i = 1 ,2) ,
then s ; | s2. A ground equation s = t is joinable (wrt. —) iff s | t . A ground
clause ® = VU is joinable (wrt. —) iff the following implication holds: Whenever
A is joinable for all A € ®, then there exists B € ¥ such that B is joinable. As a
consequence, ® = ¥ is not joinable iff every A € ® and no B € V is joinable.

A X-substitution is a substitution with codomain T'(Z,V). If C is some construct
(like a clause or a rule), then a T-substitution for C is a T-substitution the domain
of which contains all variables occuring in C. Let GInst(X,C) denote the set of all
ground instances 7(C) where 7 is a ¥-ground substitution for C . The latter means
that 7(z) is a ground term for all variables x occuring in C. An arbitrary clause C
is ¥-ground joinable iff every ground instance from GInst(X,C) is joinable. Finally, a
set C of clauses is Z-ground joinable iff every element of C is ¥-ground joinable. Just

analogously one defines notions which refer to L:o-substitutions.

Finally, if>- is a partial ordering on T(L:), then >-m=>->- extends >- to multisets. Let
;:, m =>-m U rv, where rv denotes the equality of multisets.

2.2 Term rewriting

Let (L:, R) be a given TRS, let L:o be an arbitrary sub-signature of L:. Note that the
case L:o = L: is always covered in the sequel. We always assume below that (L:o, R) is
reductive in the following sense:

Definition 2.1 (L:o, R) is said to be reductive wrt. >- iff the following conditions
are satisfied for all R : r :::;. u ---+ v, Ll with R E Glnst(Eo,R): (i) s[u] >- s[v] for all
s[u] E T(L:), (ii) s[u] t u for all s[u] E T(L:) and (iii) u >- w for all W E Mult(r :::;. Ll).

Next we define of positive/negative conditional rewriting (see also [Ka88]).

Definition 2.2 Let (L:o, R) be reductive wrt. >-. Let ---+(Eo,n) be the (uniquely exist
ing) binary relation on T(L:), satisfying for all s, t E T(L:): s ---+(Eo.n) t iff there exists
R : r :::;. u ---+ v, L1 E Glnst(L:o, R) such that (i) s - s[u], t = s[v] and such that (ii)
r :::;. Ll is not joinable wrt. ---+(Eo,n)'

Note that antecedent equations are treated positively and succedent equations nega
tively wrt. the notion of joinability. Thus, succedent equations are treated as disequa
tions, using negation as failure as an evaluation strategy.

2.3 A refined ground confluence criterion

Next we develop a critical pair criterion for ground confluence which refines the stan
dard criterion in [Ka88]. We follow the idea that ground confluence can be shown
by Noetherian induction as follows: Let Q(t) be true iff ---+(Eo,n) is ground confluent
"below t" (the exact definition will follow). Now ---+(Eo,n) is ground confluent iff Q(t)
is true for all ground terms t. In order to model a proof method based on this idea it is
convenient to take into consideration both, the critical clause as well as the term giving
rise to the critical clause (see also [Go87] where this idea is used in the unconditional
rewrite case). This term will be used as a "confluence bound". Next we formalize these
ideas by introducing suitable notions.

Let >- be a given well-founded partial ordering on T(L:). Let T >- t >- J.. for every
t E T(L:). Let >-m=>->-' and let i:: m =>-m U rv, where rv denotes the equality of
multisets. In the sequel we write singleton multisets {s} often in the form s.

Definition 2.3 A bound is a multiset of (pseudo-)ter'ms. A bounded clause (over L:)
is a pair (Gib) consisting of a clause G and a bound b.

6

analogously one defines notions which refer to Xo-substitutions.

Finally, if > is a partial ordering on T'(X), then > ,=>> extends > to multisets. Let
> m =>m U ~ , where ~ denotes the equality of multisets.

2.2 Term rewriting

Let (X,R) be a given TRS, let Ly be an arbitrary sub-signature of X. Note that the
case Lg = X is always covered in the sequel. We always assume below that (XZo, R) is
reductive in the following sense:

Definition 2.1 (3y,R) is said to be reductive wrt. > iff the following conditions
are satisfied for al l R: T = u — v , A wi th R € GInst(Xo,R): (i) s[u] > s[v] for al l
s[u] € T(X), (it) s[u] = u for al l s[u] € T(X) and (ii) u > w for a l lw € Mult(T = A).

Next we define of positive/negative conditional rewriting (see also [Ka88]).

Definition 2.2 Let (Xo,R) be reductive wrt. > . Let — 5 , =) be the (uniquely ezist-
ing) binary relation on T(X), satisfying for all s,t € T(X): s —(g ,») t iff there exists
R:T = u—v ,A¢€ GInst(Xy,R) such that (i) s = s[u], t = s[v] and such that (ii)
[' = A is not joinable wrt. — x, =) -

Note that antecedent equations are treated positively and succedent equations nega-
tively wrt. the notion of joinability. Thus, succedent equations are treated as disequa-
tions, using negation as failure as an evaluation strategy.

2.3 A refined ground confluence criterion

Next we develop a critical pair criterion for ground confluence which refines the stan-
dard criterion in [Ka88]. We follow the idea that ground confluence can be shown
by Noetherian induction as follows: Let Q(t) be true iff — 5 =, is ground confluent
“below t” (the exact definition will follow). Now —, =, is ground confluent iff Q(t)
is true for all ground terms ¢. In order to model a proof method based on this idea it is
convenient to take into consideration both, the critical clause as well as the term giving
rise to the critical clause (see also [Go87] where this idea is used in the unconditional
rewrite case). This term will be used as a “confluence bound”. Next we formalize these
ideas by introducing suitable notions.
Let > be a given well-founded partial ordering on T(X). Let T > t > L for every
t € T(X). Let ==>» and let Z m =>m U m, where ~ denotes the equality of
multisets. In the sequel we write singleton multisets {s} often in the form s.

Definition 2.3 A bound is a multiset of (pseudo- terns. A bounded clause (over X)
is a pair (C|b) consisting of a clause C and a bound b.

6

Now we introduce the notion of a bounded critical clause.

Definition 2.4 Let R : r =} u --+ v,,6. and R' : r' =} u' --+ v',,6.' be two rules from R
that share no variables. Let p be a non-variable position of u such that ulp and u' are
unifiable with most general ~o-unifier f.1. Then the bounded clause

is called a bounded critical clause between Rand R'. Let BCrit(~o, R) denote the set
of all bounded critical clauses between the rules from R.

Note that bounds resulting from critical overlaps consist of one single term only. There
are cases too where we want to admit non-singleton multisets as bounds (see section
4.2 below).

If (Gib) is a bounded clause, then the bound b is to majorize the terms from Mult(G)
in the following fashion.

Definition 2.5 Let (Gib) be ground. We say that G is bounded by b iff b >-m w for all
W E Mult(G). Now let (Gib) be an arbitrary non-ground bounded clause. G is said to
be bounded by b iffr(G) is bounded by r(b) for all ~o-ground substitutions r for (Gib).

Next we introduce a confluence notion which refers to a given bound.

Definition 2.6 Let b be a ground bound. We say that ----+(E°.R) is confluent below b
iff for all s, SI, 32 E T(~), whenever b >-m sand 3 ----+~EO,R) Si (i=1,2), then there exists
30 E T(~) such that 3i ----+~Eo,R) 30 (i=1,2).

Finally, we slightly weaken the notion of joinability.

Definition 2.7 Let (Gib) be a bounded clause that is ground. (Gib) is said to be weakly
joinable (wrt. ----+(EO,R») iff the following condition holds: If ----+(Eo,R) is confluent below
b, then G is joinable wrt. ----+CEO,R)' An arbitrary bounded clause G is weakly ~o-ground

joinable iff every ground instantiation from GInst(~o, G) is weakly joinable. finally, a
set C of bounded clauses is weakly ~o-ground joinable iff every element of C is weakly
~o -ground joinable.

The following theorem now refines the standard critical pair criterion.

Theorem 2.1 Let (~o, R) be reductive wrt. a well-founded ordering >-. Then ----+(Eo,R)

is ground confluent iff BGrit(~o, R) is weakly ~o-ground joinable wrt. ----+CEo,R)'

It follows that it suffices to design a prover for weak ground joinability of a set of
bounded clauses in order to obtain a prover for the notion of ground confluence. The
description of this prover will be given in the sections to follow. For reasons of clarity
we separate conceptual from technical issues: We first design an abstract framework for
induction-based reasoning that captures the main conceptual decisions. Thereafter we
present a (more technical) instantiation of this framework which constitutes a prover
for the property of discourse.

7

Now we introduce the notion of a bounded critical clause.

Definition 2.4 Let R:T=>u—v,A and R ' :T ' = u —v ' ,A ' be two rules from R
that share no variables. Let p be a non-variable position of u such that u l , and w are
unifiable with most general Xo-unifier u. Then the bounded clause

(uD), wT") > p(w) [pp = uw), LA) , A ’) | {u(w)})
is called a bounded critical clause between R and R'. Let BCrit(Xy, R) denote the set
of al l bounded critical clauses between the rules from R .

Note that bounds resulting from critical overlaps consist of one single term only. There
are cases too where we want to admit non-singleton multisets as bounds (see section
4.2 below).
I f (C|b) is a bounded clause, then the bound db i s to majorize the terms from Mult(C)
in the following fashion.

Definition 2.5 Let (C|b) be ground. We say that C is bounded by b iff b >m w for all
w € Mul t (C). Now let (C|b) be an arbitrary non-ground bounded clause. C is said to
be bounded by b iff 7(C) is bounded by T(b) for all o-ground substitutions T for (C|b).

Next we introduce a confluence notion which refers to a given bound.

Definition 2.6 Let b be a ground bound. We say that —> , x, is confluent below b
iff for al l 5 , 51 ,85 € T(X) , whenever b =n s and s — 5.) S i (i=1,2), then there exists
so € T(X) such that s; — 2.2) So (i=1,2).

Finally, we slightly weaken the notion of joinability.

Definition 2.7 Let (C|b) be a bounded clause that is ground. (C|b) is said to be weakly
joinable (wrt. —, zy) iff the following condition holds: If — x , =, is confluent below
b, then C' is joinable wrt. —>x, zy. An arbitrary bounded clause C' is weakly Zo-ground
joinable iff every ground instantiation from Glnst(Xy,C) is weakly joinable. Finally, a
set C of bounded clauses is weakly Zo-ground joinable iff every element of C is weakly
Yo-ground joinable.

The following theorem now refines the standard critical pair criterion.

Theorem 2.1 Let (£9, R) be reductive wrt. a well-founded ordering > . Then — 5, =)

is ground confluent iff BCrit(Xo, R) is weakly Xo-ground joinable wrt. — 5,x .

I t follows that i t suffices to design a prover for weak ground joinability of a set of
bounded clauses in order to obtain a prover for the notion of ground confluence. The
description of this prover will be given in the sections to follow. For reasons of clarity
we separate conceptual from technical issues: We first design an abstract framework for
induction-based reasoning that captures the main conceptual decisions. Thereafter we
present a (more technical) instantiation of this framework which constitutes a prover
for the property of discourse.

3 A framework for proofs by induction

We next describe a framework that allows one to model inductive reasoning on an
abstract level. This framework captures and extends ideas that have been developed
in the field of implicit inductive theorem proving [Ba88, KoRu90, Re90]. It can be used
for different purposes like proving inductive validity (see [Wi96]) or - as we do here
- proving groundjoinability. The reader is referred to [WiBe94] for additional details
and discussions.

Generally, an (inductive) theorem prover is given by an inference system that oper
ates on syntactic constructs such that certain (inductively defined) properties remain
invariant. We. capture the latter using an abstract terminology.

3.1 Derivations

We assume that we are given a set of syntactic constructs. These syntactic constructs
form the basis of the prover states the prover operates on. For the purpose of inductive
theorem proving it is convenient to model the prover states as pairs (1-£; 9) of multisets
of syntactic constructs. The set 9 contains the so-called actual goals. These are the
syntactic constructs which still have to be treated. The set 1-£ contains the constructs
that are additionally available for inductive reasoning. Usually, these are syntactic
constructs which have already been treated successfully. We call them hypotheses. A
derivation relation is a binary relation f- on prover states. If (1-£; 9) f- (1-£'; 9'), then
we say that (1-£; 9) is transformed by f- into (1-£'; 9'). A sequence of transformations
(1-£; 9) f-* (1-£'; 9')' is called a derivation.

We are mainly interested in derivations (0; Q) f-I ... f-I (1-£'; 0) which start with an
empty set of hypotheses and end with an empty set of goals. The latter means that all
goals have been treated successfully.

Next we introduce semantic notions that are used to state the invariants of the prover.
Every syntactic construct G gives rise to a set of so-called semantic units. The latter
are pairs (G, T) where T equips G with some extra information. If G E 9, then a
semantic unit (G, T) is also called a 9-instance. To have a concretization in mind one
may understand by G a clause and by T a ground substitution for G.

The property to be proved is captured abstractly by a predicate P which is defined on
the set of all semantic units. Let P(G) be true iff P(G, T) is true for all G-instances
(G, T). Let P(9) be true iff P(G) is true for all G E 9. We say that 9 is P-valid iff
P(Q) is true. If P(G,T) is false, then (G,T) is said to be a counterexample (for P). If
G E 9, then we also speak of a 9-counterexample.

Now we turn to the problem of proving P-validity. In order to enable inductive rea
soning we assume that we are given a well-founded quasi-ordering ~ i on the semantic
units. The strict part >-i of ~. is called induction ordering. A careful analysis of

2

inductive argumentation reveals that the following notion is convenient for proving
P-validity by induction wrt. >-i.

8

3 A framework for proofs by induction

We next describe a framework that allows one to model inductive reasoning on an
abstract level. This framework captures and extends ideas that have been developed
in the field of implicit inductive theorem proving [Ba88, KoRu90, Re90]. I t can be used
for different purposes like proving inductive validity (see [Wi96]) or — as we do here
— proving ground joinability. The reader is referred to [WiBe94] for additional details
and discussions.

Generally, an (inductive) theorem prover is given by an inference system that oper-
ates on syntactic constructs such that certain (inductively defined) properties remain
invariant. We. capture the latter using an abstract terminology.

3 .1 Derivations

We assume that we are given a set of syntactic constructs. These syntactic constructs
form the basis of the prover states the prover operates on. For the purpose of inductive
theorem proving it is convenient to model the prover states as pairs (H; G) of multisets
of syntactic constructs. The set G contains the so-called actual goals. These are the
syntactic constructs which st i l l have to be treated. The set H contains the constructs
that are additionally available for inductive reasoning. Usually, these are syntactic
constructs which have already been treated successfully. We call them hypotheses. A
derivation relation is a binary relation | on prover states. I f (H;G) + (H' ;G’) , then
we say that (H;G) is transformed by I into (H';G'). A sequence of transformations
(H;G) FH (H'; 9’) is called a derivation.

We are mainly interested in derivations (§;G) Fz --- Fz (#';0) which start with an
empty set of hypotheses and end with an empty set of goals. The latter means that all
goals have been treated successfully.

Next we introduce semantic notions that are used to state the invariants of the prover.
Every syntactic construct G gives rise to a set of so-called semantic units. The latter
are pairs (G,7) where 7 equips G with some extra information. I f G € G, then a
semantic unit (G, 7) is also called a G-instance. To have a concretization in mind one
may understand by G a clause and by 7 a ground substitution for G .

The property to be proved is captured abstractly by a predicate P which is defined on
the set of all semantic units. Let P(G) be true iff P(G, 7) is true for all G-instances
(G,T). Let P(G) be true iff P(G) is true for all G € G. We say that G is P-valid iff
P(G) is true. I f P (G ,) is false, then (G, 7) is said to be a counterezample (for P) . If
G € G, then we also speak of a G-counterexample.

Now we turn to the problem of proving P-validity. In order to enable inductive rea-
soning we assume that we are given a well-founded quasi-ordering X , on the semantic
units. The strict part > ; of X , is called induction ordering. A careful analysis of
inductive argumentation reveals that the following notion is convenient for proving
P-validity by induction wrt. >;.

Definition 3.1 A prover state (1l; Q) is called inductive (wrt. P and >-i) iff the fol
lowing condition is satisfied: For every y-counterexamples (G, T) there exists a 1l
counterexample (H,1f) with (G, T) >-i (H,1f).

To associate an intuition to the notion of inductiveness it is convenient to consider the
inverse of this notion. If (1l; Q) is not inductive, then (1l; Q) gives rise to a so-called
inductive counterexample (G, T) for (1l; Q). The latter is a Q-counterexample (G, T)
such that P(H, 1f) is true for all 1l-instances (H,1f) with (G, T) h (H,1f).

The notion of inductiveness has the following interesting properties which enable one
to show Theorem 3.1 below:

Lemma 3.1
(a) Every prover state (1l; 0) is inductive.
(b) A prover state (0; Q) is inductive iff P(Q) is true.
(c) If (1l; y) is inductive and if P(1l) is true, then P(Q) is true too.

Definition 3.2 A derivation relation f- is called inductively sound (wrt. P and >-i)
iff for all derivation steps (1-l; Q) f- (1-l'; Q'), whenever (1l'; y') is inductive, then (1l; Q)
is inductive.

Turned the other way around, inductive soundness means that one does not lose all
inductive counterexamples by a derivation step. Now we directly obtain by Lemma 3.1
the following result, indicating how to prove P(Q).

Theorem 3.1 Let f- be inductively sound. Let (1-l; y) f- ... f- (1l'; 0). Then (1l; y) zs
inductive. If 1l is empty, then P(Q) is true.

3.2 Inference rules

Derivation relations usually are induced by inference rules. An inference rule relates
goals to two multisets of goals. We write

if the inference rule I relates the goal G to the two multisets of goals Qc and Qr !esp.
if (G, (Qc, Yr)) E I. Furthermore we call G"-"t (Qc, Yr) an inference by I. The intuition
to be associated with such a rule is as follows: The goal G is transformed by I into the
(possibly empty) set Yr of result goals. The (possibly empty) set Yc describes so-called
condition goals which have to be considered additionally. Note that if Yr is empty,
then we have a deletion rule. If we model case splitting, then Qr usually consists of
several goals. If we model rewrite-based simplification rules, then Yr consists of one
singe result goal G' which results from G by replacing some subterm. The additional
condition goals represent in that case the conditions which have to be verified in order
to ensure a correct rewrite step. Next we associate derivation relations to a given set
I of inference rules.

9

Definition 3.1 A prover state (H;G) is called inductive (wrt. P and >;) iff the fol-
lowing condition is satisfied: For every G-counterezamples (G,T) there exists a H -
counterexample (H, x) with (G,7) > ; (H, 7).

To associate an intuition to the notion of inductiveness i t is convenient to consider the
inverse of this notion. If (H;G) is not inductive, then (H;G) gives rise to a so-called
inductive counterexample (G,7) for (H;G). The latter is a G-counterexample (G, 7)
such that P(H,n) is true for all H-instances (H, 7) with (G,7) >=; (H, 7).
The notion of inductiveness has the following interesting properties which enable one
to show Theorem 3.1 below:

Lemma 3.1
(a) Every prover state (H; 0) is inductive.
(b) A prover state (0; G) is inductive iff P(G) is true.
(c) If (H;G) is inductive and if P(H) is true, then P(G) is true too.

Definition 3.2 A derivation relation | is called inductively sound (wrt. P and > ;)
iff for all derivation steps (H;G) | (H'; G'), whenever (H'; G') is inductive, then (H; G)
is inductive.

Turned the other way around, inductive soundness means that one does not lose all
inductive counterexamples by a derivation step. Now we directly obtain by Lemma 3.1
the following result, indicating how to prove P(G).

Theorem 3.1 Let t be inductively sound. Let (H;G) +--+ (H';0). Then (H;G) is
inductive. If H is empty, then P(G) is true.

3 .2 Inference rules

Derivation relations usually are induced by inference rules. An inference rule relates
goals to two multisets of goals. We write

I : G~ (Ge, Gr)

i f the inference rule I relates the goal G to the two multisets of goals G. and G, resp.
i f (G , (Gc, Gr)) € I . Furthermore we cal l G ~ (G., G,) an inference by I . The intuit ion
to be associated with such a rule is as follows: The goal G is transformed by I into the
(possibly empty) set G, of result goals. The (possibly empty) set G. describes so-called
condition goals which have to be considered additionally. Note that if G, is empty,
then we have a deletion rule. I f we model case splitting, then G, usually consists of
several goals. If we model rewrite-based simplification rules, then G, consists of one
singe result goal G' which results from G by replacing some subterm. The additional
condition goals represent in that case the conditions which have to be verified in order
to ensure a correct rewrite step. Next we associate derivation relations to a given set
Z of inference rules.

Definition 3.3 Let (H; Q) f- con (H'; Q') ifJ there exists an inference I : G '"'-+ (Qc, Qr)
with I E I such that (i) Q = G, Qt, (ii) H' = H, G, (iii) Q' = Qt, Qr and such that (iv)
(H'; Qc) is inductive.

Note that the comma represents the union of multisets. The derivation relation f- con
replaces the goal G by the set Qr provided the condition goals Qc are satisfied in the
sense that the prover state (H'; Qc) is inductive. The goal G is stored as a hypothesis
in order to be available for further (inductive) reasoning.

Next we develop conditions which allow one to infer inductive soundness of this deriva
tion relation.

Definition 3.4 Let (H; Q) be a given prover state. Let Q = Q', G. We call an inference
rule I inductively sound wrt. (H; Q) ifJ the following condition holds for all inferences
I: G'"'-+ (Qc, Qr): For all G-instances (G, T), if (G, T) is a counterexample, then there
exists a H-counterexample (H,7f) with (G, T) >-i (H,7f), or there exists a Q' U Qc U Qr
counterexample (G', T') with (G, T) t i(G', T'). A system I of inference rules is called
inductively sound ifJ every rule from I is inductively sound.

Note that our concept of performing inductive reasoning differs from that in [Ba88,
KoRu90, Re90]. The main point is that we do not require that goals are replaced by
strictly smaller ones (note that (G, T) t i(G', T') is required only). This enables one
e.g. to simplify the design of case splitting rules (see [WiBe94] for a discussion of the
advantages of such an approach).

Lemma 3.2 If I consist is inductively sound, then f- con is inductively sound.

The problem with the derivation relation f-con is that the verification of the condition
refers to the invariance notion "inductive soundness". For practical applications one
needs a derivation relation where the 'condition check' is operationalized. The following
derivation relation can be considered as such an operationalized version of f-con' We
first define auxiliary derivation relations f- i for all natural numbers i.

Definition 3.5 Let f-o be the empty relation 0. Let f- i be defined already. Now let
(H;Q) f-i+l (H';Q') ifJ(H;Q) f-i (H';Q') or if there exists an inference I : G'"'-+ (Qc,Qr)
with! E I such that (i) Q = G, Qr, (ii) H' = H, G, (iii) Q' = Qrl Qr and such that (iv)
(H'; Qc) f-: (H"; 0). Finally let f- rec be the union of all these relations f-i .

Hence, f- rec replaces the goal G by the set Qr provided the condition goals Qc are
satisfied in the sense that the prover state (HI; Qc) can be transformed by the given
inference system into a final prover state with an empty set of goals. Note that this
derivation relation is defined in a recursive way which is similar to conditional rewriting.
Indeed, we use this kind of conditional derivation below in order to simulate contextual
conditional inductive rewriting. We finally show that inductive soundness carries over
from f- con to f- rec'

10

Definition 3.3 Let (H;G) tcon (H';G') iff there exists an inference I : G ~ (Gc, G,)
with I € T such that (1) G =G,G , , (i) H ' = H ,G , (ii) G' = Gi ,G, and such that (iv)
(H';G.) is inductive.

Note that the comma represents the union of multisets. The derivation relation ton
replaces the goal G by the set G, provided the condition goals G. are satisfied in the
sense that the prover state (H'; G.) is inductive. The goal G is stored as a hypothesis
in order to be available for further (inductive) reasoning.
Next we develop conditions which allow one to infer inductive soundness of this deriva-
t ion relation.

Definition 3.4 Let (H;G) be a given prover state. Let G = G',G. We call an inference
rule I inductively sound wrt. (H;G) iff the following condition holds for all inferences
I : G~» (GG) : For all G-instances (G, 7), if (G,T) is a counterexample, then there
exists a H-counterezample (H ,n) with (G, 1) = ; (H, 7) , or there exists a G' UG, U G,-
counterexample (G', 7") with (G,7) & ,(G',7'). A system T of inference rules is called
inductively sound iff every rule from I is inductively sound.

Note that our concept of performing inductive reasoning differs from that in [Ba88,
KoRu90, Re90]. The main point is that we do not require that goals are replaced by
strictly smaller ones (note that (G,7) 2 .(G',7’) is required only). This enables one
e.g. to simplify the design of case splitting rules (see [WiBe94] for a discussion of the
advantages of such an approach).

Lemma 3.2 I fZ consist is inductively sound, then kon is inductively sound.

The problem with the derivation relation Fy, is that the verification of the condition
refers to the invariance notion “inductive soundness”. For practical applications one
needs a derivation relation where the ‘condition check’ is operationalized. The following
derivation relation can be considered as such an operationalized version of kon. We
first define auxiliary derivation relations i; for all natural numbers 2.

Definition 3.5 Let Ho be the empty relation 0. Let HH; be defined already. Now let
(H;G) Fipr (HG) iff (H;G) bi (H';G') or if there exists an inference I : G ~ (G., Gr)
with-I € T such that (3) G = G,G,, (i) H =H ,G , (ii) G' = G,,G, and such that (iv)
(H'; Ge) H+ (H";0). Finally let H,ec be the union of all these relations t;.

Hence, Fe replaces the goal G by the set G, provided the condition goals G. are
satisfied in the sense that the prover state (H';G.) can be transformed by the given
inference system into a final prover state with an empty set of goals. Note that this
derivation relation is defined in a recursive way which is similar to conditional rewriting.
Indeed, we use this kind of conditional derivation below in order to simulate contextual
conditional inductive rewriting. We finally show that inductive soundness carries over
from Fon tO Fee .

10

Lemma 3.3 If I is inductively sound, then I-rec ~ I-con'

Corollary 3.1 If I is inductively sound, then I-rec is inductively sound.

4 A framework for proving ground joinability

Now we instantiate the notions of section 3 in order to obtain a framework for proving
weak ground joinability of a set of bounded clauses. We assume in the sequel that
(~, R) is a TRS and that ~o is a sub-signature of ~.

Let >- be a well-founded partial ordering on T(~) such that (~o, R) is reductive wrt.
>-. Let >-m=>->- and let t m =>-m U rv, where rv denotes the equality of multisets.
We write s >- t for two arbitrary terms s, t E T(~, V) iff 7(S) >- 7(t) for all ~o-ground

substitutions 7 for s, t. We use an analogous notation when comparing multisets of
arbitrary terms. Finally, we abbreviate ----t(EO,'R) by ----t.

4.1 The basic setting

First we specify the syntactic constructs in the instantiated setting. Syntactic con
structs mainly consist of clauses which are enriched by some bound and, additionally,
by a so-called 'weight'. The weights are constructs (in our case we use multisets of
terms) that enable one to perform strong inductive reasoning. We refer to [WiBe94]
for a detailed discussion of weights and some illustrating examples.

Definition 4.1 A syntactic construct is a triple (Glblw) consisting of a clause G and
two multisets band w of terms from T(~, V) such that G is bounded by b. We call b
the (confluence) bound and w the (induction) weight of the syntactic construct.

The main part ofa syntactic construct (Glblw) is the clausal formula G. The bound
and the weight are to enrich the formula with additional information. Informally, b is
used to measure up to which bound the relation ----t is known to be ground confluent
and w is used to measure up to which weight hypotheses are known to be true. Usually,
such information is extracted from the formula G. However, separating it fromG as
indicated above enables one to design more powerful inference rules. The main point is
that formulae generally become 'smaller' when applying simplification techniques. This
leads to a loss of ordering information if the latter is extracted from the formula itself.
Our definition of syntactic constructs allows one to keep bounds and weights (mainly)
unchanged and thus to preserve the full information given by the initial formula.

In order to make the setting outlined above applicable we have to clarify how bounded
clauses are turned into syntactic constructs. If (Gib) is a given bounded clause, then
there are different ways to choose w (see [WiBe94] for a general discussion). One
simple possibility is to let w be identical to b. Another possibility is to choose a
variable occuring in (Gib). The latter then amounts in selecting an induction variable.

11

Lemma 3.3 If I is inductively sound, then Free C Foon .

Corollary 3 .1 IfT is inductively sound, then b... is inductively sound.

4 A framework for proving ground joinability

Now we instantiate the notions of section 3 in order to obtain a framework for proving
weak ground joinability of a set of bounded clauses. We assume in the sequel that
(2 ,R) is a TRS and that 3 ; is a sub-signature of X.
Let > be a well-founded partial ordering on T(X) such that (Zo ,R) is reductive wrt.
> . Let >m=>> and let X _ =>m U ~ , where ~ denotes the equality of multisets.
We write s > t for two arbitrary terms s , t € T(X, V) iff 7(s) > 7(¢) for all Zo-ground
substitutions 7 for s , t . We use an analogous notation when comparing multisets of
arbitrary terms. Finally, we abbreviate — 5, =) by —.

4 .1 The basic sett ing

First we specify the syntactic constructs in the instantiated setting. Syntactic con-
structs mainly consist of clauses which are enriched by some bound and, additionally,
by a so-called ‘weight’. The weights are constructs (in our case we use multisets of
terms) that enable one to perform strong inductive reasoning. We refer to [WiBe94]
for a detailed discussion of weights and some illustrating examples.

Definition 4.1 A syntactic construct is a triple (C|blw) consisting of a clause C and
two multisets b and w of terms from T(X,V) such that C is bounded by b. We call b
the (confluence) bound and w the (induction) weight of the syntactic construct.

The main part of a syntactic construct (C|b|w) is the clausal formula C. The bound
and the weight are to enrich the formula with additional information. Informally, b is
used to measure up to which bound the relation — is known to be ground confluent
and w is used to measure up to which weight hypotheses are known to be true. Usually,
such information is extracted from the formula C. However, separating it f romC as
indicated above enables one to design more powerful inference rules. The main point is
that formulae generally become ‘smaller’ when applying simplification techniques. This
leads to a loss of ordering information i f the latter is extracted from the formula itself.
Our definition of syntactic constructs. allows one to keep bounds and weights (mainly)
unchanged and thus to preserve the full information given by the ini t ial formula.

In order t o make the setting outlined above applicable we have to clarify how bounded
clauses are turned into syntactic constructs. If (Cb) is a given bounded clause, then
there are different ways to choose w (see [WiBe94] for a general discussion). One
simple possibility is to let w be identical to b. Another possibility is to choose a
variable occuring in (C|b). The latter then amounts in selecting an induction variable.

11

For the considerations to come, the exact knowledge of w is irrelevant. The reader who
wants to have a concretization in mind may identify band w. We only assume that
there is a procedure which adds weights to bounded clauses.

In the sequel we are going to identify bounded clauses and the syntactic constructs
which are related to them. Thus, BCrit(Eo, R) e.g. is to be considered as a set of
bounded clauses and as a set of syntactic constructs.

Next we take semantic issues into consideration. A semantic unit is a pair (G, r)
consisting of a syntactic construct G and a ground substitution r E Glnst(Eo, G). The
following definition is crucial for the prover as it fixes the property P to be proved.

Definition 4.2 Let ((Clblw), r) be a semantic unit. We define P((Clblw), T) to be
true iff T (Cl b) is weakly joinable wrt. -----+.

Note that this definition does not refer to the weight w. We thus have a complete
separation between semantic and inductive issues. It follows directly that a set C of
bounded clauses is weakly Eo-ground joinable iff P(C) is true. The instantiation of
the abstract framework given above thus is well suited for our purposes: According to
Theorem 2.1 we have to show weak Eo-ground joinability of BCrit(Eo,R). The latter
is done if we have shown that BCrit(Eo, R) is P-valid.

To finish the instantiation of the abstract framework we have to define the quasi
ordering .t i which is used to control inductive reasoning. In our approach here we
relate .t i to the given ordering >- (for a discussion of other ways see [WiBe94]): Let
((Clblw), T).t J (C' Ib' Iw'), T') iff T(w).t m T' (w'). Thus, semantic units will be compared
by their weights when performing inductive reasoning.

Once we have instantiations for P and .t -, we directly obtain the invariant of our z ,
'concrete' prover framework. Recall that this invariant - inductive soundness - is
defined in terms of P and .t i. What still has to be done is the design of inference
rules which are inductively sound wrt. the instantiated notions.

4.2 The inference system

In order to keep the presentation of the inference system clear, we continue in a top
down fashion by describing only a few general rules. We briefly outline (without de
scribing all details) that these general rules subsume most of the technical reasoning
strategies used in the literature (in order to treat related problems).

There are at least three different reasoning concepts leading to a powerful prover:
(a) case splitting, (b) (inductive) contextual conditional simplification and (c) literal
elimination. We formalize them next. An illustration by some examples will follow.

4.2.1 Case splitting

As motivated in the introduction, case splitting is essential for obtaining finite schema
tized joinability proofs. We first provide a rather general case splitting rule. Thereafter

12

For the considerations to come, the exact knowledge of w is irrelevant. The reader who
wants to have a concretization in mind may identify b and w. We only assume that
there i s a procedure which adds weights t o bounded clauses.

In the sequel we are going to identify bounded clauses and the syntactic constructs
which are related to them. Thus, BCrit(Xo,R) e.g. is to be considered as a set of
bounded clauses and as a set of syntactic constructs.
Next we take semantic issues into consideration. A semantic unit is a pair (G,7)
consisting of a syntactic construct G and a ground substitution 7 € GInst(Zy, G) . The
following definition is crucial for the prover as i t fixes the property P to be proved.

Definition 4.2 Let ((C|blw),T) be a semantic unit. We define P((C|blw),T) to be
true iff T(C|b) is weakly joinable wrt. —.

Note that this definition does not refer to the weight w. We thus have a complete
separation between semantic and inductive issues. I t follows directly that a set C of
bounded clauses is weakly Yo-ground joinable iff P(C) is true. The instantiation of
the abstract framework given above thus is well suited for our purposes: According to
Theorem 2.1 we have to show weak Yy-ground joinability of BCrit(Xo,R). The latter
is done if we have shown that BCrit(Xy, R) is P-valid.
To finish the instantiation of the abstract framework we have to define the quasi-
ordering Z , which is used to control inductive reasoning. In our approach here we
relate X , to the given ordering > (for a discussion of other ways see [WiBe94]): Let
((Clplw), 7) Z ((C'|¥'|w'), 7) iff 7 (w)ZZ 7'(w'). Thus, semantic units will be compared
by their weights when performing inductive reasoning.
Once we have instantiations for P and X , , we directly obtain the invariant of our
‘concrete’ prover framework. Recall that this invariant — inductive soundness — is
defined in terms of P and Z ;,. What still has to be done is the design of inference
rules which are inductively sound wrt. the instantiated notions.

4.2 The inference system

In order to keep the presentation of the inference system clear, we continue in a top-
down fashion by describing only a few general rules. We briefly outline (without de-
scribing all details) that these general rules subsume most of the technical reasoning
strategies used in the literature (in order to treat related problems).
There are at least three different reasoning concepts leading to a powerful prover:
(a) case splitting, (b) (inductive) contextual conditional simplification and (c) literal
elimination. We formalize them next. An il lustration by some examples will follow.

4.2.1 Case splitting

As motivated i n the introduction, case splitting is essential for obtaining finite schema-
tized joinability proofs. We first provide a rather general case splitt ing rule. Thereafter

12

we show that the familiar case splitting techniques are covered by this rule. Note that
our approach allows one to split cases without performing a succeeding reduction step.

A case splitting for a clause G is a finite (possibly empty) set S of pairs (IL, r =} ~),

consisting of a I:o-substitution IL and a clause r =}~. A case splitting S for G is said
to be complete (wrt. (I:o,R)) ifffor all-----t-irreducible rE Glnst(I:o,G), ifr(G) is
not joinable wrt. -----t, then there exists (IL, r =} ~) E S and a I:o-ground substitution
r' such that (i) r = r' IL and such that (ii) r'(r =} ~) is not joinable wrt. -----t.

Rule 1 [Case splitting]

Let (1-£; Q, G) be a prover state. Let G : (Glblw) with G : ~ =} W. Let S be a complete

case splitting for G such that r =} ~ is bounded by IL(b) for all (IL, r =} ~) E S. Let Q'

consist of all syntactic constructs (r, IL(~) =} IL('1'), ~ IIL(b) IIL(w)) with (IL, r =} ~) E S.

Then 11 : G'"'-" (0, Q').

Note that the elements of Q' are well-formed syntactic constructs satisfying the bound
edness condition.

We briefly discuss three special sub-rules of this general rule. The first is obtained by
considering complete case splittings of the type S = {(ILi, 0 =} 0) I i = 1, ... , n}. This
models case splitting by mere instantiation. Note that the generation of complete case
splittings of this type is usually much simplified if one introduces a sub-signature I:o
with a few constructors only. However, the verification of completeness of I:o wrt. I:
then may become more difficult.

The second sub-rule models case splitting by addition of context equations. The easiest
way to do it is to let S = {(id, A=} 0), (id, 0 =} An, where id is the identity and A
is an equation. Obviously S is a complete case splitting for every clause G.

The third sub-rule allows one to produce case splittings that enable successive schema
tized rewriting steps. The techniques involving narrowing are based on this sub-rule.
Let G : ~,s = t =} '1' (the case G : ~,sl =} '1' is treated analogously). Now let
(IL, IL(r) ::::} IL(~)) E S if there is a non-variable position p in s (or analogously in t)
and a rule r =} u --+ v, ~ E R such that IL is the most general I:o-unifier of sip and u.
Let further (IL,O =} 0) E Sif IL is the most general I:o-unifier of sand t. One easily
verifies that S is a complete case splitting for G. Note that it is essential here that s = t
is an antecedent equation. The situation is different if s = t is a succedent equation.
In that case, the narrowing-based method produces a complete case splitting provided
s = t is ground reducible (see [Ba88]). The notion of ground reducibility however is
undecidable in the conditional rewrite case.

4.2.2 Inductive contextual simplification

Our simplification concept allows one to use actual goals, actual hypotheses and so
called lemmata for rewriting and subsuming a given syntactic construct. A lemma is a
syntactic construct (GlbIO) such that (Gib) is (known to be) weakly I:o-ground joinable
wrt. -----t. Let L denote a set of lemmata in the sequel. Below we briefly discuss ways
to generate lemmata.

13

we show that the familiar case splitting techniques are covered by this rule. Note that
our approach allows one to split cases without performing a succeeding reduction step.

A case splitting for a clause C is a finite (possibly empty) set S of pairs (i , = A),
consisting of a Zo-substitution px and a clause I' = A. A case splitting S for C is said
to be complete (wrt. (Xo, R)) iff for all —-irreducible 7 € GInst(X,,C), if 7(C) is
not joinable wrt. —, then there exists (u, T = A) € S and a y-ground substitution
7 ’ such that (i) 7 = 7'u and such that (ii) 7'(I’ = A) is not joinable wrt. —.

Rule 1 [Case splitting]
Let (H;G,G) be a prover state. Let G : (C|blw) with C : ® = Y. Let S be a complete
case splitting for C such that I’ = A is bounded by p(b) for all (u, I ' = A) € S. Let G’
consist of all syntactic constructs (I', u(®) = p(¥), A|p(d)|g(w)) with (u, T = A) € S.
Then I; : G ~ (0,6) .

Note that the elements of G' are well-formed syntactic constructs satisfying the bound-
edness condition.

We briefly discuss three special sub-rules of this general rule. The first is obtained by
considering complete case splittings of the type S = { (p ; ,0 = 0) | i =1 , . . . , n } . This
models case splitting by mere instantiation. Note that the generation of complete case
splittings of this type is usually much simplified i f one introduces a sub-signature Xo9
with a few constructors only. However, the verification of completeness of Xo wrt . X
then may become more difficult.
The second sub-rule models case splitting by addition of context equations. The easiest
way to do i t is to let § = {(id, A = 0) , (id, 0 = A)}, where id is the identity and A
is an equation. Obviously S is a complete case splitting for every clause C.
The third sub-rule allows one to produce case splittings that enable successive schema-
tized rewriting steps. The techniques involving narrowing are based on this sub-rule.
Let C : & , s = t = UV (the case C : ®,s! = W is treated analogously). Now let
(4, w(T) = p(A)) € S i f there is a non-variable position p in s (or analogously in €)
and a rule I" = u — v, A € R such that u is the most general ¥o-unifier of s | , and u .
Let further (u, 0 => 0) € S i f u is the most general Xo-unifier of s and t. One easily
verifies that S is a complete case splitting for C . Note that i t is essential here that s = ¢
is an antecedent equation. The situation is different i f s = t is a succedent equation.
In that case, the narrowing-based method produces a complete case splitt ing provided
s = t is ground reducible (see [Ba88]). The notion of ground reducibility however is
undecidable in the conditional rewrite case.

4.2.2 Inductive contextual simplification

Our simplification concept allows one to use actual goals, actual hypotheses and so-
called lemmata for rewriting and subsuming a given syntactic construct. A lemma is a
syntactic construct (C|b|0) such that (C|b) is (known to be) weakly Xo-ground joinable
wrt . —. Let £ denote a set of lemmata i n the sequel. Below we briefly discuss ways
to generate lemmata.

13

Rule 2 [Contextual rewriting]
Let (1-£; Q, G) be the actual prover state. Let K : (f =? u = V, .6.lb'lw') be a syntactic
construct from 1l u 9 u £. Let a be an arbitrary I:-substitution such that a(K) is a
syntactic construct (satisfying the boundedness condition) too. Let G : (Clblw) with
C: 1> =? E,w resp. C: 1>,E =? '1i, where the (pseudo-)equation E: s[a(u)] = t
contains an instance of u. Let Qc contain all the constructs G~ : (1) =? a(A), wlblw)
with A E f, G~ : (1), a(B) =? wlblw) with B E .6. and G~ : (1) =? a(x)!, wlblw) such
that x E var(K) and a(x) 'f. T(~o, V). Finally let G' result from G by replacing the
subterm a(u) in s[a(u)] by a(v). Thus, G' : (C'lblw) with C' : 1> =? s[a(v)] = 't, W resp.
C' : 1>, s[a(v)] = t =? W. Let the following conditions be satisfied:
(a) w 'rm a(w') if K E 1-£ and w ~ ma(w') if K E Q.
(b) b~ma(b').

(c) b 'rm {s[a-(v)]} and b 'rm {a-(x)} for all x E var(K) and a-(x) 'f. T(~o, V).

Then h : G ~ (Qc, {G'}).

First note that all newly generated constructs are indeed syntactic constructs in the
sense of Definition 4.1. On the one hand we use condition (c) to infer that G' satisfies
the boundedness condition. On the other hand we use condition (b) together with the
fact that a-(K) is a syntactic construct to ensure that all constructs G~ and G~ satisfy
the boundedness condition. The second part of condition (c) finally ensures that G~

satisfies the boundedness condition.

This rule allows one to use a-(K) for schematized rewriting, replacing the subterm
a-(u) of G by a-(v). In order to be appli~able, the conditions a(f) and a(.6.) must be
guaranteed to be 'true' (wrt. the notion of ground joinablability) within the present
situation. Note that the present situation allows us to use 1> and W as additional
context. Note that the substitution a- need not be a ~o-substitution. However, a(x)
must be guaranteed to be 'defined' for all relevant variables x in order to be able to

. pull a ~-ground substitution Ta- down to a ~o-ground substitution T'.

The next rule models contextual subsumption. We omit a detailed discussion as it

proceeds just as in the rewrite case.

Rule 3 [Contextual subsumption]

Let (1-£; Q, G) be the actual prover state. Let K: (fo, f 1 =? .6.0 , .6. 1 1b'Iw') be a syntactic

construct from 1-£ u 9 u £. Let a- be an arbitrary ~-substitution such that a-(K) is a

syntactic construct too. Let G : (Clblw) with C : a-(fO),1>1 =? a-(~o), Wl' Let gc

contain all the syntactic constructs G~ : (1)1 =? a-(A), wllblw) with A E f 1, G~ :

(1)1, a(B) =? wllblw) with B E .6.1 and G~ : (1)1 =? a-(x)!, wllblw) such that x E var(K)

and such that a-(x) 'f. T(~o, V). Let the following conditions be satisfied:

(a) w 'rm a-(w') if K E 1-£ and w ~ ma(w') if KEg.
(b) b~ma-(b').

(c) b 'r m {a(x)} for all x E var(K) and a(x) 'f. T(~o, V).

Then Is : G ~ (Qc, 0).

First note that all newly generated constructs are indeed syntactic constructs in the
sense of Definition 4.1. First, we use condition (b) together with the fact that a-(K) is

14

Rule 2 [Contextual rewriting]
Let (H;G,G) be the actual prover state. Let K : (I' = u = v,Alb'Jw’) be a syntactic
construct from H UG U L . Let vo be an arbitrary Z-substitution such that o(K) is a
syntactic construct (satisfying the boundedness condition) too. Let G : (C|blw) with
C:® = E ,V resp . C : &, FE = V , where the (pseudo-)equation E : s[o(u)] = t
contains an instance of u. Let G, contain all the constructs G2 : (® = o(A), ¥|blw)
with A € T', GB : ($, o(B) = ¥|bjw) with B € A and G® : (® = o(z)!, ¥|b|w) such
that x € var(K) and o(z) g T(Xo,V). Finally let G' result from G by replacing the
subterm o(u) i n s[o(u)] by o(v). Thus, G' : (C'|b|lw) with C’ : ® = s[o(v)] = t , ¥ resp.
C' : ®,s[o(v)] = t = VU. Let the following conditions be satisfied:
(a) wrpow)if KeHandwZ ow) i f Keg .
(b) bz, 0b) .
(¢) d >m {s[o(v)]} and b > {o(z)} for all z € var(K) and o(z) & T(Xo, V).
Then I : G ~ (Go, {G'}).

First note that all newly generated constructs are indeed syntactic constructs in the
sense of Definition 4.1. On the one hand we use condition (c) to infer that G’ satisfies
the boundedness condition. On the other hand we use condition (b) together with the
fact that o(K) is a syntactic construct to ensure that all constructs G2 and GP satisfy
the boundedness condition. The second part of condition (c) finally ensures that G%
satisfies the boundedness condition.

This rule allows one to use o(K) for schematized rewriting, replacing the subterm
o(u) of G by o(v). In order to be applicable, the conditions o(I') and o(A) must be
guaranteed to be ‘true’ (wrt. the notion of ground joinablability) within the present
situation. Note that the present situation allows us to use ® and ¥ as additional
context. Note that the substitution o need not be a Yy-substitution. However, o(z)
must be guaranteed to be ‘defined’ for all relevant variables x in order to be able to

"pul l a ¥-ground substitution 70 down to a Xy-ground substitution 7’.
The next rule models contextual subsumption. We omit a detailed discussion as it
proceeds just as in the rewrite case.

Rule 3 [Contextual subsumption]
Let (H;G, G) be the actual prover state. Let K : (T'g,I'1 = Ap, A1|¥/|w') be a syntactic
construct from H UG U L . Let vo be an arbitrary X-substitution such that o(K) is a
syntactic construct too. Let G : (Clblw) with C : o(To);®1 = 0 (Ao) ,Ty. Let Ge
contain all the syntactic constructs G2 : (®; = o(A), ¥,|b|lw) with A € Ty, GB :
(®,0(B) = ¥,|bjw) with B € A; and G% : (®, = o(z)!, ¥;|b|w) such that x € var(K)
and such that o(z) & T(E, V). Let the following conditions be satisfied:
(a) w >m o(w') £ KeHandwz ow) i f K EG.
(b) 6% ob) .
(c) bm {o(z)} for all z € var(K) and o(z) & T(Xo, V).
Then I3 : G ~ (Ge, 0).

First note that all newly generated constructs are indeed syntactic constructs in the
sense of Definition 4.1. First, we use condition (b) together with the fact that o(K) is

14

a syntactic construct to ensure that all constructs G~ and G~ satisfy the boundedness

condition. Condition (c) ensures that G~ satisfies the boundedness condition as well.

Next we briefly outline how to obtain lemmata. Lemmata can be generated according

to different strategies:

First note that if a clause C (without a bound) is known to be 2:o-ground joinable wrt.

~, then (CIMult(C)IO) is a lemma.

Every rule R : r ::::} u -+ v,.6 E R can be turned into a lemma (RI{u, 1-}10) (note that

(RI {u, 1-} I0) indeed satisfies the boundedness condition). As a consequence, rewriting

with R turns out to be a special case of rewriting with lemmata.

Lemmata may result from former runs of our prover.

Finally, there are general heuristics that indicate how to obtain lemmata. For instance,

every equation A : s = s (resp. A: sl with s E T(2:o, V)) induces a lemma (0 ::::}

A I Mult(A) 10). If C : A::::} A, then (CIMult(A)IO) is a lemma too.

Lemmata can be used to model a kind of contextual rewriting which uses (skolem

ized) antecedent equations for rewriting and subsuming an equation occuring in the

remaining clause. We briefly explain how this can be done in our framework.

Let G : (Clblw) with C : <1>, U = v ::::} s[u] = t. Suppose that b >-m {s[v]}. Then we

are allowed to replace U by v. This is because we can use the lemma K : (u = v ::::}

U = v I {u, v} I 0) (wrt. the substitution (5 = id) for rewriting. Note that (H, G; Qc)

is trivially inductive (and thus satisfied in a conditional fashion) as the only element

(<1>, U = v ::::} U = v I b I w) of Qc is 2:o-ground joinable.

Now let G : (Clbjw) with C : <I> ::::} U = v, W. If there is a derivation u - Uo Hq,

Ul Hq, ... Hq, Un - v using equations from <1> (with variables treated as constants)

such that b >-m {Ui} for i = 1, ... , n - 1, then we are allowed to subsume G by the

lemma K : (<I> ::::} U = vlbIO).

4.2.3 Literal elimination

This concept of reasoning allows· one to eliminate atoms from a clause that turn out to
be redundant. As in [BaGa92] we first provide a very general rule.

Rule 4 [Literal elimination]
Let (H; Q, G) be the current prover state. Let G : (Clblw) with C : <1>, A ::::} W
(resp. C: <1> ::::} A, w). Let G' : (C'lblw) with C' : <1> ::::} W. Let Gc : (Cclblw) with
Cc : <1> ::::} A, W (resp. Cc: <1>, A::::} w). Then 14 : G ~ ({Gc}, {G/}).

First note that the newly generated constructs obviously satisfy the boundedness con
dition.

We briefly discuss three applications of this rule. Consider first the case where the
clause G : (<I> ::::} A, A, w I b I w) contains two identical succedent atoms. In that case
we have Gc : (<1>, A::::} A, w I b Iw). Note that(H, G; Gc) is trivially inductive as P(Gc)
is true. If G : (<1>, s = s ::::} W I b I w), then Gc : (<1> ::::} s = s, wI b I w). It follows that

15

a syntactic construct to ensure that all constructs G2 and GP satisfy the boundedness
condition. Condition (c) ensures that (7 satisfies the boundedness condition as well.

Next we briefly outline how to obtain lemmata. Lemmata can be generated according
to different strategies:
First note that if a clause C (without a bound) is known to be Zo-ground joinable wrt.
—+, then (C|Mult(C)|0) is a lemma.
Every rule R :T ' = u — v ,A € R can be turned into a lemma (R|{u, 1 } | 0) (note that
(R|{u, L } | 0) indeed satisfies the boundedness condition). As a consequence, rewriting
with R turns out to be a special case of rewriting with lemmata.
Lemmata may result from former runs of our prover.
Finally, there are general heuristics that indicate how to obtain lemmata. For instance,
every equation A : s = s (resp. A : s! with s € T(Xo,V)) induces a lemma (O =
A | Mult(A) | 0) . If C : A= A, then (C|Mult(A)|0) is a lemma too.
Lemmata can be used to model a kind of contextual rewriting which uses (skolem-
ized) antecedent equations for rewriting and subsuming an equation occuring in the
remaining clause. We briefly explain how this can be done in our framework.

Let G : (C|blw) with C : ®,u = v = s[u] = t. Suppose that b > {s[v]}. Then we
are allowed to replace u by v. This is because we can use the lemma K : (u =v =
u =v | {u ,v} | O) (wrt. the substitution ¢ = id) for rewriting. Note that (#, G;G.)
is trivially inductive (and thus satisfied in a conditional fashion) as the only element
(P ,u=v=>u="v |b |w) of G. is Zo-ground joinable.
Now let G : (Clblw) with C : @ = u = v ,¥ . If there is a derivation u = uy “eo
Up r o c+ $e Un = v using equations from ® (with variables treated as constants)
such that b > {wi} for i = 1 , . . . , n — 1, then we are allowed to subsume G by the
lemma K : (® = u = v|b|D).

4 .2 .3 Literal elimination

This concept of reasoning allows one to eliminate atoms from a clause that turn out to
be redundant. As in [BaGa92| we first provide a very general rule.

Rule 4 [Literal elimination]
Let (H;G,G) be the current prover state. Let G : (Clblw) with C : ® , A = ¥
(resp. C :® = AT) . Let G' : (C'|blw) with C' : & = VU. Let G, : (C.|blw) with
C. :®= AT (resp. C . : ® ,A= VT). Then I, : G~ ({G.},{G'}).

First note that the newly generated constructs obviously satisfy the boundedness con-
dition.

We briefly discuss three applications of this rule. Consider first the case where the
clause G : (® = A, A, ¥ | b | w) contains two identical succedent atoms. In that case
we have G . : (®, A = A ,¥ | b |w) . Note that(H, G; G.) is trivially inductive as P(G,)
is true. I f G: (® , s=5=V |b | w), then G . : (=> s=45,V | b | w). I t follows that

15

P(Gc) is true and that (1£, G; Gc) is inductive. Hence s = s can be eliminated in G.
Finally, if G : (<I> ::::} s = t, 'lJ I b I w) is such that S = 0 is a complete case splitting for
<I>, s = t ::::} W, then s = t can be eliminated as well in G.

4.3 The main result

In this section we join together all the previously developed parts of our theory. Note
that section 4.1 and 4.2 provide an instantiation of the abstract notions we have in
troduced in section 3 to state the abstract theory. In order to make applicable this
abstract theory, one still has the verify that all the rules from section 4.2 satisfy the
invariant property. For that purpose let I consist of the four rules 11,12,13,14 discussed
in section 4.2. One easily verifies the following correctness properties of I.

Lemma 4.1 All rules from I are inductively sound.

Corollary 4.1 The derivation relations f-con and f-rec induced by I are inductively
sound.

The following theorem provides the main result of this paper. It is obtained in a
straightforward manner from previously stated results.

Theorem 4.1 Let (~o, n) be reductive wrt. a well-founded partial ordering >-. Let
f-x = f- rec or f-x = f- con . Let BCrit(~o,n) ~ 9. Let (0;9) f-x '" f-x (1£';0). Then
-----7p:::o:R.) is ground confluent.

Acknowledgements: I would like to thank J. Avenhaus and C.-P. Wirth for many
valuable discussions and helpful suggestions.

References

[Av95] J. Avenhaus, Reduktionssysteme, (Springer, 1995).

[Ba88] L. Bachmair, Proof by Consistency in Equational Theories, in: 3rd LICS (1988) pp. 228-233.

[BaGa92] L. Bachmair and H. Ganzinger, Rewrite-based theorem proving with selection and simplifi
cation, Technical Report MPI-I-91-208, Max-Planck-Institut fur Informatik, Saarbrucken.

[Be93] K. Becker, Proving ground confluence and inductive validity in constructor based equational
specifications, TAPSOFT '93,LNCS 668 (Berlin, 1993) pp. 46-60.

[DeJo90] N. Dershowitz and J. P. Jouannaud, Rewriting systems, in: J. van Leeuwen, ed., Handbook
of Theoretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990) pp. 241-320.

[Fr86] L. Fribourg, A strong restriction of the inductive completion procedure, 13th ICALP 86,
LNCS 266 (Springer, 1991) pp. 105-115.

[Ga87] H. Ganzinger, Ground term confluence in parametric conditional equational specifications,
in: STACS '87, LNCS 247 (Springer, 1987) pp. 286-298.

16

P(G.) is true and that (H,G;G.) is inductive. Hence s = s can be eliminated in G.
Finally, if G : (® = s =1t,¥ | b | w) is such that S = 0 is a complete case splitting for
®,s = t = VW, then s = t can be eliminated as well i n G .

4 .3 The main result

In this section we join together al l the previously developed parts of our theory. Note
that section 4.1 and 4.2 provide an instantiation of the abstract notions we have in-
troduced in section 3 to state the abstract theory. In order to make applicable this
abstract theory, one stil l has the verify that al l the rules from section 4.2 satisfy the
invariant property. For that purpose let Z consist of the four rules I , I , I 3 , I; discussed
in section 4.2. One easily verifies the following correctness properties of Z.

Lemma 4 .1 A l l rules from I are inductively sound.

Corollary 4 .1 The derivation relations on and b,.. induced by I are inductively
sound.

The following theorem provides the main result of this paper. It is obtained in a
straightforward manner from previously stated results.

Theorem 4.1 Let (Xo,R) be reductive wrt. a well-founded partial ordering > . Let
Fz = Free o r F r = Feon- Le t BCrit(Xo,R) cq . Le t (0 ; 9) Fz . . . b r (H' ;0) . Then

— zo r) IS ground confluent.

Acknowledgements: I would like to thank J. Avenhaus and C.-P. Wirth for many
valuable discussions and helpful suggestions.

References

[Av95] J. Avenhaus, Reduktionssysteme, (Springer, 1995).

[Ba88] L . Bachmair, Proof by Consistency in Equational Theories, in: 3rd LICS (1988) pp. 228-233.

[BaGa92] L . Bachmair and H . Ganzinger, Rewrite-based theorem proving with selection and simplifi-
cation, Technical Report MPI-I-91-208, Max-Planck-Institut fiir Informatik, Saarbrücken.

[Be93] K . Becker, Proving ground confluence and inductive validity in constructor based equational
specifications, TAPSOFT ’93, LNCS 668 (Berlin, 1993) pp. 46-60.

[DeJo90] N . Dershowitz and J . P. Jouannaud, Rewriting systems, in : J . van Leeuwen, ed., Handbook
of Theoretical Computer Science, Vol. B (Elsevier, Amsterdam, 1990) pp. 241-320.

[Fr86) L . Fribourg, A strong restriction of the inductive completion procedure, 13th ICALP 86,
LNCS 266 (Springer, 1991) pp. 105-115.

[Ga87] H . Ganzinger, Ground term confluence in parametric conditional equational specifications,
in : STACS ’87, LNCS 247 (Springer, 1987) pp. 286-298.

16

[Go87]	 R. Gobel, Ground confluence, in: 2nd RTA 87, LNCS 256 (Berlin, 1991) pp. 156-167.

[Ka88]	 S. KapIan, Positive/Negative Conditional Rewriting, in: Conditional Term Rewriting Sys
tems, LNCS 308 (Springer, 1987) pp. 129-143.

[KN090]	 D. Kapur, P. Narendran and F. Otto, On ground-confluence of term rewriting systems,
Inform. and Comp. 86 1990, pp. 14-31.

[KoRu90]	 E. Kounalis and M. Rusinowitch, Mechanizing Inductive Reasoning, in: Proc. of 8th AAAI
'90 (MIT Press, 1990) pp. 240-245.

[KoRu91]	 E. Kounalis and M. Rusinowitch, Studies on the ground convergence property of conditional
theories, in: Algebraic Methodology and Software Technology '91 (Springer, 1992) pp. 363
376.

[PI85] D. Plaisted, Semantic confluence tests and completion methods, Inform. and Control
65(2/3) 1985, pp. 182-215.

[Re90] Term rewriting induction, in: 10th CADE '90, LNAI 449 (Springer 1990) pp. 162-177.

[Wi95] C.-P. Wirth, Syntactic confluence criteria for positive/negative-conditional rewriting sys
tems, SEKI Report SR-95-09 (SFB), Universitat Kaiserslautern.

[Wi96]	 C.-P. Wirth, PhD-thesis, Universitat Kaiserslautern, to appear 1996.

[WiBe94]	 C.-P. Wirth and K. Becker, Abstract notions and inference systems for proofs by mathe
matical induction, in: 4th CTRS '94, to appear.

17

[Go87]
[Ka88]

[KNO90]

[KoRu90]

[KoRu91]

[P185]

[Re90]

[Wi95]

[Wi96]
[WiBe94]

R. Gobel, Ground confluence, in: 2nd RTA 87, LNCS 256 (Berlin, 1991) pp. 156-167.

S. Kaplan, Positive/Negative Conditional Rewriting, in: Conditional Term Rewriting Sys-
tems, LNCS 308 (Springer, 1987) pp. 129-143.

D. Kapur, P. Narendran and F . Otto, On ground-confluence of term rewriting systems,
Inform. and Comp. 86 1990, pp. 14-31.

E. Kounalis and M. Rusinowitch, Mechanizing Inductive Reasoning, in: Proc. of 8th AAAI
’90 (MIT Press, 1990) pp. 240-245. '

E. Kounalis and M . Rusinowitch, Studies on the ground convergence property of conditional
theories, in: Algebraic Methodology and Software Technology ’91 (Springer, 1992) pp. 363-
376.

D. Plaisted, Semantic confluence tests and completion methods, Inform. and Control
65(2/3) 1985, pp. 182-215.

Term rewriting induction, in: 10th CADE ’90, LNAI 449 (Springer 1990) pp. 162-177.

C.-P. Wirth, Syntactic confluence criteria for positive/negative-conditional rewriting sys-
tems, SEKI Report SR-95-09 (SFB), Universitit Kaiserslautern.

C.-P. Wirth, PhD-thesis, Universitat Kaiserslautern, t o appear 1996.

C.-P. Wirth and K . Becker, Abstract notions and inference systems for proofs by mathe-
matical induction, in: 4th CTRS ’94, to appear.

17

A Proofs

In the sequel we always abbreviate --+(I;O;R) by --+.

Theorem 2.1 Let (~o, R) be reductive wrt. a well-founded partial ordering >-.
Then --+(I;o,R) is ground confluent iff BCrit(~o, R) is weakly Eo-ground joinable wrt.
--+(I;O,R)'

Proof: We first define an auxiliary predicate Q on T(~): For t E T(~) let Q(t) be
true iff the following implication holds for all t1,t2 E T(E): whenever t --+ t i (i=1,2),
then there exists to E T(~) such that t i --+* to (i=I,2). Thus, if Q(t) is shown to be
true for all t E T(E), then it follows that --+ is locally ground confluent. As --+ is
terminating, --+ is even ground confluent.

In the sequel we show that Q(t) is true for all t E T(E), using Noetherian induction
wrt. >-. Let Q(s) be true for all S E T(E) satisfying t >- s. It follows directly that --+
is locally confluent and thus confluent below {t}.

Now consider an overlap t --+ ti (i=1,2). Let t --+ t1 with the rule R : f => u ---+ v,.6.
and the Eo-ground substitution r1 at the position p E O(t). Further, let t --+ t2

with the rule R' : f' => u' ---+ Vi, 6.' and the Eo-ground substitution r2 at the position
q E O(t). We assume that Rand R' share no variables. Thus, we can make one
substitution r from r1 and r2.

The case where p and q are disjoint positions is obvious. Thus, we only consider the
case where (say) q is below p. Let q = pr for a suitable position r. So we have
r(u)lr _ r(u').

Let first r E O(u) and ul r rt V. Then ul r and u' are Eo-unifiable with a most general
Eo-unifier f-l. Let r = Pf-l for a suitable Eo-ground substitution p. Consider the bou'nded
critical clause (Cl {f-l(u)}) res~lting from Rand R'. First note that --+ is confluent
below {Pf-l(u)}. This follows from the fact that t >- s C: r(u) - Pf-l(u) (note that (~o, R)
is reductive wrt. >-) and that --+ is confluent below {t} (according to the induction
hypothesis). Furthermore note that pf-l(f => .6.) and pf-l(f' => 6.') are unjoinable
because the two rules Rand R' are applicable wrt. the Eo-ground substitution r. As
BCrit(R) is weakly joinable wrt. --+ it follows that p(f-l(u) [f-l(v')]p) = Pf-l(v) is joinable
wrt. --+. Thus, t 1 = t2 is joinable as well, which has to be shown.

Now let r rt O(u) or r E O(u) and ul r E V. Hence, r(u') is a sub-term of r(x) for some
variable x E var(u). Let r(x)lrf r(u'). We define a new Eo-ground substitution
r' as follows: Let r'(x) r(x)[r(v')]rf and let r'(y) r(y) for all y :1= x. Then
r (z) --+* r' (z) for all variables z. Next we show that r' (u) --+ r' (v) . Using this
relation we easily obtain the desired result.

We know that r(u) --+ r(v). Thus r(f :::} 6.) is unjoinable wrt. --+. We show that
r'(f => .6.) is unjoinable wrt. --+ too. Let first c = d E f. We have r'(c) f--*
r(t) t r(d) --+* r'(d). Now we use the fact that t >- s C: r(u) >- r(c),r(d). As
--+ is confluent below {t} according to the induction hypothesis, we can infer that
r'(c) t r'(d). Next let c = d E 6.. We have r(c) --+* r'(c) and r(d) --+* r'(d).

18

A Proofs

In the sequel we always abbreviate — xz, =) by —.

Theorem 2.1 Let (Zy,R) be reductive wrt. a well-founded partial ordering > .
Then — (5 , x , is ground confluent iff BCrit(Xy, R) is weakly Zo-ground joinable wrt.
— (Zo r)

Proof: We first define an auxiliary predicate Q on T (X) : For t € T'(X) let Q(t) be
true iff the following implication holds for all t ; , t , € T'(X): whenever t — t; (i=1,2),
then there exists tg € T(X) such that t; —* to (i=1,2). Thus, if Q(t) is shown to be
true for all t € T(X), then i t follows that — is locally ground confluent. As — is
terminating, — is even ground confluent.
In the sequel we show that Q(t) is true for all t € T(X) , using Noetherian induction
wrt. > . Let Q(s) be true for all s € T (X) satisfying t > s. I t follows directly that —
is locally confluent and thus confluent below { t } . ;

Now consider an overlap t — t; (i=1,2). Let t —t ; with the rule R: IT =u = v ,A
and the Xy-ground substitution 7; at the position p € O(t). Further, let t — to
with the rule R' : IV = uw — v', A ’ and the Xg-ground substitution 7» at the position
q € O(t) . We assume that R and R’ share no variables. Thus, we can make one
substitution 7 from 7; and 72 .

The case where p and g are disjoint positions is obvious. Thus, we only consider the
case where (say) ¢ is below p. Let ¢ = pr for a suitable position r . So we have
7(u)| , = 7(u) .

Let first r € O(u) and u| , € V. Then u| , and u’ are Xo-unifiable with a most general
Yo-unifier u. Let 7 = pu for a suitable Zo-ground substitution p. Consider the bounded
critical clause (C|{u(u)}) resulting from R and R'. First note that — is confluent
below {pp(w)}. This follows from the fact that t > s > 7(u) = pu(u) (note that (Xo, R)
is reductive wrt . >) and that — is confluent below { t } (according to the induction
hypothesis). Furthermore note that pu(I' = A) and pu(I' = A’) are unjoinable
because the two rules R and R' are applicable wrt. the Zo-ground substitution 7 . As
BCrit(R) is weakly joinable wrt. — it follows that p(u(u)[p(v")],) = pp(v) is joinable
wrt. —. Thus, t ; = 7% is joinable as well, which has to be shown.

Now let r € O(u) or r € O(u) and u | , € V . Hence, 7(v') is a sub-term of 7(z) for some
variable x € var(u). Let 7(z)|» = 7(u'). We define a new Xo-ground substitution
7" as follows: Let 7/(z) = 7(z)[r(v')]» and let 7'(y) = 7(y) for all y #Z x. Then
T(z) —* 7'(2) for all variables z. Next we show that 7'(u) — 7'(v). Using this
relation we easily obtain the desired result.

We know that 7(u) — 7(v). Thus 7(I' = A) is unjoinable wrt. —». We show that
7/(I' = A) is unjoinable wrt. — too. Let first c = de I . We have 7'(¢) «+—*
T(e) | 7(d) —* 7'(d). Now we use the fact that t = s = 7(u) > 7(c),7(d). As
— is confluent below { t } according to the induction hypothesis, we can infer that
T'(c) | 7'(d). Next let c = de A. We have 7(c) —* 7'(¢) and 7(d) —* 7'(d).

18

Furthermore, r(c) = r(d) is not joinable wrt. ----+. Suppose, r'(c) = r'(d) were
joinable wrt. ----+. As t >- s ~ r(u) ~ r'(u) >- r'(c), r'(d) and as ----+ is confluent
below {t} according to the induction hypothesis we could infer that r(c) = r'(d) were
joinable wrt. ----+ too. 0

Lemma 3.2 Let I be inductively sound. Then f- con is inductively sound.

Proof: Let (H; 9, G) f- con (H, G; 9,91')' Thus, by the definition of f-con, (H, G; 9c) is

inductive. Now let (H, G; 9, 91') be inductive. It directly follows that (H, G; 9, 9') is

inductive, where 9' = 9c U 91" We show that (H; 9, G) is inductive, using Noetherian

induction wrt. >-i' For that purpose let Q be an auxiliary predicate which is defined

on 9 U {G}-instances as follows:

Let Q(K, p) be true for a 9 U {G}-instance (K, p) iff the following condition holds: If

P(K, p) is false, then there exists a H-counterexample (H, 11') such that (K, p) >-i (H,11').

We show that Q(K, p) is true for all 9U{G}-instances (K, p). (H; 9, G) is then inductive

according to the definition.

Let (K, p) be a 9 U {G}-instance. We assume that Q(K', p') is true for all 9 U {G}

instances (K', p') with (K, p) >-i (K', p'). Let P(K, p) be false.

Case 1: K = G. Thus, P(G, p) is false. As I is inductively sound, there are two cases

to be considered:

Case 1.1: There exists a H-counterexample (H,11') such that (G, p) >-i (H,11'). In that

case we can directly infer that Q(K, p) is true.

Case 1.2: There exists a 9 U 9'-counterexample (G', r') such that (G, p) >-i (G', r').

As (H, G; 9, 9') is inductive, there exists a H U {G}-counterexample (K', p') such that

(G', r') >-i (K', p').

Case 1.2.1: K' = G. According to the induction hypothesis, Q(K', r') is true. It follows

that there exists a H-counterexample (H,11') with (K', r') >-i (H,11'). As (K, p) >-i

(G',r') >-i (H,11'), Q(K,p) is true too.

Case 1.2.2: K' f= H. In that case we can directly infer that Q(K, p) is true.

Case 2: K E 9~ As (H, G; 9,9') is inductive, there exists a H U {G}-counterexample

(K', p') such that (G', r') >-i (K', p'). Now we can proceed just as in case 1.2. 0

Lemma 3.3 Let I be inductively sound. Then f- rec ~ f-con-

Proof: We show (by using induction on i) that the following two implications are true
for all natural numbers i:
(a) If (H;9) f- i (H';9'), then (H;9) f- con (H';9').
(b) If (H; 9) f-; (H'; 0), then (H; 9) is inductive.
The claim then follows directly.

Let first i = O. The first statement (a) is trivially satisfied. For the second statement
(b) note that f-g is the identity relation. But, if (H; 9) is such that 9 = 0, then we
know from Lemma 3.1 above that (H; 9) is inductive.
Now we assume that the statements hold for a given i. Consider first the statement
(a). Let (H; 9) f-i+l (H'; 9'). Hence, we have (H'; 9c) f-i (H"; 0). Using the induc
tion hypothesis we can infer that (H'; 9c) is inductive. It then follows directly that

19

Furthermore, 7(c) = 7(d) is not joinable wrt. —>. Suppose, 7'(c) = 7'(d) were
joinable wrt. —. As t > s >= 7(u) > 7(u) > 7'(c),7'(d) and as — is confluent
below { t } according to the induction hypothesis we could infer that 7(c) = 7'(d) were
joinable wrt . — too. 0

Lemma 3.2 Let Z be inductively sound. Then | , is inductively sound.

Proof: Let (# ;G ,G) Feon (H,G;G,G,). Thus, by the definition of on , (H,G;G,) is
inductive. Now let (H,G;G,G,) be inductive. It directly follows that (#,G;G,G’) is
inductive, where G' = G. U G,. We show that (# ;G , G) is inductive, using Noetherian
induction wrt. > ; . For that purpose let Q be an auxiliary predicate which is defined
on G U {G}-instances as follows:
Let Q(K, p) be true for a G U {G}-instance (K, p) iff the following condition holds: I f
P(K, p) is false, then there exists a H-counterexample (H, 7) such that (KX, p) > ; (H, 7).
We show that Q(K, p) is true for all GU{G}-instances (K, p). (MH; G,G) is then inductive
according to the definition.
Let (K,p) be a GU {G}-instance. We assume that Q(K’, p) is true for all GU {G}-
instances (K’ ,po’) with (K, p) > ; (K' , po’). Let P(K, p) be false.
Case 1: K = G. Thus, P(G, p) is false. As I is inductively sound, there are two cases
to be considered:
Case 1.1: There exists a H-counterexample (H, 7) such that (G, p) > ; (H,n). In that
case we can directly infer that Q(K, p) is true.
Case 1.2: There exists a G U G'-counterexample (G', 7’) such that (G ,p) > ; (G',7) .
As (H,G;G,G') is inductive, there exists a HU {G}-counterexample (K”, p') such that
(G7) = i (K',) .
Case 1.2.1: K ' = G. According to the induction hypothesis, Q(K’, 7’) is true. It follows
that there exists a H-counterexample (H,w) with (K',7') > ; (H,n). As (K,p) = ;

(G' ,7") = ; (H, 7), Q(K, p) is true too.
Case 1.2.2: K’' £ H . In that case we can directly infer that Q(K, p) is true.
Case 2: K € G. As (H,G;G,G") is inductive, there exists a H U {G}-counterexample
(K ' ,p') such that (G' ,7") > ; (K ' , p'). Now we can proceed just as in case 1.2. O

Lemma 3.3 Let Z be inductively sound. Then ec € Feon -

Proof: We show (by using induction on 3) that the following two implications are true
for all natural numbers i :
(a) If (H; 9) bi (H’; 6’), then (H;G) boon (HG).
(b) If (H;G) FH (H';0), then (#;G) is inductive.
The claim then follows directly.

Let first 7 = 0. The first statement (a) is trivially satisfied. For the second statement
(b) note that J is the identity relation. But, i f (H;G) is such that G = 0, then we
know from Lemma 3.1 above that (7 ; G) is inductive.
Now we assume that the statements hold for a given i . Consider first the statement
(a). Let (H;G) kiya (H';G'). Hence, we have (H';G.) +! (#";0). Using the induc-
tion hypothesis we can infer that (H';G.) is inductive. It then follows directly that

19

(H; 9) f- con (H'; 9'). Now consider the statement (b). Let (H; 9) f-i+l (H'; 0). Then,
as we have just proved, (H; 9) f-~on (H'; 0). As I consists of sound inference rules, f- con

is inductively sound. It follows that (H; 9) is inductive. 0

Before we prove Lemma 4.1 we briefly consider an auxiliary lemma.

Lemma Let G : (Clblw) be a syntactic construct. Let rJ be a ~-substitution such that
rJ(G) is a syntactic construct too. If (rJ(G), T) is a counterexample and if TrJ ---t* Psuch
that p is a ~o-ground substitution, then (G, p) is a counterexample with (rJ(G), T)t z.(G, p).•

Proof: Let, C : <I> * W. Let (rJ(G), T) be a counterexample. Thus, ---t is confluent
below TrJ(b) and TrJ(C) is unjoinable wrt. ---t. Let p be a ~o-grouri.d substitution such
that TrJ(X) ---t* p(x). We show that (G, p) is a counterexample too.

First we show that p(C) is unjoinable wrt. ---t. Let C = d E <I>. As TrJ(C = d) is joinable
we have p(c) +-----* TrJ(C) -!- TrJ(d) ----+* p(d). As TrJ(b) >-m TrJ(C), TrJ(d) and as ---t is
confluent below TrJ(b), we obtain p(c) -!- p(d). Now let C = d E .6.. If p(c) -!- p(d), then
we would directly obtain TrJ(C) -!- TrJ(d). Hence, p(C) is indeed unjoinable wrt. ---t. As
TrJ(b) t mP(b), ---t is confluent below p(b). Thus, (G, p) is indeed a counterexample.

As TrJ(W) t mP(w) it follows that (rJ(G), T) t i(G, p). 0

Lemma 4.1 11 is inductively sound.

Proof: Let (H; 9, G) be a prover state. Let G : (Clblw) with C : <I> * W. Let S be
a complete case splitting for C such that r * .6. is bounded by j.L(b) for all (j.L, r *
.6.) E S. Let 9' consist of all syntactic constructs (r,j.L(<I» * j.L(w),.6.Ij.L(b)Ij.L(w)) with
(j.L, r * .6.) E S. Thus, let 11 : G ~ (0,9').

Suppose that (G, T) is a G-counterexample. Thus, ---t is confluent below T(b) and
T(C) is unjoinable wrt. ---t. According to the lemma above we can assume that T is
irreducible wrt. ---t. As S is a complete case splitting for C, there exists (j.L, r * .6.) E

S and a ground substitution T' such that T = T' j.L and such that T' (r *'.6.) is unjoinable
wrt. ---t. Now consider G' : (C'Ij.L(b)Ij.L(w)), where C' : r, j.L(<I» * j.L(w) , .6.. First note
that T' (C') is unjoinable. As T = T' j.L, ---t is confluent below T' j.L(b). Thus, (G', T') is a
counterexample. Furthermore, we obviously have (G,T) ti(G',T') as T(W) = T'j.L(W).
o

Lemma 4.1 h is inductively sound.

Proof: Let (H; 9, G) be the actual prover state. Let K : (r * U = v, .6.lb'lw') be a
syntactic construct from H U 9 U £. Let rJ be an arbitrary ~-substitution such that
rJ(K) is a syntactic construct too. Let G : (Clblw) with C : <I>, E * W, where the
(pseudo-)equation E : s[rJ(u)] = t contains an instance of u. (The case C : <I> * E; W
is treated just analogously.) Let 9c contain all the constructs G~ : (<I> * rJ(A), wlblw)
with A E r, G~ : (<I>, rJ(B) * wlblw) with B E .6. and G~ : (<I> * rJ(x)!, wlblw) such
that x E var(k) and rJ(x) tf. T(~o, V). Let G' : (C'lblw) with C' : <I> * s[rJ(v)] = t, W
resp. C': <I>,s[rJ(v)] = t * W. Finally, let h: G ~ (Qc, {G'}). Thus the following
conditions are satisfied:

20

(H;G) Feon (H';G'). Now consider the statement (b). Let (H;G) F i , (H';0). Then,
as we have just proved, (H;G) F,, (H';0). As T consists of sound inference rules, Fon,
is inductively sound. It follows that (H;G) is inductive. O

Before we prove Lemma 4.1 we briefly consider an auxiliary lemma.

Lemma Let G : (C|b|w) be a syntactic construct. Let o be a X-substitution such that
o(Q) is a syntactic construct too. If (6(G), 7) is a counterexample and if ro —* p such
that pis a Y-ground substitution, then (G, p) is a counterexample with (0(G), 7)Z ;(G, p)-

Proof: Let.C' : & = ¥ . Let (0 (G) ,7) be a counterexample. Thus, — is confluent
below ro(b) and 70(C) is unjoinable wrt. —. Let p be a Zo-ground substitution such
that 7o(z) —* p(z). We show that (G, p) is a counterexample too.
First we show that p(C) is unjoinable wrt. —. Let c = de ®. As 7o(c = d) is joinable
we have p(c) +—* 1o(c) | ro (d) —* p(d). As ro(b) > To(c),70(d) and as — is
confluent below 7a (b), we obtain p(c) | p(d). Now let c= de A . If p(c) | p(d), then
we would directly obtain ro(c) | ro(d) . Hence, p(C) is indeed unjoinable wrt. —. As
To(b) Z ,.p(b), — is confluent below p(b). Thus, (G, p) is indeed a counterexample.
As to(w) ZZ, p (w) it follows that (0(G),7) Z (G , p). O

Lemma 4 .1 I; is inductively sound.

Proof: Let (#;G,G) be a prover state. Let G : (C|blw) with C : ® = ¥ . Let S be
a complete case splitting for C such that I' = A is bounded by p(b) for all (x, I" =
A) € S. Let G' consist of all syntactic constructs (I , u(®) = p (¥) , A|u(b)|p(w)) with
(4 , T= A) € S. Thus, let I; : G ~ (0,5).
Suppose that (G ,7) is a G-counterexample. Thus, — is confluent below 7(b) and
7(C) is unjoinable wrt. —». According to the lemma above we can assume that 7 is
irreducible wrt. —. As S is a complete case splitting for C , there exists (u, I’ = A) €
S and a ground substitution 7 ’ such that 7 = 7 'u and such that 7’(T =¥A) is unjoinable
wrt. —>. Now consider G' : (C'|u(b)|u(w)), where € : T, u(®) = u (¥) , A . First note
that 7’(C”) is unjoinable. As 7 = 7 'u , — is confluent below 7'u(b). Thus, (G',7') is a
counterexample. Furthermore, we obviously have (G,7) Z .(G', 7’) as T(w) = 7'u(w).
O

Lemma 4 .1 I , is inductively sound.

Proof: Let (H;G,G) be the actual prover state. Let K : (I' = u = v, Alb'Jw’) be a
syntactic construct from H UG U L . Let vo be an arbitrary ¥-substitution such that
o(K) is a syntactic construct too. Let G : (C|blw) with C : ® ,E = VW, where the
(pseudo-)equation E : s[o(u)] = t contains an instance of u. (The case C : ® = E ;¥
is treated just analogously.) Let G, contain al l the constructs G2 : (® = o(A) , ¥|b|lw)
with A € T, GP : (9,0(B) = ¥|blw) with B € A and G* : (® = o(z)!, ¥|bjw) such
that x € var(k) and o(z) € T(Zo,V). Let G' : (C'|blw) with C' : & = s[o(v)] = t , U
resp. C ' : ®, s[o(v)] = t = VU. Finally, let I, : G ~ (G.,{G'}). Thus the following
conditions are satisfied:

20

(a) w >-m a(w/) if K E 1-l and w t ma(w/) if K E Q.
(b) btma(b').
(c) b >-m {s[a(v)]} and b >-m {a(x)} for all x E var(K) and a(x) tJ. T(L:a,V).

Suppose that (G,7) is a G-counterexample. Thus, ---+ is confluent below 7(b) and

7(C) is unjoinable wrt. ---+.

Case 1: 7(Cc) is unjoinable wrt. ---+ for some Gc : (Cc I b I w) with Gc E Qc' As ---+

is confluent below the bound 7(b), (Gc> 7) is a counterexample. As Gc has the same

weight as G, we have (G,7) t i(Gc,7).

Case 2: 7(Cc) is joinable wrt. ---+ for all Gc : (Cc I b I w) with Gc E Qc. In par

ticular, 7(<I> =* a(x)!, 'lI) is joinable wrt. ---+. As 7(<I> =* 'lI) is unjoinable wrt. ---+

by the assumption, it follows that there exists a L:a-ground substitution 7/ such that

7a(x) ---+* 7/(X) for all x.

Case 2.1: 7a(f =* u = v,~) is unjoinable wrt. ---+. Note that ---+ is confluent below

7a(b') as 7(b) t 7a(b') and as ---+ is confluent below 7(b). Thus, (a(K), 7) is a coun

terexample. It follows from the auxiliary lemma above that (K,7/) then is a counterex

ample too, satisfying (a(K),7) t i (K,7/). If K E 1-l, then 7(W) >-m 7a(w/) t 7/(W/).
m
If K E Q, then 7(W) tm7a(w/) tm7/(w/). The case K E I:- is impossible as lem
mata cannot give rise to counterexamples. Thus, (K,7/) is a counterexample with
(G,7) >-i (K,7/) resp. (G, 7) t i(K, 7/).
Case 2.2: 7a(f =* u = v,~) is joinable wrt. ---+. Thus, as 7a(f =* ~) is unjoinable
by the assumption, 7a(u = v) is joinable wrt. ---+. Now consider the antecedent
(pseudo-)equation E': s[a(v)] = t. We show that 7(E') is joinable wrt. ---+. We have
7(s)[7a(v)] -!- 7(s)[7a(u)] -!- 7(t). The latter relation holds as 7(C) is unjoinable. As
7(b) >- 7(S) and as ---+ is confluent below 7(b), we can infer that 7(s)[7a(v)] -!- 7(t).
Thus, 7(C/) is unjoinable. As ---+ is confluent below the bound 7(b), (G/,7) is a
counterexample. As G and G/ have the same weights, (G, 7) t i(G/, 7). 0

Lemma 4.1 13 is inductively sound.

Proof: Let (1-l; g, G) be the actual prover state. Let K : (fa, f 1 =* ~a, ~llb/lw/) be
a syntactic construct from 1-l U QuI:-. Let a be an arbitrary L:-substitution such that
a(K) is a syntactic construct too. Let G : (Clblw) with C : a(fa), <I>1 =* a(~a), 'lI 1 .

Let Qc contain all the syntactic constructs G~ : (<I>1 =* a(A), wllblw) with A E f 1,
G~ : (<I>I,a(B) =* wllblw) with B E ~1 and G~ : (<I>1 =*a(x)!, wllblw) such that
x E var(K) and such that a(x) tJ. T(L:a,V). Finally, let 13 : G'"'-'+ (Qc, 0). Thus, the
following conditions are satisfied:
(a) w >-m a(w/) if K E 1-l and w t ma(w/) if K E Q.
(b) btma(b').
(c) b >-m {a(x)} for all x E var(K) and a(x) tJ. T(~a, V).

Now assume that (G,7) is a G-counterexample. Thus, ---+ is confluent below 7(b) and

7(C) is unjoinable wrt. ---+.

Case 1: 7(Cc) is unjoinable wrt. ---+ for some Gc : (Cc I b I w) with Gc E Qc' As ---+

is confluent below the bound 7(b), (Gc, 7) is a counterexample. As Gc has the same

weight as G, we have (G,7) t i(GC ' 7).

Case 2: 7(Cc) is joinable wrt. ---+ for all Gc : (Cc I b I w) with Gc E Qc' In

21

(a) w >m o(w) it KeH and wz „o(wW) £K € G.
(b) b z ot) .
(c) b>m {s[o(v)]} and b >,, {o(z)} for all x € var(K) and o(z) & T(Xo, V).
Suppose that (G,7) is a G-counterexample. Thus, — is confluent below 7(b) and
7(C) is unjoinable wrt. —.
Case 1: 7(C;) is unjoinable wrt. — for some G. : (C. | b | w) with G. € G.. As —
is confluent below the bound 7(b), (G¢, 7) is a counterexample. As G,. has the same
weight as G, we have (G,7) Z (Ge,7).
Case 2: 7(C.) is joinable wrt . — for al l G . : (C. | b | w) with G, € Ge. In par-
ticular, 7(® = o (z) ! ,¥) is joinable wrt. —. As 7(® = WV) is unjoinable wrt. —
by the assumption, i t follows that there exists a ¥g-ground substitution 7 such that
To(z) —* 7'(z) for all z.
Case 2.1: ro(T = u =v , A) is unjoinable wrt. —. Note that — is confluent below
To (b') as 7(b) Z ro(b') and as — is confluent below 7(b). Thus, (¢(K), 7) is a coun-
terexample. I t follows from the auxiliary lemma above that (K, 7’) then is a counterex-
ample too, satisfying (o(K), 7)Z , (K , 7’). I f K € H , then 7(w) =p, To(w') Z „T ' (w') .
If K € G, then 7(w) Z „ ro (w ') Z 7 (w ') . The case K € L is impossible as lem-
mata cannot give rise to counterexamples. Thus, (KX, 7’) is a counterexample with
(G,7) > : (K, 7") resp. (G ,7) Z ,(K,T).
Case 2.2: ro(T = u =v , A) is joinable wrt. —. Thus, as ro(T = A) is unjoinable
by the assumption, 7o(u = v) is joinable wrt. —>. Now consider the antecedent
(pseudo-)equation E’ : s[o(v)] = t. We show that T(E") is joinable wrt. —». We have
7(8)[ro(v)] | 7(s)[ro(u)] | 7(t). The latter relation holds as 7(C) is unjoinable. As
7(b) > 7(s) and as — is confluent below 7(b), we can infer that 7(s)[ro(v)] | T(t).
Thus, 7(C") is unjoinable. As — is confluent below the bound 7(b), (G',7) is a
counterexample. As G and G' have the same weights, (G,7) Z ,(G',7). D

Lemma 4 .1 [3 is inductively sound.

Proof: Let (H;G,G) be the actual prover state. Let K : (Ip ,Ti = Ag, Ay|0|w') be
a syntactic construct from HUG UL . Let o be an arbitrary X-substitution such that
o(K) is a syntactic construct too. Let G : (C|blw) with C : o(Ty),®; = o(Ay), Y ı .
Let G. contain all the syntactic constructs G4 : (®, = o(A), ¥,|bjw) with A € Ty,
GB : (®,,0(B) = Yılblw) with B € A; and G* : (®; = ‘o(z)!, ¥;|b|lw) such that
x € var(K) and such that o(z) € T(Zo,V). Finally, let Iz : G ~ (G,,0). Thus, the
following conditions are satisfied:
(@wrpoW)ifKeHandwZ ow) i f K eg.
(b) bz o t) .
(c) b>m {o (z) } for all x € var(K) and o(z) g T(Zo, V) .

Now assume that (G, 7) is a G-counterexample. Thus, — is confluent below 7(b) and
7(C) is unjoinable wrt. —.
Case 1: 7(C,) is unjoinable wrt. — for some G . : (C, | b | w) with G, € Ge. As —
is confluent below the bound 7(b), (G., 7) is a counterexample. As G. has the same
weight as G, we have (G ,7) Z (Ge, 7).
Case 2: 7(C.) is joinable wrt. — for all G; : (C. | b | w) with G, € Ge. In

21

particular, T(<1>l ~ a(x)!, W1) is joinable wrt. ---+ for all x E var'(K) such that
a(x) tf. T('L-o,V). As T(<1>l ~ W1) is unjoinable wrt. ---+ due to the fact that T(C) is
unjoinable by assumption, it follows that there exists a I:o-ground substitution T' such
that Ta(x) ---+* T'(X) for all x.

We next show that Ta(fo, f 1 ~ ~o, ~d is unjoinable wrt. ---+. Assume the contrary.
Thus, Ta(fo,f1 ~ ~O,~l) is joinable wrt. ---+. As T(Cc) is joinable wrt. ---+ and
as T(<1>l ~ W1) is unjoinable wrt. ---+, it follows that Ta(f1 ~ ~1) is unjoinable
wrt. ---+. According to the assumption, Ta(fo ~ ~o) is joinable wrt. ---+. But then
it follows that T(C) is joinable wrt. ---+, which contradicts the fact that (G, T) is a
counterexample.

Thus, Ta(fo, f 1 ~ ~o, ~d is indeed unjoinable wrt. ---+. Note that ---+ is confluent
below Ta(b') because T(b) ~ Ta(b'). It follows from the auxiliary lemma above that
(K, T') is a counterexample too. If K E 1-£, then T(W) >-m Ta(w') ~ mT'(W'). If K E 9,
then T(W) ~ mTa(w') ~ mT'(w'). The case K E [, is impossible as lemmata cannot give
rise to counterexamples. Thus, (K, T') is a counterexample with (G, T) >-i (K, T') resp.
(G,T) ~i(K,T'). 0

Lemma 4.1 14 is inductively sound.

Proof: Let (1-£; 9, G) be the current prover state. Let G : (Clblw) with C : <1>, A ~

W. (The case C : <1> ~ A, W is treated just analogously.) Let G' : (C'lblw) with
C' : <1> ~ W. Let Gc : (Cclblw) with Cc : <1> ~ A, W (resp. Cc: <1>, A ~ w). Thus,
14 : G'Vt ({Gc}, {G'}).

Assume that (G, T) is a G-counterexample. Thus, ---+ is confluent below T(b) and T(C)
is unjoinable wrt. ---+. Then T(C') is unjoinable wrt. ---+ too. As G and G' have the
same weights, (G', T) is a counterexample with (G, T) ~ i (G', T). 0

Theorem 4.1 Let ('L-o,R) be reductive wrt. a well-founded partial ordering >-. Let
f- I = f- rec or f- I = f- con . Let BCrit("Eo,R) .~ 9. Let (0; 9) h: ... f- I (1-£'; 0). Then
---+(~o:R.) is ground confluent.

Proof: Let (0; 9) f- I ... f- I (1-£'; 0). As I is inductively sound it follows from Lemma
3.2 that f- I is inductively sound too. Using Theorem 3.1 it follows that P(Q) is true..
The latter means that BCrit('L-o,R) is weakly ground joinable. Thus, ---+(~o:R.) is
ground confluent according to Theorem 2.1. 0

22

particular, 7(®, = o (z) ! , ¥ ;) is joinable wrt. — for al l z € var(K) such that
o(z) € T(Xo,V). As 7(®; = Y,) is unjoinable wrt. — due to the fact that 7(C) is
unjoinable by assumption, i t follows that there exists a Zo-ground substitution 7 ’ such
that ro(z) —* 7'(z) for all z.
We next show that ro (To,T ; = Ap, A ;) is unjoinable wrt. —. Assume the contrary.
Thus, ro(To,T, = Ag, Ay) is joinable wrt. —. As 7(C.) is joinable wrt. — and
as 7(®; = ¥ ,) is unjoinable wrt. —, i t follows that 7o(I';, = A ;) is unjoinable
wrt. —. According to the assumption, 7a (Ig => Ay) is joinable wrt. —. But then
i t follows that 7(C) is joinable wrt. —, which contradicts the fact that (G,7) is a
counterexample.

Thus, 70(To,T; = Ay, A ;) is indeed unjoinable wrt. —. Note that — is confluent
below To (b') because 7(b) X 7o(b). It follows from the auxiliary lemma above that
(K,7') is a counterexample too. If K € H, then 7(w) >m ro(w') X „ r ' (w ') . HK €G,
then 7(w) Z ,7o(w') 2, 7 ' (w ') . The case K € L is impossible as lemmata cannot give
rise to counterexamples. Thus, (K, 7’) is a counterexample with (G, 7) > ; (K, 7’) resp.
(G ,7)z , (K ,7) . O

Lemma 4 .1 I , is inductively sound.

Proof: Let (H;G,G) be the current prover state. Let G : (Cl|blw) with C : ®, A =
VU. (The case C : ® = A ,V is treated just analogously.) Let G' : (C'|blw) with
C ' :® = VU. Let G. : (C.|b)w) with C, : ® = A ,¥ (resp. C. : ® , A = ¥) . Thus,
I : G ~ {GC} {CP
Assume that (G, 7) is a G-counterexample. Thus, — is confluent below 7(b) and 7(C)
is unjoinable wrt . —>. Then 7(C") is unjoinable wrt. — too. As G and G' have the
same weights, (G’, 7) is a counterexample with (G,7) Z ,(G',7). O

Theorem 4.1 Let (Xo,R) be reductive wrt. a well-founded partial ordering > . Let
Fz = Free OF Fz = boon. Let BOTit(Zo,R) € G. Let (0;G) Fz --- Fz (H';0). Then
—(zo .%) IS ground confluent.

Proof: Let (0;G) Fz --- Fz (H';0). As Z is inductively sound it follows from Lemma
3.2 that 7 is inductively sound too. Using Theorem 3.1 i t follows that P(G) is true.”
The latter means that BCrit(Zo,R) is weakly ground joinable. Thus, —s ,) is
ground confluent according to Theorem 2.1. O

22

B Examples

We briefly discuss the introductory examples once again, using now our proving method
in a formal manner. In order to simplify notations we write sx instead of s(x).

Let R consist of the following rules - written now in a clausal fashion:

(RI) :::} even(O) -7 t

(R2) :::} even(sx) -7 t , even(x) = t

(R3) :::} even(ssx) -7 even(x)

Let L:o be the sub-signature of L: that consists of the constructors 0, S, t, f. (L:o, R) is
obviously reductive wrt. a suitable recursive path ordering. We show that ---+(EO,R) is
ground confluent, using Theorem 4.1. Our goal is to show that the set BCrit(~o, R)
- which contains the bounded clause C : (:::} even(x) = t, even(sx) = t I {even(ssx)})
only ~ is weakly ~o-ground joinable wrt. ---+(Eo,R)' The initial weight chosen for this
bounded clause is the bound {even(ssx)}. We use the derivation relation f- rec induced
by I. Let
Go.o : (:::} even(x) = t, even(sx) =7 t I {even(ssx)} I {even(ssx)})
be the initial goal. We first use rule 11 wrt. the complete case splitting S = {(x t---+

0,0 :::} 0), (x t---+ sx, 0 :::} O)}. The first case is easy, so we do not consider it further.
Let
GO.l : (:::} even(sx) = t, even(ssx) = t I {even(sssx)} I {even(sssx)})
result from Go.o by applying the instantiation x t---+ sx. Now we can use the inference
rule Iz in order to simplify GO.l . More concretely, we use the rewrite rules R3 as
a lemma in order to rewrite even(ssx) into even(x). The application of this lemma
causes no difficulties because the rewrite rule is unconditional. Note further that the
condition concerning the bounds is satisfied. Now one obtains the goal
GO.2 : (:::} even(sx) = t, even(x) = t I {even(sssx)} I {even(sssx)})
As outlined in the introduction we want to subsume GO.2 by the initial goal Go.o. The
latter indeed can be done by using rule Is. Note that the striking condition concerning
the weights is satisfied: The goal Go.o is an element of H. Thus, we have to check
whether {even(sssx)} >-m {even(ssx)}. But the latter is obviously true. It thus
follows that BCrit(~o, R) is indeed weakly L:o-ground joinable wrt. ---+(EO,R) and that
---+(EO,R) is thus ground confluent.

Let R consist now of the following rules (which are written in a clausal fashion):

(RI) :::} even(O) -7 t

(R2) :::} even(sx) -7 f ,even(x) = f

(R3) :::} even(sx) -7 t ,even(x) = t

Let ~o be the sub-signature of ~ that consists of the constructors 0, S, t, f. (~o, R) is
obviously reductive. We show that ---+(EO'7?) is ground confluent, using Theorem 4.1,
proceeding as above. Our goal is to show that the set BCrit(~o, R) - which contains

23

B Examples

We briefly discuss the introductory examples once again, using now our proving method
in a formal manner. In order to simplify notations we write sz instead of s(x).

Let R consist of the following rules — written now in a clausal fashion:

(Rl) = even(0) — t
(R2) = even(sz) — t , even(z)=t
(R3) = even(ssz) — even(z)

Let Xo be the sub-signature of ¥ that consists of the constructors 0, s , t , f . (Zp, R) is
obviously reductive wrt. a suitable recursive path ordering. We show that — x , is
ground confluent, using Theorem 4.1. Our goal is to show that the set BCrit(Xo, R)
— which contains the bounded clause C' : (= even(z) = t, even(sz) = t | {even(ssz)})
only — is weakly ¥o-ground joinable wrt. —, zy. The initial weight chosen for this
bounded clause is the bound {even(ssz)}. We use the derivation relation Fe, induced
by Z. Let
Goo : (= even(z) = t, even(sz) = t | {even(ssz)} | {even(ssz)})
be the initial goal. We first use rule I; wrt. the complete case splitting S = { (z —
0 ,0 = 0) , (z — sz ,0 = O)}. The first case is easy, so we do not consider i t further.
Let
Go i : (= even(sz) = t , even(ssz) = t | {even(sssz)} | {even(sssz)})
result from Gg by applying the instantiation z — sz. Now we can use the inference
rule I, in order to simplify Gp;. More concretely, we use the rewrite rules R3 as
a lemma in order to rewrite even(ssz) into even(z). The application of this lemma
causes no difficulties because the rewrite rule is unconditional. Note further that the
condition concerning the bounds is satisfied. Now one obtains the goal
Gos : (= even(sz) =t, even(z) = t | {even(sssz)} | {even(sssz)})
As outlined in the introduction we want to subsume Go. by the initial goal Ggg. The
latter indeed can be done by using rule J;. Note that the striking condition concerning
the weights is satisfied: The goal Gy is an element of H . Thus, we have to check
whether {even(sssz)} >m {even(ssz)}. But the latter is obviously true. I t thus
follows that BCrit(3e,R) is indeed weakly Zo-ground joinable wrt . — 5, =, and that
—zo, r) is thus ground confluent.

Let R consist now of the following rules (which are written in a clausal fashion):

(Rl) = even(0)
(R2) = even(sz

— %
) = f ,even(z)= f

(R3) = even(sz) — t ,even(z) = t

Let Ty be the sub-signature of X that consists of the constructors 0, s,¢, f . (£g,R) is
obviously reductive. We show that — zz , is ground confluent, using Theorem 4.1,
proceeding as above. Our goal is to show that the set BCrit(Zy, R) — which contains

23

the bounded clause Co : (::::} I = t, even(x) = I, even(x) = t I {even(sx)}) only - is
weakly I:o-ground joinable wrt. ---+(I:o,'R.)' Thus, let
Gooo : (::::} I = t, even(x) = j, even(x) = t I {even(sxn I {even(sxn)
be the initial goal. First we want to delete the equation I = t using rule 14 . For that
purpose we have to verify that the goal
Gl.O: (J = t::::} even(x) = I, even(x) = t I {even(sxn I {even(sx)})
can be deleted by our calculus. This is indeed possible by using the case splitting rule
11, because the empty set S = 0 is a complete case splitting for I = t ::::} even(x) =
I, even(x) = t. The latter follows from the general fact that narrowing with n into an
antecedent equation provides a complete case splitting and from the fact that in the
particular case above no narrowing step into the equation I = t is possible. Thus, the
literal elimination rule is applicable and it provides the new goal
GOo1 : (::::} even(x) = I, even(x) = t I {even(sx)} I {even(sx)}).
Now we apply rule 11 wrt. the complete case splitting S = {(x t--t 0,0 ::::} D), (x t--t

sx,O ::::} on. The new goal obtained by the instantiation x t--t 0 is easy to handle. So
we only treat the new goal
Goo2 : (::::} even(sx) = I, even(sx) = t I {even(ssx)} I {even(ssx)}).
Next we want to apply the simplification rule 12 by using the rewrite rule R2 as a lemma
(in order to simplify the first equation of Goo2)' If such an application is possibe, then
the transformed goal contains the succedent equation I = I, indicating a successful
joinability proof. Formally, one deletes the resulting transformed goal by using the rule
h, because is can be subsumed by the lemma I = f. In order to enable the mentioned
rewrite step by R2 we have to verify that the condition of R2 is satisfied wrt. the actual
context (note that the condition concerning the bounds is satisfied). Concretely, we
have to further treat the condition goal
GLl : (even(x) = I::::} even(sx) = t I {even(ssx)} I {even(ssx)}).
There are several possibilities to proceed. One could e.g. produce a case splitting by
narrowing with n into the antecedent equation. We proceed by applying the rule 12

wrt. the rewrite rule R3 (considered as a lemma) in order to produce the succedent
equation t = t. This leads to a successful treatment of the goal GLl . Again, we have
to treat the related condition goal which now has the form
G200 : (even(x) = I, even(x) = t::::} ° I {even(ssx)} I {even(ssx)}).
Now it is convenient to produce a case splitting by narrowing with n into one of the
antecedent equations, say even (x) = I. This case splitting has the form S = {(x t--t

0,0 ::::} 0), (x t--t sX,D ::::} even(x) = J), (x t--t sx,o ::::} even(x) = In. We do not
further treat the

(
goal resulting from the mere instantiation x t--t O. First we consider ,

the goal
G2.1: (even(sx) = I, even(sx) = t::::} even(x) = I I {even(sssxn I {even(ssxn)·
This goal can be transformed by using 12 wrt. tp.e lemma R2. Concretely, we use
R2 in order to produce the antecedent equation I = t. The newly generated goal is
then deletable because the empty set provides a complete case splitting for this goal.
The verification that R2 is indeed applicable is easy now: The related condition clause
contains the equation even(x) = I as an antecedent and succedent equation. One can
use now a suitable lemma to subsume this condition clause. The second goal to be
considered is

24

the bounded clause Co : (= f = t, even(z) = f , even(z) = t | {even(sz)}) only — is
weakly Yo-ground joinable wrt. — 5, =) . Thus, let
Goo: (= f = t , even(z) = f , even(z) = t | {even(sz)} | {even(sz)})
be the initial goal. First we want to delete the equation f = ¢ using rule I;. For that
purpose we have to verify that the goal
Giro: (f = t = even(z) = f, even(z) = t | {even(sz)} | {even(sz)})
can be deleted by our calculus. This is indeed possible by using the case splitting rule
I , because the empty set S = @ is a complete case splitting for f = t = even(z) =
f , even(z) = t. The latter follows from the general fact that narrowing with R into an
antecedent equation provides a complete case splitting and from the fact that in the
particular case above no narrowing step into the equation f = t is possible. Thus, the
literal elimination rule is applicable and i t provides the new goal
Go i : (= even(z) = f , even(z) = t | {even(sz)} | {even(sz)}).
Now we apply rule I), wrt. the complete case splitting S = {(z — 0 ,0 = 0) , (z —
s r , 0 = 0) } . The new goal obtained by the instantiation x — 0 is easy to handle. So
we only treat the new goal
Goz : (= even(sz) = f, even(sz) = t | {even(ssz)} | {even(ssz)}).
Next we want to apply the simplification rule I, by using the rewrite rule R2 as a lemma
(in order to simplify the first equation of Gy) . If such an application is possibe, then
the transformed goal contains the succedent equation f = f , indicating a successful
joinability proof. Formally, one deletes the resulting transformed goal by using the rule
I 5 , because is can be subsumed by the lemma f = f . In order to enable the mentioned
rewrite step by R2 we have to verify that the condition of R2 is satisfied wrt. the actual
context (note that the condition concerning the bounds is satisfied). Concretely, we
have to further treat the condition goal
G11: (even(z) = f = even(sz) = t | {even(ssz)} | {even(ssz)}).
There are several possibilities to proceed. One could e.g. produce a case splitting by
narrowing with R into the antecedent equation. We proceed by applying the rule I,
wrt. the rewrite rule R3 (considered as a lemma) in order to produce the succedent
equation t = t . This leads to a successful treatment of the goal G1.1. Again, we have
to treat the related condition goal which now has the form
Gao: (even(z) = f , even(z) = t = 0 | {even(ssz)} | {even(ssz)}).
Now it is convenient to produce a case splitting by narrowing with R into one of the
antecedent equations, say even(x) = f . This case splitting has the form S = { (z —
0 ,0 = 0O),(z + sz ,0 = even(z) = f) , (z — sz,0 = even(z) = f) } . We do not
further treat the goal resulting from the mere instantiation z + 0. First we consider
the goal
Ga. : (even(sz) = f , even(sz) = t = even(z) = f | {even(sssz)} | {even(ssz)}).
This goal can be transformed by using I, wrt. the lemma R2. Concretely, we use
R2 in order to produce the antecedent equation f = t . The newly generated goal is
then deletable because the empty set provides a complete case splitting for this goal.
The verification that R2 is indeed applicable is easy now: The related condition clause
contains the equation even(z) = f as an antecedent and succedent equation. One can
use now a suitable lemma to subsume this condition clause. The second goal to be
considered is

24

G2.2 : (even(sx) = j, even(sx) = t => even(x) = t I {even(sssx)} I {even(sssx)}).
Here we can proceed just analogously.

Now, all goals are treated successfully. It follows that BCrit(~o,n) is indeed weakly
~o-ground joinable wrt. ---+(EO,'R) and that ---+(EO,'R) is thus ground confluent.

Surely, these examples are rather simple. But there are much harder examples which
can be treated successfully by our proving method.

25

Ga2: (even(sz) = f , even(sxz) = t = even(z) = t | {even(sssz)} | {even(sssz)}).
Here we can proceed just analogously.

Now, all goals are treated successfully. I t follows that BCrit(Xo,R) is indeed weakly
Yo-ground joinable wrt. — x , z) and that —s , =, is thus ground confluent.
Surely, these examples are rather simple. But there are much harder examples which
can be treated successfully by our proving method.

25

	UR_0006.jpg

