
Xjaorong Huang

SEKI Report SR—93—04

e
h

t

t
a

„ß

m
l

e
r

P
m

„ I L
o

n

n
o

o
ü

. . l r

M
et s

n
s

e
A

S
e

r
P

e. h
. .

T

3
:5

5
3

,

_
_

‚_
„_

„_
_

_
„ „_

_
_

„ „ . _
„ „ „ _

„ „ „ _
_

_
_

2
: „_

=
. „_

„_
_

„_
. .

_V:;
v.;m

Zm
o—

z.
5

5
5

5
.8

5

m
m

:—
Z

: .E
ccmmm

:—
‚E

P
—

‚m
a

g
a

z :

The Presentation of Proofs at the

Assertion Level

Xiaorong Huang*

Fachbereich Inforrnatik, Cniversitat des Saarlandes

Postfach 1150, D-66041 Saarbriicken, Germany

huang:@cs.uni-sb.de

Abstract \

~fost automated theorem provers suffer from the problem that they
can produce proofs only in formalisms difficult to understand even for
experienced mathematicians. Efforts have been made to transform
such machine generated proofs into natural deduction ()I"D) proofs.
Although the single steps are now easy to understand, the entire proof
is usually a.t a low level of abstraction. containing too many tedious
steps. Therefore, it is not adequate as input to natural language gen
eration systems.

To overcome these problems. we propose a new intermediate rep
resentation, called XD style proofs at the assertion level. After illus
trating the notion intuitively, we show that the assertion level steps
can be justified by domain-specific inference rules, and that these rules
can be represented compactly in a tree structure. Finally, we describe
a procedure which substantially shortens ~D proofs by abstracting
them to the assertion level, and report our experience with further
transformation into natural language.

"This work was supported by the Deutsche Forschungsgemeinschaft, SFB ;314 (D2, D3)

The Presentation of Proofs at the
Assertion Level

Xiaorong Huang“
Fachbereich Informatik, Universität des Saarlandes
Postfach 1150, D-66041 Saarbrücken, Germany

h11ang@cs.uni—sb.de

Abstract \

Most automated theorem provers suffer from the problem that they
can produce proofs only in formalisms difficult to understand even for
experienced mathematicians. Efforts have been made to transform
such machine generated proofs into natural deduction (ND) proofs.
Although the single Steps are now easy to understand, the entire proof
is usually at a low level of abstraction. containing too many tedious
steps. Therefore, it is not adequate as input to natural language gen-
eration systems.

To overcome these problems, we propose a new intermediate rep-
resentation: called ND style proofs at the assertion level . After illus-
trating the notion intuitively. we show that the assertion level steps
can be justified by domain-specific inference rules, and that these rules
can be represented compactly in a tree structure. Finally, we describe
a procedure which substantially shortens ND proofs by abstracting
them to the assertion level, and report our experience with further
transformation into natural language.

"This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2, D3)

mailto:huang:@cs.uni-sb.de

1 Introduction

This paper concerns the presentation of machine generated proofs. In partic
ular, the natural deduction proofs containing steps at the assertion le'vel are
introduced, serving as an intermediate representation before proofs are trans
lated into natural language (1\L). 1Iost of the existing automated reasoning
systems suffer from the problem of only delivering protocols difficult for hu
man users to understand. Therefore, attempts have been made to transform
proofs from machine oriented formalisms to natural deduction (ND) proofs
[AndSO, 1\:IiIS:3, Pfe87, PN90, Lin90]. Also some effort has been spent on con
structing ~L generators, which take a.s input a ND proof [Che76, McD83].

\iVhile proofs in various machine oriented formalisms have rather smoothly
been transformed into natural deduction proofs, the latter, however, turn
out to be an inappropriate basis for formulating strategies concerning the
presentation of argumentative text. The first attempt of transforming natural
deduction proofs into natural language ..vas made by D. Chester [Che76]. His
program is usually characterized as an example of direct translation: After
a linerization of an input 1\"D proof. the steps ate translated locally in a
template driven way. Equipped with more advanced techniques developed
in the field of natural language generation, a more coherent translation was
obtained by the MU~lBLE system of D. McDonald [McDS3], in particular,
emphasis ..vas laid on the generation of utterances highlighting important
logical structures in the proofs, as well as utterances mediating between
subproofs. However, both systems operate on a very low level: the proof steps
they translate are exclusively at the level of inference rules of the ND calculus.
As a consequence, natural language proofs thus produced contain too many
minute details, and are there~ore very tedious. If it was still tolerable for the
toy examples containing less than a dozen of proof lines, the results would be
intolerable, if they were assigned the task of presenting realistic ND proofs
containing hundreds of lines, as our system must cope with.

The main problem, lies on the totally' flat structure of ND proofs, which
can be viewed as a tree with no further structures imposed upon. Since hu
man theorem proving can be viewed as a planning process [Hua93b], the
hierarchical structure of proof units plays a crucial role in human proof
presentation. First, proof time hierarchical structures lerid themselves very
naturally to the specification of presentation strategies. For instance, a proof
to be presented can often be split and ordered in terms of such structures
[Hua93a]. This structure is also important while discussing the depth of
proofs to which presentation should be carried out [EP91]. Second, even
more important, some compound proof units allow atomic justifications at
a higher level of abstraction. A proof is usually substantially shortened by
presenting complex units as atomic steps.

1

1 Introduction

This paper concerns the presentation of machine generated proofs. Inpartic-
ular, the natural deduction proofs containing steps at the assertion level are
introduced, serving as an intermediate representation before proofs are trans-
lated into natural language (NL). Most of the existing automated reasoning
systems suffer from the problem of only delivering protocols difficult for hu-
man users to understand. Therefore, attempts have been made to transform
proofs from machine oriented formalisms to natural deduction (ND) proofs
[And80, Mi183, Pfe87, PNQO, Lin90]. Also some effort has been Spent on con-
structing NI. generators, which take as input a ND proof [CheT6, McD8-3].

W'hile proofs in various machine oriented formalisms have rather smoothly
been transformed into natural deduction proofs, the latter, however, turn
out to be an inappropriate basis for formulating strategies concerning the
presentation of argumentative text. The first attempt of transforming natural
deduction proofs into natural language was made by D. Chester [Chem]. His
program is usually characterized as an example of direct translation: After
a linerization of an input ND proof. the steps are translated locally in a
template driven way. Equipped with more advanced techniques developed
in the field of natural language generation, a more coherent translation was
obtained by the MUMBLE system of D. McDonald [MCD83], in particular,
emphasis was laid on the generation of utterances highlighting important
logical structures in the proofs, as well as utterances mediating between
subproofs. However, both systems operate on a very low level: the proof steps
they translate are exclusively at the level of inference rules of the ND calculus.
As a consequence, natural language proofs thus produced contain too many
minute details, and are therefore very tedious. If i t was still tolerable for the
toy examples containing less than a dozen of proof lines, the results would be
intolerable, if they were assigned the task of presenting realistic ND proofs
containing hundreds of lines, as our system must cope with.

The main problem, lies on the totally' flat structure of ND proofs, which
can be viewed as a tree with no further structures imposed upon. Since hu—
man theorem proving can be viewed as a planning process [Hua93b], the
hierarchical structure of proof units plays a crucial role in human proof
presentation. First, proof time hierarchical structures lerid themselves very
naturally to the specification of presentation strategies. For instance, a proof
to be presented can often be split and ordered in terms of such structures
[Hua93a]. This structure is also important while discussing the depth of
proofs to which presentation should be carried out [EP91]. Second, even
more important, some compound proof units allow atOmic justifications at
a higher level of abstraction. A proof is usually substantially shortened by
presenting complex units as atomic steps.

To gain more reliable experience with the levels of justifications, we have
analyzed proofs In mathematical textbooks like [Deu71]. Based on our pre
liminary empirical study, justifications are provided at three levels. First,
logic level justifications are simply verbalizations of the);"D inference rules.
One example is if we know P * Q and P, we may claim that Q is derived by
applying the rule of \lodus Ponens. Second; there are justifications at the
assertion level, evidently at a higher level of abstraction. The following is an
example: "since a is an element of set SI, and 51 is a subset of 52, according
to the definition of s'ubset, a is an element of S2'" Axioms, theorems, and
even previously proved intermediate results are applied in the same way. We
call these justifications collectively the applications of assertions. Technic
ally, by an assertions we mean any fact encoded as a logic formula, which is'
either assumed as true, such as axioms and definitions, or proved to be true
previously in the context, such as theorems or lemmas. Third, proof level
.justifications are at a still higher level, accounting for segments containing
proof steps at the two lower levds. Proof level justifications are comparat
ively rare. One occasion is that when a subproof of the current problem is
similar to a proof known to the reader, we may resort to this similarity as a
justification.

i\rnong the three levels mentioned above, the assertion level plays a dual
role in presentation. On the one hand assertion level justifications are logic
ally (,fJmpo'Und, that is. human beings can explain such steps by providing a
logic l("\'cl proof segment. On the other hand, assertion level justifications are
primitive with respect to pragmatics, since during the presentation process,
an assertion level step is practically never expanded to a logic level proof
segment. On account of this, while proof level structures are also very use
ful. the reconstruction of assertion level units in ND proofs is of paramount
importance and is indispensable for the purpose of presenting proofs in a
natural \\'ay.

In section 2, we first introduce formally the notion of assertion level proof
units. and show that they can be achieved by assertion level inference rules.
Section :3 defines a tree structure which very compactly represents the set of
assertion level inference rules originating from one assertion. Then in section
4; we illustrate how this tree structure can be used to abstract ND proofs to
assertion level proofs, and report our experiences with them in the subsequent
translation into natural language. Finally, a look into future work concludes
this paper.

Assertion Level Proof Unit

The existence of a hierarchy of proof units in proofs constructed by human
beings and the dual role of the assertion level can be accounted for by a

2

:.'

2

To gain more reliable experience with the levels of justifications, we have
analyzed proofs in mathematical textbooks like [DeuTl]. Based on our pre—
liminary empirical study, justifications are provided at three levels. First ,
logic level justifications are simply verbalizations of the ND inference rules.
One example is if we know P => Q and P , we may claim that Q is derived by
applying the rule of Modus Ponens. Second, there are justifications at the
assertion level, evidently at a higher level of abstraction. The following is an
example: “since a is an element of set 5'1, and S1 is a subset of 52, according
to the definition of subset, a is an element of 5'2”. Axioms, theorems, and
even previously proved intermediate results are applied in the same way. we
call these justifications collectively the-applications of assertions. Technic-
ally, by an assertions we mean any fact encoded as a logic formula, which is
either assumed as true, such as axioms and definitions, or proved to be true
previously in the context, such as theorems or lemmas. Third, proof level
justifications are at a still higher level, accounting for segments containing
proof steps at the two lower levels. Proof level justifications are comparat-
ively rare. One occasion is that when a subproof of the current problem is
similar to a proof known to the reader, we may resort to this similarity as a
justification.

A mong the three levels mentioned above, the assertion level plays a dual
role in presentation. On the one hand assertion level justifications are logic-
ally compound, that is. human beings can explain such steps by providing a.
logic level proof segment. On the other hand, assertion level justifications are
primitive with respect to pragmatics, since during the presentation process,
an assertion level step is practically never expanded to a logic level proof .
segment. On account of this, while proof level structures are also very use-
[ul. the reconstruction of assertion level units in ND proofs is of paramount
importance and is indispensable for the purpose of presenting proofs in a
natural way.

In section 22, we first introduce formally the notion of assertion level proof
units, and show that they can be achieved by assertion level inference rules.
Section 3 defines a tree structure which very compactly represents the set of
assertion level inference rules originating from one assertion. Then in section
4, we illustrate how this tree structure can be used to abstract ND proofs to
assertion level proofs, and report our experiences with them in the subsequent
translation into natural language. Finally, a look into future work concludes
this paper. '

2 Assertion Level Proof Unit

The existence of a hierarchy of proof units in proofs constructed by human
beings and the dual role of the assertion level can be accounted for by a

computational model of human deductive reasoning [Hua9:3b, HKK+92b]. In
that theory, a planner constructs a proof by applying proof methods (called
tactics in some other systems [GMW79, Con86]) on still pending open goals.
The proof under construction is represented as a hierarchical and partially

•elaborated plan called a p'roof tree. The execution of each proof method
results in the integration of a subtree constituting a proof unit with internal
structure. Ac.cording to our theory, the intuitive notion of the application of
an assertion is technically realized either by a compound proof unit composed
of applications of ND rules, or by a atomic proof unit justified by a domain
specific inference rule.

Figure 1 is an example of a compound proof unit inferring al E F1 from
U1 C Ft and al E U1 by applying the definition of subset encoded as

(1)

The leaf with the label A contains the assertion being applied.

Figure 1: Xatural Expansion 1 for Subset Definition

Actually, the procedure applying assertions by constructing a compound
proof segment is specified in terms of a so called decomposition-composition
constraint imposed on such proof segments identified in our preliminary em
pirical study [Hua92]. Roughly speaking, a natural expansion consists of
primarily a linear decomposition of the assertion being applied. In Figure
1, this decomposition is carried out along the branch from A to the root.
By decomposition we mean the derivation of an instance or a subformula ,
(compare section 3.1). Other premises involved in the series of decomposi
tions (the leaves 0'1 C F1 and al E 0'1 in Figure 1) can be constructed by
compositions. For an example of such composition, see Figure 2. For more
details, the readers are referred to [Hua92].

\Ve also proved that deductions justifiable by the application of a partic
ular assertion A can be covered by a finite set of domain-specific inference
rules at the assertion level. In the sequel, we denote this set of rules applying
the assertion A, by Rules(A). It is this finiteness that makes this concept
useful both for proof presentation, as well as for interactive proof develop
ment environments [WMF93, Pas93, HKK92a, HKK+92b]. Our computa
tional model also postulates two \oyays for acquiring new assertion level rules.
First, since there is evidence that input-output patterns of repeated actions

3

computational model of human deductive reasoning [Hua93b, HKK+92b]. In
that theory, a planner constructs a proof by applying proof methods (called
tactics in some other systems [GB/IWW, Con86]) on still pending open goals.
The proof under construction is represented as a hierarchical and partially
elaborated plan called a proof free. The execution of each proof met’hod
results in the integration of a subtree constituting a proof unit with internal
structure. According to our theory, the intuitive notion of the application of
an assertion is technically realized either by a compound proof unit composed
of applications of ND rules, or by a atomic proof unit justified by a domain-
specific inference rule.

Figure 1 is an example of a compound proof unit inferring a l 6 F1 from
U1 C F1 and a l € U1 by applying the definition of subset encoded as

V31,3251 C 52 @ Val-' € SI =3" 37 6 S2 (] .)

The leaf with the label A contains the assertion being applied.

A: V5, .5351 C 52 @(l ’ 651 :? 4.3652)
UI C F1¢=>Wrx € U1=>£ E F1)

U1 C F1=>(V„.re U1=>J:-E F1)

VrreUl 2 : 6 5
(11 EU1 =>£11 6171

(116171

VD
9D: Url. CF] .

=>D
VD, a l GUI

=>D

Figure 1: Natural Expansion 1 for Subset Definition

Actually, the procedure applying assertions by constructing a Compound
proof segment is specified in terms of a so called decomposz'tiofra—composition
constraint imposed on such proof segments identified in our preliminary em-
pirical study [Hua92]. Roughly speaking, a natural expansion consists of
primarily a linear decomposition of the assertion being applied. In Figure
1, this decomposition is carried out along the branch from ‚A to the root.
By decomposition we mean the derivation of an instance or a subformula'
(compare section 3.1). Other premises involved in the series of decomposi-
tions (the leaves UI C F1 and a l € U1 in Figure 1) can be constructed by
compositions. For an example of such composition, see Figure '2. For more
details, the readers are referred to [Hua92].

We also proved that deductions justifiable by the application of a partic-
ular assertion A can be covered by a finite set of domain-specific inference
rules at the assertion level. In the sequel, we denote this set of rules applying
the assertion A, by Rules(A). It is this finiteness that makes this concept
useful both for proof presentation, as well as for interactive proof develop-
ment environments [WMF93, Pa393, HKKQ‘Za, HKK'l'QiZb]. Our computa-
t ional model also postulates two waysfor acquiring new assertion level rules.
First, since there is evidence that input-output patterns of repeated actions

will be remembered as new operators, we believe that patterns of repeated
applications of an assertion may be remembered as new rules. Similar phe

. nomena is called in other systems the learning of macro-operators [FHN72],
or chunking [~ew90]. On account of this. domain-specific rules are also re
'ferred to as compound rules or macro-rules. We continue with our subset
example to illustrate this.

Example 1. Suppose that a reasoner has just derived al E F1 from the
premises al E U1 and U1 C F1 by applying the definition of subset (1). Our
assumption is that apart from merely drawing a concrete conclusion from the
premises, possibly he learns the following macro-rule as well:

6. f- a E U, 6. f- U C F
(2)

6.f-aEF

,,\'here a, U and Fare meta-variables standing for object variables. Nlore
generally, hand in hand with deductive steps corresponding to natural ex
pansions with P{, ... , p:n as formulas attached to the leaves and P' as the
formula attached to the root. the inference rule below may be acquired:

6. f- Pi, ... , 6. f- Pm
(3)

6.f-P

where PI,"" Pn are formula schemata abstracted from P{, ... , p:n and P is
the formula schema obtained from P'. This abstraction process replaces con
stant symbols not originally occurring in A, the assertion being applied, by
.new meta-variables. A similar variabli::ation is a standard technique em
ployed in the context of explanation based learning [l\:10090]. Obviously, the
replaced constant symbols must occur in formulas serving as premises, such
as aI, U1 and F1 in al E UI and U1 C F1 in our example.

The second way of acquiring assertion level rules is described by the
following schema: if r is an existing rule of the form:

__ .6. f- Pt, 6. ~ pn
T- LSFq

then r' below can be acquired by contraposition as a rule associated with r:

Tt	 __ 6. ~ pt·· ... 6. f- Pi-I. 6. ~ Pit1 , ••• , 6. ~ Pn, 6. ~ -'q
-- LS F -'Pi

For instance, after the acquisition of

6. ~ a E U,U c F
6.~aEF

two other rules

will be remembered as new operators, we believe that patterns of repeated
applications of an assertion may be remembered as new rules. Similar phe~

, nomena is called in other systems the learning of macro-operators [FHNT‘Z],
or chunk-mg [New90]. On account of this. domain-specific rules are also re-
iferred to as compound rules or macro—rules. We continue with our subset
example to illustrate this.

Example 1. Suppose that a reasoner has just derived a l 6 F1 from the
premises a l 6 U1 and U1 C F1 by applying the definition of subset (l). Our
assumption is that apart from merely drawing a concrete conclusion from the
premises, possibly he learns the following macro-rule as well:

A l - aEU,AbUCF („))
AFGEF "

where a , U and F are meta-variables standing for object variables. More
generally, hand in hand with deductive steps corresponding to natural ex-
pansions with P{,...,P,§, as formulas attached to the leaves and P' as the
formula attached to the root, the inference rule below may be acquired:

AI—P1,...,Al-Pm
AI—P (3)

where Pl., . . . , Pn are formula schemata abstracted from P{, ..., P,; and P is
the formula schema obtained from P’. This abstraction process replaces con-
stant symbols not originally occurring in A, the assertion being applied, by
new meta-variables. A similar variablizatz’on is a standard technique em-
ployed in the context of explanation based learning [Ii/10090]. Obviously, the
replaced constant symbols must occur in formulas serving as premises, such
as ah U1 and F1 in a l 6 U1 and U1 C F1 in our example.

The second way of acquiring assertion level rules is described by the
following schema: if 'r is an existing rule of the form:

__-Al"p1 ,A l ' pn

'" A7” [_q

then r’ below can be acquired by contraposition as a rule associated with r :

rn l—pl AFPi—1*A£p i i l su° sA '_pneAl___‘q

For instance, after the acquisition of

AI—aEUJ i 'CF
Al-aEF

two other rules

3

6. f- a E U. a ~ F 6. f- a $: F, U c F
and

6.f-UrtF 6.f-a~U

can be derived as associated rules (see [Hua92] for more details).

To summarize, an asscrtional proof unit is either a compound unit com
posed of applications of natural deduction inference rules and satisfying the
composition-decomposition constraint, or an atomic unit justified by an as
sertion level inference rule. Assertion level inference rules can either be ac
quired as byproducts of deduction by variablizalion and chunking, or they
can be derived as an associated rule of another existing rule. Since com
pound a')sertion level units will be presented1in the same way as atomic ones,
namely as atomic steps justified by a single assertion level rule of inference,
only the atomic units are later used to abstract natural deduction proofs.

A. Structured Representation of Assertion
Level Inference Rules

xow let us turn to our main concern, namely the set of inference rules
Rule(A), for any particular assertion A. As we have argued, rules in Rule(A)
are either generated in a variablization-and-chunking manner, or as rules as
sociated with existing rules. Therefore:

Rules(A) = R(A,jVK U Assoc(.NK» U Assoc(R(A,.VK U Assoc(,,:VK»)

where R(A,8) denotes the set of rules applying A, which can be acquired
in a variablization-and-chunking manner with respect to 8, denoting the set
of logic level rules at the disposal of the reasoner for constructing logic level
proof segment. In our theory, we assume the ND calculus NK [Gen35],
together with rules associated with them, as the available rules at the logic
level. Assoc(S) denotes the set of rules associated with rules in the set of
rules S. However, there are redundancies in R(A,NK U Assoc(N"K» and
Assoc(R(A,A",(U Assoc(..:V",(»), because many rules in the latter may have
a direct derivation as well.

Example 1 (continued):

'With a rule a!E;:;E~!CF! already acquired from the subset definition, sup
ported by the i\D proof segment illustrated in Figure 1, it is only natural for
a human to be able to apply the following associated rule: a! ~(lFt;F!. This,
however, has as a matter of fact a corresponding compound proof segment

of its own, given in Figure 2.

5

AFaEL- ‘ÄaéF and Al - aéFJ /CF
Al—U¢F AbagéU

can be derived as associated rules (see [Hua9‘2] for more details).
To summarize, an assertional proof unit is either a compound unit com-

posed of applications of natural deduction inference rules and satisfying the
composition-decomposition constraint, or an atomic unit justified by an as-
sertion level inference rule. Assertion level inference rules can either be ac--
quired as byproducts of deduction by van‘ablizatz'on and chunking, or they
can be derived as an associated rule of another existing rule. Since com-
pound assertion level units will be presented’in the same way as atomic ones,
namely as atomic steps justified by a single assertion level rule of inference,
only the atomic units are later used to abstract natural deduction proofs.

3. A‘Structured Representation of Assertion
Level Inference Rules

Now let us turn to our main concern, namely the set of inference rules
Rule(A), for any particular assertion A. As we have argued, rules in Rule(.4)
are either generated in a variablization-and-chunking manner, or as rules as-
sociated with existing rules. Therefore:

Rules(A) = R(A‚J\ÜC U AssocbV/CD U Assoc(R[A,'N7C U Assoc(.;'\:'lC)))

where R(..4, ß) denotes the set of rules applying A, which can be acquired
in a variablization-and-chunking manner with respect to B, denoting the set
of logic level rules at the disposal of the reasoner for constructing logic level
proof segment. In our theory, we assume the ND calculus NIC [Gen35],
together with rules associated with them, as the available rules at the logic
level. Assoc(5) denotes the set of rules associated with rules in the set of
rules .5' . However, there are redundancies in R'(A,NIC U .Assoc(.NlC)) and
Assoc(R(.A,./WC U Assoc(N7C))), because many rules in the latter may have
a direct derivation as well.

Example 1 (continued):
With a rule-W already acquired from the subset definition, sup-

ported by the ND proof segment illustrated in Figure 1, it is only natural for
a human to be able to apply the following associated rule: Ele—vfé‘fifl. This,
however, has as a matter of fact a corresponding compound proof segment
of its own, given in Figure 2.

'</81,5251 C 52 {::> ('</rx E 51 '* X E 52) -. al E U1 '* al E F1

U1 C F1 {::> VxX E U1 '* X E Fl ' -'(v'rX E U1 '* X E Ft)

U1 it F1

Figure 2: N'atural Expansion 2 for Subset Definition

In general, if Figure 3(a) is the corresponding tree schema for a rule cl,~;,bl ,
acquired from assertion A, the corresponding tree schema for the associated
rule bl ,:~~,cl can certainly be constructed, using corresponding associated
logic level rules, as shown in Figure 3(b)

cLc2.... bl. -.b2, ...

A Cn -.Biii

If' .. ·· Cl -.131
81 ,... -.c1

-----;~.....,----, cl, ...Bm. bl, . .. -'L,n
b2

(a) (b)

Figure 3: Expansion for Associated Rules

The following property makes a more succinct representation possible
[Hua9l]:

R(A, Assoc(B) U B) = R(A, 8) U Assoc(R(A, B))

",'here B is an arbitrary set of logic level inference rules. A natural corollary
IS:

Assoc(R(A, As.'Joc(B) U B)) c R(A, Assoc(8) U B)

Intuitively, this means if all rules associated to elementary rules are already
at the disposal of the variablization-and-chunking process, the derivation of
associated rules will bring forth no more new rules. Thus

Rules(A) = R(A,lIK) U Assoc(R(A,NK})

3.1 Tree Schemata for Assertion Level Inference Rules

As illustrated above, every assertion level proof segment can be abstracted
into a tree schema, and every tree schema corresponds to a rule in R(A, N):::').
Therefore R(A,,;\/K,) can be represented by a set of tree schemata covering
all assf'rtion level compound segment, denoted by Tree(A, JVK,). Since some

6

81 € Uha l @ F1
V51 ,3351 C 52 @ (V3!) € 31¢ .17 € 52) “ (01 € U1 => (11 € F1)

DYICFIÖeeLr l ä l 'GFI ’ “ (VxxEUläxeFfl(fl i n _

Figure 2: Natural Expansion 2 for Subset Definition

In general, if Figure 3(a) is the corresponding tree schema for a rule —-—°1'§§'bl,
acquired from assertion A, the corresponding tree schema for the associated
rule é—l—z-ä-äi-l- can certainly be constructed, using corresponding associated
logic level rules, as shown in Figure 3(b)

(31 .62 ‘ 61 “52 ,

__ ICE g _,

["-if j].— 37’ . . . “"—Bl

31 «cu
Brr i . b l , . . . HCn . , c l , . . .

122 "“162

(a) , (b)
Figure 3: Expansion for Associated Rules

The following property makes a more succinct representation possible
[Hua91]:

R(.A, Assoc(8) U B) = R(A, B) U Assoc(R(A, B))

where B is an arbitrary set of logic level inference rules. A natural corollary
is:

Assoc(R(A, As.soc(B) U B)) C ETA, Assoc(ß) U ß)
intuitively, this means if all rules associated to elementary rules are already
at the disposal of the variablization-and—chunking process, the derivation of
associated rules will bring forth no more new rules. Thus

Rule.9(.A) = R(.A‚N7C) U Assoc(R(A,NlC))

3 .1 Tree Schemata for Assertion Level Inference Rules

As illustrated above, every assertion level proof segment can be abstracted
into a tree schema, and every tree schema corresponds to a rule in R(A, JWC).
Therefore R(A„«'WC) can be represented by a set of tree schemata covering
all assertion level compound segment, denoted by Tree(A,JV/C). Since some

6

members in Tfe~(A, .IVK-) are subtrees of others and can therefore be omitted,
we show in this section that this set can be represented in a very compact
way. For almost all examples, Tree(A,.'VK-) consists usually of only one or
two trees.

Example 1. (continued)

If we apply the variablization process described in the last section on the
proof segment in Figure 1 by replacing at, Ul and F1 by meta-variables a, U
and F, respectively, the tree schema in Figure 4 can be derived.

Q. E 1"1

Figure 4: Tree Schema for Subset Definition

Because every subtree (with the subset definition as one of its leaves) of
the tree schema in Figure 4 is a schema of assertion level proof segment,
this tree contains a whole set of assertion level inference rules. Apart from
the one listed in (2), Ifzx~(;:'XEF is another rule contained in this tree, for
instance.

Before providing a constructive definition of Tree(A, NK), let us first
introduce some notions categorizing rules in ,N"K-.
Definition: An inference rule of the form ~I-F!~~Q"!6.I-Pn is a decomposition
rule with respect to formula schema F, if all applications of it, written as
~I-A' ~I-P' ,··6.I-P' 'f h r 11' d' , h pi pi d Q' '

n! ~I-Q" satls y t e 10 owmg con Ihon: eac l' •. " n an IS

• a proper subformula of F', or

• a specialization of F' .or one of its proper subformula, or

• a negation of one of the first two cases.

'Gnder this definition, AD,:::} D, VD are the only elementary decomposi
tion rules in ..VK-.

Definition: An inference rule of the form ~PL;:~tI-Pn is called a composition
'f 11 1" f ,. ~I-P' ... ~I-P'I 'f h £, 11 ' ru1e 1 a app lcatlOns 0 It, WrItten as ~QI n, satls y t e 0 owmg

condition: each P{,· ,. p~ is

• a proper subformula of Q', or

• a specialization of Q' or one of its proper subformula, or

7

members in Tree(J-l, JV/C) are subtrees of others and can therefore be omitted, _
we show in this section that this set can be represented in a very compact
way. For almost all. examples, Tree(A,JWC) consists usually of only one or
two trees.

Example 1 . (continued)
If we apply the variablization process described in the last section on the

proof segment in Figure 1 by replacing a l , U1 and F1 by metawvariables a , U
and F , respectively, the tree schema in Figure 4 can be derived.

A:Vs , , 5251‘C SQ©V3$ES1Q$€52
U1CF1<=>VrIGLi1=>$€F1 ' ICF

U1CF1=>J I$EI IE1=>$E£1 ’ 1 1
1-196 L=>17€1 'r

a—„äaéfi ’ “EDI
a€F1

Figure 4: Tree Schema for Subset Definition

Because every subtree (with the subset definition as one of its leaves) of
the tree schema in Figure 4 is a schema of assertion level proof segment,
this tree contains a whole set of assertion level inference rules. Apart from
the one listed in (2), Fair—6F is another rule contained in this tree, for
instance.

Before providing a constructive definition of Tree(A,JVIC), let us first
introduce some notions categorizing rules in N'IC.

Definition: An inference rule of the form AFF'AFPLV'3AFP“ is a decomposition
rule with respect to formula schema F , if all applications of it, written as

.- ', m.m.AI-P:. - ' ' ' 'A ”* ßen—2?
satisfy the followmg condltion: each P{, . - - , P,; and Q’ IS

. a proper subformula of F ' , or

o a specialization of F' „or one of its proper subformula, or

o a negation of one of the first two cases.

Under this definition, AD, => D ,VD are the only elementary decomposi-
tion rules in JWC.

Definition: An inference rule of the form Alf—131$ is called a composition
rule if all applications of it, written as W, satisfy the following
condition: each P{, - - - P,.’, is

o a proper subformula of Q’, or

o a. specialization of Q’ or one of its proper subformula, or

**
]

•	 a negation of one of the first two cases.

Now we are ready to examine the set of proof tree schemata designated
by Tree(A,/'''/K). We do this by defining Tree(A,B) as a restricted deductive
closure of the composition and decomposition rules in B, an arbitrary set of
logic level inference rules. Technically, for all r E R(A, B), there is a tree
schema t E Tree(A, B), such that r can be accounted for by a subtree of t.
Below is a constructive definition:

Start with the tree in Figure .S(a), which corresponds to the rule 6At-A'

11	 If there is a tree t in the form of Figure 5(b), r = 6At-a.bo1IJ~Q..,boAt-pn E

8 is a decomposition rule with respect to a, and if there exists a sub
stitution 17, such that A' = a17, then extend t to a tree t' in form of
Figure 5(c).

III	 If there is a tree t in the form of Figure 5(b), and r = 6At-p~A~~At-pln E

8 is a composition rule with respect to Q, now if there exists a substi
t ution 17, such that p = Q17, then extend t to a tree t' in form of Figure
5(cl).

, ,
PI , ... ,pn17

P 'H' ,... ,

A', pl17, ...• pnO"
Q

(a) (b) (c)	 (d)

Figure .5: Construction of Tree Schemata

Some explanations: i) initializes a tree with only one node, corresponding
to the initial inference rule bot-A' ii) and iii) extend existing trees by decom
posing the root or the leaves. The informations contained in this set can
be redundant, since many rules accounted for by one tree schema are often
associated to rules accounted for by another tree schema, described by the
schema in section 2.

3.2 Examples

In this section, we illustrate the structure of tree schemata introduced above
with the help of two examples. We will show that one or two trees are

A.... ,... , , ... ,

8

o a. negation of one of the first two cases.

Now we are ready to examine the set of proof tree schemata designated
by Tree(.‚4,N7C). We do this by defining Tree(A,ß) as a restricted deductive
closure of the composition and decomposition rules in B , an arbitrary set of
logic level inference rules. Technically, for all r € BULB), there is a tree
schema t E Tree(.A,B), such that r can be accounted for by a subtree of t .
Below is a constructive definition:

i Start with the tree in Figure 5(a), which corresponds to the rule m,

.. . ' . . AAl— .AAI- Immu-11 If there IS a tree t 1n the form of Figure 5(b), r = “ &»k ?" €
B is a decomposition rule with respect to a : and if there exists a sub-
stitution 0‘, such that A’ == aa, then extend t to a tree t’ in form of
Figure 5(c).

iii If there is a tree t in the form of Figure 5(b), and r = AAFPZEEQAFP’" E
B is a composition rule with respect to Q, now if there exists a substi-
tution a , such that p = Qa, then extend t to a tree t’ in form of Figure
5(d).

(a) (b) (C) ((I)
Figure 5: Construction of Tree Schemata

Some explanations: i) initializes a tree with only one node, corresponding
to the initial inference rule KFZ? ii) and iii) extend existing trees by decom-
posing the root or the leaves. The informations contained in this set can
be redundant, since many rules accounted for by one tree schema are often
associated to rules accounted for by another tree schema, described by the
schema in section ‘2.

3 .2 Examples

In this section, we illustrate the structure of tree schemata introduced above
with the help of two examples. We will show that one or two trees are

8

sufficient to represent an entire class of rules. The second example should
also clarify that the concept of the application of assertions is not restricted
to mathematics, but also useful for common sense reasoning, as far as logic
is used as the representation language. For each example, we list some of
the rules contained in Hules(A) (assertion level rule applying the assertion
A, a.nd illustrate how they are related to the subtrees in Tree(A,NJC). We
first finish the discussion of the subset example used throughout this paper.

Example 1. (Continued): Two trees are needed as shown in Figure 6 and
Figlln~ i, since the equivalence {::? is understood as the shorthand of the
conjunction of two implications and therefore can be decomposed in two
different ways. The subset definition is repeated below:

Table 1 is a list of some of the rules in Rule(A), and their corresponding tree
schemata.

Xo. Inference Rule Derivation(Tree or Association)

(1) 6. I- a E U.6. I- 1./ C f
6r-aEF Tree in Figure 6

(2) 6. l- a ft F. 6. l- V C F
6.r-aftU Associated with (1)

(3) 6. l- a E U. 6. l- a ft F
61-Ur{..f Associated with (1)

(4)
t:::,.l-ucr

6 l- YrX E U :::} x E F Subtree of Figure 6, rooted at node [cl

(.5) 6I-aEL' :::}-aEl'
6l-UcP

where a does not occur in A Tree in Figure 7.

(6) 6. I- VxX E U :::} x E F
6FUcF Subtree of Figure 7 rooted at node [cl

(7) 61-uet.F
6. I- ..,VrX E U :::}- x E F Associated to (5)

Table 1: Some Inference Rules for Subset Definition

c :VxxEU:::}-xEF
-----.......,...d....--:"':Oa-E-----;~...~ -:::}-a-E------;F..---------,

e : a E F

Figure 6: Tree Schema 1 for Subset Definition

9

u.
a E

sufficient to represent an entire class of rules. The second example should
also clarify that the concept of the application of assertions is not restricted
to mathematics, but also useful for common sense reasoning, as far as logic
is used as the representation language. For each example, we list some of
the rules contained in R-uJes(.A) (assertion level rule applying the assertion
A. and illustrate how they are related to the subtrees in Tree(A,NlC). We
first finish the discussion of the subset example used throughout this paper.

Example 1. (Continued): Two trees are needed as shown in Figure 6 and
Figure ?, since the equivalence <=}— is understood as the shorthand of the
conjunction of two implications and therefore can be decomposed in two
different ways. The subset definition is repeated below:

figs-251 C 52 {=> VII E 51 => 27 € 52

Table 1 is a list of some of the rules in Rule(A), and their corresponding tree
schemata.

X0. Inference Rule Derivation(Tree or Association)

(1) A f- a E Hagel—FU C F Tree in Figure 6

(2) A l- ag fiaAél—UL‘ C F Associated with (1)

(3) A l— GAEFDEFAn"; i F Associated with (1)

(4) A l- VAxr-ELEYCäFx E F Subtree of Figure 6, rooted at node [c]
(5 AFaEU=>aEF I '” AFUCF

where a does not occur in A Tree in Figure 7.

(6) A '— VÄxFélg'cäFx E F Subtree of Figure ? rooted at node [c]
.. A l - U F . ‘(l) A |_ ‘1e 60¢=> .1: E F Assoc1ated to (5)

Table L: Some Inference Rules for Subset Definition

AivshsgS lCSa‘äVxxG—gl=>$€32

a] :UCF¢=>Vr . rEU=>xEF
b] : U C F = > e € U = > 1 - E F ’

B :} : ee l f ' äxEF
[d] : a6U=>aEF ’

[c] : aEF

UCF

aEU

Figure 6: Tree Schema 1 for Subset Definition

_ ,
“ -

cu
-

..
n-

r'
“

a :UCF{::?\txxEU=>xEF

c : U C F

A :VS .s 81 C 82 {::? \tr.T E SI => X E S2
aEU=>aEF

,VxX E U => x E F

Figure 7: Tree Schema 2 for Subset Definition

Xotice, as we argued above, every subtree containing the subset definition
as a leaf corresponds to a rule of inference, if we take the other leaves as
preconditions and the root as the conclusion. In other words, only subtrees
rooted along the path from the -leave which is the assertion being applied
to the root,' called the main bmnch, are of interest. Figure 6 has five such
subtrees and Figure 7 has three, namely, the length of the main path. Nodes
along the main branch are numbered in Figure 6 and Figure 7 for convenience.
Each such subtree represents a rule of inference, directly, and rules associate
with it indirectly.

For instance, rules (1) is directly represented by Figure 6 itself and (2),
(:3) are associated with rule (1). Rule (4) is represented by a subtree rooted at
node [cl in Figure 6. Rule (5) is represented by one of the subtrees rooted at
[cj in Figure 7, which has no associated rules because of its variable condition.

The Schubert's steam-roller problem below should illustrate that similar
observations can be made for non-mathematical reasoning.

Example 2. The encoding of an axiom is given below (E stands for Eats).

Va:animal(Vp:plantE(a,p) V (Val:animala' < a A 3p':plantE(a',p') => E(a, a')))

Although Tree(A,NK) in this case consists of two trees, due to the redund
ancy of the two symmetric vD rules, only one is shown in Figure 8. Since the
two vD rules are associated with each other, this tree is complete by itself,
see [Hua91J. Some inference rules are listed in Table 2.

?\o. Inference Rules Derivation(Tree or Association)

(1)

(2)

(3)

(4)

6. f- -.E(a,p),a < a,E(a',p)
6. f- E(a, a')

6.f-a <a.E(a,p').-.E(a.a')
6.1- E(a,p)

6. f- -.VpE(a,p),a' < a, E(a',p)
6. f- E(a, a'l

6. f- a' < a.E(a ,p).-.E(a.a)
6. f- VpE(a, p)

•
Tree in Figure 8.

Associated to (1)

Subtree of Figure 8.

Associated to (3)

Table 2: Some Inference Rules for Steam-Roller Axiom

10

A :V5b3251 C 32 <=} VI.? € 51 =? 3: € 52
a) :UcF<=>Vxe=>: reF a=>aeF

E}:(Vx;r€U=>x€F)=>UCF ’VxeäxeF
[c]:UCF

Figure T: Tree Schema. '2 for Subset Definition

Notice, as we argued above, every subtree containing the subset definition
as a. leaf corresponds to a rule of inference, if we take the other leaves as
preconditions and the root as the conclusion. In other words, only subtrees
rooted along the path from the'leave which is the assertion being applied
to the rootgcalled the main branch, are of interest. Figure 6 has five such
subtrees and Figure T has three, namely, the length of the main path. Nodes
along the main branch are numbered in Figure 6 and Figure 7 for convenience.
Each such subtree represents a rule of inference, directly, and rules associate
with it indirectly.

For instance, rules (1) is directly represented by Figure 6 itself and (2),
(3) are associated with rule (1). Rule (4) is represented by a subtree rooted at
node [c] in Figure 6. Rule (5) is represented by one of the subtrees rooted at
[c] in Figure T, which has no associated rules because of its variable condition.

The Schubert’s steam~roller problem below should illustrate that similar
observations can be made for non-mathematical reasoning.

Example 2 . The encoding of an axiom is given below (E stands for Eats).

Va:an ima l (vp :p l an t -E (aap) V (va’mnimala’ < a A ap ’ :p l an tE(a l7PI) => E017 a , ”)

Although Tree(A, N 1C) in this case consists of two trees, due to the redund-
ancy of the two symmetric VD rules, only one is shown in Figure 8. Since the
two VD rules are associated with each other, this tree is complete by itself,
see [Hua91]. Some inference rules are listed in Table 2.

No. Inference Rules Derivation(Tree or Association)

(1) A *“ “El: f?r-(ja?; Eu ~P) Tree in Fighre 8.
(2) A *“ “ <Ä— f(äaap gems-a) Associated to (1)
(3) A ’— “VpEAars-Pkfa i,?” E(a ‚p) Subtree of Figure 8.

(4) A " “ 2313355213n- “1 Associated to (3)

Table 2 : Some Inference Rules for Steam-Roller Axiom

10

4

VaC'<IpE(a.p) V (Va1a' < nJ\3p'E(a'.p'):::} E(a,a'))) E aI, 2)

E(al, aD

VpE(at. p) V (Va,Q' < at J\ 3pl E(a', pi) => E(al' a')) VpE(al, P
Va1a' < aI1\3pI E(a',p') => E(at,a')

Figure 8: Tree Schema for Steam-Roller Example

Abstracting ND-Proofs to Assertion Level
Proofs

This section is devoted to a procedure abstracting input ND proofs to the
assertion level, with the help of the tree structure introduced above. This
procedure is the preprocessor of PROVERB, a system transforming natural
deduction proofs into natural language. Embedded in n-NIKRP, an inter
active proof development enviroment [HKK+92b], the input ND proofs are
represented in a linearized version, introduced in [And80]. In this formalism,
every proof is a sequence of proof lines, each of the form:

Label Deri'ved-Formula '1(,(reason-pointers)

where n is a rule of inference in .IV;::" which justifies the derivation of the
derived formula using formulas in lines pointed to by reason-pointers as the
preconditions. 6,. is a finite set of formulas, being hypothesis on which the
derived formula depends. 'We want to point out that although the linear
format may be not sui table for some purpose, a linearization is required by
the translation into natural language.

As argumented above, in order to produce natural language proofs com
parable with proofs found in typical mathematical textbooks, we should first
try to replace as much complex proof units as possible by atomic assertion
level steps. One straightforward procedure would be going through the en
tire input proof, and test for every proof line, if it can also be justified by
the application of an assertion. As candidate for such assertions all formula
valid at this point of proof must be considered. To test the applicability of a.
particular assertion, we have to search the entire previous proof context for
potential premises. Apparently, the above sketched procedure effectively re
proves the problem based on the input proof. Although this procedure may
find more better proofs, it is very search intensive and can easily get lost
in a combinatorially explosive search. Another extreme is a strict abstrac
tion of the input l'<""D proof by simply replacing all subproofs satisfying the
decomposition and composition constraint by a atomic assertion level step.
This approach, however, has a severe drawback as well. Since automated
theorem provers usually work in a manner fundamentally different to that of
human being, the input ~D proofs are often quite twisted so that not many

11

V4(V„E(a.p') V (Vara' < a A 31,1E(a'.p') => E[a‚a'))) -E(al ,p2)
VpElahp lVa- ‘a ' < 01 A3p(a ' , p ') =? E’(a1,a’)) "‘VpElaiaP) a; < 01 , £161.21)

Va’a ’ < a1A3p :E(a ' ‚p")=> E(a l ‚ a ') $$$-LP)
a; '< a l A3p:E(gi,p’) => E(a1,a'1) ’ a ; < a ; A 3p:E(a'1,p’)

EU“ , all)

Figure 8: Tree Schema for Steam—Roller Example

4 Abstracting ND-Proofs to Assertion Level
Proofs

This section is devoted to a procedure abstracting input ND proofs to the
assertion level, with the help of the tree structure introduced above. This
procedure is the preprocessor of PROV ERB, a system transforming natural
deduction proofs into natural language. Embedded in Q—MKRP, an inter-
active proof deveIOpment enviroment [HKK+92b], the input ND proofs are
represented in a linearized version, introduced in [And80]. In this formalism,
every proof is a sequence of proof lines, each of the form:

Label A I— Derived—Female 'R(reason-pointers)

where R is a rule of inference in JWC, which justifies the derivation of the
derived formula using formulas in lines pointed to by reason—pointers as the
preconditions. A is a finite set of formulas, being hypothesis on which the
derived formula depends. We want to point out that although the linear
format may be not suitable for some purpose, a linearization is required by
the translation into natural language.

As argumented above, in order to produce natural language proofs com—
parable with proofs found in typical mathematical textbooks, we should first
try to replace as much complex proof units as possible by atomic assertion
level steps. One straightforward procedure would be going through the en—
tire input proof, and test for every proof line, if it can also be justified by
the application of an-assertion. As candidate for such assertions all formula
valid at this point of proof must be considered. To test the applicability of a
particular assertion, we have to search the entire previous proof context for
potential premises. Apparently, the above sketched procedure effectively re-
proves the problem based on the input proof, Although this procedure may
find more better proofs, i t is very search intensive and can easily get lost
in a combinatorially explosive search. Another extreme is a strict abstrac-
tion of the input ND proof by simply replacing all subproofs satisfying the
decomposition and composition constraint by a atomic assertion level step.
This approach, however, has a severe drawback as well. Since automated
theorem provers usually work in a mannerifundamentally different to that of
human being, the input N D proofs are often quite twisted so that not many

11

units satisfying this constraint can be found. To reconcile the efficiency and
the quality requirement, we employ an algorithm that mainly abstracts an
existing proof as it is proved, but utilizes the assertion level inference rules
instead of the decomposition-and-composition constraint. In fact, the global
structure is taken over from the first approach: we go through the entire
input proof, and test for every proof line, if it can also be justified by the
application of an assertion. However, only definitions and theorems contrib
uting to its proof, namely those in 6., are taken as candidates of applicable
assertions. And only proof lines transitively reachable via the reason-pointers
are considered as potential premises.

Algorithm:

1. go through the entire proof starting from the beginning, for each line,

(a) choose as the set of assertions AS the set of hypothesis 6. of the
current line

(b)	 among the lines transitively reachable via the reason-pointers start
ing from the current line, test if there exist lines Pt, ... , Pn, from
which the derived formula F of the current line can be derived by
applying an assertion A in AS. This is done by finding a subtree
in Tree(A,.VK), so that the derivation is justified by a rule rep
resented by this subtree. In this case, replace the rule of inference
n in this line by a label standing for A as the new justification,
and update reason-pointers so that they point to Pt, ... ,pn'

2. delete all lines, '.",hich are no more involved in the reason hierarchy start- .
ing from the conclusion of the entire proof, along the reason-pointers.

A refinement is also made to tackle the situation where more than one
applicable assertion level rule is found. In the current implementation, the
one that deletes most lines is chosen. Although locally optimal choices do
not always lead to a globally optimal choice, it turns out to be tolerable
since such cases rarely occur. The search of a subtree in Tree(A,NK) is
significantly accelerated by the subformula relation among nodes in the tree
schemata.

~otice the order of searching for abstractions is deliberately chosen for
efficiency reasons. By proceeding from the more shallow lines gradually
towards the final conclusion, the more later abstractions may profit from the
earlier ones, since the reason pointers' of the current proof line are updated
with every abstraction.

Despite its simpleness, the current algorithm substantially shortens input
XD proofs of a broad class. Most significant reduction is observed with input
proofs which are essentially direct proofs, but containing machine generated

12

units satisfying this constraint can be found. To reconcile the efficiency and
the quality requirement, we employ an algorithm that mainly abstracts an
existing proof as it is proved, but utilizes the assertion level inference rules
instead of the decomposition-and-composition constraint. In fact, the global
structure is taken over from the first approach: we go through the entire
input proof, and test for every proof line, if it can also be justified by the
application of an assertion. However, only definitions and theorems contrib-
uting to its proof, namely those in A , are taken as candidates of applicable
assertions. And only proof lines transitively reachable via the reason—pointers
are considered as potential premises.

Algorithm:

1. go through the entire proof starting from the beginning, for each line,

(a) choose as the set of assertions A5 the set of hypothesis A of the
current line

(b) among the lines transitively reachable via the reason-pointers start—
ing from the current line, test if there exist lines p1, . . . , pn, from
which the derived formula F of the current line can be derived by
applying an assertion A in AS. This is done by finding a subtree
in Tree(A‚N7C), so that the derivation is justified by a rule rep-
resented by this subtree. In this case, replace the rule of inference
’R. in this line by a label standing for A as the new justification,
and update reason-pointers so that they point to pl, . . . , p„.

‘2. delete all lines, which are no more involved in the reason hierarchy start- '
ing from the conclusion of the entire proof, along the reason-pointers.

A refinement is also made to tackle the situation where more than one
applicable assertion level rule is found. In the current implementation, the
one that deletes most lines is chosen. Although locally optimal choices do
not always lead to a globally optimal choice, it turns out to be tolerable
since such cases rarely occur. The search of a sfubtree in Tree(A,N}C) is
significantly accelerated by the subformula relation among nodes in the tree
schemata.

Notice the order of searching for abstractions is deliberately chosen for
efficiency reasons. By proceeding from the more shallow lines gradually
towards the final conclusion, the more later abstractions may profit from the
earlier ones, since the reason pointers’of the current proof line are updated
with every abstraction.

Despite its simpleness, the current algorithm substantially shortens input
ND proofs of a broad class. Most significant reduction is observed with input
proofs which are essentially direct proofs, but containing machine generated

12

detours and redundancies. At the end of this section, we show an example
where a machine generated ~D proof with 134 lines is abstracted to a proof
of VS lines. The algorithm also works well on neatly structured ~D proofs.
In these cases, the reduction factor depends on the average depth of the
terms in the definitions and theo,rems involved in the proof. Since mathem
aticians usually avoid using both too trivial and too complicated definitions
and theorems, a quite stable reduction factor (about two thirds in length) is
normally achieved. Finally, the algorithm performs very poorly on machine
generated proofs which are mainly indirect, i.e., in most of the lines only
bottom is derived. Despite of a reduction factor of about one third in length,
the remaining proof lines are still largely at the level of calculus rules and
the proof is therefore still too tedious. ,

Let us look at the example below, abstracted from an input proof of 134
lines, generated in the proof development environment n-MKRP. Eleven of
the remaining fifteen steps are at the assertion level. The rest are justified
by XD rules of more structural import: they introduce new temporary hy
pothesis and then discharge them, or split a problem into cases. These steps
\O\·ill usually be presented explicitly later. Groups of trivial steps instantiat
ing quantifiers or manipulating logical connectives are largely abstracted to
assertion level steps. A proof segment with four extra lines, being the lin
earized version of the proof tree in Figure 1 as the matter of fact, is needed
even in a neatly written input ~D proof to achieve step 7 from step 2 and
.5. The definitions of semigroup, group, and unit are obvious and therefore
omitted in the proof below. solution(a, b, c, F, *) should be read as "c is a
solution of the equation a *x = b in F." ~otice, the proof segments replaced
by assertion level steps are not necessarily a natural expansion of the latter.
In contrast, it is usually a logically equivalent but structurally more complex
proof segments produced by automated theorem provers. If we replace the
ass('rtion level steps in the proof below by their natural expansions corres
pondingly, the result is a logic level proof of 43 lines, in contrast to the input
proof of 134 lines.

Theorem: Let F be a group and U a subgroup of F, if lu is a unit element
of U, then 1 = 1u.

Abstracted Proof about Unit Element of Subgroups

X?\o S;D	 Formula Reason
1.	 ;1 I- G : group(F, *) 1\ subg'roup(U, F, *) 1\ (hyp)

unit(F, 1. *) 1\ unit(U, Iu, *)
2. l', I-	 UcF (Def-subgroup 1)
3. 1; f-	 lu E (} (Def-unit 1)
4. l', f-	 3",xE U (3 3)
5. ;5 f-	 uEF (hyp)

13

I

detours and redundancies. At the end of this section, we show an example
where a machine generated ND proof with 134 lines is abstracted to a proof
of 15 lines. The algorithm also works well on neatly structured N- D proofs.
In these cases, the reduction factor depends on the average depth of the
terms in the definitions and theorems involved in the proof. Since mathem-
aticians usually avoid using both too trivial and too complicated definitions
and theorems, a quite stable reduction factor (about two thirds in length) is
normally achieved. Finally, the algOrithm performs very poorly on machine
generated proofs which are mainly indirect, i.e., in most of the lines only
bottom is derived. Despite of a reduction factor of about one third in length,
the remaining proof lines are still largely at the level of calculus rules and
the proof is therefore still too tedious.

Let us look a t the example below, abstracted from an input proof of 134
lines, generated in the proof development environment Q—MKRP. Eleven of
the remaining fifteen steps are at the assertion level. The rest are justified
by ND rules of more structural import: they introduce new temporary hy-
pothesis and then discharge them, or split a problem into cases. These steps
will usually be presented explicitly later. Groups of trivial steps instantiat—
ing quantifiers or manipulating logical connectives are largely abstracted to
assertion level steps. A proof segment with four extra lines, being the lin-
earized version of the proof tree in Figure 1 as the matter of fact, is needed
even in a neatly written input ND proof to achieve step 7 from step 2 and
5 . The definitions of semig'roup, group, and unit are obvious and therefore
omitted in the proof below. sol-ution(a, b, c, F, *) should be read as “c is a
solution of the equation a * a: = b in F.” Notice, the proof segments replaced
by'assertion level steps are not necessarily a natural expansion of the latter.
In contrast, i t is usually a logically equivalent but structurally more complex
proof segments produced by automated theorem provers. If we replace the
assertion level steps in the proof below by their natural expansions corres-
pondingly, the result is a logic level proof of 43 lines, in contrast to the input
proof of 134 lines.
Theorem: Let F be a group and U a subgroup of F , if 1;; is a unit element
of U , then 1 == IU.

Abstracted Proof about Unit Element of Subgroups
NNo S;D Formula Reason
1. ;1 l- G : group(F, at) A subg-rou;p(U, F, *) A (hyp)

un i t (F ‚1 ,*) / \ uni£(U‚ IU, *)
2 1; l- U C F (Def-subgroup 1)
3 1; 1- 1:; E U \ [Def-unit 1)
4r 1; I- 333: E U (3 3)
3. ;5 I- 'u e U (hyp)

13

6. 1;5 I- u *lu =u (Def-unit 1 5)
7. 1:5 I- uEF (Def-subset 2 5)
8. 1:5 I- lu E F (Def-subset 2 3)
9. 1:5 I- semigroup(F, *) (Def-group 1)
10. 1;5 I- so/ution(u, u. lu, F, *) (Def-solution 6 7 8 9)
11. 1:5 I- u* 1 =u (Def-unit 1 7)
12. 1;5 I- 1 E F (Def-unit 1)
13. 1;.5 I- so/ution(tt, tt, 1, F, *) (Def-solution 7 11 12 9)
14. 1:5 I- 1 =lu (Th-solution 11 10 13)
15. . 1; I- 1 =1u (Choice 4 14)
Thrn. l', I- 1 = lu 0

The appropriateness of the assertion level is supported by a computa
tional model for human proof presentation, realized in the system PROVERB
[Hua9:3a]. We have already tested it with assertion level proofs as input and
the exp~rience is quite positive. Even without sophisticated language gen::
eration mechanism, resulting texts are at an acceptable level of. abstraction
[Hua90]. Below is the natural language proof generated by PROVERB, using
the generator TAG-GEN- i [KiI9:3] as its linguistic component.

The Natural Language Proof

(1)Let F be a group and let V be a subgroup of F and let t-' be an unit

element of F and let Eu be an unit element of U. (2)According to the

definition of unit element Eu E U. (3)Therefore there is a X, X E U.

(·l)~ow suppose that V is such an X. (5)According to the definition of

unit element UI *EU = VI. (6)Since Eu is an unit element of U Eu E U.

(7)Since U is a subgroup of F U C F. (8)Therefore Eu E F. (9)Similarly
VI E F since VI E U. (lO)Since F is a group F is a semigroup. {ll)Since
U1 * Eu = U1 EU is a solution of th.e equation U * X = U. (12)Since E
is an unit element of F U1 * E = U1• (13)Since E is an unit element of
FEE F. (14)Since Ut E F E is a solution of the equation U *X =U.
(15)Since F is a group Eu = E by the uniqueness of solution. (16)This
conclu3ion is independent of the choice of the element U.

Conclusion and Future Work

This paper discussed with the presentation of natural deduction proofs, trans
lated from proofs in more machine oriented formalisms. An algorithm is
proposed to abstract such l"D proofs to the assertion level, to allow for jus
tifications at a higher level of abstraction. '\l!le have illustrated that proof
units which can be justified as the application of a certain assertion can also
be justified by an assertion level rule of inference. The complete set of such

14

5

6. 1:5 1" u *_1U :: u (Def—unit 1 5)
T. 1;5 !- u E F (Def-subset 2 5)
8. 1:5 l- 1:; E F (Def-subset 2 3)
9. 1:5 1- semigroup(F, at) [Def-group 1)
10. 1;:3 l- solution(u, u. l g , F, *) (Def-solution 6 7 8 9)
11. 1:5 !- u‘arl = u (Def-unit 1 7)
1'2. 1:5 I- 1 E F (Def-unit 1)
13. 1:5 I- solution(u,u, 1, F, *) (Def-solution 7 11 12 9)
14. 1:5 I- 1 : l g (Th-solution 11 10 13)
15. . 1; l- 1 : : l g (Choice 4 14)
Thm. 1; l- 1 = 1U ()

The appropriateness of the assertion level is supported by a computa-
tional model for human proof presentation, realized in the system PROVERB
[Hua93a]. We have already tested it with assertion level proofs as input and
the experience is quite positive. Even without sophisticated language gen;
eration mechanism, resulting texts are at an acceptable level of abstraction
[HaO]. Below is the natural language proof generated by PROVERB, using
the generator TAG-GEN—T [Ki193] as its linguistic component.

The Natural Language Proof
(1)Let F be a group and let U be a subgroup of F and let E be an unit
element of F and let EU be an unit element of U. (‘2)According to the
definition of unit element EU € U. (3)Therefore there is a. X, X €" U.
(«l)Now suppose that U is such an X . (5)According to the definition of
unit element U1=+=EU -_- U1. (6)3ince EU is an unit element of U EU 6 U.
(7)5ince U is a subgroup of F U C F . (8)Therefore EU € F . (9)3imilarly
UI E F since U1 6 U. (10)Since F is a group F is a. semigroup. (11)Since
U1 * EU == U1 EU is a solution of the equation U * X = U. (12)Since E
is'an unit element of F U1 * E : U1. (13)Since E is an unit element of
F E E F . (l4)Since U1 6 F E is a solution of the equation U * X = U.
(15)Since F is a group EU : E by the uniqueness of solution. (16)This
conclusion is independent of the choice of the element U .

5 Conclusion and Future Work

This paper discussed with the presentation of natural deduction proofs, trans-
lated from proofs in more machine oriented formalisms. An algorithm is
proposed to abstract such ND proofs to the assertion level, to allow for jus-
tifications at a higher level of abstraction. We have illustrated that proof
units which can be justified as the application of a certain assertion can also
be justified by an assertion level rule of inference. The complete set of such

14

assertion level rules related to a particular assertion can be represented in
a very compact way in form of tree schemata. With the help of these tree
schemata, we devised an efficient algorithm abstracting machine generated
ND proofs to the assertion level.

The significance becomes more evident when it is viewed within the entire
spectrum of transforming machine generated proofs into natural language.
\Vith natural deduction style proofs composed of mostly assertion level steps
as an additional intermediate representation, the proofs passed to the text
planner already resemble proofs produced by human mathematician, and
therefore lend themselves to a natural specification of presentation strategies.
Using the abstraction as a preprocessor which substantially shortens input
proofs. we are able to tackle a broad class of proofs containing more than
one hundred lines, and the final proofs generated are at a level of abstraction
comparable with proofs found in typical mat.hematical text books.

There is no doubt that proofs are often presented by mathematician at a
even higher level of abstraction, since a loss factor of 10 to 20 is reported when
using systems like ArTOMATH [dB80]. Even more radical expansion factors
(about .),000 to 10,000) are conjectured by experts for harder mathematical
problems. To achieve a similar factor of reduction in the proof presentation,
a much deeper understanding of the cognitive process of theorem proving is
necessary. This work is only a first step toward this direction.

Acknowledgement

Thanks are due to ~Ianfred Kerber and Daniel Nesmith, who read several
drafts of this paper carefully, and to Armin Fiedler, who implemented the
abstraction algorithm.

References

[And80] Peter B. Andrews. Transforming Wlatings into Natural Deduc
tion Proofs. In Proc. of the CADE-80, pages 281-292, 1980.

[Chei6] Daniel Chester. The Translation of Formal Proofs into English.
AI, i:178-216, 1976..

[Con86] Robert L. Constable et al. Implementing lV[athematics with the
Nuprl Proof Development System. Prentice Hall, Inc., 1986.

[dB80] Nicolaas Govert.de Bruijn. A survey of the project automath. In
J. P. Seldin and J. R. Hindley, editors, Curry Essays on Com
binatory Logic, Lambda Calculus and Formalism, pages .5i9-606.
Academic Press, London, United Kingdom, 1980.

15

assertion level rules related to a particular assertion can be represented in
a very compact way in form of tree schemata. With the help of these tree
schemata, we devised an efficient algorithm abstracting machine generated
ND proofs to the assertion level.

The significance becomes more evident when it is viewed within the entire
spectrum of transforming machine generated proofs into natural language.
With natural deduction style proofs composed of mostly assertion level steps
as an additional intermediate representation, the proofs passed to the text
planner already resemble proofs produced by human mathematician, and
therefore lend themselves to a natural specification of presentation strategies.
Using the abstraction as a preprocessor which substantially shortens input
proofs, we are able to tackle a. broad class of proofs containing more than
one hundred lines, and the final proofs generated are at a level of abstract-ion
comparable with proofs found in typical mathematical text books.

There is no doubt that proofs are often presented by mathematician at a
even higher level of abstraction, since a loss factor of 10 to 20 is reported when
using systems like AUTOMATH [dB80]. Even more radical expansion factors
(about 5,000 to 10,000) are conjectured by experts for harder mathematical
problems. To achieve a similar factor of reduction in the proof presentation,
a much deeper understanding of the cognitive process of theorem proving is
necessary. This work is only a first step toward this direction.

Acknowledgement
Thanks are due to Manfred Kerber and Daniel Nesmith, who read several

drafts of this paper carefully, and to Armin Fiedler, who implemented the
abstraction algorithm.

' References

[And80] Peter B. Andrews. Transforming Matings into Natural Deduc-
' tion Proofs. In Proc. of the CADE—80, pages 281—292, 1980.

[Che76] Daniel Chester. The Translation of Formal Proofs into English.
AI, 7:178—216, 1976. .

[Con86] Robert L. Constable et al. Implementing Mathematics with the
Nuprl Proof Development System. Prentice Hall, Inc., 1986.

[dB80] Nicolaas Govertde Bruijn. A survey of the project automath. In
J . P. Seldin and J . R. Hindley, editors, Curry - Essays on Cam-
binatory Logic, Lambda Calculus and Formalz'sm, pages 579-606.
Academic Press, London, United Kingdom, 1980.

. 15

[Deu71] Peter Deussen.
1971.

Halbgruppen und Automaten. Springer Verlag,

[EP91] Andrew Edgar and Francis Jeffry Pelletier. ~atural language
explanation of natural deduction proofs. Personal Communica
tion, 1991.

[FHN72] R. R. Fikes, P. E. Hart: and N. J. Nilsson. Learning and execut
ing generalized robot plans. Ariificiallntelligence, :3:251-288,
1972.

[Gen:J5] Gerhard Gentzen. Untersuchungen iiber das logische SchlieBen
I. Afath. Zeitschrijt: 39:176-210: 1935.

[GMvV79] Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF: A Afechanized Logic of Computation. LNCS
78. Springer Verlag, 1979.

[HKK92a] Xiaorong Huang, Manfred Kerber, and Michael Kohlhase. Meth
ods - the basic units for planning and verifying proofs. SEKI
Report SR-92-20, Fachbereich Informatik, Universitat des Saar
landes, Saarbriicken, Germany, 1992.

[HKK+92b] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica
Melis, Daniel Nesmith, Jorn Richts, and Jorg Siekmann.
n-MKRPa proof development environment. SEKI Report
SR-92-22, Fachbereich Informatik, Universitat des Saarlandes,
Saarbriicken, Germany: 1992.

[Hua90]	 Xiaorong Huang. Reference Choices in Mathematical Proofs. In
Proc. of ECAI-90, L. C. Aiello (Ed), pages 720-725. Pitman
Publishing, 1990.

[Hua91]	 Xiaorong Huang. An Extensible Natural Calculus for Argument
Presentation. SEKI-Report SR-91-03, Fachbereich Informatik,
Universitat Kaiserslautern, Kaiserslautern, Germany, 1991.

[Hua92]	 Xiaorong Huang. Applications of assertions as elementary tac
tics in proof planning. In V. Sgurev and B. du Boulay, editors,
Proc. of the 5th International Conference on Artificial Intelli
gence - i\1ethodology, Systems, Applications, pages 25-34. El
sevier Science Publishers RV., the Netherlands, 1992.

[Hua93a]	 Xiaorong Huang. A Computational Model for Proof Present
ation. SEKI Report to appear, Fachbereich Informatik, Dni
versitat des Saar1a~,des, Saarbriicken, Germany, 1993.

16

[DeuTl]

[13.1391]

[FHNTQ]

[Gen35]

[GMWTQ]

[HKK9‘2a]

[HKK+9-2b]

[HaO]

[Hua91]

[Hua92]

[Hua93a]

Peter Deussen. Halbgruppen und Automaten. Springer Verlag,
1971.

Andrew Edgar and Francis Jeffry Pelletier. Natural language
explanation of natural deduction proofs. Personal Communica-
t ion, 1991.

R. R. Fikes, P. E. Hart, and N. J . Nilsson. Learning and execut-
ing generalized robot plans. Artificial .Inteiligence, 3:251—288,
197...

Gerhard Gentzen. Untersuchungen fiber das logische Schließen
I. Math. Zeitschrift, 39:176w-210, 1935.

Michael Gordon, Robin Milner, and Christopher Wadsworth.
Edinburgh LCF: A Mechanized Logic of Computation. LNCS
78. Springer Verlag, 1979.

Xiaorong Huang, Manfred Kerber, and Michael Kohlhase. Meth-
ods - the basic units for planning and verifying proofs. SEKI
Report SR-92-‘20, Fachbereich Informatik, Universität des Saar-
landes, Saarbrücken, Germany, 1992.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica
Melis, Daniel Nesmith, Jörn Richts, and Jörg Siekmann.
Q—MKRPa proof development environment. SEKI Report
SR—92-22, Fachbereich Informatik, Universität des Saarlandes,
Saarbrücken, Germany, 1992. '

Xiaorong Huang. Reference Choices in Mathematical Proofs. In
Proc. of ECAI—90, L. C. Aiello (Ed), pages 720—725. Pitman
Publishing, 1990.

Xiaorong Huang. An Extensible Natural Calculus for Argument
Presentation. SEKI-Report SR-91-03, Fachbereich Informatik,
Universität Kaiserslautern, Kaiserslautern, Germany, 1991..

Xiaorong Huang. Applications of assertions as elementary tac—
tics in proof planning. In V. Sgurev and B. du Boulay, editors,
Proc. of the 5th International Conference on Artificial Intelli-
gence - Methodology, Systems, Applications, pages 25-34. El-
sevier Science Publishers B.V., the Netherlands, 1992.

Xiaorong Huang. A Computational Model for Proof Present-
ation. SEKI Report to appear, Fachbereich Informatik, Uni-
versität des Saarlandes, Saarbrücken, Germany, 1993.

16

[Hua9:3b] Xiaorong Huang. An explanatory framework for human theorem
proving. In Hans Jiirgen Ohlbach, editor, Proc. of GWAI-92,
pages 55-66. Springer Verlag, 199:3. LNAI67l.

[Ki193] Anne Kilger. Using utags for incremental and parallel genera
tion. Computational Intelligence, to appear, 1993.

[Lin90] Christoph Lingenfelder. Transformation and Structuring of
Computer Generated Proofs. PhD thesis, Universitat Kaisers
lautern, Kaiserslautern, Germany, 1990.

[McD83] David D. McDonald. Natural Language Generation as a Com
putational Problem. In Brady/Berwick: Computational ~Uodels

of Discourse. MIT Press, Cambridge, MA, 1983.

[?\.liI83] Dale A. :\filler. Proofs in Higher-Order Logic. PhD thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
1983.

[Moo90] Raymond J. Mooney. Learning plan schemata from observation:
Explanantion-based learning for plan recognition. Cognitive Sci
ence, 14:483-509, 1990.

[~ew90] Allen)l'ewell. Unified Theories in Cognition. Harvard 'Gniversity
Press, Cambridge, MA, 1990.

[Pas9:3] Dominique Pastre. Automated theorem proving in mathematics.
Annals of Artificial Intelligence· and Mathematics, 1993.

[Pfe87] Frank Pfenning. Proof Transformation in Higher-Order Lo
gic. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 1987.

[P~90] Frank Pfenning and Daniel Nesmith. Presenting Intuitive De
ductions via Symmetric Simplification. In :Mark E. Stickel, ed
itor, Proc. of the CA DE-90, pages 336-350. Springer Verlag,
1990. LNAI449.

[W~IF93] F. Javier Thayer vVilliam M. Farmer, Joshua D. Guttman. Imps:
An interactive mathematical proof system. Jaornal of Autmated
Reasoning, to appear, 1993.

17

[Hua93b]

[Ki193]

[Lin90]

[McD83]

[ax-51831

[M0090]

[New90]

[Pa593]

[PfeST]

[PNQO]

[WMF93]

Xiaorong Huang. An explanatory framework for human theorem
proving. In Hans Jürgen Ohlbach, editor, Proc. of G WAI-92,
pages 55—66. Springer Verlag, 1993. LNAI 671.

Anne Kilger. Using utags for incremental and parallel genera-
tion. Computational Intelligence, to appear, 1993.

Christ0ph Lingenfelder. Transfownation and Structuring of
Computer Generated Proofs. PhD thesis, Universität Kaisers-
lantern, Kaiserslautern, Germany, 1990.

David D. McDonald. Natural Language Generation as a Com-
putational Problem. In Brady/Bemick: Computational [Models
of Discourse. MIT Press, Cambridge, MA, 1983.

Dale A. Miller. Proofs in Higher-Order Logic. PhD thesis,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA,
1983.

Raymond J . Mooney. Learning plan schemata from observation:
Explanantion—based learning for plan recognition. Cognitive Sci-
ence, 14:483—509, 1990.

Allen Newell. Unified Theories in Cognition. Harvard University
Press, Cambridge, MA, 1990.

Dominique Pastre. Automated theorem proving in mathematics.
Annals of Artificial Intelligence and Mathematics, 1993.

Frank Pfenning. Proof Transformation in Higher-Order Lo-
gic. PhD thesis, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 1987. \

Frank Pfenning and Daniel Nesmith. Presenting Intuitive De-
ductions via Symmetric Simplification. In Mark E. Stickel, ed-
itor, Proc. of the CADE—90, pages 336-350. Springer Verlag,
1990. LNAI 449. .

F . Javier Thayer William M. Farmer, Joshua D. Guttman. Imps:
An interactive mathematical proof system. Joe-mal of Autmated
Reasoning, to appear, 1993.

17

