Empirical Software Engineering (2023) 28:152
https://doi.org/10.1007/510664-023-10338-3

®

Check for
updates

Performance evolution of configurable software systems:
an empirical study

Christian Kaltenecker'® - Stefan Miihlbauer?® - Alexander Grebhahn3 .
Norbert Siegmund?® - Sven Apel*

Accepted: 25 April 2023 / Published online: 13 November 2023
© The Author(s) 2023

Abstract

As a software system evolves, its performance can improve or degrade over time. Perfor-
mance evolution is especially delicate in configurable software systems, where performance
degradation may manifest only for specific configurations, making it especially hard to spot
and fix. Problem. Prior work concentrated mainly on performance-bug detection and root-
cause analysis of a single version of a system. The big picture of how performance co-evolves
with a system and what role configurability plays is largely unclear. Approach. In an empir-
ical study, we investigate the relation between configurability and performance evolution.
Specifically, we analyze a total of 190 releases of 12 configurable real-world systems and
examine the extent to which performance changes are specific to particular configurations
and whether few or many configuration options cause performance changes. We triangulate
our findings by analyzing change logs and commit messages of the respective projects to pin
down causes of performance changes. Results. We found that almost every release of every
subject system exhibits performance changes in some of their configurations. Notably, the
majority of performance changes affects only a subset of the configuration space, and most
performance changes are triggered by multiple options (up to 6). In a deeper analysis, we
found that a considerable number of releases mention performance changes in the change
log and commits: performance changes are reported in 45% and 69% of the releases in the
change log and the commit messages, respectively, but only a fraction report the involved
configuration options.

Keywords Configurable software systems - Performance - Evolution - Performance changes

1 Introduction

Software systems must evolve constantly to adapt to changes of hardware and user require-
ments (Xu et al. 2015). Software evolution is driven by the integration of new functionality

Communicated by: Justyna Petke

B Christian Kaltenecker
kaltenec @cs.uni-saarland.de

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10338-3&domain=pdf
http://orcid.org/0000-0002-4160-7162
http://orcid.org/0000-0002-7971-6727
http://orcid.org/0000-0001-7741-7777
http://orcid.org/0000-0003-3687-2233

152 Page 2 of 41 Empirical Software Engineering (2023) 28:152

or libraries, refactoring, and bug fixes. Beside functionality, the performance of the system
may change considerably. A performance change in which the execution time (or another
property such as throughput) of a software system degrades (performance regression) or
improves (performance fix or performance optimization) compared to previous releases.
There is a substantial corpus of previous work on analyzing, detecting, and reverting perfor-
mance changes (Chen and Shang 2017; Burnim et al. 2009; Han et al. 2012; Miihlbauer et al.
2019), considering only a single or few default configurations across multiple releases of
the software. However, performance changes may be configuration-dependent, that is, they
appear only in a subset of configurations of the system in question (Han and Yu 2016). As
such, configuration-dependent changes could be easily missed by considering only the default
configuration. Given that contemporary software systems are often configurable (Han and
Yu 2016), this calls for investigating performance changes not only across multiple versions,
but simultaneously across multiple configurations.

So far, there is no clear picture of how severe and frequent performance changes are in con-
figurable software systems and whether individual configurations or configuration options
play a central role in the evolution of a system’s performance behavior. A systematic analy-
sis of performance changes of configurable software systems holds the promise of providing
insights beyond just studying default configurations or average performance behavior. Devel-
opers and users are interested in which specific configurations exhibit diverging performance
behavior and which configuration options (or interactions among options) are responsible for
this. At a conceptual level, insights on the nature and prevalence of configuration-dependent
performance changes can be used to improve configuration sampling and performance mod-
eling techniques, where only a representative subset of all software configurations is used
for performance prediction (Siegmund et al. 2015; Jamshidi et al. 2018; Kaltenecker et al.
2019; Pett et al. 2019).

To learn about performance changes in configurable software systems, we conduct an empiri-
cal study on performance evolution of 12 popular configurable open-source software systems
from different domains across multiple releases and covering the entire configuration space.
To pin down the performance changes to configuration options, we make use of the structure
of performance-influence models (obtained by machine learning).

In particular, we address the following research questions:

— RQ1.1: What is the fraction of the configuration space containing performance changes
between consecutive releases?

— RQ>: How stable is the relative performance of configurations in the presence of per-
formance changes between consecutive releases?

— RQ».1: How frequent and how strong are changes of performance influences of individual
configuration options and interactions between consecutive releases?

— RQ»7: How stable is the relative influence of configuration options and interactions in
the presence of performance changes between consecutive releases?

To answer these research questions, we examine the prevalence and properties of performance
changes at two levels of abstraction:

— Configuration-level: performance of individual configurations

— Option-level: performance influence of individual configuration options and interactions.
In a deeper analysis, we contrast this information to the change log and commit messages of
the respective projects.
Overall, we make the following contributions:

— A novel approach to use performance-influence models to identify performance changes

associated with specific configuration options.

@ Springer

Empirical Software Engineering (2023) 28:152 Page30f41 152

— An empirical study of 12 popular configurable software systems involving their complete
configuration spaces for a series of releases considering up to 11 years of evolution.

— Insights on what role configurability plays in performance evolution of configurable
systems, which (kinds of) options and interactions cause performance changes, and which
performance changes are documented.

In a nutshell, we found that almost all 190 releases that we analyzed exhibit, at least, one
performance change in, at least, one configuration. Most performance changes (75%) affect
less than half of the configurations of a system, and most of the performance changes (91%)
affect multiple options (up to 6). Notably, despite the prevalence of performance changes, the
performance ranking of configurations and influences of individual options are in many cases
not affected. That is, developers and users can assume a certain stability of configuration-
dependent performance behavior. About 43% of the performance changes are documented
in change logs, 64% in commit messages. Specific configuration options were mentioned in
67% of the cases.

Our results have direct implications for configuration sampling, performance modeling, and
transfer learning in the area of configurable software systems. That is, for instance, some
performance changes affect only 1% of the configurations and demand for comprehensive
performance measurements to spot performance changes. Additionally, we found that the
relative influence of configuration options and interactions on the performance is stable in
80% of the releases. That is, performance engineers can assume a certain stability also on
the options’ influences while performing transfer learning across different releases (Jamshidi
et al. 2017). A deeper analysis of change logs and commit messages shows that using a
configuration-aware performance testing pipeline could help in identifying configuration-
specific performance changes early. Our measurement and analysis framework provides a
solid foundation for further experiments on different software systems and non-functional
properties. All results along with analysis scripts and further information are available at a
supplementary website! .

2 Preliminaries
2.1 Configurable Software Systems

A configurable software system offers a set O of configuration options, each of which can
be selected or deselected.” C denotes the set of valid configurations, where ¢ € C represents
a single configuration represented as a function ¢ : O — {0, 1}, which assigns to each con-
figuration option o € O either 1 if it is selected in configuration ¢ or 0 if not. For illustration,
we show in Table 1 the configurations of a compression tool with four configuration options:
Encryption (E), Compression (C), and two alternative compression algorithms, gzip (G) and
ZPAQ (2).

Note that not all combinations of configuration options 0 € O are valid (i.e., |C|< 2100,
due to constraints among configuration options. In our example, exactly one compression

1 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website

2 Numeric configuration options can be discretized or explicitly represented (Siegmund et al. 2015); most
options in our experiments are binary, the numeric options are discretized. This, however does not change the
configuration space, only its representation and enables us to learn step functions as they typically appear in
configurable software systems (Oh et al., 2017).

@ Springer

https://github.com/ChristianKaltenecker/PerformanceEvolution_Website

152 Page 4 of 41 Empirical Software Engineering (2023) 28:152

algorithm, either gzip or ZPAQ has to be selected if Compression is selected; none of them
can be selected if Compression is deselected.

2.2 Performance-Influence Models

Performance-influence models allow us to model and predict the performance of all individ-
ual configurations of a configurable software system (Siegmund et al. 2015). The resulting
performance-influence model is a polynomial in which each additive term consists of a coeffi-
cient that describes either the base performance, the influence of a single configuration option
(denoted as ¢), or an interaction among multiple options (denoted as 1) on the performance
of the system. We denote a performance-influence model as a function [: C — R, which
takes a configuration ¢ € C and returns its predicted performance value. For illustration, con-
sider the configurable system from Table 1. A corresponding performance-influence model
could be as follows:

o ¢z 29 VeG
—t— —— N ———
1_[(6) =10+20-c(E)+15-¢c(Z)—5-¢c(G)—=5-¢c(E) - c(Q)

Notice that influences may be positive, negative, or negligible (close to 0). In our example,
E increases the execution time by 20 (¢g), whereas G decreases the execution time by 5
(¢e). Only if both E and G are selected, the system is additionally speeded up by 5, which
is effectively an interaction between two configuration options (g g). The configuration-
independent base performance is denoted by the polynomial’s intercept 10.

In general, performance models are of the following form:

Bas Option influences Interaction influences
ase
~
[T@="8+D Bo-c@+ Y Bojo-clo)-...-clo)
0e© 01..0;€0

To obtain performance-influence models, we use multiple linear regression with feature
forward selection (Andrews 1974; Kuhn and Johnson 2013). The underlying problem of
multiple linear regression is to solve the following equation:

y=XB+e

where X denotes the input matrix in which each row corresponds to a configuration and
each column represents a configuration option or interaction. f is a vector that encodes the
influences of the configuration options and interactions; € is a vector containing the predic-
tion errors. Finally, y is a vector containing our dependent variable (i.e., our performance

Table 1 All valid configurations
and their predicted performance
values of a compression tool with

Configuration c(E) c(O) c(G) c(2) [T

E ! 1 0 0 0 0 10
three configuration options:
Encryption (E),Compression (C), €2 0 1 1 0 5
gzip (G), and ZPAQ (2) c3 0 1 0 1 25
cq 1 0 0 0 30
cs 1 1 1 0 20
ce 1 1 0 1 45

@ Springer

Empirical Software Engineering (2023) 28:152 Page50f41 152

measurement results). The objective of multiple linear regression is to fit the vector 8 such
that the error € is minimal.
For further illustration, we use the example from Table 1 to fill the equation:

Base E C G Z
1 1 0 0 0 o fo &¢y 10
c 1 0o 1 1 0 Be ¢, 255
c3 1 0 1 0 1 gy | _
s 1 1 0 0 0 gg Tlea | = |30 M
cs 1 1 1 1 0 82 Ecs 20
e 1 1 1 0 1 £ 45

In this example, we have encoded only the base influence and all individual options, but not
interactions. To also support interactions, the columns of the matrix C’ and the vector 8’ in
Equation 1 have to be expanded accordingly.

Algorithm 1 Learning a performance-influence model

1 Function learn_model (feature_model, performance_data) :

2 error <— 0o
3 error_reduction < 00
4 model <)
5 while error > 1% and error_reduction > 0.1% do
6 candidates <— create_candidates(model, feature_model)
7 best_candidate_model <)
8 best_candidate_error < o0
9 foreach candidate € candidates do
10 candidate_model, candidate_error < fit_and_predict(candidate, performance_data)
11 if candidate_error < best_candidate_error then
12 best_candidate_error < candidate_error
13 best_candidate_model < candidate_model
14 end
15 end
16 model < best_candidate_model
17 error_reduction < error — best_candidate_error
18 error < best_candidate_error
19 end
20 model < backward_selection(model)
21 return model, error

The overall idea of learning a performance-influence model is to refine a model iteratively
until a user-defined threshold is reached (Siegmund et al. 2015; Kolesnikov et al. 2019b),
as defined in Algorithm 1. Function learn_model receives the performance data and
the feature model (i.e., information about the configuration options) as input. In Lines 2-3,
we initialize two variables, prediction error and the error improvement, which are used to
check against the threshold for aborting the learning process. Lines 5-19 contain the iterative
procedure to perform multiple linear regression with feature forward selection (Andrews
1974; Kuhn and Johnson 2013). Therein, a list of different candidates (or features) is created
in each step(Line 6). Each individual configuration option is a suitable candidate and so are
interactions of configuration options with options that have already been added to the model.
For instance, if a model contains the configuration option E, then also interactions with E such
asE-C,E-G, or E-Z become candidates. The rationale of this iterative extension of the model is
to counter the combinatorial explosion of combining all configuration options. This iterative

@ Springer

152 Page 6 of 41 Empirical Software Engineering (2023) 28:152

approach is hierarchical in that it can add interactions for only those options that have been
found in reducing the model error in prior iterations. For instance, if E - G interact with each
other, the approach would firstly include either E or G into the model and, in a later iteration,
E - G if both together would reduce the prediction error for a hold-out set. After creating the
candidates, each candidate is evaluated within a model that represents the state of the prior
iteration (Lines 9—15). To this end, we first fit the model to the performance data of a hold-out
set (see (1)) in Line 10 returning the model including the candidate and the overall error of the
corresponding model. In Lines 11-14, the current candidate is selected as the best candidate
if it reduces the error more than previous candidates. The best candidate of the current
iteration is added to the model in Line 16. The reduction of the error resulting from the newly
added candidate and the new error are then calculated. Note that choosing the best candidate
represents a limitation of our approach since a worse performing candidate could lead to a
better reduction of the error in future iterations. This iterative process is continued until one
of the thresholds in Line 5 is no longer satisfied. Due to its hierarchical nature, the model
can potentially include configuration options or interactions that may become irrelevant in
later iterations. For instance, if only the interaction E - G is relevant for performance but the
individual configuration options E and G are not, this approach would still include, at least,
E or G as it reduced for some configuration the prediction error in previous iterations. To
remove such unnecessary options and interactions, we apply a backward selection in Line
20. The backward selection removes all options and interactions that no longer improve the
model error.

In many cases, it is desirable that a performance-influence model contains only the most
relevant influences, which can be achieved by adjusting the learning procedure at the cost of
predictive power (Kolesnikov et al. 2019b). In any case, predictions of performance-influence
models are rarely totally accurate, even if we included all possible configurations for learn-
ing the performance-influence models. To some extent, the measurement setup introduces
systematic error, resulting in noisy data.

Performance-influence models are not specific to execution time. They can be used to model
any non-functional property that can be quantified on an interval scale. Performance-influence
models have been applied to accurately predict execution time, throughput, memory con-
sumption, binary footprint, energy consumption, verification effort, and more (Siegmund
et al. 2013; Kniippel et al. 2018; Grebhahn et al. 2017). We selected performance-influence
models for our empirical study since their additive structure makes them easy to interpret
and compare. Typically, a performance-influence model is learned based on a sample set
of configurations and used for performance prediction. However, instead of using them for
predictions, in this paper, we use performance-influence models to explain which configura-
tions or interactions thereof are affected by a performance change. For this purpose, we learn
a performance-influence model based on the whole configuration space so that we obtain
an accurate picture of the performance influences of configuration options and interactions
thereof. In the past, (Kolesnikov et al. 2019b) and (Grebhahn et al. 2017) have successfully
applied this approach for understanding and verifying the influence of configuration options
and interactions on performance, respectively.

2.3 Software Evolution
Version control systems help developers to keep track of code changes that arise during

software evolution. For this purpose, most version control systems provide the concept of
revisions. A revision is effectively a view on the code base at a certain point in time. In what

@ Springer

Empirical Software Engineering (2023) 28:152 Page7of41 152

follows, RV denotes the set of revisions of a software system. To highlight revisions that (1)
contain prominent changes, (2) are assumed as running stable, or (3) mark major milestones,
arevision can be tagged as release, with R € RV denoting the set of releases. In our study,
we consider only releases (1) to focus on important revisions, (2) to keep measurement effort
feasible, and (3) releases are usually the revisions that are used in production. Intermediate
revisions are not guaranteed to compile/run without errors since those revisions typically
are incremental modifications and "work in progress". Further, we measure not all, but only
certain releases. The rationale behind this is that older software versions do not compile and
run anymore on current operating systems, which limits the time span that we can observe.
Furthermore, we do not measure each minor release in each software system since measuring
each release would require to measure all configurations of the configuration space again. In
this case, we opted to distribute the releases in similar time frames (e.g., one release per half
year) to cover each time frame equally.

2.4 Multicollinearity

Multicollinearity is one of the biggest challenges in regression analysis and refers to a sit-
uation, in which a term of a linear model can be linearly predicted by other terms. That is,
multiple terms represent the same effect such that it becomes unclear, which of these terms
has the true influence on the independent variable and to what extent.

For a comprehensive and an unambiguous analysis of a software system’s evolution, we have
to assure that the terms of our models are not multicollinear. Otherwise, we can end up with
different performance-influence models all predicting the same value, but with diverging
influences of options and interactions, threatening internal validity of our analysis. As a
countermeasure, one can apply a variance inflation factor (VIF) analysis (James et al. 2013;
Dorn et al. 2023) and exclude terms that can be completely linearly predicted by other terms.
For illustration, consider Table 1 and the following performance-influence models:

Hl(c) =10+ 15-¢(C) - ¢(2)
1_[2(6) =10+ 15-¢(2)

Both performance-influence models predict the same performance values. The terms c(Z)
and c(C) - ¢(Z) are perfectly multicollinear because when Z is selected in a configuration, C is
also always selected. Hence, we cannot distinguish the influence of the interaction ¢(C) - ¢(Z)
from the influence of the option ¢(Z). Having both terms in a performance-influence models
would cause infinite possibilities of assigning coefficients to these terms, as demonstrated
here:

]—[’1 (©) =10 = 10 - ¢(C) - ¢(Z) + 25 - ¢(2)
H;(c) =104 10-¢(C) - ¢(Z) +5 - ¢(2)

Again, both performance-influence models make the same predictions but assign completely

different coefficients to the terms. The VIF analysis detects such cases and declares the terms

as multicollinear.?

3 Note that we exclude only perfectly multicollinear terms, since perfect multicollinear terms are completely
interchangeable. We do not use any threshold such as 5 as commonly used in literature because configuration
options and their interactions can always be multicollinear to some extent due to overlap.

@ Springer

152 Page 8 of 41 Empirical Software Engineering (2023) 28:152

Algorithm 2 Learning a performance-influence model

1 Function learn_comparable_models (feature_model, releases, release_performance_data) :
2 terms <)

foreach release € releases do

model < learn_model(feature_model, release_performance_data[release])

terms < include_terms_from_model(terms, model)

terms <— variance_factor_analysis(terms)
models < (

3
4
5
6 end
7
8
9 foreach release € releases do

10 model < fit(terms, release_performance_datalrelease])
1 models <— models U {model}

12 end

13 return models

In our empirical study, we follow the approach of Algorithm 2 to bring the performance-
influence models into a comparable form (i.e., all performance-influence models contain the
same terms). In Lines 2—6, we learn a performance-influence model for each release. This is
necessary to identify the performance-relevant configuration options and interactions. These
configuration options and interactions are included as zerms into the model in Line 5. This
way, we obtain a set containing all relevant configuration options and interactions among
them. However, this set cannot be immediately used as a performance-influence model since
this step includes configuration options and interactions that might be multicollinear. Hence,
we remove multicollinear terms by applying a VIF analysis (Dorn et al. 2023) in Line 7. Note
that this does not affect our prediction error since we remove only perfectly multicollinear
terms (i.e., terms that are completely interchangeable). After this step, we use the same terms
and fit them for each release in Line 10. These performance-influence models contain the
same configuration options and interactions and can now be compared.

3 Study Setup

In this section, we discuss our research questions and how we attempt to answer them by
analyzing 12 subject systems.

3.1 Research Questions

Our overarching goal is to understand the performance evolution of configurable software
systems. To this end, we study the characteristics of performance changes and their relation to
configurability. For a detailed analysis, we consider two levels of abstraction: configuration
level and option level.

Configuration level As a first approximation, we address our goal at the level of individual
configurations. In particular, we are interested in (1) whether performance changes affect typ-
ically many or only a few configurations and (2) whether performance hanges alter typically
the overall ranking of configurations with regard to their performance optimality.

For the firstresearch question (RQj 1), we compare for each pair of releases each configuration
with its successor in terms of the extent to which the performance has changed. This will allow

@ Springer

Empirical Software Engineering (2023) 28:152 Page9of41 152

us to make quantitative statements about how many performance changes exist in practice and
what fractions and kinds of configurations are affected. These insights can inform sampling
strategies and maintenance activities by prioritizing specific configurations that likely exhibit
performance changes.

RESEARCH QUESTION 1.1

What is the fraction of the configuration space containing performance changes between

consecutive releases
——————— |
For the second research question (RQ;), we analyze to what extent performance changes

affect the ranking of configurations with regard to their performance. That is, the slowest
configuration has the lowest rank, the fastest configuration the highest rank, etc. Often devel-
opers and users are less interested in the actual performance values, but rather in their relative
importance, including which configurations are performance-optimal and which fall below a
certain threshold (Nair et al. 2017).It might be that performance changes exist but that most
of them do not alter the performance ranking of configurations. That is, the performance
ranking of configurations is stable. This would be useful for researchers (e.g., for transfer
learning of performance models (Jamshidi et al. 2017, 2018)) and practitioners (so they can
rely on a certain stability in the relative performance influences).

RESEARCH QUESTION 1.2

How stable is the relative performance of configurations in the presence of performance
changes between consecutive releases?
 — —_—

Option level Beside knowing which configurations are affected by a performance change, we
would like to know which configuration options or interactions among options are responsible
for this change. As with configurations, we are interested in (1) whether typically many or only
few options or interactions cause performance changes and (2) whether performance changes
alter typically the overall ranking of performance influences of options and interaction. To
obtain information on the influences of options and their interactions, we learn a performance-
influence model per release and compare their terms and coefficients (see Sect.?2). Since we
use linear regression to learn our performance models, multicollinearity might occur between
multiple terms (see Sect.2.4). As a countermeasure, we apply a VIF analysis and remove
all terms causing perfect multicollinearity. By doing so, 9 out of 707 terms were removed
leaving the predictions of our performance-influence models unaffected.

For the first research question (RQjy. 1), we compare for each pair of releases each influence of
each model term with its successor regarding the extent to which its influence has changed.
This will allow us to make quantitative statements about how many options and interactions
are responsible for performance changes. Knowing whether many or only few options are
responsible for performance changes helps to understand root causes of these changes and to
guide corresponding actions. Identifying patterns here can inform performance engineers to
guide and improve the detection and tracing of performance bottlenecks (Gahvari et al. 2011).
Comparing each pair of releases further gives us the opportunity to assess the distribution
of relative influences of the configuration options on performance (i.e., all options have a
similar influence on performance, or a few influence performance the most).

RESEARCH QUESTION 2.1

How frequent and how strong are changes of performance influences of individual config-
uration options and interactions between consecutive releases?

O — —_—]

@ Springer

152 Page 10 of 41 Empirical Software Engineering (2023) 28:152

For the second research question (RQ»), we analyze to what extent performance changes
affect the global ranking of performance influences of configuration options and interactions.
As with configurations, it is often sufficient to know which configuration options have a strong
influence on performance without knowing exact performance values. For instance, when
optimizing for performance, a user may concentrate on the configuration options having a
strong influence on performance and ignore others (Xu et al. 2015). When optimizing for
performance in a compression software, the performance-influence model might point out to
consider low instead of high compression levels and to neglect debug options. For a developer,
it might be interesting to confirm own expectations of how configuration options perform, as
shown in a former study (Grebhahn et al. 2017).

RESEARCH QUESTION 2.2

How stable is the relative influence of configuration options and interactions in the presence
of performance changes between consecutive releases?

 —— —_—]

3.2 Subject Systems

For our experiments, we selected 12 real-world configurable software systems based on the
following criteria: (1) different sizes (number of configurations and configuration options) to
evaluate scalability, (2) different application domains to increase external validity, (3) differ-
ent application architectures (e.g., client—server vs. desktop) to cover different performance
aspects, and (4) actively maintained systems to detect historical changes in a realistic context;
see Table 2, for an overview. As of 2023, all systems in our selection are actively maintained,
and we consider lifetimes of 21 months (POSTGRESQL) to 137 months (OPENVPN). From the
respective development histories, we extracted all releases, which we identified based on GIT
tags and respective documentation. All considered configuration options represent run-time
configuration options. We provide all variability models, selected releases, measurements,
results from our deeper analysis, and a complete description of the configuration options

Table 2 Overview of the subject systems, including application domain, lines of code (LOC) in the last
measured release, number of valid configurations (|C|) in each release, configuration options (|O]), releases
(]R|), and performance metric

Name Domain LOC IC| (@] IR| Performance Metric
BROTLI Compression 30k 181 30 12 Compression time
FAST DOWNWARD Planning system 90k 374 39 9 Solving time
HSQLDB Database 194k 864 29 19 Response time
LRZIP Compression 16k 1440 27 22 Compression time
MARIADB Database 1969k 972 21 22 Response time
MYSQL Database 2792k 972 21 20 Response time
OPENVPN VPN software 80k 512 24 12 Response time
OPUS Audio encoder 54k 6480 31 12 Encoding time
POSTGRESQL Database 1160k 864 18 22 Response time
VP8 Video encoder 324k 2736 27 15 Encoding time
VP9 Video encoder 324k 3008 25 7 Encoding time

73 Constraint solver 415k 1024 13 18 Solving time

@ Springer

Empirical Software Engineering (2023) 28:152 Page 11 0of41 152

on our supplementary website. It is important to note that we carried out the performance
measurements on multiple machines in parallel to keep the measurement time manageable.
While we use different machines across different subject systems, we use equally equipped
machines for the measurements of each subject system. Parallelizing our performance mea-
surements this way was possible, since we only compare revisions and configurations in
subject systems and not across subject systems.

BROTLI is an open-source file compression tool by Google written in C. We considered 30
configuration options that give rise to 181 configurations, including configuration options set-
ting the window size and compression level. We used UIQ2* to generate a general workload for
compression (see Sect. 3.3 for more detail). As performance measure, we used compression
time. The measurements took place on machines with Intel Core i7-4790 CPUs at 3.60 GHz
with 16 GiB RAM (Debian 9). Overall, we considered 12 releases, from release 0.3.0 to
1.0.7, covering almost 3 years of history.

FAST DOWNWARD is an open-source domain-independent planning system for optimization.
To identify performance-relevant configuration options and a proper workload, we contacted
adomain expert. Based on the feedback, we considered 39 configuration options that give rise
to 374 configurations. 7 out of 39 configuration options control different search heuristics; all
other configuration options represent parameters for these heuristics. Each heuristic comes
with its own parameters (i.e., configuration options). We measured the time to find an optimal
solution for the planning task. All measurements were conducted on machines with Intel Xeon
E5-2630 v4 at 2.20 GHz with 256 GiB RAM (Debian 11). Overall, we considered 9 revisions
chosen in cooperation with the domain expert. In total, we cover 5 years of history.

HSQLDB is a lightweight database engine. We considered 29 configuration options that give
rise to 864 configurations. Configuration options include support for different encryption
algorithms, transaction control settings, and incremental backup. We measured through-
put with the benchmarking tool POLEPOSITION.> We have used multiple thousands of read,
insert, and update queries. We also considered nested queries. The tool emulates realistic
user interaction by performing a number of insertions, deletions, updates, and queries. All
measurements were conducted on machines with Intel Core 15-4590 CPUs at 3.30 GHz with
16 GiB RAM (Debian 9). Overall, we considered 19 releases, from release 2.1.0 to 2.4.1,
covering over 7 years of history.

LRZIP is an open-source file compression tool. We considered 27 configuration options that
give rise to 1, 440 configurations. Relevant configuration options are, for instance, different
compression algorithms, compression levels, and processor numbers. We used the same setup
as for BROTLI. All measurements were conducted on machines with Intel Xeon E5-2650v2
CPUs at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases,
from release 0.530 to 0.631, covering almost 6 years of history.

MARIADB and MYSQL are open-source relational database management systems. For both
subject systems, we considered 21 configuration options that give rise to 972 configurations.
Among others, we included different buffer pool sizes, table sizes, and flush methods. We
measured throughput with the benchmarking tool POLEPOSITION. All measurements were
conducted on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB RAM
(Debian 10). For MARIADB, we considered 22 releases, from release 5.5.23 to 10.4.7, cov-

4 http://mattmahoney.net/dc/uiq/
5 http://polepos.org

@ Springer

http://mattmahoney.net/dc/uiq/
http://polepos.org

152 Page 12 of 41 Empirical Software Engineering (2023) 28:152

ering over 7 years of history. For MYSQL, we considered 20 releases, from release 5.6.10 to
8.0.17, covering over 6 years of history.

OPENVPN is an open-source software that provides secure communication between comput-
ers using virtual private networks. We considered 24 configuration options that give rise to
512 configurations. We included, for instance, support for compression, different encryption
ciphers, authentication methods, and renegotiation settings. We set up an experiment with
one client and one server exchanging files to measure the throughput of the application. All
measurements of OPENVPN were conducted on machines with Intel Xeon E5-2650v2 CPUs
at 2.60 GHz with 128 GiB RAM (Debian 10). Overall, we considered 22 releases, from
release 2.1.0 to 2.4.6, covering over 11 years of history.

OPUS is a codec for lossy audio compression. We considered 31 configuration options, giving
rise to 6 480 configurations. Configuration options include choices of bit rates, sample rates,
and numbers of channels. We measured the performance of OPUS by repeatedly encoding a
test vector, which has been used to validate the implementation against OPUS’s file format
specification. All measurements were conducted on machines with Intel Xeon E5-2620v4
CPUs at 2.10 GHz with 256 GiB RAM (Debian 10).Overall, we considered 12 releases, from
release 1.0.0 to 1.3.1, covering almost 7 years of history.

POSTGRESQL is an open-source relational database management system. We considered
18 configuration options that give rise to 864 configurations. As configuration options, we
include synchronous commits as well as different sizes of buffers and working memory.
As with HSQLDB, we used the benchmarking tool POLEPOSITION for measurements. All
measurements were conducted with machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz
with 128 GiB RAM (Debian 9). Overall, we considered 22 releases, from release 9.6.3 to
11.2, covering almost 2 years of history.

VPXENC (VP8/VPY) is a video encoder that can be customized with different codecs, of which
we study VP8 and VP9. We considered 27 and 25 configuration options that give rise to
2736 and 3008 configurations for VP8 and VP9, respectively. VPXENC provides a variety
of configuration options, for instance, to adjust the quality or bitrate of the encoded video
and multithreading operation. We used the raw trailer from the movie “Sintel” (480p, y4m
format) as a benchmark and measured the encoding time of both codecs, respectively. VP8
was measured on machines with Intel Core 15-4590 CPUs at 3.30 GHz with 16 GiB RAM.
VP9 was measured on machines with Intel Xeon E5-2650v2 CPUs at 2.60 GHz with 128 GiB
RAM (Debian 10). For VP8, we considered 15 releases, from release 0.9.1 to 1.8.0, covering
almost 9 years of history. For VP9, we considered 7 releases, from release 1.3.0 to 1.8.0,
covering over 5 years of history.

73 is an open-source SMT solver from Microsoft Research. We considered 13 configuration
options that give rise to 1024 configurations. Configuration options include the generation
of proofs, model validation, and model simplification. As a benchmark, we selected four sce-
narios from the International SMT Competition (LRA, QF_FP, QF_LRA, and QF_UFLRA).
We measured and report the execution time for solving these tasks. Z3 was measured on
machines with Intel Core i5-4590 CPUs at 3.30 GHz with 16 GiB RAM (Debian 11). Over-
all, we considered 18 releases, from release 4.3.2 to 4.8.13, covering more than 7 years of
history.

@ Springer

Empirical Software Engineering (2023) 28:152 Page 13 0f41 152

3.3 Workloads

To obtain a representative workload and increase external validity (see Sects.4.4 and 5) for
each subject system, we selected one benchmark that originates from the respective system
developers or community.

Audio Encoding (OpPuS): For the audio encoding, we used test vectors provided by the
developers of OPUS.® Test vectors are designed to test all aspects of the implementation of
the audio encoder.

Compression (BROTLI/LRZIP): We used the tool UIQ2 to generate a large text compression
workload. It creates a generic and general purpose compression workload of a specified
size.The generated data was the same for both subject systems and has a size of about 100
MB.

Database (HSQLDB/MARIADB/MYSQL/POSTGRESQL): Each of the database systems sup-
ports SQL queries. We used the SQL benchmark POLEPOSITION,® which was also used in
multiple publications (Pukall et al. 2013; van Zy1 et al. 2006). The benchmark enables us to
generate different types of queries, such as SELECT, UPDATE, nested queries, and complex
queries.

Planning System (FAST DOWNWARD): We applied the workload DATA- NETWORK- OPT18-
STRIPS/PO5Y that was suggested by an experienced user of Fast Downward as a general
workload. In addition, this workload does not contain specific characteristics that make the
benchmark unsolvable for certain heuristics.

Solver (z3): We selected multiple benchmarks from the Satisfiability Modulo Theories
Library'? having different types of logics LRA, QF_FP, QF_LRA, and QF_UFLRA. These
benchmarks cover floating point, linear real arithmetic, free sort and function symbols, for-
mulas with and without quantifier, and satisfiable and unsatisfiable formulas, thus, covering
a large range of options provided by 73.

Video Encoding (VP8/VP9): We used the Sintel trailer as a well-established workload when
assessing the quality of different encoders. The Sintel trailer is listed in the Xiph repository!!
and has been used in different publications (Seidel et al. 2013; Pereira et al. 2020).

VPN (OPENVPN): Similar to compression, we created a generic general purpose file using
UIQ2 with a size of 1400 MB. We opted for UIQ2 since it generates compression workloads
for the LZO compression, which is a functionality enabled by an option in OPENVPN. We
adjusted the size of the file as suggested by a community guide for performance testing.!?

3.4 Operationalization

To answer our research questions, for each release, (1) we measured all configurations of a
subject system and (2) learn a performance-influence model on the entire set of configurations,

6 https://opus-codec.org/docs/opus_testvectors-rfc8251 .tar.gz

7 http://mattmahoney.net/dc/uiq/

8 http://polepos.org/

9 https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl
10 https://smtlib.cs.uiowa.edu/benchmarks.shtml

11 https://media.xiph.org/

12 https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases

@ Springer

https://opus-codec.org/docs/opus_testvectors-rfc8251.tar.gz
http://mattmahoney.net/dc/uiq/
http://polepos.org/
https://github.com/aibasel/downward-benchmarks/blob/master/data-network-opt18-strips/p05.pddl
https://smtlib.cs.uiowa.edu/benchmarks.shtml
https://media.xiph.org/
https://community.openvpn.net/openvpn/wiki/PerformanceTesting#Testcases

152 Page 14 of 41 Empirical Software Engineering (2023) 28:152

resulting in one model per system and release. S refers to the set of subject systems.For a
system s € S, C, refers to its set of configurations (see Sect.2.1) and Ry to its set of
releases. M : C; — R maps the configurations ¢ € C; of release r € R to their measured
performance values in R. T} denotes the performance-influence model for revision r € R
of system s.

Configuration level Conducting performance measurements on the history of a configurable
software system raises the question of whether the addition and removal of configuration
options across releases should be considered. To simplify the analysis, we resort to a fixed
set of options that is available across all releases of a subject system. While this way we
might miss some interesting cases, our data set is still large and diverse enough to answer
reliably our research questions.

The independent variables for RQ; ; and RQq > are (1) the subject system s, (2) the release r,
and (3) the configuration c. The dependent variable is the performance value M} (c). A con-
founding factor is measurement noise caused by particularities of the hardware and software
platform (Mytkowicz et al. 2009). To control for this factor, we measured all configurations
multiple times (3 to 5 times depending on the subject system) until the coefficient of variation
(i.e., standard deviation divided by the mean) of the repetitions is lower than 10%.

To answer RQ 1, we determine the performance values M (¢) for each configuration ¢ € C
and each release r € R;. We consider a performance change between a configuration of two
consecutive releases relevant if:

| M? (C) _ ;’Hl (C) | > 2 .max (Sdgi (C), Sd?i+1 (C)) (2)

where sdf (c) denotes the standard deviation of performance values of a configuration across
repeated measurements. In other words, if a performance change does not exceed twice the
larger standard deviation of the two releases, it is not further considered. The rationale for
this conservative threshold is to filter out measurement noise and tiny performance changes.

To answer RQ 2, we rank the configurations of each release r; by their performance value.
For illustration, we show the performance ranking of our exemplary compression tool for
two releases in Table 3. ¢, represents the fastest configuration in both releases and c¢ the
slowest configuration. Further, instead of directly comparing the rankings of two consecutive
releases, we first filter out irrelevant performance changes according to our definition in (2).
That s, the ranking order of the second release is affected only by relevant changes. In Table 3,
we show in the last column which configurations are relevant according to (2), assuming a
relative standard deviation of 1%. After filtering, the ranking of only ¢ and ¢5 would be
compared, resulting in a perfect correlation, since both configurations maintain their ranking
in both releases (i.e., ¢ < c5 holds).

To quantify the similarity of two rankings (i.e., the performance rankings of the configurations
of the current and the previous release), we use the Kendall’s Tau correlation coefficient
(Kendall 1938). A correlation value of 1 indicates perfect correlation, a value close to O means
no correlation, and —1 indicates that the rankings are fully opposed (i.e., the configuration
with the highest rank in release r; has the lowest rank in release r;41, the configuration
with the second highest rank in release r; has the second lowest rank in release r;11, etc.).
In other words, a high correlation indicates that the performance ranking of configurations
remains stable across releases, whereas a low correlation indicates that the ranking changes
considerably. We omit computing Kendall’s Tau for releases where the rank changes for less
than two configurations. Calculating the correlation of the relevant configurations in Table 3,
we would obtain a perfect correlation of 7 = 1.0.

@ Springer

Empirical Software Engineering (2023) 28:152 Page 150f41 152

Table 3 All valid configurations of our exemplary system from Sect.2.1, their predicted performance values
for two different releases, and the performance ranking of the configurations of the exemplary compression
tool

Release 1 Release 2

Configuration N6 Rank ([](c)) T Rank ([T (c)) Relevant
cl 10 2 10 2 X

e 5 1 6 1

c3 25 4 25 4 X

e 30 5 30 5 x

cs 20 3 21 3

c6 45 6 45 6 X

The last column indicates whether the performance change is relevant according to (2)

Option level ITn RQ; | and RQ» 7, we aim at identifying the configuration options and inter-
actions that are responsible for the performance change that we observed at the configuration
level. To identify changes of the performance influence of an individual configuration option
or interaction, we build on previous work by Siegmund et al. (Siegmund et al. 2015): We use
multiple linear regression with feature forward selection to create for each revisionr € Ry a
performance-influence model IT{ of the form described in Sect. 2. Note that we do not follow
a sample-based learning approach (i.e., one that uses only a subset of configurations). Instead,
we learn models on the whole configuration space. This would be impractical in practice but
gives us the most accurate results. So, the independent variables for RQ,.; and RQ;» are
(1) the subject system s and (2) the release r; the dependent variable is the corresponding
performance-influence model I} for r € R;.

To answer RQ> 1, we determine for each r € R the performance influences g7 (¢) of all terms
t € IT}. A term can either consist of the base term (i.e., B in Sect. 2.2), a configuration option
(i.e., Bo-c(o) foro € O), or aninteraction among multiple options (i.e., Bo,..; -c(01)-- - --c(0;)
for oy, ..., 0; € O). Function g} (¢) returns the coefficient of the term. Similar to RQy 1, we
consider a performance change between two coefficients relevant if:

| BLi(6) — B (1) | > 2 - max(sdy , sdy ™).

where ﬁ? denotes the mean standard deviation of all configurations of release r; € R;.
As with RQI.1, if a change of performance influence does not exceed twice the larger
average standard deviation of the two releases, it is not further considered. The rationale of
using the maximum of the mean standard deviation is that we use the entire configuration
space for learning performance models and thus accumulate the standard deviation over all
configurations.

To answer RQ> >, we rank the terms ¢ € I} based on their coefficients B (¢). Similar to
RQj 2, the most influential term has the highest rank, the second most influential term has
the second rank, and so on. As in RQ 2, we quantify to what extent the ranks between two
releases r; and r;4 differ by using the Kendall’s Tau correlation coefficient.

@ Springer

152 Page 16 of 41

Empirical Software Engineering (2023) 28:152

Fig. 1 Fraction of performance
changes and stability of
performance ranking at
configuration level. The red line
indicates the fraction of
configurations of the whole
configuration space containing
performance changes (in %); the
blue line indicates the stability of
the ranked configuration
performance as measured by
Kendall’s Tau

@ Springer

Changes [%] Changes [%] Changes [%] Changes [%] Changes [%]

Changes [%]

25

100

BROTLI

A w
AVEERN
NESVaN

R N Y

AR NN NN SN
Release
HSQLDB

%00 6% % RS

RS »
v W[LW'LW,LW,L’L%W%W vtV 5
Release
MARIADB

10

00

T
BREDO U
5 N San St
CHOCCR CRANE AR S R

Release

OPENVPN

75 /\ 05
50 / \ 00
) / _A b
0 A A A A A X A A -0

Y oW> N oo I

" g 17’0'5 Bt

Release
POSTGRESQL

Oy TSP 0Py O PO Py O B O 2 S 3 S 1.0,
o0 q,"%w@h%@@b%b‘%h‘b %‘79 PR
Release

:/ﬁ:ﬁki:ﬁl

S S S & S s
¥ @ & 8
& 4" N N 4" {
Release

Kendall's Tau Kendall's Tau Kendall's Tau Kendall's Tau Kendall's Tau

Kendall's Tau

FASTDOWNWARD

B
P
S s
<
e \
5= 8
0:
& & d S ® 0 @
R R I S 0§
& 8 4 @ @ o o o
L A N N
Release
LRZIP

Changes [%] Changes [%] Changes [%]

Changes [%]

Changes [%]

o R

m‘/\/\ﬁ

A0 AL g
y

Release

MySQL

100:

A
MAJLMI

ohddsddd Addhak
91016 4 o o o
RO A

Release

OPUS

100:

25

Release

z3

AN s
R EAUVAY S
xvv

o
O NS SN
RECIRCRI

> A
RTINS Cxs

Release

2200 00
et

1.0
05

1.0

-05

1.0

1.0

05

00

-05

-10

Kendall's Tau Kendall's Tau Kendall's Tau Kendall's Tau Kendall's Tau

Kendall's Tau

152

Page 17 of 41

Empirical Software Engineering (2023) 28:152

BROTLI FASTDOWNWARD

Fig. 2 Fraction of performance

changes and stability of

100

10

100

nejJ s,||lepuay

%,
< “
Y
q e
\ ®
B
< %,
3
P
%,
3
.
%,
%
P
%,
%
0.
i <,
@
"
2
3
T T
e 8 & %,
%

[%] sabueyo

nej s,jjepua

3 32 5 v
«
H_

[%] saBueyd

performance ranking at option
level. The red line indicates the
fraction of options containing
performance changes (in %); the
blue line indicates the stability of
the ranked options performance
as measured by Kendall’s Tau

Release

Release

LRZIP

HSQLDB

10

100

10

100

nej s,|lepuay

€
@€
«
«
']
<
«
0
(
e (
[%] sebueyn
nej s,|lepuay
3 2 ¢ 7
4
€02
€5
P
<
S
A So
<
PP
&
< o
A i
€08
« 5
(<
S
WW
R
Wi
<
Se
<
(e
&
S
an
g 8 & °9

[%] seBueyd

Release

Release

MyYSQL

MARIADB

10

100

10

100

e 8 & °af

%] sebueyd

nej s,jjepuay

s 3 T

[%] saBueyd

Release

Release

OPUS

OPENVPN

m

10

nej s,||lepuay

%] sebueud

nej slepuay

s 3 T

[%] saBueyd

Release

Release

VP8

POSTGRESQL

100

[%] seBueyd

nej s|jepuay

S S 7

SO
ESNSN

AAAAAL 1o
SOV

S,
>

e 8 % 2

[%] saBueyd

Release

Release

z3

VP9

100

10

nej s,||lepuay

<

[%] s9Bueyd

ney s,jlepuayi

s 3 7

[%] seBueyd

3

:

-10

910N D DN aN eP P a2 60 g g2 KO R Y B
PRSNGSRS IR X

Release

Release

pringer

Qs

152 Page 18 of 41 Empirical Software Engineering (2023) 28:152

100%
80%
60% I Configurations
40% Options

Releases [%]

20%

0%
0% 20% 40% 60% 80% 100%

Configurations / Options [%)]

Fig.3 Cumulative plot on the fraction of involved configurations (blue) or options (orange) in all performance
changes of RQ1 1 and RQj 1, respectively

4 Evaluation

In this section, we summarize our results (Sect.4.1). We use these results in subsequent
metadata analysis (Sect. 4.2) and discuss the results along with further observations (Sect. 4.3)
and potential threats to validity (Sect.4.4).

4.1 Results

In what follows, we refer to the plots given in Figs. 1 and 2. For each subject system, there is
one plot per figure: the plots in Fig. 1 show the number of changes (red line) and the stability
of the performance ranking (blue line) at configuration level; and the plots in Fig. 2 show
the number of changes (red line) and performance ranking stability (blue line) at the option
level.

RQ1.1: What is the fraction of the configuration space containing performance changes
between consecutive releases?

In Fig. 1, we show the fraction of configurations containing performance changes across
consecutive releases (red lines)—the larger the value, the higher the fraction of configurations
involved in a performance change. In Fig. 3 (blue line), we provide a cumulative overview
that shows how many of the 178 consecutive releases have a performance change in at
least a certain fraction of configurations. For instance, we see that in more than 40% of
the releases the performance changed in at least 20% of the configurations. Notably, 176
out of 178 (99%) releases have, at least, one configuration with a performance change.'3
Further, 2 (1%) performance changes are observed in the entire configuration space, 133
(75%) performance changes are observed in less than half of the configuration space, and 26
(15%) performance changes are observed only in 1% of the configuration space.

In Fig. 4, we show the intensity of performance changes for VP9. Red color indicates perfor-
mance degradation, blue color indicates performance improvement. For releases 1.4.0 and
1.6.0, we observe that the performance behavior of a considerable number of configurations
(30%) of VP9 has changed substantially (i.e., the blue and the red colored configurations)—
much more than our threshold of twice the standard deviation used in Fig. 4.

13 We have detected no configurations with performance changes between releases 9.2.0 and 9.2.4 of POST-
GRESQL and between releases 2.2.1 and 2.2.2 of OPENVPN.

@ Springer

Empirical Software Engineering (2023) 28:152 Page 19 of 41 152
v1.3.0
v1.4.0

1000

v1.5.0 ‘%
[0}
2 ‘II... g
@ v1.6.0 0 g
& 5
T
v1.6.1 [0]
-—10002-
v1.7.0
-—2000
v1.8.0

Configuration

Fig. 4 Performance changes of VP9 across all configurations (x-axis) and releases (y-axis). We use a color
palette to illustrate performance degradation (> 0, red) and performance improvement (< 0, blue). The
configurations are sorted in ascending order according to their mean performance over all releases. There are
3008 configurations on the x-axis; axis ticks have been omitted for readability

SUMMARY RQq

Almost every release of every subject contains, at least, one performance change in some
configuration. The majority of performance changes affects less than half of the configura-

tions.
E— ——]

RQ12: How stable is the relative performance of configurations in the presence of perfor-
mance changes between consecutive releases?

In Fig. 2, we show the stability of the performance ranking of configurations, as quantified
by Kendall’s Tau (blue lines). A high value indicates high stability: the performance ranking
of configurations changes only slightly (i.e., the fastest configurations stay the fastest, etc.).
Across all systems and releases, the ranking is largely stable: 7 = 0.74. In Fig. 5, we provide
an overview of the stability (blue line) between all 178 consecutive releases. 148 (83%)
releases have a t value higher than 0.5, 105 (59%) releases have a t value higher than 0.80,
and 64 (36%) releases have a t value higher than 0.90. OPUS is most stable (T = 0.98),
POSTGRESQL is least stable (T = 0.36).

g 80%

B 60% Il Configurations
§ 0% [Options

i

-100 -075 -050 -025 000 025 050 075 1.00
Kendall's Tau

Fig.5 Cumulative plot on the stability of configurations (blue) or options (orange) in all performance changes
of RQ1 2 and RQy 2, respectively

@ Springer

152 Page 20 of 41 Empirical Software Engineering (2023) 28:152

SUMMARY RQj»

The performance ranking of configurations is largely stable across consecutive releases
(T = 0.74), with some notable exceptions.

RQ».1: How frequent and how strong are changes of performance influences of individual
configuration options and interactions between consecutive releases?

In Fig. 2, we show the fraction of how many options or interactions have changed from one
release to another (red line). As explained in Sect. 3.4, the influences were determined by
learning a performance-influence model per release. It is important to note that the prediction
errors of the models were generally low (3.9%, on average), so we are confident that the
influences are accurate.

Frequency The fraction of configuration options and interactions involved in performance
changes ranges from 0.45% (e.g., LRZIP) to 95% (e.g., VP8). In Fig. 3 (orange line), we
provide a cumulative overview that shows how many of the consecutive releases have a
performance change in at least the certain fraction of configuration options. For instance, we
see that about 12% of the consecutive releases indicate a change on more than 40% of the
configuration options and interactions. On average, the influence of 28% of the configuration
options and interactions change across all releases. While, in most of the changes (91%),
multiple configurations options and interactions are involved, there are cases where just a
single option is responsible for a performance change (POSTGRESQL). Figure 6 shows the
intensity of performance influences of individual configuration options and interaction for
OPENVPN: In releases 2.3.0 and 2.4.0, we note substantial performance changes, each of
which is caused by only a subset of options, some of which interact causing the effect (e.g.,
SHA512 and LZO).

Distribution In Fig. 7, we show the distribution of relative performance influences across all
subject systems and releases. 83% of the model terms (options or interactions) have only
a very small influence on performance (less than 7.5%), which is in line with theoretical
considerations of influencing factors in sensitivity analysis (Saltelli, 2008); only 3% of the
model terms have an influence of 80% and more on the system’s performance. That is, the
influence on the performance is mostly distributed over all configuration options and interac-
tions. A notable exception is POSTGRESQL, where only three terms are relevant, namely the

2.1.0 &
21.2 Py
214
520 100 2
- o

Q 221 5

© 222 £

g 2mm - o £

o 23.18 9
23.9 _ c
240 BN I 100 g
243 =
246 N v =

S PP PP &SSP
N T X SN &
AR F XA &g
S K FF O
& & g 0
&

Configuration Choice

Fig.6 Performance influence of options and interactions (x-axis) of OPENVPN across all releases (y-axis). A
color palette illustrates performance degradation (> 0, red) and improvements (< 0, blue)

@ Springer

Empirical Software Engineering (2023) 28:152 Page 21 of 41 152

All subject systems PostgreSQL
100 100
X 80 80 X
> >
O 60 60 O
g &
S 40 40 >
o (o
Q 20 20 E
[T . [T
o — . e= o= . —
0 25 50 75 100 0 25 50 75 100
Relative Influence Relative Influence

Fig. 7 Distribution of the relative influences of model terms across all subject systems (left) and for POST-
GRESQL (right)

base term, fsync (which enables synchronized writes), and trackActivities (which enables
the collection of information on the executed commands).

SUMMARY RQ> ;

There is a substantial number of cases where influences of individual configuration options

or interactions change across releases, but only few have a substantial influence on perfor-

mance. Most performance changes (91%) are caused by multiple options and interactions,
but there are cases where only a single option is responsible.

C———— ———— |
RQ»> »: How stable is the relative influence of configuration options and interactions in the
presence of performance changes between consecutive releases?

In Fig. 2, we show the stability of the performance ranking of individual influences of
options and interactions, as quantified by Kendall’s Tau (blue lines). We included a cumu-
lative overview in Fig. 5 (orange line). In comparison to RQ1.2, stability is much higher:
T = 0.91. 151 (85%) have a t larger than 0.8, and 142 releases (80%) have a t larger than
0.9. For two subject systems (OPUS and POSTGRESQL), the performance ranking is stable
across all releases. The performance model ranking (i.e., blue line of the right plot) of the
consecutive releases 1.3.0 and 1.4.0 in VP9 contain slightly negative values, which indicate
larger fluctuations and even a partial reversal of the ranking (see change of ranking of first
and fourth options between 1.3.0 and 1.4.0 in Fig. 8). For illustration, we show in Fig. 8
the evolution of the ranking of the 5 most influential configuration options or interactions of
VPO. The ranking changes considerably over time, where the most changes are in between

Performance Rank
w

N N Q Q N Q N
> ™ o o © AS >
\\'\ 4\ . 4’\ B \\'\ R 4\ 4’\ . 4'\
Release

Fig. 8 Evolution of the performance ranking of the 5 most important model terms of VP9. Connected nodes
illustrate the change of ranking from one release to another. An unconnected node means that the ranking in
the next release is lower than 5

@ Springer

152 Page 22 of 41 Empirical Software Engineering (2023) 28:152

1.3.0 and 1.4.0. The reason is a performance regression in the options realtime and quality
encoding, which was fixed in 1.6.0.

SUMMARY RQ»»

The performance ranking of influences of individual configuration options and interactions
is largely stable across consecutive releases (T = 0.91), with some exceptions.
. = ——

4.2 Metadata Analysis

To triangulate the results of Sect.4.1, we have conducted a deeper analysis that aligns the
identified performance changes and influential model terms with reported cases in change
logs and commit messages of the respective subject systems. In particular, we are interested
in to what extent the learned performance models are able to pin down configuration options
or interactions that are involved in a performance change.

Conduct In Fig. 9, we show the steps of our deeper analysis. In Step I, we check the per-
formance change of each consecutive release at the configuration level and the option level
(see Figs. 1 and 2). We consider a release as relevant if the performance change at option or
configuration level of one release exceeds 5% of the previous release. We exclude releases for
which only the performance of the base program (i.e., the term base) has changed. There are
two reasons for this: (1) a code change to the common base code affects all configurations;
(2) a code change affects an option that is not included in our analysis For instance, changing
the default value of an unconsidered configuration option (e.g., by enabling it by default) can
be the reason for performance changes in base. This scenario occurred only in POSTGRESQL,
in which in 4 out of 5 relevant releases, only the term base has a changed performance value.
Applying both filters, 79 out of 181 (43%) releases are relevant for our investigation. OPUS
is the only subject system with no detectable performance changes. Thus, OPUS will not be

| Filter releases

0. Results

11l. Read changemg\\ 3 IV. Read commits

V. Compare

Fig. 9 Methodology of our deeper analysis. Step O includes our previously discussed results. In Step I, we
select consecutive releases with certain degrees of performance change. Afterwards in Step II, we identify
the configuration options with a changed performance influence from one release r; to another ;1. In Step
III, we read change logs for documented performance changes to find the cause and extract for each release
whether performance changes were documented or not. In Step IV, we read commit messages of the relevant
consecutive releases and include the changed configuration options from Step II to our analysis to aid finding
the cause. In this step, we obtain for each release whether a performance change was documented in the
commits and whether at least one affected configuration option was mentioned or not. Last, in Step V, we
compare the results from Step 0, Step III, and Step IV. In particular, we show in which cases the change log
and commit messages correspond or differ from our results and in which cases the configuration option is
mentioned

@ Springer

Empirical Software Engineering (2023) 28:152 Page 23 of 41 152

considered in this analysis. By contrast, all releases of VP8 and VP9 are included in our
analysis.

In Step II, we inspect performance-influence models of Sect.4.1 in more depth to gather
information on which configuration options and interactions thereof have actually changed.
Based on this information, we search for documented performance changes in the entire
change log between each pair of relevant consecutive releases including the change log for
the current release for documented performance changes in Step III.

In Step IV, we analyze the commit messages between each pair of relevant consecutive
releases. Fortunately, our selected subject systems are open source relying on publicly acces-
sible version control systems (mostly git). Since reading all commit messages is infeasible for
larger projects, we filter the commit messages using the following keywords similar to other
studies (Jin et al. 2012; Chen et al. 2018): slow, fast, time, perf(ormance), optim(ize), and
regression. Additionally, we added the name of the configuration options that we identified
in Step II and check whether a configuration option is mentioned. If one of these keywords
matches, we analyzed the commit message in detail.

Finally, in Step V, we contrast the obtained information by comparing them with each other.
In particular, we report in how many cases the commit messages reported a performance
change in comparison to the change log and in how many cases the configuration option was
mentioned. For brevity, we provide only a summary of our analysis in Table 4; the full set of
results is available on our supplementary website.

To reduce interpretation bias, the first and the second author performed the analysis of Step
IIT and Step IV independently. After the analysis, they compared their results and discussed
the differences to reach a consensus. Only in 3 pairs of releases of MARIADB, where the
commit messages were larger than 10 MB, the third author checked and confirmed the results
of the first author’s manual analysis.

Table 4 Overview of the number

Syst RR| Ch 1 C it Opti
of relevant releases (RR) and ystem IRR ﬁ%ﬂg: 08 %omimii ption
releases reporting speed-ups (#) ‘
or slow-downs (¥) in the change BROTLI 9 20 4 0 5
log and commit messages

FAST DOWNWARD 9 0 0 2 1 5

HSQLDB 8 4 0 1 0 1

LRZIP 15 7 0 7 1 9

MARIADB 5 2 0 5 0 5

MyYSQL 3 2 0 3 0 3

OPENVPN 2 2 0 2 0 2

POSTGRESQL 1 0 0 0 0 1

VP8 14 7 0 10 0 12

VP9 6 6 0 6 1 5

Z3 16 1 2 15 2 11

The last column indicates the number of releases where at least one
affected configuration option is mentioned in the commit messages

@ Springer

152 Page 24 of 41 Empirical Software Engineering (2023) 28:152

Results In Table 5, we list an excerpt of the results of our deeper analysis. We provide
the complete list of results on our supplementary website.!# Details on each result are also
included on our supplementary website.!> We show which of the consecutive releases have
reported a speed-up or a slow-down in change logs or

7 out of 88 (8%) consecutive releases do not include a change log. In summary, in 35 out
of 81 (43%) consecutive releases, the change log reported a performance change, whereas 2
reported a slow down and 33 a speed-up. In 56 pairs of releases (64%), the commit messages
reported a performance change. Comparing change log and commit messages, we found that
in 48 out of 81 (59%) consecutive releases, the change log and commit messages correspond
to each other. In the remaining 33 consecutive releases (41%), 26 (32%) list other (and more)
performance-relevant information in the commit messages than in the change log. The change
log delivers more performance-relevant information in only 5 consecutive releases (6%). In
total, 60 out of 88 (68%) consecutive releases mention a performance change in the change
log or commit message.

In 4 cases (5%), speed-ups and slow-downs were reported in commit messages. At least
one affected configuration option was mentioned in 59 cases (67%), out of which 14 pairs
of releases (16%) mention only changes in the configuration option’s code base but no
performance changes in the change log or commit messages. In 29 of the cases (33%), no
affected configuration option is mentioned. Moreover, in 7 cases (8%), some configurations
show a minor but relevant performance change while the performance-influence model does
not (i.e., the performance-influence models are similar in these cases). In 12 cases (15%), the
change log or commit messages report speed-ups without mentioning a configuration option.

Details To provide in-depth insight into our deeper analysis, we show in Fig. 10 the configu-
ration options WindowSize and CompressionLevel of BROTLI which control the compression
rate of files. A blue color represents performance increase and a red color a decrease from
one release to another. In the first pair of consecutive releases, 0.3.0 — 0.4.0, an increase in
performance of compression levels 0 — 3 can be observed, which is also mentioned in the
change log and the commit message. However, the speed-up of compression levels 10 and
11 are not directly mentioned and may be a product of memory improvements, which was
another focus of release 0.4.0. In release 0.5.2, the performance is improved for 66% of
the configurations, which is not mentioned in the change log. One commit message, how-
ever, addresses speed and the affected configuration options: “new hasher - improved speed,
compression and reduced memory usage for q:5-9 w:10-16“16

Note that ¢ stands for compression level (or quality) and w for the window size. The slow-
down in compression level 11, however, is not addressed until the next release 0.6.0 and
mentioned there as fixed. We can see the fix for the compression level 11 only later in release
1.0.0. In release 0.6.0, the developer also report optimizations for mid-level compression
levels (5-9). Another interesting pair are releases 1.0.2 and 1.0.3. Although more than half
of the configurations experience a performance change in this range, there are no direct
relations to these performance changes in the change log or the commit messages. Only a
fix in compression level 10 is reported. The changes are a consequence of a new dictionary
generator that was introduced in this release. In the latest release 1.0.7, where a quarter of
the configurations was sped up but no configuration was slowed down, nothing relevant is

14 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/
MetadataAnalysis/AnalysisTable.md

15 https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/
MetadataAnalysis/MetadataAnalysis.md

16 https://github.com/google/brotli/commit/2048189048

@ Springer

https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/AnalysisTable.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md
https://github.com/ChristianKaltenecker/PerformanceEvolution_Website/blob/master/MetadataAnalysis/MetadataAnalysis.md
https://github.com/google/brotli/commit/2048189048

152

Page 25 of 41

Empirical Software Engineering (2023) 28:152

Vs * X 10 8°LT 11°C01-L'T01

Vs * X 9°¢C 6'S 9T0I-91'T°01

/S * * 9°¢¢ 6'S LT'0°01-0%'S°S

/ * X 0¥y 9l 8E'CG—6ESS

/ * * L0 gce LTS SETSS dAviaviN

Vs e * 90 2% 1L5-09S

X * * 618 L'L 096-CSS

Ve * * y'e €66 0SS—¥S

Vs * * el 0S¢ PrS—evs

X * * 9'9¢ 8¢ €7$-0€S diz41

/ X X [60 9TT<STT

X * * [4Y 99¢ [A

X X * Ly €0 0CTT017T adTOSH

X X X 00 19t L0 1901

/ X X Ay 91§ €0 1-C0l

X * X LT 001 0°0'1-09°0

/ * 2 L'L 1'9¢ 090-¢¢<0

/ * X ¥'6 1'99 T500%0

a * * 191 4%y 0¥'0-0°¢0 I'Lo¥d
uondp o)) Jor a8uey) (%) umop-mols (9) dn-paadg ases[oy [LEINN

payiodar are suonorrduy/suondo paynuapt Yy ur SaSUBYD JAYIAYM pue QFeSSaU JIUWod) ut Jo o[aSueyd ay)

Ul PaUONUAW 31k (4) SUMOP-MO[S 10 (4) sdn-paads 1oyiaym ‘suoneInSyuod umop pamors pue dn pads Jo UONORIJ AY) ‘SISBI[I DAINIISUOD JUBAS[AI 88 9} Jo 1d100XT ¢ 3|qe]

pringer

Qs

Empirical Software Engineering (2023) 28:152

152 Page 26 of 41

/ * A 4 0vy 91 68188V

a A £) A 4 6'8¢C '8 88 V-L8V €7z

Vs * * 0°001 00 ['9'1-09°1

Vs e * 9°¢9 I€ve 0y 1-0¢'1 6dA

/ * X 9 £or 0¥ 1-0¢1 8dA

/S X X 00 0°0¢ ¥'0'6-00'6 TOSHIDLSOd

/ * * 0¢ €T S1'0'8—€1'0'8

/ * * [00 crog-—cecLs

/ * X 7S 00 6'L'S9T9°¢ TOSAN
uondp JIIwo)) So1 a3uey) (%) umop-mo[s (9) dn-paadg aseaoy wIsAS

panunuod g ajqel

pringer

Ns

Empirical Software Engineering (2023) 28:152 Page 27 of 41 152

Window Size
10..24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24 10.24

0.3.0

0.4.0 | 10?

0.5.2 10
0.6.0

Il 100
1.0.0
1.0.1
I SN
1.03

1.0.4

Release
o
Performance [s]

—-10°

1.0.5 1 -1o0t

1.0.6 ~10?

1.0.7
0 1 2 3 4 5 6 7 8 9 10 11

Compression Level

Fig. 10 Performance changes of BROTLI across all releases (y-axis). The color code highlights performance
degradation (> 0, red) and performance improvement (< 0, blue)

reported in the change log and the commit messages. The changes focus on optimizations
on the ARM architecture. Some of these changes may also affect the x86 architecture where
our experiments were performed on.

Between releases 2.1.0 to 2.2.0 of HSQLDB in Table 5, we measured a slow-down in 47%
of the configurations and a speed-up of only 0.3% of the configurations, whereas the change
log reports only a speed-up. With the option-level analysis, we could relate the slow-down to
the configuration option logSize, which controls the size of the log file before an automatic
checkpoint occurs. A deeper analysis of commit messages did not confirm any evidence of
a slow-down.

In Table 5, we show notable cases for LRZIP. In the pair 530-543, more than 36% of con-
figurations show a slow-down and more than 3% show a speed-up. The change log and
commit messages only mention the latter. In the option-level analysis, we find a slow-down
in different compression algorithms, compression levels, and in multi-threading. The commit
messages mention changes on multi-threading and compression algorithms, but in relation
to decompression, which was not measured. In the next pair of releases, 543-544, we have a
similar situation, with 73% of configurations showing a slow-down and 25% of the config-
urations showing a speed-up. According to our option-level analysis, similar configuration
options as in the release pair 530-543 are affected. Commit messages report that the way
how threads are spawned has been changed to improve the performance of compression.!”
However, this slow-down is addressed between 544—550, where the respective commit was
completely reverted.'® Another situation appears in the release pair 552—560. Change logs
and commit messages report only speed-ups and no slow-downs. Again, multiple configu-
ration options, such as compression algorithms, compression levels, and multi-threading are
affected. Moreover, the commit messages do not mention any of the affected configuration
options, only in relation to another operating system (Mac OSX). Later, in the release pair

17 https://github.com/ckolivas/Irzip/commit/688aa55¢7930
18 https://github.com/ckolivas/Irzip/commit/8dd9b00

@ Springer

https://github.com/ckolivas/lrzip/commit/688aa55c7930
https://github.com/ckolivas/lrzip/commit/8dd9b00

152 Page 28 of 41 Empirical Software Engineering (2023) 28:152

560-571, more than 85% of the configurations are sped up and less than 1% have a slow-
down. Both change log and commit messages report speed-ups in multi-threading, whereas
only the commit messages also report a minor slow down.

MARIADB and MYSQL are also included in the excerpt in Table 5 since the first is a fork of the
latter. Both projects use semantic versioning and introduce new functionality in new major
releases that may break backward compatibility. In the major release of MARIADB between
releases 5.5.40-10.0.17 and MYSQL between releases 5.7.22-8.0.12, the InnoDB engine
was updated and, in the case of MYSQL, some refactoring was applied. Further refactoring
of logging and binlogging was applied in MYSQL, between releases 5.6.26-5.7.9, which
resulted in a slow-down. Releases 8.0.13-8.0.15 of MYSQL contain further bug fixes that
result in speed-ups. Between releases 5.5.35-5.5.38, MARIADB applied several bug fixes
and speed-up fixes. Later, between releases 10.1.16-10.2.6, the InnoDB engine was updated.
Between releases 10.2.7-10.2.11, MARIADB reverted an InnoDB fix from MYSQL19 and
performed code optimization.

Interestingly, we observed that MARIADB and POSTGRESQL have the same fixes between
releases 5.5.23-5.5.27 and 9.0.0-9.0.4, respectively. There, forcing fdatasync for physical
data synchronization on Linux causes an improvement in performance and assures that the
files are synchronized on the physical storage, which is important for data recovery in case
of system crashes. Interestingly, MARIADB reports speed-ups in the change log and commit
messages, whereas POSTGRESQL does not.

Another interesting case in Table 5 includes VP8 and VP9. Both video encoders are developed
in the same repository and VP9 represents the successor of VP8. The consequence is that
the developers compare VP9 with its predecessor in terms of performance, which applies
to the pair 1.3.0-1.4.0. There, the developers report a regression in the commit messages
in comparison to VP8: "Was 20% faster than speed -5 of vp8. Now 20% slower but adds
motion search(...)" 2° This change demonstrates that VP9 comes with additional functionality
at the cost of deviating from the performance of VPS. Interestingly, VP9 contains the single
consecutive release 1.6.0-1.6.1 where all configurations indicate a slow down. To increase
confidence in this particular findings, we have additionally executed all configurations of
releases 1.6.0—1.6.1 on another current setup (i.e., another hardware and current operating
system?!) and were able to observe the slow-down too. The change log and the commit
messages, however, report only speed-ups. Our performance-influence model related the
changes to multiple configuration options and interactions, some of which are mentioned in
the commit messages.

73 also contains pairs of consecutive releases (i.e., 4.8.7-4.8.8 and 4.8.8-4.8.9) where the
developer reported aregression already in the change log and the commit message. The reason
behind lies in nightly performance tests that are performed for Z3 on different platforms and,
thus, the developers of z3 are informed early about performance changes. However, the
affected configuration options are not mentioned in these releases.

19 https://github.com/MariaDB/server/commit/cb9648a6b5
20 hitps://github.com/webmproject/libvpx/commit/ea8aaf15b55
21 Intel Core i5-4590 CPU with 16 GiB RAM (Debian 11)

@ Springer

https://github.com/MariaDB/server/commit/cb9648a6b5
https://github.com/webmproject/libvpx/commit/ea8aaf15b55

Empirical Software Engineering (2023) 28:152 Page 29 of 41 152

SUMMARY METADATA ANALYSIS

In most consecutive releases (68%), the developers mention performance changesin the
change log or commit messages. In a similar amount of releases (67%), the developers
mention the affected configuration option in the commit message, but there are cases
(16%) where no performance changebut changes in affected configuration options have
been reported.

E— e

4.3 Implications

Insight: Need for prioritization of configurations for testing Our study shows that change in
performance behavior is not the exception but the rule (i.e., 99% of the releases contain a per-
formance change in RQj 1) as also confirmed by others (Jiang and Hassan 2015; Miihlbauer
et al. 2020). What is interesting is that most performance changes (78%) affect less than half
of the configuration space and a non-negligible number (16%) only 1% of the configuration
space. This is bad news for developers as, this way, performance problems are more difficult
to spot with standard methods, such as testing default or random configurations (we will get
back to this shortly). Only in few (1%) cases, the whole configuration space is affected by
a performance change, which is easy to discover by measuring the default configuration for
instance. This result is notable and corroborates the need for performance modeling and test-
ing methods that incorporate configurability. Random testing is unlikely sufficient to reveal
cases where only few configurations are affected by a change. Furthermore, we found that, in
7% of the releases with a performance change, functional changes on the affected configura-
tion options are reported but not observable with our models (i.e., a speed-up or slow-down).
Combining configuration testing with performance modeling could help in such cases.

Insight: Mixed-strategy sampling Another notable result is that performance changes are often
caused by multiple configuration options (i.e., in 91% of the changes in RQ5_1). This includes
(1) cases where the performance change is a cumulation of the individual influences of sev-
eral options and (2) cases where multiple options interact and, this way, cause a performance
change. Both cases are interesting as they demonstrate that configuration sampling methods
based on simple structured coverage criteria (e.g., t-wise sampling) or simple random sam-
pling are doomed to fail. The distribution of influences of options and interactions shows that
only a combination of random and structured sampling methods is able to sufficiently cover
the configuration space. That is, our results demonstrate that simple pair-wise sampling would
miss many relevant interactions—in z3, we found even a performance-relevant interaction
among 6 configuration options! At the same time, pair-wise sampling would consider way
too many pair-wise interactions that are irrelevant, rending the whole approach expensive
or even intractable in practice (von Rhein et al., 2018). A random approach would likely
miss important interactions, too. For example, in the case of POSTGRESQL, a single option is
responsible for a substantial performance change between 9.0.0 and 9.0.4. Our results (in par-
ticular, distributions of influences) shall inform recent developments in combining structured
and random sampling to improve sample quality and reduce cost. In the past, the application
of such a combined sampling strategy, distance-based sampling, already outperformed other
sampling strategies with regards to performance (Kaltenecker et al. 2019; Pereira et al. 2020).

Insight: Configuration sensitivity A further notable result is that, in about 80% of the releases
(see RQ» 1), the ranking of configuration options and interactions is stable (z > 0.8). This is
good news, as developers and users can assume a certain stability of the relative performance

@ Springer

152 Page 30 of 41 Empirical Software Engineering (2023) 28:152

of individual configurations. In other words, there is no immediate need for reconfiguring
the system after a new release. However, there are exceptions such as POSTGRESQL, where
the performance ranking changes considerably over time (see Fig. 1). Knowing about this
general behavior sheds light onto the sensitivity of the system’s performance behavior on
configuration. Our results suggest that this sensitivity varies across systems and developers
need to know that for performance testing and tuning.

At the level of individual configuration options and influences, we observe a similar picture.
The sensitivity of individual options regarding performance differs across systems and may
change over time. An option that influences performance to a large extent in one release may
have only a minor influence in the next release. This finding has implications for configuration
sampling across revisions (Thiim et al. 2019) and transfer learning (Jamshidi et al. 2017):
In both cases, a set of options is selected based on few revisions and then applied to other
revisions (for further sampling or learning transfer). Our results indicate that this approach
may work for most of the cases, but is too simplistic for the general case, as the set of relevant
options and interactions may change considerably (e.g., VP9). For most cases nevertheless,
focusing on the configuration options or interactions with the highest influence could be a
promising way when using sampling, since their relative influence remains largely the same.

Insight: Diverging performance behavior An interesting aspect of our selection of subjects is
that VP8 and VP9 share some of their history and are still developed in the same repository.
One might expect that this leads to similarities in performance behavior and evolution, since
fixes and optimizations might be transferred easily. Our data do not confirm this expectation.
On the contrary, we even found an opposing performance regressionin 1.3.0-—1.4.0: VP8 was
sped up for 40% of the configurations and slowed down for only 6.2% of the configurations
whereas VP9 shows a massive slow-down for 65.6% of the configurations. The same holds for
MARIADB and MYSQL, where the first is a fork of the later. Both show different performance
changes in their evolution. While this does not have to be a problem per se, our analysis
framework provides proper means for developers to identify such divergences.

Insight: Main-effects sampling still necessary, but not sufficient Moreover, our results
contribute to the new feature-interaction challenge (Apel et al. 2013). The idea is that there are
different kinds of feature interactions, at different levels of abstraction, including functional
and non-functional interactions that manifest in externally observable or internal behavior.
The goal is to collect data from many different cases and triangulate results on interactions
between options or features to learn about their nature and to predict one kind of interaction
based on information about another kind (Kolesnikov et al. 2019a). Our results in RQ> ;
and RQ; » provide real-world data on likelihood and properties of performance feature inter-
actions; our measurement and analysis framework offers a blueprint for conducting further
experiments on other kinds of interactions (e.g., regarding memory utilization or energy
consumption).

Insight: Configuration awareness Another interesting issue of our empirical study is whether
we are able to reveal new information in terms of performance changes in addition to what
is already documented and thus well-known among developers and users. To investigate
whether performance changes are explicitly documented by developers (i.e., the develop-
ers added the performance change intentionally), we manually analyzed the change logs (if
available) of 6 out of 12 systems (i.e., FASTDOWNWARD, HSQLDB, LrzIP, VP8, VP9, 73) in
Sect.4.2. Several performance changes have been documented by developers, but not all. We
found that developers often report speed-ups in commit messages and change logs but only
rarely slow-downs. The reason may be that developers become aware of these slow-downs

@ Springer

Empirical Software Engineering (2023) 28:152 Page 31 0f41 152

2000 ‘ ;
Z o= -
© 1500 - -
E
=
C
S 1000 .., !
‘5’ ==y -
(&)
2
L 500
*
. - - --_-F
N N N N N N N
4""5 4"?(4"(? 4"@ 4\@ 4"/'\ 4'&
Release

Fig. 11 The performance of all configurations (green dots) and the default configuration (blue dotted line) of
VPO. The x-axis shows the releases and the y-axis the execution time in seconds

only after deployment, as several cases indicate in which the slow-down was encountered
and fixed one or two releases later. Such issues could be detected early by a configuration-
aware continuous performance testing pipeline. Although some software systems, such as
73 and VP9 use performance tests, these are not configuration-aware. This could explain
why these subject systems report regressions, but only to a certain extent. Our results sug-
gest that configuration-aware performance testing can indeed provide new information in an
automated manner and simultaneously validates our findings. Interestingly, in some of the
performance changes, we observed a slow-down, although the change logs reported a speed-
up. In particular, version 1.4.0 of VP9 promises faster encoding in change log, although the
change results in a slow-down of 265%, which can be considered as an unintentional slow-
down. The reason behind this discrepancy is that the change log referred only to the default
configurations; all other configurations, however, were affected by a massive slow-down,
possibly untested and unaware by the developers. For illustration, we contrast in Fig. 11 the
performance of the default configuration and the mean performance of all configurations.
Notably, in version 1.6.0 the performance regression has been fixed resulting in a speed-up
of all configurations; the performance of the default configuration, however, remains largely
unchanged. This performance optimization was achieved by avoiding and reordering some
of the processor instructions for Intel chips and is mentioned in the change logs. This is an
interesting aspect, since such cases demonstrate the importance of automated support and
paves the way for further research in this area.

4.4 Threats to Validity

Construct validity To guarantee comparability across releases and to simplify benchmarking,
we selected options that are available in all releases. While we may have missed interest-
ing cases, this way, we increase internal validity by ruling out effects from option-specific
benchmarks. Moreover, while performance changes could affect newly included configu-
ration options that are enabled by default, this would affect either the whole configuration
space or certain configuration options if the configuration option does depend on another
configuration option. Either way, this would be visible in the performance-influence models.

@ Springer

152 Page 32 of 41 Empirical Software Engineering (2023) 28:152

This affected also our deeper analysis and is the reason for why we have excluded consecutive
releases where only the base code changes. In the end, only 4 pairs of consecutive releases
of POSTGRESQL were excluded by this filter. In all other cases, the performance-influence
model shows changes in certain configuration options or interactions or does not change at
all. Another threat to validity arises from the selection of the keywords for filtering commit
messages. Choosing another set of keywords may yield other results. However, all selected
keywords were used in related publications (Jin et al. 2012; Chen et al. 2018) that focus
on identifying performance regressions in commit messages or issue lists. One reason for
the low number of reported configuration options is that developers may state configuration
options under different names (e.g., g or quality for the compression level in BROTLI). We
have encountered few cases in which very specific parts of the code were addressed in a com-
mit message, but a clear relation to a configuration option is hard to discover without domain
knowledge and code inspection. Another reason could be data-flow dependencies between
the configuration options. For instance, in HSQLDB, the configuration option blowfish was
not mentioned a single time in any commit message when a performance change occurred.
When other configuration options affect the data that has to be encrypted by blowfish, then
we relate the change to blowfish as the effect occur here, but the cause resides in code of
another option.

Internal validity Measurement noise is not only caused by software but also by hardware
(Mytkowicz et al. 2009). To limit measurement noise, we used identical hardware per sub-
ject system, running with a minimum DEBIAN installation. Furthermore, we preceded the
measurements with a CPU warm-up phase. The measurements of the Java-based database
(HSQLDB) are additionally preceded by a complete benchmark execution because of the JIT
compilation as proposed by Georges et al. (2007). Furthermore, we isolated the benchmark
execution of client—server software (i.e., HSQLDB, MARIADB, MYSQL, OPENVPN, and
POSTGRESQL) by running the server on a different node than the client(s) running the bench-
mark. To avoid wrong benchmark results, (Costa et al. 2021) observe and solve different bad
practices in method-level performance tests. Since we measure the system as a whole and not
individual methods by, for instance, issuing SQL queries to the database system, we are not
affected by these bad practices. We varied the hardware across subject systems, since we do
not need to compare measurements among systems. Furthermore, we used, if possible, the
same version of the libraries over all releases, and we repeated our measurements three to five
times until the relative standard deviation of the repetitions was lower than 10%. To control
measurement noise, we used the standard deviation to pin down performance changes.

The choice of the learning algorithm may threaten internal validity. Other learning algorithms
could have produced other results for RQ; ; and RQ> . We used multiple linear regression
with feature forward selection (Siegmund et al. 2015) because the additive structure of mod-
els enables us to track performance influences across releases by comparing the coefficients
of model terms. Further, choosing always the best candidate in the feature forward selec-
tion (see Lines 11-14 in Algorithm 1) represents another limitation of our approach, since
choosing a worse performing candidate in one iteration might lead to much better performing
candidates in a later iteration. In other words, our learned models could not represent the
optimum models. However, the prediction error of the models was 3.7% on average, which
indicates that the models cover nearly all influences of options and interactions on perfor-
mance accurately. To reduce spurious terms, which are only an artifact of the measurement
and learning procedure, we checked the documentation (i.e., commit messages and change
logs, if available) of our subject systems.

@ Springer

Empirical Software Engineering (2023) 28:152 Page 33 0of41 152

Additionally, we have used the variance inflation factor analysis to reduce variance in the
performance-influence models as described in Sect.2.4. This step removed a few terms by
maintaining the error rate of the performance-influence models. Removing terms that are
not perfectly multicollinear but exceed these thresholds removes important terms needed
to predict specific parts of the configuration space and, thus, the error rate decreases. In a
pre-study, we have applied the variance factor analysis by using the commonly threshold of
5 (Sheather 2009) on the subject system LRZIP. From 230 terms, 160 were removed by the
variance factor analysis but at the cost of increasing the error rate of the performance-influence
model from 6 % to 60 %. In our setup, we removed only terms with perfect collinearity. In
Table 6, we show the number of terms of the performance-influence models before and after
the VIF analysis. Overall, we removed 14 out of 702 terms while the performance-influence
models’ error rate remained constant.

Finally, our metrics for identifying performance changes may threaten internal validity, since
other metrics would identify other performance changes. For instance, the work of Costa et al.
(2021) investigates the performance change of some bad practices at method level of one
single configuration and uses the Wilcoxon non-parametric test and Cliff’s Delta effect size to
identify significant performance changes of their benchmark results. We refrained from using
statistical tests to assess a significant performance change because the number of performance
values per configuration (i.e., 3 or 5 performance values; 1 from each repetition) is far too
low for a significance test and the suggested effect size metric, whereas the work of Costa
et al. had at least 100 performance values due to a high number of repetitions. Increasing
the number of repetitions on a similar level is infeasible despite the number of releases and
configurations, we measured. Instead, we have used the standard deviation as an effect size
to express the variance of measurement noise across multiple repetitions.

Due to the absence of a baseline, we need to resort to an automated approach, which we
complemented, though, by studying commit messages and change logs manually (see above).

External validity To increase external validity, we chose configurable software systems from
different domains, including throughput-intensive applications (compression tools, video
encoders) and client—server applications (Web servers, databases). In total, our corpus con-
tains software systems ranging from 181 to 6 480 configurations and 7 to 22 releases.

Table 6 The number of terms of

Syst Initial T T fter VIF
the performance-influence model hhininn |nitial Terms| [Terms after !
per subject system before and BROTLI 166 166
after the variance inflation factor
(VIF) analysis FAST DOWNWARD 44 41

HSQLDB 21 21

LRZIP 220 220

MARIADB 35 33

MyYSQL 25 23

OPENVPN 13 13

OPUS 66 66

POSTGRESQL 3 3

VP8 40 40

VP9 51 44

73 18 18

Total 702 688

@ Springer

152 Page 34 of 41 Empirical Software Engineering (2023) 28:152

To keep experiment effort feasible, we limited the selection of configuration options to a
tractable number. This limitation is due to our experiment setup, which aimed for high internal
validity, and is not a principal limitation of our analysis framework. Considering more con-
figuration options would require to sample the configuration space for learning performance
influence models, instead of considering the whole space. While learning performance-
influence models on small sample sets works well in practice (Kaltenecker et al., 2020),
we aimed for high internal validity, ruling out possible inaccuracies.

The choice of the workload for performance measurement poses another threat to external
validity. We have fixed the workload/benchmark across configurations and releases, this way
gaining internal validity for external validity—see the discussion above. However, we used
established community or developer workloads to catch typical scenarios, which already
provided numerous interesting insights (see Sect.3.3). For instance, the selection of the
developer workload might be a reason why we found no performance changes in OPUS.
Varying the workload shall bring even more insights in further studies.

5 Related Work

In this section, we discuss related work with respect to (1) the role and evolution of software
performance, (2) methods to analyze the performance changes, and (3) the evolution of
software configurability.

Performance & Software Evolution Root causes of performance changes and their effect on
maintainability have been studied before. Zaman et al. conducted an analysis of over 400
bugs from MOZILLA FIREFOX and GOOGLE CHROME (Zaman et al. 2012). They found
that performance bugs often require more effort to fix and, therefore, are more costly than
fixing functional bugs. A study on MOZILLA FIREFOX, APACHE, and MYSQL found a strong
relation between configurability and performance: 113 out of 193 bugs were configuration
related (Han and Yu 2016).

Alcocer et al. studied the performance evolution of 19 software systems’ releases. By analyz-
ing the performance of multiple benchmarks, they found that one third of releases introduced
performance bugs. The authors identified 9 patterns for performance changes (Alcocer and
Bergel 2015), which include performance improvements, due to removing redundant method
calls or caching, as well as performance regressions arising from the composition of collection
operations. Our work links both research directions—software configuration and software
evolution—and explores performance of software systems across their configuration spaces
and along their development histories.

Performance Change Detection The detection of performance changes has been approached
from different angles, such as using different statistical methods, and taking one or more
performance characteristics of the software system into account. For example, statistical
process control charts were used to capture changes of an observed metric, such as the
performance of the system, and provide thresholds, which, when exceeded by accumulated
change, indicate a performance degradation (Nguyen et al. 2014; Malik et al. 2013; Lee et al.
2012). Other statistical approaches rely on testing and determining whether two observations
are statistically different. For example, Heger et al. compare the performance distributions for

@ Springer

Empirical Software Engineering (2023) 28:152 Page 350f41 152

different versions with ANOVA (Heger et al. 2013). Reichelt et al. apply different statistical
tests to identify performance anomalies from performance histories (Reichelt and Kiihne
2018).

Aside from considering only a single performance measure, previous work considers multiple
measures and their relations. Foo et al. mine repositories regarding performance regression
tests and automatically detect performance changes by tracking the correlation of perfor-
mance measures over time (Foo et al. 2010). Malik et al. analyze performance regression by
automatically selecting a subset of performance measures that describe system performance
(Malik et al. 2013). Using principal component analysis, they correlate the measures to obtain
a performance fingerprint, which then can be compared across releases.

All this work illustrates that performance changes can manifest in many ways. However,
it does not consider configurability and to what extent individual configuration options or
interactions cause performance changes, which is the focus of this paper.

Evolution: Configurability & Performance Miihlbauer et al. devised a prediction technique for
performance changes in software repositories, across versions and configurations (Miihlbauer
etal. 2020). This work is the closest but complementary to ours: While we study the prevalence
and properties of performance feature interactions in the wild, they propose a technique to
discover them with little effort. In principle, we could have used their technique to collect
the data for our study. But, as their approach only approximates performance changes with
iterative sampling, we analyze the configuration space as a whole for accuracy.

Several studies have observed and categorized recurring patterns in the evolution of variabil-
ity models, such as the introduction or removal of new configuration options (often called
features) or splitting generic options into more precise ones. There are three relevant pat-
terns: a new feature is added, a mandatory feature becomes optional, or a mandatory/optional
feature is split into alternative features (Peng et al. 2011; Seidl et al. 2012; Passos et al. 2016,
2021). Our study considers only configuration options that exist in all releases of the soft-
ware system, which is the majority, though. However, for the interpretation of our results
(cf. RQy.2), these patterns provide some context that can help map changes in the perfor-
mance influence across releases. Recent work by Jamshidi et al. explores the applicability of
transfer learning to adapt performance-influence models to different environments (Jamshidi
etal. 2017). Their key insight, after investigating 4 configurable software systems, is that only
a subset of configuration options and interactions among them have a strong influence on
performance and that the performance influence is generally preserved across environments
and software releases.

Workload Dependence Clearly, the performance of a software system may change depending
on the workload. There is a substantial corpus of work studying this phenomenon and pro-
viding models and solutions that incorporate workload-dependent performance (Feitelson
2002; Wolf et al. 2014; Miihlbauer et al. 2023). The work of Costa et al. and Leitner et al.
focuses on studying and improving performance tests in Java-based open source projects
(Leitner and Bezemer 2017; Costa et al. 2021). Our work is complementary in that we study
system configurability, which is a further dimension that influences a system’s performance.
To increase internal validity, we fixed the workload per system in our experiments. Ulti-
mately, our approach and previous work on workload-dependent performance behavior shall
be combined.

@ Springer

152 Page 36 of 41 Empirical Software Engineering (2023) 28:152

6 Conclusion

Although performance evolution has been extensively studied in the literature, prior work
concentrated on single or few default configurations. Since most software systems are config-
urable, performance changes can easily be missed this way. Specifically, we are interested in
the role of configurability for performance evolution, for example, whether specific configura-
tions exhibit diverging performance behavior and what configuration options (or interactions
among options) are responsible for this.

In an empirical study, we analyzed performance changes of 12 real-world configurable soft-
ware systems across 190 releases that span a total of 11 years of history. We found that
almost every release of every subject system exhibits performance changes in some of their
configurations. Notably, the majority of performance changes affects only a small subset of
the configuration space, and most performance changes affect multiple options (up to 6),
either by accumulation of influences or interactions among options.

A deeper analysis of these configurable software systems shows that performance changes
are reported in the change log or the commit messages in most cases. Similarly often, changes
regarding affected configuration options have been mentioned.

Our results confirm prior beliefs that configuration-dependent performance changes are the
rule, not the exception. This has direct implications for configuration sampling, performance
modeling, and transfer learning in the area of configurable software systems. For example,
our results confirm assumptions that simple random configuration sampling is not sufficient
to catch all relevant performance changes. Likewise, structured sampling strategies likely
overestimate the prevalence of performance-relevant interactions among options. Our results
clearly indicate that combined sampling strategies such as distance-based sampling hit a
proper sweet spot.

A further notable insight is that, despite the prevalence of performance changes, the per-
formance ranking of configurations and influences of individual options are in many cases
not affected. That is, developers and users can assume a certain stability of configuration-
dependent performance behavior. Still, we found cases where the performance ranking
fluctuates considerably across releases. This phenomenon seems to be application- or
domain-specific and is worth further exploring, as it has implications for transfer learn-
ing of performance behavior across releases since more stable applications or domains could
focus on the most relevant configuration options; in other applications and domains such
approaches are doomed to fail. Additionally, our deeper analysis demonstrates that using a
configuration-aware performance testing pipeline could help in identifying configuration-
specific performance changes early. Our measurement and analysis framework offers a solid
basis for exploring these and related issues.

Acknowledgements We thank our reviewers for their constructive comments. Apel’s work has been funded by
the German Research Foundation (DFG) under the contracts AP 206/11-1, AP 206/11-2, and Grant 389792660
as part of TRR 248 — CPEC. Siegmund’s work has been funded by the German Research Foundation (S12171/2-
2), by the Federal Ministry of Education and Research of Germany, and by the Sichsische Staatsministerium fiir
Wissenschaft Kultur und Tourismus in the program Center of Excellence for Al-research “Center for Scalable
Data Analytics and Artificial Intelligence Dresden/Leipzig”, project identification number: ScaDS.Al and by
the BMBF project Agile-Al

Funding Open Access funding enabled and organized by Projekt DEAL.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

@ Springer

Empirical Software Engineering (2023) 28:152 Page 37 of 41 152

and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AlcocerJ, Bergel A (2015) Tracking down performance variation against source code evolution. In: Proceedings
of the Symposium on Dynamic Languages (DLS), ACM pp 129-139

Andrews D (1974) A robust method for multiple linear regression. Technometrics 16(4):523-531

Apel S, Kolesnikov S, Siegmund N, Késtner C, Garvin B (2013) Exploring feature interactions in the wild: The
New Feature-Interaction Challenge. In: Proceedings of the International Workshop on Feature-Oriented
Software Development (FOSD), ACM pp 1-8

BurnimJ, Juvekar S, Sen K (2009) WISE: Automated test generation for worst-case complexity. In: Proceedings
of the International Conference on Software Engineering (ICSE), IEEE pp 463473

Chen J, Shang W (2017) An exploratory study of performance regression introducing code changes. In:
Proceedings of the International Conference on Software Maintenance and Evolution (ICSME), IEEE
pp 341-352

Chen Z, Chen B, Xiao L, Wang X, Chen L, Liu Y, Xu B (2018) Speedoo: Prioritizing performance optimization
opportunities. In: Proceedings of the International Conference on Software Engineering (ICSE), ACM
pp 811-821

Costa D, Bezemer C, Leitner P, Andrzejak A (2021) What’s wrong with my benchmark results? Studying bad
practices in JMH benchmarks. IEEE Transactions on Software Engineering 47(7):1452—1467

DornJ, Apel S, Siegmund N (2023) Mastering uncertainty in performance estimations of configurable software
systems. Empirical Software Engineering 28(2):33

Feitelson D (2002) Workload modeling for performance evaluation. In: Performance evaluation of complex
systems: Techniques and Tools, Springer, pp 114-141

Foo K, Jiang Z, Adams B, Hassan A, Zou Y, Flora P (2010) Mining performance regression testing repositories
for automated performance analysis. In: Proceedings of the International Conference on Quality Software
(QRS), IEEE pp 32-41

Gahvari H, Baker A, Schulz M, Yang U, Jordan K, Gropp W (2011) Modeling the performance of an algebraic
multigrid cycle on HPC Platforms. In: Proceedings of the International Conference on Supercomputing
(ICSP), ACM pp 172181

Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java performance evaluation. In: Proceedings
of the Annual Conference on Object-Oriented Programming, Systems, Languages, and Applications,
(OOPSLA), ACM pp 57-76

Grebhahn A, Rodrigo C, Siegmund N, Gaspar FJ, Apel S (2017) Performance-influence models of multigrid
methods: A case study on triangular grids. Concurrency and Computation: Practice and Experience 29(17)

Han S, Dang Y, Ge S, Zhang D, Xie T (2012) Performance debugging in the large via mining millions of
stack traces. In: Proceedings of the International Conference on Software Engineering (ICSE), IEEE pp
145-155

Han X, Yu T (2016) An empirical study on performance bugs for highly configurable software systems.
In: Proceedings of the International Symposium on Empirical Software Engineering and Measurement
(ESEM), ACM pp 1-10

Heger C, Happe J, Farahbod R (2013) Automated root cause isolation of performance regressions during
software development. In: Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE), ACM pp 27-38

James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning, vol 112. Springer

Jamshidi P, Siegmund N, Velez M, Kistner C, Patel A, Agarwal Y (2017) Transfer learning for performance
modeling of configurable systems: An exploratory analysis. In: Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), IEEE pp 497-508

Jamshidi P, Velez M, Kistner C, Siegmund N (2018) Learning to sample: Exploiting similarities across
environments to learn performance models for configurable systems. In: Proceedings of the Joint Meeting

@ Springer

http://creativecommons.org/licenses/by/4.0/

152 Page 38 of 41 Empirical Software Engineering (2023) 28:152

of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), ACM pp 71-82

Jiang Z, Hassan A (2015) A survey on load testing of large-scale software systems. IEEE Transactions on
Software Engineering 41(11):1091-1118

Jin G, Song L, Shi X, Scherpelz J, Lu S (2012) Understanding and detecting real-world performance bugs. In:
Conference on Programming Language Design and Implementation (PLDI), ACM pp 77-88

Kaltenecker C, Grebhahn A, Siegmund N, Guo J, Apel S (2019) Distance-based sampling of software config-
uration spaces. In: Proceedings of the International Conference on Software Engineering (ICSE), IEEE
pp 1084-1094

Kaltenecker C, Grebhahn A, Siegmund N, Apel S (2020) The interplay of sampling and machine learning for
software performance prediction. IEEE Software 37(4):58-66

Kendall M (1938) A new measure of rank correlation. Biometrika 30(1/2):81-93

Kniippel A, Thiim T, Pardylla C, Schaefer I (2018) Understanding parameters of deductive verification: An
empirical investigation of keY. In: Proceedings of the International Conference on Interactive Theorem
Proving (ITP), Springer, pp 342-361

Kolesnikov S, Siegmund N, Késtner C, Apel S (2019) On the relation of control-flow and performance feature
interactions: A case study. Empirical Software Engineering 24(4):2410-2437

Kolesnikov S, Siegmund N, Kistner C, Grebhahn A, Apel S (2019) Tradeoffs in modeling performance of
highly-configurable software systems. Software and System Modeling 18(3):2265-2283

Kuhn M, Johnson K (2013) Applied predictive modeling, vol 26. Springer

LeeD,ChaS, Lee A (2012) A performance anomaly detection and analysis framework for DBMS development.
IEEE Transactions on knowledge and data engineering 24(8):1345-1360

Leitner P, Bezemer C (2017) An exploratory study of the state of practice of performance testing in java-
based open source projects. In: Proceedings of the International Conference on Performance Engineering
(ICPE), ACM pp 373-384

Malik H, Hemmati H, Hassan AE (2013) Automatic detection of performance deviations in the load testing
of large scale systems. In: Proceedings of the International Conference on Software Engineering (ICSE),
IEEE pp 1012-1021

Miihlbauer S, Apel S, Siegmund N (2020) Identifying software performance changes across variants and
versions. In: Proceedings of the International Conference on Automated Software Engineering (ASE),
ACM

Miihlbauer S, Apel S, Siegmund N (2019) Accurate modeling of performance histories for evolving software
systems. In: Proceedings of the International Conference on Automated Software Engineering (ASE),
ACM pp 640-652

Miihlbauer S, Sattler F, Kaltenecker C, Dorn J, Apel S, Siegmund N (2023) Analyzing the impact of workloads
on modeling the performance of configurable software systems. In: Proceedings of the International
Conference on Software Engineering (ICSE), IEEE

Mytkowicz T, Diwan A, Hauswirth M, Sweeney P (2009) Producing wrong data without doing anything obvi-
ously wrong! In: Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), ACM pp 265-276

Nair V, Menzies T, Siegmund N, Apel S (2017) Using bad learners to find good configurations. In: Proceed-
ings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), ACM pp 257-267

Nguyen T, Nagappan M, Hassan A, Nasser M, Flora P (2014) An industrial case study of automatically iden-
tifying performance regression-causes. In: Proceedings of the Working Conference on Mining Software
Repositories (MSR), ACM pp 232-241

Oh J, Batory D, Myers M, Siegmund N (2017) Finding near-optimal configurations in product lines by random
sampling. In: Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), ACM pp
61-71

Passos L, Teixeira L, Dintzner N, Apel S, Wasowski A, Czarnecki K, Borba P, Guo J (2016) Coevolution of
variability models and related software artifacts: A fresh look at evolution patterns in the Linux Kernel.
Empirical Software Engineering 21(4):1744-1793

Passos L, Queiroz R, Mukelabai M, Berger T, Apel S, Czarnecki K, Padilla J (2021) A study of feature
scattering in the Linux Kernel. IEEE Transactions on Software Engineering (TSE) 47(1):146-164

Peng X, Yu Y, Zhao W (2011) Analyzing evolution of variability in a software product line: From contexts
and requirements to features. Information & software technology 53(7):707-721

@ Springer

Empirical Software Engineering (2023) 28:152 Page 39 of 41 152

Pereira J, Acher M, Martin H, Jézéquel JM (2020) Sampling effect on performance prediction of configurable
systems: A case study. In: Proceedings of the International Conference on Performance Engineering
(ICPE), ACM

Pett T, Thiim T, Runge T, Krieter S, Lochau M, Schaefer I (2019) Product sampling for product lines: The
scalability challenge. In: Proceedings of the International Systems and Software Product Line Conference
(SPLC), ACM pp 14:1-14:6

Pukall M, Kistner C, Cazzola W, Gotz S, Grebhahn A, Schroter R, Saake G (2013) JavAdaptor - flexible
runtime updates of java applications. Software: Practice and Experience 43(2):153-185

Reichelt D, Kiihne S (2018) How to detect performance changes in software history: Performance analysis of
software system versions. In: Proceedings of the International Conference on Performance Engineering
(ICPE), ACM pp 183-188

Saltelli A (2008) Global sensitivity analysis: The Primer. John Wiley

Seidel I, de Moraes B, Wuerges E, Giintzel J (2013) Quality assessment of subsampling patterns for pel
decimation targeting high definition video. In: Proceedings of the International Conference on Multimedia
and Expo (ICME), IEEE pp 1-6

Seidl C, Heidenreich F, ABmann U (2012) Co-evolution of models and feature mapping in software product
lines. In: Proceedings of the International Software Product Line Conference on (SPLC), ACM p 76

Sheather S (2009) A modern approach to regression with R. Springer Science & Business Media

Siegmund N, Rosenmiiller M, Kistner C, Giarrusso P, Apel S, Kolesnikov S (2013) Scalable prediction of
non-functional properties in software product lines: Footprint and memory consumption. Information &
software technology 55(3):491-507

Siegmund N, Grebhahn A, Apel S, Kistner C (2015) Performance-influence models for highly configurable
systems. In: Proceedings of the Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), ACM pp
284-294

Thiim T, Teixeira L, Schmid K, Walkingshaw E, Mukelabai M, Varshosaz M, Botterweck G, Schaefer I, Kehrer
T (2019) Towards efficient analysis of variation in time and space. In: Proceedings of the International
Systems and Software Product Line Conference (SPLC), ACM pp 69:1-69:8

von Rhein A, Liebig J, Janker A, Kistner C, Apel S (2018) Variability-aware static analysis at scale: An
empirical study. ACM Transactions on Software Engineering and Methodology 27(4):18:1-18:33

Wolf F, Bischof C, Hoefler T, Mohr B, Wittum G, Calotoiu A, Iwainsky C, Strube A, Vogel A (2014) Catwalk:
A quick development path for performance models. In: Proceedings of the European Conference on
Parallel Processing (Euro-Par), Springer, pp 589-600

Xu T, Jin L, Fan X, Zhou Y, Pasupathy S, Talwadker R (2015) Hey, you have given me too many knobs!:
Understanding and dealing with over-designed configuration in system software. In: Proceedings of the
Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), ACM pp 307-319

Zaman S, Adams B, Hassan A (2012) A qualitative study on performance bugs. In: Proceedings of the Working
Conference on Mining Software Repositories (MSR), IEEE pp 199-208

van Zyl P, Kourie D, Boake A (2006) Comparing the performance of object databases and ORM tools. In:
Proceedings of the Annual Research Conference of the South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing Countries (SAICSIT), south african institute
for computer scientists and information technologists pp 1-11

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

152 Page 40 of 41

Empirical Software Engineering (2023) 28:152

@ Springer

Christian Kaltenecker is a Ph.D. student at the Chair of Software
Engineering, Saarland University, Saarbriicken, Germany, under the
supervision of Prof. Sven Apel. His research interests include sam-
pling software configuration spaces, performance prediction, and the
performance evolution of configurable software systems. Kaltenecker
received an M.S. in 2016 from the University of Passau, Germany.
One of his key contributions is the distance-based strategy for sam-
pling configurations of highly configurable software systems for per-
formance prediction.

Stefan Miihlbauer is a Ph.D. student at the Chair of Software Engi-
neering at Leipzig University, Germany, under the supervision of Prof.
Norbert Siegmund. In 2018, Miihlbauer received an M.S. degree from
the Technical University of Braunschweig, Germany. His research
interests lie in software performance prediction, active learning meth-
ods, and the performance evolution of configurable software systems.
Specifically, his work focuses on developing efficient methods for
learning the performance of highly-configurable software systems.

Alexander Grebhahn is part of the Cloud Data Platforms team at
Adesso SE. Grebhahn received an M.S. from the University of Magde-
burg, Germany. His research interests include machine learning, con-
figurable software systems, and cloud computing.

Empirical Software Engineering (2023) 28:152 Page 41 0f41 152

Norbert Siegmund is chair of Software Systems at Leipzig University,
Leipzig, Germany. His research interests include software product
lines and configurable software systems, performance and energy opti-
mization. He is further actively researching on software engineering
for Al Siegmund received a Ph.D. with distinction in 2012 from the
Otto-von-Guericke University Magdeburg, Germany. He is the author
and coauthor of more than 80 peer-reviewed scientific publications.
He regularly serves on the program committees of top-ranked inter-
national conferences.

Prof. Dr. Sven Apel holds the Chair of Software Engineering at Saar-
land University & Saarland Informatics Campus, Germany. Prof. Apel
received a Ph.D. in Computer Science in 2007 from the University
of Magdeburg. His research interests include software product lines,
software analysis, optimization, and evolution, as well as empirical
methods and the human factor in software engineering.

Authors and Affiliations

Christian Kaltenecker'® - Stefan Miihlbauer?® - Alexander Grebhahn3 .
Norbert Siegmund?@® - Sven Apel*

Stefan Miihlbauer
muehlbauer @informatik.uni-leipzig.de

Alexander Grebhahn
Alexander.Grebhahn @adesso.de

Norbert Siegmund
norbert.siegmund @informatik.uni-leipzig.de

Sven Apel
apel @cs.uni-saarland.de

Saarland University, Saarland Informatics Campus, Saarbriicken, Germany

2 Leipzig University, Leipzig, Germany
3 adesso SE, Berlin, Germany
4

Saarland Informatics Campus, Saarland University, Saarbriicken, Germany

@ Springer

http://orcid.org/0000-0002-4160-7162
http://orcid.org/0000-0002-7971-6727
http://orcid.org/0000-0001-7741-7777
http://orcid.org/0000-0003-3687-2233

	Performance evolution of configurable software systems: an empirical study
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Configurable Software Systems
	2.2 Performance-Influence Models
	2.3 Software Evolution
	2.4 Multicollinearity

	3 Study Setup
	3.1 Research Questions
	3.2 Subject Systems
	3.3 Workloads
	3.4 Operationalization

	4 Evaluation
	4.1 Results
	4.2 Metadata Analysis
	4.3 Implications
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgements
	References

