
Fa
ch

be
re

ic
h 

In
fo

rm
at

ik
U

ni
ve

rs
itä

t 
K

ai
se

rs
la

ut
er

n
D

-6
76

63
 K

ai
se

rs
la

ut
er

n
SE

KI
 - 

R
EP

O
R

T

Knowledge-based Cooperation
between Theorem Provers by  TECHS

Dirk Fuchs, Jörg Denzinger
SEKI Report SR-97-11





Knowledge-based Cooperation between
 
Theorenl Provers by TECHS
 

Dirk Fuchs, Jorg Denzinger
 
Fachbereich Informatik, Universitat Kaiserslautern
 

Postfach 3049, 67653 Kaiserslautern
 
Germany
 

E-mail: {dfuchsldenzinge}@informatik.uni-kl.de
 

Abstract 

We present a methodology for coupling several saturation-based theorem 
provers (running on different computers). The methodology is well-suited for re
ali~ing cooperation between different incarnations of one basic prover. Moreover, 
also different heterogeneous provers -that differ from each other in the calculus 
and in the heuristic they employ- can be coupled. Cooperation between the dif
ferent provers is achieved by periodically interchanging clauses which are selected 
by so-called referees. We present theoretic results regarding the completeness of 
the system of cooperating provers as well as describe concrete heuristics for de
signing referees. Furthermore, we report on two experimental studies performed 
with homogeneous and heterogeneous provers in the areas superposition and un
failing completion. The results reveal that the occurring synergetic effects lead 
to a significant improvement of performance. 

1
 

Knowledge-based Cooperation between
Theorem Provers by TECHS

Dirk Fuchs, Jorg Denzinger
Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, 67653 Kaiserslautern
Germany

E-mail: {dfuchs|denzinge}@informatik.uni-k1.de

Abstract

We present a methodology for coupling several saturation-based theorem
provers (running on different computers). The methodology is well-suited for re-
alizing cooperation between different incarnations of one basic prover. Moreover,
also different heterogeneous provers —that differ from each other in  the calculus
and in  the heuristic they employ— can be coupled. Cooperation between the dif-
ferent provers is achieved by  periodically interchanging clauses which are selected
by so-called referees. We present theoretic results regarding the completeness of
the system of  cooperating provers as well as describe concrete heuristics for de-
signing referees. Furthermore, we report on  two experimental studies performed
with homogeneous and heterogeneous provers in  the areas superposition and un-
failing completion. The results reveal that the occurring synergetic effects lead
to a significant improvement of  performance.

mailto:dfuchsldenzinge}@informatik.uni-kl.de


2 1 INTRODUCTION 

1 Introduction 

Although the aim of the CADE theorem prover competitions is to find the best au
tomated theorem prover (regarding a given set of problems) a deeper analysis of the 
results reveals that each prover has different strengths and weaknesses. Naturally, 
users interested in applying theorem provers to their problems are interested in a sys
tem having all strengths of these (and some more) provers and none of the weaknesses. 
In addition, proving problems should be very efficient and may also make use of clusters 
of workstations or PCs that are the typical hardware environment these days. 
In order to obtain such a system it might be sensible to analyze all known provers, 
develop concepts and structures that can be used to implement all of their methods, 
develop heuristics that decide when to use which method, add procedures to divide 
problems into "digestible" parts for the methods, and design a complex interaction 
scheme allowing for the distribution of the proof process to several computers. During 
the years needed to undertake this effort, the developers have to hope that no new 
ideas resulting in new provers or major updates of existing ones come up, because this 
entails that they must probably start all over again. 
Another solution is to develop concepts that allow the existing provers to cooperate 
when solving a proof problem. Such a concept should be easy to integrate into the 
provers, it should allow the interchange of interesting results only, and it should be 
open so as to allow adding new provers at any time. Naturally, the provers can run in 
parallel on different machines. 
Henceforth, we present such a concept, our TECHS approach for a knowledge-based 
cooperation between search agents employing different search models and methods. 
The general idea of TECHS is to let the provers periodically interchange selected results, 
i.e. formulas. Formulas can be interchanged via files which may be slow but allows 
an easy integration of the concept into existing provers, since most of the provers can 
read data from and write data to files. 
The selection process is performed by referees that are known from the TEAMWORK 
method ([Den95]). But in contrast to TEAMWORK'S referees that are totally success
driven in their selection, TECHS employs both success-driven and demand-driven ref
erees. Thus, each connection between provers can utilize a send-referee and a receive
referee that use different knowledge for accomplishing their job. The selection of send
referees is based on the success formulas have had with respect to the search of the 
sending prover. They can also use some general knowledge about the receiver like its 
preferences. Receive-referees select formulas from the formulas sent by the send-referees 
to their prover. Their selection tries to meet the actual demands of their prover. 
We demonstrate the usefulness of our approach with two case studies. Firstly, we 
employed TECHS to let incarnations of the prover SPASS cooperate (thus forming a 
homogeneous team). This case study showed that despite the slow .communication 
synergetical speed-ups can be observed (with a prover not built for distribution and 
cooperation). Secondly, we used TECHS to let SPASS cooperate with DISCOUNT (thus 
forming a heterogeneous team). Besides synergetical speed-ups we also observed that 
the cooperation resulted in the solution of several problems that none of the provers 
could solve alone. 

2 1 INTRODUCTION

1 Introduction

Although the aim of the CADE theorem prover competitions is to find the best au-
tomated theorem prover (regarding a given set of problems) a deeper analysis of the
results reveals that each prover has different strengths and weaknesses. Naturally,
users interested in applying theorem provers to  their problems are interested in a sys-
tem having all strengths of these (and some more) provers and none of the weaknesses.
In  addition, proving problems should be very efficient and may also make use of  clusters
of workstations or PCs that are the typical hardware environment these days.
In order to obtain such a system it might be sensible to analyze all known provers,
develop concepts and structures that can be used to  implement all of their methods,
develop heuristics that decide when to use which method, add procedures to  divide
problems into “digestible” parts for the methods, and design a complex interaction
scheme allowing for the distribution of  the proof process to several computers. During
the years needed to  undertake this effort, the developers have to hope that no new
ideas resulting in new provers or major updates of existing ones come up, because this
entails that they must probably start all over again.
Another solution is to develop concepts that allow the existing provers to  cooperate
when solving a proof problem. Such a concept should be easy to integrate into the
provers, i t  should allow the interchange of interesting results only, and it should be
open so as to allow adding new provers at any time. Naturally, the provers can run in
parallel on different machines.
Henceforth, we present such a concept, our TECHS approach for a knowledge-based
cooperation between search agents employing different search models and methods.
The general idea of  TECHS is to  let the provers periodically interchange selected results,
i.e. formulas. Formulas can be interchanged via files which may be slow but allows
an easy integration of the concept into existing provers, since most of  the provers can
read data from and write data to files.
The selection process is performed by referees that are known from the TEAMWORK
method ([Den95]). But in contrast to TEAMWORK’s referees that are totally success-
driven in  their selection, TECHS employs both success-driven and demand-driven ref-
erees. Thus, each connection between provers can utilize a send-referee and a receive-
referee that use different knowledge for accomplishing their job. The selection of send-
referees is based on the success formulas have had with respect to the search of the
sending prover. They can also use some general knowledge about the receiver like its
preferences. Receive-referees select formulas from the formulas sent by the send-referees
to  their prover. Their selection tries to  meet the actual demands of their prover.
We demonstrate the usefulness of our approach with two case studies. Firstly, we
employed TECHS to let incarnations of the prover SPASS cooperate (thus forming a
homogeneous team). This case study showed that despite the slow communication
synergetical speed-ups can be observed (with a prover not built for distribution and
cooperation). Secondly, we used TECHS to  let SPASS cooperate with DISCOUNT (thus
forming a heterogeneous team). Besides synergetical speed-ups we also observed that
the cooperation resulted in the solution of several problems that none of the provers
could solve alone.



3 

This paper is organized as follows: In section 2 we briefly introduce the basics of 
saturation-based provers. In section 3 we present our TECHS approach. In sections 4 
and 5 we describe our experiments with homogeneous and heterogeneous teams. Fi
nally, in section 6 we conclude with some remarks regarding other known cooperation 
concepts for provers and our future goals. 

2 Basics of Automated Deduction 

In general, automated theorem proving (in first-order logic) deals with the problem 
to show the inconsistency of a clause set M. Commonly, automated theorem provers 
utilize certain calculi for accomplishing this. Saturation-based calculi continuously 
produce logic consequences of M until the empty clause is derived. 
Typically a saturation-based calculus is based on an inference system that contains 
several inference rules which can be applied to a set of clauses (which represents, a 
certain search state). Expansion inference rules are able to generate new clauses from 
known ones and add these clauses to the search state. Contraction inference rules 
allow for the deletion of clauses or replacing clauses by other "simpler" ones. For sets 
of clauses M and N, M f- N denotes that it is possible to derive N from M by 
applying one inference rule. 

Usually, a theorem prover which employs a certain calculus maintains either implicitly 
or explicitly a set :FP of so-called potential or passive clauses from which it selects and 
removes one clause C at a time. After the application of some contraction inference 
rules on C, it is put into the set :FA of activated clauses, or discarded if it was deleted 
by a contraction rule (forward subsumption). Activated clauses are, unlike potential 
clauses, allowed to produce new clauses via the application of expanding inference 
rules, The inferred new clauses are put into :Fp. We assume the expansion rules to 
be exhaustively applied to the elements of :FA. Initially, :FA = 0 and :FP = Ax. The 
indeterministic selection or activation step is realized by heuristic means. To this end, 
a heuristic 1i associates a natural number 1i(C) E IN with each C E :Fp. Subsequently, 
that C E :FP with the smallest weight 1i(C) is selected. 

An important property of heuristics is their fairness: A heuristic is called fair if it 
selects clauses in such a manner that no clause stays in :FP infinitely long. If a prover 
is based on a complete calculus and it uses a fair heuristic every unsatisfiable proof 
problem can be solved by deriving clauses with the above algorithm until the empty 
clause appears. 
For our experiments with the TECHS approach we used the saturation-based calculi 
superposition and unfailing completion.
 

In the area of superposition-based theorem proving we conducted experimental stud

ies with the prover SPASS (see [WGR96]). This is an automatic prover for first-order
 
logic with equality. It is based on the superposition calculus (see '[BG94]). The un

failing completion procedure (see [HR87], [BDP89]) offers possibilities to develop high

performance theorem provers (e.g., DISCOUNT [ADF95]) in pure equationallogic. The
 
inference system underlying the unfailing completion procedure is in main parts a re

stricted version of the superposition calculus and contains additional reduction rules.
 

This paper is organized as follows: In section 2 we briefly introduce the basics of
saturation-based provers. In section 3 we present our TECHS approach. In sections 4
and 5 we describe our experiments with homogeneous and heterogeneous teams. Fi-
nally, in section 6 we conclude with some remarks regarding other known cooperation
concepts for provers and our future goals.

2 Basics o f  Automated Deduction

In general, automated theorem proving (in first-order logic) deals with the problem
to show the inconsistency of a clause set M .  Commonly, automated theorem provers
utilize certain calculi for accomplishing this. Saturation-based calculi continuously
produce logic consequences of M until the empty clause is derived.
Typically a saturation-based calculus is based on an inference system that contains
several inference rules which can be applied to  a set of clauses (which representsa
certain search state). Expansion inference rules are able to generate new clauses from
known ones and add these clauses to the search state. Contraction inference rules
allow for the deletion of clauses or replacing clauses by other “simpler” ones. For sets
of clauses M and N,  M F N denotes that it is possible to derive N from M by
applying one inference rule.
Usually, a theorem prover which employs a certain calculus maintains either implicitly
or explicitly a set FF  of so-called potential or passive clauses from which i t  selects and
removes one clause C at a time. After the application of some contraction inference
rules on C, it is put into the set FA of activated clauses, or discarded i f  i t  was deleted
by a contraction rule (forward subsumption). Activated clauses are, unlike potential
clauses, allowed to produce new clauses via the application of expanding inference
rules. The inferred new clauses are put into FX.  We assume the expansion rules to
be exhaustively applied to the elements of F4.  Initially, FA = @ and FF  = Az. The
indeterministic selection or activation step is realized by  heuristic means. To this end,
a heuristic H associates a natural  number H(C)  € IN  with each C € FF.  Subsequently,
that C € FF  with the smallest weight H(C) is selected.
An  important property of heuristics is their fairness: A heuristic is called fair if it
selects clauses in  such a manner that no clause stays in A” infinitely long. I f  a prover
is based on a complete calculus and i t  uses a fair heuristic every unsatisfiable proof
problem can be solved by deriving clauses with the above algorithm until the empty
clause appears.
For our experiments with the TECHS approach we used the saturation-based calculi
superposition and unfailing completion.
In the area of superposition-based theorem proving we conducted experimental stud-
ies with the prover SPASS (see [WGRY6]). This is an automatic prover for first-order
logic with equality. I t  is based on the superposition calculus (see [BG94]). The un-
failing completion procedure (see [HR87], [BDP89]) offers possibilities to  develop high-
performance theorem provers (e.g., DISCOUNT [ADF95|) in  pure equational logic. The
inference system underlying the unfailing completion procedure is  in main parts a re-
stricted version of the superposition calculus and contains additional reduction rules.



4 3 THE TECHS APPROACH 

The search state of an equational prover is usually divided into orientable equations, 
so-called rules, and other non-orientable equations. 

3 The TECHS approach 

The general idea of the TECHS approach (TEams for Cooperativ.e Heterogeneous 
Search) is to interchange selected clauses between heterogeneous provers in regular 
time intervals. Firstly, we shall introduce the main principles of the TECHS methodol
ogy for realizing cooperating provers. Secondly, we point out methods for exchanging 
clauses between provers that are part of the cooperative system. Especially, we de
scribe the components responsible for the exchange of clauses, so-called send- and 
receive-referees. Finally, we explain possibilities of initializing a team of heterogeneous 
provers. 

3.1 Basics of TECHS 

The TECHS approach requires several different provers running in parallel on different 
computing nodes. Despite the fact that our experiments will only coVer saturation
based provers also analytical provers can be used. All provers tackle the same proof 
problem (although provers may obtain merely parts of it, see below). In our context 
proof problems are specified in first-order logic (with equality). The provers employ 
either calculi which are complete for first-order logic (universal provers) or calculi which 
are complete for a sub-logic of first-order logic (specialized provers). We assume that 
unique numbers are assigned to the provers. 
As already mentioned, the provers exchange information in regular time intervals. 
Thus, the working scheme of each prover is characterized by certain phases (similar 
to the TEAMWORK approach). The sequence of phases is Pinit , P~, P~, P~, Pc!"'" i.e. 
after an initialization phase (Pinit ), working (P~) and cooperation phases (PD alternate 
each other. 
If the original clause set to be refuted is M, each prover i obtains in the initialization 
phase an initial clause set 'Yi(M) ~ M (see section 3.3). Moreover, it gets a schedule 
of cooperation phases. In the working phases each prover works on its set of clauses 
employing its inference rules. 

In a cooperation phase, the provers exchange some of their generated clauses (see sec
tion 3.2). Obviously, a prover should not communicate all new clauses it has generated 
since the last cooperation phase to all other provers. This would force a receiving prover 
to process all these clauses (i.e to perform all possible inferences involving them). More
over, since these clauses persist in the search state they might slow down the prover 
because they can be used in many inferences in future. Then it is quite probable that 
the cooperation of the provers does not result in much gain. Furthermore, it is wise to 
send only a small number of clauses so as to decrease the amount of communication. 
Hence, we decided to exchange only a subset of the clauses which is selected by using 
referees. Let :F:A,j be the set of active clauses of prover i at the beginning of coopera
tion phase Pj. Then, the activities in cooperation phase Pj are: At first send-referees 

4 3 THE TECHS APPROACH

The search state of an equational prover is usually divided into orientable equations,
so-called rules, and other non-orientable equations.

3 The TECHS approach

The general idea of the TECHS approach (TEams for Cooperative Heterogeneous
Search) is to interchange selected clauses between heterogeneous provers in regular
time intervals. Firstly, we shall introduce the main principles of the TECHS methodol-
ogy for realizing cooperating provers. Secondly, we point out methods for exchanging
clauses between provers that are part of the cooperative system. Especially, we de-
scribe the components responsible for the exchange of clauses, so-called send- and
receive-referees. Finally, we explain possibilities of initializing a team of heterogeneous
provers.

3 .1  Basics o f  TECHS

The TECHS approach requires several different provers running in parallel on  different
computing nodes. Despite the fact that our experiments will only cover saturation-
based provers also analytical provers can be used. All provers tackle the same proof
problem (although provers may obtain merely parts of i t ,  see below). In our context
proof problems are specified in  first-order logic (with equality). The provers employ
either calculi which are complete for first-order logic (universal provers) or calculi which
are complete for a sub-logic of first-order logic (specialized provers). We assume that
unique numbers are assigned to the provers.
As already mentioned, the provers exchange information in  regular time intervals.
Thus, the working scheme of each prover is characterized by certain phases (similar
to the TEAMWORK approach). The sequence of  phases is P i ,  PS, P?  PL  PL  . .  i e .
after an initialization phase (Pini), working (Pi) and cooperation phases (P?) alternate
each other.
If  the original clause set to be refuted is M ,  each prover i obtains in  the initialization
phase an initial clause set v;(M) C M (see section 3.3). Moreover, it gets a schedule
of cooperation phases. In the working phases each prover works on i ts set of clauses
employing its inference rules. ,
In a cooperation phase, the provers exchange some of their generated clauses (see sec-
tion 3.2). Obviously, a prover should not communicate all new clauses i t  has generated
since the last cooperation phase to all other provers. This would force a receiving prover
to  process all these clauses (i.e to perform all possible inferences involving them). More-
over, since these clauses persist in  the search state they might slow down the prover
because they can be used in  many inferences in future. Then i t  is quite probable that
the cooperation of the provers does not result in  much gain. Furthermore, i t  is wise to
send only a small number of clauses so as to  decrease the amount of communication.
Hence, we decided to exchange only a subset of the clauses which is selected by using
referees. Let FA  be the set of active clauses of  prover i at the beginning of coopera-
tion phase P?. Then, the activities in  cooperation phase PJ are: At  first send-referees



3.2 Achieving cooperation between provers 5 

examine the active clauses of prover i and determine a set of active clauses sfkC FiA,j, 
for all receiving provers k i= i. Then, each set sf,k is transferred (see section 3.2) to 

the receiving prover k. After that, prover i integrates clauses RI ~ Uk#i SL of provers 
k (k i= i) selected by a receive-referee into its search state. 

3.2 Achieving cooperation between provers 

In order to realize cooperation between provers by exchanging some deduced clauses 
we must at first introduce techniques for identifying clauses to be exchanged and for 
transferring these clauses to other provers. Thus, we have to deal with the architec
ture of our cooperative system and with the realization of referees. Furthermore, we 
sketch aspects regarding the completeness of saturation-based provers when integrating 
clauses into their search states. 

3.2.1 General Architecture 

There are two main aims when selecting clauses from the active clauses of prover i 
which should be sent to prover j: On the one hand, it is sensible to utilize as much 
knowledge as possible in the selection process so as to perform an "optimal" selection 
regarding the systems of active clauses of i and j. On the other hand, the selection 
and transmission of clauses should be very efficient in order to reduce the overhead 
caused by the cooperation. However, these are conflicting goals: If we, e.g., use merely 
local knowledge for selecting clauses, i.e. knowledge about the system of the sender and 
its history, we can select and transfer clauses very efficiently. We can select clauses 
at the site of the sender and send these clauses via broadcast to all receivers. This 
method, however, allows only to utilize a minimum of knowledge (only knowledge 
about the sender and its preferences) and hence concrete needs of receiving provers are 
not considered. The other extreme is to select clauses according to global knowledge 
about the systems of the sender and the receiver. If we have so much knowledge it is 
possible to perform an optimal selection regarding i and j. But this kind of selection 
requires the highest (communication) costs because the complete systems of sender 
and receiver must be simultaneously evaluated (which has to be realized by sending all 
information of the provers, including their history, to all others). 

Thus, we have chosen an approach that realizes a compromise between the use of 
local and global knowledge or success-driven and demand-driven selection. It falls 
back on knowledge about the sender and receiver in a rather efficient way: We employ 
an individual send-referee for each receiver of clauses at the sender site which selects 
clauses from the active clauses of the sender. Moreover, each receiver employs an 
additional receive-referee which filters some clauses from the set of clauses it receives 
from the send-referees of other provers. This receive-referee takes· the current set of 
clauses of the receiver into account and hence its needs. Thus, on the one hand send
and receive-referee can use knowledge about the sender and the receiver of clauses, 
respectively. On the other hand, the selection process is rather efficient: In the case 
that our team consists of n provers, n - 1 selections take place at each sender site. 

3.2 Achieving cooperation between provers 5

examine the active clauses of prover : and determine a set of active clauses Ss?x CF
for all receiving provers k # i .  Then, each set S}, is transferred (see section 3.2) to
the receiving prover k. After that, prover ¢ integrates clauses R i c  Ur i  Si; of provers
k (k # 1) selected by a receive-referee into its search state.

3.2  Achieving cooperation between provers

In order to realize cooperation between provers by exchanging some deduced clauses
we must at first introduce techniques for identifying clauses to be exchanged and for
transferring these clauses to  other provers. Thus, we have to deal with the architec-
ture of our cooperative system and with the realization of referees. Furthermore, we
sketch aspects regarding the completeness of saturation-based provers when integrating
clauses into their search states.

3 .2 .1  General Architecture

There are two main aims when selecting clauses from the active clauses of prover i
which should be sent to  prover j :  On the one hand, i t  is sensible to  utilize as much
knowledge as possible in the selection process so as to perform an “optimal” selection
regarding the systems of active clauses of 7 and j .  On the other hand, the selection
and transmission of clauses should be very efficient in  order to reduce the overhead
caused by the cooperation. However, these are conflicting goals: If  we, e.g., use merely
local knowledge for selecting clauses, i.e. knowledge about the system of the sender and
its history, we can select and transfer clauses very efficiently. We can select clauses
at the site of the sender and send these clauses via broadcast to all receivers. This
method, however, allows only to utilize a minimum of knowledge (only knowledge
about the sender and its preferences) and hence concrete needs of receiving provers are
not considered. The other extreme is to select clauses according to global knowledge
about the systems of the sender and the receiver. If-we have so much knowledge it  is
possible to  perform an optimal selection regarding ¢ and 7. But this kind of selection
requires the highest (communication) costs because the complete systems of sender
and receiver must be simultaneously evaluated (which has to  be realized by  sending all
information of the provers, including their history, to  all others).
Thus, we have chosen an approach that realizes a compromise between the use of
local and global knowledge or success-driven and demand-driven selection. I t  falls
back on knowledge about the sender and receiver in a rather efficient way: We employ
an individual send-referee for each receiver of clauses at the sender site which selects
clauses from the active clauses of the sender. Moreover, each receiver employs an
additional receive-referee which filters some clauses from the set of clauses i t  receives
from the send-referees of other provers. This receive-referee takes the current set of
clauses of the  receiver into account and hence its needs. Thus, on  the one hand send-
and receive-referee can use knowledge about the sender and the receiver of clauses,
respectively. On  the other hand, the selection process is rather efficient: In the case
that our team consists of n provers, n — 1 selections take place at each sender site.



6 3 THE TEGHS APPROACH 

I RR 

I RR II 

Prover 11 SRI
'I 

I SRI --1 SR Iprover 2 

'SR I 

'-I - ,-'

RR SR SR 

e..,. - L..-

Prover 3 

Figure 1: TECHS architecture for 3 provers 

After that, n - 1 (rather small) sets of clauses must be transferred to the receiving 
pravers and then one additional selection out of the set of incoming clauses must be 
performed. 

The architecture of a system based on TECHS is depicted in figure 1. The send-referees 
(SR) and receive-referees (RR) are displayed half inside and half outside the pravers 
because they can be realized either as parts of the pravers or as independent processes. 
Realizing referees as parts of the provers necessitates more implementational effort but 
allows to have access to internal data of the provers. Since this allows the development 
of more powerful referees we decided to choose this alternative for our experiments. 

In order to exchange clauses between referees it is important that they employ a com
munication language that both send- and receive-referees understand. Consider the sit
uation that a send-referee obtains clauses in format i and its associated receive-referee 
has to give some clauses to a prover which employs format j. Then, it is possible to 
implement receive-referees that understand many different formats of clauses and can 
transform them into the relevant format j. Another possibility is to employ a spe
cific transfer language: Send-referees transfer their selected clauses from format i into 
this transfer language, receive-referees then transform received clauses into format j. 
The main disadvantage of the latter method is that two transformations are needed. 
However, it has the advantage that a new praver can simply be added to the coop
erative system because its send- and receive-referee must only understand two clause 
formats. We used this second alternative and employed the syntax format of the DFG 
Schwerpunkt Deduktion ([HKW96]) for exchanging clauses. 

6 3 THE TECHS  APPROACH

RR|E—

> RR
Prover 1| [SR

SR SR| |Prover 2

SR

y

RR| |sm| [SR]

Prover 3

Figure 1: TECHS architecture for 3 provers

After that, n — 1 (rather small) sets of clauses must be transferred to the receiving
provers and then one additional selection out of the set of incoming clauses must be
performed.

The architecture of a system based on TECHS is depicted in  figure 1. The send-referees
(SR) and receive-referees (RR) are displayed half inside and half outside the provers
because they can be realized either as parts of the provers or as independent processes.
Realizing referees as parts of the provers necessitates more implementational effort but
allows to  have access to  internal data of the provers. Since this allows the development
of more powerful referees we decided to choose this alternative for our experiments.

In order to exchange clauses between referees i t  is important that they employ a com-
munication language that both send- and receive-referees understand. Consider the sit-
uation that a send-referee obtains clauses in format ¢ and its associated receive-referee
has to  give some clauses to  a prover which employs format j .  Then, i t  is possible to
implement receive-referees that understand many different formats of clauses and can
transform them into the relevant format j .  Another possibility is to  employ a spe-
cific transfer language: Send-referees transfer their selected clauses from format 7 into
this transfer language, receive-referees then transform received clauses into format j .
The main disadvantage of the latter method is that two transformations are needed.
However, i t  has the advantage that a new prover can simply be added to  the coop-
erative system because i ts send- and receive-referee must only understand two clause
formats. We used this second alternative and employed the syntax format of the DFG
Schwerpunkt Deduktion ([HKW96]) for exchanging clauses.



3.2 Achieving cooperation between provers 7 

3.2.2 Realizing referees 

The quality of the referees heavily influences whether or not cooperation between the 
provers is successful. If referees select at least some clauses that contribute to a proof of 
a given problem and these clauses are not already in the data base of a receiving prover, 
then this prover may succeed faster. Especially, if received clauses were generated 
very late by the receiving prover, then a substantial speed-up of the search would be 
achieved. 
All kinds of referees employ a selection function <p for the selection of clauses. <p can 
employ several judgment functions 'l/Jl, ... , 'l/Jn· These functions 'l/Ji associate a natural 
number with each clause C. A clause is considered the better the higher the value 
'l/Ji (C) is. <p eventually selects the clauses with the best judgments. In our experiments 
we selected a certain percentage Pi of clauses with each function 'l/Ji. 
The different kinds of knowledge included in judgment functions determine how the 
quality of a clause is measured. On the one hand, it is possible to employ only knowl
edge about the sender, on the other hand also knowledge about the receiver can be 
used. Knowledge about the receiver can again be divided into two parts: It is possible 
to have knowledge about the search state of the receiver (its set of active and passive 
clauses). Moreover, one can ,have knowledge about its method to modify the search 
state in future (its heuristic). 

3.2.3 Send-referees 

A send-referee in a system based on the TECHS approach consists of a pair (8, <p) of 
a filter predicate 8 and a selection function <po The prover that receives the results of 
the send-referee will get those clauses in the cooperation phases that pass through the 
filter and that are selected by <po 

The filter predicate 8 limits the set of clauses that are eligible for transmission to 
other provers. Only clauses C with S(C) pass through this filter. Typically, clauses 
are filtered out that are redundant (with respect to the receiving provers). Redundant 
are all clauses that were selected in previous cooperation phases. Additionally, clauses 
should' be filtered out that a receiver cannot use in its inference mechanism (e.g. non
unit clauses if they should be sent to an equational prover). 
The following judgment functions are sensible for selecting clauses: The easiest method 
-that does not employ special knowledge about the receiver- is to select clauses that 
are quite "general". This is especially important for saturation-based provers because 
such clauses can often be used in order to subsume or rewrite other clauses. Moreover, 
clauses should not have literals with a "deep" term structure because this often prevents 
literals from matching others. 'l/Ja utilizes these criteria for judging clauses. 

Definition 3.1 The judgment function 'l/Ja defined on clauses can be computed by 
'l/Ja( {il , ... , in}) = - L~=l 'l/Ja(ii)' For literals, 'l/Ja(l) = 'l/JMi,O), if i is positive, and 
'l/Ja(l) = 'l/J~(l', 0), if i == ,I'. Further, 

h ( ) { 1 + d ; l is a variable
 
'l/Ja i, d = 2 + d + L~=l 'l/J~(ti' d + 1) ; i = f(t l , ... ,tn)
 

3.2 Achieving cooperation between provers 7

3.2.2 Realizing referees

The quality of the referees heavily influences whether or not cooperation between the
provers is successful. I f  referees select at least some clauses that contribute to  a proof of
a given problem and these clauses are not already in the data base of a receiving prover,
then this prover may succeed faster. Especially, i f  received clauses were generated
very late by the receiving prover, then a substantial speed-up of the search would be
achieved.
All kinds of referees employ a selection function ¢ for the selection of clauses. ¢ can
employ several judgment functions 1 ,  . . . ,%,.  These functions 1; associate a natural
number with each clause C. A clause is considered the better the higher the value
¥;(C) is. vw eventually selects the clauses with the best judgments. In our experiments
we selected a certain percentage p; of clauses with each function %;.
The different kinds of knowledge included in judgment functions determine how the
quality of a clause is measured. On the one hand, i t  is possible to employ only knowl-
edge about the sender, on the other hand also knowledge about the receiver can be
used. Knowledge about the receiver can again be divided into two parts: It is possible
to have knowledge about the search state of the receiver (its set of active and passive
clauses). Moreover, one can have knowledge about i ts method to modify the search
state in future (its heuristic).

3 .2 .3  Send-referees

A send-referee in a system based on the TECHS approach consists of a pair (S, ©) of
a filter predicate S and a selection function ¢ .  The prover that receives the results of
the send-referee will get those clauses in  the cooperation phases that pass through the
filter and that are selected by w.
The filter predicate S limits the set of clauses that are eligible for transmission to
other provers. Only clauses C with S(C) pass through this filter. Typically, clauses
are filtered out that are redundant (with respect to  the receiving provers). Redundant
are all clauses that were selected in previous cooperation phases. Additionally, clauses
should be filtered out that a receiver cannot use in its inference mechanism (e.g. non-
unit clauses i f  they should be sent to  an equational prover).
The following judgment functions are sensible for selecting clauses: The easiest method
—that does not employ special knowledge about the receiver— is to select clauses that
are quite “general”. This is especially important for saturation-based provers because
such clauses can often be used in order to  subsume or rewrite other clauses. Moreover,
clauses should not have literals with a “deep” term structure because this often prevents
literals from matching others. we utilizes these criteria for judging clauses.

Definition 3 .1  The judgment function ec  defined on clauses can be computed by
eh r . . . In) = X;  ve(l;). For literals, v l l )  = vE(1,0), i f  I is positive, and
well) = YA ( I ,  0), if  I = = ’ .  Further,

Wil, d) = 1+d  ; 1 is a variable
GT 24d4+ Th E(t,  d +1) l =  f ( t , ta)



8 3 THE TECHS APPROACH 

Function'l/Js uses again only knowledge about the sender, namely retrospective criteria. 
It defines the quality of a clause by its history during the proof attempt so far. This 
means that all inferences the clause was part of should be considered when developing 
a measure for the quality of a clause. Note that by means of such a retrospective view 
on the performed inferences it is possible to use a posteriori knowledge whereas typical 
search-guiding heuristics are only able to utilize a priori knowledge. 

Definition 3.2 The judgment function 'l/Js is defined as follows: Let C be a clause, 
let /1, ... ,h be expanding, h+1,"" In be contracting inference rule types. Ij(C) 
(1 S; j ~ n) is the number of inferences of type I j the clause C was involved in so far. 
Then, 

k n 

'l/Js(C) = - Lli(C) + L Ii(C) 
i=l i=k+l 

'l/Js rates contracting inferences positive, expanding inferences negative because gener
ating too many clauses complicates the search.
 

In a send-referee, it is also possible to employ knowledge about the receiver in form of
 
its heuristic.
 

Definition 3.3 Let A p be the set of clauses generated by a prover P and R the receiver 
of the clauses to be selected. R activates clauses with heuristic HR' Let further be 
Rmax = max({HR(C): C E A p }) and Rmin = min({1lR(C): C E A p }). For a clause 
C let Rane be the maximal value HR of all ancestors of C from A p , i.e. of the C' E A p 

that were needed to infer C. Then, the value of C according to the judgment function 
'l/JR is 

;Rmax f Rmin 

; otherwise 

This function favors clauses that have a small heuristic weight according to the heuristic 
of the receiver. Since the receiver favors such clauses, too, it is important to avoid the 
transmission of redundant information. Hence, 'l/JH takes into account whether there 
are ancestors of a clause that have a high heuristic weight. If this is the case it is not 
very likely that the receiver activates such clauses by itself. 

It is to be emphasized that such a criterion can only be employed by a send-referee 
that has access to internal data of a sending prover. It is impossible for a referee that 
is working at the receiver site to select clauses with this criterion: In order to employ 
it, it would be necessary to know not only the clauses to choose from but also the 
inference chains the clauses were derived with. But sending the information on both 
clauses and inference chains is practically impossible due to the enormous amount of 
communication. 

More knowledge about the receiver, e.g. knowledge about its set of clauses, cannot be 
efficiently used by a send-referee for the same reason: The whole set of clauses of the 
receiver would be needed. 

8 3 THE TECHS APPROACH

Function ws uses again only knowledge about the sender, namely retrospective criteria.
I t  defines the quality of a clause by its history during the proof attempt so far. This
means that  all  inferences the clause was part of should be considered when developing
a measure for the quality of a clause. Note that by means of such a retrospective view
on the performed inferences it is possible to  use a posteriori knowledge whereas typical
search-guiding heuristics are only able to utilize a priori knowledge.

Definition 3.2 The judgment function 5 is defined as follows: Let C be a clause,
let I h , . . . , I ;  be expanding, Zx+1 , . . . ,In be contracting inference rule types. I;(C)
(1  < j  <n) is  the number of inferences of type I; the clause C' was involved in so far.
Then,

k n

¥s(C) = - 2 L(C) + > LC)
i=k-+1

Us rates contracting inferences positive, expanding inferences negative because gener-
ating too many clauses complicates the search.
In a send-referee, it is also possible to  employ knowledge about the receiver in form of
its heuristic.

Definition 3.3 Let Ap be the set of clauses generated by a prover P and R the receiver
of the clauses to  be selected. R activates clauses with heuristic Hr. Let further be
Re = max({Hgr(C) : C € Ap}) and R™" = min({Hgr(C) : C € Ap}). For a clause
C let  R°"¢ be  the maximal value Hp  of  all ancestors of  C from Ap ,  i.e. of  the C '  € Ap
that were needed to  infer C .  Then, the value of C according to the judgment function
Yu  is

Ras  ~Hg(C)  _ R™e=—Re¢(C)  . Dmaz m in

HCC)  — Rmaz  _ Rm in  + (1  Rmaz  _ Rmin  ) ’ R # R |

0 ; otherwise

This function favors clauses that have a small heuristic weight according to the heuristic
of the receiver. Since the receiver favors such clauses, too, i t  is important to avoid the
transmission of redundant information. Hence, w takes into account whether there
are ancestors of a clause that have a high heuristic weight. If this is the case i t  is not
very likely that the receiver activates such clauses by itself.
It is to be emphasized that such. a criterion can only be employed by a send-referee
that has access t o  internal data of a sending prover. I t  is impossible for a referee that
is working at the receiver site t o  select clauses with this criterion: In  order to  employ
i t ,  i t  would be necessary to  know not only the clauses to choose from but also the
inference chains the clauses were derived with. But sending the information on both
clauses and inference chains is practically impossible due to  the enormous amount of
communication.
More knowledge about the receiver, e.g. knowledge about its set of clauses, cannot be
efficiently used by a send-referee for the same reason: The whole set of clauses of the
receiver would be needed.



3.2 Achieving cooperation between provers 9 

3.2.4 Receive-referees 
, 

The judgment functions of a receive-referee employ knowledge about the search state 
of the receiver. Receive-referees can only select clauses from the set of clauses they 
have received from the send-referees of other provers. Thus, they have to choose from a 
small set of clauses and can therefore employ more sophisticated (and time-consuming) 
criteria than a send-referee. Nevertheless, the knowledge about the system of the 
receiver is somewhat limited and can only facilitate the selection a little bit. (In order 
to go beyond the limitation, for each clause the whole future proof and the role of the 
clause in it has to be computed, which is not feasible.) Since the receive-referee is only 
able to estimate which consequences the integration of certain clauses will have we 
must employ heuristic criteria again. Therefore, even the selection of a receive-referee 
might be insufficient in some cases. In general, there are two main principles of how 
receive-referees can be designed, a contraction-based and an expansion-based principle. 

Function 'l/Ju follows the first principle. Basically, it favors clauses that might often be 
involved in contracting inferences in future. 

Definition 3.4 The judgment function 'l/Ju is defined as follows: Let F:' be the set of 
active clauses of the receiver, let C and D be clauses. Let 8(C, D) be equal to 1 if C 
is able to contract D, and 0 otherwise. Then, 

'l/Ju(C) = L 6(C, Cl) 
C'EF:' 

Hence, 'l/Ju (C) counts how often C could be used in order to contract active clauses of 
the receiver if it were integrated into its search state. Note that 'l/Ju(C) can efficiently 
be computed because usually the set of active clauses is rather small. 

Since we consider expansion inferences to be negative we require that expansion infer
ences involving C should at least contribute to a proof with a high probability. Function 
'l/JSG tries to estimate this in the following way. 

Definition 3.5 Let v be a function defined on pairs of clauses. Let F:' be the set of 
active clauses of the receiver. Let C be a clause to be judged. Then, 

'l/JSG(C) = L v(C, Cl) 
C'EF:' 

'l/JSG( C) sums the value v(C, Cl) for each active clause Cl of the receiver. v(C, Cl) 
should be the higher the more likely C and Cl contribute both to'a proof and hence 
possibly also a descendant of C and Cl may contribute to a proof. E.g., the similarity 
of C to a goal regarding the definitions from [DF94] could be a hint that C contributes 
to a proof. Exact definitions of v depend on the concrete application domain. Hence, 
they can be found in sections 4 and 5. 

3.2 Achieving cooperation between provers 9

3 .2 .4  Receive-referees

The judgment functions of a receive-referee employ knowledge about the search state
of the receiver. Receive-referees can only select clauses from the set of clauses they
have received from the send-referees of other provers. Thus, they have to choose from a
small set of clauses and can therefore employ more sophisticated (and time-consuming)
criteria than a send-referee. Nevertheless, the knowledge about the system of the
receiver is somewhat limited and can only facilitate the selection a little bit. (In order
to  go beyond the limitation, for each clause the whole future proof and the role of the
clause in  i t  has to be computed, which is not feasible.) Since the receive-referee is only
able to  estimate which consequences the integration of certain -clauses will have we
must employ heuristic criteria again. Therefore, even the selection of a receive-referee
might be insufficient in some cases. In general, there are two main principles of how
receive-referees can be designed, a contraction-based and an expansion-based principle.
Function py  follows the first principle. Basically, it favors clauses that might often be
involved in  contracting inferences in future.

Definition 3.4 The judgment function ¥y  is defined as follows: Let F#  be the set of
active clauses of the receiver, let C and D be clauses. Let 6(C, D)  be equal to 1 if  C
is able to  contract D ,  and 0 otherwise. Then,

Yw(C)=  X 5(C,C')
CIEFR

Hence, 1p (C) counts how often C could be used in order to contract active clauses of
the receiver i f  i t  were integrated into its search state. Note that ¥y(C) can efficiently
be computed because usually the set of active clauses is rather small.
Since we consider expansion inferences to  be negative we require that expansion infer-
ences involving C should at  least contribute to  a proof with a high probability. Function
sq  tries to  estimate this in  the following way.

Definition 3.5 Let v be a function defined on pairs of clauses. Let F@ be the set of
active clauses of the receiver. Let C be a clause to be judged. Then,

¥sc(C)  = > v (C ,C )
C'eFg

Ysc(C) sums the value v(C,C") for each active clause C' of the receiver. v(C,C’)
should be the higher the more likely C and C” contribute both to  a proof and hence
possibly also a descendant of C and C” may contribute to a proof. E.g., the similarity
of C to a goal regarding the definitions from [DF94] could be a hint that C contributes
to  a proof. Exact definitions of  v depend on  the concrete application domain. Hence,
they can be found in sections 4 and 5.



10 3 THE TECHS APPROACH
 

3.2.5 Integrating clauses 

The integration of clauses into the system of a saturation-based prover can simply be 
performed by treating the clauses as selected potential clauses. That is, the received 
clauses are activated in an arbitrary order. This method gives rise to the question 
whether or not a prover which performs fair derivations may become incomplete when 
it periodically integrates clauses from others. As pointed out in [Fuc97] a saturation
based prover might become incomplete if it only employs an arbitrary fair heuristic. But 
a stronger condition than fairness, fairness despite disturbance, is sufficient in order to 
guarantee completeness. Fortunately, most fair selection strategies are also fair despite 
disturbance. The main idea of fairness despite disturbance is that a heuristic must 
not always favof the activation of received clauses or descendants of them before the 
activation of one of its potential facts. For details we refer the reader to [Fuc97]. 

3.3 Initialization of heterogeneous teams 

Now, we shall deal with the ?,ssignment of clauses from the original clause set M to 
the provers which are part of the cooperating system. We outline heuristic methods 
for this assignment. Moreover, we examine conditions on the assignment and on the 
referees that guarantee completeness o(the whole system. 

3.3.1 Heuristics for clause assignment 

First, we consider the case that only universal provers are part of our cooperating 
system. Then, we set Vi : 'Y'i(M) = M, i.e. all provers obtain the original clause set as 
input. It is to be emphasized that we are mainly interested in a system of cooperating 
provers, not in distributing or partitioning the original problem. Hence, in this case we 
do not partition the original clause set in contrast to distribution methods like clause 
diffusion ([BH95]). 

In the case that specialized provers are part of our team we must take care of the fact 
that they can only deal with clauses from their'relevant sub-logic. Hence, the easiest 
way is to use the following system of functions 'Y'i: 

; i is a universal prover 
; i is specialized in sub-logic Li, .ci(M) = {C : C E M, 
C is a well-formed formula to L i } 

Note that this kind of assignment of initial clauses to provers often leads to the situa
tion that specialized provers cannot solve proof problems by themselves.. Nevertheless, 
they can efficiently work as kind of lemma generators for universal provers and can 
produce important consequences of the initial clause set that lie deep within the search 
space of a universal prover. Consider, e.g., the case that we have an equational prover 
as specialized prover which employs unfailing completion. If a proof problem contains 
positive equations and other non-unit clauses (possibly not containing equality), in gen
eral the prover is not able to solve the problem. However, it can at least produce many 

10 3 THE TECHS APPROACH

3.2.5 Integrating clauses

The integration of clauses into the system of a saturation-based prover can simply be
performed by treating the clauses as selected potential clauses. That is, the received
clauses are activated in  an arbitrary order. This method gives rise to the question
whether or not a prover which performs fair derivations may become incomplete when
i t  periodically integrates clauses from others. As pointed out in [Fuc97] a saturation-
based prover might become incomplete if  i t  only employs an arbitrary fair heuristic. But
a stronger condition than fairness, fairness despite disturbance, is sufficient in order to
guarantee completeness. Fortunately, most fair selection strategies are also fair despite
disturbance. The main idea of fairness despite disturbance is that a heuristic must
not always favor the activation of received clauses or descendants of them before the
activation of one of its potential facts. For details we refer the reader to [Fuc97].

3.3 Initialization o f  heterogeneous teams

Now, we shall deal with the assignment of clauses from the original clause set M to
the provers which are part of the cooperating system. We outline heuristic methods
for this assignment. Moreover, we examine conditions on the assignment and on the
referees that guarantee completeness of the whole system.

3.3.1 Heuristics for clause assignment

First, we consider the case that only universal provers are part of our cooperating
system. Then, we set Vi  : y ; (M)  = M ,  i.e. all provers obtain the original clause set as
input. I t  is to be emphasized that we are mainly interested in  a system of cooperating
provers, not in  distributing or partitioning the original problem. Hence, in  this case we
do not partition the original clause set in  contrast to distribution methods like clause
diffusion ([BH95]).
In the case that specialized provers are part of our team we must take care of the fact
that they can only deal with clauses from their'relevant sub-logic. Hence, the easiest
way is to use the following system of functions «;:

(M)  = M ;%is a universal prover
% | L i (M)  i is specialized in sub-logic L; ,  £ ; (M)  = {C  : C € M,

C is a well-formed formula to  L ; }

Note that this kind of assignment of initial clauses to provers often leads to the situa-
tion that specialized provers cannot solve proof problems by themselves. Nevertheless,
they can efficiently work as kind of lemma generators for universal provers and can
produce important consequences of the initial clause set that lie deep within the search
space of a universal prover. Cousider, e.g., the case that we have an equational prover
as specialized prover which employs unfailing completion. I f  a proof problem contains
positive equations and other non-unit clauses (possibly not containing equality), in  gen-
eral the prover is not able to  solve the problem. However, i t  can at least produce many



3.3 Initialization of heterogeneous teams 11 

logic consequences of the equations which might help a universal prover to conclude 
the proof. 
Since specialized provers are mainly used as lemma generators a sensible refinement is 
that they concentrate on certain regions of the search space. Hence, it is reasonable to 
give a specialized prover i only a subset of £i(M) and the prover produces only logic 
consequences of this subset. Possible criteria for eliminating clauses from £i(M) are: 
On the one hand, it is possible to focus only on certain parts of the search space, e.g. 
on parts specified by using subsets of the predicate and function symbols. Hence, a 
specialized prover can very quickly produce logic consequences that universal provers 
will probably derive quite late. On the other hand, it might be sensible to insert 
only clauses with certain syntactic properties into the initial clause set of a specialized 
prover. E.g., specialized provers may only obtain large clauses which are hard to 
process by universal provers, but quite efficient by specialized provers because their 
data structures and algorithms are optimized regarding their sub-logics. 
Another possible refinement is that also the input sets of universal provers are reduced. 
More exactly, if i is a universal and jl,'" ,jn are specialized provers, 'Yi(M) = M \ 
D, D c Ui=l£ji(M). Hence, a universal prover can transfer parts of the search space 
whose exploration would lead to high costs to specialized provers. Then, with the help 
of the referees it can obtain "interesting" clauses from these parts of the search space. 
However, completeness may be lost by using this refinement (see below). One possible 
criterion for reducing the input of universal provers is to omit large clauses (see also 
5). 

3.3.2 Completeness of heterogeneous teams 

Since it might be the case that provers obtain only subsets of the initial clause set 
we must examine the completeness of a heterogeneous team. Henceforth, we restrict 
ourselves to the case that a superposition-based prover cooperates with an equational 
prover (employing unfailing completion). This is sensible due to two different reasons: 
On the one hand, this special case is sufficient to show the main principles. On the 
other hand, we have exactly this constellation in our experiments with heterogeneous 
teams (see section 5). 
If the universal superposition prover obtains all initial clauses and activates clauses 
with a heuristic which is fair despite disturbance surely the system of cooperating 
provers is complete. 
Thus, in the following we only examine the situation that the universal prover obtains 
as input the set M', M\M' c EQ(M) = {s = t: s = t E M}. The equational prover 
obtains the set M" C EQ(M). Then, in general completeness is not guaranteed. If 
the universal prover never obtains a certain axiom (an equation) from the specialized 
prover and exactly this is needed in a proof (together with a non-unit clause) none 
of the provers is able to find a proof. Nevertheless, there are rather weak conditions 
on the input sets, on the referees, and on the heuristics of the provers that guarantee 
completeness. We assume that the superposition-based prover performs derivations 
with disturbance (i.e. with periodically receiving and integrating clauses of the other 
prover) M' = Mo f-- sup,dist M 1 f-- sup,dist ... The system of persistent clauses is Moo. 

3.3 Initialization of  heterogeneous teams 11

logic consequences of the equations which might help a universal prover to conclude
the proof.
Since specialized provers are mainly used as lemma generators a sensible refinement is
that they concentrate on certain regions of the search space. Hence, it is reasonable to
give a specialized prover i only a subset of £ ; (M)  and the prover produces only logic
consequences of this subset. Possible criteria for eliminating clauses from £; (M) are:
On the one hand, it is possible to focus only on certain parts of the search space, e.g.
on parts specified by using subsets of the predicate and function symbols. Hence, a
specialized prover can very quickly produce logic consequences that universal provers
will probably derive quite late. On the other hand, it might be sensible to insert
only clauses with certain syntactic properties into the initial clause set of  a specialized
prover. E.g., specialized provers may only obtain large clauses which are hard to
process by universal provers, but quite efficient by specialized provers because their
data structures and algorithms are optimized regarding their sub-logics.
Another possible refinement is that also the input sets of universal provers are reduced.
More exactly, if ¢ is a universal and j i ,  . . . ,  j ,  are specialized provers, v;(M) = M \
D,D  C UL ,  L ; , (M).  Hence, a universal prover can transfer parts of the search space
whose exploration would lead to  high costs to specialized provers. Then, with the help
of the referees i t  can obtain “interesting” clauses from these parts of the search space.
However, completeness may be lost by using this refinement (see below). One possible
criterion for reducing the input of universal provers is to omit large clauses (see also
5).

3.3.2 Completeness of  heterogeneous teams

Since it might be the case that provers obtain only subsets of the initial clause set
we must examine the completeness of a heterogeneous team. Henceforth, we restrict
ourselves to  the case that a superposition-based prover cooperates with an equational
prover (employing unfailing completion). This is sensible due to two different reasons:
On the one hand, this special case is sufficient to show the main principles. On  the
other hand, we have exactly this constellation in our experiments with heterogeneous
teams (see section 5).
I f  the universal superposition prover obtains all initial clauses and activates clauses
with a heuristic which is fair despite disturbance surely the system of cooperating
provers is complete.
Thus, in the following we only examine the situation that the universal prover obtains
as input the set M ' ,  M \M '  C EQ(M)  = { s= t : s  = t  € M} .  The equational prover
obtains the set M"  C EQ(M) .  Then, in  general completeness is not guaranteed. If
the universal prover never obtains a certain axiom (an equation) from the specialized
prover and exactly this is needed in  a proof (together with a non-unit clause) none
of the provers is able to find a proof. Nevertheless, there are rather weak conditions
on the input sets, on the referees, and on the heuristics of the provers that guarantee
completeness. We assume that the superposition-based prover performs derivations
with disturbance (i.e. with periodically receiving and integrating clauses of the other
prover) M'’ = Mpg bgp d i s t  Mi  Fsupd is t  - - .  The system of persistent clauses is M™.



12 4 HOMOGENEOUS TEAMS VIA TECHS 

The equational prover performs derivations with disturbance (0, M") = (0, Eo) r-uc,dist 

(RI, El) r-uc,dist ... Its persistent rules and equations are ROO and Eoo, respectively. 
Then, the following holds: 

Theorem 3.1 Let M be an inconsistent set of clauses containing (positive) unit equa
tions. Let PI be a superposition prover, P2 be a prover based on unfailing completion. 
Both provers obtain initial clause sets M' C M and M" C M, respectively, where 
M \ M' c EQ(M), M" c EQ(M), and M = M' U M". g employs heuristic HI, 
P2 heuristic H 2 . Both heuristics are fair despite disturbance. Moreover, the referee of 
P 2 is designed in such a way that it eventually selects all C E ROO U Eoo and transmits 
these clauses to PI' Then, there is a set D such that M' r-:up,dist D and 0 E D. 

Proof: Prover Pz generates the systems of persistent rules and equations Roo and E oo , 

with its inference rules and by using clauses from prover PI, such that =M"c;;;.=RooUE=. 

The fairness despite disturbance of the heuristic of prover Pz guarantees that for all 
Si = ti E M" holds: Si =R=UE= ti (1 ::; i ::; n). Thus, for each Si = ti there is a proof 
with persistent rules and equations. B i c;;;. Roo u Eoo denotes the set of clauses needed 
in a proof for Si = t i . Then: 

(*) M' u U Bi is inconsistent iff M' U M" = M is inconsistent 
l:S;i:S;n 

Due to our condition regarding the referee of prover P 2 all clauses from UI:S;i:S;nBi will 
eventually be integrated into the set of clauses of prover g. Hence, by using (*), 
prover PI has an inconsistent set of clauses after the integration of all these clauses. 
Because of the fact that superposition is Tefutationally complete and HI is fair despite 
disturbance prover PI is able to derive the empty clause. 0 
As we can see, we must take care in the fact that all equations which are eliminated 
from the system of the universal prover are in the system of the specialized prover. The 
condition that both provers must employ a heuristic which is fair despite disturbance 
is not a grave restriction because this is also required from the complete prover when 
the provers simply exchange clauses without dividing the initial clause set. Referees 
with the above property can quite easily be designed, e.g. by giving time stamps to 
activated clauses and selecting in each cooperation phase the oldest clause that has not 
been selected in an earlier phase (besides other clauses selected using various criteria). 
Note that similar conditions are also proposed in [BH97]. However, there only the 
distribution of a single prover is examined. "Ve, however, examine the coupling of 
heterogeneous provers in that sense that they employ different heuristics and orderings. 
Moreover, we are able to use provers in the network whose calculus is not complete for 
the logic the proof problems are specified in. 

4 Homogeneous Teams via TECHS 

Henceforth, we describe a case study for coupling different incarnations of the same 
prover, resulting in a homogeneous team. Firstly, we outline the basics of our experi
mental setting. Secondly, we report on some experimental results. 

12 4 HOMOGENEOUS TEAMS VIA TECHS

The equational prover performs derivations with disturbance (8; M") = (8, Eo) Fuc  gist

(Ry, Ev) Fucg is t  ---  I ts persistent rules and equations are R® and E ,  respectively.
Then, the following holds:

Theorem 3 .1  Let M be an inconsistent set of  clauses containing (positive) unit equa-
tions. Let P, be a superposition prover, Pa be a prover based on unfailing completion.
Both provers obtain init ial clause sets M '  C M and M"  C M ,  respectively, where
MA\M '  Cc EQ(M) ,  M "  C EQ(M) ,  and M = M '  UM" .  P; employs heuristic H ı ,
P, heuristic H , .  Both heuristics are fair despite disturbance. Moreover, the referee of
P,  is designed in such a way that i t  eventually selects a l l  C € R®  U E>  and transmits
these clauses to Py. Then, there is a set D such that M '  FD  and O € D .

Proof: Prover P,  generates the systems of  persistent rules and equations R*  and E°,
with its inference rules and by using clauses from prover Pı,  such that =C=peygsw.
The fairness despite disturbance of the heuristic of prover P,  guarantees that for all
s; = t ;  € M"  holds: s;  =reug» t; ( 1  < ¢ <n ) .  Thus, for each s ;  = ¢; there is a proof
with persistent rules and equations. B;  © R ”  U E *  denotes the set of clauses needed
in a proof for s; = t;. Then:

(x) M 'u  U B; is  inconsistent iff M 'UM"  =M is inconsistent
1< i<n

Due to  our condition regarding the referee of prover P,  all clauses from U,<;<,B; will
eventually be integrated into the set of clauses of prover Pı. Hence, by using (x),
prover P ı  has an inconsistent set of clauses after the integration of all these clauses.
Because of the fact that superposition is refutationally complete and H ,  is fair despite
disturbance prover P;  is able to  derive the empty clause. 0
As we can see, we must take care in the fact that all equations which are eliminated
from the system of the universal prover are in the system of the specialized prover. The
condition that both provers must employ a heuristic which is fair despite disturbance
is not a grave restriction because this is also required from the complete prover when
the provers simply exchange clauses without dividing the initial clause set. Referees
with the above property can quite easily be designed, e.g. by giving time stamps to
activated clauses and selecting in  each cooperation phase the oldest clause that has not
been selected in  an earlier phase (besides other clauses selected using various criteria).
Note that similar conditions are also proposed in [BH97]. However, there only the
distribution of a single prover is examined. We, however, examine the coupling of
heterogeneous provers i n  that sense that they employ different heuristics and orderings.
Moreover, we are able to  use provers in the network whose calculus is not complete for
the logic the proof problems are specified in.

4 Homogeneous Teams via TECHS

Henceforth, we describe a case study for coupling different incarnations of the same
prover, resulting in  a homogeneous team. Firstly, we outline the basics of our experi-
mental setting. Secondly, we report on some experimental results.



4.1 Experimental setting 13 

4.1 Experimental setting 

A homogeneous team of provers consists of different incarnations of one basic prover. 
That is, the provers differ. from each other only in the parameter settings which is 
mainly the heuristic they employ for activating clauses or the ordering used in some 
inferences. 

We chose the area of full first-order theorem proving for our case study in order to 
demonstrate the generality of our approach. Note that we have also coupled homoge
neous provers in the (specialized) area of condensed detachment with some success (see 
[FD97]). In our case study, we coupled different incarnations of the prover SPASS. This 
prover is already very powerful when working sequentially as results of theorem prov
ing competitions reveal (see, e.g., [8897]). In order to couple incarnations of SPAssit 
was necessary that SPASS could employ several heuristics. 8ince SPASS has merely one 
heuristic at its disposal we were forced to add new heuristics which are slightly modi
fied variants of the basic heuristic. Note that -starting with obtaining SPASS via ftp
we needed one man-month for the whole process of extending SPASS to a cooperative 
prover. Hence, our cooperation concept proved to be easily implementable. 

We coupled two different incarnations of SPASS. One incarnation was the SPASS stan
dard heuristic, the heuristic of the other incarnation was realized by weighting function 
symbols which occured in axioms but not in conjecture clauses with the value 5 and 
the remaining function symbols with the value 2. It is to be emphasized that both heu
ristics are fair despite disturbance. Each prover employed a send- and a receive-referee. 
The send-referee of each prover selected 24 clauses, the receive referee then selected 10 
clauses from these clauses. Note that the exchange of clauses was simply organized via 
files. The send-referees fell back on judgment functions 'l/Js, 'l/JG, and 'l/JH as described in 
section 3.2. 8 clauses were selected with each function. The receive-referees employed 
functions 'l/Ju and 'l/JSG, and used each function for identifying 5 clauses to be integrated. 

In order to define 'l/JSG we have to explain the function v which is the basis of 'l/JSG. 
Recall that v(C, C') should estimate whether or not a descendant of C and C' is likely 
to contribute to a proof. Because of the fact that a receive-referee should not perform 
inferences by itself simple criteria have to be used for such an estimation. We assume 
that a clause C contributes to the refutation of another active clause C' if we can 
perform a superposition step with C and C'. However, a superposition step does not 
necessarily lead to a derivation of the empty clause. On the contrary, the clause length 
of the resulting clause can even increase. Hence, we assume that C only contributes 
to a refutation of C' if at least one descendant of C and C' exists which does not have 
more literals than C or C'. In order to reduce the amount of computation needed to 
check this we use the following heuristic: If C is a unit and has a descendant with 
C' we assume it to be contributing to the refutation of C'. If C is not a unit clause 
we consider it to be only contributing to a proof of C' if this clause is a unit and has 
a descendant with C. Furthermore, it is possible to take the length of the non-unit 
clauses into account: When performing inferences with short clauses it might be easier 
to derive the empty clause than when deriving new clauses with very long ones. 

Definition 4.1 Let C and C' be clauses, let r(C, C') be the number of clauses derivable 

4.1 Experimental setting 13

4 .1  Experimental setting

A homogeneous team of provers consists of different incarnations of one basic prover.
That is, the provers differ. from each other only in the parameter settings which is
mainly the heuristic they employ for activating clauses or the ordering used in some
inferences.
We chose the area of full first-order theorem proving for our case study in order to
demonstrate the generality of our approach. Note that we have also coupled homoge-
neous provers in the (specialized) area of condensed detachment with some success (see
[FD97]). In  our case study, we coupled different incarnations of the prover SPASS. This
prover is already very powerful when working sequentially as results of theorem prov-
ing competitions reveal (see, e.g., [SS97]). In order to couple incarnations of SPass.it
was necessary that SPASS could employ several heuristics. Since SPASS has merely one
heuristic at i ts disposal we were forced to add new heuristics which are slightly modi-
fied variants of the basic heuristic. Note that —starting with obtaining SPASS via ftp—
we needed one man-month for the whole process of extending SPASS to  a cooperative
prover. Hence, our cooperation concept proved to  be easily implementable.
We coupled two different incarnations of SPASS. One incarnation was the SpAss stan-
dard heuristic, the heuristic of the other incarnation was realized by  weighting function
symbols which occured in  axioms but not in conjecture clauses with the value 5 and
the remaining function symbols with the value 2. It is to be emphasized that both heu-
ristics are fair despite disturbance. Each prover employed a send- and a receive-referee.
The send-referee of each prover selected 24 clauses, the receive referee then selected 10
clauses from these clauses. Note that the exchange of clauses was simply organized via
files. The send-referees fell back on judgment functions ws, a ,  and m as described in
section 3.2. 8 clauses were selected with each function. The receive-referees employed
functions ¥y  and se ,  and used each function for identifying 5 clauses to  be integrated.
In order to  define sg  we have to  explain the function v which is the basis of %sc.
Recall that v(C, C’) should estimate whether or not a descendant of C and C” is likely
to contribute to a proof. Because of the fact that a receive-referee should not perform
inferences by  itself simple criteria have to  be used for such an estimation. We assume
that a clause C contributes to the refutation of another active clause C” i f  we can
perform a superposition step with C and C’. However, a superposition step does not
necessarily lead to  a derivation of the empty clause. On  the contrary, the clause length
of the resulting clause can even increase. Hence, we assume that C only contributes
to  a refutation of C” if at least one descendant of C and C’  exists which does not have
more literals than C or C’. In order to reduce the amount of computation needed to
check this we use the following heuristic: If C is a unit  and has a descendant with
C'  we assume i t  to  be contributing to the refutation of C’ .  If C is not a unit clause
we consider i t  to  be only contributing to  a proof of C” i f  this clause is a unit and has
a descendant with C. Furthermore, i t  is possible to take the length of the non-unit
clauses into account: When performing inferences with short clauses i t  might be easier
to derive the empty clause than when deriving new clauses with very long ones.

Definition 4.1 Let C and C’  be clauses, let  r(C,  C’) be the number of clauses derivable



14 4 HOMOGENEOUS TEAMS VIA TECHS 

I problem I SPASS I mod. SPASS I TECHS I OTTER I 
LCL196-1 292.4s 311.78 83.88 34.98 
LCL163-1 1O.0s 11.98 7.5s -

GRP048-2 23.38 17.48 8.78 101.98 
GRP148-1 951.28 253.18 184.78 70.3s 
GRP169-1 80.18 15.7s 13.7s 9.9s 
GRP169-2 56.1s 26.2s 9.7s 9.5s 
GRP174-1 8.08 8.3s 5.8s 9.6s 
RNG018-6 639.9s 199.7s 152.3s 0.5s 
NUMOO9-1 8.1s 6.3s 2.6s 21.5s 

Table 1: Coupling incarnations of SPASS via TECHS 

by applying superposition to C and C'. Then, if C is a unit we define the evaluation 
function for superposition v SP by 

00 ; :J(j : (j = mgu(C, ,C') 
VSP(C, C') = { r(~~') ; otherwise 

Otherwise, if C is not a unit clause, we define 

;C' is not a unit clause 
VSP(C, C') = { r(e~el) ; otherwise lel 

4.2 Experimental results 

We conducted experimental studies in the light of problems taken from the problem 
library TPTP ([SSY94]). As our test set we chose problems from the CADE-13 ATP 
system competition ([SS97]) and selected those from the categories 'unit equality' and 
'mixed'. 

Table 1 presents an excerpt of our results obtained when tackling hard and medium 
problems (the runtime is at least 8 seconds on a SPARCstation 20). Column 1 shows 
the name of the problem. The remaining columns display the runtimes (obtained on 
one or two SPARCstations 20) of the basic heuristic of SPASS (SPASS), our :p.ewly 
implemented heuristic (mod. SPASS), our cooperating system of provers (TECHS), and 
OTTER in its auto-mode (see [McC94]). We use the runtime of OTTER as a point 
of reference merely in order to show that we are not dealing with trivial problems. 
More interesting, however, is the comparison of the single heuristics with our system 
of cooperating provers. 

The speed-ups w.r.t. the better of the two heuristics for each problem range from 1.3 
to 3.5 with more than half of the problems having a (super-linear) speed-up of 2 or 
more. So, despite the overhead produced by TECHS, that includes interchange of data 
via files, the performance of SPASS was definitely improved. 

14 4 HOMOGENEOUS TEAMS VIA TECHS

| problem| Spass | mod. SPASS | TECHS| OTTER|
LCL196-1  | 292.4s 311.7s | 83.8s 349s
LCL163-1 | 10.0s 11.9s 7.58 -
GRP048-2 | 23.3s 17.4s 8.7s | 101.9s
GRP148-1 | 951.28 253.1s | 184.7s 70.3s |

GRP169-1 | 80.1s 15.7s 13.7s 9.9s
GRP169-2 | 56.1s 26.2s 9.7s 9.5s
GRP174-1 8.0s 8.3s 5.8s 9.6s
RNGO18-6 | 639.9s 199.7s | 152.3s 0.5s
NUM009-1 8.1s 6.3s 2.6s 21.58

Table 1: Coupling incarnations of SPASS via TECHS

by applying superposition to  C and C’. Then, if C is a unit we define the evaluation
function for superposition v°P by

oo  ;30:0=mgu(C,~C’)Sp nN — ,

vH(C ,C)  { aden ; otherwise

Otherwise, if C is not a unit clause, we define

PCC 0 ;C '  is not a unit clause
v HCC) =)  a0  ; otherwiseICH

4.2 Experimental results

We conducted experimental studies in the light of problems taken from the problem
library TPTP ([SSY94]). As our test set we chose problems from the CADE-13 ATP
system competition ([SS97]) and selected those from the categories ‘unit equality’ and
‘mixed’.
Table 1 presents an excerpt of our results obtained when tackling hard and medium
problems (the runtime is at least 8 seconds on a SPARCstation 20). Column 1 shows
the name of the problem. The remaining columns display the runtimes (obtained on
one or two SPARCstations 20) of the basic heuristic of SPASS (Spass), our newly
implemented heuristic (mod. SPASS) ,  our cooperating system of provers (TECHS), and
OTTER in  its auto-mode (see [McC94]). We use the runtime of OTTER as a point
of reference merely in order to  show that we are not dealing with trivial problems.
More interesting, however, is the comparison of the single heuristics with our system
of cooperating provers. ’

The speed-ups w.r.t. the better of the two heuristicsfor each problem range from 1.3
to 3.5 with more than half of the problems having a (super-linear) speed-up of 2 or
more. So, despite the overhead produced by TECHS, that includes interchange of data
via files, the performance of  SPASS was definitely improved.



15 

5 Heterogeneous Teams via TECHS 

We also conducted a case study using different provers in a team and in the following 
report on achieved results. 

5.1 Experimental setting 

In order to couple heterogeneous provers we let a universal prover and a prover spe
cialized in pure equationallogic cooperate. This is interesting for two different reasons: 
Firstly, equality is involved in many problems of first-order logic and usually universal 
provers have serious difficulties when dealing with such problems. Hence, cooperation 
with a prover specialized in equationallogic might be the right way for increasing per
formance. Secondly, there exist many high-performance provers for pure equational 
logic whose applicability is rather restricted because most problems contain -besides 
unit equations- also non-unit clauses. Thus, by employing such specialized provers in 
a network of cooperating provers they can contribute to the solution of problems of 
full first-order logic and their applicability can hence be increased. 

We have again chosen the superposition-based prover SPASS with its basic heuristic 
as universal prover. We have chosen the unfailing completion prover DISCOUNT as 
specialized prover. Note that DISCOUNT is superior to SPASS in pure equationallogic 
because it has goal-oriented heuristics ([DF94]) at its disposal which are only suitable 
for equationallogic. Moreover, its implementation and data structures are specialized 
so as to very efficiently deal with equations. Hence, DISCOUNT is more powerful 
than a version of SPASS restricted to equationallogic. In our case study, DISCOUNT 
activates clauses with such a goal-oriented heuristic. Note that these heuristics are not 
fair, i.e. also not fair despite disturbance (see [Fuc97]). However, since the universal 
prover SPASS employs a heuristic which is fair despite disturbance the cooperating 
system is nonetheless complete (if SPASS obtains all input clauses). By employing 
these provers we have indeed a heterogeneous system: The provers employ different 
calculi, different orderings, and different heuristics. Moreover, their implementation is 
optimized regarding different aims. 

Each prover employed send- and receive-referees which selected 12 clauses at the sender 
site and 6 clauses at the receiver site, respectively. The referees of SPASS were designed 
as described in section 4.1. The send-referee of DISCOUNT selected clauses with func
tions 1/Ja, 1/Js, and 1/JH· The receive-referee fell back on functions 1/Ju and 1/Jsa. The 
function l/uc which is needed by 1/J~a is defined as follows: 

Definition 5.1 Let w be a similarity function (based on function CPinGoal as de
scribed in [DF94]) between a positive equation and a negative equation (goal). Let C, 
C' be unit equations. Then, we define 

w(C, C') ; C == {s = t}, C' ={-,U = v} 
vUC(C, C') = w(C~, C) ;C = {-,s = t},C' == {u = v}

{ ;otherwise 

15

5 Heterogeneous Teams via TECHS

We also conducted a case study using different provers in a team and in the following
report on achieved results.

5 .1  Experimental setting

In order to couple heterogeneous provers we let a universal prover and a prover spe-
cialized in  pure equational logic cooperate. This is interesting for two different reasons:
Firstly, equality is involved in many problems of first-order logic and usually universal
provers have serious difficulties when dealing with such problems. Hence, cooperation
with a prover specialized in  equational logic might be the right way for increasing per-
formance. Secondly, there exist many high-performance provers for pure equational
logic whose applicability is rather restricted because most problems contain —besides
unit equations— also non-unit clauses. Thus, by employing such specialized provers in
a network of cooperating provers they can contribute to  the solution of problems of
full first-order logic and their applicability can hence be increased.
We have again chosen the superposition-based prover SPASS with i ts basic heuristic
as universal prover. We have chosen the unfailing completion prover DISCOUNT as
specialized prover. Note that DISCOUNT is superior to SPASS in pure equational logic
because i t  has goal-oriented heuristics ([DF94]) at its disposal which are only suitable
for equational logic. Moreover, its implementation and data structures are specialized
so as to very efficiently deal with equations. Hence, DISCOUNT is more powerful
than a version of SPAsS restricted to equational logic. In our case study, DISCOUNT
activates clauses with such a goal-oriented heuristic. Note that these heuristics are not
fair, i.e. also not fair despite disturbance (see [Fuc97]). However, since the universal
prover SPASS employs a heuristic which is fair despite disturbance the cooperating
system is nonetheless complete (if SPASS obtains all input clauses). By  employing
these provers we have indeed a heterogeneous system: The provers employ different
calculi, different orderings, and different heuristics. Moreover, their implementation is
optimized regarding different aims.
Each prover employed send- and receive-referees which selected 12 clauses at  the sender
site and 6 clauses at the receiver site, respectively. The referees of  SPASS were designed
as described in section 4.1. The send-referee of DISCOUNT selected clauses with func-
tions vq ,  Us, and wm. The receive-referee fell back on functions py  and sg .  The
function v“C which is needed by sg  is defined as follows:

Definition 5 .1  Let w be a similarity function (based on function CPinGoal as de-
scribedin  [DF94]) between a positive equation and a negative equation (goal). Let C,
C'  be unit equations. Then, we define

w(C,C) ;C= { s= t ) } ,C= { -u=v }
vUCC)=$ w(C',C) ;C= { - s=1 t } ,C '= {u=v }

0 ; otherwise



16 5 HETEROGENEOUS TEAMS VIA TECHS
 

We examined three different variants for an initial assignment of clauses to the provers. 
Let M be the original set of input clauses, EQ(M) be the set of positive equations 
in M, and EQneg(M) be the set of negative equations in M. Then, the first variant 
(basic assignment) is to give SPASS all clauses from M, and DISCOUNT all equations 
from EQ(M) as axioms and all inequations from EQneg(M) as goals. The second 
variant (input reduction of DISCOUNT) is to again give SPASS all clauses but to reduce 
the input of DISCOUNT to "difficult" parts. More exactly, we eliminated from the input 
set EQ(M) U EQneg(M) of DISCOUNT 10% of the positive equations with the lowest 
weight (the lowest number of symbols). Finally, the third variant (input reduction of 
SPASS) is not to reduce DISCOUNT'S input, i.e. it obtains EQ(M) UEQneg(M), but to 
eliminate some equations from the input of SPASS. We deleted 10% of the equations 
having the highest weights. Note that it is sometimes the case (especially in the HEN 
domain) that some of these equations are redundant and that SPASS can solve the 
problem much faster without using them. In order to avoid this, we only eliminated 
such clauses that are really necessary for a proof. That is, SPASS is not able to derive 
the empty clause by only producing logic consequences of its reduced input set but it 
really needs support from DISCOUNT. It is to be emphasized that we employed these 
variants only when dealing with problems that are not specified in pure equational 
logic. In that case both theorem provers obtain all equations as input. 

5.2 Experimental results 

We experimented in the light of problems from the TPTP. We dealt especially with the 
ROB and HEN domain. We chose those problems which contain positive unit equa
tions that can be giveJ;l. to DISCOUNT (we consider literals P(t1, ... ,tn) to be equations 
P(t1 , ... , tn) = true). Sometimes (especially in the HEN domain) the situation oc
curred that the completion of DISCOUNT stopped and SPASS could not transmit unit 
equations to DISCOUNT. In order to deal with such problems we extended DISCOUNT 
in that case so as to let it partly work with horn clauses: We allowed horn clauses to 
pass through the filter of SPASS. Then, DISCOUNT tried to derive unit equations by 
applying hyper-resolution to its set of equations and the received horn clauses. After 
that, the horn clauses were deleted and the derived equations were treated as received 
equations. 

By employing the described experimental setting we could achieve a consistent gain of 
efficiency in both examined domains HEN and ROB. Table 2 presents an excerpt of 
our experimental results in these domains, enriched with some problems taken from 
other domains. Column 1 again shows the name of the problem, columns 2 and 3 the 
sequential runtimes of the provers (again obtained on a SPARCstation 20). As one 
can see, SPASS sometimes outperforms DISCOUNT for unit equality problems although 
it is in general not as powerful as DISCOUNT in equational logic. This is because the 
used goal-oriented heuristics of DISCOUNT are especially well-suited when combining 
them with conventional heuristics but sometimes fail when working alone. Columns 
4-6 display the results obtained with our three variants of TECHS. Note that for 
problems of unit equality we only used the first variant (basic assignment). Then, 
we used the same runtimes for the second and third variant as for the first variant. 

16 5 HETEROGENEOUS TEAMS VIA TECHS

We examined three different variants for an initial assignment of clauses to the provers.
Let M be the original set of input clauses, EQ(M) be the set of positive equations
in M ,  and EQpe,(M) be the set of negative equations in M .  Then, the first variant
(basic assignment) is to give SPASS all clauses from M ,  and DISCOUNT all equations
from FQ(M) as axioms and all inequations from EQ,,(M) as goals. The second
variant (input reduction of DISCOUNT) is to again give SPASS all clauses but to reduce
the input of DISCOUNT to “difficult” parts. More exactly, we eliminated from the input
set EQ(M)  U EQpeg(M) of DISCOUNT 10% of the positive equations with the lowest
weight (the lowest number of symbols). Finally, the third variant (input reduction of
SPASS) is not to reduce DISCOUNT’s input, i.e. i t  obtains FQ(M)U  EQpe,(M), but to
eliminate some equations from the input of SPAss. We deleted 10% of the equations
having the highest weights. Note that i t  is sometimes the case (especially in  the HEN
domain) that some of these equations are redundant and that SPASS can solve the
problem much faster without using them. In order to  avoid this, we only eliminated
such clauses that are really necessary for a proof. That is, SPASS is not able to  derive
the empty clause by only producing logic consequences of its reduced input set but  it
really needs support from DISCOUNT. It  is to be emphasized that we employed these
variants only when dealing with problems that are not specified in pure equational
logic. In  that case both theorem provers obtain all equations as input.

5.2 Experimental results

We experimented in the light of problems from the TPTP. We dealt especially with the
ROB and HEN domain. We chose those problems which contain positive unit equa-
tions that can be given to DISCOUNT (we consider literals P(ty,. . . ,¢,)  to be equations
P(ty,... , tn) = true). Sometimes (especially in the HEN domain) the situation oc-
curred that the completion of DISCOUNT stopped and SPASS could not transmit unit
equations to DISCOUNT. In order to  deal with such problems we extended DISCOUNT

‚ in  that case so as to  let i t  partly work with horn clauses: We allowed horn clauses to
pass through the filter of SPASS. Then, DISCOUNT tried to derive unit equations by
applying hyper-resolution to  its set of equations and the received horn clauses. After
that, the horn clauses were deleted and the derived equations were treated as received
equations.
By  employing the described experimental setting we could achieve a consistent gain of
efficiency in both examined domains HEN and ROB. Table 2 presents an excerpt of
our experimental results in these domains, enriched with some problems taken from
other domains. Column 1 again shows the name of the problem, columns 2 and 3 the
sequential runtimes of the provers (again obtained on a SPARCstation 20). As one
can see, SPASS sometimes outperforms DISCOUNT for unit equality problems although
i t  is i n  general not as powerful as DISCOUNT in equational logic. This is because the
used goal-oriented heuristics of DISCOUNT are especially well-suited when combining
them with conventional heuristics but sometimes fail when working alone. Columns
4-6 display the results obtained with our three variants of TECHS. Note that for
problems of unit equality we only used the first variant (basic assignment). Then,
we used the same runtimes for the second and third variant as for the first variant.



5.2 Experimental results 17 

problem SPAS!; DISCOUNT 
TECHS 

OTTER
bas. as8ign. inp. red. DISCOUNT inp. red. SPASS 

BOOOO7-4" 403.48 - 19.38 19.38 19.38 10.98 
CIVOO1-l 24.98 - 12.48 8.48 12.38 7.48 
GRP169-1" 80.18 - 41.98 41.98 41.98 9.98 
GRP177-2" - - 58.38 58.38 58.38 -

GRP179-1" - - 80.78 80.78 80.78 -

HENOO3-1 28.28 - 13.38 11.68 12.98 1.38 
HENOO3-2 58.18 - 21.58 20.48 14.58 1.38 
HENOO5-1 10.38 - 4.88 4.68 5.08- 1.68 
HENOO5-2 55.28 - 34.28 40.18 31.78 3.98 
HENOO6-1 851.98 - 632.88 621.38 627.2 7.2 
HENOO6-3 16.28 - 7.08 7.08 14.18 29.48 
HENOO6-6 12.08 - 4.78 4.58 4.18 19.48 
HENOO9-5 309.98 - 105.98 42.08 35.78 119.78 
HEN010-5 68.78 - 14.78 12.78 9.88 48.68 
HENOl1-4 12.88 - 10.28 10.28 9.88 -

HENOl1-5 41.28 - 26.28 18.88 17.48 -

. LCL143-1 16.18 - 1.78 1.88 1.78 1.08 
LCL146-1 12.48 - 8.78 8.38 2.38 271.78 
LCL163-1" 1O.0s 12.08 7.78 7.78 7.78 -
LDA010-2 - - 682.78 649.68 682.78 -
ROBOO5-1" - 109.68 39.98 39.98 39.98 44.98 
ROBOO8-1" - 98.88 33.38 33.38 33.38 0.48 
ROBOll-1 105.38 - 21.98 5.78 14.98 0.68 
ROB014-2 95.38 - 87.38 90.88 75.68 229.2 
ROB016-1 9.88 - 4.68 4.58 2.6s 0.7s 
ROB022-1" 15.18 - 6.9s 6.98 6.9s 5.0s 
ROB023-1" 204.68 - 4.48 4.4 4.4 2.2s 

Table 2: Coupling SPASS and DISCOUNT via TECHS 

Such problems are marked with an asterisk. The last column presents the runtime of 
OTTER'S auto-mode. 

Table 2 shows that the cooperation of heterogeneous theorem provers leads to even 
better results as before. On the one hand, we have rather high speed-ups (up to the 
factor 46). On the other hand, the system of cooperating provers was able to solve 3 
problems no single praver was able to solve when working alone (problems GRP177-2, 
GRP179-1, and LDA010-2). Since most of the problems are in first-order logic with 
equality, DISCOUNT was not able to solve them. 

The reduction of the input of DISCOUNT so as to let the prover mainly work on difficult 
parts of the search space led in most cases to (moderate) speed-ups. However, there are 
problems where this input reduction could significantly improve on the basic variant 
of TECHS (e.g., HEN009-5, LDA010-2, ROBOll-1). When reducing the input of SPASS 
we can observe similar results. In most cases the runtimes slightly decrease, and there 
are some problems where we achieve quite a high gain of efficiency (e.g., HEN009-5, 
LCL146-1, HEN0l1-5). Note that the results become worse when reducing the input of 

5.2 Experimental results 17

; TECHS
problem Sass  | DISCOUNT bas. assign. | i np .  red.  DISCOUNT | inp. red. SPASS OTTER

B00007-4* | 403.4s - 19.3s 19.3s 19.3s 10.9s
CIV0O1-1 24.9s - 12.4s 8.4s 12.3s 7.4s
GRP169-1* 80.1s — 41.9s 41.9s 41.9s 9.9s
GRP177-2* - - 58.3s 58.3s 58.3s -
GRP179-1* - - 80.7s 80.7s 80.7s -
HENOO3-1 28.2s — 13.3s 11.6s 12.9s 1.3s
HEN003-2 58.1s - 21.5s 20.4s 14.5s 1.3s

| HENOO5-1 10.3s - 4.8s 4.6s | _  5.0s 1.6s
HENOO5-2 55.2s - 34.25 40.1s 31.7s 3.9s
HENOO6-1 | 851.9s - 632.8s 621.3s 627.2 7.2
HENO0O6-3 16.2s - 7.0s 7.0s 14.1s 29.4s
HENOO6-6 12.0s - 4.7s 4.5s 4.1s 19.4s
HENC09-5 | 309.9s — 105.9s 42.0s 35.7s | 119.7s
HENO10-5 68.7s - 14.7s 12.7s 9.8s 48.6s
HENO11-4 12.8s - 10.2s 10.2s 9.8s -
HENO11-5 41.2s - 26.2s 18.8s 17.4s —

"LCL143-1 16.1s - 1.7s 1.8s 1.7s 1.0s
LCL146-1 12.4s _ 8.7s 8.3s 2.3s 271.7s
LCL163-1* 10.0s 12.0s 7.7s 7.7s 7.7s —
LDA010-2 - - 682.7s 649.6s 682.7s _
ROB005-1* - 109.6s 39.95 39.95 39.9s 44.9s
ROBOOS-1* - 98.8s 33.3s 33.3s 33.3s 0.4s
ROBO11i-1 | 105.3s — 21.9s 5.7s 14.9s 0.6s
ROB0O14-2 95.3s — 87.3s 90.8s 75.68 229.2
ROBO16-1 9.8s - 4.6s 4.5s 2.6s 0.7s
ROB0O22-1* 15.1s - 6.9s 6.9s 6.9s 5.0s
ROB023-1* | 204.6s - 44s 4.4 44  2.28

Table 2: Coupling SPASS and DISCOUNT via TECHS

Such problems are marked with an asterisk. The last column presents the runtime of
OTTER’s auto-mode.
Table 2 shows that the cooperation of heterogeneous theorem provers leads to even
better results as before. On the one hand, we have rather high speed-ups (up to the
factor 46). On  the other hand, the system of cooperating provers was able to  solve 3
problems no single prover was able to solve when working alone (problems GRP177-2,
GRP179-1, and LDA010-2). Since most of the problems are in first-order logic with
equality, DISCOUNT was not able to  solve them.

The reduction of the input of DISCOUNT so as to  let the prover mainly work on  difficult
parts of the search space led in  most cases to (moderate) speed-ups. However, there are
problems where this input reduction could significantly improve on the basic variant
of TEcHs (e.g., HEN009-5, LDA010-2, ROBO11-1). When reducing the input of SpPAss
we can observe similar results. In  most cases the runtimes slightly decrease, and there
are some problems where we achieve quite a high gain of efficiency (e.g., HENO09-5,
LCL146-1, HENO11-5). Note that the results become worse when reducing the input of



18 

6 

6 DISCUSSION AND FUTURE WORK 

both SPASS and DISCOUNT. Perhaps the criteria of our referees are too vague in order 
to cope with this situation. 

Discussion and Future Work 

We have presented the TECHsmethodology for realizing cooperation between hetero
geneous theorem provers. The main principles of TECHS are to let several provers work 
in parallel and to achieve cooperation by periodically exchanging clauses. The clauses 
are selected by send- and receive-referees. In the case that speCialized provers are in 
the network of cooperating provers, TECHS allows for a division of the original input 
so as to efficiently use specialized provers as lemma generators. 

We examined the methodology theoretically and discovered weak conditions on the 
heuristics that guarantee completeness even when a prover periodically receives and 
processes clauses from other provers. In the case that only some clauses of the orig
inal input are assigned to different provers, we pointed out weak conditions on this 
assignment, on the referees, and on the heuristics of the provers that are sufficient for 
completeness. Besides theoretic studies we developed and described heuristics for ref
erees and the initial clause assignment that proved to be successful in two case studies. 
In addition, TECHS can be easily integrated into existing high-performance provers. 

There already exist some approaches for distributed theorem proving. Hence, we want 
to compare TECHS with related approaches. The referee concept of TECHS is essen
tially adapted from the TEAMWORK method ([Den95]). However, the main difference 
between TEAMWORK and TECHS is that the latter approach is intended for coupling 
heterogeneous provers, the first for homogeneous provers. TEAMWORK requires that 
periodically different provers are judged and that the system of the "best" prover is 
the starting system of the other provers. Hence, the provers in the network must be 
able to work on the same kinds of system of clauses. As a matter of fact, TEAM
WORK is only sensible if different incarnations of one prover should be coupled. In 
addition, TEAMWORK is not able to use demand-driven criteria for selecting results to 
be interchanged. 

The clause diffusion method ([BH95]) is essentially a distribution approach of one basic 
prover. It requires an initial partition of the original input and distributes the clauses 
to different processors. On each of these processors the same prover works on these 
clauses. Then, in order to remain complete generated clauses must be sent around in 
order to perform inferences involving them. Hence, clause diffusion does not allow for 
the use of referees to reduce the amount of communication and computation. Moreover, 
in its current form it is-as already mentioned-not suitable for heterogeneous provers. 

Heterogeneous teams were-to our knowledge-so far only used in [Sut92]. There, 
provers employing different calculi worked in parallel and asynchronously exchanged 
each generated clause. Again, no referee concept was used and hence the results were 
not very convincing. 

It should be noted that all known distribution approaches for theorem provers, with 
the exception of TECHS require rather massive changes to provers in order to allow 

18 6 DISCUSSION AND FUTURE WORK

both SPASS and DISCOUNT. Perhaps the criteria of  our referees are too vague in order
to  cope with this situation.

6 Discussion and Future Work

We have presented the TECHS methodology for realizing cooperation between hetero-
geneous theorem provers. The main principles of TECHS are to  let several provers work
in  parallel and to achieve cooperation by periodically exchanging clauses. The clauses
are selected by send- and receive-referees. In the case that specialized provers are in
the network of cooperating provers, TECHS allows for a division of the original input
so as to  efficiently use specialized provers as lemma generators.
We examined the methodology theoretically and discovered weak conditions on the
heuristics that guarantee completeness even when a prover periodically receives and
processes clauses from other provers. In the case that only some clauses of the orig-
inal input are assigned to  different provers, we pointed out weak conditions on this
assignment, on the referees, and on the heuristics of the provers that are sufficient for
completeness. Besides theoretic studies we developed and described heuristics for ref-
erees and the initial clause assignment that proved to be successful in  two case studies.
In addition, TECHS can be easily integrated into existing high-performance provers.
There already exist some approaches for distributed theorem proving. Hence, we want
to  compare TECHS with related approaches. The referee concept of TECHS is essen-
tially adapted from the TEAMWORK method ([Den95]). However, the main difference
between TEAMWORK and TECHS is that the latter approach is intended for coupling
heterogeneous provers, the first for homogeneous provers. TEAMWORK requires that
periodically different provers are judged and that the system of the “best” prover is
the starting system of the other provers. Hence, the provers in the network must be
able to  work on the same kinds of system of clauses. As a matter of fact, TEAM-
WORK is only sensible i f  different incarnations of one prover should be coupled. In
addition, TEAMWORK is not able to use demand-driven criteria for selecting results to
be interchanged.
The clause diffusion method ([BH95]) is essentially a distribution approach of one basic
prover. It requires an initial partition of the original input and distributes the clauses
to  different processors. On each of these processors the same prover works on these
clauses. Then, in order to  remain complete generated clauses must be sent around in
order to perform inferences involving them. Hence, clause diffusion does not allow for
the use of referees to  reduce the amount of communication and computation. Moreover,
in  its current form it  is—as already mentioned—not suitable for heterogeneous provers.
Heterogeneous teams were—to our knowledge—so far only used in [Sut92]. There,
provers employing different calculi worked in parallel and asynchronously exchanged
each generated clause. Again, no referee concept was used and hence the results were
not very convincing.
It  should be noted that all known distribution approaches for theorem provers, with
the exception of TECHS require rather massive changes to provers in order to  allow



19 

them to use the approaches. They also do not allow for the cooperation of different 
existing prayers.
 

Future work should deal with increasing the heterogeneity of the prover network. In
 
_particular, we are interested in also integrating analytic tableau-style prayers into our
 
network which already lies within the TECHS framework.
 

19

them to use the approaches. They also do not allow for the cooperation of different
existing provers. ;

Future work should deal with increasing the heterogeneity of the prover network. In
‚particular, we are interested in also integrating analytic tableau-style provers into our
network which already lies within the TECHS framework.



20 REFERENCES 

References 

[ADF95] J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: A System For Dis
tributed Equational Deduction. In Proc. 6th RTA, pages 397-402, Kaisers
lautern, 1995. LNCS 914. 

[BDP89] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without Failure. 
In Coll. on the Resolution of Equations in Algebraic Structures. Academic 
Press, Austin, 1989. 

[BG94] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem prov
ing with selection and simplification. Journal of Logic and Computation, 
4(3):217-247, 1994. 

[BH95] M.P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for dis
tributed deduction. Fundamenta Informaticae, 24:177-207, 1995. 

[BH97] M.P. Bonacina and J. Hsiang. On the representation of dynamic search 
spaces in theorem proving. In Proc. of the Int. Computer Symposium, pages 
85-94, 1997. 

[Den95] J. Denzinger. Knowledge-based distributed search using teamwork. In Proc. 
ICMAS-95, pages 81-88, San Francisco, 1995. AAAI-Press. 

[DF94] J. Denzinger and M. Fuchs. Goal oriented equational theorem proving. In 
Proc. 18th KI-94 , pages 343-354, Saarbriicken, 1994. LNAI 861. 

[FD97] D. Fuchs and J. Denzinger. Cooperation in theorem proving by loosely 
coupled heuristics. Technical Report SR-97-03, University of Kaiserslautern, 
Kaiserslautern, 1997. 

[Fuc97] D. Fuchs. Coupling Generating Theorem Provers by Exchanging Pos
itive/Negative Information. Technical Report SR-97-07, University of 
Kaiserslautern, Kaiserslautern, 1997. 

[HKW96]	 Reiner Hiihnle, Manfred Kerber, and Christoph Weidenbach. Com,mon Syn
tax of DFG-Schwerpunktprogramm "Deduktion". Technical report 10/96, 
Universitiit Karlsruhe, Fakultiit fiir Informatik, 1996. 

[HR87]	 J. Hsiang and M. Rusinowitch. On word problems in equational theories. In 
Proc. ICALP87, pages 54-71. LNCS 267, 1987. 

[McC94]	 W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL
94/6, Argonne National Laboratory, Argonne, 1994. 

[S897]	 G. Sutcliffe and C.B. Suttner. The results of the cade-13 ATP system com
petition. Journal of Automated Reasoning, 18(2):271-286, 1997. 

[SSY94] G. Sutcliffe, C.B. Suttner, and T. Yemenis. The TPTP Problem Library. 
In CADE-12, pages 252-266, Nancy, 1994. LNAI 814. 

20 REFERENCES

References

[ADF95] J. Avenhaus, J. Denzinger, and M.  Fuchs. DISCOUNT: A System For Dis-

[BDP89]

[BG94]

[BH95]

[BH97)

[Den95)

[DF94]

[FD97]

[Fuc97]
{

[HKW96]

[HR87]

[McC94]

[SS97]

[SSY94]

tributed Equational Deduction. In Proc. 6th RTA, pages 397-402, Kaisers-
lautern, 1995. LNCS 914.

L .  Bachmair, N .  Dershowitz, and D.A.  Plaisted. Completion without Failure.
In Coll. on the Resolution of Equations in Algebraic Structures. Academic
Press, Austin, 1989.

L .  Bachmair and H .  Ganzinger. Rewrite-based equational theorem prov-
ing with selection and simplification. Journal of Logic and Computation,
4(3):217-247, 1994.

M.P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for dis-
tributed deduction. Fundamenta Informaticae, 24:177-207, 1995.

M.P. Bonacina and J. Hsiang. On  the representation of dynamic search
spaces in theorem proving. In Proc. of the Int. Computer Symposium, pages
85-94, 1997.

J. Denzinger. Knowledge-based distributed search using teamwork. In  Proc.
ICMAS-95, pages 81-88, San Francisco, 1995. AAAI-Press.

J. Denzinger and M .  Fuchs. Goal oriented equational theorem proving. In
Proc. 18th KI-94, pages 343-354, Saarbriicken, 1994. LNAI 861.

D .  Fuchs and J. Denzinger. Cooperation in theorem proving by loosely
coupled heuristics. Technical Report SR-97-03, University of Kaiserslautern,
Kaiserslautern, 1997.

D .  Fuchs. Coupling Generating Theorem Provers by Exchanging Pos-
itive/Negative Information. Technical Report SR-97-07, University of
Kaiserslautern, Kaiserslautern, 1997.

Reiner Hahnle, Manfred Kerber, and Christoph Weidenbach. Common Syn-
tax of DFG-Schwerpunktprogramm “Deduktion”. Technical report 10/96,
Universitat Karlsruhe, Fakultät für Informatik, 1996.

J. Hsiang and M .  Rusinowitch. On  word problems in  equational theories. In
Proc. ICALP87, pages 54-71. LNCS 267, 1987.

W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-
94/6, Argonne National Laboratory, Argonne, 1994.

G. Sutcliffe and C.B. Suttner. The results of the cade-13 ATP system com-
petition. Journal of Automated Reasoning, 18(2):271-286, 1997.

G. Sutcliffe, C.B. Suttner, and T .  Yemenis. The TPTP Problem Library.
In CADE-12, pages 252-266, Nancy, 1994. LNAI 814.



21 REFERENCES 

[Sut92]	 G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS'92 
Workshop W3, 1992. 

[WGR96]	 C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In 
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI 1104. 

REFERENCES 21

[Sut92] G. Sutcliffe. A heterogeneous parallel deduction system. In Proc. FGCS’92
Workshop W3, 1992.

[WGR96] C. Weidenbach, B. Gaede, and G. Rock. Spass & Flotter Version 0.42. In
Proc. CADE-13, pages 141-145, New Brunswick, 1996. LNAI  1104.


	UR_0014.jpg



