
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t K
ai

se
rs

la
ut

er
n

P
os

tfa
ch

 3
04

9
SE

KI
 -

R
EP

O
R

T
D

-6
76

63
 K

ai
se

rs
la

ut
er

n

Analysis and Representation o f
Equational Proofs Generated by a

Distr ibuted Completion Based Proo f
System

Jörg Denzinger, Stephan Schulz
SEKI Report SR-94-05

Analysis and Representation of Equational

Proofs Generated by a Distributed

Completion Based Proof System

Jorg Denzinger, Stephan Schulz
{denzinge, s..schulz}@informatik.uni-kl.de

Department of Computer Science

University of Kaiserslautern

Postfach 3049

67653 Kaiserslautern

April 6, 1994

Abstract

Automatic proof systems are becoming more and more powerful.
However, the proofs generated by these systems are not met with
wide acceptance, because they are presented in a way inappropriate
for human understanding.

In this paper we pursue two different, but related, aims. First we
describe methods to structure and transform equational proofs in a
way that they conform to human reading conventions. We develop
algorithms to impose a hierarchical structure on proof protocols from
completion based proof systems and to generate equational chains
from them.

Our second aim is to demonstrate the difficulties of obtaining such
protocols from distributed proof systems and to present our solution
to these problems for provers using the TEAMWORK method. We
also show that proof systems using this method ca.n give considerable
help in structuring the proof listing in a way analogous to human
behaviour.

In addition to theoretical results we also include descriptions on
algorithms, implementation notes, examples and data on a variety of
examples.

1

Analysis and Representation of Equational
Proofs Generated by a Distributed

Completion Based Proof System

Jörg Denzinger, Stephan Schulz
{denzinge, s_schulz}@informatik.uni-kl.de

Department of Computer Science

University of Kaiserslautern

Postfach 3049

67653 Kaiserslautern

April 6, 1994

Abstract

Automatic proof systems are becoming more and more powerful,
However, the proofs generated by these systems are not met with
wide acceptance, because they are presented in a way inappropriate
for human understanding.

In this paper we pursue two different, but related, aims. First we
describe methods to structure and transform equational proofs in a
way that they conform to human reading conventions. We develop
algorithms to impose a hierarchical structure on proof protocols from -
completion based proof systems and to generate equational chains
from them.

Our second aim is to demonstrate the difficulties of obtaining such
protocols from distributed proof systems and to present our solution
to these problems for provers using the TEAMWORK method. We
also show that proof systems using this method can give considerable
help in structuring the proof listing in a way analogous to human
behaviour.

In addition to theoretical results we also include descriptions on
algorithms, implementation notes, examples and data on a variety of
examples.

Contents

1 Introduction 5

2 Concepts of equational reasoning 7

2.1 Annotations and basic definitions 7

2.2 Completion based proof procedures 8

2.2.1 A completion procedure .. 11

2.3 Distributed deduction - The TEAMWORK method 14

3 Representation of comp~ter generated proofs 17

3.1 The language PCL 18

3.2 Working with PCL listings 23

3.3 Extracting the proof .. 25

4 Structuring proof listings 27

4.1 Partitioning the proof - top-down vs. bottom-up. 28

·1.2 Frequently used steps . 28

4.3 Important intermediate results. 29

4.4 Isolated proof segments. 29

4.5 Syntactical criteria ... 31

4.6 Using outside knowledge 33

4.7 Analysing the applied inference rules 34

4.8 Sectioning long proofs . 34

4.9 "What to avoid" - not every candidate may be suitable 35

4.10 Combinations of different criteria 36

4.11 An algorithm for the structuring of PCL listings 38

4.12 Evaluating the different criteria for lemma generation 40

5 Proof presentation 43

5.1 Equational Chains: A calculus for proof presentation 43

5.2 PCL listings and equational chains . . 45

5.3 An algorithm for proof transformation 49

6 Dealing with a distributed proof system 53

6.1 Measuring without disturbing . 53

2

Contents

1 In t roduc t i on

2 Concepts of equational reasoning

2.1 Annotations and basic definitions .

2.2 Completion based proof procedures .

2.2.1 A completion procedure LL .

2.3 Distributed deduction - The TEAMWORK method

3 Representation of computer generated proofs

3.1 The language PCL 0
3.2 Working with PCL listings .

3.3 Extractingtheproof 0 .

4 St ruc tur ing p roo f l ist ings

4.1 Partitioning the proof — top-down vs. bottom-up

4.2 Frequently used steps
4.3 Important intermediateresults. .

44 Isolated proof segments. i . . .

4.5 Syntactical criteria eee .

4.6 Using outside knowledge .
4.7 Analysing the applied inferencerules ee .

4.8 Sectioninglong proofs .
4.9 “What to avoid” - not every candidate may be suitableSN

4.10 Combinations of different criteria : . . .

4.11 An algorithm for the structuring of PCL listings
4.12 Evaluating the different criteria for lemma generation

5 Proof presentation
5.1 Equational Chains: A calculus for proof presentation
5.2 PCL listings and equational chains
5.3 An algorithm for proof transformation ® e+ ee se ee + 4 es eo = se ee es sv

6 Deal ing wi th a dist r ibuted proof system
6.1 Measuring without disturbing L I I TE J

6.2 Sequentializing parallel proofs .. 54

6.2.1 Eliminating redundancies. 55

6.3 Handling large amounts of data 57

7 Benefits from going distributed 58

7.1 Increased power of the proof system. 58

7.2 Shorter proof protocols . 58

7.3 Easier handling of extreme protocols 59

7.4 Improved lemma recognition 59

8 Implemented Programs 62

8.1 The DISCOUNT system . 64

8.1.1 Changes in the configuration files 64

8.1.2 Logging the proof session 64

8.1.3 Reproducing proofs: The rdiscount executable 66

8.1.4 Generating PCL listings: pcl and rpcl . 66

8.2 Programs dealing with PCL protocols . 67

8.2.1 Extracting the proof: extract and mextract 67

8.2.2 Dealing with extreme examples: revert and rextract 68

8.2.3 Revealing the structure: lemma ... 69

8.2.4 Generating equational chains: proof 71

9 Conclusion 73

A A short log file of a proof session 74

B Examples' 75

B.1 A ring with x 2 = x is Abelian 75

B.1.1 The problem. . . . 75

B .1.2 The proof protocol 76

B;1.3 Lemmata 77

B.1.4 The proof 78

B.2 A ring with x 3 = x is Abelian 81

B.2.1 The Problem 81

B.2.2 The proof .. 82

B.3 A problem from the domain of lattice ordered groups 88

3

6.2 Sequentializing parallel proofs . 54
6.2.1 Eliminating redundancies. 55

6.3 Handling large amounts of data . 57

Benefits from going distributed 58

7.1 Increased power of the proof system . 58

7.2 Shorter proof protocols . . . 0000000000 LL ooo 58
7.3 Easier handling of extreme protocols eee 59

7.4 Improved lemma recognition 0000000000 . . 59

Implemented Programs 62

8.1 The DISCOUNT system PE 64

8.1.1 Changes i n the configuration files 64
8.1.2 Logging theproofsession. 64

8.1.3 Reproducing proofs: The rdiscount executable 66
8.1.4 Generating PCL l is t ings: pc l and rpel 66

8.2 Programs dealing with PCL protocols 67
8.2.1 Extracting the proof: extract and mextract 67

8.2.2 Dealing with extreme examples: revert and rextract 68
8.2.3 Revealing the structure: lemma 69
8.2.4 Generating equational chains: proof 71

Conclusion 73

A short log file o f a proof session 74

Examples) 75
B.1 Aring with z? = x is Abelian Ce ee ee ee 75

B.1.1 The p rob lem. 75
B.1.2 The proof protocol Se ee ee eee ee ee 76
B13 Lemmata 0 . . . 77
B.1.4 Theproof a . 78

B.2 A ring with z* = x is Abelian . 81
B.2.1 The Problem Cee 81
B.22 The proof 82

B.3 A problem from the domain of lattice ordered groups 88

3

B.3.1 The problem.	 88

B.3.2 The proof	 89

B.4	 Specifications of some other problems 93

BA.l The problem SelfInverse 94

B.4.2 The problem Fibgroup .	 94

B.4.3 The problem BoolAssoc	 95

B.4.4 The problem Latticel ..	 95

B.4.5 The problem DeMorgan	 96

B.4.6 The problem Lattice2 .	 97

B.4.7 The problem Z22	 98

References	 99

List of Tables

1 Numbers of steps in PCL listings 26

2 Necessary and executed inferences in protocols of distributed proofs 60

3 Percentage of arbitrary and selected results needed in the found proof 61

4 The new DISCOUNT programs and their options 65

5 Constants and options in lemma 70

6 Letter codes and corresponding criteria for use with -criteria 71

List of Figures

1 Basic structure of a team in the TEAMWORK method 14

2 A cycle between two team meetings 15

3 Proof graph corresponding to the example on page 30 32

4 Team work and name spaces 56

5 A concept for a system generating, analyzing and transforming proofs 62

6 Structure of the implemented system 63

7 Lemma structure according to R1.3 78

4

B.4

B.3.1 Theproblem.

B.3.2 The proof
Specifications of some other problems
B.4.1 The problem Selflnverse .

B.4.2 The problem Fibgroup .
B.4.3 The problem BoolAssoc .

B.4.4 The problem Latticel .

B.4.5 The problem DeMorgan
B.4.6 The problem Lattice2. .
B.4.7 The problem 222 0 . . .

References

Lis t o f Tables

e
e

R

R

a
C

L
N

— Numbers of steps in PCL listings .

Necessary and executed inferences in protocols of distributed proofs . .
Percentage of arbitrary and selected results needed in the found proof .
The new DISCOUNT programs and their options
Constants and options in lemma . :

Letter codes and corresponding criteria for use with -~criteria

List of Figures

1
O

O

W
n

S

S

Basic structure of a team in the TEAMWORK method
A cycle between two team meetings LL . . . LL . . .

Proof graph corresponding to the example on page 30
Team work and namespaces

A concept for a system generating, analyzing and transforming proofs .

Structure of the implemented system
Lemma structure according to B.1.3

26

60

61
65
70
71

1 Introduction

Automatic theorem provers have reached a point in their development where they
could support human experts in many routine tasks. However, the proofs generated
by these systems have not been met with wide acceptance. The main leason for this is
the inappropriate way automatically generated proofs are presented. Up to now much
work has been invested into developing more powerful provers, but very little effort
has been made to present the generated proofs to a user who is not interested in the
details of the prover but in the proof itself. This is especially true for equational proof
systems, where only very rudimentary suggestions for proof presentation have been
brought forward.

In this paper we will address two problems in the field of proof presentation. First we
will develop concepts and algorithms to present equational proofs generated by comple
tion based proof systems in a structured format appropriate for human understanding.
Our second aim is to generate such proofs from a distributed proof system. Treating
these two problems together is justified by two facts: First, distributed theorem provers
introduce new problems for proof presentation. These problems have to be dealt with
if such provers are to be used by humans. Secondly, we found that distributed proof
systems using the TEAMWORK method can give a lot of help in structuring the proofs
and often achieve "better" proofs than sequential systems. In particular we can use
information gained during the proof process (suggestions by the referees used with
TEAMWORK) in addition to the more conventional post mortem criteria to generate
lemmata. In this way we emulate a human expert, who also bases the structure of his
presentation of a proof on information from the proof process and on the final proof.

Our approach to proof presentation partitions the procedure into a number of separate
phases. In the first phase the proof is found and a step by step listing of each inference
done by the prover is generated. In the case of a distributed proof system this listing
has to be sequentialized before further analysis. The second main step is the extraction
of the inference steps actually used in the proof. In the next phase we try to structure
the resulting listing in a hierarchical way and to reveal important intermediate results
(or lemmata). The final step transforms the structured listing to a calculus conforming
to human reading conventions. In our case this calculus uses equationaf chains.

This report is organized as follows: Section 2 provide a short introduction to the basic
concepts of a completion based prover and the TEAMWORK method. Section 3 dis
cusses proof representation, and introduces our protocol language peL. Additionally
we present first results from a very basic analysis of some proof protocols.

Section 4 is dedicated to the structuring of proof protocols. We introduce a couple of
criteria for lemma detection and discuss their comparative merits. The next section
describes how to transform the proof to equational chains, a calculus acceptable for
human digestion. Section 6 describes special problems in dealing with distributed proof
systems as well as their solution, and section 7 discusses the beneficial aspects of using
a distributed proof system in depth.

The next section describes details of the implemented programs. This includes changes

5

1 Introduction

Automatic theorem provers have reached a point in their development where they
could support human experts in many routine tasks. However, the proofs generated
by these systems have not been met with wide acceptance. The main 1eason for this is
the inappropriate way automatically generated proofs are presented. Up to now much
work has been invested into developing more powerful provers, but very l i t t le effort
has been made to present the generated proofs to a user who is not interested i n the
details of the prover but in the proof itself. This is especially true for equational proof
systems, where only very rudimentary suggestions for proof presentation have been
brought forward.
In this paper we wil l address two problems in the field of proof presentation. First we
will develop concepts and algorithms to present equational proofs generated by comple-
tion based proof systems in a structured format appropriate for human understanding.
Our second aim is to generate such proofs from a distributed proof system.. Treating
these two problems together is justified by two facts: First, distributed theorem provers
introduce new problems for proof presentation. These problems have to be dealt with
i f such provers are to be used by humans. Secondly, we found that distributed proof
systems using the TEAMWORK method can give a lot of help in structuring the proofs
and often achieve “better” proofs than sequential systems. In particular we can use
information gained during the proof process (suggestions by the referees used with
TEAMWORK) in addition to the more conventional post mortem criteria to generate
lemmata. In this way we emulate a human expert, who also bases the structure of his
presentation of a proof on information from the proof process and on the final proof.
Our approach to proof presentation partitions the procedure into a number of separate
phases. In the first phase the proof is found and a step by step listing of each inference
done by the prover is generated. In the case of a distributed proof system this listing
has to be sequentialized before further analysis. The second main step is the extraction
of the inference steps actually used in the proof. In the next phase we try t o structure
the resulting listing in a hierarchical way and to reveal important intermediate results
(or lemmata). The final step transforms the structured listing to a calculus conforming
to human reading conventions. In our case this calculus uses equational chains.

This report is organized as follows: Section 2 provide a short introduction to the basic
concepts of a completion based prover and the TEAMWORK method. Section 3 dis-
cusses proof representation, and introduces our protocol language PCL. Additionally
we present first results from a very basic analysis of some proof protocols.

Section 4 is dedicated to the structuring of proof protocols. We introduce a couple of
criteria for lemma detection and discuss their comparative merits. The next section
describes how to transform the proof to equational chains, a calculus acceptable for
human digestion. Section 6 describes special problems in dealing with distributed proof
systems as well as their solution, and section 7 discusses the beneficial aspects of using
a distributed proof system i n depth.
The next section describes details of the implemented programs. This includes changes

5

to the DISCOUNT system, our TEAMWORK based equational prover, and the new
programs developed to deal with analysis, structuring and presentation of proofs. The
final section concludes the paper with an evaluation and some remarks about our
future plans. The appendix provides some examples of different protocols and a couple
of automatically generated proofs.

6

to the DISCOUNT system, our TEAMWORK based equational prover, and the new
programs developed to deal wi th analysis, structuring and presentation of proofs. The
final section concludes the paper wi th an evaluation and some remarks about our
future plans. The appendix provides some examples of different protocols and a couple
of automatically generated proofs.

2 Concepts of equational reasoning

An equational theorem prover is a system trying to deal with the following problem:

Given a set E of equations (over terms), is an equation s=t a logical con
sequence of E (written as s =E t)?

In order to allow a more detailed discussion of the related problems we need some
basic definitions. We assume the reader to be familiar with rewriting techniques and
use standard notations. For a more in-depth introduction to the field, using similar
notations, see [Av91] and [Av90].

2.1 Annotations and basic definitions

• A term t is a recursive structure build from a set F of function symbols and a set
V of variables. The set of all terms for given sets F and V is called TERM(F, V).A
ground term is a term not containing any variables, the set of ground terms is
denoted as TERM(F).

•	 We write tip to denote the subterm of t at the position p. The top ppsition is
written as ..x, and tl p.q == (tlp)lq.

•	 A substitution <7 is a function mapping a finite set of variables into the set of
terms. We write <7 = {Xl +- t}, ••• ,Xn +- tn } if <7 maps Xi to ti for 1 ~ i ~ n. <7id

represents the empty substitution {}, mgu(t}, t 2) the most general unifier for t 1

and t 2 •

•	 The encompassment ordering ~ is defined by s ~ t iff <7(s) = tip for a substi
tution <7 and a position p. t> is the strict part of ~.

•	 t[p +- t1 denotes the term t with the subterm at position p replaced by t'.

•	 An equation is a pair (s, t) E (TERM(F, V) x TERM(F, V)). We write s=t instead of
(s, t). We always regard equations as symmetrical, so that s=t also represents
t=s.

•	 A reduction ordering> is a Noetherian ordering compatible with the term struc
ture and stable with respect to substitutions. A reduction ordering total on
ground terms is called a ground reduction ordering.

•	 A rule is a pair (l,r) E (TERM(F,V) x TERM(F, V)) with Var(r) C Var(l) (Var(t)
denotes the set of variables occurring in t). We write a rule as 1~r.

•	 A rule I-tr is compatible with a reduction ordering> if 1 > r. A system of rules
R is compatible with > if all rules in R are compatible.

7

2 Concepts of equational reasoning

An equational theorem prover is a system trying to deal with the following problem:

Given a set E of equations (over terms), is an equation s= t a logical con-
sequence of E (written as s = ; t)?

In order to allow a more detailed discussion of the related problems we need some
basic definitions. We assume the reader to be familiar with rewriting techniques and
use standard notations. For a more in-depth introduction to the field, using similar
notations, see [Av91] and [Av90].

2 .1 Annotations and basic definitions

e A term t is a recursive structure build from a set F of function symbols and a set
V of variables. The set of all terms for given sets F and V is called TERM(F,V).A
ground term is a term not containing any variables, the set of ground terms is
denoted as TERM(F).

e We write t | , to denote the subterm of ¢ at the position p. The top position is
written as A, and ¢|,.4 = (t|p)lq-

e A substitution o is a function mapping a finite set of variables into the set of
terms. We write 0 = {z ; —t1 , . . . , zp t , } i f co maps z ; t o t ; for 1 <i <n . gy

represents the empty substitution { } , mgu(t ,¢ ;) the most general unifier for ¢ ,

and ts .

e The encompassment ordering D is defined by s 5 t iff o(s) = t | p for a substi-
tution o and a position p. > is the strict part of > .

e t[p—1'] denotes the term ¢ with the subterm at position p replaced by ?'.

e An equation is a pair (s , t) € (TERM(F,V) x TERM(F, V)). We write s= t instead of
(s , t) . We always regard equations as symmetrical, so that s= t also represents
t=s.

e A reduction ordering > is a Noetherian ordering compatible with the term struc-
ture and stable with respect to substitutions. A reduction ordering total on
ground terms is called a ground reduction ordering.

e A rule is a pair (1 , r) € (TERM(F,V) x TERM(F,V)) with Var(r) © Var(1) (Var(t)
denotes the set of variables occurring in t) . We write a rule as 1->r.

e A rule 1—r is compatible wi th a reduction ordering > i f 1 > r . A system of rules
R is compatible with > i f all rules in R are compatible.

7

An equation s=t is a logical conclusion form a set of equation E if it is valid in each
model of E. According to Birkhoffs theorem s =E t holds, if and only if we can trans
form s into t by application of the equations from E. Given this result we can give an
operational characterization of E-equality.

• Given a set E of equations we define a symmetrical relation HE as follows:

tlHEt2 iff	 there exists an equation s=tEE, an position p in tl and a
substitution er with er(5) =tllp and t2 == ttfp +- er(t)].

Then =E is the reflexive and transitive closure of HE, that is tl =E t2 if and only..
if tl HE t2.

Knuth-Bendix completion (see [KB70]) tries to substitute the application of equations
with the application of rules (oriented equations). It tries to generate a confluent
rule system by orienting equations according to a reduction ordering, generating new
equations from critical pairs and using rules to simplify the knowledge base.

In order to handle unorientable equations the calculus introduced by Knuth and Bendix
has been extended in [BDP89]. The extended calculus tries to generate only a ground
confluent system, and orientable instances of equations can be used for simplifications.

•	 A system R of rules defines a rewriting relation :::::::;'R as follows:

tl ~R t2 iff	 there exists a rule l--+r, a place pin tl and a substitution so
that tllp == er(l) and t2 == tl[P +- O"(r)]

•	 A term that cannot be reduced with ===}R is said to be in normal form vV'ith
respect to R.

•	 The set RE = {er(s)--+er(t)ler(s) > er(t), s=t E E,era substitution} is called the set
of orientable instances for a set of equations E and a reduction ordering >.

•	 We define R(E) = R U RE for given sets E, R and an ordering >.

•	 Critical pairs are defined as follows: Let 11--+rl and 12--+r2 be two rules and
let> be a (ground) reduction ordering. Let p be a non-variable position in 11,
0" = mgu(1 1Ip , 12)' If er(11) I- er(rt} and er(12) I- o-{r2) then (O"(rt) , er(ldp +- r2]))
is called a critical pair between the two rules at position p.

•	 Finally, critical pairs between equations can be builtby treating an equation s=t
as the two rules s--+t and t--+s. The set of all critical pairs that can be build for
an E and R is called ePeE, R).

2.2 Completion based proof procedures

Input for a completion based proof system are a set of equations E,a {ground) re
duction ordering> and a (skolemized) goal s=t. In order to prove s =E t the prover

8

An equation s= t is a logical conclusion form a set of equation E i f i t is valid in each
model of E. According to Birkhoffs theorem s = ; t holds, if and only i f we can trans-
form s into t by application of the equations from E. Given this result we can give an
operational characterization of E-equality.

e Given a set E of equations we define a symmetrical relation H j as follows:

t iHe to iff there exists an equation s= t€E, an position p in t y and a
substitution o with o(s) = t i] , and t2 = t4[p « o(t)].

Then = ; is the reflexive and transitive closure of Hg , that is t ; = ; t2 if and only
i f 4 HH, t a .

Knuth-Bendix completion (see [KB70]) tries to substitute the application of equations
with the application of rules (oriented equations). I t tries to generate a confluent
rule system by orienting equations according to a reduction ordering, generating new
equations from critical pairs and using rules to simplify the knowledge base.

In order to handle unorientable equations the calculus introduced by Knuth and Bendix
has been extended in [BDP89]. The extended calculus tries to generate only a ground
confluent system, and orientable instances of equations can be used for simplifications.

e A system R of rules defines a rewriting relation =p as follows:
t ; =>p t 2 iff there exists a rule 1—r, a place p in t ; and a substitution so

that t ı l p = (1) and t2 = tı[p « o(r)]

A term that cannot be reduced with =p is said to be i n normal form wi th
respect to R.

® The set Rg = {o(8)—0o(t)|o(s) > a(t) , s=t € E, oa substitution} is called the set
of orientable instances for a set of equations E and a reduction ordering > .

e We define R(E) = RU Rg for given sets E, R and an ordering > .

e Critical pairs are defined as follows: Let 1 ;—r; and 12—r2 be two rules and
let > be a (ground) reduction ordering. Let p be a non-variable position i n 14,
o = mgu(lilp, 12). Ho(1 ;) £ o (r ı) and o(12) £ o(r2) then (o(r1), o(1ılp &— ra]))
is called a critical pair between the two rules at position p.

eo Finally, critical pairs between equations can be builtby treating an equation s= t
as the two. rules s—t and t—s. The set of all critical pairs that can be build for
an E and R is called CP(E,R).

2.2 Completion based proof procedures

Input for a completion based proof system are a set .of equations E, a (ground) re-
duction ordering > and a (skolemized) goal s= t . In order to prove s =} t the prover

8

successively orients equations from E, creating a set R of rules, generates new equations

by building critical pairs between rules and equations from E and R and uses the rules

from Rand orientable instances from equations for simplifications of both the goal and

the knowledge base. This process is called completion. The goal is proved if the normal

forms of both sides (with respect to R(E)) are identical or if an equation subsuming the

goal is being generated.

In order to guarantee completeness and correctness of the prover we need to discuss

completion more formally. The authors in [BDP89] suggested an inference system

describing the operations on the rules and equations. We use this inference system,

with an added rule to allow for subsumption. If these inference rules are applied using

a fair strategy, the resulting prover can be shown to be both complete and correct.

Definition 1 : The inference system U (Unfailing Completion)

Let> be a ground reduction ordering. The inference system works. on pairs (E, R),

where E is a set of equations and R is a set of rules compatible with >.

(VI)	 Orient an equation

(EU{s=t},R)

if 5> t

(E, R U {s-+t})

(V2) Generate an equation

(E,R)

(EU{s=t},R)

(V3) Simplify an equation

(EU {s=t},R)

(a)	 if S ===>R u

(E U {u=t}, R)

(EU{s=t},R) iff S ===>R u usmg a rule l-+r with(b)	 E
(EU {u=t},R) s I> 1

(U4a) Delete an equation

(E U {s=s},R)

(E,R)

(U4b) Subsume an equation

(EU {s=t,u=v},R) if ulp =o-(s), v =[p +- t], u I> s, for a
(E U {s=t}, R) position p and a substitution 0

(SI) Simplify the right side of a rule

(E,RU {s-+t})

if t ===>R(E) u

(E, R U {s-+u})

(S2) Simplify the left side of a rule

(E, R U {s-+t}) if S ===>R(E) t usmg a rule l-+r with
(E U {u=t}, R) s I> 1

9

successively orients eduations from E, creating a set R of rules, generates new equations
by building critical pairs between rules and equations from E and R and uses the rules
from R and orientable instances from equations for simplifications of both the goal and
the knowledge base. This process is called completion. The goal is proved if the normal
forms of both sides (with respect to R(E)) are identical or i f an equation subsuming the
goal is being generated.
In order to guarantee completeness and correctness of the prover we need to discuss
completion more formally. The authors in [BDP89] suggested an inference system
describing the operations on the rules and equations. We use this inference system,
with an added rule to allow for subsumption. If these inference rules are applied using
a fair strategy, the resulting prover can be shown to be both complete and correct.

Definition 1 : The inference system U (Unfailing Completion)
Let > be a ground reduction ordering. The inference system works. on pairs (E,R),
where E is a set of equations and R is a set of rules compatible with > .

(U1) Orient an equation
(EU { s= t } ,R)
(E,RU { s—t })

i f s> t

(U2) Generate an equation
(E,R)

(EU {s=t},R)
if stHHeypubdgurt, s pu , t u

(U3) Simplify an equation

(EU {s= t } ,R) i f(a) (EU {u=t},R) if s =>gu

(b) (EU {s=t} ,R) iff s =>p; un using a rule 1—r with
(EU {u=t},R) sb l

(U4a) Delete an equation

(EU { s=s } ,R)
(E,R)

(U4b) Subsume an equation
(EU { s= t , u=v } ,R) i f up=o (s) , v= [p—t l , ups , f o ra

(EU { s= t } ,R) position p and a substitution o

(S1) Simplify the right side of a rule
(E ,RU {s—t })

(E,R U {s—u})

(S2) Simplify the left side of a rule
(E,RU {s—t }) i f s =>gE) t using a rule 1—r wi th
(EU {u=t},R) sb l

i f t =p) u

We write (E, R) I-u (E', R') if (E, R) can be transformed into (E', R') using one inference

rule from U. An application of an inference rule from U does not change the equality

relation described by the system:

Theorem 1 : Correctness of U

Assume (E, R) I-u (E', R') and consider R to be compatible with a reduction ordering >.

The the following facts hold true:

•	 R' is compatible with >.

A proof for an equation s=t in E U R is a chain of terms connected by one application
of a rule or equation from E U R. Using the ground reduction ordering> and the
encompassment ordering l> a well founded proof ordering >1' that is compatible with
the proof structure can be constructed (see [BDP89]), such that the following theorem
holds:

Theorem 2 : Proof orderings
Let >1' be a proof ordering, and assume (E, R) I-u (E', R'). Let B be a proof for s=t
in E U R. Then there exists a proof B be a proof for s=t in E' U R' with B ~p B/. In'
particular, if B contains a peak s {:=R(£) U ==*R(£) t and B' is constructed from B by
replacing this peak with a new equation generated using rule (U2), then B >p B/.

If only minimal (with respect to >1') proofs are considered and any peak in these is
eventually eliminated by generating new equations, it can be assured that an equivalent
proof containing no peaks (a so called V-proof) does exist for every ground proof of
a valid equation. To ensure that every peak is eliminated we have to make certain
demands on the sequence of the inferences.

Definition 2 : U-fairness
•	 A sequence (Ei, RiheN is called an U-derivation if (Ei, Ri) I-u (Ei+t, Ri+d for all

i E IN.

EOO•	 The system (ROO
,) of persistent rules and equations (for a given U-derivation)

is defined by by:
OO

E = U nEj and R
oo = U nRj

i~Oj~i i~Oj~i

•	 An U-derivation (Ei, RiheN is fair if

CP(EO<?, ROO
) ~ UEi

i~O

An derivation is fair, if every critical pair between persistent rules will eventually be
built and added to the set of equations. It can be shown that the following theorem
holds for U-fair derivations.

10

We write (E,R) Fy (E',R') i f (E,R) can be transformed into (E’,R’) using one inference
rule from U . An application of an inference rule from U does not change the equality
relation described by the system:

Theorem 1 : Correctness of U
Assume (E,R) Fy (E',R’) and consider R to be compatible with a reduction ordering > .
The the following facts hold true:

e R’ is compatible with > .

® =EUR = =EWUR'-

A proof for an equation s=t in EUR is a chain of terms connected by one application
of a rule or equation from EUR. Using the ground reduction ordering > and the
encompassment ordering > a well founded proof ordering >, that is compatible wi th
the proof structure can be constructed (see [BDP89]), such that the following theorem
holds:

Theorem 2 : Proof orderings
Let > , be a proof ordering, and assume (E,R) Fy (E,R’). Let B be a proof for s= t
i n EUR. Then there exists a proof B’ be a proof for s= t in E' UR’ with B >, B’. In
particular, i f B contains a peak s <=pg) u =>p(E) t and B ’ is constructed from B by
replacing this peak with a new equation generated using rule (U2), then B > , B'.

If only minimal (wi th respect to > ,) proofs are considered and any peak in these is
eventually eliminated by generating new equations, i t can be assured that an equivalent
proof containing no peaks (a so called V-proof) does exist for every ground proof of
a valid equation. To ensure that every peak is eliminated we have to make certain
demands on the sequence of the inferences.

Definition 2 : U-fairness
o A sequence (Ej ,R;) ien is called an U-derivation i f (E;j,R;) Fy (Ei+1,Ri+1) for all

i e IN.

e The system (R®, E®) of persistent rules and equations (for a given U-derivation)
is defined by by:

E” = |) (| Ejand R” = | J (RB;
i >0 j i i >0 j> i

e An U-derivation (E;,R ı) ien is fair i f

CP(E®,R°) © | J Es
i >0

An derivation is fair, i f every critical pair between persistent rules will eventually be
built and added to the set of equations. I t can be shown that the following theorem
holds for U-fair derivations.

10

Theorem 3 : Completeness of fair V-derivations
Let (Ei,RiheN be a fair V-derivation.

•	 The final system of rules and equations describes the same equality as the initial
system: =EoouRoo = =EouRo·

•	 If S =E t holds,then there is an i such that the normal forms of sand t with
respect to (Ei, Ri) are identical.

This result can be used to build completion based provers for equational logic. The
following algorithm describes a possible implementation of such a proof system. It will
either proof a given goal or it will try to generate a (possibly infinite) ground confluent
system of rules and equations that can be used for calculations in equationally specified
algebraic structures.

In order to keep control over the critical pairs already considered it uses not two, but
three sets of term pairs to represent the current state of a completion process: A set
E of processed, but unorientable equations, a set R of rules (processed and oriented
equations) and a set CP of unprocessed equations.

The completion algorithm starts out with empty sets Rand E, and with the initial
axioms in CP. It examines each equation in CP, reduces it t6 normal form with respect
to E and R, uses it to build new critical pairs (to be added to CP) and to eliminate
redundancies from Rand E by simplification (this process is known as interreduction).
It is then added to either R (if it can be oriented according to » or E.

To build a prover on top of the completion algorithm the goal is brought to normal
form with respect to each successive E and R. If these normal forms are identical or
if an equation from E subsumes the goal, the goal is proved. Please note that both,
completeness and. efficiency of the proof process, depend on the order in which the
equations from CP will be considered, with both goals often conflicting.

2.2.1 A completion procedure

Input: M A set of equations

> A ground reduction ordering

PROOFMODE A boolean value, TRUE, if a single goal
is	 to be proved, FALSE if a ground
confluent end system is desired

(gs,gt) The goal to be proved (only if
PROOFMODE has the value TRUE

11

Theorem 3 : Completeness of fair U-derivations
Let (Ei ,Ri) ien be a fair U-derivation.

e The final system of rules and equations describes the same equality as the initial
system: =E0wuR® = =EgURg-

e If s =g t holds,then there is an i such that the normal forms of s and t with
respect to (E j , R j) are identical.

This result can be used to build completion based provers for equational logic. The
following algorithm describes a possible implementation of such a proof system. I t will
either proof a given goal or i t will try to generate a (possibly infinite) ground confluent
system of rules and equations that can be used for calculations in equationally specified
algebraic structures.

In order to keep control over the critical pairs already considered i t uses not two, but
three sets of term pairs to represent the current state of a completion process: A set
E of processed, but unorientable equations, a set R of rules (processed and oriented
equations) and a set CP of unprocessed equations.

The completion algorithm starts out with empty sets R and E, and with the initial
axioms in CP. It examines each equation i n CP, reduces i t t o normal form wi th respect
to E and R, uses i t to build new critical pairs (to be added to CP) and to eliminate
redundancies from R and E by simplification (this process is known as interreduction).
It is then added to either R (if i t can be oriented according to >) or E.
To build a prover on top of the completion algorithm the goal is brought to normal
form with respect to each successive E and R. If these normal forms are identical or
i f an equation from E subsumes the goal, the goal is proved. Please note that both,
completeness and. efficiency of the proof process, depend on the order i n which the
equations from CP will be considered, with both goals often conflicting.

2.2.1 A completion procedure

Input: M A set of equations
> A ground reduction ordering
PROOFMODE A boolean value, TRUE, i f a single goal

is to be proved, FALSE if a ground
confluent end system is desired

(gs,gt) The goal to be proved (only if
PROOFMODE has the value TRUE

11

Variables: R

E

CP
s,t

l,r
u,v

U I, v'

Functions: NOTEMPTY(list)

FIRST(list)
EXCEPTFIRST(list)
NORMALFORM(t,R)

SUBSUM(e,E)

INSERT(list,e)

CPS(e,E)

CP := M;
E ::: {};
R ::: {};
WHILE NOTEMPTY(CP)

IF PROOFMODE :: TRUE THEN

The set of processed rules

The set of processed equations

The set of unprocessed equations

The sides of the unprocessed term
pair considered at a given moment

The terms of a newly generated rule

The sides of a processed term pair
considered again

Possibly simplified descendants from
u and v
FALSE, if list is empty, TRUE oth
erWIse
First element of list
list without it's first element
Calculates a normal form for t with
respect to R

Tests, whether the equation e is sub
sumed by an equation in E or whether
an equivalent equation already exists
in E
Inserts the term pair e into list in a
way that ensures that for any given
pair in list only finitely many pairs
will be inserted in front of it (this en
sures fairness)

Returns all critical pairs that can be
build between e and term pairs from
E

gs ::: NORMALFORM(gs,R(E»j
gt := NORMALFORM(gt,R(E»;
IF gs :: gt THEN END j A proof has been found

ENDIF

(s,t) := FIRST(CP);

CP := EXCEPTFIRST(CP);

s := NORMALFORM(s,R(E»;

t := NORMALFORM(t,R(E»;

IF s#t AND NOT(SUBSUM(s=t,E» THEN

FOREACH (u,v)E E

12

Variables:

Functions:

CP := M;
E := {};
R := { } ;

R
E

CP

s , t

1 , r
u , v

u? , Vv!

NOTEMPTY (l i s t)

FIRST(1list)
EXCEPTFIRST(1list)
NORMALFORM(t,R)

SUBSUM(e,E)

INSERT (l i s t , e)

CPS(e,E)

WHILE NOTEMPTY (CP)
I F PROOFMODE = TRUE THEN

gs : = NORMALFORM(gs,R(E));
gt : = NORMALFORM(gt,R(E));

The set of processed rules
The set of processed equations
The set of unprocessed equations
The sides of the unprocessed term
pair considered at a given moment
The terms of a newly generated rule
The sides of a processed term pair
considered again
Possibly simplified descendants from
uandv
FALSE, if L i s t is empty, TRUE oth-
erwise
First element of 1 i s t
l i s t without i t ’s first element
Calculates a normal form for t with
respect to R
Tests, whether the equation e is sub-
sumed by an equation in E or whether
an equivalent equation already exists
i nE
Inserts the term pair e into l i s t in a
way that ensures that for any given
pair i n l i s t only finitely many pairs
will be inserted in front of i t (this en-
sures fairness)

Returns all critical pairs that can be
build between e and term pairs from
E

IF gs = gt THEN END; A proof has been found
ENDIF
(s , t) : = FIRST(CP);
CP := EXCEPTFIRST(CP);
s :
t

NORMALFORM(s,R(E));
NORMALFORM(t ,R(E));

I F s# t AND NOT(SUBSUM(s=t ,E)) THEN
FOREACH (u , v)€ E

12

u' := NORMALFORM(u,R{s::t});
v' := NORMALFORM(v ,R{s::t}) ;
IF u!u' OR v!v' THEN

E := E \ {u=v};

CP:= INSERT(CP,u'=v');

ENDIF

ENDFOREACH

FOREACH (u,v)E R

v := NORMALFORM(v ,R(E U{s = t})) ;
u' := NORMALFORM(u,R{s::t});
IF u'!u THEN

R := R\ {(u, v)} ;

CP := INSERT(CP,u'=v);

ENDIF
ENDFOREACH
FOREACH (u,v) E CPS(s=t,E U R)

CP := INSERT(CP,u=v);

IF s>t THEN

R := R U {s-+t};

ELSE IF t>s THEN

R := R U {t-+s};

ELSE

E: = E U {s=t};

ENDIF

ENDIF
ENDWHILE
(E,R) represents the ground confluent endsystem

13

u? NORMALFORM(u,R(s=¢}) ;
v ’ := NORMALFORM(v,Rig_y}) ;
I F u#u ’ OR v#v ’ THEN

E := E \ {u=v};
CP:= INSERT(CP,u ’=v ’) ;

ENDIF
ENDFOREACH
FOREACH (u , v)E R

v := NORMALFORM(v,R(EU {s = t })) ;
u ’ : = NORMALFORM(u,R{g=t});
I F u ’ 7u THEN

R := R\{(u,v)};
CP := INSERT(CP,u’=v);

ENDIF
ENDFOREACH
FOREACH (u , v) € CPS(s=t ,E U R)

CP := INSERT(CP,u=v);
IF s> t THEN

R := R U { s t } ;
ELSE IF t>s THEN

R := RU { t s } ;
ELSE

E:= E U {s= t } ;
ENDIF

ENDIF
ENDWHILE
(E,R) represents the ground confluent endsystem

13

Supervisor

Referee n Referee 1 Referee 0

Expert nExpert 1Expert 0

Figure 1: Basic structure of a team in the TEAMWORK method,

2.3 Distributed deduction - The TEAMWORK method

The TEAMWORK method (see [De93] or [AD93]) is an approach to distribute theo
rem proving procedures. It has been inspired by human project teams and has been
implemented quite successfully. A TEAMWORK based proof system models human
project teams by use of multiple processes running on different processors.

A team consists of a single supervisor and a number of experts, each accompanied by
a referee evaluating his work. Figure 1 shows the structure of a team. Usually each
expert is working on a problem without communication with the other team members.
Only at team meetings scheduled by the supervisor results are exchanged.

The supervisor is selecting the experts to work on a specific task, initially 'by judging
their previous success on related problems, later by using the referees' evaluation of
their performance in dealing with the problem at hand.

The referees are evaluating the work of the different experts. Their conclusions are
used in selecting a new team and important results (from their respective experts) at
the team meetings.

The experts are the members of the team working directly on the problem. In our case
each of them is using an unfailing completion algorithm l as described in the above
section. They differ only in the criteria used to select inferences. At the team meetings
the system of the best expert is chosen as the base for further work. As only one system

lThis is a. slight simplification. We can a.lso add specialists using other algorithms. One example
is a reduction specialist trying to eliminate critical pairs before they are selected by the other experts,

14

Supervisor

Referee 0 Referee 1 Se Refereen

Expert 0 Expert 1 Expert n

Figure 1: Basic structure of a team i n the TEAMWORK method

2 .3 Distributed deduction - The TEAMWORK method

The TEAMWORK method (see [De93] or [AD93]) is an approach to distribute theo-
rem proving procedures. I t has been inspired by human project teams and has been
implemented quite successfully. A TEAMWORK based proof system models human
project teams by use of multiple processes running on different processors.

A team consists of a single supervisor and a number of experts, each accompanied by
a referee evaluating his work. Figure 1 shows the structure of a team. Usually each
expert is working on a problem without communication with the other team members.
Only at team meetings scheduled by the supervisor results are exchanged.
The supervisor is selecting the experts to work on a specific task, initially by judging
their previous success on related problems, later by using the referees’ evaluation of
their performance in dealing with the problem at hand.
The referees are evaluating the work of the different experts. Their conclusions are
used in selecting a new team and important results (from their respective experts) at
the team meetings.

The experts are the members of the team working directly on the problem. In our case
each of them is using an unfailing completion algorithm?! as described in the above
section. They differ only in the criteria used to select inferences. At the team meetings
the system of the best expert is chosen as the base for further work. As only one system

This is a slight simplification. We can also add specialists using other algorithms. One example
is a reduction specialist trying to eliminate critical pairs before they are selected by the other experts.

14

Team meeting iSupervisor

Expert 0

Referee 0

Expert 1

Referee 1

Expert 2

Referee· 2

Transmission of the
updated problem

Working phase i

Evaluation phase
Winner is expert 2

Transmission of
the results

Supervisor Team meeting i+1

-->~ Indicates transmission of a full system

---.;...... Indicates transmission of selected results

Figure 2: A cycle between two team meetings

survives completely, the experts are competing for the best result.

However, competition is only one aspect of the TEAMWORK method. The second
important element is the cooperation between the experts. Cooperation is achieved
by integrating outstanding results from inferior experts (as chosen by their referees)
into the system of the best expert. This is done by the supervisor during the team
meetings, before he presents a new and updated problem description to the experts for
the next working phase (In our case of a completion based theorem prover the results
- rules and equations - are handled as new critical pairs to be processed immediately).

It is important to note that most of the results generated by the inferior experts are
dropped or forgotten. We believe that one of the reasons for the success of TEAM
WORK is this feature of forgetting, because it alleviates the usual explosion of the
search space.

A complete cycle between two team meetings is shown in figure 2. It can be described
as follows:

15

Supervisor Team meeting i

Transmission of the
updated problem

Expert 0 Expert 1 Expert 2 Working phase i

Referee 0 Referee 1 Referee 2 Evaluation phase
Winner is expert 2

Transmission of
the results

Supervisor Team meeting i +1

——=> Indicates transmission of a full system

—> Indicates transmission of selected results

Figure 2: A cycle between two team meetings

survives completely, the experts are competing for the best result.

However, competition is only one aspect of the TEAMWORK method. The second
important element is the cooperation between the experts. Cooperation is achieved
by integrating outstanding results from inferior experts (as chosen by their referees)
into the system of the best expert. This is done by the supervisor during the team
meetings, before he presents a new and updated problem description to the experts for
the next working phase (In our case of a completion based theorem prover the results
~ rules and equations — are handled as new critical pairs to be processed immediately).
I t is important to note that most of the results generated by the inferior experts are
dropped or forgotten. We believe that one of the reasons for the success of TEAM-
WORK is this feature of forgetting, because i t alleviates the usual explosion of the
search space.
A complete cycle between two team meetings is shown in figure 2. I t can be described
as follows:

15

•	 The supervisor selects a team of experts with their respective referees. Each of
the experts is given the problem description. The supervisor schedules the next
team meeting.

•	 The experts start working on the pr0blem. If none of them can solve it until
the schedaled meeting their progress is evaluated by the respective referees. The
referees also selects outstanding single results and report these results and their
overall evaluation of the experts progress to the supervisor.

•	 The supervisor chooses the best expert and integrates the results from the other
experts into his system. He chooses a new team based on the success of the
experts in the previous working phases. The experts are handed the updated
problem description and the cycle starts again.

In [De93] and [AD93] the authors proved that a completion based prover using TEAM
WORK is complete if certain (weak) fairness criteria are fulfilled.

16

e The supervisor selects a team of experts with their respective referees. Each of
the experts is given the problem description. The supervisor schedules the next
team meeting.

e The experts start working on the problem. If none of them can solve i t until
the scheduled meeting their progress is evaluated by the respective referees. The
referees also selects outstanding single results and report these results and their
overall evaluation of the experts progress to the supervisor.

® The supervisor chooses the best expert and integrates the results from the other
experts into his system. He chooses a new team based on the success of the
experts in the previous working phases. The experts are handed the updated
problem description and the cycle starts again.

In [De93] and [AD93] the authors proved that a completion based prover using TEAM-
WORK is complete i f certain (weak) fairness criteria are fulfilled.

16

3 Representation of computer generated proofs

The first problem encountered when dealing with computer generated proofs based on
inference mechanisms is the representation of the proof. In many cases the proof does
not exist in a presentable form, but is represented only by the- internal state, or, even
worse, the dynamic processes of the program generat~ng this proof. There are two
basic ways to get information about the proof process. First, it is possible to build
internal data structures representing the proof process. This is done in many proof
system for first order predicate logic, which build refutation graphs containing enough
information to reproduce the proof.

While this procedure is successful for predicate logic it is not really suitable for com
pletion based rewriting systems. The great strength of rewriting systems is the fact
that they can cut down on the information base using simplification rules and thereby
keep the size of this data base relatively modest. They have to deal with large amounts
of intermediate results (critical pairs are one example). These intermediate facts will
usually be simplified extensively before they are used to generate new facts or can
be proven trivial. Storing all the intermediate results and the simplifications done on
them would nullify the main advantage of rewriL"'6 systems and seriously impair their
power. For distributed proof systems this effect becomes still more pronounced, as it
blows up on the communication between the different components - which already is a
well known bottleneck even for systems refraining from proof analysis.

The second approach to get the desired information about the proof process is to
generate a complete external listing of all the inferences and generated facts. This
results in some problems too, but they can be overcome much easier. Section 6 deals
with them for the special case of a distributed proof system (using the TEAMWORK
method). Most of the problems encountered in sequential proof systems can be solved
using the same techniques. This second approach has a number of advantages, namely:

• Changes in	 the proof system are kept to a minimum. No changes have to be
made to the basic proof algorithm, all that is needed is the addition of routines
to produce the relevant output. After this the proof system and the programs
working on the proofs can be maintained separately. Our work with the DIS
COUNT system has shown that these routines can be integrated into existing,
complex proof systems quite easily (see section 6).

•	 Changing the underlying proof system will not affect the programs working on the
generated proof. Building a new proof system which can produce the appropriate
output does not significantly change the complexity of the system.

•	 As the information about the proof is stored on external media, the power of the
proof system is not affected in any significant way. While the speed of the proof
system may suffer, the class of theorems provable under fixed memory constraints
is not usually affected2

•

2Lack of memory is at the moment the main restriction for finding proofs with the DISCOUNT
system, while lack of time plays no role at all.

17

3 Representation o f computer generated proofs

The first problem encountered when dealing wi th computer generated proofs based on
inference mechanisms is the representation of the proof. In many cases the proof does
not exist in a presentable form, but is represented only by the internal state, o r , even
worse, the dynamic processes of the program generating this proof. There are two
basic ways to get information about the proof process. First, i t is possible to build
internal data structures representing the proof process. This is done in many proof
system for first order predicate logic, which build refutation graphs containing enough
information to reproduce the proof.

While this procedure is successful for predicate logic it is not really suitable for com-
pletion based rewriting systems. The great strength of rewriting systems is the fact
that they can cut down on the information base using simplification rules and thereby
keep the size of this data base relatively modest. They have to deal with large amounts
of intermediate results (critical pairs are one example). These intermediate facts will
usually be simplified extensively before they are used to generate new facts or can
be proven trivial. Storing all the intermediate results and the simplifications done on
them would nullify the main advantage of rewrit’..g systems and seriously impair their
power. For distributed proof systems this effect becomes sti l l more pronounced, as i t
blows up on the communication between the different components - which already is a
well known bottleneck even for systems refraining from proof analysis.

The second approach to get the desired information about the proof process is to
generate a complete external listing of all the inferences and generated facts. This
results in some problems too, but they can be overcome much easier. Section 6 deals
with them for the special case of a distributed proof system (using the TEAMWORK
method). Most of the problems encountered in sequential proof systems can be solved
using the same techniques. This second approach has anumber of advantages, namely:

e Changes in the proof system are kept to a minimum. No changes have to be
made to the basic proof algorithm, all that is needed is the addition of routines
to produce the relevant output. After this the proof system and the programs
working on the proofs can be maintained separately. Our work with the DIS-
COUNT system has shown that these routines can be integrated into existing,
complex proof systems quite easily (see section 6).

e Changing the underlying proof system will not affect the programs working on the
generated proof. Building a new proof system which can produce the appropriate
output does not significantly change the complexity of the system.

e As the information about the proof is stored on external media, the power of the
proof system is not affected in any significant way. While the speed of the proof
system may suffer, the class of theorems provable under fixed memory constraints
i s not usually affected?.

2Lack of memory is at the moment the main restriction for finding proofs wi th the DISCOUNT
system, while lack of t ime plays no role at all.

17

•	 Quite a few operations can be done on the proof listing. This operations are inde
pendent of the used calculus and can easily be extended to cover most inference
based reasoning processes.

•	 As an added benefit the complete listings allow a very close and detailed analysis
of the work done and problems encountered by the proof system. The knowledge
gathered by this analysis can be (and has been) used to improve the heuristics
of the prover and to get better insight into the inference mechanism.

Of course there are some problems associated with generating a complete listing of the
proof process. They mostly stem from the enormous amount of data processed by a
powerful proof system.

•	 Proof listings can become very large. The sheer amount of proof steps done
can overwhelm most people and even programs used to analyze the proof. We
cope with this problem by basing our analysis on the necessary steps only and
by discarding steps that did not contribute to the proof process. Section 3.3
describe~ this solution in more detail.

•	 Producing the proof protocol is an output intensive task and can slow down
the proof system significantly. This is particularly grave for distributed systems
relying on cooperation at specific times. This problem is examined in more detail
in section 6.1, where we also offer a solution for distributed proof systems based
on the TEAMWORK method.

Obviously a consistent and general description of the proof process will be of much
more use then a specialized format - some of the benefits above do not even apply if a
less general description is used.

3.1 The language PCL

To achieve the goals stated above we developed a language for the description of comple
tion based proofs. This language is PCL (proof communication language). We believe
that it can be easily extended to cover most inference based reasoning processes.

PCL describes the proof process as a pure ASCII listing of single steps, representing
the equations and rules (or, to be more general, the facts) generated during the com
pletion (or reasoning) process. Connection between different steps are represented by
justifications, giving the inference type, the facts used in the inference and additional
information sufficient to allow a unique reproduction of the inference. Because PCL
uses a rather intuitive description of the inferences a proof description in peL can
be read and analyzed by humans. On the other hand the complete description of ev
ery single inference makes it possible to use PCL protocols as the base for computer
analysis. Some of our programs dealing with PCL will be described later.

As we stated before, a PCL protocol of a proof session is a list of single PCL steps.

18

e Quite a few operations can be done on the proof listing. This operations are inde-
pendent of the used calculus and can easily be extended to cover most inference
based reasoning processes.

e As an added benefit the complete listings allow a very close and detailed analysis
of the work done and problems encountered by the proof system. The knowledge
gathered by this analysis can be (and has been) used to improve the heuristics
of the prover and to get better insight into the inference mechanism.

Of course there are some problems associated with generating a complete listing of the
proof process. They mostly stem from the enormous amount of data processed by a
powerful proof system.

e Proof listings can become very large. The sheer amount of proof steps done
can overwhelm most people and even programs used to analyze the proof. We
cope with this problem by basing our analysis on the necessary steps only and
by discarding steps that did not contribute to the proof process. Section 3.3
describes this solution i n more detail. |

U

e Producing the proof protocol is an output intensive task and can slow down
the proof system significantly. This is particularly grave for distributed systems
relying on cooperation at specific times. This problem is examined in more detail
in section 6.1, where we also offer a solution for distributed proof systems based
on the TEAMWORK method.

Obviously a consistent and general description of the proof process will be of much
more use then a specialized format - some of the benefits above do not even apply i f a
less general description is used.

3.1 The language PCL

To achieve the goals stated above we developed a language for the description of comple-
t ion based proofs. This language is PCL (proof communication language). We believe
that i t can be easily extended to cover most inference hased reasoning processes.
PCL describes the proof process as a pure ASCII listing of single steps, representing
the equations and rules (or, to be more general, the facts) generated during the com-
pletion (or reasoning) process. Connection between different steps are represented by
Justifications, giving the inference type, the facts used in the inference and additional
information sufficient to allow a unique reproduction of the inference. Because PCL
uses a rather intuitive description of the inferences a proof description in PCL can
be read and analyzed by humans. On the other hand the complete description of ev-
ery single inference makes i t possible to use PCL protocols as the base for computer
analysis. Some of our programs dealing with PCL will be described later.
As we stated before, a PCL protocol of a proof session is a l ist of single PCL steps.

18

<pcl-list> ::= <pcl-step>*;;

A single PCL step consists of a unique PCL identifier used to reference the step, a
designator describing the type of the fact, the fact and finally the justification for the
step.

<pcl-step> ::= <pcl-id>':'<step-type>':'<fact>':'<pcl-initexpr>;;

PCL identifiers are lists of positive integers. On the one hand this allows us to express
technical information - for example the origin of the step in distributed environments
or the heuristics used in generating the step - by using appropriate name spaces. On
the other hand complex proof steps can be broken down into simpler inferences and
inserted into the listing without requiring a global renaming. We will go into more
depth about name spaces and distributed proof systems in section 6.2.

<pcl-id> ::= <int>['.'<int>]*;;

<int> ::= <digit>+;;

<digit> ::= 'Q' 1'1' 1'2' 1'3'1'4' 1'5'1'6'1'7'1'8' 1'9';;

PCL descriptions of proof sessions tend to become very long. To allow an efficient
working with them we demand that the PCL identifiers are used in a monotonically
ascending order. Identifier of later steps have to be larger (in the lexicographic exten
sion over the usual ordering on natural numbers) than earlier steps.

The next element of a PCL step is the type designator. This designator is mainly used
to mark the role of the fact in the proof process. Important steps can be marked as
lemmata, different types of goals can be distinguished from normal facts and the proof
system can mark steps with a special importance for the proof process.

<step-type> ::=	 'tes-rule'I'tes-eqn'I'tes-goal'I'crit-goal'l
'tes-intermed'I'tes-intermedgoal'l
'crit-intermedgoal'I'tes-lemma'I'tes-final;;

The different step types are described below:

tes-rule A rewriting rule generated during completion.
tes-eqn An equation yielded by the completion process.

tes-goal One of the hypothesises or a new goal generated (by rewrit
ing) from a hypothesis. Goals of this type usually contain no
variables, universally quantified variables have been replaced
by skolem constants.

19

<pe l - l i s t> : : = <pc l - s tep>* ; ;

A single PCL step consists of a unique PCL identifier used to reference the step, a
designator describing the type of the fact, the fact and finally the justification for the
step.

<pcl-step> : : = <pc l - i d> ’ : ’ <s tep - t ype> ’ : ’ < fac t> ’ : ’ <pc l - i n i t exp r> ; ;

PCL identifiers are lists of positive integers. On the one hand this allows us to express
technical information — for example the origin of the step in distributed environments
or the heuristics used in generating the step — by using appropriate name spaces. On
the other hand complex proof steps can be broken down into simpler inferences and
inserted into the listing without requiring a global renaming. We will go into more
depth about name spaces and distributed proof systems in section 6.2.

<pcl- id> : : = < i n t> [’ . ’ < i n t>] * ; ;

< in t> : : = <d ig i t >+ ; ;

<digi t> : : = ’ 0 ’ | ?1 ’] ’ 2 ’ 1 ’ 3?] ’ 4 ’ 1 ’ 5 ’ 1 ’ 6 ’ 1 ’ 7 ’ | ’ 8 ’ 1 ’ 9 ’ ; ;

PCL descriptions of proof sessions tend to become very long. To allow an efficient
working with them we demand that the PCL identifiers are used in a monotonically
ascending order. Identifier of later steps have to be larger (in the lexicographic exten-
sion over the usual ordering on natural numbers) than earlier steps.
The next element of a PCL step is the type designator. This designator is mainly used
to mark the role of the fact i n the proof process. Important steps can be marked as
lemmata, different types of goals can be distinguished from normal facts and the proof
system can mark steps with a special importance for the proof process.

<step-type> : : = ’ t es - ru l e ’ | ’ t es -eqn ’ | ’ t es -goa l ’ | ’ c r i t - goa l ’ |
’ tes - in te rmed ’ | ’tes-intermedgoal’ |
'crit-intermedgoal’|’tes-lemma’ | ’ ' t es - f i na l ; ;

The different step types are described below:

tes-rule A rewriting rule generated during completion.
tes-eqn An equation yielded by the completion process.
tes-goal One of the hypothesises or a new goal generated (by rewrit-

ing) from a hypothesis. Goals of this type usually contain no
variables, universally quantified variables have been replaced
by skolem constants.

19

crit-goal A critical goal, containing variables that are existentially
quantified.

tes-intermed A intermediate fact, either an equation or a rule, deemed
particularly important by the proof system. This informa
tion can, for example, be used in the generation of lemmata.
In the DISCOUNT system this type and the following two
types designate the intermediate "good" results gained from
unsuccessful experts.

tes-intermedgoal
crit-intermedgoal The same as tes-goal and crit-goal, respectively, but

deemed especially important by the proof system.

tes-lemma A rule or equation generated during completion and awarded
a lemma status.

tes-rinal The last step in a reasoning sequence, usually concluding the
proof of at least one hypothesis. If a completion is desired,
all facts of the final, ground convergent system are marked
as tes-rind.

Each PCL step represents a single fact. These can either be initial facts or facts
generated by the reasoning process. In the case of a completion based proof system
for equational reasoning the facts are either rules or equations. They either are a
conclusion from the initial axioms or a (probably rewritten) goal. Equations consist of
two terms connected by an equal sign, rules consist of two terms and an arrow.

<fact> .. = <rule>l<eqn>;;

<rule> ::= <term> ,->' <term>;;

<eqn> ::= <term> '=' <term>;;

<term> ::= <ident>l<ident>'('<arglist>');;

<arglist> ::= <term>['.'<term>]*;;

<ident> ::= [<letter>l<digit>]+;j

<letter> ::= 'a'I ... I'z'I'A'I ... I'Z';j

The final part of a PCL step is an expression describing the origin of the fact in
the step. Facts are either initial axioms or goals without further justification or they
have been derived during the inference process. While initial facts need no additional
justification, derived facts usually need a description of the actual inference step.

<pcl-initexpr> ;:= 'initial'I'hypothesis'l<pcl-expr>;;

In PCL annotation a step with the justification initial represents an axiom and a'step
with justification hypothesis represents a goal to be proved. For consistency reasons
these expressions are assigned the fact in their PCL step as a value of the justification.

20

cr i t -goal A critical goal, containing variables that are existentially
quantified.

tes-intermed A intermediate fact, either an equation or a rule, deemed
particularly important by the proof system. This informa-
tion can, for example, be used i n the generation of lemmata.
In the DISCOUNT system this type and the following two
types designate the intermediate “good” results gained from
unsuccessful experts.

tes-intermedgoal
crit-intermedgoal The same as tes-goal and cri t-goal, respectively, but

deemed especially important by the proof system.
tes-lemma A rule or equation generated during completion and awarded

a lemma status.
tes- f ina l The last step in a reasoning sequence, usually concluding the

proof of at least one hypothesis. If a completion is desired,
all facts of the final, ground convergent system are marked
as tes-final.

Each PCL step represents a single fact. These can either be initial facts or facts
generated by the reasoning process. In the case of a completion based proof system
for equational reasoning the facts are either rules or equations. They either are a
conclusion from the initial axioms or a (probably rewritten) goal. Equations consist of
two terms connected by an equal sign, rules consist of two terms and an arrow.

<fact> : : = <rule>|<eqn>;;

<rule> : : = <term> ’ - > ’ <term>;;

<eqn> : : = <term> ’ '=’ <term>;;

<term> : : = < ident>|< ident> ’ (’<arg l is t> ’) ; ;

<arg l is td : : = < te rm>[’ , ’ < te rm>] * ; ;

<ident> : : = [< le t te r> i<d ig i t>]+ ; ;

<let ter> : : = ’ a ’ l . . . 1 ’ z ’ | ’A ’ 1 . . . 1 ’Z? ’ ; ;

The final part of a PCL step is an expression describing the origin of the fact in
the step. Facts are either initial axioms or goals without further justification or they
have been derived during the inference process. While initial facts need no additional
justification, derived facts usually need a description of the actual inference step.

<pcl - in i texpr> : : = ’ i n i t i a l ’ | ’ h ypo thes i s ’ | <pc l - exp r> ; ;

In PCL annotation a step with the justification in i t ia l represents an axiom and a step
with justification hypothesis represents a goal to be proved. For consistency reasons
these expressions are assigned the fact in their PCL step as a value of the justification.

20

The justifications for the derived facts either describe the generation of a new fact or
simply reference an already known fact.

<pcl-expr> ::= <quote~expr>l<orient-expr>l<cp-expr>

<tes-red-expr>l<instance-expr>;;

The most obvious justification for a fact is a reference to an earlier step with the same
fact. This is represented by a <quote-expr>, which simply consists of the identifier
belonging to the earlier PCL step. The value associated with a <quote-expr> is the
value of the referenced step.

<quote-expr> ::= <pcl-id>;;

During completion equations can be oriented using a reduction ordering. PCL de
scribes this operation as a <orient-expr>. Arguments of an <orient-expr> are a
<pcl-expr>, whose value is the equation to be oriented, and a direction. Directions
can be either u, designating a rule in which the terms appear in the same order as in
the original equation, or x, designating a rule in which these terms have been reversed.

<orient-expr> ::= 'orient('<pcl-expr>','['u' I 'x']')';;

..	 New equations are generated from critical pairs. In a critical pair inference one side
of a rule or an equation is superposed into a subterm of a side of another term pair
(or another instance of the same term pair). This is expressed as a <cp-expr>. Argu
ments are a <pcl-expr>, describing the term pair to be superposed into, a side and
place descriptor designating the subterm to overlap, another <pcl-expr> describing
the superposing term pair and finally a side descriptor marking the overlapping term
of the second term pair. The value of a <cp-expr> is the critical pair resulting from
the described superposition.

<cp-expr> ::= 'cp('<pcl-expr>','<place>','<pcl-expr>','<side>')';;

A place designator consists of two elements, a side descriptor selecting either the left
(L) or the right (R) term in a term pair, followed by a list of integers describing the
specific subterm in this term.

<place> ::= <side>[.<int>]*;;

<side> ::= 'L' I'R';;

Another way to generate new facts is the simplification of existing term pairs. This
operation is described by a <tes-red-expr>. Like a <cp-expr> it takes four arguments,
two PCL expressions describing term pairs, a place designator and a side designator.
The value of a <tes-red-expr> is the fact created by the simplification in which the
subterm of the first term pair described by the place designator is being matched with
the selected side of the second term pair.

<tes-red-expr> ::=	 'tes-red('<pcl-expr>','<place>',

'<pcl-expr>','<side>')';;

21

The justifications for the derived facts either describe the generation of a new fact or
simply reference an already known fact.

<pcl-expr> : : = <quote-expr>|<or ient -expr>|<cp-expr>
<tes-red-expr>|<instance-expr>; ;

The most obvious justification for a fact is a reference to an earlier step with the same
fact. This is represented by a <quote-expr>, which simply consists of the identifier
belonging to the earlier PCL step. The value associated with a <quote-expr> is the
value of the referenced step.

<quote-expr> : : = <pc l - i d> ; ;

During completion equations can be oriented using a reduction ordering. PCL de-
scribes this operation as a <orient-expr>. Arguments of an <orient-expr> are a
<pcl-expr>, whose value is the equation to be oriented, and a direction. Directions
can be either u, designating a rule in which the terms appear in the same order as in
the original equation, or x , designating a rule in which these terms have been reversed.

<orient-expr> : : = ’ o r i en t (’ <pc l - exp r> ’ , ’ [’ u ’ | ’ x ’ '] ’) ’ ; ;

"New equations are generated from critical pairs. In a critical pair inference one side
of a rule or an equation is superposed into a subterm of a side of another term pair
(or another instance of the same term pair). This is expressed as a <cp-expr>. Argu-
ments are a <pcl-expr>, describing the term pair to be superposed into, a side and
place descriptor designating the subterm to overlap, another <pcl-expr> describing
the superposing term pair and finally a side descriptor marking the overlapping term
of the second term pair. The value of a <cp-expr> is the critical pair resulting from
the described superposition.

<cp-expr> : : = ’ cp (’ <pc l - exp r> ’ , ’ <p lace> ’ , ’ <pc l - exp r> ’ , ’ <s i de> ’) ’ ; ;

A place designator consists of two elements, a side descriptor selecting either the left
(L) or the right (R) term in a term pair, followed by a list of integers describing the
specific subterm in this term.

<place> : : = <s ide> [.< i n t>] * ; ;

<s ide> : : = ’ L ’ I ’R ’ HH

Another way to generate new facts is the simplification of existing term pairs. This
operation is described by a <tes-red-expr>. Like a <cp-expr> i t takes four arguments,
two PCL expressions describing term pairs, a place designator and a side designator.
The value of a <tes-red-expr> is the fact created by the simplification in which the
subterm of the first term pair described by the place designator is being matched with
the selected side of the second term pair.

<tes-red-expr> : : = ’ t es - red (’ <pc l - exp r> ’ , ’ <p lace> ’ ,
’ <pc l - exp r> ’ , ’ <s i de> ’) ’ ; ;

21

While the above expressions cover all inferences usually done by a completion procedure
there is another mechanism heavily used by completion based provers. This is the
instantiation of equations, and is often used to prove that a (skolemized) goal is a
consequence of an already known fact. An <instance-expr> in PCL describes exactly
this operation. Arguments are two PCL expressions, the first one describing a goal and
the second one describing the term pair subsuming this goal.

<instance-expr> ::= 'instance('<pcl-expr>','<pcl-expr>')';;

Additional to the bare bones of a proof process other informations may be of use. To
allow inserted text without syntactical structure PCL supports two different comment
formats. One format is used to conveniently append comments to the end of an arbi
trary line in the protocol file (please note that this includes empty lines). This kind
of comments starts with a hash (#) and is terminated by the next newline character.
The second kind of comments is included in C-style delimiters (* and *\) and can be
inserted between any two syntactical elements.

<line-comment> ::= '#'<comment>;;

<insert-comment> ::= '/*'<comment>'/*';;

<comment> :: = Any text without termination symbols; ;

The following is a very short example of a PCL listing.

o tes-eqn: f(e(),x) = x : initial
e() is a left neutral for f

1 tes-eqn: f(x,g(x» = e() : initial
g(x) is a right inverse for f

2 tes-eqn: f(f(x,y),z) = f(x,f(y,z» : initial
f is associative

3 tes-goal: g(f(e(),x» = f(e(),g(x» : hypothesis
Hypothesis

4 tes-rule: f(e(),x) -> x : orient(O,u)
Orient the equation in step 0 without swapping the sides

5 tes-goal: g(f(e(),x» = g(x) : tes-red(3,R,4,L)
Simplify the right side of the fact from step 3 with the rule
from step 4

6 tes-final: g(x) =g(x) : tes-red(5,L.l,4,L)
Simplify the subterm f(e(),x) from the left side of the fact
from step 5, using the rule from step 4
As the result is trivial the goal h.as been proved

22

While the above expressions cover all inferences usually done by a completion procedure
there is another mechanism heavily used by completion based provers. This is the
instantiation of equations, and is often used to prove that a (skolemized) goal is a
consequence of an already known fact. An <instance-expr> in PCL describes exactly
this operation. Arguments are two PCL expressions, the first one describing a goal and
the second one describing the term pair subsuming this goal.

<instance-expr> : : = ’ instance(’<pcl-expr>’ , ’<pcl-expr>’) ’ ; ;

Additional to the bare bones of a proof process other informations may be of use. To
allow inserted text without syntactical structure PCL supports two different comment
formats. One format is used to conveniently append comments to the end of an arbi-
trary line in the protocol file (please note that this includes empty lines). This kind
of comments starts with a hash (#) and is terminated by the next newl ine character.
The second kind of comments is included in C-style delimiters (\ * and * \) and can be
inserted between any two syntactical elements.

<line-comment> : : = ’# ’<comment> ; ;

<insert-comment> : : = ’ /%’<comment>’ /* ’ ; ;

<comment> : : = Any text without termination symbols; ;

The following is a very short example of a PCL listing.

0 : tes-eqn : f (e () , x) = x : i n i t i a l
e () i s a le f t neutral f o r f

1 : tes-eqn : £(x,g(x)) = e() : in i t ia l
g (x) i s a r ight inverse fo r f

2 : tes-eqn : £ (f (x , y) , z) = £ (x , f (y , z)) : in i t ia l
f i s assoc ia t ive

3 : tes-goal : g (f (e () , x)) = £ (e () , g (x)) : hypothesis
Hypothesis

4 : tes - ru le : f (e () , x) -> x : o r i en t (0 ,u)
Or ien t the equat ion in s tep 0 without swapping the s ides

5 : tes-goal : g (f (e () , x)) = g (x) : tes- red(3 ,R,4 ,L)
S impl i fy the r ight s i de of the fact f rom s tep 3 w i th the rule
f rom s tep 4

6 : tes - f ina l : g (x) = g (x) : t es - red (5 ,L .1 ,4 ,L)
S imp l i f y the subterm f (e () , x) f rom the le f t s ide o f the fact
f rom s tep 5 , us ing the rule f rom step 4
As the result i s t r i v ia l the goal has been proved

22

3.2 Working with PCL listings

The aim of this section is to supply some basic functions and concepts to ease working
with PCL steps and listings. These functions will be used in the description of more
complex algorithms. The first group of functions allows access to PCL steps and their
basic components. '

Definition 3 : The functions ID, TYPE, FACT, EXPR and STEP
Let <step>:=pcl-id>:<step-type>:<fact>:<pcl-initexpr> be a PCL step. The
projection functions ID, TYPE,FACT and EXPR are defined as follows:

• ID(step) = <pcl-id>

• TYPE (step) = <step-type>

• FACT(step) = <fact>

• EXPR(step) = <pcl-initexpr>

The function STEP is designed to reference a PCL step using a given identifier, therefore:

• STEP«pcl-id» = <step>

In most cases we use ID(step) instead of step when discussing PCL listings. We
use the more explicit form in further definitions and in algorithms dealing with PCL
listings, however.

The following functions return multisets of PCL steps (in the implementation these
are represented as ordered lists). Multisets are basically finite sets which can contain
the same element more then once. This can be represented by defining a multiset
as a function over a set (the base set). This function returns the number of times
tr..e element is contained in the multiset for each element of the set. The usual set
operations E, U, nand \ are extended to multisets in the straightforward way. For
more detailed definitions, see [Av91].

We need another operator related to \. An additional concept used is the cardinality
of a multiset.

Definition 4 : The ~ operator and the cardinality of multisets
• Let A and B be multisets over a set M. The ~ operator is defined as follows:

if B(m) 1= 0 for all mE M(A~B)(m) = {~(m) otherwise

• The cardinality of a multiset A over M is

IAI = LA(m)
aeK

23

3.2 Working with PCL listings

The aim of this section is to supply some basic functions and concepts to ease working
with PCL steps and listings. These functions will be used in the description of more
complex algorithms. The first group of functions allows access to PCL steps and their
basic components. '

Definition 3 : The functions ID, TYPE, FACT, EXPR and STEP
Let <step>:=pcl- id>:<step-type>:<fact>:<pcl- ini texpr> be a PCL step. The
projection functions ID, TYPE,FACT and EXPR are defined as follows:

e ID(s tep) = <pcl- id>

e TYPE(step) = <step-type>

e FACT(step) = <fact>

e EXPR(step) = <pcl- ini texpr>

The function STEP is designed to reference a PCL step using a given identifier, therefore:

e STEP(<pc l - i d>) = <s tep>

In most cases we use ID(step) instead of step when discussing PCL listings. We
use the more explicit form in further definitions and in algorithms dealing with PCL
listings, however.
The following functions return multisets of PCL steps (in the implementation these
are represented as ordered lists). Multisets are basically finite sets which can contain
the same element more then once. This can be represented by defining a multiset
as a function over a set (the base set). This function returns the number of times
tke element is contained in the multiset for each element of the set. The usual set
operations € , U , N and \ are extended to multisets in the straightforward way. For
more detailed definitions, see [Av91].
We need another operator related to \ . An additional concept used i s the cardinality
of a multiset.

Definition 4 : The \ operator and the cardinality of multisets
e Let A and B be multisets over a set M. The \ operator i s defined as follows:

(A\B)(m) = { if Bm) #0 a lm EMA(m) otherwise

e The cardinality of a multiset A over M is

Al =3_ Am)
neM

23

Using this concepts we can now specify some functions dealing with the relationship of
various PCL steps in a protocol. We call a step parent of another step if it is referenced
in it's justification. The second step is then called a child of the first one.

Definition 5 : The functions PARENTS, PARENTS* and CHILDREN
Let step be a PCL step.

•	 PARENTS(step) is the multiset of the direct predecessors of step. Therefore it is
the multiset of all steps cited in EXPR(step).

•	 PARENTS*(step) is the multiset of all predecessors of step. More formally, the
following equation holds:

PARENTS"(step) = U PARENTS*(s) U PARENTS(step)
sEPAREITS(step)

•	 CHILDREN(step) is the multiset of all steps citing step:

CHILDREN(step) = {slstep E PARENTS(s)}

For partial proofs involving lemmata it is often useful to treat a lemma like an axiom
by taking it as proven and ignoring its proof. To this end we define some new functions
in a way analogous to the previous ones.

Definition 6 : The functions LPARENTS, LPARENTS* and LCHILDREN
Let step be a PCL step.

•	 LPARENTS(step) is the multiset of steps cited in EXPR(step) if step is not a
lemma. It is the empty multiset otherwise.

0 if TVPE(step) = tes-lemma
LPARENTS(step) = { PARENTS(step) otherwise

•	 LPARENTS"(step) is the multiset of predecessors of step directly used in that
proof. More formally:

LPARENTS*(step) = U LPARENTS"(s) U LPARENTS(step)
sELPAREIITS(step)

•	 LCHILDREN(step) is the multiset of all steps citing step if step is neither an
initial fact nor a lemma. It is the empty multiset otherwise.

o	 if TYPE(step) = tes-lemma
LCHILDREN(step) = {} if EXPR(step) E {initial,hypothesis}{ CHILDREN(step) otherwise

24

Using this concepts we can now specify some functions dealing with the relationship of
various PCL steps in a protocol. We call a step parent of another step if i t is referenced
in i t ’s justification. The second step is then called a child of the first one.

Definition 5 : The functions PARENTS, PARENTS* and CHILDREN
Let step be a PCL step. ‘

e PARENTS(step) is the multiset of the direct predecessors of step. Therefore it is
the multiset of all steps cited in EXPR(step).

e PARENTS*(step) is the multiset of all predecessors of step. More formally, the
following equation holds:

PARENTS (s tep) = U PARENTS*(s) U PARENTS(step)
s8cPARENTS(step)

e CHILDREN(step) is the multiset of all steps citing step:

CHILDREN(step) = {s|step € PARENTS(s)}

For partial proofs involving lemmata i t is often useful to treat a lemma like an axiom
by taking i t as proven and ignoring i ts proof. To this end we define some new functions
in a way analogous to the previous ones.

Definition 6 : The functions LPARENTS, LPARENTS* and LCHILDREN
Let step be a PCL step.

e LPARENTS(step) is the multiset of steps cited in EXPR(step) if step is not a
lemma. It is the empty multiset otherwise.

_ [{ } i f TYPE(step) = tes-lemma
LPARENTS(step) = {hear S(step) otherwise

e LPARENTS*(step) is the multiset of predecessors of step directly used in that
proof. More formally:

LPARENTS (s tep) = U LPARENTS"(s) U LPARENTS(step)
sCLPARENTS(step)

® LCHILDREN(step) is the multiset of all steps citing step if step is neither an
initial fact nor a lemma. It is the empty multiset otherwise.

{ } if TYPE(step) = tes-lemma
LCHILDREN(step) = ¢ { } if EXPR(step) € { ini t ial hypothesis}

CHILDREN(step) otherwise

24

3.3 Extracting the proof

As has been stated above the main problem with an extensive step by step listing of
the proof is the overwhelming amount of data produced. Of this data, however, only
a tiny fraction refers to facts actually used in the proof. Most of the steps represent
unsuccessful paths and dead ends in the search space traversed by the proof system.
While this data allows an exact analysis of the strategy, the sheer mass of it tends
to hid.e more than it reveals. Proofs of interesting theorems can easily produce some
hundreds of thousands proof steps, of which only a very small fraction - a few permille
for large examples - is necessary for the proof.

We noted that an analysis based only on the useful steps is much more helpful than
wading through lots of misleading data.' Even most programs working with PCL listings
cannot cope with the immense amount of data.. Therefore we devised a simple algorithm
to extract the needed steps from the complete description.

These steps can be identified very easily in a post mortem analysis. Necessary facts are
the ones reducing or subsuming a goal in the final proof, and, recursively, steps needed
to generate these. 'They can be found by considering the final proof steps (usually
marked as tea-final by the proof system) and, while scanning the listing backwards,
discarding all steps not cited by steps already known as necessary.

We have implemented some variants of a simple algorithm dealing with PCL listings
of various sizes. All use the same principles and differ only by technical considerations.
For more detailed informations see [Sch93]. .

We will now present some results from the extraction process to support our statement
about the relation between used and unused steps. As even protocols for simple ex
amples are to long to be reproduced here we limit ourselves to a table with numerical
data. Even so the large differences should become obvious. Table 1 shows the numbers
of steps in some peL listings. Please note that the first 12 examples are proofprob
lems while the last 3 are completions. [Sch93] discusses a concrete example in more
detail. A number of problems also appears in table 2 on page 60, these problems are
commented there.

Two trends become obvious in the data. First, the larger the example t,he smaller the
percentage of used steps. This of course is a result from the larger search space the
prover has to handle for more complex problems. Secondly, completions use relatively
more steps than proof problems. This is easily explained by taking into account that
in a completion each fact in the final system can be considered as a separate theorem,
while in the proof problems above only one result is shown.

25

3.3 Extracting the proof

As has been stated above the main problem with an extensive step by step listing of
the proof is the overwhelming amount of data produced. Of this data, however, only
a tiny fraction refers to facts actually used in the proof. Most of the steps represent
unsuccessful paths and dead ends in the search space traversed by the proof system.
While this data allows an exact analysis of the strategy, the sheer mass of it tends
to hide more than i t reveals. Proofs of interesting theorems can easily produce some
hundreds of thousands proof steps, of which only a very small fraction — a few permille
for large examples ~ is necessary for the proof.

We noted that an analysis based on lyon the useful steps is much more helpful than
wading through lots of misleading data. Even most programs working with PCL listings
cannot cope with the immense amount of data. Therefore we devised a simple algorithm
to extract the needed steps from the complete description.
These steps can be identified very easily in a post mortem analysis. Necessary facts are
the ones reducing or subsuming a goal in the final proof, and, recursively, steps needed
to generate these. 'They can be found by considering the final proof steps (usually ‘

marked as tes-final by the proof system) and, while scanning the listing backwards,
discarding all steps not cited by steps already known as necessary.

We have implemented some variants of a simple algorithm dealing with PCL listings
of various sizes. All use the same principles and differ only by technical considerations.
For more detailed informations see [Sch93].
We will now present some results from the extraction process to support our statement
about the relation between used and unused steps. As even protocols for simple ex-
amples are to long to be reproduced here we limit ourselves to a table with numerical
data. Even so the large differences should become obvious. Table 1 shows the numbers
of steps in some PCL listings. Please note that the first 12 examples are proof prob-
lems while the last 3 are completions. [Sch93] discusses a concrete example in more
detail. A number of problems also appears in table 2 on page 60, these problems are
commented there.
Two trends become obvious i n the data. First, the larger the example the smaller the
percentage of used steps. This of course is a result from the larger search space the
prover has to handle for more complex problems. Secondly, completions use relatively
more steps than proof problems. This is easily explained by taking into account that
in a completion each fact in the final system can be considered as a separate theorem,
while in the proof problems above only one result is shown.

25

IProblem IComplete IExtracted IComments
Lusk2 54 16 Group axioms imply (X-1).1 = x.

This is a very simple problem from
[L082].
In a ring with x 2 = x every element
is self inverse, that is x-I = x. This
is related to the next problem. See
appendix BA for details.
In a ring with x 2 = x the multiplica
tive operation is Abelian. See [L082]
and appendix B.l for a discussion.

SelfInverse 1703 69

Lusk3 5009 83

Cooperation 98532 64 See table 2.
ditto
ditto
ditto
ditto
In a group with x<l = e the equation
h(h(x, V), y) = eholds for the commu
tator h. See [L082].
See table 2.
ditto
ditto

DeMorgan 238706 151
Luka1 145078 22
Luka2 85934 58
Luka3 322001 79
Lusk4 13420 95

Lusk5 46477 45
Lusk6 387273 190
Lattice3 485010 139

Group 414 44 Completion of the group axioms. This
problem was used as an example for
the completion procedure in [KB70].

Fibgroup 1610 137 Completion of a cyclic group. See ap
pendix BA.
See table 2.Z22 18254 711

Table 1: Numbers of steps in PCL listings

26

| Problem Complete | Extracted | Comments
Lusk2 54 16 Group axioms imply (z- !) -1 = z. |

This is a very simple problem from
[LO82].

SelfInverse 1703 69 In a ring with z? = z every element
is self inverse, that is z=! = z. This
is related to the next problem. See
appendix B.4 for details.

Lusk3 5009 83 In a ring with z?= z the multiplica-
tive operation is Abelian. See [LO82]
and appendix B.1 for a discussion.

Cooperation 98532 64 See table 2.
DeMorgan 238706 151 ditto
Lukal 145078 22 dit to
Luka2 85934 58 ditto
Luka3 322001 79 ditto
Lusk4 13420 95 In a group with z° = e the equation

h(h(z,y),y) = e holds for the commu-
tator h. See [LO82].

Lusk5 46477 45 See table 2.
Lusk6 387273 190 ditto
Latticed 485010 139 ditto
Group 414 44 Completion of the group axioms. This

problem was used as an example for
the completion procedure i n [KB70] .

Fibgroup 1610 137 Completion of a cyclic group. See ap-
pendix B.4.

722 18254 711 See table 2.

Table 1: Numbers of steps in PCL listings

26

4 Structuring proof listings

Even relatively simple proofs can become overwhelmingly complex if they are presented
in an unstructured way. While this statement holds true for every reasonable calculus
the situation for completion based proofs is particularly grave, as the proof is usually
found in tiny, often unrelated fragments. To make such proofs more. accessible they
need to be segmented into a number of subproofs. This is done by using selected
sub-results as lemmata and, using them, building a hierarchical proof structure.

In our approach to this issue the basic structure of the proof as delivered by the proof
system is unchanged, the lemmata only serve to break it into more manageable parts.
In particular, steps are usually considered one after the other and with earlier lemmata
taken i~to account. As a result the reasoning process of the proof system can still be
studied from the structured and possibly transformed proof. This is a marked difference
from the (superficial) approach of the authors in [LP90]. In this paper the authors try
to transfer Lingenfelders results (see [Li90]) from restructuring proofs in first order
predicate logic to equational reasoning. However, concrete suggestions are lacking
from the paper, and the straightforward transfer to a completely different calculus is
not very convincing in our opinion.

Structuring the proof "as is" by selecting certain steps as lemmata has some easily
identified merits:

•	 The proof is broken up into smaller, more easily accessible parts.

•	 A lemma needs to be proofed just once. If it is then used more then once the
size of the overall proof can be reduced significantly. This does not apply to the
peL proof, however, because a completion based prover reuses each fact without
generating a new proof. It does apply to the more readable formats generally
used by human mathematicians, which we try to emulate in section 5. .

•	 By searching the proof for viable lemmata a lot of insight can be won regarding
the processes by which the proof has been generated. This knowledge can be
used to improve the heuristics used in the prover, probably by a guided search
for viable .lemmata.

The problem is, of course, to identify suitable candidates for lemmata. Unfortunately,
even humans usually do not present exact reasons for their decisions in selecting lem
mata. More often than not a lemma is chosen because it is intuitively "important"
or "aesthetically satisfying". Our aim in this section is to find some objective criteria
applicable to a proof generated by an automatic proof system. As above we restrict
ourself to completion based equational proofs. As lemmata are used to structure large
proofs the criteria developed here usually have to take into account rather large parts
of the proof tree. We therefore give only one example for the most complex criterion.
See [Sch93] to find examples for the other criteria.

It should be noted that structuring the proof is in this section viewed purely as a post
mortem process. This is not fully in accordance with the behavior of humans, who

27

4 Structuring proof l istings

Even relatively simple proofs can become overwhelmingly complex i f they are presented
i n an unstructured way. While this statement holds true for every reasonable calculus
the situation for completion based proofs is particularly grave, as the proof is usually
found in tiny, often unrelated fragments. To make such proofs more accessible they
need to be segmented into a number of subproofs. This is done by using selected
sub-results as lemmata and, using them, building a hierarchical proof structure.
In our approach to this issue the basic structure of the proof as delivered by the proof
system is unchanged, the lemmata only serve to break i t into more manageable parts.
In particular, steps are usually considered one after the other and with earlier lemmata
taken into account. As a result the reasoning process of the proof system can still be
studied from the structured and possibly transformed proof. This is a marked difference
from the (superficial) approach of the authors in [LP90]. In th is paper the authors try
to transfer Lingenfelders results (see [Li90]) from restructuring proofs in first order
predicate logic to equational reasoning. However, concrete suggestions are lacking
from the paper, and the straightforward transfer to a completely different calculus is
not very convincing in our opinion.
Structuring the proof “as is” by selecting certain steps as lemmata has some easily
identified merits:

e The proof is broken up into smaller, more easily accessible parts.

e A lemma needs to be proofed just once. If i t is then used more then once the
size of the overall proof can be reduced significantly. This does not apply to the
PCL proof, however, because a completion based prover reuses each fact without
generating a new proof. It does apply to the more readable formats generally
used by human mathematicians, which we try to emulate in section 5.

e By searching the proof for viable lemmata a lot of insight can be won regarding
the processes by which the proof has been generated. This knowledge can be
used to improve the heuristics used in the prover, probably by a guided search
for viable lemmata. : ;

The problem is, of course, to identify suitable candidates for lemmata. Unfortunately,
even humans usually do not present exact reasons for their decisions in selecting lem-
mata. More often than not a lemma is chosen because i t is intuitively “important”
or “aesthetically satisfying”. Our aim in this section is to find some objective criteria
applicable to a proof generated by an automatic proof system. As above we restrict
ourself to completion based equational proofs. As lemmata are used to structure large
proofs the criteria developed here usually have to take into account rather large parts
of the proof tree. We therefore give only one example for the most complex criterion.
See [Sch93] to find examples for the other criteria.
I t should be noted that structuring the proof is in this section viewed purely as a post
mortem process. This is not fully in accordance with the behavior of humans, who

27

usually use lemmata in both proof presentation and proof generation. We will later
show that some of the intermediate results generated by the teamwork method can
aid in the generation of lemmata. These results can be considered as lemmata found
during the proof process itself.

4.1 Partitioning the proof - top-down vs. bottom-up

We considered two different ways to partition a proof. One approach is. a recursive
algorithm, starting at the goal and working in a top-down partitioning scheme. While
this may seem a natural way we found that it is not really possible for equational
proofs. The proofs typically possess a large number of steps referenced from different
parts of the proof. Selecting a lemma because of its position in one part of the proof
may invalidate conditions used to select lemmata in other parts. This is due to the
fact that it can be inserted previous to existing ones, thus rendering them. unnecessary.
Because of the high degree of interconnectedness in the proof we were forced to choose
a constructive, bottom-up approach.

In this second approach the proof listing is considered one step after the other. For each
step under consideration all predecessors have already been processed and all previous
lemmata are known. A newly introduced lemma cannot influence subproofs of previous
lemma, and no old lemma is invalidated.

The resulting algorithm can be summed up as follows: Starting at the beginning of a
proof listing, each step is evaluated, using one or more of the criteria suggested below.
In this evaluation previous lemmata are treated just like axioms. If a step is suitable,
its status is set to lemma. The process is then repeated for subsequent steps. Please
note that a lemma in a PCL listing is just an ordinary step with a special status.
The subproof for a lemma consists of the PCL steps describing its derivation. Only
when transforming the proof to human readable form (see section 5)" this subproof is
separated from the main proof (but will still use previous lemmata).

4.2 Frequently used steps

A proof step that is referenced frequently in the proof is an obvious candidate for a
lemma. The fact that it is used relatively often indicates its importance for the whole
proof. Additionally the total proof is reduced in size if this step is only proved once
and not on every occurrence.

Formalizing this criteria a step becomes a lemma if

ICHILDREN(step) I~ MINUSED

holds. Here MINUSED is a constant designating the minimum number of times a step
has to be referenced in order to satisfy this criterion.

28

usually use lemmata i n both proof presentation and proof generation. We will later
show that some of the intermediate results generated by the teamwork method can
aid in the generation of lemmata. These results can be considered as lemmata found
during the proof process itself.

4 .1 Partitioning the proof — top-down vs. bottom-up

We considered two different ways to partition a proof. One approach is a recursive
algorithm, starting at the goal and working in a top-down partitioning scheme. While
this may seem a natural way we found that i t is not really possible for equational
proofs. The proofs typically possess a large number of steps referenced from different
parts of the proof. Selecting a lemma because of i ts position in one part of the proof
may invalidate conditions used to select lemmata in other parts. This is due to the
fact that i t can be inserted previous to existing ones, thus rendering them unnecessary.
Because of the high degree of interconnectedness in the proof we were forced to choose
a constructive, bottom-up approach.

In this second approach the proof listing is considered one step after the other. For each
step under consideration all predecessors have already been processed and all previous
lemmata are known. A newly introduced lemma cannot influence subproofs of previous
lemma, and no old lemma is invalidated.

The resulting algorithm can be summed up as follows: Starting at the beginning of a
proof listing, each step is evaluated, using one or more of the criteria suggested below.
In this evaluation previous lemmata are treated just like axioms. If a step is suitable,
its status is set to lemma. The process is then repeated for subsequent steps. Please
note that a lemma in a PCL listing is just an ordinary step with a special status.
The subproof for a lemma consists of the PCL steps describing i ts derivation. Only
when transforming the proof to human readable form (see section 5) this subproof is
separated from the main proof (but will still use previous lemmata).

4.2 Frequently used steps

A proof step that is referenced frequently in the proof is an obvious candidate for a
lemma. The fact that i t is used relatively often indicates its importance for the whole
proof. Additionally the total proof is reduced in size i f this step is only proved once
and not on every occurrence.
Formalizing this criteria a step becomes a lemma i f

|CHILDREN(step)| > MINUSED

holds. Here MINUSED is a constant designating the minimum number of times a step
has to be referenced in order to satisfy this criterion.

28

4.3 Important intermediate results

As the whole point in finding lemmata is isolating "important" steps the above title
may seem a little bit preposterous. However, in this section we are addres~ing one
objective measure for the importance of a proof step, namely how many applications
of initial axioms or lemmata it represents. This can be easily calculated as the product
of the number of applications of axioms or lemmata necessary to proof the step (the
length of its proof chain) and the number of references to this step in the remaining
proof.

Definition 7 : The function CHAINLEN
Let step be a PCL step. CHAINLEN(step) calculates the number of applications of
axioms or lemmata used to proof the fact from step. Therefore

· ITYPE(s) = tes-lemma or }I
CHAINLEN(step) = sE LPARENTS (step) EXPR(s) E {initial, hypothesis}I{

CHAINLEN can be implemented quite efficiently by recursion over the arguments of
EXPR(step). Given the above definition, a step becomes a lemma by this criterion if

ICHILDREN(step) I X CHAINLEN(step) 2:: MINWEIGHT

The constant MINWEIGHT defines the minimum weight a step has to achieve in order to
become a lemma.

4.4 Isolated proof segments

The results of a (relatively) isolated subproof are good candidates for lemmata. They
usually represent important implications from a subset of the axioms and tend to
partition the proof into segments connected by a common subject. This criterion uses
a rather large part of the proof listing and relies on the overall structure of the proof.

Note that in [Li90] the author suggests using isolated subgraphs as a criterion to
restructure refutation based predicate logic proofs. In [LP90] the authors suggest to
transfer this principle to equational proofs. They do however use Equation Solution
Graphs as the base for their ideas, while our approach works directly with a step-by
step (PCL) listing of the proof.

Our basic measure for the degree of isolation is the number of steps in the subproof for
a potential lemma that are cited outside this subproof. In order to get a more exact
impression of the weight of this citations we calculate an "importance" analog to 4.3
for each of them. This value is compared to the weight for the potential lemma to
reach a decision.

For a more detailed discussion we need the following function:

Definition 8 : The function EXITS
EXITS(step) is the multiset of all steps outside the (sub-)proof for step but referencing

29

4.3 Important intermediate results

As the whole point in finding lemmata is isolating “important” steps the above title
may seem a l i t t le bit preposterous. However, in this section we are addressing one
objective measure for the importance of a proof step, namely how many applications
of initial axioms or lemmata i t represents. This can be easily calculated as the product
of the number of applications of axioms or lemmata necessary to proof the step (the
length of its proof chain) and the number of references to this step in the remaining
proof.

Definition 7 : The function CHAINLEN
Let step be a PCL step. CHAINLEN(step) calculates the number of applications of
axioms or lemmata used to proof the fact from step. Therefore

CHAINLEN(step) = f s € LPARENTS*(step) TYPE(s) = tes-lemma or i

EXPR(s) € {initial, hypothesis}

CHAINLEN can be implemented quite efficiently by recursion over the arguments of
EXPR(step). Given the above definition, a step becomes a lemma by this criterion i f

|CHILDREN(step)| x CHAINLEN(step) > MINWEIGHT

The constant MINWEIGHT defines the minimum weight a step has to achieve in order to
become a lemma.

4.4 Isolated proof segments

The results of a (relatively) isolated subproof are good candidates for lemmata. They
usually represent important implications from a subset of the axioms and tend to
partition the proof into segments connected by a common subject. This criterion uses
a rather large part of the proof listing and relies on the overall structure of the proof.
Note that in [Li90] the author suggests using isolated subgraphs as a criterion to
restructure refutation based predicate logic proofs. In [LP90] the authors suggest to
transfer this principle to equational proofs. They do however use Equation Solution
Graphs as the base for their ideas, while our approach works directly with a step-by-
step (PCL) listing of the proof.
Our basic measure for the degree of isolation is the number of steps in the subproof for
a potential lemma that are cited outside this subproof. In order to get a more exact
impression of the weight of this citations we calculate an “importance” analog to 4.3
for each of them. This value is compared to the weight for the potential lemma to
reach a decision.
For a more detailed discussion we need the following function:

Definition 8 : The function EXITS
EXITS(step) is the multiset of all steps outside the (sub-)proof for step but referencing

29

a step in this proof. Therefore

EXITS(step) = (U LCHILDREN(S)) "(LPARENTS*(step) U {step})
sELPAREIlTS'(step)

This function can be easily implemented recursively, too. Given this function the
required condition for a lemma can be written as follows:

L ICHAINLEN(s)1 x ICHILDREN(s) nEXITS(step)l) x WEIGHTFACTOR+ OFFSET(
sELPAREJfTS·(step)

< jCHILDREN(step)1 x CHAINLEN(step)

Please note that CHILDREN(s) n EXITS(step) is the multiset of all descendents of s
that are not part of the proof for step. WEIGHTFACTOR and OFFSET are two constants
determining the requirements for a lemma with this criterion.

As this criterion is rather more complex then the preceding ones we will illustrate it
with the following example:

Example: Consider the following excerpt from a longer PCL listing:

1 tes-eqn j(O().x) = x ; initial

4 tes-eqn j(x.g(x» =O() : initial

6 tes-eqn j(j(x.y).z) = j(x.j(y.z» ; initial

12 tea-rule j(O().x) -) x : orient(1.u)

20 tes-rule j(x.g(x» -> O() ; orient(4.u)

45 tes-rule j(j(x.y).z) -) j(x.j(y.z» : orient(6.u)

53 tes-eqn j(x.j(g(x).y» =j(O().y) : cp(45.L.l.20.L)

54 tes-eqn: j(x.j(g(x),y» = y : tes-red(53.R.12.L)

59 tes-eqn: j(x.j(y.z» = j(y.j(z.x» : cp(5.L,45.L)

65 tea-rule; j(x.j(g(x).y» -) y : orient(54.u)

71 tes-eqn g(g(x» = j(x.O(» cp(65.L.2.20.L)

87 tes-eqn x = j(y.j(x.g(y») cp(65.L.2.5.L)

93 tes-eqn x = j(g(y),j(y,x» cp(65.L.2.1.89.L)

2721 tes-eqn f(g(x),O(» = j(x.g(x» : cp(65,L.2.2707,L).

2722 tes-eqn f(g(x) ,O(» = 00 : tes-red(2721.R:20,L)

30

•

a step i n this proof. Therefore

EXITS(step) = (U LoHTLDREN(s)} \(LPARENTS*(step) U {step})
SELPARENTS*(step)

This function can be easily implemented recursively, too. Given this function the
required condition for a lemma can be written as follows:

5 |CHAINLEN(s)| x |CHILDREN(s)N 20) X WEIGHTFACTOR + OFFSET
SCLPARENTS (step)

< |CHILDREN(step)| x CHAINLEN(step)

Please note that CHILDREN(s)N EXITS(step) is the multiset of all descendents of s
that are not part of the proof for step. WEIGHTFACTOR and OFFSET are two constants
determining the requirements for a lemma with this criterion.

As this criterion is rather more complex then the preceding ones we will illustrate i t
with the following example:

Ezample: Consider the following excerpt from a longer PCL listing:

1 : tes-eqn : j (0 () , x) = x : ini t ial

4 : tes-eqn : j (x , g (x)) = 0 () : init ial

6 : tes-eqn : j (j (x , y) , 2) = j (x , j (y , z)) : initial

12 : tes-rule : j (0 () , x) => x : or ient (1,u)

20 : tes-rule : j (x , g (x)) -> 0 () : o r ien t (4 ,u)
45 : tes-rule : j (j (x , y) , z) -> j (x , j (y , 2)) : o r ient (6 ,u)
53 : tes-eqn : j (x , j (g (x) . , y)) = 3(00),y) : cp(45,L.1,20,L)
54 : tes-eqn : j (x , j (g (x) , y)) = y : tes-red(53,R,12,L)
59 : tes-eqn : j (x , j (y , 2)) = j (y , j (z , x)) : cp (5 ,L ,45 ,L)
65 : tes-rule : j (x , j (g (x) , y)) -> y : orient(54,un)
71 : tes-eqn : g(g(x)) = j (x , 0 ()) : cp(65,L.2,20,L)

87 : tes-eqn : x = j (y , j (x , g (y))) : cp(65,L.2,5,L)

93 : tes-eqn : x = j (g (y) , j (y , x)) : cp (65 ,L .2 .1 ,88 ,L)

2721 : tes-eqn : £ (g (x) , 0 ())
2722 : tes-eqn : f (g (x) , 0Q))

j (x , g (x)) : cp (65 ,L .2 ,2707 ,L)
0 () : tes-red(2721,R,20,L)

30

2883 tes-eqn	 j(g(x),f(g(x)',x» = f(g(x),O(» : cp(2859,L.2,20,L)

2961 tes-eqn	 f(g(x),x) = j(x,O(» : cp(65,L.2,2944,L)

3632 tes-eqn	 j(x,f(g(x),x» = f(O(),x) : cp(3610,L.1,20,L)

3986 tes-eqn	 g(x) = j(x,O(» tes-red(3985,R.2,20,L)

4132 tes-eqn	 j(x,j(x,y» = y tes-red(65,L.2.1,4117,L)

4267 tes-eqn	 j(x,j(x,j(y,f(y,x»» = f(j(x,y),y)

tes-red(4266,L.2,45,L)

The graph expressing the relations in this listing is drawn in figure 3. Note that
step 65 is being referenced 7 times. The length of the proof chain for this step is
3, and only a few references to steps with a trivial proof chain (oriented axioms
in this case) are being made outside the subproof for step 65. Therefore step 65
is relatively isolated and a viable lemma.

4.5 Syntactical criteria

Humans rather seldom view the proof as a tree or graph. They are much more con
cerned with the facts themselves, and less concerned with the structure of the reasoning
process. The proof is perceived as a (mostly linear) sequence of results, and results are
often selected as lemmata for their own appearance. To emulate this behaviour we de
veloped some simple criteria comparing the size of the two terms in a fact. We mainly
aimed at "small" terms for the sides of the potential lemma, because they represent
more general concepts. However, as there is only little effort involved in extending this
principles, we tried some variations. Be forewarned that this criteria have proven to
be very weak compared to the more global ones.

As a measure for the size of a term we use the number of variables and function symbols
contained in it.

Definition 9 : The size of a term

The size ItI of a term t is recursively defined by the following equation:

falls t E V

falls t =f(tl, ... ,tn)

Given this information we can easily formulate two criteria checking for either a small
size of the larger term or a small average size of the two terms in a fact. Let stpp be

31

2883 : t es -eqn : j (g (x) , f (g (x) , x)) = £ (g (x) , 00)) : cp (2859 ,L .2 ,20 ,L)

2961 : tes-eqn : f (g (x) , x) = j (x ,00)) : cp(65,L.2,2944,L)

3632 : tes -eqn : j (x , £ (g (x) , x)) = £ (00) , x) : cp (3610 ,L .1 ,20 ,L)

3986 : tes-eqn : g (x) = j (x , 0 ()) : tes-red(3985,R.2,20,L)

4132 : tes-eqn : j (x , j (x , y)) = y : tes- red(65,L.2 .1 ,4117,L)

4267 : tes -eqn : j (x , j (x , j (y . f (y , x)))) = £ (j (x , y) . , y) :
t es - red (4266 ,L .2 ,45 ,L)

The graph expressing the relations in this listing is drawn in figure 3. Note that
step 65 is being referenced 7 times. The length of the proof chain for this step is
3, and only a few references to steps with a trivial proof chain (oriented axioms
in this case) are being made outside the subproof for step 65. Therefore step 65
is relatively isolated and a viable lemma.

4.5 Syntactical criteria

Humans rather seldom view the proof as a tree or graph. They are much more con-
cerned wi th the facts themselves, and less concerned with the structure of the reasoning
process. The proof is perceived as a (mostly linear) sequence of results, and results are
often selected as lemmata for their own appearance. To emulate this behaviour we de-
veloped some simple criteria comparing the size of the two terms in a fact. We mainly
aimed at “small” terms for the sides of the potential lemma, because they represent
more general concepts. However, as there is only l i t t le effort involved i n extending this
principles, we tried some variations. Be forewarned that this criteria have proven to
be very weak compared to the more global ones. :

As a measure for the size of a term we use the number of variables and function symbols
contained in i t .

Definition 9 : The size of a term
The size | t | of a term t is recursively defined by the following equation:

1 fa l l s t EV

[t l = falls t =1+ 3 t i alls t = £ (t 1 , . . . , t n)
1< i<n

Given this information we can easily formulate two criteria checking for either a small
size of the larger term or a small average size of the two terms in a fact. Let step be

31

Figure 3: Proof graph corresponding to the example on page 30

32

[EESA SE NE
AI } NNN
FEU SE

x SsAS LO NS
x A [SE BE. \ » x OS

A \ [OE N
~ ~

Figure 3: Proof graph corresponding to the example on page 30

32

a PCL step, FACT(step) = tt=t2 or FACT(step) = tt--tt2. The criteria for step then
become either

max(lsl, Itl) :::; MAXSIZE

for the maximum size or

Ittl + It 21 :::; AVERAGESIZE
2

for the average size.

Now remember that we are at the moment working on proofs generated by a rewriting
system. Important facts are then rules which allow "strong" simplifications. However,
most reduction orderings do not support the concept of a measure of the difference
between two terms, and PCL listings do not contain informations about orderings,
anyway. As a simple and at least heuristically sound measure we utilize the difference
between the terms sizes. 1f the difference between the two sides of a rule is large it will
alter a reduced term significantly. Therefore such a rule can probably be an important
step, or potential lemma. More exactly this requirement becomes

max(lsl, It!) > E';:;~FAK .
min(lsl, It!)

In some equations valid in many domains the size of the two terms is exactly the same
or differs very little. Examples are the axioms of commutativity and associativity.
Steps with equal term sizes may be good lemmata, two. Stating this more exactly
yields

max(lsl, It!) < MAXFAK
min(lsl, It/) -

Obviously there are much more possibilities for a purely syntactical analysis of the
proof listing. The success or better lack of success we had with this criteria' did not
encourage more research. More about this can be found in section 4.12, which compares
the merits and weaknesses of the various criteria.

4.6 Using outside knowledge

Another way to select lemmata using only data from a single step is to apply outside in
formation. Many problems come from well known domains, and important results from
these domains can be used as lemmata in more special domains. Examples are equa
tions of the form f(x, f(y, z))=f(f(x, y), z) (describing associativity) or f(x, y)=f(y, x)
(describing commutativity).

This criterion is simply applied by comparing the facts of steps in a protocol with a
data base of known good lemmata. A step becomes a lemma if it matches one of the
patterns in this data base.

A human selecting the lemmata can be viewed as a special case of this criterion,
employing his "biological data base".

33

a PCL step, FACT(step) = t1=t2 or FACT(step) = t1—t2. The criteria for step then
become either

max(|s|, | t |) < MAXSIZE

for the maximum size or
t t

fea] eal < AVERAGESIZE

for the average size.
Now remember that we are at the moment working on proofs generated by a rewriting
system. Important facts are then rules which allow “strong” simplifications. However,
most reduction orderings do not support the concept of a measure of the difference
between two terms, and PCL listings do not contain informations about orderings,

_ anyway. As a simple and at least heuristically sound measure we utilize the difference
between the terms sizes. I f the difference between the two sides of a rule is large i t will
alter a reduced term significantly. Therefore such a rule can probably be an important
step, or potential lemma. More exactly this requirement becomes

max(|s, |t]) > FINFAK ©min(|s], | t]) =

In some equations valid in many domains the size of the two terms is exactly the same
or differs very l i t t le. Examples are the axioms of commutativity and associativity.
Steps with equal term sizes may be good lemmata, two. Stating this more exactly
yields

max(|s|, | |)— 2" < MAXFAK
min(]s | , | t])

Obviously there are much more possibilities for a purely syntactical analysis of the
proof listing. The success or better lack of success we had with this criteria did not
encourage more research. More about this can be found i n section 4.12, which compares
the merits and weaknesses of the various criteria.

4.6 Using outside knowledge

Another way to select lemmata using only data from a single step is to apply outside in-
formation. Many problems come from well known domains, and important results from
these domains can be used as lemmata in more special domains. Examples are equa-
tions of the form f (x , f(y, z))=f(f (x, y), z) (describing associativity) or £(x,y)=%(y, x)
(describing commutativity).
This criterion is simply applied by comparing the facts of steps in a protocol with a
data base of known good lemmata. A step becomes a lemma i f i t matches one of the
patterns i n this data base.
A human selecting the lemmata can be viewed as a special case of this criterion,
employing his “biological data base”.

33

4.7 Analysing the applied inference rules

In this section we again utilize the knowledge about the inference processes used to
generate a PCL listing. Currently we only deal with protocols from completion based
proof systems. These systems use three major inference mechanisms: orientation,
simplification and critical pair generation. While all three mechanisms are useful in
finding a proof they obviously have different impacts on the data base. An orientation
~s a purely technical process, a simplification is actually changing the data base and a
new critical pair is a real addition to the data base of the proof system.

Using this knowledge we can assign different values to the inference mechanisms. The
sum for all the inferences necessary to generate a given step can then, as above, be
used to base the lemma decision on.

Definition 10 : The function IWEIGHT
The function IWEIGHT can be applied to PCL steps and PCL expressions and assigns
them a weight representing the inference steps used to generate the fact of the step or
the value (see 3.1) of the expression. Let step be a PCL step and let INITW, HYPOW,
QUOTEW, ORIENTW, CPW, REDW and INSW be constants.

•	 IWEIGHT(ste) = {INITW if TYPE(step) =tes-lemma

P IWEIGHT(EXPR(step)) otherwise

• IWEIGHT(expr) =
INITW if expr = initial

HYPOW if expr = hypothesis

QUOTEW + lWEIGHT(STEP(<id») if expr = <id>

ORIENTW + IWEIGHT(exprt} if expr = orient(exprt, d)

CPW + IWEIGHT(exprt} + lWEIGHT(expr2) if expr = cp(exprt, p, expr2, s)

REDW + IWEIGHT(exprt) + IWEIGHT(expr2) if expr = tes-red(exprt, P, expr2, s)

INSW + IWEIGHT(exprt) + IWEIGHT(expr2) if expr = instance(exprt, expr2)

To decide wether a step should become a lemma we only need to compare the weight
calculated using IWEIGHT with a predetermined boundary. Therefore our criterion
becomes

IWEIGHT(step) ~ MINWEIGHT

with the boundary constant MINWEIGHT.

4.8 Sectioning long proofs

The purpose of using lemmata is of course sectioning a long proof into smaller, more
easily digestable proofs by selecting meaningful intermediate results and separating
their proofs. However, sometimes no important fact can be found - either because our
criteria are to weak or simply because no outstanding result is generated in a large
part of the proof. In this case the proof should still be broken up into smaller segments
for easier understanding. As there are no particulary suitable steps we select a lemma
purely on the length of its proof chain.

34

4.7 Analysing the applied inference rules

In this section we again utilize the knowledge about the inference processes used to
generate a PCL listing. Currently we only deal with protocols from completion based
proof systems. These systems use three major inference mechanisms: orientation,
simplification and critical pair generation. While all three mechanisms are useful in
finding a proof they obviously have different impacts on the data base. An orientation
is a purely technical process, a simplification is actually changing the data base and a
new critical pair is a real addition to the data base of the proof system.

Using this knowledge we can assign different values to the inference mechanisms. The
sum for all the inferences necessary to generate a given step can then, as above, be
used to base the lemma decision on.

Definition 10 : The function IWEIGHT
The function IWEIGHT can be applied to PCL steps and PCL expressions and assigns
them a weight representing the inference steps used to generate the fact of the step or
the value (see 3.1) of the expression. Let step be a PCL step and let INITW, HYPOW,
QUOTEW, ORIENTW, CPW, REDW and INSW be constants.

INITW if TYPE(step) = tes-lemmaIw =
i

¢ IWEIGHT(step) { Tiprohr(expRcstep)) otherwise

¢ IWEIGHT(expr) =
(INITW i f expr = in i t ia l
HYPOW if expr = hypothesis
QUOTEW + IWEIGHT(STEP(<id>)) if expr = < id>

{ ORIENTW + IWEIGHT(expry) if expr = orient(expry,d)
CPW + IWEIGHT(expri) + IWEIGHT(expr;) if expr = cp(expri,p,exprz,s)
REDW + IWEIGHT(expry) + IWEIGHT(expr2) if expr = tes- red(expr i ,p ,exprz ,s)

| INSW + INEIGHT(expry) + IWEIGHT(exprz) if expr = instance(expri,exprz)

To decide wether a step should become a lemma we only need to compare the weight
calculated using IWEIGHT with a predetermined boundary. Therefore our criterion
becomes

IWEIGHT(step) > MINWEIGHT
with the boundary constant MINWEIGHT.

4.8 Sectioning long proofs

The purpose of using lemmata is of course sectioning a long proof into smaller, more
easily digestable proofs by selecting meaningful intermediate results and separating
their proofs. However, sometimes no important fact can be found - either because our
criteria are to weak or simply because no outstanding result is generated i n a large
part of the proof. In this case the proof should st i l l be broken up into smaller segments
for easier understanding. As there are no particulary suitable steps we select a lemma
purely on the length of its proof chain.

34

This length can be easily computed using the function CHAINLEN introduced in sec
tion 4.3. A step becomes a lemma if the relation

CHAINLEN(step) > MAXLEN

holds for step. Please keep in mind that for a fact generated by a reduction or a
critical pair inference the lenght of the new proof chain is the sum of the lenghts of the
two old chains. Therefore chains up to 2 times MAXLENGHT can be generated.

Obviously this simple implementation does not reach an optimal division. It does reach
relativly good results, however. A perfectly regular division of the proof is generally
impossible to achieve and even small improvements lead to much more complex al
gorithms. As the importance of this criterion is rather small we consider the simple
solution sufficent in this context.

4.9 "What to avoid" - not every candidate may be suitable

Up to now we only considered conditions for selecting a step as a lemma. However,
some steps, albeit they fulfill one or more of the above criteria, are not really suitable
as lemmata. In this section we try to develop some necessary conditions for lemmta.
A step not satisfying these criteria cannot become a lemma even if it satisfies other
criteria.

Apart from certain limitations in our current implementation of PCL we found the
criteria from sections 4.2 and 4.8 to be particulary useful in designing these necessary
conditions for lemmata. Of course a lemma should be used at least once in a proof.
This condition is guaranteed if lemmata are generated from extracted listings or, as
in our implementation, a proof graph is build that contains only used steps. In many
cases it can be useful to demand that a lemma is used more then once in the proof.
This condition can be stated exactly as in section 4.2:

ICHILDREN(step)I~MINUSED

It should be kept in mind that this condition now describes a necessary condition,
while above it described a sufficient condition.

Of course demanding a certain minimum of new information in· a lemma is reasonable.
A step only citing an already known fact does not deserve lemma status. The length
of a step's proof chain represents the number of applications of other facts necessary
to generate it. It is therefore a reasonable measur~ of the amount of new knowledge
represented by the step. Stating this as a formal co~dition yields

CHAINLEN(step) ~ MINLEN

A more specialized criterion can be used to enhance the performance of the criterion
from section 4.4. If a step with an isolated proof has but a single successor generated
within the same subproof as the step this successor is usually the better lemma. Check
ing this condition for steps with only a single successor can be done by comparing the

35

This length can be easily computed using the function CHAINLEN introduced i n sec-
tion 4.3. A step becomes a lemma i f the relation

r

CHAINLEN(step) > MAXLEN

holds for step. Please keep in mind that for a fact generated by a reduction or a
critical pair inference the lenght of the new proof chain is the sum of the lenghts of the
two old chains. Therefore chains up to 2 times MAXLENGHT can be generated.

Obviously this simple implementation does not reach an optimal division. I t does reach
relativly good results, however. A perfectly regular division of the proof i s generally
impossible to achieve and even small improvements lead to much more complex al-
gorithms. As the importance of this criterion is rather small we consider the simple
solution sufficent in this context.

4.9 “What t o avoid” - not every candidate may be suitable

Up to now we only considered conditions for selecting a step as a lemma. However,
some steps, albeit they fulfill one or more of the above criteria, are not really suitable
as lemmata. In this section we try to develop some necessary conditions for lemmta.
A step not satisfying these criteria cannot become a lemma even i f i t satisfies other
criteria.

Apart from certain limitations in our current implementation of PCL we found the
criteria from sections 4.2 and 4.8 to be particulary useful in designing these necessary
conditions for lemmata. Of course a lemma should be used at least once in a proof.
This condition is guaranteed i f lemmata are generated from extracted listings or, as
in our implementation, a proof graph is build that contains only used steps. In many
cases i t can be useful to demand that a lemma is used more then once in the proof.
This condition can be stated exactly as in section 4.2:

|CHILDREN(step)|> MINUSED

It should be kept in mind that this condition now describes a necessary condition,
while above i t described a sufficient condition.

Of course demanding a certain minimum of new information in a lemma is reasonable.
A step only citing an already known fact does not deserve lemma status. The length
of a step’s proof chain represents the number of applications of other facts necessary
t o generate i t . I t i s therefore a reasonable measure of the amount of new knowledge
represented by the step. Stating this as a formal condition yields

CHAINLEN(step) > MINLEN

A more specialized criterion can be used to enhance the performance of the criterion
from section 4.4. I f a step with an isolated proof has but a single successor generated
within the same subproof as the step this successor is usually the better lemma. Check-
ing this condition for steps with only a single successor can be done by comparing the

35

exits from the step and its sucessor. Let step be a potential lemma according to the
criterion from section 4.4 and let succ be its single successor. step should only become
a lemma if either another criterion suggests this or if

EXITS(step) =f EXITS(succ)

Note that this criterion is not perfect because not the whole sproof graph of succ has
been considered during the analysis for step.

4.10 Combinations of different criteria

Many of the criteria mentioned so far are able to structure a peL proof without further
asistance. However, a combination of several criteria usually achieves a much better
result then any single one. For example, consider the lemmata resulting from the iso
lated subgraph criterion (section 4.4). Every single lemma is usally of superior quality,
however it is impossible to structure the complete proof using only this criterion, be
cause the lemmata are generated at more or less random intervalls, giving lemmata
with very long or very short subproofs. It is therefore not very well suited as a stand
alone criterion, but can drastically improve the sectioning if used as a supplementary
criterion. Similar effects can be noted for other criteria.

There are several different ways to combine multiple criteria. They will be discussed in
the following paragraphs. Note that some of them need a completly separate treatment
of the negative criteria form section 4.9.

(1) Every step in the peL listing is tested exactly once for each of the used criteria.
It becomes a lemma if one of the conditions is fulfilled. This simple approach has
several advantages:

- The implementation can be kept very simple.

- When considering a step all previous steps have been analysed and the
selected lemmata among them can be taken into account.

- The resulting implementation is very efficient as every step has to be con
sidered only once.

There are some disadvantages, too:

Each criterion is given the same weight. In particular, a rather weak criterion
can produce lemmata hindering a better structuring by other criteria.

Steps conforming to only one criterion are handled exactly as steps fulfilling
two ore more conditions.

The criteria from section 4.9 can only be incorporated as necessarycondi
tions for a lemma. A weighted decision is not possible.

(2)	 The criteria are ordered according to (perceived) quality. The complete peL
listing is then analysed using one of this criteria at a time. As above only one
condition needs to be fulfilled for a step to become a lemma. The advantages:

36

exits from the step and its sucessor. Let step be a potential lemma according to the
criterion from section 4.4 and let succ be its single successor. step should only become
a lemma i f either another criterion suggests this or i f

EXITS(step) # EXITS(succ)

Note that this criterion is not perfect because not the whole sproof graph of succ has
been considered during the analysis for step.

4 .10 Combinations o f different criteria

Many of the criteria mentioned so far are able to structure a PCL proof without further
asistance. However, a combination of several criteria usually achieves a much better
result then any single one. For example, consider the lemmata resulting from the iso-
lated subgraph criterion (section 4.4). Every single lemma is usally of superior quality,
however i t is impossible to structure the complete proof using only this criterion, be-
cause the lemmata are generated at more or less random intervalls, giving lemmata
with very long or very short subproofs. I t is therefore not very well suited as a stand
alone criterion, but can drastically improve the sectioning i f used as a supplementary
criterion. Similar effects can be noted for other criteria.
There are several different ways to combine multiple criteria. They will be discussed in
the following paragraphs. Note that some of them need a completly separate treatment
of the negative criteria form section 4.9.

(1) Every step in the PCL listing is tested exactly once for each of the used criteria.
It becomes a lemma i f one of the conditions is fulfilled. This simple approach has
several advantages:

— The implementation can be kept very simple.
— When considering a step all previous steps have been analysed and the

selected lemmata among them can be taken into account.
— The resulting implementation is very efficient as every step has to be con-

sidered only once.

There are some disadvantages, too:

— Each criterion is given the same weight. In particular, a rather weak criterion
can produce lemmata hindering a better structuring by other criteria.

— Steps conforming to only one criterion are handled exactly as steps fulfilling
two ore more conditions.

— The criteria from section 4.9 can only be incorporated as necessary condi-
tions for a lemma. A weighted decision is not possible.

(2) The criteria are ordered according to (perceived) quality. The complete PCL
listing is then analysed using one of this criteria at a time. As above only one
condition needs to be fulfilled for a step to become a lemma. The advantages:

36

Criteria producing "better" lemmata have the first chance to evaluate the
listing. It is therefore less likely that an inferior lemma is generated instead
of a better one.

The implementation is still very managable.

However, some new disadvantages appear together with the advantages:

The lemmata are generally not generated in their order of appearance in the
PCL listing. As the criteria only take earlier lemmata into account a newly
created lemma can make an old one superfluous.

The PCL listing has to be traversed once for every single criterion, the cost
for the calculation rises by a small factor. However, this has not caused any
problems for the examples analysed so far.

As above the criteria from section 4.9 can only be incorporated as necessary
conditions

(3)	 The different criteria are weighted numerically, and the sum over the fulfilled
conditons is compared to a limit. This combines most of the advantages from (1)
and (2) above.

An implementation can still be kept quite simple.

At the evaluation of a step all earlier lemmata are already known and can
be taken into account.

The efficiency is rather high as the listing has to be analyzed but once.

For the first time the (negative) criteria from 4.9 can be incorporated in a
weighted way. Even steps that, according to one of these cri teria, are not
suitable can become lemmata if a lot of other conditions are fulfilled.

Based on this approach other criteria searching for a globaly optimal sec
tioning can be constructed. They would be extremly costly to evaluate,
though.

Of course there still remain some disadvantages:

Analogous to (1) the best lemmata are generally not guaranteed to be found.

As the field is a rather new one we do not yet know enough about the quality
of the different criteria to assign meaningful weights to the different ones.
This disadvantage will hopefully vanish with time.

(4)	 When analyzing the different criteria for lemmata it can be noted that the Jecis
sion is usually based on the comparison of numerical values. This can be used to
switch from the purely binary approach described so far (each criteria either rec
ommends a step or it does not) to a more subtle procedure. In this each criteria
evaluates a step on a conti~uous scale and gives its recomendation in the form of
a single numerical value. The (weighted) sum of this values is then - as above
compared to a limit.

37

— Criteria producing “better” lemmata have the first chance to evaluate the
listing. I t is therefore less likely that an inferior lemma is generated instead
of a better one.

— The implementation is still very managable.

However, some new disadvantages appear together with the advantages:

— The lemmata are generally not generated in their order of appearance in the
PCL listing. As the criteria only take earlier lemmata into account a newly
created lemma can make an old one superfluous.

— The PCL listing has to be traversed once for every single criterion, the cost
for the calculation rises by a small factor. However, this has not caused any
problems for the examples analysed so far.

— As above the criteria from section 4.9 can only be incorporated as necessary
conditions

(3) The different criteria are weighted numerically, and the sum over the fulfilled

(4)

conditons is compared to a limit. This combines most of the advantages from (1)
and (2) above.

— An implementation can still be kept quite simple.

— At the evaluation of a step all earlier lemmata are already known and can
be taken into account.

— The efficiency is rather high as the listing has to be analyzed but once.
— For the first time the (negative) criteria from 4.9 can be incorporated i n a

weighted way. Even steps that, according to one of these criteria, are not
suitable can become lemmata i f a lot of other conditions are fulfilled.

— Based on this approach other criteria searching for a globaly optimal sec-
tioning can be constructed. They would be extremly costly to evaluate,
though.

Of course there still remain some disadvantages:

— Analogous to (1) the best lemmata are generally not guaranteed to be found.
— As the field is a rather new one we do not yet know enough about the quality

of the different criteria to assign meaningful weights to the different ones.
This disadvantage will hopefully vanish with time.

When analyzing the different criteria for lemmata i t can be noted that the decis-
sion is usually based on the comparison of numerical values. This can be used to
switch from the purely binary approach described so far (each criteria either rec-
ommends a step or i t does not) to a more subtle procedure. In this each criteria
evaluates a step on a continuous scale and gives i ts recomendation in the form of
a single numerical value. The (weighted) sum of this values is then — as.abave ~
compared to a limit.

37

- The concept uses the data collected for the criteria in a more flexible way,
probably achieving a more just verdict.

- The negative criteria can be smoothly integrated. In particular the first
two conditions from section 4.9 can be completly merged with the criteria
from 4.2 and 4.8 respectively.

Two important disadvantages have hindered an implementation so far:

- The cost for an implementation based on our current programs is compar~

atively high.

- In a much stronger sense than above our limited knowledge about the be
haviour of the different criteria makes it difficult to map the data onto a
continuous scale. However, we do hope to overcome this problem in the
future.

(5)	 The last and potentially most powerful possibility is to constuct a complex lan
guage supporting arbitrary expressions and access to the functions described in
the various criteria and possibly to the PCL listing itself. This has an immedi
ately obvious advatage:

- The user enjoys maximum flexiblility and power in designing his own criteria.

There are however a number of disadvantages to consider, too.

- An implementation is comparatively very costly in terms of manpower.

- The efficency of an implementation will suffer because of the need to inter
pret an additional language.

The user has to invest a lot of effort if he wants to gain any benefits from
this approach.

Up to now we only implemented the methods (1) and (2). The algorithm used will be
presented in the next section. We found that most proofs could be structured quite
well using this algorithm. While there is still interest in the approaches labeled (3) and
(4) the last one (labeld (5)) will probably never be realised. For the few c~es where
this flexibility is needed the criteria can probably be coded much easier directly into
the C sources of the program.

4.11 An algorithm for the structuring of PCL listings

This section describes the basic algorithm used by our program for the structuring of
lemmata in peL listings. It uses all the criteria presented so far. Additionally several
of these critera can be combined using the methods (1) and (2) from section 4.10.

Input and output are (extracted) PCL listings. The output listing contains all the used
steps from the input listings. Recognized lemmata will be of the typetes";lemrna.

38

— The concept uses the data collected for the criteria in a more flexible way,
probably achieving a more just verdict.

— The negative criteria can be smoothly integrated. In particular the first
two conditions from section 4.9 can be completly merged with the criteria
from 4.2 and 4.8 respectively.

Two important disadvantages have hindered an implementation so far:

— The cost for an implementation based on our current programs is compar-
atively high.

— In a much stronger sense than above our limited knowledge about the be-
haviour of the different criteria makes i t difficult to map the data onto a
continuous scale. However, we do hope to overcome this problem in the
future.

(5) The last and potentially most powerful possibility is to constuct a complex lan-
guage supporting arbitrary expressions and access to the functions described in
the various criteria and possibly to the PCL listing itself. This has an immedi-
ately obvious advatage:

— The user enjoys maximum flexiblility and power in designing his own criteria.

There are however a number of disadvantages to consider, too.

— An implementation is comparatively very costly i n terms of manpower.
— The efficency of an implementation will suffer because of the need to inter-

pret an additional language.
— The user has to invest a lot of effort i f he wants to gain any benefits from

this approach.

Up to now we only implemented the methods (1) and (2). The algorithm used will be
presented i n the next section. We found that most proofs could be structured quite
well using this algorithm. While there is still interest in the approaches labeled (3) and
(4) the last one (labeld (5)) will probably never be realised. For the few cases where
this flexibility is needed the criteria can probably be coded much easier directly into
the C sources of the program.

4.11 An algorithm for the structuring of PCL listings

This section describes the basic algorithm used by our program for the structuring of
lemmata in PCL listings. I t uses all the criteria presented so far. Additionally several
of these critera can be combined using the methods (1) and (2) from section 4.10.
Input and output are (extracted) PCL listings. The output listing contains all the used
steps from the input listings. Recognized lemmata will be of the type tes-lemma.

38

Input:

Output:

Variables:

Functions:

in

criteria

iterate

out

store

step

IsLemma(step)

NOTEMPTY(list)

FIRST(list)

EXCEPTFIRST(list)

TYPE (step)

APPEND(list.step)

IsOftenLemma(step)

IsImportantLemma(step)

IsTreeLemma(step)

IsSyntaxLemma(step)

IsKnovnLemma(step)

IsCompletionLemma(step)

A list of PCL steps.

A list of (boolean) functions for the

evaluation of a PCL step (see be

low),

TRUE, if the criteria to be used

should be combined according to

the second approach from 4.10,

FALSE otherwise.

A list of PCL steps with the lem

mata markes as tes-lemma.

A list for the intermediate storage

of the PCL listing.

The PCL step considered at the

moment.

The momentarily active evaluation

function.

FALSE, if list is empty, TRUE if

not.

First entry in list.

list without its first entry.

Type of step (compare 3.2).

List generated by appending step

as the last element to list.

Realizes the search for frequently

used steps (section 4.2).

Realizes the search for important

steps from section 4.3.

Implements the search for isolated

segments of the proof (see 4.4).

This may take into account the

third criterion from section 4.9,

although our current implementa

tion does not yet check this.

Realizes the different syntactical

criteria from section 4.5.

Checks the step by comparing its

fact to known important results

from the domain.

Evaluates lemmata using weighted

inference steps (see 4.7).

39

Input:

Output:

Variables:

Functions:

in

c r i t e r i a

i te ra te

out

s to re

step

IsLemma(step)

NOTEMPTY(list)

FIRST (l i s t)
EXCEPTFIRST(1list)
TYPE(step)
APPEND(1list,step)

IsOftenLemma(step)

IsImportantLemma (s tep)

IsTreeLemma(step)

IsSyntaxLemma(step)

IsKnownLemma(step)

IsCompletionLemma(step)

39

A list of PCL steps.
A list of (boolean) functions for the
evaluation of a PCL step (see be-
low).
TRUE, if the criteria to be used
should be combined according to
the second approach from 4.10,
FALSE otherwise.
A list of PCL steps with the lem-
mata markes as tes-lemma.
A list for the intermediate storage
of the PCL listing.
The PCL step considered at the
moment.
The momentarily active evaluation
function.
FALSE, if 1 i s t is empty, TRUE i f
not.
First entry in l i s t .
l i s t without i ts first entry.
Type of step (compare 3.2).
List generated by appending step
as the last element to l i s t .
Realizes the search for frequently
used steps (section 4.2).
Realizes the search for important
steps from section 4.3.
Implements the search for isolated
segments of the proof (see 4.4).
This may take into account the
third criterion from section 4.9,
although our current implementa-
tion does not yet check this.
Realizes the different syntactical
criteria from section 4.5.
Checks the step by comparing i ts
fact to known important results
from the domain.
Evaluates lemmata using weighted
inference steps (see 4.7).

IsPartLemma(step) Evaluates steps according to the
criterion from section 4.8 (break
ing up long proof chains).

IsNoLemma(step) Checks for the first two negative
criteria from section 4.9.

Remark: IsNoLemma(step) = TRUE holds if the step is not acceptable as a
lemma, FALSE otherwise. The other evaluation functions are TRUE if the
step should become a lemma, FALSE otherwise. The different constants
needed for the evaluation of the criteria are not listed as separate param
eters. Please note that by suitable selection of these constants it can be
guaranteed that IsNoLemma(step) = FALSE does always hold.

IF iterate = TRUE THEN
store := in;
WHILE NOTEMPTY(criteria)

Islemma := FIRST(criteria);
criteria := EXCEPTFIRST(criteria);
WHILE NOTEMPTY(store)

step := FIRST(store);
store := EXCEPTFIRST(store);
IF NOT(IsNoLemma(step» THEN

IF IsLemma(step) THEN TYPE(step) := tes-lemma;
out := APPEND(out,step);

ENOWHILE
store := out;

ENDWHILE
ELSE

WHILE NOTEMPTY(in)
step := FIRST(in);
in := EXCEPTFIRST(in);
IF NOT(IsNoLemma(step» THEN

FOREACH IsLemma E criteria
IF IsLemma(step) THEN TYPE(step) := tes-lemma;

ENOIF"
out := APPENO(out,step);

ENOWHILE
ENDIF

4.12 Evaluating the different criteria for lemma generation

The lack of objective criteria for lemma selection hinders not only the generation but
also the evaluation of structured proofs. Any assessment therefore has to be highly
subjective. As PCL listings are not particulary suitable for human interpretation (they

40

IsPartLemma(step) Evaluates steps according to the
criterion from section 4.8 (break-
ing up long proof chains).

IsNoLemma(step) Checks for the first two negative
criteria from section 4.9.

Remark: IsNoLemma(step)= TRUE holds i f the step is not acceptable as a
lemma, FALSE otherwise. The other evaluation functions are TRUE if the -
step should become a lemma, FALSE otherwise. The different constants
needed for the evaluation of the criteria are not listed as separate param-
eters. Please note that by suitable selection of these constants i t can be
guaranteed that IsNoLemma(step) = FALSE does always hold.

I F i terate = TRUE THEN
s tore : = i n ;
WHILE NOTEMPTY (cr i ter ia)

Islemma := F IRST(c r i te r ia) ;
cr i te r ia : = EXCEPTFIRST(criteria);
WHILE NOTEMPTY (s to re)

step := FIRST(store) ;
store := EXCEPTFIRST (s t o re) ;
IF NOT(IsNoLemma(step)) THEN

IF IsLemma(step) THEN TYPE(step) : = tes-lemma;
out : = APPEND (ou t , s t ep) ;

ENDWHILE
s to re := ou t ;

ENDWHILE
ELSE

WHILE NOTEMPTY(in)
step := FIRST(in);
i n : = EXCEPTFIRST (i n) ;
IF NOT(IsNoLemma(step)) THEN

FOREACH IsLemma € c r i t e r i a
IF IsLemma(step) THEN TYPE(step) : = tes-lemma;

ENDIF ’
out : = APPEND (ou t , s t ep) ;

ENDWHILE
ENDIF

4.12 Evaluating the different criteria for lemma generation

The lack of objective criteria for lemma selection hinders not only the generation but
also the evaluation of structured proofs. Any assessment therefore has to be highly
subjective. As PCL listings are not particulary suitable for human interpretation (they

40

work well for a~alyzing the proof process, but not for proof presentation), we used
proofs transformed into the more friendly format presented in chapter 5.

Apart from the purely suhjective impression we use two more objective (albeit quite

weak) criteria: The length of the proof chains and the size of the terms in the lemmata.

We think proof chains of similar length and lemmata containing small (more general)

I

terms are desirable.

The overall result is quite promising. Comparisons with proof listings structured by
humans have shown that our automatic algorithms usually achieve uniformly better
results. This mainly stems from the difficulty of considering the global effects of a
inserted lemma. However, the automatic proofs does not quite reach the quality of
proofs found and structured by humans. We also found that these proofs can still be
improved by a human working not with a plain listing but with a proof prestructured.

We will now discuss the problems and merits of the different criteria in more detail.

•	 Frequently used steps (section 4.2) can be quite good individual lemmata. How
ever, while they often contain small, meaningful terms, they do not structure the
proof very well. Proof chains vary widely in length and particulary towards the
end of the proof grow much to large for easy comprehension. However, if used in
conjunction with additional criteria limiting the maximum size of the subproofs,
good results can be obtained.

• Searching for	 "important" steps as detailed in section 4.3 is one of the strongest
single criteria developed so far. The lemmata are often intuitively appealing and
the length of the proof chains, while quite variable, never becomes overwhelming.
In most cases lemmata obtained using only this criterion are sufficient to structure
the proof in an agreeable way.

•	 Using the criterion from section 4.4 yields very good lemmata. However, while
the structure of the proof is well reflected and the lemmata are quite intuitive,
the subproofs are of very different length. Lemmata are clustered together, with
very short subproofs within the clusters and very large subproofs outside of them.
Our best results are achieved if this criterion is combined with another criterion
limiting the maximum proof size.

•	 Syntactical criteria based purely on the size of the terms have proven to be very
weak. While some of the resulting lemmata look quite reasonable they usually
have no special role in the proof. The frequency of the lemmata is extremely
random, with very large proof chains towards the end of the proof. Even in
conjunction with other criteria no acceptable results have been achieved. All in
all these syntactical criteria are only useful in very special cases and not suited
for more general purposes.

•	 Employing outside knowledge to identify good lemmata results in quite intuitive
and appealing lemmata. However, as the criterion does not take the global struc
ture of the proof into account, these lemmata suffer from the same problem as

41

work well for analyzing the proof process, but not for proof presentation), we used
proofs transformed into the more friendly format presented in chapter 5.

Apart from the purely subjective impression we use two more objective (albeit quite
weak) cr i ter ia: The length of the proof chains and the size o f the terms i n the lemmata.
We think proof chains of similar length and lemmata containing small (more general)
terms are desirable.

The overall result is quite promising. Comparisons with proof listings structured by
humans have shown that our automatic algorithms usually achieve uniformly better
results. This mainly stems from the difficulty of considering the global effects of a
inserted lemma. However, the automatic proofs does not quite reach the quality of
proofs found and structured by humans. We also found that these proofs can st i l l be
improved by a human working not with a plain listing but with a proof prestructured.
We will now discuss the problems and merits of the different criteria in more detail.

e Frequently used steps (section 4.2) can be quite good individual lemmata. How-
ever, while they often contain small, meaningful terms, they do not structure the
proof very well. Proof chains vary widely in length and particulary towards the
end of the proof grow much to large for easy comprehension. However, i f used in
conjunction with additional criteria l imiting the maximum size of the subproofs,
good results can be obtained.

e Searching for “important” steps as detailed in section 4.3 is one of the strongest
single criteria developed so far. The lemmata are often intuitively appealing and
the length of the proof chains, while quite variable, never becomes overwhelming.
In most cases lemmata obtained using only this criterion are sufficient to structure
the proof in an agreeable way.

e Using the criterion from section 4.4 yields very good lemmata. However, while
the structure of the proof is well reflected and the lemmata are quite intuitive,
the subproofs are of very different length. Lemmata are clustered together, with
very short subproofs within the clusters and very large subproofs outside of them.
Our best results are achieved i f this criterion is combined with another criterion
l imiting the maximum proof size.

e Syntactical criteria based purely on the size of the terms have proven to be very
weak. While some of the resulting lemmata look quite reasonable they usually
have no special role in the proof. The frequency of the lemmata is extremely
random, with very large proof chains towards the end of the proof. Even i n
conjunction wi th other criteria no acceptable results have been achieved. All i n
all these syntactical criteria are only useful in very special cases and not suited
for more general purposes.

e Employing outside knowledge to identify good lemmata results in quite intuitive
and appealing lemmata. However, as the criterion does not take the global struc-
ture of the proof into account, these lemmata suffer from the same problem as

41

the ones based onto syntactical structure. If used in combination with strong
negative criteria and some more global positive ones, this criterion can help to
improve the overall proof structure.

•	 The analysis of the used inference steps yields lemmata of average quality. The
lengths of the subproofs are quite regular, and the size of the terms in the lemmata
as well as in the proof chains are rather small. Proofs structured with this
criterion bear some similarity to proofs structured by simply breaking long proof
chains (see section 4.8), but appear more apealing and regular to the viewer. As a
possible consequence we consider to use the weight of the inference steps instead
of the length of the proof chain in some of the more complex criteria.

•	 Inserting lemmata whenever the proof chain becomes too long is the weakest of
the global criteria. While the structured proofs are much better to follow then
monolithic proofs, the lemmata bear no special meaning. However, while the
criteria does not produce good results by itself, it is a very good backup criterion
for cases in which more powerful criteria leave some large subproofs.

Apart form the different criteria we have to discuss the two implemented ways to
combine them. We noted that both approaches have advantages. They can he summed
up as follows: Analysing the complete proof with all criteria to be used at once yields
less extreme lemmata. Analysing the proof with the different critera one after the other
generates some better lemmata. However, it also produces some less than desirable
lemmata. Which overall result is considered better has to be decided for each single
case, and depends largely on personal preferences.

All in all the lemmata found by our algorithms are sufficient for most problems and
usually lead to proofs quite readable for humans.

42

the ones based onto syntactical structure. If used in combination with strong
negative criteria and some more global positive ones, this criterion can help to
improve the overall proof structure.

e The analysis of the used inference steps yields lemmata of average quality. The
lengths of the subproofs are quite regular, and the size of the terms in the lemmata
as well as in the proof chains are rather small. Proofs structured with this
criterion bear some similarity to proofs structured by simply breaking long proof
chains (see section 4.8), but appear more apealing and regular to the viewer. As a
possible consequence we consider to use the weight of the inference steps instead
of the length of the proof chain in some of the more complex criteria.

o Inserting lemmata whenever the proof chain becomes too long is the weakest of
the global criteria. While the structured proofs are much better to follow then
monolithic proofs, the lemmata bear no special meaning. However, while the
criteria does not produce good results by itself, i t is a very good backup criterion
for cases in which more powerful criteria leave some large subproofs.

Apart form the different criteria we have to discuss the two implemented ways to
combine them. We noted that both approaches have advantages. They can be summed
up as follows: Analysing the complete proof with all criteria to be used at once yields
less extreme lemmata. Analysing the proof with the different critera one after the other
generates some better lemmata. However, i t also produces some less than desirable
lemmata. Which overall result is considered better has to be decided for each single
case, and depends largely on personal preferences.
All in all the lemmata found by our algorithms are sufficient for most problems and
usually lead to proefs quite readable for humans.

42

5 Proof presentation

Completion based proof systems work mainly by applying inrerence steps to sets of
equations, thereby deriving more equations. Humans generally use another concept:
They apply existing equations to terms, building equational chains. New equations
are only generated when such a chain becomes unwieldy. The basic difference is that
humans are working on terms, using equations as tools, while an automatic proof
system works on equations (and rules), using certain inferences as tools.

This difference makes automatic proofs very hard to follow. While every single inference
is easily understood and proved to be correct, the complete proof is generated in small,
largely independent pieces that arrive in a more or less random order. The original
axioms (used heavily by humans) are applied only very occasionally, and their role in
the final proof is very hard to perceive.

To make automatic proofs easier to understand we transform them into a calculus em
ploying the same equational chains used by human mathematicians. These proofs can
be presented in a very natural way, resembling textbook proofs for simple mathematical
problems.

5.1 Equational Chains: A calculus for proof presentation

In the calculus presented here each equation is accompanied by an equational chain
(called justification) describing the applications of (known) equations necessary to
transform the two terms of the equation into each other. Therefore an equation is
not viewed as a logical consequence of a set of equations, but as the result of the appli
cation of these equations to a term. Although the two approaches are equivalent, the
users viewpoint has changed.

Definition 11 : Justifications for equations
1) A tuple (u, (s=t, p, 0'), v) is called justification for the equation u=v, if ulp = 0'(s)

and u[p ~ O'(t)] = v.

2)	 A tuple (u, (s=t, p, 0'), v) is called justification for the equation u=v., if ulp = O'(t)
and u[p ~ O'(s)] = v.

3) Let (s,Bt,t) and (t,B2'U) be justifications for s=t and t=u, respectively. Then
(s, Bt, t) • (t, B2, u) == (s, Bt, t, B2, u) is a justification for s=u.

Given this recursive definition, a justification is a chain of the form

We write s == t to denote either s=t or s t, and require that s-t = s=t holds.

We need some additional operation on justifications. The most simple of these oper
ations makes use of the inherent symmetry of equality. It generates a justification for
t=s from a justification for the symmetric equation s=t.

43

5 Proof presentation

Completion based proof systems work mainly by applying inierence steps to sets of
equations, thereby deriving more equations. Humans generally use another concept:
They apply existing equations to terms, building equational chains. New equations
are only generated when such a chain becomes unwieldy. The basic difference is that
humans are working on terms, using equations as tools, while an automatic proof
system works on equations (and rules), using certain inferences as tools.

This difference makes automatic proofs very hard to follow. While every single inference
is easily understood and proved to be correct, the complete proof is generated in small,
largely independent pieces that arrive in a more or less random order. The original
axioms (used heavily by humans) are applied only very occasionally, and their role in
the final proof is very hard to perceive.

To make automatic proofs easier to understand we transform them into a calculus em-
ploying the same equational chains used by human mathematicians. These proofs can
be presented i n a very natural way, resembling textbook proofs for simple mathematical
problems. ;

5.1 Equational Chains: A calculus for proof presentation

In the calculus presented here each equation is accompanied by an equational chain
(called justification) describing the applications of (known) equations necessary to
transform the two terms of the equation into each other. Therefore an equation is
not viewed as a logical consequence of a set of equations, but as the result of the appli-
cation of these equations to a term. Although the two approaches are equivalent, the
users viewpoint has changed.

Definition 11 : Justifications for equations
1) A tuple (u,(s=t,p,0),v) is called justification for the equation u=v, i f uly = o(s)

and ufp « o(t)] = v .

2) A tuple (u, (S=t,p,0) ,v) is called justification for the equation u=v, if ulp = o(t)
and up « o(s)] =v .

3) Let (s,B ı , t) and (t,B2, u) be justifications for s= t and t=u, respectively. Then
(s,B1,t) ® (t,B2, u) = (s,B ı , t ,B2,u) is a justification for s=u.

Given this recursive definition, a justification is a chain of the form

(uo, (81 = t 1 , p1 ,01) , u1 , (82 = t 2 ,P2 ,02) , 92 , . . . ,Un—1, (Sn = tn , Pn; On), Un)

We write s = t to denote either s= t or S=%, and require that s=t = s= t holds.

We need some additional operation on justifications. The most simple of these oper-
ations makes use of the inherent symmetry of equality. I t generates a justification for
t =s from a justification for the symmetric equation s=t.

43

Definition 12 : The symmetry operator on justifications
The symmetry operator -- is defined as follows:

1) (u,(s == t,p,a),v) = (v,(~,p,a),u)

2) (u,Bl,t,B2,V) = (t,B2,V). (u,Bt.t)

Repeated application of 1) and 2) yields

(UO,(Sl == tl,Pl,Ut},Ul,(S2 == t2,P2,(2),U2, ... ,Un-1,(sn == tn,Pn,un),un) =

(un, (sn == t n, pn, an), Un-I,·· ., U2, (S2 == t2, P2, (72), Ub (SI ...:.. tl, Pt. (71), UO)

As one of our goals is to eliminate unnecessary intermediate results from the reasoning
chain we need a mechanism to replace an application of such a fact by "simpler" facts.
To this end we introduce a flattening operator. Using this operator we can replace an
equation in a proof chain with the equations in its justification.

Definition 13 : The flattening operator S
The flattening operator S is defined as follows:

1) Sew, q, T, (u, (5 == t,P, u), v)) = (w[q t- T(U)], (5 == t, q.p, T 0 u), w[q t- T(V)])

2) S(w,q,T,(s,Bl,t,B2,U)) = S(w,q,T,(s,Bbt).S(W,q,T,(t,B2,U))

Using these operators we can build new justifications from old ones. The following
theorem shows the correctness of the transformations.

Theorem 4 : Symmetry and flattening
•	 Let B be a justification for u=v. Then B is a justification for v=u.

•	 Let (U,Bl,S',(S=t,p,0"),t',B2'V) be a justification for u=v and let B be ajustifi
cation for s=t. Then (u, Bl, S(s', P, 0", B), B2, v) is another justification for u=v.

•	 Let (u, Bl, 51, (s=t, P, u), t', B2, v) be a justification for u=v and let B be a justifi
cation for s=t. Then (u,Bt,S(s',p,0',B),B2,V) is another justification for u=v.

The following short example will illustrate the use of the flattening operator:

Example: Let (g(a, b), (g(x, b)=g(x, c), A, {x t- a}),g(a, e)) be a justification for

g(a, b)=g(a, c), and let (g(x, b), (b=c, 2, {}), g(x, c») be a justification for

g(x,b)=g(x, c).

Then

S(g(a, b), A, {x t- a}, (g(x, b), (b=d, 2, {}), g(x, c»)

= (g(a, b)[A t- {x ~ a}(g(x, b»], (b=d, A.2, {x t- a} 0 {}),

g(a, b)[A t- {x t- a}(g(x, c))])

= (g(a,b),(b=c,2,{xt- a}),g(a,c))

is an alternative justification for g(a, b)=g(a, c). Here we replaced the application

of g(x, b)=g(x, c) by an application of the equation b=c.

44

Definition 12 : The symmetry operator on justifications
The symmetry operator is defined as follows:

; 1) (u , (s = t,p,0),v) = (v , (s=t,p,0),u)

2) (u,B ı , t ,B2,v)= (t,Bz,v)e (u,By,t)

Repeated application of 1) and 2) yields

(uo , (s1 = t 1 , P i , 01) , ui, (s2 = t a , P2 , g2) , u2 , . - +s Un~1 , (Sn = t p , Pn , On) , Un) =

(un, (8a = tn , Pn, on),Un-1 , - . -, U2, (82 = t 3 , p2 ,02) , u1 , (81= t 1 , p1 ,01) , 0)

As one of our goals is to eliminate unnecessary intermediate results from the reasoning
chain we need a mechanism to replace an application of such a fact by “simpler” facts.
To this end we introduce a flattening operator. Using this operator we can replace an
equation in a proof chain with the equations in i ts justification.

Definition 13 : The flattening operator S
The flattening operator S is defined as follows:

1) S(w, 9 ; 7 , (u , (s =t, p ,0) , v)) = (w l — T(u)], (s = t , q .p ,70 0), vq — r(v)])

2) S(w, 9 , 7 , (s , B i , t , Bo, u)) = S(w, Q, 7, (s , By, t)) id S(w, Q ,7 , (t , Ba, u))

Using these operators we can build new justifications from old ones. The following
theorem shows the correctness of the transformations.

Theorem 4 : Symmetry and flattening
e Let B be a justification for u=v. Then B is a justification for v=u.

e Let (u,By,s’,(s=t,p, 0) ,t’, Ba, v) be a justification for u=v and let B be a justifi-
cation for s= t . Then (u, Bj, S(s’,p, 0 ,B) ,B2,v) is another justification for u=v .

e Let (u,Bı,s', (S=t,p, 0) , t ’ , Bo, v) be a justification for u=v and let B be a justifi-
cation for s= t . Then (u,B;,S(s’,p, c,B),B2,v) is another justification for u=v.

The following short example will illustrate the use of the flattening operator:

Example: Let (g (a) , (g(x, b)=g(x, c) , A, { x + a}),g (a , c)) be a justification for
g(a, b)=g(a,c), and let (g (x ,b), (b=c, 2, {}), g(x, c)) be a justification for
g(x, b)=g(x,<).
Then

S(g(a,b), A, { x « a} , (g(x, b), (b=d, 2, { }) , g(x, c)))
= (g(a, b)[A — {x — a}(g(x, b))], (b=d,1.2, {x — a} o {}),

g(a,b)A — {x «— a}(g(x, c))])
= (g(a,5),(b=c, 2, {x — a}), g(a, c))
is an alternative justification for g(a, b)=g(a,c). Here we replaced the application
of g(x,b)=g(x,<) by an application of the equation b=c.

EL . TE

As the calculus of equational chain already emulates the definition of operational
E-equality rather closely we can easily use justified equations to express proofs for
equality. This is achieved by considering only equations valid in E for use in justifica
tions.

Definition 14 : E-justified equations
Let E be a set of equations, the axioms of the set of E-justifi~d equations. An equation
s=t is called justified in E, if one of the following conditions is met:

1)	 s=t E E. In this case B = (s, (s=t, A, O"id) , t) is the justification for s=t.

2)	 There exist E-justified equations so=to, Sl=tt, ... , Sn=tn and a justification
(UO,(Sl == tt,Pt,;1),Ul,(S2 == t2'P2'0"2),U2,~ ... ,un-t,(Sn == tn,Pn,O"n),un) with
Uo =s and Un =t.

In the above definition we allow any E-justified equation in the justifications. However,
as stated earlier, we want to use only axioms and selected lemmata in equational chains.
Therefore we will introduce the concept of flat justifications.

Definition 15 : Flat justifications
Let E be a set of equations, L a set of equations justified in E. A justification

is called a flat justification with respect to E and L if Si=ti E (E U L) holds for all i.

These flat justifications are sufficient to justify any equation valid in E.

Theorem 5 : Flat justifications and E-equality
Let E be a set of equations.

•	 Let L be an arbitrary set of equations justified in E. The equation s=t is justified
in E if and only if a flat justification with respect to E and L exists for it.

•	 s =E t holds if and only if s=t is justified in E.

Please note that the first part of the above theorem applies even for L= D. Lem
mata are not necessary in any proof. They only allow a proof to be followed more
conveniently.

5.2 PCL listings and equational chains

A proof in the form of equational chains is very similar to an equational proof done by
a hu~an. The remaining differences are only superficial details. Humans usually don't
mention places or substitutions, and use a slightly different display format. However,
these problems can be solved easily by projecting only' the wanted parts of the proof
in any desired format.

45

As the calculus of equational chain already emulates the definition of operational
E-equality rather closely we can easily use justified equations to express proofs for
equality. This is achieved by considering only equations valid in E for use i n justifica-
tions.

Definition 14 : E-justified equations
Let E be a set of equations, the azioms of the set of E-justified equations. An equation
s= t i s called justified in E, i f one of the following conditions is met:

1) s=t € E. In this case B = (s, (s=t, A, 014),t) is the justification for s=t.

2) There exist E-justified equations sp=to, S ı= t ı , . . . , Sn=tn and a justification
. . > . .

(uo , (s1 = t i , P1 , 01) , ug, (s2 = 2 , P2 ; 02) ; U2 , . . ¢ ,Un -1 , (sn = tn, Pn, Ou), un) wi th

up = sand un = t .
In the above definition we allow any E-justified equation in the justifications. However,
as stated earlier, we want to use only axioms and selected lemmata i n equational chains.
Therefore we wil l introduce the concept of flat justifications.

Definition 15 : Flat justifications
Let E be a set of equations, L a set of equations justified in E. A justification

(uo, (s t = t 1 , P1 ,01) , uy, (s2 = t 2 , P2 , 02) , u2 , . . . ,Un -1 , (Sn = t n , Pn, On) , Up)

is called a flat justification with respect to E and L if s ;= t ; € (EU L) holds for all i.

These flat justifications are sufficient to justify any equation valid in E.

Theorem 5 : Flat justifications and E-equality
Let E be a set of equations.

e Let L be an arbitrary set of equations justified in E. The equation s= t is justified
in E i f and only if a flat justification with respect to E and L exists for it.

e s =; t holds i f and only if s= t is justified in E.

Please note that the first part of the above theorem applies even for L= { } . Lem-
mata are not necessary in any proof. They only allow a proof to be followed more
conveniently.

5.2 PCL listings and equational chains

A proof in the form of equational chains is very similar to an equational proof done by
a human. The remaining differences are only superficial details. Humans usually don’t
mention places or substitutions, and use a slightly different display format. However,
these problems can be solved easily by projecting only the wanted parts of the proof
in any desired format.

45

Of course a proof is not usually generated in the form of equational chains. Therefore

we need to transform the proofs delivered by the proof system to the new form. We

will now show how this can be achieved.

The foundation of our algorithm is the following transformation system. It will gen

erate (flat) justifications for simple PCL expressions if such justifications exist for the

arguments of these expressions.

Definition 16 : The transformation system JE (justified equations)

In the following we write s ~ t to denote either s=t or 5-t. The function eval yields

the value of a PCL expression (compare 3.1). The following conventions are used in

the transformation rules:

• eval«exprl» = sl~tl and eval«expr2» = s2~t2'

• Bl is a (flat) justification for 51 ~t1, B2 is a (flat) justification for 52~t2.

Input for a transformation step is a PCL expression with value 5 ~ t, output is a (fiat)
justification for the value of this expression.

(1) Axioms

initial Compare the definition of E-justified

(s, (s=t, A, O'id), t) equations (Definition 14 on page 45).

(2) Quotes

<exprl>	 <exprl> here is just an identifier refer
encing another PCL step.Bl

(3) Orienting

orient«exprl>'U)

Bl

orient«exprl>'X)

Bl

(4) Critical pairs

cp(<exprl>, L.p, <expr2>, L) .

S(0"(sd, p, 0", B2) • S(0'(sd, A, 0', Bd

cp(<exprl>, L.p, <expr2>, R)

S(0'(51), p, 0", B2) • s(0'(sd, A, 0', Bd

cp(<exprl>, R.p, <expr2>, L)

S(O'(tl),p,O',B;). S(O"(tl),A,O",Bl)

cp(<exprl>, R.p, <expr2>, R)

S(0"(tt},p,0",B2). S(O'(tl),A,O',B1)

46

Of course a proof is not usually generated in the form of equational chains. Therefore
we need to transform the proofs delivered by the proof system to the new form. We
will now show how this can be achieved.

The foundation of our algorithm is the following transformation system. I t will gen-
erate (flat) justifications for simple PCL expressions i f such justifications exist for the
arguments of these expressions.

Definition 16 : The transformation system JE (justified equations)
In the following we write s~ t to denote either s= t or s—t. The function eval yields
the value of a PCL expression (compare 3.1). The following conventions are used in
the transformation rules:

® eval(<expr;>) = s ı “ t ı and eval(<expr;>) = sa t,.
e B ; i s a (flat) justification for s ;~ t ; , B2 is a (flat) justification for s ,~ t , .

Input for a transformation step is a PCL expression with value s > t , output is a (flat)
justification for the value of this expression.

(1) Axioms
in i t ia l Compare the definition of E-justified

(s, (s=t , A, d ig) , t) equations (Definition 14 on page 45).

(2) Quotes
<expr,> <expr)> here is just an identifier refer-

By encing another PCL step.

(3) Orienting
orient(<expr;>,u)

By

orient(<expr;>, x)
B ı

(4) Critical pairs

cp(<expr;>,L.p,<expry>,L) _
S(o(s ı) , p,9,B2) e S(o(sı), A, 0,Bı)

cp(<expr;>, L.p, <expr2>, R)
S(o(s1), Ps 7 , Bo) * S(o(s1), A, 0 , Bi)

cp(<expr;>,R.p, <expry>,L)
S(o (t1) , Pp, 0 , By) o S (o (t 1) , A , c,B;)

cp(<expr;>,R.p, <expr2>,R)
S(o(t1),p,0,B2) e S(o(t1), A, 0,B7)

with 70 = mgu(sı]p, 82) .

with 0 = mgu(s1lp, t2)-

with 7 = mgu(tilp, s2).

with o = mgu(tylp, t2).

46

(5) Simplifications

tes-red(<exprt>, L.p, <expr 2>, L)

S(st,p,O",B2). Bl

tes-red(<exprt>, L.p, <expr2>, R)

S(st,p,0",B2). Bl

tes-red(<exprl>, R.p, <expr2>, L)

Bl. S(tl,p,0",B2)

tes-red(<exprt>, R.p, <expr2>, R)

Bl • Sett, p, 0", B2)

The system JE is indeed capable of generating correct justifications:

Theorem 6 : Correctness of JE
The transformation system JE is correct. If the requirements from the definition are
fulfilled, the generated justification will be a (flat) justification for the value of the
expression. It will only use facts from the arguments justifications.

The proof system JE up to now offers only support for new, valid equations generated
from the axioms. However, in many proofs the goal is not proofed constructively
(by generating an equation subsuming the goal), but destructively by reducing both
sides of the goal to common normal forms. The following theorem serves to generate
justifications for such goals. u=v is the goal to be proved.

Theorem 7 : Justifications for destructively proofed equations
•	 Let B be a justification for the trivial equation s=s. Let u=v appear in B ex

actly once, at top level and instantiated with the empty substitution, that is
B = (s, Bl, u, (u=v, A, O"id) , V, B2, s). Then (s, Bl, u) • (v, B2, s) is a justification for
u=v.

•	 Let B be an justification for an equation s=t not containing u=v. Let B' be
another justification for s=t with u=v appearing exactly once, at top level and in
stantiated with the empty substitution, that is B' = (s, Bl, u, (u=v, A, O"id) , v, B2, s).
Then (s, Bt, u). B. (v, B2, t) is a justification for u=v.

Using this theorem and treating the hypotheses as axioms we can generate justifica

tions for goals proved with any combinations of constructive and destructive inferences.

Please note that the intermediate justifications are not valid justifications in E. Only

by applying theorem 7 the final justifications are arrived at. To generate the interme

diate justifications we need to expand the system JE by adding a rule dealing with

hypotheses.

Definition 17 : The transformation system JE'

Using the same postulates as in definition 16, the system JE' consists of the rules from

JE and the following new rule:

47

(5) Simplifications
tes-red(<expr;>,L.p, <expr2>,L)

S(s1 ,p , a,B3) ® By

tes-red(<expr;>,L.p, <expry>,R)
S(s1,p» o, Ba) eB ;

with o = match(s2, sılp).

with 7 = match(t2, Sılp)-

tes-red(<expr;>,R.p, <expr2>,L)
Bye S (t1 , p , 0 , Ba)

with o = match(sz, t 1] p) -

t es - red (<expr ;> ,R .p , <expr2> ,R)

Bye S (t1 , Ps 0,B2)
with o = match(ta, t 1 l p) .

The system JE is indeed capable of generating correct justifications:

Theorem 6 : Correctness of JE
The transformation system JE is correct. If the requirements from the definition are
fulfilled, the generated justification will be a (flat) justification for the value of the
expression. It will only use facts from the arguments justifications.

The proof system JE up to now offers only support for new, valid equations generated
from the axioms. However, in many proofs the goal is not proofed constructively
(by generating an equation subsuming the goal), but destructively by reducing both
sides of the goal to common normal forms. The following theorem serves to generate
justifications for such goals. u=v is the goal to be proved.

Theorem 7 : Justifications for destructively proofed equations
e Let B be a justification for the trivial equation s=s . Let u=v appear in B ex-

actly once, at top level and instantiated with the empty substitution, that is
B = (s ,B ı ,u, (u=v, \ ,0 i4) ,V,B2,s) . Then (s ,B ı ,u) e (v,B2,s) is a justification for
u=v.

e Let B be an justification for an equation s= t not containing u=v. Let B ’ be
another justification for s=t with u=v appearing exactly once, at top level and in-
stantiated with the empty substitution, that is B’ = (s , By,u , (u=v, A, 014) , v, B2, 5).
Then (s ,B ı ,u) e Be (v , Ba, t) is a justification for u=v.

Using this theorem and treating the hypotheses as axioms we can generate justifica-
tions for goals proved with any combinations of constructive and destructive inferences.
Please note that the intermediate justifications are not valid justifications in E. Only
by applying theorem 7 the final justifications are arrived at. To generate the interme-
diate justifications we need to expand the system JE by adding a rule dealing with
hypotheses.

Definition 17 : The transformation system JE ’
Using the same postulates as in definition 16, the system JE? consists of the rules from
JE and the following new rule:

47

(1 ') Hypotheses

hypothesis

(s, (s=t, A, O"id) , t)

Using the syEtem JE' we can generate justifications for all facts in a correct PCL
listing. The following example will demonstrate this:

Example: We are presenting a very short PCL listing, accompanied by the justifica
tions generated using JE'.

o : tes-eqn : f(e().x) = x : initial

Bo = (f(eO, x), (f(eO, x)=x, A, {}), x) is a justification for the fact of step 0 by rule (1).

3 : tes-goal : g(f(e().x» = f(e().g(x» : hypothesis

B3 = (g(f(eO, x», (g(f(eO, x»=f(eO, g(x», A, {}), f(eO, g(x») using rule (1').

4 : tes-rule : f(e().x) -) x : orient(O,u)

B4 = Bo = (f(eO, x), (f(eO, x)=x, A, {}), x) according to rule (2), first case.

5 : tes-goal : g(f(e().x» = g(x) : tes-red(3.R.4.L)

Bs = B3 • S(f(eO"g(x», A, {x - g(x)}, B4)

= (g(f(eO, x», (g(f(eO, x»=f(eO,g(x», A, {}), f(eO, g(x»,

(f(eO, x)=x, A, {x - g(x)}), g(x»

according to rule (5), third case.

6 : tes-final : g(x) = g(x) : tes-red(5.L.l.4,L)

B6 = S(g(f(eO, x», 1, n,B4). Bs

= (g(x), (f(eO, x)=x, 1, n), g(f(eO, x)))

• (g(f(eO, x», (g(f(eO, x»=f(eO, g(x)), A, {}), f(eO, g(x)),

(f(eO, x)=x, A, {x - g(x)}), g(x))

using rule (5), first case.

B6 now is a justification for the trivial equation g(x)=g(x), and fulfilles the criteria
from theorem 7 with respect to g(f(eO, x»=f(eO, g(x». By appying this theorem we
arrive at

B = (g(x),(f(e(),x)=x,1,{}),g(f(e(),x»)

• (f(eO, g(x», (f(eO, x)=x, A, {x <- g(x)}), g(x»

= (g(f(eO, x», (f(eO, x)=x, 1, {}), g(x), (f(eO, x)=x, A, {}), f(eO, g(x»)

B now is a valid justification in E for g(f(eO,x»)=f(eO,g(x)).

48

(1’) Hypotheses
hypothesis

(s,(s=t, A, 014) , t)

Using the system JE’ we can generate justifications for all facts in a correct PCL
listing. The following example will demonstrate this:

Ezample: We are presenting a very short PCL listing, accompanied by the justifica-
tions generated using JE ’ .

0 : tes-eqn : f (e () , x) = x : in i t ia l

Bo = (£(e(), x), (£(e(), x)=x, A, { }) , x) is a justification for the fact of step 0 by rule (1).

3 : tes-goal : g (f (e () , x)) = f (e () , g (x)) : hypothesis

Bs = (g(£(e(), x)), (g(£(e(), x))=£(e(), g(x)); A, {}), £(e(), &(x))) using rule (1°).

4 : tes-rule : f (e () , x) -> x : o r i en t (O ,u)

Bq = Bo = (£ (e () ,x), (f(e(), x)=x, A, { }) ,x) according to rule (2), first case.

5 : tes-goal : g (f (e () , x)) = g (x) : t es - red (3 ,R ,4 ,L)

Bs = Bj eo S (f (e () ,& (x)) , A, { x — g (x) } , Ba) .

= (&(£(e(), x)), (&(2(e(), x))=t(e(),&(x)) A, { }) , £(o(), 8(x));
(£(e(), x)=x, A, { x — g(x)}) , &(x))

according to rule (5), third case.

6 : tes-final : g(x) = g(x) : tes-red(5,L.1,4,L)

Be = S(g(£(e(),x)),1,{},Bs) © Bs

= (g(x), (£(e(), x)=x, 1, { }) , g(£(e(), x)))
* (g(£(e(), x)) , (g (f (e() , x))=f (e(), g(x)), A, { }) ; £ (() , &(x)),

(£(e(), x)=x, A, { x — g(x)}), &(x))
using rule (5) , first case.

Be now is a justification for the trivial equation g(x)=g(x), and fulfilles the criteria
from theorem 7 with respect t o g(£(e().x))=£f(e(),g(x)). By appying this theorem we
arrive at

B = (g(x), (£(e(), x)=x,1, {}), 8 (£(e() ,x)))
* (£(a(), 8(x)), (F(e(), x)=%, A, { x — g(x)}) , &(x))

= (g(£(e(), x)), (£(e(), x)=x,1, { }) , g(x), (£(e(), x)=x, A, { }) , £(e(), &(x)))
B now is a valid justification in E for g(£(e(),x))=£(e(), g(x)).

48

The transformation rules in JE can for the most part be viewed as dual (or reverse)
to the operations of orientation, simplification and critical pair building used in an
unfailing completion algorithm. They are not exactly dual to the inference rules for
unfailing completion because they are acting on a more concrete level. However, they
can be easily generalized to match these original rules.

5.3 An algorithm for proof transformation

We will now develop an algorithm for generating equational chains from PCL listings.

To keep the description of this algorithm compact and understandable we need a set

of auxilliary functions. The first two functions employ JE' recursively to generate

justifications for arbitrary PCL steps and expressions.

Definition 18 : The functions JUST and LJUST

Let step be a PCL step and expr be a peL expression.

•	 The function JUST is defined as follows:

JUST(step) = JUST(EXPR(step))

JUST(expr) is calCulated recursively:

Assign JUST(expri) to Bi and eval(expri) to (Si, ti) for all direct ar

guments expri of expr. Use the Bi and (Si, ti) as input and apply the

appropriate rule from JE' to it. Let B be the result of this rule, then

JUST(expr) = B.

•	 The function LJUST is defined quite analogous to JUST. It does, however, employ
lemmata to keep the justifications shorter.

LJUST(step) = { LJUS:"(EXPR(.step)) if TYPE(step) =1= tes-lemma
(s, (s-t, A, (1~d), t) otherwise

with FACT(step) = s~t.

-	 LJUST(expr) is calculated recursively as above:

Assign LJUST(expri) to Bi and eval(expri) to (Si, ti) for all direct ar
guments expri of expr. Use the Bi and (Si, ti) as input and apply the
appropriate rule from JE' to it. Let B be the result of this rule, then
LJUST(expr) = B.

The functions just presented enable us to handle all kinds of generated equations.
However, we still need tools to deal with equations proved destructively. The following
functions help us to make full use of theorem 7.

Definition 19 : The functions UsesHypothesis and SplitChain
The function UsesHypothesis checks a justification for an occurance of a hypothesis
at top level and instanciated with the empty substitution. If such an occurance exists,

49

The transformation rules in JE can for the most part be viewed as dual (or reverse)
to the operations of orientation, simplification and critical pair building used i n an
unfailing completion algorithm. They are not exactly dual to the inference rules for
unfailing completion because they are acting on a more concrete level. However, they
can be easily generalized to match these original rules.

5.3 An algorithm for proof transformation

We will now develop an algorithm for generating equational chains from PCL listings.
To keep the description of this algorithm compact and understandable we need a set
of auxilliary functions. The first two functions employ JE ’ recursively to generate
justifications for arbitrary PCL steps and expressions.

Definition 18 : The functions JUST and LJUST
Let step be a PCL step and expr be a PCL expression.

e The function JUST is defined as follows:

— JUST(step) = JUST(EXPR(step))
— JUST(expr) is calculated recursively:

Assign JUST(expr;) to Bi and eval(expr;) to (s j , t ;) for all direct ar-
guments expr; of expr. Use the Bi and (s j , t i) as input and apply the
appropriate rule from JE ’ to i t . Let B be the result of this rule, then
JUST(expr) = B

e The function LJUST is defined quite analogous to JUST. I t does, however, employ
lemmata to keep the justifications shorter.

LJUST(EXPR(step)) i f TYPE(step) # tes-lemma— LJUST(step) = { ec (s=t , \ ,044) , t) otherwise

with FACT(step) = s~t.

— LJUST(expr) is calculated recursively as above:

Assign LJUST(expr;) to B i and eval(expr;) to (s j , t i) for all direct ar-
guments expr; of expr. Use the B ; and (s j , t i) as input and apply the
appropriate rule from JE ’ to i t . Let B be the result of this rule, then
LJUST(expr) = B.

The functions just presented enable us to handle all kinds of generated equations.
However, we still need tools to deal with equations proved destructively. The following
functions help us to make full use of theorem 7.

Definition 19 : The functions UsesHypothesis and Spl i tChain
The function UsesHypothesis checks a justification for an occurance of a hypothesis
at top level and instanciated with the empty substitution. If such an occurance exists,

49

the function SplitChain will split the justification at this point. More formaly the
following holds:

•	 UsesHypothesis(B, list) = TRUE if and only if FACT(step) is used in B, at top
level and instanciated with the empty substitution, for a step in list with
EXPR(step) = hypothesis. If this is not the case, UsesHypothesis(B,list)
yields FALSE.

•	 Now consider a B and a list with UsesHypothesis(B, list) = TRUE. In this
case B can be written in the form (s,Bl,U,(U=V,A,O'id),v,B2,t), with u=v be
ing the fact of a step with EXPR(step) = hypothesis. Then the function is
defined by SplitChain(B, list) = (u=v,(s,Bl,u),(v,B2,t)). In any other case
SplitChain(B, list) is undefined.

We will now use these auxilliary functions to present a compact algorithm for the
transformation of PCL listings to equational chains. It will generate a list of justified
equations with the following properties:

• All facts of PCL steps with TYPE(step) = tes-lemma will be represented in the
list with their fact.

• All PCL steps with TYPE(step) = tes-final concluding a proof of an original
goal will be represented in the list with the fact of this goal.

• All other peL steps with TYPE(step) = tes-final will be represented in the list
with their own fact.

•	 All justifications appearing in the list will only use earlier equations from the
lists or facts from steps with EXPR(step) = initial. The justifications therefore
are flat justifications with respect to {FACT(step)IEXPR(step) = initial} and
{FACT(step)ITYPE(step) = tes-lemma}.

Given this properties, the generated list represents a proof (in equational cha.ins) for
the original hypotheses and eventua.l new final equations.

50

the function Spli tChain will split the justification at this point. More formaly the
following holds:

e UsesHypothesis(B,l ist) = TRUE i f and only i f FACT(step) is used in B, at top
level and instanciated with the empty subst i tut ion, for a s tep in l i s t wi th
EXPR(step) = hypothesis. If this is not the case, UsesHypothesis(B,list)
yields FALSE.

e Now consider a B and a l i s t with UsesHypothesis(B,list) = TRUE. In this
case B can be written in the form (s, Bı, u, (u=v, A, 0;a),v,Ba, t) , with u=v be-
ing the fact of a step with EXPR(step) = hypothesis. Then the function is
defined by SplitChain(B, l i s t) = (u=v,(s,B ı ,u),(v,B2,t)). In any other case
Spli tChain(B, l ist) is undefined.

We will now use these auxilliary functions to present a compact algorithm for the
transformation of PCL listings to equational chains. It wil l generate a list of justified
equations with the following properties:

e All facts of PCL steps with TYPE(step) = tes-lemma will be represented in the
list with their fact.

e All PCL steps with TYPE(step) = tes-f inal concluding a proof of an original
goal will be represented i n the list with the fact of this goal.

e All other PCL steps with TYPE(step) = tes-f inal will be represented in the list
with their own fact.

e All justifications appearing in the list will only use earlier equations from the
lists or facts from steps with EXPR(step) = in i t ia l . The justifications therefore
are flat justifications with respect to {FACT(step)|EXPR(step)= i n i t i a l } and
{FACT(step)|TYPE(step) = tes-lemma}.

Given this properties, the generated list represents a proof (in equational chains) for
the original hypotheses and eventual new final equations. :

50

Input: in A list of PCL steps.

Output: out A list of justified equations.

Variables step A single PCL step.

u. V Terms.
B1, B2 Justifications.
exprt, expr 2 PCL-expressions.

Functions: NOTEMPTY(list) FALSE, if list is empty, TRUE if
not.

FIRST(list) First entry in list.

EXCEPTFIRST(list) list without its first entry.

APPEND(list.B) List generated by appending B as
the last element to list.

TYPE (step) Type of step (compare 3.2).

EXPR(step) Expression of a PCL step.

TOP(expr) Top symbol of a PCL expression.

SUBEXPRS(expr) The direct subexpressions of expr
that are PCL expressions (as op
posed to place designators or di
rectional arguments).

store := in;
WHILE NOTEMPTY(in)

step := FIRST(in);
in := EXCEPTFIRST(in);
IF TYPE(step) = tes-lemma THEN

out := APPEND(out.(FACT(step).LJUST(step»);
IF TYPE (step) = tes-final THEN

IF TOP(EXPR(step» = instance THEN
A (sub-) goal is being proven by instanciation
(exprt.expr2) := SUBEXPRS(EXPR(step»;
(u=v.Bt. B2) := SplitChain(LJUST(exprt).store);
out := APPEND(out.(u=v. BteLJUST(step)eB2»;

ELSE IF NOT(UsesHypothesis(LJUST(step).store» THEN
A n interesting constructive fact is made a theorem
out := APPEND(out.(FACT(step).LJUST(step»);

ELSE
A goal is being proved by reduction
(u=v.Bt. B2) := SplitChain(LJUST(step).store);
out := APPEND(out.(u=v.BteB2);

ENDIF
ENDIF

ENDWHILE

51

Input: in
Output:
Variables

out
s tep

u , v

B ı ,B2
expr i , expr

Functions: NOTEMPTY(list)

FIRST(1l is t)
EXCEPTFIRST(l ist)
APPEND(1ist,B)

TYPE(step)
EXPR(step)
TOP (expr)
SUBEXPRS (expr)

s tore := i n ;
WHILE NOTEMPTY (i n)

step := F IRST(i n) ;
in : = EXCEPTFIRST(in);

A list of PCL steps.
A list of justified equations.
A single PCL step.
Terms.
Justifications.
PCL-expressions.
FALSE, i f L i s t is empty, TRUE i f
not.
First entry in list.
l i s t without i ts first entry.
List generated by appending B as
the last element to l i s t .
Type of step (compare 3.2).
Expression.of a PCL step.
Top symbol of a PCL expression.
The direct subexpressions of expr
that are PCL expressions (as op-
posed to place designators or di-
rectional arguments).

I F TYPE(step) = tes-lemma THEN
out : = APPEND (ou t , (FACT (s tep) ,LJUST(step))) ;

I F TYPE(step) = tes- f ina l THEN
IF TOP(EXPR(step)) = instance THEN

A (sub-) goal is being proven by instanciation
(expry ,exprs)
(u=v ,B ; , B32)
out

:= SUBEXPRS (EXPR(step));
: = Sp l i tCha in(LJUST(expr ;) ,s tore) ;

: = APPEND (ou t , (u=v, B ; e LJUST(step)eB3));
ELSE IF NOT(UsesHypothesis(LJUST(step) , s to re)) THEN

An interesting constructive fact is made a theorem
out

ELSE
: = APPEND (ou t , (FACT (s tep) ,LJUST(step))) ;

A goal is being proved by reduction
(u=v,B; , Ba)
out

ENDIF
ENDIF

ENDWHILE

:= Sp l i tCha in (LJUST(s tep) , s to re) ;
: = APPEND(out, (u=v,B; Bj);

51

Appendix B provides two examples for proofs transfomed using our implementation of
the algori tm above.

52

Appendix B provides two examples for proofs transfomed using our implementation of
the algoritm above. ’

52

6 Dealing with cl distributed proof system

In analyzing completion based proofs we have developed tools to deal with a verbose
listing of the proof steps. The language used to describe the proof is PCL, which has
been introduced in [Sch93]. It represents the proof in a generic format independent of
the internals of a specific prover. Obtaining this listing from a sequential (as opposed
to parallel) program is rather straightforward, but there are a number of problems to
consider when dealing with a parallel proof system.

6.1 Measuring without disturbing

Given todays computer systems, input and output operations are usually very time
expensive compared to computation and symbol manipulation. Generating a complete
listing of the inference steps during a proof session does therefore significantly increase
the time needed to find the proof. This does not matter in sequential provers, which
usually show a deterministic behaviour. Given a specific input they proceed always
through the same states and eventually arrive at the same proof. The process is
independent of outside events and of the elapsed time. '

This is not true for parallel programs, which usually rely heavily on cooperation and
whose behaviour is largely influenced by the timing of both the complete system and
the single components. Our experiments have shown that producing a complete PCL
listing during the generation of a proof significantly alters the behaviour of the proof
system. In particular, results found without extensive documentation of the proof run
are not directly reproducible under the altered circumstances.

However, generating full documentation of every proof run is not a desirable option.
Using the prover without the protocol is usually much more convenient, especially while
searching for a new proof. The significant advantage in speed does allow deeper searches
within the same time limits. The protocol is only needed when a already existing proof
is to be analyzed in detail, or when the proof has to be presented to humans. We
therefore chose another way to generate the data necessary for this analysis.

During the initial phase of the pro()f generation no verbose listing is written. Instead
we use a very short, specialized protocol written only at some crucial points in the
process. For the teamwork method these points are the team meetings, during which
the different processes exchange their information. The use of this protocol allows us
to reproduce the proof without any further dependency on the elapsed time. We do no
longer use the elapsed time but a comparison with the protocol data as a measure for
the progress of the proof process. During this time independent reproduction a ve':"bose
listing in PCL is generated, which can then be used for further analysis.

Note that while this concept can, be implemented very easily fo,r the teamwork method
it is not viable for most other approaches to parallel processing. It works only with
algorithms using short periods of intensive communication and longer periods of se
quential and deterministic work not interrupted by interprocess communication. This
property is inherent in the teamwork method but not for example in the concepts

53

6 Dealing with a distributed proof system

In analyzing completion based proofs we have developed tools to deal with a verbose
listing of the proof steps. The language used to describe the proof is PCL, which has
been introduced in [Sch93]. I t represents the proof in a generic format independent of
the internals of a specific prover. Obtaining this listing from a sequential (as opposed
to parallel) program is rather straightforward, but there are a number of problems to
consider when dealing with a parallel proof system.

6.1 Measuring without disturbing

Given todays computer systems, input and output operations are usually very time
expensive compared to computation and symbol manipulation. Generating a complete
listing of the inference steps during a proof session does therefore significantly increase
the time needed to find the proof. This does not matter in sequential provers, which
usually show a deterministic behaviour. Given a specific input they proceed always
through the same states and eventually arrive at the same proof. The process is
independent of outside events and of the elapsed time.
This is not true for parallel programs, which usually rely heavily on cooperation and
whose behaviour is largely influenced by the timing of both the complete system and
the single components. Our experiments have shown that producing a complete PCL-
listing during the generation of a proof significantly alters the behaviour of the proof
system. In particular, results found without extensive documentation of the proof run
are not directly reproducible under the altered circumstances.

However, generating full documentation of every proof run is not a desirable option.
Using the prover without the protocol is usually much more convenient, especially while
searching for a new proof. The significant advantage in speed does allow deeper searches
within the same time limits. The protocol is only needed when a already existing proof
is to be analyzed in detail, or when the proof has to be presented to humans. We
therefore chose another way to generate the data necessary for this analysis.
During the initial phase of the proof generation no verbose listing is written. Instead
we use a very short, specialized protocol written only at some crucial points in the
process. For the teamwork method these points are the team meetings, during which
the different processes exchange their information. The use of this protocol allows us
to reproduce the proof without any further dependency on the elapsed time. We do no
longer use the elapsed time but a comparison with the protocol data as a measure for
the progress of the proof process. During this t ime independent reproduction a verbose
listing in PCL is generated, which can then be used for further analysis.
Note that while this concept can.be implemented very easily for the teamwork method
i t is not viable for most other approaches to parallel processing. It works only with
algorithms using short periods of intensive communication and longer periods of se-
quential and deterministic work not interrupted by interprocess communication. This
property is inherent in the teamwork method but not for example i n the concepts

53

presented in [BH92].

6.2 Sequentializing parallel proofs

Humans are only capable of following one thread at a time. To prepare proofs in a
form suitable for human reading the proof has to be a single chain of logical arguments..
A conventional proof system generates such a chain automatically, but a parallel proof
system without shared memory can (and will) analyze more than one thread at a time.
These different threads have to be integrated into a single proof chain, preferably in a
way that keeps the context of each proof step as intact as possible.

Additionally, in a complete recording of the reasoning process the facts have to be
labeled so that a justification for a new fact can point at the facts it has been derived
from. When integrating the different threads these labels have to be unique to avoid
problems with ambiguous references.

Another, more practical, consideration is that we deal with very large amounts of data.
For a detailed analysis of the proof we use a protocol which contains only the facts
actually used in generating the final proof, not the ~'~"ually much bigger) set of unused
facts. This extraction of the important facts can be done rather efficiently because we
use a total ordering on the labels and demand that labels in a protocol are used in
ascending order only. We want to maintain this property for protocols generated from
a parallel proof session.

For the teamwork method the different threads are generated by the different experts.
During the working phases each expert is working on a single thread. At the team
meetings these different threads are integrated into a common knowledge base. This
base is then used as the single starting point for the threads of the next working phase.
An important feature of this approach is that an inference process can only access
informations from his own thread and from the common data base generated during
the last team meeting.

peL represents the inference processes as a list of steps labeled by an identifier and
containing the result of a single inference as well as a description of the inference and
the labels of the parent steps. The identifier consists of a list of arbitrary length, con
taining positive integers. The ordering defined on this identifiers is the lexicographical
extension of the standard ordering on the natural numbers. This allows us to split the
set of all possible identifiers into a hierarchical structure of infinitely many different
name spaces. If carefully chosen this name spaces can be ordered in a way that the or
dering on the name spaces is total and compatible with the ordering on the identifiers.
In this case every two name spaces can be compared and identifiers from a "greater"
name space are always larger than identifiers from a "smaller" name space.

To get more specific we use the first n elements in the list that constitutes an iden
tifier as the criterion to distinguish different name spaces. For protocols of teamwork
sessions the identifiers are composed of at least three integers. The first one designates
the working phase or team meeting the inference happened in, the second element dis
tinguishes between the different experts and the rest of the identifier is used to label

54

presented i n [BH92].

6.2 Sequentializing parallel proofs

Humans are only capable of following one thread at a time. To prepare proofs in a
form suitable for human reading the proof has to be a single chain of logical arguments.
A conventional proof system generates such a chain automatically, but a parallel proof
system without shared memory can (and will) analyze more than one thread at a time.
These different threads have to be integrated into a single proof chain, preferably in a
way that keeps the context of each proof step as intact as possible.

Additionally, in a complete recording of the reasoning process the facts have to be
labeled so that a justification for a new fact can point at the facts i t has been derived
from. When integrating the different threads these labels have to be unique to avoid
problems with ambiguous references.
Another, more practical, consideration is that we deal with very large amounts of data.
For a detailed analysis of the proof we use a protocol which contains only the facts
actually used in generating the final proof, not the /:sually much bigger) set of unused
facts. This extraction of the important facts can be done rather efficiently because we
use a total ordering on the labels and demand that labels in a protocol are used in
ascending order only. We want to maintain this property for protocols generated from
a parallel proof session.
For the teamwork method the different threads are generated by the different experts.
During the working phases each expert is working on a single thread. At the team
meetings these different threads are integrated into a common knowledge base. This
base is then used as the single starting point for the threads of the next working phase.
An important feature of this approach is that an inference process can only access
informations from his own thread and from the common data base generated during
the last team meeting.
PCL represents the inference processes as a list of steps labeled by an identifier and
containing the result of a single inference as well as a description of the inference and
the labels of the parent steps. The identifier consists of a list of arbitrary length, con-
taining positive integers. The ordering defined on this identifiers is the lexicographical
extension of the standard ordering on the natural numbers. This allows us to split the
set of all possible identifiers into a hierarchical structure of infinitely many different
name spaces. If carefully chosen this name spaces can be ordered in a way that the or-
dering on the name spaces is total and compatible with the ordering on the identifiers.
In this case every two name spaces can be compared and identifiers from a "greater”
name space are always larger than identifiers from a ”smaller” name space.

To get more specific we use the first n elements in the list that constitutes an iden-
tifier as the criterion to distinguish different name spaces. For protocols of teamwork
sessions the identifiers are composed of at least three integers. The first one designates
the working phase or team meeting the inference happened in, the second element dis-
tinguishes between the different experts and the rest of the identifier is used to label

54

the different steps within a single thread.

The rules for identifiers and name spaces can be summarized as follows: Identifiers
consist of at least 3 integers, they are of the form cycle.expert.cpunt. The first integer,
cycle, numbers (in ascending order) the team meetings and working phases. Identifiers
from team meeting n start with cycle = 2 x n, identifiers from working phase n start
with cycle = (2 x n) + 1. The second element, expert, is the number of the processor
running the expert that generated the proof step. The rest of the identifier, count,
is usually just another simple integer which numbers all the proof steps done by that
particular expert. In the general case it can be an arbitrary list that distinguishes
among the proof steps done by a single expert. Figure 4 shows this arrangement for a
simple example. .

This concept does achieve most of the goals set above. By simply concatenating the
protocols of the different experts in a single working phase a protocol for that working
phase can be generated. It exhibits three important properties:

•	 The identifiers of the proof steps are used in an ascending order.

•	 Every proof step references only steps with smaller identifiers.

•	 As the entire thread is kept in one part the proof steps usually do not loose the
context they were generated in.

These protocols can then be concatenated with the protocols generated from the team
meetings in the order indicated by there respective name spaces. The resulting list con
stitutes a valid sequential PCL protocol of the complete proof session. This shares most
of the above characteristics and additionally (if the experts work correctly) contains
every step referenced in an inference.

6.2.1 Eliminating redundancies

A second, minor problem with the distributed proof system is that some facts might be
found independently by more then one expert. This is not a problem for the validity
of the generated proof, however, it is not a feature desirable in proofs presented to
humans. The redundant data does not add any new information but merely confuses
the reader.

We cope with this problem by eliminating these steps, using two different approaches.
In a first step we take the complete protocol and eliminate all steps proved by a
simple reference to a previous step. This is achieved by replacing all references to the
redundant step with references to the prior step and by (possibly) changing the previous
steps type to reflect the additional information that might have been incorporated
into the redundant step (the redundant step might have been of type 'tes-final or
tes-intermed, while the previous step might have been an ordinary result).

It should be noted that this first handling of the protocol is not primarily done for the
elimination of redundancies, but to move the more detailed types to the first occurence

55

the different steps within a single thread.
The rules for identifiers and name spaces can be summarized as follows: Identifiers
consist of at least 3 integers, they are of the form cycle.expert.count. The first integer,
cycle, numbers (in ascending order) the team meetings and working phases. Identifiers
from team meeting n start with cycle = 2 x n , identifiers from working phase n start
with cycle = (2 x n) + 1. The second element, expert, is the number of the processor
running the expert that generated the proof step. The rest of the identifier, count,
is usually just another simple integer which numbers all the proof steps done by that
particular expert. In the general case i t can be an arbitrary list that distinguishes
among the proof steps done by a single expert. Figure 4 shows this arrangement for a
simple example.

This concept does achieve most of the goals set above. By simply concatenating the
protocols of the different experts in a single working phase a protocol for that working
phase can be generated. It exhibits three important properties:

e The identifiers of the proof steps are used in an ascending order.

e Every proof step references only steps with smaller identifiers.

e As the entire thread is kept i n one part the proof steps usually do not loose the
context they were generated in.

These protocols can then be concatenated with the protocols generated from the team
meetings in the order indicated by there respective name spaces. The resulting l ist con-
stitutes a valid sequential PCL protocol of the complete proof session. This shares most
of the above characteristics and additionally (if the experts work correctly) contains
every step referenced i n an inference.

6.2.1 Eliminating redundancies

A second, minor problem wi th the distributed proof system is that some facts might be
found independently by more then one expert. This is not a problem for the validity
of the generated proof, however, i t is not a feature desirable in proofs presented to
humans. The redundant data does not add any new information but merely confuses
the reader.

We cope with this problem by eliminating these steps, using two different approaches.
In a first step we take the complete protocol and eliminate all steps proved by a
simple reference to a previous step. This is achieved by replacing all references to the
redundant step with references to the prior step and by (possibly) changing the previous
steps type to reflect the additional information that might have been incorporated
into the redundant step (the redundant step might have been of type tes- f ina l or
tes-intermed, while the previous step might have been an ordinary result).
I t should be noted that this first handling of the protocol is not primarily done for the
elimination of redundancies, but to move the more detailed types to the first occurence

35

Team meeting 0 (Initialization)
Name space is O.O.count Expert 0

Expert 1

Expert 1

Expert 1

Expert 2

: Expert 2

Expert 2

Expert 0

: Expert 0

Expert 0

Working phase 1
Name space is 1.x.count

Team meeting 1
Name space is 2.1.count

Working phase 2
ame space is 3.x.count

Expert 2 in working phase 2

Name space is 3.2.count

Figure 4: Team work and name spaces

of a fact, thus ensuring that this information is not lost during the extraction phase.
It does, however, eliminate a couple of redundant steps, too.

The second elimination phase does check all steps with compatible types for identical
facts. If two steps with identical facts (and compatible types) are found the listing

56

Expert 0 Name space ts 0.0.count

Working phase 1
Expert 1 Expert 0 Expert 2 Name space is 1.z.count

Team meeting 1
Name space is 2.1.count

<p

Expert 1

Working phase 2
Expert 1 Expert 0 = 2 ame space is 3.z.count

Expert 2 in working phase 2

Name space is 3.2.count

Figure 4: Team work and name spaces

of a fact, thus ensuring that this information is not lost during the extraction phase.
I t does, however, eliminate a couple of redundant steps, too.
The second elimination phase does check all steps with compatible types for identical
facts. If two steps with identical facts (and compatible types) are found the listing

56

is treated as mentioned above: All references to the second step are changed into
references to the first step. This operation is usually performed after a first extraction,
because the operation tends to be quite costly (in terms of CPU time) for large listings.
A final extraction then removes all steps that became redundant during this phase.

6.3 Handling large amounts of data

Even protocols of sequential proofs can become very large, as section 3.3 demonstrated.
This leads to serious practical problems in handling the files. For a distributed proof
system these problems are further aggravated. First, the same protocol will grow about
20 %, because of the necessarily more complex identifier structure reflecting the name
spaces introduced in the previous section.

The real increase in the amount of data is the result of multiple processes generating
inferences. Given the same amount of time a distributed system with n processors will
generate approximately n times the inferences of a system with one processor. As PCL
depends on a complete protocol of all inference steps the size of the PCL listings will
reflect this fact.

We have not yet encountered a situation our system could not master. This is, however,
a result of the success of the teamwork method, which generated much shorter proofs.
We expect PCL protocols for more difficult problem to quickly become unmanageable.

To handle this problem we can again use a feature of TEAMWORK. As has been
stated in section 2.3 only a few results of inferior experts are selected at the team
meetings, the other results are dropped from the data base. We can transfer this
process of forgetting to the PCL layer by interleaving proving phases and extraction.

To be more specific, the exceptional results handed to the master of the team are
marked in the PCL protocol by type identifiers (tes-intermed, tes-intermedgoal
and crit-intermedgoal, compare section 3.1) expressing their special status.

The PCL listings produced by the inferior experts are then extracted using the algo
rithm described in section 3.3, treating the intermediate results as finals. All facts
needed for the generation of the intermediate results are preserved, all other generated
facts are discarded. As these other results cannot be referenced by the prover any
more, we will still get a valid PCL listing describing the proof.

The final PCL listing is usually much smaller this way, and can be handled quite easily
in most cases. However, there is a price to pay. If this intermediate extraction is used
no complete listing of all inferences is generated. As we are interested much more in
the steps necessary for the proof we think this is acceptable.

57

is treated as mentioned above: All references to the second step are changed into
references to the first step. This operation is usually performed after a first extraction,
because the operation tends to be quite costly (in terms of CPU time) for large listings.
A final extraction then removes all steps that became redundant during this phase. '

6.3 Handling large amounts o f data

Even protocols of sequential proofs can become very large, as section 3.3 demonstrated.
This leads to serious practical problems in handling the files. For a distributed proof
system these problems are further aggravated. First, the same protocol will grow about
20 %, because of the necessarily more complex identifier structure reflecting the name
spaces introduced in the previous section.

The real increase in the amount of data is the result of multiple processes generating
inferences. Given the same amount of time a distributed system with n processors will
generate approximately n times the inferences of a system with one processor. As PCL
depends on a complete protocol of all inference steps the size of the PCL listings wil l
reflect this fact.
We have not yet encountered a situation our system could not master. This is, however,
a result of the success of the teamwork method, which generated much shorter proofs.
We expect PCL protocols for more difficult problem to quickly become unmanageable.

To handle this problem we can again use a feature of TEAMWORK. As has been
stated in section 2.3 only a few results of inferior experts are selected at the team
meetings, the other results are dropped from the data base. We can transfer this
process of forgetting to the PCL layer by interleaving proving phases and extraction.

To be more specific, the exceptional results handed to the master of the team are
marked i n the PCL protocol by type identifiers (tes-intermed, tes-intermedgoal
and cri t- intermedgoal, compare section 3.1) expressing their special status.
The PCL listings produced by the inferior experts are then extracted using the algo-
rithm described in section 3.3, treating the intermediate results as finals. All facts
needed for the generation of the intermediate results are preserved, all other generated
facts are discarded. As these other results cannot be referenced by the prover any
more, we will st i l l get a valid PCL listing describing the proof.
The final PCL listing is usually much smaller this way, and can be handled quite easily
in most cases. However, there is a price to pay. If this intermediate extraction is used
no complete listing of all inferences is generated. As we are interested much more in
the steps necessary for the proof we think this is acceptable.

57

7 Benefits from going distributed

Using a distributed, TEAMWORK based proof system has a number of advantages
in comparison to a sequential prover, ranging from the obvious advantage of increased
speed to some more subtle aspects in proof analysis and presentation~ This chapter
will explain the benefits gained.

7.1 Increased power of the proof system

Of course the original reason for choosing a distributed system are the gains in speed
and power. These reasons still hold. The increase in the provers capabilities allow
access to a broader class of problems, including more difficult and general examples.

Our equational prover, the DISCOUNT system, achieves this goal of more power in
an admirable way. It has often demonstrated superior strategies when running in dis
tributed mode. This manifests in super-linear speedups for many problems (see [AD93]
for a detailed discussion of some examples). Proof sessions occupying a single machine
for hours can now often be solved in a couple of minutes, using a cluster of worksta
tions. We also found a couple of problems we could prove using the distJ;ibuted mode
of DISCOUNT, but not with any single strategy in sequential mode. One example is
shown in table 2.

Using the methods detailed in section 6 we were able to maintain the increased power
even for proof processes documented in a way that allows a exact analysis of the proof.
Additionally, as we can now reproduce proof runs, there is no need to generate a full
protocol of each proof process. Only successful proof runs need to be reconstructed,
yielding a complete protocol only at reproduction time.

7.2 Shorter proof protocols

The superior behaviour of DISCOUNT in distributed mode also shows in the better
ratio of necessary inferences to executed inferences. The prover does behave more goal
oriented, a larger part of his work does actually further the proof; Many important
results are generated more directly and earlier, because the different experts arrive at
important results in their part of the search space. These results are usually recognized
by the referees and integrated into the prover's system of rules and equations, thus
forming a strong reasoning base for the prover quite early.

The total number of steps in an extracted listing is roughly the same for the distributed
and sequential system. However, due to the improved ratio of necessary to executed
steps we generally get much smaller complete protocols for the same problem. For large
examples the proof listing typically shrinks by at least 50 %, quite often the reduction
is even more dramatic. These protocols are easier to handle than the larger, monolithic
protocols of sequential proofs.

To show this trend we have included data from distributed proofs for some of the more

58

7 Benefits from going distributed

Using a distributed, TEAMWORK based proof system has a number of advantages
in comparison to a sequential prover, ranging from the obvious advantage of increased
speed to some more subtle aspects i n proof analysis and presentation. This chapter
wil l explain the benefits gained.

7 .1 Increased power o f the proof system

Of course the original reason for choosing a distributed system are the gains in speed
and power. These reasons still hold. The increase in the provers capabilities allow
access to a broader class of problems, including more difficult and general examples.

Our equational prover, the DISCOUNT system, achieves this goal of more power in
an admirable way. I t has often demonstrated superior strategies when running in dis-
tributed mode. This manifests in super-linear speedups for many problems (see [AD93]
for a detailed discussion of some examples). Proof sessions occupying a single machine
for hours can now often be solved i n a couple of minutes, using a cluster o f worksta-
tions. We also found a couple of problems we could prove using the distributed mode
of DISCOUNT, but not with any single strategy in sequential mode. One example is
shown in table 2.

Using the methods detailed in section 6 we were able to maintain the increased power
even for proof processes documented in a way that allows a exact analysis of the proof. -
Additionally, as we can now reproduce proof runs, there is no need to generate a full
protocol of each proof process. Only successful proof runs need to be reconstructed,
yielding a complete protocol only at reproduction time.

7.2 Shorter proof protocols

The superior behaviour of DISCOUNT in distributed mode also shows in the better
ratio of necessary inferences to executed inferences. The prover does behave more goal
oriented, a larger part of his work does actually further the proof. Many important
results are generated more directly and earlier, because the different experts arrive at
important results in their part of the search space. These results are usually recognized
by the referees and integrated into the prover’s system of rules and equations, thus
forming a strong reasoning base for the prover quite early.
The total number of steps in an extracted listing is roughly the same for the distributed
and sequential system. However, due to the improved ratio of necessary to executed
steps we generally get much smaller complete protocols for the same problem. For large
examples the proof listing typically shrinks by at least 50 %, quite often the reduction
is even more dramatic. These protocols are easier to handle than the larger, monolithic
protocols of sequential proofs.

To show this trend we have included data from distributed proofs for some of the more

58

difficult examples3 from Table 1 to demonstrate the improvement. Table 2 shows the
data for proofs generated in distributed mode.

7.3 Easier handling of extreme protocols

The faster and more efficient proofs possible with the TEAMWORK method usually
result in much smaller protocols. However, for more difficult examples, especially for
examples challenging for even the distributed system, the protocols can still become
overwhelmingly large.

However, by transferring the process of "forgetting" introduced by TEAMWORK to
the level of proof analysis we can alleviate this task. Section 6.3 describes how we can
use this feature to ease the handling of large protocols to a point where even the most
complex examples we encountered so far can be analyzed quite casually.

7.4 Improved lemma recognition

Most of the advantages listed so far are only visible to the operator of the proof system,
not to the recipient of the proof. The important advantage of TEAMWORK with
respect to proof presentation, however, is the use of the referees in lemma detection.
The outstanding results selected by the referees prior to the team meetings make very
good and quite often superior lemmata.

Table 3 shows the percentage of arbitrary steps necessary for the final proof and, in
contrast, the percentage of steps selected by the· referees as important intermediate
results used in this proof. The chosen examples come from a wide variety of domains,
but in all cases the selected results are much more likely to be needed for the final proof.
Averaged over all example the probability for a selected result to be of use for the proof
is more then 160 times higher then for an arbitrary step. In addition to demonstrating
the quality of DISCOUNT's referees this result also is a strong indication that the
intermediate results play a special role in the proof process and thus are probably
suitable as lemmata.

The referees select these results because of their good performance during the comple
tion. Thus a result is chosen on its importance for the complete equational domain.
The post mortem criteria from section 4, on the other hand, choose lemmata purely
by judging their relevance to the proof at hand. Especially, the more powerful of these
~riteria use quite complex algorithms than cannot easily be applied to the complete
listings.

We can, however, use the suggested intermediate results of the experts to generate lem
mata with a more global perspective. While a small number of these results are not
suitable as lemmata at all (usually because they represent very simple consequences
of the axioms), a larger part does indeed make superior lemmata. Taking the refer

3We did not include the easier examples because they can be solved very quickly by the sequential
plOver - generally faster than starting the distributed system over the network.

59

difficult examples® from Table 1 to demonstrate the improvement. Table 2 shows the
data for proofs generated i n distributed mode.

7.3 Easier handling of extreme protocols

The faster and more efficient proofs possible with the TEAMWORK method usually
result in much smaller protocols. However, for more difficult examples, especially for
examples challenging for even the distributed system, the protocols can still become
overwhelmingly large.
However, by transferring the process of “forgetting” introduced by TEAMWORK to
the level of proof analysis we can alleviate this task. Section 6.3 describes how we can
use this feature to ease the handling of large protocols to a point where even the most
complex examples we encountered so far can be analyzed quite casually.

7.4 Improved lemma recognition

Most of the advantages listed so far are only visible to the operator of the proof system,
not to the recipient of the proof. The important advantage of TEAMWORK with
respect to proof presentation, however, is the use of the referees i n lemma detection.
The outstanding results selected by the referees prior to the team meetings make very
good and quite often superior lemmata.
Table 3 shows the percentage of arbitrary steps necessary for the final proof and, i n
contrast, the percentage of steps selected by the referees as important intermediate
results used in this proof. The chosen examples come from a wide variety of domains,
but in all cases the selected results are much more likely to be needed for the final proof.
Averaged over all example the probability for a selected result to be of use for the proof
is more then 160 times higher then for an arbitrary step. In addition to demonstrating
the quality of DISCOUNT’s referees this result also is a strong indication that the
intermediate results play a special role in the proof process and thus are probably
suitable as lemmata.
The referees select these results because of their good performance during the comple-
tion. Thus a result is chosen on its importance for the complete equational domain.
The post mortem criteria from section 4, on the other hand, choose lemmata purely
by judging their relevance to the proof at hand. Especially, the more powerful of these
criteria use quite complex algorithms than cannot easily be applied to the complete
listings.

We can, however, use the suggested intermediate results of the experts to generate lem-
mata with a more global perspective. While a small number of these results are not
suitable as lemmata at all (usually because they represent very simple consequences
of the ax ioms), a larger part does indeed make superior lemmata. Taking the refer-

3We did not include the easier examples because they can be solved very quickly by the sequential
prover — generally faster than starting the distributed system over the network.

59

I Example I Complete I Extracted I Comment

BoolAssoc 95788 117 The disjunctive operator (and) In a
Boolean algebra is associative. See ap
pendix BA.
Calculations in cyclic group. Presented
in [Pi92].
Proof of one of DeMorgan's laws in
an arbitrary boolean algebra. See ap
pendix BA.
Derivation of the associativity axiom from
a single equation axiomatization of a
group. See [LW92].
Derive the first of Lucaciewicz's axioms
for propositional calculus from Frege's ax
iomatization of this calculus. See [Ta56].

Cooperation 6879 58

DeMorgan 181336 159

GT7-3 9638 214

Luka1 139178 22

Luka2 47898 57 Derive the second of Lucaciewicz's axioms
(see above).
Derive the third of Lucaciewicz's axioms
(see above).
An example using a ternary Boolean al
gebra - see [L082].
In a ring with x3 = x the multiplicative
operation is Abelian. This was presented
as a challenging example in [L082]. See
also appendix B.2.
Completion of a finite group. See [Si92].

Luka3 180278 42

Lusk5 24738 48

Lusk6 144099 227

Sims2 283473 936
Lattice1 324019 73 An example from the field of lattice or

dered groups. See appendix BA
Another problem from the domain of lat
tice ordered groups. See appendix BA.
Show that each element of a lattice or
dered group can be expressed as the prod
uct of it's positive and it's negative part.
See appendix B.3.
Completion of a large cyclic group. See
appendix BA.

Lattice2 28124 103

Lattice3 63860 133

Z22 25508 646

Table 2: Necessary and executed inferences in protocols of distributed proofs

Remark: For examples present in this table but not in table 1 there does not at the moment exist
a sequential proof with DISCOUNT. For BoolAssoc, as an example, the sequential prover did
879594 inferences (generating a protocol of 73 Megabytes) before terminating unsuccessfully
due to lack of memory.

60

| Example | Complete | Extracted | Comment HB
BoolAssoc 95788 117 The disjunctive operator (and) i n a

Boolean algebra is associative. See ap-
pendix B.4.

Cooperation 6879 58 Calculations in cyclic group. Presented
in [Pi92].

DeMorgan 181336 159 Proof of one of DeMorgan’s laws in
an arbitrary boolean algebra. See ap-
pendix B.4.

GT7-3 9638 214 Derivation of the associativity axiom from
a single equation axiomatization of a
group. See [LW92].

Lukal 139178 22 Derive the first of Lucaciewicz’s axioms
for propositional calculus from Frege's ax-
jiomatization of this calculus. See [Ta56].

Luka2 47898 57 Derive the second of Lucaciewicz’s axioms
(see above). |

Luka3 180278 42 Derive the third of Lucaciewicz’s axioms
(see above).

Lusk5 24738 48 An example using a ternary Boolean al-
gebra - see [LO82].

Lusk6 144099 227 In a ring with z* = the multiplicative
operation is Abelian. This was presented
as a challenging example in [LO82]. See
also appendix B.2.

Sims2 283473 936 Completion of a finite group. See [S192].
Latticel 324019 73 An example from the field of lattice or-

dered groups. See appendix B.4
Lattice2 28124 103 Another problem from the domain of lat-

tice ordered groups. See appendix B.4.
Lattice3 63860 133 Show that each element of a lattice or-

dered group can be expressed as the prod-
uct of i t ’ s positive and i t ’ s negative part.
See appendix B.3.

722 25508 646 Completion of a large cyclic group. See
| appendix B.4.

Table 2: Necessary and executed inferences in protocols of distributed proofs
Remark: For examples present in this table but not i n table 1 there does not at the moment exist

a sequential proof w i t h DISCOUNT. For BoolAssoc, as an example, the sequential prover d i d
879594 inferences (generating a protocol of 73 Megabytes) before terminating unsuccessfully
due to lack of memory.

60

Example I Protocol size I Arbitrary facts I Referees choice II

BoolAssoc 95788 0.12 % 43.5 %
Cooperation 6879 0.8 % 40.0 %
DeMorgan 181336 0.08 % 20.9 %
GT7-3 9638 2.2 % 83.3 %
Lukal 139178 0.015 % 20.0 %
Luka2 47898 0.01 % 33.3 %
Luka3 180278 0.023 % 23.1 %
Lusk5 24738 0.19 % 50.0 %
Lusk6 144099 0.16 % 20.5 %
Sims2 283473 0.33 % 50.0 %
Latticel 324019 0.01 % 8.2 %
Lattice2 28124 0.37 % 50.0 %
Lattice3 63860 0.2 % 15.1 %
Z22 25508 2.5 % 75.1 %

I WeIghted Sum 1__l_58_2_62_7--J.1 0_._18_%_o1 2_9._6 _%_1

Table 3: Percentage of arbitrary and selected results needed in the found proof

ees suggestions into account does also emulate human behaviour quite well, because
humans often base their lemma selection on the global performance of a fact in the
respective field, too.

We apply this criterion by simply marking the selected results in the proof protocol.
This information can be used as a constant element in a weighted decision, as described
in section 4.10, or we can use these results (if they conform to the most basic require
ments for lemmata) as the basic building blocks and generate (using other criteria)
more lemmata to fill in this skeleton. The results are quite promising, especially if
more than one example from the same domain are to be presented. For an example
see the proof in appendix B.3.

61

| Example [| Protocol size| Arbitrary facts| Referees choice|
BoolAssoc 95788 0.12 % 43.5 %
Cooperation 6879 08% 40.0 %
DeMorgan 181336 0.08 % 20.9 %

GT7-3 9638 2 .2% 83.3 %
Lukal 139178 0.015 % 20.0 %
Luka2 47898 0.01 % 33.3%
Luka3 180278 0.023 % 23.1 %
Lusk5 24738 0.19 % 50.0 %
Lusk6 144099 0.16 % 20.5 %
Sims2 283473 0.33 % 50.0 %
Latt icel 324019 0.01 % 8.2 %
Lattice2 28124 0.37 % 50.0 %
Lattice3 63860 0.2 % 15.1 %
722 25508 2.5 % 75.1 %

|Weighted Sum | 1582627| 0.18% | 29.6 % |

Table 3: Percentage of arbitrary and selected results needed in the found proof

ees suggestions into account does also emulate human behaviour quite well, because
humans often base their lemma selection on the global performance of a fact in the
respective field, too.

We apply this criterion by simply marking the selected results in the proof protocol.
This information can be used as a constant element in a weighted decision, as described
in section 4.10, or we can use these results (i f they conform to the most basic require-
ments for lemmata) as the basic building blocks and generate (using other criteria)
more lemmata to fill i n this skeleton. The results are quite promising, especially i f
more than one example from the same domain are to be presented. For an example
see the proof i n appendix B.3.

61

8

Problem description

1

evant steps

Proof System

Proof listing

Proof Extraction

Listing of the rei

Structuring Phase

Proof listing str

Transformation

~ Proof in a form

uctured by lemmata

suitable for humans

Figure 5: A concept for a system generating, analyzing and transforming proofs

Implemented Programs

To achieve our goals with respect to proof analysis and representation we implemented
a number of programs. They have first been described in [Sch93] and have been ex
tended to cover some special situations arising with the use of the distributed version
of the DISCOUNT system. Additional changes have been made to the proof system
itself. This chapter deals with both the extensions to DISCOUNT and the programs
dealing with PCL listings. For more information about DISCOUNT see [DP92], for
a more extensive description of the programs for proof analysis and transformation
consult [Sch93].

Figure 5 shows the basic framework for a system generating and transforming proofs
using the concepts described in chapters 3 to 5. A proof is generated from a problem
description, yielding a listing of all inference steps. This listing is analyzed and the
relevant steps are extracted. Then the proof is structured and finally transformed to a
\calculus suitable for human consumption.

iHowever, figure 5 is quite abstract and does not take into account the special problems
\arising with the use of distributed systems. Taking into account the results from
chapter 6 we arrive at the structure depicted in figure 6.

62

| Problem description

Proof System

| Proof listing

Proof Extraction

List ing of the relevant steps

Structuring Phase

Proof l ist ing structured by lemmata
4

Transformation

| Proof i n a form sui table for humans

Figure 5: A concept for a system generating, analyzing and transforming proofs

8 Implemented Programs

To achieve our goals with respect t o proof analysis and representation we implemented
a number of programs. They have first been described in [Sch93] and have been ex-
tended to cover some special situations arising wi th the use of the distributed version
of the DISCOUNT system. Additional changes have been made to the proof system
itself. This chapter deals wi th both the extensions to DISCOUNT and the programs
dealing with PCL listings. For more information abaut DISCOUNT see [DP92], for
a more extensive description of the programs for proof analysis and transformation
consult [Sch93].
Figure 5 shows the basic framework for a system generating and transforming proofs
using the concepts described i n chapters 3 to 5. A proof is generated from a problem
description, yielding a listing of all inference steps. This listing is analyzed and the
relevant steps are extracted. Then the proof is structured and finally transformed to a
calculus suitable for human consumption.
However, figure 5 is quite abstract and does not take into account the special problems
arising with the use of distributed systems. Taking into account the results from
chapter 6 we arrive at the structure depicted i n figure 6.

62

! Problem descr iption

Proof System

Short protoco

Proof reproduction
r---------------,
I I

I Optional extraction
,

, I , (interleaved) I

I I
L.. _______________ .J

Proof listing

Proof Extraction

Listing of the relevant steps

Structuring Phase

Proof listing s tructured by lemmata

.Transformation

~ Proof in a for m suitable for humans

Figure 6: Structure of the implemented system

Our implementation fills the roles in this diagram as follows: The proof (and the
accompanying short protocol) is generated by the basic DISCOUNT prover using the
executable discount. Closely related to this is the program rpcl which takes the
short protocol (and problem description) of a proof and reproduces it, yielding a PCL
protocol of the process.

This PCL listing is extracted by one of a number of programs or program combina
tions, with mextract being the most often used default. Section 8.2 describes these
programs in some detail. The programs lemma and proof deal with proof structuring
and transformation, respectively.

63

| Problem description

Proof System

Short protocol

Proof reproduction

; Optional extraction ;

' (interleaved) !

Proof l isting

Proof Extraction

Listing of the relevant steps

Structuring Phase

Proof l isting structured by lemmata

‘Transformation

| Proof i n a form suitable for humans

Figure 6: Structure of the implemented system

Our implementation fills the roles i n this diagram as follows: The proof (and the
accompanying short protocol) is generated by the basic DISCOUNT prover using the
executable d iscount . Closely related to this is the program rpcl which takes the
short protocol (and problem description) of a proof arand reproduces it, yielding a PCL
protocol of the process.
This PCL listingi s extracted by one of a number of programs or program combina-
tions, wi th mextract being the most often used default. Section 8.2 describes these
programs in some detail. The programs lemma and proof deal with proof structuring
and transformation, respectively.

63

8.1 The DISCOUNT system

The DISCOUNT system is a parallel proof system for equational reasoning based on
the TEAMWORK method (see [De93]). It is described in detail in [Pi92], the user
interface has been documented in [DP92]. An important enhancement of the system
is the incorporation of a true broadcast for the transfer of large amounts of data to all
members of a team. It lead to a much better performance for configurations with more
then two experts and will be described in [Lin93].

The latest improvement so far is the implementation of the protocols necessary to
analyze and reproduce the proofs generated by the system. This implementation follows
the concepts developed in chapter 6.

It resulted in some small changes to the basic proof system and three new variant
programs implementing features not necessary in the plain prover. For consistency
reasons and easy maintenance the different versions are build from a common source
code using the conditional compilation supported by the C language preprocessor.
Which of the four executables shall be build can thus be determined using compile
time switches.

The changes in the behaviour of the programs are described in detail in the following
sections and will be integrated into upcoming versions of the DISCOUNT User Guide.
For easy reference the new options available with the different program versions are
listed in table 8.1.

8.1.1 Changes in the configuration files

The DISCOUNT system can be tailored to specific problems by the use of configuration
files describing the number of processors to use, the experts and specialists to run on
them and some additional data of less importance. The EXEC keyword was used in the
configuration files to specify the name of the executable to be started on the remote
processors.

The new versions of the DISCOUNT system discard the EXEC entry in the configuration
files, although for compatibility reasons it can still be given. Now the master process
queries the command line for its own name and uses this as the name of the executable
to be started on the remote hosts. This allows the use of the same configuration files
with different versions of the DISCOUNT system.

8.1.2 Logging the proof session

The discount executable implements our basic proof system for equational proofs
based on unfailing completion. There has been only one major change necessary to
allow the analysis of proofs generated with the DISCOUNT system.

This is the incorporation of the ability to generate the short protocol mentioned in
section 6.1. By default the prover now uses the team meetings to write the data
necessary for a later reproduction of the proof. The default filename for this protocol

64

8.1 The DISCOUNT system

The DISCOUNT system is a parallel proof system for equational reasoning based on
the TEAMWORK method (see [De93]). I t is described in detail in [Pi92], the user
interface has been documented i n [DP92]. An important enhancement of the system
is the incorporation of a true broadcast for the transfer of large amounts of data to all
members of a team. I t lead to a much better performance for configurations wi th more
then two experts and will be described in [Lin93].
The latest improvement so far is the implementation of the protocols necessary to
analyze and reproduce the proofs generated by the system. This implementation follows
the concepts developed in chapter 6.
I t resulted i n some small changes to the basic proof system and three new variant
programs implementing features not necessary i n the plain prover. For consistency
reasons and easy maintenance the different versions are build from a common source
code using the conditional compilation supported by the C language preprocessor.
Which of the four executables shall be build can thus be determined using compile
time switches.

The changes i n the behaviour of the programs are described i n detail in the following
sections and will be integrated into upcoming versions of the DISCOUNT User Guide.
For easy reference the new options available wi th the different program versions are
listed i n table 8.1.

8.1.1 Changes in the configuration files

The DISCOUNT system can be tailored to specific problems by the use of configuration
files describing the number of processors to use, the experts and specialists to run on
them and some additional data of less importance. The EXEC keyword was used i n the
configuration files to specify the name of the executable to be started on the remote
Processors.

The new versions of the DISCOUNT system discard the EXEC entry i n the configuration
files, although for compatibility reasons i t can sti l l be given. Now the master process
queries the command line for its own name and uses this as the name of the executable
to be started on the remote hosts. This allows the use of the same configuration files
with different versions of the DISCOUNT system.

8.1.2 Logging the proof session

The discount executable implements our basic proof system for equational proofs
based on unfailing completion. There has been only one major change necessary to
allow the analysis of proofs generated with the DISCOUNT system.
This is the incorporation of the ability to generate the short protocol mentioned in
section 6.1. By default the prover now uses the team meetings to write the data
necessary for a later reproduction of the proof. The default filename for this protocol

64

Effect
discount

OptionShortcut

-no_log Suppress the production of the short pro
tocol generated by default during the proof
seSSIOn.

-L <name>

-1

Select <name> as the filename for the short
protocol to be written.

rdiscount
-L <name>

-log_file <name>

-log_file <name> Select <name> as the filename for the short
protocol to be read for the reproduction.

pcl and rpcl
-no_log Suppress the production of a short protocol

generated by default during the proof session
(only for pcl).

-L <name>

-1

-log_file <name> Select <name> as the filename for the short
protocol to be written or to be read.

-x <method>: -extract <method> Select the programs to be used for the
intermediate extraction of the PCL files.
<method> can be one of the following:
none No intermediate extraction at

all.
mextract Use mextract for the interme

diate extractions.
revert Use revert' and rextract.
tac Use tac and rextract.

-F <method> -fextract <method> Select the programs to be used for the final
extraction of the PCL files. <method> can
have the same values as for the preceding
option.

-a -async Start the final extraction asynchronously.
This allows the proof system to terminate
and free its resources for the extracting
process.

I

Table 4: The new DISCOUNT programs and their options

65

Shortcut | Option | Effect
discount

-no_ log Suppress the production of the short pro-
tocol generated by default during the proof
session.

- log_ f i l e <name> Select <name> as the filename for the short
protocol to be written.

rd iscount
- log_ f i le <name> Select <name> as the filename for the short

protocol to be read for the reproduction.
pe l and rpcl

-no_ log Suppress the production of a short protocol
generated by default during the proof session
(only for pel).

- L <name> - l og_ f i l e <name> Select <name> as the filename for the short
protocol to be written or to be read.

-X <method> -ext ract <method> Select the programs to be used for the
intermediate extraction of the PCL files.
<method> can be one of the following:

none No intermediate extraction at
al l .

mextract Usemextract for the interme-
diate extractions.

revert Use revert and rext ract .
tac Use tac and rextract .

-F <method> - fext ract <method> Select the programs to be used for the final
extraction of the PCL files. <method> can
have the same values as for the preceding
option.

- a -async

_

Start the final extraction asynchronously.
This allows the proof system to terminate
and free i t s resources for the extracting
process.

Table 4: The new DISCOUNT programs and their options

65

is the name of the problem file with the added suffix . prk. This can be changed by
specifying the option -log_file <filename>. The new option -no_log suppresses
the protocol altogether.

The symmetric design of the DISCOUNT system has been preserved for the task of
writing this protocol. As a consequence all discount processes in a parallel proof
session have to access a single file system, because every process can be responsible for
part of this protocol. As the system typically runs on a cluster of workstations with a
common NFS (Network File System) this assumption is usually fulfilled.

In the other case the protocol file may be shattered among the different file systems.
The final version then has to be assembled by the user from the files generated by the
different processes. The format of the protocol file allows for this by explicitly stating
cycle numbers.

An example of a logged proof session can be found in appendix A.

8.1.3 Reproducing proofs: The rdiscount executable

The simple reproduction of a once generated proof session was not one of our main
objectives. However, we managed to solve the two problems of reproducing a proof
session and generating a PCL listing quite independently. The result of our solution
for the reproduction problem is the executable rdiscount.

This program reads the short format file described in 8.1.2 and uses the data to repro
duce the proof session. It supports the same syntax for configuration and problem files
and accepts the same -log_file option as discount. The same conventions for the
names of the protocol files as above apply, however the files are of course only read,
not written.

Although rdiscount is only a byproduet of our development it still proved to be useful
for demonstration and test purposes.

8.1.4 Generating PCL listings: pcl and rpcl

pcl is basically the discount executable with added routines for the PCL output.
It is, therefore, a full proof system for equational reasoning and implements - except
for the additional generation of PCL - the same functionality as discount. This
does extend to the new features dealing with the short protocol and the options
-log_file <filename> and -no_log. Although it is a pretty powerful system in
itself it lacks the full power of the plain discount executable for the reasons stated
in 6.1. It can be used for small examples, but even for them it is usually more feasible
to generate the proof and a short protocol using discount. The PCL listing can then
be generated using rpcl.

rpcl combines the new features from rdiscount and pcl. It can reproduce proofs using
only the shor;t protocol from section 8.1.2 and it can produce pcllistings documenting
these proofs. As both pcl and rpcl use the same principles for dealing with the PCL

is the name of the problem file wi th the added suffix .prk . This can be changed by
specifying the option - l og_ f i l e <filename>. The new option -no_ log suppresses
the protocol altogether.

The symmetric design of the DISCOUNT system has been preserved for the task of
writing this protocol. As a consequence all discount processes in a parallel proof
session have to access a single file system, because every process can be responsible for
part of this protocol. As the system typically runs on a cluster of workstations wi th a
common NFS (Network File System) this assumption is usually fulfilled.
In the other case the protocol file may be shattered among the different file systems.
The final version then has to be assembled by the user from the files generated by the
different processes. The format of the protocol file allows for this by explicitly stating
cycle numbers.
An example of a logged proof session can be found in appendix A .

8.1.3 Reproducing proofs: The rdiscount executable

The simple reproduction of a once generated proof session was not one of our main
objectives. However, we managed to solve the two problems of reproducing a proof
session and generating a PCL listing quite independently. The result of our solution
for the reproduction problem is the executable rdiscount.
This program reads the short format file described i n 8.1.2 and uses the data to repro-
duce the proof session. I t supports the same syntax for configuration and problem files
and accepts the same - log_f i le option as discount. The same conventions for the
names of the protocol files as above apply, however the files are of course only read,
not written.
Although rdiscount is only a byproduct of our development i t sti l l proved to be useful
for demonstration and test purposes.

8.1.4 Generating PCL listings: pcl and rpcl

pel is basically the discount executable with added routines for the PCL output.
I t is, therefore, a full proof system for equational reasoning and implements — except
for the additional generation of PCL - the same functionality as d iscount . This
does extend to the new features dealing with the short protocol and the options
- log_f i le <filename> and -no_log. Although i t is a pretty powerful system in
itself i t lacks the full power of the plain d iscount executable for the reasons stated
in 6.1. I t can be used for small examples, but even for them i t is usually more feasible
to generate the proof and a short protocol using discount. The PCL listing can then
be generated us ing r pc l .

rpcl combines the new features from rd iscount and pc l . I t can reproduce proofs using
only the short protocol from section 8.1.2 and i t can produce pcl listings documenting
these proofs. As both pc l and rpcl use the same principles for dealing with the PCL

66

output they are described together.

The programs use the multidimensional name space conventions described in 6.2. They
create one PCL file for each interreduction phase and one PCL file per expert for the
working phases. By default they try an extraction on the fly (see 6.3) using mextract as
the extraction program. The user can select other extraction programs or no extraction
at all for large or particularly interesting examples by specifying the option -extract
<method>. <method> can be none, indicating that no intermediate extraction has to
take place, it can be mextract to designate mextract as the extraction program to
use or it can be one of revert and tac, designating rextract with preprocessing by
either revert or tac.

As the protocol files can become rather large we encountered a few memory problems
especially in the final extraction where more then one file have to be extracted. Up to
now these have not been solved completely satisfactory. An improvement is the'addi
tional option -async, which starts the final extraction as an independent background
process and thus allows the proof system to terminate and free its resources for the
extraction program. We do need to manipulate extreme examples manually, though.

8.2 Programs dealing with PCL protocols

As the final proof description generated by the DISCOUNT system is still a sequential
peL listing of all executed inferences, our tools for proof analysis and transformation
were able to deal with distributed proofs immediately. However, to use all the features
described in chapter 6 we needed some minor extensions.

The programs share some common features. They have been implemented in ANSI-C,
using the GNU-C-Compiler. This results in efficient code and high portability. All of
them can deal with input from files (named in the command line) or can be used as a
UNIX style filter, reading from stdin, possibly connected to a pipeline. Output can
be either to a file or to stdout.

8.2.1 Extracting the proof: extract and mextract

The programs extract and mextract deal with the straightforward extraction of the
necessary proof steps. Both implement the algorithm described in section 3.3. In
fact, both programs behave exactly alike with only two exceptions. In the design of
mextract, the younger of the two programs, we could utilize experience made with the
earlier version. We therefore used more specialized data structure, resulting in a much
faster execution and the capability to deal with examples approximately one order of
magnitude larger.

The success of mextract made extract obsolete and we do no longer develop it. In
particularly, it does not support some of the newer options of mextract, dealing with
statistics and the redundancy elimination process described in section 6.2.1. extract's
main value nowadays lies in its role as a simple example for programs using the PCL
data structures and parsing routines.

67 .

output they are described together.
The programs use the multidimensional name space conventions described i n 6.2. They
create one PCL file for each interreduction phase and one PCL file per expert for the
working phases. By default they try an extraction on the fly (see 6.3) using mextract as
the extraction program. The user can select other extraction programs or no extraction
at all for large or particularly interesting examples by specifying the option -extract
<method>. <method> can be none, indicating that no intermediate extraction has to
take place, i t can be mextract to designate mextract as the extraction program to
use or i t can be one of revert and t ac , designating rextract wi th preprocessing by
either revert or tac . ,

As the protocol files can become rather large we encountered a few memory problems
especially in the final extraction where more then one file have to be extracted. Up to
now these have not been solved completely satisfactory. An improvement is the-addi-
tional option -async, which starts the final extraction as an independent background
process and thus allows the proof system to terminate and free its resources for the
extraction program. We do need to manipulate extreme examples manually, though.

8.2 Programs dealing with PCL protocols

As the final proof description generated by the DISCOUNT system is st i l l a sequential
PCL listing of all executed inferences, our tools for proof analysis and transformation
were able to deal with distributed proofs immediately. However, to use all the features
described i n chapter 6 we needed some minor extensions.
The programs share some common features. They have been implemented in ANSI-C,
using the GNU-C-Compiler. This results i n efficient code and high portability. A l l of
them can deal with input from files (named i n the command l ine) or can be used as a
UNIX style filter, reading from std in, possibly connected to a pipeline. Output can
be either to a file or to stdout .

8.2.1 Extracting the proof: extract and mextract

The programs extract and mextract deal with the straightforward extraction of the
necessary proof steps. Both implement the algorithm described i n section 3.3. I n
fact, both programs behave exactly alike with only two exceptions. In the design of
mextract, the younger of the two programs, we could utilize experience made with the
earlier version. We therefore used more specialized data structure, resulting i n a much
faster execution and the capability to deal with examples approximately one order of
magnitude larger.
The success of mextract made extract obsolete and we do no longer develop i t . In
particularly, i t does not support some of the newer options of mextract , dealing wi th
statistics and the redundancy elimination process described in section 6.2.1. ext ract ’s
main value nowadays lies i n its role as a simple example for programs using the PCL
data structures and parsing routines.

67"

Both programs take a PCL protocol and return a PCL file containing only steps used
to arrive at certain results. By default they take only steps with type tes-final as
anchors for the extraction, but runtime options can change this behaviour.

<

The programs support the following set of options:

Option	 Semantics

-v Give a short explanation of the program and information on the

extraction phases.

-h Terminate the program after producing a short description.

-s Print a block of statistic information (steps read, steps extracted,

etc..) to stderr after termination. Implemented in mextract only.

-c Preserve comments in the input file (if possible).

-i	 Use not only steps with type tes-final but also steps with types

tes-intermed, tes-intermedgoal and crit-intermedgoal as an

chors for the extraction. This option is used for the interleaved

extraction described in section 6.3.

-1 Use the last step, regardless of type, as an anchor.

-n Eliminate steps proved by a simple reference to an earlier step. Im
plemented in mextract only.

-n2 Eliminate redundant results generated more then once during the

proof process. Implemented in mextract only.

-0 outfile Select the output file outfile. If no -0 option is given, output is

directed to stdout.

8.2.2 Dealing with extreme examples: revert and rextract

As we already mentioned, proof listings can become overwhelmingly large. For really
challenging examples the protocol of proof generated by the sequential system can
easily exceed 50 Megabytes. This problem has become less serious with the distributed
system because of the interleaved extraction described in section 6.3. However, it is
only a matter of time until new examples will yield even greater protocols.·

Our extraction algorithm inspects the complete listing, starting with the final proof
step. The straightforward programs therefore have to handle the complete listing - a
task that quickly becomes impossible for extreme examples. We therefore developed
the program rextract, an alternative implementation of the extraction algorithm ex
pecting the PCL steps in reverse order. As no standard UNIX utility was able to
reorder the steps of a large PCL listing at that time (in the meantime the GNU pro
gram tac has become widely available, solving the same problem) we also implemented
revert, a program designed to reverse the order of lines in an ASCII text.

revert does support the following options:

68

Both programs take a PCL protocol and return a PCL file containing only steps used
to arrive at certain results. By default they take only steps with type tes- f ina l as
anchors for the extraction, but runtime options can change this behaviour.

The programs support the following set of options:

Option Semantics

-v Give a short explanation of the program and information on the
extraction phases.

-h Terminate the program after producing a short description.
- s Print a block of statistic information (steps read, steps extracted,

etc..) to stderr after termination. Implemented in mextract only.
- c Preserve comments in the input file (i f possible).
- i Use not only steps with type tes- f ina l but also steps with types

tes-intermed, tes-intermedgoal and crit-intermedgoal as an-
chors for the extraction. This option is used for the interleaved
extraction described i n section 6.3.

- 1 Use the last step, regardless of type, as an anchor.
-n Eliminate steps proved by a simple reference to an earlier step. Im-

plemented in mextract only.
-n2 Eliminate redundant results generated more then once during the

proof process. Implemented in mextract only.
- o out f i le Select the output file out f i le . I f no - o option is given, output is

directed to stdout.

8.2.2 Dealing with extreme examples: revert and rextract

As we already mentioned, proof listings can become overwhelmingly large. For really
challenging examples the protocol of proof generated by the sequential system can
easily exceed 50 Megabytes. This problem has become less serious with the distributed
system because of the interleaved extraction described in section 6.3. However, i t is
only a matter of t ime until new examples will yield even greater protocols.
Our extraction algorithm inspects the complete listing, starting with the final proof
step. The straightforward programs therefore have to handle the complete listing - a
task that quickly becomes impossible for extreme examples. We therefore developed
the program rextract, an alternative implementation of the extraction algorithm ex-
pecting the PCL steps i n reverse order. As no standard UNIX uti l i ty was able to
reorder the steps of a large PCL listing at that t ime (in the meantime the GNU pro-
gram t ac has become widely available, solving the same problem) we also implemented
revert , a program designed to reverse the order of lines in an ASCII text.
revert does support the following options:

68

Option	 Semantics

-v Give a short explanation of the program and information on the

different phases during the program execution.

-h Terminate the program after producing a short description.

-0 outfile	 Select the output file outfile. If no -0 option is given, output

is directed to stdout. If the virtual memory of the machine does

not suffice for execution revert will write a number of files called

outfile. rev* or stdout. rev* which have to concatenated for the

final result.

The program rextract, serving a very similar purpose to mextract, does feature nearly
the same options:

Option	 Semantics

-v Give a short explanation of the program and information on the

extraction phases.

-h Terminate the program after producing a short description.

-c Preserve comments in the input file (if possible).

-r	 Do immediately print steps recognized as necessary, yielding a re
versed extracted listing. By default the program will store these

steps and produce an extracted listing with the steps already in the

correct sequence.

-i	 Use not only steps with type tes-final but also steps with types

tes-intermed, tes-intermedgoal and crit-intermedgoal as an

chors for the extraction. This option is used for the interleaved

extraction described in section 6.3.

-1 Use the last step, regardless of type, as an anchor.

-0 outfile Select the output file outfile. If no -0 option is given, output is

directed to stdout.

8.2.3 Revealing the structure: lemma

The program lemma implements the structuring algorithm described in section 4.11.
Input is a PCL listing4

, output is a listing with important steps marked as tes-lemma.
It realizes most of the criteria mentioned in chapter 4. Consequently, its configuration
can be quite complex. The ability to choose any combination of criteria and influence
all constant values in the evaluation function required a lot of different options. They
can be split into two classes: Options necessary to set values for the criteria and options
used to influence the programs behavior in other ways. The first group of options is
displayed in table 5.

41emma can handle all kinds of listings, however, extracted listings, being smaller, are analyzed
much f~ter and can be handled for much more difficult problems.

69

Option Semantics

- v Give a short explanation of the program and information on the
different phases during the program execution.

-h Terminate the program after producing a short description.
- o out f i le Select the output file out f i le . If no - o option is given, output

is directed to stdout. If the virtual memory of the machine does
not suffice for execution revert will write a number of files called
ou t f i l e . r ev * or s tdou t . rev* which have to concatenated for the
final result.

The program rextract , serving a very similar purpose to mextract, does feature nearly
the same options:

Option Semantics

- v Give a short explanation of the program and information on the
extraction phases. ;

-h Terminate the program after producing a short description.
- c Preserve comments i n the input file (i f possible).
- r Do immediately print steps recognized as necessary, yielding a re-

versed extracted listing. By default the program will store these
steps and produce an extracted listing wi th the steps already in the
correct sequence.

- i Use not only steps with type tes- f ina l but also steps with types
tes-intermed, tes-intermedgoal and crit-intermedgoal as an-
chors for the extraction. This option is used for the interleaved
extraction described i n section 6.3.

- 1 Use the last step, regardless of type, as an anchor.
- o out f i le Select the output file ou t f i l e . I f no - o option is given, output is

directed to stdout.

8.2.3 Revealing the structure: lemma

The program lemma implements the structuring algorithm described i n section 4.11.
Input is a PCL listing*, output is a listing with important steps marked as tes-lemma.
It realizes most of the criteria mentioned in chapter 4. Consequently, i ts configuration
can be quite complex. The ability to choose any combination of criteria and influence
all constant values in the evaluation function required a lot of different options. They
can be split into two classes: Options necessary to set values for the criteria and options
used to influence the programs behavior i n other ways. The first group of options is
displayed i n table 5.

41emma can handle a l l k inds o f l is t ings, however, extracted l i s t ings , be ing smaller, are analyzed
much faster and can be handled for much more difficult problems.

69

I Constant I Default I Option
Coust.ants from section 4.2 (Frequently used steps)

, MINUSED 4 -o_min_used

Constants from section 4.3 (Important intermediate results)
MINWEIGHT 11 -i_lemma_weight

Constants from section 4.4 (Isolated proof segments)
WEIGHTFACTOR
OFFSET

0.5
2

-t_weight_factor
-t_offset

Constants from section 4.5 (Syntactical criteria)
MAXSIZE
AVERAGESIZE
MINFAK
MAXFAK

1
2
5
0

-s_average_size
-s_max_size
-s_min_fak
-s_max_fak

Constants from section 4.7 (Analyzing the applied inference rules)
·INITW
HYPOW
QUOTEW
ORIENTW
CPW
REDW
INSW
MINWEIGHT

1
0
0
0
3
2
0

15

-c_init_weight
-c_hypo_weight
-c_quot_weight
-c_orient_weight
-c_cp_weight
-c_redu_weight
-c_inst_weight
-c_lemma_weight

Constants from section 4.8 (Sectioning long proofs)
MAXLEN 10 -p_max_length

Constants from section 4.9 (Avoiding unsuitable lemmata)
MINUSED
MINLEN

1
2

-u_min_used
-u_min_length

Table 5: Constants and options in lemma

The second class of options determines more general parts of the program's behaviour.
Many of these options are familiar from the other programs. There are, however, two
important new options determining the lemma criteria to use and the way to combine
them:

Option Semantics

Give a short explanation of the program and information on the
extraction phases.

70

-v

| Constant | Default | Opt ion
~Constants from sect ion 4.2 (Frequently used steps)

"MINUSED | 4 | -o_min_used
Constants from section 4.3 (Important intermediate results)

MINWEIGHT 11 | -i_lemma_weight
Constants from section 4.4 (Isolated proof segments)

WEIGHTFACTOR 0.5 | - t_weight_factor
OFFSET 2 | ~ t_o f f se t

Constants from section 4.5 (Syntactical criteria)
MAXSIZE 1 | -s_average_size
AVERAGESIZE 2 | -s_max_size
MINFAK 5 | -s_min_fak
MAXFAK 0] -s_max_fak

[Constants from section 4.7 (Analyzing the applied inference rules)
"INITW 1 | ~c_in i t_weight
HYPOW 0 | -c_hypo_weight
QUOTEW 0 | ~c_quot_weight
ORIENTW 0 | ~c_orient_weight
CPW 3 | ~c_cp_weight
REDW 2 | ~c_redu_weight
INSW 0 | -c_ inst_weight

| MINWEIGHT _ 15 | ~c_lemma_weight
Constants from section 4.8(Sectioning long proofs)

MAXLEN 10 | -p_max_length
Constants from section 4.9 (Avoiding unsuitable lemmata)

MINUSED 1 | -u_min_used
MINLEN 2 | -u_min_length

Table 5: Constants and options i n lemma

The second class of options determines more general parts of the program’s behaviour.
Many of these options are familiar from the other programs. There are, however, two
important new options determining the lemma criteria to use and the way to combine
them:
Option Semantics

-v Give a short explanation of the program and information on the
extraction phases.

70

I Letter I Criterion / Criteria

0 Frequently used steps (4.2)
i Important intermediate results (4.3)
t Isolated proof segments (4.4)
s Syntactical criteria (4.5)
c Analyzing the applied inference rules (4.7)

P Sectioning long proofs (4.8)

Table 6: Letter codes and corresponding criteria for use with -criteria

-h Terminate the program after producing a short description.

-c Preserve comments in the input file (if possible). This option will
also generate new comments, documenting the lemma evaluation
process and the reasons for the final decision'.

-criteria w The option -criteria selects the criteria to be used in lemma
evaluation. The argument w is a word containing letters from
{s, 0, i, t, c, p}, with each letter denoting on criterion. The cor
respondence can be found in table 6.

-iterate By default the program will combine different criteria according to
method (1) from section 4.10. If this option is set it will use method
(2) instead.

-0 outfile Select the output file outfile. If no -0 option is given, output is
directed to stdout.

8.2.4 Generating equational chains: proof

The transformation algorithm from section 5.3 has been implemented in the program
proof. It reads a (possibly prestructured) PCL listing and generates an equivalent
proof to the one ~escribed in the PCL listing, but using equational chains. These chains
can be printed in a variety of styles with different levels of detail. For convenience the
program usually ignores lemmata in the input file and generates lemmata by itself
(using the default strategy employed by lemma).

The output of the program contains a list of axioms and a list of propositions, followed
by proof chains for a hierarchy of lemmata and finally the theorems. The proof chains
can contain places and substitutions and are either formatted for easy readability
of a pure ASCII description or typeset in 1i\TEX. The behaviour of the program is
determined by the following options:

71

| Let ter |Criterion / Criteria |
0 Frequently used steps (4.2)

Important intermediate results (4 .3)
Isolated proof segments (4.4)
Syntactical criteria (4.5)
Analyzing the applied inference rules (4.7)

x
)

lu

||

Sectioning long proofs (4.8)

Table 6: Letter codes and corresponding criteria for use with -c r i te r ia

-C

- c r i t e r i a w

- i t e ra te

- o ou t f i l e

Terminate the program after producing a short description.
Preserve comments in the input file (if possible). This option will
also generate new comments, documenting the lemma evaluation
process and the reasons for the final decision.
The option - c r i t e r ia selects the criteria to be used in lemma
evaluation. The argument w is a word containing letters from
{s ,0 ,1 , t , c ,p } , with each letter denoting on criterion. The cor-
respondence can be found i n table 6.
By default the program will combine different criteria according to
method (1) from section 4.10. I f this option is set i t will use method
(2) instead.
Select the output file ou t f i le . If no -o option is given, output is
directed to stdout.

8.2.4 Generating equational chains: proof

The transformation algorithm from section 5.3 has been implemented i n the program
proof . I t reads a (possibly prestructured) PCL listing and generates an equivalent
proof to the one described i n the PCL listing, but using equational chains. These chains
can be printed i n a variety of styles with different levels of detail. For convenience the
program usually ignores lemmata i n the input file and generates lemmata by itself
(using the default strategy employed by lemma).
The output of the program contains a list of axioms and a list of propositions, followed
by proof chains for a hierarchy of lemmata and finally the theorems. The proof chains
can contain places and substitutions and are either formatted for easy readability
of a pure ASCII description or typeset i n IATEX. The behaviour of the program is
determined by the following options:

71

Option	 Semantics

-v	 Give a short explanation of the program and information on the
extraction phases.

-h	 Terminate the program after producing a short description.
-0 outfile	 Select the output file outfile. If no -0 option is given, output is

directed to stdout.
-nobrackets	 Print constants in the output without a pair of brackets. Proofs look

much cleaner this way, but only naming conventions can be used to
distinguish variables and constant. proof supports this by using
only variables from the set {x,y,z,u,v,w,p,q,xO,xt, ...}.

-nolemmas	 If this option is set, proof will refrain from generating new lemmata
and will use lemmata in the input file instead.

-noplace	 Suppress the place designator in the output, yielding a more natural
looking proof, but at the cost of loosing some accuracy.

-nosubst	 Refrain from printing the substitutions necessary for applying equa
tions, with the same effect as above.

-latex	 Generate a U\TEX description of the proof, suitable for inclusion in
a document.

72

- o ou t f i l e

-nobrackets

-nolemmas

-noplace

-nosubst

- l a t ex

Semantics

Give a short explanation of the program and information on the
extraction phases.
Terminate the program after producing a short description.
Select the output file out f i le . If no -o option is given, output is
directed to stdout.
Print constants in the output without a pair of brackets. Proofs look
much cleaner this way, but only naming conventions can be used to
distinguish variables and constant. proof supports this by using
only variables from the set {x ,y ,z ,u ,v ,w,p,q,x0,x1, . . . } .
If this option is set, proof will refrain from generating new lemmata
and will use lemmata in the input file instead.
Suppress the place designator in the output, yielding a more natural
looking proof, but at the cost of loosing some accuracy.
Refrain from printing the substitutions necessary for applying equa-
tions, with the same effect as above.
Generate a IATEX description of the proof, suitable for inclusion i n
a document.

9 Conclusion

Our results show that proof protocols are a suitable base for proof analysis and trans
formation. The language PCL provides a flexible tool for the description of inference
based proofs. Using short, specialized protocols and a reproduction mode we can pro
duce protocols without measurably influencing the proof system even for distributed
proof systems using TEAMWORK.

The/structuring algorithms developed for use with these protocols are capable of rec
ognizing many important intermediate results. Important results with respect to the
proof at hand can be found by a post mortem analysis using only the inferences rel
evant to the proof, while TEAMWORK's referees can add a more global pers?ective,
judging facts on their performance in the equational domain. The resulting proofs are
comparable with proofs structured by humans.

The transformation of structured proof protocols into a hierarchical proof using equa
tional chains yield a proof representation fully adequate for human understanding.
Equational proofs represented in this calculus resemble textbook proofs of equational
problems.

However, while we are quite satisfied with the results up to now, there still remain
some paths for further investigation.

First the proof presentation can be improved in some simple, but significant details.
This includes changes to the term representation (using infix notation and dropping
some brackets), naming of lemmata and axioms, and merging of repeated applications
of "well known" theorems like associativity or commutativity.

Finally we already have transferred back to the prover some knowledge gained from
the proof analysis. We hope to gain strong heuristics and significant performance
improvements for the prover by further following this path, using either manual analysis
or automatic learning procedures. The future may actually see automatic p.rovers used
by mathematicians for routine tasks.

73

9 Conclusion

Our results show that proof protocols are a suitable base for proof analysis and trans-
formation. The language PCL provides a flexible tool for the description of inference
based proofs. Using short, specialized protocols and a reproduction mode we can pro-
duce protocols without measurably influencing the proof system even for distributed
proof systems using TEAMWORK.
The structuring algorithms developed for use with these protocols are capable of rec-
ognizing many important intermediate results. Important results with respect to the
proof at hand can be found by a post mortem analysis using only the inferences rel-
evant to the proof, while TEAMWORK’s referees can add a more global perspective,
judging facts on their performance i n the equational domain. The resulting proofs are
comparable with proofs structured by humans.

The transformation of structured proof protocols into a hierarchical proof using equa-
tional chains yield a proof representation fully adequate for human understanding.
Equational proofs represented in this calculus resemble textbook proofs of equational
problems.
However, while we are quite satisfied with the results up to now, there st i l l remain
some paths for further investigation.
First the proof presentation can be improved i n some simple, but significant details.
This includes changes to the term representation (using infix notation and dropping
some brackets), naming of lemmata and axioms, and merging of repeated applications
of “well known” theorems like associativity or commutativity.
Finally we already have transferred back to the prover some knowledge gained from
the proof analysis. We hope to gain strong heuristics and significant performance
improvements for the prover by further following this path, using either manual analysis
or automatic learning procedures. The future may actually see automatic provers used
by mathematicians for routine tasks.

73

A A short log file of a proof session

Here we present a short example of the protocol format used to log proof sessions.
Please note that the format is rather compact and depends heavily on the implementa
tion of a given proof system. It does not contain any data on the actual proof but only
information on the number of steps and the configurations used by the proof system.

Obviously it is not very useful in analyzing the proof without further information...

DISCOUNT

Aufgabenstellung: lukal
Konfigurationsdatei: lukal.cfg.gut

Hashs are used to mark comments ...

cycle 0

mast'er:O
process 0 using configuration 0 (ADD_WEIGHT) did 68 steps
process 1 using configuration 1 (GOALMATCH) did 53 steps

cycle 1

master:O
process 0 using configuration 0 (ADD_WEIGHT) did 48 steps
process 1 using configuration 1 (GOALMATCH) did 16 steps

cycle 2

master:O
process 0 using configuration 0 (ADD_WEIGHT) did 58 steps
process 1 using configuration 1 (GOALMATCH) did 19 steps

cycle 3

master:O
process 0 using configuration 0 (ADD_WEIGHT) did 81 steps
process 1 using configuration 1 (GOALMATCH) did 10 steps

cycle 4

74

A A short log file of a proof session

Here we present a short example of the protocol format used to log proof sessions.
Please note that the format is rather compact and depends heavily on the implementa-
tion of a given proof system. It does not contain any data on the actual proof but only
information on the number of steps and the configurations used by the proof system.

Obviously i t is not very useful i n analyzing the proof without further information...

HHUBRBBRUBBRRRABERRBRBRBBEBBRBRBUBRBRRUGINNEN WEE
DISCOUNT
##
Aufgabenstel lung: lukal
Konf igurat ionsdatei : l uka l . c fg .gu t
##
Hashs are used t o mark comments. . .

cyc le 0

mas te r :0
process 0 using configuration 0 (ADD_WEIGHT) d id 68 steps
process 1 using configuration 1 (GOALMATCH) d id 53 steps

cyc le 1

mas te r :0
process 0 using configuration 0 (ADD_WEIGHT) d id 48 steps
process 1 using configuration 1 (GOALMATCH) d id 16 steps

cyc le 2

mas te r :0
process 0 using configurat ion 0 (ADD_WEIGHT) d id 58 steps
process 1 using configurat ion 1 (GOALMATCH) d id 19 steps

cycle 3

mas te r : 0 |

p rocess 0 us ing conf igurat ion 0 (ADD_WEIGHT) d id 81 s teps
process 1 us ing conf igurat ion 1 (GOALMATCH) d id 10 steps

cyc le 4

74

master:O
process 0 using configuration -1 (NO_CONFIG) did 0 steps
process 1 using configuration 1 (GOALMATCH) did 1 steps

team terminated by process 1 during completion

B Examples

In this section we will represent two related problems from the theory of rings and one
example from the domain of lattice ordered groups. The first example is of medium
difficulty and will be presented in some detail. The second one is a challenging example
for equational provers. To our knowledge the DISCOUNT system is the only existing
automatic prover capable of generating a proof for this example using pure equational
logic without underlying AC-theory. As this example is quite large we will only include
the final proof. Both examples have been suggested in [L082]. Ring theory is a field
where humans quite often reason using a (semi ~£ormal equational calculus. Therefore
automatically generated proofs in this domain are comparable to proofs found by hu
mans. This is also true for the last example, a hard problem from the domain of lattice
ordered groups.

B.l A ring with x 2 = x is Abelian

B.l.l The problem

The problem description printed below provides the specification in the format used
by DISCOUNT.

MODE PROOF

NAME Lusk3

ORDERING XKBO
f:5 > j:4 > g:3 > 0:1 > b: 1 > a: 1

EQUATIONS j (o,x) = x # 0 is a left identity
j (x,O) = x # 0 is a right identity
j (g (x),x) = 0 # There is a left inverse
j (x,g (x)) = 0 # There is a right inverse
j (j (x,y),z) = j (x,j (y,z)) # Addition is associative
j (x,y) = j(y,x) # Addition is Abelian
f (f (x,y),z) = f (x,f (y,z)) # Multiplication is

associative
f (x,j (y,z)) = j (f (x,y),f (x,z)) # Distributive axioms

75

mas te r :0
p rocess 0 us ing conf igurat ion -1 (NO_CONFIG) d i d 0 s teps
process 1 us ing conf igurat ion 1 (GOALMATCH) d id 1 steps

team terminated by process 1 during complet ion

B Examples

In this section we will represent two related problems from the theory of rings and one
example from the domain of lattice ordered groups. The first example is o f medium
difficulty and will be presented in some detail. The second one is a challenging example
for equational provers. To our knowledge the DISCOUNT system is the only existing
automatic prover capable of generating a proof for this example using pure equational
logic without underlying AC-theory. As this example is quite large we will only include
the final proof. Both examples have been suggested in [LO82]. Ring theory is a field
where humans quite often reason using a (semi formal equational calculus. Therefore
automatically generated proofs i n this domain are comparable to proofs found by hu-
mans. This is also true for the last example, a hard problem from the domain of latt ice
ordered groups.

B.1 A ring with 22 = z is Abelian

B.1 .1 The problem

The problem description printed below provides the specification in the format used
by DISCOUNT.

MODE PROQF

NAME Lusk3

ORDERING XKBO
£ :5 > j : 4 > g :3 > 0 :1 > b :1 > a :1

EQUATIONS j €0 , x) = X # 0 i s a le f t ident i ty
j (x , 0) =x # 0 i s a right identi ty
j (g (x) , x) =0 # There i s a le f t inverse
j (x , g (x)) = 0 # There i s a right inverse
jG Cx ,y) , z) = 3 (x , j (y , z)) # Addit ion i s assoc ia t ive
j (x , y) = j (y , x) # Addi t ion i s Abel ian
f (f (x , y) , 2) = f (x , f (y , 2)) # Mul t ip l icat ion i s

assoc ia t i ve
= j (f (x , y) , f (x,2z)) # D is t r i tu t ive axiomsf (x , j (y , 2))

75

f (j (x,y) ,z) = j (f (x,z),f (y,z» •
f (x,x) = x • Special axiom: x*x = x

CONCLUSION f (a,b) = f (b,a) • Theorem

B:1.2 The proof protocol

The prover generates a protocol of 5009 steps, using about 360 Kilobytes. For obvious
reasons we print only the extracted version. It contains only 83 steps.

o tes-eqn t(x,x) =x : initial

1 tes-eqn j(O(),x) = x : initial

2 tes-eqn j(x,O(» = x : initial

4 tes-eqn j(x,g(x» = o() : initial

5 tes-eqn j(x,y) = j(y,x) : initial

6 tea-eqn j(j(x,y),z) j(x,j(y,z»: initial

8 tes-eqn f(x,j(y,z» = j(f(x,y)',f(x,z» : initial

9 tes-eqn f(j(x,y),z) = j(f(x,z),f(y,z» : initial

10 tes-~~al f(a(),b(» = f(b().a(» : hyrothesia
1~ tes-rule f(x,x) -> x : orient(O,u)
12 tes-rule j(O(),x) -> x : orient(l,u)
13 tes-rule j(x,O(» -> x : orient(2,u)
20 tes-rule j(x,g(x» -> o() : orient(4,u)
45 tes-rule j(j(x,y),z) -> j(x.j(y,z» : orient(6.u)
53 tes-eqn j(x,j(g(x),y» = j(O(),y) : cp(45,L.l,20.L)
54 tes-eqn: j(x,j(g(x),y) = y : tes-red(63,R,12,L)
59 tes-eqn: j(x,j(y,z» = j(y,j(z,x» : cp(5,L,45,L)
65 tes-rule: j(x,j(g(x),y» -> y : orient(54.u)
71 tes-eqn g(g(x» = j(x,O(» : cp(65,L.2,20,L)
72 tes-eqn: g(g(x» = x : tes-red(71,R,13,L)
87 tes-eqn: x = j(y,j(x,g(y») : cp(65,L.2,5,L)
89 tes-rule: g(g(x» -> x : orient(72,u)
93 tes-eqn: x = j(g(y).j(y,x» : cp(66,L.2.1.89.L)
97 tes-rule: j(x,j(y,g(x») -> y : orient(87,x)

115 tes-eqn: x = j(g(y),j(x,y» : cp(97.L.2.2,89,L)
126 tes-rule: j(g(x),j(x,y» -> y : orient(93,x)
160 tes-rule: j(g(x),j(y,x» -> y : orient(115,x)
181 tes-eqn: g(x) = j(g(j(x,y»,y) : cp(160,L.2,126,L)
182 tes-eqn: g(x) = j(y,g(j(x,y») : tes-red(181,R,5,L)
298 tea-rule: j(x,g(j(y,x») -> g(y) : orient(182,x)

2615 tea-rule: j(:f(x,y).:f(x,z» -> f(x,j(y,z» : orient(8.x)

2616 tes-eqn f(x,j(x,y» = j(x,:f(x,y» cp(2615,L.1,11,L)

2617 tes-eqn: f(x.j(y,x» = j(f(x,y),x) : cp(2616,L.2,11,L)

2618 tes-eqn: f(x,j(y,x» = j(x,f(x,y» : tes-red(2617,R,5,L)

2656 tes-rule: f(x,j(x,y» -> j(x,f(x,y» : orient(2616,u)

2669 tes-eqn: j(x,f(x,O(») = f(x,x) : cp(2656,L.2,13,L)

2670 tes-eqn: j(x,:f(x,O(») = x : tes-red(2669,R,11,L)

2707 tes-rule: j(x,f(x,O(») -> x : orient(2670,u)

2721 tes-eqn: f(g(x),O(» = j(x,g(x» : cp(65,L.2,2707,L)

2722 tes-eqn: f(g(x),O(» = O() : tes-red(2721,R,20,L)

2767 tes-rule: f(g(x),O(» -> O() : orient(2722,u)

2788 tes-eqn: o() = ;f(x,O(» : cp(2767,L.l,89,L)

76

f (j (x , y) , z) = j (f (x , 2) , f (y , z)) #
f (x , x) X # Spec ia l ax iom: x *x = x

CONCLUSION f (a ,b) = f (b ,a) # Theorem

B.1.2 The proof protocol

The prover generates a protocol of 5009 steps, using about 360 Kilobytes. For obvious
reasons we print only the extracted version. I t contains only 83 steps.

0 : tes -eqn :
1 ; tes-eqn :
2 : tes-eqn :
4 : tes-eqn :
5 : tes-eqn :
6 : tes—eqn :
8 : 2 (x , j (y , .z)): tes-eqn
9 : t es -eqn :

10 : tes-z~a l :
11 : tes- ru le :
12 : tes- ru le :
13 : tes- ru le :
20 : tes - ru le :
45 : tes - ru le :

: j (x , j (g (x) , y)) = j (0 () , y) : cp(45,L.1,20,L)
54 : tes-eqn : =

59 : tes-eqn :
65 : tes- ru le :
71 : tes-eqn :
72 : tes-eqn :
87 : tes-eqn :
89 : tes - ru le :
93 : tes-eqn :
97 : tes - ru le :

: x= j (g l y) , j (x , y)) : cp (97 ,L .2 .2 ,89 ,L)
: j (g (x) , j (x , y)) => y : or ient(93,x)

160 : tes- ru le :
181 : tes-eqn :
182 : tes-eqn :
298 : tes - ru le :

2615 : tes- ru le :
2616 : tes-eqn :
2617 : tes -eqn :
2618 : tes-eqn :
2656 : tes- ru le :
2669 : tes -eqn :
2670 : t es -eqn :
2707 : tes- ru le :

: £(g(x) ,00)) = j (x , g (x)) : cp(65,L.2,2707,L)
2722 : tes-eqn : =
2767 : tes - ru le :
2788 : t es -eqn :

63 : tes-eqn

115 : tes -eqn
126 : tes - ru le

2721 : tes-eqn

2 (x , x) = x : in i t ia l
j (0 () , x) = x : init ial
j (x ,00)) = x : ini t ial
j l x , g (x)) = 0 () : init ial
j (x , y) = j (y , x) : ini t ial
jC j (x , y) , z) = j (x , j (y , z)) : init ial

j (t (x , y) , 2 (x ,2)) : initial
£ (j (x , y) , 2z) = j (f (x , z) , f (y , z)) : ini t ial
£ (a () , b ()) = f (b () , a ()) : hypo thes i s
£ (x , x) -> x : o r i en t (0 ,u)
j (00) , x) => x : o r i en t (1 ,u)
j (x , 00)) -> x : o r i en t (2 ,u)
j (x , g (x)) => 0 () : o r i en t (4 ,u)
j i l x , y) , 2z) -> j (x , j (y , 2)) : o r i en t (6 ,u)

j (x , j (g (x) , y)) = y : tes- red(63,R,12,L)
j l x , j (y , z)) = j (y , j (z , x)) : cp (5 ,L ,45 ,L)
j (x , j (g (x) , y)) -> y : o r i en t (54 ,u)

g(g(x)) = j (x , 0 ()) : cp(65,L.2,20,L)
g (g (x)) = x : t es - red (71 ,R ,13 ,L)
x = j (y , j (x , g (y))) : cp(65,L.2,5,L)
g (g (x)) => x : o r i en t (72 ,u)

x = j (g (y) , j l y , x)) : cp (e5 ,L .2 .1 ,89 ,L)
j (x , j (y , g (x))) => y : o r i en t (87 , x)

j (g (x) , j (y , x)) -> y : or ient(115,x)
g l x) = 5 (g (j (x , y)) , y) : cp(160,L.2,126,L)
g(x) = j (y , g (j (x , y))) : tes-red(181,R,5,L)

j (x , 8g (j (y , x))) - > g (y) : o r i en t (182 , x)
j (e (x , y) , 2 (x ,2)) -> £ (x , j (y , z)) : oriemnt(8,x)

£ (x , j (x , y)) = j (x , f (x , y)) : cp(2615,L.1,11,L)
£ (x , j (y , x)) = j (£ (x , y) , x) : cp (2615 ,L .2 ,11 ,L)
£ (x , j (y , x)) = j (x , 2 (x , y)) : t es - red (2617 ,R ,5 ,L)
£ (x , j (x , y)) -> j (x , 2 (x , y)) : orient(2616,un)

j (x , £ (x ,0 ())) = £ (x , x) : cp (2656 ,L .2 ,13 ,L)
j (x , 2 (x ,0 ())) = x : tes-red(2669,R,11,L)
j (x , 2 (x ,00))) -> x : orient (2670,u)

[II

£(g(x) ,00)) = 0 () : tes-red(2721,R,20,L)
£ (g (x) , 00)) => 00) : o r i en t (2722 ,u)

00) = £ (x ,0 ()) : cp (2767 ,L .1 ,89 ,L)

76

2791 tes-rule : t(x,O(» -> O() : orient(2788,x)
2859 tes-rule : t(x,j(y,x» -> j(x,t(x,y» : orient(2618,u)
2883 tes-eqn :
2884 tes-eqn :
2944 tes-rule :
2961 tes-eqn :
2962 tes-eqn :
3044 tes-rule :
3464 tes-rule :
3465 tes-eqn
3466 tes-eqn :
3467 tes-eqn :

j(g(x),t(g(x),x» = t(g(x),O(» : cp(2859,L.2,20,L)
j(g(x),t(g(x),x» = O() : tes~red(2883,R,2791,L)

j(g(x),t(g(x),x» -> O() : orient(2884,u)
t(g(x),x) = j(x,O(» : cp(65,L.2,2944,L)
t(g(x),x) = x : tes-red(2961,R,13,L)
t(g(x),x) -> x : orient(2962,u)
j(t(x,y),t(z,y» -> t(j(x,z),y) : orient(9,x)

t(j(x,y),x) = j(x,t(y,x» cp(3464,L.1,11,L)
t(j(x,y),y) = j(t(x,y),y) : cp(3464,L.2,11,L)
t(j(x,y),y) = j(y,t(x,y» : tes-red(3466,R,5,L)

3610 tes-rule : t(j(x,y),x) -> j(x,t(y,x» : orient(3465,u)
3630 tes-eqn
3631 tes-eqn
3632 tes-eqn
3633 tes-eqn
3682 tes-rule :
3867 tes-eqn :
3943 tes-rule :

j(x,t(O(),x» = t(x,x) : cp(3610,L.1,13,L)
j(x,t(O(),x» = x : tes-red(3630,R,11,L)
j(x,t(g(x),x» = t(O(),x) : cp(3610,L.1,20,L)
j(x,x) = t(O(),x) : tes-red(3632,L.2,3044,L)
j(x,t(O(),x» -> x : orient(3631,u)

x = j(x,j(x,x» : cp(3682,L.2,3633,R)
j(x,j(x,x» -> x : orient(3867,x)

3983 tes-eqn g(x) = j(j(x,x),g(x» cp(298,L.2.1,3943,L)

3984 tes-eqn g(x) = j(g(x),j(x,x» : tes-red(3983,R,5,L)

3985 tes-eqn g(x) = j(x,j(x,g(x») : tes-red(3984,R,59,L)

3986 tes-eqn g(x) = j(x,O(» : tes-red(3985,R.2,20,L)

3987 tes-eqn g(x) = x : tes~red(3986,R,13,L)

4117 tes-rule : g(x) -> x : orient(3987,u)

4132 tes-eqn : j(x,j(x,y» = y : tes-red(65,L.2.1,4117,L)

4259 tes-rule : j(x,j(x,y» -> y : orient(4132,u)
4263 tes-eqn j(j(x,y),t(j(x,y),x» = t(j(x,y),y)
4264 tes-eqn j(j(x,y),j(x,t(y,x») =f(j(x,y),y)
4265 tes-eqn j(x,j(t(y,x),j(x,y») = f(j(x,y),y)
4266 tes-eqn j(x,j(j(x,y),f(y,x») =f(j(x,y),y)
4267 tes-eqn j(x,j(x,j(y,f(y,x»» = f(j(x,y),y)

cp(2859,L.2,4259,L)
tes-red(4263,L.2,3610,L)
tes-red(4264,L,59,L)
tes-red(4265,L.2,5,L)
tes-red(4266,L.2,45,L)

4268 tes-eqn j(x,f(x,y» = f(j(y,x),x) : tes-red(4267,L,4259,L)
4435 tes-rule : f(j(x,y),y) -> j(y,t(x,y» : orient(3467,u)
4800 tes-eqn j(x,f(x,y» = j(x,f(y,x» : tes-red(4268,R,4435,L)
4834 tes-eqn j(x,f(j(x,y),x» = j(x,j(x,f(x,y») : cp(4800,L.2,2656,L)
4835 tes-eqn j(x,j(x,f(y,x») = j(x,j(x,t(x,y») : tes-red(4834,L.2,3610,L)
4836 tes-eqn f(x,y) = j(y,j(y,f(y,x») : tes-red(4835,L,4259,L)
4837 tes-eqn t(x,y) = t(y,x) : tes-red(4836,R,4259,L)
5008 tes-final : f(a(),b(» = f(b(),a(» : instance(10,4837)

B.1.3 Lemmata

If we use the program lemma with the default settings (or directly pipe the protocol
into proof) the following steps are recognized as important lemmata:

65 tes-lemma
89 tes-lemma

2884 tes-lemma
3610 tes-lemma
3867 tea-lemma

3985 tes-lemma

j(x,j(g(x),y» -> Y : orient(54,u)
g(g(x» -> X : orient(72,u)
j(g(x),f(g(x),x» = O() : tes-red(2883,R,2791,L)
f(j(x,y),x) -> j(x,f(y,x» : orient(3465,u)
x = j(x,j(x,x)) : cp(3682,L.2,3633,R)
g(x) = j(x,j(x,g(x») : tes-red(3984,R,59,L)

77

\

2791 : tes-ru le : £ (x ,0 ()) -> 0 () : o r i en t (2788 ,x)
2859 : tes-ru le : f (x , j (y , x)) -> j (x , f (x , y)) : o r i en t (2618 ,u)
2883 : tes-eqn : j (g (x) , f (g (x) , x)) = £ (g (x) ,0 ()) : cp(2869,L.2,20,L)
2884 : tes-eqn : j (g (x) , f (g (x) , x)) = 0 () : tes- red(2883,R,2791,L)
2944 : tes-ru le : j (g (x) , f (g (x) , x)) -> 0 () : o r ien t (2884 ,u)
2961 : tes-eqn : f (g (x) , x) = j (x , 0 ()) : cp(65,L.2,2944,L)
2962 : t es -eqn : £ (g (x) , x) = x : t es - red (2961 ,R ,13 ,L)
3044 : tes-ru le : £ (g (x) , x) -> x : o r i en t (2962 ,u) -
3464 : tes-rule : j (f (x , y) , f (z , y)) -> £ (j (x , z) , y) : o r i en t (9 , x)
3465 : tes-eqn : f (j (x , y) , x) = j (x , f (y , x)) : cp(3464,L .1 ,11 ,L)
3466 : tes-eqn : f (j (x , y) , y) = j (£ (x , y) , y) : cp (3464,L .2 ,11 ,L)
3467 : tes-eqn : f (j (x , y) , y) = j (y . f (x , y)) : tes - red (3466 ,R ,5 ,L)
3610 : tes- ru le : f £ (j (x , y) , x) -> j (x , f (y , x)) : o r i en t (3465 ,u)
3630 : t es -eqn : j (x , £ (0 () , x)) = £ (x , x) : cp (3610 ,L .1 ,13 ,L)
3631 : tes-eqn : j (x , f (0 () , x)) = x : tes~red(3630,R,11,L)
3632 : tes-eqn : j (x , f (g (x) , x)) = £ (0 () , x) : cp (3610,L .1 ,20 ,L)
3633 : tes-eqn : j (x , x) = £ (0 () , x) : tes - red(3632 ,L .2 ,3044 ,L)
3682 : tes-rule : j (x , £ (0 () , x)) -> x : o r i en t (3631 ,u)
3867 : tes-eqn : x = j (x , j (x , x)) : cp(3682,L.2,3633,R)
3943 : tes-rule : j (x , j (x , x)) -> x : o r i en t (3867 ,x)
3983 : tes-eqn : g (x) = j (j (x , x) , g (x)) : cp(298,L .2 .1 ,3943,L)
3984 : tes -eqn : g (x) = j (g (x) , j (x , x)) : t es - red (3983 ,R ,5 ,L)
3985 : tes -eqn : g (x) = j (x , j (x , g (x))) : tes - red(3984,R,59 ,L)
3986 : tes-eqn : g(x) = j (x , 0 ()) : tes-red(39885,R.2,20,L)
3987 : tes-eqn : g (x) = x : tes - red(3986,R,13 ,L)
4117 : tes-ru le : g (x) -> x : or ient (3987,u)
4132 : tes-eqn : j (x , j (x , y)) = y : t es - red (65 ,L .2 .1 ,4117 ,L)
4269 : tes- ru le : j (x , j (x , y)) -> y : o r i en t (4132 ,u)
4263 : tes—eqn : j (j (x , y) , 2 (j (x , y) , x)) = £ (j (x , y) , y) : cp(2859,L .2 ,4259,L)
4264 : tes-eqn : j (j (x , y) , j (x , 2 (y , x))) = £ (j (x , y) , y) : tes-red(4263,L.2,3610,L)
4265 : tes-eqn : j (x , ; j (f (y , x) , j (x , y))) = 2 (j (x , y) , y) : t es - red (4264 ,L ,59 ,L)
4266 : tes-eqn : j (x , j (j (x , y) , f (y , x))) = £ (j (x , y) , y) : t es - red (4265 ,L .2 ,5 ,L)
4267 : tes—eqn : j (x , j (x , j (y , f (y , x)))) = £ (j (x , y) , y) : tes-red(4266,L.2,45,L)
4268 : tes—eqn : j (x , f (x , y)) = £ (j (y , x) , x) : t es - red (4267 ,L ,4259 ,L)
4435 : tes-rule : £ (j (x , y) , y) -> j (y , f (x , y)) : o r ien t (3467,u)
4800 : tes-eqn : j (x , f (x , y)) = j (x , f (y , x)) : tes- red(4268,R,4435,L)
4834 : tes-eqn : j (x , 2 (j (x , y) , x)) = j (x , j (x , 2 (x , y))) : cp(4800,L .2 ,2656,L)
4835 : tes-eqn : j (x , j (x , f (y . x))) = j (x , j (x , f (x , y))) : tes - red(4834 ,L .2 ,3610 ,L)
4836 : tes -eqn : f (x , y) j (y , i l y , 2 (y , x))) : t es - red (4835 ,L ,4269 ,L)
4837 : tes-eqn : f (x , y) f (y , x) : t es - red (4836 ,R ,4269 ,L)
5008 : tes - f ina l : £ (a () , b ()) = £ (b () , a ()) : i ns tance (10 ,4837)

B.1 .3 Lemmata

If we use the program lemma with the default settings (or directly pipe the protocol
into proof) the following steps are recognized as important lemmata:

65 : tes-lemma : j (x , j (g (x) , y)) -> y : or ient(54,u)
89 : tes-lemma : g (g (x)) -> x : o r i en t (72 ,u)

2884 : tes-lemma : j (g (x) , f (g (x) , x)) = 0 () : tes- red(2883,R,2791,L)
3610 : tes-lemma : £ (j (x , y) , x) -> j (x , f (y , x)) : o r i en t (3465 ,u)
3867 : tes-lemma : x = j (x , j (x , x)) : cp (3682 ,L .2 ,3633 ,R)
3985 : tes-lemma : g (x) = j (x , j (x , g (x))) : tes - red(3984,R,59 ,L)

77

AXIOMS

Figure 7: Lemma structure according to B.1.3

4259 tes-lemma j(x,j(x,y» -> Y : orient(4132,u)

4267 tes-lemma j(x,j(x,j(y,f(y,x»» = f(j(x,y),y) tes-red(4266,L.2,45,L)

4836 tes-lemma t(x,y) = j(y,j(y,t(y,x») : tes-red(4835,L,4259,L)

The dependencies of the lemmata are depicted in figure 7. The numbers correspond to
the proof as printed in the next section, the theorem is marked "T".

B.1.4 The proof

To arrive at a .readable proof we have used the program proof on the above proof
listing. We used the -latex option to produce output in ~TEX. Please note that the
terms going to be replaced (affected by the next operation) are marked by underlining,

78

AXIOMS

Figure 7: Lemma structure according to B.1.3

4259 : tes-lemma : j (x , j (x , y)) -> y : orient(4132,u)
4267 : tes-lemma : j (x , j (x , j (y , f (y , x)))) = £ (j (x , y) , y) : tes-red(4266,L.2,45,L)
4836 : tes-lemma : f (x , y) = j (y , j (y , f (y , x))) : tes - red(4835,L ,4269,L)

The dependencies of the lemmata are depicted i n figure 7. The numbers correspond to
the proof as printed in the next section, the theorem is marked “T”.

B .1 .4 The proof

To arrive at a readable proof we have used the program proof on the above proof
listing. We used the - la tex option to produce output in ATpX. Please note that the
terms going to be replaced (affected by the next operation) are marked by underlining,

18

while inserted terms (affected by the last operation) are set in bold face. We refrained
from printing the substitutions to keep the proof more readable.

Consider the following set of axioms:

Axiom 1: f(x, x) =x

Axiom 2: j(O, x) = x

Axiom 3: j(x, 0) = x

Axiom 4: j(x, g(x» = 0

Axiom 5: j(x, y) = j(y, x)

Axiom 6: j(j(x, y), z) =j(x, j(y, z»

Axiom 7: f(x, j(y, z» = j(f(x, y), f(x, z»

Axiom 8: f(j(x, y), z) =j(f(x, z), fey, z»

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

Proof:

Lemma 1: j(u, j(g(u), z» =z
j(u, j(g(u), z» = j(j(u, g(u», z) by Axiom 6 RL

= j(O, z) by Axiom 4 LR

= z by Axiom 2 LR

Lemma 2: g(g(u» = u
g(g(u»	 = j(u, j(g(u), g(g(u»» by Lemma 1 RL

= j(u, 0) by Axiom 4 LR

= u by Axiom 3 LR

Lemma 3: j(g(z), f(g(z), z» = 0
j(g(z), f(g(z), z»	 = j(f(g(z), z), g(z» by Axiom 5 RL

= j(f(g(z), z), f(g(Z), g(z») by Axiom 1 RL
= f(g(z), j(z, g(z») by Axiom 7 RL
= f(g(z), 0-)--- by Axiom 4 LR
= f(g(g(g(z»), 0)	 by Lemma 2 RL
= j(g(g(z», j(g(g(g(z»), f(g(g(g(z»), 0») by Lemma 1 RL
= j(g(g(z», j(f(g(g(g(z»), g(g(g(z»», f(g(g(g(z))), 0))) by Axiom 1 RL
= j(g(g(z», f(g(g(g(z»), j(g(g(g(z»), 0») by Axiom 7 RL
= j(g(g(z», f(g(g(g(z))), g(g(g(z»»)	 by Axiom 3 LR
= j(g(g(z», g(g(g(z»»	 by Axiom 1 LR
= 0	 by Axiom 4 LR

79

while inserted terms (affected by the last operation) are set in bold face. We refrained
from printing the substitutions to keep the proof more readable.

Consider the following set of axioms:

Axiom 1: f(x, x) = x
Axiom 2: j(0, x) = x
Axiom 3: j(x, 0) = x
Axiom 4: j(x, g(x)) = 0
Axiom 5: (x , y) = i(y, x)
Axiom 6: (i(x, ¥), 2) = i (x , i (y, 2))
Axiom 7: f(x, j(y, z)) = (f(x, y), f(x, z))
Axiom 8: f(j(x, y), z) = (f(x, 2), f(y, z))

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

Proof:

Lemma 1 : j(u, j(g(u), z)) = 2

i (u , j(g(u), 2)) = Jj(i(u, g (u)) , z) by Axiom 6 RL
= j(0,z) by Axiom 4 LR
= z by Axiom 2 LR

Lemma 2 : g(g(u)) =u
g(g(u)) J(u, j (g (u) , g (g (u)))) by Lemma 1 RL

j(u, 0) by Axiom 4 LR
u by Axiom 3 LR

Lemma 3 : j(g(z), f(g(z), 2)) = 0
i(e(z), f(g(z), 2)) = j (f (g(z) , 2), g(z)) by Axiom 5 RL

= j(f(g(2), 2), f (g(z) , g (z))) by Axiom 1 RL
= f(g(z) , J(z, g(z))) by Axiom 7 RL
= f(g(z), 0) by Axiom 4 LR
= f (g (g (g (z))) , 0) by Lemma2 RL
= jus (g (z)) , (g (g (g (z))) f (g (g (g (z))) , 0))) by Lemma 1 RL
= is (g (z)) , (f (g (g (g (z))) , g (g (g (z)))) , f(g(g(g(z))), 0))) by Axiom 1 RL
= j(g(8(z)), f(g(g(g(z))), j(g(g(g(z))), 0))) by Axiom 7 RL
= j(g(g(z)), (g(g(g(z))) , g (g(g(z))))) by Axiom 3 LR
= Uslslz)), g(8(g(z)))) by Axiom 1 LR

by Axiom 4 LR.

79

Lemma 4: f(j(v, y), v) =j(v, fey, v»
f(j(v, y), v) = j(f(v, v), fey, v» by Axiom 8 LR

= j(v, f(y, v» by Axiom 1 LR

Lemma 5: g(y) = W(y, y), g(y»
g(y) = j(g(j(y, j(y, y»), j(g(g(j(y, j(y, y»», g(y») by Lemma 1 RL
- = j(g(j(y, j(y, y»), j(g(y), g(g(j(y, j(y, y»»» by Axiom 5 LR

= j(gU(y, j(y, y))), j(g(y), j(y, j(y, y»))) by Lemma 2 LR
= j(g(j(y, j(y, y))), j(g(y), j(g(g(y», j(y, y)))) by Lemma 2 RL

= j(g(j(y, j(y, y))), j(y, y» by Lemma 1 LR
= j(j(y, y), g(j(y, j(y, y»» by Axiom 5 LR
= j(j(y, y), g(j(y,j(y,j(Y~Q»)))) by Axiom 3 RL
= j(j(y, y), g(j(y, j(y, j(y, j(g(y), f(g(y), y»»))) by Lemma 3 RL
= j(j(y, y), g(j(y, j(y, f(g(y), y»))) by Lemma 1 LR

= j(j(y, y), g(j(y, f(j(y, g(y», y»» by Lemma 4 RL

= j(j(y, y), g(j(y, f(O, y»» by Axiom 4 LR
= j(j(y, y), g(f(j(y, 0), y))) by Lemma 4 RL

= j(j(y, y), g(f(y, y») by Axiom 3 LR

v = j(j(y, y), g(YD by Axiom 1 LR

Lemma 6: j(u, j(u, z» = z
je", j(!!, z» = je", j(j(u,!D, z» by Axiom 3 RL

= je", we", j(u, g(u»), z» by Axiom 4 RL
= j(u, jU(j(u, u), g(u», z» by Axiom 6 RL
= j(u, j(g(u), z» by Lemma 5 RL

by Lemma 1 LR= z

Lemma 7:
j(z, fez, w»

j(z, fez, w» = j(z, few, z»

= j(w, j(w, j(z, fez, w»» by Lemma 6 RL

= j(w, j(j(w, z), fez, w») by Axiom 6 RL

= j(w, j(f(z, w), j(w, z») by Axiom 5 RL

= j(j(w, fez, w», j(w, z» by Axiom 6 RL

= j(j(w, z), j(w, fez, w») by Axiom 5 LR

= j(j(w, z), f(j(w, z), w» by Lemma 4 RL

= j(f(j(w, z), w), j(w, z» by Axiom 5 RL

= j(f(j(w, z), w), f(j(w, z), j(w, z») by Axiom 1 RL

= f(j(w, z), j(w, j(w, z») by Axiom 7 RL

= f(j(w, z), z) by Lemma 6 LR

=
=

j(f(w, z), fez, z»
j(f(w, z), z)-

by Axiom 8 LR
by Axiom 1 LR

= j(z, few, z» by Axiom 5 LR

80

Lemma 4:
f i (v ,y) , v) = J(f (v,v) , f(y, v))

= j (v , f(y, v))

Lemma 5 : g(y) = j(i(y, ¥) , 8(y))
gly) = i (8 l (y Hy, ¥))) , i(8(8li(y, j(y, ¥)))) , g (y))) by Lemma 1 RL

= jel . iv,))) , i (g(y) (gly: iy» ¥)))))) by Axiom 5 LR
= je l ly , itv, ¥))), i(8(y), 3(y, ivy ¥)))) by Lemma 2 LR
= j y , i ly, YD), sy) , i (e (g (y)) ,ily, ¥)))) by Lemma 2 RL
= (gly, iy , yo ¥)) by Lemma 1 LR

= (My y) , Gy» Hy, ¥)))) by Axiom 5 LR
= j y , ¥), 86(y, i(y, 3(3> 0))))) by Axiom 3 RL
= iG y) , Os, i ly , IQ, 3 (8 (¥) , £ (g(¥) , ¥))))))) by Lemma 3 RL
= JG y), O0, iy , g ly) , y))) by Lemma i LR
= JG, ¥): 8G(y, fGQn 8(¥))s YIN) by Lemma 4 RL
= j v) gG(y, KO, y)))) by Axiom 4 LR
= jG0y, y) , g(fG(y, 0) , ¥))) by Lemma 4 RL
= jG0y, y) s(f(y, y))) by Axiom 3 LR

v = j y , ¥) 8(y)) by Axiom 1 LR

Lemma 6 : j(u, j(u, z)) = z
wie 2) = (u , jG(u, 0) , 3) by Axiom 3 RL

= (u , j(i(u, j (u , g (u))) , z)) by Axiom 4 RL
= j (e , jGG(u , u) , g (u)) , z)) by Axiom 6 RL
= j u , j(g(u), 2)) by Lemma 5 RL
= 2 by Lemma 1 LR

Lemma 7 : j(z, f(z, w)) = j(z, f(w, 2))
i (z, f(z, w))

fG(v, y), v) = i(v, f(y, v))
by Axiom 8 LR
by Axiom 1 LR

FI

|
J

1
J

J
|

1I
 1

TA

 | Jw , j (w , i (z , f(z, w))))
iw , 3G (w , z) , f (z, w)))
iw , 3 (f (z , w) , 3 (w , z)))
1G (w , f (z , w)), j (w , z))
JG(w , z) , J (w , f (z , w)))
jG (w , 2) , fG (w , 2) , w))
j (fG(w, z) , w) , J (w , z))
j (fG(w, z) , w) , fG(w, z) , (Ww, z)))

by Lemma 6 RL
by Axiom 6 RL
by Axiom 5 RL
by Axiom 6 RL
by Axiom 5 LR
by Lemma 4 RL
by Axiom 5 RL
by Axiom 1 RL

fO(w, z), j (w, j (w, z)))
f(j(w, z), z)
J (f (w, z) , f (z , z))
j(f(w, z), z)
i (z , f(w, z))

by Axiom 7 RL
by Lemma 6 LR
by Axiom 8 LR
by Axiom 1 LR
by Axiom 5 LR

80

Theorem 1: f(a, b) = f(b, a)
f(a, b) j(b, j(b, f(a, b») by Lemma 6 RL
-- = j(b, f(j(b, a), b» by Lemma 4 RL

=	 j(b, f(b, j(b, a») by Lemma 7 RL
=	 j(b, j(f(b, b), f(b, a») by Axiom 7 LR

j(b, j(b, f(b, a») by Axiom 1 LR

f(b, a) by Lemma 6 LR

B.2 A ring with x 3 = x is Abelian

This problem is very similar to the last one. However, albeit the specifications seem
to be nearly identical, this example is considered as a particularly challenging example
for pure equational reasoning. The first known automatic proof for this problem by
a prover not employing a build-in AC-theory was found by the DISCOUNT system
in a sequential run on a SUN4j370 server. It took 8188 seconds (roughly two and
one quarter hours) arid was published in [Pi92]. In the meantime this problem can
be solved by teams using two or three SUN ELC workstations5 in approximately 300
seconds.

B.2.1 The	 Problem

MODE	 PROOF

NAME	 lusk6

ORDERING	 XKBO
f:5 > j:4 >	 g:3 > 0:1 > b:1 > a:1

EQUATIONS	 j (O,x) = x # 0 is a left identity
j (x,O) = x # 0 is a right identity
j (g (x),x) = 0 # there is a left inverse
j (x,g (x)) = 0 # there is a right inverse
j (j (x,y),z) = j (x,j (y,z)) # associativity of addition
j (~,y) = j (y ,x) # commutativity of addition
f (f (x,y),z) = f (x,f (y,z)) # associativity of

multiplication
f (x,j (y,z) = j (f (x,y),f (x,z)) # distributivity axioms
f (j (x,y),z) = j (f (x,z),f (y,z)) #

f (f(x,x),x) = x # special hypothesis

CONCLUSION	 f (a.b) = f (b,a) # theorem

5For better comparison: We reproduced the original sequential proof on a SUN ELC workstation
in 5153 seconds.

81

Theorem 1 : f(a, b) = f(b, a)
f (a ,b) = j (b , j (b , f(a, b))) by Lemma6 RL

= j(b, f(j(b, a) , b)) by Lemma4 RL
= j (b , f(b, j (b , a))) by Lemma7 RL
= i b , (f (b , b) , f (b , a))) by Ax iom 7 LR

= j(b, j (b , f(b, a))) by Axiom 1 LR
= f(b, a) by Lemma 6 LR

B.2 A ring wi th 2% = 2 is Abelian

This problem is very similar to the last one. However, albeit the specifications seem
to be nearly identical, this example is considered as a particularly challenging example
for pure equational reasoning. The first known automatic proof for this problem by
a prover not employing a build-in AC-theory was found by the DISCOUNT system
i n a sequential run on a SUN4/370 server. It took 8188 seconds (roughly two and
one quarter hours) and was published in [Pi92]. In the meantime this problem can
be solved by teams using two or three SUN ELC workstations® in approximately 300
seconds.

B.2 .1 The Problem

MODE PROOF

NAME lusk6

ORDERING XKBO
£ :5 > j : 4 > g :3 > 0 :1 > b :1 > a :1

j (0 , x) =EQUATIONS j x # 0 i s a le f t ident i ty
j (x , 0) =x # 0 i s a right ident i ty
j (g (x) , x) = 0 # there i s a le f t inverse
j (x , g (x)) 0 # there i s a r ight inverse
jG (x , y) , z) = j (x , j (y , 2)) # assoc ia t iv i ty of addit ion
j (x , y) = j (y , x) # commutativity o f addit ion
f (f (x , y) , 2) = f (x , f (y , 2)) # assoc ia t iv i ty of

mul t ip l icat ion
f (x , j (y , 2)) = j (£ (x , y) , f (x , 2)) # d is t r ibu t iv i ty axioms
f (j (x , y) , 2) = j (£ (x , 2) , f (y , 2)) #
f (£ (x , x) , x) = x # specia l hypothesis

CONCLUSION f (a ,b) = f (b ,a) # theorem

For better comparison: We reproduced the original sequential proof on a SUN ELC workstation
in 5153 seconds.

81

B.2.2	 The proof

As we already mentioned above we will only print the final proof. The proof listing for
this problem can be very long - the sequential version, which we present here, contains
nearly 400000 steps and has a size of nearly 50 Megabytes. However, the extracted
listing uses only 190 steps.

Consider the following set of axioms:

Axiom 1: j(O, x) =x

Axiom 2: j(x, 0) =x

Axiom 3: j(x, g(x» = 0

Axiom 4: j(j(x, y), z) = j(x, j(y, z»

Axiom 5: j(x, y) = j(y, x)

Axiom 6: f(f(x, y), z) = f(x, fey, z»

Axiom 7: f(x, j(y, z» =j(f(x, y), f(x, z»

Axiom 8: f(j(x, y), z) = j(f(x, z), fey, z»

Axiom 9: f(f(x, x), x) = x

This theorem holds true:

Theorem	 1: [(a, b) =f(b, a)

Proof:

Lemma 1: j(u, j(g(u), z» = z
j(u, j(g(u), z»	 = j(j(u, g(u», z) by Axiom 4 RL

= j(O, z) by Axiom 3 LR

= z by Axiom 1 LR

Lemma 2: g(g(u» = u
g(g(u»	 = j(u, j(g(u), g(g(u»» by Lemma 1 RL

= j(u; 0) by Axiom 3 LR

= u by Axiom 2 LR

Lemma 3: j(v, g(j(w, v))) = g(w)
j(v, g(j(w, v)))	 = j(g(j(w, v», v) by Axiom 5 RL

= j(g(j(w, v», j(g(w), j(g(g(w», v))) by Lemma 1 RL

= j(g(j(w, v», j(g(w), j(w, v))) by Lemma 2 LR

= j(g(j(w, v», j(g(w), g(g(j(w, v»))) by Lemma 2 RL

= j(g(j(w, v», j(g(g(j(w, v»), g(w») by Axiom 5 RL

= g(w) by Lemma 1 LR

82

B.2.2 The proof

As we already mentioned above we will only print the final proof. The proof l isting for
this problem can be very long - the sequential version, which we present here, contains
nearly 400000 steps and has a size of nearly 50 Megabytes. However, the extracted
listing uses only 190 steps.

Consider the following set of axioms:

Axiom 1: j(0, x) = x
Axiom 2: j(x, 0) =x
Axiom 3: j (x , g(x)) = 0
Axiom 4: j(i(x, y) , z) = (x , i (y , 2))
Axiom 5: j (x , y) = (3, %)
Axiom 6: (f(x, y), z) = f(x, f(y, 2))
Axiom 7: f(x, i (y , 2) = i(i (x, y), f(x, 2))
Axiom 8: £(i(x, ¥), 2) = i(f(x, 2), f(y: 2)
Axiom 9: f(f(x, x), x) = x

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

Proof:

Lemma 1 : j (u , j (g (u) , 2)) = z
i u , {g (u) , z)) = i (i (u , g(u)), z) by Axiom 4 RL

30 , 2) by Axiom 3 LR
z by Axiom 1 LR

Lemma 2: g(gu)) =u
g(g(u)) = (u , i (g (u) , g(g(u)))) by Lemmal RL

= j(w, 0) by Axiom 3 LR
= u by Axiom 2 LR

Lemma 3 : j(v, g(i(w, v))) = g(w)
i (v , 8G(w, v))) 1(gG(w, v)), v) by Axiom 5 RL

i (g ((w , v)), j(g(w), i(g(g(w)), v))) by Lemma 1 RL
i(g(i(w, v)), i(g(w), i(w, v))) by Lemma 2 LR
i (8 l (w , v)), i (s(w), g(&(i(w, v))))) by Lemma 2 RL
i(8G(w, v)), i(g(g(i(w, v))), g(w))) by Axiom 5 RL
g(w) by Lemma 1 LR{I

T
I

0
HU

 T
O

82

Lemma 4: fey, 0) =	 0
f(y, 0)	 = f(g(g(y»,O)

= j(g(y), j(g(g(y», f(g(g(y», 0)))
= j(g(y), j(f(f(g(g(y», g(g(y))), g(g(y»), f(g(g(y», 0)))
= j(g(y), j(f(g(g(y», f(g(g(y», g(g(y»))), f(g(g(y», 0)))
= j(g(y), f(g(g(y», j(f(g(g(y», g(g(y))), 0)))
= j(g(y), f(g(g(y», f(g(g(y», g(g(y»))))
= j (g(y), f(f(g(g(y», g(g(y))), g(g(y))))
= j(g(y), g(g(y)))

= °

by Lemma 2 RL
by Lemma 1 RL
by Axiom 9 RL
by Axiom 6 LR
by Axiom 7 RL
by Axiom 2 LR
by Axiom 6 RL
by Axiom 9 LR
by Axiom 3 LR

Lemma 5: f(O, y) = 0
f(O, y) f(O, j(y, 0» by Axiom 2 RL =

f(O, j(y, j(y, g(y)))) by Axiom 3 RL =
f(O, j(j(y, y), g(y») by Axiom 4 RL =
j(f(O, j(y, y», f(O, g(y») by Axiom 7 LR=
j(j(f(O, y), f(O, y», f(O, g(y») by Axiom 7 LR =
j(f(j(O, 0), y), f(O, g(y))) by Axiom 8 RL =
j(f(O, y), f(O, g(y») by Axiom 1 LR =
f(O, j(y, g(y»)	 by Axiom 7 RL =
f(O, 0)	 by Axiom 3 LR =

° by Lemma 4 LR=

Lemma 6: fez, fey, fez, fey, fez, y»))) = fez, y)
fez, fey, fez, fey, fez, y»))) = fez, fey, f(f(z, y), fez, y»))) by Axiom 6 RL

= f(f(z, y), f(f(z, y), fez, y))) by Axiom 6 RL
= f(f(f(z, y), fez, y», fez, y» by Axiom 6 RL
= fez, y) by Axiom 9 LR

Lemma 7: f(p, j(f(p, f(p, v», z» =f(p, j(v, z»
f(p, j(f(p, f(p, v», z»	 = j(f(p, f(p, f(p, v»), f(p, z» by Axiom 7 LR

= j(f(p, f(f(p, p), v», f(p, z» by Axiom 6 RL

= j(f(f(p, f(p, p», v), f(p, z» by Axiom 6 RL

= j(f(f(f(p, p), p), v), f(p, z» by Axiom 6 RL

= j(f(p, v), f(p, z» by Axiom 9 LR

= rep, j(v, z» by Axiom 7 RL

83

Lemma 4:
f(y, 0)

H
H

(I

TI

[I
M

N
ALemma

£(0, y)

T
O

|

{ 1
J

|

Lemma 6 :

Lemma 7 :
f(p, i(f(p, 1(p, v)), 2))

f(y, 0) = 0
f (g(g(y)) , 0)
i (g(y) je(g(y)): (s(g(y)), 0)))
i(g(y), f (g(g(y)) , g(g(y))); &(&(¥))), f(g(g(y)), 0)))
i (8(y) , f g (g (y)) , fg(g(y)) , g(g(¥)))), f(g(g(y)), 0)))
i(g(y), Mg(g(y)). jfls(g(y)), g(g(y))), 0)))
Hy), f(a(g(y)), f(g(g(y)), 8(g(y)))))
i (g (y) , f(f(g(s(y)), g(g(y))), 8(g(y))))
Yel) g(g(y)))

f(0, y)= 0
£f(0, j(y, 0))
f(0, j(y, i(y, 8(y))))
£(0, jG(y, y), g(y)))
(0, i(y, y)), 1(0, g(y)))
iGi(£(0, y), £(0, y)), £(0, g(y)))
3(£G(0, 0), y), £0, g(y)))
3(£(0, y), £0, &(v)))
£0, i(y, g(y)))
£(0, 0)
0

by Axiom 2 RL
by Axiom 3 RL
by Axiom 4 RL
by Axiom 7 LR
by Axiom 7 LR
by Axiom 8 RL
by Axiom 1 LR
by Axiom 7 RL
by Axiom 3 LR
by Lemma 4 LR

f(z, f(y, f(z, f(y, f(z, y))))) = f(z, y)
f(z, f(y, f(z, {(y, f(z, ¥)))))

f(p, J(f(p, f(p,

N
N

N

f(z, y)

f(z, f(y, {(£(z, y) , f(z, y))))
£(f(z, y) , £(f(z, y) , f(z, ¥)))
f(f(f(z, y), f(z, y)) , f(z, y))

v)), z)) = f(p, j(v, 2))
i(f(p, f(p, f(p, v)
i f (p, f(f(p, p), v
(EEp, f(p, P)), v), f(p, 2))
3(£(f(£(p, p), p), v), f(p, 2))
i(f(p, v), f(p, 2))
f(p, i (v , 2))

)), f(p, z))
)), f(p, z)) by

by
by

by Lemma 2 RL
by Lemma 1 RL
by Axiom 9 RL
by Axiom 6 LR
by Axiom 7 RL
by Axiom 2 LR
by Axiom 6 RL
by Axiom 9 LR
by Axiom 3 LR

by Axiom 6 RL
by Axiom 6 RL
by Axiom 6 RL
by Axiom 9 LR

by Axiom 7 LR
Axiom 6 RL
Axiom 6 RL
Axiom 6 RL

by Axiom 9 LR
by Axiom 7 RL

Lemma 8: f(j(v, g(f(x, f(x, v)))), x) = 0
f(j(v, g(f(x, f(x, v)))), x)

= f(j(v, g(f(x, f(x, v)))), f(x, f(j(v, g(f(x, f(x, v»», f(x, f(j(v, g(f(x, f(x, v»))), x»»).
by Lemma 6 RL

= f(j(v, g(f(x, f(x, v)))), f(f(x, j(v, g(f(x, f(x, v»))), f(x, f(j(v, g(f(x, f(x, v»))), x»)))
by Axiom 6 RL

= f(j(v, g(f(x, f(x, v»))), f(f(x, j(f(x, f(x, v», g(f(x, f(x, v»))), f(x, f(j(v, g(f(x, f(x, v»))), x»)))
by Lemma 7 RL

= f(j(v, g(f(x, f(x, v»», f(f(x, 0), f(x, f(j(v, g(f(x, f(x, v»», x»»
by Axiom 3 LR

= f(j(v, g(f(x, f(x, v»))), f(O, f(x, f(j(v, g(f(x, f(x, v»))), x»»
by Lemma 4 LR

= f(j(v, g(f(x, f(x, v»», 0)
by Lemma 5 LR

= 0
by Lemma 4 LR

Lemma 9: fez, g(u» = g(f(z, u»
fez, g(u»	 = j(O, fez, g(u))) by Axiom 1 RL

= j(f(z, g(u», 0) by Axiom 5 RL

= j(f(z, g(u», j(O, g(O») by Axiom 3 RL

= j(f(z, g(u», g(O» by Axiom 1 LR

= j(f(z, g(u», g(f(z, 0))) by Lemma 4 RL

= j(f(z, g(u», g(f(z, j(u, g(u»))) by Axiom 3 RL

= j(f(z, g(u», g(j(f(z, u), fez, g(u))))) by Axiom 7 LR

= g(f(z, u» by Lemma 3 LR

Lemma 10: f(g(u), y) = g(f(u, y»
f(g(u), y) = j(O, f(g(u), y» by Axiom 1 RL

= j(f(g(u), y), 0) by Axiom 5 RL

= j(f(g(u), y), j(O, g(O») by Axiom 3 RL

= j(f(g(u), y), g(O» by Axiom 1 LR
= j(f(g(u), y), g(f(O, y») by Lemma 5 RL
= j(f(g(u), y), g(f(j(u, g(u», y») by Axiom 3 RL

= j(f(g(u), y), g(j(f(u, y), f(g(u), y)))) by Axiom 8 LR

= g(f(u, y» by Lemma 3 LR

Lemma 11: g(f(u, w» = few, few, g(f(u, w»»
g(f(u, w» = j(f(g(f(w, few, u»), w), g(j(f(u, w), f(g(f(w, few, u))), w»))) by Lemma 3 RL

= j(f(g(f(w, few, u»), w), g(f(j(u, g(f(w, few, u»))), w))) by Axiom 8 RL
= j(f(g(f(w, few, u))), w), g(O» by Lemma 8 LR
= j(f(f(w, g(f(w, u))), w), g(O» by Lemma 9 RL
= j(f(w, f(g(f(w, u», w», g(O» by Axiom 6 LR
= j(f(w, f(f(w, g(u», w», g(O» by Lemma 9 RL
= j(f(w, few, f(g(u), w))), g(O» by Axiom 6 LR
= j(f(w, few, f(g(u), w))), j(O, g(O))) by Axiom 1 RL
= j(f(w, few, f(g(u), w))), 0) by Axiom 3 LR
= j(O, few, few, f(g(u), w»» by Axiom 5 LR
= few, few, f(g(u), w))) by Axiom 1 LR
= few, few, g(f(u, w»» by Lemma 10 LR

84

Lemma 8 : f(j(v, g(f(x, f(x, v)))), x) = 0
fG(v, s(f(x, f(x, v)))), x) . .

= fO(v, g(f (x , f(x, v)))) , f (x , fO(v, (f (x , f(x, v)))) , f(x, fG(v, g (f (x , f(x, v)))) , x))))) -
by Lemma 6 RL

= fG(v, g(f(x, f(x, v)))) , f(f(x, j (v , &(f(x, f(x, v))))) , f(x, f l v , g(f(x, f(x, v)))), x)}))
by Axiom 6 RL

= fG(v, (f(x, f(x, v)))), f (x , (f(x, f(x, v)), &(f(x, f(x, v))))), f(x, fG(v, &(f(x, f(x, v)))), x))))
by Lemma 7 RL

= fG(v, g(f(x, f(x, v)))), f(f(x, 0), f(x, fG(v, g(f(x, f(x, v)))), x))))
by Axiom 3 LR

= f(j(v, g(f(x, f(x, v)))), £0, f(x, f(i(v, &(f(x, f(x, v)))), x))))
by Lemma 4 LR

= fO(v, s(f(x, f(x, v)))), 0)
by Lemma 5 LR

= 0
by Lemma 4 LR

Lemma 9 : f(z, g(u)) = g(f(z, u))
f(z, g(u)) = j(0, f(z, g(u))) by Axiom 1 RL

= j(f(z, g(u)), 0) by Axiom 5 RL
= j(f(z, g(u)), i(0, g(0))) by Axiom 3 RL
= j(f(z, g(u)), g(0)) by Axiom 1 LR
= (f (z , g (u)) , g (f (z , 0))) by Lemma 4 RL

= (f(z, g(u)), g(f(z, j (u, g(u))))) by Axiom 3 RL
= j(f(z, g(u)), g(i(f(z, u) , f(z, g(u))))) by Axiom 7 LR
= g(f(z, u)) by Lemma 3 LR

Lemma 10 : f(g(u), y) = g(f(u, y))
f(g(u), y) = (0, f(g(u), y)) by Axiom 1 RL

= j(f(g(u), y), 0) by Axiom 5 RL
= j(f(g(u), y) , i (0 , g(0))) by Axiom 3 RL
= j(f(g(u), y), g(0)) by Axiom 1 LR
= j(f (g(u), y) , &(f(0, y))) by Lemma 5 RL
= j(f(g(u), y) , s(fG(u, g(u)), y))) by Axiom 3 RL
= j(f(g(u), y), gG(f(u, y), f(g(u), y)))) by Axiom 8 LR
= g(f(u, y)) by Lemma 3 LR

Lemma 11 : g(f(u, w)) = f(w, f(w, g(f(u, w))))
gi , w)) = (E(w, fw , u))), w), (f(s, w), (e(f(w, {w, u))), w)))) by Lemma 3 RL

= (E(w, fw , u))), w), g(fGi(u, (fw, fw, u)))), w))) by Axiom 8 RL
= j(f(g(f(w, f(w, u))), w), g(0)) by Lemma 8 LR
= (£@(w, g(£(w, u))), w), g(0)) by Lemma 9 RL
= (E(w, (gE, u)), w)), g(0)) by Axiom 6 LR
= (tw, (Ew, g(u)), w)), g(0)) by Lemma 9 RL
= j(f(w, f(w, f(g(u), w))), g(0)) by Axiom 6 LR
= j(f(w, f(w, f(g(u), w))), j(0, g(0))) by Axiom 1 RL
= j(f(w, f(w, f(g(u), w))), 0) by Axiom 3 LR
= (0 , f(w, f(w, f(g(u), w)))) by Axiom 5 LR
= f(w,f(w, f(g(u), w))) by Axiom 1 LR
= f(w, f(w, g(f(u, w)))) by Lemma 10 LR

84

Lemma 12: fey, fey, fez, v))) =fez, v)
fey, fey, fez, v))) = g(g(f(v, fey, fez, v))))) by Lemma 2 RL

= g(f(v, g(f(v, fez, v))))) by Lemma 9 RL
= g(f(v, fey, g(f(z, v))))) by Lemma 9 RL
= g(g(f(z, v))) by Lemma 11 RL
= fez, v) by Lemma 2 LR

Lemma 13: fey, w) = few, fey, few, fey, few, few, fey, w)))))))
fey, w) = fey, few, fey, few, fey, w)))))

by Lemma 6 RL .
= f(f(w, fey, few, fey, w)))), f(f(w, fey, few, fey, w)))), fey, few, fey, few, fey, w)))))))

by Lemma 12 RL
= f(f(w, fey, few, fey, w)))), f(f(w, fey, few, fey, w)))), fey, w)))

by Lemma 6 LR
= f(f(w, fey, few, fey, w)))), few, f(f(y, few, fey, w))), fey, w))))

by Axiom 6 LR
= f(f(w, fey, few, fey, w)))), few, fey, f(f(w, fey, w)), fey, w)))))

by Axiom 6 LR
= f(f(w, fey, f(w,f(y, w)))), few, fey, few, f(f(y, w), fey, w))))))

by Axiom 6 LR
= f(f(w, fey, few, fey, w)))), few, fey, few, fey, few, fey, w)))))))

by Axiom 6 LR
= f(f(w, fey, few, fey, w)))), few, fey, w)))

by Lemma 6 LR
= few, f(f(y, few, fey, w))), few, fey, w))))

by Axiom 6 LR
= few, fey, f(f(w, fey, w)), few, fey, w)))))

by Axiom 6 LR
= few, fey, few, f(f(y, w), few, fey, w))))))

by Axiom 6 LR
= few, fey, few, fey, few, few, fey, w)))))))

by Axiom 6 LR

85

Lemma 12: f(v, f(v, f(z, v))) = f(z, v)
f(v, f(v, f(z, v))) g(g(f(v, f(v, f(z, v))))) by Lemma 2 RL

g(f(v, g(f(v, f(z, v))))) by Lemma 9 RL
g(f(v, f (v, g(f(z, v))))) by Lemma 9 RL
g(g(f(z, v))) by Lemma 11 RL
f(z, v) by Lemma 2 LR

i

Lemma 13 : f(y, w) = f(w, f(y, f (w, f(y, f(w, f (w, f(y, w))))))
fly, w) = f(y, f(w, f(y, f(w, f(y, w)))))

by Lemma 6 RL .

= f(f(w, f(y, f (w, f(y, w)))), {(f(w, f(y, f(w, f(y, w)))), f(y, f(w, f(y, f(w, f(y, w)))))))
by Lemma 12 RL

= f(f(w, f(y, f(w, f(y, w)))), f(f(w, f(y, f(w, f(y, w)))), f(y, w)))
by Lemma 6 LR

= f(f(w, iy, f(w, f(y, w)))), f(w, f(f(y, f(w, f(y, w))), f(y, w))))
by Axiom 6 LR

= f(f(w, f(y, f(w, f(y, w)))), f(w, f(y, {(f(w, f(y, w)), £(y, w)))))
by Axiom 6 LR

= f(f(w, f(y, i (w, f(y, w)))), f (w, f(y, f (w, {(f(y, w) , f(y, w))))))
by Axiom 6 LR

= f(f(w, f(y, f (w, f(y, w)))), f (w, f(y, f (w, f(y, f (w, f(y, w)))))))
by Axiom 6 LR

= {(f(w, f(y, f(w, iy, w)))), f(w, f(y, w)))
by Lemma 6 LR

= f (w, f(f(y, f(w, f(y, w))), f(w, f(y, w))))
by Axiom 6 LR

= fw, f(y, Kf(w, f(y, w)), f(w, f(y, w)))))
by Axiom 6 LR

= f(w, f(y, fw, f(f(y, w), f(w, f(y, w))))))
by Axiom 6 LR

= f(w, f(y, f(w, f(y, f(w, f(w, f(y, w)))))))
by Axiom 6 LR

85

Lemma 14: f(j(p, f(p, g(f(x, x»)), x) =f(p, j(g(x), f(f(p, p), x»)
f(j(p, f(p, g(f(x, x»))), x) = f(j(f(f(p, p), p), f(p, g(f(x, x»», x)

by Axiom 9 RL
= f(j(f(p, f(p, p», f(p, g(f(x, x»», x)

by Axiom 6 LR
= f(f(p, j(f(p, p), g(f(x, x»))), x)

by Axiom 7 RL
= f(p, f(j(f(p, p), g(f(x, x))), x»

by Axiom 6 LR
= f(p, f(j(f(p, p), j(g(f(p, p», g(j(f(x, x), g(f(p, p»))))), x»

by Lemma 3 RL
= f(p, f(g(j(f(x, x), g(f(p, p»))), x»

by Lemma 1 LR
= f(p, g(f(j(f(x, x), g(f(p, p»), x)))

by Lemma 10 LR
= f(p, g(j(f(f(x, x), x), f(g(f(p, p», x»)))

by Axiom 8 LR
= f(p, g(j(x, f(g(f(p, p», x»»

by Axiom 9 LR
= f(p, g(j(x, g(f(f(p, p), x)))))

by Lemma 10 LR
= f(p, j(f(f(p, p), x), j(g(f(f(p, p), x», g(j(x, g(f(f(p, p), x))))))

by Lemma 1 RL
= f(p, j(f(f(p, p), x), g(x»)

by Lemma 3 LR
= f(p, j(g(x), f(f(p, p), x)))

by Axiom 5 LR

'Lemma 15: f(j(p, g(f(p, f(x, x)))), x) = 0

lf(j(p, g(f(p, f(x, x»», x) = f(j(p, f(p, g(f(x, x»))), x) by Lemma 9 RL
= f(p, j(g(x), f(f(p, p), x») by Lemma 14 LR
= f(p, j(g(x), f(p, f(p, x»» by Axiom 6 LR
= j(f(p, g(x», f(p, f(p, f(p, x»» by Axiom 7 LR
= j(f(p, g(x», f(p, f(f(p, p), x))) by Axiom 6 RL
= j(f(p, g(x», f(f(p, f(p, p», x» by Axiom 6 RL
= j(f(p, g(x», f(f(f(p, p), p), x» by Axiom 6 RL
= j(f(p, g(x», f(p, x» by Axiom 9 LR
= r(p, j(g(x), x» by Axiom 7 RL
= rep, j(x, g(x») by Axiom 5 LR
= f(p, 0) by Axiom 3 LR
= 0 by Lemma 4 LR

86

Lemma 14 : f(G(p, f(p, g(f(x, x)))) , x) = f(p, i(g(x), £(f(p, p) , x)))
fG(p, f(p, &(f(x, x)))) , x)

i]

IGP, p), P), f(p, &(f(x, x)})), x)
by Axiom 9 RL
fG(f(p, fp, p)) . f (p, &(f(x, x)))) , x)
by Axiom 6 LR
f(i(p, i (f (p, pP), g(f(x, x)))), x)
by Axiom 7 RL
f(p, fG(f(p, p), &(f(x, x))), x))
by Axiom 6 LR
f(p, fG((p, p), i(e(f(p, p)), gG(f(x, x), g(f(p, p)))))), x))
by Lemma 3 RL
f(p, f(g((f(x, x) , g((p, p)))), x))
by Lemma I LR
f(p, g(fG(f(x, x) , g(f(p, P))), x)))
by Lemma 10 LR
f(p, g((f(f(x, x) , x), f(g(f(p, p)), x))))
by Axiom 8 LR
f(p, g ((x , f(g(f(p, P)), x))))
by Axiom 9 LR
f(p, g(i(x, g(f(f(p, p), X)))))
by Lemma 10 LR
f(p, i (f(f(p, p), x), (g(£(f(p, pP); X)), (x g(f(f(p, p) , x))))))
by Lemma 1 RL
f(p, J(£(£(p, p) , x), &(x)))
by Lemma 3 LR
f(p, j(g(x), f(f(p, p), x)))
by Axiom 5 LR

emma 15 : f(j(p, hd f(x, x)))),x) =
fG(p, g(f(p, f(x, x)))) ,x

LO

{A

V
I

(LO
 1 f(G(p, f(p, a0 , x)))) , x) by Lemma 9 RL

f(p, i(g(x), f(f(p, p), x))) by Lemma 14 LR
f (p, (g (x) , f(p, f (p, x)))) by Axiom 6 LR
i(f (p, &(x)), fp, f(p, f(p, x)))) by Axiom 7 LR
(Hp, g(x) , f p , f(f(p, P), x))) by Axiom 6 RL
i(E(p, g(x) , f(f(p, f{p, P)); x)) by Axiom 6 RL
i(£(p, g (x) , f(f(f(p, p), p), x)) by Axiom 6 RL
i(f(p, g (x) , f(p, x)) by Axiom 9 LR
f (p ,i (g(x), x)) by Axiom 7 RL
f (p, (x , g(x))) by Axiom 5 LR
f(p, 0) by Axiom 3 LR
0 by Lemma 4 LR

86

Lemma 16: few, g(f(w, few, g(f(y, few, w»»») = few, y)
few, g(f(w, few, g(f(y, few, w)))))))

= few, j(O, g(f(w, few, g(f(y, few, w»)))))))
by Axiom 1 RL

= few, j(f(w, 0), g(f(w, few, g(f(y, few, w»»»»
by Lemma 4 RL

=	 few, j(f(w, f(j(w, g(f(j(y, g(f(y, few, w»))), f(j(y, g(f(y, few, w)))), w)))),

j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»)))))))

by Lemma 8 RL

=	 few, j(f(w, f(j(w, g(f(j(y, g(f(y, few, w»))), 0»), j(y, g(f(y, few, w»))))),

g(f(w, few, g(f(y, few, w))))))))

by Lemma 15 LR

= few, j(f(w, f(j(w, g(O)) , j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»))))))
by Lemma 4 LR

= few, j(f(w, f(j(w, j(O, g(O»), j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»»))))
by Axiom 1 RL

= few, j(f(w, f(j(w, 0), j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»»»»
by Axiom 3 LR

= few, j(f(w, few, j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w))))))))
by Axiom 2 LR

= few, j(j(y, g(f(y, few, w»», g(f(w, few, g(f(y, few, w))))))))
b:, I,emma 7 LR

= few, j(y, j(g(f(y, few, w))), g(f(w, few, g(f(y, few, w»»»))))
by Axiom 4 LR

= j(f(w, y), few, j(g(f(y, few, w»), g(f(w, few, g(f(y, few, w»))))))))
by Axiom 7 LR

= j(f(w, y), few, j(f(w, few, g(f(y, few, w»)))), g(f(w, few, g(f(y, few, w)))))))))
by Lemma 7 RL

= j(f(w, y), few, 0»
by Axiom 3 LR

= j(f(w, y), 0)
by Lemma 4 LR

= j(O, few, y»
by Axiom 5 LR

= few, y)
by Axiom 1 LR

Lemma 17: few, fey, few, w))) = few, y)
few, fey, few, w))) = few, g(g(f(y, few, w»))) by Lemma 2 RL

= few, g(g(f(f(y, w), w)))) by Axiom 6 RL
= few, g(g(f(w, few, f(f(y, w), w»»» by Lemma 12 RL
= few, g(g(f(w, few, fey, few, w))))))) by Axiom 6 LR
= few, g(f(w, g(f(w, fey, few, w))))))) by Lemma 9 RL
= few, g(f(w, few, g(f(y, few, w))))))) by Lemma 9 RL
= few, y) by Lemma 16 LR

87

Lemma 16 : f(w, g(f(w, f(w, g(f(y, f(w, w))))))) = f(w, y)
f(w, g(f(w, f(w, g(f(y, f(w, w)))))))

= f(w, (0 , &(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 1 RL

= f (w, j (f (w, 0) . g(f (w, f(w, g(f(y, f (w, w))))))))
by Lemma 4 RL

= f(w, j(f(w, fG(w, g(fG(y, g(f(y, fw , w)))), f(y, g(f(y, fw, w)))), w)))),
i y , 8((y, f(w, w)))))), g(f(w, f(w, g(£(y. f(w, w))))))))
by Lemma 8 RL

= fw , j (f (w, fG(w, g(fG(y, g(f(y, f(w, w)))), 0))), i (y , &(f(y, f(w, w)))))),
g(f(w, f(w, g(f(y, f(w, w))))))))
by Lemma 15 LR

= fw , j (f (w, fG(w, 0) , i (y , g(f(y, f(w, w)))))), &(f(w, f(w, g(f(y, f(w, w))))))))
by Lemma 4 LR

= fw, j (f(w, fG(w, i(0, g(0))), i (y , g(f(y, f (w, W)))))), &(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 1 RL

= f(w, j (f (w, f(G(w, 0) , i (y , g(f(y, f (w, w)))))) , g(f(w, f(w, g(f(y, f (w, w))))))))
by Axiom 3 LR

= f(w, j(f(w, f(w, i (y , g(f(y, f (w, w)))))), g(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 2 LR

= f (w, 3G(y, g(f(y, f (w, w)))), s(f (w, f (w, g(f(y f(w, w))))))))
b ; Lemma 7 LR

= f (w , j (y , i(g(E(y, f (w, w))), g(f(w, f (w , g(f(y, f (w, w)))))))))
by Axiom 4 LR

= j (f (w , y) , f (w, j(g(£(y, f (w, w))), g(f(w, f (w, g(f(y, f(w, w)))))))))
by Axiom 7 LR

= j (f (w, y) , f(w, J(f(w, f(w, g(f(y, f(w, w))))), &(f(w, f(w, g({(y, f(w, w)))))))))
by Lemma 7 RL

= j(f(w,y), f(w, 0))
by Axiom 3 LR

= j(f(w,y), 0)
by Lemma 4 LR

= i (0 , f(w, y)
by Axiom 5 LR

= f (w , y)
by Axiom 1 LR

Lemma 17 : f(w, f(y, f(w, w))) = f(w, y)
f(w, f(y, f (w, w))) fw, g(g(f(y, f (w, w))))) by Lemma2 RL

f(w, g(g(f(f(y, w), w)))) by Axiom 6 RL
f(w, g(g(f(w, f(w, f(f(y, w), w)))))) by Lemma 12 RL
f (w, g(g(f (w, f (w , f(y, f (w , w))))))) by Axiom 6 LR
f(w, g(f(w, g(f(w, f(y, f(w, w))))))) by Lemma 9 RL
f(w, g(f(w, f(w, g(f(y, f(w, w))))))) by Lemma 9 RL
f(w, y) by Lemma 16 LR

87

Lemma 18: f(z, x) = f(f(z, f(x, x», f(z, f(x, z»)
f(z, x)	 = f(z, f(f(x, x), x» by Axiom 9 RL

= f(f(z, f(x, X», x) by Axiom 6 RL

= f(f(z, f(x, x», f(x, f(f(z, f(x, x», f(z, f(x, x»))) by Lemma 17 RL

= f(f(z, f(x, x», f(x, f(f(f(z, f(x, x», z), f(x, x»))) by Axiom 6 RL

= f(f(z, f(x, x», f(x, f(f(z, f(x, x», z») by Lemma 17 LR

= f(f(z, f(x, X», f(x, f(z, f(f(x, x), z)))) by Axiom 6 LR

= f(f(z, f(x, x», f(x, f(z, f(x, f(x, z»)))) by Axiom 6 LR

= f(f(z, f(x, x», f(f(x, z), f(x, f(x , z)))) by Axiom 6 RL

= f(f(z, f(x, x», f(f(z, f(z, f(x, z))), f(x, f(x, z)))) by Lemma 12 RL

= f(f(z, f(x, x», f(z, f(f(z, f(x, z», f(x, f(x, z))))) by Axiom 6 LR

= f(f(z, f(x , x», f(z, f(z, f(f(x, z), f(x, f(x, z)))))) by Axiom 6 LR

= f(f(z, f(x, x», f(z, f(z, f(x, f(z, f(x, f(x, z»)))))) by Axiom 6 LR

= f(f(z, f(x, x», f(z, f(z, f(x, f(z, f(x, f(z, f(z, f(x , z))))))))) by Lemma 12 RL

= f(f(z, f(x, x», f(z, f(x, z))) by Lemma 13 RL

Lemma 19: f(z, x) = f(z, f(x, f(x, f(z, f(x, z»))))
f(z, x) = f(f(z, f(x, x», f(z, f(x, z») by Lemma 18 LR

= f(z, f(f(x, x), f(z, f(x, z»))) by Axiom 6 LR
= f(z, f(x, f(x, f(z, f(x, z»)))) by Axiom 6 LR

Theorem 1: f(a, b) = f(b, a)
f(a, b) = f(a, f(b, f(b, f(a, f(b, a»») by Lemma 19 LR

= f(a, f(b, f(b, f(f(a, b), a»» by Axiom 6 RL
= f(a, f(b, f(f(b, f(a, b», a») by Axiom 6 RL
= f(3o, f(f(b, £(b, £(80, b))), a» by Axiom 6 RL
= f(3o, f(f(a, b), a» by Lemma 12 LR
= f(a, f(a, f(b, a») by Axiom 6 LR
= f(b, a) by Lemma 12 LR

B.3	 A problem from the domain of lattice ordered groups

The DISCOUNT system is used as a component of the ILF system by the group of
B.I. Dahn at the Humbold-University in Berlin (see [Da+94]). From him we received
the following problem from the domain of lattice ordered groups:

B.3.l The problem

For each element in a lattice ordered group show that it can be expressed as the product
of its positive part and of its negative part. This is said to be a non-trivial task even
for human experts.

MODE PROOF

NAME lattice3

88

Lemma 18:
f(z, x)

{ |
|

TT
 | A

 A
 V

I

Lemma 19 :
f(z, x)

in
i

Theorem
f(a, b)

"R
U

N

N

B.3 A problem from the domain of latt ice ordered groups

The DISCOUNT system is used as a component of the ILF system by the group of
B.I. Dahn at the Humbold-University i n Berlin (see [Da+94]). From him we received

1 :

f(z, (f(x, x) , x))
(f(z, f (x, x)) , x)

f(z, x) = f(f(z, f(x, x)), f(z, f(x, z)))

f(£(z, f (x, x)) , x , f(z, (x , x)) , f(z, f(x, X)))))
f(f(z, f(x, x)), f(x, KE(Ez, f(x, x)), 2), fx , x))))
f(f(z, f(x, x) , f(x, f(K(z, f(x, x) , 2)))
f(f(z, f(x, x) , f(x, f(z, (K(x, x) , 2))))
(f (z, f(x, x)), f(x, f(z, f(x, {(x, z)))))
(f(z, f(x, x)), (f(x, z), f(x, f(x, 2))))
(f(z, f(x, x)), {({(z, f(z, f(x, 2))), f(x, f(x, 2))))
(f (z, f(x, x)), f(z, f({(z, f(x, 2)), f(x, f(x, 2)))))
f(f(z, f(x, x)), f(z, £f(z, (f (x, 2), f(x, f(x, 2))))))
f(f(z, f(x, x)), f(z, f(z, f(x, f(z, f(x, f(x, 2)))))))
(f(z, f(x, x)), £(z, f(z, f(x, f(z, f(x, f(z, (3, f(x, 2)))))))))
(f(z, f(x, x)) , f(z, f(x, 2)))

f(z, x) = f(z, f(x, f(x, f(z, f(x, 2)))))
£(i(z, f(x, x)) , f(z, f(x, 2)))
f(z, f(f(x, x), f(z, f(x, z))))
f(z, f(x, f(x, f(z, f(x, 2)))))

f(a, b) = f(b, a)
f(a, f(b, f(b, f(a, f(b, a)))))
f(a, f(b, f(b, f(f(a, b), a))))
f(a, f(b, £(£f(b, f(a, b)), a)))
f(a, f(f(b, f(b, f(a, b))), a))
f(a, f(f(a, b), a))
f(a, f(a, f(b, a)))
f(b, a)

by Lemma 18 LR
by Axiom 6 LR
by Axiom 6 LR

by Lemma 19 LR
by Axiom 6 RL
by Axiom 6 RL
by Axiom 6 RL
by Lemma 12 LR
by Axiom 6 LR
by Lemma 12 LR

by Axiom 9 RL
by Axiom 6 RL
by Lemma 17 RL
by Axiom 6 RL
by Lemma 17 LR
by Axiom 6 LR
by Axiom 6 LR
by Axiom 6 RL
by Lemma 12 RL
by Axiom 6 LR
by Axiom 6 LR
by Axiom 6 LR
by Lemma 12 RL
by Lemma 13 RL

the following problem from the domain of lattice ordered groups:

B.3 .1 The problem

For each element i n a lattice ordered group show that i t can be expressed as the product
of i ts positive part and of i ts negative part. This is said to be a non-trivial task even
for human experts.

MODE

NAME

PROOF

l a t t i ce3

88

ORDERING	 LPO
i > n > u > f > np > pp > 1 > a

EQUATIONS	 n(x,y) = n(y,x)
u(x,y) = u(y,x)
n(x,n(y,z» = n(n(x,y),z)
u(x,u(y,z» = u(u(x,y),z)
u(x,x) = x
n(x,x) = x
u(x,n(x,y» = x
n(x,u(x,y» = x
f(x,f(y,z» = f(f(x,y),z)
f(1,x) = x
f(i(x),x) = 1
i(1) = 1

iCiCx» = x
i(f(x,y» = f(i(y),i(x»
f(x,u(y,z» = u(f(x,y),f(x,z»
f(x,n(y,z» = n(f(x,y),f(x,z»
f(u(y,z),x) = u(f(y,x),f(z,x»
f(n(y,z),x) = n(f(y,x),f(z,x»
pp(x) = u(x,1)
np(x) = n(x,1)
u(x,n(y,z» = n(u(x,y),u(x,z»
n(x,u(y,z» = u(n(x,y),n(x,z»

CONCLUSION	 a = f(pp(a),np(a»

B.3.2 The	 proof

The proof is here reprinted as it has been typeset by our proof transformation sys
tem. Except for minor reformatting of the long proof lines in the subproof for lemma
8 nothing has been edited. The extracted PCL protocol for the proof contains 8 re
sults deemed important by the referees. Five of these results are axioms used often
in the proof. This effect can be explained by the rich and powerful axiomatization of
the problem. The other three selected results became lemmata 3, 7 and 12. Addi
tionallemmata have been selected by the default strategy of the program lemma, with
the additional restriction that no proof chain should be shorter then 3 steps (option
-uJIlin~ength 3). See section 8.2.3 for a description of the default criteria of lemma.

89

ORDERING LPO
i >n>u> f>np>pp>1>a

EQUATIONS n (x , y) = n (y , x)
u(x,y) = u(y,x)
n(x ,n(y ,z)) = n(n(x ,y) ,z)
u (x ,u (y , z)) = u (u l x , y) , z)
u (x , x) = x
n (x , x) = x
u (x ,n (x , y)) = x
n(x ,u(x ,y)) = x
£f(x,f(y,2z)) = £ (f (x , y) , 2)
f (1 , x) = x
f ax) , x) = 1
i (1) = 1
1 (i (x)) = x
i (f (x , y)) = f (i (y) , i (x))
f (x ,u (y , z)) = u(f (x ,y) , . f (x ,2))
£ f (x ,n (y , z)) = n (f (x , y) , f (x , 2))
f (u (y , z) , x) = u (f (y , x) , f (z , x))
f (n (y , z) , x) = n (f (y , x) , f (z , x))
pp(x) = u(x,1)
np(x) = n (x ,1)
u (x ,n (y , z)) = n (u (x , y) , u (x , z))
n (x ,u (y , z)) = u (n (x , y) , n (x ,2))

CONCLUSION a = f(pp(a),np(a))

B.3 .2 The proof

The proof i s here reprinted as i t has been typeset by our proof transformation sys-
tem. Except for minor reformatting of the long proof lines i n the subproof for lemma
8 nothing has been edited. The extracted PCL protocol for the proof contains 8 re-
sults deemed important by the referees. Five of these results are axioms used often
in the proof. This effect can be explained by the rich and powerful axiomatization of
the problem. The other three selected results became lemmata 3, 7 and 12. Addi-
tional lemmata have been selected by the default strategy of the program lemma, with
the additional restriction that no proof chain should be shorter then 3 steps (option
-umin length 3). See section 8.2.3 for a description of the default criteria of Lemma.

89

Consider the following set of axioms:

Axiom 1: n(x, x) == x

Axiom 2: f(l, x) == x

Axiom 3: i(l) == 1

Axiom 4: i(i(x» == x

Axiom 5: n(x, y) == n(y, x)

Axiom 6: u(x, y) == u(y, x)

Axiom 7: u(x, n(x, y» == x

Axiom 8: f(i(x), x) == 1

Axiom 9: pp(x) == u(x, 1)

Axiom 10: np(x) == n(x, 1)

Axiom 11: n(x, n(y, z» == n(n(x, y), z)

Axiom 12: u(x, u(y, z» == u(u(x, y), z)

Axiom 13: f(x, fey, z» == f(f(x, y), z)

Axiom 14: i(f(x, y» == f(i(y), i(x»

Axiom 15: f(x, u(y, z» == u(f(x, y), f(x, z»

Axiom 16: f(x, n(y, z» == n(f(x, y), f(x, z»

Axiom 17: f(u(x, y), z) == u(f(x, z), fey, z»

Axiom 18: f(n(x, y), z) == n(f(x, z), fey, z»

Axiom 19: n(x, u(y, z» == u(n(x, y), n(x, z»

This theorem holds true:

Theorem 1: a	 == f(pp(a), np(a»

Proof:

J

Lemma 1:	 u(v, f(x, v» == f(pp(x), v)

u(v, f(x, v»	 == u(f(x, v), y) by Axiom 6 RL
== u(f(x, v), f(l, v» by Axiom 2 RL
== f(u(x, 1), v) by Axiom 17 RL
== f(pp(x), v) by Axiom 9 RL

Lemma 2:	 f(pp(i(y», y) == pp(y)

90

Consider the following set of axioms:

Axiom 1:
Axiom 2 :
Axiom 3:
Axiom 4:
Axiom 5:
Axiom 6 :
Axiom 7:
Axiom 8 :
Axiom 9:
Axiom 10:
Axiom 11:
Axiom 12:
Axiom 13:
Axiom 14:
Axiom 15:
Axiom 16:
Axiom 17:
Axiom 18:
Axiom 19:

This theorem

Theorem

Proof:

n(x, x) = x
f (1 , x) = x
i (1)=1
i(i(x)) = x
n(x, y) = n(y, x)
u(x , y) = u(y, x)
u(x, n (x , y)) = x
f(i (x), x) = 1
PP(x) = u (x , 1)

np(x) = n(x , 1)
n(x , n(y, z)) = n(n(x , y) , 2)
u(x, u(y, z)) = u(u(x, y) , z)
f(x, f(y, z)) = (f(x, y), 2)
i(f(x, y)) = 1(i(y), i(x))
f(x, u(y, z)) = u(f(x, y), f(x, z))
f(x, n(y, z)) = n(f(x, y), f(x, z))
f(u(x, y) , 2) = u({(x, 2), f(y, 2))
f(n(x, y) , 2) = n(f(x, 2), f(y, 2))
n(x, u(y, z)) = u(n(x, y), n(x, z))

holds t rue:

1: a = f(pp(a), np(a))

/

Lemma 1 : u(v, f(x, v)) = f(pp(x), v)

u(v, f(x, v)) = u(f(x, v) , v) by Axiom 6 RL
= u(f(x, v), f(1, v)) by Axiom 2 RL
= fu (x , 1) , v) by Axiom 17 RL
= f(pp(x), Vv) by Axiom 9 RL

Lemma 2 : {(pp(i(y)), y) = pp(y)

90

f(pp(i(y», y)	 = u(y, f(i(y), y» by Lemma 1 RL

= u(y, 1) by Axiom 8 LR

= pp(y) by Axiom 9 RL

Lemma 3: pp(np(z» = 1

pp(np(z» f(pp(i(np(z»), np(z»	 by Lemma 2 RL =
f(f(pp(i(i(np(z»», i(np(z»), np(z»	 by Lemma 2 RL =

= f(f(pp(np(z», i(np(z»), np(z» by Axiom 4 LR

= f(u(i(np(z», f(np(z), i(np(z»», np(z» by Lemma 1 RL

= f(u(i(np(z», f(n(z, 1), i(np(z»», np(z» by Axiom 10 LR
f(u(i(np(z», n(f(z, i(np(z»), f(I, i(np(z»)», np(z» by Axiom 18 LR=
f(u(i(np(z», n(f(z, i(np(z»), i(np(z»», np(z» by Axiom 2 LR =

= f(u(i(np(z», n(i(np(z», fez, i(np(z»»), np(z» by Axiom 5 LR

=
=

f(i(np(z», np(z»
1

by Axiom 7 LR
by Axiom 8 LR

Lemma 4: f(x, 1) = x

f(25:, 1) =
=
=
=
=

f(i(i(x»,l)
f(i(i(x», i(l»
i(f(I, i(x»)
i(i(x»
x

by Axiom 4 RL
by Axiom 3 RL
by Axiom 14 RL
by Axiom 2 LR
by Axiom 4 LR

Lemma 5: np(pp(x» = u(l, np(x»

np(pp(x» =
=
=
=
=

=
=
=
=
=

np(u(x, 1»
np(u(l, x»
n(u(l, x), 1)
n(l, u(l, x»
u(n(I, 1), n(I, x»
u(np(I), n(l, x»
u(np(l), n(x, 1»
u(np(l), np(x»
u(n(l, 1), np(x»
u(l, np(x»

by Axiom 9 LR
by Axiom 6 LR
by Axiom 10 LR
by Axiom 5 LR
by Axiom 19 LR
by Axiom 10 RL
by Axiom 5 RL
by Axiom 10 RL
by Axiom 10 LR
by Axiom 1 LR

Lemma 6: np(pp(x» = 1

91

£pp(i(y)),y)

Lemma 3 : pp(np(z)) = 1

pp(np(z))

Lemma 4:

f(x, 1)

Lemma 5 :

np(pp(x))

Lemma 6 :

= u(y, f(i(y), y)) by Lemma 1 RL
= u(y, 1) by Axiom 8 LR
= pp(y) by Axiom 9 RL

= f (pp(i (np(z))) , np (z))
= f(f(pp(i(i(np(z)))), i (np (z))) , np(2))
= f(f (pp(np(z)) , i(np(2))), np(z))
= f(u(i(np(z)), f(np(z), i(np(z)))), np(z))
= f(u(i(np(2)), f(n(z, 1), i(np(z)))), np(z))
= { f(u(i(np(z)), n(fz, i(np(2z))), 1 , i(np(z))))), np(z))
= {f(u(i(np(2)), n(f(z, i(np(2))), i(np(z)))), np(z))
= f(u(i(np(z)), n(i(np(2)), Kz , i(np(z))))), np(z))
= f(i(np(z)), np(z))
= 1

f(x, 1) =x

f (i (i (x)) , 1) by Axiom 4 RL
f(i(i (x)), i (1)) by Axiom 3 RL
i(f(1, i (x))) by Axiom 14 RL
i(i(x)) by Axiom 2 LR
x by Axiom 4 LR

np(pp(x)) = u(1, np(x))

np(u (x , 1))
np (u (1 , x))
n (u (1 , x) , 1)
n (1 , u (1 , x))
u (n (1 , 1) , n (1 , x))
u(np(1), n (1 , x))
u (np (1) , n (x , 1))
u(np(1), np(x))
u(n(1, 1) , np(x))
u(1, np(x))

np(pp(x)) = 1

by Axiom 9 LR
by Axiom 6 LR
by Axiom 10 LR
by Axiom 5 LR
by Axiom 19 LR
by Axiom 10 RL
by Axiom 5 RL
by Axiom 10 RL
by Axiom 10 LR
by Axiom 1 LR

91

by Lemma 2 RL
by Lemma 2 RL
by Axiom 4 LR
by Lemma 1 RL
by Axiom 10 LR
by Axiom 18 LR
by Axiom 2 LR
by Axiom 5 LR
by Axiom 7 LR
by Axiom 8 LR

np(pp(x» = u(l, np(x» by Lemma 5 LR

= u(np(x), 1) by Axiom 6 RL

pp(np(x)) by Axiom 9 RL

= 1 by Lemma 3 LR

Lemma 7: np(n(pp(z), y» = np(y)

np(n(pp(z), y»	 = np(n(y, pp(z») by Axiom 5 RL

= n(n(y, pp(z», 1) by Axiom 10 LR

= n(y, n(pp(z), 1» by Axiom 11 RL

= n(y, np(pp(z») . by Axiom 10 RL

= n(np(pp(z», y) by Axiom 5 LR

= n(l, y) by Lemma 6 LR

= n(y, 1) by Axiom 5 RL

= np(y) by Axiom 10 RL

Lemma 8: f(pp(i(y», np(y» = u(l, f(pp(i(y», np(y»)

f(pp(i(y», np(y» = u(f(pp(i(y», np(y», n(f(pp(i(y», np(y», 1»
by Axiom 7 RL

= u(f(pp(i(y», np(y», np(f(pp(i(y», np(y»»
by Axiom 10 RL

= u(f(pp(i(y), np(y», np(f(pp(i(y», n(y, 1»»
by Axiom 10 LR

= u(f(pp(i(y», np(y», np(f(pp(i(y», n(l, y»»
by Axiom 5 LR

= u(f(pp(i(y», np(y», np(n(f(pp(i(y», 1), f(pp(i(y», y»»)
by Axiom 16 LR

= u(f(pp(i(y», np(y», np(n(pp(i(y», f(pp(i(y», y))
by Lemma 4 LR

= u(f(pp(i(y», np(y», np(f(pp(i(y», y»)
by Lemma 7 LR

= u(np(f(pp(i(y», y», f(pp(i(y», np(y»)
by Axiom 6 LR

= u(np(pp(y», f(pp(i(y», np(y»)
by Lemma 2LR

= u(l, f(pp(i(y», np(y»)
by Lemma 6 LR

Lemma 9: f(pp(i(y», np(y» =pp(np(i(y))

92

u(1l, np (x)) by Lemma 5 LR
u(np(x), 1) by Axiom 6 RL
pp(np (x)) by Axiom 9 RL
1 by Lemma 3 LR

np(pp(x))

Lemma 7 : np(n(pp(z), y)) = np(y)

np(n(y, pp (z))) by Axiom 5 RL
n(n(y, pp (z)) , 1) by Axiom 10 LR
n(y, n (pp (z) , 1)) by Axiom 11 RL
n(y, np (pp (2))) - by Axiom 10 RL
n(np(pp(z)) , y) by Axiom 5 LR

np(n(pp(z), ¥))

N
U

N

M
A

N

n(1, y) by Lemma 6 LR
n(y, 1) by Axiom 5 RL
np(y) by Axiom 10 RL

Lemma 8: {(pp(i(y)), np(y)) = u(1, f(pp(i(y)), np(y)))

f(pp(i(y)), np(y)) = u(Kpp(i(y)) , np(y)) , n(f{pp(i(y)), np(y)), 1))
by Axiom 7 RL

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), np(y))))
by Axiom 10 RL

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), n(y, 1))))
by Axiom 10 LR

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), n(1, ¥))))
by Axiom 5 LR

= u(f(pp(i(y)), np(y)), np(n(Kpp(i(y)), 1), Kpp(i(y)), ¥))))
by Axiom 16 LR

= u(f(pp(i(y)), np(¥)), np(n(pp(i(y)), f(pr(i(¥)), ¥))))
by Lemma 4 LR

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), ¥)))
by Lemma 7 LR

= u(np(f(pp(i(y)), ¥)), f(pp@i(y)), np(y)))
by Axiom 6 LR

= ulnp(pp(y)), f(pp(i(y)), np(y)))
by Lemma 2 'LR

= u(1, f(pp(i(y)), np(y)))
by Lemma 6 LR

Lemma 9 : {(pp(i(y)), np(y)) = pp(np(i(y)))

92

f(pp(i(y», np(y» = u(l, f(pp(i(y»,np(y») by Lemma 8 LR

= u(f(pp(i(y», np(y», 1) by Axiom 6 RL

= pp(f(pp(i(y», np(y») by Axiom 9 RL

= pp(u(np(y), f(i(y), np(y»» by Lemma 1 RL

= pp(u(f(i(y), np(y», np(y») by Axiom 6 RL

= u(u(f(i(y), np(y», np(y», 1) by Axiom 9 LR

= u(f(i(y), np(y», u(np(y), 1» by Axiom 12 RL

= u(f(iCy), np(y», pp(np(y») by Axiom 9 RL

= u(f(i(y), np(y», 1) by Lemma 3 LR

= pp(f(i(y), np(y»)	 by Axiom 9 RL

= pp(f(i(y), n(y, 1»)	 by Axiom 10 LR

= pp(f(i(y), n(l, y»)	 by Axiom 5 LR

= pp(n(f(i(y),	 1), f(i(y), y») by Axiom 16 LR

= pp(n(i(y), f(i(y), y») by Lemma 4 LR

= pp(n(i(y), 1»	 by Axiom 8 LR

= pp(np(i(y»)	 by Axiom 10 RL

Lemma 10: f(pp(x), np(x» = x

f(pp(x), np(x»	 = f(u(x, 1), np(x» by Axiom 9 LR

= f(u(x, f(i(i(x», i(x»), np(x» by Axiom 8 RL

= f(U(K, f(x, i(x»), np(x» by Axiom 4 LR

= f(u(f(x, 1), f(x, i(x»), np(x» by Lemma 4 RL

= f(f(x, u(l, i(x»), np(x» by Axiom 15 RL

= f(f(x, u(i(x), 1», np(x» by Axiom 6 RL

= f(f(x, pp(i(x»), np(x» by Axiom 9 RL

= f(x, f(pp(i(x», np(x») by Axiom 13 RL

= f(x, pp(np(i(x»» by Lemma 9 LR
= f(x, 1) by Lemma 3 LR

= x by Lemma 4 LR

Theorem 1: a = f(pp(a), np(a»

~ = f(pp(a),	 np(a» by Lemma 10 RL

B.4 Specifications of some other problems

This section contains the problem descriptions of some of the benchmark problems
used as examples. Problems not described in the appendix are quoted from literature.
See the bibliography for sources.

93

f(pp(i(y)), np(y)) u (1 , f(pp(i(y)), np (y))) by Lemma 8 LR
u(fpp(i (y)) , np(y)) , 1) by Axiom 6 RL
pP(f(pp(i(y)), np(y))) by Axiom 9 RL
pp (u (np (y) , f(i(y), np (y)))) by Lemma 1 RL
pp(u(f(i(y), np (y)) , np (y))) by Axiom 6 RL
u(u(f(i(y), np(y)) , np(y)) , 1) by Axiom 9 LR
u(f(i(y), np(y)) , u(np(y) , 1)) by Axiom 12 RL

{I
I

O
R

W
O

N
A

C
H

N

N

{
 [

 1

u(f(i(y), np(y)), pP(np(y))) by Axiom 9 RL
u(f(i(y), np(y)), 1) by Lemma 3 LR
pp(f(i(y), np(y))) by Axiom 9 RL
pp(f(i (y), n(y, 1))) by Axiom 10 LR
pp(f(i (y) , n (1 , ¥))) by Axiom 5 LR
pp(n(f(i(y), 1) , f(i(y), ¥))) by Axiom 16 LR
pp(n(i (y) , f (i (y) , ¥))) by Lemma 4 LR
pp(n(i(y), 1)) by Axiom 8 LR
pp(np(i(y))) by Axiom 10 RL

Lemma 10: f{(pp(x), np(x)) = x

f(pp(x), np(x)) = f(u(x, 1) , np(x)) by Axiom 9 LR
a = f(u(x, f(i(i(x)), i (x))) , np(x)) by Axiom 8 RL

= f(u(x, f(x, i(x))), np(x)) by Axiom 4 LR
= f(u(f(x, 1), f(x, i(x))), np(x)) by Lemma 4 RL
= {(f(x, u l , i (x))) , np(x)) by Axiom 15 RL
= f(f(x, u(i(x), 1)), np(x)) by Axiom 6 RL
= {(f(x, pp(i(x))), np(x)) by Axiom 9 RL
= f(x, f{pp(i(x)), np(x))) by Axiom 13 RL
= f(x, pp(np(i (x)))) by Lemma 9 LR
= f(x, 1) by Lemma 3 LR
= x by Lemma 4 LR

Theorem 1 : a = f(pp(a), np(a))

a = f(pp(a), np(a)) by Lemma 10 RL

B.4 Specifications of some other problems

This section contains the problem descriptions of some of the benchmark problems
used as examples. Problems not described in the appendix are quoted from literature.
See the bibliography for sources.

93

B.4.1 The	 problem SelfInverse

Proof that in a ring with x * x = x for all x each element is self inverse with respect to
the multiplicative operation, that is g(x) = x for all x.

MODE PROOF

NAME SelfInverse

ORDERING XKBO .'
f:5 > j:4 >	 g:3 > 0:1 > a:l

EQUATIONS	 j (O,x) = x
j (g (x),x) = 0
j (j (x,y),z) = j (x,j (y,z))
j (x,y) = j (y ,x)
f (f (x,y),z) = f (x,f Cy,z»
f (x,j (y,z» = j (f (x,y),f (x,z»
f (j (x,y) ,z) = j (f (x,z),f (y,z»
f (x,x) = x

CONCLUSION	 g(a) = a

B.4.2 The problem Fibgroup

Show that the following axioms describe a Fibonacci-group of grade 5.

MODE COMPLETION

NAME FibGroup

ORDERING KBO
a 6
b 10
c 6
d 6
e 1

EQUATIONS	 a (e (x» = d (x)
b Ca Cx» = e (x)
c Cb ex» = a ex)

94

B.4 .1 The problem SelfInverse

Proof that i n a ring with z xz = z for all x each element is self inverse with respect to
the multiplicative operation, that is g(z) = x for all z .

MODE PROOF

NAME Sel f Inverse

ORDERING XKBO -
f : 5 > j : 4 > g :3> 0 :1 > a : l

EQUATIONS j (0 ,x) = x
j (g x) , x) =0
jG (x , y) , 2) = j (x , j (y , 2))
i (x y) = j (y , x)
f (f (x ,y) ,2) = f (x , f (y ,2))
f (x , (y ,2)) = j (f (x , y) , f (x , z))
tf (j (x , y) , z) = j (f (x , z) , f (y ,2))
f (x , x) = X

CONCLUSION g (a) = a

B.4 .2 The problem Fibgroup

Show that the following axioms describe a Fibonacci-group of grade 5.

MODE COMPLETION

NAME FibGroup

ORDERING KBO

®

S
A

U

=
O

O
=

O
O

EQUATIONS a (e (x)) =d (x)
b (a (x)) = e (x)
c (db (x)) = a (x)

94

d (c (x)) = b (x)

e (d (x)) = c (x)

B.4.3 The	 problem BoolAssoc

Show that the conjunctive operation (and) in an arbitrary boolean algebra is associa
tive.

MODE ?ROOF

NAME BoolAssoc

ORDERING LPO
n > a > o >	 1 > 0 > xO > xl > x2

EQUATIONS	 0 (x,y) = 0 (y,x) # Commutativity
a (x,y) = a (y,x)

a (x,o (y,z)) = 0 (a (x,y),a (x,z)) # Distributivity
o (x,a (y,z)) = a (0 (x,y),o (x,z))

o (x,O) = x # Neutral elements
a (x,l) = x

a (x,n (x))	 = 0 # Complement
o (x,n (x)) = 1

CONCLUSION a(a(xO,xl),x2) = a(xO,a(xl,x2))

B.4.4 The problem Latticel

Another problem from the domain of lattice ordered groups.

MODE PROOF

NAME latticel

ORDERING LPO
n > u > i >	 f > 1 > a > b > C > d

95

d (c (x))
e (d (x))

b (x)
c (x)

B.4 .3 The problem BoolAssoc

Show that the conjunctive operation (and) in an arbitrary boolean algebra is associa-
tive.

MODE PROOF

NAME Boo lAssoc

ORDERING LPO
n>a>o>1>0>x0> x1 > x2

EQUATIONS o (x , y) = o (y , x) # Commutat iv i ty
a (x , y) = a (y , x)

o (a (x , y) , a (x , z)) # Dis t r ibut iv i ty
a (o (x , y) , 0 (x , 2))

a (x ,0 (y , 2))
(x , a (y , 2))[+

]
[<

] (x , 0) = x # Neutral elements
a (x ,1) =x

a (x ,n (x)) =

[+] (x I (x))

| [=
] # Complement

u -

CONCLUSION a (a (x0 , x1) , x2) = a (x0 ,a (x1 , x2))

B.4 .4 The problem Latt icel

Another problem from the domain of lattice ordered groups.

MODE PROOF

NAME l a t t i ce l

ORDERING LPO
n>u> i> f>1>a>b>c>d

95

EQUATIONS	 n(x,y) = n(y,x)
u(x,y) = u(y,x)
n(x,n(y,z» = n(n(x,y),z)
u(x,u(y,z» = u(u(x,y),z)
u(x,x) = x
n(x,x) = x
u(x,n(x,y» = x
n(x,u(x,y») = x
f(x,f(y,z» = f(f(x,y),z)
f(1,x) = x
f(i(x) ,x) = 1
Hi) = 1

HHx) = x
i(f(x,y») = f(i(y),i(x»
f(x,u(y,z» = u(f(x,y),f(x,z)
f(x,n(y,z» = n(f(x,y),f(x,z»)
f(u(y,z),x) = u(f(y,x),f(z,x)
f(n(y,z),x) = n(f(y,x),f(z,x»)
u(a,b) = b
u(c,d) = d

CONCLUSION	 u(f(a,c),f(b,d») = f(b,d)

B.4.5 The	 problem DeMorgan

Show one of DeMorgan's laws in a Boolean algebra.

MODE	 PROOF

NAME	 DeMorgan

ORDERING	 LPO
n > a > 0 > 1 > 0 > yO > xO

EQUATIONS	 0 (x,y) = 0 (y,x) # Commutativity
a (x,y) = a (y,x)

a (x,o (y,z) = 0 (a (x,y),a (x,z) # Distributivity
o (x,a (y,z) = a (0 (x,y),o (x,z»

o (x,O) = x # Neutral elements
a (x,i) = x

96

EQUATIONS n(x,y) = n(y,x)
u(x,y) = u(y,x)
n (x ,n (y , z)) = n(n(x,y),2z)
u (x ,u (y , z)) = u (u (x , y) , z)
u (x , x) = x
n (x , x) = x
u(x,n(x ,y))
n(x ,u(x ,y))
£ (x ,£ (y ,2))
f (1 , x) = x
f (i (x) , x) =
i (1) = 1
i (i (x)) = x
i (f (x , y)) = £ (i (y) , i (x))
f (x , u (y , z)) = uw(f (x , y) , f (x , 2))

n
o

n

M
R

X

f (f (x , y) , z)
+

f (x ,n (y , z)) = n (f (x , y) , f (x , z))
f (u (y ,2) ,x) = u (f (y , x) , f (z , x))
f (n (y ,2) ,x) = n (f (y , x) , f (z , x))
u (a ,b) = b
u (c ,d) = d

CONCLUSION u (f (a , c) , f (b ,d)) = £ (b ,d)

B.4.5 The problem DeMorgan

Show one of DeMorgan’s laws in a Boolean algebra.

MODE PROOF

NAME DeMorgan

ORDERING LPO
n>a>o>1>0>y0>x0

EQUATIONS o (x , y) = o (y , x) # Commutativi ty
(x ,y) = a (y ,x)a

a (x ,o (y , 2)) = o (a (x , y) , a (x,2z)) # D is t r ibu t i v i t y
o (x ,a (y , 2)) = a (0 (x , y) , 0 (x , 2))

o (x ,0) = x) # Neut ra l e lements
a (x ,1) = x

96

a (x,n (x»	 = 0 # Complement
o (x,n (x»	 = 1

CONCLUSION	 a (n (xO),n (yO» = n (0 (xO,yO» # De Morgan

BA.6 The	 problem Lattice2

Yet another (hard) problem from the domain of lattice ordered groups.

MODE	 PROOF

NAME	 lattice2

ORDERING	 LPO
i > f > n > u > 1 > a > b

ORDERING	 LPO
n > u > i > f > 1 > a > b

EQUATIONS n(x,y) = n(y,x)
u(x,y) = u(y,x)
n(x,n(y,z» = n(n(x,y),z)
u(x,u(y,z» = u(u(x,y),z)
u(x,x) = x
n(x,x) = x
u(x,n(x,y» = x
n(x,u(x,y» = x
f(x,f(y,z» = f(f(x,y),z)
fCi,x) = x

f(i(x) ,x) = 1

i(i) = 1
iCiCx» = x
i(f(x,y» = f(i(y),i(x»
f(x,u(y,z» = u(f(x,y),f(x,z»
f(x,n(y,z» = n(f(x,y),f(x,z»
f(u(y,z),x) = u(f(y,x),f(z,x»
f(n(y,z),x) = n(f(y,x),f(z,x»

CONCLUSION	 i(u(a,b» = n(i(a),i(b»

97

a (x ,n (x))
o (x , n (x))

0 # Complement
1

CONCLUSION a (n (x0) , n (y0)) = n (o (x0 , y0)) # De Morgan

B.4 .6 The problem Latt ice2

Yet another (hard) problem from the domain of lattice ordered groups.

MODE PROOF

NAME l a t t i ce?

ORDERING LPO
i > f>n>u>1>a>b

ORDERING LPO
n>u> i> f>1>a>hb

EQUATIONS n (x , y) = n (y , x)
u(x,y) = u(y,x)
n(x,n(y,z)) = n(n(x ,y) ,z)
u(x ,u(y ,z)) = u(u(x ,y) ,2)
u (x , x) = x
n (x , x) = x
u(x,n(x,y)) = x
n(x ,u(x ,y)) = x
f (x , f (y , z)) = f (f (x , y) , z)
f (1 , x) = x
f (i (x) , x) = 1
i (1) = 1
i i (x)) = x
i (f (x , y)) = f (i (y) , i (x))
f (x ,u (y ,z)) = u (f (x , y) , f (x , 2))
f (x , n (y ,2)) = n (f (x , y) , f (x , z))
f (u (y , z) , x) = u (f (y , x) ,£ (z , x))
f (n (y ,2) , x) = n (f (y , x) , f (z , x))

CONCLUSION i (u (a ,b)) = n (i (a) , i (b))

97

BA.7 The	 problem Z22

The axioms describe a large, cyclic group.

MODE	 COMPLETION

NAME	 222

ORDERING	 LPO
e1 > e > d1 > d > cl > c > b1 > b > a1 > a

ORDERING	 LPO
a1 > a > bl > b > cl > c > dl > d > el > e

EQUATIONS	 a (b (c (x») = d (x)
b (c (d (x») = e (x)
c (d (e (x») = a (x)
d (e (a (x») b (x)
e (a (b (x») = c (x)
a (a1 (x» = x
al (a (x» = x
b (bl (x» = x
bl (b (x» = x
c (cl (x» = x
cl (c (x» = x
d (dl (x» = x
dl (d (x» = x
e (el (x» = x
el (e (x» = x

98

B.4 .7 The problem Z22

The axioms describe a large, cyclic group.

MODE COMPLETION

NAME 222

ORDERING LPO
e l >e>d1 >d>c l1>c>b1 l >b > a l > a

ORDERING LPO
a l > a > b l > o >c l >c>d l >d >e l >e

EQUATIONS Mm (c (x)))
{ c (4d (x)))

a (x)
b
c (d (e (x)))
d
e

d
e (x)
a (x)

(e (a (x))) = b
(a (b (x))) = €

a (a1 (x))
a l (a (x))
b (b i (x))
b l (b (x))
c (e l (x))
c t (c (x))
d (d1 (x))
d i (d (x))
e (et (x))
e l (e (x))

(x)
(x)

H
o

w

U
N

H

U
H

N
N

H
M

M

M
M

M

O
M

K

O
M

M

X

98

References

[Av91] Avenhaus, J.: Reduktionssysteme I (german language), Skript zur Vor

lesung im WS91, Fachbereich Informatik der Universitat Kaiserslautern

[Av90] Avenhaus, J.: Reduktionssysteme II (german language), Skript zur Vor
lesung im SS89, Fachbereich Informatik der Universitat Kaiserslautern

[AD93] Avenhaus, J.; Denzinger, J.: Distributing equational theorem proving,
Seki-Report SR-93-06, also in Proc. of the RTA-93, Montreal, Springer Ver
lag, LNCS690, pp. 62-76

[BDP89] Bachmair, L.; Derschowitz, N.; Plaisted, D.A.: Completion without
Failure, ColI. on the Resolution of Equations in Algebraic Structures, Austin
1987, Academic Press 1989

[BH92] Bonaeina, M. P., Hsiang, J.: Distributed Deduction by Clause-Diffusion:
the. Aquarius Prover, Proc. 3rd DISCO 1993, Gmunden, Springer Verlag,
LNCS722, pp. 272-287

[Da+94] Dahn, B.I.; Gehne, J.; Honigmann, T.; Walther, L.; Wolf, A.:
Integrating Logical Functions with ILF, Internal report, Institut fur Reine
Mathematik, Humbold-University, Berlin, 1994

[De93] Denzinger, J.: Teamwork: Eine Methode zum verteilten, wissensbasierten
Entwurf von Theorembeweisern (german language), Ph.D.-Thesis, Univer
sity of Kaiserslautern, 1993

[DP92] Denzinger, J.; Pitz, W.: Das DISCOUNT-System Benutzerhandbuch
(german language), Seki-Working Paper SWP-92-16

[KB70] Knuth, D.E.; Bendix, P.B.: Simple Word Problems in Universal Alge
bras, Computational Problems in Abstract Algebra, ed.: J.Leech, Pergamon
Press 1970, pp 263-297

[Li90] Lingenfelder, C.: Structuring Computer generated Proofs, Ph.D.-Thesis,
University of Kaiserslautern, 1990

[LP90] Lingenfelder,C.; Pracklein, A.: Presentation of Proofs in an Equational
Calculus, Seki-Report SR-90-15

[Lin93] Lind, J.: Sicheres Broadcasting fur DISCOUNT
Project-Report, University of Kaiserslautern, 1993

(german language),

[L082] Lusk, E.L.; Overbeck, R.A.: A Short Problem Set for Testing Sys
tems that Include Equality Reasoning, Argonne National Laboratory, Illi
nois, 1982

99

References
[Av91]

[Av90]

[AD93]

[BDP89]

[BH92]

[Da+94]

[De93]

[DP92]

[KB70]

[Li90]

[LP90] _

[Lin93]

[LO82]

Avenhaus, J . : Reduktionssysteme I (german language), Skript zur Vor-
lesung im WS91, Fachbereich Informatik der Universität Kaiserslautern

Avenhaus, J . : Reduktionssysteme II (german language), Skript zur Vor-
lesung im SS89, Fachbereich Informatik der Universität Kaiserslautern

Avenhaus, J . ; Denzinger, J . : Distributing equational theorem proving,
Seki-Report SR-93-06, also in Proc. of the RTA-93, Montreal, Springer Ver-
lag, LNCS690, pp. 62-76

Bachmair, L . ; Derschowitz, N . ; Plaisted, D .A . : Completion without
Failure, Coll. on the Resolution of Equations.in Algebraic Structures, Austin
1987, Academic Press 1989

Bonacina, M . P . , Hsiang, J . : Distributed Deduction by Clause-Diffusion:
the Aquarius Prover, Proc. 3rd D ISCO 1993, Gmunden, Springer Verlag,
LNCS722, pp. 272-287

Dahn, B.I.; Gehne, J . ; Honigmann, T . ; Walther, L . ; Wolf, A.:
Integrating Logical Functions with ILF, Internal report, Insti tut fiir Reine
Mathematik, Humbold- University, Berlin, 1994

Denzinger, J . : Teamwork: Eine Methode zum verteilten, wissensbasierten
Entwurf von Theorembeweisern (german language), Ph.D.-Thesis, Univer-
sity of Kaiserslautern, 1993

Denzinger, J . ; P i tz , W . : Das DISCOUNT-System Benutzerhandbuch
(german language), Seki-Working Paper SWP-92-16

Knuth, D .E . ; Bendix, P .B . : Simple Word Problems in Universal Alge-
bras, Computational Problems in Abstract Algebra, ed.: J.Leech, Pergamon
Press 1970, pp 263-297

Lingenfelder, C . : Structuring Computer generated Proofs, Ph.D.-Thesis,
University of Kaiserslautern, 1990

Lingenfelder,C.; Pracklein, A . : Presentation of Proofs in an Equational
Calculus, Seki-Report SR-90-15

L ind, J . : Sicheres Broadcasting fir DISCOUNT (german language),
Project-Report, University of Kaiserslautern, 1993

Lusk, E .L . ; Overbeck, R .A . : A Short Problem Set for Testing Sys-
tems that Include Equality Reasoning, Argonne National Laboratory, I l l i -
nois, 1982

99

.[LW92] Lusk, E.L.; Wos, L.: Benchmark Problems in which equality plays the
major role, Proc. of the CADE-ll, 1992, Springer Verlag, LNAI607, pp.
781-785

[Pi92] Pitz, W.: Realisierung eines Systems zum verteilten, wissensbasierten
Gleichheitsbeweisen mit Hilfe der Teamwork Methode (german !anguage),
Diploma thesis, University of Kaiserslautern, 1992

[Sch93] Schulz, S.: Analyse und Transformation von Gleichheitsbeweisen (german
language), Project-Report, University of Kaiserslautern, 1993

[Si92] Sims, C.C.: The I<nuth-Bendix Procedure for Strings as a Substitute for
Coset Enumeration, JSC 12 (1991) pp. 439-442

[Ta56] Tarski, A: Logic, Semantics, Meta mathematics, Oxford University Press,
1956

100

„ [LW92]

[Pi92]

[Sch93]

(Si92]

[Ta56]

Lusk, E .L . ; Wos, L . : Benchmark Problems in which equality plays the
major role, Proc. of the CADE-11, 1992, Springer Verlag, LNAI607, pp. '

781-785

Pi t z , W. : Realisierung eines Systems zum verteilten, wissensbasierten
Gleichheitsbeweisen mit Hilfe der Teamwork Methode (german language),
Diploma thesis, University of Kaiserslautern, 1992

Schulz, S.: Analyse und Transformation von Gleichheitsbeweisen (german
language), Project-Report, University of Kaiserslautern, 1993

Sims, C.C. : The Knuth-Bendiz Procedure for Strings as a Substitute for
Coset Enumeration, JSC 12 (1991) pp. 439-442

Tarski, A : Logic, Semantics, Meta mathematics, Oxford University Press,
1956

100

	1994.pdf
	1994-2

