
5
9

3
9

2
3

0
!

o
w

n
e

d
o

ve
n

£
0

0
.5

9
“ .

5
0

5
0

.3
3

9
.

E
te

m
zc:

3
:0

8
.9

559
9

0
0

2
0

0
.”.

string-rewriting systems pre'senting groups.

K. Madlener, P. Narendran, F. Otto
SEKI Report SR-90-24

......»
dan0mr

- 0fmudecOrpn‚ 0O
h

‚ &B..
m0cde„m‚n..ED

.sA

E
O

n
m

E

..
2

m
m

A specialized completion procedure for monadic
string-re'Writing systems presenting groups

K. Madlener

Fachbereich Informatik

Universitat Kaiserslautern

Postfach 3049

6750 Kaiserslautern

Germany

P. Narendran

Department of Computer Science

State University of New York

Albany. NY 12222

U.S.A.

F. OHo

Fachbereich Mathematik

FG Informatik.

Gesamthochschule Kassel

Postfach 101380

3500 Kassel

Germany

A specialized completion procedure for monadic
string-rewriting systems presenting groups

K. Madlener

Fachbereich Informatik
Universität Kaiserslautern

Postfach 3049
6150 Kaiserslautern

Germany

P. Narendran

Department of Computer Science
State University of New York

Albany. NY 12222
U.S.A.

F. Otto

Fachbereich Mathematik
FG Informatik.

G-esamthochschule Kassel

Postfach 101380

3500 Kassel
Germany

Abstract

Based on a simplified test for determining whethe~ a finite monadic string-rewriting system
R presenting a group is confluent on the equivalence class of the unity. a procedure for
completing a system of this form on [e~ is derived. The completion procedure transforms
monadic presentations in monadic ones by adding monadic rules which are extracted from
appropriate infinite regular sets in polynomial time. The correctness and completeness of this
procedure are shown.

Abstract

Based on a simplified test for determining whether a finite monadic string—rewriting system
R presenting a group is confluent on the equivalence class of the unity, a procedure for
completing a system of this form on [31R is derived. The completion procedure transforms
monadic presentations i n monadic ones by adding monadic rules which are extracted from
appropriate infinite regular sets in polynomial time. The correctness and completeness of this
procedure are shown.

1. Introduction

Algebraic structures and rewrite methods for effectively computing information on such
structures have been studied extensively. In the present paper we are interested in groups that
are presented through certain string-rewriting systems. Our interest in groups has mainly two
reasons: first of all. the theory of groups is well developed, and secondly, groups are often used

as invariants for more complicated structures. For example. there are many results on structural
properties of groups. and knowing about these properties may give a lot of additional infor
mation on the groups considered [11]. Also it was first for groups that rewrite methods were
used for solving the word problem as exemplified by Dehn's algorithm for the class of small

cancellation groups ([4],[10],[11]).

Each finitely presented group G can be presented by a finite string-rewriting system R on
some alphabet L, i.e. G is isomorphic to the factor monoid ~ := L*I~R of the free monoid
L* generated by L modulo the Thue congruence ~R induced by R. Although we may

restrict the system R to only contain special rules, i.e., one side of each rule is the empty

word e. it is in general impossible to obtain much information on the Thue congruence ~R

or on the monoid ~ from R For example. it is even undecidable in general whether the
monoid ~ presented by a finite special string-rewriting system R is at all a group [16]. In
fact, the undecidability of Markov properties can be carried over to the class of monoids that
are presented by finite special string-rewriting systems [22].

The situation improves dramatically when attention is restricted to those finite string-rewriting
systems R that are Noetherian and confluent. Let .!,.R denote the reduction relation induced by
R. which is obtained by allowing the rules of R to be only applied only from left to right.
Then R is called Noetherian if there are no infinite sequences of reductions modulo R. and it
is called confluent if. for all u,v E L*, u ~R v implies that u .!,.R wand v .!,.R w for some
w E L*. Thus. if R is Noetherian and confluent. then each congruence class mod ~R contains
a unique "minimal" word. and given any word u E L*. the minimal word v congruent to
u can be computed through rewriting. Hence. the word problem for R is decidable. but also
some other problems become decidable in this setting. By restricting the syntactic form of the
rules admitted. e.g. by allowing only length-reducing. monadic or special rules, stronger
decidability results have been obtained. (c.f.. e.g., ([2],[3]) and even some results on structural
properties have been derived (see [13] for an overview).

- 1

1 . Introduction

Algebraic structures and rewrite methods for effectively computing information on such
structures have been studied extensively. In the present paper we are interested i n groups that
are presented through certain string-rewriting systems. Our interest in groups has mainly two
reasons: first of all. the theory of groups is well developed. and secondly. groups are often used
as invariants for more complicated structures. For example, there are many results on structural
properties of groups. and knowing about these properties may give a lot of additional infor—
mation on the groups considered [11]. Also it was first for groups that rewrite methods were
used for solving the word problem as exemplified by Dehn's algorithm for the class of small
cancellation groups ([4],[10].[11]).

Each finitely presented group G can be presented by a finite string—rewriting system R on
some alphabet Z. i.e. G is isomorphic to the factor monoid DER == 2*/<-*—>R of the free monoid
2* generated by E modulo the Thue congruence £15912 induced by R. Although we may
restrict the system R to only contain Special rules. i.e.. one side of each rule is the empty
word e . it is i n general impossible to obtain much information on the Thue congruence 63R

or on the monoid SRH from ‘R. For example. it is even undecidable i n general whether the
monoid DER presented by a finite special string-rewriting system R is at all a group [16]. In
fact. the undecidability of Markov properties can be carried over to the class of monoids that
are presented by finite special string—rewriting systems [22].

The situation improves dramatically when attention is restricted to those finite string—rewriting
systems R that are Noetherian and confluent. Let i912 denote the reduction relation induced by
R, which is obtained by allowing the rules of R to be only applied only from left to right.
Then R is called Noetherian if there are no infinite sequences of reductions modulo R. and it
is called confluent if. for all u.v E 2*. u der? v implies that u 5R w and v 1’2 w for some
w E 21*. Thus, if R is Noetherian and confluent. then each congruence class mod AR contains
a unique "minimal" word. and given any word u E 22*. the minimal word v congruent to
u can be computed through rewriting. Hence. the word problem for R is decidable. but also
some other problems become decidable i n this setting. By restricting the syntactic form of the
rules admitted. e.g. by allowing only length-reducing. monadic or special rules. stronger
decidability results have been obtained. (c.f.. e.g.. ([2].[3]) and even some results on structural
properties have been derived (see [13] for an overview).

The confluence property for finite Noetherian string-rewriting systems is decidable. Based on a
confluence test Knuth and Bendix have developed a completion procedure for rewrite systems
[9]. If R is a finite Noetherian string-rewriting system on ~ that is non-confluent. then this
completion procedure tries to construct a finite string-rewriting system S on the same alphabet
~ such that S is equivalent to R. i.e.. the two congruences ~s and ~ coincide. and S is
Noetherian and confluent. Specialized completion procedures a la Knuth-Bendix have been
developed for groups [l0]. However. even if the word problem of R is decidable and if it is
allowed to change the ordering used in the completion process. as well as the underlying
alphabet. they will not always succeed [21]. By restricting the ordering used or the syntactic
form of the rules allowed we are led to completion procedures for certain restricted classes of
string-rewriting systems e.g., length-reducing. monadic or special systems. In case of success
these procedures may give more information on the group considered or algorithms that are
more efficient. Of course, they will not always succeed either.

If the monoid ~ is a group. the' word problem for R is reducible to the membership
problem for the congruence class [e:k. The system R is called confluent on [e]R' if. for all
w E ~*, if w ~ e, implies w ~R e. If a Noetherian system R is confluent on [e:k. then
the process of reduction mod R yields an algorithm for testing membership in [e:k and there
with for solving the word problem for R. even if R is not confluent. In fact Dehn's algorithm
for the word problem can be interpreted as computing minimal words modulo a finite length
reducing system R. which in general is only confluent on [e~. As pointed out in [4],[l0] this
system can be computed by only using critical pairs which involve the group axioms.
provided the given presentation satisfies certain small cancellation conditions. An example of
a system R. which presents a group, and which is confluent on [e:k. but for which no
equivalent finite string- rewriting system exists. that is Noetherian and confluent. is described
in detail in [7] and [l2].
The property of confluence on a given congruence class is undecidable in general even for
finite length-reducing string-rewriting systems. and for finite monadic string-rewriting systems
only algorithms of doubly exponential time complexity are known for deciding this property
[lS]. So far it is only for finite special string-rewriting systems that this property has been
shown to be tractable in [l9]. Based on this result a completion procedures may now be
developed which. given a finite special string-rewriting system R that is not confluent on
[e]R' tries to compute a special system S which is equivalent to R and confluent on [e]R
For the case of finite special string-rewriting systems presenting groups such a specialized
completion procedure is described in [20].

Here we consider the case of finite monadic string-rewriting systems that present groups. i.e ..
each rule is of the form Cf.b) with fEr and b E ~ u {e1. For example. let ~ = {a,b.d and
R = {Cab,e),(ba.e),(c2.e).Cacb.C)}. Obviously, this system presents a group. In fact. this group is
isomorphic to the direct product of the free group F1 of rank 1 and the cyclic group Z2 of
order 2, and hence. it cannot be presented by a finite monadic and confluent string-rewriting
system on any set of generators [l3]. However. let R := R u {Cbca,c)l. Then R is a finiteo o
monadic system that is equivalent to R. Obviously. Ra is not confluent either, but for all w E ~*.
if w ~ e, then w ~o e, i.e. R is confluent on [e]Ro ' Hence, the process of reductiono
mod Ro gives a linear-time algorithm for solving the word problem for R. In fact many
decision problems can be solved. when they are restricted to the class of finite monadic
string-rewriting systems R that present groups. and that are confluent on [e:k. For example.

- 2

The confluence property for finite Noetherian string—rewriting systems is decidable. Based on a

confluence test Knuth and Bendix have developed a completion procedure for rewrite systems
[9]. If R is a finite Noetherian string-rewriting system on Z that is non-confluent, then this
completion procedure tries to construct a finite string-rewriting system S on the same alphabet
Z such that S is equivalent to R. i.e.. the two congruences %s and €**—ä coincide, and S is
Noetherian and confluent. Specialized completion procedures a la Knuth-Bendix have been
developed for groups [IO]. However. even if the word problem of R is decidable and if it is
allowed to change the ordering used in the completion process. as well as the underlying
alphabet, they will not always succeed [21]. By restricting the ordering used or the syntactic
form of the rules allowed we are led to completion procedures for certain restricted classes of
string-rewriting systems e.g.. length-reducing. monadic or special systems. In case of success
these procedures may give more information on the group considered or algorithms that are
more efficient. Of course. they will not always succeed either.

If the monoid GER is a group. the' word problem for R is reducible to the membership
problem for the congruence class [e]R. The system R is called confluent on [e]R. if. for all
w E 2*. if w (—Tfih e. implies w LR e. If a Noetherian system R is confluent on [e]R, then
the process of reduction mod R yields an algorithm for testing membership in [e]R and there-
with for solving the word problem for R. even if R is not confluent. In fact Dehn's algorithm
for the word problem can be interpreted as computing minimal words modulo a finite length—
reducing system R. which in general is only confluent on [e]R. As pointed out in [4].[lO] this
system can be computed by only using critical pairs which involve the group axioms,
provided the given presentation satisfies certain small cancellation conditions. An example of
a system R. which presents a group. and which is confluent on [e]R. but for which no
equivalent finite string— rewriting system exists. that is Noetherian and confluent. is described
in detail in [T] and [12].
The property of confluence on a given congruence class is undecidable in general even for
finite length—reducing string-rewriting systems, and for finite monadic string-rewriting systems
only algorithms of doubly exponential time complexity are known for deciding this property
[18]. So far it is only for finite special string-rewriting systems that this property has been
shown to be tractable in [19]. Based on this result a completion procedures may now be
developed which. given a finite special string-rewriting system R that is not confluent on
[e]R, tries to compute a special system S which is equivalent to R and confluent on [e]R.
For the case of finite special string-rewriting systems presenting groups such a specialized

completion procedure is described in [20].
Here we consider the case of finite monadic string—rewriting systems that present groups. i.e..
each rule is of the form (Eb) with E E 2+ and b E Z u {e}. For example, let E = {a.b.c} and
R = {(ab,e).(ba.e).(c2.e).(acb.c)}. Obviously, this system presents a group. In fact. this group is
isomorphic to the direct product of the free group F1 of rank 1 and the cyclic group Z2 of
order 2, and hence. it cannot be presented by a finite monadic and confluent string—rewriting
system on any set of generators [13]. However. let RO == R u {(bca.c)}. Then Ro is a finite
monadic system that is equivalent to R. Obviously. Ro is not confluent either. but for all w E Eile.
if w 4-120 e, then w imo e, i.e. Ro is confluent on [6]Ro. Hence. the process of. reduction

mod R0 gives a linear—time algorithm for solving the word problem for R. In fact many

decision problems can be solved, when they are restricted to the class of finite monadic

string-rewriting systems R that present groups. and that are confluent on [e]R. For example.

all problems which can be expressed through linear sentences in the sense of Book [2] can
be solved in a uniform way in this setting [14]. In addition, the class of groups that can be
presented by these systems is strictly larger than the class of groups that can be presented
by finite length-red~cing and confluent string-rewriting systems. In fact, the structural and
language theoretical properties of this class of groups are also well-known, since it is exactly
the class of contex~free groups [1]. which has also been characterized as the class of finite

extensions of finitely generated free groups [15].

Here we present a procedure which, given a finite monadic string-rewriting system R on
~ such that the monoid ~ is a group as input, tries to construct a finite monadic system
S on ~ such that S is equivalent to R and confluent on [b~ for all b E ~ u {el. This
procedure consists of two subroutines called CONTEXT_RESOLVING and NORMALIZAnON,
where the former introduces new monadic and, special rules to make the system confluent on
the relevant equivalence classes, while the latter deletes superfluous rules in order to keep
the system as small as possible. It is showl"!- that this procedure either terminates with a finite
monadic system S, or it enumerates an infinite monadic system S. In either case, S is
equivalent to R and confluent on [b~ for all b E~ u {el. In addition, our procedure terminates
whenever there exists a finite monadic system that is equivalent to R and that is confluent
on [e~. Thus, we have a completion procedure that is correct and complete.
This paper is organized as follows. After establishing the necessary notation in Section 2, we
derive some conditions in Section 3 that are necessary and sufficient to guarantee confluence
on [e] for finite monadic string-rewriting systems R presenting groups. Since these conditions
can be verified in polynomial time, we thus have a polynomial-time algorithm for deciding
confluence on [e]R for this class of string-rewriting systems. In Section 4 the announced
completion procedure is presented together with the necessary proofs and some examples.
Finally, in Section 5 we point out the relation to the notion of symmetrized group-presentation
as it is considered in small cancellation theory C[10],[1l]). Also some possible improvements of

our completion procedure and some problems for future research are mentioned.

2. Prelimin.a.ry res-ults

After establishing notation we present some qasic results about reductions in finite monadic
string-rewriting systems. We assume the reader to be familiar with the foundations of au
tomata theory as presented for example by Hopcroft and Ullman [6], and the theory of
string-rewriting systems. Therefore, we repeat only those definitions and results which will
be used here. For more details and background information, Book's seminal paper [3] may
be consul ted.

Let ~ be a finite alphabet. Then ~* denotes the set of words over ~ including the empty
word e. A monadic string-rewriting system R on ~ is a subset of ~+XCL u {en, where
~+ = ~*\{el denotes the set of non-empty words over L. The elements (f,b) of R are called
Crewrite) rules. If b = e, the rule is called special. For all u,v E L* and (f,b) E R. ufv ~R ubv,
i.e., ~R is the single-step reduction relation induced by R. Its reflexive and transitive closure ~R

is the reduction relation induced by R. For u,v E L*, if u ~R v, then u is an ancestor of v,
and v is a descendant of u. By <v>R we denote the set of all ancestors of v, and 6 RCu) denotes
the set of all descendants of u. For a subset L c ~*, <L> = U <u> and f':,. * (L) = U f':,. * (u)

uEL uEL

- 3

all problems which can be expressed through linear sentences in the sense of Book [2] can
be solved in a uniform way in this setting [14] . I n addition. the class of groups that can be

presented by these systems is strictly larger than the class of groups that can be presented
by finite length-reducing and confluent string-rewriting systems. In fact. the structural and
language theoretical properties of this class of groups are also well-known. since it is exactly
the class of context-free groups [1]. which has also been characterized as the class of finite
extensions of finitely generated free groups [15].

Here we present a procedure which, given a finite monadic string—rewriting system R on
2 such that the monoid DER is a group as input. tries to construct a finite monadic system
S on Z such that S is equivalent to R and confluent on [b]R for all b E Z u {e}. This
procedure consists of two subroutines called CONTEXT_RESOLVING and NORMALIZATION.
where the former introduces new monadic and‘ special rules to make the system confluent on
the relevant equivalence classes. while the latter deletes superfluous rules i n order to keep
the system as small as possible. It is shown that this procedure either terminates with a finite
monadic system S. or it enumerates an infinite monadic system S. In either case, S is
equivalent to R and confluent on [b]R for all b E Z u {e}. In addition. our procedure terminates
whenever there exists a finite monadic system that i s equivalent to R and that i s confluent
on [e]R. Thus. we have a completion procedure that is correct and complete.
This paper is organized as follows. After establishing the necessary notation i n Section 2, .we

derive some conditions in Section 3 that are necessary and sufficient to guarantee confluence
on [e] for finite monadic string-rewriting systems R presenting groups. Since these conditions
can be verified in polynomial time. we thus have a polynomial-time algorithm for deciding
confluence on [e]R for this class of string—rewriting systems. In Section 4 the announced
completion procedure is presented together with the necessary proofs and some examples.
Finally, in Section 5 we point out the relation to the notion of symmetrized group—presentation
as it is considered in small cancellation theory ([10].[ll]). Also some possible improvements of
our completion procedure and some problems for future research are mentioned.

2 . P re l imina ry r e su l t s

After establishing notation we present some basic results about reductions in finite monadic
string-rewriting systems. We assume the reader to be familiar with the foundations of au-
tomata theory as presented for example by Hopcroft and Ullman [s]. and the theory of
string-rewriting systems. Therefore. we repeat only those definitions and results which will
be used here. For more details and background information. Book's seminal paper [3] may
be consulted.

Let Z be a finite alphabet. Then 2.ale denotes the set of words over 2 including the empty
word e. A monadic string-rewriting system R on Z is a subset of 2*xCZ u {e}). where
Z" = E*\{e} denotes the set of non—empty words over 2 . The elements (2b) of R are called
(rewrite) rules. If b = e . the rule is called special. For al l u .v E 2* and (Eb) E R. uEv —->R ubv.
i.e.. -->R is the single-step reduction relation induced by R. Its reflexive and-transit ive closure 35>

R
is the reduction relation induced by R. For u .v E 2*. if u 359R v . then u is an ancestor of v .
and v is a descendant of u. By <v>R we denote the set of a l l ancestors of v . and AfiCu) denotes
the set of all descendants of u . For a subset L C 2*. (L) = U <u> . and AT (L) = U A* (u).

u€L uEL

Since we allow monadic rules of the form Ca,bJ, where a,b E ~ are both letters, we will always
assume a fixed ordering)- on ~, and for each rule of this form, we will require that a)- b.
This slightly extends the usual definition of monadic systems, but ~R is terminating and the
usual properties still hold . For example. if R is finite and monadic, and if L c ~. is a regular
set that is given through a non-deterministic finite state acceptor CnfsaJ Z(, then the set 6.~CLJ

is regular as well. and an nfsa ~ for this set can be constructed in polynomial time [2]. If
there is no word y E ~* such that x ~R y, then x is called irreducible, otherwise, it is
reducible. If R is finite, the.n the set IRRCRJ of irreducible words is regular, and from R a
deterministic finite state acceptor CdfsaJ for this set can be obtained in polynomial time [5].
By ~R we denote the equivalence relation induced by ~R' which is actually a congruence
on ~*. It is called the Thuecongruence generated by R: For w E ~., [w~ = {u E~· I u ~R w}
is the congruence class of w mod R. The set {[w]R I w E ~.} of congruence classes forms a

monoid ~ under the operation [u]R 0 [v~ = [uv]R with identity [e~. This monoid is

uniquely determined Cup to isomorphismJ by ~ and R, and hence. whenever M is a monoid
that is isomorphic to ~. we call the ordered pair C~;RJ a Cmonoid-) presentation of M with
generators ~ and defining relations R. Two systems Rand S on the same alphabet ~ are

called equivalent if they generate the same Thue congruence, i.e. ~R = ~s and ~ = IDls·
The monoid ~ is a group if and only if. for each letter a E ~, there exists a word u E ~. a
such that aU ~R e. In this case there exists a function -1: ~* ~ ~* such that for all a
w E ~., w-1 is a formal inverse of w, i.e., ww-1 ~R w-1w ~R e. In fact, for every letter
a E ~ a candidate w for u of length less than CmaxHeI: Cf,b) E R})I1:1 can be computeda a
from R [I7].

A subset L c ~. is closed under cyclic permutations if uv E L implies vu E L for all
u,v E ~*. The set [e~ is closed under cyclic permutations if ~ is a group.
A string-rewriting system R on ~ is confluent on [w:k for some word w E ~., if there exists
a word Wo E IRRCRJ such that 6.~C[w~) 1"1 IRRCR) = {wo}, Thus, R is confluent on [w~ if all
words in that class reduce to the same irreducible word, which then can serve as a normal
form for this class. R will be called weakly confluent if it is confluent on [b~ for all b E ~ u {e},
and it will be called e-eonfluent if it is confluent on [e~.

From now on we will assume that the monoid ~ is a group. This group is called
context-free if the set [e~ c ~. is a context-free language. This property is independent of
the actually chosen finite presentation. The importance of monadic string-rewriting systems that
are weakly confluent or e-confluent is due to their relation to context-free groups and on
the decidability of the linear sentences of Book for this class [I4]. Autebert, Boasson, and
Senizergues [I] established the following fundamental result on context-free groups.

Theorem 2.1 [Autebert et al. 87]. A finitely generated group ~ is context-free if and only if
it has a presentation of the form C~;R), where R is a finite, monadic and weakly confluent
string-rewriting system on ~.

An algebraic characterization of this class of groups has been given by Muller and Schupp
[IS] using the concept of virtually free groups Ci.e. groups which contain a finitely. generated
free subgroup of finite index). So it is fairly easy to construct examples of such groups. They

all have presentations by finite and confluent string-rewriting systems, provided appropriate

- 4

Since we allow monadic rules of the form (ab). where a .b E Z are both letters. we will always
assume a fixed ordering > on 2 , and for each rule of this form. we will require that a > b.
This slightly extends the usual definition of monadic systems, but LR is terminating and the
usual properties still hold . For example. if R is finite and monadic, and if L C 2?" is a regular
set that is given through a non-deterministic finite state acceptor (nfsa) ll. then the set AECL)
is regular as well , and an nfsa 55 for this set can be constructed in polynomial time [2]. If
there is no word y E Zale such that x +1? y . then x is called irreducible, otherwise. it is
reducible. If R is finite. then the set IRR(R) of irreducible words is regular. and from R a
deterministic finite state acceptor (dfsa) for this set can be obtained in polynomial time [5] .
By 6-3-9}? we denote the equivalence relation induced by +}? which is actually a congruence
on 2". It is called the Thue congruence generated by R; For w E 22*. [W.]R = {u E 2* | u $}? w}
is the congruence class of w mod R. The set {[w]R | w E ff} of congruence classes forms a
monoid EWR under the operation [u]Ro[v]R = [uv]R with . identity [€]? This monoid is
uniquely determined (up to isomorphism) by E and R, and hence. whenever M is a monoid
that is isomorphic to DER, we call the ordered pair (ZR) a (monoid—) presentation of M with
generators Z and defining relations R. Two systems R and S on the same alphabet E are
called equivalent if they generate the same Thue congruence. i.e. 4:52 = <—°'E-->S and MIR = fins.
The monoid 93R is a group if and only if, for each letter a E Z. there exists a word ua E fe
such that aua 49R e. In this case there exists a function “l: 2* % 2* such that for all
w E Z}. w"1 is a formal inverse of w , i.e.. ww‘l (ii? w‘lw & e . In fact . for every letter
a E Z a candidate wa for ua of length less than (maxtIBI: (Eb) E RD'2| can be computed
from R[1'I].
A subset L C 2* is closed under cyclic permutations if uv E L implies vu E L for all
u,v E 2*. The set [e]R is closed under cyclic permutations if % is a group.
A string-rewriting system R on 2 is confluent on [w]?! for some word w E 2*. if there exists
a word Wo E IRRCR) such that A;([W]R) n IRRCR) = {WO}. Thus. R is confluent on [wlR if all
words in that class reduce to the same irreducible word. which then can serve as a normal
form for this class. R will be called weakly confluent if it is confluent on [b]R for all b E Z u {e}.
and it will be called e-confluent if it is confluent on [B]}?

From now on we wil l assume that the monoid DER is a group. This group is called
context-free if the set [e]R C 2* is a context-free language. This property is independent of
the actually chosen finite presentation. The importance of monadic string—rewriting systems that
are weakly confluent or e-confluent is due to their relation to context-free groups and on
the decidability of the linear sentences of Book~ for this class [14]. Autebert. Boasson. and
Senizergues [1] established the following fundamental result on context—free groups.

Theorem 2.1 [Autebert et al. 8T]. A finitely generated group (8 is context-free if and only if
it has a presentation of the form (ZR). where R is a finite. monadic and weakly confluent
string-rewriting system on 2.

An algebraic characterization of this class of groups has been given by Muller and Schupp
[15] using the concept of virtually free groups (i.e. groups which contain a finitely; generated
free subgroup of finite index). So it is fairly easy to construct examples of such groups. They
all have presentations by finite and confluent string—rewriting systems, provided appropriate

orderings are used, which in general are not length-compatible. Note that the class of groups
that can be presented by finite, monadic and confluent systems is a proper subclass of the

context-free groups. CSee the example of Section I and [13]).

Example 2.2. a) Let ~ = {a,b,cl and R = {Cab,e),Cba,e),Cc2,e),Caca,c)}. Then C~;R) presents a group
which is an extension of the free group of rank I and the cyclic group Z2' R is not confluent,
since ac ~R cb and ca ~R bc. It is neither confluent on [e]R' since cbcb ~R e; nor

* on the congruence class of any letter, because bcb ~R * c, cac ~R * band cbc ~R a.

By adding the rule Cbcb,c) we get a system which is confluent on [e] and [b], and if Ccac,b)

and Ccbc,a) are also taken, we get a weakly confluent system. CSee also Example 4.5}

b) Let ~ = {a,b,cl and R = {Cab,e),(ba,e),(c3,e),Cc2ac,a),Cc2bc ,b)}. Then C~;R) presents a group iso

morphic to ZxZ3, the direct product of Z with the cyclic group of order 3. For all n ~ 1.

can c2bn ~R e ~R cbn c2an . Since bc2a ~R c2 ~R ac2b, no factor u of can c2bn or

cbn c2an satisfying I < lul :;;; n is congruent to any letter. Thus, there is no finite monadic system

S that is both equivalent to R and confluent on [e]R Since ZxZ 3 is a context-free group, there

must be a monadic presentation of this gr~up which is confluent on [el In fact, by introdu

cing a new letter d and the rules Cc2,d),Ccd,e),Cdc,e),Cd2,c) together with {Caxb,x),Cbxa,x) I x E{c,d}}

we get a different presentation of ZxZ 3 for which confluence on [e] and even weak confluence

can be shown.

Confluence on one equivalence class is much harder to decide than confluence everywhere.

In fact, in [18] it is shown that this property is undecidable even for length-reducing systems,

while for monadic systems it may be decided using the decidability of the equivalence problem

for finite -turn deterministic pushdown automata. For stating this result in detail we need some

more notation. Let R be a finite monadic string-rewriting system on ~ , and let CEl,bl) and C£2,b2)

be two rules of R. If El = x£2Y for some x,y E ~*, or if El x = yE2 for some x,y E .~* satis

fying 0 < [yl < IEll, then the pair Cbl ,xb2y), respectively Cblx,yb2), is called a critical pair of R.

By UCPCR) we denote the set {Cx,y) I (x,y) is a critical pair of R such that 6.~Cx) n 6.~(y) = 0}

of unresolvable critical pairs of R. Obviously, this set can be computed in polynomial time.

For w E IRRCR) we define a language LuCw) as follows: LuCw) = {xny I x,y E IRRCR), xuy ~R w}.

Here n is an additional letter not in ~. Then xny E LuCw) if CX,y) is an irreducible context of

u in <w >R' Using sets of this form the confluence on [w~ can be characterized as follows:

Proposition 2.3 [Otto 87]. Let R be a monadic string-rewriting system on ~, and let w E IRRCR).

Then the following two statements are equivalent:

CD The system R is confluent on [w~.

CiD VCu,v) E UCPCR): LuCw) = LvCw).

Since the sets Ljw) are in general context-free languages, this characterization will not be useful

in a completion procedure. In the next section we will derive an easier test by using the fact

that ~ is a group.

As a first simplification we would like to keep the system R as small as possible. A string

rewriting system R is called reduced if. for each rule (£.r) ER. r E IRRCR) and f E IRRCR\{CE,r)}).

In general there need not exist a reduced system which is equivalent to a given one. However,

- 5

orderings are used. which in general are not length—compatible. Note that the class of groups
that can be presented by finite. monadic and confluent systems is a proper subclass of the

context-free groups. (See the example of Section 1 and [13]).

Example 2.2. a) Let E = {a.b.c} and R = {Cab.e).(ba.e).(cz.e).(aca.c)}. Then (LR) presents a group
which is an extension of the free group of rank 1 and the cyclic group 22. R is not confluent.
since ac 635—9}? ab and ca €**—ih be. It is neither confluent on [e]R. since cbcb <—*->R e . nor

on the congruence class of any l e t t e r . because bob (L)}? c . cac “vi—>1? b and cbc @ a .

By adding the rule (bcb.c) we get a system which is confluent on [e] and [b] . and if (agb)

and (cbc.a) are also taken. we get a weakly confluent system. (See also Example 4.5).
b) Let Z = {a .b . c} and R = { (ab . e) . (ba . e) .Cc3 . e) , (c2ac . a) . (czbc .b)} .Then (ZR) presents a group iso—

morphic to ZXZ3, the direct product of Z with the cyclic group of order 3. For all n 2 l .
ca""c2bn <—*—>R e 6-1-9}? cbnczan. Since bcza @R 02 €**—% aczb. no factor u of car‘czbn or
cbr‘czan satisfying 1 < lul S n is congruent to any letter. Thus, there is no finite monadic system
S that is both equivalent to R and confluent on [e]R. Since ZxZ3 is a context-free group, there
must be a monadic presentation of this group which is confluent on [e] . In fact. by introdu—
cing a new letter d and the rules (c2,d).(cd.e).(dc.e).(d2.c) together with {Caxb.x).(bxa.x) I x E {c.d}}
we get a different presentation of Zs for which confluence on [e] and even weak confluence

can be shown.

Confluence on one equivalence class is much harder to decide than confluence everywhere.
In fact. in [18] it is shown that this property is undecidable even for length-reducing systems.
while for monadic systems it may be decided using the decidability of the equivalence problem
for finite -turn deterministic pushdown automata. For stating this result i n detail we need some
more notation. Let R be a finite monadic string-rewriting system on 2 . and let (El.b1) and (22-132)

be two rules of R. If 21 = x82y for some x.y e 2*. or if 81x = s for some x.y E 2* satis-
fying O < lyl < IEII. then the pair (b1.xb2y). respectively (blx.yb2). is called a critical pair of R.
By UCP(R) we denote the set {(x.y) l (x.y) is a critical pair of R such that AÄCX) n AECy) = @}
of unresolvable critical pairs of R. Obviously. this set can be computed in polynomial time.
For w E IRRCR) we define a language Lutw) as follows: Lutw) = {xuy | x.y E IRRCR). xuy 359R w}.
Here n is an additional letter not in 22. Then xuy E LuCW) if (x.y) is an irreducible context of
u in <w>R. Using sets of this form the confluence on [w]R can be characterized as follows:

Proposition 2.3 [Otto 8T]. Let R be a monadic string-rewriting system on E. and let w E IRR(R).
Then the following two statements are equivalent:
(1) The system R is confluent on [W]R.
(ii) V(u.v) E UCP(R): LuCW) = Lv).

Since the sets L u(w) are in general context-free languages. this characterization will not be useful
in a completion procedure. In the next section we will derive an easier test by using the fact
that SRR is a group. '
As a first simplification we would l ike to keep the system R as small as possible. A string-
rewriting system R is called reduced if. for each rule (BJ) E R, r E IRR(R) and B E IRR(R\{(E.r)}).
In general there need not exist a reduced system which is equivalent to a given one. However.

such a reduced system exists when the ordering on 2* is total or when the system R is confluent
on [r]R for every right-hand side r of R. The same holds for monadic systems R as we shall see.
Let R be a finite monadic string-rewriting system on 2. By replacing every right-hand side
by an irreducible descendant of it. we get a finite monadic system R

1
on L, which can be

obtained in polynomial time from R, such that IRRCRl) = IRRCR), ~l !: --""R and ~l = ~R'
Also RI is weakly confluent or e-confluent if and only if R has this property. Recall that each
right-hand side of a rule of RI is irreducible, but still RI need not be reduced.
So assume that there are two rules CE l .bl).CE 2,b2) E RI such that El = xE 2y for some x.y E 2*.
Let R2 := RI \{CEl,bl)}· Then ~2 !: ~l and IRRCR2) = IRRCRl). In general RI and R2 will not
be equivalent. Nevertheless, if RI is weakly confluent. then it is confluent on [e] and Cb] for
every right-hand side b of a rule. In particular, for all u E 2*. U ~l e or u ~l b implies
u ~l e, respectively u ~l b. Since R2 is terminating, there exists a word v E IRRCR2) such
that u ~2 v. Because of --""R2 !: --""Rl and IRRCR2) = IRRCRl), we see that v = e. respectively
v = b. Hence [e]Rl = [e]R2 and [b]Rl = [b]R2. and R2 is also weakly confluent. But then
El ~2 bl , so R2 and RI are equivalent (in fact ~l = ~2).
If RI is only e-confluent. then as above [e]Rl = [e]R2' and R2 is also e- confluent. If bl = e,

then again R2 is equivalent to RI' So let b l E 2. Since mtRl is a group. bil E ~l e and
blbi"l ~l e, so bj1E ~2 e and blbil ~2 e. Thus, we get E ~2 blbilf ~2 bl , i.e.
R2 is eql,livalent to RI'

Thus. if RI is weakly confluent or e-confluent. we obtain a reduced finite monadic system R2
that is equivalent to RI and that has the same confluence property. by simply deleting those
rules Cf ,b) E RI one by one. for which E is reducible by some other rule of RI' Notice that
the conditions

D * -1 * -1 *
"L l ~2 bl and b l E ~2 e and blbl ~2 e

can be verified in polynomial time. If they are not satisfied, then from the above discussion
we can conclude that either RI is not weakly confluent or RI is not e-confluent. respectively.
So when testing weak- or e-confluence of a monadic system R we may assume that R is re
duced. When completing such a system. xb2y ~ bl can always be oriented so that a
monadic rule results. If no letter is congruent to e or to a different letter. then, if El -frR2 bl,
then Cxb2y.bl) has to be added to preserve the congruence. and then the resulting system R2
even satisfies ~l !: ~2' This will not be the case if a letter becomes reducible to a different
letter or to e.

3. A polyn.orn.ial test for e-con.fh...1en.ce

Let R be a finite reduced monadic string-rewriting system on 2 such that ~ is a group. If

R is confluent on eel then for each a E 2, there exists a word u E 2* such that au ~R e.
. a I a

In fact. aU -4~ e for some i s: 121. and hence, lu \ s: 121'(1l-I), where II = max{lf\ CE,b) ER}.a a
Further. if au --""R e, then ua ~R e, since [e] is closed under cyclic permutations, and there
with <e> has also this property. If anyone of these conditions is not satisfied. then R is not
e-confluent. It is easy to see that R is e-confluent iff for all a E 2 and w E [a-I] n IRRCR):
aw ~R e. This set might not be easy to construct. so we will use an approximation of it,
namely the set of right-inverses which will play a central role in a test for e-confluence.

- 6

such a reduced system exists when the ordering on E.;" is total or when the system R is confluent
on [r]R for every right—hand side I of R. The same holds for monadic systems R as we shall see.
Let R be a finite monadic string—rewriting system on Z. By replacing every right—hand side
by an irreducible descendant of it. we get a finite monadic system R on 2. which can be

obtained in polynomial time from R. such that IRRCRI) = IRRCR). fem c —>R and (“*t = AR.
Also R1 is weakly confluent or e—confluent if and only if R has this property. Recall that each
right-hand side of a rule of R1 is irreducible. but still R1 need not be reduced.
So assume that there are two rules (21 .b1 12G! ‚zb) E R1 such that 81 = xBZy for some x.y E 2*.
Let R2 —"1R1\{(B '1b)}. Then —>R2 C em and lRRCR2)l= IRRCRI). In1 general R1 and R2 will not

be eqzuivalent. Nevertheless. if R1 is weakly confluent. then it is confluent on [e] and [b] for
every right——hand side b of a rulel. In particular. for all u E 2* . u fi! e or u flail b implies
u —>Rl e. respectively u —>R1 b Since R2 is terminating there exists a word v E IRRCR2) such
that u —>R2 v. Because of ->R2 C _>R1 aznd IRRCR2) = IRRCR1.) we see that v = e_. respectively
=.b Hence [e]R1 = [eh-az and [b]R1= [b]R2. 2and R2 is also weakly confluent. But then

31=ÄR2 b1. so R2 and R1 are equivalent (in fact 9 R 1 = —>R2)-

If R1 is only e--confluent,1 then as above [e]R1 = [e]R2. and R2 is also e— confluent. If b1

then again R2 is equivalent to R1. So let;lE bl E 2. Since mm is a group. b11 2 fi} e and
blb'1 @Rl e‚sob'118 —>R2eandb1b11 —>R2e. Thus. we get E <——->R2 blb'lB H122 b1.i.e.
R2 is equivalent to R .

Thus. if R1 is weakly confluent or e—confluent, we obtain a reduced finite monadic system R2

that is equivalent to R1 and that has the same confluence property, by simply deleting those
rules (Kb) E R1 one by one. for which E is reducible by some other rule of R1. Notice that
the conditions

81 1691:12 b1 and hilt? i>R2 e and blb;1 i>R2 e
can be verified in polynomial time. If they are not satisfied. then from the above discussion
we can conclude that either R1 is not weakly confluent or R1 is not e-confluent. respectively.
So when testing weak- or e——confluenoe of a monadic system R we may assume that R is re-
duced. When completing such a system xbzy H b1 can always be oriented so that a
monadic rule results. If no letter is congruent to e or to a different letter. then. if 8 1 % R 2 b r
then (xbzy b1)alehas to alsbe added to preserve the congruence, and then the resulting system R2
even satisfies 9R1 C —>R2. This will not be the case if a letter becomes reducible to a different
letter or to e.

3. A polynomial t es t for a—confluence

Let R be a finite reduced monadic string- rewriting system on 2 such that 9BR is a group. If
R is confluent on [e]. then for each a E E, there exists a word ua E 2* such that aua 9R e.
In fact aua i—> e for some i : IEI. and hence. Iua I S IZI (u—l). where u = max{|Bl t (E ‚b) E R}.
Further, ifaau —>R e. then ua —>R e. since [e] is closed under cyclic permutations. and there—
with (e) has also this property. If any one of these conditions is not satisfied. then R is not
e—confluent. It is easy to see that R is e—confluent iff for all a E Z and w E [514] n IRRCR):
aw i>R e. This set might not be easy to construct, so we will use an approximation of it.
namely the set of right—inverses which will play a central role in a test for e-confluence.

Definition 3.1. For u E ~*. let RIRCu). the set of right inverses of u. consist of all words v
such that uv .!.,.R e. and no step of the reduction sequence is performed entirely within u

or within v. To be precise
RIRCu) = {v E ~* I 3k 2 1 3uluk . vlv k E ~* with u = uk··ul . V = vl .. .vk' Culvl.al) E R.

Cu alv 2.a2) E R.Cukak_ v k.e) E Rand u i :j: e :j: vi if a i = e}.2	 1

If u.v	 * E RIRCu) since R is monadic. RIRCu) may be infinite. butE IRRCR) and uv ~R e. then v

it is easy to compute.

Lemma 3.2. For every u E ~*. RIRCu) is a regular set. From Rand u a nfsa' for this set can
be constructed in polynomial time.
Proof: Let F be the set of all proper factors of left-hand sides of rules in R. Define a nfsa

~CU) = CQ.~.S.qo.q) as follows:
Q = {Cul.f l) I 3u2 E ~* 3b E ~ u {e}: uI ,; u2b. u2 is a prefix of u and f l E F}

q := Cu e) - q := Ce.e) and
O' a

Cu .E2) E SCCul.f l).a) iff CUI = u2 and E2 = Ela E F) or El a E F and 3u3.u4, E ~*:

2

u I = u 3u4,' u4, :j: e. u4,E Ia ~R band u2 = u 3b. E2 = e for some b E ~ u {e}.
Then ~Cu) can be constructed in polynomial time and Ce.e) E SCCu.e).v) iff v E RIRCu} So
LmCu)) = RIRCu). _

Now we are ready to formulate a test for e-confluence.

Theorem 3.3. R is confluent on [e] iff the following conditions are satisfied:
Cj) 'la E ~: .6.~CRIRCa)· a) n IRRCR) = {e} if RIRCa) :j: 0 and

CiD	 VCp.q) E UCPCR) VPI E .6.~Cp) Vql E .6.~Cq):

.6.~Cq .RIRCPI)) n IRRCR) = {el = .6.~Cp· RIRCql)) n IRRCR) if RIRCPI) :j: 0 :j: RIRCql)'

Proof: Assume that R is confluent on [e~.

CD Let a E ~ and v E RIRCa). i.e. av .!.,.R e. Since ~ is a group. va ~R e and

.6.~Cva) C [e]. Because R is confluent on [e~. .6.~Cva) n IRRCR) = {e} holds.

CiD Let Cp.q) E UCPCR). let PI E .6.~Cp) and let v E RIRCPI)' i.e. PI v .!.,.R e. Then

qv ~R PI v ~R e and since R is confluent on [e~. .6.~Cqv) n IRRCR) = {el.

So the condi tions are necessary.

To prove the converse implication. assume that conditions CD and CiD are satisfied.

Claim 1: <e>R is closed under cyclic permutations.

Proof: Assume that this is not the case and let x E ~* be of minimal length and minimal

with respect to .!.,.R' such that x .!.,.R e. but Xl ~ R e for some cyclic permutation Xl of x.

Then there exists a cyclic permutation y = az of x. where a E ~ and z E ~*. such that

y = az .!.,.R e. but za ~R e.

In the reduction sequence az .!.,.R e no step is entirely performed within a or within z. since

otherwise x would not be minimal. Hence. z E RIRCa). By condition CD this implies that za .!.,.R e.

contradicting our choice. Thus. <e>R is closed under cyclic permutations. _

- 7

Definition 3.1. For u E Zi", let RIRtu). the set of right inverses of u . consist of all words v
such that uv 39R e. and no step of the reduction sequence is performed entirely within u
or within v . To be precise
RIR(u) = {v E 2* I Hk 2 l 3111 uk, v1 vk E 2* With u = uk.. .u1. v = V1" 'Vk ' (u lv l . a l) E R,

(u2a1v2.a2) E R.....(ukak_lvk.e) E R and uiL 4: e $ vi if ai = e}.

If u,v E IRRCR) and uv LR e. then v E RIRCu) since R is monadic. RIRCu) may be infinite, but
it is easy to compute.

Lemma 3.2. For every u E 2*, RIRCu) is a regular set. From R and u a nfsa“ for this set can
be constructed in polynomial time.
Proof: Let F be the set of all proper factors of left—hand sides of rules in R. Define a nfsa
QICu) = (Q.Z.8.q0.qa) as follows:
— Q = {(u1.Bl) l 3u2 E 2* 3b E Z u {e}: u1 =5 u2b, u2 is a prefix of u and 81 E F}
— qo == (u‚e) — qa == (e‚e) and
- (u2.82) E 8(Cul.21).a) iff (u1 = u2 and % = 81a E F) or 21a E F and 3u3.u4 E Y:

u1 = u3u4, u4 # e, 1148161 3-93? b and u2 = u3b, £2 = e for some b E E u {e} .

Then QICu) can be constructed i n polynomial time and (e.e) E 8C(u,e).v) iff v E RIRCu). So
LC'IICuD = RIRCu). .

Now we are ready to formulate a test for e-confluence.

Theorem 3.3. R is confluent on [e] iff the following conditions are satisfied:
(1) Va E z: A;(R1Rca)-e) n IRR(R) = {e} if RIRCa) $ @ and
(ii) vcp‚q) E UCPCR) Vpl E Agcp) Vql E Agcq):

Aäcq-RIcln n IRRCR) = {e} = Agcp-RIcln n IRRCR) if RIcI) * @ e RIR(ql).

Proof: Assume that R is confluent on [e]R.
(i) Let a E Z and v E RIR(a). i.e. av 35R e. Since WER is a group. va ééR e and
A;(va) C [e]. Because R is confluent on [e]R, A;(va) n IRRCR) = {e} holds.
(ii) Let cp.q> E UCPCR). let p1 E Aäcp) and let v E RIRCpI). i.e. plv i*->R e. Then
qv <i>R p lv 49R e and since R is confluent on [e]R. AEq) n IRRCR) = {e}.
So the conditions are necessary.
To prove the converse implication, assume that conditions (i) and (ii) are satisfied.

Claim 1: <e>R is closed under cyclic permutations.
Proof: Assume that this is not the case and let x E Za'e be of minimal length and minimal
with respect to Ä , such that x i)R e . but x ' -7->R e for some cyclic permutation x ' of x.
Then there exists a cyclic permutation y = az of x, where a E E and 2 E 23*. such that
y = az i)}? e , bu tza -7->R e .
In the reduction sequence az LR e no step is entirely performed within a or within 2, since
otherwise x would not be minimal. Hence, z E RIRCa). By condition (i) this implies that za Ä e .

. . - . Rcontradicting our chorce. Thus. <e>R 15 closed under cyclic permutations. I

Claim 2: R is confluent on [e~.

Proof: Let Cp.q) E UCPCR). By Proposition 2.3 we must show that, for all x.y E IRRCR). xpy ~R e
iff xqy .!,.R e. By Claim 1, <e> is closed under cyclic permutations. i.e. pyx .!,.R e. Since R
is monadic. this means that there exist words PI E 6~Cp) and w E 6~CyX) such that PI w ~R e,
and each step in this reduction straddles the boundary between PI and w. Hence w E RIRCPI).

By condition CiD this implies that qw ~R e and so qyx ~R qw ~R e. Again by Claim I
this means that xqy ~R e. By symmetry we obtain: xpy ~R e iff xqy ~R e. Thus, R is in
fact confluent on [e]R •
So conditions CD and CiD guarantee confluence on [el •

According to the discussion at the end of Section 2, we may assume that R is reduced. Thus,
if Cp.q) E UCPCR). then there exist words x.y E L* and rules Cfl,bl),Cf 2.b2) E R such that
fIX = yf 2 , 0 < Iyl < Ifll, p = blx and q = yb2 . In particular, y is a proper prefix of f l . and
x is a proper suffix of f 2 . i.e. x and y are both irreducible. If bl = e, then p is irreducible,

and if b2 = e, then q is irreducible. Otherwise. the sets 6~Cp) and 6~Cq) are of size bounded

from above by (l·ILI, where (l = max{lfl I Cf.b) ER}. Hence. to verify the conditions CD and
CiD of Theorem 3.3 only a polynomially bounded number of tests must be performed. Since
we can construct nfsa's recognizing the involved testsets in polynomial time. we obtain the
following result.

Corollary 3.4: The following problem is decidable in polynomial time.

INSTANCE: A finite monadic string-rewriting system R on L such that the monoid ~ IS

a group.
QUESTION: Is R confluent on [e~ ?

Let us now consider the problem of deciding weak confluence of such a system. We may assume

that R is confluent on [e] and reduced, and so we only have to check the confluence of R
on the congruence classes of irreducible letters. Let b be such a letter and let b-I be an irre
ducible inverse of b. Then RIRCb-l) n IRRCR) = Cb] n IRRCR).

The inclusion RIRCb-l) n IRRCR) C Cb] n IRRCR) is clear. So let w E Cb] n IRRCR). Then

b-Iw ~R b-Ib ~R e. Since R is monadic and confluent on [e], and since both b-I and w

are irreducible. we get w E RIRCb-l) i.e .. w E RIRCb-1) n IRRCR). Thus, we have the following
characterization.

Theorem 3.5. R is weakly confluent iff conditions CD and CiD of Theorem 3.3 and
CiiD \fa E L n IRRCR): RIRCa-l) n IRRCR) = {a} for some irreducible inverse a-I of a
are satisfied.

Since e-confluence is decidable in polynomial time, and since CiiD of Theorem 3.5 is also

decidable in polynomial time we get:

Corollary 3.6: The following problem is decidable in polynomial time.

INSTANCE: A finite monadic string-rewriting system R on L such that the mon6id ~ is
a group.

QUESTION: Is R weakly confluent ?

- 8

Claim 2: R is confluent on [B]}?

Proof: Let (p. q) E UCPCR). By Proposition 23 we must show that. for all x.y E IRRCR). xpy 9R e
iff q ->R e . By Claim 1 (e) is closed under cyclic permutations i..e pyx -i> e . Since R
is monadic, this means that there exist words pl E AaleR(p) and w E ATRn) such th; p lw —>R e .
and each step in this reduction s’traddlesale the boundary between p1 and w . Hence w E RIR.Cp1)

By condition (ii) this implies that qw —>R e and so qyx—éw —>R e . akLfl‘mgain by Claim 1
this means that q —>R e . By symmetry we obtain: xpy 6R e iff q —>R e . Thus. R is in
fact confluent on [e]R. I
So conditions (i) and (ii) guarantee confluence on [e]. n

According to the discussion at the end of Section 2, We may assume that R is reduced. Thus.
if (pg) E UCPCR). then there exist words x.y E 2* and rules (El.bl).(82,b2) E R such that
fix = s. O < lyl < lBll. p = blx and q = ybz. In particular. y is a proper prefix of El. and
x is a proper suffix of 22, i.e. x and' y are both irreducible. If b1 = e . then p is irreducible.
and if b2 = e. then q is irreducible. Otherwise, the sets Agtpl and Agcq) are of size bounded
from above by 11- IZI. where u = max{|E| l (Eb) E R}. Hence, to verify the conditions (i) and
(ii) of Theorem 3.3 only a polynomially bounded number of tests must be performed. Since
we can construct nfsa's recognizing the involved testsets i n polynomial time. we obtain the
following result.

Corollary 3.4: The following problem is decidable in polynomial time.
INSTANCE: A finite monadic string-rewriting system R on 2 such that the monoid MR is

a group.
QUESTION: Is R confluent on [e]R ?

Let us now consider the problem of deciding weak confluence of such a system. We may assume
that R is confluent on [e] and reduced. and so we only have to check the confluence of R
on the congruence classes of irreducible letters. Let b be such a letter and let b’1 be an irre-
ducible inverse of b. Then RIRCb"1) n IRRCR) = [b] n IRRCR).

The inclusion RlRtb-ll n IRRCR) ; [b] n IRRCR) is clear. So let w E [b] n IRRCR). Then
b ' lw 49R b ' lb ("je—>,R e . Since R i s monadic and confluent on [e] . and since both b‘1 and w
are irreducible. we get w E RIRCb‘l) i.e., w € RIRCb-ll n IRR(R). Thus. we have the following
characterization.

Theorem 3.5. R is weakly confluent iff conditions (i) and (ii) of Theorem 3.3 and
(iii) Va E z n IRRCR): RIRCa'l) n IRRCR) = {a} for some irreducible inverse a4 of a
are satisfied.

Since e-confluence is decidable in polynomial time. and since _Ciii) of Theorem 3.5 is also
decidable in polynomial time we get:

Corollary 3.:6 The following problem is decidable in polynomial time. =-
INSTANCE: A finite monadic string-rewriting system R on Z such that the monoid DER is

a group.
QUESTION: Is R weakly confluent ?

One might ask whether e-confluence implies weak confluence. This is not the case as shown
by Example 2.2al But the existence of an e-confluent monadic system R implies the existence
of a weakly confluent monadic system RI which is equivalent to R. In fact, RI may be con

structed in polynomial time from R. W.l.o.g. we may assume that R is reduced. Thus. for each
reducible letter b. R contains exactly one rule with left-hand side b. and this letter does not
occur in any other rule. Let a be the smallest irreducible letter CL is ordered) such that R is
not confluent on [a], and let a-I be an irreducible inverse of a. Then RIRCa- l) n IRRCR) = [a] n IRRCR)
properly contains {al. This set is finite in this case. since otherwise we would have irreducible
words uxnv ~R uv ~R a. Since mR is a group. and since R is confluent on [e], this

nwould imply that x ~R e contradicting the fact that uxnv is irreducible. So let wlw k
be the irreducible words in [a] different from a, which may be computed in polynomial time.
Then R u {Cwi,a) I i = l,. ...kl is monadic. e-confluent and also confluent on [a]. This process
may be iterated with the next irreducible letter on which the resulting reduced system is not
confluent. For the resulting system RI we obtain !.,.R !: !.,.RIo RI is equivalent to R. and RI is

weakly confluent.

4. The completion. proced'L1re

Based on our confluence test, we now present a procedure which on input a finite monadic string
rewriting system Ro presenting a group. tries to construct a weakly confluent monadic system
R that is equivalent to Ro' This procedure contains two main subroutines: NORMALIZATION
and CONTEXT_RESOLVING. The first one realizes the reduction process explained at the end
of Section 2. The second one introduces new rules if necessary based on the test of Theorem 3.5.
There are three types of regular sets which may contribute new rules depending on the
condition actually checked:

E a ·

La-l :=
.6~CRIRCa)·a) n IRRCR)\{el
RIRCa-l) n IRRCR)\{al

for a E L
for irreducible a E L

SPi:= .6~Cq. RIRCPi)) n IRRCR)\{el and

Sqi:= .6~Cp·RIRCqi)) n IRRCm\{el
for Cp.q) E ucpcm and Pi E .6~Cp)

Since these sets might be infinite. we have to determine a finite number of special and
monadic rules which can reduce all the computed divergences. For doing this. notice that E . a
SPi and Sqi are subsets of [e], and that L - !: [a]. From the nfsals for these sets a finitea l
number of simple accepting paths and of simple loops which generate all accepting paths
may be determined in polynomial time. Since we have a group. the irreducible words
corresponding to simple loops are equivalent to e. CThe argument for this being similar to
the one at the end of Section 3). In the nfsa for L - l the irreducible words corresponding to a
simple accepting paths are equivalent to a. so they lead to proper monadic rules.

Let GENSPATH and GENSLOOP be procedures which compute the irreducible words
corresponding to the simple paths, respectively simple loops. when applied to a nfsa accepting
one of the above sets. Since the subroutine CONTEXT_RESOLVING may introduce new rules
which destroy the property of being reduced and also add new unresolved critical pairs. we
have. to keep applying both subroutines until a stable system is obtained.

- 9

One might ask whether e-confluence implies weak confluence. This is not the case as shown

by Example 2.2a). But the existence of an e-confluent monadic system R implies the existence

of a weakly confluent monadic system R' which is equivalent to R. In fact, R' may be con—

structed in polynomial time from R. W.l.o.g. we may assume that R is reduced. Thus. for each

reducible letter b, R contains exactly one rule with left-hand side b. and this letter does not
occur in any other rule. Let a be the smallest irreducible letter (Z is ordered) such that R is

not confluent on [a]. and let a'1 be an irreducible inverse of a. Then RIRCa“1) n IRRCR) = [a] n IRRCR)

properly contains {a}. This set is finite in this case. since otherwise we would have irreducible

words uxnv (LR uv <—*—>R a. Since 93R is a group. and since R is confluent on [e]. this
would imply that xn (JE—>}:2 e contradicting the fact that uxnv is irreducible. So let w1 Wk
be the irreducible words in [a] different from a. which may be computed in polynomial time.

Then R u {(wi,a) l i = l k} is monadic. e-confluent and also confluent on [a]. This process
may be iterated with the next irreducible letter on which the resulting reduced system is not

confluent. For the resulting system R' we obtain 39R c %., R' is equivalent to R. and R' is
weakly confluent.

4. The compla t ion procedure

Based on our confluence test. we now present a procedure which on input a finite monadic string-

rewriting system Ro presenting a group. tries to construct a weakly confluent monadic system

R that is equivalent to RO. This procedure contains two main subroutines: NORMALIZATION
and CONTEXT_RESOLVING. The first one realizes the reduction process explained at the end
of Section 2. The second one introduces new rules if necessary based on the test of Theorem 3.5.

There are three types of regular sets which may contribute new rules depending on the

condition actually checked:

Ea == &;(RIRCaIaJ n IRR(R)\{e} for a E z
La,l == RIRCa'l) n IRRCR)\{a} for irreducible a E >:
spi == AäCq-RIRCpiD n IRRCR)\{e} , and
Sqi == Agcp-RIRqn n IRRCR)\{e}
for (p.q) E UCPCR) and p11 E AäCp) . qi E AECq).

Since these sets might be infinite. we have to determine a finite number of special and
monadic rules which can reduce all the computed divergences. For doing this. notice that Ea.
Sp1 and Sqi are subsets of [e]. and that L a_1 C [a]. From the nfsa's for these sets a finite
number of simple accepting paths and of simple loops which generate all accepting paths
may be determined in polynomial time. Since we have a group. the irreducible words
corresponding to simple loops are equivalent to e. (The argument for this being similar to
the one at the end of Section 3). In the nfsa for La_1 the irreducible words corresponding to
simple accepting paths are equivalent to a. so they lead to proper monadic rules.
Let GENSPATH and GENSLOOP be procedures which compute the irreducible words
corresponding to the simple paths, respectively simple loops, when applied to a nfsa accepting
one of the above sets. Since the subroutine CONTEXT_RESOLVING may introduce new rules
which destroy the property of being reduced and also add new unresolved critical pairs. we
have‘to keep applying both subroutines until a stable system is obtained.

Procedure	 4.1:

INPUT:	 A finite monadic string-rewriting system R on an ordered alphabet L such that

the monoid ~ is a group.

begin	 i ~ 0 ; Ri ~ R
NORMALIZATION: Reduce right-hand sides using first applicable rule;

while 3£I'£2'x,y E: L*: £2 = X£IY /\ C£l,bl) E: Ri /\ C£2,b2) E: Ri
do

begin	 Ri ~ Ri \ {C£2,b2)h
if b 2 Et 6~/xbIY) then Ri ~ Ri u {(xbl y,b2)};
Reduce right-hand sides

. end

comment: At this point the system Ri is reduced. Here, <xbl y,b2) is the monadic rule resulting

from this pair using the ordering on L if both sides are letters.

CONTEXLRESOLVING: For all a E: L n IRRCRi) compute irreducible inverse a-I;

Compute UCPCRi) ; R~ ~ 0 ;
For all a E: L do {Ea ~ 6~CRIRCa).a) n IRRCR)\ {e},

~a ~ GENSPATHCE
a

) u GENSLOOPCE
a

);

R~ ~ R~ u {C£,e) lEE: ~a}}
For all a E: L n IRRCRi) do {La - l

/\
M a - l
R;

~

~

~

RIRCa-l) n IRRCR)\{a};

GENSPATHCL a _I),
/\

R~ u {<£,a) lEE: Ma-I},
t ~ GENSLOOPCL _I);a-l a

R~ ~ Ri u {C£,e) I £ Eta-I} }

For all Cp,q) E: UCPCRi) do {For all Pi E 6~Cp) . qi E: 6~Cq) do

{SPi ~ 6~Cq'RIRCPi)) n IRRCR)\{e};

Sq. ~ 6*RCP·RIRCq.)) n IRRCR)\{e},

/\ 1	 1

Sp. ~ GENSPATHCSp.) u GENSLOOPCSp.);
/\ 1	 1 1

Sq. ~ GENSPATHCSq.) u GENSLOOPCSq.),
1	 1 /\ /\ 1

R~ ~ Ri u {~£,e) I £ E: SPi u Sqi}}}

comment: The new rules are now collected in R~, all left- and right-hand sides of the rules

in Ri are RCirreducible.

if R~ :j: 0 then {Ri+l ~ Ri u R~;

i ~ i+1;

goto NORMALIZATrON}

comment: At this point Ri is weakly confluent and reduced

OUTPUT: Ri
end

- 10

Procedure 4.]:

INPUT: A finite monadic string-rewriting system R on an ordered alphabet 2 such that
the monoid SRH is a group.

begin i< -O;Ri<—R=
NORMALIZATION: Reduce right—hand sides using first applicable ru le ;

while 381.82.x.y E 2*: +32 = xBly A (21,131) E Ri A (22,192) E Ri
do

begin Ri <— Ri\{(82.b2)};
if b2 & Aäiücbly) then Ri <— Ri u {<xb1y.b2>};

Reduce right—hand sides
and

comment: At this point the system Ri is reduced. Here. (xblybz) is the monadic rule resulting
from this pair using the ordering on Z if both sides are letters.

CONTEXTRESOLVING: For all a E E n IRRCRi) compute irreducible inverse a‘l;
Compute UCPCRN) R! <— @.

For all a E 2 do {Ea e— N‘RRcRI(a) a) n lRRCR)\{e}
E: <— GENSPATI—ICEa) u GENSLOOPCEa)
R! <—R! u{(Be)|B Efian

For all a E >: n IRRCIR.) do {La_ <— RIRCa"1) n IRRCR)\{a}
M a_1 +- GENSPATHCLa_1)
R; e R! u {(B a> l e E IOIEH};133-1 + GENSLOOPCLa_„3
R; <— R'. u {(Ee) | e Efia_1}}

For all (p.q) E UCPCRi) do {For all pi e MRR» qi E N‘c) do
{Spi e NRCq-RIRCpiD n IRRCR)\{e};

<— Ac-RIciJ) n IRRCR)\{oL _
spi <— GENSPATHCSp.) u GENSLOOPCSp)

e— GENSPATHCSq.) u GENSLOOP(Sq)
+- R u {redo | e ESp. „ q}

comment: The new rules are now collected in R! all left- and right-hand sides of the rules
in R1' are Ri -irreducible.

if Ri' i @ then {RN 6-- R1 u Rb
i +" i+13

goto NORMALIZATION}

comment: At this point Ri is weakly confluent and reduced

OUTPUT: R1
and

-10 . .

We claim that the above procedure determines a finite monadic system Ri that is weakly

confluent and that is equivalent to R whenever an equivalent e-confluent monadic

system exists. Otherwise it enumerates an infinite monadic system Reo having both these

properties.

The only place in the procedure where rules are deleted is in the NORMALIZATION subroutine.

If a rule is deleted here it might be replaced by smaller rules Cwhere rules are compared

first by their left-hand sides using length-lex-ordering and for equal left-hand sides by

comparing their right-hand sides). In fact for any proof using the deleted rule there is a

strictly smaller proof in the resulting system using the induced proof ordering. So.

when applied to some system R. NORMALIZATION always terminates with a reduced system

R' which is equivalent to Rand IRRCR 1
) c IRRCR). So a rule which was once deleted will

never be introduced again. neither by NORMALIZATION nor by CONTEXLRESOLVING. If no

letter is equivalent to e or to a different letter then ~R C ~R"

Lemma 4.2. Let R be a finite monadic string-rewriting system on L such that the monoid

~ is a group. If Procedure 4.1 terminates· on input R. then it yields a finite monadic system

R. on L that is equivalent to R. weakly confluent and reduced.

1

Proof: On input R. Procedure 4.1 computes a sequence of finite monadic systems R .R1,R2, .o
which are the systems after NORMALIZATION. satisfying the following conditions for j = 0.1.2 .

R. is equivalent to R
J

IRRCR. 1) c IRRCRJ
J+ . J
R is reduced.j

This stems from the fact that in each step only a finite set of monadic rules. which are
correct. is added. Procedure 4.1 terminates when Ri = 0. i.e. when no rule is added by the
subroutine CONTEXLRESOLVING applied to Ri' By Theorem 3.5 this happens iff Ri is weakly

confluent. •

Thus. whenever Procedure 4.1 terminates. the system Ri constructed has indeed all the
properties we want. It remains to show that this algorithm does terminate whenever a monadic
system S exists that is finite, equivalent to R. and confluent on [e~. Because of the discussion
at the end of Section 3 we may assume that S is in fact weakly confluent. Notice also that

the existence of such a system does not depend on the fixed ordering on L. since a different
ordering induces just a renaming. As a first step towards proving this fact. we analyse the
situation when Procedure 4.1 does not terminate.

Lemma 4.3.. Let R be a finite monadic string-rewriting system on L such that the monoid
~ is a group. If Procedure ·4.1 does not terminate on input R. then it enumerates an infinite
monadic system Reo that is reduced. equivalent to R and weakly confluent.
Proof: Assume that Procedure 4.1 does not terminate on input R. Then it enumerates an
infinite sequence Ro.R1.R2.... of finite monadic string-rewriting systems on L satisfying the
following conditions for all j :2 0:

Rj is equivalent to R and reduced
IRRCRj + 1) C IRRCR)j

<e>Rj C <e>Rj+l
<a>Rj c <a>Rj+1 for a E L n IRRCR. I),J+

- 11

We claim that the above procedure determines a finite monadic system Ri' that is weakly
confluent and that is equivalent to R whenever an equivalent e—confluent monadic

system exists. Otherwise it enumerates an infinite monadic system R 00 having both these

properties.
The only place in the procedure where rules are deleted is in the NORMALIZATION subroutine.

If a rule is deleted here it might be replaced by smaller rules (where rules are compared

first by their left-hand sides using length-lex-ordering and for equal left-hand sides by
comparing their right—hand sides). In fact for any proof using the deleted rule there is a
strictly smaller proof in the resulting system using the induced proof ordering. So.
when applied to some system R. NORMALIZATION always terminates with a reduced system
R' which is equivalent to R and IRRCR‘) C IRRCR). So a rule which was once deleted will
never be introduced again. neither by NORMALIZATION nor by CONTEXT-RESOLVING. If no
letter is equivalent to e or to a different letter then 39R C ÄR"

Lemma 4.2. Let R be a finite monadic string—rewriting system on 2 such that the monoid
DER is a group. If Procedure 4.1 terminates~on input R. then it yields a finite monadic system
Ri on 2 that is equivalent to R. weakly confluent and reduced.
Proof: On input R. Procedure 4.1 computes a sequence of finite monadic systems RO.R1.R2....
which are the systems after NORMALIZATION. satisfying the following conditions for j = 0.1.2....

— Rj is equivalent to R
IRR(RJ.+1) C IRRCRJ.)

- R. is reduced.
This stems from the fact that in each step only a finite set of monadic rules. which are
correct. is added. Procedure 4.1 terminates when R; = @. i.e. when no rule is added by the
subroutine CONTEX'ILRESOLVING applied to Ri. By Theorem 3.5 this happens iff Ri is weakly
confluent. .

Thus, whenever Procedure 4.1 terminates. the system Ri constructed has indeed all the
properties we want. It remains to show that this algorithm does terminate whenever a monadic
system S exists that is finite. equivalent to R, and confluent on [e]R. Because of the discussion
at the end of Section 3 we may assume that S is in fact weakly confluent. Notice also that
the existence of such a system does not depend on the fixed ordering on 2. since a different
ordering induces just a renaming. As a first step towards proving this fact. we analyse the
situation when Procedure 4.1 does not terminate.

Lemma 4.3.. Let R be a finite monadic string-rewriting system on 2 such that the monoid
SWR is a group. If Procedure'4.l does not terminate on input R. then it enumerates an infinite
monadic system R oo that is reduced. equivalent to R and weakly confluent.
Proof: Assume that Procedure 4.1 does not terminate on input R. Then it enumerates an
infinite sequence RO.R1.R2.... of finite monadic string-rewriting systems on 2 satisfying the
following conditions for all j 2 O:
— R]. is equivalent to R and reduced

IRRCRH) C IRRCRJ.)
" Rj C <3>Rj.1
— <a>Rj C <a>Rj+1 for a E 2 n IRRCq).

-11 ;

The last two properties are easy to prove if ~i C ~i"l' which is the case if no letter
becomes reducible to e or to a different letter. Otherwise a derivation w ~j a for
a E CL u {e}) n IRRCRj..1) can be transformed into a derivation w ~j.. l a. For doing so we
use the fact that R. and R. 1 are reduced, so if Cb,a) is a rule, this rule will be the only

J J"
one containing the letter b.

Let R := {Cf,b) I 3j ~ 0 Vi ~ j: CE,b) ER), i.e. R is the set of persistent rules. Procedure 4.1 oo	 oo
can be interpreted as enumerating this system. R is an infinite monadic system, since deleted oo
rules are never introduced again.

Claim 1: R is equivalent to R. oo

Proof: By construction ~R = ~Rj :J ~= for all j ~ 0., So if Cf,b) E R then f ~j b.

If this is not a proof in R ' some rule used in the proof is deleted and so there is a strictlyoo
smaller proof in some later system. Since this can happen only finitely often, there must be
a k such that f ~k b and all rules used in this proof are persistent. i.e., f ~= b. •

Claim 2: R is reduced.
oo

Proof: There are only finitely many rules of the form Cb,a) E R with bEL and
oo

a E L u {e}. Let k ~ 0 such that all these rules are in Rk Since Rk is reduced, there is at
most one rule for which the left-hand side is some fixed letter, and this letter does not appear
in any other rule. So the right-hand sides of rules in R are irreducible. Assume that CEI,bI)oo

and CxE Iy,b2) are both in R ' Then there is an index j ~ k such that both rules are in Rj. oo
However, this contradicts the fact that Rj is reduced.	 •

Claim 3: R is weakly confluent. oo
Proof: Let e =I: w E 6 R'" CRIR Ca) .a) n IRRCR). Then there is an index k ~ 0, such that= =	 00

w E 6~kCRIRkCa).a) n IRRCRk). But then w Et IRRCRk..I), which contradicts our choice of w.
Condition CiiD of Theorem 3.5 is verified in a similar way. Now let Cp,q) E UCPCR)' Then oo
there are rules Cf I ,bI),Cf ,b2) E R such that fIX = yf for some x,y EL"', 0 < Iyl < IE/2 oo 2
p = blx, q = yb2 and p and q do not have a common descendant mod R ' Notice that these oo

rules can only contain irreducible letters. Since R only contains the persistent rules, there oo

is an index j ~ 0 such that Cf I,bI),(f 2,b2) E Rj ..i . Hence Cp,q) is a critical pair for all Rj .. i, for

all i ~ O. Assume further that Rj contains all Cb,a) E Reo with b E ~. Then the pair cannot
be resolved mod Rj ..i for any i ~ 0, since any such resolution would involve only rules
with R -irreducible letters and so would lead to a resolution in R , i.e. Cp,q) E UCPCR. J.eo eo ~

Now let x E RIR= CPI) for some PI E 6~=Cp). Only a finite number of rules is involved in
the corresponding reductions, and hence there i~ an index k ~ j such that PI E 6~k(P) and

x E RIRk(p/ Hence x E RIRk..iCPl) for all i ~ O. By Theorem 3.5 we need to verify that
6~ Cqx) n IRRCR) = {el, i.e. that e is the only irreducible descendant of qx mod R . Assume = eo '"	 00
to	 the contrary that qx ~= y E IRRCReo)\ {el, As above we conclude that

'" Y E IRRCR£)\{e} for some f ~ k and hence y becomes reducible in R£..I' sinceqx ~£

y E SPI for this f. This contradicts the fact that y was irreducible in R and therewith in all

oo

Ri' By symmetry. also the other condition holds and hence, Reo is indeed weakly confluent
by Theorem 3.5. •
This completes the proof of Lemma 4.3. •

- 12

The last two properties are easy to prove if i>Ri C 51:21.1. which is the case if no letter
becomes reducible to e or to a different let ter . Otherwise a derivation w —>Rj a for
a E (Z u {e}) n IRRCRJ. 1) can be transformed into a derivation w _)Rj+1 a . For doing so we
use the fact that RJ. and R]. 1 are reduced, so if (b. a) is a rule. this rule will be the only
one containing the J le t te r b.
Let Rm == {(Eb) I Elj 2 0 Vi 2 j: (Eb) E Ri}, i.e. R00 is the set of persistent rules. Procedure 4.1
can be interpreted as enumerating this system. R m is an infinite monadic system. since deleted
rules are never introduced again.

Claim l : R oo is equivalent to R.
Proof: By construction <i>»JR = 491%]. 2 diatom for all j z o.‚ So if (so) e R then e <i>Rj. b.
If this is not a proof in R00. some rule used in the proof is deleted and so there is a strictly
smaller proof in some later system. Since this can happen only finitely often, there must be
a k such that E Arm b and all rules used i n this proof are persistent. i.e.. B @Rm b. I

Claim 2: R 0° is reduced.
Proof: There are only finitely many rules of the form (ba) E Roe with b E 2 and
a E Z u {e}. Let k 2 0 such that all these rules are in Rk. Since Rk is reduced. there is at
most one rule for which the left-hand side is some fixed letter. and this letter does not appear
in any other rule. So the right-hand sides of rules in R m are irreducible. Assume that (Bl.b1)
and CxEly.b2) are both in R00. Then there is an index j 2 k such that both rules are i n Rj.
However, this contradicts the fact that Rj is reduced. u

Claim 3: R00 is weakly confluent.
Proof: Let e # w E AEmCRIRCDCai-a) n IRRCROO). Then there is an index k 2 0. such that
w E AEkCRIRkCaIa) n IRRCRk). But then w € IRRCd). which contradicts our choice of W.
Condition (iii) of Theorem 3.5 is verified in a similar way. Now let (p.q) E UCPCRDD). Then
there are rules (Bl.bl).(82,b2) E Roo such that 21x = yBZ for some x.y E 2*. O < Iyl < lEII.
p = blx. q = yb2 and p and q do not have a common descendant mod R00. Notice that these
rules can only contain irreducible letters. Since R00 only contains the persistent rules. there
is an index j 2 0 such that (El.bl).(22.b2) E Rj+i ' Hence (p.q) is a critical pair for all RJ“, for
all i 2 0. Assume further that RJ. contains all (be) E R00 with b E 22. Then the pair cannot
be resolved mod Rj+i for any i 2 0. since any such resolution would involve only rules
with Roe -irreducible letters and so would lead to a resolution in R oo . i..e (p. q) E UCPCRj i) .

Now let x E RIR ml) for some p1 E ARm (p). Only a finite number of rules is involved in
the corresponding reductions. and hence there is an index k 2 j such that p1 E ARk) and
x E RIRkl). Hence x E RIqCpl) for all i 2 0. By Theorem 3.5 we need to verify that
ARoo (qx) n IRRCR 00) = {e} i.e. that e is the only irreducible descendant of qx mod Rm .Assume
to the contrary that qx +1200 y E IRRCR 00-.)\{e} As above we conclude that
qx img y E IRRCRB)\{e} for some E 2 k. and hence y becomes reducible in RB+1' since
y E Sp1 for this 8 . This contradicts the fact that y was irreducible i n R 00 and therewith i n all
Ri. By symmetry. also the other condition holds and hence. R m is indeed weakly confluent
by Theorem 3.5. I
This completes the proof of Lemma 4.3. I

-12 -

Thus. on input a finite monadic string-rewriting system R presenting a group. Procedure 4.1
always "computes" a monadic system Reo that is reduced. equivalent to R and weakly
confluent. Procedure 4.1 terminates iff this system Reo is finite. Hence, it remains to characterize

the condition under which this system Reo is indeed finite.

Theorem 4.4. Let R be a finite monadic string-rewriting system on ~ such that the monoid
~ is a group. On input R. Procedure 4.1 terminates if and only if there exists a finite
monadic system S on ~ that is equivalent to Rand e-confluent.
Proof: We may assume that S is even weakly confluent with the fixed ordering on ~ used
in Procedure 4.1 and reduced. If the procedure does not terminate on input R. then it
enumerates an infinite monadic system Reo that is reduced. weakly confluent and equivalent
to R. Let S = {CEI.bI),....CErn.b)}. Since Reo is equivalent to R and therewith to S. and since
R is weakly confluent. e. ~= b. for i = l, ... ,m. Hence. there is an index k 2 0 such thateo 1 1

e ~k for i = L ...m. i.e. ~s ~ ~k' However, since S is weakly confluent andi b i
[a]s = [a]Rk' a E ~ u {b}, Rk is already weakly confluent. Because of Theorem 3.5 this
yields that Rk = 0. i.e. on input R Procedure 4.1 terminates after computing Rk" •

It can easily be verified, that the system Reo is uniquely determined by R and the ordering

on ~, i.e. if Sand T are two reduced monadic systems on ~ that are both equivalent to R

and that are both weakly confluent. then Sand T are in fact identical. This coincides with

more general situations for systems that are confluent everywhere Csee e.g. [8]),

We close this section by presenting an example to illustrate the way Procedure 4.1 works.

Example 4.5: Let ~ = {a.b.d and R = {Cab.e),(ba.e),Cc2,e),(cac,b)}. ~ is a group. R is reduced.

a-I = b, b-1 = a. c-I = c and UCPCR) = {Cac.cb),Cbc.ca)l.

The procedure first computes the sets RICu) for u E ~ u {ac.cb.bc.ca}:

RICa) = {b} . RICb) = {a} . RICc) = {c,aca}

RICac) = {cb.ac.acab} . RICcb) = {ac,aaca}

RICbc) = {ca.acaa} . RICca) = {ca.bc,bacal.

Now the check D.~CRICu),u) n IRRCR) = re} for u E ~ is done. In the present case this is true. so

no rules are introduced by this test. Since aca is irreducible in RICc). we get the monadic rule

Caca.d as a candidate. Finally. from the test D.~Cp· RICq)). respectively D.~Cq· RICp)). for the two

unresolvable critical pairs in R we get as rules Cacaaca,e),Ccbcb.e),Ccaacaa.e) and Cbcbc.e). From

these last four rules, two are deleted by the NORMALIZATION and so

RI = R u {Caca.d.Ccbcb.e).Cbcbc,e)}.

In the next call of CONTEXLRESOLVING the inverses stay as they were, but new critical
pairs are added. e.g. Cbcb.c) and Ccbc.a). In fact these rules will be added, since bcb and cbc
are irreducible right-inverses of c. respectively b. After the second step and NORMALIZATION
we get the system

R2 = {Cab.e).Cba,e),(c2.e),Ccac,b),(aca,c),Ccbc.a),Cbcb,c)}

with unresolvable critical pairs {Cac,cb),Cbc.ca),Ccbb,aac),Ccaa,bbC)}.

For this monadic system RICa) n IRRC~) = {b}, RICb) n IRRCR) = {a} and RICc) n IRRCR) = {d, so
2 2
no proper monadic rules are added.

- 13

Thus. on input a finite monadic string-rewriting system R presenting a group. Procedure 4.1
always ”computes" a monadic system R 0° that is reduced. equivalent to R and weakly
confluent. Procedure 4.1 terminates iff this system R 00 is finite. Hence. it remains to characterize
the condition under which this system R oo is indeed finite.

Theorem 4.4. Let R be a finite monadic string-rewriting system on E such that the monoid
DER is a group. On input R. Procedure 4.1 terminates if and only if there exists a finite
monadic system S on Z that is equivalent to R and e—confluent.
Proof: We may assume that S is even weakly confluent with the fixed ordering on 2 used
in Procedure 4.1 and reduced. If the procedure does not terminate on input R. then it
enumerates an infinite monadic system R oo that is reduced. weakly confluent and equivalent
to R. Let S = { (B l .b1) (8m.b)}. Since R 00 is equivalent to R and therewith to S. and since
R00 i s weakly confluent. Bi _mm*bi for i = l m. Hence. there is an index k 2 0 such that
Bi wk bi for i = l m. i.e. “%s C -—>Rk. ~I-iowever. since S is weakly confluent and
[a]s = [ah-2k, a € Z u {b}. Rk is already weakly confluent. Because of Theorem 3.5 this
yields that R]; = @. i.e. on input R Procedure 4.1 terminates after computing Rk. I

It can easily be verified, that the system Rc0 is uniquely determined by R and the ordering
on Z. i.e. if S and T are two reduced monadic systems on E that are both equivalent to R
and that are both weakly confluent. then S and T are in fact identical. This coincides with
more general situations for systems that are confluent everywhere (see e .g . [8]).
We close this section by presenting an example to illustrate the way Procedure 4.1 works.

Example 4.5: Let E = {a.b.c} and R = {(ab.e).(ba.e).(c2.e).(cac,b)}. DER is a group. R is reduced.
51'1 = b. b‘1 = a . c'1 = c and UCPCR) = {(ac‚cb)‚(bc.ca)}.
The procedure first computes the sets RICu) for u E Z u {ac.cb.bc.ca}:
RICa) = {b} . RI(b) = {a} . RICc) = {c .aca}

RICac) = {cb.ac.acab} . RIc) = {ac.aaca}
RICbc) = {ca.acaa} . RI(ca) = {ca.bc.baca}.
Now the check AECRICuD-u) n IRRCR) = {e} for u E 2 is done. In the present case this is true. so
no rules are introduced by this test. Since aca is irreducible in RItc). we get the monadic rule
(aca.c) as a candidate. Finally. from the test AECp-RICqD. respectively AECq-RICpD. for the two
unresolvable critical pairs in R we get as rules (acaaca.e).(cbcb.e).(caacaa.e) and (bcbc.e). From
these last four rules. two are deleted by the NORMALIZATION and so

R1 = R u {(aca.c).(cbcb.e).(bcbc.e)}.

In the next call of CONTEXT_RESOLVING the inverses stay as they were. but new critical
pairs are added. e.g. (bcb.c) and (cbc.a). In fact these rules will be added. since bob and cbc
are irreducible right-inverses of c . respectively b . After the second step and NORMALIZATION
we get the system

R2 = {Cab.e) .(ba.e) .(c2.e) .(cac.b).(aca.c) .(cbc.a) .(bcb.c)}

with unresolvable critical pairs {Cac.cb) . (bc.ca) . (cbb.aac) . (caa.bbc)}.

For this monadic system RICa) n IRRCRZJ = {b}. RICb) n IRRCRZ) -- {a} and RICc) n IRRCRZJ = {c}. so
no proper monadic rules are added.

-13 . .

Finally because of

RICac) n IRRCR2

) = RICcb) n IRRCR2
) = {ac,cb}, RICbc) n IRRCR2) RICca) n IRRCR2) {bc,ca},

RICcbb) n IRRCR2) = RICaac) n IRRCR2) = kbb,aac,acb} and

RICcaa) n IRRCR2) = RICbbc) n IRRCR2) = {bbc,caa,bca}

no further rule is added. The procedure terminates with the weakly confluent system R2 .

5. Conclu.ding Rema.rks

We have developed a specialized completion procedure for monadic string-rewriting systems
presenting groups, based on a polynomial test for confluence on the congruence class of the

identity for such systems. The main purpose for such a procedure is to find equivalent
presentations which are syntactically restricted and hence provide much more structural and
algorithmical information than general presentations. The completion procedure itself can be seen
as a kind of unfailing completion, where the role of non-orientable equations is taken by the
unresolvable critical pairs, and ground confluence is replaced by confluence on [e]. Thus the

divergency of usual completion procedures may be avoided in some cases. A generalization
to other classes of systems, e.g. length-reducing ones, seems to be quite hard, since no known
decidable criteria for confluence on a single congruence class are known for other classes.
In the subroutine CONTEXLRESOLVING Procedure 4.1 adds special rules when ax .!,.R e but
xa .;t;.R e. In this way one tries to make <e> closed under cyclic permutations. Here is a
possible improvement of the procedure: Whenever an irreducible word w E [e] is found, add
special or monadic rules which guarantee that wand all cyclic permutations of it .reduce to
e. In fact this idea is similar to the one used in the completion procedures of C[4].[1O]) and
is based on the notion of symmetrized group presentations Cln
If we start with a special string-rewriting system R such that the left-hand sides form a
symmetrized set Cevery element is cyclically reduced and the set is closed under cyclic
permutations and taking inverses), then <e>R is closed under cyclic permutations. LeChenadec
c[10]) presents a process he calls the group symmetrization algorithm that on input a finite
symmetrized group presentation <~a> satisfying certain small cancellation conditions generates
the finite length-reducing system S used in Dehn's algorithm to solve the word problem for
such groups: Rules of the form w -,» e are split as w = uv -,» e, where u is maximal with
u ~ v-I, and the rule u -,» v-I is generated. We i3-re doing in f~ct the same if v-I is a letter.

There are examples where the sets RICa) or RICp.) are indeed infinite. One interesting question
• 1

is whether the confluence criterion can be specialized to have finite test sets and not just
regular ones. This is indeed the case for special systems [19]. The same confluence criterion
holds, if one restricts the elements of RI to be irreducible, but these sets still may be infinite
in the monadic case.
The examples presented here are fairly simple ones. The reason for this is due to the number
and size of the sets RIRiCu) involved. An implementation of the procedure is currently under
way and we hope to gain further insights into how the procedure behaves in practice.

- 14

Finally because of

RICac) n IRRCRZ) = RIc) n IRRCRZ) = {ac.cb}. RICbc) n IRRCRZ) = Rl(ca) n IRRCRZ) = {bc.ca}.
RIcb) n IRRCRZ) = RICaac) n IRRCRZ) = {cbb.aac.acb} and

RICcaa) n IRRCRZ) = RICbbc) n IRRCRZ) = {bbc.caa.bca}

no further rule is added. The procedure terminates with the weakly confluent system R2.

5. Concluding Remarks

We have developed a specialized completion procedure for monadic string—rewriting systems

presenting groups, based on a polynomial test for confluence on the congruence class of the

identity for such systems. The main purpose for such a procedure is to find equivalent

presentations which are syntactically restricted and hence provide much more structural and
algorithmical information than general presentations. The completion procedure itself can be seen
as a kind of unfailing completion. where the role of non—orientable equations is taken by the

unresolvable critical pairs. and ground confluence is replaced by confluence on [e]. Thus the

divergency of usual completion procedures may be avoided in some cases. A generalization
to other classes of systems. e.g. length-reducing ones. seems to be quite hard. since no known
decidable criteria for confluence on a single congruence class are known for other classes.
In the subroutine CONTEXT_RESOLVING Procedure 4.1 adds special rules when ax ÄR e but
xa :91? e. In this way one tries to make (e) closed under cyclic permutations. Here is a

possible improvement of the procedure: Whenever an irreducible ‘word w E [e] is found. add

special or monadic rules which guarantee that w and all cyclic permutations of it reduce to
e. In fact this idea is similar to the one used in the completion procedures of ([4].[10]) and
is based on the notion of symmetrized group presentations [1].].
If we start with a special string—rewriting system R such that the left-hand sides form a
symmetrized set (every element is cyclically reduced and the set is closed under cyclic
permutations and taking inverses). then <e>R is closed under cyclic permutations. LeChenadec
([10]) presents a process he calls the group symmetrization algorithm that on input a finite
symmetrized group presentation (ELL) satisfying certain small cancellation conditions generates
the finite length—reducing system S used in Dehn's algorithm to solve the word problem for
such groups: Rules of the form w -> e are split as w = uv -—> e. where u is maximal with
u > v'l. and the rule u —> v'1 is generated. We are doing in fact the same if v"1 is a letter.

There are examples where the sets RICa) or R_I(pi) are indeed infinite. One interesting question

is whether the confluence criterion can be specialized to have finite test sets and not just
regular ones. This is indeed the case for special systems [19]. The same confluence criterion
holds. if one restricts the elements of RI to be irreducible. but these sets still may be infinite
in the monadic case. -
The examples presented here are fairly simple ones. The reason for this is due to the number
and size of the sets RIRiCu) involved. An implementation of the procedure is currently under
way and we hope to gain further insights into how the procedure behaves in practice.

- 1 4 -

References

[lJ	 J.M. Autebert. L. Boasson, G. Senizergues; Groups and NTS languages; J. Comput.

System Sci. 35 (1987), 243-267.
[2J	 RV. Book; Decidable sentences of Church-Rosser congruences; Theoretical Computer

Science 23 (1983), 301-312.
[3J	 RV. Book Thue systems as rewriting 'systems; J. Symbolic Computation 3 Cl 987), 39-68.
[4J H. Bucken; Reduction systems and small cancellation theory; in: Proceedings 4th

Workshop on Automated Deduction Cl 979). 53-59.
[SJ RH. Gilman; Presentations of groups and monoids; J. of Algebra 57 Cl 979). 544-554.
[6J J.E. Hopcroft, J.o. Ullman; Introduction to Automata Theory, Languages and Computation

CAddison-Wesley. Reading, MA. 1979),
[7] M. Jantzen. Confluent String-Rewriting CSpringer. Berlin. 1988),
[8J D. Kapur. P. Narendran; The Knuth-Bendix completion procedure and Thue systems;

SIAM J. on Computing 14 Cl 985). 1052-1072.
[9J D. Knuth. P. Bendix; Simple word 'problems in universal algebras; in: J. Leech CedJ.

Computational Problems in Abstract Algebra CPergamon, New York 1970). 263-297.

[l0] Ph. LeChenadec; Canonical Forms in Finitely Presented Algebras CPitman: London,

Wiley: New York. Toronto, 1986).
[UJ RC, Lyndon, P.E. Schupp; Combinatorial Group Theory CSpringer, Berlin. 1977).
[l2J K. Madlener. F. Otto; Using string-rewriting for solving the word problem for finitely

presented groups; Information Processing Letters 24 (981), 281-284.

[13J K. Madlener, F. Otto; About the descriptive power of certain classes of finite string
rewri ting systems; Theoretical Computer Science 67 Cl 989). 143-172.

[l4J K. Madlener, F. Otto; Decidable sentences for context-free groups, Preprint No.. Universitat

Kaiserslautern. FB Informatik 1990.
[l5J D.E. Muller. P.E. Schupp; Groups the theory of ends, and context-free languages; J.

Comput. Systems Ci. 26 Cl 983). 295-310.
[l6J P. Narendran, C. OIDunlaing. F. Otto; It is undecidable whether a finite special

string-rewriting system presents a group: Discrete Math., to appear.
[17]	 F. Otto; On deciding whether a monoid 1S a free monoid or is a group; Acta

Informatica 23 Cl 986). 99-110.
[l8J F. Otto; On deciding the confluence of a finite string-rewriting system on a given

congruence class; J. Comp. Sci. Sciences 35 (987), 285-310.

[l9J	 F. Otto; The problem of deciding confluence on a given congruence class IS tractable
for finite special string-rewriting systems; Preprint No. 4/90. FB Math.. GhK. Kassel,
West Germany. 1990.

[20J	 F. Otfo; Completing a finite special string-rewriting system presenting a group on the
congruence class of the empty word; Preprint No. 8/90, FB Math., GhK. KasseI. West
Germany, 1990.

[21J	 C.c. Squier; Word problems and a homological finiteness condition for monoids,].
Pure AppI. Algebra 49 Cl 987). 201-217.

[22J L. Zhang; The word problem and undecidability results for finitely presented special
monoids; submitted for publication.

15

References

[1]

[2]

[3]
[4]

[5]
[b]

[T]
[8]

[9]

[10]

[u]
U2]

DB]

[14]

[15]

[16]

[IT]

[18]

l]9]

[20]

[21]

[22]

].M. Autebert. L. Boasson. G. Senizergues; Groups and NTS languages;] . Comput.
System Sci. 35 (198?). 243-261.
RV. Book; Decidable sentences of Church-Rosser congruences; Theoretical Computer
Science 23 (1983). 301—312.
RV. Book; Thue systems as rewriting systems; I. Symbolic Computation 3 (198?). 39-68.
I-I. Biicken; Reduction systems and small cancellation theory; in: Proceedings 4th
Workshop on Automated Deduction (1979). 53-59.
RH. Gilman; Presentations of groups and monoids;]. of Algebra 5? (1979). 544—554.
].E. l-Iopcroft.].D. Ullman; Introduction to Automate Theory. Languages and Computation
(Addison—Wesley. Reading. MA. 19T9).
M. Iantzen. Confluent String—Rewriting (Springer. Berlin. 1988).
D. Kapur. P. Narendran; The Knuth—Bendix completion procedure and Thue systems;
SIAM]. on Computing 14 (1985). lO52—lO'I2.
D. Knuth. P. Bendix; Simple word problems in universal algebras; in:]. Leech (ed.),
Computational Problems in Abstract Algebra (Pergamon. New York. 1910). 263-291
Ph. LeChenadec; Canonical Forms in Finitely Presented Algebras (Pitman: London.
Wiley: New York. Toronto. 1986).
RC. Lyndon. PE . SchUpp; Combinatorial Group Theory (Springer. Berlin. 19TH.
K. Madlener. F. Otto; Using string-rewriting for solving the word problem for finitely
presented groups; Information Processing Letters 24 (198T). 281-284.
K. Madlener, F. Otto; About the descriptive power of certain classes of finite string—
rewriting systems; Theoretical Computer Science öT (1989). 143-172.
K. Madlener. F. Otto; Decidable sentences for context-free groups. Preprint No.. Universität
Kaiserslautern. FB Informatik, 1990.
DE. Muller. PE . Schupp; Groups the theory of ends. and context-free languages; J.
Comput. Systems Ci . 26 (1983). 295-310.
P. Narendran. C . O'Dunlaing. F. Otto; It is undecidable whether a finite special
string-rewriting system presents a group: Discrete Math.. to appear.
F. Otto; On deciding whether a monoid is a free monoid or is a group; Acta
Informatica 23 (1986). 99-110.
F. Otto; On deciding the confluence of a finite string-rewriting system on a given
congruence class; I. Comp. Sci. Sciences 35 (198?). 285—310.
F. Otto; The problem of deciding confluence on a given congruence class is tractable
for finite special string—rewriting systems; Preprint No. 4/90, FB Math., GhK. Kassel.
West Germany. 1990.
F. Otto; Completing a finite special string-rewriting system presenting a group on the
congruence class of the empty word; Preprint No. 8/90. FB Math.. GhK. Kassel. West
Germany. 1990.
CC. Squier; Word problems and a homological finiteness condition for monoids.].
Pure Appl. Algebra 49 (198?). ZOl—ZIT.
L. Zhang; The word problem and undecidability results for finitely presented special
monoids; submitted for publication.

-15 -

	SR-1990-24-Header.jpg

