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Abstract
This paper presents an existence theory for solitary waves at the interface between
a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an
ideal fluid (of finite depth and in irrotational motion). The theory takes the form of
a review of the Kirchgässner reduction to a finite-dimensional Hamiltonian system,
highlighting the refinements in the theory over the years and presenting some novel
aspects including the use of a higher-order Legendre transformation to formulate the
problem as a spatial Hamiltonian system, and a Riesz basis for the phase space to
complete the analogy with a dynamical system. The reduced system is to leading
order given by the focussing cubic nonlinear Schrödinger equation, agreeing with the
result of formal weakly nonlinear theory (which is included for completeness). We
give a precise proof of the persistence of two of its homoclinic solutions as solutions
to the unapproximated reduced system which correspond to symmetric hydroeleastic
solitary waves.

Keywords Solitary waves · Hydroelastic waves · Nonlinear Schrödinger equation ·
Centre-manifold reduction

1 Introduction

1.1 TheMain Result

In this article, we examine the propagation of solitary waves on the surface of an ocean
under ice, regarding the water as a perfect fluid in irrotational flow and the ice sheet as
an elastic shell which bends with the surface without stretching and without friction
or cavitation between it and the fluid beneath. For this purpose we consider the model
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Fig. 1 An ice sheet on the free surface of a two-dimensional perfect fluid

derived by Plotnikov and Toland [33] using the Euler equations for inviscid fluid flow
and the Cosserat theory of hyperelastic shells (Fig. 1).

We suppose that the fluid occupies the region bounded below by a rigid horizontal
bottom {y = 0} and above by the free surface {y = h + η(x, t)}, where h is the depth
of the water in its undisturbed state. Travelling waves move in the x-direction with
constant speed c and without change of shape, so that η(x, t) = η(x−ct), and solitary
waves are localised travelling waves, so that η(x−ct) → 0 as x−ct → ±∞. In terms
of an Eulerian velocity potential φ, the governing equations for the hydrodynamic
problem in dimensionless coordinates and in a coordinate system moving with the
wave are

φxx + φyy = 0, 0 < y < 1 + η (1.1)

with boundary conditions

φy
∣
∣
y=0 = 0, (1.2)

φy − ηxφx + ηx
∣
∣
y=1+η

= 0, (1.3)

− φx + 1
2 (φ2

x + φ2
y) + αη

+ β

(
1

(1 + η2x )
1/2

[
1

(1 + η2x )
1/2

(
ηxx

(1 + η2x )
3/2

)

x

]

x
+ 1

2

(
ηxx

(1 + η2x )
3/2

)3)∣∣
∣
∣
y=1+η

= 0

(1.4)

and asymptotic conditions η → 0, (φx , φy) → (0, 0) as x → ±∞ (see Guyenne and
Parau [16]). The dimensionless parameters α and β are given by

α = gh

c2
, β = D

ρh3c2
,

where D is the coefficient of flexural rigidity of the ice sheet, g is the acceleration due
to gravity, c is the wave speed and ρ is the constant water density.

This formulation is unfavourable because of the variable fluid domain. It is, there-
fore, convenient to introduce the change of variable

ỹ = y

1 + η(x)
, �(x, ỹ) = φ(x, y), (1.5)
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Fig. 2 The linear dispersion relation for a fixed β0

which maps the variable fluid domain {(x, y) : x ∈ R, y ∈ (0, 1 + η(x))} to the
fixed strip R × (0, 1). Dropping the tildes for notational simplicity, one obtains the
transformed equations

�xx + �yy
1 + y2η2x
(1 + η)2

− 2�xy
yηx
1 + η

− �y
yηxx
1 + η

+ 2�y
yη2x

(1 + η)2
= 0, 0 < y < 1,

(1.6)

�y
∣
∣
y=0 = 0, (1.7)

�y

1 + η
+ ηx − ηx

(

�x − �y
yηx
1 + η

)∣
∣
∣
y=1

= 0, (1.8)

−
(

�x − �y
yηx
1 + η

)

+ 1

2

((

�x − �y
yηx
1 + η

)2 +
( �y

1 + η

)2)+ αη

+ β

(
1

(1 + η2x )
1/2

[
1

(1 + η2x )
1/2

(
ηxx

(1 + η2x )
3/2

)

x

]

x
+ 1

2

(
ηxx

(1 + η2x )
3/2

)3)∣∣
∣
∣
y=1

= 0

(1.9)

with asymptotic conditions η → 0, (�x ,�y) → (0, 0) as x → ±∞.
Let us briefly review the (formal) classical weakly nonlinear theory as it applies to

this problem. Figure2 shows the linear dispersion relation

α + βs4 = s coth(s)

for a sinusoidal wave train with wave number s. For each fixed value β0 of β, the
dispersion curve has a unique minimum at (s, α−1) = (smin, α

−1
0 ); the relationship

between β0, α0 and s = smin can be expressed in the form

β0(s) = 1

4s3
coth(s) − 1

4s2
cosech2(s), α0(s) = 3s

4
coth(s) + s2

4
cosech2(s),
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which defines a curve C in the (β, α)-plane parametrised by s ∈ (0,∞). Setting
α = α0 + δ2, β = β0, and substituting the modulational Ansatz

η(x) = δ
(

A1(δx)e
isx + Ā1(δx)e

−isx)

+ δ2
(

A2(δx)e
2isx + Ā2(δx)e

−2isx + A0(δx)
)+ · · ·

into Eqs. (1.6)–(1.9), one finds that to leading order A1 satisfies the nonlinear
Schrödinger equation

A1 − b1A1XX − b2|A1|2A1 = 0, (1.10)

where X = δx (see Appendix A for details of the derivation and formulae for the
coefficients b1 and b2). One finds that b1 is positive for all values of s, and there exists
a critical value s	 (numerically s	 ≈ 177.33) such that b2 > 0 for s < s	 and b2 < 0
for s > s	.

Suppose that b2 > 0, that is, choose s sufficiently small, or equivalently β0 suf-
ficiently large (corresponding to sufficiently shallow water in physical variables).
Equation (1.10) admits the family

A1(X) =
(

2

b2

)1/2

sech

(

X

b1/21

)

eiθ , θ ∈ [0, 2π)

of homoclinic solutions (solutions which decay to zero as x → ±∞), which corre-
spond to the solitary waves

η(x) = 2δ

(
2

b2

)1/2

sech

(

δx

b1/21

)

cos(sx + θ) + O(δ2).

These waves take the form of periodic wave trains modulated by exponentially decay-
ing envelopes; the wave with θ = 0 is a symmetric wave of elevation, while the wave
with θ = π is a symmetric wave of depression (see Fig. 3). In this article, we confirm
the predictions of the weakly nonlinear theory and prove the following theorem.

Theorem 1.1 Choose s ∈ (0, s	) and let (β0, α0) denote the point on the curve C
with this parameter value. For each sufficiently small value of δ > 0 and ν ∈ (0, 1),
the hydroelastic problem (1.1)–(1.4) with β = β0 and α = α0 + δ2 admits two
geometrically distinct, symmetric solitary-wave solutions (η±, φ±) which satisfy the
estimate

η±(x) = ±2δ

(
2

b2

)1/2

sech

(

δx

b1/21

)

cos(sx) + O(δ2e−νb−1/2
1 δ|x |)

uniformly over x ∈ R.
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Fig. 3 Symmetric envelope solitary waves (with scaled amplitudes and wavelengths)

1.2 Spatial Dynamics and the Kirchgässner Reduction

We prove Theorem 1.1 using the Kirchgässner reduction: the hydrodynamic problem
is formulated as a spatial Hamiltonian system and reduced to a locally equivalent
Hamiltonian system with finitely many degrees of freedom; homoclinic solutions of
the reduced system correspond to solitary waves. The method was introduced by
Kirchgässner [21] and has been used for many problems in fluid mechanics, in par-
ticular for water waves (see Dias and Iooss [6] for a review), and more recently for
water waves with vorticity (Groves and Wahlén [14, 15], Kozlov et al. [22], Kozlov
and Lokharu [23]) and ferrofluids (Groves et al. [11], Groves and Nilsson [12]). In this
paper, we review the method as it applies to hydroelastic solitary waves, presenting
various refinements and new features.

Our starting point in Sect. 2 is the observation that the Eqs. (1.1)–(1.4) follow from
the formal variational principle

δ

∫

R

{∫ 1+η(x)

0

(

− φx + 1
2 (φ

2
x + φ2

y)
)

dy + 1
2αη2 + 1

2β
η2xx

(1 + η2x )
5/2

}

dx = 0,

(1.11)

in which the variations are taken over η and φ (a modified version of the classical
variational principle introduced by Luke [25]); this observation is confirmed by the
calculation

δ

∫

R

{∫ 1+η(x)

0

(

− φx + 1
2 (φ2

x + φ2
y)
)

dy + 1
2αη2 + 1

2β
η2xx

(1 + η2x )
5/2

}

dx

=
∫

R

{

−
∫ 1+η(x)

0
(φxx + φyy)φ̇ dy + ((−ηxφx + φy + ηx )φ̇

)∣
∣
y=1+η

− (φy φ̇)
∣
∣
y=0

+
(
(− φx + 1

2 (φ2
x + φ2

y)
)∣
∣
y=1+η

+ αη + 1
2β

(
ηxx

(1 + η2x )
3/2

)3

+ β
1

(1 + η2x )
1/2

[
1

(1 + η2x )
1/2

(
ηxx

(1 + η2x )
3/2

)

x

]

x

)

η̇

}

dx,

where the formal first variations of η and φ are denoted by respectively η̇ and φ̇ and
we have used integration by parts and Green’s integral formula.
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We proceed using the change of variable (1.5), which transforms (1.11) into the
new variational principle

δ

∫

L(η, ηx , ηxx ,�,�x ) dx = 0

with Lagrangian

L(η, ηx , ηxx ,�,�x )

:=
∫ 1

0

(

−
[

�x−�y
yηx
1 + η

]

+ 1

2

[

�x−�y
yηx
1 + η

]2

+ 1

2

�2
y

(1 + η)2

)

(1 + η) dy

+ 1
2αη2+ 1

2β
η2xx

(1 + η2x )
5/2

;

this variational principle recovers the transformed equations (1.6)–(1.9). The next step
is to perform a (formal) Legendre transform to obtain a formulation of the hydrody-
namic problem as a spatial Hamiltonian system (in which the variable x plays the
role of ‘time’). The presence of second-order derivatives in the Lagrangian, however,
necessitates the use of a higher-order Legendre transform (see Lanczos [24, Appendix
I]), by means of which obtain the Hamiltonian system

ηx = δH

δω
, ρx = δH

δξ
, ωx = −δH

δη
, ξx = −δH

δρ
, �x = δH

δ�
, �x = −δH

δ�

(1.12)

with variables η, � and

ρ = ηx , ω = δL

δηx
− d

dx

(
δL

δηxx

)

, ξ = δL

δηxx
, � = δL

δ�x
;

these equations are accompanied by the boundary conditions

− �y + yρ�
∣
∣
y=0,1 = 0, (1.13)

which emerge when computing the variational derivatives.
Equations (1.12), (1.13) are reversible, that is invariant under the transformation

(η, ω, ρ, ξ,�,�)(x) �→ (η,−ω,−ρ, ξ,−�,�)(−x); this symmetry is inherited
from (1.6)–(1.9), which are invariant under (η(x),�(x, y)) �→ (η(−x),�(−x, y)).
They are also invariant under the transformation � �→ � + c for any constant c.
To eliminate this symmetry, one replaces (�,�) with new variables (�̄,�0, �̄,�0),
where �̄ = �−�0, �̄ = � −�0 and �0 = ∫ 10 � dy, �0 = ∫ 10 � dy, thus obtaining
a new canonical Hamiltonian system with Hamiltonian

H̄(η, ω, ρ, ξ, �̄, �̄,�0, �0) = H(η, ω, ρ, ξ, �̄ + �0, �̄ + �0)

= H(η, ω, ρ, ξ, �̄, �̄ + �0)
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and additional constraints
∫ 1
0 �̄ dy = 0,

∫ 1
0 �̄ dy = 0. The variable �0 is cyclic,

so that its conjugate �0 is a conserved quantity; we proceed in standard fashion by
setting �0 = −1, considering the equations for (η, ω, ρ, ξ, �̄, �̄) and recovering �0
by quadrature. The nonlinear boundary condition

−�̄y + yρ(�̄ − 1)
∣
∣
y=1 = 0

necessitates a further change of variable, namely

�̄ = �̄ − ρ

∫ y

0
s(�̄(s) − 1) ds + ρ

∫ 1

0

∫ y

0
s(�̄(s) − 1) ds dy,

in terms of which the boundary conditions take the simple, linear form �̄y
∣
∣
y=0,1 = 0.

The formulation of the hydrodynamic problem as a spatial Hamiltonian system is
discussed rigorously in Sect. 2, where a precise definition of a Hamiltonian system is
given and Hamilton’s equations are derived. Full details of the changes of variable,
which are performed explicitly, are also given; the result is a quasilinear evolution
equation of the form

ux = Lu + N ε(u) (1.14)

for the variable u = (η, ρ, ω, ξ, �̄, �̄) in the phase space

X = {(η, ρ, ω, ξ, �̄, �̄) ∈ R × R × R × R × H̄1(0, 1) × L̄2(0, 1)},

where the overline denotes the subspace of functionswith zeromean value; the domain
of the linear operator L is

D(L) = {(η, ρ, ω, ξ, �̄, �̄) ∈ R × R × R × R × H̄2(0, 1) × H̄1(0, 1) : �̄y
∣
∣
y=0,1 = 0

}

and the nonlinear term on the right-hand side of (1.14), which satisfies
N ε(u) = O(‖(ε, u)‖‖u‖), maps a neighbourhood of the origin in R2 ×D(L) analyt-
ically into X . Here we have written α = α0 + ε1 and β = β0 + ε2, where α0 and β0
are fixed, and the superscript ε denotes the dependence upon this parameter.

In Sect. 3 we show that the spectrum of L is discrete. By reducing the spectral
problem to a non self-adjoint Sturm–Liouville problem, we show that a complex
number λ is an eigenvalue of L if and only if

α0 + λ4β0 = λ cot(λ) (1.15)

and deduce that σ(L) consists of

(a) a countably infinite family {λk}k∈Z\{0} of simple real eigenvalues, where {λk}∞k=1
are the positive real solutions of equation (1.15), so that λk ∈ (kπ, (k + 1)π) for
k = 1, 2, . . . and

λ2k = k2π2 + 2

β0
+ o

(
1

k

)

for large k, and λ−k = −λk for k = 1, 2, . . .,
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Fig. 4 The shaded region indicates the parameter regime in which homoclinic bifurcation is detected; dots
and crosses denote, respectively, simple and algebraically double, geometrically simple eigenvalues

(b) four additional eigenvalues (counted according to multiplicity) which are shown
in Fig. 4. Note in particular that a Hamiltonian–Hopf bifurcation occurs at each
point (β0(s), α0(s)) of the curve C : two pairs of purely imaginary eigenvalues
become complex by colliding at the points ±is on the imaginary axis.

Remarkably, we can treat (1.14) as a dynamical systemwith countably infinitely many
coordinates by showing that L is a Riesz spectral operator, that is its generalised
eigenvectors form a Riesz basis for X (a Schauder basis obtained by an isomorphism
from an orthonormal basis). In particular, at a point (β0(s), α0(s)) of the curve C (a
‘Hamiltonian–Hopf point’) we can write

X =
{

u = Ae + B f + Āē + B̄ f̄ +
∑

k∈Z\{0}
βkeλk : A, B ∈ C, {βk} ∈ �2

}

,

where e, f and eλk are suitably normalised generalised eigenvectors with
(L − is I )e = 0, (L − is I ) f = e and (L − λk I )eλk = 0. In the above notation,

Lu = (is A + B)e + isB f + (−is Ā + B̄)ē − is B̄ f̄ +
∑

k∈Z\{0}
λkβkeλk

and u ∈ D(L) whenever {λkβk} ∈ �2.
Homoclinic solutions of (1.12) are of particular interest since they correspond to

solitary waves. We detect them using centre-manifold reduction (see Mielke [28, 29]
for the version of the reduction theoremused here).Denoting the central and hyperbolic
subspaces of X at a Hamiltonian-Hopf point by
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X1 = {u1 = Ae + B f + Āē + B̄ f̄ : A, B ∈ C},
X2 =

{

u2 =
∑

k∈Z\{0}
βkeλk : {βk} ∈ �2

}

,

one finds that all small, globally bounded solutions to (1.14) lie on a centre mani-
fold of the form {u2 = r(u1; ε)}, where the reduction function r : X1 → D(L) is
O(‖(ε, u)‖‖u‖). The flow on the centre manifold is governed by the reduced system

u1x = Lu1 + N ε(u1 + r(u1; ε)), (1.16)

which is itself a reversible Hamiltonian system (with two degrees of freedom). One
of the key requirements in Mielke’s theorem is that the operator L2 = L|X2 has
L p-maximal regularity in the sense that the differential equation

∂xu2 = L2u2 + h

admits a unique solution u2 ∈ W 1,p(R, X2)∩ L p(R,D(L2)) for each h ∈ L p(R, X2)

and p > 1. In fact L p-maximal regularity for some p > 1 implies L p-maximal
regularity for all p > 1 (see Mielke [27]), and an operator has L2-maximal regularity
if and only if it is bisectorial (see Arendt and Duelli [1, Theorem 2.4]); the theorem is
usually stated with bisectorality as a hypothesis. (Mielke’s theorem actually requires
maximal regularity in exponentially weighted spaces, a property which is implied
by L p-maximal regularity; see Mielke [27, Lemma 2.3]). In Sect. 4 we, however,
demonstrate directly that a Riesz spectral operator with no imaginary eigenvalues
has L2-maximal regularity, and stipulate L2-maximal regularity as a hypothesis in
Mielke’s theorem. This approach is more direct than that taken in the above references
to the Kirchgässner reduction, in which central and hyperbolic subspaces of a suitable
phase space are defined by Dunford integrals and the bisectorality condition is verified
by a priori estimates.

Writing (ε1, ε2) = (μ, 0), so that positive values of μ correspond to points on
the ‘complex’ side of C (the shaded region in Fig. 4), one finds after a Darboux and
normal-form transformation that the reduced equation (1.16) can be formulated as the
Hamiltonian system

Ax = ∂ H̃μ

∂ B̄
, Bx = −∂ H̃μ

∂ Ā
, (1.17)

H̃μ(A, B, Ā, B̄) = is(AB̄ − ĀB) + |B|2 + H̃μ
NF(|A|2, i(AB̄ − ĀB))

+O(|(A, B)|2|(μ, A, B)|n0),

where H̃μ
NF(A, B, Ā, B̄) is a real polynomial function of its arguments which satisfies

H̃μ
NF(|A|2, i(AB̄ − ĀB), μ)= O(|(A, B)|2|(μ, A, B)|);
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it contains the terms of order 3, ..., n0+1 in the Taylor expansion of H̃μ(A, B, Ã, B̃).
Equation (1.17) inherit the reversibility of (1.12): they are invariant under the
transformation (A, B)(x) �→ ( Ā,−B̄)(−x). Neglecting the remainder term in the
Hamiltonian and introducing the scaled variables

A(x) = δeisx Ã(X), B(x) = δ2eisx B̃(X), X = δx,

where δ = μ2, confirms that the system is at leading order equivalent to the nonlinear
Schrödinger equation

ÃX X = −c1 Ã − d1 Ã| Ã|2,

where c1 and d1 are the coefficients of respectively μ|A|2 and |A|4 in the Taylor
expansion of H̃μ

NF. We compute these coefficients explicitly in Appendix B and find
that

c1 = − 1

b1
, d1 = sinh2(s)

2τ1

b2
b1

,

where b1, b2 are the coefficients in Eq. (1.10) and τ1 > 0 is defined in Eq. (4.4).
A rigorous analysis of (1.17) is given in Sect. 5. Returning to real coordinates q,

p ∈ R
2 given by A = 1√

2
(q1+iq2), B = 1√

2
(p1+ip2), eliminating p and introducing

the scaled variables

q(x) = δRsx Q(X), X = δx,

where δ2 = −c1μ and Rθ is the matrix representing a rotation through the angle θ ,
transforms (1.17) into

QXX = Q − CQ|Q|2 + T δ
1 (Q, QX ) + R−sX/δT

δ
2 (RsX/δQ, RsX/δQX , RsX/δQXX ),

(1.18)

where C = −d1/c1 and

T δ
1 (Q, QX ) = O(δ|(Q, QX )|), T δ

2 (Q, QX , QXX ) = O(δn0−2|(Q, QX , QXX )|).

Equation (1.18) is invariant under the transformation X �→ −X ,
(Q1(X), Q2(X)) �→ (Q1(−X),−Q2(−X)) and in the limit δ = 0 has the explicit
solution

Q(X) =
(

h(X)

0

)

, h(X) =
( 2

C

)1/2
sech(X),

which is nondegenerate in the class of symmetric functions (see Sect. 5 for a precise
statement of this result). This fact allows one to prove the following theorem with an
implicit-function theorem argument.
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Theorem 1.2 For each ν ∈ (0, 1) and each sufficiently small value of δ > 0 Eq. (1.18)
has two homoclinic solutions Qδ± which are symmetric, that is invariant under the
transformation (Q1(X), Q2(X)) �→ (Q1(−X),−Q2(−X)), and satisfy the estimate

Qδ±(X) = ±
(

h(X)

0

)

+ O(δe−ν|X |)

for all X ∈ R.

Finally, let us briefly mention some related work in the literature. Buffoni and
Groves [4] show that (1.17) has an infinite number of geometrically distinct homo-
clinic solutions which generically resemble multiple copies of one of the ‘primary’
homoclinic solutions found here. In the present context, this result yields the existence
of an infinite family of ‘multi-pulse’ hydroelastic solitary waves. A variational exis-
tence theory for hydroelastic solitary waves in the present parameter regime has been
given by Groves et al. [10], while the Kirchgässner reduction (without the Hamilto-
nian framework) has also been applied to alternative models in which the ice sheet is
modelled as a thin Euler–Bernoulli elastic plate (Parau andDias [32]) and aKirchhoff–
Love elastic plate with non-zero thickness and inertial effects (Ilichev [17], Ilichev and
Tomashpolskii [18]). There are also several numerical studies of hydroelastic solitary
waves in deep water (Gao et al. [8], Guyenne and Parau [16], Milewski et al. [30]),
and an alternative approach to centre-manifold reduction has been given by Chen et
al. [5].

2 Formulation as a Spatial Hamiltonian System

In this section, we formulate the hydrodynamic problem as a spatial Hamiltonian
system. Starting with a variational principle for the ‘flattened’ hydrodynamic problem
(1.6)–(1.9), we perform a formal Legendre transform to detect its spatial Hamiltonian
structure, the correctness of which is confirmed a posteriori.

The ‘flattened’ hydrodynamic problem follows from the variational principle

δ

∫

L(η, ηx , ηxx ,�,�x ) dx = 0

with Lagrangian

L(η, ηx , ηxx ,�,�x )

=
∫ 1

0

(

−
[

�x−�y
yηx
1 + η

]

+ 1

2

[

�x−�y
yηx
1 + η

]2

+ 1

2

�2
y

(1 + η)2

)

(1 + η) dy

+ 1
2αη2+ 1

2β
η2xx

(1 + η2x )
5/2

.

We perform a formal Legendre transformation (see Lanczos [24, Appendix I]) by
defining
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ρ = ηx ,

ω = δL

δηx
− d

dx

(
δL

δηxx

)

=
∫ 1

0

(

y�y −
[

�x − �y
yηx
1 + η

]

y�y

)

dy + 5
2β

ηxη
2
xx

(1 + η2x )
7/2 − β

ηxxx

(1 + η2x )
5/2

,

ξ = δL

δηxx
= β

ηxx

(1 + η2x )
5/2

,

� = δL

δ�x
= −(1 + η) +

(

�x − �y
yηx
1 + η

)

(1 + η)

and defining the Hamiltonian function by

H(η, ρ, ω, ξ,�,�) = ωηx + ξηxx +
∫ 1

0
��x dy − L(η, ρ, ω, ξ,�,�)

= ωρ − 1
2αη2 + ξ2

2β
(1 + ρ2)5/2 + 1

2 (1 + η)

+
∫ 1

0

(
1

2(1 + η)
(�2 − �2

y) + � + ρy�y�

1 + η

)

dy.

Writing α = α0 + ε1 and β = β0 + ε2, where α0 and β0 are fixed, we find that
Hamilton’s equations are given explicitly by

ηx = δH ε

δω
= ρ, (2.1)

ρx = δH ε

δξ
= (1 + ρ2)5/2

β0 + ε2
ξ, (2.2)

ωx = −δH ε

δη
= 1

(1 + η)2

∫ 1

0

(
1
2 (�

2 − �2
y) + ρy�y�

)

dy + (α0 + ε1)η − 1
2 ,

(2.3)

ξx = −δH ε

δρ
= −ω − 5

2

ρ

β0 + ε2
ξ2(1 + ρ2)3/2 − 1

1 + η

∫ 1

0
y�y� dy, (2.4)

�x = δH ε

δ�
= � + η

1 + η
+ ρy�y

1 + η
, (2.5)

�x = −δH ε

δ�
= 1

1 + η
(−�y + ρy�)y, (2.6)

where the superscript denotes the dependence upon ε = (ε1, ε2), with boundary
conditions

−�y + yρ�
∣
∣
y=0,1 = 0,
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which emerge from the integration by parts used to compute (2.6). A straightforward
calculation shows that the η- and �-components of any solution to these equations
satisfy (1.6)–(1.9).

Note that Eqs. (2.1)–(2.6) are reversible, that is invariant under the transformation
(η, ω, ρ, ξ,�,�)(x) �→ S(η, ω, ρ, ξ,�,�)(−x), where the reverser is defined by

S(η, ω, ρ, ξ,�,�) = (η,−ω,−ρ, ξ,−�,�).

They are also invariant under the transformation � �→ � + c for any constant c.
To eliminate this symmetry it is convenient to replace (�,�) with new variables
(�̄,�0, �̄,�0), where �̄ = � − �0, �̄ = � − �0 and

�0 =
∫ 1

0
� dy, �0 =

∫ 1

0
� dy.

This transformation leads to a new canonical Hamiltonian system with Hamiltonian

H̄(η, ω, ρ, ξ, �̄, �̄,�0, �0) = H(η, ω, ρ, ξ, �̄ + �0, �̄ + �0)

= H(η, ω, ρ, ξ, �̄, �̄ + �0)

and additional constraints

∫ 1

0
�̄ dy = 0,

∫ 1

0
�̄ dy = 0.

Observe that �0 is a cyclic variable whose conjugate �0 is a conserved quantity;
we proceed in standard fashion by setting �0 = −1, considering the equations for
(η, ω, ρ, ξ, �̄, �̄) and recovering �0 by quadrature. Dropping the bars for notational
simplicity, one finds that Hamilton’s equations for the reduced system are

ηx = ρ, (2.7)

ρx = (1 + ρ2)5/2

β0 + ε2
ξ, (2.8)

ωx = 1

(1 + η)2

∫ 1

0

(
1
2 ((� − 1)2 − �2

y) + ρy�y(� − 1)
)

dy − 1
2 + (α0 + ε1)η,

(2.9)

ξx = −ω − 5

2

ρ

β0 + ε2
ξ2(1 + ρ2)3/2 − 1

1 + η

∫ 1

0
y�y(� − 1) dy, (2.10)

�x = �

1 + η
+ ρ

1 + η

(

y�y −
∫ 1

0
y�y dy

)

, (2.11)

�x = 1

1 + η
(−�y + ρy(� − 1))y, (2.12)
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with constraints
∫ 1

0
� dy = 0,

∫ 1

0
� dy = 0 (2.13)

and boundary conditions

−�y + yρ(� − 1)
∣
∣
y=0,1 = 0. (2.14)

To make this construction rigorous we recall the differential-geometric definitions
of a Hamiltonian system and Hamilton’s equations for its associated vector field (see
Groves and Toland [13, §1.4]).

Definition 2.1 A Hamiltonian system consists of a triple (M,�, H), where M is a
manifold, � : T M × T M → R is a closed, weakly nondegenerate bilinear form
(the symplectic 2-form) and the Hamiltonian H : M → R is a smooth function. Its
Hamiltonian vector field vH with domainD(vH ) ⊆ M is defined as follows. The point
m ∈ M belongs to D(vH ) with vH |m := w ∈ T M |m if and only if

�|m(w, v) = dH |m(v)

for all tangent vectors v ∈ T M |m . Hamilton’s equations for (M,�, H) are the differ-
ential equations

u̇ = vH |u

which determine the trajectories u ∈ C1(R, X) ∩ C(R,D(vH )) of its Hamiltonian
vector field.

Let

X = {(η, ρ, ω, ξ,�,�) ∈ R × R × R × R × H̄1(0, 1) × L̄2(0, 1)},

where the overline denotes the subspace of functions with zero mean value, and define
the manifold

M = {(η, ρ, ω, ξ,�,�) ∈ X : η > −1}.

The 2-form � on M defined by

�|m
(

(η1, ρ1, ω1, ξ1,�1, �1), (η2, ρ2, ω2, ξ2,�2, �2)
)

=
∫ 1

0
(�2�1 − �2�1) dy + ω2η1 + ξ2ρ1 − η2ω1 − ρ2ξ1

is skew-symmetric, closed (since it is constant) and weakly nondegenerate at each
point of M . The triple (M,�, H ε) is, therefore, a Hamiltonian system in the sense of
Definition 2.1.
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Theorem 2.2 Consider the Hamiltonian system (M,�, H ε). The domain of the cor-
responding Hamiltonian vector field vH ε is

D(vH ε ) =
{

(η, ρ, ω, ξ,�,�) ∈ R × R × R × R × H̄2(0, 1) × H̄1(0, 1) :
η > −1, �y − yρ(� − 1)

∣
∣
y=0,1 = 0

}

,

upon which it is given by the right-hand sides of equations (2.7)–(2.12).

Proof Let v̄|m = (η̄, ρ̄, ω̄, ξ̄ , �̄, �̄) ∈ T M |m , where m = (η, ρ, ω, ξ,�,�) ∈ M .
The point m lies in D(vH ε ) with vH ε |m = v̄|m if and only if

�|m(v̄|m, v1|m) = dH ε|m(v1|m),

that is

ω1η̄ + ξ1ρ̄ − η1ω̄ − ρ1ξ̄ +
∫ 1

0
(�1�̄ − �1�̄ dy

=
(

−(α0 + ε1)η + 1
2 − 1

2(1 + η)2

∫ 1

0

(

(� − 1)2 − �2
y

)

dy

− 1

(1 + η)2

∫ 1

0
ρy�y(� − 1) dy

)

η1

+
(

ω + 5

2

ξ2

β0 + ε2
ρ(1 + ρ2)3/2 +

∫ 1

0

y�y(� − 1)

1 + η
dy

)

ρ1

+ ρω1 + ξ

β0 + ε2
(1 + ρ2)5/2ξ1 + 1

1 + η

∫ 1

0
(−�y + ρy(� − 1))�1y dy

+ 1

1 + η

∫ 1

0
(� + η + ρy�y)�1 dy (2.15)

for all v̄1|m = (η1, ρ1, ω1, ξ1,�1, �1) ∈ T M |m .
The four particular choices (η1, ρ1, ξ1,�1, �1) = (0, 0, 0, 0, 0),

(η1, ρ1, ω1,�1, �1) = (0, 0, 0, 0, 0), (ρ1, ω1, ξ1,�1, �1) = (0, 0, 0, 0, 0) and
(η1, ω1, ξ1,�1, �1) = (0, 0, 0, 0, 0) yield, respectively,

η̄ = ρ,

ρ̄ = (1 + ρ2)5/2
ξ

β0 + ε2
,

ω̄ = 1

(1 + η)2

∫ 1

0

(
1
2 ((� − 1)2 − �2

y) + ρy�y(� − 1)
)

dy − 1
2 + (α0 + ε1)η,

ξ̄ = −ω − 5

2

ρ

β0 + ε2
ξ2(1 + ρ2)3/2 − 1

1 + η

∫ 1

0
y�y(� − 1) dy,
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and with these expressions for ω̄, η̄, ρ̄ and ξ̄ equation (2.15) becomes

∫ 1

0

(

�1�̄ − �1�̄
)

dy = 1

1 + η

∫ 1

0

(

(−�y + ρy(� − 1))�1y + (� + η + ρy�y)�1
)

dy.

Choosing �̃ ∈ H1(0, 1), �̃ ∈ L2(0, 1) and setting �1 = 0, �1 = �̃ − ∫ 10 �̃ dy

and �1 = �̃ − ∫ 10 �̃ dy, �1 = 0, we thus find that

∫ 1

0
�̃

(
�

1 + η
+ ρ

1 + η

(

y�y −
∫ 1

0
y�y dy

)

− �̄

)

dy = 0

for all �̃ ∈ L2(0, 1), and in particular for all �̃ ∈ C∞
0 (0, 1), which implies that

�̄ = �

1 + η
+ ρ

1 + η

(

y�y −
∫ 1

0
y�y dy

)

∈ H1(0, 1), (2.16)

and
∫ 1

0

(

�̃�̄ + �̃y

(

− �y

1 + η
+ ρy(� − 1)

1 + η

))

dy = 0 (2.17)

for all �̃ ∈ H1(0, 1), and in particular for all �̃ ∈ C∞
0 (0, 1), which implies that

�̄ = 1

1 + η
(−�y + ρy(� − 1))y ∈ L2(0, 1) (2.18)

in the weak sense. It follows from (2.16) and (2.18) that �y ∈ H1(0, 1) and
�y ∈ L2(0, 1), so that � ∈ H2(0, 1) and � ∈ H1(0, 1).

Finally, integrating the second term in (2.17) by parts and using (2.18), we find that

[

�1

(

− �y

1 + η
+ ρy(� − 1)

1 + η

)]1

0
= 0

for all �1 ∈ C∞[0, 1], so that

− �y

1 + η
+ ρy(� − 1)

1 + η

∣
∣
∣
∣
y=0,1

= 0.

��
One cannot work directly with (2.7)–(2.12) because of the nonlinear boundary con-
dition at y = 1 in the domain of the Hamiltonian vector field vH ε . We overcome
this difficulty using the change of variable (η, ρ, ω, ξ,�,�) �→ (η, ρ, ω, ξ, �,�),
where

� = � − ρ

∫ y

0
s(�(s) − 1) ds + ρ

∫ 1

0

∫ y

0
s(�(s) − 1) ds dy,
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which is a smooth diffeomorphism X → X and M → M with inverse

� = � + ρ

∫ y

0
s(�(s) − 1) ds − ρ

∫ 1

0

∫ y

0
s(�(s) − 1) ds dy.

This change of variable transforms equations (2.7)–(2.12) into

ηx = ρ, (2.19)

ρx = (1 + ρ2)5/2

β0 + ε2
ξ, (2.20)

ωx = 1

(1 + η)2

∫ 1

0

{

1
2 (� − 1)2 − 1

2

(

�y + ρy(� − 1))2
)

+ ρy�y(� − 1) + ρ2y2(� − 1)2
}

dy

− 1
2 + (α0 + ε1)η, (2.21)

ξx = −ω − 5

2

ρ

β0 + ε2
ξ2(1 + ρ2)3/2 − 1

1 + η

∫ 1

0
y(�y + ρy(� − 1))(� − 1) dy,

(2.22)

�x = �

1 + η
+ ρy(�y + ρy(� − 1))

1 + η
− ρ

1 + η

∫ 1

0
y(�y + ρy(� − 1)) dy

− (1 + ρ2)5/2

β0 + ε2
ξ

∫ y

0
s(�(s) − 1) ds

+ (1 + ρ2)5/2

β0 + ε2
ξ

∫ 1

0

∫ y

0
s(�(s) − 1) ds dy

+ ρ

∫ y

0

s

1 + η
�yy ds − ρ

∫ 1

0

∫ y

0

s

1 + η
�yy ds dy, (2.23)

�x = − 1

1 + η
�yy (2.24)

and the boundary conditions (2.14) into

�y
∣
∣
y=0,1 = 0. (2.25)

Equations (2.19)–(2.24) are Hamilton’s equations for the Hamiltonian system
(M, ϒ, Ĥ ε), where

Ĥ ε(η, ρ, ω, ξ, �,�) = ωρ − 1
2 (α0 + ε1)η

2 + ξ2

2β0 + ε2
(1 + ρ2)5/2 + 1

2 (η − 1)

+
∫ 1

0

{
1

2(1 + η)

(

(�−1)2−(�y + ρy(�−1))2
)

+ 1

1 + η

(

ρy�y(�−1) + ρ2y2(� − 1)2
)
}

dy
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and

ϒ |(η,ρ,ω,ξ,�,�)

(

(η̃1, ρ̃1, ω̃1, ξ̃1, �̃1, �̃1), (η̃2, ρ̃2, ω̃2, ξ̃2, �̃2, �̃2)
)

=
∫ 1

0

{

�̃2

(

�̃1 + ρ̃1

∫ y

0
s�(s) ds + ρ

∫ y

0
s�̃1(s) ds

)

− 1
2 ρ̃1y

2�̃2

− �̃1

(

�̃2 + ρ̃2

∫ y

0
s�(s) ds + ρ

∫ y

0
s�̃2(s) ds

)

+ 1
2 ρ̃2y

2�̃1

}

dy

+ ω̃2η̃1 + ξ̃2ρ̃1 − η̃2ω̃1 − ρ̃2ξ̃1;

furthermore,

D(vĤ ε ) =
{

(η, ρ, ω, ξ, �,�) ∈ M : �y
∣
∣
y=0,1 = 0

}

.

We write (2.19)–(2.24) as

ux = Lu + N ε(u),

in which L = dvĤ0 [0], so that

L

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η

ρ

ω

ξ

�

�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ

1
β0

ξ

(α0 − 1)η

−ω − 1
3ρ +

∫ 1

0
y�y dy

1
2β0

(y2 − 1
3 )ξ + �

−�yy

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

D(L) =
{

(η, ρ, ω, ξ, �,�) ∈ R × R × R × R × H̄2(0, 1) × H̄1(0, 1) : �y
∣
∣
y=0,1 = 0

}

.

3 Spectral Analysis

In this section, we examine the spectrum of the linear operator L : D(L) ⊆ X → X
in detail. Our first result is obtained by a straightforward calculation.

Proposition 3.1 A complex number λ is an eigenvalue of L if and only if

α0 + λ4β0 = λ cot(λ); (3.1)
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its eigenspace is one-dimensional and spanned by, respectively,

eλ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
λ
sin(λ)

sin(λ)
1
λ2

(α0 − 1) sin(λ)
1
λ2

cos(λ) − 1
λ3

α0 sin(λ)
1
λ
cos(λy) − 1

λ2
sin(λ) + 1

2 (y
2 − 1

3 ) sin(λ)

cos(λy) − 1
λ
sin(λ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, e0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

for λ 
= 0 and λ = 0 (which arises only for α0 = 1). All eigenvalues are also
algebraically simple, with the exception of the zero eigenvalue at α0 = 1 and the
purely imaginary eigenvalues ±is at the point (β0(s), α0(s)) of the curve

C =
{

(β0(s), α0(s)) =
(

1

4s3
coth(s) − 1

4s2 sinh2(s)
,
3s

4
coth(s) + s2

4 sinh2(s)

)

: s ∈ (0, ∞)

}

in the parameter plane which are algebraically double.

The following lemma gives more precise information on the point spectrum of L .

Lemma 3.2 Choose (β0, α0) ∈ C. The point spectrum of L consists of a countably
infinite family {λk}k∈Z\{0} of simple real eigenvalues, where {λk}∞k=1 are the positive
real solutions of equation (3.1) and λ−k = −λk for k = 1, 2, . . . together with

(a) two plus–minus pairs of simple purely imaginary eigenvalues if α0 > 1 and
(β0, α0) lies to the left of the curve C in the parameter plane,

(b) a plus–minus pair of algebraically double purely imaginary eigenvalues ±is if
(β0, α0) is the point with parameter value s on the curve C,

(c) a plus–minus quartet of genuinely complex eigenvalues if α0 > 1 and (β0, α0) lies
to the right of the curve C in the parameter plane,

(d) a plus–minus pair of simple purely imaginary eigenvalues and an algebraically
double zero eigenvalue if α0 = 1,

(e) an additional plus–minus pair of simple real eigenvalues and a plus–minus pair
of simple purely imaginary eigenvalues if α0 < 1.

Furthermore, λk ∈ (kπ, (k + 1)π) for k = 1, 2, . . . and

λ2k = k2π2 + 2

β0
+ o

(
1

k

)

for large k.

Proof Observe that λ solves (3.1) if and only if ν = λ2 is an eigenvalue of the non-
self-adjoint Sturm–Liouville problem

− vyy = νv, (3.2)
vy(1)

v(1)
= α0 + β0ν

2, (3.3)

v(0) = 0. (3.4)
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This problem has a countable number of (not necessarily real) eigenvalues {νn}n∈N0 ,
which repeated according to algebraic multiplicity and listed according in increasing
absolute value, are given asymptotically for large n by

νn = (n − 1)2π2 + 2

β0
+ o

(
1

n

)

(3.5)

(see Binding et al. [3, Theorem 2.2]). The real eigenvalues of the spectral prob-
lem (3.2)–(3.4) correspond to the intersections in the (ν, s) plane of the parabola
s = α0 +β0ν

2 and the curve s = B(ν), where B(ν) = √
ν cot

√
ν. The function B(ν)

has poles exactly at the Dirichlet eigenvalues

νDn = (n + 1)2π2, n ∈ N0 (3.6)

of the self-adjoint problem in which (3.3) is replaced by v(1) = 0; it is strictly
decreasing from +∞ to −∞ in each interval (−∞, νD0 ) and (νDn , νDn+1), n ∈ N0. It
follows that (3.2)–(3.4) has at least one real eigenvalue in each interval (νDn , νDn+1),
n ∈ N0 (see Fig. 5).

Comparing (3.5) with (3.6) and using the above geometrical characterisation of the
real eigenvalues, one concludes that

(1) each interval (νDn , νDn+1), n ∈ N contains a simple real eigenvalue;
(2) there are precisely two additional eigenvalues (counted according to algebraic

multiplicity) in the form of either

(a) a complex-conjugate pair (with non-vanishing imaginary part) whose absolute
value is less than νD0 (Fig. 5a),

(b) one negative, algebraically double eigenvalue (Fig. 5b),
(c) two simple real eigenvalues to the left of νD

0 , at least one of which is negative
(Fig. 5c–e).

The solutions λ of (3.1) are recovered from the above analysis by the formula
ν = λ2, so that in particular they occur in plus-minus pairs. Clearly, (3.1) has a real
solution in each interval ((νDn )1/2, (νDn+1)

1/2) and (−(νDn+1)
1/2,−(νDn )1/2), n ∈ N0

(see point (1) above), and it follows from point (2) that there are four additional
solutions (counted according to multiplicity). The results in Proposition 3.1 and the
fact that B(0) = 1 show that these four solutions are described by precisely one of the
statements (a)–(e) (according to which of the scenarios in Fig. 5 occurs).

The asymptotic formula for λk follows by writing k = n + 1. ��
According to this lemma the purely imaginary eigenvalues of L appear in pairs±is

satisfying the dispersion relation

α0 + s4β0 = s coth(s). (3.7)

Fig. 4 shows the dependence of these eigenvalues upon β0 and α0. At each point of
{α0 = 1}, two real eigenvalues become purely imaginary by colliding at the origin,
while at each point of the curve C two pairs of purely imaginary eigenvalues become
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a b

dc

e

Fig. 5 Geometric characterisation of the eigenvalues νn as the points of intersection of the curve
s = B(ν) with the parabola s = α0 + β0ν

2; one real eigenvalue lies in each interval (νDn , νDn+1),
n ∈ N0. a Two additional complex eigenvalues; b one additional algebraically double negative eigenvalue;
c–e two additional real eigenvalues

complex by colliding at non-zero points±is on the imaginary axis. For later reference,
we record the formulae

e =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sinh(s)
is sinh(s)

−i cosh(s) + i
s sinh(s) + iβ0s3 sinh(s)

−β0s2 sinh(s)
−i cosh(sy) + i

s sinh(s) − 1
2 is(y

2 − 1
3 ) sinh(s)

s cosh(sy) − sinh(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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f =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−i cosh(s)
sinh(s) + s cosh(s)

−β0s2 sinh(s) − 1
s2
sinh(s) − α0

s cosh(s) + 2
s cosh(s)

iβ0s2 cosh(s) + 2iβ0s sinh(s)
−y sinh(sy) − 1

s2
sinh(s) + 1

s cosh(s) + 1
2 (y

2 − 1
3 )(s cosh(s) + sinh(s))

−isy sinh(sy) − i cosh(sy) + i cosh(s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

for an eigenvector e and generalised eigenvector f with eigenvalue is when
(β0, α0) ∈ C (the corresponding formulae for the zero eigenvalue at α0 = 1 are
e0 = (1, 0, 0, 0, 0, 0)T, f0 = (0, 1,− 1

3 , 0, 0, 0)
T).

Lemma 3.3 The operator L is regular, that is its spectrum consists entirely of isolated
eigenvalues of finite algebraic multiplicity.

Proof Since D(L) is compactly embedded in X it suffices to show that ρ(L) is non-
empty, so that L has compact resolvent (Kato [20, Theorem III.6.29]). In the case
α0 
= 1, a direct calculation shows that L is invertible with

L−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

η

ρ

ω

ξ

�

�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

α0 − 1
ω

η

− 1
3η − ξ −

∫ 1

0
y
∫ y

0
�(t) dt dy

β0ρ

−
∫ y

0

∫ s

0
�(t) dt ds +

∫ 1

0

∫ y

0

∫ s

0
�(t) dt ds dy

� − 1
2 (y

2 − 1
3 )ρ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To deal with the case α0 = 1 note that L|α0=1 is a compact perturbation of L|α0= 1
2
,

so that the essential spectrum of these two operators (the set of λ for which (λI − L)

is not Fredholm with index zero) is identical (see Schechter [34]). It follows that the
spectrum of L|α0=1 consists of the solution set of (3.1); in particular, its resolvent set
is non-empty. ��

Finally, we show that the set of generalised eigenvectors of L form a Schauder basis
for X , which is henceforth replaced by its complexification. In particular, we show
that this set is a Riesz basis, that is a basis obtained from an orthonormal basis by an
isomorphism (see Gohberg and Krein [9, §VI.2]); note that we use the Dirichlet norm
for the space H̄1(0, 1).

Proposition 3.4 The set

A =
{(

(kπ)−1 cos(kπ y)
cos(kπ y)

)}

k∈Z\{0}

is an orthonormal basis for H̄1(0, 1) × L̄2(0, 1).
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Proof Note that {√2 cos(kπ y)}∞k=1, {
√
2(kπ)−1 cos(kπ y)}∞k=1 are orthonormal bases

for, respectively, L̄2(0, 1) and H̄1(0, 1). It, therefore, follows from

sp

{(

(kπ)−1 cos(kπ y)
cos(kπ y)

)}

k∈Z\{0}
= sp

{(√
2(kπ)−1 cos(kπ y)

0

)

,

(
0√

2 cos(kπ y)

)}∞

k=1

in H̄1(0, 1) × L̄2(0, 1) that A is complete, and it is evidently orthonormal. ��
Corollary 3.5 Let P be the spectral projection onto the four-dimensional subspace of
X corresponding to the eigenvalues shown in Fig.4, and let {e1, e2, e3, e4} be a basis
for P[X ] consisting of generalised eigenvectors of L. The set

{e1, e2, e3, e4} ∪ { fk}k∈Z\{0}, fk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

is a Riesz basis for X.

Proof Let {g1, g2, g3, g4} denote the usual basis for the subset C4 × {(0, 0)} of
X , and note that {g1, g2, g3, g4} ∪ { fk}k∈Z\{0} is an orthonormal basis for X . Let
π : X → C

4 denote the projection (η, ρ, ω, ξ,�,�) �→ (η, ρ, ω, ξ), and note that
{πe1, πe2, πe3, πe4} spans C4.

The formula S(η, ρ, ω, ξ,�,�) = (T (η, ρ, ω, ξ), (�,�)), where T (η, ρ, ω, ξ)

is the coordinate vector of (η, ρ, ω, ξ) with respect to the basis {πe1, πe2, πe3, πe4}
for C4, defines an isomorphism X → X with

S[{g1, g2, g3, g4} ∪ { fk}k∈Z\{0}] = {e1, e2, e3, e4} ∪ { fk}k∈Z\{0}.

It follows that {e1, e2, e3, e4} ∪ { fk}k∈Z\{0} is a Riesz basis for X . ��
Theorem 3.6 The set {e1, e2, e3, e4} ∪ {eλk }k∈Z\{0} is a Riesz basis for X.

Proof We first note that the set {e1, e2, e3, e4}∪{eλk }k∈Z\{0} is ω-linearly independent
since it is the union of bases for the generalised eigenspaces of a regular operator (see
Gohberg and Krein [9, p. 329]).

Choose μ	 ∈ (0, λ1). The function h : (0,∞) → X defined by

h(μ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
μ
sin(μ)

sin(μ)
1
μ2 (α0 − 1) sin(μ)

1
μ2 cos(μ) − 1

μ3 α0 sin(μ)
1
μ
cos(μy) − 1

μ2 sin(μ) + 1
2 (y

2 − 1
3 ) sin(μ)

cos(μy) − 1
μ
sin(μ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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satisfies

‖h(μ1) − h(μ2)‖ ≤ sup
μ∈[μ	,∞)

‖h′(μ)‖|μ1 − μ2| � |μ1 − μ2|

for all μ1, μ2 ∈ (μ	,∞). With μ1 = λk and μ2 = kπ this calculation shows in
particular that

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

eλk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

eλk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

eλk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

+ 1

k2π2

� |λk − kπ | + 1

k2π2

= O( 1k )

as k → ∞, and similarly

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

e−λk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

−(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

eλk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

= O( 1k )

as k → ∞. Hence,

4
∑

j=1

‖e j − e j‖2 +
∑

k∈Z\{0}

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

eλk −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

(kπ)−2 cos(kπ)

(kπ)−1 cos(kπ y)
cos(kπ y)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

< ∞

and the conclusion now follows by Bari’s theorem (Gohberg and Krein [9, Theorem
VI.2.3]). ��
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Let {e1, e2, e3, e4}∪{eλk }k∈Z\{0} be the dualRiesz basis to {e1, e2, e3, e4}∪{eλk }k∈Z\{0}
(see Gohberg and Krein [9, §VI.1-2]), so that

P =
4
∑

i=1

〈 ·, ei 〉ei , (I − P) =
∑

k∈Z\{0}
〈 ·, eλk 〉eλk ,

and define X2 = (I − P)X , L2 = L|X2 (with D(L2) = D(L) ∩ X2). Note that

X2 =
{
∑

k∈Z\{0}
βkeλk : {βk} ∈ �2

}

, D(L2) =
{
∑

k∈Z\{0}
βkeλk : {λkβk} ∈ �2

}

.

We conclude this section with amaximal regularity result for L̃ which is used in Sect. 4
below.

Lemma 3.7 The operator L2 : D(L2) ⊆ X2 → X2 has L2-maximal regularity in the
sense that the differential equation

ẇ = L2w + h

admits a unique solution w ∈ H1(R, X2) ∩ L2(R,D(L2)) for each h ∈ L2(R, X2).

Proof Writing

w =
∑

k∈Z\{0}
wkeλk , h =

∑

k∈Z\{0}
hkeλk

(where wk = 〈w, eλk 〉, hk = 〈h, eλk 〉), we find that

ẇk = λkwk + hk, (3.8)

which is solved by

wk(t) =

⎧

⎪⎨

⎪⎩

∫ t

−∞
hk(s)e

λk (t−s) ds, k < 0,

−
∫ ∞

t
hk(s)e

λk (t−s) ds, k > 0.

Note that

‖wk‖L2(R,R) ≤ 1

λk
‖hk‖L2(R,R)
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because

‖wk‖2L2(R,R)
=
∫ ∞

−∞

∣
∣
∣
∣

∫ ∞

t
hk(s)e

λk (t−s) ds

∣
∣
∣
∣

2

dt

≤
∫ ∞

−∞

∫ ∞

t
eλk (t−s) ds

∫ ∞

t
eλk (t−s)|hk(s)|2 ds dt

= 1

λk

∫ ∞

−∞

∫ ∞

t
eλk (t−s)|hk(s)|2 ds dt

= 1

λk

∫ ∞

−∞

∫ s

−∞
eλk (t−s) dt |hk(s)|2 ds

= 1

λ2k
‖hk‖2L2(R,R)

for k > 0 with a similar calculation for k < 0. It follows that

‖w‖2L2(R,X2)
=
∫ ∞

−∞

∑

k∈Z\{0}
|wk(t)|2 dt

=
∑

k∈Z\{0}
‖wk‖2L2(R,R)

≤
∑

k∈Z\{0}
‖hk‖2L2(R,R)

= ‖h‖2L2(R,X2)

and similarly

‖L2w‖2L2(R,X2)
=
∫ ∞

−∞

∑

k∈Z\{0}
λ2k |wk(t)|2 dt

=
∑

k∈Z\{0}
λ2k‖wk‖2L2(R,R)

≤
∑

k∈Z\{0}
‖hk‖2L2(R,R)

= ‖h‖2L2(R,X2)
,

so that w, L2w ∈ L2(R, X). Equation (3.8) shows that w is differentiable, satisfies
ẇ ∈ L2(R, X) and solves the given differential equation.

The uniqueness of the solution follows by noting that Eq. (3.8) has no nontrivial
solution in L2(R,R) when hk = 0. ��
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4 Centre-Manifold Reduction

Our strategy in finding solutions toHamilton’s equations (2.19)–(2.24) for (M, ϒ, H ε)

consists in applying a reduction principle which asserts that it is locally equivalent to
a finite-dimensional Hamiltonian system. The key result is the following theorem due
to Mielke [28, 29].

Theorem 4.1 Consider the differential equation

u̇ = Lu + N (u; λ), (4.1)

which represents Hamilton’s equations for the reversible Hamiltonian system
(M,�λ, Hλ). Here u belongs to a Hilbert space X , λ ∈ R

l is a parameter and
L : D(L) ⊂ X → X is a densely defined, closed linear operator. RegardingD(L) as
a Hilbert space equipped with the graph norm, suppose that 0 is an equilibrium point
of (4.1) when λ = 0 and that

(H1) The part of the spectrum σ(L) of L which lies on the imaginary axis of a finite
number of eigenvalues of finite multiplicity and is separated from the rest of
σ(L) in the sense of Kato, so that X admits the decomposition X = X1 ⊕ X2,
whereX1 = P(X ),X2 = (I −P)(X ) are the centre and hyperbolic subspaces
of L defined by the spectral projection P corresponding the purely imaginary
part of σ(L).

(H2) The operator L2 = L|X2 has L
2-maximal regularity in the sense that the dif-

ferential equation

u̇2 = L2u2 + h

admits a unique solution u2 ∈ H1(R,X2) ∩ L2(R,D(L2)) for each
h ∈ L2(R,X2).

(H3) There exist a natural number k and neighbourhoods � ⊂ R
l of 0 and

U ⊂ D(L) of 0 such that N is (k + 1) times continuously differentiable on
U × �, its derivatives are bounded and uniformly continuous on U × � and
N (0, 0) = 0, d1N [0, 0] = 0.

Under these hypotheses, there exist neighbourhoods �̃ ⊂ � of 0 and Ũ1 ⊂ U ∩ X1,
Ũ2 ⊂ U ∩ X2 of 0 and a reduction function r : Ũ1 × �̃ → Ũ2 with the following
properties. The reduction function r is k times continuously differentiable on Ũ1 × �̃

and r(0; 0) = 0, d1r [0; 0] = 0. The graph M̃λ = {u1+r(u1; λ) ∈ X1⊕X2 : u1 ∈ Ũ1}
is a Hamiltonian centre manifold for (4.1), so that

(i) M̃λ is a locally invariant manifold of (4.1): through every point in M̃λ, there
passes a unique solution of (4.1) that remains on M̃λ as long as it remains in
Ũ1 × Ũ2.

(ii) Every bounded solution u(x), x ∈R of (4.1) that satisfies (u1(x),u2(x))∈Ũ1×Ũ2
lies completely in M̃λ.

(iii) Every solution u1 : (x1, x2) → Ũ1 of the reduced equation

u̇1 = Lu1 + Ñ λ(u1), (4.2)
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where Ñ λ(u1) = PN (u1 + r(u1; λ); λ), generates a solution

u(x) = u1(x) + r(u1(x); λ)

of the full equation (4.1).
(iv) M̃λ is a symplectic submanifold of M and the flowdeterminedby theHamiltonian

system (M̃λ, �̃λ, H̃λ), where the tilde denotes restriction to M̃λ, coincides with
the flow on M̃λ determined by (M,�λ, Hλ). The reduced equation (4.2) is
reversible and represents Hamilton’s equations for (M̃λ, �̃λ, H̃λ).

Remarks 4.2 (i) We find that

H̃λ(u1) = Hλ(u1 + r(u1; λ)),

�̃λ|u1(v1, v2) = �0|0(v1 + d1r [u1; λ](v1), v2 + dr [u1; λ](v2))
= �0|0(v1, v2) + O(|(λ, u1)|) (4.3)

as (λ, u1) → 0. Using a parameter-dependent version of Darboux’s theorem (e.g.
see Buffoni and Groves [4]), we may assume that the remainder term in (4.3)
vanishes identically.

(ii) Substituting u = u1 + r(u1; λ) into (4.1) and eliminating u̇1 using (4.2) leads to
the equation

Lr(u1; λ) − d1r [u1; λ](Lu1) = Ñ λ(u1) + d1r [u1; λ](Ñ λ(u1)) − N (u1 + r(u1; λ); λ),

which can be used to recursively determine the terms in theTaylor series of r(u1; λ)

and N λ(u1).

We proceed by choosing (β0(s), α0(s)) ∈ C , setting (ε1, ε2) = (μ, 0), and apply-
ing Theorem 4.1 to (M, ϒ, H ε). Hypothesis (H3) is clearly satisfied for any natural
number k, and we henceforth refer to functions which are continuously differentiable
an arbitrary, but fixed number of times as ‘smooth’. The spectral theory in Sect. 3
shows that (H1), (H2) are also satisfied; indeed, the (complexified) four-dimensional
centre subspace of L is spanned by the generalised eigenvectors

E = τ
−1/2
1 e, Ē = τ

−1/2
1 ē, F = τ

−1/2
1

(

f − iτ2
2τ1

e
)

, F̄ = τ
−1/2
1

(

f̄ + iτ2
2τ1

ē
)

,

where

τ1 = −s coth(s) + 3 sinh(s) cosh(s)

2s
− 1

2
> 0, (4.4)

τ2 = − sinh(2s)

2s2
+ 4s

3
− 1

2s
− 3 cosh(2s)

2s
+ s + sinh(2s)

sinh2(s)
,
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so that the centre and hyperbolic subspaces of L are, respectively,

X1 = {AE + BF + ĀE + B̄F : A, B ∈ C}, X2 =
{
∑

k∈Z\{0}
βk fk : {βk} ∈ �2

}

.

The vectors are normalised such that (L − is I )E = 0, (L − is I )F = E with
SE = Ē , SF = −F̄ , and

ϒ |0(E, F̄) = ϒ |0(Ē, F) = 1, ϒ |0(F̄, E) = ϒ |0(F, Ē) = −1

and the symplectic product of any other combination of the vectors E, F, Ē, F̄ is zero
(so that {E, F, Ē, F̄} is a symplectic basis for the centre subspace of L). Writing

u1 = AE + BF + ĀĒ + B̄ F̄,

we, therefore, find that A, B are canonical coordinates for the reduced Hamiltonian
system (see Remark 4.2(i)), which can therefore be written as

Ax = ∂ H̃μ

∂ B̄
, Bx = −∂ H̃μ

∂ Ā

(with a slight abuse of notation we abbreviate H̃ ε|(ε1,ε2)=(μ,0) to H̃μ); this system is
reversible with reverser S : (A, B) → ( Ā,−B̄). Note that the quadratic, parameter-
independent part of the Hamiltonian is

H0
2 (A, B, Ā, B̄) = is(AB̄ − ĀB) + |B|2,

so that in coordinates

L

⎛

⎜
⎜
⎝

A
B
Ā
B̄

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

is 1 0 0
0 is 0 0
0 0 −is 1
0 0 0 −is

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

A
B
Ā
B̄

⎞

⎟
⎟
⎠

.

The next step is to use a normal-form transform to simplify the Hamiltonian. For
this purpose we use the following result due to Elphick [7].

Lemma 4.3 Let n0 ≥ 2. There exists a near-identity, canonical change of variables
which transforms the Hamiltonian to

is(AB̄ − ĀB) + |B|2 + Hμ
NF(A, B, Ā, B̄) + O(|(A, B)|2|(μ, A, B)|n0),

where the complexification of Hμ
NF lies in kerLL∗ , andLM∗ : C[Z ] → C[Z ] is defined

by

(LM∗ p)(Z) = M∗Z · ∇ p(Z)
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for M ∈ C
4×4, where the coefficients of the polynomials in the complex polynomial

rings depend upon μ and the gradient is taken with respect to Z = (A, B, Ā, B̄).

We proceed by characterising kerLL∗ using the following lemma, the statements in
which are obtained from results byMurdock [31, Lemma 3.4.8], Malonza [26, Lemma
4, Theorem 9] and Billera et al. [2, Section 4], respectively. Corollary 4.5 takes into
account that Hμ

NF is real valued.

Lemma 4.4 Let S = diag(is, is,−is,−is) and N = L − S.

(i) The kernel of LL∗ : C[Z ] → C[Z ] is given by kerLL∗ = kerLN∗ ∩ kerLS∗ .
(ii) The kernel of LN∗ is given by kerLN∗ = C[A, Ā, AB̄ − ĀB].
(iii) The kernel of LS∗ is given by kerLS∗ = C[AĀ, AB̄, B Ā, B B̄].
Corollary 4.5 The kernel of LL∗ : C[Z ] → C[Z ] is given by C[|A|2, i(AB̄ − ĀB)]
and Hμ

NF ∈ R[|A|2, i(AB̄ − ĀB)].
Writing the transformed reduced system as

u1x = Lu1 + Pμ(u1),

where

u1 = AE + BF + ĀĒ + B̄ F̄,

Pμ(u1) = ∂B̄ H̃
μ(A, B, Ā, B̄)E − ∂ Ā H̃

μ(A, B, Ā, B̄)F

+ ∂B H̃
μ(A, B, Ā, B̄)Ē − ∂A H̃

μ(A, B, Ā, B̄)F̄,

we can compute theTaylor series of r(u1;μ) andNμ(u1), and hence Hμ(A, B, Ā, B̄),
recursively using the equation

Lr(u1;μ)−d1r [u1;μ](Lu1) = Pμ(u1)+d1r [u1;μ](Pμ(u1))−Nμ(u1+r(u1;μ))

(4.5)
(see Remark 4.2(ii)), where with a slight abuse of notation we have applied the near-
identity normal-form transformation to the reduction function. Corollary 4.5 states
that there are real constants c1, c2, d1, d2, d3 such that

H̃1
2 (A, B, Ā, B̄, 0) = c1|A|2 + c2i(AB̄ − ĀB),

H̃0
3 (A, B, Ā, B̄, 0) = 0,

H̃0
4 (A, B, Ā, B̄, 0) = d1|A|4 + d2i(AB̄ − ĀB)|A|2 − d3(AB̄ − ĀB)2,

whereμ j H̃ j
k (A, B, Ā, B̄) denotes the part of the Taylor expansion of H̃μ(A, B, Ā, B̄)

which is homogeneous of order j in μ and k in (A, B, Ā, B̄). The coefficients c1 and
d1, whose values are required in Sect. 5 below, are computed in Appendix B; we find
that c1 < 0 and there exists a critical value s	 of s such that d1 > 0 for s < s	, which
we now assume.
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5 Homoclinic Solutions

In this section, we examine the reduced Hamiltonian system

Ax = ∂B̄ H̃
μ(A, B, Ā, B̄)

= is A + B + ∂B̄ H̃
μ
NF(|A|2, i(AB̄ − ĀB, μ) + O(|(A, B)||(μ, A, B)|n0),

(5.1)

Bx = −∂ Ā H̃
μ(A, B, Ā, B̄)

= isB − ∂ Ā H̃
μ
NF(|A|2, i(AB̄ − ĀB), μ) + O(|(A, B)||(μ, A, B)|n0), (5.2)

where the underscore indicates that the order-of-magnitude estimate remains valid
when formally differentiated with respect to (A, B). The truncated system without the
remainder terms was examined in detail by Iooss and Pérouème [19], who also studied
the ‘persistence’ of certain solutions as solutions to the full system. Here, we present
an alternative, functional-analytic proof of the existence of two reversible homoclinic
solutions to (5.1), (5.2).

We begin by returning to real coordinates q = (q1, q2)T, p = (p1, p2)T given by

A = 1√
2
(q1 + iq2), B = 1√

2
(p1 + ip2)

and, hence, obtaining the real Hamiltonian system

qx = ∂ H̃μ

∂ p
= p + sR π

2
q +

:= Pμ
1 (q, p)

︷ ︸︸ ︷

∂2 H̃
μ
NF(

1
2 |q|2, p ·R π

2
q)R π

2
q +Rμ

1 (q, p), (5.3)

px = −∂ H̃μ

∂ p
= sR π

2
p−∂1 H̃

μ
NF(

1
2 |q|2, p ·R π

2
q)q + ∂2 H̃

μ
NF(

1
2 |q|2, p ·R π

2
q)R π

2
p

︸ ︷︷ ︸

:= Pμ
2 (q, p)

+Rμ
2 (q, p),

(5.4)

in which

H̃μ(q, p) = 1

2
|p|2 + sp ·R π

2
q + H̃μ

NF(
1
2 |q|2, p ·R π

2
q, μ) + O(|(q, p)|2|(μ, q, p)|n0 ),

so that Pμ
1 (q, p), Pμ

2 (q, p) are polynomials in μ, q and p and

Rμ
1 (q, p), Rμ

2 (q, p) = O(|(q, p)|(μ, q, p)|n0).

Note that this system is reversiblewith reverser S :(q1, p1, q2, p2) �→(q1,−p1,−q2, p2)
and that

Rθ P
μ
1 (q, p) = Pμ

1 (Rθq, Rθ p), Rθ P
μ
2 (q, p) = Pμ

2 (Rθq, Rθ p)
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for all θ ∈ [0, 2π), where Rθ is the matrix representing a rotation through the angle
θ .

The next step is to recast equations (5.3), (5.4) as a single second-order equation.
Writing

p = qx − sR π
2
q + v,

we find from equation (5.3) that

v + Pμ
1 (q, qx − sR π

2
q + v) + Rμ

1 (q, qx − sR π
2
q + v) = 0, (5.5)

and using the implicit-function theorem, we now construct a solution of (5.5) of the
form

v = v
μ
1 (q, qx − sR π

2
q) + v

μ
2 (q, qx − sR π

2
q),

where v
μ
1 solves the truncated equation with Rμ

1 = 0 and takes the particular form

v
μ
1 (q, qx − sR π

2
q) = w

μ
1 (|q|2, R π

2
q ·(qx − sR π

2
q))R π

2
q. (5.6)

Note that wμ
1 necessarily solves

w1 + ∂2 H̃
μ
NF(

1
2 |q|2, w1|q|2 + R π

2
q ·(qx − sR π

2
q)) = 0, (5.7)

while v
μ
2 necessarily solves

v2 + Pμ
1 (q, qx − sR π

2
q + v

μ
1 (q, qx − sR π

2
q) + v2)

−Pμ
1 (q, qx − sR π

2
q + v

μ
1 (q, qx − sR π

2
q))

+Rμ
1 (q, qx − sR π

2
q + v

μ
1 (q, qx − sR π

2
q) + v2) = 0. (5.8)

Proposition 5.1

(i) Equation (5.7) has a unique solution w1 = w
μ
1 (|q|2, R π

2
q ·(qx − sR π

2
q)) which

depends analytically uponμ, |q|2 and R π
2
q·(qx−sR π

2
q)and satisfiesw0

1(0, 0) = 0.

The function v
μ
1 defined by (5.6) satisfies

v
μ
1 + Pμ

1 (q, qx − sR π
2
q + v

μ
1 ) = 0

and

Rθ v
μ
1 (q, qx − sR π

2
q) = v

μ
1 (Rθq, Rθ (qx − sR π

2
q))

for all θ ∈ [0, 2π).
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(ii) Equation (5.8) has a unique solution v2 = v
μ
2 (q, qx − sR π

2
q) which depends

smoothly upon μ, q and qx − sR π
2
q and satisfies

v
μ
2 (q, qx − sR π

2
q) = O(|(q, qx − sR π

2
q)||(μ, q, qx − sR π

2
q)|n0).

Substituting

p = qx − sR π
2
q + v

μ
1 + v

μ
2

into Eq. (5.4), wherewe have omitted the arguments of vμ
1 , v

μ
2 for notational simplicity,

shows that

(∂x − sR π
2
)2q = −(∂x − sR π

2
)(v

μ
1 + v

μ
2 ) + P̃μ(q, qx − sR π

2
q) + R̃μ(q, qx − sR π

2
q),

in which

P̃μ(q, qx − sR π
2
q) = Pμ

2 (q, qx − sR π
2
q + v

μ
1 ),

R̃μ(q, qx − sR π
2
q) = Pμ

2 (q, qx − sR π
2
q + v

μ
1 + v

μ
2 ) − Pμ

2 (q, qx − sR π
2
q + v

μ
1 )

+ Rμ
2 (q, qx − sR π

2
q + v

μ
1 + v

μ
2 ).

It follows that

(∂x − sR π
2
)2q = −∂1v

μ
1 (qx − sR π

2
q) − ∂2v

μ
1 (∂x − sR π

2
)2q

+ P̃μ(q, qx − sR π
2
q) − ∂1v

μ
2 (qx − sR π

2
q)

− ∂2v
μ
2 (∂x − sR π

2
)2q − ∂1v

μ
2 sR π

2
q

− ∂2v
μ
2 sR π

2
(qx − sR π

2
q) + sR π

2
v

μ
2 + R̃μ(q, qx − sR π

2
q), (5.9)

where ∂ jv
μ
k is the matrix d jv

μ
k [q, qx − sR π

2
q] and we have used the calculation

(∂x − sR π
2
)v

μ
1 (q, qx − sR π

2
q)

= (∂x − sR π
2
)Rsxv

μ
1 (R−sxq, R−sx (qx − sR π

2
q))

= Rsx∂xv
μ
1 (R−sxq, R−sx (qx − sR π

2
q))

= Rsx∂1v
μ
1 (R−sxq, R−sx (qx − sR π

2
q))∂x (R−sxq)

+ Rsx∂2v
μ
1 (R−sxq, R−sx (qx − sR π

2
q))∂x (R−sx (qx − sR π

2
q))

= Rsx∂1v
μ
1 (R−sxq, (qx − sR π

2
q))R−sx (qx − sR π

2
q)

+ Rsx∂2v
μ
1 (R−sxq, (qx − sR π

2
q))R−sx (∂x − sR π

2
)2q

= ∂1v
μ
1 (q, qx − sR π

2
q)(qx − sR π

2
q) + ∂2v

μ
1 (q, qx − sR π

2
q)(∂x − sR π

2
)2q.
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Introducing the scaled variables

q(x) = δRsx Q(X), X = δx,

where δ2 = −c1μ, so that

qx − sR π
2
q = δ2Rsx QX (X), (∂x − sR π

2
)2q = δ3Rsx QXX (X),

transforms equation (5.9) into

QXX = Q − CQ|Q|2 + T δ
1 (Q, QX ) + R−sX/δT

δ
2 (RsX/δQ, RsX/δQX , RsX/δQXX ),

(5.10)

where C = −d1/c1 and

T δ
1 (Q, QX ) = O(δ|(Q, QX )|), T δ

2 (Q, QX , QXX ) = O(δn0−2|(Q, QX , QXX )|).

Remark 5.2 The various changes of variable preserve the reversibility symme-
try, so that equation (5.10) is invariant under the transformation X �→ −X ,
(Q1, Q2) �→ (Q1,−Q2).

Before proving the existence of homoclinic solutions to (5.10) we define the func-
tion spaces with which we work and refer to some functional-analytic results which
are used in the proof (see Kirchgässner [21, Proposition 5.1]).

Definition 5.3 Suppose that k ∈ N0 and ν ≥ 0. Define

Ck
ν (R) = { f ∈ Ck(R) : ‖ f ‖k,ν < ∞}, ‖ f ‖k,ν := sup

t∈R

k
∑

j=0

| f ( j)(t)|eν|t |

and their subspaces

Ck
ν,e = { f ∈ Ck

ν (R) : f (−t) = f (t), t ∈ R},
Ck

ν,o = { f ∈ Ck
ν (R) : f (−t) = − f (t), t ∈ R}.

In the case k = 0 we just write Cν(R), Cν,e(R) and Cν,o(R).

Proposition 5.4

(i) The formula

K

(

z1
z2

)

=
(

z1XX − z1
z2XX − z2

)

defines a bounded linear operator C2
ν (R)2 → Cν(R)2 and C2

ν,e(R) ×C2
ν,o(R) →

Cν,e(R) × Cν,o(R) for each ν ≥ 0.
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(ii) For 0 ≤ ν < 1 the operator K : C2
ν (R)2 → Cν(R)2 is invertible with bounded

inverse given by

(K−1 f )(t) = −1

2

∫ ∞

−∞
e−|t−s| f (s) ds,

where the integration is taken componentwise.
(iii) Suppose that C > 0, h ∈ C1(R) and 0 ≤ ν < 1. The formula

Khz = K−1
(−3Ch2z1

−Ch2z2

)

defines a bounded linear operator C0(R)2 → C2
ν (R)2 and a compact operator

Cν(R)2 → Cν(R)2.

Theorem 5.5 For each ν ∈ (0, 1) and each sufficiently small value of δ > 0 equa-
tion (5.10) has two homoclinic solutions Qδ± which are symmetric, that is invariant
under the transformation (Q1(X), Q2(X)) �→ (Q1(−X),−Q2(−X)), and satisfy
the estimate

Qδ±(X) = ±
(

h(X)

0

)

+ O(δe−ν|X |)

for all X ∈ R.

Proof For δ = 0 equation (5.10) has the family

{

(Q1, Q2)
T = Rθ (h(X0 + ·), 0)T : θ ∈ [0, 2π), X0 ∈ R

}

of homoclinic solutions, where

h(X) =
( 2

C

)1/2
sech(X).

Two of these solutions, namely those with (θ, X0) = (0, 0) and (θ, X0) = (π, 0),
which we denote by respectively Q+ and Q−, are symmetric. We seek a solution of
(5.10) in the form of a perturbation of Q+ by writing

Q1 = h + z1, Q2 = z2,

so that z = (z1, z2)T satisfies

z1XX − z1 = −3Ch2z1 + r δ
1(z1, z2, z1X , z2X , z1XX , z2XX , X), (5.11)

z2XX − z2 = −Ch2z2 + r δ
2(z1, z2, z1X , z2X , z1XX , z2XX , X) (5.12)

with the obvious definitions of r δ
1 and r δ

2 . We study the system (5.11), (5.12) in
the space C2

ν (R)2 with fixed ν ∈ (0, 1) and, with a slight abuse of notation,
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consider the nonlinearity r δ = (r δ
1 , r

δ
2)

T as a mapping C2
ν (R)2 → Cν(R)2 and

C2
ν,e(R) × C2

ν,o(R) → Cν,e(R) × Cν,o(R) with

‖r δ(z1, z2)‖0,ν = O(δ) + O1(‖(z1, z2)‖22,ν).

In terms of the operators K and Kh defined in Proposition 5.4 equations (5.11), (5.12)
can thus be written as

z = Khz + K−1r δ(z). (5.13)

The eigenvalue problem

Khz = z

is equivalent to the decoupled system

z1XX = z1 − 3Ch2z1, (5.14)

z2XX = z2 − Ch2z2 (5.15)

of ordinary differential equations. Let

z11(X) = sech(X) tanh(X), z12(X) = sech(X),

z21(X) = sech(X)(−3 + cosh2(X) + 3X tanh(X)), z22(X) = sech(X)(2X + sinh(2X)),

so that {z11, z21} and {z12, z22} are fundamental solution sets for, respectively, (5.14) and
(5.15). Since z11, z12 are bounded while z21, z22 are unbounded, we conclude that all
bounded solutions of equation (5.14) are multiples of z11 = −hX and all bounded
solutions of equation (5.15) are multiples of z12 = (2/C)−1/2h. The eigenspace of
Kh : Cν(R)2 → Cν(R)2 corresponding to the eigenvalue 1 is, therefore,

sp

{(

hX

0

)

,

(

0
h

)}

,

which lies in Cν,o(R) × Cν,e(R). This calculation shows that 1 is not an eigenvalue
of Kh |Cν,e(R)×Cν,o(R) and since Kh is a compact operator Cν(R)2 → Cν(R)2, one
concludes that the spectrum of Kh |Cν,e(R)×Cν,o(R) consists only of eigenvalues, so that
1 lies in the resolvent set of Kh |Cν,e(R)×Cν,o(R). It follows that

I − Kh : Cν,e(R) × Cν,o(R) → C2
ν,e(R) × C2

ν,o(R)

is invertible. We can, therefore, solve equation (5.13) for sufficiently small values of
δ > 0 using the implicit-function theorem; the solution zδ	 satisfies ‖zδ	‖2,ν = O(δ).

Returning to equation (5.10), we have found a symmetric solution Qδ+ = Q+ + zδ	
which satisfies the stated estimate. The second homoclinic solution Qδ− is obtained
from Q− by the same procedure. ��
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Appendix A: Formal Derivation of the Nonlinear Schrödinger Equation

Writing β = β0, α = α0 + δ2 and substituting the formal asymptotic expansions

η(x) = δη1(x, X) + δ2η2(x, X) + δ3η3(x, X) + · · · ,

�(x, y) = δ�1(x, X , y) + δ2�2(x, X , y) + δ3�3(x, X , y) + · · · ,

where X = δx , into Eqs. (1.6)–(1.9) yields the boundary-value problems

�1xx + �1yy = 0, 0 < y < 1, (5.16)

�1y
∣
∣
y=0 = 0, (5.17)

�1y + η1x
∣
∣
y=1 = 0, (5.18)

α0η1 − �1x + β0η1xxxx
∣
∣
y=1 = 0 (5.19)

for �1,

�2xx + �2yy + 2�1x X + 2η1�1xx − 2yη1x�1xy − y�1yη1xx = 0, 0 < y < 1,

(5.20)

�2y
∣
∣
y=0 = 0, (5.21)

�2y + η1X + η2x − η1x�1x + η1xη1
∣
∣
y=1 = 0, (5.22)

− �2x − �1X + α0η2 + 4β0η1xxx X + β0η2xxxx + �1yη1x + 1
2�2

1x + 1
2�2

1y

∣
∣
y=1 = 0

(5.23)

for �2 and

�3xx + �3yy + 2�2x X + 4η1�1x X + 2η1�2xx + 2η2�1xx

− 2yη1x�1Xy + �1XX − 2yη1x�2xy − 2yη1X�1xy

− 2yη2x�1xy − 2yη1x X�1y − yη2xx�1y − yη1xx�2y

+ η21�1xx + y2η21x�1yy − 2yη1η1x�1xy − yη1η1xx�1y

+ 2yη21x�1y = 0, 0 < y < 1, (5.24)

�3y
∣
∣
y=0 = 0, (5.25)

�3y + η2X + η3x − η1x�1X − η1x�2x − η2x�1x − η1X�1x

+ η1η1X + η1xη2 + η1η2x − η1η1x�1x + yη21x�1y
∣
∣
y=1 = 0,

(5.26)

− �3x − �2X + α0η3 + 6β0η1xx X X + 4β0η2xxx X + β0η3xxxx

+ η1x�2y + η1X�1y + η2x�1y + �1x�1X + �1x�2x

+ �1y�2y − 5
2β0η

2
1xη1xxxx − η1η1x�1y − η1�

2
1y

− η1x�1x�1y + η1 − 10β0η1xη1xxη1xxx − 5
2β0η

3
1xx

∣
∣
y=1 = 0 (5.27)
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for �3. We proceed by making the modulational Ansatz

η1(x, X) = A1(X)eisx + c.c. ,

η2(x, X) = A2(X)e2isx + c.c. + A0(X),

η3(x, X) = A3(X)e3isx + A4(X)e2isx + A5(X)eisx + c.c. + A6(X).

• From (5.16)–(5.18) it follows that

�1xx + �1yy = 0, 0 < y < 1,

�1y
∣
∣
y=0 = 0,

�1y
∣
∣
y=1 = −is A1e

isx + c.c. ,

the solution to which is

�1(x, X , y) = − i cosh(sy)

sinh(s)
A1e

isx + c.c. + g1(X),

where g1 is an arbitrary function of a single variable. The equation

(α0 + β0s
4)A1 − �1x

∣
∣
y=1 = 0,

which follows from (5.19), then recovers the dispersion relation (3.7).
• From (5.20)–(5.22), it follows that

�2xx + �2yy = − 2s
cosh(sy)

sinh(s)
A1X e

isx

− is(3sy sinh(sy) − 2 cosh(sy))A2
1e

2isx + c.c., 0 < y < 1,

�2y
∣
∣
y=0 = 0,

�2y
∣
∣
y=1 = −A1Xe

isx + is

(
s cosh(sy)

sinh(s)
A2
1 − A2

1 − 2A2

)

e2isx ,

the solution to which is

�2(x, X , y) =
(
coth(s)

sinh(s)
cosh(sy) − y

sinh(sy)

sinh(s)

)

A1X e
isx

+
(

is

(
coth(s) cosh(2sy)

sinh(2s)
− y

sinh(sy)

sinh(s)

)

A2
1 + i cosh(2sy)

sinh(2s)
A2

)

e2isx

+ c.c. + g2(X),

where g2 is an arbitrary function of a single variable. Substituting the formulae
for �1, �2 and the modulational Ansatz into (5.23), and equating the coefficients
of e0isx , eisx , e2isx , we then find that
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g1X = s2

sinh2(s)
|A1|2 + α0A0, (5.28)

A2 = 1

2

(1 − 3 coth2(s))s2

α0 + 16s4β0 − s(coth(s) + (coth(s))−1)
A2
1,

β0 = 1

4s3
coth(s) − 1

4s2
cosech2(s).

Using the dispersion relation and the above formula for β0, we find that

α0 = 3s

4
coth(s) + s2

4
cosech2(s).

• Similarly, (5.24)–(5.26) yield a Poisson equation for�3 with boundary conditions
at y = 0 and y = 1, the solution to which is

�3(x, X , y)

=
((

3

2

is2 cosh(sy)

sinh(s)
− 2is2 coth(2s) cosh(s) cosh(sy)

sinh2(s)
− 1

2

is2y2 cosh(sy)

sinh(s)

+ is2y
sinh(2sy)

sinh2(s)

)

Ā1A
2
1

+
(

(2is coth(s) + is tanh(s)) cosh(sy)

sinh(s)
+ isy sinh(sy)

sinh(s)
− 2isy sinh(2sy)

sinh(2s)

)

Ā1A2

+
(
is coth(s) cosh(sy)

sinh(s)
− isy sinh(sy)

sinh(s)

)

A0A1

+
(
iy2 cosh(sy)

2 sinh(s)
+ i(2 coth2(s) − 1) cosh(sy)

2 sinh(s)
− iy coth(s) sinh(sy)

sinh(s)

)

A1XX

− i cosh(sy)

sinh(s)
A5 + i cosh(sy)

sinh(s)
A1g1X

)

eisx + (· · · )e2isx + (· · · )e3isx + c.c

+ sinh(sy)(sy coth(s) + coth(s) − y) − cosh(sy)(sy2 + coth(s))

sinh(s)

d

dX
|A1|2

− 1
2 y

2 − 1
2 y

2g1XX

with

g1XX − A0X + 2s coth(s)
d

dX
|A1|2 = 0.

By integrating this equation and substituting it into (5.28) we find that

A0 =
( s2

α0 − 1
(1 − coth2(s)) − 2s coth(s)

α0 − 1

)

|A1|2,
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so that

g1X =
(

s2α0

α0 − 1
(1 − coth2(s)) − 2sα0

α0 − 1
coth(s) − s2(1 − coth2(s))

)

|A1|2.

Substituting the formulae for A0, A2, g1X , �1, �2, �3 and the modulational
Ansatz into (5.27), and equating coefficients of eisx , finally yields the nonlinear
Schrödinger equation

A1 − (6β0s
2 − (1 − σ 2)(1 − sσ))A1XX

+
( −s4(1 − 3σ 2)2

2(α0 + 16β0s4 − s(σ + σ−1))
+ s3(−5s3β0 + 4σ − 2σ 3)

− s4(1 − σ 2)2

α0 − 1
+ 4s3σ(1 − σ 2)

α0 − 1
− 4α0s2σ 2

α0 − 1

)

|A1|2A1 = 0,

where σ = coth(s).

Appendix B: Computation of the Normal-Form Coefficients

For this purpose we make use of the calculation

ϒ |0(Lu, v) = H0
2 (u, v) = H0

2 (v, u) = ϒ |0(Lv, u),

denote the parts of Hμ(w), gμ(w) which are homogeneous of order m in μ and n in
w by μmHm

n (w), μmNm
n (w) and the part of r(u1;μ) which is homogeneous of order

m in μ and n in u1 by rmn (u1;μ). With a slight abuse of notation we use the same
symbols for the multilinear operators associated with these quantities.

Write

rmn (u1;μ) =
∑

i+ j+k+�=m

rni jk�μ
m Ai B j Āk B̄�

and consider the μA-component of (4.5), namely

(L − is I )r11000 = c2iE − c1F − N 1
1 (E).

Taking the symplectic product of this equation with Ē , we find that

c1 = −ϒ |0(r11000, (L + is I )Ē
︸ ︷︷ ︸

= 0

) + ϒ |0(N 1
1 (E), Ē) = 2H1

2 (E, Ē) = − sinh2(s)

τ1
.

To compute d1 we consider the A2 Ā-component of (4.5), namely
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(L − is I )r02010 = id2E − 2d1F − 3N 0
3 (E, E, Ē)

−2N 0
2 (Ē, r0200000) − 2N 0

2 (E, r0101000),

and again take the symplectic product with Ē , so that

2d1 = −ϒ |0(r02010, (L + is I )Ē
︸ ︷︷ ︸

= 0

) + 3ϒ |0(N 0
3 (E, E, Ē), Ē)

+ 2ϒ |0(N 0
2 (Ē, r02000), Ē) + 2ϒ |0(N 0

2 (E, r1010), Ē).

The functions r02000 and r
0
1010 are obtained from the A2- and AĀ-components of (4.5),

which are respectively

(K − 2is I )r02000 = −N 0
2 (E, E),

Kr01010 = −2N 0
2 (E, Ē)

(note that r0101000 is determined up to addition of a multiple of F). Altogether we find
that

d1 = sinh4(s)

2τ 21

(
s4(1 − 3σ 2)2

2(α0 + 16β0s4 − s(σ + σ−1)
− s3(−5s3β0 + 4σ − 2σ 3)

+ s4(1 − σ 2)2

α0 − 1
− 4s3σ(1 − σ 2)

α0 − 1
+ 4α0s2σ 2

α0 − 1

)

,

where σ = coth(s).
For completeness, we record the formulae for r̃0101000 and r̃

0
200000, namely

r̃01010 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−s(α0 − 1)−1(s + sinh(2s))
0
0
0
0

−s sinh(2s) + 2s sinh(s)(sy sinh(sy) + cosh(sy))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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r̃02000 = ã02000

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

i sinh(2s)
−2s sinh(2s)

1
2s (α0 − 1) sinh(2s)
−4is2β0 sinh(2s)

−( 1
2s + (y2 − 1

3 )s) sinh(2s) + cosh(2sy)
2is cosh(2sy) − i sinh(2s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2 s sinh(2s)
is2 sinh(2s)

− i
8 (2α0 − 3) sinh(2s) − i

s sinh
2(s)

−2β0s3 sinh(2s)
i sinh(s)(−2sy sinh(sy) + cosh(sy))

i(1 + 1
2 s

2(y2 − 1
3 )) sinh(2s) + i(− 3

s + 1
2 s(y

2 − 1
3 )) sinh

2(s)
s sinh(s)(sy sinh(sy) + cosh(sy)) − 1

2 s sinh(2s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

ã02000 = 1

2
i

(
s2(cosh(2s) + 2)

sinh(2s)(α0 + 16β0s4) − 2s cosh(2s)
+ s

)

.
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