
/m
a

a
/q

n
d

/e
pqu- zum

 93 anaef// 43%
 M

A
M

A

AN
VAH

ED
NAMONUEUVVS 17099-A

MILYIW
HOANI H

O
IFYAgH

O
V

SAANVTYVYVS SEA LY.LISH
AAIN

A

ro]
(<a

2b
=

w
n

N

N
x©=2
5

»
,

S @
£

9Q
o

2

>
8=

£
3

Q
23 A
o

u
n

==<

H
oday |M

IS

Ly&BD=©n
N3„xOA©=8i][£3]

SEKI Report SR-96-13

1

Analogy in Verification of State-Based

Specifications. First Results

Erica Melisr Claus Sengler§

Fachbereich Informatik, Universitat des Saarlandes

66041 Saarbriicken, Germany

Abstract

Saving user interaction reduces the costs of program verification. This
paper describes an internal analogy technique that reuses subproofs in the
verification of state-based specifications. It identifies common patterns of
subproofs and their justifications in order to employ them in the reuse of
subproofs.

Introduction

Typically, in formal software verification many and very large proof obligations
have to be satisfied rather than complicated to prove obligations. This requires
a considerable number of relatively simple subproofs to be accomplished by the
user supported by the verification system. Even if the percentage of interactive
steps may sound small, it amounts to quite an effort for proofs with ten thou
sands of proof steps. Consequently, a major problem in software verification
is the tremendous amount of user interaction needed. To minimize the user
interaction is therefore a primary goal in order to reduce the costs of verified
software that are some five to ten times the costs of ordinary software. The
reuse of user-guided subproofs can contribute to that goal.

A class of real world software verification problems have state-based specifi
cations. State-based means that an invariant, e.g. a reliability statement, has to
be proved for an initial state Po and for all states that can be reached by certain
(admissible) state transitions Ti . Put formally, the theorem to be proved is

Inv(po) /\ (Inv(p) -t Inv(Ti(P))), (1)

·The first author was supported by the SFB 378.

tDFKI Saarbriicken

tThe first author was supported by the SFB 378.

§DFKI Saarbriicken

1

Analogy in Verification of State-Based
Specifications. First Results

Erica Melis} Claus Sengler®
Fachbereich Informatik, Universität des Saarlandes

66041 Saarbrücken, Germany

Abstract

Saving user interaction reduces the costs of program verification. This
paper describes an internal analogy technique that reuses subproofs in the
verification of state-based specifications. It identifies common patterns of
subproofs and their justifications in order to employ them in the reuse of
subproofs.

1 Introduction

Typically, in formal software verification many and very large proof obligations
have to be satisfied rather than complicated t o prove obligations. This requires
a considerable number of relatively simple subproofs to be accomplished by the
user supported by the verification system. Even if the percentage of interactive
steps may sound small, i t amounts to quite an effort for proofs with ten thou-
sands of proof steps. Consequently, a major problem in software verification
is the tremendous amount of user interaction needed. To minimize the user
interaction is therefore a primary goal in order to reduce the costs of verified
software that are some five to ten times the costs of ordinary software. The
reuse of user-guided subproofs can contribute to that goal.

A class of real world software verification problems have state-based specifi-
cations. State-based means that an invariant, e.g. a reliability statement, has to
be proved for an initial state po and for all states that can be reached by certain
(admissible) state transitions T;. Put formally, the theorem to be proved is

Inv(po) A\Inv(p) = Inv(Ti(p))), (1)

*The first author was supported by the SFB 378.
TDFKI Saarbrücken
}The first author was supported by the SFB 378.
§DFKI Saarbrücken

2

where usually, the invariant Inv(X) is a conjunction with many conjuncts
and the proof of Inv(p) -t Inv(Ti(P)) can be similar for different state transi
tions Ti. Therefore, a decomposition of the theorem gives many similar proof
obligations. This situation gives many similar proof obligations in one verifica
tion task and naturally suggests a reuse of subproofs.

Reusing proofs has been addressed in different settings. A reuse of proofs
in program verification after slightly changing programs is addressed in [9].
External analogy, i.e., analogy between proofs of different theorems has been
described in [6] and reuse of generalized rewrite proofs' is described in [4]. As
far as we know, internal analogy for verifying state-based specifications has not
been tackled before.

This paper is organized as follows. First we describe the internal analogy
paradigm suitable for reusing subproofs within the same large proof attempt. In
particular, the reuse in verifying state-based specifications is addressed. Then
we illustrate the usage of internal analogy with an example that is taken from
a case study that, among others, verified a state-based specification.

Notation

We work with a sequent calculus; for other calculi the procedure can be adapted.
H l , ... ,Hn I- Cl, ... , Cm abbreviates thesequent Hll\ ...I\Hn I- Cl V...vCm . A
normal form (NF) of this sequent is the set {Hl , ... , Hn , -,Cl , ... , -,Cm }. Note
that this normal form does not distinguish between variants having,e.g., H as
hypothesis and having -,H in the conclusion, respectively. A proof obligation
is provable if for a formula H, Hand -,H belong to its NF. Variables are 'v'
quantified if not stated otherwise.

Internal Derivational Analogy in the Verifica
tion of State-Based Specifications

Analogy in problem solving transfers the solution or the problem solving ex
perience of a source problem to guide the problem solving for a similar target
problem. In general, the process of reasoning by analogy can be described as
follows. A case base is kept of previously solved problems with accompanying
solutions. When a new target problem is encountered, a similar problem is re
trieved from this case base and its solution is used as a guide to the solution of
the new problem by analogical replay.

Analogy requires to map, and sometimes to reformulate, the source problem
to the target problem, to extend the mapping and reformulation to the solutions,
to replay, as well as to adapt the solution to the requirements of the target.

Derivational analogy [1] guides the target solution by replaying decisions of
the source problem solving process, and it uses information about reasons for
the decisions (justifications).

Internal analogy [2, 7] is a process that transfers experience from a completed
subgoal (source) in the same problem solving process to solve a current subgoal

2

where usually, the invariant Inv(X) is a conjunction with many conjuncts
and the proof of Inv(p) — Inv(T;(p)) can be similar for different state transi-
tions T;. Therefore, a decomposition of the theorem gives many similar proof
obligations. This situation gives many similar proof obligations in one verifica-
t ion task and naturally suggests a reuse of subproofs.

Reusing proofs has been addressed in different settings. A reuse of proofs
in program verification after slightly changing programs is addressed in [9].
External analogy, i.e., analogy between proofs of different theorems has been
described in [6] and reuse of generalized rewrite proofs is described in [4]. As
far as we know, internal analogy for verifying state-based specifications has not
been tackled before.

This paper is organized as follows. First we describe the internal analogy
paradigm suitable for reusing subproofs within the same large proof attempt. In
particular, the reuse in verifying state-based specifications is addressed. Then
we illustrate the usage of internal analogy with an example that is taken from
a case study that, among others, verified a state-based specification.

Notation

We work with a sequent calculus; for other calculi the procedure can be adapted.
H, . . . ,H , + Ci , . . . , Cm abbreviates the sequent H iA . . AH, + C V. . .VC, , . A
normal form (NF) of this sequent is the set {Hjy,...,Hpn,~C},...,—Cn}. Note
that this normal form does not distinguish between variants having.e.g., H as
hypothesis and having —H in the conclusion, respectively. A proof obligation
is provable if for a formula H , H and -H belong to its NF. Variables are V-
quantified i f not stated otherwise.

2 Internal Derivational Analogy in the Verifica-
t ion of State-Based Specifications

Analogy in problem solving transfers the solution or the problem solving ex-
perience of a source problem to guide the problem solving for a similar target
problem. In general, the process of reasoning by analogy can be described as
follows. A case base is kept of previously solved problems with accompanying
solutions. When a new target problem is encountered, a similar problem is re-
trieved from this case base and its solution is used as a guide to the solution of
the new problem by analogical replay.

Analogy requires to map, and sometimes to reformulate, the source problem
to the target problem, to extend the mapping and reformulation to the solutions,
to replay, as well as to adapt the solution to the requirements of the target.

Derivational analogy [1] guides the target solution by replaying decisions of
the source problem solving process, and i t uses information about reasons for
the decisions (justifications).

Internal analogy [2, 7] is a process that transfers experience from a completed
subgoal (source) in the same problem solving process to solve a current subgoal

(target). That is, in internal analogy the source and the target are subproblems
of a single problem. Therefore, this technique does not require the effort to set
up a permanent case base and needs relatively little search for the retrieval of a
source, as opposed to analogy in general. Furthermore, little or no effort at all
is required for mapping because corresponding subgoals in one proof are very
similar.

Still, internal analogy needs some storing of justifications and mapping effort
and hence, internal analogy pays in particular when it replaces search-intensive
subtasks or interaction-intensive subtasks, see [7].

2.1 Internal Analogy for State-Based Verification

Using internal analogy in software verification replaces interaction-intensive sub
tasks. The accumulation of a library of cases is not required in our internal
analogy. Usually, the subproofs need only to be cached, and often the source"
terms need not to be mapped into different target terms.

The internal analogy has two steps, retrieval and replay. Two modes of the
retrieval are possible for the internal analogy described in this paper:

• The retrieval of a source is done automatically.
• The source is provided interactively.

In the first case, the analogy procedure includes searching for a source which is
left to the user in the second case. The automated retrieval searches for (source)
nodes in the proof plan the proof obligations of which are proved already and
that have justifications holding in the current (target) node. For instance, as
described in sections 2.2 and 3, the search for a reusable subproof automatically
compares the essence justification of source nodes with the NF of the target
problem. An efficient retrieval can be achieved by (lexicographically) ordering
the formulae in the justifications and in the NFs. Henceforth, we use "NF" for
ordered NF.

The analogical replay is an automated one in any case. It is given in a nut
shell in Table 1. The justifications are checked in order to perform a warranted
analogical"transfer only. Its check of justifications is also simplified by ordering
the formulae in the NF. The replayed subplan 7r may consist of a single step Ci,

of several steps, or even of the whole source subplan. The "next usable step"
depends on the satisfied justification j of Ci in C. All the steps that belong to
the~~fjiJOOf;<e~~~fig~iy~ItilJip~gA~eh@M1jzmi@fjf~i&:wi~
miahth~lay>ItleP~IpM~ft@i§b~a~igqi6~~e~play.

2.2 Justifications

Justifications represent reasons for proof decisions. It is a non-trivial task to
select appropriate justifications in a proof planning environment. For inductive
theorem proving this task and a set of appropriate justifications is described
in [5] and [7]. '

Our justifications are represented in a data structure attached to the proof
plan nodes. This justification structure has different slots that store different

3

(target). That is, in internal analogy the source and the target are subproblems
of a single problem. Therefore, this technique does not require the effort to set
up a permanent case base and needs relatively little search for the retrieval of a
source, as opposed to analogy in general. Furthermore, little or no effort at all
is required for mapping because corresponding subgoals in one proof are very
similar.

Still, internal analogy needs some storing of justifications and mapping effort
and hence, internal analogy pays in particular when it replaces search-intensive
subtasks or interaction-intensive subtasks, see [7].

2 .1 Internal Analogy for State-Based Verification
Using internal analogy in software verification replaces interaction-intensive sub-
tasks. The accumulation of a library of cases is not required in our internal
analogy. Usually, the subproofs need only to be cached, and often the source _
terms need not to be mapped into different target terms.

The internal analogy has two steps, retrieval and replay. Two modes of the
retrieval are possible for the internal analogy described in this paper:

e The retrieval of a source is done automatically.
e The source is provided interactively.

In the first case, the analogy procedure includes searching for a source which is
left to the user in the second case. The automated retrieval searches for (source)
nodes in the proof plan the proof obligations of which are proved already and
that have justifications holding in the current (target) node. For instance, as
described in sections 2.2 and 3, the search for a reusable subproof automatically
compares the essence justification of source nodes with the NF of the target
problem. An efficient retrieval can be achieved by (lexicographically) ordering
the formulae in the justifications and in the NFs. Henceforth, we use “NF” for
ordered NF.

The analogical replay is an automated one in any case. It is given in a nut-
shell in Table 1. The justifications are checked in order to perform a warranted
analogical transfer only. Its check of justifications is also simplified by ordering
the formulae in the NF. The replayed subplan = may consist of a single step c;,
of several steps, or even of the whole source subplan. The “next usable step”
depends on the satisfied justification j of ¢ ; in C . All the steps that belong to
thelnibpdentecisespoeriakderiyatienilippedogh wenbpahArishowtjuli fen nnd
gh ährheoH eh precipi epurdaishbptatkeigqgingsisiaeplay.

2.2 Justifications

Justifications represent reasons for proof decisions. I t is a non-trivial task to
select appropriate justifications in a proof planning environment. For inductive
theorem proving this task and a set of appropriate justifications is described
in [5] and [7]. ‘

Our justifications are represented in a data structure attached to the proof
plan nodes. This justification structure has different slots that store different

input: source goal, guiding source subplan, target goal
output: (partial) target plan

1.	 Let C be the guiding subplan and Ci the current step in C.

2.	 Terminate if the target goal is proved.

3. Check of justifications:	 If the justification of Ci that corresponds to a
subplan 1r holds in the target, then replay 1r.

4. Advance the case C to the next usable step Cj; i f- j; goto 2.

Table 1: Outline of the analogical replay

kinds of justifications, as explained below. The justifications are checked during
the replay. Only if at least one kind of justification holds, the corresponding
step or the subplan can be replayed.

For the verification of state-based specifications we analyzed the most com
mon proof patterns and associated them with appropriate justifications. Fre
quent proof patterns are: (i) the reduction to small essential proof obligations
by extracting relevant subformulae, (ii) the use of derived lemmata, and (iii)
term generalization. These patterns can be combined in a proof.

In order to make the effort for analogy that includes checking the justifica
tions as small as possible, we need to

•	 store all the information relevant for the replay but not more,
•	 store it in a form that is available during the source solution process

and that can be easily interpreted in the target.
Taking into consideration the two requirements, we identified the following jus
tifications for state-based specifications.

1.	 The user reduces the problem to essential proof obligations: If a proof
obligation at a root node No

Hl, ... ,Hn I-- Cl"",Cm

is reduced to a proof of a sequent

for i l , it E {I, ... ,n} and jl,jk E {I, ... ,m}, then the NF of the reduced
sequent, called essence, is stored as a justification in the essence slot,
e.g., .(essence: {Hill"" Hill -,Cjll ... , -,Cjk }). essence contains all the
relevant subformulae. Note that essence is a justification for a whole
subproof rather than for single proof steps. Therefore, this justification
is stored after the subproof has been completed. It is computed by goal
regression [8] over the whole subproof.

For a new subproblem in a node N it can be checked automatically whether
its NF is a superset of No's essence. That is, it is checked whether the

4

input: source goal, guiding source subplan, target goal
output: (partial) target plan

1. Let C be the guiding subplan and c; the current step in C.

2. Terminate i f the target goal is proved.

3. Check of justifications: If the justification of ¢; that corresponds to a
subplan 7 holds in the target, then replay =.

4. Advance the case C to the next usable step c;; © + j ; goto 2.

Table 1: Outline of the analogical replay

kinds of justifications, as explained below. The justifications are checked during
the replay. Only if at least one kind of justification holds, the corresponding
step or the subplan can be replayed.

For the verification of state-based specifications we analyzed the most com-
mon proof patterns and associated them with appropriate justifications. Fre-
quent proof patterns are: (i) the reduction to small essential proof obligations
by extracting relevant subformulae, (ii) the use of derived lemmata, and (iii)
term generalization. These patterns can be combined in a proof.

In order to make the effort for analogy that includes checking the justifica-
tions as small as possible, we need to

e store all the information relevant for the replay but not more,
e store it in a form that is available during the source solution process

and that can be easily interpreted in the target.
Taking into consideration the two requirements, we identified the following jus-
tifications for state-based specifications.

1. The user reduces the problem to essential proof obligations: If a proof
obligation at a root node No

H, , . . . ,H , + Ci...) Cm

is reduced to a proof of a sequent

Hay . . . H i + C i s . Cj,

for 45,4 € { 1 , . . . , n } and j i , j x € {1 , . . . ,m} , then the NF of the reduced
sequent, called essence, is stored as a justification in the essence slot,
e.g., (essence: {H , , , . . . ,H ; ,~C j , , . . . ,=C j ; . }) . essence contains all the
relevant subformulae. Note that essence is a justification for a whole
subproof rather than for single proof steps. Therefore, this justification
is stored after the subproof has been completed. It is computed by goal
regression [8] over the whole subproof.
For a new subproblem in anode N it can be checked automatically whether
its NF is a superset of Ny’s essence. That is, it is checked whether the

4

source and the target problem differ in irrelevant subformulae only. If yes,
the subproof at No can be fully replayed. In a target node, the essence
is the justification checked first.

Example: The essence of 5.3. below is a subset of the NF of 5.8. The
rest of the proof obligation does not matter, and so the subproof of
5.3. can completely be replayed.

Interpretation: If the NF of a target proof obligation is a superset of
the NF in the justification slot essence, then this justification holds,
and the source subproof can be replayed.

Even in cases where no reduction was performed in the source, it is rea
sonable to store the essence of a subproof in order to be able to discover
a similar essence of a target problem later on.

2.	 The user provides a lemma in the source that enables or considerably'
simplifies the proof. For instance in several subproofs of the example
below, the lemma x E insert(Y, Z) /\ x f/. z ::} x == Y is provided1

that helps to complete several subproofs. The subset of (generalized)
elements of the source NF that is needed to apply the lemma is stored
as a justification in the lemma justification. lemma is computed by goal
regression (backward) from the lemma application node NI. The current
value of the regressed goal is stored as lemma justification at each node
visited by the goal regression.

Example: In example 5.3. below, the lemma justification at node No is:
{x E err, err == insert(next(in'), err'), ...,(x E err')} because the goal
regression yields {x E insert(next(in') , err'), ...,(x E err')} in the first
step and {x E err, err == insert(next(in') , err'), ...,(x E err')} in the
second step.

Interpretation: If the NF of the target problem is a superset of the
source node's lemma justification, then the justification holds, and
the lemma can be applied in the target.
lemma is a justification for several steps rather than for a large sub
proof.

3. An extended form of the justification check does not require the source
essence to be an exact subset of the target NF but additionally allows for
a: substitution of variables or even a mapping of terms. This more general
g-lemma justification is produced by

1.	 in lemma replacing the substitution terms by the variables of the
lemma they are substituted for and

2.	 replacing other constants not occurring in the lemma by vari
ables.

IThe semantics of the functions does not pll!-Y a role at this moment. It will be explained
in section 3.

5

source and the target problem differ in irrelevant subformulae only. If yes,
the subproof at No can be fully replayed. In a target node, the essence
is the justification checked first.

Example: The essence of 5.3. below is a subset of the NF of 5.8. The
rest of the proof obligation does not matter, and so the subproof of
5.3. can completely be replayed.

Interpretation: If the NF of a target proof obligation is a superset of
the NTF in the justification slot essence, then this justification holds,
and the source subproof can be replayed.

Even in cases where no reduction was performed in the source, it is rea-
sonable to store the essence of a subproof in order to be able to discover
a similar essence of a target problem later on.

2. The user provides a lemma in the source that enables or considerably °
simplifies the proof. For instance in several subproofs of the example
below, the lemma x € insert(Y,Z) Az ¢ Z = x = Y is provided!
that helps to complete several subproofs. The subset of (generalized)
elements of the source NF that is needed to apply the lemma is stored
as a justification in the lemma justification. lemma is computed by goal
regression (backward) from the lemma application node N;. The current
value of the regressed goal is stored as lemma justification at each node
visited by the goal regression.

Example: In example 5.3. below, the lemma justification at node Np is:
{z € err,err = insert(next(in'), err’), (x € err ') } because the goal
regression yields {z € insert(next(in’), err’), (x € err ') } in the first
step and {z € err,err = insert(next(in’),err'), (x € err ’)} in the
second step.

Interpretation: If the NF of the target problem is a superset of the
source node’s lemma justification, then the justification holds, and
the lemma can be applied in the target.
lemma is a justification for several steps rather than for a large sub-
proof. >

3. An extended form of the justification check does not require the source
essence to be an exact subset of the target NF but additionally allows for
a substitution of variables or even a mapping of terms. This more general
g-lemma justification is produced by

1. in lemma replacing the substitution terms by the variables of the
lemma. they are substituted for and

2. replacing other constants not occurring in the lemma by vari-
ables.

1The semantics of the functions does not play a role at this moment. I t will be explained
in section 3.

3

When we replace the lemma subset by the g-lemma subset in essence, we
also obtain a more general g-essence.

Example: From- the lemma justification above and from the substitution
[Y f- next(in'), Z f- err'], the g-lemma justification {x E B, B ==
insert(Y, Z),
-.(x E Z)} is produced.

Interpretation: If g-lemma of a source node matches a subset of the NF
of the target problem, then the justification holds and the lemma can
be applied in the target node again. If the g-essence of a source
matches a subset of the NF of the target problem, then the justifica
tion holds and the source subproof can be replayed.

4. Often, the theorem provers of a verification system are not able to prove
a proof obligation without a user supplied generalization. Automated
generalization is a very difficult task and, therefore, most often left to the
user.

The justifications gen-essence and gen-lemma, stored at a generalization
node Na of a plan, is produced by computing the essence and lemma of
the generalized goal, respectively.

Example: The proof of 6.3. in section 3 includes the term generalization
max_value(sender(next(in')) , clients') to X and of value(next(in'))
to Y at node Na. The gen-essence for the node is {(X < Y), -.(Y >
X)}. Note that this is a justification for the subplan with root NG .

Interpretation: If a subset of the NF 6f a target goal matches the
gen-essence of a source node N, then the substitution provided by
the match is used for the term generalization in the target, and the
subproof for the goal at N can be replayed. If a subset of the NF of a
target goal (node) matches the gen-lemma of a source node only, then
the substitution provided by the match is taken for a generalization,
and then the lemma application can be replayed.

Example: Proofs of Invariants

The following example stems from a case study at DFKI performed with VSE,
a verification support environment [3]. The goal of this case study is to model
a communication filter: From an input queue a message is checked for certain
properties. If these properties hold, the message is sent to an output queue. In
case the properties do not hold, it is sent to an error queue.

, A message is a compound object of several components: the addressee, the
sender, the subject, and the message text. The input queue (in), the output
queue (out), as well as the error queue (err) are first-in-first-out queues with
the following functions:

6

When we replace the 1emma subset by the g-1emma subset in essence, we
also obtain a more general g-essence.

Example: From the lemma justification above and from the substitution
[Y « nezt(in'),Z + err'], the g-lemma justification { z € B ,B =
insert(Y, Z),
(x € Z) } is produced.

Interpretation: If g-lemma of a source node matches a subset of the NF
of the target problem, then the justification holds and the lemma. can
be applied in the target node again. If the g-essence of a source
matches a subset of the NF of the target problem, then the justifica-
t ion holds and the source subproof can be replayed.

4. Often, the theorem provers of a verification system are not able to prove
a proof obligation without a user supplied generalization. Automated
generalization is a very difficult task and, therefore, most often left to the
user.
The justifications gen-essence and gen-lemma, stored at a generalization
node Ng of a plan, is produced by computing the essence and lemma of
the generalized goal, respectively.

Example: The proof of 6.3. in section 3 includes the term generalization
maz.value(sender(next(in')), clients’) to X and of value(nezt(in'))
to Y at node Ng. The gen-essence for the node is { (X <Y) , - (Y >
X) } . Note that this is a justification for the subplan with root Ng.

Interpretation: If a subset of the NF of a target goal matches the
gen~essence of a source node N, then the substitution provided by
the match is used for the term generalization in the target, and the
‘subproof for the goal at N can be replayed. If a subset of the NF of a
target goal (node) matches the gen-lemna of a source node only, then
the substitution provided by the match is taken for a generalization,
and then the lemma application can be replayed.

3 Example: Proofs of Invariants

The following example stems from a case study at DFKI performed with VSE,
a verification support environment [3]. The goal of this case study is to model
a communication filter: From an input queue a message is checked for certain
properties. If these properties hold, the message is sent to an output queue. In
case the properties do not hold, it is sent to an error queue.

A message is a compound object of several components: the addressee, the
sender, the subject, and the message text. The input queue (in), the output
queue (out), as well as the error queue (err) are first-in-first-ont queues with
the following functions:

•	 nil:-t queue generating the empty queue,
•	 insert: message x queue -t queue inserts a message into a queue,
•	 E: message x queue -t bool determining whether a message is con

tained in a queue,
•	 next : queue -t message returning the message from the queue

which is handled next, and
•	 rest: queue -t queue deletes the message that is handled next from

the queue and leaving all other entries unchanged.
In addition, for the communication system there is a data base (base) of all

clients.
The check whether a message can pass the filter is done in two steps: First,

it is checked whether the sender is a legal client. A function known : name x
data_base -t bool returns ,true if for the name there is an entry in the data
base. Secondly, the message is evaluated, and a natural number is computed,
value: message -t nat. Moreover, for each client in the data base there is
a maximal value, max_value : name X data_base -t nat. If the value of a
message does not exceed the maximal value associated with the sender, then
the respective message is allowed to pass. As values one could imagine, for
instance, the allowed lengths of a message text.

For this scenario a state-based specification [10, 3] was used: We have several
state variables for the different queues and for the client data base. Furthermore,
some state transitions were specified for the insertion operation on queues, and
for the check whether a message can pass the filter. Each state transition is spec
ified by the details of the changes they produce, Le., by defining the precondition
and the postcondition of a state transition. In these pre- and postconditions a
state variable prior to the execution of the state transition is quoted as opposed
to the state variable after the transition has been performed. For example, in'
denotes the input queue before the transition has been performed, and in is the
input queue afterwards.

A state-based specification is called correct, if a first-order formula - the
intlariant - holds for all reachable states. Hence, this invariant has to be proved
for the initial state, and for all states that can be reached from the initial state.
The invariant from our case study is:

x E out -t known(sender(x) , base)/\. ; /\.t
value(x) ~ max_value(sender(x) , base)

-,known(sender(x) , base)v
x ~ err -t value(x) > max_value(sender(x),base)

During the verification process the original large proof obligation has been
decomposed into seven smaller proof obligations denoted by proofinv-i for i =
1, ... ,7. By simplifications and equation applications each proofinv-i is decom
posed into several simpler proof obligations. For instance, proofinv-5, proofinv
6, proofinv-7 are each reduced to eight subgoals. We shall have a look at the
proofs of these subgoals. In the following examples the shaded parts of proof
obligations indicate the relevant parts of the proof obligations. Note, how these
relevant p~ts occur in several proof obligations giving rise to a reuse of proofs.

7

e nil :— queue generating the empty queue,
e insert : message X queue — queue inserts a message into a queue,
® €: message X queue — bool determining whether a message is con-

tained in a queue,
e next : queue — message returning the message from the queue

which is handled next, and
® rest : queue — queue deletes the message that is handled next from

the queue and leaving all other entries unchanged.
In addition, for the communication system there is a data base (base) of all

clients.
The check whether a message can pass the filter is done in two steps: First,

it is checked whether the sender is a legal client. A function known : name x
data_base — bool returns true if for the name there is an entry in the data
base. Secondly, the message is evaluated, and a natural number is computed,
value : message — nat. Moreover, for each client in the data base there is
a maximal value, maz. value : name x database — nat. If the value of a
message does not exceed the maximal value associated with the sender, then
the respective message is allowed to pass. As values one could imagine, for
instance, the allowed lengths of a message text.

For this scenario a state-based specification [10, 3] was used: We have several
state variables for the different queues and for the client data base. Furthermore,
some state transitions were specified for the insertion operation on queues, and
for the check whether a message can pass the filter. Each state transition is spec-
ified by the details of the changes they produce, i.e., by defining the precondition
and the postcondition of a state transition. In these pre- and postconditions a
state variable prior to the execution of the state transition is quoted as opposed
to the state variable after the transition has been performed. For example, in’
denotes the input queue before the transition has been performed, and in is the
input queue afterwards.

A state-based specification is called correct, i f a first-order formula — the
invariant — holds for all reachable states. Hence, this invariant has to be proved
for the initial state, and for all states that can be reached from the initial state.
The invariant from our case study is:

known(sender(z), base)A
value(z) < maz value(sender(z), base)

—known(sender(z), base)V
value(z) > maz_value(sender(z),base)

xE€out —

seem —

During the verification process the original large proof obligation has been
decomposed into seven smaller proof obligations denoted by proofinv-i for i =
1 , . . . , 7 . By simplifications and equation applications each proofinv-i is decom-
posed into several simpler proof obligations. For instance, proofinv-5, proofinv-
6, proofinv-7 are each reduced to eight subgoals. We shall have a look at the
proofs of these subgoals. In the following examples the shaded parts of proof
obligations indicate the relevant parts of the proof obligations. Note, how these
relevant parts occur in several proof obligations giving rise to a reuse of proofs.

proofinv-5 is a rather large proof obligation:

in' ~ nil, x E out' ~ known(sender(x) , base') A

value(x) ::; max_value(sender(x) , base'),

x E err' ~ -,known(sender(x) , base')

Vvalue(x) > max_value(sender(x) , base'), -'known(sender(next(in')) , base),

err == insert(next(in') , err') A out == out' A in == rest(in') f-
(x E out ~ known(sender(x) , base') A

value(x) ::; max_value(sender(x) , base')) A (x E err ~

-,known(sender(x) , base') V value(x) > max_value(sender(x) , base')).

All but the resulting third and eighth subgoal can easily be simplified and
proved. Originally, for the 19 proof steps of proofinv-5 ten user interactions
were needed. By internal analogy approximately 50% of the interactions can
be saved.

5.3. 1).,I.l.ljl••,a..JI,r......ti••1JJ,
out ==out',in == rest(in') f-
value(x) > max_value(sender(x) , base'), li...,x E out',

;~i¥JII.:m.,in' == nil

is proved by

•	 manually suggesting the lemma

x E insert(Y, Z) A x f. Z =} x == Y. (2)

With the substitution [Y +- next(in') , Z +- err'] the application
of this lemma gives

x == next(in'). (3)

•	 By simplification with (3) we obtain a subgoal ... ,H, . .. f-
... , H, ... where H abbreviates known(sender (x), base').

The justifications at the root node of 5.3. look as follows:

essence made up from all the shaded formulae.

lemma: {x E err, err == insert(next(in') , err'), -,(x E err')} is constructed

from 1111It'fI, at the left hand side of the

proof obligation an at the right hand side. lemma provides the

elements of the essence relevant for the lemma application. The other

shaded formulae are relevant for the remaining proof steps.

g":lemma: {x E B,B == insert(Y,A),-'(x EA)}.

5.8. [t.t~"I•••,I,B.I~I,Ilfilt.:IIL..ir.~'JII,out == out',
in == rest(in'), known(sender(x), base'),
value(x) ::; max_value(sender(x) , base') f-
value(x) > max_value(sender(x) ,base'M.I:'tII,

II_t~••[fJl(({.)I_ll, in' == nil

can l;>e proved by analogy to proof obligation 5.3. because the essence of
5.3.. is a subset of the NF of 5.8. as well.

8

proofinv-5 is a rather large proof obligation:

in’ # n i l , z € out’ = known(sender(z),base’) A
value(z) < maz _value(sender(z), base’),
z € err’ = ~known(sender(z), base’)
Vvalue(z) > maz_value(sender(z), base’), ~known(sender(next(in')), base),
err = insert(nezt(in'), err’) A out = out’ A i n =rest(in ’) |}
(z € out = known(sender(z), base’) A
value(z) < maz_value(sender(z),base’)) A (x € err =
—known(sender(z), base’) V value(z) > maz_value(sender(z), base')).

All but the resulting third and eighth subgoal can easily be simplified and
proved. Originally, for the 19 proof steps of proofinv-5 ten user interactions
were needed . By internal analogy approximately 50% of the interactions can
be saved.

5.8.

se manually suggesting the lemma

z €insert(Y,Z) Az ¢ Z=>z=Y. (2)

With the substitution [Y «+ next(in'), Z + err’] the application
of this lemma gives

; z = nezt(in ') . (3)
e By simplification with (3) we obtain a subgoal . . . ,H , . . . F

. . ,H , . . . where H abbreviates known(sender(z), base’).
The justifications at the root node of 5.3. look as follows:
essence made up from all the shaded formulae.
lemma: {z € err, err = insert(nezt(in'), err’), (x € err ')} is constructed
from Cry , } | at the left hand side of the
proof obligation and : t the right hand side. 1emma provides the

=
e

elements of the essence rélevant for the lemma application. The other
shaded formulae are relevant for the remaining proof steps.
g-lemma: { z € B , B = insert(Y, A) , » (z € A) } .

out = out’,
: Ga 78

in = rest(in'), known(sender(z), base’),
value(z)< maz_value(sender(z), base’) +

base’), &Tr

zy to p of obligation 5.3. because the essence of
5.3.is a subset of the NF of 5.8. as well.

proofinv-6 is decomposed into eight proof obligations. All but the resulting
third and eighth subgoal can be immediately simplified and proved automati
cally. The more complicated subproofs are outlined below. Originally, for the 22
proof steps of proofinv-6 13 user interactions were needed. By internal analogy
approximately 80% of the interactions can be saved.

is proved by

• reusing the lemma application from 5.3. because the lemma justifica
tion holds in 6.3. The rest of the subproof differs though.

• Then interactively generalizing max_value(sender(x), clients l
) to X

and value(x) to Y at node Na results in the problem ... , X < Y, ... l
... ,Y > X, This goal can be proved automatically.

• This subproof automatically uses the lemma X < Y +-t Y > X.

essence at the root node of 6.3. is provided by all the shaded formulae.
gen-essence at Na is {X < Y, .(Y > X)}.

out == outl
,

value(x) ~ max_value(sender(x), base l
) I

......rtll••••."J!I,.11r.,inl == nil,
is proved by reusing the proof of 6.3. because essence of 6.3. is a subset
of 6.8.'s NF.

Only the third and eighth subgoal of proofinv-7 can be simplified and
proved immediately. The other goals are proved by analogy. Originally, for
the 40 proof steps of proofinv-7 31 user interactions were needed. By internal
analogy approximately 90% of the interactions can be saved.

7.1.	 , err == err1,

,in == rest(id) l
x E err1 , ilRflIl

max_value(sender(next(inl
)), basel

) < value(next(inl
))inl == nil

Is proved by reusing the subproof of 5.3.

''''''-''W''N~1@ (((I)) b ')7.2. ;i\l~~, known sender next in , ase ,
err == err l

,· in == rest(in l
) I

,x E err l
,

The lemma application of 7.1. is reused.

Then at Na, interactive generalization yields ... I- ... ,X ~ Y, Y < X, ...

9

proofinv-6 is decomposed into eight proof obligations. All but the resulting
third and eighth subgoal can be immediately simplified and proved automati-
cally. The more complicated subproofs are outlined below. Originally, for the 22
proof steps of proofinv-6 13 user interactions were needed . By internal analogy
approximately 80% of the interactions can be saved.

6.3. known(sender(z),base’), 2
2 id

known(sender(next(in'), base’) ,

is proved by

e reusing the lemma application from 5.3. because the lemma justifica-
tion holds in 6.3. The rest of the subproof differs though.

e Then interactively generalizing maz_value(sender(z), clients’) to X
and value(z) to Y at node Ng results in the problem ..., X <Y, . . . }F

. . . ,Y > X , This goal can be proved automatically.
e This subproof automatically uses the lemma X <Y «+ Y > X .

essence at the root node of 6.3. is provided by all the shaded formulae.
gen-essence at Ng is {X <Y,~(Y > X) } .

6.8. known(sender(z),base’) n = rest(in’), known(sender(z), base’),
Ss i :

known (sender (next(in’),base')),&
value(z) < maz_value(sender(z), base’) +

ou t= out’,

Tus £ in ' = nil,
is proved by reusing the proof of 6.3. because essence of 6.3. is a subset
of 6.8.s NF.

Only the third and eighth subgoal of proofinv-7 can be simplified and
proved immediately. The other goals are proved by analogy. Originally, for
the 40 proof steps of proofinv-7 31 user interactions were needed . By internal
analogy approximately 90% of the interactions can be saved.

7.2. 5, known (sender (nezt(in')), base’),
err! B i 4,

3 , i n = rest(in') +

The lemma application of 7.1. is reused.
Then at Ng, interactive generalization yields . . . +... , X <Y,Y < X,...

4

which can be proved automatically.

This provides the gen-essence {-,(X ::; Y), -,(Y < X)} for [X +- value(x), Y +

max_value(sender(x), base')].

7.4.	 ,err == err',

in == rest(in') r

,known(sender(x), base'),IJiIflI,

max_value(sender(next(in')) , base') < value(next(i:':;~);"'i;" == nil.

the subproof of 7.1 can be reused.

7.5.	 ,err == err',
in == rest(in') r-

l () < l (d () b ') '~,'$m'7l'W'~WliU'mt;1.w*'~¥V~aue :, _ max_va ue sen er x , ase ,!si{;~~~,;}j~~!lU,tl~~j'i/,i,

;II!I!~, max_value(sender(next(in')) , base') < value(next(in')) , in' _
nil.

the subproof of 7.1 can be reused.

7.6.	 value(x) > max_value(sender(x) , base'),

err == err'

== rest(in') r
,

max_value(sender(next(in')), base') < value(next(in'))in' == nil.

the subproof of 7.1 can be reused.

in' == nil.

The lemma application of 7.1. can be reused.
Then the resulting subgoal is proved by automatically applying the lemma
X > Y H -,(X ::; Y). The first step of 7.1. can be replayed because its
lemma justification holds.

Conclusion and Future	 Work

Since user interaction accounts for the lions share of the costs in program veri
fication, the paper has addressed the problem of saving user interaction in the
verification of state-based specifications.

l.From the given examples it is clear that and how whole subproofs, general
izations, and lemma applications can be reused if the justifications hold for the
target subproblem. In our example the savings of user interactions achieved by
internal analogy sums up to about 80%.

Our technique is based on the general idea of internal analogy that transfers
source subproofs to target subproofs in the same proof attempt. It turns out

10

which can be proved automatically.
This provides the gen-essence {~ (X < Y), - (Y < X) } for [X + value(z),Y +
max.value(sender(x), base')].

maz value(sender(nezt(in')), base') < value(nezt(in’)),in' == nil.
the subproof of 7.1 can be reused.

nil.

max value(sen er(nezt(in')), base’) < value(nezt(in'))in' = nil.
the subproof o f 7.1 can be reused.

‚ i n=rest(in’) +
value(z) < maze t base"), 3

Lin’ = nil.
The lemma application of 7.1. can be reused.
Then the resulting subgoal is proved by automatically applying the lemma
X>Y & - (X <7). The first step of 7.1. can be replayed because its
lemma justification holds.

4 Conclusion and Future Work

Since user interaction accounts for the lions share of the costs in program veri-
fication, the paper has addressed the problem of saving user interaction in the
verification of state-based specifications.

From the given examples it is clear that and how whole subproofs, general-
izations, and lemma applications can be reused if the justifications hold for the
target subproblem. In our example the savings of user interactions achieved by
internal analogy sums up to about 80%.

Our technique is based on the general idea of internal analogy that transfers
source subproofs to target subproofs in the same proof attempt. It turns out

10

that state-based specifications give rise to many similar proof obligations in
their verification. Therefore, we provide mechanisms to replay subproofs in this
kind of formal verification. We identified common patterns of subproofs and
their justifications in order to employ them for the reuse of subproofs and proof
steps.

The presented techniques are just a beginning. More elaborate justifica
tions and mapping techniques will be explored to obtain even more reuse. The
retrieval and the replay have to be extended to handle multiple sources.

References
[1]	 J.G. Carbonell. Derivational analogy: A theory of reconstructive problem solving

and expertise acquisition. In RS. Michalsky, J.G. Carbonell, and T.M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach, pages 371-392.
Morgan Kaufmann Publ., Los Altos, 1986.

[2]	 Angela K. Hickman, Peter Shell, and Jaime G. Carbonell. Internal analogy: Reduc
ing search during problem solving. In C. Copetas, editor, The Computer Science
Research Review 1990. The School of Computer Science, Carnegie Mellon Univer
sity, 1990.

[3]	 Dieter Hutter, Bruno Langenstein, Claus Sengler, Jorg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Deduction in the Verification Support Environ
ment (VSE). In Marie-Claude Gaudel and James Woodcock, editors, Proceedings
of the 7;hird International Symposium of Formal Methods Europe, pages 268-286,
Oxford, England, 1996.

[4]	 Th. Kolbe and Chr. Walther. Reusing Proofs. In Proceedings of 11th European
Conference on Artificial Intelligence (ECAI-94), Amsterdam, 1994.

[5]	 E. Melis. Analogy in CLAM. Technical Report DAI Research Paper No 766,
University of Edinburgh, AI Dept, Dept. of Artificial Intelligence, Edinburgh, 1995.

[6]	 E. Melis. A model of analogy-driven proof-plan construction. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence, pages 182-189,
Montreal, 1995.

[7]	 E. Melis and J. Whittle. Internal analogy in inductive theorem proving. In
M.A.McRobbie and J.K. Slaney, editors, Proceedings of the 13th Conference on
Automated Deduction (CADE-96), Lecture Notes in Artificial Intelligence, 1104,
pages 92-105, Berlin, New York, 1996. Springer.

[8]	 T.M. Mitchell and RM. Keller and S.T. Kedar-Cabelli. Explanation-based gener
alization: A unifying view. Machine Learning 1, pages 47-80, 1986.

[9]	 W. Reif and K. Stenzel. Reuse of proofs in software verification. In RK. Shyama
sundar, editor, Proc. 13th Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 761 of LNCS. Springer, 1993.

[10]	 J. Rushby, F. von Henke, and S. Owre. An Introduction to Formal Specification
and Verification using EHDM. Technical report, SRI International, March 1991.

11

that state-based specifications give rise to many similar proof obligations in
their verification. Therefore, we provide mechanisms to replay subproofs in this
kind of formal verification. We identified common patterns of subproofs and
their justifications in order to employ them for the reuse of subproofs and proof
steps.

The presented techniques are just a beginning. More elaborate justifica-
tions and mapping techniques will be explored to obtain even more reuse. The
retrieval and the replay have to be extended to handle multiple sources.

References
[1] J.G. Carbonell. Derivational analogy: A theory of reconstructive problem solving

and expertise acquisition. In R.S. Michalsky, J.G. Carbonell, and T.M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach, pages 371-392.
Morgan Kaufmann Publ., Los Altos, 1986. -

[2] Angela K . Hickman, Peter Shell, and Jaime G. Carbonell. Internal analogy: Reduc-
ing search during problem solving. In C. Copetas, editor, The Computer Science
Research Review 1990. The School of Computer Science, Carnegie Mellon Univer-
sity, 1990.

[3] Dieter Hutter, Bruno Langenstein, Claus Sengler, Jorg H. Siekmann, Werner
Stephan, and Andreas Wolpers. Deduction in the Verification Support Environ-
ment (VSE). In Marie-Claude Gaudel and James Woodcock, editors, Proceedings
of the Third International Symposium of Formal Methods Europe, pages 268-286,
Oxford, England, 1996.

[4] Th. Kolbe and Chr. Walther. Reusing Proofs. In Proceedings of 11th European
Conference on Artificial Intelligence (ECAI-94), Amsterdam, 1994.

[5] E. Melis. Analogy in CLAM. Technical Report DAI Research Paper No 766,
University of Edinburgh, A I Dept, Dept. of Artificial Intelligence, Edinburgh, 1995.

[6] E. Melis. A model of analogy-driven proof-plan construction. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence, pages 182-189,
Montreal, 1995.

[7] E. Melis and J. Whittle. Internal analogy in inductive theorem proving. In
M.A.McRobbie and J.K. Slaney, editors, Proceedings of the 13th Conference on
Automated Deduction (CADE-96), Lecture Notes in Artificial Intelligence, 1104,
pages 92-105, Berlin, New York, 1996. Springer.

[8] T.M. Mitchell and R.M. Keller and S.T. Kedar-Cabelli. Explanation-based gener-
alization: A unifying view. Machine Learning 1, pages 47-80, 1986.

[9] W. Reif and K . Stenzel. Reuse of proofs in software verification. In R.K. Shyama-
sundar, editor, Proc. 13th Conference on Foundations of Software Technology and
Theoretical Computer Science, volume 761 of LNCS. Springer, 1993.

[10] J. Rushby, F. von Henke, and S. Owre. An Introduction to Formal Specification
and Verification using EHDM. Technical report, SRI International, March 1991.

11

	BB_0010.jpg

