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Abstract 

Saving user interaction reduces the costs of program verification. This 
paper describes an internal analogy technique that reuses subproofs in the 
verification of state-based specifications. It identifies common patterns of 
subproofs and their justifications in order to employ them in the reuse of 
subproofs. 

Introduction 

Typically, in formal software verification many and very large proof obligations 
have to be satisfied rather than complicated to prove obligations. This requires 
a considerable number of relatively simple subproofs to be accomplished by the 
user supported by the verification system. Even if the percentage of interactive 
steps may sound small, it amounts to quite an effort for proofs with ten thou
sands of proof steps. Consequently, a major problem in software verification 
is the tremendous amount of user interaction needed. To minimize the user 
interaction is therefore a primary goal in order to reduce the costs of verified 
software that are some five to ten times the costs of ordinary software. The 
reuse of user-guided subproofs can contribute to that goal. 

A class of real world software verification problems have state-based specifi
cations. State-based means that an invariant, e.g. a reliability statement, has to 
be proved for an initial state Po and for all states that can be reached by certain 
(admissible) state transitions Ti . Put formally, the theorem to be proved is 

Inv(po) /\ (Inv(p) -t Inv(Ti(P))), (1) 
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where usually, the invariant Inv(X) is a conjunction with many conjuncts 
and the proof of Inv(p) -t Inv(Ti(P)) can be similar for different state transi
tions Ti. Therefore, a decomposition of the theorem gives many similar proof 
obligations. This situation gives many similar proof obligations in one verifica
tion task and naturally suggests a reuse of subproofs. 

Reusing proofs has been addressed in different settings. A reuse of proofs 
in program verification after slightly changing programs is addressed in [9]. 
External analogy, i.e., analogy between proofs of different theorems has been 
described in [6] and reuse of generalized rewrite proofs' is described in [4]. As 
far as we know, internal analogy for verifying state-based specifications has not 
been tackled before. 

This paper is organized as follows. First we describe the internal analogy 
paradigm suitable for reusing subproofs within the same large proof attempt. In 
particular, the reuse in verifying state-based specifications is addressed. Then 
we illustrate the usage of internal analogy with an example that is taken from 
a case study that, among others, verified a state-based specification. 

Notation 

We work with a sequent calculus; for other calculi the procedure can be adapted. 
H l , ... ,Hn I- Cl, ... , Cm abbreviates thesequent Hll\ ...I\Hn I- Cl V...vCm . A 
normal form (NF) of this sequent is the set {Hl , ... , Hn , -,Cl , ... , -,Cm }. Note 
that this normal form does not distinguish between variants having,e.g., H as 
hypothesis and having -,H in the conclusion, respectively. A proof obligation 
is provable if for a formula H, Hand -,H belong to its NF. Variables are 'v'
quantified if not stated otherwise. 

Internal Derivational Analogy in the Verifica
tion of State-Based Specifications 

Analogy in problem solving transfers the solution or the problem solving ex
perience of a source problem to guide the problem solving for a similar target 
problem. In general, the process of reasoning by analogy can be described as 
follows. A case base is kept of previously solved problems with accompanying 
solutions. When a new target problem is encountered, a similar problem is re
trieved from this case base and its solution is used as a guide to the solution of 
the new problem by analogical replay. 

Analogy requires to map, and sometimes to reformulate, the source problem 
to the target problem, to extend the mapping and reformulation to the solutions, 
to replay, as well as to adapt the solution to the requirements of the target. 

Derivational analogy [1] guides the target solution by replaying decisions of 
the source problem solving process, and it uses information about reasons for 
the decisions (justifications). 

Internal analogy [2, 7] is a process that transfers experience from a completed 
subgoal (source) in the same problem solving process to solve a current subgoal 
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where usually, the invariant Inv(X) is a conjunction with many conjuncts
and the proof of Inv(p) — Inv(T;(p)) can be similar for different state transi-
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Reusing proofs has been addressed in different settings. A reuse of proofs
in program verification after slightly changing programs is addressed in [9].
External analogy, i.e., analogy between proofs of different theorems has been
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2 Internal Derivational Analogy in the Verifica-
t ion of  State-Based Specifications

Analogy in problem solving transfers the solution or the problem solving ex-
perience of a source problem to guide the problem solving for a similar target
problem. In general, the process of reasoning by analogy can be described as
follows. A case base is kept of previously solved problems with accompanying
solutions. When a new target problem is encountered, a similar problem is re-
trieved from this case base and its solution is used as a guide to  the solution of
the new problem by  analogical replay.

Analogy requires to  map, and sometimes to  reformulate, the source problem
to  the target problem, to  extend the mapping and reformulation to  the solutions,
to  replay, as well as to adapt the solution to  the requirements of  the target.

Derivational analogy [1] guides the target solution by replaying decisions of
the source problem solving process, and i t  uses information about reasons for
the decisions (justifications).

Internal analogy [2, 7] is a process that transfers experience from a completed
subgoal (source) in  the same problem solving process to solve a current subgoal



(target). That is, in internal analogy the source and the target are subproblems 
of a single problem. Therefore, this technique does not require the effort to set 
up a permanent case base and needs relatively little search for the retrieval of a 
source, as opposed to analogy in general. Furthermore, little or no effort at all 
is required for mapping because corresponding subgoals in one proof are very 
similar. 

Still, internal analogy needs some storing of justifications and mapping effort 
and hence, internal analogy pays in particular when it replaces search-intensive 
subtasks or interaction-intensive subtasks, see [7]. 

2.1 Internal Analogy for State-Based Verification 

Using internal analogy in software verification replaces interaction-intensive sub
tasks. The accumulation of a library of cases is not required in our internal 
analogy. Usually, the subproofs need only to be cached, and often the source" 
terms need not to be mapped into different target terms. 

The internal analogy has two steps, retrieval and replay. Two modes of the 
retrieval are possible for the internal analogy described in this paper: 

• The retrieval of a source is done automatically. 
• The source is provided interactively. 

In the first case, the analogy procedure includes searching for a source which is 
left to the user in the second case. The automated retrieval searches for (source) 
nodes in the proof plan the proof obligations of which are proved already and 
that have justifications holding in the current (target) node. For instance, as 
described in sections 2.2 and 3, the search for a reusable subproof automatically 
compares the essence justification of source nodes with the NF of the target 
problem. An efficient retrieval can be achieved by (lexicographically) ordering 
the formulae in the justifications and in the NFs. Henceforth, we use "NF" for 
ordered NF. 

The analogical replay is an automated one in any case. It is given in a nut
shell in Table 1. The justifications are checked in order to perform a warranted 
analogical"transfer only. Its check of justifications is also simplified by ordering 
the formulae in the NF. The replayed subplan 7r may consist of a single step Ci, 

of several steps, or even of the whole source subplan. The "next usable step" 
depends on the satisfied justification j of Ci in C. All the steps that belong to 
the~~fjiJOOf;<e~~~fig~iy~ItilJip~gA~eh@M1jzmi@fjf~i&:wi~ 
miahth~lay>ItleP~IpM~ft@i§b~a~igqi6~~e~play. 

2.2 Justifications 

Justifications represent reasons for proof decisions. It is a non-trivial task to 
select appropriate justifications in a proof planning environment. For inductive 
theorem proving this task and a set of appropriate justifications is described 
in [5] and [7]. ' 

Our justifications are represented in a data structure attached to the proof 
plan nodes. This justification structure has different slots that store different 
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(target). That is, in  internal analogy the source and the target are subproblems
of a single problem. Therefore, this technique does not require the effort to set
up a permanent case base and needs relatively little search for the retrieval of a
source, as opposed to  analogy in general. Furthermore, little or  no  effort at  all
is required for mapping because corresponding subgoals in one proof are very
similar.

Still, internal analogy needs some storing of justifications and mapping effort
and hence, internal analogy pays in  particular when it replaces search-intensive
subtasks or interaction-intensive subtasks, see [7].
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tasks. The accumulation of a library of cases is not required in our internal
analogy. Usually, the subproofs need only to  be cached, and often the source _
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e The retrieval of a source is done automatically.
e The source is provided interactively.

In the first case, the analogy procedure includes searching for a source which is
left to  the user in  the second case. The automated retrieval searches for (source)
nodes in the proof plan the proof obligations of which are proved already and
that have justifications holding in the current (target) node. For instance, as
described in  sections 2.2 and 3, the search for a reusable subproof automatically
compares the essence justification of source nodes with the NF  of the target
problem. An  efficient retrieval can be achieved by (lexicographically) ordering
the formulae in the justifications and in the NFs. Henceforth, we use “NF” for
ordered NF.

The analogical replay is an automated one in any case. It is given in  a nut-
shell in  Table 1. The justifications are checked in  order to  perform a warranted
analogical transfer only. Its check of justifications is also simplified by ordering
the formulae in the NF. The replayed subplan = may consist of a single step c;,
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theorem proving this task and a set of  appropriate justifications is described
in [5] and [7]. ‘

Our justifications are represented in  a data structure attached to the proof
plan nodes. This justification structure has different slots that store different



input: source goal, guiding source subplan, target goal 
output: (partial) target plan 

1.	 Let C be the guiding subplan and Ci the current step in C. 

2.	 Terminate if the target goal is proved. 

3. Check of justifications:	 If the justification of Ci that corresponds to a 
subplan 1r holds in the target, then replay 1r. 

4. Advance the case C to the next usable step Cj; i f- j; goto 2. 

Table 1: Outline of the analogical replay 

kinds of justifications, as explained below. The justifications are checked during 
the replay. Only if at least one kind of justification holds, the corresponding 
step or the subplan can be replayed. 

For the verification of state-based specifications we analyzed the most com
mon proof patterns and associated them with appropriate justifications. Fre
quent proof patterns are: (i) the reduction to small essential proof obligations 
by extracting relevant subformulae, (ii) the use of derived lemmata, and (iii) 
term generalization. These patterns can be combined in a proof. 

In order to make the effort for analogy that includes checking the justifica
tions as small as possible, we need to 

•	 store all the information relevant for the replay but not more, 
•	 store it in a form that is available during the source solution process 

and that can be easily interpreted in the target. 
Taking into consideration the two requirements, we identified the following jus
tifications for state-based specifications. 

1.	 The user reduces the problem to essential proof obligations: If a proof 
obligation at a root node No 

Hl, ... ,Hn I-- Cl"",Cm 

is reduced to a proof of a sequent 

for i l , it E {I, ... ,n} and jl,jk E {I, ... ,m}, then the NF of the reduced 
sequent, called essence, is stored as a justification in the essence slot, 
e.g., .(essence: {Hill"" Hill -,Cjll ... , -,Cjk } ). essence contains all the 
relevant subformulae. Note that essence is a justification for a whole 
subproof rather than for single proof steps. Therefore, this justification 
is stored after the subproof has been completed. It is computed by goal 
regression [8] over the whole subproof. 

For a new subproblem in a node N it can be checked automatically whether 
its NF is a superset of No's essence. That is, it is checked whether the 
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source and the target problem differ in irrelevant subformulae only. If yes, 
the subproof at No can be fully replayed. In a target node, the essence 
is the justification checked first. 

Example: The essence of 5.3. below is a subset of the NF of 5.8. The 
rest of the proof obligation does not matter, and so the subproof of 
5.3. can completely be replayed. 

Interpretation: If the NF of a target proof obligation is a superset of 
the NF in the justification slot essence, then this justification holds, 
and the source subproof can be replayed. 

Even in cases where no reduction was performed in the source, it is rea
sonable to store the essence of a subproof in order to be able to discover 
a similar essence of a target problem later on. 

2.	 The user provides a lemma in the source that enables or considerably' 
simplifies the proof. For instance in several subproofs of the example 
below, the lemma x E insert(Y, Z) /\ x f/. z ::} x == Y is provided1 

that helps to complete several subproofs. The subset of (generalized) 
elements of the source NF that is needed to apply the lemma is stored 
as a justification in the lemma justification. lemma is computed by goal 
regression (backward) from the lemma application node NI. The current 
value of the regressed goal is stored as lemma justification at each node 
visited by the goal regression. 

Example: In example 5.3. below, the lemma justification at node No is: 
{x E err, err == insert(next(in'), err'), ...,(x E err')} because the goal 
regression yields {x E insert(next(in') , err'), ...,(x E err')} in the first 
step and {x E err, err == insert(next(in') , err'), ...,(x E err')} in the 
second step. 

Interpretation: If the NF of the target problem is a superset of the 
source node's lemma justification, then the justification holds, and 
the lemma can be applied in the target. 
lemma is a justification for several steps rather than for a large sub
proof. 

3. An extended form of the justification check does not require the source 
essence to be an exact subset of the target NF but additionally allows for 
a: substitution of variables or even a mapping of terms. This more general 
g-lemma justification is produced by 

1.	 in lemma replacing the substitution terms by the variables of the 
lemma they are substituted for and 

2.	 replacing other constants not occurring in the lemma by vari
ables. 

IThe semantics of the functions does not pll!-Y a role at this moment. It will be explained 
in section 3. 
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in  section 3.
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When we replace the lemma subset by the g-lemma subset in essence, we 
also obtain a more general g-essence. 

Example: From- the lemma justification above and from the substitution 
[Y f- next(in'), Z f- err'], the g-lemma justification {x E B, B == 
insert(Y, Z), 
-.(x E Z)} is produced. 

Interpretation: If g-lemma of a source node matches a subset of the NF 
of the target problem, then the justification holds and the lemma can 
be applied in the target node again. If the g-essence of a source 
matches a subset of the NF of the target problem, then the justifica
tion holds and the source subproof can be replayed. 

4. Often, the theorem provers of a verification system are not able to prove 
a proof obligation without a user supplied generalization. Automated 
generalization is a very difficult task and, therefore, most often left to the 
user. 

The justifications gen-essence and gen-lemma, stored at a generalization 
node Na of a plan, is produced by computing the essence and lemma of 
the generalized goal, respectively. 

Example: The proof of 6.3. in section 3 includes the term generalization 
max_value(sender(next(in')) , clients') to X and of value(next(in')) 
to Y at node Na. The gen-essence for the node is {(X < Y), -.(Y > 
X)}. Note that this is a justification for the subplan with root NG . 

Interpretation: If a subset of the NF 6f a target goal matches the 
gen-essence of a source node N, then the substitution provided by 
the match is used for the term generalization in the target, and the 
subproof for the goal at N can be replayed. If a subset of the NF of a 
target goal (node) matches the gen-lemma of a source node only, then 
the substitution provided by the match is taken for a generalization, 
and then the lemma application can be replayed. 

Example: Proofs of Invariants 

The following example stems from a case study at DFKI performed with VSE, 
a verification support environment [3]. The goal of this case study is to model 
a communication filter: From an input queue a message is checked for certain 
properties. If these properties hold, the message is sent to an output queue. In 
case the properties do not hold, it is sent to an error queue. 

, A message is a compound object of several components: the addressee, the 
sender, the subject, and the message text. The input queue (in), the output 
queue (out), as well as the error queue (err) are first-in-first-out queues with 
the following functions: 
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When we replace the 1emma subset by  the g-1emma subset in essence, we
also obtain a more general g-essence.

Example: From the lemma justification above and from the substitution
[Y « nezt( in'),Z + err'], the g-lemma justification { z  € B ,B  =
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of the target problem, then the justification holds and the lemma. can
be applied in the target node again. If the g-essence of a source
matches a subset of the NF  of the target problem, then the justifica-
t ion holds and the source subproof can be  replayed.

4. Often, the theorem provers of a verification system are not able to  prove
a proof obligation without a user supplied generalization. Automated
generalization is a very difficult task and, therefore, most often left to  the
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The justifications gen-essence and gen-lemma, stored at a generalization
node Ng  of a plan, is produced by computing the essence and lemma of
the generalized goal, respectively.
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Interpretation: If a subset of the NF  of a target goal matches the
gen~essence of a source node N, then the substitution provided by
the match is used for the term generalization in the target, and the
‘subproof for the goal at N can be replayed. If  a subset of the NF  of a
target goal (node) matches the gen-lemna of  a source node only, then
the substitution provided by the match is taken for a generalization,
and then the lemma application can be replayed.

3 Example: Proofs of  Invariants

The following example stems from a case study at  DFKI performed with VSE,
a verification support environment [3]. The goal of this case study is to model
a communication filter: From an  input queue a message is checked for certain
properties. If these properties hold, the message is sent to  an output queue. In
case the properties do not hold, it is sent to  an error queue.

A message is a compound object of several components: the addressee, the
sender, the subject, and the message text. The input queue (in), the output
queue (out), as well as the error queue (err) are first-in-first-ont queues with
the following functions:



•	 nil:-t queue generating the empty queue, 
•	 insert: message x queue -t queue inserts a message into a queue, 
•	 E: message x queue -t bool determining whether a message is con

tained in a queue, 
•	 next : queue -t message returning the message from the queue 

which is handled next, and 
•	 rest: queue -t queue deletes the message that is handled next from 

the queue and leaving all other entries unchanged. 
In addition, for the communication system there is a data base (base) of all 

clients. 
The check whether a message can pass the filter is done in two steps: First, 

it is checked whether the sender is a legal client. A function known : name x 
data_base -t bool returns ,true if for the name there is an entry in the data 
base. Secondly, the message is evaluated, and a natural number is computed, 
value: message -t nat. Moreover, for each client in the data base there is 
a maximal value, max_value : name X data_base -t nat. If the value of a 
message does not exceed the maximal value associated with the sender, then 
the respective message is allowed to pass. As values one could imagine, for 
instance, the allowed lengths of a message text. 

For this scenario a state-based specification [10, 3] was used: We have several 
state variables for the different queues and for the client data base. Furthermore, 
some state transitions were specified for the insertion operation on queues, and 
for the check whether a message can pass the filter. Each state transition is spec
ified by the details of the changes they produce, Le., by defining the precondition 
and the postcondition of a state transition. In these pre- and postconditions a 
state variable prior to the execution of the state transition is quoted as opposed 
to the state variable after the transition has been performed. For example, in' 
denotes the input queue before the transition has been performed, and in is the 
input queue afterwards. 

A state-based specification is called correct, if a first-order formula - the 
intlariant - holds for all reachable states. Hence, this invariant has to be proved 
for the initial state, and for all states that can be reached from the initial state. 
The invariant from our case study is: 

x E out -t known(sender(x) , base)/\. ; /\.t 
value(x) ~ max_value(sender(x) , base) 

-,known(sender(x) , base)v
x ~ err -t value(x) > max_value(sender(x),base) 

During the verification process the original large proof obligation has been 
decomposed into seven smaller proof obligations denoted by proofinv-i for i = 
1, ... ,7. By simplifications and equation applications each proofinv-i is decom
posed into several simpler proof obligations. For instance, proofinv-5, proofinv
6, proofinv-7 are each reduced to eight subgoals. We shall have a look at the 
proofs of these subgoals. In the following examples the shaded parts of proof 
obligations indicate the relevant parts of the proof obligations. Note, how these 
relevant p~ts occur in several proof obligations giving rise to a reuse of proofs. 

7 

e nil :— queue generating the empty queue,
e insert  : message X queue — queue inserts a message into a queue,
® €:  message X queue — bool determining whether a message is con-

tained in a queue,
e next : queue — message returning the message from the queue

which is handled next, and
® rest : queue — queue deletes the message that is handled next from

the queue and leaving all other entries unchanged.
In  addition, for the communication system there is a data base (base) of  all

clients.
The check whether a message can pass the filter is done in two steps: First,

it is checked whether the sender is a legal client. A function known : name x
data_base — bool returns true if for the name there is an entry in the data
base. Secondly, the message is evaluated, and a natural number is computed,
value : message — nat. Moreover, for each client in the data base there is
a maximal value, maz. value : name x database — nat. If the value of a
message does not exceed the maximal value associated with the sender, then
the respective message is allowed to pass. As values one could imagine, for
instance, the allowed lengths of a message text.

For this scenario a state-based specification [10, 3] was used: We have several
state variables for the different queues and for the client data base. Furthermore,
some state transitions were specified for the insertion operation on queues, and
for the check whether a message can pass the filter. Each state transition is spec-
ified by  the details of  the changes they produce, i.e., by  defining the precondition
and the postcondition of a state transition. In these pre- and postconditions a
state variable prior to  the execution of the state transition is quoted as opposed
to  the state variable after the transition has been performed. For example, in’
denotes the input queue before the transition has been performed, and in  is the
input queue afterwards.

A state-based specification is  called correct, i f a first-order formula — the
invariant — holds for all reachable states. Hence, this invariant has to  be proved
for the initial state, and for all states that can be reached from the initial state.
The invariant from our case study is:

known(sender(z), base)A
value(z) < maz value(sender(z), base)

—known(sender(z), base)V
value(z) > maz_value(sender(z),base)

xE€out —

seem —

During the verification process the original large proof obligation has been
decomposed into seven smaller proof obligations denoted by proofinv-i for i =
1 , . . . , 7 .  By  simplifications and equation applications each proofinv-i is decom-
posed into several simpler proof obligations. For instance, proofinv-5, proofinv-
6, proofinv-7 are each reduced to eight subgoals. We shall have a look at the
proofs of these subgoals. In the following examples the shaded parts of proof
obligations indicate the relevant parts of the proof obligations. Note, how these
relevant parts occur in several proof obligations giving rise to  a reuse of  proofs.



proofinv-5 is a rather large proof obligation: 

in' ~ nil, x E out' ~ known(sender(x) , base') A
 
value(x) ::; max_value(sender(x) , base'),
 
x E err' ~ -,known(sender(x) , base')
 
Vvalue(x) > max_value(sender(x) , base'), -'known(sender(next(in')) , base),
 
err == insert(next(in') , err') A out == out' A in == rest(in') f-
(x E out ~ known(sender(x) , base') A
 
value(x) ::; max_value(sender(x) , base')) A (x E err ~
 

-,known(sender(x) , base') V value(x) > max_value(sender(x) , base')).
 

All but the resulting third and eighth subgoal can easily be simplified and 
proved. Originally, for the 19 proof steps of proofinv-5 ten user interactions 
were needed. By internal analogy approximately 50% of the interactions can 
be saved. 

5.3. 1).,I.l.ljl••,a..JI,r......ti••1JJ, 
out ==out',in == rest(in') f-
value(x) > max_value(sender(x) , base'), li...,x E out',
 
_;~i¥JII.:m._,in' == nil
 
is proved by 

•	 manually suggesting the lemma 

x E insert(Y, Z) A x f. Z =} x == Y. (2) 

With the substitution [Y +- next(in') , Z +- err'] the application 
of this lemma gives 

x == next(in'). (3) 

•	 By simplification with (3) we obtain a subgoal ... ,H, . .. f-
... , H, ... where H abbreviates known(sender (x), base'). 

The justifications at the root node of 5.3. look as follows:
 
essence made up from all the shaded formulae.
 
lemma: {x E err, err == insert(next(in') , err'), -,(x E err')} is constructed
 
from 1111It'fI, at the left hand side of the
 
proof obligation an at the right hand side. lemma provides the
 
elements of the essence relevant for the lemma application. The other
 
shaded formulae are relevant for the remaining proof steps.
 
g":lemma: {x E B,B == insert(Y,A),-'(x EA)}.
 

5.8. [t.t~"I•••,I,B.I~I,Ilfilt.:IIL..ir.~'JII,out == out', 
in == rest(in'), known(sender(x), base'), 
value(x) ::; max_value(sender(x) , base') f-
value(x) > max_value(sender(x) ,base'M.I:'tII,
 
II_t~••[fJl(({.)I_ll, in' == nil
 
can l;>e proved by analogy to proof obligation 5.3. because the essence of 
5.3.. is a subset of the NF of 5.8. as well. 
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proofinv-5 is a rather large proof obligation:

in’ # n i l , z € out’ = known(sender(z),base’) A
value(z) < maz _value(sender(z), base’),
z € err’ = ~known(sender(z), base’)
Vvalue(z) > maz_value(sender(z), base’), ~known(sender(next(in')), base),
err = insert(nezt(in'),  err’) A out = out’ A i n  =rest( in ’)  |}
(z € out = known(sender(z), base’) A
value(z) < maz_value(sender(z),base’)) A (x € err =
—known(sender(z), base’) V value(z) > maz_value(sender(z), base')).

All but the resulting third and eighth subgoal can easily be simplified and
proved. Originally, for the 19 proof steps of  proofinv-5 ten user interactions
were needed . By  internal analogy approximately 50% of the interactions can
be saved.

5.8.

se manually suggesting the lemma

z €insert(Y,Z) Az ¢ Z=>z=Y. (2)

With the substitution [Y  «+ next(in'), Z + err’] the application
of this lemma gives

; z = nezt( in ') .  (3)
e By simplification with (3) we obtain a subgoal . . . ,H , . . .  F

. . ,H , . . .  where H abbreviates known(sender(z), base’).
The justifications at the root node of 5.3. look as follows:
essence made up from all the shaded formulae.
lemma: {z € err, err = insert(nezt(in'), err’), ( x  € err ')}  is constructed
from Cry ,  } | at the left hand side of the
proof obligation and : t the right hand side. 1emma provides the

=
e

elements of  the essence rélevant for the lemma application. The other
shaded formulae are relevant for the remaining proof steps.
g-lemma: { z  € B ,  B = insert(Y, A ) ,  » (z  € A ) } .

out = out’,
: Ga 78

in = rest(in'),  known(sender(z), base’),
value(z)< maz_value(sender(z), base’) +

base’), &Tr

zy  to p of obligation 5.3. because the essence of
5.3.is a subset of the NF  of 5.8. as well.



proofinv-6 is decomposed into eight proof obligations. All but the resulting 
third and eighth subgoal can be immediately simplified and proved automati
cally. The more complicated subproofs are outlined below. Originally, for the 22 
proof steps of proofinv-6 13 user interactions were needed. By internal analogy 
approximately 80% of the interactions can be saved. 

is proved by 

• reusing the lemma application from 5.3. because the lemma justifica
tion holds in 6.3. The rest of the subproof differs though. 

• Then interactively generalizing max_value(sender(x), clients l
) to X 

and value(x) to Y at node Na results in the problem ... , X < Y, ... l
... ,Y > X, .... This goal can be proved automatically. 

• This subproof automatically uses the lemma X < Y +-t Y > X. 

essence at the root node of 6.3. is provided by all the shaded formulae. 
gen-essence at Na is {X < Y, .(Y > X)}. 

out == outl
, 

value(x) ~ max_value(sender(x), base l
) I

......rtll••••."J!I,.11r.,inl == nil, 
is proved by reusing the proof of 6.3. because essence of 6.3. is a subset 
of 6.8.'s NF. 

Only the third and eighth subgoal of proofinv-7 can be simplified and 
proved immediately. The other goals are proved by analogy. Originally, for 
the 40 proof steps of proofinv-7 31 user interactions were needed. By internal 
analogy approximately 90% of the interactions can be saved. 

7.1.	 , err == err1,
 

,in == rest(id) l
x E err1 , ilRflIl 

max_value(sender(next(inl 
)), basel 

) < value(next(inl 
) )inl == nil 

Is proved by reusing the subproof of 5.3. 

''''''-''W''N~1@ ( ( (I)) b ')7.2. ;i\l~~, known sender next in , ase , 
err == err l 

,· in == rest(in l
) I


,x E err l
,
 

The lemma application of 7.1. is reused.
 
Then at Na, interactive generalization yields ... I- ... ,X ~ Y, Y < X, ...
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proofinv-6 is decomposed into eight proof obligations. All  but the resulting
third and eighth subgoal can be immediately simplified and proved automati-
cally. The more complicated subproofs are outlined below. Originally, for the 22
proof steps of  proofinv-6 13 user interactions were needed . By  internal analogy
approximately 80% of  the interactions can be  saved.

6.3. known(sender(z),base’), 2
2 id

known(sender(next(in'), base’) ,

is proved by

e reusing the lemma application from 5.3. because the lemma justifica-
tion holds in 6.3. The rest of the subproof differs though.

e Then interactively generalizing maz_value(sender(z), clients’) to  X
and value(z) to  Y at  node Ng  results in the problem ..., X <Y, . . . }F

. . . ,Y  > X , . . . .  This goal can be proved automatically.
e This subproof automatically uses the lemma X <Y  «+ Y > X .

essence at the root node of 6.3. is provided by all the shaded formulae.
gen-essence at  Ng  is {X  <Y,~(Y > X ) } .

6.8. known(sender(z),base’) n = rest(in’), known(sender(z), base’),
Ss i :

known (sender (next(in’),base')),&
value(z) < maz_value(sender(z), base’) +

ou t= out’,

Tus £ in '  = nil,
is proved by reusing the proof of  6.3. because essence of 6.3. is a subset
of 6.8.s NF.

Only the third and eighth subgoal of proofinv-7 can be simplified and
proved immediately. The other goals are proved by analogy. Originally, for
the 40 proof steps of proofinv-7 31 user interactions were needed . By  internal
analogy approximately 90% of  the interactions can be  saved.

7.2. 5, known (sender (nezt(in')), base’),
err! B i  4,  

3 ,  i n  = rest(in') +

The lemma application of 7.1. is reused.
Then at Ng,  interactive generalization yields . . .  +...  , X <Y,Y < X,...
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which can be proved automatically.
 
This provides the gen-essence {-,(X ::; Y), -,(Y < X)} for [X +- value(x), Y +

max_value(sender(x), base')].
 

7.4.	 ,err == err',
 
in == rest(in') r

,known(sender(x), base'),IJiIflI,
 
max_value(sender(next(in')) , base') < value(next(i:':;~);"'i;" == nil.
 

the subproof of 7.1 can be reused. 

7.5.	 ,err == err', 
in == rest(in') r-

l () < l ( d () b ') '~,'$m'7l'W'~WliU'mt;1.w*'~¥V~aue :, _ max_va ue sen er x , ase ,!si{;~~~,;}j~~!lU,tl~~j'i/,i, 

;II!I!~, max_value(sender(next(in')) , base') < value(next(in')) , in' _ 
nil. 

the subproof of 7.1 can be reused. 

7.6.	 value(x) > max_value(sender(x) , base'),
 
err == err'
 

== rest(in') r
,
 

max_value(sender(next(in')), base') < value(next(in'))in' == nil.
 

the subproof of 7.1 can be reused. 

in' == nil. 

The lemma application of 7.1. can be reused. 
Then the resulting subgoal is proved by automatically applying the lemma 
X > Y H -,(X ::; Y). The first step of 7.1. can be replayed because its 
lemma justification holds. 

Conclusion and Future	 Work 

Since user interaction accounts for the lions share of the costs in program veri
fication, the paper has addressed the problem of saving user interaction in the 
verification of state-based specifications. 

l.From the given examples it is clear that and how whole subproofs, general
izations, and lemma applications can be reused if the justifications hold for the 
target subproblem. In our example the savings of user interactions achieved by 
internal analogy sums up to about 80%. 

Our technique is based on the general idea of internal analogy that transfers 
source subproofs to target subproofs in the same proof attempt. It turns out 
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which can be proved automatically.
This provides the gen-essence {~ (X  < Y),  - (Y  < X ) }  for [X  + value(z),Y +
max.value(sender(x), base')].

maz value(sender(nezt(in')), base') < value(nezt(in’)),in' == nil.
the subproof of 7.1 can be reused.

nil.

max value(sen er(nezt(in')), base’) < value(nezt(in'))in' = nil.
the subproof o f  7.1 can be  reused.

‚ i n=rest(in’) +
value(z) < maze t  base"), 3

Lin’  = nil.
The lemma application of  7.1. can be  reused.
Then the resulting subgoal is proved by  automatically applying the lemma
X>Y & - (X <7). The first step of 7.1. can be replayed because its
lemma justification holds.

4 Conclusion and Future Work

Since user interaction accounts for the lions share of the costs in program veri-
fication, the paper has addressed the problem of saving user interaction in the
verification of state-based specifications.

From the given examples it is clear that and how whole subproofs, general-
izations, and lemma applications can be  reused if the justifications hold for the
target subproblem. In our example the savings of  user interactions achieved by
internal analogy sums up to  about 80%.

Our technique is based on the general idea of internal analogy that transfers
source subproofs to target subproofs in the same proof attempt. It turns out
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that state-based specifications give rise to many similar proof obligations in 
their verification. Therefore, we provide mechanisms to replay subproofs in this 
kind of formal verification. We identified common patterns of subproofs and 
their justifications in order to employ them for the reuse of subproofs and proof 
steps. 

The presented techniques are just a beginning. More elaborate justifica
tions and mapping techniques will be explored to obtain even more reuse. The 
retrieval and the replay have to be extended to handle multiple sources. 
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