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Abstract 

This paper introduces a multi-valued variant of higher-order resolution and proves 
it correct and complete with respect to a natural multi-valued variant of Henkin's 
general model semantics. This resolution method is parametric in the number of truth 
values as well as in the particular choice of the set of connectives (given by arbitrary 
truth tables) and even substitutional quantifiers. In the course of the completeness 
proof we establish a model existence theorem for this logical system. The work 
reported in this paper provides a basis for developing higher-order mechanizations 
for many non-classical logics. 
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1 INTRODUCTION 2 

1 Introduction 

Many specialized logics in the field of artificial intelligence use more than two truth values 
in order to deal with notions like vagueness, uncertainty, undefinedness and even non
monotonicity. Moreover, these logics primarily obtain their specialized behavior by utilizing 
nonstandard truth tables for connectives and quantifiers. On the other hand, the past 
25 years have seen a tremendous increase in the deductive power of automated reasoning 
systems for standard two-valued first-order predicate logic. These systems have reached the 
ability to solve nontrivial theorems fully automatically. Stimulated by this development, 
multi valued logics, after they had been of theoretic interest in the field of mathematical 
logic in the past, are nowadays treated in the context of deduction systems, Le. with an 
emphasis on mechanization. 

For this, it is desirable to have a method that is parametric in the choice of the sets 
of truth values, connectives and quantifiers. Such a method can be instantiated with a 
particular choice and (possibly after optimization) would yield a mechanization for that 
logic system. In [Car87, Car91] Carnielli presents a tableau method, a resolution calculus is 
given by Baaz and Fermiiller [BF92]. A sorted version of these methods [KK94, KK95] can 
be used to mechanize Kleene's strong logic for partial functions [Kle52], thus giving a clean 
foundation for first-order automated theorem proving in mathematics, where most func
tions are only defined on parts of the universe. However a first-order language cannot be 
adequate for mathematics, since quantification over functions or predicates is widespread. 
For instance the natural numbers cannot be fully characterized in first-order logic (the 
induction axiom quantifies over sets). 

This has been the initial motivation to investigate the multi-valued framework for 
higher-order logic. In [Sch94] the second author presents an n-valued higher-order logic 
and gives a sound and complete resolution calculus by combining results of Huet [Hue72] on 
higher-order resolution with the first-order framework of multi-valued deduction mentioned 
above. Our system is further refined in this paper to a logic 1-If)£n and a resolution calculus 
1-tRn using techniques and results from [Koh94]. Thus the proofs omitted in this paper 
can be easily adapted from those in these sources. 

The resulting framework can be combined with the sort techniques developed in [Koh94] 
to obtain a higher-order formalization of mathematics in the spirit of [KK94]. Naturally the 
results reported here are much more widely applicable, they extend to all logical systems 
that combine multiple truth values with higher-order features, such as A-binding and f3TJ
conversion. Even if the target logic does not contain higher-order features, the added 
expressivity of 1-If)£n admits simple and efficient relativizations (especially for first-order 
target logics, such as modal logics). Thus llRn makes mechanization of the target logic 
much simpler than the first-order multi-valued frameworks. 
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Higher-Order Logic 

In this paper we study a higher-order logic liO[,n, which is parametric in the number n of 
truth values and the choice of connectives and quantifiers. It is based on the simply typed 
lambda calculus which we will shortly review in the following. 

Definition 2.1 (Types). Let Br : = {o, t,}, then the set T of types is inductively de
fined to be the set Br together with all expressions a -+ 13, where a and /3 are types. Here 
the base type t, stands for the set of individuals and the type ° for the truth values. 
The functional type a -+ /3 denotes the type of functions with domain a and codomain /3. 
The types in Br ~ T are called base types, types of the form a -+ /3 are called func
tional types. We use the convention of association to the right for omitting parentheses 
in functional types, thus a -+ /3 -+, is an abbreviation for (a -+ ({3 -+ ,)). This way the 
type, : = /31 -+ -+ /3n -+ a denotes the type of k-ary functions, that take k arguments 
of the types/3b , /3k and have values of type a. To conserve even more space we use a 
kind of vector notation and abbreviate, by /3k -+ a. 

We will write finite functions like substitutions or variable assignments as sets of pairs 
cp : = [aI/Xl], ... ,[ak / X k ] with the intended meaning that cp(Xi ) = ai . Furthermore we 
use the convention that 'l/J : = cp, [a/X] assigns a to X and coincides with cp everywhere 
else. ' 

For the definition of well-formed formulae we fix a signature and collection of vari 
ables, Le. typed collection E : = UaET Ea and V : = UaET Vaof symbols, such that each 
Va is countably infinite. 

We denote the constants by lower case letters and the variables by upper case letters 
and use bold upper case letters Aa, Ba->P, C'Y ... as syntactical variables for well-formed 
formulae. 

Definition 2.2 (Well-Formed Formulae). For each a E T we define the set wffa(E) of 
well-formed formulae of type a inductively by 

1. Ea ~ wffa(E) 

2. If X E Va, then X E wffa(E). 

3. If A E wffP->a(E) and B E wffp(E), then AB E wffa(E). 

4. If A E wffaC£), then (AXp.A) E wffP->a(E). 

We call formulae of the form AB applications, and formulae of the form )..Xa.A A
abstractions. We will often write the type as a subscript Aa, if it is not irrelevant or 
clear from the context. 

We adopt the usual definition of free and bound (all occurrences of the variable X 
in AXa.A are called bound), variables and call a formula closed, iff it does not contain 
free variables. As in first-order logic the names of bound variables have no meaning at 
all, thus we consider alphabetic variants as identical and use a notion of substitution that 
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3 SEMANTICS 4 

systematically renames bound variables in order to avoid variable capture. We refer to 
formulae of type 0 as propositions and as sentences if they are closed. 

We assume fixed subsets .:J = UkEN .:Jk ~ 2:; of connectives and Q = UaEr Qa ~ 2:; of 
quantifiers. Here .:Jk is the set of k-ary connectives of type Ok --+ 0 and Qa ~ 2:;(a-+o)-+o. 
We generally apply the convention that quantified expression QXa.A is an abbreviation of 
Q(AXa.A), which is a well-formed formula (in the A-calculus, quantifiers can be represented 
by ordinary constants, since the A-binding mechanism can be utilized). 

The case of classical higher-order logic [Chu40] can be recovered as WJ:,2, where we 
have .:J = {-'o-+o, vo-+o-+o} and Q = {ITola E 7} where YXa.A is an abbreviation for 
ITO(AXo.A). 

In order to make the notation of well-formed formulae more legible, we use the con
vention that the group brackets ( and) associate to the left and that the square dot 
. denotes a left bracket, whose mate is as far right as consistent with the brackets al
ready present. Additionally, we combine successive A-abstractions, so that the formulae 
AX1 .•. xn.AE1 ... Em and AXn.AEm stand for (AX 1(AX2 ... (Axn(AE1)E2 ... Em) ... ). 

Let A E {,B, ,BT], T]}. We say that a well-formed formula B is obtained from a well-formed 
formula A by a one-step A-reduction (A --+A B), if it is obtained by applying one of the 
following rules to a well-formed part of A. 

,B-Reduction (AX.C)D --+/3 [DjX]C. 

T]-Reduction If X is not free in C, then (AX.CX) --+1/ C. 

As usual we denote the transitive closure of a reduction relation --+A with --+~. These rules 
induce equivalence relations =/3, =1/' and =/31/ on wff(2:;) , which we call the A-equality 
relations. A formula that does not contain a A-redex, and thus cannot be reduced by 
A-reduction, is called a A-normal form. 

The A-reduction relations are terminating and confluent, as the reader can convince 
himself by looking at the proofs for instance in [HS86]. Thus for any formula A there is a 
sequence of A-reductions A --+~ AJ- such that AJ- is a A-normal form. 

3 Semantics 

For the semantics we first define the algebraic structure of model structures which will 
serve as a model for the underlying A-calculus. Then we will specialize the type 0 of truth 
values to give the system its meaning of a multi-valued higher-order logic. Model structures 
are built up from a carrier set 'Or, i.e. a collection 'Or = {Vala E 7} of sets, such that 
'00 -+/3 ~ F(Vo ; '0/3), and a (well-typed) interpretation of constants I: 2:; ---+ V. 

We call a function cp: V ---+ V an assignment, iff cp(Xo ) E '00 for all variables X O • We 
call a pair A : = (V, I) a model structure, iff for each assignment cp the interpretation 
function I can inductively be extended to a function Iep: wff(2:;) --+ V by the following 
rules. 
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call a pair A : = (D,Z)  a model structure, iff for each assignment ¢ the interpretation
function Z can inductively be extended to a function Z , :  wff(¥) — D by the following
rules.
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3 Semantics
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Dawg © F(Da; Dp), and a (well-typed) interpretation of constants Z :  X — D.

We call a function ¢ :  V — D an  assignment, iff ¢(X,)  € Da  for all  variables X .  We
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undefined. 

Maybe the most prominent example of a model structure is the set wff(:E)1 of well-formed 
formulae in ,87]-normal form, together with I = Idr;. Here we consider formulae A of 
type a --+ ,8 as functions, such that A(B) = (AB)1. In this setting,. assignments are 
substitutions and Icp(A) = cp(A)!. -. 

So far the semantical notions do not make any requirements on the special type 0 of 
truth values. In contrast to classical higher-order logic [Chu40] WJ:,n has a finite set ~ of 
truth values that has n :2: 2 elements. In this, we have a designated, nonempty subset 
'! ~ ~ that denotes those truth values, which are considered as true (in the sense that 
formulae that evaluate to a member of'! are valid). 

We have claimed that W£,n is parametric in the choice of the set of connectives and 
quantifiers. Indeed the semantics makes no assumptions on the value] = I(j): ~k --+ ~ 
for a connective j E .:Jk. 

In first-order multi-valued logics the intended meaning of a quantifier Q is traditionally 
given as a function Q: P*(~) --+ ~, where we write P(M) for the power set of a set M 
and P*(M) := P(M) \ f/J. With this, the value of a quantified expression is computed by 
applying Q to the set of truth-values of all of the instances of its scope. Note that these 
definitions generalize the classical case, where ~ = {T, F} and 'I = {T} and for instance 
V(M) is true, iff M = {T}. 
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Qfor quantifiers are fixed (given by the user). 
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~ = {T, F, J...} and'! = {T}. Here the third truth value J... is intended for atomic formulae 
that contain a non-denoting subformula, such as t or the predecessor of zero. K 3 has the 
same sets of connectives and quantifiers, which will however have extended truth functions: 

V F J... T 
T for M = {T}

F F J... T F T 9(1\11) ..L forM={T,..L}or{J...}
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Now we can use K 3 to formalize a simple mathematical fact about function division, 
namely a cancelation law for real functions: For all real functions F and G, the product 
of FIG and G is F, provided that G is nowhere zero. Note the use of quantification over 
functions in this example. 

Example 3.1. Of the real numbers we use the constants 0,1 and the functions inv and *. 
Since we want inv to be partial (undefined on 0), we assume an error element 1.a for all 
types a E 7 and all functions and predicates to be strict with respect to it (where a =I 0 

and f3 does not have 0 as an argument type): 

\:IFa-t(3.F1.a = 1.(3 (1) 

We will also use the symbols inv and * on functions, defined by 

inv - (.-\F.-\X.inv(FX)) (2) 

* - (.-\F, G.-\X.(FX)*(GX)) (3) 

This allows us to define function division by 

+ = (.-\F, G.F*(invG)) (4) 

In order to prove the theorem we need the following axioms of elementary calculus. 

\:IX.(invX = 1.L ) =X = 0 (5) 

\:IX.(X =I 0) ===? (invX*X)=l (6) 

together with associativity of * and the unit axiom for 1 and *. In the theory defined by 
axioms (1)-(6), the theorem stated above has the form 

\:IF,G.(\:IX.GX =I OI\GX =I 1.) ===? (*(+FG)G) = F (7) 

In fact, this axiomatization is not yet correct, since the universal quantifications include 
the error-element 1.. In order to arrive at a correct representation, we have to change all 
quantified expressions of the form \:IX.A into \:IX.(X =I 1.) ===? A. 

Let us now turn to the definition of models. 

Definition 3.2 (Henkin Model). A model structure A is called a Henkin model, iff 
V o = Q3, I(j) =] and I(Q) (f) = Q({f(a)la E V a }) for any j E:J and Q E Qa. 

The class of standard models (where we furthermore require that Va -t(3 is the set of 
all functions V a ----t V (3) is in some way the most natural notion of semantics for Wf,n, 

however, with the notion of completeness induced by this semantics there cannot be com
plete calculi [God31] , a fact that makes it virtually useless for our purposes. Unfortunately, 
we cannot even use Henkin models directly, since they make too strong assertions about 
extensionality on V o 

1 that higher-order refutation calculi cannot yet handle. So we cannot 
require that V o = Q3, but we have to make the more general assumption that there exists 
a valuation (a mapping that respects the intended meaning of connectives and quantifiers) 
from V o to Q3. 

Ithe fact that V o = {T, F} implies that equivalent propositions can be substituted for each other 
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Definition 3.3 (Frege Structure). Let A = (V, I) be a model structure, then a surjec
tive total function v: 1)0 -----+ ~ with 

1. v (I(j)[al , ... ,an]) =] [Veal), ... ,v(ak)] for any j E :rk. 

2. v(I(Q)[f]) = Q({v(f[a])la E VQ}) for any Q E QQ. 

is called a valuation for A. In this case we call the triple M : = (1), I, v) a Frege struc
ture. For a given assignment cp the evaluation of a formula A consists of interpretation 
Iep(A) in A and the subsequent valuation with v. Thus we call a formula A E wffo("£) 

. valid in M under an assignment cp (M Fep A), iff v 0 Iep(A) E'I'. 

Model Existence 

We now introduce an important tool for proving completeness results in higher-order logic. 
Model existence theorems state that sets which belong to a so-called abstract consistency 
class are satisfiable. With their help the completeness proof for a given logical system C 
is reduced to the (purely proof-theoretic) demonstration that the class of C-consistent sets 
is an abstract consistency· class. This proof technique was first introduced by Smullyan 
in [Smu68] based on work by Hintikka and Beth. It was later generalized to higher-order 
logic by Andrews in [And71] and to multi-valued first-order logics by Carnielli [Car87]. 
Since there is no simple Herbrand theorem in higher-order logic, Andrews' model existence 
theorem for higher-order logic [And71] has become the standard method for completeness 
proofs in higher-order logic. 

We call a pair A W a labeled formula, iff A E wffo("£) and W E~. For a labeled . 
formula A W we require v 0 Itp(A) = w. As usual we can derive a notion of satisfiability 
from this. 

For the definition of an abstract consistency class we must consider the relation of 
satisfiability of a labeled formula jA to the values of its subformulae Ai' The immediate 
answer to this question is that Itp(jA) = ](Itp(A)) and thus (Iep(A I ) , ... ,Itp(An)) E 
]-l(w) is the relevant condition. However it is possible to optimize this condition, if] is 
constant on some argument. We formalize this in the notion of a IT-consequence, which 
has been introduced by Carnielli [Car87]. 

Definition 4.1 (IT-Consequence). Let ~* : = ~ U { *} and vn = (VI, . " ,vn) and wn = 
(WI' ... ,wn) be members of ~*n, then we say that vn is more general than wn (vn !; wn), 
if for some :r ~ {I, ... ,n} we have Vk = * for all k E :r and Wi = Vi for all i ~ :r. 
Intuitively, higher generality can be obtained by replacing some components of a vector 
by *. For a sequence A = Ai ... An of formulae we write Jf!n for the set {Ay; IVi =1= 

*}. Asterisks mark positions without influence on the value of connective formulae; they 
can be left out of consideration while forming semantic consequences. Let us extend the 
function] to all of ~* by inductively defining ](VI, ... ,Vi-I, *, Vi+l,'" ,Vn ) = V whenever 
](VI, ... ,Vi-I, W, Vi+l,'" ,Vn ) = V for all W E ~ and undefined else. Then we call the set 
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Jy .  e t  Vie l ,  W, Vig, . . .  , Up) = U for all w € B and undefined else. Then we call the set
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llV (j) : = ]-l(V) ~ 23*n the propositional condition for a connective j and the truth 
value v. From this we can choose a set J-lr;1iv(j) of generators (a vector vn generates the 
set of all wn with fin !;::;; Wn). Now let BV be a labeled formula of the form (jA l ... An)V, 

nthen a set r is called a IT-consequence of B V , iff wn E J-lr;llv(j). 

Note that the set of IT-consequences can be empty. Furthermore this construction is not 
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condition for ,B7]-equality. The remaining conditions state that a "consistent" set of propo
sitions can be extended by certain logical preconditions without loosing "consistency". In 
contrast to the two-valued case, n-valued quantifiers have in general both existential and 
universal nature, thus it is necessary to extend by preconditions that contain arbitrary 
instances as well as witnesses (negative variables). 

The significance of abstract consistency classes lies in the following theorem, which we 
cite from [Sch94]. 

Theorem 4.5 (Existence of Frege Structures). 
Let H E '\1 and '\1 be a saturated abstract consistency class, then there is a model structure 

M with M FH. 

Proof sketch: The set H can be extended to higher-order Hintikka set,Le. a maximal 
set 1£ E '\1, such that H ~ 1£. For this we can build a Frege structure (V, I, v) that satisfies 
1£ by choosing V to be the set of closed formulae in ,B7]-normal forms, and I to be the 
identity on constants. Since 1-£ E '\1, the function v: 'Do -t ~ defined by v(Ao) = w, 
iff A W E 1£ is a valuation. Note that with this construction we can only obtain Frege 
structures, not Henkin models, since the set of closed formulae of sort 0 is different from 
~. 0 

5 Resolution (HRn
) 

Now that we have specified the semantics we can turn to the exposition of our resolution 
calculus 1£nn. There are three main differences to the first-order case. 

•	 Higher-order unification is undecidable, therefore we cannot simply use it as a sub
procedure that is invoked during resolution. The solution for this problem is to treat 
the unification problem as a constraint and residuate it in the resolution and factoring 
rules. In fact we use negative equality literals that are disjunctively bound to the 
clause (cf. 5.1). 

•	 Not all instantiations for predicate variables can be found by unification. For com
pleteness the instantiations of head variables of literals must contain logical constants, 
which cannot be supplied by unification, since they are not even present in the clauses 
set, as they have been eliminated in the clause normal form transformations. 

•	 Naive Skolemization is not sound for higher-order logic. In this paper we will use 
Dale Miller's solution to this problem: His idea is to introduce arities for the witness 
constants (we call the resulting pair f~, where the arity k is smaller than the length 
of a a Skolem constant). Then the language is restricted to so-called Skolem 
formulae, where all Skolem constants f~ have all their necessary arguments (i.e. at 
least k of them) and furthermore no variables occurring in necessary arguments of 
Skolem constants are bound outside. For lack of space, we will not go into depth 
here; the reader is referred to [Mil83] for details. 
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In our definition of clauses, we will uSe disjunctions as meta-symbols for sets of formulae, 
in order to enhance legibility. Note that since the disjuncts are labeled formulae, these 
symbols are different from the disjunction constants in the signature. 

Definition 5.1 (Clause). IfMi E wffoCE) and Vi E ~, then we call a formula 1) : = CVe 
a generalized clause, if C is of the form C : = Mfl V... VM~n , and if e is a disjunction 
of pairs of the form A L #? B 1 V ... V Am #? Bm (we will consider unification pairs of the 
form Aa =I=? Ba as literals, since this will simplify the presentation). We call C a clause, iff 
the M~i are literals (a labeled formula Av is called literal, if the head of A is a parameter 
or variable). In order to conserve space we will write disjunctions of the form VvEV AV as 
AV, so AV V A Wbecomes A Vw . 

In 1-lRn the transformation to clause normal form only need two parametric rules, one 
for the connectives 

which basically transforms a labeled connective formula (jA)V into the cross product of 
all it's IT-consequences r n; and one for the quantifiers 

where f3(AtI) = {(A(ffXk))Wi IWi E M}U{VWiEM(AX)Wi}, where Free(A) = {Xb .. · ,Xk}. 
This set plays the role of the set =M(A) of witnesses defined in 4.3. The key difference is 
that instead of arbitrary instances j3(M) uses variables that will be instantiated appropri
ately by unification. 

For a a given set \l1 of generalized clauses we call the set cnf(\l1) of clauses that is 
derivable from W the clause normal form of \l1. Since in order to show that a sentence 
A E wffoC'E.) is valid (i.e. obtains a truth value in 'I), it is sufficient to refute that A obtains 
a truth value in ~ \ 'I, we define the clause normal form of a set <I> of sentences as 

CNF(<I» = U cnf( V A W
) 

AE'P wE'B\'!" 

If we apply the rules above to classical higher-order logic, we obtain the traditional 
clause normal form reductions for -, and V, but a quantifier reduction that is significantly 
less efficient. Fortunately, wide classes of naturally occuring quantifiers admit generic 
optimizations [Sch94] that yield the classical rules for 1If)£2. This also holds for our 
running example K 3 , where we obtain the following (optimized) transformation rules. For 
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instance the VJ. rule, where the number of introduced clauses is decreased from six to two. 

C V (A V B)F C V (A V B)l. 

Cv AF CVBF 

CV (Ir.lAl 

C V (A(f~Xk)? C V (A(f~Xk))J. Cv (AX)l.T 

The regularity of K 3 allows us to optimize this clause normal form even further: As 
first noticed by Rainer Hahnle [Hah92], clause normalization can be more efficient, if we 
process disjunctions L {VI, ..• ,Vn} (written as L Vl."Vn ) in one step. In particular for K 3 , labeled 
formulae containing literals L UF are tautologous and can be deleted and normalization 
rules acting on AT,l. or AF,J. (intuitively meaning that 'the formula A must not be FIT) are 
rimch more regular than the combination of the T, and .L rules induced by the disjunctions. 
For instance we have the following rules for sets of signs 

C V (A V B)U C V (A V B)FJ. 

Cv ATJ. V BTJ. Cv AFJ. C V BFJ. 

C V (IJC~ A)U C V (n°A)FJ. 

Cv (AX)U C V (A(f~ Xk))FJ. 

Let us now return to our example 3.1 to prove the theorem 7, we have to consider the 
clause normal form of the set of axioms (1)-(6) labeled with T, together with (7) labeled 
with F.L (we have to refute that it obtains the truth values F or .l). Using the optimized 
reduction rules above the clause normal form of our example 3.1 has the following form: 

Al (Ft-H.Lt = .Lt)T 
A2 X=.LTV(invX=.L)FV(X=OF 
A3 X =.LTV (invX = .L)T V (X = oy 
A4 (X = .L)T V (X = O)'r V (invX*X) = IT 
Tl (fO = .L)FJ. 
T2 (gO = .l)FJ. 
T3 (X = .L)TJ. V (gO X = O)FJ. 
T4 (X = .L)U V (gOX = .L)FJ. 
T5 (().Y.(fOY)*(inv(gOY))*(goy)) = fO)FJ. 

where Al comes from strictness (1), A2-A3 from (5), and A4 comes from (6). The theorem 
clauses Tl and T2 have been obtained from (7) by eliminating definitions (2) - (4) and 
clause normalizing. 
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where A l  comes from strictness (1), A2— A3 from (5), and A4 comes from (6). The theorem
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To prove the theorem from this clause set, we have two possibilities: We can either 
axiomatize transitivity, reflexivity, symmetry, and substitutivity of equality or or eliminate 
the equality predicate via the well-known Leibniz formulation 

We will execute neither here, since multi-valued resolution proofs look almost exactly the 
same as classical resolution proofs (the special features of the logic only come into play 
during the clause form transformation). 

Theorem 5.2 (Clause Normal Form Theorem). 
A set q> of sentences is valid, if CNF(q» is unsatisfiable. 

Proof sketch: The notion of satisfiability for clauses in this theorem is nearly straight
forward, a clause C is satisfiable in M= (V, I), iff there is a literal LV in C such that 
Irp(L) = v for some assignment cp. However, due to the non-standard nature of Skolem 
constants, they may not be interpreted as normal functions in the model; but for our 
'restricted class of Skolem formulae interpretation is unproblematic. With this and the 
definition of IT-consequences the proof of the assertion reduces to a standard argument 
about Skolemization. For details about the model construction see [Sch94]. 0 

5.1 Higher-Order Unification 

The higher-order unification problem can be reduced to the/problem of finding most general 
formulae of a given type and a given head symbol. 

Definition 5.3 (General Binding). Let Cl! = (/31 -+ '1'), and h be a constant or variable 
of type (<5m -+ '1'), then G : = >"X~l.hvm is called a general binding of type a and 
head h, if Vi = HiX~I' The Hi are new variables of types /31 -+ <5i . It is easy to show that 
general bindings indeed have the type and head claimed in the name and are most general 
in the class of all such terms. Moreover they are unique up to the choice of variable names. 

General bindings, where the head is a bound variable X$j are called projection bind
ings (we write them as g~(~)) and imitation bindings (written g~(~)) else. Since we 
need both imitation and projection bindings for higher-order unification, we collect them 
in the set of Approximations A~(~) : = {g~(~)} U {g~(~)lj :::; l}. 

5.2 The Resolution Calculus llnn 

Now we turn to the actual resolution calculus 1inn
. The previous results set the stage 

by giving a semantic justification of a resolution calculus that proves sentences A by 
converting VvE!B\'!' A v to clause normal form and then by deriving the empty clause from 
that. Intuitively, this refutes that possibility that A obtains a value in ~ \ '! in order to 
prove that it indeed obtains a value in '! and thus is valid. 
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Definition 5.4 (Higher-Order Resolution (1-lRn 
)). The calculus 1-lRn is a variant of 

Huet's resolution calculus from [Hue72], and has the following rules of inference: 

NVvC MWvD v#w (
---------1-lR Res) 

C V D V M #? N 

V V 

M
M V N V C 1-lR(Fac) 

V V C V M #? N 

which operate on the clause part of clauses. For manipulating the unification constraints 
1-lRn utilizes pre-unification rules (cf. [Koh94]) of which we will only state the most inter
esting one: 

CVFaUi=?hV 
--------1-lR(ftex - rigid) 
CV F #? G V FU #? hV 

Here G is a general binding in A~ (I;). The following inference rule 

FaIf V C ""'(. )------- 1-l,,, Przm 
Cv Flf V F #? P 

generates instantiations for flexible literals, i.e. literals where the head symbol is a positive 
variable. Here P E A~(2:) is'a general binding of type a that approximates some logical 
constant k E :J u Q. llRn has one further inference rule 

C V £ V X #? A ( )
------1-lR Solv 

C 

where X #? A is solved in £ V X #? A and C E CNF([A/X]C V [A/X]£). This 
rule propagates partial solutions from the constraints to the clause part, and thus helps 
detect clashes early. Since thEt instantiation may well change the propositional structure 
of the clause by instantiating a predicate variable, we have to renormalize the resulting 
generalized clause on the fly. 

We call a clause' empty, iff it does not contain any proper literals and its unification 
constraint is pre-solved (i.e. contains only solved pairs X #? A or flex/flex pairs). Since 
these clauses play the role of the empty clause in our resolution calculus we denote them 
collectively by O. Clearly any empty clause 0 is unsatisfiable with respect to Frege struc
tures, since the constraint is solvable. We will call a set Wof generalized clauses refutable, 
iff 0 is derivable from it and a set <I? of sentences provable, iff CNF(<I?) is refutable. 

In contrast to Huet's calculus we allow pre-unification transformations to be applied 
to clauses during the resolution process. This generalization allows us to investigate more 
realistic strategies than in Huet's calculus, which uses the "lazy unification" strategy, that 
only allows unification to happen after a terminal clause has been derived. 
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Theorem 5.5 (Soundness). If a set <l? of propositions is provable, then it is valid. 

Proof: The soundness is a simple consequence of the soundness of unification and ' 
the clause normal form theorem 5.2 since the resolution and factoring rules residuate the 
appropriate unification constraint. 0 

Lemma 5.6. Let <l? be a set of generalized clauses, () a substitution V a refutation of()(<l?). 
Then there is a derivation V': <l? rll'R. E, where E is a set of pairs. Furthermore there is 
an extension ()I of (), such that 

•	 ()I unifies E, and 

•	 the new variables in the domain of ()I do not occur in <l? 

Proof sketch: The derivation Viis constructed along the line of V. In order to 
do this, it is essential to maintain a close correspondence between the clause sets involved 
(see the notion of a clause set isomorphism in [Koh94]). Note that the clause normal 
form transformations from V can also be applied to the corresponding clauses in <l? with 
the exception of the case, where the clause in <l? contains a flexible literal, whose head 
() instantiates with a formula whose head is a logical constant. Here the transformation 
from V must be mimicked by using the 1lR(Prim) rule that introduces the appropriate 
constant. Since the 1lR(Prim) rule contains an application of 1lR(Solv), the ensuing 
clause normal form transformation makes it possible to update the correspondence. Thus 
by a simple inductive argument we see that the clause normal form transformation part of 
V can be lifted to a 1lR-derivation. 

The rest of V can then be lifted one inference rule at a time. The only two interesting 
aspects of this: 

•	 In the lifting of the 1lR(Solv) rule, we can have the case, that again () introduces 
logical constants in the codomain of the eliminated variables. Fortunately, this can 
be solved by exactly the argument above. 

•	 The clause isomorphism can be destroyed by the fact that literals in V may corre
spond to more than one literal in V', t,hen we use 1lR(Fac) to collapse them (restoring 
the correspondence). 

The results on ()I are obtained by maintaining () along with the correspondence (updating 
it with the primitive substitutions) and carefully analyzing unifiability conditions. 0 

Theorem 5.7 (Completeness). 1lRn is complete with respect to Frege structures. 

Proof: The proof is conducted by verifying that the property of clause sets not 
to be refutable is a saturated abstract consistency property. So by the model existence 
theorem 4.5 we see that non-refutable sets of generalized clauses are satisfiable in the class 
of Frege structures. Since this is just the contrapositive of the statement of completeness, 
we have finished the proof. Thus it only remains to verify the conditions of 4.4. 
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\71	 We prove the converse: Assume there are literals AV, A W E q, for v =j:. w, then q, is 
refutable, since there are unit clauses AV and A W in the clause normal form of q" 

which can be resolved to the empty clause. 

\72 This condition is trivially met, since the clause normal form is invariant under f3TJ
equality. 

\73 Again we prove the converse: Assume that for each IT-consequence C i of a formula 
(jA)W there is a refutation of q,uC. We inductively merge these refutations together 
to a refutation 'D of q, U Cl Q9 ••• ® Ck where '1' Q9 e is the set 

{A V BIA E cnf('1'); BE cnf(8n 

For this construction we use a technical result (disjunction lemma) that refutations 
of =: U '1' and 2: u e imply the existence of a refutation of 2: U ('1' Q9 e). We concluded 
the proof by remarking that Cl Q9 ••• Q9 ck is just the clause normal form of (jA)w. 

\74 Let (QA)V E q,. We have to show that the existence of a family of refutations 'D%f 
of q, U =:M(A) U {(AB)W}, where M E Q-I(V) and WE M implies the existence of a 
refutation 'D of q,. 

Remember that in the clause normal form reduction, (QA)V is transformed to gen
eralized clauses of the form L I V .,. V L k 

, where the L i comes from some f3(Mi ). 

From refutations 'D%f, w E M, we will construct refutations 'DM of q, U f3(M). With 
a disjunction lemma technique similar to the one above the 'DM are combined to a 
refutation 'D of q, U {LI V ... V LklLi E ,6(Mi )}, which has the same clause normal 
form as q,. Thus'D is indeed the refutation needed to complete the proof. 

Let us fix a M = {WI, ... ,wm } E Q-I(V), then 

f3(M) = {(A(f~Xk))Wilwi E NI} U { V (AX)Wi} 
w;EM 

For each 'D%f, W EM, the lifting lemma (cf. 5.6 take () = [B/ X]) guarantees a 
derivation :FM: q, U 2:M (A) U {(AX)W} 1-1fR. C, where the resulting clause C only 
contains a set £w of pairs. Again by a disjunction lemma technique, we can combine 
these to a derivation 

The solutions ()W of the £w from the lifting lemma can be combined to a substitution 
()M = ()Wl U ... U()Wk, since they agree on X. Thus £Wl V ... V £Wn is pre-unifiable 
and hence (higher-order unification is complete) there is a derivation 1-lm (using only 
pre-unification steps) that derives the empty clause from £Wl V ... V £Wn. Finally 
we remark the Skolem subterms (i.e. the Skolem constants with all their necessary 
arguments) from the clause form transformation directly correspond to the witness 
constants in the abstract consistency property. 0 
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of ZU  ¥ and ZU  © imply the existence of a refutation of ZU ( ¥  ® ©). We concluded
the proof by remarking that C !  ® --- ® CF is just the clause normal form of (jA)“.

Let (QA)” € ®. We have to show that the existence of a family of refutations D¥
of ® UZ (A )  U { (AB)*} ,  where M € Q~(v)  and w € M implies the existence of aa
refutation D of ®.
Remember that in  the clause normal form reduction, (QA)” is transformed to gen-
eralized clauses of the form L ' Vv . . .  Vv L*, where the L* comes from some S(M?).
From refutations Div, w € M,  we will construct refutations Dys of ® U B(M) .  With
a disjunction lemma technique similar to the one above the Dj, are combined to a
refutation D of  ® U {Ly V . . .V  L i |Ls  € B(M;) } ,  which has the same clause normal
form as ®. Thus D is indeed the refutation needed to complete the proof.
Let us fix a M = {wy, . . .  ,wn }  € Q7!(v), then

B(M) = {(A(£FXL))"wi € M}U{  V (AX)™}
wiEM

For each DY, w € M, the lifting lemma (cf. 5.6 take § = [B/X]) guarantees a
derivation F :  ® U Zp (A) U { (AX)"}  u r  C, where the resulting clause C only
contains a set £¥  of  pairs. Again by a disjunction lemma technique, we can combine
these to  a derivation

Fu:  ®UEM(A)U{(AX)* VV... V (AX)™}  Far EMV. . .  V EY

The solutions 8% of the £¥ from the lifting lemma can be combined to a substitution
Op = 0 "  U...U 0 “ ,  since they agree on X .  Thus E”1  V . . .V  EY  is pre-unifiable
and hence (higher-order unification is complete) there is a derivation H ,  (using only
pre-unification steps) that derives the empty clause from £** Vv . . .V  £%. Finally
we remark the Skolem subterms (i.e. the Skolem constants with all their necessary
arguments) from the clause form transformation directly correspond to the witness
constants in the abstract consistency property. [m
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6 Conclusion 

We have presented a multi-valued higher-order logic W.cn and a higher-order- resolution 
calculus llRn that is sound and complete with respect to multi-valued Frege structures. 
Since this logical system combines multiple truth values and parametric choice of connec
tives and quantifiers with higher-order features, such as A-binding and ,LJT/-conversion, it 
is a suitable basis for the development of artificial intelligence logics. Even if the target 
logic does not contain higher-order features, the added expressivity of W.cn admits simple 
and efficient relativizations (especially for first-order target logics, such as modal logics). 
Thus llRn makes mechanization of the target logic much simpler than the first-order 
multi-valued frameworks. 

However, as we have seen in the example, W.cn can only be a starting point for 
the development of a higher-order logic with partial functions. In order for an adequate 
treatment of quantification (which must exclude the undefined element) it will be necessary 
to combine it with the sort techniques of [Koh94] in the spirit of [KK94]. This will yield·a 
suitable basis for formalizing and mechanizing informal mathematical vernacular. 
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