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Abstract 

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic rep­
resentation and processing of knowledge. This is in sharp contrast to many forms of 
human reasoning, which to an extraordinary extent, rely on cases arid (typical) ex­
amples. Although these examples could themselves be encoded into logic, this raises 
the problem of restricting the corresponding model classes to include only the intended 
models. 

There are, however, more compelling reasons to argue for a hybrid representation 
based on assertions as well as examples. The problems of adequacy, availability of 
information, compactness of representation, processing complexity, and last but not 
least, results from the psychology of human reasoning, all point to the same conclusion: 
Common sense reasoning requires different knowledge sources and hybrid reasoning 
principles that combine symbolic as well as semantic-based inference. 

In this paper we address the problem of integrating semantic representations of 
examples into automated deduction systems. The main contribution is a formal frame­
work for combining sentential with direct representations. The framework consists of 
a hybrid knowledge base, made up of logical formulae on the one hand and direct rep­
resentations of examples on .the other, and of a hybrid reasoning method based on the 
resolution calculus. The resulting hybrid resolution calculus is shown to be sound and 
complete. 

Introduction 

The traditional paradigm of knowledge representation and processing, dating at least to 
the time of McCarthy's Advice Taker [14], is to represent knowledge by a collection of 
sentences of a formal language that· are viewed as the symbolic knowledge base of the 
reasoner. Keeping with this view, the reasoning process itself is then seen as the application 
of explicit inference rules (or procedures) to sentences of the formal language. The best 
evidence of this point of view is the dominance of predicate; modal and nonmonotonic 
logics in AI research. 
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The hallmark of traditional Artificial Intelligence (AI) research is the symbolic rep—
resentation and processing of knowledge. This is in sharp contrast to many forms of
human reasoning, which to an extraordinary extent, rely on cases and (typical) ex—
amples. Although these examples could themselves be encoded into logic, this raises
the problem of restricting the corresponding model classes to include only the intended
models.

There are, however, more compelling reasons to argue for a hybrid representation
based on assertions as well as  examples. The problems of adequacy, availability of
information, compactness of representation, processing complexity, and last but not
least, results from the psychology of human reasoning, all point to the same conclusion:
Common sense reasoning requires different knowledge sources and hybrid reasoning
principles that combine symbolic as well as semantic-based inference.

In this paper we address the problem of integrating semantic representations of
examples into automated deduction systems. The main contribution is a formal frame-
work for combining sentential with direct representations. The framework consists of
a hybrid knowledge base, made up of logical formulae on the one hand and direct rep—
resentations of examples on the other, and of a hybrid reasoning method based on the
resolution calculus. The resulting hybrid resolution calculus is shown to be sound and
complete.

1 Introduction .

The traditional paradigm of" knowledge representation and processing, dating at least to
the time of McCarthy’s Advice Taker [14], is to represent knowledge by a collection of
sentences of a formal language that 'are viewed as the symbolic knowledge base of the
reasoner. Keeping with this view, the reasoning process itself is  then seen as the application
of explicit inference rules (or procedures) to sentences of the formal language. The best
evidence of this point of View is the dominance of predicate, modal and nonmonotonic
logics in A1 research.
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The advantage of such a logic-based approach is the formal logical framework with 
its precise semantics. Furthermore, the specific logic under consideration provides a clean 
inference mechanism for deriving results from the theory, where applying inference rules 
to a knowledge base takes care of the procedural aspects of an AI-system. This view of 
traditional AI, now quite commonly accepted, arose from the procedural versus declarative 
representation debate of the seventies. 

There are, however, several problems with this traditional approach: In the first place, 
it has become clear that logics are not always the best or easiest way to represent complex 
forms of information. Consider, for instance, a variation of a well-known example from 
non-monotonic logic: Suppose Birdy is a bird and Tweety is a typical bird. Assume also 
that in addition to the 'object language (say first-order predicate logic) there is a means 
of representing a typical bird, e.g. in a neural net, so that the query can.-:fly(Tweety) 
evaluates to true if the representation of the typical bird Tweety contains the information 
that Tweety can, in fact, fly. In other words, we have two different levels of information: 
the syntactic information, bird(Birdy), which is stated in the object language, where 
(deductive) inferences are drawn, and the semantic information, where for example a typical 
case of a bird, namely Tweety, is represented. If can.-:fly(Tweety) evaluates to true, we 
tentatively conclude that Birdy can fly, too. Apparently, this procedure is similar to the 
way humans reason under these circumstances: the default knowledge is stored in the form 
of an example [16], from which the conclusion is drawn by analogy rather than by an explicit 
rule of deductive inference - be it monotonic or not. If we want to know something about 
an arbitrary bird, for instance, whether or not it has teeth, we have no rule in mind such 
as: "typical birds have no teeth" (or rules to reflect the myriad of other facts that are 
not the case), but we think of a typical representative for the concept bird and reason by 
analogy: Tweety has no teeth, hence Birdy has no teeth. A purely logical approach would 
require some complicated rule of inference such as circumscription in order to minimize the 
intended models. 

Thus the first problem refers to the adequacy of representing and processing knowledge 
only in terms of formulae in some formal language. It is a well-known observation that 
human reasoning relies to an extra-ordinary extent on cases and typical example (see next 
paragraph). The criticism of classical AI by Dreyfus and Dreyfus [3], for example, claims 
that only' the lower stages of human knowledge processing are based on an explicit use 
of rules whereas for the three higher stages - competence, proficiency, and expertise ­
large amounts of well-chosen examples are imperative. Many experiments in cognitive 
psychology have provided ample evidence for an explicit rule application, as well as for 
processing information that is somehow more directly represented. 

A second problem concerns the availability oflogically formalized knowledge and explicit 
rules of inference. Often, knowledge about examples, diagrams and the like is encoded 
implicitly, as for example, in the analogical representation of a map [22]. 

Another problem becomes obvious by comparing the compactness of syntactic and 
semantic encodings of information, e.g., information about a road map. The direct, "se­
mantic" representation is far more concise than a corresponding explicit symbolic repres­
entation (if one can ·be obtained at all). 

Finally, the complexity of knowledge processing, e.g. theorem proving, within the tra­
ditional paradigm depends on the expressive power of the formal language (cf. [7]). 

In this paper w~ present an approach to knowledge representation and processing that 
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combines a direct "semantic" representation of examples with the usual sentential rep­
resentation. The main idea of this approach is to replace some information traditionally 
inferred using syntactic rules by appropriate semantic information which we assume to be 
somehow directly represented) perhaps in a neural net) some data structures, or a ca&e 

• I
base. I 

I 

Hybrid approaches to knowledge representation and reasoning have also been suggested, 
inter alia, by Halpern and Vardi [7], Johnson-I.aird and Byrne [8], and Myers and Konolige 
[17]. In [10] we demonstrated how analogical reasoning with typical examples can be done 
with hybrid knowledge bases. In this paper we are interested in the combination of deductive 
reasoning with reasoning by examples that is based on the same hybrid knowledge base. 

First, we motivate our approach by giving psychological evidence for the use of examples 
in human reasoning. Then we introduce a formal framework consisting of a semantics for 
hybrid reasoning based on three-valued logic together with a resolution calculus. 

2 Psychological Evidence 

Do people reason by applying explicit rules to logically formalized knowledge or do they 
reason by example? This problem has been widely investigated by cognitive psychologists, 
and psychological experiments have provided evidence for both modes of reasoning. For 
instance, Cherniak [2] and Medin and Ross [15] found support for their thesis that people 
reason using information directly extracted from examples/models in an experiment clearly 
exhibiting retrieval of examples and the subsequent use of these examples for analogical 
reasoning. In addition, the importance 'of typical examples in reasoning has been shown by 
several researchers [18], [2]. Kaiser, Jo~ides, and Alexander [9], for example, demonstrated 
that people draw on their formal models of 'physics only after they are unable to find an 
acceptable solution by analogy, and Ross [20] has shown that novices make use of analogy 
with earlier solution instances even when a principle or a rule has been presented explicitly. 
On the other hand, some psychological findings point toward an explicit rule application of 
facts (see [23] for an overview). Braine, Reiser, and Rumain [1.] have shown that the more 
rules are required in order to determine the validity of an argument, the longer the reaction 
time and the lower the accuracy ofthe final response to questions on the argument. Yet they 
found that people generally agree on the correctness of modus ponens applications. Such 
evidence strongly suggests that people do pay attention to the structure of an argument, 
that is, its logical form. 

In other words, both views of reasoning are legitimate and can be useful depending 
on the context, the conditions, and the aim of the respective reasoning process. Since 
in many real life situ.ations, neither one nor the other position is sufficient to cover the 
whole case, we argue for a hybrid approach to knowledge representation and reasoning in 
AI, rather than for a purely symbolic or a purely representation-based approach. Further 
experimental support for this position is given in [23] and by Galotti, Baron, and Sabini [5]. 
The latter 'have performed tests with syllogisms and concluded that there exist deduction 
rules in human reasoning as well as non-rule entities which we shall sometimes refer to as 
noncompositional, following Myers and Konolige [17]. Smith, Langston, and Nisbett [23] 
also discussed hybrid reasoning mechanisms. 
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3 A Framework for Hybrid Reasoning 

In the following paragraph we shall introduce a general semantics for knowledge bases rep­
resented by formulae and examples. After that we will present a logic for hybrid reasoning 
that is based on the resolution calculus, and extend this to a hybrid calculus. Finally, we 
shall show soundness and completeness of this extended calculus with respect to the given 
semantics. 

3.1 Model Theory for Hybrid Reasoning 

As· described above, we want to base our reasoning mechanism upon logical formulae as 
well as examples. For our purpose, a knowledge base will consist of a set of formulae rand 
a set of example sets £ (for each concept one set of examples). Of course, the formulae and 
the example sets should be connected in some way, and we will express the relationship 
between them by a partial interpretation function oX. 
DEFINITION (KNOWLEDGE BASE): A knowledge base is a triple d = (r,£,oZ), where 
r is a formula set expressed in a logic £. £ is a set of example sets, and oZ is a partial 
interpretation of £-formulae. _ 

More precisely, we assume a sorted (first-order) logic £, where each sort can be viewed 
as a concept like bird, human, or female. We denote the sorts by lowercase greek letters 
such as K, or 1". £ is a set of sets {£JC}1(, where each £1( is called the set oj examples of sort 
K,. The £1( are such that their structure corresponds to the sort structure of £, that is, if 
I" ~ K, (Le. I" is subsort of K,) then £p. ~ £1(' £ forms the frame (the collection of universes) 
for the partial interpretation of the terms. oX is a fixed partial interpretation function 
(corresponding to three-valued strong Kleene logic £K [12, 25]) in the frame £. Each term 
t of sort K, is either interpreted by an example in £1( or by the bottom element .1.. Formulae 
may be evaluated by oX to true, to false, or to undef. Furthermore, we assume that for 
every element e~ E £1( there exists a constant c~ of sort K, with OX(c~) = e~ E £1( and that 
there are only finitely many examples in £. 

The semantics of composed formulae is defined as usual, based on the propositional 
connectives as defined by the following truth tables: 

• 

false true 
true 
true 

undef 
undef 

false 
false 

V
----1--------- ­false 

undef undef undef undef undef true 
true false true true true true 

In order to fix the semantics of the universal quantifier, assignments ~ for the interpret­
ation of the variables into the frame are necessary. If ~ is an arbitrary assignment., ~[x +- a] 
denotes the assignment equal to ~ for all variables except for x and ~[x +- a](x) = a. 

true if oXe[x+--a] (c.p) == true for all a E £1( 
oXe(Yxl(c.p) := false if oXe[x+--aj(c.p) = false for one a E £1(

{ undef else 

The semantics of 1\, ~, <=>, and 3 can then be defined in the usual manner. 
Note that these definitions do\not assume .a concrete representation of the examples. 

The examples may, in fact, be represented by a data structure like a semantic net or by some 
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frame structure, or they may be represented within a neural net - the only requirement 
is	 that we get an answer to certain questions, thus fixing the interpretation function. In 
other words, &I has to be effectively computable for all ground formulae (Le., variable free 
formulae) and, consequently, for all formulae, since we assume the number of examples in 
£	 to be finite. 

As usual, we give an (extended) set theoretic semantics for a formula set. Our semantics 
is such that it is compatible with the examples. An interpretation of a knowledge base ~ 

is defined as an extension of the partial interpretation, given by (£, oX). 

DEFINITION «(£, oI)-INTERPRETATION): Let £ = {£~} ~ be a given set of example sets 
and let oI be a partial interpretation function in £. An interpretation ({V~}",I) is called 
an (£, oI)-interpretation iff 

•	 there are mappingsQ~ : £~ -+ V" with I(e,,) = Q,,(oI(c,,» for all constant symbols c~ 

with oI(e,,) -I .L. (When the sort is not important, we omit the index", and simply 
write Q.) 

• for all terms t and arbitrary ground instances O'(t) with oI(O'(t)) -I .L holds I(O'(t» = 
~(oI( 0'(t»). 

• for all formulae ep and all ground instances 0' of ep holds, if oI(0'(ep» -I undef then 
I(0'(ep)) = oI(0'(<p» 

If I e(ep) = true for all assignments ethen I is called an(£, oI)-model of ep. If ep has no 
(£,oI)-model, it is said to be (£, oI}-unsatisfiable. r (£, oI}~entails the formula ep iff each 
(£,oI}-model of r is an (£, oI}-model of ep, too (i.e. r P=(t,8I) ep). • 

.EXAMPLE: Let £ be the sorted logic with just one sort bird and two constants tweety and 
birdy. Furthermore, let the knowledge base ~ consist of the formula. set 

r	 = {red(tweety), 
.canfly(birdy), 
'v'xbirdcanfly(x) * has_feather(x)}, 

the example set be £bird which contains one example for tweety and another for birdy, and 
the partial interpretation be &I. By looking up the examples in the knowledge base, oI 
evaluates canfly(tweety) to true and canfly(birdy) to undef. Then in all (£,oI)-models of 
r,	 red(tweety), canfly(tweety), and has_feather(twee'ty) hold, whereas canfly(birdy) does not 
hold. The assertion has_feather(birdy) may hold or not.	 • 

A knowledge base (r,£,oI) is c~lled consistent if an (£,oI}-model of r exists, else 
inconsistent. As in classical logic, a knowledge base is rather useless if it contains incom­
patible knowledge. Ifr contains, for instance, a ground formula ep such that oI(ep) =false, 
then the knowledg;e base is not consistent. 

3.2 Proof Theory for lIybrid Reasoning 

Assume the two inference rules RES and FACT for resolution and factoring, respectively 
[19], and let C be the initial clause set generated from a knowledge base r and the negation 
of a hypothesis ep by normalization. ep can be derived classically from r, denoted r I- ep, if 
the empty clause 0 is in the transitive closure of C under the rules RES and FACT. 
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of a hypothesis cp by normalization. (,0 can be derived classically from I‘, denoted I‘ l- (p, if
the empty clause Cl is in the transitive closure of C under the rules RES and FACT.
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Often there are simplification rules SIMP, for the sake of efficiency, which simplify the 
clause set, for instance, by deleting redundant clauses. 

In order to prove that a hypothesis cp follows hybridly from a knowledge base A = 
(r, £, oX), first rand -'cp are transformed into the set C of clauses in normal form. Then 
the empty clause 0 is to be derived from C by application of RES, FACT and an additional 
rule, EXEMP (for exemplification), which looks up the knowledge base of examples. (It is 
not too hard to see that the transformation to clausal normal form does not change (£, oI)­
unsatifiability. Newly introduced Skolem-terms are not known to oI and, consequently, 
they are interpreted to 1..) 

Let L1 V '" V L m V K 1 V ... V K n be a clause, and u be a substitution such that all 
u(Li) are ground and oI(u(Li)) = false. Then EXEMP is defined- as: 

L1 V ... V Lm V K 1 V ... V K nEXEMP 
u(K1) V ..• V d(Kn ) 

This rule is in a sense the semantic equivalent to the usual resolution rule (consequently 
we call the calculus "exemplification-based resolution"). In order to see this, consider the 
modus ponens mode ofreasoning: if A implies B and A holds then B. Nowexemplification­
based reasoning rests on the following form: if A implies B and A holds in the database 
of cases then B. Now as usual, if -,A or B and A holds in the database of cases, then -,A 
is false, hence B. In other words the above rule EXEMP generalizes "semantic modus 
PQnens" just as resolution is a generalization of modus ponens in the sense that there 
may be more than just the two predicates A and B and that possible substitutions of the 
variables must be considered. 

We may assume that for all Kj in the result of the EXEMP-rule, aI(u(Kj)) :f false, 
otherwise, such literals Kj could be eliminated by repeated exemplification. For an arbit­
rary clause C, different applications of EXEMP may be possible (as a result, for example, 
of different ground substitutions u). But, since there are only finitely many examples in £, 
there are only finitely many possible applications of EXEMP for each clause. 

EXAMPLE: If we want to derive has_feather(tweety) in the example given above, we obtain 
as initial clause set C = {red(tweety), 

-,canfly(birdy), 
-,canfly{x) V has-feather(x), 
-,has_feather(tweety)}. 

Because aI(-,canfly(tweety)) = false, we can apply EXEMP to the second last clause 
and get the clause has_feather(tweety). An application of RES, together with the last of 
the initial clauses, then yields the empty clause as the resolvent. • 

In addition to the traditional simplification rules for resolution there is a simplification 
rule based on oI, namely, a clause can be deleted if one of its literals, say L, is ground and 
aI(L) = true. 

Exemplification-based resolution, that is, reasoning that is based on the inference rules 
RES, FACT and EXEMP, can be considered as a special case of T-resolution [24]. While 
T-resolution is a well-known framework for integrating different kinds of knowledge sources 
in deductive reasoning, it is very general such that feasible procedure can only be achieved 
by employing well-suited theories. Because of the simple mechanism of EXEMP and the 
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T-resolution is a well-known framework for integrating different kinds of knowledge sources
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exclusive use of ground instances exemplification-based resolution seems to be a feasible 
instance of T-resolution. 

The next two theorems show that this hybrid resolution calculus is adequate for the 
notion of hybrid entailment. 

THEOREM: The calculus consisting of the rules RES, FACT, and EXEMP is refutation 
sound. 

Proof: We first show the soundness of RES (for FACT the proofis analogous). Let Cl and 
C2 be arbitrary clauses and let I be an (£, oI)-model of Cl and C2 • Let R be a resolvent 
of Cl and C2 ; we show that I is an (£, oI)-model of R, as well. Let Cl and C2 be 

Cl = LV Ki V ... V Kl and 
C2 = -.L' V M I V ... V M n 

with most general unifier a of L an~ L'. Their resolvent is 

R = a(Kt} V ..• V a(Kl) V a(MI) V ... V a(Mn ). 

Since I is an (£, oI)-model of Cl and C2 , it is a standard model of Cl and C2 • Hence, 
because of the soundness of standard resolution, I is a standard model of R. Assume I is 
not an (£,oI)-model of R, then oI(R) = false. Consequently, for all literals Ki and Mj, 
oI(a(Ki» =oI(a(Mj» = false. That is why oI(Ki) =false and oI(Mj) =false, and 
by the definition of (£,oI)-interpretations, I(Ki) = false and I(Mj) = false. Finally, 
because of I(Cl ) =I(C2 ) = true, I(L) = I(-.L') = true also holds, contradicting the 
unifiability of Land L'. 
To prove the soundness of EXEMP, we assume I to be an (£, oI)-model for a clause 
L I V ••. V L m V K 1 V •.• V K n and assume that the Li can be eliminated by EXEMP and 
the Kj can not. Then I is an (£,oI)-model of a(L l ) V ... VO'(Lm ) V O'(Kl ) V ••• V a(Kn ) 

for any substitution 0'. For substitutions 0' occuring within the applications of EXEMP, 
the literals O'(Li) are ground. This implies that I(O'(Li» = oI(O'(Li» = false for all i 
and thus guarantees I(O'(Kl ) V ... V O'(Kn » = true. Since I is an (£,oI)-interpretation, 
I is an (£,oI)-model of the resulting exemplified clause, 0'(K1 ) V ... V O'(Kn ). 

The soundness of the calculus follows since all three rules are sound and the empty clause 
is trivially (£, 8I)-unsatisfiable. • 

THEOREM: The calculus consisting of the rules RES, FACT, and EXEMP is refutation 
complete. 

Proof: Let C be a finite, (£, 8I)-unsatisfiable clause set. In order to show completeness, 
the derivability of 0 from C by RES, FACT, and EXEMP must be proved. We therefore 
form the transitive closure Cof C under EXEMP which can he done in finitely many steps 
and prove that Cis unsatisfiable in the standard sense (and that 0 is derivable from C by 
RES and FACT according to the completeness result for standard resolution). 
For a proof by refutation, assume Chas a standard model ({'Pit}It' I). We show that there 
is an (£, oI)-model ({V It } It' I*) of C. 

Construction of I*: Let ~It be partial mappings from £It to 'Pit such that for all constants 
Clt denoting examples of sort K, ~(oI(c,,» := I(c holds. For all constants c in the signaturelt ) 

of the underlaying language [, we fix I*(c) := I(c).
 
Let P be a predicate symbol of sort Kl X ••• X Km -> K in [, and let d lti be arbitrary elements
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is trivially (£  , 6I)-unsatisfiable. I

THEOREM: The calculus consisting of the rules RES, FACT, and EXEMP is refutation
complete.

Proof: Let C be a finite, (£,6I)-unsatisfiable clause set. In order to show completeness,
the derivability of CI from C by RES, FACT, and EXEMP must be proved. We therefore
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f'". Th I*(P(d d»'- {8I(P)(~"I(d"I),... ,~"m(d"m» if not undef 
o	 V",, en "1' ... , "m .- I(P)(d d) I 

"I , ••• , "m e se. . 
By defining the interpretation of function symbols analogously, I* is fixed as an (£, 8I)­
interpretation for all formulae of the language £. It remains to show that I* is indeed a 
model of C. 

Let C E C and C = K 1 V ... V Km and assume I*(C) = false. By Herbrand's theorem 
there is a ground substitution q such that I*(q(C» = false. Since C 2 C and I 1= C, 
we must have I(q(C» = true, and since I*(q(C» = false, 8I(q(C» must evaluate to 
false (definition of I*), Le. ,8I(q(Ki» must be false for all i. Thus, the empty clause 
o can be derived from C by EXEMP, and so 0 is an element of C. This contradicts the 
assumption that Chas a model. • 

REMARK: Of course, it is not the idea of the exemplification-based resolution calculus 
to perform all possible applications of EXEMP in advance as in the completeness proof. 
The application of the EXEMP-rule, the selection of a clause, and the choice of q, are 
tasks for an efficient control strategy. In particular, it is useful to have a partial order 
on the examples and to apply the exemplification rule preferentially, checking only typical 
examples. • 

A General Trend to Hybrid Reasoning 

While the classical view of AI stresses the assertional part of knowledge representation and 
rule~based reasoning, in pure case-based reasoning another extreme position is taken: only 
examples are stored and processed. 

Since neither the mere logical nor the mere semantic-based approaches are adequate in 
all cases, several subareas of AI independently witnessed the development of techniques for 
reasoning based on various semantically oriented representations mixed with the traditional 
deductive approach. To wit: 

• Model-based methods in theorem proving rely on hybrid representations.	 Typical 
approaches include model construction methods [21], model checking [7], "vivid reas­
oning" [4], and the various methods of representing a model in the form of a diagram 
in geometry theorem proving [6] . 

• Recently, diagrams have become important again as a representational medium, and 
the manipulating of diagrams [17] or depictions [13] as a means of inferencing. 

The investigation of analogical reasoning based on the semantic representation of 
typical examples as opposed to rule-based analogical inference, is becomming an 
active area of research in hybrid reasoning (see, e.g., [10] and the additional references 
there). 
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4 A General Trend to Hybrid Reasoning

While the classical view of AI stresses the assertional part of knowledge representation and
rule-based reasoning, in pure case-based reasoning another extreme position is taken: only
examples are stored and processed.

Since neither the mere logical nor the mere semanticsbased approaches are adequate in
all cases, several subareas of AI independently witnessed the development of techniques for
reasoning based on various semantically oriented representations mixed with the traditional
deductive approach. To wit:

o Model—based methods in theorem proving rely on hybrid representations. Typical
approaches include model construction methods [21], model checking [7], “vivid reas-
oning” [4], and the various methods of representing a model in the form of a diagram
in geometry theorem proving [6].

o Recently, diagrams have become important again as a representational medium, and
the manipulating of diagrams [17] or depictions [13] as a means of inferencing.

The investigation of analogical reasoning based on the semantic representation of
typical examples as opposed to rule-based analogical inference, is becomming an
active area of research in hybrid reasoning (see, e.g., [10] and the additional references
there).



5 Conclusion; Exemplification-Based Reasoning 

Hybrid reasoning as proposed in this paper, attempts to combine the strong tools of formal­
ization taken from logic and the more semantic oriented, noncompositional representation 
of examples. A formal framework for combining sets of formulae with the information 
provided by an explicit representation of examples was presented. While the resulting hy­
brid reasoning presented in this paper is resolution-based, we are not particularly committed 
to the use of resolution. Indeed, our representation is suitable for combination with any de­
ductive rule of inference. Moreover; this approach can also be employed in conjunction with 
non-deductive inference methods, e.g., for analogical reasoning based on typical examples, 
induction, abduction, etc. In a forthcoming paper Ill], we present a uniform framwork for 
hybrid reasoning, called exemplification. The idea behind exemplification-based reasoning 
is that the different traditional modes of logical inference (deduction, abduction, and in­
duction as, for example, proposed by Charles S. Peirce) can he augmented by an additional 
"exemplification" rule instructing the reasoning system to look up an (typical) example 
directly. 

We have outlined here how our framework supports hybrid reasoning in the case of 
for reliable (deductive) reasoning. In conjunction with tentative reasoning, such as hybrid 
analogy or hybrid abduction, it is important to use the structure of the given sets of 
examples as in [lOJ. 

Acknowledgements. We would like to thank Patricia Johann for her comments on a 
draft of this paper. 
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