
N

/#na/qnd/ep q
s-tu

n
' 

sa um
sqzs-s{//:d33q A

M
M

A
N

V
IN

H
ID

N
H

EM
O

Q
EEIVVS 197099-d

M
ILVIN

H
O

AN
I H

O
IF

Y
H

IdH
OVA

SHO
NVTHVYVS S

dd LY
LIS

H
H

A
IN

N

Detlef Fehrer

SEKI Report SR-96-04

Ad53 8
©

 Ss
S

&
8= 2

—
 

‚5

8 
8

©D
e(=)

= 8
a

0
E

R
a

i
5

8
<

o
d

a
 

IA
S





Abstract 

We present a way to describe Reason Maintenance Systems using the same 
formalism for justification based as well as for assumption based approaches. 
This formalism uses labelled formulae and thus is a special case of Gabbay's 
labelled deductive systems. Since our approach is logic based, we are able to 
get a semantics oriented description of the systems in question. 

Instead of restricting ourselves to e.g. propositional Horn formulae, as was 
done in the past, we admit arbitrary logics. This enables us to characterize 
systems as a whole, including both the reason maintenance component and the 
problem solver, nevertheless maintaining a separation between the basic logic 
and the part that describes the label propagation. The possibility to freely vary 
the basic logic enables us to not only describe various existing systems, but can 
help in the design of completely new ones. 

We also show, that it is possible to implement systems based directly on our 
labelled logic and plead for "incremental calculi" crafted to attack undecidable 
logics. 

Furthermore it is shown that the same approach can be used to handle 
default reasoning, if the propositionallabels are upgraded to first order. 
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11 ndeed, even at this stage I predict 
a time when there will be mathem

- atical investigations of calculi con
taining contradictions, and people will actu
ally be proud of having emancipated them
selves even from consistency. 

LUDWIG WITTGENSTEIN 

Chapter 1 

Introduction 

Much effort has been spent on the automation of reasoning, and researchers 
from different background have been working on this topic in various subareas 
of artificial intelligence and cognitive science. The motivations for doing so can 
roughly be divided into two main categories: 

1. Interest in building (computer) systems that can reason. 

2. Interest in a model how humans do it. 

Research in computer science and also in artificial intelligence is mainly 
driven by the first motivation, whereas cognitive science and psychology are 
usually guided by the second. 

Particularly in the field of artificial intelligence(Al for short) such systems 
have been examined. Though the main interest here has certainly also been 
to implement systems that "reason", many researchers agree that it is worth 
considering cognitive models as well. 

This aspect becomes apparent when we consider domains other than math
ematics and examine e.g. the phenomena of commonsense reasoning For in
stance mathematical theories are monotonic, Le. adding further axioms can 
never defeat a theorem, which means that everything once detected (proven) 
as true will stay true forever. This is not true in most commonsense reason
ing processes. Very often inferences have to be drawn that use premises that 
later turn out to be false, or worse, sometimes inferences have to be drawn that 
strictly speaking could not be done, because not all of their premises can be 
guaranteed to hold (incomplete information) at a given point in time. 

Seen as a black box this type of AI system works like some kind of intelligent 
information stora~e that is used by other components or directly by man. It 
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is (once and for all or incrementally) provided with facts (what is observed 
or has been told) and later questioned about them. Such a knowledge base 
should, however, not only be able to repeat the items explicitly given to it, 
but be capable of deriving knowledge implicitly contained in the facts given by 
application of rules also supplied or taken from knowledge about the domain 
or even from common sense. There exists a vast literature on these knowledge 
bases (see e.g. Frost (1986) and the literature on deductive databases, as e.g. 
Nicolas & Yazdanian (1978), Reiter (1980a)). 

Hence, in general, any AI system maintains an internal model of the real 
world (or a suited subset thereof) and/or of its own state of "mind" (beliefs, 
plans, intentions etc.). It draws inferences and thus adds to the knowledge it 
was given at the start. Communication with the real world usually runs via 
observations in one direction and possibly some kind of actions in the other. 
Not all of those parts have to be incorporated into every system, but this is the 
fundamental design. 

We shall not talk about the interactions with the real world, as given by 
observations and actions, in this thesis, but concentrate on the core, which we 
call the abstract reasoner. Here all the communication with the environment 
is reduced to either getting information through a dedicated input channel or 
answering questions (called queries) transmitted through a second interface. 
The questions are all of the same simple type, merely asking whether some 
proposition holds or not, and the only answers possible are "yes", "no" or 
possibly "don't know". 

As a means to describe what such a system is doing and to formulate its 
properties, it is often proposed to use some kind of logic for the internal repres
entation of knowledge as well as for the reasoning part. This has the advantage 
that this way programs can be given a declarative semantics. Unfortunately 
many existing systems simply are not given such a characterization, but pro
grammed in an ad hoc fashion. Even if a logical correspondence is given, easy 
comparison between different systems tailored to fulfill the same or a related 
task is not always possible because of the abundance of logical formalisms. 

The abstract reasoner can be seen as a "black box" from outside. When we 
look at the internal behaviour, the simplest realization can be thought of like 
this: Assuming a logical representation of the knowledge, answering questions 
is in essence trying to prove that the query formula logically follows from the 
input knowledge, which serves as the axiom set. 

Therefore, one way to proceed is to take an ordinary Automated Theorem 
Prover (ATP). In practice, there are, however, several reasons why such a 
procedure might not be ideal for the task: 

1.	 In contrast to the situation found in Automated Theorem Proving there 
is not a (nearly) unlimited amount of time available, but tighter time 
bounds exist. The r~ason for this is that the answer to one question is 
generally not the top level goal, but only contributes as a minor part to 
a bigger task. 
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2. Again	 in contrast to ATP a single question can not be considered in 
isolation. The situation might even occur that the same question is asked 
several times. 

3.	 The set of axioms is in general not static, but dynamic. 

4.	 In real examples the input knowledge cannot be assumed to be consist
ent in every case. For many logics this will result in the situation that 
every question will be answered with "yes" I which is certainly not what 
is desired. 

Points 2 and 3 in the preceding list, considered in isolation, do not neces
sarily object to the ATP-approach of considering every single question as a 
separate proof. But in connection with point lone will certainly try to make 
use of knowledge obtained during one proof in later ones, thus saving valuable 
time. So 2 may lead to lemma generation. But this in turn contradicts 3, be
cause a derived lemma may not hold in the theory given by the changed set 
of assumptions. Of course, if the logic is monotonic and the axiom set is only 
increasing, this may not happen. But because of point 4 it may well be the case 
that items previously given will be retracted, not to speak of real nonmonotonic 
inference rules. 

1.1 Reason Maintenance Systems 

In order to overcome these difficulties Reason Maintenance Systems (RMS) have 
been developed. Their main task is to maintain a record of the dependencies of 
items derived. Thus the validity of any item can be traced back to the validity 
of other items it depends on and so forth. 

The general approach pursued in the past has been to view the RMS as an 
additional component to the problem solver, as shown in figure 1.1. There are 
numerous different RMSs that have been implemented along this line. All of 
these use a structure called a dependency net (DN). This is a graph, where the 
nodes represent pie'ces of information and the edges tell how this information 
is related. Often the nodes are labelled, e.g. with information about whether 
that node is (currently) believed-or not. Almost always there is another kind of 
nodes, called justifications. A justification represents - as the name suggests 
- the justification for belief in an item. It depends on the state of belief of 
some antecedent nodes and supports belief in one or several consequent nodes. 

RMSs can be divided according to two main criteria: 

1.	 whether they are justification based or assumption based. In the first case 
the nodes are labelled according to the current state of belief. So the 
momentary validity of an item can instantly be checked via lookup of its 
label. If some item should change its state, e.g. if a premise is retracted, 
then this information has to be propagated through the graph and the 
states of the concerned nodes must be changed appropriately. This can 
take a while. 
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Actions 
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WORLD 
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Figure 1.1: The usual RMS approach 

In the assumption based approach, the labels at the nodes do not contain 
simple status informatiQn. Instead there exist certain distinguished nodes 
(the assumptions), which are the only ones whose state can be altered 
arbitrarily. The states of belief for all the other nodes can then be com
puted for all possible combinations of beliefs in these assumptions. This 
is done once and for all at the start and written as a label at the nodes. 
Now the information about the validity of a node given a particular set of 
assumptions (the RMS terminology is "in a given contexf') can quickly be 
recovered. The price for this is the costly computation at the beginning. 

2.	 whether they allow for nonmonotonic justifications or not. A nonmono
tonic justification is a justification that has as an antecedent (possibly 
among others) the lack of belief in an item. This is an interesting possib
ility, but causes problems because of the nonmonotonicity introduced. 
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In  the assumption based approach, the labels at the nodes do  not contain
simple status information. Instead there exist certain distinguished nodes
(the assumptions), which are the only ones whose state can be altered
arbitrarily. The states of belief for all the other nodes can then be com-
puted for all possible combinations of beliefs in these assumptions. This
is done once and for all at the start and written as a label at the nodes.
Now the information about the validity of  a node given a particular set of
assumptions (the RMS terminology is “in a given context”) can quickly be
recovered. The price for this is the costly computation at the beginning.

. whether they allow for nonmonotonic justifications or not. A nonmono-
tonic justification is a justification that has as an antecedent (possibly
among others) the lack of  belief in  an  item. This is  an  interesting possib-
ility, but causes problems because of the nonmonotonicity introduced.
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There are two possibilities, why a formerly derived item may have to be 
retracted. The first is that its justification could be undermined, in the sense 
that the reason for its derivation may have gone. In assumption based ap
proaches this is done by considering contexts where some assumption needed 
in the proof of the item is missing. In all approaches containing nonmonotonic 
justifications this can also happen if justifications are added for some items 
which were formerly assumed to be not believed. 

The second cause is simple rebuttal, i.e. the fact that some items can not be 
believed simultaneously, because that would cause a contradiction. 

1.2 Problems with Current Approaches 

Despite the fact that there exist quite a number of implemented reason main
tenance systems, there still remain some problems unsolved that we consider 
as elementary. They are independent of the approach chosen. 

1.	 The first problem results from the fundamental design decision to separate 
the RMS component from the problem solver (as shown in fig. 1.1) which 
at first sight appears to be reasonable, since then the same RMS can be 
used for different problem solvers with minimal adaptation problems. 

However, some tasks a RMS is expected to perform are made difficult 
or even impossible by that separation. Because the RMS component 
has no clue about the semantical contents of the nodes it maintains it 
totally relies on the information transmitted by the problem solver. In 
order to detect a contradiction even in such a simple case, when two 
atomic propositions A and ...,A are simultaneously believed in, it has to be 
informed about the existence of a contradiction, for the two propositions 
would be mapped to two different nodes in the dependency net, with no 
semantical relation between them. The net only stores the connections 
to those nodes that have been used in their derivation. The fact that 
they constitute a contradiction has to be explicitly stated. We call this 
the interface problem. 

2.	 A second flaw concerns the semantics. Many systems have been imple
mented in an ad hoc fashion. In some cases semantics have afterwards 
been supplied, but the formalisms used for this task differ from system 
to system, thus making it impossible to compare various systems on that 
base. 

3.	 These two problems taken together yield a third one: The separation 
between problem solver and RMS blocks the possibility to give a se
mantical characterization of the system as a whole, which is always an 
important problem. Take as an example the semantical characterization 
of de Kleer's ATMS: This states that the ATMS finds out all contexts in 
which an item can be derived. If e.g. a problem solver deals with the set of 
formulae {A, A ~ C, B, B ~ C} and has currently found out that C can 
be derived using A and A ~ C (as well as modus ponens), and uses an 
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or even impossible by  that separation. Because the RMS component
has no clue about the semantical contents of  the nodes it maintains it
totally relies on  the information transmitted by the problem solver. In
order to  detect a contradiction even in such a simple case, when two
atomic propositions A and —A are simultaneously believed in, it has to be
informed about the existence of  a contradiction, for the two propositions
would be mapped to two different nodes in the dependency net, with no
semantical relation between them. The net only stores the connections
to those nodes that have been used in their derivation. The fact that
they constitute a contradiction has to be explicitly stated. We call this
the interface problem. :

2. A second flaw concerns the semantics. Many systems have been imple-
mented in an ad hoc fashion. In some cases semantics have afterwards
been supplied, but the formalisms used for this task differ from system
to system, thus making it impossible to compare various systems on that
base.

3. These two problems taken together yield a third one: The separation
between problem solver and RMS blocks the possibility to give a se-
mantical characterization of the system as a whole, which is always an
important problem. Take as an example the semantical characterization
of de Kleer’s ATMS: This states that the ATMS finds out all contexts in
which an item can be derived. If  e.g. a problem solver deals with the set of
formulae {A , A — C,  B ,B  — C}  and has currently found out that C can
be derived using A and A — C (as well as modus ponens), and uses an
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ATMS as its RMS component, the single context computed that entails 
G is {A,A -+ Cl, whereas the second possibility, namely {B,B -+ C} 
goes undetected. This is not the ATMS's fault. Concerning what has 
been transmitted to it this is certainly all it can detect. So it has in fact 
found out all the possibilities wrt. its knowledge. But this information, 
as correct as it may be, is rather useless. By far more interesting would 
be statements taking the combined components into consideration. 

4.	 The fourth problem is the restriction of logics. In most systems justific
ations must be of a particular form, e.g. Horn formulae. Of course there 
have been generalizations defined, such as e.g. the CMS (clause manage
ment system) as a generalization of ATMS, but (for efficiency reasons) 
not the full power of the logic used by the problem solver is available for 
the RMS. 

1.3 The Aim of this Thesis 

In this thesis we define labelled logics. This will serve us as a tool to solve 
the problems listed in the previous section: It gives a genuine semantics to 
RMSs, using the same formalism for all the approaches. Moreover, we explicitly 
demonstrate the degrees of freedom where a system designer can decide what his 
system should be like, thus giving rise to manifold possibilities of combinations 
not yet found in existing systems. We do not first and foremost want to tell 
anything about how such a system could be implemented. In a later chapter 
(chapter 7) we demonstrate that it can be done by supplying a rather primitive 
generic method, albeit this may be inefficient. 

The interface problem is solved, since labelled logics describe the whole 
system, including the problem solver as well as the (classical) RMS. The sep
aration of the two systems is mirrored by the property of labelled formulae 
to be composed of two rather independent parts stemming from different lo
gics. In practice the RMS part is completely taken over by the problem solver 
itself, whose'- procedures have to be altered only slightly in order to work on 
labelled formulae, the management of which incorporates the book-keeping of 
justifications and dependencies. 

Finally, the problem of restricted logics in current approaches is completely 
disposed of. 

1.4 Overview 

The thesis consists of three main parts. The first (chapters 2-6) deals with 
Reason Maintenance and the problems presented above. 

In chapter 2 we give a short introduction to Reason Maintenance, covering 
the main systems and the aspects of importance for our subsequent analysis. 
Also the notation and terminology needed for the more formal parts of the 
thesis are introduced here. 
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7 1.4 OVERVIEW 

In chapter 3 we discuss the problems inherent in all approaches to Reason 
Maintenance in closer detail. 

Only then does it seem appropriate to present our own approach, which is 
done in chapter 4. There, all the necessary formalism is introduced and the 
important theorems are proven. This chapter is in a sense the heart of the 
matter and the reader should have understood it thoroughly before proceeding. 

Chapter 5 returns to the systems described in chapter 2 and gives their 
presentation within our framework. We also show how new systems can be 
described via their respective properties in our formalism at the end of that 
chapter. 

We are then in a position to discuss the differences to other approaches to 
solve the semantics problem proposed in the past and we do this in chapter 6. 

The other two parts are represented by chapters 7 and 8, which show possible 
extensions of the basic framework introduced in the first chapters. 

Chapter 7 complements the theoretical analysis by giving guidelines for the 
design of practical systems. The necessary calculi are developed and it is shown 
what a system based on labelled logics would look like. It is here that we return 
to the abstract reasoner as described above. 

In chapter 8 we digress from RMS and turn our attention to default reas
oning. This is very close to RMS in several aspects, so it is no surprise that we 
are able to deal with that in a generalization of our framework. 

We give a short summarizing overview of our results in chapter 10, also 
mentioning the directions that we consider interesting for further investigation. 

It remains to note that parts of this thesis have already been published 
in (Fehrer, 1993) respective (Fehrer, 1994). The gist of the abstract reasoner 
construction is hinted at in (Fehrer, Hustadt, Jaeger, Nonnengart, ohlbach, 
Schmidt, Weidenbach & Weydert, 1994). 
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Chapter 2 

On the History of Reason 
Maintenance 

This chapter will serve a twofold purpose. First we give a short survey of the 
historical development of reason maintenance. We shall, in particular, describe 
the systems of Doyle (Doyle, 1979) and de Kleer (de Kleer, 1986a) in detail, 
because they stand as representatives for the justification based resp. the as
sumption based class of approaches. 

Besides, we use the chapter to introduce the main notions and definitions. 
We do not follow the respective authors' original notation, but introduce our 
own, as this will make it easier to compare the various systems with one an
other. The chapter is not intended to be a detailed introduction to Reason 
Maintenance. There exist textbooks that cover this topic (e.g. chapter 6, pp. 
108-139 of (Pratt, 1994) has a nice presentation of TMS and ATMS as well as 
all the procedures; (Reinfrank, 1989) goes into greater depth). 

2.1 The Early Beginnings 

The seminal article of Doyle (Doyle, 1979) is usually seen as the starting point 
of reason maintenance. However, many of the ideas already appeared earlier 
in literature. One of the best examples is Stallman and Sussman's article on 
the diagnosis of switching circuits (Stallman & Sussman, 1977)1. They noticed 
that in problem solving it appears to be useful to learn from erroneous trials 
in order to avoid doing the same computations twice. So they propose systems 
which remember their reasoning 

"... threading the deduced facts with justifications which men
tion the antecedent facts used and the rule of inference applied." 

1Diagnosis has always remained one of the most important areas of application for RMSs 
(besides prediction, Le. model based reasoning); cf. e.g. (de Kleer & Williams, 1986b; de Kleer 
& WiIliams, 1987; Reiter, 1987). 
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"The same justifications are employed by the system to determ
ine the currently active database context for reasoning in hypothet
ical situations." 

Nearly all of the key notions appearing in later articles (e.g. justifications, 
assumptions, context, well-founded support etc.) are already introduced in this 
article, but the most outstanding idea is the proposal to process contradictions 
via dependency directed backtracking, finding a culprit for the contradiction and 
trying to eliminate it. 

The explicit conservation of dependencies in the derivation process has been 
used in many (expert) systems, such as e.g. TOPLE (McDermott, 1974) or 
MYCIN (Shortliffe, 1976). In the latter, however, the purpose for doing so was 
not the possibility of belief revision, but the generation of explanations. 

2.2 Doyle's TMS 

Doyle proposed the use of a special component for maintaining the dependen
cies between memory items, which he called Truth Maintenance System (TMS). 
This not very accurate nomenclature has been criticized, because what is man
aged is not truth but belief and reasons for belief. So even Doyle himself (in 
(Doyle, 1983)) supports the term 

'''Reason maintenance systems' (a less deceptive name than the 
original 'truth maintenance systems')." 

Though "TMS" is still in use, more and more authors nowadays agree upon 
the more honest name "Reason Maintenance Systems". The term TMS (or 
sometimes JTMS, for justification-based TMS) is then reserved for Doyle's ori
ginal system. We shall use it solely for this purpose. 

The most important merit of Doyle's paper is the introduction of nonmono
tonic justifications. This means that some of the recorded dependencies ex
plicitly mark that some derivations depend on the absence of justifications for 
other items. As such a justification might be found and added later on, these 
derivations can be defeated. This is in contrast to the monotonicity property of 
classical logic, saying that the addition of further premises (axioms) can only 
increase, but never reduce the number of theorems. 

2.2.1 Basic Definitions 

A TMS consists of a set N of nodes and a set J of justifications. The nodes are 
atomic, whereas the justifications are triples, consisting of two sets of nodes (the 
sQ-called IN-SET and OUT-SET) and a single node, the consequent. All nodes 
in the IN-SET and the OUT-SET, taken together, are called the antecedent;. 
I~tuitively a justification says: If all the nodes in the IN-SET and none of the 
nodes in the OUT-SET are believed, then the consequent should be believed. 

2We sometimes speak of IN-antecedents and OUT-antecedents. 
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In order to denote what is believed and what is not, there is a labelling 
function I : N -+ {out, in}, which assigns to each node a status, out meaning 
currently not believed and in meaning currently believed. It is worth mention
ing that the disbelief in a node does not mean that its contrary (whatever that 
may be) is believed, Le. we are talking about justified belief, and there may 
well exist situations where neither a particular proposition nor its contrary is 
justified. 

Since the procedures which compute the status of the nodes proceed in an 
incremental manner and on their way deal with partiallabellings (not every 
node has been assigned a status yet), in practice a third label, called undet, is 
introduced, saying the label of that node has not been computed up to now. 
Thus the labelling function is redefined to I : N --T {out, in, undet}. We shall 
not do this, because we do not take a closer look at how the algorithms proceed. 

Let us put this more formally to fix the notation: 

Definition 2.2.1 (Dependency Net)
 
A dependency net is a directed, bipartite graph DN = (N, J, E) where
 

1.	 N is the set of nodes. 

2.	 J is the set of justifications, N n J = 0 

3. inset, outset:	 J --T 2N ,
 

conseq: J -+ N.
 

4. E	 ~ (N x J) U (J x N), the set of edges, such that (x, y) E E, iff one of 
the following holds: 

•	 x EN, yE J , x E inset(y) Uoutset(y) or 

•	 x E J, yEN, y = conseq(x). 

A justification j is sometimes denoted as a triple 

< inset(j),outset(j),conseq(j) > . 

We often abbreviate dependency net by DN. 

Definition 2.2.2 (Valid Justffications, Labelling Function) 
The labelling function (or simply labelling) is given as I : N -+ {in, out}. 

A justification is said to be valid, iff all the nodes in its IN-SET are labelled 
in and all the nodes in its OUT-SET are labelled out. 

Given arbitrary labels for all the nodes of a dependency net the validity of all 
justifications is uniquely determined by the previous definition. The intuition 
behind this is that the validity of an argument (which is what a justification 
stands for) depends solely on the validity of (or the status of belief in) the nodes 
involved. 

The definition of the labelling function does not contain restrictions as to 
what label to assign to a node, so up to now the labels of nodes have been 
completely arbitrary. In order to interpret a dependency net as modelling real 
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lines of argumentation, there are certainly some requirements that should be 
met by a labelling, e.g. 

Definition 2.2.3 (Properties of Nodes and Labellings)
 
A labelling l of a dependency net is called complete, if the consequent of every
 
valid justification is labelled in.
 

It is said to be sound, if for every node n E N which is labelled in, there 
exists a valid justification with n as consequent. 

A justification is called a premise justification, iff its IN-SET as well as its 
OUT-SET is empty. A node which is the consequent of some premise justifica
tion is a premise. An assumption justification is a valid justification with 
nonempty OUT-SET. An assumption is a node with all its valid justifications 
being assumption justifications. 

The requirement of completeness and soundness, taken together, is simply 
the translation of the demand that a node should be in exactly if it has a valid 
justification. 

We do not present examples of dependency nets in the given notation, but 
instead use a familiar graphical representation, which is borrowed from switch
ing circuits design3. 

a justification with one node in the
a node 

IN-SET and one node in the OUT
called A 

SET each 

Nodes are represented as circles and justifications as semicircles ("bugs"). 
The lines drawn between them are interpreted as follows: There is only one line 
emanating from the curved side of a justification, leading to the consequent 
node, whereas arbitrarily many lines connect the straight side with members 
of IN-SET and OUT-SET. The latter are marked with a dot. In the switching 
circuit interpretation these are and-gates with negations in front of them. We 
sometimes give names to nodes in order to refer to them more easily. We then 
write the names into the resp~ctive circles. This is in contrast to the nodes' 
labels; which we always write outside the nodes. 

We are only interested in complete and sound labellings. It is, however, not 
guaranteed that each dependency net possesses such a labelling, nor that there 
need be only one, as shown in figures 2.1 and 2.2. 

In figure 2.1 there are two complete and sound labellings for the dependency 
net shown. One labels node A in and B out, and the other labelling is vice 
versa. 

For the DN of figure 2.2 it is impossible to find a sound and complete 
labelling. If node A were labelled out, then the upper justification would be 

3To my knowledge, this representation was first used for RMSs in (Goodwin, 1987). 
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Figure 2.1: a dependency net with two sound and complete labellings 

Figure 2.2: a dependency net with no sound and complete labelling 

valid and thus B would have to be labelled in. This in turn would force the 
other justification to be valid also and thus make A in. A cannot be in either, 
because then there is no valid justification for B and therefore no reason for A 
to be in. 

Of course the phenomenon of multiple or missing sound and complete la
bellings may be regarded desired in the two examples given. But what is 
certainly not satisfactory is the following: The dependency net in figure 2.3 
possesses two sound and complete labellings, namely both nodes labelled in or 
alternatively both labelled out. One of those does not correspond to the usual 
intuition of justified belief, because the argumentation for both nodes marked 
in is clearly circular. This cannot be detected if one only uses local constraints 
like the soundness criterion. 

Figure 2.3: two sound and complete labellings due to circular argumentation 

To rule out such pathological cases, labellings are restricted further to 
be well-fou.nded. The well-foundedness condition is a stronger alternative for 
soundness and says that it is possible to order the nodes, so that every node be
ing in is justified by justifications that depend only on nodes which are smaller 
in this ordering. This then precludes a circular argumentation. The ordering 
of the nodes is done via a ranking function, which is a mapping from nodes to 
the natural numbers. 

2.2 DoyLE’s TMS 13

ONO

Figure 2.1: a dependency net with two sound and complete labellings

®)X &

Figure 2.2: a dependency net with no sound and complete labelling

valid and thus B would have to be labelled in. This in turn would force the
other justification to be valid also and thus make A in. A cannot be in  either,
because then there is no valid justification for B and therefore no reason for A
to  be  in.

Of  course the phenomenon of multiple or missing sound and complete la-
bellings may be regarded desired in the two examples given. But what is
certainly not satisfactory is the following: The dependency net in figure 2.3
possesses two sound and complete labellings, namely both nodes labelled in  or
alternatively both labelled out .  One of those does not correspond to the usual
intuition of  justified belief, because the argumentation for both nodes marked
in  is clearly circular. This cannot be detected if one only uses local constraints
like the soundness criterion.

(®

Figure 2.3: two sound and complete labellings due to circular argumentation

To rule out such pathological cases, labellings are restricted further to
be well-founded. The well-foundedness condition is a stronger alternative for
soundness and says that it is possible to order the nodes, so that every node be-
ing in  is justified by justifications that depend only on nodes which are smaller
in this ordering. This then precludes a circular argumentation. The ordering
of  the nodes is done via a ranking function, which is  a mapping from nodes to
the natural numbers.
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Definition 2.2.4 (Well-Founded Labelling) 
A labelling is said to be well-rounded, if there exists a function rank: Nu J 4 

IN, such that for all nodes n E N the fact that n is labelled in implies that 
there is a valid justification j with n as a consequent and all the nodes x in 
inset(j) have a rank with rank(x) < rank(n). 

It is important to note that only the IN-SET is considered in the definition 
above. This stems from an asymmetry in the design, saying that every node can 
be assumed out, if there is no hint to the contrary, without any well-founded 
justification. This makes sense, since out does not mean that the contrary is 
believed. 

Looking again at the examples, we find that the unintuitive labelling of 
figure 2.3 is now ruled out as not well-founded, whereas the DN of figure 2.1 
still possesses two labellings. 

2.2.2 CP-Justifications 

Doyle introduced another kind of justifications, called GP-justifications, GP 
standing for conditional proof, besides the ordinary justifications we have con
sidered so far, which he named SL-justifications (for support list). Doyle (1979): 

"A GP-justification is valid if the consequent node is in whenever 
(a) each node of the in-hypotheses is in and (b) each node of the 
out-hypotheses is out" 

We shall not consider those any further, because - as many authors have 
pointed out - they can be translated to SL-justifications. 

de Kleer (1986c): 

"Note that if, in the current database state, all the in-hypotheses 
are in and all the out hypotheses are out, this CP-justification is just 
the usual (Le., 8L) justification. Thus the GP-justification is simply 
a mechanism of recording or summarizing results which were de
termined in (usually) some other database state. In a sense, the 
ATMS which has no notion of current state, considers all justifica
tions as CP, and translates each justification into all its correspond
ing SL-justifications in terms of the assumptions. As a consequence, 
the GP-justification is unnece~sary for the ATMS." 

A correct transformation is provided by Xianchang & Huowang (1991) (the 
transformation sketch in (Doyle, 1979) is shown to have some flaws in that 
article). We shall therefore not deal any further with GP-justifications in the 
sequel. 

2.2.3 The Truth Maintenance Procedure 

Doyle then presents two algorithms. The first one, the so-called truth main
tenance procedure (TMP in the sequel), computes a well-founded, complete 
labelling for a given dependency net. 
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We do not present the TMP algorithm in closer detail. There exist many 
different implementations, that can be looked up in the literature. What is 
important is that it proceeds in a step by step fashion, moving from partial 
labellings (some nodes labelled undet) towards a complete one. The advantage 
of the algorithm is the local way of label propagation,. Small changes in the 
dependency net (the only allowed changes being the addition of justifications) 
may in some cases concern the whole net, but most often the effects are only 
local. The algorithm exploits this fact and only relabels nodes in the vicinity of 
a node whose label has changed, if an in node has lost its last valid justification 
or an out node gets one. 

The disadvantages, however, are manifold: If there are many possible la
bellings, one is chosen indeterministically. This is not really problematic. But, 
the arbitrary decision for one option may in some cases prevent finding an 
existing labelling at all. 

The dependency net in fig. 2.4, e.g., possesses two sound and complete 
labellings. Suppose the TMP chooses the one shown in the figure. 

out 

Figure 2.4: one of two possible labellings 

Let us now introduce a further nonmonotonic justification from D to C. 
Local label propagation a la TMP relabels C to in, then D to in and then 
either goes into a cycle labelling C out again etc. or detects the loop and then 
terminates :without result, depending on the implementation (fig. 2.5). 

Figure 2.5: dead end for local labelling algorithms
 

However, had the TMS chosen the other one of the two possible labellings,
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namely the one given in fig. 2.6, the addition of the above justification would 
simply yield fig. 2.7. 

in 

Figure 2.6: the second possible labelling 

in 

Figure 2.7: existing labelling 

The example also shows, that the TMP algorithm faces difficulties when it 
comes across so-called odd loops. A loop is a cycle of edges in the dependency 
net. If one counts the dots on the path in the graphical representation (the 
number of times a member of an OUT-SET appears in the justification), one 
can classify loops into even and odd ones. Roughly speaking, even loops can 
be responsible for multiple candidate labellings and odd loops can prevent the 
existence of labellings. This.is not completely true, but what can be said is, 
that a DN without odd loops is guaranteed to possess at least one well-founded 
complete labelling and a DN without any loops at all is guaranteed to possess 
exactly one. We have already encountered examples of such loops: Figure 2.1 
is an even loop, and figure 2.2 represents an odd loop. 

Some odd loops are detected by the TMP process, but some go undetected 
and cause the algorithm not to terminate, even in cases where a well-founded 
labelling exists. 

The most serious disadvantage of TMS is the fact that the transition from 
one "belief state" to another is costly and clumsy. There are no means of enfor
cing belief or disbelief in an item other than by introducing new justifications. 
That means that in order to make a node retractable (i.e. specify belief in an 
item supposedly to be withdrawn later on) it must be based (beforehand) on 
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that a DN  without odd loops is guaranteed to possess at least one well-founded
complete labelling and a DN  without any loops at all is guaranteed to possess
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is an even loop, and figure 2.2 represents an odd loop.

Some odd loops are detected by the TMP  process, but some go undetected
and cause the algorithm not to terminate, even in cases where a well-founded
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The most serious disadvantage of TMS is the fact that the transition from
one “belief state” to  another is costly and clumsy. There are no  means of  enfor-
cing belief or disbelief in  an item other than by introducing new justifications.
That means that in order to make a node retractable (i.e. specify belief in  an
item supposedly to be withdrawn later on) it must be based (beforehand) on



17 2.2 DOYLE'S TMS 

a justification containing at least one node in the OUT-SET. Intuitively that 
means there is a dummy argument reserved for later defeat, which is not further 
specified. The former node can then be "withdrawn" by supplying the latter 
with a valid justification. A "redo" is only possible if this justification again is 
an assumption justification that mentions at least one node in its OUT-SET. 
Thus frequent "switches" blow up the dependency net. 

To see this, assume there is a node A which represents a tentative assump
tion. Therefore it has to be provided with a possibility for later defeat, resulting 
in a net like 

In order to retract A, node C must get a valid justification. If this should 
be possible to become "undone", it ought to get a defeasible justification with 
non-empty OUT-SET as well: 

This procedure could be repeated arbitrarily often. 

2.2.4 Dependency Directed Backtracking 

There is a second procedure, which gained importance in literature: the de
pendency directed backtracking algorithm (DDB). Since the TMS has no clue 
about the semantical contents of its nodes, the problem solver is given the pos
sibility of marking sets of nodes as incompatible with one another. This is done 
via the introduction of a distinguished contradiction node. We denote it by 
1.. It bears the additional "semantics" that it may not be labelled in. If this 
should happen, the DDB procedure is invoked. Its task is to trace back the 
justifications, find a "culprif', and then render it harmless by destroying its 
justifications. This destruction is done by traversing in a backward direction 
through the justifications and supplying the first out labelled OUT-antecedent 
found with an artificially created valid justification. This justification mentions 
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in its IN-SET the siblings of the culprit and in its OUT-SET other possible 
candidates of defeating OUT-antecedents4 • An example may illustrate this: 

Example 2.2.5 

in 

Here the contradiction node is labelled in, therefore DDB is invoked. There 
are two possibilities for a culprit, namely nodes A or B. If the decision is for 
B, again there are two alternative ways to proceed: Either node D or node E 
can be supplied with a valid justification. The following picture shows what 
the net would look like if D were chosen as the defeating node. 

If there are no OUT-antecedent candidates, DDB cannot succeed. In most 
cases, however, there are numerous possibilities of culprits as well as of ways 
of defeating them. Hence DDB is highly nondeterministic. The justifications 
inserted into the DN by the DDB algorithm remain there and aXe not distin
guishable from other justifications. Their presence thus influences the behaviour 
of the system in a way not always perceivable from the outside. 

For the detection and management of odd loops algorithms are known that 
perform substantially better (see section 2.5). But the other flaws are inherent 
and gave rise to a completely different class of RMS, which we shall present 
now. 

4We shall not exhibit the details here. The construction of the OUT-SET as mentioned is 
only a very cautious way of proceeding, for if anyone of the nodes mentioned there becomes 
out resp. in, the newly constructed justification is simply unnecessary, since the node leading 
to the contradiction is then out anyway. 
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2.3 Multiple Contexts and de Kleer's ATMS 

De Kleer's criticism of the TMS (de Kleer, 1984) can be summarized as follows: 

1.	 the single state problem: Doyle's TMS produces one (global) state at a 
time. The system itself has no knowledge of "states". Thus it is not 
only very difficult to change states, but simply impossible to compare 
two of them. A state change can only be forced by introducing additional 
justifications (typically by declaring some nodes as contradictory). But as 
there is no way of eliminating justifications, these artificial justifications 
remain present in the system forever, and "toggling" a node between in 
and out results in lots of justifications accumulating in the dependency 
net, as shown in the previous section. 

2.	 contradiction avoidance: The TMS does not admit any kind of contradic
tion, but immediately tries to return to a state where ..L is labelled out. 
In connection with the single state property this means that the system 
has to decide for one possible consistent state and cannot follow alternat
ive lines simultaneously, thus losing all consequences of nodes that were 
decided against. This is not adequate for every domain, as there are cases 
where some kind of paraconsistency is desired. If we have for example the 
(hypothetical) facts A and B, as well as the justifications A ---+ C, B ---+ D 
and A /\ B ---+ E, and then declare C and D to be contradictory, then the 
system will label either A or B out. Besides the desired consequence that 
of course E will also be out, we lose C resp. D in addition, depending 
on this decision. There is no way to see the "cases" "we can have C if A 
were in, we could have D if B were", corresponding to the two extensions 
of a default logic formulation of the example. 

3.	 the dominance of justifications: Doyle's definition of an assumption de
pends on the structure of the dependency net. Adding a premise justific
ation can change a node from an assumption to a premise. Often it seems 
more convenient to declare in advance what is to be viewed as assumption 
and what not. 

Besides, if asked why a node is in, the TMS could at best supply the com
plete tree of current support. Neither is it easy to see which assumptions 
this is based on, nor is it clear that there might not be an. alternative way 
of justifying the node's status. 

4.	 single contexts only: Pushing the latter argument even further, sometimes 
one would like to "switch" assumptions, e.g. in case analyses. The TMS 
may perhaps tell us that node n2 is in whenever nl is. But it may well 
be the case that n2 is completely independent of the state of nI, and it is 
certainly interesting to find out about that. 

These disadvantages led to the introduction of assumption based truth main
tenance (ATMS, (de Kleer, 1986a)). Instead of the justifications, assumptions 
now play the primary role. In de Kleer's notation, assumptions are distinguished 
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nodes representing basic items whose state of belief can be manipulated directly. 
All the other nodes' states are then derived by a procedure similar to the TMP. 

To ease context switches, the labelling procedure does not compute a single 
state (in or out) for every node, but a list of all combinations of assumptions 
which force that node to be in. It is easy to see that this is a computationally 
complex task, however, once computed, the test for the state of a node under 
arbitrary assumptions consists of a simple lookup. 

The label of a node in an ATMS represents a set of environments, Le. a 
set of sets of assumptions. As the ATMS in its basic form does not support 
nonmonotonic justifications, addition of assumptions to an environment cannot 
cause a node to become out, if it was in before. So the label can be stored in a 
"minimal" form, containing only those environments that are not supersets of 
others already accounted for. This makes the label read like the distinguished 
disjunctive normal form (DDNF) of a propositional logic formula. 

As in TMS, there is also the possibility of ruling out inconsistent sets of 
assumptions. This is again done by the introduction of a "contradiction node" . 
Environments that make this node believed are called nogoodaS. They are there
fore eliminated from the labels of the nodes. 

Aside from the obvious computational complexity of the ATMS procedure, 
the most prominent disadvantage in comparison to TMS is the lack of non
monotonic justifications. Another flaw is not that easy to perceive: There is no 
such notion as an overall state of the system (what is believed and what is not). 
This can be seen as an advantage, because it permits digression from overall 
consistency, as already mentioned. But there may not even be a consistent state 
of global belief at all, which would then be difficult to detect6 • 

Definition 2.3.1 (ATMS) 
An ATMS is a quadruple (N, J, A, .1.), where N is a set of nodes, A a subset of 
N, the assumptions, and J is the set of justifications. .1. is a distinguished 
element of N \ A, called the contradiction node. The nodes are atomic items, 
whereas a justification is a pair, consisting of a single node as consequent and a 
set of nodes as antecedents7• For the sake of convenience we use the functions 
inset and conseq the same way as with TMS (cf. definition 2.2.1) and denote a 
justification j as < inset(j), conseq(j) >. 

An environment is a s~t of assumptions. A node n is said to hold in 
an environment e, if n is derivable8 from e U J, provided the nodes are 
interpreted as propositional-logic atoms and the justifications as Horn formulae 
with material implication. 

A label is a set of environments. Labels are attached to nodes. A label l 
is called consistent, iff .1. is not derivable from li U J for all the environments 

SThe term nogood appears first in (Stallman & Sussman, 1977); Steele (1979) mentions 
nogood sets as well. 

6In ordinary ATMS this argument does not apply, since the absence of nonmQnotonic jus
tifications guarantees that the empty environment (no assumption is in) is always consistent. 
This does not hold for nonmonotonic extensions of the ATMS. . 

7In de Kleer's notation there exists a third part, the so-called informant, but, as this is 
irrelevant for the considerations here, we shall not include it into our definition. 

8De Kleer uses classical derivability here, and we shall simply follow him. 
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tifications guarantees that the empty environment (no assumption is in) is always consistent.
This does not hold for nonmonotonic extensions of the ATMS. .

"In de Kleer’s notation there exists a third part, the so-called informant, but,  as this is
irrelevant for the considerations here, we shall not include i t  into our definition.

8De Kleer uses classical derivability here, and we shall simply follow him.
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li E 1. It is sound, iff the node n, to which it belongs, is derivable from li U J 
for all the environments li E 1. It is minimal, iff no two environments in 1 are 
subset resp. superset of one another. Finally, a labell is called complete, iff 
any consistent environment e with n derivable from e U J is a superset of an 
environment in l. 

An environment e with 1. derivable from e U J is termed a nogood. 

For every node the ATMS algorithm computes a label which is consistent, 
sound, complete and minimal. 

2.4	 Some Considerations on Dependency Directed 
Backtracking 

The dependency directed backtracking procedure of the TMS has been criti
cized by various authors (including de Kleer) as not soundly motivated. DDB 
(as defined in (Stallman & Sussman, 1977) and used in (Doyle, 1979)) is prob
lematic, because the system can not really decide which assumptions should 
be withdrawn9. So this is done in a nondeterministic way. Besides, as already 
mentioned, the "junk" justifications produced will stay within the dependency 
net forever. This can lead to wrong decisions, if the system chooses one par
ticular labelling (of several possible) and then detects nogoods10• Returning to 
the still possible alternative may be impossible, because of the justifications in
troduced by the DDB process. The argumentation is similar to the one for the 
example in figure 2.2.3, but this time it is not the fault of the TMS procedure, 
for even globally informed search procedures cannot find the correct alternative, 
because the labelling is excluded by the justifications introduced by DDB. 

The following DN shall demonstrate this. It possesses two sound and com
plete labellings, namely 

out 
c 

and 

9In TMS terminology: which OUT-antecedents of assumptions should, be given a valid 
justification. 

100f course this is ATMS terminology again. In TMS this corresponds to detecting that 
the contradiction node is labelled in by a labelling. 

2.4 SOME CONSIDERATIONS ON DEPENDENCY DIRECTED BACKTRACKING 21

l; € l .  It is sound, iff the node n,  to which it belongs, is derivable from I; U J
for all the environments I; € I .  It is minimal, iff no two environments in | are
subset resp. superset of  one another. Finally, a label is called complete, iff
any consistent environment e with n derivable from e U J is  a superset of an
environment in [.

An  environment e with 1 derivable from eU  J is termed a nogood.

For every node the ATMS algorithm computes a label which is consistent,
sound, complete and minimal.

2 .4  Some Considerations on  Dependency Directed
Backtracking

The dependency directed backtracking procedure of the TMS has been criti-
cized by various authors (including de Kleer) as not soundly motivated. DDB
(as defined in (Stallman & Sussman, 1977) and used in (Doyle, 1979)) is prob-
lematic, because the system can not really decide which assumptions should
be withdrawn®. So this is done in a nondeterministic way. Besides, as already
mentioned, the “junk” justifications produced will stay within the dependency
net forever. This can lead to  wrong decisions, if the system chooses one par-
ticular labelling (of several possible) and then detects nogoods!?. Returning to
the still possible alternative may be impossible, because of the justifications in-
troduced by the DDB process. The argumentation is similar to the one for the
example in figure 2.2.3, but this time it is not the fault of the TMS  procedure,
for even globally informed search procedures cannot find the correct alternative,
because the labelling is excluded by the justifications introduced by DDB.

The following DN  shall demonstrate this. It possesses two sound and com-
plete labellings, namely

out

and

°In TMS terminology: which OUT-antecedents of assumptions should be given a valid
justification.

100f course this is ATMS terminology again. In TMS this corresponds to  detecting that
the contradiction node is labelled in  by a labelling.



22 CHAPTER 2. ON THE HISTORY OF REASON MAINTENANCE 

out 
C 

Now suppose the second labelling is chosen and node F is declared as contra
dictory, Le. a justification of the contradiction node with F as sole antecedent 
is introduced. Because F is in, the DDB process is started. In search for a 
defeating node there are two choices: C or A could be given a valid justification. 
If C is chosen, the justification is constructed as 

in 

So the node C is forced to be in. This is completely unnecessary, for the 
alternative labelling (A in, Bout) fulfills the same purpose without additional 
justifications. If the in state of C leads to contradictions later, it is impossible 
to return to that state without supplying A with an additional artificial justific
ation. Even that would not suffice if the nogood strategy is not as cautious as 
in our example, where we included node A in the OUT-SET of the justification 
we created for C. 

A thorough examination of this (TMS) problem is carried out by Elkan 
(1990). Elkan introduces the notion of a correct nogood strategy, by which he 
means that no unnecessary additionallabellings are introduced. The algorithm 
ofPetrie (1987), e.g., suffices this condition (under particular circumstances).l1 

Elkan gives a nogood strategy of his own, which he proves to be correct. 
He eliminates the special handling of contradiction nodes by the following con
struction: A contradiction node C is r.eplaced by an ordinary node plus an 
additional node, call it A, and two justifications: 

llFurther thoughts about backtracking can be found in (Junker, 1990). The distinction 
between normal and backtracking justification is best discussed in (Brewka, 1990). 
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Elkan then shows that there is a one to one correspondence between la
bellings of the original dependency net that make the contradiction node out 
and labellings of the extended DN. This means that there are no "correct" 
labellings lost and there are none additionally introduced. 

This is theoretically very nice, but fails to address part of why DDB was 
invented. Of course it is reasonable that, given a DN possesses severallabellings 
and one is ruled out, one of the alternative labellings should be chosen instead 
of introducing a new one. But DDB is of particular importance for some DNs 
that do not have a well-founded labelling at all. In this case a correct nogood 
strategy must fail. 

Nevertheless the Elkan idea is very useful, in that it describes what a DDB 
strategy should at least rule out and what it must not introduce unnecessarily. 
It is not that easy to describe when the necessity of an exception arises (one 
criterion might be the non-existence of a well-founded labelling) and what to 
do in such a case. Therefore in our modelling of TMS we shall from the start 
include a correct nogood strategy, and afterwards discuss an extension of how 
to do more DDB, but this extension suffers from the same flaws as does the 
Doyle approach. 

Despite the criticism there are attempts to reintroduce backtracking into 
ATMS (de Kleer & Williams, 1986a). The cited article also contains a compar
ison of the two approaches. A more detailed elaboration of the differences is 
given in de Kleer (1986c), where besides Doyle's system (Doyle, 1979) also the 
systems described in (McAllester, 1980; McDermott, 1983; Martins, 1983; Mar
tins & Shapiro, 1983) and others are taken into consideration. 

2.5 Systems 

We have had a closer look at Doyle's TMS and de Kleer's ATMS in the preceding 
sections. Most other systems are reimplementations of either TMS or ATMS. 
In the TMS case there exist some real improvements concerning the detection of 
odd loops. There are cases in which Doyle's TMP does not terminate, even if a 
well-founded labelling exists. The WATSON system (Goodwin, 1987) performs 
better in some cases, but sometimes exits without result, too. Descriptions of 
improved labelling algorithms can be found in (Goodwin, 1982; Euzenat, 1992). 

Another system to be mentioned here is RUP (McAllester, 1982; McAllester, 
1980; McAllester, 1978), which is simpler, but more efficient than TMS. RUp12 
is clearly justification-based, but explicitly mentions assumptions. Therefore 
context switches are easier. Even temporary inconsistencies are possible. The 
problem of "unouting" a node is dealt with better than in TMS. 

12Strictly speaking RUP itself is not a RMS, but it contains an RMS component. 
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In ATMS, there are numerous attempts to incorporate nonmonotonic jus
tifications (de Kleer, 1986b; DressIer, 1989, among many others). This is not 
as easy as simply admitting nonmonotonic justifications, for th~s decision is 
accompanied by some fundamental changes in label representation. 

For an example, consider the following dependency net, which should rep
resent a nonmonotonic ATMS: 

If A is an assumption, what should be the label of B? Clearly B holds in 
the empty environment. So the label of B should mention this environment, 
for it certainly fulfills all the requirements. But now we can not conclude, as 
in the basic ATMS case, that all supersets of this environment have the same 
property, for adding A destroys the derivability of B. 

What is needed is a generalization of the set representation, very much the 
way it is done with the restriction sets used in the SNeBR system (Martins & 
Shapiro, 1983; Martins, 1983) described below. We shall talk about this issue 
in section 5.3. 

The SNeBR13 system of Martins and Shapiro is peculiar in some respects. 
In contrast to all the other authors Martins and Shapiro do not favour the 

traditional separation between problem solver and RMS: 

"It would be desirable to put the responsibility of computing 
these dependencies on the system itself, so that as new beliefs are 
generated their dependency on old beliefs will automatically com
puted. 

This is a problem area that has been mostly ignored by research
ers. The systems of Doyle, McDermott, and de Kleer do not address 
this issue at all: The inferences are made outside the system, which 
just passively records them." 

So their abstract MBR (Multiple BeliefReasoner) model comprises the prob
lem solving component, which is of a a natural deduction type, as well as the 
maintenance of dependency information. 

For the latter they use a relevance logic they call SWM (for Shapiro, Wand 
and Martins) in an assumption-based approach that allows for multiple con
texts, without nonmonotonic justifications. The motivation for a relevant im
plication (Anderson & Belnap, 1975; Routley & Meyer, 1973; Dunn, 1986) is 
to avoid introduction of unnecessary (irrelevant) dependencies: If we e.g. have 
the two hypotheses "John is tall" and "John is fat", we could first conclude 
"John is tall and fat" using AND-introduction. Of course this depends on both 
hypotheses. By AND-elimination we could later obtain another "John is fat" 
from this, which we falsely assume to depend on both hypotheses again. If this 

13SNeBR stands for SNePS with Belief Revision, where SNePS means Semantic Network 
Processing System. 
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is found to be part of a contradiction in the sequel, perhaps "John is tall" is 
blamed as a possible culprit, which is clearly nonsense. 

The SWM logic is derived from the FR system of (Anderson & Belnap, 
1975). It is described by supplying inference rules, and the authors explicitly 
ask the scientific public to provide a model theory for it. In chapter 5 we shall 
show that this can in fact be done using classical logics. 

The implementation of nogood handling in SNeBR differs from ATMS. In
stead of keeping a list of all known nogoods that is checked for necessary elim
inations whenever a node's label is computed, Martins and Shapiro use what 
they call restriction sets. Nodes in SNeBR are labelled with an origin set, which 
is the environment in which the node was derived (note that there is only one 
single environment and not a set of them) and a restriction set14 • The restric
tion set contains sets of assumptions that, when united with the origin set, yield 
a nogood. This representation is advantageous, because the restriction set of 
a newly derived node can be computed from the information contained in its 
parents without the need to consult a list of all nogoods detected, which then 
becomes obsolete. However, whenever a new nogood is detected, the restriction 
sets of all nodes have to be updated. 

We shall look at this representation in closer detail in chapter 5, when we 
show how SNeBR can be represented in our framework. It is commented by 
de Kleer (1986c): 

"The idea of restriction sets presents an alternative implement
ation for nogoods because each union operation need only check 
the result against the restriction sets of its antecedents, not all no
goods." 

but he adds in parentheses 

"This implementation of nogoods turned out to be inefficient for 
the ATMS" 

a claim he does not explain further and which seems rather questionable. 

.. The approach presented in (McDermott, 1983) is ATMS-like, but working 
with one single consistent context. There are labels in de Kleer's sense (sets of 
environments). Additionally, M~Dermott allows negated assumptions, therefore 
the label propagation algorithm is more complex (global constraint satisfaction 
instead of local propagation; but no special nogood database is needed). 

De Kleer (1986b) suggests improvements for the ATMS, including the per
mission of disjunctions, nonmonotonic justifications, defaults (normal as well as 
non-normal) and arbitrary propositional formulae instead of atoms, but this is 
a purely algorithmic solution without any proofs. There is also a nonmonotonic 
ATMS version in (DressIer, 1989) which suffers from similar flaws. 

The ATMS reimplementation in (Junker, 1987) directly follows de Kleer, 
incorporating in addition some parts from (de Kleer, 1986b) and (de Kleer, 
1986c). 

14There is also an origin tag that tells whether a node is a hypothesis, derived or "special". 
We do not consider this in detail. 

2.5 SYSTEMS 25

is found to be part of a contradiction in the sequel, perhaps “John is tall” is
blamed as a possible culprit, which is clearly nonsense.

The SWM logic is derived from the FR  system of (Anderson & Belnap,
1975). I t  is described by supplying inference rules, and the authors explicitly
ask the scientific public to provide a model theory for i t .  In  chapter 5 we shall
show that this can in  fact be done using classical logics.

The implementation of nogood handling in SNeBR differs from ATMS. In-
stead of  keeping a list of all known nogoods that is checked for necessary elim-
inations whenever a node’s label is computed, Martins and Shapiro use what
they call restriction sets. Nodes in  SNeBR are labelled with an origin set, which
is the environment in which the node was derived (note that there is only one
single environment and not a set of them) and a restriction set!*, The restric-
tion set contains sets of assumptions that, when united with the origin set, yield
a nogood. This representation is advantageous, because the restriction set of
a newly derived node can be computed from the information contained in its
parents without the need to  consult a list of  all nogoods detected, which then
becomes obsolete. However, whenever a new nogood is detected, the restriction
sets of  all nodes have to be updated.

We shall look at this representation in closer detail in chapter 5, when we
show how SNeBR can be represented in our framework. It is commented by
de Kleer (1986¢):

“The idea of restriction sets presents an alternative implement-
ation for nogoods because each union operation need only check
the result against the restriction sets of i ts  antecedents, not all no-
goods.”

but he adds in  parentheses

“This implementation of nogoods turned out to  be inefficient for
the ATMS”

a claim he does not explain further and which seems rather questionable.
: The approach presented in (McDermott, 1983) is ATMS-like, but working

with one single consistent context. There are labels in  de Kleer’s sense (sets of
environments). Additionally, McDermott allows negated assumptions, therefore
the label propagation algorithm is more complex (global constraint satisfaction
instead of  local propagation; but no special nogood database is  needed).

De Kleer (1986b) suggests improvements for the ATMS, including the per-
mission of  disjunctions, nonmonotonic justifications, defaults (normal as well as
non-normal) and arbitrary propositional formulae instead of  atoms, but this is
a purely algorithmic solution without any proofs. There is also a nonmonotonic
ATMS version in (Dressler, 1989) which suffers from similar flaws.

The ATMS reimplementation in (Junker, 1987) directly follows de Kleer,
incorporating in addition some parts from (de Kleer, 19864) and (de Kleer,
1986¢).

There is also an origin tag that tells whether a node is a hypothesis, derived or “special”.
We do not consider this in detail.



26 CHAPTER 2. ON THE HISTORY OF REASON MAINTENANCE 

Cayrol & Tayrac (1989) admit negation of assumptions. They introduce 
generalized environments and nogoods, an approach rather similar to our defin
itions in the respective chapters. 

There is one system (Junker, 1989) which is truly nonmonotonic, yet com
putes all extensions and thus is not restricted to one single context. A specialty 
is the handling of exceptions to exceptions. 

ATMS generalizations such as CMS are dealt with in the next chapter. 

We have just described only the basic notions. Yet the details of different 
systems are mainly implementational issues and differences are motivated by 
the problems already mentioned or those presented in the following chapter. 
There is not much one can learn about the interesting concepts by looking in 
closer detail at single systems. The main categories suited to classify them are 

1.	 whether they allow nonmonotonic justifications or not 

2.	 whether they pursue the justification-based, single consistent state ap
proach or are assumption-based. 
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Chapter 3 

Shortcomings of Current 
Approaches 

In spite of the fact that there have been quite a number of reason maintenance 
systems implemented up to now, some fundamental problems still remain un
solved. These are not only connected to just single systems, but are principally 
present, i.e. in all algorithms. The main problems are 

1.	 The interface problem: the classic two component approach with strict 
separation between RMS and problem solver should be questioned. 

2.	 Current systems are restricted to propositionallogic, very often even to 
Horn clause logics1 • 

3.	 Most of the systems have been given only an operational semantics, if 
any. 

• Even if there is a more abstract semantics,	 the formalisms used to 
describe various systems are too different to facilitate a comparison 
of approaches on this basis. 

• Frequently the given semantics skips the modelling of parts of the 
system; most often dependency directed backtrackingis omitted. 

We discuss these and give a short preview on how we shall try to solve them 
in the sequel. 

3.1 A Plea for a Combined System 

Most authors and system designers share the belief that a strict separation of 
the problem solver and the reason maintenance component is a good idea, and 
traditionally this approach has been pursued ever since, starting with (Stallman 

laf course this has to be seen in connection with the two component approach. Although 
the logic of the RMS component may be propositional, this does not prevent the problem 
solver from using any arbitrary logic. This point, however, becomes problematic if one takes 
interactions (as e.g. the .detection of inconsistencies by the RMS) into account. 
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& Sussman, 1977), and strongly supported in (de Kleer, 1984). Of course the 
possibility to modularize is appealing, for the inference mechanism could (at 
least theoretically) be exchanged without the need to change anything within 
the RMS. Thus the same RMS can be used independently of the type of problem 
solver attached to it, and especially independently of the logic it uses. 

However, as we shall show, this advantage is traded against much of the 
potential power of an RMS. The modularization is based on the RMS treating 
every item it tackles as atomic and therefore deprived of any semantic content 
it may be given by the problem solver. This constitutes an abstraction step, 
because formulae of the problem solver's language are mapped to atomic formu
lae of some propositionallanguage, giving up information that is potentially of 
value. For example it would be desirable if the RMS were capable of detecting 
inconsistencies. But given the abstraction mentioned, there is no way for the 
RMS to accomplish this. It can only manage contradictions if it is explicitly told 
about their occurrence. This places a heavy burden on the interface between 
the two components. Of course one could not expect the RMS to know of every 
contradiction inherently present, but it does not even know of every contradic
tion detected by the problem solver so far, but only of those transmitted to 
it. 

Of course one can demand that the problem solver directly passes on every 
piece of information to the RMS. But even then the completeness of the RMS's 
contradiction detection depends on the problem solver's progress. This is what 
appears to be a little bit misguiding e.g. in the description of de Kleer's ATMS. 
There the computed labels claim to be "complete", and in fact they are, but 
only relative to what is known at the given moment. Any honest concept 
of completeness has to include both RMS and problem solver, so there is a 
limitation for modularization. 

Even de Kleer (de Kleer, 1986c) states: 

"The advantages provided by the soundness, completeness and 
consistency of the ATMS can be inadvertently lost in the overall 
reasoning system." 

therefore 

"... the ATMS is only one component of an overall reasoning 
system. This paper presents a set of concerns for interfacing with 
the ATMS, an interface protocol, ... " 

He then talks about part of what we call the interface problem (what hap
pens, if the problem solver transmits justifications that are either too general 
or too specific), but the proposed solution is described purely algorithmically 
(this also holds for all articles that try to implement this idea; a partial im
plementation is e.g. (Junker, 1987)), and the problem of a combined semantics 
for both components is not addressed. Proposals for how to improve the inter
face of de Kleer (1986c) can inter alia be found in (DressIer & Farquhar, 1990) 
(COntext driven COntrol). 
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& Sussman, 1977), and strongly supported in (de Kleer, 1984). Of  course the
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The approach we want to propose in the next chapters overcomes the inter
face problem. We present a logic whose formulae consist of two separate parts, 
one representing the RMS and the other the particular problem solver's logic. 
We give a semantics for this logic, which incorporates the respective semantics 
of the components, thus giving the possibility to characterize the system as a 
whole and nevertheless preserve its modular character. 

3.2 The Restriction of Logic 

Independently of the nature of the logic used by the problem solver (if any), the 
RMS itself usually uses a very restricted logic. In one sense this is clearly an 
advantage: Since the nodes are considered as atomic, a propositionallogic will 
do in any case for the RMS, no matter how sophisticated a logic the problem 
solver deals with. This is the reason for the decidability of the TMP and the 
ATMS label computation. But there are further restrictions imposed by the 
nature of justifications, which are again exploited in the design of algorithms. If 
translated into logic, it turns out that all the formulae resulting from an ATMS 
are Horn (or purely negative) clauses. Sometimes however one might like to have 
e.g. disjunctions within justifications. This was discovered very early, and Reiter 
& de Kleer (1987) came up with their CMS (clause management system). This 
is like the ATMS, but now the queries can be arbitrary (propositional) clauses 
instead of just atoms. The ATMS itself is a proper special case of CMS, with 
all the justifications being Horn clauses and nogoods purely negative clauses. 

In this thesis we propose a framework that in principle admits arbitrary 
logics on the RMS side2 . This has the theoretical advantage of comprising any 
RMS - given it is logically presentable at all. Of course one should restrict 
oneself as tightly as possible when designing a concrete implementation, for 
the performance or even the decidability of the respective algorithms certainly 
depends on this. 

There are other attempts at using logics for providing general frameworks. 
Kakas & Mancarella (1990b) (resp. (Kakas & Mancarella, 1990a)) describe a 
nonmonotonic ATMS extension (including dependency directed backtracking) 
using a generalization of the stable models semantics from logic programming 
(Gelfond & Lifschitz, 1988) and autoepistemic logics (AEL) (Moore, 1985). 

Elkan (1990) gives a logical characterization of TMS, again with the help of 
stable models and AEL. 

The most general attempt at unifying the area was developed by McDer
motto In (McDermott, 1991) he claims to be able to show how all the RMSs 
can be 

"unified into a single general RMS to see how the others are a 
special case of this one" 

In:order to do so McDermott replaces justifications by full propositionallogic 
formulae, thus admitting contrapositives (cf. chapter 8 for a thorough discussion 

2 However, within this thesis we first deal only with classical propositional logic and later 
with first order logic. 
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stable models and AEL.

The most general attempt at unifying the area was developed by McDer-
mott. In (McDermott, 1991) he claims to be able to show how all the RMSs
can be

“unified into a single general RMS to see how the others are a
special case of  this one”

Inorder to do so McDermott replaces justifications by  full  propositional logic
formulae, thus admitting contrapositives (cf. chapter 8 for a thorough discussion

?However, within this thesis we first deal only with classical propositional logic and later
with first order logic.
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of this topic) The resulting multidirectionality of justifications is called "logic 
based". This is certainly more general than e.g. TMS, but it is not shown what 
restriction could be imposed in order to characterize systems like TMS. The 
admittance of contrapositives certainly simplifies handling dependency directed 
backtracking, but yields results different from all JTMS approaches in cases like 
the Yale shooting example (again see chapter 8). An interesting point is that 
McDermott gives a semantics for odd loops. 

In this approach multiple simultaneous assumption sets (as in the case of 
ATMS) are admitted. McDermott discusses the choice between the current 
context approach and the assumption based multiple context one and decides 
to use the second one without explaining how to model the first one. Non
monotonicity is included via a multi-valued logic (valuations instead of simple 
interpretations) . 

The whole approach is completely procedural in nature. It does indeed 
contain most features one can think of (particularly multiple contexts as well 
as nonmonotonicity), but it can not serve as a general framework containing the 
"simpler" systems, as these features cannot be "switched off". McDermott's 
comment on this is 

"many of the algorithms used in my RMS would carry over to 
a single current-context framework (... ) (of course, new algorithms 
would be required for handling nogoods, and for deleting justifica
tions)" 

There is no hint how the algorithms should be changed, hence the title "a 
general framework" is somewhat misleading. 

3.3 A Genuine Model Theoretic Semantics 

All implemented systems have in common the fact that they first have been 
characterized only operationally. That this constitutes a serious drawback, has 
been mentioned very early. E.g. Doyle (Doyle, 1983) writes: 

"To progress significantly beyond current reason maintenance 
systems, we must formulate their structure and intended behavior 
precisely enough to analyze computational complexities and trade
offs independently of the current set of limited implementation pro
posals. 

There is little hope for improving on existing RMS implement
ations without clearer statements of their intended behaviors and 
better analyses of their performance. (... ) These goals require 
mathematical formulations that clearly capture our intuitions ... " 

It is true that some systems have been given a clear semantics afterwards, 
but often these semantics suffer from several drawbacks, as e.g. 

•	 Some formalisms are developed just for the purpose of describing a par
ticular RMS and therefore are very specialized and not generally known 
outside that area. 
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context approach and the assumption based multiple context one and decides
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contain most features one can think of  (particularly multiple contexts as well
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“many of the algorithms used in my RMS would carry over to
a single current-context framework ( . . . )  (of course, new algorithms
would be required for handling nogoods, and for deleting justifica-
tions)”

There is no hint how the algorithms should be changed, hence the title “a
general framework” is somewhat misleading.

3 .3  A Genuine Model Theoretic Semantics

All implemented systems have in common the fact that they first have been
characterized only operationally. That this constitutes a serious drawback, has
been mentioned very early. E.g. Doyle (Doyle, 1983) writes:

“To progress significantly beyond current reason maintenance
systems, we must formulate their structure and intended behavior
precisely enough to analyze computational complexities and trade-
offs independently o f  the current set of  limited implementation pro-
posals.

There is little hope for improving on existing RMS implement-
ations without clearer statements of their intended behaviors and
better analyses of their performance. ( . . . )  These goals require
mathematical formulations that clearly capture our intuitions...”

I t  is true that some systems have been given a clear semantics afterwards,
but often these semantics suffer from several drawbacks, as e.g.

e Some formalisms are developed just for the purpose of  describing a par-
ticular RMS and therefore are very specialized and not generally known
outside that area.
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•	 Some do not fully characterize the systems in question but only part of 
it; in many cases this e.g. concerns DDB. 

The most outstanding drawback -is that the semantics for different RMSs 
make use of different types of formalisms, thus making it nearly impossible to 
compare those systems to one another (Katsuno & Satoh, 1991). So the main 
enterprise we shall undertake is to provide a unifying framework covering all of 
them. Thus it would in principle become possible to characterize the differences 
by telling what axioms hold in a particular approach. Besides, it appears that 
new systems can be described in a simple way just by enumerating the demands 
they should satisfy. 

3.3 A GENUINE MODEL THEORETIC SEMANTICS 31

se Some do not fully characterize the systems in question but only part of
i t ;  in many cases this e.g. concerns DDB.

The most outstanding drawbackis that the semantics for different RMSs
make use of different types of formalisms, thus making i t  nearly impossible to
compare those systems to one another (Katsuno & Satoh, 1991). So the main
enterprise we shall undertake is to  provide a unifying framework covering all of
them. Thus it would in  principle become possible to  characterize the differences
by telling what axioms hold in a particular approach. Besides, i t  appears that
new systems can be  described in  a simple way just by  enumerating the demands
they should satisfy.



32 CHAPTER 3. SHORTCOMINGS OF CURRENT ApPROACHES 32 CHAPTER 3. SHORTCOMINGS OF CURRENT APPROACHES



Chapter 4 

The Labelled Approach 

In this chapter we introduce the logic LL as a new approach to solving the 
problems presented in the preceding chapter. LL uses (and derives its name 
from) labelled formulae. Formulae of the logic used by the problem solver are 
labelled with information about the way they have been derived. Like many 
labelling methods in literature our mechanism has initially been developed in
dependently, but later turned out to be a special case of Gabbay's Labelled 
Deductive Systems (Gabbay, 1991; Gabbay, 1994b). One significant difference 
is that the definition of an LDS has primarily been a purely syntactical mat
ter, whereas show how to obtain a semantics for LL, provided the logic of the 
problem solver has one. In the meantime Gabbay showed how it is possible 
to combine semantics of different logics via a method called fibering (Gabbay, 
1994a), and again our approach is a special case of that. We dedicate a later 
section (4.9)to this correspondence. 

4.1 Labelling Formulae 

Our main motivation in defining the labelled logics LL is to solve the problems 
of RMSs discussed above. However, as we shall see later (chapter 8), this 
approach also provides a means to deal with a broader class of problems. For 
the moment, let us suppose we are given a logic, henceforth called the basic 
logic, and we want to describe the dependencies between axiom sets and their 
respective sets of logical consequences. We pursue our goal by first attaching 
a name to every formula given as an axiom. We use Greek letters for these 
names, and we suppose them to be unique, i.e. no two formulae share the same 
name. An example might look like 

Example 4.1.1 

O!:RAIN~WET 

,B:SPRINKLER~WET 

'Y:-,RAIN~SPRlNKLER 

8:RAIN. 
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The Labelled Approach

In this chapter we introduce the logic LL  as a new approach to solving the
problems presented in the preceding chapter. LL  uses (and derives its name
from) labelled formulae. Formulae of the logic used by the problem solver are
labelled with information about the way they have been derived. Like many
labelling methods in literature our mechanism has initially been developed in-
dependently, but later turned out to be a special case of Gabbay’s Labelled
Deductive Systems (Gabbay, 1991; Gabbay, 19945). One significant difference
is that the definition of an LDS has primarily been a purely syntactical mat-
ter, whereas show how to  obtain a semantics for LL ,  provided the logic of  the
problem solver has one. In the meantime Gabbay showed how it is possible
to combine semantics of different logics via a method called fibering (Gabbay,
19944), and again our approach is a special case of that. We dedicate a later
section (4.9)to this correspondence.

4 .1  Labelling Formulae

Our main motivation in  defining the labelled logics LL  is to solve the problems
of RMSs discussed above. However, as we shall see later (chapter 8), this
approach also provides a means to deal with a broader class of  problems. For
the moment, let us suppose we are given a logic, henceforth called the basic
logic, and we want to describe the dependencies between axiom sets and their
respective sets of logical consequences. We pursue our goal by first attaching
a name to every formula given as an axiom. We use Greek letters for these
names, and we suppose them to  be  unique, i.e. no  two formulae share the same
name. An  example might look like

Example 4 .1 .1

a:RAINSWET
B:SPRINKLER—WET
~v:-RAIN—SPRINKLER
0:RAIN.
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Since WET follows from RAIN and RAIN-tWET as well as from the col
lection of ...,RAIN-tSPRlNKLER, RAIN-+WET, and SPRlNKLER-tWET, we 
could denote this by something like {{a, 8}, {a, {3, 'Y}} =>WET. Instead we use 
the shorthand notation a8 + a{3'Y:WET. It is easy to see that this in a sense 
corresponds to the labels in an ATMS, where the labels denote sets of environ
ments, Le. sets of sets of assumptions. The difference is that ATMS labels are 
assumed to meet some additional requirements, such as being complete (every 
minimal (wrt. set inclusion) assumption set that entails the consequent has to be 
mentioned), whereas up to now nothing prevents us from writing e.g. a8:WET 
or a{3'Y8:WET, both not being complete, the latter not even minimal. We call 
the respective property (to be defined in the sequel) of a label maximality1. 

The similarity of our label notation to algebraic or logic formulae is intended 
and gives a hint at the semantics we are aiming at. What we want to do is to 
treat the whole formulae (including their labels) as formulae of some kind of 
new logical language, the semantics of which is derived straightforwardly from 
the respective semantics of the logics of their label and formula parts. In all the 
definitions below we make use of different indices for notating the particular 
logic the symbols are to be interpreted in. We use BL for the basic logic 
(the logic the original formulae stem from), and PL for (classical) propositional 
logic, which will serve, at least for the moment, as the logic for the labels. 

Concerning BL we want to make as few restrictions as possible, since we 
want to apply our approach to various types of logics. There are, however, some 
things we can assume without too much loss: 

Nearly all of the theorems require that BL is reflexive. That means that 
a set of BL-formulae entails every formula contained in it. There are in fact 
very few logics that violate this assumption (we shall meet some in sections 4.5 
and 4.7). 

Sometimes we demand that BL be monotonic. Yet this is not as restrictive 
as it sounds, for the sole purpose of introducing nonmonotonicity into logic has 
been the desire to cope with default assumptions, which we are able to treat 
with monotonic basic logics as well (more to this in chapter 8). 

This e~cepted, this section's theorems do not depend on any further prop
erties of BL. Within the next section there are some theorems which assume 
particular properties of BL, the most prominent being the existence of a falsum 
(written ..L). This applies to all the parts dealing with consistent entailment. 

Furthermore we suppose all sets of formulae to be finite. . 
Since we are mainly interested in semantics, we do not presuppose a par

ticular calculus for BL. However, we assume that there exists a sound and 
complete calculus. Therefore we are not very strict concerning the use of words 
like "derivability" instead of "entailment". It sounds by far less complicated if 
we speak of multiple ways of derivation instead of stating that there are several 

IThe fact that we chose to call this criterion maximality may be a bit confusing, since the 
name resembles the minimality criterion for ATMS labels (cf. definition 2.3.1). However, it 
has nothing to do with it. Instead, our maximality correlates to de Kleer's completeness, as 
we shall soon see. We prefer this nomenclature, since later we shall approach maximal labels 
by constructing "bigger" and "bigger" ones, starting from very "small" labels, according to 
an ordering to be defined in definition 4.5.2. 
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subsets of a given set of formulae that all entail the formula in question, and 
it is intuitively clear what is meant. The same holds for the pair inconsist
encyjunsatisfiability. 

To make the distinction clear between labels and formulae (since BL could of 
course also be PL) within labels we write conjunction by simple concatenation, 
denote negation by a bar over the label and write disjunction as "+". Also we 
omit most of the parentheses by assuming operator precedence of negation over 
conjunction over disjunction. So e.g. (a /\ -,(3) V'Y is written as a(j + 'Y. We use 
T for the verum, J... for the falsum. 

We almost always give labels in disjunctive normal form (DNF). The DNF 
of a formula is a logically equivalent formula which is either T or J... or consists 
of a disjunction of conjunctions of literals. There is a special disjunctive form 
called distinguished disjunctive normal form (DDNF). Usually this is defined as 
a DNF containing only the necessary prime implicants of a formula. Remember: 
an implicant of a formula cp is a conjunction of literals that implies cp. A prime 
implicant a of cp is an implicant, so that for any other implicant {3 of cp with 
a -+ {3 follows {3 ++ a, that means leaving out any literal does destroy a's status 
of being an implicant. In a collection of prime implicants each one is necessary, 
if their disjunction is equivalent to cp, but none of them can be left out. E.g. 
a{3 and a{3o are both implicants of af3 + 'Y, but only the former is a prime 
implicant. a{3, a'Y and !3'Y are all prime implicants of a{3 + a'Y + !3'Y, but a'Y is 
not necessary, because a{3 + a'Y +!3'Y is equivalent to a{3 + !3'Y' 

Thus defined, the DDNF representation of a formula is not unique. a{3 + 
a(j + (j'Y and a'Y + 7i(j + a{3 e.g. are both DDNFs of the same formula. But 
in cases where the DDNF consists of prime implicants containing only positive 
literals, it is unique up to the ordering of implicants as well as literals within 
an implicant2 . For more details see e.g. (Birkhoff & Bartee, 1970, an algebra 
textbook), or cf. articles like (Minicozzi & Reiter, 1972), (Slagle, Chang & Lee, 
1969), (Reiter & de Kleer, 1987), the latter directly referring to our domain of 
discussion. 

To circumvent the difficulties accompanying multiple DDNFs we digress 
from the usual definition and define our DDNF as' 

Definition 4.1.2 (DDNF) _
 
The DDNF of a formula is the unique (up to ordering) disjunctive normal form
 
that contains all prime implicants.
 

This is well-defined, since each formula has only a finite number of prime 
implicants3 . Whenever we talk about DDNF in the sequel we mean this unique 
DDNF representation. 

The computation of prime implicants is usually done by the so-called con
sensus method (Tison, 1967), but there are also incremental (Kean & Tsiknis, 
1988) and other methods; e.g. Inoue (1990) uses an extension of linear logic. 

2Strictly speaking this is not completely true. The formula T is an exception. It can be 
represented as a + Q for an arbitrary atom a. We always choose T as the representation. 

3 Again consider last footnote for the only exception. 

4 .1  LABELLING FORMULAE 35
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an implicant of  a formula ¢ is a conjunction of literals that implies v. A prime
implicant a of  ¢ is an  implicant, so that for any other implicant 8 of  ¢ with
a — ß follows 8 + a ,  that means leaving out any literal does destroy a’s status
of  being an  implicant. In  a collection of  prime implicants each one is necessary,
if their disjunction is equivalent to ¢ ,  but none of them can be left out. E.g.
af  and afd are both  implicants of  aß +7 ,  but only the former is a prime
implicant. ax6, ary and By  are all prime implicants of aß  + ay  + Gy, but ary is
not necessary, because aß + ay  + By  is equivalent to aß + By.

Thus defined, the DDNF representation of a formula is not unique. aß  +
aß + By  and ay  + aß + af  e.g. are both DDNFs of the same formula. But
in cases where the DDNF consists of prime implicants containing only positive
literals, it is unique up to the ordering of  implicants as well as literals within
an  implicant?. For more details see e.g. (Birkhoff & Bartee, 1970, an  algebra
textbook), or cf. articles like (Minicozzi & Reiter, 1972), (Slagle, Chang & Lee,
1969), (Reiter & de Kleer, 1987), the latter directly referring to our domain of
discussion.

To circumvent the difficulties accompanying multiple DDNFs we digress
from the usual definition and define our DDNF as:

Definition 4.1.2 (DDNF')
The DDNF of a formula is the unique (up to ordering) disjunctive normal form
that contains all prime implicants.

This is well-defined, since each formula has only a finite number of prime
implicants®. Whenever we talk about DDNF in  the sequel we mean this unique
DDNF representation.

The computation of prime implicants is usually done by the so-called con-
sensus method (Tison, 1967), but there are also incremental (Kean & Tsiknis,
1988) and other methods; e.g. Inoue (1990) uses an extension of linear logic.

2Strictly speaking this is not completely true. The formula T is an exception. I t  can be
represented as a + X for an arbitrary atom a .  We always choose T as the representation.

3 Again consider last footnote for the only exception.
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The reason why we choose to present labels in DDNF is that there is a direct 
correspondence between this form and sets of sets of axioms, as we soon shall 
see. 

We need the following lemma: 

Lemma 4.1.3 
For any implicant (3 of a given formula cp there exists a prime implicant a of cp 
with (3 -+ a. 

Proof: 
Suppose (3 does not imply any prime implicant of cp. Then (3 can in particular 

be no prime implicant itself. Therefore there must be at least one implicant, 
say 1'17 of cp, which is implied by (3, but not equivalent to it. Because of the 
structure of implicants, 1'1 must then consist of a set of literals which is a proper 
subset of the literals in (3. If 1'1 itself is no prime implicant, there will be an 
implicant 1'2 of cp, which has still less literals and is also implied by (3. Because 
of the decrease in the number of literals we finally come to a prime implicant 
1'i of cp. But (3 implies 1'i. 0 

Definition 4.1.4 (formula and label function) 
Given a labelled formula F, we refer to its label by label(F) and to the formula 
part by formula(F). If no confusion is possible, we simply speak of "formulae" 
when referring to labelled formulae. We further extend the functions label and 
formula to work on sets of formulae by defining 

label(<p):= 1\ label(F) 
FEll> 

and 
formula(<p) := {formula(F) IF E <p}. 

Now we can make a first attempt at defining our logical consequence relation: 

Definition 4.1.5 (Strict Labelled Logical Consequence)
 
Let <P be a set of labelled formulae and a:F a single labelled formula. We say
 
a:F strictly follows (logically) from <P (written as <P FequivLL a:F), iff there 
exist subsets Wl, ... , wn of El> (n ~ 0), with 

• V Wi : formula(wi) FBL F and 

n 
• FPL a B V label(Wi)' 

i=l 

Very often we shall meet sets of sets like the Wi in the definition above. 
To increase clarity we talk about collections of sets in this context. Each 
Wi is a set of assumptions, that - taken together - entail F. Different Wi 
represent different ways of accomplishing this, corresponding to alternative ways 
of deriving F. 

The definition is in several aspects more general than what we talked about 
before. Neither is there a demand that all the labels have to be different from 
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one another, nor are they required to be atomic here. We have also said nothing 
about negative literals within the labels up to now, although they are not 
excluded by the definition. We shall not do this here, however, but rather 
permit arbitrary propositional formulae as labels, only making sure that the 
restricted case of unique, positive, atomic labels (see definition 4.1.8) is dealt 
with as expected. 

Definition 4.1.6 (Basic, Semi-basic and Simple Sets, Assumptions) 
A set of labelled formulae is called basic, iff every label is atomic and no label 
occurs more than once. It is called semi-basic, if in addition the occurrence 
of arbitrarily many formulae labelled T is allowed. The formulae not labelled 
T are called assumptions. 

A set of labelled formulae is called simple, if in addition to the labels 
allowed in semi-basic sets conjunctions of atomic labels are allowed. 

It is clear that we are mainly interested in basic sets. The role of assumptions 
and semi-basic sets will become apparent later, but we introduce them already 
here, because we can then prove our theorems in a more general form. As a 
guiding intuition let us say that the formulae labelled T can be used "for free" , 
that means we do not track their use in labels. 

It is immediately obvious that, given the set of formulae is basic, our defini
tion of logical consequence corresponds to the intuitive set characterization, Le. 
labels represent collections of sets of (unlabelled) formulae. So we always use 
the two views exchangeably. 

In later chapters, when we are talking about calculi, we shall deal with 
operations that transform sets of formulae into other sets of formulae. There 
it will become apparent that some of the procedures do not preserve a set's 
status of being basic. For non-basic sets the correspondence between labels and 
collections of sets is not that obvious, and it will turn out that we would get 
difficulties in defining an appropriate notion of equivalence for sets4 , if we used 
the definition of strict labelled consequence. 

We therefore introduce a second definition. For this, the correspondence to 
collections of sets is not immediately obvious (even for basic sets), but we shall 
show that for the cases of interest the new definition is equivalent to the former 
one. 

Definition 4.1.7 (Logical Consequence on Labelled Formulae)
 
Let ep be a set of labelled formulae and ex.:F a single labelled formula. We say
 
a:F follows (logically) from <P (written as ep FLL a:F), iff there exist subsets 
W1, ... , wn of <P (n 2:: 0), with 

• VWi: formula(wi) l=aL F and 

n 
• FPL ex. ~ V label(wi). 

i=l 

We call the logic defined by the consequence relation I=LL LL (for labelled 
logic). 

4cf. the proof of theorem 4.3.10. 
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i =1

We call the logic defined by the consequence relation =1L1 LL  (for labelled
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4¢f. the proof of theorem 4.3.10.
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In order to prove the equivalence for the "interesting" cases, we first have 
to be more precise about what counts as interesting: 

Definition 4.1.8 (Positive and Relevant Labels) 
A label is called positive if its DDNF does not contain negative literals. It is 
called relevant wrt. a given semi-basic set cP of labelled formulae, if each of its 
literals appears as a label of some formula in CP. A labelled formula is said to 
be relevant resp. positive if its label is. 

Now we can formulate the transformation between labels and collections of 
sets of formulae and thus justify our treating them as equivalent. For this task 
we use the so-called characteristic function. 

Given a particular basic set cP of labelled formulae, arbitrary positive, rel
evant labels can be looked upon as coding for sets of formulae, as each atomic 
label represents a unique formula. If transformed into DDNF, a label is either 
T, .1 or a disjunction of conjunctions of literals. 

Definition 4.1.9 (Characteristic Function) 
Let cP be a semi-basic set oflabelled formulae, and let p.(a) for an atomic label 
a denote the set {F} U {G I T:G E cp}, where F is the unique formula F with 
a:FE CP. Then for positive, relevant a in DDNF the characteristic function X 
is defined as 

if a =.1 
if a= T 

if a = 
m on 

E IT G.ij 
i=lj=l 

(where the E and I1 stand for disjunction resp. conjunction). For positive, 
relevant a not in DDNF, we define x(a) = X(DDNF(a)). 

Remark 4.1.10
 
The characteristic junction always yields a collection of subsets ojformula(cp).
 

Note that X depends on CP, so that we should correctly write e.g. X4>(a). 
However, we omit this, sincejn most cases cP remains fixed. 

The inverse operation, getting a label from a collection of subsets of CP, is 
best defined as a generalization of the known label function: 

Definition 4.1.11 
Let 8 be a collection of subsets of a set ep of labelled formulae. Then define 

label(8) = V label(\I1) 
wE4> 

For this definition one should bear in mind that V0 = .1 and /\ 0 = T. 

Now it is easy to see that the two functions are inverses of each other in the 
following sense: 
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Lemma 4.1.12 
Let <P	 be a semi-basic set of labelled formulae ..Then for relevant, positive a 

FPL label(x(a)) f-t a 

holds, and if 8 = Wl, ... , wn is a collection of subsets of <P, no two of which 
are subsets of one another, we have 

x(label(8)) = U{'lJi U {T:G E <PH. 
i 

The proof is a trivial computation with elementary sets. For basic <P the 
set of non-assumptions is empty, and thus we get 

Corollary 4.1.13 
If <P is basic, then if 8 is a collection of subsets of <P, no two of which are 
subsets of one another, we have 

x(label(8)) = 8. 

Theorem 4.1.14 
Let <P be a semi-basic set of labelled formulae, and assume the basic logic BL 
is monotonic. Then FequivLL and FLL are equivalent for positive, relevant 
formulae, i. e. for all labelled formulae a:F with a positive and relevant wrt. <P, 
we have <P FequivLL a:F iff <P FLL a:F. 

Proof: 

=}:	 trivial (holds even without the restriction to positive, relevant la
bels). 

~:	 Let <P FLL F. Then there exists a collection of Wi that satisfies the 
conditions of definition 4.1.7. Since a is relevant and positive, x(a) 
is defined and yields a collection 8 = W/l, ... , 'lJ'n of subsets of 
<P. As a -+ Vi=llabel('lJi) holds and the labels on both sides of the 
implication are positive, every 'lJj is a superset of some Wi. Since BL 
is monotonic, F follows from all the 'lJj. Since a = label(x(a)) = 
VJ;:llabel('lJj) as well, <P FequivLL F. 

The following theorem shows the correspondence between FLL and the col
lections of sets view. It is crucial for the ATMS representation. 

Theorem 4.1.15 
Given a semi-basic set <P of labelled formulae, let A be the set of assumptions 
in <P and J = <P \ A. Then for any positive, relevant label a we have <P FLL a:F 
iff x(a) FBL F. Furthermore, <P FLL a:F iff for any prime implicant ai of a 
the union of the set S of BL-formulae defined by 

S = {G I (3:G E <P and (3 is an atom in ai} 

with formula(J) BL-entails F. 

0 
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Proof: 
Directly from the definition of I=LL and x. o 

The theorem tells us about the meaning of the non-assumptions in semi
basic sets. They are not tracked in the labels and can be added to every envir
onment described by a label. In reasoning systems therefore non-assumptions 
are used for those items which are uninteresting, because 

• they are supposed to be "hard facts", Le. will never need to be retracted, 

• they should not serve as explanations. 

Furthermore we can see how positive relevant labels directly correspond to 
environments. 

Computationally it is certainly better to have as few assumptions as ne
cessary. But note that it is somewhat dangerous to declare too many things 
as non-assumptions: If the set of non-assumptions is BL-inconsistent, then we 
again find that everything follows, even in labelled logics (cf;- section 4.3. Thus 
in our RMS characterizations the non-assumptions will be reserved for the ax
iomatic parts. 

4.2 Labelled Deductive Systems 

As defined, our labelled logic is just a special case of a labelled deductive system 
(LDS) (Gabbay, 1991; Gabbay, 1994b). Informally speaking, an LDS is a logical 
system working on formulae of some logic which are prefixed with additional 
information called labels. The original motivation was to code control informa
tion such as counting how often a particular formula has been used into a label, 
but the formalism admits labels of arbitrary form. 

The inference rules of a respective calculus are now such that they operate 
on the labels as well as on the formulae itself. The operations on the labels 
therefore have to be defined. What one gets this way is a proof theoretical 
description of the combined system, i.e. a purely syntactic characterization. 

When looking solely at the formula part of the labelled formulae, one no
tices that the constraints arising from taking the labels into account block the 
derivation of some formulae formerly derivable, thus resulting in a change of 
logic. This logic is by no means easy to be recognized in every case, though 
very interesting observations (such as mimicking linear logic by adding labels 
to classical logic) have been obtained even at that stage. 

The whole matter becomes by far more interesting, if - as in our case 
the labels themselves are taken from a logic and thus carry a semantics as well. 
Yet obtaining the combined semantics may be a sophisticated task. In our 
case we can give this semantics. We shall first do this in a way particularly 
fitted to the example at hand, but in section 4.9 we show that this can be 
obtained as a special case of a fibred semantics as proposed by Gabbay (Gabbay, 
1994bj Gabbay, 1994a). 
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The rest of this chapter serves three purposes: First we prove some import
ant properties of labelled logics, just to get a feeling about what we are dealing 
with (sections 4.3 and 4.4). Some of the theorems may seem to be a little un
motivated at this stage, but they will be used to prove the key theorems in later 
chapters in a rather concise and elegant way. Next we present further variations 
of labelled consequence (sections 4.5 to 4.7), which are needed to characterize 
different RMSs occurring in literature. Finally (sections 4.8 and 4.9) we present 
a true model theoretic semantics. 

4.3 Some Useful Properties of LL 

Suppose BL were classical predicate logic. If we start with an inconsistent set 
of axioms, we are able to prove anything, and usually this is not particularly 
welcomed. Instead, one often wants to keep inconsistency local. This is possible 
in our approach. It is not the case that anything follows from a database 
obtained from an axiom set that is inconsistent wrt. the basic logic. E.g. {a:A, 
j3:-.A, -y:C} does imply aj3-y:D, but not j3:D. 

There are, however, sets of labelled formulae from which arbitrary labelled 
formulae follow. But this cannot happen with basic sets. T:A e.g. is never en
tailed by a basic set <P offormulae, if A is an atom not occurring in formula(<i», 
for this would mean that A is entailed by the empty set of BL-formulae. Note, 
however, that this does not hold for sets which are only semi-basic. Counter
examples are the sets {T:A, T:-.A} and {T:1.}. 

Some further key properties independent of BL are 

Proposition 4.3.1 
1.	 For every unlabelled formula F the labelled formula 1.:F follows from an 

arbitrary set of labelled formulae. 

2.	 If formula(<i» is inconsistent (formula(<i» FBL 1.) for a set <i> of labelled 
formulae, none of which is labelled with 1.5, then there exists a label a 
different from 1. with <P FLL a:..L. 

3.	 If F is a tautologous unlabelled formula (i. e. 0 FBL F) then T:F follows 
from any set of labelled formulae. 

Proof: 
The proof can be obtained easily, if one keeps in mind the correspondence of 

labels and collections of sets, particularly how the characteristic function maps 
the falsum and the verum. 1.:F simply says: From all sets contained in the 
empty set (i.e. none) F can be derived (note: this does not mean: there is no 
subset of <P from which F can be derived), which is clearly true for every <i> and 
F. For basic <P T:F means F is entailed by the empty set, which is the definition 
of a tautology. The converse of 3 is not true even for semi-basic sets (it holds 
for basic ones). T:F only says F is entailed by the set of all non-assumptions 
in <P. 0 

5We shall never make use of formulae labelled that way throughout the whole thesis. 
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The rest of  this chapter serves three purposes: First we prove some import-
ant properties of  labelled logics, just to  get a feeling about what we are dealing
with (sections 4.3 and 4.4). Some of the theorems may seem to be a little un-
motivated at this stage, but they will  be used to prove the key theorems in  later
chapters in  a rather concise and elegant way. Next we present further variations
of labelled consequence (sections 4.5 to 4.7), which are needed to characterize
different RMSs occurring in  literature. Finally (sections 4.8 and 4.9) we present
a true model theoretic semantics.

4 .3  Some Useful Properties o f  LL

Suppose BL  were classical predicate logic. If we start with an inconsistent set
of axioms, we are able to prove anything, and usually this is not particularly
welcomed. Instead, one often wants to keep inconsistency local. This is possible
in our approach. It is not the case that anything follows from a database
obtained from an axiom set that is inconsistent wrt. the basic logic. E.g. {a:A,
B:—A, y:C} does imply afy:D, but not 8:D.

There are, however, sets of labelled formulae from which arbitrary labelled
formulae follow. But this cannot happen with  basic sets. T :A  e.g. is never en-
tailed by a basic set ® of formulae, if  A is an atom not occurring in formula(®),
for this would mean that A is entailed by the empty set of  BL-formulae. Note,
however, that this does not hold for sets which are only semi-basic. Counter-
examples are the sets {T:4,  T:~A} and {T:1}.

Some further key properties independent of BL  are

Proposition 4.3.1
1. For every unlabelled formula F the labelled formula 1 :F follows from an

arbitrary set of labelled formulae.

2. If formula(®) is inconsistent (formula(®) pL  L)  for a set ® of labelled
formulae, none of which is labelled with L5,  then there exists a label a
different from L with ® =r, a:L .

8. If  F is a tautologous unlabelled formula (i.e. 0 E>zı F )  then T:F  follows
from any set of labelled formulae.

Proof:
The proof can be obtained easily, if one keeps in mind the correspondence of

labels and collections of  sets, particularly how the characteristic function maps
the falsum and the verum. L :F  simply says: From all sets contained in the
empty set (i.e. none) F can be derived (note: this does not  mean: there is no
subset of ® from which F can be derived), which is clearly true for every ® and
F.  For basic ® T :F  means F is entailed by the empty set, which is the definition
of a tautology. The converse of 3 is not true even for semi-basic sets (it holds
for basic ones). T :F  only says F is entailed by the set of all non-assumptions
in ®. [m]

5We shall never make use of formulae labelled that way throughout the whole thesis.



42 CHAPTER 4. THE LABELLED ApPROACH 

There is one rather trivial lemma we shall often need in subsequent proofs. 
As an aside, note that this lemma does not hold for l=equivLL. 

Lemma 4.3.2
 
If If? I=LL Ci.:F and I=PL f3 --+ Ci., then If? I=LL f3:F as well.
 

Proof: 
Immediately from the definition of I=LL. o 

We have directly defined logical consequence without saying anything about 
validity up to now. In order to get a genuine model theory, however, we should 
be able to define that notion. 

Definition 4.3.3 (Validity)
 
We say a labelled formula F is valid (written as I=LL F), iff 0 I=LL F.
 

We then immediately get the characterization 

Lemma 4.3.4
 
A labelled formula Ci.:F is valid ijj I=PL a ++ .1. or F is a BL-tautology.
 

Proof: 
Let 0 I=LL Ci.:F. According to definition 4.1.7 there exist subsets 'lii, i 2:: 0 

of 0 with particular properties. As there is only one subset of 0, namely 0 
itself, the full definition reads as "either (n=l) 0 I=BL F and I=PL Ci. --+ T or 
(n=O) I=PL Ci. --+ .1.", which yields one direction of the proof. The other one is 
elementary. 0 

Corollary 4.3.5 
For arbitrary F the labelled formula .1.:F is valid. If F is a EL-tautology, then 
a:F is valid for arbitrary Ci.. 

The next few properties directly characterize the consequence relation, as 
given in definition 4.1.7. In the sequel we make use of a generalization of I=LL 

to sets. 

Definition 4.3.6 (Consequence Relation on Sets)
 
By If? I=LL 'li, <I> and 'li being sets of labelled formulae, we mean that for all
 
cp E 'li we have If? I=LL cpG. For any set <I> of labelled formulae we define Cons(If?)
 
as {cp I If? I=LL cp}.
 

One remarkable property of I=LL is monotonicity7. Despite the fact that it 
can easily be proven, this is nevertheless noticeable, for we are attempting to 
characterize reason maintenance systems and it turns out that our consequence 
relation stays monotonic even in the presence of nonmonotonic justifications. 
But if we keep in mind the fact that we are not talking about the outcome 

6Note that we interpret the set on the right hand side as a conjunction. This differs from 
some conventions in literature, such as e.g. (Gabbay, 1994b). 

7 Concerning the history of the treatment and phenomena of nonmonotonicity see (Bobrow, 
1980), which is a whole issue on thi~ theme. 
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There is one rather trivial lemma we shall often need in subsequent proofs.
As an aside, note that this lemma does not hold for FequivLL-

Lemma 4.3.2
If  ® =u, oF  and =pL B — a ,  then ® =11, B:F as well.

Proof:
Immediately from the definition of = .  a

We have directly defined logical consequence without saying anything about
validity up  to  now. In order to  get a genuine model theory, however, we should
be  able to define that notion.

Definition 4.3.3 (Validity)
We say a labelled formula F is valid (written as >11  F ) ,  iff 0 |=11, F .

We then immediately get the characterization

Lemma 4.3.4
A labelled formula a:F  is valid iff =p1, a ++ L or F is a BL-tautology.

Proof:
Let 0 =r, oF .  According to definition 4.1.7 there exist subsets ¥ ; , i  > 0

of  @ with particular properties. As there is only one subset of @, namely 0
itself, the full definition reads as “either (n=1) 0 =p. F and |p, @ — T or
(n=0) =p, @ — L ” ,  which yields one direction of the proof. The other one is
elementary. 0

Corollary 4.3.5
For arbitrary F the labelled formula L :F  is valid. If  F is a BL-tautology, then
a:F  is valid for arbitrary o.

The next few properties directly characterize the consequence relation, as
given in definition 4.1.7. In the sequel we make use of a generalization of =r,
t o  sets.

Definition 4.3.6 (Consequence Relation on  Sets)
By  ® = r  ¥ ,  ® and VU being sets of  labelled formulae, we mean that for all
© € U we have ® |=11, © .  For any set ® of  labelled formulae we define Cons(®)
as {p  | ® FuL vo}

One remarkable property of  >11 is monotonicity’. Despite the fact that it
can easily be proven, this is nevertheless noticeable, for we are attempting to
characterize reason maintenance systems and it turns out that our consequence
relation stays monotonic even in the presence of  nonmonotonic justifications.
But i f  we keep in mind the fact that we are not talking about the outcome

SNote that we interpret the set on the right hand side as a conjunction. This differs from
some conventions in literature, such as e.g. (Gabbay, 19945).

"Concerning the history of the treatment and phenomena of  nonmonotonicity see (Bobrow,
1980), which is a whole issue on this theme.
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of single queries (such as "does A hold?"), but characterize the "network" of 
detected dependencies of answers on sets of axioms, this is not that amazing any 
more, as this network is monotonically increasing even in a TMS8. Nevertheless, 
it is interesting to see that the following theorem is completely independent of 
the basic logic, Le. BL may well be nonmonotonic. 

Theorem 4.3.7 (Monotonicity of the Consequence Relation) 
For any labelled formula <P and sets of labelled formulae 4'> and W holds: 
If <1> I=LL <P and 4'> ~ W, then W I=LL <p. 

Proof: 
In definition 4.1.7 the existence of subsets Wi is the crucial point. Of course 

these are also subsets of any superset of the original set of formulae. 0 

Not that obvious is the fact that one can add consequences to a set offormu
lae without increasing the set of logical consequences, Le. that the consequence 
relation, when generalized to sets of labelled formulae, is transitive. 

Theorem 4.3.8 (Transitivity of the Consequence Relation) 
Let BL be monotonic (and reflexive). Then for any set 4'> of labelled formulae 
Cons(4'» = Cons(Cons(4'») . 

Proof: 

~:	 From the fact that FLL is reflexive (easy to see if BL is) we have 
Cons(<1» I=LL Cons(<1». This means Cons(<1» ~ Cons(Cons(<1») by 
definition of the latter. 

2:	 Let Cons(iI» FLL a:F. Then there exist Wl, ... , WnE Cons(iI» 
n 

with V Wi : formula(Wi) I=BL F and FPL a -+ V label(Wi). If all 
i=l 

the Wi are subsets of <1>, we are done. So assume there is a Wi 
containing a formula <Pj with <Pj ft <1>. Of course iI> I=LL <Pj' Let 
<Pj = f3:G. Then there exist 8 1 , ••. , 8 m such that for all 8i we 

n 
have formula(8i) I=BL G and furthermore I=PL f3 -+ V label(8i).

i=l 
Now replace Wi by Wil to Wim defined as Wik = (Wi \ {<pj}) U 8 k . 

For all Wik still formula(wik) FBL F holds because of the mono-
n 

tonicity of BL. In addition I=PL a -+ V label(wik). Still the sets 
i=l 

contain only elements from Con5(<1». If they are not subsets of <1>, 

the same argument can be repeated and, as we have only finite sets, 
this will certainly terminate. Nevertheless the argumentation works 
for infinite sets also, because we can choose to replace all candidates 
in one single step. 0 

8The fa(:t that nonmonotonicity does not apply to the justifications themselves, for their 
set is monotonically increasing, has been mentioned by de Kleer (1984, p. 79). Already Israel 
(1980) remarks, that inferences may be nonmonotonic, but derivability (entailment; and this 
is what we talk about) still remains monotonic. 
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of  single queries (such as “does A hold?”), but characterize the “network” of
detected dependencies of answers on sets of axioms, this is not that amazing any
more, as this network is monotonically increasing even in  a TMS®. Nevertheless,
i t  is interesting to see that the following theorem is completely independent of
the basic logic, i.e. BL  may well be nonmonotonic.

Theorem 4.3.7 (Monotonicity of  the Consequence Relation)
For any labelled formula ¢ and sets of labelled formulae ® and U holds:
I f ® Fı_L w and $ C7 ,  then U F ıL 0 .

Proof:
In definition 4.1.7 the existence of subsets Y;  is the crucial point. Of  course

these are also subsets of any superset of  the original set of formulae. 9

Not that obvious is the fact that one can add consequences to  a set of  formu-
lae without increasing the set of logical consequences, i.e. that the consequence
relation, when generalized to sets of labelled formulae, is transitive.

Theorem 4.3.8 (Transitivity o f  the Consequence Relation)
Let BL  be monotonic (and reflexive). Then for any set ® of labelled formulae
Cons(®)= Cons(Cons(®)).

Proof:

C:  From the fact that =r, is reflexive (easy to see if BL  is) we have
Cons(®) FLL Cons(®). This means Cons(®) C Cons(Cons(®)) by
definition of the latter.

IJ Let Cons(®) = i  o:F. Then there exist ¥q,..., Une  Cons(®)
with VU ;  : formula(¥;) =p, F and FpL a — v label(¥;). If all

the U;  are subsets of ®, we are done. So assume there is a U;
contains a formula @; with ¢; a ®. Of course ® [=i p j .  Let

j = PB:G. Then there exist ©), ..., Om such that for all ©;  we

have formula(©;) [=pL G and furthermore FFpı BO — V label(©;).
=1

Now replace ¥ ;  by ¥;; to ¥;p, defined as Uy = (UV; \ {oh U Ok.
For all Wy; still formula(Py) EBL F holds because of the mono-
tonicity of  BL. In addition =p  a = v label(¥;). Still the sets

contain only elements from Cons(®). If tthey are not subsets of ®,
the same argument can be repeated and, as we have only finite sets,
this will certainly terminate. Nevertheless the argumentation works
for infinite sets also, because we can choose to  replace all  candidates
in one single step. [m]

8The fact that nonmonotonicity does not apply to  the justifications themselves, for their
set is monotonically increasing, has been mentioned by de Kleer (1984, p .  79). Already Israel
(1980) remarks, that inferences may be nonmonotonic, but derivability (entailment; and this
is what we talk about) still remains monotonic.
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This theorem states that consequences can freely be added to a set of la
belled formulae without either enlarging or diminishing the number of formulae 
entailed. This property is also known under the name cumulativity (cf. sec
tion 4.7). 

In the sequel we write cp == 7/J to denote cp l=LL 7/J and 7/J l=LL cp. cp and 
7/J can be single labelled formulae or sets of formulae. It is clear that == is an 
equivalence relation. Reflexivity and symmetry are obvious, if BL is reflexive, 
and transitivity follows from theorem 4.3.8. 

The next theorems and propositions show us different equivalence preserving 
transformations on sets of labelled formulae. 

First, if there is some equivalence relation defined on formulae of BL, we 
can freely substitute equivalent BL-formulae within labelled formulae, still pre
serving equivalence (::) as defined above. The same holds for equivalence pre
serving transformations within the label part. 

Proposition 4.3.9 (Equivalences in Label or Formula Part)
 
Given F and G are formulae of the basic logic, a and {3 are labels. Let ++EL be
 
an equivalence relation on EL-formulae. Then the following equivalences hold:
 

1. if FBL F ++ G, then a:F::a:G for arbitrary a. 

2. if l=PL a ++ {3, then a:F::{3:F for arbitrary F. 

The proof is trivial. 

Theorem 4.3.10 (Contraction) 

{a:F, {3:F} == a + {3:F. 

Proof: 

=*:	 trivial 

*=:	 this proof is elementary, too. But it is worth noting here that this 
direction does not hold for the naive definition 4.1.5. In fact this is 
the reason for us to introduce definition 4.1.7 instead of 4.1.5. 

The next theorem does not hold for arbitrary basic logics, but only for those 
containing a classical "and" connective. 

Theorem 4.3.11 (Splitting) 
If there is a connective 1\ in EL with the meaning F 1\ G is satisfied iff both F 
and G are, then the following holds: 

a:F 1\ G:: {a:F,a:G}. 

The proof is obvious. 
It should be noted that transformations which preserve equivalence can 

nevertheless change a set's status of being basic or semi-basic. Reading con
traction from left to right introduces non-atomic labels, whereas splitting yiel~s 

0 
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This theorem states that consequences can freely be added to a set of  la-
belled formulae without either enlarging or diminishing the number of  formulae
entailed. This property is also known under the name cumulativity (cf. sec-
tion 4.7).

In the sequel we write ¢ = 1) to denote ¢ =r  ¥ and ¥ FLL ©. ¢ and
1 can be  single labelled formulae or sets of  formulae. It is clear that = is an
equivalence relation. Reflexivity and symmetry are obvious, if BL  is reflexive,
and transitivity follows from theorem 4.3.8.

The  next theorems and propositions show us different equivalence preserving
transformations on sets of labelled formulae.

First, if there is some equivalence relation defined on  formulae of  BL,  we
can freely substitute equivalent BL-formulae within labelled formulae, still  pre-
serving equivalence (=)  as defined above. The same holds for equivalence pre-
serving transformations within the label part.

Proposition 4.3.9 (Equivalences in Label or  Formula Part)
Given F and G are formulae of the basic logic, x and ß are labels. Let &p ı ,  be
an equivalence relation on BL-formulae. Then the following equivalences hold:

1. if =pL F © G, then a:F=a:G for arbitrary a .

2. if pL  a © B,  then a:F=Bß:F for arbitrary F.

The proof is  trivial.

Theorem 4.3.10 (Contraction)

{a:F,B:F}  =a+  B:F.

Proof:

=>: trivial

&:  this proof is elementary, too. But it is worth noting here that this
direction does not hold for the naive definition 4.1.5. In  fact this is
the reason for us to  introduce definition 4.1.7 instead of  4.1.5. O

The next theorem does not hold for arbitrary basic logics, but only for those
containing a classical “and” connective.

Theorem 4.3.11 (Splitting)
If there is a connective A in BL  with the meaning F A G is satisfied iff both F
and G are, then the following holds:

a:F  AG  = {a:F,a:G}.

The proof is obvious.
I t  should be noted that transformations which preserve equivalence can

nevertheless change a set’s status of being basic or semi-basic. Reading con-
traction from left to right introduces non-atomic labels, whereas splitting yields
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multiple copies of atomic labels. But, as those transformations work in both 
directions, starting with a basic or semi-basic set maintains our correspondence 
to collections of sets, because we can simply apply this to the respective basic 
(semi-basic) set, which we can view as the canonical representation. 

4.4 Towards Proof Procedures 

Many deduction systems use particular normal forms for formulae. If BL is 
classical first-order predicate logic, one would e.g. like to use established refut
ation procedures. This often presupposes the existence of a clause normal form 
(CNF) and the availability of a deduction theorem, which is the topic of this 
section. 

Theorems 4.3.9 to 4.3.11 provide us with a means to define a clause normal 
form for suitable basic logics: if BL itself possesses a clause normal form, this 
carries over to labelled formulae. 

Definition 4.4.1 (CNF for Labelled Formulae)
 
Suppose there is a definition of a clause normal form for BL-formulae. A set {[>
 

of labelled formulae is in clause normal form, if!'
 

1.	 all formula parts are in CNF as defined for BL 

2.	 all the labels are in DDNF 

3. each BL-formula occurs	 at most once as a formula part of a labelled 
formula. 

An algorithm to obtain this is: 

Algorithm 4.4.2 (Transformation to Clause Normal Form) 
1.	 transform all the formula parts to conjunctive normal form. This does 

not affect the labels at all. 

2.	 if necessary, apply splitting to obtain clause normal form of the formula 
parts. With first order formulae this will be accompanied by variable 
renamings. 

3.	 apply contraction to reduce the number of occurrences for each BL
formula to exactly one. 

4.	 transform the labels to distinguished disjunctive normal form. 

The soundness proof for this procedure is obvious. For 1 and 4 use propos
ition 4.3.9 (1) resp. (2). 2 is shown by theorem 4.3.11 and 3 by theorem 4.3.10. 

Next we prove an important property: A (slightly altered) deduction the
orem holds for labelled logic, if there is one for the basic logic. 

4.4 TOWARDS PROOF PROCEDURES 45

multiple copies of atomic labels. But, as those transformations work in both
directions, starting with a basic or semi-basic set maintains our correspondence
to collections of sets, because we can simply apply this to the respective basic
(semi-basic) set, which we can view as the canonical representation.

4 .4  Towards Proof Procedures

Many deduction systems use particular normal forms for formulae. If BL  is
classical first-order predicate logic, one would e.g. like to use established refut-
ation procedures. This often presupposes the existence of  a clause normal form
(CNF) and the availability of a deduction theorem, which is the topic of this
section.

Theorems 4.3.9 to 4.3.11 provide us with a means to  define a clause normal
form for suitable basic logics: if BL  itself possesses a clause normal form, this
carries over to labelled formulae.

Definition 4.4.1 (CNF for Labelled Formulae)
Suppose there is a definition of a clause normal form for BL-formulae. A set ®
of labelled formulae is in clause normal form, iff

1. all formula parts are in CNF as defined for BL

2. all the labels are in  DDNF

3. each BL-formula occurs at most once as a formula part of  a labelled
formula.

An  algorithm to obtain this is:

Algorithm 4.4.2 (Transformation to  Clause Normal Form)
1. transform all the formula parts to conjunctive normal form. This does

not affect the labels at all.

2. if necessary, apply splitting to obtain clause normal form of the formula
parts. With first order formulae this will be accompanied by variable
renamings.

3. apply contraction to reduce the number of occurrences for each BL-
formula to exactly one.

4. transform the labels to distinguished disjunctive normal form.

The soundness proof for this procedure is obvious. For 1 and 4 use propos-
ition 4.3.9 (1) resp. (2). 2 is shown by theorem 4.3.11 and 3 by theorem 4.3.10.

Next we prove an important property: A (slightly altered) deduction the-
orem holds for labelled logic, i f  there is one for the basic logic.
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Theorem 4.4.3 (Deduction Theorem) 
Let <P be a set of labelled formulae, a a label and A ~ B a formula of the basic 
logic. Furthermore let BL be monotonic and possess a deduction theorem9 • 

Then we have 

<P FLL a:A ~ B {::} <P U {T:A} FLL o::B. 

Proof: 

=>:	 Given 'lT 1, .•. , 'lTn , ~ <P, with V'lTi formula('lTi) FBL A -7 Band 
FPL 0: -7 V label('lTd, construct a collection of 'lT~ = 'lTi U {T:A}. 
Clearly formula('lTi) = formula('lT)U{A}, so because of the deduction 
theorem for BL we get V'lT~ formula('l1i) FBL B. It is easy to 
see that FPL 0: -7 Vlabel('lTi), because the latter is identical to 
V label('lTi)' 

~:	 Let Wl, ... , wn, ~ <P U {T:A}, with V'lT i formula('lT i ) FBL Band 
FPL 0: -+ V label('lTi). W.l.o.g. we can assume that T:A E 'lTi for 
all i (If not, since BL is monotonic, we could simply add it without 
destroying the fact that formula('lTi) FBL B). Using the deduction 
theorem for BL we get V'lTi formula('lTi) \ {A} FBL A -+ B. FPL 
0: -+ V label('lTi) is unaffected by this operation.	 0 

This theorem is not formulated as generally as it could be: T:A could be 
replaced by I3:A for arbitrary 13, if 0: -+ 13 holds. But we only need the special 
case given above. 

Theorem 4.4.3 has an important corollary, which provides us with a justi
fication for refutation proofs: 

Corollary 4.4.4 (Refutation Proof) 
If the basic logic contains material implication10 we getI 

<P FLL o::F {::} <P U {T:..,F} FLL 0::.1. 

Proof: 
By substituting ..,F for A and .1. for B in theorem 4.4.3 (keeping in mind the 

fact that F f-t (..,F) -+ ..L). 0 

4.5 Alternative Notions of Labelled Consequence 

The definition of labelled consequence, as given in section 4.8, does not suffice 
as a description of what e.g. de Kleer's ATMS does. What is missing can best 
be described by the notion of maximality. Let us look at 

9Let Ilf be a set of BL-formulae and F -+ G a BL-formula involving an implication operator 
"-+". Then Ilf I=BL F -+ G iff Ilf U {F} l=BL G. 

lOBy this we mean that A -+ B is equivalent to ...,A V B. 
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Theorem 4.4.3 (Deduction Theorem)
Let ® be a set of  labelled formulae, a a label and A — B a formula of the basic
logic. Furthermore let BL  be monotonic and possess a deduction theorem®.
Then we have

SkLaA—+B & QU{T :A }  FLL a :B .

Proof:

= :  Given ¥y , . . . ,  Un, © ®, with VW; formula(¥;) =p  A — B and
E=pL a — Vlabel(¥;), construct a collection of ¥}; = ¥;  U {T:A4}.
Clearly formula(¥;) = formula(¥)U{A}, so because of the deduction
theorem for BL  we get VW! formula(¥}) =p, B .  It is easy to
see that =p, a — V/label(¥}), because the latter is identical to
V label(\¥;).

< :  Let ¥y , . . . ,  Un, C dU  {T:4} ,  with VT ;  formula(¥;) =p. B and
pL  a — Vlabel(¥;). W.lLo.g. we can assume that T :A € Y;  for
all i (If  not, since BL  is monotonic, we could simply add i t  without
destroying the fact that formula(Y;) Ep. B ) .  Using the deduction
theorem for BL we get VW; formula(¥;) \ {4}  Fer A — B .  pL
a — V label(¥;) is unaffected by  this operation. [m

This theorem is not formulated as generally as it could be: T:A could be
replaced by ß:A for arbitrary 3,  if @ — B holds. But we only need the special
case given above.

Theorem 4.4.3 has an important corollary, which provides us with a justi-
fication for refutation proofs:

Corollary 4.4.4 (Refutation Proof)
If the basic logic contains material implication!®, we get

dEpLaF  & SU  {T :=F}  FLL o l .

Proof:
By  substituting —F for A and L for B in theorem 4.4.3 (keeping in  mind the
fact that F & (=F) — 1). Oo

4 .5  Alternative Notions o f  Labelled Consequence

The definition of labelled consequence, as given in section 4.8, does not suffice
as a description of what e.g. de Kleer’s ATMS does. What is missing can best
be  described by the notion of  mazimality. Let  us look at

Let ¥ be a set of BL-formulae and F — G a BL-formula involving an  implication operator
“~ " .  Then ¥ =p;  F =» Giff YU {F }  =51, G.

10By  this we mean that A — B is equivalent to  =A  V B .
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Example 4.5.1 

T :RAIN-+WET 

T:SPRlNKLER-+WET 

a:RAIN 

,8:SPRlNKLER. 

Suppose we give this example to an ATMS ll . Then the ATMS computes 
labels for every atomic proposition that strongly resemble ours. For WET the 
ATMS e.g. computes something like a + ,8:WET. This means, that a + ,8:WET 
should be deducible in a formalism attempting to represent an ATMS. In 
labelled logic, as defined up to now, however, we can in addition deduce e.g. 
a:WET or even a,8"(:WET. What distinguishes a + f3 from these other labels is 
called maximality. Informally speaking, a + ,8 represents all possible derivations 
of WET and mentions only those assumptions that are really necessary for the 
derivation. Thus, in a sense, a +,8 is a better label for WET, than e.g. a. We 
capture this by defining an ordering on labels. We say that a label a is greater 
than a label,8 (wrt. an unlabelled formula F and a set of labelled formulae <1» 

iff <1> FLL a:F as well as <1> FLL f3:F and FPL f3 -+ a holds. 
Let us compare our labels to ATMS labels more closely. As already men

tioned (definition 2.3.1), an ATMS label satisfies four conditions 

•	 it is sound, Le. the node in question really is deducible in all environments 
mentioned, 

•	 it is minimal in the sense that none of the environments is a subset of 
another one also contained in the label, 

•	 it is consistent, Le. none of the environments is a nogood, 

•	 it is complete, Le. every environment in which the node can be deduced 
is a superset of one of the environments in the label. 

The first property clearly holds for our labels, too, because that is how they 
are defined. The second one is a syntactical matter. Ifwe consider only positive, 
relevant labels this is the same as putting the label to DDNF. 

The last two properties are not satisfied by our labels, not even for positive, 
relevant labels. We therefore need some additional means to express them. 

First let us discuss the completeness criterion. The reason why we did not 
introduce this into the definition of labelled consequence is simple: A label 
represents ways to prove a formula. Usually we want to compute these incre
mentally. If the completeness criterion were incorporated into the consequence 
relation, intermediate results (we have not found all possible ways to prove the 
formula) are not sound in our logic. That means there is no way to generate 
lemmata on the way. In an ATMS this is exactly what happens. The ATMS 

11 Of course the notation in ATMS is quite different. For the moment the reader should just 
beiieve that this example can in fact be transformed to represent an ATMS problem. 
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Example 4 .5 .1

T:RAIN+WET
T:SPRINKLER—WET
a:RAIN
B:SPRINKLER.

Suppose we give this example to an ATMS!!. Then the ATMS computes
labels for every atomic proposition that strongly resemble ours. For WET the
ATMS e.g. computes something like « + S:WET. This means, that « + 8:WET
should be deducible in a formalism attempting to represent an ATMS. In
labelled logic, as defined up to now, however, we can in addition deduce e.g.
a:WET or even aßy:WET. What distinguishes a+  8 from these other labels is
called maximality. Informally speaking, x + represents all  possible derivations
of  WET  and mentions only those assumptions that are really necessary for the
derivation. Thus, in  a sense, a + is a better label for WET, than e.g. a .  We
capture this by  defining an ordering on labels. We say that a label a is greater
than a label 8 (wrt. an unlabelled formula F and a set of labelled formulae ®)
iff ® E,. oF  as well as ® |=; i F  and [=p1, 8 — a holds.

Let us compare our labels to ATMS labels more closely. As already men-
tioned (definition 2.3.1), an ATMS label satisfies four conditions

e i t  is sound, i.e. the node in  question really is deducible in  all environments
mentioned,

e i t  is minimal in the sense that none of  the environments is a subset of
another one also contained in the label,

e i t  is consistent, i.e. none of the environments is a nogood,

e i t  is complete, i.e. every environment in which the node can be deduced
is a superset of  one of  the environments in the label.

The first property clearly holds for our labels, too, because that is how they
are defined. The second one is a syntactical matter. If  we consider only positive,
relevant labels this is the same as putting the label to DDNF.

The last two properties are not satisfied by our labels, not even for positive,
relevant labels. We therefore need some additional means to express them.

First let us discuss the completeness criterion. The reason why we did not
introduce this into the definition of labelled consequence is simple: A label
represents ways to prove a formula. Usually we want to compute these incre-
mentally. If  the completeness criterion were incorporated into the consequence
relation, intermediate results (we have not found all possible ways to  prove the
formula) are not sound in our logic. That means there is no way to generate
lemmata on  the way. In an ATMS this is exactly what happens. The ATMS

Of  course the notation in ATMS is quite different. For the moment the reader should just
believe that this example can in fact be transformed to  represent an ATMS problem.
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computes the complete labels and only afterwards tells the result. The pos
sibility to do this of course depends on the fact that the ATMS uses classical 
propositionallogic for its labels and therefore this is decidable. We, however, 
do not want to restrict ourselves to this limited case, for we attempt not to 
treat BL-formulae as atomic and do not want to use only decidable basic logics. 
Besides that, a logic, where only complete labelled formulae are considered as 
sound, must necessarily be nonmonotonic, since adding further axioms may 
increase the number of different derivations for an item. 

In the sequel we first introduce some properties one could demand of labels. 
Later we shall define various alternative consequence relations based on different 
combinations of these properties. All the properties refer to a given set <P of 
labelled formulae in their definitions. Since we assume this <P to remain fixed 
in our considerations, we shall most often not explicitly mention it. 

First we define a (partial) ordering on labels, based on classical implication. 

Definition 4.5.2 (Ordering on Labels)
 
We say a label Cl! is greater than a label {3, written Cl! > {3, if I=PL {3 -+ Cl!.12
 

Note the direction. Thus T is the "biggest" label, ..L the smallest. In 
particular, for any Cl! and /3 the relations Cl!/3 < Cl! and Cl! + /3 > Cl! hold. 

Definition 4.5.3
 
We say Cl! is a label for a BL-formula F (for given <p), if <P I=LL F.
 

If we look at the labels for a given BL-formula, we can ask whether there 
is a "best one" concerning the ordering> (intuitively it is clear why greater 
labels concerning> are better, for these represent derivations showing more 
alternative ways or using less assumptions). Since> is only a partial ordering, 
it is not clear that such a maximal label always exists. But indeed this is the 
case, as theorems 4.5.4 and 4.5.29 will show. 

Theorem 4.5.4 (Existence and Uniqueness of Maximal Label) 
Given an unlabelled formula F and a set of labelled formulae <P there exists a 
label Cl! (possibly ..L), such that <P I=LL Cl!:F and Cl! is maximal in the sense that 
for all labels /3 with <P I=LL {3:F also, /3 -+ Cl! holds. This Cl! is unique up to 
logical equivalence. 

Moreover, if <I> is simple,- then Cl! is relevant, and either ..L or positive and 
thus unique up to the ordering of conjuncts and literals. 

Proof: 

existence: There is at least one label Cl!, for which <I> I=LL Cl!:F holds, namely 
Cl! = ..L. There may well be many uncomparable labels, and in fact 
there are infinitely many of them, as there are that many atomic 
lab,els. We first show that only labels of the form V label(wi) with 
W(~ <I> can be candidates for maximal labels. This is quite easy: 
Suppose <I> I=LL Cl!:F. Then by definition there exist Wi ~ <P whose 
formula parts imply F and for which I=PL Cl! -+ Vlabel(wi) holds. 

12We also use < and "smaller" with the obvious meaning. 
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computes the complete labels and only afterwards tells the result. The pos-
sibility to do this of  course depends on  the fact that the ATMS uses classical
propositional logic for its labels and therefore this is decidable. We, however,
do not want to restrict ourselves to this limited case, for we attempt not to
treat BL-formulae as atomic and do not want to  use only decidable basic logics.
Besides that, a logic, where only complete labelled formulae are considered as
sound, must necessarily be nonmonotonic, since adding further axioms may
increase the number of different derivations for an item.

In  the sequel we first introduce some properties one could demand of labels.
Later we shall define various alternative consequence relations based on different
combinations of these properties. All the properties refer to a given set ® of
labelled formulae in their definitions. Since we assume this ® to remain fixed
in our considerations, we shall most often not explicitly mention it.

First we define a (partial) ordering on labels, based on classical implication.

Definition 4.5.2 (Ordering on  Labels)
We say a label a is greater than a label 3,  written a > 8,  if =pL 8 — a .12

Note the direction. Thus T is the “biggest” label, . the smallest. In
particular, for any a and ß the relations aß <a  and a + 8 > a hold.

Definition 4.5.3
We say a is a label for a BL-formula F (for given ®), if ® [=r F.

If we look at the labels for a given BL-formula, we can ask whether there
is a “best one” concerning the ordering > (intuitively i t  is clear why greater
labels concerning > are better, for these represent derivations showing more
alternative ways or using less assumptions). Since > is only a partial ordering,
it is not clear that such a mazimal label always exists. But indeed this is the
case, as theorems 4.5.4 and 4.5.29 will show.

Theorem 4.5.4 (Existence and Uniqueness of  Maximal Label)
Given an unlabelled formula F and a set of labelled formulae ® there exists a
label x (possibly 1) ,  such that ® =r, a:F and a is maximal in the sense that
for all labels 8 with ® F ıL B:F also, Bp — a holds. This a is unique up to
logical equivalence.

Moreover, if ® is simple,” then a is relevant, and either L or positive and
thus unique up to the ordering of conjuncts and literals.

Proof:

existence: There is at least one label a ,  for which ® 11, 0 :  F holds, namely
a = L. There may well be many uncomparable labels, and in fact
there are infinitely many of them, as there are that many atomic
labels. We first show that only labels of the form V/ label(¥;) with
WU; C ® can be candidates for maximal labels. This is quite easy:
Suppose ® =p, a:F. Then by definition there exist ¥ ;  C ® whose
formula parts imply F and for which =p  a — V label(¥;) holds.

12We also use < and “smaller” with the obvious meaning.
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If (the DDNF of) a is not of the form given above, we can simply 
construct a greater label Vlabel('l1i), so a can not be maximal. So 
the maximal label (if it exists) must be of that form. 

Next we notice that, given a finite CP, there are only finitely many 
subsets and thus only finitely many Cl! in the candidate set (up to 
ordering of both literals and conjuncts). Take all of them that are 
labels for F. It is easy to show that their disjunction is a label for 
F as well and is implied by every other label of F in the candidate 
set. 

uniqueness: Suppose there are two such labels. As they are both max
imal, both imply every other label of F, particularly they imply 
one another, i.e. they are equivalent. 

relevance/positiveness: If cP is simple, all the labels occurring in it are 
positive. We saw above that the maximal label is of the form 
Vlabel('l1i), which can directly be noticed to be relevant and posit
ive or equal to J... 0 

Therefore we may define: 

Definition 4.5.5 (Maximal Label)
 
For given cP and F we call the label a guaranteed by theorem 4.5.4 the maximal
 
labelfor F (wrt. cP), written a = maxlabel(F, cp), or, for known CP, maxlabel(F).
 

We can now define an entailment relation incorporating the maximality 
criterion: 

Definition 4.5.6 (Maximal LL-Entailment) 
Let cP be a set of labelled formulae. cP maximally LL-entails a:F, written 
cP I=ma.x(LL) a:F, iff 

• cP I=LL a:F and 

• for all labels {3 with cP FLL {3:F {3 -t a holds. 

Current systems like ATMS will produce states described by non-maximal 
labelled formulae only temporar~ly. 

The following corollary to theorem 4.5.4 shows that maximally LL-entailed 
formulae are also strictly LL-entailed: 

Corollary 4.5.7
 
Given a labelled set of formulae cP and a BL-formula F,
 

cP l=equivLL maxlabel(<P, F):F. 

Proof: 
In the proof above it is ~hown that the maximal label must be of a particular 

form. This formula can easily be detected as also strictly LL-entailed. 0 

We further have 
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If (the DDNF of) « is not of the form given above, we can simply
construct a greater label \/label(¥;), so a can not be maximal. So
the maximal label (if  it exists) must be of that form.
Next we notice that, given a finite ®, there are only finitely many
subsets and thus only finitely many « in the candidate set (up to
ordering of both literals and conjuncts). Take all of  them that are
labels for F.  It is easy to show that their disjunction is a label for
F as well and is implied by every other label of F in  the candidate
set.

uniqueness: Suppose there are two such labels. As they are both max-
imal, both imply every other label of F ,  particularly they imply
one another, i.e. they are equivalent.

relevance/positiveness: I f  ® is simple, all the labels occurring in i t  are
positive. We saw above that the maximal label is of the form
V label(¥;), which can directly be noticed to be relevant and posit-
ive or equal to lL. a

Therefore we may define:

Definition 4.5.5 (Maximal Label)
For given ® and F we call the label a guaranteed by theorem 4.5.4 the maximal
label for F (wrt. ®), written a = maxlabel(F, 8 ) ,  or, for known ®, maxlabel(F).

We can now define an entailment relation incorporating the maximality
criterion:

Definition 4.5.6 (Maximal LL-Entailment)
Let ® be a set of labelled formulae. ® maximally LL-entails a:F, written
© Fmax(LL) a: F, iff

od  FLL a : F and

e for all labels 8 with ® = r  B:F ß-— a holds.

Current systems like ATMS will produce states described by non-maximal
labelled formulae only temporarily.

The following corollary to theorem 4.5.4 shows that maximally LL-entailed
formulae are also strictly LL-entailed:

Corollary 4.5.7
Given a labelled set of  formulae © and a BL-formula F,

® FequivLL Maxlabel(®, F) :F.

Proof:
In the proof above it is shown that the maximal label must be of a particular
form. This formula can easily be  detected as also strictly LL-entailed. =]

We  further have
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Lemma 4.5.8 
A label a which is a conjunction of atoms is a label for a formula F, iff there 
exists a prime implicant (3 of maxlabel(F) with 0: -1- (3. 

Proof: 

:::>: If 0: is a label for F, then 0: -1- maxlabel(F) because of the definition 
of maxlabel. Because of the particular form of 0: it is an implicant 
of maxlabel(F). Lemma 4.1.3 then guarantees the existence of a 
prime implicant with the required property. 

*=: Since 0: -1- (3 -1 maxlabel(F), 0: is also a label for F because of 
lemma 4.3.2. 0 

For modelling the handling of nogoods in the ATMS case, or as well con
tradiction nodes in JTMS, we must be able to rule out some labels which also 
are labels of the falsum (cf. de Kleer's consistency criterion). Labels of 1. cor
respond to nogoods13 . Actually the case is slightly more complicated, since it 
does not suffice that the whole label of a formula is a nogood, but also formulae 
whose label contains prime implicants that are nogoods, should be shut out. If 
e.g. 0:(3 + TF is derivable, but also 0:(3:1., but not 7:1., then we nevertheless do 
not want to have 0:(3 +7:F as consistently entailed. This corresponds to the 
fact that in ATMS the labels should not contain nogoods. So we define 

Definition 4.5.9 (Consistent Labels, w-Free Labels)
 
A label 0: is said to be consistent (wrt. a given cP), iffor all prime implicants (3
 
of 0: we do not have cP l=LL (3:1.. It is called w-free, if for all prime implicants
 
(3 of 0: we do not have l=PL (3 -1- w.
 

The :reason why we define w-free labels becomes apparent if one takes into 
consideration that an entailment relation that should produce only consistent 
labels must be nonmonotonic and thus cannot be computed using local infer
ence rules. Therefore we shall approximate this using inference relations that 
produce w-free labels, for strictly increasing w, until we reach the "best" label 
available for 1.. 

When we want to model JTMS systems, we have got a finite set of nodes 
which we shall map to BL-atoms. We also have to describe states. A state is 
given by a well-founded, complete labelling (in the TMS sense, definitions 2.2.3 
and 2.2.4). Such a labelling corresponds to a label (in our sense) which for 
all mentioned nodes entails the proposition represented by that node or its 
negation. We call this property input completeness. 

The other definitions are needed because we want to be able to compute 
the labels of interest incrementally. So we can approach input completeness by 
computing D-satisfying labels for increasing D, starting with the empty set and 
then adding one BL-atom after the other until we reach the set of all BL-atoms 
occurring in the set under consideration. 

13This is not completely true. If we define nogoods that way, we are more general than the 
usual nogood definition. Nogoods in the usual sense correspond to labels of.l which contain 
no disjunctions. So our nogoods are sets of nogoods in de Kleer's sense. 
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Lemma 4.5.8
A label x which is a conjunction of atoms is a label for a formula F ,  iff there
exists a prime implicant 3 of  maxlabel(F) with a — ß.

Proof:

=>: If ais a label for F ,  then a — maxlabel(F) because of the definition
of maxiabel. Because of the particular form of « it is an implicant
of maxlabel(F). Lemma 4.1.3 then guarantees the existence of a
prime implicant with the required property.

&:  Since a —+ ß —+ maxlabel(F), a is also a label for F because of
lemma 4.3.2. 0

For modelling the handling of nogoods in the ATMS case, or as well con-
tradiction nodes in JTMS, we must be able to  rule out some labels which also
are labels of  the falsum (cf. de Kleer’s consistency criterion). Labels of L cor-
respond to nogoods!3. Actually the case is slightly more complicated, since i t
does not suffice that the whole label of a formula is a nogood, but also formulae
whose label contains prime implicants that are nogoods, should be shut out. If
e.g. aß  + v:F is derivable, but also a f : .L, but not y :L,  then we nevertheless do
not want to have a f  + v :F  as consistently entailed. This corresponds to the
fact that in ATMS the labels should not contain nogoods. So we define

Definition 4.5.9 (Consistent Labels, w-Free Labels)
A label a is said to be consistent (wrt. a given ®), if  for all  prime implicants 8
of  a we do not have ® [=r 8: L. I t  is called w-free, if for all prime implicants
B of a we do not have f=p_ 6 — w.

The reason why we define w-free labels becomes apparent if one takes into
consideration that an entailment relation that should produce only consistent
labels must be nonmonotonic and thus cannot be computed using local infer-
ence rules. Therefore we shall approximate this using inference relations that
produce w-free labels, for strictly increasing w,  until we reach the “best” label
available for L .

When we want to model JTMS systems, we have got a finite set of nodes
which we shall map to BL-atoms. We also have to describe states. A state is
given by a well-founded, complete labelling ( in  the TMS sense, definitions 2.2.3
and 2.2.4). Such a labelling corresponds to a label (in our sense) which for
all mentioned nodes entails the proposition represented by that node or its
negation. We call this property input completeness.

The other definitions are needed because we want to be able to compute
the labels of  interest incrementally. So we can approach input completeness by
computing Q-satisfying labels for increasing $2, starting with the empty set and
then adding one BL-atom after the other until we reach the set of  all BL-atoms
occurring in the set under consideration.

13This is not completely true. If we define nogoods that way, we are more general than the
usual nogood definition. Nogoods in the usual sense correspond to labels of L which contain
no  disjunctions. So our nogoods are sets of nogoods in de Kleer’s sense.
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Definition 4.5.10 ( (Strictly) A-Satisfying Labels)
 
For a particular BL-formula A a label a is said to be A-satisfying (wrt. a
 
given <P), if there exist '111, ... , Wn f; <P such that /
 

• '7Wi :" formula(Wi) !=BL A or formula(wi) !=BL -.A (maybe both) 

It is said to be strictly A-satisfying, if 3'111, ... , Wn f; <P such that 

It can immediately be seen that a label which is strictly A-satisfying, is also 
A-satisfying. 

Remark 4.5.11
 
Given a set <P of labelled formulae and a BL-formula A, then a is strictly A

satisfying wrt. <P iff !=LL a:A or !=LL a:-.A.
 

The proof is obvious. 

Lemma 4.5.12 
Let a be A-satisfying (for some A and <p). Then there are labels a1 and a2 

such that !=PL a -+ a1 + a2 and both a1 and a2 are strictly A-satisfying. 

Proof: 
Looking at the definition of A-satisfying labels we divide the Wi into two (not 

necessarily disjoint) subsets '11 and '11, namely those which BL-entail A and those 
that BL-entail -.A. Define a1 as VwiE'1' label(Wi) and a2 as VWiE~ label(wi)' 
Then a1 and a2 are certainly strictly A-satisfying, furthermore !=PL a -+ al + 
a2~Ms. 0 

We can prove an interesting corollary of this lemma, if we use the following 
trivial lemma: 

Lemma 4.5.13 
If al and a2 are positive labels, then every prime implicant of a1 +a2 is a prime 
implicant of either a1 or a2. 

This lemma does not hold for arbitrary labels. As a counterexample consider 
a1 = f3'Y8 + f3'Y8 and a2 = a'fO + f3'Y8. af3 is a prime implicant of a1 + a2, but 
neither of a1 nor of a2. 

Now we have 

Corollary 4.5.14 
If a is positive and A-satisfying (for some A and <p), and {3 is a prime implicant 
of a, then {3 is strictly A-satisfying. 
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Definition 4.5.10 ((Strictly) A-Satisfying Labels)
For a particular BL-formula A a label « is said to be A-satisfying (wrt. a
given ®), if there exist Y ı ,  . . . ,  Yn  © ® such that z

e VV; : formula(%;) Ep  A or formula(%;) FB ı  ~A (maybe both)

e =pıL a — V;label(®;).

It is said to  be  strictly A-satisfying, if 3W,, . . . ,  Un  C ® such that

e VW;: formula(¥;) FL  A or VY; :  formula(¥;) [=p 4

e =p  a — Vi; label(T;).

It can immediately be seen that a label which is strictly A-satisfying, is also
A-satisfying.

Remark 4.5.11
Given a set ® of labelled formulae and a BL-formula A,  then a is strictly A-
satisfying wrt. ® iff ELL a : A or  ELL a i  A.

The proof is obvious.

Lemma 4.5.12
Let a be A-satisfying (for some A and ©). Then there are labels a;  and ay
such that Fpi, a = a1  + ag and both a ;  and ag are strictly A-satisfying.

Proof:
Looking at the definition of  A-satisfying labels we divide the ¥;  into two (not

necessarily disjoint) subsets ¥ and ¥,  namely those which BL-entail A and those
that BL-entail ~A. Define on as Vyey label(¥;) and a2 as Va .  label(¥;).
Then o ;  and ay are certainly strictly A-satisfying, furthermore FpL a = a;  +
a9 holds. D

We can prove an interesting corollary of this lemma, if we use the following
trivial lemma:

Lemma 4.5.13
If  a1 and  oq are positive labels, then every prime implicant of a;  +o  is a prime
implicant of  either ay or  as.

This lemma does not hold for arbitrary labels. As a counterexample consider
ay = By  + B76 and az = od  + Bd. aß  is a prime implicant of a + a ,  but
neither of  a ;  nor of  aj.

Now we have

Corollary 4 .5 .14
I f  x is  positive and A-satisfying (for some A and ®), and ß is a prime implicant
of  a ,  then ß is strictly A-satisfying.



52 

0 

CHAPTER 4. THE LABELLED ApPROACH 

Proof: 
First find a1 and a2 as in lemma 4.5.12. Clearly FPL {3 -+ a1 + a2, because 

13 implies a. Because of the particular form of {3 (conjunction of literals) and 
lemma 4.5.13 it must be the case that I=PL f3 -+ a1 or I=PL f3 -+ a2 (maybe 
both). 

Next we define some generalizations of the notions just introduced. 

Definition 4.5.15 «Strictly) O-Satisfying Labels)
 
Given a set <P of labelled formulae, let n be a set of BL-formulae. A label a is
 
called (strictly) O-satisfying if it is (strictly) A-satisfying for all the A E n.
 
It is called input complete, if it is strictly O-satisfying for 0 being the set of
 
all BL-atoms occurring in <P.
 

Based on the properties of labels just introduced, we may define further 
entailment relations: 

Definition 4.5.16 (Consistent LL-Entailment)
 
Let <.P be a set of labelled formulae and a:F a single labelled formula. We say
 
a:F consistently follows from <P (written as <P I=consLL a:F), iff 

• <P FLL a:F and 

• a is consistent. <P A=LLf3:..L. 

Remember that a label a is consistent, if none of its prime implicants is a 
label of..L. Because of lemma 4.5.8 this means that none of its prime implicant 
implies maxlabel(..L). 

This is a stronger restriction than simply forbidding a itself to be a label 
of..L. If we e.g. have I=LL a:.1, then a + f3 is no label of ..L, but nevertheless 
inconsistent. 

As already noted, maximal LL-entailment is nonmonotonic. The same holds 
for consistent LL-entailment, hence in particular the combination of both. In 
order to give a semantics to calculi that incrementally construct maximal, con
sistent labels,. we introduce chains of consequence relations that are monotonic, 
and whose limit approaches maximal resp. consistent entailment. 

Definition 4.5.17 (w-Consequence)
 
Let <.P be a set of labelled formulae, a:F a single labelled formula, and w a label.
 
We say a:F w-follows from <P (written as <P I=w-LL a:F), i:ff
 

• <P FLL a:F and 

• a is w-free. 

This definition is needed to approach consistent LL-entailment. The ra
tionale behind it is that, if we already know that w is a nogood, we want to 
exclude all the environments containing it. 

The ordering on labels introduced by classical implication carries over to an 
ordering on different w-entailments. 
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Proof:
First find a ı  and ag as in lemma 4.5.12. Clearly =p  8 — a ;  + a3 ,  because

ß implies a. Because of the particular form of 8 (conjunction of literals) and
lemma 4.5.13 i t  must be  the case that =py, 8 — a ;  or pg,  8 — az (maybe
both). a

Next we define some generalizations of  the notions just introduced.

Definition 4.5.15 ((Strictly) Q-Satisfying Labels)
Given a set ® of  labelled formulae, let 2 be  a set of  BL-formulae. A label a is
called (strictly) Q-satisfying if i t  is (strictly) A-satisfying for all the A € Q.
It is called input complete, i f  it is strictly {2-satisfying for 2 being the set of
all BL-atoms occurring in ®.

Based on the properties of labels just introduced, we may define further
entailment relations:

Definition 4.5.16 (Consistent LL-Entailment)
Let ® be a set of labelled formulae and a:F  a single labelled formula. We say
a:F  consistently follows from ® (written as ® consi, 1F) ,  iff

e ® = ,  a :F  and

e & is consistent. ® 11.0: L.

Remember that a label a is consistent, if none of  its prime implicants is a
label of .L. Because of lemma 4.5.8 this means that none of its prime implicant
implies maxlabel(L).

This is a stronger restriction than simply forbidding a itself to be a label
of 1 .  If we e.g. have =p, a:  l ,  then a + ßB is no label of .L, but nevertheless
inconsistent.

As already noted, maximal LL-entailment is nonmonotonic. The same holds
for consistent LL-entailment, hence in particular the combination of  both. In
order to give a semantics to calculi that incrementally construct maximal, con-
sistent labels; we introduce chains of consequence relations that are monotonic,
and whose limit approaches maximal resp. consistent entailment.

Definition 4.5.17 (w-Consequence)
Let ® be a set of labelled formulae, a: F a single labelled formula, and w a label.
We say a:F w-follows from ® (written as ® |=,.11, oF), iff

oP  ELL  a :F  and

eo « is w-free.

This definition is needed to approach consistent LL-entailment. The ra-
tionale behind i t  is that, i f  we already know that w is a nogood, we want to
exclude all the environments containing it.

"The ordering on  labels introduced by  classical implication carries over to  an
ordering on different w-entailments.
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Proposition 4.5.18 
Given W2 > Wl, then er> F W2-LL a:F implies er> FWI-LL a:F. Furthermore for 
arbitrary W er> FW-LL a:F implies er> FLL a:F. 

This means with increasing W (more nogoods found) less can be deduced. 

Proof: 
The first condition in definition 4.5.17 remainS unchanged, because it is inde

pendent of w. So only the second one has to be proved. Suppose there is a 
prime implicant f3 of a with f3 -+ W2. Then of course f3 -+ Wl holds as well. 0 

F ..L-LL and FLL are not equivalent. The latter is weaker. The difference 
is, that FLL 1.:F holds for arbitrary F, but, since this is also true for F = l., 
~ ..L-LL l.:F for every F. This, however, is the only difference: 

Theorem 4.5.19
 
If a", 1., then for arbitrary F F ..L-LL a:F iff FLL a:F.
 

Proof: 

=>	 simple. there is one less condition in the definition. 

~	 ::I prime implicants f3 of a with a -+ l. is only possible, if a = l., 
else it would not be a prime implicant. 0 

The crucial result is that the chain of w-LL-entailment relations really ap
proaches consistent LL-entailment for increasing w 14 : 

Theorem 4.5.20 
FconsLL is equivalent to Fmaxlabel(..L)-LL· 

Proof: 

~	 Suppose there is a prime implicant (3 with FLL (3:.1. Because of 
the definition of maxlabel we immediately get (3 -+ maxlabel(l.). 

=>	 let (3 be a prime implicant with (3 -+ maxlabel(1.). We have FLL 

maxlabel(l.):l.. Then all the more we get FLL (3:l.. 0 

Corollary 4.5.21
 
As a special case we get: If ip is"BL-consistent, then we have maxlabel(l.) = l..
 

Definition 4.5.22 «Strict) O-Consequence) 
Let cl> be a set of labelled formulae, a:F a single labelled formula, and 0 a 
set of BL-formulae. We say a:F (strictly) O-follows from ip (written as 
q> Fn-LL a:F resp. q> Fstr-n-LL a:F), iff 

• q> FLL a:F and 

• a	 is (strictly) O-satisfying. 

14Actually it may overshoot. FT-LL means nothing is entailed at all. 
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Proposition 4.5.18
Given wy > wi, then ® k=y,11 @:F implies ® |=,,-L1, @:F. Furthermore for
arbitrary w ® Fu.LL a :F  implies ® =p  a :F.

This means with increasing w (more nogoods found) less can be deduced.
Proof:
The first condition in definition 4.5.17 remains unchanged, because it is inde-

pendent of  w. So only the second one has to be. proved. Suppose there is a
prime implicant 3 of  a with 6 — wo. Then of  course 6 — wy holds as well. O

=1.11 and FLL are not  equivalent. The latter is weaker. The difference
is, that k=r1, L :F  holds for arbitrary F', but, since this is also true for F = L ,
bey.r1 L :F  for every F .  This, however, is the only difference:

Theorem 4.5.19
If a # L ,  then for arbitrary F |=,.11, a:F iff FL  FF.

Proof:

=> simple. there is one less condition in the definition.

< J prime implicants 8 of a with a — L is only possible, if a = L ,
else i t  would not be a prime implicant. a

The crucial result is that the chain of w-LL-entailment relations really ap-
proaches consistent LL-entailment for increasing w'¢:

Theorem 4.5.20
FconsLL 5 equivalent to Fmaxiabel (1) -LL-

Proof:

<< Suppose there is a prime implicant 6 with FELL 8 :1 .  Because of
the definition of maxlabel we immediately get 8 — maxiabel(.L).

= let 8 be a prime implicant with 8 — maxlabel(.L). We have |=,
maxlabel(.L):L. Then all the more we get =p. B:L.  Q

Corollary 4.5.21
As a special case we get: If ® isBL-consistent, then we have maxlabel(L) = 1 .

Definition 4.5.22 ((Strict) Q-Consequence)
Let ® be  a set of  labelled formulae, a :F a single labelled formula, and Q a
set of BL-formulae. We say a:F (strictly) Q-follows from ® (written as
® Fo-LL a:F resp. ® Fatr-Q-LL oF), iff

e & 11, a:F and

e « is (strictly) Q-satisfying.

14  Actually i t may overshoot. =T_1j, means nothing is entailed at all.
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Definition 4.5.23 (Input-Consequence) 
Let <P be a set of labelled formulae, a:F a single labelled formula. We say a:F 
input-follows from <P (written as <P !=inputLL a:F), iff 

• <P I=LL a:F and 

• a is input-complete. 

As a further entailment relation we need the combination of consistent and 
input consequence: 

Definition 4.5.24 (Consistent Input-Consequence) 
Let <.P be a set of labelled formulae, a:F a single labelled formula. We say a:F 
consistently input-follows from <P (written as ~ I=cons,inputLL a:F), iff 

• <.P I=LL a:F and 

• a is consistent and input-complete. 

We can now extend the definition of maximal labels to all the entailment 
relations considered up to now. In order to do so we have to check whether under 
the additional requirements the existence and uniqueness of maximal labels is 
guaranteed as well. Concerning existence, this is not the case, but if there 
is a label satisfying the required properties at all, then there exists a unique 
maximal one. In order to prove this, we must first show that the respective 
properties of labels are conserved when labels are disjunctively combined. We 
only need to show this for positive labels, for we consider only simple sets of 
labelled formulae, for which maximal labels of any kind must be positive (cf. 
the proof of theorem 4.5.4). 

Lemma 4.5.25
 
If a and {3 are both labels for a formula F, then a + {3 is also a label for F.
 

Proof: 
There exist sets 'ill, ... , wn and '11'1, ... , w'm whose formula parts all imply 

n m 
F and for which I=PL a --+ V label(wi) and I=PL {3 --+ V label('ilD hold. 

_ i=l i=l 
n m 

Therefore we have also a + (3 --+ V label('ili) V V label('ilD. 0 
i=l i=l 

It should be noted that the trivial direction of contraction (theorem 4.3.10) 
is a special case of this. 

Lemma 4.5.26
 
If a and {3 are two positive, w-free labels, then a + {3 is also w-free.
 

Proof: 
Suppose there exists a prime implicant 'Y of a + {3 with 'Y --+ w. Because of 

lemma 4.5.13 'Y is also a prime implicant of a or {3. So a and {3 can not both 
~~~. 0 
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Definition 4.5.23 (Input-Consequence)
Let ® be a set of  labelled formulae, a :F  a single labelled formula. We say a :F
input-follows from ® (written as ® FinputLL a :F), iff

ed  ELL a :F  and

® « is input-complete.

As  a further entailment relation we need the combination of  consistent and
input consequence:

Definition 4.5.24 (Consistent Input-Consequence)
Let ® be a set of labelled formulae, a :F  a single labelled formula. We say a :F
consistently input-follows from ® (written as ® |=cons inpusLr, @:F), iff

® ®k=rr a:Fand

® « is consistent and input-complete.

We can now extend the definition of  maximal labels to all the entailment
relations considered up to now. In  order to do so we have to check whether under
the additional requirements the existence and uniqueness of  maximal labels is
guaranteed as well. Concerning existence, this is not the case, but if there
is a label satisfying the required properties at all, then there exists a unique
maximal one. In order to prove this, we must first show that the respective
properties of  labels are conserved when labels are disjunctively combined. We
only need to  show this for positive labels, for we consider only simple sets of
labelled formulae, for which maximal labels of any kind must be positive (cf.
the proof of theorem 4.5.4).

Lemma 4.5.25
I f  a and B are both labels for a formula F,  then a+  3 is also a label for F .

Proof:
There exist sets Y ı ,  . . . ,  Un  and Y ' ; ,  . . . ,  Y 'm whose formula parts all imply

n m
F and for which kp, a — V label(¥;) and =p, 8 — V label(¥}) hold.

. i= l  i =1

Therefore we have also a +8  — \/ label( ; )  v V label(%Y). Do
i =1  i =1

It should be noted that the trivial direction of contraction (theorem 4.3.10)
is a special case of this.

Lemma 4.5.26
If  a and B are two positive, w-free labels, then a + B is also w-free.

Proof:
Suppose there exists a prime implicant y of a + 8 with y — w. Because of

lemma 4.5.13 y is also a prime implicant of a or 8 .  So a and ß can not both
be  w-free. oO
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Corollary 4.5.27 
If a and 13 are two positive, consistent labels, then a + 13 is also consistent. 

Proof: 
This can be obtained from lemma 4.5.26 and the fact that being maxlabel(l.)

free is identical to being consistent (theorem 4.5.20). 0 

Corollary 4.5.28
 
If a and 13 are two (strictly) rt.-satisfying labels, then a + 13 is also (strictly) rt.

satisfying. If a and 13 are two input complete labels, then a +13 is also (strictly)
 
input complete.
 

The proof is trivial. 

Now we have 

Theorem 4.5.29 
Given an unlabelled formula F and a simple set of labelled formulae q;, if there 
exists a label a, such that q; FLL a:F and in addition fulfills any combination 
of the requirements 

1. a is consistent, 

2. a is w-free for a given w, 

3. a is input complete, 

4. a is rl-satisfying for a given rl, 

then for this combination there also exists a label 13 that is maximal in the 
sense of theorem 4.5.4, which is unique up to logical equivalence. Furthermore 
it is relevant, positive, and therefore even unique up to the ordering of conjuncts 
and literals. 

Proof: 
The proof follows the same lines as that for theorem 4.5.4. The additional 

conditions cause no harm, because, as shown above, the disjunction of two 
consistent / w-free / input-complete / n-satisfying labels is also consistent / 
w-free / input-complete / rt.-satisfying. 

The crucial difference is, however, that there may be no maximal label in 
case there is no label for F satisfying the side conditions at all. 0 

Based on this we can now proceed to define further entailment relations that 
include the maximality criterion. 
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Corollary 4.5.27
If  x and ß are two positive, consistent labels, then a + is also consistent.

Proof:
This can be obtained from lemma 4.5.26 and the fact that being maxlabel(L)-

free is identical to being consistent (theorem 4.5.20). {m}

Corollary 4.5.28
If  «x and ß are two (strictly) Q-satisfying labels, then a+ B is also (strictly) Q-
satisfying. If  a and B are two input complete labels, then a+ 8 is also (strictly)
input complete.

The proof is trivial.

Now we have

Theorem 4.5.29
Given an unlabelled formula F and a simple set of labelled formulae ®, if there
exists a label a ,  such that ® =11, a :F and in addition fulfills any combination
of the requirements

1 .  & is consistent,

2. a is w-free for a given w,

3. «a is input complete,

4. «a is Q-satisfying for a given 9 ,

then for this combination there also exists a label § that is mazimal in the
sense of theorem 4.5.4, which is unique up to logical equivalence. Furthermore
it is relevant, positive, and therefore even unique up to the ordering of conjuncts
and literals. i

Proof:
The proof follows the same lines as that for theorem 4.5.4. The additional

conditions cause no harm, because, as shown above, the disjunction of  two
consistent / w-free / input-complete / Q-satisfying labels is also consistent /
w-free / input-complete / Q-satisfying.

The crucial difference is, however, that there may be no maximal label in
case there is no label for F satisfying the side conditions at all. a

Based on  this we can now proceed to  define further entailment relations that
include the maximality criterion.
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Definition 4.5.30 (General Maximal Entailment)
 
Let iP be a simple set of labelled formulae, and let FE be one of {FLL, I=consLL,
 

FequivLL' Fw-LL' Fn-LL, I=n-LL, l=inputLL, Fcons,inputLL}.
 
iP maximally E-entails a:F, written iP Fmax(E) a:F, iff 

• iP FE a:F and 

• for all labels /3 with iP I=E /3:F /3 ~ a holds. 

Theorem 4.5.31
 
Fmax(LL) and I=max(equivLL) are the same.
 

Proof: 
Clearly iP l=equivLL a:F implies iP FLL a:F. So the maximal label according 

to FequivLL is at least a label concerning FLL, too. But there can be no bigger 
one, because corollary 4.5.7 tells us that maxlabel(iP, F) is also a label according 
to FequivLL. 

The interrelations between all the consequence relations defined so far can 
be summarized as follows: 

Theorem 4.5.32 
There are the following relationships between the entailment relations: 

FLL 

r~ 
FW-LL Fn-LL FequivLL 

r r 
I=consLL l=inputLL 

~/ 
Fcons,inputLL I=max(LL)

7 
Fmax(consLL) Fmax(inputLL) 

~/ 
Fmax(cons,inputLL) 

where lines (read downward) indicate proper set inclusion, the arrowheads sym
bolize approximation. 

Proof: 
Most parts have already been proved. The relations between FLL, FWLL and 

FconsLL are explained by theorems 4.5.19, 4.5.18 and 4.5.20. All the inclusions 

0 
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Definition 4.5.30 (General Maximal Entailment)
Let ® be  a simple set of  labelled formulae, and let = r  be  one of  {F1L,  FconsLL,

_ FequivLL; Fw-LL; FFQ-LL; FQ-LL; FinputLL, Fcons,inputLL}-
© maximally E-entails o:F,  written ® Fmax(g) oF, iff

e ® =g  a:F and

e for all labels 8 with ® kg  S:F ß — a holds.

Theorem 4.5 .31

Fmax(LL) 67d Fmax(equiviL) @7e the same.

Proof:
Clearly ® FequivLL o:F implies ® k=11, a:F. So the maximal label according

to FequivLL is at least a label concerning =r ,  too. But there can be  no  bigger
one, because corollary 4.5.7 tells us that maxlabel(®, F)  is also a label according
to FequivLL. a

The interrelations between all the consequence relations defined so far can
be summarized as follows:

Theorem 4.5.32
There are the following relationships between the entailment relations:

IN
T T FequivLL

Eco  nsLL F=inp utLL

F=max(consLL) F=max(inputLL)

F=max(cons,inputLL)

where lines (read downward) indicate proper set inclusion, the arrowheads sym-
bolize approzimation.

Proof:
Most parts have already been proved. The relations between 11 ,  FuLL and

EconsLL are explained by theorems 4.5.19, 4.5.18 and 4.5.20. All  the inclusions
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can simply be read off the respective definitions, since they each represent ad
ditional conditions. We give counterexamples to show that they are all proper: 

{a + {3:F} I=LL a:F, but not {a + {3:F} l=equivLL:a:F. 

{a:F,{3:F} l=equivLL a:F, but not {a:F,{3:F} I=max(LL) a:F. 
The latter example can also be used for the pairs I=consLL vs. Fmax(consLL), 

l=inputLL vs. I=max(inputLL) and I=cons,inputLL vs. Fmax(cons,inputLL)' 

{T:..l} I=max(LL) T:F, but not {T:..l} Fmax(consLL) T:F. 
The proof that the O-LL relations form a chain with 

I=LL=I=0-LL and <P FinputLL= <P I={atom A I A occurs in of1}-LL is trivial. 0 

4.6 Some Computation Rules 

We want to incrementally compute labels satisfying certain conditions, hence 
we must be able to tell which properties of labels remain unchanged by which 
operations. In particular we want to be able to compute maximal consistent 
labels that are input complete for a given set <P. 

We can not give a procedure for the general case, but if we restrict ourselves 
to the case that <P is simple, we can proceed as follows: 

First we can compute the maximal label (according to I=LL) for every atomic 
formula A. Then we obtain an A-satisfying label a +{3 from the maximal labels 
a for A and {3 for ...,A. The next lemma shows that this label is the maximal 
A-satisfying label. 

Lemma 4.6.1 
If a is the maximal label for A and {3 the maximal label for ...,A, then a + {3 is 
the maximal A-satisfying label. 

Proof: 
Suppose we have a 'Y that is A-satisfying. Because of lemma 4.5.12 this is 

decomposable into 'Y1 +'Y2, that are both strictly A-satisfying and hence a label 
for A or ...,A. Since a and {3 are maximal, both 'Y1 and 12 must imply either a 
or {3. Therefore we have 'Y1 + 'Y -t Q +{3. Because this holds for all 'Y we obtain 
that Q + {3 is maximal. 0 

Now the maximal A-satisfying labels for all atoms are conjunctively com
bined, yielding the maximal input complete labeL 

Lemma 4.6.2
 
If a is A-satisfying and {3 is B-satisfying, then a{3 is {A,B}-satisfying.
 
Furthermore, if Q is maximally A-satisfying and {3 is maximally B -satisfying,
 
then a{3 is also maximally {A, B}-satisfying.
 

Proof: 
The first part follows trivially from lemma 4.3.2. For the second part suppose 

that a 'Y is {A, B}-satisfying. This means in particular that 'Y is A-satisfying, 
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can simply be read off the respective definitions, since they each represent ad-
ditional conditions. We give counterexamples to  show that they are all proper:

{ a+  B:F}  ELL a:F,  but not {a  + B:F}  |=equivLi a:F .
{a:F,B:F} FequivLL oF,  but not {o:F,B:F} Fmax(LL) @:F.
The latter example can also be used for the pairs |=consLL VS. Fmax(consLL)
FinputLL VS. Fmax(inputLL) and F=cons,inputLL vs.  F=max(cons,inputLL)-
{T :1 }  Fmax(LL) T :F ,  but not {T :1 }  F=max(consLL) TF .

The proof that the Q-LL relations form a chain with

DQ;  implies @ f q ,  = Pa ,  9,

FrL=FgrL and ® FinputLL= ® F{atom 4 | A occurs i n  $}-LL 18 trivial. a

4.6 Some Computation Rules

We want to incrementally compute labels satisfying certain conditions, hence
we must be able to  tell which properties of  labels remain unchanged by which
operations. In  particular we want to  be  able to  compute maximal consistent
labels that are input complete for a given set @.

We can not give a procedure for the general case, but if  we restrict ourselves
to the case that © is simple, we can proceed as follows:

First we can compute the maximal label (according to =r )  for every atomic
formula A.  Then we obtain an A-satisfying label a + B from the maximal labels
a for A and ß for =A. The next lemma shows that this label is the mazimal
A-satisfying label.

Lemma 4 .6 .1
If a is the mazimal label for A and 3 the maximal label for „A, then a + (3 is
the maximal A-satisfying label.

Proof:
Suppose we have a + that is A-satisfying. Because of lemma 4.5.12 this is

decomposable into 7;  +2 ,  that are both strictly A-satisfying and hence a label
for A or „A. Since a and ß are maximal, both y ı  and y2 must imply either «
or B. Therefore we have 71 +y  — a + 5 .  Because this holds for all y we obtain
that a + § is maximal. [ms]

Now the maximal A-satisfying labels for all atoms are conjunctively com-
bined, yielding the maximal input complete label.

Lemma 4.6.2
If a is A-satisfying and B is B-satisfying, then aß  is {A ,  B}-satisfying.
Furthermore, if a is mazimally A-satisfying and is mazimally B-satisfying,
then a f  is also mazimally {A,B}-satisfying.

Proof:
The first part follows trivially from lemma 4.3.2. For the second part suppose
that a y is {A,  B}-satisfying. This means in particular that v is A-satisfying,
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which in turn yields that , -+ a because of the maximality of a. The same 
holds for f3 and thus we have, -+ af3. 0 

The maximal consistent, input complete label is finally obtained from elim
inating from the DDNF of the maximal input complete label all those prime 
implicants that are labels of 1., i.e. imply a prime implicant of maxlabel(1.). 

The resulting label is of course consistent (because of the construction) and 
input complete (because it is a smaller label and thus implies everything the 
bigger one implied). But the maximality remains to be shown: 

Lemma 4.6.3 
If Cl( is the maximal input complete label, then deleting in its DDNF all the prime 
implicants that are labels of J.. yields the maximal consistent, input complete 
label. 

Proof: 
Let a be maximally input complete. Its DDNF can be written as a = a1 + 
... + an + an+! + ... + am, where an+! + + am are the prime implicants 

f f	 fthat are labels of 1.. Define a as a = a1 + + an' Clearly a is consistent 
and input complete. Now suppose there is a, that is suspected to be bigger 
than a' and fulfills the same properties. In order to be a candidate for this, 
'Y must be positive. Since 'Y is input complete, we have , -+ a because of the 
maximality of a. As both a and, are positive, each prime implicant of, must 
imply a prime implicant of a. But since, is also consistent, it can not be the 
case that anyone of its prime implicants implies one of a n+1,'" ,am' But then 
'Y must imply a f 0• 

These lemmata give us a procedure for incrementally computing maximal 
consistent and input complete labels. 

4.7	 Properties of the Different Entailment Rela
tions 

In this section we analyze some important properties of the various entailment 
relations, as defined in the previous section. 

Obviously not all of them.are monotonic. In the literature on nonmonotonic 
entailment there are minimal requirements on an entailment relation in order to 
classify it as well-behaved in some sense. According to Gabbay (1985)15 there 
are e.g. 

monotonicity 

transitivity (cut) 

150ther catalogs can be found in (Glirdenfors, 1988; Glirdenfors, 1990; Kraus, Lehmann & 
Magidor, 1990; Makinson, 1989). 
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which in turn yields that y — a because of the maximality of a .  The same
holds for 8 and thus we have v —+ af. a

The maximal consistent, input complete label is finally obtained from elim-
inating from the DDNF of the maximal input complete label all those prime
implicants that are labels of L ,  i.e. imply a prime implicant of  maxlabel(L).

The resulting label is of course consistent (because of  the construction) and
input complete (because it is a smaller label and thus implies everything the
bigger one implied). But the maximality remains to be shown:

Lemma 4.6.3
I f  a is the mazimal input complete label, then deleting in  its DDNF  all  the prime
implicants that are labels of L yields the mazimal consistent, input complete
label.

Proof:
Let a be maximally input complete. Its DDNF can be written as a = a ı  +

«o r  + ap  + ony + + Am, where apy ++  + ap, are the prime implicants
that are labels of  1 .  Define a’ as & = a j  + +++  + ap. Clearly « is consistent
and input complete. Now suppose there is a y that is suspected to be bigger
than a’ and fulfills the same properties. In order to  be a candidate for this,
« must be positive. Since y is input complete, we have y — a because of the
maximality of «. As both & and + are positive, each prime implicant of y must
imply a prime implicant of a. But since y is also consistent, it can not be the
case that any one of  its prime implicants implies one of  ap 41 , . . .  0m. But then
y must imply « ' .  [m

These lemmata give us a procedure for incrementally computing maximal
consistent and input complete labels.

4 .7  Properties o f  the Different Entailment Rela-
tions

In  this section we analyze some important properties of the various entailment
relations, as defined in the previous section.

Obviously not all of  them.are monotonic. In  the literature on  nonmonotonic
entailment there are minimal requirements on an entailment relation in  order to
classify it as well-behaved in  some sense. According to Gabbay (1985)!5 there
are e.g.

monotonicity
Eo

SUT  Ep ’
transitivity (cut)

SE;  oU{p }  Ey
Ev  ’

150ther catalogs can be found in (Géardenfors, 1988; Gardenfors, 1990; Kraus, Lehmann &
Magidor, 1990; Makinson, 1989).
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restricted monotonicity 
<.P 1= CPj <.P 1= 'l/J 
<.pu{cp}I='l/J' 

cumulativity (cut plus restricted monotonicity) 

If <.P 1= C{J, then <.P 1= 'l/J and <.P U {cp} 1= 'l/J are equivalent. 

reflexivity
 

'VcP E <.P <.P 1= cp.
 

As it turns out, all of our entailment relations with the exception of I=n-LL 

are cumulative (and therefore transitivity and restricted monotonicity hold as 
well). This is independent of the monotonicity of BL. 

Theorem 4.7.1
 
The properties of the entailment relations are as listed in table 4.1. The state

ments about reflexivity and transitivity presuppose that BL is reflexive.
 

~ monotonicity I cumulativity I reflexivity I 
I=LL + + + 
l=equivLL + + + 
I=consLL - + -

I=w-LL + + -

I=max(LL) - + -
I=max(consLL) - + -
I=n-LL + + -
l=inputLL - - -
I=max(inputLL) - - -

Table 4.1: Properties of the different entailment relations 

Proof: 

-
monotonicity: For I=LL this has been proved in theorem 4.3.7. For l=equivLL 

the proof runs the same. The additional constraints in I=w-LL and 
I=n-LL present no difficulties either. For I=consLL the following may 
serve as a counterexample: 

{a:A} I=consLL a:A, but the addition of T :A will block this. The 
same is a counterexample for I=max(LL), if instead {3:A is added. 
Again the same set with addition of {3:B refutes the monotonicity 
of l=inputLL. The combinations are trivial then. 

reflexivity: Here we have to assume that BL is reflexive. The case is trivial 
for 1=11 and l=equivLL again. Counterexamples can be obtained by 
trying to derive a:A from the following sets: 
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restricted monotonicity
Sky ;
SUT  Fo

cumulativity (cut plus restricted monotonicity)
If ® = ,  then ® = % and ® U {p }  |= ¢ are equivalent.

reflezivity
Vp EBD  =o.

As it turns out, all of our entailment relations with the exception of  F=q.13,
are cumulative (and therefore transitivity and restricted monotonicity hold as
well). This is independent of  the monotonicity of BL.

Theorem 4.7.1
The properties of the entailment relations are as listed in table 4.1. The state-
ments about reflexivity and transitivity presuppose that BL  is reflexive.

_ | monotonicity |cumulativity |reflexivity |
FLL
FequivLL
= consLL

+
1

 [+
+

F-w-LL
I L  vn—max(LL)

= max(consLL) _ —

=0-LL
—inputLL

+
+

+
] 

+
+

+

|

—max(inputLL)

Table 4.1: Properties of the different entailment relations

Proof:

monotonicity: For [=ry, this has been proved in  theorem 4.3.7. For FequivLL
the proof runs the same. The additional constraints in f=... and
Eq.LL present no difficulties either. For FconsLL the following may
serve as a counterexample:

{a:A} FconsLL 0:4, but the addition of T:A will block this. The
same is a counterexample for Fmax(LL): if instead ß:A is added.
Again the same set with addition of 3:B refutes the monotonicity

; of EinputrL. The combinations are trivial then.

reflexivity: Here we have to assume that BL  is reflexive. The case is trivial
for f=11 and FequivLL again. Counterexamples can be obtained by
trying to derive a:A from the following sets:
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cons {a:A, T:A}
 
max {a:A,,6:A}
 
input {a:A,,B:B}
 
a,6-LL {a:A}
 
{B}-LL {a:A}
 

The combinations are again easy. 

cut: For I=LL this has been proved in theorem 4.3.8. For l=equivLL the 
proof is essentially the same, as are the proofs for I=w-LL and I=n-LL. 

Theorem 4.3.8 tells us that, if <P I=LL <p, then the addition of <p to <P 

does not give us more theorems. This means that anything entailed 
by WU{<p} is already entailed by <P itself. Therefore particularly the 
maximal label of an (unlabelled) formula stays the same. This also 
holds for 1., Le. maxlabel(1., <p) = maxlabel(1., <PU{<p}), if<p I=LL <po 

From these considerations the transitivity of the "max" and "cons" 
forms of LL-entailment follow. 

That l=inputLL is not transitive, can be shown by the following 
counterexample: 
{a:A} l=inputLL a:B V ...,B, but also {a:A} l=inputLL a:A, whereas 
{a:A, a:B V ...,B} !=inputLL a:A does not hold. 

restricted monotonicity: Those relations which are monotonic are of course 
also restrictedly monotonic. Thus it, remains to give proofs for the 
rest. 

As all of the relations are defined in terms of PLL, we can again 
exploit theorem 4.3.8 for this purpose. The additional conditions 
within the definitions do not present any difficulties. This time even 
l=inputLL is included. 0 

4.8 Semantics of Labelled Logics 

Earlier we have claimed to be able to present a genuine model theory for the 
proposed labelled logic. The semantics described up to now does not on the 
first view satisfy this demand, since even though we reduced the definitions 
to consequence relations which are known to possess a model theory (PPL) or 
may be expected to have one (FBd, the process of combining these component 
theories is not as clear as to immediately make obvious how interpretations in 
labelled logics should look like. 

In the following paragraphs we shall fill this gap. We define a logical con
sequence relation in the usual way in terms of interpretations and prove equi
valence to our first definition. The details of such a proof depend on the logic 
used for the labels. In our case this is PL, but for digressions from that (~nd we 
shall present an alternative label logic in chapter 8) will need different· model 
theories than those given in this chapter. 

In the sequel we shall therefore stick to our former approach, because it 
emphasizes the compositional character and allows us to switch from one label 
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cons {a:A, T:A}
max {a:A,B:A}
input {a:A,  B:B}
af-LL  {a:A}
{B}-LL {a:A}

The combinations are again easy.

C
C = e+ For Fir this has been proved in theorem 4.3.8. For |=equiviL the

proof is essentially the same, as are the proofs for Ew.LL and FEq.LL.
Theorem 4.3.8 tells us that, if ® I=L 9 ,  then the addition of  ¢ to ®
does not give us more theorems. This means that anything entailed
by YU{w} is already entailed by ® itself. Therefore particularly the
maximal label of an (unlabelled) formula stays the same. This also
holds for 1 ,  i.e. maxlabel(L, ®) = maxlabel(.L, 2U{y}),  i f  ® kıL 6.
From these considerations the transitivity of  the “max” and “cons”
forms of  LL-entailment follow.

That FinputLL is not transitive, can be shown by the following
counterexample:
{a:A} FinputLL @:B  VB,  but also {a:A} FinputLL 0 :  A, whereas
{ocA,:B V —B} FinputLL a :A does not hold.

restricted monotonicity: Those relations which are monotonic are of course
also restrictedly monotonic. Thus it remains to give proofs for the
rest.

As all of  the relations are defined in terms of f=11, we can again
exploit theorem 4.3.8 for this purpose. The additional conditions
within the definitions do not present any difficulties. This time even
FinputLL is included. D

4.8 Semantics of  Labelled Logics

Earlier we have claimed to be able to  present a genuine model theory for the
proposed labelled logic. The semantics described up to  now does not on the
first view satisfy this demand, since even though we reduced the definitions
to  consequence relations which are known to possess a model theory (pr )  or
may be expected to  have one (k=pL), the process of  combining these component
theories is not as clear as to  immediately make obvious how inferpretations in
labelled logics should look like.

In the following paragraphs we shall fill this gap. We define a logical con-
sequence relation in  the usual way in terms of interpretations and prove equi-
valence to our first definition. The details of  such a proof depend on the logic
used for the labels. In  our case this is PL,  but for digressions from that (and we
shall present an alternative label logici n  chapter 8) will need different.model
theories than those given in this chapter.

In the sequel we shall therefore stick to our former approach, because i t
emphasizes the compositional character and allows us to switch from one label
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logic to another more easily, since this definition stays the same syntactically 
for all label logics and only the meaning of the connectives within the label part 
changes depending on the particular logic. 

It should be noted that fibering gives a possibility to directly obtain the 
combined semantics, as we shall see in section 4.9. 

Definition 4.8.1 (Interpretations, Models) 
Let 'ZSPL denote a propositionallogic interpretation and 'ZSBL an interpretation 
of the basic logic in question16. Then a labelled logic interpretation 'ZSLL is a 
pair ('ZSPL, 'ZSBL). r::sLL is said to be a model for a labelled formula <p (written 
'ZSLL FLL <p) iff 'ZSPL FPL label(<p) implies 'ZSBL FBL formula(<p). 'ZSLL is a model 
for a set <P of labelled formulae, if it is a model of all the formulae in <P. A 
formula CI.:F is a logical consequence of a set <P of formulae, iff 

It is important to see that this definition only applies to the special case 
where the label logic is classical propositionallogic. Propositional interpret
ations 'ZSP L are referred to, and the interpretation of implication as material 
implication is "coded" into the definition via the formulation "... 'ZSPL FPL 

label(<p) implies r::sBL FBL formula(<p) ... ", which should be read 'ZSPL ~PL 

label(<p) or r::sBL FBL formula(cp) ... ". Thus definition 4.1.7 can be generalized 
more easily. Nevertheless the following important theorem holds: 

Theorem 4.8.2
 
The two definitions of FLL (4.1. 7 and 4.8.1) are equivalent.
 

Proof: 

=>:	 Let 3W1, ... , wn ~ <P, n 2.: 0, with VWi : formula(wi) FBL F and 
FPL Cl. -+ Vi:1Iabel(wi) hold. 

Now take an r::sLL = (r::sPL, 'ZSBd which is a model of <P. We show 
that 'ZSLL is also a model of CI.:F. If Cl. is (PL-)unsatisfiable (= 1.), 
we are done, for then r::sP L ~PL Cl. and so r::sLL FLL CI.:F. Otherwise 
the collection of Wi contains at least one element (i.e. n > 0), or else 
Vi=llabel(wi) woulq be 1., which contradicts the fact it is implied 
by a satisfiable CI.. 

Since r::sLL FLL <P, also r::sLL FLL Wi holds for all the Wi. This 
means 

VWi"/CPj E Wi: r::sPL f6PL label(<pj) or'ZSBL FBL formula(cpj). 

Suppose r::sPL FPL CI.. Then r::sPL FPL Vi=llabel(wi)' This means 
- as n > 0 - there is a Wi with r::sPL FPL label(wi)' This is 
equivalent to 3wi"/<pj E Wi 'ZSPL FPL label(<pj). As r::sLL satisfies 

160£ course we do not claim to supply a combined model theory if the basic logic itself does 
not possess one. We assume the semantics of BL is given in the form: AFBLB if£' in all (here 
may be added attributes like e.g. preferred) models of A B holds. 
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logic to another more easily, since this definition stays the same syntactically
for all label logics and only the meaning of the connectives within the label part
changes depending on the particular logic.

It should be noted that fibering gives a possibility to directly obtain the
combined semantics, as we shall see in section 4.9.

Definition 4.8.1 (Interpretations, Models)
Let Spr denote a propositional logic interpretation and Spr an interpretation
of the basic logic in  question!®. Then a labelled logic interpretation Sp  is a
pair (Spr,  Sp r ) .  S r  is  said to  be a model for a labelled formula ¢ (written
Sir ELL €) iff Spr f=pL label(y) implies Sp, F=pL formula(p). S r  is a model
for a set ® of labelled formulae, if i t  is a model of all the formulae in ®. A
formula o:F is a logical consequence of a set ® of  formulae, iff

VYSıL: Sir FL  @ = SLL Fu  «oF.

It is important to see that this definition only applies to the special case
where the label logic is classical propositional logic. Propositional interpret-
ations Spy, are referred to, and the interpretation of implication as material
implication is “coded” into the definition via the formulation “... S$pr PL
label(yp) implies Spr k=pr, formula(yp) . . . ” ,  which should be read Spr pL
label ( )  or Spr Far formulae) . . . ” .  Thus definition 4.1.7 can be generalized
more easily. Nevertheless the following important theorem holds:

Theorem 4.8.2
The two definitions of FELL (4.1.7 and 4.8.1) are equivalent.

Proof:

=>: Let 30y , . . . ,  Un © ®,n > 0, with VT; : formula(¥;) Fa  F and
pL  a — Vi,  label('¥;) hold.
Now take an Sp  = (Spr,  Spr) which is a model of ®. We show
that Sy, is also a model of a :F.  If a is (PL-)unsatisfiable (=  1 ) ,
we are done, for then Spr fpr, a and so S ız FLL a: F. Otherwise
the collection of ¥ ;  contains at least one element (i.e. n > 0), or else

1 label(¥;) would be .L, which contradicts the fact i t  is implied
by a satisfiable a .
Since Srp FELL ®, also Sırz Err Us; holds for all the ¥ ; .  This
means

VOY;  € U i :  Spr r u  label(p;) or  Far =p  formula(p;).

Suppose Spr F=p1, a .  Then Spr pr,  Vie; label(¥;). This means
— as n > 0 — there is a ¥ ;  with Spy f=pr, label(¥;). This is
equivalent to 3WU;Vp; € ¥;  Spy [=p label(p;). As Srp satisfies

16  Of  course we  do  not claim to  supply a combined model theory i f  the basic logic itself does
not possess one. We assume the semantics of BL  is given in the form: A= B iff in all (here
may be added attributes like e.g. preferred) models of  A B holds.
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q> this means 3\J!i"tCPj E \J!i ~BL I=BL formula(cpj), which means 
';SBL FBL F because of our assumption that 'V\J!i : formula(\J!i) I=BL 

F. 

-<:=:	 Define the collection {Wl,'" , wn } as {Wi ~ q> I formula(wi) FBL 

F}. Now let "tr::sLL : ~LL I=LL q> ::} r::sLL I=LL et:F hold. To show: 
FPL et ~ Vi label(Wi)' Let ';SPL FPL a for an arbitrary ';SPL. 

Define \J! = {Ip E q> I ~PL I=PL label(lp)} and \J! = q> \ w. Sup
pose formula(w) ~BL F. Then there exists a basic logic interpret
ation C;SBL with C;SBL I=BL formula(\J!), and r::sBL ~BL F. But this 
cannot be true, because then ~LL = (!;SPL, !;SBL) I=LL q> (to see 
this, note that q> = \J! U \J!, 'Vip E W : <;SBL FBL formula(cp) and 
'Vip E 'It : r::sPL ~PL label(cp)), but ~LL ~LL a:F, which contradicts 
our assumption. 

Therefore formula(W) PBL F, which means \J! E {\J!i}' As "tlpj E 

W~PL I=PL label(cpj) (definition of \lI), ~PL I=PL W, and - as \lI E 

{\lIi} - !;SPL I=PL Vi label(\lIi). Since ~PL was chosen arbitrarily, 
we are done. 0 

The case with all the other entailment relations is not that easy. Here it is 
not possible to give a characterization in the form e.g. q> FconsLL a:F iff every 
model of q> is also a model of a:F. 

What is worse, we cannot get rid of restrictions of a rather syntactical 
flavour, namely the use of the notion of a prime implicant, which is not char
acterized in terms of entailment only, but depends on a particular syntactical 
structure (conjunction of literals). 

In order to come to a model theoretic definition of consistent LL-entailment 
we could define notions like a subset of the models of a particular formula being 
"prime", if it can be expressed as intersection of the sets of models of atomic 
formulae or their complement wrt. the set of all interpretations. We shall not 
do this, because it is futile, because the notion of a formula being atomic is 
syntactical in nature, too. Therefore we leave the regress to syntax in the 
definition below. 

Definition 4.8.3 (a-models)
 
Given a set <P of labelled formulae and a label et, we say a model (~PL, ~BL)
 

of q> is said to be an a-model, if !;SPL I=PL et.
 

Theorem 4.8.4 
Let interpretations be defined as above. Then q> I=consLL a:F ifJ 

1. every model of <P is also a model of a:F, and 

2. for every prime implicant j3 of a there exists a j3-model of <P. 

Proof: 
As concerns the first property, the proof of theorem 4.8.2 can be used. The 

second property exactly corresponds to the additional restriction in defini
tion 4.5.16 and can be handled by simply inserting the respective definitions. 

o 
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® this means 3W;Vp; € ¥;  Spr pL  formula(p;), which means
S8L [=BL F because of  our assumption that V¥;  : formula(¥;) =pL
F.

4 :  Define the collection { ¥y , . . . , ¥ , }  as {¥ ;  € ® | formula(%;) Fer
F} .  Now let VS:  Sor ELL ® = Sir F ıL a F hold. To  show:
E=pL a — V;  label(¥;). Let Spr [=pL « for an  arbitrary Spy.

Define ¥ = {p € ® | Spr pL  label(p)} and ¥ = & \ U .  Sup-
pose formula(¥) [py F.  Then there exists a basic logic interpret-
ation Spy, with Spr EBL formula(¥), and Sgr  EBL F .  But this
cannot be true, because then Sz  = (Spr,  Spar) FLL ® (to see
this, note that ® = YU ,  Vp € ¥ : Op; k=p1 formula(y) and
Yo eV :  Spr pL  label(y)), but Siz Fir a:F, which contradicts
our assumption.

Therefore formula(¥) [=p F ,  which means ¥ € {¥ ; } .  As Vp; €
¥ Spr, =p  label(p;) (definition of ¥ ) ,  Spr Fp ı  ¥ ,  and — as ¥ €
{¥ ; }  — Spr pL  V;label(¥;). Since Spr was chosen arbitrarily,
we are done. Qa

The case with all the other entailment relations is not that easy. Here it is
not possible to give a characterization in the form e.g. ® FeonsLL a: F iff every
model o f  ® is also a model of  a:F.

What is worse, we cannot get rid of  restrictions of  a rather syntactical
flavour, namely the use of the notion of a prime implicant, which is not char-
acterized in terms of entailment only, but depends on a particular syntactical
structure (conjunction of literals).

In  order to  come to a model theoretic definition of  consistent LL-entailment
we could define notions like a subset of  the models of  a particular formula being
“prime”, if i t  can be expressed as intersection of the sets of models of atomic
formulae or their complement wrt. the set of all interpretations. We shall not
do this, because it is futile, because the notion of  a formula being atomic is
syntactical in nature, too. Therefore we leave the regress to  syntax in the
definition below.
Definition 4.8.3 (a-models)
Given a set ® of labelled formulae and a label &,  we say a model (Spr,  p r )
of ® is said to be an a-model, if Spy, F=p1, a .

Theorem 4.8.4
Let  interpretations be defined as above. Then ® f=consr1, a :F iff

1. every model of ® is also a model of a:F, and

2. for every prime implicant ß of a there exists a B-model of ®.

Proof:
As concerns the first property, the proof of theorem 4.8.2 can be used. The

second property exactly corresponds to  the additional restriction in defini-
t ion 4.5.16 and can be handled by simply inserting the respective definitions.

a
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We hope that this examples suffice to demonstrate that in principle model 
theoretic definitions can be given for the various entailment relations intro
duced. As these definitions are, however, not used in the sequel, we omit the 
definitions of the other ones. 

4.9 Fibred Semantics 

As our labelled logics are a special case of LDS, one could argue that the general 
combination methods for labelled deduction systems (Gabbay, 1994a) can be 
applied. In this section we show that this is indeed the case. 

Let us have a look at definition 4.8.1. If we consider the case that BL 
is also classical propositional logic, then we can combine the two (disjoint!) 
interpretations for labels and formulae into one single interpretation, taking 
the ":" operator as material implication, so that a:F becomes a -+ F. This 
does not change anything. 

Following Gabbay one could do the same if BL were a logic different from 
classical propositional logic. The method proposed there, called fibering, says 
that in principle all one has to do is to define a language that contains the union 
of the connectives of the original languages and when interpreting a concrete 
formula by decomposing its structure to always use an interpretation of that 
logic that is responsible for the respective top level constructor. 

For details we refer to Gabbay (1994a), but we want to give some additional 
notes: First, our case can be handled relatively easy, because our formulae have 
a particular structure. The components of the two logics are not interleaved 
arbitrarily, but there is only one single "-+", which is always the top level 
connective, connecting the otherwise separate parts of the formula. So we allow 
only a subset of the formulae we would get by fibering the two logics. This will 
be relaxed a little in section 8, when we allow for variables common to labels 
and formulae. 

Second, we do not even want the general case, as the separation between 
the two parts of the combined formulae reflects the different components of a 
combined system. When we for instance talk about completeness, we are not 
interested in really considering all LL-entailed formulae, but only how a given 
formula part can be derived. Depending on the application the label part will 
not even be visible to the user (tf. chapter 7.5). 

Third, we shall meet the same phenomenon, when we examine Poole's ap
proach for default reasoning in chapter 8. There the names of defaults play 
the same role as our labels. In his translation also names imply the defining 
formula. 
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We hope that this examples suffice to demonstrate that in  principle model
theoretic definitions can be given for the various entailment relations intro-
duced. As  these definitions are, however, not used in the sequel, we omit the
definitions of the other ones.

4 .9  Fibred Semantics

As our labelled logics are a special case of  LDS, one could argue that the general
combination methods for labelled deduction systems (Gabbay, 19944) can be
applied. In this section we show that this is indeed the case.

Let us have a look at definition 4.8.1. If we consider the case that BL
is also classical propositional logic, then we can combine the two (disjoint!)
interpretations for labels and formulae into one single interpretation, taking
the “ ”  operator as material implication, so that a :F  becomes a — F .  This
does not change anything.

Following Gabbay one could do the same if BL  were a logic different from
classical propositional logic. The method proposed there, called fibering, says
that in  principle all  one has to do is to define a language that contains the union
of the connectives of the original languages and when interpreting a concrete
formula by decomposing its structure to always use an interpretation of that
logic that is responsible for the respective top level constructor.

For details we refer to Gabbay (1994¢), but we want to give some additional
notes: First, our case can be handled relatively easy, because our formulae have
a particular structure. The components of the two logics are not interleaved
arbitrarily, but there is only one single “—”, which is always the top level
connective, connecting the otherwise separate parts of  the formula. So we allow
only a subset of  the formulae we would get by fibering the two logics. This will
be relaxed a little in section 8, when we allow for variables common to labels
and formulae.

Second, we do not even want the general case, as the separation between
the two parts of the combined formulae reflects the different components of a
combined system. When we for instance talk about completeness, we are not
interested in really considering all LL-entailed formulae, but only how a given
formula part can be derived. Depending on the application the label part will
not even be visible to the user (cf. chapter 7.5).

Third, we shall meet the same phenomenon, when we examine Poole’s ap-
proach for default reasoning in chapter 8. There the names of defaults play
the same role as our labels. In his translation also names imply the defining
formula.
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Chapter 5 

Modelling Systems 

In this chapter we show how to represent some of the known Reason Main
tenance systems within our formalism. We shall not do this exhaustively, but 
simply demonstrate how the different characteristics can be modelled. 

More importantly, this framework facilitates devising new systems by put
ting together the respective properties, in addition to simply describing and 
comparing known systems. 

5.1 The ATMS of de Kleer 

Easiest to be modelled is de Kleer's ATMS (de Kleer, 1986a), as our approach 
is essentially assumption-based as well. Besides the ATMS has already been 
given a rather simple semantics by Fujiwara & Honiden (1990) (see section 6.1). 

The language of ATMS is propositional. Justifications are in essence Horn 
formulae, A l /\ An -r B expressing that B depends on the validity of all the Ai. 
Of course there may be more than one justification for an atom. Some of the 
atoms are special. They are called assumptions, and they are considered the 
axiomatic bases of dependency chains. 

The similarity between ATMS labels and ours is obvious. If we apply the 
characteristic function X (cf. definition 4.1.9) to a label, we get a collection of 
sets of formulae. This is exactly the same as an ATMS label tells us. 

We translate an ATMS into a semi-basic set of labelled formulae as follows: 

•	 every ATMS node corresponds to a classical propositionallogic atom. 

•	 every assumption is translated into a labelled formula a:A where A is the 
respective atom and a a "new" atomic label. 

•	 every justification is translated to a formula A l /\ . . . /\An -r B, where B is 
the consequent and the Ai are the atoms corresponding to the antecedent 
oo~. . 

•	 the contradiction node is mapped to the falsum (.1..). 

•	 nogood declarations are treated like any other justification. 

Chapter 5

Modelling Systems

In this chapter we show how to represent some of the known Reason Main-
tenance systems within our formalism. We shall not do this exhaustively, but
simply demonstrate how the different characteristics can be modelled.

More importantly, this framework facilitates devising new systems by put-
ting together the respective properties, in addition to simply describing and
comparing known systems.

5 .1  The ATMS of  de  Kleer

Easiest to be modelled is de Kleer’s ATMS (de Kleer, 19864), as our approach
is essentially assumption-based as well. Besides the ATMS has already been
given a rather simple semantics by Fujiwara & Honiden (1990) (see section 6.1).

The language of ATMS is propositional. Justifications are in  essence Horn
formulae, A;  A A ,  — B expressing that B depends on the validity of  all the A;.
Of  course there may be more than one justification for an atom. Some of the
atoms are special. They are called assumptions, and they are considered the
axiomatic bases of dependency chains.

The similarity between ATMS labels and ours is obvious. If we apply the
characteristic function x (cf. definition 4.1.9) to a label, we get a collection of
sets of formulae. This is exactly the same as an ATMS label tells us.

We translate an ATMS into a semi-basic set of labelled formulae as follows:

e every ATMS node corresponds to  a classical propositional logic atom.

e every assumption is translated into a labelled formula a : A where A is the
respective atom and a a “new” atomic label.

® every justification is translated to  a formula A ;  A . . .AA ,  — B ,  where B is
the consequent and the A;  are the atoms corresponding to  the antecedent
nodes.

e the contradiction node is mapped to the falsum (1).

e nogood declarations are treated like any other justification.
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The formula part of the resulting set of labelled formulae consists of formulae 
that are either Horn or positive (nogood justifications). 

More formally we get 

Definition 5.1.1 (Labelled ATMS Representation) 
Let DN = (N, J, A, .1.) be an ATMS. Then we define injective functions that 
map elements of N\.L to propositional atoms from BL and the logic of the 
labels, respectively. For N E N we denote the image as N and aN and call it 
the corresponding atom resp. the corresponding label to N. 

Then the labelled representation of DN is a set LLATMS(DN) of labelled 
formulae, where classical propositionallogic is the basic logic: 

LLATMs(DN) = U LLATMs(N) U U LLATMS(j) 
NEA jEJ 

where 
VN E A LLATMs(N) = aN:N 

Vj E J with conseq(j) =I=.L LLATMS(j) = T : 1\ fir ~ conseq(j) 
NE 

inset(j) 

Vj E J with conseq(j) =.L LLATMS(j) = T : V ...,fIr. 
NEinset(j) 

We note that ATMS assumptions become exactly our assumptions in the res
ulting semi-basic set, whereas justifications (ordinary and nogood-justifications) 
become non-assumptions. 

The fundamental theorem for our translation from ATMS to sets of labelled 
formulae is theorem 4.1.15, which states that the above outline of a translation 
is in fact correct. 

Given the work already done in chapter 4 the fundamental result can be 
obtained rather trivially: 

Theorem 5.1.2 (ATMS Representation Theorem) 
Given an ATMS DN = (N, J, A, .L) and its representation as a set .p = 
LLATMS(DN) of labelled formulae according to definition 5.1.1. Then for any 
node N E N holds: If 1 is the label computed for N by the ATMS procedure, 
then the characteristic formula of 1 is logically equivalent to the maximal label 
for which cl> FconsLL fir holds. 

Proof: 
We presuppose, that the label computed by the ATMS is consistent, sound, 

complete and minimal. According to de Kleer it always exists and is unique. 
If we can show that the characteristic function of the maximal label fulfills the 
requirements, we are done because of the uniqueness. Let a be the maximal 
label for which cl> I=consLL fir holds. 

1.	 x(a) is sound: because of the maximality Cl. must be positive and relevant. 
Therefore x(a) exists. With theorem 4.1.15 we obtain the result. 
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The formula part of the resulting set of labelled formulae consists of formulae
that are either Horn or positive (nogood justifications).

More formally we get

Definition 5.1.1 (Labelled ATMS Representation)
Let DN  = (N, J, A,  L )  be an ATMS. Then we define injective functions that
map elements of  N \L  to propositional atoms from BL  and the logic of  the
labels, respectively. For N € N we denote the image as N and ay  and call it
the corresponding atom resp. the corresponding label to N.
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Ne
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We note that ATMS assumptions become exactly our assumptions in  the res-
ulting semi-basic set, whereas justifications (ordinary and nogood-justifications)
become non-assumptions.

The fundamental theorem for our translation from ATMS to sets of labelled
formulae is theorem 4.1.15, which states that the above outline of  a translation
is in fact correct.

Given the work already done in chapter 4 the fundamental result can be
obtained rather trivially:

Theorem 5.1.2 (ATMS Representation Theorem)
Given an ATMS DN  = (N, J, A, L)  and its representation as a set ® =
LLxrms(DN) of  labelled formulae according to definition 5.1.1. Then for any
node N € N holds: If | is the label computed for N by the ATMS procedure,
then the characteristic formula of 1 is logically equivalent to the maximal label

Proof:
We presuppose, that the label computed by the ATMS is consistent, sound,

complete and minimal. According to de Kleer i t  always exists and is unique.
If  we can show that the characteristic function of  the maximal label fulfills the
requirements, we are done because of the uniqueness. Let a be the maximal
label for which ® =consir, N holds.

1. x(a)  is sound: because of  the maximality o must be positive and relevant.
Therefore x(a) exists. With theorem 4.1.15 we obtain the result.
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2. x(a) is consistent: from the definition of FconsLL 

3. x(a) is complete: from the maximality of a 

4. x(a) is minimal: this follows directly from the DDNF form. o 

5.2 Doyle's TMS 

In the TMS there is no distinguished class of nodes serving as assumptions. 
However, there are some implicit assumptions present, namely every node can 
simply be assumed out if there is no justification for the contrary. The intro
duction of these as explicit assumptions gives us the possibility to treat the 
TMS similarly to the ATMS. 

The general idea is to model justifications by implications, as it was done 
in the ATMS case. A justification with consequent C, IN-SET {A} and OUT
SET {B} would then simply become T:A 1\ -.B -+ C. Formulae of type a:F 
with atomic F are not introduced this time, as there are no distinguished items 
that are explicitly marked as assumptions. Instead we add a:-.F (with fresh 
a) for all nodes (atomic formulas) introduced, which represents the implicit 
assumptions. 

We have to be careful in modelling the justifications, though, because in the 
TMS IN-SET and OUT-SET are not handled symmetrically. The crucial point 
to be represented is the notion of well-foundedness. This has to do with the 
directionality of justifications. It should not be possible to deduce backward 
from an out consequence, that an antecedent in the OUT-SET is in, for this 
violates well-foundedness. This can be blocked by replacing the justification 
T:A 1\ -.B -+ G from above by f3:A 1\ -.B -+ C, where f3:-.B was the assumption 
that B is out. More generally: we take as label for the justification formulae 
the conjunction of the labels of its out-antecedents. 

Besides, the TMS does not yield enumerations of environments (labels) for 
every node considered in isolation, but computes one (of possibly many, if one 
exists at all) labelling, representing a global state. We capture this by the input 
completeness demand. 

Definition 5.2.1 (Labelled TMS Representation) 
Let DN = (N, J, E) be a TMS. Now we define two injective functions, that 

map every node A E N to a BL-atom A, the so called corresponding atom, 
and the PL-atom aA, the corresponding label, respectively. The (partial) 
inverse functions yield A as the corresponding node. 

Then the labelled representation of DN is a set LLTMs(DN) of labelled 
formulae over classical propositionallogic as basic logic, obtained as 

LLTMS(DN) = U LLTMS(N) U U LLTMS(j) 
NEN jEJ 
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2. x(a) is consistent: from the definition of FconsLL

3. x(a)  is complete: from the maximality of  a

4. x(@x) is minimal: this follows directly from the DDNF form. oO

5 .2  Doyle’s TMS

In the TMS there is no distinguished class of nodes serving as assumptions.
However, there are some implicit assumptions present, namely every node can
simply be assumed out if there is no justification for the contrary. The intro-
duction of these as explicit assumptions gives us the possibility to treat the
TMS similarly to the ATMS.

The general idea is to model justifications by implications, as it was done
in  the ATMS case. A justification with consequent C, IN-SET {A} and OUT-
SET {B}  would then simply become T :AA  -B  — C.  Formulae of type a:F
with atomic F are not introduced this time, as there are no  distinguished items
that are explicitly marked as assumptions. Instead we add a:—F (with fresh
a) for all nodes (atomic formulas) introduced, which represents the implicit
assumptions.

We have to  be careful in  modelling the justifications, though, because in  the
TMS  IN-SET and OUT-SET are not handled symmetrically. The crucial point
to be represented is the notion of well-foundedness. This has to do with the
directionality of  justifications. It should not be  possible to deduce backward
from an out consequence, that an  antecedent in the OUT-SET is in, for this
violates well-foundedness. This can be blocked by replacing the justification
T:A  AB  — C from above by  8:A A -B  — C,  where §:~B was the assumption
that B is out .  More generally: we take as label for the justification formulae
the conjunction of  the labels of  its out-antecedents.

Besides, the TMS does not yield enumerations of environments (labels) for
every node considered in isolation, but computes one (of possibly many, if one
exists at all) labelling, representing a global state. We capture this by the input
completeness demand. i }

Definition 5.2.1 (Labelled TMS Representation)
Let DN  = (N, J, E)  be a TMS. Now we define two injective functions, that
map every node A € N to a BL-atom A,  the so called corresponding atom,
and the PL-atom a4 ,  the corresponding label, respectively. The (partial)
inverse functions yield A as the corresponding node.

Then the labelled representation of  DN  is a set LLTMms(DN) of  labelled
formulae over classical propositional logic as basic logic, obtained as

LLyms(DN) = J LL rms(N)U  (J LLrMs(d)
NeN jeJ



68 CHAPTER 5. MODELLING SYSTEMS 

where 

\:IN E N LLTMS(N) = CtN:-,jij
 

\:Ij E J LLTMSU) = IPA U\A 1\ 1\-,.-4) -+ con-;qU).
 
AE AE AE 

outset(i) inset(j) outset(j) 

This may seem a little odd on first view. What happens is the following: 
contrapositives are not suppressed, but using the implication representing the 
justification in the contrapositive direction also adds the respective label to the 
respective context. This, however, results in a nogood, as the out-antecedent 
concerned is justified as being out with the same label. 

In our definition of the labelled representation contradiction nodes are not 
handled specially, but mapped to ordinary BL atoms. If we want to treat 
dependency directed backtracking or talk about correct nogood strategies in 
the Elkan sense, we need a different type of transformation that takes care of 
this. 

Definition 5.2.2 (TMS Representation with Contradiction Nodes) 
Let DN = (N, J, E) be a TMS. The labelled representation of DN, account
ing for contradiction nodes, is a set LLTMS' (DN) of labelled formulae over 
classical propositionallogic as basic logic, obtained as 

LLTMS' (DN) = U LLTMS' (N) U ULLTMS' (j) 
NeN\{.L} jeJ 

where 

\:IN E N with N =1= 1. LLTMS,(N) - LLTMS(N) 
Vj E J with CONSUl =1= 1. LLTMS,(j) - LLTMSU) 
\:Ij E J with CONSU) = 1. LLTMS,(j) - T: V -,.4:. 

Ae 
inset(j) 

We can now try to find labels for the atomic formulae, that are consistent 
and input complete, i.e. this time we are interested in consequences with respect 
to I=max(cons,inputLL)' This will in fact give us a representation of all possible 
labellings. Of course the nondeterminism of TMS (which concrete labelling to 
choose) can not be resolved by our methods. 

The case is more complicated than ATMS, because this time we have to 
start with sets of formulae that are not even semi-basic. However, they are 
simple. 

Let us start with some examples. The notation we use for these is the fol
lowing: first we give the set of labelled formulae the dependency net is mapped 
to. Then for :every atom and its negation from the unlabelled set, as well as 
for 1., we give the maximal label according to simple LL-entailment. Because 
of the "computation rules" presented in the preceding chapter we can imme
diately read off the maximal consistent and input complete labels from this 
representation. 
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This may seem a little odd on first view. What happens is the following:
contrapositives are not suppressed, but using the implication representing the
justification in  the contrapositive direction also adds the respective label to the
respective context. This, however, results in a nogood, as the out-antecedent
concerned is justified as being out with the same label.

In  our definition of  the labelled representation contradiction nodes are not
handled specially, but mapped to ordinary BL  atoms. If we want to treat
dependency directed backtracking or talk about correct nogood strategies in
the Elkan sense, we need a different type of  transformation that takes care of
this.

Definition 5.2.2 (TMS Representation with Contradiction Nodes)
Let DN  = (N,  J,  E)  be a TMS. The labelled representation of DN, account-
ing for contradiction nodes, is a set LLy yg(DN) of labelled formulae over
classical propositional logic as basic logic, obtained as
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V ieJ  with CONS(j )= L LLpyg(j) = T :V  A .

AE
inset(5)

We can now try to find labels for the atomic formulae, that are consistent
and input complete, i.e. this time we are interested in  consequences with respect
to Fmax(cons,inputLL)- This will in fact give us a representation of all possible
labellings. Of  course the nondeterminism of  TMS (which concrete labelling to
choose) can not be resolved by our methods.

The case is more complicated than ATMS, because this time we have to
start with sets of formulae that are not even semi-basic. However, they are
simple.

Let us start with some examples. The notation we use for these is the fol-
lowing: first we give the set of labelled formulae the dependency net is mapped
to. Then for every atom and its negation from the unlabelled set, as well as
for 1 ,  we give the maximal label according to simple LL-entailment. Because
of  the “computation rules” presented in the preceding chapter we can imme-
diately read off the maximal consistent and input complete labels from this
representation.
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Example 5.2.3 (Even Loop) 

This will be modelled as 

a :..,A {3:..,B 

a+{3:AVB 

The second formula is simply a contraction of the two formulae a:A V B and 
{3:A V B which model the two nonmonotonic justifications. 

The resulting LL-consequences with maximal labels are 

{3:A a:..,A 
a:B {3:..,B 

a{3:1. 

We are now looking for the maximal consistent label which is input com
plete, Le. its prime implicants make either A or ..,A true for every atom A 
corresponding to a node. Here this label is a + {3. To see this we can look at 
the table of maximal labels for the respective nodes and immediately see that 
either a or {3 is needed to guarantee input completeness. Since a + {3 contains 
no nogood (no prime implicant implies the maximal label for 1.), we are done. 

What is the intuitive meaning of this? Remember labels stand for sets of sets 
of assumptions. In TMS the assumptions are the implicit assumptions of nodes 
being out. Here are two environments, characterized by a and {3. This means 
there are two environments which give us a complete well-founded labelling, 
namely assuming A to be out or assuming B to be out, which certainly meets 
our intuition. This is very much alike extensions as defined in default logics (cf. 
chapter 8). 

Example 5.2.4 (Odd Loop) 

=

- >»
t a
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Example 5.2.3 (Even Loop)

D
T

This will be  modelled as

a : -A  [ : -B

a+pB :AVB

The second formula is simply a contraction of the two formulae a:A V B and
B :AV  B which model the two nonmonotonic justifications.

The resulting LL-consequences with maximal labels are

B:A aA
a:B B:-B

af:L

We are now looking for the maximal consistent label which is input com-
plete, i.e. i ts prime implicants make either A or —A true for every atom A
corresponding to  a node. Here this label is a + ß. To  see this we can look at
the table of  maximal labels for the respective nodes and immediately see that
either a or  3 is needed to guarantee input completeness. Since a + § contains
no nogood (no prime implicant implies the maximal label for 1 ) ,  we are done.

What is the intuitive meaning of this? Remember labels stand for sets of  sets
of  assumptions. In  TMS the assumptions are the implicit assumptions of  nodes
being out .  Here are two environments, characterized by  a and 8 .  This means
there are two environments which give us a complete well-founded labelling,
namely assuming A to be  out or assuming B to  be out ,  which certainly meets
our intuition. This is very much alike extensions as defined in  default logics (cf.
chapter 8).

Example 5.2.4 (Odd Loop)
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This is modelled as 

a:AVB 

T:Av....,B 

The last two formulae can be replaced by T:A V -.B, as this subsumes the other 
one. 

This time the consequences with maximal labels are 

.:A .:....,A 
II:B III + {3:....,B 

a:..L 

The shaded parts of the formulae are nogoods. Since a is a nogood, there is 
no consistent input complete label, because it is the maximal label for A as well 
as for -,A. This corresponds to the nonexistence of a well-founded labelling. 

Before we can proceed to the main theorem of this section, we have to 
introduce some terminology. 

Definition 5.2.5 (Stable Labels)
 
A consistent, input complete label f3 which is a conjunction of atoms, containing
 

all the atoms aA for which cI> FLL {3:....,j{ holds, is called stable.
 

Definition 5.2.6 (Canonical Label Transformation)
 
Let DN be a TMS and LLTMS(DN) its labelled representation. Then any la

belling 1 of DN can be mapped to the canonical label >"(l), which is defined
 
as
 

A(l) = IT aN
 

I(N)=out
 

Since Ais injective (up to ordering), there is a (partial) inverse function A-I that 
maps labels consisting of conjunctions of atomic labels that are corresponding 
to nodes of DN to labellings of DN. 

Lemma 5.2.7
 
A-1 is always defined on stable labels.
 

Proof: 
A stable label a is by definition input complete and consistent. So for every 

node A we have either cI> FLL a:..4 or <I> FLL a:....,j{ (exclusive). 

We can now approach the fundamental theorem of JTMS representation: it 
shows that there is a one to one correspondence between the sound and well
founded labellings of a TMS and the stable labels of its labelled representation. 
We prove this in two steps. 

Proposition 5.2.8 
Let DN = (N, J, E) be a TMS, and <I> = LLTMs(DN) its labelled representation 
according to definition 5.2.1. Let further l be a sound and well-founded labelling 
of D.N. Then the canonical label A(l) is stable. 

0 
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This is modelled as
a :  A BB: =B

a :  AVB

T :AV-B
The last two formulae can be replaced by T:A V =B, as this subsumes the other
one.

This time the consequences with maximal labels are

EA
BB

The shaded parts of the formulae are nogoods. Since a is a nogood, there is
no consistent input complete label, because it is the maximal label for A as well
as for „A. This corresponds to the nonexistence of a well-founded labelling.

Before we can proceed to the main theorem of this section, we have to
introduce some terminology.

Definition 5.2.5 (Stable Labels)
A consistent, input complete label 8 which is a conjunction of atoms, containing
all the atoms a4  for which ® = ,  B:—A holds, is called stable.

Definition 5.2.6 (Canonical Label Transformation)
Let DN  be a TMS and LLTms(DN) its labelled representation. Then any la-
belling! of DN  can be mapped to the canonical label A({), which is defined
as

M)=  I I  on
KHN)=out

Since A is injective (up to ordering), there is a (partial) inverse function A~! that
maps labels consisting of conjunctions of atomic labels that are corresponding
to  nodes of  DN  to labellings of  DN.

Lemma 5.2.7
A !  is always defined on stable labels.

Proof:
A stable label « is by definition input completeand consistent. So for every

node A we have either ® =r, a :4 or ® =p  a:—A (exclusive). a

We  can now approach the fundamental theorem of  JTMS representation: i t
shows that there is a one to one correspondence between the sound and well-
founded labellings of a TMS and the stable labels of its labelled representation.
We  prove this in two steps.

Proposit ion 5.2.8
Let DN  = (N, J,  E)  be a TMS, and ® = LLyMs(DN) its labelled representation
according to definition 5.2.1. Let  further| be a sound and well-founded labelling
of  DN. Then the canonical label MI) is stable.
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Proof: 
a trivially fulfills the first criterion for being stable, namely containing exactly 

the labels corresponding to nodes labelled out, by definition of the canonical 
label. We have yet to prove that it is input complete and consistent. 

First we show that the label is input complete. We consider the nodes 
labelled out and the ones labelled in by I separately. 

1.	 For all nodes A labelled out of course q. FLL a:--.A holds because we have 
LLTMS(A) = aA:--.A E q. and aA is a literal in a. 

2.	 There exists a function rank, such that, if a node A is labelled in, then 
there exists a valid justification for A with the rank of all nodes in its IN
SET smaller than the rank of A. We use this function for an induction to 
prove q. FLL a:A for all the nodes A labelled in: 

The statement holds for all A with the lowest occurring rank, for the 
only possibility for them are justifications with empty IN-SET. The way 
justifications are translated we have a formula 

where (3 is a conjunction of atomic labels. Since the justification is valid, 
all the Ai are out and therefore their corresponding labels appear in a. 
We also have q. FLL a:--.Ai, so we can conclude q. FLL a:A. Now we 
assume this holds for all A with a rank smaller than some given value. 
If we consider a node labelled in with the next rank occurring we know 
that there must be a valid justification for this node with all the nodes in 
the IN-SET having a smaller rank. Therefore we can assume they are all 
a-implied. With this we can perform the induction step, concluding that 
the statement indeed holds for all nodes labelled in. 

Now we show that such a label is consistent. Suppose there is a BL-formula 
F with <.I> FLL a:F and <.I> FLL a:--.F. Then there must be a BL-inconsistent 
subset of formula( q.) with a label that PL-implies a. We show that the set of all 
formulae in q. with a label implying a is BL-consistent. So must every subset 
be, and we get a contradiction. 

We construct this set 1IJ' by -including all the formulae from <.I> labelled T, 
plus those whose l~bels contain only literals occurring in a. This is the biggest 
subset of q. with a label implying a. We now construct a BL-interpretation ~ 

by defining 
\fA E N ~ FBL A iff I(A) = out. 

We claim that ~ FBL formula(<p) for all formulae <p in 1IJ'. This is easy to 
prove: If <p = LLTMS (j) for some justification j, then j is valid if one of the 
IN-antecedents is out, one of the OUT-antecedents is in: or the consequent 
is in. The OUT-antecedents are all out in our construction. But since the 
labelling is sound, the consequent must be in if none of the IN-antecedents is 
out. So our interpretation ~ must satisfy the corresponding formulae also. If 
<p = LLTMS(N) for some node N, it is trivially satisfied because of the definition 
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Proof:
«a trivially fulfills the first criterion for being stable, namely containing exactly

the labels corresponding to nodes labelled out,  by  definition of  the canonical
label. We have yet to prove that it is input complete and consistent.

First we show that the label is input complete. We consider the nodes
labelled out and the ones labelled in by / separately.

1. For all nodes A labelled out of  course ® =r,  a:—A holds because we have
LLrms(A) = a4 : A € ® and ay  is a literal in a.

2. There exists a function rank, such that, i f  a node A is labelled in,  then
there exists a valid justification for A with the rank of all nodes in  its IN-
SET smaller than the rank of A. We use this function for an induction to
prove ® EL  a:A for all the nodes A labelled in:

The statement holds for all A with the lowest occurring rank, for the
only possibility for them are justifications with empty IN-SET. The way
justifications are translated we have a formula

BAV. . . VA VA

where ß is a conjunction of atomic labels. Since the justification is valid,
all the A;  are out and therefore their corresponding labels appear in a.
We also have ® ir .  a:  A;, so we can conclude ® |=r1, a:A.  Now we
assume this holds for all A with a rank smaller than some given value.
If we consider a node labelled in  with the next rank occurring we know
that there must be a valid justification for this node with all the nodes in
the IN-SET having a smaller rank. Therefore we can assume they are all
a-implied. With this we can perform the induction step, concluding that
the statement indeed holds for all nodes labelled in.

Now we show that such a label is consistent. Suppose there is a BL-formula
F with ® |=11, a :F  and ® k=, a :  FF. Then there must be a BL-inconsistent
subset of formula(®) with a label that PL-implies a. We show that the set of all
formulae in ® with a label implying « is BL-consistent. So must every subset
be, and we get a contradiction.

We construct this set ¥ by including all the formulae from ® labelled T ,
plus those whose labels contain only literals occurring in a .  This is the biggest
subset of ® with a label implying a .  We now construct a BL-interpretation $
by defining

VAEN Sp .  A iff (A) = out.

We claim that § |=pr, formula(yp) for all formulae ¢ in ©. This is easy to
prove: I f  ¢ = LLtms(j) for some justification j ,  then j is valid if one of the
IN-antecedents is out, one of the OUT-antecedents is in  or the consequent
is in. The OUT-antecedents are all out in  our construction. But since the
labelling is sound, the consequent must be in i f  none of the IN-antecedents is
out.  So our interpretation & must satisfy the corresponding formulae also. If
¢ = LLTMs(N) for some node N, it is trivially satisfied because of  the definition
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of~. So there exists a BL-model SS of formula('li). This means this set and all 
its subsets are BL-consistent. 

We now come to the converse direction. 

Proposition 5.2.9
 
Let DN = (N, J, E) be a TMS, and q> = LLrMS(DN) its labelled representation,
 
and let 0: be a stable label of q>. Then A-1 (0:) is sound and well-founded.
 

Proof: 
Because of lemma 5.2.7 we know that ).-1(0:) is defined. Now consider the 

labelling A-1 (0:). We have to show that this labelling is indeed sound and 
well-founded. 

We start with soundness. A justification with IN-antecedents AI, ... , An, 
OUT-antecedents Bb' .. ,Bm and consequent C is translated to 

- - -...-...-
{3Bl" . {3Bm :-,A1 V ... V -,An V B1 V ... V Bm V C. 

If all the IN-antecedents are in and all the OUT-antecedents out, this means 
q> FLL o::Ai and q> FLL a:-,Bi, we also have q> FLL o::C, because all the {3Bi 

are contained in a. 

We now show how to construct the rank function for the proof of well
foundedness. 

For this purpose we take a look at the atoms A for which q> FLL o::A holds. 
From the definition of FLL we know that there must exist collections of subsets 
of q> whose formula parts BL-entail A and the disjunction of whose labels is PL
implied by 0:. Because of the construction of 0: as conjunction of atoms and the 
fact that q> is simple this can be strengthened: there must exist a subset 'li of q> 

with formula('li) FBL Aand FPL a -+ label('li). Now consider 'li' = x(label('li)) 
instead. Since it is clearly the case that 'li' ~ 'li, we get formula('li') FBL A as 
welL Furthermore 'li' can not be BL-inconsistent, because this would contradict 
the consistency of a, since labet('li') = label('li). So formula('li') has BL-models. 

How do these BL-models look? In iIt' there are three types of formulae: 

• O:Ai :-.Ai with atomic label O:Ai occurring in 0: 

• possibly justifications of contradiction nodes of the form 

• translations of ordinary justifications of the form 

If there are no formulae of the third kind, then formula('li') does not BL
entail any positive atom, for the interpretation mapping all atoms to false is 
clearly a BL-model of formula('li'). Because of the formulae of the first type 
every model of formula ('1t') has to map the respective atoms to false. These 
appear again as the Bi in the third kind of formulae. Since all the f3i appear 
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of  $ .  So there exists a BL-model & of  formula(¥). This means this set and all
i ts  subsets are BL-consistent. m]

We  now come to  the converse direction.

Proposition 5.2.9
Let DN  = (N, J, E)  be a TMS, and ® = LLtys(DN) its labelled representation,
and let &x be a stable label of ®. Then \7} (a)  is sound and well-founded.

Proof:
Because of lemma 5.2.7 we know that \ ” ! (a)  is defined. Now consider the

labelling \ 7 l ( a ) .  We have to  show that this labelling is indeed sound and
well-founded.

We start with soundness. A justification with IN-antecedents A; , . . . ,  An,
OUT-antecedents By , . . . ,  Bm and consequent C is translated to

Bp, . . . 0p ,  AV...  VA  VB V...VB,  VC.

If  all the IN-antecedents are in  and all the OUT-antecedents out, this means
® F ıL a:A; and ® FLL o:~B;, we also have ® FLL a:C, because all the BB,
are contained in a.

We now show how to construct the rank function for the proof of well-
foundedness. N

For this purpose we take a look at the atoms A for which ® >11  @:A4 holds.
From the definition of =p, we know that there must exist collections of subsets
of  ® whose formula parts BL-entail A and the disjunction of whose labels is PL-
implied by &.  Because of the construction of a as conjunction of atoms and the
fact that ® is simple this can be strengthened: there must exist a subset ¥ of ®
with formula(¥) =p,  4 and p r  a — label(¥). Now consider ¥’  = x(label(¥))
instead. Since i t  is clearly the case that ¥'  DO U,  we get formula(?’) [=p A as
well. Furthermore ¥/  can not be BL-inconsistent, because this would contradict
the consistency of  a ,  since label(¥’) = label(¥). So formula(¥’) has BL-models.

How do these BL-models look? In ¥’  there are three types of formulae:

J cain Az with atomic label a4, occurring in a

e possibly justifications of contradiction nodes of the form

TmA;V...V-4,

e translations of ordinary justifications of  the form

Bay ...BB AL V. . .V=A ,  VB; ...VBp VC.

If there are no formulae of the third kind, then formula(¥’) does not BL-
entail any positive atom, for the interpretation mapping all atoms to false is
clearly a BL-model of formula(¥’). Because of the formulae of the first type
every model of  formula(¥’) has to map the respective atoms to fa l se .  These
appear again as the B;  in the third kind of formulae. Since all the 8; appear
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in CY, all the Bi are mapped to false in a model of formula(w') and thus the 
respective atoms do not contribute to satisfying the respective formula. 

The only possibility to force an atom to be present (positively) in a model 
is the existence of a formula of the third kind with no negative literals. This 
shows that the consequent C is BL-entailed. This corresponds exactly to a 
valid justification with no IN-antecedents. We can start the definition of rank 
by giving rank 0 to all the nodes C for which this is the case. 

The fact that these atoms are present in all models of formula(w') forces 
some others to be present also, iff there exist formulae of the third kind which 
contain as negative literals only literals of rank O. There also the consequents 
have to be in the model. We rank them with l. 

We can proceed this way until there is no formula left which contains as 
negative literals only literals of preceding ranks. All remaining nodes can be 
assumed to be falsified by an interpretation without any problem and thus are 
not BL-entailed. 

Of course '11' may have fewer models than '11, sow' could BL-entail more 
formulae. But this is not critical, since the pure existence of a set like '11 also 
guarantees the existence of '11'. 0 

The main result of this section is now a corollary of the two preceding 
propositions: 

Corollary 5.2.10 (TMS Representation Theorem 1)
 
Let DN = (N, J, E) be a TMS, and <P = LLrrMS(DN) its labelled representation.
 
Then there is a bijection between the stable labels of <P and the canonical labels
 
of sound and well-founded labellings of DN.
 

Corollary 5.2.11
 
Let <P be the labelled representation of the dependency net DN. Then there exists
 
a sound, well-founded labelling for DN, ijJ <P possesses a stable label.
 

An interesting question is how to compute the stable labels and thus the 
labellings of a dependency net. The general procedure is first to compute the 
maximal consistent, input satisfying label. This can be done in steps, first 
computing the maximal (LL) labels for every atom and its negation, as well as 
for the falsum, combining these in the appropriate way. 

Then one looks at the prime implicants of this label. Since the maximal label 
is positive, so are the prime implicants. Furthermore every prime implicant is 
input complete. Since every input complete label is also input satisfying, any 
input complete label implies the maximal label and in particular any input 
complete conjunction of literals implies one of the prime implicants, Le. it has 
at least the same atoms. 

Now one has to check stability. For this we add to every pri~e implicant all 
the atomic labels corresponding to nodes whose negation is LL-entailed with 
this label. Some of the prime implicants will then yield labels which are not 
consistent. Also several of the prime implicants may lead to the same label. 

This is illustrated by two examples: 
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in a, all the B;  are mapped to false in a model of formula(?’) and thus the
respective atoms do not contribute to satisfying the respective formula.

The only possibility to force an atom to be present (positively) in a model
is the existence of a formulaof the third kind with no negative literals. This
shows that the consequent C is BL-entailed. This corresponds exactly to a
valid justification with no IN-antecedents. We can start the definition of rank
by giving rank 0 to all the nodes C for which this is the case.

The fact that these atoms are present in all models of formula(¥’) forces
some others to  be  present also, iff there exist formulae of  the third kind which
contain as negative literals only literals of rank 0. There also the consequents
have to be in the model. We rank them with 1.

We can proceed this way until there is no formula left which contains as
negative literals only literals of preceding ranks. All remaining nodes can be
assumed to be  falsified by  an  interpretation without any problem and thus are
not BL-entailed.

Of  course ¥’  may have fewer models than ¥ ,  so ¥’  could BL-entail more
formulae. But this is not critical, since the pure ezistence of a set like ¥ also
guarantees the existence of Y’. a

The main result of  this section is now a corollary of  the two preceding
propositions:

Corollary 5.2.10 (TMS Representation Theorem 1 )
Let DN  = (N, J, E)  be a TMS, and ® = LL7Ms(DN) its labelled representation.
Then there is a bijection between the stable labels of ® and the canonical labels
of sound and well-founded labellings of  DN.

Corollary 5.2.11
Let  ® be the labelled representation of the dependency net  DN. Then there exists
a sound, well-founded labelling for DN, iff ® possesses a stable label.

An  interesting question is how to compute the stable labels and thus the
labellings of a dependency net. The general procedure is first to compute the
maximal consistent, input satisfying label. This can be done in steps, first
computing the maximal (LL) labels for every atom and its negation, as well as
for the falsum, combining these in the appropriate way.

Then one looks at the prime implicants of this label. Since the maximal label
is positive, so are the prime implicants. Furthermore every prime implicant is
input complete. Since every input complete label is also input satisfying, any
input complete label implies the maximal label and in particular any input
complete conjunction of  literals implies one of  the prime implicants, i.e. it has
at least the same atoms.

Now one has to  check stability. For this we add to  every prime implicant all
the atomic labels corresponding to nodes whose negation is LL-entailed with
this label. Some of  the prime implicants will then yield labels which are not
consistent. Also several of  the prime implicants may lead to the same label.

This is illustrated by two examples:
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Example 5.2.12 
The net 

is translated to 
a:...,A j3:....,B 

resulting in the following maximal labels: 

J..:A a + !1:....,A 
J..:B a + !1:....,B 

1.:1. 

The candidate labels are a and {3, but they both are mapped to the same 
stable label, a{3, which corresponds to the only sound and well-founded labelling 
for this dependency net, namely both nodes labelled out. 

Example 5.2.13 
The net 

translates to 
{3:...,B ,:....,C 

T:....,AvB 

T:AV....,B 

{3:BVC 

This time we give the maximal labels with nogoods already eliminated: 
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Example 5.2.12
The net

B

is translated to ,

a :  A B : -B

T : -AVB

T :AvV-B

resulting in the following maximal labels:

L:;A a + f : -A
L:B & + B:-B

LL

The candidate labels are a and 3 ,  but they both are mapped to the same
stable label, af, which corresponds to  the only sound and well-founded labelling
for this dependency net, namely both nodes labelled out.

Example 5.2.13
The net

translates to

T : -AVB

T :AV-B

B:BvC

This time we give the maximal labels with nogoods already eliminated:
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.1:A a + {3:-,A 

.1:B a + {3:-,B 
{3:C "'(:-,B 

{3"'(:.1 

So the maximal consistent, input complete label is a"'( + {3. Whereas {3 
can be expanded to the stable a{3, the label a"'( (which makes all nodes out, 
which is not a sound labelling) can not be enlarged by adding {3 without losing 
consistency, though (l) FLL a"'(:...,B. 

In our representation theorem we have ignored the particular semantics of 
contradiction nodes, since the translation according to definition 5.2.1 treats 
them as ordinary nodes and hence does not force them to be labelled out. 
Using definition 5.2.2 instead, we can overcome this flaw and get a stronger 
version of the TMS representation theorem: 

Theorem 5.2.14 (TMS Representation Theorem 2) 
Let DN = (N, J, E) be a TMS, and (l) =LLTMs' (DN) its labelled representation 
(accounting for contradiction nodes). Then there is a bijection between the 
stable labels of (l) and the canonical labels of sound and well-founded labellings 
of DN that label contradiction nodes out. 

Proof: 
The proof follows in essence the proofs for propositions 5.2.8 and 5.2.9. The 

difference is, that this time contradiction nodes have no direct atomic coun
terpart. LLTMs' differs from LLTMS only in this respect. Let LLTMS map a 
contradiction node to an atom C. Then a labelling assigns the label in to this 
contradiction node, if the corresponding label a is a label for C, Le. a:C holds. 
Looking at the LLTMS' translation this means a:.1 holds, which simply means a 
is inconsistent. So labellings that map a contradiction node to in are excluded 
by LLTMS' because of the consistency criterion. 0 

It is important to emphasize that our modelling of the TMS has a one to one 
correspondence between the TMS's justifications and labelled formulae. There
fore the translation is purely local, and it is possible to extend such a model by 
further formulae if justifications are added to the TMS. This is in contrast to 
characterizations like that of Jmiker & Konolige (1990a), which maps labellings 
(taking the whole dependency net into consideration for the translation of every 
single justification) and therefore cannot be extended that simply. They have 
to completely restart the whole procedure for the addition of a justification. In 
our case, however, the logical representation can be incrementally updated very 
much the same way as the original net. 

5.2.1 Dependency directed Backtracking 

Though we have accounted for contradiction nodes in the preceding section, 
we have not really modelled the dependency directed backtracking procedure. 
Our translation of contradiction nodes guarantees that they are never labelled 
in. The reason for this is that contradiction nodes do not show up as separate 

5.2 DoyLE’s TMS 75

L:4 a+  B inA
L:B a+  BB
B:C ~v:=B

Br:L
So the maximal consistent, input complete label is ary + 8.  Whereas ß

can be expanded to the stable a8, the label ay  (which makes all nodes out,
which is not a sound labelling) can not be enlarged by adding 8 without losing
consistency, though ® =r, ay:-B.

In our representation theorem we have ignored the particular semantics of
contradiction nodes, since the translation according to definition 5.2.1 treats
them as ordinary nodes and hence does not force them to be labelled out.
Using definition 5.2.2 instead, we can overcome this flaw and get a stronger
version of  the TMS  representation theorem:

Theorem 5.2.14 (TMS Representation Theorem 2)
Let DN  = (N, J, E)  be a TMS, and ® = LLy\g (DN) its labelled representation
(accounting for contradiction nodes). Then there is a bijection between the
stable labels of ® and the canonical labels of sound and well-founded labellings
of DN  that label contradiction nodes out.

Proof:
The proof follows in essence the proofs for propositions 5.2.8 and 5.2.9. The

difference is, that this time contradiction nodes have no direct atomic coun-
terpart. LLryg differs from LLtyps only in this respect. Let LLTMs map a
contradiction node to an  atom C.  Then a labelling assigns the label in  to  this
contradiction node, if the corresponding label a is a label for C,  i.e. a:C holds.
Looking at the LLyy\g translation this means a :L  holds, which simply means &
is inconsistent. So labellings that map a contradiction node to in are excluded
by LLyyg because of the consistency criterion. m]

It is important to emphasize that our modelling of the TMS has a one to  one
correspondence between the TMS’s justifications and labelled formulae. There-
fore the translation is purely local, and it is possible to  extend such a model by
further formulae i f  justifications are added to the TMS. This is in contrast to
characterizations like that of Junker & Konolige (1990a), which maps labellings
(taking the whole dependency net into consideration for the translation of  every
single justification) and therefore cannot be extended that simply. They have
to completely restart the whole procedure for the addition of a justification. In
our case, however, the logical representation can be incrementally updated very
much the same way as the original net.

5 .2 .1  Dependency directed Backtracking

Though we have accounted for contradiction nodes in the preceding section,
we have not really modelled the dependency directed backtracking procedure.
Our translation of contradiction nodes guarantees that they are never labelled
in. The reason for this is that contradiction nodes do not show up  as separate
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atoms, like all the other nodes, that can be freely interpreted, but are directly 
mapped to the falsum. So we have not treated dependency directed backtrack
ing in the way the TMS treats the matter. Although we believe our approach 
is an improvement, because it pursues a correct nogood strategy, one may want 
to exactly imitate what the TMS does. There are two possibilities for this. 

1.	 The first is to use the translation from definition 5.2.1 instead of the 
one in definition 5.2.2. Then one only has theorem 5.2.10 instead of 
theorem 5.2.14 with the effect that contradiction nodes may be labelled 
in. Now one could take an operational view and just enlarge the set of 
formulae by one that represents the new justification introduced by the 
TMS. This is certainly correct, but not very satisfactory, since that does 
not supply any semantics. 

2.	 The second possibility is motivated by what DDB was originally intended 
for. It introduces new justification possibilities by allowing to infer back
ward from contradictions in certain cases. This can be done by changing 
the logic of the labels in such a way that justifications are represented by 
an appropriate kind of implication. This is certainly the most interesting 
variant, but it is beyond the scope of this thesis. 

3.	 The approach we shall pursue within this section is to allow restricted 
contrapositive use ofjustifications by adding extra labels to them. We give 
some examples of how this works, but unfortunately we are not able to 
give characterizing theorems, as the approach does more than the original 
DDB. Therefore this section stays rather informal. 

Have a look at the example of a single justification 

We used to model this with the formulae 

a:-:A j3:...,B "'(:...,c 

: j3: A /\ ...,B -+ C 

The PL-implication can be used in three directions, only one of which is 
usually wanted. Let us check what happens: 
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atoms, like all the other nodes, that can be  freely interpreted, but are directly
mapped to the falsum. So we have not treated dependency directed backtrack-
ing in the way the TMS treats the matter. Although we believe our approach
is  an  improvement, because it pursues a correct nogood strategy, one may want
to exactly imitate what the TMS does. There are two possibilities for this.

1. The first is to use the translation from definition 5.2.1 instead of the
one in definition 5.2.2. Then one only has theorem 5.2.10 instead of
theorem 5.2.14 with the effect that contradiction nodes may be labelled
in. Now one could take an operational view and just enlarge the set of
formulae by one that represents the new justification introduced by the
TMS. This is certainly correct, but not very satisfactory, since that does
not supply any semantics.

2. The second possibility is motivated by what DDB was originally intended
for. It introduces new justification possibilities by allowing to infer back-
ward from contradictions in certain cases. This can be done by changing
the logic of  the labels in such a way that justifications are represented by
an  appropriate kind of  implication. This is certainly the most interesting
variant, but it is beyond the scope of this thesis.

3. The approach we shall pursue within this section is to allow restricted
contrapositive use of justifications by adding extra labels to them. We give
some examples of  how this works, but unfortunately we are not able to
give characterizing theorems, as the approach does more than the original
DDB.  Therefore this section stays rather informal.

Have a look at the example of a single justification

©
PEO

©)

We used to  model this with the formulae

&:  A B : -B  v : -C

“B :AN-B+C

The PL-implication can be  used in three directions, only one of  which is
usually wanted. Let us check what happens:
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1.	 If we have a reason ~ for A being in, Le. o:A holds, then we can then use 
the formula describing the justification above to derive f3e5:C. This is the 
direction we normally want to use. 

2.	 If we instead have reasons for C being out (~:...,C) and A being in (E:A), 
we can work in the backwards direction to conclude f3oE:B. But we also 
have f3:...,B. Therefore f3~E is a nogood and this inference is blocked. 

3.	 The last direction thinkable is deriving f38:...,A from ~:...,C (and f3:...,B). 
But this is not really new, for we can deduce a:...,A anyway. The two 
labels do not imply one another, but if a turns out to be a nogood, then 
of course f3~ is a nogood, too, for the same derivation for 1. could be used 
simply starting with f3e5:...,A instead of a:...,A. 

So the ordinary mechanism (without DDB) works as expected. The "wrong" 
directions are excluded by labelling the justification not with T but with the 
conjunction of all antecedents in the OUT-SET. 

For modelling DDB we want to be able to use justifications backward. If in 
the example C constitutes a nogood, we want to not only force C to be out, 
but use this as a reason for either A being out or B being in. Already here it 
becomes apparent that we do not want to copy the faults accompanying DDB: 
The normal DDB procedures will try to make B in, neglecting the possibil
ity of alternative labellings with A labelled out. As already noted, there are 
possibilities to model the multidirectionality by alternative definitions of the 
implication and therefore digression from PL as logic for the labels. One could 
for example use three-valued logics to be able to discriminate between "out 
because of lack of justifications for being in" and "must necessarily be out". 
Here we go a simpler way by allowing for certain backward directions by chan
ging the label for the justification from f3 to f3 +;Y, Le. permitting alternative 
derivations that do not include the f3. The new justification 

f3 + ;y : A 1\ ...,B -+ C 

should be understood as saying "in order to use me, you either have to assume 
that B is out, or you may not ~se the assumption that C is out". Why this? 
We want to be able to deduce backwards from C's state of being necessarily 
out (because of nogood justifications), but this should not be possible simply 
from the assumption that C is out, which is introduced by ,:...,C. 

Let us revisit our example with the new translation: 

1.	 Given e5:A and E:...,B we now can conclude f3e5E + ;ye5E:C. 

2.	 If we instead have O:...,C and E:A, we get f3e5E + ;Y&:B. The first part f3~E 

is again a nogood, but ;ye5E:B still remains. Note that any environment 
containing this cannot also contain the assumption that C is out, because 
;YdE and , are contradictory. 
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1. If we have a reason 4 for A being in, i.e. §:4 holds, then we can then use
the formula describing the justification above to derive Sö:C. This is the
direction we normally want to use.

2. If we instead have reasons for C being out (6:~C) and A being in  (e:4),
we can work in the backwards direction to conclude de : B.  But we also
have £:-B. Therefore Bde is a nogood and this inference is blocked.

3. The last direction thinkable is deriving S6ö:—A from § : -C  (and B:-B).
But this is not really new, for we can deduce a:—~A anyway. The two
labels do not imply one another, but if a turns out to be a nogood, then
of  course $6  is a nogood, too, for the same derivation for .L could be  used
simply starting with §4:—A instead of a:-A.

So the ordinary mechanism (without DDB) works as expected. The “wrong”
directions are excluded by labelling the justification not with T but with the
conjunction of  all antecedents in the OUT-SET.

For modelling DDB we want to be able to use justifications backward. If  in
the example C constitutes a nogood, we want to not only force C to be out,
but use this as a reason for either A being out or  B being in. Already here it
becomes apparent that we do not want to  copy the faults accompanying DDB:
The normal DDB procedures will try to make B in, neglecting the possibil-
ity of alternative labellings with A labelled out. As already noted, there are
possibilities to model the multidirectionality by alternative definitions of the
implication and therefore digression from PL  as logic for the labels. One could
for example use three-valued logics to be able to discriminate between “out
because of lack of justifications for being in” and “must necessarily be out”.
Here we go a simpler way by allowing for certain backward directions by chan-
ging the label for the justification from ß to 8 + 7, i.e. permitting alternative
derivations that do not include the 8.  The new justification

B+F :AAN-B—=C

should be understood as saying “in order to use me, you either have to assume
that B is out, or you may not use the assumption that C is out”.  Why this?
We want to be able to deduce backwards from C’s state of being necessarily
out (because of  nogood justifications), but this should not be possible simply
from the assumption that C is out, which is introduced by 7:-C.

Let us revisit our example with the new translation:

1. Given 4:4 and e:~B we now can conclude Bde + Fde:C.

2. If we instead have §:—C and e:A, we get Bde + Fde:B. The first part Bde
is again a nogood, but ¥ée:B still remains. Note that any environment
containing this cannot also contain the assumption that C is out,  because
de  and vy are contradictory.

3. From 4:~C and e:—~B we get Bde + FemA.
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In order to demonstrate that this translation works as expected, we give 
some examples. 

Example 5.2.15 

Our first translation (without DDB-correction) 

o::--,A {3:--,B 

o::AvB 

yields 

II:A 
II:B 

0::.1 

This means there is no consistent input complete label and therefore no 
complete and well-founded labelling that assigns out to the contradiction node. 
The task of DDB is to find a culprit for the inconsistency. Here B is the only 
candidate. In order to defeat it, there is again only one choice: A must be 
supplied with a valid justification. This is exactly what the TMS would do by 
adding a justification for A with B as only (IN-)antecedent. 

Instead of adding a justification, we allow using the justifications backwards. 
The fact that .1 must be out justifies B being out and this in turn gives a 
justification for A being in. 

Therefore we replace 0: : A V B by er + /3 : A VB, thus obtaining as maximal 
labels 

.+/3:A 
R:B 

0::1. 

Now there is a consistent input complete label, namely /3. In TMS terms 
that means that the fact that it is forbidden to assume B out serves as a 
justification for A 1Jeing in. 

Our procedure "is best suited to model a cautious type of DDB that does 
not label nodes in unnecessarily. The next example is already known from 
chapter 2 (exampl~ 2.2.5). 
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In order to  demonstrate that this translation works as expected, we give
some examples.

Example 5.2.15

®-+4 + 0

Our first translation (without DDB-correction)

a : -A  B : -B

a :AVB

yields

a l

This means there is no consistent input complete label and therefore no
complete and well-founded labelling that assigns out to the contradiction node.
The task of DDB is to find a culprit for the inconsistency. Here B is the only
candidate. In order to  defeat i t ,  there is again only one choice: A must be
supplied with a valid justification. This is exactly what the TMS would do by
adding a justification for A with B as only (IN-)antecedent.

Instead of adding a justification, we allow using the justifications backwards.
The fact that I must be out justifies B being out and this in turn gives a
justification for A being in.

Therefore we replace a : AV B by  a+  3 :  AV  B, thus obtaining as maximal
labels

a l

Now there is a consistent input complete label, namely 3. In TMS terms
that means that the fact that it is forbidden to assume B out serves as a
justification for A being in.

Our procedureis best suited to model a cautious type of  DDB that does
not label nodes in  unnecessarily. The next example is already known from
chapter 2 (example 2.2.5).
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Example 5.2.16 

in 

Without the DDB correction this dependency net is modelled as 

a:-,A f3:-,B 'Y:-,C
 

6:-,D €: -,E
 

'Y: AVC
 

T: -,A V-,B 

6€: BV Dv E. 

As a result the following maximal consistent labels are obtained: 

a + 6€:-,A 'Y:A 
f3 + 'Y:-,B 8€:B 

'Y:-,C (none):C 
8:-,D (none):D 
E:-,E (none):E 

'Y6€ + f36€ + a'Y:J.. 

There is no input complete l~bel, and thus no extension. 

With DDB modelling via reverse justifications, the formulae change to 

a:-,A f3:-,B 'Y:-,C
 

8:-,D €: -,E
 

'Y+ a :AVC
 

T: -,A v-,B 

{) + {3E : B V D V E, 

yielding 

5.2 DoYLE’s TMS

Example 5.2.16

Without the DDB correction this dependency net is modelled as

a : -A  f : -B  v :=C

d : -D  € :  FE

v :AvC

T : -AV-B

de:  BVDVE.

As a result the following maximal consistent labels are obtained:

a+  de : A y :A
B+  y: BB de:B

1:-C (none):C
d:=D (none):D
e~F (none):X

vée + Bde + ory:L

There is no input complete label, and thus no extension.

With DDB modelling via reverse justifications, the formulae change to

a :  A p : -B  v : -C

d : -D  € :  FE

y+a@:AvC

T : -AV-B

+B :  BVDVE,

yielding
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a + oe:..,A ,:A 
f3 + ,:..,B of.:B 

,:..,C 7iOf.:C 
o:..,D /3,€:D 
€:..,E f3,o:E 
,& + (3& + a,:.l 

This time the maximal input complete consistent label is 7ioe + /3,0 + 73,e, 
leading to three possible extensions, namely the one characterized by assuming 
D and E out (oe): 

out 

the one obtained by assuming Band C out (f3,): 

and the one given by assuming C and E out he): 
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a+  de: A vA
B+  vB  de:B

y :~C @oe:C
6:D Bye:D
nF  Bv6:E
yde + Bde + ary:L

This time the maximal input complete consistent label is @e  + Bvd + Be,
leading to  three possible extensions, namely the one characterized by assuming
D and E out (de):

the one obtained by assuming B and C out (87):

and the one given by assuming C and E out (ve):
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out 

Note that the label 'Yf. is also a label for ...,B, so in order to check for sta
bility, we must test whether {3,f. is a nogood, which is not the case. Note that 
the negative atoms occurring in the labels are only needed to exclude some 
unwanted labels. They have to be ignored in the stability check. 

Adding T:E in this situation yields 

a:-,A ,:A 
{3 + ,:-,B (none):B 

'Y:-,C (none):C 
d:...,D (none):D 
f.:-,E T:E 

and thus simply chooses the third labelling as the only remaining option. 
Note that D is out. 

As a further example let us take the Nixon Diamond example (Poole, 1985). 
This shows how careful our description of DDB proceeds. This is taken from 
a default logic formulation. Q, R, D, H, AQ, AR stand for the predicates 
QUAKER, REPUBLICAN, DOyE, HAWK, ABNORMAL-QUAKER, respect
ive ABNORMAL-REPUBLICAN. 

Example 5.2.17 (Nixon Diamond)
 
Directly translating with the DDB-correction we get
 

a + € : -,Q V AQ V D {3 + 'fj : ...,R V AR V H 

T : -,D V -,H 
a:-,AQ 
d : ...,R 

T: Q 
{3:-,AR 
f. : -,D 

T : R 
,:-,Q 
'fJ : -,H 

with 

5.2 DOYLE’s TMS 81

Note that the label ve is also a label for —B, so in order to check for sta-
bility, we must test whether (Sve is a nogood, which is not the case. Note that
the negative atoms occurring in the labels are only needed to exclude some
unwanted labels. They have to be ignored in the stability check.

Adding T:E  in this situation yields

a: A 1A
B+  vB  (none):B

v:~C (none):C
6:D (none) :D
e i  E T :E

e+ ay:  L

and thus simply chooses the third labelling as the only remaining option.
Note that D is out.

As a further example let us take the Nixon Diamond example (Poole, 1985).
This shows how careful our description of  DDB proceeds. This is taken from
a default logic formulation. Q ,  R,  D ,  H ,  AQ, AR stand for the predicates
QUAKER, REPUBLICAN, DOVE, HAWK, ABNORMAL-QUAKER, respect-
ive ABNORMAL-REPUBLICAN.

Example 5.2.17 (Nixon Diamond)
Directly translating with the DDB-correction we get

a+€e : "QVAQVD B+7 :~RVARVH

T :~Dv -H  T :Q  T :R
a :  AQ B : -AR  ~ : -Q
d : -R  e : -D  n : -H

with
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-+ pe +.:AQ a:...,AQ 
+ ar; + :AR f3:...,AR 

T:Q I:...,Q 
T:R . :...,R 
a:D f3 + f:...,D 
f3:H a + T/:...,H 

af + f3T/ + af3 + 'Y + <5:..1. 

as resulting maximal labels. 
The maximal input consistent label is ar; + pe. This means there are two 

possible labellings which could result from DDB, both making Q and R in, 
but one assuming ABNORMAL-QUAKER out and then being forced not two 
assume HAWK out, thus making ABNORMAL-REPUBLICAN out and DOVE 
in, the other just the other way round. Here it is not decided which alternative 
is chosen by a nondeterministic implementation of DDB, which seems quite 
reasonable. 

The case that is handled differently than by Doyle's DDB is the direct odd 
loop: 

Example 5.2.18 

Here the translation is 

which results in 

T:A
 
a:..1. 

which yields a as maximal input consistent label. So we have a labelling 
that makes A in. On first view this is rather suspicious, since Doyle's TMS 
gives no labelling, and indeed ours is not well-founded. Furthermore there is 
no contradiction node present, so that there is no need for DDB. However, 
as shown by Elkan (1990), this odd loop can be viewed as equivalent to a 
contradiction node. Therefore we are quite content with this result. 

ConcludiIig, the author has to say that he is not really satisfied with the 
solution presented in this section. It should be much more interesting to exam
ine altered label logics, as already hinted at. 

IFrom a+a 
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: a+  nH
ae +Bßn+aß+y  +68: L

as resulting maximal labels.
The maximal input consistent label is off + BE. This means there are two

possible labellings which could result from DDB, both making Q and R in,
but one assuming ABNORMAL-QUAKER out and then being forced not two
assume HAWK out,  thus making ABNORMAL-REPUBLICAN out and DOVE
in, the other just the other way round. Here i t  is not decided which alternative
is chosen by a nondeterministic implementation of DDB, which seems quite
reasonable.

The case that is handled differently than by Doyle's DDB is the direct odd
loop:

Example 5.2.18

Here the translation is

a : A

which results in

T :4
- o l

which yields @ as maximal input consistent label. So we have a labelling
that makes A in. On first view this is rather suspicious, since Doyle's TMS
gives no labelling, and indeed ours is not well-founded. Furthermore there is
no contradiction node present, so that there is no need for DDB.  However,
as shown by Elkan (1990), this odd loop can be viewed as equivalent to a
contradiction node. Therefore we are quite content with this result.

Concluding, the author has to say that he is not really satisfied with the
solution presented in  this section. It should be much more interesting to exam-
ine altered label logics, as already hinted at.

From a +&
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5.3	 Gener-alized Sets and the System of Martins 
and Shapiro 

We want to give an intuitive way of how to interpret labels containing negative 
literals. Our view of the "collection of sets" can indeed be generalized to contain 
this as well. 

Let us remember the case of ATMS. We saw that maximal labels in an 
ATMS stand for sets of sets which entail a given proposition. As the ATMS is 
monotonic, every superset of a context also entails that proposition. So there is 
nothing wrong with assuming that labels represent the respective sets and all 
their supersets. 

When we consider nogoods and therefore consistent LL-entailment the situ
ation is different. The maximal consistent label again gives us environments 
that allow the deduction of the respective node. In addition these environments 
are guaranteed not to contain nogoods. But it is not the case that supersets of 
these environments are also free of nogoods. If we want to know of all envir
onments that entail the node in question and besides are consistent, we cannot 
directly get them without considering the maximal label for 1.. 

There is, however, an alternative way to represent nogoods, that can yield 
the description wanted. Instead of just eliminating nogoods from labels com
puted otherwise, we can conjunctively combine the nodes' labels with the neg
ation of the maximal label for 1.. If we have e.g. maxlabel(A) = a(3 + '1 and 
maxlabel(1.) = '16 + (3, we would have to eliminate a(3 to get the maximal con
sistent label '1 for A. Instead we can directly compute only consistent labels if 
we conjunctively combine a node's label with the negated maximal label for 1.. 
In our case we have (a(3 + '1)('16 + (3), which can be simplified to /3'16. 

This label is in fact a label for A and also consistent. From the view of LL it 
is of course not the maximal consistent label for A, because we have just shown 
that this is '1. How then should it be interpreted? 

The author favours a generalization of the set representation, interpreting 
/3'Y6 as "all the sets containing at least the item represented by '1, but not the 
itemS represented by (3 and 6. If we rewrite the label to 'Y{(3 + 6), we note a 
close connection to Martins and Shapiro's restriction sets (cf. chapter 2): The 
origin set of node A is described by '1, and the sets characterized by (3 and 8 
may not be united with it without getting a contradiction. 

This procedure only works for simple sets, as in this case maximal labels 
are always positive and thus the splitting into origin set and restriction set is 
possible through the distinction between positive and negative literals, as will 
be shown below. This is not possible in the general case. For the description 
of SNeBR this does not matter, because we have only basic sets here: Every 
hypothesis is labelled with a fresh atomic labeL 

In the SNeBR system origins sets are always single environments. In our case 
this corresponds to maximal labels that can be written as simple conjunctions 
of atoms. Given such a label, we show that the label resulting from conjoining 
it with the negation of the maximal label for 1. indeed corresponds to the 
origin/restriction-set representation. 
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5 .3  Generalized Sets and the System of  Martins
and Shapiro

We want to give an intuitive way of how to interpret labels containing negative
literals. Our view of the “collection of sets” can indeed be generalized to contain
this as well.

Let us remember the case of ATMS. We saw that maximal labels in an
ATMS stand for sets of  sets which entail a given proposition. As the ATMS is
monotonic, every superset of  a context also entails that proposition. So there is
nothing wrong with assuming that labels represent the respective sets and al l
their supersets.

When we consider nogoods and therefore consistent LL-entailment the situ-
ation is different. The maximal consistent label again gives us environments
that allow the deduction of the respective node. In  addition these environments
are guaranteed not to contain nogoods. But  it is not the case that supersets of
these environments are also free of nogoods. If we want to know of all envir-
onments that entail the node in  question and besides are consistent, we cannot
directly get them without considering the maximal label for L .

There is, however, an  alternative way to  represent nogoods, that can yield
the description wanted. Instead of just eliminating nogoods from labels com-
puted otherwise, we can conjunctively combine the nodes’ labels with the neg-
ation of the maximal label for L .  If we have e.g. maxlabel(A) = a f  + v and
maxlabel(1l) = vd + ß, we would have to eliminate aß  to get the maximal con-
sistent label y for A. Instead we can directly compute only consistent labels if
we conjunctively combine a node’s label with the negated maximal label for L .
In our case we have (aß + 7)(yö  + B) ,  which can be  simplified to  Fv.

This label is in  fact a label for A and also consistent. From the view of  LL  it
is of  course not the maximal consistent label for A,  because we have just shown
that this is y. How then should it be interpreted?

The author favours a generalization of the set representation, interpreting
Bd  as “al l  the sets containing at least the item represented by  7 ,  but not  the
items represented by 8 and J. If we rewrite the label to y(ß + J), we note a
close connection to Martins and Shapiro’s restriction sets (cf. chapter 2): The
origin set of node A is described by y ,  and the sets characterized by 8 and §
may not be united with i t  without getting a contradiction.

This procedure only works for simple sets, as in this case maximal labels
are always positive and thus the splitting into origin set and restriction set is
possible through the distinction between positive and negative literals, as will
be shown below. This is not possible in the general case. For the description
of SNeBR this does not matter, because we have only basic sets here: Every
hypothesis is labelled with a fresh atomic label.

In  the SNeBR system origins sets are always single environments. In  our case
this corresponds to  maximal labels that can be  written as simple conjunctions
of atoms. Given such a label, we show that the label resulting from conjoining
it with the negation of the maximal label for 1 indeed corresponds to the
origin/restriction-set representation.
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Assume we have a label of the form at an, where all the ai are atomic. 
Let the maximal label of .L be f311 ... f3tn l + + f3mt ... f3mnm' We then get 

at ... an (f3tt ... f31nl + ... + f3ml ... f3mnm) = 

0:1 ... O:n (f3n + ... + f31nl) ... (f3ml + ... + f3mnm) 

Multiplying this out and transforming it to DDNF gives either .L or a label of 
the form 

at ... O:non .•• 01h + ... +at ... anOkl ... Okl,. 

which then can be retransformed to 

which is of the required form: The first conjunct is the origin set, whereas under 
the negation bar we find the restriction set, consisting of several sets. 

Martins and Shapiro demand that two conditions are met by restriction 
sets: 

1.	 If a is the origin set and p the restriction set, then there is no rEp such 
that r n a i- 0. 

2.	 There are no two different rEp and sE p with res. 

It is easy to see that these conditions are satisfied here. 
They then describe how origin set and restriction set of a derived item can 

be obtained, when the respective information is known of the parents. In the 
cases where the origin set is just computed as set union of the parents' origin 
sets, the restriction set is computed as 

where 

w(R,O) = {a I (a E R /\ a no = 0) V 3f3 (f3 E R /\ f3 n 0 i- 0/\ a == f3 \ On 

and
 
O'(R) = {a I a E R /\ -.3f3 (f3 i= a /\ f3 E R /\ f3 can·
 

This looks a little complicated, but a closer 'look reveals that this is ex
actly what happens if one conjunctively combines labels in the representation 
presented above. 

We now briefly describe how SNeBR can be modelled within our framework. 
We have already seen how the origin/restriction-set representation of labels can 
be adopted by our approach. 

SNeBR is assumption-based, so we can in principle proceed as in the case of 
ATMS. The use of relevance logic on first view seems to complicate the matter, 
but we shall show that we can do without. 
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Assume we have a label of  the form a ;  . . .  an,  where all the a; are atomic.
Let the maximal label of L be B13...01a ++  + Bm  -- - Bm, - We then get

a r . . . 0n (B11 . .On,  + + Bmi--- Bann) =

oy . . . an (B i i + + Bin) Bm + + + Brn)
Multiplying this out and transforming it to DDNF gives either L or a label of
the form

Q1. . . 0p011Oy  +c  Far . . . OAndkı cc Oki,

which then can be retransformed to

(A . . .  On)(011°- 31, + - -+ 61+ Ops)

which is of  the required form: The first conjunct is the origin set, whereas under
the negation bar we find the restriction set, consisting of  several sets.

Martins and Shapiro demand that two conditions are met by restriction
sets:

1. If  « is the origin set and p the restriction set, then there is no r € p such
that r Na  #0.

2. There are no two different r € p and s € p with r Cs.

It is easy to see that these conditions are satisfied here.
They then describe how origin set and restriction set of a derived item can

be obtained, when the respective information is known of the parents. In the
cases where the origin set is just computed as set union of the parents’ origin
sets, the restriction set is computed as

p ( { r y , . . . ,  rm} { o1 , . . - , 0n } )  =o (¥ ( r  U- - -U rm,01U- - -Uoy ) )

where

¥ (R ,0 )= {c | ( e€RAaNO=0)V IB (BERABNO£DAa=S\0 ) }

and -
ocR)= {a lae  RA- IB (B#aABERABCa) } .

This looks a little complicated, but a closer look reveals that this is ex-
actly what happens if one conjunctively combines labels in the representation
presented above.

We  now briefly describe how SNeBR can be  modelled within our framework.
We have already seen how the origin/restriction-set representation of labels can
be  adopted by  our approach.

SNeBR is assumption-based, so we can in  principle proceed as in  the case of
ATMS. The use of relevance logic on first view seems to complicate the matter,
but we shall show that we can do without.
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The sole purpose of using a relevant implication is that no irrelevant as
sumptions are recorded. But this is guaranteed as well if we make sure that 
only maximal labels are computed. Consider again the example from chapter 2: 
If we have assumptions a: "John is tall" and ,B:"John is fat", we might of course 
have a natural deduction style basic logic that allows for AND-introduction and 
AND-elimination, thus leading to the deduction of a,B:"John is tall and fat" 
and then a,B: "John is fat". But as we already have {3: "John is fat", we know 
that a,B is not maximal for "John is fat". 

So actually there are no real complications in the modelling of SNeBR, and 
we can really get a model theoretic characterization without regress to any 
relevance logic, provided we have one for the basic logic, which here is the logic 
underlying the particular natural deduction calculus they use. 

5.4 Combinations: The General Case 

We have looked at the most prominent representatives of the main approaches 
for Reason Maintenance. It should be clear - at least in principle - how a 
modelling can be done for others that fit into the classification scheme given by 
the two orthogonallines justification based vs. assumption based approach (or 
to be more concrete: single context vs. multiple contexts) and the nonmonotonic 
vs. monotonic division, the other details being implementation issues in essence. 

In order to test the generality of our approach we start with ATMS-like 
systems. There are several possible generalizations of the ATMS. 

1.	 The basic logic used need not be classical propositionallogic. In particular 
formulae need not be of such restricted forms as being Horn. 

This is already included in our approach. Nothing in our ATMS descrip
tion depends on the particular choice of basic logic, or a peculiar form of 
the formulae. So we can in fact freely vary the basic logic. 

.. 2. Contradiction detection could be performed by the RMS component. 

This is also included for free, because we do not separate RMS and prob
lem solver. If a problem solver derives the formulae A and -.A, an ATMS 
generates two new nodes, say Band C, for this and has to be told that 
they contradict one another. However, in our modelling nothing prevents 
us from directly taking a:A and {3:-.A, which enables the RMS to detect 
a{3 as a nogood without help from outside, because it knows how to deal 
with the semantic content of the nodes. 

3.	 An ATMS only knows of its nodes and does no inferences on its own. 
Therefore non-atomic queries can not be performed. If we have e.g. a:A 
and {3:B we can see that in the environment described by a{3 we have 
A 1\ B. Or, if we have have nodes with internal structure, a:A V B and 
,B:-.A V B should entail a{3:B. All this must be done by the problem 
solver and is not detected by the ATMS. 
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The sole purpose of  using a relevant implication is that no irrelevant as-
sumptions are recorded. But this is guaranteed as well if we make sure that
only maximal labels are computed. Consider again the example from chapter 2:
If  we have assumptions a:  “John is tall” and 3:“John is fat”, we might of course
have a natural deduction style basic logic that allows for AND-introduction and
AND-elimination, thus leading to the deduction of af:“John is tall and fat”
and then af:“John is fat”. But as we already have 8:“John is fat”, we know
that a f  is not maximal for “John is fat”.

So actually there are no real complications in  the modelling of  SNeBR, and
we can really get a model theoretic characterization without regress to any
relevance logic, provided we have one for the basic logic, which here is the logic
underlying the particular natural deduction calculus they use.

5 .4  Combinations: The General Case

We have looked at the most prominent representatives of the main approaches
for Reason Maintenance. It should be  clear — at least in principle — how a
modelling can be done for others that fit into the classification scheme given by
the two orthogonal lines justification based vs. assumption based approach (or
to  be more concrete: single context vs. multiple contexts) and the nonmonotonic
vs. monotonic division, the other details being implementation issues in  essence.

In order to test the generality of our approach we start with ATMS-like
systems. There are several possible generalizations of the ATMS.

1. The basic logic used need not be classical propositional logic. In  particular
formulae need not be of such restricted forms as being Horn.

This is already included in  our approach. Nothing in our ATMS descrip-
tion depends on the particular choice of  basic logic, or a peculiar form of
the formulae. So we can in fact freely vary the basic logic.

: 2 .  Contradiction detection could be  performed by  the RMS component.

This is also included for free, because we do not separate RMS and prob-
lem solver. I f  a problem solver derives the formulae A and „A,  an ATMS
generates two new nodes, say B and C,  for this and has to be Zold that
they contradict one another. However, in  our modelling nothing prevents
us from directly taking a:A and ß:—A, which enables the RMS to detect
af} as a nogood without help from outside, because i t  knows how to deal
with the semantic content of the nodes.

3.  An ATMS only knows of  its nodes and does no inferences on  its own.
Therefore non-atomic queries can not be  performed. If  we have e.g. a :A
and §:B we can see that in the environment described by  af  we have
A A B .  Or, if we have have nodes with internal structure, «:A  V B and
BB:  AV B should entail o5:B.  All this must be  done by  the problem
solver and is not detected by the ATMS.
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Again, even our modelling of ATMS contains these inference possibilit
ies. The reason is, that theorem 5.1.2 need not be restricted to atomic 
propositions, but holds for arbitrary formulae, as does theorem 4.1.15. 

Within our framework we can also vary the nogood handling: 

•	 We can independently compute maximal labels for nodes and 1.., as it is 
done in de Kleer's ATMS. 

•	 We can use the generalized set representation to keep nogoods in the form 
of restriction sets like in the Martins and Shapiro system. 

Furthermore we are not restricted to always computing maximal labels. We 
are completely free to choose another type of entailment that allows for the 
deduction of intermediate labels that are not maximal, but nevertheless sound 
wrt. the chosen entailment relation. Choices are 

• Simple LL-entailment gives us systems not	 bound to come up with the 
"best" result, but capable of deriving intermediate results. 

•	 The introduction of the maximality criterion will enforce a behaviour like 
the one found in most existing systems: The system gives an answer only 
if it comes to a quiescent optimal state. 

•	 The consistency demand yields the introduction of nogood handling. 

•	 All combinations are possible, as well as using the approximative entail
ment relations also presented in chapter 4. 

Now we have to talk about the introduction of nonmonotonic justifications 
into ATMS, as well as transition to single contexts. 

Single context approaches like TMS differ from ATMS in that for every node 
the state must be fixed, thus arriving at one consistent state. This criterion is 
represented by the demand that labels be input complete. Although there can 
still remain more than one label, there is no need to decide for one particular 
of these, as this only reflects the nondeterminism present in TMS. 

The introduction of nonmonotonic justifications for the general case where 
arbitrary formulae are admitted as nodes, does not work satisfactorily. This is 
because in our JTMS representation we have exploited the fact that all nodes 
are represented by atoms. We could map the non-derivability of a node to the 
consistency of a label attached to the contrary. If, however, we admit arbitrary 
formulae instead of just atoms for nodes, we cannot do this any more, because 
e.g. assuming A V -,B out is in fact the same as assuming -,A /\ B in, which is 
usually not intended. This is, however, a general problem and has nothing to 
do with our particular approach. 

If we stick to the paradigm that nodes are atomic, as it is done in all exist
ing systems, then there is in fact no problem with introducing nonmonotonic 
justifications into ATMS, for we can proceed just like in the JTMS case, but 
simply drop the input completeness demand. 
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Again, even our modelling of ATMS contains these inference possibilit-
ies. The reason is, that theorem 5.1.2 need not be restricted to atomic
propositions, but holds for arbitrary formulae, as does theorem 4.1.15.

Within our framework we can also vary the nogood handling:

e We can independently compute maximal labels for nodes and L ,  as it is
done in de Kleer’s ATMS.

e We can use the generalized set representation to  keep nogoods in the form
of  restriction sets like in  the Martins and Shapiro system.

Furthermore we are not restricted to  always computing maximal labels. We
are completely free to choose another type of entailment that allows for the
deduction of  intermediate labels that are not maximal, but nevertheless sound
wrt. the chosen entailment relation. Choices are

se Simple LL-entailment gives us systems not bound to come up  with the
“best” result, but capable of  deriving intermediate results.

e The introduction of the maximality criterion will enforce a behaviour like
the one found in  most existing systems: The system gives an  answer only
if i t  comes to a quiescent optimal state.

e The consistency demand yields the introduction of  nogood handling.

e All combinations are possible, as well as using the approximative entail-
ment relations also presented in  chapter 4.

Now we have to talk about the introduction of  nonmonotonic justifications
into ATMS, as well as transition to single contexts.

Single context approaches like TMS differ from ATMS in  that for every node
the state must be fixed, thus arriving at one consistent state. This criterion is
represented by the demand that labels be input complete. Although there can
still remain more than one label, there is no need to decide for one particular
of these, as this only reflects the nondeterminism present in TMS.

The introduction of nonmonotonic justifications for the general case where
arbitrary formulae are admitted as nodes, does not work satisfactorily. This is
because in our JTMS representation we have exploited the fact that all nodes
are represented by  atoms. We could map the non-derivability of  a node to the
consistency of  a label attached to  the contrary. If, however, we admit arbitrary
formulae instead of  just atoms for nodes, we cannot do this any more, because
e.g. assuming A V —B out is in fact the same as assuming =A  A B in, which is
usually not intended. This is, however, a general problem and has nothing to
do with our particular approach.

If we stick to the paradigm that nodes are atomic, as i t  is done in all exist-
ing systems, then there is in fact no problem with introducing nonmonotonic
justifications into ATMS, for we can proceed just like in the JTMS case, but
simply drop the input completeness demand.
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It is also possible to translate a TMS into an ATMS (Giordano & Martelli, 
1990a), which then performs nonmonotonic reasoning, and then model this 
ATMS with our approach. 

We can conclude that we really have been successful in the primary aim of 
this thesis: We have provided a unifying framework for reason maintenance, 
which in particular eases the task of finding a model theoretic semantics for the 
system under consideration. Of course that does not render any of the existent 
systems useless, as we have not provided a calculus yet. However, we now show 
how this can be done in principle, although not necessarily very efficiently. 

The main advantage of our characterization lies in the fact, that we use 
the same formalism to describe both justification based and assumption based 
approaches, thus making it possible to compare the different systems on that 
basis. Furthermore we are free to change the basic logic (concerning a change in 
the logic of the labels cf. chapter 8 and the notes in the further works chapter). 
By changing the basic logic, we can dispose of the tight restrictions of existing 
systems, like the choice of Horn logic or propositionallogics. The first extension 
has already been made by Reiter and de Kleer in Reiter & de Kleer (1987) and 
therefore taken into account in works like e.g. Inoue (1990). Arguments for the 
admittance of full first order logic have been given in the introductory section, 
so we do not repeat them here. 
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Chapter 6 

Comparison with other 
Semantics 

In this chapter we compare our approach to other semantics that have been 
proposed for RMSs in the literature. 

6.1 ATMS Semantics 

The ATMS problem has been shown to be related to abduction already by Rei
ter & de Kleer (1987). Ordinary justifications can be viewed as propositional 
Horn clauses, nogood justifications as purely negative clauses, whereas the as
sumptions are always atoms and serve as the abducibles. The CMS is a more 
general form of ATMS, where arbitrary clauses are admitted as justifications, 
and where queries can also be clauses instead of just atoms. If A is the con
junction of all the justification clauses and C the query, then the answer of the 
CMS is the shortest clause 8 with A I- 8 vC, but not A I- 8. Because of the 
deduction theorem this is equivalent to A A ...,8 I- C but not A A ...,8 I- 1., where 
...,5 is a conjunction of literals, the simplest explanation. In this context, simple 
means that no proper sub-conjunction ...,8' is an explanation, Le. A A S' I- C. 

Finding the clauses that correspond to simplest explanations is dual to look
ing for prime implicants. The dual procedure to the consensus method turns 
out to be ordinary resolution (Robinson, 1965)1. 

For a further generalization of the eMS Inoue (1990) gives a semantics with 
a model and proof theory in terms of abduction. Here we have a set W of 
formulae (not necessarily propositional) as justifications, where assumptions 
are ground literals, and a query G is an arbitrary closed formula. 

Then an explanation H of G from (W, A) satisfies 

• H is a conjunction of literals 

• WU{H} FG 
lReiter and de Kleer therefore speak of prime implicants in the cited article, though actually 

prime implicates are meant. 
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• W U {H} is satisfiable 

An explanation is minimal, if no sub-conjunction H' of H is an explanation, 
Le. W U {H'} F G. 

This can be mapped exactly to our approach, which is in fact a further 
generalization, because we admit arbitrary formulae for justifications as well as 
for assumptions and queries. Of course this has an influence on algorithms, but 
it does not change the abductive semantics. 

Levesque (1989) uses a similar approach for examining a more general case 
of abduction. In this context he finds a particular case corresponding to the 
ATMS: 

"When belief is closed under logical implication, the correspond
ing form of abduction is precisely what is performed by the ATMS 
as characterized by Reiter and de Kleer." 

"However else it has been characterized in the past, this the
orem establishes that an ATMS can be understood as computing 
all simplest explanations with respect to this type of implicit belief. 
Among other things, this guarantees that Poole's account of abduc
tion (with the addition of the notion of simplicity defined here) also 
specifies the task performed by an ATMS." 

The approach of Poole mentioned (Poole, 1988a) will be dealt with in the 
chapter on default handling (chapter 8), as it turns out that his handling of 
defaults and ours are very close. 

Fujiwara & Honiden (1990) describe the (basic) ATMS by a translation to 
propositional Horn clauses. In contrast to our approach they have an extra 
handling for contradictions. Their characterization runs via a smallest fixed 
points semantics. ATMS labels represent a subset of a Boolean algebra, a so
called upper closed set. "Upper closed" means every superset of a set contained 
is also contained. This corresponds to our minimal DDNF representation. They 
also use the notion of a characteristic formula2 X, which is the opposite of our 
characteristic function. This is unique up to logical equivalence. An ATMS is 
a quadruple (N, A, J, C) like defined here, A being a subset of N, J a subset of 
N x 2N , C a subset of J (the nogood justifications). Their upper closed sets 
l(J, n) and i(J, C) are such that 

l(J,n) = maxlabel(n) 

and
 
i(J, C) = maxlabel(.l).
 

2 Characteristic clau.se first appears in (Bossu & Siegel, 1985) in this context: 

"Informally speaking, characteristic clauses are intended to represent 'in
teresting' clauses to solve a certain problem, and are constructed over a sub
vocabulary of the representation language." (This is called a production field in 
(Inoue, 1990)). 
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The computed l(J, n) \ i(J, C) is not necessarily upper closed, so the upper 
closure (ucl) has to be taken. A label then is the prime implicant decomposition 
of X(ucl(l \ i)). 

Despite the fact that (Fujiwara & Honiden, 1990) certainly fulfills the task 
of proving the ATMS labelling procedure correct, their semantics is doomed to 
be of minor importance, since the semantical characterizations of assumption 
based methods in terms of abduction, as been presented above, include much 
broader classes than the basic ATMS. 

Summing up we can say that concerning the ATMS our approach is very 
closely related to some known proposals. With the exception of the last men
tioned, specialized approach, the ATMS characterizations use well-known se
mantics and can be generalized in several ways very easily. So the problem of 
ATMS semantics can be viewed as solved. Nevertheless none of the authors 
mentioned how general the abductive approach really is. In particular, except 
for (Poole, 1988a) all former approaches are limited to propositionallogics (this 
certainly comes from the fact that this was not seen as necessary, because of 
the two component approach). Furthermore, we have shown that it is possible 
to describe justification based systems like the JTMS using the same formalism 
(cf. chapter 5). 

6.2 Semantics for Justification Based Approaches 

Semantics of JTMS have to deal with nonmonotonic justifications. In addition, 
the demand of well-foundedness proved to present some problems. There are a 
lot of formalisms proposed for JTMS that suffer from the fact that they are only 
developed for that very reason, e.g. (Brown, 1985; Brown, Gaucas & Benanav, 
1987; Brown & Shoham, 1988; Morris, 1988c; Brown, 1988), and therefore do 
not allow easy comparison of the characterized systems to others. 

There is a paper by Haneclou (1987) that characterizes nonmonotonic logics 
(including reason maintenance) via valuations (the truth values true, false, 
undefined and contradiction form a lattice), which is rather general, espe
cially independent of any concrete implementation and control strategy, but the 
results cannot be directly used for our purposes. 

Direct characterizations for -JTMS are e.g. (Junker & Konolige, 1990b) or 
(Xianchang & Huowang, 1991). The former does not deal with CP-justifi
cations, whereas the latter shows that they can in fact be eliminated. Junker & 
Konolige (1990b) do not want to characterize TMS in the first place, but use it to 
compute extensions of autoepistemic and (Reiter's) default logic, but indirectly 
this results in a characterization of TMS, too. They use a semantics developed 
by Reinfrank, DressIer & Brewka (1989). These map TMS justifications to for
mulae of autoepistemic logics. The justification with OUT-SET {B}, IN-SET 
{A} and consequent C becomes La /\ ...,Lb -+ c, where L is the AEL modal op
erator with La meaning "a is believed". The TMS is then proven to compute 
all non modal atoms of a strongly grounded AEL-extension. Reinfrank, DressIer 
and Brewka explicitly mention the limits of their "NMFS-theory" (non mono
tonic formal sys~em): It does not work even for a full propositionallanguage, 
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but is dependent on the formulae being Horn. 
Xianchang and Huowang claim, that their "semantics" is equivalent to that 

of Junker and Konolige, but no proof is given. 
A major part of the JTMS characterizations use some kind of stable model 

semantics. This is not astonishing, since the groundedness condition (which 
corresponds to well-foundedness) directly relates to negation as failure. Stable 
models appear in logic programming, where they have been introduced by Gelf
ond & Lifschitz (1988). They are used for the characterization of nonmonotonic 
RMS e.g. by Elkan (1990) (or already Elkan (1989)). Elkan shows that his 
models are grounded iff they are stable. Finding a stable model is proven to be 
NP-hard (Elkan, 1989). A JTMS may possess none or more than one. 

"One can view the nodes of a nonmonotonic TMS as propos
itional calculus atoms, and its justifications as implications of a 
restricted nature. A set of believed nodes corresponds to a propos
itional calculus interpretation." 

"A justification is a directed propositional clause." 

It is noted that justifications are not correctly modelled if translated to (ma
terial) implications, but the use of contrapositives has to be blocked, because 
justifications are to be understood as directed. 

Another stable models characterization is due to Pimentel & Cuadrado 
(1989). 

The stable models semantics is not able to capture dependency directed 
backtracking. There are several papers from Giordano and Martelli on that 
theme. Giordano & Martelli (1990b) introduces generalized stable models, which 
facilitates semantics for JTMS including the dependency directed backtracking 
procedure. It is noted that in spite of the directed nature of justifications the 
use of contrapositives is necessary for resolving inconsistencies. 

The fact that not all contrapositives are allowed, for it does not suffice that 
the consequent is out by default assumption, but its state of being out has to 
be proved, led to the suggestion to use 3-valued logics (with truth values in, out 
and false), as e.g. in (Giordano & Martelli, 1990d). Eshghi & Kowalski (1989) 
show that it is possible to tI=anslate such a three valued net into an ordinary 
two valued one by adding further justifications which simulate the backward 
rule applications. There is a direct correspondence between the "use all con
trapositives in a three valued logics" and the "restricted use of contrapositives 
in a two valued setting" approaches. 

The fact that dependency directed backtracking actually modifies the set 
of justifications (cf. chapter 2) led to the omission of DDB in many models. 
The stable closure solution in AEL (Morris, 1988b) does in a sense something 
similar to DDB, but yields uriexpected results from the standpoint of reason 
maintenance. 

A mixed approach (3-valued stable models) called skeptical model is given 
by Witteveen (1990). The skeptical model is O(n2)-computable. An interesting 
remark in (Witteveen, 1990) i~ 
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"The solution to these problems can be found if we are prepared 
to give up the idea of a complete evaluation of beliefs." 

which is exactly what we propose. 
Various authors try to give a JTMS semantics in terms of AEL (Moore, 

1985), so e.g. Reinfrank et al. (1989) or the already cited Elkan (1990). Rein
frank et al. (1989) give as TMS characteristics 

• finiteness (logical incompleteness): this is accounted for in our approach 
by the input completeness criterion 

• the nondeterministic choice of an extension (so we give all of them) 

• global groundedness 

• asymmetric use of justifications 

Their method is based on (Konolige, 1988), who shows "equivalence" be
tween DL and AEL (kernels of strongly grounded AEL extensions are proven to 
be DL extensions). DDB is detected as a problem by Reinfrank et al., but not 
dealt with. Therefore they omit nogood inferences and backtracking, because 
that could possibly destroy groundedness. 

The same holds for (Fujiwara & Honiden, 1989). 

Our approach differs very much from all these proposals. We have shown 
that it is possible to use an assumption-based framework for justification-based 
systems as well. This is done by introducing as assumption the hypothesis 
which is implicit there, namely that everything can be assumed out without 
further reason. Then we of course get multiple contexts. The transition to 
single contexts is not modelled, because the particular choice of context is 
done nondeterministically anyway3. However, the exclusion of not well-founded 
solutions is reflected. We do this by forcing not well-founded environments to 
become inconsistent. The same is done when we handle nogoods. Here we 
follow the spirit of Elkan (1990). This is why we come to a correct nogood 
strategy. 

6.3 Unifying Frameworks 

There are in fact none. Because of their apparent differences, assumption
based and justification-based approaches have always been dealt with separ
ately, when concerning semantics. The attempt of McDermott, who at least 
spotted the problem, has already been discussed and recognized as insufficient 
(cf. section 3.2). This insufficiency has been the major motivation for writing 
this thesis. 

However, there are numerous papers in literature that show the close cor
respondences between single pairs of approaches. Examples are: 

30r course it is actually deterministic in real systems, but the particular choice is intendedly 
not part of their semantics. 
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•	 ATMS and Constraint Solving: the claim is made that ATMS be more 
general (de Kleer, 1989) 

• TMS as implementation of default logic (Junker & Konolige, 1990b) 

•	 TMS, stable models and AEL (Elkan, 1990) 

•	 ATMS and abduction (Inoue, 1990; Poole, 1988a) 

•	 AEL and DL (Marek & Truszczynski, 1989) 

•	 AEL and circumscription (Konolige, 1989) 

What DL and JTMS have in common is that one has to decide for one 
extension at a time. The extension chosen, however, is not semantically distin
guishable from others (Hanks & McDermott, 1986). 

The strong connection between all these approaches, as it is suggested by the 
numerous pairwise correspondences, is made explicit by our approach, which 
supplies a uniform presentation, including the close relationship to default reas
oning, as shown in chapter 8. 
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Chapter 7 

Incremental Calculi 

So far we have been concerned with theoretical, i.e. semantical aspects. The res
ult was a uniform formalism for the description of Reason Maintenance Systems. 
This can now be used to build practical inference systems directly operating 
with labelled logic. 

It will turn out that such systems can be constructed by minor modifica
tions of calculi for the respective basic logics - in a canonical manner. This 
leads to the advantageous situation that existing provers for the basic logic 
can be modified to do their own reason maintenance. Instead of giving the 
problem solver an RMS as an assistant (and getting all the problems with the 
interface described in chapter 3), the problem solver does the maintenance of 
dependencies all by itself. 

It has to be admitted that the proposed canonical transformation in its 
original (rather naIve) form is too simple to result in systems that expectedly 
treat reason maintenance in an efficient way. Therefore we shall certainly not 
gain anything in the case of classical propositional logic as basic logic. Quite 
the opposite is true: If we attempted to reimplement de Kleer's ATMS this 
way, for instance, we were confronted with a horrible loss of performance. 

Our approach will however turn out to be interesting if the basic logic is 
not decidable. Every trial to built a system like ATMS, that in a single "run" 
computes the maximal labels for all the nodes, is doomed to fail. In these cases 
systems like the ones proposed here may not be the most efficient solution, but 
they are a solution at all. Concerning efficiency there are some hints in the 
section on proof strategies (7.2). 

We call our systems "incremental systems". The name captures the fact 
that maximal labels are approximated step by step. Their advantage is, that a 
procedure which else could only be done with global consideration of the whole 
set of input formulae (cf. the computations done by e.g. ATMS or TMS) can in 
fact be attacked by purely local inference rules. All the intermediate "lemmata" 
~ay of course not meet the maximality criterion, but are - with respect to our 
well-defined semantics of labelled logics (cf. definition 4.1.7) valid theorems. 
That means procedures implementing such an incremental calculus have the 
status of an anytime procedure (Dean & Boddy, 1988; Haddawy & Frisch, 1991), 
i.e. intermediate results are meaningful, and the result only improves, if the 
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algorithm is given more time. 
If the basic logic is semi-decidable and the chosen BL-calculus (refutation-) 

complete we can also prove some kind of completeness for the transformed 
calculus. Given a (refutation-) complete calculus C for BL, we transform it into 
a canonical calculus C' for the labelled logic with BL as basic logic (we denote 
this by LL(BL)). If we are interested in the maximal label for a BL-formula F 
we imagine just to give F as a query and then get a = maxlabel(F,4». But 
the completeness of C' only guarantees that a:F will be derived some time. 
It also guarantees that a potential query of a:F will certainly be answered in 
the affirmative. The completeness does not at all mean that the calculus will 
identify a as being the maximal label for F. A query like "give me the maximal 
label for F" will thus at best (and this is exactly what we propose) result in a 
strictly monotonous sequence oflabels for F, which approximates the maximal 
label and is even guaranteed to reach it, but one cannot expect (at least not 
in general) the algorithm to terminate. Instead it would run on, of course 
never "overbidding" the maximal label. Of course it may be possible to find 
termination conditions for restricted classes of formulae. 

This sounds rather negative, but one has to be aware of the fact that in the 
case of an undecidable basic logic one cannot seriously expect anything better. 
This is immediately reasonable if one considers that the status of maximality of 
a label for a formula F corresponds to the non-derivability of F in other subsets 
of the set of input formulae. 

The situation is even worse if the transition from LL-derivability to consist
ent LL-derivability is done. We can give a local transformed calculus C" for 
this case, too. But the lemmata generated by this calculus are such that we 
now even lose correctness. That originates from the fact that at a given point 
in time also the maximal label for J.. may not be found yet. For this reason the 
calculus may produce labels for F that are not only not maximal, but maybe 
even inconsistent. It has to be noted, however, that the loss of correctness only 
concerns the semantics of I=consLL. With respect to (increasing) chains of I=w-LL 

semantics the derived formulae can be proved correct. 
In the sequel we first present the basic idea of how to transform a calculus 

for BL into one for LL(BL). After this we give the correctness and complete
ness results of interest. Some considerations and hints on how to improve a 
real system follow. For the whole chapter we assume BL is an arbitrary, but 
monotonic, logic. 

7.1	 From a BL-Calculus to its Corresponding 
LL(BL)-Calculus 

From chapter 4 we know that (the DDNF of) a positive, relevant label represents 
subsets of the set of input formulae. If this set is basic, every atomic label 
directly c~rresponds to exactly one input formula and the correspondence can 
easily be seen. From this it is rather straightforward to interpret a formula 
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Qi  Q ipy  + + Om1  cc  Cn,  F
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as "F is derivable from the set x(au ... alnJ as well as from the set ... as well 
as from the set X(aml ... amn".) " , where we could dispose of the x, because 
x(a) represents a one element set, if a is atomic and relevant. 

Definition 7.1.1 (Labelled Representation, Labelled Calculus)
 
Let q) be a set of BL-formulae and C a calculus for BL with rules of the form
 

F1,···,Fn 
(~)

G 

Then the labelled representation of q) is a set LL(q) of LL(BL)-formulae 
obtained from q) by prefixing each formula in q) with a "fresh" atomic labeL 

The labelled calculus C' to C, working on LL(BL)-formulae, is obtained 
from C by transforming each rule Ili into its labelled version 

al:F1,···, an:Fn 
al···an:G 

the ai being label variables, and adding a further rule 

al:F, , an:F 
(eR)

al + +an:F' 

the so-called contraction rule. 

Remark 7.1.2
 
For any set q) of labelled formulae, LL(q)) is basic.
 

Remark 7.1.3 
Given a basic set (such as the labelled representation of a set of BL-formulae), 
in C' only formulae with positive, relevant labels can be deduced. 

This immediately shows, that C' can not be complete wrt. the semantics of 
I=LL(BL)' However, we can show some important properties. 

Theorem 7.1.4 (Properties of the Labelled Calculus) 
The labelled calculus has the following properties: 

1.	 Every rule R;., which is ea-rreet wrt. the semantics of BL, will result in a 
rule Ri, which is correct wrt. the semantics of LL(BL). 

2.	 eR is correct wrt. the semantics of LL(BL). 

3.	 If C is (refutation-) complete wrt. the semantics of BL, then C' is (refu
tation-) complete wrt. the semantics of LL(BL) for maximal formulae. 

Before we give the proof, let us make some comments on the third assertion: 
A simple example may show, why for arbitrary sets of formulae C can not 

be complete even for positive relevant labelled formulae: Let q) = {a + f3:F}. 
The construction of the rules ~ resp. eR is such that labels can only be 
"constructed", not "decomposed". That means that e.g. a:F, which of course 
is LL-implied, is not derivable in C'. 

7.1 FROM BL-CALCULUS TO LL(BL)-CALCULUS 97

as “F  is derivable from the set x(c11---  a@1n,) as well as from the set . . .as well
as from the set x(ami ‘ * :  &mn,,)”, where we could dispose of the x ,  because
x(a)  represents a one element set, if  a is atomic and relevant.

Definition 7.1.1 (Labelled Representation, Labelled Calculus)
Let ® be  a set of  BL-formulae and C a calculus for BL  with rules of  the form

R, . . . , F ,aa  (Rı)

Then the labelled representation of ® is a set LL(®) of  LL(BL)-formulae
obtained from ® by prefixing each formula in ® with a “fresh” atomic label.

The labelled calculus C' to C, working on LL(BL)-formulae, is obtained
from C by transforming each rule R;  into its labelled version

Qu: F i . . . )  On Fy /

1 :  AnG (Ri)
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au F, . . . ,  On: F
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Now one could object that the example is ill suited, since our transformation 
always generates basic sets of formulae. As for basic sets of formulae I=LL and 
l=equivLL coincide, the calculus is complete for positive relevant formulae. 

This is correct, but we shall need the weaker version stated here later on. 
When we talk about proof strategies, there will be things like the deletion of 
subsumed clauses or other operations that depend upon the notion of trans
formations of sets of formulae preserving satisfiability. These transformations 
will in general not leave basic sets basic. 

Example 7.1.5 
The set of formulae {a:F, {3:F} is basic. Application of CR gives a + {3:F. 
This subsumes a:F as well as {3:F. We therefore transform the original set to 
{a + {3:F}1 ending up with exactly the problem described above. The same 
will already happen if a transformation to clause normal form is attempted. 
Because of duplication of labels (a:F /\ G will become a:F, a:G), the resulting 
set of labelled clauses is not basic. 

Now we shall prove theorem 7.1.4 
Proof: 

1.)	 Correctness wrt. the semantics of BL means 

{F I , ... , F n } I=BL G. 

Now let aI, ... , an be arbitrary labels. We have to show 

{al:FI, ... , an:Fn} I=LL(BL) al'" an:G. 

Let us call the set {al:FI, ... ,an:Fn} i.P. There is a subset of i.P, 
namely i.P itself, for which, according to our assumptions, we have 
formula(i.P) I=BL G. Further label(i.P) equals al .,. an, so the second 
condition of definition 4.1.7 is satisfied trivially. 

2.)	 To show: i.P = {al:FI, ... , an:Fn} I=LL(BL) al + ... + an:F. Take 
all one element subsets of i.P. Certainly F I=BL F holds. The rest 
is trivial. 

3.)	 Let C be complete and <P the given set of axioms. Furthermore 

<P I=max(LL) a:F 

holds. Now consider formula(<P). Let WI, ... , Wn be all minimal 
sets (wrt. set inclusion) for which formula(Wi) I=BL F holds. C being 
complete, there are derivations of F by applications of C-rules in all 
the: Wi. One can simply "lift" the derivations to C' and finally apply 
CR to get a proof for {3:F with (3 = V":=llabel(Wi)' It remains to 
be shown that a ++ {3. 

1If it seems to be suspicious how one could assume those sets as equivalent, then note that 
the equivalence is'only given concerning I=LL. not concerning l=equivLL' 
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This is simple: Since a:F is an LL-consequence of q>, there are 
sets 8 1, ••• , 8 m with formula(8i) FBL F. Since the Wi above 
are minimal, all the Si are supersets of some Wi. From this it 
follows that Vi label(Wi) ~ Vi label(8i)' from which the desired 
equivalence is obvious because of the maximality of a. 

The corresponding result for refutation completeness directly fol
lows, if the definition of a refutation proof is considered. 0 

As a further result we can get 

Proposition 7.1.6 (Decidability Results) 
If BL is semi-decidable, so is LL(BL). If BL is decidable, then LL(BL) is de
cidable, too. 

This is immediately obvious. However, even in the decidable case the com
plexity of the task is higher. This seems plausible, for a proof of maxlabel(F):F 
has to take into consideration all "minimal" proofs of F. In the decidable case 
also the question "what is the maximal label for F?" is decidable. A naive 
decision procedure is, e.g. to answer the question W FBL F? for all subsets W 
of q>. Certainly one could save some of these tests, since, if the answer is "no" 
for some W, the same answer holds for all subsets of W, and if the answer is 
"yes", this is also true of all supersets (remember BL is monotonic). 

Now we come to the question whether we could obtain transformed calculi 
also for the case of consistent consequence. The answer is yes, if we are con
tent with a calculus that produces incorrect lemmata. What we aim at is to 
generate derivations for the (BL-)theorem F in question as well as for falsity, 
thus looking for nogoods. As well as we are never sure if we have arrived at 
the maximal derivation for F, we are not able to tell whether the nogood found 
so far is maximal. We propose to filter the derived label of F through the 
nogoods known to "sieve them out". As we possibly do not know the maximal 
nogood, the result cannot be guaranteed to be correct wrt. the semantics of 
FconsLL' It is, however, correct wrt. FW-LL semantics with w being the known 
nogood. As this known nogood monotonically increases over time and will not 
only approach, but definitely reach maxlabel(.l), the results will be correct wrt. 
increasing FW-LL semantics, and thus eventually even wrt. the semantics of 
FconsLL. The details will be elaborated in section 7.3. 

1.2 Proof Strategies 

As already noted, the naive calculi obtained via the transformations given in the 
preceding section will not be of much use in practice. Especially if our aim is to 
use a slightly modified version of an existing proof system for BL, we shall soon 
notice that the simple equation PROOF-SYSTEM = AXIOMS + RULES does 
not suffice. In reality often the use of proof strategies is of great importance 
for the performance of a system. So we should dedicate some thoughts to 
the examination of the question, which proof strategies can be taken over into 
labelled systems. 
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This is simple: Since a:F is an LL-consequence of ®, there are
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Now we come to the question whether we could obtain transformed calculi
also for the case of consistent consequence. The answer is yes, if we are con-
tent with a calculus that produces incorrect lemmata. What we aim at is to
generate derivations for the (BL-)theorem F in question as well as for falsity,
thus looking for nogoods. As well as we are never sure if we have arrived at
the maximal derivation for F ,  we are not able to tell whether the nogood found
so far is maximal. We propose to filter the derived label of F through the
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nogood, the result cannot be guaranteed to be correct wrt. the semantics of
E=consLL: It is, however, correct wrt. = ,  semantics with w being the known
nogood. As this known nogood monotonically increases over time and will not
only approach, but definitely reach maxlabel(L), the results will be correct wrt.
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7.2 Proof Strategies

As already noted, the naive calculi obtained via the transformations given in  the
preceding section will  not be of much use in  practice. Especially if  our aim is to
use a slightly modified version of an existing proof system for BL,  we shall soon
notice that the simple equation PROOF-SYSTEM = AXIOMS + RULES does
not suffice. In reality often the use of proof strategies is of great importance
for the performance of a system. So we should dedicate some thoughts to
the examination of the question, which proof strategies can be taken over into
labelled systems.
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We shall not answer this question exhaustively, but simply analyze some 
important examples. For doing so, we take BL to be first order predicate 
calculus and think of some resolution based refutational proof system. 

7.2.1 Transformation to Clause Normal Form 

In section 4.3 we have learned that equivalence preserving transformations 
within the formula part of labelled formulae are allowed. If we ate only look
ing for satisfiability, as is done within refutationally working systems, usually 
skolemization is performed, which does not preserve validity, but keeps satis
fiability. It is not difficult to see, that steps of this kind will not do any harm. 
Within CNF-transformation, the most critical point from our view is the split
ting of conjuncts into different clauses. But, as can be seen by theorem 4.3.11, 
even this works. We have to note, however, that it could undermine a formula 
set's status of being basic. 

7.2.2 Set of Support (SOS) 

One of the most common strategies for diminishing the search space in auto
mated theorem proving is the set of support strategy. Its applicability depends 
heavily on the characteristic setting theorem provers are normally used in, Le. 
mathematics. There we have the situation that the axioms can be assumed 
to be consistent. This means that a proof of falsity must necessarily contain 
the negated theorem, a fact which can be exploited during the search. In our 
setting this is simply not true in most cases, as the set of axioms will often be 
(BL-)contradictory. So SOS will not be of great help here in general. Whether 
it can nevertheless be exploited, depends on the particular interest. If one is 
really concerned about computing LL-theorems or wants to track the effects of 
inconsistencies in the original formula set, using SOS produces wrong answers. 
If, however, the goal is to obtain maximal consistent labels for BL-formulae, as 
in the abstract reasoner approach we sketch in section 7.5, SOS can be used, 
if the process is divided into finding the maximal label for .1 and finding the 
maximal label for the formula in question, with the intention to "subtract" the 
former from the latter. In this configuration one can use SOS for the second 
process, which then does not compute the true maximal label, but the part of 
the label that is missing would be deleted afterwards anyway. 

7.2.3 Deletion Strategies 

7.2.3.1 Tautologies, Purity etc. 

The idea behind these strategies is not to examine clauses that simply cannot 
be part of a proof. As the definition of labelled consequence is based on BL
consequence, it can easily be seen, that deletions of this kind can be used the 
same way in LL(BL) as in BL. 
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maximal label for the formula in  question, with the intention to “subtract” the
former from the latter. In this configuration one can use SOS for the second
process, which then does not compute the true maximal label, but the part of
the label that is missing would be deleted afterwards anyway.

7.2.3 Deletion Strategies

7.2.3.1 Tautologies, Purity etc.

The idea behind these strategies is not to examine clauses that simply cannot
be  part of  a proof. As the definition of  labelled consequence is based on  BL-
consequence, i t  can easily be  seen, that deletions of  this kind can be  used the
same way in  LL(BL) as in  BL.



101 7.2 PROOF STRATEGIES 

1.2.3.2 Subsumption 

The case with subsumption is not that easy as are the deletions mentioned 
in the preceding paragraph. The difference is, deleted subsumed clauses are 
not guaranteed not to be part of a proof, but their deletion is justified by the 
fact, that, if they are, there is still another proof possible using the subsuming 
clause instead. If we are interested in "better" (ideally maximal) labels we have 
to look for every possible derivation, however, so we cannot dispose of proofs 
that easy. If we are, e.g. given {a:A /\ B, f3:A} , we immediately notice that 
(regarding only the formula parts) the first formula subsumes the second one. 
If we deleted that formula, we are no more able to derive a + f3:A, which is 
maximal. 

Nevertheless there is a possibility of subsumption deletion even in the la
belled calculus, if we are only interested in formulae with maximal labels. The 
solution is, that we have to consider also the labels in the definition of sub
sumption: 

Definition 1.2.1 (Labelled Subsumption)
 
Given two labelled formulae a:F and f3:G, we say a:F subsumes f3:G, iff F
 
subsumes G according to the underlying basic logic and further a subsumes f3
 
in the logic of the labels.
 

We then get 

Lemma 1.2.2 (Subsumption Deletion) 
If the calculus e for BL allows for subsumption, then the deletion of (LL)
subsumed formulae does not destroy the derivability of any maximally labelled 
formula. 

Proof: 
Let <P FLL a:F with a = maxlabel(<P,F). Suppose there is a proof of a:F in 

e" using some formula f3:G which is LL-subsumed by some f3':G'. This means 
in particular that G is BL-subsumed by G'. Because e allows for subsumption 
deletion, there is another proof in e using G' instead of G. Because of the 
construction of LL(BL) we can lift this proof to e", getting a proof of some 
a':F. The construction also tells that a' ~ a. Since a is maximal, this must 
be a' = a. 0 

7.2.4 Restrictions on the Choice of Inference Rule Applied 

In general completeness can only be guaranteed if the strategy of rule applic
ation is fair, which means that every rule has its fair chance, Le. will finally 
be applied, if applicable at all. There are strategies that give preference to 
some rules over others. Sometimes this does not contradict fairness, because 
the rules not considered under the strategy can be shown not to be applicable 
in the respective situation anyway. Sometimes other considerations may justify 
the selection. 

We give here only one example of a rather primitive strategy possible for 
incremental systems of labelled logic. The strategy can simply be stated as "give 
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7.2.3.2 Subsumption

The case with subsumption is not that easy as are the deletions mentioned
in the preceding paragraph. The difference is, deleted subsumed clauses are
not guaranteed not to be part of a proof, but their deletion is justified by the
fact, that, if they are, there is stil l  another proof possible using the subsuming
clause instead. If we are interested in “better” (ideally maximal) labels we have
to look for every possible derivation, however, so we cannot dispose of  proofs
that easy. I f  we are, e.g. given { a :A A B,3:A}, we immediately notice that
(regarding only the formula parts) the first formula subsumes the second one.
I f  we deleted that formula, we are no  more able to derive a + 8:4,  which is
maximal.

Nevertheless there is a possibility of subsumption deletion even in the la-
belled calculus, i f  we are only interested in formulae with maximal labels. The
solution is, that we have to consider also the labels in the definition of sub-
sumption:

Definition 7.2.1 (Labelled Subsumption)
Given two labelled formulae a:F and 8:G, we say a:F subsumes ß:G, iff F
subsumes G according to the underlying basic logic and further a subsumes 3
in  the logic of the labels.

We then get

Lemma 7.2.2 (Subsumption Deletion)
If the calculus C for BL  allows for subsumption, then the deletion of (LL)-
subsumed formulae does not destroy the derivability of any mazimally labelled
formula.

Proof:
Let ® Fı_p oF  with a = maxlabel(®, F ) .  Suppose there is a proof of  a :F  in

C" using some formula 8:G which is LL-subsumed by some ( ' :G’.  This means
in particular that G is BL-subsumed by G'. Because C allows for subsumption
deletion, there is another proof in C using G'  instead of G .  Because of the
construction of LL(BL) we can lift this proof to C”, getting a proof of some
o/:F. The construction also tells that o > a.  Since a is maximal, this must
be od = a. } a

7.2.4 Restrictions on  the Choice of  Inference Rule Applied

In general completeness can only be  guaranteed if the strategy of  rule applic-
ation is fair, which means that every rule has its fair chance, i.e. will finally
be applied, if applicable at all. There are strategies that give preference to
some rules over others. Sometimes this does not contradict fairness, because
the rules not considered under the strategy can be shown not to be applicable
in  the respective situation anyway. Sometimes other considerations may justify
the selection.

We give here only one example of a rather primitive strategy possible for
incremental systems of  labelled logic. The strategy can simply be stated as “give
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the contraction rule precedence over the other rules, Le. apply it immediately, 
if applicable" . 

We show that this strategy is not only fair, but can in fact make the search 
tree smaller. 

Proposition 7.2.3 
After application of the contraction rule the antecedent formulae can immedi
ately be disposed of, because they are subsumed by the consequent. Furthermore, 
if we do so, the strategy of giving CR preference over every other rule is fair. 

Proof: 
Because the formula parts of all the antecedents as well as the consequent are 

identical, BL-subsumption is trivial. The construction of the consequent's label 
as disjunction of the antecedents' labels guarantees the subsumption relation 
for the label, too. 

Ifwe delete the antecedents, the rule application will decrease the number of 
formulae. So there are no infinite chains of CR-applications. So finally another 
rule will be chosen. Lemma 7.2.2 guarantees that all rules applicable before will 
still be applicable in the new situation. 0 

7.3 A Strategy for Consistent Consequence 

At the end of section 7.1 we already talked about the problem to find a calculus 
for computing consLL-derivatives, given a calculus for the underlying basic 
logic. Of course the labelled calculus C' is complete also wrt. the semantics of 
FconsLL(BL)' for the theorems of I=consLL(BL) are a subset of those of FLL(BL). 

But such a calculus unfortunately yields incorrect formulae, too. 
In order to fix these shortcomings we explain here a proof strategy, which 

guarantees that the formulae derived will be correct wrt. the semantics of 
FW-LL(BL) for monotonically increasing w. 

The strategy is based on directly filtering out all known nogoods from labels 
the very moment they are computed. We formulate the filtering procedure as 
another rule, called nogood filtration rule, 

-a + (3T=F,(3 + 8:.1 
NF 

a:F 

but in order to obtain the desired results we have to use a particular strategy 
for rule application. This becomes clear, if we notice that N F works into a 
direction opposite to subsumption. The strategy is simply demand that the 
N F-rule precedence is not only given over all others, but has to be applied 
after each other rule application before "looking" at their results. 

Definition 7.3.1 (Quiescent State)
 
Let C' be the labelled calculus for some BL-calculus C. A proof system using C'
 
as well as subsumption deletion and the strategy of giving CR precedence over
 
all the other rules. Such a proof system is said to be in a quiescent state, if!
 
CR is not applicable on the current set of formulae.
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the contraction rule precedence over the other rules, i.e. apply i t  immediately,
if  applicable”.

We show that this strategy is not only fair, but can in fact make the search
tree smaller.

Proposition 7.2.3
After application of  the contraction rule the antecedent formulae can immedi-
ately be disposed of, because they are subsumed by the consequent. Furthermore,
if we do so, the strategy of giving CR  preference over every other rule is fair.

Proof:
Because the formula parts of all the antecedents as well as the consequent are

identical, BL-subsumption is trivial. The construction of  the consequent’s label
as disjunction of the antecedents’ labels guarantees the subsumption relation
for the label, too.

If  we delete the antecedents, the rule application will  decrease the number of
formulae. So there are no infinite chains of CR-applications. So finally another
rule will  be chosen. Lemma, 7.2.2 guarantees that all  rules applicable before will
still be applicable in the new situation. o

7.3  A Strategy for Consistent Consequence

At  the end of  section 7.1 we already talked about the problem to find a calculus
for computing consLL-derivatives, given a calculus for the underlying basic
logic. Of  course the labelled calculus C’ is complete also wrt. the semantics of
FeonsLL(BL), for the theorems of [=consLi(BL) are a subset of  those of FFLL(BL)-
But such a calculus unfortunately yields incorrect formulae, too.

In order to fix these shortcomings we explain here a proof strategy, which
guarantees that the formulae derived will be correct wrt. the semantics of
Fu-LL(BL) for monotonically increasing w.

The strategy is based on directly filtering out all  known nogoods from labels
the very moment they are computed. We formulate the filtering procedure as
another rule, called nogood filtration rule,

- a+  By: F,B +6 :L
a:F ’

but in  order to  obtain the desired results we have to use a particular strategy
for rule application. This becomes clear, if we notice that NF  works into a
direction opposite to subsumption. The strategy is simply demand that the
NF-rule precedence is not only given over all others, but has to be applied
after each other rule application before “looking” at their results.

NF

Definition 7.3.1 (Quiescent State)
Let C’ be the labelled calculus for some BL-calculus C. A proof system using C’
as well as subsumption deletion and the strategy of  giving CR  precedence over
all the other rules. Such a proof system is said to be in a quiescent state, iff
CR  is not applicable on the current set of formulae.
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Lemma 7.3.2 
If a labelled proof system is in a quiescent state, then every formula part occurs 
at most once in the set of current formulae. 

Proof:
 
If this were not the case, then CR would be applicable. o
 

Definition 7.3.3 (Labelled Calculus for Consistent Consequence)
 
The calculus C" for consistent consequence is obtained from C' by superimposing
 
the following strategy:
 

After every application of a rule ~, CR must be applied until the system 
is in a quiescent state. Then N F is applied for every formulae with formula 
part F different from .1, if applicable. The resulting consequence is not simply 
added to the current set of formulae, but replaces the first antecedent. Only 
after this potential subsumption deletions may be performed. We refer to this 
whole process as one derivation step. 

Theorem 7.3.4 (Correctness wrt. w-LL(BL» 
After every derivation step in C" we have the following situation: Let w be 
the (unique) label of.1. Then every formula in the current set of formulae 
is I=w-LL(BL) -entailed. This means that C" is cQrrect wrt. the semantics of 

I=w-LL(BL) . 

Proof: 
Let <P be the set of original formulae. Since C' is correct wrt. I=LL(BL), this 

also holds for C", which produces only a subset of the formulae derivable by C'. 
Therefore for any Ci.:F in the current set of formulae, we have <P I=LL Ci.:F. 

Now suppose there is a prime implicand {3 of Ci. with {3 -+ w. Since all 
the labels are positive, there must be a prime implicand 'Y of w, such that the 
N F -rule is applicable. This cannot be the case. 

Because of the transitivity of I=LL this result can by induction be generalized 
to an arbitrary number of derivation steps. 0 

Theorem 7.3.5 (Completeness for Maximal Labels wrt. consLL(BL» 
If the underlying calculus C is (refutation-) complete for BL, then C" is (refu
tation-) complete for maximally labelled LL(BL)-formulae with respect to the 
semantics of I=consLL. 

Proof: 
As C' is complete wrt. I=LL (point 3 in theorem 7.1.4), it is also wrt. I=consLL, 

for its theorems are a subset. It remains to show that the application of N F 
does not destroy the derivation of formulae maximally labelled according to 
I=consLL. This is rather simple: N F deletes formulae of the form Ci. + {3,:F, if 
<P I=LL {3 + 8:.1. It is immediately obvious that <P V=consLL Ci. + {3TF and the 
same holds for all formulae derivable from this by C'. 

It may, however, be the case that the formulae now being deleted have 
formerly been used to eliminate subsumed formulae. All of those are, however, 
subsumed by either the newly introduced formula Ci.:F or by {3'Y:F (Ci. as well as 
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Lemma 7.3.2
If a labelled proof system is in a quiescent state, then every formula part occurs
at most once in the set of  current formulae.

Proof:
If this were not the case, then CR would be applicable. a

Definition 7.3.3 (Labelled Calculus for Consistent Consequence)
The calculus C” for consistent consequence is obtained from C’ by superimposing
the following strategy:

After every application of a rule R;, CR  must be applied until the system
is in a quiescent state. Then NF  is applied for every formulae with formula
part F different from L ,  if  applicable. The resulting consequence is not simply
added to the current set of formulae, but replaces the first antecedent. Only
after this potential subsumption deletions may be  performed. We refer to this
whole process as one derivation step.

Theorem 7.3.4 (Correctness wrt. w-LL(BL))
After every derivation step in C" we have the following situation: Let w be
the (unique) label of 1 .  Then every formula in the current set of formulae
is Fu-LL(BL)-entailed. This means that C" is correct wrt. the semantics of
Fuw-LL(BL)-
Proof:
Let ® be the set of original formulae. Since C’ is correct wrt. |=r1,(mr), this

also holds for C”, which produces only a subset of the formulae derivable by C'.
Therefore for any a :F in the current set of  formulae, we have ® EL, a : F.

Now suppose there is a prime implicand 8 of a with 6 — w. Since all
the labels are positive, there must be a prime implicand y of w, such that the
NF-rule is applicable. This cannot be the case.

Because of  the transitivity of j=g, this result can by induction be generalized
to an  arbitrary number of  derivation steps. {m}

Theorem 7.3.5 (Completeness for Maximal Labels wrt. consLL(BL))
If the underlying calculus C is (refutation-) complete for BL, then C" is (refu-
tation—) complete for mazimally labelled LL(BL)-formulae with respect to the
semantics of  F=consLL-

Proof:
As C' is complete wrt. =p, (point 3 in theorem 7.1.4), it is also wrt. consi,

for its theorems are a subset. It remains to show that the application of  NF
does not destroy the derivation of formulae maximally labelled according to
EconsLL- This is rather simple: NF  deletes formulae of the form a + Sy :F, if
® Err, B+  6 :L .  I t  is  immediately obvious that ® peconsir, @ + Bv:F and the
same holds for all formulae derivable from this by  C’.

It may, however, be the case that the formulae now being deleted have
formerly been used to eliminate subsumed formulae. All  of  those are, however,
subsumed by either the newly introduced formula a :F or by 8v:F (a  as well as
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{3'Y is positive and therefore for any 5 we have that Cl! + {3'Y --t 5 implies Cl! --t 5 
or {3'Y --t 5). Derivatives of the latter are not consistent. 0 

Corollary 1.3.6 
Let w be the label for 1., concerning the current set of formulae. C" is complete 
wrt. the semantics of I=consLL(BL) and correct wrt. the semantics of I=w-LL(BL), 

thus approaching correctness wrt. the semantics of I=consLL(BL) with increasing 
w. 

7.4	 Related Work 

Thoughts on incremental systems can be found in (Cadoli & Schaerf, 1992)2. 
There also an approximizing semantics is introduced3. 

"We are trying instead to formalize the approximation of a lo
gical consequence relation defined by means of an extensional se
mantics but too difficult to compute, through different, but simpler, 
consequence relations, also defined by means of an extensional se
mantics." 

"any intermediate step (level of approximation) provides clear 
information which is semantically related to the final answer; the 
intermediate steps can be efficiently computed; subsequent steps 
are computed using information obtained in previous ones." 

"In our method the answer to a query is reached - although 
in exponential time - through the computation of several simple 
steps." 

Complexity results of similar problems are e.g. in (Kautz & Selman, 1991; 
Eiter & Gottlob, 1991; Gottlob, 1991; Stillman, 1990). : 

7.5	 The Abstract Reasoner: A Visionary View of a 
System Using Incremental Calculi 

In this section we describe in a very general form how the type AI system 
sketched in the introduction can be built using labelled logics. We only need a 
rather simple form oflabelled logics for this: Semi-basic sets oflabelled formulae 
will be sufficient. 

Imagine a system that models an agent's memory. It will be supplied with 
information from outside, draw inferences autonomously, and from time to time 
be queried whether some statement holds or not. This query will generally be 
time critical. The system can not wait for a prover to try an exhaustive search 

20r better the original long form (Cadoli & Schaerf, 1991).
 
3The quotations following are from (Cadoli & Schaerf, n.d.).
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ßy  is positive and therefore for any ö we have that a + f y  — § implies a — §
or  By  — 4). Derivatives of  the latter are not consistent. im

Corollary 7.3.6
Let w be the label for L ,  concerning the current set of formulae. C" is complete
wrt. the semantics of FeonsLi(BL) 6nd correct wrt. the semantics of |=, Li (BL) ,
thus approaching correctness wrt. the semantics of  FeonsLL(BL) With increasing
w.

7.4  Related Work

Thoughts on incremental systems can be found in (Cadoli & Schaerf, 1992)2.
There also an approximizing semantics is introduced?.

“We are trying instead to formalize the approximation of  a lo-
gical consequence relation defined by means of an extensional se-
mantics but too difficult to compute, through different, but simpler,
consequence relations, also defined by  means of an extensional se-
mantics.” -

“any intermediate step (level of approximation) provides clear
information which is semantically related to the final answer; the
intermediate steps can be efficiently computed; subsequent steps
are computed using information obtained in  previous ones.”

“In our method the answer to a query is reached — although
in exponential time — through the computation of  several simple
steps.”

Complexity results of similar problems are e.g. in (Kautz & Selman, 1991;
Eiter & Gottlob, 1991; Gottlob, 1991; Stillman, 1990). -

7 .5  The Abstract Reasoner: A Visionary View of  a
System Using Incremental Calculi

In this section we describe in a very general form how the type AI  system
sketched in the introduction can be built using labelled logics. We only need a
rather simple form of labelled logics for this: Semi-basic sets of labelled formulae
will be sufficient.

Imagine a system that models an  agent’s memory. It will be  supplied with
information from outside, draw inferences autonomously, and from time to  t ime
be  queried whether some statement holds or  not. This query will generally be
time critical. The system can not wait for a prover to try an exhaustive search

20r better the original long form (Cadoli & Schaerf, 1991).
3The quotations following are from (Cadoli & Schaerf, n.d.).
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(possibly infinitely), but has to come up with an answer eventually. What we 
are arguing for is a system that then delivers the best answer fou.nd so far, that 
means an answer based on the greatest label found for that query, including 
the unsatisfactory J.. (note that this would assume looking for F and ....,F in 
parallel, for the system could be able to show both of them, given inconsistent 
prerequisites) . 

As long as there is no query, the system could try to prove J.. from the 
original set, thus detecting nogoods. It then could perhaps inform the outer 
world of these nogoods, in order to allow withdrawals. 

Take a look at figure 7.1. 

"Withdrawn"-List 
(or other Nogoods) 

.JJ. 
"filtered" through 

known nogoods and 
withdrawn input 

.JJ. 
Valuation (ordering) 

(found so far) 

€ 

a:F 
{3:G 
,:H 

Input "Knowledge" 

of labels 
.JJ. 

{3 
Nogoods Found 
by the System 

IAnswer I 

Figure 7.1: the Abstract Reasoner Architecture in closer detail 

Every statement given to the AR component is formulated in some basic 
logic BL. When entered, it gets "stamped" with a fresh atomic label and is 
included into the knowledge base, which is in principle monotonically increasing. 

If an arbitrary question F is asked, the system has to do several things: 

1.	 first of all it tries to derive the item in question. This is done according to 
an arbitrary procedure suitable for BL. E.g. a refutation proof is perfectly 
fine. The decisive difference to ATP is, that the procedure should not stop 
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(possibly infinitely), but has to come up with an answer eventually. What we
are arguing for is a system that then delivers the best answer found so far, that
means an  answer based on  the greatest label found for that query, including
the unsatisfactory L (note that this would assume looking for F and —F in
parallel, for the system could be  able to  show both of  them, given inconsistent
prerequisites).

As long as there is no query, the system could try to prove L from the
original set, thus detecting nogoods. It then could perhaps inform the outer
world of  these nogoods, in  order to allow withdrawals.

Take a look at figure 7.1.

“Withdrawn”-List
(or other Nogoods)

Nogoods Found
B by  the System

Input “Knowledge” € aß  + de
aF  5 : + Bn  + . . .

B:G B + 7 . . .

v:H :

(found so far)

Inference
Engine ay :F

a2: F
4

“filtered” through
known nogoods and

withdrawn input

| Question: F? Valuation (ordering)
of  labels

4

Figure 7.1: the Abstract Reasoner Architecture in  closer detail

Every statement given to the AR component is formulated in some basic
logic BL. When entered, it gets “stamped” with a fresh atomic label and is
included into the knowledge base, which is  in  principle monotonically increasing.

If  an  arbitrary question F is asked, the system has to  do  several things:

1.  first of  all it tries to  derive the item in question. This is done according to
an arbitrary procedure suitable for BL.  E.g. a refutation proof is perfectly
fine. The decisive difference to  ATP  is, that the procedure should not stop
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after having found a derivation, but should go on and look for alternative 
proofs. This may not end for undecidable BL, but the "raw answer" can 
only be improved by yielding bigger and bigger labels (wrt. our order 
given for labels). Of course there may be criteria that reveal a label as 
maximal. In such cases one could simply stop. 

2.	 if BL is not decidable, even the search for only one derivation may not 
terminate. As the yes/no question in fact means "can you find a derivation 
of F or ..,F" , a second procedure trying to derive ..,F is started in parallel. 
Note that the whole procedure must not be aborted if one of the two parts 
yields a derivation, because there may be possibilities to derive both, as 
the formula set is not guaranteed to be BL-consistent. 

3.	 this procedure is not really necessary, but supplies the system with a 
better performance. As contradictions may be present in the original 
formula set already, the AR does not need to wait for a query at all, 
but can try to look for all refutations of the original set in advance (or 
whenever there is time for that). Every label found for ..L (BL), can be 
stored in a separate nogood database for future use. 

This procedure can be run for an arbitrary time and interrupted at any 
time. The resulting raw answer may of course not be the correct one, but it can 
serve as an approximation and is guaranteed to approach the correct solution 
in a sense described below. 

There are now several possibilities, what the concrete answer given by the 
system could look like. Say al:F as well as a2:..,F have been derived within the 
time available. One solution is to simply output these. One can, however, do 
better. First of all, every nogood found so far can be eliminated from the raw 
labe1s4 . This is best described as a filtering process. If there remains a label 
only for F or ..,F, one could translate this as "yes" respective "no". 

It has to be noted that this must be handled with care. The yes/no answers 
are only temporary approximations. With increasing time there can occur ar
bitrarily many changes from yes to no and vice versa. This is due to the fact 
that, though clearly the labels increase monotonically, the same holds for the 
nogood labels as well. So the approximation process does not approach the 
final answer "from below" or "from above", but oscillates. 

It may also happen that there does not remain a label for F as well as 
for ..,F. This simply means that there has not been sufficient time to find a 
(consistent) proof at alL Quite the opposite can occur also. There may be 
(different) labels for both polarities. This is the point where it is useful not to 
hide the labels from the question asking device. 

If this is a human, he (or she) may perhaps decide - by looking at the labels 
or better at the input formulae they denote - what was the reason and how 
the conflict should be resolved. There are possibilities to do this in a manner 
enabling the system to do the same on its own in future times. 

4The set of found nogoods even can be increased, if 01 and 02 contain common prime 
implicants. 
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after having found a derivation, but should go on and look for alternative
proofs. This may not end for undecidable BL,  but the “raw answer” can
only be  improved by  yielding bigger and bigger labels (wrt. our order
given for labels). Of  course there may be criteria that reveal a label as
maximal. In such cases one could simply stop.

2. if BL  is not decidable, even the search for only one derivation may not
terminate. As the yes/no question in  fact means “can you find a derivation
of  F or  =F”, a second procedure trying to  derive —F is started in  parallel.
Note that the whole procedure must not be aborted if  one of  the two parts
yields a derivation, because there may be possibilities to derive both,  as
the formula set is not guaranteed to be BL-consistent.

3. this procedure is not really necessary, but supplies the system with a
better performance. As contradictions may be present in the original
formula set already, the AR does not need to wait for a query at all,
but can try to look for all refutations of the original set in advance (or
whenever there is time for that). Every label found for L (BL), can be
stored in a separate nogood database for future use.

This procedure can be run for an arbitrary time and interrupted at any
time. The resulting raw answer may of course not be the correct one, but i t  can
serve as an  approximation and is guaranteed to approach the correct solution
in  a sense described below.

There are now several possibilities, what the concrete answer given by the
system could look like. Say «a;:F as well as a2: -F  have been derived within the
time available. One solution is to  simply output these. One can, however, do
better. First of all, every nogood found so far can be eliminated from the raw
labels*. This is best described as a filtering process. If there remains a label
only for F or —F, one could translate this as “yes” respective “no”.

I t  has to  be noted that this must be handled with care. The yes/no answers
are only temporary approximations. With increasing time there can occur ar-
bitrarily many changes from yes to no and vice versa. This is due to the fact
that, though clearly the labels increase monotonically, the same holds for the
nogood labels as well. So the approximation process does not approach the
final answer “from below” or “from above”, but oscillates.

I t  may also happen that there does not remain a label for F as well as
for —F. This simply means that there has not been sufficient time to find a
(consistent) proof at all. Quite the opposite can occur also. There may be
(different) labels for both polarities. This is the point where i t  is useful not to
hide the labels from the question asking device.

If  this is a human, he (or she) may perhaps decide — by looking at the labels
or better at the input formulae they denote — what was the reason and how
the conflict should be resolved. There are possibilities to do this in a manner
enabling the system to do the same on its own in future times.

“The set of found nogoods even can be increased, if @; and a contain common prime
implicants.
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One could for example retract a formula. This is not done by eliminating 
it from the input data base, as then the whole process has to be started anew 
and all lemmata generated in the meantime must be eliminated, but can be 
handled by simply declaring the corresponding label a nogood. This should be 
done in a separate "withdrawn list" distinguished from the nogood data base, if 
this process is intended as reversible. So any formula can be switched "on" and 
"off" simply by adding or deleting its label to/from that list. Besides, there 
is no reason why the list should only contain atomic nogoods. In fact it can 
contain any arbitrary label, exactly like the nogood data base. This is a true 
possibility to describe exclusions of defaults5 . 

There is another way of resolving conflicts. It is not necessary to block 
certain formulae completely, as is done when declaring them nogoods. When 
there are proofs for (X1:F as well as (X2:-,F, the weakest condition sufficient for 
a true decision between yes and no is to declare one of (Xl and (X2 to be bigger 
according to some ordering than the other. This can be done by refining our 
partial order for labels. It first is to show that this is a true refinement, Le. 
that no inconsistencies occur from doing so. But this is obvious, because if one 
was bigger than the other in our usual sense, the smaller one is a nogood and 
this cannot occur, as it would already have been eliminated. 

As an aside it should be mentioned, that this construction fits into the 
paradigm of an anytime procedure (Dean & Boddy, 1988; Russell & Zilberstein, 
1991)6. 

No let us turn to the proof procedures needed. The problem we have to 
solve, given a query, differs from the one encountered in automated theorem 
proving. Finding one proof is not sufficient. Instead we are interesting in all 
possible proofs, or at least particular representatives. What we need can be 
reduced to the so-called consequence finding problem. This problem is well
known in literature. The name has been coined by Lee (1967). He uses it to 
clarify the distinction to proof finding (Robinson, 1967). 

Fortunately, known proofprocedures can be used for this problem. Ordinary 
resolution (Robinson, 1965) for instance is complete for prime consequences. A 
similar result has been obtained for semantic resolution (Slagle, 1967) in (Slagle 
et al., 1969) and for linear resolution (Anderson & Bledsoe, 1970) in (Minicozzi 
& Reiter, 1972). Newer results more directly related to our domain of discussion 
can be found in (Inoue, 1992; Demolombe & Farifias del Cerro, 1991). 

The definition of a prime 'consequence (also known as non-trivial conse
quence) is: A clause C is a prime consequence of S, if S implies C and there is no 
consequence D (different from C) of S with C implies D. For propositionallogic 
this is exactly dual to prime implicants, therefore the term prime implicates 
can also be found7. 

5In our example we have only given propositional labels. The whole procedure .will run 
the same way with the first order labels we shall encounter in chapter 8, when we taik about 
defaults. . 

6Similar concepts can be found in (Horvitz, 1989). In our context especially (Haddawy & 
Frisch, 1991) should be mentioned. 

7Slagle et al. (1969): "the prime consequence of a set of ground clauses is a prime implicate 
of the set and is the dual of a prime implicant of the dual of the set" . 
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The completeness proof for resolution in consequence finding shows the fol
lowing: When starting with a satisfiable set of axioms, and then doing resolu
tion, we get no complete enumeration of theorems, but for every entailed T there 
is a derivable T' that subsumes T. This is sufficient for prime consequences. 

Application to CMS/ATMS is done in (Inoue, 1990). Inoue explains the 
importance of consequence finding for the whole area of artificial intelligence 
(p. 341) and why it has been neglected up to then (p. 302). An improved 
algorithm (SOL resolution) is given by Inoue (1992)8. 

In practice there is the difference between the interpreted versus the compiled 
approach (Reiter & de Kleer, 1987), which means advance computation of prime 
implicates. Inoue (1990) does this via saturation. From the viewpoint of theory 
alone there is no difference between those methods. The enumeration problem 
of prime implicates is of exponential complexity (Inoue, 1990). 

An interesting resolution strategy for ATMS problems (directed CAT-cor
rect resolution with clash, RCD) can be found in (Tayrac, 1990) resp. (Cayrol 
& Tayrac, 1989). 

Our abstract reasoner bears a lot of similarities with the "belief subsystem" 
in (Konolige, 1983). There also the resource boundedness of computation is 
taken into account, so that Konolige comes up with effectively computable, 
sound inference rules in a system consisting of the inference rules, a base set, 
a control strategy (!), queries and answers. The answers are, however, simply 
"yes" or "no". Konolige writes: 

"In particular, this forces deduction rules to be monotonic. It 
is our view that nonmonotonic or default reasoning should occur in 
the belief updating and revision process, rather than in querying 
beliefs." 

Similarly to our approach, the filtering goes extra and can in principle be 
done in the end. However, to accelerate computation, a lot can be computed 
in advance, as in the case of nogoods. This works like the restriction sets of 
Martins and Shapiro. 

The main difference between our method and Konolige's is his totality de
mand: 

"the answer to a query will be returne4 in a finite amount of 
time" 

With "answer" Konolige means the final yes/no decision. This demand is 
weakened in our approach to that in a finite amount of time an answer is given. 
This answer will at any time contain a label correct wrt. LL-entailment, but 
that label need not be consistent. With increasing time, the label will suffice 
w-correctness for also increasing wand thus approach consistent LL-entailment. 
If only the yes/no answer is considered, this may be wrong, and in particular 

SIn that same article a generalization of characteristic clauses is given, so that CMS/ATMS 
as well as abduction turn out to be special cases of the same problem. There are similar results 
in (Demolombe & Fariiias del Cerro, 1991). 
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may toggle between yes and no several times. This seems horrible at first view, 
but it comes rather close to how humans deal with that matter (given more 
time more justifications as well as more rejections for a conjecture will come to 
one's mind). Besides one could not seriously expect to ever yield better results 
for undecidable logics. 

Konolige talks about the difference between deductive consistency and logical 
consistency. Deductive consistency means there may be logical consistency, but 
the system will not be able to detect it, thus the matter is consistent wrt. to 
the system given. Instead of restraining ourselves to deductive consistency, 
as Konolige proposes, we stick to logical consistency, as our systems are in 
principle able to detect any· inconsistency, given infinite amounts of time, but 
allow tentative answers, which however can be characterized correct wrt. to the 
approximative semantics presented. 

There are also other system proposals in the literature on data (or know
ledge) base updates that resemble the abstract reasoner in certain points. We 
only mention (Winslett, 1986; Fagin, Ullman & Vardi, 1983; Fagin, Kuper, 
Ullman & Vardi, 1984; Abiteboul & Grahne, 1985; lmielinski & Lipski, 1984; 
Levesque, 1984a; Reiter, 1984; Winslett-Wilkins, 1986) without discussing them. 
The interface construction goes back to (Levesque, 1984b) , who termed it 
TELL/ASK. In Levesque's original article the TELL operation is however 
very restricted. As he only eliminates models, anything introduced has to be 
consistent with the old state. 
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Chapter 8 

Default Handling 

Within this chapter we sketch how our approach can be used to describe default 
reasoning as well. For this task we have to extend the logic of the labels to first 
order logic. In contrast to the sections on Reason Maintenance we do not claim 
to possess a framework capable of describing all the approaches proposed up 
to now. In fact we simply introduce our way of handling defaults and only 
afterwards compare it to the existing ones. It will turn out that we can gain 
some interesting insights on default logics. 

8.1	 Motivation: The Flying Birds Example Revis
ited 

Seemingly all kinds of default logics are motivated by the need to model typic
ality. One of the standard examples goes like this 

Example 8.1.1 (Does Tweety fly?!) 

Typically birds fly 

Penguins are birds 

Penguins don't fly 

If we now are told, that Tweety is a bird, then we should come to the 
conclusion that Tweety flies, as any bird should be assumed a typical bird, as 
far as there are no hints to the contrary. If, however, we get to know instead 
that Tweety is a penguin, we are no more allowed to assume him to fly, as 
though he certainly remains a bird - the fact that penguins do not fly is hard, 
as compared to the default that birds typically fly. 

There are many approaches that tackle this kind of reasoning. Most are 
based on a dichotomy within the rules of the calculU:s used. There are some rules 
that can always be applied, whereas others, the so-called default rules are only 

IThis example is in fact very old. In a slightly different form it can be found already in 
Frege (1879, page 51). 
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CHAPTER 8. DEFAULT HANDLING 

applicable if certain conditions are met. These conditions are almost always not 
testable in a constructive way. By this we mean that the test for applicability is 
often based on knowledge that is available only after the application itself, i.e. 
it is possible that the result can tell that the rule should not have been applied 
at all. 

In Reiter's logic DL (Reiter, 1980b) for instance default rules are written 
as

a: M{3 

'Y 

with the intended meaning "if a is derivable and it is consistent to assume {3, 
then 'Y is derivable per default" . 

More formally: 

Definition 8.1.2 (Reiter Default) 
A (Reiter) default is of the form 

a[x] : M {3[x] 
'Y[x] 

where a, {3 and 'Y are first order formulae with common free variables x = 
Xl, ... , Xn. a is called the prerequisite, 'Y the consequent. 

A rather uninteresting, although well examined, subclass of defaults are 
closed defaults: 

Definition 8.1.3 (Closed Default)
 
A default is called closed, if it does not contain free variables. A default that
 
is not closed is called open.
 

Definition 8.1.4 (Default Theory)
 
A default theory consists of a set F of closed first order formulae and a set
 
~ of defaults. A default theory is called closed, if all elements of ~ are closed.
 

The semantics for DL talks about extensions. 

Definition 8.1.5 (Extension) 
Let (F,~) be a default theory. Then an extension is a fixed point of the r 
operator, which maps sets of cIo.sed first order formulae (wffs) on sets of wffs 
and is defined as: r(S) is the smallest set with 

•	 F ~ r(S) 

•	 r(S) is closed wrt. (classical) logical consequence, 

• for every default rule a	 M{3/'Y E ~, if a E r(S) and {3 ft S,: then 
'Y E r(S). 

Reiter gives an algorithm that computes extensions by the iteration 

2within text we write er : M {3h instead. 
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Algorithm 8.1.6 

Eo = F 
Ei+l = Cons(Ei) ubi a: M/3/'Y E Do,a E Ei,/3 ~ E}. 

The extension is then defined as 

This algorithm is, however, not constructive, for E has to be guessed before
hand (note the occurrence of E in the second equation). So checking whether a 
given set E is in fact an extension can be done with the help of this algorithm, 
but extensions can not be constructed. 

We shall approach that matter in a slightly different way. Instead of forbid
ding to use a rule because it will contribute to a contradiction not known at the 
moment, we admit that step and only later, when we really find out about a 
contradiction, eliminate some consequences. The advantage is that thus we can 
proceed incrementally and use inference rules that are only locally informed. 
Instead we have the difficulty to find an appropriate notion of soundness for 
the intermediate results. 

This looks very much the same as our incremental calculi presented in the 
preceding chapter. And in fact it bears the same spirit and only one rather 
simple generalization has to be performed to obtain the possibility of modelling 
default reasoning. 

Let us try to model the example of the non-flying penguins. We can see 
the statements "all penguins fly" and "penguins are birds" as axioms, as well 
as perhaps "Tweety is·a penguin". Like in the modelling of an ATMS we label 
them with T. 

In contrast, "typically birds fly" is something like an assumption. Assump
tions and defaults have in common, that both may be used only as long as 
their use does not produce trouble. In a first approach we could try to label 
the formula 'v'xBIRD(x) ~ FLI~S(x) with an atomic label, thus modelling the 
complete example as 

a:'v'xBIRD(x) ~ FLIES(x) 

T:'v'xPENGUIN(x) ~ BIRD(x) 

T:'v'xPENGUIN(x) ~ -.FLIES(x) 

adding T:BIRD(Tweety) or T:PENGUIN(Tweety). If we now look for 
consistent consequences, we find that in the first case a:FLIES(Tweety) is 
maximally consistently derivable, while in the second case a is a nogood and 
T:-.FLIES(Tweety) follows consistently, which looks rather like what we inten
ded. 
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There is just one flaw with this approach. If in addition to 

_ T:PENGUIN(Tweety) 

we added 
T:I3IftI)(Hansi), 

we can not derive 
a:FLIES(Hansi), 

as a is a nogood. 

What we have done is simply reject the whole formula 'v'xI3IftI)(x) -+ 
FLIES(x) because of the counterexample. Instead in most default logics the 
defaults are not treated as formulae, but rather as schemata, that stand as 
representatives for all their ground instances. 

To get a similar effect, we enhance the logic of the labels. We permit them 
to be first order formulae, intending the following representation of the problem: 

'v'x a(x):I3IRD(x) -+ FLIES(x) 

T:'v'xPENGUIN(x) -+ I3IRD(x) 

T:'v'xPENGUIN(x) -+ -,FLIES(x) 

If we design a calculus the way that instantiation of those variables in the 
formula part that also appear in the labels, is carried over to the labels, we can 
diagnose e.g. a(Tweety) as a nogood by addition of T:PENGUIN(Tweety), 
thus preserving the possibility to derive the formula a(Hansi):FLIES(Hansi) 
from T:BIRD(Hansi) without violating consistency. 

What we shall do in the rest of the chapter is the following. First we give a 
very brief introduction to some of the main approaches for dealing with defaults. 
This mainly serves the purpose of supplying the terminology needed. Then we 
work out our representation introduced rather informally up to now in a more 
accurate way. Afterwards we compare our approach with some other known 
default handling methods. We close the chapter by dedicating a whole section 
on a particular famous problem, which we shall be able to shed some additional 
light on with the help of our formalism. 

8.2 Default Logics: Approaches and Terminology 

In (McDermott & Doyle, 1980) the relation between formal logics ("laws of 
thought", the "ideal mind") and the operation of the mind is discussed. This 
leads to a modal approach using the operator M, which is meant to denote 
"is consistent", thus introducing defeasible reasoning. The resulting logics is 
not semi-decidable, but asymptotically decidable, which means the pro~edure 

changes its answer only a finite number of times3• 

3The same holds for our incremental calculi. 
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There is just one flaw with this approach. If in addition to

T:PENGUIN(Tweety)

we added
T:BIRD(Hansi),

we can not derive
o:FLIES(Hansi),

as a is a nogood.

What we have done is simply reject the whole formula VzBIRD(z) —
FLIES(z) because of the counterexample. Instead in most default logics the
defaults are not treated as formulae, but rather as schemata, that stand as
representatives for all their ground instances.

To get a similar effect, we enhance the logic of the labels. We permit them
to  be first order formulae, intending the following representation of the problem:

Vz a(z):BIRD(z) — FLIES(z)
T:VzPENGUIN(z) — BIRD(z)

T:VzPENGUIN(z) — —-FLIES(z)

If we design a calculus the way that instantiation of those variables in the
formula part that also appear in  the labels, is carried over to the labels, we can
diagnose e.g. a(Tweety) as a nogood by addition of T:PENGUIN(Tweety),
thus preserving the possibility to derive the formula a(Hansi):FLIES(Hansi)
from T:BIRD(Hansi) without violating consistency.

What we shall do in  the rest of the chapter is the following. First we give a
very brief introduction to  some of  the main approaches for dealing with defaults.
This mainly serves the purpose of supplying the terminology needed. Then we
work out our representation introduced rather informally up  to now in a more
accurate way. Afterwards we compare our approach with some other known
default handling methods. We close the chapter by dedicating a whole section
on a particular famous problem, which we shall be able to shed some additional
light on with the help of our formalism.

8 .2  Default Logics: Approaches and Terminology

In (McDermott & Doyle, 1980) the relation between formal logics (“laws of
thought”, the “ideal mind”) and the operation of the mind is discussed. This
leads to a modal approach using the operator M ,  which is meant to denote
“is consistent”, thus introducing defeasible reasoning. The resulting logics is
not semi-decidable, but asymptotically decidable, which means the procedure
changes its answer only a finite number of times}.

3The same holds for our incremental calculi.
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"a procedure of this kind could be useful in spite of the provi
sional nature of its outputs, since a robot always has to act on the 
basis of incomplete cogitation" 

Their logic is known under the name NML I. 
The M operator appears again in Reiter's default logic (Reiter, 1980b), which 

we already came across in the introductory section. As DL is probably the best 
known default mechanism, we will use terminology borrowed from there. 

In Reiter's logic, a formula follows (from facts F and default rules .6.) by 
default, if it is contained in at least one extension. But unfortunately not 
every default theory does have an extension. This is quite inconvenient. So 
one considers restricted cases of default theories that guarantee existence of an 
extension. In this context the following definitions arose. 

Definition 8.2.1 (Types of Default Rules) 
A default rule 

a:M[3 

7 

is called a normal default, if [3 = 7. It is called a semi-normal default, if 
[31- 7. We call a default with empty (missing) a prerequisite-free. 

Reiter was able to supply a proof theory for closed normal default theories, 
which he extended to open normal default theories4 • Normal default theories 
are guaranteed to always possess an extension. The problem, whether some 
formula is in an extension, is known to be not even semi-decidable. 

Some other approaches to default reasoning use modal logics, such as (Mc
Dermott, 1982a; McDermott, 1980; Moore, 1983; Moore, 1985; Marek & Tru
sczynski, 1990). (Moore, 1985) proposes the terminology autoepistemic logic 
(AEL) instead of default logic, as he sees the main characteristics of the prob
lem given by the introspection aspect. The same should hold for (McDermott, 
1982a) and (McDermott & Doyle, 1980). 

Still another direction are different kinds of circumscription, like (McCarthy, 
1980; McCarthy, 1984; Lifschitz, 1985; Lifschitz, 1986), an idea that is actually 
older than defaults, as predicate completion already appears in (Clark, 1978). 

There is an article (Sombe,-1990) that compares the various approaches 
using one single example for all of them. _ 

The aproach that most resembles ours is Poole's. Poole (1985) (and (Poole, 
1988a))5 uses abduction to describe the matter. Abduction is a form of hypo
thetical reasoning which tries to find explanations for found observations, that 
means the direction of inferences is from conclusion to premises. An introduc
tion can be found in (Levesque, 1989)6. Logical characterizations of abduction 

40pen defaults have recently been detected to cause problems when doing Skolemization 
(Baader & Hollunder, 1992). The procedure of Junker & Konolige (1990b) (for decidable base 
logic) does only work for closed defaults. But the interesting ones are indeed the open ones, 
as already mentioned by Reiter (1980b). 

5The THEORlST system is described in (Poole, 1984) 
6It is interesting that Levesque explicitly mentions the tight connection to ATMS. 
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“a procedure of this kind could be useful in spite of the provi-
sional nature of its outputs, since a robot always has to act on the
basis of incomplete cogitation”

Their logic is known under the name NML I.
The M operator appears again in  Reiter’s default logic (Reiter, 19805), which

we already came across in  the introductory section. As DL  is probably the best
known default mechanism, we will use terminology borrowed from there.

In Reiter’s logic, a formula follows (from facts F and default rules A )  by
default, if it is contained in at least one extension. But unfortunately not
every default theory does have an extension. This is quite inconvenient. So
one considers restricted cases of default theories that guarantee existence of  an
extension. In this context the following definitions arose.

Definition 8.2.1 (Types of  Default Rules)
A default rule

a :  MB
Y

is called a normal default, if 8 = y. It is called a semi-normal default, if
BF  v.  We call a default with empty (missing) a prerequisite-free.

Reiter was able to  supply a proof theory for closed normal default theories,
which he extended to open normal default theories. Normal default theories
are guaranteed to  always possess an  extension. The problem, whether some
formula is in an  extension, is known to  be not even semi-decidable.

Some other approaches to default reasoning use modal logics, such as (Mc-
Dermott, 1982a; McDermott, 1980; Moore, 1983; Moore, 1985; Marek & Tru-
sczynski, 1990). (Moore, 1985) proposes the terminology aufoepistemic logic
(AEL) instead of default logic, as he sees the main characteristics of  the prob-
lem given by the introspection aspect. The same should hold for (McDermott,
19824) and (McDermott & Doyle, 1980).

Still another direction are different kinds of circumscription, like (McCarthy,
1980; McCarthy, 1984; Lifschitz, 1985; Lifschitz, 1986), an  idea that is actually
older than defaults, as predicate completion already appears in (Clark, 1978).

There is an article (Sombé,” 1990) that compares the various approaches
using one single example for all of them. _

The aproach that most resembles ours is Poole’s. Poole (1985) (and (Poole,
1988a))° uses abduction to describe the matter. Abduction is a form of  hypo-
thetical reasoning which tries to  find explanations for found observations, that
means the direction of inferences is from conclusion to premises. An  introduc-
tion can be found in (Levesque, 1989)8. Logical characterizations of  abduction

‘Open defaults have recently been detected to cause problems when doing Skolemization
(Baader & Hollunder, 1992). The procedure of Junker & Konolige (19905) (for decidable base
logic) does only work for closed defaults. But the interesting ones are indeed the open ones,
as already mentioned by  Reiter (19805).

5The THEORIST system is described in  (Poole, 1984)
SIt is interesting that Levesque explicitly mentions the tight connection to  ATMS.
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are given in (Eshghi & Kowalski, 1988; Poole, 1988b;~eiter, 1987). The last 
two mentioned introduce the list of marked possible hypotheses, called the ab
ducibles. 

Poole's defaults are those predefined hypotheses (abducibles), and an ad
ditional consistency check is done. There is a distinction between hard facts 
(F) and a pool of possible hypotheses (defaults, .6.), a proposition 9 being en
tailed (in Poole's terminology: is explainable), if there exists a set D of ground 
instances of elements of .6., such that 

FUDF9 

and 
F uD is consistent. 

Definition 8.2.2 (Scenario)
 
A scenario of F,.6. is a set Du F, where D is a set of ground instances of
 
elements of .6. such that D UF is consistent.
 

Definition 8.2.3 (Explanation)
 
IT G is a closed formula, then an explanation of G from F,.6. is a scenario of
 
F,.6.. that implies G.
 

Poole admits as defaults (elements of .6.) arbitrary first order formulae. In 
Reiter's terminology this means admittance of open defaults. 

Poole also gives a definition for extensions that is different from Reiter's, 
but are related to them. 

Definition 8.2.4 (Extension)
 
An extension of F,.6. is the set of logical consequences of a maximal (wrt. set
 
inclusion) scenario of F,.6..
 

Theorem 8.2.5 (PooIe (1988a)) 
Let E be an extension. Then 

.Fc;;.E 

• Cons(E) = E 

• if'Y is a ground instance of an element of.6. and ""'Y 'I. E, then'Y E E. 

Furthermore E is minimal with respect to the above three properties. 

8.3 First Order Labels for Defaults 

In this section we show how the definitions and theorems of chapter 4 can be 
generalized so as to handle first order labels. So from now on we build our 
labelled formulae in the following way: The right part is taken from classical 
first order logic as basic logic, whereas labels are now also classical first order 
predicate logic formulae. We can assume all our formulae to be closed by 
implicit universal quantification. So e.g. a(x):F(x) is actually \IX a(x) -7 F(x), 
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are given in (Eshghi & Kowalski, 1988; Poole, 1988b;.Reiter, 1987). The last
two mentioned introduce the list of  marked possible hypotheses, called the ab-
ducibles. :

Poole’s defaults are those predefined hypotheses (abducibles), and an ad-
ditional consistency check is done. There is a distinction between hard facts
(F) and a pool of  possible hypotheses (defaults, A) ,  a proposition g being en-
tailed ( in  Poole’s terminology: is ezplainable), if there exists a set D of  ground
instances of  elements of  A ,  such that

FUDfEg

and
FUD is consistent.

Definition 8.2.2 (Scenario)
A scenario of F ,A  is a set DU F ,  where D is a set of  ground instances of
elements of A such that DU  F is consistent.

Definition 8.2.3 (Explanation)
I f  G is a closed formula, then an explanation of  G from F,  A is a scenario of
F,  A that implies G.

Poole admits as defaults (elements of A )  arbitrary first order formulae. In
Reiter’s terminology this means admittance of open defaults.

Poole also gives a definition for extensions that is different from Reiter’s,
but are related to them.

Definition 8.2.4 (Extension)
An  extension of  F,  A is the set of logical consequences of a maximal (wrt. set
inclusion) scenario of F,  A.

Theorem 8.2.5 (Poole (1988a))
Let E be an extension. Then

es PCE

e Cons(E) =F

e if  v is a ground instance of an element of A and —y g E,  then y € E .

Furthermore E is minimal with respect to the above three properties.

8 .3  First Order Labels for Defaults

In  this section we show how the definitions and theorems of  chapter 4 can be
generalized so as to handle first order labels. So from now on we build our
labelled formulae in the following way: The right part is taken from classical
first order logic as basic logic, whereas labels are now also classical first order
predicate logic formulae. We can assume all our formulae to be closed by
implicit universal quantification. So e.g. a(Z):F(Z) is actually VT a(Z) — F(Z),
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where x represents a vector of variables. However, we usually do not write the
 
quantifier but denote the formulae with free variables, in order to emphasize
 
that if we speak of instances of labelled formulae, we only want to instantiate
 
these free variables. So e.g. a(a):"Iy F(a, y) is an instance of a(x):'v'y F(x, y),
 
whereas a(a):F(a, b) is not. Intuitively, like in most default languages, such
 
open formulae stand as representatives for all of their instances.
 

Definition 8.3.1 (Labelled Formulae and Substitutions)
 
A labelled formula is of the form L[x]:F[x], where F is a first order formula
 
with free variables x and L a first order formula with x as its only variables.
 

If G = a:F is a labelled formula, then the substitution uG is defined as 
uG = ua:uF. 

Most definitions of chapter 4 carry over, so we give only the important ones 
briefly. We have to be more precise about what we mean by DDNF in this 
context: According to the fact that non-ground atoms stand for their instances 
and therefore in particular for all their ground instances, they denote in fact sets 
of ground instances and can be viewed as shorthand for writing these down (of 
course this is not possible, for there are usually (countably) infinitely many of 
them). So the DDNF formation can be done on the ground atoms and the result 
again notated in shorthand. As an example, a(f(x))a(x) can be shortened to 
a(x). 

Definition 8.3.2 (Basic and Semi-basic Sets) 
A set of labelled formulae is called basic, iff every label is atomic and has an 
arity corresponding to the number of variables free in the formula part, which 
occupy the argument positions in the label. Furthermore no label occurs more 
than once. It is called semi-basic, if in addition the occurrence of arbitrarily 
many formulae labelled T is allowed. The formulae labelled T are called facts, 
the others defaults. 

Definition 8.3.3 (Positive and Relevant Labels) 
A label is called positive if its DDNF does not contain negative literals. It is 
called relevant wrt. a given semi~basic set !P of labelled formulae,.if each of 
its literals is an instance of a label of some formula in!P. A labelled formula is 
said to be relevant resp. positive if its label is. 

Definition 8.3.4 (Characteristic Function) 
Let !P be a semi-basic set of labelled formulae, and let a(tl, , tn ) be an 
atomic relevant label. Then there exists a unique formula a(xl' , xn):F in 
!P such that a(tl' ... , tn) is an instance of a(xl' ... , xn). Now let J.t(a) denote 
the set 

{uF Iu(a(xl, ... , xn):F) is an instance of a(xl, ... , xn):F}U{G IT:G E !p}. 

Then for positive, relevant a the characteristic function X is defined as 

if a =.L 
if ex = T 

m n 
a = L TI aij 

i=lj=l 
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where T represents a vector of variables. However, we usually do not write the
quantifier but denote the formulae with free variables, in order to emphasize
that i f  we speak of instances of labelled formulae, we only want to instantiate
these free variables. So e.g. a(a):Vy F(a,y) is an instance of a(z):Vy F(z ,y ) ,
whereas a{a):F(a,b) is not. Intuitively, like in most default languages, such
open formulae stand as representatives for all of  their instances.

Definition 8.3.1 (Labelled Formulae and Substitutions)
A labelled formula is of the form L[Z]:F[Z], where F is a first order formula
with free variables Z and L a first order formula with T as its only variables.

If G = a:F is a labelled formula, then the substitution 0G  is defined as
0G  = oa:oF.

Most definitions of chapter 4 carry over, so we give only the important ones
briefly. We have to be more precise about what we mean by  DDNF in this
context: According to the fact that non-ground atoms stand for their instances
and therefore in  particular for all their ground instances, they denote in  fact sets
of ground instances and can be viewed as shorthand for writing these down (of
course this is not possible, for there are usually (countably) infinitely many of
them). So the DDNF formation can be done on the ground atoms and the result
again notated in  shorthand. As an example, o(f(z))a(z) can be shortened to
a(z).

Definition 8.3.2 (Basic and Semi-basic Sets)
A set of  labelled formulae is called basic, iff every label is atomic and has an
arity corresponding to the number of  variables free in the formula part, which
occupy the argument positions in  the label. Furthermore no label occurs more
than once. It is called semi-basic, if  in  addition the occurrence of arbitrarily
many formulae labelled T is allowed. The formulae labelled T are called facts,
the others defaults.

Definition 8.3.3 (Positive and Relevant Labels)
A label is called positive if its DDNF does not contain negative literals. It is
called relevant wrt. a given semi-basic set ® of labelled formulae, i f  each of
its literals is an instance of a label of some formula in ®. A labelled formula is
said to be relevant resp. positive if  its label is.

Definition 8.3 .4  (Characteristic Function)
Let ® be a semi-basic set of labelled formulae, and let a(ty, . . . ,  tn) be an
atomic relevant label. Then there exists a unique formula a(x;, . . . ,  xp ) :F  in
® such that a(t;, . . . ,  tn) is an instance of a(x;, . . . ,  xn). Now let x(a) denote
the set

{oF | o(a(xi,  - - . . ,  xn):F) is an instance of (xy, . . . ,  xn): F}U{G | T:G € &} .

Then for positive, relevant a the characteristic function x is defined as

{ }  i f  a=1

x(e) =4{ UH if a=T
Utu  plai j)}  if a=  X IT a ii=1 j =1  j=1
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(where the 'E and IT stand for disjunction resp. conjunction) if a is in DDNF, 
else x(a) = X(DDNF(a». 

Remark 8.3.5
 
The characteristic function always yields a set of instances of formula(<»).
 

Definition 8.3.6 
If G = a:F is a labelled formula, then label(G) = a. Let 'I1 be a set of instances 
of elements of a set <» of labelled formulae. Then define 

label('I1) = /\ label(<p) 
cpEW 

Definition 8.3.7 (Logical Consequence on Labelled Formulae)
 
Let <» be a set of labelled formulae and a:F a single labelled formula. We say
 
a:F follows (logically) from Cl> (written as Cl> l=LL a:F), iff there exist subsets 
'I1 l , ... , 'I1n (n 2: 0) of the set of all instances of Cl>, with 

•	 '::/ 'I1i: formula('I1i) l=BL F and
 

n
 
• l=FOL a -+	 V label('I1i)' 

i=l 

The ordering relation on labels is generalized in the obvious way, in that 
instances are greater than their generalizations. 

Example 8.3.8 
The set of labelled formulae 

a(x):BIRD(x) -+ FLIES(x) 

T:BIRD(tweety) 

entails e.g. a(tweety):FLIES(tweety) as well as a(x):FLIES(tweety). The first
 
of these labels is the maximal label for FLIES(tweety).
 

Definition 8.3.9 (Consistent LL-Entailment)
 
Let Cl> be a set of labelled formulae and a:F a single labelled formula. We say
 
a:F consistently follows from Cl> (written as Cl> l=consLL a:F), iff 

• Cl> l=LL a:F and 

• for all prime implicants {3 of a holds Cl> ,FLL{3:.L 

Now we can give our translation from (Poole) defaults to labelled logic. As 
can be expected, facts are mapped to facts in our sense and defaults to defaults. 

Definition 8.3.10 (Labelled Default Theories) 
Let D = (F, A) be a default theory. Then its labelled representation is a 
set DLL of labelled formulae obtained by translating 

• every fact f	 E F to T:F, 
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(where the X) and [] stand for disjunction resp. conjunction) if « is in DDNF,
else x(a)  = x(DDNF(a)).

Remark 8.3.5
The characteristic function always yields a set of instances of formula(®).

Definition 8.3.6
If  G = a:F is a labelled formula, then label(G) = a .  Let ¥ be a set of  instances
of  elements of  a set ® of  labelled formulae. Then define

label(¥) = A label(¢)
pEeY

Definition 8.3.7 (Logical Consequence on Labelled Formulae)
Let ® be a set of  labelled formulae and a:F  a single labelled formula. We say
a :F follows (logically) from ® (written as ® [=p a:F),  iff there exist subsets
¥y, . . . ,  Tn  (n  => 0) of the set of all instances of ®, with

e VV; : formula(¥;) pL  F and

e ro .  a— V label(Z;).
i = ]

The ordering relation on labels is generalized in the obvious way, in that
instances are greater than their generalizations.

Example 8.3 .8
The set of  labelled formulae

a(z):BIRD(z) — FLIES(z)

T:BIRD(tweety)

entails e.g. a(tweety):FLIES (tweety) as well as a(z):FLIES (tweety). The first
of  these labels is the maximal label for FLIES(tweety).

Definition 8.3.9 (Consistent LL-Entailment)
Let ® be a set of labelled formulae and a :F a single labelled formula. We say
a:F  consistently follows from ® (written as ® FconsLL @:F), iff

oe ® =p  a:F and

e for all prime implicants 8 of  a holds ® j=118:1.

Now we can give our translation from (Poole) defaults to labelled logic. As
can be expected, facts are mapped to facts in  our sense and defaults to  defaults.

Definition 8.3.10 (Labelled Default Theories)
Let D = (F ,A)  be a default theory. Then its labelled representation is a
set Dr  1, of  labelled formulae obtained by  translating

e every fact f € F to TF ,
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• and every default d[x] E ~ to a(x):d[x], where a is a new predicate. 

We then get as a result 

Theorem 8.3.11 
Given a default theory D according to Poole and its labelled representation 
DLL. If a formula G is explainable in D, then there exists a label a such 
that DLL FconsLL a:G. 

Proof: 
This is immediately obvious. A formula G is Poole explainable exactly if there 

exists a set !:J.' of ground instances of elements of !:J., such that ~' U F entails 
G and !:J.' U F is consistent. This is exactly modelled by our translation. 0 

The other direction is slightly more complicated, for we can deduce more in 
the translation. This comes from the fact that Poole (like others) allows only 
ground instances of defaults, whereas we admit arbitrary instances. 

Example 8.3.12 
From 

a(x):BIRD(x) -+ FLIES(x) 

T:PENGUIN(x) -+ BIRD(x) 

we can deduce 
a(x):PENGUIN(x) -+ FLIES(x), 

which is not possible in Poole's approach. However, for arbitrary ground terms 
t 

PENGUIN(t) -+ FLIES(t) 

is explainable. 

So we have 

Theorem 8.3.13 
Given a default theory D according to Poole, its labelled representation DLL and 
an unlabelled formula G. If there exists a label a such that DLL FconsLL a:G, 
then every ground instance of G is explainable in D. . 

Proof: 
From the definition of X and the label function. o 

So we have shown that our approach is a generalization of Poole's. We want 
to emphasize that the incremental calculi from chapter 7 can also be generalized 
so as to work with first order labels. We only have to make sure that every 
instantiation in the formula part occurring in the derivation process must also 
be applied to the labels, so that rules of the form 

are now mapped to 
al:F1,···, an:Fn 
O'(al' ... , an:G)" 
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e and every default d[Z] € A to a(Z):d[Z], where a is a new predicate.

We then get as a result

Theorem 8.3.11
Given a default theory D according to Poole and its labelled representation
Dy1,- If a formula G is explainable in D,  then there ezisis a label a such
that Dry, F=consLL a :G .

Proof:
This is immediately obvious. A formula G is Poole explainable exactly i f  there

exists a set A ’  of ground instances of  elements of  A ,  such that A’  U F entails
G and A’  UF  is consistent. This is exactly modelled by our translation. Oo

The other direction is slightly more complicated, for we can deduce more in
the translation. This comes from the fact that Poole (like others) allows only
ground instances of defaults, whereas we admit arbitrary instances.

Example 8 .3 .12
From

a(z):BIRD(z) — FLIES(z)

T:PENGUIN(z) — BIRD(z)

we can deduce
a(z):PENGUIN(z) — FLIES(z),

which is not possible in  Poole’s approach. However, for arbitrary ground terms
t

PENGUIN(t) — FLIES(t)

is explainable.

So we have

Theorem 8.3.13
Given a default theory D according to Poole, its labelled representation Dy 1, and
an unlabelled formula G .  If  there exists a label a such that Dy], FconsLL &:G,
then every ground instance of G is explainable in  D .  ;

Proof: ”

From the definition of x and the label function. a

So we have shown that our approach is a generalization of Poole’s. We want
to emphasize that the incremental calculi from chapter 7 can also be generalized
so as to work with first order labels. We only have to make sure that every
instantiation in the formula part occurring in the derivation process must also
be applied to the labels, so that rules of the form

F , . . . , F ,
oG

are now mapped to
a1 :  F ı , . . . ,  An: Fp

olay « . . ,  an:G)’
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8.4	 How is Our Approach Related to Other Default 
Logics? 

As already seen, there are various different approaches to handling defaults. 
They often yield different results for the same problem. So there has been 
much discusion of which approach can be viewed as adequate, and in particular, 
whether it is really necessary to leave first order logic for this. 

Poole (1988a), for example, strongly objects the necessity of a special logic 
beyond ordinary first order logics for modelling default reasoning: 

"there is nothing wrong with classical logic; we should not expect 
reasoning to be just deduction from our knowledge. (... ) defaults 
are implicit assumptions; we have to make these assumptions expli
cit (... )" 

"I argue that, rather than being a problem with logic, nonmono
tonicity is a problem of how logic is used" 7 

The simplest case is described as 

"the user provides the form of possible hypotheses they are pre
pared to accept in an explanation" 

In his case this "form" seems to mean open defaults. 

"Rather than defining a new logic for default reasoning, we would 
rather say that it's the natural outcome of considering reasoning, not 
as deduction, but as theory formation. It is logic which tells us what 
our theory predicts." 

We go one step further in that we look upon the whole thing as deduction 
as well, thus incorporating some metalevel reasoning into the object level, true 
to the spirit of LDS. 

"if one allows hypothetical reasoning, then there is no need to 
define a new logic to hl¥ldle nonmonotonic reasoning" 

Here the author wholeheartedly agrees. As can be seen in the section on 
fibering semantics (4.9) it is possible to view our labelled formulae, though they 
are presented differently, as ordinary first order formulae. 

Like our approach, Poole's is - though presented as first order - in fact 
independent of the particular logic used. Crucial is his definition of a scenario: 
D is a ground instance of a subset of ~, which is consistent. An extension is 
then a maximal (wrt. set inclusion) scenario. What is inherited of first order 
semantics is e.g. compactness. If something is explainable, then it is explainable 
with a finite scenario. In our case that corresponds to the fact that maximal 
labels are finitely representable. 

7To this theme ef. (Israel, 1980). 
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As already seen, there are various different approaches to handling defaults.
They often yield different results for the same problem. So there has been
much discusion of  which approach can be viewed as adequate, and in  particular,
whether it is really necessary to leave first order logic for this.

Poole (1988a), for example, strongly objects the necessity of a special logic
beyond ordinary first order logics for modelling default reasoning:

“there is nothing wrong with classical logic; we should not expect
reasoning to be just deduction from our knowledge. ( . . . )  defaults
are implicit assumptions; we have to make these assumptions expli-
cit ( . . . ) ”

“I argue that, rather than being a problem with logic, nonmono-
tonicity is a problem of  how logic is used”?

The simplest case is described as

“the user provides the form of  possible hypotheses they are pre-
pared to accept in  an explanation”

In his case this “form” seems to mean open defaults.

“Rather than defining a new logic for default reasoning, we would
rather say that it’s the natural outcome of considering reasoning, not
as deduction, but as theory formation. It is logic which tells us what
our theory predicts.”

We go one step further in that we look upon the whole thing as deduction
as well, thus incorporating some metalevel reasoning into the object level, true
to the spirit of  LDS.

“if one allows hypothetical reasoning, then there is no need to
define a new logic to handle nonmonotonic reasoning”

Here the author wholeheartedly agrees. As can be seen in the section on
fibering semantics (4.9) it is possible to view our labelled formulae, though they
are presented differently, as ordinary first order formulae.

Like our approach, Poole’s is — though presented as first order — in fact
independent of the particular logic used. Crucial is his definition of a scenario:
D is a ground instance of a subset of A ,  which is consistent. An  extension is
then a maximal (wrt. set inclusion) scenario. What is inherited of first order
semantics is e.g. compactness. If  something is explainable, then it is explainable
with a finite scenario. In our case that corresponds to  the fact that maximal
labels are finitely representable.

"To this theme cf. (Israel, 1980).
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Comparison to DL shows, that Poole's defaults are normal. 
Poole names his defaults. The names themselves are parametrized by the 

free variables in the default. This is exactly what we get in our case. Poole 
explains the intuitive meaning as 

"have the name implying the default as a fact" 

There is an interesting theorem in (Poole, 1988a) (theorem 5.1, p. 33) that 
states that any default theory can be transformed into an equivalent one, where 
.6. contains only the names of defaults, whereas for every default dE .6. a formula 
name -t d is added to the set of facts. This is even closer to our representation 
than the original version. 

Like Poole, our approach admits open defaults, but is restricted to normal 
ones. Poole gives a possibility to translate arbitrary Reiter defaults: 

a(x) : Mf31(X) ... Mf3n(x) 
'Y(x) 

becomes 
')'(x) +- Mf31(X) /\ ... /\ Mf3n(x) /\ a(x) 

with an additional "constraint" 

Poole's definition of constraints is to introduce a set C offirst order formulae, 
that are used when checking for consistency, but not for the explanation. This 
means a formula G is explained by a default theory (F,.6., C), if there is a set !:i.' 
of ground instances of elements of !:i., such that !:i.' UF entails G and .6.' UF UC 
is consistent. 

This can be modelled in our aproach by redefining consistent LL-entailment 
as to also use an additional set of formulae for the derivation of .1., which does 
not present any problem. . 

Poole also presents a way to model how one can explicitly state that one 
default blocks another. This is done by adding to the facts formulae containing 
the names of the involved defaults. This can not be directly modelled by our 
approach, because our labelled formulae are all of a particular form, namely 
the label implies the formula part. Digression from this is in principle possible, 
as long as only semantics is concerned, because we always can interpret the 
complete labelled formula as a simple first order formula with ":" as -t. But 
of course we can then not deal with the labels separately, as in the proposed 
calculi. 

Coming back to the question of what method of treating defaults is ad
equate, the author thinks that there is a strong argument for approaches like 
Poole's, and therefore ours, too. There is an interesting article by Brewka 
(1989) that describes the nature of a default (as compared to a fact). 

8 .4  How 1s Our  APPROACH RELATED TO OTHER DEFAULT Logics? 121

Comparison to DL  shows, that Poole’s defaults are normal.
Poole names his defaults. The names themselves are parametrized by the

free variables in the default. This is exactly what we get in our case. Poole
explains the intuitive meaning as

“have the name implying the default as a fact”

There is an interesting theorem in (Poole, 19884) (theorem 5.1, p .  33) that
states that any default theory can be transformed into an equivalent one, where
A contains only the names of  defaults, whereas for every default d € A a formula
name — d is added to the set of facts. This is even closer to our representation
than the original version.

Like Poole, our approach admits open defaults, but is restricted to normal
ones. Poole gives a possibility to translate arbitrary Reiter defaults:

o(z) : Mßı(z)... MBn(z)
v(z)

becomes
¥(z) + MBi(z) A . . .  A MBp(z) A az)

with an  additional “constraint”

—~M fi(z) + Bi(z).

Poole’s definition of  constraints is to  introduce a set C of  first order formulae,
that are used when checking for consistency, but not for the explanation. This
means a formula G is explained by a default theory (F, A ,  C),  if  there is a set A ’
of  ground instances of  elements of A ,  such that A 'UF  entails G and A 'UFUC
is consistent.

This can be modelled in  our aproach by redefining consistent LL-entailment
as to also use an additional set of formulae for the derivation of 1 ,  which does
not present any problem. :

Poole also presents a way to model how one can explicitly state that one
default blocks another. This is done by adding to  the facts formulae containing
the names of  the involved defaults. This can not be  directly modelled by  our
approach, because our labelled formulae are all of a particular form, namely
the label implies the formula part. Digression from this is in  principle possible,
as long as only semantics is concerned, because we always can interpret the
complete labelled formula as a simple first order formula with “ ”  as —. But
of course we can then not deal with the labels separately, as in the proposed
calculi.

Coming back to the question of what method of treating defaults is ad-
equate, the author thinks that there is a strong argument for approaches like
Poole’s, and therefore ours, too. There is an interesting article by Brewka
(1989) that describes the nature of a default (as compared to a fact).
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"What makes a default a default? What distinguishes it from 
a fact? Certainly our attitude t()wards it in case of conflict, i.e. an 
inconsistency. If we take this view serious then the idea of default 
reasoning as a special case of inconsistency handling seems quite 
natural." 

He stresses that the difference becomes apparent only if contradictions 
ariseS. The idea of a maximal consistent subtheory goes back as far as to Rescher 
(1964). 

8.5	 Some Thoughts on the Anomalous Extension 
Problem 

In this section we shall discuss a famous problem well known from literature. 
Opinions whether the correct solution to it has already been found, differ. The 
author wants to put forth his own opinion on this issue, arguing that our frame
work rather clearly shows how the solution should look like. 

Being a little bit naive, one expects that default reasoning should solve 
things like the frame problem (McCarthy & Hayes, 1969) or the phenomena 
of persistence (McDermott, 1982b), as these have been the very reasons for its 
introduction. 

Unfortunately this is not true. As early as in (Reiter & Criscuolo, 1981) it 
was noticed that there are problems resulting from the interaction of defaults 
and that certain extensions should be excluded. In contrast to the conjecture in 
(Reiter, 1980b) this involves using non normal defaults. The attempt to restrict 
the class of defaults needed, semi-normal theories were introduced, but the 
properties these exhibit are not particularly appealing (no existence guarantee 
for extensions, no semimonotonicity, no proof theory)9 • 

A lot of people's hopes were then destroyed by the famous article of Hanks & 
McDermott (1986) (this is an improved version of their original article (Hanks 
& McDermott, 1985)10). The sad message simply is, that DL does not do what 
is intuitively expected. 

"On one hand the logics have been subjected to intense technical 
scrutiny (... ) and have shown to produce counterintuitive results 
under certain circumstances. At the same time we see in the liter
ature practical representation problems (... ) in which default rules 
would seem to be of use, but in these cases technical details of the 
formal systems are for the most part ignored. 

8A similar remark is due to Bibel (1985). 
9There is an interesting note on integrity constraints in (Reiter, 1980b) (p. 275). These 

can not be incorporated that easily into DL. Our approach pursues that direction again: First 
contradiction is permitted, and only afterwards the user is asked how inconsistencies are to 
be resolved (by supplying a partial order on labels). 

lOThere is also a later version (Hanks & McDermott, 1987) which contains the authors' 
answers to several objections. 
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“What makes a default a default? What distinguishes it from
a fact? Certainly our attitude towards it in case of  conflict, i.e. an
inconsistency. If we take this view serious then the idea of default
reasoning as a special case of inconsistency handling seems quite
natural.”

He stresses that the difference becomes apparent only if contradictions
arise®. The idea of a mazimal consistent subtheory goes back as far as to  Rescher
(1964).

8.5 Some Thoughts on  the Anomalous Extension
Problem

In this section we shall discuss a famous problem well known from literature.
Opinions whether the correct solution to it has already been found, differ. The
author wants to  put forth his own opinion on  this issue, arguing that our frame-
work rather clearly shows how the solution should look like.

Being a little bit naive, one expects that default reasoning should solve
things like the frame problem (McCarthy & Hayes, 1969) or the phenomena
of  persistence (McDermott, 1982b), as these have been the very reasons for its
introduction.

Unfortunately this is not true. As early as in (Reiter & Criscuolo, 1981) it
was noticed that there are problems resulting from the interaction of defaults
and that certain extensions should be  excluded. In  contrast to  the conjecture in
(Reiter, 19805) this involves using non normal defaults. The attempt to  restrict
the class of defaults needed, semi-normal theories were introduced, but the
properties these exhibit are not particularly appealing (no existence guarantee
for extensions, no semimonotonicity, no proof theory).

A lot of  people’s hopes were then destroyed by the famous article of  Hanks &
McDermott (1986) (this is an improved version of their original article (Hanks
& McDermott, 1985)1%). The sad message simply is, that DL  does not do what
is intuitively expected.

“On  one hand the logics have been subjected to intense technical
scrutiny ( . . . )  and have shown to produce counterintuitive results
under certain circumstances. At the same time we see in the liter-
ature practical representation problems ( . . . )  in  which default rules
would seem to be  of  use, but in these cases technical details of  the
formal systems are for the most part ignored.

8A similar remark is due to  Bibel (1985).
9There is an interesting note on integrity constraints in (Reiter, 19805) (p. 275). These

can not be incorporated that easily into DL.  Our approach pursues that direction again: First
contradiction is permitted, and only afterwards the user is asked how inconsistencies are to
be resolved (by supplying a partial order on labels).

10There is also a later version (Hanks & McDermott, 1987) which contains the authors’
answers to several objections.
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The middle ground - whether the technical workings of the 
logics correctly bear out one's intentions in representing practical 
default-reasoning problems - is for the most part empty ... " . 

What follows then is known as the Yale shooting problem, which is not 
properly solved by DL as well as by circumscription (McCarthy, 1980). 

The situation is described using situation calculus. There are predicates 
that hold (or do not hold) in certain situations. Furthermore there are actions 
that transform one situation into another. The effect of actions is described 
as enumerations of the predicates that hold in the result situation. The frame 
problem is now that this enumeration is lengthy if it should be exhaustive, even 
though most actions leave most predicates absolutely unchanged, which is called 
persistence. 

With defaults this can be modelled by stating the persistence axioms as 
defaults. 

The shooting example consists of a situation So and three following actions. 

•	 First, in So a gun is loaded. That yields situation SI. 

•	 Then the gunner waits some time. Waiting is another action and here 
leads to situation 82. 

•	 In 82, finally, the gunner shoots at his victim. 

Giving the facts that loading causes a gun to be loaded and that shooting 
a loaded gun on somebody causes his death (of cause this is simplified), the 
victim should be dead in 83. But we do not know if the gun is loaded in 82. We 
can only assume this because of persistence and the implicit assumption that 
waiting does not change anything. With the same reason we could, however, 
assume that the victim is still alive in 83 because of the persistence of staying 
alive. Of course this has to be blocked. This can be done by explicitly telling 
that shooting a loaded gun at someone is exceptional for this person's staying 
alive. A formulation of the complete story (reduced to the important things) 
in a first order representation, where the predicates t(p, s) and ab(p, a, s) mean 
"predicate p is is true in situation s" resp. "in situation s the action a is an 
exception to the persistence of predicate p" and the function res(a, s) denotes 
the resulting situation from performing action a in situation s, is then: 

Example 8.5.1 (Yale Shooting Example, Circumscriptive Version) 

t(alive, so) 

"18 t(loaded, res(1oad, s))
 

Vs t(loaded, s) -+ ab(alive, shoot, s) /\ t(dead, res(shoot , s))
 

Vs t(alive, 8) B -,t(dead, s)
 

"lp, a, s t(p, s) /\ -.ab(p, a, s) -+ t(p, res(a, 8))
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The middle ground — whether the technical workings of the
logics correctly bear out one’s intentions in representing practical
default-reasoning problems — is for the most part empty . . . ” .

What follows then is known as the Yale shooting problem, which is not
properly solved by DL  as well as by circumscription (McCarthy, 1980).

The situation is described using situation calculus. There are predicates
that hold (or do not hold) in  certain situations. Furthermore there are actions
that transform one situation into another. The effect of actions is described
as enumerations of  the predicates that hold in the result situation. The frame
problem is now that this enumeration is lengthy if  it should be exhaustive, even
though most actions leave most predicates absolutely unchanged, which is called
persistence.

With defaults this can be modelled by stating the persistence axioms as
defaults.

The shooting example consists of  a situation sg and three following actions.

e First, in sp a gun is loaded. That yields situation s;.

e Then the gunner waits some time. Waiting is another action and here
leads to  situation ss.

e In  s2,  finally, the gunner shoots at  his victim.

Giving the facts that loading causes a gun to be loaded and that shooting
a loaded gun on somebody causes his death (of cause this is simplified), the
victim should be  dead in  s3. But we do not know if the gun is loaded in so. We
can only assume this because of  persistence and the implicit assumption that
waiting does not change anything. With the same reason we could, however,
assume that the victim is still alive in s3 because of the persistence of staying
alive. Of  course this has to be blocked. This can be done by explicitly telling
that shooting a loaded gun at someone is exceptional for this person’s staying
alive. A formulation of the complete story (reduced to the important things)
in  a first order representation, where the predicates £(p, s) and ab(p, a, s) mean
“predicate p is is true in situation s” resp. “in situation s the action a is an
exception to the persistence of  predicate p” and the function res(a, s) denotes
the resulting situation from performing action a in situation s, is then:

Example 8 .5 .1  (Yale Shooting Example, Circumscriptive Version)

t(alive, so)

Vs t(loaded, res(load, s))
Vs t(loaded, s) — ab(alive, shoot, s) A t(dead, res(shoot, s))

Vs t(alive, s) + —t(dead, s)

Vp, a, s t(p, 8) A —ab(p, a, s) — t(p,res(a, s))
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By circumscribing the ab predicate one can now hope to obtain the result 
wished for. But, as it turns out, there do exist two minimal models. One is the 
one we hoped for, but there is another one in which the victim is still alive in 
S3, whereas the gun mysteriously ceased to be loaded during the waiting. 

This is no fault of circumscriptionll . DL translations of the same problem, 
as well as various others, all yield the same result. Using DL-terminology one 
speaks of an anomalous extension. 

The conclusion of Hanks and McDermott is 

"... we need to re-evaluate the relationship between nonmono
tonic logics and human default reasoning. We can no longer engage 
in the logical 'wishful thinking' that led us to claim that circum
scription solves the frame problem ... " 

As a reaction several solutions have been proposed in turn. Examples are 

•	 the problem is caused by an incorrect modelling of time (examples are 
(Shoham, 1986; Shoham, 1988)). 

•	 other formalisms such as pointwise circumscription (Lifschitz, 1986) 

According to the author's opinion the first argument is simply not true, as 
the problem also occurs in examples not involving temporal reasoning, which 
has been demonstrated e.g. in (Morris, 1988a). 

For the discussion let us look at a formulation of the problem within our 
framework. This suffers from the same problem, Le. here, too, we get the second 
extension. But we argue, that this should be so, for there is nothing false with 
the unwanted extension. We argue that our disliking that extension is based on 
an assumption not expressed in the formulation of the problem, so we simply 
can not expect any reasonable calculus to come up with the wanted result only. 

Our formulation is very much like the circumscription formulation, the only 
difference being that instead of circumscribing the abnormality predicate we 
introduce the explicit assumption that there are no abnormal situations. 

Example 8.5.2 (Yale Shooting Example, LL-Version) 

T:t(alive, so) 

T :t(loaded, res(load, s)) 

T :t(loaded, s) -7 ab(alive, shoot, s) /\ t(dead, res(shoot, s)) 

T:t(alive, s) ++ -.t(dead, s) 

T:t(p,s) /\-.ab(p,a,s) -t t(p, res(a, s)) 

a(p, a, s): -.ab(p, a, s) 

llNor is the situation calculus to blame for that. There are other formulations of the 
problems that show exactly the same effect. 
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By circumscribing the ab predicate one can now hope to obtain the result
wished for. But, as i t  turns out, there do exist two minimal models. One is the
one we hoped for, but there is another one in which the victim is still alive in
s3, whereas the gun mysteriously ceased to  be  loaded during the waiting.

This is no fault of circumscription!l. DL  translations of the same problem,
as well as various others, all yield the same result. Using DL-terminology one
speaks of  an anomalous extension.

The conclusion of  Hanks and McDermott is

“ . .we need to re-evaluate the relationship between nonmono-
tonic logics and human default reasoning. We can no longer engage
in the logical ‘wishful thinking’ that led us to claim that circum-
scription solves the frame problem . . . ”

As a reaction several solutions have been proposed in turn. Examples are

e the problem is caused by an incorrect modelling of time (examples are
(Shoham, 1986; Shoham, 1988)).

e other formalisms such as pointwise circumscription (Lifschitz, 1986)

According to the author’s opinion the first argument is simply not true, as
the problem also occurs in examples not involving temporal reasoning, which
has been demonstrated e.g. in (Morris, 19880).

For the discussion let us look at a formulation of the problem within our
framework. This suffers from the same problem, i.e. here, too, we get the second
extension. But we argue, that this should be so, for there is nothing false with
the unwanted extension. We argue that our disliking that extension is based on
an assumption not expressed in the formulation of the problem, so we simply
can not expect any reasonable calculus to come up with the wanted result only.

Our formulation is very much like the circumscription formulation, the only
difference being that instead of circumscribing the abnormality predicate we
introduce the explicit assumption that there are no abnormal situations.

Example 8.5.2 (Yale Shooting Example, LL-Version)

T:t(alive, so)

T:t(loaded,res(load, s))

T:t(loaded, s) — ab(alive, shoot, s) A t(dead,res(shoot, s))
T:t(alive, s) & —t(dead, s)

T:t(p, s )  A ~ab(p, a ,  s )  — t(p,res(a,s))

a(p, a, 8):—ab(p, a, 8)

UNor is the situation calculus to blame for that. There are other formulations of the
problems that show exactly the same effect.
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Using the shorthana notations 

SI = res(load, SO} 

S2 = res(wait, sd 
S3 - res(shoot , S2) 

we can deduce
 
a(alive, load, so):t(alive, sd
 

T :t(1oaded, sd 
concerning situation SI. 

Proceeding further tos2 we get 

a(alive, load, so)a(alive, wait, sl):t(alive, S2) 

a(loaded, wait, sl):t(loaded, S2)
 

Next comes S3 and now it becomes interesting:
 

a (alive, load, so) a (alive, wait, sda(alive, shoot, s2):t(alive, 83) 

a(loaded, wait, sd:t(dead, S3) 

From this we see that 

a(alive, load, so)a(alive, wait, sl)a(alive, shoot, 82), a (loaded, wait, SI) 

is a nogood. But this does not help us very much, since there are obviously 
consistent labels for t(alive, S3) as well as for t(dead, S3). 

We have not used the axiom that states that shooting a loaded gun at 
somebody is an abnormality concerning the persistence of living on. Will that 
solve our problems? 

We can deduce 

a(loaded, wait, sl):ab(alive, shoot, S2) 

which shows that we can give a better (tighter) nogood, namely 

a (alive, shoot, S2), a(loaded, wait, SI) 

So in our representation we can directly see what is happening: Assuming 
one normality (either the persistence of staying alive after the shoot or the 
persistence of the gun staying loaded during the waiting) contradicts the other. 
This exactly corresponds to what is expressed in all the formulations. So why 
should one extension be preferable to the other? 

One could argue (and it has indeed been) that the example explicitly states 
that staying alive behaves abnormally in the shooting situation, whereas noth
ing is told that endangers the assumption of the persistence of staying loaded. 
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Using the shorthand notations

sy = res(load,so)

sp = res(wait,s;)
s3 = res(shoot,s2)

we can deduce
af(alive,load, sg):t(alive, s ı )

T:t(loaded, 81 )

concerning situation sı.
Proceeding further to sz we get

afalive, load, so)a(alive, wait, s):t(alive, s2)

a(loaded, wait, s1):t(loaded, s2)

Next comes s3 and now it becomes interesting:

af(alive, load, so) a(alive, wait, sı)a(alive, shoot, s3):t(alive, s3)

a(loaded, wait, s,):t(dead, s3)
From this we see that

a(alive,load, so)a(alive, wait, sı)a(alive, shoot, s2), a(loaded, wait, s1)

is a nogood. But this does not help us very much, since there are obviously
consistent labels for ¢(alive, s3) as well as for ¢(dead, s3).

We have not used the axiom that states that shooting a loaded gun at
somebody is an abnormality concerning the persistence of living on. Will that
solve our problems?

We can deduce

a(loaded, wait, s1):ab(alive, shoot, 52)

which shows that we can give a better (tighter) nogood, namely

a(alive, shoot, s2), (loaded, wait, s1)

So in our representation we can directly see what is happening: Assuming
one normality (either the persistence of staying alive after the shoot or the
persistence of the gun staying loaded during the waiting) contradicts the other.
This exactly corresponds to what is expressed in all the formulations. So why
should one extension be preferable to the other?

One could argue (and i t  has indeed been) that the example explicitly states
that staying alive behaves abnormally in the shooting situation, whereas noth-
ing is told that endangers the assumption of the persistence of  staying loaded.
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But this is not true. The abnormality wrt. staying alive after shooting has as 
a premise the statement that the gun is loaded. So assuming the persistence 
of alive it can be concluded that the gun is not loaded at S2 and therefore we 
get the abnormality in the persistence of loaded. There is nothing mysterious 
here. The author's interpretation of the example is simply that most people 
implicitly assume that staying alive is at least questioned if shooting occurs, 
independently of whether the gun is loaded or not. 

So a better formulation should be axiomatized as 

T:t(loaded, s) -+ t(dead, res(shoot, s)) 

T :ab(alive, shoot, s) 

which indeed leads to only one extension. 
What we want to say is that there is nothing wrong with calculi that yield 

the second extensions, because its exclusion is not contained in the informa
tion the problem formulation, but comes in via particular assumptions of the 
observer not explicitly stated. Of course there exist different opinions on that 
topic. In fact nearly every proposal goes into the direction of excluding the 
unwanted extension. We do not discuss special formalisms, as e.g. pointwise 
circumscription (Lifschitz, 1986; Lifschitz, 1987), here. Instead we want to dis
cuss only one proposal for a solution that fits well in what we talked about 
earlier. 

Some authors propose that the direction of argumentation should be re
stricted. E.g. Kautz (1986) thinks the reasoning should primarily work forward 
in time. He uses preferred models in a circumscriptive approach. Models are 
preferred if they delay the assumption of exceptional cases (no persistence) as 
late as possible. This solves the given example, but Kautz himself gives another 
example that leads this argumentation ad absurdum: Given I parked my car in 
the morning and now notice it is no more there, I certainly have no reason to 
prefer the hypothesis it has been stolen just the moment before. The theft may 
as well have happened immediately after I left my car. He concludes that his 
approach obviously does not work satisfactorily in all examples, but very often 
is appropriate, for the true reason seems to be not time, but causation, which 
physically works forward in time. 

That time is not the problem, can be seen from the fact that the same 
phenomena in cont~xts that have no connection to time (Morris, 1988a). In 
some sense, however, the Morris proposal goes into the same direction. In 
(Morris, 1987) he reports the Yale shooting problem as solved. He wants to 
restrict the direction in which the implications are to be read. If this goes 
"forward" only (this time "forward" refers to the direction of the implication), 
the example is solved. He therefore proposes to use a TMS for that task and 
thus cures the matter. Indeed this works properly for this exa:mple, for the TMS 
produces only the intuitively correct answer. This is caused, by its property of 
possessing directed justifications, which excludes the unwanted contrapositives. 
But this can not be the proper solution to all those problemS, because in many 
cases reasoning in both directions is necessary. Besides, even TMS models like 
(Giordano & Martelli, 1990b) yield both extensions. This seems astonishing, 
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But this is not true. The abnormality wrt. staying alive after shooting has as
a premise the statement that the gun is loaded. So assuming the persistence
of  alive it can be  concluded that the gun is not loaded at sy and therefore we
get the abnormality in  the persistence of  loaded. There is nothing mysterious
here. The author’s interpretation of  the example is simply that most people
implicitly assume that staying alive is at least questioned if shooting occurs,
independently of whether the gun is loaded or not.

So a better formulation should be axiomatized as

T:t(loaded, s) — t(dead,res(shoot, s))

T:ab(alive, shoot, s)
which indeed leads to only one extension.

What we want to say is that there is nothing wrong with calculi that yield
the second extensions, because its exclusion is not contained in the informa-
tion the problem formulation, but comes in via particular assumptions of the
observer not explicitly stated. Of  course there exist different opinions on that
topic. In fact nearly every proposal goes into the direction of excluding the
unwanted extension. We do not discuss special formalisms, as e.g. pointwise
circumscription (Lifschitz, 1986; Lifschitz, 1987), here. Instead we want to  dis-
cuss only one proposal for a solution that fits well in what we talked about
earlier.

Some authors propose that the direction of argumentation should be re-
stricted. E.g. Kautz (1986) thinks the reasoning should primarily work forward
in time. He uses preferred models in  a circumscriptive approach. Models are
preferred if they delay the assumption of exceptional cases (no persistence) as
late as possible. This solves the given example, but Kautz himself gives another
example that leads this argumentation ad absurdum: Given I parked my  car in
the morning and now notice it is no more there, I certainly have no reason to
prefer the hypothesis it has been stolen just the moment before. The theft may
as well have happened immediately after I left my car. He concludes that his
approach obviously does not work satisfactorily in all examples, but very often
is appropriate, for the true reason seems to be not time, but causation, which
physically works forward in time.

That time is not the problem, can be seen from the fact that the same
phenomena in contexts that have no connection to time (Morris, 19884). In
some sense, however, the Morris proposal goes into the same direction. In
(Morris, 1987) he reports the Yale shooting problem as solved. He wants to
restrict the direction in which the implications are to be read. If this goes
“forward” only (this time “forward” refers to the direction of  the implication),
the example is solved. He therefore proposes to use a TMS for that task and
thus cures the matter. Indeed this works properly for this example, for the TMS
produces only the intuitively correct answer. This is caused:by i ts  property of
possessing directed justifications, which excludes the unwanted contrapositives.
But this can not be the proper solution to all those problems, because in  many
cases reasoning in  both directions is necessary. Besides, even TMS models like
(Giordano & Martelli, 19905) yield both extensions. This seems astonishing,
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but is simply caused by the fact, that the TMS is not static (this is what is 
modelled), but changes justifications during DDB. In (Giordano & Martelli, 
1990d) the Morris example is refuted. In fact every existing extension can be 
reached by TMS, too, if the justifications are supplied to the system in the 
appropriate order (Giordano & Martelli, 1990cj Giordano & Martelli, 1990b). 

Another good rebuttal of the time argument can be found in (Pequeno, 
1990). There it is shown, that time is not the problem. Then the use of 
paraconsistency12 is recommended. 

"This is the most we can ask from a formalism. We cannot 
expect it to perform miracles, to extract a single conclusion out of 
inconclusive knowledge, out of knowledge that supports diverging 
arguments equally well" 

Pequeno forbids the use of contrapositives. 

"... nonmonotonic conclusions cannot have the same epistemolo
gical status as conclusions coming from deduction. They can never 
be dissociated from the evidence that gives support for them. The 
occurrence of contradiction among them says something about the 
accuracy of the knowledge available but does not entail the incon
sistency of the state of affairs." 

Morris (1988a) even pleads for an extralogical contradiction handling, which 
in some sense can be seen parallel to the DDB mechanism in TMS's. 

Summarizing, one can say that all of the cures proposed to eliminate the 
unwanted extensions can be shown as rather artificial, thus solving the concrete 
problem at hand, but not adequate in general. We hope that our discussion 
adds some plausibility for the author's strong opinion that the description of the 
problem does not satisfy the preference for one of the two extensions, though 
on first view this is suggested. This can be seen very easily when the problem 
is formulated using our formalism. 

12Independently invented by da Costa (1974) and Jaskowski (1948); a good survey can be 
found in (Arruda, 1980). 
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Chapter 9 

Conclusion 

We have succeeded in developing a unifying framework for describing reason 
maintenance systems. This framework captures systems using the justification 
based approach as well as those that are assumption based, thus making it 
possible to compare different systems on that basis. 

Our approach is purely logical, thus enabling us to 

• characterize	 the differences by naming axioms and translations of the 
respective elements of a system, 

• make apparent the degrees of freedom in the design of such a system. 

As has been justified in detail, a combined approach has been chosen, incor
porating the reason maintenance system proper as well as the problem solving 
component. It nevertheless reflects the possibility of modularization, since the 
two parts appear neatly separated as two distinct parts of the labelled formulae. 
What is gained, however, is the availability of a description of the interface, a 
matter very much neglected in past proposals. 

9.1 Summary of the Main Results 

9.1.1 A Unifying Semanfics for Reason Maintenance Systems 

Our approach is not restricted to any particular logic. By changing the basic 
logic, we can dispose of the tight restrictions of existing systems, like the choice 
of Horn logic or propositionallogic. So in fact any arbitrary problem solver, 
if described in logics at all, can be included. If the component logics possess 
a model theoretic semantics, then we are able to supply one for the combined 
system. 

The different entailment relations introduced for labelled logics in chapter 4 
provide us with a variety of possibilities for system design: 

• Simple LL-entailment gives us systems not	 bound to come up with the 
"best" result, but capable of deriving intermediate results. 
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•	 The introduction of the maximality criterion will enforce a behaviour like 
the one found in most existing systems: The system gives an answer only 
if it comes to a quiescent optimal state. 

•	 The consistency demand yields the introduction of nogood handling. 

•	 All combinations are possible, as well as using the approximative entail
ment relations also presented in chapter 4. 

9.1.2 Incremental Calculi 

Having started from purely theoretical considerations, we have come to practical 
systems as well. The abstract reasoner approach has been presented as a way 
of procedure usable for question answering components - like they appear 
in expert systems or in user/agent models - particularly interesting in cases 
when there is no decision procedure available for the basic logic in question and 
partial answers have to be generated. This fits into the "anytime algorithm" 
paradigm, which is increasingly recognized as important in AI nowadays. 

9.1.3 Handling of Default Reasoning 

We have shown that default logics can also be dealt with using our framework 
originally intended for Reason Maintenance Systems. This is done by changing 
the labels' logic from propositionallogic to first order. It turned out that there 
is a close resemblance to the abductive approach of Poole. 

9.2 Further Work 

Starting from the results presented in this thesis there are some potential can
didates for further investigation. In the sequel we sketch some of them and rate 
the value to be expected from pursuing them. 

9.2.1 Checking Proof Strategies 

In the design of incremental calculi efficiency certainly plays a role. In order 
to achieve this one has to spend some effort on the design of proof strategies. 
We have already discussed a selection of proof strategies in section 7.2, but it is 
certainly worthwhile investigating others and check whether they are compatible 
with our approach. 

9.2.2 Modelling Other Systems 

What could also be done, is to explicitly prove the correspondence of a model 
gained from specializing our approach to a particular reason maintenance sys
tem implementation. But in our opinion this is not very interesting, because we 
do not think there could be valuable insights gained from this, and in principle 
this should not be difficult (though probably tedious), for all the systems fall 
into one of the main categories dealt with here and the respective differences 
actually are implementation issues not concerning the logical behaviour. 
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9.2.3 Varying the Labels' Logic 

A particularly interesting point is to examine what can be obtained by vary
ing the logic of the label part. This concerns the conjunction and disjunction 
operators on labels as well as the top level ":" connective, which represents an 
implication. If we interpret the colon differently from material implication, we 
can perhaps directly model phenomena like the asymmetry of TMS justifications 
in a more direct way than our procedure in chapter 5. Also the characterization 
of dependency directed backtracking may be more elegant than the procedure 
of section 5.2.1 if a three-valued logic is used for the labels. 

All this should in principle work without problems, for as semantics we can 
always use the very general approach via fibering (cf. section 4.9). 

9.2.4 Orderings on Labels 

In section 7.5 we have proposed a system that answers queries for F by finding 
labels for F as well as for ...,F. If for both labels are found, we must somehow 
decide what to give as an answer. One possibility is to confront the user with 
the (uninterpreted) labels. Another is to introduce a (partial) ordering on labels 
that at least in some cases enables the system to make the decision. 

Such an ordering is a generalization of the ordering on labels we introduced 
in chapter 4. In default logic terminology this corresponds to preferences on 
defaults, a topic certainly of interest. The algebras necessary for handling this 
should therefore be explored. 

9.2.5 Probabilistic Calculi 

A special case, where the introduction of alternative label logics could prove 
useful, appears in the context of incrementally working calculi for probabilistic 
or possibilistic logics: 

The most prominent possibilistic system is described in (Dubois, Lang & 
Prade, 1990b) (or more detailed in (Dubois, Lang & Prade, 1990a)). The 
approach is incremental in nature, using refutation procedures working with 
resolution. Like ourselves they search for 

"the exploration of all proof paths leading to the empty clause." 

In order to overcome coinbinatoric explosion (labels by far too large given 
numerous assumptions), the weaker contexts are omitted. They stress that 

"the precise values of certainty degrees are not as important as 
their ordering" . 

So why then involve numbers at all. In the author's opinion it is by far more 
honest (and avoids misleading artifacts) to at best impose a (partial) order on 
the labels (see previous section). 

A system working with genuine probabilities (in contrast to e.g. possibility 
values) can not be based solely on local inference rules, but must. construct 
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complete statistical models. Purely local approaches are therefore incorrect, if 
not particular assumptions of statistical independence are met. These are i~ 

fact very often assumed, but unfortunately do very seldom hold in practical 
applications. If instead some extremely cautious rules are used, the results are 
not very interesting. 

Here an incremental approach with local propagation rules that explicitly 
account for what has been taken into consideration so far, yields a considerable 
improvement. 
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