
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t
K

ai
se

rs
la

ut
er

n
D

-6
76

63
 K

ai
se

rs
la

ut
er

n
SE

KI
 -

R
EP

O
R

T

Completion and Equational Theorem
Proving using Taxonomic

Constraints
Jö rg Denz inger

SEKT Report SR-95-11

Completion and Equational Theorem Proving
using Taxonomic Constraints

Jörg Denzinger
Department of Computer Science

University of Kaiserslautern
Postfach 3049, 67653 Kaiserslautern

E-mail: denzinge@informatik.uni-kl.de

Abstract

We present an approach to prove several theorems in slightly different axiom
systems simultaneously. We represent the different problems as a taxonomy, i.e.
a tree in which each node inherits all knowledge of i ts predecessors, and solve the
problems using inference steps on rules and equations with simple constraints,
i.e. words identifying nodes in the taxonomy. We demonstrate that a substantial
gain can be achieved by using taxonomic constraints, not only by avoiding the
repetition of inference steps in the different problems but also by achieving run
times that are much shorter than the accumulated run times when proving each
problem separately.

1 Introduction

The problem we are interested i n i s equational theorem proving (although taxonomic
constraints can also be used by other theorem proving approaches that are based on the
generation of facts): Given a set E of equations and a goal s = t , we want to prove s =p
t . Methods based on the Knuth-Bendix completion (see [KB70]) have turned out to
be highly efficient for this problem. Very sophisticated heuristics have been developed
t o search goal directed i n the search space (see [DF94]) . Also, distributed theorem
provers have been designed and implemented (see [AD93], [ADF95]) to enhance the
power of these provers.
In this paper we focus on the problem to prove several theorems s; = ¢; from (slightly)
different axiom systems FE, i=1,...,n, simultaneously. Clearly, i f all the E* are unrelated,
each of the theorems has to be proved separately. But in many situations the axiom
systems have large parts in common. Such a situation occurs, for example, when one
wants to prove several conditional consequences of a mathematical structure. Then one
may want not to repeat the same inference steps for different proofs. Here we propose
to organize the axiom systems as a taronomy T , a tree in which with each node a set of
facts is associated, initially axioms, that are inherited by all successors of the node and
a set of theorems t o prove. Such taxonomies play also: an important role in KL-ONE
based knowledge representation formalisms (see [BS95]).

2

The inference rules of our system T AX reflect the structure of the taxonomy T by
initially associating with each axiom a taxonomic ,constraint w describing the path
from the root of T to the node N that contains the axiom. In a similar way taxonomic
constraints are added to the theorems to prove. Inferences between axioms and!or
theorems are only allowed if their nodes are on a common path. This can be tested
easily by determining whether one of the corresponding constraints is a prefix of the
other one. The result of an inference step is stored in the deeper one of the two nodes
involved.

Our concept of a constraint is quite different from the common concept of constraints
used in deduction processes (see [Bii90] or [KKR90]) that stem from logic programming
(see, for example [Sm89]). Normally, constraints are added to some already derived
fact F to describe the validity of F. In other words, a constraint C assigned to a fact
F (a clause, an equation, a formula) is a logical formula. Then O"(F) is valid for those
substitutions 0" only that satisfy C~ In this context the problem arises how to handle

. the constraints, especially when and how to solve them, These problems do not appear
in our context.

As we will show by examples, our approach allows one to simultaneously solve sets of

problems with less inference steps. Since the constraint handling is extremely simple

this results directly in faster proofs.

This report is organized as follows: After this introduction, we will provide the nec
essary definitions to formulate our method in section 2. In section 3 we present an
inference system for unfailing completion with taxonomic constraints, deal with the
completeness of this system and provide control algorithms for the system we found
useful. In section 4 we present experiments with our method. In section 5 we discuss
some situations in which completion with taxonomic constraints is very useful and in
section 6 we give a conclusion and utter a few remarks about future work.

Basic Definitions

Equational theorem proving deals with solving the following problem:

Input: E, a set of equations over a fixed signature sig;

s = t, a goal equation over sig

Question: Does s = t hold in every model of E ?

In this paper we will deal with the following modification of this problem:

Input: {Ei 11 :::; i :::; k}, all E i sets of equations over a fixed signature sig;

k goal equations Si = ti over sig

Question: Does for all i Si = ti hold in every model of E i ?

Let us first take a closer look at the first problem. Let T h(E) denote the set of equations
over sig that hold in every model of E. By Birkhoff's theorem we have s = t E Th(E) iff

2

The inference rules of our system TAX reflect the structure of the taxonomy T by
initially associating with each axiom a taxonomic constraint w describing the path
from the root of T to the node N that contains the axiom. In a similar way taxonomic
constraints are added to the theorems to prove. Inferences between axioms and/or
theorems are only allowed if their nodes are on a common path. This can be tested
easily by determining whether one of the corresponding constraints is a prefix of the
other one. The result of an inference step is stored in the deeper one of the two nodes
involved.
Our concept of a constraint is quite different from the common concept of constraints
used in deduction processes (see [Bü90] or [KKR90]) that stem from logic programming
(see, for example [Sm89]). Normally, constraints are added to some already derived
fact F to describe the validity of F. In other words, a constraint C assigned to a fact
F (a clause, an equation, a formula) is a logical formula. Then ¢(F) is valid for those
substitutions o only that satisfy C, In this context the problem arises how to handle

“the constraints, especially when and how to solve them. These problems do not appear
in our context.

As we will show by examples, our approach allows one to simultaneously solve sets of
problems with less inference steps. Since the constraint handling is extremely simple
this results directly i n faster proofs.

This report is organized as follows: After this introduction, we will provide the nec-
essary definitions to formulate our method in section 2. In section 3 we present an
inference system for unfailing completion with taxonomic constraints, deal with the
completeness of this system and provide control algorithms for the system we found
useful. In section 4 we present experiments with our method. In section 5 we discuss
some situations in which completion with taxonomic constraints is very useful and in
section 6 we give a conclusion and utter a few remarks about future work.

2 Basic Definitions

Equational theorem proving deals with solving the following problem:

Input: E , a set of equations over a fixed signature sig;
s = t , a goal equation over sig

Question: Does s = t hold i n every model of E ?

In this paper we will deal with the following modification of this problem:

Input: {FL < i <k}, all E* sets of equations over a fixed signature sig;
k goal equations s; = ¢; over sig

Question: Does for all i 5 ; = t ; hold in every model of E* ?

Let us first take a closer look at the first problem. Let T'h(E) denote the set of equations
over s i g that hold in every model of E . By Birkhoff’s theorem we have s = t € Th (E) iff

s can be transformed into t by replacing equals by equals. Provers based on rewriting
and completion techniques developed by Knuth and Bendix ([KB70]), improved to
unfailing completion ([HR87], [BDP89]), have proven to be quite successful in solving
this first problem.

We assume the reader to be familiar with rewriting and completion techniques. An
overview is given in [AM90] or [DJ90].

A signature sig = (S, F, T) consists of a set S of sorts, a set F of operators and a
function T : F ~ S+ that fixes the input and output sorts of the operators. Let
T(F, V) denote the set of terms over F and a set V of variables. By tip we denote
the subterm of t at position p and by t[Pf-s] the replacement of tip in t by s. By
T(F) = T(F,0) we denote a set of ground terms over F. Let K be a set of new
constants. A reduction ordering >- is a well-founded ordering on T(F U K, V) that is
compatibl~ with substitutions and the term structure, i.e. t l >- t 2 implies O"(tl) >- 0"(t2)

and t[p f- t l] >- t[p f- t 2]. If >- is total on T(FUK) then >- is called a ground reduction
ordering.

A rule is an oriented equation, written as 1-t r, such that Var(r) ~ Var(l). A set R
of rules is compatible with >- if 1 >- r for every 1 ~ r in R. If E is a set of equations
then RE = {O"(u) ~ 0"(v) I u == v in E, 0" a substitution, 0"(u) >- 0"(v)} is the set of
orientable instances of equations in E. (We use u == v to denote u = v or v = u.)
Finally, we have R(E) = R U RE. If I -t r E R(E) and O"(l) _ tip and t[p f- O"(r)] - s,
then t is called reducible to s and we write t =? s. If a term t is not reducible with any
element of R(E), then it is in normal form.

Let u:.... v and s ...:.. t be equations in E U R. Let u/p be a non-variable subterm
of u that is unifiable with s, say with most general unifier 0" = mgu(ulp,s). Then
O"(u)[P f- O"(t)] = a:(v) is in Th(R U E). If O"(u)[P f- O"(t)]) >f O"(u) and O"(v) >f O"(u),
then O"(u)[P f- O"(t)] = O"(v) is a critical pair of R,E. .

Since we will base our inference system for unfailing completion with taxonomic con
straints on the inference system U presented in [AD93], which is a slight improvement
of the system presented in [BDP89], we need also another ordering on terms, namely
the encompassment ordering t>. It is the strict part of the quasi-ordering ~ defined
by $ ~ t iff O"(t) = sip for some substitution 0" and some position p.

In general, a proof procedure for equational theorem proving using unfailing completion
works as follows: Input is the set E and g, a ground equation over FUK (the skolemized
goal s = t) and a ground reduction ordering >-. The procedure uses sets R,E and CP.
The input equations are put into CP (therefore E = 0). Then the following loop is
repeated until the normal forms of the terms of g are the same or subsumed by an
equation of E or until the set CP is empty: Select an equation s'=t' out of CP. Let s"
and t" be normal forms of s' and t' with respect to R(E). If neither s" = t" nor s"=t"
is subsumed by an equation in E, then all critical pairs between s"=t" and E and R
are added to CP (resp. their normal forms). If s" and t" are comparable with respect
to >-, then the appropriate rule is added to R, else s"=t" is added to E. All elements
of E and R that can be reduced with the new rule or equation are removed from R or
E and their normal forms are added to CP.

3

s can be transformed into £ by replacing equals by equals. Provers based on rewriting
and completion techniques developed by Knuth and Bendix ([KB70]), improved to
unfailing completion ([HR87], [BDP89]), have proven to be quite successful in solving
this first problem.
We assume the reader to be familiar with rewriting and completion techniques. An
overview is given in [AM90] or [DJ90].
A signature sig = (S, F,7) consists of a set S of sorts, a set F of operators and a
function 7 : F — S* that fixes the input and output sorts of the operators. Let
T(F ,V) denote the set of terms over F and a set V of variables. By t /p we denote
the subterm of t at position p and by t [p«s] the replacement of t /p in t by s. By
T (F) = T(F;0) we denote a set of ground terms over F . Let K be a set of new
constants. A reduction ordering > is a well-founded ordering on 7 (F U K ,V) that is
compatible with substitutions and the term structure, i.e. ¢; > t ; implies o(t1) > o(t2)
and t p — #;] >= t[p « tg]. If > is total on 7(FUK) then > is called a ground reduction
ordering.

A rule is an oriented equation, written as 1 — r , such that Var(r) © Var(l). A set R
of rules is compatible with > i f | > r for every! — r i n R. If FE is a set of equations
then Rg = {o(u) — o(v) | u = v in E , 0 a substitution, o(u) > o(v)} is the set of
orientable instances of equations in E . (We use u = v to denote u = v or v = u.)
Finally, we have R(E) = RURg . l f] » r € R(E) and o(l) = t /p and t[p « o(r)] = s,
then t is called reducible to s and we write t = s. I f a term t is not reducible with any
element of R (E) , then i t is in normal form.

Let u = v and s = t be equations in EUR. Let u/p be a non-variable subterm
of u that is unifiable with s, say with most general unifier ¢ = mgu(u/p,s). Then
o(u)[p « o(t)] = o(v) is in THRU E) . If o(u)[p — o(t)]) ¥ o(u) and o(v) ¥ o(u),
then o(u)[p — o(t)] = o(v) is a critical pair of R, E .
Since we will base our inference system for unfailing completion with taxonomic con-
straints on the inference system U presented in [AD93], which is a slight improvement
of the system presented in [BDP89], we need also another ordering on terms, namely
the encompassment ordering b . It i s the strict part of the quasi-ordering > defined
by s B tiff o(t) = s/p for some substitution o and some position p.
In general, a proof procedure for equational theorem proving using unfailing completion
works as follows: Input is the set E and g, a ground equation over FUK (the skolemized
goal s = t) and a ground reduction ordering > . The procedure uses sets R,E and CP.
The input equations are put into CP (therefore E = §). Then the following loop is
repeated until the normal forms of the terms of g are the same or subsumed by an
equation of E or until the set CP i s empty: Select an equation s ’= t ’ out of CP . Let s”
and t ” be normal forms of s’ and t ’ with respect to R(E). If neither s” = t ” nor s ”= t ”
is subsumed by an equation i n E , then all critical pairs between s ”= t ” and E and R
are added to CP (resp. their normal forms). If s” and t ” are comparable wi th respect
to > , then the appropriate rule is added to R, else s”"=t” is added to E . All elements
of E and R that can be reduced wi th the new rule or equation are removed from R or
E and their normal forms are added to CP.

In order to solve the second problem given above we will use taxonomic constraints.
Therefore we have to define what a taxonomy is.

Definition 2.1 (Taxonomy)
A tree T in which each node N consists of a set EN of equations, a set RN
of rules and a set GN of goal equations over a fixed signature sig is called a
taxonomy. If a node N has n successors N1, ... ,Nn , then these successors are
ordered and the i-th node in this ordering is assigned the number i. Therefore
each node N can be described by the path from the root to it, represented by
a word WN in IN~: WN = E if N is the root and WN = wMi, if N is the i-th
successor of node M.
The accumulated sets of equations EN and rules RN are defined recursively.
If N is the root, then EN = EN and RN = RN. If N is a successor of node M,
then EN = EN U EM, RN = RN U RM.
The equality relation =N to a node N of T is defined as =N = =ENuRN.

Note that for our purposes it is sufficient to define a taxonomy as a tree. Some readers
may find it useful to use directed acyclic graphs, as can be- the case in some taxonomy
definitions that are used in knowledge representation.

3	 Unfailing Completion and Theorem Proving with
Taxonomic Constraints

In this section we will present our unfailing completion with taxonomic constraints
by means of an inference rule system called T AX. As we will see, correctness and
completeness of T AX follow directly from correctness and completeness of standard
unfailing completion as presented in [BDP89]. However, some thoughts about fair
selection strategies for constraint critical pairs are necessary. We will provide a fair
selection strategy that does not have to take the constraints into account and give
insight into some other implementational aspects. Finally, we will discuss obvious
variations of T AX and the possible effects of these variations.

3.1 The inference system

Many experiences have shown that for theoretical reasons it is useful to present calculi
in general and completion algorithms in particular in form of inference systems. Then,
rather than having to prove for each small variation of an algorithm completeness again,
one defines so-called fairness criteria that guarantee that each control strategy to the
inference rules that fulfills these criteria produces a complete algorithm. We will also
use this method for presenting our constraint completion method. Before we present
our inference system, we have to define the form of the taxonomic constraints and their
semantics, we have to transfer our set of problems into a taxonomy and we have to
transfer the taxonomy back into starting sets for our completion inference system.

4

In order to solve the second problem given above we will use taxonomic constraints.
Therefore we have to define what a taxonomy is.

Definition 2.1 (Taxonomy)
A tree T in which each node N consists of a set Ey of equations, a set Ry
of rules and a set Gy of goal equations over a fixed signature s ig i s called a
tazonomy. If a node N has n successors MNj,..., Ny, then these successors are
ordered and the i-th node in this ordering is assigned the number i . Therefore
each node N can be described by the path from the root to i t , represented by
a word wy in IN}: wy = e i f N is the root and wn = wmi, i f N is the i - th
successor of node M .
The accumulated sets of equations EV and rules RV are defined recursively.
If N is the root, then EY = Ey and RN = Ry. If N is a successor of node M ,
then EN = Ey UEM, RN = Ry U RM.
The equality relation =x to a node N of T is defined as =yN = =gENURN-

Note that for our purposes i t is sufficient to define a taxonomy as a tree. Some readers
may find i t useful to use directed acyclic graphs, as can be the case in some taxonomy
definitions that are used in knowledge representation.

3 TUnfailing Completion and Theorem Proving with
Taxonomic Constraints

In this section we will present our unfailing completion with taxonomic constraints
by means of an inference rule system called TAX. As we will see, correctness and
completeness of TAX follow directly from correctness and completeness of standard
unfailing completion as presented in [BDP89]. However, some thoughts about fair
selection strategies for constraint critical pairs are necessary. We will provide a fair
selection strategy that does not have to take the constraints into account and give
insight into some other implementational aspects. Finally, we will discuss obvious
variations of 7AX and the possible effects of these variations.

3.1 The inference system

Many experiences have shown that for theoretical reasons i t is useful to present calculi
in general and completion algorithms i n particular i n form of inference systems. Then,
rather than having to prove for each small variation of an algorithm completeness again,
one defines so-called fairness criteria that guarantee that each control strategy to the
inference rules that fulfills these criteria produces a complete algorithm. We will also
use this method for presenting our constraint completion method. Before we present
our inference system, we have to define the form of the taxonomic constraints and their
semantics, we have to transfer our set of problems into a taxonomy and we have to
transfer the taxonomy back into starting sets for our completion inference system.

4

Definition 3.1 (taxonomic constraint, constraint equation/rule/goal)
Let T be a taxonomy and N a node of T. The word WN to N is called the
taxonomic constraint to N.
If w is a taxonomic constraint, s=t an equation, 1 - r a rule and u=v a goal
equation, then s=tlw is a constraint equation, I - rlw a constraint rule and
u=vlw a constraint goal.

As already stated, we want to solve several proof problems Si -E' ti simultaneously
by means of transforming them into a taxonomy and then performing completion with
constraint rules, equations and goals obtained from the taxonomy. It is our goal to
change standard unfailing completion as little as possible to accomplish this task. Since
the constraints of the rules, equations and goals are sufficient to represent the taxonomy
T from which they were obtained we will identify in the following a node N of T and
its constraint WN.

As a result of performing completion we have to expect that the sets EN, RN and GN
of a node N of a taxonomy change if an appropriate inference rule is applied. But '!'e
will prove that =N remains the same during the whole completion process for each
node N of the taxonomy.

Standard unfailing completion works on sets of equations and rules. In order to solve
our problem we will also need sets of goals. Initially, these sets have to be obtained
from a taxonomy T. Before we will define our inference system we have to construct
such a taxonomy out of our proof problems Si =Ei ti. Since there are several ways to
construct a taxonomy out of these problems this task has to be done by the user of
our system TAX. However, the following construction can be used to obtain an initial
taxonomy T to the proof problems.

The root node No of T is defined by

ENo = ni=ln Ei, RNo = 0 and GNo = {Si = til Ei = ENo}·
Then we partition the set M = {Ei IEi =1= ENo } into several sets M1 to Mm, such that
M i n Mj = 0 for all i =1= j, Uj=lmMj = M and nEEMj E =1= 0 for all j. For each Mj a
node Nj as successor of the last node is constructed by

ENj = nEEMj E \ ENo ' RNj = 0 and GNj = {Si = tilEi = ENj}.
Then for each Mj this construction is repeated on and on until for all i = 1,... ,n Si =
ti E UNETo GN · .

Note that there may be several partitions of a set M into M1 to Mm and one of these
partitions (preferably with small m and big sets ENj) has to be selected.

I

Definition 3.2 (Inference system TAX)
Let T be a taxonomy. The inference system TAX works on triples (E,R,G),
where E is a set of constraint equations, R a set of constraint rules and G a
set of constraint goals. The initial set (Eo, Ra, Go) to T is defined by

Eo = {s=tlw I s=t E EN for some NET and w the constraint to N}
!to = 0
Go = {s=tlw I s=t E GN for some NET and w the constraint to N}.

5

Definition 3.1 (taxonomic constraint, constraint equation/rule/goal)
Let T be a taxonomy and N a node of T . The word wy to N is called the
tazonomic constraint to N .
If w is a taxonomic constraint, s=t an equation, — r a rule and u=v a goal
equation, then s=t|w is a constraint equation, | — r |w a constraint rule and
=v|w a constraint goal.

As already stated, we want t o solve several proof problems s; =g i t ; simultaneously
by means of transforming them into a taxonomy and then performing completion with
constraint rules, equations and goals obtained from the taxonomy. I t is our goal to
change standard unfailing completion as l itt le as possible to accomplish this task. Since
the constraints of the rules, equations and goals are sufficient to represent the taxonomy
T from which they were obtained we will identify in the following a node N of T and
i ts constraint wy .

As a result of performing completion we have to expect that the sets Ey, Ry and Gy
of a node N of a taxonomy change i f an appropriate inference rule is applied. But we
will prove that =y remains the same during the whole completion process for each
node N of the taxonomy.

Standard unfailing completion works on sets of equations and rules. In order to solve
our problem we will also need sets of goals. Initially, these sets have to be obtained
from a taxonomy T . Before we wil l define our inference system we have to construct
such a taxonomy out of our proof problems s; =g: %;. Since there are several ways to
construct a taxonomy out of these problems this task has to be done by the user of
our system TAX. However, the following construction can be used to obtain an initial
taxonomy T to the proof problems.

The root node No of T is defined by
En, = i z1 , .n E ‘ , Rn, = 0 and Gm = {s i = tiJE* = En, } .

Then we partition the set M = {E*|E* # En,} into several sets M; to Mm, such that
M; N M; = 0 for al li # j , Uj=1,..m Mj = M and Ngep; E # 0 for all j . For each M; a
node N; as successor of the last node is constructed by

En; = Neem; E \ En) Rn ; = 0 and Gn; = { s ; = t ; |E * = ENi } ,

Then for each M; this construction is repeated on and on until for a l l i = 1,...,n 5 ; =
t i € Uner, Gn-
Note that there may be several partitions of a set M into M i to My, and one of these
partitions (preferably with small m and big sets En;) has to be selected.

Definition 3.2 (Inference system TAX)
Let T be a taxonomy. The inference system TAX works on triples (E,R,G),
where E is a set of constraint equations, R a set of constraint rules and G a
set of constraint goals. The initial set (Fo, Ro, Go) to T is defined by

Ey = {s=t|w | s=t € En for some N € T and w the constraint to N }
Ro =10
Go = {s=t |w | s=t € Gn for some N € T and w the constraint to N } .

The inference rules of T AX are as follows:

1. Orient
E U {s == t Iw }, R, G

if s > t.
E,RU {s -+ tlw},G

2. Generate
E,R,G

E U {s == t Iw }, R, G

if 11 = 1'1Iw1, 12 = 1'2!w2 E RUE, s=t critical pair to 11 -+ 1'1 and 12 -+ 1'2
withmgu u, U(11) I- u(1'd and U(12) I- u(1'2), W2=W1U and W=W2 or
W1 =W2U and W=W1.

3. Sim plify equation

E U {s == t Iv}, R, G
if s ::::;,. u with 1-+ 1'lw E R(E), v = wv', s I> 1.

E U {u == t Iv}, R, G

4.	 Simplify'right side of rule

E, R U {11 -+ r1lwd, G

E,R U {h -+ slwd,G

5. Sim plify left side of rule

E,RU {ll -+ 1'1lwd,G

E U {s == 1'llwd, R, G

if h ::::;,. s with 12 -+ 1'21w2 E R(E), W1 = W2V, 11 I> 12.

6. Subsume equation

E U {SI == hlwl, S2 == t2!W2}, R, G

,E U {S2 == t2Iw2}, R, G

if sdp - U(S2), t1 =sdp +-- u(t2)], SI I> s2, W1 = WzV.

7.	 Simplify goal

E,R,GU {s == tlw}

if s ::::;,. u with 1 -+ rlv E R(E), w = vv'.

E, R, G U {u == t Iw }

8.	 Subsume goal

E U {SI == t1 lwd, R, G U {sz == tz!wz}

E U {SI == tllwd, R, G

if sz/p U(Sl), sz[P +-- u(t1)] = t z, Wz = W1V.

9.	 Delete goal

E,R,GU {s == tlw}

if s == tE,R,G

6

The inference rules of TAN are as follows:

1. Orient
EU {s= t lw} ,R,G
E,RU {s — tlw},G i f s > t .

. Generate
E,R ,G

EU { s= tw } ,R ,G
i f ly = rw , lz = raw € RUE, s=t critical pair to ly — ri and I; — 72

with mgu o, o(ly) £ o(r) and o(l2) £ o(r2), wa=wju and w=w, or
wi=w ,u and w=w;.

Simplify equation
EU { s= t v } ,R ,G
EU {u = t|v}, R,G

i f s= u with | — r|w € R(E), v = wv',s bl.

Simplify right side of rule
ER U {h — r jw } , G

E,RU{ l ; = slun},G if r ı = s with I ; — rajw; € R(E) , wy = wav.

Simplify left side of rule
E,RU {kL — r i |w i } ,G
EU { s= r | u } ,RG
f l y = s with lp, — ro |ws € R(E), wy = Wav, L b l s .

Subsume equation
EU {s ı = iw , 82 = t 2 |wW2} , R ,G

E U { s2 = ta|ws}, R , G

i f 51 /p = 0(s2), t ı = sılp « 0(t2)], S ı b 82 , wy = wav.

Simplify goal
E,R ,GU {s = t lw}
E,R,GU {u = t{w} i f s = u with | — r j v € R(E) , w = vv’.

Subsume goal
EU {s ı = t1|lun}, R ,G U {s2 = t2|w2}

EU {sy = t un } , R,G
i f s2/p = o(s1), Sap — a(t1)] = t a , Wo = Nv .

. Delete goal
E,R ,GU{s =tlw}

E .R GC i f s= t

10. Success
E,R,{s~tlw}

if s = tSuccess

So, T AX deals with facts that are associated with paths in a taxonomy. For manip
ulating a fact of a given level of the path only facts with the same or higher level,
representing more general knowledge, can be used. The results of inferen<;,es involving
facts of different levels will always belong to the deeper, more specialized level.

Note that there are some differences between T AX and the very general method of
constraint theorem proving described in [KKR90]. We will discuss these differences in
section 3.4.

3.2 Theoretical aspects

Since the inference rules of T AX are essentially the same rules as those in [AD93], the
necessary additional definitions and the proofs to establish correctness and complete
ness of [BDP89] can be taken over. Thus we have

Theorem 3.1 (correctness of TAX)
Let (E,R, G) be the constraint equations, rules and goals to a taxonomy T.
Let further (E',R', G ') be the result of applying one of the rules of T AX to
(E,R, G). Then for all nodes N of T =ENURN==E,NUR,N holds.

Proof:
We reduce the problem to standard unfailing completion by considering a node
N of T with constraint WN. For rules 7 to 10 there is nothing to prove, because
only the set GN of N may be changed.
Since we allow only the simplification of term pairs by rules whose constraints
are prefixes of the constraints of the term pairs (see also the comment at the
end of section 3) and since critical pairs get the longer constraint, the node N
and EN and RN are only affected, if both term pairs the inference rule uses
have constraints that are prefixes of WN. But this means, that these term pairs
are in EN and RN. Then the correctness of the un-constraint inference system
of [AD93] guarantees that =ENuRN==EINUR'N holds. q.e.d.

An important property of an algorithm based on an inference rule system is a fair
selection of applications of the inference rules. As already stated, for completion only
a fair selection of critical pairs is required. Again, the definition of fairness of [BDP89]
can be taken over to constraint critical pairs.

Definition 3.3 (Fairness)
A derivation (Ei ,Ri, Gi)iEIN, where (Ei+1 , Ri+I, Gi+l) is derived from
(Ei, Ri, Gi) by application of a rule of TAX, is called fair, if for each crit
ical pair u = vlw to Eoo ,Roo there is an i such that u =vlw E E i . Here, Eoo =
Ui~O nj~i E j and Roo = Ui~O nj~i R j .

7

10. Success
E,R,{s = t|w}

Success

So, TAX deals with facts that are associated with paths in a taxonomy. For manip-
ulating a fact of a given level of the path only facts with the same or higher level,
representing more general knowledge, can be used. The results of inferences involving
facts of different levels will always belong to the deeper, more specialized level.
Note that there are some differences between TAN and the very general method of
constraint theorem proving described in [KKR90]. We will discuss these differences in
section 3.4.

3.2 Theoretical aspects

Since the inference rules of TAX are essentially the same rules as those in [AD93], the
necessary additional definitions and the proofs to establish correctness and complete-
ness of [BDP89] can be taken over. Thus we have

Theorem 3.1 (correctness of TAX)
Let (E,R,G) be the constraint equations, rules and goals to a taxonomy T.
Let further (E’,R’,G’) be the result of applying one of the rules of TAX to
(E,R,G). Then for all nodes N of T =gnygv==pgwy gw holds.

Proof:
We reduce the problem to standard unfailing completion by considering a node
N of T with constraint wy. For rules 7 to 10 there is nothing to prove, because
only the set GN of N may be changed.
Since we allow only the simplification of term pairs by rules whose constraints
are prefixes of the constraints of the term pairs (see also the comment at the
end of section 3) and since critical pairs get the longer constraint, the node N
and EV and RV are only affected, i f both term pairs the inference rule uses
have constraints that are prefixes of wy . But this means, that these term pairs
are in EV and RN. Then the correctness of the un-constraint inference system
of [AD93] guarantees that =g~gv==pgw~rw holds. q.e.d.

An important property of an algorithm based on an inference rule system is a fair
selection of applications of the inference rules. As already stated, for completion only
a fair selection of critical pairs is required. Again, the definition of fairness of [BDP89]
can be taken over to constraint crit ical pairs.

Definition 3.3 (Fairness)
A derivation (Ei , R i , Gi)ien, where (E41, Rit1,Giy1) is derived from
(E i , Ri, Gi) by application of a rule of TAX, is called fair, i f for each crit-
ical pair u = v|w to E”,R°” there is an i such that u =v |w € E; . Here, E ” =
Uiso N i> i E ; and R ” = Uiso Nj> i R;.

So, if we omit the constraint w, this would be .the usual definition of fairness. Now we
have

Theorem 3.2 (completeness of TAX)
Let T be a taxonomy to the input problems Si -E' ti and let >- be a ground
reduction ordering and (Ej ,Rj, Gj)jEJN an derivation that is fair with Eo,Ro
and Go as defined before. Then for each pair of ground terms (s, t) with S =Ei t
for an i El, ... , n, there is an j E IN such that the normal forms of sand t with
respect to R j (Ej) are identical.

Proof:

As in [BDP89] one can define a proof ordering >-u based on >- and show
that for each proof for s =Ei t using elements of (Ej ,Rj, Gj) with appro
priate constraints that is no rewrite proof, there is a proof using elements of
(Ej+l, Rj+1 , Gj+l) (again with appropriate constraints) that is equal or smaller
with respect to >-u. In fact, one can use the same proof ordering as in [BDP89]
and the same proof totally neglecting the constraints. They only restrict the
rules and equations that can be used for a particular proof. But one has to
make the following modification:
Since T AX does not allow the simplification of term pairs with constraint w
using elements of R(E) with an constraint wv, v i- E, there are fewer simplifica
tions possible than without constraints. For the proof of s = Ei t in (Ej , Rj , Gj)
this means, that according to [BDP89] one could apply a simplification infer
ence that is not possible with respect to TAX. But, since a match is always
also an mgu, there is a critical pair, i.e. a generation step, that can be applied
to do the trick, resulting in a smaller proof.
The fairness guarantees that eventually to each proof that is no rewrite proof
there will be a (Ej , Rj, Gj) containing a smaller one. Therefore for each pair
of ground terms (s, t) with S =Ei t a jo will be reached such that the proof to
s =Ei tin (Ejo , Rjo,Gjo) is a rewrite proof, since >-u is Noetherian. q.e.d.

3.3 Practical aspects

The problem we have to face is how to guarantee derivations to be fair. An obvious
solution is to use the FIFa-strategy for selecting the critical pairs, but it is well known
that FIFa performs very badly. Therefore more intelligent strategies are needed. One
way would be to extend a known (intelligent) strategy for unfailing completion to
deal also with the constraints. Fortunately, this is not necessary. A very often used
selection strategy, the smallest-component strategy of [Hu80] (we call it AddWeight,
see [AD93]), produces fair derivations also for T AX without the need of considering
the constraints.

AddWeight always selects a critical pair with the smallest term weight, which (in 0Uf

system) is computed by counting a function symbol as 2 and a variable as 1. The term
weight of each term of a critical pair is added to get the weight of a pair (hence the

8

So, i f we omit the constraint w, this would be the usual definition of fairness. Now we
have

Theorem 3.2 (completeness of TAX)
Let T be a taxonomy to the input problems s; =g i t ; and let = be a ground
reduction ordering and (E;, R;,G;)jen an derivation that is fair with Eo,Ro
and Gy as defined before. Then for each pair of ground terms (s , t) with s =g i t
for an i € 1,...,n, there is anj € N such that the normal forms o f s and t with
respect t o R ; (E ;) are identical.

Proof:

As in [BDP89] one can define a proof ordering > ; based on > and show
that for each proof for s =g i t using elements of (E; , R;,G;) with appro-
priate constraints that i s no rewrite proof, there i s a proof using elements of
(Ej+1, Ri+1,Gj+1) (again with appropriate constraints) that is equal or smaller
with respect to > . In fact, one can use the same proof ordering as in [BDP89]
and the same proof totally neglecting the constraints. They only restrict the
rules and equations that can be used for a particular proof. But one has to
make the following modification:
Since 7 AX does not allow the simplification of term pairs with constraint w
using elements of R(E) with an constraint wv, v # ¢ , there are fewer simplifica-
tions possible than without constraints. For the proof of s =g : t i n (E;, R;, G;)
this means, that according to [BDP89] one could apply a simplification infer-
ence that is not possible wi th respect t o TAX. But, since a match is always
also an mgu, there is a critical pair, i.e. a generation step, that can be applied
to do the trick, resulting in a smaller proof.
The fairness guarantees that eventually to each proof that is no rewrite proof
there will be a (Ej, R;,G;) containing a smaller one. Therefore for each pair
of ground terms (s , t) with s =g i t a jo wi l l be reached such that the proof to
s =g i t i n (Ej, Riss G i) is a rewrite proof, since > is Noetherian. q.e.d.

3.3 Practical aspects

The problem we have to face is how to guarantee derivations to be fair. An obvious
solution is to use the FIFO-strategy for selecting the critical pairs, but i t is well known
that FIFO performs very badly. Therefore more intelligent strategies are needed. One
way would be to extend a known (intelligent) strategy for unfailing completion to
deal also with the constraints. Fortunately, this is not necessary. A very often used
selection strategy, the smallest-component strategy of [Hu80] (we call i t AddWeight,
see [AD93]), produces fair derivations also for TAX without the need of considering
the constraints.

AddWeight always selects a critical pair with the smallest term weight, which (in cur
system) is computed by counting a function symbol as 2 and a variable as 1. The term
weight of each term of a critical pair is added to get the weight of a pair (hence the

8

name AddWeight). Since there is only a limited number ofterm pairs that have a lower
term weight than a given critical pair and since there is also only a limited number of
term pairs with the same weight, AddWeight is a fair selection strategy with respect to
the fairness defined in [BDP89]. Since the number of nodes in T is also limited, each
term pair can only occur with a limited number of different constraints. Therefore
there is only a limited number of term pairs with constraints that have a lower weight
than a given constraint critical pair and this means that AddWeight is indeed fair.

Another aspect when looking for a selection strategy (or heuristic, if one is not in
terested in completeness) for critical pairs that is often critized is the absence of any
goal orientation. The same criticism may also be directed towards our system TAX.
But, as in the case of simple unfailing completion, goal oriented selection heuristics, as
defined in [DF94], can be used. If we do not store the critical pairs in one list sorted
according to one selection strategy, but use for each one of the nodes of T a seperate
list, then the selection from these lists can be organized according to different selection
strategies. Since there are several goals to solve, a goal oriented heuristic should only
be used for those critical pair lists that contain one goal only. The other lists should
employ a strategy as, for example, AddWeight. Although fairness is of no concern when
goal orientation is involved, the selection of the critical pair list from which the next
critical pair is chosen should be fair, i.e. each list is chosen regularly. But, so far our
experiments have shown that there is no need for such complex selection mechanisms;
AddWeight was always sufficient (see section 4).

As we have seen, from a theoretical point of view only the sets Ei and Ri are interesting.
Nevertheless, we included the sets Gi of goals in TAX and even several inference rules
mainly dealing with goals, because the goals are very important for implementations
of T AX. An empty list Gi does not only indicate that all initial problems are solved
and the run can be terminated, but the absence of any goals in a part of T (from a
node down to all leaves of that part of T) allows us also to stop choosing any critical
pairs with constraints referring to this part of T.

3.4 Discussion of T AA'

In this section we will discuss some technical differences between TAX and other
constraint completion systems, as for example [KKR90]. Besides the main conceptual
difference -constraints used in T AX define different contexts, a kind of different worlds
deriving from each other, while in other systems constraints limit the allowed instances
of a fact- there are some further differences that can be observed on the level of inference
rules.

First, we do not have an inference rule 'that merges constraints and do also not provide
a function to do a merging. It is possible, that the same rule, equation or goal (up to
renaming of variables) occurs with two different constraints. Then this rule, equation or
goal has to be represented twice (with respect to TAX), one time for each constraint.
We think that the designer of a completion algorithm to T AA' should decide, whether
he wants to use sets of constraints, thus avoiding double representation of term pairs, or

9

name AddWeight). Since there is only a limited number of term pairs that have a lower
term weight than a given critical pair and since there is also only a limited number of
term pairs with the same weight, AddWeight is a fair selection strategy with respect to
the fairness defined in [BDP89]. Since the number of nodes in T is also limited, each
term pair can only occur with a limited number of different constraints. Therefore
there is only a limited number of term pairs with constraints that have a lower weight
than a given constraint critical pair and this means that AddWeight is indeed fair.
Another aspect when looking for a selection strategy (or heuristic, i f one is not in-
terested i n completeness) for critical pairs that is often cri t ized i s the absence of any
goal orientation. The same criticism may also be directed towards our system 7 AX.
But, as in the case of simple unfailing completion, goal oriented selection heuristics, as
defined in [DF94], can be used. If we do not store the critical pairs in one list sorted
according to one selection strategy, but use for each one of the nodes of T a seperate
list, then the selection from these lists can be organized according to different selection
strategies. Since there are several goals to solve, a goal oriented heuristic should only
be used for those critical pair lists that contain one goal only. The other lists should
employ a strategy as, for example, AddWeight. Although fairness is of no concern when
goal orientation is involved, the selection of the critical pair list from which the next
critical pair is chosen should be fair, i.e. each list is chosen regularly. But, so far our
experiments have shown that there is no need for such complex selection mechanisms;
AddWeight was always sufficient (see section 4).
As we have seen, from a theoretical point of view only the sets E; and R; are interesting.
Nevertheless, we included the sets G; of goals i n TAX and even several inference rules
mainly dealing with goals, because the goals are very important for implementations
of TAX. An empty list G; does not only indicate that all initial problems are solved
and the run can be terminated, but the absence of any goals in a part of T (from a
node down to all leaves of that part of T) allows us also to stop choosing any critical
pairs with constraints referring t o this part of T.

3.4 Discussion of TAX

In this section we will discuss some technical differences between 7.AX and other
constraint completion systems, as for example [KKR90]. Besides the main conceptual
difference —constraints used in TAX define different contexts, a kind of different worlds
deriving from each other, while in other systems constraints limit the allowed instances
of a fact— there are some further differences that can be observed on the level of inference
rules.

First, we do not have an inference rule that merges constraints and do also not provide
a function to do a merging. It is possible, that the same rule, equation or goal (up to
renaming of variables) occurs with two different constraints. Then this rule, equation or
goal has to be represented twice (with respect to TAX), one time for each constraint.
We think that the designer of a completion algorithm to 7 AX should decide, whether
he wants to use sets of constraints, thus avoiding double representation of term pairs, or

4

wants to allow only one constraint, thus avoiding any splitting of constraint term pairs,
which is, for example, the result when a term pair can be reduced with respect to one
constraint but can not be reduced with respect to another one. Splitting means here,
that the constraint of the term pair is splitted into a term pair with constraints that
allow the reduction and into another one with all other constraints. So, the duplication
of term pairs is introduced again.

To avoid splitting in simplification inference rules we also did not allow the simplifica
tion of a term pair whose constraint is a prefix of the constraint of the element of R(E)
that would reduce the unconstraint pair. If one wants to allow such simplifications one
has to introduce a second list of constraints, a so-called outlist, and any application of
an inference rule is only possible, if there is no element w in outlist, that is a prefix
of a constraint of the other term pair used in the inference rule. Again, this results
not only in an inference system that is more difficult to understand, but also in more
difficulties when implementing a completion procedure. We will also see that using

.T AX as given in our definition results in a decrease of inference steps made and in
decreasing run times with respect to proving each problem seperately. Therefore, it
seems not necessary to us to complicate TAX any more.

Finally, we do not have a concept for "solving" constraints. Since we do not collect con
straints that restrict substitutions, it is not necessary to do any computation regarding
their combination and the solvability of them. This is one of the major problems of
other constraint completion approaches, that so far is not satisfactory solved for many
applications. It is of no problem at all for T AX.

Experimental Results

Equational theorem proving with taxonomic constraints is intended for situations in
which from several slightly different sets of equations several goals have to be proved.
Typically, such situations occur when one wants to prove the validity of several condi
tional equations in a theory consisting of unconditional equations.

For our experiments we have chosen two such theories, namely lattice ordered groups
and an equational axiomatization of the propositional calculus, and for each theory we
have chosen several conditional equations of which we generated several problem sets
we solved using our implementation of T AX. We will compare run times, numbers
of rules and equations generated, numbers of critical pairs computed and numbers of
reductions made of our implementation using constraints and the cumulated results
obtained with our implementation when proving each conditional equation alone. All
experiments were made on a SUN Sparc 20 and the times are given in seconds. Note
that our implementation is in C (based on the DISCOUNT system, see [ADF95]), but
does not use indexing techniques or realizing lists of critical pairs as heaps.

10

wants to allow only one constraint, thus avoiding any splitting of constraint term pairs,
which is, for example, the result when a term pair can be reduced wi th respect to one
constraint but can not be reduced with respect to another one. Splitting means here,
that the constraint of the term pair is splitted into a term pair with constraints that
allow the reduction and into another one with all other constraints. So, the duplication
of term pairs is introduced again.
To avoid splitting in simplification inference rules we also did not allow the simplifica-
tion of a term pair whose constraint is a prefix of the constraint of the element of R(E)
that would reduce the unconstraint pair. I f one wants to allow such simplifications one
has to introduce a second list of constraints, a so-called outlist, and any application of
an inference rule is only possible, i f there is no element w in outlist, that is a prefix
of a constraint of the other term pair used in the inference rule. Again, this results
not only i n an inference system that is more difficult to understand, but also i n more
difficulties when implementing a completion procedure. We will also see that using

TAX as given in our definition results in a decrease of inference steps made and in
decreasing run times wi th respect to proving each problem seperately. Therefore, i t
seems not necessary to us to complicate TAX any more.

Finally, we do not havea concept for "solving” constraints. Since we do not collect con-
straints that restrict substitutions, i t is not necessary to do any computation regarding
their combination and the solvability of them. This is one of the major problems of
other constraint completion approaches, that so far is not satisfactory solved for many
applications. I t is of no problem at all for TAX.

4 Experimental Results

Equational theorem proving with taxonomic constraints is intended for situations in
which from several slightly different sets of equations several goals have to be proved.
Typically, such situations occur when one wants to prove the validity of several condi-
tional equations in a theory consisting of unconditional equations.

For our experiments we have chosen two such theories, namely lattice ordered groups
and an equational axiomatization of the propositional calculus, and for each theory we
have chosen several conditional equations of which we generated several problem sets
we solved using our implementation of TAX. We will compare run times, numbers
of rules and equations generated, numbers of critical pairs computed and numbers of
reductions made of our implementation using constraints and the cumulated results
obtained with our implementation when proving each conditional equation alone. All
experiments were made on a SUN Sparc 20 and the times are given in seconds. Note
that our implementation is in C (based on the DISCOUNT system, see [ADF95]), but
does not use indexing techniques or realizing lists of critical pairs as heaps.

10

4.1 Lattice ordered groups

The theory of lattice ordered groups is given by the following set of equations:

f(f(x,y),z) = f(x,f(y,z)) f(l,x) = x f(i(x),x) = 1
l(1(x,y),z) = l(x,l(y,z)) l(x,y) = l(y,x) l(x,x) = x
u(u(x,y),z) = u(x,u(y,z)) u(x,y) = u(y,x) u(x,x) = x
f(x,l(y,z)) = l(f(x,y),f(x,z)) u(x,l(x,y)) = x f(1(x,y),z) = l(f(x,z),f(y,z))
f(x,u(y,z)) = u(f(x,y),f(x,z)) l(x,u(x,y)) = x f(u(x,y),z) = u(f(x,z),f(y,z))

In literature, as for example [KK74], lattice ordered groups are characterized as the
combination of two mathematical structures, namely lattices and groups. Above can
be seen the group operator f of arity 2, its neutral element 1 and the inverse operator
i. A lattice is based on a partial ordering::; and two binary functions 1 and u, the
greatest lower bound and the least upper bound of two elements. The two functions 1
and u can be used to get rid of the partial ordering::; with the help of the definition

x ::; y iff l(x,y) = x or x ::; y iff u(x,y) = y.
that was already used in the axiomatization above. Since there are two ways for
eliminating ::;, there are several possible formulations to a given problem which is in
the following indicated by the last letter of the names of the examples. So, lat2a und
lat2b are two different formulations for the same problem. We present the conditional
theorems already skolemized and in the form" additional axioms:::} goal to prove".

aX-lIlono1a: u(a,b) = b :::} u(f(a,c),f(b,c)) = f(b,c)
aX-lIlono1b: l(a,b) = a :::} l(f(a,c),f(b,c)) = f(a,c)
aX-lIlono1c: u(a,b) = b :::} l(f(a,c) ,f(b,c)) = f(a,c)
aX-lIlon02a: u(a,b) = b :::} u(f(c,a),f(c,b)) = f(c,b)
aX-lIlon02b: l(a,b) = a :::} l(f(c,a),f(c,b)) = f(c,a)
aX-lIlon02c: l(a,b) = a :::} u(f(c,a),f(c,b)) = f(c,b)

lat1a: u(a,l) = a :::} u(a,f(a,a)) = f(a,a)
lat2a: u(a,l) = a, u(b,l) = b :::} u(a,f(a,b)) = f(a,b)
lat2b: l(a,l) = 1, l(b,l) = 1 :::} l(a,f(a,b)) = a
lat3a: u(a,l) = a, u(b,l) = b :::} u(a,f(b,a)) = f(b,a)
lat3b: l(a,l) = 1, l(b,l) = 1 :::} l(a,f(b,a)) = a
p04a: u(l,a) = a, u(1,b) = b :::} u(l,f(a,b)) = f(a,b)
p04b: l(l,a) = 1, l(l,b) = 1 :::} l(l,f(a,b)) = 1
p04c: u(1,a) = a, u(1,b) = b :::} l(l,f(a,b)) = 1
p04d: l(l,a) = 1, l(1,b) = 1 :::} u(l,f(a,b)) = f(a,b)
p05a: u(1,a) = 1, u(l,i(a)) = 1 :::} l=a
p05b: l(l,a) = 1, l(l,i(a)) = 1 :::} l=a
p39a: u(a,b) = a :::} u(i(a),i(b)) = i(b)
p39b: l(a,b) = b :::} l(i(a),i(b)) = i(a)
p39c: u(a,b) = a :::} l(i(a),i(b)) = i(a)
p39d: l(a,b)=b :::} u(i(a),i(b)) = i(b)

11

4 .1 Lattice ordered groups

The theory of lattice ordered groups is given by the following set of equations:

f(f(x,y),z) = f(x,f(y,z)) f(1,x) = x f(i(x),x) = 1
1(1(x,y),2) = 1(x,1(y,2)) (x ,y) = (yx) 1x,x) =x
u(u(x,y) ,z) = u(x,u(y,z)) u(xy) = u(yx) u (xx) =x
f(x,1(y,z)) = 1(f(x,y),f(x,2)) u(x l (xy)) =x {(i(xy),2) = 1({(x,2),f(y,2))
f(x,u(y,z)) = u(f(x,y),f(x,z)) l (xu(xy)) =x f(u(x,y),z) = u(f(x,2),i(y,z))

In literature, as for example [KK74], lattice ordered groups are characterized as the
combination of two mathematical structures, namely lattices and groups. Above can
be seen the group operator f of arity 2, its neutral element 1 and the inverse operator
i . A lattice is based on a partial ordering < and two binary functions 1 and u, the
greatest lower bound and the least upper bound of two elements. The two functions 1
and u can be used to get r id of the partial ordering < with the help of the definition

x <y i f f l (x , y) =x or x <y i f f u(x,y) = y.
that was already used in the axiomatization above. Since there are two ways for
eliminating < , there are several possible formulations to a given problem which is in
the following indicated by the last letter of the names of the examples. So, lat2a und
lat2b are two different formulations for the same problem. We present the conditional
theorems already skolemized and in the form "additional axioms = goal to prove”.

ax_monola: u(a,b) =b
ax_monolb: (a,b) =a
ax_monolc: u(a,b) = b
ax.mono2a: u(a,b) = b
ax_mono2b: l(a,b) =a
ax_mono2c: l(a,b) = a

latla: u(a,l) =a
lat2a: wu(a,l) =a , u(b,l) =b
lat2b: 1(a,1) =1,1(b,1) =1
lat3a: u(a,l) =a , u(b,1) = b
lat3b: l(a,1) =1,1(b,1) =1
p04a: u(l,a) =a , u(1,b) = b
p04b: 1(1,a) =1,1(1,b) = 1
p04c: u(l,a) = a, u(l,b) = b
p04d: 1(1,a) = 1, 1(1,b) = 1
p05a: u (l ‚ a)= 1, u(l,i(a)) = 1
p05b: 1(l1,a) = 1, 1(1,i(a)) = 1
p39a: u (a ,b) =a
p39b: Il(a,b) = b
p39c: u(a,b) =a
p39d: I(a,b) = b

u(f(a,c),f(b,c)) = f(b,c)
(f(a) (bic) = f(a,c)
1(f(a,c),f(b,c)) = f(a,c)
u(f(c,a),f(c,b)) = f(c,b)
1(f(c,a),f(c,b)) = f(c,a)
u(f(c,a),f(c,b)) = f(c,b)
u(a,f(a,a)) = f(a,a)
u(a,f(a,b)) = f(a,b)
I(a,f(a,b)) = a
u(a,f(b,a)) = (ba)
1(a,f(bja)) = a
u(1,f(a,b)) = f(a,b)
1(1,f(a,b)) = 1
I(1,f(a,b)) = 1
u(Lf(a,b) = (a,b)

l =a
u(i(a),i(b)) = i(b)
L(i(a)4(b)) = i(a)
1((a),i(b)) = i(a)
u(i(a)i(b)) = i (b)2

a
a

a
a

A
 2

 A
 2

11

Using a LPO with precedence i > f > n > u > 1 > a > b > c we get the results
reported in Table 1 when proving each example alone. In addition to the rules for each
example the same 8 unorientable equations were produced.

I Ex. I Run Time I Rules I crit. Pairs I Reductions I

aX-ffiono1a 21.59 118 8806 13610 I
aX-ffiono1b 21.99 122 9037 13976
aX-ffiono1c 22.50 122 9037 13976
aX-ffiono2a 21.30 108 8270 12819
aX-ffiono2b 21.48 114 8584 13282
aX-ffiono2c 21.17 108 8270 12819
latla 2.88 61 2230 2570
lat2a 4.00 90 3484 3921
lat2b 4.42 91 352-1 3954
lat3a 27.56 293 20125 22079
lat3b 29.04 294 20204 22178
p04a 15.46 212 12338 12869
p04b 4.14 96 3670 4115
p04c 4.24 96 3670 4115
p04d 16.53 212 12338 12869
p05a 3.44 75 2819 3276
p05b 3.53 75 2816 3236
p39a 20.32 112 8492 13137
p39b 20.20 113 8535 13192
p39c 21.00 113 8535 13192
p39d 21.59 112 8492 13137

'

I

I

Table 1 : Lattice ordered groups: statistics for runs of one example only

We generated out of these examples the following experiments using taxonomic con
straints.

LOGExpl:
Examples included: all
Taxonomy:

Partition at first level: {ax-ffiono1a,ax-ffiono1c,ax-ffiono2a}, {axJIlono1b,
aX-ffiono2b,ax-ffiono2c}, {lat1a,lat2a,lat3a}, {lat2b,lat3b}, {p04a,p04c}, {p04b,
p04d}, {p05a}, {p05b}, {p39a,p39c}, {p39b,p39d}
Second level: {lat2a}, {lat3a}

Comment:

Obvious partition when proving all examples.

LOGExp2 :

Examples included: aX-ffiono1a, axJIlono1b, aXJIlono1c, aXJIlono2a, aX-ffiono2b,

aX-ffiono2c, latla, lat2a, lat2b, lat3a, lat3b, p04a, p04b, p04c, p04d, p05a, p05b

Taxonomy:

Partition at first level: {axJIlono1a,axJIlono1c,axJIlono2a}, {axJIlono1b,

12

Using a LPO with precedencei >f>n>u>1>a>b5>c we get the results
reported in Table 1 when proving each example alone. In addition to the rules for each
example the same 8 unorientable equations were produced.

| Ex. | Run Time | Rules| cr i t . Pairs | Reductions |
ax_monola 21.59 118 8806 13610|
ax_monolb 21.99 122 ~ 9037 13976 |
ax_monolc 22.50 122 9037 13976 |
ax.mono2a 21.30 108 8270 12819 |
ax_mono2b 21.48 114 8584 13282 |
ax.mono2c 21.17 108 8270 12819 |
la t la 2.88 61 2230 2570|
lat2a 4.00 90 3484 3921
lat2b 4.42 91 | 3521 3954
lat3a 27.56 293 20125 22079|
la t3b 29.04 294 20204 22178
p04a 15.46 212 12338 12869
p04b 4.14 . 96 3670 4115
pO4c 4.24 96 3670 4115 |
p04d 16.53 212 12338 12869
pOda 3.44 75 2819 3276
p05b 3.53 75 2816 3236
p39a 20.32 112 8492 13137
p39b 20.20 113 8535 13192
p39c 21.00 113 8535 13192
p39d 21.59 112 8492 13137

Table 1 : Lat t ice ordered groups: stat ist ics for runs of one example only

We generated out of these examples the following experiments using taxonomic con-
straints.

LOGExpl :
Examples included: all
Taxonomy :

Partition at first level: {ax_monola,ax.monolc,ax_mono2a}, {ax.monolb,
ax-mono2b,ax_mono2c}, {latla,lat2a,lat3a}, {lat2b,lat3b}, {p04a,p04c}, {p04b,
p04d}, {p05a}, {p05b}, {p39a,p39c}, {p39b,p39d}
Second level: {lat2a}, {lat3a}

Comment :
Obvious partition when proving all examples.
LOGExp2 :
Examples included: ax_monola, ax_-monolb, ax_monolc, ax_mono2a, ax_mono2b,
ax_monoZ2c, latla, lat2a, lat2b, lat3a, lat3b, p04a, p04b, p04c, p04d, p05a, p05b
Taxonomy :

Partition at first level: {ax_monola,ax_monolc,ax.mono2a}, {ax.monolb,

12

aXJllono2b,axJllono2c}, {lat1a,lat2a,lat3a}, {lat2b,lat3b}, {p04a,p04c}, {p04b,

p04d}, {p05a}, {p05b}

Second level: {lat2a}, {lat3a}

Comment:

Removing from LOGExp1 some examples that worked positive for our implementation.

LOGExp3 :

Examples included: aXJllono1a, aXJllono1c, aXJllono2a, lat1a, lat2a, lat3a, p04a, p04c,

p05a, p39a, p39c

Taxonomy:

Partition at first level: {axJllono1a,axJllono1c,axJllono2a}, {latla,lat2a,lat3a},

{p04a,p04c}, {p05a}, {p39a,p39c}

Second level: {lat2a}, {lat3a}

Comment:

All those examples that used the u-translation for < in the premisses. Using the

obvious partition.

LOGExp4 :

Examples included: aXJllono1b, aXJllono2b, aXJllono2c, lat2b, lat3b, p04b, p04d,

p05b, p39b, p39d

Taxonomy:

Partition at first level: {axJllono1b,axJllono2b,axJllono2c}, {lat2b,lat3b},

{p04b,p04d}, {p05b}, {p39b,p39d}

Second level: unnecessary

Comment:

All those examples that used the I-translation for:::; in the premisses. Using the obvious

partition.

LOGExp5 :

Examples included: lat3a,lat3b

Taxonomy:

Partition at first level: {lat3a}, {lat3b}
Second level: unnecessary

Comment:
Testing, how different the proofs of the u- and I-translations are. Obviously, they are
very different.

Exp. Run times Rules crit. Pairs Reduktions

L TAX L TAX L TAX L TAX
LOGExp1 328.38 157.99 2737 1114 173273 80201 228332 95217
LOGExp2 245.27 136.90 2287 1046 139219 73764 175674 85423
LOGExp3 164.29 71.66 1400 596 87806 42706 115564 51589
LOGExp4 164.09 71.29 1337 597 85467 42782 112768 51647
LOGExp5 56.60 54.89 587 539 40329 38689 44257 42477

Table 2: Lattice ordered groups: statistics of runs using taxonomic constraints

13

ax-mono2b,ax_mono2c}, {latla,lat2a,lat3a}, {lat2b,lat3b}, {p04a,p04c}, {p04b,
p04d}, {p05a}, {p05b}
Second level: {lat2a}, {lat3a}

Comment :
Removing from LOGExpl some examples that worked positive for our implementation.

LOGExp3 :
Examples included: ax_monola, ax_monolc, ax_mono2a, la t la , lat2a, lat3a, p04a, pO4c,
p05a, pd9a, p39c
Taxonomy :

Partition at first level: {ax_monola,ax_-monolc,ax-mono2a}, {latla,lat2a,lat3a},
{p04a,p04c}, {p05a}, {p39a,p39c}
Second level: {lat2a}, {lat3a}

Comment :
All those examples that used the u-translation for < in the premisses. Using the
obvious partition.

LOGExp4 :
Examples included: ax_monolb, ax_mono2b, ax.mono2c, lat2b, lat3b, p04b, p04d,
p05b, p39b, p39d
Taxonomy :

Partition at first level: {ax_monolb,ax_.mono2b,ax_mono2c}, {lat2b,lat3b},
{p04b,p04d}, {p05b}, {p39b,p39d}
Second level: unnecessary

Comment :
All those examples that used the I-translation for < in the premisses. Using the obvious
partition.

LOGExp5 :
Examples included: lat3a,lat3b
Taxonomy :

Partition at first level: {lat3a}, {lat3b}
Second level: unnecessary

Comment :
Testing, how different the proofs of the u- and l-translations are. Obviously, they are
very different.

Exp. Run times Rules crit. Pairs Reduktions
> TAX | X [TAX X TAX > TAX

LOGExpI1 || 328.38 | 157.99 || 2737 | 1114 | 173273 | 80201 || 228332 | 95217
LOGExp2 || 245.27 | 136.90 || 2287 | 1046 || 139219 | 73764 || 175674 | 85423
LOGExp3 || 164.29 | 71.66 | 1400 596 || 87806 | 42706 || 115564 | 51589
LOGExp4 || 164.09 | 71.29 || 1337 597 || 85467 | 42782 || 112768 | 51647
LOGExp5 56.60 | 54.89 587 539 || 40329 | 38689 || 44257 | 42477

Table 2: Lattice ordered groups: statistics of runs using taxonomic constraints

13

4.2 Propositional calculus

An equational axiomatization of the propositional calculus is given by

C(T,x) = x C(C(p,C(q,r)),C(C(p,q),C(p,r))) = T
C(p,C(q,p)) = T C(C(p,C(q,r)),C(q,C(p,r))) = T
C(N(N(p)),p) = T C(C(p,q),C(N(q),N(p))) = T
C(p,N(N(p))) = T

This axiomatization is inspired by [Ta56]. The function C represents the logical im
plication, N the negation and T true. We selected out of [KW76] (pages 181, 182)
the following conditional equations that are presented alrea~y skolemized and in the
form" additional axioms ::::} goal to prove", again. The numbers are the numbers of
[KW76] (the examples not appearing here either used additional junctors or were too
easy, meaning that they were solved in under one second).

9: C(A,B) = T, C(A,N(B)) = T ::::} N(A) = T
26: C(A,B) = T, C(B,D) '= T ::::} C(A,D) = T
27: C(A,B) = T ::::} C(C(B,D),C(A,D)) = T
28: C(A,B) = T ::::} C(C(D,A),C(D,B)) = T
29: C(C(A,B),D) = T ::::} C(A,C(B,D)) = T
36: C(A,N(A)) = T ::::} N(A) = T
37: C(N(A),A) = T ::::} A = T
39: N(A) = T ::::} C(A,B) = T
40: A = T ::::} C(N(A),B) = T
44: C(N(B),N(A)) = T ::::} C(A,B) = T
45: C(A,N(B)) = T ::::} C(B,N(A)) = T
46: C(N(A),B) = T ::::} C(N(B),A) = T
55: C(A,B) = T, C(N(A),B) = T ::::} B = T

Using a LPO with precedence C > N > A > B > D > T we get the results of Table 3

when proving these examples without taxonomic constaints. No unorientable equations

were produced.

Out of these examples we generated the following experiments.

PCExpl: '

Examples included: all

Taxonomy:

Partition at first level: {9,26,27,28,55}, {29}, {36}, {37}, {39}, {40}, {44}, {45},
{46}

Second level: {9}, {26}, {55}
Comment:
One way to partition the examples. The aim was to get one set on the first level as big
as possible. Therefore all other sets consist of only one element.

14

4.2 Propositional calculus

An equational axiomatization of the propositional calculus is given by

C(T ,x) =X C(C(p ,C (q , r)) ,C (C (p ,a) ,C (p ,1))) =T
C(p,C(qp)) =T C(C(p,C(q,1)),C(q,C(p,r))) = T
C(N(N(p)),p) =T C(C(p,q),C(N(q),N(p)))=T
C(p,N(N(p)))=

This axiomatization is inspired by [Ta56]. The function C represents the logical im-
plication, N the negation and T true. We selected out of [KW76] (pages 181, 182)
the following conditional equations that are presented already skolemized and i n the
form "additional axioms = goal t o prove”, again. The numbers are the numbers of
[KW76] (the examples not appearing here either used additional junctors or were too
easy, meaning that they were solved in under one second).

9: C (AB)=T ,C (ANB)=T = N(A)=
26: C (A ,B)=T ,C (BD)=T = C(A,De
27: C (A ,B)= ~ C(C(B.D),clap) = 1
28: C (A ,B)= = C(C(D,A) ,C(D,B))=
29: C (C(A ,B) ,D)= = C(AC(BD)) = T
36: C (A ,N (A))=T = N(A)=
37: C (N (A) ,A)=T = A=T
39: N (A)= = C (AB)=
40: A=T = CN(A)B) =
4: C(N(B) ,N(A))= T = C(A ,B)=
45: C (AN(B))=T = o r I l i
46: C (N(A) ,B)=T = C(N(B) ,A)=T
55: C (A ,B)=T ,C (N(A)B)=T = B=T

Using a LPO with precedence C > N > A > B > D > T we get the results of Table 3
when proving these examples without taxonomic constaints. No unorientable equations
were produced.

Out of these examples we generated the following experiments.
PCExpl :
Examples included: all
Taxonomy :

Partition at first level: {9,26,27,28,55}, {29}, {36}, {37}, {39}, {40}, {44}, {45},
{46}

Second level: {9}, {26}, {55}
Comment:
One way to partition the examples. The aim was to get one set on the first level as big
as possible. Therefore all other sets consist of only one element.

14

I Ex. I Run Time I Rules I crit. Pairs [Reductions I
'---

9 8.12 142 15275 25469
26 3.70 103 7840 13281
27 8.98 149 18044 30769
28 2.90 84 6380 10895
29 7.60 119 14273 24623
36 6.00 110 11950 20123
37 4.49 100 9878 16161
39 4.24 96 9067 16032
40 2.76 74 6292 10936
44 10.61 148 20335 33656
45 11.80 154 21674 35662
46 4.20 85 7461 12851
55 ·7.35 147 15017 24876 ,

Table 3: Propositional calculus: statistics for runs of one example only

PCExp2 :

Examples included: all

Taxonomy:

Partition at first level: {9,45}, {26,27,28}, {46,55}, {36}, {37}, {39}, {40}, {44}
Second level: {9}, {26}, {55}

Comment:
Goal of the partition was to get as many sets with more than one element in the first
level partition as possible.

PCExp3 :

Examples included: 9,26,27,28,44,45

Taxonomy:

Partition at first level: {9,26,27,28}, {44}, {45}
Second level: {9}, {26}

Comment:
Part of biggest partition with two further examples.

PCExp4 :

Examples included: 9,26,27,28,44,45,55

Taxonomy:

Partition at first level: {9,26,27,28,55}, {44}, {45}
Second level: {9}, {26}, {55}

Comment:
Whole biggest partition with same two examples as PCExp3.

PCExp5 :

Examples included: 28,29,36,37,39,40,44,45,46

Taxonomy:

Partition at first level: {28}, {29}, {36}, {37}, {39}, {40}, {44}, {45}, {46}
Second level: unnecessary

15

| Ex. | Run Time | Rules | cr i t . Pairs | Reductions |
9 8.12 142 15275 25469

26 3.70 103 7840 13281
27 8.98 149 18044 30769
28 2.90 84 6380 10895
29 7.60 119 14273 24623
36 6.00 110 11950 20123
37 4.49 100 9878 16161
39 4.24 96 9067 16032
40 2.76 74 6292 10936
44 10.61 148 20335 33656
45 11.80 154 21674 35662
46 4.20 85 7461 12851
55 7.35 147 15017 24876

Table 3: Propositional calculus: statistics for runs of one example only

PCExp2 :
Examples included: all
Taxonomy :

Partition at first level: {9,45}, {26,27,28}, {46,55}, {36}, {37}, {39}, {40}, {44}
Second level: {9}, {26}, {55}

Comment :
Goal of the partition was to get as many sets with more than one element in the first
level partit ion as possible.

PCExp3 :
Examples included: 9,26,27,28,44,45
Taxonomy :

Partition at first level: {9,26,27,28}, {44}, {45}
Second level: {9}, {26}

Comment :
Part of biggest partition with two further examples.
PCExp4 :
Examples included: 9,26,27,28,44,45,55
Taxonomy :

Partition at first level: {9,26,27,28,55}, {44}, {45}
Second level: {9}, {26}, {55}

Comment :
Whole biggest partition with same two examples as PCExp3.
PCExpS5 :
Examples included: 28,29,36,37,39,40,44,45,46
Taxonomy :

Partition at first level: {28}, {29}, {36}, {37}, {39}, {40}, {44}, {45}, {46}
Second level: unnecessary

15

Comment:
All examples that can be put together without having a second level.

PCExp6 :

Examples included: 29,36,37,39,40,44

Taxonomy:

Partition at first level: {29}, {36}, {37}, {39}, {40}, {44}
Second level:

Comment:

Subset of PCExp5.

PCExp7 :

Examples included: 9,26,27,28,45,46,55

Taxonomy:

Partition at first level: {9,45}, {46,55}, {26,27,28}
Second level: {9}, {55}, {26}

.Comment :
Partition of PCExp2 without further one-element sets.

PCExp8 :

Examples included: 9,40,44,45,46,55

Taxonomy:

Partition at first level: {9,45}, {46,55}, {40}, {44}
Second level: {9}, {55}

Comment:
Two smaller sets that can be used as partition with additional examples.

Exp. Run times Rules crit. Pairs Reduktions
L TAX L TAX L TAX L TAX

PCExpl 82.75 36.31 1511 407 163086 54023 275334 89557
PCExp2 82.75 29.48 1511 419 163086 50867 275334 85054
PCExp3 46.11 23.81 780 267 89548 38443 149735 62570
PCExp4 53.46 23.67 927 300 104565 41756 174611 67913
PCExp5 54.60 21.58 970 279 106910 35225 180939 59227
PCExp6 35.70 14.44 647 227 71395 29485 121531 50197
PCExp7 47.05 21.09 864 306 91691 37679 153803 61885
PCExp8 44.84 21.72 750 282 86053 35149 143450 57616

Table 4: Propositional calculus: statistics of runs using taxonomic constraints
,

4.3 Discussion of the results

The first, obvious and most important result of our experiments is that not only the
number of inferences done by T AX is substantially smaller than the accumulated sum
of the runs of single examples, but also the run times (see Table 2 and Table 4). This
shows that our claim that taxonomic constraints are easy and efficient to handle is
true. But typically the ratio of L (the accumulated sum) to TAX is for rules, critical

16

Comment :
All examples that can be put together without having a second level.
PCExp6 :
Examples included: 29,36,37,39,40,44
Taxonomy :

Partition at first level: {29}, {36}, {37}, {39}, {40}, {44}
Second level:

Comment :
Subset of PCExp5.
PCExp7 :
Examples included: 9,26,27,28,45,46,55
Taxonomy :

Partition at first level: {9,45}, {46,55}, {26,27,28}
Second level: {9}, {55}, {26}

"Comment :
Partition of PCExp2 without further one-element sets.
PCExp8 :
Examples included: 9,40,44,45,46,55
Taxonomy :

Partition at first level: {9,45}, {46,55}, {40}, {44}
Second level: { 9 } , { 55 }

Comment :
Two smaller sets that can be used as partition with additional examples.

Exp. Run t imes Rules cr i t . Pairs Reduktions
X [TAX || X | TAX S TAX > TAX

PCExpl | 82.75 | 36.31 | 1511 407 || 163086 | 54023 || 275334 | 89557
PCExp?2 |[[.82.75 | 29.48 || 1511 419 || 163086 | 50867 | 275334 | 85054
PCExp3 || 46.11 | 23.81 || 780 267 | | 89548 | 38443 | 149735 | 62570
PCExp4 || 53.46 | 23.67 | | 927 300 | | 104565 | 41756 || 174611 | 67913
PCExp5 || 54.60 | 21.58 | | 970 279 || 106910 | 35225 || 180939 | 59227
PCExp6 | | 35.70 | 14.44 647 227 71395 | 29485 || 121531 | 50197
PCExp7 || 47.05 | 21.09 || 864 306 || 91691 | 37679 || 153803 | 61885
PCExp8 || 44.84 | 21.72 || 750 282 || 86053 | 35149 || 143450 | 57616

Table 4: Propositional calculus: statistics of runs using taxonomic constraints

4 .3 Discussion o f the results

The first, obvious and most important result of our experiments is that not only the
number of inferences done by 7 AX is substantially smaller than the accumulated sum
of the runs of single examples, but also the run times (see Table 2 and Table 4). This
shows that our claim that taxonomic constraints are easy and efficient to handle is
t rue. Bu t typically the rat io of X (the accumulated sum) to TAX is for rules, crit ical

16

pairs and reductions better, i.e. slightly higher, than for the run time.

If we compare the two example domains, the number of equations that are. common
in all examples is for lattice ordered groups twice the number of that for propositional
calculus. Concerning the experiments in which all examples were used (LOGExp1,
PCExp1, PCExp2) we have more examples to prove for lattice ordered groups than
for propositional calculus. Therefore one would expect that the ratio of L to T AX
would be in all statistics much better for lattice ordered groups than for propositional
calculus. But this doesn't hold true.

The reasons for this phenomenon are the usage of AddWeight and the structure of the
two domains. The additional axioms for the examples of both domains are quite short.
This means that they produce many critical pairs that are also short and therefore
will be selected by AddWeight prior to many of the critical pairs between elements of
the common axioms. So, in both domains the number of common axioms is not so
important.

If we take a closer look at the examples of the domain lattice ordered groups we can
observe that the additional axioms either use 1or u (due to the two translations of s).
Therefore some proofs do not have many steps in common, although the number of steps
is quite similar (again AddWeight effects this concentration on differrent directions).
This is illustrated by the examples lat3a and lat3b. LOGExp5 solves those examples
together and it can be seen that T AX needs nearly the same number of rules, critical
pairs and reductions as the accumulated sum of the single runs (and the same run
time, of course). Therefore the examples of the domain lattice ordered groups have
to be divided into two groups, those using the u-translation and those using the 1
translation. If we look at the results of T AX when given only the examples of one
group (experiments LOGExp3 and LOGExp4), then the ratio of L to T AX is better
in all statistics than for LOGExpl.

Another expectation one has is that the addition of more examples from a domain
-that do not require totally different proofs- does not increase the statistics of T AX
as much as the statistics of L. This is indeed the case as proven by experiments
LOGExp2 and LOGExp1, PCExp3 and PCExp4, PCExp7 and PCExp2 or PCExp6
and PCExp5. For all these pairs of experiments the increase of TAX is less than that
of L for all statistics of the Tables 2 and 4.

Some of the experiments in the domain propositional calculus demonstrate the effects
of different partitions of the examples (i.e. PCExp1, PCExp2, PCExp4 and PCExp8).
In general one can say that our results do not allow to favor a certain partition heuristic.
This is because all the examples of the problem, not only those that allow different
partitions, decide the statistics of a run.

Another interesting question is the behaviour of T AX when proving examples that
are totally different, i.e. with no equations in common. To answer this question we
combined examples from both domains in single experiments. The results are given
in Table 5. The experiment CombExp1 used one example from each domain, namely
lat3b and 45. We selected them because they had the longest run times in their group.
In experiment CombExp2 we added to the examples of LOGExp5 the examples of

17

pairs and reductions better, i.e. slightly higher, than for the run time.
I f we compare the two example domains, the number of equations that are. common
in all examples is for lattice ordered groups twice the number of that for propositional
calculus. Concerning the experiments i n which all examples were used (LOGExpl,
PCExpl, PCExp2) we have more examples to prove for lattice ordered groups than
for propositional calculus. Therefore one would expect that the ratio of X to TAX
would be i n all statistics much better for lattice ordered groups than for propositional
calculus. But this doesn’t hold true.

The reasons for this phenomenon are the usage of AddWeight and the structure of the
two domains. The additional axioms for the examples of both domains are quite short.
This means that they produce many critical pairs that are also short and therefore
will be selected by AddWeight prior to many of the critical pairs between elements of
the common axioms. So, i n both domains the number of common axioms is not so
important.

I f we take a closer look at the examples of the domain lattice ordered groups we can
observe that the additional axioms either use 1 or u (due to the two translations of <).
Therefore some proofs do not have many steps in common, although the number of steps
is quite similar (again AddWeight effects this concentration on differrent directions).
This is illustrated by the examples lat3a and lat3b. LOGExp5 solves those examples
together and i t can be seen that TAN needs nearly the same number of rules, critical
pairs and reductions as the accumulated sum of the single runs (and the same run
time, of course). Therefore the examples of the domain lattice ordered groups have
t o be div ided in to two groups, those using the u-t ranslat ion and those using the I-
translation. If we look at the results of TAX when given only the examples of one
group (experiments LOGExp3 and LOGExp4), then the ratio of X} to TAX is better
in all statistics than for LOGExpl.

Another expectation one has is that the addition of more examples from a domain
-that do not require totally different proofs— does not increase the statistics of TAN
as much as the statistics of >). This is indeed the case as proven by experiments
LOGExp2 and LOGExpl , PCExp3 and PCExp4, PCExp7 and PCExp2 or PCExp6
and PCExp5. For all these pairs of experiments the increase of TA is less than that
of X for all statistics of the Tables 2 and 4.

Some of the experiments i n the domain propositional calculus demonstrate the effects
of different partitions of the examples (i.e. PCExpl, PCExp2, PCExp4 and PCExp8).
In general one can say that our results do not allow to favor a certain partit ion heuristic.
This is because all the examples of the problem, not only those that allow different
partitions, decide the statistics of a run.

Another interesting question is the behaviour of TAX when proving examples that
are totally different, i.e. wi th no equations in common. To answer this question we
combined examples from both domains in single experiments. The results are given
i n Table 5. The experiment CombExpl used one example from each domain, namely
lat3b and 45. We selected them because they had the longest run times in their group.
In experiment CombExp2 we added to the examples of LOGExp5 the examples of

17

5

PCExp3. In CombExp3 we solved the examples of LOGExpl and PCExp2 together
(which means that in CompExp3 all our examples were proved). In the experiments
CombExp2 and CombExp3 the results of L are the sum of the basic experiments, i.e.
the sum of the results of LOGExp5 and PCExp3, resp. LOGExpl and PCExp2.

Exp. Run times Rules crit. Pairs Reduktions

L TAX L TAX L TAX 2: TAX
CombExpl 40.84 40.93 448 448 41878 41878 57840 57978
CombExp2 78.70 79.59 806 806 77132 77132 105047 105238
CombExp3 187.47 192.17 1533 1533 131068 131068 180271 180408

Table 5: Propositional calculus and lattice ordered groups combined

All of the· three experiments show that the overhead produced by handling of the
constraints is neglectable. The run times of the experiments are nearly the same as
the sums. So, the gains provided by the constraints are not disturbed by the further
examples.

Finally, there is the question whether our small restriction of interreduction (no reduc
tion of term pairs that are higher up in the taxonomy than the rule to apply) causes
any problems. This question can be negated. The ratio of L to T AX for the number
of rules or the number of critical pairs is in all our experiments comparable to this
ratio for the number of reductions. It seems that· the reductions mentioned above are
not important for the performance of the system.

As conclusion of our discussion of the experiments one can say that the use of T AX
results in a decrease with respect to both, number of inferences made and run time,
compared to proving all examples alone. Since this decrease is quite substantial, be
cause the overhead of using taxonomic constraints is neglectable, applications that need
to prove several theorems in slightly different axiom systems should always use T AX.

Dynamic taxonomies and some applications

So far, taxonomies did not change during completion. In the following we will discuss
situations in which a certain change of the taxonomy used, namely a dynamic extension,
is required. We have a so-called dynamic taxonomy, when during the proof task new
successors to nodes of the taxonomy may be added. Of course, these new successors
inherit the equations and rules of their ancestors. As long as the taxonomy remains
finite, this dynamic change does not influence the correctness and completeness results
given in this paper.

Note that the form of our constraints guarantees the necessary inheritance without any
further actions to be taken in addition to simply adding the new equations and goals
with the new constraints. Especially, there is no need for any copy actions.

In the following we will sketch two situations in which dynamic taxonomies in combina
tion with T AX can be useful. In [KK095], Kurihara, Kondo and Ohuchi presented a

18

PCExp3. In CombExp3 we solved the examples of LOGExpl and PCExp2 together
(which means that in CompExp3 all our examples were proved). In the experiments
CombExp2 and CombExp3 the results of 3° are the sum of the basic experiments, i.e.
the sum of the results of LOGExp5 and PCExp3, resp. LOGExpl and PCExp2.

Exp. Run t imes Rules cr i t . Pairs Reduktions
X TAX | X |TAX > TAX > TAX

CombExpl 40.84 | 40.93 | 448 448 | | 41878 | 41878 57840 | 57978
CombExp2 || 78.70 | 79.59 || 806 806 || 77132 | 77132 || 105047 | 105238
CombExp3 || 187.47 | 192.17 || 1533 | 1533 || 131068 | 131068 || 180271 | 180408

Table 5: Propositional calculus and lattice ordered groups combined

All of the three experiments show that the overhead produced by handling of the
constraints is neglectable. The run times of the experiments are nearly the same as
the sums. So, the gains provided by the constraints are not disturbed by the further
examples.

Finally, there is the question whether our small restriction of interreduction (no reduc-
t ion of term pairs that are higher up i n the taxonomy than the rule to apply) causes
any problems. This question can be negated. The ratio of X to TAX for the number
of rules or the number of critical pairs is in all our experiments comparable to this
ratio for the number of reductions. I t seems that the reductions mentioned above are
not important for the performance of the system.

As conclusion of our discussion of the experiments one can say that the use of TAX
results in a decrease with respect to both, number of inferences made and run time,
compared to proving all examples alone. Since this decrease is quite substantial, be-
cause the overhead of using taxonomic constraints is neglectable, applications that need
to prove several theorems in slightly different axiom systems should always use TAX.

5 Dynamic taxonomies and some applications

So far, taxonomies did not change during completion. In the following we will discuss
situations i n which a certain change of the taxonomy used, namely a dynamic extension,
is required. We have a so-called dynamic taronomy, when during the proof task new
successors to nodes of the taxonomy may be added. Of course, these new successors
inherit t he equations and rules of thei r ancestors. As long as the taxonomy remains
finite, this dynamic change does not influence the correctness and completeness results
given in this paper.

Note that the form of our constraints guarantees the necessary inheritance without any
further actions to be taken in addition to simply adding the new equations and goals
with the new constraints. Especially, there is no need for any copy actions.

In the following we will sketch two situations in which dynamic taxonomies in combina-
tion with 7AX can be useful. In [KK095], Kurihara, Kondo and Ohuchi presented a

18

method to complete a given set of equations with respect to several reduction orderings.
The intention of this method was, as in our case, to reduce the repetition of inference
steps that is a result of trying the completion for each reduction ordering. The use of
several reduction orderings was suggested to solve the problem that for some sets of
equations the use of one reduction ordering may produce an infinite computation while
another one results in a finite, convergent system. Unfortunately, before trying, one
does not know which reduction ordering is the best one.

The method presented in [KK095] has one drawback, namely that all reduction order
,.,	 ings must. be given before the completion is started. So, to be on the safe side, one

has, for example, to use all permutations of the precedence ordering to a LPO or RPO,
although many comparisions between function symbols may never be necessary due to
the form of the equations. So, dynamic extension is missing in this approach. But this
dynamic extension can be achieved by using completion with taxonomic constraints.
The nodes of our, now dynamic, taxonomy represent reduction orderings (or better,
rules that were oriented according to these orderings) and the ordering of a successor
node N to a node M is an extension of the ordering of M.

Another situation stems from using completion theorem provers in interactive proof
environments that are used as proof assistants. Such an environment is, for example,
the ILF-System [Da+94] in which the DISCOUNT-System is used for solving pure
equational problems. Very often an user of such a system is interested in checking the
consequences of some manipulations of parts of the axioms for proving a goal. This
means that there is a given basis of equations to which another set of equations is
added. Some of the equations of this second set may be withdrawn later and other
equations may be added instead. Without the use of a dynamic taxonomy and T AX
each change of the second set forces the user to start a new run of the completion prover

. that has to repeat all those inferences between the basis equations and the remaining
equations of the second set that have already been made i~ prior experiments. This
redundant work is very frustrating for the user.

If the user is able to order the equations of the second set with respect to the possibility
that they are withdrawn, then he can use TAX with a degenerated taxonomy that has
only one path in which each additional equation of the second set is assigned a new node
according to the given order. In case the user wants to withdraw an equation and add
some other ones instead a new node (or several new ones if some of the new equations
may be withdrawn, again) is added as successor of the father of the node representing
the withdrawn equation. So, assuming a careful planning of the experiments, many
results of prior experiments can be used for new ones, thus improving the acceptance
of the whole proof assistant.

6 Conclusion and Future Work

We have presented taxonomic constraints as a way to reduce the repetition of many
inferences when one wants to prove theorems in slightly different axiom systems for the
case of equational deduction by unfailing completion. By transforming all examples

19

method to complete a given set of equations with respect to several reduction orderings.
The intention of this method was, as in our case, t o reduce the repetition of inference
steps that is a result of trying the completion for each reduction ordering. The use of
several reduction orderings was suggested to solve the problem that for some sets of
equations the use of one reduction ordering may produce an infinite computation while
another one results in a finite, convergent system. Unfortunately, before trying, one
does not know which reduction ordering is the best one.
The method presented in [KK095] has one drawback, namely that all reduction order-
ings must. be given before the completion is started. So, to be on the safe side, one
has, for example, to use all permutations of the precedence ordering to a LPO or RPO,
although many comparisions between function symbols may never be necessary due to
the form of the equations. So, dynamic extension is missing in this approach. But this
dynamic extension can be achieved by using completion with taxonomic constraints.
The nodes of our , now dynamic, taxonomy represent reduction orderings (or better,
rules that were oriented according to these orderings) and the ordering of a successor
node N to a node M is an extension of the ordering of M .
Another situation stems from using completion theorem provers in interactive proof
environments that are used as proof assistants. Such an environment is, for example,
the ILF-System [Da+94] in which the DISCOUNT-System is used for solving pure
equational problems. Very often an user of such a system is interested i n checking the
consequences of some manipulations of parts of the axioms for proving a goal. This
means that there is a given basis of equations to which another set of equations is
added. Some of the equations of this second set may be withdrawn later and other
equations may be added instead. Without the use of a dynamic taxonomy and 7 AX
each change of the second set forces the user to start a new run of the completion prover

" that has to repeat all those inferences between the basis equations and the remaining
equations of the second set that have already been made in prior experiments. This
redundant work is very frustrating for the user.
If the user is able to order the equations of the second set with respect to the possibility
that they are withdrawn, then he can use TAX with a degenerated taxonomy that has
only one path in which each additional equation of the second set is assigned a new node
according to the given order. In case the user wants to withdraw an equation and add
some other ones instead a new node (or several new ones if some of the new equations
may be withdrawn, again) is added as successor of the father of the node representing
the withdrawn equation. So, assuming a careful planning of the experiments, many
results of prior experiments can be used for new ones, thus improving the acceptance
of the whole proof assistant.

6 Conclusion and Future Work

We have presented taxonomic constraints as a way to reduce the repetition of many
inferences when one wants to prove theorems in slightly different axiom systems for the
case of equational deduction by unfailing completion. By transforming all examples

19

one wants to prove into a taxonomy and then transforming this taxonomy back into
sets of constraint equations, rules and goals we were able to develop a theorem prover
that did not only much less inference steps than those that were needed to prove each
of the examples alone but also in less tim~. We also ~ketched several situations in which
a theorem prover using taxonomic constraints is very useful.

Future work should center on exploiting the use of dynamic taxonomies, development
of more selection heuristics for constraint critical pairs and the implementation and
experimental evaluation of the idea presented in section 3.3 to use goal oriented selec
tion heuristics. Also the use of taxonomic constraints in other theorem provers is of
interest.

References

[AD93]	 Avenhaus, J. ; Denzinger, J.: Distributing equational theorem proving,
Proc. 5th RTA, Montreal, LNCS 690, 1993, pp. 62-76; also available as SEKI
Report SR-93-06, University of Kaiserslautern, 1993.

[ADF95]	 Avenhaus, J. ; Denzinger, J. ; Fuchs, M.: DISCOUNT: A system for
distributed equational deduction, Proc. 6th RTA, Kaiserslautern, LNCS 914,
1995, pp. 397-402.

[AM90]	 Avenhaus, J. ; Madlener, K.: Term Rewriting and Equational Reasoning,
in R.B. Banerji (ed): Formal Techniques in Artificial Intelligence, Elsevier,
1990, pp. 1-43.

[BDP89]	 Bachmair, L. ; Dershowitz, N.; Plaisted, D.A.: Completion without
Failure, ColI. on the Resolution of Equations in Algebraic Structures, Austin
(1987), Academic Press, 1989.

[BS85] Brachman, R.J.; Schmolze, J.G.: On Overview of the KL-ONE Knowl
edge Representation System, Cognitive Science 9(2), 1985, pp. 171-216.

[Bu90] Biirckert, H.-J.: A Resolution Principle for Clauses with Constraints, Proc.
10th CADE, Kaiserslautern, Springer, LNAI 449, 1990, pp. 178-192.

[Da+94] Dahn, B.I. ; Gehne, J. ; Honigmann, T. ; Walther, L. ; Wolf, A.:
Integrating Logical Functions with ILF, Internal report, Institut fur Reine
Mathematik, Humbold-University, Berlin, 1994.

[DF94] Denzinger, J. ; Fuchs, M.: Goal oriented equational theorem proving using
teamwork, Proc. 18th KI-94, Saarbrucken, LNAI 861, 1994, pp. 343-354; also
available as SEKI-Report SR-94-04, University of Kaiserslautern, 1994.

[DJ90] Dershowitz, N. ; Jouannaud, J.P.: Rewriting systems, in J. van Leeuwen
(Ed.): Handbook of theoretical computer science, Vol. B., Elsevier, 1990, pp.
241-320.

20

one wants to prove into a taxonomy and then transforming this taxonomy back into
sets of constraint equations, rules and goals we were able to develop a theorem prover
that did not only much less inference steps than those that were needed to prove each
of the examples alone but also in less time. We also sketched several situations in which
a theorem prover using taxonomic constraints is very useful.
Future work should center on exploiting the use of dynamic taxonomies, development
of more selection heuristics for constraint critical pairs and the implementation and
experimental evaluation of the idea presented in section 3.3 to use goal oriented selec-
t ion heuristics. Also the use of taxonomic constraints i n other theorem provers is of
interest.

;

References

[AD93] Avenhaus, J . ; Denzinger, J.: Distributing equational theorem proving,
Proc. 5th RTA, Montreal, LNCS 690, 1993, pp. 62-76; also available as SEKI-
Report SR-93-06, University of Kaiserslautern, 1993.

[ADF95] Avenhaus, J . ; Denzinger, J . ; Fuchs, M . : DISCOUNT: A system. for
distributed equational deduction, Proc. 6th RTA, Kaiserslautern, LNCS 914,
1995, pp. 397-402.

[AM90] Avenhaus, J . ; Madlener, K . : Term Rewriting and Equational Reasoning,
in R.B. Banerji (ed): Formal Techniques in Artificial Intelligence, Elsevier,
1990, pp. 1-43.

[BDP89] Bachmair, L . ; Dershowitz, N . ; Plaisted, D.A. : Completion without
Failure, Coll. on the Resolution of Equations in Algebraic Structures, Austin
(1987), Academic Press, 1989.

[BS85] Brachman, R.J. ; Schmolze, J.G.: On Overview of the KL-ONE Knowl-
edge Representation System, Cognitive Science 9(2), 1985, pp. 171-216.

[Bii90] Biirckert, H.-J. : A Resolution Principle for Clauses with Constraints, Proc.
10th CADE, Kaiserslautern, Springer, LNAI 449, 1990, pp. 178-192.

[Da+94] Dahn, B. I . ; Gehne, J . ; Honigmann, T . ; Walther, L . ; Wolf, A.:
Integrating Logical Functions with ILF, Internal report, Institut fiir Reine
Mathematik, Humbold-University, Berlin, 1994.

[DF94] Denzinger, J . ; Fuchs, M . : Goal oriented equational theorem proving using
teamwork, Proc. 18th KI-94, Saarbriicken, LNAI 861, 1994, pp. 343-354; also
available as SEKI-Report SR-94-04, University of Kaiserslautern, 1994.

[DJ90] Dershowitz, N . ; Jouannaud, J.P.: Rewriting systems, i n J. van Leeuwen
(Ed.): Handbook of theoretical computer science, Vol. B., Elsevier, 1990, pp.
241-320.

20

[HR87]	 Hsiang, J. ; Rusinowitch, M.: On word problems in equational theories,
Proc. 14th ICALP, Karlsruhe, LNCS 267, 1987, pp. 54-71.

"
[Hu80]	 Huet, G.: Confluent Reductions: Abstract Properties and Applications to

Term Rewriting Systems, Journal of ACM, Vol. 27, No. 4, 1980, pp. 798-821.

[KB70]	 Knuth, D.E. ; Bendix, P.B.: Simple Word Problems in Universal Algebra,
Computational Algebra, J. Leech, Pergamon Press, 1970, pp. 263-297.

[KK74]	 Kokorin, A.I. ; Kopytov, V.M.: Fully ordered groups, Halsted Press,
1974.

[KK095]	 Kurihara, M. ; Kondo, H. ; Ohuchi, A.: Completion for Multiple Reduc
tion Orderings, Proc. 6th RTA, Kaiserslautern, LNCS 914, 1995, pp. 71-85.

[KKR90]	 Kirchner, C. ; Kirchner, H. ; Rusinowitch, M.: Deduction with sym
bolic constraints, Revue d'Intelligence Artificielle 4(3), 1990, pp. 9-52.

[KW76]	 Kleinknecht, R. ; Wiist, E.: Lehrbuch der elementaren Logik, Bd. 1:
Aussagenlogik, DTV-Verlag, 1976.

[Sm89]	 Smolka, G.: Logic Programming over Polymorphically Order-Sorted Types,
Ph.D. thesis, University of Kaiserslautern, 1989.

21

[HR87] Hsiang, J . ; Rusinowitch, M . : On word problems in equational theories,
Proc. 14th ICALP, Karlsruhe, LNCS 267, 1987, pp. 54-71.

[Hu80] Huet , G.: Confluent Reductions: Abstract Properties and Applications to
Term Rewriting Systems, Journal of ACM, Vol. 27, No. 4, 1980, pp. 798-821.

[KB70] Knuth, D .E . ; Bendix, P .B . : Simple Word Problems in Universal Algebra,
Computational Algebra, J. Leech, Pergamon Press, 1970, pp. 263-297.

[KK74] Kokorin, A. I . ; Kopytov, V .M. : Fully ordered groups, Halsted Press,
1974.

[KKO95] Kurihara, M . ; Kondo, H . ; Ohuchi, A . : Completion for Multiple Reduc-
tion Orderings, Proc. 6th RTA, Kaiserslautern, LNCS 914, 1995, pp. 71-85.

[KKR90] Kirchner, C . ; Kirchner, H . ; Rusinowitch, M . : Deduction with sym-
bolic constraints, Revue d’Intelligence Artificielle 4(3), 1990, pp. 9-52.

[KW76] Kleinknecht, R . ; Wiist, E.: Lehrbuch der elementaren Logik, Bd. 1:
Aussagenlogik, DTV-Verlag, 1976.

[Sm89] Smolka, G.: Logic Programming over Polymorphically Order-Sorted Types,
Ph.D. thesis, University of Kaiserslautern, 1989.

21

