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Abstract 

Automatic proof systems are becoming more and more powerful. 
However, the proofs generated by these systems are not met with 
wide acceptance, because they are presented in a way inappropriate 
for human understanding. 

In this paper we pursue two different, but related, aims. First we 
describe methods to structure and transform equational proofs in a 
way that they conform to human reading conventions. We develop 
algorithms to impose a hierarchical structure on proof protocols from 
completion based proof systems and to generate equational chains 
from them. 

Our second aim is to demonstrate the difficulties of obtaining such 
protocols from distributed proof systems and to present our solution 
to these problems for provers using the TEAMWORK method. We 
also show that proof systems using this method ca.n give considerable 
help in structuring the proof listing in a way analogous to human 
behaviour. 

In addition to theoretical results we also include descriptions on 
algorithms, implementation notes, examples and data on a variety of 
examples. 
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1 Introduction 

Automatic theorem provers have reached a point in their development where they 
could support human experts in many routine tasks. However, the proofs generated 
by these systems have not been met with wide acceptance. The main leason for this is 
the inappropriate way automatically generated proofs are presented. Up to now much 
work has been invested into developing more powerful provers, but very little effort 
has been made to present the generated proofs to a user who is not interested in the 
details of the prover but in the proof itself. This is especially true for equational proof 
systems, where only very rudimentary suggestions for proof presentation have been 
brought forward. 

In this paper we will address two problems in the field of proof presentation. First we 
will develop concepts and algorithms to present equational proofs generated by comple
tion based proof systems in a structured format appropriate for human understanding. 
Our second aim is to generate such proofs from a distributed proof system. Treating 
these two problems together is justified by two facts: First, distributed theorem provers 
introduce new problems for proof presentation. These problems have to be dealt with 
if such provers are to be used by humans. Secondly, we found that distributed proof 
systems using the TEAMWORK method can give a lot of help in structuring the proofs 
and often achieve "better" proofs than sequential systems. In particular we can use 
information gained during the proof process (suggestions by the referees used with 
TEAMWORK) in addition to the more conventional post mortem criteria to generate 
lemmata. In this way we emulate a human expert, who also bases the structure of his 
presentation of a proof on information from the proof process and on the final proof. 

Our approach to proof presentation partitions the procedure into a number of separate 
phases. In the first phase the proof is found and a step by step listing of each inference 
done by the prover is generated. In the case of a distributed proof system this listing 
has to be sequentialized before further analysis. The second main step is the extraction 
of the inference steps actually used in the proof. In the next phase we try to structure 
the resulting listing in a hierarchical way and to reveal important intermediate results 
(or lemmata). The final step transforms the structured listing to a calculus conforming 
to human reading conventions. In our case this calculus uses equationaf chains. 

This report is organized as follows: Section 2 provide a short introduction to the basic 
concepts of a completion based prover and the TEAMWORK method. Section 3 dis
cusses proof representation, and introduces our protocol language peL. Additionally 
we present first results from a very basic analysis of some proof protocols. 

Section 4 is dedicated to the structuring of proof protocols. We introduce a couple of 
criteria for lemma detection and discuss their comparative merits. The next section 
describes how to transform the proof to equational chains, a calculus acceptable for 
human digestion. Section 6 describes special problems in dealing with distributed proof 
systems as well as their solution, and section 7 discusses the beneficial aspects of using 
a distributed proof system in depth. 

The next section describes details of the implemented programs. This includes changes 
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This report is organized as follows: Section 2 provide a short introduction to  the basic
concepts of a completion based prover and the TEAMWORK method. Section 3 dis-
cusses proof representation, and introduces our protocol language PCL. Additionally
we present first results from a very basic analysis of  some proof protocols.

Section 4 is dedicated to  the structuring of proof protocols. We introduce a couple of
criteria for lemma detection and discuss their comparative merits. The next section
describes how to transform the proof to equational chains, a calculus acceptable for
human digestion. Section 6 describes special problems in  dealing with distributed proof
systems as well as their solution, and section 7 discusses the beneficial aspects of using
a distributed proof system i n  depth.
The next section describes details of the implemented programs. This includes changes
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to the DISCOUNT system, our TEAMWORK based equational prover, and the new 
programs developed to deal with analysis, structuring and presentation of proofs. The 
final section concludes the paper with an evaluation and some remarks about our 
future plans. The appendix provides some examples of different protocols and a couple 
of automatically generated proofs. 
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2 Concepts of equational reasoning 

An equational theorem prover is a system trying to deal with the following problem: 

Given a set E of equations (over terms), is an equation s=t a logical con
sequence of E (written as s =E t)? 

In order to allow a more detailed discussion of the related problems we need some 
basic definitions. We assume the reader to be familiar with rewriting techniques and 
use standard notations. For a more in-depth introduction to the field, using similar 
notations, see [Av91] and [Av90]. 

2.1 Annotations and basic definitions 

• A term t is a recursive structure build from a set F of function symbols and a set 
V of variables. The set of all terms for given sets F and V is called TERM(F, V).A 
ground term is a term not containing any variables, the set of ground terms is 
denoted as TERM(F). 

•	 We write tip to denote the subterm of t at the position p. The top ppsition is 
written as ..x, and tl p.q == (tlp)lq. 

•	 A substitution <7 is a function mapping a finite set of variables into the set of 
terms. We write <7 = {Xl +- t}, ••• ,Xn +- tn } if <7 maps Xi to ti for 1 ~ i ~ n. <7id 

represents the empty substitution {}, mgu(t}, t 2 ) the most general unifier for t 1 

and t 2 • 

•	 The encompassment ordering ~ is defined by s ~ t iff <7( s) = tip for a substi
tution <7 and a position p. t> is the strict part of ~. 

•	 t[p +- t1 denotes the term t with the subterm at position p replaced by t'. 

•	 An equation is a pair (s, t) E (TERM(F, V) x TERM(F, V)). We write s=t instead of 
(s, t). We always regard equations as symmetrical, so that s=t also represents 
t=s. 

•	 A reduction ordering> is a Noetherian ordering compatible with the term struc
ture and stable with respect to substitutions. A reduction ordering total on 
ground terms is called a ground reduction ordering. 

•	 A rule is a pair (l,r) E (TERM(F,V) x TERM(F, V)) with Var(r) C Var(l) (Var(t) 
denotes the set of variables occurring in t). We write a rule as 1~r. 

•	 A rule I-tr is compatible with a reduction ordering> if 1 > r. A system of rules 
R is compatible with > if all rules in R are compatible. 
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An equation s=t is a logical conclusion form a set of equation E if it is valid in each 
model of E. According to Birkhoffs theorem s =E t holds, if and only if we can trans
form s into t by application of the equations from E. Given this result we can give an 
operational characterization of E-equality. 

• Given a set E of equations we define a symmetrical relation HE as follows: 

tlHEt2 iff	 there exists an equation s=tEE, an position p in tl and a 
substitution er with er(5) =tllp and t2 == ttfp +- er(t)]. 

Then =E is the reflexive and transitive closure of HE, that is tl =E t2 if and only.. 
if tl HE t2. 

Knuth-Bendix completion (see [KB70]) tries to substitute the application of equations 
with the application of rules (oriented equations). It tries to generate a confluent 
rule system by orienting equations according to a reduction ordering, generating new 
equations from critical pairs and using rules to simplify the knowledge base. 

In order to handle unorientable equations the calculus introduced by Knuth and Bendix 
has been extended in [BDP89]. The extended calculus tries to generate only a ground 
confluent system, and orientable instances of equations can be used for simplifications. 

•	 A system R of rules defines a rewriting relation :::::::;'R as follows: 

tl ~R t2 iff	 there exists a rule l--+r, a place pin tl and a substitution so 
that tllp == er(l) and t2 == tl[P +- O"(r)] 

•	 A term that cannot be reduced with ===}R is said to be in normal form vV'ith 
respect to R. 

•	 The set RE = {er(s)--+er(t)ler(s) > er(t), s=t E E,era substitution} is called the set 
of orientable instances for a set of equations E and a reduction ordering >. 

•	 We define R(E) = R U RE for given sets E, R and an ordering >. 

•	 Critical pairs are defined as follows: Let 11--+rl and 12--+r2 be two rules and 
let> be a (ground) reduction ordering. Let p be a non-variable position in 11, 
0" = mgu(1 1Ip , 12)' If er(11) I- er(rt} and er(12) I- o-{r2) then (O"(rt) , er(ldp +- r2])) 
is called a critical pair between the two rules at position p. 

•	 Finally, critical pairs between equations can be builtby treating an equation s=t 
as the two rules s--+t and t--+s. The set of all critical pairs that can be build for 
an E and R is called ePeE, R). 

2.2 Completion based proof procedures 

Input for a completion based proof system are a set of equations E,a {ground) re
duction ordering> and a (skolemized) goal s=t. In order to prove s =E t the prover 
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equations from critical pairs and using rules to simplify the knowledge base.

In  order to  handle unorientable equations the calculus introduced by Knuth and Bendix
has been extended in [BDP89]. The extended calculus tries to generate only a ground
confluent system, and orientable instances of equations can be used for simplifications.

e A system R of  rules defines a rewriting relation =p  as follows:
t ;  =>p t 2  iff there exists a rule 1—r, a place p in  t ;  and a substitution so

that t ı l p  = ( 1 )  and t2  = tı[p « o(r)]

A term that cannot be reduced with =p  is said to be i n  normal form wi th
respect to  R.

® The set Rg = {o(8)—0o(t)|o(s) > a( t ) ,  s=t € E, oa  substitution} is called the set
of orientable instances for a set of equations E and a reduction ordering > .

e We define R(E) = RU  Rg for given sets E, R and an ordering > .

e Critical pairs are defined as follows: Let 1 ;—r;  and 12—r2 be two rules and
let > be a (ground) reduction ordering. Let p be a non-variable position i n  14,
o = mgu(lilp, 12). Ho(1 ; )  £ o ( r ı )  and o(12) £ o(r2) then (o(r1), o(1ılp &— ra]))
is called a critical pair between the two rules at  position p.

eo Finally, critical pairs between equations can be builtby treating an equation s= t
as the two. rules s—t and t—s.  The set of all critical pairs that can be build for
an E and R is called CP(E,R).

2.2 Completion based proof procedures

Input for a completion based proof system are a set .of equations E, a (ground) re-
duction ordering > and a (skolemized) goal s= t .  In order to prove s =}  t the prover
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successively orients equations from E, creating a set R of rules, generates new equations
 
by building critical pairs between rules and equations from E and R and uses the rules
 
from Rand orientable instances from equations for simplifications of both the goal and
 
the knowledge base. This process is called completion. The goal is proved if the normal
 
forms of both sides (with respect to R(E)) are identical or if an equation subsuming the
 
goal is being generated.
 

In order to guarantee completeness and correctness of the prover we need to discuss
 
completion more formally. The authors in [BDP89] suggested an inference system
 
describing the operations on the rules and equations. We use this inference system,
 
with an added rule to allow for subsumption. If these inference rules are applied using
 
a fair strategy, the resulting prover can be shown to be both complete and correct.
 

Definition 1 : The inference system U (Unfailing Completion)
 
Let> be a ground reduction ordering. The inference system works. on pairs (E, R),
 
where E is a set of equations and R is a set of rules compatible with >.
 

(VI)	 Orient an equation
 

(EU{s=t},R)
 
if 5> t

(E, R U {s-+t}) 

(V2) Generate an equation
 
(E,R)
 

(EU{s=t},R)
 

(V3) Simplify an equation
 

(EU {s=t},R)

(a)	 if S ===>R u 

(E U {u=t}, R) 

(EU{s=t},R) iff S ===>R u usmg a rule l-+r with(b)	 E 
(EU {u=t},R) s I> 1 

(U4a) Delete an equation
 
(E U {s=s},R)
 

(E,R)
 

(U4b) Subsume an equation 

(EU {s=t,u=v},R) if ulp =o-(s), v =[p +- t], u I> s, for a 
(E U {s=t}, R) position p and a substitution 0

(SI) Simplify the right side of a rule
 

(E,RU {s-+t})
 
if t ===>R(E) u

(E, R U {s-+u}) 

(S2) Simplify the left side of a rule 

(E, R U {s-+t}) if S ===>R(E) t usmg a rule l-+r with 
(E U {u=t}, R) s I> 1 
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successively orients eduations from E, creating a set R of  rules, generates new equations
by building critical pairs between rules and equations from E and R and uses the rules
from R and orientable instances from equations for simplifications of both the goal and
the knowledge base. This process is called completion. The goal is proved if the normal
forms of both sides (with  respect to  R(E)) are identical or i f  an equation subsuming the
goal is being generated.
In order to  guarantee completeness and correctness of the prover we need to discuss
completion more formally. The authors in [BDP89] suggested an  inference system
describing the operations on the rules and equations. We use this inference system,
with an added rule to allow for subsumption. If these inference rules are applied using
a fair strategy, the resulting prover can be shown to be both complete and correct.

Definition 1 : The inference system U (Unfailing Completion)
Let > be  a ground reduction ordering. The inference system works. on  pairs (E,R),
where E is a set of equations and R is a set of rules compatible with > .

(U1) Orient an equation
(EU  { s= t } ,R )
(E,RU { s—t } )

i f s> t

(U2) Generate an  equation
(E,R)

(EU  {s=t},R)
if stHHeypubdgurt, s pu ,  t u

(U3) Simplify an equation

(EU  {s= t } ,R) i f(a) (EU {u=t},R) if s =>gu

(b) (EU  {s=t} ,R) iff s =>p;  un using a rule 1—r with
(EU {u=t},R) sb l

(U4a)  Delete an  equation

(EU  { s=s } ,R )
(E,R)

(U4b) Subsume an equation
(EU  { s= t , u=v } ,R )  i f up=o (s ) , v= [p—t l ,  ups ,  f o ra

(EU  { s= t } ,R )  position p and a substitution o

(S1) Simplify the right side of a rule
(E ,RU  {s—t } )

(E,R U {s—u})

(S2) Simplify the left side of a rule
(E,RU {s—t } )  i f  s =>gE) t  using a rule 1—r wi th
(EU {u=t},R) sb l

i f t  =p )  u



We write (E, R) I-u (E', R') if (E, R) can be transformed into (E', R') using one inference
 
rule from U. An application of an inference rule from U does not change the equality
 
relation described by the system:
 

Theorem 1 : Correctness of U
 
Assume (E, R) I-u (E', R') and consider R to be compatible with a reduction ordering >.
 
The the following facts hold true:
 

•	 R' is compatible with >. 

A proof for an equation s=t in E U R is a chain of terms connected by one application 
of a rule or equation from E U R. Using the ground reduction ordering> and the 
encompassment ordering l> a well founded proof ordering >1' that is compatible with 
the proof structure can be constructed (see [BDP89]), such that the following theorem 
holds: 

Theorem 2 : Proof orderings 
Let >1' be a proof ordering, and assume (E, R) I-u (E', R'). Let B be a proof for s=t 
in E U R. Then there exists a proof B be a proof for s=t in E' U R' with B ~p B/. In' 
particular, if B contains a peak s {:=R(£) U ==*R(£) t and B' is constructed from B by 
replacing this peak with a new equation generated using rule (U2), then B >p B/. 

If only minimal (with respect to >1') proofs are considered and any peak in these is 
eventually eliminated by generating new equations, it can be assured that an equivalent 
proof containing no peaks (a so called V-proof) does exist for every ground proof of 
a valid equation. To ensure that every peak is eliminated we have to make certain 
demands on the sequence of the inferences. 

Definition 2 : U-fairness 
•	 A sequence (Ei, RiheN is called an U-derivation if (Ei, Ri) I-u (Ei+t, Ri+d for all 

i E IN. 

EOO•	 The system (ROO
, ) of persistent rules and equations (for a given U-derivation) 

is defined by by: 
OO

E = U nEj and R
oo = U nRj 

i~Oj~i i~Oj~i 

•	 An U-derivation (Ei, RiheN is fair if 

CP(EO<?, ROO 
) ~ UEi 

i~O 

An derivation is fair, if every critical pair between persistent rules will eventually be 
built and added to the set of equations. It can be shown that the following theorem 
holds for U-fair derivations. 
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We write (E,R) Fy (E',R') i f  (E,R) can be transformed into (E’,R’) using one inference
rule from U .  An  application of an inference rule from U does not change the equality
relation described by the system:

Theorem 1 : Correctness of  U
Assume (E,R) Fy (E',R’) and consider R to  be compatible with a reduction ordering > .
The the following facts hold true:

e R’ is compatible with > .

® =EUR = =EWUR'-

A proof for an equation s=t  in  EUR is a chain of terms connected by  one application
of a rule or equation from EUR. Using the ground reduction ordering > and the
encompassment ordering > a well founded proof ordering >,  that is compatible wi th
the proof structure can be constructed (see [BDP89]), such that the following theorem
holds:

Theorem 2 : Proof orderings
Let > ,  be a proof ordering, and assume (E,R) Fy (E,R’). Let B be a proof for s= t
i n  EUR. Then there exists a proof B’ be a proof for s= t  in  E' UR’ with B >, B’. In
particular, i f  B contains a peak s <=pg) u =>p(E) t and B ’  is constructed from B by
replacing this peak with a new equation generated using rule (U2), then B > ,  B'.

If only minimal (wi th respect to  > , )  proofs are considered and any peak in these is
eventually eliminated by generating new equations, i t  can be assured that an  equivalent
proof containing no peaks (a so called V-proof) does exist for every ground proof of
a valid equation. To ensure that every peak is eliminated we have to  make certain
demands on the sequence of the inferences.

Definition 2 : U-fairness
o A sequence (Ej ,R;) ien  is called an U-derivation i f  (E;j,R;) Fy (Ei+1,Ri+1) for all

i e  IN.

e The system (R®, E®) of persistent rules and equations (for a given U-derivation)
is defined by  by:

E”  = |) (| Ejand R”  = | J (RB;
i >0  j i  i >0 j> i

e An  U-derivation (E;,R ı) ien is fair i f

CP(E®,R°) © | J Es
i >0

An derivation is fair, i f  every critical pair between persistent rules will eventually be
built and added to  the set of equations. I t  can be shown that the following theorem
holds for U-fair derivations.
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Theorem 3 : Completeness of fair V-derivations 
Let (Ei,RiheN be a fair V-derivation. 

•	 The final system of rules and equations describes the same equality as the initial 
system: =EoouRoo = =EouRo· 

•	 If S =E t holds,then there is an i such that the normal forms of sand t with 
respect to (Ei, Ri) are identical. 

This result can be used to build completion based provers for equational logic. The 
following algorithm describes a possible implementation of such a proof system. It will 
either proof a given goal or it will try to generate a (possibly infinite) ground confluent 
system of rules and equations that can be used for calculations in equationally specified 
algebraic structures. 

In order to keep control over the critical pairs already considered it uses not two, but 
three sets of term pairs to represent the current state of a completion process: A set 
E of processed, but unorientable equations, a set R of rules (processed and oriented 
equations) and a set CP of unprocessed equations. 

The completion algorithm starts out with empty sets Rand E, and with the initial 
axioms in CP. It examines each equation in CP, reduces it t6 normal form with respect 
to E and R, uses it to build new critical pairs (to be added to CP) and to eliminate 
redundancies from Rand E by simplification (this process is known as interreduction). 
It is then added to either R (if it can be oriented according to » or E. 

To build a prover on top of the completion algorithm the goal is brought to normal 
form with respect to each successive E and R. If these normal forms are identical or 
if an equation from E subsumes the goal, the goal is proved. Please note that both, 
completeness and. efficiency of the proof process, depend on the order in which the 
equations from CP will be considered, with both goals often conflicting. 

2.2.1 A completion procedure 

Input: M A set of equations 

> A ground reduction ordering 

PROOFMODE A boolean value, TRUE, if a single goal 
is	 to be proved, FALSE if a ground 
confluent end system is desired 

(gs,gt) The goal to be proved (only if 
PROOFMODE has the value TRUE 
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Theorem 3 : Completeness of  fair U-derivations
Let (Ei ,Ri ) ien  be a fair U-derivation.

e The final system of rules and equations describes the same equality as the initial
system: =E0wuR® = =EgURg-

e If s =g  t holds,then there is an i such that the normal forms of s and t with
respect to (E j ,  R j )  are identical.

This result can be used to build completion based provers for equational logic. The
following algorithm describes a possible implementation of such a proof system. I t  will
either proof a given goal or i t  will try to  generate a (possibly infinite) ground confluent
system of rules and equations that can be used for calculations in  equationally specified
algebraic structures.

In order to  keep control over the critical pairs already considered i t  uses not two, but
three sets of term pairs to represent the current state of  a completion process: A set
E of processed, but unorientable equations, a set R of rules (processed and oriented
equations) and a set CP of unprocessed equations.

The completion algorithm starts out with empty sets R and E, and with the initial
axioms in CP. It examines each equation i n  CP, reduces i t  t o  normal form wi th  respect
to E and R, uses i t  to build new critical pairs ( to be added to  CP) and to  eliminate
redundancies from R and E by  simplification (this process is known as interreduction).
It is then added to either R (if  i t  can be oriented according to >)  or  E.
To build a prover on top of the completion algorithm the goal is brought to  normal
form with respect to each successive E and R. If these normal forms are identical or
i f  an equation from E subsumes the goal, the goal is proved. Please note that both,
completeness and. efficiency of the proof process, depend on the order i n  which the
equations from CP will be considered, with both goals often conflicting.

2.2.1 A completion procedure

Input: M A set of equations
> A ground reduction ordering
PROOFMODE A boolean value, TRUE, i f  a single goal

is to be proved, FALSE if a ground
confluent end system is desired

(gs,gt) The goal to be proved (only if
PROOFMODE has the value TRUE
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Variables: R 

E 

CP 
s,t 

l,r 
u,v 

U I, v' 

Functions: NOTEMPTY(list) 

FIRST(list) 
EXCEPTFIRST(list) 
NORMALFORM(t,R) 

SUBSUM(e,E) 

INSERT(list,e) 

CPS(e,E) 

CP := M; 
E ::: {}; 
R ::: {}; 
WHILE NOTEMPTY(CP) 

IF PROOFMODE :: TRUE THEN 

The set of processed rules 

The set of processed equations 

The set of unprocessed equations 

The sides of the unprocessed term 
pair considered at a given moment 

The terms of a newly generated rule 

The sides of a processed term pair 
considered again 

Possibly simplified descendants from 
u and v 
FALSE, if list is empty, TRUE oth
erWIse 
First element of list 
list without it's first element 
Calculates a normal form for t with 
respect to R 

Tests, whether the equation e is sub
sumed by an equation in E or whether 
an equivalent equation already exists 
in E 
Inserts the term pair e into list in a 
way that ensures that for any given 
pair in list only finitely many pairs 
will be inserted in front of it (this en
sures fairness) 

Returns all critical pairs that can be 
build between e and term pairs from 
E 

gs ::: NORMALFORM(gs,R(E»j 
gt := NORMALFORM(gt,R(E»; 
IF gs :: gt THEN END j A proof has been found 

ENDIF
 
(s,t) := FIRST(CP);
 
CP := EXCEPTFIRST(CP);
 
s := NORMALFORM(s,R(E»;
 
t := NORMALFORM(t,R(E»;
 
IF s#t AND NOT(SUBSUM(s=t,E» THEN
 

FOREACH (u,v)E E 
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Variables:

Functions:

CP :=  M;
E :=  {};
R := { } ;

R
E

CP

s , t

1 , r
u , v

u?  , Vv!

NOTEMPTY ( l i s t )

FIRST(1list)
EXCEPTFIRST(1list)
NORMALFORM(t,R)

SUBSUM(e,E)

INSERT ( l i s t  , e )

CPS(e,E)

WHILE NOTEMPTY (CP)
I F  PROOFMODE = TRUE THEN

gs  : =  NORMALFORM(gs,R(E));
gt  : =  NORMALFORM(gt,R(E));

The set of  processed rules
The set of  processed equations
The set of  unprocessed equations
The sides of the unprocessed term
pair considered at a given moment
The terms of a newly generated rule
The sides of a processed term pair
considered again
Possibly simplified descendants from
uandv
FALSE, if L i s t  is empty, TRUE  oth-
erwise
First element of 1 i s t
l i s t  without i t ’s  first element
Calculates a normal form for t with
respect to  R
Tests, whether the equation e is sub-
sumed by  an  equation in  E or whether
an equivalent equation already exists
i nE
Inserts the term pair e into l i s t  in  a
way that ensures that for any given
pair i n  l i s t  only finitely many pairs
will  be inserted in  front of i t  (this en-
sures fairness)

Returns all critical pairs that can be
build between e and term pairs from
E

IF  gs = gt  THEN END; A proof has been found
ENDIF
(s , t )  : =  FIRST(CP);
CP :=  EXCEPTFIRST(CP);
s :
t

NORMALFORM(s,R(E));
NORMALFORM(t ,R(E));

I F  s# t  AND NOT(SUBSUM(s=t ,E))  THEN
FOREACH (u , v )€  E
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u' := NORMALFORM(u,R{s::t}); 
v' := NORMALFORM(v ,R{s::t}) ; 
IF u!u' OR v!v' THEN 

E := E \ {u=v};
 
CP:= INSERT(CP,u'=v');
 

ENDIF
 
ENDFOREACH
 
FOREACH (u,v)E R
 

v := NORMALFORM(v ,R(E U{s = t})) ; 
u' := NORMALFORM(u,R{s::t}); 
IF u'!u THEN 

R := R\ {(u, v)} ;
 
CP := INSERT(CP,u'=v);
 

ENDIF 
ENDFOREACH 
FOREACH (u,v) E CPS(s=t,E U R) 

CP := INSERT(CP,u=v);
 
IF s>t THEN
 

R := R U {s-+t};
 
ELSE IF t>s THEN
 

R := R U {t-+s};
 
ELSE
 

E: = E U {s=t};
 
ENDIF
 

ENDIF 
ENDWHILE 
(E,R) represents the ground confluent endsystem 
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u? NORMALFORM(u,R(s=¢}) ;
v ’  := NORMALFORM(v,Rig_y}) ;
I F  u#u ’  OR v#v ’  THEN

E :=  E \ {u=v};
CP:= INSERT(CP,u ’=v ’ ) ;

ENDIF
ENDFOREACH
FOREACH (u , v )E  R

v := NORMALFORM(v,R(EU {s  = t } ) ) ;
u ’  : =  NORMALFORM(u,R{g=t});
I F  u ’ 7u  THEN

R :=  R\{(u,v)};
CP :=  INSERT(CP,u’=v);

ENDIF
ENDFOREACH
FOREACH (u , v )  € CPS(s=t ,E  U R)

CP :=  INSERT(CP,u=v);
IF  s> t  THEN

R := R U { s t } ;
ELSE IF  t>s  THEN

R :=  RU { t s } ;
ELSE

E:= E U {s= t } ;
ENDIF

ENDIF
ENDWHILE
(E,R) represents the ground confluent endsystem
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Supervisor 

Referee n Referee 1 Referee 0 

Expert nExpert 1Expert 0 

Figure 1: Basic structure of a team in the TEAMWORK method, 

2.3 Distributed deduction - The TEAMWORK method 

The TEAMWORK method (see [De93] or [AD93]) is an approach to distribute theo
rem proving procedures. It has been inspired by human project teams and has been 
implemented quite successfully. A TEAMWORK based proof system models human 
project teams by use of multiple processes running on different processors. 

A team consists of a single supervisor and a number of experts, each accompanied by 
a referee evaluating his work. Figure 1 shows the structure of a team. Usually each 
expert is working on a problem without communication with the other team members. 
Only at team meetings scheduled by the supervisor results are exchanged. 

The supervisor is selecting the experts to work on a specific task, initially 'by judging 
their previous success on related problems, later by using the referees' evaluation of 
their performance in dealing with the problem at hand. 

The referees are evaluating the work of the different experts. Their conclusions are 
used in selecting a new team and important results (from their respective experts) at 
the team meetings. 

The experts are the members of the team working directly on the problem. In our case 
each of them is using an unfailing completion algorithm l as described in the above 
section. They differ only in the criteria used to select inferences. At the team meetings 
the system of the best expert is chosen as the base for further work. As only one system 

lThis is a. slight simplification. We can a.lso add specialists using other algorithms. One example 
is a reduction specialist trying to eliminate critical pairs before they are selected by the other experts, 
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2 .3  Distributed deduction - The TEAMWORK method

The TEAMWORK method (see [De93] or [AD93]) is an approach to distribute theo-
rem proving procedures. I t  has been inspired by human project teams and has been
implemented quite successfully. A TEAMWORK based proof system models human
project teams by  use of  multiple processes running on  different processors.

A team consists of a single supervisor and a number of experts, each accompanied by
a referee evaluating his work. Figure 1 shows the structure of a team. Usually each
expert is working on a problem without communication with the other team members.
Only at team meetings scheduled by  the supervisor results are exchanged.
The supervisor is selecting the experts to work on a specific task, initially by  judging
their previous success on related problems, later by using the referees’ evaluation of
their performance in  dealing with the problem at hand.
The referees are evaluating the work of the different experts.  Their conclusions are
used in  selecting a new team and important results (from their respective experts) at
the team meetings.

The experts are the members of  the team working directly on the problem. In our case
each of them is using an unfailing completion algorithm?! as described in the above
section. They differ only in  the criteria used to  select inferences. At  the team meetings
the system of  the best expert is chosen as the base for further work. As only one system

This is a slight simplification. We can also add specialists using other algorithms. One example
is a reduction specialist trying to eliminate critical pairs before they are selected by the other experts.
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Team meeting iSupervisor 

Expert 0 

Referee 0 

Expert 1 

Referee 1 

Expert 2 

Referee· 2 

Transmission of the 
updated problem 

Working phase i 

Evaluation phase 
Winner is expert 2 

Transmission of 
the results 

Supervisor Team meeting i+1 

-->~ Indicates transmission of a full system 

---.;...... Indicates transmission of selected results 

Figure 2: A cycle between two team meetings 

survives completely, the experts are competing for the best result. 

However, competition is only one aspect of the TEAMWORK method. The second 
important element is the cooperation between the experts. Cooperation is achieved 
by integrating outstanding results from inferior experts (as chosen by their referees) 
into the system of the best expert. This is done by the supervisor during the team 
meetings, before he presents a new and updated problem description to the experts for 
the next working phase (In our case of a completion based theorem prover the results 
- rules and equations - are handled as new critical pairs to be processed immediately). 

It is important to note that most of the results generated by the inferior experts are 
dropped or forgotten. We believe that one of the reasons for the success of TEAM
WORK is this feature of forgetting, because it alleviates the usual explosion of the 
search space. 

A complete cycle between two team meetings is shown in figure 2. It can be described 
as follows: 
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—> Indicates transmission of selected results

Figure 2: A cycle between two team meetings

survives completely, the experts are competing for the best result.

However, competition is only one aspect of the TEAMWORK method. The second
important element is the cooperation between the experts. Cooperation is achieved
by integrating outstanding results from inferior experts (as chosen by their referees)
into the system of the best expert. This is done by the supervisor during the team
meetings, before he presents a new and updated problem description to the experts for
the next working phase (In our case of a completion based theorem prover the results
~ rules and equations — are handled as new critical pairs to  be processed immediately).
I t  is important to note that most of the results generated by the inferior experts are
dropped or forgotten. We believe that one of the reasons for the success of TEAM-
WORK is this feature of forgetting, because i t  alleviates the usual explosion of the
search space.
A complete cycle between two team meetings is shown in  figure 2. I t  can be described
as follows:
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•	 The supervisor selects a team of experts with their respective referees. Each of 
the experts is given the problem description. The supervisor schedules the next 
team meeting. 

•	 The experts start working on the pr0blem. If none of them can solve it until 
the schedaled meeting their progress is evaluated by the respective referees. The 
referees also selects outstanding single results and report these results and their 
overall evaluation of the experts progress to the supervisor. 

•	 The supervisor chooses the best expert and integrates the results from the other 
experts into his system. He chooses a new team based on the success of the 
experts in the previous working phases. The experts are handed the updated 
problem description and the cycle starts again. 

In [De93] and [AD93] the authors proved that a completion based prover using TEAM
WORK is complete if certain (weak) fairness criteria are fulfilled. 
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e The supervisor selects a team of experts with their respective referees. Each of
the experts is given the problem description. The supervisor schedules the next
team meeting.

e The experts start working on the problem. If none of them can solve i t  until
the scheduled meeting their progress is  evaluated by the respective referees. The
referees also selects outstanding single results and report these results and their
overall evaluation of the experts progress to the supervisor.

® The supervisor chooses the best expert and integrates the results from the other
experts into his system. He  chooses a new team based on the success of the
experts in  the previous working phases. The experts are handed the updated
problem description and the cycle starts again.

In [De93] and [AD93] the authors proved that a completion based prover using TEAM-
WORK is complete i f  certain (weak) fairness criteria are fulfilled.
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3 Representation of computer generated proofs 

The first problem encountered when dealing with computer generated proofs based on 
inference mechanisms is the representation of the proof. In many cases the proof does 
not exist in a presentable form, but is represented only by the- internal state, or, even 
worse, the dynamic processes of the program generat~ng this proof. There are two 
basic ways to get information about the proof process. First, it is possible to build 
internal data structures representing the proof process. This is done in many proof 
system for first order predicate logic, which build refutation graphs containing enough 
information to reproduce the proof. 

While this procedure is successful for predicate logic it is not really suitable for com
pletion based rewriting systems. The great strength of rewriting systems is the fact 
that they can cut down on the information base using simplification rules and thereby 
keep the size of this data base relatively modest. They have to deal with large amounts 
of intermediate results (critical pairs are one example). These intermediate facts will 
usually be simplified extensively before they are used to generate new facts or can 
be proven trivial. Storing all the intermediate results and the simplifications done on 
them would nullify the main advantage of rewriL"'6 systems and seriously impair their 
power. For distributed proof systems this effect becomes still more pronounced, as it 
blows up on the communication between the different components - which already is a 
well known bottleneck even for systems refraining from proof analysis. 

The second approach to get the desired information about the proof process is to 
generate a complete external listing of all the inferences and generated facts. This 
results in some problems too, but they can be overcome much easier. Section 6 deals 
with them for the special case of a distributed proof system (using the TEAMWORK 
method). Most of the problems encountered in sequential proof systems can be solved 
using the same techniques. This second approach has a number of advantages, namely: 

• Changes in	 the proof system are kept to a minimum. No changes have to be 
made to the basic proof algorithm, all that is needed is the addition of routines 
to produce the relevant output. After this the proof system and the programs 
working on the proofs can be maintained separately. Our work with the DIS
COUNT system has shown that these routines can be integrated into existing, 
complex proof systems quite easily (see section 6). 

•	 Changing the underlying proof system will not affect the programs working on the 
generated proof. Building a new proof system which can produce the appropriate 
output does not significantly change the complexity of the system. 

•	 As the information about the proof is stored on external media, the power of the 
proof system is not affected in any significant way. While the speed of the proof 
system may suffer, the class of theorems provable under fixed memory constraints 
is not usually affected2

• 

2Lack of memory is at the moment the main restriction for finding proofs with the DISCOUNT 
system, while lack of time plays no role at all. 
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3 Representation o f  computer generated proofs

The first problem encountered when dealing wi th  computer generated proofs based on
inference mechanisms is the representation of the proof. In  many cases the proof does
not exist in  a presentable form, but is represented only by  the internal state, o r ,  even
worse, the dynamic processes of the program generating this proof. There are two
basic ways to get information about the proof process. First, i t  is possible to build
internal data structures representing the proof process. This is done in many proof
system for first order predicate logic, which build refutation graphs containing enough
information to reproduce the proof.

While this procedure is successful for predicate logic it is not really suitable for com-
pletion based rewriting systems. The great strength of  rewriting systems is the fact
that they can cut down on the information base using simplification rules and thereby
keep the size of this data base relatively modest. They have to deal with large amounts
of intermediate results (critical pairs are one example). These intermediate facts will
usually be simplified extensively before they are used to generate new facts or can
be proven trivial. Storing all the intermediate results and the simplifications done on
them would nullify the main advantage of  rewrit’..g systems and seriously impair their
power. For distributed proof systems this effect becomes sti l l  more pronounced, as i t
blows up on the communication between the different components - which already is a
well known bottleneck even for systems refraining from proof analysis.

The second approach to  get the desired information about the proof process is to
generate a complete external listing of all the inferences and generated facts. This
results in  some problems too, but they can be overcome much easier. Section 6 deals
with them for the special case of a distributed proof system (using the TEAMWORK
method). Most of  the problems encountered in  sequential proof systems can be solved
using the same techniques. This second approach has anumber of advantages, namely:

e Changes in  the proof system are kept to a minimum. No changes have to be
made to the basic proof algorithm, all that is needed is the addition of routines
to  produce the  relevant output.  After this the proof system and the programs
working on the proofs can be maintained separately. Our work with the DIS-
COUNT system has shown that these routines can be integrated into existing,
complex proof systems quite easily (see section 6).

e Changing the underlying proof system will  not affect the programs working on the
generated proof. Building a new proof system which can produce the appropriate
output does not significantly change the complexity of the system.

e As the information about the proof is stored on  external media, the power of the
proof system is not affected in any significant way. While the speed of  the proof
system may suffer, the class of  theorems provable under fixed memory constraints
i s  not  usually affected?.

2Lack of  memory is at the moment the main restriction for finding proofs wi th  the DISCOUNT
system, while lack of  t ime plays no  role at all.
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•	 Quite a few operations can be done on the proof listing. This operations are inde
pendent of the used calculus and can easily be extended to cover most inference 
based reasoning processes. 

•	 As an added benefit the complete listings allow a very close and detailed analysis 
of the work done and problems encountered by the proof system. The knowledge 
gathered by this analysis can be (and has been) used to improve the heuristics 
of the prover and to get better insight into the inference mechanism. 

Of course there are some problems associated with generating a complete listing of the 
proof process. They mostly stem from the enormous amount of data processed by a 
powerful proof system. 

•	 Proof listings can become very large. The sheer amount of proof steps done 
can overwhelm most people and even programs used to analyze the proof. We 
cope with this problem by basing our analysis on the necessary steps only and 
by discarding steps that did not contribute to the proof process. Section 3.3 
describe~ this solution in more detail. 

•	 Producing the proof protocol is an output intensive task and can slow down 
the proof system significantly. This is particularly grave for distributed systems 
relying on cooperation at specific times. This problem is examined in more detail 
in section 6.1, where we also offer a solution for distributed proof systems based 
on the TEAMWORK method. 

Obviously a consistent and general description of the proof process will be of much 
more use then a specialized format - some of the benefits above do not even apply if a 
less general description is used. 

3.1 The language PCL 

To achieve the goals stated above we developed a language for the description of comple
tion based proofs. This language is PCL (proof communication language). We believe 
that it can be easily extended to cover most inference based reasoning processes. 

PCL describes the proof process as a pure ASCII listing of single steps, representing 
the equations and rules (or, to be more general, the facts) generated during the com
pletion (or reasoning) process. Connection between different steps are represented by 
justifications, giving the inference type, the facts used in the inference and additional 
information sufficient to allow a unique reproduction of the inference. Because PCL 
uses a rather intuitive description of the inferences a proof description in peL can 
be read and analyzed by humans. On the other hand the complete description of ev
ery single inference makes it possible to use PCL protocols as the base for computer 
analysis. Some of our programs dealing with PCL will be described later. 

As we stated before, a PCL protocol of a proof session is a list of single PCL steps. 
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e Quite a few operations can be done on the proof listing. This operations are inde-
pendent of the used calculus and can easily be extended to cover most inference
based reasoning processes.

e As an added benefit the complete listings allow a very close and detailed analysis
of the work done and problems encountered by  the proof system. The knowledge
gathered by this analysis can be (and has been) used to improve the heuristics
of  the prover and to get better insight into the inference mechanism.

Of course there are some problems associated with generating a complete listing of  the
proof process. They mostly stem from the enormous amount of data processed by a
powerful proof system.

e Proof listings can become very large. The sheer amount of proof steps done
can overwhelm most people and even programs used to analyze the proof. We
cope with this problem by basing our analysis on the necessary steps only and
by discarding steps that did not contribute to the proof process. Section 3.3
describes this solution i n  more detail. |

U

e Producing the proof protocol is an output intensive task and can slow down
the proof system significantly. This is particularly grave for distributed systems
relying on cooperation at specific times. This problem is examined in  more detail
in  section 6.1, where we also offer a solution for distributed proof systems based
on  the TEAMWORK method.

Obviously a consistent and general description of the proof process will be of much
more use then a specialized format - some of the benefits above do not even apply i f  a
less general description is used.

3.1 The language PCL

To achieve the goals stated above we developed a language for the description of  comple-
t ion based proofs. This language is PCL  (proof communication language). We believe
that i t  can be easily extended to cover most inference hased reasoning processes.
PCL describes the proof process as a pure ASCII listing of single steps, representing
the equations and rules (or, to be more general, the facts) generated during the com-
pletion (or reasoning) process. Connection between different steps are represented by
Justifications, giving the inference type, the facts used in  the inference and additional
information sufficient to allow a unique reproduction of the inference. Because PCL
uses a rather intuitive description of the inferences a proof description in PCL can
be read and analyzed by humans. On  the other hand the complete description of ev-
ery single inference makes i t  possible to use PCL protocols as the base for computer
analysis. Some of  our programs dealing with PCL will be described later.
As we stated before, a PCL  protocol of  a proof session is a l ist of  single PCL  steps.
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<pcl-list> ::= <pcl-step>*;; 

A single PCL step consists of a unique PCL identifier used to reference the step, a 
designator describing the type of the fact, the fact and finally the justification for the 
step. 

<pcl-step> ::= <pcl-id>':'<step-type>':'<fact>':'<pcl-initexpr>;; 

PCL identifiers are lists of positive integers. On the one hand this allows us to express 
technical information - for example the origin of the step in distributed environments 
or the heuristics used in generating the step - by using appropriate name spaces. On 
the other hand complex proof steps can be broken down into simpler inferences and 
inserted into the listing without requiring a global renaming. We will go into more 
depth about name spaces and distributed proof systems in section 6.2. 

<pcl-id> ::= <int>['.'<int>]*;; 

<int> ::= <digit>+;; 

<digit> ::= 'Q' 1'1' 1'2' 1'3'1'4' 1'5'1'6'1'7'1'8' 1'9';; 

PCL descriptions of proof sessions tend to become very long. To allow an efficient 
working with them we demand that the PCL identifiers are used in a monotonically 
ascending order. Identifier of later steps have to be larger (in the lexicographic exten
sion over the usual ordering on natural numbers) than earlier steps. 

The next element of a PCL step is the type designator. This designator is mainly used 
to mark the role of the fact in the proof process. Important steps can be marked as 
lemmata, different types of goals can be distinguished from normal facts and the proof 
system can mark steps with a special importance for the proof process. 

<step-type> ::=	 'tes-rule'I'tes-eqn'I'tes-goal'I'crit-goal'l 
'tes-intermed'I'tes-intermedgoal'l 
'crit-intermedgoal'I'tes-lemma'I'tes-final;; 

The different step types are described below: 

tes-rule A rewriting rule generated during completion. 
tes-eqn An equation yielded by the completion process. 

tes-goal One of the hypothesises or a new goal generated (by rewrit
ing) from a hypothesis. Goals of this type usually contain no 
variables, universally quantified variables have been replaced 
by skolem constants. 
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<pe l - l i s t>  : : =  <pc l - s tep>* ; ;

A single PCL step consists of a unique PCL identifier used to reference the step, a
designator describing the type of the fact, the fact and finally the justification for the
step.

<pcl-step> : : =  <pc l - i d> ’ : ’ <s tep - t ype> ’ : ’ < fac t> ’ : ’ <pc l - i n i t exp r> ; ;

PCL identifiers are lists of positive integers. On the one hand this allows us to express
technical information — for example the origin of the step in  distributed environments
or the heuristics used in  generating the step — by  using appropriate name spaces. On
the other hand complex proof steps can be broken down into simpler inferences and
inserted into the listing without requiring a global renaming. We will go into more
depth about name spaces and distributed proof systems in  section 6.2.

<pcl- id> : : =  < i n t> [ ’ . ’ < i n t> ] * ; ;

< in t>  : : =  <d ig i t >+ ; ;

<digi t> : : =  ’ 0 ’ | ?1 ’ ] ’ 2 ’ 1 ’ 3? ] ’ 4 ’ 1 ’ 5 ’ 1 ’ 6 ’ 1 ’ 7 ’ | ’ 8 ’ 1 ’ 9 ’ ; ;

PCL descriptions of proof sessions tend to become very long. To allow an efficient
working with them we demand that the PCL identifiers are used in  a monotonically
ascending order. Identifier of later steps have to be larger (in the lexicographic exten-
sion over the usual ordering on natural numbers) than earlier steps.
The next element of a PCL step is the type designator. This designator is  mainly used
to mark the role of the fact i n  the proof process. Important steps can be marked as
lemmata, different types of goals can be distinguished from normal facts and the proof
system can mark steps with a special importance for the proof process.

<step-type> : : =  ’ t es - ru l e ’ | ’ t es -eqn ’ | ’ t es -goa l ’ | ’ c r i t - goa l ’ |
’ tes - in te rmed ’  | ’tes-intermedgoal’ |
'crit-intermedgoal’|’tes-lemma’ | ’ ' t es - f i na l ; ;

The different step types are described below:

tes-rule A rewriting rule generated during completion.
tes-eqn An  equation yielded by the completion process.
tes-goal  One of the hypothesises or a new goal generated (by rewrit-

ing) from a hypothesis. Goals of this type usually contain no
variables, universally quantified variables have been replaced
by skolem constants.
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crit-goal A critical goal, containing variables that are existentially 
quantified. 

tes-intermed A intermediate fact, either an equation or a rule, deemed 
particularly important by the proof system. This informa
tion can, for example, be used in the generation of lemmata. 
In the DISCOUNT system this type and the following two 
types designate the intermediate "good" results gained from 
unsuccessful experts. 

tes-intermedgoal 
crit-intermedgoal The same as tes-goal and crit-goal, respectively, but 

deemed especially important by the proof system. 

tes-lemma A rule or equation generated during completion and awarded 
a lemma status. 

tes-rinal The last step in a reasoning sequence, usually concluding the 
proof of at least one hypothesis. If a completion is desired, 
all facts of the final, ground convergent system are marked 
as tes-rind. 

Each PCL step represents a single fact. These can either be initial facts or facts 
generated by the reasoning process. In the case of a completion based proof system 
for equational reasoning the facts are either rules or equations. They either are a 
conclusion from the initial axioms or a (probably rewritten) goal. Equations consist of 
two terms connected by an equal sign, rules consist of two terms and an arrow. 

<fact> .. = <rule>l<eqn>;;
 

<rule> ::= <term> ,->' <term>;;
 

<eqn> ::= <term> '=' <term>;;
 

<term> ::= <ident>l<ident>'('<arglist>');;
 

<arglist> ::= <term>['.'<term>]*;;
 

<ident> ::= [<letter>l<digit>]+;j
 

<letter> ::= 'a'I ... I'z'I'A'I ... I'Z';j
 

The final part of a PCL step is an expression describing the origin of the fact in 
the step. Facts are either initial axioms or goals without further justification or they 
have been derived during the inference process. While initial facts need no additional 
justification, derived facts usually need a description of the actual inference step. 

<pcl-initexpr> ;:= 'initial'I'hypothesis'l<pcl-expr>;; 

In PCL annotation a step with the justification initial represents an axiom and a'step 
with justification hypothesis represents a goal to be proved. For consistency reasons 
these expressions are assigned the fact in their PCL step as a value of the justification. 
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cr i t -goal  A critical goal, containing variables that are existentially
quantified.

tes-intermed A intermediate fact, either an equation or a rule, deemed
particularly important by the proof system. This informa-
tion can, for example, be used i n  the generation of lemmata.
In the DISCOUNT system this type and the following two
types designate the intermediate “good” results gained from
unsuccessful experts.

tes-intermedgoal
crit-intermedgoal The same as tes-goal and cri t-goal, respectively, but

deemed especially important by the proof system.
tes-lemma A rule or equation generated during completion and awarded

a lemma status.
tes- f ina l  The  last step in a reasoning sequence, usually concluding the

proof of at least one hypothesis. If a completion is desired,
all facts of the final, ground convergent system are marked
as tes-final.

Each PCL step represents a single fact. These can either be initial facts or facts
generated by the reasoning process. In the case of a completion based proof system
for equational reasoning the facts are either rules or equations. They either are a
conclusion from the initial  axioms or a (probably rewritten) goal. Equations consist of
two terms connected by  an equal sign, rules consist of two terms and an arrow.

<fact> : : =  <rule>|<eqn>;;

<rule> : : =  <term> ’ - > ’  <term>;;

<eqn> : : =  <term> ’ '=’ <term>;;

<term> : : =  < ident>|< ident> ’ ( ’<arg l is t> ’ ) ; ;

<arg l is td  : : =  < te rm>[ ’ , ’ < te rm>] * ; ;

<ident> : : =  [< le t te r> i<d ig i t> ]+ ; ;

<let ter> : : =  ’ a ’ l . . . 1 ’ z ’ | ’A ’ 1 . . . 1 ’Z? ’ ; ;

The final part of a PCL step is an expression describing the origin of the fact in
the step. Facts are either initial  axioms or goals without further justification or they
have been derived during the inference process. While initial facts need no additional
justification, derived facts usually need a description of the actual inference step.

<pcl - in i texpr> : : =  ’ i n i t i a l ’ | ’ h ypo thes i s ’ | <pc l - exp r> ; ;

In  PCL  annotation a step with the justification in i t ia l  represents an axiom and a step
with  justification hypothesis represents a goal to  be proved. For consistency reasons
these expressions are assigned the fact in  their PCL  step as a value of the justification.
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The justifications for the derived facts either describe the generation of a new fact or 
simply reference an already known fact. 

<pcl-expr> ::= <quote~expr>l<orient-expr>l<cp-expr>
 

<tes-red-expr>l<instance-expr>;;
 

The most obvious justification for a fact is a reference to an earlier step with the same 
fact. This is represented by a <quote-expr>, which simply consists of the identifier 
belonging to the earlier PCL step. The value associated with a <quote-expr> is the 
value of the referenced step. 

<quote-expr> ::= <pcl-id>;; 

During completion equations can be oriented using a reduction ordering. PCL de
scribes this operation as a <orient-expr>. Arguments of an <orient-expr> are a 
<pcl-expr>, whose value is the equation to be oriented, and a direction. Directions 
can be either u, designating a rule in which the terms appear in the same order as in 
the original equation, or x, designating a rule in which these terms have been reversed. 

<orient-expr> ::= 'orient('<pcl-expr>','['u' I 'x']')';; 

..	 New equations are generated from critical pairs. In a critical pair inference one side 
of a rule or an equation is superposed into a subterm of a side of another term pair 
(or another instance of the same term pair). This is expressed as a <cp-expr>. Argu
ments are a <pcl-expr>, describing the term pair to be superposed into, a side and 
place descriptor designating the subterm to overlap, another <pcl-expr> describing 
the superposing term pair and finally a side descriptor marking the overlapping term 
of the second term pair. The value of a <cp-expr> is the critical pair resulting from 
the described superposition. 

<cp-expr> ::= 'cp('<pcl-expr>','<place>','<pcl-expr>','<side>')';; 

A place designator consists of two elements, a side descriptor selecting either the left 
(L) or the right (R) term in a term pair, followed by a list of integers describing the 
specific subterm in this term. 

<place> ::= <side>[.<int>]*;; 

<side> ::= 'L' I'R';; 

Another way to generate new facts is the simplification of existing term pairs. This 
operation is described by a <tes-red-expr>. Like a <cp-expr> it takes four arguments, 
two PCL expressions describing term pairs, a place designator and a side designator. 
The value of a <tes-red-expr> is the fact created by the simplification in which the 
subterm of the first term pair described by the place designator is being matched with 
the selected side of the second term pair. 

<tes-red-expr> ::=	 'tes-red('<pcl-expr>','<place>',
 
'<pcl-expr>','<side>')';;
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The justifications for the derived facts either describe the generation of a new fact or
simply reference an already known fact.

<pcl-expr> : : =  <quote-expr>|<or ient -expr>|<cp-expr>
<tes-red-expr>|<instance-expr>; ;

The most obvious justification for a fact is a reference to an earlier step with the same
fact. This is represented by a <quote-expr>, which simply consists of the identifier
belonging to the earlier PCL step. The value associated with a <quote-expr> is the
value of the referenced step.

<quote-expr> : : =  <pc l - i d> ; ;

During completion equations can be oriented using a reduction ordering. PCL de-
scribes this operation as a <orient-expr>. Arguments of an <orient-expr> are a
<pcl-expr>, whose value is the equation to be oriented, and a direction. Directions
can be either u, designating a rule in  which the terms appear in the same order as in
the original equation, or x ,  designating a rule in which these terms have been reversed.

<orient-expr> : : =  ’ o r i en t ( ’ <pc l - exp r> ’ , ’ [ ’ u ’ | ’ x ’ ' ] ’ ) ’ ; ;

"New equations are generated from critical pairs. In a critical pair inference one side
of a rule or an equation is superposed into a subterm of a side of another term pair
(or another instance of the same term pair). This is expressed as a <cp-expr>. Argu-
ments are a <pcl-expr>,  describing the term pair to be superposed into, a side and
place descriptor designating the subterm to overlap, another <pcl-expr> describing
the superposing term pair and finally a side descriptor marking the overlapping term
of the second term pair. The value of a <cp-expr> is the critical pair resulting from
the described superposition.

<cp-expr> : : =  ’ cp ( ’ <pc l - exp r> ’ , ’ <p lace> ’ , ’ <pc l - exp r> ’ , ’ <s i de> ’ ) ’ ; ;

A place designator consists of two elements, a side descriptor selecting either the left
(L) or the right (R) term in  a term pair, followed by a list of integers describing the
specific subterm in this term.

<place> : : =  <s ide> [ .< i n t> ] * ; ;

<s ide>  : : =  ’ L ’  I ’R ’  HH

Another way to generate new facts is the simplification of existing term pairs. This
operation is described by  a <tes-red-expr>. Like a <cp-expr> i t  takes four arguments,
two PCL expressions describing term pairs, a place designator and a side designator.
The value of a <tes-red-expr> is the fact created by the simplification in which the
subterm of the first term pair described by the place designator is being matched with
the selected side of the second term pair.

<tes-red-expr> : : =  ’ t es - red ( ’ <pc l - exp r> ’ , ’ <p lace> ’ ,
’ <pc l - exp r> ’ , ’ <s i de> ’ ) ’ ; ;
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While the above expressions cover all inferences usually done by a completion procedure 
there is another mechanism heavily used by completion based provers. This is the 
instantiation of equations, and is often used to prove that a (skolemized) goal is a 
consequence of an already known fact. An <instance-expr> in PCL describes exactly 
this operation. Arguments are two PCL expressions, the first one describing a goal and 
the second one describing the term pair subsuming this goal. 

<instance-expr> ::= 'instance('<pcl-expr>','<pcl-expr>')';; 

Additional to the bare bones of a proof process other informations may be of use. To 
allow inserted text without syntactical structure PCL supports two different comment 
formats. One format is used to conveniently append comments to the end of an arbi
trary line in the protocol file (please note that this includes empty lines). This kind 
of comments starts with a hash (#) and is terminated by the next newline character. 
The second kind of comments is included in C-style delimiters (\* and *\) and can be 
inserted between any two syntactical elements. 

<line-comment> ::= '#'<comment>;; 

<insert-comment> ::= '/*'<comment>'/*';; 

<comment> :: = Any text without termination symbols; ; 

The following is a very short example of a PCL listing. 

o tes-eqn: f(e(),x) = x : initial 
# e() is a left neutral for f 

1 tes-eqn: f(x,g(x» = e() : initial 
# g(x) is a right inverse for f 

2 tes-eqn: f(f(x,y),z) = f(x,f(y,z» : initial 
# f is associative 

3 tes-goal: g(f(e(),x» = f(e(),g(x» : hypothesis 
# Hypothesis 

4 tes-rule: f(e(),x) -> x : orient(O,u) 
# Orient the equation in step 0 without swapping the sides 

5 tes-goal: g(f(e(),x» = g(x) : tes-red(3,R,4,L) 
# Simplify the right side of the fact from step 3 with the rule 
# from step 4 

6 tes-final: g(x) =g(x) : tes-red(5,L.l,4,L) 
# Simplify the subterm f(e(),x) from the left side of the fact 
# from step 5, using the rule from step 4 
# As the result is trivial the goal h.as been proved 
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While the above expressions cover all  inferences usually done by a completion procedure
there is another mechanism heavily used by completion based provers. This is the
instantiation of equations, and is often used to prove that a (skolemized) goal is a
consequence of an already known fact. An  <instance-expr> in  PCL describes exactly
this operation. Arguments are two PCL expressions, the first one describing a goal and
the second one describing the term pair subsuming this goal.

<instance-expr> : : =  ’ instance( ’<pcl-expr>’ , ’<pcl-expr>’) ’ ; ;

Additional to the bare bones of a proof process other informations may be of  use. To
allow inserted text without syntactical structure PCL  supports two different comment
formats. One format is used to  conveniently append comments to the end of an arbi-
trary line in  the protocol file (please note that this includes empty lines). This kind
of comments starts with  a hash (#) and is terminated by the next newl ine character.
The second kind of comments is included in C-style delimiters ( \ *  and * \ )  and can be
inserted between any two syntactical elements.

<line-comment> : : =  ’# ’<comment> ; ;

<insert-comment> : : =  ’ /%’<comment>’ /* ’ ; ;

<comment> : : =  Any text without termination symbols; ;

The following is a very short example of a PCL listing.

0 : tes-eqn : f ( e ( ) , x )  = x : i n i t i a l
# e ( )  i s  a le f t  neutral f o r  f

1 : tes-eqn : £(x,g(x))  = e( )  : in i t ia l
# g (x )  i s  a r ight inverse fo r  f

2 : tes-eqn : £ ( f ( x , y ) , z )  = £ ( x , f ( y , z ) )  : in i t ia l
# f i s  assoc ia t ive

3 : tes-goal  : g ( f ( e ( ) , x ) )  = £ (e ( ) , g ( x ) )  : hypothesis
# Hypothesis

4 : tes - ru le  : f ( e ( ) , x )  ->  x : o r i en t (0 ,u )
# Or ien t  the equat ion in  s tep 0 without swapping the s ides

5 : tes-goal  : g ( f ( e ( ) , x ) )  = g (x )  : tes- red(3 ,R,4 ,L)
# S impl i fy  the r ight s i de  of  the  fact f rom s tep  3 w i th  the  rule
# f rom s tep  4

6 : tes - f ina l  : g ( x )  = g ( x )  : t es - red (5 ,L .1 ,4 ,L )
# S imp l i f y  the subterm f ( e ( ) , x )  f rom the le f t  s ide  o f  the  fact
# f rom s tep  5 ,  us ing  the  rule f rom step 4
# As the result i s  t r i v ia l  the goal has been proved
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3.2 Working with PCL listings 

The aim of this section is to supply some basic functions and concepts to ease working 
with PCL steps and listings. These functions will be used in the description of more 
complex algorithms. The first group of functions allows access to PCL steps and their 
basic components. ' 

Definition 3 : The functions ID, TYPE, FACT, EXPR and STEP 
Let <step>:=pcl-id>:<step-type>:<fact>:<pcl-initexpr> be a PCL step. The 
projection functions ID, TYPE,FACT and EXPR are defined as follows: 

• ID(step) = <pcl-id> 

• TYPE (step) = <step-type> 

• FACT(step) = <fact> 

• EXPR(step) = <pcl-initexpr> 

The function STEP is designed to reference a PCL step using a given identifier, therefore: 

• STEP«pcl-id» = <step> 

In most cases we use ID(step) instead of step when discussing PCL listings. We 
use the more explicit form in further definitions and in algorithms dealing with PCL 
listings, however. 

The following functions return multisets of PCL steps (in the implementation these 
are represented as ordered lists). Multisets are basically finite sets which can contain 
the same element more then once. This can be represented by defining a multiset 
as a function over a set (the base set). This function returns the number of times 
tr..e element is contained in the multiset for each element of the set. The usual set 
operations E, U, nand \ are extended to multisets in the straightforward way. For 
more detailed definitions, see [Av91]. 

We need another operator related to \. An additional concept used is the cardinality 
of a multiset. 

Definition 4 : The ~ operator and the cardinality of multisets 
• Let A and B be multisets over a set M. The ~ operator is defined as follows: 

if B(m) 1= 0 for all mE M(A~B)(m) = {~(m) otherwise 

• The cardinality of a multiset A over M is 

IAI = LA(m) 
aeK 
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Using this concepts we can now specify some functions dealing with the relationship of 
various PCL steps in a protocol. We call a step parent of another step if it is referenced 
in it's justification. The second step is then called a child of the first one. 

Definition 5 : The functions PARENTS, PARENTS* and CHILDREN 
Let step be a PCL step. 

•	 PARENTS(step) is the multiset of the direct predecessors of step. Therefore it is 
the multiset of all steps cited in EXPR(step). 

•	 PARENTS*(step) is the multiset of all predecessors of step. More formally, the 
following equation holds: 

PARENTS"(step) = U PARENTS*(s) U PARENTS(step) 
sEPAREITS(step) 

•	 CHILDREN(step) is the multiset of all steps citing step: 

CHILDREN(step) = {slstep E PARENTS(s)} 

For partial proofs involving lemmata it is often useful to treat a lemma like an axiom 
by taking it as proven and ignoring its proof. To this end we define some new functions 
in a way analogous to the previous ones. 

Definition 6 : The functions LPARENTS, LPARENTS* and LCHILDREN 
Let step be a PCL step. 

•	 LPARENTS(step) is the multiset of steps cited in EXPR(step) if step is not a 
lemma. It is the empty multiset otherwise. 

0 if TVPE(step) = tes-lemma 
LPARENTS(step) = { PARENTS(step) otherwise 

•	 LPARENTS"(step) is the multiset of predecessors of step directly used in that 
proof. More formally: 

LPARENTS*(step) = U LPARENTS"(s) U LPARENTS(step) 
sELPAREIITS(step) 

•	 LCHILDREN(step) is the multiset of all steps citing step if step is neither an 
initial fact nor a lemma. It is the empty multiset otherwise. 

o	 if TYPE(step) = tes-lemma 
LCHILDREN(step) = {} if EXPR(step) E {initial,hypothesis}{ CHILDREN(step) otherwise 
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3.3 Extracting the proof 

As has been stated above the main problem with an extensive step by step listing of 
the proof is the overwhelming amount of data produced. Of this data, however, only 
a tiny fraction refers to facts actually used in the proof. Most of the steps represent 
unsuccessful paths and dead ends in the search space traversed by the proof system. 
While this data allows an exact analysis of the strategy, the sheer mass of it tends 
to hid.e more than it reveals. Proofs of interesting theorems can easily produce some 
hundreds of thousands proof steps, of which only a very small fraction - a few permille 
for large examples - is necessary for the proof. 

We noted that an analysis based only on the useful steps is much more helpful than 
wading through lots of misleading data.' Even most programs working with PCL listings 
cannot cope with the immense amount of data.. Therefore we devised a simple algorithm 
to extract the needed steps from the complete description. 

These steps can be identified very easily in a post mortem analysis. Necessary facts are 
the ones reducing or subsuming a goal in the final proof, and, recursively, steps needed 
to generate these. 'They can be found by considering the final proof steps (usually 
marked as tea-final by the proof system) and, while scanning the listing backwards, 
discarding all steps not cited by steps already known as necessary. 

We have implemented some variants of a simple algorithm dealing with PCL listings 
of various sizes. All use the same principles and differ only by technical considerations. 
For more detailed informations see [Sch93]. . 

We will now present some results from the extraction process to support our statement 
about the relation between used and unused steps. As even protocols for simple ex
amples are to long to be reproduced here we limit ourselves to a table with numerical 
data. Even so the large differences should become obvious. Table 1 shows the numbers 
of steps in some peL listings. Please note that the first 12 examples are proofprob
lems while the last 3 are completions. [Sch93] discusses a concrete example in more 
detail. A number of problems also appears in table 2 on page 60, these problems are 
commented there. 

Two trends become obvious in the data. First, the larger the example t,he smaller the 
percentage of used steps. This of course is a result from the larger search space the 
prover has to handle for more complex problems. Secondly, completions use relatively 
more steps than proof problems. This is easily explained by taking into account that 
in a completion each fact in the final system can be considered as a separate theorem, 
while in the proof problems above only one result is shown. 
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IProblem IComplete IExtracted IComments 
Lusk2 54 16 Group axioms imply (X-1).1 = x. 

This is a very simple problem from 
[L082]. 
In a ring with x 2 = x every element 
is self inverse, that is x-I = x. This 
is related to the next problem. See 
appendix BA for details. 
In a ring with x 2 = x the multiplica
tive operation is Abelian. See [L082] 
and appendix B.l for a discussion. 

SelfInverse 1703 69 

Lusk3 5009 83 

Cooperation 98532 64 See table 2. 
ditto 
ditto 
ditto 
ditto 
In a group with x<l = e the equation 
h(h(x, V), y) = eholds for the commu
tator h. See [L082]. 
See table 2. 
ditto 
ditto 

DeMorgan 238706 151 
Luka1 145078 22 
Luka2 85934 58 
Luka3 322001 79 
Lusk4 13420 95 

Lusk5 46477 45 
Lusk6 387273 190 
Lattice3 485010 139 

Group 414 44 Completion of the group axioms. This 
problem was used as an example for 
the completion procedure in [KB70]. 

Fibgroup 1610 137 Completion of a cyclic group. See ap
pendix BA. 
See table 2.Z22 18254 711 

Table 1: Numbers of steps in PCL listings 
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| Problem Complete | Extracted | Comments
Lusk2 54 16 Group axioms imply (z- ! ) -1  = z. |

This is a very simple problem from
[LO82].

SelfInverse 1703 69 In a ring with z? = z every element
is self inverse, that is z=! = z. This
is related to the next problem. See
appendix B.4 for details.

Lusk3 5009 83 In a ring with z?= z the multiplica-
tive operation is Abelian. See [LO82]
and appendix B.1 for a discussion.

Cooperation 98532 64 See table 2.
DeMorgan 238706 151 ditto
Lukal 145078 22 dit to
Luka2 85934 58 ditto
Luka3 322001 79 ditto
Lusk4 13420 95 In a group with z° = e the equation

h(h(z,y),y)  = e holds for the commu-
tator h. See [LO82].

Lusk5 46477 45 See table 2.
Lusk6 387273 190 ditto
Latticed 485010 139 ditto
Group 414 44 Completion of the group axioms. This

problem was used as an example for
the completion procedure i n  [KB70] .

Fibgroup 1610 137 Completion of a cyclic group. See ap-
pendix B.4.

722 18254 711 See table 2.

Table 1: Numbers of steps in  PCL listings
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4 Structuring proof listings 

Even relatively simple proofs can become overwhelmingly complex if they are presented 
in an unstructured way. While this statement holds true for every reasonable calculus 
the situation for completion based proofs is particularly grave, as the proof is usually 
found in tiny, often unrelated fragments. To make such proofs more. accessible they 
need to be segmented into a number of subproofs. This is done by using selected 
sub-results as lemmata and, using them, building a hierarchical proof structure. 

In our approach to this issue the basic structure of the proof as delivered by the proof 
system is unchanged, the lemmata only serve to break it into more manageable parts. 
In particular, steps are usually considered one after the other and with earlier lemmata 
taken i~to account. As a result the reasoning process of the proof system can still be 
studied from the structured and possibly transformed proof. This is a marked difference 
from the (superficial) approach of the authors in [LP90]. In this paper the authors try 
to transfer Lingenfelders results (see [Li90]) from restructuring proofs in first order 
predicate logic to equational reasoning. However, concrete suggestions are lacking 
from the paper, and the straightforward transfer to a completely different calculus is 
not very convincing in our opinion. 

Structuring the proof "as is" by selecting certain steps as lemmata has some easily 
identified merits: 

•	 The proof is broken up into smaller, more easily accessible parts. 

•	 A lemma needs to be proofed just once. If it is then used more then once the 
size of the overall proof can be reduced significantly. This does not apply to the 
peL proof, however, because a completion based prover reuses each fact without 
generating a new proof. It does apply to the more readable formats generally 
used by human mathematicians, which we try to emulate in section 5. . 

•	 By searching the proof for viable lemmata a lot of insight can be won regarding 
the processes by which the proof has been generated. This knowledge can be 
used to improve the heuristics used in the prover, probably by a guided search 
for viable .lemmata. 

The problem is, of course, to identify suitable candidates for lemmata. Unfortunately, 
even humans usually do not present exact reasons for their decisions in selecting lem
mata. More often than not a lemma is chosen because it is intuitively "important" 
or "aesthetically satisfying". Our aim in this section is to find some objective criteria 
applicable to a proof generated by an automatic proof system. As above we restrict 
ourself to completion based equational proofs. As lemmata are used to structure large 
proofs the criteria developed here usually have to take into account rather large parts 
of the proof tree. We therefore give only one example for the most complex criterion. 
See [Sch93] to find examples for the other criteria. 

It should be noted that structuring the proof is in this section viewed purely as a post 
mortem process. This is not fully in accordance with the behavior of humans, who 
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usually use lemmata in both proof presentation and proof generation. We will later 
show that some of the intermediate results generated by the teamwork method can 
aid in the generation of lemmata. These results can be considered as lemmata found 
during the proof process itself. 

4.1 Partitioning the proof - top-down vs. bottom-up 

We considered two different ways to partition a proof. One approach is. a recursive 
algorithm, starting at the goal and working in a top-down partitioning scheme. While 
this may seem a natural way we found that it is not really possible for equational 
proofs. The proofs typically possess a large number of steps referenced from different 
parts of the proof. Selecting a lemma because of its position in one part of the proof 
may invalidate conditions used to select lemmata in other parts. This is due to the 
fact that it can be inserted previous to existing ones, thus rendering them. unnecessary. 
Because of the high degree of interconnectedness in the proof we were forced to choose 
a constructive, bottom-up approach. 

In this second approach the proof listing is considered one step after the other. For each 
step under consideration all predecessors have already been processed and all previous 
lemmata are known. A newly introduced lemma cannot influence subproofs of previous 
lemma, and no old lemma is invalidated. 

The resulting algorithm can be summed up as follows: Starting at the beginning of a 
proof listing, each step is evaluated, using one or more of the criteria suggested below. 
In this evaluation previous lemmata are treated just like axioms. If a step is suitable, 
its status is set to lemma. The process is then repeated for subsequent steps. Please 
note that a lemma in a PCL listing is just an ordinary step with a special status. 
The subproof for a lemma consists of the PCL steps describing its derivation. Only 
when transforming the proof to human readable form (see section 5)" this subproof is 
separated from the main proof (but will still use previous lemmata). 

4.2 Frequently used steps 

A proof step that is referenced frequently in the proof is an obvious candidate for a 
lemma. The fact that it is used relatively often indicates its importance for the whole 
proof. Additionally the total proof is reduced in size if this step is only proved once 
and not on every occurrence. 

Formalizing this criteria a step becomes a lemma if 

ICHILDREN(step) I~ MINUSED 

holds. Here MINUSED is a constant designating the minimum number of times a step 
has to be referenced in order to satisfy this criterion. 
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4.3 Important intermediate results 

As the whole point in finding lemmata is isolating "important" steps the above title 
may seem a little bit preposterous. However, in this section we are addres~ing one 
objective measure for the importance of a proof step, namely how many applications 
of initial axioms or lemmata it represents. This can be easily calculated as the product 
of the number of applications of axioms or lemmata necessary to proof the step (the 
length of its proof chain) and the number of references to this step in the remaining 
proof. 

Definition 7 : The function CHAINLEN 
Let step be a PCL step. CHAINLEN(step) calculates the number of applications of 
axioms or lemmata used to proof the fact from step. Therefore 

· ITYPE(s) = tes-lemma or }I
CHAINLEN(step) = sE LPARENTS (step) EXPR(s) E {initial, hypothesis}I{ 

CHAINLEN can be implemented quite efficiently by recursion over the arguments of 
EXPR(step). Given the above definition, a step becomes a lemma by this criterion if 

ICHILDREN(step) I X CHAINLEN(step) 2:: MINWEIGHT 

The constant MINWEIGHT defines the minimum weight a step has to achieve in order to 
become a lemma. 

4.4 Isolated proof segments 

The results of a (relatively) isolated subproof are good candidates for lemmata. They 
usually represent important implications from a subset of the axioms and tend to 
partition the proof into segments connected by a common subject. This criterion uses 
a rather large part of the proof listing and relies on the overall structure of the proof. 

Note that in [Li90] the author suggests using isolated subgraphs as a criterion to 
restructure refutation based predicate logic proofs. In [LP90] the authors suggest to 
transfer this principle to equational proofs. They do however use Equation Solution 
Graphs as the base for their ideas, while our approach works directly with a step-by
step (PCL) listing of the proof. 

Our basic measure for the degree of isolation is the number of steps in the subproof for 
a potential lemma that are cited outside this subproof. In order to get a more exact 
impression of the weight of this citations we calculate an "importance" analog to 4.3 
for each of them. This value is compared to the weight for the potential lemma to 
reach a decision. 

For a more detailed discussion we need the following function: 

Definition 8 : The function EXITS 
EXITS(step) is the multiset of all steps outside the (sub- )proof for step but referencing 
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a step in this proof. Therefore 

EXITS(step) = ( U LCHILDREN(S)) "(LPARENTS*(step) U {step}) 
sELPAREIlTS'(step) 

This function can be easily implemented recursively, too. Given this function the 
required condition for a lemma can be written as follows: 

L ICHAINLEN(s)1 x ICHILDREN(s) nEXITS(step)l) x WEIGHTFACTOR+ OFFSET(
sELPAREJfTS·(step) 

< jCHILDREN(step)1 x CHAINLEN(step) 

Please note that CHILDREN(s) n EXITS(step) is the multiset of all descendents of s 
that are not part of the proof for step. WEIGHTFACTOR and OFFSET are two constants 
determining the requirements for a lemma with this criterion. 

As this criterion is rather more complex then the preceding ones we will illustrate it 
with the following example: 

Example: Consider the following excerpt from a longer PCL listing: 

1 tes-eqn j(O().x) = x ; initial 

4 tes-eqn j(x.g(x» =O() : initial 

6 tes-eqn j(j(x.y).z) = j(x.j(y.z» ; initial 

12 tea-rule j(O().x) -) x : orient(1.u) 

20 tes-rule j(x.g(x» -> O() ; orient(4.u)
 
45 tes-rule j(j(x.y).z) -) j(x.j(y.z» : orient(6.u)
 
53 tes-eqn j(x.j(g(x).y» =j(O().y) : cp(45.L.l.20.L)
 
54 tes-eqn: j(x.j(g(x),y» = y : tes-red(53.R.12.L)
 
59 tes-eqn: j(x.j(y.z» = j(y.j(z.x» : cp(5.L,45.L)
 
65 tea-rule; j(x.j(g(x).y» -) y : orient(54.u)
 
71 tes-eqn g(g(x» = j(x.O(» cp(65.L.2.20.L)
 

87 tes-eqn x = j(y.j(x.g(y») cp(65.L.2.5.L) 

93 tes-eqn x = j(g(y),j(y,x» cp(65.L.2.1.89.L) 

2721 tes-eqn f(g(x),O(» = j(x.g(x» : cp(65,L.2.2707,L).
 
2722 tes-eqn f(g(x) ,O(» = 00 : tes-red(2721.R:20,L)
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a step i n  this proof. Therefore

EXITS(step) = ( U LoHTLDREN(s)} \(LPARENTS*(step) U {step})
SELPARENTS*(step)

This function can be easily implemented recursively, too. Given this function the
required condition for a lemma can be written as follows:

5 |CHAINLEN(s)| x |CHILDREN(s)N 20 )  X WEIGHTFACTOR + OFFSET
SCLPARENTS (step)

< |CHILDREN(step)| x CHAINLEN(step)

Please note that CHILDREN(s)N EXITS(step) is the multiset of all descendents of s
that are not part of  the proof for step. WEIGHTFACTOR and OFFSET are two constants
determining the requirements for a lemma with this criterion.

As this criterion is rather more complex then the preceding ones we will illustrate i t
with the following example:

Ezample: Consider the following excerpt from a longer PCL listing:

1 :  tes-eqn : j ( 0 ( ) , x )  = x : ini t ial

4 : tes-eqn : j ( x , g ( x ) )  = 0 ( )  : init ial

6 : tes-eqn : j ( j ( x , y ) , 2 )  = j ( x , j ( y , z ) )  : initial

12  : tes-rule : j ( 0 ( ) , x )  => x : or ient (1,u)

20 : tes-rule : j ( x , g ( x ) )  ->  0 ( )  : o r ien t (4 ,u )
45 : tes-rule : j ( j ( x , y ) , z )  ->  j ( x , j ( y , 2 ) )  : o r ient (6 ,u)
53 : tes-eqn : j ( x , j ( g (x ) . , y ) )  = 3(00),y) : cp(45,L.1,20,L)
54 : tes-eqn : j ( x , j ( g ( x ) , y ) )  = y : tes-red(53,R,12,L)
59 : tes-eqn : j ( x , j ( y , 2 ) )  = j ( y , j ( z , x ) )  : cp (5 ,L ,45 ,L )
65 : tes-rule : j ( x , j ( g ( x ) , y ) )  ->  y : orient(54,un)
71 : tes-eqn : g(g(x) )  = j ( x , 0 ( ) )  : cp(65,L.2,20,L)

87 : tes-eqn : x = j ( y , j ( x , g ( y ) ) )  : cp(65,L.2,5,L)

93 : tes-eqn : x = j ( g ( y ) , j ( y , x ) )  : cp (65 ,L .2 .1 ,88 ,L )

2721 : tes-eqn : £ (g ( x ) , 0 ( ) )
2722 : tes-eqn : f ( g ( x ) , 0Q) )

j ( x , g ( x ) )  : cp (65 ,L .2 ,2707 ,L )
0 ( )  : tes-red(2721,R,20,L)
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2883 tes-eqn	 j(g(x),f(g(x)',x» = f(g(x),O(» : cp(2859,L.2,20,L) 

2961 tes-eqn	 f(g(x),x) = j(x,O(» : cp(65,L.2,2944,L) 

3632 tes-eqn	 j(x,f(g(x),x» = f(O(),x) : cp(3610,L.1,20,L) 

3986 tes-eqn	 g(x) = j(x,O(» tes-red(3985,R.2,20,L) 

4132 tes-eqn	 j(x,j(x,y» = y tes-red(65,L.2.1,4117,L) 

4267 tes-eqn	 j(x,j(x,j(y,f(y,x»» = f(j(x,y),y)
 
tes-red(4266,L.2,45,L)
 

The graph expressing the relations in this listing is drawn in figure 3. Note that 
step 65 is being referenced 7 times. The length of the proof chain for this step is 
3, and only a few references to steps with a trivial proof chain (oriented axioms 
in this case) are being made outside the subproof for step 65. Therefore step 65 
is relatively isolated and a viable lemma. 

4.5 Syntactical criteria 

Humans rather seldom view the proof as a tree or graph. They are much more con
cerned with the facts themselves, and less concerned with the structure of the reasoning 
process. The proof is perceived as a (mostly linear) sequence of results, and results are 
often selected as lemmata for their own appearance. To emulate this behaviour we de
veloped some simple criteria comparing the size of the two terms in a fact. We mainly 
aimed at "small" terms for the sides of the potential lemma, because they represent 
more general concepts. However, as there is only little effort involved in extending this 
principles, we tried some variations. Be forewarned that this criteria have proven to 
be very weak compared to the more global ones. 

As a measure for the size of a term we use the number of variables and function symbols 
contained in it. 

Definition 9 : The size of a term
 
The size ItI of a term t is recursively defined by the following equation:
 

falls t E V 

falls t =f(tl, ... ,tn ) 

Given this information we can easily formulate two criteria checking for either a small 
size of the larger term or a small average size of the two terms in a fact. Let stpp be 
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2883 : t es -eqn  : j ( g ( x ) , f ( g ( x ) , x ) )  = £ (g ( x ) , 00 ) )  : cp (2859 ,L .2 ,20 ,L )

2961 : tes-eqn : f ( g ( x ) , x )  = j (x ,00) )  : cp(65,L.2,2944,L)

3632 : tes -eqn : j ( x , £ (g ( x ) , x ) )  = £ (00 ) , x )  : cp (3610 ,L .1 ,20 ,L )

3986 : tes-eqn : g ( x )  = j ( x , 0 ( ) )  : tes-red(3985,R.2,20,L)

4132 : tes-eqn : j ( x , j ( x , y ) )  = y : tes- red(65,L.2 .1 ,4117,L)

4267 : tes -eqn  : j ( x , j ( x , j ( y . f ( y , x ) ) ) )  = £ ( j ( x , y ) . , y )  :
t es - red (4266 ,L .2 ,45 ,L )

The graph expressing the relations in  this listing is drawn in  figure 3. Note that
step 65 is being referenced 7 times. The length of the proof chain for this step is
3, and only a few references to steps with a trivial  proof chain (oriented axioms
in this case) are being made outside the subproof for step 65. Therefore step 65
is relatively isolated and a viable lemma.

4.5 Syntactical criteria

Humans rather seldom view the proof as a tree or graph. They are much more con-
cerned wi th  the facts themselves, and less concerned with the structure of the reasoning
process. The proof is perceived as a (mostly linear) sequence of results, and results are
often selected as lemmata for their own appearance. To emulate this behaviour we de-
veloped some simple criteria comparing the size of the two terms in  a fact. We mainly
aimed at “small” terms for the sides of the potential lemma, because they represent
more general concepts. However, as there is only l i t t le  effort involved i n  extending this
principles, we tried some variations. Be forewarned that this criteria have proven to
be very weak compared to the more global ones. :

As a measure for the size of a term we use the number of variables and function symbols
contained in  i t .

Definition 9 : The size of  a term
The size | t |  of a term t is recursively defined by the following equation:

1 fa l l s t EV

[ t l  = falls t =1+  3 t i  alls t = £ ( t 1 , . . . , t n )
1< i<n

Given this information we can easily formulate two criteria checking for either a small
size of the larger term or a small average size of the two terms in  a fact. Let step be
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Figure 3: Proof graph corresponding to the example on page 30 
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a PCL step, FACT(step) = tt=t2 or FACT(step) = tt--tt2. The criteria for step then 
become either 

max(lsl, Itl) :::; MAXSIZE 

for the maximum size or 

Ittl + It 21 :::; AVERAGESIZE 
2 

for the average size. 

Now remember that we are at the moment working on proofs generated by a rewriting 
system. Important facts are then rules which allow "strong" simplifications. However, 
most reduction orderings do not support the concept of a measure of the difference 
between two terms, and PCL listings do not contain informations about orderings, 
anyway. As a simple and at least heuristically sound measure we utilize the difference 
between the terms sizes. 1f the difference between the two sides of a rule is large it will 
alter a reduced term significantly. Therefore such a rule can probably be an important 
step, or potential lemma. More exactly this requirement becomes 

max(lsl, It!) > E';:;~FAK . 
min(lsl, It!) 

In some equations valid in many domains the size of the two terms is exactly the same 
or differs very little. Examples are the axioms of commutativity and associativity. 
Steps with equal term sizes may be good lemmata, two. Stating this more exactly 
yields 

max(lsl, It!) < MAXFAK 
min(lsl, It/) -

Obviously there are much more possibilities for a purely syntactical analysis of the 
proof listing. The success or better lack of success we had with this criteria' did not 
encourage more research. More about this can be found in section 4.12, which compares 
the merits and weaknesses of the various criteria. 

4.6 Using outside knowledge 

Another way to select lemmata using only data from a single step is to apply outside in
formation. Many problems come from well known domains, and important results from 
these domains can be used as lemmata in more special domains. Examples are equa
tions of the form f(x, f(y, z))=f(f(x, y), z) (describing associativity) or f(x, y)=f(y, x) 
(describing commutativity). 

This criterion is simply applied by comparing the facts of steps in a protocol with a 
data base of known good lemmata. A step becomes a lemma if it matches one of the 
patterns in this data base. 

A human selecting the lemmata can be viewed as a special case of this criterion, 
employing his "biological data base". 
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max(|s|, | t | )  < MAXSIZE

for the maximum size or
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system. Important facts are then rules which allow “strong” simplifications. However,
most reduction orderings do not support the concept of a measure of the difference
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_ anyway. As a simple and at least heuristically sound measure we utilize the difference
between the terms sizes. I f  the difference between the two sides of  a rule is large i t  will
alter a reduced term significantly. Therefore such a rule can probably be an important
step, or potential lemma. More exactly this requirement becomes

max(|s, |t]) > FINFAK ©min(|s], | t]) =

In some equations valid in many domains the size of the two terms is exactly the same
or differs very l i t t le. Examples are the axioms of commutativity and associativity.
Steps with equal term sizes may be good lemmata, two. Stating this more exactly
yields

max(|s|, | | )— 2"  < MAXFAK
min( ]s | ,  | t ] )

Obviously there are much more possibilities for a purely syntactical analysis of the
proof listing. The success or better lack of success we had with this criteria did not
encourage more research. More about this can be found i n  section 4.12, which compares
the merits and weaknesses of the various criteria.

4.6 Using outside knowledge

Another way to  select lemmata using only data from a single step is to  apply outside in-
formation. Many problems come from well known domains, and important results from
these domains can be used as lemmata in  more special domains. Examples are equa-
tions of the form f (x ,  f(y,  z))=f( f (x,  y), z) (describing associativity) or £(x,y)=%(y, x)
(describing commutativity).
This criterion is simply applied by comparing the facts of steps in  a protocol with a
data base of known good lemmata. A step becomes a lemma i f  i t  matches one of the
patterns i n  this data base.
A human selecting the lemmata can be viewed as a special case of this criterion,
employing his “biological data base”.
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4.7 Analysing the applied inference rules 

In this section we again utilize the knowledge about the inference processes used to 
generate a PCL listing. Currently we only deal with protocols from completion based 
proof systems. These systems use three major inference mechanisms: orientation, 
simplification and critical pair generation. While all three mechanisms are useful in 
finding a proof they obviously have different impacts on the data base. An orientation 
~s a purely technical process, a simplification is actually changing the data base and a 
new critical pair is a real addition to the data base of the proof system. 

Using this knowledge we can assign different values to the inference mechanisms. The 
sum for all the inferences necessary to generate a given step can then, as above, be 
used to base the lemma decision on. 

Definition 10 : The function IWEIGHT 
The function IWEIGHT can be applied to PCL steps and PCL expressions and assigns 
them a weight representing the inference steps used to generate the fact of the step or 
the value (see 3.1) of the expression. Let step be a PCL step and let INITW, HYPOW, 
QUOTEW, ORIENTW, CPW, REDW and INSW be constants. 

•	 IWEIGHT(ste ) = {INITW if TYPE(step) =tes-lemma
 
P IWEIGHT(EXPR(step)) otherwise
 

• IWEIGHT(expr) = 
INITW if expr = initial
 
HYPOW if expr = hypothesis
 
QUOTEW + lWEIGHT(STEP(<id» ) if expr = <id>
 
ORIENTW + IWEIGHT(exprt} if expr = orient(exprt, d)
 
CPW + IWEIGHT(exprt} + lWEIGHT(expr2) if expr = cp(exprt, p, expr2, s)
 
REDW + IWEIGHT(exprt) + IWEIGHT(expr2) if expr = tes-red(exprt, P, expr2, s)
 
INSW + IWEIGHT(exprt) + IWEIGHT(expr2) if expr = instance(exprt, expr2)
 

To decide wether a step should become a lemma we only need to compare the weight 
calculated using IWEIGHT with a predetermined boundary. Therefore our criterion 
becomes 

IWEIGHT(step) ~ MINWEIGHT 

with the boundary constant MINWEIGHT. 

4.8 Sectioning long proofs 

The purpose of using lemmata is of course sectioning a long proof into smaller, more 
easily digestable proofs by selecting meaningful intermediate results and separating 
their proofs. However, sometimes no important fact can be found - either because our 
criteria are to weak or simply because no outstanding result is generated in a large 
part of the proof. In this case the proof should still be broken up into smaller segments 
for easier understanding. As there are no particulary suitable steps we select a lemma 
purely on the length of its proof chain. 
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Using this knowledge we can assign different values to the inference mechanisms. The
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Definition 10  : The  function IWEIGHT
The function IWEIGHT can be applied to PCL steps and PCL expressions and assigns
them a weight representing the inference steps used to generate the fact of the step or
the value (see 3.1) of  the expression. Let step be a PCL step and let INITW, HYPOW,
QUOTEW, ORIENTW, CPW, REDW and INSW be  constants.

INITW if TYPE(step) = tes-lemmaIw = 
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¢ IWEIGHT(step) { Tiprohr(expRcstep)) otherwise

¢ IWEIGHT(expr) =
( INITW i f  expr = in i t ia l
HYPOW if expr = hypothesis
QUOTEW + IWEIGHT(STEP(<id>)) if expr = < id>

{ ORIENTW + IWEIGHT(expry) if expr = orient(expry,d)
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REDW + IWEIGHT(expry) + IWEIGHT(expr2) if expr = tes- red(expr i ,p ,exprz ,s )
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To decide wether a step should become a lemma we only need to compare the weight
calculated using IWEIGHT with a predetermined boundary. Therefore our criterion
becomes

IWEIGHT(step) > MINWEIGHT
with the boundary constant MINWEIGHT.

4.8 Sectioning long proofs

The purpose of  using lemmata is of  course sectioning a long proof into smaller, more
easily digestable proofs by selecting meaningful intermediate results and separating
their proofs. However, sometimes no  important fact can be found - either because our
criteria are to weak or simply because no outstanding result is generated i n  a large
part of the proof. In this case the proof should st i l l  be broken up  into smaller segments
for easier understanding. As there are no particulary suitable steps we select a lemma
purely on the length of its proof chain.
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This length can be easily computed using the function CHAINLEN introduced in sec
tion 4.3. A step becomes a lemma if the relation 

CHAINLEN(step) > MAXLEN 

holds for step. Please keep in mind that for a fact generated by a reduction or a 
critical pair inference the lenght of the new proof chain is the sum of the lenghts of the 
two old chains. Therefore chains up to 2 times MAXLENGHT can be generated. 

Obviously this simple implementation does not reach an optimal division. It does reach 
relativly good results, however. A perfectly regular division of the proof is generally 
impossible to achieve and even small improvements lead to much more complex al
gorithms. As the importance of this criterion is rather small we consider the simple 
solution sufficent in this context. 

4.9 "What to avoid" - not every candidate may be suitable 

Up to now we only considered conditions for selecting a step as a lemma. However, 
some steps, albeit they fulfill one or more of the above criteria, are not really suitable 
as lemmata. In this section we try to develop some necessary conditions for lemmta. 
A step not satisfying these criteria cannot become a lemma even if it satisfies other 
criteria. 

Apart from certain limitations in our current implementation of PCL we found the 
criteria from sections 4.2 and 4.8 to be particulary useful in designing these necessary 
conditions for lemmata. Of course a lemma should be used at least once in a proof. 
This condition is guaranteed if lemmata are generated from extracted listings or, as 
in our implementation, a proof graph is build that contains only used steps. In many 
cases it can be useful to demand that a lemma is used more then once in the proof. 
This condition can be stated exactly as in section 4.2: 

ICHILDREN(step)I~MINUSED 

It should be kept in mind that this condition now describes a necessary condition, 
while above it described a sufficient condition. 

Of course demanding a certain minimum of new information in· a lemma is reasonable. 
A step only citing an already known fact does not deserve lemma status. The length 
of a step's proof chain represents the number of applications of other facts necessary 
to generate it. It is therefore a reasonable measur~ of the amount of new knowledge 
represented by the step. Stating this as a formal co~dition yields 

CHAINLEN(step) ~ MINLEN 

A more specialized criterion can be used to enhance the performance of the criterion 
from section 4.4. If a step with an isolated proof has but a single successor generated 
within the same subproof as the step this successor is usually the better lemma. Check
ing this condition for steps with only a single successor can be done by comparing the 
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cases i t  can be useful to demand that a lemma is used more then once in the proof.
This condition can be stated exactly as in  section 4.2:

|CHILDREN(step)|> MINUSED
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ing this condition for steps with  only a single successor can be done by  comparing the
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exits from the step and its sucessor. Let step be a potential lemma according to the 
criterion from section 4.4 and let succ be its single successor. step should only become 
a lemma if either another criterion suggests this or if 

EXITS(step) =f EXITS(succ) 

Note that this criterion is not perfect because not the whole sproof graph of succ has 
been considered during the analysis for step. 

4.10 Combinations of different criteria 

Many of the criteria mentioned so far are able to structure a peL proof without further 
asistance. However, a combination of several criteria usually achieves a much better 
result then any single one. For example, consider the lemmata resulting from the iso
lated subgraph criterion (section 4.4). Every single lemma is usally of superior quality, 
however it is impossible to structure the complete proof using only this criterion, be
cause the lemmata are generated at more or less random intervalls, giving lemmata 
with very long or very short subproofs. It is therefore not very well suited as a stand 
alone criterion, but can drastically improve the sectioning if used as a supplementary 
criterion. Similar effects can be noted for other criteria. 

There are several different ways to combine multiple criteria. They will be discussed in 
the following paragraphs. Note that some of them need a completly separate treatment 
of the negative criteria form section 4.9. 

(1) Every step in the peL listing is tested exactly once for each of the used criteria. 
It becomes a lemma if one of the conditions is fulfilled. This simple approach has 
several advantages: 

- The implementation can be kept very simple. 

- When considering a step all previous steps have been analysed and the 
selected lemmata among them can be taken into account. 

- The resulting implementation is very efficient as every step has to be con
sidered only once. 

There are some disadvantages, too: 

Each criterion is given the same weight. In particular, a rather weak criterion 
can produce lemmata hindering a better structuring by other criteria. 

Steps conforming to only one criterion are handled exactly as steps fulfilling 
two ore more conditions. 

The criteria from section 4.9 can only be incorporated as necessarycondi
tions for a lemma. A weighted decision is not possible. 

(2)	 The criteria are ordered according to (perceived) quality. The complete peL 
listing is then analysed using one of this criteria at a time. As above only one 
condition needs to be fulfilled for a step to become a lemma. The advantages: 
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— The criteria from section 4.9 can only be incorporated as necessary condi-
tions for a lemma. A weighted decision is not possible.

(2) The criteria are ordered according to (perceived) quality. The complete PCL
listing is then analysed using one of this criteria at a time. As above only one
condition needs to be fulfilled for a step to  become a lemma. The advantages:
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Criteria producing "better" lemmata have the first chance to evaluate the 
listing. It is therefore less likely that an inferior lemma is generated instead 
of a better one. 

The implementation is still very managable. 

However, some new disadvantages appear together with the advantages: 

The lemmata are generally not generated in their order of appearance in the 
PCL listing. As the criteria only take earlier lemmata into account a newly 
created lemma can make an old one superfluous. 

The PCL listing has to be traversed once for every single criterion, the cost 
for the calculation rises by a small factor. However, this has not caused any 
problems for the examples analysed so far. 

As above the criteria from section 4.9 can only be incorporated as necessary 
conditions 

(3)	 The different criteria are weighted numerically, and the sum over the fulfilled 
conditons is compared to a limit. This combines most of the advantages from (1) 
and (2) above. 

An implementation can still be kept quite simple. 

At the evaluation of a step all earlier lemmata are already known and can 
be taken into account. 

The efficiency is rather high as the listing has to be analyzed but once. 

For the first time the (negative) criteria from 4.9 can be incorporated in a 
weighted way. Even steps that, according to one of these cri teria, are not 
suitable can become lemmata if a lot of other conditions are fulfilled. 

Based on this approach other criteria searching for a globaly optimal sec
tioning can be constructed. They would be extremly costly to evaluate, 
though. 

Of course there still remain some disadvantages: 

Analogous to (1) the best lemmata are generally not guaranteed to be found. 

As the field is a rather new one we do not yet know enough about the quality 
of the different criteria to assign meaningful weights to the different ones. 
This disadvantage will hopefully vanish with time. 

(4)	 When analyzing the different criteria for lemmata it can be noted that the Jecis
sion is usually based on the comparison of numerical values. This can be used to 
switch from the purely binary approach described so far (each criteria either rec
ommends a step or it does not) to a more subtle procedure. In this each criteria 
evaluates a step on a conti~uous scale and gives its recomendation in the form of 
a single numerical value. The (weighted) sum of this values is then - as above 
compared to a limit. 
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— Based on this approach other criteria searching for a globaly optimal sec-
tioning can be constructed. They would be extremly costly to evaluate,
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— Analogous to  (1) the best lemmata are generally not guaranteed to  be found.
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This disadvantage will hopefully vanish with time.

When analyzing the different criteria for lemmata i t  can be noted that the decis-
sion is usually based on the comparison of numerical values. This can be used to
switch from the purely binary approach described so far (each criteria either rec-
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- The concept uses the data collected for the criteria in a more flexible way, 
probably achieving a more just verdict. 

- The negative criteria can be smoothly integrated. In particular the first 
two conditions from section 4.9 can be completly merged with the criteria 
from 4.2 and 4.8 respectively. 

Two important disadvantages have hindered an implementation so far: 

- The cost for an implementation based on our current programs is compar~ 

atively high. 

- In a much stronger sense than above our limited knowledge about the be
haviour of the different criteria makes it difficult to map the data onto a 
continuous scale. However, we do hope to overcome this problem in the 
future. 

(5)	 The last and potentially most powerful possibility is to constuct a complex lan
guage supporting arbitrary expressions and access to the functions described in 
the various criteria and possibly to the PCL listing itself. This has an immedi
ately obvious advatage: 

- The user enjoys maximum flexiblility and power in designing his own criteria. 

There are however a number of disadvantages to consider, too. 

- An implementation is comparatively very costly in terms of manpower. 

- The efficency of an implementation will suffer because of the need to inter
pret an additional language. 

The user has to invest a lot of effort if he wants to gain any benefits from 
this approach. 

Up to now we only implemented the methods (1) and (2). The algorithm used will be 
presented in the next section. We found that most proofs could be structured quite 
well using this algorithm. While there is still interest in the approaches labeled (3) and 
(4) the last one (labeld (5)) will probably never be realised. For the few c~es where 
this flexibility is needed the criteria can probably be coded much easier directly into 
the C sources of the program. 

4.11 An algorithm for the structuring of PCL listings 

This section describes the basic algorithm used by our program for the structuring of 
lemmata in peL listings. It uses all the criteria presented so far. Additionally several 
of these critera can be combined using the methods (1) and (2) from section 4.10. 

Input and output are (extracted) PCL listings. The output listing contains all the used 
steps from the input listings. Recognized lemmata will be of the typetes";lemrna. 
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— The concept uses the data collected for the criteria in  a more flexible way,
probably achieving a more just verdict.

— The negative criteria can be smoothly integrated. In particular the first
two conditions from section 4.9 can be completly merged with the criteria
from 4.2 and 4.8 respectively.

Two important disadvantages have hindered an implementation so far:

— The cost for an implementation based on our current programs is compar-
atively high.

— In a much stronger sense than above our limited knowledge about the be-
haviour of the different criteria makes i t  difficult to map the data onto a
continuous scale. However, we do hope to overcome this problem in  the
future.

(5) The last and potentially most powerful possibility is to  constuct a complex lan-
guage supporting arbitrary expressions and access to the functions described in
the various criteria and possibly to the PCL listing itself. This has an immedi-
ately obvious advatage:

— The user enjoys maximum flexiblility and power in  designing his own criteria.

There are however a number of  disadvantages to  consider, too.

— An  implementation is comparatively very costly i n  terms of manpower.
— The efficency of an implementation will suffer because of the need to  inter-

pret an additional language.
— The user has to invest a lot of  effort i f  he wants to gain any benefits from

this approach.

Up to now we only implemented the methods (1) and (2). The algorithm used will be
presented i n  the next section. We found that most proofs could be structured quite
well using this algorithm. While there is still  interest in  the approaches labeled (3) and
(4) the last one (labeld (5)) will probably never be realised. For the few cases where
this flexibility is needed the criteria can probably be coded much easier directly into
the C sources of the program.

4.11 An  algorithm for the structuring of  PCL  listings

This section describes the basic algorithm used by our program for the structuring of
lemmata in  PCL  listings. I t  uses all the criteria presented so far. Additionally several
of  these critera can be combined using the methods (1) and (2) from section 4.10.
Input and output are (extracted) PCL  listings. The output listing contains all the used
steps from the input listings. Recognized lemmata will be of  the type tes-lemma.
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Input: 

Output: 

Variables: 

Functions: 

in 

criteria 

iterate 

out 

store 

step 

IsLemma(step) 

NOTEMPTY(list) 

FIRST(list) 

EXCEPTFIRST(list) 

TYPE (step) 

APPEND(list.step) 

IsOftenLemma(step) 

IsImportantLemma(step) 

IsTreeLemma(step) 

IsSyntaxLemma(step) 

IsKnovnLemma(step) 

IsCompletionLemma(step) 

A list of PCL steps.
 

A list of (boolean) functions for the
 
evaluation of a PCL step (see be

low),
 

TRUE, if the criteria to be used
 
should be combined according to
 
the second approach from 4.10,
 
FALSE otherwise.
 
A list of PCL steps with the lem

mata markes as tes-lemma.
 
A list for the intermediate storage
 
of the PCL listing.
 

The PCL step considered at the
 
moment.
 
The momentarily active evaluation
 
function.
 
FALSE, if list is empty, TRUE if
 
not.
 
First entry in list.
 

list without its first entry.
 

Type of step (compare 3.2).
 

List generated by appending step
 
as the last element to list.
 
Realizes the search for frequently
 
used steps (section 4.2).
 

Realizes the search for important
 
steps from section 4.3.
 

Implements the search for isolated
 
segments of the proof (see 4.4).
 
This may take into account the
 
third criterion from section 4.9,
 
although our current implementa

tion does not yet check this.
 

Realizes the different syntactical
 
criteria from section 4.5.
 
Checks the step by comparing its
 
fact to known important results
 
from the domain.
 
Evaluates lemmata using weighted
 
inference steps (see 4.7).
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Input:

Output:

Variables:

Functions:

in

c r i t e r i a

i te ra te

out

s to re

step

IsLemma(step)

NOTEMPTY(list)

FIRST  ( l i s t )
EXCEPTFIRST(1list)
TYPE(step)
APPEND(1list,step)

IsOftenLemma(step)

IsImportantLemma ( s tep )

IsTreeLemma(step)

IsSyntaxLemma(step)

IsKnownLemma(step)

IsCompletionLemma(step)
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A list of  PCL  steps.
A list of  (boolean) functions for the
evaluation of a PCL step (see be-
low).
TRUE, if the criteria to be used
should be combined according to
the second approach from 4.10,
FALSE otherwise.
A list of  PCL  steps with the lem-
mata markes as tes-lemma.
A list for the intermediate storage
of the PCL listing.
The PCL step considered at the
moment.
The momentarily active evaluation
function.
FALSE, if  1 i s t  is empty, TRUE i f
not.
First entry in  l i s t .
l i s t  without i ts  first entry.
Type of step (compare 3.2).
List generated by appending step
as the last element to  l i s t .
Realizes the search for frequently
used steps (section 4.2).
Realizes the search for important
steps from section 4.3.
Implements the search for isolated
segments of the proof (see 4.4).
This may take into account the
third criterion from section 4.9,
although our current implementa-
tion does not yet check this.
Realizes the different syntactical
criteria from section 4.5.
Checks the step by comparing i ts
fact to known important results
from the domain.
Evaluates lemmata using weighted
inference steps (see 4.7).



IsPartLemma(step) Evaluates steps according to the 
criterion from section 4.8 (break
ing up long proof chains). 

IsNoLemma(step) Checks for the first two negative 
criteria from section 4.9. 

Remark: IsNoLemma(step) = TRUE holds if the step is not acceptable as a 
lemma, FALSE otherwise. The other evaluation functions are TRUE if the 
step should become a lemma, FALSE otherwise. The different constants 
needed for the evaluation of the criteria are not listed as separate param
eters. Please note that by suitable selection of these constants it can be 
guaranteed that IsNoLemma(step) = FALSE does always hold. 

IF iterate = TRUE THEN 
store := in; 
WHILE NOTEMPTY(criteria) 

Islemma := FIRST(criteria); 
criteria := EXCEPTFIRST(criteria); 
WHILE NOTEMPTY(store) 

step := FIRST(store); 
store := EXCEPTFIRST(store); 
IF NOT(IsNoLemma(step» THEN 

IF IsLemma(step) THEN TYPE(step) := tes-lemma; 
out := APPEND(out,step); 

ENOWHILE 
store := out; 

ENDWHILE 
ELSE 

WHILE NOTEMPTY(in) 
step := FIRST(in); 
in := EXCEPTFIRST(in); 
IF NOT(IsNoLemma(step» THEN 

FOREACH IsLemma E criteria 
IF IsLemma(step) THEN TYPE(step) := tes-lemma; 

ENOIF" 
out := APPENO(out,step); 

ENOWHILE 
ENDIF 

4.12 Evaluating the different criteria for lemma generation 

The lack of objective criteria for lemma selection hinders not only the generation but 
also the evaluation of structured proofs. Any assessment therefore has to be highly 
subjective. As PCL listings are not particulary suitable for human interpretation (they 
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IsPartLemma(step) Evaluates steps according to the
criterion from section 4.8 (break-
ing up long proof chains).

IsNoLemma(step) Checks for the first two negative
criteria from section 4.9.

Remark: IsNoLemma(step)= TRUE holds i f  the step is not acceptable as a
lemma, FALSE otherwise. The other evaluation functions are TRUE  if the -
step should become a lemma, FALSE otherwise. The different constants
needed for the evaluation of  the criteria are not listed as separate param-
eters. Please note that by suitable selection of  these constants i t  can be
guaranteed that IsNoLemma(step) = FALSE does always hold.

I F  i terate = TRUE THEN
s tore  : =  i n ;
WHILE NOTEMPTY (cr i ter ia)

Islemma :=  F IRST(c r i te r ia ) ;
cr i te r ia  : =  EXCEPTFIRST(criteria);
WHILE NOTEMPTY (s to re )

step :=  FIRST(store) ;
store :=  EXCEPTFIRST ( s t o re ) ;
IF NOT(IsNoLemma(step)) THEN

IF  IsLemma(step) THEN TYPE(step) : =  tes-lemma;
out : =  APPEND ( ou t , s t ep ) ;

ENDWHILE
s to re  :=  ou t ;

ENDWHILE
ELSE

WHILE NOTEMPTY(in)
step :=  FIRST(in);
i n  : =  EXCEPTFIRST ( i n ) ;
IF  NOT(IsNoLemma(step)) THEN

FOREACH IsLemma € c r i t e r i a
IF  IsLemma(step) THEN TYPE(step) : =  tes-lemma;

ENDIF ’
out : =  APPEND ( ou t , s t ep ) ;

ENDWHILE
ENDIF

4.12 Evaluating the different criteria for lemma generation

The lack of objective criteria for lemma selection hinders not only the generation but
also the evaluation of structured proofs. Any assessment therefore has to be highly
subjective. As PCL  listings are not particulary suitable for human interpretation (they
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work well for a~alyzing the proof process, but not for proof presentation), we used 
proofs transformed into the more friendly format presented in chapter 5.
 

Apart from the purely suhjective impression we use two more objective (albeit quite
 
weak) criteria: The length of the proof chains and the size of the terms in the lemmata.
 
We think proof chains of similar length and lemmata containing small (more general)


I 

terms are desirable. 

The overall result is quite promising. Comparisons with proof listings structured by 
humans have shown that our automatic algorithms usually achieve uniformly better 
results. This mainly stems from the difficulty of considering the global effects of a 
inserted lemma. However, the automatic proofs does not quite reach the quality of 
proofs found and structured by humans. We also found that these proofs can still be 
improved by a human working not with a plain listing but with a proof prestructured. 

We will now discuss the problems and merits of the different criteria in more detail. 

•	 Frequently used steps (section 4.2) can be quite good individual lemmata. How
ever, while they often contain small, meaningful terms, they do not structure the 
proof very well. Proof chains vary widely in length and particulary towards the 
end of the proof grow much to large for easy comprehension. However, if used in 
conjunction with additional criteria limiting the maximum size of the subproofs, 
good results can be obtained. 

• Searching for	 "important" steps as detailed in section 4.3 is one of the strongest 
single criteria developed so far. The lemmata are often intuitively appealing and 
the length of the proof chains, while quite variable, never becomes overwhelming. 
In most cases lemmata obtained using only this criterion are sufficient to structure 
the proof in an agreeable way. 

•	 Using the criterion from section 4.4 yields very good lemmata. However, while 
the structure of the proof is well reflected and the lemmata are quite intuitive, 
the subproofs are of very different length. Lemmata are clustered together, with 
very short subproofs within the clusters and very large subproofs outside of them. 
Our best results are achieved if this criterion is combined with another criterion 
limiting the maximum proof size. 

•	 Syntactical criteria based purely on the size of the terms have proven to be very 
weak. While some of the resulting lemmata look quite reasonable they usually 
have no special role in the proof. The frequency of the lemmata is extremely 
random, with very large proof chains towards the end of the proof. Even in 
conjunction with other criteria no acceptable results have been achieved. All in 
all these syntactical criteria are only useful in very special cases and not suited 
for more general purposes. 

•	 Employing outside knowledge to identify good lemmata results in quite intuitive 
and appealing lemmata. However, as the criterion does not take the global struc
ture of the proof into account, these lemmata suffer from the same problem as 
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work well for analyzing the proof process, but not for proof presentation), we used
proofs transformed into the more friendly format presented in chapter 5.

Apart from the purely subjective impression we use two more objective (albeit quite
weak) cr i ter ia: The  length of  the proof chains and the size o f  the  terms i n  the lemmata.
We think proof chains of similar length and lemmata containing small (more general)
terms are desirable.

The overall result is quite promising. Comparisons with proof listings structured by
humans have shown that our automatic algorithms usually achieve uniformly better
results. This mainly stems from the difficulty of considering the global effects of a
inserted lemma. However, the automatic proofs does not quite reach the quality of
proofs found and structured by humans. We also found that these proofs can st i l l  be
improved by a human working not with a plain listing but with a proof prestructured.
We will now discuss the problems and merits of the different criteria in more detail.

e Frequently used steps (section 4.2) can be quite good individual lemmata. How-
ever, while they often contain small, meaningful terms, they do not structure the
proof very well. Proof chains vary widely in  length and particulary towards the
end of the proof grow much to large for easy comprehension. However, i f  used in
conjunction with additional criteria l imiting the maximum size of the subproofs,
good results can be obtained.

e Searching for “important” steps as detailed in  section 4.3 is one of  the strongest
single criteria developed so far. The lemmata are often intuitively appealing and
the length of the proof chains, while quite variable, never becomes overwhelming.
In  most cases lemmata obtained using only this criterion are sufficient to  structure
the proof in an agreeable way.

e Using the criterion from section 4.4 yields very good lemmata. However, while
the structure of the proof is well reflected and the lemmata are quite intuitive,
the subproofs are of very different length. Lemmata are clustered together, with
very short subproofs within the clusters and very large subproofs outside of them.
Our best results are achieved i f  this criterion is combined with  another criterion
l imiting the maximum proof size.

e Syntactical criteria based purely on the size of the terms have proven to  be very
weak. While some of the resulting lemmata look quite reasonable they usually
have no special role in the proof. The frequency of the lemmata is extremely
random, with very large proof chains towards the end of the proof. Even i n
conjunction wi th  other criteria no acceptable results have been achieved. All i n
all these syntactical criteria are only useful in  very special cases and not suited
for more general purposes.

e Employing outside knowledge to identify good lemmata results in  quite intuitive
and appealing lemmata. However, as the criterion does not take the global struc-
ture of the proof into account, these lemmata suffer from the same problem as
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the ones based onto syntactical structure. If used in combination with strong 
negative criteria and some more global positive ones, this criterion can help to 
improve the overall proof structure. 

•	 The analysis of the used inference steps yields lemmata of average quality. The 
lengths of the subproofs are quite regular, and the size of the terms in the lemmata 
as well as in the proof chains are rather small. Proofs structured with this 
criterion bear some similarity to proofs structured by simply breaking long proof 
chains (see section 4.8), but appear more apealing and regular to the viewer. As a 
possible consequence we consider to use the weight of the inference steps instead 
of the length of the proof chain in some of the more complex criteria. 

•	 Inserting lemmata whenever the proof chain becomes too long is the weakest of 
the global criteria. While the structured proofs are much better to follow then 
monolithic proofs, the lemmata bear no special meaning. However, while the 
criteria does not produce good results by itself, it is a very good backup criterion 
for cases in which more powerful criteria leave some large subproofs. 

Apart form the different criteria we have to discuss the two implemented ways to 
combine them. We noted that both approaches have advantages. They can he summed 
up as follows: Analysing the complete proof with all criteria to be used at once yields 
less extreme lemmata. Analysing the proof with the different critera one after the other 
generates some better lemmata. However, it also produces some less than desirable 
lemmata. Which overall result is considered better has to be decided for each single 
case, and depends largely on personal preferences. 

All in all the lemmata found by our algorithms are sufficient for most problems and 
usually lead to proofs quite readable for humans. 

42
 

the ones based onto syntactical structure. If used in  combination with strong
negative criteria and some more global positive ones, this criterion can help to
improve the overall proof structure.

e The analysis of  the used inference steps yields lemmata of average quality. The
lengths of  the subproofs are quite regular, and the size of the terms in  the lemmata
as well as in  the proof chains are rather small. Proofs structured with this
criterion bear some similarity to proofs structured by simply breaking long proof
chains (see section 4.8), but appear more apealing and regular to the viewer. As a
possible consequence we consider to  use the weight of the inference steps instead
of the length of the proof chain in some of  the more complex criteria.

o Inserting lemmata whenever the proof chain becomes too long is  the weakest of
the global criteria. While the structured proofs are much better to  follow then
monolithic proofs, the lemmata bear no special meaning. However, while the
criteria does not produce good results by  itself, i t  is  a very good backup criterion
for cases in which more powerful criteria leave some large subproofs.

Apart form the different criteria we have to discuss the two implemented ways to
combine them. We noted that both approaches have advantages. They can be  summed
up as follows: Analysing the complete proof with all criteria to be used at once yields
less extreme lemmata. Analysing the proof with the different critera one after the other
generates some better lemmata. However, i t  also produces some less than desirable
lemmata. Which overall result is considered better has to be decided for each single
case, and depends largely on personal preferences.
All  in  all the lemmata found by our algorithms are sufficient for most problems and
usually lead to proefs quite readable for humans.
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5 Proof presentation 

Completion based proof systems work mainly by applying inrerence steps to sets of 
equations, thereby deriving more equations. Humans generally use another concept: 
They apply existing equations to terms, building equational chains. New equations 
are only generated when such a chain becomes unwieldy. The basic difference is that 
humans are working on terms, using equations as tools, while an automatic proof 
system works on equations (and rules), using certain inferences as tools. 

This difference makes automatic proofs very hard to follow. While every single inference 
is easily understood and proved to be correct, the complete proof is generated in small, 
largely independent pieces that arrive in a more or less random order. The original 
axioms (used heavily by humans) are applied only very occasionally, and their role in 
the final proof is very hard to perceive. 

To make automatic proofs easier to understand we transform them into a calculus em
ploying the same equational chains used by human mathematicians. These proofs can 
be presented in a very natural way, resembling textbook proofs for simple mathematical 
problems. 

5.1 Equational Chains: A calculus for proof presentation 

In the calculus presented here each equation is accompanied by an equational chain 
(called justification) describing the applications of (known) equations necessary to 
transform the two terms of the equation into each other. Therefore an equation is 
not viewed as a logical consequence of a set of equations, but as the result of the appli
cation of these equations to a term. Although the two approaches are equivalent, the 
users viewpoint has changed. 

Definition 11 : Justifications for equations 
1) A tuple (u, (s=t, p, 0'), v) is called justification for the equation u=v, if ulp = 0'(s) 

and u[p ~ O'(t)] = v. 

2)	 A tuple (u, (s=t, p, 0'), v) is called justification for the equation u=v., if ulp = O'(t) 
and u[p ~ O'(s)] = v. 

3) Let (s,Bt,t) and (t,B2'U) be justifications for s=t and t=u, respectively. Then 
(s, Bt, t) • (t, B2, u) == (s, Bt, t, B2, u) is a justification for s=u. 

Given this recursive definition, a justification is a chain of the form 

We write s == t to denote either s=t or s t, and require that s-t = s=t holds. 

We need some additional operation on justifications. The most simple of these oper
ations makes use of the inherent symmetry of equality. It generates a justification for 
t=s from a justification for the symmetric equation s=t. 
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5 Proof presentation

Completion based proof systems work mainly by applying inierence steps to sets of
equations, thereby deriving more equations. Humans generally use another concept:
They apply existing equations to terms, building equational chains. New equations
are only generated when such a chain becomes unwieldy. The basic difference is  that
humans are working on terms, using equations as tools, while an automatic proof
system works on equations (and rules), using certain inferences as tools.

This difference makes automatic proofs very hard to follow. While every single inference
is easily understood and proved to  be correct, the complete proof is generated in  small,
largely independent pieces that arrive in a more or  less random order. The original
axioms (used heavily by  humans) are applied only very occasionally, and their role in
the final proof is very hard to perceive.

To make automatic proofs easier to  understand we transform them into a calculus em-
ploying the same equational chains used by human mathematicians. These proofs can
be presented i n  a very natural way, resembling textbook proofs for simple mathematical
problems. ;

5.1 Equational Chains: A calculus for proof presentation

In the calculus presented here each equation is accompanied by an equational chain
(called justification) describing the applications of (known) equations necessary to
transform the two terms of the equation into each other. Therefore an equation is
not viewed as a logical consequence of a set of equations, but as the result of the appli-
cation of these equations to a term. Although the two approaches are equivalent, the
users viewpoint has changed.

Definition 11  : Justifications for equations
1) A tuple (u,(s=t,p,0),v) is called justification for the equation u=v, i f  uly = o(s)

and ufp « o(t)]  = v .

2) A tuple (u, (S=t,p,0) ,v) is called justification for the equation u=v, if  ulp = o(t)
and up « o(s)] =v .

3) Let (s,B ı , t )  and (t,B2, u) be justifications for s= t  and t=u, respectively. Then
(s,B1,t)  ® (t,B2,  u) = (s,B ı , t ,B2,u)  is a justification for s=u.

Given this recursive definition, a justification is a chain of  the form

(uo,  (81  = t 1 , p1 ,01 ) , u1 ,  (82 = t 2 ,P2 ,02 ) , 92 , . . . ,Un—1,  (Sn = tn ,  Pn; On), Un)

We write s = t to denote either s= t  or  S=%, and require that s=t  = s= t  holds.

We need some additional operation on justifications. The most simple of these oper-
ations makes use of the inherent symmetry of equality. I t  generates a justification for
t =s  from a justification for the symmetric equation s=t.
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Definition 12 : The symmetry operator on justifications 
The symmetry operator -- is defined as follows: 

1) (u,(s == t,p,a),v) = (v,(~,p,a),u) 

2) (u,Bl,t,B2,V) = (t,B2,V). (u,Bt.t) 

Repeated application of 1) and 2) yields 

(UO,(Sl == tl,Pl,Ut},Ul,(S2 == t2,P2,(2),U2, ... ,Un-1,(sn == tn,Pn,un),un) = 

(un, (sn == t n, pn, an), Un-I,·· ., U2, (S2 == t2, P2, (72), Ub (SI ...:.. tl, Pt. (71), UO) 

As one of our goals is to eliminate unnecessary intermediate results from the reasoning 
chain we need a mechanism to replace an application of such a fact by "simpler" facts. 
To this end we introduce a flattening operator. Using this operator we can replace an 
equation in a proof chain with the equations in its justification. 

Definition 13 : The flattening operator S 
The flattening operator S is defined as follows: 

1) Sew, q, T, (u, (5 == t,P, u), v)) = (w[q t- T(U)], (5 == t, q.p, T 0 u), w[q t- T(V)]) 

2) S(w,q,T,(s,Bl,t,B2,U)) = S(w,q,T,(s,Bbt).S(W,q,T,(t,B2,U)) 

Using these operators we can build new justifications from old ones. The following 
theorem shows the correctness of the transformations. 

Theorem 4 : Symmetry and flattening 
•	 Let B be a justification for u=v. Then B is a justification for v=u. 

•	 Let (U,Bl,S',(S=t,p,0"),t',B2'V) be a justification for u=v and let B be ajustifi 
cation for s=t. Then (u, Bl, S(s', P, 0", B), B2, v) is another justification for u=v. 

•	 Let (u, Bl, 51, (s=t, P, u), t', B2, v) be a justification for u=v and let B be a justifi
cation for s=t. Then (u,Bt,S(s',p,0',B),B2,V) is another justification for u=v. 

The following short example will illustrate the use of the flattening operator: 

Example: Let (g(a, b), (g(x, b)=g(x, c), A, {x t- a} ),g(a, e)) be a justification for
 
g(a, b)=g(a, c), and let (g(x, b), (b=c, 2, {} ), g(x, c») be a justification for
 
g(x,b)=g(x, c).
 

Then 

S(g(a, b), A, {x t- a}, (g(x, b), (b=d, 2, {}), g(x, c»)
 
= (g(a, b)[A t- {x ~ a}(g(x, b»], (b=d, A.2, {x t- a} 0 {}),
 

g(a, b)[A t- {x t- a}(g(x, c))])
 

= (g(a,b),(b=c,2,{xt- a}),g(a,c))
 

is an alternative justification for g(a, b)=g(a, c). Here we replaced the application
 
of g(x, b)=g(x, c) by an application of the equation b=c.
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Definition 12  : The symmetry operator on  justifications
The symmetry operator is defined as follows:

; 1 )  ( u ,  ( s  = t,p,0),v)  = ( v ,  (s=t,p,0),u)

2) (u,B ı , t ,B2,v)= (t,Bz,v)e (u,By,t)

Repeated application of 1) and 2)  yields

( uo ,  ( s1  = t 1 ,  P i ,  01 ) ,  ui, ( s2  = t a ,  P2 ,  g2 ) , u2 , .  - +s Un~1 , (Sn  = t p ,  Pn ,  On ) ,  Un) =

(un, (8a = tn ,  Pn, on),Un-1 , - .  -, U2, (82 = t 3 , p2 ,02 ) , u1 , (81= t 1 , p1 ,01 ) , 0 )

As one of our goals is to eliminate unnecessary intermediate results from the reasoning
chain we need a mechanism to  replace an application of  such a fact by  “simpler” facts.
To this end we introduce a flattening operator. Using this operator we can replace an
equation in  a proof chain with the equations in  i ts justification.

Definition 13 : The flattening operator S
The flattening operator S is defined as follows:

1 )  S(w,  9 ;  7 ,  ( u ,  ( s  =t, p ,0 ) , v ) )  = (w l  — T(u)], ( s  = t , q .p ,70  0),  vq — r(v)])

2)  S(w,  9 , 7 ,  ( s ,  B i ,  t ,  Bo,  u)) = S(w,  Q, 7,  ( s ,  By,  t ) )  id S(w,  Q ,7 ,  ( t ,  Ba,  u))

Using these operators we can build new justifications from old ones. The following
theorem shows the correctness of  the transformations.

Theorem 4 : Symmetry and flattening
e Let B be a justification for u=v.  Then B is a justification for v=u.

e Let (u,By,s’,(s=t,p,  0 ) ,t’, Ba, v )  be a justification for u=v and let B be a justifi-
cation for s= t .  Then (u, Bj, S(s’,p, 0 ,B) ,B2,v) is another justification for u=v .

e Let (u,Bı,s',  (S=t,p, 0 ) ,  t ’ ,  Bo, v)  be a justification for u=v and let B be a justifi-
cation for s= t .  Then (u,B;,S(s’,p,  c,B),B2,v) is another justification for u=v.

The following short example will illustrate the use of the flattening operator:

Example: Let ( g (a ) ,  (g(x,  b)=g(x,  c ) ,  A, { x  + a}),g (a , c ) )  be  a justification for
g(a, b)=g(a,c), and let ( g ( x ,b), (b=c, 2, {}),  g(x, c)) be a justification for
g(x, b)=g(x,<).
Then

S(g(a,b), A, { x  « a} ,  (g(x, b),  (b=d, 2, { } ) ,  g(x, c)))
= (g(a, b)[A — {x — a}(g(x, b))], (b=d,1.2, {x — a} o {}),

g(a,b)A — {x  «— a}(g(x, c))])
= (g(a,5),(b=c, 2, {x  — a}),  g(a, c))
is an  alternative justification for g(a, b)=g(a,c).  Here we replaced the application
of g(x,b)=g(x,<) by an application of the equation b=c.
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As the calculus of equational chain already emulates the definition of operational 
E-equality rather closely we can easily use justified equations to express proofs for 
equality. This is achieved by considering only equations valid in E for use in justifica
tions. 

Definition 14 : E-justified equations 
Let E be a set of equations, the axioms of the set of E-justifi~d equations. An equation 
s=t is called justified in E, if one of the following conditions is met: 

1)	 s=t E E. In this case B = (s, (s=t, A, O"id) , t) is the justification for s=t. 

2)	 There exist E-justified equations so=to, Sl=tt, ... , Sn=tn and a justification 
(UO,(Sl == tt,Pt,;1),Ul,(S2 == t2'P2'0"2),U2,~ ... ,un-t,(Sn == tn,Pn,O"n),un) with 
Uo =s and Un =t. 

In the above definition we allow any E-justified equation in the justifications. However, 
as stated earlier, we want to use only axioms and selected lemmata in equational chains. 
Therefore we will introduce the concept of flat justifications. 

Definition 15 : Flat justifications 
Let E be a set of equations, L a set of equations justified in E. A justification 

is called a flat justification with respect to E and L if Si=ti E (E U L) holds for all i. 

These flat justifications are sufficient to justify any equation valid in E. 

Theorem 5 : Flat justifications and E-equality 
Let E be a set of equations. 

•	 Let L be an arbitrary set of equations justified in E. The equation s=t is justified 
in E if and only if a flat justification with respect to E and L exists for it. 

•	 s =E t holds if and only if s=t is justified in E. 

Please note that the first part of the above theorem applies even for L= D. Lem
mata are not necessary in any proof. They only allow a proof to be followed more 
conveniently. 

5.2 PCL listings and equational chains 

A proof in the form of equational chains is very similar to an equational proof done by 
a hu~an. The remaining differences are only superficial details. Humans usually don't 
mention places or substitutions, and use a slightly different display format. However, 
these problems can be solved easily by projecting only' the wanted parts of the proof 
in any desired format. 
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As the calculus of equational chain already emulates the definition of operational
E-equality rather closely we can easily use justified equations to express proofs for
equality. This is achieved by considering only equations valid in  E for use i n  justifica-
tions.

Definition 14  : E-justified equations
Let E be a set of  equations, the azioms of the set of E-justified equations. An  equation
s= t  i s  called justified in E, i f  one of  the following conditions is  met:

1) s=t  € E. In this case B = (s, (s=t, A, 014),t) is the justification for s=t.

2) There exist E-justified equations sp=to, S ı= t ı ,  . . . ,  Sn=tn and a justification
. . > . .

( uo ,  ( s1  = t i ,  P1 ,  01 ) ,  ug, ( s2  = 2 ,  P2 ;  02 ) ;  U2 , . . ¢ ,Un -1 ,  ( sn  = tn,  Pn,  Ou), un) wi th

up = sand un  = t .
In the above definition we allow any E-justified equation in  the justifications. However,
as stated earlier, we want to  use only axioms and selected lemmata i n  equational chains.
Therefore we wil l  introduce the concept of flat justifications.

Definition 15 : Flat justifications
Let E be a set of  equations, L a set of equations justified in  E. A justification

(uo, ( s t  = t 1 ,  P1 ,01 ) ,  uy, (s2  = t 2 ,  P2 ,  02 ) ,  u2 , . . . ,Un -1 ,  (Sn  = t n , Pn, On ) ,  Up)

is called a flat justification with respect to E and L if s ;= t ;  € (EU  L)  holds for all i.

These flat justifications are sufficient to  justify any equation valid in  E.

Theorem 5 : Flat justifications and E-equality
Let E be a set of equations.

e Let L be an arbitrary set of equations justified in  E. The equation s= t  is justified
in  E i f  and only if a flat justification with respect to E and L exists for it.

e s =;  t holds i f  and only if s= t  is justified in  E.

Please note that the first part of the above theorem applies even for L=  { } .  Lem-
mata are not necessary in  any proof. They only allow a proof to  be followed more
conveniently.

5.2 PCL  listings and equational chains

A proof in  the form of equational chains is very similar to  an equational proof done by
a human. The remaining differences are only superficial details. Humans usually don’t
mention places or substitutions, and use a slightly different display format. However,
these problems can be solved easily by  projecting only the wanted parts of the proof
in  any desired format.
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Of course a proof is not usually generated in the form of equational chains. Therefore
 
we need to transform the proofs delivered by the proof system to the new form. We
 
will now show how this can be achieved.
 

The foundation of our algorithm is the following transformation system. It will gen

erate (flat) justifications for simple PCL expressions if such justifications exist for the
 
arguments of these expressions.
 

Definition 16 : The transformation system JE (justified equations)
 
In the following we write s ~ t to denote either s=t or 5-t. The function eval yields
 
the value of a PCL expression (compare 3.1). The following conventions are used in
 
the transformation rules:
 

• eval«exprl» = sl~tl and eval«expr2» = s2~t2' 

• Bl is a (flat) justification for 51 ~t1, B2 is a (flat) justification for 52~t2. 

Input for a transformation step is a PCL expression with value 5 ~ t, output is a (fiat) 
justification for the value of this expression. 

(1) Axioms 

initial Compare the definition of E-justified 

(s, (s=t, A, O'id), t) equations (Definition 14 on page 45). 

(2) Quotes 

<exprl>	 <exprl> here is just an identifier refer
encing another PCL step.Bl 

(3) Orienting 

orient«exprl>'U)
 
Bl
 

orient«exprl>'X)
 
Bl
 

(4) Critical pairs 

cp(<exprl>, L.p, <expr2>, L) .
 
S(0"( sd, p, 0", B2) • S(0'(sd, A, 0', Bd
 

cp( <exprl>, L.p, <expr2>, R)
 

S(0'(51), p, 0", B2) • s(0'(sd, A, 0', Bd
 

cp( <exprl>, R.p, <expr2>, L)
 
S(O'(tl),p,O',B;). S(O"(tl),A,O",Bl)
 

cp( <exprl>, R.p, <expr2>, R)
 
S(0"(tt},p,0",B2). S(O'(tl),A,O',B1)
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Of  course a proof is not usually generated in  the form of equational chains. Therefore
we need to transform the proofs delivered by the proof system to the new form. We
will  now show how this can be achieved.

The foundation of our algorithm is the following transformation system. I t  will gen-
erate (flat) justifications for simple PCL  expressions i f  such justifications exist for the
arguments of these expressions.

Definition 16 : The transformation system JE  (justified equations)
In  the following we write s~ t  to  denote either s= t  or  s—t.  The function eval  yields
the value of a PCL expression (compare 3.1). The following conventions are used in
the transformation rules:

® eval(<expr;>) = s ı  “ t ı  and eval(<expr;>) = sa t,.
e B ;  i s  a (flat) justification for s ;~ t ; ,  B2 is  a (flat) justification for s ,~ t , .

Input for a transformation step is a PCL  expression with value s > t ,  output is a (flat)
justification for the value of  this expression.

(1) Axioms
in i t ia l  Compare the definition of E-justified

(s,  (s=t ,  A, d ig ) , t) equations (Definition 14 on page 45).

(2) Quotes
<expr,> <expr)> here is just an identifier refer-

By encing another PCL  step.

(3) Orienting
orient(<expr;>,u)

By

orient(<expr;>, x)
B ı

(4) Critical pairs

cp(<expr;>,L.p,<expry>,L) _
S(o(s ı ) ,  p,9,B2) e S(o(sı), A, 0,Bı)

cp(<expr;>, L.p, <expr2>, R)
S(o(s1),  Ps 7 ,  Bo) * S(o(s1), A,  0 ,  Bi)

cp(<expr;>,R.p, <expry>,L)
S(o ( t1 ) ,  Pp, 0 , By) o S (o ( t 1 ) ,  A ,  c,B;)

cp(<expr;>,R.p, <expr2>,R)
S(o(t1),p,0,B2) e S(o(t1), A, 0,B7)

with 70 = mgu(sı]p, 82 ) .

with 0 = mgu(s1lp, t2)-

with 7 = mgu(tilp, s2).

with o = mgu(tylp, t2).
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(5) Simplifications 

tes-red(<exprt>, L.p, <expr 2>, L)
 
S(st,p,O",B2). Bl
 

tes-red(<exprt>, L.p, <expr2>, R)
 
S(st,p,0",B2). Bl
 

tes-red(<exprl>, R.p, <expr2>, L)
 

Bl. S(tl,p,0",B2)
 

tes-red(<exprt>, R.p, <expr2>, R)
 
Bl • Sett, p, 0", B2)
 

The system JE is indeed capable of generating correct justifications: 

Theorem 6 : Correctness of JE 
The transformation system JE is correct. If the requirements from the definition are 
fulfilled, the generated justification will be a (flat) justification for the value of the 
expression. It will only use facts from the arguments justifications. 

The proof system JE up to now offers only support for new, valid equations generated 
from the axioms. However, in many proofs the goal is not proofed constructively 
(by generating an equation subsuming the goal), but destructively by reducing both 
sides of the goal to common normal forms. The following theorem serves to generate 
justifications for such goals. u=v is the goal to be proved. 

Theorem 7 : Justifications for destructively proofed equations 
•	 Let B be a justification for the trivial equation s=s. Let u=v appear in B ex

actly once, at top level and instantiated with the empty substitution, that is 
B = (s, Bl, u, (u=v, A, O"id) , V, B2, s). Then (s, Bl, u) • (v, B2, s) is a justification for 
u=v. 

•	 Let B be an justification for an equation s=t not containing u=v. Let B' be 
another justification for s=t with u=v appearing exactly once, at top level and in
stantiated with the empty substitution, that is B' = (s, Bl, u, (u=v, A, O"id) , v, B2, s). 
Then (s, Bt, u). B. (v, B2, t) is a justification for u=v. 

Using this theorem and treating the hypotheses as axioms we can generate justifica

tions for goals proved with any combinations of constructive and destructive inferences.
 
Please note that the intermediate justifications are not valid justifications in E. Only
 
by applying theorem 7 the final justifications are arrived at. To generate the interme

diate justifications we need to expand the system JE by adding a rule dealing with
 
hypotheses.
 

Definition 17 : The transformation system JE'
 
Using the same postulates as in definition 16, the system JE' consists of the rules from
 
JE and the following new rule:
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(5) Simplifications
tes-red(<expr;>,L.p, <expr2>,L)

S(s1 ,p ,  a,B3) ® By

tes-red(<expr;>,L.p, <expry>,R)
S(s1,p»  o,  Ba) eB ;

with o = match(s2, sılp).

with 7 = match(t2, Sılp)-

tes-red(<expr;>,R.p, <expr2>,L)
Bye  S ( t1 ,  p ,  0 ,  Ba )

with o = match(sz, t 1 ] p ) -

t es - red (<expr ;> ,R .p ,  <expr2> ,R)

Bye  S ( t1 ,  Ps 0,B2)
with o = match(ta,  t 1 l p ) .

The system JE  is indeed capable of generating correct justifications:

Theorem 6 : Correctness of  JE
The transformation system JE  is correct. If the requirements from the definition are
fulfilled, the generated justification will be a (flat) justification for the value of the
expression. It will only use facts from the arguments justifications.

The proof system JE  up to  now offers only support for new, valid equations generated
from the axioms. However, in many proofs the goal is not proofed constructively
(by generating an equation subsuming the goal), but destructively by reducing both
sides of the goal to common normal forms. The following theorem serves to  generate
justifications for such goals. u=v is the goal to  be proved.

Theorem 7 : Justifications for destructively proofed equations
e Let B be a justification for the trivial equation s=s .  Let u=v appear in  B ex-

actly once, at top level and instantiated with the empty substitution, that is
B = ( s ,B ı ,u,  (u=v, \ ,0 i4) ,V,B2,s) .  Then (s ,B ı ,u )  e (v,B2,s) is  a justification for
u=v.

e Let B be  an  justification for an  equation s= t  not containing u=v.  Let B ’  be
another justification for s=t  with  u=v  appearing exactly once, at top level and in-
stantiated with  the empty substitution, that is B’ = (s ,  By,u ,  (u=v, A, 014 ) ,  v,  B2, 5).
Then ( s ,B ı ,u)  e Be  (v ,  Ba, t )  is a justification for u=v.

Using this theorem and treating the hypotheses as axioms we can generate justifica-
tions for goals proved with  any combinations of constructive and destructive inferences.
Please note that the intermediate justifications are not valid justifications in E. Only
by applying theorem 7 the final justifications are arrived at. To generate the interme-
diate justifications we need to expand the system JE  by adding a rule dealing with
hypotheses.

Definition 17  : The transformation system JE ’
Using the same postulates as in  definition 16, the system JE? consists of the rules from
JE  and the following new rule:
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(1 ') Hypotheses
 

hypothesis
 

(s, (s=t, A, O"id) , t)
 

Using the syEtem JE' we can generate justifications for all facts in a correct PCL 
listing. The following example will demonstrate this: 

Example: We are presenting a very short PCL listing, accompanied by the justifica
tions generated using JE'. 

o : tes-eqn : f(e().x) = x : initial 

Bo = (f(eO, x), (f(eO, x)=x, A, {}), x) is a justification for the fact of step 0 by rule (1). 

3 : tes-goal : g(f(e().x» = f(e().g(x» : hypothesis 

B3 = (g(f( eO, x», (g(f(eO, x»=f( eO, g(x», A, {}), f( eO, g(x») using rule (1'). 

4 : tes-rule : f(e().x) -) x : orient(O,u) 

B4 = Bo = (f(eO, x), (f(eO, x)=x, A, {}), x) according to rule (2), first case. 

5 : tes-goal : g(f(e().x» = g(x) : tes-red(3.R.4.L) 

Bs = B3 • S(f(eO"g(x», A, {x - g(x)}, B4)
 

= (g(f(eO, x», (g(f(eO, x»=f(eO,g(x», A, {}), f(eO, g(x»,
 

(f(eO, x)=x, A, {x - g(x)}), g(x»
 

according to rule (5), third case.
 

6 : tes-final : g(x) = g(x) : tes-red(5.L.l.4,L) 

B6 = S(g(f(eO, x», 1, n,B4). Bs
 

= (g(x), (f(eO, x)=x, 1, n), g(f(eO, x)))
 

• (g(f(eO, x», (g(f(eO, x»=f(eO, g(x)), A, {}), f(eO, g(x)), 

(f(eO, x)=x, A, {x - g(x)}), g(x)) 

using rule (5), first case. 

B6 now is a justification for the trivial equation g(x)=g(x), and fulfilles the criteria 
from theorem 7 with respect to g(f(eO, x»=f(eO, g(x». By appying this theorem we 
arrive at 

B = (g(x),(f(e(),x)=x,1,{}),g(f(e(),x») 

• (f(eO, g(x», (f(eO, x)=x, A, {x <- g(x)}), g(x» 

= (g(f(eO, x», (f(eO, x)=x, 1, {}), g(x), (f(eO, x)=x, A, {}), f( eO, g(x»)
 

B now is a valid justification in E for g(f(eO,x»)=f(eO,g(x)).
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(1’) Hypotheses
hypothesis

(s,(s=t,  A, 014 ) ,  t )

Using the system JE’  we can generate justifications for all facts in  a correct PCL
listing. The following example will demonstrate this:

Ezample: We are presenting a very short PCL  listing, accompanied by  the justifica-
tions generated using JE ’ .

0 : tes-eqn : f ( e ( ) , x )  = x : in i t ia l

Bo = (£(e(), x), (£(e(), x)=x, A, { } ) ,  x) is a justification for the fact of step 0 by rule (1).

3 : tes-goal : g ( f ( e ( ) , x ) )  = f ( e ( ) , g ( x ) )  : hypothesis

Bs = (g(£(e(), x)), (g(£(e(), x))=£(e(), g(x)); A, {}), £(e(), &(x))) using rule (1°).

4 : tes-rule : f ( e ( ) , x )  ->  x : o r i en t (O ,u )

Bq = Bo = ( £ (e ( ) ,x),  (f(e(), x)=x, A, { } ) ,x) according to  rule (2), first case.

5 : tes-goal  : g ( f ( e ( ) , x ) )  = g ( x )  : t es - red (3 ,R ,4 ,L )

Bs = Bj  eo S ( f (e ( ) ,& (x ) ) ,  A,  { x  — g (x ) } ,  Ba) .

= (&(£(e(), x)),  (&(2(e(), x))=t(e(),&(x)) A, { } ) ,  £(o(), 8(x));
(£(e(), x)=x, A, { x  — g(x)}) ,  &(x))

according to rule (5), third case.

6 : tes-final : g(x)  = g(x)  : tes-red(5,L.1,4,L)

Be = S(g(£(e(),x)),1,{},Bs) © Bs

= (g(x), (£(e(), x)=x, 1, { } ) ,  g(£(e(), x)))
* (g(£(e(),  x ) ) ,  (g ( f (e( ) ,  x))=f (e(),  g(x)),  A, { } ) ;  £ ( ( ) ,  &(x)),

(£(e(), x)=x, A, { x  — g(x)}), &(x))
using rule (5) ,  first case.

Be now is a justification for the trivial equation g(x)=g(x), and fulfilles the criteria
from theorem 7 with respect t o  g(£(e().x))=£f(e(),g(x)). By appying this theorem we
arrive at

B = (g(x), (£(e(), x)=x,1, {}),  8 (£(e() ,x)))
* (£(a(), 8(x)), (F(e(), x)=%, A, { x  — g(x)}) ,  &(x))

= (g(£(e(), x)),  (£(e(), x)=x,1, { } ) ,  g(x), (£(e(), x)=x, A, { } ) ,  £(e(), &(x)))
B now is a valid justification in  E for g(£(e(),x))=£(e(), g(x)).
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The transformation rules in JE can for the most part be viewed as dual (or reverse) 
to the operations of orientation, simplification and critical pair building used in an 
unfailing completion algorithm. They are not exactly dual to the inference rules for 
unfailing completion because they are acting on a more concrete level. However, they 
can be easily generalized to match these original rules. 

5.3 An algorithm for proof transformation 

We will now develop an algorithm for generating equational chains from PCL listings.
 
To keep the description of this algorithm compact and understandable we need a set
 
of auxilliary functions. The first two functions employ JE' recursively to generate
 
justifications for arbitrary PCL steps and expressions.
 

Definition 18 : The functions JUST and LJUST
 
Let step be a PCL step and expr be a peL expression.
 

•	 The function JUST is defined as follows: 

JUST(step) = JUST(EXPR(step)) 

JUST(expr) is calCulated recursively:
 

Assign JUST(expri) to Bi and eval(expri) to (Si, ti) for all direct ar

guments expri of expr. Use the Bi and (Si, ti) as input and apply the
 
appropriate rule from JE' to it. Let B be the result of this rule, then
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The function UsesHypothesis checks a justification for an occurance of a hypothesis 
at top level and instanciated with the empty substitution. If such an occurance exists, 
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The transformation rules in JE can for the most part be viewed as dual (or reverse)
to the operations of orientation, simplification and critical pair building used i n  an
unfailing completion algorithm. They are not exactly dual to the inference rules for
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the function SplitChain will split the justification at this point. More formaly the 
following holds: 

•	 UsesHypothesis(B, list) = TRUE if and only if FACT(step) is used in B, at top 
level and instanciated with the empty substitution, for a step in list with 
EXPR(step) = hypothesis. If this is not the case, UsesHypothesis(B,list) 
yields FALSE. 

•	 Now consider a B and a list with UsesHypothesis(B, list) = TRUE. In this 
case B can be written in the form (s,Bl,U,(U=V,A,O'id),v,B2,t), with u=v be
ing the fact of a step with EXPR(step) = hypothesis. Then the function is 
defined by SplitChain(B, list) = (u=v,(s,Bl,u),(v,B2,t)). In any other case 
SplitChain(B, list) is undefined. 

We will now use these auxilliary functions to present a compact algorithm for the 
transformation of PCL listings to equational chains. It will generate a list of justified 
equations with the following properties: 

• All facts of PCL steps with TYPE(step) = tes-lemma will be represented in the 
list with their fact. 

• All PCL steps with TYPE(step) = tes-final concluding a proof of an original 
goal will be represented in the list with the fact of this goal. 

• All other peL steps with TYPE(step) = tes-final will be represented in the list 
with their own fact. 

•	 All justifications appearing in the list will only use earlier equations from the 
lists or facts from steps with EXPR(step) = initial. The justifications therefore 
are flat justifications with respect to {FACT(step)IEXPR(step) = initial} and 
{FACT(step)ITYPE(step) = tes-lemma}. 

Given this properties, the generated list represents a proof (in equational cha.ins) for 
the original hypotheses and eventua.l new final equations. 
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Input: in A list of PCL steps. 

Output: out A list of justified equations. 

Variables step A single PCL step. 

u. V Terms. 
B1, B2 Justifications. 
exprt, expr 2 PCL-expressions. 

Functions: NOTEMPTY(list) FALSE, if list is empty, TRUE if 
not. 

FIRST(list) First entry in list. 

EXCEPTFIRST(list) list without its first entry. 

APPEND(list.B) List generated by appending B as 
the last element to list. 

TYPE (step) Type of step (compare 3.2). 

EXPR(step) Expression of a PCL step. 

TOP(expr) Top symbol of a PCL expression. 

SUBEXPRS(expr) The direct subexpressions of expr 
that are PCL expressions (as op
posed to place designators or di
rectional arguments). 

store := in; 
WHILE NOTEMPTY(in) 

step := FIRST(in); 
in := EXCEPTFIRST(in); 
IF TYPE(step) = tes-lemma THEN 

out := APPEND(out.(FACT(step).LJUST(step»); 
IF TYPE (step) = tes-final THEN 

IF TOP(EXPR(step» = instance THEN 
A (sub-) goal is being proven by instanciation 
(exprt.expr2) := SUBEXPRS(EXPR(step»; 
(u=v.Bt. B2) := SplitChain(LJUST(exprt).store); 
out := APPEND(out.(u=v. BteLJUST(step)eB2»; 

ELSE IF NOT(UsesHypothesis(LJUST(step).store» THEN 
A n interesting constructive fact is made a theorem 
out := APPEND(out.(FACT(step).LJUST(step»); 

ELSE 
A goal is being proved by reduction 
(u=v.Bt. B2) := SplitChain(LJUST(step).store); 
out := APPEND(out.(u=v.BteB2); 

ENDIF 
ENDIF 

ENDWHILE 
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Input: in
Output:
Variables

out
s tep

u ,  v

B ı ,B2
expr i ,  expr

Functions: NOTEMPTY(list)

FIRST(1l is t )
EXCEPTFIRST(l ist )
APPEND(1ist,B)

TYPE(step)
EXPR(step)
TOP (expr)
SUBEXPRS (expr)

s tore  :=  i n ;
WHILE NOTEMPTY ( i n )

step :=  F IRST( i n ) ;
in  : =  EXCEPTFIRST(in);

A list of PCL steps.
A list of justified equations.
A single PCL step.
Terms.
Justifications.
PCL-expressions.
FALSE, i f  L i s t  is empty, TRUE  i f
not.
First entry in list.
l i s t  without i ts  first entry.
List generated by appending B as
the last element to l i s t .
Type of step (compare 3.2).
Expression.of a PCL step.
Top symbol of  a PCL expression.
The direct subexpressions of  expr
that are PCL expressions (as op-
posed to place designators or di-
rectional arguments).

I F  TYPE(step) = tes-lemma THEN
out : =  APPEND ( ou t ,  (FACT (s tep)  ,LJUST(step))) ;

I F  TYPE(step) = tes- f ina l  THEN
IF TOP(EXPR(step)) = instance THEN

A (sub-) goal is being proven by instanciation
(expry ,exprs )
( u=v ,B ; ,  B32)
out

:= SUBEXPRS (EXPR(step));
: =  Sp l i tCha in(LJUST(expr ; ) ,s tore) ;

: =  APPEND ( ou t ,  (u=v, B ;  e LJUST(step)eB3));
ELSE IF NOT(UsesHypothesis(LJUST(step) , s to re ) )  THEN

An  interesting constructive fact is made a theorem
out

ELSE
: =  APPEND ( ou t ,  (FACT (s tep)  ,LJUST(step))) ;

A goal is being proved by reduction
(u=v,B; ,  Ba)
out

ENDIF
ENDIF

ENDWHILE

:=  Sp l i tCha in (LJUST(s tep ) , s to re ) ;
: =  APPEND(out, (u=v,B; Bj);
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Appendix B provides two examples for proofs transfomed using our implementation of 
the algori tm above. 
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Appendix B provides two examples for proofs transfomed using our implementation of
the algoritm above. ’
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6 Dealing with cl distributed proof system 

In analyzing completion based proofs we have developed tools to deal with a verbose 
listing of the proof steps. The language used to describe the proof is PCL, which has 
been introduced in [Sch93]. It represents the proof in a generic format independent of 
the internals of a specific prover. Obtaining this listing from a sequential (as opposed 
to parallel) program is rather straightforward, but there are a number of problems to 
consider when dealing with a parallel proof system. 

6.1 Measuring without disturbing 

Given todays computer systems, input and output operations are usually very time 
expensive compared to computation and symbol manipulation. Generating a complete 
listing of the inference steps during a proof session does therefore significantly increase 
the time needed to find the proof. This does not matter in sequential provers, which 
usually show a deterministic behaviour. Given a specific input they proceed always 
through the same states and eventually arrive at the same proof. The process is 
independent of outside events and of the elapsed time. ' 

This is not true for parallel programs, which usually rely heavily on cooperation and 
whose behaviour is largely influenced by the timing of both the complete system and 
the single components. Our experiments have shown that producing a complete PCL
listing during the generation of a proof significantly alters the behaviour of the proof 
system. In particular, results found without extensive documentation of the proof run 
are not directly reproducible under the altered circumstances. 

However, generating full documentation of every proof run is not a desirable option. 
Using the prover without the protocol is usually much more convenient, especially while 
searching for a new proof. The significant advantage in speed does allow deeper searches 
within the same time limits. The protocol is only needed when a already existing proof 
is to be analyzed in detail, or when the proof has to be presented to humans. We 
therefore chose another way to generate the data necessary for this analysis. 

During the initial phase of the pro()f generation no verbose listing is written. Instead 
we use a very short, specialized protocol written only at some crucial points in the 
process. For the teamwork method these points are the team meetings, during which 
the different processes exchange their information. The use of this protocol allows us 
to reproduce the proof without any further dependency on the elapsed time. We do no 
longer use the elapsed time but a comparison with the protocol data as a measure for 
the progress of the proof process. During this time independent reproduction a ve':"bose 
listing in PCL is generated, which can then be used for further analysis. 

Note that while this concept can, be implemented very easily fo,r the teamwork method 
it is not viable for most other approaches to parallel processing. It works only with 
algorithms using short periods of intensive communication and longer periods of se
quential and deterministic work not interrupted by interprocess communication. This 
property is inherent in the teamwork method but not for example in the concepts 
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presented in [BH92]. 

6.2 Sequentializing parallel proofs 

Humans are only capable of following one thread at a time. To prepare proofs in a 
form suitable for human reading the proof has to be a single chain of logical arguments.. 
A conventional proof system generates such a chain automatically, but a parallel proof 
system without shared memory can (and will) analyze more than one thread at a time. 
These different threads have to be integrated into a single proof chain, preferably in a 
way that keeps the context of each proof step as intact as possible. 

Additionally, in a complete recording of the reasoning process the facts have to be 
labeled so that a justification for a new fact can point at the facts it has been derived 
from. When integrating the different threads these labels have to be unique to avoid 
problems with ambiguous references. 

Another, more practical, consideration is that we deal with very large amounts of data. 
For a detailed analysis of the proof we use a protocol which contains only the facts 
actually used in generating the final proof, not the ~'~"ually much bigger) set of unused 
facts. This extraction of the important facts can be done rather efficiently because we 
use a total ordering on the labels and demand that labels in a protocol are used in 
ascending order only. We want to maintain this property for protocols generated from 
a parallel proof session. 

For the teamwork method the different threads are generated by the different experts. 
During the working phases each expert is working on a single thread. At the team 
meetings these different threads are integrated into a common knowledge base. This 
base is then used as the single starting point for the threads of the next working phase. 
An important feature of this approach is that an inference process can only access 
informations from his own thread and from the common data base generated during 
the last team meeting. 

peL represents the inference processes as a list of steps labeled by an identifier and 
containing the result of a single inference as well as a description of the inference and 
the labels of the parent steps. The identifier consists of a list of arbitrary length, con
taining positive integers. The ordering defined on this identifiers is the lexicographical 
extension of the standard ordering on the natural numbers. This allows us to split the 
set of all possible identifiers into a hierarchical structure of infinitely many different 
name spaces. If carefully chosen this name spaces can be ordered in a way that the or
dering on the name spaces is total and compatible with the ordering on the identifiers. 
In this case every two name spaces can be compared and identifiers from a "greater" 
name space are always larger than identifiers from a "smaller" name space. 

To get more specific we use the first n elements in the list that constitutes an iden
tifier as the criterion to distinguish different name spaces. For protocols of teamwork 
sessions the identifiers are composed of at least three integers. The first one designates 
the working phase or team meeting the inference happened in, the second element dis
tinguishes between the different experts and the rest of the identifier is used to label 
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the different steps within a single thread. 

The rules for identifiers and name spaces can be summarized as follows: Identifiers 
consist of at least 3 integers, they are of the form cycle.expert.cpunt. The first integer, 
cycle, numbers (in ascending order) the team meetings and working phases. Identifiers 
from team meeting n start with cycle = 2 x n, identifiers from working phase n start 
with cycle = (2 x n) + 1. The second element, expert, is the number of the processor 
running the expert that generated the proof step. The rest of the identifier, count, 
is usually just another simple integer which numbers all the proof steps done by that 
particular expert. In the general case it can be an arbitrary list that distinguishes 
among the proof steps done by a single expert. Figure 4 shows this arrangement for a 
simple example. . 

This concept does achieve most of the goals set above. By simply concatenating the 
protocols of the different experts in a single working phase a protocol for that working 
phase can be generated. It exhibits three important properties: 

•	 The identifiers of the proof steps are used in an ascending order. 

•	 Every proof step references only steps with smaller identifiers. 

•	 As the entire thread is kept in one part the proof steps usually do not loose the 
context they were generated in. 

These protocols can then be concatenated with the protocols generated from the team 
meetings in the order indicated by there respective name spaces. The resulting list con
stitutes a valid sequential PCL protocol of the complete proof session. This shares most 
of the above characteristics and additionally (if the experts work correctly) contains 
every step referenced in an inference. 

6.2.1 Eliminating redundancies 

A second, minor problem with the distributed proof system is that some facts might be 
found independently by more then one expert. This is not a problem for the validity 
of the generated proof, however, it is not a feature desirable in proofs presented to 
humans. The redundant data does not add any new information but merely confuses 
the reader. 

We cope with this problem by eliminating these steps, using two different approaches. 
In a first step we take the complete protocol and eliminate all steps proved by a 
simple reference to a previous step. This is achieved by replacing all references to the 
redundant step with references to the prior step and by (possibly) changing the previous 
steps type to reflect the additional information that might have been incorporated 
into the redundant step (the redundant step might have been of type 'tes-final or 
tes-intermed, while the previous step might have been an ordinary result). 

It should be noted that this first handling of the protocol is not primarily done for the 
elimination of redundancies, but to move the more detailed types to the first occurence 
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Figure 4: Team work and name spaces 

of a fact, thus ensuring that this information is not lost during the extraction phase. 
It does, however, eliminate a couple of redundant steps, too. 

The second elimination phase does check all steps with compatible types for identical 
facts. If two steps with identical facts (and compatible types) are found the listing 
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of a fact, thus ensuring that this information is not lost during the extraction phase.
I t  does, however, eliminate a couple of redundant steps, too.
The second elimination phase does check all steps with  compatible types for identical
facts. If two steps with identical facts (and compatible types) are found the listing
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is treated as mentioned above: All references to the second step are changed into 
references to the first step. This operation is usually performed after a first extraction, 
because the operation tends to be quite costly (in terms of CPU time) for large listings. 
A final extraction then removes all steps that became redundant during this phase. 

6.3 Handling large amounts of data 

Even protocols of sequential proofs can become very large, as section 3.3 demonstrated. 
This leads to serious practical problems in handling the files. For a distributed proof 
system these problems are further aggravated. First, the same protocol will grow about 
20 %, because of the necessarily more complex identifier structure reflecting the name 
spaces introduced in the previous section. 

The real increase in the amount of data is the result of multiple processes generating 
inferences. Given the same amount of time a distributed system with n processors will 
generate approximately n times the inferences of a system with one processor. As PCL 
depends on a complete protocol of all inference steps the size of the PCL listings will 
reflect this fact. 

We have not yet encountered a situation our system could not master. This is, however, 
a result of the success of the teamwork method, which generated much shorter proofs. 
We expect PCL protocols for more difficult problem to quickly become unmanageable. 

To handle this problem we can again use a feature of TEAMWORK. As has been 
stated in section 2.3 only a few results of inferior experts are selected at the team 
meetings, the other results are dropped from the data base. We can transfer this 
process of forgetting to the PCL layer by interleaving proving phases and extraction. 

To be more specific, the exceptional results handed to the master of the team are 
marked in the PCL protocol by type identifiers (tes-intermed, tes-intermedgoal 
and crit-intermedgoal, compare section 3.1) expressing their special status. 

The PCL listings produced by the inferior experts are then extracted using the algo
rithm described in section 3.3, treating the intermediate results as finals. All facts 
needed for the generation of the intermediate results are preserved, all other generated 
facts are discarded. As these other results cannot be referenced by the prover any 
more, we will still get a valid PCL listing describing the proof. 

The final PCL listing is usually much smaller this way, and can be handled quite easily 
in most cases. However, there is a price to pay. If this intermediate extraction is used 
no complete listing of all inferences is generated. As we are interested much more in 
the steps necessary for the proof we think this is acceptable. 

57
 

is treated as mentioned above: All references to the second step are changed into
references to the first step. This operation is usually performed after a first extraction,
because the operation tends to  be quite costly ( in  terms of CPU time) for large listings.
A final extraction then removes all steps that became redundant during this phase. '

6.3 Handling large amounts o f  data

Even protocols of sequential proofs can become very large, as section 3.3 demonstrated.
This leads to serious practical problems in handling the files. For a distributed proof
system these problems are further aggravated. First, the same protocol will grow about
20 %, because of the necessarily more complex identifier structure reflecting the name
spaces introduced in  the previous section.

The real increase in the amount of data is the result of multiple processes generating
inferences. Given the same amount of time a distributed system with n processors will
generate approximately n times the inferences of  a system with one processor. As PCL
depends on a complete protocol of all inference steps the size of the PCL  listings wil l
reflect this fact.
We have not yet encountered a situation our system could not master. This is, however,
a result of the success of the teamwork method, which generated much shorter proofs.
We expect PCL  protocols for more difficult problem to quickly become unmanageable.

To handle this problem we can again use a feature of TEAMWORK. As has been
stated in  section 2.3 only a few results of inferior experts are selected at the team
meetings, the other results are dropped from the data base. We can transfer this
process of forgetting to  the PCL  layer by  interleaving proving phases and extraction.

To be more specific, the exceptional results handed to the master of the team are
marked i n  the PCL protocol by type identifiers (tes-intermed, tes-intermedgoal
and cri t- intermedgoal,  compare section 3.1) expressing their special status.
The PCL listings produced by the inferior experts are then extracted using the algo-
rithm described in section 3.3, treating the intermediate results as finals. All facts
needed for the generation of the intermediate results are preserved, all other generated
facts are discarded. As these other results cannot be referenced by the prover any
more, we will st i l l  get a valid PCL listing describing the proof.
The final PCL  listing is usually much smaller this way, and can be handled quite easily
in  most cases. However, there is a price to pay. If this intermediate extraction is used
no complete listing of all inferences is generated. As we are interested much more in
the steps necessary for the proof we think this is acceptable.

57



7 Benefits from going distributed 

Using a distributed, TEAMWORK based proof system has a number of advantages 
in comparison to a sequential prover, ranging from the obvious advantage of increased 
speed to some more subtle aspects in proof analysis and presentation~ This chapter 
will explain the benefits gained. 

7.1 Increased power of the proof system 

Of course the original reason for choosing a distributed system are the gains in speed 
and power. These reasons still hold. The increase in the provers capabilities allow 
access to a broader class of problems, including more difficult and general examples. 

Our equational prover, the DISCOUNT system, achieves this goal of more power in 
an admirable way. It has often demonstrated superior strategies when running in dis
tributed mode. This manifests in super-linear speedups for many problems (see [AD93] 
for a detailed discussion of some examples). Proof sessions occupying a single machine 
for hours can now often be solved in a couple of minutes, using a cluster of worksta
tions. We also found a couple of problems we could prove using the distJ;ibuted mode 
of DISCOUNT, but not with any single strategy in sequential mode. One example is 
shown in table 2. 

Using the methods detailed in section 6 we were able to maintain the increased power 
even for proof processes documented in a way that allows a exact analysis of the proof. 
Additionally, as we can now reproduce proof runs, there is no need to generate a full 
protocol of each proof process. Only successful proof runs need to be reconstructed, 
yielding a complete protocol only at reproduction time. 

7.2 Shorter proof protocols 

The superior behaviour of DISCOUNT in distributed mode also shows in the better 
ratio of necessary inferences to executed inferences. The prover does behave more goal 
oriented, a larger part of his work does actually further the proof; Many important 
results are generated more directly and earlier, because the different experts arrive at 
important results in their part of the search space. These results are usually recognized 
by the referees and integrated into the prover's system of rules and equations, thus 
forming a strong reasoning base for the prover quite early. 

The total number of steps in an extracted listing is roughly the same for the distributed 
and sequential system. However, due to the improved ratio of necessary to executed 
steps we generally get much smaller complete protocols for the same problem. For large 
examples the proof listing typically shrinks by at least 50 %, quite often the reduction 
is even more dramatic. These protocols are easier to handle than the larger, monolithic 
protocols of sequential proofs. 

To show this trend we have included data from distributed proofs for some of the more 
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important results in  their part of  the search space. These results are usually recognized
by the referees and integrated into the prover’s system of rules and equations, thus
forming a strong reasoning base for the prover quite early.
The total number of steps in  an extracted listing is roughly the same for the distributed
and sequential system. However, due to the improved ratio of necessary to  executed
steps we generally get much smaller complete protocols for the same problem. For large
examples the proof listing typically shrinks by  at least 50 %, quite often the reduction
is even more dramatic. These protocols are easier to  handle than the larger, monolithic
protocols of  sequential proofs.

To show this trend we have included data from distributed proofs for some of the more

58



difficult examples3 from Table 1 to demonstrate the improvement. Table 2 shows the 
data for proofs generated in distributed mode. 

7.3 Easier handling of extreme protocols 

The faster and more efficient proofs possible with the TEAMWORK method usually 
result in much smaller protocols. However, for more difficult examples, especially for 
examples challenging for even the distributed system, the protocols can still become 
overwhelmingly large. 

However, by transferring the process of "forgetting" introduced by TEAMWORK to 
the level of proof analysis we can alleviate this task. Section 6.3 describes how we can 
use this feature to ease the handling of large protocols to a point where even the most 
complex examples we encountered so far can be analyzed quite casually. 

7.4 Improved lemma recognition 

Most of the advantages listed so far are only visible to the operator of the proof system, 
not to the recipient of the proof. The important advantage of TEAMWORK with 
respect to proof presentation, however, is the use of the referees in lemma detection. 
The outstanding results selected by the referees prior to the team meetings make very 
good and quite often superior lemmata. 

Table 3 shows the percentage of arbitrary steps necessary for the final proof and, in 
contrast, the percentage of steps selected by the· referees as important intermediate 
results used in this proof. The chosen examples come from a wide variety of domains, 
but in all cases the selected results are much more likely to be needed for the final proof. 
Averaged over all example the probability for a selected result to be of use for the proof 
is more then 160 times higher then for an arbitrary step. In addition to demonstrating 
the quality of DISCOUNT's referees this result also is a strong indication that the 
intermediate results play a special role in the proof process and thus are probably 
suitable as lemmata. 

The referees select these results because of their good performance during the comple
tion. Thus a result is chosen on its importance for the complete equational domain. 
The post mortem criteria from section 4, on the other hand, choose lemmata purely 
by judging their relevance to the proof at hand. Especially, the more powerful of these 
~riteria use quite complex algorithms than cannot easily be applied to the complete 
listings. 

We can, however, use the suggested intermediate results of the experts to generate lem
mata with a more global perspective. While a small number of these results are not 
suitable as lemmata at all (usually because they represent very simple consequences 
of the axioms), a larger part does indeed make superior lemmata. Taking the refer

3We did not include the easier examples because they can be solved very quickly by the sequential 
plOver - generally faster than starting the distributed system over the network. 
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difficult examples® from Table 1 to demonstrate the improvement. Table 2 shows the
data for proofs generated i n  distributed mode.

7.3 Easier handling of  extreme protocols

The faster and more efficient proofs possible with the TEAMWORK method usually
result in  much smaller protocols. However, for more difficult examples, especially for
examples challenging for even the distributed system, the protocols can still become
overwhelmingly large.
However, by transferring the process of “forgetting” introduced by TEAMWORK to
the level of  proof analysis we can alleviate this task. Section 6.3 describes how we can
use this feature to ease the handling of large protocols to a point where even the most
complex examples we encountered so far can be analyzed quite casually.
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Most of the advantages listed so far are only visible to  the operator of the proof system,
not to  the recipient of the proof. The important advantage of TEAMWORK with
respect to proof presentation, however, is the use of the referees i n  lemma detection.
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Table 3 shows the percentage of arbitrary steps necessary for the final proof and, i n
contrast, the percentage of steps selected by the referees as important intermediate
results used in  this proof. The chosen examples come from a wide variety of domains,
but in  all cases the selected results are much more likely to  be needed for the final proof.
Averaged over all example the probability for a selected result to  be of  use for the proof
is more then 160 times higher then for an arbitrary step. In addition to demonstrating
the quality of DISCOUNT’s referees this result also is a strong indication that the
intermediate results play a special role in the proof process and thus are probably
suitable as lemmata.
The referees select these results because of their good performance during the comple-
tion. Thus a result is chosen on its importance for the complete equational domain.
The post mortem criteria from section 4, on the other hand, choose lemmata purely
by  judging their relevance to the proof at hand. Especially, the more powerful of these
criteria use quite complex algorithms than cannot easily be applied to  the complete
listings.

We can, however, use the suggested intermediate results of  the experts to  generate lem-
mata with a more global perspective. While a small number of these results are not
suitable as lemmata at all (usually because they represent very simple consequences
of  the ax ioms),  a larger part does indeed make superior lemmata. Taking the refer-

3We did not include the easier examples because they can be solved very quickly by the sequential
prover — generally faster than starting the distributed system over the network.
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I Example I Complete I Extracted I Comment 

BoolAssoc 95788 117 The disjunctive operator (and) In a 
Boolean algebra is associative. See ap
pendix BA. 
Calculations in cyclic group. Presented 
in [Pi92]. 
Proof of one of DeMorgan's laws in 
an arbitrary boolean algebra. See ap
pendix BA. 
Derivation of the associativity axiom from 
a single equation axiomatization of a 
group. See [LW92]. 
Derive the first of Lucaciewicz's axioms 
for propositional calculus from Frege's ax
iomatization of this calculus. See [Ta56]. 

Cooperation 6879 58 

DeMorgan 181336 159 

GT7-3 9638 214 

Luka1 139178 22 

Luka2 47898 57 Derive the second of Lucaciewicz's axioms 
(see above). 
Derive the third of Lucaciewicz's axioms 
(see above). 
An example using a ternary Boolean al
gebra - see [L082]. 
In a ring with x3 = x the multiplicative 
operation is Abelian. This was presented 
as a challenging example in [L082]. See 
also appendix B.2. 
Completion of a finite group. See [Si92]. 

Luka3 180278 42 

Lusk5 24738 48 

Lusk6 144099 227 

Sims2 283473 936 
Lattice1 324019 73 An example from the field of lattice or

dered groups. See appendix BA 
Another problem from the domain of lat
tice ordered groups. See appendix BA. 
Show that each element of a lattice or
dered group can be expressed as the prod
uct of it's positive and it's negative part. 
See appendix B.3. 
Completion of a large cyclic group. See 
appendix BA. 

Lattice2 28124 103 

Lattice3 63860 133 

Z22 25508 646 

Table 2: Necessary and executed inferences in protocols of distributed proofs 

Remark: For examples present in this table but not in table 1 there does not at the moment exist 
a sequential proof with DISCOUNT. For BoolAssoc, as an example, the sequential prover did 
879594 inferences (generating a protocol of 73 Megabytes) before terminating unsuccessfully 
due to lack of memory. 
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| Example | Complete | Extracted | Comment HB
BoolAssoc 95788 117 The disjunctive operator (and) i n  a

Boolean algebra is associative. See ap-
pendix B.4.

Cooperation 6879 58 Calculations in  cyclic group. Presented
in  [Pi92].

DeMorgan 181336 159 Proof of one of DeMorgan’s laws in
an arbitrary boolean algebra. See ap-
pendix B.4.

GT7-3 9638 214 Derivation of  the associativity axiom from
a single equation axiomatization of a
group. See [LW92].

Lukal 139178 22 Derive the first of Lucaciewicz’s axioms
for propositional calculus from Frege's ax-
jiomatization of this calculus. See [Ta56].

Luka2 47898 57 Derive the second of Lucaciewicz’s axioms
(see above). |

Luka3 180278 42 Derive the third of Lucaciewicz’s axioms
(see above).

Lusk5 24738 48 An example using a ternary Boolean al-
gebra - see [LO82].

Lusk6 144099 227 In a ring with z* = the multiplicative
operation is Abelian. This was presented
as a challenging example in  [LO82]. See
also appendix B.2.

Sims2 283473 936 Completion of a finite group. See [S192].
Latticel 324019 73 An  example from the field of lattice or-

dered groups. See appendix B.4
Lattice2 28124 103 Another problem from the domain of lat-

tice ordered groups. See appendix B.4.
Lattice3 63860 133 Show that each element of a lattice or-

dered group can be expressed as the prod-
uct of  i t ’ s  positive and i t ’ s  negative part.
See appendix B.3.

722 25508 646 Completion of a large cyclic group. See
| appendix B.4.

Table 2: Necessary and executed inferences in  protocols of distributed proofs
Remark: For examples present in  this table but not i n  table 1 there does not at the moment exist

a sequential proof w i t h  DISCOUNT. For BoolAssoc, as an example, the  sequential prover d i d
879594 inferences (generating a protocol of 73 Megabytes) before terminating unsuccessfully
due to  lack of  memory.
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Example I Protocol size I Arbitrary facts I Referees choice II 

BoolAssoc 95788 0.12 % 43.5 % 
Cooperation 6879 0.8 % 40.0 % 
DeMorgan 181336 0.08 % 20.9 % 
GT7-3 9638 2.2 % 83.3 % 
Lukal 139178 0.015 % 20.0 % 
Luka2 47898 0.01 % 33.3 % 
Luka3 180278 0.023 % 23.1 % 
Lusk5 24738 0.19 % 50.0 % 
Lusk6 144099 0.16 % 20.5 % 
Sims2 283473 0.33 % 50.0 % 
Latticel 324019 0.01 % 8.2 % 
Lattice2 28124 0.37 % 50.0 % 
Lattice3 63860 0.2 % 15.1 % 
Z22 25508 2.5 % 75.1 % 

I WeIghted Sum 1__l_58_2_62_7--J.1 0_._18_%_o1 2_9._6 _%_1 

Table 3: Percentage of arbitrary and selected results needed in the found proof 

ees suggestions into account does also emulate human behaviour quite well, because 
humans often base their lemma selection on the global performance of a fact in the 
respective field, too. 

We apply this criterion by simply marking the selected results in the proof protocol. 
This information can be used as a constant element in a weighted decision, as described 
in section 4.10, or we can use these results (if they conform to the most basic require
ments for lemmata) as the basic building blocks and generate (using other criteria) 
more lemmata to fill in this skeleton. The results are quite promising, especially if 
more than one example from the same domain are to be presented. For an example 
see the proof in appendix B.3. 
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| Example [ |  Protocol size| Arbitrary facts| Referees choice|
BoolAssoc 95788 0.12 % 43.5 %
Cooperation 6879 08% 40.0 %
DeMorgan 181336 0.08 % 20.9 %

GT7-3 9638 2 .2% 83.3 %
Lukal 139178 0.015 % 20.0 %
Luka2 47898 0.01 % 33.3%
Luka3 180278 0.023 % 23.1 %
Lusk5 24738 0.19 % 50.0 %
Lusk6 144099 0.16 % 20.5 %
Sims2 283473 0.33 % 50.0 %
Latt icel  324019 0.01 % 8.2 %
Lattice2 28124 0.37 % 50.0 %
Lattice3 63860 0.2 % 15.1 %
722 25508 2.5 % 75.1 %

|Weighted Sum | 1582627| 0.18% | 29.6 % |

Table 3: Percentage of arbitrary and selected results needed in  the found proof

ees suggestions into account does also emulate human behaviour quite well, because
humans often base their lemma selection on the global performance of a fact in the
respective field, too.

We apply this criterion by simply marking the selected results in  the proof protocol.
This information can be used as a constant element in  a weighted decision, as described
in  section 4.10, or we can use these results ( i f  they conform to the most basic require-
ments for lemmata) as the basic building blocks and generate (using other criteria)
more lemmata to fill i n  this skeleton. The results are quite promising, especially i f
more than one example from the same domain are to be presented. For an example
see the proof i n  appendix B.3.
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Figure 5: A concept for a system generating, analyzing and transforming proofs 

Implemented Programs 

To achieve our goals with respect to proof analysis and representation we implemented 
a number of programs. They have first been described in [Sch93] and have been ex
tended to cover some special situations arising with the use of the distributed version 
of the DISCOUNT system. Additional changes have been made to the proof system 
itself. This chapter deals with both the extensions to DISCOUNT and the programs 
dealing with PCL listings. For more information about DISCOUNT see [DP92], for 
a more extensive description of the programs for proof analysis and transformation 
consult [Sch93]. 

Figure 5 shows the basic framework for a system generating and transforming proofs 
using the concepts described in chapters 3 to 5. A proof is generated from a problem 
description, yielding a listing of all inference steps. This listing is analyzed and the 
relevant steps are extracted. Then the proof is structured and finally transformed to a 
\calculus suitable for human consumption. 

iHowever, figure 5 is quite abstract and does not take into account the special problems 
\arising with the use of distributed systems. Taking into account the results from 
chapter 6 we arrive at the structure depicted in figure 6. 
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Figure 5: A concept for a system generating, analyzing and transforming proofs

8 Implemented Programs

To achieve our goals with respect t o  proof analysis and representation we  implemented
a number of programs. They have first been described in [Sch93] and have been ex-
tended to cover some special situations arising wi th the use of the distributed version
of the DISCOUNT system. Additional changes have been made to the proof system
itself. This chapter deals wi th both the extensions to DISCOUNT and the programs
dealing with PCL listings. For more information abaut DISCOUNT see [DP92], for
a more extensive description of the programs for proof analysis and transformation
consult [Sch93].
Figure 5 shows the basic framework for a system generating and transforming proofs
using the concepts described i n  chapters 3 to 5. A proof is generated from a problem
description, yielding a listing of all  inference steps. This listing is analyzed and the
relevant steps are extracted. Then the proof is structured and finally transformed to  a
calculus suitable for human consumption.
However, figure 5 is quite abstract and does not take into account the special problems
arising with the use of distributed systems. Taking into account the results from
chapter 6 we arrive at the structure depicted i n  figure 6.
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Figure 6: Structure of the implemented system 

Our implementation fills the roles in this diagram as follows: The proof (and the 
accompanying short protocol) is generated by the basic DISCOUNT prover using the 
executable discount. Closely related to this is the program rpcl which takes the 
short protocol (and problem description) of a proof and reproduces it, yielding a PCL 
protocol of the process. 

This PCL listing is extracted by one of a number of programs or program combina
tions, with mextract being the most often used default. Section 8.2 describes these 
programs in some detail. The programs lemma and proof deal with proof structuring 
and transformation, respectively. 

63 

| Problem description

Proof System

Short protocol

Proof reproduction

; Optional extraction ;

' (interleaved) !

Proof l isting

Proof Extraction

Listing of  the relevant steps

Structuring Phase

Proof l isting structured by  lemmata

‘Transformation

| Proof i n  a form suitable for humans

Figure 6: Structure of the implemented system

Our implementation fills the roles i n  this diagram as follows: The proof (and the
accompanying short protocol) is generated by the basic DISCOUNT prover using the
executable d iscount .  Closely related to this is the program rpcl which takes the
short protocol (and problem description) of a proof arand reproduces it, yielding a PCL
protocol of the process.
This PCL listingi s  extracted by one of a number of programs or program combina-
tions, wi th  mextract being the most often used default. Section 8.2 describes these
programs in  some detail. The programs lemma and proof deal with proof structuring
and transformation, respectively.
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8.1 The DISCOUNT system 

The DISCOUNT system is a parallel proof system for equational reasoning based on 
the TEAMWORK method (see [De93]). It is described in detail in [Pi92], the user 
interface has been documented in [DP92]. An important enhancement of the system 
is the incorporation of a true broadcast for the transfer of large amounts of data to all 
members of a team. It lead to a much better performance for configurations with more 
then two experts and will be described in [Lin93]. 

The latest improvement so far is the implementation of the protocols necessary to 
analyze and reproduce the proofs generated by the system. This implementation follows 
the concepts developed in chapter 6. 

It resulted in some small changes to the basic proof system and three new variant 
programs implementing features not necessary in the plain prover. For consistency 
reasons and easy maintenance the different versions are build from a common source 
code using the conditional compilation supported by the C language preprocessor. 
Which of the four executables shall be build can thus be determined using compile 
time switches. 

The changes in the behaviour of the programs are described in detail in the following 
sections and will be integrated into upcoming versions of the DISCOUNT User Guide. 
For easy reference the new options available with the different program versions are 
listed in table 8.1. 

8.1.1 Changes in the configuration files 

The DISCOUNT system can be tailored to specific problems by the use of configuration 
files describing the number of processors to use, the experts and specialists to run on 
them and some additional data of less importance. The EXEC keyword was used in the 
configuration files to specify the name of the executable to be started on the remote 
processors. 

The new versions of the DISCOUNT system discard the EXEC entry in the configuration 
files, although for compatibility reasons it can still be given. Now the master process 
queries the command line for its own name and uses this as the name of the executable 
to be started on the remote hosts. This allows the use of the same configuration files 
with different versions of the DISCOUNT system. 

8.1.2 Logging the proof session 

The discount executable implements our basic proof system for equational proofs 
based on unfailing completion. There has been only one major change necessary to 
allow the analysis of proofs generated with the DISCOUNT system. 

This is the incorporation of the ability to generate the short protocol mentioned in 
section 6.1. By default the prover now uses the team meetings to write the data 
necessary for a later reproduction of the proof. The default filename for this protocol 
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files, although for compatibility reasons i t  can sti l l  be given. Now the master process
queries the command line for its own name and uses this as the name of the executable
to  be  started on the remote hosts. This allows the use of the same configuration files
with  different versions of  the DISCOUNT system.

8.1.2 Logging the proof  session

The discount executable implements our basic proof system for equational proofs
based on unfailing completion. There has been only one major change necessary to
allow the analysis of proofs generated with the DISCOUNT system.
This is the incorporation of the ability to generate the short protocol mentioned in
section 6.1. By  default the prover now uses the team meetings to  write the data
necessary for a later reproduction of the proof. The default filename for this protocol
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Effect 
discount 

OptionShortcut 

-no_log Suppress the production of the short pro
tocol generated by default during the proof 
seSSIOn. 

-L <name> 

-1 

Select <name> as the filename for the short 
protocol to be written. 

rdiscount 
-L <name> 

-log_file <name> 

-log_file <name> Select <name> as the filename for the short 
protocol to be read for the reproduction. 

pcl and rpcl 
-no_log Suppress the production of a short protocol 

generated by default during the proof session 
(only for pcl). 

-L <name> 

-1 

-log_file <name> Select <name> as the filename for the short 
protocol to be written or to be read. 

-x <method>: -extract <method> Select the programs to be used for the 
intermediate extraction of the PCL files. 
<method> can be one of the following: 
none No intermediate extraction at 

all. 
mextract Use mextract for the interme

diate extractions. 
revert Use revert' and rextract. 
tac Use tac and rextract. 

-F <method> -fextract <method> Select the programs to be used for the final 
extraction of the PCL files. <method> can 
have the same values as for the preceding 
option. 

-a -async Start the final extraction asynchronously. 
This allows the proof system to terminate 
and free its resources for the extracting 
process.

I 

Table 4: The new DISCOUNT programs and their options 
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Shortcut | Option | Effect
discount

-no_ log Suppress the production of the short pro-
tocol generated by default during the proof
session.

- log_ f i l e  <name> Select <name> as the filename for the short
protocol to  be written.

rd iscount
- log_ f i le  <name> Select <name> as the filename for the short

protocol to  be read for the reproduction.
pe l and rpcl

-no_ log Suppress the production of a short protocol
generated by default during the proof session
(only for pel).

- L  <name> - l og_ f i l e  <name> Select <name> as the filename for the short
protocol to  be written or to be read.

-X  <method> -ext ract  <method> Select the programs to be used for the
intermediate extraction of the PCL files.
<method> can be one of the following:

none No  intermediate extraction at
al l .

mextract  Usemextract  for the  interme-
diate extractions.

revert  Use revert  and rext ract .
tac  Use tac  and rextract .

-F  <method> - fext ract  <method> Select the programs to be used for the final
extraction of the PCL files. <method> can
have the same values as for the preceding
option.

- a -async

_

Start the final extraction asynchronously.
This allows the proof system to terminate
and free i t s  resources for the extracting
process.

Table 4: The new DISCOUNT programs and their options
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is the name of the problem file with the added suffix . prk. This can be changed by 
specifying the option -log_file <filename>. The new option -no_log suppresses 
the protocol altogether. 

The symmetric design of the DISCOUNT system has been preserved for the task of 
writing this protocol. As a consequence all discount processes in a parallel proof 
session have to access a single file system, because every process can be responsible for 
part of this protocol. As the system typically runs on a cluster of workstations with a 
common NFS (Network File System) this assumption is usually fulfilled. 

In the other case the protocol file may be shattered among the different file systems. 
The final version then has to be assembled by the user from the files generated by the 
different processes. The format of the protocol file allows for this by explicitly stating 
cycle numbers. 

An example of a logged proof session can be found in appendix A. 

8.1.3 Reproducing proofs: The rdiscount executable 

The simple reproduction of a once generated proof session was not one of our main 
objectives. However, we managed to solve the two problems of reproducing a proof 
session and generating a PCL listing quite independently. The result of our solution 
for the reproduction problem is the executable rdiscount. 

This program reads the short format file described in 8.1.2 and uses the data to repro
duce the proof session. It supports the same syntax for configuration and problem files 
and accepts the same -log_file option as discount. The same conventions for the 
names of the protocol files as above apply, however the files are of course only read, 
not written. 

Although rdiscount is only a byproduet of our development it still proved to be useful 
for demonstration and test purposes. 

8.1.4 Generating PCL listings: pcl and rpcl 

pcl is basically the discount executable with added routines for the PCL output. 
It is, therefore, a full proof system for equational reasoning and implements - except 
for the additional generation of PCL - the same functionality as discount. This 
does extend to the new features dealing with the short protocol and the options 
-log_file <filename> and -no_log. Although it is a pretty powerful system in 
itself it lacks the full power of the plain discount executable for the reasons stated 
in 6.1. It can be used for small examples, but even for them it is usually more feasible 
to generate the proof and a short protocol using discount. The PCL listing can then 
be generated using rpcl. 

rpcl combines the new features from rdiscount and pcl. It can reproduce proofs using 
only the shor;t protocol from section 8.1.2 and it can produce pcllistings documenting 
these proofs. As both pcl and rpcl use the same principles for dealing with the PCL 

is the name of the problem file wi th the added suffix .prk .  This can be changed by
specifying the option - l og_ f i l e  <filename>. The new option -no_ log  suppresses
the  protocol altogether.

The symmetric design of the DISCOUNT system has been preserved for the task of
writing this protocol. As a consequence all discount processes in  a parallel proof
session have to  access a single file system, because every process can be responsible for
part of this protocol. As the system typically runs on a cluster of workstations wi th  a
common NFS (Network File System) this assumption is usually fulfilled.
In the other case the protocol file may be shattered among the different file systems.
The final version then has to be assembled by the user from the files generated by the
different processes. The format of the protocol file allows for this by explicitly stating
cycle numbers.
An  example of a logged proof session can be found in  appendix A .

8.1.3 Reproducing proofs: The rdiscount executable

The simple reproduction of a once generated proof session was not one of our main
objectives. However, we managed to solve the two problems of reproducing a proof
session and generating a PCL listing quite independently. The result of our solution
for the reproduction problem is the executable rdiscount.
This program reads the short format file described i n  8.1.2 and uses the data to repro-
duce the proof session. I t  supports the same syntax for configuration and problem files
and accepts the same - log_f i le  option as discount. The same conventions for the
names of the protocol files as above apply, however the files are of course only read,
not written.
Although rdiscount is only a byproduct of our development i t  sti l l  proved to  be useful
for demonstration and test purposes.

8.1.4 Generating PCL listings: pcl  and rpcl

pel  is basically the discount executable with added routines for the PCL  output.
I t  is, therefore, a full proof system for equational reasoning and implements — except
for the additional generation of PCL - the same functionality as d iscount .  This
does extend to the new features dealing with the short protocol and the options
- log_f i le  <filename> and -no_log. Although i t  is a pretty powerful system in
itself i t  lacks the full power of the plain d iscount  executable for the reasons stated
in  6.1. I t  can be used for small examples, but  even for them i t  is usually more feasible
to generate the proof and a short protocol using discount. The PCL listing can then
be  generated us ing  r pc l .

rpcl combines the new features from rd iscount  and pc l .  I t  can reproduce proofs using
only the short protocol from section 8.1.2 and i t  can produce pcl listings documenting
these proofs. As both pc l  and rpcl  use the same principles for dealing with the PCL
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output they are described together. 

The programs use the multidimensional name space conventions described in 6.2. They 
create one PCL file for each interreduction phase and one PCL file per expert for the 
working phases. By default they try an extraction on the fly (see 6.3) using mextract as 
the extraction program. The user can select other extraction programs or no extraction 
at all for large or particularly interesting examples by specifying the option -extract 
<method>. <method> can be none, indicating that no intermediate extraction has to 
take place, it can be mextract to designate mextract as the extraction program to 
use or it can be one of revert and tac, designating rextract with preprocessing by 
either revert or tac. 

As the protocol files can become rather large we encountered a few memory problems 
especially in the final extraction where more then one file have to be extracted. Up to 
now these have not been solved completely satisfactory. An improvement is the'addi
tional option -async, which starts the final extraction as an independent background 
process and thus allows the proof system to terminate and free its resources for the 
extraction program. We do need to manipulate extreme examples manually, though. 

8.2 Programs dealing with PCL protocols 

As the final proof description generated by the DISCOUNT system is still a sequential 
peL listing of all executed inferences, our tools for proof analysis and transformation 
were able to deal with distributed proofs immediately. However, to use all the features 
described in chapter 6 we needed some minor extensions. 

The programs share some common features. They have been implemented in ANSI-C, 
using the GNU-C-Compiler. This results in efficient code and high portability. All of 
them can deal with input from files (named in the command line) or can be used as a 
UNIX style filter, reading from stdin, possibly connected to a pipeline. Output can 
be either to a file or to stdout. 

8.2.1 Extracting the proof: extract and mextract 

The programs extract and mextract deal with the straightforward extraction of the 
necessary proof steps. Both implement the algorithm described in section 3.3. In 
fact, both programs behave exactly alike with only two exceptions. In the design of 
mextract, the younger of the two programs, we could utilize experience made with the 
earlier version. We therefore used more specialized data structure, resulting in a much 
faster execution and the capability to deal with examples approximately one order of 
magnitude larger. 

The success of mextract made extract obsolete and we do no longer develop it. In 
particularly, it does not support some of the newer options of mextract, dealing with 
statistics and the redundancy elimination process described in section 6.2.1. extract's 
main value nowadays lies in its role as a simple example for programs using the PCL 
data structures and parsing routines. 
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create one PCL file for each interreduction phase and one PCL  file per expert for the
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the extraction program. The user can select other extraction programs or no extraction
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As the protocol files can become rather large we encountered a few memory problems
especially in  the final extraction where more then one file have to be extracted. Up to
now these have not been solved completely satisfactory. An  improvement is the-addi-
tional option -async, which starts the final extraction as an independent background
process and thus allows the proof system to terminate and free its resources for the
extraction program. We do need to manipulate extreme examples manually, though.

8.2 Programs dealing with PCL  protocols

As the final proof description generated by the DISCOUNT system is st i l l  a sequential
PCL  listing of all  executed inferences, our tools for proof analysis and transformation
were able to  deal with distributed proofs immediately. However, to  use all the features
described i n  chapter 6 we needed some minor extensions.
The programs share some common features. They have been implemented in  ANSI-C,
using the GNU-C-Compiler. This results i n  efficient code and high portability. A l l  of
them can deal with input from files (named i n  the command l ine)  or  can be  used as a
UNIX style filter, reading from std in,  possibly connected to a pipeline. Output can
be either to  a file or to  stdout .

8.2.1 Extracting the  proof: extract and mextract

The programs extract and mextract deal with the straightforward extraction of the
necessary proof steps. Both implement the algorithm described i n  section 3.3. I n
fact, both programs behave exactly alike with only two exceptions. In the design of
mextract, the younger of the two programs, we could utilize experience made with the
earlier version. We  therefore used more specialized data structure, resulting i n  a much
faster execution and the capability to  deal with examples approximately one order of
magnitude larger.
The success of mextract made extract obsolete and we do no longer develop i t .  In
particularly, i t  does not support some of the newer options of mextract ,  dealing wi th
statistics and the redundancy elimination process described in  section 6.2.1. ext ract ’s
main value nowadays lies i n  its role as a simple example for programs using the PCL
data structures and parsing routines.
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Both programs take a PCL protocol and return a PCL file containing only steps used 
to arrive at certain results. By default they take only steps with type tes-final as 
anchors for the extraction, but runtime options can change this behaviour. 

< 

The programs support the following set of options: 

Option	 Semantics 

-v Give a short explanation of the program and information on the
 
extraction phases.
 

-h Terminate the program after producing a short description.
 

-s Print a block of statistic information (steps read, steps extracted,
 
etc.. ) to stderr after termination. Implemented in mextract only.
 

-c Preserve comments in the input file (if possible).
 

-i	 Use not only steps with type tes-final but also steps with types
 
tes-intermed, tes-intermedgoal and crit-intermedgoal as an

chors for the extraction. This option is used for the interleaved
 
extraction described in section 6.3.
 

-1 Use the last step, regardless of type, as an anchor.
 

-n Eliminate steps proved by a simple reference to an earlier step. Im
plemented in mextract only.
 

-n2 Eliminate redundant results generated more then once during the
 
proof process. Implemented in mextract only.
 

-0 outfile Select the output file outfile. If no -0 option is given, output is
 
directed to stdout.
 

8.2.2 Dealing with extreme examples: revert and rextract 

As we already mentioned, proof listings can become overwhelmingly large. For really 
challenging examples the protocol of proof generated by the sequential system can 
easily exceed 50 Megabytes. This problem has become less serious with the distributed 
system because of the interleaved extraction described in section 6.3. However, it is 
only a matter of time until new examples will yield even greater protocols.· 

Our extraction algorithm inspects the complete listing, starting with the final proof 
step. The straightforward programs therefore have to handle the complete listing - a 
task that quickly becomes impossible for extreme examples. We therefore developed 
the program rextract, an alternative implementation of the extraction algorithm ex
pecting the PCL steps in reverse order. As no standard UNIX utility was able to 
reorder the steps of a large PCL listing at that time (in the meantime the GNU pro
gram tac has become widely available, solving the same problem) we also implemented 
revert, a program designed to reverse the order of lines in an ASCII text. 

revert does support the following options: 
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Both programs take a PCL protocol and return a PCL file containing only steps used
to arrive at certain results. By  default they take only steps with type tes- f ina l  as
anchors for the extraction, but runtime options can change this behaviour.

The programs support the following set of  options:

Option Semantics

-v  Give a short explanation of the program and information on the
extraction phases.

-h  Terminate the program after producing a short description.
- s  Print a block of statistic information (steps read, steps extracted,

etc..) to stderr  after termination. Implemented in  mextract only.
- c  Preserve comments in  the input file ( i f  possible).
- i  Use not only steps with type tes- f ina l  but also steps with types

tes-intermed, tes-intermedgoal and crit-intermedgoal as an-
chors for the extraction. This option is used for the interleaved
extraction described i n  section 6.3.

- 1  Use the last step, regardless of type, as an anchor.
-n  Eliminate steps proved by a simple reference to  an earlier step. Im-

plemented in  mextract only.
-n2 Eliminate redundant results generated more then once during the

proof process. Implemented in  mextract only.
- o  out f i le  Select the output file out f i le .  I f  no - o  option is given, output is

directed to stdout.

8.2.2 Dealing with extreme examples: revert and rextract

As we already mentioned, proof listings can become overwhelmingly large. For really
challenging examples the protocol of proof generated by the sequential system can
easily exceed 50 Megabytes. This problem has become less serious with the distributed
system because of the interleaved extraction described in  section 6.3. However, i t  is
only a matter of t ime until  new examples will yield even greater protocols.
Our extraction algorithm inspects the complete listing, starting with the final proof
step. The straightforward programs therefore have to  handle the complete listing - a
task that quickly becomes impossible for extreme examples. We therefore developed
the program rextract,  an alternative implementation of the extraction algorithm ex-
pecting the PCL steps i n  reverse order. As no standard UNIX uti l i ty was able to
reorder the steps of  a large PCL  listing at that t ime ( in  the meantime the GNU  pro-
gram t ac  has become widely available, solving the same problem) we also implemented
revert ,  a program designed to reverse the order of lines in  an ASCII text.
revert does support the following options:
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Option	 Semantics 

-v Give a short explanation of the program and information on the
 
different phases during the program execution.
 

-h Terminate the program after producing a short description.
 

-0 outfile	 Select the output file outfile. If no -0 option is given, output
 
is directed to stdout. If the virtual memory of the machine does
 
not suffice for execution revert will write a number of files called
 
outfile. rev* or stdout. rev* which have to concatenated for the
 
final result.
 

The program rextract, serving a very similar purpose to mextract, does feature nearly 
the same options: 

Option	 Semantics 

-v Give a short explanation of the program and information on the
 
extraction phases.
 

-h Terminate the program after producing a short description.
 

-c Preserve comments in the input file (if possible).
 

-r	 Do immediately print steps recognized as necessary, yielding a re
versed extracted listing. By default the program will store these
 
steps and produce an extracted listing with the steps already in the
 
correct sequence.
 

-i	 Use not only steps with type tes-final but also steps with types
 
tes-intermed, tes-intermedgoal and crit-intermedgoal as an

chors for the extraction. This option is used for the interleaved
 
extraction described in section 6.3.
 

-1 Use the last step, regardless of type, as an anchor.
 

-0 outfile Select the output file outfile. If no -0 option is given, output is
 
directed to stdout.
 

8.2.3 Revealing the structure: lemma 

The program lemma implements the structuring algorithm described in section 4.11. 
Input is a PCL listing4 

, output is a listing with important steps marked as tes-lemma. 
It realizes most of the criteria mentioned in chapter 4. Consequently, its configuration 
can be quite complex. The ability to choose any combination of criteria and influence 
all constant values in the evaluation function required a lot of different options. They 
can be split into two classes: Options necessary to set values for the criteria and options 
used to influence the programs behavior in other ways. The first group of options is 
displayed in table 5. 

41emma can handle all kinds of listings, however, extracted listings, being smaller, are analyzed 
much f~ter and can be handled for much more difficult problems. 
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Option Semantics

- v  Give a short explanation of the program and information on the
different phases during the program execution.

-h  Terminate the program after producing a short description.
- o  out f i le  Select the output file out f i le .  If no - o  option is given, output

is directed to stdout.  If the virtual memory of the machine does
not suffice for execution revert will write a number of  files called
ou t f i l e . r ev *  or s tdou t . rev*  which have to  concatenated for the
final result.

The program rextract ,  serving a very similar purpose to  mextract,  does feature nearly
the same options:

Option Semantics

- v  Give a short explanation of the program and information on the
extraction phases. ;

-h  Terminate the program after producing a short description.
- c  Preserve comments i n  the input file ( i f  possible).
- r  Do  immediately print steps recognized as necessary, yielding a re-

versed extracted listing. By  default the program will store these
steps and produce an extracted listing wi th  the steps already in  the
correct sequence.

- i  Use not only steps with type tes- f ina l  but also steps with types
tes-intermed, tes-intermedgoal  and crit-intermedgoal as an-
chors for the extraction. This option is used for the interleaved
extraction described i n  section 6.3.

- 1  Use the last step, regardless of type, as an anchor.
- o  out f i le  Select the output file ou t f i l e .  I f  no - o  option is given, output is

directed to stdout.

8.2.3 Revealing the  structure: lemma

The program lemma implements the structuring algorithm described i n  section 4.11.
Input is a PCL  listing*, output is a listing with  important steps marked as tes-lemma.
It realizes most of the criteria mentioned in  chapter 4. Consequently, i ts configuration
can be quite complex. The ability to choose any combination of criteria and influence
all constant values in the evaluation function required a lot of different options. They
can be split into two classes: Options necessary to  set values for the criteria and options
used to influence the programs behavior i n  other ways. The first group of options is
displayed i n  table 5.

41emma can handle a l l  k inds o f  l is t ings,  however, extracted l i s t ings ,  be ing  smaller, are analyzed
much faster and can be handled for much more difficult problems.

69



I Constant I Default I Option 
Coust.ants from section 4.2 (Frequently used steps) 

, MINUSED 4 -o_min_used 

Constants from section 4.3 (Important intermediate results) 
MINWEIGHT 11 -i_lemma_weight 

Constants from section 4.4 (Isolated proof segments) 
WEIGHTFACTOR 
OFFSET 

0.5 
2 

-t_weight_factor 
-t_offset 

Constants from section 4.5 (Syntactical criteria) 
MAXSIZE 
AVERAGESIZE 
MINFAK 
MAXFAK 

1 
2 
5 
0 

-s_average_size 
-s_max_size 
-s_min_fak 
-s_max_fak 

Constants from section 4.7 (Analyzing the applied inference rules) 
·INITW 
HYPOW 
QUOTEW 
ORIENTW 
CPW 
REDW 
INSW 
MINWEIGHT 

1 
0 
0 
0 
3 
2 
0 

15 

-c_init_weight 
-c_hypo_weight 
-c_quot_weight 
-c_orient_weight 
-c_cp_weight 
-c_redu_weight 
-c_inst_weight 
-c_lemma_weight 

Constants from section 4.8 (Sectioning long proofs) 
MAXLEN 10 -p_max_length 

Constants from section 4.9 (Avoiding unsuitable lemmata) 
MINUSED 
MINLEN 

1 
2 

-u_min_used 
-u_min_length 

Table 5: Constants and options in lemma 

The second class of options determines more general parts of the program's behaviour. 
Many of these options are familiar from the other programs. There are, however, two 
important new options determining the lemma criteria to use and the way to combine 
them: 

Option Semantics 

Give a short explanation of the program and information on the 
extraction phases. 
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-v 

| Constant | Default | Opt ion
~Constants from sect ion 4.2 (Frequently used steps)

"MINUSED | 4 | -o_min_used
Constants from section 4.3 (Important intermediate results)

MINWEIGHT 11 | -i_lemma_weight
Constants from section 4.4 (Isolated proof segments)

WEIGHTFACTOR 0.5 | - t_weight_factor
OFFSET 2 | ~ t_o f f se t

Constants from section 4.5 (Syntactical criteria)
MAXSIZE 1 | -s_average_size
AVERAGESIZE 2 | -s_max_size
MINFAK 5 | -s_min_fak
MAXFAK 0 ]  -s_max_fak

[ Constants from section 4.7 (Analyzing the applied inference rules)
"INITW 1 | ~c_in i t_weight
HYPOW 0 | -c_hypo_weight
QUOTEW 0 | ~c_quot_weight
ORIENTW 0 | ~c_orient_weight
CPW 3 | ~c_cp_weight
REDW 2 | ~c_redu_weight
INSW 0 | -c_ inst_weight

| MINWEIGHT _ 15 | ~c_lemma_weight
Constants from section 4.8(Sectioning long proofs)

MAXLEN 10 | -p_max_length
Constants from section 4.9 (Avoiding unsuitable lemmata)

MINUSED 1 | -u_min_used
MINLEN 2 | -u_min_length

Table 5: Constants and options i n  lemma

The second class of options determines more general parts of the program’s behaviour.
Many of these options are familiar from the other programs. There are, however, two
important new options determining the lemma criteria to  use and the way to  combine
them:
Option Semantics

-v  Give a short explanation of the program and information on the
extraction phases.
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I Letter I Criterion / Criteria 

0 Frequently used steps (4.2) 
i Important intermediate results (4.3) 
t Isolated proof segments (4.4) 
s Syntactical criteria (4.5) 
c Analyzing the applied inference rules (4.7) 

P Sectioning long proofs (4.8) 

Table 6: Letter codes and corresponding criteria for use with -criteria 

-h Terminate the program after producing a short description. 

-c Preserve comments in the input file (if possible). This option will 
also generate new comments, documenting the lemma evaluation 
process and the reasons for the final decision'. 

-criteria w The option -criteria selects the criteria to be used in lemma 
evaluation. The argument w is a word containing letters from 
{s, 0, i, t, c, p}, with each letter denoting on criterion. The cor
respondence can be found in table 6. 

-iterate By default the program will combine different criteria according to 
method (1) from section 4.10. If this option is set it will use method 
(2) instead. 

-0 outfile Select the output file outfile. If no -0 option is given, output is 
directed to stdout. 

8.2.4 Generating equational chains: proof 

The transformation algorithm from section 5.3 has been implemented in the program 
proof. It reads a (possibly prestructured) PCL listing and generates an equivalent 
proof to the one ~escribed in the PCL listing, but using equational chains. These chains 
can be printed in a variety of styles with different levels of detail. For convenience the 
program usually ignores lemmata in the input file and generates lemmata by itself 
(using the default strategy employed by lemma). 

The output of the program contains a list of axioms and a list of propositions, followed 
by proof chains for a hierarchy of lemmata and finally the theorems. The proof chains 
can contain places and substitutions and are either formatted for easy readability 
of a pure ASCII description or typeset in 1i\TEX. The behaviour of the program is 
determined by the following options: 
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| Let ter  |Criterion / Criteria |
0 Frequently used steps (4.2)

Important intermediate results (4 .3)
Isolated proof segments (4.4)
Syntactical criteria (4.5)
Analyzing the applied inference rules (4.7)

x
)

lu
 

||

Sectioning long proofs (4.8)

Table 6: Letter codes and corresponding criteria for use with -c r i te r ia

-C

- c r i t e r i a  w

- i t e ra te

- o  ou t f i l e

Terminate the program after producing a short description.
Preserve comments in  the input file (if  possible). This option will
also generate new comments, documenting the lemma evaluation
process and the reasons for the final decision.
The option - c r i t e r ia  selects the criteria to be used in  lemma
evaluation. The argument w is a word containing letters from
{s ,0 ,1 , t , c ,p } ,  with each letter denoting on criterion. The cor-
respondence can be found i n  table 6.
By  default the program will  combine different criteria according to
method (1) from section 4.10. I f  this option is set i t  will  use method
(2) instead.
Select the output file ou t f i le .  If no -o option is given, output is
directed to stdout.

8.2.4 Generating equational chains: proof

The transformation algorithm from section 5.3 has been implemented i n  the program
proof .  I t  reads a (possibly prestructured) PCL listing and generates an equivalent
proof to  the one described i n  the PCL listing, but using equational chains. These chains
can be printed i n  a variety of styles with different levels of detail. For convenience the
program usually ignores lemmata i n  the input file and generates lemmata by itself
(using the default strategy employed by lemma).
The output of the program contains a list of axioms and a list of propositions, followed
by proof chains for a hierarchy of lemmata and finally the theorems. The proof chains
can contain places and substitutions and are either formatted for easy readability
of a pure ASCII description or typeset i n  IATEX. The behaviour of the program is
determined by the following options:
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Option	 Semantics 

-v	 Give a short explanation of the program and information on the 
extraction phases. 

-h	 Terminate the program after producing a short description. 
-0 outfile	 Select the output file outfile. If no -0 option is given, output is 

directed to stdout. 
-nobrackets	 Print constants in the output without a pair of brackets. Proofs look 

much cleaner this way, but only naming conventions can be used to 
distinguish variables and constant. proof supports this by using 
only variables from the set {x,y,z,u,v,w,p,q,xO,xt, ...}. 

-nolemmas	 If this option is set, proof will refrain from generating new lemmata 
and will use lemmata in the input file instead. 

-noplace	 Suppress the place designator in the output, yielding a more natural 
looking proof, but at the cost of loosing some accuracy. 

-nosubst	 Refrain from printing the substitutions necessary for applying equa
tions, with the same effect as above. 

-latex	 Generate a U\TEX description of the proof, suitable for inclusion in 
a document. 
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- o  ou t f i l e

-nobrackets

-nolemmas

-noplace

-nosubst

- l a t ex

Semantics

Give a short explanation of the program and information on the
extraction phases.
Terminate the program after producing a short description.
Select the output file out f i le .  If no  -o  option is given, output is
directed to stdout.
Print constants in  the output without a pair of brackets. Proofs look
much cleaner this way, but only naming conventions can be used to
distinguish variables and constant. proof supports this by using
only variables from the set {x ,y ,z ,u ,v ,w,p,q,x0,x1, . . . } .
If this option is set, proof  will refrain from generating new lemmata
and will use lemmata in  the input file instead.
Suppress the place designator in  the output, yielding a more natural
looking proof, but at the cost of loosing some accuracy.
Refrain from printing the substitutions necessary for applying equa-
tions, with the same effect as above.
Generate a IATEX description of  the proof, suitable for inclusion i n
a document.



9 Conclusion 

Our results show that proof protocols are a suitable base for proof analysis and trans
formation. The language PCL provides a flexible tool for the description of inference 
based proofs. Using short, specialized protocols and a reproduction mode we can pro
duce protocols without measurably influencing the proof system even for distributed 
proof systems using TEAMWORK. 

The/structuring algorithms developed for use with these protocols are capable of rec
ognizing many important intermediate results. Important results with respect to the 
proof at hand can be found by a post mortem analysis using only the inferences rel
evant to the proof, while TEAMWORK's referees can add a more global pers?ective, 
judging facts on their performance in the equational domain. The resulting proofs are 
comparable with proofs structured by humans. 

The transformation of structured proof protocols into a hierarchical proof using equa
tional chains yield a proof representation fully adequate for human understanding. 
Equational proofs represented in this calculus resemble textbook proofs of equational 
problems. 

However, while we are quite satisfied with the results up to now, there still remain 
some paths for further investigation. 

First the proof presentation can be improved in some simple, but significant details. 
This includes changes to the term representation (using infix notation and dropping 
some brackets), naming of lemmata and axioms, and merging of repeated applications 
of "well known" theorems like associativity or commutativity. 

Finally we already have transferred back to the prover some knowledge gained from 
the proof analysis. We hope to gain strong heuristics and significant performance 
improvements for the prover by further following this path, using either manual analysis 
or automatic learning procedures. The future may actually see automatic p.rovers used 
by mathematicians for routine tasks. 

73
 

9 Conclusion

Our results show that proof protocols are a suitable base for proof analysis and trans-
formation. The language PCL provides a flexible tool for the description of inference
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Finally we already have transferred back to the prover some knowledge gained from
the proof analysis. We hope to gain strong heuristics and significant performance
improvements for the prover by  further following this path, using either manual analysis
or automatic learning procedures. The future may actually see automatic provers used
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A A short log file of a proof session 

Here we present a short example of the protocol format used to log proof sessions. 
Please note that the format is rather compact and depends heavily on the implementa
tion of a given proof system. It does not contain any data on the actual proof but only 
information on the number of steps and the configurations used by the proof system. 

Obviously it is not very useful in analyzing the proof without further information... 

############################################################# 

## DISCOUNT 
## 

## Aufgabenstellung: lukal 
## Konfigurationsdatei: lukal.cfg.gut 
## 

## Hashs are used to mark comments ... 

cycle 0 

mast'er:O 
process 0 using configuration 0 (ADD_WEIGHT) did 68 steps 
process 1 using configuration 1 (GOALMATCH) did 53 steps 

cycle 1 

master:O 
process 0 using configuration 0 (ADD_WEIGHT) did 48 steps 
process 1 using configuration 1 (GOALMATCH) did 16 steps 

cycle 2 

master:O 
process 0 using configuration 0 (ADD_WEIGHT) did 58 steps 
process 1 using configuration 1 (GOALMATCH) did 19 steps 

cycle 3 

master:O 
process 0 using configuration 0 (ADD_WEIGHT) did 81 steps 
process 1 using configuration 1 (GOALMATCH) did 10 steps 

cycle 4 
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A A short log file of  a proof session

Here we present a short example of the protocol format used to log proof sessions.
Please note that the format is rather compact and depends heavily on the implementa-
tion of a given proof system. It  does not contain any data on  the actual proof but only
information on the number of steps and the configurations used by  the proof system.

Obviously i t  is not very useful i n  analyzing the proof without further information...

HHUBRBBRUBBRRRABERRBRBRBBEBBRBRBUBRBRRUGINNEN WEE
## DISCOUNT
##
## Aufgabenstel lung: lukal
## Konf igurat ionsdatei :  l uka l . c fg .gu t
##
##  Hashs are used  t o  mark comments. . .

cyc le  0

mas te r :0
process 0 using configuration 0 (ADD_WEIGHT) d id  68 steps
process 1 using configuration 1 (GOALMATCH) d id  53 steps

cyc le  1

mas te r :0
process 0 using configuration 0 (ADD_WEIGHT) d id  48 steps
process 1 using configuration 1 (GOALMATCH) d id  16 steps

cyc le  2

mas te r :0
process 0 using configurat ion 0 (ADD_WEIGHT) d id  58 steps
process 1 using configurat ion 1 (GOALMATCH) d id  19 steps

cycle 3

mas te r : 0  |

p rocess  0 us ing  conf igurat ion 0 (ADD_WEIGHT) d id  81  s teps
process 1 us ing  conf igurat ion 1 (GOALMATCH) d id  10 steps

cyc le  4
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master:O 
process 0 using configuration -1 (NO_CONFIG) did 0 steps 
process 1 using configuration 1 (GOALMATCH) did 1 steps 

team terminated by process 1 during completion 

B Examples 

In this section we will represent two related problems from the theory of rings and one 
example from the domain of lattice ordered groups. The first example is of medium 
difficulty and will be presented in some detail. The second one is a challenging example 
for equational provers. To our knowledge the DISCOUNT system is the only existing 
automatic prover capable of generating a proof for this example using pure equational 
logic without underlying AC-theory. As this example is quite large we will only include 
the final proof. Both examples have been suggested in [L082]. Ring theory is a field 
where humans quite often reason using a (semi ~£ormal equational calculus. Therefore 
automatically generated proofs in this domain are comparable to proofs found by hu
mans. This is also true for the last example, a hard problem from the domain of lattice 
ordered groups. 

B.l A ring with x 2 = x is Abelian 

B.l.l The problem 

The problem description printed below provides the specification in the format used 
by DISCOUNT. 

MODE PROOF 

NAME Lusk3 

ORDERING XKBO 
f:5 > j:4 > g:3 > 0:1 > b: 1 > a: 1 

EQUATIONS j (o,x) = x # 0 is a left identity 
j (x,O) = x # 0 is a right identity 
j (g (x),x) = 0 # There is a left inverse 
j (x,g (x)) = 0 # There is a right inverse 
j (j (x,y),z) = j (x,j (y,z)) # Addition is associative 
j (x,y) = j(y,x) # Addition is Abelian 
f (f (x,y),z) = f (x,f (y,z)) # Multiplication is 

# associative 
f (x,j (y,z)) = j (f (x,y),f (x,z)) # Distributive axioms 
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mas te r :0
p rocess  0 us ing  conf igurat ion -1  (NO_CONFIG) d i d  0 s teps
process 1 us ing conf igurat ion 1 (GOALMATCH) d id  1 steps

team terminated by process 1 during complet ion

B Examples

In this section we will represent two related problems from the theory of  rings and one
example from the domain of lattice ordered groups. The first example is o f  medium
difficulty and will be presented in  some detail. The second one is a challenging example
for equational provers. To our knowledge the DISCOUNT system is the only existing
automatic prover capable of generating a proof for this example using pure equational
logic without underlying AC-theory. As this example is quite large we will only include
the final proof. Both examples have been suggested in  [LO82]. Ring theory is a field
where humans quite often reason using a (semi formal equational calculus. Therefore
automatically generated proofs i n  this domain are comparable to proofs found by hu-
mans. This is also true for the last example, a hard problem from the domain of  latt ice
ordered groups.

B.1  A ring with 22  = z is Abelian

B.1 .1  The problem

The problem description printed below provides the specification in  the format used
by DISCOUNT.

MODE PROQF

NAME Lusk3

ORDERING XKBO
£ :5  > j : 4  > g :3  > 0 :1  > b :1  > a :1

EQUATIONS j €0 , x )  = X # 0 i s  a le f t  ident i ty
j ( x , 0 )  =x  # 0 i s  a right identi ty
j ( g  ( x ) , x )  =0  # There i s  a le f t  inverse
j ( x , g  ( x ) )  = 0 # There i s  a right inverse
jG  Cx ,y ) , z )  = 3 ( x , j  ( y , z ) )  # Addit ion i s  assoc ia t ive
j ( x , y )  = j ( y , x )  # Addi t ion i s  Abel ian
f ( f  ( x , y ) , 2 )  = f ( x , f  ( y , 2 ) )  # Mul t ip l icat ion i s

# assoc ia t i ve
= j ( f  ( x , y ) , f  (x,2z)) # D is t r i tu t ive  axiomsf ( x , j  ( y , 2 ) )
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f (j (x,y) ,z) = j (f (x,z),f (y,z» • 
f (x,x) = x • Special axiom: x*x = x 

CONCLUSION f (a,b) = f (b,a) • Theorem 

B:1.2 The proof protocol 

The prover generates a protocol of 5009 steps, using about 360 Kilobytes. For obvious 
reasons we print only the extracted version. It contains only 83 steps. 

o tes-eqn t(x,x) =x : initial
 
1 tes-eqn j(O(),x) = x : initial
 
2 tes-eqn j(x,O(» = x : initial
 
4 tes-eqn j(x,g(x» = o() : initial
 
5 tes-eqn j(x,y) = j(y,x) : initial
 
6 tea-eqn j(j(x,y),z) j(x,j(y,z»: initial
 
8 tes-eqn f(x,j(y,z» = j(f(x,y)',f(x,z» : initial
 
9 tes-eqn f(j(x,y),z) = j(f(x,z),f(y,z» : initial
 

10 tes-~~al f(a(),b(» = f(b().a(» : hyrothesia 
1~ tes-rule f(x,x) -> x : orient(O,u) 
12 tes-rule j(O(),x) -> x : orient(l,u) 
13 tes-rule j(x,O(» -> x : orient(2,u) 
20 tes-rule j(x,g(x» -> o() : orient(4,u) 
45 tes-rule j(j(x,y),z) -> j(x.j(y,z» : orient(6.u) 
53 tes-eqn j(x,j(g(x),y» = j(O(),y) : cp(45,L.l,20.L) 
54 tes-eqn: j(x,j(g(x),y) = y : tes-red(63,R,12,L) 
59 tes-eqn: j(x,j(y,z» = j(y,j(z,x» : cp(5,L,45,L) 
65 tes-rule: j(x,j(g(x),y» -> y : orient(54.u) 
71 tes-eqn g(g(x» = j(x,O(» : cp(65,L.2,20,L) 
72 tes-eqn: g(g(x» = x : tes-red(71,R,13,L) 
87 tes-eqn: x = j(y,j(x,g(y») : cp(65,L.2,5,L) 
89 tes-rule: g(g(x» -> x : orient(72,u) 
93 tes-eqn: x = j(g(y).j(y,x» : cp(66,L.2.1.89.L) 
97 tes-rule: j(x,j(y,g(x») -> y : orient(87,x) 

115 tes-eqn: x = j(g(y),j(x,y» : cp(97.L.2.2,89,L) 
126 tes-rule: j(g(x),j(x,y» -> y : orient(93,x) 
160 tes-rule: j(g(x),j(y,x» -> y : orient(115,x) 
181 tes-eqn: g(x) = j(g(j(x,y»,y) : cp(160,L.2,126,L) 
182 tes-eqn: g(x) = j(y,g(j(x,y») : tes-red(181,R,5,L) 
298 tea-rule: j(x,g(j(y,x») -> g(y) : orient(182,x) 

2615 tea-rule: j(:f(x,y).:f(x,z» -> f(x,j(y,z» : orient(8.x)
 
2616 tes-eqn f(x,j(x,y» = j(x,:f(x,y» cp(2615,L.1,11,L)
 
2617 tes-eqn: f(x.j(y,x» = j(f(x,y),x) : cp(2616,L.2,11,L)
 
2618 tes-eqn: f(x,j(y,x» = j(x,f(x,y» : tes-red(2617,R,5,L)
 
2656 tes-rule: f(x,j(x,y» -> j(x,f(x,y» : orient(2616,u)
 
2669 tes-eqn: j(x,f(x,O(») = f(x,x) : cp(2656,L.2,13,L)
 
2670 tes-eqn: j(x,:f(x,O(») = x : tes-red(2669,R,11,L)
 
2707 tes-rule: j(x,f(x,O(») -> x : orient(2670,u)
 
2721 tes-eqn: f(g(x),O(» = j(x,g(x» : cp(65,L.2,2707,L)
 
2722 tes-eqn: f(g(x),O(» = O() : tes-red(2721,R,20,L)
 
2767 tes-rule: f(g(x),O(» -> O() : orient(2722,u)
 
2788 tes-eqn: o() = ;f(x,O(» : cp(2767,L.l,89,L)
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f ( j  ( x , y ) , z )  = j ( f  ( x , 2 ) , f  ( y , z ) )  #
f ( x , x ) X # Spec ia l  ax iom:  x *x  = x

CONCLUSION f ( a ,b )  = f  ( b ,a )  # Theorem

B.1.2 The proof  protocol

The prover generates a protocol of  5009 steps, using about 360 Kilobytes. For obvious
reasons we print only the extracted version. I t  contains only 83 steps.

0 : tes -eqn :
1 ; tes-eqn :
2 : tes-eqn :
4 : tes-eqn :
5 : tes-eqn :
6 : tes—eqn :
8 : 2 (x , j (y , .z ) ): tes-eqn
9 : t es -eqn  :

10 : tes-z~a l  :
11  : tes- ru le  :
12  : tes- ru le  :
13  : tes- ru le  :
20  : tes - ru le  :
45  : tes - ru le  :

: j ( x , j ( g ( x ) , y ) )  = j ( 0 ( ) , y )  : cp(45,L.1,20,L)
54 : tes-eqn : =

59 : tes-eqn :
65  : tes- ru le  :
71  : tes-eqn :
72 : tes-eqn :
87 : tes-eqn :
89  : tes - ru le  :
93  : tes-eqn :
97  : tes - ru le  :

: x=  j ( g l y ) , j ( x , y ) )  : cp (97 ,L .2 .2 ,89 ,L )
: j ( g ( x ) , j ( x , y ) )  => y : or ient(93,x)

160 : tes- ru le  :
181  : tes-eqn :
182 : tes-eqn :
298 : tes - ru le  :

2615 : tes- ru le  :
2616  : tes-eqn :
2617  : tes -eqn  :
2618 : tes-eqn :
2656  : tes- ru le  :
2669 : tes -eqn  :
2670  : t es -eqn  :
2707  : tes- ru le  :

: £(g(x) ,00))  = j ( x , g ( x ) )  : cp(65,L.2,2707,L)
2722 : tes-eqn : =
2767 : tes - ru le  :
2788 : t es -eqn  :

63 : tes-eqn

115  : tes -eqn
126  : tes - ru le

2721 : tes-eqn

2 (x , x )  = x : in i t ia l
j ( 0 ( ) , x )  = x : init ial
j ( x ,00 ) )  = x : ini t ial
j l x , g ( x ) )  = 0 ( )  : init ial
j ( x , y )  = j ( y , x )  : ini t ial
jC j ( x , y ) , z )  = j ( x , j ( y , z ) )  : init ial

j ( t ( x , y ) , 2 ( x ,2 ) )  : initial
£ ( j ( x , y ) , 2z )  = j ( f ( x , z ) , f ( y , z ) )  : ini t ial
£ (a ( ) , b ( ) )  = f ( b ( ) , a ( ) )  : hypo thes i s
£ (x , x )  ->  x : o r i en t (0 ,u )
j ( 00 ) , x )  => x : o r i en t (1 ,u )
j ( x , 00 ) )  ->  x : o r i en t (2 ,u )
j ( x , g ( x ) )  => 0 ( )  : o r i en t (4 ,u )
j i l x , y ) , 2z )  ->  j ( x , j ( y , 2 ) )  : o r i en t (6 ,u )

j ( x , j ( g ( x ) , y ) )  = y : tes- red(63,R,12,L)
j l x , j ( y , z ) )  = j ( y , j ( z , x ) )  : cp (5 ,L ,45 ,L )
j ( x , j ( g ( x ) , y ) )  ->  y : o r i en t (54 ,u )

g(g(x))  = j ( x , 0 ( ) )  : cp(65,L.2,20,L)
g (g (x ) )  = x : t es - red (71 ,R ,13 ,L )
x = j ( y , j ( x , g ( y ) ) )  : cp(65,L.2,5,L)
g (g (x ) )  => x : o r i en t (72 ,u )

x = j ( g ( y ) , j l y , x ) )  : cp (e5 ,L .2 .1 ,89 ,L )
j ( x , j ( y , g ( x ) ) )  => y : o r i en t (87 , x )

j ( g ( x ) , j ( y , x ) )  ->  y : or ient(115,x)
g l x )  = 5 (g ( j ( x , y ) ) , y )  : cp(160,L.2,126,L)
g(x)  = j ( y , g ( j ( x , y ) ) )  : tes-red(181,R,5,L)

j ( x , 8g ( j ( y , x ) ) )  - >  g ( y )  : o r i en t (182 , x )
j ( e ( x , y ) , 2 ( x ,2 ) )  ->  £ ( x , j ( y , z ) )  : oriemnt(8,x)

£ ( x , j ( x , y ) )  = j ( x , f ( x , y ) )  : cp(2615,L.1,11,L)
£ (x , j ( y , x ) )  = j ( £ ( x , y ) , x )  : cp (2615 ,L .2 ,11 ,L )
£ (x , j ( y , x ) )  = j ( x , 2 ( x , y ) )  : t es - red (2617 ,R ,5 ,L )
£ (x , j ( x , y ) )  ->  j ( x , 2 ( x , y ) )  : orient(2616,un)

j ( x , £ ( x ,0 ( ) ) )  = £ ( x , x )  : cp (2656 ,L .2 ,13 ,L )
j ( x , 2 ( x ,0 ( ) ) )  = x : tes-red(2669,R,11,L)
j ( x , 2 ( x ,00 ) ) )  ->  x : orient (2670,u)

[II

£(g(x) ,00))  = 0 ( )  : tes-red(2721,R,20,L)
£ (g (x ) , 00 ) )  => 00)  : o r i en t (2722 ,u )

00 )  = £ ( x ,0 ( ) )  : cp (2767 ,L .1 ,89 ,L )
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2791 tes-rule : t(x,O(» -> O() : orient(2788,x) 
2859 tes-rule : t(x,j(y,x» -> j(x,t(x,y» : orient(2618,u) 
2883 tes-eqn : 
2884 tes-eqn : 
2944 tes-rule : 
2961 tes-eqn : 
2962 tes-eqn : 
3044 tes-rule : 
3464 tes-rule : 
3465 tes-eqn 
3466 tes-eqn : 
3467 tes-eqn : 

j(g(x),t(g(x),x» = t(g(x),O(» : cp(2859,L.2,20,L) 
j(g(x),t(g(x),x» = O() : tes~red(2883,R,2791,L) 

j(g(x),t(g(x),x» -> O() : orient(2884,u) 
t(g(x),x) = j(x,O(» : cp(65,L.2,2944,L) 
t(g(x),x) = x : tes-red(2961,R,13,L) 
t(g(x),x) -> x : orient(2962,u) 
j(t(x,y),t(z,y» -> t(j(x,z),y) : orient(9,x) 

t(j(x,y),x) = j(x,t(y,x» cp(3464,L.1,11,L) 
t(j(x,y),y) = j(t(x,y),y) : cp(3464,L.2,11,L) 
t(j(x,y),y) = j(y,t(x,y» : tes-red(3466,R,5,L) 

3610 tes-rule : t(j(x,y),x) -> j(x,t(y,x» : orient(3465,u) 
3630 tes-eqn 
3631 tes-eqn 
3632 tes-eqn 
3633 tes-eqn 
3682 tes-rule : 
3867 tes-eqn : 
3943 tes-rule : 

j(x,t(O(),x» = t(x,x) : cp(3610,L.1,13,L) 
j(x,t(O(),x» = x : tes-red(3630,R,11,L) 
j(x,t(g(x),x» = t(O(),x) : cp(3610,L.1,20,L) 
j(x,x) = t(O(),x) : tes-red(3632,L.2,3044,L) 
j(x,t(O(),x» -> x : orient(3631,u) 

x = j(x,j(x,x» : cp(3682,L.2,3633,R) 
j(x,j(x,x» -> x : orient(3867,x) 

3983 tes-eqn g(x) = j(j(x,x),g(x» cp(298,L.2.1,3943,L)
 
3984 tes-eqn g(x) = j(g(x),j(x,x» : tes-red(3983,R,5,L)
 
3985 tes-eqn g(x) = j(x,j(x,g(x») : tes-red(3984,R,59,L)
 
3986 tes-eqn g(x) = j(x,O(» : tes-red(3985,R.2,20,L)
 
3987 tes-eqn g(x) = x : tes~red(3986,R,13,L)
 

4117 tes-rule : g(x) -> x : orient(3987,u)
 
4132 tes-eqn : j(x,j(x,y» = y : tes-red(65,L.2.1,4117,L)
 
4259 tes-rule : j(x,j(x,y» -> y : orient(4132,u) 
4263 tes-eqn j(j(x,y),t(j(x,y),x» = t(j(x,y),y) 
4264 tes-eqn j(j(x,y),j(x,t(y,x») =f(j(x,y),y) 
4265 tes-eqn j(x,j(t(y,x),j(x,y») = f(j(x,y),y) 
4266 tes-eqn j(x,j(j(x,y),f(y,x») =f(j(x,y),y) 
4267 tes-eqn j(x,j(x,j(y,f(y,x»» = f(j(x,y),y) 

cp(2859,L.2,4259,L) 
tes-red(4263,L.2,3610,L) 
tes-red(4264,L,59,L) 
tes-red(4265,L.2,5,L) 
tes-red(4266,L.2,45,L) 

4268 tes-eqn j(x,f(x,y» = f(j(y,x),x) : tes-red(4267,L,4259,L) 
4435 tes-rule : f(j(x,y),y) -> j(y,t(x,y» : orient(3467,u) 
4800 tes-eqn j(x,f(x,y» = j(x,f(y,x» : tes-red(4268,R,4435,L) 
4834 tes-eqn j(x,f(j(x,y),x» = j(x,j(x,f(x,y») : cp(4800,L.2,2656,L) 
4835 tes-eqn j(x,j(x,f(y,x») = j(x,j(x,t(x,y») : tes-red(4834,L.2,3610,L) 
4836 tes-eqn f(x,y) = j(y,j(y,f(y,x») : tes-red(4835,L,4259,L) 
4837 tes-eqn t(x,y) = t(y,x) : tes-red(4836,R,4259,L) 
5008 tes-final : f(a(),b(» = f(b(),a(» : instance(10,4837) 

B.1.3 Lemmata 

If we use the program lemma with the default settings (or directly pipe the protocol 
into proof) the following steps are recognized as important lemmata: 

65 tes-lemma 
89 tes-lemma 

2884 tes-lemma 
3610 tes-lemma 
3867 tea-lemma 

3985 tes-lemma 

j(x,j(g(x),y» -> Y : orient(54,u) 
g(g(x» -> X : orient(72,u) 
j(g(x),f(g(x),x» = O() : tes-red(2883,R,2791,L) 
f(j(x,y),x) -> j(x,f(y,x» : orient(3465,u) 
x = j(x,j(x,x)) : cp(3682,L.2,3633,R) 
g(x) = j(x,j(x,g(x») : tes-red(3984,R,59,L) 
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2791 : tes-ru le : £ ( x ,0 ( ) )  ->  0 ( )  : o r i en t (2788 ,x )
2859 : tes-ru le : f ( x , j ( y , x ) )  ->  j ( x , f ( x , y ) )  : o r i en t (2618 ,u )
2883 : tes-eqn : j ( g ( x ) , f ( g ( x ) , x ) )  = £ (g (x ) ,0 ( ) )  : cp(2869,L.2,20,L)
2884 : tes-eqn : j ( g ( x ) , f ( g ( x ) , x ) )  = 0 ( )  : tes- red(2883,R,2791,L)
2944 : tes-ru le : j ( g ( x ) , f ( g ( x ) , x ) )  ->  0 ( )  : o r ien t (2884 ,u )
2961 : tes-eqn : f ( g ( x ) , x )  = j ( x , 0 ( ) )  : cp(65,L.2,2944,L)
2962 : t es -eqn  : £ (g ( x ) , x )  = x : t es - red (2961 ,R ,13 ,L )
3044 : tes-ru le : £ (g ( x ) , x )  -> x : o r i en t (2962 ,u )  -
3464 : tes-rule : j ( f ( x , y ) , f ( z , y ) )  ->  £ ( j ( x , z ) , y )  : o r i en t (9 , x )
3465 : tes-eqn : f ( j ( x , y ) , x )  = j ( x , f ( y , x ) )  : cp(3464,L .1 ,11 ,L )
3466 : tes-eqn : f ( j ( x , y ) , y )  = j ( £ ( x , y ) , y )  : cp (3464,L .2 ,11 ,L )
3467 : tes-eqn : f ( j ( x , y ) , y )  = j ( y . f ( x , y ) )  : tes - red (3466 ,R ,5 ,L )
3610  : tes- ru le  : f £ ( j ( x , y ) , x )  ->  j ( x , f ( y , x ) )  : o r i en t (3465 ,u )
3630 : t es -eqn  : j ( x , £ (0 ( ) , x ) )  = £ ( x , x )  : cp (3610 ,L .1 ,13 ,L )
3631 : tes-eqn : j ( x , f ( 0 ( ) , x ) )  = x : tes~red(3630,R,11,L)
3632 : tes-eqn : j ( x , f ( g ( x ) , x ) )  = £ (0 ( ) , x )  : cp (3610,L .1 ,20 ,L )
3633 : tes-eqn : j ( x , x )  = £ (0 ( ) , x )  : tes - red(3632 ,L .2 ,3044 ,L )
3682 : tes-rule : j ( x , £ (0 ( ) , x ) )  ->  x : o r i en t (3631 ,u )
3867 : tes-eqn : x = j ( x , j ( x , x ) )  : cp(3682,L.2,3633,R)
3943 : tes-rule : j ( x , j ( x , x ) )  ->  x : o r i en t (3867 ,x )
3983 : tes-eqn : g ( x )  = j ( j ( x , x ) , g ( x ) )  : cp(298,L .2 .1 ,3943,L)
3984 : tes -eqn : g ( x )  = j ( g ( x ) , j ( x , x ) )  : t es - red (3983 ,R ,5 ,L )
3985 : tes -eqn : g ( x )  = j ( x , j ( x , g ( x ) ) )  : tes - red(3984,R,59 ,L)
3986 : tes-eqn : g(x) = j ( x , 0 ( ) )  : tes-red(39885,R.2,20,L)
3987 : tes-eqn : g ( x )  = x : tes - red(3986,R,13 ,L)
4117 : tes-ru le : g ( x )  ->  x : or ient  (3987,u)
4132 : tes-eqn : j ( x , j ( x , y ) )  = y : t es - red (65 ,L .2 .1 ,4117 ,L )
4269 : tes- ru le  : j ( x , j ( x , y ) )  ->  y : o r i en t (4132 ,u )
4263 : tes—eqn : j ( j ( x , y ) , 2 ( j ( x , y ) , x ) )  = £ ( j ( x , y ) , y )  : cp(2859,L .2 ,4259,L)
4264 : tes-eqn : j ( j ( x , y ) , j ( x , 2 ( y , x ) ) )  = £ ( j ( x , y ) , y )  : tes-red(4263,L.2,3610,L)
4265 : tes-eqn : j ( x , ; j ( f ( y , x ) , j ( x , y ) ) )  = 2 ( j ( x , y ) , y )  : t es - red (4264 ,L ,59 ,L )
4266 : tes-eqn : j ( x , j ( j ( x , y ) , f ( y , x ) ) )  = £ ( j ( x , y ) , y )  : t es - red (4265 ,L .2 ,5 ,L )
4267 : tes—eqn : j ( x , j ( x , j ( y , f ( y , x ) ) ) )  = £ ( j ( x , y ) , y )  : tes-red(4266,L.2,45,L)
4268 : tes—eqn : j ( x , f ( x , y ) )  = £ ( j ( y , x ) , x )  : t es - red (4267 ,L ,4259 ,L )
4435 : tes-rule : £ ( j ( x , y ) , y )  ->  j ( y , f ( x , y ) )  : o r ien t (3467,u)
4800 : tes-eqn : j ( x , f ( x , y ) )  = j ( x , f ( y , x ) )  : tes- red(4268,R,4435,L)
4834 : tes-eqn : j ( x , 2 ( j ( x , y ) , x ) )  = j ( x , j ( x , 2 ( x , y ) ) )  : cp(4800,L .2 ,2656,L)
4835 : tes-eqn : j ( x , j ( x , f ( y . x ) ) )  = j ( x , j ( x , f ( x , y ) ) )  : tes - red(4834 ,L .2 ,3610 ,L )
4836 : tes -eqn : f ( x , y )  j ( y , i l y , 2 ( y , x ) ) )  : t es - red (4835 ,L ,4269 ,L )
4837 : tes-eqn : f ( x , y )  f ( y , x )  : t es - red (4836 ,R ,4269 ,L )
5008 : tes - f ina l  : £ (a ( ) , b ( ) )  = £ (b ( ) , a ( ) )  : i ns tance (10 ,4837 )

B.1 .3  Lemmata

If we use the program lemma with the default settings (or directly pipe the protocol
into proof )  the following steps are recognized as important lemmata:

65 : tes-lemma : j ( x , j ( g ( x ) , y ) )  ->  y : or ient(54,u)
89 : tes-lemma : g (g ( x ) )  ->  x : o r i en t (72 ,u )

2884 : tes-lemma : j ( g ( x ) , f ( g ( x ) , x ) )  = 0 ( )  : tes- red(2883,R,2791,L)
3610 : tes-lemma : £ ( j ( x , y ) , x )  -> j ( x , f ( y , x ) )  : o r i en t (3465 ,u )
3867  : tes-lemma : x = j ( x , j ( x , x ) )  : cp (3682 ,L .2 ,3633 ,R )
3985 : tes-lemma : g ( x )  = j ( x , j ( x , g ( x ) ) )  : tes - red(3984,R,59 ,L )
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AXIOMS 

Figure 7: Lemma structure according to B.1.3 

4259 tes-lemma j(x,j(x,y» -> Y : orient(4132,u)
 
4267 tes-lemma j(x,j(x,j(y,f(y,x»» = f(j(x,y),y) tes-red(4266,L.2,45,L)
 
4836 tes-lemma t(x,y) = j(y,j(y,t(y,x») : tes-red(4835,L,4259,L)
 

The dependencies of the lemmata are depicted in figure 7. The numbers correspond to 
the proof as printed in the next section, the theorem is marked "T". 

B.1.4 The proof 

To arrive at a .readable proof we have used the program proof on the above proof 
listing. We used the -latex option to produce output in ~TEX. Please note that the 
terms going to be replaced (affected by the next operation) are marked by underlining, 
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AXIOMS

Figure 7: Lemma structure according to B.1.3

4259 : tes-lemma : j ( x , j ( x , y ) )  ->  y : orient(4132,u)
4267 : tes-lemma : j ( x , j ( x , j ( y , f ( y , x ) ) ) )  = £ ( j ( x , y ) , y )  : tes-red(4266,L.2,45,L)
4836 : tes-lemma : f ( x , y )  = j ( y , j ( y , f ( y , x ) ) )  : tes - red(4835,L ,4269,L )

The dependencies of the lemmata are depicted i n  figure 7. The numbers correspond to
the proof as printed in  the next section, the theorem is marked “T”.

B .1 .4  The proof

To arrive at a readable proof we have used the program proof on the above proof
listing. We used the - la tex  option to produce output in  ATpX. Please note that the
terms going to be replaced (affected by the next operation) are marked by underlining,
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while inserted terms (affected by the last operation) are set in bold face. We refrained 
from printing the substitutions to keep the proof more readable. 

Consider the following set of axioms: 

Axiom 1: f(x, x) =x
 
Axiom 2: j(O, x) = x
 
Axiom 3: j(x, 0) = x
 
Axiom 4: j(x, g(x» = 0
 
Axiom 5: j(x, y) = j(y, x)
 
Axiom 6: j(j(x, y), z) =j(x, j(y, z»
 
Axiom 7: f(x, j(y, z» = j(f(x, y), f(x, z»
 
Axiom 8: f(j(x, y), z) =j(f(x, z), fey, z»
 

This theorem holds true: 

Theorem 1: f(a, b) = f(b, a) 

Proof: 

Lemma 1: j(u, j(g(u), z» =z 
j(u, j(g(u), z» = j(j(u, g(u», z) by Axiom 6 RL 

= j(O, z) by Axiom 4 LR 

= z by Axiom 2 LR 

Lemma 2: g(g(u» = u 
g(g(u»	 = j(u, j(g(u), g(g(u»» by Lemma 1 RL
 

= j(u, 0) by Axiom 4 LR
 
= u by Axiom 3 LR
 

Lemma 3: j(g(z), f(g(z), z» = 0 
j(g(z), f(g(z), z»	 = j(f(g(z), z), g(z» by Axiom 5 RL 

= j(f(g(z), z), f(g(Z), g(z») by Axiom 1 RL 
= f(g(z), j(z, g(z») by Axiom 7 RL 
= f(g(z), 0-)--- by Axiom 4 LR 
= f(g(g(g(z»), 0)	 by Lemma 2 RL 
= j(g(g(z», j(g(g(g(z»), f(g(g(g(z»), 0») by Lemma 1 RL 
= j(g(g(z», j(f(g(g(g(z»), g(g(g(z»», f(g(g(g(z))), 0))) by Axiom 1 RL 
= j(g(g(z», f(g(g(g(z»), j(g(g(g(z»), 0») by Axiom 7 RL 
= j(g(g(z», f(g(g(g(z))), g(g(g(z»»)	 by Axiom 3 LR 
= j(g(g(z», g(g(g(z»»	 by Axiom 1 LR 
= 0	 by Axiom 4 LR 
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while inserted terms (affected by the last operation) are set in  bold face. We refrained
from printing the substitutions to  keep the proof more readable.

Consider the following set of  axioms:

Axiom 1: f(x, x) = x
Axiom 2: j(0,  x) = x
Axiom 3: j(x,  0) = x
Axiom 4: j(x,  g(x)) = 0
Axiom 5: (x ,  y) = i(y,  x)
Axiom 6: ( i(x, ¥), 2) = i (x ,  i (y,  2))
Axiom 7: f(x, j(y, z)) = (f(x, y), f(x, z))
Axiom 8: f(j(x, y), z) = (f(x, 2), f(y, z))

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

Proof:

Lemma 1 :  j(u, j(g(u), z)) = 2

i ( u ,  j(g(u), 2)) = Jj(i(u, g (u ) ) ,  z)  by Axiom 6 RL
= j(0,z) by Axiom 4 LR
= z by Axiom 2 LR

Lemma 2 :  g(g(u)) =u
g(g(u)) J(u,  j ( g (u ) ,  g (g (u ) ) ) )  by  Lemma 1 RL

j(u, 0) by Axiom 4 LR
u by Axiom 3 LR

Lemma 3 :  j(g(z), f(g(z), 2))  = 0
i(e(z), f(g(z), 2)) = j ( f (g(z) ,  2),  g(z)) by Axiom 5 RL

= j(f(g(2), 2), f (g(z) ,  g (z) ) )  by Axiom 1 RL
= f(g(z) ,  J(z, g(z))) by Axiom 7 RL
= f(g(z), 0)  by Axiom 4 LR
= f (g (g (g (z ) ) ) ,  0 )  by  Lemma2 RL
= jus (g (z ) ) ,  ( g (g (g ( z ) ) )  f (g (g (g (z ) ) ) ,  0 ) ) )  by  Lemma 1 RL
= is (g (z ) ) ,  ( f (g (g (g (z ) ) ) ,  g (g (g ( z ) ) ) ) ,  f(g(g(g(z))), 0))) by Axiom 1 RL
= j(g(8(z)), f(g(g(g(z))),  j(g(g(g(z))),  0))) by Axiom 7 RL
= j(g(g(z)),  (g(g(g(z) ) ) ,  g (g(g(z) ) ) ) )  by  Axiom 3 LR
= Uslslz)), g(8(g(z)))) by Axiom 1 LR

by  Axiom 4 LR.
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Lemma 4: f(j(v, y), v) =j(v, fey, v» 
f(j(v, y), v) = j(f(v, v), fey, v» by Axiom 8 LR 

= j(v, f(y, v» by Axiom 1 LR 

Lemma 5: g(y) = W(y, y), g(y» 
g(y) = j(g(j(y, j(y, y»), j(g(g(j(y, j(y, y»», g(y») by Lemma 1 RL 
- = j(g(j(y, j(y, y»), j(g(y), g(g(j(y, j(y, y»»» by Axiom 5 LR 

= j(gU(y, j(y, y))), j(g(y), j(y, j(y, y»))) by Lemma 2 LR 
= j(g(j(y, j(y, y))), j(g(y), j(g(g(y», j(y, y)))) by Lemma 2 RL 

= j(g(j(y, j(y, y))), j(y, y» by Lemma 1 LR 
= j(j(y, y), g(j(y, j(y, y»» by Axiom 5 LR 
= j(j(y, y), g(j(y,j(y,j(Y~Q»)))) by Axiom 3 RL 
= j(j(y, y), g(j(y, j(y, j(y, j(g(y), f(g(y), y»»))) by Lemma 3 RL 
= j(j(y, y), g(j(y, j(y, f(g(y), y»))) by Lemma 1 LR 

= j(j(y, y), g(j(y, f(j(y, g(y», y»» by Lemma 4 RL 

= j(j(y, y), g(j(y, f(O, y»» by Axiom 4 LR 
= j(j(y, y), g(f(j(y, 0), y))) by Lemma 4 RL 

= j(j(y, y), g(f(y, y») by Axiom 3 LR 

v = j(j(y, y), g(YD by Axiom 1 LR 

Lemma 6: j(u, j(u, z» = z 
je", j(!!, z» = je", j(j(u,!D, z» by Axiom 3 RL 

= je", we", j(u, g(u»), z» by Axiom 4 RL 
= j(u, jU(j(u, u), g(u», z» by Axiom 6 RL 
= j(u, j(g(u), z» by Lemma 5 RL 

by Lemma 1 LR= z 

Lemma 7: 
j(z, fez, w» 

j(z, fez, w» = j(z, few, z» 

= j(w, j(w, j(z, fez, w»» by Lemma 6 RL 

= j(w, j(j(w, z), fez, w») by Axiom 6 RL 

= j(w, j(f(z, w), j(w, z») by Axiom 5 RL 

= j(j(w, fez, w», j(w, z» by Axiom 6 RL 

= j(j(w, z), j(w, fez, w») by Axiom 5 LR 

= j(j(w, z), f(j(w, z), w» by Lemma 4 RL 

= j(f(j(w, z), w), j(w, z» by Axiom 5 RL 

= j(f(j(w, z), w), f(j(w, z), j(w, z») by Axiom 1 RL 

= f(j(w, z), j(w, j(w, z») by Axiom 7 RL 

= f(j(w, z), z) by Lemma 6 LR 

= 
= 

j(f(w, z), fez, z» 
j(f(w, z), z)-

by Axiom 8 LR 
by Axiom 1 LR 

= j(z, few, z» by Axiom 5 LR 
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Lemma 4:
f i (v ,y ) ,  v) = J( f (v,v) ,  f(y, v))

= j ( v ,  f(y, v) )

Lemma 5 :  g(y) = j(i(y, ¥) ,  8(y) )
gly) = i (8 l ( y  Hy, ¥ ) ) ) ,  i(8(8li(y, j(y, ¥ ) ) ) ) ,  g ( y ) ) )  by  Lemma 1 RL

= jel .  iv, ) ) ) ,  i (g(y)  (gly: iy» ¥)))))) by Axiom 5 LR
= je l ly ,  itv, ¥))), i(8(y), 3(y, ivy ¥)))) by Lemma 2 LR
= j y ,  i ly,  YD), sy) ,  i ( e (g ( y ) ) ,ily, ¥)))) by  Lemma 2 RL
= (gly, iy ,  yo  ¥ ) )  by  Lemma 1 LR

= (My  y ) ,  Gy»  Hy, ¥)))) by Axiom 5 LR
= j y ,  ¥), 86(y,  i(y, 3(3> 0))))) by  Axiom 3 RL
= iG  y) ,  Os,  i ly ,  IQ,  3 (8 (¥ ) ,  £ (g(¥) ,  ¥))))))) by Lemma 3 RL
= JG  y), O0,  iy ,  g ly ) ,  y ) ) )  by Lemma i LR
= JG,  ¥):  8G(y, fGQn 8(¥))s  YIN) by Lemma 4 RL
= j v )  gG(y, KO, y)))) by Axiom 4 LR
= jG0y, y) ,  g(fG(y,  0 ) ,  ¥))) by Lemma 4 RL
= jG0y, y )  s(f(y, y))) by Axiom 3 LR

v = j y ,  ¥ )  8(y)) by Axiom 1 LR

Lemma 6 :  j(u, j(u, z)) = z
wie  2 )  = (u ,  jG(u,  0 ) ,  3 )  by Axiom 3 RL

= (u ,  j(i(u, j (u ,  g (u ) ) ) ,  z)) by Axiom 4 RL
= j ( e ,  jGG(u ,  u ) ,  g (u ) ) , z ) )  by Axiom 6 RL
= j u ,  j(g(u), 2)) by  Lemma 5 RL
= 2 by  Lemma 1 LR

Lemma 7 :  j(z, f(z, w)) = j(z, f(w, 2))
i (z,  f(z, w))

fG(v, y), v) = i(v,  f(y, v))
by Axiom 8 LR
by Axiom 1 LR

FI
 

| 
J 

1 
J 

J 
| 

1I
 1

 
TA

 | Jw ,  j (w ,  i ( z ,  f(z, w))))
iw ,  3G (w ,  z ) ,  f (z,  w)))
iw ,  3 ( f ( z ,  w ) ,  3 (w ,  z ) ) )
1G  (w ,  f (z ,  w)), j (w ,  z ) )
JG(w ,  z ) ,  J (w ,  f (z ,  w)))
jG (w ,  2 ) ,  fG (w ,  2 ) ,  w ) )
j ( fG(w,  z ) ,  w ) ,  J (w ,  z ) )
j ( fG(w,  z ) ,  w ) ,  fG(w,  z ) ,  (Ww, z ) ) )

by Lemma 6 RL
by Axiom 6 RL
by Axiom 5 RL
by Axiom 6 RL
by Axiom 5 LR
by Lemma 4 RL
by Axiom 5 RL
by Axiom 1 RL

fO(w, z), j (w,  j (w,  z)))
f(j(w, z), z )
J ( f (w,  z ) ,  f (z ,  z ) )
j(f(w, z), z)
i ( z ,  f(w, z))

by Axiom 7 RL
by Lemma 6 LR
by Axiom 8 LR
by Axiom 1 LR
by Axiom 5 LR
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Theorem 1: f(a, b) = f(b, a) 
f(a, b) j(b, j(b, f(a, b») by Lemma 6 RL 
-- = j(b, f(j(b, a), b» by Lemma 4 RL 

=	 j(b, f(b, j(b, a») by Lemma 7 RL 
=	 j(b, j(f(b, b), f(b, a») by Axiom 7 LR
 

j(b, j(b, f(b, a») by Axiom 1 LR
 
f(b, a) by Lemma 6 LR
 

B.2 A ring with x 3 = x is Abelian 

This problem is very similar to the last one. However, albeit the specifications seem 
to be nearly identical, this example is considered as a particularly challenging example 
for pure equational reasoning. The first known automatic proof for this problem by 
a prover not employing a build-in AC-theory was found by the DISCOUNT system 
in a sequential run on a SUN4j370 server. It took 8188 seconds (roughly two and 
one quarter hours) arid was published in [Pi92]. In the meantime this problem can 
be solved by teams using two or three SUN ELC workstations5 in approximately 300 
seconds. 

B.2.1 The	 Problem 

MODE	 PROOF 

NAME	 lusk6 

ORDERING	 XKBO 
f:5 > j:4 >	 g:3 > 0:1 > b:1 > a:1 

EQUATIONS	 j (O,x) = x # 0 is a left identity 
j (x,O) = x # 0 is a right identity 
j (g (x),x) = 0 # there is a left inverse 
j (x,g (x)) = 0 # there is a right inverse 
j (j (x,y),z) = j (x,j (y,z)) # associativity of addition 
j (~,y) = j (y ,x) # commutativity of addition 
f (f (x,y),z) = f (x,f (y,z)) # associativity of 

# multiplication 
f (x,j (y,z) = j (f (x,y),f (x,z)) # distributivity axioms 
f (j (x,y),z) = j (f (x,z),f (y,z)) # 

f (f(x,x),x) = x # special hypothesis 

CONCLUSION	 f (a.b) = f (b,a) # theorem 

5For better comparison: We reproduced the original sequential proof on a SUN ELC workstation 
in 5153 seconds. 
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Theorem 1 :  f(a, b) = f(b, a)
f (a ,b )  = j ( b ,  j ( b ,  f(a, b ) ) )  by Lemma6 RL

= j(b, f(j(b, a) ,  b ) )  by Lemma4 RL
= j ( b ,  f(b, j ( b ,  a) ) )  by Lemma7 RL
= i b ,  ( f (b ,  b) ,  f ( b ,  a) ) )  by  Ax iom 7 LR

= j(b, j (b ,  f(b, a))) by Axiom 1 LR
= f(b, a)  by Lemma 6 LR

B.2  A ring wi th 2% = 2 is Abelian

This problem is very similar to  the last one. However, albeit the specifications seem
to  be  nearly identical, this  example is considered as a particularly challenging example
for pure equational reasoning. The first known automatic proof for this problem by
a prover not employing a build-in AC-theory was found by the DISCOUNT system
i n  a sequential run on a SUN4/370 server. It took 8188 seconds (roughly two and
one quarter hours) and was published in  [Pi92]. In the meantime this problem can
be solved by teams using two or three SUN ELC workstations® in approximately 300
seconds.

B.2 .1  The Problem

MODE PROOF

NAME lusk6

ORDERING XKBO
£ :5  > j : 4  > g :3  > 0 :1  > b :1  > a :1

j ( 0 , x )  =EQUATIONS j x # 0 i s  a le f t  ident i ty
j ( x , 0 )  =x  # 0 i s  a right ident i ty
j (g  ( x ) , x )  = 0 # there i s  a le f t  inverse
j ( x , g  ( x ) )  0 # there i s  a r ight inverse
jG  ( x , y ) , z )  = j ( x , j  ( y , 2 ) )  # assoc ia t iv i ty  of  addit ion
j ( x , y )  = j ( y , x )  # commutativity o f  addit ion
f ( f  ( x , y ) , 2 )  = f ( x , f  ( y , 2 ) )  # assoc ia t iv i ty  of

# mul t ip l icat ion
f ( x , j  ( y , 2 ) )  = j (£  ( x , y ) , f  ( x , 2 ) )  # d is t r ibu t iv i ty  axioms
f ( j  ( x , y ) , 2 )  = j ( £  ( x , 2 ) , f  ( y , 2 ) )  #
f ( £ ( x , x ) , x )  = x # specia l  hypothesis

CONCLUSION f ( a ,b )  = f ( b ,a )  # theorem

For better comparison: We reproduced the original sequential proof on a SUN ELC workstation
in  5153 seconds.
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B.2.2	 The proof 

As we already mentioned above we will only print the final proof. The proof listing for 
this problem can be very long - the sequential version, which we present here, contains 
nearly 400000 steps and has a size of nearly 50 Megabytes. However, the extracted 
listing uses only 190 steps. 

Consider the following set of axioms: 

Axiom 1: j(O, x) =x
 
Axiom 2: j(x, 0) =x
 
Axiom 3: j(x, g(x» = 0
 
Axiom 4: j(j(x, y), z) = j(x, j(y, z»
 
Axiom 5: j(x, y) = j(y, x)
 
Axiom 6: f(f(x, y), z) = f(x, fey, z»
 
Axiom 7: f(x, j(y, z» =j(f(x, y), f(x, z»
 
Axiom 8: f(j(x, y), z) = j(f(x, z), fey, z»
 
Axiom 9: f(f(x, x), x) = x
 

This theorem holds true: 

Theorem	 1: [(a, b) =f(b, a) 

Proof: 

Lemma 1: j(u, j(g(u), z» = z 
j(u, j(g(u), z»	 = j(j(u, g(u», z) by Axiom 4 RL
 

= j(O, z) by Axiom 3 LR
 
= z by Axiom 1 LR
 

Lemma 2: g(g(u» = u 
g(g(u»	 = j(u, j(g(u), g(g(u»» by Lemma 1 RL
 

= j(u; 0) by Axiom 3 LR
 
= u by Axiom 2 LR
 

Lemma 3: j(v, g(j(w, v))) = g(w) 
j(v, g(j(w, v)))	 = j(g(j(w, v», v) by Axiom 5 RL
 

= j(g(j(w, v», j(g(w), j(g(g(w», v))) by Lemma 1 RL
 
= j(g(j(w, v», j(g(w), j(w, v))) by Lemma 2 LR
 
= j(g(j(w, v», j(g(w), g(g(j(w, v»))) by Lemma 2 RL
 
= j(g(j(w, v», j(g(g(j(w, v»), g(w») by Axiom 5 RL
 
= g(w) by Lemma 1 LR
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B.2.2 The proof

As we already mentioned above we  will only print the final proof. The proof l isting for
this problem can be very long - the sequential version, which we present here, contains
nearly 400000 steps and has a size of nearly 50 Megabytes. However, the extracted
listing uses only 190 steps.

Consider the following set of  axioms:

Axiom 1: j(0, x) = x
Axiom 2: j(x,  0) =x
Axiom 3: j (x ,  g(x)) = 0
Axiom 4: j(i(x, y ) ,  z) = (x ,  i (y ,  2))
Axiom 5: j (x ,  y) = (3, %)
Axiom 6: (f(x, y),  z) = f(x, f(y, 2))
Axiom 7: f(x,  i (y ,  2 )  = i( i (x,  y),  f(x, 2))
Axiom 8: £(i(x, ¥),  2) = i( f(x,  2), f(y: 2 )
Axiom 9: f(f(x, x),  x) = x

This theorem holds true:

Theorem 1: f(a, b) = f(b, a)

Proof:

Lemma 1 :  j ( u , j ( g (u ) ,  2))  = z
i u ,  {g (u ) ,  z)) = i ( i ( u ,  g(u)),  z) by  Axiom 4 RL

30 ,  2) by  Axiom 3 LR
z by Axiom 1 LR

Lemma 2:  g(gu)) =u
g(g(u)) = ( u ,  i (g (u ) ,  g(g(u)))) by  Lemmal RL

= j(w, 0) by Axiom 3 LR
= u by Axiom 2 LR

Lemma 3 :  j(v,  g(i(w, v))) = g(w)
i (v ,  8G(w, v))) 1(gG(w, v)), v) by Axiom 5 RL

i ( g ( (w ,  v)), j(g(w), i(g(g(w)), v))) by Lemma 1 RL
i(g(i(w, v)), i(g(w), i(w, v))) by Lemma 2 LR
i ( 8 l (w ,  v)),  i (s(w),  g(&(i(w, v))))) by Lemma 2 RL
i(8G(w, v)), i(g(g(i(w, v))), g(w))) by Axiom 5 RL
g(w) by Lemma 1 LR{I

T
I 

0 
HU

 T
O
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Lemma 4: fey, 0) =	 0 
f(y, 0)	 = f(g(g(y»,O) 

= j(g(y), j(g(g(y», f(g(g(y», 0))) 
= j(g(y), j(f(f(g(g(y», g(g(y))), g(g(y»), f(g(g(y», 0))) 
= j(g(y), j(f(g(g(y», f(g(g(y», g(g(y»))), f(g(g(y», 0))) 
= j(g(y), f(g(g(y», j(f(g(g(y», g(g(y))), 0))) 
= j(g(y), f(g(g(y», f(g(g(y», g(g(y»)))) 
= j (g(y), f(f(g(g(y», g(g(y))), g(g(y)))) 
= j(g(y), g(g(y))) 

= ° 

by Lemma 2 RL 
by Lemma 1 RL 
by Axiom 9 RL 
by Axiom 6 LR 
by Axiom 7 RL 
by Axiom 2 LR 
by Axiom 6 RL 
by Axiom 9 LR 
by Axiom 3 LR 

Lemma 5: f(O, y) = 0 
f(O, y) f(O, j(y, 0» by Axiom 2 RL = 

f(O, j(y, j(y, g(y)))) by Axiom 3 RL = 
f(O, j(j(y, y), g(y») by Axiom 4 RL = 
j(f(O, j(y, y», f(O, g(y») by Axiom 7 LR= 
j(j(f(O, y), f(O, y», f(O, g(y») by Axiom 7 LR = 
j(f(j(O, 0), y), f(O, g(y))) by Axiom 8 RL = 
j(f(O, y), f(O, g(y») by Axiom 1 LR = 
f(O, j(y, g(y»)	 by Axiom 7 RL = 
f(O, 0)	 by Axiom 3 LR = 

° by Lemma 4 LR= 

Lemma 6: fez, fey, fez, fey, fez, y»))) = fez, y) 
fez, fey, fez, fey, fez, y»))) = fez, fey, f(f(z, y), fez, y»))) by Axiom 6 RL 

= f(f(z, y), f(f(z, y), fez, y))) by Axiom 6 RL 
= f(f(f(z, y), fez, y», fez, y» by Axiom 6 RL 
= fez, y) by Axiom 9 LR 

Lemma 7: f(p, j(f(p, f(p, v», z» =f(p, j(v, z» 
f(p, j(f(p, f(p, v», z»	 = j(f(p, f(p, f(p, v»), f(p, z» by Axiom 7 LR
 

= j(f(p, f(f(p, p), v», f(p, z» by Axiom 6 RL
 
= j(f(f(p, f(p, p», v), f(p, z» by Axiom 6 RL
 
= j(f(f(f(p, p), p), v), f(p, z» by Axiom 6 RL
 
= j(f(p, v), f(p, z» by Axiom 9 LR
 
= rep, j(v, z» by Axiom 7 RL
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Lemma 4:
f(y, 0)

H
H

 
(I 

TI
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ALemma

£(0, y )
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Lemma 6 :

Lemma 7 :
f(p, i(f(p, 1(p, v)), 2))

f(y, 0) = 0
f (g(g(y)) ,  0)
i (g(y)  je(g(y)):  (s(g(y)),  0)))
i(g(y), f (g(g(y)) ,  g(g(y))); &(&(¥))), f(g(g(y)), 0)))
i (8(y) ,  f g (g (y ) ) ,  fg(g(y)) ,  g(g(¥)))), f(g(g(y)), 0)))
i(g(y), Mg(g(y)). jfls(g(y)), g(g(y))), 0)))
Hy),  f(a(g(y)), f(g(g(y)), 8(g(y)))))
i (g (y) ,  f(f(g(s(y)), g(g(y))),  8(g(y))))
Yel) g(g(y)))

f(0, y )=  0
£f(0, j(y, 0))
f(0, j(y, i(y, 8(y))))
£(0, jG(y, y), g(y)))
(0,  i(y, y)), 1(0, g(y)))
iGi(£(0, y), £(0, y)), £(0, g(y)))
3(£G(0, 0), y), £0, g(y)))
3(£(0, y), £0, &(v)))
£0, i(y, g(y)))
£(0, 0)
0

by Axiom 2 RL
by Axiom 3 RL
by Axiom 4 RL
by Axiom 7 LR
by Axiom 7 LR
by Axiom 8 RL
by Axiom 1 LR
by Axiom 7 RL
by Axiom 3 LR
by Lemma 4 LR

f(z, f(y, f(z, f(y, f(z, y))))) = f(z, y )
f(z, f(y, f(z, {(y, f(z, ¥)))))

f(p, J(f(p, f(p,

N
N

 
N

f(z, y)

f(z, f(y, {(£(z, y) ,  f(z, y))))
£(f(z, y ) ,  £(f(z, y ) ,  f(z, ¥)))
f(f(f(z, y), f(z, y)) ,  f(z, y))

v)), z)) = f(p, j(v, 2))
i(f(p, f(p, f(p, v)
i f (p,  f(f(p, p), v
(EEp, f(p, P)), v), f(p, 2))
3(£(f(£(p, p), p), v), f(p, 2))
i(f(p, v), f(p, 2))
f(p, i ( v ,  2))

)), f(p, z))
)), f(p, z)) by

by
by

by Lemma 2 RL
by Lemma 1 RL
by Axiom 9 RL
by Axiom 6 LR
by Axiom 7 RL
by Axiom 2 LR
by Axiom 6 RL
by Axiom 9 LR
by Axiom 3 LR

by Axiom 6 RL
by Axiom 6 RL
by Axiom 6 RL
by Axiom 9 LR

by Axiom 7 LR
Axiom 6 RL
Axiom 6 RL
Axiom 6 RL

by Axiom 9 LR
by Axiom 7 RL



Lemma 8: f(j(v, g(f(x, f(x, v)))), x) = 0 
f(j(v, g(f(x, f(x, v)))), x) 

= f(j(v, g(f(x, f(x, v)))), f(x, f(j(v, g(f(x, f(x, v»», f(x, f(j(v, g(f(x, f(x, v»))), x»»). 
by Lemma 6 RL 

= f(j(v, g(f(x, f(x, v)))), f(f(x, j(v, g(f(x, f(x, v»))), f(x, f(j(v, g(f(x, f(x, v»))), x»))) 
by Axiom 6 RL 

= f(j(v, g(f(x, f(x, v»))), f(f(x, j(f(x, f(x, v», g(f(x, f(x, v»))), f(x, f(j(v, g(f(x, f(x, v»))), x»))) 
by Lemma 7 RL 

= f(j(v, g(f(x, f(x, v»», f(f(x, 0), f(x, f(j(v, g(f(x, f(x, v»», x»» 
by Axiom 3 LR 

= f(j(v, g(f(x, f(x, v»))), f(O, f(x, f(j(v, g(f(x, f(x, v»))), x»» 
by Lemma 4 LR 

= f(j(v, g(f(x, f(x, v»», 0) 
by Lemma 5 LR 

= 0 
by Lemma 4 LR 

Lemma 9: fez, g(u» = g(f(z, u» 
fez, g(u»	 = j(O, fez, g(u))) by Axiom 1 RL
 

= j(f(z, g(u», 0) by Axiom 5 RL
 
= j(f(z, g(u», j(O, g(O») by Axiom 3 RL
 
= j(f(z, g(u», g(O» by Axiom 1 LR
 
= j(f(z, g(u», g(f(z, 0))) by Lemma 4 RL
 
= j(f(z, g(u», g(f(z, j(u, g(u»))) by Axiom 3 RL
 
= j(f(z, g(u», g(j(f(z, u), fez, g(u))))) by Axiom 7 LR
 
= g(f(z, u» by Lemma 3 LR
 

Lemma 10: f(g(u), y) = g(f(u, y» 
f(g(u), y) = j(O, f(g(u), y» by Axiom 1 RL 

= j(f(g(u), y), 0) by Axiom 5 RL 

= j(f(g(u), y), j(O, g(O») by Axiom 3 RL 

= j(f(g(u), y), g(O» by Axiom 1 LR 
= j(f(g(u), y), g(f(O, y») by Lemma 5 RL 
= j(f(g(u), y), g(f(j(u, g(u», y») by Axiom 3 RL 

= j(f(g(u), y), g(j(f(u, y), f(g(u), y)))) by Axiom 8 LR 

= g(f(u, y» by Lemma 3 LR 

Lemma 11: g(f(u, w» = few, few, g(f(u, w»» 
g(f(u, w» = j(f(g(f(w, few, u»), w), g(j(f(u, w), f(g(f(w, few, u))), w»))) by Lemma 3 RL 

= j(f(g(f(w, few, u»), w), g(f(j(u, g(f(w, few, u»))), w))) by Axiom 8 RL 
= j(f(g(f(w, few, u))), w), g(O» by Lemma 8 LR 
= j(f(f(w, g(f(w, u))), w), g(O» by Lemma 9 RL 
= j(f(w, f(g(f(w, u», w», g(O» by Axiom 6 LR 
= j(f(w, f(f(w, g(u», w», g(O» by Lemma 9 RL 
= j(f(w, few, f(g(u), w))), g(O» by Axiom 6 LR 
= j(f(w, few, f(g(u), w))), j(O, g(O))) by Axiom 1 RL 
= j(f(w, few, f(g(u), w))), 0) by Axiom 3 LR 
= j(O, few, few, f(g(u), w»» by Axiom 5 LR 
= few, few, f(g(u), w))) by Axiom 1 LR 
= few, few, g(f(u, w»» by Lemma 10 LR 
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Lemma 8 :  f(j(v, g(f(x, f(x, v)))), x) = 0
fG(v, s(f(x, f(x, v)))), x) . .

= fO(v,  g( f (x ,  f(x, v ) ) ) ) ,  f (x ,  fO(v,  ( f (x ,  f(x,  v ) ) ) ) ,  f(x, fG(v,  g ( f (x ,  f(x, v ) ) ) ) ,  x) ) ) ) ) -
by Lemma 6 RL

= fG(v, g(f(x, f(x, v)) ) ) ,  f(f(x,  j ( v ,  &(f(x, f(x, v))))) ,  f(x, f l v ,  g(f(x, f(x, v)))), x)}))
by Axiom 6 RL

= fG(v, (f(x, f(x, v)))), f (x ,  (f(x, f(x, v)), &(f(x, f(x, v))))), f(x, fG(v, &(f(x, f(x, v)))), x))))
by Lemma 7 RL

= fG(v, g(f(x,  f(x, v)))), f(f(x, 0), f(x, fG(v, g(f(x, f(x, v)))), x ) ) ) )
by Axiom 3 LR

= f(j(v, g(f(x,  f(x, v)))), £0, f(x,  f(i(v, &(f(x, f(x,  v)))), x))))
by Lemma 4 LR

= fO(v, s(f(x, f(x, v)))), 0)
by Lemma 5 LR

= 0
by Lemma 4 LR

Lemma 9 :  f(z, g(u)) = g(f(z, u))
f(z, g(u)) = j(0, f(z, g(u))) by Axiom 1 RL

= j(f(z, g(u)), 0) by Axiom 5 RL
= j(f(z, g(u)), i(0, g(0))) by Axiom 3 RL
= j(f(z, g(u)), g(0)) by Axiom 1 LR
= ( f (z ,  g (u ) ) ,  g ( f ( z ,  0 ) ) )  by  Lemma 4 RL

= (f(z, g(u)), g(f(z, j (u,  g(u))))) by Axiom 3 RL
= j(f(z, g(u)), g(i(f(z, u) ,  f(z, g(u))))) by Axiom 7 LR
= g(f(z, u)) by Lemma 3 LR

Lemma 10 :  f(g(u), y) = g(f(u, y))
f(g(u), y) = (0,  f(g(u), y)) by Axiom 1 RL

= j(f(g(u), y),  0) by Axiom 5 RL
= j(f(g(u),  y) ,  i ( 0 ,  g(0))) by Axiom 3 RL
= j(f(g(u), y), g(0)) by Axiom 1 LR
= j( f (g(u),  y ) ,  &(f(0, y))) by Lemma 5 RL
= j(f(g(u),  y ) ,  s(fG(u, g(u)), y)))  by Axiom 3 RL
= j(f(g(u), y),  gG(f(u, y), f(g(u), y)))) by Axiom 8 LR
= g(f(u,  y ) )  by  Lemma 3 LR

Lemma 11 :  g(f(u, w)) = f(w, f(w, g(f(u, w))))
gi ,  w)) = (E(w, fw ,  u))), w), (f(s, w), (e(f(w, {w,  u))), w)))) by Lemma 3 RL

= (E(w, fw ,  u))), w), g(fGi(u, (fw, fw,  u)))), w))) by Axiom 8 RL
= j(f(g(f(w, f(w, u))), w), g(0)) by Lemma 8 LR
= (£@(w, g(£(w, u))), w), g(0)) by Lemma 9 RL
= (E(w, (gE,  u)), w)), g(0)) by Axiom 6 LR
= (tw, (Ew, g(u)), w)), g(0)) by Lemma 9 RL
= j(f(w, f(w, f(g(u), w))), g(0)) by Axiom 6 LR
= j(f(w, f(w, f(g(u), w))), j(0, g(0))) by Axiom 1 RL
= j(f(w, f(w, f(g(u), w))), 0) by  Axiom 3 LR
= (0 ,  f(w, f(w, f(g(u), w)))) by Axiom 5 LR
= f(w,f(w, f(g(u), w))) by Axiom 1 LR
= f(w, f(w, g(f(u, w)))) by Lemma 10 LR
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Lemma 12: fey, fey, fez, v))) =fez, v) 
fey, fey, fez, v))) = g(g(f(v, fey, fez, v))))) by Lemma 2 RL 

= g(f(v, g(f(v, fez, v))))) by Lemma 9 RL 
= g(f(v, fey, g(f(z, v))))) by Lemma 9 RL 
= g(g(f(z, v))) by Lemma 11 RL 
= fez, v) by Lemma 2 LR 

Lemma 13: fey, w) = few, fey, few, fey, few, few, fey, w))))))) 
fey, w) = fey, few, fey, few, fey, w))))) 

by Lemma 6 RL . 
= f(f(w, fey, few, fey, w)))), f(f(w, fey, few, fey, w)))), fey, few, fey, few, fey, w))))))) 

by Lemma 12 RL 
= f(f(w, fey, few, fey, w)))), f(f(w, fey, few, fey, w)))), fey, w))) 

by Lemma 6 LR 
= f(f(w, fey, few, fey, w)))), few, f(f(y, few, fey, w))), fey, w)))) 

by Axiom 6 LR 
= f(f(w, fey, few, fey, w)))), few, fey, f(f(w, fey, w)), fey, w))))) 

by Axiom 6 LR 
= f(f(w, fey, f(w,f(y, w)))), few, fey, few, f(f(y, w), fey, w)))))) 

by Axiom 6 LR 
= f(f(w, fey, few, fey, w)))), few, fey, few, fey, few, fey, w))))))) 

by Axiom 6 LR 
= f(f(w, fey, few, fey, w)))), few, fey, w))) 

by Lemma 6 LR 
= few, f(f(y, few, fey, w))), few, fey, w)))) 

by Axiom 6 LR 
= few, fey, f(f(w, fey, w)), few, fey, w))))) 

by Axiom 6 LR 
= few, fey, few, f(f(y, w), few, fey, w)))))) 

by Axiom 6 LR 
= few, fey, few, fey, few, few, fey, w))))))) 

by Axiom 6 LR 
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Lemma  12: f(v, f(v, f(z, v))) = f(z, v)
f(v, f(v, f(z, v))) g(g(f(v, f(v, f(z, v))))) by Lemma 2 RL

g(f(v, g(f(v, f(z, v))))) by Lemma 9 RL
g(f(v,  f (v,  g(f(z, v))))) by Lemma 9 RL
g(g(f(z, v))) by Lemma 11 RL
f(z, v) by Lemma 2 LR

i

Lemma 13 :  f(y, w)  = f(w, f(y, f (w,  f(y, f(w, f (w,  f(y, w))))))
fly, w) = f(y, f(w, f(y, f(w, f(y, w)))))

by Lemma 6 RL  .

= f(f(w, f(y, f (w,  f(y, w)))), {(f(w, f(y, f(w, f(y, w)))), f(y, f(w, f(y, f(w, f(y, w)))))))
by Lemma 12 RL

= f(f(w, f(y, f(w, f(y, w)))), f(f(w, f(y, f(w, f(y, w)))), f(y, w)))
by Lemma 6 LR

= f(f(w, iy, f(w, f(y, w)))), f(w, f(f(y, f(w, f(y, w))), f(y, w))))
by Axiom 6 LR

= f(f(w, f(y, f(w, f(y, w)))), f(w, f(y, {(f(w, f(y, w)), £(y, w)))))
by Axiom 6 LR

= f(f(w, f(y, i (w, f(y, w)))), f (w,  f(y, f (w,  {(f(y, w) ,  f(y, w))))))
by Axiom 6 LR

= f(f(w, f(y, f (w,  f(y, w)))), f (w,  f(y, f (w,  f(y, f (w,  f(y, w)))))))
by Axiom 6 LR

= {(f(w, f(y, f(w, iy, w)))), f(w, f(y, w)))
by Lemma 6 LR

= f (w,  f(f(y, f(w, f(y, w))), f(w, f(y, w))))
by Axiom 6 LR

= fw,  f(y, Kf(w,  f(y, w)), f(w, f(y, w)))))
by Axiom 6 LR

= f(w, f(y, fw,  f(f(y, w), f(w, f(y, w))))))
by Axiom 6 LR

= f(w, f(y, f(w, f(y, f(w, f(w, f(y, w)))))))
by Axiom 6 LR
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Lemma 14: f(j(p, f(p, g(f(x, x»)), x) =f(p, j(g(x), f(f(p, p), x») 
f(j(p, f(p, g(f(x, x»))), x) = f(j(f(f(p, p), p), f(p, g(f(x, x»», x) 

by Axiom 9 RL 
= f(j(f(p, f(p, p», f(p, g(f(x, x»», x) 

by Axiom 6 LR 
= f(f(p, j(f(p, p), g(f(x, x»))), x) 

by Axiom 7 RL 
= f(p, f(j(f(p, p), g(f(x, x))), x» 

by Axiom 6 LR 
= f(p, f(j(f(p, p), j(g(f(p, p», g(j(f(x, x), g(f(p, p»))))), x» 

by Lemma 3 RL 
= f(p, f(g(j(f(x, x), g(f(p, p»))), x» 

by Lemma 1 LR 
= f(p, g(f(j(f(x, x), g(f(p, p»), x))) 

by Lemma 10 LR 
= f(p, g(j(f(f(x, x), x), f(g(f(p, p», x»))) 

by Axiom 8 LR 
= f(p, g(j(x, f(g(f(p, p», x»» 

by Axiom 9 LR 
= f(p, g(j(x, g(f(f(p, p), x))))) 

by Lemma 10 LR 
= f(p, j(f(f(p, p), x), j(g(f(f(p, p), x», g(j(x, g(f(f(p, p), x)))))) 

by Lemma 1 RL 
= f(p, j(f(f(p, p), x), g(x») 

by Lemma 3 LR 
= f(p, j(g(x), f(f(p, p), x))) 

by Axiom 5 LR 

'Lemma 15: f(j(p, g(f(p, f(x, x)))), x) = 0 

lf(j(p, g(f(p, f(x, x»», x) = f(j(p, f(p, g(f(x, x»))), x) by Lemma 9 RL 
= f(p, j(g(x), f(f(p, p), x») by Lemma 14 LR 
= f(p, j(g(x), f(p, f(p, x»» by Axiom 6 LR 
= j(f(p, g(x», f(p, f(p, f(p, x»» by Axiom 7 LR 
= j(f(p, g(x», f(p, f(f(p, p), x))) by Axiom 6 RL 
= j(f(p, g(x», f(f(p, f(p, p», x» by Axiom 6 RL 
= j(f(p, g(x», f(f(f(p, p), p), x» by Axiom 6 RL 
= j(f(p, g(x», f(p, x» by Axiom 9 LR 
= r(p, j(g(x), x» by Axiom 7 RL 
= rep, j(x, g(x») by Axiom 5 LR 
= f(p, 0) by Axiom 3 LR 
= 0 by Lemma 4 LR 
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Lemma 14 :  f(G(p, f(p,  g(f(x, x)))) ,  x) = f(p, i(g(x), £(f(p, p ) ,  x)))
fG(p, f(p, &(f(x, x)))) ,  x )

i]

IGP, p),  P), f(p, &(f(x, x)})), x )
by Axiom 9 RL
fG(f(p,  fp, p ) ) .  f (p,  &(f(x,  x ) ) ) ) ,  x )
by Axiom 6 LR
f(i(p, i ( f (p,  pP), g(f(x, x)))), x)
by Axiom 7 RL
f(p, fG(f(p, p), &(f(x, x))), x))
by Axiom 6 LR
f(p, fG((p,  p),  i(e(f(p, p)), gG(f(x, x), g(f(p, p)))))), x))
by Lemma 3 RL
f(p, f(g((f(x, x ) ,  g( (p,  p)))), x ) )
by Lemma I LR
f(p, g(fG(f(x, x ) ,  g(f(p, P))), x)) )
by Lemma 10 LR
f(p, g((f(f(x,  x) ,  x), f(g(f(p, p)),  x))))
by Axiom 8 LR
f(p, g ( (x ,  f(g(f(p, P)), x))))
by Axiom 9 LR
f(p, g(i(x, g(f(f(p, p), X)))))
by Lemma 10 LR
f(p, i ( f( f(p,  p), x),  (g(£(f(p, pP); X)), ( x  g(f(f(p, p ) ,  x))))))
by Lemma 1 RL
f(p,  J(£(£(p, p) ,  x),  &(x)))
by  Lemma 3 LR
f(p, j(g(x), f(f(p, p), x)))
by Axiom 5 LR

emma  15 :  f(j(p, hd  f(x, x)))),x) =
fG(p, g(f(p, f(x, x ) ) ) ) ,x

LO
 

{A
 

V
I 

(LO
 1 f(G(p, f(p,  a0 ,  x) ) ) ) ,  x )  by Lemma 9 RL

f(p, i(g(x), f(f(p, p), x))) by Lemma 14 LR
f (p,  (g (x ) ,  f(p, f (p,  x)))) by Axiom 6 LR
i( f (p,  &(x)), fp, f(p, f(p,  x))))  by Axiom 7 LR
(Hp, g(x) ,  f p ,  f(f(p, P), x))) by Axiom 6 RL
i(E(p, g(x) ,  f(f(p, f{p, P)); x)) by Axiom 6 RL
i(£(p, g (x ) ,  f(f(f(p, p), p), x)) by Axiom 6 RL
i(f(p, g (x ) ,  f(p, x)) by Axiom 9 LR
f ( p ,i (g(x), x)) by Axiom 7 RL
f (p,  (x ,  g(x))) by Axiom 5 LR
f(p, 0) by Axiom 3 LR
0 by Lemma 4 LR
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Lemma 16: few, g(f(w, few, g(f(y, few, w»»») = few, y) 
few, g(f(w, few, g(f(y, few, w))))))) 

= few, j(O, g(f(w, few, g(f(y, few, w»))))))) 
by Axiom 1 RL 

= few, j(f(w, 0), g(f(w, few, g(f(y, few, w»»»» 
by Lemma 4 RL 

=	 few, j(f(w, f(j(w, g(f(j(y, g(f(y, few, w»))), f(j(y, g(f(y, few, w)))), w)))),
 
j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»)))))))
 
by Lemma 8 RL
 

=	 few, j(f(w, f(j(w, g(f(j(y, g(f(y, few, w»))), 0»), j(y, g(f(y, few, w»))))),
 
g(f(w, few, g(f(y, few, w))))))))
 
by Lemma 15 LR
 

= few, j(f(w, f(j(w, g(O)) , j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»)))))) 
by Lemma 4 LR 

= few, j(f(w, f(j(w, j(O, g(O»), j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»»)))) 
by Axiom 1 RL 

= few, j(f(w, f(j(w, 0), j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w»»»» 
by Axiom 3 LR 

= few, j(f(w, few, j(y, g(f(y, few, w)))))), g(f(w, few, g(f(y, few, w)))))))) 
by Axiom 2 LR 

= few, j(j(y, g(f(y, few, w»», g(f(w, few, g(f(y, few, w)))))))) 
b:, I,emma 7 LR 

= few, j(y, j(g(f(y, few, w))), g(f(w, few, g(f(y, few, w»»»)))) 
by Axiom 4 LR 

= j(f(w, y), few, j(g(f(y, few, w»), g(f(w, few, g(f(y, few, w»)))))))) 
by Axiom 7 LR 

= j(f(w, y), few, j(f(w, few, g(f(y, few, w»)))), g(f(w, few, g(f(y, few, w))))))))) 
by Lemma 7 RL 

= j(f(w, y), few, 0» 
by Axiom 3 LR 

= j(f(w, y), 0) 
by Lemma 4 LR 

= j(O, few, y» 
by Axiom 5 LR 

= few, y) 
by Axiom 1 LR 

Lemma 17: few, fey, few, w))) = few, y) 
few, fey, few, w))) = few, g(g(f(y, few, w»))) by Lemma 2 RL 

= few, g(g(f(f(y, w), w)))) by Axiom 6 RL 
= few, g(g(f(w, few, f(f(y, w), w»»» by Lemma 12 RL 
= few, g(g(f(w, few, fey, few, w))))))) by Axiom 6 LR 
= few, g(f(w, g(f(w, fey, few, w))))))) by Lemma 9 RL 
= few, g(f(w, few, g(f(y, few, w))))))) by Lemma 9 RL 
= few, y) by Lemma 16 LR 
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Lemma 16 :  f(w, g(f(w, f(w, g(f(y, f(w, w))))))) = f(w, y)
f(w, g(f(w, f(w, g(f(y, f(w, w)))))))

= f(w, (0 ,  &(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 1 RL

= f (w,  j ( f (w,  0) .  g( f (w,  f(w, g(f(y, f (w,  w))))))))
by Lemma 4 RL

= f(w, j(f(w, fG(w, g(fG(y, g(f(y, fw ,  w)))), f(y, g(f(y, fw,  w)))), w)))),
i y ,  8((y, f(w, w)))))), g(f(w, f(w, g(£(y. f(w, w))))))))
by Lemma 8 RL

= fw ,  j ( f (w,  fG(w, g(fG(y, g(f(y, f(w, w)))),  0))),  i (y ,  &(f(y, f(w, w)))))),
g(f(w, f(w, g(f(y, f(w, w))))))))
by Lemma 15 LR

= fw ,  j ( f (w,  fG(w, 0 ) ,  i ( y ,  g(f(y, f(w, w)))))), &(f(w, f(w, g(f(y, f(w, w))))))))
by Lemma 4 LR

= fw,  j ( f(w, fG(w, i(0, g(0))),  i ( y ,  g(f(y, f (w,  W)))))), &(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 1 RL

= f(w, j ( f (w,  f(G(w, 0 ) ,  i ( y ,  g(f(y, f (w, w) ) ) ) ) ) ,  g(f(w, f(w, g(f(y,  f (w,  w))))))))
by Axiom 3 LR

= f(w,  j(f(w, f(w,  i ( y ,  g(f(y, f (w,  w)))))), g(f(w, f(w, g(f(y, f(w, w))))))))
by Axiom 2 LR

= f (w,  3G(y, g(f(y, f (w,  w)))), s( f (w,  f (w,  g(f(y f(w, w))))))))
b ;  Lemma 7 LR

= f (w ,  j (y ,  i(g(E(y, f (w,  w))), g(f(w, f (w ,  g(f(y,  f (w,  w)))))))))
by Axiom 4 LR

= j ( f (w ,  y ) ,  f (w,  j(g(£(y, f (w, w))), g(f(w, f (w,  g(f(y, f(w, w)))))))))
by Axiom 7 LR

= j ( f (w,  y ) ,  f(w,  J(f(w, f(w, g(f(y, f(w, w))))), &(f(w, f(w, g({(y, f(w, w)))))))))
by Lemma 7 RL

= j(f(w,y), f(w, 0))
by Axiom 3 LR

= j(f(w,y), 0)
by Lemma 4 LR

= i ( 0 ,  f(w, y )
by Axiom 5 LR

= f (w , y )
by Axiom 1 LR

Lemma 17 :  f(w, f(y, f(w, w))) = f(w, y)
f(w,  f(y, f (w, w))) fw,  g(g(f(y, f (w,  w))))) by  Lemma2 RL

f(w, g(g(f(f(y, w), w)))) by Axiom 6 RL
f(w, g(g(f(w, f(w, f(f(y, w), w)))))) by Lemma 12 RL
f (w,  g(g( f (w,  f (w ,  f(y, f (w ,  w))))))) by  Axiom 6 LR
f(w, g(f(w, g(f(w, f(y, f(w, w))))))) by Lemma 9 RL
f(w, g(f(w, f(w, g(f(y, f(w, w))))))) by Lemma 9 RL
f(w, y) by Lemma 16 LR
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Lemma 18: f(z, x) = f(f(z, f(x, x», f(z, f(x, z») 
f(z, x)	 = f(z, f(f(x, x), x» by Axiom 9 RL
 

= f(f(z, f(x, X», x) by Axiom 6 RL
 
= f(f(z, f(x, x», f(x, f(f(z, f(x, x», f(z, f(x, x»))) by Lemma 17 RL
 
= f(f(z, f(x, x», f(x, f(f(f(z, f(x, x», z), f(x, x»))) by Axiom 6 RL
 
= f(f(z, f(x, x», f(x, f(f(z, f(x, x», z») by Lemma 17 LR
 
= f(f(z, f(x, X», f(x, f(z, f(f(x, x), z)))) by Axiom 6 LR
 
= f(f(z, f(x, x», f(x, f(z, f(x, f(x, z»)))) by Axiom 6 LR
 
= f(f(z, f(x, x», f(f(x, z), f(x, f(x , z)))) by Axiom 6 RL
 
= f(f(z, f(x, x», f(f(z, f(z, f(x, z))), f(x, f(x, z)))) by Lemma 12 RL
 
= f(f(z, f(x, x», f(z, f(f(z, f(x, z», f(x, f(x, z))))) by Axiom 6 LR
 
= f(f(z, f(x , x», f(z, f(z, f(f(x, z), f(x, f(x, z)))))) by Axiom 6 LR
 
= f(f(z, f(x, x», f(z, f(z, f(x, f(z, f(x, f(x, z»)))))) by Axiom 6 LR
 
= f(f(z, f(x, x», f(z, f(z, f(x, f(z, f(x, f(z, f(z, f(x , z))))))))) by Lemma 12 RL
 
= f(f(z, f(x, x», f(z, f(x, z))) by Lemma 13 RL
 

Lemma 19: f(z, x) = f(z, f(x, f(x, f(z, f(x, z»)))) 
f(z, x) = f(f(z, f(x, x», f(z, f(x, z») by Lemma 18 LR 

= f(z, f(f(x, x), f(z, f(x, z»))) by Axiom 6 LR 
= f(z, f(x, f(x, f(z, f(x, z»)))) by Axiom 6 LR 

Theorem 1: f(a, b) = f(b, a) 
f(a, b) = f(a, f(b, f(b, f(a, f(b, a»») by Lemma 19 LR 

= f(a, f(b, f(b, f(f(a, b), a»» by Axiom 6 RL 
= f(a, f(b, f(f(b, f(a, b», a») by Axiom 6 RL 
= f(3o, f(f(b, £(b, £(80, b))), a» by Axiom 6 RL 
= f(3o, f(f(a, b), a» by Lemma 12 LR 
= f(a, f(a, f(b, a») by Axiom 6 LR 
= f(b, a) by Lemma 12 LR 

B.3	 A problem from the domain of lattice ordered groups 

The DISCOUNT system is used as a component of the ILF system by the group of 
B.I. Dahn at the Humbold-University in Berlin (see [Da+94]). From him we received 
the following problem from the domain of lattice ordered groups: 

B.3.l The problem 

For each element in a lattice ordered group show that it can be expressed as the product 
of its positive part and of its negative part. This is said to be a non-trivial task even 
for human experts. 

MODE PROOF 

NAME lattice3 
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Lemma 18:
f(z, x)
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|  

TT
 | A

 A
 V

I

Lemma 19 :
f(z, x)
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i

Theorem
f(a, b)
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B.3  A problem from the domain of  latt ice ordered groups

The DISCOUNT system is used as a component of the ILF system by the group of
B.I. Dahn at the Humbold-University i n  Berlin (see [Da+94]). From him we received

1 :

f(z, (f(x, x ) ,  x) )
( f(z,  f (x,  x) ) ,  x)

f(z, x)  = f(f(z, f(x,  x)), f(z, f(x,  z)))

f(£(z, f (x,  x)) ,  x ,  f(z, ( x ,  x) ) ,  f(z, f(x,  X)))))
f(f(z, f(x, x)), f(x, KE(Ez, f(x, x)), 2), fx ,  x))))
f(f(z, f(x, x ) ,  f(x, f(K(z, f(x,  x ) ,  2)))
f(f(z, f(x, x ) ,  f(x, f(z, (K(x, x ) ,  2))))
( f (z,  f(x, x)), f(x, f(z, f(x, {(x, z)))))
(f(z,  f(x, x)), (f(x, z), f(x, f(x, 2))))
(f(z, f(x, x)), {({(z, f(z, f(x, 2))), f(x, f(x, 2))))
( f (z,  f(x, x)), f(z, f({(z, f(x, 2)), f(x, f(x, 2)))))
f(f(z, f(x, x)), f(z, £f(z, ( f (x,  2), f(x, f(x, 2))))))
f(f(z, f(x, x)),  f(z, f(z, f(x, f(z, f(x,  f(x,  2)))))))
(f(z,  f(x, x)), £(z, f(z, f(x, f(z, f(x, f(z, (3, f(x, 2)))))))))
(f(z, f(x, x) ) ,  f(z, f(x,  2)))

f(z, x )  = f(z, f(x, f(x, f(z, f(x, 2)))))
£(i(z, f(x, x)) ,  f(z, f(x, 2)))
f(z, f(f(x, x), f(z, f(x, z))))
f(z, f(x, f(x, f(z, f(x, 2)))))

f(a, b )  = f(b, a)
f(a, f(b, f(b, f(a, f(b, a)))))
f(a, f(b, f(b, f(f(a, b), a))))
f(a, f(b, £(£f(b, f(a, b)), a)))
f(a, f(f(b, f(b, f(a, b))), a))
f(a, f(f(a, b), a))
f(a, f(a, f(b, a)))
f(b, a)

by  Lemma 18 LR
by Axiom 6 LR
by Axiom 6 LR

by Lemma 19 LR
by Axiom 6 RL
by Axiom 6 RL
by Axiom 6 RL
by Lemma 12 LR
by Axiom 6 LR
by Lemma 12 LR

by Axiom 9 RL
by Axiom 6 RL
by Lemma 17 RL
by Axiom 6 RL
by Lemma 17 LR
by Axiom 6 LR
by Axiom 6 LR
by Axiom 6 RL
by Lemma 12 RL
by Axiom 6 LR
by Axiom 6 LR
by Axiom 6 LR
by Lemma 12 RL
by Lemma 13 RL

the following problem from the domain of lattice ordered groups:

B.3 .1  The problem

For each element i n  a lattice ordered group show that i t  can be expressed as the product
of i ts  positive part and of i ts negative part. This is said to be a non-trivial task even
for human experts.

MODE

NAME

PROOF

l a t t i ce3

88



ORDERING	 LPO 
i > n > u > f > np > pp > 1 > a 

EQUATIONS	 n(x,y) = n(y,x) 
u(x,y) = u(y,x) 
n(x,n(y,z» = n(n(x,y),z) 
u(x,u(y,z» = u(u(x,y),z) 
u(x,x) = x 
n(x,x) = x 
u(x,n(x,y» = x 
n(x,u(x,y» = x 
f(x,f(y,z» = f(f(x,y),z) 
f(1,x) = x 
f(i(x),x) = 1 
i(1) = 1 

iCiCx» = x 
i(f(x,y» = f(i(y),i(x» 
f(x,u(y,z» = u(f(x,y),f(x,z» 
f(x,n(y,z» = n(f(x,y),f(x,z» 
f(u(y,z),x) = u(f(y,x),f(z,x» 
f(n(y,z),x) = n(f(y,x),f(z,x» 
pp(x) = u(x,1) 
np(x) = n(x,1) 
u(x,n(y,z» = n(u(x,y),u(x,z» 
n(x,u(y,z» = u(n(x,y),n(x,z» 

CONCLUSION	 a = f(pp(a),np(a» 

B.3.2 The	 proof 

The proof is here reprinted as it has been typeset by our proof transformation sys
tem. Except for minor reformatting of the long proof lines in the subproof for lemma 
8 nothing has been edited. The extracted PCL protocol for the proof contains 8 re
sults deemed important by the referees. Five of these results are axioms used often 
in the proof. This effect can be explained by the rich and powerful axiomatization of 
the problem. The other three selected results became lemmata 3, 7 and 12. Addi
tionallemmata have been selected by the default strategy of the program lemma, with 
the additional restriction that no proof chain should be shorter then 3 steps (option 
-uJIlin~ength 3). See section 8.2.3 for a description of the default criteria of lemma. 
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ORDERING LPO
i >n>u> f>np>pp>1>a

EQUATIONS n (x , y )  = n ( y , x )
u(x,y)  = u(y,x)
n(x ,n(y ,z) )  = n(n(x ,y) ,z )
u (x ,u ( y , z ) )  = u (u l x , y ) , z )
u ( x , x )  = x
n (x , x )  = x
u (x ,n ( x , y ) )  = x
n(x ,u(x ,y) )  = x
£f(x,f(y,2z)) = £ ( f ( x , y ) , 2 )
f ( 1 , x )  = x
f ax )  , x )  = 1
i ( 1 )  = 1
1 ( i ( x ) )  = x
i ( f ( x , y ) )  = f ( i ( y ) , i ( x ) )
f ( x ,u (y , z ) )  = u( f (x ,y ) , . f (x ,2) )
£ f ( x ,n ( y , z ) )  = n ( f ( x , y ) , f ( x , 2 ) )
f ( u ( y , z ) , x )  = u ( f ( y , x ) , f ( z , x ) )
f ( n ( y , z ) , x )  = n ( f ( y , x ) , f ( z , x ) )
pp(x) = u(x,1)
np(x )  = n ( x ,1 )
u ( x ,n ( y , z ) )  = n (u ( x , y ) , u ( x , z ) )
n (x ,u ( y , z ) )  = u (n ( x , y ) , n ( x ,2 ) )

CONCLUSION a = f(pp(a),np(a))

B.3 .2  The  proof

The proof i s  here reprinted as i t  has been typeset by  our proof transformation sys-
tem. Except for minor reformatting of the long proof lines i n  the subproof for lemma
8 nothing has been edited. The extracted PCL protocol for the proof contains 8 re-
sults deemed important by the referees. Five of these results are axioms used often
in  the proof. This effect can be explained by  the rich and powerful axiomatization of
the problem. The other three selected results became lemmata 3, 7 and 12. Addi-
tional lemmata have been selected by the default strategy of the program lemma, with
the additional restriction that no proof chain should be shorter then 3 steps (option
-umin length 3).  See section 8.2.3 for a description of the default criteria of  Lemma.
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Consider the following set of axioms: 

Axiom 1: n(x, x) == x
 
Axiom 2: f(l, x) == x
 
Axiom 3: i(l) == 1
 
Axiom 4: i(i(x» == x
 
Axiom 5: n(x, y) == n(y, x)
 
Axiom 6: u(x, y) == u(y, x)
 
Axiom 7: u(x, n(x, y» == x
 
Axiom 8: f(i(x), x) == 1
 
Axiom 9: pp(x) == u(x, 1)
 
Axiom 10: np(x) == n(x, 1)
 
Axiom 11: n(x, n(y, z» == n(n(x, y), z)
 
Axiom 12: u(x, u(y, z» == u(u(x, y), z)
 
Axiom 13: f(x, fey, z» == f(f(x, y), z)
 
Axiom 14: i(f(x, y» == f(i(y), i(x»
 
Axiom 15: f(x, u(y, z» == u(f(x, y), f(x, z»
 
Axiom 16: f(x, n(y, z» == n(f(x, y), f(x, z»
 
Axiom 17: f(u(x, y), z) == u(f(x, z), fey, z»
 
Axiom 18: f(n(x, y), z) == n(f(x, z), fey, z»
 
Axiom 19: n(x, u(y, z» == u(n(x, y), n(x, z»
 

This theorem holds true: 

Theorem 1: a	 == f(pp(a), np(a» 

Proof: 

J 

Lemma 1:	 u(v, f(x, v» == f(pp(x), v) 

u(v, f(x, v»	 == u(f(x, v), y) by Axiom 6 RL 
== u(f(x, v), f(l, v» by Axiom 2 RL 
== f(u(x, 1), v) by Axiom 17 RL 
== f(pp(x), v) by Axiom 9 RL 

Lemma 2:	 f(pp(i(y», y) == pp(y) 
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Consider the following set of  axioms:

Axiom 1:
Axiom 2 :
Axiom 3:
Axiom 4:
Axiom 5:
Axiom 6 :
Axiom 7:
Axiom 8 :
Axiom 9:
Axiom 10:
Axiom 11:
Axiom 12:
Axiom 13:
Axiom 14:
Axiom 15:
Axiom 16:
Axiom 17:
Axiom 18:
Axiom 19:

This theorem

Theorem

Proof:

n(x, x) = x
f ( 1 , x )  = x
i ( 1 )=1
i(i(x)) = x
n(x, y )  = n(y, x )
u(x ,  y )  = u(y, x )
u(x,  n (x ,  y ) )  = x
f( i (x),  x )  = 1
PP(x) = u (x ,  1 )

np(x )  = n(x ,  1 )
n(x ,  n(y, z))  = n(n(x ,  y ) ,  2)
u(x, u(y, z)) = u(u(x, y) ,  z)
f(x, f(y, z)) = (f(x, y),  2)
i(f(x, y)) = 1(i(y), i(x))
f(x, u(y, z)) = u(f(x, y),  f(x, z))
f(x, n(y, z)) = n(f(x,  y), f(x, z))
f(u(x, y) ,  2) = u({(x, 2), f(y, 2))
f(n(x, y ) ,  2) = n(f(x, 2), f(y, 2))
n(x, u(y, z)) = u(n(x, y), n(x, z))

holds t rue:

1: a = f(pp(a),  np(a))

/

Lemma 1 :  u(v, f(x, v)) = f(pp(x), v)

u(v, f(x, v)) = u(f(x, v ) ,  v) by Axiom 6 RL
= u(f(x, v), f(1, v))  by Axiom 2 RL
= fu (x ,  1 ) ,  v )  by Axiom 17 RL
= f(pp(x),  Vv) by Axiom 9 RL

Lemma 2 :  {(pp(i(y)),  y )  = pp(y)

90



f(pp(i(y», y)	 = u(y, f(i(y), y» by Lemma 1 RL
 
= u(y, 1) by Axiom 8 LR
 
= pp(y) by Axiom 9 RL
 

Lemma 3: pp(np(z» = 1 

pp(np(z» f(pp(i(np(z»), np(z»	 by Lemma 2 RL = 
f(f(pp(i(i(np(z»», i(np(z»), np(z»	 by Lemma 2 RL = 

= f(f(pp(np(z», i(np(z»), np(z» by Axiom 4 LR 

= f(u(i(np(z», f(np(z), i(np(z»», np(z» by Lemma 1 RL 

= f( u(i(np(z», f( n(z, 1), i(np(z»», np(z» by Axiom 10 LR 
f(u(i(np(z», n(f(z, i(np(z»), f(I, i(np(z»)», np(z» by Axiom 18 LR= 
f(u(i(np(z», n(f(z, i(np(z»), i(np(z»», np(z» by Axiom 2 LR = 

= f(u(i(np(z», n(i(np(z», fez, i(np(z»»), np(z» by Axiom 5 LR 

= 
= 

f(i(np(z», np(z» 
1 

by Axiom 7 LR 
by Axiom 8 LR 

Lemma 4: f(x, 1) = x 

f(25:, 1) = 
= 
= 
= 
= 

f(i(i(x»,l) 
f(i(i(x», i(l» 
i(f(I, i(x») 
i(i(x» 
x 

by Axiom 4 RL 
by Axiom 3 RL 
by Axiom 14 RL 
by Axiom 2 LR 
by Axiom 4 LR 

Lemma 5: np(pp(x» = u(l, np(x» 

np(pp(x» = 
= 
= 
= 
= 

= 
= 
= 
= 
= 

np(u(x, 1» 
np(u(l, x» 
n(u(l, x), 1) 
n(l, u(l, x» 
u(n(I, 1), n(I, x» 
u(np(I), n(l, x» 
u(np(l), n(x, 1» 
u(np(l), np(x» 
u(n(l, 1), np(x» 
u(l, np(x» 

by Axiom 9 LR 
by Axiom 6 LR 
by Axiom 10 LR 
by Axiom 5 LR 
by Axiom 19 LR 
by Axiom 10 RL 
by Axiom 5 RL 
by Axiom 10 RL 
by Axiom 10 LR 
by Axiom 1 LR 

Lemma 6: np(pp(x» = 1 
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£pp(i(y)),y)

Lemma 3 :  pp(np(z)) = 1

pp(np(z))

Lemma 4:

f(x, 1)

Lemma 5 :

np(pp(x))

Lemma 6 :

= u(y, f(i(y), y ) )  by Lemma 1 RL
= u(y, 1 )  by  Axiom 8 LR
= pp(y)  by Axiom 9 RL

= f (pp( i (np(z))) ,  np (z ) )
= f(f(pp(i( i(np(z)))), i ( np (z ) ) ) ,  np(2))
= f( f (pp(np(z)) ,  i(np(2))),  np(z))
= f(u(i(np(z)), f(np(z), i(np(z)))),  np(z))
= f(u(i(np(2)), f(n(z, 1),  i(np(z)))), np(z))
= { f(u( i(np(z)),  n(fz,  i(np(2z))), 1 ,  i(np(z))))), np(z))
= {f(u(i(np(2)), n(f(z, i(np(2))), i(np(z)))),  np(z))
= f(u(i(np(z)), n(i(np(2)), Kz ,  i(np(z))))),  np(z))
= f( i(np(z)),  np(z))
= 1

f(x, 1) =x

f ( i ( i (x) ) ,  1) by Axiom 4 RL
f( i( i (x)),  i ( 1 ) )  by Axiom 3 RL
i(f(1, i ( x ) ) )  by Axiom 14 RL
i(i(x)) by Axiom 2 LR
x by Axiom 4 LR

np(pp(x) )  = u(1,  np(x))

np(u (x ,  1))
np (u (1 ,  x ) )
n (u (1 ,  x ) ,  1 )
n (1 ,  u (1 ,  x ) )
u (n (1 ,  1 ) ,  n (1 ,  x ) )
u(np(1), n (1 ,  x ) )
u (np (1 ) ,  n ( x ,  1 ) )
u(np(1), np(x))
u(n(1, 1 ) ,  np(x))
u(1, np(x))

np(pp(x ) )  = 1

by Axiom 9 LR
by Axiom 6 LR
by Axiom 10 LR
by Axiom 5 LR
by Axiom 19 LR
by Axiom 10 RL
by Axiom 5 RL
by Axiom 10 RL
by Axiom 10 LR
by Axiom 1 LR
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by Lemma 2 RL
by Lemma 2 RL
by Axiom 4 LR
by Lemma 1 RL
by Axiom 10 LR
by Axiom 18 LR
by  Axiom 2 LR
by Axiom 5 LR
by Axiom 7 LR
by Axiom 8 LR



np(pp(x» = u(l, np(x» by Lemma 5 LR
 
= u(np(x), 1) by Axiom 6 RL
 

pp(np(x)) by Axiom 9 RL
 
= 1 by Lemma 3 LR
 

Lemma 7: np(n(pp(z), y» = np(y) 

np(n(pp(z), y»	 = np(n(y, pp(z») by Axiom 5 RL
 
= n(n(y, pp(z», 1) by Axiom 10 LR
 
= n(y, n(pp(z), 1» by Axiom 11 RL
 
= n(y, np(pp(z») . by Axiom 10 RL
 
= n(np(pp(z», y) by Axiom 5 LR
 
= n(l, y) by Lemma 6 LR
 
= n(y, 1) by Axiom 5 RL
 
= np(y) by Axiom 10 RL
 

Lemma 8: f(pp(i(y», np(y» = u(l, f(pp(i(y», np(y») 

f(pp(i(y», np(y» = u(f(pp(i(y», np(y», n(f(pp(i(y», np(y», 1» 
by Axiom 7 RL 

= u(f(pp(i(y», np(y», np(f(pp(i(y», np(y»» 
by Axiom 10 RL 

= u(f(pp(i(y), np(y», np(f(pp(i(y», n(y, 1»» 
by Axiom 10 LR 

= u(f(pp(i(y», np(y», np(f(pp(i(y», n(l, y»» 
by Axiom 5 LR 

= u(f(pp(i(y», np(y», np(n(f(pp(i(y», 1), f(pp(i(y», y»») 
by Axiom 16 LR 

= u(f(pp(i(y», np(y», np(n(pp(i(y», f(pp(i(y», y)) 
by Lemma 4 LR 

= u(f(pp(i(y», np(y», np(f(pp(i(y», y») 
by Lemma 7 LR 

= u(np(f(pp(i(y», y», f(pp(i(y», np(y») 
by Axiom 6 LR 

= u(np(pp(y», f(pp(i(y», np(y») 
by Lemma 2LR 

= u(l, f(pp(i(y», np(y») 
by Lemma 6 LR 

Lemma 9: f(pp(i(y», np(y» =pp(np(i(y)) 
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u(1l, np (x ) )  by Lemma 5 LR
u(np(x), 1 )  by  Axiom 6 RL
pp(np (x ) )  by Axiom 9 RL
1 by Lemma 3 LR

np(pp(x))

Lemma 7 :  np(n(pp(z), y ) )  = np(y)

np(n(y,  pp (z ) ) )  by  Axiom 5 RL
n(n(y, pp (z ) ) ,  1 )  by Axiom 10 LR
n(y, n (pp (z ) ,  1 ) )  by  Axiom 11  RL
n(y, np (pp (2 ) ) )  - by Axiom 10 RL
n(np(pp(z ) ) ,  y) by Axiom 5 LR

np(n(pp(z),  ¥ ) )

N
U

N
 

M
A

N

n(1, y) by Lemma 6 LR
n(y, 1)  by Axiom 5 RL
np(y) by Axiom 10 RL

Lemma 8: {(pp(i(y)), np(y)) = u(1, f(pp(i(y)), np(y)))

f(pp(i(y)), np(y)) = u(Kpp(i(y)) ,  np(y)) ,  n(f{pp(i(y)), np(y)), 1))
by Axiom 7 RL

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), np(y))))
by Axiom  10 RL

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), n(y, 1))))
by  Axiom 10 LR

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), n(1,  ¥))))
by Axiom 5 LR

= u(f(pp(i(y)), np(y)), np(n(Kpp(i(y)), 1),  Kpp(i(y)),  ¥))))
by Axiom 16 LR

= u(f(pp(i(y)), np(¥)), np(n(pp(i(y)), f(pr(i(¥)), ¥))))
by Lemma 4 LR

= u(f(pp(i(y)), np(y)), np(f(pp(i(y)), ¥)))
by Lemma 7 LR

= u(np(f(pp(i(y)), ¥)), f(pp@i(y)), np(y)))
by Axiom 6 LR

= ulnp(pp(y)), f(pp(i(y)), np(y)))
by Lemma 2 'LR

= u(1, f(pp(i(y)), np(y)))
by Lemma 6 LR

Lemma 9 :  {(pp(i(y)), np(y)) = pp(np(i(y)))
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f(pp(i(y», np(y» = u(l, f(pp(i(y»,np(y») by Lemma 8 LR 

= u(f(pp(i(y», np(y», 1) by Axiom 6 RL 

= pp(f(pp(i(y», np(y») by Axiom 9 RL 

= pp(u(np(y), f(i(y), np(y»» by Lemma 1 RL 

= pp(u(f(i(y), np(y», np(y») by Axiom 6 RL 

= u(u(f(i(y), np(y», np(y», 1) by Axiom 9 LR 

= u(f(i(y), np(y», u(np(y), 1» by Axiom 12 RL 

= u(f(iCy), np(y», pp(np(y») by Axiom 9 RL 

= u(f(i(y), np(y», 1) by Lemma 3 LR 

= pp(f(i(y), np(y»)	 by Axiom 9 RL 

= pp(f(i(y), n(y, 1»)	 by Axiom 10 LR 

= pp(f(i(y), n(l, y»)	 by Axiom 5 LR 

= pp(n(f(i(y),	 1), f(i(y), y») by Axiom 16 LR 

= pp(n(i(y), f(i(y), y») by Lemma 4 LR 

= pp(n(i(y), 1»	 by Axiom 8 LR 

= pp(np(i(y»)	 by Axiom 10 RL 

Lemma 10: f(pp(x), np(x» = x 

f(pp(x), np(x»	 = f(u(x, 1), np(x» by Axiom 9 LR
 

= f(u(x, f(i(i(x», i(x»), np(x» by Axiom 8 RL
 

= f(U(K, f(x, i(x»), np(x» by Axiom 4 LR
 

= f(u(f(x, 1), f(x, i(x»), np(x» by Lemma 4 RL
 

= f(f(x, u(l, i(x»), np(x» by Axiom 15 RL
 

= f(f(x, u(i(x), 1», np(x» by Axiom 6 RL
 

= f(f(x, pp(i(x»), np(x» by Axiom 9 RL
 

= f(x, f(pp(i(x», np(x») by Axiom 13 RL 

= f(x, pp( np(i(x»» by Lemma 9 LR 
= f(x, 1) by Lemma 3 LR 

= x by Lemma 4 LR 

Theorem 1: a = f(pp(a), np(a» 

~ = f(pp(a),	 np(a» by Lemma 10 RL 

B.4 Specifications of some other problems 

This section contains the problem descriptions of some of the benchmark problems 
used as examples. Problems not described in the appendix are quoted from literature. 
See the bibliography for sources. 
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f(pp(i(y)), np(y)) u (1 ,  f(pp(i(y)),  np (y ) ) )  by Lemma 8 LR
u( fpp( i (y ) ) ,  np(y) ) ,  1) by Axiom 6 RL
pP(f(pp(i(y)), np(y))) by Axiom 9 RL
pp (u (np (y ) ,  f(i(y), np (y ) ) ) )  by  Lemma 1 RL
pp(u(f(i(y), np (y ) ) ,  np (y ) ) )  by  Axiom 6 RL
u(u(f(i(y), np(y ) ) ,  np(y)) ,  1 )  by Axiom 9 LR
u(f(i(y), np(y) ) ,  u(np(y) ,  1 ) )  by Axiom 12 RL

{I 
I 

O
R 

W
O

N
A

C
H

 
N

N
 

{ 
 [

 
 1

u(f(i(y),  np(y)),  pP(np(y))) by Axiom 9 RL
u(f(i(y), np(y)), 1 )  by Lemma 3 LR
pp(f(i(y), np(y))) by Axiom 9 RL
pp(f( i (y),  n(y, 1))) by Axiom 10 LR
pp(f( i (y) ,  n (1 ,  ¥ ) ) )  by  Axiom 5 LR
pp(n(f(i(y), 1 ) ,  f(i(y), ¥ ) ) )  by Axiom 16 LR
pp(n( i (y) ,  f ( i (y) ,  ¥)))  by  Lemma 4 LR
pp(n(i(y),  1 ) )  by  Axiom 8 LR
pp(np(i(y))) by Axiom 10 RL

Lemma 10:  f{(pp(x), np(x)) = x

f(pp(x), np(x)) = f(u(x,  1 ) ,  np(x)) by Axiom 9 LR
a = f(u(x, f(i(i(x)), i (x ) ) ) ,  np(x)) by Axiom 8 RL

= f(u(x, f(x, i(x))),  np(x)) by Axiom 4 LR
= f(u(f(x, 1), f(x, i(x))), np(x)) by Lemma 4 RL
= {(f(x, u l ,  i ( x ) ) ) ,  np(x)) by Axiom 15 RL
= f(f(x, u(i(x), 1)), np(x)) by Axiom 6 RL
= {(f(x, pp(i(x))), np(x)) by Axiom 9 RL
= f(x, f{pp(i(x)), np(x) ) )  by Axiom 13 RL
= f(x, pp(np( i (x))) )  by Lemma 9 LR
= f(x, 1) by Lemma 3 LR
= x by Lemma 4 LR

Theorem 1 :  a = f(pp(a), np(a))

a = f(pp(a), np(a)) by Lemma 10 RL

B.4  Specifications of  some other problems

This section contains the problem descriptions of some of the benchmark problems
used as examples. Problems not described in  the appendix are quoted from literature.
See the bibliography for sources.
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B.4.1 The	 problem SelfInverse 

Proof that in a ring with x * x = x for all x each element is self inverse with respect to 
the multiplicative operation, that is g(x) = x for all x. 

MODE PROOF 

NAME SelfInverse 

ORDERING XKBO .' 
f:5 > j:4 >	 g:3 > 0:1 > a:l 

EQUATIONS	 j (O,x) = x 
j (g (x),x) = 0 
j (j (x,y),z) = j (x,j (y,z)) 
j (x,y) = j (y ,x) 
f (f (x,y),z) = f (x,f Cy,z» 
f (x,j (y,z» = j (f (x,y),f (x,z» 
f (j (x,y) ,z) = j (f (x,z),f (y,z» 
f (x,x) = x 

CONCLUSION	 g(a) = a 

B.4.2 The problem Fibgroup
 

Show that the following axioms describe a Fibonacci-group of grade 5.
 

MODE COMPLETION 

NAME FibGroup 

ORDERING KBO 
a 6 
b 10 
c 6 
d 6 
e 1 

EQUATIONS	 a (e (x» = d (x) 
b Ca Cx» = e (x) 
c Cb ex» = a ex) 
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B.4 .1  The problem SelfInverse

Proof that i n  a ring with z xz  = z for all  x each element is self inverse with  respect to
the multiplicative operation, that is g(z) = x for all z .

MODE PROOF

NAME Sel f Inverse

ORDERING XKBO -
f : 5  > j : 4  > g :3>  0 :1  > a : l

EQUATIONS j (0 ,x)  = x
j ( g  x ) , x )  =0
jG  ( x , y ) , 2 )  = j ( x , j  ( y , 2 ) )
i ( x y )  = j ( y , x )
f ( f  ( x ,y ) ,2 )  = f ( x , f  (y ,2) )
f ( x ,  (y ,2 ) )  = j ( f  ( x , y ) , f  ( x , z ) )
tf ( j  ( x , y ) , z )  = j ( f  ( x , z ) , f  (y ,2) )
f ( x , x )  = X

CONCLUSION g (a )  = a

B.4 .2  The problem Fibgroup

Show that the following axioms describe a Fibonacci-group of grade 5.

MODE COMPLETION

NAME FibGroup

ORDERING KBO

®
 

S
A

 
U

= 
O

O
= 

O
O

EQUATIONS a (e  ( x ) )  =d  ( x )
b (a  ( x ) )  = e ( x )
c (db ( x ) )  = a ( x )
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d (c (x)) = b (x)
 
e (d (x)) = c (x)
 

B.4.3 The	 problem BoolAssoc 

Show that the conjunctive operation (and) in an arbitrary boolean algebra is associa
tive. 

MODE ?ROOF 

NAME BoolAssoc 

ORDERING LPO 
n > a > o >	 1 > 0 > xO > xl > x2 

EQUATIONS	 0 (x,y) = 0 (y,x) # Commutativity 
a (x,y) = a (y,x) 

a (x,o (y,z)) = 0 (a (x,y),a (x,z)) # Distributivity 
o (x,a (y,z)) = a (0 (x,y),o (x,z)) 

o (x,O) = x # Neutral elements 
a (x,l) = x 

a (x,n (x))	 = 0 # Complement 
o (x,n (x)) = 1 

CONCLUSION a(a(xO,xl),x2) = a(xO,a(xl,x2)) 

B.4.4 The problem Latticel
 

Another problem from the domain of lattice ordered groups.
 

MODE PROOF 

NAME latticel 

ORDERING LPO 
n > u > i >	 f > 1 > a > b > C > d 
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d ( c  ( x ) )
e (d  ( x ) )

b ( x )
c ( x )

B.4 .3  The problem BoolAssoc

Show that the conjunctive operation (and) in  an arbitrary boolean algebra is associa-
tive.

MODE PROOF

NAME Boo lAssoc

ORDERING LPO
n>a>o>1>0>x0>  x1  > x2

EQUATIONS o ( x , y )  = o ( y , x )  # Commutat iv i ty
a ( x , y )  = a ( y , x )

o ( a  ( x , y ) , a  ( x , z ) )  # Dis t r ibut iv i ty
a (o  ( x , y ) , 0  ( x , 2 ) )

a ( x ,0  ( y , 2 ) )
( x , a  ( y , 2 ) )[+

]
[<

] ( x , 0 )  = x # Neutral  elements
a ( x ,1 )  =x

a ( x ,n  ( x ) )  =

[+] ( x  I ( x ) )

| [=
] # Complement

u -

CONCLUSION a (a (x0 , x1 ) , x2 )  = a ( x0 ,a ( x1 , x2 ) )

B.4 .4  The problem Latt icel

Another problem from the domain of lattice ordered groups.

MODE PROOF

NAME l a t t i ce l

ORDERING LPO
n>u> i> f>1>a>b>c>d
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EQUATIONS	 n(x,y) = n(y,x) 
u(x,y) = u(y,x) 
n(x,n(y,z» = n(n(x,y),z) 
u(x,u(y,z» = u(u(x,y),z) 
u(x,x) = x 
n(x,x) = x 
u(x,n(x,y» = x 
n(x,u(x,y») = x 
f(x,f(y,z» = f(f(x,y),z) 
f(1,x) = x 
f(i(x) ,x) = 1 
Hi) = 1 

HHx) = x 
i(f(x,y») = f(i(y),i(x» 
f(x,u(y,z» = u(f(x,y),f(x,z) 
f(x,n(y,z» = n(f(x,y),f(x,z») 
f(u(y,z),x) = u(f(y,x),f(z,x) 
f(n(y,z),x) = n(f(y,x),f(z,x») 
u(a,b) = b 
u(c,d) = d 

CONCLUSION	 u(f(a,c),f(b,d») = f(b,d) 

B.4.5 The	 problem DeMorgan 

Show one of DeMorgan's laws in a Boolean algebra. 

MODE	 PROOF 

NAME	 DeMorgan 

ORDERING	 LPO 
n > a > 0 > 1 > 0 > yO > xO 

EQUATIONS	 0 (x,y) = 0 (y,x) # Commutativity 
a (x,y) = a (y,x) 

a (x,o (y,z) = 0 (a (x,y),a (x,z) # Distributivity 
o (x,a (y,z) = a (0 (x,y),o (x,z» 

o (x,O) = x # Neutral elements 
a (x,i) = x 
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EQUATIONS n(x,y)  = n(y,x)
u(x,y)  = u(y,x)
n (x ,n ( y , z ) )  = n(n(x,y),2z)
u (x ,u ( y , z ) )  = u (u ( x , y ) , z )
u ( x , x )  = x
n (x , x )  = x
u(x,n(x ,y) )
n(x ,u(x ,y) )
£ (x ,£ ( y ,2 ) )
f ( 1 , x )  = x
f ( i ( x ) , x )  =
i ( 1 )  = 1
i ( i ( x ) )  = x
i ( f ( x , y ) )  = £ ( i ( y ) , i ( x ) )
f ( x , u ( y , z ) )  = uw( f ( x , y ) , f ( x , 2 ) )

n
o

n
 

M
R

X

f ( f ( x , y ) , z )
+

f ( x ,n (y , z ) )  = n ( f ( x , y ) , f ( x , z ) )
f (u (y ,2 ) ,x )  = u ( f ( y , x ) , f ( z , x ) )
f (n (y ,2 ) ,x )  = n ( f ( y , x ) , f ( z , x ) )
u (a ,b )  = b
u (c ,d )  = d

CONCLUSION u ( f ( a , c ) , f ( b ,d ) )  = £ (b ,d )

B.4.5  The problem DeMorgan

Show one of DeMorgan’s laws in a Boolean algebra.

MODE PROOF

NAME DeMorgan

ORDERING LPO
n>a>o>1>0>y0>x0

EQUATIONS o ( x , y )  = o ( y , x )  # Commutativi ty
(x ,y)  = a (y ,x)a

a ( x ,o  ( y , 2 ) )  = o ( a  ( x , y ) , a  (x,2z))  # D is t r ibu t i v i t y
o ( x ,a  ( y , 2 ) )  = a ( 0  ( x , y ) , 0  ( x , 2 ) )

o ( x ,0 )  = x ) # Neut ra l  e lements
a ( x ,1 )  = x
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a (x,n (x»	 = 0 # Complement 
o (x,n (x»	 = 1 

CONCLUSION	 a (n (xO),n (yO» = n (0 (xO,yO» # De Morgan 

BA.6 The	 problem Lattice2 

Yet another (hard) problem from the domain of lattice ordered groups. 

MODE	 PROOF 

NAME	 lattice2 

ORDERING	 LPO 
i > f > n > u > 1 > a > b 

ORDERING	 LPO 
n > u > i > f > 1 > a > b 

EQUATIONS n(x,y) = n(y,x) 
u(x,y) = u(y,x) 
n(x,n(y,z» = n(n(x,y),z) 
u(x,u(y,z» = u(u(x,y),z) 
u(x,x) = x 
n(x,x) = x 
u(x,n(x,y» = x 
n(x,u(x,y» = x 
f(x,f(y,z» = f(f(x,y),z) 
fCi,x) = x 

f(i(x) ,x) = 1 

i(i) = 1 
iCiCx» = x 
i(f(x,y» = f(i(y),i(x» 
f(x,u(y,z» = u(f(x,y),f(x,z» 
f(x,n(y,z» = n(f(x,y),f(x,z» 
f(u(y,z),x) = u(f(y,x),f(z,x» 
f(n(y,z),x) = n(f(y,x),f(z,x» 

CONCLUSION	 i(u(a,b» = n(i(a),i(b» 
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a ( x ,n  ( x ) )
o ( x , n  ( x ) )

0 # Complement
1

CONCLUSION a (n  ( x0 ) , n  ( y0 ) )  = n (o  ( x0 , y0 ) )  # De Morgan

B.4 .6  The problem Latt ice2

Yet another (hard) problem from the domain of lattice ordered groups.

MODE PROOF

NAME l a t t i ce?

ORDERING LPO
i > f>n>u>1>a>b

ORDERING LPO
n>u> i> f>1>a>hb

EQUATIONS n (x , y )  = n ( y , x )
u(x,y)  = u(y,x)
n(x,n(y,z) )  = n(n(x ,y) ,z )
u(x ,u(y ,z) )  = u(u(x ,y) ,2)
u (x , x )  = x
n (x , x )  = x
u(x,n(x,y) )  = x
n(x ,u(x ,y) )  = x
f ( x , f ( y , z ) )  = f ( f ( x , y ) , z )
f ( 1 , x )  = x
f ( i ( x ) , x )  = 1
i ( 1 )  = 1
i i ( x ) )  = x
i ( f ( x , y ) )  = f ( i ( y ) , i ( x ) )
f ( x ,u (y ,z ) )  = u ( f ( x , y ) , f ( x , 2 ) )
f ( x , n ( y ,2 ) )  = n ( f ( x , y ) , f ( x , z ) )
f ( u (y , z ) , x )  = u ( f ( y , x ) ,£ (z , x ) )
f ( n ( y ,2 ) , x )  = n ( f ( y , x ) , f ( z , x ) )

CONCLUSION i ( u (a ,b ) )  = n ( i ( a ) , i ( b ) )

97



BA.7 The	 problem Z22 

The axioms describe a large, cyclic group. 

MODE	 COMPLETION 

NAME	 222 

ORDERING	 LPO 
e1 > e > d1 > d > cl > c > b1 > b > a1 > a 

ORDERING	 LPO 
a1 > a > bl > b > cl > c > dl > d > el > e 

EQUATIONS	 a (b (c (x») = d (x) 
b (c (d (x») = e (x) 
c (d (e (x») = a (x) 
d (e (a (x») b (x) 
e (a (b (x») = c (x) 
a (a1 (x» = x 
al (a (x» = x 
b (bl (x» = x 
bl (b (x» = x 
c (cl (x» = x 
cl (c (x» = x 
d (dl (x» = x 
dl (d (x» = x 
e (el (x» = x 
el (e (x» = x 
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B.4 .7  The problem Z22

The axioms describe a large, cyclic group.

MODE COMPLETION

NAME 222

ORDERING LPO
e l  >e>d1 >d>c l1>c>b1 l  >b  > a l  > a

ORDERING LPO
a l  > a > b l  > o >c l  >c>d l  >d  >e l  >e

EQUATIONS Mm ( c  (x)))
{ c  (4d ( x ) ) )

a ( x )
b
c (d  (e  ( x ) ) )
d
e

d
e ( x )
a ( x )

( e  ( a  ( x ) ) )  = b
( a  (b  ( x ) ) )  = €

a (a1  ( x ) )
a l  (a  ( x ) )
b (b i  ( x ) )
b l  (b ( x ) )
c (e l  ( x ) )
c t  ( c  ( x ) )
d (d1  ( x ) )
d i  ( d  ( x ) )
e (et  ( x ) )
e l  ( e  ( x ) )

( x )
( x )

H
o

w
 

U
N

 
H

U
H

N
N

H
M

M
 

M
M

 
M

O
M

 
K

O
M

 
M

X
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