
>
€

E@
(0

e =
x8 7

ga E8 ©En == 5
Ly =
C= [2dLER
532-Sedapcx
2588
£ SEN

HEwan

Sec Z©
[Za]

Ss”
Ns?”
Se ”

(2)

A Test Environment for Unification Algorithms

R. Scheidhauer und G. Seul
Universitit Kaiserslautern, FB Informatik - AG Siekmann

Postfach 3049, D-6750 Kaiserslautern, FR Germanya
th

-W

or
ki

ng
 P

ap
er

TENUA

A Test Environment for Unification Algorithms

R. Scheidhauer und G . Seul

Universität Kaiserslautern, FB Informatik - AG Siekmann

Postfach 3049, D-6750 Kaiserslautern, FR Germany

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Contents

0. Introduction

1. Facilities for the Implementation of Unification Algorithms
1.1 Basic Definitions
1.2 Representation of Terms and Substitutions
1.3 Term Conversion
1.4 Input and Output of Terms and Substitutions
1.5 Arity-Check
1.6 Interface.for Unification Functions

2. Description of the Implemented Unification Algorithms
2.1 The Robinson Algorithm
2.2 The Martelli/Montanari Algorithm
2.3 The Escalada/Ghallab Algorithm

3. Description of the Implemented Term Generators
3.1 Parametrized Term Generators
3.2 Generators for Random Terms

3.2.1 GENTERM-RND1
3.2.2 GENTERM-RND2

4. Facilities for Testing Correctness and Efficiency of Unification Algorithms
4.1 Facilities for Testing Correctness |

4.2 Facilities for Testing Efficiency
4.2.1 Efficiency Test Using Standard Terms
4.2.2 Efficiency Test Using Random Terms

5. Conclusion

6. References

7. Appendix

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Contents

0. Introduction

1. Facilities for the Implementation of Unification Algorithms
1.1 Basic Definitions
1.2 Representation of Terms and Substitutions
1.3 Term Conversion
1.4 Input and Output of Terms and Substitutions
1.5 Arity-Check
1.6 Interface.for Unification Functions

2. Description of the Implemented Unification Algorithms
2.1 The Robinson Algorithm
2.2 The Martelli/Montanari Algorithm
2.3 The Escalada/Ghallab Algorithm

3. Description of the Implemented Term Generators
3.1 Parametrized Term Generators
3.2 Generators for Random Terms

3.2.1 GENTERM-RND1
3.2.2 GENTERM-RND2

4. Facilities for Testing Correctness and Efficiency of Unification Algorithms
4.1 Facilities for Testing Correctness |

4.2 Facilities for Testing Efficiency
4.2.1 Efficiency Test Using Standard Terms
4.2.2 Efficiency Test Using Random Terms

5. Conclusion

6. References

7. Appendix

R. Scheidhauer& G. Seul: TENUA— A TestEnvironmentfor Unification Algorithms

0. Introduction

In this paper we describe TENUA, a Test ENvironment for Unification Algorithms for first
order terms.
In its essence the unification problem in first order logic can be expressed as follows: Given two
terms containing some variables, find, if it exists, the simplest substitution (assignment of some
term to every variable) which makes the two terms equal. Since Herbrand's original work

(Herbrand 1930), unification has been the subjekt of several research works, mainly settled in
the field of artificial intelligence. The first unification algorithm, introduced by Robinson 1965,
constituted the central step of the resolution principle, which is frequently used in theorem
proving and logic programming like PROLOG. Resolution, however, is not the only application
of the unification algorithm. In fact its pattern matching nature often can be exploited in cases
where symbolic expressions are dealt with, for instance type checkers for programming
languages with a complex type structure, rewriting systems and some knowledge representation
formalisms in AI. Because in all these applications unification constitutes the elementary
operation, its performance effects in a crucial way their global efficiency. Since the Robinson
algorithm has a exponential worst case complexity, soon linear (Paterson/Wegman 1978,
Escalada/Ghallab 1987) or almost linear algorithms (Martelli/Montanari 1983) were developed.
The choice of the appropriate unification algorithm for some application is facilated by TENUA,
a tool which allows comfortable implementation and analysis of unification algorithms. I t
provides the user with:

- Facilities for the implementation of unification algorithms such as an interface for input
and output of terms and substitutions (including an arity check), and functions for term
conversion (see chapter 1).

- Implemented unification algorithms (Robinson 1965, Martelli/Montanari 1982,
~ Escalada/Ghallab 1987) giving a practical measure of efficiency (see chapter 2).

- Facilities for the comparision of unification algorithms such as statistical functions (see
chapter 4) and parameterized generators for “standard” and “random” terms (see chapter
3). This allows the user to produce term pairs appropriate to his application and so to test
the efficiency of unification algorithms on “real” conditions (see example 4.2).

TENUA is implemented in COMMON LISP on Apollo Domain Workstations. Except the online
documentation (HELP-facility) i t is machine independent and can be loaded in any COMMON
LISP environment.

R. Scheidhauer& G. Seul: TENUA— A TestEnvironmentfor Unification Algorithms

0. Introduction

In this paper we describe TENUA, a Test ENvironment for Unification Algorithms for first
order terms.
In its essence the unification problem in first order logic can be expressed as follows: Given two
terms containing some variables, find, if it exists, the simplest substitution (assignment of some
term to every variable) which makes the two terms equal. Since Herbrand's original work

(Herbrand 1930), unification has been the subjekt of several research works, mainly settled in
the field of artificial intelligence. The first unification algorithm, introduced by Robinson 1965,
constituted the central step of the resolution principle, which is frequently used in theorem
proving and logic programming like PROLOG. Resolution, however, is not the only application
of the unification algorithm. In fact its pattern matching nature often can be exploited in cases
where symbolic expressions are dealt with, for instance type checkers for programming
languages with a complex type structure, rewriting systems and some knowledge representation
formalisms in AI. Because in all these applications unification constitutes the elementary
operation, its performance effects in a crucial way their global efficiency. Since the Robinson
algorithm has a exponential worst case complexity, soon linear (Paterson/Wegman 1978,
Escalada/Ghallab 1987) or almost linear algorithms (Martelli/Montanari 1983) were developed.
The choice of the appropriate unification algorithm for some application is facilated by TENUA,
a tool which allows comfortable implementation and analysis of unification algorithms. I t
provides the user with:

- Facilities for the implementation of unification algorithms such as an interface for input
and output of terms and substitutions (including an arity check), and functions for term
conversion (see chapter 1).

- Implemented unification algorithms (Robinson 1965, Martelli/Montanari 1982,
~ Escalada/Ghallab 1987) giving a practical measure of efficiency (see chapter 2).

- Facilities for the comparision of unification algorithms such as statistical functions (see
chapter 4) and parameterized generators for “standard” and “random” terms (see chapter
3). This allows the user to produce term pairs appropriate to his application and so to test
the efficiency of unification algorithms on “real” conditions (see example 4.2).

TENUA is implemented in COMMON LISP on Apollo Domain Workstations. Except the online
documentation (HELP-facility) i t is machine independent and can be loaded in any COMMON
LISP environment.

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

1. Facilities for the Implementation of Unification Algorithms

1.1 Basic Definitions

To describe the unification problem for first order terms we briefly introduce basic definitions
and results:
The set T of terms over a countable set V of variables and a countable set F of function symbols
(including constants) is recursively defined by:

t eT iff t e Vor I f e Ft,..t € T with t=1(t,..t)

A substitution is a mapping y: V — T for which y(x) = x except on a finite part of V. A
substitution can therefore be described by a finite set {x, « t;; 1<i<n}. Substitutions are
naturally extended as homomorphisms T — T by Yf(t;,....t) = f(yt,,..., Yt).
A unifier © o f two terms s and t is a substitution 6 with 6(t) = o(s). It is called a most general

unifier (mgu) of these terms, iff for every unifier | of t and s there is a substitution 8 with u = 8
+ ©. There always exists a mgu for two unifiable terms.
The unificationproblem (s = t) is the problem, to find such an mgu for two terms s and t.

1.2 Representation of Terms and Substitutions

TENUA offers two different representations of terms: the string representation, which allows a
mathematical notation and therefore is very appropriate for input and output (but unsuitable for
term manipulation) and the representation as LISP S-expressions, which is very handy for
algorithmic applications (have always in mind that LISP is our programming language). Now
we give both notations in more detail. Functions for conversion, input, output and arity check of
terms (in the above representation) are described in chapter 1.3 - 1.5.

Terms as Strings
This representation corresponds to the usual mathematical notation, including the following
convention: Variables are represented by letters u, v, w, x, y, z, constants by a, b, c, d, e and
function symbols by f, g,..., s or t. To expand the number of symbols it is allowed to add a
number to a letter.
Example: "a"; "x5"; "f(a, b, g(x, u))"; "h4711(f12(a3), x2, z)" are legal terms.

Terms as LISP S-expressions (list representation)
Here variables, constants and function symbols are represented as LISP atoms with the same
restrictions as for string terms. Composed terms are LISP lists, where the head corresponds to

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

1. Facilities for the Implementation of Unification Algorithms

1.1 Basic Definitions

To describe the unification problem for first order terms we briefly introduce basic definitions
and results:
The set T of terms over a countable set V of variables and a countable set F of function symbols
(including constants) is recursively defined by:

t eT iff t e Vor 3 fe F t . € Twitht=1(,..t)

A substitution is a mapping 'y: V — T for which (x) = x except on a finite part of V. A
substitution can therefore be described by a finite set (x; « t;; 1<i<n}. Substitutions are
naturally extended as homomorphisms T — T by Yf(t;,....t) = f(yt;,..., Yt).
A unifier 6 of two terms s and t is a substitution 6 with o(t) = o(s). It is called a most general
unifier (mgu) of these terms, iff for every unifier pt of t and s there is a substitution 8 with u = 5
« ©. There always exists a mgu for two unifiable terms.
The unificationproblem (s = t) is the problem, to find such an mgu for two terms s and t.

1.2 Representation of Terms and Substitutions

TENUA offers two different representations of terms: the string representation, which allows a
mathematical notation and therefore is very appropriate for input and output (but unsuitable for
term manipulation) and the representation as LISP S-expressions, which is very handy for
algorithmic applications (have always in mind that LISP is our programming language). Now
we give both notations in more detail. Functions for conversion, input, output and arity check of
terms (in the above representation) are described in chapter 1.3 - 1.5.

Terms as Strings
This representation corresponds to the usual mathematical notation, including the following
convention: Variables are represented by letters u, v, w, x, y , z, constants by a, b, ¢ , d, e and
function symbols by f, g,..., s or t. To expand the number of symbols it is allowed to add a
number to a letter.
Example: "a"; "x5"; "f(a, b, g(x, u))"; "h4711(f12(a3), x2, z)" are legal terms.

Terms as LISP S-expressions (list representation)
Here variables, constants and function symbols are represented as LISP atoms with the same
restrictions as for string terms. Composed terms are LISP lists, where the head corresponds to

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

the functor and the tail to the argument list (already LISP S-expressions).
Example: A; X5; (FAB (G X U)); (H4711 (F12 A3) X2 Y).

For the same reason as for terms TENUA accepts two different representations for substitutions.

Substitutions as Strings
This representation is very similar to mathematical notation and therefore suitable for input and
output. It always begins with a “ { ” and ends with a “ } ” , enclosing a finite number of pairs (of
the form) <variable> <-- <term> seperated by commas.

‘Example: " { x « a, y « f(z, g(b))}" or " { } " (empty substitution).

Substitutions as Association Lists
To work more easily with substitutions in LISP they are also represented as association lists.
The elements of such an association list are of the form (variable . term) . The substitutions of
the previous example now are represented as ((X . A) (Y. (F Z (G B)))) and NIL for the empty
substitution. Notice however, that by LISP convention the first substitution is printed as:
(X . A) (Y F Z (G B))).

See also chapter 1.4 for an output function for substitutions.

1.3 Term Conversion

TENUA supplies the following two functions to transform the string and the list representation
of terms into each other:

STRING-TO-TERM gets a term t in string representation and returns the list representation of t.
Supernumerary closing parantheses and blanks are ignored.
Example: (STRING-TO-TERM "f(a, g(y))))))" has value (F A (G Y)).

TERM-TO-STRING gets a term t in list representation and returns the string representation of t.
Example: (TERM-TO-STRING '(F (G X) Y Z)) returns "f(g(x), y, 2)".

1.4 Input and Output of Terms and Substitutions

To take the implementation of input/output procedures from the user, TENUA provides some
comfortable built in functions. As already explained in chapter 1.2 list representation of
substitutions and terms constitutes the working data format. The following functions describe

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

the functor and the tail to the argument list (already LISP S-expressions).
Example: A; X5; (FAB (G X U)); (H4711 (F12 A3) X2 Y).

For the same reason as for terms TENUA accepts two different representations for substitutions.

Substitutions as Strings
This representation is very similar to mathematical notation and therefore suitable for input and
output. It always begins with a “ { ” and ends with a “ } ” , enclosing a finite number of pairs (of
the form) <variable> <-- <term> seperated by commas.

‘Example: " { x « a, y « f(z, g(b))}" or " { } " (empty substitution).

Substitutions as Association Lists
To work more easily with substitutions in LISP they are also represented as association lists.
The elements of such an association list are of the form (variable . term) . The substitutions of
the previous example now are represented as ((X . A) (Y. (F Z (G B)))) and NIL for the empty
substitution. Notice however, that by LISP convention the first substitution is printed as:
(X . A) (Y F Z (G B))).

See also chapter 1.4 for an output function for substitutions.

1.3 Term Conversion

TENUA supplies the following two functions to transform the string and the list representation
of terms into each other:

STRING-TO-TERM gets a term t in string representation and returns the list representation of t.
Supernumerary closing parantheses and blanks are ignored.
Example: (STRING-TO-TERM "f(a, g(y))))))" has value (F A (G Y)).

TERM-TO-STRING gets a term t in list representation and returns the string representation of t.
Example: (TERM-TO-STRING '(F (G X) Y Z)) returns "f(g(x), y, 2)".

1.4 Input and Output of Terms and Substitutions

To take the implementation of input/output procedures from the user, TENUA provides some
comfortable built in functions. As already explained in chapter 1.2 list representation of
substitutions and terms constitutes the working data format. The following functions describe

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

the interface for input/output of working data:

The function TERM-IN reads new lines from terminal as long as the number of closed
parantheses is less than the number of open parantheses. Blanks and supernumerary closing
parantheses are ignored. The input string is transformed into the corresponding list
representation. Optionally the user can specify the input stream, from which TERM-IN reads.
Example: (TERM-IN stream1) reads a term from stream] and returns its list representation.

TERM-OUT performs the inverse operation. It gets a term in list notation and prints its string
representation to the standard output. As optional arguments the user can specify the file on
which TERM-OUT writes and the minimum of symbols per line (see online documentation).

Example: (TERM-OUT '(F A (G Y))) prints "f(a, g(y))" to standard output ;
(TERM-OUT '(F A (G Y)) "testfile") prints "f(a, g(y))" to the file "testfile".

The function SUBST-OUT gets the result of a unification problem in working format, that is,
either an association list (see chapter 1.2) or one of the both LISP atoms CLASH or CYCLE,
and writes its string representation cleverly arranged on standard output. Again the user can
optionally specify the name of the output file and the minimum length per line.

Example: (SUBST-OUT '((X . A) (Y . (F B)))) writes " { x « a, y « f (b)}" to standard output.

1.5 Arity Check

The user has the possibility to check a unification problem on consistence, that is to reject term
pairs in which one function symbol occurs with different arities: |

CHECK-ARITY gets two terms s and t in list representation and returns T(rue) if each function
symbol in s and t is used with consistent arity, otherwise the pair of subterms in which the
difference occured. |

Example: |

(CHECK-ARITY '(F (G A)) (F(G B)))returns T
(CHECK-ARITY '(F (G A)) '(F (G B C))) returns ((G A) (G B C)).

1.6 Interface for Unification Functions

If the user wants to implement a unification algorithm in LISP without wasting time by such
problems as cosmetic preparation of output data, he can use TENUA's UNIFY. His unification

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

the interface for input/output of working data:

The function TERM-IN reads new lines from terminal as long as the number of closed
parantheses is less than the number of open parantheses. Blanks and supernumerary closing
parantheses are ignored. The input string is transformed into the corresponding list
representation. Optionally the user can specify the input stream, from which TERM-IN reads.
Example: (TERM-IN stream1) reads a term from stream] and returns its list representation.

TERM-OUT performs the inverse operation. It gets a term in list notation and prints its string
representation to the standard output. As optional arguments the user can specify the file on
which TERM-OUT writes and the minimum of symbols per line (see online documentation).

Example: (TERM-OUT '(F A (G Y))) prints "f(a, g(y))" to standard output ;
(TERM-OUT '(F A (G Y)) "testfile") prints "f(a, g(y))" to the file "testfile".

The function SUBST-OUT gets the result of a unification problem in working format, that is,
either an association list (see chapter 1.2) or one of the both LISP atoms CLASH or CYCLE,
and writes its string representation cleverly arranged on standard output. Again the user can
optionally specify the name of the output file and the minimum length per line.

Example: (SUBST-OUT '((X . A) (Y . (F B)))) writes " { x « a, y « f (b)}" to standard output.

1.5 Arity Check

The user has the possibility to check a unification problem on consistence, that is to reject term
pairs in which one function symbol occurs with different arities: |

CHECK-ARITY gets two terms s and t in list representation and returns T(rue) if each function
symbol in s and t is used with consistent arity, otherwise the pair of subterms in which the
difference occured. |

Example: |

(CHECK-ARITY '(F (G A)) (F(G B)))returns T
(CHECK-ARITY '(F (G A)) '(F (G B C))) returns ((G A) (G B C)).

1.6 Interface for Unification Functions

If the user wants to implement a unification algorithm in LISP without wasting time by such
problems as cosmetic preparation of output data, he can use TENUA's UNIFY. His unification

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

function merely must satisfy the following input/output specification: it gets two terms in l ist
representation and returns a substitution in explicit form represented as an association list or one
of the two atoms CLASH or CYCLE. UNIFY gets the name xyz of the users unification
function and two terms s and t either in string or in list representation. The arity of the function
symbols of s and t is checked and both terms are transformed into list representation (if
necessary). Subsequently xyz is applied to them. The result is transformed into string
representation and displayed on screen.

Built in unification functions are:
ROB (Robinson), MM (Martelli/Montanari) and EG (Escalda/Ghallab) (see chapter 2)
Correct calls of unify are for example:

(UNIFY ROB '(F A) (FX))
(has the effect that " {x «— a}" is printed on screen)

or (UNIFY XYZ "f(a)" "f(x)").

2. Description of the implemented Unification Algorithms

2.1 The Robinson Algorithm

Robinson's algorithm, developed in 1965, was the first known unification algorithm for first
order terms.
It is based on the following idea :
Given a unification problem (s = t) , two cases are distinguished:
1) If one o f the two terms is a variable x , the so called Occurcheck is performed, which means i t

is checked, if x occurs in the other term. If the test is positive we have a cycle and (s= t) is
not unifiable, otherwise the substitution {x « t } isamguof (x =t).

2) The two terms are of the form s = f(s, s, , . . . ,s) and t = g(t, ty,..., tm), where constants are
considered as O-ary functions. If the functors f and g are different we have a clash and s , t
are not unifiable. Otherwise the Robinson algorithm is sequentially applied to the
corresponding argument pairs ((s, = t ,) , (5 , =t,)...), where the mgu's of preceding pairs
are applied to the subsequent pairs before their recursive treatment. I f a cycle or clash is
produced i n the recursion, s and t are not unifiable, otherwise the mgu is the composition of
the mgu's of the argument pairs.

This can be represented in the following algorithmic notation:

R. Scheidhaver & G. Seul: TENUA — A Test Environment for Unification Algorithms

function merely must satisfy the following input/output specification: it gets two terms in l ist
representation and returns a substitution in explicit form represented as an association list or one
of the two atoms CLASH or CYCLE. UNIFY gets the name xyz of the users unification
function and two terms s and t either in string or in list representation. The arity of the function
symbols of s and t is checked and both terms are transformed into list representation (if
necessary). Subsequently xyz is applied to them. The result is transformed into string
representation and displayed on screen.

Built in unification functions are:
ROB (Robinson), MM (Martelli/Montanari) and EG (Escalda/Ghallab) (see chapter 2)
Correct calls of unify are for example:

(UNIFY ROB '(F A) (FX))
(has the effect that " {x «— a}" is printed on screen)

or (UNIFY XYZ "f(a)" "f(x)").

2. Description of the implemented Unification Algorithms

2.1 The Robinson Algorithm

Robinson's algorithm, developed in 1965, was the first known unification algorithm for first
order terms.
It is based on the following idea :
Given a unification problem (s = t) , two cases are distinguished:
1) If one o f the two terms is a variable x , the so called Occurcheck is performed, which means i t

is checked, if x occurs in the other term. If the test is positive we have a cycle and (s= t) is
not unifiable, otherwise the substitution {x « t } isamguof (x =t).

2) The two terms are of the form s = f(s, s, , . . . ,s) and t = g(t, ty,..., tm), where constants are
considered as O-ary functions. If the functors f and g are different we have a clash and s , t
are not unifiable. Otherwise the Robinson algorithm is sequentially applied to the
corresponding argument pairs ((s, = t ,) , (5 , =t,)...), where the mgu's of preceding pairs
are applied to the subsequent pairs before their recursive treatment. I f a cycle or clash is
produced i n the recursion, s and t are not unifiable, otherwise the mgu is the composition of
the mgu's of the argument pairs.

This can be represented in the following algorithmic notation:

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Algorithm ROBINSON-UNIFY
Input: A pair of terms (s , t)
Output: if (s, t) are unifiable, a mgu 6 of (s = t), CLASH or CYCLE otherwise
BEGIN
IF oneof the two terms s and t is a variablex
THEN let u be the other;

IF x=u
THEN o0:=()
ELSIF Occur(x,u)
THEN exit (CYCLE)
ELSE O:={x & u}
FI

ELSE let s=f(S,, s,,..., s,) and t=g(t,, t,...., tm;
IF fxg
THEN exit (CLASH)
ELSE o:=(};

FOR k:=1 TO n DO
7:=ROBINSON-UNIFY(0(s,), 6(1)) ;
o:=10

ENDFOR
FI

FI
END

Example:

U = (f(g(x), x), f(g(y), a))
o:={}

U, =(o(g(x)), ogy)) = (g(x), gy))
7, =0 ,={ }

Uy , = (c,(x), 0 , (y)) = (x , y)
Ty = (x &y)

1 ,=6 ,=1 , ; 0= {x & y } (})= { x & y)
0:=T,0= (x & y} ;

U,= (0 (x) , o (a))= (y ,a)
 U= (y&a) }
0:=1,0 = (y «a } (x «y }

= (yea , x «a }

We have implemented Robinson's algorithm with terms represented as lists,which are a kind of

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Algorithm ROBINSON-UNIFY
Input: A pair of terms (s , t)
Output: if (s, t) are unifiable, a mgu 6 of (s = t), CLASH or CYCLE otherwise
BEGIN
IF oneof the two terms s and t is a variablex
THEN let u be the other;

IF x=u
THEN o0:=()
ELSIF Occur(x,u)
THEN exit (CYCLE)
ELSE O:={x & u}
FI

ELSE let s=f(S,, s,,..., s,) and t=g(t,, t,...., tm;
IF fxg
THEN exit (CLASH)
ELSE o:=(};

FOR k:=1 TO n DO
7:=ROBINSON-UNIFY(0(s,), 6(1)) ;
o:=10

ENDFOR
FI

FI
END

Example:

U = (f(g(x), x), f(g(y), a))
o:={}

U, =(o(g(x)), ogy)) = (g(x), gy))
7, =0 ,={ }

Uy , = (c,(x), 0 , (y)) = (x , y)
Ty = (x &y)

1 ,=6 ,=1 , ; 0= {x & y } (})= { x & y)
0:=T,0= (x & y} ;

U,= (0 (x) , o (a))= (y ,a)
 U= (y&a) }
0:=1,0 = (y «a } (x «y }

= (yea , x «a }

We have implemented Robinson's algorithm with terms represented as lists,which are a kind of

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

tree structure. Therefore in worst case it has exponential time and space complexity (depending
on the term size), caused by the excessively increasing term copies in substitution application at
the recursive call. The classical example is:
U = (f (x , X;..... X)), f(@(XgXg), 8(X1X;)s. 8X1» Xn-1))) (see also chapter 3). |

In TENUA the Robinson Algorithm can be called using the UNIFY function (see chapter 1.5).
Example: The evaluation of the call (UNIFY ROB "g(f(x),x)" "g(f(y),a)") returns

{x «a , yea } .

2.2 The Martelli/Montanari Algorithm

The algorithm of Martelli/Montanari was developed in 1982. However it is considered to be one
of the most efficient unification algorithms. First of all we give some basic definitions:
A multiset of consistent terms (no direct functor clash) will be represented as a multiterm.. A
multiterm can either be empty or of the form f((S,,M,),....(S,,M,)), where the S; are sets of
variables, the M; are multiterms and S,; and M; cannot both be empty.
Example: The multiset of consistent terms (f(x,g(a,y)),f(b,x),f(x,y)} is represented by the

multiterm f({{x},b).{(x,y}.g({<,a).({y}, ©))).
A multiequation is of the form S=M, where S is a nonempty set of variables and M is a
multiterm. The following algorithm merges two multiterms M' and M" into one, if they are
consistent, otherwise it fails.

merge(M', M") =
CASE M' OF

2 : M",
£ (S ' M ' s . (SLM): let M"= £({S",M')),....(S',,M',));

IF f'=f" AND merge(M',M")#failure
THEN f((S', U S",, merge(M';, M")))....,

(§ ' , US" , merge(M',, M")))
ELSE failure
FI

The commonpart of a multiterm M is also a multiterm and defined as follows:
'COMMONPART(f({S},M,),....{S_.M)))) = f(P,,....P,)

where P,= IF §, =O
THEN COMMONPART(M))

ELSE ANYOF(S))
FI

and the function ANYOF(S,) returns an element of the set S;.

R. Scheidhaver & G. Seul: TENUA — A Test Environment for Unification Algorithms

tree structure. Therefore in worst case it has exponential time and space complexity (depending
on the term size), caused by the excessively increasing term copies in substitution application at
the recursive call. The classical example is:
U = (f (x , X;..... X)), f(@(XgXg), 8(X1X;)s. 8X1» Xn-1))) (see also chapter 3). |

In TENUA the Robinson Algorithm can be called using the UNIFY function (see chapter 1.5).
Example: The evaluation of the call (UNIFY ROB "g(f(x),x)" "g(f(y),a)") returns

{x «a , yea } .

2.2 The Martelli/Montanari Algorithm

The algorithm of Martelli/Montanari was developed in 1982. However it is considered to be one
of the most efficient unification algorithms. First of all we give some basic definitions:
A multiset of consistent terms (no direct functor clash) will be represented as a multiterm.. A
multiterm can either be empty or of the form f((S,,M,),....(S,,M,)), where the S; are sets of
variables, the M; are multiterms and S,; and M; cannot both be empty.
Example: The multiset of consistent terms (f(x,g(a,y)),f(b,x),f(x,y)} is represented by the

multiterm f({{x},b).{(x,y}.g({<,a).({y}, ©))).
A multiequation is of the form S=M, where S is a nonempty set of variables and M is a
multiterm. The following algorithm merges two multiterms M' and M" into one, if they are
consistent, otherwise it fails.

merge(M', M") =
CASE M' OF

2 : M",
£ (S ' M ' s . (SLM): let M"= £({S",M')),....(S',,M',));

IF f'=f" AND merge(M',M")#failure
THEN f((S', U S",, merge(M';, M")))....,

(§ ' , US" , merge(M',, M")))
ELSE failure
FI

The commonpart of a multiterm M is also a multiterm and defined as follows:
'COMMONPART(f({S},M,),....{S_.M)))) = f(P,,....P,)

where P,= IF §, =O
THEN COMMONPART(M))

ELSE ANYOF(S))
FI

and the function ANYOF(S,) returns an element of the set S;.

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

The counterpart to the commonpart of a multitermi s itsfrontier, a set of multiequations.
FRONTIER (f((S;,M;),...{S;,M\)) =F, U... UF,

where F ,= IF § , = J THEN FRONTIER(M)
ELSE {S;=M;} (i=l,...,n)

Given two terms s and t the idea of Martelli/Montanari is to distribute the variables of s and t

over equivalence classes of terms, corresponding to the variable bindings of the mgu. The
equivalence classes are represented as multiequations. We always consider a system of
multiequations R=(T,U) with an unsolved part U and a solved or triangular part T.
By every step of the unification algorithm a multiequation is transfered from the U-part to the
T-part, until the U-part is empty.
The initial system has an empty T-part and its U-part contains the following multiequations: the

f i r s t is of the form {xg)={s,t} (with a new variable x); all other multiequations in U are of the
form (y }=0 , where y is a variable occuring in s or t. Vice versa every variable in s or t
corresponds to such a multiequation in U. U therefore contains n+1 multiequations, with n =
number of variables in s and t. For reasons of efficiency (in multiequation selection) every
multiequation S=M of U comprises a counter for the sum of occurrences of the variables of S i n
the right hand sides of U. |

Example: The initial system belonging to s = f(x,g(y,z),y.b), t = f(g(h(a,v),y),x,h(a,u),u) is :

U: {[0] {x}=f(({x} ,8((.h((D.a)({v} .ON)({y}.ON),
({ x } . 8 { y } . 2) ({ z } .O))
{{y}.h({d ,a),{{u}.@})),
({u},b))

[2] (x)= 0
3] (y}= 9
[1] (z}= 0
[2] {u)= 0
[1] (v}=9)

T: { } .

While the U-part is nonempty we search for a multiequation in U with counter 0. If no such
multiequation exists, every variable of U must occur in the right hand side and therefore in the
substituting term of at least one other variable in U (stop with cycle!).
Otherwise that multiequation is removed from the U-part, its common part is added to the
T-part, the multiequations of its frontier are merged with the variable corresponding
mulfiequation of U (compactification: here clashes are found!) and the counters are adjusted.
When the U-part is empty the solution can be obtained in explicite form by substituting
backward the left hand side variables of T. .

10

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

The counterpart to the commonpart of a multitermi s itsfrontier, a set of multiequations.
FRONTIER (f((S;,M;),...{S;,M\)) =F, U... UF,

where F ,= IF § , = J THEN FRONTIER(M)
ELSE {S;=M;} (i=l,...,n)

Given two terms s and t the idea of Martelli/Montanari is to distribute the variables of s and t

over equivalence classes of terms, corresponding to the variable bindings of the mgu. The
equivalence classes are represented as multiequations. We always consider a system of
multiequations R=(T,U) with an unsolved part U and a solved or triangular part T.
By every step of the unification algorithm a multiequation is transfered from the U-part to the
T-part, until the U-part is empty.
The initial system has an empty T-part and its U-part contains the following multiequations: the

f i r s t is of the form {xg)={s,t} (with a new variable x); all other multiequations in U are of the
form (y }=0 , where y is a variable occuring in s or t. Vice versa every variable in s or t
corresponds to such a multiequation in U. U therefore contains n+1 multiequations, with n =
number of variables in s and t. For reasons of efficiency (in multiequation selection) every
multiequation S=M of U comprises a counter for the sum of occurrences of the variables of S i n
the right hand sides of U. |

Example: The initial system belonging to s = f(x,g(y,z),y.b), t = f(g(h(a,v),y),x,h(a,u),u) is :

U: {[0] {x}=f(({x} ,8((.h((D.a)({v} .ON)({y}.ON),
({ x } . 8 { y } . 2) ({ z } .O))
{{y}.h({d ,a),{{u}.@})),
({u},b))

[2] (x)= 0
3] (y}= 9
[1] (z}= 0
[2] {u)= 0
[1] (v}=9)

T: { } .

While the U-part is nonempty we search for a multiequation in U with counter 0. If no such
multiequation exists, every variable of U must occur in the right hand side and therefore in the
substituting term of at least one other variable in U (stop with cycle!).
Otherwise that multiequation is removed from the U-part, its common part is added to the
T-part, the multiequations of its frontier are merged with the variable corresponding
mulfiequation of U (compactification: here clashes are found!) and the counters are adjusted.
When the U-part is empty the solution can be obtained in explicite form by substituting
backward the left hand side variables of T. .

10

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Algorithmic notation:

REPEAT .
1) Select a multiequation S=M of U such that the variables in S do not occur elsewhere in U

(counter=0). I f a multiequation with this property does not exist stop with failure(cycle).
2) IF M i s empty

THEN transfer S=M from U to the end of T
ELSE 1) compute the commonpart C and the frontier F of M

2) Transfer S=C from U to the end of T
3) Merge the multiequations of F with the corresponding multiequations of U

and adjust the counters (if merge fails stop with clash).
FI

UNTIL U is empty.

Example: For reasons of readability we will not use multiterm notation, which indeed may be
appropriate for computers but not for human.
s and t see previous example:

initial system:

Up: { [0] {xq}={f(x,g(y,2).y.b),f(g(h(a,v),y).x,h(a,u),u)},
[2] { x }= 0
Bl { y }=0
[1] (z)= 9
[2] (u)= 0
[1] (v}= 9)

To: { }

Uy: { [0] {x}={g(h(a,v),y),g(y,z)},
[2] { y }= {h(a,u)}
[1] (z }=9
[1] {u}= {b}
[1] (v }= 9)

Ti : { (xo)}=f(x,x,y,u)}.

Uy: { [0] {y,z}={h(a,u),h(a,v)},
[1] {u}= (b}
[1] { v }= 9}

To: { (Xg}=f(x,x,y,u),

{x} =8(y,z)}.

11

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Algorithmic notation:

REPEAT .
1) Select a multiequation S=M of U such that the variables in S do not occur elsewhere in U

(counter=0). I f a multiequation with this property does not exist stop with failure(cycle).
2) IF M i s empty

THEN transfer S=M from U to the end of T
ELSE 1) compute the commonpart C and the frontier F of M

2) Transfer S=C from U to the end of T
3) Merge the multiequations of F with the corresponding multiequations of U

and adjust the counters (if merge fails stop with clash).
FI

UNTIL U is empty.

Example: For reasons of readability we will not use multiterm notation, which indeed may be
appropriate for computers but not for human.
s and t see previous example:

initial system:

Up: { [0] {xq}={f(x,g(y,2).y.b),f(g(h(a,v),y).x,h(a,u),u)},
[2] { x }= 0
Bl { y }=0
[1] (z)= 9
[2] (u)= 0
[1] (v}= 9)

To: { }

Uy: { [0] {x}={g(h(a,v),y),g(y,z)},
[2] { y }= {h(a,u)}
[1] (z }=9
[1] {u}= {b}
[1] (v }= 9)

Ti : { (xo)}=f(x,x,y,u)}.

Uy: { [0] {y,z}={h(a,u),h(a,v)},
[1] {u}= (b}
[1] { v }= 9}

To: { (Xg}=f(x,x,y,u),

{x} =8(y,z)}.

11

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Us: { [0] {u,v}=(b}}
T;: { {xo}=f(x,x,y,u),

{ x } =g(y,2),
{y,z}=h(a,u)}.

Ug: ©

2 { {xo}=f(x,x,y,n),
{x} =g(y.),
{y,z}=h(a,u)
{u,v}=b}.

=

Solution in explicit form by backward substitution:
mgu(s,t)={u «b , ve b , y « h(a,b), z « h(a,b) , x « g(h(a,b),h(a,b)}.
The Martelli/Montanari algorithm has complexity O(n log(n)) provided there is a direct (and not a
sequential) access to a variable's equivalence class (using the UNION-FIND algorithm even a
quasilinear complexity is reached). In our implementation we guaranteed that property by
employing hash tables to represent the actual variable bindings. This causes a relative high
amount in administration for small examples, but that i s a general draw back of
Martelli/Montanari's algorithm.
In TENUA you can call the Martelli/Montanari's algorithm by using the UNIFY function (see
chapter 1.5).
Example: (UNIFY 'MM "g(f(x),x)" "g(f(y),a)") returns the unifier in sequential form

while (UNIFY 'MM-MULTAUS "g(f(x),x)" "g(f(y),a)") returns the unifier in explicite
form.

2.3 The Escalada/Ghallab Algorithm

The algorithm of Escalada/Ghallab is the most recent unification algorithm that TENUA
provides. It was published in January 1987 and turned out to be very efficient for practical use,
while keeping an almost linear worst case complexity. Furthermore only few data structures are
needed, especially in contrast to the Martelli/Montanari algorithm. Its idea bases on theoretical
framework developed by Huet (1976) and Paterson/Wegman (1978).
First of all we give two basic definitions:
A homogeneous equivalence relation is such that two nonvariable terms s and t are equivalent iff
cither one of them is a variable or they correspond to the same constant or function symbol
(homogeneity condition) and their i-th subterms s; and t; are pairwise equivalent.
A valid equivalence relation is a homogeneous relation with a partial order on equivalence
classes such that the class of t is before the class of t, whenever t, is a subterm of t.

12

R. Scheidhauer & G. Séul: TENUA — A Test Environment for Unification Algorithms

Us: { [0] {u,v}=(b}}
T;: { {xo}=f(x,x,y,u),

{ x } =g(y,2),
{y,z}=h(a,u)}.

Ug: ©

2 { {xo}=f(x,x,y,n),
{x} =g(y.),
{y,z}=h(a,u)
{u,v}=b}.

=

Solution in explicit form by backward substitution:
mgu(s,t)={u «b , ve b , y « h(a,b), z « h(a,b) , x « g(h(a,b),h(a,b)}.
The Martelli/Montanari algorithm has complexity O(n log(n)) provided there is a direct (and not a
sequential) access to a variable's equivalence class (using the UNION-FIND algorithm even a
quasilinear complexity is reached). In our implementation we guaranteed that property by
employing hash tables to represent the actual variable bindings. This causes a relative high
amount in administration for small examples, but that i s a general draw back of
Martelli/Montanari's algorithm.
In TENUA you can call the Martelli/Montanari's algorithm by using the UNIFY function (see
chapter 1.5).
Example: (UNIFY 'MM "g(f(x),x)" "g(f(y),a)") returns the unifier in sequential form

while (UNIFY 'MM-MULTAUS "g(f(x),x)" "g(f(y),a)") returns the unifier in explicite
form.

2.3 The Escalada/Ghallab Algorithm

The algorithm of Escalada/Ghallab is the most recent unification algorithm that TENUA
provides. It was published in January 1987 and turned out to be very efficient for practical use,
while keeping an almost linear worst case complexity. Furthermore only few data structures are
needed, especially in contrast to the Martelli/Montanari algorithm. Its idea bases on theoretical
framework developed by Huet (1976) and Paterson/Wegman (1978).
First of all we give two basic definitions:
A homogeneous equivalence relation is such that two nonvariable terms s and t are equivalent iff
cither one of them is a variable or they correspond to the same constant or function symbol
(homogeneity condition) and their i-th subterms s; and t; are pairwise equivalent.
A valid equivalence relation is a homogeneous relation with a partial order on equivalence
classes such that the class of t is before the class of t, whenever t, is a subterm of t.

12

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Huet (1976) and Paterson/Wegman (1978) showed that two terms s and t are unifiable iff there

exists a valid equivalence relation that makes s equivalent to t.

The algorithm is naturally decomposed in two steps:
Stepl (HERE) : build a homogeneous equivalence relation = check for clashes.
Step2 (VERE) : build from stepl a valid equivalence relation = check for cycles.
We will now look at both steps in more detail:

Stepli
Both terms s and t are parallely passed through and whenever a variable occurs i t is bound to the
corresponding subterm t, or i f it is already bound to a term t', step] is recursively applied to t;
and t';. The homogeneous equivalence relation is manifested in the variable bindings and can be
represented by a directed graph G with the following properties:

- nodes in G are terms, one single node corresponds to each variable in s or t.
- each connected component of G corresponds to an equivalence class and contains at most

one nonvariable term. |

- for any variable node x in G: outdegree(x)<1,
and for a nonvariable node t: outdegree(t)=0, indegree(t)=1.

Thus for each variable x only one pointer r(x) is needed; initially r(x)=nil. Step1 stops with clash
if the homogeneity condition fails at some point.
We now give a simplified algorithm for step1:
TERM-HERE(s,t):

IF s and t are not identical variables or constant symbols
THEN IF s is a variable

THEN VAR-HEREC,t)
FI

ELSIF t is a variable
THEN VAR-HERE(t,s)

ELSE let s=f(s,,...,s,), t=g(t,,.. iy)
IF fxg
THEN exit (CLASH)
ELSE FOR i:=1 TOK DO

TERM-HERECs,t,)
FI

VARE-HERE(x,t)
IF r(x)=nil
THEN r(u) « t
ELSIF t i s a variable and r(t)=nil

~ THENT(t) « x
ELSE mark x,

13

R. Scheidhauer& G.Seul: TENUA — A Test Environment for Unification Algorithms

Huet (1976) and Paterson/Wegman (1978) showed that two terms s and t are unifiable iff there
exists a valid equivalence relation that makes s equivalent to t.

The algorithm is naturally decomposed in two steps:
Stepl (HERE) : build a homogeneous equivalence relation = check for clashes.
Step2 (VERE) : build from step1 a valid equivalence relation =check for cycles.
We will now look at both steps in more detail:
Stepl:
Both terms s and t are parallely passed through and whenever a variable occurs i t is bound to the
corresponding subterm t, or i f it is already bound to a term t', step] is recursively applied to t;
and t';. The homogeneous equivalence relation is manifested in the variable bindings and can be
represented by a directed graph G with the following properties:

- nodes in G are terms, one single node corresponds to each variable in s or t.
- each connected component of G corresponds to an equivalence class and contains at most

one nonvariable term. |

- for any variable node x in G: outdegree(x)<1,
and for a nonvariable node t: outdegree(t)=0, indegree(t)=1.

Thus for each variable x only one pointer r(x) is needed; initially r(x)=nil. Step1 stops with clash
if the homogeneity condition fails at some point.
We now give a simplified algorithm for step1:
TERM-HERE(s,t):

IF s and t are not identical variables or constant symbols
THEN IF s is a variable

THEN VAR-HERE(s,t)
FI

ELSIF t is a variable
THEN VAR-HERE(t,s)

ELSE let s=f(s,,...,s,), t=g(t;,....,t,)
IF fzg
THEN exit (CLASH)
ELSE FOR i:=1 TOK DO

TERM-HERE(s;t;)
FI

VARE-HERE(x,t)
IF r(x)=nil
THEN r(u) « t
ELSIF tis a variable and r(t)=nil

THEN r(t) « x
ELSE mark x,

13

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

TERM-HERE(r(u),t);
unmark u

FI

Example: Given s=f(h(x,,X,,X3),h(X¢,X7,Xg),X3,X)

and t=f(h(g(x,,Xs),X;,X9),h(X7,Xg,X(),8(X5,2)X 5).
HERE(s,t) builds the following graph G: x3 — x, — X; = g(X4,Xs)
and x; = Xg = X; —> Xs — a and X, — Xs.

The function VARE-HERE mainly finds out to which equivalence class a particular variable
belongs or defines a new class as the union of two equivalence classes. To reach quasilinear
complexity the exact version of the Escalda/Ghallab algorithm uses a special UNION-FIND
algorithm relying on the so called collapse and weight rules.
Step2:
The second step consists in checking the validity of the homogeneous equivalence relation built
in step and in defining the unifier explicitly.
For each variable node of graph G (see stepl) a new arc s(x) (substitutor) is created by the
function VAR-VERE. I t recursively substitutes the variables i n the term bound to x (by G) and:
detects cycles in marking already visited variables. Here is a simplified algorithm not exploiting
the efficiency of a UNIONFIND algorithm:

VAR-VERE(u)
IF u is marked
THEN exit(cycle)

ELSE mark u;
s(u) « TERM-VERE(r(u));
unmark u

FI

TERM-VERE(t)
IF t i s a variable
THEN VAR-HERE(t)
ELSIF t is constant
THENreturn t
ELSE let t=f(,,....t,)

return f(TERM-VERE(,),...,TERM-VERE(t))

FI

Given the graph G of the example of step] we would get the following unifier:
s(X3)=s(x,)=s(x,)=g(a,8) and S(X„)=S(Xg)=S(Xc)=S(Xs)=S(X4)=a.

14

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

TERM-HERE(r(u),t);
unmark u

FI

Example: Given s=f(h(x,,X,,X3),h(X¢,X7,Xg),X3,X)

and t=f(h(g(x,,Xs),X;,X9),h(X7,Xg,X(),8(X5,2)X 5).
HERE(s,t) builds the following graph G: x3 — x, — X; = g(X4,Xs)
and x; = Xg = X; —> Xs — a and X, — Xs.

The function VARE-HERE mainly finds out to which equivalence class a particular variable
belongs or defines a new class as the union of two equivalence classes. To reach quasilinear
complexity the exact version of the Escalda/Ghallab algorithm uses a special UNION-FIND
algorithm relying on the so called collapse and weight rules.
Step2:
The second step consists in checking the validity of the homogeneous equivalence relation built
in step and in defining the unifier explicitly.
For each variable node of graph G (see stepl) a new arc s(x) (substitutor) is created by the
function VAR-VERE. I t recursively substitutes the variables i n the term bound to x (by G) and:
detects cycles in marking already visited variables. Here is a simplified algorithm not exploiting
the efficiency of a UNIONFIND algorithm:

VAR-VERE(u)
IF u is marked
THEN exit(cycle)

ELSE mark u;
s(u) « TERM-VERE(r(u));
unmark u

FI

TERM-VERE(t)
IF t i s a variable
THEN VAR-HERE(t)
ELSIF t is constant
THENreturn t
ELSE let t=f(,,....t,)

return f(TERM-VERE(,),...,TERM-VERE(t))

FI

Given the graph G of the example of step] we would get the following unifier:
s(X3)=s(x,)=s(x,)=g(a,8) and S(X„)=S(Xg)=S(Xc)=S(Xs)=S(X4)=a.

14

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

The complete unification algorithm consists in calling once TERM-HERE(s,t) and if it succeeds,
calling VAR-VERE(u) for all variables u in s and t.
In our LISP-implementation we represented the equivalence relation on variables in two ways:
1) as hash-tables:, which ensures a direct access to every equivalence class and therefore

results in a quasilinear complexity but entails a disproportionate administration amount for
‘small’ terms. ; ;

2) as assoc-lists:, which seems to be more efficient in practice, but at the expense of a
quasilinear time complexity.

You can call both versions of the Escalada/Ghallabaigoritn in TENUA by using the UNIFY
function (see chapter 1.5).
Example: (UNIFY EG-HASH (term,) (term,)) applies the first version to (term,) and (term)

while (UNIFY EG (term,) (term,)) does the same for the second version.

3. Description of the Implemented Term Generators

To test unification algorithms TENUA provides two essentially different kinds of term
generators:

(3.1) Generators for parameterized terms, say terms with a uniform structure
(3.2) Generators for random terms

Both kinds of term generating functions may get different parameters for input but return always
a list of two terms s and t in list representation corresponding to the unification problem (s=t) .

3.1 Parameterized Term Generators

Withparametrized terms we mean terms with a uniform structure, also called standard terms.
TENUA contains 8 generating functions for standard terms: GENTERM-STD1 ...
GENTERM-STDS. They all get a nonnegative integer n for input and return terms with
increasing size depending on n. In this way you can find out the time behaviour (exponential,
linear...) of a given unification algorithm. Notice, that for some of them the generated terms are
growing non-linear in n.We give nowa short description of each standard term generator:

GENTERM-STD1
Input: N: nonnegative integer
Value: A list of twoterms of the following form:

1 term: f(x,,...x,)
2™ term: £(y,,...y,)

Application: Illustrates the behaviour of unification algorithms for increasing term breath.

15

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

The complete unification algorithm consists in calling once TERM-HERE(s,t) and if it succeeds,
calling VAR-VERE(u) for all variables u in s and t.
In our LISP-implementation we represented the equivalence relation on variables in two ways:
1) as hash-tables:, which ensures a direct access to every equivalence class and therefore

results in a quasilinear complexity but entails a disproportionate administration amount for
‘small’ terms. ; ;

2) as assoc-lists:, which seems to be more efficient in practice, but at the expense of a
quasilinear time complexity.

You can call both versions of the Escalada/Ghallabaigoritn in TENUA by using the UNIFY
function (see chapter 1.5).
Example: (UNIFY EG-HASH (term,) (term,)) applies the first version to (term,) and (term)

while (UNIFY EG (term,) (term,)) does the same for the second version.

3. Description of the Implemented Term Generators

To test unification algorithms TENUA provides two essentially different kinds of term
generators:

(3.1) Generators for parameterized terms, say terms with a uniform structure
(3.2) Generators for random terms

Both kinds of term generating functions may get different parameters for input but return always
a list of two terms s and t in list representation corresponding to the unification problem (s=t) .

3.1 Parameterized Term Generators

Withparametrized terms we mean terms with a uniform structure, also called standard terms.
TENUA contains 8 generating functions for standard terms: GENTERM-STD1 ...
GENTERM-STDS. They all get a nonnegative integer n for input and return terms with
increasing size depending on n. In this way you can find out the time behaviour (exponential,
linear...) of a given unification algorithm. Notice, that for some of them the generated terms are
growing non-linear in n.We give nowa short description of each standard term generator:

GENTERM-STD1
Input: N: nonnegative integer
Value: A list of twoterms of the following form:

1 term: f(x,,...x,)
2™ term: £(y,,...y,)

Application: Illustrates the behaviour of unification algorithms for increasing term breath.

15

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

GENTERM-STD2

Input:
Value:

Application:

N: nonnegative integer
A list containing two terms:
The first term has the form a left, the second of a right ZZ-tree of depth n, where
ZZ-trees are defined as follows:
- a left ZZ-tree of depth 1 consists only of a root
- aright ZZ-tree of depth 1 consists only of a root
- a left ZZ-tree of depth k (>1) is a binary tree, where the left son is a right ZZ-tree
of depth k-1 and the right son is a leave.
- a right ZZ-tree of depth k (>1) is a binary tree, where the right son is a left
ZZ-tree of depth k-1 and the left son is a leave.
- theleaves are marked with a continuously indexed x respectively y.
n=35

1% term: £ (F (x , ,(f(x 4,X5).X3)),X,)
2 term: £(y,,f(£(y3,£(y5.Y4)):¥2)

Illustrates the behaviour of unification algorithms for variable bindings of
increasing complexity, especially the occurcheck is tested.

GENTERM-STD3

Input:
Yalue:

Example:

Application:

N: nonnegative integer
A list containing two terms where each of them has the structure of a complete
binary tree of depth n. The leaves are marked with continuously indexed variables
x, respectively y.
n=35:

1 * term: f(F(£(x,,%,),f(x5,X).f(f(xs,%4).(X4,Xg)))
2 term: £(ECE(y yy) : E(Y3Y DEY, 6) (y7:Y5)))

Illustrates the behaviour of unification functions for terms of increasing depth.

GENTERM-STD4

Input:
Value:

N: nonnegative integer
A list containing two terms, each of them possessing n arguments. The i-th
argument corresponds to a term of GENTERM-STD2 with depth i . The toplevel

functor is p and the leaves are marked with continuously indexed variables x,
respectively y. a

Illustrates the behaviour of unification functions for termsof increasing depth and
breadth and corresponding variable bindings.

16

R. Scheidhauer & G. Seul: TENUA ~ A Test Environment for Unification Algorithms

GENTERM-STD2

Input:
Yalue:

Application:

N: nonnegative integer
A list containing two terms:
The first term has the form a left, the second of a right ZZ-tree of depth n, where
ZZ-trees are defined as follows:
- a left ZZ-tree of depth 1 consists only of a root
- aright ZZ-tree of depth 1 consists only of a root
- a left ZZ-tree of depth k (>1) is a binary tree, where the left son is a right ZZ-tree
of depth k-1 and the right son is a leave.
- a right ZZ-tree of depth k (>1) is a binary tree, where the right son is a left
ZZ-tree of depth k-1 and the left son is a leave.
- theleaves are marked with a continuously indexed x respectively y.
n=5

1% term: £(£(x,,£(f(x4,X5),X3)),X;)

24 term: f(y,f(£(y3.£(y5,¥4)):¥2)
Illustrates the behaviour of unification algorithms for variable bindings of
increasing complexity, especially the occurcheck is tested.

GENTERM-STD3

Input:
Yalue:

Example:

Application:

N: nonnegative integer
A list containing two terms where each of them has the structure of a complete
binary tree of depth n. The leaves are marked with continuously indexed variables
x, respectively y.
n=5 :

1% term: f(£(£(x,,X,),f(x3,%,)).f(f(x5.%().f(x5,Xg)))
2 term: £(£(Cy;,y2).f(¥3,Y))f((Y5,Y6)£(¥7:¥5)))

Illustrates the behaviour of unification functions for terms of increasing depth.

GENTERM-STD4
Input:
Value:

N: nonnegative integer
A list containing two terms, each of them possessing n arguments. The i-th
argument corresponds to a term o f GENTERM-STD2 with depth i . The toplevel
functor is p and the leaves are marked with continuously indexed variables x,
respectively y. a

Tlustrates the behaviour of unification functions for terms o f increasing depth and
breadth and corresponding variable bindings.

16

R. Scheidhauer& G. Seul: TENUA — A Test Environment for Unification Algorithms

GENTERM-STDS
Input: N: nonnegative integer
Value: A list of two terms of the following form:

1% term: f(x,,X,,...,X)
2 term: £(X,X3,.+ 1X p%p.1)

Application: Tests the efficiency in finding variable bindings because all variables are bound to
the same term. Here especially unification algorithms using UNION-FIND
strategies will dominate.

GENTERM-STD6
Input: N: nonnegative integer
Value: A list o f two terms of the following form:

1% term: f(X,,...,X)
2 term: f(g(xg.Xg)s- + 8(Xp 1X1)

Application: Classical example for the exponential complexity of the Robinson algorithm.

GENTERM-STD7

Input: N: nonnegative integer
Value: A list o f two terms of the following form:

1# term: f(X ss KEY 8(Y1:¥1)s++18(Yn-1:¥n-1))
2™ term: F(g(XgXgh EX K r Xp10% 1 Yıs Yin)

Application: This example is gathered from Bidoit/Corbin (1983) and shows that even the
improved version of Robinson's algorithm keeps exponential time complexity.

GENTERM-STD8
Input: N: nonnegative integer
Value: A list of two terms of the following form:

1% term: f(Yı> Yır--YaYn)
2™ term: (X 8(Xg:Xg)» Kg 8(Xp Xp) 1:Xn-1))

Application: This is a modified version of GENTERM-STD6 and shows that unification
algorithms (for example Robinson's) may have exponential time complexity,
although the two terms have no variables in common.

17

R. Scheidhaver& G. Seul: TENUA — A Test Environment for Unification Algorithms

GENTERM-STDS
Input: N: nonnegative integer
Value: A list of two terms of the following form:

1% term: f(x,,X,,...,X)
2 term: £(X,X3,.+ 1X p%p.1)

Application: Tests the efficiency in finding variable bindings because all variables are bound to
the same term. Here especially unification algorithms using UNION-FIND
strategies will dominate.

GENTERM-STD6
Input: N: nonnegative integer
Value: A list o f two terms of the following form:

1% term: f(X,,...,X)
2 term: f(g(xg.Xg)s- + 8(Xp 1X1)

Application: Classical example for the exponential complexity of the Robinson algorithm.

GENTERM-STD7

Input: N: nonnegative integer
Value: A list o f two terms of the following form:

1# term: f(X ss KEY 8(Y1:¥1)s++18(Yn-1:¥n-1))
2™ term: F(g(XgXgh EX K r Xp10% 1 Yıs Yin)

Application: This example is gathered from Bidoit/Corbin (1983) and shows that even the
improved version of Robinson's algorithm keeps exponential time complexity.

GENTERM-STD8
Input: N: nonnegative integer
Value: A list of two terms of the following form:

1% term: f(Yı> Yır--YaYn)
2™ term: (X 8(Xg:Xg)» Kg 8(Xp Xp) 1:Xn-1))

Application: This is a modified version of GENTERM-STD6 and shows that unification
algorithms (for example Robinson's) may have exponential time complexity,
although the two terms have no variables in common.

17

R. Scheidhauer & G. Seul: TENUA -- A Test Environment for Unification Algorithms

3.2 Generators for Random Terms

First of all it must be said, that we did not want to consider the problem of generating a random
termpair under the strict conditions of probability theory, but from a more practical viewpoint.
The user should have the possibility to test the correctness and efficiency of unification
algorithms by 'natural’ terms, say terms that are not of extreme breadth or depth. The problem is
not trivial, because generating both terms one after the other would lead to an extremely high
quota of nonunifiable terms.
TENUA provides two generators for random term pairs: GENTERM-RND1 (see chapter 3.2.1)
and GENTERM-RND?2 (see chapter 3.2.2). They have only optional parameters (to adjust
maximum termdepth, probability of clashes, etc.) and return a list of two terms in list
representation. While GENTERM-RNDI1 allows the user to specify a signature of function
symbols and then constructs the two terms in parallel, GENTERM-RND?2 first generates a
unifier and, out of that, the termpair, in order to support an aimed production of clashes, cycles
and so on,

3.2.1 GENTERM-RND1

GENTERM-RNDI1 is a function which generates a term pair depending on several input
arguments. These input parameters are optional. If they are not specified GENTERM-RND1
starts with some default values. We will now describe the input arguments and their influence on
the construction of the term pair:

Input: VAR-PROB (optional) nonnegative integer < 100
(probability for placing a variable instead of a
function symbol)

Default value: 145
MAX-DEPTH (optional) nonnegative integer

(maximum depth o f terms)

Default value: 5
CLASH-PROB (optional) nonnegative integer < 100

(probability of producing a clash)
Default value: 30

SIGNATURE (optional) list containing elements of the form (F N M),
whereF is a function symbol, N is a nonnegative
integer specifying the arity of F, and M is a
nonnegative integer, specifying the relative
frequency of F in relation to other function

18

R. Scheidhauer & G. Seul: TENUA - A Test Environment for Unification Algorithms

3.2 Generators for Random Terms

First of all it must be said, that we did not want to consider the problem of generating a random
termpair under the strict conditions of probability theory, but from a more practical viewpoint.
The user should have the possibility to test the correctness and efficiency of unification
algorithms by 'natural’ terms, say terms that are not of extreme breadth or depth. The problem is
not trivial, because generating both terms one after the other would lead to an extremely high
quota of nonunifiable terms.
TENUA provides two generators for random term pairs: GENTERM-RND1 (see chapter 3.2.1)
and GENTERM-RND?2 (see chapter 3.2.2). They have only optional parameters (to adjust
maximum termdepth, probability of clashes, etc.) and return a list of two terms in list
representation. While GENTERM-RNDI1 allows the user to specify a signature of function
symbols and then constructs the two terms in parallel, GENTERM-RND?2 first generates a
unifier and, out of that, the termpair, in order to support an aimed production of clashes, cycles
and so on,

3.2.1 GENTERM-RND1

GENTERM-RNDI1 is a function which generates a term pair depending on several input
arguments. These input parameters are optional. If they are not specified GENTERM-RND1
starts with some default values. We will now describe the input arguments and their influence on
the construction of the term pair:

Input: VAR-PROB (optional) nonnegative integer < 100
(probability for placing a variable instead of a
function symbol)

Default value: 145
MAX-DEPTH (optional) nonnegative integer

(maximum depth o f terms)

Default value: 5
CLASH-PROB (optional) nonnegative integer < 100

(probability of producing a clash)
Default value: 30

SIGNATURE (optional) list containing elements of the form (F N M),
whereF is a function symbol, N is a nonnegative
integer specifying the arity of F, and M is a
nonnegative integer, specifying the relative
frequency of F in relation to other function

18

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

symbols iin SIGNATURE.
(signature of used function symbols; by specifying
SIGNATURE the user can model his own
practical conditions)

Default value: (A090) (F 1 20) (G 2 40) (H 3 20) (14 5)
(R 5 3) (P 62) (S 10 1))
Here, for instance, the functors G and H have
arity 2 respectively 3 but the the probability to be
chosen is twice as high for G as for H.

Value: A list of two terms in list representation.

The construction of the term pair can be divided into three steps:
1) Parallel construction of a scheme of the two terms, but al l function symbols (inclusded

constants) are placed, but variables are not inserted yet, only their positions are marked.
2) Insertion of variables into the term schemes.
3) With probability VAR-PROBa clash-symbol is built in.
We will now describe the three steps seperately:
Step]: Construction of the scheme for both terms

Both term structures are constructed in parallel, such that no direct clashes (also called
structure clashes occur. The process can be outlined by the following algorithm:

TERMPAIR-STRUCTURE (MAX-DEPTH, SIGNATURE, VAR-PROB)
IF MAX-DEPTH=1
THEN return (VARMARK VARMARK)
ELSIF RANDOM(100)SVAR-PROB
THEN return (VARMARK TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))
ELSE choose a function symbol F from SIGNATURE;

return F(TERMPAIR-STRUCTURE (MAX-DEPTH -1, SIGNATURE,
VAR-PROB),...,
TERMPAIR-STRUCTURE (MAX-DEPTH -1,
SIGNATURE, VAR-PROB))

where RANDOM(n) is a random number generator with range 1...n-1 VARMARK
marks a position where a variable will be inserted (see Step2), and TERM-STRUCTURE
is defined as follows:
TERM-STRUCTURE (MAX-DEPTH, SIGNATURE)
IF MAX-DEPTH=1
THEN return VARMARK

19

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

symbols iin SIGNATURE.
(signature of used function symbols; by specifying
SIGNATURE the user can model his own
practical conditions)

Default value: (A090) (F 1 20) (G 2 40) (H 3 20) (14 5)
(R 5 3) (P 62) (S 10 1))
Here, for instance, the functors G and H have
arity 2 respectively 3 but the the probability to be
chosen is twice as high for G as for H.

Value: A list of two terms in list representation.

The construction of the term pair can be divided into three steps:
1) Parallel construction of a scheme of the two terms, but al l function symbols (inclusded

constants) are placed, but variables are not inserted yet, only their positions are marked.
2) Insertion of variables into the term schemes.
3) With probability VAR-PROBa clash-symbol is built in.
We will now describe the three steps seperately:
Step]: Construction of the scheme for both terms

Both term structures are constructed in parallel, such that no direct clashes (also called
structure clashes occur. The process can be outlined by the following algorithm:

TERMPAIR-STRUCTURE (MAX-DEPTH, SIGNATURE, VAR-PROB)
IF MAX-DEPTH=1
THEN return (VARMARK VARMARK)
ELSIF RANDOM(100)SVAR-PROB
THEN return (VARMARK TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))
ELSE choose a function symbol F from SIGNATURE;

return F(TERMPAIR-STRUCTURE (MAX-DEPTH -1, SIGNATURE,
VAR-PROB),...,
TERMPAIR-STRUCTURE (MAX-DEPTH -1,
SIGNATURE, VAR-PROB))

where RANDOM(n) is a random number generator with range 1...n-1 VARMARK
marks a position where a variable will be inserted (see Step2), and TERM-STRUCTURE
is defined as follows:
TERM-STRUCTURE (MAX-DEPTH, SIGNATURE)
IF MAX-DEPTH=1
THEN return VARMARK

19

R. Scheidhauer& G. Seul: TENUA — A Test Environment for Unification Algorithms

ELSE choose a function symbol F from SIGNATURE;
return F (TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE),...

...,TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))

Step2: Insertion of variablesinto the term schemes
Let N be the number of variablesin both term schemes. We define the set of variables
VARS as {x,, X,,...,Xy}. Now for every marked position a variableis randomly chosen
from VARS and inserted into that position. It may happen that the same variable occurs
more than once, so that indirect clashes are possible.

Step3: Insertion of clashes
In step3 a clash-symbol is built into the termpair (resulting from stepl and step2) with
probability CLASH-PROB. For that purpose a node is choosen from both terms. If a
leave is choosen, i t is marked with the symbol B0O815 else if an inner node is chosen it is
marked with symbol T4711. This procedure doesn't guarantee a clash since the
corresponding node may be a variable.

To simplify the specification of a signature TENUA provides some default signatures, which are
bound to the following LISP constants:
MONOID = (M 2 20) (E 0 10))
GRUPPE = ((M 2 20) (E 0 10) (I 1 20))
RING= ((M 2 20) (P 2 20) (E1 0 10) (E20 10) (I1 20))
KOERPER= (M220) (P 2 20) (E1010) (E2010) (11120) (12 1 20)
Possible calls of GENTERM-RND1 would be:
(GENTERM-RND1) (maintenance of all default values) or
(GENTERM-RND1 45 6 20 GRUPPE) (term pairs of group will be generated with maximal

depth 6 and clash probability 20).

Conclusion:
It becomes clear that the term pair is constructed in view of a practical unification application and
less under the aspect of probability theory: the quota of unifiable terms is disproportionately
high, there are even term pairs which cannot be generated (for example multiple clashes),
GENTERM-RND1 therefore is not surjective. However in practice this may not be of high
interest.
On the other handin specifying SIGNATURE the user has thepossibility of modelling his own
practical conditions and can adjust term size, clash probability and variable occurrences
according to his requirements.

R. Scheidhaver& G. Seul: TENUA — A Test Environment for Unification Algorithms

ELSE choose a function symbol F from SIGNATURE;
return F (TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE),...

...,TERM-STRUCTURE (MAX-DEPTH -1, SIGNATURE))

Step2: Insertion of variablesinto the term schemes
Let N be the number of variablesin both term schemes. We define the set of variables
VARS as {x,, X,,...,Xy}. Now for every marked position a variableis randomly chosen
from VARS and inserted into that position. It may happen that the same variable occurs
more than once, so that indirect clashes are possible.

Step3: Insertion of clashes
In step3 a clash-symbol is built into the termpair (resulting from stepl and step2) with
probability CLASH-PROB. For that purpose a node is choosen from both terms. If a
leave is choosen, i t is marked with the symbol B0O815 else if an inner node is chosen it is
marked with symbol T4711. This procedure doesn't guarantee a clash since the
corresponding node may be a variable.

To simplify the specification of a signature TENUA provides some default signatures, which are
bound to the following LISP constants:
MONOID = (M 2 20) (E 0 10))
GRUPPE = ((M 2 20) (E 0 10) (I 1 20))
RING= ((M 2 20) (P 2 20) (E1 0 10) (E20 10) (I1 20))
KOERPER= (M220) (P 2 20) (E1010) (E2010) (11120) (12 1 20)
Possible calls of GENTERM-RND1 would be:
(GENTERM-RND1) (maintenance of all default values) or
(GENTERM-RND1 45 6 20 GRUPPE) (term pairs of group will be generated with maximal

depth 6 and clash probability 20).

Conclusion:
It becomes clear that the term pair is constructed in view of a practical unification application and
less under the aspect of probability theory: the quota of unifiable terms is disproportionately
high, there are even term pairs which cannot be generated (for example multiple clashes),
GENTERM-RND1 therefore is not surjective. However in practice this may not be of high
interest.
On the other handin specifying SIGNATURE the user has thepossibility of modelling his own
practical conditions and can adjust term size, clash probability and variable occurrences
according to his requirements.

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

3.2.2 GENTERM-RND2

GENTERM-RND2, like GENTERM-RNDY], is a function that generates a random term pair
depending on several optional input arguments. Unlike GENTERM-RNDI1 the terms are not
immediately constructed. Instead their construction is guided by a substitution that has been
generated before. By appropriate manipulations of the substitution a specific generation of
clashes, cycles etc. i s possible. We will describe the different optional parameters and their
influence on the construction of the term pair:
Input: (all input parameters are optional)

VARLIST List of variables from which the variables in the term pair
are taken.

Default value: XYZ)

UNI-PROB nonnegativeinteger < 100;
probability for producing a unifiable termpair

Default value: 50
DCL-PROB nonnegative integer < 100;

probability for producing a direct clash (‘structure clash’)
Default value: 15

ICL-PROB nonnegative integer < 100;
probability for producing an indirect clash

Default value: 5

CYC-PROB nonnegative integer < 100;
probability for producing a cycle

Default value: 14

CYC-DCL-PROB nonnegative integer < 100;
probability for producing a pair containing a direct clash
and a cycle

Default value: 4

D/ICL-PROB nonnegative integer < 100;
probability for producing a direct and an indirect clash

Default value: 4

21

R. Scheidhaver & G. Seul: TENUA — A Test Environment for Unification Algorithms

3.2.2 GENTERM-RND2

GENTERM-RND2, like GENTERM-RNDY], is a function that generates a random term pair
depending on several optional input arguments. Unlike GENTERM-RNDI1 the terms are not
immediately constructed. Instead their construction is guided by a substitution that has been
generated before. By appropriate manipulations of the substitution a specific generation of
clashes, cycles etc. i s possible. We will describe the different optional parameters and their
influence on the construction of the term pair:
Input: (all input parameters are optional)

VARLIST List of variables from which the variables in the term pair
are taken.

Default value: XYZ)

UNI-PROB nonnegativeinteger < 100;
probability for producing a unifiable termpair

Default value: 50
DCL-PROB nonnegative integer < 100;

probability for producing a direct clash (‘structure clash’)
Default value: 15

ICL-PROB nonnegative integer < 100;
probability for producing an indirect clash

Default value: 5

CYC-PROB nonnegative integer < 100;
probability for producing a cycle

Default value: 14

CYC-DCL-PROB nonnegative integer < 100;
probability for producing a pair containing a direct clash
and a cycle

Default value: 4

D/ICL-PROB nonnegative integer < 100;
probability for producing a direct and an indirect clash

Default value: 4

21

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

CYC-ICL-PROB nonnegative integer < 100;
probability for producing a pair containing an indirect clash
and a cycle

Default value: 4

CYC-D/ICL-PROB nonnegative integer < 100;
probability for producing a termpair containing an indirect
clash, a direct clash and a cycle

Default value:

Restriction:

Exception:

4

UNI-PROB + DCL-PROB + ICL-PROB +
CYC-PROB + CYC-DCL-PROB + D/ICL-PROB
+ CYC-ICL-PROB + CYC-D/ICL-PROB
= 100
If starting from a certain parameter all following
parameters are equal to 0, they need not be
specified.

MAX-DEPTH-TERMSTRUCTURE nonnegative integer;

Default value:

MAX-DEPTH-UNI

Default value:

SMALL-TERM-PROB

Default value:

CONST-PROB

Default value:

CLASH-SYM-PROB

maximum depth of the term structure into which
the unifier is built
8

nonnegative integer;
max imumdepth of the terms in the unifier
4

nonnegative integer < 100;
probability for stopping the construction of a term
(see stepl)
70

nonnegative integer < 100;
probability for placing a constant instead of a
variable
40

nonnegative integer < 100;
probability for substituting function symbols by a

22

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

CYC-ICL-PROB nonnegative integer < 100;
probability for producing a pair containing an indirect clash
and a cycle

Default value: 4

CYC-D/ICL-PROB nonnegative integer < 100;
probability for producing a termpair containing an indirect
clash, a direct clash and a cycle

Default value:

Restriction:

Exception:

4

UNI-PROB + DCL-PROB + ICL-PROB +
CYC-PROB + CYC-DCL-PROB + D/ICL-PROB
+ CYC-ICL-PROB + CYC-D/ICL-PROB
= 100
If starting from a certain parameter all following
parameters are equal to 0, they need not be
specified.

MAX-DEPTH-TERMSTRUCTURE nonnegative integer;

Default value:

MAX-DEPTH-UNI

Default value:

SMALL-TERM-PROB

Default value:

CONST-PROB

Default value:

CLASH-SYM-PROB

maximum depth of the term structure into which
the unifier is built
8

nonnegative integer;
max imumdepth of the terms in the unifier
4

nonnegative integer < 100;
probability for stopping the construction of a term
(see stepl)
70

nonnegative integer < 100;
probability for placing a constant instead of a
variable
40

nonnegative integer < 100;
probability for substituting function symbols by a

22

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

clash symbol, supposed a direct clash is to be
produced.

GENTERM-RND2 works with a fixed signature of function symbols: A (constant or 0-ary
function symbol),F1 (1-ary function symbol), F2 (2-ary function symbol), and so on. The
clash symbols are analogously named by B , G1, G2....
The construction of the pair can be divided into 4 steps:
1) Constrution of the unifier .

2) Construction of a pair of identical term schemes
3) A direct clash is built into both term structures with probability DCL-PROB
4) Insertion of the unifier into the leaves of both term structures
We will now discuss the different steps in more detail:
Step1: Construction of the unifier

Constructing a unifier means that every variable of VARLIST must be bound tto a term. It
may happen that several variables are bound to the same term. Therefore VARLIST first
is first partitioned, such that all variables of the same subset are bound to the same term.
The terms corresponding to the different subsets are generated by the following method:
a) First the basic term structure is generated:
Starting with a root as actual node, it is decided at every step if a new leave is added to the
actual node (probability 100 - SMALL-TERM-PROB), or if the father becomes the new
actual node (probability SMALL-TERM-PROB). The process stops if the father of the
root is demanded. Moreover it must be guaranteed that the term structure is not deeper
than MAX-DEPTH-UNI.
b) Now the term structure generated in a) is labeled in the following way:
Inner nodes are labeled with the corresponding function symbol and leaves are marked
either with a constant symbol (probability CONST-PROB), or with a variable symbol
(probability 100 - CONST-PROB).

Before the unifier is constructed it must be decided what kind of term pair (unifiable,
cycle...) shall be generated, because this will influence the construction of the unifier.
If two unifiable terms are to be generated (probability UNI-PROB), cycles must be
excluded. Therefore a term corresponding to a certain variable subset must contain only
variables belonging to the subsequent subsets (Occur-Check).
In case a cycle is to be (probability CYC-PROB) the restriction on variables is canceled,
moreover the number of subsets is reduced and the probability that variables are created
instead of constants is increased. This guarantees a cycle quota of about 98%.
Nevertheless even if CYC-PROB is 100 a termpair may arise which does not contain
cycles.
If an indirect clash is to be produced (probability ICL-PROB), first the unifier is

23

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

clash symbol, supposed a direct clash is to be
produced.

GENTERM-RND2 works with a fixed signature of function symbols: A (constant or 0-ary
function symbol), F1 (1-ary function symbol), F2 (2-ary function symbol), and so on. The
clash symbols are analogously named by B, G1, G2....
The construction of the pair can be divided into 4 steps:
1) Constrution of the unifier
2) Construction of a pair of identical term schemes
3) A direct clashi s builtinto both term structures with probability DCL-PROB
4) Insertion of the unifier into the leaves of both term structures
We will now discuss the different steps in more detail:
Step1: Construction of the unifier

Constructing a unifier means that every variable of VARLIST must be bound ıto aterm. It
may happen that several variables are bound to the same term. Therefore VARLIST first
is first partitioned, such that all variables of the same subset are bound to the same term.
The terms corresponding to the different subsets are generated by the following method:
a) First the basic term structure is generated:
Starting with a root as actual node, it is decided at every stepif a new leave is added to the
actual node (probability 100 - SMALL-TERM-PROB), or if the father becomes the new
actual node (probability SMALL-TERM-PROB). The process stops if the father of the
root is demanded. Moreover it must be guaranteed that the term structure is not deeper
than MAX-DEPTH-UNL
b) Now the term structure generated in a) is labeled in the following way:
Inner nodes are labeled with the corresponding function symbol and leaves are marked
either with a constant symbol (probability CONST-PROB), or with a variable symbol
(probability 100 - CONST-PROB).

Before the unifier is constructed it must be decided what kind of term pair (unifiable,
cycle...) shall be generated, because this will influence the construction of the unifier.
If two unifiable terms are to be generated (probability UNI-PROB), cycles must be
excluded. Therefore a term corresponding to a certain variable subset must contain only
variables belonging to the subsequent subsets (Occur-Check).
In case a cycle is to be (probability CYC-PROB) the restriction on variables is canceled,
moreover the number of subsets is reduced and the probability that variables are created
instead of constants is increased. This guarantees a cycle quota of about 98%.
Nevertheless even if CYC-PROB is 100 a termpair may arise which does not contain
cycles.
If an indirect clash is to be produced (probability ICL-PROB), first the unifier is

23

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

constructed analogously to the unifiable case. Then it is enlarged by multiple bindings of
some variables. The terms belonging to these additional bindings may contain clash
symbols.
In case of a mix of a cycle and an indirect clash the unifier is constructed as in the cycle
case, but subsequently enlarged by additional variable bindings.
Direct clashes are inserted later (see step3).
One may ask why some features are produced in a rather complicated way (for example
cycles). This was necessary because we wanted to ensure that any possible term pair can
be produced by GENTERM-RND?2 (surjectivity).

Step2: Construction of a pair of identical term schemes
The task is to generate a term scheme, i.e. a term with unlabeled leaves, and then to copy
it. The term scheme is constructed analogously to step1, including the following points:
- The term structure must not be deeper than MAX-DEPTH-TERMSTRUCTURE.
- The number of (unmarked) leaves corresponds to the number of variable bindings of the

unifier (including multiple bindings), such that every leave corresponds to a pair
consisting of a variable and a term.

This is guaranteed by a new stop criterion:
Stop the construction if the required number of leaves is reached.

Step3: Eventually direct clash symbols are built in:
If a direct clash, the union of a direct clash and a cycle, an indirect clash is to be
produced, in steplthe unifier is constructed without considering the direct clash.
If for instance a direct clash and a cycle are required, the unifier is constructed as in the
cycle case. Then step2 is performed and only (in step3) clash symbols are built into the
second term structure, substituting every label by the corresponding clash symbol with
probability CLASH-SYM-PROB.

Step4: Insertion of the unifier into the leaves of both term structures
As mentioned above, every pair of corresponding leaves of the two identical
termstructures of step2 belongs to a pair of the form (variable term). The leaves are
labeled in the following way: Given such pair of leaves and its corresponding (VAR
TERM) either the leave in the first term structure or that in the second one is labeled with

- VAR. The remaining unmarked leave is either labeled with TERM, or with a variable
belonging to the same subset as VAR. However every term, bound to a subset of
variables, must occur at least once. In this way indirect variable bindings are possible.

‘Possible calls of GENTERM-RND? are:

(GENTERM-RND2) (default values for all arguments)
(GENTERM-RND2 '(X Y Z) 100)) (a unifiable pair of terms is produced)
(GENTERM-RND2'(X YZ) 0000 100) (a pair containing a clash and a cycle is

produced).

24

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

constructed analogously to the unifiable case. Then it isenlarged by multiple bindings of
some variables. The terms belonging to these additional bindings may contain clash
symbols.
In case of a mix of a cycle and an indirect clash the unifier is constructed as in the cycle
case, but subsequently enlarged by additional variable bindings.
Direct clashes are inserted later (see step3).
One may ask why some features are produced in a rather complicated way (for example
cycles). This was necessary because we wanted to ensure that any possible term pair can
be produced by GENTERM-RND?2 (surjectivity).

Step2: Construction of a pair of identical term schemes
The task is to generate a term scheme, i.e. a term with unlabeled leaves, and then to copy
it. The term scheme is constructed analogously to step1, including the following points:
- The term structure must not be deeper than MAX-DEPTH-TERMSTRUCTURE.
- The number of (unmarked) leaves corresponds to the number of variable bindings of the

unifier (including multiple bindings), such that every leave corresponds to a pair
consisting of a variable and a term.

This is guaranteed by a new stop criterion:
Stop the construction if the required number of leaves is reached.

Step3: Eventually direct clash symbols are built in:
If a direct clash, the union of a direct clash and a cycle, an indirect clash is to be
produced, in steplthe unifier is constructed without considering the direct clash.
If for instance a direct clash and a cycle are required, the unifier is constructed as in the
cycle case. Then step2 is performed and only (in step3) clash symbols are built into the
second term structure, substituting every label by the corresponding clash symbol with
probability CLASH-SYM-PROB.

Step4: Insertion of the unifier into the leaves of both term structures
As mentioned above, every pair of corresponding leaves of the two identical
termstructures of step2 belongs to a pair of the form (variable term). The leaves are
labeled in the following way: Given such pair of leaves and its corresponding (VAR
TERM) either the leave in the first term structure or that in the second one is labeled with

- VAR. The remaining unmarked leave is either labeled with TERM, or with a variable
belonging to the same subset as VAR. However every term, bound to a subset of
variables, must occur at least once. In this way indirect variable bindings are possible.

‘Possible calls of GENTERM-RND? are:

(GENTERM-RND2) (default values for all arguments)
(GENTERM-RND2 '(X Y Z) 100)) (a unifiable pair of terms is produced)
(GENTERM-RND2'(X YZ) 0000 100) (a pair containing a clash and a cycle is

produced).

24

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Conclusion:
Like GENTERM-RND1, GENTERM-RND?2 is designed to meet practical requirements. Its
precise production of clashes, cycles etc. makes a thorough analysis of unification algorithms
possible. Le. one can determine the time complexity of detecting cycles or find out what is
detected first by different algorithms, an indirect clash or a cycle. It i s helpful that the
performance in the different cases can be tested seperately. In addition to this see also chapter 4
on statistical functions, which allow a comfortable handling with a great numbersof examples.
Another advantage of GENTERM-RND?2 is its surjectivity: every possible termpair can be
generated. The user can even manipulate the probability of certain classes of terms.

4. Facilities for Testing Correctness and Efficiency
of Unification Algorithms

4.1 Facilities for Testing Correctness of Unification Algorithms

Before the efficiency of a newly implemented unification algorithm is measured, its correctness
must be checked. For this purpose TENUA provides a function CORRECTNESS, that
performsa test on equivalence of mgu's:
Input: TERM-PAIR list of two terms in list representation

UNIFY-ALGO function, which gets a term pair inlist representation and returns
CLASH, CYCLE or an explicit unifier of the input terms
represented as assoc-list

Value: T if the given term pair is unifiable and UNIFY-ALGO returns an
mgu of it, or if the term pair is not unifiable and UNIFY-ALGO
returns CLASH or CYCLE

<error message> otherwise
Example: The call (CORRECTNESS (GENTERM-RND2 (X Y Z) 100) 'NEW-UNIFY)

causes NEW-UNIFY to be applied to a unifiable term pair generated by
GENTERM-RND2, and it is checked if the result is a most general unifier.

You can perform a great number of tests by using the function DOTIMES .
Example: (DOTIMES (K 100) (CORRECTNESS (GENTERM-RND2 'X Y Z) 100)

'NEW-UNIFY)
repeats the above test 100 times. Notice, that DOTIMES return NIL. Your
algorithm is wrong, if error messages occur!

25

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Conclusion:
Like GENTERM-RND1, GENTERM-RND?2 is designed to meet practical requirements. Its
precise production of clashes, cycles etc. makes a thorough analysis of unification algorithms
possible. Le. one can determine the time complexity of detecting cycles or find out what is
detected first by different algorithms, an indirect clash or a cycle. It i s helpful that the
performance in the different cases can be tested seperately. In addition to this see also chapter 4
on statistical functions, which allow a comfortable handling with a great numbersof examples.
Another advantage of GENTERM-RND?2 is its surjectivity: every possible termpair can be
generated. The user can even manipulate the probability of certain classes of terms.

4. Facilities for Testing Correctness and Efficiency
of Unification Algorithms

4.1 Facilities for Testing Correctness of Unification Algorithms

Before the efficiency of a newly implemented unification algorithm is measured, its correctness
must be checked. For this purpose TENUA provides a function CORRECTNESS, that
performsa test on equivalence of mgu's:
Input: TERM-PAIR list of two terms in list representation

UNIFY-ALGO function, which gets a term pair inlist representation and returns
CLASH, CYCLE or an explicit unifier of the input terms
represented as assoc-list

Value: T if the given term pair is unifiable and UNIFY-ALGO returns an
mgu of it, or if the term pair is not unifiable and UNIFY-ALGO
returns CLASH or CYCLE

<error message> otherwise
Example: The call (CORRECTNESS (GENTERM-RND2 (X Y Z) 100) 'NEW-UNIFY)

causes NEW-UNIFY to be applied to a unifiable term pair generated by
GENTERM-RND2, and it is checked if the result is a most general unifier.

You can perform a great number of tests by using the function DOTIMES .
Example: (DOTIMES (K 100) (CORRECTNESS (GENTERM-RND2 'X Y Z) 100)

'NEW-UNIFY)
repeats the above test 100 times. Notice, that DOTIMES return NIL. Your
algorithm is wrong, if error messages occur!

25

R. Scheidhauer& G. Seul: TENUA — A Test Environment for Unification Algorithms

4.2 Facilities for Testing Efficiency of Unification Algorithms

Most people working with unification algorithms are interested in their time comlexity. Either
they want to measure the runtime of a special algorithm for some kinds of terms, or they want to
compare different algorithms with regard to some application. Often i t is also useful to find out,
how some unification algorithms work: whether it detects first clashes or cycles?....To make the
answers to these questions easier, TENUA provides statistical functions that use the term
generators discussed in chapter 3. We think they constitute the most important part of TENUA.
There are two kinds of statistical functions:
- statistical functioms using the standard term generators (see 4.1.1)
- statistical functions using the random term generators (see 4.1.2).

4.2.1 Efficiency Test Using Standard Terms

You can test the performance of unification algorithms on standard terms in TENUA using the
function STATISTIC-GENTERM-STD. I t allows a comfortable work with the standard term
generators discussed in chapter 3, and so an analysis of time complexity at systematically
varying terms. STATISTIC-GENTERM-STD has the following input/output specification:
Input: TERMGEN one of the standard term generators GENTERM-STD1-8

FROM nonnegative integer
TO nonnegative integer
STEP nonnegative integer
FUN (key) list, containing the names of unification functions (for example

ROB, EG,MM)
FOREIGN-FUN (key) list, containing the names of unification functions, which

are to be measured without considering the time used for term and
unifier conversion. For this reason the pure unification function
must be enclosed by the function STATISTIC-TIME.
Example: (DEFUN USER-UNIFY-HELP (Term1 Term2)

(LET*
((T1 (CONVERT-TERM Term1))
(T2 (CONVERT-TERM Term?2))
(HELP (STATISTIC-TIME(USER-UNIFYTI1T2)))
(LIST (FIRST HELP) |

(CONVERT-SUBST (SECOND HELP)))))

OUTFILE (key) string, specifying the name of a file

26

R. Scheidhauer& G. Seul: TENUA — A Test Environment for Unification Algorithms

4.2 Facilities for Testing Efficiency of Unification Algorithms

Most people working with unification algorithms are interested in their time comlexity. Either
they want to measure the runtime of a special algorithm for some kinds of terms, or they want to
compare different algorithms with regard to some application. Often it is also useful to find out,
how some unification algorithms work: whether it detects first clashes or cycles?....To make the
answers to these questions easier, TENUA provides statistical functions that use the term
generators discussed in chapter 3. We think they constitute the most important part of TENUA.
There are two kinds of statistical functions:
- statistical functioms using the standard term generators (see 4.1.1)
- statistical functions using the random term generators (see 4.1.2).

4.2.1 Efficiency Test Using Standard Terms

You can test the performance of unification algorithms on standard terms in TENUA using the
function STATISTIC-GENTERM-STD. I t allows a comfortable work with the standard term
generators discussed in chapter 3, and so an analysis of time complexity at systematically
varying terms. STATISTIC-GENTERM-STD has the following input/output specification:
Input: TERMGEN one of the standard term generators GENTERM-STD1-8

FROM nonnegative integer
TO nonnegative integer
STEP nonnegative integer
FUN (key) list, containing the names of unification functions (for example

ROB, EG,MM)
FOREIGN-FUN (key) list, containing the names of unification functions, which

are to be measured without considering the time used for term and
unifier conversion. For this reason the pure unification function
must be enclosed by the function STATISTIC-TIME.
Example: (DEFUN USER-UNIFY-HELP (Term1 Term2)

(LET*
((T1 (CONVERT-TERM Term1))
(T2 (CONVERT-TERM Term?2))
(HELP (STATISTIC-TIME(USER-UNIFYTI1T2)))
(LIST (FIRST HELP) |

(CONVERT-SUBST (SECOND HELP)))))

OUTFILE (key) string, specifying the name of a file

26

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Value: .. The unification functions specified in FUN and FOREIGN-FUN are applied to the
term pairs that arise from TERMGEN. TERMGEN starts with input argument
FROM and stops with TO making stepsof width STEP. At every step the runtime of

~ the different unification functions is measured; the functions specified in
FOREIGN-FUN without considering input/output conversion. The results are
displayed on screen in table form or, if OUTFILE was specified, are additionally

written there.
Example:
1) The call (STATISTIC-GENTERM-STD 'GENTERM-STD6 1 10 1

{FUN (ROB EG-HASH)
:FOREIGN-FUN '(MM-OHNE-KONVERT)
:OUTFILE "TEST")

performs the unification functions ROB, EG-HASH and MM-OHNE-KONVERT (MM without
input/output conversion) on GENTERM-STD6 and writes the following results on screen and
on file TEST:

Number of tests: 10
Start Value: 1
Stop Value: 10
Step Width: 1

N ROB | EG-HASH MM-OHNE-KONVERT

1 0.0035 0.0137 0.0068

2 0.0069 0.0228 0.0152

3 0.0192 0.0256 0.0201

4 0.0343 0.0341 0.0257

5 0.0734 0.0371 0.0341

6 0.1477 0.0460 0.0461

7 0.2929 0.0522 0.0460

8 0.5937 0.0629 0.0549

9 1.1882 0.0638 0.0610

10 2.5781 0.0690 0.0713

This example illustrates the exponential time complexity of the Robinson algorithm in contrast to

27

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

Value: .. The unification functions specified in FUN and FOREIGN-FUN are applied to the
term pairs that arise from TERMGEN. TERMGEN starts with input argument
FROM and stops with TO making stepsof width STEP. At every step the runtime of

~ the different unification functions is measured; the functions specified in
FOREIGN-FUN without considering input/output conversion. The results are
displayed on screen in table form or, if OUTFILE was specified, are additionally

written there.
Example:
1) The call (STATISTIC-GENTERM-STD 'GENTERM-STD6 1 10 1

{FUN (ROB EG-HASH)
:FOREIGN-FUN '(MM-OHNE-KONVERT)
:OUTFILE "TEST")

performs the unification functions ROB, EG-HASH and MM-OHNE-KONVERT (MM without
input/output conversion) on GENTERM-STD6 and writes the following results on screen and
on file TEST:

Number of tests: 10
Start Value: 1
Stop Value: 10
Step Width: 1

N ROB | EG-HASH MM-OHNE-KONVERT

1 0.0035 0.0137 0.0068

2 0.0069 0.0228 0.0152

3 0.0192 0.0256 0.0201

4 0.0343 0.0341 0.0257

5 0.0734 0.0371 0.0341

6 0.1477 0.0460 0.0461

7 0.2929 0.0522 0.0460

8 0.5937 0.0629 0.0549

9 1.1882 0.0638 0.0610

10 2.5781 0.0690 0.0713

This example illustrates the exponential time complexity of the Robinson algorithm in contrast to

27

R. Scheidhauer & G. Seul: TENUA -- A Test Environment for Unification Algorithms

the linear respective quasilinear time behaviour of the Escalada/Ghallab and the
Martelli/Montanari algorithm.
2) Suppose you want to analyze the time complexity of USER-UNIFY (see above) for growing
term breadth without measuring time for input/output conversion, the appropriate call is:
(STATISTIC-GENTERM-STD 'GENTERM-STD1 5 100 5

:FOREIGN-FUN 'USER-UNIFY-HELP).

4.2.2 Efficiency Test Using Random Terms

The function STATISTIC-GENTERM-RND allows a comfortable use of the random term
generators described in chapter 3. In this way the user has the possibility to analyze the
performance of unification algorithms under such conditions as: special classes of termpairs
(unifiable, clash, cycle...), different signatures and so on. STATISTIC-GENTERM-RND has
the following input/output specification:
Input: LOOP-NUM nonnegative integer

TERMGEN-CALL function call of GENTERM-RND1 or
GENTERM-RND2

FUN (key) list of unification functions
FOREIGN-FUN (key) l ist of unification functions which shall be

measured without input/output conversion
(see chapter 4.2.1)

PROTOKOLL (key) T(rue) or F(alse)
OUTFILE (key) string, specifying the name of a file

Yalue: TERMGEN-CALL is performed LOOP-NUM times and the different unification
functions stated in in FUN and FOREIGN-FUN are applied to every produced
term pair. If you want to record every generated term pair along with its unifier,
you must set PROTOKOLL to T(rue). Now the run times of every unification
function are divided into the classes UNIFIABLE, CLASH, CYCLE and some
statistical quantities are calculated. The results are printed on screen or, if
OUTFILE was specified, they are additionally written there.

Example: Suppose you want to analyze the behaviour of the Robinson and the
Escalada/Ghallab algorithm and you are especially interested in the question
what is detected first by which algorithm: an indirect clash or a cycle? Then an
appropriate call o f STATISTIC-GENTERM-RND is:
(STATISTIC-GENTERM-RND 100

'(GENTERM-RND2'(XY Z) 000000 100)
:FUN '(ROB EQG)).

TENUA prints the followingresults on screen:

28

R. Scheidhauer & G. Seul: TENUA -- A Test Environment for Unification Algorithms

the linear respective quasilinear time behaviour of the Escalada/Ghallab and the
Martelli/Montanari algorithm.
2) Suppose you want to analyze the time complexity of USER-UNIFY (see above) for growing
term breadth without measuring time for input/output conversion, the appropriate call is:
(STATISTIC-GENTERM-STD 'GENTERM-STD1 5 100 5

:FOREIGN-FUN 'USER-UNIFY-HELP).

4.2.2 Efficiency Test Using Random Terms

The function STATISTIC-GENTERM-RND allows a comfortable use of the random term
generators described in chapter 3. In this way the user has the possibility to analyze the
performance of unification algorithms under such conditions as: special classes of termpairs
(unifiable, clash, cycle...), different signatures and so on. STATISTIC-GENTERM-RND has
the following input/output specification:
Input: LOOP-NUM nonnegative integer

TERMGEN-CALL function call of GENTERM-RND1 or
GENTERM-RND2

FUN (key) list of unification functions
FOREIGN-FUN (key) l ist of unification functions which shall be

measured without input/output conversion
(see chapter 4.2.1)

PROTOKOLL (key) T(rue) or F(alse)
OUTFILE (key) string, specifying the name of a file

Yalue: TERMGEN-CALL is performed LOOP-NUM times and the different unification
functions stated in in FUN and FOREIGN-FUN are applied to every produced
term pair. If you want to record every generated term pair along with its unifier,
you must set PROTOKOLL to T(rue). Now the run times of every unification
function are divided into the classes UNIFIABLE, CLASH, CYCLE and some
statistical quantities are calculated. The results are printed on screen or, if
OUTFILE was specified, they are additionally written there.

Example: Suppose you want to analyze the behaviour of the Robinson and the
Escalada/Ghallab algorithm and you are especially interested in the question
what is detected first by which algorithm: an indirect clash or a cycle? Then an
appropriate call o f STATISTIC-GENTERM-RND is:
(STATISTIC-GENTERM-RND 100

'(GENTERM-RND2'(XY Z) 000000 100)
:FUN '(ROB EQG)).

TENUA prints the followingresults on screen:

28

R. Scheidhauer & G. Seul: TENUA — A Test Environment for Unification Algorithms

TENUA prints the following results on screen:

Number of generated Termpairs: 100
Average Length of Terms: 11.43
Standard Deviation: 3.10
Maximum Length: 35
Minimum Length: 5

Function Number Time Time/Number

ROB absolut relative absolut relative

CLASH 3 3.0% 0.024 4.1% 0.0081

CYCLE 97 97.0% 0.573 95.9% 0.0059

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.597 100.0% 0.0060

Function Number Time Time/Number

EG absolut relative absolut relative

CLASH 88 88.0% 0.451 80.6% 0.0051

CYCLE 12 12.0% 0.108 19.4% 0.0090

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.559 100.0% 0.0056

Now it is easy to reach the following conclusion: Given a mix of cycle and indirect
clash the Robinson algorithm normally detects the cycle first, while the
Escalada/Ghallab algorithm usually finds the clash.

5. Conclusion

29

A test environment for unification algorithms has been presented. Providing input/output
interface, some well known implemented unification algorithms, generators for random and
parameterized term pairs, and finally statistical functions, i t turns out to be a useful tool for the
implementation as well as for the analysis of unification algorithms. Especially the possibility to
compare the time complexity of different algorithms with regard to certain classes of termpairs is
of practical interest. With the implemented unification functions we made the following
experiences (see appendix): Although its worst case complexity is exponential the Robinson

R. Scheidhaver & G. Seul: TENUA — A Test Environment for Unification Algorithms

TENUA prints the following results on screen:

Number of generated Termpairs: 100
Average Length of Terms: 11.43
Standard Deviation: 3.10
Maximum Length: 35
Minimum Length: 5

Function Number Time Time/Number

ROB absolut relative absolut relative

CLASH 3 3.0% 0.024 4.1% 0.0081

CYCLE 97 97.0% 0.573 95.9% 0.0059

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.597 100.0% 0.0060

Function Number Time Time/Number

EG absolut relative absolut relative

CLASH 88 88.0% 0.451 80.6% 0.0051

CYCLE 12 12.0% 0.108 19.4% 0.0090

UNIFIABLE 0 0.0% 0.0 0.0% 0.0

zZ 100 100.0% 0.559 100.0% 0.0056

Now it is easy to reach the following conclusion: Given a mix of cycle and indirect
clash the Robinson algorithm normally detects the cycle first, while the
Escalada/Ghallab algorithm usually finds the clash.

5. Conclusion

29

A test environment for unification algorithms has been presented. Providing input/output
interface, some well known implemented unification algorithms, generators for random and
parameterized term pairs, and finally statistical functions, i t turns out to be a useful tool for the
implementation as well as for the analysis of unification algorithms. Especially the possibility to
compare the time complexity of different algorithms with regard to certain classes of termpairs is
of practical interest. With the implemented unification functions we made the following
experiences (see appendix): Although its worst case complexity is exponential the Robinson

R. Scheidhauer& G. Seul: TENUA — A Test Environment for Unification Algorithms

algorithm (ROB) has excellent performances; especially for small terms. The Martelli/Montanari
algorithm (MM) turned out to be the slowest of the implemented algorithms.This is caused by
complex data structures the initialization and management of which worsens significantly the
average performance for small terms. Especially the creation and initialization of the hash tables,
that represent the equivalence classes of variables, seems to be very expensive. This conjecture
was confirmed when omitting the time for input/output conversion (MM-OHNE-KONVERT).
Indeed the pure time, needed for unification by the Martelli/Montanari algorithm is highly
competitive. Thus it will be especially attractive for systems which already use an analogous
representation of terms. In contrast to this the Escalada/Ghallab algorithm (EG-HASH) involves
very simple data structures. This explains its outstanding performances for small terms while
keeping a almost linear worst case complexity. Substituting the hash table representation of
substitutions by association lists (EG) it will be as twice as quick, comparable to the Robinson
algorithm even for small terms, but, at the cost of a O(n?) complexity. We think that it is worth
to be tested in practice more frequently. As a final remark, we point out, that an extension of
TENUA to unification with equations might be possible by additionally implementing
appropriate unification algorithms and standard term generators. The statistical functions also
might be improved by using a graphical representation.

6. References

1. J. Corbin and M. Bidoit:
A Rehabilitaion of Robinson's Unification Algorithm, Information Processing, 1983.

2. G. Escalada and M. Ghallab:
A Practically Efficient and Almost Linear Unification Algorithm, Laboratoire d'Automatique
et d'Analyse des Systemes, Toulouse, 1987.

3. J.Herbrand:
Recherches sur la Theorie de la Demonstration, Thesis, Paris 1930

4. A. Martelli and U. Montanari:
An Efficient Unification Algorithm, Journal of the ACM, 1982.

5. M.S. Paterson and M.N. Wegman:
Linear Unification, Journal of Computer and System Sciences Vol.16, 1978.

6. J.A. Robinson:
A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM Vol.12,
1965.

7. J.A. Robinson:
Computational Logic - the Unification Computation, Machine Intelligence Vol.6, 1971

R. Scheidhaver & G. Seul: TENUA ~ A Test Environment for Unification Algorithms

algorithm (ROB) has excellent performances; especially for small terms. The Martelli/Montanari
algorithm (MM) turned out to be the slowest of the implemented algorithms.This is caused by
complex data structures the initialization and management of which worsens significantly the
average performance for small terms. Especially the creation and initialization of the hash tables,
that represent the equivalence classes of variables, seems to be very expensive. This conjecture
was confirmed when omitting the time for input/output conversion (MM-OHNE-KONVERT).
Indeed the pure time, needed for unification by the Martelli/Montanari algorithm is highly
competitive. Thus it will be especially attractive for systems which already use an analogous
representation of terms. In contrast to this the Escalada/Ghallab algorithm (EG-HASH) involves
very simple data structures. This explains its outstanding performances for small terms while
keeping a almost linear worst case complexity. Substituting the hash table representation of
substitutions by association lists (EG) it will be as twice as quick, comparable to the Robinson
algorithm even for small terms, but, at the cost of a O(n2) complexity. We think that it is worth
to be tested in practice more frequently. As a final remark, we point out, that an extension of
TENUA to unification with equations might be possible by additionally implementing
appropriate unification algorithms and standard term generators. The statistical functions also
might be improved by using a graphical representation.

6. References

1. J. Corbin and M. Bidoit:
A Rehabilitaion of Robinson's Unification Algorithm, Information Processing, 1983.

2. G. Escalada and M. Ghallab:
A Practically Efficient and Almost Linear Unification Algorithm, Laboratoire d'Automatique
et d'Analyse des Systemes, Toulouse, 1987.

3. J.Herbrand:
Recherches sur la Theorie de la Demonstration, Thesis, Paris 1930

4. A. Martelli and U. Montanari:
An Efficient Unification Algorithm, Journal of the ACM, 1982.

5. M.S. Paterson and M.N. Wegman:
Linear Unification, Journal of Computer and System Sciences Vol.16, 1978.

6. J.A. Robinson:
A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM Vol.12,
1965.

7 . I .A. Robinson:
Computational Logic - the Unification Computation, Machine Intelligence Vol.6, 1971

=
=

=

-
e

i
H

e
e

n
m

m
 t t t

t t e

g
m

mrn

]
1261" 1

!
0985 "0

!
v096°0

!
B2ZT6"1

!
ZEPO

TE
:

001
i

i
]

|
!

|
!

-
—

m

m
m

 m
m

m
 mmm mmS

E
E

e

e

gon —
—

—
—

—
—

a

t
|

S966°0
!

1095°0
|

6097270
!

9824" 1
!

£vO
Z"1

:
06

!
:

!
!

1
!

T
e

|

-
—

—
y-

E
t

Bei t d

go
m

n
 ee m

m
 i

n
t

!
O

VZB"0
|

1246E°0
!

ZIZ9"0
|

BEZE"T
!

8
9

2
° 1

:
08

2
[1

2

1
[]

[]

A
U

T
R

E

S————— —
—

—
—

—
 —

—

—
—

A

-
]

z099°0
1

8995" 0
!

1Z6Y°0
!

1001" 1
!

868670
!

04
3

[]
H

[]

’
4

in

S
E

S
A

A

E

E

—
 F

E
]

Z116°0
!

90Z£"0
!

810970
!

8710670
!

0
8

2
0

!

09
!

!
!

!
!

i
j e

m
m

|
e

m
E

e
M

a
a

E

E
E

E
l R

e
t

g
m

!
LEBE"0

!
S082°0

|
81820

!
S

IE
L"0

!
Z61S70

!
06

|
:

]
i

!
:

B
in

d

E
t t

e
d

m
—

—
—

—
—

—
—

—
 K

m

g o
m

mmmm

t
1692°0

;
6461°0

!
146170

!
9908" 0

|
06££"°0

:
oy

|
!

1
1

{
!

H
 R

S
D

 S
S

 SEER 000
W

i i G
G

 G
M

D em
a FU

P M
OM

 SED
 W

O
 SED

 EH
D

 G
M

Seen H

A

W

000 Sw

SUID S
IS

 SUES A
bt SUED SLED SAID G

04 TIO

0005 IN
R

 am
u —

H

 S
H

0000 Tov SEs G

m
b Sete 0000 00MM Shin G

m
sin

0

0

f rm
 em

m
y E

D
 w

=

H

—

S
E

E

t
G

AS G
R

E SLED S450 AD
E BANS D

EE S
e

i 0500 0000 S
he —

H

2009 900m Bosh M

ab A000 6005 0000 G
out BONS BUND 0042 vem

 TEED W
ER w

ie
e

w

H
 W

a
 am

as sate SPOS BOSE 0000 w
ise SENS S

se Soke asta 0000 0800 G
m

s e
a

s

1
198170

!
0S91"0

;
08Z170

;
969£"0

!
086170

:
o

f
§

 }
H

’

[]
I

J
—

RTES

U
N

N
S

U
S

S—

—
—

—
—

 E
S

i
v101°0

!
882070

!
602070

!
ZvO

Z"O

!
YE60°0

!
oz

[1

2
?

1
EH

4

1]
?

1
1

2
5

T
e

l l
T

a

f i
u u m

 anu a
m

r
e

e

K
m

g

m
]

£Zv0°0
!

6976070
!

£86070
1

S891"0
!

Z190"0
:

ot
!

|
!

:
}

!
!

:
i

}
i=

t=

=
=

=

——————————— gm —
—

—
—

—
—u

g
m

-=1
3 LY3AN

O
N

-3N
H

O
-H

W
!

H
SYH

-03
}

93
!

W
W

!

408
!

N

;
;

]
v

!
!

i
!

o
t

:
33TAM

IFTLYIG
001

: apu3
O

T
:

2
348M

}4P
35

O
01

:
8}+

N
at[]}S

al
Ja

p
 (ye

zu
y

H

1A
LS

-W
H

ILIN
D

O

2
J0

)P
IB

U
IN

-W
L

A
IP

L
E

p
U

E
L

S

1
H

S

I®
IIIW

U

B
U

O
T

IN
U

N
G

-S
U

O
T

IE
R

T
S

HTU
N

 U
O

C
A Y

yd
a

ta
ıb

a
a

l
!

=
=

=

-
e

i
H

e
e

n
m

m
 t t t

t t e

g
m

mrn

]
1261" 1

!
0985 "0

!
v096°0

!
B2ZT6"1

!
ZEPO

TE
:

001
i

i
]

|
!

|
!

-
—

m

m
m

 m
m

m
 mmm mmS

E
E

e

e

gon —
—

—
—

—
—

a

t
|

S966°0
!

1095°0
|

6097270
!

9824" 1
!

£vO
Z"1

:
06

!
:

!
!

1
!

T
e

|

-
—

—
y-

E
t

Bei t d

go
m

n
 ee m

m
 i

n
t

!
O

VZB"0
|

1246E°0
!

ZIZ9"0
|

BEZE"T
!

8
9

2
° 1

:
08

2
[1

2

1
[]

[]

A
U

T
R

E

S————— —
—

—
—

—
 —

—

—
—

A

-
]

z099°0
1

8995" 0
!

1Z6Y°0
!

1001" 1
!

868670
!

04
3

[]
H

[]

’
4

in

S
E

S
A

A

E

E

—
 F

E
]

Z116°0
!

90Z£"0
!

810970
!

8710670
!

0
8

2
0

!

09
!

!
!

!
!

i
j e

m
m

|
e

m
E

e
M

a
a

E

E
E

E
l R

e
t

g
m

!
LEBE"0

!
S082°0

|
81820

!
S

IE
L"0

!
Z61S70

!
06

|
:

]
i

!
:

B
in

d

E
t t

e
d

m
—

—
—

—
—

—
—

—
 K

m

g o
m

mmmm

t
1692°0

;
6461°0

!
146170

!
9908" 0

|
06££"°0

:
oy

|
!

1
1

{
!

H
 R

S
D

 S
S

 SEER 000
W

i i G
G

 G
M

D em
a FU

P M
OM

 SED
 W

O
 SED

 EH
D

 G
M

Seen H

A

W

000 Sw

SUID S
IS

 SUES A
bt SUED SLED SAID G

04 TIO

0005 IN
R

 am
u —

H

 S
H

0000 Tov SEs G

m
b Sete 0000 00MM Shin G

m
sin

0

0

f rm
 em

m
y E

D
 w

=

H

—

S
E

E

t
G

AS G
R

E SLED S450 AD
E BANS D

EE S
e

i 0500 0000 S
he —

H

2009 900m Bosh M

ab A000 6005 0000 G
out BONS BUND 0042 vem

 TEED W
ER w

ie
e

w

H
 W

a
 am

as sate SPOS BOSE 0000 w
ise SENS S

se Soke asta 0000 0800 G
m

s e
a

s

1
198170

!
0S91"0

;
08Z170

;
969£"0

!
086170

:
o

f
§

 }
H

’

[]
I

J
—

RTES

U
N

N
S

U
S

S—

—
—

—
—

 E
S

i
v101°0

!
882070

!
602070

!
ZvO

Z"O

!
YE60°0

!
oz

[1

2
?

1
EH

4

1]
?

1
1

2
5

T
e

l l
T

a

f i
u u m

 anu a
m

r
e

e

K
m

g

m
]

£Zv0°0
!

6976070
!

£86070
1

S891"0
!

Z190"0
:

ot
!

|
!

:
}

!
!

:
i

}
i=

t=

=
=

=

——————————— gm —
—

—
—

—
—u

g
m

-=1
3 LY3AN

O
N

-3N
H

O
-H

W
!

H
SYH

-03
}

93
!

W
W

!

408
!

N

;
;

]
v

!
!

i
!

o
t

:
33TAM

IFTLYIG
001

: apu3
O

T
:

2
348M

}4P
35

O
01

:
8}+

N
at[]}S

al
Ja

p
 (ye

zu
y

H

1A
LS

-W
H

ILIN
D

O

2
J0

)P
IB

U
IN

-W
L

A
IP

L
E

p
U

E
L

S

1
H

S

I®
IIIW

U

B
U

O
T

IN
U

N
G

-S
U

O
T

IE
R

T
S

HTU
N

 U
O

C
A Y

yd
a

ta
ıb

a
a

l
!

o
i van np one m

t6
1

1
0

H

£

4
8

0
0

:

cye
o

-o

!
0

8
9

c "0

:
C

E
S

0T0
H

o

e
a

n
n

a

m
e

m

§ r e

e
m

§ e

e

e
m

| tm
g

y0
1

°0

i
4

9
2

0
7

0

:
£

2
2

0
0

;

O
Z

1E
"0

;
9

9
9

0
0

;

8
T

4
[]

[]
4

[1]

S
E

O

U

S
S

9
6

8
0

°0

H

8
¢

£
0

°0

!
%

0€0°0
H

L

T
H

T
°0

;

7
o

v0
°0

:

2
1

;
;

:
H

;

;
e

e

e
e

e

m
 a a fe

D
E

V

E

c0
8

0
°0

H

9

0
£

0
°0

H

4

8
1

0
7

0

}
L

9
9

1
°0

'

9
9

£
0

"0

!
LA

[]
=

|
$

1
3

n
n

O
U

av90°-0
|

vB
Z

0
"0

H

£

9
1

0
7

0
.

:
86£1"°0

i
8

6
C

0
°0

}

e
t

[]
H

1

[1
[i

ee ee
m

e

e
m

 me R
T

r t

S
S

e

t
e

e

e
e

7
0

5
0

°0

H

9
2

0
°

0
H

-

0
8

T
0

°0

H

9
9

1
1

0

H

1
9

€
0

°0

;
0

1

—
—

 ——————————— ; S
A

; S

U

J
—

cL
E

0
"0

!

1
9

2
0

°0

H

T
0

1
0

0

i
8

2
6

0
7

0

;
7

6
1

0
7

0

a
8

[1
|

[]
[

-
1

e
e

em

 me em

-—
 B

E

e
e

0
4

2
0

7
0

H

L

1
2

0
°0

H

<

8
0

0
°0

4

9
1

4
0

0

i
0271070

H

9
[]

|]
[1

|]
1

I
m

m

e
m

mmm

m
m

e

m

e
e

re

£
8

1
0

0

;
8

6
1

0
7

0

;
£

9
0

0
0

:

T
4907 0

:
9

€
1

0
°0

:

14

e
e

m

m
 mm m

m
 : eer me mro

r
i

ı —
—

—
—

—
—

—
—

—
—

—
 em

 {m
ee

e
e

 m
m

 e
e

E

n

; e
e

e

e
m

e
£

9
0

0
°0

H

9

v1
0

°0

a
€

8
0

0
°0

|

£
S

Z
0

"0

}
9

2
0

0
7

0

!
&

[
1]

H

H

[1]

I
e

e

e
m

te

JU
IA

N
O

I-IN
H

O
 W

H
!

H
S

Y
H

-93
H

9

3

:
W

i
H

0

4

H

N
H

H

:

:
i

[4
2 8}118M

}}14405
o

c

:
8apu3

Z
2

je
d

M
I2

E
L

S
O

T
=: 94N

ae13}sS
a| Ja

p

T
ye

zu
y

C
A

LS
-H

M
IA

LN
IS

:

JL
0

je
P

isU
a

-W
E

S
}p

L
E

p
U

R
IG

ST333ITW
 U

S
U

O
T

IN
U

N
I-S

U
C

T
ILY

T
IT

U
N

 U
C

A Y
O

T
aT

buap

o
i van np one m

t6
1

1
0

H

£

4
8

0
0

:

cye
o

-o

!
0

8
9

c "0

:
C

E
S

0T0
H

o

e
a

n
n

a

m
e

m

§ r e

e
m

§ e

e

e
m

| tm
g

y0
1

°0

i
4

9
2

0
7

0

:
£

2
2

0
0

;

O
Z

1E
"0

;
9

9
9

0
0

;

8
T

4
[]

[]
4

[1]

S
E

O

U

S
S

9
6

8
0

°0

H

8
¢

£
0

°0

!
%

0€0°0
H

L

T
H

T
°0

;

7
o

v0
°0

:

2
1

;
;

:
H

;

;
e

e

e
e

e

m
 a a fe

D
E

V

E

c0
8

0
°0

H

9

0
£

0
°0

H

4

8
1

0
7

0

}
L

9
9

1
°0

'

9
9

£
0

"0

!
LA

[]
=

|
$

1
3

n
n

O
U

av90°-0
|

vB
Z

0
"0

H

£

9
1

0
7

0
.

:
86£1"°0

i
8

6
C

0
°0

}

e
t

[]
H

1

[1
[i

ee ee
m

e

e
m

 me R
T

r t

S
S

e

t
e

e

e
e

7
0

5
0

°0

H

9
2

0
°

0
H

-

0
8

T
0

°0

H

9
9

1
1

0

H

1
9

€
0

°0

;
0

1

—
—

 ——————————— ; S
A

; S

U

J
—

cL
E

0
"0

!

1
9

2
0

°0

H

T
0

1
0

0

i
8

2
6

0
7

0

;
7

6
1

0
7

0

a
8

[1
|

[]
[

-
1

e
e

em

 me em

-—
 B

E

e
e

0
4

2
0

7
0

H

L

1
2

0
°0

H

<

8
0

0
°0

4

9
1

4
0

0

i
0271070

H

9
[]

|]
[1

|]
1

I
m

m

e
m

mmm

m
m

e

m

e
e

re

£
8

1
0

0

;
8

6
1

0
7

0

;
£

9
0

0
0

:

T
4907 0

:
9

€
1

0
°0

:

14

e
e

m

m
 mm m

m
 : eer me mro

r
i

ı —
—

—
—

—
—

—
—

—
—

—
 em

 {m
ee

e
e

 m
m

 e
e

E

n

; e
e

e

e
m

e
£

9
0

0
°0

H

9

v1
0

°0

a
€

8
0

0
°0

|

£
S

Z
0

"0

}
9

2
0

0
7

0

!
&

[
1]

H

H

[1]

I
e

e

e
m

te

JU
IA

N
O

I-IN
H

O
 W

H
!

H
S

Y
H

-93
H

9

3

:
W

i
H

0

4

H

N
H

H

:

:
i

[4
2 8}118M

}}14405
o

c

:
8apu3

Z
2

je
d

M
I2

E
L

S
O

T
=: 94N

ae13}sS
a| Ja

p

T
ye

zu
y

C
A

LS
-H

M
IA

LN
IS

:

JL
0

je
P

isU
a

-W
E

S
}p

L
E

p
U

R
IG

ST333ITW
 U

S
U

O
T

IN
U

N
I-S

U
C

T
ILY

T
IT

U
N

 U
C

A Y
O

T
aT

buap

GE we Se BE BE A Ce A GP ED EGE BE SE weSw BE Be Se Be oe oe ee ee ee

T
0

2
4

0

-
—

—
—

e

m

4
8

9
8

°1

98E
V

"T

:
{9

1
8

°C

:
S

Z
11"T

|

8
|

i

[]

—

a
t

mmm mmmmmmm
m

m
 {mmmm

m
m

a
l

B
a

m
m

m
 a

n
n

998570
i

00YE*0
!

a8zy 0
O

ZvO
“T

!
915v9"0

!
Z

i
]

!
;

{
—

—
—

=

|
E

e
n

m

n

|
0 u

m
e

mm g
o

m

m

g
e

11020
'

I£61"0
!

9
1

-0

]
IE

IV
 0

|
E6ZZ"0

|
9

i
:

|
|

:
|

m
m

| m

m
m

E
n

e

e
m

m

m
m

m
n

 j u
m

S180°0
4

vyv9O
"0

!
0250°0

!
BELT"O

1

£020"0
!

5
|

|
1

:
m

m
m

 —
—

—
—

—
—

 E
m

|

a a u a a dm a u ra
S

eene
e

8££0°0
)

69£0"0
]

ZEZO
"0

1
Z680"0

!
S9Z070

1
v

!
!

!
|

J
m

-1

e

e

|
s

n

bb un
A

os u a

u ns an
89100

!
422070

1
v600°0

!
LYw

YO
"0

i
£110°0

!
£

|
:

!
:

!
=

m
m

m

—
—

—
—

 Ta
m

m
m

———————E

E
 B

a
t t

g
o

9600°0
i

£2100
}

Zv00"0
!

962070
!

9200" 0
z

!
!

!
!

!
—

-

1
m

m
mn |

m
m

|

u am
 a

a u amm
a

in
 m

m
e

e
0000°0

!
69100

}
9200°0

|
Z100°0

!
9000°0

1
1

!
:

!
:

=
.

t
-

=
m

m
n

n

m
n

 | m
m

m
enm

e

rb
e

te
n

-
L1U

3AN
O

N
-~3N

H
O

-W
K! H

SYH
-93

]
93

!
W

W

!
4

0

!
N

|
i

!
:

!

¥
5

8
3

T
a

M
IIT

L
Y

IG
o

t
3

8
p

U
3

¥
5

3
4

8
M

Ja
.8

7
5

O
Ö

:
=: 8

4
N

8
P

7
1

}5
8

1

Ja
p

TIU

P
ZU

Y

'"S133371W
 U

S
U

O
TIN

U
N

J-—
S

U
O

C
TIILY

TS
TU

N
 U

O
A Y

yatatıbaan
S

A
LS

~-W
N

A
LN

IO

=
407P

418U
80-W

L83IP
LP

P
U

P
IG

1|!

--. we mw

GE we Se BE BE We Ce SE GP EE EGE BE SE weSw BE Be Se Be oe oe ee ee ee

T
0

2
4

0

-
—

—
—

e

m

4
8

9
8

°1

98E
V

"T

:
{9

1
8

°C

:
S

Z
11"T

|

8
|

i

[]

—

a
t

mmm mmmmmmm
m

m
 {mmmm

m
m

a
l

B
a

m
m

m
 a

n
n

998570
i

00YE*0
!

a8zy 0
O

ZvO
“T

!
915v9"0

!
Z

i
]

!
;

{
—

—
—

=

|
E

e
n

m

n

|
0 u

m
e

mm g
o

m

m

g
e

11020
'

I£61"0
!

9
1

-0

]
IE

IV
 0

|
E6ZZ"0

|
9

i
:

|
|

:
|

m
m

| m

m
m

E
n

e

e
m

m

m
m

m
n

 j u
m

S180°0
4

vyv9O
"0

!
0250°0

!
BELT"O

1

£020"0
!

5
|

|
1

:
m

m
m

 —
—

—
—

—
—

 E
m

|

a a u a a dm a u ra
S

eene
e

8££0°0
)

69£0"0
]

ZEZO
"0

1
Z680"0

!
S9Z070

1
v

!
!

!
|

J
m

-1

e

e

|
s

n

bb un
A

os u a

u ns an
89100

!
422070

1
v600°0

!
LYw

YO
"0

i
£110°0

!
£

|
:

!
:

!
=

m
m

m

—
—

—
—

 Ta
m

m
m

———————E

E
 B

a
t t

g
o

9600°0
i

£2100
}

Zv00"0
!

962070
!

9200" 0
z

!
!

!
!

!
—

-

1
m

m
mn |

m
m

|

u am
 a

a u amm
a

in
 m

m
e

e
0000°0

!
69100

}
9200°0

|
Z100°0

!
9000°0

1
1

!
:

!
:

=
.

t
-

=
m

m
n

n

m
n

 | m
m

m
enm

e

rb
e

te
n

-
L1U

3AN
O

N
-~3N

H
O

-W
K! H

SYH
-93

]
93

!
W

W

!
4

0

!
N

|
i

!
:

!

¥
5

8
3

T
a

M
IIT

L
Y

IG
o

t
3

8
p

U
3

¥
5

3
4

8
M

Ja
.8

7
5

O
Ö

:
=: 8

4
N

8
P

7
1

}5
8

1

Ja
p

TIU

P
ZU

Y

'"S133371W
 U

S
U

O
TIN

U
N

J-—
S

U
O

C
TIILY

TS
TU

N
 U

O
A Y

yatatıbaan
S

A
LS

~-W
N

A
LN

IO

=
407P

418U
80-W

L83IP
LP

P
U

P
IG

1|!

--. we mw

PE CE BE GE BE SE CE GE CE GE PE BC GE BE CE CE GE YE PE BE SE > . TH BP ST BE GE EP Ye PE Se SE > .

7
}

„4

i
R

i t
E

n
d

a
0

6
8

°
H

yvıv-o

H

o

ve
s-o

H

L

6
9

9
°S

H

4

0
8

”
:

o
e

{
!

’
!

H

H

(>) 2 PAk
;

8
8

2
8

" 0
:

L
E

O
" 0

;
G

£
8

0
"9

4

£
O

IV
"T

!

8
1

;
H

H

H

:

{
7

-7
3

-

T
T

I

A
n

i t a

A
a

n
a

£
6

1
8

°1

H

9
£

9
C

"0

!
6T

IE
E

"0
H

6

0
9

6
"

;
1E

6670
H

9

1
!

H

H

;
H

|
=

i
T

d

Iu

A

a
B

t
-=

6
6

8
1

°1

}
Z

0
1

2
"0

;

6LZE
Z"0

|
vO

oSO
"Z

H

4
8

5
9

7
0

i

LA
i

}
H

H

H

H

- -
B

e
T

T
T

E

r
m

e

|
a

a
a a

evY
9L"0

H

2
0

9
1

0

:
0

9
1

7
0

'

L
E

vE
"1

:

Z6£V
7"0

!
A

:
:

H

!
!

}
'

{
}

m
m

m

BE
R

E D
ia

=

=
=

-

S
£vv"oO

H

1

9
2

1
0

H

eR

IT
1"0

|
2

yZ
8

°0

H

L
0

2
Z

"0
.

H

0
1

H

oo
}

}
H

|

=
=

7

}
I

" 1

I
F

a

a
a

ALA LA
Y

)
H

vL

8
0

°0

:
C

1
L

0
°0

H

9

9
S

0

H

Y
6

9
1

°0

:
8

H

H

H

:
=

H
=

i=

=
3

=
J

E

R
a E

a
t

e
a

0
6

2
1

0

H

2
0

9
0

0

{
z8

v0
°0

H

9

0
8

°
0

H

9
2

6
0

0

|
9

;
H

H

H

H

}
i

E
y

T

o
o

T

T
T

a m

 hat h
a

=

=
8

0
5

0
°0

;

0
0

7
0

7
0

H

0VZ0O

"0
H

0

9
1

1
0

:

8
6

2
0

7
0

H

14

}
H

2

;
!

!
}

;
m

T

o
e

i

A
n

h

S
e

t t e
e

£
0

1
0

7
0

H

£

0
2

0
7

0

H

0
4

0
0

°0

!
Z

9
£

0
°0

!

v5
0

0
"0

i

[4
H

H

}

H

!
H

H

1

“1

I
S

a

-
JUINNO

N~-INHO
~-W

UH 1
H

S
U

H
-93

H

9
3

}

W
H

H

a

0

H

N
!

H

!
!

{

[A
3

9
3

T
a

8
M

IIT
IY

IS
0

Z

g
8PpU

3
FA

:
348M

3}J4.P35
O

T
ss a

jn
a

e
iisa

)
J48p IY

®
ZU

Y

V
a

lS
-W

N
IL

N
3

O

8
JO

JE
LB

U
S

H
-W

LS
JP

LE
P

U
LR

LE

H
S

IS
I}IT

H
 U

S
U

D
TIN

U
N

J-S
U

O
TIP

Y
TS

TU
 U

O
A yo

ra
tb

u
a

p

WH EE AR GD CR LE GR EE SE GE BE RR RE SE G6 G0 EE BE GG PE GE Ne ER BE GE GE BE GE We RE GE EE an

i =

73
E

E

A

-
H

t
=

H
0

6
£

8
°£

!

YyvıvV"o
H

o

ve
s©

o

!
L

6
9

9
°S

!

TLO
08" 1

:
o

z

}
H

}

;
|

}
;

:
=

H

-
=

=
=

S
R

EE
a

{a

a
t i

a
te

Sg£1L¢C

U

8
8

2
£

°0

}
L

8
0

9
" 0

;
S

£890"9
3

Z
01V

"T

:
8

1

!
H

!

}
}

:
:

H

B
E

|

-
"7

3

-
a

J
n

n
4

£
6

1
8

°1

!
9

£
9

2
°0

3

I L
L

"O

O

H

6
0

9
6

°2

:
1

2
6

6
7

0

}
9

1

t
U

Li

;
H

;

;
:

|
"7

3

"7
3

m

m

A
T

T
T

m

:

6
6

8
1

°1

H

2
0

1
2

0

U

6
L

2
Z

”0

!
9

0
S

0
°¢

:

6
5

5
9

°0

|
v i

:
3

!
}

|
!

:
"3

"7

3

=
-

h
l

A
a

h

R
e

t t
|

S
v9

L
°0

;

2
0

9
1

°0

H

v0
9

1
°0

!

L
e

ve
l

;
Z

6£7"”0
:

[AS
H

:
U

{

}
;

;
!

U
H

U

U

!

-
"1

!

S
L

vv0

U

1
9

2
1

°0

H

2
6

1
1

0

|
v

i g

o
U

404270.

;
0

1

|
{

oo
}

!
A

H

H

H

7
7

7
7

}
-

1
m

m
m

E
E

9cvecto
H

v4

8
0

°0

}
S

1
£

0
°0

!

v
e

s

0
H

9

6
9

1
7

0

|
8

}
H

}

!
!

=
}

:
}

}
a

h
a

=

=
i =

m

m
m

B
E

 A
0

6
C

1
°0

|

2
0

9
0

0

}
z8

7
0

"0

!
v0

£
°0

|

9
c6

0
"0

|

9
|

!
}

!
i

!
!

=
}

=
=

=

J
a

H
8

0
5

0
°0

!

o
0

v0
°0

}

0
9

Z
0

"0

H

0
9

t1
°0

;

8
6

2
0

7
0

|

14
!

H

}
. 4

H

!
|

H

}
=

|
e

s

7
}

;
-=

H

a

=
=

}
£

0
1

0
°0

H

£

0
2

0
7

0

}
0

4
0

0
°0

H

c9

£
0

°0

:
$

8
0

0
°0

!

[A
!

}
j

}
;

}
!

H

U

U

!
R

E

H
LY

IN
A

N
O

N
-IN

H
O

-H
K

 |
H

S
Y

H
-93

3
9

3

U

W
H

H

a

0
y

}
N

j

U

H

3
$

!
i

&

3 8})718M
}47443IS

0%

s
@

PU
3

4
2

348M
14P

735
O

T
2 3418aP71}581]

J8
p

TY

ezU
Y

V
A

LS
-M

Y
ILN

E
O

©

 407P
L18U

30-W
A

83]P
LC

P
U

P
IE

S
T®

1ITW
 U

8S
U

O
FN

U
N

-S
U

O
TE

eN
T4TU

N
 U

O
A Y

a
ra

tb
a

a
g

BE Be Be > Ge DR BE WE WE A SE BE WE BE WE PE BE DE MW SE ED CE BE BE NIE SE EN Se YE Co we

-
[O

h
i

0 Sa 05 S
l D

S

A

80 Se Se tam

[a
d

a

Gos sien S
U

 2 deme ate en en ne’o
i

oo mm me th e
e

 |
a he cm

 em th las ds Se sn darn ine sam sum oe § m
n ee ome 0 fr bm sa Gem vm rn ane in

e

os a0
a

1
1

[]
r

£
0

9
1

°0

H

£
9

6
0

7
0

:

-G
280°0

i
£

8
9

¢
"0

H

Z

IE
L

 "O

i
o

c
H

H

E
i

H

i
1 m

—
—

—
—

—

—
—

—

H
 -

H

T
A

S
E

S
 s

e

Sm
e

s E
n

e

—
—

hall B
a

t i s
te

—

—
—

|S
mn in

 H
 m

e
in

 m
a E

S
S

E
R

E

S

m
T

S

T

IL
IT

C
O

i

£
6

8
0

7
0

H

&

v9
0

°0

H

G
8

8
1

°0

H

1
5

4
0

7
0

}

8
1

U

H

H

H

;
fm

m
e

e
e

{m

m
m

m
m

m

m
n{mmm m

ee
8

9
6

0
°0

}

vS
Z

0
"0

:

£
9

5
0

7
0

H

0

0
9

1
0

H

0

6
5

0
°0

H

9

1
;

H

H

H

H

!
=

=
$

=

m
T

i

E
m

m
y T

T
T

T
T

T
T

T
 T

U
T

E

{T
T

T
m

m
m

H

A

m
m

m
1

8
£

0
°0

:

9
8

9
0

" 0
H

c8

y0
°0

H

G

E
T

" 0
H

L

8
0

0

}
v i

1
2

1
[1

1

E
E

fu

n
B

irn
e

n
A

n

n
m

m
m

 m
m

a
£

v9
0

°0

H

S
L

8
0

°0

{
v8

£
0

°0

i
C

E
T

T
"O

}

1
8

2
0

7
0

|

ZT
)

4
3

]
3

.

S
S

S

S
E

S

N
E

S
S

E
S

NSN—
—

—

A
9

0
5

0
"0

H

1

1
5

0
°0

H

8

1
8

0
7

0

}
0

0
6

0
°0

H

4

9
8

0
7

0

i
oT

H

H

H

;
H

m
m

A

a
E

ta
t

J
R

a

mmmm
e

m
5

5
8

0
0

H

9

&
v0

°0

H

6
9

2
0

7
0

i

8
1

4
0

°0

N

C
6

1
0

0

;
8

H

:
H

}

H
-

=
-1

--
m

m
IR

A

R
a

=
D

EE T
t

m
m

m
m

em
 mmm mmm

m
—

S
ZZz0"0

H

8
6

2
0

°0

:
8

8
1

0
°0

!

£
£

5
0

°0

H

C
£I10°0

H

9
{

H

H

H

}
I

H

E
E

|

BEa
A

E

a
9

9
1

0
°0

H

FX AAV N

Y
H

£

£
1

0
°0

;

1
9

£
0

7
0

H

8

8
0

0
°0

;

v
4

H

{
H

:

H
"3

R

a
h

A

I

S
e

K

m
m

{T

T
T

m

a
6

8
0

0
”0

H

8

1
0

7
0

f

£
5

0
0

°0

H

6
2

2
0

0

U

vZE
00”0

|
&

;
i

H

;
H

H

;

.
!

a
:

E
T

T

A

m
m

I D
e

m
1830A

N
O

N
-IN

H
O

-H
R

 |
H

S
U

H
-93

H

9
3

H

W

W

;
a

0

;
N

H

}
H

H

H

€
8

81T
aM

IF
T

LY
O

S
0

:
8apu3

A
8

34839M
4075

O
T

=: 8
}n

a
P

[3
S

8
a

] Ja
p

IY

P
Z

U
Y

1
a

n
n

m

m
 e

e
a

n
m

 nn a
!

U

SAaLS-W
H

ILIN
3O

:

407P
48080-04.8]P

41P
P

U
P

IS

;
'

S
T833TW

 U
S

U
O

T
IIU

N
I-S

U
O

T
IL

Y
T

STU
M

 U
O

A yd
ra

tb
u

a
n

!

[]
.

H

1]

6
8

0
0

°0

z2810°0
£

S
0

0
°0

!

&
4220°0

i
9

2
0

0
7

0

H

&
;

.
4

:
:

LAU
IAN

O
C

H
-IN

H
O

-H
KW

H

S
V

H
-83

E
7

7

=
)

i
I

A
J

e
n

m m

 m

m
 m

 m

V
E

m
e

m
H

L

O
vI-0

U

£

V
6

0
"0

H

S

Z
8

0
”0

!

S
8

9
2

" 0
;

Z
IE

L
 "O

0
;

0
2

:
H

H

H

:

|
H

m

m

H
h

y
e

J

V
T

m
m

m
H

IL

1
%

°0

i
£

8
8

0
°0

H

6

9
9

0
7

0

!
S

6
8

1
"0

H

1

5
£

0
°0

|

8
1

H

U

H

}
i

|
H

7

7

E
U

A

an m m

 E
m

m

M
m

 m
m

K

m
m

m

 m
H

8

9
6

0
7

0

!
$

8
2

0
°0

!

£
9

5
0

°0

H

0
0

9
1

0

H

0
6

5
0

°0

:
?

1
H

;

H

}
;

H

!
;

H
i

H

R
E

A

J

m

m

H
A

m

E
H

1

8
2

0
7

0

H

9
8

9
0

°0

:
€

8
v0

°0

;
9

8
£

1
°0

1

2
8

7
0

7
0

i

v
r

}
;

H

}
H

:

E
E

A

E
 A

I

E
E

m

m
m

 Em
m

 m
m

m
 m

—
—

H

£
v9

0
°0

i

S
L

5
0

°0

l
v8

£
0

°0

H

E
IT

"
0

}
18¢£0"°0

|
e

r
H

i

H

i
i

1
;

H

iT

a
H

H

ER
A R

a
n

n

u
m m

n

n
u a {T

T
T

m
m

m
 m

m
:

9
0

5
0

°0

:
1

1
8

0
°0

H

8

1
£

0
°0

|

0
0

6
0

7
0

H

£

9
2

0
7

0

!
O

T
H

H

H

H

;

{
H

"4

7
7

=

=
7

4
7

m

m
 e

n

C
E

{A

;
S

S
£

0
*0

H

9

6
9

0
0

H

6

v2
0

°0

!
8

1
4

0
7

0

|
S

6
1

0
"0

H

8

H

;
:

|
H

!

T
T

7

4
7

7

E
E

he

=
m

m
m

m
m

4
m

H

S
ZZz0"0

H

8
6

2
0

°0

}
8

8
1

0
0

!

£
£

5
0

°0

!
S

E
T

0°0
|

9
j

i
}

U

;
H

}
}

!
H

E E
a

A

J

i
9

9
1

0
°0

U

L

2
2

0
°0

}

££71070
!

1
9

£
0

°0

:
8

8
0

0
°0

H

4

H

!
!

H

:
!

H

H

} -
n

d

h
a

te
d

d
l

B
ib

i
TT SID GUD SID ST 0% Sim IRD SNS SEL SUSUR ASS Im

 nn
S

S
 40

TD SO SS SO 400 S00 oe |
n

n

$000 —
—

>
.

>> sem
e

}
H

!

|
|

}
U

!

}
}

H

U
}

}
U

93
i

W
W

!

40d
|

N
!

!

€
2 8IT

S
M

IF
IT

LY
IS

o
c

:

a
p

u
l

z
BET L

IT
E

F
Y

O
T

=: 3
4

N
A

P
IIS

a
]

JA
P

 IY
P

Z
U

Y

C
ALS-W

N
ILN

IO
 2 J03P.LBU

IN
-W

LBIPLEPU
R

LS
ST933TW

 U
SU

O
TIN

U
N

I-SU
O

TIIER
TSIU

M
 U

O
A ydratbuaapn

wm Re Ge EE ee we En ew =e EE» ee-— me mm

we Te DO Ce DD Cn YE Ce DD ee we ew

9
8

9
0

°0
H

0

9
9

0
7

0

;
v£

v0
"0

H

P

C
L

T
" 0

:
| 24 3" A

H

0

1

6
8

5
0

°0

H

6997070
H

G

L
5

0
°0

H

T

4
2

1
°0

H

V

A

H

&
U

H

:

H

H
T

T
T

E
T

T
T

 E
T

T

m
m

J

m man m u
m

w

m
m

a

r
a a = Sm ma ma aD

 ma a
m

 nm
 am an m

 a
8

2
5

0
°0

H

LE

2G
0°0

H

I9
9

0
°0

H

8

6
L

£
T

°0

H

£
£

L
9

°0

H

8
[4

[]
[1

U

1

a
t

B
e

E
E

E

G
a

=

m
m

m
m

 m
em

e
1

9
9

0
-0

H

£

8
v0

°0

H

9
0

£
0

°0

:
0

€
6

0
°0

H

T

H
E

O

:
Z

1
|

:
i

i
a

n
n

A

A

|
m

m
1

1
S

0
”"0

|

0Z2S
0”"0

:
2

0
8

0
7

0

:
0

Z
0

1
°0

i

o
vL

T
=

O

H

9
H

H

H

:

H
-

Ia

n
a

E
R

i n

m

e
e

n

n

{TTT
TT m

e
e

{ i n

i t
£

2
2

0
0

1

0
L

£
0

°0

H

8
8

1
0

" 0
{

0
1

4
0

7
0

;

.
0697070

!
Ss

—
B

R

S
U

S

N
S

U

S
U

IS

S
U

S
U

9
2

0
°

0
}

L
8

0
7

0

H

2
7

T
0

"0

H

8
4

5
0

" 0
H

8

cE
g

0
"0

|

v
1

3
[]

1
[]

[]
1

1
[J

]

m
m

-
H

=

=
H

a
I a

i
a

E
a

£
8

1
0

7
0

H

£

2
0

0

H

?
£

1
0

°0

H

Z
yvo

-o

H

2
9

1
0

7
0

|

£
1

1
[]

1
4

Ll
1

[
1

D
O

-=

~
1

u

=
=

a

H
E

y

o
m

m
e

m
en

n
 m

£
7

0
7

0

H

v0
2

0
°0

H

£

9
0

0
°0

!

V
O

"
:

?
5

0
0

°0

H

€
H

[3

[]
]

H

a
T

e
a

a
m

m
m

8
0

0
°

0
H

0

2
1

0
0

i

0
£

0
0

"0

4
S

E
2

0
"0

H

0

£
0

0
"0

H

+

H

'
!

H

1
b

e

H

=
=

H

J

ik A
i

T
T

T
LU

IN
A

N
O

N
~IN

H
O

~H
U

 {
~

H
S

U
H

-9
3

H

9

3

H

W
W

;

g
0

3

H

N
‚4

H

H

H

|

1
3

8
3

T
a

M
IT

IT
L

Y
IS

o
T

 @

p
u

l
1

2
JL

O
M

IL
E

L
S

O
T

:
a

jn
a

e
lisa

)l
ia

p

TuezZU
Y

m
e

m

—
—

—
 m

m
em

 er m
e

—
—

}
P

A
LS

-W
N

IA
LN

ID

:
4

0
3

P
1

8
U

8
0

-W
L

8
3

]P
L

.P
P

U
P

IS

H
'

S
T

®
1

}T
W

 U
B

U
O

T
IN

U
N

S
-S

U
C

T
IE

B
R

T
S

T
U

N
 L

O
A

 yo
ra

tb
ia

n
p

!

H

!

we Te Se Ce ee Cn YE Ce Se ee we ew

9
8

9
0

°0
H

0

9
9

0
7

0

;
v£

v0
"0

H

P

C
L

T
" 0

:
| 24 3" A

H

0

1

6
8

5
0

°0

H

6997070
H

G

L
5

0
°0

H

T

4
2

1
°0

H

V

A

H

&
U

H

:

H

H
T

T
T

E
T

T
T

 E
T

T

m
m

J

m man m u
m

w

m
m

a

r
a a = Sm ma ma aD

 ma a
m

 nm
 am an m

 a
8

2
5

0
°0

H

LE

2G
0°0

H

I9
9

0
°0

H

8

6
L

£
T

°0

H

£
£

L
9

°0

H

8
[4

[]
[1

U

1

a
t

B
e

E
E

E

G
a

=

m
m

m
m

 m
em

e
1

9
9

0
-0

H

£

8
v0

°0

H

9
0

£
0

°0

:
0

€
6

0
°0

H

T

H
E

O

:
Z

1
|

:
i

i
a

n
n

A

A

|
m

m
1

1
S

0
”"0

|

0Z2S
0”"0

:
2

0
8

0
7

0

:
0

Z
0

1
°0

i

o
vL

T
=

O

H

9
H

H

H

:

H
-

Ia

n
a

E
R

i n

m

e
e

n

n

{TTT
TT m

e
e

{ i n

i t
£

2
2

0
0

1

0
L

£
0

°0

H

8
8

1
0

" 0
{

0
1

4
0

7
0

;

.
0697070

!
Ss

—
B

R

S
U

S

N
S

U

S
U

IS

S
U

S
U

9
2

0
°

0
}

L
8

0
7

0

H

2
7

T
0

"0

H

8
4

5
0

" 0
H

8

cE
g

0
"0

|

v
1

3
[]

1
[]

[]
1

1
[J

]

m
m

-
H

=

=
H

a
I a

i
a

E
a

£
8

1
0

7
0

H

£

2
0

0

H

?
£

1
0

°0

H

Z
yvo

-o

H

2
9

1
0

7
0

|

£
1

1
[]

1
4

Ll
1

[
1

D
O

-=

~
1

u

=
=

a

H
E

y

o
m

m
e

m
en

n
 m

£
7

0
7

0

H

v0
2

0
°0

H

£

9
0

0
°0

!

V
O

"
:

?
5

0
0

°0

H

€
H

[3

[]
]

H

a
T

e
a

a
m

m
m

8
0

0
°

0
H

0

2
1

0
0

i

0
£

0
0

"0

4
S

E
2

0
"0

H

0

£
0

0
"0

H

+

H

'
!

H

1
b

e

H

=
=

H

J

ik A
i

T
T

T
LU

IN
A

N
O

N
~IN

H
O

~H
U

 {
~

H
S

U
H

-9
3

H

9

3

H

W
W

;

g
0

3

H

N
‚4

H

H

H

|

1
3

8
3

T
a

M
IT

IT
L

Y
IS

o
T

 @

p
u

l
1

2
JL

O
M

IL
E

L
S

O
T

:
a

jn
a

e
lisa

)l
ia

p

TuezZU
Y

m
e

m

—
—

—
 m

m
em

 er m
e

—
—

}
P

A
LS

-W
N

IA
LN

ID

:
4

0
3

P
1

8
U

8
0

-W
L

8
3

]P
L

.P
P

U
P

IS

H
'

S
T

®
1

}T
W

 U
B

U
O

T
IN

U
N

S
-S

U
C

T
IE

B
R

T
S

T
U

N
 L

O
A

 yo
ra

tb
ia

n
p

!

H

!

Z
6

9
1

"0
£sS871"0

8
£

0
2

 "0

2
1

£
1

°0
6

8
4

1
7

0

9
0

9
1

0

9SE£T1"0
C

6
1

1
0

—
—

—
—

in

d

=
—

—
—

=1

£96070
£I121°0

S
£

0
T

°0

i[
m

 m

ma um

u
m

o

e

m
e

6
0

8
0

°0

£4S
0T°0

cz8
0

”0

|
|

i

9
5

9
0

" 0

0715070

v0
6

0
”0

£
9

4
0

°0

89900

69580°0

5
£

8
0

°0

6
9

9
0

7
0

6
2

7
0

7
0

§
2

£
0

°0

LU
3A

N
O

N
-IN

H
O

-H
W

RE GE SG GE CD CN CD GR GT DM TE CE PE EE BE GD DS GE GE BE DO DE DD Be Ge GG DD GE GF BE Oo =

H
S

Y
H

-03

GE DD GE GE EE BE BE GE EE GE GY BE ER EE GE WY WE EE WE RE DE GN GE PE BE TE BE GE Ee Ye SE SE we

£
9

8
0

7
0

C

6
5

0
0

1

6
£

0
°0

£
9

C
0

°0

ZEVO
0°O

0
0

vz0
”0

6
4

1
0

”0

—
—

—
—

—
—

—
—

—
—

—ey

9
3

v6
v0

”"0

W
W

B
O

e

l
a

h

L
E

E

p

SE aD

(0002 ets etn A000 0% BONS Bows Sass Same sete Un ars Bese Seem

LALS-W
NILINIO

 2 403PLaU
AQ

-W
LSIPLR

pU
LS

S
T

I I
U

B
S

U
O

T
IN

U
N

S
-S

U
O

C
T

IP
N

T
S

T
U

N

U
O

A

yo
ra

g
b

u
a

p
n

oT

Sn coat bane See ein eam S200 Som Se Sse eu THD PUSS Best m
un

An 140 Gams mem ote eet 0000 as sass Sues

win 0700 2020 Seas Goss tte chet Gasp Sess mime Sous SVG 000 Se H
ee

8
IT

a
M

IIT
IY

IS
:

a
p

u
3

IL
IM

IL
L

E
S

:
8}N

ae{[}sa]l LBP
TYPZU

Y

Z
6

9
1

"0
£sS871"0

8
£

0
2

 "0

2
1

£
1

°0
6

8
4

1
7

0

9
0

9
1

0

9SE£T1"0
C

6
1

1
0

—
—

—
—

in

d

=
—

—
—

=1

£96070
£I121°0

S
£

0
T

°0

i[
m

 m

ma um

u
m

o

e

m
e

6
0

8
0

°0

£4S
0T°0

cz8
0

”0

|
|

i

9
5

9
0

" 0

0715070

v0
6

0
”0

£
9

4
0

°0

89900

69580°0

5
£

8
0

°0

6
9

9
0

7
0

6
2

7
0

7
0

§
2

£
0

°0

LU
3A

N
O

N
-IN

H
O

-H
W

RE GE SG GE CD CN CD GR GT DM TE CE PE EE BE GD DS GE GE BE DO DE DD Be Ge GG DD GE GF BE Oo =

H
S

Y
H

-03

GE DD GE GE EE BE BE GE EE GE GY BE ER EE GE WY WE EE WE RE DE GN GE PE BE TE BE GE Ee Ye SE SE we

£
9

8
0

7
0

C

6
5

0
0

1

6
£

0
°0

£
9

C
0

°0

ZEVO
0°O

0
0

vz0
”0

6
4

1
0

”0

—
—

—
—

—
—

—
—

—
—

—ey

9
3

v6
v0

”"0

W
W

B
O

e

l
a

h

L
E

E

p

SE aD

(0002 ets etn A000 0% BONS Bows Sass Same sete Un ars Bese Seem

LALS-W
NILINIO

 2 403PLaU
AQ

-W
LSIPLR

pU
LS

S
T

I I
U

B
S

U
O

T
IN

U
N

S
-S

U
O

C
T

IP
N

T
S

T
U

N

U
O

A

yo
ra

g
b

u
a

p
n

oT

Sn coat bane See ein eam S200 Som Se Sse eu THD PUSS Best m
un

An 140 Gams mem ote eet 0000 as sass Sues

win 0700 2020 Seas Goss tte chet Gasp Sess mime Sous SVG 000 Se H
ee

8
IT

a
M

IIT
IY

IS
:

a
p

u
3

IL
IM

IL
L

E
S

:
8}N

ae{[}sa]l LBP
TYPZU

Y

TR
LS

n
 I

zu
G

i
TERS A

a TD
 S

S
 FE

 W
i SU

 am
 am

 e
e

 H
a

-

—
—

.
tr

tn
 n

e

ta

H
 T

T
 T

T
S

S

T
U

N

atm
 G

m
 hen Shen S08 Sete S

S
 SOE M

ie G
am

 fn

Sse See ls C
e tie

 hm
 o

s e
i

en Set Pere m
em

E
S

E
T

0
i

0
1

1
"

0
H

E
.

S
e

ve

0
i

C
Y

667V
444O

D
D

R

ir A Si —

tn
 2200 TY SD Gas SR Gin Pu Sea S

O
 SE m

y URN N
 MUS Tm

 RD STD SPE mee em 00 Sut aan S00 B
T

E

E
E

RE hid cn

 om em
 a

te Sie
i

Re 0%
 Aber far A G

o Pe a
Sade So om

 A
e

s
 Sem

 S
o

 re Sent um
 Soe bre eke duu BAe Sens Sam hs Sh Se 4h Sea |

FR Gem res Sere smn ren cab Ade rom em
 W

a $0 lh rt an
[][]112

S
S

E
N

T
E

B

e

N

R
R

E

a

TI
—

—

8
v4

6
0

°0

H

6
9

6
0

°0

;
0

8
2

0
"0

:

Z
5

2
4

1
"0

:

S
IE

1

!
8

{
;

H

i
;

a
n

n
N

n

a
0

0
8

0
°0

H

€

0
6

0
°0

:

£
v9

0
°0

1

8
1

9
7

1
"0

:

L
O

G
O

;

Z
1

[]
1

1
-

1

t t
i

0
—

 —
 So

-
0

m

over om
 oon ;

0
.

—

um
 om

e.
.

w
or ow

 H
 n

e
 cr

n
c

c

y

M
E cats aime e

s
 A

SO

 W
O

 000 0700 S00 !
0005 40m 0200 200 0000 0005 0200 HOS mass 0200 002 Nien Bae SOT am

 w
e :

c
a

m

sem
 tet mbm Bier Vata S004 1450 bobs Spe Shen am

e 00T ste
 ;

h
E

I

aa a0 bin NO BEE C
M

 A
n

9
L

9
0

°0

H

5
4

0
7

0

}
5

2
5

0
7

0

H

H
TIE

T
0

;
1

6
8

2
" 0

!
9

H

}
!

H

H
a

n
a

e
e

m

e

| m
m

 m
e

§ m

m
 m

e
I

S
O

S
£

5
0

°0

H

S
£

7
0

"0

H

E
2

7
0

0

H

2
8

0
1

7
0

:

1
6

£
T

"0

H

a
a

3
1

2
[]

a
n

a
E

l
E

y

F
E

 —
—

vovoO
"o

H

£
4

2
8

0
0

;

9
y£

L
0

"0

|
0880"

0
i

£
8

9
0

7
0

H

9

§
|]

1
1

-
4

S
n

N

A

E
N

vyzvoO
"o

!
7

9
5

0
-0

H

£

5
0

7
0

i

£
1

8
0

0

;
Z

6
2

0
"0

H

£

!
H

H

H

H

m
a

2.00 22

e
f

e
n

e

m

c
m

me0000 sass 0000 oom soem H

 —
 000 —

—
—

v

o

oan
n

e

c
f

re
r

A

corm 0000 0009 2200 an es Wm Be Sp
fT

m

m

#100 aim 1000 Some ran seme mms SB bate med dase BOOB Sons Ses oa

8
0

2
0

0

:
P

IL
0

°0

}
cvi0

T
o

!

£
0

8
0

7
0

H

0

0
1

0
0

H

ec

H

i
;

;
H

H

—
—

—
 m

e rm
 m

e om
 |

|
r e

8
1

1
0

7
0

H

£

4
1

0
°0

:

9
9

0
0

°0

!
£

0
8

0
0

H

£

0
0

0

:
T

H

H

'
H

;

H
m

m
m

 T
T

 e
e

e

e

e
e

e

e

e
m

m

e
m

|

m
m

m
LH

IA
A

N
O

N
-IN

H
O

-W
K

H

S
Y

H
-0

3

H

9
3

H

W

W

:
4

0
4

H

N

H

H

H

H

i

1
:

83T
am

M
}I}T

LY
D

S
o

t
s

3
p

u
3

1
2

3
4

8
M

 4
0

7
5

.
O

T
=: 84}N

3P
71}S

8]
Ja

p

[ye
zu

y

H

8A
015-W

M
H

3LN
39

= 1
0

}E
L

B
U

S
E

-W
L

B
}P

L
E

P
U

E
L

E

1

un u . . . —_ . nn Ee MT EE ME a ME an eeewee we me we wn me we- mm En

—
—

—
—

o

o

[ad
-

—
—

O

D

S
n

I

Sh
S

e

V
e

e
n

b
e

e
 ken S

e
 Se

|
Se Se ho So ie tem ten tae

dn 4 me ee m
e

T
IP

I°O

:
G

S
£

1
"0

H

0

1
1

7
0

}

S
e

ve

o
i

C
Y

G
6

"V

:
(04

U

[]
3

1
[]

S
E

A

F

U
P

e
6

1
1

"0

H

9
6

1
1

°0

:
8

2
6

0
°0

;

8
2

2
5

 "0

H

c0
L

?
"2

:

6
U

:

{
H

i

i
A

S

A

N
a

A

S
—

8
v6

0
°0

H

4

6
9

6
0

0

!
0

8
4

0
°0

!

£
8

4
1

7
0

:

S
IL

T

:
8

H

:
!

H

:
_

—
—

—
—

—
 m

m

m
e

I e

t
g

m
m

e
m

e

a
a

a

0
0

8
0

°0

H

€060°0Q

;
£

V
9

0
"0

:

8
1

9
1

"0

i
V

ZO

"0

'
zZ

H

:
!

:
}

—
—

a

wm
 E

w

A

D
a

S
M

 ee ame GHD ema cam sete !
-—

 n—

o
m

a

0000 vous. H
 000 m

m

—
 AD

 am
 SMD SSS) BIS Gene H

N
 SHS SHE SO

I 0000 SO
M

 } 000° 40%) 0500
a

d

:
m

a

mmm sem
 Tees ED

 Same bobs S364 440i Babs Shee Sen seve Seer som
 !

oon ood apne 07 main suse Gum m
e nme SMe 0000 PEE debe G

ut m
m

a

9
4

9
0

°0

H

8
4

0
7

0

:
8

£
5

0
°0

H

S

T
IE

T
"0

;

1
6

8
2

"0

H

9
U

:

!
:

H
-

—
—

—
—

§

--
E

A

e
a

E

E

—
 | m

—
—

—
—

—
—

—
—

L

g
 m

m
m

e
n

 n
n

gm

rm

 m
m

em

 m
n

S
E

S
0

°0

:
E

9
0

0

!
L

2
9

0
" 0

!
2

8
0

1
7

0

:
T

6
£

T
 "0D

H

8

1
H

!

H

H
e

e

e
m

m

r
e

e
e

e
 K

r
V

e

O
K

vyovo-"o
H

£

2
5

0
7

0

H

P
re

0
°0

H

0

8
8

0
°0

:

£
5

9
0

7
0

:

v
H

:

H

|
-

i
—

—
—

—
—

—
—

e
e

fl

0
0

= BB N
 GR O

O

a

v£voO
"o

H

9
5

0
°

0
H

£

5
2

0
7

0

U

£
1

8
0

0

H

PA-YA
;

£
{

H

|
'

!
-

—
—

$

;
S

o
m

m
e

e
e

e

r
oo

m
i

me m
t

e
m

rm

——e
m

8
0

2
0

" 0
U

V

I£
O

"O

}
evi1o0°o

!
£

0
5

0
7

0

!
0

0
1

0
0

|

&
H

H

H

;

|
H

=
=

n

lA
te

a

m
e

m
e

T

T
T

Tm

 m
m

m

H
E

{A

m

e
m

8
1

1
0

7
0

:

£
£

1
0

°0

U

29900”"0
H

£

0
2

0
0

;

7
£

0
0

"0

;
3

H

}
H

:

H
n

F
E

R
E

{TTT

ee m
e

e
e

H

E

m
e

m
e

JU
IA

N
O

M
-IN

H
O

-W
K

!
H

S
Y

H
-8

3

H

9
3

H

W

W

:
2

0
M

H

N

U

{
:

H

H

T
:

894118M
})14U

3S
o

l
:

a
p

u
3

3
2

}L
a

M
IL

e
L

S
O

T
:

8}4nae[l])sal
Ja

p

1
ye

zu
y

8
0

1
5

-W
Y

IL
N

3
9

:

1
0

}e
1

8
U

8
9

0
-W

L
8

)P
L

E
P

U
P

IS

;
S

I®
13T

W
 U

B
U

O
T

IR
U

N
S

-S
U

O
T

IE
N

T
S

TU
M

 U
O

A yotatrbuaap
!

a
Te PE are woe ee i t SR Gore AED wee SE Gris } 205 FEE SUES Grin OU G

e ete Se Ge m
e hp Te do

H

H

H

'
H

1
0

1
0

°0

H

X
0

7
0

0
1

H

2

G
0

°0
1

H

%

 0
7

0
0

1

i
0

0
0

1

H

a
w

w
n

g
H

i

H

!
H

S
zssm

ro
sse

sss
| E

e
a

ssssssse
sn

| E

E
E

| E

r ro
r s

| S

e
ssra

sra
n

srs
|

s
e

e
rs

E

E
E

.
{

H

!
;

H
£

0
7

1
0

"0

{
X

6
7

6
8

{

0
2

0
°9

H

%

€

”8
6

;

E
8

5

H

a
w

Ja
l

"+4+7TU
f]

[
[]

4
7

1]
4

—
S

E
 R

S

J
S

JSS
—

 A

A
0

£
1

0
°0

H

X

6
7

0
2

H

0

1
°¢

H

%

 2
°9

1

H

9
1

:

u
a

tyL
z

[}
[]

[]
H

H

a
a

a

A

A

S
E

S
O

—

F

E
E

{E

S
g

£
0

0
°0

H

X

2
°6

1

'
0

£
6

"T

H

ZX 97768
H

9

6
2

:

sa
yse

1
]

H

H

H

H

H
m

e
m

T

T

-
H

c

y
o

m
Tm

 m
m

m
 |

a nn
C

b

C
A

T
P

I8
J)

|
C

IN
IO

S
G

Q
E

)
|

C
A

T
E

T
A

@
J)

|
d€3IN

IO
S

G
E

)
|

4
0

3
T

yezuy/31182Z

|
371827

L
E

3

1
8

2

S
h

ye

zu
y

:
u

e
zu

y
|

U
o

T
IR

U
N

G
H

U

H

;

:

:
—

—

-

-
r e

0000 uni 000.000 2003 i

3 fm
a e

S

$
m

et em em re
 tr aem

nm
n

{'
FA

2
S

3
W

L
)

U
S

1IS
U

TIS
TY

so

p

a
b

u
se

r
Hq'

8
9

2

S
a

W
l8

a
| U

8375580416
sa

p

a
b

u
e

e
n

{31
9

9
2

1

8
ssa

o
u

b
w

e
a

]
a

yo
T

IIIT
U

Y
IS

Y
IIN

G
aH

0

0
0

1

:
sw

u
a

|
u

e
ib

n
a

za
s

a
a

p

T
ye

Z
U

Y
|

.

C
T

A
N

N
-W

Y
IL

N
3

H
)

:
40784183U

89Q
-W

4833S
1184N

Z
S183}31W

 U
8U

0TN
U

N
J-S

U
C

T}E
N

T/*TU
M

N
 U

O
A yo

ra
ib

u
a

p

—— me we wef e Se Ch Ee EE EE SE wm ee ee ee an

=
=

i

A

i
-

I
E

u

H
1

0
1

0
°0

'

xX 0
7

0
0

1

H

5
0

°0
1

|

%
 0

°0
0

T

|
0007

|
aw

w
ng

H

i
;

;
!

T
E

N
E

T

| C
T

C
T

T
S

N
T

S
E

T
R

B
IN

|

S
T

s

R
E

E
S

 {e
s

o
s

| u

n
a

| m

n

.
H

H

H

:

H
£

0
1

0
°0

H

X 6

7
6

5

H

0
2

0
°9

H

%

 ¢
°8

S

H

8
5

H

a

w
.a

]|
*jtuf]

}
H

H

H

H

-
a

e
E

e

=
m

=
e

0
£

1
0

°0

H

%
 6

7
0

2

{
?

0
1

°¢

H

%
 C

9
1

!

c9
1

t

uU
8{A

Z
H

H

H

{

!
L

e
F

t
A

A

-

£
4

0
0

°0

H

xX E
6

1

!
0

£
6

"T

}
%

 9
°5

C

:
9

5
¢

i

sa
yse

1
]

H

H

H

H

H
=

|
1

oa
"4

7
7

7

4

-
J

m
m

EP
(A

T
Ie

I®
N

)
|

C
IN

IO
S

G
E

)
|

(A
T

IE
IS

N
)

|
C

IN
IO

S
G

E
)

|
4

0
4

ye
zu

y/3
1

e
z

|
318Z

H

3718Z

;
ye

zu
y

|
w

e
zu

y
|

3
U

O
T

3
U

N
)

{
U

!

|
H

A
aa a a

H}
Z

2
S

a
w

.s)
u

a
isu

ra
ly

sa
p

 a
b

u
a

e
n

i!
8

9

2 S8aW
L83| u

a
issa

o
rb

sa

p
 a

b
u

a
e

q
H!

A

:
bunyotam

qu-puepuels
;

.

H

?
9

°L

3
a

ssa
o

u
b

w
a

a
]

8
yo

trrIIru
yo

syo
a

n
g

HH

0
0

0
1

ss 8W

A
8) u

a
jib

n
a

za
a

sa

p

tye
zu

y
‘

C
T

A
N

M
-R

Y
ILN

IH
)

3
40}P

udU
B

O
-W

LB
IS

T
IC

IN
Z

S
T

e
IIT

W
 U

SU
O

T IN
U

N
g

-S
U

Q
T

E
N

T
L

/T
U

N
 U

C
A

yo

ra
tb

u
a

p

0070 SES PED EM
 GMD SHE SEL SA GOV Su G

i SO
 #055 ENED GEN w

i W
S) Sin M

A Sik SASS GAP G
IT CDV S

D
 GEN) SIS VES GUN Geum See G

u SURG S060.

on 0200 0 200 Abe 0000 sree Sri 400 mas Sees Sums vam
0

Pees Gms aps Sas 0000 Gale 0005 Pont Bets 0000 whee SH ett Sens
;

:
;

:
!

i
H

i
8

9
0

0
°0

i

X 0°0071
i

£
8

9

H

%
 0

7
0

0
1

;

0
0

0
1

{

aw
w

nyg
H

!
i

H

H

i
H

!

| SS S
S

R
 D

E
R

E
N

| sxzxa

so
sssa

se
s

| se
sa

rssssn
sn

s
| se

o
sm

sre
re

srss
| Sage Ann N JOD SMS UMSEMS MEIN N

O
S | s

e
ro

s
a

SE s
s

 m
en m

s
e

|

i
H

H

i

|
i

i
i

9
8

0
0

°0

i
F

A
R

A
4

;
6

6
6

° Y
i

X 2
°8

9

{
8

s

L
a

8
)

"+
1

0

|
!

!
ı

!
:

H

=
“T

T
T

IE
R

H

a

K
m

m

 m

K
m

ne m

m
m

 m—
—

 K
m

m
e

m
i

v£
0

0
°0

!

X 07517
!

LC
A

i

%
 6

°E
T

}

6E
T

i
u

a
z

!

i
;

:
!

i
i

;
p

tm
T

T
 T

T
EEF

h

R
E

 7
7

7
m

IA
n

n

e
n

en m

T

m
a

4
!

6
2

0
0

0

i
X 8

°1
1

!

0
1

8
-0

;

X 6
°L

E

|
6

4
8

;

sa
yse

t)
i

!
)

!
:

:
|

a
m

e
m

K

m
m

m
m

m

T
T

T

N

H
E

m
m

m
i

i
(A

TIR
IS

®
JL)

}
(IN

T
O

S
q

R
)

|
(A

T
IR

IA
Y

)
|

C
IN

IO
SG

Ee)
|

9
3

}

!
T

yezuy/3¥82Z

|
ra

z

;
3

7
8

2

;
IH

P
Z

U
Y

;

T
ye

zu
y

i
tU

O
TIR

U
N

G

i
;

H

H

;
:

H

|

l e
a

E

e
te

E

t
b

t
aot 2000 ere tn con on nm | 40 S040 2000 orn re a0 mo se sn ee00 en 200 ann 0000 0000 an

av£0°-0
xX 0°007%

v08°-vE

U

%

 0
°0

0
1

0

0
0

7

aw
w

ng
4

}
1

)
)

|
|

!
)

!
!

)
:

Po
1

88£0°0
|

X 6°99
1

G
6S"ZZ |

x Z'8S
;

)
)

!
)

EE
f a

A

i t
)

09v0°0
|

X £°81
|

z69"9
E

2
8

 £14
I

!
!

1
K

e
e

n
|

}
90Z0°0

|
X v°91

!
Z1L°S

a
PAY:

;
)

)
!

!
=="

m
m

m
—

—
—

—
—

!
|

C
ATIPIEL) |

(INTO
SQ

E) |
(ATIeTAL)

| TyeZUY/3ITAZ |
378Zz

)
3raz

!
IYPZU

Y
)

|
)

(antosqe)
|

yezuy
|

S
S

m
m

o
u

a
sa

Im
E

m
m

E
a

E
m

m
se

s

aw
sa]

"ru
n

¢

W
W

E3U
O

F3IN
U

N
G

H

8
9

0
0

7
0

U

X 0

°0
0

1

{
£

£
8

°9

H

X 0
7

0
0

7

:
0

0
0

1

H

aw
w

ns
{

H

U

H

:
:

z
o

c
o

r
| T

rsa
cso

n
E

e
ssn

R
E

s | T
re

a
E

E
E

S
S

N
S

E
S

| S

C
e

E
srsssn

e
s

| s
c

re
a

m
s

| S

E
S

R
ITITTE

A
T

B
Z

T

R
E

S

}
U

H

H

}

i
H

9

8
0

0
°0

H

FAK A

U

6

6
6

7
9

H

X

2°8%

;
ce

s
:

a
w

.a
j

"T
U

N
H

{

1
H

;

H
H

H

“1

m

n

K
m

I
E

a

R
E

;
9

2
0

0
7

0

{
X 0

°8
1

H

LCA IS

|

%
 6

7
T

1

6
E

1

i
u

a
z

H

H

H

H

U

i
H

m

m

“1

=
73

m
m

B
n

H

6
2

0
0

0

H

Z
8

°1
1

H

0

1
8

-0

;
X 6

"L
Z

;

6
4

T

H

sS
ayse1]

!
H

U

i

{
¥

J
F

s

A

m
H

{|

(A
T

IR
I®

L
)

|
 (IN

T
O

S
q

P
)

|
(A

T
IP

IB
J)

|
C

3IN
ITO

SG
E)

|
9

3
I

T
ye

zu
y/3

¥
8

Z

|
3

1
8

2

U

37182
:

ye
zu

y
;

IY
E

Z
U

H

a
tU

O
T

IR
U

N
:

H

{
;

:
:

H

H

U

m
e

m
p

n
m

a

4
m

m

 m m m
 am

m
m

}
8

v£
0

°0

U

xX 0
°0

0
1

|

v0o8- v
e

i

xX 0
°0

0
1

|

0
0

0
1

A

aw
ung

H

;
;

:
H

e
H

H E
E

R
E

E
R

sro
S

o
ss

| S
E

C
E

IC
O

E
E

S
T

E
S

|

C
E

S
S

E
S

S

N
E

E
S

 | T
E

IS
S

E
IS

IE
E

E
E

S

| A
E

E
E

C
E

S
R

E
S

E
S

S
 |

S
S

IS

IR
S

S
E

S
T

E
E

N
N

E

;
{

U
I

{
H

:

3
8

8
g

£
0

°0

|
xX 6

°9
9

a

S
6

5
°2

2

!
Xx Z

°8
s

|
ca

s
:

A

"jrT
un

}
U

H

;

:
;

;
!

H

J R
a

|

e
T

1

ER
H

o

9
v0

°0

U

X
4

°8
1

H

e

v
"

9
H

1

°0
1

H

114°

H

u
a

tyiz
}

U

!
}

|
;

}
H

}

-
- t

m
e

r
H

i
=

a R
a

4
3

9
0

2
0

°0

¢
xX v°9

1

t
L

1
L

°S

H

X L
°L

2

H

£
4

2

;
sa

yse
7

)
}

:
;

1
H

U

H

1
1

=
=

1

:
m

E
m

m
m

E

T
T

T

T
T

E
n

i
!

C
A

T
IC

IS
L

)
|

C
IN

IO
S

G
E

)
|

(A
F

IE
T

a
L

)
|

C
IN

TO
S

G
E

)
|

W
W

i
IY

P
Z

U
Y

/3E
8Z

|

ta
l r4

H

IT
Z

:

ye
zu

y
:

1
ye

zu
y

:
EU

O
TIM

U
N

G
H

U

0

i
}

i

99 we ue en Ge De we

te
S

ay rr om
 y

m
 rn

 naar
H

H

H

H

S
6

0
0

°0

H

%

0
7

0
0

1

H

?
9

v" 6
H

%

 0
°0

0
T

:

0
0

0
t

:
[

[1]
[

4
1

i
H

i

H

H
USE 30 SI SE 200 MO SUN OSS

IE
 U

N
S | ODE ES S

O
N

N
E

 U
N

S
E

R
E

N

| S
E

N
S

E

E
E

E
]

H

H

H

H

H
LO

0T
0"0

U

ZZ 8
°8

9

}
v

0
"?

H

%

£

8
5

H

2

8
s

:
|

H

:
:

H
=

7
1

"
m

K

m

E
E

R

E

H
9

£
1

0
°0

H

%

 0
°0

2

{
S

6
8

" 1
{

ZZ 1
°v1

H

ive

H

H

.
;

H

H

H
S

e
m

m
m

n

t
E

a

|
n

n

H
E

H

&
4900°0

1
ZX 9

°9
1

H

L

9
8

1

U

%
 L

L
C

!

L
L

:

:
{

H

U

H

H
=

-
a

—
—

—
—

—
—

 m
m

O
S

T

T
T

 m
m

m
 e

m

H
E

i

1
C

ATEeT8@
U

M
)

|
C

IN
IO

S
G

E
)

|
(C

A
T

Z
F

I@
J)

|
C

IN
TIO

C
EgE)

|
' IY

P
Z

U
Y

y/3
1

8
Z

|

3
1

9
2

H

37892

H

Iye
zu

y
H

T

ye
zu

y
H

H

H

H

H

H

;
H

—

H

=

=
=

i l A

t t a
i n

H

e
t

H
€

L
1

0
°0

{

%
 0

7
0

0
7

H

FA S

A
A

H

%

 0
7

0
0

1

H

00071
H

H

H

H

i
H

208 200% SER ZUR ZI DENE ZU I
SC 3M

 42 OO ; E
E

M
E

S
E

E
E

E
E

E
D

G

| a
E

re
rre

S
E

S
T

E
R

| S

n
sa

E
E

re
o

n
E

E
s

| s
e

s
s

|

H

.
{

H

i
H

0
2

0
°

0
|

Xx v 8
9

H

1

8
4

°1
1

H

%

2 8

s

H

ce
s

!
i

H

H

H

H
!

m
t

R
e

t
]

in
l

t t y
-=

=
1

v2
1

0
°0

{

X

1
°9

1

H

Y
Z

v"Z

{
Xx 6

°8
1

;

6£Tt
H

H

H

H

H
a

3
ped I n

i a

E
a

!

8
0

1
0

°0

1
X

S

°L
Y

4

4
0

0
°

H

X
6°4LT

U

6

L
Z

!

|
;

H

;
H

{

t
H

-

“1

=
-=

}

-
7

}
I

C
A

T
IR

IS
&

)
1]

C
IN

T
O

S
Q

E
)

|
C

A
L

Z
E

I®
U

)
|

(IN
T

O
S

qQ
E

)
|

IY
P

Z
U

y/3
7

@
Z

|

37502
{

T
a

z

{
T

ye
zu

y
H

ye

zu
y

H
{

H

i
H

e
n

a

a
w

sa
|

"3

sSayse1n

T
un

Shes cust Gaur Grin obeh Sane Smad sien Bom open 0000 0000 M
d Sek Sere SFOS Buss Su

LM
IN

A
N

O
N

-IN
H

O
-W

H
2U

O
LN

U
N

y

aw
ua]l

*}
ru

n

H
S

U
H

-93

99 we ue en Ge De we

te
S

ay rr om
 y

m
 rn

 naar
H

H

H

H

S
6

0
0

°0

H

%

0
7

0
0

1

H

?
9

v" 6
H

%

 0
°0

0
T

:

0
0

0
t

:
[

[1]
[

4
1

i
H

i

H

H
USE 30 SI SE 200 MO SUN OSS

IE
 U

N
S | ODE ES S

O
N

N
E

 U
N

S
E

R
E

N

| S
E

N
S

E

E
E

E
]

H

H

H

H

H
LO

0T
0"0

U

ZZ 8
°8

9

}
v

0
"?

H

%

£

8
5

H

2

8
s

:
|

H

:
:

H
=

7
1

"
m

K

m

E
E

R

E

H
9

£
1

0
°0

H

%

 0
°0

2

{
S

6
8

" 1
{

ZZ 1
°v1

H

ive

H

H

.
;

H

H

H
S

e
m

m
m

n

t
E

a

|
n

n

H
E

H

&
4900°0

1
ZX 9

°9
1

H

L

9
8

1

U

%
 L

L
C

!

L
L

:

:
{

H

U

H

H
=

-
a

—
—

—
—

—
—

 m
m

O
S

T

T
T

 m
m

m
 e

m

H
E

i

1
C

ATEeT8@
U

M
)

|
C

IN
IO

S
G

E
)

|
(C

A
T

Z
F

I@
J)

|
C

IN
TIO

C
EgE)

|
' IY

P
Z

U
Y

y/3
1

8
Z

|

3
1

9
2

H

37892

H

Iye
zu

y
H

T

ye
zu

y
H

H

H

H

H

H

;
H

—

H

=

=
=

i l A

t t a
i n

H

e
t

H
€

L
1

0
°0

{

%
 0

7
0

0
7

H

FA S

A
A

H

%

 0
7

0
0

1

H

00071
H

H

H

H

i
H

208 200% SER ZUR ZI DENE ZU I
SC 3M

 42 OO ; E
E

M
E

S
E

E
E

E
E

E
D

G

| a
E

re
rre

S
E

S
T

E
R

| S

n
sa

E
E

re
o

n
E

E
s

| s
e

s
s

|

H

.
{

H

i
H

0
2

0
°

0
|

Xx v 8
9

H

1

8
4

°1
1

H

%

2 8

s

H

ce
s

!
i

H

H

H

H
!

m
t

R
e

t
]

in
l

t t y
-=

=
1

v2
1

0
°0

{

X

1
°9

1

H

Y
Z

v"Z

{
Xx 6

°8
1

;

6£Tt
H

H

H

H

H
a

3
ped I n

i a

E
a

!

8
0

1
0

°0

1
X

S

°L
Y

4

4
0

0
°

H

X
6°4LT

U

6

L
Z

!

|
;

H

;
H

{

t
H

-

“1

=
-=

}

-
7

}
I

C
A

T
IR

IS
&

)
1]

C
IN

T
O

S
Q

E
)

|
C

A
L

Z
E

I®
U

)
|

(IN
T

O
S

qQ
E

)
|

IY
P

Z
U

y/3
7

@
Z

|

37502
{

T
a

z

{
T

ye
zu

y
H

ye

zu
y

H
{

H

i
H

e
n

a

a
w

sa
|

"3

sSayse1n

T
un

Shes cust Gaur Grin obeh Sane Smad sien Bom open 0000 0000 M
d Sek Sere SFOS Buss Su

LM
IN

A
N

O
N

-IN
H

O
-W

H
2U

O
LN

U
N

y

aw
ua]l

*}
ru

n

H
S

U
H

-93

>
e

e

0
me en § eve eet em sm

 a
fe

o
 ens

t
s

t
E

d
re em

£L600°0
|

%
 0

°0
0

1

:
899° 6

Xx 07001
000T

:
sw

ung

S
E

Z
E

R
Z

T
E

R
E

R
E

R

m
E

xE
=

ss=
ssa

n
m

; R

Z

U
 EN EEE EEE E

E
E

! E

E
E

E

E
E

} E

R
Z

R
E

D
D

E
R

R
E

E
R

: BEE SHE SR

 DS R
EISE E

E
E

E

E
E

a
'

:
2

:
1£00°0

!
%

 8°8£
:

IS
L

°¢

;
%

 0°£S

ı
0£S

:

A

"jT
u

n

S
S

N

—

S

E

A
ee

69¢0°0
X S

°£S

:
0L1°8

X E
6

1

E
67

;
u

a
tn

L
z

SR

S
O—

F

R

J
A

A

ZZE0070
|

X L
L

i

L
vL

to

xX 8°4C

848
S

a
yse

r)
S

A

F
E

—

A

E
R

a

a
n

N n

n
i

C
A

P
E

)
|

(IN
TO

E
Q

E
)

|
C

A
F

P
L3J)

|
(}n

fo
sq

e
)

|
d0y

T
yezuy/31az

|
3782

i
37587

i
T

yezuy
i

Iye
zu

y
i

suoTIuU
N

ng
i

:
i

i
|

m
e

e
e

ee e
m

1
eo O

d
 a—

—

;
4

2
S

O
W

La)] uU
B

IS
U

TIA
TY

S

e
p

a

b
u

se

;
Z

L

:
sa

w
sa

]
uailssaounb

sa
p

 a
b

u
a

e
n

48°C

H
 S

U
N

yaTam
qy-P

uepue3S

;
9

1
°,

:
835858045643) a

yo
trirU

ya
syo

u
n

g

;
0001

:
a

w
ıa

) u
a
ıb

n
a

zıa

aap T
yezuy

H

C
ZAN

N
-W

N
IIN

TO
)

©
 4078418U

890-W
IL8ISTTE4N

Z
S

[8}}31W
 U

8U
013)U

N
J)--SU

O
TIEN

TSTIU
N

 uG
A yaT

albiagy

an an An e t mE DE me ce An Le BE ea a a Fe La

H

1
5

£
6

0
0

°0

H

Z
0

°0
0

1

H

8
9

9
°6

H

X%

 0
7

0
0

1

:
0

0
0

1

H

a
w

u
n

g
H

H

{

H

H
su

sssIsE
n

E
E

e
n

| se

sssssS
ssssn

a

s
s

e
s

s
e

s

| w
e

n
n

| s

e
m

| m

m

H

:
H

:

:
1

2
0

0
7

0

U

Z 8
°8

¢

:
1

8
4

°
;

xz 0
°€

S

i
0

2
4

:

a
w

u
a

]
"jrT

U
N

U

H

H

i
H

H

=
=

a

a
m

e
m

e

m
m

m
m

m
m

{TTT

E
m

m
e

 m
m

m

{T
T

T
m

n am
 m

 m
w

6
9

2
0

°0

H

xX S
°£

S

:
O

LE
" G

S
H

LZ C

6
1

|

C
61

:
u

a
T

R
iz

H

H

L
E

'

i
h

te

..—
. H

s

m

m
m

m
m

e
m

e

m
m

m

m
em

e m
e

m
e

} tt

00 fh Sam m
m

 am
 main ann

H F
I IS CUT ST Ser hen enn om me Sm et om nm H M

m

m
m

m

a
m

a
sva a Cm san

£
2

0
0

" 0
H

X L

L

H
A

£

4
+)

U

X 8
7

2
5

;

8
4

E

|
sS

ayse{[3
;

H

;
H

H

=
n

f
u A

k

d
r

m u e
e

S

e
h

e
k

A

n
k

—

1
C

AT3ZPI@
4)

|
C

IN
IO

S
G

E
)

|
(A

T
P

L
)

|
C

IN
TIO

SG
E)

|
da0y

T
ye

zu
y/3

¥
8

z
|

318Z

1
3

1
8

7

{
ye

zu
y

H

ye
zu

y
i

sU
O

TIN
U

N
G

H

H

H

o
d

{

§
m

m

m
t

tt
o

t
tt

ot tt
e

e

e
e

aan om om cra 0000 sme 0000 Som on Fam 0000 000 So Sm i

So tS
 A000 a

00 (000 0002 wm aie oi os

!
.

H

v
3

S
8aw

W
w

lal
U

a
jlsu

ta
l)y

S
e

p

a
ß

u
a

r
a

.

:
V

4

:
sS

a
w

e
a

|
u

a
ilssa

o
n

.b

s
a

p

a
b

u
a

e

:
.8°2

1 bunyotam
qy-paepuels

4:
9

1
°¢

H

a

ssa
o

csb
w

a
a

}
S

yo
IT

T
IIT

u
yo

sya
u

n
g

[!
0

0
0

1

:
a

w
sa

jl u
a

ib
n

a
za

e

sa
p

T

yezU
Y

H

C
Z

A
N

M
-W

N
I L

N
G

)
2

4
0

} P
a

d
U

B
O

-W
ID

IS
T

T
I®

IN
Z

S
{913TW

 U
BU

O
TIN

U
N

I-SU
O

TIER
TSTU

N
 LO

A YyITaTburap

Be DR ER DE oe DE em ee A " EE ZU ee ae Po Lod

4
5

0
0

7
0

U

%

 0
”0

0
T

H

£

L
9

°S

H

X 0°00%

:
0

0
0

1

}
aw

w
ng

|
:

!
Z

E
T

E
Z

E
X

C
T

E
IR

E

(|ISSUE SUNG ON U EOSDOESDSNASEZUR DANN | so
sso

csE
szsss

| S
xssrsssse

e
ss

| ssrse
o

n
o

o
rsse

s
|

T
E

oE
E

 E
m

m

SUN M
U

 M
AN

S

U

!
{

H

i
8

0
0

°
0

U

X 9
°8

4

H

2
7

9
" V

;
Z

0
°£

S

H

0
£

5

H

sw
.sa

l
"j3TU

n

DSRS JUS SAS SUSU SN SRSTN
N

N
E

R
S

E
v9

0
0

°0

H

X
£

7
0

1

H

?
8

5
°0

!

%
 A

!
H

VET

i
u

a
ty<

z

217
=

S
E

a

6
1

0
0

7
0

H

2

1
°1

1

1
6297"0

:
Z P

°E
L

|

G
E

L
'

S
aysS

er)
H

H

H

!

;
H

:

E
R

S

a
E

a

E
m

m
e

m

m
|

cA
rze

ra
u

)
|

C
IN

TO
S

G
E

)
|

C
ATFZEL@

J)
|

C
IN

TIO
S

qE
)

|
9

3
T

ye
zu

y/3
1

8
Z

|

3
1

8
2

H

318Z

i

T
ye

zu
y

!
T

ye
zu

y
H

R

U
O

TIR
U

N
G

H

H

{
U

i

H

H

=
{

=
a

H
a

LE
C

O
TO

H

%

 0
7

0
0

1

H

L
E

L
E

T

H

Z 0
°0

0
T

{

0
0

0
1

i

a
w

u
n

g
U

|

H

H

{
S

O
T

T
T

M
V

T
A

M
Z

IT
R

 | T
N

T
V

R
T

V
U

E
D

N
E

N
S

 | C
IH

E
n

ssa
ca

sE
z

| E
cso

sssm
rre

ss
| o

e
 NROU NUN N HUHNHU UEU

 SS | sro
ssssse

e
m

m
e

m
a

m
n

s

H

U

H

H

H
8

8
2

0
" 0

U

Z
Z

°9
9

H

G

EC
 S

T

H

X 0
°g

S

H

o
rs

;
8aw

u3aı "4}tuß
H

H

U

;

H

;
g

H

;
;

H

I
R

n

R
e

{T

T

m
m

m
8

Z
£

0
”0

U

X

S
°8

1

I
~

vé
L

°y
1°

25 A 1
U

VET

H

u
8

1

AZ
t

:
{

H

!
H

H

T

e
T

T
 TTT T

m

m
re

m
e

e
e

H

E
m

m
mmm m

m
Z

2
1

0
°0

}

X
 £

4
1

H

v6

0
°Y

|

X 9
°€

€

;
P

L

;
S

a
yse

r)
i

H

H

H

|
H

)

E77
Ia

in

R
e

i t h
B

a

A

=
-

!
C

A
T

IP
IS

L
)

|
C

IN
TO

S
G

E
)

|
C

ATZET@
U

L)
|

C
IN

TITO
SG

E)
|

W
W

1
Y

8
zU

y/3
7

8
Z

|

3758Z
{

IT
Z

{

T
ye

zu
y

!
ye

zu
y

H

su
o

triju
n

g
}

:
3

H

{
!

vr or ©
 0000 E70 Sam w

v } SS 000 005 5000 Som 0000 0205 a
Dann Sie C

n nn sur [TS
Sa S

i
SMS S000 SHER SIE 2000 CUS SEIS Same SE SASS SD

 000 due !

b
a

l4

U

i
i

}
;

4
5

0
0

7
0

x

0
°0

0
7

}

L
4

9
°S

H

X 0

7
0

0
1

!

0
0

0
1

|

sw
u

n
g

H

H

|
;

H

i
i

:
!

Izu
sszzsza

n
a

e
n

|

IE
E

E

p
E

S
E

E
R

T

| IC
T

Z
E

S
T

T
IT

IT
E

S
D

| S

E
S

T
T

IS
T

E
S

IS
E

S

| W
E

E
Z

E

|
T

E
S

T
E

R

T
E

sm
m

m
sE

ss
|

H

U

U

i
H

H

|

}
v8

0
0

°0

i
xX 9

°8
Z

H

£

9
9

"Y

i
X 0

°€
S

!

0£S

:
a

w
Ja

j
“jru

n

|
U

;

:
|

‘
!

;
{

H

|
;

U

I
R

a
E

E
a

4

nn sr a wa a an am man me au=
|

yv0
0

°0

U

X
£

°0
1

U

?

8
5

°0

!
X

V
IE

L

:
VET

i
u

a
iyiz

H
i

!
H

i

:
:

{
:

i=

1
=

iT

J
m

m

 m

4
m

nn nm mm
T

H

6
1

0
0

°0

H

1
°1

3

1
6

2
9

°0

:
xX 9

°€
€

|

D
ELL

!
sa

yse
rn

!

H

4
!

H

!
i

}
}

}
;

=
i

E
e

e
e

m

m
 nm en

n
m

a a L
E

T
m

m
m

m
e

mm
m

 m
}

|
C

(A
T

IR
IaL)

|
(IN

T
O

S
Q

E
)

|
C

A
T

Z
P

L8J)
|

C
€C

IN
IO

SG
E)

|
9

3

!
i

T
ye

zu
y/3

ta
z

|
378Z

;

3
7

8
2

;

1Y®
eZU

y
|

ye
zu

y
H

3

U
O

T
IU

N
G

!

!
!

!
_

4
bo

1
!

}
U

3

=
i

a
|

U

LE
Z

O
°O

{

%
 0

°0
0

7

H

L
E

L
tE

T

|
X 0

0
0

1

|
0

0
0

1

i
aw

w
ng

:
}

I
U

;

|
|

!
|Z

o
ca

n
a

E
E

A
R

N
T

E
S

|

E
R

E
C

A
T

R
E

V
C

X
A

N
T

 |
U

IN
V

E
E

C
A

A
T

IZ
E

E
 |

S
IT

E
T

MUS UN NUNUN |

E
T

R
B

E
T

T
R

R
IIZ

T

|
S

S
S

S
S

S
E

S
S

S
[D

E
D

W
R

E
S

 |

H

!
U

U

{

!
‚ 4

U

8
8

Z
0

”0

U

X
Z

°ve

U

6
£

2
°S

T

i
Xx 0

°g
s

1
0

£
S

i

3
0

.8
1

“jrU

n

|
!

i
;

{
|

:
H

}
:

a
H

t t

t e
a

R

i
A

}
8

2
£

0
°0

!

xX S
°8

1

!
7 M

6
L

'Y

i"
%

 V
E

IT

U

VET
:

u
a

tyiz
i

}
|

H

1
!

!
;

}
1

H

=
=

h

t
E

E

T
T

A
 TTTTTT

=
;

U

ZZ210"0
U

xX £

°L
1

U

v6

0
°v

{
xX 9

°¢
L

!

9
£

L

;
sa

yse
iy

|
}

{
H

U

|

i
|

H

!
.

U

I
IE

 A
a

a

N

C
a

=
3

U

§
C

A
T

IP
184)

|
(IN

T
O

S
Q

E
)

|
(A

T
R

IA
L

)
|

C
IN

IO
S

G
E

)
|

W
W

i

I
T

Y
P

Z
U

Y
/3E

8Z

|
i

370Z

U

I4P
Z

U
Y

U

ye

zu
y

H

guoT
IjuU

ng
H

}
}

1
U

;

i

=
U

}

!
X 0

°0
0

1

U

v6
"?

H

{
;

H
H

6

9
0

0
°0

i

%
 0

7
0

0
1

H

0

0
0

1

i
sw

u
n

g
}

U

;
{

i
:

H
 80 UN DAS Z

E
N

 SAN M
N

 U
N

S ER S
E

E

|
R

E
E

a
E

E
R

A
R

T
R

D
IN

S

|
P

E
N

A

]
R

N
E

n
m

s
S

S
m

a
n

n
s

n
s

|

p
e

r
m

m
m

s
E

m
T

E
m

E

E
E

E

E
E

E

E
E

F

E

te

|
.

H

!
;

!
i

H

£
6

0
0

°0

H

X 9
°0

4

Kb
5

0
6

°V

{
xX 0

°E
S

:

0
£

S

|
A

"T

U
N

;
:

|
H

:

:
H

-1

I

E
a

E
E

m

e

m

n
n

a

H
E

m
m

mm
m

 m
—

—
—

}
£

8
0

0
°0

H

X 1

°9
1

;

S
T

I Tt
;

X
V

E
Y

;

v£
1

;

U
u87A

Z
H

U

{

i
H

;

H

"1

a
l

a
m

e
E

m

H
E

{T

T
T

m
m

m
E

m
m

;
Z

2200”0
H

X

£
°£

1

R
i

£
2

6
0

H

%

 P
°S

E

i
e

g

i
sa

yse
ld

H

;
:

}
!

!
l

H
a

tm

T
T

T
D

a

m
m

{T

T
T

T

e
m

{T

T
T

 mm em
 mmmm

m
m

!
I

(A
T

Ie
Ia

d
)

|
C

IN
TO

S
G

E
)

|
(A

T
IR

IB
L

)
|

(IN
IO

S
Q

E
)

|
LM

IN
N

O
N

-IN
H

O
-KW

W
{| T

ye
zu

y/3
¥

sz
|

I ta
z

i
IB

Z

i
ye

zu
y

!
T

ye
tu

y
i

tU
C

T
IjU

N
G

}
|

:
}

U
R

i

|

H

a
n

i h
e

h
e

E

E

T
o

m
s

=
vS

1
0

°0

{
X 0

°0
0

1

U

IBLE S
T

X 0°00%

:

0
0

0
1

aw

w
nsg

[]

%3’1]

P
A

A

A

H

 b
b

A

A

A

} S
E

m
E

a
R

E
m

m
m

E
a

IR
n

E
R

E

H1[]11J

Tyezuy

!
;

H

H
H

H

H

i
}

H
!

1
0

2
0

°0

H

xX £
°6

9

}
v99°0T1

{
XZ 0

°€
S

|

0
5

5

A

"3TuU
n

{
U

3

!
1

U

H

1
i t

f e
s

ta
te

H

E
H

S

£
1

0
°0

H

X

L
T

}

2
0

8
”T

!

X
V

E
T

!

ve
r

i
u

a
iR

iz
}

;
!

1
:

H

1
H

4

H
a

747]
E

n
i

I
i

Ia
m

n
mmm m

m
}

£
8

0
0

°0

1
.

%
 6

°8
1

!

E
1

6
"

!
X "L

E

H

E
L

!

sa
yse

y)
}

H

H

!
H

U

3
U

!

=
7

}
H

7

4
7

7

m
n

m
 m

m
}

’
ji

(A
T

IP
T

IS
L)

|
(3IN

TO
SQ

Ee)
|

(A
T

IR
Ia

L
)

|
(InTO

osqQ
e)

|
H

S
U

H
-93

3 I4Y®
PZU

N
/3T@

Z |
1

1
8

2

3
378Z

!

}
T

ye
zu

y
H

u

o
T

IR
U

N
G

}
H

!

i
H

|

_
a

IND —
 ve > E

c

SED III DD w
v.

we an on on ee >.. . nF .

-—
—

 n
n

o

rf
SE eer oom Sam sem tn Sees S006 Sim eR

 Re PVP ENS PHD e
i SES me mae ;

3
|

U

H
H

6

9
0

0
7

0

X 0
°0

0
1

H

£

v6
°9

U

X%

 0
°0

0
T

H

0

0
0

1

H

aw
w

ng
H

U

i
H

H

H

{

H
{e

ra
s

e

| S
E

E
E

T
A

R
N

A
T

T
IN

S

| IN

Z
O

N
E

 Z
E

IT
E

N

|
o

s
s

D

N
A

| m

s
n

| S

e
n

n
a

!

H

|
H

H

H

;

;
H

£

6
0

0
°0

H

%

 9
°0

4

H

S
0

6
°Y

;

X 0
”£

S

H

0£S

i
sw

Ja
jl

“jyu
n

|

H

H

:
H

:

H

H
H

i

!
T

T

ER T
e

{T

T
T

m
m

m
H

£

8
0

0
°0

U

ZZ 1

°9
1

H

S

IT
 IT

I
28 A 1

)
H

VEIT

H

u
a

z

H
H

3

H

i
:

;
H

H

{
H

=

"3

m

|
}

£
2

0
0

°0

!
X

£°FET
7

L
2

6
°0

;

X
9

°£
E

H

P

LE
.

;
sS

a
yse

r)
H

H

H

H

H

H

;
:

}
"3

=

R
a

m
n

"4

"
=

R
E

1

m
e

n
|

}
1

 C
ATZEeT@

4)
|

C
IN

TO
S

G
E

)
|

(A
T

IR
IS

L
)

|
C

IN
IO

S
G

E
)

|
1Y

3A
N

O
N

-IN
H

O
-W

W

|
I

IU
P

Z
U

Y
/3

1
9

Z

|
37822

H

T
A

Z

!
ye

zu
y

H

T
ye

tu
y

;
2U

07F
3U

N
)

U
U

i

}
{

H

!
H

dase w
n

 H

H

-—

ndeslendedendl
B

n
d

e
sd

e
n

d
e

n
d

e
n

b
e

n
d

e
e

dS
 tandenbasbaiod H

 SHE 000 0005 000 fe
ERS E00

m
e

 S
s

m

S

S
R

SO

 m
is dain m

n Ams SS =

?
8

1
0

°0

H

X 0
°0

0
1

U

1

8

S
T

Xx 0

7
0

0
1

U

0

0
0

1

aw
w

ng

T
ye

zu
y

!
!!

|
!

I
T0Z0°0 |

X £69
|

w
o

r
|

x o0°£s
|

oes
|

awsa) *3¥un
|

|
!

|
|

:
|

!
!

>
T

a
i

of D
a

t
|

 S£¥00
|

LIE

|
908°T

I
XZ ver

I
ver

ua TAZ
!

!
ro

o

1
!

1
I n

i t
ha

g m
em

e m
m

 m
em

m
I

¢800°0
|

.Xxeé4°8T |
zlez

|
%

x9'e£
|

9£f
|

sayserd
!

!
!

!
|

!
}

{
;

H

!
=

i=
"

T
E

S
T

mem m
 m

B
O

|

Ccapzeras) |
cıinzosqe) |

(ATIPIAL) |
(Intosqe)

|
H

SYH
-93

| TYeZUV/ITEZ |
w

ez
|

re
z

|
|

Tyeuy
1

auO
T3IAU

N
g

'
!

|
|

	BB_0001.jpg
	BB_0001.jpg
	BB_0001.jpg
	BB_0003.jpg

