Universitat Kaiserslautern
D-6750 Kaiserslautern 1, W. Germany

Fachbereich Informatik
Postfach 3049

atchi-Working Paper

W\

=g
< —
<

—)2

68

& ee

?«’g@

(

J
A

9\1_1

Frame and Heir: Clausal Frames
and Multiple Inheritance in

LISPLOG

Harold Boley
SEKI Working Paper SWP-87-09

Ne Se Se Se S

Se e Se e Ne “e Se Ne e Ne Ne o

Se Ye Se e

Se Ne Se Se NS4 S. S. e e Se e Yo S e Se e “e e Se v w.

Se Se Ss Sa Ne Se Ne ve Se v

FRAME AND HEIR: CLAUSAL FRAMES AND MULTIPLE INHERITANCE IN LISPLOG
Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany

SEKI Working Paper SWP-87-09, November 1987

Abstract: Two related extensions of LISPLOG are given. The first is a
frame-to-clause translator permitting 'variable-length slots'
and 'goal attachment', where the clauses generated from a
frame can be freely mixed with other clauses. The second is an
ako-slot interpreter proving a goal by recursively inheriting
information from its object's superobjects, for multiple ako
links employing LISPLOG's built-in depth-first search.

In two previous pages 'forward extensions' of LISPLOG's basic backward
machinery were presented [Boley 1987b 1987c]. Here we complement these
'productions' by another knowledge-representation formalism, a version of
'frames'. Taken together, these LISPLOG extensions can be regarded as the
kernel of a simple 'expert-system shell', LLshLL.0 (LispLog sheLL no. 0),
based primarily on the PROLOG part of our functional/logical language.

The 'frames extensions' considered here consist of a translator, frame,
and an interpreter, heir:

* frame generates a set of clauses from a frame description of an object,
with attributes of slots becoming predicates (relations) of conclusions,
and the object becoming copied into their first argument position;

* helr proves an arbitrary goal by first trying it as an ordinary LISPLOG
goal, and then trying to find an ako link from its first argument to any
superobject and continuing recursively with a new goal that employs this
superobject as a substitute for its first argument.

The frame and heir parts can be used in isolation as well as together.

Appendix III shows some facts and rules in the notation of LISPLOG's usual
clausal style; appendix IV augments these by some frames in the style of
the frame extension. Both can be consulted into the same database because
the clauses asserted via frame calls merge naturally with clauses asserted
directly. For example, the binary size relation created by the directly
asserted fact (size canary small) in appendix III can be augmented by the
frame-generated fact (size mouse small) in appendix IV. Thus, frame may be
regarded as a kind of ass usable for groups of clauses 1nvolv1ng the same
object as their first argument. Once asserted, the querying of all kinds
of clauses is done in the uniform notation of LISPLOG goals. For example,
while it is unusual for frames to keep a slot's attribute and value fixed
and asking for all objects characterized by it, after our translation a
query such as (size _obj small) binds _obj to canary and then to mouse,
without any difficulty. Let us remark here that our translator takes an
'object-centered' representation (frames) to produce a 'non-centered' one
(clauses), from which LISPLOG.Z2 immediately produces a 'relation-centered’
representat fon ('"PROLOG procedures' as shown, e.g., by the llasting command
through the grouplng of clauses around predicates); the Inverse direction
of translation (we might call it a 'frame decompiler') may also be useful,
but would have to perform a partial mapping from the subset of clauses or
relations producible by frame (e.g. excluding most kinds of rules).

While slots of frames normally correspond to binary relations, we allow
them to correspond to, and translate into, relations of arbitrary arities,
exploiting LISPLOG's "."-notation for variable-length terms; for example,
the goal (color bird . _which) succeeds with _which=(blue green yellow).
[The animal taxonomy in appendices III and IV employs relations of arity
greater than 2 for enumerating some default values of attributes like
color, but we can also employ, say, a ternary sell relation in the more
logical manner, as in the mini frame (frame mary (sell auto john)).]

In particular, slots consisting only of an attribute without any value
translate to unary relations; for example, (frame cat ... (clever) ...)

- -

Se Se Se Se Sa e

Se e Se e e Sa Se Ve Sa Ve w. we s,

Se Ss Na Se Ne e Se W Ne Ne Ne e s Se Ne S Se Ve Ve “So Se ~o

S Se Se Sa e Se Ve Ye Y& Se Yo s %o Ne Ss Se Ne Se Se S ve e e

becomes (ass (clever cat)), and can be queried by (clever cat . _w) with
_w=nil or by (clever cat). The well-known binary isa or ako relation of
‘semantic networks and frames, which we kept here (see below), may really
be an artifact of the lack of unary relations in these formalisms: One
might want to inherit to cat the properties of clever beings as well as
those reachable via ako (mammal and pet), or indeed generally replace
(frame ... (ako supercbject) ...) by (frame ... (superobject) ...) and
use all unary slots, (superobject), for inheritance. In any case, the
possibility of 'variable-length slots' in frames appears to be useful.
Another generalization that our frame concept inherits simply from its
implementation in a logical programming language is the permission of
non~-ground slot values, in particular variables. In the transformation
of an obj frame (frame obj ... (attr vall val2 ... valN) ...) into a
sequence of obj clauses, ... (ass (attr obj vall val2 ... valN)) ...,
each vall can either be ground or non-ground, whereas obj is normally
ground (if a frame describes a fixed object) and attr must always be
even a LISP atom (in LISPLOG.2 atoms are used for relation indexing).
A simple example is the last slot of the mammal frame in appendix IV,
which translates to the clause (ass (eat mammal _x-0)). [Of course, its
interpretation, "mammals eat everything”, would be overly general for
a biologist, and it i1s even more clear that indiscriminate inheritance
of such 'almost-universal' facts via ako links need not always lead to
satisfactory results.]

Our frames include a concept of procedural attachment more accurately
called 'goal attachment': The dummy slot value "@" marks a 'procedure'
(a 1list of goals) for computing the actual slot value, using "@" as a
distinguished result variable. More precisely, a slot of the form

(attr @ . . . (pred ... @ ...) . . .) can be logically interpreted as
(attr (epsilon (v) . . . & (pred ... v ...) & . . .)), where a version
of Hilbert's epsilon operator is used to denote one of the objects v

for which the pred goal conjunction holds. For example, the last slot of
the mouse frame in appendix IV (with two "@"-goals) can be interpreted as
(flee (epsilon (v) (size v medium) & (ako v animal))). Our translator
generates a LISPLOG rule for each such slot, in the example leading to
(ass (flee mouse _v-10) (size _v-10 medium) (ako _v-10 animal)). [The
variable _v becomes renamed to v-10 through the dynamic ass execution
on 'deduction level' 10.] Obviously, this attachment concept realizes
only "if-needed procedures”, which directly map into rules evaluated by
the backward méchanism of LISPLOG. Our forward extensions cited above
could be used for realizing "if-added procedures"™, even though these
would also suggest the introduction of a class/instance distinction not
utilized in the current frame concept.

The ako ("a kind of") relation can be employed like any other relation
(as in the second goal above), but it is distinguished by its special use
inside the inheritance interpreter heir: If the goal (_attr _obj . _vals),
given to heir, fails as an ordinary LISPLOG goal, heir enumerates the ako
superconcepts, _sup, of its first argument, obj, and then calls itself
for (_attr _sup . _vals), in the PROLOG-usual depth-first fashion. For
example, the heir-Iless goal (inhabit canary house) clearly fails since

no inhabit relation can be deduced for canary in the ordinary LISPLOG
manner; however, calling the heir interpreter with this same goal, i.e.
(heir (inhabit canary house)), succeeds via (heir (inhabit pet house)},
exploiting the 'sort information' (ako canary pet). The user has the
responsibility for ordering multiple ako facts in an 'optimal' fashion
(Just as for ordering any other clauses). So in the previous example we
had to pay for ordering the pet superconcept after the bird superconcept,
because this caused the depth-first strategy to unnecessarily explore the
bird hierarchy for non-existent inhabit information. Note that the ako
links form 'subtype hierarchies', used by heir to replace objects by their
superobjects within goals. These same hierarchies could also be used by
many object-level rules (instead of one heir interpreter) that explicitly
prove ako goals over logical variables, as exemplified in appendix III by
the rule (ass (inhabit _x house) (ako _x human)) as opposed to the fact
(ass (inhabit human house)); however, while this is sufficient for simple

-2 -

Ne Yo e Ne e ve Se S e So

Ne Ne Yo S Ne Se Ne N S e e

Ne Ne “e Ne Se “Se e S Se Sa ve N

’

goals like (inhabit child house), for multi-level hierarchies it would
require an explicit formulation of the transitivity of the ako relation,
a potential source of non-termination if done naively.

Perhaps the main advantage of inheritance systems like heir is the economy
permitted by storing general information with the highest superconcept to
which it applies and still allowing exceptional information to be stored
for certain subconcepts. A well-known example is the slot (inhabit land)
stored with the mammal frame and the slot (inhabit sea) stored for the
whale frame in appendix IV: Requests like (heir (inhabit mouse _what))

and (heir (inhabit cat _what)) bind _what to land via mammal inheritance,
and (heir (inhabit whale _what)) binds _what to sea directly [as usual,
the whale request will also mammal-inherit _what=land if pressed for a
'second answer' via LISPLOG's more command] .

Of course, ako links need not stem from frames but can be directly input
as facts; however, the usual convention is to introduce ako links as the
first slots of every frame.

Another optional interaction between frame and heir is the use of heir
calls in one or more goals of a slot's goal attachment. For example, our
previous goal attachment could not be queried like the explicit mouse slot
(flee cat) because (ako @ animal) will not succeed for cat; on the other
hand, the cat slot (chase @ (heir (size @ small)) (heir (ako @ animal)))
is queryable like (chase mouse) because (heir (size @ small)) succeeds
(trivially) for mouse and (heir (ako @ animal)) succeeds (non-trivially)
for the same object by going up one step to its mammal superobiject.

The reader may consult appendices I and II for complete details of the
frame and heir implementations. It should be noted that the second clause
of frame employs LISPLOG's is primitive to call FRANZ LISP's function
subst to replace "@" by " _v" on all levels of a rule generated by goal
attachment. The extra def macro definition of frame serves only to permit
frame to operate also (as a LISP function call) during consult commands,
i.e. to allow reading in frames from files. For instance, the reader is
encouraged to consult this file into LISPLOG, perform a listing of the
clauses read into the database, compare the frame-generated clauses with
the frames in appendix IV, query them with examples as given in the body
of this paper (perhaps tracing the computations using spy), and adding
other frames interactively.

References (orders: lisplog@uklirb.UUCP)

[Boley 1987b] H. Boley: Fone and Fall: Forward-with-Backward
Chaining in LISPLOG. Universitaet Kaiserslautern,
FB Informatik, SEKI Working Paper SWP-87-03, June 1987

[Boley 1987c] H. Boley: Goal: Backward-with-Forward
Chaining in LISPLOG. Universitaet Kaiserslautern,
FB Informatik, SEKI Working Paper SWP-87-04, June 1987

; Appendix I: The frame-to-clause translator

(ass (frame _obj))

(ass (frame _obj (_attr mark . _goals) . _slots)
(eg mark Q)
(s _assert (subst _v @ (list (_attr _obj @) . _goals)))
(ass . _assert)
(frame obj _slots))
(ass (frame _obj (attr . _vals) . _slots)
(or (null vals) (neq (car _vals) @))
(ass (_attr _obj . _vals))
(frame _obj . slots))

(def frame (macro (frm) (list 'n-solutions (list 'quote frm) 1)))

-3 -

; Appendix II: The ako-inheritance interpreter‘

(ass (heir _goal) _goal)

(ass (heir (_attr _obj . _vals))
(ako _obj _sup)
(heir (_attr _sup . _vals)))

; Appendix III: Some sample clauses

(ass (ako canary bird))
(ass (ako canary pet))
(ass (ako budgerigar bird))
(ass (ako child human))

(ass (size canary small))
(ass (sound canary warble) (happy canary))
(ass (can bird fly))

(ass (color canary yellow))
(ass (color bird blue green yellow))

(ass (inhabit pet house))
(ass (inhabit _x house) (ako _x human))

; Appendix IV: Some sample frames

(frame mouse
(ako mammal)
(size small)
(color gray)
(flee @ (size @ medium) (ako @ animal)))

(frame cat

(ako mammal)

(ako pet)

(size medium)

(sound meow spit)

(clever)

(color black brown gray white)

(chase @ (heir (size @ small)) (heir (ako @ animal)))
(flee dog))

(frame whale
(ako mammal)
(inhabit sea))

(frame mammal
(ako animal)
(inhabit land)
(suckle young)
(eat x))

