
=
1

Norbert Eisinger

y—
t

v
d

~©2=70]
$=©5a
W

)
e

o

3©>[69
75]

Manual  o f  FranzScheme

— AUBWUSD M
 ‘I WOIBISI8SIEN 0629-0

useIne[sIasiey 1BYISISAU
N

XREWLOjU) YO
LSISQ

U
YO

B4 
®





Manual of  Franz Scheme

Norbert Eisinger
FachbereichInformatik, Universität Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern, W.-Germany





Manual ofFranzScheme

. Abstract: Scheme is a Lisp dialect designed to have an exceptionally clear and simple semantics.
FranzScheme is a Scheme interpreter written for educational purposes inFranz Lisp. The FranzScleme
language is exactly the one used in the Abelson, Sussman & Sussman textbook. FranzScheme is
deliberately kept small and easy to grasp; its intention is not to provide a full environment for
professional programming, but a simple tool for teaching Scheme.

Brief History of  Scheme

Scheme is a statically scoped and properly tail-recursive dialect of  the Lisp programming language
invented by Guy Lewis Steele Jr and Gerald Jay Sussman. It was designed to have an exceptionally
clear and simple scmantics and very few different methods of expression formation.

The first description of  Scheme was written in  1975. A Revised Report appeared in 1978, which
described the evolution of  the language as its MIT implementation was upgraded to support an
innovative compiler. Three distinct projects began in 1981 and 1982 to use variants of  Scheme for
courses at MIT, Yale, and Indiana University. An  introductory computer science textbook using
Scheme was published in  1984 [Harold Abelson and Gerald Jay Sussman with Julie Sussman:
Structure andInterpretation ofComputer Programs. MIT  Press, Cambridge MA,  USA, 1985).

As might be expected of a language used primarily for education and research, Scheme has always
evolved rapidly. This was no problem when Scheme was used only within MIT, but as Scheme
became more widespread, local subdialects began to  diverge until students and researchers occasionally
found it difficult to understand code written at other sites. Fifteen representatives of  the major
implementations of  Scheme therefore met in  October 1984 to work toward a better and more widely
accepted standard for Scheme. The outcome was a Revised Revised Report on Scheme and later a
Revised? Report on Scheme, reporting their unanimous recommendations.

FranzScheme is a Scheme interpreter written in Franz Lisp for educational purposes by Dan
Friedman at Indiana University, later modified by Manfred Meyer at the University of Kaiserslautern.
The language i t  implements is the one used in  the Abelson, Sussman & Sussman textbook, hence i t
does not comply with later reports. For instance, the object n i l  does have ambiguous meanings, as a
symbol, ds the truth value false, and as the empty list, although meanwhile this has been sorted out
in the Scheme reports. Also, the language is deliberately kept small and easy to grasp, its intention is
not to provide a full environment for professional programming.

This Manual of  FranzScheme was written by Norbert Eisinger, borrowing most of the details of the
presentation from The Revised Revised Report on Scheme.



Semantics

Scheme is a statically scoped programming language. Each use of an identifier is associated with a
lexically apparent binding of  that identifier. In  this respect Scheme is like Algol 60, Pascal, and C, but
unlike dynamically scoped languages such as APL and traditional Lisp.

Scheme has latent as opposed to manifest types. Types are associated with values (also called
objects) rather than with variables. (Some authors refer to languages with latent types as weakly typed
or dynamically typed languages.) Other languages with latent types are APL, Snobol, and other dialects
o f  Lisp. Languages with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

All objects created in  the course of  a Scheme computation, including all procedures and variables,
have unlimited extent. The reason that implementations of  Scheme do not (usually!) run out of  storage
is that they are permitted to reclaim the storage occupied by an object if  they can prove that the object
cannot possibly matter to any future computation. Other languages in which most objects have
unlimited extent include APL and other Lisp dialects.

Implementations of Scheme are required to  be properly tail-recursive. This allows the execution of
an iterative process in constant space, even i f  the iterative process is described by a syntactically
recursive procedure. Thus with a tail-recursive implementation, iteration can be expressed using the
ordinary procedure-call mechanics, so that special iteration constructs are useful only as syntactic
sugar.

Scheme procedures are objects in  their own right. Procedures can be created dynamically, stored in
data structures, returned as results of  procedures, and so on. Other languages with these properties
include Common Lisp and ML.

Arguments to Scheme procedures are always passed by value, which means that the actual
argument expressions are evaluated before the procedure gains control, whether the procedure needs
the result of  the evaluation or not. ML,  C, and APL are three other languages that always pass
arguments by value. Lazy ML  passes arguments by name, so that an argument expression is evaluated
only i f  its value is needed by the procedure.



Top Level Interpreter Commands

(exit)
Terminates the FranzScheme session. The parantheses may be omitted for this command.

(vifilename)
(v i )

The argument must be a string representing the name ofa file. Calls the editor vi  for the given file.
After terminating vi, the control returns to FranzScheme, and the modified file can now be loaded.
From the second call on the argument may be omitted, then the filename from the previous call is used.
In  this case the parantheses may be omitted for the command.

(v i  "mydi rectory /myf i le" )

(vilfilename)
(vil)

Like vi, except that the edited file is  automatically loaded upon return to FranzScheme.

( v i l  "mydi rec tory /myf i le " )

(trace name] name? . . . )
The arguments must be procedure names. Causes the procedures to print information about theit

arguments and results whenever they are called.

(untrace namel name2 . . . )

(untrace)
The arguments must be procedure names. Turns off  the trace modus for the given procedures. I f  no

argument is given, the trace modus is turned off for all procedures. In  this case the paranthesesmay be
omitted for the command.

(break namel name2 . . . )
The arguments must be procedure names. Causes the interpreter to interrupt immediately after any

of  the procedures is called and to enter a break level. On the break level the user can investigate the
current environment. There are some special commands available on the break level, among them:

(help)  prints information about the break commands
(scheme) aborts the evaluation and returns to the interpreter top level
(continue) continues the interrupted procedure.

(unbreak namel name2 . . . )
(unbreak)

The arguments must be procedure names. Turns off the break modus for the given procedures. If
no argument is given, the break modus is turned off for all procedures. In this case the parantheses
may be omitted for the command.



Special Forms

variable

An  expression consisting of  a symbol that is not the keyword of  a special form indicates a variable
reference. Evaluates to the value stored in the location to which variable is bound in  the current
environment. It  is an error to reference an unbound variable.

(operator operandl ...)
A list whose first element is not the keyword of  a special form indicates a procedure call. The

operator and the operand expressions are evaluated and the resulting procedure is called with the
resulting arguments. Evaluates to the result of this procedure call.

(+  3 4 )  -—> 7

( ( 1 f  t + * )  3 (+  2 2 ) )  = ->  7

( (1£  n i l  + * )  3 (+  2 2 ) )  - ->  12

(quote expression)
‘expression

Evaluates to expression. This notation is  used to include literal constants in Scheme code. The
notation expression is an abbreviation of  (quote expression). The two notations are equivalent in all
respects.

(quote (+  1 2 ) )  -—> (+12 )
" (+  1 2 )  =>  (+  1 2 )
(quote a )  -——> a

‘a  > a

(quote (quote a ) )  =>  ra

Ta  =>  a

(if condition consequent alternative)
First evaluates condition. If i t  yields the value t (or another value different from nil), then

consequent is evaluated and its value is  returned. If  i t  yields the value nil, alternative is  evaluated and _
its value is returned.

( i f  ( <1  2 )  ’ yes  no )  =>  yes
( i f  ( <  2 1 )  ’ yes  ’ no )  =>  no
(1 f  (<1  2 )  (+  3 4 )  ’ no )  - ->  7

(cond clausel clause? . . . )
Each clause must be a list of one or more expressions. The first expression in each clause is a

boolean expression called the “guard” for the clause. The guards are evaluated in order until one of
them evaluates to  the value t (or another value different from nil). If  this happens for a guard, then the
remaining expressions in  its clause are evaluated in order, and the result of the last expression in the
selected clause is returned as the result of the entire conditional expression. If the selected clause
contains only the guard, then the value of the guard is returned as the result.

(cond ( (>  1 2 )  ' g rea te r )

( (<  12 )  ’ l e ss ) )  - ->  l ess



If  all guards evaluate to the value nil, then the result of the entire conditional expression is the value
nil. In  order to  prevent this, the keyword else may be used as the guard of the last clause to make sure
that the last clause is always selected if  none of the others is. The clause with guard else must contain
at least one more expression,

(cond ( (>  1 1 )  ’ g rea te r )

( (<  11 )  ’ l e ss )

( e l se  ‘equal)) - ->  equal

(and expression! . . . )
Evaluates the expressions from left to right, returning n i l  as soon as one evaluates to ni l .  Any

remaining expressions are not evaluated. If  all the expressions evaluate to the value t (or another value
different from nil), then the value t is returned.

(and  (=  2 2 )  (<1  2 ) )  > t

(and  (=  2 2 )  (<  2 1 ) )  > n i l

(and  (=  2 2 )  ’ a  (+  3 4 ) )  - ->  t

(or expression]! . . . )
Evaluates the expressions from left to right, returning t as soon as one evaluates to the value t (or

another value different from nil). Any remaining expressions are not evaluated. If  all the expressions
evaluate to the value nil, then the value nil  is retumed.

( o r  (=  22 )  (<1  2 ) )  > t

( o r  (=  2 2 )  (<  2 1 ) )  ==>  t

( o r  (=  2 3 )  n i l  ( <  1 1 ) )  - ->  n i l

( o r  (=  2 3 )  (+  3 4 )  n i l )  - - >  t

(sequence expression] expression2 ...)
Evaluates the expressions sequentially from left to right and returns the value of the last expression.

Used to sequence side effects such as input and output.
(de f ine  x 1 )

(sequence ( se t !  x 5 )  : changes va lue  o f  x
(1+  x ) )  =>  6

(sequence ;

(p r i nc  "4+1  equals ")
(p r i nc  (1+  4)) ; p r in ts  4+1  equals 5
’ done) -—> done

Some special forms, such as lambda and let, implicitly treat their bodies as sequence expressions.

(let ((varl forml) . . . )  exprl expr2 . . ) )
Evaluates the forms in the current environment ( in some unspecified order), then creates an

extended environment in which the vars are bound to new locations containing the corresponding
results, and then cvaluates the exprs in the extended environment from left to right, returning the value
of  the last one. Each binding of  a var has exprl expr2 . . .  as its scope.

( l e t  ( ( x  1 )  ( y  2 ) )
(+  x y ) )  —— 3



( l e t  ( ( x  1 )  ( y  2 ) )
( l e t  ( ( f oo  (lambda(z) (+  x y z ) ) )

( x  11 ) )

( foo  3 ) ) )  =>  6

The nesting of let and letrec gives Scheme a block structure. The difference between let and letrec is
that in  a let theforms are not within the scope of the vars being bound, whereas in  a letrec they are.

(letrec ((varl forml) . . .) exprl expr2 ...)
Creates an extended environment in which the vars are bound to new locations containing

unspecified values, then evaluates theforms in the extended environment (in some unspecified order),
then stores the result of  eachform in  the location to which the corresponding var is bound, and then
evaluates the exprs in the extended environment from left to right, returning the value of the last one.
Each binding of a var has the entire letrec expression as its scope.

( l e t  ( ( x  1 )  ( y  2 ) )
{ l e t r ec

( ( f oo  (lambda(z) (+  x y z ) ) )

( x  11 ) )
( foo 3))) =>  16

One restriction of  letrec is very important: i t  must be possible to evaluate eachform without referring
to the value of  a var. In  the normal use of  letrec allforms are lambda expressions and the restriction is
satisfied automatically.

(set! var expression)
Expects that var is a bound variable. Does not evaluate var, but evaluates expression and stores the

result in  the location to which var is bound. The result of the entire set! expression is not specified, it
is called only for its side effect.

( l e t  ( ( x  1 ) )
( se t !  x (+  x 7 ) )
x )  =>  8

(lambda (var! . . .)  expression)
Each var must be a symbol. The lambda expression evaluates to a procedure with formal argument

list (var! . . .)  and procedure body expression. The environment in  effect when the lambda expression
was evaluated is remembered as part of the procedure. When the procedure is later called with some
actual arguments, the environment in  which the lambda expression was evaluated will be extended by
binding the identifiers in  the formal argument list to new locations, the corresponding actual argument
values will be stored in those locations, and expression will then be evaluated in  the extended
environment. The result of this evaluation will be returned as the result of the procedure call.

( lambda (x) (+  x 2 ) )  =>  <PROCEDURE>

((lambda(x) (+  x 2 ) )  4 )  - ->  6

( l e t  ( ( x  1)  ( y  2 ) )
(( lambda(x) (+  x y ) )  4 ) ) - ->  6

(lambda (varl . . .)  expressionl expression2 .. .)
may be used as an abbreviation of  (lambda (var! . . . )  (sequence expression] expression2 ...))



(define var expression)
Is usually called at the top level, so that i t  is not nested within any other expression. Does not

evaluate var, but evaluates expression. I f  var is  a bound variable, the result of  the evaluation is stored
in  the corresponding location, with the same effect as the assignment (set! var expression). If  var is an
unbound variable, then i t  is bound to a new location containing the result of  the evaluation, which
means that the current environment is extended. The value of the entire define expression is var, the
name being defined.

(def ine p lus  + )  =>  p lus

(def ine one 1) -——> one

(p lus  one one )  =>  2

(define (var varl . . .)  expression] expression2 .. .)
may be used as an abbreviation of  (define var (lambda (var! . . .)  expressionl expression2 ...).

When (define var expression) is called at the beginning of  the body of  a lambda, let, letrec, or
define expression, it is called a local definition as opposed to the global definition described above.
The scope of  a local definition is the body of the lambda, let, letrec, or define expression
(including in the case of  letrec theforms).

( l e t  ( ( x  1 )  ( y  2 ) )
(de f ine  ( f oo  z )  (+  x y 2 ) )

(def ine ( f oo+ l  a )  ( 1+  ( f oo  a ) ) )
( f oo+ l  3 ) )  -—> 7

Local definitions can always be reexpressed by equivalent letrec expressions. For example, the
expression above is equivalent to

( l e t  ( ( x  1 )  ( y  2 ) )
( l e t r ec

( ( f oo  (lambda(z) (+  x y z ) ) )
( f oo+ l  (lambda(a) ( 1+  ( f oo  a ) ) ) ) )

( f oo+ l  3 ) ) )  =>  7



Booleans and Equivalence Predicates

n i l
The boolean value for falsity. The nil object is self-evaluating, it  does not need to be quoted in

programs.
n i l  -—> n i l
" n i l  =>  n i l

The boolean value for truth. The t object is self-evaluating, i t  does not need to be quoted in
programs.

t =>  t

r t  -=>  t

(not obj)
Returns t i f  obj is nil and returns nil otherwise.

(eq? objl obj2)
Returns t i f  obj! is identical in  all  respects to obj2, otherwise returns nil. I f  there is any way at all

that a user can distinguish obj! and obj2, then eq? will  return nil.
(eq?  ’ a  ’ a )  > t

( eq?  ’ a  ’A )  -—> n i l

(eq? "a  ’ b )  =>  n i l
(eq?  ’ ( a )  ’ ( a ) )  -—> n i l

(eg?  "a "  " a " )  =>  n i l

(eq? 1024 1024) =>  unspecified
(eq? (cons ’ a  ’ b )

( cons  ‘ a  ’ ' b ) )  -—D> n i l

(=  obj! obj2)
Returns t i f  obj] and obj2 are identical objects or i f  they are equivalent numbers or lists or strings.

Two objects are generally considered equivalent, i f  they print the same. If  its arguments are circular
data structures, = may fail to terminate.

(=  ' a  ' a )  ==>  t
(=  ' a  ’A) =>  n i l
(=  ’ a  ’ b )  - ->  n i l
(=  / ( a )  /’(a)) ==>  t
(=  "a "  wa r )  > t

(=  1024  1024 )  -—> t

(=  (cons ’ a  ’ b )
( cons  ‘ a  ’ ' b ) )  --=> t



Pairs and Lists

n i l
The empty list, which has no elements and length zero. The nil object is self-evaluating, i t  does not

need to be quoted in  programs. The empty list is not a pair.

Larger lists are built out of  pairs (sometimes called dotted pairs). A pair is a structure with two
fields called car and cdr. The notation for a pair is  (cI . ¢2) where cl  is  the value of  the car field and c2
is the value of the cdr field. If  the value of the cdr field is nil, the pair is written as (cI). If  the value of
the cdr field is  itself a pair (c27 . c22), the pair is  written as (c/ ¢21 . c22) and so on.

f ( a  . b )  ==>  (a  . b )
f ( a  . n i l )  -—-> (a )
( a  . ( b  . n i l ) )  =>  (a  b )
t a .  ( b .  ( c  . n i l ) ) )  - ->  ( a b c )
t a . ( b . c))  =>  (ab . c )

(cons obj! obj2)
Returns a newly allocated pair whose car is obj! and whose cdr is 0bj2. The pair is guaranteed to be

different in  the sense of  eq? from every existing object.
( cons  ' a  ’ b )  - ->  ( a  . b )
( cons  ’ a  n i l )  - - >  (a )
( cons  "a  ’ ( b ) )  =>  (a  b )
( cons  ’ a  ’ ( b  c)) -—> (a  bc )
( cons  ‘ a  ’ ( b  . ¢ ) )  ==> ( ab  . c )

(car pair)

Returns the car field ofpair, which must be a pair.
( ca r  " ( a  . b ) )  -—> a
(ca r  ’ ( a ) )  =>  a
( ca r  ’ ( a  b ) )  =>  a

(cdr pair)
Returns the car field ofpair, which must be a pair.

( ca r  " ( a  . b ) )  =>  b
{cd r  /’(a)) - n i l
( cd r  ’ ( a  b ) )  =>  (b )

(set-car! pair obj)
Stores obj  in  the car field ofpair, which must be a pair. The result is pair after the manipulation.

This procedure can be very confusing if  used indiscriminately.

(set-cdr! pair obj)
Stores obj in the cdr field ofpair, which must be a pair. The result is pair after the manipulation.

This procedure can be very confusing i f  used indiscriminately.



(null? obj)
Returns t if  obj  is the empty list, otherwise returns nil.

(atom? obj)
Returns t if  obj is not a pair, otherwise returns nil.

(atom? n i l )  | > t
(a tom? ’ a )  -—> t

(atom? "a " )  =>  t

(atom? 2 )  = ->  t

(atom? (cons  ’ a  ’ b ) )  > n i l

(list obj! .. .)
Returns a list of its arguments, that is a pair whose car is obj! and whose cdr is a list of the

remaining arguments.
( l i s t )  > n i l
( l i s t  ’ a )  -—> (a )

( l i s t  ’ a  ’ b )  =>  (a  b )
( l i s t  ’ a  ’ b  ’ c )  -—> (a  bc )

( l i s t  ’ a  (+  2 3 )  ’c) =>  (a  5 c )

10



Symbols

Symbols are objects whose usefulness rests entirely on the fact that two symbols are identical in  the
sense of  eq? if and only if their names are spelled the same way. The name of  a symbol must be
different from a number or a string and may start with one of the following characters:

abcde fgh i j k l imnopq rsa tuvwxXxyz
"AB  CDEFGHIJKLMNOPQRSTUVWIXYZ2

1 §%&* /  1 <=>72
Subsequent characters may be drawn from the same set or from

0123456789
+= .  _

In  addition, there are some symbols that violate the rule for the first letter, in  particular:
+ = 1+  -1+

The following characters must not be used in  a symbol name:
) ( 1  0 }  { " :  b lank

However, any sequence of  characters enclosed between two vertical bars, e.g. | (.) |, is a symbol.

(symbol? obj)
Returns t i f  obj  is a symbol, otherwise returns nil,

(symbol? n i l )  - =>  t

(symbol? abc )  ==>  t
(symbol? ’ * a+b -c%$?<>)  -—> t

( symbo l?  "abc " )  =>  n i l
(symbol? 2 )  ==>  n i l
(symbol?  +2) =>  n i l
(symbol? +2 .2 )  -—> n i l
(symbol? ’ | +2 .21 )  > t
( symbo l?  ( cons  "a  ’ b ) )  -—> n i l
( symbo l?  ( ca r  ’ ( a  b ) ) )  -—> t

(explode symbol)
Returns a list of  symbols, each consisting of  one of  the characters in  the name of  symbol, which

must be a symbol.
(explode n i l )  -— (n  1 1)
(explode ’ abc )  > (a  b c )
(exp lode ’ *a .b - c%$?<>)  =>  ( *a | . |  b~c% $2?  <>)

(implode lis?)
Returns a symbol whose name is the concatenation of the names of the members of list, which must

be a list of symbols with one-character-names.
( implode (n  i 1 ) )  =>  n i l
( implode ’ ( a  b c ) )  =>  abc
( implode ’ ( *  a | . |  b ) )  = - ->  *a .b

11



Numbers

A number is an integer or a real. An  integer is a sequence of  digits or a sequence of  digits preceded
by + or -. Reals can be written in several ways, which are indicated by the examples below. Numbers
are sclf-evaluating, they do not need to be quoted in  programs.

(number? obj)
Returns t i f  obj  is a number, otherwise nil.

(number? 1 )  -—> t

(number? -1 )  =>  t
(number? +1234567890123) - ->  t
(number? -1 .0 )  > t

(number? +12345 .67890 )  =>  t
(number? +1 .234567890e4 )  - ->  t ; same value as  above
(number? +1.2e-20) =>  t 3; 1.2-107°20, almost zero
(number? ’ - 1 )  -—> t
(number? ’ | - 1 ] )  —-—> n i l

(number? ’ - 1+ )  =>  n i l

(number? " - 1 " )  =>  n i l

(number? n i l )  =>  n i l

(number? ’abc) =>  n i l

In the following definitions assume that n, n l ,  n2, ...  are numbers, that i, i ] ,  12, ... are integers.
Warning: most arithmetical operations may be unreliable for reals.

(zero? n)
Returns t i f  n is zero, otherwise nil.

(=n l  n2)
Returns t i f  n l  and n2 are the same numbers, otherwise nil,

(< nl  n2)
Returns t i f  nl  is a smaller number than n2, otherwise nil.

(>  nl  n2)
Returns t i f  n/  is a larger number than „2, otherwise nil.

(minnl n2 ...)
Returns the smallest of  the numbers given as arguments.

(max nl  n2 ...)
Returns the largest of the numbers given as arguments.

(1+ n)
Returns the number one larger than n.

(-1+ n)
Returns the number one smaller than 7.

12



(+n ln2 . . )
Returns the sum of  the numbers given as arguments.

*nln2..)
Returns the product of the numbers given as arguments.

(- nl)
Returns the additive inverse of nl.

(-nln2..)
Returns the number obtained by subtracting from nl  the sum of all the other arguments.

( nl)
Returns the multiplicative inverse of nl.

( / n l n2 . . )
Returns the number obtained by dividing nl  by the product of all the other arguments.

(quotient {7 i2)
Retums the result of the number-theoretic integer division of i/ by 2 .

(remainder i/ i2)
Returns the remainder of  the number-theoretic integer division of  i l by i2.

( /  4) > 0 .25
( /  12  4) \ -— 3

( /  12  2 3 )  =>  2

( /  13  4) -—> 3 .25
(quotient 13  4 )  =>  3

( remainder  13  4 )  =>  1

(sin n)
Returns the sine of  n.

(cos n )

Returns the cosine of  n.
(atan nl  n2)

Returns the arctangent of  a l  / n2 in  the range between -x  and x.

(round nr)

Returns the closest integer to n.
(floor n)

Returns the closest integer below n.
(ceiling n)

Returns the closest integer above n.
( r ound  2 .5 )  -—>
( round  2 .49999 )  =>

( f l oo r  2 .49999 )  =>

( ce i l i ng  2.49999) => “ 
N

N
W

w

(random i)
Returns a random non-negative integer smaller than i i f i is  given. If i is omitted, any integer,

positive or negative, might be returned.

13



Strings

A string is a sequence of characters enclosed between two doublequote characters. Strings are
self-evaluating, they do not need to be quoted in  programs. In  FranzScheme strings may be read and
printed and passed around as arguments, but special operations on strings are not provided.

"abc" -—> "abe"
' "abc" ==> "abc"
" t h i s  con ta ins  | and ’ " - ->  " t h i s  conta ins | and ’ "

" t h i s  conta ins  even

(some)

return characters and

(other  s tu f f )

ne  ==> “ t h i s  contains even
(some)

re turn characters and
(o ther  s t u f f )

Ne"

The last example illustrates a common error of  novices: a doublequote causes the interpreter to
accumulate any input as part of  a string until it  encounters the next doublequote. To a user who forgot
to type a closing doublequote and thus fails to notice that any input is still being accumulated, this often
appears as i f  the system entirely refused to react.

14



Vectors

A vector is a structure of  an arbitrary but fixed number of  elements indexed by integers. The first
element in  a vector is indexed by zero, and the last element is indexed by one less than the length of the
vector. Vectors are created by the procedure make-vector.

(vector? obj)

Returns t if  obj  is  a vector, otherwise returns nil.

(make-vector length)
(make-vector lengthfill)

Returns a newly allocated vector of length elements. I f  a second argument is given, then each
element is initialized tofill. Otherwise the initial contents of  each element is unspecified.

(vector-length vec)
Returns the number of  elements in  the vector vec.

(vector-ref vec i)
Returns the contents of element i of the vector vec. The index i must be a nonnegative integer less

than (vector-length vec).

(vector-set! vec i obj)
Stores obj  as the contents of  element { of  the vector vec. The index { must be a nonnegative integer

less than (vector-length vec). The value returned by vector-set! is unspecified.

(de f ine  v

(make-vector  3 ’ i n i t ) )  - ->  v
( vec to r - se t !  v 2 two )  -—> unspeci f ied
(vec to r - se t !  v 1 ’ one )  =>  unspecif ied
(vec tor - re f  v 0 )  -—> in i t
(vec tor - re f  v 1 )  =>  one
(vec to r - re f  v 2 )  =>  two
(vec to r - r e f  v 3) -—> error

15



Input and Output

In  order to transfer data between Scheme and external media, Scheme uses data objects called ports,
which connect it  to the external media. All  reading and printing goes through these ports. A port may
be open for input or output but not for both simultaneously. There is a standard input port usually
connected to  the keybord and a standard output port usually connected to the teletype. Ports are created
by infile and outfile and must be explicitly destroyed by close.

(port? obj)
Returns t if  obj  is a port, otherwise returns nil.

(infile filename)
The argument must be a string representing the name of  a file containing Scheme expressions.

Returns a new port which is open for input and connected to the givenfile.

(outfile filename)
The argument must be a string representing the name of a file to  be created. Returns a new port

which is open for output and connected to  the new file.

(close port)
Releases the given port.

(readport end-of-file-indicator)
(readport)

(read)

Expects that port is open for input. Returns the first Scheme expression not yet read from the
medium to whichport is connected (but does not evaluate this expression), updatingport to point to the
first character after this expression. If  no Scheme expression can be obtained from the medium, read
returns its second argument or nil  if  no second argument is given. If port is  omitted, the standard input
port is used.

(princ objport)
(princ obj)

Expects thatport is open for output. Prints the printed representation of  obj to the medium to which
port is connected. If  the argument is omitted, the standard output port is used. If  obj is a string, the
enclosing doublequotes are not printed. The result of  the print expression is not specified.

(print objport)
(print ob))

Like princ, but starts on a new line and terminates its output with a space, which princ does not.

(pretty-print objport)
(pretty-print obj)

Like princ, but indents to align the output according to the structure of  obj.

16



(newline port)
(newline)

Expects that port  is  open for output. Prints a “carriage return” character to the medium to whichport
is connected. If  the argument is omitted, the standard output port is used. The result of the newline
expression is not specified. 

|

(loadfilename)
The argument must be a string representing the name of  a file containing Scheme expressions. All

of these expressions are successively evaluated as long as no error occurs. When the first erroneous
expression is encountered, load stops loading.

(load® filename)
Like load except that after an erroneous expression loading continues with the rest of the file.

17



Environments, Procedures, and Miscellaneous

The set of  all variable bindings in  effect at some point in  a program is  known as the environment in
effect at that point. Environments do not have a standard printed representation, but they can be stored
in  data structures and passed around like any other values. The most common thing to do with an
environment is to provide it  as an argument to eval. Procedures are created when lambda expressions
are evaluated. Procedures do not have a standard printed representation, but they can be stored in data
structures and passed around like any other values. The most common thing to do with a procedure is
to call i t  with appropriate arguments,

(the-environment)
The current environment, that is the set of  all bindings in  effect when this expression is evaluated.

(make-environment def! ...)
Each of  the arguments is a define expression. Returns a new environment, which is the current

one extended by the given definitions.

(eval expr env)
Returns the value of evaluating expr relative to the environment env.

( l e t  ( ( x  1 )  ( y  2 ) )
(eva l

(+  xy )
( the-env i ronment) ) )  - ->  3

( l e t  ( ( x  1 )  ( y  2 ) )
(de f ine  e (make-environment (def ine x 11 ) ) )

(eval

" (+  xy )
e ) )  -— 13

(apply proc args)
Requires that proc is a procedure and args is a list of proper arguments. Calls proc with the

elements of  args as the actual arguments and returns the value of  this procedure call.
(app ly  + 7 ( 3  4 ) )  =>  7

(error expression! ...)
When evaluated, this expression always signals an error and prints its arguments. It never returns

any value.

(runtime)
Returns the cpu time used since the invocation of the current FranzScheme session. The time is

measured in units of 1/60 seconds.

18




