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0. Introduction

In this paper we describe TENUA, a Test ENvironment for Unification Algorithms for first
order terms.
In  its essence the unification problem in first order logic can be expressed as follows: Given two
terms containing some variables, find, if  it  exists, the simplest substitution (assignment of  some
term to every variable) which makes the two terms equal. Since Herbrand's original work

(Herbrand 1930), unification has been the subjekt of  several research works, mainly settled in
the field of  artificial intelligence. The first unification algorithm, introduced by Robinson 1965,
constituted the central step of  the resolution principle, which is frequently used in theorem
proving and logic programming like PROLOG. Resolution, however, is  not the only application
of  the unification algorithm. In  fact its pattern matching nature often can be exploited in  cases
where symbolic expressions are dealt with, for instance type checkers for programming
languages with a complex type structure, rewriting systems and some knowledge representation
formalisms in AI. Because in all these applications unification constitutes the elementary
operation, its performance effects in  a crucial way their global efficiency. Since the Robinson
algorithm has a exponential worst case complexity, soon linear (Paterson/Wegman 1978,
Escalada/Ghallab 1987) or almost linear algorithms (Martelli/Montanari 1983) were developed.
The choice of  the appropriate unification algorithm for some application is  facilated by TENUA,
a tool which allows comfortable implementation and analysis of  unification algorithms. I t
provides the user with:

- Facilities for the implementation of  unification algorithms such as an interface for input
and output of  terms and substitutions (including an arity check), and functions for term
conversion (see chapter 1).

- Implemented unification algorithms (Robinson 1965, Martelli/Montanari 1982,
~ Escalada/Ghallab 1987) giving a practical measure of  efficiency (see chapter 2).

- Facilities for the comparision of  unification algorithms such as statistical functions (see
chapter 4) and parameterized generators for “standard” and “random” terms (see chapter
3). This allows the user to produce term pairs appropriate to his application and so to test
the efficiency of  unification algorithms on “real” conditions (see example 4.2).

TENUA is  implemented in COMMON LISP on Apollo Domain Workstations. Except the online
documentation (HELP-facility) i t  is machine independent and can be loaded in  any COMMON
LISP environment.
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1. Facilities for the Implementation of Unification Algorithms

1.1 Basic Definitions

To describe the unification problem for first order terms we briefly introduce basic definitions
and results:
The set T of  terms over a countable set V of  variables and a countable set F of  function symbols
(including constants) is recursively defined by:

t eT  iff t e  Vor I f e  Ft,..t € T with t=1(t,..t)

A substitution is  a mapping y: V — T for which y(x) = x except on a finite part of  V.  A
substitution can therefore be described by a finite set {x, « t;; 1<i<n}. Substitutions are
naturally extended as homomorphisms T — T by Yf(t;,....t) = f(yt,,..., Yt).
A unifier © o f  two terms s and t is a substitution 6 with 6(t) = o(s). It is  called a most  general

unifier (mgu) of  these terms, iff for every unifier | of  t and s there is a substitution 8 with u = 8
+ ©. There always exists a mgu for two unifiable terms.
The unificationproblem ( s  = t ) is the problem, to find such an mgu for two terms s and t.

1.2 Representation of  Terms and Substitutions

TENUA offers two different representations of  terms: the string representation, which allows a
mathematical notation and therefore is  very appropriate for input and output (but unsuitable for
term manipulation) and the representation as LISP S-expressions, which is  very handy for
algorithmic applications (have always in  mind that LISP is  our programming language). Now
we give both notations in  more detail. Functions for conversion, input, output and arity check of
terms (in the above representation) are described in  chapter 1.3 - 1.5.

Terms as Strings
This representation corresponds to the usual mathematical notation, including the following
convention: Variables are represented by letters u,  v,  w,  x,  y,  z, constants by a, b, c,  d, e and
function symbols by f, g,..., s or t. To expand the number of  symbols it is  allowed to add a
number to a letter.
Example: "a"; "x5"; "f(a, b, g(x, u))"; "h4711(f12(a3), x2, z)" are legal terms.

Terms as LISP S-expressions (list representation)
Here variables, constants and function symbols are represented as LISP atoms with the same
restrictions as for string terms. Composed terms are LISP lists, where the head corresponds to
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the functor and the tail to the argument list (already LISP S-expressions).
Example: A;  X5; ( FAB  (G  X U)); (H4711 (F12 A3) X2  Y).

For the same reason as for terms TENUA accepts two different representations for substitutions.

Substitutions as Strings
This representation is  very similar to mathematical notation and therefore suitable for input and
output. It always begins with a “ { ”  and ends with a “ } ” ,  enclosing a finite number of  pairs (of
the form) <variable> <-- <term> seperated by  commas.

‘Example: " { x  « a, y « f(z, g(b))}" or " { } "  (empty substitution).

Substitutions as Association Lists
To work more easily with substitutions in  LISP they are also represented as association lists.
The elements of  such an association list are of  the form (variable . term) . The substitutions of
the previous example now are represented as ((X . A)  (Y. (F Z (G B)))) and NIL  for the empty
substitution. Notice however, that by LISP convention the first substitution is  printed as:
(X .  A)  (Y  F Z (G  B))).

See also chapter 1.4 for an output function for substitutions.

1.3 Term Conversion

TENUA supplies the following two functions to transform the string and the list representation
of  terms into each other:

STRING-TO-TERM gets a term t in  string representation and returns the list representation of t.
Supernumerary closing parantheses and blanks are ignored.
Example: (STRING-TO-TERM "f(a, g(y))))))" has value (F A (G Y)).

TERM-TO-STRING gets a term t in  list representation and returns the string representation of t.
Example: (TERM-TO-STRING '(F (G X) Y Z) ) returns "f(g(x), y, 2)".

1.4 Input and Output of  Terms and Substitutions

To take the implementation of  input/output procedures from the user, TENUA provides some
comfortable built in functions. As already explained in chapter 1.2 list representation of
substitutions and terms constitutes the working data format. The following functions describe
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the interface for input/output of  working data:

The function TERM-IN reads new lines from terminal as long as the number of  closed
parantheses is less than the number of  open parantheses. Blanks and supernumerary closing
parantheses are ignored. The input string is  transformed into the corresponding list
representation. Optionally the user can specify the input stream, from which TERM-IN reads.
Example: (TERM-IN stream1) reads a term from stream] and returns its list representation.

TERM-OUT performs the inverse operation. It gets a term in  list notation and prints its string
representation to the standard output. As optional arguments the user can specify the file on
which TERM-OUT writes and the minimum of  symbols per line (see online documentation).

Example: (TERM-OUT '(F A (G Y)) ) prints "f(a, g(y))" to standard output ;
(TERM-OUT '(F A (G Y)) "testfile") prints "f(a, g(y))" to the file "testfile".

The function SUBST-OUT gets the result of  a unification problem in working format, that is,
either an association list (see chapter 1.2) or one of  the both LISP atoms CLASH or CYCLE,
and writes its string representation cleverly arranged on standard output. Again the user can
optionally specify the name of  the output file and the minimum length per line.

Example: (SUBST-OUT '((X . A)  (Y  . (F  B)))) writes " {  x « a, y « f (b)}"  to  standard output.

1.5 Arity Check

The user has the possibility to check a unification problem on consistence, that is to reject term
pairs in which one function symbol occurs with different arities: |

CHECK-ARITY gets two terms s and t in  list representation and returns T(rue) if  each function
symbol in s and t is used with consistent arity, otherwise the pair of  subterms in which the
difference occured. |

Example: |

(CHECK-ARITY '(F (G A)) (F(G  B)) )returns T
(CHECK-ARITY '(F (G A)) '(F (G B C)) ) returns ((G A) (G B C)).

1.6 Interface for Unification Functions

If the user wants to implement a unification algorithm in  LISP without wasting time by such
problems as cosmetic preparation of  output data, he can use TENUA's UNIFY. His unification
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function merely must satisfy the following input/output specification: it gets two terms in l ist
representation and returns a substitution in  explicit form represented as an association list or one
of  the two atoms CLASH or CYCLE. UNIFY gets the name xyz of  the users unification
function and two terms s and t either in  string or in  list representation. The arity of  the function
symbols of  s and t is checked and both terms are transformed into list representation (if
necessary). Subsequently xyz is  applied to them. The result is  transformed into string
representation and displayed on screen.

Built in  unification functions are:
ROB (Robinson), MM  (Martelli/Montanari) and EG (Escalda/Ghallab) (see chapter 2)
Correct calls of unify are for example:

(UNIFY ROB '(F A)  (FX )  )
(has the effect that " {x  «— a}"  is printed on screen)

or (UNIFY XYZ  "f(a)" "f(x)").

2. Description of  the implemented Unification Algorithms

2.1 The Robinson Algorithm

Robinson's algorithm, developed in 1965, was the first known unification algorithm for first
order terms.
It  is based on the following idea :
Given a unification problem ( s = t ) ,  two cases are distinguished:
1) If  one o f  the two terms is  a variable x ,  the so called Occurcheck is  performed, which means i t

is  checked, if  x occurs in  the other term. If  the test is  positive we have a cycle and ( s= t  ) is
not unifiable, otherwise the substitution {x « t }  isamguof (x =t).

2) The two terms are of  the form s = f(s, s, , . . . ,s) and t = g(t, ty,..., tm), where constants are
considered as O-ary functions. If  the functors f and g are different we have a clash and s , t
are not unifiable. Otherwise the Robinson algorithm is sequentially applied to the
corresponding argument pairs (( s, = t ,  ) ,  ( 5 ,  =t, )...), where the mgu's of preceding pairs
are applied to the subsequent pairs before their recursive treatment. I f  a cycle or clash is
produced i n  the recursion, s and t are not unifiable, otherwise the mgu is the composition of
the mgu's of  the argument pairs.

This can be represented in  the following algorithmic notation:
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Algorithm ROBINSON-UNIFY
Input: A pair of terms (s ,  t )
Output: if  ( s, t ) are unifiable, a mgu 6 of  ( s = t  ),  CLASH or CYCLE otherwise
BEGIN
IF oneof the two terms s and t is a variablex
THEN let u be the other;

IF x=u
THEN o0:=()
ELSIF Occur(x,u)
THEN exit (CYCLE)
ELSE O:={x & u}
FI

ELSE let s=f(S,, s,,..., s,) and t=g(t,, t,...., tm;
IF fxg
THEN exit (CLASH)
ELSE o:=(};

FOR k:=1 TO n DO
7:=ROBINSON-UNIFY(0(s,), 6(1)) ;
o:=10

ENDFOR
FI

FI
END

Example:

U = ( f(g(x), x), f(g(y), a) )
o:={}

U,  =(o(g(x)), ogy) ) = (g(x), gy)  )
7,  =0 ,={ }

Uy ,  = ( c,(x),  0 , (y)  ) = ( x , y )
Ty  = (x  &y)

1 ,=6 ,=1 , ; 0= {x  & y }  (})= { x  & y )
0:=T,0= ( x  & y} ;

U,= (0 (x ) ,  o (a ) )= ( y ,a )
 U= (y&a ) }
0:=1,0  = ( y  «a } ( x  «y }

= ( yea ,  x «a }

We have implemented Robinson's algorithm with terms represented as lists,which are a kind of
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tree structure. Therefore in  worst case it  has exponential time and space complexity (depending
on the term size), caused by the excessively increasing term copies in  substitution application at
the recursive call. The classical example is:
U = ( f (x ,  X;..... X)), f(@(XgXg), 8(X1X;)s. 8X1» Xn-1))) (see also chapter 3). |

In  TENUA the Robinson Algorithm can be called using the UNIFY function (see chapter 1.5).
Example: The evaluation of  the call (UNIFY ROB  "g(f(x),x)" "g(f(y),a)") returns

{x  «a ,  yea } .

2.2 The Martelli/Montanari Algorithm

The algorithm of Martelli/Montanari was developed in  1982. However it  is considered to  be one
of  the most efficient unification algorithms. First of  all we give some basic definitions:
A multiset of  consistent terms (no direct functor clash) will be represented as a multiterm.. A
multiterm can either be empty or of  the form f((S,,M,),....(S,,M,)), where the S; are sets of
variables, the M;  are multiterms and S,; and M;  cannot both be empty.
Example: The multiset of  consistent terms (f(x,g(a,y)),f(b,x),f(x,y)} is  represented by the

multiterm f({{x},b).{(x,y}.g({<,a).({y}, © ))).
A multiequation is of  the form S=M, where S is  a nonempty set of  variables and M is a
multiterm. The following algorithm merges two multiterms M'  and M"  into one, if they are
consistent, otherwise it fails.

merge( M',  M")  =
CASE M'  OF

2 :  M",
£ (S '  M ' s .  (SLM): let M"= £({S",M')),....(S',,M',));

IF f'=f" AND  merge(M',M")#failure
THEN f(( S', U S",,  merge(M';, M")))....,

( § ' ,  US" ,  merge(M',, M")))
ELSE failure
FI

The commonpart of  a multiterm M is also a multiterm and defined as follows:
'COMMONPART( f({S},M,),....{S_.M)))) = f(P,,....P,)

where P,= IF  §, =O
THEN COMMONPART(M))

ELSE  ANYOF(S))
FI

and the function ANYOF(S,) returns an element of  the set S;.
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The counterpart to the commonpart of  a multitermi s  itsfrontier, a set of  multiequations.
FRONTIER ( f((S;,M;),...{S;,M\)) =F, U... UF,

where F ,= IF  § , = J THEN FRONTIER(M)
ELSE {S;=M;} (i=l,...,n)

Given two terms s and t the idea of  Martelli/Montanari is to  distribute the variables of  s and t

over equivalence classes of  terms, corresponding to the variable bindings of  the mgu. The
equivalence classes are represented as multiequations. We always consider a system of
multiequations R=(T,U) with an unsolved part U and a solved or triangular part T.
By  every step of  the unification algorithm a multiequation is transfered from the U-part to the
T-part, until the U-part is empty.
The initial system has an empty T-part and its U-part contains the following multiequations: the

f i r s t  is  of  the form {xg)={s,t} (with a new variable x); all other multiequations in  U are of  the
form ( y }=0 ,  where y is  a variable occuring in  s or t. Vice versa every variable in  s or t
corresponds to such a multiequation in  U.  U therefore contains n+1 multiequations, with n =
number of  variables in  s and t. For reasons of  efficiency (in multiequation selection) every
multiequation S=M of  U comprises a counter for the sum of  occurrences of  the variables of  S i n
the right hand sides of  U. |

Example: The initial system belonging to s = f(x,g(y,z),y.b), t = f(g(h(a,v),y),x,h(a,u),u) is :

U: {[0] {x}=f( ( {x} ,8(( .h((D.a)({v} .ON )({y}.ON ),
( { x } . 8 { y } . 2 ) ( { z } .O )  )
{{y}.h({d ,a),{{u}.@}) ),
({u},b))

[2] ( x )=  0
3]  (y}= 9
[1] (z}= 0
[2] {u )=  0
[1] (v}=9)

T:  { } .

While the U-part is nonempty we search for a multiequation in  U with counter 0. If no such
multiequation exists, every variable of  U must occur in  the right hand side and therefore in  the
substituting term of  at least one other variable in  U (stop with cycle!).
Otherwise that multiequation is removed from the U-part, its common part is added to the
T-part, the multiequations of  its frontier are merged with the variable corresponding
mulfiequation of  U (compactification: here clashes are found!) and the counters are adjusted.
When the U-part is empty the solution can be obtained in explicite form by substituting
backward the left hand side variables of T. .
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Algorithmic notation:

REPEAT .
1) Select a multiequation S=M of  U such that the variables in  S do not occur elsewhere in  U

(counter=0). I f  a multiequation with this property does not exist stop with failure(cycle).
2) IF  M i s  empty

THEN transfer S=M from U to the end of T
ELSE 1) compute the commonpart C and the frontier F of  M

2) Transfer S=C from U to the end of  T
3) Merge the multiequations of  F with the corresponding multiequations of  U

and adjust the counters (if merge fails stop with clash).
FI

UNTIL U is  empty.

Example: For reasons of  readability we will  not use multiterm notation, which indeed may be
appropriate for computers but not for human.
s and t see previous example:

initial system:

Up: { [0] {xq}={f(x,g(y,2).y.b),f(g(h(a,v),y).x,h(a,u),u)},
[2] { x }=  0
Bl  { y }=0
[1 ]  ( z )=  9
[2] ( u )=  0
[1] (v}= 9 )

To: { }

Uy: { [0] {x}={g(h(a,v),y),g(y,z)},
[2] { y }=  {h(a,u)}
[1] ( z }=9
[1] {u}= {b}
[1] ( v }=  9)

Ti :  { (xo)}=f(x,x,y,u)}.

Uy: { [0] {y,z}={h(a,u),h(a,v)},
[1] {u}= (b}
[1] { v }=  9}

To: { (Xg}=f(x,x,y,u),

{x} =8(y,z)}.
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Us: { [0] {u,v}=(b}}
T;:  { {xo}=f(x,x,y,u),

{ x }  =g(y,2),
{y,z}=h(a,u)}.

Ug: ©

2 { {xo}=f(x,x,y,n),
{x} =g(y.),
{y,z}=h(a,u)
{u,v}=b}.

=

Solution in  explicit form by backward substitution:
mgu(s,t)={u «b , ve  b , y  « h(a,b),  z « h(a,b) ,  x « g(h(a,b),h(a,b)}.
The Martelli/Montanari algorithm has complexity O(n log(n)) provided there is a direct (and not a
sequential) access to a variable's equivalence class (using the UNION-FIND algorithm even a
quasilinear complexity is reached). In our implementation we guaranteed that property by
employing hash tables to represent the actual variable bindings. This causes a relative high
amount in administration for small examples, but that i s  a general draw back of
Martelli/Montanari's algorithm.
In TENUA you can call the Martelli/Montanari's algorithm by using the UNIFY function (see
chapter 1.5).
Example: (UNIFY 'MM  "g(f(x),x)" "g(f(y),a)") returns the unifier in  sequential form

while (UNIFY 'MM-MULTAUS "g(f(x),x)" "g(f(y),a)") returns the unifier in explicite
form.

2.3 The Escalada/Ghallab Algorithm

The algorithm of  Escalada/Ghallab is the most recent unification algorithm that TENUA
provides. It was published in  January 1987 and turned out to be very efficient for practical use,
while keeping an almost linear worst case complexity. Furthermore only few data structures are
needed, especially in  contrast to the Martelli/Montanari algorithm. Its idea bases on theoretical
framework developed by Huet (1976) and Paterson/Wegman (1978).
First of all we give two basic definitions:
A homogeneous equivalence relation is such that two nonvariable terms s and t are equivalent iff
cither one of  them is a variable or they correspond to the same constant or  function symbol
(homogeneity condition) and their i-th subterms s; and t; are pairwise equivalent.
A valid equivalence relation is a homogeneous relation with a partial order on equivalence
classes such that the class of  t is  before the class of  t, whenever t,  is a subterm of  t.
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Huet (1976) and Paterson/Wegman (1978) showed that two terms s and t are unifiable iff there

exists a valid equivalence relation that makes s equivalent to  t.

The algorithm is  naturally decomposed in  two steps:
Stepl (HERE) : build a homogeneous equivalence relation = check for clashes.
Step2 (VERE) : build from stepl a valid equivalence relation = check for cycles.
We will  now look at both steps in  more detail:

Stepli
Both terms s and t are parallely passed through and whenever a variable occurs i t  is bound to  the
corresponding subterm t, or i f  it  is already bound to a term t', step] is  recursively applied to t;
and t';. The homogeneous equivalence relation is  manifested in  the variable bindings and can be
represented by a directed graph G with the following properties:

- nodes in  G are terms, one single node corresponds to each variable in  s or t.
- each connected component of  G corresponds to an equivalence class and contains at most

one nonvariable term. |

- for any variable node x in  G: outdegree(x)<1,
and for a nonvariable node t: outdegree(t)=0, indegree(t)=1.

Thus for each variable x only one pointer r(x) is  needed; initially r(x)=nil. Step1 stops with clash
if  the homogeneity condition fails at some point.
We now give a simplified algorithm for step1:
TERM-HERE(s,t):

IF  s and t are not identical variables or constant symbols
THEN  IF  s is a variable

THEN VAR-HEREC,t)
FI

ELSIF t is a variable
THEN VAR-HERE(t,s)

ELSE let s=f(s,,...,s,), t=g(t,,.. iy)
IF  fxg
THEN exit (CLASH)
ELSE FOR i:=1 TOK  DO

TERM-HERECs,t,)
FI

VARE-HERE(x,t)
IF  r(x)=nil
THEN  r(u) « t
ELSIF t i s  a variable and r(t)=nil

~ THENT(t) « x
ELSE mark x,
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TERM-HERE(r(u),t);
unmark u

FI

Example: Given s=f(h(x,,X,,X3),h(X¢,X7,Xg),X3,X)

and t=f(h(g(x,,Xs),X;,X9),h(X7,Xg,X(),8(X5,2)X 5).
HERE(s,t) builds the following graph G:  x3 — x,  — X;  = g(X4,Xs)
and x;  = Xg = X; —> Xs — a and X, — Xs.

The function VARE-HERE mainly finds out to which equivalence class a particular variable
belongs or defines a new class as the union of  two equivalence classes. To reach quasilinear
complexity the exact version of  the Escalda/Ghallab algorithm uses a special UNION-FIND
algorithm relying on the so called collapse and weight rules.
Step2:
The second step consists in  checking the validity of  the homogeneous equivalence relation built
in step and in defining the unifier explicitly.
For each variable node of  graph G (see stepl) a new arc s(x) (substitutor) is created by the
function VAR-VERE. I t  recursively substitutes the variables i n  the term bound to x (by G)  and:
detects cycles in  marking already visited variables. Here is a simplified algorithm not exploiting
the efficiency of  a UNIONFIND algorithm:

VAR-VERE(u)
IF  u is marked
THEN  exit(cycle)

ELSE mark u;
s(u) « TERM-VERE(r(u));
unmark u

FI

TERM-VERE(t)
IF  t i s  a variable
THEN VAR-HERE(t)
ELSIF t is constant
THENreturn t
ELSE let t=f(,,....t,)

return f(TERM-VERE(,),...,TERM-VERE(t))

FI

Given the graph G of  the example of  step] we would get the following unifier:
s(X3)=s(x,)=s(x,)=g(a,8) and S(X„)=S(Xg)=S(Xc)=S(Xs)=S(X4)=a.
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The complete unification algorithm consists in  calling once TERM-HERE(s,t) and if  it succeeds,
calling VAR-VERE(u) for all variables u in  s and t.
In  our LISP-implementation we represented the equivalence relation on variables in two ways:
1) as hash-tables:, which ensures a direct access to every equivalence class and therefore

results in  a quasilinear complexity but entails a disproportionate administration amount for
‘small’ terms. ; ;

2) as assoc-lists:, which seems to be more efficient in  practice, but at the expense of a
quasilinear time complexity.

You can call both versions of  the Escalada/Ghallabaigoritn in  TENUA by using the UNIFY
function (see chapter 1.5).
Example: (UNIFY EG-HASH (term,) (term,)) applies the first version to (term,) and (term)

while (UNIFY EG  (term,) (term,)) does the same for the second version.

3. Description of  the Implemented Term Generators

To test unification algorithms TENUA provides two essentially different kinds of term
generators:

(3.1) Generators for parameterized terms, say terms with a uniform structure
(3.2) Generators for random terms

Both kinds of  term generating functions may get different parameters for input but return always
a list of  two terms s and t in  list representation corresponding to the unification problem ( s=t ) .

3.1  Parameterized Term Generators

Withparametrized terms we mean terms with a uniform structure, also called standard terms.
TENUA contains 8 generating functions for standard terms: GENTERM-STD1 ...
GENTERM-STDS. They all get a nonnegative integer n for input and return terms with
increasing size depending on n. In  this way you can find out the time behaviour (exponential,
linear...) of  a given unification algorithm. Notice, that for some of  them the generated terms are
growing non-linear in  n.We give nowa short description of  each standard term generator:

GENTERM-STD1
Input: N:  nonnegative integer
Value: A list of  twoterms of  the following form:

1 term: f(x,,...x,)
2™ term: £(y,,...y,)

Application: Illustrates the behaviour of  unification algorithms for increasing term breath.
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In  our LISP-implementation we represented the equivalence relation on variables in two ways:
1) as hash-tables:, which ensures a direct access to every equivalence class and therefore

results in  a quasilinear complexity but entails a disproportionate administration amount for
‘small’ terms. ; ;

2) as assoc-lists:, which seems to be more efficient in  practice, but at the expense of a
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growing non-linear in  n.We give nowa short description of  each standard term generator:

GENTERM-STD1
Input: N:  nonnegative integer
Value: A list of  twoterms of  the following form:

1 term: f(x,,...x,)
2™ term: £(y,,...y,)

Application: Illustrates the behaviour of  unification algorithms for increasing term breath.

15



R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

GENTERM-STD2

Input:
Value:

Application:

N:  nonnegative integer
A list containing two terms:
The first term has the form a left, the second of  a right ZZ-tree of  depth n, where
ZZ-trees are defined as follows:
- a left ZZ-tree of  depth 1 consists only of  a root
- aright ZZ-tree of  depth 1 consists only of  a root
- a left ZZ-tree of depth k (>1) is a binary tree, where the left son is a right ZZ-tree
of depth k-1 and the right son is a leave.
- a right ZZ-tree of  depth k (>1) is a binary tree, where the right son is a left
ZZ-tree of depth k-1 and the left son is a leave.
- theleaves are marked with a continuously indexed x respectively y.
n=35

1% term: £ (F (x , ,(f(x 4,X5).X3)),X,)
2 term: £(y,,f(£(y3,£(y5.Y4)):¥2)

Illustrates the behaviour of  unification algorithms for variable bindings of
increasing complexity, especially the occurcheck is tested.

GENTERM-STD3

Input:
Yalue:

Example:

Application:

N:  nonnegative integer
A list containing two terms where each of  them has the structure of  a complete
binary tree of  depth n. The leaves are marked with continuously indexed variables
x,  respectively y.
n=35:

1 *  term: f(F(£(x,,%,),f(x5,X).f(f(xs,%4).(X4,Xg)))
2 term: £(ECE(y yy) : E(Y3Y DEY, 6) (y7:Y5)))

Illustrates the behaviour of  unification functions for terms of  increasing depth.

GENTERM-STD4

Input:
Value:

N:  nonnegative integer
A list containing two terms, each of  them possessing n arguments. The i-th
argument corresponds to  a term of  GENTERM-STD2 with depth i .  The toplevel

functor is p and the leaves are marked with continuously indexed variables x,
respectively y. a

Illustrates the behaviour of  unification functions for termsof  increasing depth and
breadth and corresponding variable bindings.
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GENTERM-STD2

Input:
Yalue:

Application:

N:  nonnegative integer
A list containing two terms:
The first term has the form a left, the second of a right ZZ-tree of  depth n, where
ZZ-trees are defined as follows:
- a left ZZ-tree of  depth 1 consists only of  a root
- aright ZZ-tree of depth 1 consists only of a root
- a left ZZ-tree of  depth k (>1) is a binary tree, where the left son is a right ZZ-tree
of depth k-1 and the right son is a leave.
- a right ZZ-tree of  depth k (>1) is a binary tree, where the right son is a left
ZZ-tree of depth k-1 and the left son is a leave.
- theleaves are marked with a continuously indexed x respectively y.
n=5

1% term: £(£(x,,£(f(x4,X5),X3)),X;)

24 term: f(y,f(£(y3.£(y5,¥4)):¥2)
Illustrates the behaviour of  unification algorithms for variable bindings of
increasing complexity, especially the occurcheck is tested.

GENTERM-STD3

Input:
Yalue:

Example:

Application:

N:  nonnegative integer
A list containing two terms where each of  them has the structure of  a complete
binary tree of  depth n. The leaves are marked with continuously indexed variables
x,  respectively y.
n=5 :

1% term: f(£(£(x,,X,),f(x3,%,)).f(f(x5.%().f(x5,Xg)))
2 term: £(£(Cy;,y2).f(¥3,Y))f((Y5,Y6)£(¥7:¥5)))

Illustrates the behaviour of unification functions for terms of increasing depth.

GENTERM-STD4
Input:
Value:

N:  nonnegative integer
A list containing two terms, each of  them possessing n arguments. The i-th
argument corresponds to  a term o f  GENTERM-STD2 with depth i .  The toplevel
functor is p and the leaves are marked with continuously indexed variables x,
respectively y. a

Tlustrates the behaviour of  unification functions for terms o f  increasing depth and
breadth and corresponding variable bindings.
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GENTERM-STDS
Input: N:  nonnegative integer
Value: A list of  two terms of  the following form:

1% term: f(x,,X,,...,X)
2 term: £(X,X3,.+ 1X  p%p.1)

Application: Tests the efficiency in  finding variable bindings because all variables are bound to
the same term. Here especially unification algorithms using UNION-FIND
strategies will  dominate.

GENTERM-STD6
Input: N:  nonnegative integer
Value: A list o f  two terms of  the following form:

1% term: f(X,,...,X)
2 term: f(g(xg.Xg)s- + 8(Xp 1X1)

Application: Classical example for the exponential complexity of  the Robinson algorithm.

GENTERM-STD7

Input: N:  nonnegative integer
Value: A list o f  two terms of  the following form:

1# term: f(X ss  KEY 8(Y1:¥1)s++18(Yn-1:¥n-1))
2™ term: F(g(XgXgh EX  K r  Xp10% 1 Yıs Yin)

Application: This example is gathered from Bidoit/Corbin (1983) and shows that even the
improved version of  Robinson's algorithm keeps exponential time complexity.

GENTERM-STD8
Input: N: nonnegative integer
Value: A list of  two terms of  the following form:

1% term: f(Yı> Yır--YaYn)
2™ term: (X  8(Xg:Xg)» Kg 8(Xp Xp ) 1:Xn-1))

Application: This is a modified version of GENTERM-STD6 and shows that unification
algorithms (for example Robinson's) may have exponential time complexity,
although the two terms have no variables in  common.
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GENTERM-STDS
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Application: This example is gathered from Bidoit/Corbin (1983) and shows that even the
improved version of  Robinson's algorithm keeps exponential time complexity.
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Value: A list of  two terms of  the following form:

1% term: f(Yı> Yır--YaYn)
2™ term: (X  8(Xg:Xg)» Kg 8(Xp Xp ) 1:Xn-1))

Application: This is a modified version of GENTERM-STD6 and shows that unification
algorithms (for example Robinson's) may have exponential time complexity,
although the two terms have no variables in  common.
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3.2 Generators for Random Terms

First of  all it  must be said, that we did not want to consider the problem of  generating a random
termpair under the strict conditions of  probability theory, but from a more practical viewpoint.
The user should have the possibility to test the correctness and efficiency of  unification
algorithms by 'natural’ terms, say terms that are not of  extreme breadth or depth. The problem is
not trivial, because generating both terms one after the other would lead to an extremely high
quota of  nonunifiable terms.
TENUA provides two generators for random term pairs: GENTERM-RND1 (see chapter 3.2.1)
and GENTERM-RND?2 (see chapter 3.2.2). They have only optional parameters (to adjust
maximum termdepth, probability of  clashes, etc.) and return a list of  two terms in list
representation. While GENTERM-RNDI1 allows the user to specify a signature of  function
symbols and then constructs the two terms in parallel, GENTERM-RND?2 first generates a
unifier and, out of  that, the termpair, in  order to support an aimed production of  clashes, cycles
and so on,

3.2.1 GENTERM-RND1

GENTERM-RNDI1 is a function which generates a term pair depending on several input
arguments. These input parameters are optional. If they are not specified GENTERM-RND1
starts with some default values. We will  now describe the input arguments and their influence on
the construction of  the term pair:

Input: VAR-PROB (optional) nonnegative integer < 100
(probability for placing a variable instead of a
function symbol)

Default value: 145
MAX-DEPTH (optional) nonnegative integer

(maximum depth o f  terms)

Default value: 5
CLASH-PROB (optional) nonnegative integer < 100

(probability of  producing a clash)
Default value: 30

SIGNATURE (optional) list containing elements of  the form (F  N M),
whereF is a function symbol, N is a nonnegative
integer specifying the arity of F, and M is a
nonnegative integer, specifying the relative
frequency of  F in relation to other function
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First of  all it  must be said, that we did not want to consider the problem of  generating a random
termpair under the strict conditions of  probability theory, but from a more practical viewpoint.
The user should have the possibility to test the correctness and efficiency of  unification
algorithms by 'natural’ terms, say terms that are not of  extreme breadth or depth. The problem is
not trivial, because generating both terms one after the other would lead to an extremely high
quota of  nonunifiable terms.
TENUA provides two generators for random term pairs: GENTERM-RND1 (see chapter 3.2.1)
and GENTERM-RND?2 (see chapter 3.2.2). They have only optional parameters (to adjust
maximum termdepth, probability of  clashes, etc.) and return a list of  two terms in list
representation. While GENTERM-RNDI1 allows the user to specify a signature of  function
symbols and then constructs the two terms in parallel, GENTERM-RND?2 first generates a
unifier and, out of  that, the termpair, in  order to support an aimed production of  clashes, cycles
and so on,

3.2.1 GENTERM-RND1

GENTERM-RNDI1 is a function which generates a term pair depending on several input
arguments. These input parameters are optional. If they are not specified GENTERM-RND1
starts with some default values. We will  now describe the input arguments and their influence on
the construction of  the term pair:

Input: VAR-PROB (optional) nonnegative integer < 100
(probability for placing a variable instead of a
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Default value: 145
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integer specifying the arity of F, and M is a
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symbols iin  SIGNATURE.
(signature of  used function symbols; by specifying
SIGNATURE the user can model his own
practical conditions)

Default value: (A090) (F 1 20) (G 2 40) (H  3 20) (14 5)
(R 5 3) (P 62 )  (S 10 1))
Here, for instance, the functors G and H have
arity 2 respectively 3 but the the probability to be
chosen is twice as high for G as for H.

Value: A list of  two terms in  list representation.

The construction of  the term pair can be divided into three steps:
1) Parallel construction of  a scheme of  the two terms, but al l  function symbols (inclusded

constants) are placed, but variables are not inserted yet, only their positions are marked.
2) Insertion of  variables into the term schemes.
3) With probability VAR-PROBa clash-symbol is built in.
We will  now describe the three steps seperately:
Step]: Construction of  the scheme for both terms

Both term structures are constructed in  parallel, such that no direct clashes (also called
structure clashes occur. The process can be outlined by the following algorithm:

TERMPAIR-STRUCTURE (MAX-DEPTH, SIGNATURE, VAR-PROB)
IF MAX-DEPTH=1
THEN return (VARMARK VARMARK)
ELSIF RANDOM(100)SVAR-PROB
THEN return (VARMARK TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))
ELSE choose a function symbol F from SIGNATURE;

return F(TERMPAIR-STRUCTURE (MAX-DEPTH -1, SIGNATURE,
VAR-PROB),...,
TERMPAIR-STRUCTURE (MAX-DEPTH -1,
SIGNATURE, VAR-PROB))

where RANDOM(n) is a random number generator with range 1...n-1 VARMARK
marks a position where a variable will be inserted (see Step2), and TERM-STRUCTURE
is  defined as follows:
TERM-STRUCTURE (MAX-DEPTH, SIGNATURE)
IF MAX-DEPTH=1
THEN return VARMARK
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symbols iin  SIGNATURE.
(signature of  used function symbols; by specifying
SIGNATURE the user can model his own
practical conditions)

Default value: (A090) (F 1 20) (G 2 40) (H  3 20) (14 5)
(R 5 3) (P 62 )  (S 10 1))
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ELSE choose a function symbol F from SIGNATURE;
return F (TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE),...

...,TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))

Step2: Insertion of  variablesinto the term schemes
Let N be the number of  variablesin  both term schemes. We define the set of  variables
VARS as {x,, X,,...,Xy}. Now for every marked position a variableis  randomly chosen
from VARS and inserted into that position. It may happen that the same variable occurs
more than once, so that indirect clashes are possible.

Step3: Insertion of  clashes
In  step3 a clash-symbol is built into the termpair (resulting from stepl and step2) with
probability CLASH-PROB. For that purpose a node is choosen from both terms. If a
leave is choosen, i t  is  marked with the symbol B0O815 else if  an inner node is  chosen it  is
marked with symbol T4711. This procedure doesn't guarantee a clash since the
corresponding node may be a variable.

To simplify the specification of  a signature TENUA provides some default signatures, which are
bound to the following LISP constants:
MONOID = (M  2 20) (E 0 10))
GRUPPE = ((M 2 20) (E 0 10) (I  1 20))
RING= ((M 2 20) (P 2 20) (E1 0 10) (E20 10) (I1 20))
KOERPER= (M220)  (P 2 20) (E1010) (E2010) (11120) (12 1 20)
Possible calls of  GENTERM-RND1 would be:
(GENTERM-RND1) (maintenance of  all default values) or
(GENTERM-RND1 45 6 20 GRUPPE) (term pairs of  group will be generated with maximal

depth 6 and clash probability 20).

Conclusion:
It becomes clear that the term pair is constructed in  view of  a practical unification application and
less under the aspect of  probability theory: the quota of  unifiable terms is disproportionately
high, there are even term pairs which cannot be generated (for example multiple clashes),
GENTERM-RND1 therefore is not surjective. However in practice this may not be of  high
interest.
On the other handin  specifying SIGNATURE the user has thepossibility of  modelling his own
practical conditions and can adjust term size, clash probability and variable occurrences
according to his requirements.
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ELSE choose a function symbol F from SIGNATURE;
return F (TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE),...

...,TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))

Step2: Insertion of  variablesinto the term schemes
Let N be the number of  variablesin  both term schemes. We define the set of  variables
VARS as {x,, X,,...,Xy}. Now for every marked position a variableis  randomly chosen
from VARS and inserted into that position. It may happen that the same variable occurs
more than once, so that indirect clashes are possible.

Step3: Insertion of  clashes
In  step3 a clash-symbol is built into the termpair (resulting from stepl and step2) with
probability CLASH-PROB. For that purpose a node is choosen from both terms. If a
leave is choosen, i t  is  marked with the symbol B0O815 else if  an inner node is  chosen it  is
marked with symbol T4711. This procedure doesn't guarantee a clash since the
corresponding node may be a variable.

To simplify the specification of  a signature TENUA provides some default signatures, which are
bound to the following LISP constants:
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Conclusion:
It becomes clear that the term pair is constructed in  view of  a practical unification application and
less under the aspect of  probability theory: the quota of  unifiable terms is disproportionately
high, there are even term pairs which cannot be generated (for example multiple clashes),
GENTERM-RND1 therefore is not surjective. However in practice this may not be of  high
interest.
On the other handin  specifying SIGNATURE the user has thepossibility of  modelling his own
practical conditions and can adjust term size, clash probability and variable occurrences
according to his requirements.
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3.2.2 GENTERM-RND2

GENTERM-RND2, like GENTERM-RNDY], is a function that generates a random term pair
depending on several optional input arguments. Unlike GENTERM-RNDI1 the terms are not
immediately constructed. Instead their construction is guided by a substitution that has been
generated before. By  appropriate manipulations of  the substitution a specific generation of
clashes, cycles etc. i s  possible. We  will describe the different optional parameters and their
influence on the construction of  the term pair:
Input: (all input parameters are optional)

VARLIST List of  variables from which the variables in  the term pair
are taken.

Default value: XYZ)

UNI-PROB nonnegativeinteger < 100;
probability for producing a unifiable termpair

Default value: 50
DCL-PROB nonnegative integer < 100;

probability for producing a direct clash (‘structure clash’)
Default value: 15

ICL-PROB nonnegative integer < 100;
probability for producing an indirect clash

Default value: 5

CYC-PROB nonnegative integer < 100;
probability for producing a cycle

Default value: 14

CYC-DCL-PROB nonnegative integer < 100;
probability for producing a pair containing a direct clash
and a cycle

Default value: 4

D/ICL-PROB nonnegative integer < 100;
probability for producing a direct and an indirect clash

Default value: 4
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CYC-ICL-PROB nonnegative integer < 100;
probability for producing a pair containing an indirect clash
and a cycle

Default value: 4

CYC-D/ICL-PROB nonnegative integer < 100;
probability for producing a termpair containing an indirect
clash, a direct clash and a cycle

Default value:

Restriction:

Exception:

4

UNI-PROB + DCL-PROB + ICL-PROB +
CYC-PROB + CYC-DCL-PROB + D/ICL-PROB
+ CYC-ICL-PROB + CYC-D/ICL-PROB
= 100
If starting from a certain parameter all following
parameters are equal to 0, they need not be
specified.

MAX-DEPTH-TERMSTRUCTURE nonnegative integer;

Default value:

MAX-DEPTH-UNI

Default value:

SMALL-TERM-PROB

Default value:

CONST-PROB

Default value:

CLASH-SYM-PROB

maximum depth of  the term structure into which
the unifier is built
8

nonnegative integer;
max imumdepth of the terms in the unifier
4

nonnegative integer < 100;
probability for stopping the construction of  a term
(see stepl)
70

nonnegative integer < 100;
probability for placing a constant instead of  a
variable
40

nonnegative integer < 100;
probability for substituting function symbols by a

22

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms
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clash symbol, supposed a direct clash is to  be
produced.

GENTERM-RND2 works with a fixed signature of function symbols: A (constant or 0-ary
function symbol),F1 (1-ary function symbol), F2  (2-ary function symbol), and so on. The
clash symbols are analogously named by B ,  G1, G2....
The construction of  the pair can be divided into 4 steps:
1) Constrution of  the unifier .

2) Construction of  a pair of  identical term schemes
3) A direct clash is built into both term structures with probability DCL-PROB
4) Insertion of  the unifier into the leaves of  both term structures
We will  now discuss the different steps in  more detail:
Step1:  Construction of  the unifier

Constructing a unifier means that every variable of  VARLIST must be bound tto a term. It
may happen that several variables are bound to the same term. Therefore VARLIST first
is first partitioned, such that all variables of  the same subset are bound to the same term.
The terms corresponding to the different subsets are generated by the following method:
a) First the basic term structure is generated:
Starting with a root as actual node, it  is decided at every step if  a new leave is added to the
actual node (probability 100 - SMALL-TERM-PROB), or if  the father becomes the new
actual node (probability SMALL-TERM-PROB). The process stops if the father of  the
root is demanded. Moreover it must be guaranteed that the term structure is not deeper
than MAX-DEPTH-UNI.
b) Now the term structure generated in  a) is labeled in the following way:
Inner nodes are labeled with the corresponding function symbol and leaves are marked
either with a constant symbol (probability CONST-PROB), or with a variable symbol
(probability 100 - CONST-PROB).

Before the unifier is  constructed it must be decided what kind of  term pair (unifiable,
cycle...) shall be generated, because this will  influence the construction of  the unifier.
If two unifiable terms are to be generated (probability UNI-PROB), cycles must be
excluded. Therefore a term corresponding to a certain variable subset must contain only
variables belonging to the subsequent subsets (Occur-Check).
In  case a cycle is to be (probability CYC-PROB) the restriction on variables is canceled,
moreover the number of  subsets is  reduced and the probability that variables are created
instead of  constants is increased. This guarantees a cycle quota of  about 98%.
Nevertheless even if CYC-PROB is 100 a termpair may arise which does not contain
cycles.
If an indirect clash is to be produced (probability ICL-PROB), first the unifier is

23

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

clash symbol, supposed a direct clash is to  be
produced.

GENTERM-RND2 works with a fixed signature of  function symbols: A (constant or 0-ary
function symbol), F1 (1-ary function symbol), F2 (2-ary function symbol), and so on. The
clash symbols are analogously named by B,  G1, G2....
The construction of  the pair can be divided into 4 steps:
1) Constrution of  the unifier
2) Construction of  a pair of  identical term schemes
3) A direct clashi s  builtinto both term structures with probability DCL-PROB
4) Insertion of  the unifier into the leaves of  both term structures
We will  now discuss the different steps in  more detail:
Step1:  Construction of  the unifier

Constructing a unifier means that every variable of  VARLIST must be bound ıto aterm. It
may happen that several variables are bound to the same term. Therefore VARLIST first
is first partitioned, such that all variables of  the same subset are bound to the same term.
The terms corresponding to the different subsets are generated by the following method:
a) First the basic term structure is generated:
Starting with a root as actual node, it  is decided at every stepif a new leave is added to the
actual node (probability 100 - SMALL-TERM-PROB), or if  the father becomes the new
actual node (probability SMALL-TERM-PROB). The process stops if the father of  the
root is demanded. Moreover it  must be guaranteed that the term structure is not deeper
than MAX-DEPTH-UNL
b) Now the term structure generated in  a) is labeled in  the following way:
Inner nodes are labeled with the corresponding function symbol and leaves are marked
either with a constant symbol (probability CONST-PROB), or with a variable symbol
(probability 100 - CONST-PROB).

Before the unifier is constructed it must be decided what kind of  term pair (unifiable,
cycle...) shall be generated, because this will  influence the construction of  the unifier.
If two unifiable terms are to be generated (probability UNI-PROB), cycles must be
excluded. Therefore a term corresponding to a certain variable subset must contain only
variables belonging to the subsequent subsets (Occur-Check).
In  case a cycle is to be (probability CYC-PROB) the restriction on variables is  canceled,
moreover the number of  subsets is  reduced and the probability that variables are created
instead of  constants is increased. This guarantees a cycle quota of  about 98%.
Nevertheless even if CYC-PROB is 100 a termpair may arise which does not contain
cycles.
If an indirect clash is to be produced (probability ICL-PROB), first the unifier is

23



R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

constructed analogously to the unifiable case. Then it is  enlarged by multiple bindings of
some variables. The terms belonging to these additional bindings may contain clash
symbols.
In  case of  a mix of  a cycle and an indirect clash the unifier is constructed as in  the cycle
case, but subsequently enlarged by additional variable bindings.
Direct clashes are inserted later (see step3).
One may ask why some features are produced in  a rather complicated way (for example
cycles). This was necessary because we wanted to ensure that any possible term pair can
be produced by GENTERM-RND?2 (surjectivity).

Step2: Construction of  a pair of  identical term schemes
The task is to generate a term scheme, i.e. a term with unlabeled leaves, and then to copy
it.  The term scheme is  constructed analogously to step1, including the following points:
- The term structure must not be deeper than MAX-DEPTH-TERMSTRUCTURE.
- The number of  (unmarked) leaves corresponds to the number of  variable bindings of  the

unifier (including multiple bindings), such that every leave corresponds to a pair
consisting of  a variable and a term.

This is  guaranteed by a new stop criterion:
Stop the construction if  the required number of  leaves is  reached.

Step3: Eventually direct clash symbols are built in:
If a direct clash, the union of  a direct clash and a cycle, an indirect clash is to be
produced, in  steplthe unifier is constructed without considering the direct clash.
If for instance a direct clash and a cycle are required, the unifier is constructed as in  the
cycle case. Then step2 is  performed and only (in step3) clash symbols are built into the
second term structure, substituting every label by the corresponding clash symbol with
probability CLASH-SYM-PROB.

Step4: Insertion of  the unifier into the leaves of  both term structures
As mentioned above, every pair of  corresponding leaves of  the two identical
termstructures of  step2 belongs to a pair of  the form (variable term). The leaves are
labeled in the following way: Given such pair of  leaves and its corresponding (VAR
TERM) either the leave in  the first term structure or  that in  the second one is  labeled with

- VAR. The remaining unmarked leave is either labeled with TERM, or with a variable
belonging to the same subset as VAR. However every term, bound to a subset of
variables, must occur at least once. In  this way indirect variable bindings are possible.

‘Possible calls of  GENTERM-RND? are:

(GENTERM-RND2) (default values for all arguments)
(GENTERM-RND2 '(X Y Z) 100)) (a unifiable pair of  terms is  produced)
(GENTERM-RND2'(X YZ )  0000  100) (a pair containing a clash and a cycle is

produced).
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Conclusion:
Like GENTERM-RND1, GENTERM-RND?2 is designed to meet practical requirements. Its
precise production of  clashes, cycles etc. makes a thorough analysis of  unification algorithms
possible. Le. one can determine the time complexity of  detecting cycles or find out what is
detected first by different algorithms, an indirect clash or a cycle. It  i s  helpful that the
performance in  the different cases can be tested seperately. In  addition to this see also chapter 4
on statistical functions, which allow a comfortable handling with a great numbersof examples.
Another advantage of  GENTERM-RND?2 is its surjectivity: every possible termpair can be
generated. The user can even manipulate the probability of  certain classes of  terms.

4. Facilities for Testing Correctness and Efficiency
of Unification Algorithms

4.1 Facilities for Testing Correctness of Unification Algorithms

Before the efficiency of  a newly implemented unification algorithm is measured, its correctness
must be checked. For this purpose TENUA provides a function CORRECTNESS, that
performsa test on equivalence of  mgu's:
Input: TERM-PAIR list of  two terms in  list representation

UNIFY-ALGO function, which gets a term pair inlist representation and returns
CLASH, CYCLE or an explicit unifier of  the input terms
represented as assoc-list

Value: T if the given term pair is  unifiable and UNIFY-ALGO returns an
mgu of  it, or if the term pair is  not unifiable and UNIFY-ALGO
returns CLASH  or  CYCLE

<error message> otherwise
Example: The call (CORRECTNESS (GENTERM-RND2 (X  Y Z) 100) 'NEW-UNIFY)

causes NEW-UNIFY to be applied to a unifiable term pair generated by
GENTERM-RND2, and it  is  checked if  the result is a most general unifier.

You can perform a great number of  tests by using the function DOTIMES .
Example: (DOTIMES (K 100) (CORRECTNESS (GENTERM-RND2 'X  Y Z) 100)

'NEW-UNIFY)
repeats the above test 100 times. Notice, that DOTIMES return NIL. Your
algorithm is wrong, if  error messages occur!
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4.2 Facilities for Testing Efficiency of  Unification Algorithms

Most people working with unification algorithms are interested in  their time comlexity. Either
they want to measure the runtime of  a special algorithm for some kinds of  terms, or they want to
compare different algorithms with regard to some application. Often i t  is also useful to find out,
how some unification algorithms work: whether it detects first clashes or cycles?....To make the
answers to these questions easier, TENUA provides statistical functions that use the term
generators discussed in  chapter 3. We think they constitute the most important part of  TENUA.
There are two kinds of  statistical functions:
- statistical functioms using the standard term generators (see 4.1.1)
- statistical functions using the random term generators (see 4.1.2).

4.2.1 Efficiency Test Using Standard Terms

You can test the performance of  unification algorithms on standard terms in  TENUA using the
function STATISTIC-GENTERM-STD. I t  allows a comfortable work with the standard term
generators discussed in chapter 3, and so an analysis of  time complexity at systematically
varying terms. STATISTIC-GENTERM-STD has the following input/output specification:
Input: TERMGEN one of  the standard term generators GENTERM-STD1-8

FROM nonnegative integer
TO nonnegative integer
STEP nonnegative integer
FUN  (key) list, containing the names of  unification functions (for example

ROB, EG,MM)
FOREIGN-FUN (key) list, containing the names of  unification functions, which

are to be measured without considering the time used for term and
unifier conversion. For this reason the pure unification function
must be enclosed by the function STATISTIC-TIME.
Example: (DEFUN USER-UNIFY-HELP (Term1 Term2)

(LET*
((T1 (CONVERT-TERM Term1))
(T2 (CONVERT-TERM Term?2))
(HELP (STATISTIC-TIME(USER-UNIFYTI1T2)))
(LIST (FIRST HELP) |

(CONVERT-SUBST (SECOND HELP)))))

OUTFILE (key) string, specifying the name of  a file
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Value: .. The unification functions specified in  FUN  and FOREIGN-FUN are applied to the
term pairs that arise from TERMGEN. TERMGEN starts with input argument
FROM and stops with TO  making stepsof  width STEP. At  every step the runtime of

~ the different unification functions is measured; the functions specified in
FOREIGN-FUN without considering input/output conversion. The results are
displayed on screen in table form or, if OUTFILE was specified, are additionally

written there.
Example:
1) The call (STATISTIC-GENTERM-STD 'GENTERM-STD6 1 10 1

{FUN (ROB EG-HASH)
:FOREIGN-FUN '(MM-OHNE-KONVERT)
:OUTFILE "TEST")

performs the unification functions ROB, EG-HASH and MM-OHNE-KONVERT (MM  without
input/output conversion) on GENTERM-STD6 and writes the following results on screen and
on file TEST:

Number of  tests: 10
Start Value: 1
Stop Value: 10
Step Width: 1

N ROB | EG-HASH MM-OHNE-KONVERT

1 0.0035 0.0137 0.0068

2 0.0069 0.0228 0.0152

3 0.0192 0.0256 0.0201

4 0.0343 0.0341 0.0257

5 0.0734 0.0371 0.0341

6 0.1477 0.0460 0.0461

7 0.2929 0.0522 0.0460

8 0.5937 0.0629 0.0549

9 1.1882 0.0638 0.0610

10 2.5781 0.0690 0.0713

This example illustrates the exponential time complexity of  the Robinson algorithm in  contrast to
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the linear respective quasilinear time behaviour of  the Escalada/Ghallab and the
Martelli/Montanari algorithm.
2) Suppose you want to analyze the time complexity of  USER-UNIFY (see above) for growing
term breadth without measuring time for input/output conversion, the appropriate call is:
(STATISTIC-GENTERM-STD 'GENTERM-STD1 5 100 5

:FOREIGN-FUN 'USER-UNIFY-HELP).

4.2.2 Efficiency Test Using Random Terms

The function STATISTIC-GENTERM-RND allows a comfortable use of  the random term
generators described in chapter 3. In this way the user has the possibility to analyze the
performance of  unification algorithms under such conditions as: special classes of  termpairs
(unifiable, clash, cycle...), different signatures and so on. STATISTIC-GENTERM-RND has
the following input/output specification:
Input: LOOP-NUM nonnegative integer

TERMGEN-CALL function call of  GENTERM-RND1 or
GENTERM-RND2

FUN  (key) list of  unification functions
FOREIGN-FUN (key) l ist  of  unification functions which shall be

measured without input/output conversion
(see chapter 4.2.1)

PROTOKOLL (key) T(rue) or  F(alse)
OUTFILE (key) string, specifying the name of  a file

Yalue: TERMGEN-CALL is  performed LOOP-NUM times and the different unification
functions stated in in  FUN  and FOREIGN-FUN are applied to every produced
term pair. If  you want to record every generated term pair along with its unifier,
you must set PROTOKOLL to T(rue). Now the run times of  every unification
function are divided into the classes UNIFIABLE, CLASH, CYCLE and some
statistical quantities are calculated. The results are printed on screen or, if
OUTFILE was specified, they are additionally written there.

Example: Suppose you want to analyze the behaviour of  the Robinson and the
Escalada/Ghallab algorithm and you are especially interested in  the question
what is detected first by which algorithm: an indirect clash or a cycle? Then an
appropriate call o f  STATISTIC-GENTERM-RND is:
(STATISTIC-GENTERM-RND 100

'(GENTERM-RND2'(XY Z)  000000  100)
:FUN '(ROB EQG)).

TENUA prints the followingresults on screen:
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TENUA prints the following results on screen:

Number of  generated Termpairs: 100
Average Length of Terms: 11.43
Standard Deviation: 3.10
Maximum Length: 35
Minimum Length: 5

Function Number Time Time/Number

ROB absolut relative absolut relative

CLASH 3 3.0% 0.024 4.1% 0.0081

CYCLE 97 97.0% 0.573 95.9% 0.0059

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.597 100.0% 0.0060

Function Number Time Time/Number

EG absolut relative absolut relative

CLASH 88 88.0% 0.451 80.6% 0.0051

CYCLE 12 12.0% 0.108 19.4% 0.0090

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.559 100.0% 0.0056

Now it is easy to reach the following conclusion: Given a mix of  cycle and indirect
clash the Robinson algorithm normally detects the cycle first, while the
Escalada/Ghallab algorithm usually finds the clash.

5.  Conclusion
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A test environment for unification algorithms has been presented. Providing input/output
interface, some well known implemented unification algorithms, generators for random and
parameterized term pairs, and finally statistical functions, i t  turns out to be a useful tool for the
implementation as well as for the analysis of  unification algorithms. Especially the possibility to
compare the time complexity of  different algorithms with regard to certain classes of  termpairs is
of  practical interest. With the implemented unification functions we made the following
experiences (see appendix): Although its worst case complexity is exponential the Robinson
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CLASH 3 3.0% 0.024 4.1% 0.0081

CYCLE 97 97.0% 0.573 95.9% 0.0059

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.597 100.0% 0.0060

Function Number Time Time/Number

EG absolut relative absolut relative

CLASH 88 88.0% 0.451 80.6% 0.0051

CYCLE 12 12.0% 0.108 19.4% 0.0090

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.559 100.0% 0.0056

Now it is easy to reach the following conclusion: Given a mix of  cycle and indirect
clash the Robinson algorithm normally detects the cycle first, while the
Escalada/Ghallab algorithm usually finds the clash.

5.  Conclusion

29

A test environment for unification algorithms has been presented. Providing input/output
interface, some well known implemented unification algorithms, generators for random and
parameterized term pairs, and finally statistical functions, i t  turns out to be a useful tool for the
implementation as well as for the analysis of  unification algorithms. Especially the possibility to
compare the time complexity of  different algorithms with regard to certain classes of  termpairs is
of  practical interest. With the implemented unification functions we made the following
experiences (see appendix): Although its worst case complexity is exponential the Robinson
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algorithm (ROB) has excellent performances; especially for small terms. The Martelli/Montanari
algorithm (MM) turned out to be the slowest of  the implemented algorithms.This is caused by
complex data structures the initialization and management of  which worsens significantly the
average performance for small terms. Especially the creation and initialization of  the hash tables,
that represent the equivalence classes of  variables, seems to be very expensive. This conjecture
was confirmed when omitting the time for input/output conversion (MM-OHNE-KONVERT).
Indeed the pure time, needed for unification by the Martelli/Montanari algorithm is  highly
competitive. Thus it will be especially attractive for systems which already use an analogous
representation of  terms. In  contrast to this the Escalada/Ghallab algorithm (EG-HASH) involves
very simple data structures. This explains its outstanding performances for small terms while
keeping a almost linear worst case complexity. Substituting the hash table representation of
substitutions by  association lists (EG) it will be  as twice as quick, comparable to  the Robinson
algorithm even for small terms, but, at the cost of  a O(n?) complexity. We  think that it  is worth
to be tested in  practice more frequently. As a final remark, we point out, that an extension of
TENUA to unification with equations might be possible by additionally implementing
appropriate unification algorithms and standard term generators. The statistical functions also
might be improved by using a graphical representation.
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was confirmed when omitting the time for input/output conversion (MM-OHNE-KONVERT).
Indeed the pure time, needed for unification by the Martelli/Montanari algorithm is highly
competitive. Thus it will be especially attractive for systems which already use an analogous
representation of  terms. In  contrast to this the Escalada/Ghallab algorithm (EG-HASH) involves
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