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Abstract

Based on a simplified test for determining whether a finite monadic string-rewriting system
R presenting a group is confluent on the equivalence class of the unity, a procedure for
caompleting a systern of this form on [e]R is derived. The completion procedure transforms
monadic presentations in monadic ones by adding monadic rules which are extracted from
appropriate infinite regular sets in polynomial time. The correctness and completeness of this
procedure are shown.



1. Introduction

Algebraic structures and rewrite methods for effectively computing information on such
structures have been studied extensively. In the present paper we are interested in groups that
are presented through certain string-rewriting systems. Our interest in groups has mainly two
reasons: first of all, the theory of groups is well developed, and secondly, groups are often used
as invariants for more complicated structures. For example, there are many results on structural
properties of groups, and knowing about these properties may give a lot of additional infor-
mation on the groups considered [11]. Also it was first for groups that rewrite methods were
used for solving the word problem as exernplified by Dehn's algorithm for the class of small
cancellation groups ([(41[10][11D.

Each finitely presented group G can be presented by a finite string-rewriting systemm R on
some alphabet Z, i.e. G is isomorphic to the factor monoid My, := Z*/<—*—>R of the free monoid
=* generated by ¥ modulo the Thue congruence é—*%R induced by R. Although we may
restrict the system R to only contain special rules, i.e., one side of each rule is the empty
word e, it is in general impossible to obtain much information on the Thue congruence @R
or on the monoid My from R. For example, it is even undecidable in general whether the
monoid My, presented by a finite special string-rewriting system R is at all a group [16]. In
fact, the undecidability of Markov properties can be carried over to the class of monoids that

are presented by finite special string-rewriting systems [22].

The situation improves dramatically when attention is restricted to those finite string-rewriting
systems R that are Noetherian and confluent. Let LR denote the reduction relation induced by
R, which is obtained by allowing the rules of R to be only applied only from left to right.
Then R is called Noetherian if there are no infinite secjuences of reductions modulo R, and it
is called confluent if, for all uv € =* u J_)R v implies that u -*—>R w and v i>R w for some
w € 2*. Thus, if R is Noetherian and confluent, then each congruence class mod J—>R contains
a unique "minimal” word, and given any word u € X*, the minimal word v congruent to
u can be computed through rewriting. Hence, the word problem for R is decidable, but also
some other problems become decidable in this setling. By restricting the syntactic form of the
rules admitted, eg. by allowing only length-reducing, monadic or special rules, stronger
decidability results have been obtained, (c.f., e.g., ([2].[3]) and even some results on structural
properties have been derived (see [13] for an overview).



The confluence property for finite Noetherian string-rewriting systerns is decidable. Based on a
confluence test Knuth and Bendix have developed a completion procedure for rewrite systems
[9]. If R is a finite Noetherian string-rewriting system on = that is non-confluent, then this
completion procedure tries to construct a finite string-rewriting system S on the same alphabet
T such that S is equivalent to R, i.e.. the two congruences <= % and = % coincide, and S is
Noetherian and confluent. Specialized completion procedures a la Knuth-Bendix have been
developed for groups [10]. However, even if the word problem of R is decidable and if it is
allowed to change the ordering used in the completion process, as well as the underlying
alphabet, they will not always succeed [21]. By restricting the ordering used or the syntactic
form of the rules allowed we are led to cormpletion procedures for certain restricted classes of

string-rewriting systemns e.g., length-reducing, monadic or special systerns. In case of success
these procedures may give more information on the group considered or algorithms that are
more efficient. Of course, they will not always succeed either.

If the monoid M, is a group. the word problem for R is reducible to the membership
problem for the congruence class [el;. The system R is called confluent on [e]R. if, for all
w € =¥, if w (_*%h e, implies w iéR e. If a Noetherian systemn R is confluent on [e]R, then
the process of reduction mod R yields an algorithm for testing membership in [e]R and there-
with for solving the word problem for R, even if R is not confluent. In fact Dehn's algorithm
for the word problem can be interpreted as cornputing minimal words modulo a finite length-
reducing system R, which in general is only confluent on [e];. As pointed out in [4][10] this
systerm can be computed by only using critical pairs which involve the group axioms,
provided the given presentation satisfies certain small cancellation conditions. An exarnple of
a system R, which presents a group, and which is confluent on [el;. but for which no
equivalent finite string- rewriting system exists, that is Noetherian and confluent, is described
in detail in [7] and [12].

The property of confluence on a given congruence class is undecidable in general even for
finite length-reducing string-rewriting systerns, and for finite monadic string-rewriting systems
only algorithms of doubly exponential time complexity are known for deciding this property
[18]. So far it is only for finite special string-rewriting systemns that this property has been
shown to be tractable in [19] Based on this result a completion procedures may now be
developed which, given a finite special string-rewriting system R that is not confluent on
[el. tries to compute a special system S which is equivalent to R and confluent on [e];.
For the case of finite special string-rewriting systems presenting groups such a specialized
completion procedure is described in [20].

Here we consider the case of finite monadic string-rewriting systems that present groups, i.e.,
each rule is of the form (8b) with € € Z* and b € 2 u {e}. For example, let £ = {abc} and
R = {(ab.e)(ba.e)c?e)lacb.c)l. Obviously, this system presents a group. In fact, this group is
isornorphic to the direct product of the free group F; of rank 1 and the cyclic group Z, of
order 2, and hence, it cannot be presented by a finite monadic and confluent string-rewriting
system on any set of generators [13]. However, let Ry := R v {(bcac)). Then R, is a finite
monadic system that is equivalent to R. Obviously, Ry is not confluent either, but for all w € =¥,
if w éi—q;o e, then w —*->R° e. i.e. R, is confluent on [elr,. Hence, the process of. reduction
mod R, gives a linear-time algorithm for solving the word problem for R. In fact many
decision problems can be solved, when they are restricted to the class of finite monadic
string-rewriting systems R that present groups, and that are confluent on [el,. For example,



all problems which can be expressed through linear sentences in the sense of Book [2] can
be solved in a uniform way in this setting [14]. In addition, the class of groups that can be
presented by these systems is strictly larger than the class of groups that can be presented
by finite length-redﬁcing and confluent string-rewriting systerns. In fact, the structural and
language theoretical properties of this class of groups are also well-known, since it is exactly
the class of contextfree groups [1]. which has also been characterized as the class of finite
extensions of finitely generated free groups [15].

Here we present a procedure which, given a finite monadic string-rewriting system R on
= such that the monoid My is a group as input, tries to construct a finite monadic system
S on ¥ such that S is equivalent to R and confluent on [b]R for all b € £ v {e}. This
procedure consists of two subroutines called CONTEXT.RESOLVING and NORMALIZATION,
where the former introduces new monadic and special rules to make the system confluent on
the relevant equivalence classes, while the latter deletes superfluous rules in order to keep
the systemn as small as possible. It is shown that this procedure either terminates with a finite
monadic system S, or it enumerates an infinite monadic system S. In either case, S is
equivalent to R and confluent on [b] for all b € Z v {e}. In addition, our procedure terminates
whenever there exists a finite monadic systemn that is equivalent to R and that is confluent
on [e]R. Thus, we have a completion procedure that is correct and complete.

This paper is organized as follows. After establishing the necessary notation in Section 2, we
derive some conditions in Section 3 that are necessary and sufficient to guarantee confluence
on [e] for finite monadic string-rewriting systems R presenting groups. Since these conditions
can be verified in polynomial time, we thus have a polynomial-time algorithm for deciding
confluence on [el; for this class of string-rewriting systems. In Section 4 the announced
completion procedure is presented together with the necessary proofs and some examples.
Finally, in Section 5 we point out the relation to the notion of symmetrized group-presentation
as it is considered in small cancellation theory ([10][11]). Also some possible improvements of
our completion procedure and sormme problems for future research are mentioned.

2. Preliminary results

After establishing notation we present some basic results about reductions in finite monadic
string-rewriting systermns. We assume the reader to be familiar with the foundations of au-
tomata theory as presented for exarnple by Hopcroft and Ullman [6]. and the theory of
string-rewriting systems. Therefore, we repeat only those definitions and results which will
be used here. For more details and background information, Book’s seminal paper [3] may
be consulted.

Let = be a finite alphabet. Then =* denotes the set of words over I including the empty
word e. A monadic string-rewriting system R on X is a subset of Z*x(E u {e}), where
=* - =*\{e} denotes the set of non-empty words over X. The elements (21) of R are called
(rewrite) rules. If b = e, the rule is called special. For all u,v € =* and (1) € R, ulv —>p ubv,
lL.e., = is the single-step reduction relation induced by R. Its reflexive and transitive closure N

R

is the reduction relation induced by R. For uv € 2* if u -i>R v, then u is an ancestor of v,

and v is a descendant of u. By {v>, we denote the set of all ancestors of v, and Ag(u) denotes
the set of all descendants of u. For a subset L ¢ £* <L> = J <u> .and A*M) - U A*@).
u€l u€l



Since we allow monadic rules of the form (a,b), where ab € Z are both letters, we will always
assume a fixed ordering » on Z, and for each rule of this form, we will require that a » b.
This slightly extends the usual definition of monadic systems, but i>R is terminating and the
usual properties still hold . For example, if R is finite and monadic, and if L. € =¥ is a regular
set that is given through a non-deterministic finite state acceptor (nfsa) U, then the set A;(L)
is regular as well, and an nfsa B for this set can be constructed in polynomial time [2]. If
there is no word y € Z* such that x — v. then x is called irreducible, otherwise, it is
reducible. If R is finite, then the set IRRR) of irreducible words is regular, and from R a
deterministic finite state acceptor (dfsa) for this set can be obtained in polynomial time [5].
By é-i—>R we denote the equivalence relation induced by —. which is actually a congruence
on =¥ It is called the Thue congruence generated by R. For w € ¥ [w]; = fu € 2% | u <%=, wi}
is the congruence class of w mod R. The set {[w]R | w € =*1 of congruence classes forms a
monoid M, under the operation [u]Ro[v]R = [uv]R with. identity [e]R' This monoid is
uniquely determined (up to isomorphism) by X and R, and hence, whenever M is a monoid
that is isomorphic to My, we call the ordered pair (Z:R) a (monoid-) presentation of M with
generators ¥ and defining relations R. Two systems R and S on the same alphabet Z are
called equivalent if they generate the same Thue congruence, i.e. @R = <L>S and M - M.
The monoid My, is a group if and only if, for each letter a € Z, there exists a word u_ € =*
such that au_ <—-*-—->R e. In this case there exists a function ': ¥ — 2 such that for all
w € Z* wl is a formal inverse of w, i.e, ww! <L>R wlw @R e. In fact , for every letter
a € X a candidate W, for u, of length less than (max{|g|: (€.b) € RN'Zl can be computed
from RI[I1T].

A subset L < XZ* is closed under cyclic permutations if uv € L implies vu € L for all
uv € Z*. The set [e]y is closed under cyclic permutations if M is a group.

A string-rewriting system R on X is confluent on [w]R for some word w € Z¥, if there exists
a word Wg € IRR(R) such that A;([w]R) n IRR(R) = {wo}. Thus, R is confluent on I:w]R if all
words in that class reduce to the same irreducible word, which then can serve as a normal
form for this class. R will be called weakly confluent if it is confluent on [b]R for all b € = v {e},
and it will be called e-confluent if it is confluent on [elL.

From now on we will assume that the monoid WM, is a group. This group is called
context-free if the set [e]; © =* is a context-free language. This property is independent of
the actually chosen finite presentation. The importance of maonadic string-rewriting systerns that
are weakly confluent or e-confluent is due to their relation to context-free groups and on
the decidability of the linear sentences of Book for this class [14]. Autebert, Boasson, and
Senizergues [1] established the following fundamental result on context-free groups.

Theorem 21 [Autebert et al. 87]. A finitely generated group @ is context-free if and only if
it has a presentation of the form (Z.R), where R is a finite, monadic and weakly confluent
string-rewriting system on 2.

An algebraic characterization of this class of groups has been given by Muller afd Schupp
[15 ] using the concept of virtually free groups (i.e. groups which contain a finitely: generated
free subgroup of finite index). So it is fairly easy to construct examples of such groups. They
all have presentations by finite and confluent string-rewriting systems, provided appropriate



orderings are used, which in general are not length-compatible. Note that the class of groups
that can be presented by finite, monadic and confluent systerns is a proper subclass of the
context-free groups. (See the example of Section 1 and [13]).

Example 22. a) Let 2 - {abcl and R - {tab.e).(ba.e)(c?e)lacacd. Then (ZR) presents a group
which is an extension of the free group of rank 1 and the cyclic group Z,. R is not confluent,
since ac <=3, cb and ca <", be. It is neither confluent on [ely. since cbeb <%= e nor
on the congruence class of any letter, because bcb A)R c, cac ef—>R b and cbe <*= a.

By adding the rule (bcb.c) we get a system which is confluent on [e] and [b]. and if (caRc,b)
and (cbc,a) are also taken, we get a weakly confluent system. (See also Exarnple 4.5).

b)Let 2 = {abct and R = {(ab.e).(ba.e)(c3e)(c2ac.a)(c?be,b)}). Then (Z.R) presents a group iso-
morphic to ZxZ,, the direct product of Z with the cyclic group of order 3. For all n = 1,
cac?ph @‘—)R e é—*-éR cbMcZa™. Since bc?a éR c2 %*)R ac?b, no factor u of ca™c?b" or
cbMc?a™ satisfying 1 < |u| < n is congruent to any letter. Thus, there is no finite monadic system
S that is both equivalent to R and confluent on [el,. Since ZxZ 4 is a context-free group, there
must be a monadic presentation of this group which is confluent on [e]. In fact, by introdu-
cing a new letter d and the rules (c2d),(cd.e)(dc.e).(d? ) together with {(axb.x),(bxa,x) | x € {c.d}}
we get a different presentation of ZxZ, for which confluence on [e] and even weak confluence

can be shown.

Confluence on one equivalence class is much harder to decide than confluence everywhere.
In fact, in [18] it is shown that this property is undecidable even for length-reducing systems,
while for monadic systems it may be decided using the decidability of the equivalence problem
for finite -turn deterministic pushdown autornata. For stating this result in detail we need some
more notation. Let R be a finite monadic string-rewriting system on X, and let (El,bl) and (Ez.bz)
be two rules of R. If £, = x8,y for some xy € =* or if €,x = y&, for some xy € ‘Z"E satis-
fying O < |yl < [€,], then the pair (b; xb,y), respectively (b;x,yb,), is called a critical pair of R.
By UCP(R) we denote the set {(x,y) | (x,y) is a critical pair of R such that A;(x) n A;(y) = &
of unresolvable critical pairs of R. Obviously, this set can be computed in polynomial time.
For w € IRR(R) we define a language LUCW) as follows: Lu(w) = {xay | x,y € IRR®), xXuy iéR w1
Here © is an additional letter not in 2. Then xny € L (W) if (x,y) is an irreducible context of
u in {wpp. Using sets of this form the confluence on [W]R can be characterized as follows:

Proposition 2.3 [Otto 87]. Let R be a monadic string-rewriting systemn on Z, and let w € [RR(R).
Then the following two staternents are equivalent:

@ The system R is confluent on (Wl

(i) V@v) € UCPR)Y: L (w) = L_(w).

Since the sets L (w) are in general context-free languages, this characterization will not be useful
in a completion procedure. In the next section we will derive an easier test by using the fact
that M, is a group. '

As a first simplification we would like to keep the system R as small as possible. A string-
rewriling system R is called reduced if, for each rule (8,;1) €R, r € IRR(R) and £ € IRRR\{(€.N).
In general there need not exist a reduced systemn which is equivalent to a given one. However,



such a reduced system exists when the ordering on =* is total or when the system R is confluent
on [r]R for every right-hand side r of R. The same holds for monadic systermns R as we shall see.
Let R be a finite monadic string-rewriting system on Z. By replacing every right-hand side
by an irreducible descendant of it, we get a finite monadic systemm R, on Z, which can be
obtained in polynomial time from R, such that IRR(R)) = IRR(R), T, € =3, and <Xy = <5
Also R, is weakly confluent or e-confluent if and only if R has this property. Recall that each
right-hand side of a rule of R, is irreducible, but still R, need not be reduced.
So assume that there are two rules (E bE,by) E€R such that £, = x8,y for some xy € =¥
Let R, *= R\ {(2,.b)}. Then —>R2 < —>R1 and IRR(R ) IRR(R, ). In general R, and R, will not
be equlvalent Nevertheless if R, is weakly conﬂuent then it is confluent on [e] and [b] for
every right-hand side b of a rule In particular, for all u € =%, u ﬁ_—q g or u ﬁl b implies
u —>R1 e respectively u ">R1 b. Since R, is terminating, there exists a word v € IRRR,) such
that u —>R2 v. Because of —Rry € —R, and IRR(Ry) = IRRR)), we see that v = e, respechvely
= b. Hence [elr, - [elr, and [blgr, - [blrs and R, is also weakly confluent. But then
81 i>R2 b, so R, and R, are equivalent (in fact +R1 —>R2)
If R, is only e- conﬂuent then as above [elr, = [elr,. and R, is also e-confluent. If b, - e,
then again R, is equlvalent to R,. So let b, € Z. Since Mg, is a group, b 14 ﬁl e and
bbby <g, e sob18—>R2eandbb1 >Ry e. Thus, we get 2 <——9R2bb g «Fop, by, ie.
R2 is equivalent to R;.

Thus, if R, is weakly confluent or e-confluent, we obtain a reduced finite monadic system R,
that is equivalent to R| and that has the same confluence property, by simply deleting those

rules (£.b) € R, one by one, for which £ is reducible by some other rule of R,. Notice that
the conditions

£, SRy by and bt Bry e and bbbyl Sg, e

can be verified in polynomial time. If they are not satisfied, then from the above discussion
we can conclude that either R, is not weakly confluent or R, is not e-confluent, respectively.
So when testing weak- or e-confluence of a monadic system R we may assume that R is re-
duced. When completing such a system, xb,y s b, can always be oriented so that a
monadic rule results. If no letter is congruent to e or to a different letter, then, if ¢, %Rz b,
then (xb,y.b)) has to be added to preserve the congruence, and then the resulting system R,
even satisfies —>R1 - —>R2 This will not be the case if a letter becomes reducible to a dlfferent
letter or to e.

3. A polynomial test for e-confluence

Let R be a finite reduced monadic string-rewriting system on Z such that My, is a group If
R is confluent on (el then for each a € =, there exists a word u, € =* such that au, —>R e.
In fact, au_ L5 e for some i s |Z], and hence, |u_| < [Z[-(u-1), where n = max{|2] \ @ b) € R}
Further, 1f au = e, then ua —>R e, since [e] is closed under cyclic permutations, and there-
with <e> has also this property. If any one of these conditions is not satisfied, then R is not
e-confluent. It is easy to see that R is e-confluent iff for all a € £ and w € [a?] n IRRR:
aw i>R e. This set might not be easy to construct, so we will use an approximation of it
namely the set of right-inverses which will play a central role in a test for e-confluence.



Definition 31. For u € $*, let RI;(w), the set of right inverses of u, consist of all words v
such that uv i>R e, and no step of the reduction sequence is performed entirely within u
or within v. To be precise

Rl(w = {v € =¥ |3k =1 .y, Vv € =* with u - WU, Vo= vievy, (avia) €R,

(ua vya) €R.ua,  vie) ERand u e * vy if g - eb

If uv €IRRR and uv i’R e, then v € RI(W since R is monadic. RIg(w may be infinite, but
it is easy to compute.

Lemma 32. For every u € =% RI () is a regular set. From R and u a nfsa’ for this set can
be constructed in polynomial time.
Proof: Let F be the set of all proper factors of left-hand sides of rules in R. Define a nfsa
AW - Q.23.q,9,) as follows:
- Q= {y.ep | Ju, € * 3b € T u fek Y, = u,b, u, is a prefix of u and €, € F}
- g = e - q, = (ee) and

(u2.€2) € 8((ul.21),a) iff (u1 = u, and Eé = Ela €EF or Ela € F and 3u3.u4 € =*

Uy = uguy,, uy F e u.ba L’R b and u, = ugb, £, - e for some b € Z v {eh
Then A() can be constructed in polynomial time and (ee) € 8(uelv) iff v € RIW. So
LAWY = RI0W. n

Now we are ready tfo formulate a test for e-confluence.

Theorem 3.3. R is confluent on [e] iff the following conditions are satisfied:
@ Va € Z: A;(RIR(a)-a) n IRR(R) = {e} if Rl (a) # & and
i V(p.g) € UCPR) Vp, € AXP) Vg, € AXq:
AXQ-RIglp) n IRR® = {e} = AXp Riglq;» n IRRR if RIgp) * @ # Rigdq,).

Proof: Assume that R is confluent on [el.

() Let a € £ and v € RIg@, ie. av i>R e. Since M, is a group, va @*—>R e and
Agva) ¢ [e] Because R is confluent on [el. ARva) n IRR®) = {e} holds.

() Let (pg) € UCPR), let p; € A;(p) and let v € RI(p) ie pv *%R e. Then
qv <X, pv <% e and since R is confluent on [el;. ARgV) n IRRR) = {el.

So the conditions are necessary.

To prove the converse implication, assume that conditions () and Gi) are satisfied.

Claim 1: <{e> is closed under cyclic permutations.

Proof: Assumne that this is not the case and let x € =* be of minimal length and minimal
with respect to X5 . such that x -*—>R e, but x' -%R e for some cyclic permutation x' of x.
Then there exists a cyclic permutation v = az of x, where a € £ and z € =¥ such that
y = az i—>R e, but za -7>R e.

In the reduction sequence az —*-9R e no step is entirely performed within a or within z, since
otherwise x would not be minimal. Hence, z € RI(a). By condition () this implies that za e,

. . . . R
contradicting our choice. Thus, <e>R is closed under cyclic permutations. "



Claim 2: R is confluent on [el,.
Proof: Let (p.ag) € UCP(R). By Proposition 2.3 we must show that, for all xy € IRR(R) Xpy % e
iff xqy —> e. By Claim 1, <{e> is closed under cyclic permutatlons lLe. pyx S e Smce R

is monadxc this means that there exist words p, € AX rP) and w € AX rlyx) such th?t W —>R e,
and each step in this reduction straddles the boundary between P and w. Hence w € Rip(p).
By condition G this 1mpl1es that gw —>R e and so qyx =y qw —> e. Agam by Claim 1
this means that xqy —> e. By symmetry we obtain: xpy % e iff xqy —> e. Thus, R is in
fact confluent on [el;. .
So conditions () and @ii) guarantee confluence on [el. n

According to the discussion at the end of Section 2, we may assume that R is reduced. Thus,
if (p.g) € UCPQ), then there exist words xy € Z* and rules (8,.b)8,by) € R such that

- ye, O<lyl<[gl p=bxand q - yb, In particular, y is a proper prefix of £, and
x is a proper suffix of £,, ie. x and y are both irreducible. If b, = e, then p is irreducible,
and if b, = e, then q is irreducible. Otherwise, the sets AX rP) and ARCq) are of size bounded
from above by u-|Z|, where g = max{|g| ) (,b) € R} Hence, to verify the conditions () and
(ii) of Theorem 3.3 only a polynomially bounded number of tests must be performed. Since
we can construct nfsa's recognizing the involved testsets in polynomial time, we obtain the
following result.

Corollary 3.4: The following problem is decidable in polynomial time.

INSTANCE: A finite monadic string-rewriting system R on I such that the monoid My is
a group.

QUESTION:  Is R confluent on [el; ?

Let us now consider the problem of deciding weak confluence of such a system. We may assume
that R is confluent on [e] and reduced, and so we only have to check the confluence of R
on the congruence classes of irreducible letters. Let b be such a letter and let b be an irre-
ducibkle inverse of b. Then RIR(b'l) n IRRR) = [b] n IRRR).

The inclusion RIRCb'l) n [RRR) <€ [b] n IRRMR) is clear. So let w € [b] n IRRMR). Then
blw <& R blp «* » €. Since R is monadic and confluent on [e] and since both b and w
are irreducible, we get w € RIR(b‘l) le, w € RIR(b‘l) n IRR(R). Thus, we have the following
characterization.

Theorem 3.5. R is weakly confluent iff conditions (1) and (i) of Theorem 3.3 and
(iid Va € £ n IRRR: RIR(a'l) n IRRR) = {a} for some irreducible inverse a! of a
are satisfied.

Since e-confluence is decidable in polynomial time, and since (ii) of Theorem 3.5 is also
decidable in polynomial time we get:

Corollary 3.6: The following problem is decidable in polynomial time. ;

INSTANCE: A finite monadic string-rewriting system R on Z such that the mon01d My, is
a group.

QUESTION:  Is R weakly confluent ?



One might ask whether e-confluence implies weak confluence. This is not the case as shown
by Example 2.2a). But the existence of an e-confluent monadic system R implies the existence
of a weakly confluent monadic system R' which is equivalent to R. In fact, R' may be con-
structed in polynomial time from R. W.log. we may assume that R is reduced. Thus, for each
reducible letter b, R contains exactly one rule with left-hand side b, and this letter does not
occur in any other rule. Let a be the smallest irreducible letter (Z is ordered) such that R is
not confluent on [a], and let a™ be an irreducible inverse of a. Then RIR(a'l) n IRRR) = [a] n IRRR)
properly contains {al. This set is finite in this case, since otherwise we would have irreducible
words ux"v €3, uv *, a. Since My, is a group, and since R is confluent on [e], this
would imply that x™ é*ﬁR e contradicting the fact that ux™v is irreducible. So let W e
be the irreducible words in [a] different from a, which may be cormputed in polynomial time.
Then R u {w;a | i = 1.k} is monadic, e-confluent and also confluent on [a]. This process
may be iterated with the next irreducible letter on which the resulting reduced system is not
confluent. For the resulting system R' we obtain iéR < *%R., R' is equivalent to R, and R' is
weakly confluent.

4. The completion procedure

Based on our confluence test, we now present a procedure which on input a finite monadic string-
rewriting system R, presenting a group. tries to construct a weakly confluent monadic system
R that is equivalent to R, This procedure contains two main subroutines: NORMALIZATION
and CONTEXT_RESOLVING. The first one realizes the reduction process explained at the end
of Section 2. The second one introduces new rules if necessary based on the test of Theorem 3.5.
There are three types of regular sets which may contribute new rules depending on the
condition actually checked:

E_ = ARRL@-a) n IRRRN\{e} for a € =
L= RIR(a‘l) n IRR®)\{a} for irreducible a € Z
Sp, = AR RIL(p) n [RRR\{e} , and

Sq, := AgRpP-Rig) n IRRRI\{e}
for (p.g) € UCP(R) and p; € A;(p) . q; € A;(q).

Since these sets might be infinite, we have to determine a finite number of special and
monadic rules which can reduce all the commputed divergences. For doing this, notice that E_,
Sp; and Sq; are subsets of [e], and that L al © [a]. From the nfsa's for these sets a finite
number of simple accepting paths and of simple loops which generate all accepting paths
may be determined in polynomial time. Since we have a group, the irreducible words
corresponding to simple loops are equivalent to e. (The argument for this being similar to
the one at the end of Section 3). In the nfsa for L__; the irreducible words corresponding to
simple accepting paths are equivalent to a, so they lead to proper monadic rules.

Let GENSPATH and GENSLOOP be procedures which compute the irreducible words
corresponding to the simple paths, respectively simple loops, when applied to a nfsa accepting
one of the above sets. Since the subroutine CONTEXT_RESOLVING may introduce new rules
which destroy the property of being reduced and also add new unresolved critical pairs, we
have to keep applying both subroutines until a stable system is obtained.



Procedure 4.:

INPUT: A finite monadic string-rewriting system R on an ordered alphabet X such that
the monoid M is a group.

begin i< 0, R < R
NORMALIZATION: Reduce right-hand sides using first applicable rule;
while 38,.8,xy € =% £, - xB )y A (B b) €R A ®,b) €R;
do
begin R, < R\{@,b)k
if b, € ARxbyy) then R, < R, v {Kxby.b >k
Reduce right-hand sides
end

comment: At this point the system R, is reduced. Here, {xb;y.b,> is the monadic rule resulting
from this pair using the ordering on X if both sides are letters.

CONTEXT_RESOLVING: For all a € £ n IRR(R,) compute irreducible inverse al;
Compute UCPR)) : R! « @ .
For all a € ¥ do {E, < A*(RI (a) a) n IRRCR)\{e}
B < GENSPATI—I(E ) v GENSLOOP(E,);
R' <R u (e | 2 €E

For all a € X n IRRR,) do Lo < R @) o IRRAR\{a),
M, < GENSPATHQL_.:
R < R uea>| £ eM_ 4}
£, < GENsLooP®_. )
Rl « ;u{c2e3|eeﬁa,l}}

For all (p.g) € UCP(R) do ({For all p; € Ax rRP) . q; € PN r@ do
{Sp, < A =@ RI(p) n IRRRI\{ek:
Sq, <« A*;Q(p-RIR(qi)) n IRRR\lek
Sp, < GENSPATH(Sp,) u GENSLOOP(Sp,)
Sq < GENSPATH(Sq,) v GENSLOOP(Sq);
Rl < R u{(Ee)|E€Sp uSq}}}

comrent: The new rules are now collected in R}, all left- and right-hand sides of the rules
in R are R;-irreducible.

if Rl + @ then (R, < R uR!

i <« i"‘l;

goto NORMALIZATION}
comment: At this point R, is weakly confluent and reduced

QUTPUT: R,
end
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We claim that the above procedure determines a finite monadic system R.l_ that is weakly
confluent and that is equivalent to R whenever an equivalent e-confluent monadic
systern exists. Otherwise it enumerates an infinite monadic system R, having both these
properties.

The only place in the procedure where rules are deleted is in the NORMALIZATION subroutine.
If a rule is deleted here it might be replaced by smaller rules (where rules are compared
first by their left-hand sides using length-lex-ordering and for equal left-hand sides by
comparing their right-hand sides). In fact for any proof using the deleted rule there is a
strictly smaller proof in the resulting system wusing the induced proof ordering. So,
when applied to some systern R, NORMALIZATION always terminates with a reduced system
R' which is equivalent to R and IRR(R") < IRR(R). So a rule which was once deleted will
never be introduced again, neither by NORMALIZATION nor by CONTEXT_.RESOLVING. If no
letter is equivalent to e or to a different letter then l'&->R < i>R,.

Lemma 4.2. Let R be a finite monadic string-rewriting system on 2 such that the moneid
My, is a group. If Procedure 41 terminates-on input R. then it yields a finite monadic system
R, on Z that is equivalent to R, weakly confluent and reduced.
Proof: On input R, Procedure 41 computes a sequence of finite monadic systerns R R .R,,..
which are the systerns after NORMALIZATION, satisfying the following conditions for j = Ol1.2,...
- Rj is equivalent to R

IRR(RJ.*I) c IRR(RJ.)
- RJ. is reduced.
This sterns from the fact that in each step only a finite set of monadic rules, which are
correct, is added. Procedure 4.1 terminates when R; = @, i.e. when no rule is added by the
subroutine CONTEXT_RESOLVING applied to R;. By Theorem 3.5 this happens iff R, is weakly
confluent. x

Thus, whenever Procedure 41 terminates, the systemm R, constructed has indeed all the
properties we want. It remains to show that this algorithm does terminate whenever a monadic
systern S exists that is finite, equivalent to R, and confluent on [el,. Because of the discussion
at the end of Section 3 we may assume that 5 is in fact weakly confluent. Notice also that
the existence of such a system does not depend on the fixed ordering on Z, since a different
ordering induces just a renaming. As a first step towards proving this fact, we analyse the
situation when Procedure 4.1 does not terminate.

Lemmma 4.3. Let R be a finite monadic string-rewriting system on X such that the ronoid
M, is a group. If Procedure 4.1 does not terminate on input R, then it enumerates an infinite
monadic system R_ that is reduced, equivalent to R and weakly confluent.
Proof: Assume that Procedure 41 doeés not terminate on input R. Then it enumerates an
infinite sequence R, R, .R,.. of finite monadic string-rewriting systems on I satisfying the
following conditions for all j = O:
- Rj is equivalent to R and reduced

IRR(RJ.‘I) C IRR(RJ.)
- <8>Rj C <€>Rj.1
- <a>Rj ¢ <{adrju for a € £ n IRRR,)).
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The last two properties are easy to prove if i>R1 c LRM which is the case if no letter
becomes reducible to e or to a different letter. Otherwise a denvahon w éRJ a for
a €@ vufehn IRR(R ) can be transformed into a derivation w —)R_H a. For doing so we
use the fact that R and R ., are reduced, so if (b,a) is a rule, this rule will be the only
one containing the letter b.

Let R = {(Eb) | 3320 Vizj@b) €RY} ie. R is the set of persistent rules. Procedure 4.
can be interpreted as enumerating this system. R __ is an infinite monadic system, since deleted
rules are never introduced again.

Claim 1: R is equivalent to R.

Proof: By construction <= = x Rj 2 x R, for all j 2 O, S0 if (Bb) €R then & <—’E—>Rj. k.
If this is not a proof in R_, some rule used in the proof is deleted and so there is a strictly
smaller proof in some later systerm. Since this can happen only finitely often, there must be

a k such that £ @Rk b and all rules used in this proof are persistent, ie., £ *ﬁm b. =

Claim 2 R_, is reduced.

Proof: There are only finitely many rules of the form (a € R_ with b € £ and
a € Z v {e}. Let k > O such that all these rules are in R, . Since R is reduced, there is at
most one rule for which the left-hand side is some fixed letter, and this letter does not appear
in any other rule. So the right-hand sides of rules in R_ are irreducible. Assumne that (£,,b))
and (x£,y.b,) are both in R_. Then there is an index j > k such that both rules are in Rj.
However, this contradicts the fact that Rj is reduced. n

Claim 3 R is weakly confluent.

Proof: Let e + w € AE@(RIRm(a)'a) n IRRRR_)J. Then there is an index k = O, such that
w € AﬁkCRIRk(a}a) n IRR(RR)). But then w § IRRR, ). which contradicts our choice of w.
Condition @ii) of Theorem 3.5 is verified in a similar way. Now let (p.g) € UCPR ). Then
there are rules (8,,b))(8, b)) € R_ such that £x - y2, for some xy € =* 0 < |yl < e, .
p = bjx. g = yb, and p and g do not have a cornmon descendant mod R . Notice that these
rules can only contain irreducible letters. Since R only contains the persistent rules, there
1s an index j 2 O such that (€, b)).(€,b,) € Rj*i' Hence (p.q) is a critical pair for all RP1 for
all 1 2 O. Assumme further that RJ. contains all (b,a) € R with b &€ Z. Then the pair cannot
be resolved mod Rj+i for any i = O, since any such resolution would involve only rules
with R_-irreducible letters and so would lead to a resolution in R_, ie (p.g € UCP(R -
Now let x € Rlg_(p)) for some p; € AR (p). Only a finite number of rules is mvolved in
the corresponding reductions, and hence there is an index k 2 j such that p; € ARk(p) and
x & RIg,(p)). Hence x € Rlgy.i(p,) for all i > O. By Theorem 35 we need to verify that
Afgoo(qx) n IRR(R ) = fel. ie. tha’( e is the only irreducible descendant of gx mod R_. Assume
to the contrary that gx —>R y € IRRR \{e}. As above we conclude that
gx -f>Re y € IRRRyN\fe} for some € = k, and hence y becomes reducible in R,,. since
y € Sp, for this £. This contradicts the fact that y was irreducible in R_, and therewith in all
R;. By symmetry, also the other condition holds and hence, R, is indeed weakly confluent
by Theorem 3.5. .
This completes the proof of Lemma 4.3. n
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Thus, on input a finite monadic string-rewriting system R presenting a group, Procedure 41
always “"computes” a monadic system R_ that is reduced. equivalent to R and weakly
confluent. Procedure 41 terminates iff this system R__ is finite. Hence, it remains to characterize
the condition under which this system R_ is indeed finite.

Theorem 4.4. Let R be a finite monadic string-rewriting system on 2 such that the monoid
My is a group. On input R, Procedure 41 terminates if and only if there exists a finite
monadic systern S on Z that is equivalent to R and e-confluent.

Proof: We may assume that S is even weakly confluent with the fixed ordering on = used
in Procedure 41 and reduced. If the procedure does not terminate on input R, then it
enumerates an infinite monadic system R__ that is reduced, weakly confluent and equivalent
to R Let 5 = {(8,.b)..(8_ b _J} Since R_ is equivalent to R and therewith to S, and since
R, is weakly confluent, £, _>R°°*bi for i= l....m. Hence, there is an index k = O such that
2, =Ry b for i = l..m, ie —>5 < —3Ry. -However, since S is weakly confluent and
[alg - [alrk. & € 2 v (b}, R, is already weakly confluent. Because of Theorem 3.5 this
yields that R| - &, i.e. on input R Procedure 4] terminates after computing R, . =

It can easily be verified, that the system R_ is uniquely determined by R and the ordering
on I, ie. if S and T are two reduced monadic systems on X that are both equivalent to R
and that are both weakly confluent, then S and T are in fact identical. This coincides with
more general situations for systems that are confluent everywhere (see e.g. [8]).

We close this section by presenting an example to illustrate the way Procedure 4.1 works.

Example 4.5: Let = - {abcl and R - {ab.e).(ba.e),(c2e)cac, b}, My, is a group, R is reduced,
al-=b b!=a c?=-cand UCPR - {(ac.ch).lbc.cal.

The procedure first computes the sets RI(u) for u € 2 v {accbbc.calk

Ri(a) = {b} , RIb) = {a} , Rlle) = {c,acal

Rl(ac) = {cb.ac,acab}l , Rl(cb) = {ac,aacal

Ri(be) = {ca,acaal , Ri(ca) = {cabcbacal.

Now the check A;(RI(U)'U) n IRR(R) = {e} for u € 2 is done. In the present case this is true, so
no rules are introduced by this test. Since aca is irreducible in Rl{c), we get the monadic rule
(aca,c) as a candidate. Finally, from the test A;(p-RI(q)), respectively AE(q-RI(p)). for the two
unresclvable critical pairs in R we get as rules (acaaca,e){cbcb,e),(caacaa,e) and (bcbe.e). Fram
these last four rules, two are deleted by the NORMALIZATION and so

R1 = R v {(aca,0),(cbcb.e).(bcbe,ell.

In the next call of CONTEXT_RESOLVING the inverses stay as they were, but new critical
pairs are added. e.g. (beb.c) and (cbe,a). In fact these rules will be added, since beb and cbc
are irreducible right-inverses of ¢, respectively b. After the second step and NORMALIZATION
we get the system

R, = {(ab.e).(ba,e)(c?e).(cac.b)(aca,c).cbe.a).(beb,c)}

with unresolvable critical pairs {(ac,cb).(bc,ca)(cbb,aac)(caa bbe)}.
For this monadic system Rl(a) n IRRR,) = {b}. RI(b) n IRRR,) = {a} and Rl(c) n IRRR,) = {c}. so
no proper monadic rules are added.
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Finally because of
Ri(ac) n IRRR,) = Rl(cb) n IRRR,) - {ac.cb}, Ri(bc) n IRRR,) = Rl(ca) n IRRR,) = {bc.cal,
Rl(cbb) n IRRR,) = Rl(aac) n IRRR,) - {cbb,aac,acb} and

Ri(caa) n IRR(R,) = Rl(bbe) n IRRR,) - {bbc,caabeal
neo further rule is added. The procedure terminates with the weakly confluent system R,

5. Concluding Remarks

We have developed a specialized completion procedure for monadic string-rewriting systerns
presenting groups, based on a polynomial test for confluence on the congruence class of the
identity for such systems. The main purpose for such a procedure is to find equivalent
presentations which are syntactically restricted and hence provide much more structural and
algorithrmical information than general presentations. The completion procedure itself can be seen
as a kind of unfailing completion, where the role of non-crientable equations is taken by the
unresolvable critical pairs, and ground confluence is replaced by confluence on [e]. Thus the
divergency of usual completion procedures may be avoided in some cases. A generalization
to other classes of systems, e.g. length-reducing ones, seems to be quite hard, since no known
decidable criteria for confluence on a single congruence class are known for other classes.
In the subroutine CONTEXT_RESOLVING Procedure 4.1 adds special rules when ax -*%R e but
Xa ;&R e. In this way one tries to make <{e) closed under cyclic permutations. Here is a
possible improvement of the procedure: Whenever an irreducible word w € [e] is found, add
special or monadic rules which guarantee that w and all cyclic permutations of it reduce to
e. In fact this idea is similar to the one used in the completion procedures of ([4][10]) and
is based on the notion of symmetrized group presentations [11 ].

If we start with a special string-rewriting systern R such that the left-hand sides form a
symmetrized set (every element is cyclically reduced and the set is closed under cyclic
permutations and taking inverses), then <{e>y is closed under cyclic permutations. LeChenadec
([10] presents a process he calls the group symmetrization algorithm that on input a finite
syrnmetrized group presentation <{Z;L) satisfying certain small cancellation conditions generates
the finite length-reducing system S used in Dehn's algorithm to solve the word problem for
such groups: Rules of the form w — e are split as w = uv = e, where u is maximal with
u s vl and the rule u = v is generated. We are doing in fact the same if vl is a letter.

There are examples where the sets Rl(a) or Rl(p;) are indeed infinite. One interesting question
is whether the confluence criterion can be specialized to have finite test sets and not just
regular ones. This is indeed the case for special systems [19]. The same confluence criterion
holds, if one restricts the elements of RI to be irreducible, but these sets still may be infinite
in the monadic case. .

The examples presented here are fairly simple ones. The reason for this is due to the number
and size of the sets RIg;(w) involved. An implementation of the procedure is currently under
way and we hope to gain further insights into how the procedure behaves in practice.
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