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mm
This report presents a method to create an inductive proof system by using a theorem
prover for PL1EQ (first order logic with equality) as a basic system.
This method not only comprises the general principles necessary for making a theorem
prover for PL1 EQ capable of performing inductive proofs, but also includes further features
that may be added to systems for inductive proofs in order to guide the individual proof (for
instance heuristics aimed at optimizing the application of the inference rules with respect
to the fact that a proof by induction is  to be found).
An emphasis lies on the automatic generation of inductive Iemmata which are crucial to
the success of inductive proofs. In this domain a range of heuristics were conceived, partly
as derivations of ideas of other authors, partly as own developments, which in many cases
can generate a lemma that ends the proof attempt successfully. (This includes that this
lemma itself can be proved by induction as well.)

mm
Proofs in inductive theories face a wide range of application. not only in mathematics, but also in
computer science (here especially in  the domain of program verification). Therefore the need for
systems for inductive proofs is understandable. The goal of this report is  to present a method that
represents a general means to convert any theorem prover for PL1EQ into an inductive prover.

Since inductive theories are much harder than the “usual” theories for PL1 or PL1EQ, in the
early years of automatic proving a lot of work was invested in the construction of systems that were
able to prove in theories concerning PL1 EQ. Because these systems nowadays are considerably
powerful on account of continuous optimizations, improvements and extensions, it seems to be
recommendable to use these systems for inductive proofs by adding components suitable for this
purpose.
This is of course only one possible approach to the enormous challenge of inductive proofs.
Another approach would be the use of unfailing completion techniques combined with the concept



of proofs by consistency. But this approach involves the development of systems completely 
different from what is normally considered as theorem provers for PL1Ea. For this reason the 
proceedings to achieve the extension of an already existing theorem prover for PL1EO, so that it 
will be able to perform inductive proofs, must be different and shall be presented in the following 
paragraph in form of a general overview on the sections of this report: 
First of all, a description of the general method for inductive proving, the so-called structural 
induction, will be given. In this section 1 it will also be explained how that method and the 
underlying theorem prover for PL1Ea relate to form a device for accomplishing inductive proofs. 
Furthermore the inductive theory, in which the thereby created system is able to prove, will be 
defined. 
Section 2 will describe some features which can be very useful for guiding an individual inductive 
proof. It includes heuristics for the application of inference rules as well as heuristics related to the 
problem of inductive lemmata in general, for instance criteria which allow to detect the need for 
inductive lemmata. . 

The problem of generating automatically the inductive lemmata, which are necessary for a 
successful proof, will be covered in section 3. The general idea behind the method for the 
automatic generation of inductive lemmata consists in the manipulation of a subset of the formulas 
inferred in the course of an inductive proof attempt. This subset will be called "lemma-candidates". 
The manipulation mainly consists in transformations of syntactical nature, realized by various 
heuristics. Therefore the process of automatic lemma-generation is divided into two steps. In the 
first step (section 3.2), a subset of formulas (Le. the lemma-candidates) is extracted. This subset 
is subsequently rec1uced (because our aim should be the generation of just one useful lemma). 
This will be discussed in sections 3.2.1 and 3.2.2. After that, the remaining formulas can be 
manipulated. This task is taken, care of in the second step (section 3.3). A number of heuristics for 
this purpose will be ~resented and illustrated by examples (sections 3.3.1 through 3.3.6). How 
these various heuristics interact so as to get closer to the ideal goal of creating exactly one lemma 
is the subject of section 3.4. Moreover a concept will be introduced which allows us to classify 
these heuristics according to the effects the lemmata generated by them have on the respective 
proof. 
The last section 4 will summarize the essential parts of this report, point out some limits of the 
presented methods and give a brief outlook on what could be further interesting and useful items 
in this domain of research. 

1. Structural Induction 
In this section we shall come to know the proof principle which represents the framework for our 
inductive prover. But before we can come to the heart of the matter, we have to introduce some 
preliminary definitions concerning the notions term, formula, substitution etc. 

pefinition 1.1: term 
Let FS={f1... A} be a set of function-symbols with arity -r(fi»O, where \QO, C={C1''''Cm} be a set of 
constant-symbols, where m>O, and V be a (enumerable) set of variables. 
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of proofs by consistency. But this approach involves the development of systems completely
different from what is normally considered as theorem provers for PL1EQ. For this reason the
proceeding's to achieve the extension of an already existing theorem prover for PL1EQ, so that it
will be able to perform inductive proofs, must be different and shall be presented in the following
paragraph in form of a general overview on the sections of this report:
First of all, a description of the general method for inductive proving, the so-called structural
induction, will be given. In this section 1 i t  will also be explained how that method and the
underlying theorem prover for PL1EQ relate to form a device for accomplishing inductive proofs.
Furthermore the inductive theory, in which thelthereby created system is able to prove, will be
defined. "
Section 2 will describe some features which can be very useful for guiding an individual inductive
proof. It includes heuristics for the application of inference rules as well as heuristics related to the
problem of inductive lemmata in general, for instance criteria which allow to detect the need for
inductive lemmata. '
The problem of generating automatically the inductive lemmata, which are necessary for a
successful proof, will be covered in section 3 .  The general idea behind the method for the
automatic generation of inductive lemmata consists in  the manipulation of a subset of the formulas
inferred in  the course of an inductive proof attempt. This subset will be called “lemma-candidates”.
The manipulation mainly consists in transformations of syntactical nature, realized by various
heuristics. Therefore the process of automatic lemma-generation is divided into two steps. In the
first step (section 3.2), a subset of formulas (i.e. the lemma—candidates) is extracted. This subset
is subsequently reduced (because our aim should be the generation of just one useful lemma).
This will be discussed in sections 3.2.1 and 3.2.2. After that, the remaining formulas can be
manipulated. This task is taken“ care of in the second step (section 3.3). A number of  heuristics for
this purpose will be presented and illustrated by examples (sections 3.3.1 through 3.3.6). How
these various heuristics interact so as to get closer to the ideal goal of creating exactly one lemma
is the subject of section 3.4. Moreover a concept will be introduced which allows us to classify
these heuristics according to the effects the lemmata generated by them have on  the respective
proof.
The last section 4 will summarize the essential parts of this report, point out some limits of the
presented methods and give a brief outlook on what could be further interesting and useful items
in this domain of research.

1. r . r I In i n
In this section we shall come to know the proof principle which represents the framework for our
inductive prover. But before we can come to the heart of the matter, we have to introduce some
preliminary definitions concerning the notions term, formula, substitution etc.

mm: term
Let FS={f1,..,fk} be a set of function-symbols with arity 1:(fi)>0, where R20, C={c1,..,cm} be a set of
constant-symbols. where m>0, and V be a (enumerable) set  of variables.



t is in term{FS,C,V) iff 
(a) tE Cor 
(b) tEV or 
(c) t1 ,.. ,tn E term(FS,C,V), fE FS, t(f)=n, t=f(t1, ...tn)· 

(Note: If in (c) n=2, then we may prefer infix notation.) 

If there is no ambiguity, we shall use the short version lit is a term" instead of lit is in term(FS,C,V)". 
If V is'empty, then term(FS,C) d~notes the set of ground-terms. 

Definition 1.2: formulas 
'\1,3 denote the quantifiers as usual, -, is the negation symbol, PS a finite set of predicate-symbols 
and OP a finite set of binary logic operators (OP={/\,v, ..}), XE V. 
F is called a formula iff 
(a) F=O x (F), F formula, QE {'\I,3} or 
(b) F=-.(F), F' formula or 
(c) F=(F1 op F2), F1, F2 formulas, OPE OP or 
(d) F=P(t1 ,.. ,tn), tjE term(FS,C,V). n~O, PE PS. 
If F=P(t1,.. ,tn) or F=-.P(t1,.. ,tn). then F is called a literal. 
(Note: If in (d) n=2, then we may prefer infix notation.) 

Since we can look upon formulas as terms with a special structure (e.g.'\I x (F) could be interpreted
 
as ALL(x,F), both notions will be used synonymously if there is no risk of confusion. Moreover,
 
any formula F can be written without quantification (implicitly '\I-quantified), e.g. utilizing the so

called clause-normalform ([Ni80]). To avoid notation-fiddling, we assume for every formula to be
 
represented this way unless stated otherwise.
 
Later in this report it will become necessary to pinpoint positions in terms and terms occuring at
 
these positions. This is facilitated by the following definition.
 

Definition 1.3:
 
Let t be in term(FS,C,V).
 
O(t) is called the set of positions resp. occurences in t, and it is
 
O(t)={e} if t is a constant or variable; tle=t;
 
O(t)={ip I pEO(tj), 1~i~n}u{e} if t=f(t1, .. ,tn) and tlip=tilp; tle=t;
 
If PE O(t), then s=tlp is called a subterm of 1.
 
If p;t:e. then sis called a proper subterm of 1.
 
Furthermore. if l' is a term, then t[Pf-1'] denotes the term obtained when replacing the term tip at
 
position p in t by t'.
 

Further definitions we shall need for defining the inductive theory we want to be able to prove in
 
are listed in the sequel.
 

Definition 1.4:
 
FS, C and V are as introduced in definition 1.1. V' be a finite subset of V.
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t is in term(FS,C‚V) iff
(a) te C or
(b) te V or
(c) t1...,tn e term(FS,C,V), fe FS, t(f)..—..n, t.=.f(t1,..,tn).
(Note: If in (c) n=2, then we may prefer infix notation.)

If there is no ambiguity, we shall use the short version “t is a term” instead of “t is in term(FS.C,V)”.
If V is empty, then term(FS,C) denotes the set of ground-terms.

Definition 1.2: formulas
V,  El denote the quantifiers as usual, —. is the negation symbol, PS a finite set of predicate-symbols
and OP a finite set of binary logic operators (OP={A,v,..}), xe V.
F is called a formula iii
(a) FEQ x (F'), F' formula, 06 {v3} or
(b) Fa—«.(F’), F’ formula or
(c) FE(F1 op F2), F1, F2 formulas. ope OP or
(d) FEP(t1,..,tn), tieterm(FS,C.V), n20, P6 P8.
lf FaP(t1,..,tn) or F::—.P(t1,..,tn). then F is called a literal.
(Note: If in (d) n=2, then we may prefer infix notation.)

Since we can look upon formulas as terms with a special structure (e.g.v x (F) could be interpreted
as ALL(x,F)), both notions will be used synonymously if there is no risk of confusion. Moreover,
any formula F can be written without quantification (implicitly V-quantified), e.g. utilizing the so-
called clause-normalform ([Ni801). To avoid notation-fiddling, we assume for every formula to be
represented this way unless stated otherwise.
Later in this report it will become necessary to pinpoint positions in terms and terms occuring at
these positions. This is facilitated by the following definition. '

D l' 'I' l 3:

Let t be in term(FS,C,V).
0(t) is called the set of positions resp. occurences in t, and it is
O(t)={s} if t is a constant or variable; tlsst;
O(t)={ip | pe O(ti), isiSn}u{e} if tsf(t1,..,tn) and t|ipäi|p; flat;
If pe O(t), then satlp is called a subterm of t.
If paee, then sis called a prOper subterm of t.
Furthermore, if t' is a term, then t[p<—t’] denotes the term obtained when replacing the term t|p at
position p in t by t’.

Further definitions we shall need for defining the inductive theory we want to be able to prove in
are listed in the sequel.

D fini i n 1.4:
FS, C and V are as introduced in definition 1.1, V’ be a finite subset of V.



(a) An endomorphism a:term(FS,C,V)~term(FS,C,V) is called a substitution iff 
a(x)Eterm(FS,C,V) for all XEV', a(z)=z for all ZEV-V', a(c)=c for all CEC and 
a(f(t1 ,.. ,tn))=f(a(t1), .. ,a(tn)) for all fE FS, tiE term(FS,C,V), 't(f)=n. 

(b)	 a is called a ground-substitution iff 
a is a substitution where a(x)E term(FS,C) (Le. a(x) is a ground-term) for all XE V', a(z)=z for all 
ZEV-V'. 

The inductive theory ITh naturally depends on the set Ax of axioms and the inference relation l 
of the underlying prover for PL1Ea. Hence we define ITh(Ax)={F I Ax l- a(F) for all ground
substitutions a}. This definition reflects the idea of using the data-model which is actually 
represented by term(FS,C). 

~: 

With the determination ofAx we also implicitly determine FS, C and PS such that
 
FS={f I f function-symbol in FE Ax},
 
C ={c I c constant-symbol in FE Ax},
 
PS={P I P predicate-symbol in FE Ax}.
 

Mostly, there is no need to take into account all ground-substitutions, considering only the so

called constructor-ground-substitutions.
 

Definition 1.5:
 
Let FSc~FS, Cc~C.
 

If for any term tE term(FS,C) there is a t'E term(FSc,Cc) so that Ax l- t=t' (we also write t=Axt' for
 
simplicity), then FSc is called a set of constructor-function-symbols, Cc is called a set of
 
constructor-constant-symbols.
 
The set FScuCc is a set of constructors.
 
gE FScuCc is called a constructor.
 
tE term(FSc,Cc) is a constructor-groundterm.
 
We call a a constructor-ground-substitution, if a is a (ground-) substitution, where
 
a(x)E term(FSc,Cc) for all XE V' (V' is a finite subset of the set V of all variables), a(z)=z for all ZE V

V'.
 

Hence we can redefine ITh(Ax):
 

Definition 1.6:
 
Let Ax be the set of axioms, l- the inference relation of the underlying prover for PL1Ea.
 
ITh(Ax)={F I Ax l-a(F) for all constructor-ground-substitution a}
 
Any formula FE ITh(Ax) is called an inductive theorem. (If its membership in ITh(Ax) is not (yet)
 
confirmed, it will be denoted inductive theorem nevertheless.)
 

Example: (constructors and inductive theory)
 
Ax={x+O=x, x+s(y)=S(x+y)}.
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(a) An endomorphism o:term(FS,C,V)—>term(FS,C,V) is called a substitution iff
o(x)e term(FS,C,\/) for all Xe V’, o(z)=z for all 2e V-V’, o(c)=c for all Ce C and
o(f(t1,..,tn))=f(o(t1),..,o(tn)) for all fe FS. tie term(FS,C,V), I(f)=n.

(b) o is called a ground-substltutlon iii
0 is a substitution where o(x)e term(FS,C) (i.e. o(x) is a ground-term) for all Xe V‘, o(z)=z for all
2e V-V’.

The inductive theory lTh naturally depends on the set Ax of axioms and the inference relation 1—
of the underlying prover for PL1EQ. Hence we define lTh(Ax)={F | Ax l— o(F) for all ground-
substitutions o}. This definition reflects the idea of using the data-model which is actually
represented by term(FS.C).

Note:
With the determination of Ax we also implicitly determine FS, C and PS such that
PS.—_{f | f function-symbol in Fe Ax},
C ={c | c constant-symbol in Fe Ax},
PS={P | P predicate-symbol in Fe Ax}.

Mostly, there is no need to take into account all ground-substitutions, considering only the so-
called constructor-ground-substitutions.

Definition 1.5:
Let FSCgFS, CCgC.
If for any term te term(FS,C) there is a t'eterm(FSC,CC) so that Ax l— t=t’ (we also write t=Axt’ for
simplicity), then FSC is called a set of constructor-function-symbols, Cc is called a set of
constructor-constant—symbols.
The set FSCUCC is a set of constructors.
ge FSCUCC is called a constructor.
te term(FSC,CC) is a constructor-groundterm.
We call a a constructor-ground-substitution, if c is a (ground-) substitution, where
o(x)e term(FSC,CC) for all Xe V’ (V' is a finite subset of the set V of all variables), o(z)=z for all 2e V-
V‘.

Hence we can redefine |Th(Ax):

Definitign ‘l.§:
Let Ax be the set of axioms, l— the inference relation of the underlying prover for PL1EQ.
|Th(Ax)={F | Ax l—om for all constructor-ground-substitution a}
Any formula Fe lTh(Ax) is called an inductive theorem. (If its membership in lTh(Ax) is not (yet)
confirmed, it Will be denoted inductive theorem nevertheless.)

Example: (constructors and inductive theory)
Ax={x+0=x, x+s(y)=S(x+y)}.



Consequently, we have FS={+,s} and C={O}.
 

assertion: {s,O} is a set of constructors. (Of course {+,s,O} is also a set of constructors. But we are
 
interested in smaller sets because we want to reduce effort.)
 

QIQ.Q!: (Noetherian induction)
 
Let S,tE term(FS,C); s>'t :iff IIsl>lltl, where> represents the usual "greater-than"-relation on natural
 
numbers and lu={pE O(u) I ulp=s1+s2, S1 ,s2E term(FS,C)} for any UE term(FS,C).
 
Then >' is Noetherian.
 
P(t):=3t'Eterm(FSc ,Cc):t=Axt';
 
If Iltl=O, then P(t) holds with t'=t.
 
Let Iltl>O, P(s) hold for all sEterm(FS,C) with t>'s. Hence there is a p'EO(t) with tlp'=S1'+s2'.
 
Choose PE O(t) with tlp=S1+S2 so that S1=sk(O), S2=sj(O), k,j2:0. Then tlp=Axsk+i(O), therefore
 
t=Axt[pf-sk+i(O)]=:t'. So IItl>llrI, and consequently t>'t'. According to the induction assumption, P(t')
 
holds. Therefore there is a uEterm(FSc,Cc) with t'=AxU. Thus t=AxU and P(t). 0
 

This set of constructors is now used to prove that the commutativity of + is an inductive theorem.
 

assertion: x+y=y+XE ITh(Ax)
 

.tllQ.Qf: 
Let cr be an arbitrary constructor-ground-substitution, Le. cr(Z)E {sk(O) I kE {O, 1,..}} for a finite subset
 
V' of all variables. Thus cr(x+y) = cr(x)+cr(y) = si(O)+sj(O) =Ax si+i(O) = si+i(O) =Ax si(O)+si(O) =
 
cr(y)+cr(x) = cr(y+x) for all constructor-ground-substitutions cr. 0
 

In general there will be infinitely many constructor-ground-substitutions, so that testing Ax t- cr(F)
 
for all constructor-ground-substitutions cr to prove FE ITh(Ax) in compliance with the definition of
 
ITh(Ax) is out of the question.
 
For an algorithmic realization we have to find another way. Using the so-called "structural
 
induction" is a possible approach since it reduces the infinite number of tests to a finite number,
 
relying on the following principle:
 

structural induction 
Let F be a formula, x a variable in F (the induction variable), Ax a set of axioms, and F[xf-t] denote
 
the formula obtained by replacing all occurences of x by 1, where tE term(FSc,Cc).
 
F is in ITh(Ax) if (a) and (b) hold:
 

. (a) Ax t- F[xf-c] for all CE CC : BASE-CASES 
(b) Axu{F[xf-ti] I 1=:;;i=:;;n} t- F[xf-f(t1,.. ,tn)] for all fE FSc with 't(f)=n : INDUCTION-STEPS 

(The ti's represent arbitrary constructor-groundterms. The formulas F[xf-tj] are called hypotheses. 
The formula generated in a base-case or induction-step is called conclusion.) 

Q[QQf:
 
Since Ax t- F[xf-t] for all tE term(FSc,Cc) implies Ax t- cr(F) for all constructor-ground
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Consequently, we have FS={+,s} and C={0}.

assertion: {5,0} is a set of constructors. (Of course {+,s,0} is also a set of constructors. But we are
interested in smaller sets because we want to reduce effort.)

proof: (Noetherian induction)
Let Sie term(FS,C); s>'t :iff |ls|>||t|, where > represents the usual “greater-than”-relation on natural
numbers and I„={pe O(u) | u|p=s1+32, 31,32eterm(FS,C)} for any ueterm(FS,C).
Then >’ is Noetherian. "
P(t) :=3t 'e  term(FSC,CC):t=Axt';
If |lt|=0, then P(t) holds with t’at.
Let |lt|>0, P(s) hold for all Seterm(FS,C) with t>’s. Hence there is a pa O(t) with t|p'=s1'+32’.
Choose pe O(t) with t|p=s1+sg so that s1=_sk(0), 52am), k,j20. Then t|p=Axsk+j(0), therefore

' t=Axt[p<—sk+i(0)]=:t'. So |lt|>|lt.|, and consequently t>'t'. According to the induction assumption, P(t’)
holds. Therefore there is a Uete„rm(FSc,CC) with t'=Axu. Thus t=Axu and P(t). El

This set of constructors is now used to prove that the commutativity of + is an inductive theorem.

assertion: x+y=y+><e |'|'h(Ax)

„um:
Le to  be an arbitrary constructor-ground—substitutiqn, i.e. c(z)e {5"(0) | ke {O,_1_‚..}} for a finite subset
V’ of all variables. Thus c(x+y) = o(x)+c(y) = s'(0)+s‘(0) =Ax s'+’(0) s s’+'(0) =Ax sl(0)+si(0) =
o(y)+o(x) = o(y+x) for all constructor-ground-substitutions o. El

In general there will be infinitely many constructor-ground—substitutions, so that testing Ax )— 0(F)
for all constructor-ground—substitutions o to prove Fe |Th(Ax) in compliance with the definition of
lTh(Ax) is out of the question.
For an algorithmic realization we have to find another way. Using the so-called “structural
induction” is a possible approach since it reduces the infinite number of tests to a finite number,
relying on the following principle:

structural induction -
Let F be a formula, x a variable in F (the induction variable), Ax a set of axioms, and F[x<-—t] denote
the formula obtained by replacing all occurences of x by t, where teterm(FSc,CC).
F is in ITh(Ax) if (a) and (b) hold:
' (a) Ax L— F[x<—c] for all Ce cc : BASE-CASES

(b) Axu{F[x<—ti] | 1sisn} l— F[x<—f(t1,..,tn)] for all fe FSC with t(f)=n : INDUCTION-STEPS
(The ti's represent arbitrary constructor-groundterms. The formulas F[xe—ti] are called hypotheses.
The formula generated in a base-case or induction-step is called conclusion.)

Qrgo f :

Since Ax l— F[x<—t] for all teterm(FSC,CC) implies Axl— 6(F) for all constructor—ground—



substitutions cr, it suffices to prove the former statement.
 
Noetherian induction: P(z):=Ax t- F[x~z]; s>t :iff t is a proper subterm of s (thus> is Noetherian).
 
Because of (a) P(z) holds for all ZE Cc. Let ZE term(FSc,Cc), ZE CC, and for all y with z>y P(y) hold.
 
Therefore z=f(t1•.. ,tn) for some t1 ,..•tnE term(FSc.Cc). fE FSc. and since z>tj for all iE {1 •..•n} P(tj)
 
holds for all iE p ... ,n}. Hence Axu{F[x~ti] I 1::;i::;n} t- F[x~f(t1 •.. ,tn)] if and only ifAx t 

F[x~f(t1,..•tn)]. With (b) we have P(z). 0
 

Remarks:
 
Some of the hypotheses may be omitted if we dispose of sort information. For the same reason,
 
parts of the base-cases and induction-steps may be skipped. (The lack of sort information can be
 
compensated by selecting subsets of FSc and Cc so that all terms generable comply with the
 
implicitly given sort of the induction variable x.)
 

Equipped with this method, it is easy to write down an algorithm enabling us to perform inductive
 
proofs (assuming that the underlying prover for PL1Ea - represented by t- - is already available
 
or is not considered a major difficulty):
 
(1) for all CE Cc: prove Ax t- F[x~c]; 

(2) for all fE FSc : prove Axu{F[x~tj] I 1::;i::;n. tj new constant symbol} t-- F[x~f(t1 •..,tn)]; 

It is apparent that (1) and (2) realize in a straight forward way (a) and (b) we encountered when 
introducing structural induction. Hence, whenever (1) and (2) could be executed successfully 
(assuming correctness of t--), we have proved FE ITh(AX). 
~: Later in this report, if no ambiguity can arise. we shall sometimes use expressions like 
"proof is completed", though only referring to the proof of a base-case or induction-step, meaning 
that the proof of the respective base-case or induction-step has been completed.) 
Unfortunately. ITh(Ax) is not even semi-decidable. Therefore. we cannot prove for every 
FE ITh(AX) to have this property merely by applying the steps (1) and (2). 

Example: 
We already know that x+Y=Y+x is in ITh({x+O=x.x+s(y)=s(x+y)}). But when making use of the 
above procedure. we have the base-case O+x=x+O (using yas induction variable. what does not 
matter because of the symmetrie of the problem). Simplification yields O+x=O. and we cannot 
proceed any further. 

The dilemma is the need for additional inductive theorems. called lemmata, which must be added 
to the set of axioms in order to be able to complete a proof. (In the example, the lemma O+x=x 
would be satisfactory for the completion of the base-case.) Since the lemmata we have to use are 
inductive theorems, no prover for PL1Ea can find them. So they must in the simplest case be 
provided by the user and be proved separately by induction as well. But apart from this, heuristics 
can be incorporated whose jobs consist in generating the lemmata necessary for a successful 
proof. as we shall see in a later section. 
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substitutions o, i t  suffices to prove the former statement.
Noetherian induction: P(z):=Ax l— F[x<-z]; s>t : i f f t  is a proper subterm of 5 (thus > is Noetherian).
Because of (a) F"(z) holds for all Ze CC. Let 2e- term(FSc,CC), ze Cc,  and for all y with z>y P(y) hold.
Therefore ZEf(t1,..,tn) for some t1,..,tneterm(FSc,Cc), fe FSC, and since z>ti for all ie{1,..,n} P(ti)
holds for all ie {1 ‚..,n}. Hence Axu{F[x<—t;] | 1si_<.n} l— F[xe—f(t1,..,tn)] if and only if Ax l—
F[x<—f(t1,..,tn)]. With (b) we have P(z). Cl

Remarks:
Some of the hypotheses may be omitted if we dispose of sort information. For the same reason,
parts of the base-cases and induction—steps may be skipped. (The lack of sort information can be
compensated by selecting subsets of FSC and Co so that all terms generable comply with the
implicitly given sort of the induction variable x.)

Equipped with this method, it is easy to write down an algorithm enabling us to perform inductive
proofs (assuming that the underlying prover for PL1EQ - represented by l— - is already available
o r  is not considered a major difficulty):
(1) for all 06 CC: prove Ax l— F[x<--c];
(2) for all fe FSC : prove Axu{F[x<—ti] | 1sisn, ti new constant symbol} l— F[x<—f(t1,..,tn)];

It is apparent that (1) and (2) realize in a straight forward way (a) and (b) we encountered when
introducing structural induction. Hence, whenever (1) and (2') could be executed successfully
(assuming correctness of l—), we have proved Fe lTh(Ax).
(nme: Later in this report, if no ambiguity can arise, we shalt sometimes use expressions like
"proof is completed", though only referring to the proof of  a base-case or induction-step, meaning
that the proof of the respective base—case or induction-step has been completed.)
Unfortunately, lTh(Ax) is  not even semi-decidable. Therefore, we cannot prove for every
Fe lTh(Ax) to have this property merely by applying the steps (1) and (2).

Emma: ..
We already know that x+y=y+x is in lTh({x+0=x,x+s(y)=s(x+y)}). But when making use of the
above procedure, we have the base—case 0+x=x+0 (using y as induction variable, what does not
matter because of the symmetrie of  the problem). Simplification yields 0+x=0, and we cannot
proceed any further.

The dilemma is the need for additional inductive theorems, called lemmata, which must be added
to the set of  axioms in order to be able to complete a proof. (In the example, the lemma 0+x=x
would be satisfactory for the completion of the base-case.) Since the lemmata we have to use are
inductive theorems, no  prover for PL1EQ can find them. So they must in the simplest case be
provided by the user and be proved separately by induction as well. But apart from this, heuristics
can be incorporated whose jobs consist in generating the lemmata necessary for a successful
proof, as we shall see in a later section.



2. Additional features 
In this section a range of methods will be introduced which all serve the purpose of more and 'more 
automatizing the inductive prover outlined in the preceding section. The automatic generation of 
inductive lemmata, which also belongs to these methods, will be handled in a separate section 
because of its outstanding importance. 

The following subjects will be covered: 
2.1. automatizing the choice of the induction variable 
2.2. induction on several variables 
2.3. heuristics for guiding the inference rules with respect to the context of an inductive proof 
2.4. detecting the need for inductive lemmata 

2.1. Automatizing the search for the Induction variable 
The proper choice of the induction variable plays an important role in an attempt to prove some 
theorem by induction as we shall see through the following example. 

Example: 
The set of axioms be Ax={x+O=x, x+s(y)=s(x+y)}.
 
When attempting to prove x+(y+z)=(X+y)+ZE ITh(Ax), choosing x as the induction variable, we
 
cannot complete the proof without the lemma s(x)+y=s(x+y). But if we use Z as induction variable,
 
there are no problems.
 

Leaving this choice to the user is a respectable but not very satisfactory solution of this problem.
 
Therefore a rather simple but quite effective heuristic was developed which suggests a variable
 
for the use as the induction variable. This heuristic will now be introduced: We already know that
 
both in the base case and in the induction-step there are instances of the theorem to be proved.
 
Those instances are in principle generated by replacing all occurences of the induction variable
 
by a term with a constructor function symbol as top-level symbol. For a successful proof, it is
 
necessary to manipulate the respective instance in a "proper" way, so that either axioms or
 
hypotheses can be applied. This manipulation and the applicability of axioms or hypotheses
 
mainly depend on the premise that the term, which was substituted for the induction variable when
 
creating an instance, occurs at positions that potentially allow an application of axioms. These
 
positions (they will be called potential induction places from now on) are closely related to the
 
argument positions which are responsible for recursive definition. Hence we have to concentrate
 
on the potential induction places of all functions and predicates occuring in the theorem. The idea
 
is to count for every variable in the theorem the frequency of occurences at such positions. That
 
variable which in this way can achieve the highest number is suggested.
 

Example: 
Ax={x+O=x,x+s(y)=s(x+y)}; + is recursively defined in the second argument; for the theorem 
x+(y+z)=(x+Y)+z we obtain the numbers 0,1 and 2 for the variables x,y and Z respectively. 
Therefore Z is suggested. 
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2. Additional features
In this section a range of methods will be introduced, which all serve the purpose of more and ’more
automatizing the inductive prover outlined in the preceding section. The automatic generation of
inductive Iemmata, which also belongs to these methods, will be handled in a separate section
because of its outstanding importance.

The following subjects will be covered:
2.1. automatizing the choice of the induction variable
2. 2. induction on several variables ‚.
2 ..3 heuristics for guiding the inference rules with respect to the context of an inductive proof
2.4. detecting the need for inductive Iemmata

1.A mlz lnh  rh f rh ln  lnv r l l
The proper choice of the induction variable plays an important role in an attempt to prove some
theorem by induction as we shall see through the following example.

game/e:
The set of axioms be Ax={x+0=x. x+s(y)=s(x+y)}.
When attempting to prove x+(y+z)=(x+y)+2e- lTh(Ax). choosing x as the induction variable, we
cannot complete the proof without the lemma s(x)+y=s(x+y). But if we use 2 as induction variable,
there are no problems.

Leaving this choice to the user is a respectable but not very satisfactory solution of this problem.
Therefore a rather simple but quite effective heuristic was developed which suggests a variable
for the use as the induction variable. This heuristic will now be introduced: We already know that
both in the base case and in the induction-step there are instances of the theorem to be proved.
Those instances are in principle generated by replacing all occurences of the induction variable
by a term with a constructor function symbol as top-level symbol. For a successful proof, it is
necessary to manipulate the respective instance in a “proper" way, so that either axioms or
hypotheses can be applied. This manipulation and the applicability of axioms or hypotheses
mainly depend on the premise that the term, which was substituted for the induction variable when
creating an instance, occurs at positions that potentially allow an application of axioms. These
positions (they will be called potential induction places from now on) are closely related to the
argument positions which are responsible for recursive definition. Hence we have to concentrate
on the potential induction places of all functions and predicates occuring in the theorem. The idea
is to count for every variable in the theorem the frequency of occurences at such positions. That
variable which in this way can achieve the highest number is suggested.

flame/e:
Ax={x+0=x,x+s(y)=s(x+y)}; + is recursively defined in the second argument; for the theorem
x+(y+z)=(x+y)+z we obtain the numbers 0,1 and 2 for the variables x,y and 2 respectively.
Therefore 2 is suggested.



2.2. Induction on several variables 
The structural induction as it was introduced in section 1 heavily depends on the availability of 
suitable inductive lemmata. But sometimes it is recommendable to use another technique to 
complete an inductive proof: the so-called induction on several variables. This shall be illustrated 
by an example: 

Examole: 
Ax={09<, -,(s(x):5;O), s(x):5;S(Y)HX~Y};
 

Theorem: X:5;yvy9<
 
Induction variable: x (y would be as good a choice because of symmetrie)
 
base-case: O:5;yvy:5;O is ok.
 
hypothesis: t::;;yvy:5;t
 
induction-step: s(t):5;yvy:5;s(t) cannot be proved with the set of axioms.
 
Instead of using and of course having to prove the necessary and sufficient "special purpose"
 
lemma (t::;;yvy:5;t)~(s(t):5;yvy:5;s(t» ("special purpose" because of the special constant t in the
 
potential lemma) the induction-step is proved by a further induction on the (remaining) variable y,
 
in the course of which the hypotheses of all former inductions are still available (here there is only
 
one hypothesis):
 
base case': s(t):5;OvO:5;s(t) is ok.
 
hypothesi~: s(t):5;t'vt':5;s(t)
 
induction-step': s(t):5;s(t')vs(t'):5;s(t) ==> ~t'vt':5;t is ok (hypothesis)
 

Induction on several variables is not at all a mandatory feature for an inductive prover, but it
 
sometimes helps to keep the number of lemmata reasonably low and thereby serves the purpose
 
of achieving better transparency.
 

2.3. GuIding the Inference rules with respect to the context of an Inductive proof
 
Whenever talking about automatic proving the subject of guiding the inference rules of any proving
 
system so as to obtain higher efficiency is very important. A commonly accepted and in a lot of
 
implementations successfully used heuristic is the set of support (SOS) - strategy (see [CL73]).
 
For our inductive prover this principle will be slightly extended. Instead of one SOS we have in fact
 
three of them: one for the conclusion (Le. the instance created in the base case or the induction

step), one for the hypotheses and the ~hjrd for further formulas (for example lemmata) which are
 
considered to be of importance in the course of the proof. All formulas which are not in one of these
 
three sets are referred to as the remaining formulas. By literally trebling the SOS, what has
 
become possible through the knowledge provided by the context of an inductive proof, a more
 
sophisticated hierarchy for the application of the inference rules can be established. While using
 
the usual SOS-strategy we just have formulas belonging to the SOS and formulas not belonging
 
to the SOS, we here have the means of further differentiation: since the conclusion plays the role
 
of the goal in an inductive proof, inferences involving a formula connected to the conclusion should
 
be preferred; inferences involving formulas connected to one of the hypotheses should be
 
considered to be second most important because the hypotheses also play a deciding role in an
 
inductive proof; the formulas of the third set and the remaining formulas can be handled according
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Wattles
The structural induction as it was introduced in section 1 heavily depends on the availability of
suitable inductive lemmata. But sometimes it is  recommendable to use another technique to
complete an inductive proof: the so-called induction on several variables. This shall be illustrated
by an example:

Example:
Ax={OSx, ~1(s(x)$0). s(x)$s(y)<—>xs‘y};
Theorem: xsyvysx
Induction variable: x (y would be as good a choice because of symmetrie)
W: Osyvyso is ok.
MM: tsyvySt

mm: s(t).<_yvyss(t) cannot be proved with the set of axioms.
Instead of using and of course having to prove the necessary and sufficient “special purpose”
lemma (tSyvySt)—->(S(t)SyvySS(t)) (“special purpose" because of the special constant t in the
potential lemma) the induction-step is proved by a further induction on the (remaining) variable y,
in the course of which the hypotheses of all former inductions are still available (here there is only
one hypothesis):
nam: s(t)sovoss(t) is ok.
hypothesis: s(t)st’vt’ss(t)
W:  s(t)5s(t')vs(t’)ss(t) => tSt'vt'St is ok  (hypothesis)

Induction on  several variables is not at all a mandatory feature for an inductive prover, but it
sometimes helps to keep the number of Iemmata reasonably low and thereby serves the purpose
of achieving better transparency.
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Whenever talking about automatic proving the subject of guiding the inference rules of any proving
system so as to obtain higher efficiency is very important. A commonly accepted and in  a lot of
implementations successfully used heuristic is the set of support (SOS) - strategy (see [CL73]).
For our inductive prover this principle will be slightly extended. Instead of one SOS we have in fact
three of them: one for the conclusion (Le. the instance created in the base case or the induction—
step), one for the hypotheses and the third for further formulas (for example lemmata) which are
considered to be of importance in the course of the proof. All formulas which are not in one of these
three sets are referred to as the remaining formulas. By literally trebling the SOS, what has
become possible through the knowledge provided by the context of an inductive proof, a more
sophisticated hierarchy for the application of the inference rules can be established. While using
the usual SOS-strategy we just have formulas belonging to the SOS and formulas not belonging
to the SOS, we here have the means of further differentiation: since the conclusion plays the role
of the goal in an inductive proof, inferences involving a formula connected to the conclusion should
be preferred; inferences involving formulas connected to one of the hypotheses should be
considered to be second most important because the hypotheses also play a deciding role in an
inductive proof; the formulas of the third set and the remaining formulas can be handled according



to the usual SOS-strategy. Moreover the inferences involving certain combinations (for instance 
"conclusion and hypothesis") can be rated in a differentiated way, where rating is done on a 
heuristical basis, of course. Analogously to the SOS-strategy, inferences involving formulas of the 
same set or partition (for example "conclusion and conclusion") should be delayed as much as 
possible. 
Certainly, this extended SOS-strategy is only a small step towards finally creating a "real efficient" 
control mechanism for the inference rules. It should be regarded as just another possibility to 
develop a heuristic for inference rule application whose performance clearly depends on how well 
it can be integrated in the individual case. 

2.4. Detecting the need for Inductlye lemmata 
The problem of inductive proofs requiring inductive lemmata has already been discussed, but so 
far nothing was mentioned about how to get the idea during a proof that an inductive lemma might 
be missing. Therefore this section will present two methods (Le. heuristics) for this purpose. 

2A..1.... In section 2.3, inferences involving the conclusion were said to be most promissing because 
the conclusion is in fact the goal of the attempted inductive proof. So, if it is discovered during a 
proof that those inferences which are considered to be essential for the success of the attempt no 
longer involve a conclusion (or a derivate thereof), it is probable that inductive lemmata might be 
needed. The definition of the term "essential inference" very much depends on the kind of basic 
proving system and must be determined in the individual case. 

Example: 
If a theorem prover for PL1Ea is used that works according to the resolution principle with 
paramodulation (and factorization), and a theorem formulated in pure PL1 is to be proved, 
resolution should be regarded as the essential inference, not paramodulation. 

2.4.2. Another hint is the "inflation of formulas", Le. a repeated, recursive structure of formulas 
created in the course of the proof attempt. 

Examples (inflated formulas): 
s(s(s(s(x»))), f(x,g(f(y,g(f(z,a) )))). 

This might happen through the repeated application of a sequence of inferences to a formula and 
the thereby created formulas. Whenever this occurs, it is rather obvious that the proof procedure 
has run into a "dead end" (provided that this phenomenon is not an inherent fault of the basic 
proving system) and is in a dire need for inductive lemmata to help it out of it. 

ExamPle: 
Ax={x+O=x,x+s(y)=s(x+y),even(O),-,even(s(O»,even(x)~ven(s(s(x»)} 

Trying to prove even(x+x) leads in the induction-step to:
 
hypothesis: even(t+t)
 
induction-step: even(s(t)+s(t» ~ ev~n(s(s(t)+t»
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to the usual SOS-strategy. Moreover the inferences involving certain combinations (for instance
"conclusion and hypothesis”) can be rated in a differentiated way, where rating is done on a
heuristical basis, of course. Analogously to the SOS-strategy, inferences involving formulas of the
same set or  partition (for example “conclusion and conclusion”) should be delayed as much as
possible.
Certainly, this extended SOS-strategy is only a small step towards finally creating a “real efficient”
control mechanism for the inference rules. It should be regarded as just another possibility to
develop a heuristic for inference rule application whose performance clearly depends on how well
it can be integrated in the individual case.

W
The problem of inductive proofs requiring inductive lemmata has already been discussed, but so
far nothing was mentioned about how to get the idea during a proof that an inductive lemma might
be missing. Therefore this section will present two methods (i.e. heuristics) for this purpose.

& In section 2.3, inferences involving the conclusion were said to be most  promissing because
the conclusion is in fact the goal of the attempted inductive proof. So, if it is discovered during a
proof that those inferences which are considered to be essential for the success of the attempt no
longer involve a conclusion (or a derivate thereof), i t  is probable that inductive lemmata might be
needed. The definition of the term “essential inference" very much depends on the kind of basic
proving system and must be determined in the individual case.

Example:
If a theorem prover for PL1EQ is  used that works according to the resolution principle with
paramodulation (and factorization), and a theorem formulated in  pure PL1 is to be proved,
resolution should be regarded as the essential inference, not paramodulation.

2.4.2. Another hint is the "inflation of formulas", Le. a repeated,‘recursive structure of formulas
created in the course of the proof attempt.

Examples (inflated formulas):
S(S(S(S(X)))). f (x .9( f (y .g( f (z .a) ) ) ) ) -

This might happen through the repeated application of a sequence of inferences to a formula and
the thereby created formulas. Whenever this occurs, it is rather obvious that the proof procedure
has run into a “dead end" (provided that this phenomenon is not an inherent fault of the basic
proving system) and is in a dire need for inductive lemmata to help it out of it.

Example:
Ax={x+0=x,x+s(y)=s(x+y),even(0),fieven(s(0)),even(x)<—>even(s(s(x)))}
Trying to prove even(x+x) leads in the induction-step to:
hypothesis: even(t+t)
10mm: even(s( t )+s( t ) )  => even(s(s( t )+ t ) )



With the given axioms the prover can't help creating formulas of the form even(s2i(s(s(t)+t))), i~O, 
which show the symptom of inflation. And actually, an inductive lemma, i.e. s(x)+y=s(x+y), can 
break the vicious circle. 

Hence adding a component to our inductive prover which at least warns the user if an inflation 
exceeding a given threshold occurs in any formula created represents indeed a useful and 
powerful method to detect the need for inductive lemmata. 
But first of all, the concept of inflation must be properly defined. We have to give a concrete 
meaning to the notion "inflation", thus enabling us to "measure" in some way the inflation of any 
given formula (not only for the simple cases like s(s(s(x))), but also for complex structures like 
f(x1,g(f(x2,g(f(x3,a,x3)),x2)).x1) ). The realization of all this is quite extensive and is therefore listed 
in appendix B for those readers who are interested in details. 

The section shall be concluded with a remark concerning a rather obvious fact: If at some point of 
the proof-process no further inferences are possible, it is clear that inductive lemmata are missing 
(assuming correct axiomatization and validity of the theorem to be proved). 

3. Automatic lemma-generation 

3.1. Motivation 
We already mentioned in previous sections the essential importance of inductive lemmata for the 
success of an inductive proof. This necessity of inductive lemmata can be explained by the fact 
that the lemmata needed are "genuine" inductive I~mmata (i.e. they are not valid in all models of 
the respective set of axioms) and that they can therefore not be found or inferred by a theorem 
prover for PL1Ea. Thus the availability of appropriate inductive lemmata is mandatory (as 
opposed to the optional availability of lemmata for proofs in PL1Ea merely because of speed up 
reasons). As our aim consists in constructing a theorem prover which be automatized as much as 
possible. the convenient. but not very satisfactory alternative of providing manually the needed 
lemmata (Le. by the user), should not be acceptable. Hence we have to take a look at the issues 
of automatic lemma-generation. 
It is clear that - due to the undecidability of inductive theories - automatic lemma-generation can 
only be performed on a heuristical basis. 
The first question that arises is the selection of the appropriate moment for the intended lemma
generation. Basically, there are two possibilities: 
(1) lemmata may be generated before the proof is started, using only the knowledge provided by 
the given axioms; 
(2) lemmata may be generated during an interrupt of a proof attempt, using all the knowledge that 
has been inferred so far; 

Since most of the time the need for inductive lemmata and the idea how they should look like 
becomes more obvious after a number of inferences, we shall concentrate on alternative (2). But 
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With the given axioms the prover can’t help creating formulas of the form even(s‘?i(s(s(t)+t))), i20,
which show the symptom of inflation. And actually, an inductive lemma, Le. s(x)+y=s(x+y), can
break the vicious circle.

Hence adding a component to our inductive prover which at least warns the user if an inflation
exceeding a given threshold occurs in any formula created represents indeed a useful and
powerful method to detect the need for inductive lemmata.
But first of all, the concept of inflation must be properly defined. We have to give a concrete
meaning to the notion “inflation”, thus enabling us to “measure” in some way the inflation of any
given formula (not only for the simple cases like s(s(s(x))), but also for complex structures like
f(x1,g(f(x2,g(f(x3,a,x3)),x2)),x1) ). The realization of all this is quite extensive and is therefore listed
in appendix B for those readers who are interested in details.

The section shall be concluded with a remark concerning a rather obvious fact: If at some point of
the proof-process no  further inferences are possible, i t  is clear that inductive lemmata are missing
(assuming correct axiomatization and validity of the theorem to be proved).

Q. Automatic lemma-generatign

3.1. Mgtlvat lgn
We already mentioned in previous sections the essential importance of inductive lemmata for the
success of an inductive proof. This necessity of inductive lemmata can be explained by the fact
that the lemmata needed are “genuine" inductive lemmata (i.e. they are not valid in all models of
the respective set of axioms) and that they can therefore not be found or inferred by a theorem
prover for PL1EQ. Thus the availability of appropriate inductive lemmata is mandatory (as
opposed to the optional availability of lemmata for proofs in PL1EQ merely because of speed up
reasons). As our aim consists in  constructing a theorem prover which be automatized as much as
possible, the convenient, but not very satisfactory alternative of providing manually the needed
lemmata (Le. by the user), should not be acceptable. Hence we have to take a look at the issues
of automatic lemma-generation.
It is clear that - due to the undecidability of inductive theories - automatic lemma-generation can
only be performed on a heuristical basis.
The first question that arises is the selection of the appropriate moment for the intended lemma-
generation. Basically, there are two possibilities:
(1) lemmata may be generated before the proof is started, using only the knowledge provided by
the given axioms;
(2) lemmata may be generated during an interrupt of a proof attempt, using all the knowledge that
has been inferred so far;

Since most of the time the need for inductive lemmata and the idea how they should look like
becomes more obvious after a number of inferences, we shall concentrate on alternative (2). But
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alternative (1) is nevertheless worth thinking about and may possess interesting abilities. 
There already exists a variety of heuristics dealing with automatic lemma-generation. They mostly 
carry through syntactical manipulations of some formulas. While it is not always clear where these 
formulas come from, in our case the formulas representing the state of the current proof attempt 
can play this role. But it does not make much sense to take into account all formulas. The formulas 
used in the base-case or induction-step are instances of the theorem to be proved. As such they 
have the position of a goal (and are referred to as conclusion). Consequently these and the 
formulas inferred with their participation (which will be called conclusion-formulas) are top
candidates when it comes to lemma-generation. Now it becomes clear that the process,of 
automatic lemma-generation will be performed in two steps: 
First of all, the conclusion-formulas must be extracted from the set of formulas representing the 
state of the current proof. The extracted formulas then act as so-called lemma-candidates after a 
slight modification: If the proof is being led for an induction-step, then the conclusion-formulas 
might contain constant symbols introduced through the hypotheses. In order to be able to 
generate more general lemmata and because of the fact that those constant symbols represent 
arbitrary ground-terms, they are substituted by (new) variables. 
Since there will usually be more than one lemma-candidate and since we intend to produce in the 
ideal case exactly one lemma, this first step is combined with a reduction of the set of lemma
candidates obtained so far. The way this can be achieved will be explained later in this section 
(see 3.2.1 and 3.2.2). 
In the second step the remaining lemma-candidates undergo the already mentioned (syntactical) 
manipulations by various heuristics, thus generating one (in the ideal case) or more lemmata. 
Some of these lemmata may not at all be inductive lemmata, because they were generated by 
heuristics. To avoid the introduction of a notion like "potential lemma", we shall call them "lemma" 
nevertheless. In this context it might be interesting to think about methods for validating lemmata 
created by heuristics ([Pr92]). 
The following two subsections are devoted to the more detailed description of these two steps of 
automatic lemma-generation. 

3.2. Step One. Creating and confining the set of lemma-candldates. 
Extracting the conclusion-formulas, which can easily be transformed into lemma-candidates in the 
way outlined above, theoretically imposes hardly problems. We only have to check for every 
formula available in the current proof whether it stems from the conclusion or not. This can either 
be achieved by ''tracking back" the inference chain which led to the formula in question (what is 
not a very efficient method), or by associating a flag to every formula, which is propagated during 
the inference process, indicating the membership to the set of conclusion formulas. A slight 
problem arises when we want to define which formulas should be considered as stemming from 
the conclusion. There are certain deductions involving a conclusion-formula which infer formulas 
that should not be regarded as conclusion-formulas (although a conclusion-formula participated 
in their generation). This seems to contradict the (informal) definition for conclusion-formulas 
given above. A motivation for this constraint shall be presented through the following example. 
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alternative (1) is nevertheless worth thinking about and may possess interesting abilities.
There already exists a variety of heuristics dealing with automatic lemma-generation. They mostly
carry through syntactical manipulations of some formulas. While it is not always clear where these
formulas come from, in our case the formulas representing the state of the current proof attempt
can play this role. But it does not make much sense to take into account all formulas. The formulas
used in the base-case or induction-step are instances of the theorem to be proved. As such they
have the position of a goal (and are referred to as conclusion). Consequently these and the
formulas inferred with their participation (which will be called conclusion-formulas) are t0p-
candidates when it comes to lemma-generation. Now it becomes clear that the process (of

automatic lemma-generation will be performed in two steps: "
First of all, the conclusion-formulas must be extracted from the set of formulas representing the
state of the current proof. The extracted formulas then act as so-called lemma—candidates after a
slight modification: If the proof is being led for an induction-step, then the conclusion-formulas
might contain constant symbols introduced through the hypotheses. In order to be able to
generate more general lemmata and because of the fact that those constant symbols represent
arbitrary ground-terms. they are substituted by (new) variables.
Since there will usually be more than one lemma-candidate and since we intend to produce in the
ideal case exactly one lemma, this first step is combined with a reduction of the set of lemma-
candidates obtained so far. The way this can be achieved will be explained later in this section
(see 3.2.1 and 3.2.2).
In the second step the remaining lemma-candidates undergo the already mentioned (syntactical)
manipulations by various heuristics, thus generating one (in the ideal case) or more lemmata.
Some of these lemmata may not at all be inductive lemmata, because they were generated by
heuristics. To avoid the introduction of a notion like “potential lemma”, we shall call them “lemma"
nevertheless. In this context it might be interesting to think about methods for validating lemmata
created by heuristics ([Pr92]).
The following two subsections are devoted to the more detailed description of these two steps of
automatic lemma-generation.
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Extracting the conclusion—formulas. which can easily be transformed into lemma-candidates in the
way outlined above, theoretically imposes hardly problems. We only have to check for every
formula available in the current proof whether it stems from the conclusion or  not. This can either
be achieved by “tracking back" the inference chain which led to the formula in question (what is
not a very efficient method), or by associating a flag to every formula, which is propagated during
the inference process, indicating the membership to the set of conclusion formulas. A slight
problem arises when we want to define which formulas should be considered as stemming from
the conclusion. There are certain deductions involving a conclusion-formula which infer formulas
that should not be regarded as conclusion-formulas (although a conclusion-formula participated
in their generation). This seems to contradict the (informal) definition for conclusion-formulas
given above. A motivation for this constraint shall be presented through the following example.
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Examole 3, 1:
 
Suppose we have the two facts
 
(A) P(f(x,a),x)
 
(B) f(b,y)=g(y)
 
which allow to derive (C) P(g(a),b) by paramodulation. If (A) is a conclusion-formula, then it is quite
 
obvious that (C) should be considered as a conclusion-formula as well. If (B) is a conclusion

formula (and (A) is nota conclusion-formula), then it does not seem recommendable to regard (C)
 
as a conclusion-formula,
 
To justify this way of proceeding for the latter case, let us take a look at the following consideration:
 
If we do not prove by refutation, then this paramodulation is invalid anyway since we used a
 
formula which is to be proved, Otherwise it is a legal inference, but making formula (C) a lemma

candidate will most certainly result in an incorrect lemma. One reason is the negation of the initial
 
goal of the proof which we must undo in some way for formula (C), But we cannot do that properly
 
in this case,
 

This hint towards a first reduction of the set of conclusion-formulas (and thereby also reducing the 
number of lemma-candidates) must be used cautiously, and the application thereof should be 
thought over carefully for every individual inference rule, 
Furthermore, if the theorem prover for PL1Ea in use works according to the principle "proof by 
refutation", then the initial negation of the conclusion must be taken into account properly. The 
problems arising in this context are not very difficult to handle, if we confine ourselves to "iI
quantified theorems only, (Basically, it suffices under these restricted conditions to replace all 
skolem-constants by new variables and to negate the conclusion-formulas to revert the initial 
negation,) As existentially quantified theorems cause tremendous difficulties, we shall omit here 
theorems involving existential quantification entirely, (An in-depth coverage of this subject can be 
found in [Bi91].) 
But apart from these contemplations, the identification of conclusion-formulas and their extraction 
combined with the modifications just described (so as to be used as lemma-candidates) is merely 
animplementational problem, 
So let us concentrate our effort to the reduction of the set of lemma-candidates for the purpose of 
our ideal goal, the generation of exactly one (inductive) lemma, Two heuristics were qonceived in 
order to eliminate a part of the lemma-candidates, They will be described in the sequel. 
~: A third heuristic is the use of the subsumption-criterion, Le. preferring those lemmata that 
subsume other ones to those subsumed by them, e,g. prefer P(x,y) to P(s(x),s(y». But we shall 
not consider it here in detail, yet keeping it in mind as a further strategy,) 

3.2,1. "Minimal number of different subterms on places suitable for induction yariables" 
The goal of automatic lemma-generation is the generation of inductive lemmata which have a 
positive influence on the current proof and which can be proved by induction as well. Otherwise 
such a lemma would be pointless. This first heuristic for reducing the set of lemma-candidates 
applies a related idea: it tries to measure (on a heuristical basis) the provability of lemma
candidates, Knowing the importance of the choice of the induction variable, the principle consists 
in counting the number n of distinct terms occuring at positions in an individual lemma-candidate 
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Ezamaleil:
Suppose we have the two facts
(A) P( f (x .a ) .X )

(B) f (b.y)=g(y)

which allow to derive (C) P(g(a),b) by paramodulation. If (A) is a conclusion-formula. then it is quite
obvious that (C) should be considered as a conclusion-formula as well. If (B) is a conclusion-
formula (and (A) is not—a conclusion-formula), then it does not seem recommendable to regard (C)
as a conclusion-formula.
To justify this way of proceeding for the latter case. let us take a look at the following consideration:
If we do not prove by refutation, then this paramodulation is invalid anyway since we used a
formula which is to be proved. Otherwise it is a legal inference, but making formula (C) a lemma-
candidate will most certainly result in an incorrect lemma. One reason is the negation of the initial
goal of the proof which we must undo in some way for formula (C). But we cannot do that properly
in this case.

This hint towards a first reduction of the set of conclusion-formulas (and thereby also reducing the
number of lemma-candidates) must be used cautiously, and the application thereof should be
thought over carefully for every individual inference rule.
Furthermore, if the theorem prover for PL1EQ in use works according to the principle "proof by
refutation", then the initial negation of the conclusion must be taken into account properly. The
problems arising in this context are not very difficult to handle, if we confine ourselves to V-
quantified theorems only. (Basically, it suffices under these restricted conditions to replace all
skolem-constants by new variables and to negate the conclusion-formulas to revert the initial
negation.) As existentially quantified theorems cause tremendous difficulties, we shall omit here
theorems involving existential quantification entirely. (An in-depth coverage of this subject can be
found in [Bi91].)
But apart from these contemplations, the identification of conclusion-formulas and their extraction
combined with the modifications just described (so as to be used as lemma-candidates) is merely
an .implementational problem.
So let us  concentrate our effort to the reduction of the set of lemma-candidates for the purpose of
our ideal goal, the generation of exactly one (inductive) lemma. Two heuristics were conceived in
order to eliminate a part of the lemma—candidates. They will be described i n  the sequel.
(Note: A third heuristic is the use of the subsumption-criterion, i.e. preferring those lemmata that
subsume other ones to those subsumed by them, e.g. prefer P(x,y) to P(s(x),s(y)). But we shall
not consider i t  here in detail, yet keeping it in mind as a further strategy.)

"unn-  n n.0- . 0 | ° ' |  " "  no . .  ‘ . 0 '  o no an  . . o - "
The goal of automatic lemma—generation is the generation of inductive lemmata which have a
positive influence on the current proof and which can be proved by induction as well. OthenNise
such a lemma would be pointless. This first heuristic for reducing the set of lemma-candidates
applies a related idea: it tries to measure (on a heuristical basis) the provability of lemma-
candidates. Knowing the importance of the choice of the induction variable, the principle consists
in counting the number n of distinct terms occuring at positions in an individual lemma-candidate
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which would be suitable positions for the induction variable. "Suitable positions" are again the 
argument positions on which recursion is performed, Le. potential induction places. The less the 
value of n, the better the respective lemma-candidate is estimated. The heuristic therefore 
discards all lemma-candidates for which it calculates such a number n that is not minimal. 
The following example should demonstrate the way this heuristic works and serve as a motivation 
for the underlying principle: 

Example 3.2: 
Suppose we have a set of axioms 
(1) x+O=x 
(2) x+s(y)=s(x+y) 
and we want to prove the commutativity of +, Le. x+y=y+x is our theorem. We shall concentrate 
here on the interesting induction-step: The hypothesis is x+t=t+x (if Y is the induction variable, 
what in this example really doesn't matter). Hence, we obtain x+s(t)=s(t)+x in the induction-step, 
which can be rewritten with the help of axiom (2) to s(x+t)=s(t)+x. Applying the hypothesis, we 
additionally create s(t+x)=s(t)+x. This means that we have at this point of the proof the two 
conclusion-formulas s(x+t)=s(t)+x and s(t+x)=s(t)+x. They are transformed into lemma-candidates 
by the already known substitution of t by a (new) variable (z) (see 3.1) and we obtain 
(a) s(x+z)=s(z)+x 
(b) s(z+x)=s(z)+x 
Since argument position 2 of function + is the position where recursion takes place according to 
the defining axioms, {z,x} and {x} are the terms on that argument positions in the lemma
candidates (a) and (b) respectively. Therefore lemma-candidate (a) is discarded, because our 
heuristic counts here two distinct terms (x and z) on recursion argument positions, whereas it 
counts only one for (b). 'Nhen proving both (a) and (b), we can see that (b) can be proved without 
difficulties. But for the proof of (a) we need (b), what clearly signalizes that (b) is the better choice. 

In general, the presented method sustains the issues inherent to inductive proving which were 
already discussed in the context of the selection of the induction variable in section 2.1. 

~: 

Even in the case of non-variable terms occuring on potential induction places, this method still 
makes sense. As we shall see later in this section, under certain conditions these non-variable 
terms may be replaced by variables ("generalization"). 

3.2.2. "Avoiding inflated formulas" 
Another possibility to reduce the set of lemma-candidates is the elimination of inflated formulas. 
This notion was already introduced in section 2.4 and describes the symptom of a regular 
(recursive) structure of a term. So, f(s(s(s(s(x)))),a)is considered to be inflated. The degree to 
which a formula is inflated is expressed in natural numbers, where high values indicate a high 
degree of inflation. (How these values are computed is shown in appendix B in detail.) The idea 
is to remove all lemma~candidates that do not have a minimal inflation degree. Once again for 
motivation and explanatory reasons, we shall take a look at an example: 
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which would be suitable positions for the induction variable. “Suitable positions" are again the
argument positions on  which recursion is  performed, i.e. potential induction places. The less the
value of n ,  the better the respective lemma-candidate is  estimated. The heuristic therefore
discards all lemma-candidates for which it calculates such a number'n that is not minimal.
The following example should demonstrate the way this heuristic works and serve as a motivation
for the underlying principle:

Example 2.2:
Suppose we have a set of axioms
(1) X+0=X

(2) X+S(y)=S(X+y)

and we want to prove the commutativity of +, i.e. x+y=y+x is our theorem. We shall concentrate
here on the interesting induction-step: The hypothesis is x+t=t+x (if y is the induction variable,
what in this example really‘doesn’t matter). Hence, we obtain x+s(t)=s(t)+x in the induction-step,
which can be rewritten with the help of axiom (2) to s(x+t)=s(t)+x. Applying the hypothesis, we
additionally create s(t+x)=s(t)+x. This means that we have at this point of the proof the two
conclusion-formulas s(x+t)=s(t)+x and s(t+x)=s(t)+x. They are transformed into lemma-candidates
by the already known substitution of t by a (new) variable (2) (see 3.1) and we obtain
(a) s(x+z)=s(z)+x
(b) s(z+x)=s(z)+x
Since argument position 2 of function + is the position where recursion takes place according to
the defining axioms, {z,x} and {x} are the terms on  that argument positions in the lemma-
candidates (a) and (b) respectively. Therefore lemma-candidate (a) is discarded. because our
heuristic counts here two distinct terms (x and 2) on  recursion argument positions, whereas i t
counts only one for (b). When proving both (a) and (b), we can see that (b). can be proved without
difficulties. But for the proof of (a) we need (b), what clearly signalizes that (b) is the better choice.

In general, the presented method sustains the issues inherent to inductive proving which were
already discussed in the context of the selection of the induction variable in section 2.1.

Note:
Even in the case of non-variable terms occuring on potential induction places, this method still
makes sense. As we shall see later in this section, under certain conditions these non-variable
terms may be replaced by variables (“generalization").

3.2.2. “Avgiging inflated emulas"
Another possibility to reduce the set of lemma-candidates is  the elimination of inflated formulas.
This notion was already introduced in section 2.4 and describes the symptom of a regular
(recursive) structure of a term. 80,  f(s(s(s(s(x)))),a) is considered to be inflated. The degree to
which a formula is inflated is expressed in natural numbers, where high values indicate a high
degree of inflation. (How these values are computed is  shown in appendix B in  detail.) The idea
is to remove all lemma-candidates that do not have a minimal inflation degree. Once again for
motivation and explanatory reasons, we shall take a look at an example:
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Examole 3.3: 
Let the set of axioms be 
(1) x+O=x 
(2) x+s(y)=s(x+y) 
(3) even(O) 
(4) -,even(s(O)) 
(5) eVf3n(x)Heven(s(s(x)))
 
If we want to prove the inductive theorem even(x+x), we obtain even(s(t)+s(t)) in the induction

step (the base case is trivial). This can be rewritten to even(s(s(t)+t)). Since neither the hypothesis
 
even(t+t) nor any axiom other than axiom (5) can be applied, we get lost in the infinite deduction
 
chain even(s(s(t)+t))Beven(s(s(s(s(t)+t))))B...
 
When automatic lemma-generation is invoked, we have in general n lemma-candidates of the
 
form even(s2i(s(s(t)+t))), O::;i<n. It is obvious that the lemma-candidates with i>O are redundant.
 
So, their elimination by applying the described criterion of minimal inflation is welcome.
 

Despite these apparent advantages of this method it must not be denied that it hosts a certain risk 
of eliminating possibly suitable lemma-candidates. It is therefore in its initial and simple form 
especially open to further extensions and improvements. 

3.3. Step tWQ. Generating lemmata. 
At this point of the process of automatic lemma-generation we dispose of a (reduced) set of 
lemma-candidates. As these lemma-candidates merely represent a subset of the formulas 
available in the current proof, it is usually necessary to submit them to further manipulations in 
order to obtain lemmata which themselves have a good chance of being provable by induction. 
For this task a range of heuristics is at our disposal that will be described in this paragraph. But 
before that, we shall introduce a classification for these heuristics in terms of the effect the 
lemmata created by them have on the respective current proof. It is clear that the generated 
lemmata should at least have a positive influence on the proof, Le. they should bring the proof 
closer to a successful termination. But besides this general request, a significant number of the 
heuristics to be presented have the property of providing lemmata that always conclude the proof 
(of a base-case or induction-step). These lemmata shall from now on be referred to as sufficient 
lemmata. Moreover, those heuristics that generally produce sufficient lemmata will also be called 
sufficient. 
~: If a lemma is ,SUfficient, this does not imply that it is correct, Le. it is valid in the inductive 
theory currently investigated through the proof attempt.) 
Sufficient lemmata are naturally very convenient, because we do not have to add them to the 
current set of formulas and to continue the inference procedure; it suffices to focus on the proof of 
the (sufficient) lemma. Nevertheless there are important heuristics that do not produce sufficient 
lemmata in general. 
It must be noted that every lemma-candidate is sufficient, because it is a generalized derivate of 
the conclusion that would conclude the proof if added as a lemma. It is important to keep this in 
mind, because this fact is essential when we want to classify the heuristics for lemma-generation 
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Emma—ü:
Let the set of axioms be
(1) x+0=x
(2) X+s(y)=8(><+y)

(3) even(0)
(4) —.even(s(0))
(5) even(x)<—>even(s(s(x)))
If we want to prove the inductive theorem even(x‘+x), we obtain even(s(t)+s(t)). in the induction-
step (the base case is trivial). This can be rewritten to even(s(s(t)+t)). Since neither the hypothesis
even(t+t) nor any axiom other than axiom (5) can be applied, we get lost in the infinite deduction
chain even(s(s(t)+t))<——>even(s(s(s(s(t)+t))))<—>...
When automatic lemma-generation is invoked, we have in general n lemma—candidates of the
form even(sz'(s(s(t)+t))), 0$i<n. It is obvious that the lemma-candidates with i>0 are redundant.
So,  their elimination by applying the described criterion of minimal inflation is welcome.

Despite these apparent advantages of this method it must not  be denied that it hosts a certain risk
of eliminating possibly suitable lemma—candidates. It is therefore in  its initial and simple form
especially open to further extensions and improvements.

W
At this point of ( the process of automatic lemma-generation we dispose of a (reduced) set of
lemma-candidates. As these lemma-candidates merely represent a subset of the formulas
available in the current proof, it is usually necessary to submit them to further manipulations in
order to obtain lemmata which themselves have a good chance of being provable by induction.
For this task a range of heuristics is at our disposal that will be described in this paragraph. But
before that, we shall introduce a classification for these heuristics in terms of the effect the
lemmata created by them have on the respective current proof. it is clear that the generated
lemmata should at least have a positive influence on the proof, i.e. they should bring the proof
closer to a successful termination. But besides this general request, a significant number of the
heuristics to be presented have the property of providing lemmata that always conclude the proof
(of a base—case or induction-step). These lemmata shall from now on be referred to as sufficient
lemmata. Moreover, those heuristics that generally produce sufficient lemmata will also be called
sufficient.
(Note: If a lemma is sufficient, this does not imply that it is correct, Le. it is valid in-the inductive
theory currently investigated through the proof attempt.)
Sufficient lemmata are naturally very convenient, because we do not have to add them to the
current set of formulas and to continue the inference procedure; it suffices to focus on the proof of
the (sufficient) lemma. Nevertheless there are important heuristics that do not produce sufficient
lemmata in general.
It must be noted that every lemma-candidate is sufficient, because it is a generalized derivate of
the conclusion that would conclude the proof if added as a lemma. It is important to keep this in
mind, because this fact is essential when we want to classify the heuristics for lemma-generation
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according to the criterion of sufficiency.
 
We shall now present heuristics for generating lemmata out of lemma-candidates.
 
(~: Almost all heuristics we shall come to know in the following subsections are supposed to
 
work on lemma-candidates though this may not be stated explicitly every time.)
 

3.3.1. Generalization of common subterms 
Generalization is usually understood as a procedure which creates a formula F' from a formula F 
so that F'~F holds. (F' is said to be more general.) Although this method complicates the proof 
(or even makes it impossible) for theorems in PL1Ea, an inductive proof can benefit thereof. A 
reason for this phenomenon is the fact that - at least in the induction-step - the hypotheses must 
be applicable to the instance created in the induction-step in order to complete the proof. The more 
general the hypotheses are, the easier this task can be accomplished. As the hypotheses 
themselves are instances of the theorem and because the lemma we want to generate has to be 
a theorem as well when an attempt is made to prove it, a generalization offers a good chance to 
create lemmata that are provable by induction. For these reasons this first heuristic for lemma
generation relies on the generalization of the available lemma-candidates. 
Any replacement of a subterm of a formula by a (new) variable is a generalization. But replacing 
indifferently subterms not only causes a lot of indeterminism, but also increases the danger of 
generating formulas that are no more in the respective (inductive) theory, Le. they are over
generalized. Confining the generalization (this means in our case the replacement of subterms by 
new variables) to so-called common subterms significantly diminishes this negative effect. A 
common subterm in this context (see also [BM79], [Au77] and [HuS7]) is a subterm of a formula 
which neither is a constant nor a variable and which occurs either in more than one literal or in 
distinct sides of an equation. 

Examoles 3.4: 
'v'x:P(x,f(x))vQ(f(x)) - f(x) is a common subterm 
'v'x:f(g(x),a)=g(x) - g(x) is a common subterm 
'v'x:P(g(x),g(x)) - g(x) is not a common subterm 

The generalization of common subterms can now be defined as the replacement of all occurences 
of a common subterm by a new variable. If there exist more than one common subterm in a 
formula, we have to decide which. of them to generalize. We shall discuss this problem later in this 
section. 
Generalizing common subterms of lemma-candidates according to this convention in most cases 
provides us with lemmata that are not over-generalized. This is of course an experimental and 
empirical result, sustained by many encouraging tests (see also appendix A). 

Example 3.5: 
From s(x)+s(y)=s(y)+s(x) we obtain after generalizing the common subterms s(x) and s(y) the 
equation x+Y=Y+x which can be proved more easily than the original one, using the axioms of 
example 3.2. 
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according to the criterion of sufficiency.
We shall now present heuristics for generating lemmata out of lemma-candidates.
(Nele: Almost all heuristics we shall come to know in the following subsections are supposed to
work on lemma-candidates though this may not be stated explicitly every time.)

. . 1 .  n r l ' i n fmmn rrn
Generalization is usually understood as a procedure which creates a formula F’ from a formula F
so that F'—>F holds. (F' is said to be more general.) Although this method complicates the proof
(or even makes it impossible) for theorems i n  PL1EQ, an inductive proof can benefit thereof. A
reason for this phenomenon is the fact that - at least in the induction-step - the hypotheses must
be applicable to the instance created in the induction-step in order to complete the proof. The more
general the hypotheses are. the easier this task can be accomplished. As the hypotheses
themselves are instances of the theorem and because the lemma we want to generate has to be
a theorem as well when an attempt is made to prove it, a generalization offers a good chance to
create lemmata that are provable by induction. For these reasons this first heuristic for lemma-
generation relies on the generalization of the available lemma—candidates.
Any replacement of a subterm of a formula by a (new) variable is a generalization. But replacing
indifferently subterms not only causes a lot of indeterminism, but also increases the danger of
generating formulas that are no  more in the respective (inductive) theory, i.e. they are over-
generalized. Confining the generalization (this means in our case the replacement of subterms by
new variables) to so—called common subterms significantly diminishes this negative effect. A
common subterm in this context (see also [BM_79], [Au77] and [Hu87]) i s  a subterm of a formula
which neither is a constant nor a variable and which occurs either in more than one literal or in
distinct sides of an equation.

Example: 3.4:
Vx:P(x,f(x))vQ(f(x)) - f(x) is a common subterm
Vx:f(g(x),a)=g(x) - g(x) is a common subterm
Vx:P(g(x),g(x)) - g(x) is not a common subterm

The generalization of common subterms can now be defined as the replacement of all occurences
of a common subterm by a new variable. If there exist more than one common subterm in a
formula, we have to decide whichof  them to generalize. We shall discuss this problem later in this
section.
Generalizing common subterms of lemma-candidates according to this convention in most cases
provides us with lemmata that are not over-generalized. This is of course an experimental and
empirical result, sustained by many encouraging tests (see also appendix A).

W:
From s(x)+s(y)=s(y)+s(x) we obtain after generalizing the common subterms s(x) and s(y) the
equation x+y=y+x which can be proved more easily than the original one, using the axioms of
example 3.2.
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Although the restrictive generalization of common subterms substantially improves reliability, 
there are still cases in which it may fail. 

Example 3.6: 

Suppose we dispose of a function isort:L1ST~L1ST (see also appendix A) that computes sorted 
lists (of natural numbers for instance) w.r.t. some ordering. Then it is clear that 
isort(isort(x))=isort(x) hold_s. Generalizing the common subterm isort(x) results in the equation 
isort(z)=z which is not valid anymore. 

In this case the failure of our method can be compensated by the introduction of so-called 
generalization-lemmata. This notion is described in detail in [Hu8?]. We shall therefore only take 
a glance at the issues of this domain and consider merely the basic principle: 
The problem we run into when generalizing the common subterm isort(x) is caused by the 
circumstance that isort(x) represents sorted lists (not arbitrary lists). If we have a predicate ORD(x) 
at our disposal which is true if and only if x is a sorted list, then we can code that property of isort 
by formulating the following implication ORD(z)~isort(z)=z. If we can prove this implication, then 
the original equation isort(isort(x))=isort(x) is also proved, because ORD(isort(x)) ~ 

isort(isort(x))=isort(x) => TRUE~isort(isort(x))=isort(x) => isort(isort(x))=isort(x). 
Although the principle of this procedure is rather obvious, the detection of the need for 
generalization-lemmata and their creation is so far not satisfactorily amenable to automatization, 
Le. good heuristics for this purpose are still to be found. (A possible approach to these problems 
might be achieved by analyzing the way the respective top-level function-symbol of the common 
subterm under investigation (isort in our example) is defined by the axioms. The results of this 
analysis might be useful for detecting the need for and the creation of proper generalization
lemmata.) 

We shall now introduce two further properties of common subterms that are closely related to 
over-generalization. They will both provide us with (heuristical) criteria signalizing potentially 
hazardous constellations. 
The first property is the dependency of common subterms which is also discussed in [Hu8?]. We 
shall call analogously a common subterm t dependent, if a proper subterm of it occurs somewhere 
else in the formula where it is not a subterm of an occurence of 1. 

Example 3.7: 
In the formula P{g{x),x)vQ{g{x)), g(x) is a dependent (common) subterm, because x is a proper 
subterm of g(x) and it occurs in P(g(x),x) at a position where it is not a subterm of a further 
occurence of g(x). 

The criterion of dependency must be regarded as a clue for increased probability of over
generalization. That means, whenever we are dealing with dependent common subterms, we 
must be aware of the inherent dangers, but we must also keep in mind that generalizing 
dependent common subterms not necessarily results in over-generalized formulas. 
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Although the restrictive generalization of common subterms substantially improves reliability,
there are still cases in which it may fail.

Example 3.5:
Suppose we dispose of a function isort:L|ST—>LIST (see also appendix A) that computes sorted
lists (of natural numbers for instance) w.r.t. some ordering. Then it is clear that
isort(isort(x))=isort(x) holds. Generalizing the common subterm isort(x) results in the equation
isort(z)=z which is not valid anymore.

In this case the failure of our method can be compensated by the introduction of so-called
generalization-lemmata. This notion is described in detail in [Hu87]. We shall therefore only take
a glance at the issues of this domain and consider merely the basic principle:
The problem we run into when generalizing the common subterm isort(x) is caused by the
circumstance that  isort(x) represents sorted lists (not arbitrary lists). If we have a predicate ORD(x)
at our disposal which is  true if and only if x is a sorted list, then we can code that property of isort
by formulating the following implication ORD(z)—>isort(z)=z. If we can prove this implication, then
the original equation isort(isort(x))=isort(x) is also proved. because ORD(isort(x)) —>
isort(isort(x))=isort(x) => TRUE—aisort(isort(x))=isort(x) => isort(isort(x))=isort(x).
Although the principle of this procedure is rather obvious, the detection of the need for
generalization-lemmata and their creation is so far not satisfactorily amenable to automatization,
i.e. good heuristics for this purpose are still to be found. (A possible approach to these problems
might be achieved by analyzing the way the respective top-level function-symbol of the common
subterm under investigation (isort in our example) is defined by the axioms. The results of this
analysis might be useful for detecting the need for and the creation of proper generalization—
lemmata.)

We shall now introduce two further properties of common subterms that are closely related to
over-generalization. They will both provide us with (heuristical) criteria signalizing potentially
hazardous constellations.
The first property is the dependency of common subterms which is also discussed in [Hu87]. We
shall call analogously a common subterm t dependent, if a pr0per subterm of it occurs somewhere
else in the formula where it is not a subterm of an occurence of t.

Example ,3. 7:
In the formula P(g(x),x)vQ(g(x)), g(x) is a dependent (common) subterm, because x is a proper
subterm of g(x) and it occurs in P(g(x),x) at a position where it is not a subterm of a further
occurence of g(x).

The criterion of dependency must be regarded as a clue for increased probability of over-
generalization. That means, whenever we are dealing with dependent common subterms, we
must be aware of the inherent dangers, but we must also keep in mind that generalizing
dependent common subterms not necessarily results in over-generalized formulas.
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Examo/e 3.8: 
Let the set of axioms be
 
x+O=x. x+s(y)=s(x+y).
 
xeO=O. xes(y)=x+xey.
 
fak(O)=s(O), fak(s(x»=fak(x)es(x).
 
F(O.y)=y, F(s(x),y)=F(x.s(x)ey).
 
When attempting to prove the theorem F(x.s(O»=fak(x), we obtain in the induction-step
 
F(s(t).s(O»=fak(s(t» what can be rewritten giving F(t,s(t»=fak(t)es(t). Thus we have the lemma

candidate F(x.s(x»=fak(x)es(x). The common subtertn s(x) is dependent; nevertheless its
 
generalization provides us with the very helpful (and correct) lemma F(x,y)=fak(x)ey.
 

In those cases where generalizing common subterms does produce over-generalized formulas.
 
the failure mostly is a consequence of a connection that existed between the dependent common
 
subterm and its subterm that caused the dependency. When generalizing we destroy that possibly
 
crucial connection and thus quite often generate useless (wrong) formulas.
 

Example 3.9: 
The set of axioms be
 
app(nil.x)=x
 
app(cons(y.x) .z)=cons(y.app(x,z»
 
rev(nil)=nil
 
rev(cons(y.x))=app(rev(x).cons(y,nil».
 
The proof of the theorem rev(app(I.I»=app(rev(I).rev(l» generates in the induction-step
 
rev(app(cons(t1,t2).cons(t1,12») = app(rev(cons(t1.t2»,rev(cons(t1.t2»)· At this point. the common
 
subterm cons(t1.t2) is not dependent. After applying the axioms. the equation can be rewritten to
 
app(rev(app(t2,cons(t1.t2»),cons(t1.nil» = app(app(rev(t2).cons(t1,nil».app(rev(t2),cons(t1.nil»).
 
This way all occurences of cons(t1 ,t2) except one disappeared, thereby acting as ancestors for the
 
common subterm cons(t1,nil) in the rewritten equation. cons(t1.nil) is a dependent common
 
subterm. because t1 occurs in cons(t1.t2) which could not be rewritten. By generalizing cons(t1,nil)
 
we destroy the relation that existed and thus finally generate the wrong equation
 
app(rev(app(z.cons(y,z»),x)=app(app(rev(z).x),app(rev(z).x».
 

This effect is enhanced if common subterms not only are dependent, but also are "strongly
 
homeomorphically embedded" which is a stronger and therefore more restrictive property. The
 
notion "(strong) homeomorphic embedding" has so far not been used in this context. For this
 
reason. we shall give a definition of what it means if a common subterm is (strongly) homeo

morphically embedded.
 

Definition:
 
A term s is called homeomorphically embedded in a term t, if sLt, where L is a recursively defined
 
relation on terms:
 
s=f(S1 ....sn)Lg(t1 •..•tm)=t iff
 
(1) f=g and sjLtj for all i=1 ..n=m or 
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Exam:
Let the set of axioms be
x+0=x, x+s(y)=s(x+y),
x00=0, x-s(y)=x+xoy,
fak(0)=s(0), fak(s(x))=fak(x)os(x),
F(0 .y )=y .  F lS lX) .y )=F(x .S(X) 'y ) -

When attempting to prove the theorem F(x,s(0))=fak(x), we obtain in the induction-step
F(s(t),s(0))=fak(s(t)) what can be rewritten giving F(t,s(t))=fak(t)os(t). Thus we have the lemma-
candidate F(x,s(x))=fak(x)os(x). The common subterm s(x) is dependent; nevertheless its
generalization provides us with the very helpful (and correct) lemma F(x,y)=fak(x)oy.

In those cases "where generalizing common subterms does produce over-generalized formulas,
the failure mostly is a consequence of a conneCtion that existed between the dependent common
subterm and its subterm that caused the dependency. When generalizing we destroy that possibly
crucial connection and thus quite often generate useless (wrong) formulas.

Exam:
The set of axioms be
app(ni|,x)=x
app(cons(y.x) .z)=cons(y.app(x.z))

rev(ni|)=nil
rev(cons(y,x))=app(rev(x),cons(y,nil)).
The proof of the theorem rev(app(l,l))=app(rev(l),rev(l)), generates in the induction-step
rev(app(cons(t1,t2),cons(t1,t2))) = app(rev(cons(t1,t2)),rev(cons(t1,t2))). At this point, the common
subterm cons(t1,t2) is not dependent. After applying the axioms, the equation can be rewritten‘to
app(rev(app(t2,cons(t1 ,t2))).cons(t1,nil)) = app(app(rev(t2),cons(t1 ‚nil))‚app(rev(t2),cons(t1,nil))).
This way all occurences of cons(t1,t2) except one disappeared, thereby acting as ancestors for the
common subterm cons(t1,nil) in the rewritten equation. cons(t1,nil) is a dependent common
subterm, because t1 occurs in cons(t1,t2) which could not be rewritten. By generalizing cons(t1,nil)
we destroy the relation that existed and thus finally generate the wrong equation
app(reV(app(Z-C°n8(y.2))).X)=app(app(rev(2).X).app(rev(2).x))-

This effect is enhanced if common subterms not only are dependent, but also are "strongly
homeomorphically embedded“ which is a stronger and therefore more restrictive pr0perty. The
notion “(strong) homeomorphic embedding" has so far not been used in this context. For this
reason, we shall give a definition of what i t  means if a common subterm is  (strongly) homeo-
morphically embedded.

D IE' 'I' :

A term s is called homeomorphically embeddedin a term t, if sit, where z is a recursively defined
relation on terms:
saf(s1,..,sn)zg(t1,..,tm)st iff
(1) fag and sizti for all i=1..n=m or
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(2) SLtj for one tjE {t1 ...•tm}
 
Let ~ be a new symbol. <p[t.s] be the term we obtain by replacing all occurences of sin t by~.
 

Then s is called strongly homeomorphically embeddediff SL<p[t.s].
 

Examole 3. 10: 
(a) f(x}Lf(g(a,x)) 
(b) In P(s(g(s(x}}}.s(s(x}}}, the subterm s(s(x)) is strongly homeomorphically embedded since 
s(s(x})L<p[P(s(g(s(x))},s(s(x}}},s(s(x})] = P(s(g(s(x)) },~}. 

Since every subterm that is strongly homeomorphically embedded is also dependent, the criterion 
of strong homeomorphic embedding provides us with the possibility of a more sophisticated 
estimation of impending over-generalization beyond the scope of the dependency criterion.

\ 

We already mentioned that there can sometimes exist more than one common subterm so that 
we have to decide which of them to generalize. First of all we must state that every subterm of a 
common subterm is also a common subterm, provided that it is neither a variable nor a con!:?tant. 
Hence we must decide whether we shall generalize the "bigger" common subterm or the "smaller" 
ones it contains. For this decision we can make use of the criteria of dependency and strong 
homeomorphic embedding we introduced above: if we assume a hierarchy "not dependent < 

dependent < strongly homeomorphically embedded" for common subterms expressing the 
potential danger of their causing over-generalization, where "<" means "ovar-generalization less 
probable", we can classify all common subterms utilizing this hierarchy. It is then a good policy to 
restrict generalization to those commen subterms that are in a minimal class w.r.t <. This strategy 
can of course be employed the same way if there are several common subterms not necessarily 
related by the subterm property. 

Example 3.11: 
(a) In F=P(g(f(a.x}.b},b}vQ(g(f(a,x}.b)) we find two common subterms g(f(a.x}.b} and f(a.x}. a 
subterm of the former. Since g(f(a,x}.b} is a dependent common subterm. F is generalized to 
P(g(z.b}.b}vQ(g(z,b}}. 
(b) In P(g(f(a,x},a}.b}vQ(g(f(a,x),a)) there are again two common subterms g(f(a.x},a} and f(a.x}. 
which is a subterm of the former. This time. f(a,x} is dependent, whereas g(f(a,x}.a} is not 
dependent. Therefore we generalize the "bigger" common subterm and we obtain P(z.b}vQ(z}. 
(c) In P(f(z},s(x},s(y))vQ(z.s(x},s(y)}vR(f(z)) we have three common subterms f(z}. s(x} and s(y). 
Since f(z) is dependent. it is sugg~sted to generalize s(x) and s(y) only, thus generating 
P(f(z),u.v}vQ(z.u,v)vR(f(z}}. 

Another preference strategy concerning generalization of common subterms is based on the so
called "common subterms with primary occurences" ([Au77]). In this case we confine the 
generalization to those common subterms that are located on potential induction places. Since 
generalization replaces them by (new) variables. we should have a good chance of finding a 
suitable induction variable in a later proof. All other common subterms are left unchanged. 
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(2) Sétj for one tje {t1‚..,tm}
Let a be a new symbol ,  (p[t,s] be the  term we obtain by replacing all occurences of s in t by §-
Then s is called strongly homeomorphically embedded iff szq)[t,s].

W:
(a) f (X)éf (g(a.X))

(b) ln P(s(g(s(x))),s(s(x))), the subterm s(s(x)) is strongly homeomorphically embedded since
s(s(x))z¢[P(s(g(s(x)) ) .s(s(x)) ) .s(s(x)) l  = P(s(g(s(x))).§)-

Since every subterm that is'strongly homeomorphically embedded is also dependent, the criterion
of strong homeomorphic embedding provides us with the possibility of a more sophisticated
estimation of impending over—generalization beyond the scope of the dependency criterion.
We already mentioned that there can sometimes exist more than one common subterm so that
we have to decide which of them to generalize. First of all we must state that every subterm of a
common subterm is also a common subterm, provided that it is neither a variable nor a constant.
Hence we must decide whether we shall generalize the "bigger" common subterm or the “smaller"
ones it contains. For this decision we can make use of the criteria of dependency and strong
homeomorphic embedding we introduced above: if we assume a hierarchy "not dependent <
dependent < strongly homeomorphically embedded" for common subterms expressing the
potential danger of their causing over-generalization, where “<“ means “over-generalization less
probable", we can classify all common subterms utilizing this hierarchy. It  is then a good policy to
restrict generalization to those commen subterms that are in a minimal class w.r.t <. This strategy
can of course be employed the same way if there are several common subterms not necessarily
related by the subterm property.

Example 2.11:
(a) In F=P(g(f(a,x),b),b)vQ(g(f(a,x),b)) we find two common subterms g(i(a,x),b) and f(a,x), a
subterm of the former. Since g(f(a,x),b) is a dependent common subterm, F is generalized to
P(g(z .b) .b )v0(g(z .b) ) -

(b) In P(g(f(a,x),a).b)vO(g(f(a,x),a)) there are again two common subterms g(f(a,x),a) and f(a,x),
which is a subterm of the former. This time, f(a,x) is dependent, whereas g(f(a,x),a) is not
dependent. Therefore we generalize the “bigger" common subterm and we obtain P(z,b)vQ(z).
(c) In P(f(z),s(x),s(y))vQ(z,s(x),s(y))vFi(f(z)) we have three common subterms f(z), s(x) and s(y).
Since f(z) is dependent, it is suggested to generalize s(x) and s(y) only, thus generating
P(f(z),u,v)vQ(z,u,v)vFi(f(z)).

Another preference strategy concerning generalization of common subterms is based on the so-
called "common subterms with primary occurences" ([Au77]). In this case we confine the
generalization to those common subterms that are located on potential induction places. Since
generalization replaces them by (new) variables, we should have a good chance of finding a
suitable induction variable in a later proof. All other common subterms are left unchanged.
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ExamPle 3.12:
 
The set of axioms be {x+O=x, x+s(y)=s(x+y)}.
 
Suppose we want to generalize the equation s(x)+(s(y)+s(z))=(s(x)+s(y))+s(z). Then it suffices 

according to what we just argued- to generalize s(y) and s(z), since s(x) does not occur on a
 
potential induction place. And indeed, the ''weaker'' generalization s(x)+(u+v)=(s(x)+u)+v allows
 
as easy a proof as the "complete" generalization w+(u+v)=(w+u)+v. So, this strategy enables us
 
to select a satisfactory subset of the common subterms that are to be generalized, and it thereby
 
supports us in our struggle to avoid over-generali":ation.
 

Under certain conditions it is recommendable to generalize common subterms although they are
 
not located at potential induction places and even though they are dependent. This is the case if
 
the common subterms have a variable as one of their subterms that appears suitable for the use
 
as induction variable (Le. it occurs on a potential induction place somewhere else in the formula).
 
By generalizing them we achieve a disconnection from the future induction variable, what makes
 
the proof easier in some cases.
 

Example 3.13: 
The set of axioms be the same as in example 3.12.
 
Although the common subterm s(x) in the equation s(x)+(y+x)=(s(x)+y)+x is not positioned at a
 
potential induction place, its generalization impressively improves provability:
 
In the induction-step we obtain:
 
hypothesis: s(t)+(y+t)=(s(t)+y)+t
 
induction-step: s(s(t))+(y+s(t))=(s(s(t))+y)+s(t) which can be rewritten giving s(s(s(t»+(y+t» =
 
s((s(s(t»+y)+t). The proof is stuck at this point unless we add a further lemma (s(x)+y=s(x+y)). If
 
we use the generalized version z+(y+x)=(z+y)+x there are no problems (provided that we use x
 
as induction variable; see also section 2.1 ).
 

To conclude this overview on aspects of generalizing common subterms we shall classify the
 
heuristic realizing this type of generalization according to the criterion of sufficiency introduced at
 
the beginning of this section. We already argued that every lemma-candidate L is sufficient. Since
 
for every formula L' generated from L by generalization (of common subterms) L'~L holds, L' is
 
also sufficient. This follows from the monotony of deduction.
 

3.3.2. Creating common subterms with the help of the induction hypotheses 
In the preceding section 3.3.1 we have experienced a heuristic for lemma-generation which is 
without doubt considerably powerful and thus very important. The crucial point for its applicability 
is the existence of common subterms. These can - ;f not yet present - be created under certain 
conditions. One of two methods with that aim is the subject of this section. The second one will be 
discussed in section 3.3.3. 
The method we want to introduce depends on the availability of induction hypotheses in form of 
pure equalities. (More complex hypotheses must be declined because they would complicate the 
procedure to a degree not acceptable for practical application.) The basic idea consists in rewriting 
formulas (lemma-candidates) we would like to contain common subterms with the hypotheses so 
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mw
The set of axioms be {x+0=x, x+s(y)=s(x+y)}.
Suppose we want to generalize the equation s(x)+(s(y)+s(z))=(s(x)+s(y))+s(z). Then it suffices -
according to what we just argued- to generalize s(y) and 3(2), since s(x) does not occur on a
potential induction place. And indeed. the “weaker" generalization s(x)+(u+v)=(s(x)+u)+v allows
as easy a proof as the “complete" generalization w+(u+v)=(w+u)+v. So, this strategy enables us
to select a satisfactory subset of the common subterms that are to be generalized, and it thereby
supports us in our struggle to avoid over-generalization.

Under certain conditions it is recommendable to generalize common subterms although they are
not located at potential induction places and even though they are dependent. This is  the case if
the Common subterms have a variable as one of their subterms that appears suitable for the use
as induction variable (i.e. it occurs on a potential induction place somewhere else in the formula).
By generalizing them we achieve a disconnection from the future induction variable, what makes
the proof easier in some cases.

Eminem:
The set of axioms be the same as in example 3.12.
Although the common subterm s(x) in the equation s(x)+(y+x)=(s(x)+y)+x is not positioned at a
potential induction place, its generalization impressively improves provability:
In the induction-step we obtain:
Magnesia: s(t)+(y+t)=(8(t)+Y)+t

W: s(s(t))+(y+s(t))=(s(s(t))+y)+s(t) which can be rewritten giving s(s(s(t))+(y+t)) =
s((s(s(t))+y)+t). The proof is stuck at this point unless we add a further lemma (s(x)+y=s(x+y)). If
we use the generalized version z+(y+x)=(z+y)+x there are no problems (provided that we use x
as induction variable; see also section 2.1 ) .

To conclude this overview on aspects of generalizing common subterms we shall classify the
heuristic realizing this type of generalization according to the criterion of sufficiency introduced at
the‘beginning of this section. We already argued that every lemma-candidate L is sufficient. Since
for every formula L’ generated from L by generalization (of common subterms) L'—>L holds. L' i s
also sufficient. This follows from the monotony of deduction.

r i n  mmn rmw ihhh l f h i n  i n
In the preceding section 3.3.1 we have experienced a heuristic for lemma-generation which is
without doubt considerably powerful and thus very important. The crucial point for its applicability
is the existence of common subterms. These can - If not yet present - be created under certain
conditions. One of two methods with that aim is the subject of this section. The second one will be
discussed in section 3.3.3.
The method we want to introduce depends on the availability of induction hypotheses in form of
pure equalities. (More complex hypotheses must be declined because they would complicate the
procedure to a degree not acceptable for practical application.) The basic idea consists in rewriting
formulas (lemma-candidates) we would like to contain common subterms with the hypotheses so
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that common subterms are generated.
 

ExampLe 3. 14:
 

Suppose we have the following set of axioms
 
rev(nil)=nil
 
rev(cons(x,y»=app(rev(y),cons(x,nil»
 
app(nil,x)=x
 
app(cons(x,y),z)=cons(x,app(y,z»
 
and we want to prove the theorem rev(rev(x))=x.
 
While the base case is rather trivial, we obtain in the induction-step rev(rev(cons(t',t)))=cons(t',t)
 
which can be rewritten to rev(app(rev(t),cons(t' ,nil)))=cons(t',t). So far there are no common
 
subterms. If we use the hypothesis rev(rev(t»=t from right to left in the right-hand side of the
 
equation generated in the induction-step, we obtain rev(app(rev(t),cons(t',nil») =
 
cons(t' ,rev(rev(t))). Hence we created the common subterm rev(t) and we finally can generate the
 
lemma rev(app(x,cons(y,nil)»=cons(y,rev(x».
 

The use of the method just outlined does of course not change the property of every lemma

candidate to be sufficient. Therefore a generalization of common subterms combined with the
 
creation of common subterms with the help of the induction hypotheses (equalities) always
 
produces sufficient lemmata.
 
(Remark: Since we need hypotheses, this method naturally can only be applied in the induction

step.)
 

3.3.3. Weakening with hypotheses 
We shall now present a second strategy with the aim of creating common subterms so as to be 
able to utilize the generalization of common subterms. As in section 3.3.2 we shall again make 
use of the hypotheses for this purpose. The considerations forming the foundations of this 
heuristic are described in the sequel. 
When proving an inductive theorem, we dispose in the induction-step of a set of hypotheses 
{hYP1,",hYPn} and the conclusion C (all of them are instances of the theorem to be proved). We 
then have to show that the implication V'x1 ,I,xm:[hYP1A"AhYPn]~V'X1,",Xm:[C] holds, where 
x1 ,.. ,xmare the variables occuring in the hypotheses as well as in the conclusion. During the proof 
we infer conclusion-formulas, Le. derivates of the conclusion C, so that it makes sense to regard 
a formula V'x1 ,1,xm:[hYP1A"AhYPn]~V'x1,",xk':[CF] as a derivation of the initial implication, where 
CF represents a conclusion-formula with variables X1,",Xk" which are not necessarily the same 
variables as in the hypotheses. Our hope is that this implication contains common subterms which 
CF alone does not contain. (In other words, we treat the whole implication as raw material for 
lemma-generation instead of using CF only.) In order to improve our chances of finding common 
subterms in the implication at hand, we transform it into F=V'X1, .. ,Xm,X1""Xk':[hYP1A..l'\hYPn~CF], 

which is of course not an equivalent formula. If we can find common subterms in F suitable for 
being generalized, then we accomplished what we intended. (Otherwise the heuristic failed.) It is 
possible that in the case of a success of the heuristic not all of the hYPi contributed to the creation 
of common subterms. Since every hYPi in the conjunction hYP1AIIAhYPn weakens the resulting 

- 20 

that common subterms are generated.

W14:
Suppose we have the following set of axioms
rev(nil)=ni|
rev(cons(x,y))=app(rev(y),cons(x,nil))
app(nil,x)=x
app(con8(x.y).2)=conS(x.app(y.Z))

and we want to prove the theorem rev(rev(x))=x.
While the base case is rather trivial, we obtain in the induction—step rev(rev(cons(t'.t)))=cons(t’,t)
which can be rewritten to rev(app(rev(t),cons(t'‚nil)))=cons(t’,t). So far there are no common
subterms. If we use the hypothesis rev(rev(t))=t from right to left in the right-hand side of the
equation generated in the induction-step, we obtain rev(app(rev(t),cons(t’,nil))) =
cons(t'‚rev(rev(t))). Hence we created the common subterm rev(t) and we finally can generate the
lemma rev(app(x,cons(y,nil)))=cons(y,rev(x)).

The use of the method just outlined does of course not change the property of every lemma-
candidate to be sufficient. Therefore a generalization of common subterms combined with the
creation of common subterms with the help of the induction hypotheses (equalities) always
produces sufficient lemmata.
(Remark: Since we need hypotheses, this method naturally can only be applied in the induction-
step.)

33.3 Wgakening with hpIhgses
We shall now present a second strategy with the aim of creating common subterms so as to be
able to utilize the generalization of common subterms. As in section 3.3.2 we shall again make
use of the hypotheses for this purpose. The considerations forming the foundations of this
heuristic are described in the sequel.
When proving an inductive theorem, we dispose in the induction-step of a set of hypotheses
{hyp„..‚hyp„} and the conclusion C (all of them are instances of the theorem to be proved). We
then have to show that the implication Vx1,..,xm:[hyp1A..Ahypn]—>Vx1,..,xm:[C] holds, where
x1...,xm are the variables occuring in the hypotheses as well as in the conclusion. During the proof
we infer conclusion-formulas, i.e. derivates of the conclusion C, so that it makes sense to regard
a formula Vx1,..,xm:[hyp1A..Ahypn]—->Vx1’,..,xk’:[CF] as a derivation of the initial implication, where
CF represents a conclusion-formula with variables x1’,..,xk’. which are not necessarily the same
variables as in the hypotheses. Our hope is that this implication contains common subterms which
CF alone does not contain. (In other words, we treat the whole implication as raw material for
lemma-generation instead of using CF only.) In order to improve our chances of finding common
subterms in the implication at hand, we transform it into Fat/X1,..,xm,x1’,..,xk':[hyp1A..mhypn—>CF],
which is of course not an equivalent formula. If we can find common subterms in F suitable for
being generalized, then we“ accomplished what we intended. (Otherwise the heuristic failed.) It is
possible that in the case of a success of the heuristic not all of the hypi contributed to the creation
of common subterms. Since every hypi in the conjunction hyp1A../\hypn weakens the resulting
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formula (which is supposed to be employed as a lemma later on), what is not at" all a desirable 
effect in inductive proofs (we already discussed this issue), we discard all hYPi from the antecedent 
that did not help in creating the common subterms finally generalized. This way we can minimize 
the negative effect of weakening while preserving its intended purpose. 

Example 3. 1~: 

We give a subset of the axioms defining insertion-sort and the ORD-predicate (see [Gr90] and 
appendix A for details) which will suffice for demonstration. 
isort(nil)=nil 
isort(cons(x,nil»=cons(x,nil) 
isort(cons(x,cons(y,nil» )=ins(x,isort(y» 
If we want to prove ORD(isort(x)), we shall come up with ORD(isort(cons(t' ,t))) in the induction
step which can be rewritten giving ORD(ins(t' ,isort(t))). According to the method just described we 
generate (ORD(isort(x))I\ORD(isort(y)))~ORD(ins(x,isort(y))) (recall that the complete implication 
acts as lemma-candidate), since ORD(ins(x,isort(y))) alone does not host common subterms. We 
can now generalize the independent common subterm isort(y) and we obtain 
(ORD(isort(x))I\ORD(z))~ORD(ins(x,z)). ORD(isort(x)) is then erased from the antecedent 
conjunction since it did not contribute to the generation of the common subterm isort(y). Thus we 
finally have the lemma ORD(z)~ORD(ins(x,z». 

The heuristic lust presented is sufficient, because 'v'x:[P(x)~Q(x)] implies 'v'x:[P(x)]~'v'x:[Q(x)]. 

The rest follows from the fact that every conclusion-formula is sufficient and that the hypotheses 
together with the axioms belong to the presuppositions. 

3.3.4. Minimal mismatching subterms 
The key to success in the induction-step of inductive proofs lies in the ability to utilize the 
hypotheses. Sometimes, an inference involving a hypothesis (and preferably a conclusion
formula) is only prevented by a small number of subterms in both hypothesis and the second 
formula used in the inference. 

Example 3.16: 
(see also the isort-example in [Gr90] and appendix A for details on the axiomatization)
 
theorem: perm(x,isort(x)), Le. the (ordered) list computed by isort is a permutation of its input-list;
 
From the conclusion perm(cons(t' ,t),isort(cons(t' ,t))) we can derive the conclusion-formula
 
el(t',ins(t' ,isort(t)))l\perm(t,del(t',ins(t',isort(t»))). Here, the subterm isort(t) in the hypothesis
 
perm(t,isort(t)) and the subterm del(t',ins(t',isort(t))) in the conclusion-formula prevent the desired
 
inference.
 

An approach to solve this problem caused by not unifiable (mismatching) subterms is based on
 
the introduction of equations (as lemmata) that resolve the mismatch. Thus, in the example above,
 
we could add the equation isort(x)=del(y,ins(y,isort(x»)) which might even be simplified by
 
generalizing the common subterm isort(x) giving z=del(y,ins(y,z)). This method that reflects the
 
principles of "minimal mismatching subterms" ([Hu8?]) depends on the extraction of those
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formula (which is  supposed to be employed as a lemma‘later on), what is not at" all a desirable
effect in inductive proofs (we already discussed this issue), we discard all hypi from the antecedent
that did not help in creating the common subterms finally generalized. This way we can minimize
the negative effect of weakening while preserving its intended purpose.

Example I3.15:

We give a subset of the axioms defining insertion-sort and the ORB-predicate (see [Gr90] and
appendix A for details) which will suffice for demonstration.
isort(nil)=ni|
isort(cons(x,nil))=cons(x,nil)
isort(cons(x,cons(y,nil)))=ins(x,isort(y))
If we want to prove OFiD(isort(x)), we shall come up with ORD(isort(cons(t',t))) in the induction-
step which can be rewritten giving ORD(ins(t’,isort(t))). According to the method just described we
generate (ORD(isort(x))AOFiD(isort(y)))—>ORD(ins(x,isort(y))) (recall that the complete implication
acts as lemma-candidate), since ORD(ins(x,isort(y))) alone does not host common subterms. We
can now generalize the independent common subterm isort(y) and we obtain
(OHD(isort(x))AORD(z))—>ORD(ins(x‚z)). OFiD(isort(x)) is then erased from the antecedent
conjunction since it did not contribute to the generation of the common subterm isort(y). Thus we
finally have the lemma ORD(z)—>ORD(ins(x,z)).

The heuristic lust presented i s  sufficient, because Vx:[P(x)—>Q(x)] implies Vx:[P(x)]—->Vx:[Q(x)].
The rest follows from the fact that every conclusion-formula is sufficient and that the hypotheses
together with the axioms belong to the presuppositions.

The key to success in the induction-step of inductive proofs lies in the ability to utilize the.
hypotheses. Sometimes, an inference involving a hypothesis (and preferably a conclusion-
formula) is only prevented by a small number of subterms in both hypothesis and the second
formula used in the inference.

W:
(see also the isort-example in [Gr90] and appendix A for details on  the axiomatization)
theorem: perm(x,isort(x)), i.e. the (ordered) list computed by isort is a permutation of its input-list;
From the conclusion perm(cons(t',t),isort(cons(t',t))) we can derive the conclusion-formula
el(t’,ins(t',isort(t)))Aperm(t,del(t’,ins(t',isort(t)))). Here, the subterm isort(t) in the hypothesis
perm(t,isort(t)) and the subterm del(t’,ins(t',isort(t))) in the conclusion-formula prevent the desired
inference.

An approach to solve this problem caused by not unifiable (mismatching) subterms is based on
the introduction of equations (as lemmata) that resolve the mismatch. Thus, in the example above,
we could add the equation isort(x)=del(y,ins(y,isort(x))) which might even be simplified by
generalizing the common subterm isort(x) giving z=del(y,ins(y,z)). This method that reflects the
principles of “minimal mismatching subterms" ([Hu87]) depends on the extraction of those
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subterms that are the main reason for a mismatch (non-unifiability). These subterms are denoted
 
"minimal mismatching subterms" and are defined as follows.
 

Definition:
 
Let F1=P(S1,.. ,Sn), F2=P(t1, .. ,ln) be two literals with no variables in common, pe (O(F1)nO(F2))-{E},
 
s=e(F1Ip), t=e(F2Ip), where e is a substitution with the property that whenever qe (O(F1)nO(F2))

{E} and Filq=xE V (iE {1 ,2}), then there is q'E (O(F1)nO(F2))-{E} (possibly q=q') so that Filq'=x and 
e(x)=e(FS_ilq') or Fs_ilqE V and e(Fs-ilq)=x for all such q. (e can be understood as ''that substitution 
which brings F1 and F2 as close to successful unification as possible".) 
sand t are called mismatching subterms, if there is no substitution 0 so that o(s)=o(t) holds. 
sand t are called minimal mismatching subterms (resp. [s,t] is called a pair of minimal 
mismatching subterms), if sand t are mismatching subterms and if s=f(S1', .. ,Sm'), t=g(t1', .. ,~'), then 
fitg. 

ExamDIe 3.17: 
F1=P(f(g(x)),b), F2=P(f(h(a,x)),b);
 
Both [f(g(x)),f(h(a,x))] and [g(x),h(a,x)] are pairs of mismatching subterms. But only the latter is a
 
pair of minimal mismatching subterms.
 

~: 

An obvious procedure that computes all pairs of minimal mismatching subterms when given 
two literals F1 and F2 as input, where F1 and F2 match the requirements of the definition 
above, is very close to Robinson's unification algorithm ([Ro71]). The difference is that, 
whenever we run into term-pairs that would cause Robinson's algorithm to exit with failure 
(Le. there is no unifier), these term-pairs are collected in a set TPE that will act as output 
when the inference process terminates, containing all pairs of minimal mismatching 
subterms. 

We shall now focus our attention on the question how we should utilize the equations associated
 
with the set of term-pairs contained in TPE.
 
Basica,lIy there are two alternatives, assuming TPE is not empty. (Otherwise the two investigated
 
literals F1 and F2 are unifiable, thus making an application of this strategy pointless.)
 
(A) We can use the equations generable from the term-pairs in TPE all or in part as lemmata 
(possibly after performing some form of generalization). . 
(B) We can create a conjunction of all equations or a part thereof and generate a lemma by 
replacing the literal belonging to the conclusion-formula (let us say F2), which was used to 
compute TPE, by this conjunction. An additional generalization step is recommendable. (Recall 
that the idea is to take F1 from the hypothesis and F2 from a conclusion-formula, since the reason 
for not being able to perform a successful inference between the two of them might reside in these 
two literals.) 
Thus for the isort-example given above we obtain for instance: 
(A) x=del(y,ins{y,x)) as lemma (which is not sufficient) 
(B) el(y,ins(y,x))l\x=del(y,ins(y,x)) (which is sufficient) 
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subterms that are the main reason for a mismatch (non-unifiability). These subterms are denoted
“minimal mismatching subterms" and are defined as follows.

Qefinitign:
Let F15P(s1‚„.s„), F25P(t1‚..‚t„) be two literals with no variables in common, pe (0(F1)nO(F2))-{e},
326(F1|p), tä(F2|p), where e is a substitution with the property that whenever qe (0(F1)nO(F2))-
{a} and Filqsxe V (ie {1 ‚2}), then there is q'e (0(F1)nO(F2))-{e} (possibly q=q’) so that Filq'ax and
9(x)=e(F3-i|q') or F3_i|qe V and 9(F3_i|q)ax for all such q. (9 can be understood as “that substitution
which brings F1 and F2 as close to successful unification as possible".)
s and t are called mismatching subterms, if there is no substitution 0 so that o(s)=o(t) holds.
3 and t are called minimal mismatching subterms (resp. [s,t] is called a pair of minimal
mismatching subterms), if  s and t are mismatching subterms and if Saf(s1’,..,sm’), tsg(t1',..,tk’), then
faeg.

Ezamptejiz:
F1=P(f(g(x».b). F2=P<f(h(a.x)).b);
Both [f(g(x)),f(h(a,x))] and [g(x),h(a,x)] are pairs of mismatching subterms. But only the latter i s  a
pair of minimal mismatching subterms.

me:
An obvious procedure that computes all pairs of minimal mismatching subterms when given
two literals F1 and F2 as input, where F1 and F2 match the requirements of the definition
above, is very close to Robinson's unification algorithm ([Ro71]). The difference is that,
whenever we run into term-pairs that would cause Robinson’s algorithm to exit with failure
(i.e. there is  no  unifier), these term-pairs are collected in a set TPE that will act as output
when the inference process terminates, containing all pairs of minimal mismatching
subterms.

We shall now focus our attention on the question how we should utilize the equations associated
with the set of term-pairs contained in TPE.
Basically there are two alternatives. assuming TPE is not empty. (Otherwise the two investigated
literals F1 and F2 are unifiable, thus making an application of this strategy pointless.)
(A) We can use the equations generable from the term-pairs in TPE all or  in part as Iemmata
(possibly after performing some form of  generalization). ‘
(B) We can create a conjunction of all equations o r  a part thereof and generate a lemma by
replacing the literal belonging to the conclusion-formula (let us  say F2), which was used to
compute TPE, by this conjunction. An additional generalization step is recommendable. (Recall
that the idea is to take F1 from the hypothesis and F2 from a conclusion-formula, since the reason
for not being able to perform a successful inference between the two of them might reside in these
two literals.)
Thus for the isort—example given above we obtain for instance:
(A) x=del(y,ins(y,x)) as lemma (which is  not sufficient)
(B) el(y,ins(y,x))Ax=del(y,ins(y,x)) (which is  sufficient)
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In general, neither alternative (A) nor (B) can be sufficient since we consider only one literal (F1)
 
of one hypothesis per application of this heuristic. Hence in the case where the hypotheses are
 
more complex than just being made of one literal sufficiency cannot be assured.
 
(Remark: It is of course allowed that F1 or/and F2 are negated.)
 

3.3,5. RiPs>ljng out
 
The so-called rippling-out strategy (see [BuSS] for basic version, [BMSI90] for extensions) is
 
dealing with the descrepancy existing between the conclusion in the induction-step and the
 
hypotheses due to the introduction of a constructor-function-symbol. "Rippling our' is used to
 
deminish the descrepancy so that the hypotheses finally become applicable. This can (in the basic
 
version [BuSS]) be achieved by moving ("rippling") the disturbing constructor-function-symbols to
 
the outside (Le. towards top-level) of the formula representing the conclusion through applications
 
of suitable equations.
 

ExafDQle 3.18: 
Let the set of axioms be {x+O=x, x+s(y)=s(x+y}}.
 
If we want to prove the inductive theorem x+y=y+x (inducing on y), we obtain in the induction-step
 
x+s(t)=s(t)+x yielding s(x+t)=s(t)+x after rippling out the constructor s on the left-hand side of the
 
equation. A fruitful application of the hypothesis x+t=t+x is prevented by the constructor s on the
 
right-hand side of the equation s(x+t}=s(t}+x. If we could also ripple out constructor s on the right
 
side (using the equation s(x)+y=s(x+y) for instance}, we should clear the way for success.
 

We shall now give a general definition of "rippling out".
 

pefinition:
 
Let c be a n-ary constructor, n>O, f a m-ary function symbol, m>O, f no constructor.
 
A transformation of a (sub-}term t == f(t1, .. ,ti_1,C(S1,.. ,Sj_1,Sj, Sj+1,.. ,Sn),ti+1,.. ,tm} into t' == C(S1, .. ,Sj_1,
 
f(t1,.. ,ti-1 ,Sj' ti+1, .. ,tm),Sj+1,..,sn) is called rippling out (constructor c).
 

While this technique was intended to guide rewrite-steps, Le. the equations are already at hand,
 
their application only needs to be forced, we shall not contemplate this issue here, Instead, we
 
shall make use of rippling out for generating the necessary equations as lemmata, thus
 
constructing a further method for automatic lemma-generation.
 
[BuSS] and [BMSI90] also describe some other forms of rippling such as a transformation of
 
f(t1, .. ,ti-1,C(S1,.. ,Sj, .. ,Sn),ti+1,.. ,tm) into f(t1, .. ,ti-1,Sj,ti+1,."tm}, where the constructor c disappears.
 
Since we want to use this method for lemma-generation, we shall content ourselves with the
 
version presented in the definition above. So we can see here a potential for further investigations
 
and extensions of lemma-generation based on rippling techniques.
 
But for a start, it is satisfactory to concentrate on the creation of (rippling) equations t=t' via rippling
 
out, proceeding from a term t as it is outlined in the definition. According to the principle of rippling,
 
it is sufficient to generate such an equation t=t' only if the constructor c involved in the rippling
 
process was introduced when creating an instance of the theorem due to the induction-step.
 

At first sight, creating t' and thereby the equation t=t' seems to be a simple task. But if we take 
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In general, neither alternative (A) nor (B) can be sufficient since we consider only one literal (F1)
of one hypothesis per application of this heuristic. Hence in the case where the hypotheses are
more complex than just being made of one literal sufficiency cannot be assured.
(Remark: It is of course allowed that F1 or/and F2 are negated.)

3 3 5 E' | .

The so—called rippling-out strategy (see [Bu88] for basic version, [BMSI90] for extensions) is
dealing with the descrepancy existing between the conclusion in the induction-step and the
hypotheses due to the introduction of a constructor—funotion-symbol. "Rippling out" is used to
deminish the descrepancy so that the hypotheses finally become applicable. This can (in the basic
version [Bu88]) be achieved by moving ("rippling") the disturbing constructor-funotion—symbols to
the outside (i.e. towards top-level) of the formula representing the conclusion through applications
of suitable equations.

Exam/219.33:
Let the set of axioms be {x+0=x, x+s(y)=s(x+y)}.
If we want to prove the inductive theorem x+y=y+x (inducing on y), we obtain in the induction-step
x+s(t)=s(t)+x yielding s(x+t)=s(t)+x after rippling out the constructor s on the left-hand side of the
equation. A fruitful application of the hypothesis x+t=t+x i s  prevented by the constructor s on the
right-hand side of the equation s(x+t)=s(t)+x. If we could also ripple out constructor s on  the right
side (using the equation s(x)+y=s(x+y) for instance), we should clear the way for success.

We shall now give a general definition of “rippling out”.

D [. 'l' :

Let c be a n-ary constructor, n>0, f a  m-ary function symbol, m>0, f no constructor.
A transformation of a (sub-)term t = f(t1,„‚t;_1‚c(s1‚„‚sj_1,sj, sj+1,..,sn),ti+1,..,tm) into t' a c(s1,..,sj,1,
f(t1,..,ti_1,si, ti+1,..,tm),sj+1,..,sn) is called rippling out (constructor 0).

While this technique was intended to guide rewrite-steps, i.e. the equations are already at hand,
their application only needs to be forced, we shall not contemplate this issue here. Instead. we
shall make use of rippling out for generating the necessary equations as lemmata, thus
constructing a further method for automatic lemma-generation.
[Bu88] and [BMSI90] also desoribe some other forms of rippling such as a transformation of
f(t1,..,ti-1,c(s1,..,sj,..,sn),ti+1,..,tm) into f(t1,..,ti_1,sj,ti+1,..,tm). where the constructor c disappears.
Since we want to use this method for lemma—generation, we shall content ourselves with the
version presented in the definition above. So we can see here a potential for further investigations
and extensions of lemma-generation based on rippling techniques.
But for a start, it is satisfactory to concentrate on the creation of (rippling) equations t=t’ via rippling
out, proceeding from a term t as it is  outlined i n  the definition. According to the principle of rippling,
it is sufficient to generate such an equation t=t' only if the constructor 0 involved in the rippling
process was introduced when creating an instance of the theorem due to the induction—step.

At first sight, creating t' and thereby the equation t=t' seems to be a simple task. But if we take
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a: closer look. we find out that the index j. which plays an important role in the whole process. is in 
general not clearly defined and thus can denote any arbitrary argument of c. (In the example 
above there was no problem because c=s was 1-ary and therefore j=1 was the only possible 
choice.) In our struggle to uphold provability of the equation to be generated. we cannot accept an 
arbitrary choice of j. because the selection of j will in general have a decisive influence on it. Hence 
we have to use at least heuristical methods with the aim of choosing j properly. (It is of course 
possible to select several distinct indices so that several equations can be generated.) 
A first approach is the use of sorts if available. It is clear that the sort of Sj must be the same as 
the sort of C(S1 •..•Sn). or a subsort thereof. But sort-information can only be restrictive and will in 
general not determine the choice of j. Therefore. and of course for the case where no sort
information is available. we have to think of other methods. 
A quite obvious method for deciding which j to take stems directly from the overall purpose of 
rippling out. Le. attempting to make the hypotheses fruitfully applicable. It is therefore straight 
forward to select j so that the related equation t=1' gives rise to the intended effect. But deciding 
whether such an equation t=t' has the desired effect or not can sometimes be a computationally 
exhaustive task. 

Example 3.19: 
Let the axioms be 

x+O=x. x+s(y)=s(x+Y). 
even(O). -,even(s(O». even(x)Heven(s(s(x»); 
The proof of even(x+x) yields in the induction-step even(s(t)+s(t» which can be rewritten to 
even (s(s(t)+t». The suitability of the equation s(x)+x=s(x+x) resp. s(x)+y=s(x+Y) can only be 
discovered after an additional inference involving even(x)Heven(s(s(x))). since only then it 
becomes vis~ble that the hypothesis even(t+t) can be applied. 

This problem can even be more complicated. 
On the one hand. the induction variable can occur at several positions. a circumstance which 
causes the constructor introduced in the induction-step to appear on several locations. Thus 
several different equations might be necessary to ripple all of them out, what truly can make the 

decision. whether a rippling equation has the desired effect or not, rather difficult. 
On the other hand. the induction variable can be very "deep" in the term structure. If this happens. 
we have to ripple out cascade-like, using a set of possibly different rippling equations. 
Both cases. which can of course occur in combinations. do not exclude the need of further 
inferences before. during or after the application of rippling equations. So. proceeding in this 
manner brings us close to proof planning, an interesting but also very extensive field of research 

beyond the goals of this report. Therefore we want to present a simpler. heuristical method for 
finding an appropriate index j (or several indices if possible). 
The idea is to investigate the equational axioms s=t in order to detect constellations where 

s=f(t1"·'~_1.C(S1.··,sl_1.Sllsl+11··.Sn).~+1.··.tm) and t=c(S1 •. ·.SI_1.f(t1 ....~_1.SI.tk+ 1....tm).SI+1•..•Sn) or 
where sand t play contrary roles. 

~: The index k is assumed to be different from i; otherwise the creation of a rippling equation 
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& closer look, we find out  that the index j, which plays an important role in the whole process, is in
general not clearly defined and thus can denote any arbitrary argument of c .  (In the example
above there was no  problem because cas was 1—ary and therefore j=1 was the only possible
choice.) In our struggle to uphold provability of the equation to be generated, we cannot accept an
arbitrary choice of], because the selection of ]  will in general have a decisive influence on it. Hence
we have to use at least heuristical methods with the aim of choosing j properly. (It is of course
possible to select several distinct indices so that several equations can be generated.)
A first approach is the use of sorts if available. l t  is clear that the sort of S] must be the same as
the sort of  c(s1,..,sn), or  a subsort thereof. But sort-information can only be restrictive and will in
general not determine the choice of j. Therefore, and of course for the case where no sort-
information is available, we have to think of other methods.
A quite obvious method for deciding which j to take stems directly from the overall purpose of
rippling out, i.e. attempting to make the hypotheses fruitfully applicable. lt. is therefore straight
forward to select j so that the related equation t=t’ gives rise to the intended effect. But deciding
whether such an equation t=t’ has the desired effect or not can sometimes be a computationally
exhaustive task.

Example ‚3. 12:
Let the axioms be
x+0=x. x+s(y)=s(x+y),
even(0), -even(s(0)), even(x)<—>even(s(s(x)));
The proof of even(x+x) yields in the induction-step even(s(t)+s(t)) which can be rewritten to
even(s(s(t)+t)). The suitability of the equation s(x)+x=s(x+x) resp. s(x)+y=s(x+y) can only be
discovered after an additional inference involving even(x)+—>even(s(s(x))), since only then it
becomes visible that the hypothesis even(t+t) can be applied.

This problem can even be more complicated.
On the one hand, the induction variable can occur at several positions, a circumstance which
causes the constructor introduced in the induction—step to appear on several locations. Thus
several different equations might be necessary to ripple all of them out, what truly can make the
decision, whether a rippling equation has the desired effect or not, rather difficult.
On the other hand, the induction variable can be very “deep" in the term structure. If this happens.
we have to ripple out cascade-like, using a set of possibly different rippling equations.
Both cases, which can of course occur in combinations, do not exclude the need of further
inferences before, during or after the application of rippling equations. So, proceeding in this
manner brings us close to proof planning, an interesting but also very extensive field of research
beyond the goals of this report. Therefore we want to present a simpler, heuristical method for
finding an appropriate index] (or several indices if possible).
The idea is  to investigate the equational axioms s=t in  order to detect constellations where
s(t1,..,tk_1,c(s1,..,s|-1,s.,sl+1,..,sn),tk+1,..,tm) and tsc(s1,..,s._1,f(t1,..,tk_1,s|.tk+1,..,tm),sj+1,..,sn) or
where s and t play contrary roles.

N912: The index k is assumed to be different from i ;  otherwise the creation of a rippling equation
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would be pointless because it already exists as an axiom. 
All indices I found this way are collected in the set r. If r is empty, then this is a strong clue that 
rippling out might be illegal (Le. results in incorrectness). It is suggested to avoid the generation 
and application of rippling equations under these conditions. If r is not empty, then for every I in 
r we generate the respective rippling equation for j=l, and we may then use them as lemmata. 
Note that this proceeding does not at all guarantee correctness of the generated lemmata (rippling 
equations), and it of course does not necessarily allow fruitful applications of hypotheses. 
Nevertheless, the heuristic has turned out to be reliable and effective in practical use. 
A further improvement can be achieved if we replace all variables on potential induction places 
(and only those variables) by n~w ones. Thus we can again accomplish a disconnection of future 
induction variables from the rest with all the already discussed advantages and disadvantages. 

This heuristic for lemma-generation is not sufficient. For the counterexample we start from the 
axioms of example 3.19. If we prove the theorem (even(x)l\even(y))-+even(x+y) and select x as 
induction variable (what is a not a good choice), we obtain (even(s(t))l\even(y))-+even(s(t)+y) in 
the induction-step. Adding the lemma s(x)+y=s(x+y) does not conclude the proof. But in 
combination with a heuristic that will be described in the following section, the proof is finally found 
despite the poor choice of the induction variable. 

Remark: 
Based on the idea of using the axioms as a source of knowledge leading to appropriate rippling 
equations, more sophisticated methods can be elaborated. But as such a proceeding also tends 
towards proof planning, we did not consider it here, thus leaving plenty of room for further 
investigations. 

3.3.6. Adding conjunctions 
We already know from earlier discussions that stronger theorems often allow an easier proof by 
induction because of improved usefulness of the hypotheses. One way to strengthen formulas has 
been introduced when presenting generalization (of common subterms). In this section we shall 
describe another method aiming at strengthening formulas. Its principle (see also {Hu8?]) is based 
on adding a conjunction B (B=B11\••I\Bn, n~1) to a formula A so that we obtain the stronger formula 
AI\B. The problem arising here lies in the lack of knowledge about B. While any formula 8;tTRUE 
meets all basic requirements. we also have to keep in mind that the assumed provability of A is to 
be preserved. This means that we have to be careful about the choice of B. 
There are certainly a lot of methods conceivable which all operate on the principle of adding 
conjunctions. Due to the general character of this report, only one heuristic will be described. It 
does not operate on lemma-candidates, but it depends on an induction-step being proved, as we 
shall see. (For this reason, we could call it a "constructive" heuristic as opposed to the usual case 
of a "manipulating" one.) 
As we already stated, the main problem consists in ascertaining the provability of the generated 
formula A'. Therefore we should use for the conjunction only formulas which most probably can 
be proved by induction. For this purpose a conjunction built of hypotheses and instance of an 
induction~step with the ground-term symbols tj r~placed by new variables seems perfectly 
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would be pointless because it already exists as an axiom.
All indices I found this way are collected in the set 1". If I“ is empty, then this Is a strong clue that
rippling out might be illegal (i.e. results in incorrectness). It is suggested to avoid the generation
and application of rippling equations under these conditions. If F is not empty, then for every I in
I“ we generate the respective rippling equation for j=l, and we may then use them as lemmata.
Note that this proceeding does not at all guarantee correctness of the generated lemmata (rippling
equations), and it of course does not necessarily allow fruitful applications of hypotheses.
Nevertheless, the heuristic has turned out to be reliable and effective in practical use.
A further improvement can be achieved if we replace all variables on potential induction places
(and only those variables) by new ones. Thus we can again accomplish a disconnection of future
induction variables from the rest with all the already discussed advantages and disadvantages.

This heuristic for lemma-generation is not sufficient. For the counterexample we start from the
axioms of example 3.19. If we prove the theorem (even(x)Aeven(y))—>even(x+y) and select x as
induction variable (what is a not a good choice), we obtain (even(s(t))Aeven(y))—>even(s(t)+y) in
the induction-step. Adding the lemma s(x)+y=s(x+y) does not conclude the proof. But in
combination with a heuristic that will be described in the following section, the proof is finally found
despite the poor choice of the induction variable.

Remark:
Based on the idea of using the axioms as a source of knowledge leading to appropriate rippling
equations, more sophisticated methods can be elaborated. But as such a proceeding also tends
towards proof planning, we did not consider it here, thus leaving plenty of room for further
investigations.

. A in n' n i n
We already know from earlier discussions that stronger theorems often allow an easier proof by
induction because of improved usefulness of the hypotheses. One way to strengthen formulas has
been introduced when presenting generalization (of common subterms). In this section we shall
describe another method aiming at strengthening formulas. Its principle (see also {Hu87]) is based
on adding a conjunction B (B=B1A..ABn, n21) to a formula A so that we obtain the stronger formula
AAB. The problem arising here lies in  the lack of knowledge about B .  While any formula B¢TFlL|E
meets all basic requirements, we also have to keep in mind that the assumed provability of A is to
be preserved. This means that we have to be careful about the choice of B.
There are certainly a lot of methods conceivable which all operate on the principle of adding
conjunctions. Due to the general character of this report, only one heuristic will be described. It
does not operate on lemma-candidates, but it depends on an induction-step being proved, as we
shall see. (For this reason, we could call it a “constructive" heuristic as opposed to the usual case
of a “manipulating” one.) "
As we already stated, the main problem consists in ascertaining the provability of the generated
formula A’. Therefore we should use for the conjunction only formulas which most probably can
be proved by induction. For this purpose a conjunction built of hypotheses and instance of an
induction-step with the  ground-term symbols t; replaced by new variables seems perfectly
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suitable. We thus obtain A'=A[x~x1]A ..I\A[x~xn]I\A[x~f(x1, .. ,xn)], where x is the induction 
variable, f the constructor-function of the respective induction-step. (This implies that the heuristic 
is applied during the induction-step involving f.) If A' is used as a lemma, it obviously concludes at 
once the proof (of the respective induction-step) since A·~A. Therefore the heuristic is sufficient. 
We conclude this section with an example. 

Examole 3.20: 
Let the axioms be 
x+O=x, x+s(y)=s(x+y), 
even(O), -,even(s(O», even(x)Heven(s(s(x))), 
-,odd(O), odd(s(O», odd(x)Hodd(s(s(x»); 
When proving even(x)vodd(x) we obtain even(s(t»vodd(s(t» in the induction-step. There is no 
possibility of ever applying the hypothesis even(t)vodd(t). The only axioms we could use would 
cause inflation. A generalization of common subterms might produce the original conjecture. With 
the presented heuristic we create the formula (even(x)vodd(x»I\(even(s(x»vodd(s(x))), which is 
provable without problems, because the hypothesis resolves the induction-step crosswise (after 
application of the above equivalences). 
(Remark: The success of the heuristic in this ex~mple is surely favoured by the "double-step" 
definition of even and odd. But as already stated, this is just one simple method in the vast field of 
methods based on adding conjunctions, pointing out inherent potential.) 

3.4. Application hierarchy of the heuristics for lemma-generatlon 
Meanwhile we know a number of heuristics for lemma-generation and we have to ask ourselves 
how this complies with our postulated goal of creating exactly one lemma. For usually more than 
one heuristic will be applicable so that solely due to the multitude of heuristics at hand several 
lemmata are creatable from one lemma-candidate, not to speak of the vast number of lemmata 
that might be generated on account of a large amount of conclusion-formulas (Recall that every 
conclusion-formula is utilized as a lemma-candidate which (in part) are used by the heuristics for 
lemma-generation.) 
One way to cope with the problem of generating more than one lemma from only one lemma
candidate is to develop an application hierarchy of the lemma-generating heuristics which reflects 
the reliability and anticipated performance (based on experimental results) of each individual 
heuristic. The idea is to start with the heuristic that is considered best and to continue down the 
hierarchy as long as no heuristic produces a lemma. As soon as a lemma could be created, the 
process stops. If none of the heuristics was able to deliver a lemma, then we have to question the 
quality of the respective lemma-candidate, or we use the lemma-candidate itself as a lemma 
without further modification. 
Thi-s concept can of course be refined and extended. So it is possible - as we have seen in 
example 3.20 - that for instance the generalization of common subterms might produce a lemma 
which is equivalent to the original conjecture. Then it is recommendable to have at hand a 
mechanism for detecting such events and for reacting in a proper way, e.g. by trying to apply other 
heuristics. 
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suitable. We thus obtain A'=A[x<~—-x1]A..AA[x<—xn]AA[x<——f(x1 ‚..,x„)], where x is the induction
variable, f the constructor—function of the respective induction—step. (This implies that the heuristic
is applied during the induction-step involving f.) if A' is used as a lemma, i t  obviously concludes at
once the proof (of the respective induction-step) since A'—>A. Therefore the heuristic is sufficient.
We conclude this section with an example.

W:
Let the axioms be
x+0=x, x+s(y)=s(x+y),
even(O),-1even(s(0)). even(x)<—>even(s(s(x))),
«sodd(0), odd(s(0)), odd(x)<—>odd(s(s(x)));
When proving even(x)vodd(x) we obtain even(s(t))vodd(s(t)) in the induction-step. There is no
possibility of ever applying the hypothesis even(t)vodd(t). The only axioms we could use would
cause inflation. A generalization of common subterms might produce the original conjecture. With
the presented heuristic we create the formula (even(x)vodd(x))A(even(s(x))vodd(s(x))). which is
provable Without problems, because the hypothesis resolves the induction-step crosswise (after
application of the above equivalences).
(Remark: The success of the heuristic in this example is surely favoured by the “double-step”
definition of even and odd. But as already stated, this is just one simple method in the vast field of
methods based on adding conjunctions, pointing out inherent potential.)
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Meanwhile we know a number of heuristics for lemma—generation and we have to ask ourselves
how this complies with our postulated goal of  creating exactly one lemma. For usually more than
one heuristic will be‘ applicable so that solely due to the multitude of heuristics at hand several
lemmata are creatable from one lemma-candidate. not to speak of the vast number of lemmata
that might be generated on account of a large amount of conclusion-formulas (Recall that every
conclusion-formula is utilized as a lemma-candidate which (in part) are used by the heuristics for
lemma-generation.)
One way to cope with the problem of generating more than one lemma from only one lemma-
candidate is to develop an application hierarchy of the lemma-generating heuristics which reflects
the reliability and anticipated performance (based on experimental results) of each individual
heuristic. The idea is to start with the heuristic that is considered best and to continue down the
hierarchy as long as no heuristic produces a lemma. As soon as a lemma could be created, the
process stops. If none of the heuristics was able to deliver a lemma, then we have to question the
quality of the respective lemma—candidate, or we use the lemma-candidate itself as a lemma
without further modification.
This concept can of course be refined and extended. So it is possible - as we have seen in
example 3.20 - that for instance the generalization of common subterms might produce a lemma
which is equivalent to the original conjecture. Then it is recommendable to have at hand a
mechanism for detecting such events and for reacting in a proper way, e.g. by trying to apply other
heuristics.
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4. Conclusion and outlook 
In the past sections, we have come to know a method enabling us to extend any theorem prover 
for PL1EO (first order predicate logic with equality), so that it can perform inductive proofs. The 
first step towards this goal, using the principles of structural induction, was not very hard, but yet 
was rather user-dependent, Le. it did not have the degree of automatization we should like to 
achieve. Therefore a range of feat'Jres such as automatic choice of the induction variable, 
detecting the need for (further) inductive lemmata etc. and above all automatic generation of 
inductive lemmata were added, all of them with heuristical foundations. Hereby the generation of 
inductive lemmata received highest attention due to its crucial importance for successful proofs. 
The way we realized this is characterized by a two-step procedure that is activated during a proof 
attempt. The formulas available at that time are investigated in the first step, extracting all those 
formulas that were inferred with participation of the conclusion (goal) or a derivate thereof. These 
so-called conclusion-formulas form - after slight modifications - the set of so-called lemma
candidates. This set is reduced (using some criteria also discussed) in order to get closer to the 
ideal goal of generating exactly one (correct and useful) lemma. The second step applies a 
number of heuristics (in a certain order defined by the "hierarchy of application") to the remaining 
lemma-candidates, thus finally creating lemmata. Because of the heuristical concept of the whole 
proceeding, it cannot be guaranteed that the created lemmata belong to the inductive theory we 
are currently interested in. But experiments and practical experience have shown an encouraging 
behaviour. 
With all these tools at hand, we are of course still far away from a really efficient and acceptably 
automatized inductive theorem prover. The heuristics for lemma-generation and also the 
heuristics which are used to reduce the set of lemma-candidates need furter elaboration. 
Moreover, more "intelligent" methods are required to solve more challenging problems (for 
instance problems associated with the binomial coefficient). 
A severe problem we did not touch throughout this report are the difficulties we run into when 
dealing with existential quantification. The solution to this problem lies in program synthesis, which 
is a complex domain that is clearly beyond the scope of this introductory presentation of how to 
handle the basic issues of inductive proving. The reader be referred to [Bi91] and related literature. 
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4. Conclusign and QUtIOQk -
In the past sections. we have come to know a method enabling us to extend any theorem prover
for PL1EQ (first order predicate logic with equality), so that it can perform inductive proofs. The
first step towards this goal, using the principles of structural induction, was not very hard. but yet
was rather user-dependent, Le. it did not have the degree of automatization we should like to
achieve. Therefore a range of features such as automatic choice of the induction variable,
detecting the need for (further) inductive lemmata etc. and above all automatic generation of
inductive lemmata were added, all of them with heuristical foundations. Hereby the generation of
inductive lemmata received highest attention due to its crucial importance for successful proofs.
The way we realized this is characterized by a two-step procedure that is activated during a proof
attempt. The formulas available at that time are investigated in the first step. extracting all those
formulas that were inferred with participation of the conclusion (goal) or a derivate thereof. These
so-called conclusion-formulas form - after slight modifications - the set of so-called lemma-
candidates. This set is reduced (using some criteria also discussed) in order to get closer to the
ideal goal of generating exactly one (correct and useful) lemma. The second step applies a
number of heuristiw (in a certain order defined by the “hierarchy of application”) to the remaining
lemma-candidates, thus finally creating lemmata. Because of the heuristical concept of the whole
proceeding, it cannot be guaranteed that the created lemmata belong to the inductive theory we
are currently interested in. But experiments and practical experience have shown an encouraging
behaviour.

' With all these tools at hand, we are of course still far away from a really efficient and acceptably
automatized inductive theorem prover. The heuristics for lemma-generation and also the
heuristics which are used to reduce the set of lemma-candidates need furter elaboration.
Moreover, more “intelligent" methods are required to solve more challenging problems (for _
instance problems associated with the binomial coefficient).
A severe problem we did not touch throughout this report are the difficulties we run into when
dealing with existential quantification. The solution to this problem lies in program synthesis, which
is a complex domain that is clearly beyond the scope of this introductory presentation of how to
handle the basic issues of inductive proving. The reader be referred to [Bi91] and related literature.
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Appendix A 

The following example is intended to demonstrate the capabilities of an inductive prover equipped
 
with the basic mechanism structural induction and additional features introduced in this report,
 
including automatic lemma-generation.
 
In this example we want to prove the correctness of a sorting algorithm, namely insertion-sorting.
 
The associated function isort operates on lists of natural numbers, Le. isort(x)=y, where x is an
 
arbitrary list of natural numbers, and y is a list with the elements of x in ascending order. The proof
 
of correctness is twofold:
 
(1) We must prove that isort always produces lists whose elements are in ascending order (w.r.t. 
the usual <-relation on natural numbers). This will be expressed by ORD(isort(x» (for all x). 
(2) We also have to show that no element of the input-list disappeared and no elements were 
added, Le. the output is a permutation of the input, denoted by PERM(x,isort(x» (for all x). 
All the axioms necessary for specifying isort, ORD, PERM and related predicates and functions 
are listed below (see also [Gr90]): 

(01) O~x 

(02) ....,(s(x)~O) 

(03) s(x)~S(Y)HX~y 

(04) isort(nil)=nil 
(05) isort(cons(x,y»=ins(x,isort(y» 
(06) ins(x,nil)=cons(x,nil) 
(07) x~y~ins(x,cons(y ,z))=cons(x,cons(y,z» 
(08) ....,(x~y)~ins(x,cons(y ,z))=cons(y, ins(x,z» 
(09) ORD(nil) 
(10) ORD(cons(x,nil» 
(11) ORD(cons(x,cons(y,z)))H(x~YI\ORD(cons(y,z))) 

(12) PERM(nil,nil) 
(13) -,PERM(nil,cons(x,y» 
(14) PERM(cons(x,y),z)H(EL(x,z)I\PERM(y,del(x,z») 
(15) -,EL(x,nil) 
(16) EL(x,cons(y,z»H(X=yvEL(x,z» 
(17) del(x,nil)=nil 
(18) x=y~del(x,cons(y,z»=z 

(19) ....,(x=y)~del(x,cons(y ,z»=cons(y,del(x,z» 

Let us begin the proof for ORD(isort(x» (remember that we use implicit 'V-quantification). The
 
variable x is the only possible induction variable. (Note: All induction variables we shall use for the
 
proofs are identical to those that the heuristic for selecting the induction variable would propose.
 
See section 2.1 .)
 
Furthermore we have FSc={cons}, Cc={nil}.
 

base-:'case: ORD(isort(nil» ::::} DRD(nil).
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Appendlx A

The following example is intended to demonstrate the capabilities of an inductive prover equipped
with the basic mechanism structural induction and additional features introduced in this report,
including automatic lemma-generation.
In this example we want to prove the correctness of a sorting algorithm, namely insertion-sorting.
The associated function isort operates on lists of natural numbers, i.e. isort(x)=y, where x is an
arbitrary list of natural numbers, and y is a list with the elements of x in ascending order. The proof
of correctness is twofold:
(1) We must prove that isort always produces lists whose elements are in ascending order (w.r.t.
the usual <-relation on natural numbers). This will be expressed by ORD(isort(x)) (for all x).
(2) We also have to show that no element of the input—list disappeared and no  elements were
added, i.e. the output is a permutation of the input, denoted by PERM(x,isort(x)) (for all x).
All the axioms necessary for specifying isort, 0RD,  PERM and related predicates and functions
are listed below (see also [Gr90]):

(01) 05x
(02) —.(s(x)$0)
(03) s(x)Ss(y)<—->xSy
(04) isort(ni|)-.=nil
(05) isort(cons(x,y))=ins(x,isort(y))
(06) i..ns(x,ni|)=cons(x,nil)
(07) xSy—)ins(x,cons(y,z))=cons(x,cons(y,z))
(08) fi(x5y)—>ins(x,cons(y,z))=cons(y‚ins(x,z))
(09) ORD(nil)
(10) ORD(cons(x,niI))
(1 1) ORD(cons(x,cons(y,z)))<—>(xSy/\0FlD(cons(y,z)))
(12) PERM(niI,niI)
(13) aPEFiM(nil,cons(x,y))
(14) PEFiM(cons(x,y),z)<—>(EL(x,z)APEFiM(y.del(x,z)))
(15) --.EL(x,niI)
(16) EL(x,cons(y,z))<—->(x=vL(x,z))
(17) del(x,nil)=ni|
(18) x=y—>del(x,cons(y,z))=z
(19) -.(x=y)-9del(x,cons(y,z))=cons(y,del(x,z))

Let us begin the proof for OFiD(isort(x)) (remember that we use implicit V-quantification). The
variable x is the only possible induction variable. (Note: All induction variables we shall use for the
proofs are identical to those that the heuristic for selecting the induction variable would propose.
See section 2.1 .)
Furthermore we have FSC={cons}, CC={nil}.

Mae: OFlD(isort(nil)) => OFlD(nil).
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hypothesis: ORD(isort(t»; since cons is binary, we should have two hypotheses; but one of these
 
can be omitted assuming knowledge about sorts as we shall do throughout the rest of the
 

example.
 
induction-step: ORD(isort(cons(t' ,t») ~ ORD(ins(t' ,isort(t»);
 
We have at this point no chance to continue our work on the conclusion. This fact should
 
encourage the system to stop the proof here and to attempt to generate a lemma. As we have
 
already seen in the course. of the description of the heuristic called ''weakening with hypotheses",
 
an application of that method provides us with the sufficient lemma ORD(x)~ORD(ins(y,x».
 

Therefore !t suffices to concentrate on its proof:
 

base-case: ORD(nil)~ORD(ins(y,nil»~ ORD(cons(y,nil».
 
hypothesis: ORD(t)~ORD(ins(y,t»
 

inductiQn-step: ORD(cons(t' ,t))~ORD(ins(y ,cQns(t',t»);
 
We have two alternatives (cases):
 
Applying axiom (07) leads us tQ (y:::;t'"ORD(cons(t',t)))-40RD(cons(y,cons(t',t))) which is
 
trivialized when using axiQm (11). This does of course not complete the proof, since we virtually
 
splitted the prQof into the two case~ where Y:S;1' and the following one where -,(y:::;t'.) Hence we
 
have tQ cQnsider the secQnd alternative utilizing axiQm (08) and we Qbtain
 
(-,(y:::;t')"ORD(cons(t',t)))~ORD(cons(1',ins(y,t))). The Qnly possible inference we can employ in
 
this situation is an application of axiom (03), yielding inflated formulas. We a~ain fall back upon
 
lemma-generatiQn, thus generating the I.emma (-,(y:::;X)"ORD(cons(x,z»)~ORD(cons(x,ins(y,z»),
 

which is sufficient. (NQte: This lemma is identical to the lemma-candidate, since nQne of the
 
available heuristics could modify it.)
 

The proof of this lemma prQceeds as fQIIQWS (using z as inductiQn variable).
 
base-case:
 
(-,(y:::;X)"ORD(cons(x,nil»)~ORD(cQns(x,ins(y,nil»)~(y:::;x)~ORD(cons(x,cons(y,nil»);
 

the only meaningful inference involves axiom (11), resulting in -,(y:::;x)~(x:::;y"ORD(cons(y,nil))) ~
 

....,(y:::;x)~x:::;y ("tQtality of :::;"). NQw, only the inflating axiom (03) is applicable. Consequently,
 
-,(y:::;x)~x:::;y is chosen as (sufficient) lemma. For its proof, we have to alter FSc and Cc to {s} and
 
{O} respectively. The choice of the inductiQn variable does nQt matter for this prQof; we select x. 

base-case: -,(y:::;O)~O:::;y ~ -,(y:::;O)~TRUE. 

hypothesis: -,(y:::;t)~t:::;y; 

inductiQn-step: -,(y:::;s(t))~s(t):::;y; 

We are once mQre in the unfortunate position where only axiom (03) can be applied. Moreover, 
the only "uninflated" lemmata generable are -,(y:::;s(z»~s(z):::;x (which is a specalization of the 
Qriginal cQncl~siQn) and -,(y:::;x)~x:::;y (by generalizatiQn of CQmmon subterms). The latter is 
equivalent tQ the initial lemma which is to be proved. Both possibilities are no help. But the 
phenomenQn Qf generating the conjecture, which has to be proved, by means of generalization 
of common subterms recommends the use of induction on several variables. We therefore 
prove -,(y:::;s(t»~s(t):::;y by a further induction on y, preserving the hypothesis -,(y:::;t)~t:::;y. 

base-case 2: -,(O:::;s(t»~s(t):::;O ~ FALSE~s(t):::;O. 

hYPQthesis 2: -,(1':::;s(t) )~s(t):::;1' 
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mm: ORD(isort(t)); since cons is binary, we should have two hypotheses; but one of these
can be omitted assuming knowledge about sorts as we shall do throughout the rest of the
example.
W: OFlD(isort(cons(t’,t))) => ORD(ins(t'‚isort(t)));
We have at this point no chance to continue our work on the conclusion. This fact should
encourage the system to stop the proof here and to attempt to generate a lemma. As we have
already seen in the course of the description of the heuristic called “weakening with hypotheses”,
an application of that method provides us with the sufficient lemma ORD(x)—>OFlD(ins(y,x)).
Therefore it suffices to concentrate on its proof:

Damage: OFlD(nil)—>ORD(ins(y,nil)) => ORD(cons(y,nil)).
mammals: ORD(t)—>ORD(ins(y.t))
W: ORD(cons(t',t))—>ORD(ins(y,cons(t'‚t)));
We have two alternatives (cases):
Applying axiom (07) leads us to (yst’AORD(cons(t’,t)))—>‘ORD(cons(y,cons(t',t))) which is
trivialized when using axiom (11). This does of course not complete the proof, since we virtually
splitted the proof into the two cases where yst‘ and the following one where —1(y$t’.) Hence we
have to consider the second alternative utilizing axiom (08) and we obtain
(-.(yst’)AOFlD(cons(t’.t)))—>ORD(cons(t’.ins(y,t))). The only possible inference we can employ in
this situation is an application of axiom (03), yielding inflated formulas. We again fall back upon
lemma-generation, thus generating the lemma (fi(ysx)/\ORD{cons(x‚z)))-—>ORD(cons(x,ins(y,z))),
which is sufficient. (Note: This lemma is identical to the lemma-candidate, since none of the
available heuristics could modify it.)

The proof of this lemma proceeds as follows (using z as induction variable).
base-ease:
(„(y5x)AOFlD(cons(x‚nil)))—->OF!D(cons(x,ins(y‚nil)))=>—.(y:<_x)—>ORD(cons(x,cons(y,ni|)));
the only meaningful inference involves axiom (1 1), resulting in —.(ysx)->(x5y/\ORD(cons(y,nil))) =>
-1(y£x)—>x5y (“totality of 5"). Now, only the inflating axiom (03) is applicable. Consequently,
—.(y$x)—>x$y is chosen as (sufficient) lemma. For its proof, we have to alter FSC and Co to {s} and
{0} respectively. The choice of the induction variable does not matter for this proof; we select x.

W: -r(ySO)—>05y : -—.(y$0)—>TRLIE.
hypothesis: —-(y$t)—>tsy;
i_n_dug_ti_on_slenr fi(ySS(t))—>S(t)5y;

We are once more in the unfortunate position where only axiom (03) can be applied. Moreover.
the only “uninflated” lemmata generable are -1(yss(z))—>s(z)5x (which is a specalization ‚of the
original conclusion) and a(y5x)—>xsy (by generalization of common subterms). The latter is
equivalent to the initial lemma which is to be proved. Both possibilities are no help. But the
phenomenon of generating the conjecture, which has to be proved, by means of generalization
of common subterms recommends the use of induction on several variables. We therefore
prove —-.(y$s(t))—>s(t)5y by a further induction on y, preserving the hypothesis -—.(yst)-->f5y.
mag-g: —«(0ss(t))—->s(t)so => FALSE—>s(t)so.
MM: fi(t ’$S(t))—+S(t)st ’
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induction-step: -,(s(t')ss(t»~s(t)ss(t'). Applying axiom (03) this time provides us with 
--,(t'st)~tst', and the inherited hypothesis concludes the proof (ofthis induction). 

We can now continue the proof of with the(--,(Y$X)I\ORD(cons(x,z»)~ORD(cons(x,ins(y,z»)

induction-step. Naturally, we shall make use of the lemma -,(ySX)~xsy, because we already used 
(and proved) it for the base-case. 
hypothesis: (--,(ysx)I\ORD(cons(x,t»)~ORD(cons(x,ins(y,t») 

induction-step: (-,(ySX)I\ORD(cons(x,cons(t',t))))~ORD(cons(x,ins(y,cons(t',t))».Applying axiom 
(11) yields (-,(ySX)l\xSt'I\ORD(cons(t',t)))~ORD(cons(x,ins(y,cons(t',t)))). We have now two 
complementary alternatives: 
(1) Using axiom (07) we obtain (-,(ysx)I\XSt'I\ORD(cons(t',t)))~ORD(cons(x,cons(y,(cons(t',t)))). 

Applying axiom (11) twice gives us (-,(ySX)l\xSYl\yS1'I\ORD(cons(t',t)))~ 

(xSYI\YSt'I\ORD(cons(t',t»), which simplifies to TRUE after employing the lemma-,(ysx)~xsy. 

(2) If we use axiom (08), we are provided with (-,(ySX)l\xSYI\-,(ySt')I\ORD(cons(t',t»)~ 

ORD(cons(x,cons(t' ,ins(y,t)))). An application of axiom (11) yields 
(-,(ysx)l\xSYI\-,(ySt')I\ORD(cons(t',t)))~(XSt'I\ORD(cons(t',ins(y,t»», which also simplifies to 
TRUE using the hypothesis. 

We have now completed the proof of ORD(isort(x», and we can turn our attention to the assertion
 
PERM(x,isort(x»:
 

base-case: PERM(nil,isort(nil» => PERM(ni/,nil).
 
hypothesis: PERM(t,isort(t»;
 
induction-step: PERM(cons(t' ,t),isort(cons(t',t))) => PERM(cons(t' ,t),ins(1',isort(t))) =>
 
EL(t' ,ins(t' ,isort(t)»I\PERM(t,del(1' ,ins(t',isort(t»))). We have encountered this constellation when
 
discussing the issues related to "minimal mismatching subterms". By using the strategy which was
 
described as the second alternative, we obtain the lemma EL(x,ins(x,y»l\del(x,ins(x,y»=y, which
 
we have to incorporate into the proof since the heuristic for its generation is not sufficient. But this
 
time, it is obvious that it concludes the proof. Hence we have to concentrate on the proof of the
 
lemma. We shall split up the conjunction, what is legal since it is implicitly 'it-quantified by
 
convention.
 

Let us start with the proof of EL(x,ins(x,y», selecting y as induction variable.
 
base-case: EL(x,ins(x,nil» => EL(x,cons(x,nil».
 
hypothesis: EL(x,ins(x,t»;
 
induction-step: EL(x,ins(x,cons(1',t»);
 
We have to distinguish two cases:
 
(1) The applicption of axiom (07) yields XSt'~EL(x,cons(x,cons(t',t») => xS1'~TRUE. 

(2) Applying axiom (08) gives us -,(xSt')~EL(x,cons(t',ins(x,t») => -,(xSt')~(x=t'vEL(x,ins(x,t))) 

with axiom (16). By making use of the hypothesis, we can conclude the proof. 

Thus, the only lemma that remains to be proved is del(x,ins(x,y»=y. Inducing on y yields:
 
base-case: del(x,ins(x,nil»=nil => del(x,cons(x,nil»:nil;
 
Two cases arise:
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W:  —-.(s(t')ss(t))—->s(t)_<.s(t'). Applying axiom (03) this time provides us with
-1(t'st)->tst', and the inherited hypothesis concludes the proof (ofthis induction).

We can now continue the proof of (-n(y_<.x)AOFiD(cons(x,z)))-—>ORD(cons(x,ins(y,z))) with the
induction-step. Naturally, we shall make use of the lemma fi(n)—>x$y, because we already used
(and proved) it for the base——.case
M: (—1(y<x)AOFlD(cons(x, t)))—)ORD(cons(x, ins(y. t)))
W: (——.(y_x)AORD(cons(x, cons(t’ .t))))-—->OFlD(cons(x, ins(y, cons(t ,t).))) Applying axiom
(11) yields (—~(y3x)xx$t’AORD(cons(t’,t)))—>OFiD(cons(x,ins(y,cons(t',t)))). We have now two
complementary alternatives:
(1) Using axiom (07) we obtain («(ysxhxst’AORD(cons(t',t)))—>ORD(cons(x,cons(y‚(cons(t’,t)))).
Applying axiom (1 1) twice gives us (—.(y5x)AxsyAyst'AORD(cons(t',t)))—>
(XSyAyst’AORD(cons(t',t))). which simplifies to TRUE after employing the lemma -1(ysx)->x5y.
(2) If we use axiom (08). we are provided with (—‚(y5x)Ax5yA—1(yst’)/\ORD(cons(t’,t)))—>
ORD(cons(x cons(t',  ins(y,  t)))). An application of axiom (11) yields
(—.(y<x)Ax<yA—-I(y<t")/\OFlD(cons(t ,t)))—>(x<t"AORD(cons(t ,ins(y.,t)))) which also simplifies to
TRUE using the hypothesis.

We have now completed the proof of OFiD(isort(x)), and we can turn our attention to the assertion
PERM(x,isort(x)):

W: PEFlM(nil, isort(nil)) => PERM(nil,nil).
m: PERM(t,isort(t));
IUCN—91m: PEFiM(cons(t’ ,t) isort(cons(t’ ,t))) = PERM(cons(t',t),ins(t’,isort(t))) =>
EL(t',ins(t',isort(t)))APERM(t,del(t' ,ins(t ,isort(t)))). We have encountered this constellation when
discussing the issues related to “minimal mismatching subterms". By using the strategy which was
described as the second alternative, we obtain the lemma EL(x,ins(x,y))Adel(x,ins(x,y))=y, which
we have to incorporate into the proof since the heuristic for its generation is not sufficient. But this
time, it is obvious that it concludes the proof. Hence we have to concentrate on the proof of the
lemma. We shall split up the conjunction, what is legal since it is implicitly V-quantified by
convenfion.

Let us start with the proof of EL(x,ins(x,y)), selecting y as induction variable.
W:  EL(x,ins(x,nil)) => EL(x,cons(x,nil)).
hmm: EL(x . inS(x . t ) ) ;

Mm: EL(x,ins(x,cons(t',t)));
We have to distinguish two cases:
(1) The application of axiom (07) yields xst'—>EL(x,cons(x,cons(t',t))) => xst’—>TRLIE.
(2) Applying axiom (08) gives us --.(xst')—->EL(x,cons(t',ins(x,t))) z: fi(xst‘)—->(x=t’vEL(x,ins(x,t)))
with axiom (16). By making use of the hypotheSis, we can conclude the proof.

Thus. the only lemma that remains to be proved is de-l(x,ins(x,y))=y. Inducing on y yields:
ham: del(x,  ins(x, nil))=nil => del(x, cons(x,  nil))= nil;
Two cases arise:
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(1) When using axiom (18), we obtain x=x~nil=nil, which is obviously TRUE. 
(2) The use of axiom (19) provides us with -,(x=x)~cons(x,del(x,nil»=nil => FALSE~
 

cons(x,nil)=nil and we are done.
 
hypothesis: del(x,ins(x,t»=t;
 
induction-step: del(x,ins(x,cons(t',t)))=cons(t',t);
 
Once again we must distinguish two cases:
 
(1) Applying axiom (07) generates >e:;;t'~el(x,cons(x,cons(t',t)))=cons(t',t), which we can
 
transform into TRUE analogously to what we just performed in the base-case.
 
(2) Using axiom (08) yields --.(x$t')~del(x,cons(t' ,ins(x,t)))=cons(t',t); Two further distinct cases
 
are to be dealt with at this point:
 
(2a) (--.(X$t')I\X=t')~ins(x,t)=cons(t', t)
 
(2b) (-,(X$t')I\--.(x=t'))~cons(t' ,del(x,ins(x,t» )=cons(t',t)
 
The conjecture (2b) can be rewritten to (-,(>e:;;t')I\-,(x=t'»~cons(t' ,t)=cons(t' ,t) by utilizing the
 
hypothesis and we are done.
 
For a proof of (2a) we apply x=t' and obtain -,(t'$t')~ins(t',t)=cons(t',t). The only chance we have
 
to prove this is by making the antecedent false, thus calling for the lemma >e:;;x. The way we found
 
this lemma seems rather intuitive (if not to say ''far fetched") and beyond the limits of the automatic
 
lemma-generation strategies described in this report. But with extensions incorporating heuristics
 
as the one just sketched, the system can be taught to a certainly limited extent to use some kind
 
of. "intuition" itself.
 
Apart from that, trying to prove (2a) by refutation makes the need of Xg clear without having to
 
rely on more sophisticated lemma-generation heuristics:
 
Negating and skolemizing (2a), using the skolem-constant a, yields
 
-,(a$t')l\a=t'I\-,(ins(a,t)=cons(t',t». By rewriting with a=t' we obtain (for instance)
 
-,(a$a)l\a=t'I\--.(ins(a,t)=cons(a,t». Thus we have the following lemma-candidate (recall: we must
 
reverse the effects of negation and skolemization) X$Xv-,(x=y)vins(x,z)=cons(x,z), which we
 
utilize as a (sufficient) lemma. The proof thereof imposes no major problems when using x as
 
induction variable, since X$X alone can be proved by induction without complications (we shall
 
therefore omit the details). Naturally, it would be advantageous to dispose of methods which allow
 
us to recognize the fact that part of the disjunction is not correct w.r.t. to the investigated inductive
 
theory and can therefore be dropped. We did not cover the issues related to this topic. See, for
 
instance, [Pr92].
 

Finally, we have proved both properties of isort we postulated at the beginning, and thus have 
confirmed correctness of the related sorting-algorithm. 
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(1) When using axiom (18), we obtain x=x—>nil=nil, which is obviously TRUE.
(2) The use of axiom (19) provides us  with —.(x=x)-——>cons(x,del(x,n-il))=nil => FALSE—9
cons(x,nil)=nil and we are done.
WEI del(x,ins(x,t))=t;
W: del(x,ins(x,cons(t’,t)))=cons(t’,t);
Once again we must distinguish two cases:
(1) Applying axiom (07) generates xst’—>del(x,cons(x,cons(t',t)))=cons(t’,t), which we can
transform into TRUE analogously to what we just performed in the base-case.
(2‘) Using axiom (08) yields —-.(xst')—+del(x,cons(t',ins(x,t)))=cons(t’,t); Two further distinct cases
are to be dealt with at this point:
(2a) (fi(xst')Ax=t')—->ins(x,t)=cons(t',t)
(2b) (fi(xst')A-1(x=t'))-+cons(t’,del(x,ins(x,t)))=cons(t',t)
The conjecture (2b) can be rewritten to (—1(xst’)A—„(x=t’))—»cons(t'.t)=cons(t’‚t) by utilizing the
hypothesis and we are done.
For a proof of (2a) we apply x=t' and obtain -—.(t’st’)—>ins(t',t)=cons(t’,t). The only chance we have
to prove this is by making the antecedent false, thus calling for the lemma fix. The way we found
this lemma seems rather intuitive (if not to say “far fetched") and beyond the limits of the automatic
lemma~generation strategies described in this report. But with extensions incorporating heuristics
as the one just sketched, the system can be taught to a certainly limited extent to use some kind
of, "intuition” itself.
Apart from that, trying to prove (2a) by refutation makes the need of xSx clear without having to
rely on more SOphisticated lemma-generation heuristics:
Negating and skolemizing (2a), using the skolem-constant 3, yields
fi(ast’)Aa=t'A—-.(ins(a,t)=cons(t',t)). By rewriting with a=t’ we obtain (for instance)
-.(asa)Aa=t’A--.(ins(a,t)=cons(a,t)). Thus we have the following lemma-candidate (recall: we must
reverse the effects of negation and skolemization) xsxv—.(x=y)vins(x‚z)=cons(x‚z), which we
utilize as a (sufficient) lemma. The proof thereof imposes no major problems when using x as
induction variable, since xSx alone can be proved by induction without complications (we shall
therefore omit the details). Naturally, it would be advantageous to dispose of methods which allow
us to recognize the fact that part of the disjunction is not correct w.r.t. to the investigated inductive
theory and can therefore be dropped. We did not cover the issues related to this topic. See, for
instance, [Pr92].

Finally, we have proved both properties of isort we postulated at the beginning, and thus have
confirmed correctness of the related sorting-algorithm.
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Appendix B 

Being able to measure in some way the inflation of formulas or terms is not only advantageous in 
connection with those methods presented in this report. There are also other fields of application 
detached from inductive proving, such as detecting divergence in general or utilization as 
preference strategy (e.g. for selecting the next critical pair in the KB-completion procedure 
([KB70]). 
But how should we "measure" the inflation of a term (resp. formula)? Expressing the "inflation
degree" of a given term or formula in terms of natural numbers appears to be quite suitable, since 
this way the well-known ordering < on natural numbers can very conveniently be used to compare 
two terms or formulas w.r.t. their inflation degree. Thus, for instance, s(x), s(s(x» and s(s(s(x))) are 
assigned the inflation-degrees 0, 1 and 2 respectively. Certainly, we also would like to measure 
more complicated terms such as f(x,g(f(y,g(f(z,g(a,b»))))). 
In order to make clear the principles of the computation of the inflation-degree and in order to ease 
the understanding of the definitions to come, we shall contemplate the term 
t:=h(y,f(x,g(f(y,g(f(z,g(f(a,b))))))),c). We can easily discover that t, or to be more exact, its subterm 
t'=tI2 shows a regular resp. recursive structure we refer to as inflation. This is manifested in the 
subterm t"=t'12.1=f(y,g(f(z,g(f(a,b»»), which shows a similar setup as t' itself. An analogous 
relation exists between tIt and its subterm t"'=t"12.1 =f(z,g(f(a,b»). Due to the finiteness of terms it 
is apparent that this repetition of similar structures will come to an end sooner or later for any term. 
The important point consists in capturing the number of repetitions so far. In the attempt to solve 
this task, the places of t' and t", where the recursive structure terminates, play a substantial role. 
Here, these places are 2.1.2.1.1 and 2.1.2.1.2: 
t'=f(x,g(f(y,g(f(z,g(f(a,b»))))) t'12.1.2.1.1 =z t'12.1.2.1.2=g(f(a,b» 
t"=f(y,g(f(z,g(f(a,b))))) t"12.1.2.1.1 =a t"12.1.2.1.2=b 
These so-called "critical places" are collected in a set P. Thus, for the example, we have 
P={2.1.2.1.1,2.1.2.1.2}. The regularity of the structure reveals itself through the occurence of 2.1 
(recall that t'12.1 =t") in the maximal prefix (2.1)2 of all places in P. The exponent (here 2) will later 
serve to compute the inflation-degree. 
For the computation of the inflation-degree of any term t, we have to treat every subterm t' in the 
outlined manner, Le. we have to check up all subterms t'lp by computing the associate set Pp and 
then determine the maximal exponent n such that all qe Pp can be written as pnq,. We choose the 
maximum of all these exponents we obtain by considering all subterms t' of t, and we use this 
value as inflation-degree. 
Hence, the inflation-degree of a term t=h(si(x),si(x» is the maximum of i-1, j-1 and 0 (for the case 
i=j=O and consequently t=h(x,x». 
After the informal presentation of the basic concept, the definitions shall be given. 

Definition
 
Let Var denote the set of variables.
 
(1) Let t be a term, pe O(t)-{e}, qe O(t)nO(tlp). 
q is a strong critical place of tip and t if q=q'u with 
(tlp)lq'=f(t1,.. ,tn), tlq'=g(S1, .. ,Sm), f;t:g, n,m~O or 
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Appendlx B

Being able to measure i n  some way the inflation of formulas or terms is not only advantageous in
connection with those methods presented in this report. There are also other fields of application
detached from inductive proving, such as detecting divergence in general or  utilization as
preference strategy (e.g. for selecting the next critical pair in  the KB-completion procedure
(lKB70]))-
But how should we “measure" the inflation of a term (resp. formula)? Expressing the “inflation-
degree" of a given term or  formula in terms of natural numbers appears to” be quite suitable, since
this way the well—known ordering < on natural numbers can very conveniently be used to compare
two terms or  formulas w.r.t. their inflation degree. Thus, for instance, s(x), s(s(x)) and s(s(s(x))) are
assigned the inflation-degrees 0, 1 and 2 respectively. Certainly, we also would like to measure
more complicated terms such as f(x,g(f(y,g(f(z,g(a,b)))))).
In order to make clear the principles of the computation of  the inflation—degree and in order to ease
the understanding of the definitions to come, we shall contemplate the term
tsh(y,f(x‚g(f(y,g(f(z‚g(f(a,b)))))))‚c). We can easily discover that t, or to be more exact, its subterm
t'=t|2 shows a regular resp. recursive structure we refer to as inflation. This is manifested in the
subterm t"=t'|2.1d(y,g(f(z,g(f(a.b))))), which shows a similar setup as t' itself. An analogous
relation exists between t” and its subterm t"'=t"|2.1ä(z,g(f(a,b))). Due to the finiteness of terms it
is apparent that this repetition of similar structures will come to an end sooner or later for any term.
The important point consists in capturing the number of repetitions so far. In the attempt to solve
this task, the places of t' and t ” ,  where the recursive structure terminates, play a substantial role.
Here, these places are 2.1 .2.1.1 and 2.1.2.1.2:
t'=f(x,g(f(y,g(f(z,g(f(a,b))))))) t’|2.1.2.1 .1=z t'|2.1 .2.1.2=g(f(a,b))
t"=f(y,g(f(z,g(f(a,b))))) t"|2.1.2.1.1=a t"|2.1.2.1.2=b
These so—called “critical places” are collected in a set P .  Thus, for the example. we have
P={2.1.2.1.1,2.1.2.1.2}. The regularity of the structure reveals itself through the occurence of 2.1
(recall that t'|2.1=t") in  the maximal prefix (2.1)2 of all places in  P. The exponent (here 2) will later
serve to compute the inflation-degree.
For the computation of the inflation-degree of any term t, we have to treat every subterm t '  in the
outlined manner, i.e. we have to check up all subterms t"|p by computing the associate set PF, and
then determine the maximal exponent n such that all qe Pp can be written as pnq'. We choose the
maximum of all these exponents we obtain by considering all subterms t’ of t. and we use this
value as inflation-degree.
Hence, the inflation-degree of a term Eh(si(x),sj(x)) is the maximum of i-1,j-1 and 0 (for the case
i=j=0 and consequently Eh(x,x)).
After the informal presentation of the basic concept, the definitions shall be given.

D t' 'I'

Let Var denote the set of variables.
(1) Let t be a term, pe O(t)-{e}, qe O(t)n0(t|p).
q i s  a strong critical place of t|p and t if q=q'u with
(tlpilQ’Ef(t1.--.tn). t'%(81.--.Sm). fag. M1120 or
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(tlp)lq'E Var, tlq'~ Var or 
(tlp)lq'~ Var, tlq'E Var 

(2) Let t, p and q be given as in (1). 
q is a critical place of tip and t if 
q is a strong critical place or 
tlqE Var, (tlp)lqE Var, tlq*(tlp)lq and there is a q1 EO(tlp), q1*Q, (tlp)lq,=tlq, where q1 is not a strong 
critical place. 
(Example: 
t=f(x,f(x,f(y,f(y,g(x»») 
(a) p=2: tI2=f(x,f(y,f(y,g(x»»
 
Then we have the strong critical places 2.2.2 and 2.2.2.1 (which, according to the definition, are
 
also critical places). q=2.1 is a critical place (not a strong critical place), since tI2.1=XEVar,
 
(t12)12.1 =yE Var, y*x and q=2.1 *1 =q1' (tlp)lq1*tlq, where q1 is not a strong critical place.
 
(b) p=2.2: tI2.2=f(y,f(y,g(x)))
 
In this case, every critical place is also a strong critical place. (They are 2.2 and 2.2.1.)
 
(c) If t=f(x,f(y,f(z,g(x»))), then with p=2 we also have only strong critical places (2.2 resp. 2.2.1),
 
because the second occurence of x is at.a strong critical place.)
 

(3) If t is a variable or a constant, then its inflation-degree is O.
 
Let t be a term, t neither a variable nor a constant. For every pe O(t) Pp:={q I q is a critical place of
 
tip and (.)for all u:;t€, uq'=q, u is not a critical place of tip and t}. For all pe O(t)-{e} mp:=min{n I
 
pnq'=qE Pp and there is no q" with pq"=q'}. Furthermore, At<=max{mp I PE O(t'}-{e}}.
 
max{As I s=tlu, UE O(t)} is the inflation-degree of t.
 

Remark: In definition (3), (.) is only needed to reduce the cardinality of Pp, what is of practical 
interest, but has no theoretical effect. 

~: mp is always defined, since Pp.e0 for all pe O(t)-{e} for all terms t. 

Examples: 

t=s(s(s(X))) => O(t)={e,1,1.1,1.1.1} 
p=1 : P1={1.1} => m1=2 
p=1.1 : P,.,={1} => m,.,=O 
p=1.1.1 : P1.,.,={e} => m1.U=O 
Thus As(s(s(x)))=2; 
Analogously we obtain As(s(x))=1, AS(x)=Ax=O. Hence t has inflation-degree 2. 

t=h(s(s(s(x»),s(s(S(S(x»)))) => 0(t)={e,1 ,2,1.1,1.1.1,1.1.1.1,2.1,2.1.1,2.1.1.1,2.1.1.1.1} 

Since Pu={e} for all Ue O(t), we have Ah(s(s(s(x))),s(s(s(S(X)))))=O. 
Furthermore, for the remaining subterms of t we obtain: 

As(s(s(x)))=2, As(s(x))=1, As(x)=Ax=O, As(s(s(s(x))))=3. 
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(t|p)|q'e Var, t|q'e Var  or
(t|p)|q'e Var, t|q’e Var

(2) Let t .  p and q be given as in (1 ).
q is a critical place of t |p and t if I
q is a strong critical place or
t|qe Var, (t|p)|qe Var. t|q¢(t|p)|q and there is a q1e O(t|p), qpeq, (tlp)|q1ä|q, where q1 is not a strong
critical place.
(Example:
tEf(x.f(x.f(y.f(y.g(><)))))

(a) p=2: t |2=f(x‚f(y.f(y.g(><))))

Then we have the strong critical places 2.2 .2  and 2.2.2.1 (which, according to the definition, are
also critical places). q=2.1 is a critical place (not a strong critical place), since t|2.15xe Var,
(tl2)|2.1ae Var, yatx and q=2.1¢1=q1,  (t|p)|q1=tt|q, where q1 is not a strong critical place.

(b) p=2-2=  tI2-2Ef(y‚f(y.g(><)))

In this case, every critical place is also a strong critical place. (They are 2.2 and 2.2.1.)
(c) If tä(x‚f(y,f(z,g(x)))), then with p=2 we also have only strong critical places (2 .2  resp. 2.2.1),
because the second occurence of x is at ‚a strong critical place.)

(3) If t is a variable or a constant, then its inflation-degree is 0.
Let t be a term, t neither a variable nor a constant For every pe O(t) P p=: {q  | q is a critical place of
t|p and (*)for all we. uq ’=q, u is not a critical place of t|p and t}. For all peO(t)- {6} mp :=min{n |
p “q '=qe Pp and there is no q" with pq"=q'}. Furthermore, A, =:rnax{rnp | pe O(t’-)—{e}}.
max{As | s=t|u, U6 O(t)} is the inflation-degree of t .

Remark: In definition (3). (*) is only needed to reduce the cardinality of Pp, what is of practical
interest. but has no theoretical effect.

Note: mp is always defined, since Pp¢® for all pe O(t)-{e} for all terms t .

Exammes:

tEs(s(s(x))) => O(t)={e,1,1.1,1.1.1}
p==1 IP1={1 .1}  => m1=2

P=1-1 3P1 .1={1}  => rn1.1=0

P=1-1-1 iP1 .1 .1={8}  => m1.1.1=0

ThUS AS(S(S(X)))=2;

Analogously we obtain As(s(x„=1, As(x)=Ax—_-O. Hence t has inflation-degree 2 .

tah(s(s(s(x))),s(s(s(s(x))))) => O(t)={e,1‚2,1.1‚1.1.1.1.1.1.1,2.1,2.1.1,2.1.1.1,2.1.1.1.1}
Since  Pu={8} fo r  a" UE  O( t ) ,  we have Ah(S(S (S (X ) ) ) ,S (S (S (S (X ) ) ) ) )=O '

Furthermore, for the remaining subterms of t we obtain:

AS(S(S(X)))=2* AS(S(X))=1' AstX)=Ax=0v As(s(s(s(x))))=3-
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Thus t has inflation-degree 3. 

t=f(x,g(f(y,g(f(a,z.a»,y»,x) => 
O(t}={e,1,2,3,2.1 ,2.1.1 ,2.1.2,2.1.3,2.1.2.1 ,2.1.2.1.1,2.1.2.1.2,2.1.2.1.3} 

p=1 : P1={e} => m1=0 
p=2 : P2={e} => m2=0 
p=3 : P3={e} => m3=0 
p=2.1 : P2.1={2.1.1,2.1.2,2.1.3} => m2.1=1 

p=2.1.1 : P2.1.1 ={e} => m2.1.1 =0 

p=2.1.2.1 : P2.1.2.1 ={1 ,2,3} => m2.1.2.1 =0 

Hence At=1.' Since As=O for all proper subterms 5 of t, t has inflation-degree 1. 
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Thus t has inflation—degree 3 .

t ä (x .9 ( f ( y .g ( f (a . z ‚a ) ) ‚W) -X )  =9
O(t)={e.1,2.3.2.1.2.1.1,2.1.2.2.1.3.2.1.2.1,2.1.2.1.1.2.1.2.1.2.2.12.1.3}
p=1 : P1={e} => m1=0
p=2 : P2={€} => m2=0

p=3 I P3={8} => m3=0
p=2.1 : P2_1={2.1.1.2.1.2.2.1.3} => m2_1=1
P=2-1-1 1 P2.1.1={6} => m2.1.1=0

P=2-1-2-1 1P2.1.2.1={1.2.3} => m2.1.2.1=0

Hence At=1 Since As=0 for all proper subterms s o f t ,  t has inflation—degree 1.
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