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Abstract

This paper presents an existence theory for solitary waves at the interface between
a thin ice sheet (modelled using the Cosserat theory of hyperelastic shells) and an
ideal fluid (of finite depth and in irrotational motion). The theory takes the form of
a review of the Kirchgissner reduction to a finite-dimensional Hamiltonian system,
highlighting the refinements in the theory over the years and presenting some novel
aspects including the use of a higher-order Legendre transformation to formulate the
problem as a spatial Hamiltonian system, and a Riesz basis for the phase space to
complete the analogy with a dynamical system. The reduced system is to leading
order given by the focussing cubic nonlinear Schrodinger equation, agreeing with the
result of formal weakly nonlinear theory (which is included for completeness). We
give a precise proof of the persistence of two of its homoclinic solutions as solutions
to the unapproximated reduced system which correspond to symmetric hydroeleastic
solitary waves.

Keywords Solitary waves - Hydroelastic waves - Nonlinear Schrodinger equation -
Centre-manifold reduction

1 Introduction

1.1 The Main Result

In this article, we examine the propagation of solitary waves on the surface of an ocean
under ice, regarding the water as a perfect fluid in irrotational flow and the ice sheet as

an elastic shell which bends with the surface without stretching and without friction
or cavitation between it and the fluid beneath. For this purpose we consider the model
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Fig.1 An ice sheet on the free surface of a two-dimensional perfect fluid

derived by Plotnikov and Toland [33] using the Euler equations for inviscid fluid flow
and the Cosserat theory of hyperelastic shells (Fig. 1).

We suppose that the fluid occupies the region bounded below by a rigid horizontal
bottom {y = 0} and above by the free surface {y = h + n(x, t)}, where & is the depth
of the water in its undisturbed state. Travelling waves move in the x-direction with
constant speed ¢ and without change of shape, so that n(x, t) = n(x —ct), and solitary
waves are localised travelling waves, so that n(x —ct) — 0asx —ct — =£oo. Interms
of an Eulerian velocity potential ¢, the governing equations for the hydrodynamic
problem in dimensionless coordinates and in a coordinate system moving with the
wave are

¢xx+¢yy=0’ O<y<l+n (1.1
with boundary conditions
¢yl =0, (1.2)

Gy = Medx + 1]y y, =0, (1.3)
— e+ 387 +¢7) +an

+ ! ! Max L Y
ﬂ((l + a2 LA+t ((1 +n§)3/2>x x E((1 + n,%)m) >

and asymptotic conditions n — 0, (¢, ¢y) — (0, 0) as x — £oo (see Guyenne and
Parau [16]). The dimensionless parameters « and 8 are given by

=0
y=l+n

(1.4)

gh D
(X:—z, IB:W’

where D is the coefficient of flexural rigidity of the ice sheet, g is the acceleration due
to gravity, c is the wave speed and p is the constant water density.

This formulation is unfavourable because of the variable fluid domain. It is, there-
fore, convenient to introduce the change of variable

Y

m, D(x,y) =d(x,y), (1.5

y =
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Fig.2 The linear dispersion relation for a fixed Sy

which maps the variable fluid domain {(x,y) : x € R, y € (0,1 4+ n(x))} to the
fixed strip R x (0, 1). Dropping the tildes for notational simplicity, one obtains the
transformed equations

1+ y%n? Y1l Y yn?
Do+ Dy 2o Y g 20,2 __o 0 1,
O T Ty T a2 v
(1.6)
@[, =0, (1.7)
d) YNx
. D, — D =0, 1.8
1+7n e = ( )l—i—n) (1.8)
Yx 1 Y1x D,
_(q)x_¢)yl—|—7]>+§((q}x_¢yl+n> +<+))+an
o(irmmlamm () ] <3 () )| -0
)2 [ )2\ + 02 a+n2) )|,
(1.9)

with asymptotic conditions n — 0, (®,, ®,) — (0, 0) as x — Fo0.
Let us briefly review the (formal) classical weakly nonlinear theory as it applies to
this problem. Figure 2 shows the linear dispersion relation

o+ ,8s4 = s coth(s)

for a sinusoidal wave train with wave number s. For each fixed value By of 8, the
dispersion curve has a unique minimum at (s, ™Y = (Smins Qg 1); the relationship
between By, op and s = spin can be expressed in the form

1 2
Bo(s) = coth(s) — cosech (s), ag(s) = %Scoth(s) + SZ cosechz(s),
452
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which defines a curve C in the (B, «)-plane parametrised by s € (0, 00). Setting
o = ag + 8%, B = Bo, and substituting the modulational Ansatz

n(x) = 8(A1(8x)e™™ + Ay (8x)e ™)
+8%(A2(8x)e + Az (8x)e M + Ag(8x)) + - -

into Egs. (1.6)—(1.9), one finds that to leading order A; satisfies the nonlinear
Schrodinger equation

Al —biA1xx — ba]A1]? A =0, (1.10)

where X = §x (see Appendix A for details of the derivation and formulae for the
coefficients b1 and by). One finds that b is positive for all values of s, and there exists
a critical value s* (numerically s* ~ 177.33) such that b > 0 for s < s* and b, < 0
fors > s*.

Suppose that b, > 0, that is, choose s sufficiently small, or equivalently By suf-
ficiently large (corresponding to sufficiently shallow water in physical variables).
Equation (1.10) admits the family

2\ 1/2 X »
A1(X) = E sech W e, 0 € [0,2r)
1

of homoclinic solutions (solutions which decay to zero as x — =£00), which corre-
spond to the solitary waves

2\!/? 8x
n(x)=28(—) sech|—= |cos(sx +6) + 0(5?).
b e

These waves take the form of periodic wave trains modulated by exponentially decay-
ing envelopes; the wave with & = 0 is a symmetric wave of elevation, while the wave
with 6 = 7 is a symmetric wave of depression (see Fig. 3). In this article, we confirm
the predictions of the weakly nonlinear theory and prove the following theorem.

Theorem 1.1 Choose s € (0, s*) and let (By, o) denote the point on the curve C
with this parameter value. For each sufficiently small value of § > 0 and v € (0, 1),
the hydroelastic problem (1.1)-(1.4) with B = By and ¢« = ag + 8% admits two
geometrically distinct, symmetric solitary-wave solutions (n, o) which satisfy the
estimate

2\ /2 1) -1/2
7 =428 [ =) sech | <2 ) cos(sx) + O (8%~ 3y
by b7

uniformly over x € R.
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Fig.3 Symmetric envelope solitary waves (with scaled amplitudes and wavelengths)

1.2 Spatial Dynamics and the Kirchgassner Reduction

We prove Theorem 1.1 using the Kirchgdssner reduction: the hydrodynamic problem
is formulated as a spatial Hamiltonian system and reduced to a locally equivalent
Hamiltonian system with finitely many degrees of freedom; homoclinic solutions of
the reduced system correspond to solitary waves. The method was introduced by
Kirchgissner [21] and has been used for many problems in fluid mechanics, in par-
ticular for water waves (see Dias and Iooss [6] for a review), and more recently for
water waves with vorticity (Groves and Wahlén [14, 15], Kozlov et al. [22], Kozlov
and Lokharu [23]) and ferrofluids (Groves et al. [11], Groves and Nilsson [12]). In this
paper, we review the method as it applies to hydroelastic solitary waves, presenting
various refinements and new features.

Our starting point in Sect. 2 is the observation that the Egs. (1.1)—(1.4) follow from
the formal variational principle

) Loa2 ) 42 1.2 1 n;
‘Sfm{fo (= ¢+ 2@2+¢D) dy+ ban +§ﬂW}dx=0,
X
(1.11)

in which the variations are taken over n and ¢ (a modified version of the classical
variational principle introduced by Luke [25]); this observation is confirmed by the
calculation

L+n() 1,42 2 1.2, 1 Uk
XX
‘S/]R{/o (=430t +oD) dy+ den +7ﬁ(l+n£>5/2}dx

14+n(x) . . .
= /I; { - /O (Pxx + ¢yy)¢ dy + ((_nx¢x + ¢y + 77x)¢)|y:1+n - (¢y¢)‘y:0

3
Mxx

1 1 Nxx .
MO [(1 FeyTE ((1 n n§>3/2>x]x>"} &

where the formal first variations of n and ¢ are denoted by respectively 7 and é and
we have used integration by parts and Green’s integral formula.
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We proceed using the change of variable (1.5), which transforms (1.11) into the
new variational principle

5 [ L0 s e, @, @) dx =0
with Lagrangian
L, 0y, Nxx, P, Py)

._/1 o —o 2 | e q)ynx 2+1 @7 (1 +nd
LU T T 2T 2(1+)2 PEy

1.2, 1 ’7xx
+5am +§ﬂ—(1+ 2572

this variational principle recovers the transformed equations (1.6)—(1.9). The next step
is to perform a (formal) Legendre transform to obtain a formulation of the hydrody-
namic problem as a spatial Hamiltonian system (in which the variable x plays the
role of ‘time’). The presence of second-order derivatives in the Lagrangian, however,
necessitates the use of a higher-order Legendre transform (see Lanczos [24, Appendix
I]), by means of which obtain the Hamiltonian system

SH SH SH SH 5H SH
= —, (,():——’ = -, = —, —_ —_—_—

=S PP T e YT T T Ty YT s YT s
(1.12)

with variables 1, ® and

5L d(SL) ¢ OL 5L

P = Nx, w=—_———"— s |\ —_—
! dnx dx \ nxx ONxx 3Dy

these equations are accompanied by the boundary conditions
—d>y+y,0\1/|y=0’1 =0, (1.13)

which emerge when computing the variational derivatives.

Equations (1.12), (1.13) are reversible, that is invariant under the transformation
n,w,p,& 0, ¥)(x) — (n,—w,—p, & —P, ¥)(—x); this symmetry is inherited
from (1.6)—(1.9), which are invariant under (n(x), ®(x, y)) — (n(—x), ®(—x, y)).
They are also invariant under the transformation ® — @ + ¢ for any constant c.
To eliminate this symmetry, one replaces (®, W) with new variables (Cf>, Dy, U, Uy),
where ® = ® — @, U = W — Wy and Oy = fol ®dy, ¥g = fol W dy, thus obtaining
a new canonical Hamiltonian system with Hamiltonian

H(n, o, p,€ ®,¥, &g, Vo) = H, o, p, &,
=Hmn w,p,é,

+ Py, U+ Yo)

@+
O, U + W)
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and additional constraints fol ody = 0, fol Wdy = 0. The variable ® is cyclic,
so that its conjugate W is a conserved quantity; we proceed in standard fashion by
setting Wy = — 1, considering the equations for (1, w, p, &, ®, ¥) and recovering ®
by quadrature. The nonlinear boundary condition

—Dy + yp(V — 1)yy=1 =0

necessitates a further change of variable, namely

1 )
f‘:d_D—p/ys(\IJ(s)—l)ds—i-p/ /ys(‘if(s)—l)dsdy,
0 0o JO

in terms of which the boundary conditions take the simple, linear form fy ’y:O.l =0.
The formulation of the hydrodynamic problem as a spatial Hamiltonian system is
discussed rigorously in Sect. 2, where a precise definition of a Hamiltonian system is
given and Hamilton’s equations are derived. Full details of the changes of variable,
which are performed explicitly, are also given; the result is a quasilinear evolution
equation of the form
uy = Lu + N°¥(u) (1.14)
for the variable u = (1, p, w, £, T', ¥) in the phase space

X={np ot T, V) eRxRxRxRx H'(0,1) x L*0, 1)},

where the overline denotes the subspace of functions with zero mean value; the domain
of the linear operator L is

DL) ={(, p, 0,6, T, ¥) e Rx Rx Rx R x H*(0,1) x H'(0, 1) : |, o, =0}
and the nonlinear term on the right-hand side of (1.14), which satisfies
Néu) = O(||(e, w)|||lu]l), maps a neighbourhood of the origin in R? x D(L) analyt-
ically into X. Here we have written ¢ = ag + €1 and 8 = Bp + &2, where «¢ and By
are fixed, and the superscript ¢ denotes the dependence upon this parameter.

In Sect.3 we show that the spectrum of L is discrete. By reducing the spectral
problem to a non self-adjoint Sturm—Liouville problem, we show that a complex

number A is an eigenvalue of L if and only if
ag + 2By = Acot(h) (1.15)

and deduce that o (L) consists of

(a) a countably infinite family {A}rcz\ (o) of simple real eigenvalues, where {Ax};2 ,
are the positive real solutions of equation (1.15), so that Ay € (km, (k + 1)) for
k=1,2,...and

2 1
)»,%:kznz—i-ﬁ—-l—o(z)
0

for large k,and A, = —Ap fork = 1,2, ...,
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Fig.4 The shaded region indicates the parameter regime in which homoclinic bifurcation is detected; dots
and crosses denote, respectively, simple and algebraically double, geometrically simple eigenvalues

Bo

(b) four additional eigenvalues (counted according to multiplicity) which are shown
in Fig.4. Note in particular that a Hamiltonian—Hopf bifurcation occurs at each
point (Bo(s), ap(s)) of the curve C: two pairs of purely imaginary eigenvalues
become complex by colliding at the points +is on the imaginary axis.

Remarkably, we can treat (1.14) as a dynamical system with countably infinitely many
coordinates by showing that L is a Riesz spectral operator, that is its generalised
eigenvectors form a Riesz basis for X (a Schauder basis obtained by an isomorphism
from an orthonormal basis). In particular, at a point (By(s), ag(s)) of the curve C (a
‘Hamiltonian—Hopf point’) we can write

xz{u:Ae+Bf+Aé+Bf+ Z Bres, 1 A, B € C, {ﬂk}ezz},
keZ\{0}

where e, f and e, are suitably normalised generalised eigenvectors with
(L —isl)e=0,(L —isI)f =eand (L — Agl)e;, = 0. In the above notation,

Lu = (isA+ B)e +isBf + (—isA+ B)é —isBf + Y Jprey,
keZ\{0}

and u € D(L) whenever {ify} € £2.

Homoclinic solutions of (1.12) are of particular interest since they correspond to
solitary waves. We detect them using centre-manifold reduction (see Mielke [28, 29]
for the version of the reduction theorem used here). Denoting the central and hyperbolic
subspaces of X at a Hamiltonian-Hopf point by
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Xi={u1=Ae+Bf +Aé¢+Bf :A,BecC},
Xp = {uzz > Brew s (B 652},

keZ)\{0}

one finds that all small, globally bounded solutions to (1.14) lie on a centre mani-
fold of the form {uy = r(uy; ¢)}, where the reduction function r : X1 — D(L) is
O(||(e, w)|||lu]]). The flow on the centre manifold is governed by the reduced system

ute = Luy 4+ N°(uy +r(ui; €)), (1.16)

which is itself a reversible Hamiltonian system (with two degrees of freedom). One
of the key requirements in Mielke’s theorem is that the operator L, = L|x, has
L?-maximal regularity in the sense that the differential equation

Oxuy = Loupy + h

admits a unique solution u, € WP (R, X2) NLP?(R, D(L»)) foreachh € LP (R, X»)
and p > 1. In fact L”-maximal regularity for some p > 1 implies L”-maximal
regularity for all p > 1 (see Mielke [27]), and an operator has L2-maximal regularity
if and only if it is bisectorial (see Arendt and Duelli [1, Theorem 2.4]); the theorem is
usually stated with bisectorality as a hypothesis. (Mielke’s theorem actually requires
maximal regularity in exponentially weighted spaces, a property which is implied
by LP-maximal regularity; see Mielke [27, Lemma 2.3]). In Sect.4 we, however,
demonstrate directly that a Riesz spectral operator with no imaginary eigenvalues
has L2-maximal regularity, and stipulate L?-maximal regularity as a hypothesis in
Mielke’s theorem. This approach is more direct than that taken in the above references
to the Kirchgissner reduction, in which central and hyperbolic subspaces of a suitable
phase space are defined by Dunford integrals and the bisectorality condition is verified
by a priori estimates.

Writing (1, €2) = (i, 0), so that positive values of p correspond to points on
the ‘complex’ side of C (the shaded region in Fig.4), one finds after a Darboux and
normal-form transformation that the reduced equation (1.16) can be formulated as the
Hamiltonian system

A, = g ile (1.17)
YT 9B T8A 7 '

H"(A, B, A, B) = is(AB — AB) + |B|* + H{(IA|*,i(AB — AB))
+O(|(A, B)P|(i. A, B)|™),

where I:IﬁF(A, B, A, B) is a real polynomial function of its arguments which satisfies

Hip (A2 i(AB — AB), 1)= O(|(A, B)*|(1, A, B));
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it contains the terms of order 3, ..., ng + 1 in the Taylor expansion of H "(A, B, /{, B).
Equation (1.17) inherit the reversibility of (1.12): they are invariant under the
transformation (A, B)(x) — (A, —B)(—x). Neglecting the remainder term in the
Hamiltonian and introducing the scaled variables

A(x) = 8ePYA(X), B(x) = 82" B(X), X =éx,

where § = u2, confirms that the system is at leading order equivalent to the nonlinear
Schrodinger equation

Axx = —c1A — d1A|A)%,

where ¢| and d; are the coefficients of respectively u|A[* and |A|* in the Taylor
expansion of Hﬁp. We compute these coefficients explicitly in Appendix B and find
that

1 sinh?(s) by
C1 = _—, = -,
! ! 211 b

where by, by are the coefficients in Eq. (1.10) and 71 > 0 is defined in Eq. (4.4).

A rigorous analysis of (1.17) is given in Sect.5. Returning to real coordinates ¢,
p € R?givenby A = \/li(ql +iqn), B = \/li(pl +ip»), eliminating p and introducing
the scaled variables

q(x) = 8Rsx Q(X), X =0x,

where 82 = —cyu and Ry is the matrix representing a rotation through the angle 6,
transforms (1.17) into

Oxx =0 —CQ|Q*+T{(Q, Ox) + R_sx/sT3 (Rsx/sQ, Rsx/50x, Rsx/5 Qxx),
(1.18)

where C = —d;/c1 and

TP(Q, Qx) = 061(Q, 0x)),  T5(Q. Ox. Oxx) = 08" *|(Q, Qx, Qxx)).

Equation (1.18) is invariant under the transformation X — -X,
(Q1(X), 02(X)) — (Q1(—X), —02(—X)) and in the limit § = 0 has the explicit
solution

2\ 1/2
Q(X)=(h(é()>, h(X)=(E> sech(X),

which is nondegenerate in the class of symmetric functions (see Sect.5 for a precise
statement of this result). This fact allows one to prove the following theorem with an
implicit-function theorem argument.
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Theorem 1.2 Foreachv € (0, 1) and each sufficiently small value of § > 0 Eq. (1.18)
has two homoclinic solutions Q°F which are symmetric, that is invariant under the
transformation (Q1(X), Q2(X)) — (Q1(—X), —Q2(—X)), and satisfy the estimate

0% (X) = + (h(gf)) + 0@ "Xy

forall X e R.

Finally, let us briefly mention some related work in the literature. Buffoni and
Groves [4] show that (1.17) has an infinite number of geometrically distinct homo-
clinic solutions which generically resemble multiple copies of one of the ‘primary’
homoclinic solutions found here. In the present context, this result yields the existence
of an infinite family of ‘multi-pulse’ hydroelastic solitary waves. A variational exis-
tence theory for hydroelastic solitary waves in the present parameter regime has been
given by Groves et al. [10], while the Kirchgdssner reduction (without the Hamilto-
nian framework) has also been applied to alternative models in which the ice sheet is
modelled as a thin Euler—Bernoulli elastic plate (Parau and Dias [32]) and a Kirchhoff—
Love elastic plate with non-zero thickness and inertial effects (Ilichev [17], Ilichev and
Tomashpolskii [18]). There are also several numerical studies of hydroelastic solitary
waves in deep water (Gao et al. [8], Guyenne and Parau [16], Milewski et al. [30]),
and an alternative approach to centre-manifold reduction has been given by Chen et
al. [5].

2 Formulation as a Spatial Hamiltonian System

In this section, we formulate the hydrodynamic problem as a spatial Hamiltonian
system. Starting with a variational principle for the ‘flattened” hydrodynamic problem
(1.6)—(1.9), we perform a formal Legendre transform to detect its spatial Hamiltonian

structure, the correctness of which is confirmed a posteriori.
The ‘flattened’ hydrodynamic problem follows from the variational principle

6/L(na nXa nxX7 q)a q)x) dx = O
with Lagrangian
L(’l, 77x, 77va q>1 CDX)

~J T g 207 149] 20492 ey

Nix
(1402

+ %anz—i-%ﬂ

We perform a formal Legendre transformation (see Lanczos [24, Appendix I]) by
defining
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P = MNx,

SL d ( SL )
w=—— —
Inx dx \ 8mxx

1 2
ynx 5 nxnxx Nxxx
= Dy — [y — &y 2 |yd, )dy+3 - ,
/o(y ! [ y1+n}y y) YRy TP e

_ sL —B Nxx
SNyex 1+ 77;25)5/27

SL
W= =—(1+n)+<<bx—<by

£

YNx
1+7

)(1+n)

and defining the Hamiltonian function by

1

Hm,p,w, & ® V) =wn, +E&n +/ Vo, dy — L, p,w, & O, W)
0
2

§
= wp — g’ + g1+ 0 4 (4

1
1 ,oy(I)y‘-IJ>
+ — (W dH 4w+ )d
/0 (2(1+n)( 2 1+7n Y

Writing @« = ag + €1 and 8 = By + &2, where o and By are fixed, we find that
Hamilton’s equations are given explicitly by

_ SH®

e = 75 =p, 2.1
)
SH® (14 p?)°?
px = = £, 2.2
& Bo + &2
oH ! /l(l(wz ®3) + pyd, W) dy + (o + &)1 — }
Wy =——F—="37 5 — ap+e1)n — 5,
(2.3)
SH* S_ P o I
=— =—-—w—-—-—&(+ (S d,Wdy, 2.4
Ex 5 2ﬁ0+82%‘( o) 15y ), YOV (2.4)
SH® W+ D,
b= = — 4 B 2.5)
g 1417 I+n
v, =L a4 pyw) 26)
YT T agg TP '
where the superscript denotes the dependence upon ¢ = (g1, &), with boundary
conditions

—®y +yp¥ y=0.1= 0,
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which emerge from the integration by parts used to compute (2.6). A straightforward
calculation shows that the n- and ®-components of any solution to these equations
satisfy (1.6)—(1.9).

Note that Egs. (2.1)—(2.6) are reversible, that is invariant under the transformation
n,w,p,& 0, V)(x)—~ S, w, p, &, D, V)(—x), where the reverser is defined by

S(ns w, P, ga q)1 \IJ) = (’77 —w, —pP, gv _q)a \I'I)

They are also invariant under the transformation ® +— & + ¢ for any constant c.
To eliminate this symmetry it is convenient to replace (®, W) with new variables
(®, Dy, ¥, ¥y), where ® = & — &g, ¥ = ¥ — ¥y and

1 1
Oy = / ddy, Yy = / Wdy.
0 0

This transformation leads to a new canonical Hamiltonian system with Hamiltonian

Hm,o,p,& @V, &g, W) = Hn, 0, p, &, D + Po, ¥ + W)
=H@, o, p,& &, ¥+ V)

and additional constraints

1 1
/ ddy =0, / Wdy = 0.
0 0

Observe that @ is a cyclic variable whose conjugate Wy is a conserved quantity;
we proceed in standard fashion by setting Wy = —1, considering the equations for
(1, , p, &, ®, W) and recovering ®q by quadrature. Dropping the bars for notational
simplicity, one finds that Hamilton’s equations for the reduced system are

Nx =P, 2.7
(1+,02)5/2
SRy 2.8
pr= gt 2.8)
o = ;/1(1(@_1)2_@2”@@ W = 1) dy = § + (@ + e,
(L+m? Jo \? ! ’ ’
2.9)
P 52<1+p2>3/2—if1y<b (W~ 1)dy (2.10)
x 2 B0+ e 1+1nJo Y ’
S A /1d>d @2.11)
SR P Y A A '
1
W, = —— (=D, + py(¥ — 1)), 2.12)

I+7
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with constraints X .
/ ddy =0, / Ydy =0 (2.13)
0 0

and boundary conditions
—®, + yp(¥ — 1)|y:0,l =0. (2.14)

To make this construction rigorous we recall the differential-geometric definitions
of a Hamiltonian system and Hamilton’s equations for its associated vector field (see
Groves and Toland [13, §1.4]).

Definition 2.1 A Hamiltonian system consists of a triple (M, 2, H), where M is a
manifold, Q2 : TM x TM — R is a closed, weakly nondegenerate bilinear form
(the symplectic 2-form) and the Hamiltonian H : M — R is a smooth function. Its
Hamiltonian vector field vy with domain D(vy) C M is defined as follows. The point
m € M belongs to D(vy) with vy |, := w € T M|, if and only if

Qfm(w, v) = dH |[p(v)

for all tangent vectors v € T M|,,. Hamilton’s equations for (M, 2, H) are the differ-
ential equations

n=vgly

which determine the trajectories u € C IR, X) N C(R, D(vy)) of its Hamiltonian
vector field.

Let
X={(np o&dV)eRxRxRxRx HY(0,1) x L*0, 1)},

where the overline denotes the subspace of functions with zero mean value, and define
the manifold

M={n,p, & o ¥)eX: :n>-—1}.
The 2-form 2 on M defined by
(1, p1, w1, &1, @1, W1), (02, p2, w2, &2, P2, ¥2))

1
= / (W@ — DoV ) dy + wan1 +&201 — w1 — 0261
0

is skew-symmetric, closed (since it is constant) and weakly nondegenerate at each
point of M. The triple (M, 2, H?) is, therefore, a Hamiltonian system in the sense of
Definition 2.1.
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Theorem 2.2 Consider the Hamiltonian system (M, 2, H®). The domain of the cor-
responding Hamiltonian vector field vy« is

D(vye) = {(n,p,w,g, O, V) e RxRxRxRx H0,1) x H'(0,1) :

n= =1, &y = yp(¥ =Dy, =0},

upon which it is given by the right-hand sides of equations (2.7)—(2.12).

Proof Let v|,, = (7], p, @, &, ®, W) € TM|,,, where m = (, p, w, &, , W) € M.
The point m lies in D(vge) with vy« |, = vl,, if and only if

Qp (Vs v1lm) = dH€|m(vl|m)y
that is
- 1 - -
1N +&1p—no—pi§ +/ (V@ — ¥ dy
0

1 1
= <—(a0+81)n+%—m/0 (W — 1) — @) dy

1 1
—m/o py®y (¥ — 1)d)’) m

5 g2 Lyp, (v -1
+(w+— ; p(1+p2)3/2+/ Mdy)m
0

280+ €2 1+
£
oot (1+ p*)?g +—/( Oy + py(¥ — 1))y dy
1 1
_ v +4+n+ o, )V d 2.15
1+77/o( n+py®,)¥idy (2.15)

for all V1], = (N1, p1, @1, &1, @1, Y1) € TM|p.

The four particular choices (11, p1, &1, @1, V1) = (0,0,0,0,0),
(1, p1, 01, ®1,¥1) = (0,0,0,0,0), (o1,w1,81,P1,¥1) = (0,0,0,0,0) and
(n, w1, &1, @1, Y1) = (0, 0,0, 0, 0) yield, respectively,

n=p,

S (1422t

p=(1+p7) ot o

_ 1 :

o= [, (JW =17 = 0 4 oy, =) dy =L + 0,
F o2 23/2—L/1 O, (W —1
=0t s [ ew -y,
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and with these expressions for @, 77, p and £ equation (2.15) becomes

1 B B 1 1
/ (V1@ — P V)dy = F (=@y + py(¥ — 1) D1y + (¥ + 5+ py®y)¥p) dy.
0 0

Choosing & € H'(0, 1), ¥ € L2(0, 1) and setting & = 0, ¥; = ¥ — [ ¥ dy
and ®; = ® — fol & dy, ¥; = 0, we thus find that

l‘~ N7, p 1 B
vl — 4+ — @—/. @,d)—@)d =0
[ e bon [ o) -o)o

for all U € L2(0, 1), and in particular for all ¥ € C5°(0, 1), which implies that

p=——+-—"(yo, - ®,dy ) e H'(0, 1), 2.16
T+ 1+n<y> 0y>y 0,1 (2.16)
and '
R ) w1
/(dD\Il—i—CDy(— y 4 P )>>dy=0 2.17)
0 147 I+n

forall ® € H'! (0, 1), and in particular for all e CSO(O, 1), which implies that

o 1 _ B 5
V=, Gty D)y el 0, 1) (2.18)

in the weak sense. It follows from (2.16) and (2.18) that &, € HY0,1) and

W, € L%(0, 1), so that ® € H?(0, 1) and ¥ € H'(0, 1).
Finally, integrating the second term in (2.17) by parts and using (2.18), we find that

D, v —-1)\7
[¢1<_ y P ))} —o
147 L+n /1o

for all ®; € C*°[0, 1], so that

P, n py(¥ —1)

— =0.
1+n 1+1n

y=0.1

m}

One cannot work directly with (2.7)—(2.12) because of the nonlinear boundary con-
dition at y = 1 in the domain of the Hamiltonian vector field vy:. We overcome
this difficulty using the change of variable (1, p, w, &, ®, V) — (n, p, w, &, T, V),
where

1
F:@—p/ys(\ll(s)—l)ds—i—p/ /ys(\ll(s)—l)dsdy,
0 o Jo



Spatial Dynamics and Solitary Hydroelastic Surface Waves 21

which is a smooth diffeomorphism X — X and M — M with inverse

1
@:F—i—p/ys(\ll(s)—l)ds—p/ /ys(\li(s)—l)dsdy.
0 0 JO

This change of variable transforms equations (2.7)—(2.12) into

N =P, (2.19)
(14 p?)>?
= -7 2.20
) Bo + &2 (220)
1 ! 1 2 1 2
wx=m/o {Q(‘If—l) —5(Ty + py(¥ = 1)?)
+pyTy (¥ — 1) + p?y? (W — 1>2} dy

— 3 + (a0 + &), (2.21)
A /1 ¥y + py(¥ — )W — 1) dy,

2B+ L+nJo
(2.22)

v py@y ey —1)  p /1
r, = + — Iy 4+ py(¥ —1))d
Sl T+7 1+noy(y py( ))dy
(1+p»>2 7
— —E/ s(W(s) —1)ds
Bo + &2
(1 +p2)5/2
5/ / s(W(s) —1)dsd
Bo + &2 Y
+ p/o i Iyyd / [ Fy dsdy, (2.23)
1
\px = —mryy (224)
and the boundary conditions (2.14) into

I‘y|y:0’1 =0. (2.25)

Equation§ (2.19)—(2.24) are Hamilton’s equations for the Hamiltonian system
(M, Y, H?), where

g_—Z
2B + &2

! 1 2 2
+f {m((W—l) ~(Ty + Py (@ —1)?)

1
+—— (T, (¥ =)+ p*y* (¥ = 1) )}dy

H (1, p, 0, &, T, W) = wp — Lo +e)n* + 1+pH2+ 1 -1

I+n
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and
Yoy, p.o6.0.0) (1, A1, @1, €1, D1, W), (2, B2, @2, &2, Ta, 12))
L. - y v -
= / {\112 (Fl +51/ sW(s)ds +,0/ sWi(s) dS) — %,51)/2‘112
0 0 0
- - y y . -
- (Fz + ,52f sW(s)ds + ,0/ sWo(s)ds ) + %,52}12‘1’1 } dy
0 0

+ @it + E2p1 — Tad1 — pakr;

furthermore,

D(vge) = {(77,,0,0),5, rLw)yem:T,y y=0.1= 0}.

We write (2.19)—(2.24) as

uy = Lu+ N%(u),
in which L = dvg0[0], so that

0
1
wt
(@0 — Dy
o — %p—i—fo yIydy
= DE+ W
_F)’y

e 1o 8 D 3

with

D(L) = [(n,p,w,g,r, W) eRxRx RxRx A0, 1) x A'0.1): Ty| | =0].

3 Spectral Analysis

In this section, we examine the spectrum of the linear operator L : D(L) € X — X
in detail. Our first result is obtained by a straightforward calculation.

Proposition 3.1 A complex number X is an eigenvalue of L if and only if

ag + A By = A cot(h); 3.1
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its eigenspace is one-dimensional and spanned by, respectively,
% sin(})
sin(})
& (g — 1) sin(2)
ALZ cos(A) — A%Olo sin(A)
%cos()»y) — %2 sin(A) + %(y2 — %) sin(A)
cos(Ay) — % sin(A)

b eO:

=NeNoleNell S

for . # 0 and A = 0 (which arises only for ag = 1). All eigenvalues are also
algebraically simple, with the exception of the zero eigenvalue at ¢y = 1 and the
purely imaginary eigenvalues *is at the point (By(s), ao(s)) of the curve

1 1 3s 52
C = {(,Bo(s), ap(s)) = (m coth(s) — m 7 coth(s) + m) :s € (0, oo)}

in the parameter plane which are algebraically double.
The following lemma gives more precise information on the point spectrum of L.

Lemma 3.2 Choose (o, ag) € C. The point spectrum of L consists of a countably

infinite family {Ai}iezn(0) of simple real eigenvalues, where {7 }7° | are the positive

real solutions of equation (3.1) and h_ = —Ay fork = 1,2, ... together with

(a) two plus—minus pairs of simple purely imaginary eigenvalues if g > 1 and
(Bo, ap) lies to the left of the curve C in the parameter plane,

(b) a plus—minus pair of algebraically double purely imaginary eigenvalues *is if
(Bo, o) is the point with parameter value s on the curve C,

(¢) a plus—minus quartet of genuinely complex eigenvalues if ag > 1 and (Bo, ag) lies
to the right of the curve C in the parameter plane,

(d) a plus—minus pair of simple purely imaginary eigenvalues and an algebraically
double zero eigenvalue if g = 1,

(e) an additional plus—minus pair of simple real eigenvalues and a plus—minus pair
of simple purely imaginary eigenvalues if g < 1.

Furthermore, A € (kmt, (k + 1)z) fork = 1,2, ... and

2 1
A2 =k27r2+—+0<—>
k Bo k
for large k.

Proof Observe that A solves (3.1) if and only if v = A2 is an eigenvalue of the non-
self-adjoint Sturm—Liouville problem

— Uyy = VU, 3.2)
1
va((n) = ag + Bov?, (3.3)

v(0) = 0. (34
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This problem has a countable number of (not necessarily real) eigenvalues {v,},eN,>
which repeated according to algebraic multiplicity and listed according in increasing
absolute value, are given asymptotically for large n by

2 . 2 1
v=m—1D)n"4+—+4o0| - 3.5)
Bo n
(see Binding et al. [3, Theorem 2.2]). The real eigenvalues of the spectral prob-
lem (3.2)—(3.4) correspond to the intersections in the (v, s) plane of the parabola
s = ap+ Bov? and the curve s = B(v), where B(v) = /v cot /v. The function B(v)
has poles exactly at the Dirichlet eigenvalues

W=m+127% neNp (3.6)

of the self-adjoint problem in which (3.3) is replaced by v(l) = O; it is strictly
decreasing from +o00 to —oo in each interval (—oo, v(l))) and (v,]l), U}1D+1)’ n € Np. It
follows that (3.2)—(3.4) has at least one real eigenvalue in each interval (v,]l) s v,% s
n € Ny (see Fig.5).

Comparing (3.5) with (3.6) and using the above geometrical characterisation of the

real eigenvalues, one concludes that

(1) each interval (v,? , v,]? +1)> n € N contains a simple real eigenvalue;
(2) there are precisely two additional eigenvalues (counted according to algebraic
multiplicity) in the form of either

(a) acomplex-conjugate pair (with non-vanishing imaginary part) whose absolute
value is less than v(])D (Fig.5a),

(b) one negative, algebraically double eigenvalue (Fig. 5b),

(c) two simple real eigenvalues to the left of vé) , at least one of which is negative
(Fig.5c—e).

The solutions A of (3.1) are recovered from the above analysis by the formula
v = A2, so that in particular they occur in plus-minus pairs. Clearly, (3.1) has a real
solution in each interval ((v,]?)l/z, (v’]13+1)1/2) and (—(v,]?+1)1/2, —(v,?)lﬂ), n € Ny
(see point (1) above), and it follows from point (2) that there are four additional
solutions (counted according to multiplicity). The results in Proposition 3.1 and the
fact that B(0) = 1 show that these four solutions are described by precisely one of the
statements (a)—(e) (according to which of the scenarios in Fig. 5 occurs).

The asymptotic formula for Ax follows by writing k = n + 1. O

According to this lemma the purely imaginary eigenvalues of L appear in pairs %is
satisfying the dispersion relation

oo + s*By = s coth(s). (3.7)
Fig.4 shows the dependence of these eigenvalues upon By and «g. At each point of

{ag = 1}, two real eigenvalues become purely imaginary by colliding at the origin,
while at each point of the curve C two pairs of purely imaginary eigenvalues become



Spatial Dynamics and Solitary Hydroelastic Surface Waves 25

€
Fig. 5 Geometric characterisation of the eigenvalues v, as the points of intersection of the curve
s = B(v) with the parabola s = oo + ,Bovz; one real eigenvalue lies in each interval (v,?, Ur]?+l)’

n € Np. a Two additional complex eigenvalues; b one additional algebraically double negative eigenvalue;
c—e two additional real eigenvalues

complex by colliding at non-zero points is on the imaginary axis. For later reference,
we record the formulae

sinh(s)
is sinh(s)
—icosh(s) + & sinh(s) 4 iBos* sinh(s)
—Bos? sinh(s) ’
—icosh(sy) + I sinh(s) — Jis(y? — 1) sinh(s)
s cosh(sy) — sinh(s)
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—icosh(s)
sinh(s) + s cosh(s)
—PBos? sinh(s) — & sinh(s) — % cosh(s) + % cosh(s)
iBos? cosh(s) + 2iBos sinh(s)
—y sinh(sy) — 2 sinh(s) + { cosh(s) + $(? — 1)(s cosh(s) + sinh(s))
—isy sinh(sy) — icosh(sy) 4+ icosh(s)

for an eigenvector e and generalised eigenvector f with eigenvalue is when
(Bo, ap) € C (the corresponding formulae for the zero eigenvalue at og = 1 are
eo = (1,0,0,0,0,07, fo = (0,1, —1,0,0,07).

Lemma 3.3 The operator L is regular, that is its spectrum consists entirely of isolated
eigenvalues of finite algebraic multiplicity.

Proof Since D(L) is compactly embedded in X it suffices to show that p(L) is non-
empty, so that L has compact resolvent (Kato [20, Theorem II1.6.29]). In the case
oo # 1, a direct calculation shows that L is invertible with

1
g — 1
n

1 y
—%n—s—/oy/o W(r) dt dy

Bop
—foyfoslll(t)dtds+/01/0y/0$‘11(l‘)dfd3dy

F=30%=pe

w

e 1o 8 D

To deal with the case ap = 1 note that L|y,—1 is a compact perturbation of L|a0_ 1,
-2

so that the essential spectrum of these two operators (the set of A for which (Al — L)
is not Fredholm with index zero) is identical (see Schechter [34]). It follows that the
spectrum of L|y,—1 consists of the solution set of (3.1); in particular, its resolvent set
is non-empty. O

Finally, we show that the set of generalised eigenvectors of L form a Schauder basis
for X, which is henceforth replaced by its complexification. In particular, we show
that this set is a Riesz basis, that is a basis obtained from an orthonormal basis by an
isomorphism (see Gohberg and Krein [9, §VI.2]); note that we use the Dirichlet norm
for the space HLY0, 1).

Proposition 3.4 The set

A= { <(k7r)_1 cos(kny))}
o cos(kmy) KeZ\(0)

is an orthonormal basis for H'(0, 1) x L*(0, 1).
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Proof Note that {+/2 cos(k7 I (V2(km) ! cos(km ¥)172, are orthonormal bases
for, respectively, I:2(O, 1) and H! (0, 1). It, therefore, follows from

q {((kn)_1 cos(kny))} _ {(«/ﬁ(kn)_' cos(krry)) ( 0 )}oo
P cos(kmy) keZ\[O}_ P 0 "\V2cos(kmy) kel

in H'(0, 1) x L?(0, 1) that A is complete, and it is evidently orthonormal. o

Corollary 3.5 Let P be the spectral projection onto the four-dimensional subspace of
X corresponding to the eigenvalues shown in Fig. 4, and let {e1, e, e3, ea} be a basis
for P[X] consisting of generalised eigenvectors of L. The set

0
0
0
{e1, e2, e3, ea} U{ frhrez\joy,  fi = 0
(k)= cos(kmry)
cos(kmy)

is a Riesz basis for X.

Proof Let {g1, g2, g3, g4} denote the usual basis for the subset C* x {(0,0)} of
X, and note that {g1, g2, g3, g4} U {fk}kez\(0) 1S an orthonormal basis for X. Let
7 X — C* denote the projection (1, p, w, &, &, ¥) — (n, p, w, §), and note that
{mey, mes, me3, mea} spans Cc.

The formula S(n, p, w, &, ®, V) = (T (n, p, w, &), (P, ¥)), where T (n, p, w, &)
is the coordinate vector of (1, p, w, &) with respect to the basis {rwe;, ey, we3, wes}
for C*, defines an isomorphism X — X with

S[{g1, &2, g3, g4} U {fiJkezjoy] = {e1, €2, €3, ea} U { fr}kez\(0)-

It follows that {e1, ez, e3, e4} U { fx}kez\(0) is a Riesz basis for X. O
Theorem 3.6 The set {e1, ez, e3, e4} U {ex, }kez\(0) is a Riesz basis for X.

Proof We first note that the set {e1, e, 3, e4} U {ey, Jkez\ (0} is @-linearly independent
since it is the union of bases for the generalised eigenspaces of a regular operator (see
Gohberg and Krein [9, p. 329]).

Choose u* € (0, A1). The function 4 : (0, c0) — X defined by

71 SinG)
sin(u)
(oo — 1) sin(p)
hip) = 1 cos(u) — Lya sin(u)
Cos(uy) — pzsin(u) + (3% = 3) sin(u)
cos(py) — o sin(u)
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satisfies

lh(p1) — h(u2)ll <

sup

HE[p*,00)

1A )t — pal St — w2l

for all w1, uo € (u*, 00). With u; = Ar and o = kmr this calculation shows in
particular that

6)\,( —

O O O

(=)

(k)1 cos(kr y)
cos(kmy)

as k — oo, and similarly

€ —

0
0
0

(km)~2 cos(km)
— (k)" cos(kmy)

cos(kmy)

as k — oo. Hence,

4
2

> llej —ejl* +

j=1

0 0
0 0
_ B 0 + 0
= || (km)~2 cos(km) (k)2 cos(km)
(k)= ! cos(km y) 0
cos(kmy) 0
0
0
< 0 L
= 7| ey 2eoskn) || T i2n2
(k)= cos(km y)
cos(kmy)
1
Sk — k| + pE)
=0()
0
0
_ 0 — o
=l = | m)2costm) || =R
(k)= cos(km y)
cos(kmy)
0
0
Z € — 0 < 0

keZ)\{0}

(km)~2 cos(km)
(k)= cos(km y)
cos(kmy)

and the conclusion now follows by Bari’s theorem (Gohberg and Krein [9, Theorem

VIL.2.3)]).

O
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Let{e!, €%, €3, e*}U{e** }rez\ (o) be the dual Riesz basis to {e1, e2, €3, ea}U{es, hkezy(0)

(see Gohberg and Krein [9, §VI.1-2]), so that
4 .
P=Y (e, (U—=P)= Y (.c*)ey,
i=1 keZ\{0}

and define X, = (/ — P)X, Ly = L|x, (with D(Ly) = D(L) N X»). Note that

D Brew : Dabil € z2}.

keZ\{0}

Xo = { Z Brex, < {Br} € 22}, D(L>) = {
keZ\{0}

We conclude this section with a maximal regularity result for L which is used in Sect. 4
below.

Lemma 3.7 The operator L, : D(Ly) € X2 — X» has L?*-maximal regularity in the
sense that the differential equation

w=Lw-+h
admits a unique solution w € H (R, X») N L2(R, D(L»)) for each h € L*(R, X>).

Proof Writing

w = Z Wkey, , h = Z hiey,

keZ\{0) keZ\{0)
(where wy = (w, e*), hy = (h, €)), we find that
W = Agwi + hg, (3.8)

which is solved by

ft he(s)e™* = ds, k<0,

wy (1) = -
—/ B (s)eM =) ds, k> 0.
t

Note that

1
lwillz2r,r) < EHM”U(R,R)
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because

2

o
hi()eM = ds | dr

o
”wk”LZ(R R) — /

f / M =9 dg / M=) () ds dr
= —/ / M= py () ds dt

)Lk —o0 Jt

1 o0 S
= —/ / M=) dr e (s)]* ds

Mo J oo Joo0

1 2
= ? ”hk ”LZ(R,R)
k

for k > 0 with a similar calculation for £ < 0. It follows that

Wil 2 x, = f Z |wic ()] dr

 keZ\{0

= > lux ||L2(R,R)

keZ\{0}

< D Il

keZ\{(0}

A

2
”h ”Lz(R,Xz)

and similarly

ILowlIZs g ) = f > Ak|wk<t>|2dt

X kezZ\{0

> Aknwkniz@m
keZ\{0}

D Il

keZ\{(0}

IA

_ 2
- ”h”LZ(R,Xz)’

so that w, Low € L2(R, X). Equation (3.8) shows that w is differentiable, satisfies
w e L2(R, X) and solves the given differential equation.

The uniqueness of the solution follows by noting that Eq. (3.8) has no nontrivial
solution in L?(R, R) when hj = 0. m|



Spatial Dynamics and Solitary Hydroelastic Surface Waves 31

4 Centre-Manifold Reduction

Our strategy in finding solutions to Hamilton’s equations (2.19)—(2.24) for (M, Y, H?)
consists in applying a reduction principle which asserts that it is locally equivalent to
a finite-dimensional Hamiltonian system. The key result is the following theorem due
to Mielke [28, 29].

Theorem 4.1 Consider the differential equation
= Lu+N(u;x), 4.1)

which represents Hamilton’s equations for the reversible Hamiltonian system
(M, Q*, H*). Here u belongs to a Hilbert space X, . € R! is a parameter and
L :D(L) C X - X isadensely defined, closed linear operator. Regarding D(L) as
a Hilbert space equipped with the graph norm, suppose that 0 is an equilibrium point
of (4.1) when . = 0 and that

(H1) The part of the spectrum o (L) of L which lies on the imaginary axis of a finite
number of eigenvalues of finite multiplicity and is separated from the rest of
o (L) in the sense of Kato, so that X admits the decomposition X = X| & X»,
where X1 = P(X), Xa = (I —P)(X) are the centre and hyperbolic subspaces
of L defined by the spectral projection P corresponding the purely imaginary
part of o (L).

(H2) The operator Lo = L]|x, has L?-maximal regularity in the sense that the dif-
ferential equation

iy = Lour +h

admits a unique solution u; € HY(R, X)) N L%R, D(Ly)) for each
h e L*R, X,).
(H3) There exist a natural number k and neighbourhoods A C R! of 0 and
U C D(L) of 0 such that N is (k + 1) times continuously differentiable on
U x A, its derivatives are bounded and uniformly continuous on U x A and
N(0,0) =0, d;N0,0] = 0.
Under these hypotheses, there exist netghbourhoods ACA of 0 and U cUunx,
Uy C UN X5 of 0 and a reduction function r - Uy x A — Uy with the following
properties. The reduction function r is k times contmuously differentiable on Ui x A
andr(0; 0) =0,d;r[0; 0] = 0. ThegraphM)‘ {ur+r(u;; 2) e X100, :uy € U1}
is a Hamiltonian centre manifold for (4.1), so that
() M* is a locally invariant manifold of (4.1): through every point in M*, there
passes a unique solution of (4.1) that remains on M* as long as it remains in
U] X Uz
(i) Everybounded solution u(x), x € R of (4.1) that satisfies (u1(x),u>(x)) € U, xUs
lies completely in M*.
(iii) Every solution uy : (x1, x2) — f]l of the reduced equation

= Lu ~|—./\~/)‘(u1), (4.2)
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where J\~/’A(u1) = PN (i +r(ui; A); A), generates a solution
u(x) =ui(x) +r(ui(x); A)

of the full equation (4.1).

(iv) M* isasymplectic submanifold of M and the flow determined by the Hamiltonian
system (M A fZ)‘, H )‘), where the tilde denotes restriction to M * coincides with
the flow on M* determined by (M, Q*, HM). The reduced equation (4.2) is
reversible and represents Hamilton’s equations for (M*, Q" HY).

Remarks 4.2 (i) We find that

H"(u1) = H"(uy + r(ur; A)),
My (w1, v2) = Q00 (v1 4 dyr[ur; A(v1), v2 4 drlug; Al(v2))
= Q%0 (v1, v2) + O(I(A, u1)]) (4.3)

as (A, u1) — 0. Using a parameter-dependent version of Darboux’s theorem (e.g.
see Buffoni and Groves [4]), we may assume that the remainder term in (4.3)
vanishes identically.

(ii) Substituting u = u1 + r(u1; A) into (4.1) and eliminating ;| using (4.2) leads to
the equation

Lr(up; ) — dyrfu; A(Lur) = N*uy) 4+ dyrfur; AN @) — N(uy +r(ur; 4); 4,

which can be used to recursively determine the terms in the Taylor series of 7 (u1; 1)

and N (uy).

We proceed by choosing (8o (s), ao(s)) € C, setting (g1, &2) = (i, 0), and apply-
ing Theorem 4.1 to (M, Y, H?). Hypothesis (H3) is clearly satisfied for any natural
number k, and we henceforth refer to functions which are continuously differentiable
an arbitrary, but fixed number of times as ‘smooth’. The spectral theory in Sect.3
shows that (H1), (H2) are also satisfied; indeed, the (complexified) four-dimensional
centre subspace of L is spanned by the generalised eigenvectors

_ _ _ _ it _ - - T
E=v e E=v e F=v"7(r- 2—2e) F=r 1/2<f+2—25),
T1 71

where

3sinh(s) cosh(s) 1

> 0, 4.4)
2s 2
sinh(2s) 4s 1 3cosh(2s) s+ sinh(2s)

252 3 2 2s sinh?(s)

71 = —scoth(s) +

) =
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so that the centre and hyperbolic subspaces of L are, respectively,

X, ={AE+ BF +AE+ BF : A,B € C}, X2={ > ﬂkfk:{ﬁk}eﬂz}.
keZ\{0}

The vectors are _normalised such that (L —is)E = 0, (L —is])F = E with
SE=E,SF =—F, and

Y|o(E,F)="|o(E,F)=1, TY|o(F,E)="TY|o(F,E)=—1

and the symplectic product of any other combination of the vectors E, F, E, F is zero
(sothat {E, F, E, F} is a symplectic basis for the centre subspace of L). Writing

uy = AE + BF + AE + BF,

we, therefore, find that A, B are canonical coordinates for the reduced Hamiltonian
system (see Remark 4.2(i)), which can therefore be written as

_9H" _ 9H"
9A

X

aé ’ X
(with a slight abuse of notation we abbreyiate_I:I ®|(ey.e2)=(u.0) to H™M); this system is
reversible with reverser S : (A, B) — (A, —B). Note that the quadratic, parameter-
independent part of the Hamiltonian is

H)(A, B, A, B) = is(AB — AB) + |B|*,

so that in coordinates

A is 1 0 0 A
Bl [0 s o o B
A 0 0 —is 1 |lA
B 0 0 0 —is/\B

The next step is to use a normal-form transform to simplify the Hamiltonian. For
this purpose we use the following result due to Elphick [7].

Lemma4.3 Let ng > 2. There exists a near-identity, canonical change of variables
which transforms the Hamiltonian to

is(AB — AB) + |BI” + H{p(A, B, A, B) + O(|(A, B)*|(1, A, B)["™),

where the complexification ofHIﬁfF liesinker Lpx, and L+ : C[Z] — C[Z] is defined
by

(Lu<p)(Z) = M*Z -V p(Z)
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for M € C**4, where the coefficients of the polynomials in the complex polynomial
rings depend upon | and the gradient is taken with respect to Z = (A, B, A, B).

We proceed by characterising ker £+ using the following lemma, the statements in
which are obtained from results by Murdock [31, Lemma 3.4.8], Malonza [26, Lemma
4, Theorem 9] and Billera et al. [2, Section 4], respectively. Corollary 4.5 takes into
account that HﬁF is real valued.

Lemma4.4 Ler S = diag(is, is, —is, —is) and N = L — §.

(i) The kernel of L1+ : C[Z] — C[Z] is given by ker L+ = ker Ly+ N ker Lg+.
(ii) The kernel of Ly~ is given by ker Ly« = C[A, A, AB — AB].
(iii) The kernel of Lg+ is given by ker Ls+ = C[AA, AB, BA, BB].

Corollary 4.5 The kernel of L1+ : C[Z] — C[Z] is given by C[|A|*,i(AB — AB)]
and H{ € R[|A>,i(AB — AB)].

Writing the transformed reduced system as
ury = Luy + P*(uy),
where

u; = AE + BF + AE + BF,
P*(uy) = d3H"(A, B, A, B)E — 3;H"(A, B, A, B)F
+9pH"(A, B, A, B)E — 3,H"(A, B, A, B)F,

we can compute the Taylor series of r (u1; ) and N* (u1), and hence H*(A, B, A, B),
recursively using the equation

Lr(uy; w) —dyrfug; pwl(Luy) = P*(uy) +dyrfuy; p](P*(uy)) — N (uy +r(ur; )

4.5)
(see Remark 4.2(ii)), where with a slight abuse of notation we have applied the near-
identity normal-form transformation to the reduction function. Corollary 4.5 states
that there are real constants ¢y, ¢y, di, da, d3 such that

Hy(A, B, A, B,0) = c|A]* + ©2i(AB — AB),
H)(A, B, A, B,0)=0,
H)(A, B, A, B,0) = di|A* + d2i(AB — AB)|A|> — d3(AB — AB),

where ;/ H/ (A, B, A, B) denotes the part of the Taylor expansion of H*(A, B, A, B)
which is homogeneous of order j in  and k in (A, B, A, B). The coefficients ¢; and
d1, whose values are required in Sect. 5 below, are computed in Appendix B; we find
that ¢; < 0 and there exists a critical value s* of s such that d; > 0 for s < s*, which
we now assume.
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5 Homoclinic Solutions

In this section, we examine the reduced Hamiltonian system

Ay =33H"(A, B, A, B)
—isA+ B+ 03 HL-(|AI> i(AB — AB, ) + O(I(A, B)lI(u, A, B)|"™),
(5.1)
B, =—d;H"(A, B, A, B)
=isB — 0 H{p( AP, i(AB — AB), ;1) + O(I(A, B)lI(1, A, B)I"),  (5.2)

where the underscore indicates that the order-of-magnitude estimate remains valid
when formally differentiated with respect to (A, B). The truncated system without the
remainder terms was examined in detail by Iooss and Péroue¢me [19], who also studied
the ‘persistence’ of certain solutions as solutions to the full system. Here, we present
an alternative, functional-analytic proof of the existence of two reversible homoclinic
solutions to (5.1), (5.2).

We begin by returning to real coordinates ¢ = (g1, ¢2)T, p = (p1, p2)" given by

1 1
A=—(q1+ig2), B=—=(p1+ip2)

and, hence, obtaining the real Hamiltonian system

= P{'(q. p)
81:1” T o1 2 1%
== p+sRzq+ »Hyp(3191" p-Rzq)Rzq +Ry (q, p), (5.3)
31:1“ T 1 2 T 1 2 2
Pr=— sRz p—01H\p(3lq17, p-Rzq)q + 02H\p (31917, p-Rz @) Rz p +R; (q, p),
= Py'(q, p)

5.4

in which

~ 1 ~
H"(q, p) = 5|p* +sp-R3q + Hip(3141%, p-R3q, 1) + 0@, P11 4, P)I™),

so that P{"(q, p), P3'(q. p) are polynomials in 4, ¢ and p and

Ri(q, p), Ry (q.p)=0((q, Pl q.p)I").

Note that this systemis reversible with reverser S : (¢1, p1, g2, p2)— (q1, —P1, —q2, P2)
and that

RoP{'(q, p) = P{'(Roq, Rop),  RoP)(q,p) = P)'(Roq, Rop)
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for all 6 € [0, 2r), where Ry is the matrix representing a rotation through the angle
" The next step is to recast equations (5.3), (5.4) as a single second-order equation.
Writing

P=4qx—SRzq+v,
we find from equation (5.3) that

v+ P(q.qx —SRzq +v) + R{(q, qx — sRzq +v) =0, (5.5)

and using the implicit-function theorem, we now construct a solution of (5.5) of the
form

v="0}'(g,q: — sRzq) + V5 (g, 4 — Rz ),
where v/’ solves the truncated equation with R} = 0 and takes the particular form
vi'(¢, ¢x — sRzq) = w'(Ig”, Rzq-(q: — sRzq))Rzq. (5.6)
Note that w’f necessarily solves
wi + B HR(lq1, wilgl® + Rzq-(ax — sRzq) =0, (5.7)
while Ué‘ necessarily solves

v+ Pl'(q, qx — SRzq + v (q. gx — sRzq) +v2)
—P{'(q.qx — sR3q +v{'(q. 4x — sR3q))
+Ri‘(q, qx — sR%q + vf(q, qx — sR%q) + ) =0. (5.8)

Proposition 5.1

(1) Equation (5.7) has a unique solution w| = w’f(|q|2, R%q (gx — sR%q)) which
depends analytically upon w, |q|* and Rz q{(qx —sR%q) and satisfies w(l)(O, 0) =0.
The function v{‘ defined by (5.6) satisfies

Vi + Pi(q,qx — sRzq +v)) =0
and
Rovy' (¢, qx — SRz q) = v| (Req, Ro(qx — sRzq))

forall 6 € [0, 2m).
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(i) Equation (5.8) has a unique solution vy = vg (q,q9x — SR% q) which depends
smoothly upon u, q and gy — sR%q and satisfies

V5 (q.qx — sRzq) = 0(1(q. 4x — sRzq)II(L. 4. 4x — sRzq)[").

Substituting
P =qx—sRzq+v} +vy

into Eq. (5.4), where we have omitted the arguments of vf , Ug' for notational simplicity,
shows that

(3 —sRz)’q = —(3; — sR7) (W} +v)) + P*(q, g — sRzq) + R"(q, 9 — sRzq),
in which

P"(q,qx —sRzq) = Py'(q, 4 — sRzq + v,
R"(q,qx —sRzq) = Py'(q, qx — sRzq + v} +v)) — P'(q, gx — sRzq + )
+Rg(q,qx —sR%q—i—v’lL—l—vg).

It follows that

(0x — SR%)%I = —01v}) (gx — sRzq) — vy (9 — SR%)%]
+ P"(q, qx — sRzq) — 010} (qx — sRzq)
— B} (3 — sR%)zq — d1v)sRzq
— 904'sR (qx — sR3q) + sRzvh + R*(q.qx — sRzq). (5.9)

where 9; v,’: is the matrix d; v,’f g, gx — SR% q] and we have used the calculation

(0x — sR3)V} (¢, 4x — sRzq)
= (9 — SR7) Ry v} (R—5xq, R—sx(gx — sRzq))
= Ryx0xv] (R—xq, R—sx(qx — sRzq))
= Ry 1) (Rosxq, Rsx(qx — sR29))3:(R—5xq)
+ Ryx 020} (R—5xq, R—sx(qx — Rz 9))3:(R_s (g — sR1q))
= Roxd1v} (R-5xq, (gx — SR1q)R—y:(qx — SRz q)
+ Ryx 020} (R-5xq, (qx — SRz q))R—sx (3: — sR1)’q
= 010} (¢, 9x — sR3)(qx — sR7q) + 920} (¢, ¢x — sR19)(dx — sR3)’°q.
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Introducing the scaled variables
q(x) =6Rsx Q(X), X =dx,
where 82 = —cC1 [, so that
gx —sRzq =8 Ry Ox(X),  (3x —sRz)’q = 8 Ry Oxx(X),

transforms equation (5.9) into

Oxx =0 —CQIQP +T(Q, Ox) + Rsx/sT3 (Rsx/s Q, Rsx/50x, Rsx/5 Qxx),
(5.10)

where C = —d;/cy and

TH(Q, 0x) = 0(1(Q, 0x)I),  T5(Q, Ox, Qxx) = 08" ?|(Q, Ox, Qxx))).

Remark 5.2 The various changes of variable preserve the reversibility symme-
try, so that equation (5.10) is invariant under the transformation X +— —X,

(01, 02) = (Q1, —02).

Before proving the existence of homoclinic solutions to (5.10) we define the func-
tion spaces with which we work and refer to some functional-analytic results which
are used in the proof (see Kirchgissner [21, Proposition 5.1]).

Definition 5.3 Suppose that k € Ny and v > 0. Define
k .
CER) = {f € C*®): || fllkw <00}, [1fllkw :=sup Y [fD(0)[e*"!
teR =0
and their subspaces

cko=1{feC®): f(-1) = f@), 1 € R},
cko={feCk®): f(-)=—f@), 1 €R}.

In the case k = 0 we just write C,,(R), C, ¢(R) and C, ((R).

Proposition 5.4

(1) The formula

X <z1) _ (lex - Z1>
22 22xx — 22
defines a bounded linear operator CS (R)?2 - C,(R)? and Cf’e(R) X CE’O(R) —
Cye(R) x Cy o(R) for each v > 0.
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(i) For 0 < v < 1 the operator K : CI%(JR)2 — Cy(R)? is invertible with bounded
inverse given by

K| t:—l 00e_lt_sl s) ds
( HE) > f(s) ds,

where the integration is taken componentwise.
(iii) Suppose that C > 0, h € C{(R) and 0 < v < 1. The formula

—3Ch211)

_ —1
Knz =K ( —Ch?z,

defines a bounded linear operator Co(R)? - C 5 (R)? and a compact operator
C,(R)? — C,(R)~

Theorem 5.5 For each v € (0, 1) and each sufficiently small value of § > 0 equa-
tion (5.10) has two homoclinic solutions Q‘HE which are symmetric, that is invariant
under the transformation (Q1(X), 0Q2(X)) — (Q1(—X), —02(—X)), and satisfy
the estimate

0P (X) = + <h(é()> + 0@ "Xy

forall X e R.

Proof For § = 0 equation (5.10) has the family
{01,027 = Ro(h(Xo +.0): 6 € [0,2), Xo € R}

of homoclinic solutions, where
2\1/2
O = (=) sech(X).
C
Two of these solutions, namely those with (8, Xo) = (0,0) and (0, Xo9) = (m,0),
which we denote by respectively O and Q~, are symmetric. We seek a solution of
(5.10) in the form of a perturbation of Q" by writing

so that z = (z1, z2) " satisfies

2 5
Zixx — 21 = —3Ch°z1 +r{(z1, 22, 21X, 22X, 21X X, 22xX» X), (5.11)

—Ch*z + 13 (21, 22, 21X, 22X, 21X X 22x X X) (5.12)

2XX — 22

with the obvious definitions of rf and rg . We study the system (5.11), (5.12) in
the space CE(}R)2 with fixed v € (0,1) and, with a slight abuse of notation,
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consider the nonlinearity r° = (r?,7$)T as a mapping C2(R)?> — C,(R)? and
C2.(R) x C2 (R) = Cye(R) x Cyo(R) with

17 (z1, z22) low = O8) + O, (ll(z1. 22)113,)-

In terms of the operators K and K defined in Proposition 5.4 equations (5.11), (5.12)
can thus be written as

2= Knz+ K ' (2). (5.13)
The eigenvalue problem
Khz=1z
is equivalent to the decoupled system

Zixx = 21 — 3Ch?zy, (5.14)

2xx =22 — Ch’z, (5.15)

of ordinary differential equations. Let

z}(X) = sech(X) tanh(X), Z3(X) = sech(X),
23(X) = sech(X)(=3 4 cosh?(X) 4 3X tanh(X)), z3(X) = sech(X)(2X + sinh(2X)),

so that {z%, z%} and {zi, z%} are fundamental solution sets for, respectively, (5.14) and

(5.15). Since z%, zi are bounded while z%, z% are unbounded, we conclude that all
bounded solutions of equation (5.14) are multiples of z} = —hy and all bounded

solutions of equation (5.15) are multiples of z% = (2/C)~'/?h. The eigenspace of
Kn: C,(R)?2 — C,(R)? corresponding to the eigenvalue 1 is, therefore,

#{(5)-6))

which lies in C,, ,(R) x C, ¢(R). This calculation shows that 1 is not an eigenvalue
of Kplc, (RyxC, (&) and since K is a compact operator C,, R)?> — C,(R)?, one
concludes that the spectrum of Kj|c, .(R)xC, ,(R) consists only of eigenvalues, so that
1 lies in the resolvent set of K |c, . (R)xC,,®)- It follows that

I —Kp: Cpe(R) x Cyo(R) = Cp (R) x C; (R)

is invertible. We can, therefore, solve equation (5.13) for sufficiently small values of
8 > 0 using the implicit-function theorem; the solution zi satisfies IIZf I,y = O(9).
Returning to equation (5.10), we have found a symmetric solution Q%+ = Q+ 428
which satisfies the stated estimate. The second homoclinic solution Q% is obtained
from Q~ by the same procedure. O
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Appendix A: Formal Derivation of the Nonlinear Schrédinger Equation

Writing 8 = Bo, @ = ag + 8% and substituting the formal asymptotic expansions

n(x) = 8n1(x, X) + 8 m(x, X) + &, X) + -+,
W(x,y) =8 (x, X, y) + 82 (x, X, y) + 8 W3(x, X, y) + -,

where X = dx, into Egs. (1.6)—(1.9) yields the boundary-value problems

Wi+ W, =0, 0<y<l, (5.16)
Wiyl o =0, (5.17)
Wiy +n1ef ) =0, (5.18)
aonr — Wix + ,Bonlxxxx‘yzl =0 (5.19)

for ¥,

Worx + Woyy +2W i x + 20 Wiy — 2y7]1x“1}1xy — yWiynixe =0, 0<y<l,

(5.20)
Wayl,_y =0 (5.21)
Way + Mix + N2x — N1 Wix + 011 }y=1 =0, (5.22)
— Wy — Wix + aom2 + 4Bonirexx + Bonzerex + Wiynix + SVE, + %\Illzy|y=1 =0
(5.23)
for ¥, and
Wiy + Wayy + 2Worx + 401 Wixx + 271 Worx + 200 Wixx
= 2ymxVWixy + Wixx — 2ynixWaxy — 2ym1x Wixy
= 2yn2xWixy — 2N x Wiy — Y202 W1y — YN1xx W2y
+ 11 + Y205 Wiy — 29116 Wiy — y101ex Wiy
+2yn7, Wiy =0, 0<y<l, (5.24)
Wiy|,_o =0, (5.25)
W3y + m2x + 132 — N Wix — nieWor — m2xWir — mix Wi (5.26)

+mnix + 02+ mnze — mnixVix + yﬂ%x‘ll1y|y:1 =0,

— W3 — Wox 4+ aon3 + 6B0n1xxxx + 4Bomxxxx + BoN3xxxx
+ W2y + mx Wiy + n2: Wiy + Wi Wix + Wi Wor

+ Wiy Wy — %ﬂOU%xmxxxx —mnixVYiy — 771\1"12};
— Wi Wiy + 1= 10Bonie e vex = 3B0Mye |,y =0 (5.27)
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for W3. We proceed by making the modulational Ansatz

mx, X) = Aj(X)e** +c.c.,
M (x, X) = Ax(X)e?™* 4 c.c. 4+ Ag(X),
m(x, X) = A3(X)ed™ + A4 (X)e™™ + As(X)e™ + c.c. + Ag(X).

e From (5.16)—(5.18) it follows that

q’lxx"‘\ylyy:oa 0<y<l,
\Illy|y=0 = O’
\Illy|y=1 = —isA1e®* +cc.,

the solution to which is

icosh(sy)

Y X3 = =36

A€’ +cc. + g1(X),
where g is an arbitrary function of a single variable. The equation
(a0 + osH) AT = Wix|,_, =0,

which follows from (5.19), then recovers the dispersion relation (3.7).
e From (5.20)—(5.22), it follows that

cosh(sy) .
v Wy = —2 Apyelst
Zix ¥+ B2y S sinhGs) ¥
—is(3sy sinh(sy) — ZCosh(sy))A%eZi” +cc, O<y<l,
\I"Zy | v=0 — 0,
\1—’2y|v:1 = —Ajxe" +is (MA% _ A% _ 2A2) elex’

sinh(s)

the solution to which is

coth(s) sinh(sy) isx
Wy (x, X, y) = (sinh(s) cosh(sy) — y Sinh(s) ) Aixe
N ( (coth(s)cosh(Zsy) B sinh(sy)) ,  icosh(2sy) ) Disx
sinh(2s) Psinn(s) ) 71T Tsinh(2s)
+c.c. + g (X),

where g» is an arbitrary function of a single variable. Substituting the formulae
for \I{l, \11_2 and Fhe modulational Ansatz into (5.23), and equating the coefficients
of e0is¥ is¥ e2iSX e then find that
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S2
sinh?(s)
1 (1 — 3 coth?(s))s? 22
T2 ag + 165*By — s(coth(s) + (coth(s))~1) ~

gix = |A1? + Ao, (5.28)

A

1 1
Bo=13 coth(s) — 2 cosech?(s).

Using the dispersion relation and the above formula for 8y, we find that

3 2
oy = Zs coth(s) + SZ cosechz(s).

e Similarly, (5.24)—(5.26) yield a Poisson equation for W3 with boundary conditions
at y = 0 and y = 1, the solution to which is

W3 (x, X, )
(3 is*cosh(sy)  2is?coth(2s) cosh(s) cosh(sy) 1 is*y*cosh(sy)
- ( (5 sinh(s) sinh2(s) 2 sinh(s)
. o sinh2sy)\ -
sty sinhZ(s) ) 14
N <(2is coth(s) + is tanh(s)) cosh(sy)  isysinh(sy) _ 2isy sinh(2sy)>A_1A2
sinh(s) sinh(s) sinh(2s)
(is coth(s) cosh(sy) isy sinh(sy))
- - —— ApAy
sinh(s) sinh(s)
(iy2 cosh(sy)  i(2coth®(s) — 1) cosh(sy) iy coth(s) sinh(sy))A
2 sinh(s) 2 sinh(s) sinh(s)

B icosh(sy) " icosh(sy)
sinh(s) > sinh(s)
sinh(sy)(sy coth(s) + coth(s) — y) — cosh(sy)(sy2 + coth(s)) d

_|_ - -

sinh(s) dX

Alglx>ei” + (e 4 (e e

A1l
1.2 1.2
— 3y —3Y 81Xx
with

d
—A 2s coth(s)—|A;|> = 0.
g1XXx ox + 2sco (S)dXI 1

By integrating this equation and substituting it into (5.28) we find that

2 25 coth
Ag= (= (1_coth2(s))_M)|A1|2,
ag — 1 ag — 1
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so that

2 2
aix = [ 2% (1 — coth?(s)) — 2% coth(s) — s2(1 — coth®(s)) ) |A; 2.
ag — 1 ag — 1

Substituting the formulae for Ag, A2, g1x, \1’1,.\1’2, W3 and the modulational
Ansatz into (5.27), and equating coefficients of ¥, finally yields the nonlinear
Schrodinger equation

A — (6B0s” — (1 — 0®)(1 — 50)) A1 xx
—s*(1 —362)2

(2(ao +16Bps* —s(o +071)

sP(1—0D? 45301 —0?)  4dapso?

ag — 1 ag — 1 ag — 1

+ 53 (=553B0 + 40 — 20%)

)|A1|2A1 =0,

where o = coth(s).

Appendix B: Computation of the Normal-Form Coefficients
For this purpose we make use of the calculation

Ylo(Lu, v) = Hy(u, v) = Hy (v, u) = Ylo(Lv, u),
denote the parts of H*(w), g"(w) which are homogeneous of order m in u and n in
w by u" H" (w), W™ N, (w) and the part of r(u1; 1) which is homogeneous of order
m in w and n in uy by ;' (u1; w). With a slight abuse of notation we use the same

symbols for the multilinear operators associated with these quantities.
Write

it ) = Z ri"jkgumAiBjAkBe
it j+kte=m

and consider the u A-component of (4.5), namely
(L —isD)rig = c2iE — c1 F — N} (E).
Taking the symplectic product of this equation with E, we find that

sinh?(s)

71

c1 = —=Ylo(rigoo» (L +isI)E) + YT|o(NL(E), E) = 2H, (E, E) = —
0

To compute d; we consider the A2 A-component of (4.5), namely
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(L —isI)rdyq = i E — 2d\F — 3NY(E, E, E)
07 0 0 0
—2N; (E, ra0000) — 2N5 (E, 11p1000)

and again take the symplectic product with E, so that

2dy = =Y lo(rS10, (L +isE) + 3T |o(NY(E, E, E), E)
0
+ 2T (o (NS (E. S00)- E) + 2 1o(NS (E. r1010). E).

The functions rgooo and 7?010 are obtained from the A2- and AA—components of (4.5),
which are respectively

(K —2isD)rdyo = —NY(E, E),
Kriyo = —2NY(E, E)

(note that "?01000 is determined up to addition of a multiple of F'). Altogether we find
that

— s3(—5s3,30 +40 — 203)

sinh*(s) = 302)2
21:12 2(atg + 16Bps* — s(o + o1
s*(1=0H? 45301 —0?) 4a0s202>

g — 1 g — 1 g — 1

where o = coth(s).
~0 ~0
For completeness, we record the formulae for 7}, 000 and 75y000» Namely

—s(ag — D7 (s + sinh(2s))
0
- 0
r?mo = 0 J
0
—s sinh(2s) + 2s sinh(s)(sy sinh(sy) + cosh(sy))
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i sinh(2s)
—2s sinh(2s)
r 3000 =5gooo Z_I‘Y(O{O y 1)-Sinh(ZS)
—4is? By sinh(2s)
—(5 + (y% = 1)) sinh(2s) + cosh(2sy)
2is cosh(2sy) — isinh(2s)
L5 sinh(2s)
is? sinh(2s)
—1+(2ap — 3) sinh(2s) — L sinh?(s)
+ —20s> sinh(2s) ,
isinh(s)(—2sy sinh(sy) 4+ cosh(sy))
i(14 352(y% — ) sinh(2s) +i(—2 + 1s(3? — 1)) sinh?(s)
s sinh(s)(sy sinh(sy) + cosh(sy)) — 1s sinh(2s)

where

-0 I, s2(cosh(2s) +2)
000 = 51\ = ts).
2 \'sinh(2s)(cg + 16B89s*) — 25 cosh(2s)
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