
U
N

IU
E

H
S

IT
F

IT
DE

S s
nn

nL
nN

nE
s

FH
CH

BE
RE

IC
H

IN
FO

BM
HT

IK
I:
=
CD

15:2.

‘"u

SE
“€Ea
1—0
mm

DEa
\O

“.=
a

G
er

m
an

g
S

E
K

Ie
H

E
P

D
H

T

Unification in an Extensional
Lambda Calculus with Ordered

Function Sorts and Constant
Overloading

Patricia. Johann, Michael Kohlhase
SEKI Report SR—93-14

1

Unification in an Extensional Lambda Calculus with
Ordered Function Sorts and Constant Overloading

Patricia Johann* and Michael Kohlhaset

Fachbereich Informatik

Universitat des Saarlandes

66123 Sa.arbriicken, Germa.ny

{pjohann, kohlhase}@cs.uni-sb.de

Abstract

The introduction of sorts in first-order automatic theorem proving has been
accompanied by a considerable gain in computational efficiency via reduced
search spaces. This suggests that sort information can be employed in higher­
order theorem proving with similar results. This. paper develops an order­
sorted higher-order calculus suitable for automatic theorem proving applications
- by extending the extensional simply typed lambda calculus with a higher­
order ordered sort concept and constant overloading - and extends Huet's well­
known techniques for unification in the simply typed lambda calculus to arrive
at a complete transformation-based unification algorithm for this sorted calculus.
Consideration of an order-sorted logic with functional base sorts and arbitrary
term declarations was originally proposed by the second author in a 1991 paper;
we give here a corrected calculus which supports constant, rather than arbitrary
term, declarations, as well as a corrected unification algorithm, and prove in this
setting results corresponding to those claimed in that earlier work.

Introduction

In the quest for calculi best suited for automating logic, the introduction of sort
information has been one of the most promising developments. Sorts, which are
intended to capture for automated deduction purposes the kinds of meta-level taxonomic
distinctions that humans naturally assume structure the universe, can be employed to
syntactically distinguish objects of different classes. The essential idea behind sorted
logics is to assign sorts to objects and to restrict the ranges of variables to particular sorts,
so that unintended inferences, which then violate the constraints imposed by this sort
information, are disallowed. These techniques have been seen to dramatically reduce the
search space associated with deduction in first-order systems, so that the resulting sorted
calculi are significantly more efficient for such purposes than their unsorted counterparts.

'On leave from the Department of Mathematics and Computer Science, Hobart and William Smith
Colleges, Geneva, NY 14456. This material is based upon work supported by the National Science
Foundation under Grant No. INT-9224443. It was also supported in part by a grant from the Deutscher
Akademischer Austauschdienst and in part by the Deutsche Forschungsgemeinschaft (SFB 314).

tSupported by the Deutsche Forschungsgemeinschaft (SFB 314).

1

Unification in an Extensional Lambda Calculus with
Ordered Function Sorts and Constant Overloading

Patr icia Johann* and Michael Kohlhase1L
Fachbereich Informatik

Universität des Saarlandes
66123 Saarbrücken, Germany

{ pjohann, kohlhase} @cs.uni-sb.de

Abstract

The introduction of sorts in first—order automatic theorem proving has been
accompanied by a considerable gain in computational efficiency via reduced
search spaces. This suggests t ha t sort information can be employed in higher-
order theorem proving wi th similar results . This ‚pape r develops an order-
sorted higher-order calculus suitable for automatic theorem proving applications
— by extending the extensional simply typed lambda calculus with a higher-
order ordered sort concept and constant overloading — and extends Huet’s well-
known techniques for unification in the simply typed lambda calculus to arrive
at a complete transformation—based unification algorithm for this sorted calculus.
Consideration of an order-sorted logic with functional base sorts and arbitrary
term declarations was originally proposed by the second author in a 1991 pape r ;
we give here a corrected calculus which supports constant, rather than arbitrary
term, declarations, as well as a corrected unificat ion algorithm, and prove in th i s
setting results corresponding to those claimed in that earlier work.

1 Introduction

In the quest for calculi best suited for automating logic, the introduction of sort
information has been one of t he most promising developments. Sorts , which are
intended to capture for automated deduction purposes the kinds of meta-level taxonomic
distinctions that humans naturally assume structure the universe, can be employed to
syntactically distinguish objects of different classes. The essential idea behind sorted
logics i s to assign sor ts to objects and to restrict t he ranges of variables to particular sorts,
so tha t unintended inferences, which then violate the constraints imposed by th is sort
information, are disallowed. These techniques have been seen to dramatically reduce the
search space associated wi th deduction in first—order systems, so tha t the resulting sorted
calculi are significantly more efficient for such purposes than their unsorted counterparts.

"On leave from the Department of Mathematics and Computer Science, Hobart and William Smith
Col l eges , Geneva, NY 14456 . This material i s based upon work supported by the National Science
Foundation under Gran t No . INT-9224443 . I t was also supported in part by a grant from the Deutscher
Akademischer Austauschclienst and in part by the Deutsche Forschungsgemeinschaft (SFB 314).

lSuppor t ed by the Deutsche Forschungsgemeinschaft (SFB 314).

mailto:kohlhase}@cs.uni-sb.de

2

In the context of first-order logic, sort information has been employed with impressive
results by Oberschelp ([Obe62]), Walther ([WaI88]), Cohn([Coh89]), Schmidt-SchauB
([Sch89]), and others.

Despite the existence of powerful first-order deduction systems (see, e.g., [OS89],
[Lus92]) the inherently higher-order nature of many problems whose solutions one would
like to deduce automatically has sparked an increasing interest in higher-order deduction
([ALMP84], [Gor85], [Pau90], [MiI91]). Certainly any system intended for automating
real mathematics must concern itself with higher-order logic, as suggested by van Dalen's
observation that "analysis is just another word for second-order arithmetic" ([van91]).
The behavior of sorted higher-order calculi, which boast both the expressiveness of
typed higher-order logic and the efficiency of sorted calculi, is thus a natural topic of
investigation - such calculi can be expected to serve as a basis for the development of
ever more powerful deduction systems. This paper proposes an extensional order-sorted
lambda calculus supporting functional base sorts and constant overloading, and develops
for it a complete unification algorithm suitable for use in an automated deduction setting.
Although Huet proposed the study of a simple sorted lambda calculus in an appendix
to [Hue72], the development of order-sorted higher-order calculi for use in deduction
systems has only in recent years been pursued ([Koh92], [NQ92], [Pfe92], [KP93]). There
has, however, been considerable interest in order-sorted higher-order logic from the point
of view of higher-order algebraic specifications, the theory of functional programming
languages, and object-oriented programming ([Car88], [BL90], [Qia90] , [CG91], [FP91],
[lVlit91], [Pie91], [Qia91]).

In unsorted logics, the knowledge that an object is a member of a certain class of
objects is expressed using unary predicates. If l denotes the class of individuals, and 0

denotes the class of truth values, then, for example, the predicate N,-..o in the formula
N2" is intended to specify that the individual 2 is a natural number, while in -,(NPeter,)
it indicates that the individual Peter is not a natural number. This use of predicates
leads to a multitude of unit clauses of the form P X in deductions, each of which carries
only taxonomic information and contributes to a severe explosion of the deduction
search space. In addition, since quantification is unrestricted in such calculi, restricted
quantification must be simulated by (typed) formulae like 'v'x,[(Nx,):::} G::'-"HO x,O,)].
But this is certainly unsatisfactory since, inter alia, the derivation of nonsensical
formulae such as (NPeter) :::} (2: Peter 0) is permitted even though (2: Peter 0) can
ne\'er be derived if -,(NPeter) holds (as we expect it would). In sorted logics, on the
other hand, the typed predicate N,-..o would be replaced by a sort N carrying precisely
the same taxonomic informa.tion. This eliminates the need for such predica.tes and unit
clauses, and also makes restricted quantification possible. For example, in a sorted logic,
the last formula above would read 'v'XN(2:N-..N-..o XNON).

Since type information can be regarded as coding very coarse taxonomic distinctions
between disjoint classes of objects, the introduction of sorts in the higher-order setting
is perhaps even more natural than in first-order logic: in higher-order logics, sort
information merely refines an already present structure. Moreover, the fact that humans
use class information to structure the universe, and that mathematicians naturally use
variables and functions restricted to these classes, can be captured by sorted logics, which
are therefore closer to the models mathematicians make of the world than are typed
logics. In particular, sorted higher-order logics seem to be considerably more adequate
for formalizing analysis, since they support syntactic constructs for representing domains

In the context of first—order logic, sort information has been employed with‘impressive
results by Oberschelp ([Obe62]), Walther ([Wa188]), Cohn([Coh89]), Schmidt-SchauB
([Sc1189]), and others.

Despite the existence of powerful first-order deduction systems (see, e.g., [0589],
[Lu592]) the inherently higher—order nature of many problems whose solutions one would
like to deduce automat ical ly has sparked an increasing interest in higher—order deduction
([ALMP84], [Gor85], [Pau90], [Mi191]). Certainly any system intended for automating
real mathematics must concern itself with higher—order logic, as suggested by van Dalen’s
observation that “analysis is just another word for second—order arithmetic” ([van91]).
The behavior of sor ted higher—order calculi, which boast bo th the expressiveness of
typed higher-order logic and the efficiency of sorted calculi, is thus a natural topic of
investigation —— such calculi can be expected t o serve as a basis for t he development of
ever more powerful deduction systems. This paper proposes an extensional order-sorted
lambda calculus suppor t ing functional base sorts and constant overloading, and develops
for i t a complete unification algorithm suitable for use i n an automated deduction set t ing.
Although Huet proposed the study of a simple sorted lambda calculus in an appendix
to [Hue72], the development of order-sorted higher—order calculi for use in deduction
systems has only in recent years been pursued ([Koh92], [NQQQ], [Pfe92], [KP93]). There
has, however, been considerable interest in order—sorted higher-order logic from the point
of view of higher-order algebraic specifications, the theory of functional programming
languages, and object-oriented programming ([Car88], [BL90], [Qia90], [CG91], [FP91],
[Mit—91], [Pie91], [Qia91]).

In unsorted logics, the knowledge that an object is a member of a certain class of
objects is expressed using unary predicates. If L denotes the class of individuals, and o
denotes the class of t ru th values, then , for example, the predicate N,_.o in the formula
N 2, , is intended to specify tha t the individual 2 is a natural number, while in —:(NPeter,)
i t indicates that the individual Peter is not a natural number. This use of predicates
leads to a multitude of unit clauses of the form. PX in deductions, each of which carries
only taxonomic information and contributes to a severe explosion of the deduction
search space. In addi t ion, since quantification i s unrestricted i n such calculi, restricted
quantification must be s imulated by (typed) formulae like Vx,[(Na:,) :> (Z„_.„_„, :r,0,)].
Bu t th i s is certainly unsatisfactory since, i n t e r alia, the derivation of nonsensical
formulae such as (N Peter) :> (2 Peter 0) is permitted even though (2 Peter 0) can
never be derived if --:(N Peter) holds (as we expect it would). In sorted logics, on the
other hand, t he typed predicate N„_„> would be replaced by a sort N carrying precisely
the same taxonomic information. This el iminates the need for such predicates and uni t
clauses, and also makes restricted quantification possible. For example, in a sorted logic,
the last formula above would read Vc(_>_N_.N_,o :rNON).

Since type information can be regarded as coding very coarse taxonomic distinctions
between disjoint classes of objects, the introduction of sorts in the higher—order setting
is perhaps even more natural than in first—order logic: in higher—order logics, sort
information merely refines an already present s t ructure . Moreover, the fact that humans
use class information t o s t ruc ture the universe, and that mathematicians naturally use
variables and functions restricted to these classes, can be captured by sorted logics, which
are therefore closer to the models mathematicians make of the world than are typed
logics. In particular, sorted higher-order logics seem to be considerably more adequate
for formalizing analysis, since they support syntactic constructs for representing domains

3

and codomains of functions, as well as function restriction (as discussed below).
These ideas provide a point of departure for modifying the syntax of the simply

typed lambda calculus to incorporate taxonomic information. Sorting the universe
of individuals gives rise to new classes of functions, namely functions whose domains
and codomains are just (denoted by) the sorts. But in addition to sorting function
universes in this essentially first-order manner, classes of functions defined by domains
and codomains can themselves be further divided into subclasses, since functions are
explicit objects of higher-order logic. Base sorts of functional type, i. e., base sorts that
denote classes of functions, are thus introduced. Syntactically, each sort A comes with
a type, a codomain sort j'(A), and - if of functional type - also with a domain sort
6(A). But in the presence of functional base sorts, an additional mechanism for inducing
subsort information from base sorts is needed: since any function of sort A is indeed a
function with domain 6(A) and codomain ,(A), a functional sort A must always be a
subsort of the sort 6(A) -+ ,(A).

In the calculus presented here, sort information restricting the ranges of variables
to, and assigning constants membership in, certain classes of objects can be declared.
Depending on what kind ofrelationships hold among th&-various sorts, certain classes of
terms built from these atoms then become the objects of study - in practice, it is most
natural to require the set of sorts to be partially ordered. Imposing a partial ordering
on sorts necessitates specifying a set of subsort declarations which induce the intended
partial ordering by covariance in the codomain sort. Subsort declarations restrict the
class of models for the calculus, so that terms must meet certain sort conditions to denote
meaningful objects. i. e., to be well-sorted. For example, application of the functional
term X to the argument Y is allowed only if there exist sorts A and B such that X is
of sort A, Y is of sort B, and B is a subsort of 6(A). The sort of the application term
XY is then defined to be ,(A).

It is possible to express the concept of function restriction in such a sorted calculus.
If X is a term of functional sort A, and B is a subsort of the domain sort of A, then
the term AXB.Xx denotes the restriction of the function (denoted by) X to the domain
(specified by) B. Note, however, that in order to properly modelextensionality by 1]­
reduction, B must be precisely the maximal domain of X for AX.XX to 1]-reduce to X
- otherwise X would be equal to a proper restriction of X, which cannot possibly be
the same function. In the calculus given here, restrictions are imposed on subsort and
constant declarations to ensure that all well-sorted terms representing functions have
unique maximal domains.

Currently, sorted deduction systems make only limited use of sorts, employing
them mainly to determine which terms may - as governed by sort constraints ­
be substituted for variables in deduction steps. Accordingly, sort information is
manipulated by sorted deduction systems primarily through the use of (pre-)unification
algorithms rich enough to accommodate the relevant sorted calculi. Unification in
an extensional order-sorted higher-order calculus with functional base sorts was first
investigated in [Koh92]. In that work, the second author additionally suggests allowing
the sorts of arbitrary terms, rather than just of constants, to be declared, a move
which would result in quite an expressive calculus. Unfortunately, ,the work presented
in [Koh92] is flawed in several places and does not adequately address higher-order
unification for such a calculus (see the discussion in Section 4 below).

Since our calculus allows only constant, rather than arbitrary term, declarations, and

and codomains of functions, as well as function restriction (as discussed below).
These ideas provide a. point of departure for modifying the syntax of the simply

typed lambda calculus to incorporate taxonomic information. Sorting the universe
of individuals gives rise to new classes of functions, namely functions whose domains
and codomains are just (denoted by) the sorts. But in addition to sorting function
universes in this essentially first-order manner, classes of functions defined by domains
and codomains can themselves be further divided into subclasses, since functions are
explicit objects of higher—order logic. Base sorts of functional type, i.e., base sorts that
denote classes of functions, are thus introduced. Syntactically, each sort A comes wi th
a type, a codomain sort 7(A), and —— if of functional type —— also with a domain sort
6(A). But in the presence of functional base sorts, an additional mechanism for inducing
subsort information from base sorts is needed: since any function of sort A is indeed a
function with domain 6(A) and codomain 7(A), a functional sort A must always be a
subsort of the sort 6(A) —+ 7(A).

In the calculus presented here, sort information restricting the ranges of variables
t o , and assigning constants membership in , certain classes of objects can be declared.
Depending on what kind of relationships hold among the various sorts, certain classes of
terms built from these atoms then become the objects of study — in practice, i t is most
natural to require the set of sorts t o be partially ordered. Imposing a partial ordering
on sorts necessitates specifying a set of subsort declarations which induce the intended
partial ordering by covariance in the codomain sort. Subsort declarations restrict the
class of models for t he calculus, so that terms must meet certain sort conditions t o denote
meaningful objects . i.e., t o be well-sorted. For example, application of the functional
term X to the argument Y is allowed only if there exist sorts A and B such that X is
of sort A, Y is of sort B , and B is a subsort of 6(A). The sort of the application term
XY is then defined to be 7(A).

It is possible to express the concept of function restriction in such a sorted calculus.
If X is a term of functional sort A , and B is a subsort of the domain sort of A , then
the term AzB.Xm denotes the restriction of the function (denoted by) X t o the domain
(specified by) B . Note, however, that in order to properly model'extensionality by 17—
reduction, B must be precisely the maximal domain of X for Ax .Xx to n-reduce to X
—— otherwise X would be equal to a proper restriction of X , which cannot possibly be
the same function. In the calculus given here, restrictions are imposed on subsort and
constant declarations to ensure that all well-sorted terms representing functions have
unique maximal domains .

Currently, sorted deduction systems make only limited use of sorts, employing
them mainly t o determine which terms may — as governed by sort constraints —
be substituted for variables in deduction s teps . Accordingly, sort information is
manipulated by sorted deduction systems primarily through the use of (pre—)unification
algorithms rich enough to accommodate the relevant sorted calculi. Unification in
an extensional order—sorted higher~order calculus with functional base sorts was first
investigated in [K01192]. In that work, the second author additionally suggests allowing
the sorts of arbi trary te rms , rather than jus t of constants, t o be declared, a move
which would result i n qui te an expressive calculus. Unfortunately, , the work presented
in [Koh92] is flawed in several places and does not adequately address higher-order
unification for such a calculus (see the discussion in Section 4 below).

Since our calculus allows only constant , rather than arbitrary term, declarations, and

4

therefore is somewhat less expressive than that considered in [Koh92], it can be seen as a
subca.lculus of that one, which has been corrected to properly incorporate extensionality
in the presence of partially ordered sorts (in fact, we expect the methods developed here
for treating this delicate interaction to be applicable in other calculi). As is proved here,
both the subsort relation and sort assignment are decidable for our revised calculus.
This is more than just a nice feature of the calculus - for certain of the transformations
on which the unification algorithm given here is based, enumerability, at least, of sort
assignment is necessary to determine that the transformation indeed applies to a given
unification problem.

The transformations, as well as the unification algorithm itself, are given in Section
3, where its soundness and completeness are also proved. The results of this section were
obtained by analyzing the impact of properly handling extensionality in the presence of
functional base sorts on incrementally building up answer substitutions. An appropriate
notion of partial binding is given in Section 3.2, generalizing the Huet-style bindings
sufficient for analysis of the simply typed lambda calculus, and it is shown in Section
3.3 how these partial bindings can be used to approximate answer substitutions to
unification problems in the calculus under study. This work remedies both the ill­
defined unification transformations and the flawed completeness proof given in [Koh92].
For more precise details, the reader is again referred to Section 4 of this paper.

2 Preliminaries

We begin by recalling the basic results concerning the simply typed lambda calculus,
and describing the order-sorted higher-order calculus with which we will be concerned.
For a detailed discussion of the simply typed lambda calculus, the reader is referred to
[HS86] and [Bar84], both excellent sources.

Definition 2.1 The set of types T is obtained by inductively closing a set of base types
To under function construction, i.e., under the operation a -+ f3. The length of a type
a, denoted length(cr), is the number of top-level arrows appearing in it.

Types will be denoted by lower case Greek letters. In theorem proving applications
we might have only two base types, 0 denoting truth-values, and t denoting the universe
of individuals. All other subdivisions of the universe would then be coded into sort
distinctions among individuals, as described in the next subsection.

For each type a ET, fix a countably infinite set of variables of type a and a
countably infinite set of constants of type a. Write Xa , Ya, Za, ... for variables of type a
and aa, ba, Ca, ... for constants of type a. The variables and constants for the various
Q' E T are collectively called atom.s; we assume that no two distinct atoms have the same
ty pe-erasure.

£,C is the set of explicitly simply typed lambda terms over the atoms. We will write
Xo; to indicate that X is an £'C-term of type a, and omit the type of X when this will
not lead to confusion.

On £,C, f31J-equality is generated by f31J-reduction, determined by the rules

(,xx.X)Y LX[x := Y] and 'xx.Xx ~ X. We assume that f3-reduction occurs without
free variable capture, and that x is not free in X for the 1J-reduction rule. f31J-reduction
is terminating and confluent (i. e., convergent) on £'C-terms, so we can speak of the f3­

therefore is somewhat less expressive than that considered in [Koh92], it can be seen as a
subcalculus of that one, which has been corrected to properly incorporate extensionality
in the presence of partially ordered sorts (in fact, we expect the methods developed here
for treating th i s delicate interaction t o be applicable i n other calculi). As is proved here,
both the subsort relation and sort assignment are decidable for our revised calculus.
This is more than jus t a nice feature of the calculus — for certain of the transformations
on which the unification algorithm given here is based, enumerability, at least, of sort
assignment is necessary to determine that the transformation indeed applies to a given
unification problem.

The transformations, as well as the unification algorithm itself, are given in Section
3 , where its soundness and completeness are also proved. The results of this section were
obtained by analyzing the impact of properly handling extensionality i n the presence of
functional base sorts on incrementally building up answer substitutions. An appropriate
notion of partial binding is given in Section 3.2, generalizing the Huet-style bindings
sufficient for analysis of the simply typed lambda calculus, and i t i s shown in Section
3.3 how these partial bindings can be used to approximate answer substitutions to
unification problems in the calculus under study. This work remedies both the ill-
defined unification transformations and the flawed completeness proof given in [Koh92].
For more precise details, the reader is again referred to Section 4 of th is paper .

2 Preliminaries

We begin by recalling the basic results concerning the simply typed lambda calculus,
and describing the order-sorted higher-order calculus with which we will be concerned.
For a detailed discussion of t he simply typed lambda calculus, the reader i s referred t o
[H886] and [Bar84], both excellent sources.

Definition 2 .1 The se t of types T i s obtained by inductively closing a set of base types
To under function construction, i .e. , under the operation a —> ‚6. The length of a type
a , denoted length(cv), is the number of top-level arrows appearing in i t .

Types will be denoted by lower case Greek letters. In theorem proving applications
we might have only two base types, o denoting truth—values, and L denoting the universe
of individuals. All other subdivisions of the universe would then be coded into sort
distinctions among individuals, as described in the next subsection.

For each type a E T , fix a countably infinite set of variables of type a and a
countably infini te set of constants of type a . Write a:“, ya , z a , for variables of type &
and aa ,bo , ,ca , for constants of type a . The variables and constants for the various
or E T are collectively called atoms; we assume that no two distinct atoms have the same
type—erasure.

LC is the set of explicitly simply typed lambda terms over the atoms. We will write
X„ to indicate that X is an ‚CC—term of type (1, and omit the type of X when this will
not lead to confusion.

On ‚CC, ßn—equality is generated by ßn—reduction, determined by the rules
(Az.X)Y 1» X [x := Y] and Aw.X:z: L» X. We assume that ß—reduction occurs without
free variable capture, and that a: i s not free i n X for t he n—reduction rule. ßn—reduction
is terminating and confluent (216., convergent) on ‚CC-terms, so we can speak of the ‚ß-

5

normal form and the (31)-normal form of an .cC-term X. As usual, we denote f3-reduct.ion

on .cC-terms by L, 1J-reduction by ~, and (31)-reduction by !!!.....
The reflexive, transitive closure of a reduction relation ~ is denoted ~, and

we will write =" for the symmetric closure of ~, i.e., for the equivalence relation
generated by ~. We write X == Y to indicate that two .cC-terms X and Y are
identical up to renaming of bound variables. As is customary, we will consider .cC-terms
identical up to renaming of bound variables to be the same.

2.1 Order-sorted Structures

In mathematics, subdividing the universe of individuals gives rise to new classes
of functions, namely those whose domains and codomains are among the various
subdivisions. But in addition to this essentially first-order way of partitioning function
universes, the classes of functions defined by domains and codomains can be further
divided into subclasses, since functions are explicit objects of higher-order logic. To
reflect this richer structuring of higher-order objects, we introduce into our calculus
base sorts of functional type, i. e., base sorts that denote classes of functions, as well as
non-functional base sorts. Syntactically, each sort comes with a type, a codomain sort,
and - if it is of functional type - also with a domain sort.

Definition 2.2 A sort system is a quintuple (So,S,T,8,,) such that:

•	 So is a set of base sorts distinct from the set of type symbols. The set of sorts
obtained by closing So under function construction comprises S .

•	 The type function r is a mapping T : So -> T. If T(A) E To, then A is said to
be non-functional; A is said to be functional otherwise. The set of non-functional
(resp., functional) sorts is denoted by Snf (resp., Sf). For all A E Sf, we require
that r(A) = r(8(A)) -> r(,(A)), where

the domain sort function 8 is a map 8 : S6 -> s,
- the codomain sort function, is a map, : So -> S with, IsnJ the identity

map, and

the mappings 8 and, are extended to S by defining 8(A) = B and ,(A) = C
for A == B ---> C E S.

Sorts will be denoted by upper case Roman letters from the beginning of the alphabet.
If the context is dear, we will abbreviate by S the sort system (So, S, T, 8, I)' We may
suppress references to S entirely when no confusion will arise. Since we are ultimately
interested in sorted terms and their typed counterparts, we will only consider sort
systems for which r is surjective. 'Ve will further assume that for each a E T there
exist only finitely many A E So such that r(A) = a, i. e., that sort systems have finitely
·many base sorts per type. The type r(A) is called the type of the sort A.

It will be useful t.o have some notational conventions for domain and codomain sorts.
For any A E S, recursively define the following notation: 8° (A) == A, ,O(A) == A, and
for i ~ 1, ,i(A) == ,hi-leA)), and 8i (A) == 8(-ri- l (A)). Write length(A) for the length
of, i.e., the number of top-level arrows in, the sort A.

normal form and the [in—normal form of an [EC—term X . As usual, we denote ß—reduction
on [IC—terms by L, n—reduction by J.„ and ‚Bu-reduction by &.

The reflexive, t ransi t ive closure of a reduction relation L» is denoted —”—», and
we will write =„ for the symmetric closure of i » , t e . , for the equivalence relation
generated by ——"—v. We write X _=_ Y t o indicate that two (IC—terms X and Y are
identical up to renaming of bound variables. As is customary, we will consider ‚CC-terms
identical up to renaming of bound variables to be the same.

2 .1 Order -sor ted S t ruc tures

In mathematics, subdividing the universe of individuals gives rise to new classes
of functions, namely those whose domains and codomains are among the various
subdivisions. But in addition to this essentially first—order way of partitioning function
universes, the classes of functions defined by domains and codomains can be further
divided into subclasses, since functions are explicit objects of higher—order logic. To
reflect th is richer s tructuring of higher—order objects, we introduce into our calculus
base sorts of functional type, t e . , base sorts tha t denote classes of functions, as well as
non-functional base sorts. Syntactically, each sort comes with a type, a codomain sort,
and — if it is of functional type _ also with a domain sort.

Definition 2 .2 A sort system is a quintuple (80 ,5 , T, 6, 7) such that :

. 80 is a set of base sorts distinct from the set of type symbols. The set of sorts
obtained by closing So under function construction comprises S .

. The type function T is a mapping T : So —> T . If T(A) € To, then A is said to
be non-functional; A is said t o be funct ional otherwise. The set of non-functional
(resp., functional) sorts is denoted by S”, (resp., Sf) For all A E Sf , we require
that T(A) = 7‘(6(A)) —> 7'(7(A))‚ where

— the domain sort function 6 is a map 6 : 83; —> S ,

« the codomain sort function 7 is a map 7 : So —> S with 7 L3"; the identity
map, and

— the mappings 6 and 7 are extended to S by defining 6(A) = B and 7(A) = C
for A E B —> C E S .

Sorts will be denoted by upper case Roman letters from the beginning of the alphabet.
If the context is clear, we will abbreviate by S the sort system (So, 8 , T, 6, 7). We may
suppress references to S entirely when no confusion will arise. Since we are ultimately
interested in sorted terms and their typed counterparts, we will only consider sort
systems for which T i s surjective. We will further assume that for each a E T there
exist only finitely many A E 80 such that T(A) = a , i.e.‚ that sort systems have finitely
many base sorts per type. The type 7(A) is called the type of the sort A.

I t will be useful t o have some notational conventions for domain and codomain sorts.
For any A _E S , recursively define the following notation: 6°(A) E A, 7°(A) E A, and
for i Z 1, 7‘(A) E 7(7“1(A)), and 5i(A) E 6(7i‘1(A)). Write Iength(A) for the length
of, t e . , the number of top—level arrows in , t he sort A .

6

Example 2.3 Functional base sorts are useful, for example, in the study of elementary
analysis, where one can postulate a non-functional base sort R denoting the reals, and a
functional base sort C such that 8(C) =Rand ,(C) = R denoting the class of continuous
real-valued functions on the reals. It is worth noting that it is not possible to syntactically
distinguish the continuous real-valued functions on reals solely in terms of their domains
and codomains, so that functional base sorts indeed increase the expressiveness of a
calculus.

While types represent disjoint classes of objects, certain kinds of orderings on sorts
reflect permissible inclusion relations among classes of objects denoted by sorts. The
next definition captures a consistency condition we require such orderings to satisfy.

Definition 2.4 Given a sort system S, for each pair of sorts A and B in S such that
r(.4) = r(B), the set Con(A, B) of subsod declarations (for S) is defined to be the set
{[A ~ B]} if .4, B E sn f , and

Con(8(A),8(B)) U Con(8(B), 8(A)) U Con(,(A), ,(B)) U {[A ~ B]}

if il, BE Sf.

Definition 2.5 Given a sort system S, a sort structure (for S) is any set ~ of subsort
declarations such that the judgement f- 33 ~ is provable by the following calculus:

(ss - start)

f- 33 ~ r(A) = r(B)
(ss-ext)

f- 33 ~ U Con (A, B)

The judgement f- ss ~ is precisely the declaration that ~ is a sort structure. The
rule (ss-start) guarantees that the empty set is a sort structure, and (ss-ext) indicates
that sort structures may be built inductively by adding to an existing sort structure a
set of subsort declarations of the form Con(A, B). Of course r(A) = r(B) is entailed
in the assumption that Con(A, B) is defined; nevertheless, we specifically state it as a
hypothesis in (ss-ext). Note that since sort structures have finite derivations and since
Con(A, B) is always finite, sort structures are themselves always finite.

The following two useful lemmas are easy to prove.

Lemma 2.6 Let ~ be a sort structure. If [A ~ B] E ~, then r(A) = r(B).

Proof. If [A ~ B] E ~, then [A ~ B] E Con(C, D) for some sorts C and D such that
r(C) = r(D) and Con(C, D) ~ ~. Induction on the length(r(C)), as in the proof of
the next, slightly-more-difficult lemma, yields the conclusion. 0

Lemma 2.7 For a sort structure ~, [A ~ B] E ~ iff Con(A, B) ~ ~.

Proof. Necessity follows from Definition 2.4. To prove sufficiency, note that if
[A ~ B] E ~, then [A ~ B] E Con(C, D) for some sorts C and D such that r(C) = r(D)
and Con(C, D) ~ ~. In particular, then, [C ~ D] E ~. We proceed by induction on the
length of Q' = r(C) = r(D).

Example 2 .3 Functional" base sorts are useful, for example, i n the study of elementary
analysis, where one can postula te a. non-functional base sort R denoting the reals, and a
functional base sort C such that 6 (0) = R and 7(0) = R denoting the class of continuous
real—valued functions on the reals. I t is worth noting that i t is not possible to syntactically
distinguish the continuous real-valued functions on reals solely in terms of their domains
and codomains, so tha t functional base sor ts indeed increase the expressiveness of a
calculus.

Whi le types represent disjoint classes of objects, certain kinds of orderings on sorts
reflect permissible inclusion relations among classes of objects denoted by sorts. The
next definit ion captures a consistency condit ion we require such orderings t o satisfy.

Definit ion 2 .4 Given a sor t system S , for each pair of sorts A and B in S such that
r(A) = r (B) , the set Con(A, B) of subsort declarations (for 8) is defined to be the set
{[A 5 B]} if A,B E S” , and

Comm), am» u Con(öw), M)) u Con(7(A)‚ 7(3)) u {[A s B]}
if A , B E Sf .

Definition 2 .5 Given a sort system S , a sort structure (for 8) is any set A of subsort
declarations such that t he judgement F„ A is provable by the following calculus:

(ss — start)

F„ A r (A) = T(B)
(ss — ext)

h„ A U Con (A ,B)

The judgement I-ss A is precisely the declaration that A is a sort structure. The
rule (SS-start) guarantees tha t the empty set is a sort s t ructure, and (SS-ext) indicates
that sor t structures may be buil t inductively by adding to an existing sort structure a
set of subsort declarations of the form Con(A, B). Of course r(A) = r (B) is entailed
i n the assumption that Con(A,B) i s defined; nevertheless, we specifically s ta te i t as a
hypothesis in (ss-ext). Note that since sort structures have finite derivations and since
Con(A, B) is always finite, sort structures are themselves always finite.

The following two useful lemmas are easy to prove.

Lemma 2.6 Let A be a sort structure. If [A S B] E A, then r(A) = 7 (3) .

Proof. If [A 5 B] € A , then [A 5 B] G Con(C, D) for some sorts C and D such that
r(C') = 7-(D) and Con(C, D) g A. Induction on the length(r(C)), as in the proof of
t he next , slightly—more—diflicult lemma, yields the conclusion. I:

Lemma 2 .7 For a sort structure A, [A g B] E A ifi Con(A, B) 9 A.

Proof. Necessity follows from Definition 2.4. To prove sufficiency, no te that if
[A 5 B] E A, then [A 5 B] E Con(C, D) for some sorts C and D such that r(C) = r(D)
and Con(C , D) g A. In part icular , then, [C s D] E A. We proceed by induction on the
length of a : 1(0) : 1-(D),

7

•	 If length(0') = 1, then C, D E S111, so [A $ B] E Con(C, D) implies A == C and
B == D, and there is nothing to prove .

•	 If length(a) > 1, then C, D E SI, and so Con(C, D) is exactly

Con(6(A), 6(B)) U Con(6(B), 6(A)) U Con(-y(A), i(B)) U {[A $ B]}.

Again, if [A $ B] == [C $ DJ, then there is nothing to prove. If [A $ B] E
Con(6(C),6(D)), then since T(6(C)) = T(6(D)), and since length(T(6(C))) is
less than length(0'), the induction hypothesis guarantees that Con(A, B) ~ ~ as
desired. The result is proved similarly if [A $ B] E Con(6(D), 6(C)) or [A $ B] E
ConCf(C), ,(D)).

o

Any sort structure ~ induces an inclusion ordering $ on S, inductively defined by
the rules of Definition 2.8. The rule ($-start) indicates that the inclusion ordering is
indeed determined by ~, (:S-incl) reflects the natural inclusion of function spaces, (:S­
cov) insures covariance in the codomain sort, and ($-refl) and (:S-trans) require that
the inclusion ordering determined by ~ be a quasi-ordering. For this orqering, we will
write :Sa, or just :S as above if ~ is clear from the context.

Definition 2.8 For any sort structure ~, the inclusion ordering determined by ~

contains all judgements of the form ~ f-- A $ B which are provable by the following
calculus:

[A:S	 B] E ~
(:S -start)

~f--A<B

(:S -ind)
~ f-- A :S 6(A) -. i(A)

($ -eav)
~f--C-.A:SC-.B

(:S -reIl)
~f--A<A

~f--A<B ~f--B$C
(:S -trans)

~f--A:SC

We will not, however, insist that ~ f-- A :S B hold for any sorts A and B with a
common domain sort C and whose codomain sorts satisfy ~ f-- i(A) :S ,(B). Letting A
denote the class of surjective functions from C to ,(A) and B denote the set of surjective
functions from C to ,(B) demonstrates the undesirability of such a constraint (assuming
a standard semantics).

Of course, any judgement ~ f-- A $ B has a finite derivation, and we may induct
over such derivations.

0 If length((x) : 1, then C ,D E 8"], so [A 5 B] E Con(C, D) implies A E C and
B E D, and there is noth ing to prove.

. If length(a) > 1. then C, D E Sf , and so Con(C, D) is exactly

Con(6(A), 6(3)) U Con(ö(B), 6(A)) U Con(7(A), 7(B)) U {[A 5 B]}.

Again, if [A g B] E [C S D], then there is nothing to prove. If [A _<_ B] E
Con(ö(C)‚ö(D)), .then since T(ö(C)) : T(6(D)), and since Iength(r(6(C))) is
less than length(a), the induction hypothesis guarantees that Con(A, B) g A as
desired. The result is proved similarly if [A S B] E Con(6(D), 6(0)) or [A 5 B] E
C0n(7(0) ‚ 7(0))-

B

Any sort s tructure A induces an inclusion ordering 5 on 8 , inductively defined by
the rules of Definition 2.8. The rule (S-start) indicates that the inclusion ordering is
indeed determined by A, (S- incl) reflects the natural inclusion of function spaces, (5 -
cov) insures covariance in the codomain sort, and (g—refl) and (g—trans) require that
the inclusion ordering determined by A be a quasi-ordering. For this ordering, we will
write SA: or jus t 3 as above if A i s clear from the context.

Definition 2 .8 For any sort structure A, the inclusion ordering determined by A
contains all judgements of the form A l- A 5 B which are provable by the following
calculus:

[AgB]eA
(5 —start)

A l- A g B

Aesf I—„A
—— (g —incl)AFASMAyeflM

AFAgB___—
(g —cov)AFCqASCqB

F„ A
— <—re l
Al-AsA (_ f)

AFASB AFBSC
AFASC

(g —trans)

We will no t , however, insist that A l- A S B hold for any sorts A and B with a
common domain sort C and whose codomain sorts satisfy A l- 7(A) 5 'y(B.). Letting A
denote the class of surjective functions from C to 7(A) and B denote the set of surjective
functions from C to 7(B) demonstrates the undesirability of such a constraint (assuming
a standard semantics).

Of course, any judgement A i- A S B has a finite derivation, and we may induct
over such derivations.

8

LeITlITla 2.9 Let .6. be a sort structure for S, and A, B ESJ. If.6. r A < B then
.6. r 6(A) '" 6(B) and .6. r -y(A) :S r(B).

Proof. By induction on the derivation of.6. r A :S B.

• If.6. r A :S B is the conclusion of (:S-start), then Con(A, B) ~ .6. by Lemma 2.7 so
that, in particular, [6(.4):S 6(B)] E .6., [6(B) :S 6(A)] E .6., and [r(A) :S r(B)] E .6..
Together these imply that .6. r 6(A) '" 6(B) and .6. r r(A) :S r(B).

•	 If Ll r A :S B is the conclusion of (:S-incl), then there is nothing to prove.

•	 If Ll r A :S B is the conclusion of (:S-cov), then the conclusion of the lemma is
precisely the hypothesis of the inference rule.

•	 If Ll r A :S B is the conclusion of (:S-refl), then again there is nothing to prove.

•	 If Ll r A :S B is the conclusion of (:S-trans), then the result follows from the
induction hypoth~sis.

o

As remarked after Definition 2.5, any sort structure Ll contains only finitely many
subsort declarations [A :S B], and this latter fact, together with the assumption that
sort systems have only finitely many base sorts per type, implies the decidability of the
inclusion ordering :S determined by Ll. Although only semi-decidability of :S will be
necessary for ensuring computability of sort assignment (see Lemma 2.22 below) - and
thus determining applicability of our algorithm - in fact decidability is not hard to
prove. The proof uses the next two results.

LeITlITla 2.10 For a sort structure Ll, if Ll r A :S B, then i(A) = r(B).

Proof. The proof is a routine induction on the derivation of Ll r A :S B, using Lemma
2.6.

Corollary 2.11 A sort system S is the disjoint union of infinitely many subsets
So = {A E S I r(A) = a} of sorts which are mutually incomparable. That is, if
A E So and B E Sf} with a '!- (3, then A and B are incomparable with respect to :S.
Moreover, since S has only finitely many base sorts per type, the subsets So are finite,
i.e., any sort system S has finitely many sorts per type.

TheoreITl 2.12 For any type a ET and any sort structure Ll, if:S is the inclusion
ordering determined by .6., then the restriction :So of:S to sorts of type a is effectively
computable.

Proof. By induction on the length(a).

•	 If length(a) = 1, then the set of subsort declarations in Ll restricted to type a,
together with the conclusions of the rule (:S-refl) are closed under (:S-start) and
(:s-refl). The relation we are interested in is therefore just the transitive closure of
this finite set, and the conclusion of the lemma follows from the well-known fact
that the transitive closure of a finite relation is effectively computable.

0

Lemma 2 .9 Le t A be a sort s t ructure for S , and A‚B 6 S i . I fA l- A S B t hen
A l- 6(A) ~ 6(3) and A l- 7(A) S 7(3) .

Proof. By induction on the derivation of A I- A S B.

. If A l- A S B is the conclusion of (S-start), then Con(A‚ B) g A by Lemma 2.7 so
that, in particular, [6(A)‚ S 6(3)] € A, [6(3) S 6(A)] E A, and [7(A) S 7(3)] 6 A.
Together these imply that A |— 6(A) ~ 6(3) and A l- 7(A) S 7(3) .

. If A t- A S B is the conclusion of (S-incl), then there is nothing to prove.

. If A l- A S B is the conclusion of (S-cov), then the conclusion of the lemma is
precisely the hypothesis of the inference rule.

0 If A l- A S B is t he conclusion of (S—refl), then again there is nothing to prove.

. If A l- A S B is t he conclusion of (S—trans), then the result follows from the
induction hypothesis.

El

As remarked after Definition 2.5, any sort structure A contains only finitely many
subsort declarations [A S B], and this latter fact, together with the assumption that
sort systems have only finitely many base sorts per type, implies the decidability of the
inclusion ordering S determined by A . Although only semi-decidability of S will be
necessary for ensuring computability of sort assignment (see Lemma 2.22 below) — and
thus determining applicability of our algorithm — in fact decidability is not hard to
prove. The proof uses the next two results.

Lemma 2.10 For a sort structure A , i fA l- A S 3 , then r'(A) = 'r(3).

Proof. The proof i s a rout ine induction on the derivation of A l- A S B, using Lemma
2.6. III

Corollary 2.11 A sor t system 8 is the disjoint union of infinitely many subsets
So, = {A E S | T(A) : a} of sorts which are mutually incomparable. That is, if
A E Sa and B € Sp with oz $ ß , then A and B are incomparable with respect t o S .
Moreover, since 5 has only finitely many base sorts per type, the subsets So, are finite ,
i.e., any sort system 8 has finitely many sorts per type.

Theorem 2.12 For any type a E ‚T and any sort structure A , if S is the inclusion
ordering determined by A , then the restrict ion So, o fS t o sorts of type a i s effectively
computable.

Proof. By induction on the length(a).

0 If l eng th (a) : 1 , then the set of subsort declarations in A restricted t o type a ,
together with the conclusions of the rule (S—refl) are closed under (S—start) and
(S- refl) . The relation we are interested in i s therefore jus t the transitive closure of
this finite se t , and the conclusion of the lemma follows from the well-known fact
tha t the transitive closure of a fini te relation i s effectively computable.

9

•	 If length(o:) > 1, then the relation we are interested in is the closure under (::::;-cov)
and (::::;-trans) of the finite set containing all conclusions of (::::;-start) restricted to
sorts of type 0:, (::::;-incl), and (::::;-refl). This closure can be computed by alternately
iterating closures under (::::;-trans) and (::::;-cov) until saturation. Since sort systems
have only finitely sorts per type, Corollary 2.11 implies that ::::;0 must be finite,
and therefore that saturation is indeed achieved after only finitely many iterations.
As above, closures under (::::;-trans) are computable, and the induction hypothesis
implies computability of closures under (::::;-cov).

o

Corollary 2.13 For any sort structure 6., the inclusion ordering determined by 6. zs
decidable.

Proof. Let::::; denote the ordering determined by 6., and suppose sorts A and Bare
given. We want to decide whether or not 6. I- A ::::; B.

If reA) =F r(B), then 6. I- A ::::; B is not possible by Lemma 2.10. Otherwise, for
0: = reA) = r(B), we can effectively compute ::::;0 and then check whether or not A and
B are in this relation by inspection.

To define the signatures over which our well-sorted terms will be built, we require
a final preliminary notion. It will turn out to be important that signatures "respect
function domains," in the sense that for any term X and any sorts A and B such that
X has sort A and also sort B, 6(A) '" 6(B) holds. The proof that signatures indeed
satisfy this property (see Lemma 2.24) will depend in part on the consistency conditions
embodied in Definition 2.4 and in part on the fact that constant declarations meet the
sort condition of the fifth clause of Definition 2.16 below, given in terms of the relation
Rdom, which we now define.

Definition 2.14 Given a sort structure 6., the binary relation RdomA is defined by

A, B E snj reA) = r(B)

RdomA(A, B)

A, BE Sf 6.1- 6(A) '" 6(B) RdomA(-y(A),,(B))

RdomA(A, B)

IWe will write Rdom for RdomA when 6. can be discerned from the context, and
A Rdom B in place of Rdom(A, B).

We collect some easy but important facts about the relation Rdom.

Lemma 2.15 For any sort structure 6., the following statements hold:

1. If A Rdom B, then reA) = r(B).

2. Rdom is an equivalence relation.

3. If 6. I- A ::::; B, then A Rdom B.

0

. If length(a) > 1, then the relation we are interested in is the closure under (S—cov)
and (S—trans) of the finite set containing all conclusions of (S-start) restricted to
sorts of type a , (S-incl), and (S-refl). This closure can be computed by alternately
iterating‘closures under (S-trans) and (S-cov.) until saturation. Since sort systems
have only finitely sorts per type, Corollary 2.11 implies that So, must be finite,
and therefore that saturation is indeed achieved after only finitely many iterations.
As above, closures under (S-trans) are computable, and the induction hypothesis
implies computability of closures under (S-cov) .

D

Corollary 2 .13 For any sort structure A, the inclusion ordering determined by A is
decidable.

Proof. Let _<_ denote the ordering determined by A , and suppose sorts A and B are
given. We want to decide whether or not A l- A g B.

If r(A) # r(B), then A l- A S B is not possible by Lemma 2.10. Otherwise, for
oz : T(A) : r(B), we can effectively compute So: and then check whether or not A and
B are in this relation by inspection. a

To define the signatures over which our well-sorted terms will be built, we require
a final preliminary notion. It will turn out“ to be important that signatures “respect
function domains,” in the sense that for any term X and any sorts A and B such that
X has sort A and also sort B, 6(A) ~ 6(B) holds. The proof that signatures indeed
satisfy this property (see Lemma 2.24) will depend in part on the consistency conditions
embodied in Definition 2.4 and in part on the fact that constant declarations meet the
sort condition of the fifth clause of Definition 2.16 below, given in terms of the relation
Rdom, which we now define.

Definition 2 .14 Given a sort structure A , the binary relation RdomA is defined by

A, B e s"! T(A) : T(B)
RdomA(A, B)

A, B 6 Si A +- 6(A) ~ 6(3) 'RdomA(7(A),7(B))

RdomA(A, B)

| We will write Rdom for RdomA when A can be discerned from the context, and
A Rdom B in place of Rdom(A‚ B) .

We collect some easy but important facts about the relation Rdom.

Lemma 2.15 For any sort structure A, the following statements hold:

1. IfA Rdom B, then 1-(A) : T(B).

2. Rdom is an equivalence relation.

3. IfA I- A _<_ B , then A Rdom B.

10

Proof. (1) is proved by induction on the derivation of A Rdom B, using Lemma 2.10.
(2) is proved by induction on the length of the types of the terms involved in showing
reflexivity and transitivity, and by observing that the definition of Rdom is symmetric.
To prove (3), induction in a manner similar to that used in the proof of Lemma 2.7 is
employed together with Lemma 2.6 to first show that if [A :s; B] E Ll, then A Rdom B.
The more general result is obtained by induction on the derivation of Ll f- A :s; Busing
this fact and (2). 0

We are at last in a position to describe the signatures which are suitable for our
purposes.

Definition 2.16 A (sorted) signature ~ comprises

•	 a sort system S = (So, S, 8, (, r),

•	 a sort structure Ll (for S),

•	 a countably infinite set VarsA of (sorted) variables XA,YA,ZA, ... for each A E S,

•	 a set C of typed (but unsorted) constant symbols, and

•	 a set of constant declarations of the form [Ca :: A] for c E C such that r(A) = 0'.

We assume that if [c :: A] and [c :: B] are constant declarations, then A Rdom B.

In a theorem proving context, any signature would have, for each 0' E T, only
finitely many constant declarations involving constants of type 0', i.e., only finitely many
constant declarations per type. We will therefore assume this restriction on signatures
in what follows.

Any sorted variable can be regarded as a typed variable in a natural way by
"forgetting" its sort information and retaining only its type information. If we denote the
forgetful functor by -, then we may regard the sorted variable XA as the typed variable
XA, i.e., as Xr(A)' By prudently naming the variables, we may arrange that the forgetful
functor is bijective on variables, thereby avoiding the merely technical complications
that could otherwise arise.

The requirement that r(A) = 0' for a constant declaration [ca :: A] insures that sort
assignments respect the types of constants. According to Definition 2.16, signatures
permit constant overloading of a restricted nature, consistent with this requirement.

2.2 Term Structure

';Ye now define and explore properties of the calculus with which we will be concerned.

Definition 2.17 The set of well-sorted £C-terms (for ~) is determined inductively by
the following inference rules:

x E VarsA
(var)

~f-x:A

[c :: A] E ~
(const)

Ef-c:A

10

Proof. (1) is proved by induction on the derivation of A Rdom B, using Lemma 2.10.
(‘2) is proved by induct ion on the length of the types of the terms involved in showing
reflexivity and transitivity, and by observing that the definition of Rdom is symmetric.
To prove (3), induction in a manner similar to that used in the proof of Lemma 2.7 is
employed together with Lemma 2.6 to first show that if [A _<_ B] E A, then A Rdom B.
The more general result is obtained by induction on the derivation of A i- A g B using
this fact and (2). n

We are at last in a position to describe the signatures which are suitable for our
purposes.

Definition 2.16 A (sorted) signature 2 comprises

. a sort system S : (63 .6264, T),

o a sort structure A (for S) ,

o a countably infinite set VarsA of (sorted) variables z,;‚yA, 2A, for each A E S ,

o a set C of typed (but unsorted) constant symbols, and

o a set of constant declarations of the form [ca :: A] for c € C such that r(A) = a .
We assume that if [c :: A] and [c :: B] are constant declarations, then A Rdom B.

In a theorem proving context, any signature would have, for each oz E T, only
finitely many constant declarations involving constants of type oz, i.e.‚ only finitely many
constant declarations per type. We will therefore assume this restriction on signatures
in what follows.

Any sorted variable can be regarded as a typed variable in a natural way by
“forgetting” its sort information and retaining only its type information. If we denote the
forgetful functor by _ , then we may regard the sorted variable mA as the typed variable
Ü, i.e.‚ as zu,“) . By prudently naming the variables, we may arrange that the forgetful
functor is bijective on variables, thereby avoiding the merely technical complications
that could otherwise arise.

The requirement that r(-A) = a for a constant declaration [ca :: A] insures that sort
assignments respect the types of constants. According to Definition 2.16, signatures
permit constant overloading of a restricted nature, consistent with this requirement.

2 .2 Term Struc ture

We now define and explore properties of the calculus with which we will be concerned.

Definition 2 .17 The set of well-sorted ‚CC-terms (for E) is determined inductively by
the following inference rules:

;): € VarsA
-———— (var)
E |- a: : A

[c :: A] € 2
—— (const)

EI -c1A

11

1:I-X:A 1:I-Y:B ~I-B",6(A)
(app)

1: I- XY : ,(A)

xEVa1'sB 1:I-X:A
(abs)

1: I- "x.X: B --+ A

1:I-X:A ~ I- 6(A) '" B

(1])

1:I-X:B
(weaken)

1:I-X:A

Let L:CA(1:) = {X I 1: I- X : A} and L:C(1:) = UAES L:CA(1:). For any X E L:C(1:)
write SE(X) for {A E S I X E L:CA(1:)}. If A E SE(X) we say that X has sort A.

The first four clauses of Definition 2.17 give an inductive assignment of a sort to every
well-sorted L:C-term for the signature 1: (henceforth called L:C(1:)-terms). Without loss
of generality, we may assume that we never follow one application ofthe rule (weaken) by
another in constructing any such derivation, since the inclusion ordering :S determined
by ~ is transitive.

We consider terms which are identical up to renaming of (sorted) variables to be the
same. As with types, we will omit the sort of terms whenever possible.

If 1: is a signature with sort system S and sort structure ~, and if", is the equivalence
relation determined by ~, then by the rule (weaken), L:CA(1:) = L:CB(1:) whenever
A",-, B. By passing to the quotient signature 1:' with respect to "', i.e., to the signature
with sort system S' equal to S / "'-' obtained by replacing all sorts in S by canonical
",-,-equivalence class representatives, we arrive at a signature whose equivalence relation
is trivial and such that L:CA(1:') = L:CA(1:) for all sorts A. We may, and will therefore,
assume without loss of generality that :S is a partial ordering for all signatures in the
remainder of this paper. We will also assume that we have ridded our sort structures of
redundant subsort declarations of the form [A :S A], and that whenever ~ I- A :S B for
some sort structure ~, length(A) :s length(B) holds. The latter assumption is without
loss of generality under a standard semantics.

A signature is said to be subterm closed if each subterm of a well-sorted term is
again well-sorted. It is natural in the context of mathematics to expect signatures to
be subterm closed, since it does not make sense to allow ill-formed subexpressions in
well-sorted expressions (a situation that may be different in, for example, field of natural
language processing). That signatures are subterm closed is not difficult to prove.

Lemma 2.18 If 1: is a signat1lre, X E L:C(1:) , and Y is a subterm of X, then
y E L:C(1:). That is, any signature 1: is subtermclosed.

Proof. Since X E L:C(1:), X has sort A for some sort A. The proof is by induction on
the derivation of 1: I- X : A .

• If 1: I- X : A is the conclusion of (var) or (const), then there is nothing to prove.

11

2 l—X:A 2 l -YzB Al—B~6(A)
(app)2|—XY:1I(A)

: cEVarsB 2 I -X:A
(abs)

2 l - / \ 3 .X :B——>A

2I -X2A Al—6(A)~B ()

EFAxB.X:c :A „

2 | -X :B AI—BgA
(weaken)

2 | -X :A

Let £0,4(2) = {X | 2 l- X : A} and [26(2) = UAes ECA(2). For any X E £C(2)
write 82(X) for {A E SIX 6 CCA(2)}. HA 6 82(X) we say that X has sort A.

The first four clauses of Definition 2.17 give an inductive assignment of a sort to every
well-sorted ‚CC—term for the signature 2 (henceforth called £C(2)-terms). Without loss
of generality, we may assume that we never follow one application of the rule (weaken) by
another in constructing any such derivation, since the inclusion ordering 3 determined
by A is transitive.

We consider terms which are identical up to renaming of (sorted) variables to be the
same. As with types, we will omit the sort of terms whenever possible.

If 2 is a s ignature wi th sort system S and sort structure A , and if ~ i s the equivalence
relation determined by A, then by the rule (weaken), £CA(2) = [363(2) whenever
A ~ B. By passing to the quotient signature 2’ with respect to ~ , i.e.‚ to the signature
with sort system S’ equal to 5/ ~ obtained by replacing all sorts in S by canonical
~—equivalence class representatives, we arrive at a. signature whose equivalence relation
is trivial and such that LCA(2’) = £0,4(2) for all sorts A. We may, and will therefore,
assume wi thout loss of generality that g is a partial ordering for all signatures in the
remainder of this paper. We will also assume that we have ridded our sort structures of
redundant subsdrt declarations of the form [A 5 A], and that whenever A t- A S B for
some sort structure A, Iength(A) g length(B) holds. The latter assumption is without
loss of generality under a standard semantics.

A signature is said to be subterm closed if each subterm of a well-sorted term is
again well-sorted. I t is natural in the context of mathematics to expect signatures to
be subterm closed, since i t does not make sense to allow ill—formed subexpressions in
well—sorted expressions (a s i tuat ion that may be different in , for example, field of natural
language processing). That signatures are subterm closed is not difficult to prove.

Lemma 2.18 If 2 is a signature, X 6 [26(2), and Y is a subterm of X , then
Y E £C(2). That is, any signature 2 is subterm closed.

Proof. Since X 6 [13(2), X has sort A for some sort A. The proof is by induction on
the derivation of 2 l- X : A.

. If 2 I- X : A is the conclusion of (var) or (const), then there is nothing to prove.

12

•	 If I; I- X == UV: A by an application of (app) with I; I- U: A, and I; I- V: 8(A),
then I; I- X : i(A). Any other proper subterm Y of X is a subterm of either U or
V, so that Y E .cC(I;) by the induction hypothesis.

•	 If I; I- X == >"x.U : B --; C == A is the conclusion of an application of (abs) with
I; f- U : A and x E V arSB, then any proper subterm Y of X is a subterm of U
and so is in .cC(I;) by the induction hypothesis.

•	 If I; I- X == >"x.Ux : A is the conclusion of an application of (1]) with I; f- U : A
and d I- 8(A) =B, then I; I- Ux : i(A) and any other proper subterm Y of X is
in .cC(I;) by the induction hypothesis.

•	 If I; f- X : A is the conclusion of an application of (weaken) with I; I- X : Band
I; f- B ~ A, then the result follows immediately from the induction hypothesis.

o

Although Lemma 2.18 guarantees that signatures are subterm closed, it is not
necessarily true that if Y is a subterm of a term X E .cCA(I;), then given a sort B
such that Y has sort B, there IS a derivation of I; f- Y : B which is a subderivation of
any given one for I; f- X : A. This is because the rules (1]) and (abs) provide different
ways of sorting certain abstraction terms. Thus, if I; f- X : A and we would like to
prove a result concerning the sort of a subterm Y of X, we must look at the derivation
of I; f- X : A, rather than only at the structure of X itself. On the other hand, if
we do not need information about the sort of the subterm Y, then Lemma 2.18 shows
that the structure of X itself may provide sufficient information for proof purposes.
This observation will have both important and severe consequences for our unification
algorithm (see the discussion and example in Section 3.2 below).

In any signature, variables have unique least sorts:

Lemma 2.19 If I; is a signature with sort structure d and x E VarsA, then x has least
sort A in. I;, i.e., for all BE SE(X), d f- A ~ B.

Proof. According to Definition 2.17, if I; f- x : B for any sort B :1= A, then this fact
must be the conclusion of an application of (weaken). The result is thus immediate.

But due to the possibility of constant overloading, it is not necessarily true that
every term will have a unique least sort, i. e., not every signature is a regular signature.
Nevertheless, for arbitrary terms, there does exist some relation among the various sorts
a term may have:

Lemma 2.20 If I; I- X : A and I; I- X: B, then r(A) = r(B).

Proof. By induction on the derivations of I; f- X : A and I; f- X : B. If A ~ B or
B ~ A, then the lemma holds by Lemma 2.10.We may therefore assume without loss of
generality that no (weaken) steps appear in the derivations of I; f- X : A and I; f- X : B.

•	 If I; f- X : A by (var), then E f- X : B is also the result of (var), and so A == B.

•	 If I; I- X : A by (const), then I; f- X : B is also the result of (const). Thus A
Rdom B by Definition 2.16, and so by the first part of Lemma 2.15, r(A) = r(B).

0

12

o If 2 l— X E UV : A by an applicat ion of (app) with E l- U : A, and E I— V : 6(A),
then E |- X : 7 (A) . Any other proper subterm Y of X is a. subterm of either U or
V, so that Y E (XXX?) by the induction hypothesis.

. If 2 l- X E ALU : B -—-> C E A is the conclusion of an application of (abs) with
E !— U : A and a: E VarsB , then any proper subterm Y of X is a subterm of U
and so is in 136(2) by the induction hypothesis.

0 If E l- X E ‚\:c.Ux : A is the conclusion of an application of (17) with E I- U : A
and A I- 6(A) : B, then 2 l- Ua: : 7(A) and any other proper subterm Y of X is
in £C(2) by the induction hypothesis.

0 If E l- X : A is the conclusion of an application of (weaken) with E l- X : B and
2 l- B g A, then the result follows immediately from the induction hypothesis.

CI

Although Lemma 2.18 guarantees tha t signatures are subterm closed, i t i s not
necessarily true that if Y is a subterm of a term X € LCAOJ), then given a sort B
such that Y has sort B , there i s a derivation of 2 I- Y : B which is a subderivation of
any given one for E t- X : A. This is because the rules (n) and (abs) provide different
ways of sorting certain abstraction terms. Thus, if)3 l- X : A and we would like to
prove a result concerning the sort of a sub te rm Y of X , we must look at the derivation
of E l- X : A, rather than only at the structure of X itself. On the other hand, if
we do not need information about the sort of the subterm Y, then Lemma 2.18 shows
that the structure of X itself may provide sufficient information for proof purposes.
This observation will have both important and severe consequences for our unification
algorithm (see the discussion and example in Section 3.2 below).

In any signature, variables have unique least sorts:

Lemma 2 .19 US is a signature with so r t structure A and a: E VarsA, then :(: has least
sort A WE, i.e., for all B 6 82(3) , A |- A S B.

Proof. According to Definition 2.17, if E l- a: : B for any sort B $ A, then this fact
must be the conclusion of an application of (weaken). The result is thus immediate. n

But due to the possibility of constant overloading, i t is not necessarily true that
every term will have a unique least sort , i .e., not every signature is a regular signature.
Nevertheless, for arbitrary terms, there does exist some relation among the various sorts
a term may have:

Lemma 2.20 IfE l- X : A and E I'- X : B , then r(A) = r (B) .

Proof. By induction on the derivations of E l- X : A and 2 |— X : B . If A S B or
B S A, then the lemma holds by Lemma 2.10.We may therefore assume without loss of
generality that no (weaken) steps appear in the derivations of E |— X : A and 2 |— X : B .

. If 2 l- X :A by (var), then B l- X : B is also the result of (var), and so A E B.

0 If E l- X : A by (const), then E |- X : B is also the result of (const). Thus A
Rdom B by Definition 2.16, and so by the first part of Lemma 2.15, 7'(A) : T(B).

13

•	 If ~ f- X : A by (app), then X == UV for some U and V, and ~ f- X : B is
also the result of (app). The result follows immediately by applying the induction
hypothesis to U.

•	 If ~ f- X : A by (abs), then B f- X : B is either the result of (abs) or (1]). In
the first case, X == >.x.U and the conclusion follows by applying the induction
hypothesis to U. In the second case, X == >'XE.UX, where E = c5(B) and U has
some sort C such that E -+ ,(C) = A. By the induction hypothesis, r(C) = r(B).
But reA) = r(E) -+ r(,(C)) = r(c5(B)) -+ r(r(B)) =T(B).

•	 If ~ f- X : A by (1]), t,hen ~ f- X : B is the result of either (abs) or (1]). The first
case has, by symmetry, already been considered. In the second, X == >'x.Ux, and
the conclusion follows immediately by applying the induction hypothesis to U.

o

As a corollary, we observe that for every X E .cC(~), the set SdX) is finite, since
~ has only finitely many sorts per type.

As a further consequence of Lemmas 2.20 and 2.18, we see that if we consider the
forgetful functor to be the identity on typed constants, then it can be extended to
well-sorted terms by induction on the derivations proving the terms well-sorted. This
extension gives an injection from .cC(~) into .cC. The forgetful functor is not, however,
bijective in general.

If ~ is a signature with exactly one sort A such that reA) = a for each a E To, and
such that ~ is the empty sort structure, then Lemma 2.10 implies that the sort system
S of ~ is isomorphic to T via the type assignment To Moreover, the set of constant
declarations contains at most one declaration [c :: A] per constant c E C, since constant
declarations must respect the typing of the constants, and so ..cC(~) is isomorphic to
the fragment of .cC containing only the finitely many constants per type appearing in
constant declarations in ~.

In order to prove computability of sort assignment for .cC(~), we extend the function
Sr;(-) on .cC(~) to all of .cC via the forgetful functor (which, recall, provides an injection
of the former into the latter).

Definition 2.21 For X E .cC and ~ a signature, define

SI:(X) = {SI:(Y) lYE ..cC(~) and Y == X}

According to this definition, X E .cC \ .cC(~) iff SI:(X) = 0, i. e., iff there exists no
Y E .cC(~) such that Y == X. If such a Y exists, it is unique; in this case, we abuse
terminology and say that X E ..cC is well-sorted with respect to ~.

Theorem 2.22 If X E .cC and ~ is a signature, then SI:(X) is effectively computable.

Proof. We will see later (in Theorem 2.32) that 1]-reduction on ..cC(~) is sort-preserving,
and, assuming this, we take X to be in 1]-normal form. Therefore, no derivation of
X E .cC(~) can contain an application of the inference rule (1]), and we need only
consider derivations in the calculus for .cC(~)-term formation which do not invoke the
(1]) rule. We proceed by induction on the structure of X.

•	 If X == XA, then SE(X) = {B I~ f- A :::; B}, which is computable by Corollary
2.13.

13

oI fZ l -X:Aby(app) , t henXEUVfor someUandV,andEl -X:Bi s
also the result of (app). The result follows immediately by applying the induction
hypothesis to U.

o If E l- X : A by (abs), then E I- X : B is either the result of (abs) or (17). In
the first case, X E ‚\mU and the conclusion follows by applying the induction
hypothesis t o U . In t he second case, X E AzEJJar, where E : 6 (B) and U has
some sort C such that E —> 7(0) = A. By the induction hypothesis, 7(0) = 7(3).
But 7"(A) = 7’(E) “* T(7(C)) = T(5(B)) —> T(7(B)) = 7(3) -

. If): l- X : A by (n), t hen E b X : B is the result of either (abs) or (17). The first
case has, by symmetry, already been considered. In the second, X E Xx.Ux, and
the conclusion follows immediately by applying the induction hypothesis to U .

El

As a corollary, we observe that for every X € CCOE), the set 82(X) is finite, since
2 has only finitely many sorts per type.

As a further consequence of Lemmas 2 . 20 and 2.18, we see that if we consider the
forgetful functor to be the identi ty on typed constants, then i t can be extended to
well—sorted terms by induct ion on the derivations proving the terms Well—sorted. This
extension gives an injection from CC(E) into [,C. The forgetful functor i s no t , however,
bijective in general.

If E is a signature with exactly one sort A such that 'r(A) = a for each a E To, and
such that A is the empty sort s tructure, then Lemma 2.10 implies that the sort system
8 of 2 i s isomorphic to T via. the type assignment r . Moreover, the set of constant
declarations contains a t most one declaration[c .A :] per constant c E C, since constant
declarations must respect the typing of the constants, and so £C(Z) is isomorphic to
the fragment of ‚CC containing only the finitely many constants per type appearing in
constant declarations in 8 .

In order to prove computability of sort assignment for HKS), we extend the function
Sg(-) on ECO?) to all of CC via the forgetful functor (which, recall, provides an injection
of the former into the latter).

Definition 2 . 21 For X E CC andE a signature, define

52(X) : {83(Y) | Y E £C(2) and VE X}

According to this de_finition, X 6 CC \ CCC?) ifl' S):(X) : @, i.e., ifi' there exists no
Y 6 [17(2) such that Y E X. If such a Y exists, i t i s unique; in this case, we abuse
terminology and say that X 6 LC is well-sorted wi th respect to E .

Theorem 2 .22 IfX 6 CC and E is a signature, then 82(X) is efi'cctively computable.

Proof. We will see later (in Theorem 2.32) that n—reduction on CC(Z) is sort—preserving,
and, assuming this , we take X t o be i n n—normal form. Therefore, no derivation of
X E .CC(E) can contain an application of the inference rule (17), and we need only
consider derivations in the calculus for £C(2)-term formation which do not invoke the
(71) rule. We proceed by induction on the structure of X .

. If X E fi , then 82(X) = {B | A l- A _<_ B}, which is computable by Corollary
2.13.

14

•	 If X = Ca, then SE(X) = {B I ~ I- A ~ B for some A E S with [c :: A] E ~}.
This set is also computable by Corollary 2.13 and the fact that signatures have
finitely many constant. declarations per type.

•	 If X == UV, then

SdX) = {B I ~ I- ,(A) ~ B for some A E S with A E SE(U) and 8(A) E SECV)}·

This set is computable by the induction hypothesis and Corollary 2.13.

•	 If X == >'XA.U with U not of the form Vx, then

SE(X) = {B I~ I- A -+ C ~ B for some C E S with C E SECU)}·

If U == Vx for some V, then

SE(X) {B I ~ I- A -+ C ::; B for some C E S with C E SE(U)}
U {B IB E SECV)}·

These sets are both computable by the induction hypothesis and Corollary 2.13.

o

Corollary 2.23 For any signature E and X E iX, it is decidable whether or not X is
well-sorted with respect to E.

We now prove that signatures respect function domains, in the sense that for every
term X of functional sort and any sorts A, BE SE(X), we must have 8(A) = 8(B). This
unique domain sort is called the supporting sort of X and is denoted supp(X). At first
glance, requiring signatures to respect function domains appears to be a grave restriction
011 the expressiveness of a calculus. But functional extensionality itself relies heavily on
the notion of explicitly specified domains of functions, which unique supporting sorts
ar,e intended to syntactically capture. Indeed, in mathematics, functions are assumed to
have unique (explicitly specified) domains, and must therefore be distinguished from
restrictions to subdomains. For example, the addition function on the reals must
bp- distinguished from the addition function on the natural numbers, and in general
functions f and 9 should only be considered the same if fa = ga for all a in the common
(explicitly specified) domain of f and g. Observing these distinctions is necessary for a
correct. treatment of extensional higher-order calculi, and they must be reflected in the
syntax of any such calculus.

Lemma 2.24 If E I- X : A and E I- X : B, then A Rdom B. That is, any signature E
respects function domains.

Proof. By induction on the derivations of E I- X : A and E f- X : B. If A ::; B or
B :::; A, then the lemma holds by the third part of Lemma 2.15. We may therefore assume
without loss of generality that no (weaken) steps appear in the derivations E I- X : A
and E I- X: B.

• If E I- X : A by (var), then E I- X : B is also the result of (var) , and so A == B.

14

o I fX = ca, then 82 (X) = {B | A l- A S Bfor someA E Swi th [c :: A] E A}.
This set is also computable by Corollary 2.13 and the fact that signatures have
finitely many constant declarations per type .

o I fX E UV. then

52(X) = {B l A l- 7(A) S B for some A E S with A E 32(U) and 6(A) € SE(V)}.

This set i s computable by the induction hypothesis and Corollary 2.13.

. If X E Ass—LU wi th U not of the form V3 , then

52(X) = {B | A l- A —> C s B for some C' E S with C E 32(U)}.

If U E VT, for some V , then

Sz;(X) : {BIAi—A—rCS 'Bfo r soxneCESwi thCESz(U)}
U {BIBESz(V)} .

These sets are bo th computable by the induct ion hypothesis and Corollary 2.13.

CI

Corollary 2 .23 For any signature)3 and X E ‚CC, it is decidable whether o r not X i s
well-sorted with respect t o 2 .

We now prove that signatures respect function domains, i n the sense that for every
term X of functional sort and any sorts A, B € 82(X) , we must have 6(A) = 6(B). This
unique domain sort is called the supporting so r t of X and is denoted supp(X) At first
glance, requiring signatures to respect function domains appears to be a grave restriction
on the expressiveness of a calculus. Bu t functional extensionality itself relies heavily on
the notion of explicitly specified domains of functions, which unique supporting sorts
are intended to syntactically capture. Indeed, in mathematics, functions are assumed to
have unique (explicitly specified) domains, and must therefore be distinguished from
restrictions t o subdomains. For example, t he addit ion function on the reals must
be distinguished from the addi t ion function on the natural numbers, and in general
functions f and g should only be considered the same if fa : ga for all a in the common
(explicitly specified) domain of f and g . Observing these distinctions i s necessary for a
correct treatment of extensional higher-order calculi, and they must be reflected in the
syntax of any such calculus.

Lemma 2.24 IfZ I- X :A and 2 l- X : B , then A Rdom B . That is, any signature 2
respects function domains.

Proof. By induction on the derivations of Z} l- X : A and 2 |- X : B. If A g B or
B S A, then the lemma holds by the third part of Lemma 2.15. We may therefore assume
without loss of generality that no (weaken) steps appear in the derivations E l— X : A
and 2 |- X : B.

0 If)3 I- X : A by (var) , then 2 |— X : B i s also the result of (var) , and so A _=_ B .

15

•	 If ~ r x : A by (const), then ~ r X : B is also the result of (const). Thus A
Rdom B by Definition 2.16.

•	 If ~ r X : A by (app), then X == UV for some U, V, and ~ r X : B is also
the result of (app). The result follows immediately by applying the induction
hypothesis to U.

•	 If ~ r X : A by (abs), then ~ r X : B is either the result of (abs) or (TJ). In the first
case, X == Ax.U and the conclusion follows by applying the induction hypothesis
to U and using (::;-cov). In the second case, X == AXE.UX, where E ==6(B) and U
has some sort C such that E -+ "'Y(C) =A. By the induction hypothesis, C Rdom
B, and since Band C are functional sorts, ,(C) Rdom "'Y(B). Then A = E -+ ,(C)
implies that 6(A) = 8(B) :::: E, and ,(A) :::: ,(C) Rdom ,(B). Thus A Rdom B
as desired.

•	 If ~ r X : A by (TJ), then ~ r X : B is the result of either (abs) or (TJ). The first
case has, by symmetry, already been considered. In the second, X == Ax.Ux, and
the conclusion follows immediately from the induction hypothesis applied to U.

o

2.3 Order-sorted Reduction

We now fix an arbitrary signature ~ for use throughout the remainder of this paper.
As per the discussion immediately preceding Lemma 2.24, TJ-expansion of the term

X A t.o AXB.Xx, which corresponds to restricting the function denoted by X t.o the
sort denoted by B, should only yield the original function again if B represents the
(explicitly specified) domain of the function denoted by X. This restriction is embodied
in the order-sorted TJ-rule below.

Definition 2.25 The following order-sorted reductions are defined for .cC(~)-terms:

•	 (AX.X)Y ~X[x:= Y].

•	 AXB.XX...!!.-. X if XB cf. PV(X) and B == supp(X).

The first rule above, which we assume to happen without free variable capture,
IS called order-sorted f3-reduction and the second is called order-sorted TJ-reduction.
Hereafter, these relations will be referred to simply as "f3-reduction" and "TJ-reduction"
when the context is clear. Of course there are restrictions on the sorts of the terms
implicit in the rules for .cC(~)-term format.ion. Observe, for example, that we must
have B ::; supp(X) in the rule for order-sorted 1J-reduction in order to ensure that
AX.X x E .cC(~). But in fact, we require the stronger condition that B actually be
equivalent to supp(X) for the sake of properly handling extensionality.

It is possible to define order-sorted f3-reduction with reference to typed f3-reductioll
by

XLYiffX~Y,

an equivalence of which we will make much use in what follows. But in the interest
of being s~lf-contained, we prefer instead to define f3-reduction wholly in terms of the
order-sorted calculus.

15

. If L‘ l- X : A by (const), then)3 l- X : B is also the result of (const). Thus A
Rdom B by Definition 2.16.

. HE l- X : A by (app), then X E UV for some U, V, and 2 t- X : B is also
the result of (app) . The result follows immediately by applying the induction
hypothesis to U .

. I fE I- X : A by (abs), then 2 I- X : B is either the result of (abs) or (n). In the first
case, X E ‚\:rU and the conclusion follows by applying the induction hypothesis
to U and using (S-cov). In the second case, X E AxEUw, where E E 6(8) and U
has some sort C such that E —-> 7(C) = A. By the induction hypothesis, C Rdom
B, and since B and C are functional sorts, 7(0) Rdom 7(B). Then A = E —> 7(C)
implies that 6(A) = 6(3) = E, and 7(A) = 7(C) Rdom 7(B). Thus A Rdom B
as desired.

0 If E l- X : A by (17), then E l— X : B is the result of either (abs) or (n) The first
case has , by symmetry, already been considered. In the second, X E M:.Uzc, and
the conclusion follows immediately from the induction hypothesis applied to U .

2 .3 Order-sor ted Reduction

We now fix an arbi trary s ignature 2 for use throughout the remainder of this paper .
As per the discussion immediately preceding Lemma 2.24, q—expansion of the term

XA to ÄzB.X:c‚ which corresponds to restricting the function denoted by X to t he
sort denoted by B , should only yield the original function again if B represents t he
(explicitly specified) domain of the function denoted by X . This restriction is embodied
in the order-sorted n-rule below.

Definition 2 .25 The following order-sorted reductions are defined for £C(E)—terms:

. (Äx.X)Y —ß—->X[a: :: Y].

. ‚\:cB.Xx —"+X if zB 9E FV(X) and B E supp(X).

The first rule above, which we assume to happen without free variable capture ,
is called order—sorted ß—reduciion and the second is called order-sorted n-reduction.
Hereafter, these relations will be referred to simply as “Ii-reduction” and “n—reduction”
when the context is clear. Of course there are restrictions on the sorts of the terms
implicit in the rules for £C(E)-term formation. Observe, for example, that we must
have B S supp(X) in the rule for order-sorted n—reduction in order to ensure that
An:.Xa: € £C(2) . But in fact we require the stronger condition that B actually be
equivalent to supp(X) for the sake of properly handling extensionality.

I t i s possible to define order-sorted B—reduction wi th reference to typed ‚ß—reduction
by

X i» Y iff X" i» 7,
an equivalence of which we will make much use in what follows. But in the interest
of being self-contained, we prefer instead to define ß—reduction wholly in terms of the
order-sorted calculus.

/

16

Since order-sorted ,81}-reduction generalizes ordinary typed ,81J-reduction, we will

wri I:e !!.!!...., for ordpr-sorte<1 (Jl}-reduction as well as for the typed version. We will
sirnilarly abuse not:ation in denoting the transitive, as well as the reflexive, symmetric,

and transitive, closure of !!.!!...." since the typed relations are subsumed by their order­
sorted versions.

It is important to our program that the fundamental operations of our calculus do not
allow the formation of ill-sorted terms from well-sorted ones. This will ensure that our
unification algorithm never has to handle ill-sorted terms, even intermediately. In fact

we show, using the next sequence of lemmas, that if X ~ Y, then SE(X) ~ SE(Y)'
To see that the reverse inclusion need not hold in general, we need only consider an
£C(E)-term of the form X == (AXB.X)Y such that Y has sort A for some A strictly less

than B. Then X .!..... Y, but there is no derivation proving that X has sort A.

L~mn.1.a 2.26 If E I- X : A and E I- Y : E, then El- X[XE := Y] : A.

Proof. It is easy to see that for any (free) variable XE occurring in X we can replace in
the derivation of E I- X : A all occurrences of the derivation hypothesis E I- x : E with
the derivation of El- Y : E. The resulting derivation shows that El- X[x := Y] : A. 0

Lemma 2.27 If (AX.X)y .!..... X[x := Y], then SE((AX.X)Y) ~ SE(X[X := Y]).

Proof. We must show that if El- (h.X)Y : A, then El- X[x := Y] : A. The proof is
by induction on the derivation of E I- (>.x.X)Y : A. Note that El- (AX.X)Y : A must
be the result of an application of (app) or (weaken). In the former case, we must have
El- >.x.X : B, El- Y : b(B), and A = ,(B) for some B such that E I- X : ,(B). Then
by Lemma 2.26, E I- X[x := Y] : ,(B) = A. If E I- (>.x.X)Y : A is the conclusion
of (weaken), then the result follows immediately from the induction hypothesis and an
application of (weaken). 0

Corollary 2.28 If X.!..... Y, then SE(X),~ SE(Y)'

PCorollary 2.29 If X ---* Y, then SE(X) ~ SE(Y).

Similar although slightly stronger results hold for order-sorted 1J-reduction:

Lemma 2.30 If >'XE.XX ~ X, then SE(AX.XX) = SE(X).

~ .
Proof. IfAxE.Xx ~ X, then E = b(A) for any sort A such that E I- X : A. Then
by (1J), E I- >'xE.X x : A. as well. Conversely, if E I- AXE.Xx : A, then we induct on the
derivation of E I- AX.XX : A .

•	 If E I- >.x.Xx : Ais the conclusion of an application of (abs), then x E VarsE,
E I- Xx : B, and El- Ax.Xx : E ---'> B == A for some sort B. Then E I- Xx : B is
either the consequence of an application of (app) or of (weaken).

- In the first case, E I- X : C for some sort C such that B = ,(C) and
E I- x : b(C). Then since signatures respect function domains, the fact that
X has sort C implies that AX.xX has sort b(C) ---'> ,(C), so that b(C) = E.
Thus ~ I- C :s b(C) --+ ,(C) = E --+ B == A, so that E I- X: A by (weaken).

16

Since order-sorted Lin—reduction generalizes ordinary typed ßn—reduction, we will
write E» for order-sorted (in—reduction as well as for the typed version. We will
similarly abuse nota t ion in denot ing t he transit ive, as well as the reflexive, symmetr ic ,
and transit ive, closure of E» , since the typed relations are subsumed by their order-
sorted versions.

I t is important to ou r program that t he fundamental operations of ou r calculus do not
allow the formation of ill-sorted terms from well-sorted ones. This will ensure that our
unification algorithm never has to handle ill-sorted terms, even intermediately. In fact
we show, using the next sequence of lemmas, that if X fl) ” , then 82 (X) ; Sg(Y) .
To see that the reverse inclusion need not hold in general, we need only consider an
£C(E)—term of the form X E (AmB.m~)Y such that Y has sort A for some A strictly less
than B. Then X 1» Y, but there is no derivation proving that X has sort A.

Lemma 2.26 US |- X : A and E l- Y : E, then E l- X[:cE :: Y] :A .

Proof. I t is easy to see that for any (free) variable :cE occurring in X we can replace in
the derivation of E l- X : A all occurrences of the derivation hypothesis 2 l- r : E with
the derivation of E l- Y : E. The resulting derivation shows that E l- X [a: := Y] : A. |:

Lemma 2.27 If (A$.X)Y L X[:c :: Y], then Sz((Äx.X)Y) g 82(X[x := Y])

Proof. We must show that if E l— (Äw.X)Y : A, then E l- X[:c :: Y] : A. The proof is
by induction on the derivation of 2 Ir (Ax.X)Y : A. Note that E l- (Ax.X)Y : A must
be the result of an application of (app) or (weaken). I n the former case, we must have
E l- ‚\:c.X : B,)3 |— Y : 6(3) , and A = 7(3) for some B such that E l- X : 7(B). Then
by Lemma 2.26, 2 l- X[;L' := Y] : 7(B) = A. If Z) l- (Az.X)Y : A is the conclusion
of (weaken), then the result follows immediately from the induction hypothesis and an
application of (weaken). . a

Corollary 2.28 IfX L Y, then 52 (X) .g 520’) .

Corollary 2.29 IfX 1» Y, then 5200 <_: 520/).
Similar al though slightly stronger results hold for order—sorted n—reduction:

Lemma 2.30 If lach—‚X3 L» X, then Sg()l$.X1:) = 52(X) .

Proof. If AIE.X;r—"—>X, then E : ö[_A) for any sort A such that >] I- X : A. Then
by (7)), 2 l— Amp/Yr : A as well. Conversely, if L‘ |— ‚\:L'E.X:c : A, then we induc t on the
derivation of 2 l- Am./Ya: : A.

o If E %— Ax.X:1: : A i s the conclusion of an application of (abs) , then a: E VarsE ,
E l -Xw:B , and EI—Ax.X:c :E‘—>BE 4 fo r someso r t B . ThenEl - sB i s
either the consequence of an application of (app) or of (weaken).

— In the first case, 5.) l- X : 0 for some sort C such that B = 7(0) and
2 I- x : 5(C). Then since signatures respect function domains, the fact that
X has sort C implies that Ax.X:c has sort 6(0) ——> 7 (0) , so that 6 (0) = E .
Thus A l- 0 5 6 (0) —r 7 (0) : E ——> B _=_ A, so that 2 |- X : A by (weaken).

17

-- In the second case, we must have E f-- X x : D for some sort D such that
~ f-- D :S B. Since we assume without loss of generality that applications
of (weaken) are consolidated, E f-- X x : D must itself be the consequence of
(app). By the previously considered subcase, E f-- X : A .

•	 If El- AX.XX : A is the conclusion of an application of (T]), then clearly E f-- X : A .

•	 If E f-- AX.X;r : A is the conclusion of an application of (weaken), then the result
follows immediately from the induction hypothesis and (weaken).

Cl

Corollary 2.31 If X ~ Y, then Sl:(X) = Sl:(Y)'

Corollary 2.32 If X ='1 ¥, then SE(X) = Sl:(Y).

We cart combine these results into

Theorem 2.33 If X ~ Y or X~ Y, then SdX) ~ Sl:(Y)'

,

Order-sorted ,8T]-reduction satisfies the usual properties associated with typed ,8T]­
reduction, particularly convergence. Termination is a direct consequence of the
corresponding well-known result· for the simply typed lambda calculus:

Theorem 2.34 Order-sorted (31}-reduction on .cC(E) is terminating.

Proof. Any sequence of order-sorted (317-reductions induces a corresponding typed (3T]­
reduction sequence of the same length on the .cC-terms which are the images under the
forgetful functor of the .cC(E)-terms ~n the given order-sorted (3T]-reduction sequence.
The result follows from the fact that (3T]-reduction is terminating on .cC. Cl

That order-sorted (31J-reduction is convergent is only slightly harder to prove.

Theorem 2.35 Order-sorted (3T]-reduction on .cC(E) is convergent.

Proof. Since order-sorted (31}-reduction is terminating, it suffices to see that it is weakly
confluent. This follows from the corresponding result for ,81J-reduction on .cC and the

fact, a consequence of Theorem 2.33, that if X ~ Y then supp(X) == supp(Y). Cl

In light of Lemma 2.35, it makes sense to speak of the order-sorted ,81J-normal form
of an .cC(E)-term; we denote it by ,8T]nf(X). It is also sensible to refer to the order­
sorted long 13-normal form of X. By this we mean the term obtained by computing
the order-sorted ,a-normal form of X and then performing (if needed) some order­
sorted T]-l-reductions, as in [Bre88]. Theorem 2.33 guarantees that for all X E .cC(E),
SdX) ~ SE«(3T]nf(X)) and S~(X) ~ Sl:(l,8nf(X)).

Order-sorted Higher-order Unification

When considering unification in the simply typed lambda calculus, it is customary to
work modulo T]-equality (see, for example, the presentation in [Sny91J). Although it
is also possible to do so in our setting, we will explicitly keep track of order-sorted 1]­

equality, since we have seen that the interaction between extensionality and sorts can
be unexpectedly subtle.

3

17

— In the second case, we must have 2 l- X :c : D for some sort D such that
A l- D g B. Since we assume without loss of generality that applications
of (weaken) are consolidated, E l- X1: : D must itself be the consequence of
(app) . By the previously considered subcase, 2 I- X :A .

o If E l- A$.X:c : A i s the conclusion of an application of (7]), then clearly E F X : A .

. If 2 ?- M:.c : A is the conclusion of an application of (weaken), then the result
follows immediately from the induction hypothesis and (weaken).

Corollary 2 .31 IfX LY, then 52 (X) : Sg(Y) .

Corollary 2 .32 IfX‘z,7 Y, then SE(X) = Sg(Y).

We can combine these results into
—1

Theorem 2.33 IfX —”—"» Y or X""—» Y, then 83(X) g 52m.

Order-sorted ‚Bw-reduction satisfies the usual properties associated with typed fin—
reduction, part icularly convergence. Termination i s a direct consequence of the
corresponding well—known result for the simply typed lambda calculus:

Theorem 2.34 Order-sorted ßn-reduction on £003) is terminating.

Proof. Any sequence of order-sorted ßn-reduc—tions induces a corresponding typed ßn-
reduction sequence of the same length on the LXI-terms which are the images under the
forgetful functor of the ‚CC(E)—terms in the given order-sorted ßn—reduction sequence.
The result follows from the fact that ßn—reduction is terminating on CC. a

That order-sorted fln—reduction is convergent is only slightly harder to prove.

Theorem 2 .35 Order-sorted ‚GTI—reduction on ‚CC(E) is convergent.

Proof. Since order-sorted ‚Bu-reduction is terminating, i t suffices to see that i t is weakly
confluent. This follows from the corresponding result for ‚fin—reduction on CC and the
fact, a consequence of Theorem 2.33, that if X fl rY then supp(X) -:—: supp(Y). n

In light of Lemma 2.35, it makes sense to speak of the order-sorted [tn-normal form
of an £C(Z.‘)—term; we denote i t by ‚ßnn f (X) I t is also sensible to refer to the order—
sorted long /3-normal form of X . By this we mean the term obtained by computing
the order—sorted B—normal 'form of X and then performing (if needed) some order—
sorted n‘l—reductions, as in [Bre88]. Theorem 2.33 guarantees that for all X E £C(E)‚
3200 Q SEWUHKX» and 5200 Q SEUflnfCXD-

3 Order-sorted Higher-order Unification
When considering unification in the simply typed lambda calculus, i t is customary to
work modulo n—equality (see, for example, the presentation in [Sny91]). Although it
is also possible to do so in our setting, we will explicitly keep track of order—sorted 17—
equality, since we have seen that the interaction between extensionality and sorts can
be unexpectedly subt le .

18

3.1 Systems and Substitutions

We begin with the basic notions required in any discussion of unification. In the
following, we represent unification problems by equational systems comprising the pairs
of L:C(~)-t.erms to be simultaneously unified, and use transformations of such systems
as our main tool for solving the unification problems they represent.

Definition 3.1 A pair is a two-element multiset of .cCp::;)-terms. A system is a finite
set r of pairs. A pair is Tj-trivial (or simply trivia0 if its elements are Tj-equal, and
E-valid if its elements are ,81]-equal; a system is E-valid if each of its pairs is E-valid.

As usual, we write r, (X. Y) instead ofrU{(X, Y}}. But since r mayor may not also
contain (X, Y), such a decomposition is ambiguous. We will use the notation r; (X, Y)
to abbreviate r U {(X, Y)} when (X, Y) is not a pair in r.

Definition 3.2 A pair (X, Y) is solved in r if it is either trivial or for some x E VarsA,

X ~ x, A E S:dY) and there are no occurrences of x in r other than the one indicated.
In this case, x is said to be solved in r. If each pair in r is solved in r, then r is a solved
system.

Definition 3.3 A substitution is a finitely supported map from variables to .cC(E); a
substitution (J induces a mapping on terms, which we will also denote by (J.

We will write substitution application as juxtaposition, so that (JX is the application
of the substitution (J to the term X. By D((J) and I(0) we will denote the set of variables
in the domain of (J and the set of variables introduced by (J, respectively.

Definition 3.4 A substitution (J is well-sorted (or a well-sorted substitution) iffor every
x E VarsA, A E Sd(Jx).

It follows that if X E L:CA(~) and (J is well-sorted, then (JX E .cCA(E) as well. That
the set of well-sorted substitutions is closed under composition is not hard to prove. We
assume the standard results about ordinary (not necessarily well-sorted) substitutions.

We can extend equalities on L:C(~) to (well-sorted) substitutions in the usual manner:

Definition 3.5 Let =* be an equational theory on .cC(E), W be a set of variables, and
(I and (j' be substitutions. Then (J =* (j'[W] means that for every variable in x EW,
(Jx =* 0'x. Define the subsumption relation 0' :S* O[W] to hold provided there exists a
substitution p such that (J =* p(J'[W].

If W is the set of all variables, we drop the notation "[W]." We will be primarily
concerned with the cases when =* is =f3,., or the empty equational theory. In the latter
case, we write simply ":=" and ":S" for the induced equality and subsumption ordering
on substitutions.

We can extend substitutions on .cC(~) to mappings on systems r := {(Xi, Y;) I i :S n}
by defining aT to be the system {(O"Xi, O"Y;) I i :S n}. The normal form l,8nf(r) , all
of whose unsolved pairs comprise terms in long ,8-normal form, is defined similarly. If
all terms in the unsolved pairs of r are in long ,8-normal form, we say that r is in long
,8-normal form.

We will write FV(X) for the set of free variables occurring in the .cC(E)-term X
and FV(r) for the free variables occurring in any term in the system r.

18

3 .1 Systems and Subst i tut ions

We begin with the basic notions required in any discussion of unification. In the
following, we represent unification problems by equational systems comprising the pairs
of £C(E)—terms to be simultaneously unified, and use transformations of such systems
as our main tool for solving the unification problems they represent.

Definition 3.1 A pair is a two-element multiset of £C(E)-terms. A system is a finite
set I‘ of pairs. A pair is n- tr ivial (or s imply trivial) if i t s elements are n—equal, and
E-valid if its elements are ßn—equal; a system is E-valid if each of its pairs is E—valid.

As usual, we write F, (X. Y) instead of F U { (X , Y)}. But since I‘ may or may not also
contain (X, Y), such a decomposition is ambiguous. We will use the notation I‘; (X, Y)
to abbreviate I" U {(X,Y)} when (X, Y) is not a. pair in I‘.

Definition 3.2 A pair (X, Y) is solved in P if it is either trivial or for some x 6 VarsA,
X —"» :c, A E 52(Y) and there are no occurrences of a: in I‘ other than the one indicated.
In this case, 1: i s said to be solved in I‘. If each pair in I‘ is solved in I‘, then P i s a solved
sys t em.

Definition 3.3 A substitution is a finitely supported map from variables to £C(E); a
substitution 9 induces a mapping on terms, which we will also denote by 0.

We will write subst i tu t ion application as juxtaposition, so that OX is the application
of the substitution 9 to the term X . By D(0) and I (0) we will denote the set of variables
i n the domain of 9 and the set of variables introduced by 9, respectively.

Definition 3 .4 A substitution 6 is well-sorted (or a well-sorted substitution) if for every
:1: E VarsA, A 6 52(02).

I t follows that if X E .CCA(E) and 0 is well—sorted, then OX € [CA (2) as well. That
t he set of well-sorted subst i tut ions is closed under composit ion is not hard t o prove. We
assume the standard results about ordinary (not necessarily well-sorted) substitutions.

We can extend equalities on £C(E) to (well—sorted) substitutions in the usual manner:

Definition 3 .5 Let =„ be an equational theory on .6003), W be a set of variables, and
9 and 0’ be substitutions. Then 0 z„ 0’ [W] means that for every variable in a: E ‘W,
9.1: :., 9’1‘. Define the subsumption relation 0’ Su 0[W] to hold provided there exists a
substitution p such that 0 =„ p0’ [W]

If W is the set of all variables, we drop the notation “[W].” We will be primarily
concerned with the cases when =... is =ßn or the empty equational theory. In the latter
case, we write simply “E” and “5” for the induced equality and subsumption ordering
on substi tut ions.

We can extend substitutions on £C(E) to mappings on systems I‘ E {(X,‘, Y.) | i S n}
by defining aI‘ to be the system { (a’X;‚ O’Yi) | i 5 n}. The normal form Ißnf(I‘), all
of whose unsolved pairs comprise terms in long fl—normal form, is defined similarly. If
all terms in the unsolved pairs of 1‘ are i n long ‚ß—normal form, we say that I‘ i s i n long
‚ß-narmal form.

We will write F V (X) for the set of free variables occurring in the £C(E)—term X
and F VU“) for the free variables occurring in any term in the system l.".

19

Definition 3.6 A well-sorted substitution () is a I;,-unifier of a system r if ()r is I;,­
valid. If 0" is a I;,-unifier of r with the properties that D(O") ~ FV(f) and that for any
E-unifier 0 of r, 0" 5:f31/ (J, then 0" is said to be et most general I;,-unifier of f. A system
f is I;,-'unifiable if there exists some I;,-unifier of f.

For technical reasons, given a system f, we will make extensive use of substitutions
satisfying the conditions of the next definition. Note that we relax the standard
requirement that substitutions map all variables to normal forms, and allow solved
variables to be bound arbitrarily. This is justified in Lemma 3,9 below.

Definition 3.7 An idempotent well-sorted substitution 0 is a normalized I;,-unifier of
a system r if

• D«() ~ FV(r),

• (J is a I;,-unifier of r, and

• for all unsolved variables x in r, Ox is in long ,B-normal form.

Write U1;(r) for the set of all normalized l:-unifiers of r.
It is clear that every well-sorted substitution () is ,Bry-equal to a well-sorted

substitution (J' with D«()) = D«()') and ()'x in long ,B-normal form for each x E D«()).
Such a substitution ()' is said to be in long ,B-normal form. Thus for any I;,-unifier () of
et system r, there exists et (J' E U1;(f) such that ()' =f31/ ()[FV(r)J. In particular, every
l:-unifiable system has a normalized I;,-unifier.

The remainder of this section explores the relationship between systems and their
unifiers.

Ifr is a solved system whose non-trivial pairs are (Xl> YI), ... , (Xn , Yn) with Xi ~Xi
for i = 1, ... , n, then these pairs determine an idempotent well-sorted substitution
O"r = {Xl YI, ... ,Xn l--l- Yn }. Note, however, that such a pair (X,Y) withl--l-

X ~ x E VarsA and Y ~ y E VarsA requires a choice as to which of x and y is
to be in the domain of the substitution. We will assume that a uniform way exists
for making such a choice, and so will refer to the well-sorted substitution determined
by a solved system. On the other hand, idempotent well-sorted substitutions can be
represented by solved systems without trivial pairs. If 0" is such a substitution, write [0"]
for any solved system which represents it.

Note that any system r can be written as f'; [0"] where 0" is the set of solved pairs in
r. Call [0"] the solved part of r.

Transformation-based unification methods attempt to reduce systems to be unified
to solved systems which represent their unifiers. The fundamental connection between
solved systems and E-unifiers is the following fact, which shows that solved systems
indeed represent their own solutions:

Lemma 3.8 Iff = {(Xl, YI), ... , (Xn , Y n)} is a solved system, then O"r is a most general
I;,-unifier for r. In fact, for any E-unifier () of r, () =131/ ()O"r.

Proof. Clearly O"r is a I;,-unifier of r. Suppose that the non-trivial pall'S of f
are {Xij' Yi j), where Xij ~Xij for j = 1, ... ,k. If () is any E-unifier of r, then
OO"rXij == ()Yi j =f31/ OXij for j = 1, ... , k, and Ox == ()O"rx for x <t. D(O"r), so that indeed
() =f31/ ()O"r. 0

19

Definition 3.6 A well—sorted substitution 9 is a E-unifier of a system I‘ if 0F is 2—
valid. If a is a E-unifier of l‘ with the properties that D(a') <_._'_ FV(I‘) and that for any
E-unifier 0 of I‘, a fig" 0, then o is said to be a‘ most general E-unifier of 1“. A system
I‘ is Z-unifiable if there exists some E—unifier of I‘.

For technical reasons, given a system I‘, we will make extensive use of substitutions
satisfying the conditions of the next definition. Note that we relax the standard
requirement that substitutions map all variables to normal forms, and allow solved
variables to be bound arbitrarily. This is justified in Lemma 3.9 below.

Definit ion 3 .7 An idempotent well-sorted substi tution 0 is a normalized Z-unifier of
a system 1" if

° D(9) € FVU‘),

. 0 is a E—unifier of I‘, and

. for all unsolved variables x i n I‘, 9:3 is i n long ‚ß—normal form.

Write U2(I‘) for the set of all normalized E—unifiers of I‘.
I t is clear tha t every well—sorted substitution 9 is ßn—equal t o a well-sorted

substitution 0’ with D(0) : D(0’) and 9’s in long ‚ß—normal form for each a: E D(9).
Such a subst i tut ion 0’ i s said to be i n long ß-normal form. Thus for any E—unifier 9 of
a system F, there exists a 0’ E U20?) such that 9’ : pn 9[FV(I‘)]. In particular, every
E-unifiable system has a normalized E-unifier .

The remainder of th is section explores the relationship between systems and their
unifiers.

If I‘ is a solved system whose non-trivial pairs are (X 1 , Y1), ..., (Xn, Yn) with X.- —"»'m,~
for i : l , . . . ‚ n , then these pairs determine an idempotent well—sorted substitution
or = {31 H Y1, ...,:rn »—+ Yfl}. Note, however, that such a pair (X, Y) with
X —"»:1: E VarsA and Y —”»y E VarsA requires a choice as to which of x and y is
t o be i n the domain of the substitution. We will assume that a uniform way exists
for making such a choice, and so will refer to the well-sorted substitution determined
by a solved system. On the other hand, idempotent well-sorted substitutions can be
represented by solved systems without trivial pairs. If a is such a substitution, write [a]
for any solved system which represents i t .

Note that any system F can be wri t ten as I"; [0'] where 0 i s the set of solved pairs in
I‘. Call [a] the solved part of I‘.

Transformation—based unification methods attempt to reduce systems to be unified
to solved systems which represent their unifiers. The fundamental connection between
solved systems and E-unifiers is the following fact, which shows that solved systems
indeed represent their own solutions:

Lemma 3 .8 IfI‘ = {(X1,Y1)‚ ..., (X‚. ,Y„)} i s a solved system, then 0'];- i s a most general
E-unifier for F . In fact, for any E-unifier 0 ofl", 0 : ßn 00T.

Proof. Clearly or is a Z—unifier of 1". Suppose that the non-trivial pairs of 1"
are (X,) ,YÜ), where Xi]. —"—»z,-‚. for j : l , . . . ‚ k . If 0 i s any E—unifier of I‘, then
Harz,-J. E 0%]. :5" 0121-1. for j = 1 , ...,lc, and 0:1: E Hope for 1: & D(0’[‘)‚ so that indeed
9 =13" 90T. Ü

20

In general, however, a system f will not have a single most general E-unifier, and may
not even have a finite complete set of E-unifiers, i. e., a finite set U of E-unifiers such that
for every E-unifier B of f there exists a substitution u E U such that u ~/3T/ B[FV(f)].
This quarrelsome behavioUl' has nothing to do with sorts, however - it is inherited from
the unsorted calculus ([Gou66]).

The next lemma will be used to show that we need not be concerned with solved
pairs when computing E-unifiers, and is therefore consistent with the intuition that the
solved part of a system is merely a record of an answer substitution being constructed.

Lemma 3.9 Suppose f is a E-unifiable system with solved part [u] and unsolved part
f'. If B is a E-unifier of f, then for· every E-unifier p of f' such that D(p) ~ FV(f')
and p ~/3T/ B[FV(f')], pu is a E-unifier off and pu ~/3'" B[FV(f)].

Proof. Let B be a E-unifier of f, and let p be a E-unifier of f' such that D(p) ~ FV(f')
and p ~ B[FV(f')]. Then pu E-unifies f since pu[u] and puf' == pf' are E-valid. Since ()
E-unifies [u] and u is idempotent, we have ()u =/3'1 B. Finally, FV(f') ~ FV(f) implies
that pu ~/3,., Bu =(3'1 B[FV(f)]. 0

Finally, observe that terms having different sorts can be unifiable, since sorts can
be altered by substitutions via constant declarations. Unlike the case for higher-order
unification in the absence of constant declarations, we cannot insist that each pair in a
unification problem have precisely the same sorts without sacrificing the completeness
of our method - the possibility of pairs of terms not having the same sorts does not,
of course, preclude unifiability of the terms. Nevertheless, E-unifiable terms must have
the same types.

3.2 The Unification Algorithm

One of the key steps for unification in the presence of sorts is solving the following
problem: given a term X == >'Xl ...Xk.hU1 ...Un E .cCA(E) in long ,a-normal form,
find a term G E .cCA(E) with head h which can be instantiated to yield X. This
is a generalization of a similar problem in .cC, and in [Hue75], Huet gives a 'set of
partial bindings capable of approximating any .cC-term in the sense just described.
Even in the presence of functional base sorts, Huet-style partial bindings indeed suffice
to approximate arbitrary .cC(E)-terms, although not necessarily with terms of the
appropriate sorts. This is because, by contrast with the assignment of types to terms
in .cC based on term structure, sort assignment in .cC(E) is not structural. Tha,t is, the
derivation that a given term has a given sort, rather than just the structure of the term
itself, must be consulted when deducing sort information.

Partial bindings will emerge as our main analytical tool for investigating completeness
properties of our unification algorithm. But they are also necessary for defining the
transformations on which the algorithm will be based. Below, a variable will be called
fresh if it does not appear in any term in the current context.

Definition 3.10 If h is an atom such that either h E Varsc or [h :: C] is a constant
declaration in E, then a partial binding of sort A for head h is any term of the form

where

20

In general, however, a system 1" will not have a single most general E-unifier , and may
not. even have a finite complete se t of E-unifiers , i.e., a finite set U of “-unifiers such tha t
for every E-unifier 0 of 1" there exists a substitution 0' E U such that 0' Spa 6[FV(I‘)].
This quarrelsome behaviour has nothing to do with sorts, however -— i t is inherited from
the unsorted calculus ([Gou66]).

The next lemma will be used to show that we need not be concerned wi th solved
pairs when computing E-unifiers, and is therefore consistent with the intuition that t he
solved part of a system is merely a record of an answer substitution being constructed.

Lemma 3 .9 Suppose I‘ is a E-unifiable system with solved part [a] and unsolved par t
I". I f€ is a E-unifier of I‘, then for, every E-unifier p of I" such that D(p) g FV(I")
and p 5/31; 0[FV(1")], pa is a E-unifier ofI‘ and pa 55,1 0[FV(I‘)].

Proof. Let 0 be a E-unifier of F, and let p be a E—unifier of I" such that D(p) g F V(1"’)
and p g 9[F V(I")] Then pa' E-unifies I‘ since po[rr] and p01" E pI" are E—valid. Since 0
E-unifies [a] and a is idempotent, we have 00’ :p" 9. Finally, FV(I") ; FV(I‘) implies
that pa Sßn 60' :5" 0[FV(I‘)]. Cl

Finally, observe that terms having different sorts can be unifiable, since sorts can
be altered by substitutions via constant declarations. Unlike the case for higher—order
unification in the absence of constant declarations, we cannot insist that each pair in a
unification problem have precisely the same sorts wi thout sacrificing the completeness
of ou r method — the possibility of pairs of terms not having the same sorts does no t ,
of course, preclude unifiabili ty of the terms. Nevertheless, E-unifiable terms must have
the same types.

3.2 The Unification Algorithm
One of the key steps for unification i n the presence of sorts is solving the following
problem: given a term X E A31...:ck.hU1...U,, 6 £6,103) in long ‚ß—normal form,
find a term G E CCA(E) with head h which can be instantiated to yield X . This
is a generalization of a similar problem in ‚CC, and in [Hue75], Huet gives a’set of
partial bindings capable of approximating any ‚CC—term in the sense just described.
Even in the presence of functional base sorts, Huet—style partial bindings indeed suffice
to approximate arbitrary £C(Z)-terms, although not necessarily with terms of the
appropriate sorts. This is because, by contrast with the assignment of types to terms
in CC based on term structure, sort assignment in ECTS) is not structural. That is, the
derivation that a given term has a given sort, rather than just the structure of the term
itself, must be consulted when deducing sort information.

Partial bindings will emerge as our main analytical tool for investigating completeness
properties of our unification algorithm. But they are also necessary for defining the
transformations on which the algorithm will be based. Below, a variable will be called
fresh if it does not appear in any term in the current context.

Definition 3.10 If h is an atom such that either h e Var-sc or [h :: C] is a constant
declaration in 2 , then a partial binding of sari A for head h is any term of the form

G E Ayl...y1.hV1...Vm

where

21

• I = length(A),

• rn = 1+ length(T(G») -length(r(A» 2: 0,

• Yj E VarSbi(A) for j = 1, ... ,1,

• Vi == ZiYl···Yl, for 1::; i::; rn, where Zi E VarS61(A)-> ... ->ol(A)->o'(C) is fresh, and

Note that partial bindings for a given sort A and head h need not exist because of the
second and the last conditions of Definition 3.10, but because signatures respect function
domains, when they do exist, they are unique up to renaming of the variables Zi. If L:
is a signature without functional base sorts, then the partial bindings are 7]-expanded;
in particular, if L: is a signature with exactly one sort per (base) type, then the partial
bindings a.re precisely those obta.ined for £C (modulo the isomorphism between T and
S discussed after Lemma 2.20).

Call a partial binding G == AY1 ...YI.h VI ...v'n a ph projection binding if h == Yj and
an imitation binding if h E FV(G) U C. Write g1 (L:) for the set of partial bindings of
sort A for head h.

It turns out that we cannot insist that partial bindings be 7]-expanded, as is
traditional, without sacrificing completeness of our algorithm (see Example 3.15). That
our partial bindings are 7]-expandable, in general, is the primary difference between
them and the Huet-style bindings of [Sny9I], but this liberalization suffices to recover
completeness in the presence of functional base sorts.

The following are examples of partial bindings.

Example 3.11 Let A, B, and G be base sorts, with G functional such that 8(G) = A
and ,(G) =B. Let L: be a signature with no subsort declarations and the single constant
declaration [c :: G]. Then

• gc(~) = {cl,

• gH(E) = {cz I Z E Va/'SA is fresh}, and

• 9A->B(L:) = {Ax.c(zx) I z E VarSA->A is fresh and x E VarsA}.

The following lemma justifies the terminology for partial bindings.

Lemma 3.12 If G E 9~(E), then E f- G : A.

Proof. Let G == AYI ...YI.hVI .. .vm as in Definition 3.10. Then there is some
G E S such that either h E Varsc or [h :: G] is a constant declaration in
~. It. follows that ~ f- V; : Oi(G) for i == 1, ... , 1n, so that by successively
applying (app), we see that L: f- hVI ...Vm : ,m(G). An application of (weaken)
shows that E f- hV1 .. .vm : FleA), and we conclude via a series of I applications
of (abs) that L: f- AY1 ... y/.hV1 .. .vm : 81(A) -+ ... -+ oleA) -+ FleA). But
81(A) -+ ... -> OleA) -> FleA) == A since I = length(A), so that indeed L: f- G : A
as desired. 0

21

I = Icngth(A],

o m = [+ Iength(r('C)) — Iength(‘r(A‘)) Z 0,

. yj € VarsM-(A) for j = l , . . . , l ,

o V,- E ziyl...y1, for 1 S i s m , where z,- E Varsöl(A)_‚._.__6‚(„__öiw) is fresh, and

' A '“ 7'"(C) S WA)-
Note that partial bindings for a given sort A and head h need not exist because of the

second and the last conditions of Definition 3.10, but because signatures respect function
domains, when they do exist, they are unique up to renaming of the variables z‚-. If 2
is a signature without functional base sorts, then the partial bindings are n—expanded;
in particular, if 2 is a signature with exactly one sort per (base) type, then the partial
bindings are precisely those obtained for CC (modulo the isomorphism between T and
S discussed after Lemma 220).

Cal l a partial binding G E Ayl...y1.hV1...Vm a j‘h projection binding if h E 31,- and
an imitation binding if h € FV(G') UC. Write g,’;(2) for the set of partial bindings of
sort A for head h.

It turns out that we cannot insist that partial bindings be n-expanded, as is
tradit ional, wi thout sacrificing completeness of our algorithm (see Example 3.15). That
our partial bindings are n—expandable, in general, is the primary difference between
them and the Huet-style bindings of [Sny91], but this liberalization suffices t o recover
completeness i n the presence of functional base sorts.

The following are examples of partial bindings.

Example 3 .11 Let A , B , and C be base sorts, with C functional such that 6 (0) = A
and 7(0) = B . Let E be a signature with no subsort declarations and the single constant
declaration [c :: C]. Then

' %(E) = {€},
. ggm) : {cz | z € VarsA is fresh}, and

. g;_‚5(2) : {Ax.c(zx) | z E VarsAqA is fresh and 1: E VarsA}.

The following lemma justifies the terminology for partial bindings.

Lemma 3 .12 IfG E GMS) , then 2 l— G : A .

Proof. Let G E Ayl...y1.hV1...Vm as in Definition 3.10. Then there i s some
C E S such that either h E Varsc or [h :: C] is a. constant declaration in
E. It. follows that E l- V,‘ : (NC) for i =' 1,...,m'‚ so that by successively
applying (app) , we see tha t E l— t . . .Vm : 7’“(C) . An application of (weaken)
shows tha t E l- t . . .Vm : 7 ' (A) ‚ and we conclude 'v ia a series of I applications
of (abs) that E l- Ayl...y1.hV1...Vm : 61(A) _» —> 6’(A) —-> 7'(A). But
til-(A) —-r ——> 6"(A) —> 71(A) E A since I : length(A)‚ so that indeed E l- G : A
as desired. III

22

At the end of this subsection we present an algorithm '£U which is a complete '£­
unification method, i.e., which is such that, for any system r and a ~>unifier (J of r,
there exists a computation of Algorithm '£U on input system f yielding a '£-unifier (J of
f with (J 5.f3'7 B[FV(f)] (see Theorem 3.29). That is, for any system f, Algorithm '£U
ca;n produce a '£-unifier of r which is more general than any given '£-unifier of f. The
following transformations on which Algorithm '£U is based are adapted from those of
[Sny91] .

Definition 3.13 The set '£T comprises the following transformations on systems in
long ,a-normal form.

•	 DECOMPOSE: For any atom h,

f; (Axl ...Xk.hXl ...Xn,)..Xl ...Xk.hUl ...Un) ===}

f, ()..Xl ...Xk.Xl,)..Xl ...Xk.Ul), ... , ()..Xl ...Xk.Xn,)..Xl ...Xk.Un).

•	 ELIMINATE: If x E VarsA, x ~ {Xl, ... , Xk}, X ~ FV()..Xl ...Xk.X), and
(J = {x)..Xl .•.Xk.X} is well-sorted, then

•	 IMITATE: If X E VarsA, h E C or h E FV()..Xl ...Xk.hUl ...Um), h ~ X, and
G E g~ ('£) is an imitation binding, then

f; ()..Xl ...Xk.XXl, ..Xn,)..Xl ...Xk.hUl ...Um) ==}

r, (x, G), (Axl ... Xk.XXl ...Xn, Axl ...Xk.hUl ...Um).

•	 j-PROJECT: If X E VarsA, h is a (possibly bound) atom and G E g~ ('£) is a
/h projection binding for some j E {l, ... ,n} such that head(Xj) E C implies
head(Xj) == h, then

f; ()..Xl ...Xk.XXl ...Xn,)..Xl ...Xk.hUl ...Um) ===}

r, (x, G), ()..Xl ...Xk.XXl ...Xn, >"Xl ...Xk.hUl ...Um).

•	 GUESS: If h is any atom, and x and y are free variables in VarsA and VarsB,
respectively, both distinct from h, and G E g~(,£), then

f; (>"Xl' ..Xk·XX1·· .Xn , >"Xl.· .Xk.yUl ...Um) ==}

f, (x, G), (>"Xl ...Xk.XXl ...Xn, >"Xl ...Xk.YUl ...Um).

As part of the transformations IMITATE, j-PROJECT, and GUESS, we immediately apply
ELIMINATE to the new pair (x, G). This has the effect of applying the well-sorted
substitution {x G} to the rest of the obtained system.

"Ve write f ===} f' if f reduces to f' by one application of a transformation in '£T
and implicitly assume that applicat.ions of the transformations are such that all terms
involved are well-sort.ed.

22

At the end of this subsection we present an algorithm 211 which is a complete 2-
unification method, i .e .‚ which is such tha t , for any system 1" and a 27unifier 9 of 1",
there exists a computat ion of Algorithm 211 on input system F yielding a 2-u11ifier 0' of
I‘ with a Sßn ß[FV(I‘)] (see Theorem 3.29). That is, for any system I‘, Algorithm EU
can produce a 2-unifier of 1" which is more general than any given 2-unifier of I“. The
following transformations on which Algori thm 211 i s based are adapted from those of
[Sny91].

Definit ion 3 .13 The‘ se t 27' comprises the following transformations on systems in
long ,B—normal form.

. DECOMPOSE: For any atom h ,

F ; (A11...wk.hX1...X,,, Awl...:ck.hU1...Un) =>
I‘, (A11...xk.X1,Axl...zk.U1), ..., (A21...zk.Xn,Axl...xk.Un).

. ELIMINATE: If a: € VarsA, x $ { :c l ‚ . . . ‚xk}‚ a: € FV(Ä1:1 . . .xk .X) , and
a = {z u—> ‚ \xl . . . :ck.X} is well-sorted, then

I‘;(‚\:cl...n.zz1„.z‚„ Äwl...:ck.X)=>(:c‚x\a:1„.xk.X)‚ aI‘.

. IMITATE: If :: € VarsA, h E C or h E FV(A:c1...zk.hU1...Um), h $ x, and
G 6 953(2) is an imitation binding, then

I‘; (Ax l . . .wk . zX1 .„X„ , / \ . ’B1 . . . zk .hU1 . . .Um) =>

F , (m, G) , (Azl...:ck.:cX1...X,., A11...zk.hU1...Um).

. j-PROJECT: If x E VarsA, h is a (possibly bound) atom and G € 9363) is a
j’h projection b inding for some j E {1 , . . . , n} such that head(X,-) E C implies
head(X,-) E h, then

I‘; (Äwl . . . $k .$X1 . . .Xn ,Ä$1 . . . $k .hU1 . . .Um)=>

F , ($, G) , (A31 . . .mk .mX1. . .X , , , / \ $1„$. . khU1 . . .Um>

. GUESS: If h is any a tom, and z and y are free variables in VarsA and Var sB ,
respectively, both distinct from h, and G E GMX), then

I‘; (Axl...a:k.xX1...Xn, A31...zk.yU1...Um) =>
1", (a:, G) , (Axl.. .zk.xX1...X,. , ‚\31...xk.yU1...Um).

As part of the transformations IMITATE, j-PRO'JECT, and GUESS, we immediately apply
ELIMINATE to the new pair (x,G). This has the effect of applying the well—sorted
substitution {a: v—> G} to the rest of the obtained system.

We write I‘ => I" if I‘ reduces to I" by one application of a transformation in 2T
and implicitly assume that applications of the transformations are such that all terms
involved are well-sorted.

23

Our notation exploits the fact that pairs are unordered. We adopt the convention
that no transformations may be done out of solved or trivial pairs. This accords
with the intuition that the solved pairs in a system are merely recording an
answer substitution as it is incrementally built up. Notice that if r ==> r', then
{x I x is solved in f} ~ {x I x is solved in r'}, so that solved variables remain solved
after application of a transformation from 'ET.

\-Ve emphasize that there is no deletion of trivial pairs in this presentation, and
that this design choice simplifies certain arguments. For example, this guarantees that
if r ==> r', then FV(f) ~ FV(r'), so that when a fresh variable is chosen during a
computation it is guaranteed to be new to the entire computation. As a consequence,
we need not manipulate the "protected sets of variables" typically found in completeness
proofs in the literature. This convention also eliminates complications in proving the
soundness of resolution procedures based on our unification algorithm, and respects the
fundamental idea behind the use of transformations for describing algorithms, namely
that the logic of the problem being considered can be abstracted from implementational
issues such as choice of data structures and flow of control.

We can now define our order-sorted higher-order unification algorithm.

Definition 3.14 The non-deterministic algorithm 'EU is the process of repeatedly

1.	 reducing all terms of the unsolved pairs in the system to long ,8-normal form and
then applying some transformation in 'ET to a non-trivial unsolved pair, and

2.	 returning a most general 'E-unifier if at any point in the computation the system
becomes solved.

Observe that the choice of pair upon which Algorithm 'EU IS to act IS non­
deterministic, as is the choice of rule from 'ET to be applied.

We illustrate use of the Algorithm 'EU:

Example 3.15 Let [b :: 6(A)] and [c :: A] be constant declarations in a signature 'E
with a functional base sort A. Let f E VarsA, x E VarSO(A), and w E VarsA-+o(A), and
consider the 'E-unifiable long ,8-normal form system

r == (fx, cb), (wc, b).

Applying IMITATE with partial binding c to the first pair of r yields

(f, c), (ex, cb), (wc, b).

An application of DECOMPOSE results in

(f, c), (x, b), (wc, b),

and an application of IMITATE with binding >.y.b for yE VarsA to the third pair, followed
by some ,8-reductions give the solved system

r' == (f, c), (x, b), (w, >.y.b), (b, b),

from which we extract the well-sorted substitution (j = {f 1-+ C, X 1-+ b, w 1-+ >.y.b}.
Anticipating Theorem 3.21, we conclude that (j is a 'E-unifier of r' and hence of r.

23

Our notation exploits the fact that pairs are unordered. We adopt the convention
that no transformations may be done out of solved or trivial pairs. This accords
with the intui t ion that the solved pairs in a system are merely recording an
answer substitution as i t is incrementally built up. Notice that if I‘=> I", then
{m | :c is solved in 1"} <_: {a: | :c is solved in F’}, so that solved variables remain solved
after application of a transformation from 27 .

We emphasize that there is no deletion of trivial pairs in this presentation, and
that th is design choice simplifies certain arguments. For example, th is guarantees tha t
if I ‘=>I" , then F V(F) g FV(I")‚ so that when a fresh variable is chosen during a.
computation i t is guaranteed to be new to the entire computation. As a consequence,
we need not manipulate the “protected sets of variables” typically found in completeness
proofs in the literature. This convention also eliminates complications in proving the
soundness of resolution procedures based on our unification algorithm, and respects the
fundamental idea behind the use of transformations for describing algorithms, namely
that the logic of the problem being considered can be abstracted from implementational
issues such as choice of data structures and flow of control.

We can now define our order—sorted higher-order unification algorithm.

Definition 3.14 The non-deterministic algorithm EU is the process of repeatedly

1 . reducing all terms of the unsolved pairs i n the system to long ß—normal form and
then applying some transformation in BT to a non-trivial unsolved pair , and

2 . returning a most general E-unifier if at any point in the computation the system
becomes solved.

Observe that the choice of pair upon which Algorithm Eu is to act is non-
determinist ic, as i s the choice of rule from ET to be applied.

We illustrate use of the Algorithm EU :

Example 3.15 Let [b :: 6(A)] and [c :: A] be constant declarations in a signature 2
with a functional base sort A . Let f € Va r sA , a: € Varsam) , and w E VarsA_.5(A), and
consider the E—unifiable long ß—normal form system

I‘ E (fz,cb), (wc, b).

Applying IMITA’I‘E wi th part ial binding c to the first pair of I‘ yields

(f, c), (cz, cb), (wc, b).

An application of DECOMPOSE results in

(f, 0), (Gab), (100,5),
and an application of IMITATE with binding Ay.b for y E Var-3A to the third pair, followed
by some ,B-reductions give t he solved system

r ' a (f, c), (a,-‚b), (w‚Ay.b), (b‚b),
from which we extract the well-sorted substitution 0’ = { f b—r c,:z: r—> b,w v—> Ay.b}.
Anticipating Theorem 3.21, we conclude that or is a E-unifier of I" and hence of 1".

24

Note that if we instead allow only 1]-expanded partial bindings, then the only possible
IMITATE step binds f to Ay.C(ZY) for a variable Y and a fresh variable z of appropriate
sorts. But then ELIMINATE cannot be performed on the pair (I, AY.C(zy)) (as is required
to complete the IMITATE step) without creating ill-sorted terms in the remainder of r,
since ~ f- :>'y.c(zy) : A does not hold, and so in particular, w(:>'y.c(zy)) is not well-sorted.

Yet while unification in .cC(~) is apparently more delicate than unification in .cC,
the extra care pays off when sort information disallows certain undesirable unifications
that would be possible in an unsorted calculus. That sorts can serve as a unification
search space filter is indeed the primary motivation for their introduction.

Example 3.16 Let ~ be a signature with base sorts D, I, and R, where the non­
functional sort R is intended to denote the real numbers, and the functional sorts D and I
denote the strictly decreasing and strictly increasing functions on the reals, respectively.
Suppose further that 8(D) = 8(1) = R and ,(D) = ,(1) = R. Finally, let [n :: D -+ 1]
and [4 :: R]comprise the set of constant declarations of~, where n is intended to denote
the "negation functor" mapping each function F to - F, and 4 denotes the real number
four.

Let x E VarsR, f E VarsI, and g E VarsD, and consider the unification problem
given by the pairs

r= (l4,ngx),(gx,4).

Note that I-PROJECT does not apply to (14, ngx) because of the condition on the
head of the projection term in that rule, and that because of the requirement that m 2: 0
for partial bindings, an application of IMITATE to that pair is the only possibility for
computation on the system. Letting z be fresh from VarsD, we see that nz E gy(~),

and 1'>0 apply IMITATE with this binding for f to get

(I, nz), (nz4, ngx), (gx, 4).

By reasoning similar to that for the original system we conclude that only DECOMPOSE

applies here, resulting in

(I, nz), (z, g), (x, 4), (gx, 4).

Two applications of ELIMINATE yield

(I, ng), (z, g), (x, 4), (g4, 4),

all of whose pairs, save the last - unsolvable - one, are solved. The only alternative
to eliminating z above is applying GUESS to (z, g) in the second system, but such a
step makes no progress toward a solution. Anticipating Theorem 3.29, we conclude that
the original system is unsolvable, in accordance with the facts that neither the identity
function nor the function which is constantly four is strictly decreasing.

Of course, if we were to interpret D as denoting the (not strictly) decreasing real­
valued functions on the reals, then we would want to be able to compute the function
whose value is constantly four as a binding for g. So while considering the original
system r as a typed system permits too many bindings for certain applications, a system
supporting only constant declarations may permit too few. A calculus allowing arbitray
term declarations finds a middle road: in a signature with a term declaration assigning
the term :>'y.4 to be of sort D when y E VarsR, r would have precisely the desired
solutions.

24

Note tha t if we instead allow only n—expanded partial bindings, then the only possible
IMlTATE step binds f to Ay.c(zy) for a variable y and a fresh variable z of appropriate
sorts. But then ELIMINATE cannot be performed on the pair (f , Ay.c(zy)) (as is required
to complete the IMITATE step) without creating ill—sorted terms in the remainder of I‘,
since 2 l- Ay.c(zy) : A does not hold, and so in particular, w(/\y.c(zy)) is not well-sorted.

Yet while unification in £C(E) is apparently more delicate than unification in EC,
the extra care pays off when sort information disallows certain undesirable unifications
that would be possible in an unsorted calculus. That sorts can serve as a unification
search space filter is indeed the primary motivation for thei r introduction.

Example 3.16 Let E be a signature wi th base sorts D , I , and R , where the non—
functional sort R is intended to denote the real numbers, and the functional sorts D and I
denote the strictly decreasing and strictly increasing functions on the reals, respectively.
Suppose further that 6(D) = 6(I) = R and 7(D) = 7(I) = R. Finally, let [n :: D -—+ I]
and [4 :: R] comprise the set of constant declarations of >], where n is intended to denote
the “negation functor” mapping each function F to -—F , and 4 denotes the real number
four.

Let (L' E VarsR, f E Varsl , and 9 E Var-sp, and consider the unification problem
given by the pairs

I‘ E (f4 , ngx) , (93 ,4) .

Note that 1-PROJECT does not apply to (f4,ngz) because of the condition on the
head of t he projection t e rm in that rule, and that because of the requirement that ‘m 2 U
for partial bindings, an application of [MITATE to that pair is the only possibility for
computation on the system. Letting 2 be fresh from Var-5D, we see that nz E g?(2) ,
and so app ly IMITATE wi th this binding for f to get

(f , m:), (nz4, ngx), (gx‚4).

By reasoning similar to that for the original system we conclude that only DECOMPOSE
applies here, resulting i n

(£712), (2,9); (96,4), (93,4)—
Two applications of ELIMINATE yield

(f i ng) , (2 ,9) , ($14) ! (9414) :

all of whose pairs, save t he last — unsolvable — one, are solved. The only alternative
to eliminating :: above is applying GUESS t o (2,9) in the second system, but such a
step makes no progress toward a solution. Anticipating Theorem 3.29, we conclude that
the original system is unsolvable, in accordance with the facts that neither the identity
function nor the function which is constantly four is strictly decreasing.

Of course, if we were t o interpret D as denoting the (not strictly) decreasing real—
valued functions on the reals, then we would want to be able to compute the function
whose value is constantly four as a binding for g. So While considering the original
system I‘ as a typed system permits too many bindings for certain applications, a system
supporting only constant declarations may permit too few. A calculus allowing arbitray
term declarations finds a middle road: in a signature with a term declaration assigning
the term Ay.4 to be of sor t D when y E VarsR , F would have precisely the desired
solutions.

25

3.3 Soundness and Completeness of the Algorithm

The proof that our transformations are sound is not appreciably different from the proof
for the corresponding transformations for unification in £C (as, presented, for example,
in [Sny91]). We therefore only outline the proof.

Lemma 3.17 If r ==> r' using ELIMINATE, then for any well-sorted substitution (), () is
a '£-unifier of r iff it is a '£-unifier of r'.

Lemma 3.18 If r ==> r' using DECOMPOSE, where the pair in r which is transformed
is {X, Y} == (>"Xl ...Xk.hXl",Xn, >"Xl ...Xk.hYl ...Yn), then for any well-sorted substitution
(),

1.	 if hE C, h is bound in X or Y, or hE FV(X) U FV(Y) but h f/:. D«()), then () is
a '£-unifier of r iff it is a '£-unifier of r'.

2.	 if h E D(()), then () is a '£-unifier of r if it is a '£-unifier of r'.

We do not have () a '£-unifier of r implying that it is a :'£-unifier of r' in general, as
the following example from [Sny91] shows.

Example 3.19 Applying DECOMPOSE to a system may lose :'£-unifiers: the system
{Jab, fed}, where f E VarsA, A f/:. st, and a, b, e, d E C, has infinitely many :'£-unifiers,
but the system (a, c), (b, d) obtained by applying DECOMPOSE has none.

Moreover, in applying IMITATE, j-PROJECT, and GUESS, we effectively commit
ourselves to a particular approximation of a solution, and so cannot reasonably expect
any I:-unifier of an original system r to be a :'£-unifier of the obtained system r' as well.

Lemma 3.20 If r ==> r' by DECOMPOSE, IMITATE, j-PROJECT, or GUESS, then B is a
I:-unifier of r if it is a I:-unifier of r'.

Theorem 3.21 (Soundness) If r ==> r', then for any well-sorted substitution (), () is a
I:-unifier of r if it is a I:-unifier of r'.

So if algorithm I:U is run on initial system r and returns a well-sorted substitution
(), then () is indeed a I:-unifier of r. The main result of this section and of this paper
is a converse, namely that given an initial system rand :'£-unifier B, I:U can compute a
I:-unifier t7 of r which is more general than B.

We require a few technical lemmas.

Lemma 3.22 If Y == >"xl ...xp.hU1 ...Uq E £CA (:'£) zs zn j31J-normal form, then
p ~ length(A).

Proof. By induction on the derivation of:'£ I- Y : A .

• If:'£	 I- Y : A is the conclusion of an application of (var), (const), or (app), then
p = 0 and so there is nothing to prove.

•	 If I: I- Y : A is the conclusion of an application of (weaken), then the result
follows immediately from the induction hypothesis and the fact that if B < A
then length(B) ~ length(A).

25

3.3 Soundness and Completeness of the Algorithm
The proof that our transformations are sound is not appreciably different from the proof
for the corresponding transformations for unification in EC (as, presented, for example,
in [Sny91]). We therefore only outline the proof.

Lemma 3 .17 Ifl‘ :> I" using ELIMINATE, then for any well-sorted substi tution 9 , 9 i s
a E-unifier ofI‘ ifi it is a Z-unifier of 1".

Lemma 3.18 Ifl‘ => 1" using DECOMPOSE, where the pair in I‘ which is transformed
is (X, Y) E (Axl...mk.hX1...X,,, Azl...xk.hY1...Yn), then for any well-sorted substitution

1. ifh e c, h is bound in X or Y, or h e FV(X) u FV(Y) but h & D(o)‚ then (; is
a E-unifier ofI‘ if)” it is a E-unifier of I".

2. if h e D(9), then 3 is a 2-unifier ofI‘ if it is a E-unifier ofI".

We do not have 0 a E-unifier of I‘ implying that i t is a E—unifier of I" in general, as
the following example from [Sny91] shows.

Example 3.19 Applying DECOMPOSE to a system may lose E-unifiers: the system
(fab, f ed) , where f E VarsA, A € 85 , and a ,b , c ,d € C, has infinitely many E-unifiers,
but the system (a,c), (b, d) obtained by applying DECOMPOSE has none.

Moreover, in applying IMITATE, j—PROJECT, and GUESS, we effectively commit
ourselves to a particular approximation of a solution, and so cannot reasonably expect
any E-unifier of an original system 1" to be a Z-unifier of the obtained system I" as well.

Lemma 3 .20 If I‘=>I" by DECOMPOSE, IMITATE, j-PROJECT, o r GUESS, then 6 is a
E-unifier ofl" if it is a E—unifler of I".

Theorem 3 .21 (Soundness) IfI‘=>I"‚ then for any well-sorted substitution €, 0 is a,
E-un ifier ofl" if i t is a E-unifier of I".

80 if algorithm Eu is run on initial system [‘ and returns a well—sorted substitution
0, then 9 is indeed a E-unifier of I‘. The main result of this section and of this paper
is a converse, namely that given an init ial system I‘ and E—unifier 0 , EL! can compute a
E-unifier a of I‘ which is more general than 0.

We require a few technical lemmas.

Lemma 3.22 If Y E Axl...a:p.hU1...Uq € £C_4(E) is in ‚fin-normal" form, then
p 5 length(A).

Proof. By induction on the derivation of 2 t- Y : A .

0 If E I- Y : A is the conclusion of an application of (var), (const), or (app), then
1) = 0 and so there is nothing to prove.

. If E I- Y : A is the conclusion of an application of (weaken), then the result
follows immediately from the induction hypothesis and the fact that if B 5 A
then length(B) S length(A).

26

_ If I: I- Y : A is the conclusion of an application of (abs), then

Xl E VarSB .E f-)..X2 ...xp.hUl ...Uq : D

.E f-)..Xl ...Xp.hUl ...Uq : B -+ D == A

Since)..X2 oo.xp.hUl ...Uq is in f3ry-normal form, the induction hypothesis guarantees
that p - 1 ::; length(D) = length(A) - 1. That p ::; length(A) is therefore
immediate.

o

Lelllllla 3.23 (Structure Lemma) If Y ==)..xl.ooxp.hUloo.Uq E .ccA (.E) is in f3ry-normal
form, then either h E Varsc or [h :: C] is a constant declaration in .E for some sort C
such that length(A) + length(T(G» -length(T(A» 2: 0 and ~ f-,q(G) ::; ,peA).

Proof. By induction on the derivation of.E f- Y : A.

- If.E f- Y : A is the conclusion of an application of (var) or (const), then p = 0,
q = 0, and C can be taken to be A.

_ If.E f- Y : A is the conclusion of an application of (app), then p = 0 and

.E f- hUloo.Uq_l : B .E f- Uq : 8(B)

.E f- hUloo.Uq : ,(B) = A

for some sort B. Since hUl ...Uq_ l is in f3ry-normal form, the induction hypothesis
guarantees that either h E Vars(C) or there is a constant declaration [h :: G] in
.E for some SottG such that length(B) + length(r(G» -length(T(B» 2: 0 and
~ f- ,q-l(G) ::; B. Since ~ f- B ::; 8(B) -+ A, we have length(B) ::; 1 + length(A)
and length(T(B» = 1 + length(T(A», so that length(A) + length(T(C» ­
length(r(A» 2: O. By Lemma 2.9,·~ f-,q(G)::; ,(B) == A as well.

_I If.E f- Y : A is the conclusion of an application of (abs), we must have

Xl E VarSB .E f-)..X2 ...xp.hUloo.Uq : D

.E f-)..Xloo.xp.hUloo.Uq : B -+ D == A

Since)..x2°o.xp.hUloo.Uq is in f31J-normal form, the induction hypothesis guarantees
that either h E Vars(C) or there is a constant declaration [h :: C] in .E
for some sort C such that length(D) + length(T(G» - length(T(D» 2: 0 and
~ f- ,q(C) ::; ,P-l(D) == ,peA). But since length(A) = length(D) + 1
and length(T(A» = length(r(D» + 1, we have length(A) + length(1'(G» ­
length(T(A» 2: 0 as desired.

- If E \- Y : A is the conclusion of (weaken), then

.Ef-Y:B ~f-B::;A

.Ef-Y:A

By the induction hypothesis, either h E V al·s(C) or there is a constant declaration
[h :: C] in E for some sort C such that length(B)+length(T(C»-length(T(B» 2: 0
and ~ f- ,q(C) ::; ,P(B). But since ~ f- B ::; A implies length(B) ::; length(A),
and because T(A) = T(B), we have length(A) + length(T(G») -length(T(A» 2: O.
Finally, since ~ f- B :::; A, iterating Lemma 2.9 yields ~ f- ,P(B) ::; ,peA), and so
by transitivity of::;, ~ f- ,q(G) ::; ,peA).

26

. If E I- Y : A is the conclusion of an application of (abs) , then

.'L'1 E VarsB E I'— ‚\xg...xp.hU1...Uq : D

2 |— Axl...:cp.hU1...Uq ; B —+ D a A
Since ‚\zz...zp.hU1...Uq is in ßn—normal form, the induction hypothesis guarantees
that p— 1 S length(D) = length(A) — 1. That p S Iength(A) is therefore
immediate.

D

Lemma 3.23 (Structure Lemma) IfY E Axl...xp.hU1...Uq E ECA(E) is in ‚fin-normal
farm, then either h € Varsc or [h :: C] is a constant declaration in E for some sort C
such that length(A) + length(7’(C)) — Iength(‘r(A)) 2 0 and A l- 7‘(C') S 71" (A)

Proof. By induction on the derivation of E i- Y : A .

. If Z i- Y : A is the conclusion of an application of (var) or (const), then p = 0,
q = 0, and C can be taken to be A .

. If E i- Y : A is the conclusion of an application of (app), then p = O-and
E F hU1...Uq_1 : B 2 *- Uq : 6(3)

E l- hU1...Uq :7(B) = A
for some sort B . Since hUl...Uq_1 is in fln—normal form, the induction hypothesis
guarantees that either It € Vars(C) or there is a constant declaration [h :: C] in
2 for some sort C such that length(3) + Iength(T(C)) — Icngth('r(B)) Z 0 and
A l- 79‘1(C) S B. Since A l- B S 6(3) ——> A, we have Iength(B) _<_ 1+ Iength(A)
and length('r(B)) = 1 + length(T(A)), so that length(A) + Iength(T(C)) ——
length(r(A)) Z 0. By Lemma 2.9, A I'- 79 (C) S 7(3) E A as well.

q" If E I- Y : A i s the conclusion of an application of (abs) , we must have

:01 € VarsB 2 l- Axg...xp.hU1...Uq : D

Z !- Azl...:c„.hU1...Uq : B —-> D E A

Since A32...zp.hU1...Uq is in [in-normal form, the induction hypothesis guarantees
that either h E Vars(C') or there is a constant declaration [h :: C] in 2
for some sort C such that Icngth(D) + length(T(C)) — Iength(T(D)) Z 0 and
A I- 7“(C) S 79’1(D) E 79(A). But since length(A) : Iength(D) + 1
and Iength(r(A)) = Iength(r(D)) + 1, we have length(A) + length(T(C)) —
Iength(‘r(A)) _>_ 0 as desired.

. If 2 i- Y : A is the conclusion of (weaken), then
2 i- Y : B A l- B S A

EFYzA

By the induction hypothesis, either h E Vars(C) or there is a constant declaration
[h :: C] in 2 for some sort Csuch that Iength(B)+Iength(r(C))—Iength(r(3)) Z 0
and A l- 79(C) S 7N3). But since A l- B S A implies Iength(B) S length(A),
and because f(A) : T(B)‚ we have length(A) + Iength(r(C)) — length(7'(A)) 2 0.
Finally, since A l- B S A, iterating Lemma 2.9 yields A l- 7P(B) S 71’ (A), and so
by transitivity of S , A l- 74(C) S 71’ (A).

27

o

Lemma 3.24 (Partial Binding Lemma) If X == AXI ...Xk.hUI ...Un E .cCA(E) is in
long j3-normal form, then there exist a partial binding G E 91 (E) and a well-sorted
substitution p in long j3-normal form such that

1. D(p) is precisely the set of fresh variables in G,

2. pz has smaller depth than X for each Z E D(p), and

3. pG =f3TJ X.

Proof. Let Y == AXI,..Xp.hU{ ...U~ be the j3ry-normal form of X, where Ui ~ ut for
i = 1, ... , q, p::::; k, and n = q+(k-p). Let C E S be a sort such that either hE Varsc or
[h :: C] is a constant declaration in E, m = length(A)+length(r(C»-length(r(A» 2: 0,
and Ll f- ,q(C) ::::; ,P(A), whose existence is guaranteed by the Structure Lemma.
Furthermore, let G == AXI,..X/.hVI,..vm E 91(E), where V; = ZiXI .•. X/ for fresh variables
Zi, i = 1, ,.., m. Observe that I ::::; length(r(A» = k and n = length(r(C», so that
m = l + n - k =1+ q - p. Since E f- Y : A by Corollary 2.32, Lemma 3.22 ensures that
p::::; I ::::; k. Lemma 2.9 implies that the substitution p whose components are

ZI I---> AXI,.·X/,UI

Zq I---> AXb,.X/.Uq

Zq+1 I---> AXI",X/,Xp+l

Zm I---> >'XI.,.X/.X/

is well-sorted, has domain consisting precisely of the set of fresh variables in G, and has
the property that pz has smaller depth than X for each Z E D(p). It is well-defined
because m - q = 1- p 2: 0. Finally,

p(G) _ P(AXl ...X/.h VI,..Vm)

=fJ >'XI x/.hUI",UqXp+l"'X/

AXI Xp.hU{ ...U;

as desired. o

Note that with the Huet-style partial bindings, it would not necessarily be possible
to find G of sort A and a substitution p as required:

Example 3.25 If E is a signature with a constant declaration [c :: A] for a functional
base sort A, then the only derivation of E f- >.x.cx : A is

[c:: A] E E

Ef-c:A

E f- AX.CX : A

Any Huet-style partial binding that might approximate the long j3-normal form AX.CX

must be of the form AX.C(ZX) where z is a fresh variable of an appropriate sort. But

27

D

Lemma 3 .24 (Partial Binding Lemma) I fX E Axl.. .xk.hU1...Un E £6,4(E) is in
long ‚ß-normal form, then there exist a partial binding G E GMS) and a well-sorted
substitution p i n long ß-normalfarm such that

1. D(p) is precisely the set offresh variables in G ,

2. pz has smaller depth than X for each z E D(p), and

3 . pG 2,5" X.

Proof. Let Y E /\:c1...:cp.hU{„.U; be the ‚ßn-normal form of X , where U,- —fl—»Ui' for
i : 1, . . . ,q ,p 5 Ic, and n : q+(k——p). Let C E 8 be asort such that either h € Varsc or
[h :: C] is a constant declaration in E, m = length(A)+length(‘r(C))—length(1'(A)) Z 0,
and A l- 7‘1 (C) s 7” (A), whose existence is guaranteed by the Structure Lemma.
Furthermore, let G E Ax1„.a:1.hV1„.Vm € 9203), where V.- = 25:01....121 for fresh variables
zb i = l,...‚m. Observe that l g length(‘r(A)) = k and n = length(r(C)), so that
m = l + n -— Ic : I+ q — p. Since 2 |— Y : A by Corollary 2.32, Lemma 3.22 ensures that
p g l 5 k . Lemma 2.9 implies that the substitution p whose components are

21 l—> Äx l . . . : c1 .U1

z., r—> ‚\:nl„..:c|.Uq
Zq+1 I—‘r « \ z l . . . $1 .$p+1

zm H ‚\:cl...a:1.:c‚

i s well-sorted, has domain consisting precisely of the set of fresh variables in G , and has
the property that pz has smaller depth than X for each 2 € D(p). It is well-defined
because m — q :: I— p 2 0 . Finally,

p(G) E p(‚\zl.. . .m.t.. .Vm)
:p ‚ \x l . . . :c l .hU1. . .qp+1. . .xy
=” ‚ \ : c l . . . zp .hU1 ' . . .U;

=,7 X
as desired. a

Note that w i th the Huet—style partial bindings, i t would not necessarily be possible
to find G of sort A and a substitution p as required:

Example 3.25 If E is a signature with a constant declaration [c :: A] for a functional
base sort A , then the only derivation of E !- Aw.c:c : A is

[czzA]€E

EI—czA

EI—Äm.c:c:A

Any Huet-style partial binding that might approximate the long ‚ß—normal form An:.cx
must be of the form Ar.c(zz) where 2 is a fresh variable of an appropriate sort. But

28

there is no derivation of.E r AX.C(ZX) : A -- in particular, such a derivation cannot be
obtained by applying the rule (1]) by way of mimicking the above derivation. Under our
definition, however, G == c is itself a partial binding of sort A for head h, and p can be
taken to be the identity' substitution.

The following measure will provide the basis for proving termination of Algorithm
'£U.

Definition 3.26 The measure P is defined for all systems f and substitutions 0 by

where PI(f, 0) is the multiset of the depths of the O-bindings of unsolved variables in f
which are also in D(O), and P2(f) is the multiset of depths of terms in f.

We require a final consolidating lemma to prove completeness of Algorithm '£U.

Lemma 3.27 Let 0 E U!:(f) and let (X, Y) be a non-trivial unsolved pair in a system
f in long ;3-normal form. Then there exist a system f' and a substitution 0' such that

f ==::} f'

and

1. 0 == O'[FV(f)],

2. 0' E UE(f'), and

3. p(f', 0') < p(f, 0).

Proof. If head(X) == head(Y) fI. D(O), then since (X, Y) is not trivial, it is not hard to
see that DECOMPOSE applies. By Lemma3.18, B E Udf'), and p(f', B) < p(f,B) since
PI (f', 0) is no larger than PI (f, 0) and P2(f') < P2(f).

Otherwise, either head(X) ::j:. head(Y) or else head(X) == head(Y) E D(B). In either
of these cases, one of X and Y has an unsolved variable x E D(B) n VarsA of f as its
head (since X and Y are '£-unifiable); without loss of generality, assume X does. Then
since B is well-sorted, '£ r Bx : A, and Bx is in long ;3-normal form since B is normalized.
Suppose Ox == >'XI ...Xk.hUI ...Un . Then by Lemma 3.24, there exist G E g~(,£) and
a well-sorted substitution p in long ;3-normal form satisfying the conclusions of that
lemma. Therefore,

• if head(Y) fI. D(B) and h == head(Y), then IMITATE applies.

• if head(Y) fI. D(B) and h::j:. head(Y), then j-PROJECT applies for some j.

• if head(Y) E D(B), then GUESS applies.

Let 0' = B U p. Clearly 0 == O'[FV(f)], B E U!:(f') since B E UE(f) and p is in
long ;3-normal form, and D(p) is exactly the set of fresh variables in G. Moreover,
PI(f', 0') < pI(f, 0): x is removed from the set of unsolved variables in f which appear
in D(B), and is replaced by the set of fresh variables of G, but for each such variable z,
B' z == pz is smaller than Bx. Thus p(f', B') < p(f, 0).

Observe also that in case head(X) == head(Y) fI. D(O) does not hold, but
X --.!!....,. x E VarsA and x is not free in Y and '£ I- Y : A, then ELIMINATE applies.
In this case, we can take B' to be B, by noting that PI (f', B) < PI (f, B), which implies
that p(f', B) < p(f, e). 0

28

there is no derivation of E l- Az.c(z:c) : A —- in particular, such a derivation cannot be
obtained by applying the rule (17) by way of mimicking the above derivation. Under our
definition, however, G E c is itself a partial binding of sort A for head h, and p can be
taken to be the identity‘ subst i tut ion.

The following measure will provide the basis for proving termination of Algorithm
Eu.

Definit ion 3 .26 The measure ;; i s defined for all systems F and substitutions 0 by

” (1 :0) : (“1 (F10) : / ‘2 (r) l 1

where [11(1", 9) is the multiset of the depths of the 0-bindings of unsolved variables in I‘
which are also in D(0), and „(P) is the multiset of depths of terms in 1".

We require a final consolidating lemma to prove completeness of Algorithm 211.

Lemma 3.27 Let 0 € Ug(l‘) and let (X, Y) be a non-trivial unsolved pair in a system
F i n long ‚ß-normal form. Then there exist a system I" and a substitution 0’ such- tha t

F=>I"
and

I . 0 E 6’[FV(I‘)],

2. 0’ E U2(l'"), and

3. ” (I " , 0’) < „ (RB) .

Proof. If head(X) E head(Y) é D(0), then since (X, Y) is not trivial, i t is not hard to
see that DECOMPOSE applies. By Lemma 3.18, 6 € U20"), and p(I" ,9) < u(I‘‚0) since
Ma" , 0) is no larger than ‚ul(I‘,9) and „;(P’) < ,uz(I‘).

Otherwise, either head(X) $ head(Y) or else head(X) E head(Y) 6 D09). In either
of these cases, one of X and Y has an unsolved variable :1: 6 D09) n VarsA of I‘ as its
head (since X and Y are E-unifiable); without loss of generality, assume X does. Then
since 0 is well-sorted,)] l- 022 : A, and 0a is in long ß—normal form since 0 is normalized.
Suppose 9a: E ‚\:cl...:ck.hU1...U„. Then by Lemma 3.24, there exist G E 92 (2) and
a well-sorted substitution p in long ß—normal form satisfying the conclusions of that
lemma, Therefore,

0 if head(Y) & D(0) and h E head(Y), then lMITATE applies.
0 if head(Y) € D(0) and h $ head(Y), then j—PROJECT applies for some j .

0 if head(Y) € D(6), then GUESS applies.

Let 0’ = 0 Up. Clearly 0 E 0’[FV(I‘)], 6 E U2(1") since 0 € U2(I‘) and p is in
long fl—normal form, and D(p) is exactly the set of fresh variables in G . Moreover,
u1(I", 0’) < p1(I‘‚ 0): :c is removed from the set of unsolved variables in I‘ which appear
in D(6)‚ and is replaced by the set of fresh variables of G, but for each such variable 2,
0’2 E pz is smaller than 0m. Thus ,u(I",9’) < ,u(1‘, 0).

Observe also that in case head(X) E head(Y) € D(9) does not hold, but
X —"»:c E Var-5A and m is not free in Y and 2 l- Y : A, then ELIMINATE applies.
In this case, we can take 6’ to be 0, by noting that p1(I" , 9) < [11(1‘, 0), which implies
that „(IV, 0) < ‚u(l“,6). o

29

The proof of Lemma 3.27 shows that it is possible to restrict DECOMPOSE to apply
only when head(X) == head(Y) f/. D((J), but there is no way of encoding this restriction
into the transformations since (J cannot be mentioned there.

If we call a transformation prescribed by Lemma 3.27 a p-prescribed transformation,
then each application of a p-prescribed transformation actually decreases the well­
founded measure p. Thus any sequence of p-prescribed transformations must terminate.
The previous lemma also guarantees that any system obtained by repeatedly applying
p-prescribed transformations must be solved. That is, any sequence of p-prescribed
transformations must terminate in a solved system.

Corollary 3.28 If r is a '£-unifiable system in long f3-normal form to which no p­
prescribed transformation in '£T applies, then r is solved.

Proof. If r is not solved, then there is a non-trivial unsolved pair (X, Y) in r. Since r
is '£-unifiable, there exists a substitution () E U~(r). By the last lemma, (X, Y) admits
an application of some p-prescribed transformation from '£T. 0

Theorem 3.29 (Completeness) Let (J be a '£-unifier of r. Then there exists a
computation of Algorithm '£U on r producing a '£-unifier (J' of r such that (J' Sf3'7
()[FV(r)].

Proof. Since every '£-unifier of r is pointwise f3'T]-equal on FV(r) to some ()' E U~(r),

we may prove the theorem under the additional hypothesis that (J E U~(r).

If r is not in long f3-normal form, then perform reductions until a system in long
f3-normal form results. Note that if () '£-unifies r, then (J also '£-unifies lf3nf(r) , and
that this reduction is a '£U step. We may therefore assume without loss of generality in
the remainder of this proof that r is in long ,a-normal form. We induct on the length of
the longest sequence of p-prescribed sequence of transformations available out of r.

If no p-prescribed transformation from '£T applies to r, then by Corollary 3.28, r is
solved so we may return a most general '£-unifier (J' of r whose existence is guaranteed
by Lemma 3.8. This action is a step of Algorithm '£U, and indeed (J' Sf3'7 (J.

If some p-prescribed transformation from '£T applies to r, yielding a system r'
and a substitution (J' satisfying the conclusion of Lemma 3.27, then applying this
transformation is a '£U step. By the induction hypothesis, there is a computation of
'£U on r' producing a '£-unifier 8 of r' such that 8 Sf3'7 (J'[FV(r')]. It follows from
Lemma 3.21 that 8 is a '£-unifier of r, and since FV(r) ~ FV(r'), 8 Sp'7 ()'[FV(r)].
But ()' == (J[FV(r)], so that 8 Sf3'7 (J[FV(r)] as desired. 0

Since we have not made any assumption about the order in which transformations
from '£T are performed, and since any application of ELIMINATE to a system reduces
the measure p, we infer that the strategy of eager variable elimination is complete
for unification in our calculus, just as it is for unification in the simply typed lambda
calculus. It is' not, however, known to be true that eager variable elimination is complete
for an arbitrary calculus and equational theory, even if both are first-order.

3.4 Pre-unification

As with unification in the simply typed lambda calculus, the rule GUESS (whose analogue
in [Sny91] is called FLEX-FLEX for reasons explained momentarily) gives rise to a serious
explosion of the search space for unifiers. But unfortunately, the "guessing" of partial

29

The proof of Lemma 327 shows that i t is possible to restrict DECOMPOSE t o apply
only when head(.\’) 5 head(Y) & D(0), but there is no way of encoding this restriction
into the transformations since 6 cannot be mentioned there.

If we call a transformation prescribed by Lemma 3.27 a p-prescribed transformation,
then each application of a n-prescribed transformation actually decreases the well-
founded measure n . Thus any sequence of p—prescribed transformations must terminate.
The previous lemma also guarantees that any system obtained by repeatedly applying
p—prescribed transformations must be solved. That is, any sequence of u-prescribed
transformations must terminate in a solved system.

Corollary 3.28 If I‘ is a E-unifiable system in long ‚ß-normal form to which no a -
prescribed transformation in 27' applies, then I‘ is solved.

Proof. If I‘ is not solved, then there is a non-trivial unsolved pair (X, Y) in I". Since 1"
is E-unifiable, there exists a substi tution 0 € U30“). By the last lemma, (X, Y) admits
an application of some n—prescribed transformation from ET. :1

Theorem 3.29 (Completeness) Let 0 be a E-unifier of P. Then there exists a
computation of Algorithm EU on P producing a E-unifier 0' ofl“ such that 0' 55,7
9[FV(I‘)].

Proof. Since every E—unifier of I‘ is pointwise [in-equal on FV(I‘) t o some 0’ E U2(I‘),
we may prove the theorem under the additional hypothesis that 9 € Ug(1‘).

If [‘ is not in long ß—normal form, then perform reductions unt i l a system in long
fi-normal form results. Note that if 0 E-unifies I‘, then 6’ also E-unifies lßnf(I‘)‚ and
that this reduction i s a EU s tep . We may therefore assume without loss of generality in
the remainder of this proof tha t I‘ is in long fl-normal form. We induct on the length of
the longest sequence of n-prescribed sequence of transformations available out of I‘.

If no p—prescribed transformation from ET applies to I‘, then by Corollary 3.28, I‘ is
solved so we may return a most general E—unifier 0 of I‘ whose existence i s guaranteed
by Lemma 3.8. This action is a step of Algorithm zu , and indeed a 51% 9.

If some p—prescribed transformation from 27 applies to I‘, yielding a system I"
and a substi tution (9’ satisfying the conclusion of Lemma 3.27, then applying this
transformation is a 211 step. By the induction hypothesis, there is a computation of
EU on I" producing a E-unifier 6 of 1'" such that & Sßn 0’[FV(I")]. I t follows from
Lemma 3.21 that 6 is a E—unifier of l‘, and since FV(I‘) g FV(I"), 6 Sßn 9’[FV(I‘)].
But 9’ E 9[FV(I‘)], so that ö $5,, 0[FV(I‘)] as desired. u

Since we have not made any assumption about t he order i n which transformations
from ET are performed, and since any application of ELIMINATE t o a system reduces
the measure ‚u., we infer that the strategy of eager variable elimination is complete
for unification in our calculus, just as it is for unification in the simply typed lambda
calculus. I t is not, however, known to be true that eager variable elimination is complete
for an arbitrary calculus and equational theory, even if both are first-order.

3 .4 Pre-unifica t ion

As wi th unification in t he simply typed lambda calculus, t he rule GUESS (whose analogue
in [Sny9l] is called FLEX—FLEX for reasons explained momentarily) gives rise to a serious
explosion of the search space for unifiers. But unfortunately, the “guessing” of partial

30

bindings engendered by GUESS cannot be avoided without sacrificing completeness
of Algorithm "£U. Huet solved this problem in the simply typed lambda calculus
by redefining the higher-order unification problem to a form sufficient for refutation
purposes: flex-flex pairs, i. e., pairs of terms in long ,B-normal form both of which have
variables at the head, are considered pre-unified, or already solved. We conjecture that
it is possible to define an appropriate notion of pre-unification in our setting as well, but
sound the following warnings against a naive adaptation of the standard methods.

•	 Pre-unification only makes sense in regular signatures, as can be seen by
considering the non-regular signature "£ with only two incomparable sorts A and
B, constant declarations [c :: A] and [c :: B], and the pair (XA' YB). This pair
has "£-unifier u = {x ~ c, Y ~ c}, but u can only be found by applying the rule
GUESS.

•	 The standard way (in the simply typed lambda calculus) to generate trivial unifiers
for flex-flex pairs is to

define, for every type 0' == 0'1 -> ... -> O'n -> 0'0, n 2: 0, a term
X a == AX1 ...Xn.v where r(xi) = O'i for i = 1, ... ,n, and v E Vars ao is a
fresh variable which will never be used in any other term, and then to

define an (infinite) set of bindings "p = {x ~ X a I x E Varsa }, which is
then restricted to the free variables of the flex-flex pairs under consideration
to yield a unifying substitution.

But in the presence of functional base sorts we cannot even get off the ground with
this program. We can, of course, define for each A E S a term X A = AX1"'Xn,v
where Xi E V m'soi(A) for i = 1, ... , n, and v E Vars-y"(A) is a fresh variable, and
,nCA) is non-functional. We can also construct an analogue"p' of"p, and restrict
it to an actual substitution. But this induced substitution need not be well-sorted
- indeed any component {XA ~ XA}, where A is a functional base sort, will
not be well-sorted. Moreover, for a functional base sort A, no term X of sort A
capable of absorbing arbitrary arguments to x E VarsA can be given in general.
Of course, if A is an arrow sort composed solely of non-functional base sorts, then
X A suffices as for the simply typed lambda calculus.

•	 A non-trivial flex-flex pair r == (AX1 ...Xk.hU1 ...Un, AX1 ...Xk.h'V1 .. .vn) in long,B­
normal form with h, h' E VarsA for a functional base sort A is "£-unifiable iff the
arguments to hand h' can be made identical under some well-sorted substitution,
i. e., iff application of DECOMPOSE out of such a pair preserves solutions. This is
because, q,s remarked above, we cannot bind h or h' to abstraction terms capable
of absorbing arbitrary arguments Ui and Vi without losing well-sortedness of the
"£-unifier being constructed.

•	 The existence of unifiers for flex-flex pairs depends heavily on the lattice structure
of the inclusion ordering of the signature "£ under which unification is being
considered. For example, if [a :: 8(A)] isthe only constant declaration in "£, then
the flex-flex pair (xa,ya) with x E VarsA, yE VarsB, and A and B functional
base sorts such that o(A) =o(E), is "£-unifiable iff there exists a sort D such that
D S A and D S B. In that case, if z E VarsD, then {x ~ z,y ~ z} is a E-unifier
of (xa, ya).

And there may yet be other issues to consider.

30

bindings engendered by GUESS cannot be avoided without sacrificing completeness
of Algorithm Ell. Huet solved this problem in the s imply typed lambda calculus
by redefining the higher-order unification problem to a form sufficient for refutation
purposes: flex-flex pairs, i.e.‚ pairs of terms in long ‚ß—normal form both of which have
variables at the head, are considered pre-unified, or already solved. We conjecture that
i t i s possible to define an appropriate notion of pre—unification in our setting as well, but
sound the following warnings against a naive adaptation of the standard methods.

o Pre—unification only makes sense in regular signatures, as can be seen by
considering the non—regular signature E with only two incomparable sorts A and
B, constant declarations [c :: A] and [c :: B], and the pair (mm;/B). This pair
has Z-unifier o- = {m »—-> c , y »-—+ c}, but a' can only be found by applying the rule
GUESS.

0 The standard way (in the simply typed lambda calculus) to generate trivial unifiers
for flex-flex pairs is t o

-— define, for every type a = a l —+ —> an —> ao , n 2 0, a term
X„ E «\31...xn.v where ‘r(:c‚r) = a; for i = l , . . . ‚ n , and v E Varsao is a
fresh variable which will never be used in any other term, and then to

— define an (infinite) set of bindings 1/) = {a: r—> X0, | x E Varsa}, which is
then restricted to the free variables of the flex-flex pairs under consideration
to yield a unifying substitution.

But in the presence of functional base sorts we cannot even get off the ground with
this program. We can, of course, define for each A E S a term X A : Axl...:r„.v
where a:; E Varsaem) for i = 1, . . . ‚ n , and 7; E Varsynm) is a fresh variable, and
7" (A) is non-functional. We can also construct an analogue 11)’ o f @, and restrict
it to an actual substitution. But this induced substitution need not be well—sorted
— indeed any component {mA H X A} , where A is a functional base sort, will
not be well—sorted. Moreover, for a functional base sort A , no term X of sort A
capable of absorbing arbitrary arguments to a: E VarsA can be given in general.
Of course, if A is an arrow sort composed solely of non-functional base sorts, then
X A suffices as for the simply typed lambda calculus.

o A non—trivial flex-flex pair I‘ E (A21...xk.hU1...UmAxl...zk.h’Vl...Vn) in long ,6-
normal form with h, h’ E VarsA for a functional base sort A is E-unifiable iff the
arguments to h and 11’ can be made identical under some well—sorted substitution,
226., iff application of DECOMPOSE out of such a pair preserves solutions. This is
because, as remarked above, we cannot bind h or h’ to abstraction terms capable
of absorbing arbitrary arguments U.- and V,- without losing well-sortedness of the
E—unifier being constructed.

. The existence of unifiers for flex—flex pairs depends heavily on the lattice structure
of the inclusion ordering of the signature E under which unification is being
considered. For example, if [a :: 6(A)] is ‚ t he only constant declaration in 2 , then
the flex—fiex pair (ma, ya) with a: € VdrSA, y 6 Verse, and A and B functional
base sorts such that 6 (A) = 6(B), is E-unifiable iff there exists a sort D such that
D 5 A and D 5 B. In that case, if z E Varsp , then {x H z, y r—r 2 } is a E—unifier
of (r a , ya).

And there may yet be other issues to consider.

31

4 Conclusion, Related Work, and Future Directions

We have developed an order-sorted lambda calculus with functional base sorts and
constant overloading which is suitable for use in automatic theorem proving applications,
and proved sound and complete a transformation-based unification algorithm for this
calculus. Our calculus can be seen as a subcalculus of the one proposed in [Koh92],
but corrected to be well-defined (see the problematic clauses 4 and 5 of Definition 2.5
there) and provably subterm closed, to have effectively enumerable (indeed effectively
computable) sort assignment, and to correctly incorporate the principle of extensionality,
whose fundamental importance to any calculus intended to automate real mathematics
is attested to both in Remark 2.10 there and in Section 2.2 above. With regard to the
latter, we specifically introduce the (1]) rule of Definition 2.17 to guarantee that sorts
are invariant under 1]-equality - in the absence of such a provision, a term X with
functional base sort A is guaranteed to have the sort 8(A) -+ 'Y(A) of the 1]-equivalent
term AX6(A)'XX, but the latter will not in general have sort A (indeed this situation
obtains in the calculus proposed in [Koh92]). In particular, this means that contrary
to stated intention, X and AX.Xx cannot possibly represent the same (mathematical)
function. Care about extensionality, as the reader is reminded in Section 2.3, is also
required in defining order-sorted 1]-reduction in the presence of partially ordered sorts.

Once we have a well-defined order-sorted calculus permitting constant overloading
in hand, we give transformations inducing a suitable (non-deterministic) unification
algorithm. Our transformations are generalizations of those of Huet ([Hue75]), modified
to accommodate the subtleties arising from the introduction offunctional base sorts. In
particular, because one of the consequences of extensionality under such a system is that
sort assignment is not based solely on term structure (as it is in the simply typed lambda
calculus), we are forced to consider partial bindings more general than those considered
by Huet to insure that our unification transformations are well-defined. Indeed, in the
IMITATE, j-PROJECT, and GUESS transformations, it is necessary (in the notation of
Definition 3.13) to bind the variable x E VarsA to a partial binding G of sort A in order
that the application of ELIMINATE which is part of those transformations does not create
ill-sorted terms in the resulting system. This point is overlooked in [Koh92], where for
signatures all of whose term declarations are constant declarations, the partial bindings
have exactly the same structure as Huet's general bindings.

Our analysis then proceeds essentially by analogy with that of the simply typed
calculus, except that by cOntrast with the situation there, in the presence of functional
base sorts it is not immediate that, given a term X of sort A, we can always approximate
X by a partial binding of sort A. For our more liberal notion of partial binding this is in
fact true (see Lemma 3.24), but fails under the Huet-like definition (see Examples 3.15
and 3.25). Allowing partial bindings which are not necessarily 1]-expanded remedies this
difficulty completely.

4.1 Related Work

Work related to that presented here can be roughly classified into three major areas. A
brief discussion of each will serve to place the current investigation in a proper context.

Sorted first-order systems: The primary impetus for the study of order-sorted
higher-order logics is the dramatic reduction in the search space associated with
deduction achieved by incorporating sort information into first-order calculi. These'

31

4 Conclusion, Related Work, and Future Directions

We have developed an order—sorted lambda calculus with functional base sorts and
constant overloading which is suitable for use in automatic theorem proving applications,
and proved sound and complete a transformation-based unification algorithm for this
calculus. Our calculus can be seen as a subcalculus of the one proposed in [Koh92],
but corrected to be well-defined (see the problematic clauses 4 and 5 of Definition 2.5
there) and provably subterm closed, t o have effectively enumerable (indeed effectively
computable) sort assignment, and to correctly incorporate the principle of extensionality,
whose fundamental importance to any calculus intended to automate real mathematics
is attested to both in Remark 2.10 there and in Section 2.2 above. With regard to the
latter, we specifically introduce the (17) rule of Definition 2.17 to guarantee that s'orts
are invariant under n—equality — in t he absence of such a provision, a term X with
functional base sort A is guaranteed to have the sort 6(A) --> 7(A) of the n-equivalent
term ‚ \ : n5 (A) .Xz , bu t the latter will not i n general have sort A (indeed this situation
obtains in the calculus proposed in [Koh92]). In particular, this means that contrary
to stated intention, X and MLXI cannot possibly represent the same (mathematical)
function. Care about extensionality, as the reader is reminded in Section 2.3, is also
required in defining order-sorted n—reduction in the presence of partially ordered sorts.

Once we have a well-defined order-sorted calculus permitting constant overloading
in hand, we give transformations inducing a suitable (non—deterministic) unification
algorithm. Our transformations are generalizations of those of Huet ([Hue75]), modified
to atcommodate the subtleties arising from the introduction of functional base sorts. In
part icular , because one of the consequences of extensionality under such a system is that
sort assignment is not based solely on term structure (as i t is i n the simply typed lambda
calculus), we are forced to Consider partial bindings more general than those considered
by Huet to insure that our unification transformations are well—defined. Indeed, in the
IMITATE, j-PROJECT, and GUESS transformations, i t i s necessary (in the notation of
Definition 3.13) to bind the variable x E VarsA to a partial binding G of sort A in order
that t he application of ELIMINATE which is part of those transformations does not create
ill—sorted terms in the resulting system. This point is overlooked in [Koh92], where for
signatures all of whose term declarations are constant declarations, t he partial bindings
have exactly the same structure as Huet’s general bindings.

Our analysis then proceeds essentially by analogy with that of the simply typed
calculus, except that by contrast wi th the situation there, in the presence of functional
base sorts i t i s not immediate tha t , given a term X of sort A , we can always approximate
X by a partial binding of sort A. For our more liberal notion of partial binding this is in
fact true (see Lemma 3.24), but fails under the Huet-like definition (see Examples 3.15
and 3.25). Allowing partial bindings which are not necessarily n—expanded remedies this
difficulty completely.

4 .1 Related Work

Work related to that presented here can be roughly classified into three major areas. A
brief discussion of each will serve to place the current investigation in a proper context.

Sorted first-order sys tems: The primary impetus for the study of order-sorted
higher-order logics is the dramatic reduction in the search space associated with
deduction achieved by incorporating sort information into first-order calculi. These '

32

successes are detailed in, for example, [WaI88], [Coh89], and [Sch89]. Our results
generalize unification results for the pure calculus considered by Walther, as well
as for certain of the more expressive calculi considered by Schmidt-SchauB. But
while these authors give in addition full refutation calculi for the logics they study,
we have not yet begun to undertake that task (see Section 4.2). Decidability of the
unification problems considered, complexity of the proposed unification algorithms,
and sizes of complete sets of unifiers are also studied in the first-order setting; yet
such investigations are not meaningful for order-sorted higher-order calculi since
the unification problem even for unsorted (i.e., simply typed) higher-order logic is
known to be undecidable ([Hue73], [GoI81]), and minimal complete sets of higher­
order unifiers need not exist in general ([Hue76]).

Refinement sorts: The type structure of the simply typed lambda calculus can be
refined in ways other than that presented here, depending on which semantic
features the resulting calculi are intended to syntactically capture. But for
all calculi with refinement sorts, care is taken to ensure that sorts respect the
underlying type structure of the calculus, a feature which is essential for the
effective computability of sort assignment.

Nipkow and Qian ([NQ92]) consider a collection of sort systems parameterized by
rules for contravariance in the domain sort and present a unification algorithm for
the resulting sorted calculi. Functional terms in these calculi do not have unique
supporting sorts in general, and the consequent difficulties with extensionality are
solved by studying unification under sorted equalities which have been restricted to
appropriate domain sorts - such restrictions enable specification of a well-defined
7]-rule. Constant overloading and functional base sorts are not present in these
calculi.

In [KP93] ,Frank Pfennillg and the second author consider a calculus with
intersection sorts, i. e., which has, for any sorts A and B that refine the same
type, a sort A&B denoting the intersection of the sets denoted by A and B.
This calculus also supports contravariance in the domain sort and constant
overloading. Permitting intersection sorts makes it possible to define a minimal
sort for every term, so that all signatures are regular. In this setting, problems with
extensionality are alleviated by allowing only typed abstractions and by defining
a term AX",.X to have the sort A -+ B iff X has sort B whenever x has sort
A. 7]-equality is then a typed relation which preserves the sorts of terms. This
calculus has been generalized by Pfenning ([Pfe92]) to a lambda calculus with
dependent types, which will be used as a logical framework extending LF in the
ELF programming language ([Pfe91]).

The calculi mentioned here allow only for sorting the universe of individuals, and
so are not directly comparable, in terms of expressive power, with ours. Indeed,
these calculi represent a principally different approach to deduction which appears
to call for a semantics where functions are total, rather than partial, functions on
the denotations of types, and where sorted functions are restrictions of these.

Polymorphic sorts: The works of Cardelli ([Car88]), Bruce and Longo ([BL90]),
Curien and Ghelli ([CG91]), and Pierce ([Pie91]) treat variants of the system
F5. which encompass polymorphic intersection types (i.e., intersection types
whose variables are explicitly quantified), and the interaction between these types

32

successes are detailed in , for example, [Wal88], [Coh89], and [Sch89]. Our results
generalize unification results for the pure calculus considered by Walther, as well
as for certain of t he more expressive calculi considered by Schmidt-SchauB. But
while these authors give in addition full refutation calculi for the logics they study,
we have not yet begun to undertake that task (see Section 4.2). Decidability of the
unification problems considered, complexity of the proposed unification algorithms,
and sizes of complete sets of unifiers are also studied i n the first-order setting, yet
such investigations are not meaningful for order-sorted higher-order calculi since
t he unification problem even for unsorted (i .e.‚ simply typed) higher—order logic is
known to be undecidable ([Hue73], [G0181]), and minimal complete sets of higher—
order unifiers need not exist in general ([Hue76]).

Refinement sor ts : The type structure of the simply typed lambda calculus can be
refined in ways other than that presented here, depending on which semantic
features the resulting calculi are intended to syntactically capture. But for
al l calculi with refinement sorts, care is taken to ensure that sorts respect the
underlying type structure of the calculus, a feature which is essential for the
effective computability of sort assignment.
N ipkow and Qian ([NQ92]) consider a collection of sort systems parameterized by
rules for contravariance in the domain sort and present a unification algorithm for
the resulting sorted calculi. Functional terms in these calculi do not have unique
supporting sorts in general, and the consequent difficulties with extensionality are
solved by studying unification under sorted equalities which have been restricted to
appropriate domain sorts — such restrictions enable specification of a well-defined
n—rule. Constant overloading and functional base sorts are not present in these
calculi.
In [KP93], ‚Frank Pfenning and the second author consider a calculus with
intersection sorts, i.e.‚ which has, for any sorts A and B that refine the same
type, a sort A&B denoting the intersection of the sets denoted by A and B .
This calculus also supports contravariance in the domain sort and constant
overloading. Permitting intersection sorts makes i t possible to define a minimal
sort for every term, so that all signatures are'regular. In this setting, problems with
extensionality are alleviated by allowing only typed abstractions and by defining
a te rm ‚\:ca.X to have the sort A —-> B ifi' X has sort B whenever a: has sort
A . n-equality i s then a typed relation which preserves the sorts of terms. This
calculus has been generalized by Pfenning ([Pfe92]) to a lambda calculus with
dependent types, which will be used as a logical framework extending LF in the
ELF programming language ([Pfe91]).
The calculi mentioned here allow only for sorting the universe of individuals, and
so are not directly comparable, in terms of expressive power, with ours . Indeed,
these calculi represent a principally different approach to deduction which appears
to call for a semantics where functions are total, rather than partial, functions on
the denotations of types, and where sorted functions are restrictions of these.

Polymorphic sorts: The works of Cardelli ([Car88]), Bruce and Longo ([BL90]),
Curien and Ghelli ([CG91]), and Pierce ([Pie91]) treat variants of the system
FS which encompass polymorphic intersection types (i .e.‚ intersection types
whose variables are explicitly quantified), and the interaction between these types

33

and various subsort relations. These calculi serve as computationaJ models for
functional programming languages and are much more expressive than those
studied here, but since they are not intended for deduction purposes, their
unification problems have not been addressed. In such calculi, subsort declarations
are not required to respect the functional structure of types, rendering the
decidability of sort assignment a very complex issue.

4.2 Future Directions

Of course, the unification algorithm described here is but a small contribution to the
development of calculi suitable for mechanizing real mathematics. Extracting from this
work an appropriatepre-unification algorithm is in fact crucial to any effort to implement
refutation calculi for the extensional lambda calculus with ordered function sorts and
constant overloading presented here. As discussed in Section 3.4, such extraction is not
apparently straightforward, and is currently under investigation by the second author, as
is an extension'to an order-sorted higher-order calculus with arbitrary term declarations
and functional base sorts.

Although for automated deduction purposes higher-order logic is typically presented
in terms of the lambda calculus, recent successes in developing combinatory logic
based unification algorithms ([Dou93], [DJ92], [Vit92]) suggest that this alternate,
algebraic formulation of higher-order logic can provide a computational framework
for the mechanization of pure higher-order logic and its more expressive extensions.
Transporting to a combinatory logic setting the features of the lambda calculi described
in this paper is work in progress by the first author.

The results reported in this paper, as well as subsequent related work, will be
implemented in the prototypical order-sorted higher-order resolution theorem prover
currently under construction at the Universitiit des Saarlandes in Saarbriicken.

References

[ALMP84] P. B. Andrews, E. Longini-Cohen, D. Miller, and F. Pfenning. Automating
Higher-order Logics. Contemporary Mathematics 29, pp. 169 - 192, 1984.

[Bar84]	 H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, revised
edition. North-Holland, Amsterdam, 1984.

[BL90]	 K. B. Bruce and G. Longo. A Modest Model of Records, Inheritance, and
Bounded Quantification. Information and Computation 87, pp. 196 - 240, 1990.

[Bre88] V. Breazu-Tannen. Combining Algebra and Higher-Order Types. In Proceedings
of the Third Annual Symposium on Logic and Computer Science, IEEE, pp. 82­
90, 1988.

[Car88]	 L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation
76, pp. 138 - 164, 1988.

[CG91] P.-L. Curien and G. Ghelli. Subtyping + Extensionality: Confluence of (3'f}top

reduction in F~. In Springer-Verlag LNCS 526, pp. 731- 749,1991.

33

and various subsort relations. These calculi serve as computational models for
functional programming languages and are much more expressive than those
studied here, but since they are not intended for deduction purposes, their
unification problems have not been addressed. In such calculi, subsort declarations
are not required to respect the functional structure of types, rendering the
decidability of sort assignment a very complex issue.

4 .2 Future Direc t ions

Of course, the unification algorithm described here is but a small contribution to the
development of calculi suitable for mechanizing real mathematics. Extracting from this
work an appropriate.pre~unification algorithm is in fact crucial t o any effort to implement
refutation calculi for the extensional lambda calculus with ordered function sorts and
constant overloading presented here. As discussed in Section 3.4, such extraction is not
apparently straightforward, and is currently under investigation by the second author, as
is an extension'to an order-sorted higher—order calculus with arbitrary term declarations
and functional base sorts.

Although for automated deduction purposes higher—order logic is typically presented
in terms of the lambda calculus, recent successes in developing combinatory logic
based unification algorithms ([Dou93], [DJ 92], [Vit92]) suggest that this alternate,
algebraic formulation of higher-order logic can provide a computational framework
for t he mechanization of pure higher-order logic and its more expressive extensions.
Transporting to a combinatory logic setting the features of the lambda calculi described
in this paper is work in progress by the first author.

The results reported in this paper, as well as subsequent related work, will be
implemented i n the prototypical order-sorted higher-order resolution theorem prover
currently under construction a t the Universität des Saarlandes in Saarbrücken.

References

[ALMP84] P. B. Andrews, E. Longini—Cohen, D. Miller, and F . Pfenning. Automating
Higher—order Logics. Contemporary Mathematics 29, pp . 169 — 192, 1984.

[Bar84] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, revised
edit ion. North—Holland, Amsterdam, 1984.

[BL90] K. B. Bruce and G. Longo. A Modest Model of Records, Inheritance, and
Bounded Quantification. Information and Computat ion 87 , pp . 196 - 240, 1990.

[Bre88] V. Breazu—Tannen. Combining Algebra and Higher—Order Types. In Proceedings
of the Third Annua l Symposium on Logic and Computer Science, IEEE, pp . 82 —
90, 1988.

[Car88] L. Cardelli. A Semantics of Multiple Inheritance. Information and Computation
76. Pp. 138 ~ 164. 1988.

[CG91] P.-L. Curien and G. Ghelli. Subtyping + Extensionality: Confluence of ‚ßntop
reduction in F_<_. In Springer-Verlag LNCS 526, pp . 731 — 749, 1991.

34

[Coh89] A. G. Colm. Taxonomic Reasoning with Many-sorted Logics. Artifical Intelli­
gence Review 3, pp. 89 - 128, 1989.

[DJ92]	 D. J. Dougherty and P. Johann. A Combinatory Logic Approach to Higher­
order E-unification. In Springer-Verlag LNAI 607, pp. 79 - 93,1992. Expanded
version submitted, Theoretical Computer Science.

[Dou93] D. J. Dougherty. Higher-order Unification via Combinators. Theoretical
Computer Science 114, pp. 273 - 298, 1993.

[FP91]	 T. Freeman and F. Pfenning. Refinement Types for ML. In Proceedings
of the SIGPLAN '91 Conference on Programming Language Design and
Implementation, ACM, pp. 268 - 277, 1991.

[GoI81] W. Goldfarb. The Undecidability of the Second-order Unification Problem.
Theoretical Computer Science 13, pp. 225 - 230, 1981.

[Gor85] M. Gordon. HOL: A Machine Oriented Formulation of Higher-order Logic.
University of Cambridge, Computer Laboratory, Report 68, 1985.

[Gou66] W. E. Gould. A Matching Procedure for Omega-Order Logic. Dissertation,
Princeton University, 1966.

[HS86]	 J. R. Hindley and J .P. Seldin. Introduction to Combinators and A-Calculus.
Cambridge University Press, Cambridge, 1986.

[Hue72] G. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
Dissertation, Case Western Reserve University, 1972.

[Hue73] G. Huet. The Undecidability of Unification in Third-order Logic. Information
and Control 22, pp. 257 - 267, 1973.

[Hue75] G. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer
Science 1, pp. 27 - 57, 1975.

[Hue76] G. Huet. Resolution d'Equations dans les Languages d'Ordre 1,2, ...w. These
d'Etat, Universite de Paris VII, 1976.

[Koh92] M. Kohlhase. An Order-sorted Version of Type Theory. In Springer-Verlag
LNAI 624, pp. 421 - 432, 1992. An expanded version of this paper appears
as SEKI-Report SR-91-18 (SFB), Universitat des Saarlandes, Saarbriicken,
Germany.

[KP93]	 M. Kohlhase and F. Pfenning. Unification in a A-calculus with Intersection
Types. To appear in Proceedings of the International Logic Programming
Symposium, 1993.

[Lus92] E. L. Lusk. Controlling Redundancy in Large Search Spaces: Argonne-style
Theorem Proving Through the Years. In Springer-Varlag LNAI 624, pp. 96 ­
106, 1992.

[MiI91]	 D. Miller. A Logic Programming Language with Lambda Abstraction, Function
Variables, and Simple Unification. Journal of Logic and Computation 2, pp.
497 - 536, 1986.

34

[Ct9] A . G . Colin. Taxonomic Reasoning with Many-sorted Logics. Artifical Intelli-
gence Review 3, pp. 89 — 128, 1989.

[D192] D . J . Dougherty and P . Johann. A Combinatory Logic Approach to Higher—
order E—unification. In Springer-Verlag LNAI 607, pp. 79 — 93, 1992. Expanded
version submitted, Theoretical Computer Science.

[Dou93] D. J . Dougherty. Higher—order Unification via Combinators. Theoretical
Computer Science 114, pp . 273 — 298, 1993.

[FP91] T . Freeman and F. Pfenning. Refinement Types for ML. In Proceedings
of the SIGPLAN ’91 Conference on Programming Language Design and
Implementation, ACM, pp. 268 — 277, 1991.

[G0181] W. Goldfarb. The Undecidability of the Second-order Unification Problem.
Theoretical Computer Science 13, pp. 225 — 230, 1981.

[Gor85] M. Gordon. HOL: A Machine Oriented Formulation of Higher-order Logic.
University of Cambridge, Computer Laboratory, Report 68, 1985.

[Gou66] W. E. Gould. A Matching Procedure for Omega-Order Logic. Dissertation,
Princeton University, 1966.

[H886] J . R. Hindley and J.P. Seldin. Introduction to Combinators and A-Calculus.
Cambridge University Press, Cambridge, 1986.

[Hue72] G . Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
Dissertation, Case Western Reserve University, 1972.

[Hue73] G . Huet. The Undecidability of Unification in Third-order Logic. Information
and Control 22, pp . 257 — 267, 1973.

[Hue75] G . Huet. A Unification Algorithm for Typed A—Calculus. Theoretical Computer
Science 1, pp. 27 — 57, 1975.

[Hue76] G . Huet. Resolution d’Equations dans les Languages d’Ordre 1, 2, ...w. These
d’E ta t , Université de Paris VII , 1976.

[Koh92] M. Kohlhase. An Order—sorted Version of Type Theory. In Springer-Verlag
LNAI 624, pp . 421 — 432, 1992. An expanded version of this paper appears
as SEKI—Report SR—91-18 (SFB), Universität des Saarlandes, Saarbrücken,
Germany.

[KP93] M. Kohlhase and F. Pfenning. Unification in a A-calculus with Intersection
Types. To appear in Proceedings of the Internat ional Logic Programming
Symposium, 1993.

[Lus92] E. L. Lusk. Controlling Redundancy in Large Search Spaces: Argonne-style
Theorem Proving Through the Years. In Springer-Varlag LNAI 624, pp. 96 -
106, 1992.

[Mi191] D. Miller. A Logic Programming Language with Lambda Abstraction, Function
Variables, and Simple Unification. Journal of Logic and Computat ion 2 , pp .
497 — 536, 1986.

35

[Mit90]	 J. C. Mitchell. Type Inference with Simple Types. Journal of Functional
Programming 1, pp. 245 - 285,1991.

[NQ92] T. Nipkow and Z. Qian. Reduction and Unification in Lambda Calculi with
Subtypes. In Springer-Verlag LNAI 607, pp. 66 - 78, 1992.

[Obe62] A. Oberschelp. Untersuchung zur Mehrsortigen Quantorenlogik. Mathematische
Annalen 145, pp. 297 - 333, 1962.

[OS89]	 H.-J. Ohlbach and J. Siekmann. The Markgraph Karl Resolution Procedure. In
Computational Logic - Essays in Honor of Alan Robinson, J.-L. Lassez and G.
Plotkin, eds., MIT Press, pp. 41 - 112, 1989.

[Pau90] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. In Logic and Computer
Science, P. Odifreddi, ed., Academic Press, 1990.

[Pfe9l]	 F. Pfenning. Logic Programming in the LF Logical Framework. In Logical
Frameworks, G. Huet and G. D. Plotkin, eds., Cambridge University Press,
1991.

[Pfe92]	 F. Pfenning. Intersection Types for a Logical Framework. POP-Report, Carnegie
Mellon University, 1992.

[Pie91]	 B. C. Pierce. Programming with Intersection Types and Bounded Polymorph­
ism. Dissertation, Carnegie Mellon University, 1991.

[Qia90]	 Z. Qian. Higher-order Order-sorted Algebras. In Springer-Verlag LNCS 463, pp.
86 - 100, 1990.

[Qia91]	 Z. Qian. Extensions of Order-sorted Algebraic Specifications: Parameterization,
Higher-order Functions and Polymorphism. Dissertation, Universitiit Bremen,
1991.

[Sch89]	 M. Schmidt-SchauB. Computational Aspects of an Order-sorted Logic with Term
Declarations. Springer-Verlag LNAI 395, 1989.

[Sny91] W. Snyder. A Proof Theory for General Unification. Birkhiiuser Boston, 1991.

[van91] D. van Dalen. Summer School on Logic, Languages, and Information,
Saarbriicken, 1991.

[Vit92]	 M. Vittek. A Combinatory Logic Rewriting Relation which Supports Narrowing.
Presented at the Sixth International Workshop on Unification, Dagstuhl, 1992.

[Wal88] C. Walther. Many-sorted Unification. Journal of the ACM35, pp. 1-17, 1988.

35

[Mit90] J . C . Mitchell. Type Inference wi th Simple Types Journal of Functional
Programming 1, pp. 245 — 285, 1991.

[NQ92] T . Nipkow and Z. Qian. Reduction and Unification in Lambda. Calculi with
Subtypes. In Springer—Verlag LNAI 607, pp . 66 — 78, 1992.

[Obe62] A . Oberschelp. Untersuchung zur Mehrsortigen Quantorenlogik. Mathematische
Annalen 145, pp . 297 — 333, 1962.

[0589] H.-J. Ohlbach and J . Siekmann. The Markgraph Karl Resolution Procedure. In
Computat ional Logic —— Essays in Honor ofAlan Robinson, J.—L. Lassez and G .
Plotkin, eds., MIT Press, pp . 41 _ 112, 1989.

[Pau90] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. In Logic and Computer
Science, P . Odifreddi, ed . , Academic Press, 1990.

[Pfe91] F. Pfenning. Logic Programming in the LF Logical Framework. In Logical
Frameworks, G. Huet and G. D. Plotkin, eds., Cambridge University Press,
1991.

[Pfe92] F . Pfenning. Intersection Types for a Logical Framework. POP—Report, Carnegie
Mellon University, 1992.

[Pie9l] B. C. Pierce. Programming with Intersection Types and Bounded Polymorph-
ism. Dissertation, Carnegie Mellon University, 1991.

[Qia90] Z. Qian. Higher-order Order-sorted Algebras. In Springer-Verlag LNCS 463, pp .
86 — 100, 1990.

[Qia91] Z. Qian. Extensions of Order-sorted Algebraic Specifications: Parameterization,
Higher—order Functions and Polymorphism. Dissertation, Universität Bremen,
1991.

[Sch89] M. Schmidt-SchauB. Computational Aspects of an Order—sorted Logic with Term
Declarations. Springer-Verlag LNAI 395, 1989.

[Sny91] W. Snyder. A Proof Theory for General Unification. Birkhäuser Boston, 1991.

[van91] D. van Dalen. Summer School on Logic, Languages, and Information,
Saarbrücken, 1991.

[Vit92] M. Vi t tek . A Combinatory Logic Rewriting Relation which Supports Narrowing.
Presented at the Sixth International Workshop on Unification, Dagstuhl, 1992.

[Wa.188] C. Walther. Many-sorted Unification. Journal of the ACM 35, pp. 1 — 17, 1988.

