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Abstract

Problems stemming from the study of  logic calculi in  connection with an  infer-
ence rule called “condensed detachment” are widely acknowledged as prominent
test sets for automated deduction systems and their search guiding heuristics. It
is in  the light of these problems that we demonstrate the power of  heuristics that
make use of past proof experience with numerous experiments.

We present two such heuristics. The first heuristic attempts t o  re-enact a
proof of  a proof  problem found in  the past in  a flexible way in  order t o  find a proof
of  a similar problem. The second heuristic employs “features” in  connection with
past proof experience to  prune the search space. Both these heuristics not only
allow for substantial speed-ups, but also make i t  possible to  prove problems that
were out of reach when using so-called basic heuristics. Moreover, a combination
of these two heuristics can further increase performance.

We compare our results with the results the creators of  OTTER obtained with
this renowned theorem prover and this way substantiate our achievements.

“Th is  work was supported by the Deutsche Forschungsgemeinschaft (DFG).
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4 1 INTRODUCTION 

1 Introduction 

Automated deduction is-at its lowest level-a search problem that spans huge search 
spaces. The general undecidability of problems connected with (automated) deduction 
entails an indeterminism that has to and can only be tackled with heuristics. Mostly, 
automated deduction is employed to prove that a given conjecture can be deduced 
from an also given set of axioms. In order to solve such tasks automated proving 
systems utilize a (fixed) set of inference rules whose applications are responsible for 
both indeterminism and the immense size (the "combinatorial explosion") of the search 
space. Despite a far superior inference rate the computer is inferior to (human) math
ematicians when it comes to proving "challenging" theorems. One prominent reason 
for this, drawback of automated proving systems is their inability to make use 6f past 
experience, which is very often quite helpful or even an indispensable key to success. 
Therefore, it stands to reason to upgrade automated proving systems on that score. 

But exploiting past proof experience fruitfully is in general neither trivial nor does it 
come without hazards. The main problem is that analogy in the widest sense is hard to 
define, to detect and to apply in the area of automated deduction. In other branches of 
artificial intelligence various applications of analogy have proven to be powerful tools 
(see, for instance, [Ca86], [Bu89]). These research areas profit from the fact that "small 
changes of the problem description (usually) cause small changes of the solution". This 
is definitely not true for automated deduction (proving). Consequently, we have to be 
very careful about making use of past proof experience in order not to stumble into a 
major pitfall of this kind of reuse, namely making things considerably worse compared 
to proving from scratch (cp. [KN93]). 

In spite of these bleak prospects of success we still think that it is worthwhile equipping 
an automated proving system with the option to utilize experience gained in the past. 

Most researchers in this research area are attempting to devise methods that allow to 
construct (compute) a proof 'PB of a new proof problem B (the target) from a known 
proof 'PA of a previously solved problem A (the source) using some pre-defined "anal
ogy mapping" (e.g., [KI71], [BCP88], [KW94], [Cu95]). The principle of our method, 
however, consists in incorporating information obtainable from previous proofs into 
the omnipresent (search guiding) heuristics used by an automated deduction system 
(see [Fu95a], [SE90] or [SF71] for related approaches). A significant advantage of such 
an approach is a suitable compromise between the flexibility (generality) stemming 
from the "original" heuristics and the specialization coming from the incorporation' of 
information on previous proofs. Since we do not intend to transform the source proof 
into the target proof through a chain of deterministic analogous transformation steps, 
but employa "conventional" heuristic upgraded with information on a source proof in 
order to search for the target proof, proofs do not have to be as similar for our method 
to be successful as they have to be when using a "constructive" approach. 

The first heuristic we are going to present attempts to re-enact flexibly a given proof 
(the source proof) of a proof problem found in the past in order to find a proof of a 
(novel) proof problem (more quickly). A flexible re-enactment is necessary to enlarge 
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the class of problems that can be tackled profitably with such an approach. Flexibility 
is achieved by giving (moderate) preference to deductions also present in the source 
proof and to deductions possible on account of these. This way, we do not rigorously 
exclude steps that do not comply with the source proof. Consequently, necessary 
(moderate) deviations from the source proof can be compensated for. 

The second heuristic is based on the concept of features which has been exploited 
before in different ways (e.g. [SF71], [SE90], or [Re83] for an approach tested in con
nection with the 'fifteen-puzzle'). Features basically represent structural properties of 
the objects that are manipulated (by an automated deduction system) with a (natural) 
number, and therefore can be considered as functions abstracting from structure. The 
results of abstraction, namely the feature values, are used by our second heuristic to 
prune the search space. The exact way how feature values are to influence the behavior 
of the heuristic is determined with the help of past experience. Furthermore, a com
bination of these two heuristics further improves performance as several experiments 
have shown. 

For our experimentation we have chosen problems that originate from the study of 
logic calculi with an inference rule called condensed detachment (also known as "sub
stitution and detachment"; see [Ta56] and [Lu70] for original work and [Pe76]' [Wo90], 
[MW92], [S193] for work regarding automated deduction in this context). The reason 
for this choice is twofold: Firstly, there is a large number of such problems within a 
wide spectrum of difficulty, almost continuously ranging from (nearly) trivial to (very) 
challenging. This constellation is important if we want to tackle problems with meth
ods that are based on previous proof experience. Secondly, the simplicity of the calculi 
in connection with condensed detachment (in terms of an unproblematic application 
of this inference rule) makes it easier to study the essential aspects of our methods 
without having to deal with complications on account of complex inference rules. But 
we strongly emphasize that the simplicity of the inference rule does not imply the sim
plicity of arising proof problems. On the contrary, the proof problems offer at least 
the same degree of difficulty known from other fields of automated deduction (e.g., 
resolution or equational reasoning), namely huge (potentially infinite) search spaces 
with no (obvious) hints how to proceed. Therefore, we are convinced that the methods 
(heuristics) proposed in this report will be profitably applicable to other deduction 
systems as well. (This has already been examined in part for an equational prover 
based on the unfailing Knuth-Bendix completion procedure, see [Fu95b]). 

The experimental results sustain the viability of our approach. With an experimental 
program 'CODE' we were able to achieve outstanding speed-ups and even to handle 
problems that were out of reach when not using past experience. A comparison with 
the results obtained with OTTER as reported in [MW92] underlines -the significance of 
our results. 

Section 2 introduces the study of logic calculi with condensed detachment and an 
automated deduction system for that purpose named 'CODE'. Section 3 presents 
the basic heuristic which serves as a foundation for all other heuristics that exploit 
past experience. The subsequent sections 4 and 5 describe our first heuristic that 
makes use of past experience, namely "flexible re-enactment", and experimental results 
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obtained with it. Sections 6 and 7 do the same with respect to our second, feature
based heuristic. Section 8 deals with a combination of these two heuristics. Finally, a 
discussion in section 9 brings this report to a close. 

2	 The Study of Logic Calculi With Condensed De
tachment 

This section introduces in subsection 2.1 an inference rule called condensed detachment 
and outlines its purpose in the study of logic calculi. Subsection 2.2 will present an 
automated deduction system that centers on condensed detachment. 

The purpose of this section consists in presenting the study of logic calculi as a research 
area that can be tackled with automated deduction systems. Although we do not intend 
to give a detailed theoretical background (for this purpose see [Ta56] and [Lu70]), 
we want to emphasize that the study of logic calculi is recognized as a challenging 
field for automated deduction (cf. [MW92] and also [Wo90]). As a matter of fact, 
the arising problems are of varying difficulty, ranging from almost trivial to extremely 
difficult, including problems that have not yet been proven by an unassisted automated 
deduction system. This makes it particularly interesting to approach these problems 
with methods that attempt to learn from previous experiences. 

2.1 Condensed Detachment 

The inference rule 'condensed detachment' is the central part of the different logic 
calculi we are going to investigate. This inference rule manipulates first-order terms 
which we shall also call facts. Terms (facts) are defined as usual. 

Definition 2.1 (Term/Fact) Let F be a finite set of function symbols, T : F -+ IN 
denote the arity of each f E F and V be an enumerable set of variables (V n F = 0). 
The set of terms Term(F, V) is recursively defined by 

1. x	 E Term(F, V) for all x E V 

2. f(tt, ... , tn) E Term(F, V) if! f E F, TU) = n, tt, ... , tn E Term(F, V) 

We use the symbols x, y, Z, U, v, wand Xt, X2, . .. to denote variables. Variables of a 
term are implicitly V-quantified. 

The i,nference rule 'condensed detachment' is defined for a distinguished binary function 
symbol from F. It employs first-order substitutions respectively most general unifiers. 

Definition 2.2 (Substitution, mgu, E) A function a : V -+ Term(F, V) is called 
a substitution, where a(x) ;j. x only for a finite subset of V. a can be extended to 
Term(F, V) by defining a(J(tt, ... , tn» = f(a(tt), ... , a(tn)) for all f E F. 
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2.1 Condensed Detachment 7 

Let s, t E Term(F, V). A substitution a is called a most general unifier (mgu) of s
 
and t if a( s) = a(t) and for any other substitution e with e( s) = e(t) there is a further
 
substitution IJ with IJ 0 a = e.
 
~ denotes the set of all substitutions.
 

Definition 2.3 (Condensed Detachment, Ancestor, Descendant) Let i E F be 
a (distinguished) binary function symbol (i.e. T(i) = 2), i(s, t), s' E Term(F, V) and a 
the mgu of sand s'. Then aCt) is derived from i(s, t) and s' via condensed detachment. 
In this context, the facts i(s, t) and s' are called the immediate ancestors of the imme
diate descendant a(t). Ancestors and descendants can be obtained by constructing the 
transitive closure of the immediate ancestor respectively immediate descendant. relation. 

Example 2.1 Let F = {el, T(e) = 2, i.e., e is the distinguished binary function 
symbol required by condensed detachment. Let further )...1 = e(e(x, y), e(e(z, y), e(x, z»)) 
and )...2 = e(u, u) be two facts. With the mgu a = {x +- u, Y +- u} (which is an 
abbreviation for 0"(x) = u, O"(y) = u and 0"( z) = z for all other variables z E V) of )...1 's 
subterm e(x,y) and)...2 we obtain O"()...r) _ e(a()...2),e(e(z,u),e(u,z))) and hence can 
derive e(e(z,u),e(u,z)) respectively e(e(x,y),e(y,x)) after renaming ("normalizing") 
variables. 

The two facts participating in the application of condensed detachment do not have to 
be distinct. Consider)... =e(e(e(e(x, y), z), x), e(y, z» and a renamed counterpart of )..., 
namely)...' == e(e(e(e(x',y'), z'), x'), e(y',z'». Using the mgu 0" = {x +- e(z',z'),y +

z',z +- z',x' +- z',y' +- z'} ofe(e(e(x,y),z),x) and)",' we can derive e(z',z') (respec
tively e(x, x)). 

The purpose of this inference rule is to derive facts which are valid in one given model 
provided that the facts driving the inference are also valid in that model. (See in 
particular [Lu70), pp. 250-277, for a comprehensive discussion of this aspect.) The 
logic calculi we are going to deal with determine which model to use. A fact that 
is valid in the model is also referred to as a theorem of the respective calculus. The 
area of interest in the study of logic calculi with condensed detachment is to find out 
whether an initial (finite) set of theorems-the axioms-together with the inference 
rule 'condensed detachment' allow to deduce all theorems, i.e., all facts that are valid 
in the model. This means that we want to find out whether a given axiomatization is 
complete. This form of completeness must not be confused with the completeness of 
a calculus. Commonly, a set of axioms determines all models in which the axioms are 
valid. The task of the calculus respectively its inference rules then consists in deriving 
all consequences which are also valid in these models. "Deriving all consequences" 
refers to the completeness of the calculus, while "valid in these models" refers to its 
correctness. Here, we are given one model. Hence, while it still makes sense to talk 
about the correctness of condensed detachment ("all facts inferable with condensed 
detachment must be valid in the given model"), the completeness issue must be shifted 
from the calculus to the axiomatization. 

We shall verify the completeness of an axiomatization Ax by showing that an axiom
atization known to be complete can be deduced from Ax (with the help of condensed 
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Let s , t  € Te rm(F ,V ) .  A substitution o is called a most general unifier (mgu) of  s
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a (distinguished) binary function symbol (i.e. ( i )  = 2), i(s,t),s’ € Term(F,V) and o
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In this contest, the facts i(s,t) and s' are called the immediate ancestors of the imme-
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transitive closure of the immediate ancestor respectively immediate descendant relation.

Example 2 .1  Let F = {e } ,  7(e) = 2, i.e., e is the distinguished binary function
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provided that the facts driving the inference are also valid in that model. (See in
particular [Lu70], pp. 250-277, for a comprehensive discussion of this aspect.) The
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is valid in  the model is also referred to as a theorem of the respective calculus. The
area of interest in  the study of logic calculi with condensed detachment is to find out
whether an initial (finite) set of theorems—the azioms—together with the inference
rule ‘condensed detachment’ allow to  deduce all theorems, i.e., all facts that are valid
in  the model. This means that we want to find out whether a given axiomatization is
complete. This form of completeness must not be confused with the completeness of
a calculus. Commonly, a set of axioms determines all models in which the axioms are
valid. The task of the calculus respectively i ts  inference rules then consists in deriving
all consequences which are also valid in these models. “Deriving all consequences”
refers to the completeness of the calculus, while “valid in  these models” refers to its
correctness. Here, we are given one model. Hence, while i t  st i l l  makes sense to talk
about the correctness of condensed detachment (“all facts inferable with condensed
detachment must be valid in  the given model”), the completeness issue must be shifted
from the calculus to  the axiomatization.
We shall verify the completeness of an axiomatization Az  by showing that an  axiom-
atization known to  be complete can be deduced from Az  (with the help of condensed
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let FA = 0, pP = Ax 

while	 FP =1= 0 do 
{ 

select >. E FP and remove it from FP 
if ::lA'	 E FA : A' <l ). then 

discard ). 
else 
{ 

apply	 condensed detachment employing ). 
add all deduced facts to FP 
add).	 to FA 
if >. <l	 ax then 

stop ('PROOF FOUND') 
} 

} 

stop ('PROOF FAILED') 

Figure 1: Basic Algorithm of CODE 

detachment). This naturally necessitates that there is a "starting axiomatization" that 
has to be shown to be complete in some other way. But this is not of our concern here. 
Our concern are the deduction tasks that allow to show the completeness of an axiom
atization by deducing the axioms of an axiomatization whose completeness has already 
been established. For this purpose we shall employ the automated deduction system 
'CODE'. 

2.2	 An Automated Deduction System For Condensed De
tachment 

The previous subsection presented the deduction tasks we want to solve with our 
automated deduction system CODE. These consist in attempting to derive (one by 
one) each axiom ax of a complete axiomatization Ax' using condensed detachment and 
starting from a set of axioms Ax whose completeness is to be shown. In other words, 
we want to deduce or prove each ax E Ax'. In this context, such an ax may be called 
a goal. The pair A = (Ax, ax) describes a proof problem. 

CODE proceeds according to the very common principle depicted in algorithmic form 
in figure 1. The facts in FA are called active facts because they can participate in 
the generation of new facts via condensed detachment, whereas the facts in FP can
not participate and are therefore called passive or potential facts. Selecting a fact ). 
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i f  A daz  then

s top  ( ‘PROOF FOUND’)

}
s top  (‘PROOF FAILED’)

Figure 1: Basic Algorithm of CODE
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a goal. The pair A = (Az ,  ax)  describes a proof problem.
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the generation of  new facts via condensed detachment, whereas the facts in FF  can-
not participate and are therefore called passive or potential facts. Selecting a fact A
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from FP to become a member of FA is called "activating A". But this activation 
respectively selection step 'select A E FP' is an indeterminism that is inherent to 
problems related to deduction because of the general undecidability of such problems. 
This indeterminism can consequently only be resolved by heuristic means. A selection 
heuristic H associates a natural number H(A) E IN with each A E FP, which is re
ferred to as "weighting A with H(A)". Subsequently, that A E FP with the smallest 
weight H(A) is selected. Ties are broken according to the FIFO-strategy ("first in-first 
out"). 

A heuristic H has to satisfy a criterion called fairness in order not to prevent a possible 
proof because of a "biased" selection. Informally, a heuristic is called fair if every 
A E FP (or a A' E FP that subsumes A) is selected after finite time. 

Aa <l Ab denotes subsumption, i.e., Aa is at least as general as Ab and can therefore play 
at least as important a role in the deduction process as Ab. Subsumption is a simple 

" form of testing implication on a syntactic level, i.e., Aa <l Ab iff :30" E E : 0"( Aa) = Ab. 
The subsumption test is employed in order to find out if a fact has been inferred which 
is equivalent to the goal or even more general. This test is made using A E FA and not 
A E FP for conceptual reasons, because the elements of FP are considered as not (yet) 
actually inferred. They are merely known to be inferable. But in practice, it stands to 
reason to accelerate the selection of a A E FP subsuming the goal. 

The discarding of a selected A which is subsumed by a A' E FA is an efficiency increasing 
measure. It is theoretically not necessary, but very important in practice. Note that 
this kind of redundancy removal is called forward subsumption. Backward subsumption, 
where a selected A subsumes a .\' E FA is omitted because experiments have shown 
that the frequency of such a situation is far too low to justify the effort. 

The execution of the while-loop (cp. figure 1), having replaced the indeterministic step 
'select A E FP' with a selection policy employing a heuristic H, can be taken down 
by recording the sequence S = AI; ... ; An of selected facts. We omit those selected facts 
which were discarded immediately after their selection since they do not play any role 
in the deduction process. Therefore, there can be no i < j with Ai <l Aj. The (search) 
protocol or (search) sequence S represents the search for An conducted by CODE using 
the search guiding heuristic H. Clearly, each Ai occurring in S is either an axiom, 
i.e., Ai E Ax, or it is an immediate descendant of some Ajl and Aj2 also in S, where 
it,h < i. (jl and h do not necessarily have to be distinct.) 

If the algorithm of figure 1 terminates, then the sequence S =AI; ... ; An is a successful 
search and it contains the proof (the deduction) of An with An <l ax. We say 'contains', 
because S may-and in practice always will-contain Ai that are no ancestors of An and 
hence are redundant with respect to the deduction of An. The proof P of An relating 
to S can be extracted1 from S by omitting all those Ai which are not members of the 
following set 

, 

ITo this end we implicitly associate a justification Ji with each Ai occurring in S explaining whether 
Ai is an axiom or which other facts are its immediate ancestors. 
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this kind of redundancy removal is called forward subsumption. Backward subsumption,
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search and it.contains the proof (the deduction) of A,  with A,  < az. We say ‘contains’,
because S may—and in  practice always will—contain A; that are no ancestors of A,  and
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1To this end we implicitly associate a justification J;  with each A; occurring in  S explaining whether
A; is an axiom or which other facts are i ts  immediate ancestors.



10 3 THE BASIC HEURISTIC 

The proof P =At; ... ; A;t (m :::; n, A~ _ An) is a "stripped-down" version of S where 
all Ai 1: P have been removed. P may also be viewed as the closure of {An} under the 
ancestor relation. The members of P will be referred to as positive facts, whereas the 
members of the complementary set 

are called negative facts which are irrelevant regarding P. Be aware that the classifica
tion of facts into positive and negative ones refers to the particular proof P extracted 
from S. This is why it here makes sense to talk about the proof P although in general 
several proofs of An exist. Note that S and therefore P, P and N depend on the proof 
problem A and the search guiding heuristic H in hand. But we shall not make this 
dependency explicit unless it is necessary to avoid confusion. 

The efficiency of the search is reflected by the size of N. An "ideal" heuristic H 
produces a search S with N = 0. A "bad" heuristic H', however, produces a search S' 
where the size of the associated set N' is enormous (compared to P'). But note that
in general-the size of P respectively the length m of the proof P = At; ... ;A;t alone 
gives no hints as to the efficiency of the related search. 

Consequently, the search guiding heuristic H plays an important role. Its ability to 
avoid redundancies, i.e., the selection of facts that do not contribute to finding the proof 
eventually found, is not only crucial for efficiency in terms of computation time. Apart 
from that, the sets FA and above all FP are responsible for ,filling quickly several MB of 
computer memory. While the size of FA is equal to the length n of the search sequence 
(at any state of the search), the size of the set FP has the upper bound IAxl + n2 

- n 
already suggesting that FP will grow much faster than FA (which it actually does). 
Therefore a reduction of the length of the search sequence is also welcomed regarding 
memory management. 

Problems related to condensed detachment have been the object of intensive studies 
to evaluate the usefulness of heuristics and to test automated deduction systems. In 
[MW92] various "conventional" heuristics have been tested using OTTER. We shall 
also tackle problems listed in [MW92] (see appendix A) with a (conventional) basic 
heuristic that will be introduced in section 3. But the main topic of this report is the 
design and (experimental) evaluation of heuristics that make use of proofs found in 
the past. We shall see that such heuristics not only account for substantial speed-ups 
(w.r.t. conventional ones), but also make it possible to find proofs where none of the 
conventional heuristics succeeded (in reasonable time). Both the results produced by 
CODE using its basic heuristic and those attained by OTTER (as reported in [MW92]) 
will serve as a point of reference. 

3 The Basic Heuristic 

Although the topic of this report is the demonstration of heuristics that make use of 
previously gained proof experience, this section is entirely devoted to a heuristic that 
does not belong into that category. There are two reasons for this. Firstly, at least for 
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Although the topic of this report is the demonstration of heuristics that make use of
previously gained proof experience, this section is entirely devoted to  a heuristic that
does not belong into that category. There are two reasons for this. Firstly, at least for
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a start, a heuristic which is not based on previous proof experience is indispensable to 
establish a basis of proof experiences. Secondly, this heuristic serves as the foundation 
of those heuristics based on past experience. 

Recall that a search guiding heuristic associates a weight with each fact and selects 
the one with the smallest weight. Since the majority of proof tasks consists in proving 
facts that have a comparatively small number of function symbols, our basic heuristic 
is designed to focus on "small" facts. (Heuristics centered on this observation are very 
common. See, for instance, [Hu80] or [MW92].) Instead of simply counting the number 
of function symbols and variables, we compute a weighted sum. To this end, function 
symbols are weighted with 2 and variables with 1. The function w computing the 
weighted sum is defined as follows. 

Definition 3.1 (Weighted Sum) Let A be a fact (a term). The weighted sum W(A) 
is defined by 

if A E V 
if A = f(tI, . .. , tn), f E F, TU) = n 

By giving a smaller weight to variables we cause a bias towards the selection of facts 
with more variables rather than function symbols. This makes sense because such facts 
tend to have more "deductive power", i.e., they are often more general and hence more 
useful during the deduction process. 

We soon recognized that this simple heuristic W had-quite understandably-apparent 
limitations. But we also discovered that the level of the proofs found was rather low. 
The subsequent definition defines this notion (cp. [MW92]). 

Definition 3.2 (Level of a Fact/Proof) Given a proof P =AI;"'; An and a fact 
A E P = PI, ... ,An}, the level (or depth) b(A) of A is defined by / 

if A is an axiomb(A) _ { 0, 
- max{8(Ad, 8(Aj)} + 1, if Ai and Aj are the immediate ancestors of A 

The level (or depth) b(P) of a proofP is defined by 

b(P) = max{8(A) I A E P} 

Note that b(P) = b(An), if P - AI;"'; An. 

Having observed the prevalence of "low level proofs" the next obvious step to improve 
the basic heuristic was to incorporate the level of the fact A to be weighted, so that 
"deeper" facts would receive a (moderate) penalty. We chose a weighted sum of the level 
and the result of w yielding the final basic heuristic ID. According to the considerations 
already outlined in subsection 2.2, we give a special treatment to a fact subsuming and 
hence proving the goal. This is achieved by assigning the minimal weight 0 to it which 
immediately leads to its activation and hence to a successful termination of the search. 
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Table 1: Results of the Basic Heuristic (enO1-en06) 
1 Name 1----,0-:--,-1--,1--,-1-:-'--31 1 : 2 I 2 : 3 11 : 1 14 : 3 1 3 : 2 I 2 : 1 1 3 : 1 1-'----4-:-1-1 OTTER I 

en01 - - - - - - - - - - 00 

en02 <Is <Is <Is <Is <Is <Is <Is <Is <Is <Is 3s 
en03 - - - - - - - - - - 00 

en04 <Is <Is <Is <Is <Is <Is <Is <Is <Is <Is i <Is 
en.OS 1.4s LIs <Is <Is <Is <Is <Is <Is <Is <Is 14s 
en06 - - - - - - - 90s 24s lIs 7366s 

Definition 3.3 (Basic Heuristic) Let Cs, Cw E IN) A the fact to be weighted and Aa 
the goal. The basic heuristic ro weighting A with roe A) is defined by 

if>' <l Aa 
roP) = { ~;. b(>') + Cw • w(>'), otherwise 

The design of ro allows to examine borderline cases, namely w alone (cs = 0, Cw ~ 1), 
breadth-first search (cs ~ 1, Cw = 0) or the FIFO-strategy (cs = Cw = 0). (The 
exception made for facts subsuming the goal is also effective when performing breadth
first search or a search guided by w only.) The additional computational effort on 
account of the 'subsumption test clearly pays off as experiments have shown. 

The following subsection 3.1 presents the results we obtained by applying ro-'with 
various configurations of Cs and cw-to the proof problems we shall also tackle with 
heuristics based on past proof experience. See appendix A for a complete description 
of these proof problems. Subsection 3.2 discusses a "by-product" we encountered when 
running tests with ro, namely finding shorter proofs faster. 

3.1 Experimental Results 

Tables 1-4 list the results produced by CODE using the basic heuristic ro with various 
ratios Cs : cw • The basic working method of CODE, which is written in C, was presented 
in subsection 2.2. 

In each table, the first column lists the names of the proof problems (in compliance with 
appendix A). The last column displays the results of OTTER also using a basic heuristic 
which simply counts symbols and hence does not discriminate function symbols and 
variables in contrast to ro. These results are taken from [MW92]. The head of each 
remaining column shows the ratio 'cs: cw ' employed by CODE's basic heuristic ro. The 
entries of the tables list the (approximate) run times in seconds (CPU time) obtained on 
a SPARCstation ELC. (The run times of OTTER were obtained on a SPARCstation 1+ 
which is a comparable machine.) An entry '-' (CODE'S columns only) denotes that no 
proof could be found when restricting the memory to 45 MB. An entry '00' (OTTER'S 
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Table 1: Results of the Basic Heuristic (cn01-cn06)
[Name [ 0 :1  [ 1 :3 [1 :2 [2 :3 [1 :1 ]4 :3 [3 :2 ]2 :1 [3 :1 ]  4 :1 | OTTER|

cn01  | — — — — — — — — — — 00

cn02 | < l s  | <I1s | <1s | <1s | <1s | <1s | <1s | <1s | <1s | «ls 3s
cn03 | — — — — — — — — — — oo
cn04 | <1s | < I s  | <1s | <1s | <I1s | <1s | <1s | <1s | <I1s | <1s i  <1s
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cn06 | — | — | — | — | — | — | — | 90s | 24s | 11s 7366s

Definition 3.3 (Basic Heuristic) Let cs, cw € IN, X the fact to be weighted and Ag
the goal. The basic heuristic w weighting A with w()\) is defined by

_o ,  i f  AA Ag
w(A) = { cs ( 1 )  + cw - w ( ) ) ,  otherwise

The design of w allows to  examine borderline cases, namely w alone (cs = 0, cw > 1),
breadth-first search (cs > 1, cw = 0) or the FIFO-strategy (cs = cw = 0). (The
exception made for facts subsuming the goal is also effective when performing breadth-
first search or a search guided by w only.) The additional computational effort on
account of the subsumption test clearly pays off as experiments have shown.

The following subsection 3.1 presents the results we obtained by applying w—with
various configurations of cs and c¢,—to the proof problems we shall also tackle with
heuristics based on past proof experience. See appendix A for a complete description
of these proof problems. Subsection 3.2 discusses a “by-product” we encountered when
running tests with w ,  namely finding shorter proofs faster.

3.1 Experimental Results

Tables 1-4 l ist the results produced by CODE using the basic heuristic w with various
ratios cs : Cw. The basic working method of CODE, whichi s  writteni n  C, was presented
in  subsection 2.2.
In  each table, the first column lists the names of the proof problems (in compliance with
appendix A). The last column displays the results of OTTER also using a basic heuristic
which simply counts symbols and hence does not discriminate function symbols and
variables in contrast to ww. These results are taken from [MW92]. The head of each
remaining column shows the ratio ‘cs : cw’ employed by CODE’s basic heuristic @. The
entries of the tables list the (approximate) run times in  seconds (CPU time) obtained on
a SPARCstation ELC. (The run times of OTTER were obtained on a SPARCstation 1+
which is a comparable machine.) An  entry ‘—’  (CODE’s columns only) denotes that no
proof could be found when restricting the memory to 45 MB. An entry ‘co’ (OTTER’s
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Table 2: Results of the Basic Heuristic (cn07-cn24) 

Name o: 1 1 : 3 1 : 2 2:3 1 : 1 4:3 3:2 2 : 1 3 : 1 4: 1 OTTER 
cn07 <ls <ls <ls <ls <ls <ls <Is <Is <Is <Is < Is 
cn08 9.1s 3.1s 2.0s 1.8s 1.7s 1.5s 1.6s 2.2s 2.8s 6.2s 60s 
cn09 9.1s 3.2s 2.1s 1.9s 1.8s 1.5s 1.5s 2.2s 2.8s 5.8s 60s 
cn10 16s 7.4s 6.1s 3.6s 3.7s 3.1s 3.3s 3.5s 6.3s 32s 89s 
en11 19s l1s l1s 8.3s 3.8s 3.2s 3.3s 3.6s 6.5s 41s 104s 
cn12 19s l1s l1s 8.4s 14s 3.7s 3.9s 10s 41s - 105s 
cn13 19s 9.9s 6.9s 8.3s 3.7s 5.7s 7.3s 4.4s 24s - 105s 
cn14 19s l1s 7.1s 8.3s 3.8s 5.8s 7.5s 4.6s 24s - 109s 
cn15 - - - - - - - - - - 00 

cn16 19s Us 5.9s 8.3s 2.2s 2.0s 2.4s 2.4s 3.2s 5.8s 105s 
cn17 18s 9.7s 6.0s 8.0s 2.2s 2.8s 3.8s 4.2s 20s - 104s 
cn18 19s Us 7.0s 8.4s 3.5s 5.0s 4.0s 4.5s 24s - 106s 
cn19 84s - - - - - - - - - 1021s 
cn20 42s 24s 13s 13s 3.3s 5.0s 5.1s 7.3s 24s - 260s 
cn21 91s - - - - - - - - - 1195s 
cn22 - - - - - - - - - - 00 

cn23 - - - - - - - - - - 00 

cn24 - - - - - - - - - - 00 

column only) means that no proof was found within 4 hours. Naturally, OTTER has ~o 

control its memory usage in order to be able to cope with a limited memory (12 MB 
in OTTER's case). CODE also disposes of ways to control its memory usage which, 
just like OTTER'S, can cause incompleteness. (Basically, "controlling memory usage" 
means discarding certain facts respectively clauses.) But we did not have CODE use 
them here, since the results attained without them are satisfactory. In particular, the 
problems for which the tables do not list any run time stay out of reach (within several 
hours) even when enabling the memory control features of CODE (using w). 

It must be emphasized that CODE is an experimental program whose core was devel
oped in a couple of weeks as opposed to the renowned OTTER which has been improved 
over several years. CoDE does not use sophisticated indexing techniques. These are 
crucial for efficient (forward) subsumption which is exhaustively needed in connection 
with condensed detachment. CODE might be faster at very early stages of the search 
(if at all) because of a specialized implementation of condensed detachment, which 
OTTER "simulates" with hyper-resolution. But efficiency increasing techniques like 
indexing cause OTTER to surpass CODE (in terms of inferences per second) after these 
early stages. Consequently, faster run times of CODE can only stem from heuristics 
that allow for a more efficient search in terms of selecting less facts that are irrelevant 
with respect to the proof eventually found. 

Problem cn06 (table 1) is a "paradigm" for the benefits of taking into account the level 
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Table 2: Results of the Basic Heuristic (cn07-cn24)

Name [0:1(1:3[1:2(2:3/1:1(4:3|3:2(|2:1]3:1|4:1| OTTER
cn07 | <1s  | <1s | <I1s | <1s | <1s | <1s  | <1s  | <1s | <1s | «1s < l s
cn08 | 9.1s | 3.1s | 2.0s | 1.85 | 1.7s | 1.5s | 1.6s | 2.2s | 2.85 | 6.25 60s

| cn09 | 9.1s | 3.25 | 2.1s | 1.95 | 1.85 | 1.5s | 1.5s | 2.25 | 2.85 | 5.8s 60s
en10 | 16s | 74s | 6.1s | 3.6s | 3.7s | 3.1s | 3.35 | 3.55 | 6.35 | 32s 89s
en11 | 19s | 11s | 11s | 83s  | 3.85 | 3.2s | 3.3s | 3.6s | 6.5s | 41s 104s
cn12 | 19s | 11s | 11s | 8.4s | 14s | 3.7s | 3.9s | 10s | 41s — 105s
cn13 | 19s | 9.9s | 6.9s | 8.3s | 3.7s | 5.7s | 7.3s | 4.4s | 24s | — 105s
cn14 | 19s | 11s | 7.1s | 8.3s | 3.8s | 5.8s | 7.5s | 4.6s | 24s | — 109s
cn15  — — — — — — — — — — So
cn16 | 19s | 11s | 5.9s | 8.3s | 2.2s | 2.0s | 2.4s | 2.4s | 3.2s | 5.8s 105s
cn17 | 18s | 9.7s | 6.0s | 8.0s | 2.2s | 2.8s | 3.8s | 4.2s | 20s — 104s
cn18 | 19s | 1 l s  | 7.0s | 8.4s | 3.5s | 5.0s | 4.0s | 4.5s | 24s — 106s
cn19 | 84s | — — — — — — — — — 1021s
cn20 | 42s | 24s | 13s | 13s | 3.3s | 5.0s | 5.1s | 7.3s | 24s | — 260s
cn21 | 91s | — — — — — — — — — 1195s
&n22  — — — — — — — | — — — 00

cn23 — — — — — — — — — — co
cn24 — — — — — — — — — — Oo

column only) means that no proof was found within  4 hours. Naturally, OTTER has to
control its memory usage in order to  be able to  cope with a limited memory (12 MB
in OTTER’s case). CODE also disposes of ways to control i ts memory usage which,
just l ike OTTER’s, can cause incompleteness. (Basically, “controlling memory usage”
means discarding certain facts respectively clauses.) But we did not have CODE use
them here, since the results attained without them are satisfactory. In particular, the
problems for which the tables do not list any run time stay out of reach (within several
hours) even when enabling the memory control features of CODE (using w).
It must be  emphasized that CODE  i s  an  experimental program whose core was devel-
oped in  a couple of weeks as opposed to  the renowned OTTER which has been improved
over several years. CODE does not use sophisticated indexing techniques. These are
crucial for efficient (forward) subsumption which is exhaustively needed in  connection
with condensed detachment. CODE might be faster at very early stages of the search
(if at all) because of a specialized implementationof condensed detachment, which
OTTER “simulates” with hyper-resolution. But efficiency increasing techniques like
indexing cause OTTER to surpass CODE (in terms of inferences per second) after these
early stages. Consequently, faster run times of CODE can only stem from heuristics
that allow for a more efficient search in terms of selecting less facts that are irrelevant
with respect to  the proof eventually found.
Problem cn06 (table 1) is a “paradigm” for the benefits of taking into account the level
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Table 3: Results of the Basic Heuristic (cn25-cn33)
 

I Name I 0 : 1 I 1 : 3 I 1 : 2 I 2 : 3 I 1 : 1 I 4 : 3 I 3 : 2 I 2 : 1 I 3 : 1 I 4 : 1 i OTTER I
 
cn25 - - - - - - 33s 18s 15s Us 00 

cn26 - 1.2s <Is <Is <Is <Is 1.3s 1.7s <Is <Is 4s 
cn27 4.7s LIs <Is <Is <Is <Is 1.3s 1.7s <Is <Is 3s 
cn28 - - - - - 73s 50s 15s 11s 36s 6038s 
cn29 197s 47s 40s 35s 82s - - - - - 622s 
cn30 154s 23s Us 5.2s 1. 7s <Is LOs 1.3s 3.0s 1.6s 161s 
cn31 - - - - 94s 25s 16s 9.6s 17s - 5611s 
cn32 - 89s 45s 46s 86s - - - - - 753s 
cn33 208s 58s 15s Us 3.4s 1.4s 2.8s 2.8s <Is LOs 239s 

Table 4: Results of the Basic Heuristic (mv55-mv62) 

Name 0:1 1 : 3 1 : 2 2:3 1 : 1 4:3 3:2 2:1 3 : 1 4: 1 OTTER 

rav55 - - - - - - - - - - 00 

mv56 2.2s 2.2s 2.3s 2.6s 1.4s <Is <Is <Is <Is <Is .38 
mv57 - - 176s 101s 14s 5.8s 2.1s LIs <Is <Is 4475s 
mv58 2.2s 2.1s 2.4s 2.7s 1.4s <Is <Is <Is <Is <Is 3s 
mv59 - - - 130s 40s 51s 82s 12s 75s 68s 00 

mv60 - - - - - - - - - - 00 

mv61 4.5s 4.5s 4.6s 5.7s 33s 20s 17s 18s 80s 34s 7s 
mv62 - - - - - - - - - - 00 

of a fact. There, a proof can only be found when C8 : Cw is at least 2 : 1. Moreover, 
the higher the ratio, the faster a proof is found. A similar observation can be made 
regarding cn25 (table 3) and mv57 (table 4). In general, 'W profits from considering the 
level. The only two remarkable exceptions to the "rule" are problems cn19 and cn21 
(table 2). But they reveal that computing a weighted sum of function symbols and 
variables already yields a strong heuristic. 

3.2 Finding Shorter Proofs Faster 

In [Wo90] several proof problems stemming from the equivalential calculus ([Lu70], 
pp. 250-277) and related calculi are discussed, which in part are also dealt with in 
[MW92]. Apart from the main problem of finding some proof (using OTTER), also the 
problem of finding shorter proofs than the ones found so far is addressed. This issue 
is important if the proofs obtained are to be presented to a human reader who quite 
naturally prefers short, less complex proofs. The search guiding heuristics, however, (in 
general) do not support this desire. So, in [W090] several methods are proposed how 
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Table 3 :  Results of  the  Basic Heuristic (cn25-cn33)

[Name [ 0 1 ]1 :3 ]1 :  212: 311 :  LT 313 :212 :1 ]3 :  14  1] OTTER]
cn25 33s | 18  | 15s | 11s
cn26 | — 1.25 l s  I s  l s  <ls 13s  | 1.7s | <1s | «1s -
cn27 | 4.7s | 1.1s | < l s  | <1ls | <1s  | <I1s | 1.3s | 1.7s | <1s | <1s 3s
cn28 | — — — — — | 73s | 50s | 15s | 11s | 36s 6038s
cn29 | 197s | 47s | 40s | 35s | 82s | — — — — — | ‘  622s
cn30 | 154s | 23s | 1 l s  | 5.2s | 1.7s | <1s  | 1.0s | 1.3s | 3.0s | 1.6s 161s
cn31 | — — — — | 94s | 25s | 16s | 9.6s | 17s | — 5611s
cn32 | — | 89s | 45s | 46s | 86s | — | — | — | — — 753s
cn33 [208s | 58s | 15s | 11s | 3.4s | 1.4s | 2.8s | 2.85 | <1s | 1.0s 239s

Name |0:1(1:3(1:2{2:3[1:1|4:3[3:2[2:1(3:1|4:1| OTTER
nv55  — — — — — — — — — — foo)

mv56 | 2.25 | 2.2s | 2.3s | 26s  | 1.45 | <1s | <1s | «1s | <1s | «1s 3s
mv57 | — — | 176s | 101s | 14s | 5.8s | 2.1s | 1.1s | <1s | <1s | 4475s
mv58 | 2.2s | 2.1s | 24s | 2.7s | 14s  | <1s  | <1s  | <I1s | <1s | <1s 3s
mv59 | — — — 1|130s | 40s | 51s | 82s | 12s | 75s | 68s oo
mv60 — — — — — — — — — — Oo

mv61 | 4.5s | 4.5s | 4.6s | 5.7s | 33s | 20s | 17s | 18s | 80s | 34s Ts
mv62 — — — — — — — — — — leo}

of a fact. There, a proof can only be found when cs: cw is at least 2 : 1. Moreover,
the higher the ratio, the faster a proofis found. A similar observation can be made
regarding cn25 (table 3 )  and mv57 (table 4 ) .  In general, w profits from considering the
level. The only two remarkable exceptions to  the “rule” are problems cn19 and cn21
(table 2). But they reveal that computing a weighted sum of function symbols and
variables already yields a strong heuristic.

3.2 Finding Shorter Proofs Faster

In [W090] several proof problems stemming from the equivalential calculus ([Lu70],
pp. 250-277) and related calculi are discussed, which in  part are also dealt with in
[MW92]. Apart from the main problem of finding some proof (using OTTER), also the
problem of finding shorter proofs than the ones found so far is addressed. This issue
is important i f  the proofs obtained are to  be presented to  a human reader who quite
naturally prefers short, less complex proofs. The search guiding heuristics, however, ( in
general) do not support this desire. So, in [W090] several methods are proposed how
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Table 5: Run Time and Proof Length 

Name o: 1 1 : 1 2: 1 3: 1 4: 1 5:1 6:1 7 : 1 8: 1 9: 1 10: 1 
ec69 Ills 

20 
74s 
20 

66s 
8 

16s 
8 

lls 
8 

lls 
8 

6s 
8 

3s 
8 

3s 
8 

3s 
8 

3s 
8 

18s 
25 

O.ls 
8 

0.3s 
7 

0.5s 
7 

0.3s 
, 8 

0.6s 
5 

15s 
22 

ec79 lOOs 
40 

41s 
35 

92s 
46 

51s 
43 

6s 
26 

10s 
29 

31s 
26 

73s 
26 

30s 
35 

20s 
25 

r86 3s 
31 

Is 
13 

0.7s 
8 

OAs 
8 

0.3s 
8 

0.3s 
8 

0.2s 
8 

0.2s 
8 

0.2s 
8 

O.ls 
8 

r88 6s 
13 

2s 
13 

1.5s 
7 

0.6s 
7 

0.3s 
7 

0.3s 
7 

0.3s 
7 

0.3s 
7 

0.3s 
7 

0.3s 
7 

1989 31s 
25 

15s 
21 

3s 
20 

5s 
7 

2s 
7 

1.2s 
7 

Is 
7 

OAs 
7 

0.5s 
7 

OAs 
7 

1990 107s 
10 

79s 
8 

4s 
8 

Is 
8 

Is 
8 

Is 
8 

OAs 
8 

0.3s 
8 

0.3s 
8 

0.3s 
8 

1991 25s 
13 

25s 
13 

9s 
5 

3s' 
5 

2s 
5 

2s 
5 

0.6s 
5 

0.6s 
5 

0.6s 
5 

0.6s 
5 

rgl02 44s 
32 

13s 
23 

8s 
25 

6s 
22 

7s 
22 

8s 
24 

7s 
20 

8s 
20 

8s 
22 

13s 
22 

to force OTTER into seeking (shorter) alternative proofs. But such a forced quest for 
shorter proofs often results in much longer run times. In particular, a level-saturation 
run (through the level of the shortest proof known so far)2, which seems to offer very 
good chances to find shorter proofs,3 is impractical. 

The heuristic t;;;r incorporates the level of a fact. By increasing the ratio Cs : Cw we 
gradually prefer facts with a smaller level. Experimental results summarized in table 5 
show that by increasing the ratio Cs : Cw (within reasonable boundaries) we are not only 
able to find (significantly) shorter proofs, but also to do so faster. As in subsection 3.1 
the head of a row lists the name of the problem (whose description can be found in 
appendix A.3), the columns refer to the different ratios, while the entries display run 
time (in seconds) and proof length. Note that [Wo90] refers to the number of (derived) 
proof steps as opposed to the proof length (equal to IPI) we use. The connection is 
simple: The number of derived steps is equal to the length minus the number of axioms. 

Examining table 5, we discover that except for the problems ec79 and rgl02 all other 
problems exhibit a "perfectly" regular behavior. By increasing the ratio Cs : Cw both run 
time and proof length continuously decrease until a certain "lower bound" is reached. 
As problems ec79 and rgl02 show, the length of the proofs and the run times may 
show some irregular behavior. Moreover, fastest and shortest proofs are not as per

2 A level-saturation run through level k corresponds to a breadth-first search (restricted to level k). 
3 A proof with level k can have at most the length 2k+1 - 1 and must have at least the length k +1. 

Raising k by 1 means that this upper bound will roughly double, while the lower bound is also raised 
by 1. This suggests that the length ora proof will (probably) increase with its level. 
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Table 5: Run Time and Proof Length

Name (0:1(1:1(2:1(3:1[4:1/5:1]6:1]7:1[8:1]9:1/10:1
ec69 | 111s | 74s | 66s | 16s | 11s | 11s 6s 3s 3s 3s 3s

20 20 8 8 8 8 8 8 8 8 8
ec79 | 100s | 41s | 92s | 51s 6s 10s | 31s | 73s | 30s | 20s 18s

40 35 46 43 26 29 26 26 35 25 25
r86 3s 1s |] 0.7s | 04s  | 0.35 | 0.3s | 0.25 | 0.2s | 0.2s | 0.1s | 0.1s

31 13 8 8 8 8 8 8 8 8 8
r88 6s 2s | 1.55 | 0.6s | 0.3s | 0.3s | 0.3s | 0.3s | 0.3s | 0.3s | 0.3s

. 13 13 7 7 7 7 7 7 7 7 7
1g89 | 31s | 15s | 3s Ss 2s [12s | 1s | 04s | 0.5s | 0.4s | 0.5s

25 21 20 7 7 7 7 7 7 7 7
1g90 | 107s | 79s | 4s 1s Is  Is  | 0.4s | 0.3s | 0.3s | 0.3s | 0.3s

10 8 8 8 8 8 8 8 8 8 | 8
1g91 | 25s | 25s | 9s 3s | 2s | 2s | 0.6s | 0.6s | 0.6s | 0.6s | 0.6s

13 13 5 5 5 5 5 5 5 5 5
rg l02  | 44s | 13s | 8s 6s Ts 8s 7s 8s 8 | 13s | 15s

32 23 25 22 22 24 20 20 22 22 22

to force OTTER into seeking (shorter) alternative proofs. But such a forced quest for
shorter proofs often results i n  much longer run times. In particular, a level-saturation
run (through the level of the shortest proof known so far)?, which seems to  offer very
good chances to  find shorter proofs,® is impractical.
The heuristic @ incorporates the level of a fact. By increasing the ratio cs : ¢ ,  we
gradually prefer facts with a smaller level. Experimental results summarized in table 5
show that by increasing the ratio cs : ¢,, (Within reasonable boundaries) we are not only
able to find (significantly) shorter proofs, but also to do so faster. As in  subsection 3.1
the head of a row lists the name of the problem (whose description can be found in
appendix A.3), the columns refer to  the different ratios, while the entries display run
t ime ( in seconds) and proof length. Note that [Wo90] refers to  the number of  (derived)
proof steps as opposed to the proof length (equal to |P|) we use. The connection is
simple: The number of derived steps is equal to  the length minus the number of axioms.
Examining table 5, we discover that except for the problems ec79 and rg102 all other
problems exhibit a “perfectly” regular behavior. By  increasing the ratio cs : cw both run
time and proof length continuously decrease until a certain “lower bound” is reached.
As problems ec79 and rg102 show, the length of the proofs and the run times may
show some irregular behavior. Moreover, fastest and shortest proofs are not as per-

2A level-saturation run through level k corresponds to  a breadth-first search (restricted to level k).
3A  proof  wi th level k can have at  most the length 2*+! — 1 and must have at  least the  length k + 1.

Raising k by  1 means that this upper bound will roughly double, while the lower bound is also raised
by 1. This suggests that the length of a proof will (probably) increase with its level.
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fectly correlated as they are for the other problems. But, as a common result, table 5 
demonstrates significant improvements both w.r.t. run time and proof length compared 
to the case where the level is not taken into account at all (ratio 0 : 1). Please note 
that the ratio 10 : 1 is not a "magic" boundary. Depending on the problem at hand, 
increasing the ratio even further can still yield shorter proofs. 

We would like to emphasize the results obtained in connection with problem ec69 
which corresponds to 'Theorem 5' in [W090] on pages 228 and 229. The first proof 
presented there has 31 derived steps. A second shorter proof has 18 derived steps, but 
required approximately seven times as much CPU time. By raising the ratio Cs : Cw 

to 10 : lour heuristic produced a proof using 6 derived steps ("proof length 8 minus 2 
axioms"). It succeeded in finding it roughly 37 times faster than it found the "longest" 
proof (ratio 0 : 1), which is, by the way, identical to the shorter proof found by OTTER. 

Appendix B displays all the different proofs found for problem 'ec69'. 

Despite these successes we nevertheless want to point out that (this way of) incor
porating the level into the heuristic weight does not guarantee to find shorter proofs 
(faster) by increasing the ratio Cs : Cw • But it seems that some problems connected 
with condensed detachment and logic calculi are particularly well-suited candidates to 
be tackled with such a heuristic. Firstly, there are in many cases proofs with a low level 
(which almost consequently are quite short). Secondly, the facts with a high weight 
w.r.t. the weighted sum w of (function) symbols appear at even lower levels so that the 
lesser "penalty" due to a lower level can compensate for their higher weight w.r.t. w 
(cp. appendix B). This entails their earlier selection (activation) during search. If, for 
some proof problem, no proof with these properties exists, then the beneficial outcomes 
of increasing the ratio Cs : Cw observed in connection with the examples in table 5 will 
(probably) not occur. 

Nonetheless, the simplicity and (experimentally documented) performance of heuris
tic W lead to the conclusion that it should not be ignored when addressing the issue of 
finding shorter proofs. 

4 The heuristic 1JJF R 

In section 1 the principle of our way to exploit past proof experience was sketched. 
Instead of (deterministically) transforming a known proof PA of a previously solved 
proof problem A into a proof PB of a (new) proof problem B, we have a search guiding 
heuristic use information acquired from the source proof PA (or even the complete 
search protocol SA) in order to search more efficiently for a proof of the target B. The 
advantage of this "method is a suitable compromise between 'flexibility' and 'specializa
tion'. A method for proving is called flexible if it is successful for a large class of (proof) 
problems in "acceptable" time. A method is called specialized if it is successful for a 
(very) small class of problems only, but when pr09ucing results, it does so much faster 
than more flexible methods. In other words, when making a flexible method more 
specialized, we (in general) enhance its performance with respect to a certain class of 
problems, but cause it to deteriorate with respect to its general applicability. We have 
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fectly correlated as they are for the other problems. Bu t ,  as a common result, table 5
demonstrates significant improvements bo th  w . r . t .  run t ime  and proof length compared
t o  the case where t he  level i s  not taken i n to  account a t  all ( ra t io  0 : 1 ) .  Please note
that the ratio 10 : 1 is not a “magic” boundary. Depending on the problem at hand,
increasing the ratio even further can still yield shorter proofs.
We would like to emphasize the results obtained in  connection wi th  problem ec69
which corresponds to ‘Theorem 5’ in  [Wo90] on pages 228 and 229. The first proof
presented there has 31 derived steps. A second shorter proof has 18 derived steps, but
required approximately seven times as much CPU  t ime. By  raising the ratio cs : Cw
t o  10 : 1 our heuristic produced a proof using 6 derived steps (“proof length 8 minus 2
axioms”). It succeeded in  finding i t  roughly 37 times faster than i t  found the “longest”
proof (ratio 0 : 1), which is, by the way, identical to the shorter proof found by OTTER.
Appendix B displays all the different proofs found for problem ‘ec69’.

Despite these successes we nevertheless want to  point out that (this way of) incor-
porating the level into the heuristic weight does not guarantee to find shorter proofs
(faster) by increasing the rat io cs : cw. But  i t  seems that some problems connected
with condensed detachment and logic calculi are particularly well-suited candidates to
be tackled with  such a heuristic. Firstly, there are in  many cases proofs with a low level
(which almost consequently are quite short). Secondly, the facts with a high weight
w.r.t.  the weighted sum w of (function) symbols appear at even lower levels so that the
lesser “penalty” due to a lower level can compensate for their higher weight w.r.t. w
(cp. appendix B). This entails their earlier selection (activation) during search. If, for
some proof problem, no proof with these properties exists, then the beneficial outcomes
of increasing the ratio cs : ¢,,  observed in  connection wi th  the examples in table 5 will
(probably) not occur.

Nonetheless, the simplicity and (experimentally documented) performance of  heuris-
tic w lead to the conclusion that i t  should not be ignored when addressing the issue of
finding shorter proofs.

4 The heuristic wrrR

In  section 1 the principle of our way to exploit past proof experience was sketched.
Instead of (deterministically) transforming a known proof P4  of a previously solved
proof problem A into a proof Pg  of a (new) proof problem B ,  we have a search guiding
heuristic use information acquired from the source proof Pa  (or even the complete
search protocol S4) in  order to search more efficiently for a proof of the target B.  The
advantage of this method is a suitable compromise between ‘flexibility’ and ‘specializa-
tion’. A method for proving is called flexible if  i t  is successful for a large class of (proof)
problems in  “acceptable” time. A method is called specialized i f  i t  is successful for a
(very) small class of problems only, but  when producing results, i t  does so much faster
than more flexible methods. In other words, when making a flexible method more
specialized, we ( in  general) enhance its performance with  respect to  a certain class of
problems, but cause i t  t o  deteriorate with respect t o  i t s  general applicability. We  have
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to find a reasonable compromise between flexibility and specialization, since it does not 
make sense to consider the extreme cases. On the one hand, flexible methods already 
exist, represented by basic ("conventional") methods. On the other hand, a completely 
specialized method is only profitable for exactly the proof problem it has specialized 
in. It is hence worthless when addressing the more interesting issue of proving similar, 
but not identical problems. 

By working information obtainable from past proof experience into the heuristic search, 
we do not depend on structural (syntactic) similarities to the same extent as other ap
proaches do. Furthermore, inadequacies of the source proof concerning its applicability 
to the target can be handled "on the side" because of the remaining degree of flexibility 
without having to resort to "expensive" patching strategies. (See also section 9.) 

In the sequel, we present the heuristic 'WFR which complies with our principle of ex
ploiting past proof experience. 'WFR is essentially an attempt to re-enact (parts of) a 
given source proof.4 This is achieved by giving smaller weights to facts derived during 
the attempt to solve the target problem which subsume a fact that contributed to the 
source proof (i.e., a positive fact). Such facts will henceforth be called focus facts. The 
inherent inflexibility of such an approach is moderated by combining it with the basic, 
heuristic 'W (cf. section 3). Furthermore, 'WFR also considers extensions of the source 
proof. This is accomplished by giving a reduced weight or, in other words, a lesser 
(weight) penalty to descendants of focus facts. Naturally, the reduction of the weight 
should decrease (i.e., the penalty should increase) with the distanceS of the descendants 
with respect to "cornerstones", namely focus facts. Note that we do not take into ac
count dependencies (ancestor-descendant relations) with respect to the source proof. 
We simply consider the set P of positive facts associated with the source proof P.A as 
a guideline by which we may orient ourselves (if possible). 

The special treatment of focus facts and their descendants is justified considering the 
following: Focus facts played the role of lemmas in the source proof. Since it must 
be assumed that at least some of them will also be lemmas in a proof of the (similar) 
target problem, they themselves and their descendants should receive special attention. 

Giving preference to certain facts and their descendants resembles the set of support 
(SOS) strategy used in resolution based theorem provers ([CL73]). Unlike the SOS 
strategy that classifies clauses as members or non-members of the SOS, we grade the 
credit given to a descendant which decreases with its distance from the focus of atten
tion, namely focus facts respectively the source proof. Note that we do not rigorously 
exclude all other facts. We shall now explain details. 

For the definition· of 'WFR the notions 'difference' and 'distance' with respect to focus 

4We emphasize the expressions 'attempt' and 'parts of': It might not be possible to re-enact the 
source proof as a whole, because some of the positive facts may not be deducible due to a different 
set of axioms used for the target problem. 

5Informally and to give the reader an intuitive idea what the notion 'distance' is supposed to 
denote in this context, we say that "the distance can (roughly) be measured in terms of the number 
of inference steps it took to generate a given descendant, starting to count when a focus fact was an 

immediate ancestor for the last time." 
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specialized method is only profitable for exactly the proof problem i t  has specialized
in. I t  is hence worthless when addressing the more interesting issue of proving similar,
but not identical problems.

By  working information obtainable from past proof experience into the heuristic search,
we do not depend on structural (syntactic) similarities to  the same extent as other ap-
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with respect to  “cornerstones”, namely focus facts. Note that we do not take into ac-
count dependencies (ancestor-descendant relations) with respect to the source proof.
We simply consider the set P of positive facts associated with the source proof P4  as
a guideline by  which we may orient ourselves ( i f  possible).

The special treatment of focus facts and their descendants is justified considering the
following: Focus facts played the role of lemmas in the source proof. Since i t  must
be assumed that at least some of them will also be lemmas in  a proof of the (similar)
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(SOS) strategy used in  resolution based theorem provers ([CL73]). Unlike the SOS
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4We emphasize the expressions ‘attempt’ and ‘parts of’: I t  might not be possible to re-enact the
source proof as a whole, because some of  the positive facts may not be deducible due to a different
set of  axioms used for the target problem.
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facts are pivotal. First, we define the difference diff between two facts A and.,\'. 

A <l A' 
diff(A, A') = { ~OO, otherwise 

For the time being, we content ourselves with this simple definition of difference 
(more complicated criteria may involve, for instance, homeomorphic embedding or 
(full) second order matching). Note that the values 0 and 100 are somewhat arbi
trary but intuitive hints of percentages, denoting 'no difference' and 'total difference', 
respectively. Or, expressed with opposite terms, 0 and 100 represent "perfect simi
larity" and "no similarity at all", respectively. As we shall see, the restriction of diff 
to .N lOO = {O, 1, ... , lOO} entails that all further computations will produce values 
from IN100, which makes computations more transparent and easier to interpret and to 
handle (than" for instance, computations involving unbounded values). 

diff is used to find out whether a given fact A is a focus fact, i.e., if it was useful with 
respect to the source proof PA. Let P be the set of positive facts associated with PA. 
We define 

V(A) = min ({ diff(A, A') I A' E PJ) . 

Hence, V(A) returns the minimal difference between a given fact A (target) and the 
positive facts (source). If V(A) = 0 then A is considered as a focus fact. 

The distance d(A) of a given fact A measures distance, roughly said, in terms of the 
number of inference steps separating A from the "nearest" ancestor which is a focus 
fact. It depends on the distance of the ancestors of A (if A is not an axiom) and V(A): 

if A is an axiom 

if Al and A2 are the ancestors of A 

, computes a value that is to represent the distances of the ancestors of A, if A is 
not an axiom. Otherwise, this value is specified by a parameter q E IN100. We chose 
a parameterized , employing a parameter q1 E [0; 1]. Depending on qll the result 
of , ranges between the minimum, the average and the maximum of the ancestors' 
distances. 

,(x,y) = min(x,y) + lq1' (max(x,y) - min(x,y))J 

Using q1 = 0 or q1 = 1, , computes the minimum or maximum, respectively. With 
q1 = 0.5, , computes the (integer part 6f the)6 average. 

The results of, (respectively q) and V are combined by 'IjJ yielding d(A). 'IjJ should
for obvious reasons-satisfy the following criteria. On the one hand, d(A) should be 
minimal (i.e., 0), if D(A) = 0 in which case A itself is a focus fact. On the other hand, 
the value produced by 'IjJ should increase (reasonably) with the values obtained from, 
and V in order to reflect the (growing) remoteness of A regarding focus facts (and, in 

6We restrict our computations to IN, because there is no gain in "high precision arithmetic" when 
dealing with weighting functions,. but there would be a loss in efficiency w.r.t. computation time. 
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facts are pivotal. First,  we define the difference diff between two facts A and.N'.

e rn  ff Aa
diff  (A,X) = { 100, otherwise

For the time being, we content ourselves with this simple definition of difference
(more complicated criteria may involve, for instance, homeomorphic embedding or
(full) second order matching). Note that the values 0 and 100 are somewhat arbi-
trary but  intuitive hints of percentages, denoting ‘no difference’ and ‘total  difference’,
respectively. Or, expressed with opposite terms, 0 and 100 represent “perfect simi-
larity” and “no similarity at all”, respectively. As we shall see, the restriction of diff
t o  INjoo = {0 ,1 , . . . , 100 }  entails that all further computations will produce values
from IN;go, which makes computations more transparent and easier to  interpret and to
handle (than for instance, computations involving unbounded values).

diff is used to  find out whether a given fact A is a focus fact, i.e., i f  i t  was useful with
respect t o  the source proof P4. Let P be the set of positive facts associated with Py.
We  define

D() )  = min  ({diff (A,X) |X € P } )  .

Hence, D(A) returns the minimal difference between a given fact A (target) and the
positive facts (source). If  D(A) = 0 then A is considered as a focus fact.
The distance d(A) of a given fact \ measures distance, roughly said, in  terms of the
number of inference steps separating A from the “nearest” ancestor which is a focus
fact. It depends on the distance of the ancestors of A (if A is not an axiom) and D(A):

dM = i g ,  D(V)), i f  A is an axiom
| $(1(d(A) ,d (22) ) ,  DA), if A and A,  are the ancestors of  A

~ computes a value that is to represent the distances of the ancestors of A, if A is
not an axiom. Otherwise, this value is specified by a parameter ¢ € Nıoo. We chose
a parameterized y employing a parameter ¢; € [0;1]. Depending on  q ı ,  the result
of y ranges between the minimum, the average and the maximum of the ancestors’
distances.

v(z,y) = min(z,y) + |g: - (max(z,y) — min(z,y))]
Using ¢; = 0 or ¢; = 1, 4 computes the minimum or maximum, respectively. With
qı = 0.5, 4 computes the (integer part of the)® average.
The results of y (respectively g) and D are combined by 1 yielding d(A). 1 should—
for obvious reasons—satisfy the following criteria. On the one hand, d()) should be
minimal (i.e., 0), i f  D(A) = 0 in which case X itself is a focus fact. On the other hand,
the value produced by 1 should increase (reasonably) with the values obtained from y
and D in  order to reflect the (growing) remoteness of A regarding focus facts (and, in

$We restrict our computations to  IN, because there is no  gain in  “high precision arithmetic” when
dealing wi th  weighting functions, but  there would be a loss in  efficiency w.r. t .  computation time.
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The derivation dependency graph on the left displays 
the (immediate) ancestor relation connected with the 
search protocol S =>'1; >'2; >'3; >'4; >'5; >'6, assuming 
that >'1 and >'2 are the immediate ancestors of >'4, >'3 
and >'4 are the immediate ancestors of >'5, and >'4 and 
>'5 are the immediate ancestors of >'6. 

Figure 2: Dependencies and distances 

a way, regarding the source proof). As a matter of fact, , already satisfies the latter 
criterion. Therefore, 'Ij; is (in parts) identical to ,. It also uses a parameter q2 E [0; 1]. 

0, y = 0 
'Ij;(x,y) = { min(x,y) + Lq2. (max(x,y) - min(x,y))J, otherwise . 

Example 4.1 Figure 2 depicts an exemplary ancestor-descendant relation (of an at
tempt to solve a target problem) in form of a derivation-dependency graph. Such a 
graph has nodes that are labeled with facts and edges pointing from immediate ancestor 
to immediate descendant. Next to each node we also give the distance d(>.) w.r.t. each 
fact >.. We assume that >'1, >'2 and >'3 are focus facts. Hence 'O(>'i) = 0 and therefore 
d(>'i) = 0 for i E {I, 2, 3}. We further assume that the remaining >'4, >'5 and >'6 are 
not focus facts, i.e., 'O(>.i) = 100 for i E {4, 5, 6}. The distances regarding >'4J >'5 
and >'6 were computed under the assumption that q1 = q2 = 0.5. The value of q does 
not matter here. For instance, d(>'4) = 'Ij;(,(d(>'1),d(>'2))''O(>'4)) = 'Ij;(,(O, 0), 100) = 

'Ij;(0,100) = 50. The example illustrates the growing of d(>.) as >. becomes more and 
more distant with respect to (the nearest) ancestors which are focus facts. 

Before proceeding, we shall investigate some borderline cases. (The following claims can 
be proven by induction on the immediate ancestor relation with axioms as base case.) 
Naturally, when referring to "facts" we refer to (given) axioms and their descendants. 

1.	 q1 = 0 and q2 = 0 

(a)	 q = 0: Then d(>.) = 0 for every fact >.. 
(b)	 q = 100: Then d(>.) = 0 if '0(>') = 0 or d(>.') = 0 for some ancestor >.' 

of >.. Otherwise, d(>.) = 100. This case corresponds in the main to the SOS 
strategy. Note that it degenerates into the preceding case if '0(>') = 0 for 
all axioms of the target problem. 

2.	 q2 = 1: Regardless of q1 or q we have d(>.) = '0(>'). This constellation can be 
considered as "highly specialized" in the deduction of focus facts, but unable to 
contribute anything beyond that. 

3.	 q1 = 1 and q2 = 0 
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The derivation dependency graph on the left displays
t he  (immediate) ancestor relation connected with the
search protocol S = Aj; Ag; Az; Ag; As; As, assuming
that  A;  and A,  are the immediate ancestors of  Ag, Az
and A4 are the immediate ancestors of As, and A4 and
As are the immediate ancestors of Ag.

Figure 2: Dependencies and distances

a way, regarding the source proof). As a matter of fact, y already satisfies the latter
criterion. Therefore, 1 is ( in  parts) identical to  y .  It also uses a parameter qz € [0; 1].

(x, y) = { 0 v= "’ min(z,y) + [gz - (max(z,y) — min(z,y))|, otherwise

Example 4 .1  Figure 2 depicts an exemplary ancestor-descendant relation (of an at-
tempt to solve a target problem) in  form of a derivation-dependency graph. Such a
graph has nodes that are labeled with facts and edges pointing from immediate ancestor
to immediate descendant. Next to each node we also give the distance d(A) w.r.t. each
fact X. We assume that Ay, A; and As are focus facts. Hence D(X;) = 0 and therefore
d(X;) = 0 f o r i  € {1,2,3}. We further assume that the remaining Ay, As and Ag are
not focus facts, i.e., D(X;) = 100 for i € {4,5,6} .  The distances regarding As, As
and As were computed under the assumption that qı  = go = 0.5. The value of  q does
not matter here. For instance, d(\4) = ¥(7(d(M),  d(A2)), D(A)  = %(7(0,0),  100) =
(0 ,100 )  = 50. The example illustrates the growing of  d(X) as A becomes more and
more distant with respect to (the nearest) ancestors which are focus facts.

Before proceeding, we shall investigate some borderline cases. (The following claims can
be proven by  induction on the immediate ancestor relation with axioms as base case.)
Naturally, when referring to “facts” we refer to (given) axioms and their descendants.

1. qgı=0andqz=0

(a) q=0 :  Then d(A) = 0 for every fact A.
(b) g = 100: Then d(X) = 0 if D(A) = 0 or d(X) = 0 for some ancestor X

of  A. Otherwise, d (A)  = 100. This case corresponds in  the main to the SOS
strategy. Note that i t  degenerates into the preceding case i f  D(A) = 0 for
all axioms of the target problem.

2. ga = 1: Regardless of ¢;  or q we have d ( \ )  = D(X). This constellation can be
considered as “highly specialized” in  the deduction of focus facts, but  unable to
contribute anything beyond that.

3. q ı  = l and gq; =0
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Figure 3: Behavior of WFR depending on the distance d 

(a)	 q = 0: Then d(.\) = 0 for every fact .\. 

(b)	 q = 100: Then d(.\) = V(.\) if .\ is an axiom. If.\ is not an axiom, then 
d(.\) = 0 if all immediate ancestors .\1 and .\2 satisfy d(Al) = d(.\2) = O. 
Otherwise, d(.\) = 100. Note that if V(.\) = 0 for all axioms of the target 
problem, then this case coincides with the preceding case 3a. 

The remaining task consists in combining the distance d(.\) and the value produced by 
the basic heuristic W in order to obtain a heuristic WFR that profits from both, but 
also diminishes their shortcomings. 

Among several sensible alternatives we picked the following: 

WFR(.\) = (d(.\) + p) . W(.\) , pE IN 

The parameter p controls the effect of d(.\) on the final weight WFR(.\). d(.\) will be 
dominant if p = o. In this case, if d(.\) = 0, WFR(.\) will also be 0 regardless of w(.\). 
As p grows, W increasingly influences the final weight, thus mitigating the inflexibility 
of the underlying method, namely using d(.\) alone as a measure of the suitability of 
a fact .\. For very large p, the influence of d(.\) becomes negligible, and WFR basically 
degenerates into w. The following example illustrates these aspects. 

Example 4.2 Suppose there are two facts .\1 and .\2 to be weighted by WFR whose 
basic weights are w(.\d = 15 and W(.\2) = 25. Figure 3 displays the straight lines 
representing WFR('\I) and WFR('\2) depending on d(.\I) and d(.\2)' respectively, for the 
twq cases p = 0 and p = 60. Assuming d(A2) = 12 we compute d(.\I) = 20 and 
d(.\d = 60 as the thresholds beyond which WFR(.\2) becomes smaller than WFR(.\d 
for the cases p = 0 and p = 60, respectively (cp. figure 3). This shows that the 
distance d(Al) of.\1 has to be at least 20 so that WFR('\I) can become equal or even 
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Figure 3: Behavior of wpr depending on the distance d

(a) q = 0: Then d()A) = 0 for every fact A.
(b) ¢ = 100: Then d(A) = D(A) i f  A is an axiom. If A is not an axiom, then

d(A) = 0 if  all immediate ancestors A; and A; satisfy d(A;) = d(A2) = 0.
Otherwise, d( \ )  = 100. Note that if  D(A) = 0 for all axioms of the target
problem, then this case coincides wi th the preceding case 3a.

The remaining task consists i n  combining the distance d(A) and the value produced by
the basic heuristic z in order to obtain a heuristic wrgr that profits from both, but
also diminishes their shortcomings.

Among several sensible alternatives we picked the following:

wrr(A)  = (dA )  +p )  =(M,  peN

The parameter p controls the effect of d(A) on the final weight wrgr(A). d(A) will  be
dominant i f  p = 0. In this case, if d( \ )  = 0, wrr()) will also be 0 regardless of w(A).
As p grows, w increasingly influences the final weight, thus mitigating the inflexibility
of the underlying method, namely using d(A) alone as a measure of the suitability of
a fact A. For very large p,  the influence of d(A) becomes negligible, and wpr basically
degenerates into w .  The following example illustrates these aspects.

Example 4.2 Suppose there are two facts Ay and )\, to be weighted by wrr  whose
basic weights are w(\y) = 15 and w(\2) = 25. Figure 3 displays the straight lines
representing wrr(A1) and wrr(A2) depending on d(A,) and d(A2), respectively, for the
two cases p = 0 and p = 60. Assuming d ( ) ; )  = 12 we compute d(\1) = 20 and
d(A1) = 60 as the thresholds beyond which wrr(A;)  becomes smaller than wrr(A1)
for the cases p = 0 and p = 60, respectively (cp. figure 3). This shows that the
distance d(X1) of A; has to be at least 20 so that wrr(A1) can become equal or even
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5 

greater than wFR(A2), if d(A2) = 12 and p = 0, whereas this threshold is higher, 
namely 60, if p is raised to 60. For p > 150 the smaller basic weight of Al cannot be 
compensated for by a higher distance anymore. (To be exact, a distance d(Al) > 100 
would be required, which is not possible.) This means, if p > 150, any fact A with a 
basic weight w(A) ~ 15 will always satisfy WFR(A) < wFR(A') for any fact A' with 
w(A') ;::: 25 regardless of dP) and d(A'). 

The results of our experiments with rJJFR are documented in the subsequent section. 

Experimental Results for WFR 

The experiments with rJJFR presented in this section are organized as follows. First of 
all we are going to examine the effects of various configurations of the parameters ql, 
q2 and p. The parameter q is ignored, because the axioms of a target problem here 
always are focus facts which makes q obsolete. 

But the performance of rJJFR not only depends on these parameters. To an even larger 
extent it depends on the set P of positive facts stemming from the source proof. Given a 
source problem, the basic heuristic w provides us (in general) with a number of different 
proofs for different ratios Cs : Cw . We shall not examine the performance of WFR w.r.t. 
all of these proofs. Since using rJJFR in a non-experimental setting necessitates to pick a 
source proof according to some criteria concerning the source proof, we shall investigate 
the performance of rJJFR regarding source proofs that satisfy such criteria. The criteria 
in question are 

• the length of the source proof 

• the length of the search sequence that yielded the source proof 

• the level of the source proof 

In this context, we consider shortest, longest, fastest, slowest proofs and proofs with a 
lowest or highest level. Note that "fast" and "slow" refer to the time needed to obtain 
a successful search and hence essentially refer to the length of the search sequence. 
This means that a proof is viewed as being (found) faster (slower) if the associated 
search sequence is shorter (longer). 

Besides the parameters that directly concern rJJFR, there are also the parameters Cs 

and Cw of the basic heuristic rJJ which rJJFR employs. Experiments have shown that 
raising the ratio Cs : Cw in order to favor facts with a lower level is (in general) not 
beneficial in connection with rJJFR. One reason for this is the "double" penalty imposed 
on a fact, because the distance d also grows with the "relative" level (relative to an 
ancestor which is a focus fact). Basically, in using a ratio Cs : Cw other than 0 : 1 
in connection with wFR, we are obviously trying to mix two strategies that do not 
profit from each other according to our experimental studies. We therefore keep Co : Cw 

fixed at 0 : 1, hence not taking into account the level. This observation reveals that 
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greater than wrr(A2), if d(A2) = 12 and p = 0, whereas this threshold is higher,
namely 60, if p is raised to 60. For p > 150 the smaller basic weight of A; cannot be
compensated for by a higher distance anymore. (To be exact, a distance d(A,) > 100
would be required, which is not  possible.) This means, if p > 150, any fact A with a
basic weight w(A) < 15 will always satisfy wrr(A) < wrr (A)  for any fact N with
w(X') > 25 regardless of d(A) and d(X').

The results of our experiments wi th  wrg are documented in  the subsequent section.

5 Experimental Results for wp

The experiments wi th  wpgr presented in this section are organized as follows. First of
all we are going to  examine the effects of various configurations of the parameters ¢;,
qz and p. The parameter g is ignored, because the axioms of a target problem here
always are focus facts which makes ¢ obsolete.
But the performance of wpR not only depends on these parameters. To an even larger
extent i t  depends on  the set P of  positive facts stemming from the source proof. Given a
source problem, the basic heuristic w provides us ( in  general) with  a number of different
proofs for different rat ios cs : cw. We  shall not examine the performance of wrg w. r . t .
all of these proofs. Since using @wrg i n  a non-experimental setting necessitates to pick a
source proof according to  some criteria  concerning the source proof, we shall investigate
the performance of wpfRr regarding source proofs that satisfy such criteria. The criteria
in question are

o the length of the source proof

e the length of the search sequence that yielded the source proof

eo the level of the source proof

In this context, we consider shortest, longest, fastest, slowest proofs and proofs with a
lowest or highest level. Note that “fast” and “slow” refer to  the time needed to obtain
a successful search and hence essentially refer to the length of the search sequence.
This means that a proof is viewed as being (found) faster (slower) i f the associated
search sequence is shorter (longer).
Besides the parameters that directly concern wrpg, there are also the parameters cs
and ¢ ,  of the basic heuristic @ which wrr employs. Experiments have shown that
raising the ratio cs : cw in  order to favor facts with a lower level is (in general) not
beneficial in  connection with torr. One reason for this is the “double” penalty imposed
on a fact, because the distance d also grows with the “relative” level (relative to  an
ancestor which is a focus fact). Basically, in  using a ratio cs : cw other than 0 : 1
i n  connection with @wrg, we are obviously t ry ing to mix two strategies that do not
profit from each other according t o  our experimental studies. We therefore keep cs : cy,
fixed at 0 : 1, hence not taking into account the level. This observation reveals that
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Table 6: Target: mv60, Source: mv59 (fastest, shortest) 

ql q2 p=O p= 20 p = 40 p = 60 p = 80 p = 100 P = 120 
0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 35s 87s - - - - -
0.25 0.50 69s - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 7s 19s 43s 103s 140s - -

0.50 0.50 19s 41s 68s 113s 121s - -

0.50 0.75 94s - - - - - -

0.75 0.25 5s 10s 17s 37s 53s 76s 97s 
0.75 0.50 7s lIs 20s 41s 45s 67s 109s 
0.75 0.75 32s 71s 98s 141s - - -

1.00 0.25 4s 7s lIs 17s 41s 47s 53s 
1.00 0.50 6s 8s 12s 20s 24s 54s 55s 
1.00 0.75 26s 33s 61s 99s 115s - -

(simple) algebraic combinations of heuristics do in general not produce a heuristic 
that benefits from its components in assimilating their strengths and compensating for 
their weaknesses. On the contrary, it is possible for such a mixture to perform worse 
than each of its components. More elaborate methods are called for when attempting 
to utilize several (different) heuristics in a profitable manner (e.g., 'TEAMWORK', cf. 
section 9). 

For our experiments we had ql and q2 range from 0 to 1 with 0.25 steps, while p took 
on values from {O, 20, ... , 120}. Since ql has no influence if q2 = 1 (cp. discussion of 
borderline cases in section 4), we only list one configuration with q2 = 1. Furthermore 
we omit all configurations with q2 = 0, because q2 = 0 entails d(A) = 0 for every fact A 
since in our experiments all axioms are focus facts (cp. borderline cases la and 3a), 
and therefore WFR coincides with the basic heuristic w, if p > 0, or with the FIFO 
strategy, if p = O. 

Consider table 6. Each row lists a different configuration of ql and q2, while each column 
refers to a different value of pdisplayed in the heads of the columns. The entries of 
the table show run times (as before in seconds, obtained on a SPARCstation ELC). 
The entry '-' again signifies that no proof could be found, because the memory limit 
(45 MB) was exceeded. -Besides the target problem (mv60), the caption displays the 
source problem (mv59) and what kind of proof of it was used by WFR when proving the 
target problem. (Recall that WFR employs a set of positive facts when computing D.) 
Here, the source proof is the one (among those found by w, cp. table 4) which is the 
fastest and at the same time the shortest. (We consider two proofs as the same if their 
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Table 6: Target: mv60, Source: mv59 (fastest, shortest)

qı q2 | p=0 |p=20 |p=40 |p=60 |p=80 |p=100 |p=120
0.00 025] — | — — — — — —
0.00 050 — | — — — — — —
0.00 0.751 — | — — — — — | =
0.00 1.00] — | — — — — — —
0.25 0.25 || 35s 87s — — — — —
0.25 0.50 || 69s — — — — — —

0.25 0.75 — — — — — — —
0.50 0.25 Ts 19s 43s 103s 140s — —
0.50 0.50 | 19s 41s 68s 113s 121s — —
0.50 0.75 || 94s — — — — — —
0.75 0.25 5s 10s 17s 37s 53s 76s 97s
0.75 0.50 Ts 11s 20s 41s 45s 67s 109s
0.75 0.75 || 32s 71s 98s 141s — — —
1.00 0.25 4s Ts 11s 17s 41s 47s 53s
1.00 0.50 6s 8s 12s 20s 24s 54s 55s
1.00 0.75 | 26s 33s 61s 99s 115s — —

(simple) algebraic combinations of heuristics do i n  general not produce a heuristic
that benefits from its components in  assimilating their strengths and compensating for
their weaknesses. On the contrary, i t  is possible for such a mixture to perform worse
than each of  i ts components. More elaborate methods are called for when attempting
to  utilize several (different) heuristics i n  a profitable manner (e.g., ‘TEAMWORK’, cf.
section 9).

For our experiments we had ¢q; and ¢, range from 0 to  1 with 0.25 steps, while p took
on values from {0,20, . . . ,120}.  Since qı has no influence if go = 1 (cp. discussion of
borderline cases in  section 4), we only list one configuration with ¢; = 1. Furthermore
we omit all configurations with  g,  = 0, because qz = 0 entails d(A) = 0 for every fact A
since in  our experiments all axioms are focus facts (cp. borderline cases l a  and 3a),
and therefore wrg coincides with the basic heuristic w ,  if p > 0, or  with the FIFO
strategy, i f  p = 0.
Consider table 6. Each row lists a different configuration of  ¢, and gz, while each column
refers to a different value of p displayed in the heads of the columns. The entries of
the table show run times (as before in  seconds, obtained on a SPARCstation ELC).
The entry ‘—’  again signifies that no proof could be found, because the memory limit
(45 MB)  was exceeded. Besides the target problem (mv60), the caption displays the
source problem (mv59) and what kind of  proof of  i t  was used by  wf r  when proving the
target problem. (Recall that  wrgr employs a set o f  posi t ive facts when computing D . )
Here, the source proof is the one (among those found by w ,  cp. table 4) which is the
fastest and at the same time the shortest. (We consider two proofs as the same i f  their
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Table 7: Overview of experiments with 'WFR 

Target Source 'WFR [1] 'WFR [2] 'WFR [best] 'W [best] 'Wl*] OTTER 

cn19 cn21 80s 63s 25s 84s - 423s 
cn21 cn19 43s 30s 27s 91s 61s 447s 
cn29 cn28 12s 28s 4s 35s 19s 257s 
cn29 cn30 69s 14s 6s 35s 15s 257s 
cn32 cn31 14s 15s 10s 45s - 511s 
cn32 cn33 25s 16s 9s 45s 28s 511s 
mv60 mv59 lOs 6s 4s - 20s 2035s 
mv62 mv59 18s 26s 12s - 80s 2041s 

associated sets of positive facts are equal.) 

Please note that mv60 could not be solved by 'W (see table 4), but, as table 6 reveals, 
it can be solved quite fast by 'WFR using the aforementioned proof of mv59-which was 
found by 'W in approximately 12 seconds-provided that the parameters qI, q2 and p 

are chosen "appropriately". As to the different configurations of these parameters, 
table 6 illustrates that, given a certain ql and q2, increasing p always leads to worse 
performance. Furthermore, it can be observed that ql should have higher values (close 
to 1), whereas q2 appears to guarantee better performance when set to smaller values 
(0.25-0.50). 

Appendix C provides a detailed overview of our experimentations concerning 'WFR 

and its performance in dependence of the parameters p, qI, q2 and the type of source 
proof. Unfortunately (but as expected) not all target-source combinations show such a 
regular behavior as displayed in table 6. As a matter of fact, the choice of p, ql and q2 

offering the best performance may vary significantly depending on the target-source 
combination. (E.g., the tables in subsection C.3 show that the best performance can be 
achieved when ql = 0, a setting which is absolutely detrimental considering subsections 
C.7 or C.8.) Furthermore, performance also depends on the type of source proof. 

Table 7 summarizes our experiments regarding 'WFR. Each row refers to a target-source 
combination. Target and source are given in columns 1 and 2, respectively. Columns 
3 and 4 show the results attained with 'WFR when employing two "standard" ~ettings 

of the parameters p, ql and q2, which must be seen as an attempt to find a parameter 
configuration that (often) allows for satisfactory results. These standard settings are 
[1] p = 20, ql = 0.75, q2 = 0.25, and [2] p = 0, ql = 1, q2 = 0.5. In both cases the 
fastest source proof was used. Column 5 displays the best result produced by 'WFR (see 
the respective subsections of appendix C). The best result of the basic heuristic (w.r.t. 
the target_ problem) is listed in column 6. Column 7 gives the best result obtained 
with 'W when adding the goal of the source problem to the axiomatization of the target 
problem. This is the simplest form of using past "experience" and will be discussed 
shortly. The last column shows the best result obtained with OTTER (taken from 
[MW92]). Note that OTTER uses a variety of heuristics besides the "basic" one we 
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Table 7: Overview of  experiments wi th wrr

Target || Source | wpr [1] | wrr [2] | wrr [best] | = [best] | w [*] | OTTER
cn i9  cn21  80s 63s 25s 84s — 423s
cn21 cn19 43s 30s 27s 91s 61s 447s
cn29 cn28 12s 28s 4s 35s 19s 257s

cn29 | |  cn30 | 69s | 14s 65 35s 15s | 257s
cn32 cn31l 14s 15s 10s 45s — 511s
cn32 cn33 25s 16s 9s 45s 28s 511s
mv60 mv59 10s 6s 4s — 20s 2035s
mv62 mv59 18s 26s 12s — 80s 2041s

associated sets of  positive facts are equal.)

Please note that mv60 could not be solved by tw  (see table 4), but ,  as table 6 reveals,
i t  can be solved quite fast by  wfr  using the aforementioned proof of mv69—which was
found by w= in approximately 12 seconds—provided that the parameters ¢ ; ,  ¢2 and p
are chosen “appropriately”. As to the different configurations of these parameters,
table 6 illustrates that, given a certain ¢; and gs, increasing p always leads to  worse
performance. Furthermore, i t  can be observed that ¢ ,  should have higher values (close
to 1), whereas gq; appears to  guarantee better performance when set to smaller values
(0.25-0.50).

Appendix C provides a detailed overview of our experimentations concerning WFR

and i ts  performance in  dependence of the parameters p ,  qı, q2 and the type of source
proof. Unfortunately (but as expected) not all target-source combinations show such a
regular behavior as displayed i n  table 6. As a matter of fact, the choice of  p,  ¢1 and ¢;
offering the best performance may vary significantly depending on the target-source
combination. (E .g . ,  the tables in subsection C .3  show that the  best performance can be
achieved when ¢; = 0, a setting which is absolutely detrimental considering subsections
C.7 or C.8.) Furthermore, performance also depends on the type of source proof.
Table 7 summarizes our experiments regarding wrg. Each row refers to  a target-source
combination. Target and source are given in columns 1 and 2, respectively. Columns
3 and 4 show the results attained with wrr  when employing two “standard” settings
of the parameters p ,  ¢; and q2, which must be seen as an attempt to  find a parameter
configuration that (often) allows for satisfactory results. These standard settings are
[1] p = 20, ¢1 = 0.75, qı = 0.25, and [2] p = 0, ¢; = 1, qz = 0.5. In both cases the
fastest source proof was used. Column 5 displays the best result produced by  r g  (see
the respective subsections of appendix C). The best result of the basic heuristic (w.r.t.
the target problem) is listed i n  column 6. Column 7 gives the best result obtained
with @ when adding the goal of the source problem to  the axiomatization of  the target
problem. This is the simplest form of using past “experience” and will be discussed
shortly. The last column shows the best result obtained with OTTER (taken from
[MW92]). Note that OTTER uses a variety of heuristics besides the “basic” one we
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used as a point of reference in subsection 3.1, some of which rigorously eliminate facts 
that have certain syntactic properties, and hence are unfair. 

Table 7 demonstrates that at least one of the standard settings is satisfactorily close to 
the best one (except for the first target-source combination in row one). Furthermore, 
although the best result of the basic heuristic 'W is already significantly superior to the 
(best) results of OTTER (except for mv60 and mv62), 'WFR can still improve performance 
by factors ranging from 3 to 9. As for mv60 and mv62, 'WFR not only allows to attain 
proofs where 'W failed ('WFR being restricted to 45 MB dynamic memory just like 'W), 

but it also finds these proofs substantially faster than OTTER. In this context we 
have to address the in part excellent performance of the "simplest form of using past 
experience" (see column 'W l*J). Note in particular that mv60 and mv62 can be proved 
quite fast this way. But also note that failure (for all ratios 0 : 1, ... ,4 : 1) may 
occur where even 'W does not fail. Apart from that, 'WFR performs better despite 
the overhead caused by its increased computational effort. Hence, better performance 
must be attributed to a more efficient search. Furthermore, adding the goal of the 
source problem to the axiomatization of the target problem is only admissible if the 
axiomatization of source and target are (known to be) equivalent. This is not necessary 
regarding 'WFR. We shall later see that 'WFR can be successfully employed where source 
and target axiomatization do differ (see section 8). 

Please note that all source proofs were found by 'W. The choice of the source problem 
followed the simple and straight forward rule to pick that source problem that has the 
same axiomatization as the target problem and is the most difficult problem solved so 
far (where 'difficulty' corresponds to 'run time'). 

A comparison of source proofs and target proofs (found by 'WFR using the respective 
source proofs) revealed that-as expected-the majority of the positive facts from the 
source proof also occur in the target proof. Most of the additional steps of the target 
proof have focus facts or immediate descendants of focus facts as their (immediate) 
ancestors. Figure 4 illustrates this aspect with an example. (Appendix B explains how 
to interpret proof listings.) 

The next section is going to present a further heuristic that can make use of past 
proof experience. That heuristic and 'WFR can profit from each other in two ways. 
First, one of these two heuristics may use a proof found by the other one (which it 
could not find by itself) to prove further problems (for which the other heuristic might 
fail). Moreover, a combination of these two heuristics further enhances performance as 
section 8 demonstrates. 

6 A Heuristic Based on Features 

In this section we are going to present a heuristic based on so-called features that also 
exploits past proof experience (cp. [SF71], [SE90], [Su90]). 
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used as a point of  reference in  subsection 3.1, some of which rigorously eliminate facts
that have certain syntactic properties, and hence are unfair.
Table 7 demonstrates that at least one of the standard settings is satisfactorily close to
the best one (except for the first target—source combination in  row one). Furthermore,
although the best result of the basic heuristic w is already significantly superior to the
(best) results of OTTER (except for mv60 and mv62), wrg can still  improve performance
by factors ranging from 3 to  9. As for mv60 and mv62, wrg not only allows to attain
proofs where w failed (wpr being restricted to  45 MB  dynamic memory just like =),
but i t  also finds these proofs substantially faster than OTTER. In this context we
have to address the in part excellent performance of the “simplest form of using past
experience” (see column w [#]). Note in  particular that mv60 and mv62 can be proved
quite fast this way. But also note that failure (for all ratios 0 : 1 , . . . ,4  : 1) may
occur where even tw  does not fail. Apart from that ,  wrr  performs better despite
the overhead caused by  its increased computational effort. Hence, better performance
must be attributed to a more efficient search. Furthermore, adding the goal of the
source problem to the axiomatization of the target problem is only admissible i f  the
axiomatization of source and target are (known to be) equivalent. This is not necessary
regarding wfr.  We shall later see that wrg can be successfully employed where source
and target axiomatization do differ (see section 8).
Please note that all source proofs were found by wm. The choice of the source problem
followed the simple and straight forward rule to pick that source problem that has the
same axiomatization as the target problem and is the most difficult problem solved so
far (where ‘difficulty’ corresponds to  ‘ run  time’).

A comparison of source proofs and target proofs (found by wrg using the respective
source proofs) revealed that—as expected—the majority of the positive facts from the
source proof also occur in  the target proof. Most of the additional steps of the target
proof have focus facts or immediate descendants of focus facts as their (immediate)
ancestors. Figure 4 illustrates this aspect with an example. (Appendix B explains how
to  interpret proof listings.)
The next section is going to  present a further heuristic that can make use of past
proof experience. That heuristic and wfr  can profit from each other in two ways.
First, one of these two heuristics may use a proof found by the other one (which i t
could not find by itself) to prove further problems (for which the other heuristic might
fail). Moreover, a combination of these two heuristics further enhances performance as
section 8 demonstrates.

6 A Heurist ic Based on  Features

In  this section we are going to present a heuristic based on so-called features that also
exploits past proof experience (cp. [SF71], [SE90], [Su90]).
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~ 1 1 i(x, iCy, x» 
~ 2 2 [ 1 , 1 ] i(x, iCy, i(z, y») 
~ 3 3 i(i(n(x),n(y»,i(y,x» 
~ 4 4 i(i(x, y), i(i(y, z), i(x, z»)) 
-~ 5 5 [ 4, 1 ] i(i(i(x,y),z),i(y,z» 
~ 6 6 [ 5 , 3 ] i(n(x),i(x,y» 
~ 7 7 [ 4 , 6 ] i(i(i(x, y), z), i(n(x), z» 
~ 8 8 i (i (i(x, y), y), i (i (y, x), x) ) 
~ 9 9 [ 5 , 8 ] i(x, i(i(x, y), y» 
~ 10 10 [ 8 , 2 ] i(i(i(x, iCy, x», z), z) 
~ 12 11 [ 4 , 9 ] i( i(i(i(x, y), y), z), i(x, z» 
~ 14 12 [ 4 , 3 ] i(i(i(x, y), z), i(i(n(y), n(x», z» 
~ 15 13 [ 12 , 10 ] i(i(n(x),n(i(y,i(z,y»»,x) 
~ 16 14 [ 7 , 13 ] i(n(n(x»,x) 
~ 17 15 [ 3 , 14 ] i(x, n(n(x») 
~ 18 16 [ 9 , 3 ] i(i(i(i(n(x), n(y», iCY, x», z), z) 
~ 19 17 [ 4 , 4 ] i(i(i(i(x, y), i(z, y», u), i(i(z, x), u» 
~ 20 18 [ 11 , 17 ] i(i(x, y), i(i(z, x), i(z, y») 
~ 21 19 [ 18 , 15 ] i(i(x,y),i(x,n(n(y»)) 
~ 22 20 [17,16] i(i(x, i(n(y), n(z»), i(x, i(z, y») 
~ 23 21 [ 20 , 19 ] i(i(n(x), y), i(n(y), x» 

61 22 [ 4 , 14 ] i(i(x,y),i(n(n(x»,y» 
91 23 [17,11] i(i(x, iCy, z», iCy, i(x, z») 

249 24 [ 18 , 21 ] i(i(x, i(n(y), z», i(x, i(n(z), y») 
250 25 [ 24 , 22 ] i(i(x,y),i(n(y),n(x») 
252 26 [ 11 , 25 ] i(x, i(n(y), n(i(x, y»») 
253 27 [ 23 , 26 ] i(n(x), iCy, n(i(y, x»» 

Figure 4: Proof of mv62 found by 'WFR when using the proof of mv59 found by 'W with 
ratio ~ : 1 as source proof. Focus facts are marked by ~. 

6.1 Fundamentals 

Features essentially describe syntactic (structural) properties of the facts a deduction 
system infers.7 In our case we have to deal with terms and their syntactic properties. 
Examples for features are the number of (distinct) variables of a term or the total 
number of function symbols occurring in a term. Generally, we view a feature as a 
function mapping a term into the set of integers (Z). 

Definition 6.1 (Feature, Feature Value) A function f: Term(F, V) --+ Z is called 
a feature. Given any A E Term(F, V) and a feature f, f(A) is called the feature value 
of A (with respect to the feature f). 

71f properties have to be dealt with that are not of a pure syntactic nature (e.g., the level of a 
fact), then it is assumed that the necessary information is nevertheless accessible. 
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> 1 1 i (z , i (y ,  z))
> 2 2 [ 1 ,  1 ]  i z i y , i ( z y )
> 3 3 i(i(n(2), n(y)),1(y, 7 )
> 4 4 i ( i ( 2 ,4 ) ,iv, 2), 13,2)

> 5 5 [ 4 ,  1 ]  i ( ( i ( = , y ) , 2 ) , i y ,2)
> 6 6 [ 5 ,  3 ]  i n ( z ) i ( z , y ) )
> 7 7 [ 4 ,  6 ]  i ( i ( i=z ,y ) ,2 ) , i (n (z ) ,2))
> 8 8 i ( i ( i ( z ,v),v), (iy, ) ,  7 )
> 9 9 [ 5 ,  8 ]  i(z, i( i(z,y),y))
> 10 10 [ 8 ,  2 ]  i ( ( i z , ( y ,2 ) ) ,2 ) ,2 )
> 2 1 [ 4 ]  9 ]  i(ii(i(e,y),y),2),i(e,2))
> 4 12 [ 4 ;  3 ]  i i ( i ( z  9). 2), i ( i ( n ( y ) , n (2 ) ) ;2)
> 15 13 [ 12 .10 ]  i(öln(2), n i u )  2)
> 16 14 [ 7 , 13 ]  i(n(n(z)),z)
> 17 15 [ 3 , 14 ]  i(z,n(n(z)))
> 18 16 [ 9 ;  3 ]  iGGä(n (e ) ,n (y ) ) , i ( y ,2)),2),2)
> 19 17 [ 4 }  4 ]  i ( i ( i ( i ( z , y ) , i ( z ,y)),w),ı(i(z,2), w))
> 20 218 [ 11 ,17 ]  i ( ö ( z , y ) ,i(i(z, x), 4(z, y)))
> 20 19 [ 18 ,15 ]  i ( i= ,y) , i (z ,n(n(y) ) ) )
> 22 20 [ 17 ,16 ]  i ( i ( z , i ( n ( y ) ,n(2))), iz,i(2,y)))
> 23 21 [ 20 ,19 ]  i(i(n(z) y),i(n(y),2))

61 22 [ 4 ,14 ]  i ( i (= ,y) , i (n(n(z) ) ,y) )
91 23 [ 17 ,11 ]  iCi(e,i(y,2)),  i (y, i(z,2)))

249 24 [ 18 ,21 ]  i ( i ( z , i ( n ( y ) , z ) ) ,(x, (n(z), y)))
250 25 [ 24 ,22 ]  i ( i z ,y ) , (n (y ) ,  n(z)))
252 26 [ 11 ,25 ]  i(z, i (n(y),n( i(z,y))))
253 27 [ 23 ,26 ]  i(n(z), i(y,n(i(y,2))))

Figure 4: Proof of mv62 found by wrr  when using the proof of  mv59 found by w with
ratio 2 : 1 as source proof. Focus facts are marked by > .

6 .1  Fundamentals

Features essentially describe syntactic (structural) properties of the facts a deduction
system infers.” In our case we have to deal with terms and their syntactic properties.
Examples for features are the number of (distinct) variables of a term or the total
number of function symbols occurring in a term. Generally, we view a feature as a
function mapping a term into the set of integers (Z).

Definition 6.1 (Feature, Feature Value) A function f :Term(F,V)—  Z is called
a feature. Given any A € Te rm(F ,V )  and a feature f ,  f (A )  is called the feature value
of A (with respect to the feature f ) .

I f  properties have to  be dealt with that are not of  a pure syntactic nature (e.g., the level of  a
fact), then i t  is assumed that the necessary information is nevertheless accessible.
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Hence we already know two features, namely the weighted sum w (cf. definition 3.1) 
and the level 8 (cf. definition 3.2) which are already employed by w. This suggests 
that they play a "special" role which will be discussed in section 7. 

The basic idea behind the use of features is to filid a way to discriminate positive 
facts from negative ones on the basis of feature values. To this end, one feature is 
(mostly) not enough. Therefore, we assume to have a set of k ~ 1 features it, ... , fk 
at our disposal. When searching for a proof we then attempt to "predict" if a given 
fact is useful or not (i.e., if it contributes to the proof finally found or not) with 
the help of its feature value vector. A feature value vector of a fact). is the vector 
(fl().), ... , fk().)) whose components are the feature values of ). with respect to the 
features f1, ... ,fk' Anticipating the usefulness of a fact is accomplished by a function p 
which maps a feature value vector into the set IN for instance, and gives facts thought 
to be useful small values and higher values to the rest, hence acting as a weighting 
function. Naturally, we cannot assume that p is always right. This means that a value 
computed by p merely indicates that a given fact (represented by its feature value 
vector) is probably the more useful the smaller this value is. (p is hence not different 
from any other weighting function.) It is our responsibility to design and apply p in a 
way that makes it the most reliable. 

There are many possibilities to design p : tlk 
----t IN. For instance, p can be a linear 

polynomial in the components of the feature value vector, i.e. 

k 

p((fl().),.'" fk().))) = L ai . fi().) 
i=l 

The coefficients at, . .. , ak are determined based on information gained from past ex
perience. This approach has been investigated in [SF71] w.r.t. a resolution theorem 
prover (and also in [Re83] applying it to solve the well-known fifteen puzzle). If we 
want p to be any function mapping tlk to IN, our choice must be a connectionist net
work (which has been appropriately configured). This approach has been pursued in 
[SE90] where the components of the feature value vector are presented to .the input 
layer of a connectionist network. The net is trained based on pas't experience through 
back propagation. 

We propose a different design of p which is comparatively simple, but nevertheless is 
quite successful. It is presented in the sequel, while the next section will demonstrate 
its capabilities in the light of experimental results. 

6.2 The Feature-Based Heuristic 'CVF 

Just like [SF71] and [SE90] we want p to make use of proofs found in the past. (This 
is anyway the only reasonable way to provide the necessary information as to how 
feature values possibly determine which fact is a positive one or a negative one.) These 
two approaches discern a learning phase during which coefficients respectively weights 
of a neural net are determined (learned), and an application phase during which the 
knowledge acquired in the learning phase is applied in order to solve a (new) similar 
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Hence we  already know two features, namely the weighted sum w (cf. definition 3 .1 )
and the level 6 (cf. definition 3.2) which are already employed by w .  This suggests
that they play a “special” role which will be discussed i n  section 7.
The basic idea behind the use of features is to find a way to  discriminate positive
facts from negative ones on the basis of feature values. To this end, one feature is
(mostly) not enough. Therefore, we assume to have a set of  k > 1 features f i , . . . ,  f i
at our disposal. When searching for a proof we then attempt to “predict” i f  a given
fact is useful or not ( i . e .  i f  i t  contributes to  the proof finally found or not) with
the help of i ts feature value vector. A feature value vector of a fact A is the vector
( f1(A) , . . . ,  f i (X) )  whose components are the feature values of A with respect to  the
features f i , . . . ,  fx. Anticipating the usefulness of  a fact is accomplished by  a function p
which maps a feature value vector into the set IN for instance, and gives facts thought
to  be useful small values and higher values to the rest, hence acting as a weighting
function. Naturally, we cannot assume that p is always right. This means that a value
computed by p merely indicates that a given fact (represented by its feature value
vector) is probably the more useful the smaller this value is. (p  is hence not different
from any other weighting function.) I t  is our responsibility to design and apply p in a
way that makes i t  the most reliable.
There are many possibilities to design p : Z“  — IN. For instance, p can be a linear
polynomial in  the components of  the feature value vector, i.e.

(AO),FA)  = Xai A)
i =1

The coefficients a1,...,ax” are determined based on information gained from past ex-
perience. This approach has been investigated in  [SF71] w.r.t. a resolution theorem
prover (and also in [Re83] applying i t  to solve the well-known fifteen puzzle). If we
want p to be any function mapping Z* to  IN, our choice must be a connectionist net-
work (which has been appropriately configured). This approach has been pursued in
[SE90] where the components of the feature value vector are presented to the input
layer of  a connectionist network. The net is trained based on  past experience through
back propagation.

We propose a different design of p which is comparatively simple, but nevertheless is
quite successful. I f  is presented in  the sequel, while the next section will demonstrate
i ts  capabilities in  the light of  experimental results.

6.2 The Feature-Based Heuristic wp

Just like [SF71] and [SE90] we want p to  make use of  proofs found in the past. (This
is anyway the only reasonable way to provide the necessary information as to  how
feature values possibly determine which fact is a positive one or a negative one.) These
two approaches discern a learning phase during which coefficients respectively weights
of a neural net are determined (learned), and an application phase during which the
knowledge acquired in the learning phase is applied in  order to solve a (new) similar
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problem. Past experience (e.g., a source proof) is not considered explicitly during 
application, being available implicitly in the form of coefficients respectively connection 
weights. This distinction is not as strict regarding our approach. Although there is a 
kind of learning phase, we also make explicit use of a source proof during application. 
Similar to 'WFR, we employ the set P of positive facts associated with the chosen source 
proof. But unlike 'WFR which centers its computations on subsumptiop we concentrate 
here on more abstract comparisons of feature values. The following definition clarifies 
what we mean by 'comparison'. 

Definition 6.2 (Minimal Feature Value Difference) Let fl, . .. , fk be an arbitra
ry but fixed set of features, 0 =J. "V; ~ 7l. for all 1 :s; i :s; k, and A a fact. 

"V; is called the (set of) permissible feature values (w.r.t. feature fi)' The minimal 
feature value difference w.r.t. feature fi is defined by 

~i(A) = min ({IJi(A) - v I I v E "V;}) 

Naturally, we shall use the set of positive facts P to determine Vi, ... , Vk , which is 
accomplished by letting 

Under these conditions it is evident that ~i(A) = 0 for all 1 :s; i :s; k if A E P. Given 
A 1. P, ~i( A) =J. 0 only if there is no A+ E P with the same feature value with respect 
to feature fi. Hence, ~i allows to detect "odd" feature values, i.e., feature values 
that do not occur among the feature values of the positive facts associated with the 
given source proof. In other words, the test for ~i(A) = 0 (for at least one feature fi) 
constitute~ a necessary criterion to decide whether fact A does or does not contribute 
to the source proof at hand. 

From this-point of view it appears to be reasonable to add the feature values of the 
target goal AG to the set of permissible feature values, i.e., we add Ji(AG) to "V; from 
above. This way we avoid possibly penalizing facts that share feature values with 
the current goal. (Note that especially features that do not encode pure syntactic 
properties, e.g., the level, do not always make sense in connection with a goal and 
should therefore be disregarded when extending the "V;.) 

Given a fact '\, its minimal feature value differences are combined in the obvious way 
to yield the feature weight WF('\): 

k 

WF(A) = L Ci . ~i(A), Ci E IN 
i=1 

It would be unwise to use WF alone as a search guiding heuristic, because we would be 
at the mercy of the FIFO strategy regarding all facts ,\ with WF(A) = O. Therefore, we 
combine the feature weight WF with the robust basic heuristic 'W in the following way 
to obtain the feature heuristic 'WF (which represents our version of p). Note that we 
coerce the selection of a fact A subsuming the current goal Ac by assigning the minimal 
weight 0 to it (cp. definition 3.3). 
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problem. Past experience (e.g., a source proof) is not considered explicitly during
application, being available implicitly in  the form of coefficients respectively connection
weights. This distinction is not as strict regarding our approach. Although there is a
kind of learning phase, we also make explicit use of a source proof during application.
Similar to wggr, we employ the set P of positive facts associated with the chosen source
proof. But  unlike wer which centers i ts  computations on subsumption we concentrate
here on more abstract comparisons of feature values. The following definition clarifies
what we mean by  ‘comparison’.

Definition 6.2 (Minimal  Feature Value Difference) Let f i , . . . ,  fx be an  arbitra-
ry but fized set of features, 0 £V .  CZ fora l l  1 < i  < k ,  and X a fact.

Vi is called the (set of) permissible feature values (w.r.t. feature f;). The minimal
feature value difference w.r.t. feature f; is defined by

AA)  = min ({Ifi(N) — v |  | v  € Vi})

Naturally, we shall use the set of positive facts. P to determine V4,...,  Vi, which is
accomplished by letting

Vi={fi(3) | \ *  € P}
Under these conditions i t  is evident that A;(A) =0 fo r  all 1 <: < k i f  A € P .  Given
A ¢ P ,  A i ( ) )  # 0 only i f  there is no A* € P with the same feature value with respect
to feature f;. Hence, A ;  allows to  detect “odd” feature values, i.e., feature values
that do not occur among the feature values of the positive facts associated with the
given source proof. In other words, the test for A;(A) = 0 (for at least one feature f;)
constitutes a necessary criterion to decide whether fact A does or does not contribute
to the source proof at hand.
From this point of view i t  appears to be reasonable to add the feature values of the
target goal Ag to  the set of permissible feature values, i.e., we add fi(Ag) to Vi from
above. This way we avoid possibly penalizing facts that share feature values with
the current goal. (Note that especially features that do not encode pure syntactic
properties, e.g., the level, do not always make sense in connection with a goal and
should therefore be disregarded when extending the V;.)
Given a fact A, its minimal feature value differences are combined in the obvious way
to yield the feature weight wr(X):

wr(A)  = Se  A ) ,  ag €N
i=1

It would be unwise to use wr  alone as a search guiding heuristic, because we would be
at the mercy of the FIFO strategy regarding all  facts A with wp(A) = 0. Therefore, we
combine the feature weight w r  with the robust basic heuristic @ in the following way
t o  obtain the  feature heur ist ic wr  (which represents our version of  p). Note that we
coerce the  selection of  a fact A subsuming the current goal Ag by  assigning the  minimal
weight 0 to i t  (cp. definition 3.3).
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if ,\ <I '\G 
WF('\) = { ~(,\) + WF('\), otherwise 

The following subsection is devoted to determining the coefficients Cl, ... , ck which 
regulate the impact of feature value differences on the feature weight WF. The method 
for determining these coefficients is naturally based on past experience. 

6.3 Computing Coefficients of W F 

Recalling subsection 2.2, past experience not only provides us with information on 
which facts are necessary to solve a given (source) problem A, i.e., the set of positive 
facts P. It also supplies a set of deduced, but irrelevant facts, namely the set of negative 
facts N. Henceforth we assume that W (respectively WF with Cl = ... = Ck = 0) was 
used with a certain ratio Cs : Cw to search for a proof P of A, producing a search 
protocol S from which P and N derive. We shall further assume that N "=10 (which is 
practically guaranteed for non-trivial problems). 

Since WF(A+) = 0 for all ,\+ E P regardless of the coefficients Ci (because ~i('\+) = 
o for all 1 :s; i :s; k), increasing these coefficients will only effect negative facts '\, 
and only those that have ~i('\) "=I 0 for at least one i E {I, ... , k}. If we choose 
the coefficients Cl, •.. ,Ck "sufficiently large", all these negative facts ,\ will eventually 
receive a penalty WF('\) that will cause them to disappear when searching for the 
proof P using WF('\) = w(,\) +WF('\)' But since it is not our goal to merely speed up 
the search for a proof already known, we have to be careful about raising coefficients. 
In order to ensure a good chance for WF to be successfully applicable to a similar 
problem B while at the same time reducing the number of negative facts (w.r.t. the 
proof of B finally found) WF admits when searching for a proof of B, we have to use a 
moderate and judicious way to set the coefficients. 

Therefore, considering the source problem 'A, we content ourselves with raising coef
ficients until "satisfactorily many" negative facts have received a "sufficiently large" 
penalty due to WF, while at the same time the increase in the total weight due to WF 
should be kept as low as possible. In other words, we want a certain percentage of 
the negative facts ,\ E N to have a weight wF(A) that only just suffices to make them 
disappear from the search. This way, they will not (all) be completely out of reach 
should a proof for a similar problem require them. In the following, we shall make 
these ideas more precise. 

A negative fact ,\ E N will definitely disappear from the search if its weight WF('\) is 
bigger than the maximal weight w~ax of all positive facts, where 

W~ax = max({ w(,\+) I ,\+ E P }) 

(Note again that w(,\+) = WF('\+) for all ,\+ E P.) We say that such a negative fact 
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fo ,  i f  Ad Agwr (A )  = { w (A )  + w r (A ) ,  otherwise

The following subsection is devoted to determining the coefficients ¢y , . . . ,  cr which
regulate the impact of feature value differences on the feature weight wr.  The method
for determining these coefficients is naturally based on past experience.

6 .3  Computing Coefficients o f  wy

Recalling subsection 2.2, past experience not only provides us with information on
which facts are necessary to solve a given (source) problem A,  i.e., the set of positive
facts P .  I t  also supplies a set of  deduced, but irrelevant facts, namely the set of negative
facts N .  Henceforth we assume that to  (respectively w r  with ¢ ;  = - - -  = ¢x  = 0)  was
used with a certain ratio cs : ¢ ,  to  search for a proof P of A ,  producing a search
protocol S from which P and N derive. We shall further assume that N # § (which is
practically guaranteed for non-trivial problems).

Since wp(AT) = 0 for all At € P regardless of the coefficients c; (because A;(A*) =
0 for all 1 < 7 < k ) ,  increasing these coefficients will only effect negative facts A,
and only those that have A;(A) # 0 for at least one i € {1 , . . . , k } .  If we choose
the coefficients ci, . . . ,  cr “sufficiently large”, all these negative facts A will eventually
receive a penalty wg(A) that will cause them to  disappear when searching for the
proof P using wr(A) = w(A) + wr(A). But since i t  is not our goal to merely speed up
the search for a proof already known, we have to be careful about raising coefficients.
In order to  ensure a good chance for w r  to be successfully applicable to a similar
problem B while at the same time reducing the number of negative facts (w.r.t. the
proof of  B finally found) w r  admits when searching for a proof of B ,  we have to  use a
moderate and judicious way to set the coefficients.

Therefore, considering the source problem ‘A, we content ourselves with raising coef-
ficients until “satisfactorily many” negative facts have received a “sufficiently large”
penalty due to  wr, while at the same time the increase in the total weight due to wp
should be kept as low as possible. In  other words, we want a certain percentage of
the negative facts A € N to have a weight wr(A) that only just suffices to make them
disappear from the search. This way, they will not (all) be completely out of reach
should a proof for a similar problem require them. In the following, we shall make
these ideas more precise.

A negative fact A € N will definitely disappear from the search i f  its weight w())  is
bigger than the maximal weight w }  of all positive facts, where

wh. =max({@w(At) | Ate P } )max

(Note again that w(At)  = wp(At) for all AT € P.) We say that such a negative fact

1
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is edged out. Only the following set of negative facts E ~ N can be edged out: 

E = { .\ E N I ::J 1 ::; i ::; k : ~i ( .\) -=J 0 } 

The negative facts .\ whose weight v:JF(.\) is affected by increasing Ci are collected in 
the sets 

Ni = {.\ E N I ~i ( .\) -=J O}, 1::; i ::; k . 

(Hence, E = Uf=l Ni. Note that the Ni are not necessarily a parti tion of E.) Increasing 
Ci by 1 ::; Ci E IN will lead-according to the experience represented by (P and) .N-to 
raising the weight of negative facts by at most Ci . diax , where diax is the maximal 
feature value difference regarding feature !i, i.e., 

d,,!,ax = { max( {~i(.\) I .\ E Ni}), Ni -=J 0 
~ 0, Ni = 0 

The negative facts ei(Ci) that are edged out on account of raising Ci by Ci can be 
determined as follows. (To this end we have to make v:JF'S dependence on Cl, ... ,Ck 
explicit to facilitate the notation.) 

ei(C) = {.\ E Ni I	 v:JF(.\; Cl, ... , Ck) ::; w~ax 1\ 

v:JF(.\; Cl,· •. , Ci-l, Ci + C, Ci+l,·· . , Ck) > W~ax } 

Since our goal is to edge out as many negative facts as possible while at the same time 
keeping the increase of their weights low, 

C· . , , d,,!,ax > 1 

Ci . diax = 0 

measures the degree to which we achieved this trade off. That Ci which belongs to the 
maximal ai is then to be raised by Ci. Since it is desirable to increase coefficients in 
a step-by-step manner, always looking for a raise that edges out many negative facts, 
but increases their weights the least, Ci should be minimal, i.e., there is no c < Ci with 
ei ( c) -=J 0. 
Computing the ai and raising the respective Ci is iterated until all .\ E E have been 
edged out or a satisfactory percentage e E lNlOO of all negative facts has been edged 
out. 

So far we take into account all features when computing coefficients. It makes sense to 
exclude a feature !i if the associated set Ni is rather small, i.e., by increasing Ci we can 
only expect to get rid of a (relatively) small number of negative facts. Hence we risk to 
edge out negative facts that might be useful for proving similar problems, but we gain 
little. Therefore, we refine the procedure for determining the coefficients by enabling 
it to exclude those features !i whose associated sets Ni only account for a percentage 
of all negative facts that is below a given threshold ni E lNlOO , i.e., 

INiI 
100· 1Nl < ni 

6.3 Computing Coefficients of  w r  29

is edged out. Only the following set of negative facts EC N can be edged out:

E= f I i eN  | N< iLk : AA) #0}

The negative facts A whose weight wg(A) is affected by increasing c; are collected in
the sets

No={AeN | A i (A )#0 } ,  1< i<k .

. (Hence, E = J ,  Mi. Note that the N ;  are not necessarily a partition of E . )  Increasing
ce by 1 <¢ ;  € IN wi l l  lead—according to  the experience represented by  (P  and). N—to
raising the weight of negative facts by at most ¢ ;  - d i “ ,  where d;*** is the maximal
feature value difference regarding feature f;, i.e.,

gros = [maa({A0) | A AD,  MA
: - 0 ,  N ;  —

The negative facts &;(e;)  that are edged out on  account of  raising ci by  ¢ ;  can be
determined as follows. (To this end we have to  make wr ’s  dependence on ¢ ; , . . . , c
explicit to facilitate the notation.)

Ei le)  = { 1  €ENM | WA CL , . . . ) ,Ck )  S Wax  A
wr(Asery ny  Cin, Ci FE, Citry ey )  > wh, }

Since our goal is to  edge out as many negative facts as possible while at the same t ime
keeping the increase of their weights low,

[€:(e:)]
a: = = ,  E i “  d re  > 1

i=  Ci

00 ,  E i  dres =0

measures the degree to which we achieved this trade off. That ¢; which belongs to the
maximal a ;  i s  then to  be  raised by  ¢ ; .  Since i t  i s  desirable t o  increase coeflicients in
a step-by-step manner, always looking for a raise that edges out many negative facts,
but increases their weights the least, ¢ ;  should be minimal, i.e., there is no £ < ¢ ;  with
Ee)  #0 .
Computing the a; and raising the respective c; is iterated until all A € E have been
edged out or a satisfactory percentage e € Nıoo of all negative facts has been edged
out.

So far we take into account all features when computing coefficients. It makes sense to
exclude a feature f; i f  the associated set N ;  is rather small, i.e., by  increasing c; we can
only expect to  get r id  of  a (relatively) small  number of  negative facts. Hence we risk to
edge out negative facts that might be useful for proving similar problems, but we gain
l i t t le. Therefore, we refine the procedure for determining the coefficients by  enabling
it to  exclude those features f; whose associated sets N ;  only account for a percentage
of all negative facts that is below a given threshold n ;  € Nıoo, i.e.,

Ni]100-
IN|

< ng
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input: P, N, 11, ... , Ik 

compute E 
compute W~ax 
compute Ni for all 1 :::; i :s; k 
determine I 
compute d'iax for all i E I 
m := 0 'number of negative facts edged out so far' 
Cl := ... := Ck := 0 

while m < IEI 1\ I~I' 100 < e do 
{ 

compute minimal E:i for each i E I 
determine £i(E:i) for each i E I 
compute ai for each i E I 
a j = max( {ai i E I})1 

Cj := Cj + E:j
 

m := m + l£i(E:i)1
 
} 

output: Cl, ... , Ck 

Figure 5: Algorithm Fe for computing coefficients of WF 

This can be accomplished by letting I = {i I 100· wr 2::: ni } and then considering
 
only those features fi where i E I (instead of i E {1, ... ,k}).
 

Figure 5 summarizes the procedure just described in algorithmic form.
 

Before concluding this section and continuing with section 7, which documents our ex

perimental results regarding 'WF, we sketch the 13 features f1,' .. , f13 CODE currently
 
has at its disposal.
 

• h is equal to the weighted sum w (cp. definition 3.1). 

•	 f2 computes the number of distinct variables, e.g., f2( i(x, i(y, x))) = 2. 

• fa and f4 compute the number of occurrences of an associated function symbol. 
(Note that 1.1'1 :s; 2 for all problems considered so that two such features suffice; 
if 1.1'1 = 1 then feature f4 is not used.) Example: Suppose that the function 
symbol i is associated with fa and n with 14. Then for a fact >. = i(x, n(n(x))) 
we obtain fa(>.) = 1 and f4(>') = 2. 

•	 fs and f6 compute the maximal nesting of an associated function symbol, where 
the maximal nesting is the maximal number of consecutive occurrences of the 
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i npu t :  P ,  N ,  f i , . . . , fk

compute FE
compute w l _
compute N ;  f o r  a l l  1< :<k
determine /
compute d*** fo r  al l  i €]
m:=0  ‘number of negative facts edged out so far
a i= - - - = Cc4=0

’

whi le  m < |E |  A i 100 <e  do
{

compute minimal es; f o r  each : €
determine E;(e;) f o r  each i € I
compute a ;  fo r  each : € I
a; =max({a; | i € IH
Cj = CC; +E ;
m : =  m + |&(&)|

}
ou tpu t :  c¢ i , . . . ,Ck

Figure 5: Algorithm FC for computing coefficients of wp

This can be accomplished by letting 7 = { i  | 100 - wn > n ;} and then considering
only those features f; where ¢ € I (instead of ¢ € {1 , . . . ,k } ) .
Figure 5 summarizes the procedure just described in algorithmic form.
Before concluding this section and continuing with section 7, which documents our ex-
perimental results regarding wr, we sketch the 13 features f i , . . . ,  fis CODE currently
has at its disposal.

e f i  is equal to the weighted sum w (cp. definition 3.1).

¢ f> computes the number of distinct variables, e.g., fa(i(z,i(y,z))) = 2.

e f3 and f; compute the number of occurrences of an associated function symbol.
(Note that |F |  < 2 for all problems considered so that two such features suffice;
if |F|  = 1 then feature f; is not used.) Example: Suppose that the function
symbol ¢ is associated with fs and n with fy. Then for a fact A = i (z ,  n(n(z)))
we  obtain f3(A) =1  and fa(A) = 2.

e fs and fg compute the maximal nesting of an associated function symbol, where
the maximal nesting is the maximal number of consecutive occurrences of the
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respective function symbol on the branches of the fact (term) viewed as .tree. 
(The annotation concerning features hand 14 is correspondingly valid here.) 

•	 17 is equal to the level 8 (cp. definition 3.2). 

• Is	 computes the difference of the weighted sum of the first and second argument 
of a fact (term) that has a binary function symbol at top level, i.e., Is(e(t 1 , t 2 )) = 
U?(td - w( t 2 ). If there is no binary function symbol at top level, Is returns O. 

•	 19 and 110 compute the minimum respectively maximum of w(td - w(t2 ) for all 
occurrences of a subterm e(tl, t 2 ) in the fact, where e is some binary function 
symbol in F. 

•	 111 counts the number of occurrences of a term of the form e(~, 0, where ~ E V 
and e E F. 

•	 112 and 113 return the weighted sum of the first and second argument of the fact, 
respectively, if there is a binary function symbol at top level; otherwise, both 
return the weighted sum of the whole fact (like feature JI). 

Naturally, the choice of features has a strong influence on what can be achieved 
with WF. The main demand on the features is to be distinctive with respect to positive 
and negative facts, i.e., there should not be too many negative facts for which there is 
no feature that allows to identify them as such. In other words, for most of the nega
tive facts>' there should be at least one feature Ii with Ji(>.) 1:. 1;i. The above features 
suffice on that score for the problems considered here. For different problem sets and 
in particular in connection with different calculi extensions and modifications might 
be called for. (Note that an "abundance" of features is not harmful since ineffective 
features can be excluded by setting the respective Ci = 0.) 

7 Experimental results for '(JJF 

In this section we present our experimental studies regarding WF. In order to facilitate 
their representation and to avoid getting lost in a multitude of possible parameter con
figurations, we propose the following procedure. We compute the coefficients Cl, ••• , C13 

using algorithm FC depicted in figure 5. Consequently, we have to deal with the pa
rameter e determining the percentage of negative facts we wish to edge out and the 
percentages ni of negative facts that have to he in each Ni in order for feature Ii to 
be taken into account (cp. section 6). By not distinguishing between the ni we reduce 
the number of parameters of algorithm FC to two, namely e and n = nl = ... = n13. 

As for the parameters Cs and cw , we shall use the same ratio when tackling the target 
problem as we used when proving the source problem (which provides us with the set 
of positive and negative facts required by algorithm FC and wF)'. 

Features 11 (i.e., w) and 17 (i.e., 8) are ignored by always assigning 0 to Cl and C7, 

because, in a way, both 11 and h are already taken care of by w. But note that W 
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respective function symbol on  the branches of  the fact ( term) viewed as tree.
(The annotation concerning features f3 and fy i s  correspondingly valid here.)

e fz  is equal to  the level § (cp. definition 3.2).

e fs computes the difference of the weighted sum of the first and second argument
of a fact (term) that has a binary function symbol at top level, i.e., fs(e(t1,%2)) =
w(ty) — w(t2). If there is no binary function symbol at top level, fs returns 0.

e fy and fio compute the minimum respectively maximum of w(t;) — w(t2) for all
occurrences of  a subterm e( t1 , t2 )  i n  the  fact, where e is  some binary function
symbol in  F.

e fir counts the number of occurrences of a term of the form e(E,E), where £ € V
and e € F.

e fiz and fız3 return the weighted sum  of  the first and second argument of  the  fact,
respectively, i f  there is a binary function symbol at top level; otherwise, both
return the weighted sum of the whole fact (like feature f i ) .

Naturally, the choice of features has a strong influence on what can be achieved
with wr.  The main demand on the features is to  be distinctive wi th  respect to  positive
and negative facts, i.e., there should not be too many negative facts for which there is
no feature that allows to identify them as such. In other words, for most of the nega-
tive facts A there should be at least one feature f; with  f ; ( \ )  ¢ Vi. The above features
suffice on that score for the problems considered here. For different problem sets and
in particular in connection with different calculi extensions and modifications might
be  called for. (Note that an  “abundance” of  features is  not harmful since ineffective
features can be excluded by setting the respective ¢ ;  = 0.)

7 Experimental results for wp

In  this section we present our experimental studies regarding wr. In  order to facilitate
their representation and to avoid getting lost in  a multitude of possible parameter con-
figurations, we propose the following procedure. We compute the coefficients cy, . . . ,  C ı3

using algorithm FC depicted in  figure 5. Consequently, we have to deal with the pa-
rameter e determining the percentage of negative facts we wish to  edge out and the
percentages n ;  of  negative facts that have to  be  in each N ;  in order for feature f; to
be taken into account (cp. section 6). By  not distinguishing between the n;  we reduce
the number of  parameters of  algorithm FC  to  two, namely e and n = ny; = - - -  = ngs.
As for the parameters cs and c,,, we shall use the same ratio when tackling the target
problem as we used when proving the source problem (which provides us with the set
of positive and negative facts required by  algorithm FC  and wp).

Features f;  (i.e., w )  and fr  (i.e., 6) are ignored by  always assigning 0 to  ¢ ;  and cz,
because, i n  a way, both f i and fr are already taken care of by w .  But  note that =
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Table 8: Using proof of cn06 found with ratio 4 : 1 for proving cn03; the arrows 
signify that the results due to the respective parameter configuration of e (rows) and n 
(columns) are identical to the one pointed to by the arrow, because algorithm FC 
produced the same coefficients. 

20 400 10 30 50 60 70 
f- f- f- f- f- f- f-40 45% 

50 ,
f- f- f- f- f- f- f-59% 

f- f- f- f- f-60 60%  64% 54s 64% 46s 
f- f- f-70 70% 53s 70% 48s 71% 37s 71% 33s 70% 33s 

f-f- f-80 80% 21s 80% 21s 81% 15s 80% 18s 74% 20s 
f- f-90 89%  89% 48s 88% 57s 86% 6s 85% 7s r 

uses so-to-speak "absolute" feature values, whereas 'WF utilizes "relative" feature values 
resulting from the comparison with permissible feature values. Section 3 has motivated 
why w (1) and 8 (h) are used the way they are used by 'W. Employing them again in 
connection with 'WF does not seem reasonable under these circumstances. We would 
be imposing a "double" penalty again because of mixing two heuristics (again). On 
the other hand, using the absolute feature values of all remaining features is extremely 
questionable, since there seems to be no (apparent) reason to penalize a fact for, say, 
having a first or second argument at top level with a high weight due to w in addition 
to its total weight. In other words, the feature values produced by the remaining 
features do-in contrast to features 11 and h-not correlate to the usefulness of a 
fact sufficiently enough to justify the use of absolute values. Nonetheless, wand 8 are 
features and are therefore inclU:ded into the set of features. Different approaches to 
utilizing features may favor their homogeneous use. 

We shall demonstrate with the help of target cn03 and source cn06 how the parameters 
e and n influence the performance of 'WF for all three different source proofs (and hence 
different sets of positive and negative facts) found by 'W for cn06 at ratios 2 : 1, 3 : 1 
and 4 : 1 (cp. table 1). Table 8 shows the results obtained when making use of the 
proof of cn06 found by 'W with ratio 4: 1, choosing e E {40,50, ... ,90} (rows) and 
n E {O, 10, ... ,70} (columns). The corresponding tables for ratios 2 : 1 and 3 : 1 can 
be found in appendix D. The entries in table 8 again display run times in seconds 
obtained on a SPARCstation ELC, '-' denoting failure due to the 45 MB memory 
restriction. Furthermore, they display the actual percentage of negative facts edged 
out, since the percentage e that is to be only just reached possibly cannot be reached8 

or may be significantly exceeded9 • In particular when too many features are excluded 
due to increasing n, algorithm FC has little choice as to which coefficients to raise. 
The arrows indicate that the respective parameter configuration for e and n yields the 
same feature coefficients as the one pointed to by the arrow. An example should clarify 

81 UiE1MI/INI may be smaller than e. . 
9The number m of negative facts edged out is increased by 1£($i)1 in each iteration of algorithm Fe 

which might cause it to "overshoot the mark" . 
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Table 8: Using proof of ¢n06  found with ratio 4 : 1 for proving cn03; the arrows
signify that the results due to  the respective parameter configuration of e (rows) and n
(columns) are identical to  the one pointed to  by the arrow, because algorithm FC
produced the same coefficients.

0 10 20 30 40 50 60 | 70
40  145% — — — — — — — —
50  | 59% — — +— +— — — — —

60 | 60% — — 64% 54s — — — — | 64% 46s
70 | 70% 53s | 70% 48s | 71% 37s | 71% 33s | — — — | 70% 33s
80 [80% 21s {80% 21s |81% 15s |80% 18s | — +— «— |74% 20s
90 | 89% — |89% 48s [88% 57s | 86% 6s|«— 8% 7s | — T

uses so-to-speak “absolute” feature values, whereas w r  utilizes “relative” feature values
resulting from the comparison with  permissible feature values. Section 3 has motivated
why w ( f i )  and 6 (f7) are used the way they are used by = .  Employing them again in
connection w i th  w r  does not seem reasonable under these circumstances. We  would
be imposing a “double” penalty again because of mixing two heuristics (again). On
the other hand, using the absolute feature values of all remaining features is extremely
questionable, since there seems to be no (apparent) reason to  penalize a fact for, say,
having a first or second argument at top level with  a high weight due to w in  addition
t o  i ts total weight. In other words, the feature values produced by the remaining
features do—in contrast to  features f i  and fr—mnot correlate to  the usefulness of a
fact sufficiently enough to  justify the use of absolute values. Nonetheless, w and ö are
features and are therefore included into the set of features. Different approaches to
util izing features may favor their homogeneous use.

We shall demonstrate with the help of  target cn03 and source cn06 how the parameters
e and n influence the performance of wp  for all three different source proofs (and hence
different sets of positive and negative facts) found by w for cn06 at ratios 2 :1 ,3  : 1
and 4 : 1 (cp. table 1). Table 8 shows the results obtained when making use of the
proof of cn06 found by w with ratio 4 : 1, choosing e € {40,50, . . . ,90}  (rows) and
n € {0 ,10 , . . . ,70}  (columns). The corresponding tables for ratios 2 :1  and 3 :  1 can
be found in appendix D .  The entries in table 8 again display run times in  seconds
obtained on a SPARCstation ELC, ‘—’ denoting failure due to  the 45 MB  memory
restriction. Furthermore, they display the actual percentage of negative facts edged
out, since the percentage e that is to be only just reached possibly cannot be reached®
or may be  significantly exceeded®. In  particular when too many features are excluded
due to  increasing n ,  algorithm FC has l itt le choice as to  which coefficients to  raise.
The arrows indicate that the respective parameter configuration for e and n yields the
same feature coefficients as the one pointed to  by  the arrow. An  example should clarify

8| Uses Ni l / |N| may be  smaller than e.
9The number m of  negative facts edged out  is increased by  |£(e;)|  in  each iteration of  algorithm FC

which might cause i t  to “overshoot the mark”.
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Table 9: Overview of Experiments with IDF 

Target Source 80,10 80,40 90,40 ID [best] IDFR [best] OTTER 
cn03 cn06 21s 18s 6s - - 3657s 
cn19 cn21 - - +-- 84s 25s 423s 
cn21 cn19 23s 28s +-- 91s 27s 447s 
cn29 cn28 20s 25s 58s 35s 4s 257s 
cn29 cn30 5s 9s +-- 35s 6s 257s 
cn32 cn31 14s 64s - 45s 10s 511s 
cn32 cn33 33s 32s +-- 45s 9s 511s 
mv60 mv59 24s 73s +-- - 4s 2035s 
mv62 mv59 40s 86s +-- - 12s 2041s 

how to interpret table 8. Setting the parameters e and n to 80 and 10, respectively, 
(fifth row, second column) algorithm FC produces the coefficients 0, 0, 0, 0, 3, 5, 0, 2, 
3, 1, 4, 0, 1 (not shown by table 8) and this results in actually edging out 80% of the 
negative facts (w.r.t. the search for a proof of cn06 using IDF with ratio 4 : 1 and P 
from the "original" proof of cn06 found by ID with ratio 4 : 1). When applying IDF 

with these coefficients (and P obtained from the "original" proof) cn03 could be proved 
within 21s. (Note that OTTER's best result regarding problem cn03 is 3657s.) The 
computation time spent by algorithm FC is negligible (less than a second). 

Table 9 gives an overview of our experiments with IDF. Based on the experiments 
summarized by table 8 and the tables of appendix D we picked three parameter settings 
concerning e and n displayed in the heads of columns three through five. These columns 
show the run time obtained by IDF using the coefficients produced by algorithm FC 
(with the respective setting of e and n) when proving the target shown in the first 
column by employing the source given in the second column. In case several source 
proofs are provided by ID (cp. tables J -4) we choose the fastest one. The last three 
columns list the best results attained with ID, IDFR and OTTER as a point of reference 
(cp. table 7). 

The main finding conveyed by table 9 is the appropriateness of the parameter setting 
e = 80 and n = 10 (third column). Raising e or n causes performance deterioration for 
all problems considered except one, namely proving cn03 with the help of cn06. The 
reason why proving cn03 profits from increasing e is a strong similarity between the 
two corresponding proofs with respect to the effective features, i.e., those features fi 
where Ci =1= O. If this similarity is not that strong, raising e too much can result in 
precluding facts that are necessary for a proof by assigning too big a weight penalty 
(WF) to them. In other words, we risk to "pull the strings too much" . 

Section 5 and this section have demonstrated the capabilities of two different heuristics 
'WFR and IDF that exploit past proof experience. The subsequent section shows that 
'WFR and IDF can be combined very conveniently, producing a heuristic that allows to 
solve problems that were out of reach so far. 

Table 9: Overview of Experiments wi th wg

Target | Source | 80, 10 | 80, 40 | 90, 40 | = [best] | wrr [best] | OTTER
cn03 cn06 21s 18s 6s — — 3657s
cn19 cn21  — — — 84s 25s 423s
cn21  cn19 23s 28s — 91s 27s 447s
cn29 cn28 20s 25s 58s 35s 4s 257s
cn29 cn30 5s 9s — 35s 6s 257s
cn32 cn31 14s 64s — 45s 10s 511s
cn32 cn33 33s 32s — 45s 9s 511s
mv60 mv59 24s 73s — — 4s 2035s
mv62 | mv59 40s 86s — — 12s 2041s

how to  interpret table 8. Setting the parameters e and n to 80 and 10, respectively,
(fifth row, second column) algorithm FC  produces the coefficients 0, 0, 0, 0, 3, 5, 0, 2,
3,1,4 ,  0 , 1  (not shown by table 8) and this results in  actually edging out 80% of the
negative facts (w.r.t. the  search for a proof o f  cn06  using wr  with ratio 4 : 1 and P
from the “original” proof of cn06 found by w with ratio 4 : 1). When applying wg
with these coefficients (and P obtained from the “original” proof) cn03 could be proved
within 21s. (Note that OTTER’s best result regarding problem cn03 is 3657s.) The
computation time spent by algorithm FC is negligible (less than a second).
Table 9 gives an overview of our experiments with wr .  Based on the experiments
summarized by  table 8 and the tables of  appendix D we picked three parameter settings
concerning e and n displayed in  the heads of columns three through five. These columns
show the run time obtained by w r  using the coefficients produced by algorithm FC
(with the respective setting of e and n )  when proving the target shown in  the first
column by employing the source given in the second column. In case several source
proofs are provided by @ (cp. tables. 1-4) we choose the fastest one. The last three
columns list the best results attained with w,  r r  and OTTER as a point of reference
(cp. table 7).
The main finding conveyed by  table 9 is the appropriateness of the parameter setting
e = 80 and n = 10 (third column). Raising e or n causes performance deterioration for
all problems considered except one, namely proving cn03 with the help of cn06. The
reason why proving cn03 profits from increasing e is a strong similarity between the
two corresponding proofs with respect to the effective features, i.e., those features f;
where ¢; # 0. If this similarity is not that strong, raising e too much can result in
precluding facts that are necessary for a proof by  assigning too big a weight penalty
(wr)  t o  them. In  other words, we  r isk  to  “pull the strings too much”.

Section 5 and this section have demonstrated the capabilities of two different heuristics
wrr  and w r  that exploit past proof experience. The subsequent section shows that
wrr  and w r  can be combined very conveniently, producing a heuristic that allows to
solve problems that were out of reach so far.
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8 COMBINING roFR AND roF 

Table 10: Experiments with roFR&F 

Target Source ro [best] roFR roF roFR&F OTTER 
cn15 cn03 - 27s - 7.4s 00 

cn22 cn15 - - - 475s 00 

cn23 cn15 - - - - 00 

cn23 cn22 , - LIs - 1.4s 00 

Combining WFR and WF 

Sections 4 and 6 have presented two heuristics roFR and roF that make use of past expe
rience. In this section we shall demonstrate that a combination of roFR and roF yields 
an even more powerful heuristic roFR&F which allows to solve some of the problems 
that eluded both roFR and roF (and of course ro). 

The basic idea behind roFR is to multiply the weight of a fact A computed by the 
basic heuristic ro with a multiplier determined by the distance d of A w.r.t. the source 
pwof. The feature-based heuristic roF is designed to add a weight penalty depending 
on feature value differences. Both heuristics can be combined quite naturally, giving 
heuristic roFR&F: 

Table 10 summarizes our experiments with roFR&F regarding problems cn15, cn22 and 
cn23. Note that none of these problems can be proved by OTTER with the heuristics 
presented in [MW92]. ([MW92] reports on OTTER solving these problems with "spe
cialized strategies" without further information.) Note also that CODE could not solve 
these problems so far, and that there is a kind of interaction between roF and roFR, 

since roF allows to prove cn03 using cn06 (which roFR cannot accomplish, see ta
ble 9)10, while roFR can prove cn15 using the proof of cn03 roF found (where roF fails, 
see table 10). 

The first two columns show target and source problem. Columns three through five 
list the best results of ro, and the results of roFR and roF with parameter settings 
discussed below. Column four displays the results of roFR&F with parameter settings 
also discussed below, while the last column gives OTTER's (best) results. An entry 
'00' (OTTER'S column only) signifies that no proof could be found within 4 hours. The 
entry '-' means that no proof could be found when restricting the number of activated 
facts (i.e., IFAI, cp. section 2) to 1500 (CODE only).n We had to lift the rigid memory 

lOroFR&F fails too, which suggests tttat the similarity between cn03 and cn06 is restricted to feature 
values. The attempt to re-enact cn06 in order to prove cn03 is detrimental. 

llSince CODE does not employ indexing techniques, its inference rate decreases dramatically once 
the search has reached this stage. 
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Table 10: Experiments with wrrer

Target | Source | w [best] | wrr  | w r  | WrReF | OTTER
cn15 cn03 — 27s | — 7.4s co
cn22 cn15 — — | — 473s 00

cn23 cn lb  — — — — oo
cn23 cn22 |. — 1.1s | — 1.4s 00

8 Combining wrp and w r

Sections 4 and 6 have presented two heuristics @wrr and w r  that make use of past expe-
rience. In th is  section we shall demonstrate that a combination of  wrgr and wg  yields
an even more powerful heuristic wrrgr which allows to solve some of the problems
that eluded both wfr  and wr  (and of course w).
The basic idea behind wrp is to multiply the weight of a fact A computed by the
basic heuristic @ with a multiplier determined by the distance d of A w.r.t. the source
proof. The feature-based heuristic w r  is designed to add a weight penalty depending
on feature value differences. Both heuristics can be combined quite naturally, giving
heuristic wr ry Fr:

wrrer(A) = (d(A) +p )  -w r (A ) ,  peN

Table 10 summarizes our experiments with wpreF regarding problems cn15, cn22 and
cn23. Note that none of these problems can be proved by  OTTER with the heuristics
presented i n  [MW92]. ([MW92] reports on  OTTER solving these problems with “spe-
cialized strategies” without further information.) Note also that CODE could not solve
these problems so far, and that there is  a kind of  interaction between w r  and wFR,
since w r  allows to prove cn03 using cn06 (which wpr cannot accomplish, see ta-
ble 9)10, while wrp can prove cn15 using the proof of  cn03 w r  found (where w r  fails,
see table 10). :

The first two columns show target and source problem. Columns three through five
list the best results of w ,  and the results of wrr  and w r  with parameter settings
discussed below. Column four displays the results of wrper with parameter settings
also discussed below, while the last column gives OTTER’s (best) results. An entry
‘co’ (OTTER’s column only) signifies that no proof could be found within 4 hours. The
entry ‘—’  means that no proof could be found when restricting the number of activated
facts (i.e., |[F4|, cp. section 2) to 1500 (CODE only).!! We had to lift the rigid memory

10WFR&F fails too, which suggests that the similarity between cn03 and cn06 is restricted t o  feature
values. The attempt to  re-enact cn06 in  order to  prove cn03 is  detrimental.

1Since CoDE does not employ indexing techniques, its inference rate decreases dramatically once
the search has reached this stage.
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restriction this time and enable CODE's memory control mechanism which works as 
follows: There is a memory quota of 30 MB and a memory limit of 45 MB. If the limit 
is exceeded, potential facts are deleted until the quota is reached, starting with those 
potential facts that have the highest weight. Note that especially for harder problems 
the effort spent on subsumption tests requires a huge percentage of overall CPU time, 
so that OTTER with its indexing techniques would clearly outperform CODE if CODE 
were using OTTER's heuristic. 

Based on the experiments conducted with 'WFR and 'WF (see sections 5 and 7) the 
following parameter settings and source proofs were chosen. The proof P03 of cn03 
employed by 'WFR&F to prove cn15 is the one found by 'WF using the proof of cn06 
found by 'W with ratio 4 : 1. The coefficients Cl, .•. ,C13 were computed by FC with 
e = 80 and n = 10. (This setting is apparently favorable according to the findings 
shown by table 9.) The same coefficients were also used by 'WFR&F for all problems 
of table 10. For reasons explained in section 5, the ratio Cs : Cw is set to 0 : 1 in 
connection with 'WFR&F (and 'WFR). However, the ratio 4 : 1 set when proving cn06 is 
also used by 'WF. Furthermore, based on the experimental results regarding 'WFR, the 
parameters p, ql and q2 were set to 20, 0.75 and 0.25, respectively. The proof of cn15 
is then employed to prove cn22, and its proof is used to prove cn23. 

It is worth noting that cn22 can be proved by 'WFR&F using the proof of cn15, whereas 
cn23 cannot be proved this way (given the above restrictions concerning number of 
activated facts). On the other hand, cn23 can be proved easily when using the proof of 
cn22 both by 'WFR and 'WFR&F. When analyzing the proof of cn23, it became apparent 
that only one additional step is required to turn the proof of cn22 into a proof of cn23 
which involves the goal of problem cn22. The reason why CODE is not able to add this 
one additional step when using the source cn15 despite the forced selection of a fact 
subsuming the goal is exactly this forced selection. Since the goal of cn23 is different 
from the goal of cn21, the fact subsuming the goal of cn22 is not activated in time 
when trying to prove cn23. In other words, if it were not for the forced selection of a 
fact concluding the current proof, we would not have obtained the result w.r.t. problem 
cn22 in the first place. 

Note that problems cn03 and cn15 differ in their axiomatization, but have the same 
goal. This is hence an example where the extension 'WFR&F of 'WFR and 'WFR itself are 
profitable even though the axiomatizations of source and target do not agree (which 
rules out simply adding the goal of the source to the axioms of the target, cp. section 5, 
table 7). ' 

Problem cn24 has so far resisted all our attempts. (According to our knowledge, it has 
not yet been proven by an automated deduction system on its own.) 

9 Discussion 

This report presented heuristics that exploit past proof experience. Approaches based 
on the same principle, namely incorporating information on previous experience into 

hd 35

restriction this t ime and enable CODE’s memory control mechanism which works as
follows: There is a memory quota of 30 MB  and a memory limit of 45 MB.  If the limit
is exceeded, potential facts are deleted unti l  the quota is reached, starting with those
potential facts that have the highest weight. Note that especially for harder problems
the effort spent on subsumption tests requires a huge percentage of overall CPU time,
so that OTTER with its indexing techniques would clearly outperform CODE if  CODE
were using OTTER’s heuristic.

Based on  the experiments conducted with wrgr and wr  (see sections 5 and 7) the
following parameter settings and source proofs were chosen. The proof Pgs of cn03
employed by wFrrer to  prove cn15 is the one found by wg  using the proof of cn06
found by w with ratio 4 : 1. The coefficients c ı , . . . ,C ı3  were computed by  FC  with
e = 80 and n = 10. (This setting is apparently favorable according to  the findings
shown by  table 9.) The same coefficients were also used by  wrrer for all problems
of table 10. For reasons explained in  section 5 ,  the ratio cs : cw is  set to 0 : 1 i n
connection with wrrer (and wr r ) .  However, the ratio 4 : 1 set when proving cn06 is
also used by wp. Furthermore, based on the experimental results regarding wgp, the
parameters p ,  qı  and ¢ were set to 20, 0.75 and 0.25, respectively. The proof of cn15
is then employed to prove cn22, and i ts proof is used to prove cn23.
It  is worth noting that cn22 can be proved by wrrer using the proof of cn15, whereas
cn23 cannot be proved this way (given the above restrictions concerning number of
activated facts). On  the other hand, cn23 can be proved easily when using the proof of
cn22 both  by  r r  and wrrer. When analyzing the  proof of  cn23,  i t  became apparent
that only one additional step is required to  turn the proof of cn22 into a proof of cn23
which involves the goal of  problem cn22. The reason why CODE is not able to  add this
one additional step when using the source cn15 despite the forced selection of a fact
subsuming the goal is exactly this forced selection. Since the goal of cn23 is different
from the goal of cn22, the fact subsuming the goal of cn22 is not activated in time
when trying to prove cn23. In other words, i f  i t  were not for the forced selection of a
fact concluding the current proof, we would not have obtained the result w.r.t. problem
cn22 in  the first place.

Note that problems cn03 and cn15 differ in their axiomatization, but have the same
goal. This is hence an example where the extension wrrer of wrgr and wrp itself are
profitable even though the axiomatizations of source and target do not agree (which
rules out simply adding the goal of the source to  the axioms of the target, cp. section 5,
table 7).
Problem cn24 has so far resisted all our attempts. (According to  our knowledge, i t  has
not yet been proven by an automated deduction system on i ts  own.)

9 Discussion

This report presented heuristics that exploit past proof experience. Approaches based
on the same principle, namely incorporating information on previous experience into
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the search guiding heuristics (for automated deduction), are described in [SF71] and 
[SE90j. 

A different approach explicitly reuses proofs (e.g., [BCP88], [KW94]). The main idea 
there is to transform a given source proof into a proof of the actual target problem. 
The transformation is accomplished with the help of analogy mappings that represent 
the similarity of source and target problem. Due to the given notion of similarity, the 
approach is amenable to thorough theoretical examination. But also this similarity 
requirement as well as the restrictive principle to compute deterministically a proof 
based on a given proof curtail its practical applicability. In order to compensate for 
these restrictions elaborate "patching strategies" must be employed to (attempt to) 
save a transformation that is about to fail ([BCP88], [KW95]). 

Approaches based on the heuristic use of past experience do not have to fall back on 
patching strategies, because they still search for a proof, attempting to utilize past 
experience to prune the search space. Therefore, moderate deviations from the source 
proof can be coped with due to the flexibility inherent to this kind of method. Our 
results sustain this claim. 

A problem common to any approach for utilizing past experience is to determine a 
priori whether two problems are similar enough to be tackled profitably by using 
past experience. The degree of similarity may be assessed a posteriori, but cannot be 
decided for sure a priori. Therefore, heuristic criteria must be developed in order to 
achieve full automation, which includes selecting the appropriate source problem. This 
topic is not covered by this report, the main goal being to present experimental results 
regarding heuristics that make use of past experience. Future work will deal with the 
selection problem. Since it is next to impossible to pick always the appropriate source 
problem and the heuristic to use it, the TEAMWORK method ([AD93], [De95]) will 
play an essential role in alleviating the selection problem by allowing .for the use of 
several heuristics (a team) concurrently and cooperatively. TEAMWORK is also useful 
for avoiding a major pitfall of using past experience, namely making things worse (cp. 
[KN93]). This hazard can be diminished by ad~ing standard (basic) strategies to a 
team which do not rely on past experience. 

In closing, we want to point out that despite a considerable number of potential param
eter settings for the heuristics presented here, we succeeded in isolating a small number 
of them that perform satisfactorily well. Moreover, the capabilities of the heuristics 
have been demonstrated with numerous proof problems. The results we obtained with 
our experimental program CoDE show significant improvements even in comparison 
with the renowned theorem prover OTTER which is clearly superior to CODE in terms 
of inference rate. 
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the search guiding heuristics (for automated deduct ion) ,  are described i n  [SF71] and
[SE90].
A different approach explicitly reuses proofs (e.g., [BCP88|, [KW94]). The main idea
there is to transform a given source proof into a proof of the actual target problem.
The transformation is accomplished with the help of analogy mappings that represent
the similarity of source and target problem. Due to  the given notion of similarity, the
approach is amenable to  thorough theoretical examination. But also this similarity
requirement as well as the restrictive principle to  compute deterministically a proof
based on a given proof curtail i ts  practical applicability. In order to  compensate for
these restrictions elaborate “patching strategies” must be employed to  (attempt to)
save a transformation that is about to  fail ([BCP88|, [KW95]).

Approaches based on the heuristic use of past experience do not have to fall back on
patching strategies, because they still search for a proof, attempting to utilize past
experience to  prune the search space. Therefore, moderate deviations from the source
proof can be coped with due to the flexibility inherent to  this kind of method. Our
results sustain this claim.

A problem common to any approach for utilizing past experience is to determine a
prior: whether two problems are similar enough to be tackled profitably by using
past experience. The degree of similarity may be assessed a posteriori, but cannot be
decided for sure a priori. Therefore, heuristic criteria must be developed in order to
achieve full automation, which includes selecting the appropriate source problem. This
topic is not covered by  this report, the main goal being to  present experimental results
regarding heuristics that make use of past experience. Future work will deal with the
selection problem. Since i t  is next to  impossible to  pick always the appropriate source
problem and the heuristic to  use i t ,  the TEAMWORK method ([AD93], [De95]) will
play an essential role in alleviating the selection problem by allowing for the use of
several heuristics (a  team) concurrently and cooperatively. TEAMWORK is also useful
for avoiding a major pitfall of  using past experience, namely making things worse (cp.
[KN93]). This hazard can be  diminished by  adding standard (basic) strategies to  a
team which do not rely on past experience.

In closing, we want to  point out that despite a considerable number of  potential param-
eter settings for the heuristics presented here, we succeeded in  isolating a small number
of them that perform satisfactorily well. Moreover, the capabilities of the heuristics
have been demonstrated with numerous proof problems. The results we obtained with
our experimental program CODE show significant improvements even in comparison
with  the renowned theorem prover OTTER which is clearly superior to CODE in terms
of inference rate.
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A Proof Problems 

In this appendix we give a complete description of all proof problems dealt with in this 
report. All of these problems stems from [MW92]. We use the same abbreviations to 
label axioms respectively theorems. The name of a problem is composed of the abbre
viation of the calculus it belongs to and of the continuous numbering used in [MW92]. 
For instance, problem # 7 which is a problem of the CN calculus in [MW92] is named 
'en07', while problem # 69, which is the first problem of the EC calculus, is given 
the name 'ee69'. The problems themselves are presented in the obvious way, namely 
axiomatization and goal to prove. For a brief overview of the historical background 
and origin of the problems see [MW92] and in particular for the EC calculus [W090]. 

A.I	 The Implication/Negation Two-Valued Sentential Cal
culus (CN) 

Each of the following facts is a theorem of the CN calculus. 

(CN-I) i(i(x, y), i(i(y, z), i(x, z))) (CN-30) i(i(x, i(x, y)), i(x, y)) 
(CN-2) i(i(n(x),x),x) (CN-35) i(i(x, i(y, z)), i(i(x,y), i(x, z))) 
(CN-3) i(x,i(n(x),y)) (CN-37) i(i(i(x, y), z), i(n(x), z)) 
(CN-16) i(x,x) (CN~39) i(n(n(x)),x) 
(CN-18) i(x,i(y,x)) (CN-40) i(x, n(n(x))) 
(CN-19) i(i(i(x, y), z), i(y, z)) (CN-46) i(i(x, y), i(n(y), n(x))) 
(CN-20) i(x,i(i(x,y),y)) (CN-49) i(i(n(x), n(y)), i(y, x)) 
(CN-2I) i(i(x, i(y, z)), i(y, i(x, z))) (CN-54) i(i(x, y), i(i(n(x), y), y)) 
(CN-22) i(i(x,y),i(i(z,x),i(z,y))) (CN-59) i(i(n(x), z), i(i(y, z), i(i(x, y), z))) 
(CN-24) i(i(i(x, y), x), x) 

(CN-60) i(i(x, i(n(y), z)), i(x, i(i(u, z), i(i(y, u), z)))) 
(CN-CAM) i(i(i(i( i(x, y), i(n(z), n(u))), z), v), i(i(v, x), i(u, x))) 

The proof problems are: 

Name Axiomatization Goal 
enOl CN-IS, CN-35, CN-39, CN-40, CN-46 CN-2I 
en02 
en03 
en04 
en05 
en06 

CN-IS, CN-2I, CN-22, CN-54 
CN-IS, CN-2I, CN-22, CN-54 
CN-IS, CN-2I, CN-22, CN-54 
CN-IS, CN-2I, CN-22, CN-54 
CN-IS, CN-2I, CN-22, CN-54 

CN-30 
CN-35 
CN~39 

CN-40 
CN-46 

A Proof Problems

In this appendix we give a complete description of  all proof problems dealt with  in  this
report. All of these problems stems from [MW92]. We use the same abbreviations to
label axioms respectively theorems. The name of a problem is composed of the abbre-
viation of the calculus i t  belongs to and of the continuous numbering used in  [MW92].
For instance,  problem # 7 which i s  a problem of  the CN calculus in [MW92] i s  named
‘cn07’, while problem # 69, which is the first problem of the EC  calculus, is given
the name ‘ec69’. The problems themselves are presented in  the obvious way, namely
axiomatization and goal to prove. For a brief overview of the historical background
and origin of the problems see [MW92] and in particular for the EC  calculus [W090].

A.1  The Implication/Negation Two-Valued Sentential Cal-
culus (CN)

Each of the following facts is a theorem of the CN calculus.

(CN-21)
(CN-22)
(CN-24)

i ( i (z ,y) ,1( i (y,  2), i (z,  2))) (CN-30) ( i z ,  i ( z , y ) ) ,  i= ,  y))
i i (n(z) ,2) ,2)  (CN-35) i i l z . i ( y . 2 ) ) . i ( i ( z , y ) , i ( z ,2)
i(z,i(n(z),y)) (CN-37) i ( i ( i ( x ,y), 2), n(x), 2))
i(2,2) (CN:39) i(n(n(z)),2)
i z ,  i(y,2)) (ON-40) i(z,n(n(z)))
i( i(i(z, y), 2),4(y, 2)) (CN-46) i(i(z,y),  i(n(y), n(z)))
i z ,  ( i z ,  y ) ,  y ) )  (CN-49) i ( 3 (n ( z ) ,  n ( y ) ) ,  4(y, x))
i(i(e,1(y, 2)),4(y,4(2,2)))  (CN-54) i( i(x,y),  (i(n(zx), y),y))
i ( i ( z ,  y) ,  i ( i (2 ,  x), ( z ,  y ) ) )  (CN-59) i ( i ( n ( z ) , 2),(i(y, z),  i(i(z, y), 2)))
i ( i ( i (z ,y), x), x)

(CN-60)  i ( i (z, i (n(y),2), (2, i(i(w, 2),iis u),2 )
(CN-CAM) :(i(i(i(i(z, y),i(n(2), n(u))), z), v),i(i(v, x), i(u, x)))

The proof problems are:

Name  | Axiomatization Goal
cn01 | CN-18, CN-35, CN-39, CN-40, CN-46 | CN-21
cn02 | CN-18, CN-21, CN-22, CN-54 CN-30
cn03 | CN-18, CN-21, CN-22, CN-54 CN-35
cn04 | CN-18, CN-21, CN-22, CN-54 CN-39
cn05 | CN-18, CN-21, CN-22, CN-54 CN-40
cn06 | CN-18, CN-21, CN-22, CN-54 CN-46
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I, 

Name Axiomatization Goal 
en07 CN-I, CN-2, CN-3 CN-16 
cn08 CN-I , CN-2 CN-3 CN-IS.' 
en09 CN 1, CN-2, CN-3 CN-19 
cn10 CN-I, CN-2, CN-3 CN-20 
en11 CN-I, CN-2, CN-3 CN-2I 
en12 CN-I, CN-2, CN-3 CN-22 
en13 CN-I, CN-2, CN-3 CN-24 
en14 CN-I, CN-2, CN-3 CN-30 
en15 CN-I, CN-2, CN-3 CN-3S 
en16 CN-I, CN-2, CN-3 CN-37 
en17 CN-I, CN-2, CN-3 CN-39 
en18 CN-I, CN-2, CN-3 CN-40 
en19 CN-I, CN-2, CN-3 CN-46 
en20 CN-I, CN-2, CN-3 CN-49 
en21 CN-I, CN-2, CN-3 CN-S4 
en22 CN-I, CN-2, CN-3 CN-S9 
en23 CN-I, CN-2, CN-3 CN-60 
en24 CN-I, CN-2, CN-3 CN-CAM 

Name Axiomatization Goal 
en25 CN-18, CN-3S, CN-49 CN-I 
en26 CN-I8, CN-3S, CN-49 CN-2 
en27 CN-18, CN-3S, CN-49 CN-3 
en28 CN-19, CN-37, CN-S9 CN-I 
en29 CN-19, CN-37, CN-S9 CN-2 
en30 CN-19, CN-37, CN-S9 CN-3 
en31 CN-19, CN-37, CN-60 CN-I 
en32 CN-19, CN-37, CN-60 CN-2 
en33 CN-19, CN-37, CN-60 CN-3 

A.2 The Many-Valued Sentential Calculus (MV) 

Each of the following facts is a theorem of the MV calculus. 

(MV-I) i(x,i(y,x)) (MV-2S) i(i(x, y), i(i(z, x), i(z, y))) 
(MV-2) i(i(x,y),i(i(y,z),i(x,z))) (MV-29) i(x, n(n(x))) 
(MV-3) i(i(i(x, y), y), i(i(y, x), x)) (MV-33) i(i(n(x),y),i(n(y),x)) 
(MV-4) i(i(i(x, y), iCY, x)), iCy, x)) (MV-36) i(i(x,y),i(n(y),n(x))) 
(MV-S) i(i(n(x), n(y)), i(y,x)) (MV-39) i(n(i(x,y)),n(y)) 
(MV-24) i(n(n(x)),x) (MV-SO) i(n(x), i(y, n(i(y, x)))) 

The proof problems are: 

Name Axiomatization Goal 
mv55 
mv56 
mv57 
mv58 
mv59 
mv60 
mv61 
mv62 

MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-S 
MV-I, MV-2, MV-3, MV-5 
MV-I, MV-2, MV-3, MV-5 

MV-4 
MV-24 
MV-25 
MV-29 
MV-33 
MV-36 
MV-39· 
MV-50 
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Name | Axiomatization Goal
cn07 | CN-1, CN-2, CN-3| CN-16
cn08 | CN-1, CN-2, CN-3 | CN-18
cn09 | CN-1, CN-2, CN-3 | CN-19
cn10 | CN-1, CN-2, CN-3 | CN-20 - —

’ ’ Name | Axiomatization Goal
coll on  oN.  EA  Ny  cn25 | ON-18, CN-35, CN-49 | CN-1
n i s  | ON. CN2 ON3  | CN24 cn26 | CN-18, CN-35, CN-49 | CN-2
cn14 | CN-1, CN-2. CN-3 | CN-30 cn27 | CN-18, CN-35, CN-49 | CN-3
cn15 | CN-1 CN-2. CN-3| CN-35 cn28 | CN-19, CN-37, CN-59 | CN-1
n ib  CN-1. ON-2. CN-3 | CN-37 cn29 | CN-19, CN-37, CN-59 | CN-2
en17 | ON-1 CN-2. CN-3 | CN-39 cn30 | CN-19, CN-37, CN-59| CN-3
n i s  CN-1. CN-2.  CN-3 CN-40 cn31 | CN-19, CN-37, CN-60 | CN-1
cn19 CN-1. CN-2. CN-3 | CN-46 cn32 | CN-19, CN-37, CN-60 | CN-2
n20 CN-1, CN-2, CN-3 | CN-49 cn33 | CN-19, CN-37, CN-60 | CN-3

cn21 | CN-1, CN-2, CN-3 | CN-54
cn22 | CN-1, CN-2, CN-3 | CN-59
cn23 | CN-1, CN-2, CN-3 | CN-60
cn24 | CN-1, CN-2, CN-3 | CN-CAM

A.2  The Many-Valued Sentential Calculus (MV)

Each of the following facts is a theorem of the MV  calculus.

(MV-1) i ( z , i ( y , z ) )  (MV-25) i ( i ( z , y ) , i ( i ( z ,  x), (2 ,  y)))
(MV-2) i(i(z,y),i( i(y,z),i(z,2))) (MV-29) i(z,n(n(z)))
(MV-3) i( i( i(z,y),y),i( i(y,2),2)) (MV-33) i( i(n(z),y),{n(y),2))
(MV-4) i(i(i(z,y),i(y,2)).i(y,2)) (MV-36) i(i(z,y),i(n(y),n(z)))
(MV-5)  i ( i (n(2) ,n(y)),i(y,®)) (MV-39) i(n(i(z,y)),n(9))
(MV-24) i(n(n(x)),z) (MV-50) i(n(z), i(y,  n(i(y,x))))

The proof problems are:

Name | Axiomatization Goal
mv55 | MV-1, MV-2,  MV-3,  MV-5 | MV-4
mv56 | MV-1,  MV-2,  MV-3,  MV-5 | MV-24
mv57 | MV-1,  MV-2,  MV-3,  MV-5 | MV-25
nv58 | MV-1, MV-2,  MV-3,  MV-5 | MV-29
mv59 | MV-1,  MV-2,  MV-3,  MV-5 | MV-33
mv60 | MV-1 ,  MV-2 ,  MV-3 ,  MV-5 | MV-36
mv61 | MV-1, MV-2,  MV-3,  MV-5 | MV-39.
mv62 | MV-1,  MV-2, MV-3, MV-5 | MV-50
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A.3 Problems considered when trying to find shorter proofs 

A.3.1	 Theorems of the Equivalential Calculus (EC) 

(EC-I) e(e(e(x,y),e(z,x)),e(y,z)) 
(YRO) e(e(x,y),e(z,e(e(z,y),x)))

(EC-4) e(e(x,y),e(y,x)) 
(YRM) e(e(x,y),e(z,e(e(y,z),x)))

(EC-5) e(e(e(x, y), z), e(x, e(y, z))) 

A.3.2 Theorems of the R Calculus (R) 

(WO) e(e(x,e(y,z)),e(z,e(y,x))) (QYF) e(e(e(x,y),e(x,z)),e(z,y)) 
(YQM) e(e(x, y), e(e(z, y), e(z,x))) (XGJ) e(x,e(e(y,e(z,x)),e(y,z))) 

A.3.3 Theorems of the Left Group Calculus (LG) 

(LG-I) e(e(e(x,e(e(y,y),x)),z),z)
 
(LG-2) e(e(e(e(e(x, y), e(x, z)), e(y, z)), u), u)
 
(LG-3) e(e(e(e(e(e(x, y), e(x, z)), u), e(e(y, z), u)), v), v)
 
(LG-4) e(e(e(e(x,y),z),u),e(e(e(x,v),z),e(e(y,v),u)))
 

A.3.4 Theorems of the RG Calculus (RG) 

(LG-I') e(x,e(x,e(e(y,z),e(e(y,u),e(z,u))))) 
(LG-2') e(x, e(x, e(e(y, e(z, z)),y))) 

A.3.5 The Proof Problems 

Name Axiomatization Goal 
ec69 EC-4, EC-5 EC-l 
ec79 YRO YRM 
r86 WO YQM 
r88 QYF XGJ 
1989 LG-2, LG-3, LG-4 LG-I 
1990 LG-2, LG-3 LG-4 
1991 LG-3 LG-4 
rgl02 LG-2' LG-I' 

A.3 Problems considered when trying to  find shorter proofs 39

A.3  Problems considered when trying to  find shorter proofs

A.3.1 Theorems of  the Equivalential Calculus (EC)

(EC-1 )  e (e (e ( z , y ) ,e(z,2), e(y, 2)) (YRO)
(EC-4) e(e(z,y), e(y,z))
(EC-5) e(e(e(z,y),z),e(z,e(y,z))) (RM)

e (e (z , y ) , e ( z ,e (e l z ,  y ) ,  x)))
e (e (x , y ) ,  e (z ,  e(e(y, z), x ) ) )

A.3.2 Theorems o f  the R Calculus (R)

(WO) e(e(z, e(y, 2 ) ,  e(z, e(y, 2))) (QYF) e (e (e ( z , y ) ,e(x, z)), e(z,y))
(YQM)  e (e ( z , y ) , e(e(z, y),e(z, x))) (XGI)  e ( z ,e (e ( y , e(z, z)), e(y,z)))

A.3.3 Theorems o f  the Left Group Calculus (LG)

) e (e (e (z ,e (e ( y , y ) , x ) ) ,  2), 2)
) e (e (e (e (e ( x , y ) ,e(x,2)), e(y, 2)), u), u)

(LG-3) e(e(e(e(e(e(x ,y) ,e(z ,  2 ) ,  u), e(e(y,  2), u)),v),v)
)  e(e(e(e(z,y), 2), u), e(e(e(z,v), 2), e(e(y,v),u)))

A.3.4 Theorems of  the RG  Calculus (RG)

(LG-1)  e(z,e(z,e(e(y, 2), e(e(y, u ) ,  e(z, u)))))
(LG-2") e(z,  e(z,  e(e(y, e(z,  z ) ) ,  y ) ) )

A.3 .5  The Proof Problems

Name | Axiomatization Goal
ec69 | EC-4, EC-5 EC-1
ec79 | YRO YRM
r86 WO YQM
r88 QYF XGJ
1g89 | LG-2, LG-3, LG-4 | LG-1
1g90 | LG-2, LG-3 | LG-4
1g91 | LG-3 LG-4
rgl02 | LG-2’ LG-1
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B Proofs of 'ec69' 

We list here the proofs of problem 'ec69' referred to by subsection 3.2. A proof P = 
At; ... ; A;t;. is displayed as a sequence of m lines. Line i has the following format: 

where ni = i is simply the ordinal of line i allowing for easier access . .Ji shows the justi 
fication for deriving At: If At is an axiom, then Ji 

\ 

contains no information ("blank"). 
Otherwise, Ji - [nI, n2], where nl and n2 refer to the immediate ancestors A~l and A~2 

of At which can be found in lines nl and n2, respectively. In the latter case, A~l hosts 
(an instance of) A~2 as a subterm as required by the inference rule of condensed de
tachment (cp. definition 2.3). 

In order to explain ai we have to recall that a proof P = At; ... ;A;t;. is obtained 
from a search sequence S = AI; ... ;An by omitting those Ai from S which are not 
an element of the set P defined in subsection 2.2. Hence we can define an injective 
function 1r: {l, ... ,m} -+ {l, ... ,n}, where 1r(i) = ai iff At - Aa;. Hence 1r connects 
the i th fact of a proof with its original position in the associated search sequence. The 
information contained by ai is useful if we are interested in assessing the efficiency of 
the search, since the difference ai+l - ai - 1 tells us how many "unnecessary" activation 
steps were performed between the activations of the "necessary" facts At and A1+1. 

B.l Proof # 1 (Ratio 0 : 1; Level: 8) 

1 1
 
2 2
 
3 3 2 , 1 ]
 
4 4 1 , 3 ]
 
6 5 2 , 4 ]
 

17 6 2 , 2 ] 
18 7 1 , 2 ] 

119 8 6 , 5 ] 

e(e(y, x), e(x, y»
 
e(e(e(z,y),x),e(z,e(y,x)))
 
e(y, e(x, e(x, y»))
 
e(e(y,e(y,x),x)
 
e(y, e(e(y, x), x»
 
e(e(z,y),e(x,e(z,e(y,x»»
 
e(e(z,e(y,x»,e(e(z,y),x»
 
e(z, e(y, e(e(e(y, x),x), z»)
 

122 9 1 , 6 1 e(e(z, e(y, e(x, z»), e(y, x» 
123 10 6 , 1 ] 
133 11 7 , 2 ] 
189 12 7 , 8 ] 
202 13 7 , 10 ] 
214 14 11 , 9 ] 
347 15 1 , 12 ] 
391 16 13 9 ] 
424 17 7 , 14 ] 
518 18 7 , 16 ] 
543 19 15 , 17 ] 
544 20 18 , 19 ] 

e(z,e(e(y,x),e(e(x,y),z») 
e(e(e(e(z,y),x),z),e(y,x» 
e(e(z,y),e(e(e(y,x),x),z» 
e(e(z,e(y,x»,e(e(x,y),z» 
e(z, e(y, e(x, e(e(y,x), z»)) 
e(e(e(e(z, y),.y), x), e(x, z)) 
e(e(z,y),e(x,e(y,e(z,x»)) 
e(e(z,y),e(x,e(e(y,x),z») 
e(e(e(z,y),x),e(y,e(z,x») 
e(e(z,e(e(y,z),e(x,y»)),x) 
e(e(e(z,y),e(x,z)),e(y,x)) 
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B Proofs o f  ‘ ec69 ’

We list here the proofs of problem ‘ec69’ referred to  by subsection 3.2. A proof P =
AY; . . . ;  A t  is displayed as a sequence of m lines. Line £ has the following format:

a; n ;  J i  A

where n ;  = i is  simply the ordinal of  l ine allowing for easier access. J ;  shows the  justi-
fication for deriving A}: If  A} is an axiom, then J;  contains no information (“blank”).
Otherwise, J;  = [n1, ng], where n ,  and nz refer to the immediate ancestors A }  and A t
of A}  which can be found in  lines n ı  and n j ,  respectively. In the latter case, A t  hosts
(an instance of) A }  as a subterm as required by the inference rule of condensed de-
tachment (cp. definition 2.3).
In order to  explain a; we have to recall that a proof P = Af;...; Af is obtained
from a search sequence § = \;;...; A, by omitting those A; from S which are not
an element of the set P defined in  subsection 2.2. Hence we can define an injective
function 7 : {1 , . . . ,m}  — {1 , . . . ,n } ,  where 7(i) = a ;  iff A} = A,,. Hence 7 connects
t he  th  fact of  a proof w i th  i t s  original posit ion i n  the  associated search sequence. The
information contained by a; is useful i f  we are interested in asscssing the efficiency of
the  search, since the difference a;+1 — a ;  — 1 tells us how many “unnecessary” activation
steps were performed between the activations of the “necessary” facts A}  and A .

B.1  Proof  # 1 (Ratio 0 :  1; Level: 8)

1 1 e(e(y,  x ) ,  e(z,y))
2 2 e (e (e (z , y ) ,x), e(z, ey,  z)))
3 3 [ 2 , 1 ]  e ( y ,e ( zx ,e ( x , y ) ) )  .
4 4 [ 1 ,  3 ]  e le ( y ,e ( y , z ) ) , = )
6 5 [ 2 ,  4 ]  ely e(e(y,z) ,7))

17 6 [ 2 ,  2 ] e(e(z,y) ,  e(z,  e(2,e(y,  z))))
18 7 [ 1 ,  2 ]  e(e(ze(y,x))e(e(z,y),z))

119 8 [ 6 ,  5 ]  e (z ,e ( y ,e (e (e ( y ,x), x), 2)))
122 9 [ 1 ,  6 ]  e l e ( ze (y ,e ( x ,2 ) ) )ey, z))
123 10 [ 6 ,  1 ]  e(z,e(e(y,z), e(e(z,y),2)))
133 11 [ 7 ,  2 ]  e(e(e(e(2,y),x),2),e(y,2))
189 12 [ 7 ,  8 ]  e(e (z ,y ) ,  e le le (y ,  z ) , 2 ) , 2 ) )
202 13 [ 7 , 10 ]  e(e(z,e(y;z)),ele(z,y),2))
214 14 [ 11 ,  9 ]  e (ze (y ,  e(z, e (e (y ,x), 2))))
347 15 [ 1 , 12 ]  e(e(e(e(z,y),y),x),  e(z,z))
391 16 [ 13 ,  9 ]  e (e ( z , y ) , e ( z ,e ( y ,e(z, x))))
424 17  [ 7 ,14 ]  e (e ( z , y ) , e ( z ,e (e ( y ,2 ) ,2)))
518 18 [ 7 , 16 ]  e (e (e (z , y ) ,x), e(y,e(z,x)))
543 19 [ 15 ,17 ]  e(e(z ,e(e(y ‚2) ,e(2,y) ) ) ,2)
544 20 [ 18 ,19 ]  e(e(e(z,y), e(z,2)), evr 2))
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B.2 Proof # 2 (Ratio 1 : 1; Level: 7) 

1 1 e(e(y,x),e(x,y)) 
2 2 e(e(e(z,y),x),e(z,e(y,x))) 

17 3 2 , 2 ] e(e(z,y),e(x,e(z,e(y,x)))) 
18 4 1 , 2 ] e(e(z,e(y,x)),e(e(z,y),x)) 
23 5 1 , 3 ] e(e(z,e(y,e(x,z))),e(y,x)) 
24 6 3 , 1 ] e(z,e(e(y,x),e(e(x,y),z))) 
28 7 4 , 2 ] e(e(e(e(z, y), x), z), e(y, x)) 
39 8 4 , 5 ] e(e(e(z,e(y,e(x,z))),y),x) 
42 9 4 , 6 ] e(e(z,e(y,x)),e(e(x,y),z)) 
82 10 1 , 8 ] e(z,e(e(y,e(x,e(z,y))),x)) 
85 11 9 , 9 ] e(e(z,e(y,x)),e(z,e(x,y))) 
92 12 9 , 7 ] e(e(z,y),e(e(e(x,y),z),x)) 
96 13 9 , 5 ] e(e(z, y), e(x, e(y, e(z, x)))) 

230 14 [ 5 , 10 ] e(e(z,e(e(y,x),e(x,z))),y) 
268 15 [ 11 , 4 ] e(e(z,e(y,x)),e(x,e(z,y))) 
287 16 [ 11 , 12 ] e(e(z,y),e(x,e(e(x,y),z))) 
298 17 [ 4 , 13 ] e(e(e(z,y),x),e(y,e(z,x))) 
520 18 [ 15 , 16 ] e(e(e(z,y),x),e(e(x,y),z)) 
546 19 [ 17 , 14 ] e(e(e(z,y),e(y,x)),e(x,z)) 
547 20 [ 18 , 19 ] e(e(e(z,y),e(x,z)),e(y,x)) 

B.3 Proof # 3 (Ratio 2 : 1; Level: 4) 

1 1 e(e(y,x),e(x,y)) 
2 2 e(e(e(z,y),x),e(z,e(y,x))) 
7 3 [ 2 , 2 ] e(e(z,y),e(x,e(z,e(y,x)))) 
9 4 [ 1 , 2 ] e(e(z, e(y, x)), e(e(z, y), x)) 

149 5 [ 3 , 3 ] e(u, e(e(z,y), e(e(x,e(z, e(y, x))),u))) 
156 6 [ 3 , 4 ] e(u, e(e(z, e(y,x)), e(e(e(z,y), x), u))) 
547 7 [ 1 , 5 ] e(e(e(u, z), e(e(y, e(u, e( z, y))), x)), x) 
548 8 [ 7 , 6 ] e(e(e(z,y),e(x,z)),e(y,x)) 

B.4 Proof # 4 (Ratio 3 : 1; Level: 4) 

1 1 e(e(y, x), e(x, y)) 
2 2 e(e(e(z,y),x),e(z,e(y,x))) 
6 3 [ 2 , 2 ] e(e(z,y),e(x,e(z,e(y,x)))) 
7 4 [ 1 , 2 ] e(e(z,e(y,x)),e(e(z,y),x)) 

52 5 [ 3 , 3 ] e(u, e(e(z, y), e(e(x, e(z, e(y, x))),u))) 
56 6 [ 3 , 4 ] e(u, e(e(z, e(y, x)), e(e(e( z, y), x), u))) 

295 7 [ 1 , 5 ] e(e(e(u, z), e( e(y, e(u, e(z, y))), x)), x) 
296 8 [ 7 , 6 ] e(e(e(z,y),e(x,z)),e(y,x)) 

B.2 Proof # 2 (Ratio 1 :  1; Level: 7)

B.2 Proof # 2 (Ratio 1 :  1; Level: 7)

1
2

17
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e (e (y , z ) ,  e(x,y))
e(e(e(z,  y ) ,  x ) ,  e (z ,  e(y,  z)))

2 ]  e(e (z ,y ) ,  e(z, e(z, e(y, x ) ) ) )
2 ]  e le (z  ely, z)), e (e (z , y ) ,x))
3 ]  e(e(z,e(y, elz,2))) ely, x))
1 ]  e (z ,e (e ( y ,z), e(e(x,y), 2)))
2 ]  e(e(e(e(z,y), x), 2), e(y, z))
5 ]  e(e(e(z,e(y,e(x,z7))),y), x)
6 ] e(e(z, e(y, z)),  e(e(z,y),2))
8 ]  e (z ,e (e ( y ,  e(z, e (z ,y ) ) ) ,£))
9 ]  e(e (z ,e (y ,x ) ) ,  ez, e(z ,  y)))
7 ]  e (e (z , y ) , e (e (e (z , y ) ,2), x )
5 ]  e (e (z ,9 ) , e ( z ,e ( y ,e(z, x))))
0 ]  e (e (z ,e (e ( y ,x), e(z,2))), y)
4 ]  e (e (z ,e ( y , x ) ) ,  e(z, e(z, y)))
2 ]  e(e(z ,y ) ,e (z ,  e(e(z,y),  2)))
3 ]  e (e (e (z , y ) ,x), e(y,e(z, x)))
6 ]  e (e (e (z ,y ) ,x), e(e(z,y), z))
4 ] e(e(e(z,y) ,  e(y, x ) ,  e(z, z ) )
9 ]  e l e (e ( z , y ) , e ( z ,2 ) ) , e ( y ,z))

B.3  Proof # 3 (Ratio 2 :  1; Level: 4)

1
2
7

9
149
156
547
548 D
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— e(e(y, x), e(z,y))

e(e(e(z ,y ) ,  x), e(z ,  e ( y , x ) ) )
e(e(z,y), e(z, e(z, e(y,x))))
e(e(z,  e (y ,  x7)), e(e(z,  y ) ,  x ) )
e(u,  e (e(z ,y ) ,  e(e(z,  e(z,  e(y,  x ) ) ) ,  u)))
e(u,  e(e(2,  e (y ,  2 ) ,  e(e(e(z,  y ) ,  x ) ,  u)))

e(e(e(z,y) ,  ez,2)), e(y,  x))

B.4 Proof # 4 (Ratio 3 :1 ;  Level: 4)
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e(e(y, x), e(x, y)) ;

e(e(e(z, y), z), e(z, e(y, z)))
e(e(z,y) ,  ez, e(2, ey,))))
e(e(z, e(y, z)), e(e(2,9), 7 )

e (u ,  e (e(z ,  y ) ,  e (e (z ,  e ( z ,  e (y ,  x))), u)))
e (u ,  e(e(2, e (y ,  2)), e(e (e (z ,y ) ,  x), u ) ) )
e(e(e(u,  2 ) ,  e (e (y ,  e (u ,  e (z ,  y))), ) ) ,  z )
e(e(e(2, 9), e(z, 2)), e(y, 7))
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42 B PROOFS OF 'EC69 , 

B.5 Proof # 5 (Ratios 4 : 1, 5 : 1; Level: 4) 

1 1 e(e(y, x), e(x, y)) 
2 2 e(e(e(z, y), x), e(z, e(y,x))) 
6 3 [ 2 , 2 ] e(e(z,y),e(x,e(z,e(y,x)))) 
7 4 [ 1 , 2 ] e(e(z, e(y, x)), e(e(z, y),x)) 

52 5 [ 3 , 3 ] e(u, e(e(z, y), e(e(x, e(z, e(y, x))), u))) 
56 6 [ 3 , 4 ] e(u, e( e(z, e(y, x)), e(e(e(z, y), x), u))) 

240 7 [ 1 , 5 ] e(e(e(u, z), e(e(y, e(u, e(z, y))), x)), x) 
241 8 [ 7 , 6 ] e(e(e(z,y),e(x,z)),e(y,x)) 

B.6 Proof # 6 (Ratio 6 : 1; Level: 4) 

1 1 e(e(y,x),e(x,y)) 
2 2 e(e(e(z,y),x),e(z,e(y,x))) 
4 3 [ 2 , 2 ] e(e(z,y),e(x,e(z,e(y,x)))) 
5 4 [ 1 , 2 ] e(e(z, e(y, x)), e(e(z, y), x)) 

25 5 [ 3 , 3 ] e(u, e(e( z, y), e(e(x, e(z, e(y, x))), u))) 
29 6 [ 3 , 4 ] e(u, e(e( z, e(y, x)), e(e(e(z, y), x), u))) 

169 7 [ 1 , 5 ] e(e(e(u,z),e(e(y,e(u,e(z,y))),x)),x) 
170 8 [ 7 , 6 ] e(e(e(z,y),e(x,z)),e(y,x)) 

B.7 Proof # 7 (Ratios 7 : 1, . .. ,10 : 1; Level: 4) 

1 1 e(e(y,x),e(x,y)) 
2 2 e(e(e(z,y),x),e(z,e(y,x))) 
4 3 [2,2] e(e(z, y), e(x, e(z, e(y,x)))) 
5 4 [1,2] e(e(z,e(y,x)),e(e(z,y),x)) 

25 5 [3,3] e(u,e(e(z,y),e(e(x,e(z,e(y,x))),u))) 
29 6 [3,4] e(u, e(e(z, e(y, x)), e(e(e(z, y), x), u))) 

115 7 [1,5] e(e(e(u,z),e(e(y,e(u,e(z,y))),x)),x) 
116 8 [7,6] e(e(e(z,y),e(x,z)),e(y,x)) 

Notes 

Please note that proof # 1 and proof # 2 do not differ in their length, but they do 
differ in the level.
 

The remaining proofs only differ in the efficiency of the search, which is illustrated by
 
the numbers representing the activation steps.
 

42 B PROOFS OF ‘EC69’

B.5 Proof # 5 (Ratios 4 :1 ,  5 : 1 ;  Level: 4)

e (e (y ,  z ) , e ( z , y ) )
e (e (e (z , y ) ,x), e(z,e(y,x)))

; 2 ]  e (e ( z , y ) ,  e (z ,e (z ,  e (y ,  ) ) ) )
‚ 2 ]  e (e ( z ,e ( y , x ) ) ,e(e(z, y), x))
‚ 3  ] e (u ,e (e ( z , y ) ,  e(e(x,  e ( z ,e ( y ,  z))),u)))
‚ 4 ]  e (u ,e (e ( z ,e ( y ,x), e(e(e(z, 3), 2), u)))
» 5 ]  e (e (e (u ,2), e(e(y, e(u, e(z,  y) ) ) ,z)), x)
, 6 ]  e(e (e (z , y ) ,  e(z,2)), e l y ,  2))
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B.6  Proof # 6 (Ratio 6 :  1; Level: 4)

1 1 e (e ( y ,x),e(z,y))
2 2 e (e (e ( z , y ) ,x), e(z,e(y,x)))
4 3 [ 2 ,2 ]  e (e ( z , y ) , e ( z ,e ( z ,  e(y, x))))
5 4 [ 1 , 2  ] e(e(z, e(y,z)),  e(e(z,y),z))

25 5 [ 3 ,3 ]  e lu  e(e (zy )e(e(x, e(z, e(y, x))), u)))
29 6 [ 3 , 4 ]  e (u ‚e (e ( z ,e ( y , zx ) ) ,e(e(e(z, y), x), u)))

169 7 [ 1 , 5 ]  e(e(e(u ,z ) ,  e(e(y, e(u, e(z, y) ) ) ,x)), z)
8 [ 7 ,6 ] e(e(e(z, y),e(x,z)), e(y,x))

B.7  Proof # 7 (Ratios 7 :  1,...,10 : 1; Level: 4)

e(e(y, x), e(z,y))
e(e(e(z,  y ) ,  7 ) ,  e(z,  e (y ,  7)))

1
2
3 [ 2 ,2  ] e (e ( z , y ) ,  e(z, e(z,  e(y,z))))

5 4 [ 1 ,2 ]  e(e(z,e(y,x)), e(e(z,y),x))
25 J [ 3 ,3 ]  ey, e(e(z,  y), e(e(z, e(z,  e(y,z))),u)))
29 6 [ 3 ,4 ]  e(u,e(e(z, e(y,x)), e(e(e(z, y), 2), u)))

115 7 [ 1 , 5 ]  e(e(e(u,z),  e(e(y, e(u, e(z, y))), 2 ) ,  x)
8 [ 7 ,6 ] e(e(e(z,  y ) ,  e ( z ,  2 ) ,  e ( y , x ) )

Notes

Please note that proof # 1 and proof # 2 do not differ in their length, but they do
differ in  the level.
The remaining proofs only differ in  the efficiency of the search, which is illustrated by
the numbers representing the activation steps.



43 

C Experimental Evaluation of WFR 

We list here our experimental results concerning the performance of 'WFR in depen
dence of the parameters p, ql, q2 and the different types of source proofs. obtained 
with the basic heuristic w (cf. subsection 3.1). Each subsection C.1-C.S deals with a 
different target-source combination given in its heading. The heading also shows the 
best (fastest) result produced by w when employed to prove the.target problem. This 
information stems from the respective table (2, 3 or 4) in subsection 3.1 and is intended 
to serve as a point of reference to rate the results listed in the tables of the respec
tive subsection C.1-C.S. The different tables of each subsection refer to the different 
types of source proofs which are displayed by the respective caption. The caption also 
shows (in brackets) the ratio Cs : Cw used by 'W to find the respective source proof (cp. 
tables 2-4 in subsection 3.1). The following example illustrates the information made 
available by each of the subsequent subsections. 

Consider, for instance, subsection C.3. Subsection C.3 deals with the performance 
of WFR with respect to the target problem cn29 and the source problem cn28. The 
best (fastest) result produced by w is displayed in the heading, namely a proof found 
within 35 seconds. The (body of the) first table lists the results obtained with 'WFR 

when using a proof of cn28 which is the fastest and at the same time the longest and 
the one with the lowest level. This information is provided by the caption which also 
shows that this particular proof was found (by w) when employing the ratio 3 : 1 for 
Cs : Cw (cp. table 3 in subsection 3.1). 

Please note that in case a caption enumerates several types of source proofs this does 
not mean that all these source proofs are distinct, yet yielding the same results displayed 
in the body of the table. It means that these proofs are identical (in the sense that the 
associated sets of positive sets are equal). 

Remark: There is no caption if only one (type of) source proof was found by 'W (see 
C.1 and C.2). 
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C Experimental Evaluation o f  wpp

We list here our experimental results concerning the performance of wrpr in depen-
dence of the parameters p,  ¢1 ,  gz and the different types of source proofs.obtained
with the  basic heur ist ic  @ (cf. subsection 3.1) .  Each subsect ion C .1 -C .8  deals with a
different target—source combination given in  its heading. The heading also shows the
best (fastest) result produced by w when employed to  prove the target problem. This
information stems from the respective table (2, 3 or 4) in  subsection 3.1 and is intended
to  serve as a point of reference to rate the results listed i n  the tables of the respec-
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types of source proofs which are displayed by  the respective caption. The caption also
shows (in brackets) the ratio cs : ¢,, used by w to find the respective source proof (cp.
tables 2-4 in subsection 3.1). The following example illustrates the information made
available by  each of the subsequent subsections.

Consider, for instance, subsection C.3. Subsection C.3 deals with the performance
of r p  with respect to  the target problem cn29 and the source problem cn28. The
best (fastest) result produced by w is displayed i n  the heading, namely a proof found
within 35 seconds. The (body of the) first table lists the results obtained with wrr
when using a proof of cn28 which is the fastest and at the same time the longest and
the one with the lowest level. This information is provided by the caption which also
shows that this particular proof was found (by @) when employing the ratio 3 : 1 for
Cs : Cw (cp. table 3 in  subsection 3.1).

Please note that in  case a caption enumerates several types of source proofs this does
not mean that all  these source proofs are distinct, yet yielding the same results displayed
in  the body of the table. I t  means that these proofs are identical ( in  the sense that the
associated sets of positive sets are equal).

Remark: There is no caption if  only one (type of) source proof was found by w (see
C.1 and C.2).



44 C EXPERIMENTAL EVALUATION OF WFR 

C.l Target: cn19, Source: cn21; [w: 84 seconds] 

ql q2 p=o P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 - - - 1588 1588 648 
0.00 0.50 - - - - 1508 1518 1568 
0.00 0.75 - 1518 1518 1418 548 548 548 
0.00 1.00 288 288 288 288 288 298 298 
0.25 0.25 - - 828 708 718 598 558 
0.25 0.50 - - 828 718 728 618 608 
0.25 0.75 1558 1258 598 598 518 518 458 
0.50 0.25 - 878 868 598 448 438 308 
0.50 0.50 1158 918 998 708 528 458 458 
0.50 0.75 728 538 448 338 278 278 278 
0.75 0.25 - 808 778 638 528 408 418 
0.75 0.50 928 808 628 548 558 308 308 
0.75 0.75 458 328 338 338 278 278 278 
1.00 0.25 828 588 988 838 688 558 548 
1.00 0.50 638 908 918 728 678 568 428 
1.00 0.75 528 418 428 308 308 308 258 

C.2 Target: cn21, Source: cn19; [w: 91 seconds] 

ql q2 p=O p= 20 p= 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 428 438 478 528 538 578 638 
0.00 0.50 428 438 468 518 518 528 528 
0.00 0.75 478 508 518 538 528 528 528 
0.00 1.00 628 618 628 628 628 628 628 
0.25 0.25 628 408 448 418 428 458 458 
0.25 0.50 398 428 448 418 418 418 428 
0.25 0.75 558 518 528 528 518 528 518 
0.50 0.25 338 618 q98 468 478 488 508 
0.50 0.50 618 558 628 488 498 498 498 
0.50 0.75 648 498 508 50s 518 44s 448 
0.75 0.25 288 438 598 588 608 458 468 
0.75 0.50 34s 50s 658 63s 65s 47s 49s 
0.75 0.75 808 70s 798 528 528 528 52s 
1.00 0.25 27s 35s 50s 69s 598 598 59s 
1.00 0.50 308 368 558 728 73s 678 74s 
1.00 0.75 858 92s 80s 848 558 558 558 

44 C EXPERIMENTAL EVALUATION OF wFr

C.1  Target: cn19, Source: cn21; [w :  84 seconds]

q ı  92 ([p=0|p=20|p=40|p=60|p=80|p=100 | p = 120
0.00 0.25 — — — — 158s 158s 64s
0.00 0.50 — — — — 150s 151s 156s
0.00 0.75 — 151s 151s 141s 54s 54s 54s
0.00 1.00 | 28s 28s 28s 28s 28s 29s 29s
0.25 0.25 — — 82s 70s Tls  59s 55s
0.25 0.50 — — 82s 71s 72s 61s 60s
0.25 0.75 || 155s 125s 59s 59s 51s 51s 45s
0.50 0.25 — 87s 86s 59s 44s 43s 30s
0.50 0.50 || 115s 91s 99s 70s 52s 45s 45s
0.50 0.75 | 72s 53s 44s 33s 27s 27s 27s
0.75 0.25 — 80s Ts  63s 52s 40s 41s
0.75 0.50 | 92s | 80s 62s 54s 558 30s 30s
0.75 0.75 || 45s 32s 33s 33s 27s 27s 27s
1.00 0.25 || 82s 58s 98s 83s 68s 55s 54s

1 .00  0.50 | |  63s 90s 91s 72s 67s 56s 42s
1 .00  0 .75  52s 41s 42s 30s 30s 30s 25s

C.2 Target: cn21, Source: cn19; [w :  91  seconds]

qı 2 | p=0 |p=20 |p=40 |p=60 |p=80 |p=100 |p=120
0.00 0.25 || 42s 43s 47s 52s 53s 57s 63s
0.00 0.50 | |  42s 43s 46s als 51s 52s 52s
0.00 0.75 || 47s 50s 51s 53s 52s 52s 952s
0.00 1.00 | 62s 61s 62s 62s |. 62s 62s 62s
0.25 0.25 || 62s 40s 44s 41s 42s 45s | 45s
0.25 0.50 || 39s 42s 44s 41s 41s 41s 42s
0.25 0.75 | |  55s 51s 52s 52s 51s 52s 51s
0.50 0.25 || 33s 61s 59s 46s 47s 48s 50s
0.50 0.50 | |  61s 55s 62s 48s 49s 49s 49s
0.50 0.75 || 64s 49s 50s 50s 51s 44s 44s
0.75 0.25 | 28s 43s 59s 58s 60s 45s 46s
0.75 0.50 34s 50s 65s 63s 65s 47s 49s
0.75 0.75) 80s 70s 79s 52s 52s 52s 52s
1.00 0.25 | 27s 35s 50s 69s 59s 59s 59s
1.00 0.50 || 30s 36s 55s 72s 73s 67s 74s
1.00 0.75 | 85s 92s 80s 84s 55s 55s 55s



C.3 Target: cn29, Source: cn28; [cv: 35 seconds} 45 

C.3 Target: cn29, Source: cn28; [w: 35 seconds] 

fastest, longest, lowest level [3: 1 ] 
ql q2 p=O P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 

0.00 0.25 5s 5s 5s 11s 23s 19s 31s 
0.00 0.50 5s 5s 5s 5s 5s 8s 12s 
0.00 0.75 5s 5s 5s 6s 5s 5s 5s 
0.00 1.00 7s 7s 7s 7s 7s 7s 7s 
0.25 0.25 7s 6s 6s 7s 13s 20s 19s 
0.25 0.50 6s 6s 7s 4s 4s 4s 8s 
0.25 0.75 8s 5s 5s 5s 5s 5s 5s 
0.50 0.25 10s 7s 7s 7s 9s 13s 21s 
0.50 0.50 8s 7s 7s 7s 7s 8s 9s 
0.50 0.75 8s 9s 9s 9s 10s 5s 5s 
0.75 0.25 15s 12s 8s 7s 8s 9s 12s 
0.75 0.50 14s 10s 10s 8s 9s 8s 9s 
0.75 0.75 13s 11s 12s 11s 11s 11s 11s 
1.00 0.25 13s 36s 17s 12s 12s 8s 11s 
1.00 0.50 28s 21s 15s 15s 14s 11s 10s 
1.00 0.75 13s 16s 14s 14s 12s 12s 12s 

slowest, shortest, highest level [ 4 : 3 ] 
ql q2 p=O P = 20 P = 40 p = 60 p = 80 p = 100 p = 120 

0.00 0.25 5s 5s 6s 13s 16s 17s 30s 
0.00 0.50 5s 5s 5s 6s 6s 6s 13s 
0.00 0.75 5s 6s 6s 6s 6s 6s 6s 
0.00 1.00 7s 7s 7s 7s 7s 7s 11s 
0.25 0.25 8s 6s 5s 6s 16s 17s 17s 
0.25 0.50 6s 5s 5s 5s 6s 6s 12s 
0.25 0.75 5s 5s 5s 5s 5s 5s 6s 
0.50 0.25 13s 11s 8s 6s 11s 17s 26s 
0.50 0.50 12s 8s 6s 68 5s 5s 6s 
0.50 0.75 78 6s 6s 6s 6s 7s 7s 
0.75 0.25 12s 8s 11s 7s 6s 12s 17s 
0.75 0.50 10s 8s 16s 16s 9s 8s 8s 
0.75 0.75 8s 8s 8s 6s 7s 6s 6s 
1.00 0.25 9s 6s 8s 12s 9s 9s 11s 
1.00 0.50 8s 6s 9s lOs 9s 6s 6s 
1.00 0.75 8s 8s 6s 6s 5s 5s 5s 

C.3 Target: cn29, Source: cn28;

C.3  Target: cn29, Source: cn28;

(=: 35  seconds]

[w: 35  seconds]

fastest, longest, lowest level [ 3 : 1 ]
qı 2 |p=0|p=20|p=40|p=60 ,p=80|p=100 | = 120

0.00 0.25 5s 5s 5s 11s 23s 19s 31s
0.00 0.50 5s 5s 5s 5s 5s 8s 12s
0.00 0.75 5s 5s 5s 6s 5s 5s 5s
0.00 1.00 Ts Ts Ts Ts Ts Ts Ts
0.25 0.25 Ts 6s 6s Ts 13s 20s 19s
0.25 0.50 6s 6s Ts 4s 4s 4s 8s
0.25 0.75 8s 5s 5s 5s Bs 5s 5s
0.50 0.25 | 10s Ts Ts Ts 9s 13s 21s
0.50 0.50 8s Ts Ts Ts Ts 8s 9s
0.50 0.75 8s 9s 9s Os 10s 5s Bs
0.75 0.25 15s 12s 8s Ts 8s 9s 12s
0.75 0.50 14s 10s 10s 8s 9s 8s 9s
0.75 0.75 | 13s 11s 12s 11s 11s 11s 11s
1.00 0.25 13s 36s 17s 12s 12s 8s 11s
1.00 0.50 28s 21s 15s 15s 14s 11s 10s
1.00 0.75 13s 16s 14s 14s 12s 12s 12s

slowest, shortest, highest level [ 4 : 3 ]
a 2 | p=0 |p=20 |p=40 |p=60 |p=80 |p=100  | p=120

0.00 0.25 5s 5s 6s 13s 16s 17s 30s
0.00 0.50 5s 5s 5s 6s 6s 6s 13s
0.00 0.75 5s 6s 6s 6s 6s 6s 6s
0.00 1.00 Ts Ts Ts Ts Ts Ts 11s
0.25 0.25 8s 6s 5s 6s 16s 17s 17s
0.25 0.50 6s 5s 5s 5s 6s 6s 12s
0.25 0.75 5s 5s 5s bs 5s os 6s
0.50 0.25 || 13s 11s 8s 6s 11s 17s 26s
0.50 0.50 || 12s 8s 6s 6s 5s 5s 6s
0.50 0.75 Ts 6s 6s 6s 6s Ts Ts
0.75 0.25 12s 8s 11s Ts 6s 12s 17s
0.75 0.50 | 10s 8s 16s 16s 9s 8s 8s
0.75 0.75 8s 8s 8s 6s Ts 6s 6s
1.00 0.25 9s 6s 8s 12s 9s 9s 11s
1.00 0.50 8s 6s 9s 10s 9s 6s 6s
1.00 0.75 8s 8s 6s 6s 9s 5s 5s

45



46 C EXPERIMENTAL EVALUATION OF o:JFR 

C.4 Target: cn29, Source: cn30; [w: 35 seconds] 

fastest, longest, highest level [ 4 : 3 ] 

ql q2 p=O P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 - - - - 80s 80s 70s 
0.00 0.50 - - - - - 77s 77s 
0.00 0.75 - - 77s 77s 73s 80s 82s 
0.00 1.00 95s 95s 95s 95s 95s 97s 96s 
0.25 0.25 - - - 72s 62s 62s 36s 
0.25 0.50 - - 126s 74s 68s 62s 62s 
0.25 0.75 127s 74s 72s 72s 71s 80s 79s 
0.50 0.25 28s 82s 56s 32s 30s 26s 24s 
0.50 0.50 - 72s 43s 33s 28s 28s 27s 
0.50 0.75 62s 30s 30s 29s 29s 33s 67s 
0.75 0.25 19s 69s 38s 28s 23s 23s 16s 
0.75 0.50 43s 33s 25s 24s 21s 15s 15s 
0.75 0.75 17s 15s 12s 15s 27s 28s 32s 
1.00 0.25 48s 24s 80s 45s 41s 33s 23s 
1.00 0.50 14s 50s 25s 25s 19s 18s 18s 
1.00 0.75 20s 15s 12s 12s 13s 17s 17s 

shortest, lowest level [ 4 : 1 ] 

ql q2 p=O P = 20 p= 40 p = 60 p= 80 p = 100 p = 120 
0.00 0.25 - - - - 99s 116s 99s 
0.00 0.50 - - - - - 83s 92s 
0.00 0.75 - 106s 92s 93s 34s 34s 34s 
0.00 1.00 9s 9s 9s 9s 9s 9s 9s 
0.25 0.25 - - Ills 68s 54s 45s 53s 
0.25 0.50 - - lOOs 83s 70s 72s 73s 
0.25 0.75 109s 96s 66s 38s 38s 36s 37s 
0.50 0.25 13s 45s 32s 22s 20s 20s 28s 
0.50 0.50 74s 50s 34s 28s 23s 23s 26s 
0.50 0.75 62s 37s 36s 26s 21s 16s 15s 
0.75 0.25 11s 25s 22s 13s 12s lOs 11s 
0.75 0.50 29s 26s 50s 21s 18s 15s 16s 
0.75 ,0.75 26s 18s 17s 18s 17s 17s 15s 
1.00 0.25 26s 13s 18s 17s 13s 15s 12s 
1.00 0.50 9s 23s 40s 29s 25s 10s 10s 
1.00 0.75 17s 15s 7s 15s 14s 15s 15s 

46 C EXPERIMENTAL EVALUATION OF wrr

C.4  Target: cn29, Source: cn30; [w:  35 seconds]

fastest, longest, highest level [ 4 : 3 ]
q ı  g2 I 2=0 |2=20 |9=40 |2=60 |»=80  | p=100  | p=  120

0.00 0.25 — — — — 80s 80s 70s
0.00 0.50 — — — — — 77s 778 |

0.00 0.75 — — 77s 77s 73s 80s 82s
0.00 1.00 || 95s 95s 953s 95s 95s 97s 96s
0.25 0.25 — — — 72s 62s 62s 36s
0.25 0.50 — — 126s 4s  68s 62s 62s
0.25 0.75 || 127s 74s 72s 72s 71s 80s 79s
0.50 0.25 || 28s 82s 56s 32s 30s 26s | 24s
0.50 0.50 — 72s . 43s 33s 28s 28s 27s
0.50 0.75 62s 30s 30s 29s 29s 33s 67s
0.75 0.25 19s 69s 38s 28s 23s 23s 16s
0.75 0.50 || 43s 33s 25s 24s 21s 15s 15s
0.75 0.75 || 17s 15s 12s 15s 27s 28s 32s
1.00 0.25 | 48s 24s 80s 45s 41s 33s 23s
1.00 0.50 14s 50s 25s 25s 19s 18s 18s
1.00 0.75 | |  20s 15s 12s 12s 13s 17s 17s

shortest, lowest level [ 4 : 1 ]
qı q2 |[p=0|p=20|p=40|p=60|p=80|p=100|p=120

0.00 0.25 — — — — 99s 116s 99s
0.00 0.50 — — — — — 83s 92s
0.00 0.75 — 106s 92s 93s 34s 34s 34s
0.00 1.00 9s 9s 9s 9s 9s 9s Os

10.25 0.25 — — 111s 68s 54s 45s 53s
0.25 0.50 — — 100s 83s 70s 72s 73s
0.25 0.75 || 109s 96s 66s 38s 38s 36s | 37s
0.50 0.25 | 13s 45s 32s 22s 20s 20s 28s
0.50 0.50 74s 50s 34s 28s 23s 23s 26s
0.50 0.75 | 62s 37s 36s 26s 21s 16s 15s
0.75 0.25 || 11s 25s 22s 13s 12s 10s 11s
0.75 0.50 || 29s 26s 50s 21s 18s 15s 16s
0.75 0.75 || 26s 18s 17s 18s 17s | 17s 15s
1.00 0.25 || 26s 13s 18s 17s 13s 15s 12s
1.00 0.50 9s 23s 40s 29s 25s 10s 10s
1.00 0.75 17s 15s Ts 15s 14s 15s 15s



47 CA Target: cn29, Source: cn30; [r:v: 35 seconds) 

slowest [ 0 : 1 ] 

ql q2 p=O P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 6s 7s 7s 8s 10s 14s 21s 
0.00 0.50 6s 7s 7s 8s 8s 8s 8s 
0.00 0.75 7s 8s 8s 8s 8s 8s 8s 
0.00 1.00 lIs lIs lIs lIs lIs lIs lIs 
0.25 0.25 10s 9s 9s 9s 9s 12s 14s 
0.25 0.50 9s 8s 9s 9s 8s 8s 8s 
0.25 0.75 9s 8s 8s 8s 8s 8s 8s 
0.50 0.25 14s 12s 13s 10s lIs lIs 12s 
0.50 0.50 12s 10s lIs lIs 10s 10s 10s 
0.50 0.75 lIs 10s 10s lIs 118 lIs 9s 
0.75 0.25 13s 32s 21s 20s 16s 15s 158 
0.75 0.50 20s 17s 16s 16s 15s 15s 12s 
0.75 0.75 128 12s 138 13s 12s 12s 12s 
1.00 0.25 22s 25s 92s 50s 48s 34s 24s 
1.00 0.50 15s 56s 27s 278 20s 19s 20s 
1.00 0.75 21s 16s 15s 15s 15s 15s 15s 

C.4 Target: cn29, Source: cn30; x :  35 seconds]

slowest [ 0 :1 ]
qı qgz |[p=0|p=20|p=40|p=60|p=80|p=100| p=  120

0.00 0.25 6s Ts Ts 8s 10s 14s 21s
0.00 0.50 6s Ts Ts 8s 8s 8s 8s
0.00 0.75 Ts 8s 8s 8s 8s 8s 8s
0.00 1.00 | 11s 11s 11s 11s 11s 11s 11s
0.25 0.25 10s 9s - 9s 9s 9s 12s 14s
0.25 0.50 Os 8s Os 9s 8s 8s 8s
0.25 0.75 9s 8s 8s 8s 8s 8s 8s
0.50 0.25 14s 12s 13s 10s 11s 11s 12s
0.50 0.50 12s 10s 11s 11s 10s 10s 10s
0.50 0.75 11s 10s 10s 11s 11s 11s 9s
0.75 0.25 13s 32s 21s 20s 16s 15s 15s
0.75 0.50 20s 17s 16s 16s 15s 15s 12s
0.75 0.75 | |  12s 12s 13s 13s 12s 12s 12s
1.00 0.25 | 22s 25s 92s 50s 48s 34s 24s
1.00 0.50 | |  15s 56s 27s 27s 20s 19s 20s
1.00 0.75 | 21s 16s 15s 15s 15s 15s 15s
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48 C EXPERIMENTAL EVALUATION OF WFR 

C.5 Target: cn32, Source: cn31; [w: 45 seconds] 

slowest, shortest, highest level [ 1 : 1 ] 

q1 q2 p=o P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 138' 138 148 158 248 248 358 
0.00 0.50 138 138 148 148 148 148 168 
0.00 0.75 148 148 148 158 168 168 168 
0.00 1.00 198 188 198 198 198 198 198 
0.25 0.25 168 178 158 158 198 218 208 
0.25 0.50 178 158 158 158 148 158 178 
0.25 0.75 158 148 168 168 168 168 168 
0.50 0.25 298 208 228 238 218 288 228 
0.50 0.50 228 178 198 208 218 178 178 
0.50 0.75 198 178 178 178 178 188 178 
0.75 0.25 408 178 118 228 238 298 318 
0.75 0.50 208 148 188 208 268 268 '268 

0.75 0.75 218 238 228 238 188 178 178 
1.00 0.25 628 218 158 118 148 198 248 
1.00 0.50 188 178 108 128 208 278 298 
1.00 0.75 128 218 248 258 258 258 258 

fastest, longest, lowest level [ 2 : 1 ] 
q1 q2 p=O P = 20 p = 40 p = 60 p = 80 p = 100 p = 120 

0.00 0.25 428 448 428 788 258 328 348 
0.00 0.50 438 448 448 778 818 888 888 
0.00 0.75 848 858 878 868 188 188 188 
0.00 1.00 198 198 198 198 198 198 198 
0.25 0.25 268 448 508 838 748 308 208 
0.25 0.50 638 498 828 888 958 738 248 
0.25 0.75 868 948 478 198 198 188 188 

0.50 0.25 568 228 218 488 278 308 288 
0.50 0.50 418 268 268 368 288 248 198 

0.50 0.75 558 238 198 188 178 178 178 
0.75 0.25 308 148 98 168 228 308 348 
0.75 0.50 168 108 108 228 268 278 278 
0.75 0.75 248 228 228 238 178 188 178 

1.00 0.25 468 188 128 98 128 168 228 

1.00 0.50 158 138 88 98 188 278 278 
1.00 0.75 108 218 258 258 268 258 268 

48 C EXPERIMENTAL EVALUATION OF wrgr

'C .5  Target: cn32, Source:  cn31; [w :  45  seconds]

s lowest ,  shortest ,  highest l eve l  [ 1 : 1 ]
q ı  g2 |p=0|p=20|p=40|p=60|p=80|p=100| p=120

0.00 0.25 13s: 13s 14s 15s 24s 24s 35s
0.00 0.50 || 13s 13s 14s 14s 14s 14s 16s
0.00 0.75 14s 14s 14s 15s 16s 16s 16s
0.00 1.00 19s 18s 19s 19s 19s 19s 19s
0.25 0.25 16s 17s 15s 15s 19s 21s 20s
0.25 0.50 17s 15s 15s 15s 14s 13s 17s
0.25 0.75 15s 14s 16s 16s 16s 16s 16s
0.50 0.25 | 29s 20s 22s 23s 21s 28s 22s
0.50 0.50 | |  22s 17s 19s 20s 21s 17s 17s
0.50 0.75 19s | 17s 17s 17s 17s 18s 17s
0.75 0.25 | 40s 17s 11s 22s 23s 29s 31s
0.75 0.50 || 20s 14s 18s 20s 26s 26s 26s
0.75 0.75 || 21s 23s 22s 23s 18s 17s 17s
1.00 0.25 || 62s 21s 15s 11s 14s 19s 24s
1.00 0.50 18s 17s 10s 12s 20s 27s 29s
1.00 0.75 12s 21s 24s 25s 25s 25s 25s

fastest, longest, lowest level [ 2 : 1 ]
qı gz |[p=0|p=20|p=40|p=60|p=80|p=100| p=120

0.00 0.25 42s 44s 42s 78s 25s 32s 34s
0.00 0.50 | |  43s 44s 44s 77s 81s 88s 88s
0.00 0.75 || 84s 85s 87s 86s 18s 18s 18s
0.00 1.00 19s 19s 19s 19s 19s 19s 19s
0.25 0.25 || 26s 44s 50s 83s T4s 30s 20s
0.25 0.50 | 63s 49s 82s 88s 95s 73s 24s
0.25 0.75 || 86s 94s 47s 19s 19s 18s 18s
0.50 0.25 | 56s 22s 21s 48s 27s 30s 28s
0.50 0.50 || 41s 26s 26s 36s 28s 24s 19s
0.50 0.75 || 55s 23s 19s 18s 17s 17s 17s
0.75 0.25 | 30s 14s 9s 16s 22s 30s 34s
0.75 0.50 16s 10s 10s 22s 26s 27s 27s
0.75 0.75 || 24s 22s 22s 23s 17s 18s 17s
1.00 0.25 || 46s 18s 12s 9s 12s 16s 22s
1.00 0.50 || 15s 13s 8s 9s 18s 27s 27s
1.00 0.75 10s 21s 25s 25s 26s 25s 26s



C.6 Target: cn32, Source:	 cn33; ['CV: 45 seconds} 49 

C.6	 Target: cn32, Source: cn33; [w: 45 seconds] 

slowest, highest level [ 0 : 1 ] 

e-!1} q2 p=O P = 20 p= 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 - 138 128 148 178 228 308 
0.00 0.50 638 138 118 128 128 128 148 
0.00 0.75 128 128 138 138 138 138 138 
0.00 1.00 178 188 178 178 188 178 178 
0.25 0.25 - 148 148 158 168 198 238 
0.25 0.50 168 148 148 148 138 148 148 
0.25 0.75 148 138 138 138 138 138 138 
0.50 0.25 628 198 208 208 178 198 228 
0.50 0.50 208 168 168 168 158 158 178 
0.50 0.75 168 158 168 178 188 188 158 
0.75 0.25 618 528 288 268 228 268 258 
0.75 0.50 278 218 218 208 238 238 228 
0.75 0.75 198 198 198 198 178 188 188 
1.00 0.25 - 1118 1218 658 618 438 338 
1.00 0.50 588 718 368 368 258 258 258 
1.00 0.75 268 208 228 228 228 228 :L28 

fastest [ 3 : 1 ] 
ql q2 p=O p= 20 p = 40 p = 60 p = 80 p = 100 p = 120 

0.00 0;25 - - - - 1118 1328 1088 
0.00 0.50 - - - - - 1008 1108 
0.00 0.75 - 1138 1088 1118 478 478 478 
0.00 1.00 168 168 168 168 168 168 168 
0.25 0.25 - - 1098 538 458 558 588 
0.25 0.50 - - 448 638 578 398 778 
0.25 0.75 1098 1048 728 498 498 478 478 
0.50 0.25 - 398 338 268 188 228 298 
0.50 0.50 688 518 338 288 198 168 168 
0.50 0.75 568 438 508 228 148 168 178 
0.75 0.25 458 258 158 138 138 24s 378 
0.75 0.50 308 228 488 208 228 248 258 
0.75 0.75 238 248 198 188 188 178 178 
1.00 0.25 458 208 138 128 128 128 178 
1.00 0.50 168 178 308 308 268 158 308 
1.00 0.75 98 228 248 238 188 188 188 

C.6 Target: cn32, Source: cn33;

C.6  Target: cn32, Source: cn33;

[=: 45 seconds]

[z :  45 seconds]

slowest, highest level [ 0 : 1 ]
GQ 2 | p=0 |p=20 |p=40 |p=60 |p=80 (p=100 |p=120

0.00 0.25 — 13s 12s | 14s 17s 22s 30s
0.00 0.50 || 63s 13s 11s 12s 12s 12s 14s
0.00 0.75 12s 12s 13s 13s 13s 13s 13s
0.00 1.00 | 17s 18s 17s 17s 18s 17s 17s
0.25 0.25 — 14s 14s 15s 16s 19s 23s
0.25 0.50 || 16s 14s 14s 14s 13s 14s 14s
0.25 0.75 | 14s 13s 13s 13s 13s 13s 13s
0.50 0.25 || 62s 19s 20s 20s 17s 19s 22s
0.50 0.50 || 20s 16s 16s 16s 15s 15s 17s
0.50 0.75 || 16s 15s 16s 17s 18s 18s 15s
0.75 0.25 | 61s 52s 28s 26s 22s 26s 25s
0.75 0.50 | |  27s 21s 21s 20s 23s 23s 22s
0.75 0.75 || 19s 19s 19s 19s 17s 18s 18s
1.00 0.25 — 111s 121s 65s 61s 43s 33s
1.00 0.50 || 58s 71s 36s 36s 25s 25s 25s
1.00 0.75 || 26s 20s 22s 22s 22s 22s 22s

fastest [ 3 : 1 ]
Q 2 |[p=0|p=20(p=40|p=60|p=80|p=100|(p=120

0.00 0.25 — — — — 111s 132s 108s
0.00 0.50 — — — — — 100s 110s
0.00 0.75 — 113s 108s 111s 47s 47s 47s
0.00 1.00 16s 16s 16s 16s 16s 16s 16s
0.25 0.25 — — 109s 53s 45s 55s 58s
0.25 0.50 — — 44s 63s 57s 39s 778
0.25 0.75 || 109s 104s 72s 49s 49s 47s 47s
0.50 0.25 — 39s 33s 26s 18s 22s 29s
0.50 0.50] 68s 51s 33s 28s 19s 16s 16s
0.50 0.75 | 56s 43s 50s 22s 14s 16s 17s
0.75 0.25 | 45s 25s 15s 13s 13s 24s 37s
0.75 0.50 || 30s 22s 48s 20s 22s 24s 25s
0.75 0.75 || 23s 24s 19s 18s 18s 17s 17s
1.00 0.25 || 45s 20s 13s 12s 12s 12s 17s
1.00 0.50 || 16s 17s 30s 30s 26s 15s 30s
1.00 0.75 9s 22s 24s 23s 18s 18s 18s
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50 C EXPERIMENTAL EVALUATION OF r;:}FR 

longest [ 3 : 2 ] 

ql q2 p=O P = 20 p = 40 P = 60 p= 80 p = 100 p = 120 
0.00 0.25 - - - - 115s 117s 98s 
0.00 0.50 - - - - - 113s 116s 
0.00 0.75 - - 109s 109s 99s 109s 114s 
0.00 1.00 119s 118s 119s 119s 121s 126s 128s 
0.25 0.25 - - - 110s 95s 57s 56s 
0.25 0.50 - - - 105s 98s 88s 86s 
0.25 0.75 - 108s 99s 99s 99s 109s 107s 
0.50 0.25 - - 78s 47s 47s 40s 42s 
0.50 0.50 - 97s 60s 44s 42s 42s 418 
0.50 0.75 74s 45s 45s 43s 41s 46s 868 
0.75 0.25 - 107s 49s 37s 30s 348 29s 
0.75 0.50 738 42s 32s 31s 26s 23s 22s 
0.75 0.75 21s 23s 19s 24s 39s 40s 44s 
1.00 0.25 - - 104s 58s 53s 41s 31s 
1.00 0.50 54s 63s 32s 32s 24s 23s 23s 
1.00 0.75 25s 19s 22s 21s 21s 27s 27s 

shortest, lowest level [ 4 : 1 ] 
ql q2 p=O P = 20 p = 40 P = 60 p = 80 p = 100 p = 120 

0.00 0.25 - - - - 101s 110s 95s 
0.00 0.50 - - - - - 110s 117s 
0.00 0.75 - 96s 115s 113s 44s 44s 44s 
0.00 1.00 16s 16s 15s 16s 15s 16s 16s 
0.25 0.25 - - - - 73s 64s 97s 
0.25 0.50 - - - 62s 50s 53s 31s 
0.25 0.75 70s 113s 96s 46s 46s 46s 45s 
0.50 0.25 - - - 173s 69s 40s 36s 
0.50 0.50 - - 160s 75s 35s 31s 24s 
0.50 0.75 33s 26s 14s 14s 15s 15s 17s 

0.75 0.25 113s 62s 45s 56s 38s 33s 36s 
0.75 0.50 60s 78s 27s 24s 26s 23s 17s 
0.75 0.75 14s 178 16s 16s 16s 16s 16s 
1.00 0.25 - 57s 72s 59s 22s 38s 47s 
1.00 0.50 20s 31s 21s 22s 29s 28s 27s 
1.00 0.75 20s 20s 16s 16s 16s 16s 168 

50 C EXPERIMENTAL EVALUATION OF  wrgr

longest [ 3 : 2 ]
qı qgz | p=0 |p=20 |p=40 |p=60  | p=80|p=100| p=  120

0.00 0.25 — — — — 115s 117s 98s
0.00 0.50 — — — — — 113s 116s
0.00 0.75 — — 109s 109s 99s 109s 114s
0.00 1.00 || 119s 118s 119s 119s 121s 126s 128s
0.25 0.25 — — — 110s 95s 57s 56s
0.25 0.50 — — — 105s 98s 88s 86s
0.25 0.75 — 108s 99s 99s 99s 109s 107s
0.50 0.25 — 78s 47s 47s 40s 42s
0.50 0.50 — 97s 60s 44s 42s 42s 41s
0.50 0.75 74s 45s 45s 43s 41s 46s 86s
0.75 0.25 — 107s 49s 37s 30s 34s 29s
0.75 0.50 73s 42s 32s 31s 26s 23s 22s
0.75 0.75 21s 23s 19s 24s 39s 40s 44s
1.00 0.25 — — 104s 58s 53s 41s 31s
1.00 0.50 | |  54s 63s 32s 32s 24s 23s 23s
1.00 0.75 | |  25s 19s 22s 21s 21s 27s 27s

shortest,  lowest  level [ 4 : 1 ]
qı g2 |?=0/|2=20|D=40|2=60|p=80 | = 100 | p=  120

0.00 0.25 — — — — 101s 110s 95s
0.00 0.50 — — — — — 110s 117s
0.00 0.75 — 96s 115s 113s 44s 44s 44s
0.00 1.00 16s 16s 15s 16s 15s 16s 16s
0.25 0.25 — — — — 73s 64s 97s
0.25 0.50 — — — 62s 50s 53s 31s
0.25 0.75 | 70s 113s 96s 46s 46s 46s 45s
0.50 0.25 — — — 173s 69s 40s 36s
0.50 0.50 — — 160s 75s 35s 31s 24s
0.50 0.75 || 33s 26s 14s 14s 15s 15s 17s
0.75 0.25 || 113s 62s 45s 56s 38s 33s 36s
0.75 0.50 || 60s 78s 27s 24s 26s 23s 17s
0.75 0.75 | 14s 17s 16s 16s 16s 16s 16s
1.00 0.25 — LYE T2s 99s 22s 38s 47s
1.00 0.50 || 20s 31s 21s 22s 29s 28s 27s
1.00 0.75 | 20s 20s 16s 16s 16s 16s 16s



C.7 Target: mv60, Source: mv59; fro failed] 51 

C.7 Target: mv60, Source: mv59; [w failed] 

longest) highest level [ 1 : 1 ] 

ql q2 p=o p= 20 p = 40 p = 60 p = 80 p = 100 p = 120 
0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 38s 95s - - - - -

0.25 0.50 73s - - - - - -

0.25. 0.75 - - - - - - -

0.50 0.25 8s 22s 47s 113s 1518 - -

0.50 0.50 228 44s 73s 119s 126s - -

0.50 0.75 98s - - - - - -

0.75 0.25 6s 12s 218 428 57s 83s 105s 
0.75 0.50 8s 13s 23s 46s 48s 73s 116s 
0.75 0.75 34s 75s 101s 141s - - -

1.00 0.25 5s 9s 13s 21s 48s 53s 57s 
1.00 0.50 78 9s 15s 24s 288 598 598 
1.00 0.75 288 348 65s 104s 116s - -

fastest, shortest [ 2 : 1 ] 

ql q2 p=O P = 20 P = 40 P = 60 p = 80 p = 100 P = 120 
0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 358 878 - - - - -

0.25 0.50 698 - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 7s 19s 43s 103s 140s - -

0.50 0.50 198 41s 68s 113s 121s - -

0.50 0.75 94s - - - - - -

0.75 0.25 5s 10s 17s 37s 53s 76s 97s 
0.75 0.50 7s 118 20s 418 458 67s 109s 
0.75 0.75 32s 71s 98s 141s - - -

1.00 0.25 4s 7s l1s 17s 41s 47s 53s 
1.00 0.50 6s 8s 12s 20s 24s 54s 55s 
1.00 0.75 26s 33s 61s 998 1158 - -

C.7 Target: mv60, Source: mv59; [co failed]

C.7  Target: mv60, Source: mv59;

longest, highest level [ 1 : 1 ]

[= failed]

qı a2  [[p=0|p=20|p=40|p=60|p=80|p=100|p=120
0.00 0.25 — — — — — — —
0.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 || 38s 95s — — — — —
0.25 0.50 || 73s — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 8s 22s 47s 113s 151s — —
0.50 0.50 || 22s 44s 73s 119s 126s — —

0.50 0.75 || 98s — — — — — —
0.75 0.25 6s 12s 21s 42s 57s 83s 105s
0.75 0.50 8s 13s 23s 46s 48s 73s 116s
0.75 0.75 34s 15s 101s 141s — — —

1.00 0.25 5s 9s 13s 21s 48s 53s 57s
1.00 0.50 Ts 9s 15s 24s 28s 59s 59s
1.00 0.75 | 28s 34s 65s 104s 116s — —

fastest, shortest [ 2 : 1 ]
q qz2 | p=0 |p=20 |p=40 |p=60 |p=80 |p=100 |p=120

0.00 0.25 — — — — — — —
0.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 || 35s 87s — — — — —
0.25 0.50 || 69s — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 Ts 19s 43s 103s 140s — —
0.50 0.50 || 19s 41s 68s 113s 121s — —
0.50 0.75 || 94s — — — — — —

0.75 0.25 5s 10s 17s 37s 53s 76s 97s
0.75 0.50 Ts 11s 20s 41s 45s 67s 109s
0.75 0.75 || 32s 71s 98s 141s — — —
1.00 0.25 4s Ts 11s 17s 41s 47s 53s
1.00 0.50 6s 8s 12s 20s 24s 54s 55s
1.00 0.75 | 26s 33s 61s 99s 115s — —
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52 C EXPERIMENTAL EVALUATION OF 'WFR 

slowest [ 2 : 3 ] 

ql q2 p=O P = 20 P = 40 P = 60 p = 80 p = 100 P = 120 
0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 388 938 - - - - -

0.25 0.50 728 - - - - - -
0.25 0.75 - - - - - - -

0.50 0.25 88 218 488 1108 1538 - -

0.50 0.50 218 448 748 1208 1268 - -
0.50 0.75 978 - - - - - -

0.75 0.25 68 118 218 438 558 878 1128 
0.75 0.50 88 128 228 468 488 768 1188 
0.75 0.75 338 778 lOOs 1428 - - -

1.00 0.25 58 88 128 20s 478 528 568 
1.00 0.50 68 88 148 238 278 60s 59s 
1.00 0.75 28s 338 648 101s 1158 - -

lowest level [ 3 : 1 ] 
ql q2 p=O P = 20 p= 40 p = 60 p = 80 p = 100 p = 120 

0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 368 - - - - - -

0.25 0.50 808 - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 78 198 458 1108 1348 - -

0.50 0.50 198 428 678 1238 1268 - -

0.50 0.75 1058 - - - - - -

0.75 0.25 78 108 188 368 448 678 888 
0.75 0.50 78 118 218 418 458 668 1198 
0.75 0.75 338 748 1098 1398 - - -

1.00 0.25 128 7s 128 168 328 358 42s 
1.00 0.50 88 88 138 208 238 538 518 
1.00 0.75 258 348 648 1028 1198 1598 1598 

52 C EXPERIMENTAL EVALUATION OF wrr

slowest [ 2 : 3 ]
gı 2 | p=0 |p=20 |p=40 |p=60 |p=80 |p=100 |p=120

0.00 0.25 — — — — — — —
6.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 || 38s 93s — — — — —
0.25 0.50 || 72s — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 8s 21s 48s 110s 153s — —
0.50 0.50 || 21s 44s 74s 120s 126s — —
0.50 0.75 || 97s — — — — — —
0.75 0.25 6s 11s 21s 43s 55s 87s 112s
0.75 0.50 8s 12s 22s 46s 48s 76s 118s
0.75 0.75 || 33s 77s 100s 142s — — —
1.00 0.25 5s 8s 12s 20s 47s 52s 56s
1.00 0.50 6s 8s 14s 23s 27s 60s 59s
1.00 0.75 | 28s 33s 64s 101s 115s — —

lowest level [ 3 : 1 ]
qı g2 | p=0 |p=20 |p=40 |p=60  | p=80|p=100| p = 120

0.00 - 0.25 — — — — — — —
0.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 || 36s — — — — — —
0.25 0.50 || 80s — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 Ts 19s 45s 110s 134s — —
0.50 0.50 || 19s 42s 67s 123s 126s — —
0.50 0.75 || 105s — — — — — —
0.75 0.25 Ts 10s 18s .36s 44s 67s 88s
0.75 0.50 Ts 11s 21s 41s 45s 66s 119s
0.75 0.75 || 33s T4s 109s 139s — — —
1.00 0.25 || 12s Ts 12s 16s 32s 35s 42s
1.00 0.50 8s 8s 13s 20s 23s 53s 51s
1.00 0.75 | 25s 34s 64s 102s 119s 159s 159s



C.8 Target: mv62, Source: mv59; fro failed) 53 

c.s Target: mv62, Source: mv59; ['CD failed] 

longest, highest level [ 1 : 1 ] 
ql q2 p=o p= 20 p = 40 p = 60 p = 80 p = 100 p = 120 

0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 - 96s - - - - -

0.25 0.50 - - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 57s 23s 48s 114s 152s - -

0.50 0.50 42s 44s 73s 120s 1268 - -

0.50 0.75 98s - - - - - -

0.75 0.25 55s 21s 21s 44s 58s 848 106s 
0.75 0.50 19s 14s 23s 46s 49s 74s 118s 
0.75 0.75 34s 76s 101s 141s - - -

1.00 0.25 89s 498 24s 23s 49s 54s 58s 
1.00 0.50 30s 16s 16s 248 28s 60s 60s 
1.00 0.75 29s 35s 66s 106s 117s - -

fastest} shortest [ 2 : 1 ] 
ql q2 p=O p= 20 p = 40 p = 60 p = 80 p =100 p = 120 

0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 - 87s - - - - -

0.25 0.50 - - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 548 20s 448 105s 1458 - -

0.50 0.50 388 418 698 115s 1238 - -

0.50 0.75 95s - - - - - -

0.75 0.25 48s 18s 188 38s 538 778 988 
0.75 0.50 168 128 218 41s 45s 67s 110s 
0.75 0.75 33s 71s 998 144s - - -

1.00 0.25 76s 43s 20s 198 42s 48s 54s 
1.00 0.50 268 148 14s 218 25s 55s 56s 
1.00 0.75 27s 33s 61s lOOs 117s - -

C.8 Target: mv62, Source: mv59;

C.8  Target: mv62, Source:  mv59;

[= failed]

[= failed]

longest, highest level [ 1 : 1 ]
qı qz2 [[p=0|p=20|p=40|p=60|p=80|p=100|p=120

0.00 0.25 — — — — — — —
0.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —

0.25 0.25 — 96s — — — — —
0.25 0.50 || — — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 || 57s 23s 48s 114s 152s — —
0.50 0.50 || 42s 44s 73s 120s 126s — —
0.50 0.75 | |  98s — — — — — —
0.75 0.25 || 55s 21s 21s 44s 58s 84s 106s
0.75 0.50 || 19s 14s 23s 46s 49s T4s 118s
0.75 0.75 34s 76s 101s 141s — — —

1.00 0.25 || 89s 49s 24s 23s 49s 54s 58s
1.00 0.50 || 30s 16s 16s 24s 28s 60s 60s
1.00 0.75 | |  29s 35s 66s 106s 117s — —

fastest, shortest [ 2 : 1 ]
qı 2 |p=0|p=20|pp=40|p=60|p=80|p=100 | p = 120

0.00 0.25 — — — — — — —

0.00 0.50 ( |  — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 — 87s — — — — —
0.25 0.50 — — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 || 54s 20s 44s 105s 145s — —
0.50 0.50 || 38s 41s 69s 115s 123s — —
0.50 0.75 || 95s — — — — — —
0.75 0.25 || 48s 18s 18s 38s 53s 77s 98s
0.75 0.50 16s 12s 21s 41s 45s 67s 110s
0.75 0.75 || 33s 71s 99s 144s — — —
1.00 0.25 | 76s 43s 20s 19s 42s 48s 54s
1.00 0.50 || 26s 14s 14s 21s 25s 55s 56s
1.00 0.75 || 27s 33s 61s 100s 117s — —
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54 C EXPERIMENTAL EVALUATION OF roFR 

slowest [ 2 : 3 ] 
ql q2 p=O P = 20 p = 40 p = 60 p = 80 p = 100 P = 120 

0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -

0.00 1.00 - - - - - - -

0.25 0.25 - 94s - - - - -

0.25 0.50 - - - - - - -

0.25 0.75 - - - - - - -
0.50 0.25 57s 22s 48s 112s 153s - -

0.50 0.50 41s 44s 74s 121s 126s - -

0.50 0.75 98s - - - - - -

0.75 0.25 54s 21s 21s 43s 56s 87s 111s 
0.75 0.50 198 13s 23s 47s 49s 76s 117s 
0.75 0.75 33s 78s 101s 141s - - -

1.00 0.25 88s 49s 23s 228 48s 52s 57s 
1.00 0.50 29s 16s 15s 24s 28s 60s 59s 
1.00 0.75 28s 33s 65s 102s 116s - -

lowest level [ 3 : 1 ] 
ql q2 p=O P = 20 p= 40 P = 60 p = 80 p = 100 p = 120 

0.00 0.25 - - - - - - -

0.00 0.50 - - - - - - -

0.00 0.75 - - - - - - -
0.00 1.00 - - - - - - -

0.25 0.25 - - - - - - -

0.25 0.50 - - - - - - -

0.25 0.75 - - - - - - -

0.50 0.25 - 90s 45s 113s 137s 138s 137s 
0.50 0.50 - 48s 67s 126s 130s - 150s 
0.50 0.75 105s - - - - - -

0.75 0.25 - 70s 35s 378 468 68s 908 
0.75 0.50 528 34s 218 438 478 67s 1208 
0.75 0.75 348 73s 1108 1448 - - -

1.00 0.25 - - 928 388 34s 36s 438 
1.00 0.50 668 24s 21s 20s 248 558 518 
1.00 0.75 25s 34s 63s 104s 1218 - -

54 C EXPERIMENTAL EVALUATION OF wppr

slowest [ 2 : 3 ]
G1 ¢ [(p=0|p=20|p=40|p=60|p=80(p=100 | p=  120

0 .00  0 .25  — — — — — — —
0.00 0.50 — — — -— — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 — 94s — — — — —
0.25 0.50 — — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 || 57s 22s 48s 112s 153s — —
0.50 0.50 | 41s 44s T4s 121s 126s — —
0.50 0.75 || 98s — — — — — —
0.75 0.25 || 54s 21s 21s 43s 56s 87s 111s
0.75 0.50 || 19s 13s 23s 47s 49s 76s 117s
0.75 0.75 || 33s 78s 101s 141s — — —
1.00 0.25 || 88s 49s 23s 22s 48s 52s 57s
1.00 0.50 | |  29s 16s 15s 24s 28s 60s 59s
1.00 0.75 | 28s 33s 65s 102s 116s — —

lowest level [ 3 : 1 ]
a 2 |[p=0|p=20|p=40|p=60|p=80|p=100|p=120

0.00 0.25 — — — — — — —
0.00 0.50 — — — — — — —
0.00 0.75 — — — — — — —
0.00 1.00 — — — — — — —
0.25 0.25 — — — — — — —
0.25 0.50 — — — — — — —
0.25 0.75 — — — — — — —
0.50 0.25 — 90s 45s 113s 137s 138s 137s
0.50 0.50 — 48s 67s 126s 130s — 150s
0.50 0.75 | | 105s — — — — — —
0.75 0.25 — 70s 35s 37s 46s 68s 90s
0.75 0.50 || 52s 34s 21s 43s 47s 67s 120s
0.75 0.75 | 34s 73s 110s 144s — — —_—

1.00 0.25 — — 92s 38s 34s 36s 43s
1.00 0.50 || 66s 24s 21s 20s 24s 55s 51s
1.00 0.75 || 25s 34s 63s 104s 121s — —



55 

D Experiments with IDF 

Using proof of cn06 found with ratio 2 : 1 for proving cn03 
0 10 20 30 40 50 60 70 

40 40% - f- f- f- f- f- f- 56% 78s 
50 58% 81s f- f- f- f- f- f- i 

69% 46s60 68% 32s f- f- f- f- f- f-

70 70% 32s f- 70% 32s 75% 24s f- f- f- 73% 40s 
80 82% 18s f- 80% 22s 81% 17s 80% 20s f- 82% 17s 80% 21s 
90 90% 52s 90% 17s 90% 24s 90% 18s 89% 6s f- 88% 6s 86% 5s 

Using proof of cn06 found with ratio 3 : 1 for proving cn03 
0 10 20 30 40 50 60 70 

40 55% - f- f- f- f- f- f- 51% -

i 
64% 56s 

50 i f- f- f- f- f- f-

60 64% 40s f- f- f- f- f- f-

70 72% 37s f- 70% 27s f- f- f- f- 70% 31s 
80 80% 23s 80% 24s 80% 17s 80% 14s 81% 12s 80% 14s f- 77% 17s 
90 90% 14s 90% 6s 90% 12s 90% lOs 87% 6s 87% 7s f- i 

D Experiments with w r

Using proof of cn06 found with ratio 2 : 1 for proving cn03

55

0 10 20 30 40 50 60 70
40140% —|  — — — — — | «— 56% 78s
50 | 58% 81s — — — — — — 1
60 [68% 32s — — — | — — — 69% 46s
70{ 70% 32s — 70% 32s|75% 24s — — — 73% 40s
80 | 82% 18s — 80% 22s|81% 17s|80% 20s|— |82% 17s | 80% 21s
90 |90% 52s | 90% 17s |90% 24s|90% 18s |89% 6s |— |88% 6s |86% 5s

Using proof of cn06 found with ratio 3 : 1 for proving cn03
0 10 20 30 40 50 60 70

40155% - |  — — — — — |—  51% —
50 T — — — — — freee T

60 | 64% 40s — +— — — — |—  [64% 56s
70 | 72% 37s — 70% 27s — — — — | 70% 31s
80 | 80% 23s|80% 24s|80% 17s|80% 14s|81% 12s (80% 14s|«— |77% 17s
90 190% 14s|90% 6s|90% 12s|90% 10s|87% 6s|87% Ts|«— 1
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