
U)
LLI@;
<‘2:
_, \D: :ä 2: €
(D im -
<I<D x: €mI—I—u .‚um;? g-
00m %Zig r .
LE=>< &| _ | _< \
_Im>-‘::—Ln cfi 2! &
mEN<ä
LU 1 -02 ”
> .32xo Q:

{ u.!
Du. L9

S
E

K
I—

R
E

P
O

R
T

IS
S

N
1

4
3

7
—

4
4

4
7

„ @ ;

ÜKDG/VW)
518%,

The New Standard Tactics of the
Inductive Theorem Prover QUODLIBET

Tobias Schmidt—Samoa
FB Informatik, TU Kaiserslautern
schmidtcinformat i k . uni-kl . de

SEKI Report SR—2004—01

This SEKI Report was internally reviewed by:
Claus-Peter Wirth
FR Informatik, Universität des Saarlandes, D—66123‘Saarbriicken, Germany
E—mail: cp©ags.uni-sb.de
WWW: http : ”www . ags .uni- sb .— de/ "cp/ welcome ‚html

Editor of SEKI series:
Claus—Peter Wirth
FR Informatik, Universität des Saarlandes, D—66123Saarbrücken, Germany
E-mail: cp@ags.uni-sb.de
WWW: ht tp: Hmm . ags . uni- sb . de/ "cp/welcome . html

The New Standard Tactics of the

Inductive Theorem Prover QUODLIBET

Tobias Schmidt-Samoa
FB Informatik, TU Kaiserslautern
schmidt©informatik.uni-kl.de

September 18, 2004

Abstract _

QUODLIBET is a tactic-based inductive theorem prover for the verification of algebraic
specifications of algorithms in the style of abstract data types with positive/negative-
conditional equations. Its core system consists of a small inference machine kernel
that merely acts as a proof checker. Automation is achieved with tactics written in
QML (QUODLIBET-Meta—Language), an adapted imperative programming language. .
In this paper, we describe QUODLIBET’S new standard tactics, a pool of general pur--- ‘
pose tactics provided with the core system that support the user in proving inductive .
theorems. We aim at clarifying the underlying ideas as well as explaining the param- =
eters with which the user can influence the behavior of the tactics during the proof
process. One of the major achievements of this paper is the application of condi-
tional lemmas controlled by obligatory and mandatory literals. This has drastically
improved the degree of automation without increasing the runtime significantly as will
be illustrated by the case studies. Nevertheless, the degree of automation depends on
the specification style used. Thus, we will also give some guidelines how to write
specifications and how to use the new tactics efficiently.

1 Introduction

QUODLIBET [1, 11] is an inductive theorem prover for the specification and verification
of algorithms in the style of abstract data types. It admits partial definitions of opera-
tors over free constructors C using (possibly non-terminating) positive/negative-conditional
equations E as well as destructo'r recursion or mutual recursion. There is a well-defined
semantics based on the class of so-called data models, i.e., models that do not equalize
any different constructor ground terms. This class is guaranteed not to be empty if the
specification fulfills a simple admissibility condition that essentially calls for confluence but
not termination of the axioms given by E. This is tested by a simple syntactic confluence
criterion. A clause is inductively valid iff it is valid in all data models of the specification.
This semantics is monotonic, i.e., an inductively valid clause remains inductively valid in
all consistent extensions of a specification. As usual a clause is a disjunction of literals, a

literal is an atom or a negated atom. Atoms are built from predefined predicate symbols
. and terms. We have three kinds of atoms: equality atoms (represented by the predicate

symbol =) for the formulation of equality-based specifications, definedness atoms (def) to
establish the domain of (partial) Operators, and order atoms (<) for the representation of
a fixed induction order.

QUODLIBET provides the user with an inference system to construct proofs of lemmas.
Each inference rule transforms a goal into a (possibly empty) sequence of subgoals. A goal
consists of a clause and a weight that determines a measure of the appropriate clause. To
perform inductive proofs we do not want to use an induction scheme that has to be fixed at
the beginning of the proof like in explicit induction [5, 19]. Instead, during the proof process
we can apply a lemma inductively resulting in an additional inductive proof obligation. To
establish an inductive proof obligation, it has to be shown that the weight of the'induction
hypothesis is “smaller” than the weight of the goal it is applied to . At the beginning of
the proof process the weight of a. lemma is represented by a weight variable. It may be
instantiated during the proof by a tuple of terms using the variables of the lemma clause and
arbitrary function symbols. This has to be done such that all inductive proof obligations
can be fulfilled W.r.t. the fixed induction order which is a lexicographical combination based
on the length of constructor ground terms. By the instantiation of the weight we have a
degree of freedom to choose the concrete induction order. In this way we can realize lazy
induction [14] and descente infinie [17]. Certainly, we can also simulate explicit induction. :

There are inference rules for verifying simple tautologies, decomposing atoms, removing
redundant literals, using negated atoms, handling order atoms, performing case analysis,
and applying lemmas1 (inductively or nOn-induCtively‘) to rewrite or subsume goals.- Each
inference rule fulfills two local properties —-— soundness and safeness -- that are used for
establishing inductive validity. Informally speaking, under the assumption that all non-
inductively applied lemmas are inductively valid, the soundness of an inference rule means
that there will be a “smaller” counter-example to one of the subgoals if there is a counter-
example to the original goal; an inference rule is safe if the inductive validity of the original
goal implies the inductive validity of all subgoals.

A proof attempt of a lemma is represented by a proof state tree which contains goal and
inference nodes. A proof state tree is closed iff all leaf nodes are inference nodes. In this
case the soundness of the inference rules guarantees the inductive validity of the lemma
provided that all non-inductively applied lemmas are inductively valid. Contrarily, if a goal
with a non-valid clause, like the empty clause, is derived in a proof attempt of a lemma,
then this lemma or one of the applied lemmas cannot be inductively valid because of the
safeness property of the inference rules. In general it is also possible to start several proof
attempts in parallel by applying more than one inference rule to a goal node leading to an
AN D / OR—tree as proof state tree.

QUODLIBET’S core system consists of a small inference machine kernel that guarantees
soundness by allowing to alter the inference machine state only by a limited number of
actions. These actions can be controlled by a text-based or graphical user-interface. The
actions enable the user to enter and consistently extend specifications that fulfill the admis-
sibility condition. Furthermore, the user can perform proofs by applying inference rules.

1We regard axioms as a subset of all lemmas that are inductively valid by definition. As a consequence
we always apply axioms non—inductively.

In this way the system merely acts as a proof checker just allowing sound proofs without
any automation. '

To achieve semi—automation of the proof process we use a tactic-based approach. The
user can formulate tactics in an adapted imperative programming language called QML
(QUODLIBET-Meta—Language, see [15]). As the tactics can only use the commands of the

_ inference machine to alter the state they cannot produce incorrect proofs. Tactics can be
written to support the whole proof process in the form of general purpose tactics as well
as Specialized for a certain domain. In this paper we will describe the new general purpose
standard tactics that are made available within the system. They are mainly inspired by
the former standard tactics described in [11] and by ideas develOped in [5] and [10]. They
are intended to overcome some of the shortcomings of the former standard tactics that will
be described in the next section.

The rest of the paper is organized as follows: In Section 2 we will describe the proof
process as i t is modeled by the new standard tactics in comparison to the old ones. At the
end of this section we will also give some comments on explicit induction. One of the major
achievements of the new tactics is the automatic application of conditional lemmas that are
not directly applicable, i.e., whose conditions are not completely fulfilled in the goal clause.
QUODLIBET provides inference rules to apply such lemmas creating condition subgoals that
have to be proved for each missing condition. But as these condition subgoals just extend
“the original goal by some literals, special actions have to be taken to avoid non-terminating
computations during the simplification process. This is controlled by mandatory literals in
the goal clause and obligatory literals in the lemma clause as described in Section 3. After
this motivation of the inductive proof process as well as a main part of the simplification.
process we will explain how to write specifications and use these proof processes in Section 4.
In Section 5 we will describe the new tactiCS in detail arranged according to their modular
structure. We will illustrate the degree of automation of. the new tactics by some case
studies in Section 6 and conclude with an outlook on further work in Section 7.

2 The Inductive Proof Process

An inductive proof for a clause go performed by descente infinie can be divided into the
following steps:

1 . At first a case analysis is performed that depends on the recursion analysis of the
operators in go and leads to a case splitting. This step is for instance described for
explicit induction in [5] or for the cover set method in [19].

2. Each case is simplified by applying inference rules and using the given lemmas in
order to reduce it to a valid formula (base case) or to apply a smaller instance of cp
(induction step) or other lemmas that are used by mutual induction.

3. It has to be shown that only smaller instances are used in the induction step. There-
fore an appropriate wellfounded induction order has to be selected and the order
constraints have to be proved.

4. If the clause cannot be shown inductively valid by this method additional steps have
to be taken into account as e.g. generalization of (‚0 or the speculation of additional
bmmfi . -

This whole proof scheme was already used by the former standard tactics in [11]. The han-
dling of step 1 is inherited from these old tactics if the inductive case analysis is performed
fully automatically. It merges the expandable operator calls of (p, that do not obstruct other
operator calls in the clause, into one inductive case splitting as described in [11]. Besides,
the new tactics enable the user to perform the case analysis semi-automatically by select-
ing the operator calls that should be considered or manually by specifying the induction
variables themselves.

In contrast to step 1, the simplification process of step 2 is completely reorganized in
comparison to the old tactics. While the old tactics use different simplification tactics for
different kinds of atoms that perform similar tasks with code sharing only on the level of
auxiliary functions, there is essentially only one simplification tactic in the new implemen-
tation. This simplification tactic is divided into several passes, each one can be started
separately for a special literal or for all literals. Besides, the handling in each pass depends
on the kind of atom considered. This leads to a flexible simplification structure with huge
code sharing so that the whole simplification process benefits from improvements of the tac-
tic code. Furthermore the new tactics are parameterized so that some performance-relevant. ..
settings can be changed at runtime. Last but not least the new tactics tackle the following-
additional simplification tasks that will be explained in the next sections in more detail: ‘

o delayed verification of conditions by the use of condition subgoals when applying
conditional lemmas With the possibility to debug abortive attempts;

o rewriting with permatative lemmas as e.g. commutativity of plus or times provided
the instantiation of the right—hand side is smaller than that of the left-hand side in a
fixed wellfounded order (see [5]);

o applying lemmas inductively additional to the one represented by the current proof
state tree, enabling semi-automatic handling of mutually recursive functions;

o improved handling of order and negated equality atoms;

0 provision of alternative literal representations for boolean equalities and inequalities;

o avoidance of repetitions of equal inference steps in one path of a proof state tree to
prevent infinite loops and speed up the computation;

o avoidance of top-level repetitions of alternative proof attempts so that different proof
attempts will be computed each time.

Step 3 is performed by instantiating the weight variables of all involved induction hypothe-
ses appropriately. In case of mutual induction with different weight variables this step is
not automatized until now. In case of simple (non-mutual) induction, every lexicographi-
cal combination of the constructor variables in the lemma (possibly modified by monadic

operators called weight modifiers in the following, see Section 5.4.2) is tried as weight in-
stantiation. To cope with destructor recursion the tactics consider order lemmas activated
by the user. By this procedure, the weight variable can be instantiated and the order con-
straints proved automatically in nearly all cases, provided the needed weight modifiers and
order lemmas have been activated before. The new achievement in this step is the use of
weight modifiers enabling the tactics to set the weight for sorting algorithms to the length
of the sorted list instead the list itself which leads to simpler proofs of the order constraints.

The last step 4 is supported only rudimentally. So far, the tactics do not provide means
to generalize a lemma clause. The user can choose to start a new inductive proof attempt
automatically for each goal clause the simplification process gets stuck by generating a new
proof state tree. But without generalization of the clause this method does not solve many
problems but leads to infinite loops in moSt cases. Nevertheless there are proofs that profit
from this possibility. '

The overall proof process is modeled by special tactics called strategies. The old tactics
offered only two different strategies that both performed an automatic inductive case analy-
sis, simplified the resulting goals possibly using the root of the proof state tree inductively.
They only differed in that the standard—strategy started a new proof state tree with
another inductive proof for every goal that could not be simplified anymore, whereas the
res t r ic ted-s t ra tegy stopped the whole proof process in this situation. We call a strategy
recursive iff i t tries another inductive proof when it gets stuck. In this sense, the standard-
strategy is a recursive strategy. The new tactics on the other hand are parameterized by
three orthogonal decisions:

0 the way in which the inductive case splitting is performed: automatically, semi-
automatically or manually;

o the lemmas that can be used as induction hypotheses;

0 the decision whether the strategy is recursive.

This leads to a number of 12 different proof schemes so that the user can decide very flexible
how the proof attempt should be performed. Besides, there are additional parameters to
fine-tune the simplification process. By changing these parameters, the user can influence
e.g. the handling of conditional and permutative lemmas, of free variables, and of order or
negated equational atoms.

With the new tactics it is possible to reduce the manual applications for the examples
in [11] from 43 to 5 without increasing the required time significantly. Furthermore we were
able to perform some other case studies including sorting algorithms, irrationality of &,
properties of the greatest common divisor and the lexicographical path order (Lpo) using
mutual recursion. These examples were partly out of scope of the old tactics because of
the many proof steps that have to be performed manually. Nevertheless the new tactics do
not prove complicated lemmas on their own. Thus, the user has to learn how to formulate
lemmas, speculate intermediate lemmas, activate the right lemmas for the simplification
process, and set the parameters of the tactics efficiently.

In explicit induction, steps 1 to 3 of our inductive proof scheme are performed at once
at the beginning of the proof attempt. Therefore, this method depends on a strong analysis
process. An induction scheme is introduced consisting of the formulas generated in step
1 as well as the induction hypotheses that solely can be used during the induction steps.
Thus, an implication is constructed for each induction step relating induction hypotheses
with induction conclusions. The induction schemes can only be generated according to
terminating total function definitions that guarantee the wellfoundedness of the associated
induction order.

The delay of the wellfoundedness proof in our approach does not cause any major differ-
ences because no information about this proof is used for guiding the inductive proof process
in explicit induction. But explicit induction can take advantage of the early introduction
of the induction hypotheses if they are appropriate:

0 The simplification process can be guided in a goal-directed way using heuristics such
as rippling techniques (see [7]).

0 The application of lemmas, as e.g. transitivity lemmas, can be supported by providing
additional information about the instantiation of free variables (see Example 3.3 in
[17])-

. The information can be used in step 4 to generalize lemmas or speculate additional-
lemmas (see [5]). -

The first of the above advantages of explicit induction is made independent from eager
hypotheses application in [14]: Instead of using rippling techniques to rewrite an induction
conclusion to a concrete induction hypothesis it‘ is only important to move the differences of
the induction conclusidn (w.r.t. the original lemma) to tolerable positions, i.e., to top-level
or variable positions. Therefore, rippling techniques can also be used with our approach.
Whereas we cannot completely compensate for the other two advantages of explicit induc-
tion there are some problems with the explicit induction approach as well: As explained in
[14] it is not always possible to compute appropriate induction hypotheses at the beginning
of a proof attempt. Thus, the method of explicit induction may fail even for relatively sim-
ple examples unless the user provides an appr0priate induction scheme himself. Especially,
when dealing with mutually recursive functions this seems to raise great difficulties.

Our approach can be used to simulate explicit induction. Therefore, we can also combine
both approaches by introducing the most probable induction hypotheses at the beginning
of the proof. Whereas we are then able to perform the same proofs as in explicit induction
we are not restricted to that method but can also use other induction hypotheses if they
are more appropriate. This approach will be studied in the future.

3 Application of Conditional Lemmas

One of the most crucial tasks during the simplification process, and hence in the whole
proof process, is the application of lemmas. Lemmas are provided by the user to guide the
proof process. On the one hand, they should be checked for applicability intensively to free
the user from routine work. On the other hand, heuristics have to control the applications
to guarantee the termination of the process within a reasonable amount of time. The
situation gets even more complicated as we deal with conditional lemmas. Thus, we have
to try to relieve the conditions within a given context provided by the considered goal,
possibly using other conditional lemmas. There are some important questions regarding
this recursive process:

o In which order should the literals in the goal be considered?

0 In which order should the lemmas be checked for applicability?

o What kind of checks have to be performed before we try to apply a lemma?

0 Is there a special treatment when trying to relieve conditions of a conditional lemma?

Many authors have dealt with the application of conditional lemmas. An overview can
be found in [18] where contextual rewriting as a generalization of conditional rewriting is
described. It pays special attention to the context of the goal which the conditional lemma
is applied in. We will compare our treatment to that approach at the end of this section.

We start with some notions to clarify the task. Both, the lemma and the goal it is
applied to, consist of clauses. A clause is represented by its set of literals {l1, . . . ‚l„}. A
clause can be interpreted as an implication E /\ - - - /\ E => ln, where l is the negation of
l2. A clause is called conditional iff it > 1; otherwise, i t is called unconditional. We fix one
literal in the lemma clause, called the head literal, and one literal in the goal clause, called
the focus literal. The negation of the other literals in the lemma clause and goal clause are
called condition literals and context literals, respectively.

QUODLIBET provides the user with two kinds of inference rules to apply a lemma
(inductively or non—inductively) to a goal, namely rewriting and subsumption. For both
applications the lemma is instantiated by a substitution 0 . Rewriting can only be applied
if the head literal of the lemma is an equation 8 == t (or t = s) so that 0(3) is equal to a
subterm of the focus literal of the goal clause. In that case, the subterm is replaced by 0(t)
in the rewrite subgoal. Besides, the instantiated condition literals have to be “fulfilled” by
the context. This is checked lazily: We call a condition literal directly fulfilled in a goal iff
the instantiated condition literal is present in the set of context literals of the goals. If a
condition literal is not directly fulfilled in a goal, a new condition subgoal will be created
that essentially extends the original goal by the instantiated condition literal. In this way,
it is guaranteed that the condition or the original goal is proved if this proof attempt is
closed. Furthermore, definedness subgoals will be created if a binds a non-constructor term
to a constructor variable. See [11] for details. The subsumption of a goal by a lemma
results in the same definedness and condition subgoals as explained for rewriting. We call

2The negation of s = t , def s, and s < t will be represented as s 79 t, "def s, and ”(s < t), respectively.

a lemma directly applicable iff all condition literals are directly fulfilled in the goal. Thus,
every unconditional lemma is directly applicable (if there is a match from the head literal
to the focus literal). We will clarify these notions in the following simple example.

Example 3.1 Let the specification consist of two sorts

o Bool for the boolean values with constructors true and fa l se ;

0 Nat representing the natural numbers with the constructors 0 for zero and s for the
successor function.

We consider two defined operators l e s s and plus given by the axioms:

(1) less(0, s(y)) = true
(2) less(:c, 0) = false
(3) 1ess(s(:c), s(y)) = 1ess(x, y)

We want to prove the conjecture

(4) 'plus(sc, 0) = :1:

(5) P1119433, S(31)) = 863111806, y))

(6) { less(x‚p1us(y‚ z)) = true,
1ess(a:, y) % true }

using the following lemmas

(7) . { def plus(af, y) } (9) { 1ess(1:,z) = t rue ,
(8) { less(:c,plus(a:, y)) = true, less(a:, y) # t rue,

y = o } l e ss (y , z) # true }

A proof state tree for the conjecture is illustrated in Figure 1. The root goal node consists
of the conjecture to be proved and is displayed at the top of the proof state tree. As we
do not perform an inductive proof we omit the weights of the goals. We reference goal
and inference nodes by their positions in the proof state tree. The root position is denoted
by root whereas all other positions are sequences of natural numbers separated by colons
and enclosed by brackets. The numbers encode the path from the root goal node to the
considered node. Thus, the position of a goal/inference node has equal/unequal length. .
The successor nodes are enumerated from left to right starting with 1.

The root goal node is rewritten by the conditional lemma (9) using the substitution
[2 +— p1us(y,z)]. The substitution can be determined by using the first literal of lemma
(9) as head literal, the first literal of the root goal as focus literal and matching the head
literal to the focus literal. The application results in three new subgoals: one definedness
subgoal at position [1 : 1], one condition subgoal at position [1 : 2] and one rewrite subgoal
at position [1 : 3]. Because of the condition subgoal, the lemma is not directly applicable.
The definedness subgoal is proved by a direct application of lemma (7) as subsumption
lemma. The subsumption of the goal at position [1 : 2] by lemma (8) leads to another
condition subgoal. After replacing the variable z with 0 by the inference rule #—unif the
third literal of the resulting subgoal at position [1 : 2 : 1‘4]3 is directly rewritten by the
unconditional axiom (4).

3Th i s is an abbreviation for [1 : 2 : 1 : 1 : 1 : 1].

I
{ def PluS(y‚ 2) ,

less(2, plus(y, 2)) = t rue,
1ess(2,y) 74 true }

{ 1ess(a:‚plus(y, z)) = t rue,
l e ss (r , y) =‚é true }

|
(lemma-rewri te)

I
I

{ less(y,plus(y, 2)) = t rue,
‘def plus(y, 2),
less(2,plus(y, 2)) = t rue,
less(2, y) # true }

{ z 79 0,

less(y, p1us(y, 2)) = t rue,
”def plus(y, 2),
l e s s (2 , p lus (y , 2)) = t rue ,
1ess(2, y) # t r ue}

{ less(y,plus(y, 0)) = t rue,
"def p1us(y,0),
less(2,plus(y, 0)) = true,
l e s s (2 , y) # true }

I
Caxiom-Twrite)

{ l e s s (y ,p1us (y ,0)) = t rue ,
”def p lus (y ,0) ,
1ess(:1:,y) = t rue ,
l e s s (2 , y) # true }

I
{ leSS(y‚PluS(y‚ Z)) 74 true,

"def plus(y,2),
true = true,
l e s s (2 , y) 75 true }

=-decomp

Figure 1: Proof State Tree for Example 3.1

10

The new tactics are able to perform such a simple proof automatically. In fact, if the
needed axioms and lemmas. are made available to the tactics they nearly construct the same
proof state tree with only two exceptions. Firstly, the tactics use equations for rewriting
unless the left-hand side of the equation is a variable. Therefore, the lemma subsumption
at position [1 : 2 : 1] is replaced by lemma rewriting and an application of the inference
rule =-decomp analogously to the first inference node at position [1]. Secondly, not only
the third literal but beforehand also the first literal of the goal at position [1 : 2 : 14] is
rewritten by axiom (4). This results in a slightly more complicated proof attempt but the
added complexity is negligible.

We will now present some of the underlying ideas for the lemma application of the new
tactics. Thereby, we will answer the initial questions of this section. The whole proof process
is controlled by a so—called database. The database stores information about the analysis
of defined operators and the activated lemmas. The analysis of a defined operator is used
for performing an inductive case splitting automatically whereas the activated lemmas are
applied by the tactics to rewrite or subsume a goal. The user has to analyze all Operators
and activate all lemmas that the tactics should consider during the proof process.

To reduce the search space when trying to apply a lemma, additional information is
gathered during the activation. Most importantly, head 1iteral(s) have to be provided.
These can be given by the user; otherwise, one head literal will be computed automatically
by some heuristics. According to the head literals the lemmas are divided into several sets:
rewrite lemmas (REWRITE) or subsumption lemmas either for equations (EQSUBS), negated _
equations (NEGEQSUBS), definedness atoms (DEFSUBS) or order atoms (URDERSUBS). When
the tactics try to subsume a goal by a lemma, only the head literal of the right kind of
subsumption lemma will be matched against the focus literal. In the same manner only the
left-hand side of the head literal of a rewrite lemma will be matched against a subterm of
the focus literal when trying to rewrite this subterm.

A lemma variable that is not present in the head literal of the lemma is called a free
variable. As we do not want to guess the instantiation of free variables they have to be
bound by matching appropriate lemma literals against other goal literals. If this is not
possible the lemma will not be applied. When activating lemma (9) of Example 3.1 with
the first literal as head literal, the variable y is free. It can be bound by matching the
second or the third literal to a goal literal. When applying the lemma to the root goal node
of Figure 1 it will be bound by matching the second lemma literal to the second goal literal.

If such a substitution can be found that binds all lemma variables, the lemma can be
applied possibly resulting in condition subgoals. The handling of the condition subgoals
may be expensive as the whole simplification process is applied recursively. Therefore, such
a treatment should be restricted to applications with suflicient prospects of success. We
believe that these prospects are given if the head literal of the lemma is specialized (see
below) or if some condition literals are directly fulfilled in the goal as e.g. in the case of
free variable handling. We call a term a general term iff it consists of an Operator call
with different variables at all argument positions. A lemma is specialized iff i t is not a
rewrite lemma with a general term as left-hand side of the head literal. To restrict the
use of lemmas that are neither specialized nor have free variables, obligatory literals can be
introduced when activating a lemma. These literals have to be fulfilled directly in the goal.

11

As an example, consider the lemma

(10) { less(a:, y) = true,
leq(y,:c) = true }

If we activate this lemma for the first literal without obligatory literals it can be applied
in the proof presented in Figure 1 to every subterm starting with symbol l e s s without
contributing to that proof. This can be prevented by using the second literal as obligatory
literal. This reduces drastically the applications that have to be withdrawn but still allows
the application of the lemma if it is directly applicable to a goal.

During the proof of definedness or condition subgoals we have to handle a subgoal that
extends the original goal by some literals. Therefore, we have to take care that we do not
infinitely apply the same conditional lemma to that subgoal. As for every other inference
rule, this is achieved at first by preventing repeated applications of the same inference
rule within one proof attempt. Additionally, during the relief of definedness or condition
subgoals we use heuristics based on so-called mandatory literals which guarantee that at
least one of the definedness or condition literals contribute to the proof. For this purpose,
a new set of mandatory literals is introduced for every definedness and condition subgoal.
This set consists of all the literals that have been added to the subgoal by the application
of the lemma. When applying an inference rule to a goal that contains mandatory literals
the inference rule must handle at least one of the mandatory literals. After the application,
the set of mandatory literals for all subgoals (other than definedness or condition subgoals)
will be supplemented by those literals that have been changed or added. Note, that a
new set of mandatory literals is introduced for definedness and condition subgoals whereas
for all other subgoals sets of mandatory literals are modified if they are not empty. Let

' us consider Example 3.1 once again. The definedness subgoal at position [1 : 1] has one
mandatory literal ———— the first one ——— that is handled by the following lemma subsumption.
The mandatory literals of the condition subgoal at position [1 : 2] are the first two literals.
The first one is handled by the following lemma subsumption, that introduces the first
literal as the only mandatory literal for the condition subgoal at position [1 : 2 : 12]. This
single mandatory literal is used by the inference rule #—unif . As this inference rule modifies
the first three literals of the resulting subgoal, they become the mandatory literals. From
these the third is used for proving the subgoal in two further inference steps. Note that
the subgoal at position [1 : 3] has no mandatory literals as it is a rewrite subgoal and not a
definedness or condition subgoal of a lemma application. This is justified by the fact, that
the original goal is not contained in the new subgoal. Thus, preventing an infinite loop of
the same lemma application.

The mechanism of mandatory literals is implemented by the tactics. Therefore, a data
structure similar to proof state trees is created. This data structure is reconstructed each
time the user calls a tactic. This may lead to a different result if a proof attempt is
restarted in the middle of a proof state tree because the set of mandatory literals is empty
and therefore may be smaller for the first subgoal of the restart.

If the definedness or condition subgoals of a lemma application cannot be shown by
the tactics this failed proof attempt will be deleted and an alternative proof attempt will
be tried. The user can turn on a debug mode that prevents the physical deletion of failed
proof attempts. In debug mode the tactics inspect exactly the same proof attempts as
in normal Operation mode but the user will be able to analyze why a conditional lemma

12

application has failed. Since the maintenance of alternative proof attempts gives rise to a
high complexity, the computation slows down if the debug mode is turned on. Thus, the
debug mode should be used only if necessary.

During the activation of a lemma, the user can influence the subsequent application of
that lemma by providing the head and obligatory literals. Besides, there are some further
parameters that restrict the application of lemmas. Their default values can be set in the
so-called default settings and they can be overridden by keyword parameters when calling
a tactic. We will represent such parameters by a leading colon. By the parameter :r'ale—
type-order, for instance, the user can determine whether axioms or lemmas (inductively or
non-inductively) should be applied first. Furthermore, the user can disallow the application
of lemmas that are not directly applicable, the invention of new operators in condition
subgoals or set the maximal recursion depth when applying conditional lemmas to prove
condition subgoals. Further restrictions regarding the application of permutative lemmas
and the handling of free variables will be explained in Section 5.2.

We will now summarize our previous description of automatic lemma applications by
answering the initial questions of this section. When trying to rewrite or subsume a goal
the tactics use each literal successively as focus literal. This is justified by the fact that all
inference rules add new literals that may be important for the proof attempt to the front of
the goal. At first the subsumption lemmas are checked, after that the subterms of the literal
are tested for applicability of a rewrite lemma using an innermost left-to—right strategy. The
application of lemmas is checked in two passes. During the first pass, only lemmas that are
directly applicable are considered whereas during the second pass all lemmas are tested. In
doing so, we hope to find easier proofs. - ,

' Having fixed a focus literal, axioms and lemmas (inductively and non—inductively) are
considered according to the parameter :rule-type-order. Within each group axioms or lem—
mas will be tested in reverse activation order. Thus, newer activations are prefered to older
ones. This order may be changed by the user so that he can influence the proof search. If
a lemma can be applied proving all its definedness and condition subgoals it will not be
deleted anymore. Thus, no alternative proof attempts for successful applications will be
tried during this tactic execution.

As already explained, the head literal has to match against (a subterm of) the focus
literal to initiate an applicability check for a lemma. Furthermore, all free variables have to
be bound by other matching operations and all obligatory literals have to be directly fulfilled
in the goal. This results in a fine-grained control of the lemma application mechanism.

The relief of definedness and condition subgoals is influenced by mandatory literals. This
mechanism guarantees that the conditions are used in the proof attempt of that subgoal.
This reduces the number of proofs that use unnecessary lemmas although they cannot
be avoided completely. The relief of a condition can be further restricted by parameters
that e.g. limit the recursion depth of conditional lemmas or prohibit the invention of new
operators in these subgoals.

We will conclude this section with a brief comparison of our approach to the ones of
[4], [18] and [2]. In [4] rewriting with a conditional lemma is done by a recursive process.
During the recursion the relief of the hypotheses (i.e., the conditions) of the lemma is tried
assuming the negation of the other goal literals (i.e., the context literals) to be true. The
description is rather informal, especially w.r.t. the usage of the context literals during the

13

rewriting process. One possible usage may be given by the cross-fertilization process. Dur-
ing this process negated equations in the goal clause can be used for replacing one side of
the negated equation by the other side in another goal literal based on some heuristics. A
formalization of these ideas coined contextual rewriting containing some improvements can
be found in [18]. The major improvement is the usage of a constant congruence closure
algorithm to decide the equality given by the context literals. But as mentioned in [18],
both approaches are unable to prove the formula { p(a, b) = false } by rewriting given the
axioms

(11) {p(a, a:) = false, (12) {p(y,b) = false,
qaé t rue} q= t rue}

since for both axioms the condition, i.e., the secondliteral, cannot be relieved in an empty
context. This limitation is overcome by case rewriting in [2]. In this approach, a term is
rewritten by a set of n lemmas resulting in n+ 1 new subgoals: For each lemma one rewrite
subgoal is created; additionally one well—coveredness subgoal is produced. This last subgoal
is to guarantee the completeness of the case splitting w.r.t. the given lemmas. In the ex-
ample above, the well—coveredness subgoal is { q aé t rue , q = true } which is a tautology.
But if the case splitting is not complete, this approach leads to an invalid well-coveredness
subgoal. '

Our approach is similar to case rewriting. But instead of applying all lemmas in parallel
we apply them one after the other when we try to prove the condition subgoals of the former
applications. Applying axiom (11) to the above goal formula leads to the condition subgoal
{ q = t rue , p(a, b) = f a l se } which can be proved by axiom (12). If the lemmas do not
fulfill the well-coveredness condition our approach does not produce invalid subgoals but
leads to specialized subgoals that may be proved by other simplification methods. These
specialized subgoals were omitted in [2] on purpose to prevent infinite rewrite loops. In our
approach these 100ps are prevented by the use of mandatory literals and other heuristics
that avoid redundant applications of inference rules.

Apart from condition subgoals that do not have to be created because the conditions
are directly fulfilled in the context, we do not exploit the context very much. We only
use negated equations in the context in the style of the cross-fertilization process of [4]
by applying the inference rule cons t - rewr i te . This inference rule may also be used for -
realizing a congruence closure algorithm. This improvement will be investigated for future
development.

4 How to Use the New Tactics

Before we will present each public routine in detail in Section 5, we give some advice on
their general and efficient use. This section, we hope, is particularly useful for new users of
the automation mechanisms of QUODLIBET. Some of the hints are special to our inductive
theorem prover QUODLIBET whereas others are more general and are essentially inspired
by [5], chapters 9 and 13, and [10], chapter 9. As those hints are originally given for the
inductive theorem provers NQTHM and ACL2 they have to be translated to fi t our inductive
theorem prover. ‘

14

To be able to use the theorem prover efficiently the user has to know exactly how the
theorem prover works and how it can be influenced. What is even worse is that little
changes in the specification or activation style may have significant consequences on the
abilities of the system to prove theorems at all as well as on the time consumed to do the
proofs. Therefore, the user has to learn how to write good specifications, i.e., specifications
that enable the tactics to find small proofs in a short time. We will consider this question
in Section 4.1. In addition to some fundamental guidelines about the formulation and
activation of axioms and lemmas, we will present a tool that helps users to analyze former
specifications and to improve their specification style.

The new tactics provide the user with a lot of different routines. In Section 4.2 we try to
clarify when to use which tactic. Therefore, the tactics will be divided into several groups.
This classification is reflected in the modular structure that will be used for explaining the
tactics in detail in the technical Section 5.

If the proof attempt gets stuck the user has to help the theorem prover manually, e.g.
by applying an inference rule, formulating an auxiliary lemma or activating a former lemma
in a different way. Another reason for a failed proof attempt may be that the lemma is not
inductively valid at all. We will give some hints on how to analyze (failed) proof attempts
in Section 4.3. There, we will also discuss the debug mode that helps users to understand -
why a (conditional) lemma has not been applied.

After a proof attempt has succeeded, the user normally wants to save the result in a
succinct way to be able to use the lemmas during further proofs in another session. There
are two ways to do this by saving a state of the inference machine or a command script.
Whereas states can be read in much faster, command scripts provide more information
about the proof process. Therefore, we prefer to save our work in command scripts, possibly
supplemented by state files if the command scripts are read in too slowly. QUODLIBET
provides means to save command scripts automatically but these scripts tend to be very
large as they store every command entered. Even worse, these command scripts may fail
to be read in again if a command has been aborted due to a non-terminating computation.
Hence, we prefer to save successful command applications by c0pying them to an editor.
We will present this approach in Section 4.4. Furthermore, in this section we will adapt
The Method described in [10], chapter 9. Using this method enables the user to search
top-down for a proof of a lemma and to store it in a bottom—up style that is supported by
our inductive theorem prover. '

We will conclude this introduction with some important technical notes: Before using
the tactics the database has to be initialized. The tactics can only generate case splittings
for analyzed operators and apply activated lemmas. Therefore, a typical usage of the system
is to initialize the inference machine and the database in the beginning, then to specify and
analyze the required Operators, and after that to specify, prove and activate each lemma in
succession.

4 .1 How to Write Good Specifications

It is very difficult to give guidelines for writing good specifications, i.e., specifications that
support the tactics in proving lemmas within a minimal amount of t ime, since the tactics are
very sensitive w.r.t. little changes of the specification. What is good in one situation may

15

be bad in another. Thus, every guideline that we give in the following is to be understood
as a heuristic that often leads to satisfying results but may also fail. Some Of the guidelines
are implemented as heuristics (e.g. for the activation of lemmas) but many of them are
very abstract and have to be concretized to be applicable. There may even be conflicts
between different guidelines. Therefore, i t is important to make one’s own experiences in
using the theorem prover and to analyze the resulting specifications. A tool that supports
this analysis will be presented at the end of this section.

The first two guidelines deal with the invention and usage of (defined) operators.

Guideline 4.1 We recommend using the properties Of the specification language like
clause form or built-in predicate symbols instead Of user—defined Operators. This concerns
e.g. boolean operators like no t , and, o r .

The reason for this guideline is very natural: As the inference rules are defined to reflect
the semantics of the specification language and since these rules are fixed, tactics can
make much more use Of them than applying axioms Of defined operators. There is e.g. a
special treatment for definedness atoms and equational literals. This results from a fixed
arrangement of some inference rules to macro inference steps.

Because of the clause form for lemmas, the presence of negated atoms and the implicit
conjunction of all lemmas, the boolean Operators are not needed in most cases. Never-
theless, it may be convenient to use them in some situations to get specifications that
are more problem-oriented or to exploit properties of the Operators as the associativity
or commutativity of and/ o r . To solve this problem, two different representations may be
used, one external problem-oriented one and another internal for the reasoning process. A
connection should be established by showing the equivalence between the two representa-
tions as rewrite rule from the external to the internal representation. Thus, a user can
write problem-oriented specifications in the external representation whereas most of the
reasoning process will take place in the internal representation after rewriting.

Guideline 4 .2 For sorts with exactly two constructors that are constants, we recommend
using just one of the constants as far as possible.

This guideline refers for instance to the boolean values true and fa lse as defined in Ex—
ample 3.1 on page 8. For each equational literal consisting of a defined term on one side
and one of the constants on the other side, there are two different representations. For
example t = true is equivalent to t # false i f t is a defined term, even though they are not
identical. Because of our provision for Obligatory and mandatory literals during conditional
lemma application (see Section 3), it is vital to identify both representations during the
test whether a context literal directly fulfills a condition literal. Therefore, it complicates
the test if we use both constants. As it is vital for the proof process, our tactics consider
both representations as it will be explained in Section 5.1. Thus, this guideline is only good
for efficiency reasons and has minor priority.

The next guideline is concerned with the specification of axioms for defined Operators.

Guideline 4.3 We recommend using a constructor-based specification style for axioms
as far as possible.

16

Especially, the inductive case analysis is better suited for constructor—based specifications.
Besides, these axioms will only be attempted if a syntactic matching criterion succeeds
leading to a smaller number of conditions that have to be checked (see Guideline 4.6). This
reduces the number of failed axiom applications that have to be withdrawn later on because
the condition subgoals could not be proved. On the other hand there are certainly many
functions that are to be specified with destructor recursion like the division on natural
numbers based on the destructor minus. Therefore, following this guideline should not
result in unnatural specifications.

The next guideline deals with the analysis of defined operators.

Guideline 4 .4 We recommend analyzing each defined operator after having provided all
defining rules. If the analysis shows unexpected results it may be necessary to change the
specification or activate auxiliary lemmas.

The analysis of a defined operator (see Section 5.4.2 for details) gives a first hint if there are
any flaws in the specification. Besides, the tactics for performing an inductive case splitting
depend on the generated definition scheme so that lemmas can only be proved after the
analysis of all involved Operators. There may be several reasons if the analysis heuristics
fail to guess a property, e.g. termination, that the Operator is expected to have. Firstly,
there may simply be typos in the specification. Secondly, when using destructor recursion,
there normally has to be an activated order subsumption lemma that gives reasons for the
argument of the recursive operator call to be smaller w.r.t. the induction order than the
Operator call on the left-hand side of the axiom. Last but not least, the specification style
may not be well suited for the analysis procedure. In this situation the specification or the
analysis procedure should be changed to be able to perform proofs for the specification.

The next four guidelines give hints for the specification of lemmas.

Guideline 4.5 We recommend formulating (negated) equational lemmas as rewrite lem-
mas as far as possible.

This means e.g. that a literal op(3:) 7E true should be substituted by op(:c) = f a l se if the
literal is used as the head literal of a lemma for a (defined) Operator op. The reason for
this is that each application of a negated equation as subsumption lemma can be simulated
by applying the equation as rewrite rule and proving the rewritten clause containing the
literal f a l s e # true with the inference rule aé-taut. On the other hand, the rewrite rule
has a much broader range of application since it can also be used for rewriting arbitrary
subterms within all kinds of atoms. This guideline may be in conflict with Guideline 4.2
that suggest to use only one of the boolean constants as far as possible. Due to the handling
of alternative literal representation using rewrite rules is to be prefered.

Guideline 4 .6 We recommend formulating lemmas with as few conditions as possible.

If not disabled by the parameter :allow-delayed-condition-check (see Section 5.2) condition
subgoals will be created for each condition literal that is not directly fulfilled by the context
literals when applying a conditional lemma. This may enlarge the search space enormously.

17

Therefore, it is a good specification style to reduce the number of conditions, e.g. the clause

(13) { sorted—list-p(append(k, l)) = sorted-list-p(l),
sorted—list-p(k) # t rue ,
1istleq1ist—p(‘k, l) 79 true }

is preferable in comparison to the clause

(14) { sorted-list—p(append(k, l)) = t rue,
sorted—list-p(k) 75 t rue,
sorted-list-p(l) % t rue,
l i s t l eq l i s t—p(k , l) # true }

as far as both clauses are inductively valid. In this example, clause (13) is even logi-
cally stronger making it applicable more often, since it establishes an equivalence between
sorted—list—p(l) and sorted-list—p(append(k, l)) whereas clause (14) only establishes
an implication.

Guideline 4 .7 We recommend orienting rewrite rules uniformly to get closer to F‘canonical
forms”.

Whereas the rewrite system given by axioms has to be confluent to fulfill the admissibility
condition of QUODLIBET, the invention of additional lemmas destroys this property in
most cases. Nevertheless, the lemmas should not be oriented arbitrarily since the tactics
use the rewrite lemmas only in one direction specified by the user. Thus, they should be
oriented in a way that the resulting term is easier than the original term, e.g. by rewriting
to constructor terms or subterms, or by pushing easier operators like constructors forward
to the front of the term. This can be achieved by using a fixed reduction order to orient

' rewrite lemmas as far as possible. Following this guideline will increase the probability that
the tactics find a proof and that they prevent infinite rewrite loops caused by cyclic rewrite
relations.

We want to mention two aspects concerning this guideline: Firstly, there are some
equations that are inherently non—terminating even when they are just applied from left
to right as they allow for single cyclic rewrite steps. We call a rewrite lemma with head
literal l = r permutative iff l is a variable renaming of fr, i.e., there exists a substitution 0
with a(l) E 'r that only renames variables. The commutativity of plus (see lemma (15)
in Example 4.8) is an example for a permutative lemma. These lemmas need a special
treatment. For this purpose we use a fixed total simplification order on terms that at first
depends on the number of variables, the term length and the name of the top-level operator
or variable. If all these values are equal for both terms, the first unequal argument terms
are considered recursively. This order is inspired by [5]. A permutative lemma is only used
for rewriting if the instance of the right—hand side is less than the instance of the left-hand
side w.r.t. this order. This prevents infinite loops in most cases but as there is no reduction
order that orients permutative lemmas there is no guarantee for this. Secondly, additional
lemmas may be needed to rewrite to canonical forms. We do not use a completion algorithm
to find these additional lemmas automatically but the user has to state them on his own. To
illustrate both aspects, we will consider the commutativity and associativity of the addition
on natural numbers.

18

Example 4 .8 . Let the Operator plus over sort Nat be defined as in Example 3.1 on page 8 .
The commutativity and associativity of plus are given by the clauses

(15) { P1US($a y) = Pluswa x) }
(16) { Plu3(p1u3(r‚ y) . z) = p1US(w‚p1u8(y‚Z)) }
They can be proved automatically by the auto-strategy (see Section 5.7). In the first
case, the keyword parameter :recurstve-stmtegy—p has to be enabled so that two auxiliary
lemmas can be proved by induction; otherwise, the proof gets stuck. But activating these
lemmas is not enough to prove lemmas like

(17) { plus(:z:‚p1us(y, z)) = plus(y,plus(:c, 2)) }

automatically by simplification. Because of the total simplification order used for permu-
tative lemmas both terms plus($,plus(y, 2)) and plus(y,plus(a:, 2)) are irreducible. It
is just this extended commutativity (17) that is needed to get a ground confluent rewrite
system w.r.t. the simplification-order used for permutative rewriting and, hence, to reduce
most nested plus-terms to a canonical form.

In general, when proving associativity and commutativity of an Operator, we recom—
mend to prove also the extended commutativity of the operator. The lemmas should be
activated in the order: commutativity, extended commutativity, associativity, so that the -
last property is tried first. Otherwise, an application of the associativity will always be
substituted by two applications of the commutativity and one application of the extended
commutativity. The associativity can be proved without induction if the other two proper-
ties have been activated before:

P1US(PIUS($‚ 3;), Z) —-*(15) P1113(ZP1us3% y))
—>(17) p lu s (2 , p lu s (2 , y))
—-——>(15) p1us(:c,plus(y, 2))

Guideline 4 .9 We recommend selecting variable names carefully if permutative operators
are present in the lemma clause.

As explained in Guideline 4.7 rewriting with a permutative lemma, is only done if the
rewritten term is smaller than the original term w.r.t. a fixed total simplification order.
As this fixed order depends on the names of the Operators and variables the naming of
the variables does matter for the simplification process. Let us illustrate this by a simple
example based on relations between the addition and the order on natural numbers.

Example 4.10 We consider the sorts Bool and Nat with the defined operator plus as
specified in Example 3.1 on page 8 and operator l eq given by the axioms:

(18) l eq (0 ,y)= t rue

(191)eq(8($) 0=) false
(20) leq(S(w)‚ S(30) — leqßv, 31)
AS plus is defined by recursion on the second argument a lemma with clause

(21) { leq(PIUS($‚ Z)‚P1u3(y‚2)) = l e eway) }

19

can be easily shown. It is proved automatically e.g. by the auto—strategy that performs
a structural induction on z.

When trying to prove a lemma with clause

(22) { l eq(PIUS($‚ y)‚P1uS($‚ Z)) = 1eq(y ‚ z) }
directly by induction (on y and z) two auxiliary lemmas are needed with clauses

(23) { leq(x, s(plus(:c, z))) = true }
(24) { leq(s(plus(a:, y)),x) = false }

On the other hand, lemma (22) can be proved by applying the commutativity of plus
twice and then lemma (21). To achieve this permutative rewriting automatically, lemma
(22) has to be reformulated so that the first argument of plus is less than the second
argument of plus for both occurrences of plus in the left-hand side. This can be done by
applying the substitution [x <— z , y <— 32, z +— y] resulting in the lemma clause

(25) { l eq (P1u3(z ‚$) ‚P lUS(z ‚y))= leq(-’r‚ y) }

Depending on whether one wants to rewrite permutatively, the variables have to be named
differently as shown in the last example. Certainly, permutative rewriting can be prevented
at all by disabling the parameter :allow-perm-rewm'ting-p (see Section 5.2) or deactivating
the permutative lemma (see Section 5.4.3).

The following four guidelines affect the activation of lemmas. These guidelines have
been implemented as heuristics in the procedure activate—lemma described in Section
5.4.3. In special situations these heuristics can be overridden by using appr0priate keyword
parameters.

Guideline 4.11 We recommend activating lemmas for at most one head literal.

This guideline is made due to performance reasons. Enabling a lemma for two head literals
may result in doubling the work to be done. On the other hand, i t may lead to a proof if
only an instantiation of the second head literal is directly fulfilled in the goal whereas the
instantiation of the first literal can be proved as condition subgoal.

Guideline 4.12 We recommend activating lemmas with definedness or order literals as
head literals if this is possible. Otherwise, we recommend selecting equational literals as
head literals that bind most of the variables in the lemma clause.

As there are no means for proving negated definedness or order atoms except for using
complementary literals, it is sensible that order or definedness atoms of lemmas have to be
fulfilled directly in the goal clause to which the lemma is applied. This turns order and
definedness atoms into perfect candidates for head literals. Otherwise, we recommend using
a head literal that binds most of the variables because we demand that every free variable
has to be instantiated by matching other lemma literals to goal literals before the lemma is
applied. Choosing a literal with fewer bound variables enlarges the search space for binding
the free variables.

20

Guideline 4.13 We recommend using obligatory literals for rewrite lemmas that have a
general term as left-hand side of the head literal.

General terms — i.e., terms that consist of one Operator call with different variables at all
argument positions —— do not provide any specific information if the lemma is useful when
applied as rewrite rule. Therefore, these lemmas can be applied very often if the parameter
:allow-delayed-condition-check is enabled (see Section 5.2). To reduce the search space at
least one obligatory literal should be selected that restricts the applications of the lemma
appropriately. This obligatory literal has to be fulfilled directly in the goal clause before the
lemma is applied. Nevertheless, in some situations this cannot be achieved, i.e., a lemma
is needed for a proof but no condition literal of the lemma is directly fulfilled in the goal
clause. In this case the lemma should be reactivated temporarily without any obligatory
literals. But the old activation should be restored as soon as possible for efficiency reasons.

Guideline 4 .14 We recommend activating simplified lemmas only.

Otherwise, the lemma may not be applicable, as the literals, for which it should be applied,
may be simplified by other lemmas first. This especially concerns the head literals (for
rewrite rules at least the left-hand side) and the obligatory literals that have to be directly
fulfilled in the goal clause. For all other literals of the lemma, simplification is to be prefered
because of efliciency reasons, to reduce the number of further simplification steps.

As already mentioned we do not believe that a new user will write specifications that are
perfectly‘suited for our inductive theorem prover just because of the guidelines presented
above. Instead he will have-to learn how to use the system in practice by analyzing the
results of real specifications. We have implemented a perl script to help the user in doing
this. . This perl script extracts statistics about the proofs of a specification from a run of
our inductive theorem prover given by a log file. The extracted statistics provide detailed
information about the overall proof attempts as well as for each lemma separately. The
information consist of the runtimes, the called tactics and procedures as well as the ap-
plied inference rules — both manually and automatically applied —-—— and the automatically
deleted inference rules due to unproved condition subgoals in conditional rewriting. The
applications and deletions are further broken down to the applied inference rules and to
the lemmas that have been applied.

The statistics can be used for fine-tuning specifications as well as for improving one’s
specification style. For instance, if a lemma is applied very often but all except of a few
applications are deleted because of unproved condition subgoals, the user should restrict the
use of the lemma e.g. by providing obligatory literals or by activating the lemma only for
those proofs that use i t . This has helped to reduce the proof effort for some specifications
drastically.

Besides, the statistics have been used for improving the tactics. If any change is made
to the tactics the effects will be studied for a set of specifications comparing the statistics of
both versions. The change will only be kept if the results are significantly better for at least
a few specifications. If they lead to worse results for other specifications a new parameter
will be invented that can be set by the user. This has led e.g. to the invention of the notion
obligatory literals to reduce the search effort when applying general term rewriting rules.

We conclude this section with a warning w.r.t. the generated statistics: They are essen-
tially useful to identify conditional lemmas that have been attempted but deleted at the

21

end because of unproved condition subgoals but they cannot be used for identifying lemmas
that lead to complicated proofs. These can only be detected by looking at the proof state
trees. '

4.2 How to Choose the Right Tactic . ‘

Although many routines are provided only few of them are needed to perform most of
the proofs. In this section we will focus on these routines. But let us first start with a
warning: Like other inductive theorem provers, QUODLIBET is not able to perform proofs
even of relative simple lemmas without user interaction. The user has to perform at least
one crucial task manually by providing enough auxiliary lemmas that the tactics can use
for rewriting and subsumption. Therefore, the user normally has to think about a manual
proof that is translated into the logic of QUODLIBET later on. Certainly, the user can start
a proof attempt, see if it succeeds, and analyze the failed proof attempt, otherwise. For
experienced users, this may lead to the needed auxiliary lemmas in a short amount of time,
but especially for new users it may be frustrating and confusing since the clauses tend to
get large in the middle of a failed proof attempt. Hints for analyzing (failed) proof attempts
will be given in Section 4.3.

So for now, let us assume that there is a sketch of a proof plan at hand, that the
specification has been entered, all operators have been analyzed and some auxiliary lem-
mas have been proved and activated. If we want to prove another lemma automatically
by using the tactics, we can always start a proof attempt by one of' the strategies in the

_ module Proof—Strategies. These strategies first try to simplify the goal as far as pos-
sible unless the parameter :allow-cond-sz'mplz'ficatz'on-before-induction-p (see Section 5.2) is
disabled. In this case, simplification is restricted to directly applicable lemmas. The whole
simplification process may also be activated by calling the tactic s impl i fy in the module
Simpl i f i ca t ion . If the goal cannot be proved by simplification, an inductive proof at-
tempt is started for each open subgoal. The way in which the inductive case splitting is
performed depends on the strategy that is used. For unexperienced users, we recommend
starting with the auto—stra tegy. If the lemma mutually depends on other lemmas, these
lemmas can be given by the keyword parameter :z'nd-lemmas. The strategy will perform the
inductive case analysis automatically which will be beneficial for new users. The resulting
case splittings will often lead to successful proofs if the needed auxiliary lemmas have been
activated before, but unnecessary case splittings may be introduced resulting in a poorer
performance.

The proof attempt for a lemma may lead to three different results:

. the proof process does not stop within a reasonable time;

0 the proof process steps with a failure;

o the proof attempt succeeds.

In the first case, the user has to abort the proof process manually resulting in a failed proof
attempt comparable to the second case. This abortion should not be done too early in
order not to stop a successful proof attempt by mistake. But at least if the user notices

22

in the output of the log window a cyclic behavior or terms that are pumped up, the proof
process can be st0pped. The reasons for an infinite proof process may be the activation of
cyclic rewrite lemmas or the use of a recursive strategy, i.e., a proof strategy with keyword
parameter :recursive—stmtegy-p enabled.

After a failed proof attempt the user first has to find out why this has happened by
analyzing the failed proof attempt. We will consider this process in Section 4.3. Even in the
case of a successful proof attempt the user should have a look at some crucial checkpoints
of the proof because of efficiency considerations. One of these checkpoints in an inductive
proof is the initial inductive case splitting, another is the result of the Simplification process.
The inductive case splitting and the result of the simplification process can be analyzed
directly in the proof state tree, whereas additional information about the applied lemmas
can be retrieved from a dependency graph that manages the applications of lemmas.

There may be several reasons if the tactics fail to prove a lemma:

0 The lemma is not inductively valid:
If the proof process results in a goal clause that is apparently not inductively valid
like the empty clause, one of the unproved lemma clauses used in the proof is not
inductively valid. In most cases this lemma clause has to be specialized e.g. by some
condition literals to get a valid clause and the proof has to be restarted for the changed
lemma.

. One lemma has not been applied as expected:
The reasons for this may be a wrong activation of the lemma or some free variables
that cannot be instantiated by the tactics apprOpriately. In the first case, another
activation of the lemma may help. Otherwise, the user has to apply an inference rule
manually. After this the original proof can be continued e.g. by one of the tactics in
the module S impl i f i ca t ion for instance by s impl i fy to simplify just one goal at a
time or by simplify—open—subgoals for handling all derived subgoals in succession.
Alternatively, the tactic cont-proof—attempt in the module Proof-Strategies can
be used. This last tactic is preferable if there are no other failed proof attempts so
that an inductive proof can be closed by setting the weight variable and showing all
order constraints.

. Other auxiliary lemmas are needed for the proof:
If the simplification process fails to prove a goal the derived goals often give hints for
speculating an auxiliary lemma by generalizing one of the goal clauses. After having
proved this lemma, the original proof can be continued e.g. by one of the tactics
in the module S impl i f i ca t ion or the cont-proof—attempt tactic in the module
Proof —Strategies . Alternatively, the whole proof can be deleted and restarted from
the beginning.

. In the case of an inductive proof, a wrong induction scheme has been used:
This may lead to a failed proof as well as to a bad performance. The user may
try different induction schemes by offering the effective operator calls or induction
variables that should be used for the case splitting by calling the operator-s t ra tegy
or var iable—strategy in the module Proof —Stra tegies .

23

If the simplification process after the inductive case splitting fails (e.g., runs forever)
it is possible to introduce just the inductive case splitting automatically and then to
st0p without simplification. This is achieved by using one of the tactics in the module
Inductive-Case—Analyses, although these have never been used in our case studies
so far. Then the user can provide further directions interactively.

Last but not least it may be necessary to apply the inductive case splitting manually by
an inference step and continue the proof attempt e.g. by tactic cont-proof—attempt
in module Proof -S t ra tegies .

In general, we recommend using the routines without any keyword parameters in the begin-
ning as they provide sensible default values in most cases. Only if a proof attempt fails or
when the user has become more experienced one should think of using keyword parameters.
This concerns the proof strategies and simplification tactics as well as the procedures of the
database. But one should keep in mind that the keyword parameters enable the user to
reduce the effort during the simplification process e.g. by disallowing the use of permutative
lemmas or the use of conditional lemmas which are not directly applicable, or by testing
only one instantiation of free variables.

4.3 How to Analyze (Failed) Proof Attempts

As explained in Section 4.2 there may be different reasons for a failed or inefficient proof
attempt. Before the proof attempt can be corrected the reason has to be determined by
analyzing the proof attempt that is represented by a proof state tree. There are two main
checkpoints introduced by the tactics that should be inspected:

o the automatic inductive case splitting;

. the result of the simplification process.

For technical reasons, only the root nodes of proof state trees can be applied as induction
hypotheses. Thus, the tactics start an inductive proof with an inductive case splitting only
for root nodes of proof state trees. For inner nodes that are to be proved by induction
new proof state trees will be created. Therefore, the user has to look at the root of the
proof state trees to inspect the first checkpoint. If the user expects another instantiation of
the variables for the proof of the given lemma he can try to generate a different induction
scheme automatically by using a different tactic or provide it manually by applying one
of the inference rules subst-add (for constructor recursion) or l i t -add (for destructor
recursion or cut) . An inappropriate inductive case analysis may result in too many subgoals
and hence an inefficient proof, or even worse in a failed proof attempt if the wrong induction
variables have been chosen.

The second checkpoint is particularly important if the proof attempt fails. If the failed
proof attempt stops, all Open subgoals are simplified as far as possible w.r.t. the implemented
simplification process. The user can navigate through all open subgoals with the assistance
of the graphical user interface by using the navigation button Next Open GN ode of the proof
state tree. If an open subgoal contains an order atom with a weight variable, this subgoal
can be skipped at first after having checked that there is an instantiation of the weight

24

variable that proves the subgoal. These subgoals result from inductive applications and
normally do not cause any problems. They just have not been proved yet since the weight
variable of the proof state tree is only instantiated automatically after all other subgoals
have been shown. Otherwise, the proof of another subgoal may require induction and this
may lead to an inductive proof obligation that is in conflict to . a former instantiation of
the weight variable. The instantiation is done automatically in most cases when calling the
tactic cont -proof-attempt after all other subgoals have been shown.

For the other subgoals, the user should ask himself whether the subgoal is indeed induc-
tively valid. If this is not the case, the subgoal often contains a hint for a counter—example.
Then the user has to reformulate a specialization of the lemma so that these counter-
examples are eliminated e.g. by introducing additional conditions. Otherwise, the user
should identify literals in the clause of the subgoal that are expected to be inductively
valid, thereby achieving a generalization of the subgoal. As the subgoal often consists of
many literals it may be a difficult (and the most challenging) task to find out the rele-
vant literals. To reduce the complexity of the clause, as a general rule negated definedness
and negated order atoms should not be considered, and shorter literals should be pref-
ered. Sometimes, it may be necessary to regard a predecessor of the open subgoal to get
an appropriate auxiliary lemma as the simplification process will try some extraordinary
transformations as a last resort to prove the subgoal. These transformations may cause
difficulties in finding an auxiliary lemma. Certainly, this whole approach in finding an
auxiliary lemma is just a heuristic that tries to help finding the needed relationships be-
tween the Operators of the specification. Sometimes, this will require a deeper semantic
understanding of the specification than described in this primarily syntactic approach.

Having found an auxiliary lemma, the user should introduce this lemma if it is not
already present. After that the user has two possibilities to proceed: proving the auxiliary
lemma first or continuing the proof of the main lemma. The decision depends essentially
on one’s individual flavor. Some users want to prove the simpler statement first to close
some of the paths of the proof state tree, whereas others first want to check the critical
statements. Both approaches are available within QUODLIBET. If the user wants to use
the auxiliary lemma in the proof of the main lemma automatically, the auxiliary lemma has
to be activated. This activation should be removed before the auxiliary lemma is shown to
prevent cyclic non-inductive lemma applications that do not establish inductive validity.

The last case we want to consider in this section is that we speculate an auxiliary lemma
that is already present and activated in the database. Therefore, we ask ourselves why it has
not been applied. This normally results from an inappropriate lemma actiVation. In this
situation, the debug mode may provide a helpful view on the simplification process, at least
if the auxiliary lemma is conditional. The debug mode can be enabled by the parameter
:debug-p as explained in Section 5.2. For efficiency reasons, i t should be disabled again as
soon as possible. While in debug mode, proof attempts that have failed, e.g. because of
unproved condition subgoals, will not be deleted physically from the proof state tree but will
not be considered by the tactics. Thus, the same behavior is guaranteed with or without
debug mode. This enables the user to find out easily why a certain condition could not be
established. To use the debug mode the simplification process should be restarted from a
subgoal where the auxiliary lemma is expected to be applied. This may lead to a slightly
different proof attempt as explained in Section 3 since the data structure for mandatory
literals is reconstructed each time the user calls-a tactic. But often this behavior is adequate

25

to analyze a failed proof attempt. Alternatively, the whole proof process can be restarted
which, however, may result in a big and unhandy proof state tree. Having understood the
reason for the failed lemma application, the failed proof attempts can be deleted by calling
the tactic delete—root—proof—attempts in the module Protected—Inference-Machine,
which is described in Section 5.3. The solution to the problem may then be performed
by a different lemma activation using keyword parameters or by changing the order of the
activated lemmas as described in Section 5.4.3. The result of the lemma activation w.r.t.
the selected head literals or obligatory literals may be controlled by displaying the internal
database as explained in Section 5.4.4. On the other hand, additional lemmas may have to
be inserted to relieve the conditions of the lemma.

4 .4 How to Get Good Command Scripts

As already mentioned in the introduction to Section 4, command scripts that have been
extracted automatically from the log window of the proof session may fail to be read again
since the log window may contain aborted commands that run forever“. Furthermore, when
trying to prove a lemma there are often unforeseen difficulties leading to further auxiliary
lemmas. This results in a top—down proof search whereas the tactics behave more efficiently
when used in a bottom-up style. Last but not least, the extracted files tend to be rather large
as they contain many unnecessary commands as e.g. all navigation commands in the proof
state trees from which only a few are needed. Unfortunately, we do not have any means
to extract shorter command scripts automatically. Therefore, we recommend creating a
command script manually by inserting the successful commands within a separate editor
session to a new command script file, or at least modifying the automatically extracted
command script. During this step aborted commands as well as unnecessary commands
should be deleted and the lemmas should be rearranged in a bottom-up style.

To guide the user during this last task of rearranging the commands we adopt The
Method described in [10], chapter 9. The Method allows the user to perform a top-down
proof search while arranging the lemmas in a bottom-up style. For doing this, The Method
uses two lists separated by an imaginary line called barrier. The first list, the done list,
contains already proved lemmas, whereas the second list, the to—do list, contains a proof
plan of what has still to be done. By applying The Method, the user has to think about
a proof for the first lemma of the to-do list. If there are any auxiliary lemmas for the
proof missing in the done list, the user has to add these lemmas in front of the to-do list.
Otherwise, the user tries to prove the first lemma of the to-do list by calling a simplification
tactic or a proof strategy, and aborts the proof attempt if it takes too much time. If the
lemma has been proved, the barrier is advanced behind the proved lemma. Otherwise, the
failed proof attempt has to be analyzed as described in Section 4.3. This may result in a
manual intervention leading to a successful proof, or another unforeseen auxiliary lemma
that is inserted in front of the to-do list. After having proved and activated the auxiliary
lemmas, the proof attempt of the original lemma is restarted.

4I t is possible to abort the (non—terminating) command execution when reading a command script by
sending the keyboard interruption signal 2 (SIGINT) from a unix shell directly to the lisp process. This will
cause QUODLIBET to enter the debugger from which the computation can be stopped.

26

5 Organization of the New Tactics

QML is a modularized imperative programming language adapted to the inductive theorem
prover QUODLIBET. This means that on the one hand there are special internal data struc-
tures for the proof objects of QUODLIBET as e.g. terms, atoms, literals, clauses, axioms,
lemmas, goal and inference nodes, as well as routines as e.g. the inference rules that influ-
ence the state of the inference machine, or routines that inform the tactics about the actual
specification. On the other hand tactics and procedures of QML-modules can be made
public so that they can be called within QUODLIBET through the text-based or graphical
user-interface.

In this section we will describe the organization of the new tactics in great detail from a
user’s point of view. This means that we will concentrate on the public tactics and explain
their approach in proving inductive theorems. We try to give the user a feeling how the
tactics work and especially how they can be influenced, but we will not go into detail about
the implementation issues of the tactics.

The modularization concept allows for the structuring of the tactics in separate parts
by the information hiding principle. We will use this system architecture to structure
our description of the tactics. We start with the auxiliary modules bas i c s , complexity,
a l t - l i t—rep , subs t i tu t ions , and condi t ion- t rees that do not export any public rou-
tines. After that we explain the functioning of the public modules Default-Sett ings,
Protec ted-Inference-Machine , Database, S impl i f ica t ion , Induct ive-Case—Analyses
and Proof-St ra teg ies that model the inductive proof process as described in Section 2.

Technically, a user has to call a public routine to start its execution. At the text-
based interface this can be done for routine rout by the. command cal l rout . Besides,
for each public routine a menu item will be created at the graphical user-interface that
allows its execution. These menu items are arranged according to the modules where the
routines are defined. Menu items for procedures will be placed in the QML-menu of the main
window whereas menu items for tactics will be placed in the Tactics-menu of the proof
state tree windows since tactics always apply to the activated goal node of a proof state
tree. Routines may need additional information to start their execution in a meaningful
way. The procedure activate-lemma for instance depends on the lemma which is to be
activated (see Section 5.4.3). This information is acquired by obligatory parameters that
have to be supplied with values. Some routines also provide optional keyword parameters
that enable the user to override the default behavior of the routines in a controlled way.
These parameters will be supplied with a value only if the corresponding keyword is given
beforehand. This mechanism with keyword parameters enables us to improve our tactics
by a finer—grained control without invalidating former proof scripts. This is achieved by the
invention of new keyword parameters that allow to distinguish between different behaviors
of the routine making the former behavior the default behavior. At the text-based inter-
face the command cal l activate-lemma plus-com : ac t i va t e - f i r s t - l i t - p TRUE will
start the execution of routine activate—lemma with plus—com as the value for an oblig-
atory parameter and TRUE as the value for the optional parameter :activate-first-lit-p. At
the graphical user-interface the parameter values can be entered through special widgets.
Widgets for optional parameters will only be displayed if the menu item for the routine is
not selected with the left mouse button. This behavior takes into account that Optional
parameters are rarely used since they have sensible default values. In the following sections

27

the public routines will be presented in QML—style. This means that the parameters will be
enclosed in parenthesis and separated by commas. When calling a routine at the text—based
interface the parenthesis and commas have to be omitted.

5 . 1 Auxiliary Modules

The module bas i c s provides some basic functions that can be seen as extensions of the
library functions provided by the core system. These functions neither depend on new data
types nor do they use a state. This module contains on the one hand functions that extend
matching routines or the application of substitutions from terms to literals and clauses; on
the other hand there are functions that care for a special treatment of goals with weight
variables. Furthermore, the simplification order that is used for permutative rewriting (see
the explanation after Guideline 4.7 on page 17) is implemented in this module.

The module complexity provides a new data type for measuring the complexity of
terms, literals and clauses, and for comparing complexities. This measurement can be
used for controlling the pruning of proof attempts heuristically when trying to relieve proof
obligations in conditional lemma application. At the moment the measures themselves are
fixed, e.g. the complexity of a term is its length, whereas the user can decide whether to
use complexity measures at all by changing the parameter :check-condition-complexity (see
Section 5.2).

As already explained for Guideline 4.2 on page 15 equational literals for sorts with
exactly two constructors that are constants may be represented in two different ways. Thus,
for the boolean values true and f a l s e the literal t = true has an alternative representation
t 75 f a l se if t is a defined term. At least when checking the mandatory and obligatory
literals in conditional rewriting (see Section 3) the tactics should be able to consider both
representations. This will be done if a lemma with clause { b = true, b = false } for a
constructor variable b has been activated. This lemma is needed due to technical reasons to
convert one representation into the other. The computation of the different representations
is implemented in the module a l t - l i t - rep .

The module subs t i tu t ions contains functions for completing a cover set of substi-
tutions as defined in [11] as well as merging two cover sets to compute an appropriate
inductive case Splitting that results from the expandable calls in a clause to be proved.
These functions are inherited from the old tactics.

The module condi t ion- t rees provides functions to establish a case splitting by ad-
dition of literals (cut) introduced to rewrite a given Operator call with the axioms of the
top-level operator. On the one hand these functions are used for checking for the defined-
ness property of an operator and on the other hand to compute an inductive case splitting
at the beginning of an inductive proof attempt. For further details see the description of
the old tactics in [11].

5.2 Module Def aul t -Set t ings

There are many decisions that lead to a successful proof in one case but that are just
time-consuming in another proof attempt. We tried to parameterize the tactics so that

28

Table 1: Optional parameters and their default values
Name Type Default Section
:auto-z’nsert-axioms-p Boolean TRUE 5.4.2
:speculate—domain-lemma-p Boolean TRUE 5.4.2
:activate—first—lz’t-p Boolean FALSE 5.4.3
:activate-left-to-rz'ght-p Boolean TRUE 5.4.3
:deactz'vate—old-p Boolean TRUE 5.4.3
:debug-p Boolean FALSE 5.5
:rule-type-order [rule-—type_Ta] RULESb 5.5
:allo'w-delayed-condition-check [appl—type_T°] ALLAPPLSCl 5.5
:allow-new- operato'rs-z'n- conditions [appl—1:ype_Tc] ALLAPPLSd 5.5
:check- condition- complexity [appl-type_Tc] [] 5.5
:mam'mal- condition-depth Integer - 1 5.5
:allow-perm-rewritz'ng—p ‘ , Boolean TRUE 5.5
:allow-free-vars—handlz‘ng—p Boolean TRUE 5.5
:allow- extended-order-handling-p Boolean TRUE 5.5
:allow-extended— const-rewrz‘ting-p Boolean TRUE 5.5
:allow—alternative-free-var—bindings—p Boolean TRUE 5.5
:allow-cond-sz'mplz'ficatz'on—before-induction-p Boolean TRUE 5.7
:recursz've-stmtegy-p Boolean FALSE 5.7
a ru l e - type_T := IND | AX | LMA
b RULES := [IND, AX, LMA]
° appl-type_T := EQSUBS | NEGEQSUBS I DEFSUBS | URDERSUBS | REWRITE
0‘ ALLAPP'LS := [EQSUBS, NEGEQSUBS, DEFSUBS, ORDERSUBS, REWRITE]

the user can decide whether to use more elaborated proof search heuristics or to prune the
proof state tree earlier. This behavior of the tactics can be influenced by many Optional
keyword parameters. Setting an optional parameter will change the behavior of the routine
for the actual execution. If the optional parameters are not provided by the user default
values will be used. The default value for an optional parameter can be changed in the
module Default—Settings if there is a meaningful static alternative for that parameter.
For example, the parameter :head-lz'tnbs of procedure activate-lemma (see Section 5.4.3),
that allows to specify the positions of the literals which should be used as head literals for
the lemma, has no meaningful static alternatives since the literal positions depend on the
activated lemma. On the other hand, for all boolean parameters TRUE or FALSE may be
chosen as default value.

An overview of all keyword parameters whose default values can be changed in mod-
ule Default-Settings is presented in Table 1. The table contains for each parameter
its name, type and initial default setting, i.e. the value that is used after the procedure
rese t -defaul t - se t t ings has been called. These default settings are also restored when
the database, that stores information about the analyzed operators and activated lemmas,
is initialized (see Section 5.4.1). Furthermore, the table contains for each parameter a ref-
erence where the meaning of the parameter is explained in detail. The parameters can be
divided into three groups according to the modules where they are used: parameters of
module Database control the analysis of defined operators and the activation of lemmas,

29

parameters of module Simplification influence the simplification process, especially the
application of lemmas, whereas the other parameters affect the behavior of the strategies
in module Proof —Stra tegies . As the proof strategies use the simplification tactics the
optional simplification parameters can be set in the proof strategies as well. In this section
we will only describe the procedures that allow to set and display the default settings of
the parameters.

The module offers three public procedures to handle the default settings of these optional
parameters:

. reset—default—settings () restores the predefined values for the Optional parameters
as presented in Table 1 .

. set-default—settings(:auto—z’nsert-axioms-p, . . . , :recursz've-strategy-p) allows to
set the default setting for an arbitrary set of the optional parameters displayed in
Table 1. The parameters that should be changed are themselves keyword parameters
of this procedure.

. display—default-sett ings() displays the default settings of the optional parameters
in the log window.

Note that the default settings for the optional parameters are intended to support unexpe-
rienced users. Thus, the computations based on these default values often work on, a larger
part- of the search space that can be restricted by changing some of the optional parameters.

« This can prune the search space enormously but also lead to strange and unexpected failed
proof attempts if the proof process is not understood very well.

For the sake of completeness, we. just want to mention that there are two other proce-
dures in this module. These procedures do not have any influence on the proof search but
merely control the behavior of some outputs e.g. the internal display of the database (see
Section 5.4.4). The output is controlled by the following parameters:

. :write-le'uel (—1):
This parameter indicates how deep nested structures, like lists and records, are
printed. A value of O means that the output will be abbreviated with three dots. A
positive value n allows the output of the outermost structure displaying the directly
nested structure at level n — 1. A negative value means that the whole structure is
printed. Thus, by default all structures are printed completely.

o :long—output—p (TRUE):
This parameter controls whether records are displayed in a long format that attaches
to each entry the name of the entry. This setting is enabled by default to clarify the
meaning of each record entry.

. :z'ndent ("") : -
The output is prefixed with the content of this parameter.

These write settings can be handled by the following procedures:

30

o set-write-settings(:wrz'te-level, :long-output-p, :z'ndent) sets the write settings ac-
cording to the given values. '

o display-write—sett ingso displays the write settings in the log window.

5 .3 Module P ro t ec t ed— Infe rence-Machine

The new tactics depend on information that is associated with goal or inference nodes
of proof state trees. Whereas some information can be derived directly from the inter—
nal data structures of proof state trees provided by the core system, other information
has to be stored by the tactics as e.g. the data for mandatory literals (see Section 3).
Therefore, the tactics build up a data structure similar to proof state trees in module
Protected—Inference-Machine. This data structure is more compact since only those
nodes are explicitly created for which the stored information has changed in comparison
to the predecessor node. For the maintenance of the data structure we have implemented
wrappers for each predefined tactic. In the other modules only the wrappers are used
instead of the original tactics.

The original tactics change the proof state trees by applying inference rules or deleting
inference nodes. The wrappers add further functionality in a uniform way that has the
following advantages:

. The repeated application of the same inference rule in one path of a proof state tree
or the same top—level application as in an alternative proof path is prevented.

. The constraints for mandatory literals in the proof of definedness and condition sub-
goals will be checked automatically.

0 In debug mode described at the end of Section 4.3 the physical deletion of failed proof
attempts is stopped. This is realized in conjunction with another wrapper function
that computes the open goal nodes in a proof state tree. This wrapper function will
recognize those nodes that have been deleted but not physically removed from the
proof state tree to get the same results with as without debug mode.

The module Pro tec t ed—Inf erence-Machine provides two public tactics to clean up a proof
state tree computed in debug mode:

o delete—goal-proof -at tempts(goal) deletes every alternative proof attempt but the
last in the subtree starting at the given goal node goal.

o delete—root -proof—attempts(goal) deletes every alternative proof attempt but the
last in the whole proof state tree of goal node goal, which remains the Current goal
node in the proof state tree.

5 .4 Module Database

The database stores all information about analyzed operators and activated lemmas. The
information about operators is used for creating the initial case Splitting in an inductive

31

proof whereas the activated lemmas are used for rewriting and subsumption during the
simplification process. We will divide the description of the public procedures in this module.
into five sections: the initialization of the database in Section 5.4.1, the analysis of operators
in Section 5.4.2, the activation of lemmas in Section 5.4.3, the display operations of the
database in Section 5.4.4 and saving the whole state of the database in a file in Section
5.4.5.

5 .4 .1 Initializing the Database

Before using the tactics the state of the database represented by global variables has to be
initialized. This is done by calling the following procedure:

. initialize—databaseo will reset the state of the database as well as the default
settings for optional parameters as described in Section 5.2.

Without doing this the tactics will behave unexpectedly, mainly because they cannot ini-
tialize the default settings automatically in a meaningful way.

5 .4 .2 Analyzing-Operators

The analysis of a defined Operator —— more precisely of the axioms that belong to the
defined Operator —— by the 'old tactics together with the resulting definition scheme of the
operator is presented at'length in [11]. As we have been satisfied so far with the inductive
case splittings stemming from these definition schemes, we have only made minor technical
improvements w.r.t. the separation of the axioms and the termination heuristics. Since we
are essentially interested in presenting the achievements of the new tactics we will only give
a short summary of the definition scheme of a defined operator.

The definition scheme of a defined operator f consists of

o a normalized representation of the axioms of f achieved by renaming variables to
minimize the number of different variables used.

o a cover set of substitutions for the Operator that can be used for generating an induc-
tive case splitting for goal clauses like {def f (r131, . . . , %)} where n is the arity of f
and z,- is a constructor variable for 1 g i 5 n .

o a list of termination witnesses if f is recursive and supposed to be terminating by
the termination heuristics. These termination witnesses are argument positions that
become smaller in a wellfounded order in each recursive call of f . They are used for
guessing an instantiation of a weight variable in an inductive proof.

o a list of induction positions if f is conjectured to be terminating. The induction
positions are those argument positions of f that are changed by the axioms of f . They
are used for determining the expandable and obstructed calls in a goal clause with
different defined Operators to merge different induction schemes into one inductive
case splitting.

32

A major improvement of the new tactics is the application of weight modifiers in the ter-
mination heuristics. This means that not only lexicographical combinations of constructor
variables used in the axioms of f are considered during the termination analysis, but also
combinations using constructor variables modified by a sequence of unary defined Operators
f1, . . . , fn if an appropriate order lemma has been activated before. Such an order lemma
has the form

{ f1 (. . . (f , , (t 1)) . . .) < c l (. . . (cm(f1 (. . . (f , , (t 2)) . . .))) . . .) , l2, . . . , lk } ,

where t,- are terms, 0,- are constructors and lp are literals. We will illustrate the notion of
weight modifiers by the following example about a specification of merge sort.

Example 5.1

Let the specification consist of sorts Bool and—Nat as given in Example 3.1 as well as sort
Lis t for lists over natural numbers with the constructors n i l for the empty list and cons
to construct a list consisting of a natural number and a tail list.

The recursive step in the definition of an operator mergesort on lists over natural
numbers can be defined as follows:

(26) mergesort(cons(:t, cons(y, l))) = merge(mergesort(split1(cons(:r, cons(y, l)))),
mergesort(split2(cons(:r, cons(y, l)))))

where merge merges two sorted lists and sp l i t l (respectively sp l i t2) filters the elements
of a list on odd (respectively even) positions. '

Provided two order lemmas, using an operator length that computes the length of a
list, have been activated before with clauses

(27) { length(spl i t1(l)) < 1ength(l),l = n i l , length(l) = 5(0) }
(28) { length(spl i t2(l)) < length(l), l = ni l }

resulting in a weight modifier length for sort L i s t , the termination heuristics consider
mergesort terminating with termination witness 1 (the only argument of mergesort) and
weight modifier length. Because of the given lemmas

length(split1(cons(:c, cons(y, l)))) < 1ength(cons(x, cons(y, Z))) and
length(split2(cons($, cons(y, l)))) < length(cons(a:, cons(y, l))).

Therefore, the arguments of the recursive calls of mergesort modified by the weight modifier
length are smaller w.r.t. the induction order than the argument of mergesort on the left-
hand side of the axiom.

Beside of using weight modifiers, the termination heuristics now also apply a more involved
algorithm to compare term tuples by using unconditional activated lemmas to compute
normal forms of weight terms and to delete additional constructors on the right-hand side
of the order atom before trying to find an order lemma that subsumes the order atom. As
this algorithm is rather s0phisticated we will not explain it in detail here.

There are two procedures for gathering information about defined operators in the
database: '

33

. analyze—operator(op, :auto-insert—amz'oms—p, :speculate-domain-Zemma-p) creates the
definition scheme for the defined Operator op. Note that due to technical reasons a
defined operator has to be analyzed before a definedness or rewrite lemma can be
activated for this operator.

o deac t iva te-opera tor (0p) removes the entry about the defined operator op from
the database. This also removes all activated definedness and rewrite lemmas of the
operator.

The first procedure is parameterized by two optional keyword parameters whose default
values can be set in module Default-Sett ings (see Section 5.2):

. :auto—z’nsert—am’oms-p: If this parameter is enabled the axioms of the operator will
be activated automatically for the simplification process by calling the procedure
activate-axioms (see Section 5.4.3). The activation is done in a way that the first
axioms specified will be prefered during simplification as we are used to enter the
easier axioms (e.g. the base case of a recursive definition) first.

. :speculate-domain-lemma-p: If this parameter is enabled the procedure tries to spec-
ulate a definedness lemma (called domain lemma in [11]).

5 .4 .3 Activating Lemmas

Whereas the information about analyzed operators is used for generating an inductive case
splitting, the activated lemmas are applied as rewrite or subsumption lemmas during the
simplification process as explained in Section 3. Besides, activated lemmas are used for
the computation of alternative literal representations as described in Section 5.1 about the
auxiliary module a l t—l i t - r ep , and for the termination heuristics as explained in Section
5.4.2.

All these applications are restricted by the head and obligatory literals the lemma is
activated for as motivated in Section 3. These literals can be given by the user during the
activation of the lemma; otherwise, they are computed by some heuristics. The activation
can be influenced by the following keyword parameters:

. :deactivate-old-p: If this parameter is enabled all former activations of this lemma will
be removed from the database; otherwise, the new activation is added. This enables
the user to specify different obligatory literals for each head literal by activating the
lemma more than once without removing the old activation.

. :head—litnbs: If given, this parameter contains a list of literal positions that are to be
used as head literals for the lemma. Otherwise, the head literals will be computed
according to parameter :activate-first-lz’t—p.

. :obl-lz‘tnbs-list: If given, this parameter contains one or more lists of literal positions
that are used as obligatory literals for the lemma. This means that at least one of the
lists of obligatory literals has to be directly fulfilled in a goal clause before the lemma
can be applied to the goal automatically. If this parameter is not given by the user,

34

no obligatory literals will be used with only one exception: If the lemma is activated
as a rewrite rule with a general term as left-hand side (i.e., a term that consists of an
Operator call with different variables at all argument positions), then the next literal
is chosen as obligatory literal provided that the clause has morethan one literal. This
heuristic helps to reduce the search space drastically, as rewrite rules with general
terms can be applied very often. On the other hand, it should be checked whether
this restriction is too strong if a proof attempt fails.

:actlvate-first-llt-p: This parameter is only relevant if no head literals have been
provided by the user. It distinguishes between two different heuristics to find a head
literal automatically. If :activate-first-lit-p is enabled, the first equational, negated
equational, order or definedness atom in the lemma clause is chosen as head literal.
Otherwise, the heuristics proceed as follows: If there is just one order atom or one
definedness atom this atom is chosen; if there is more than one order or definedness
atom the procedure fails, i.e., the lemma is not activated at all. This failure is justified
as there are no means to prove negated definedness or negated order atoms apart
from using them as complementary literals, but these kinds of literals will become
mandatory literals for a condition subgoal when we apply such a lemma that contains
more than one order or definedness atom. If the lemma contains neither order nor
definedness atoms, a (negated) equational atom is chosen that binds most of the
variables of the lemma. To be more precise, the first equational atom of these literals
is chosen if there is one such atom; otherwise the first negated equational atom is
taken. In other words, if the procedure does not fail exactly one atom is chosen
as head literal prefering order and definedness atoms over equational over negated
equational atoms that bind most of the variables in the clause.

:activate-left-to-rz‘ght-p: If this parameter is enabled equational atoms that can be
used as rewrite rules will be activated from left to right. Otherwise, they will be
activated from right to left.

For each head literal the lemma is assigned one application type. In contrast to the old
tactics, where there were special restrictions for rewrite, domain and induction lemmas, we
classify the lemmas just by the syntactic form of the head literal:

If the head literal is a definedness atom the application type is subsumptz'on lemma
for definedness atoms (DEFSUBS);

if the head literal is an order atom it is a sabsumptton lemma for order atoms
(ORDERSUBSfi

if the head literal is a negated equational atom it is a subsamptz'on lemma for negated
equational atoms (NEGEQSUBS);

if the head literal is an equational atom with a variable as left-hand side it is a
subsamptlon lemma for equational atoms (EQSUBS);

if the head literal is an equational atom that does not have a variable as left-hand
side it is a rewrite lemma (REWRITE).

35

Note that there may be rewrite lemmas for defined operators as well as for construc-
tors, i.e., the tOp—level operator of the left-hand side of the head literal may be a
defined operator or a constructor. The latter may occur when proving properties
about the interplay of constructors and destructors as demonstrated by lemma

(29) { cons(car(l), cdr(l)) = l,
l = n i l }

Since the rewrite rules are typically not confluent, the order in which the lemmas are
applied does matter not only for efficiency reasons but also for finding a proof at all.
As explained in Section 5.5 the user can influence "the order in which axioms (AX) and
lemmas are applied inductively (IND) or non-inductively (LMA), respectively, by setting
the parameter :rule-type-order, whereas the order in which the term is tested for rewrite
positions is fixed by an innermost strategy left—to—right. Besides, subsumption lemmas
are prefered in comparison to rewrite lemmas as they close the proof path, and directly
applicable lemmas are prefered, because they normally lead to simpler proofs. Within each
group of activated axioms, inductive lemmas and non—inductive lemmas the lemmas are
tested recent first, so that newer lemmas are prefered. The user can change the activation
order by one of the procedures presented below.

To conclude the description of the activation. mechanism we list the procedures for
activating lemmas along with their (keyword) parameters:

o act iva te—lema(lemma, :head-lz’tnbs, :obl-l'ltnbs—lz'st, :activate—first-llt-p, :actz’vate-left-
to-rz’ght-p, :deactivate-old-p) activates the given lemma non-inductively.

o activate—lemmas(lemmas, :activate-first-lz't-p, :activate-left-to-right-p, :deactz’vate-old-
p) activates the list of lemmas non-inductively in the given order so that the last lem-
mas (and thus most recently activated lemmas) will be prefered during simplification.

o change—lemmas—order(lemmas, :activate-first-ltt-p, :activate-left—to—right-p) changes
the order of activated non-inductive lemmas according to the list lemmas. Former non-
inductive lemma activations that do not appear in lemmas are deactivated, whereas
new lemmas are activated automatically.

0 deactivate—lemmas(lemmas) deactivates all non-inductive lemma activations in the
list lemmas.

o activate—ind-lemma(lemma, :head-lltnbs, :obl-lltnbs-llst, :actz'vate-first-lz't-p, :actz'vate-
lefi-to-rz’ght-p, :deactlvate-old—p) activates the given lemmas inductively.

The other corresponding procedures for non-inductive lemma activations are omitted
for inductive lemmas as they are integrated into the simplification tactics and proof
strategies directly.

. activate—axiom(a$z'om‚ :head—lz'lnbs, ...:deactloate-0ld-p),
activate—axioms(a$loms, :aclivate—first-lit-p, ...:cleactz'vate—old—p),
change—axioms-order(arz’oms, :aclivate—first-lz’t-p, :actz’vate-left-to-right-p) and
deactivate—axioms(a$i0ms)

36

correspond to the described procedures for non-inductive lemma activations replacing
lemmas by axioms.

Note that directly after an inductive case spitting axioms are applied regardless
whether they are activated: Since the inductive case splitting is done to apply certain
axioms this will not be prevented by deactivating them.

5 .4 .4 Displaying the Database

To inform the user about the state of the database the module offers some output proce-
dures. These can be divided into procedures presenting a succinct and more readable View
on the database by omitting technical details, and those providing insights into the internal
data structures that represent the state of the database.

display-databaseO displays the contents of the whole database in a succinct and
more readable form.

display—operator-info(0p) displays the information gathered for the defined oper-
ator op in a succinct form containing the information of the analysis of the Operator .
as well as all definedness and rewrite lemmas activated for the operator.

display—ctr—0perator-info(0p) displays the information gathered for the construe-.-
tor 0p in a succinct form. This information is non—empty only if a rewrite rule has
been activated with the constructor as top—level operator of the left-hand side as e.g.
in lemma (29) for constructor cons.

display—internal—databaseO displays the contents of the internal data structures
of the whole database.

display- internal-operator- info(op) displays the contents of the internal data
structure of the defined Operator op corresponding to the external view as provided
by d isp lay—opera tor - info .

display—internal—ctr—operator-info(op) displays the contents of the internal
data structure of the constructor op corresponding to the external view as provided
by d i sp lay-c t r—opera to r - in fo .

The output of the internal View can be influenced by setting the write settings, e.g. the
‚write-level, as explained in Section 5.2.

5.4.5 Saving the Database

As explained in Section 4, there are two ways to automatically extract. a file that contains
information about the current proof session:

. In a command script every user interaction with the prover will be stored. This
normally leads to a huge file that contains many irrelevant commands unless the script
has been edited manually as described in Section 4.4. A command script documents

37

the proof process in terms of the called tactics. Thus, the whole proof search that
may be very time-consuming is redone when the file is read in. On the other hand,
this mechanism guarantees that not only the state of the core system but also the
state of the QML-modules like Default-Sett ings and Database is the same as at
the end of the proof session that is stored5.

. In a state file the state of the core system represented by the current specification
and the actual proof state trees will be stored. For every proof state tree the applied
inference rules that have not been deleted will be stored regardless whether they were
applied manually or automatically during the execution of a tactic. Therefore, the
process that has led to the proof state tree is lost but a state file will be read in much
faster than an equivalent command script since no proof search is necessary. The
Operation of creating a state file is provided by the core system. Thus, a state file
only restores the state of the core system and not the state of the QM L-modules.

To overcome this latter limitation of saving a state file, the database offers the following
wrapper procedure:

. output—state(filename) saves the whole state of the core system as well as of the
QM L—modules in a single file named fi lename.

We did not want to implement procedures just for restoring the state of the QML-modules.
. Thus, in such a state file we use the procedures described so far. Whereas this does not

cause any problems for module Defaul t—Set t ings it may lead to wrong results for module
Database since e.g. the result of an operator analysis depends on the activated lemmas. We
try to overcome this problem by activating all global lemmas first. After that we analyze
each operator in the same order as stored in the database, thereby activating all rewrite
and definedness lemmas of this operator. Theoretically, this may still lead to wrong results
as some lemmas may have been deactivated during the proof session that are needed for
the analysis of an operator. But as we have not recognized this problem in practice we did
not care for a better book keeping mechanism of lemmas that were activated in the past.

5.5 Module S impl i f i ca t ion

The simplification process has been completely restructured in comparison to the old tactics
dividing it into several passes as already mentioned in Section 2. One of the main improve-
ments is achieved by applying conditional lemmas that are not directly applicable. These
applications are controlled by obligatory and mandatory literals as described in Section 3.
We will now explain the task of each pass during the simplification process without going
into technical details. The implementation of each pass depends on the kind of atom of the
considered literal, i.e., whether it is an equational atom, an order atom, a definedness atom
or a negation of one of them. The public interface of this module provides tactics to perform
one pass for one selected literal or for all literals of a goal as well as a combination of all
passes for one or all literals of the given goal or of all open children goals of the given goal,
respectively. This process may also be performed recursively as long as any simplification is

5Th i s only holds if the command script does not contain any calls of non-terminating tactics.

38

possible. The public tactics as well as their keyword parameters will be described in more
detail at the end of this section.

The whole simplification process is called s implify and it is divided into the following
five6 passes:

o prove-taut : This pass proves simple tautologies that can be shown by a single ap-
plication of one inference rule without using any lemmas. To be more precisely, the
inference rules for simple tautologies compl—lit, aé—taut and <—taut , as well as the
inference rules for decomposing atoms =—decomp, def-decomp and <—decomp are ap-
plied as long as they do not produce any new subgoals. Certainly, for each kind of
atom only those inference rules are tried which are sensible for that kind.

0 remove-redundant: During this pass all inference rules that remove redundant lit-
erals, i.e., mul t - l i t , =—removal, <—removal, %—removal and ”def—removal, are
tried.

. reduce—passl: This pass tries to apply non-permutative lemmas that are directly
applicable in the goal clause. If the goal clause can be subsumed by one lemma,
the goal is proved; otherwise, a normal form w.r.t. the directly applicable rewrite
lemmas is computed testing for simple tautologies and redundant literals after each '
rewrite step. This pass has been split from reduce—pass2 to prefer directly applicable
lemmas as they contribute to easier proofs. Technically, the different handling of
lemmas is achieved by temporarily changing the values of the keyword parameters
:allow-delayed-condition-check to the empty set [] and :allow-perm-rewriting—p to
FALSE. -

. reduce—pass2: During this pass a great effort is undertaken to prove the goal with
the considered literal. Nearly all inference rules (except const - rewri te) , that have
not been applied during the first three passes, are attempted. There are some special
macro inference steps, i.e., sequences of inference steps that are linked together to
simplify goals that contain a special pattern. They are used e.g._ for removing con-
structor prefixes of definedness atoms and equational literals as well as for guessing
intermediate weights for order atoms. Above all, the main focus of this pass is on
applying subsumption and (possibly permutative) rewrite lemmas even if they are not
directly applicable in the goal clause taking into account the obligatory literals of the
lemma and the mandatory literals of the goal as explained in Section 3. During this
pass some inference rules are tested simplifying their derived subgoals by the whole
simplification process recursively. But if some of the conditions, represented by the
subgoals, cannot be established, the whole subtree is deleted again. This guarantees
that at most one goal (without counting goals with order atoms containing weight
variables) results from this pass.
Note that this pass can be essentially influenced by keyword parameters (see below)
and the activation of lemmas in the database as described in Section 5.4.

. cross—fertilize: So far, this pass affects only negated equational atoms. They are
used for replacing in another literal the occurrence of one side of the negated equation

6As there are no means to prove negated definedness or negated order atoms apart from using them as
complementary literals, they are not considered by the last three passes at all. '

39

with the other side by applying the inference rule cons t - rewr i te . To prevent infinite
100ps the tactics do not perform applications that undo former ones. Furthermore,
the application of this pass is controlled by some heuristics to obtain “simpler” literals.
These heuristics apply the following rules until the first succeeds:

— If one of the terms is a subterm of the other, the other term will be replaced
with the subterm.

— Otherwise, if one term is a variable, it is replaced with the other term. The other
term represents the definition of the variable.

—— Otherwise, if one of the terms is “simpler” than the other term w.r.t. a fixed sim-
plification order, the other term is replaced with the “simpler” term. As simpli-
fication order we use an LPO on ground terms regarding variables as constants.
The precedence is defined by three levels only: constructors are smaller than
defined operators which are in turn smaller than variables. This order prefers
terms that have less variables and more constructors (at top-level positions).

— Otherwise, i.e., if the two terms are equal with respect to the simplification order,
it is tried to arbitrarily replace one term with the other as long as this does not
retract a former application. This random choice may help to prove some goal
clauses in cases where all other rules do not apply.

The simplification process can be fine-tuned by the following keyword parameters that
essentially allow to restrict the application of lemmas and other inference rules:

o ind-lemmas: With this parameter, the user can specify the lemmas that should be
used as induction hypotheses during the simplification process. The lemmas will be
activated as induction hypotheses analogously to procedure change-lemmas-order for
non-inductive lemmas (see Section 5.43). Thus, every lemma in ind-lemmas that has
been activated before will be kept as is, new lemmas will be activated automatically
whereas old activations will be removed if the lemmas are not in ind-lemmas. If this
parameter is not given, all former inductive lemma activations will be removed. The
activation can be controlled further by the keyword parameters :activate—first-lit-p
and :activate-Zeft-to-right-p as explained in Section 5.4.3.

. :debug-p: This parameter controls the debug mode as explained at the end of Section
4.3.

. :rule-type-order: One of the main steps when simplifying a goal is to apply an axiom
(AX) or lemma — inductively (IND) or non-inductively (LMA) — to rewrite or subsume
the goal clause. With this parameter the user can influence the order in which axioms
and lemmas are searched for.

. :allo'w-dela'yed-condz'tion-check: This parameter constitutes whether lemmas, that are
not directly applicable, should be considered for rewriting or subsumption. The deci-
sion can be made separately for each kind of lemma, i.e. subsumption lemmas for equa-
tions (EQSUBS), for negated equations (NEGEQSUBS), for definedness atoms (DEFSUBS)
and for order atoms (URDERSUBS) as well as for rewrite lemmas (REWRITE).

40

:allow-new-operators—in-conditz’ons: The introduction of new operators while proving
conditions of a conditional lemma application can blow up the search space. This
parameter enables the user to disallow the invention of new operators for each kind
of subsumption or rewrite lemma. -

:check-condition-complexity: This is another parameter toreduce the effort used for
proving condition subgoals by disallowing these subgoals for literals that are complexer
than the complexest literal in the goal clause. At the moment the complexity of a
term is measured by its length, the complexity of a literal as the complexity of the
largest term in the literal, and the complexity of a clause as the complexity of the
largest literal in the clause. It can be enabled for each kind of rewrite or subsumption
lemma separately.

:maxz'mal-condition—depth: This parameter restricts the maximal recursion depth for
applying conditional lemmas that are not directly applicable in the proof of condition
subgoals of (other) conditional lemmas. A value of 0 means that only directly applica-
ble lemmas can be applied. A positive value 77, allows the application of lemmas whose
conditions can be proved by lemma applications with maximal condition depth n — 1.
A negatiVe value stands for an unrestricted use of conditional lemma applications.

:allow-perm-rewritz’ng-p: As already explained after Guideline 4.7 on page 17, a per-
mutative lemma is an equational lemma with a head literal l = 'r, where l is a variable
renaming of r , i.e., there exists a substitution 0 with JU) E 'r that only renames vari—
ables. The commutativity of plus (see lemma (15)) is an example for a permutative“
lemma. The tactics use a fixed total simplification order to control the rewriting
process with permutative lemmas which prevents infinite loops in most cases. Be-
sides, the parameter :allow-perm-rewriting—p allows the user to disable rewriting with
permutative lemmas at all.

:allow-free-vars—handling—p: When applying a lemma to a goal clause as rewrite or
subsumption lemma each variable in the lemma has to be instantiated. For most of the
variables this is done by matching the head literal of the lemma to the focus literal of
the goal. Variables of the lemma that are not instantiated by this matching operation
are called free variables of the lemma. If this parameter is disabled lemmas containing
free variables will not be considered for rewriting and subsumption. Otherwise, the
tactics try to instantiate these free variables e.g. by matching condition literals of the
lemma containing free variables to context literals of the goal.

:allow-extended-order-handling-p: In comparison to the old tactics the new ones use
the inference rules <-mono and <—-trans (see [11]) as a last resort when trying to
prove order atoms by guessing a new intermediate weight tuple. As this can enlarge
the search space the application of these inference rules can be disabled by parameter
:allow—extended-order—handling-p.

:allow-extended-const-rewrz'tz’ng-p: This parameter controls whether the inference rule
const—rewrite will be used during pass cross—fert i l ize . In the current state of
development, c ro s s - f e r t i l i z e has no effect when this parameter is set to false.

41

o :allo'w-alternative-free-var-bindings-p: It is possible to get different instantiations of
free lemma variables by matching lemma literals to different goal literals. This pa.—
rameter controls whether alternative bindings of free variables are considered.

This module provides several public tactics that are named by a fixed naming scheme.
The first part of the name stands for the pass of the simplification process whereas the
last part specifies to which literal(s) the pass is applied. All tactics may be given the
keyword parameters listed above. These keyword parameters are represented by dots after
the obligatory parameters in the following description of the tactics:

o simplify(goal, . . .) calls the tactic s implify-al l—li ts for goal and each derived
subgoal as long as there is any change. This produces goals that are stable under
simplification.

o simplify-open-subgoals(goal, . . .) simplifies all open subgoals of the last proof
attempt for goal by calling simplify. This tactic is useful after an inference rule has
been applied manually to continue the simplification process for all derived subgoals.

o s imp l i fy—al l - l i t s (goal, . . .) simplifies the given goal by applying each pass to all
literals starting with the first pass for all literals. The literals are considered in the
same order as they appear in the goal clause beginning with the first literal.

o simplify—lit(goal, limb, . . .) simplifies the literal at position limb of the given goal
by applying all of the five passes.

o prove-taut—lit(goal, limb, . . .) ,
remove—redundant—lit(goal, limb, . . .),
reduce-passl—lit(goal, limb, . . .),
reduce-pass2-lit(goal, limb, . . .) and
c ros s - f a r t i l i z e - l i t (goa l , limb, . . .)
perform the corresponding pass for the literal at position limb of the given goal.

o prove-taut—all—lits(goal, . . .) ,
remove—redundant—all—lits(goal, . . .) ,
reduce-pass1—a11-1its(goal, . . .) and
reduce-passQ-all- l i ts(goal , . . .)
perform the corresponding pass for all literals of the given goal.

o cross—fer t i l ize-f i r s t—l i t (goal, . . .) performs the corresponding pass for the first
literal to which it can be applied. Since cross fertilization is used as a last resort with
a high probability of a misleading proof attempt it is stopped after the first literal.

In almost all cases one of the first two tactics is to be applied to simplify the goal clauses
as far as possible. Only in special cases, e.g., if it is known that the first passes will fail for
example because of an earlier (failed) proof attempt, i t is suitable to call one of the tactics
that start one pass separately to get a better performance.

42

5.6 Module Inductive—Case—Analyses

The automatic inductive case analysis, which is in principle inherited from the old tactics,
is discussed at length in [11]. Therefore, we give only a short summary and concentrate on
the new interface to QUODLIBET.

Before an inductive case splitting can be generated by the tactics, each defined operator
' of the goal clause has to be analyzed so that a definition scheme has been created in the
database. This information is needed for the inductive case analysis, e.g. the induction
positions that indicate those argument positions of a defined operator that are changed by
the axioms of that operator (see Section 5.4.2). The inductive case splitting aims at rewrit-
ing the resulting subgoal clauses by axioms to simplify them. Hence, the tactic searches
for efiecti've Operator calls, i.e., operator calls that have distinct constructor variables at
all induction positions. To be able to apply the axioms of the operator, these variables
have to be instantiated according to the induction scheme of the operator. But this is only
done if the operator call does not obstruct other operator calls, i.e., if one of the induction
variables has an occurrence in another operator call that is not in an induction position for
this operator. As these obstructing operator calls can cause redundant inference steps they
are not taken into account by the inductive case analysis. The induction schemes of the
remaining effective operator calls that do not obstruct other operator calls are then merged
into one induction scheme, and the resulting subgoals are simplified by the axioms of these
operators.

The module provides three tactics to generate an inductive case splitting automatically
or_by the assistance of the user:

o ind-case-analysis(goal) produces an inductive case Splitting for the given goal au-
tomatically according to the description above.

0 expand—operators(goal, limbs, litposl) generates an inductive case splitting for the
given goal semi-automatically taking into account only the effective Operator calls
at the given term positions in the goal. A term position is composed of a number,
representing the position of the literal in the goal clause, and a position within the
literal. Due to technical reasons the literal numbers and positions within the literals
are given by two lists limbs and lltposl, respectively. These lists must have equal size,
and the corresponding positions must be stored in the same order in each lists.

o expand-variables(goal, variables) generates an inductive case splitting for the given
goal manually using the given variables as induction variables. These variables are
instantiated by a minimal cover of constructor terms for the sort of the variable. The
variable $ of sort Nat will be e.g. instantiated by the terms 0 and s($). Since no
operator calls are specifically marked, no axioms are applied automatically after the
inductive case splitting.

5.7 Module Proof—Strategies

The whole proof process is implemented by proof strategies that enable the user to prove
(simple) inductive lemmas automatically. As already mentioned in Section 2 there are

43

12 different proof schemes depending on the way the induction analysis is performed, the
lemmas that are activated as induction hypotheses, and whether the strategy is recursive.

The proof strategies can only be applied to root goal nodes of proof state trees since only
these goal clauses can be applied inductively. First the proof strategies try to simplify the
goal clause. If the goal clause is proved during this initial simplification process the proof
process stops successfully. Otherwise, if the original goal has been simplified, for each Open
subgoal a new proof state tree is created (regardless whether the strategy is recursive).
All open proof state trees are then processed successively by establishing an inductive
case splitting according to the selected method (automatic, semi—automatic, manual) and
simplifying the resulting subgoals, possibly applying the given inductive lemmas or creating
new proof state trees if the strategy is recursive. If this process succeeds in proving all
open subgoals except those containing weight variables due to an inductive application, the
weight variables are attempted to be instantiated and the resulting order atoms are proved.

For the instantiation of the weight variables a procedure has been implemented in this
module. This proCedure is called automatically at the end of the proof process if all other
open subgoals have been proved before. Thus, it has to be called manually by the user only
if the proof attempt gets stuck e.g. due to some missing lemmas. Even in this case, the
user may decide to call the tactic cont—proof—attempt instead (see below).

. set-weights(conj) tries to instantiate the weight variable of the given lemma conj
so that all resulting order atoms can be proved. This procedure should only be called
after all inductive applications have been performed to be able to consider all order
constraints.

The tactics of this module allow the user to fine-tune the proof process by the keyword
parameters of the simplification process (see Section 5.5). The only difference is that the
root of the considered proof state tree will be used as induction hypothesis if no induction
hypotheses are given by keyword parameter :ind—lemmas. Regardless whether :ind-lemmas
are provided, each proof state tree that is created during the execution of the tactics will
be activated as inductionhypothesis.

The proof strategies auto—stra tegy, opera tors—stra tegy and var iables-s t ra tegy
provide two additional keyword parameters:

. :allow-Cond-simplification-before—inductz'on-p: If this parameter is enabled even con-
ditional lemmas that are not directly applicable are considered for rewriting and sub-
sumption during the initial simplification process before an inductive proof attempt
is started.

0 :recursz've—stmtegy-p: This parameter controls whether the strategy is recursive.

All these optional parameters will be abbreviated by dots in the following description of
the tactics.

Due to the different parameters needed to create inductive case splittings automatically,
semi-automatically or manually, there are three parameterized strategies that implement
the 12 proof schemes.

44

o auto—strategy(goal, . . .) performs the proof process described above using an auto-
matic case analysis.

a operators-s trategy(goal , limbs, lz'tposl, . .) applies the proof process described
above performing a semi—automatic case analysis. The parameters limbs and litposl
are used as positions for the effective Operator calls that have to be considered (see
tactic expand-Operators in Section 5.6). I

o var iables—stra tegy(goal, variables, . . .) applies the above proof process performing
a manual case analysis for the given variables (see tactic expand-variables in Section
5.6).

If not all open subgoals can be simplified automatically the user has to support the tac-
tics e.g. by applying inference rules manually or by providing auxiliary lemmas. After this
manual interaction it is useful to continue the proof attempt automatically, possibly in-
stantiating the weight variables at the end of the proof to finalize i t . Therefore, we offer
one further tactic comparable to the tactic simplify-open-subgoals in Section 5.5. In
contrast to this tactic the following tactic tries to simplify not only the open successor sub-
goals of the given goal but all Open subgoals of the whole proof state tree. Furthermore, the
tactic attempts to instantiate the weight variables if all other subgoals have been proved.

0' cont —proof -attempt(goal, . . .) continues the proof attempt by simplifying all open
subgoals of the proof state tree which the given goal belongs to .

6 Case Studies

We have tested our new tactics with some examples for the Old tactics described in [11] and
[8]. The examples in [11] range from some easy specifications about arithmetic Operators
on natural numbers like addition and multiplication, about Operations on lists over natural
numbers as e.g. a merge sort algorithm, and about search trees, to some specifications that
illustrate special features of the specification language as e.g. a partially defined subtrac-
tion operation, the computation of the Euclidian quotient defined by destructor recursion
and a non-terminating definition of a division Operation on natural numbers. These ex-
amples have been extended by further sorting algorithms like bubble sort or quick sort in
[8]. We will compare the results of these examples with those of our new tactics w.r.t.
the degree of automation as well as the time consumed. Besides, we have performed some
more challenging case studies that were out of scope of the old tactics because of their
Weaker simplification process. We have proved properties that involve a more intensive
treatment of arithmetic expressions like the irrationality of \/§ and properties about the
greatest common divisor (god) of two natural numbers as e.g. i ts commutativity and asso-
ciativity. Furthermore, we have performed case studies about mutually recursive functions
proving that the lexicographical path ordering (Lpo) is a simplification order and showing
the equivalence of different definitions. Besides, we have proved the exp-exhelp example
presented in [9] that states the equivalence of call by value and call by name evaluations
for simple arithmetic expressions containing function calls.

45

Version Lemmas Manual Appl. Weight Automatic Appl. Deletions Runtime
Old 79 (+3) 33 . 5 1154 —- 1.53

Improved 78 (+2) 15 3 2478 1155 5.24
New 31 (+3) 4 1 1221 33 2.02
Table 2: Comparison of the different tactic versions for the basic examples in [11]

Version Lemmas Manual Appl. Weight Automatic App]. Deletions Runtime
Old 93 . 116 2 2296 — 3.46

Improved 93 49 2 7224 4527 37.56
New 111 1 0 2210 60 3.67

Table 3: Comparison of the different tactic versions for the sorting algorithms in [8]

In [12] a first attempt was made to improve the tactics by providing an extended handling
of order atoms and permutative rewriting as well as allowing the application of conditional
lemmas that are not directly applicable. This implementation has shown the potential of
automation w.r.t. these aspects. But as i t is based on the old simplification process that
does not provide a general purpose simplification tactic to simplify all kinds of atoms as far
as possible or to apply lemmas inductively if needed, the degree of automation is restricted.
And — even worse — as it does not provide apprOpriate restrictions for applications of
conditional lemmas, i t lacks efficiency. This can be seen below in Table 2 for the examples
from [11] and in Table 3 for the sorting algorithms insertion sort, merge sort, quick sort
and bubble sort from [8] where the'three different versions (i.e., the old tactics of [11], the
improved tactics of [12] and our new tactics) are compared w.r.t. the following aspects:

o Lemmas: the number of lemmas introduced into the specification, which can be seen
as a measure of the complexity of the specification w.r.t. to other examples. If any
lemmas have been generated automatically by a recursive proof strategy, they are
added in parenthesis.

. Manual A ppl.: the number of manually applied inference rules to complete the proofs
of the lemmas in the specification.

. Weight: the number of times the weight variable has to be instantiated manually to
get an appropriate induction order.

. Automatic Appl.: the number of inference rules successfully automatically applied by
the called tactics.

o Deletions: the number of inference rules deleted due to a failure in relieving a condi-
tion subgoal of a conditional lemma. For the old tactics this parameter is meaningless
as they do not apply conditional lemmas that are not directly applicable.

. Runtime: the runtime of the tactics in seconds measured by a CMU common lisp
system on a machine with a 1330 Mhz AMD processor and 512 MB RAM. Note that
this does not include the time for user interaction which has to be added for an overall
comparison. ' .

46

Example Lemmas Manual Appl. Weight Automatic Appl. Deletions Runtime
gcd 84 (+1) 8 2 1087 18 1.98
«5 51 (+2) 11 1 1005 28 3.86
Lpo 142 (+6) 5 65 6208 1236 31.35

exp—exhelp 27 0 6 1313 - 220 ‘ 7.44

Table 4: Performance of the new tactics for some more challenging examples

First, let us comment on the different numbers of lemmas specified: For the examples in
[11] we have tried to use equivalent specifications for all tactic versions. To account for the
better automation we have deleted one trivial lemma that was needed by the old tactics
and have added three new lemmas for the new tactics. For the sorting algorithms in [8]
we have not been so restrictive in changing the specification for the new tactics to reduce
manual interventions. Therefore, the second comparison may privilege the new tactics.
Nevertheless, the statistics show that the new tactics improve the automation of the proof
process drastically without increasing the machine runtime very much. The implemented
heuristics prevent many applications of conditional lemmas whose conditions cannot be
relieved. This results in a much smaller number of inference rule applications that have
to be deleted later in comparison to the implementation in [12]. These checks may be
the reason for an additional runtime of 32% in Table 2 in comparison to the old tactics
whereas the number Of applied inference rules only increases by 3%. But this increment
is negligible in comparison to the achieved automation resulting from a bigger proof space
that is searched. ' '

The development of the new tactics has greatly benefitted from the automatic extrac-
tion of statistical informations from log files created by QUODLIBET. By doing so for the
examples in, [11], we recognized for an earlier version of the new tactics that two lemmas
have been activated which were attempted very often but always failed, i.e., their conditions
could not be relieved. First, this problem was solved by not activating these lemmas at all,
reducing the number of automatic applications and deletions as well as the runtime dras-
tically. In a second review we recognized that these two lemmas were activated as rewrite
lemmas with a general term as left-hand side. This has led to the notion of obligatory liter-
als that enable the user to activate these lemmas again. With the automatically extracted
statistics it can be shown that the lemmas will not be attempted misleadingly anymore
for the specifications in [11] when using obligatory literals. Furthermore, they may help in
finding proofs if the context given by the obligatory literals is fulfilled.

We will now discuss some more challenging examples performed with the new tactics.
The statistics are presented in Table 4. The god and \f2— example contain many arithmetic
lemmas that are needed to prove the main theorems. The irrationality of \/§ is, for instance,
essentially specified by the lemma

(30) { plus(times(y, y),times(y, y)) 75 times(a:, a:),
y=0}

where plus and times stand for the addition and multiplication on natural numbers rep-
resented by sort Nat. The lemma was first proved with QUODLIBET by Claus—Peter
Wirth using ideas from the ancient Greeks. For the proof a cut is introduced by the
literals leq(:r, y) = true and leq(p1us(y, y),a:) = true. If one of the literals holds,

47

plus(times(y, y),times(y, y)) # times($, 33) can be shown by order considerations. Oth—
erwise, if plus(times(y, y), times(y, y)) = times(a:, a:) would hold for some &: and y, then
there exist two smaller natural numbers — namely minus(plus(y, y), a:) and minus(a:‚ y),
———-— with the same property which is impossible. For these examples the integration of de-
cision procedures for Presburger arithmetic (see [6]) seems to be an important chance to
improve the tactics, although the order constraints clearly fall outside of pure Presburger
arithmetic due to multiplication. Therefore, the use of the decision procedure has to be
enhanced by lemma applications. Besides, some of the rewrite lemmas have to be used in
both directions like the distributivity of plus over times. This may be achieved by inte-
grating rippling techniques introduced for explicit induction in [7]. However, the statistics
show that even the new tactics alone perform well w.r.t. the degree of automation if the
right lemmas have been activated before. _

The Lpo and exp—exhelp example are both concerned with mutually recursive functions.
An Lpo is a simplification order on terms based on a precedence relation on operator
symbols. It is widely used in automatic theorem proving based on'rewriting techniques.
The example was initiated by Bernd Löchner while trying to prove the correctness of an
efficient implementation based on program transformation. His specifications of different
versions of the Lpo described in [13] are well suited for QUODLIBET. To illustrate the
complexity of the example we briefly present some of the specifications. In [13] boolean
operators are used in the definition of the different versions of the Lpo. Following Guideline
4.1 we have transformed this specification intoan internal representation to support the
tactics by using the built-in properties of the specification language. A part of the resulting
specification is illustrated in Figures 2 and and 3 whereas an overview about the relationship
of the seven mutually recursive operators is given in Figure 4'. Terms are represented by a .
sort Term with constructors V and F for terms consisting just of a variable symbol and for
terms consisting of an operator and a (possibly empty) list of terms, respectively. Lists of
terms, represented by sort Termlis t , are themselves composed of terms by the constructors
n i l and cons . Therefore, the two sorts mutually depend on each other often leading to
a duplication of needed lemmas: If a pr0perty has to be specified or shown for terms an
appropriate property is also needed for lists of terms. Note that the syntactic specification
of terms does not guarantee that the arity of an operator and the length of the appropriate
list in the term are the same. Instead, this wellformedness property is specified by a. boolean
operator Well on terms which depends on an operator Wel l_ t l on lists of terms.

Let us give some comments on the specification of the Lpo:7 The axioms check whether
the first term is bigger w.r.t. the Lpo than the second term. Axioms (31) to (33) handle
the. case that both terms start with an operator symbol. In this case Lpo holds iff one of
the Alpha, Beta or Gamma cases holds. This disjunction is split into three clauses. The
disjointness of the conditions as well as the negated definedness atoms in the clauses are
needed to guarantee the conformance to QUODLIBET’S admissibility conditions for ensuring
consistency of the specification. Axiom (34) addresses the case that the first term starts
with an operator symbol whereas the second term is only a variable symbol. In this case the
De l t a operator is applied which checks whether the variable is contained in the argument
list of the first term by using the operator contains_t1 (see Axiom (45)). Axiom (35)
completes the specification of the Lpo for all wellformed terms. The Alpha operator specified

7As we are only interested in properties of the Lpo w.r. t . wellformed terms we will only consider these
terms in the following description.

48

(31) { Lpo(F(f‚ ts),F(g, us)) = t rue,
Alpha(ts, F(g, us)) 75 true }

(32) { Lpo(w, „wg, us» = true,
Alpha(ts, F(g, us)) = true,
"def Alpha(ts, F(g, 11.3)),
Beta(F(f, ts),F(g, us)) 75 true }

(33) { Lp0(F(f ‚ t 8) ‚F (9 ‚ w)) = Gamma(F(f‚ t8), F (g ‚ W)) ,

A1pha(ts, F(g‚ us)) = true,
"def Alpha(ts, F(g, w)) ,
Beta(F(f‚ ts), F(g, us)) = true,
"def Beta(F(f, ts), F(g, us)) }

(34) { LP°(F(f ‚ t8)‚V(3/)) = Del ta (F(f ‚ t5) ‚V(y)) }
(35) { Lpo(V(:c), u) = false }

(36) { Alpha(nil, u) = false }
(37) { Alpha(cons(t, ts), u) = true,

t # u }
(38) { Alpha(cons(t, ts), u) = t rue,

t = u ,
. Lpo(t‚ u) # true } .
(39) { Alpha(cons(t, ts), u) = Alpha(ts, u),

' t = u ,
Lpo(t, u) = true,
"def Lpo(t, u) }

(40) { Beta(F(f‚ ts),F(g, us)) = Majo(F(f‚ ts), us),
prec(f , g) 72 true }

(41) { Beta(F(f, ts),F(g, u3)) = fa lse ,
prec(f , g) = t rue,
”def preC(f‚ g) }

(42) { Gamma(F(f, ts),F(g, us)) = Majo(F(f, ts), us),
f # g,
Lex(ts, us) # true }

(43) { Gamma(F(f, ts),F(g, 21.3)) = fa lse ,
f=9}

(44) { Gamma(F(f, ts),F(g, w)) = f a l se ,
f # g,
Lex(ts, us) = true,
"def Lex(ts, us) }

(45) { Delta(F(f, ts),V(y)) = contains_tl(t3, y) }

Figure 2: Specification of the internal representation of the Lpo

49

(46) { Majo(t,nil) = true }
(47) {Majo(t, cons(u, us)) = Majo(t, us),

Lpo(t, u) 7E true } .
(48) {Majo(t, cons(u, us)) = fa lse ,

Lpo(t, u) = t rue,
”def Lpo(t, u) }

(49) { Lex(nil,nil) = false }
(50) { Lex(cons(t, ts), cons(u, us)) = Lex(ts, us),

t 74 u }
(51) { Lex(co}ns(t, ts), cons(u, w)) = Lpo(t‚ u),

t = u

Figure 3: Specification of the internal representation of the Lpo (continued)

r + + +
Alpha Beta Gamma Delta

Majo Lex

VO 70

Figure 4: Mutual recursive definition of the Lpo

50

by Axioms (36) to (39) tests whether the first list contains a term that is equal to or bigger
than the second term w.r.t. the Lpo. The Beta operator defined by Axioms (40) and (41)
holds iff the top-level operator of the first term is bigger than that Of the second term
w.r.t. the precedence relation given by the operator p rec , and the first term is bigger than
each argument of the second term w.r.t. the Lpo. This last check is performed by Operator
Majo. Last but not least, the Operator Gamma specified by Axioms (42) to (44) holds iff the
top-level operators of the terms are equal, the first argument list is bigger than the second
argument list w.r.t. the lexicographic extension of the Lpo defined by Operator Lex and the
check of Majo holds as for the Beta Operator. We have proved that this specification of
the Lpo is totally defined for all pairs of wellformed terms and that it really establishes a
simplification order. Furthermore, we have shown the equivalence of our specification and
the first two versions of the Lpo presented in [13].

If a property has to be proved for Lpo appropriate lemmas for all mutually recursive
Operators will have to be specified. The new tactics support the proof of properties for
mutually recursive operators only rudimentarily. The analysis process does not recognize
mutual recursion but inspects each Operator separately under the assumption that every
other operator is terminating. This suffices to generate an inductive case splitting but other
tasks have to be performed manually like

. the specification of auxiliary lemmas for the mutually recursive operators;

o the activation of the auxiliary lemmas for inductive applications;

o the instantiation of the weight variables to get an apprOpriate induction order.

Furthermore, the simplification process is not directed to use one special inductive instance
of one of the mutually dependent lemmas as in explicit induction. This leads to many faulty
inductive applications that have to be deleted again resulting in a less efficient simplification
process because of the bigger search space. On the other hand, it enables the tactics to
find a proof at all with a less precise analysis of the OperatOrs. Therefore, the new tactics
succeed in finding the proofs for the mutually recursive operators provided that the hints
described above are given.

The exp—exhelp example is less problematic w.r.t. mutual recursion since only two
operators are mutually recursive. The main task is to find an apprOpriate induction or-
der to prove the termination of the exp Operator that is defined with nested recursion
by the axiom exp(app1y(eI,a:, 82), y, e) =exp(exp(61,:1:, 62), y, e). The induction order
has to be chosen so that among other things w(eI,:1:, 62) < w(apply(eI ‚cc, e2), y, 6) and
w(exp(e],x‚ 62), y, e) < w(apply(e],:c, 62), y, e) by instantiating the weight variable w.
Inspired by the termination arguments in [9], we have chosen a 2-tuple with the number
of calls of the Operator apply in the expressions as first component and the expressions
themselves as second component that is compared lexicographically as usual.

Summing up, we have achieved a high degree of automation in our case studies. Most
of the manual interactions are caused by applications of lemmas that

. have free variables which cannot be instantiated by subsumption of other goal literals:
Since we do not try to guess-the instantiation Of these variables they prevent the
automatic application Of needed lemmas such as the transitivity of order relations.

51

. are needed but whose head literals do not match any goal literal: As we typically do
not have a confluent rewrite relation the application of one lemma may prevent the
application of other lemmas in that proof attempt.

0 are non—terminating rewrite lemmas: These lemmas cannot be applied automatically
without losing termination of the simplification process which we want to avoid. Non-
termination may be introduced by lemmas that are inherently non-terminating like
the division operation on natural numbers as specified in [11] by the axioms

(52) {d iv1 (z , y, 21,22) = z] ,
z % z2 }

(53) { d iv1 (z , y ,21 ,22) = div1(a:, y ‚s (z1) ,p lus (z2‚ y)),
a: = 22 } '

Furthermore, non—termination may be caused by the need to apply a rewrite lemma
in both directions.

Whereas we cannot imagine a solution for the last case, the first two cases can often be
tackled by adding some bridging lemmas to the specification. In the first case a bridging
lemma may extend the considered goal by some literals that allow to bind the free variables.
This bridging lemma may then be used for proving the Original goal. In the second case
bridging lemmas may be used for “completing” the rewrite relation. Although these lemmas
may increase the degree of automation they also blow up the database which may be
confusing for the user and slow down the theorem prover. Thus, i t may be sometimes
better to apply a lemma manually. '

For the first case some approaches will be attempted in the future to increase the
degree of automation without using bridging lemmas: We will try to utilize additional
information about the induction hypothesis that is most likely to be used. Therefore,
we will adopt a similar approach as in explicit induction when analyzing operators and
introducing inductive case splittings to prove inductive lemmas, see e.g. Section 16.2 of
[16] and Section 3.3 of [17]. This additional information will allow us to instantiate free
variables more often. Furthermore, i t will enable a simplification process that is more goal
directed to the probable induction hypothesis. On the other hand, we are not fixed to use
this induction scheme at any prize but may choose to apply other induction hypotheses.
This will help us to overcome the problems of explicit induction stated in [14]. Furthermore,
we may use Special activated lemmas, e.g. lemmas with only one literal to instantiate free
variables. Another approach described in [17] defers the instantiation of the free variables
by using free y-variables as place holders until enough information is available. Further
experiments will have to be done to see if these approaches are feasible or if they enlarge
the search space too much.

52

7 Conclusion

We have implemented new tactics for the inductive theorem prover QUODLIBET that re-
structure and improve the whole simplification process. They provide one general-purpose
simplification tactic that consists of five passes. The simplification process is able to apply
permutative and conditional lemmas that are not directly applicable. Furthermore, we have
implemented special macro inference steps that are made up of a combination of inference
steps to handle special patterns for each kind of atom. Heuristics have been implemented
to restrict the proof space that is searched through, avoiding repetitions of equal inference
steps. The application of conditional lemmas is e.g. controlled by obligatory literals in the
lemma and mandatory literals in the goal clause that prevent many unnecessary computa—
tions. The tactics use parameterization to enable the user to control the proof process more
flexibly. The options can be set locally by keyword parameters or globally by their default
values. Altogether, the user can choose between 12 inductive proof schemes when perform-
ing a proof by induction depending on how the inductive case analysis is performed, which
lemmas are to be used inductively, and whether the inductive proof process is restarted
automatically for subgoals that cannot be proved by simplification.

This paper may serve as a user manual for the new tactics. Therefore, we have described
the new tactics in detail from a user’s point of View, neglecting issues of the implementation
but providing all information that is necessary to instantiate the parameters of the tactics
in a reasonable way. Furthermore, we have given some hints to guide users in creating
specifications and performing proofs of lemmas about the specification. The case studies
show that we have achieved a far better degree of automation than the old tactics. We are
now able to tackle some more challenging problems. Besides, these case studies indicate '
directions for further development.

In the future, we will work toward an improved analysis of mutually recursive operators.
We hope that this will enable us to overcome the problems mentioned in Section 6 for
lemmas based on mutually recursive Operators like choosing an apprOpriate induction order
by instantiating the weight variables of all participating proof state trees. For the automatic
speculation of auxiliary lemmas for mutually recursive Operators we will try to significantly
improve the ideas of the multi—predicate approach in [3]. In this approach a lemma is
generated lazily for each mutually recursive operator according to the induction hypothesis
that is needed in the proof of another mutually recursive operator. Besides, we will provide
our simplification process with more information about probable induction hypotheses as
they are computed in explicit induction. This will enable us to use a simplification process
that is more goal directed by using rippling techniques described in [7'], if this approach is
feasible. Last but not least, we will try to integrate decision procedures to QUODLIBET
starting with Presburger arithmetic along the lines of [6] to improve the efficiency of our
inductive theorem prover.

Acknowledgment

I would like to thank Jürgen Avenhaus and Claus-Peter Wirth for many helpful comments
on earlier drafts of this paper as well as Bernd Löchner for initiating the Lpo example.

53

References

[1] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, and Claus-Peter Wirth. How
to prove inductive theorems? QuodLibet! In Franz Baader, editor, Proceedings of the
19th International Conference on Automated Deduction (CADE—IQ), volume 2741 of
Lecture Notes in Artificial Intelligence, pages 328—333. Springer, 2003.

[2] A. Bouhoula and M. Rusinowitch. Automatic Case Analysis in Proof by Induction. In
R. Bajcsy, editor, Proceedings 13th International Joint Conference on Artificial Intel-
ligence, volume 1, pages 88—94, Chambéry (France), August 1993. Morgan Kaufmann.

[3] Richard J. Boulton and Konrad Slind. Automatic derivation and application of in-
duction schemes for mutually recursive functions. In J . Lloyd, V. Dahl, U. Furbach,
M. Kerber, K.-K. Lau, C . Palamidessi, L. Moniz Pereira, Y. Sagiv, and P. J . Stuckey,
editors, Computational Logic: First International Conference, CL2000, London, UK,
July 2000: Proceedings, volume 1861, pages 629—643. Springer-Verlag, 2000.

[4] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press, 1979.

[5] Robert S. Boyer and J Strother-Moore. A Computational Logic Handbook. Academic
Press Professional, Inc., 1988.

[6] Robert S. Boyer and J Strother Moore. Integrating decision procedures into heuristic
theorem provers: a case study of linear arithmetic. In Machine intelligence 11, pages
83—124. Oxford University Press, Inc., 1988.

[7] Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and Alan Smaill.
Rippling: A heuristic for guiding inductive proofs. Artificial Intelligence, 62(2):185—
253,1993.

[8] Markus Kaiser. Effizientes Beweisen mit einem formalen Beweissystem. Diplomarbeit
(German), Fachbereich Mathematik, Universität Kaiserslautern, Germany, 2002.

[9] Deepak Kapur and Mahadevan Subramaniam. Automating induction over mutually re—
cursive functions. Proceedings of the 5th International Conference on Algebraic M ethod—
ology and Software Technology (AMAST’96), 1101:117—131, 1996.

[10] Matt Kaufmann, J . Strother Moore, and Panagiotis Manolios. Computer-Aided Rea-
soning: An Approach. Kluwer Academic Publishers, 2000.

[11] Ulrich Kühler. A Tactic-Based Inductive Theorem Prouer for Data Types with Partial
Operations. PhD thesis, Universität Kaiserslautern, 2000.

[12] Nanette Linn. Verbesserung der Beweissteuerung des induktiven Theorembeweisers
QuodLibet. Projektarbeit (German), Fachbereich Informatik, Universität Kaisers—
lautern, Germany, 2003.

[13] Bernd Lochner. Things to know when implementing LPO. In Stephan Schulz, Geoff
Sutcliffe, and Tanel Tammet, editors, IJ CAR Workshop on Empirically Successful First
Order Reasoning (ESF OR}, Electronic Notes in Theoretical Computer Science, 2004.
To appear.

54

[14] Martin Protzen. Lazy generation of induction hypotheses. In Alan Bundy, editor,

[15]

[16]

[17]

[18]

[19]

Proceedings of the 12th International Conference on Automated Deduction (CADE—I 2),
volume 814 of Lecture Notes in Artificial Intelligence, pages 42—56. Springer, 1994.

Tobias Schmidt—Samoa. Realisierung einer Taktik-basierten Beweissteuerungs—
komponente für den induktiven Theorembeweiser QuodLibet. Projektarbeit (German),
Fachbereich Informatik, Universität Kaiserslautern, Germany, 1997.

Claus—Peter Wirth. Positive/Negative Conditional Equations: A Constructor-Based
Framework for Specification and Inductive Theorem Proving, volume 31 of Schriften-
reihe Forschungsergebnisse zur Informatik. Verlag Dr. Kovaö, Hamburg, Arnoldstr. 49,
D—27763 Hamburg, 1997. ISBN 3-86064—551—X, www.ags.uni-sb.de/"cp/p/diss/
welcome.htm1. '

Claus-Peter Wirth. Descente infini-e + Deduction..Logic Journal of the I CPL, 12(1)_:1-—
96, 2004. www.ags‚uni—sb.de/"cp/p/d/welcome‚html.

Hantao Zhang. Contextual rewriting in automated reasoning. Fundamenta Informat—
icae, 24(1/2):107—123, 1995.

Hantao Zhang, Deepak Kapur, and Mukkai S. Krishnamoorthy. A mechanizable in-
duction principle for equational specifications. In E . Lush and R. Overbeek, editors,
Proceedings of the 9th International Conference on Automated Deduction (CADE-Q),
volume 310 of Lecture Notes in Computer Science, pages 162—181. Springer, 1988.

