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Abstract 

In this report we formally describe a declarative approach for encoding plan operators in 
proof planning, the so-called methods. The notion of method evolves from the much stud
ied concept tactic and was first used by A. Bundy. Significant deductive power has been 
achieved with the planning approach towards automated deduction, however, the proced
ural character of the tactic part of methods hinders mechanical modification. Although the 
strength of a proof planning system largely depends on powerful general procedures which 
solve a large class of problems, mechanical or even automated modification of methods is 
nevertheless necessary for at least two reasons. Firstly methods designed for a specific type 
of problems will never be general enough. For instance, it is very difficult to encode a gen
eral method which solves all problems a human mathematician might intuitively consider 
as a case of homomorphy. Secondly the cognitive ability of adapting existing methods to 
suit noyel situations is a fundamental part of human mathematical competence. We believe 
it is extremely valuable to computationally account for this kind of reasoning. 

The main part of this report is devoted to a declarative language for encoding methods, 
composed of a tactic and a specification. The major feature of our approach is that the 
tactic part of a method is split into a declarative and a procedural part in order to enable 
a tractable adaption of methods. The applicability of a method in a planning situation 
is formulated in the specification, essentially consisting of an object level formula schema 
and a meta-level formula of a declarative constraint language. After setting up our general 
framework, we mainly concentrate on this constraint language. Furthermore we illustrate 
how our methods can be used in a STRIPs-like planning framework. Finally we briefly 
show the mechanical modification of declaratively encoded methods. An annotated run
time protocol of an example can be found in the appendix. 
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Chapter 1 

Introduction 

So fangt denn alle menschliche Erkenntnis mit An
schauungen an, geht von da zu Begriffen und endigt 
mit Ideen. 

Immanuel Kant, Kritik der reinen Vernunft 

Mathematicians learn during their academic training not only facts like definitions or 
theorems, but also problem-solving know-how for proving mathematical theorems. An im
portant part of this know-how can be described in terms of reasoning methods like the 
diagonalization procedure, the application of a definition, or the application of the homo
morphy property. The main aim of this report is to formalize the concept of a method in 
order to reflect more closely the meaning of the notion method of the informal mathemat
icallanguage. The importance of plausible reasoning in proof search has been pointed out 
by P6lya [24, p. vi]: "There are two kinds ofreasoning, as we said: demonstrative reasoning 
and plausible reasoning. ... In strict reasoning the principal thing is to distinguish a proof 
from a guess, a valid demonstration from an invalid attempt. In plausible reasoning the 
principal thing is to distinguish a guess from a guess, a more reasonable guess form a less 
reasonable guess. ... [plausible reasoning] is the kind of reasoning on which his [a math
ematician's] creative work will depend". In this report we concentrate ourselves exactly 
on the creative part. We try to capture some aspects of plausible reasoning by a proof 
planning process built on top of the methods as plan operators. 

The notion method also stands in a long tradition in human-oriented mechanical the
orem proving. One of the most advanced early proof checking systems is de Bruijn's Auto
math system [4]. The main motivation for this system continues to serve as a guideline 
for nowadays systems: only a small part of mathematical literature today is absolutely 
flawless. To improve this situation, an interactive proof checker should be used in order 
to carry out the meticulous final checking. Automath offers to that purpose an interactive 
environment, where the user must build a proof at a low calculus level. How~er, proving 
theorems at the logical level is very cumbersome. In order to overcome this, more recent 
systems like Nuprl [9], Isabelle [22], and IMPS [10] employ a mechanism called tactic. Tac
tics are programs that enable the user to comfortably manipulate the current proof state. 
One user interaction, namely the call of a single tactic, results in a sequence of calculus
level inference steps. While these systems are finding increasing acceptance and have also 
been put into use with remarkable success, there is one major objection nevertheless: They 
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incorporate little automated deductive support beyond the tactic level. 
In order to provide such an automatic support, Bundy et al. developed in the OYS'IER

CL\\M-system [7] a plan-based approach, where the tactics are extended to methods. A 
method can be viewed as a unit consisting of a procedural tactic and a declarative spe
cification. The latter allows reasoning with methods and in particular enables the use of 
methods as plan operators. These techniques have been applied in particular to problems 
based on mathematical induction. For example, a large part of the heuristic knowledge of 
the Boyer-Moore prover [3] has been encoded into such methods [5]. 

To give an idea of the notion method consider the homomorphy methods. For instance, 
it can be useful to prove the symmetry of the intersection of two binary relations by showing 
that each of the two relations is symmetric. That means in order to show symmetric(p no-) 
it might be a good idea to show symmetric(p) and symmetric(0-) separately and then to 
combine these proofs to a proof of the symmetry of the intersection. The hom1-2 method, 
which will be explained in detail in chapter 5, suggests just this proof idea. 

A homomorphism can occur in very different syntactic shapes. Another version may 
involve a unary function (e.g., the converse function) instead of the binary function inter
section, see the hom1-1 method in section 3.2.5. To handle situations involving a binary 
function as discussed above, the hom1-1 method has to be adapted to hom1-2. One poten
tial criticism is that we should instead construct more general methods which cover large 
classes of problems. Although general methods are definitely needed for effective proof 
planning systems, this by no means excludes the need of modification. It is very difficult, 
for instance, to come up with a single method covering all possible cases which a human 
mathematician would intuitively consider as an example of homomorphy. 

While in Bundy's approach the specification is declarative, the tactic itself is still pro
ceduraL Hence a method cannot be automatically adapted to new situations. However, the 
strength of human reasoning and problem solving depends to a great extent on the ability 
to adapt existing problem solving facilities to related, but not directly fitting situations. 
In order to allow such an automated modification of methods, we have proposed in [18] a 
separation of the tactic into a declaratively and a procedurally represented part. Though 
the separation of procedural and declarative knowledge is widespread in AI systems in 
general, it is not the case in most of the existing automated reasoning systems. As shown 
in [18] this separation leads not only to more natural methods, but practically enables the 
formulation of general meta-level mechanisms which adapt existing methods to suit novel 
situations. In this way, an automated modification needs only to be performed on the 
declarative part, hence it is desirable to store most of the relevant information in this part. 
Only the rest should be encoded in the procedural part. Preferably the procedural part is 
always one of few standard interpreters evaluating the declarative part. However, although 
methods consisting of only a procedural part cannot be adapted, they are not excluded in 
our framework. The work of Giunchiglia and Traverso [14] to represent tactics in a logical 
meta-language has a similar motivation as our work, namely to represent tactfcs in a de
clarative manner in order to allow a mechanical modification. In their approach the whole 
tactic is represented on a logical meta-level, what enables a full declarative representation. 
In our approach only parts of the tactic are represented declaratively, what should enable 
easier transformations in some cases. 

In the next section we summarize the fundamentals for our approach, that is, the 
logic, the natural deduction calculus, and the notion of a tactic we want to employ in the 
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following. In chapter 3 we introduce the key concept of a method. In chapter 4 we show 
how the methods can be used in a planning framework. In the following chapter we discuss 
how methods can be adapted by so-called meta-methods. After the conclusion we present 
an annotated run-time protocol of an example in the appendix. 
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Chapter 2 

Logical Foundations: Calculus and 
Tactics 

Mein teurer Freund, ich rat' Euch drum 
Zuerst Collegium Logicum 

Johann Wolfgang Goethe, Faust I 

In this chapter we introduce the basic machinery, in particular the underlying logic 
POST, our proof format, and the definition of the notion tactic. 

2.1 The Higher-Order Language POST 

A fundamental question to be answered when representing and proving mathematical the
orems concerns the underlying logic. Since the technical mathematical language of a typical 
textbook is essentially a sorted higher-order logic augmented by many special-purpose rep
resentational constructs that are typical for the field ,at hand, for our proof development 
environment il-MKRP [17] a corresponding language called POST [19, 20] has been de
veloped. Since we are mainly interested in applications of standard mathematics, we adopt 
the classical higher-order logic as opposed to a non-standard logic such as intuitionistic lo
gic. In particular, our logic is built on Church's simple theory of types [8] (for an excellent 
introduction to classical higher-order logic, see [2]), enriched by sorts (similar to the way 
first-order logic is extended to sorted first-order logic). 

To keep the presentation simple, we restrict ourselves in this report to an unsorted 
higher-order logic as object language, although we think a sorted version to be much more 
adequate for the practice of mathematical reasoning. 

Formally, we consider POST to be a standard higher-order language as described in 
[2]. Each term of POST has a type, where types are the simple types as introduced by 
Church [8]. There are the basic types t and 0 standing for the individuals and the truth 
values on the one hand. On the other hand functional types are built in the following 
way: if T1, ... , Tn, (j are types then (T1 x ... x rn -+ (j) is the type of the functions from 
T1 x ... X Tn to (j. 

Each constant symbol or variable symbol of a certain type is a term of this type. General 
terms are built up from these by applications and abstractions. If t 1 , ••• ,in are terms of 
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types TI,' •. , Tn and f is a function term of type (TI X ... X Tn -+ 0-), then f(tl, . .. , tn ), the 
application of f to its arguments, is a term of type a. 

If t is a term of type 0- and Xl, .•. , X n are variables of type TI, •.. , Tn , then the expression 
AXI, ... , xn.t, the abstraction of t by Xl, .•• , Xn, is a term oftype (Tl X .•. X Tn -+ 0-). In the 
usual way the quantifiers can be defined using the A-binder, that is, 'Vx.'P is an abbreviation 
for ITAX.'P, with a polymorphic1 constant IT that stands for a function with (truth) value 
t if the argument function is true for all its possible input. :3x.'P is an abbreviation for 
-,'Vx.-,'P. Instead of the type theoretic notion P(x) or Q( x, y) we often use the set-theoretic 
notion X E P or (x, y) E Q as a syntactic variant, but nevertheless always stay within type 
theory. 

Each term of type 0 is called a formula. We assume special function constants in our 
logic standing for the connectives, namely -, of type (0 -+ 0) and 1\, V, '-+, and .-.+ of type 
(0 X 0 -+ 0). In order to indicate the type of a term, we sometimes write it as an index of 
the term, for instance, X o -'(0-1-0)' f(L-I-L)' 

2.2 The Natural Deduction Proof Formalism 

The natural deduction (ND) calculus first proposed by Gentzen in [12, 13] is adopted as 
the basic calculus. Gentzen called his system natural deduction, since the "inference rules 
of the system of natural deduction correspond closely to procedures common in intuitive 
reasoning, and when informal proofs... are formalized within these systems, the main 
structure of the informal proofs can often be preserved." [25]. Concretely, we adopt a 
linearized version of ND proofs introduced in [1]. In this formalism, an ND proof is a 
sequence of proof lines, each of them is of the form: 

Label Derived-~or~ula (Rule pre~ise-lines) 

where Rule is .restricted to a rule of inference in ND, which justifies the derivation of 
the Derived-~or~ulausing forIIl:ulae in pre~ise-lines. Rule and pre~ise-linestogether are 
called the justification of a line. 6. is a finite set of formulae, being hypotheses the derived 
formula depends on. Since a natural deduction proof can also be viewed .as a proof tree, 
we will talk about proof trees as well. 

The set of elementary inference rules we choose are basically those identified by Gentzen. 
We adopt his calculus NIC, plus a pair of symmetric rules handling the disjunction (VEl 
and V Er). The collection of elementary rules adopted is listed in table 2.1. 

Every figure in Table 2.1 represents an inference rule. Proof line schemata (proof 
lines containing meta-variables , with justifications omitted) separated by commas above 
the bar represent preconditions. Meta-variables ~, G, and H can be substituted by any 
formula, 'Vx.Fx , :3x.Fx by any formula with 'V or :3 as the top symbol, where "x" denotes 
the corresponding bound variable. Fa denotes the formula achieved by replacing all free 
occurrences of the variable "x" in Fx by an individual constant "a". The meta-variable 
"a" in 'VE can be substituted by an arbitrary term. For rule 'VI and CHOICE, in addition, 
the following variable conditions must be checked: 

1 AGtually, we employ not only type constants, but also type variables with type inference. Since this does 
not play a major role in this paper, the reader need not bother about this subtlety of the object language. 
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Vz...  Instead of the type theoretic notion P(z)  or @(z,y) we often use the set-theoretic
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Each term of type o is called a formula. We assume special function constants in our
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(0 X 0 — 0). In order to indicate the type of a term, we sometimes write i t  as an index of
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2.2  The Natural Deduction Proof Formalism

The natural deduction (ND) calculus first proposed by Gentzen in (12, 13] is adopted as
the basic calculus. Gentzen called his system natural deduction, since the “inference rules
of  the system of  natural deduction correspond closely to procedures common in intuitive
reasoning, and when informal proofs ... are formalized within these systems, the. main
structure of  the informal proofs can often be preserved.” [25]. Concretely, we adopt a
linearized version of ND proofs introduced in [1]. In this formalism, an ND proof is a
sequence of  proof l ines, each of  them is of  the form: ;

Label AF  Derived-Formula (Rule premise-lines)

where Rule is restricted to  a rule of  inference in ND,  which justifies the derivation of
the Derived- Formula using formulae in  premise-lines. Rule and premise-lines together are
called the justification of a line. A is a finite set of formulae, being hypotheses the derived
formula depends on. Since a natural deduction proof can also be  viewed as a proof tree,
we will talk about proof trees as well.

The set of elementary inference rules we choose are basically those identified by Gentzen.
We adopt his calculus NX, plus a pair of symmetric rules handling the disjunction (VE;
and VE,). The collection of elementary rules adopted is listed in table 2.1.

Every figure in Table 2.1 represents an inference rule. Proof line schemata (proof
lines containing meta-variables, with justifications omitted) separated by commas above
the bar represent preconditions. Meta-variables F ,  G, and H can be substituted by any
formula, Vz.F,, 3z.F; by any formula with V or 3 as the top symbol, where “ x ”  denotes
the corresponding bound variable. F, denotes the formula achieved by replacing all free
occurrences of the variable “x”  in F,  by an individual constant “a” .  The meta-variable
“a”  in  VE can be substituted by an arbitrary term. For rule VI  and CHOICE, in addition,
the following variable conditions must be checked:

! Actually, we employ not only type constants, but also type variables with type inference. Since this does
not play a major role in th is paper, the reader need not bother about this subtlety of  the object language.
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Structural Gentzen Rules: 

6.,F I- G 6. I- 3x.Fx, 6., Fa I- H,
Hyp ----Ded ---------Choice,

6.,F I- F , 6.I-F-G ' 6.I-H 

6. I- F VG, 6., F I- H, 6., G I- H 6., G I-1. 6., -,G I- ..L 
------------CASE, ---IPI ----IP2

6.I-H 6. I- -,G ' 6.I-G 

Non-Structural Gentzen Rules 

6. I- F, 6. I- G 6.I-F 6.I-G 6. I- Fa 6. I- Fa 
-----1\1	 ----vI ----VI ---31-6.-I--F-V-G-.VIt,6.I-FI\G '	 6.I-FvG n 6. I- Vx.Fx 6.1- 3x.Fx 

6.I-FI\G 6.I-FI\G	 6. I- F, 6. I- F - G
----I\EI, ----I\Er, --------E 

6.I-F 6.I-G	 6.I-G ' 

6. I- P V Q, 6. I- -,Q	 6. I- P V Q, 6. I- -,p 6. I- Vx.Fx
--------VEr , --------VEt, ----ye

6.I-P 6.I-Q 6.1- Fa 

6. I- F, 6. I- -,F	 6. I-..L 
-------,E,	 ---..L 

6. I-..L	 6.I-D 

Table 2.1: Elementary Inference Rules 

•	 The variable condition for VI: meta-variable "a" (Eigenvariable in [13]) may not 
occur in Vx.Fx or in any formula in the assumption set 6.. 

•	 The variable condition for CHOICE: meta-variable "a" may not occur in H, or in 
any formula in the assumption set 6.. 

In order to uniformly represent proof plans, we extend the ND proof formalism by 
allowing the Rule slot to be replaced by the name of a method or simply the value "OPEN". 
If a line is justified by a method, it is a part of the current proof plan. Open lines are still 
to be justified in the planning process. A ~ B is a shorthand for A - B 1\ B - A. 

Below is an example, containing two OPEN lines as pending goals awaiting to be ful
filled. 

1.	 1 I- Va.Vx, y.(x, y) E converse(a) ~ (y,x) E a (Hyp) 
2. 2 I- Va.symmetric(a) ~ Vx,y.(x,y) E a - (y,x) E a (Hyp) 
3. 3 I- symmetric(p)	 (Hyp) 
4. 2 I- symmetric(p) ~ Vx, y.(x, y) E P - (y, x) E a (VE 2) 
5. 2 I- symmetric(p) - Vx, y.(x, y) E P - (y, x) E a (I\EI4) 
6.	 2,3 I- Vx, y. (x, y) E P - (y, x) E P (- E 3 5) 
7.	 1,2,3 I- Vx,y.(x,y) E converse(p) - (y,x) E converse(p) (OPEN 1 6) 
8. 1,2,3 I- symmetric(converse(p))	 (OPEN 2 7) 
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Structural  Gentzen Rules:

A,FFG Avr 3z.F,, AF,  +H,  |

—— Hyp, — m — — Ded, Choice,
A,FEFF  A rF=G AFH

A+FFVG,  AFFH,  AGH A ,GFL  AG FL
CASE, —1 IP ,  —IP

AFH AFG AFG

Non-Structural Gentzen Rules

AFF ,  AFG AFF  AFG AFF ,  AFF ,
I ,  vi,  VI,, vi  —— An———_——31

AFFAG AFFVG AFFVG Ar  Vz F, AF  Jz.  Fy,

AFFAG AFFAG AFF ,  AFF  —-G

AFF  OD AFG AFG ow

AFPYV Aka  AFPVQ, A+ -P  AF  Va.F,Q, QE .  Q VE, A r  Wem
AFP ARQ AFF ,

AFF ,  A+~F  E AbL  AF  = (=F)

AbL  AFD AFF

Table 2.1: Elementary Inference Rules

® The variable condition for VI: meta-variable “a” (Eigenvariable in [13]) may not
occur in Vz .Fy or in any formula in the assumption set A .

e The variable condition for CHOICE: meta-variable “a” may not occur in H, or in
any formula in the assumption set A .

In order to uniformly represent proof plans, we extend the ND proof formalism by
allowing the Rule slot to  be replaced by the name of a method or simply the value “OPEN”.
If a line is justified by a method, it is a part of the current proof plan. Open lines are still
to  be justified in the planning process. A = B is a shorthand for A — BA B — A .

Below is an example, containing two OPEN lines as pending goals awaiting to  be ful-
filled.

1 .1  F VouVz,y.(z, y) € converse(c) « (y,z) € 0 (Hyp)
2. 2 FE VYo.symmetric(o) « Vz,  yalz,y) € 0 — (y ,2 )  €E0 (Hyp)
3 .3  + symmetric(p) (Hyp)
4. 2 FE symmetric(p) « Vz, ya(z,y) Ep — (y,2) EC  . (VE 2)
5. 2 F symmetric(p) — Vz,y.(z,y) € p — (y,z)  EO  (AE; 4)
6. 2,3 F Vz, y(z,y) € p—  (y,z) Ep  (— E 3 5)
7. 1,2,3 + Vz,y.{z,y) € converse(p) — (y,z) € converse(p) (OPEN 1 6)
8. 1,2,3 F symmetric(converse(p)) (OPEN 2 7)
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2.3 Tactics 

As indicated in the introduction, it can be very cumbersome and tedious for a user to 
construct a proof at the calculus level. In order to overcome this, the concept of a tactic 
was proposed by Milner et al. [15J. Basically tactics can be seen as derived calculus rules. 
Technically, they are inductively defined as basic calculus level rules or as the application 
of so-called tacticals to existing tactics. 

The view above is too restrictive to including more complicated tactics, therefore in 
our framework a tactic is a function that generates new proof lines and inserts them to 
the current proof. Following the declarative approach proposed in [18J, this function is 
represented in two parts. One part is a set of proof line schemata, that is, proof lines with 
meta-variables. The other part contains a procedure. The whole tactic can then be seen 
as a function with parameters. An application of this function with concrete instances for 
the meta-variables generates new proof lines by applying the procedure to the proof line 
schemata. 

Most commonly the procedure is just one standard interpreter, which basically instan
tiates proof line schemata by binding meta-variables. In other cases, the procedure can be 
a sophisticated theorem prover. Hence the range of possible tactics is very wide, reaching 
from the application of an ND rule to the call of an incorporated theorem prover. Since 
we allow arbitrary proof lines to be added to the current proof state, the correctness of the 
final proof is not ensured a priori, but must be checked by a verifier. 
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2 .3  Tactics

As indicated in the introduction, it can be very cumbersome and tedious for a user to
construct a proof at the calculus level. In order to  overcome this, the concept of  a tactic
was proposed by Milner et al. [15]. Basically tactics can be seen as derived calculus rules.
Technically, they are inductively defined as basic calculus level rules or as the application
of so-called tacticals to  existing tactics.

The view above is too restrictive to including more complicated tactics, therefore in
our framework a tactic is a function that generates new proof lines and inserts them to
the current proof. Following the declarative approach proposed in [18], this function is
represented in two parts. One part is a set of proof line schemata, that is, proof lines with
meta-variables. The other part contains a procedure. The whole tactic can then be seen
as a function with parameters. An  application of  this function with concrete instances for
the meta-variables generates new proof lines by applying the procedure to the proof line
schemata.

Most commonly the procedure is just one standard interpreter, which basically instan-
tiates proof line schemata by  binding meta-variables. In  other cases, the procedure can be
a sophisticated theorem prover. Hence the range of  possible tactics is very wide, reaching
from the application of  an  ND  rule to the call of  an incorporated theorem prover. Since
we allow arbitrary proof lines to  be added to  the current proof state, the correctness of the
final proof is not ensured a priori, but must be checked by a verifier.



Chapter 3 

A Declarative Approach toward 
Methods 

Studiorum finis esse debet ingenii directio ad solida 
et vera, de iis omnibus quae occurrunt, proferenda 
judicia. 

Rene Descartes, Regulre ad Directionem Ingenii 

3.1 The General Notion of Method 

A central concept of knowledge based reasoning in mathematics is that of a method. A 
method contains a piece of knowledge for solving or simplifying problems or transforming 
them into a form that is easier to solve. Therefore methods can be quite general, such as 
finding proofs by acase analysis or complete induction, or the advice to expand definitions. 
On the other hand, domain specific methods are also very common, for instance a clearly 
described proof sketch for proving a theorem by diagonalization. 

In our framework a method can basically be divided into a declarative and a procedural 
part. By discerning the declarative part of a method, it is now possible to formulate meta
level methods adapting the declarative part of existing methods and thus come up with 
novel ones. 

Concretely, we define a method as consisting of the following slots: 

•	 Declarations: A signature that declares meta-variables used in the method, 

•	 Premises: Schemata of proof lines which are used by this method as assumptions, 

•	 Conclusions: Schemata of proof lines which this method is designed to prove, 

•	 Constraint: A formula in the constraint language to be described in section 3.2.3. 
This is used to formulate further restrictions on the premises and the conclusions, 
which can not be formulated in terms of proof line schemata. 

• Tactic: It is split into two components: 
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et vera, de iis omnibus quae occurrunt, proferenda
Jjudicia.

René Descartes, Regula ad Directionem Ingenii

3 .1  The General Notion o f  Method

A central concept of knowledge based reasoning in mathematics is that of a method. A
method contains a piece of knowledge for solving or simplifying problems or transforming
them into a form that is easier to  solve. Therefore methods can be quite general, such as
finding proofs by a case analysis or complete induction, or the advice to  expand definitions.
On the other hand, domain specific methods are also very common, for instance a clearly
described proof sketch for proving a theorem by diagonalization.

In  our framework a method can basically be divided into a declarative and a procedural
part. By  discerning the declarative part of a method, i t  is now possible to  formulate meta-
level methods adapting the declarative part of existing methods and thus come up with
novel ones.

Concretely, we define a method as consisting of the following slots:
/

e Declarations: A signature that declares meta-variables used in the method,

e Premises: Schemata of  proof  lines which are used by  this method as assumptions,

Conclusions: Schemata of proof lines which this method is designed to prove,

Constraint: A formula in the constraint language to be described in section 3.2.3.
This is used to formulate further restrictions on the premises and the conclusions,
which can not be formulated in terms of proof line schemata.

Tactic: I t  is split into two components:
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- Declarative content: This slot is currently restricted to schemata of partial 
proofs. For pure procedural methods, it can be empty. 

Procedural content: This slot contains a procedure which produces subproofs 
connecting the premises and the conclusions of the method using the declarative 
content. 

The procedural part of a method ranges from a simple standard interpreter which 
basically instantiates the declarative part of the tactic to a complex reasoning procedure 
working by itself. 

Some methods only suggest a proof sketch. They produce possible subgoals without 
fully specifying the way for arriving at the conclusions from the premises or vice versa. 

3.2 Formal Definitions 

In the next section we first formally define the syntax of a method. The corresponding 
semantics is explained then in section 3.2.2. 

3.2.1 Syntax of a Method 

In this section we will concentrate on the description of the components which can be 
easily explained: the declarations, the premises, the conclusions, and the tactic with its 
declarative and its procedural part. For the sake of completeness we will only mention the 
last, more complex component, the constraint, and devote section 3.2.3 to it. The section 
is concluded by a formal definition of the notion of a method. 

3.2.1.1 Declarations 

A method normally contains meta-variables that are instantiated upon application. In 
order to distinguish constants and meta-variables, all meta-variables have to be declared 
in the declaration slot. A declaration for a meta-variable is a variable symbol followed by 
a sort symbol. Formally it is a set 

D = {x:s I x E yM and 5 E SORTM
} 

where Y M is the set of meta-variables and SORTM is the set of sort symbols as defined 
in definition 3.2 below. 

3.2.1.2 Tactic 

In our model a tactic is split into two parts: An ND proof schema with meta-variables, 
called the declarative content, and a piece of program, called the procedural content. This 
procedural part can be a standard interpreter which creates new proof lines by instantiating 
the declarative content and then inserts them into the current proof state. It can also be 
an arbitrary piece of procedural knowledge, e.g., an automated theorem prover. 

Formally a tactic is a pair (Tdecl, Tproc) , where Tded is a finite list of schematic proof lines 
of the form (ad Hi I- Fi .h, or a meta-variable standing for such a list. Here the ai are 
labels of proof lines. The Hi are either a list of proof line labels standing for the formulae 
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— Declarative content: This slot is currently restricted to schemata of partial
proofs. For pure procedural methods, i t  can be empty.

— Procedural content: This slot contains a procedure which produces subproofs
connecting the  premises and the conclusions of  the method using the declarative
content.

The procedural part of a method ranges from a simple standard interpreter which
basically instantiates the declarative part of the tactic to a complex reasoning procedure
working by itself.

Some methods only suggest a proof sketch. They produce possible subgoals without
fully specifying the way for arriving at the conclusions from the premises or vice versa.

3.2  Formal Definitions

In the next section we first formally define the syntax of a method. The corresponding
semantics is explained then in section 3.2.2.

3.2.1 Syntax of  a Method

In this section we will concentrate on the description of the components which can be
easily explained: the declarations, the premises, the conclusions, and the tactic with its
declarative and its procedural part. For the sake of completeness we will only mention the
last, more complex component, the constraint, and devote section 3.2.3 to  i t .  The section
is concluded by a formal definition of the notion of a method.

3 .2 .1 .1  Declarations

A method normally contains meta-variables that are instantiated upon application. In
order to distinguish constants and meta-variables, all meta-variables have to be declared
in the declaration slot. A declaration for a meta-variable is a variable symbol followed by
a sort symbol. Formally i t  is a set

D = {z:s|  z € VM  ands € SORT}

where VM is the set of  meta-variables and SORT“ is the set of  sort symbols as defined
in definition 3.2 below.

3.2.1.2 Tactic

In our model a tactic is split into two parts: An ND  proof schema with meta-variables,
called the declarative content, and a piece of  program, called the procedural content. This
procedural part can be a standard interpreter which creates new proof lines by instantiating
the declarative content and then inserts them into the current proof state. I t  can also be
an arbitrary piece of procedural knowledge, e.g., an automated theorem prover.

Formally a tactic is a pair (T=, T?r°), where T%  is a finite list of schematic proof lines
of the form (o;) H;  FF; J; , o r  a meta-variable standing for such a list. Here the a;  are
labels o f  proof  lines. The  H;  are either a list o f  proof  line labels standing for t he  formulae
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Figure 3.1: The Structure of Methods 

of these lines or a meta-variable representing such a list. The Fi are formula schemata, 
i.e., formulae containing meta-variables. The Ji are justifications or the corresponding 
meta-variables. Tproc is a program, which generates new proof lines by interpreting Tdecl. 

3.2.1.3 Premises and Conclusions 

Intuitively, the premises slot contains a list of proof line schemata which are used to prove 
the lines in the conclusions slot. In most cases both slots are subsets of the proof lines in 
the declarative content of the tactic. The proof lines can be marked with an additional 
sign, either "EEl" or "e". These signs have no effect on the constraint language and play 
only a role in the planning process (compare chapter 4). 

3.2.1.4 Constraint 

The more complex applicability condition of a method is formulated in the constraint. We 
devote section 3.2.3 to the constraint language. 

3.2.1.5 The Definition of a Method 

Now we can formally define the notion of a method which is informally introduced above. 
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of these lines or a meta-variable representing such a list. The F; are formula schemata,
i.e., formulae containing meta-variables. The J; are justifications or the corresponding
meta-variables. 77m is a program, which generates new proof lines by interpreting T* ,

3.2.1.3 Premises and Conclusions

Intuitively, the premises slot contains a list of proof line schemata which are used to  prove
the lines in the conclusions slot. In most cases both slots are subsets of the proof lines in
the declarative content of the tactic. The proof lines can be marked with an additional
sign, either “@” or “©” .  These signs have no effect on the constraint language and play
only a role in the planning process (compare chapter 4).

3.2.1.4 Constraint

The more complex applicability condition of a method is formulated in the constraint. We
devote section 3.2.3 to the constraint language.

3 .2 .1 .5  The  Definition o f  a Method

Now we can formally define the notion of  a method which is informally introduced above.
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Definition 3.1: A method M is a 6-tuple 

M = (D,Pre,C,Con,Tdecl,Tproc) , 

The components of the method are: 

•	 D is the set of variable declarations, 

•	 Pre and Con are the premises and conclusions, 

•	 C is a formula of the constraint language C£ representing the constraint of the 
method M, 

•	 Tdecl and Tproc is the declarative content and the procedural content of the tactic of 
the method M. 

3.2.2 Semantics of a Method 

A method consists of two major parts: the specification and the tactic (cf. figure 3.1). Since 
the specification is used in planning and the tactic in the execution of the plan operator, 
a method's semantics can also be divided into two parts: its semantics as a plan operator 
and as a tactic. The semantics as a plan operator is defined in chapter 4, where STRIPs-like 
plan operators are constructed from the specification. 

The semantics as a tactic was already described in section 2.3, with the meta-variable 
bindings resulting from the planning process the procedure can be applied to the instanti
ated declarative content constructing new proof lines. 

3.2.3 The Constraint Language CL 

As described previously, the applicability of a method is in the first place specified in terms 
of schemata for the premises and the conclusions. Furthermore, the constraint slot contains 
additional meta-level application conditions. 

First we motivate our definition of the constraint language by discussing some criteria 
for an effective specification language in a proof planning environment: 

1.	 Expressiveness: Since we want to check the applicability of methods, in our language 
it must be possible to express all properties of the objects in the current proof state. 

2.	 Adaptability: The specification language should support automatic modification of 
methods by meta-methods. 

3.	 Tractability: Since the specifications play the role of plan operators in a proof planning 
environment and the applicability of an operator must be effectively computable, the 
specification language must be decidable. 

4.	 Structured Representation: The specification language should not only allow to for
mulate decidable application conditions of methods, but it should also be efficiently 
computable. Therefore the conditions should be structured in order to check the most 
important conditions first. 
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Definition 3.1: A method M is a 6-tuple

M = (D ,  Pre,C,Con, Teel, Prec) ,

The components of  the method are:

e D is the set of  variable declarations,

e Pre and Con are the premises and conclusions,

e C is a formula of the constraint language CL representing the constraint of the
method M ,

eo Tdecl and TProc is the declarative content and the procedural content of  the tactic of
the method M .

3.2.2 Semantics of  a Method

A method consists of two major parts: the specification and the tactic (cf. figure 3.1). Since
the specification is used in  planning and the tactic in the execution of the plan operator,
a method’s semantics can also be divided into two parts: i ts semantics as a plan operator
and as a tactic. The semantics as a plan operator is defined in chapter 4, where STRiPs-like
plan operators are constructed from the specification.

The semantics as a tactic was already described in section 2.3, with the meta-variable
bindings resulting from the planning process the procedure can be applied to the instanti-
ated declarative content constructing new proof lines.

3.2.3 The Constraint Language CL

As described previously, the applicability of a method is in the first place specified in terms
of schemata for the premises and the conclusions. Furthermore, the constraint slot contains
additional meta-level application conditions.

First we motivate our definition of the constraint language by discussing some criteria
for an effective specification language in a proof planning environment:

1. Ezpressiveness: Since we want to check the applicability of methods, in our language
it must be possible to express all properties of the objects in the current proof state.

2. Adaptability: The specification language should support automatic modification of
methods by  meta-methods.

3. Tractability: Since the  specifications play the role of  plan operators in  a proof  planning
environment and the applicability of an operator must be effectively computable, the
specification language must be decidable.

4. Structured Representation: The specification. language should not only allow to  for-
mulate decidable application conditions of methods, but i t  should also be efficiently
computable. Therefore the conditions should be structured in  order to  check the most
important conditions first.
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There are several approaches to relate the object language and the meta-language: Both 
languages can overlap, the object language can be included into the meta-language (see e.g. 
[26]), or both can be strictly separated from each other. Here we follow the third approach. 
While the object logic is a variant of the simple type theory as described in section 2.1, 
our constraint language is a variant of first-order predicate logic. Our language fulfills the 
first criterion, since it includes a broad range of functions and predicates manipulating the 
entities of the underlying object level. 

The second criterion for the specification language is achieved since the constraint is kept 
declarative. Furthermore we have a clearly defined model-theoretic semantics to describe 
the applicability of methods, so that meta-methods can operate on the constraint taking 
the applicability criteria into consideration. 

In order to guarantee the third criterion, the decidability, the following restrictions are 
imposed on our constraint language: First we only allow quantification over finite lists of 
objects of the object language, Le., terms, types, proof lines, inference rules, justifications, 
positions, and substitutions. Second all function and predicate symbols are assigned a fixed 
interpretation that can be effectively computed. To further improve efficiency the different 
categories of objects of the object level are reflected as different sorts at the meta-Ievel to 
avoid unnecessary instantiations. 

The fourth criterion is not achieved in the constraint language itself. Rather it is 
achieved by separating the schemata of proof lines and the logical restrictions formulated in 
the constraint language, so we have a structured formalism for representing plan operators. 

We also have two other concepts deviating from the standard definition oflogics: Firstly 
we need a binding mechanism. As we have mentioned, the free meta-variables of the 
method are bound by the planner via matching. But it is also possible to assign a value to 
remaining unbound ones. This can be necessary, for instance when a new formula should 
be constructed by evaluating the constraint. Therefore we include a binding mechanism 
"f--", which is interpreted as a combination of a predicate and an assignment known from 
procedural languages. We describe it in definition 3.6. The second non-standard constituent 
is the construct eval specifying the applicability of a method when only an execution of the 
tactic binds all meta-variables. 

3.2.3.1 The Syntax of CL 

Based on the discussion above, the syntax of our constraint language is a sorted first-order 
language with fixed function declarations. Since the primary use of the language is to make 
meta-level statements over proof objects used in a method at the object level, we have non
standard constituents in our syntax: The different categories of objects at the object level 
are reflected as different sorts at the meta-level, for instance, terms of the object level are 
reflected as meta-level constants of sort term. We will only allow quantifications over finite 
lists because the method language should be decidable. 

In the following the general concepts of a sorted first-order language are described. The 
concrete restrictions to guarantee the tractability are introduced later. 

We denote a symbol representing a meta-object with an M in its superscript. 

Definition 3.2: A sorted signature EM for the meta-Ievel of a language is an 8-tuple 

(VM, FM, pM, SORTM ,.5, SDM,FDM, PDM), where 
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There are several approaches to relate the object language and the meta-language: Both
languages can overlap, the object language can be included into the meta-language (see e.g.
[26]), or both can be strictly separated from each other. Here we follow the third approach.
While the object logic is a variant of the simple type theory as described in section 2.1,
our constraint language is a variant of first-order predicate logic. Our language fulfills the
first criterion, since i t  includes a broad range of functions and predicates manipulating the
entities of the underlying object level.

The second criterion for the specification language is achieved since the constraint is kept
declarative. Furthermore we have a clearly defined model-theoretic semantics to describe
the applicability of methods, so that meta-methods can operate on the constraint taking
the applicability criteria into consideration.

In order to guarantee the third criterion, the decidability, the following restrictions are
imposed on our constraint language: First we only allow quantification over finite lists of
objects of the object language, i.e., terms, types, proof lines, inference rules, justifications,
positions, and substitutions. Second all function and predicate symbols are assigned a fixed
interpretation that can be effectively computed. To  further improve efficiency the different
categories of objects of the object level are reflected as different sorts at the meta-level to
avoid unnecessary instantiations.

The fourth criterion is not achieved in the constraint language itself. Rather i t  is
achieved by separating the schemata of proof lines and the logical restrictions formulated in
the constraint language, so we have a structured formalism for representing plan operators.

We also have two other concepts deviating from the standard definition of logics: Firstly
we need a binding mechanism. As we have mentioned, the free meta-variables of the
method are bound by the planner via matching. But it is also possible to assign a value to
remaining unbound ones. This can be necessary, for instance when a new formula should
be constructed by evaluating the constraint. Therefore we include a binding mechanism
“« ”  which is  interpreted as a combination of a predicate and an assignment known from
procedural languages. We describe i t  in  definition 3.6. The second non-standard constituent
is the construct eval specifying the applicability of a method when only an execution of the
tactic binds all meta-variables.

3.2.3.1 The Syntax of  CL

Based on the discussion above, the syntax of our constraint language is a sorted first-order
language with fixed function declarations. Since the primary use of the language is to  make
meta-level statements over proof objects used in a method at the object level, we have non-
standard constituents in our syntax: The different categories of objects at the object level
are reflected as different sorts at the meta-level, for instance, terms of the object level are
reflected as meta-level constants of  sort term. We will only allow quantifications over finite
lists because the method language should be decidable.

In the following the general concepts of a sorted first-order language are described. The
concrete restrictions to guarantee the tractability are introduced later.

We denote a symbol representing a meta-object with an M in  its superscript.

Definition 3.2: A sorted signature L*™ for the meta-level of a language is an 8-tuple
(VM FM PM  SORTM,s ,  SDM, FD“ ,  PD“ ) ,  where
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•	 V M is a set of variables, 

•	 FM is a set of function symbols, 

•	 pM is a set of predicate symbols, 

•	 SORTM is a set of sort symbols, 

•	 S is a function s: V M -+ SORTM
, which assigns a variable symbol v E V M a sort 

symbol s(v) E SORTM
• Rather than s('/)) = s, we use the notation v:s, 

•	 SD M is the set of subsort declarations of the form sl ~ S2 where Sl' s2 E SORTM
, 

•	 FD M is a set of function declarations. 
A function declaration is a pair (I,sl X ••• X Sn -+ s) written as f-ES1 X ••. x So -+ s 
where f E FM and s, Si E SORTM for 1 ~ i ~ n. 

•	 PDM is a set of predicate declarations. 
A predicate declaration is a pair (P, sl x ... x srn) written as P-Es1 X ••• X Srn with 
P E pM and si E SORTM for 1 ~ i ~ m. Different from other predicates, the 
equality == is defined for every sort, i.e. ==-Es X s. Another special construct is the 
binding predicate ~, which is defined for every sort. 

We assume infinitely many variables in each sort. 

Example: I;M is a sorted signature, if 

•	 the set of variables V M = {Vi liE IN}, 

•	 the set of constants FM = {g, f, c} with the constants 9 of arity 2, f of arity 1 and c 
of arity 0, 

•	 the set of predicates pM = {==}, 

•	 the set of sorts SORTM = {var, const, term}, 

•	 the variables with the sorts S(Vl) =var, S(V2) =const, S(V3) =term, etc., 

•	 the subsort declarations SD M = {var ~ term, const ~ term} declaring that constants 
and variables are subsorts of terms, 

•	 the function declarations FD M = {g-Eterm X term -+ term, f -Eterm -+ term, c-Econst} 
and 

•	 the predicate declarations SD M = {==-Evar X var, ==-Econst X const, ==-Eterm X term}. 

Now we define the sorted terms of our language as usual. 

Definition 3.3: Let I;M be a sorted signature. The terms of sort s for the signature I;M, 

designated by T~, are inductively defined as follows: 

(i) v E T~, if .s(v) ~ s, 
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VM is a set of  variables,

FM  is a set of function symbols,

PM  is a set of predicate symbols,

SORT“ is a set of sort symbols,

s is a function 5 :  VM — SORT”, which assigns a variable symbol v € VM a sort
symbol s(v)  € SORT". Rather than s (v )  = s, we use the notation v:s,

SD is the set of subsort declarations of the form s i  C sp where sı,59 € SORT,

FD“  is  a set o f  function declarations.
A function declaration is a pair ( f , s ı  X +++  X sp — s) written as f<s ;  X - - -Xsy  = s
where f € FM  and s,s; € SORT“ for 1 < i  < mn.

PD“  is a set of predicate declarations.
A predicate declaration is a pair (P,sj X : ++  X sm) Written as P<sy X - -+  X sm with
P € PM and si € SORT for 1 < i < m.  Different from other predicates, the
equality = is defined for every sort, i.e. =<s X s. Another special construct is the
binding predicate « ,  which is defined for every sort.

We assume infinitely many variables in each sort.

Example: ¥M  is a sorted signature, if

the set of  variables VM = {v;  | i € IN} ,

the set of  constants FM  = {g ,  f ,  c }  with the constants g of  arity 2, f of  arity 1 and ¢
of  arity 0 ,

the set of predicates PM  = {= } ,

the  set o f  sorts SORT = {var, const, te rm} ,

the variables with the sorts s(v;) = var, s(v2) = const, s(v3) = term, etc.,

the subsort declarations SD  = {var C term, const © term} declaring that constants
and variables are subsorts of  terms,

the function declarations FD  = {g<term x term — term, f<term — term, c<const}
and

the  predicate declarations SD*™ = {=<var X var ,  =<const  X const ,  =< te rm X term}.

Now we define the sorted terms of our language as usual.

Definition 3.3: Let £ *  be a sorted signature. The terms of  sort s for the signature TM,
designated by TZ ,  are inductively defined as follows:

® ve  THM, if  s(v) Cs,
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(ii)	 f(tl, ... ,tn ) E T~\ if f has a function declaration f~sl x ... X Sn -+ r, r k 5 and 
ti E T~ for 1 ~ i ~ n. 

I 

The set of all terms is defined as TM = UseSORTM T~ . 

Example: Suppose the sorted signature is defined as in the example above. Then we have 
V3 E T~rm' therefore f(V3) E T term because of the function declaration for f, f~term -+ 

term. Also c E T term , because of const k term, and finally, when we apply the function 
declaration of g, g~term X term -+ term to f(V3) and c, we can conclude that g(J(V3)'C) is 
.	 T MIn term' 

Now we define the set of well-formed formulae. Our definition of a formula differs from 
the standard one, since we allow only quantification over finite lists of terms and because 
of the special binding predicate "~". 

Definition 3.4: The set of well-formed formulae, WFFM , for a given signature I;M is 
inductively defined (In order to distinguish connectives and quantifiers in the constraint 
language from those in the object language different symbols are used). The logic con
nectives and quantifiers are listed in groups (iii)-(v) in decreasing order of the binding 
priority. 

(i)	 If P E pM, P~Sl x ... X Sn is a sort declaration for the predicate symbol P E I;M, 

and ti E T~ for 1 ~ i ~ n, then P(t1, ... ,tn ) E WFFM 
• Also T,J.. E WFFM 

, T 
I 

stands for truth and J.. for falsehood. 

(ii)	 If x E yM with the sort 5 and t E T~, then (x ~ t) E WFFM 
• 

(iii)	 If if! E WFF M 
, then ('" if!) E WFF M 

• 

(iv)	 If if!1, if!2 E WFFM 
, then (if!l 0 if!2) E WFFM 

, for 0 E {& , I}· 

(v)	 If t E T~t(S)' x:s E Y M and if! E WFFM , then (I\tx:s.if!) E WFFM and (Vtx:s.iI!) E 

WFFM 
• 

The implication if!l => if!2 is a short-hand for'" if!l I if!2. 

Example: With the terms given above and .s(V4) = list(term), we can build the formula: 

I\V4 
z:term.c=z I'" c=g(J(z),c). 

3.2.3.2 The Semantics of CL 

The semantics of CL describes the applicability criterion of a method. Before giving formal 
definitions, let us first examine the semantics of the binary binding predicate ,,~" which is 
basically a non-logical construct. The semantics of "~" should consider the following: First 
we do not want to alter the binding resulting from the matching in the planning process, 
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(il) f l t i , . . . , t n )  € TH ,  if f has a function declaration f<s i  X - - - x  sq — r , r  Cs  and
t i  € Tg  f o r1  < i<  mn.

The set of  all terms is defined as T = Js.gogrpm TE".

Example: Suppose the sorted signature is defined as in the example above. Then we have
v3 € T{gm, therefore f(vs) € T i ,  because of  the function declaration for f ,  f<term —
term. Also c € T{Z,,, because of  const C term, and finally, when we apply the function
declaration of g,  g<term X term — term to f(v3) and ¢ ,  we can conclude that g( f(v3), c) is
in T im:

Now we define the set of well-formed formulae. Our definition of a formula differs from
the standard one, since we allow only quantification over finite lists of terms and because
of the special binding predicate “«—”,

Definition 3.4: The set of well-formed formulae, WFF™, for a given signature ZM is
inductively defined (In order to distinguish connectives and quantifiers in the constraint
language from those in the object language different symbols are used). The logic con-
nectives and quantifiers are listed in groups (iii)—(v) in decreasing order of the binding
priority.

(i) If P € PM,  P<sy  X - - -  X sp is a sort declaration for the predicate symbol P € X ,
and ¢; € Ts  for 1 < i  < nm, then P(t1, . . . , tn)  € WFFM, Also T ,L  € WFFM, T
stands for truth and L for falsehood.

(ii) If z € VM  with the sort s and t € T * ,  then (z — t )  € WFFM,

(iii) If ® € WFFM, then ( ~  3) € WFFM,

(iv) If ® , ,®,  € WFF“”, then (®;  0 ®,) € WFFM  foro € {&, | } .

(v) I f t e  Tics)» z:s € VM  and ® € WFFH,  then (Alz:s.®) € WFFM and (V'z:5.9) €
WEFFM.

The implication ®, = ®;  is a short-hand for ~ ®; | ®,.

Example: With the terms given above and s(v4) = list(term), we can build the formula:

A”  ziterm.c=z | ~ c=g( f(z), c).

3.2.3.2 The Semantics o f  CL

The semantics of CL describes the applicability criterion of a method. Before giving formal
definitions, let us first examine the semantics of the binary binding predicate “—”  which is
basically a non-logical construct. The semantics of “«~” should consider the following: First
we do not want t o  alter the binding resulting from the matching in the planning process,
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since we assume that this has a higher priority than those specified in the constraint. In 
other words only variables not bound by this matching should be bound by the constraint. 
Second a disjunction should work like a case analysis with respect to the bindings, that is, 
all bindings made by "f-" in a left side of a disjunction should be removed form the actual 
binding when interpreting the right-hand side. In contrast, a conjunction should propagate 
the bindings to all subparts and the remaining constraint. 

Furthermore, semantics is only defined for closed formulae. Technically speaking this 
means that all variables in a constraint must be bound either by a quantification or by an 
assignment. A method is not applicable when an unbound variable is encountered during 
applicability check. 

First we give the definition of an interpretation. 

Definition 3.5: Let ~M be a signature. A ~M -interpretation I, is a pair (1J, I) where 1J 
is a nonempty set (to be defined later) called the domain of I, and I is an interpretation 
function that assigns: 

• to every function symbol f E FM of arity n a function fI E 1Jn -+ 1J, 

• to every predicate symbol p E pM of arity n a predicate ~ E 1Jn. 

For every sort 's E SORTM exists a non-empty set 1Js. The domain 1J is the union of all 
these domains 1Js, Le. 1J = USESORTM 1)s. Furthermore 1Jr ~ 1Js , if r ~ s is a subsort 
declaration. We also assume that if a term t has sort s, then tI,cP is in 1Js. A well-sorted 
term f(tl, ... ,tn ) should satisfy that (ti,cp, ... ,t;"CP) is in the domain of fI. 

Deviating from the standard definition of a value of a formula Wunder an interpretation 
function I and an assignment cp, denoted by wI,cP, which is usually a truth value in {t, f}, 
we define it as a truth-value assignment pair in {t,f} X F p (VM ,1JS )' where F p (VM ,1JS ) 

is the set of all partial functions from V M to 1)s. The second component of such pairs is 
needed to keep track of the bindings. 

The following definition specifies the semantics of the constraint language. Recall that 
this language is used to formulate the ~pplicability condition of a method. Starting from an 
assignment 'P given by the planner, all bindings are accumulated in the second component of 
the truth-value assignment pairs. The method is applicable when the interpretation of the 
constraint results in t in the first component and no variable specified in the declaration slot 
remains unbound, otherwise it is not applicable. In the following we denote the domain 
of the partial function 'P, where 'P is defined, by Dom( 'P), Var( t) denotes the set of all 
variables of a term t. 

Definition 3.6: Let cp be an assignment, which is a partial function mapping variables of 
sort s to elements of 1Js. vVe define the value of a formula Wunder the assignment cp and 
the interpretation function X, denoted by q;I,cp, recursively. 

The value of the terms are interpreted as usual in the standard Tarskian model-theoretic 
semantics: 

(1) When Wis a term f(tl, .. " tn): 

WI,cP = fI (ti'cp, ... , t;"cp) , 
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since we assume that this has a higher priority than those specified in the constraint. In
other words only variables not bound by this matching should be bound by the constraint.
Second a disjunction should work like a case analysis with respect to  the bindings, that is,
all bindings made by “«—” in a left side of a disjunction should be removed form the actual
binding when interpreting the right-hand side. In  contrast, a conjunction should propagate
the bindings to  all subparts and the remaining constraint.

Furthermore, semantics is only defined for closed formulae. Technically speaking this
means that all variables in a constraint must be bound either by a quantification or by an
assignment. A method is not applicable when an unbound variable is encountered during
applicability check.

First we give the definition of an interpretation.

Definition 3.5: Let ¥™ be a signature. A LM-interpretation I ,  is a pair (D,Z) where D
is a nonempty set (to be defined later) called the domain of I ,  and Z is an interpretation
function that assigns:

e to  every function symbol f € FM  of arity n a function fZ € D "  — D ,

® to  every predicate symbol p € PM  of  arity n a predicate p*  € D " .

For every sort s € SORT” exists a non-empty set Ds. The domain D is the union of all
these domains Ds,  i.e. D = UsesORTM Ds. Furthermore Dy C Ds,  f r  C s is a subsort
declaration. We also assume that if a term t has sort s, then t*” is in Ds. A well-sorted
term f(t1,...,%n) should satisfy that (¢2%,...,#Z%) is in the domain of ff.

Deviating from the standard definition of a value of a formula ¥ under an interpretation
function Z and an assignment , denoted by 2+ ,  which is usually a truth value in {t,f},
we define i t  as a truth-value assignment pair in { t , f }  x Fp(V*,  Ds), where F,(VM, Ds)
is the set of all partial functions from V*  to Ds. The second component of such pairs is
needed to  keep track of the bindings.

The following definition specifies the semantics of the constraint language. Recall that
this language is used to formulate the applicability condition of a method. Starting from an
assignment ¢ given by  the planner, all bindings are accumulated in  the second component of
the truth-value assignment pairs. The method is applicable when the interpretation of  the
constraint results in t in  the first component and no variable specified in the declaration slot
remains unbound, otherwise i t  is not applicable. In the following we denote the domain
of the partial function ¢ ,  where ¢ is defined, by Dom(¢p), Var(t) denotes the set of  all
variables of  a term t.

Definition 3.6: Let ¢ be an assignment, which is a partial function mapping variables of
sort s to  elements of  Ds. We define the value of  a formula ¥ under the assignment ¢ and
the interpretation function Z,  denoted by ¥T¥,  recursively.

The value of the terms are interpreted as usual in  the standard Tarskian model-theoretic
semantics:

(1) When ¥ is a term f(t1,...,%n):

OTe = FH,  9) ,
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(2)	 When -W is an atom P(t1,"" tn ) and p is not the assignment predicate ".--": 

I {(t, <p), if / ti'<P, ••• , t~,<p) E pr,
-W ,<P = \ 

(f, <p) , otherwise. 

(3) When -W is a variable	 x of sort s: 

-WI,tp = <pe x) E 'Vs, 

(4) When -W has the form (x .-- t): 

[(x=t)f'tp if x E Dom(<p ), 

(t,<pu {x 1-1 tI,tp}) if x ~ Var(t) and x ~ Dom(<p) 
and Var(t) ~ Dom(<p), 

(f, <p) otherwise. 

In the first case the assignment is interpreted as the equality predicate since the variable is 
already bound. A binding is given to a variable in the second case, which is the main goal 
of this construct. If the variable x recursively occurs in the term t, then the as~ignment 

cannot be properly performed. 

(5) When -W has,the form"" <1>: 

(f, <p) , if <1>I,tp = (t, <p) ,
-wI,tp == 

{ (t, <p), if <1>I,tp = (f, <p). 

The value of the logical connectives & and I are determined by lazy evaluation: 

(6) 'When -W has the form	 <1>1 & <1>2: 

<1>I,tp' if <1>I,tp - (t <p')
-wI,tp = 2' 1 - , , 

{ (f, <p') , if <1>f'tp = (f, <p') . 

(7) When -W has the form	 <1>1 I <1>2: 

;r,.I,tp if <1>I,tp - (f u/)
'*'2' 1 - 'r ,

q[I ,tp = 
{ (t, <p'), if <1>i'<p = (t, <p') . 

Note that when the second part of a disjunction is interpreted, the bindings are restored to 
the bindings used before the first part was interpreted in order to undo the bindings made 
in the first part. 
The quantifiers range over terms representing finite lists. 
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(2) When Y is an atom p( t1, . . . , t . )  and p is not the assignment predicate “«" :

g le  — ( t , 9 ) ,  i f  ( £2 , . . . ,  15 ° )  e p? ,

(f, 0 ) ,  otherwise.

(3) When VU is a variable z of sort s:

Gi  = o(z) € Ds,

(4) When ¥ has the form (z « t):

[(z=t)]F* i f z € Dom(g),

gle = ( t ,  pu  { z+  73)  if z ¢ Var(t) and z ¢ Dom(yp)
and Var(t) © Dom(g),

{f, ©) otherwise.

In the first case the assignment is interpreted as the equality predicate since the variable is
already bound. A binding is given to a variable in the second case, which is the main goal
of this construct. If the variable x recursively occurs in the term t ,  then the assignment
cannot be properly performed.

(5) When U has-the form ~ ®:

gle  — (f,  ©) , i f D I  = ( t ,  ©)  3

(t,  0 ) ,  if  81% = (f, 0 ) .

The value of the logical connectives & and | are determined by lazy evaluation:

(6) When U has the form ©, & ®,:

7 ,  / I ,

UI  | 23%,  if 87% = ( t , ¢ ) ,
{ f , ¢ ) ,  if 82° = ( f , ¢ ) .

(7) When W has the form ®; | ® :

ple = | 83, if a1= ( f , ¢ ' ) ,

( t , ¢ ) ,  if 87% = ( t , ¢ ) .

Note that when the second part of a disjunction is interpreted, the bindings are restored to
the bindings used before the first part was interpreted in order to  undo the bindings made
in the first part.
The quantifiers range over terms representing finite lists.
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(8) When Whas the form Vtx:s.iP: 

(t, <p) , if tI,,/> = (db.' ., dn ) ,
 

Var(t) ~ Dom(<p),
 
x ~ Var(t),
 

W
I 

,,/> = {x 1--+ di } g; rp, 1 ~ i ~ n, and 
there is a least index i with iPI,,/>u{x..-d;} = (t, <pI) for some <pI. 

(f, <p) otherwise. 

(9) When Whas the form I\t x :sJI'!: 

W
I 

,,/> = 

(t, <p) ,if tT,,/> = (dl , ••• , dn ) , 

Var(t) ~ Dom(<p), 
x ~.Var(t), 

{x 1--+ dd g; rp, 1 ~ i ~ n, and 
for all i there is a <pI such that 4?I,,/>U{x..-di} = (t, <pI) . 

(f, <p) otherwise. 

Example: For constructing a resolution proof by an automatic theorem prover the clause 
normal form of formulae must be computed. In this process it is necessary to push a 
negation, -,( 4?2I V 4?22), -,( iP 2I 1\ iP 22 ) into non-atomic formulae resulting in -,4?2I 1\ -,4?22, 
-,4?2I V -,4?22, respectively. This can be achieved using the pushneg method given in fig
ure 3.2. Assume that in the planning process an assignment <p = {iPI 1--+ UVb} is made, 
where u and b are two constants (The bindings for the other meta-variables H, J, etc. are 
omitted for simplicity). When interpreting the constraint of the pushneg method, the first 
three parts of the conjuction, that is, the test whether the formula is not atomic and the 

1--+first two assignments result in (t, <PI) , where <PI = <p U {iP2I 1--+ -.u, 4?22 -.b}. Interpret
ing the first part of the disjunction results in [h +- V& conj( iPI)f''/>l = (f, <PI U {h 1--+ V}), 
which means that the second part of the disjunction must be computed. It is evaluated 
with the binding <Pb that is, the binding made in the first disjunction part, {h V},1--+ 

is not further considered. The interpretation of [h +- 1\ &disj(4?1)f''/>l results in (t, <P2), 
where <P2 = <PI U {h 1--+ I\}, which means that the last part of the constraint must be inter
preted: [4?2 +- application(h, (iP21 , iP 22 ) )]I,,/>2 = (t, <P2 U {4?2 1--+ -.u 1\ -.b}). So the method is 
applicable and a new proof line with the formula -.a 1\ .,b is inserted into the current proof. 
Note that the binding for the variable h was used while interpreting the last part of the 
constraint. 

Now we examine the second non-standard construct eval. This is necessary since we 
allow more procedural methods, for which the effect cannot be adequately described in a 
declarative way. For instance, consider a procedure stripping off all universal quantifiers 
successively from the front of a given formula until the head of the formula is no more a 
universal quantifier. Here we have the constraint 

all(prlnformula(Lpre )) &; rv all(prlnformula(Leon )), 

where L pre is a meta-variable for the proof line in the premises of the method and Leon is a 
proof line in the conclusions. The meta-variable L eon cannot be bound until the procedural 
part of the tactic is executed. 
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(8) When ¥ has the form \/*z:s.®:

[ ( t p ) ,  i f  17% = (dy , . . . ,d , ) ,
Var(t) C Dom(yp),
z ¢ Var(t),

The = { zd } C p,1<i<n, and
there is a least index £ with $7U{#~4} = (t,¢’) for some ¢ ' .

| (f,¢) otherwise.

(9) When ¥ has the form A‘z:s.®:

( ( t ,  ® )  i f  the = (da, . .  ‚ dn) ’
Var(t) C Dom(g),
z £. Var(t),
{z—> d i }  Lp ,1< i<m,  and
for all i there is a ¢’  such that 7 #{e—di}  = (+ ) .

p I  = +

| ( f , )  otherwise.

Example: For constructing a resolution proof by an automatic theorem prover the clause
normal form of formulae must be computed. In this process i t  is necessary to  push a
negation, - (® , )  V ®22), -(®21 A B22) into non-atomic formulae resulting in —Pg; A =Boo,
—®21 V =Py ,  respectively. This can be achieved using the pushneg method given in fig-
ure 3.2. Assume that in the planning process an assignment ¢ = {® ;  — a V b} is made,
where a and b are two constants (The bindings for the other meta-variables H,  J ,  etc. are
omitted for simplicity). When interpreting the constraint of the pushneg method, the first
three parts of the conjuction, that is, the test whether the formula is not atomic and the
first two assignments resulti n  (t, 1 ) ,  where 91 = YU{®2  — a ,  ®99 + Ob}. Interpret-
ing the first part of the disjunction results in [h — V & conj(®1)]*sor = (f,  01 U { h  — V}),
which means that the second part of the disjunction must be computed. It is evaluated
with the binding ¢1 ,  that is, the binding made in the first disjunction part, { h  = V},
is not  further considered. The interpretation of [h — A & disj(®1)]””? results in ( t ,  pa),
where 92 = 1 U {h  — A} ,  which means that the last part of  the constraint must be inter-
preted: [®2 — application(h, (221, ®22))]T92= (t, 02 U {®2 — =a A =b}). So the methodi s
applicable and a new proof line with the formula —a A -b  is inserted into the current proof.
Note that the binding for the variable h was used while interpreting the last part of the
constraint.

Now we examine the second non-standard construct eval. This is necessary since we
allow more procedural methods, for which the effect cannot be adequately described in a
declarative way. For instance, consider a procedure stripping off all universal quantifiers
successively from the front of a given formula until the head of the formula is no more a
universal quantifier. Here we have the constraint

all(prinformula(L,.)) & ~ all(prinformula( Lor ) ,
where L„-e is a meta-variable for the proof  line in the premises of  the  method and Leon is  a
proof line in the conclusions. The meta-variable L, ,  cannot be  bound until the procedural
part of  the tactic is executed.
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Method: pushnegl 

Declarations 

L1 , L2:prln 
J:just 
h:const 
H :Iist(prln) 
<J?21, <J?22: term 
<J?1, <J?2:appl 

eLl 
f'J atom( <J?1) & 
<J?2l ..- ...., lst(applargs( <J?1)) & 
<J?22 ..- ....,2nd(applargs( <J?1)) & 
((h..- V&conj(<J?l)) I (h..- A&disj(<J?l)))& 
<J?2 ..- application(h, (<J?2b <J?22)) 

Premises 

Constraint 

Conclusions ffiL 2 

(L 1 ) HI- ....,<J?1 (J) 
(L 2 ) HI- <J?2 (pushneg L1 ) 

schema  interpreter 

Declarative 
Content 
Procedural 
Content 

Figure 3.2: The pushneg method 

There are similar cases, for instance when the underlying procedural tactic carries out 
indeterministic operations, such that the interpretation of the constraints cannot bind some 
meta-variables. 

To overcome this drawback, we include a top-level binary construct eval. It is intended 
to split the constraints in two parts: Some constraints that can be computed before the 
tactic is applied and constraints that can only be evaluated after the tactic is applied. 
Technically, it takes as arguments two formulae, <J?1 and <J?2' The semantics of the constf'uct 
is as follows: First <J?f'<.p is interpreted, if this results in f (in the first component), the method 
is not applicable, if the result is t, then the tactic is executed. The execution of the tactic 
part normally creates extra bindings, accumulated in 1/;. The value of <J?f,<.pu1/! is calculated 
after the test application of the tactic has terminated. The method is applicable if the first 
component of this value is t. 

In our example the constraint can be written as: 

eval(all(prlnformula(L pre )), N all(prlnformula(L con ))). 

Definition 3.7: A constraint for a method M is either a formula in WFFM
, or it is of 

the form eval( <J?1, <J?2), where <J?1 and <J?2 are formulae in WFFM
• 

l-,lst(applargs(<Th)) is an abbreviation for application(-" listcons(listfirst(applargs(<PI)), ())) and 
-,2nd(applargs(<PI)) for application(-', listcons(listfirst(listrest(applargs(<PI)), ()))), (<P21 , <P 22 ) abbre
viates listcons(<P21 , listcons(<P22 , ())). 
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Method : pushneg*
Ly ,  La:prin
J:just
h:const
H:list(prin)
®,1, G22:term
®; ,  ®;:appl

Premises ol ,
~ a tom(® , )  &
Bg; + —1st(applargs(d,)) &

Constraint ®22 — —2nd(applargs(®,)) &
(Ch  V& conj(®1)) | ( h  — A & disi(®1))) &
®, — application(h, (P21, ®22))

Conclusions BL
Declarative (Li)  HF -® ,  (J)

Declarations

Content (L )  H+®;  (pushneg L ; )
Procedural sch _ int t o r
Content ema — interprete

Figure 3.2: The pushneg method

There are similar cases, for instance when the underlying procedural tactic carries out
indeterministic operations, such that the interpretation of the constraints cannot bind some
meta-variables.

To overcome this drawback, we include a top-level binary construct eval. It is intended
to split the constraints in  two parts: Some constraints that can be computed before the
tactic is applied and constraints that can only be evaluated after the tactic is applied.
Technically, i t  takes as arguments two formulae, ® ;  and ® ; .  The semantics of  the construct
is as follows: First ole is interpreted, i f  this results in  f ( in the first component), the method
is not applicable, if the result is t ,  then the tactic is executed. The execution of the tactic
part normally creates extra bindings, accumulated in %. The value of 23“UY is calculated
after the test application of the tactic has terminated. The method is applicable if  the first
component of this value is t .

In our example the constraint can be written as: .

eval(all(prinformula(Lpre)),  ~ a l l (p r in fo rmu la(Lon  ))).

Definition 3 .7 :  A constraint for a method M is either a formula in WFF“ ,  or it is of
the form eval(®,, ®,), where ®; and ®,  are formulae in  WFFM.

1-1st(applargs(®:)) is an  abbreviation for application(—, listcons(listfirst(applargs(®:)),())) and
-2nd(applargs(®:)) for application(-,l istcons(listfirst(l istrest(applargs(®1)),(}))), (®21, $22 )  abbre-
viates listcons(®21, listcons(®22, ())).
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3.2.3.3 The fixed interpretation at the meta-level 

Up to now we have given the syntax and semantics of a sorted first-order language with 
finite quantification. The intended application of our meta-language is the specification 
of applicability criteria for methods. First we assume therefore a fixed model restricted 
to the domain of object level logical entities, namely terms, types, proof lines, proof line 
justifications, inference rules, subterm positions, and substitutions. Second the different 
categories of objects at the object level are reflected as different sorts at the meta-level to 
avoid unnecessary instantiations through sort restrictions, so we consider a fixed set of sorts, 
namely term, abstr, appl, const, var for terms and its subclasses, type for types, prln for proof 
lines, just for justifications of proof lines, ir for inference rules, pos for positions, and sub for 
substitutions. Moreover we consider finite lists of these objects. Third the functions and 
the predicates at the meta-level have a fixed interpretation: they are standard primitives 
for manipulating the objects at the object level. The restriction to a fixed interpretation 
for the meta-language guarantees a decidable constraint language. We elaborate on these 
three points successively below. 

First, let us define the fixed model. We denote the set of terms of the object level by 

1Jterm = 1Jappl U 1Jabstr U Dvar U 1Jconst, 

which is divided into the set of term applications 1Jappi, term abstractions 1Jabstr, variables 
1Jvan and constants 1Jconst. Furthermore we have as constants the set of all types 1Jtype , 

proof lines 1Jprln , justifications 1Jjust, inference rules 1Jir, subterm positions of the terms 
1Jpos, and substitutions on the terms 1Jsub' 

1Jsimple = 7)term U U 1Js , 
SET 

with T = {type,prln,just, ir,pos, sub}. Furthermore we have also all finite lists build upon 
these objects in our signature: 

7)list = U 1Jlist(s) , 
SETypes 

where 1Jlist(S) designates the set of all finite lists of objects in 1Js where s E Types = 
TU {term, abstr, appl, const, var}. All these objects together constitute our interpretation 
domain 

1J = 1Jsimple U 1Jlist, 

Second we consider the fixed set of sorts. The division of the object level domain is 
directly reflected in our sort system. Therefore we define the fixed sorts as follows: 

S::rm = {term, appl, var, const, abstr}. 

and 
S~mple = S::rm U {type, prln,just, pos, sub, ir} 

and 
SM - U {Iist(s)}list 

SES~"'Ple 
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3.2.3.3 The fixed interpretation at the meta-level

Up to now we have given the syntax and semantics of a sorted first-order language with
finite quantification. The intended application of our meta-language is the specification
of applicability criteria for methods. First we assume therefore a fixed model restricted
to the domain of  object level logical entities, namely terms, types, proof lines, proof line
justifications, inference rules, subterm positions, and substitutions. Second the different
categories of objects at the object level are reflected as different sorts at the meta-level to
avoid unnecessary instantiations through sort restrictions, so we consider a fixed set of  sorts,
namely term, abstr, appl, const, var for terms and its subclasses, type for types, prin for proof
lines, just for justifications of  proof lines, i r  for inference rules, pos for positions, and sub for
substitutions. Moreover we consider finite lists of these objects. Third the functions and
the predicates at the meta-level have a fixed interpretation: they are standard primitives
for manipulating the objects at the object level. The restriction to a fixed interpretation
for the meta-language guarantees a decidable constraint language. We elaborate on these
three points successively below.

First,  let us define the fized model. We denote the set of terms of the object level by

Dierm = Dappt  U Dabstr U Dyer U Deonst

which is divided into the set of term applications Dapp ı ,  term abstractions Daps ı r ,  variables
Dyar ,  and constants Dons .  Furthermore we have as constants the set of all types Diype,

proof lines Dyin ,  justifications Dust ,  inference rules Dj,  subterm positions of  the terms
Dpos,  and substitutions on the terms Dy .

Dsimple = Derm U U Ds,
seT

with T = {type,prin,  just ,  i r ,pos, sub}. Furthermore we have also all finite lists build upon
these objects in our signature:

Di ist  = U Di ist (s)>
SET ypes

where Di;;4(s) designates the set of all finite lists of objects in Ds where s € Types =
T U {term, abstr, appl, const, var}. All these objects together constitute our interpretation
domain

D= Dsimple U Diist,

Second we consider the fired set of sorts. The division of the object level domain is
directly reflected in our sort system. Therefore we define the fixed sorts as follows:

Sian = {term, appl, var, const, abs t r } .

and
Simple = Sierm U {type, prin, just,  pos,  sub,  i r }

and
s&=  U {list(s)}

seSMs imp le
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constituting the set of sort symbols: 

SORTM = S:tmple U S~t· 

As mentioned in definition 3.5, the interpretation of a term t E Ttt is an element of Vs for 
all s E Types. Objects of the sorts prln, just, and ir stand for proof lines, justifications, and 
inference rules of the ND calculus, respectively. Since terms are further subdivided into 
applications, abstractions, variables, and constants, the sort term, has the corresponding 
subsorts appl, abstr, var, and'const. 

Third the use of a fixed set of functions and predicates can be motivated by the intended 
application of the meta-language: We want to make statements about the underlying object 
language, in our case, ND proofs with POST formulae. Therefore we choose a set of 
selectors and constructors for the different objects like proofs, inference rules, proof-lines, 
types, terms, substitutions, and lists ofthese objects. Our language and the whole approach 
is not restricted to the following functions as long as the interpretation of a formula is always 
decidable. 

We use the following functions and relations with a fixed interpretation: 

For proofs, proof lines, justifications, etc.: The actual proof state in our planning 
process is stored in cprf, a constant that has the function declaration cprf-Elist(prln). 

We can also manipulate proof lines. A proof line 1 has the form (a) H l- F J 
and the justification J has the form rei'), where H, I' are lists of proof lines, F is a 
formula, J is a justification and r is an inference rule (cf. section 2.2). The following 
accessors are given: prlnhypsT(l) =H with the function declaration prlnhYPs-Eprln 
list(prln), prlnformulaI(l) = F having the function declaration prlnformula-Eprln 
term, prlnjustI(l) = J with the function declaration prlnjust-Eprln - just, justruleI(J) 
= r with the function declaration justrule-Ejust - ir,and justlinesI (J) = [' with the 
function declaration justlineS-Ejust - list(prln). 

For terms: Furthermore we have primitives for manipulating terms: 

newconstT(r) with the function declaration newconst-Etype - const gives a new con
stant of type rand newvarI (r) with the function declaration newvar-Etype - var gives 
a new variable of type r. We get the type of a term with termtype-Eterm - type. 

termocc~(tl, t2) with function declaration termoccs-Eterm X term - list(pos) gives 
a list of positions of occurrences of term tl in t2. We ,can get all occurences of 
variables in a term by the accessor termvars-Eterm - list(pos). termatposT(t,p) with 
the function declaration termatpos-Eterm X pos - term gives the subterm at position 
p in the term t. For instance, termatpos(J(g( x, y), z), [11]) = x. termrploccs-Eterm x 
term X term - term has the following interpretation: termrploct~(tl,t2,t3) replaces 
all free occurences of tl in t2 with the term t3. 

The most general unifier and the most general matcher for two terms can be computed 
with the functions termmgU-Eterm Xterm - subst and termmgm-Eterm X term - subst. 

We also have predicates atom,impl,neg,conj,disj,eqv,all,ex-Eterm, with the interpreta
tions: 
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constituting the set of sort symbols:

SORT" = SU Si .

As mentioned in definition 3.5, the interpretation of a term t € TZ! is an element of Ds for
all s € Types. Objects of the sorts prin, just, and ir stand for proof lines, justifications, and
inference rules of the ND calculus, respectively. Since terms are further subdivided into
applications, abstractions, variables, and constants, the sort term, has the corresponding
subsorts appl, abstr, var, and const.

Third the use of  a fized set of  functions and  predicates can be  motivated by  the intended
application of the meta-language: We want to  make statements about the underlying object
language, in our case, ND proofs with POST formulae. Therefore we choose a set of
selectors and constructors for the different objects like proofs, inference rules, proof-lines,
types, terms, substitutions, and lists of these objects. Our language and the whole approach
is not restricted to  the following functions as long as the interpretation of  a formula is always
decidable.

We use the following functions and relations with a fixed interpretation:

For proofs, proof lines, justifications, e tc . :  The actual proof state in our planning
process is stored in cprf, a constant that has the function declaration cprf<list(prin).

We can also manipulate proof lines. A proof line | has the form (a)  HFF  J
and the justification J has the form (1) ,  where H , I ’  are lists of proof lines, F is a
formula, J is a justification and r is an inference rule (cf. section 2.2). The following
accessors are given: prinhyps?(l) = H with the function declaration prinhyps<prin —
list(prin), prinformula® (7) = F having the function declaration prinformula<prin —
term, prinjust?(l) = J with the function declaration prinjust<prin — just, justrule?(J )
= r with the function declaration justrule<just — ir,  and  justlines?(J )  = I ’  with the
function declaration justlines<just — list(prin).

For terms:  Furthermore we have primitives for manipulating terms:

newconst?(7) with the function declaration newconst<type — const gives a new con-
stant of type 7 and newvar?(r) with the function declaration newvar<type — var gives
a new variable of  type 7 .  We get the type of  a term with termtype<term — type.

termoccs® (1,12) with function declaration termoccs<term X term.— list(pos) gives
a list of positions of occurrences of term #; in #3. We can get all occurences of
variables in a term by the accessor termvars<term — list(pos). termatpos?(t,p) with
the function declaration termatpos<term X pos — term gives the subterm at position
p in the term ¢ .  For instance, termatpos( f(g(z,  y ) ,z),[ 1  1]) = z .  termrploccs<term x
term X term — term has the following interpretation: termrplocés?(t1,%2,13) replaces
all free occurences of t ,  in ta with the term ts.

The most general unifier and the most general matcher for two terms can be computed
with the functions termmgu<term x term — subst and termmgm<termx term — subst.

We also have predicates atom,impl,neg,conj,disj,eqv,all,ex<term, with the interpreta-
tions:
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atomI(F) =t iff F is an atom. eqvI(F) =t iff F is an equivalence. 
impII(F) =t iff F is an implication. aIlI(F) =t iff F is a universally 
negI(F) = t iff F is a negation. quantified formula. 

conl(F) =t iff F is a conjunction. exI(F) =t iff F is an existentially 
disl(F) = t iff F is a disjunction. quantified formula. 

For applications: As a special case ofterms, we can create an application t(tl, ... , tn) us
ing applicationI (t, 1) with the function declaration application -<Eterm X list(term) -+ appl 
where 1 = (tl"'" tn) is a list of terms. For an application we can project on the 
function using applfunc-<Eappl -+ term or on the arguments using applargs-<Eappl -+ 

list(term) such that applfuncI(t(tI, ... ,tn)) = t, and applarg~(t(tl,... ,tn)) = 
(tl, ... ,tn). 

For abstractions: It is also possible to create an abstraction with abstraction-<Evar x 
term -+ abstr with the following arguments: abstractionI(x,J) = AX.j. The selectors 
for abstractions are: abstrscope with the function declaration abstrscope-<Eabstr -+ 

term giving the scope of the abstraction, i.e., abstrscopeI (AX.j) = j, and abstrvar 
with the function declaration abstrvar-<Eabstr -+ var projecting on the abstracted vari
able of an abstraction, abstrva,x(Ax.j) = x. The basic rule of beta-reduction is also 
incorporated as a function betareduce-<Eabstr x term -+ term with the interpretation: 
betareduceI (Ax.j, g) = {x 1-+ g} j. The notation {x 1-+ g} j means that all occurences 
of x in j are replaced by g. A list of all variables in a term bound by abstractions 
can be computed using abstrboundvarS-<Eterm -+ list(var). 

For positions: The subterms can be selected by using positions, also known as occur
rences. The positions are constructed by the empty position []-<Epos or recursively by 
poscons-<Enat X pos -+ pos.2 The two selectors are posfirst-<Epos -+ nat, posrest-<Epos -+ 

pos. Furthermore we have a function posappend -<E pos X pos -+ pos with the following 
interpretation: Suppose that p = [nl n2 nil and p' = [ni n~ ... nkJ, then: 
posfirstI(p) = nI, and posrestI(p) = [n2 ni] and posappendI(p,p') = [nIn2 ... ni 

I I I ] n l n2" .nk , 

For types: Types can be recursively generated using itype, otype-<Etype interpreted as types 
t and o. Complex types can be generated using typeabstr-<Elist(type) x type -+ type 
interpreted as: 

The selectors for types are typedomain, typerange-<Etype -+ type with the interpretation 

typedomainI(TI x ... X Tn -+ T) = (Tb.'" Tn ), 

and 

For substitutions: Substitutions have as primitives {}-<Esubst interpreted as the empty 
substitution, substcompose-<Esubst x subst -+ subst interpreted as the composition 

2 nat is the standard sort for natural numbers, which is only used for the positions. 
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atom?(F)= t  iff F i s  an atom. equ l (F )= t  iff F is an equivalence.
imp f (F )= t  iff F isan implication. a l® (F )= t  iff F i s  a universally
negZ(F) = t  iff F is  a negation. quantified formula.

con j f (F )= t  iff F i s  a conjunction. ex ’ (F )= t  iff F is an existentially
d is j f (F)= t  iff F i s  a disjunction. quantified formula.

For applications: As a special case of terms, we can create an application ¢(¢1,...,%,;) us-
ing application( t , / )  with the function declaration application <termx list(term) — appl
where | = (t1,. . . ,1,) is a list of terms. For an application we can project on the
function using applfunc<appl — term or on the arguments using applargs<appl —
list(term) such that applfunc?(t(y,...,t,)) = t ,  and applargs® (t(2, . . Hin )  =
( tye .  s tn )

For abstractions: It is also possible to create an abstraction with abstraction<var x
term — abstr with the following arguments: abstraction(z, f )  = Az.f. The selectors
for abstractions are: abstrscope with the function declaration abstrscope<abstr —
term giving the scope of the abstraction, i.e., abstrscope?(Az.f) = f,  and abstrvar
with the function declaration abstrvar<abstr — var projecting on  the abstracted vari-
able of an abstraction, abstrvar®(Az.f)  = x.  The basic rule of beta-reduction is also
incorporated as a function betareduce<abstr x term — term with the interpretation:
betareduce’(\z.f,g) = { z  — g } f .  The notation { z  — g } f  means that all occurences
of z in f are replaced by g. A list of all variables in a term bound by abstractions
can be computed using abstrboundvars<term — list(var).

For positions: The subterms can be selected by using positions, also known as occur-
rences. The positions are constructed by the empty position []<pos or recursively by
poscons<nat X pos — pos.? The two selectors are posfirst<pos — nat,  posrest<pos —
pos. Furthermore we have a function posappend <pos X pos — pos with the following
interpretation: Suppose that p = [nny  . . .n ; ]  and p’  = [n{n} . . .n } ] ,  then:
posfirst’(p) = ny, and posrest?(p) = [ny...n;]  and posappend?(p,p’) = [n iny . . .n ;

For types: Types can be recursively generated using itype, otype<type interpreted as types
¢ and o. Complex types can be generated using typeabstr <list(type) x type — type
interpreted as:

typeabstr? ( (T1 , . . . ,  Ta), T) = TL X +++  X Tp  ST.

The selectors for types are typedomain, typerange<type — type with the interpretation

typedomain? (7; Xo  eX Tp  =T )= { (T1 , . - sTn ) ,

and
typerange” (ry X+ + tXTp—~T)=T ,

For substitutions: Substitutions have as primitives {}<subst interpreted as the empty
substitution, substcompose<subst x subst — subst interpreted as the composition

2na t  is t he  standard sor t  for natural numbers, which is  on ly  used for the positions.
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of two substitutions, substaddcomp~var X term X subst -- subst with the following 
interpretation: 

substaddcompT(x, t, 0") = {x 1-+ t} U 0", 

ad<i.ing a new component to a substitution. Furthermore we can restrict a substitution 
in its domain by substrestrict~subst X list(var) -- subst with the meaning: 

where 1 = (Xl,"" x n ). With the predicate substdomain~var x subst we can check 
whether a variable is in the domain of a substitution and with substcodomain-Eterm X 

subst whether a term is in the codomain of a substitution. The function substapply~ 

subst X term -- term applies a substitution to a term by simultaneously replacing the 
domain variables in the term with the corresponding terms of the codomain. 

For lists: Lists can be constructed recursively with O~list(s) interpreted as the empty 
list3 and tistcons~s X list(s) -- list(s) interpreted as adding an element of sort s at 
the front of a list, and listappend~list(s) X list(s) -- list(s) interpreted as appending 
two lists. The selectors are as usual listfirst~list(s) -- s interpreted as -giving the 
first element of a given list, and listrest~list(s) -- list(s) interpreted as giving the list 
without the first element of a given list. 

3.2.4 Decidability of the Constraint Language 

A main criterion for the method language is its tractability, which strongly depends on 
the decidability of the constraint language. When we have the special case of an eval
constraint, the termination can not be guaranteed because there can be nonterminating 
procedural program code in the procedural part of a tactic. Such tactics should be checked 
for applicability only with great care and with the help of additional mechanisms, for 
instance the application of such a procedure should be resource bounded. Since we assume 
that these constraints occur very rarely, we restrict our attention to the constraints without 
an eval and prove the decidability of the resulting constraint language. 

Theorem (Decidability): If all variables of the constraints are bound by matching the 
premises and conclusions against the proof lines occuring in the actual proof state, then the 
interpretation of the constraint terminates with (t, <.p) or (f, rp) as value, where rp is a partial 
assignment function. 

Proof: First we prove the decidability for the atomic formulae. When the constraint is an 
atom of the form P(tl," ., tn ), then we have a fixed interpretation for pr and since the ti, 
1 ::; i ::; n, are computable, we can decide whether the relation pI holds or not. 

For compound formulae with a negation, a conjunction and a disjunction as connective, we 
can also decide if the formula holds or not, by induction. 

3We assume that we have different constants of the empty list of the different sorts. In the following we 
denote all these different constants with the same symbol. 
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of two substitutions, substaddcomp<var X term X subst — subst with the following
interpretation:

substaddcomp?(z,t,0) = { z  — t }  U 7,

adding a new component to  a substitution. Furthermore we can restrict a substitution
in i ts  domain by  substrestrict <subst x list(var) — subst with the meaning:

substrestrict® (0,1) = o |{21,...zn}n Doms)’

where | = (zy , . . . , z , ) .  With the predicate substdomain<var x subst we can check
whether a variable is in the domain of a substitution and with substcodomain <term x
subst whether a term is in  the codomain of a substitution. The function substapply<
subst X term — term applies a substitution to  a term by  simultaneously replacing the
domain variables in the term with the corresponding terms of the codomain.

For lists: Lists can be constructed recursively with ()<list(s) interpreted as the empty
list? and listcons<s X list(s) — list(s) interpreted as adding an element of sort s at
the front of a list, and listappend <list(s) x list(s) — list(s) interpreted as appending
two lists. The selectors are as usual listfirst<list(s) — s interpreted as-giving the
first element of a given list, and listrest<list(s) — list(s) interpreted as giving the list
without the first element of a given list.

3.2.4 Decidability of the Constraint Language

A main criterion for the method language is i ts tractability, which strongly depends on
the decidability of the constraint language. When we have the special case of an eval-
constraint, the termination can not be gnaranteed because there can be nonterminating
procedural program code in the procedural part of a tactic. Such tactics should be checked
for applicability only with great care and with the help of additional mechanisms, for
instance the application of such a procedure should be resource bounded. Since we assume
that  these constraints occur very rarely, we restrict our attention t o  the constraints without
an eval and prove the decidability of  the resulting constraint language.

Theorem (Decidability): If all variables of the constraints are bound by matching the
premises and conclusions against the proof lines occuring in the actual proof state, then the
interpretation of  the constraint terminates with (t ,  x )  or ( f ,¢) as value, where © is a partial
assignment function.

Proof: First we prove the decidability for the atomic formulae. When the constraint is an
atom of  the form p( ty , . . . ,%, ) ,  then we have a fixed interpretation for p*  and since the ¢;,
1 < i  < mn, are computable, we can decide whether the relation p?  holds or not.
For compound formulae with a negation, a conjunction and a disjunction as connective, we
can also decide if the formula holds or not, by induction.

3We assume that we have different constants of the empty list of the different sorts. In  the following we
denote all these different constants with the same symbol.
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For quantified formulae, the quantifiers range only over finite lists. Therefore they are 
decidable, since their evaluation is computationally similar to finite conjunctions or finite 
disjunctions, respectively. • 

3.2.5 Homomorphy Example 

We want to illustrate our method language by an example of a method for proving theorems 
in the field of algebra. Its proof strategy can be informally -described by: If f is a given 
function, P a defined predicate and the goal is to prove P(J(c)), then show P(e) and use 
this to show P(J(c)). The very idea is that f is a homomorphism for the property P and 
that f can be "rippled away" (compare [6]). 

Method: homl-l 

Declarations 

LI, L2 , L3 , L4 , L5 , L6 :prln 
HI, H2 , H6 :list(prln) 
h,h, h:just 
X,Y:var 
P, F, C:const 
Cl? , '1!, '1!1, '1!2 :term 

Premises L 1 , L2,(EL3 

J't1 x:prln.yH6y:prln.x = y & 
;\H2 x:prln.VH6 y:prln.x = y & 
fV termoccs(F, Cl? )== 0 & 
termtype(C)==typerange(termtype( F)) & 
Wl f- termrploccs(X, '1!, G) & 
W2 f- termrploccs(X, w,F(G)) 

Constraint 

Conclusions eL6 

(L 1 ) HI f- VY.Cl? (Jl) 

(L 2 ) H2 f- VX.P(X) +-+ w (h) 
(L 3 ) H6 f- peG) (h) 
(L 4 ) H6 f- Wl (def-e L2 , L3 ) 

(L 5 ) H6 f- W2 (OPENL}, L4 ) 

(L6 ) H6 f- P(F(G)) (def-i L2 , L5 ) 

schema  interpreter 

Declarative 
Content 

Procedural 
Content 

Figure 3.3: The homl-l method. 

Suppose we want to prove the theorem that the converse relation of a binary relation p 
is symmetric (formally: symmetric( converse(p))). The method homl-l can be applied by 
substituting converse, symmetric, and p for the meta-variables F, P, and G, respectively4. 
The method homl-1 proposes symmetric(p) as a new line which can be used to prove 

4In the following the capital letters denote meta-variables, while the object level elements are written in 
lowercase letters. 
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For quantified formulae, the quantifiers range only over finite lists. Therefore they are
decidable, since their evaluation is computationally similar to  finite conjunctions or finite
disjunctions, respectively. [ |

3.2.5 Homomorphy Example

We want to  illustrate our method language by an example of a method for proving theorems
in the field of algebra. Its proof strategy can be informally described by: If f is a given
function, P a defined predicate and the goal is to prove P( f (c)) ,  then show P(c) and use
this to show P(f(c)). The very idea is that f is a homomorphism for the property P and
that f can be “rippled away” (compare [6]).

Method : homi-1
Ly ,  L, ,  Ls,  Ly,  Ls,  Lg :p r i n

Hy, Hy, Hg:list(prin)
J i ,  Ja,  J3:just
X,Y va r
P,  F,C:const
®,  U ,  Y , ,  Us:term

Premises L i ,  L2,©L3
AP  ziprin. VPS yprinz = y&
AR  z:prin. VPS ypr ing  = y&
~ termoccs(F, ®)= () &
termtype(C’)=typerange(termtype(F)) &
VU; « termrploces(X,¥ ,C )  &
TU, «— termrploces(X, ¥ ,  F (C ) )

Conclusions | 6Lg

. Declarations

Constraint

(Ly) HiFVY.® (J1)
(Ly) HFVX.P(X)e=  3 (Ja)

Declarative (Ls) He t  P(C) (J3)
Content (Ls) Heh  V9 (def-e  Lg, L3)

(Ls) Heh ¥ ,  (OPENL;, La)
(Ls) He t  P (F (C ) )  ( de f - i  Lo ,  L s )

Procedural .Content schema — interpreter

Figure 3.3: The hom1~1 method.

Suppose we want to  prove the theorem that the converse relation of a binary relation p
is  symmetric (formally: symmetric(converse(p))). The method homi -1  can be  applied by
substituting converse, symmetric, and p for the meta-variables F ,  P ,  and C,  respectively*.
The method homi-1 proposes symmetric(p) as a new line which can be used to  prove

*In the following the capital letters denote meta-variables, while the object level elements are written in
lowercase letters.
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symmetric( converse(p)) together with the definitions of symmetric and converse. The de
tails of using this method in proof planning are discussed in the next chapter. 

The constraint of the method states the following: The first two lines express that HI 
and H2 , the hypotheses of line L1 and L2 , are subsets of H6, the hypotheses of Line L6. 
The third line states that F must occur in lP, the fourth line means that certain types 
must be equal (otherwise the newly created formula P(C) is not well-typed). The fifth line 
means that q;1 is created by replacing all free occurences of X in q; by C, and the sixth 
line that q;2 is obtained by replacing all occurences of X in q; by F(C). 
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symmetric(converse(p)) together with the definitions of symmetric and converse. The de-
tails of  using this method in proof planning are discussed in the next chapter.

The constraint o f  t he  method states the following: The first two lines express that H ;
and Hs, the hypotheses of line L ;  and Lg,  are subsets of  Hg, the hypotheses of  Line Lg.
The third line states that F must occur in ®, the fourth line means that certain types
must be equal (otherwise the newly created formula P(C) is not well-typed). The fifth line
means that U ,  is created by replacing all free occurences of X in ¥ by C ,  and the sixth
line that ¥ ,  is obtained by replacing all occurences of X in ¥ by F(C).
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Chapter 4 

Planning 

We secure our mathematical knowledge by demon
strative reasoning , but we support our conjectures 
by p'ausib/e reasoning ... Demonstrative reasoning is 
safe, beyond controversy, and final. Plausible reas
oning is hazardous, controversial, and provisional. 

George P6lya, Mathematics and Plausible Reasoning 

In this chapter we specify our proof planning mechanism and the semantics of our 
methods from the planning perspective. After giving a motivation and showing an example, 
we formally define STRIPs-like plan operators from our methods and then show their use 
in a planning algorithm. 

4.1 Motivation 

To understand the proof planning process, please remember that the goal of proof planning 
is to fill gaps in a given partial proof tree by forward and backward reasoning. As a first 
attempt we adopt a STRIPs-like planning paradigm, where the plan operators correspond 
to the methods. Thus from an abstract point of view the planning process is the process 
of exploring the search space of planning states that is generated by the plan operators in 
order to find a complete plan (that is a sequence of instantiated plan operators) from a 
given initial state to a terminal state. 

Concretely a planning state contains a subset of lines in the current partial proof that 
correspond to the boandaries of a gap in the proof. This subset can be divided into open 
lines (that must be proved to bridge the gap) and support lines (that can be used as 
premises to bridge it). Thus on the meta-Ievel of planning there are two labels: "(?)" 
states that the argument is an open line and "(!)" states that the argument is a support 
line. The initial planning state consists of all lines in the initial problem; the assumptions 
are the support lines and the conclusion is the only open line. The terminal planning state 
is reached when there is no more open line in the planning state. 

Aimed at modeling a human-oriented reasoning, we want our proof planning mechanism 
to be able to perform both forward reasoning and backward reasoning. New open lines enter 
the planning state as subgoals by backward reasoning from existing open lines and new 
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Chapter 4

Planning

We secure our mathematical knowledge by demon-
strative reasoning , but  we support our conjectures
by plausible reasoning ... Demonstrative reasoning is
safe, beyond controversy, and final. Plausible reas-
oning is hazardous, controversial, and provisional.

George Polya, Mathematics and Plausible Reasoning

In this chapter we specify our proof planning mechanism and the semantics of our
methods from the planning perspective. After giving a motivation and showing an example,
we formally define STRIPS-like plan operators from our methods and then show their use
in a planning algorithm.

4 .1  Motivation

To understand the proof planning process, please remember that the goal of proof planning
is to fill gaps in a given partial proof tree by forward and backward reasoning. As a first
attempt we adopt a STRiPs-like planning paradigm, where the plan operators correspond
to  the methods. Thus from an abstract point of view the planning process is the process
of exploring the search space of planning states that is generated by the plan operators in
order to find a complete plan (that is a sequence of instantiated plan operators) from a
given initial state to a terminal state.

Concretely a planning state contains a subset of lines in the current partial proof that
correspond to the boundaries of a gap in the proof. This subset can be divided into open
lines (that must be proved to bridge the gap) and support lines (that can be used as
premises to bridge i t ) .  Thus on the meta-level of planning there are two labels: “(7)”
states that the argument is an open line and “(!)” states that the argument is a support
line. The initial planning state consists of all lines in the initial problem; the assumptions
are the support lines and the conclusion is the only open line. The terminal planning state
is reached when there is no more open line in the planning state. :

Aimed at modeling a human-oriented reasoning, we want our proof planning mechanism
to  be able to  perform both forward reasoning and backward reasoning. New open lines enter
the planning state as subgoals by backward reasoning from existing open lines and new
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support lines by forward reasoning from existing support lines. In backward reasoning the 
methods are applied from their conclusions to their premises, that is, some premises become 
new open lines in the planning state and the open lines matched with the conclusions of 
the method are deleted in the planning state because they are proved by the method. In 
forward reasoning the methods are applied from their premises to their conclusions, that is, 
some conclusions become new support lines in the planning state. In order to achieve this 
bi-directional reasoning direction with a uni-directional planning mechanism, the planning 
direction must be independent from the reasoning direction. For this reason we included 
the labels "EEl" and "8" in the premises and conclusions slot of a method. 

The labels can be examined from another perspective, namely the relation between 
the static proof represented in a method and the dynamic proof planning process. The 
specification of methods without the labels gives only a static (viewed from the completed 
proof) description of the method which is inadequate for the dynamic behavior needed in 
proof planning. Statically a method derives its conclusions from its premises. Dynamically, 
it is important to declare which lines in the specification (we will call them required lines) 
have to be present in the planning state for the method to be applicable, and which are 
constructed by the method. We do this by marking the lines which are constructed by a 
method and which will be inserted into the planning state with the label "EEl". Additionally 
it is useful to specify that some of the required lines of a method should not be used again 
by the planner. This allows to keep the planning state small and thus to optimize the 
search for plans. We mark such lines with a "8". Note that the required lines consist of 
the unmarked ones and those that are marked with "8". This labeling in effect determines 
the direction of reasoning (forward vs. backward) of the method by specifying if the method 
is applied from its premises to its conclusions or vice versa. 

In order to demonstrate how the methods are used in the planning process, we show 
how the corresponding STRIPS plan operators would look like. We presume the STRIPS 

mechanism [H] as prerequisite and only mention that a STRIPS plan operator consists of 
three slots: the preconditions slot, the delete slot, and the add slot. A STRIPS plan operator 
is applicable in a planning state if the propositions in the preconditions slot are present in 
the planning state. When a method is applied to a planning state, the propositions in the 
delete slot are removed from the planning state and the propositions of the add slot are 
inserted. 

4.2 An Example 

Before continuing in describing how a STRIPS plan operator is constructed from a method, 
we give an example that illustrates the use of the labels. Figure 4.1 shows the specification 
of two simple methods!, as well as the STRIPS plan operators defined by them. These 
methods are only a simplified version of a more general class of methods applying assertions 
(definitions and theorems). For a comprehensive study of this class which approximates 
basic proof steps encountered in informal mathematical practice see [16]. 

1 Note that these methods are not exactly in the syntax defined in chapter 3. They are simpli
fied here for didactic reason. In particular X designates a tuple of objects and "IX.P(X) designates 
"IXl•... "IXn.P(XI , • .. ,Xn). The constraint slot is empty and the declarations slot is obvious, hence these 
two are left out. 
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support lines by forward reasoning from existing support lines. In backward reasoning the
methods are applied from their conclusions to  their premises, that is, some premises become
new open lines in the planning state and the open lines matched with the conclusions of
the method are deleted in the planning state because they are proved by the method. In
forward reasoning the methods are applied from their premises to their conclusions, that is,
some conclusions become new support lines in the planning state. In order to achieve this
bi-directional reasoning direction with a uni-directional planning mechanism, the planning
direction must be independent from the reasoning direction. For this reason we included
the labels “@” and “9 ”  in the premises and conclusions slot of a method.

The labels can be examined from another perspective, namely the relation between
the static proof represented in a method and the dynamic proof planning process. The
specification of methods without the labels gives only a static (viewed from the completed
proof) description of the method which is inadequate for the dynamic behavior needed in
proof planning. Statically a method derives its conclusions from its premises. Dynamically,
i t  is important to declare which lines in the specification (we will call them required lines)
have to be present in the planning state for the method to be applicable, and which are
constructed by  the method. We do this by  marking the lines which are constructed by  a
method and which will be inserted into the planning state with the label “@”. Additionally
i t  is useful to  specify that some of the required lines of a method should not be used again
by the planner. This allows to keep the planning state small and thus to optimize the
search for plans. We mark such lines with a “©” .  Note that the required lines consist of
the unmarked ones and those that are marked with “©” .  This labeling in  effect determines
the direction of reasoning (forward vs. backward) of the method by specifying if the method
is applied from its premises to  its conclusions or vice versa.

In order to demonstrate how the methods are used in the planning process, we show
how the corresponding STRIPS plan operators would look like. We presume the STRIPS
mechanism [11] as prerequisite and only mention that a STRIPS plan operator consists of
three slots: the preconditions slot, the delete slot, and the add slot. A STRIPS plan operator
is applicable in a planning state if the propositions in the preconditions slot are present in
the planning state. When a method is applied to a planning state, the propositions in the
delete slot are removed from the planning state and the propositions of the add slot are
inserted.

4.2 An  Example

Before continuing in describing how a STRIPS plan operator is constructed from a method,
we give an example that illustrates the use of the labels. Figure 4.1 shows the specification
of two simple methods!, as well as the STRIPS plan operators defined by them. These
methods are only a simplified version of a more general class of methods applying assertions
(definitions and theorems). For a comprehensive study of this class which approximates
basic proof  steps encountered in informal mathematical practice see [16].

Note that these methods are not exactly in the syntax defined in chapter 3. They are simpli-
fied here for didactic reason. In  particular X designates a tuple of objects and VX.P(X) designates
VXin. . .¥XneP(X1, . . . ,  Xn) .  The constraint slot is empty and the declarations slot is obvious, hence these
two are left out.
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Plan-Op def-i
Method def-i (Definition Introduction) 

Pre: (!) Definition 
, Premises Definition: YX.P(X) <-+ WX 

==} (?) defined-line
EBexpanded-line: WT Del: (?) defined-line

Conclusions 8defined-line: peT) 
Add: (?) expanded-line 

Plan-Op def-e
Method def-e (Definition Elimination) 

Pre: (!) Definition
Premises Definition: YX.P(X) <-+ WX 

==} (!) defined-line
8defined-line: peT) 

Del: (!) defined-line
Conclusions EBexpanded-line: WT Add: (!) expanded-line 

Figure 4.1: The specification of the methods def-i and def-e and the corresponding 
plan operators. The terms 'introduction' and 'elimination' refer to the static proof; in the 
dynamic proof planning process the definition is expanded in both methods. 

The method def-i applies a definition for the predicate P to an open line (marked with 
"(?)" in the plan operators and in the planning state) and constructs a new open line with 
the expanded definition (by backward reasoning); def-e applies a definition to a support 
line (marked with "(1)") and constructs a new support line (by forward reasoning). In 
order to achieve this dynamic behavior the labels are used for the lines in the specifications 
as follows. 

It is obvious that in both methods the line of the definition is required because it is not 
reasonable to "guess" a definition2 ; furthermore the definition line must not be deleted in 
the planning state since it might be used more than once in a proof. Therefore Definition 
has no label in our example; in the STRIPS plan operators this line must occur in the 
precondition slot as a support line. Clearly in both methods defined-line must be a 
required line and in def-i (and analogously in def-e) it is useless after the application of 
the definition because an open line needs to be proved only once. It is labeled with "8" 
and must occur in the preconditions slot as well as in the delete slot of the STRIPS plan 
operators. Since expanded-line is constructed by the methods, it is labeled with "EB" and 
occurs in the add slot of the STRIPS plan operators. 

When applying def-i, defined-line has to be matched with an open line and the 
newly constructed expanded-line becomes an open line. But when applying def-e, 
defined-line must be matched with a support line and expanded-line becomes a new 
support line. Therefore in the STRIPS plan operator constructed from def-i, namely 
defined- line and expanded-line, occur as open lines. Analogously in the STRIPS plan 
operator constructed from def-e these lines occur as support lines. Figure 4.2 shows an 
example of the effect of the methods def-e and def-i on the planning state. Line 1 is 
the definition of the predicate symmetric. Line 3 is constructed by applying def-e to line 
1 and 2, that is, by expanding the definition of symmetric in forward reasoning; line 8 
is constructed by applying def-i to line 1 and 9, that is, by expanding the definition of 
symmetric in backward reasoning. 

2This could be sensible at a more sophisticated level of proof planning. However, this "guessing" should 
be implemented by a different method in order to clearly distinguish it from simply applying a definition. 
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Plan-Op def - i
Pre: (!) Def in i t ion

= (7) defined-l ine
Del: (?) defined-line
Add: (?) expanded-line

Method def - i  (Definition Introduction)
- Premises Definition: VX.P(X) & Tx

@Pexpanded-line: Uy
Conclusions ©defined-line: P(T)

Plan-Op def -e
Pre: (!) Definit ion

= (!) defined-line
Del: (!) defined-line
Add :  ( ! )  expanded-line

Method def -e  (Definition Elimination)
Premises Definition: vX.P(X) = Us

©defined-l ine: P(T)
Conclusions @expanded-line: Ux

Figure 4.1: The specification of the methods def - i  and def-e and the corresponding
plan operators. The terms ‘introduction’ and ‘elimination’ refer to the static proof; in the
dynamic proof planning process the definition is expanded in both methods.

The method def - i  applies a definition for the predicate P to an open line (marked with
“(2)” in the plan operators and in the planning state) and constructs a new open line with
the expanded definition (by backward reasoning); def-e applies a definition to a support
line (marked with “(!)”)  and constructs a new support line (by forward reasoning). In
order to  achieve this dynamic behavior the labels are used for the lines in the specifications
as follows.

It is obvious that in  both methods the line of the definition is required because it is not
reasonable to  “guess” a definition?; furthermore the definition line must not be deleted in
the planning state since i t  might be used more than once in a proof. Therefore Definition
has no label in our example; in the STRIPS plan operators this line must occur in the
precondition slot as a support line. Clearly in both methods defined-l ine must be a
required line and in de f - i  (and analogously in def-e) i t  is useless after the application of
the definition because an open line needs to  be proved only once. It is  labeled with “© ”
and must occur in the preconditions slot as well as in the delete slot of the STRIPS plan
operators. Since expanded-line is constructed by  the methods, i t  is labeled with “©”  and
occurs in the add slot of the STRIPS plan operators.

When applying de f - i ,  defined-line has to be matched with an open line and the
newly constructed expanded-line becomes an open line. But when applying def-e,
defined~-line must be matched with a support line and expanded-line becomes a new
support line. Therefore in the STRIPS plan operator constructed from de f - i ,  namely
defined- l ine and expanded-line, occur as open lines. Analogously in the STRIPS plan
operator constructed from def-e these lines occur as support lines. Figure 4.2 shows an
example of the effect of  the methods def -e  and de f - i  on  the planning state. Line 1 is
the definition of the predicate symmetric. Line 3 is constructed by applying def-e  to  line
1 and 2, that is, by expanding the definition of symmetric in forward reasoning; line 8
is constructed by applying def- i  to line 1 and 9, that is, by expanding the definition of
symmetric in  backward reasoning.

2This could be sensible at a more sophisticated level of proof planning. However, this “guessing” should
be  implemented by  a different method in order to clearly distinguish i t  from simply applying a definition.
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(!) l. 1 f- 'i1T.symmetric(lT) .- 'ix, y.(x, y) ElT -- (y, x) ElTPlanning 
(!) 2. 2 f- symmetric(p)

State 1 (?) 9. 1,2 f- symmetric( converse(p» 

def-e 12} 
def-i 1 9 

(!) l. 1 f- 'i1T.symmetric(lT) .- 'ix, y.(x, y) E (J' -- (y, x) ElTPlanning 
(!) 3. 1,2 f- 'ix, y.(x, y) E p -- (y, x) E P 

State 2 (?) 8. 1,2 f- 'ix,y.(x,y) E·converse(p) -- (y,x) E converse(p) 

Figure 4.2: Using def-i and def-e in the planning process 

4.3 Defining STRIPS Plan Operators from Methods 

Now w~ formally define how the specification of a method corresponds to a STRIPS plan 
operator. The required slots of the specification are the premises, the' constraint, and 
the conclusions. The premises and conclusions contain lines that are labeled with "EB" or 
"8" or are unlabeled; the constraint contains an additional logical statement that can be 
evaluated to true or false. With this information we define a STRIPS plan operator that 
has three slots: the precondition list, the delete list, and the add list. 

STRIPS-Op name 
Pre: (!) PI, , (!) PnpMethod name 

(!) PI' , (!) P--Premises n p 

(?) Cl, , (?) Cne 

(?) Cl' , (?) c-_ 
ne 

WConstraint 
Del: (!)'PI' ... , (!) p--Conclusions n p 

(?) - (?) -' . cl' .. " . C_ 
ne 

Add: (?) pt, ... , (?) p++
n p 

(!) ct, ... , (!) C++ 
ne 

Figure 4.3: Defining a plan operator from a method's specification 

Figure 4.3 shows the generation of the STRIPS plan operator from a method. It defines 
the most general case, although usually not all possible labels are used in a single method. 
The unlabeled lines in a method go to the preconditions slot and the lines with a "EB" to 
the add slot. The lines labeled with "8" are moved to the precondition slot and to the 
delete slot. In the preconditions and delete slot the premises become support lines and 
the conclusions become open lines. In the add slot it is the other way round. The content 
of the constraint slot is inserted into the preconditions slot of a STRIPS operator. Note 
that it is not a proof line that is present in the planning state, but a formula specifying 
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: . MH 1. 1 F  Vossymmetric(a) — Vz, y z ,  y) € vo — (y,z)  E r
Planning ® 2. 2 F  symmetric(p)
State 1 (?) 9. 12 FF symmetric(converse(p))

def -e  12
de f -119

. M 1. 1 FE  Voesymmetric(o) — Vz, yalz,y) €0 — (y,z)  Eo
Planning (0 3. 12  F Vzu (z , y )€p—(y , z )€Ep
State 2 (?) 8 1,2 I Vz,y{z ,y )  € converse(p) — {y,z)  € converse(p)

Figure 4.2: Using def - i  and def-e  in  the planning process

4.3 Defining STRIPS Plan Operators from Methods

Now we formally define how the specification of a method corresponds to  a STRIPS plan
operator. The required slots of the specification are the premises, the constraint, and
the conclusions. The premises and conclusions contain lines that are labeled with “@®” or
“©”  or are unlabeled; the constraint contains an additional logical statement that can be
evaluated to true or false. With this information we define a STRIPS plan operator that
has three slots: the precondition list, the delete list, and the add list.

STRrIPS-Op name
Method name Pre: ( ! )  pP, . . . ,  ( ! )  Pn,
Premises P ls  -+ -5  Pry ( 21 . . .  0)  P,-

ory,  OP,= (?) en .  (?) Cne

©p i - . -  OP; _ (7) e r s . (7) c=

Constraint U Del :  0 = )  o r

Conclusions C1, . . . ,  Cn.  Pie (9) Paz
SIA  Se, - (?) e r s . . .  (?) GC

oc t ,  . . . ,  Sch, Add:  (?) p f , . . . , (D  Pps
Men ,  cls

Figure 4.3: Defining a plan operator from a method’s specification

Figure 4.3 shows the generation of the STRIPS plan operator from a method. It defines
the most general case, although usually not all possible labels are used in a single method.
The unlabeled lines in a method go to the preconditions slot and the lines with a “®”  to
the add slot. The lines labeled with “9 ”  are moved to the precondition slot and to the
delete slot. In the preconditions and delete slot the premises become support lines and
the conclusions become open lines. In the add slot i t  is the other way round. The content
of the constraint slot is inserted into the preconditions slot of  a STRIPS operator. Note
that i t  is not a proof line that is present in the  planning state, but a formula specifying
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While there are still open lines in the planning state 

1.	 Find all possibilities of an application of the methods 

(a) Select a method M. 

(b) Find all possibilities of matching	 the lines in M's precondition slot with 
lines in the planning state. 

(c) Evaluate the constraint of M with the bindings of the last step. 

2.	 Select the "best" method M (this is the choice point for the backtracking mech
anism and the point where some heuristic control can take place) 

3. Apply the plan operator to the planning state 

(a) Insert the lines in the add slot of M into the planning state. 

(b) Remove the lines in the delete slot of M from the planning state. 

Figure 4.4: The planning algorithm 

an additional applicability condition. From now on the preconditions, delete, and add slot 
refer to the corresponding slot in a STRIPS plan operator defined by the method. 

In figure 4.4 we give an abstract view of the planning algorithm. The plan operators 
are applied as usual. Note that backward planning is not possible since the terminal 
state is defined by the absence of OPEN lines. During the matching of the lines in the 
preconditions slot and the evaluation of the constraint all meta-variables should have been 
bound to object level terms. Therefore the new lines of step 3.(a) can be constructed by 
simply instantiating the meta-variables. 

Once a complete proof plan is found, all methods (Le. their tactics) in the proof plan are 
successively applied to construct a calculus level proof. Note that such a method application 
phase need not lead to a complete proof of the problem at hand, since we do not require 
methods to be sound or complete with respect tq their specifications. Furthermore the proof 
segments inserted by the methods may still contain open lines (see the homl-l method, for 
instance) that define further gaps awaiting to be closed by the proof planner. Therefore the 
verification phase which follows the application of the methods, may result in a recursive 
call to the planner or in backtracking. While a recursive call refines a plan and models 
hierarchical planning, the backtracking rejects the plan and calls the proof planner in order 
to find a different plan. 

4.3.1 Homomorphy Example (Continued) 

Having illustrated the basic framework, let us examine a slightly more complex example, 
related to the homl-l method. The method is shown in figure 3.3. Note that line L s is an 
open line that does not occur in the specification and therefore does not enter the planning 
state. This leads to an abstraction in the planning process (Le. there is less information 
in the planning state) and results in a hierarchical proof planning: since line L s is not 
considered by the planner, after completing the plan it will be inserted into the proof tree 
as an open line by the application of the tactic of homl-1. This will result in a recursive 
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While there are still open lines in the planning state

1. Find all possibilities of an application of the methods

(a )  Select a method M .

(b) Find all possibilities of matching the lines in M’s precondition slot with
lines in the planning state.

(c) Evaluate the constraint of M with the bindings of the last step.

2. Select the “best” method M (this is the choice point for the backtracking mech-
anism and the point where some heuristic control can take place)

3. Apply the plan operator to the planning state

(a) Insert the lines in the add slot of M into the planning state.
(b) Remove the lines in the delete slot of M from the planning state.

Figure 4.4: The planning algorithm

an additional applicability condition. From now on the preconditions, delete, and add slot
refer to the corresponding slot in a STRIPS plan operator defined by the method.

In figure 4.4 we give an abstract view of the planning algorithm. The plan operators
are applied as usual. Note that backward planning is not possible since the terminal
state is defined by the absence of OPEN lines. During the matching of the lines in the
preconditions slot and the evaluation of the constraint all meta-variables should have been
bound to  object level terms. Therefore the new lines of step 3.(a) can be constructed by
simply instantiating the meta-variables.

Once a complete proof plan is found, all methods (i.e. their tactics) in  the proof plan are
successively applied to  construct a calculus level proof. Note that such a method application
phase need not lead to  a complete proof of the problem at hand, since we do not require
methods to be sound or complete with respect to  their specifications. Furthermore the proof
segments inserted by the methods may still contain open lines (see the homi-1 method, for
instance) that define further gaps awaiting to  be closed by the proof planner. Therefore the
verification phase which follows the application of the methods, may result in  a recursive
call to the planner or in backtracking. While a recursive call refines a plan and models
hierarchical planning, the backtracking rejects the plan and calls the proof planner in order
to find a different plan.

4.3.1 Homomorphy Example (Continued)

Having illustrated the basic framework, let us examine a slightly more complex example,
related to the homi-1 method. The method is shown in figure 3.3. Note that line Ls is an
open line that does not occur in the specification and therefore does not enter the planning
state. This leads to an abstraction in the planning process (i.e. there is less information
in the planning state) and results in a hierarchical proof planning: since line Ls  is not
considered by the planner, after completing the plan i t  will be inserted into the proof tree
as an open line by the application of the tactic of hom1-1. This will result in a recursive
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call of the planner in the following verification phase. 

Planning 
State 1 

Planning 
State 2 

(!) l. 
(!) 2. 
(?) 9. 

(!) l. 
(!) 2. 
(?) 8. 

1 f
2 f
1,2, ... f

1 f
2 f
1,2, ... f-
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Figure 4.5: Using homl-l in the planning process 

For example, to prove that the converse relation of a binary relation p is symmetric 
(formally: symmetric(converse(p))), the method homl-l can be applied by instantiating 
the meta-variables F, P, and C by converse, symmetric, and p, respectively. While in 
figure 4.2 we filled the gap between symmetric(p) and symmetric( converse(p)) which were 
both existing lines, in this example the method homl-l proposes symmetric(p) as a new 
line which can be used to prove symmetric( converse(p)) together with the definitions of 
symmetric and converse. Figure 4.5 shows the transition of the planning state. If the plan 
can be completed (by proving the remaining OPEN line -with some additional information 
about p) the proof resulting from the application of the tactic homl-l would look like in 
figure 4.6. 

l. 1 ~ VO'.Vx, y.(x, y) E converse(O') Ho (y, x) E 0' (JI) 
2. 2 ~ VO'.symmetric(O') Ho Vx,y.(x,y) E 0' -+ (y,x) E 0' (J2) 
3. 1,2, ... I- symmetric(p) (J3) 
4. 1,2, ... ~ Vx, y.(x, y) E P -+ (y, x) E P (def-e 3 2) 
5. 1,2, ... I- Vx,y.(x,y) E converse(p) -+ (y,x) E converse(p) (OPEN 1 4) 
6. 1,2, ... I- symmetric( converse(p)) (def-i 2 5) 

Figure 4.6: The proof resulting from the application of the tactic homl-l 

Let us have a look at the justifications in this proof fragment. Justifications J1 and 
J2 are found via matching when applying the plan operator of homl-1, J3 will be inserted 
by the rest of the proof plan. The justifications of lines 4 and 6 stand for the subproofs 
generated by the application of the tactics of these methods, whereas the justification of 
line 5 defines a new gap with support lines containing lines 1 and 4. 
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For example, to prove that the converse relation of a binary relation p is symmetric
(formally: symmetric(converse(p))), the method hom1-1 can be applied by instantiating
the meta-variables F,  P ,  and C by converse, symmetric, and p, respectively. While in
figure 4.2 we filled the gap between symmetric(p) and symmetric(converse(p)) which were
both existing lines, in this example the method hom1-1 proposes symmetric(p) as a new
line which can be used to prove symmetric(converse(p)) together with the definitions of
symmetric and converse. Figure 4.5 shows the transition of the planning state. If the plan
can be completed (by proving the remaining OPEN line with some additional information
about p)  the proof resulting from the application of the tactic homi-1 would look like in
figure 4.6.

1. 1 b VYouVz,y.(z,y) € converse(o) « (y,z) € 0 (J1)
2. 2 kb Vowsymmetric(o) « Vz, yılz,y) Eo — (y,2) Eo  (J2)
3. 1,2,... + symmetric(p) (33)
4. 12 , . . .  FE Vz,p(z,y) €p—(y , z )  Ep  (def-e 3 2)
5. 1,2,.. .  FE Vz,y5(z,y) € converse(p) — (y,z) € converse(p) (OPEN 1 4)
6. 1,2,... | symmetric(converse(p)) (de f - i  2 5)

Figure 4.6: The proof resulting from the application of  the tactic hom1-1

Let us have a look at the justifications in this proof fragment. Justifications J1 and
J2 are found via matching when applying the plan operator of hom1-1, J3 will be inserted
by the rest of the proof plan. The justifications of lines 4 and 6 stand for the subproofs
generated by the application of the tactics of these methods, whereas the justification of
line 5 defines a new gap with support lines containing lines 1 and 4.
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Chapter 5 

Extending the Reasoning 
Repertoire by Meta-Methods 

... et chaque verite que je trouvais etant une regIe 
qui me servait apres a en trouver d'autres, ... 

Rene Descartes, Discours de la Methode 

It is one of the main features contributing to the problem solving competence of math
ematicians that they can extend their current problem solving methods by adapting them 
to suit new situations (see [23] for mathematical reasoning and [27] for general problem 
solving). Newell has pointed out in [21] that the mechanization of this procedure is hard 
but essential in order to go beyond the reasoning power of existing systems. 

In the previous chapters of this paper, a declarative approach for formulating methods 
has been introduced in order to mechanize aspects of this procedure by so-called meta
methods. In 'this chapter we discuss the notion of a meta-method and briefly illustrate 
the planning process with meta-methods with the help of an example. A more detailed 
discussion can be found in [18]. 

By discerning the declarative part of tactics, it is now feasible to formulate meta
methods adapting the declarative part of existing methods and thus come up with novel 
methods. In a framework where tactics consist only of procedural knowledge, we would in 
effect be confronted with the much more difficult problem of adapting procedures in order 
to achieve the above. 

We define a meta-method as consisting of: 

•	 A body: a procedure which takes as input a method, and possibly further parameters 
from the planner (in particular the current state of proof planning) and generates a 
new method with the same procedural part . 

•	 A rating: a procedure which takes as input a method, the current state of proof 
planning and the proof history. It estimates the contribution of the application of 
the meta-methods to the solution of the current problem!. 

1 In general, a more complete specification will be necessary for more complex problems where meta-Ievel 
planning is necessary for the generation of a new method. 
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methods adapting the declarative part of  existing methods and thus come up with novel
methods. In a framework where tactics consist only of procedural knowledge, we would in
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to achieve the above.

We define a meta-method as consisting of:
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CHAPTER 5. META-METHODS 
". 

Method: homl-2 

Declarations 

L1 , L2 , L3 , L4 , Ls, L6 , L7 , L8 :prln 

HI, H2 , Hs:list(prln) 
J1 , h, h, J4 :just 
X, Y:var 
P, P', G, D:const 
~, W, W1, w~, W2:term 

LI, L2 ,tIJL3/J!JL4 

I\Hlx:prln.VHsy:prln.x = y & 
I\H2x:prln.VHsy:prln.x = y& 
'" termoccs(F', ~)= () & 
termtype(G)=typerange(termtype(F')) & 
termtype(D)=typerange(termtype(F')) & 
W1 f- termrploccs(X, W, G) & 
W~ f- termrploccs(X, W, D) & 
W2 f- termrploccs(X, w,F'(G,D)) 

Premises 

Constraint 

Conclusions eLs 
(L 1 ) Hlf-W.~ (Jl) 
(L 2 ) H2 'r VX.P(X) f-+ W (h) 
(L3) Hs 'r peG) (h) 
(L 4 ) Hgf- P(D) (J4 ) 

(Ls) Hgf- W1 (def-e L2 , L3) 
(L6 ) Hgf- w~ (def-e L2 , L4 ) 

(L7 ) Hsf- W2 (OPEN LI, Ls, L6 ) 

(L g ) Hg 'r P(F'(G, D)) (def-i L2 , L7 ) 

schema  interpreter 

Declarative 
Content 

Procedural 
Content 

Figure 5.1: The homl-2 method: 

We illustrate this definition with the homl-l method introduced in section 3.2.5. The 
method homl-l simplifies a problem by generating an intermediate goal, where a unary 
function symbol is eliminated. Suppose we are facing the new but similar problem of 
proving that the intersection of symmetric relations is itself a symmetric relation. What we 
need is a variant of homl-l, which is able to handle a binary function symbol (intersection) 
in a similar way. 

In the following, we illustrate how to use a meta-method called add-argument to obtain 
a binary version homl-2 from the unary version homl-1. homl-l is suited to situations with 
a unary predicate constant P and a unary function constant F, while homl-2 can handle 
situations with a unary predicate constant P and a binary function constant F'. Note 
that P, F, and P' are meta-variables standing for object constants. The meta-method 
add-argument takes as input a method Mand a unary function or predicate constant F. 

This meta-method is supposed to add an argument to a key constant symbol F which is 
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Method : hom1-2
Ly ,  La ,  Ls,  La ,  Ls ,  Leg, La,  Lg :p r i n

Hy, Hy, Hg:list(prin)
J1,  Ja,  Js, Ja:just
X,Y va r
P,F ' ,C,  D:const
%, U ,  Uy, Wi, Uyiterm

Premises L i ,  L2,©L3,®La4
AF ız :pr in .VPS ysprin.z = y&
APz:pr in \ /He y:prine = y&
~ termoces(F',  ® )=  ( )  &
termtype(C)=typerange(termtype(F')) &
termtype(D )=typerange(termtype(F")) &
¥ ;  « termrploces(X,¥,C)  &
Wi « termrploces(X,¥,D) &
Uy — termrploces(X, ¥ ,  F ' (C,  D))

Conclusions | 61g

Declarations

Constraint

( I )  H i  FVY.0 (71)
(Lg) HFVX.P(X)  = 3 (Jy)
(Ls) Hsk P(C) (J3)

Declarative (Ls) Ha t  P(D) (Ja)
Content (Ls) Hs t¥ ,  (def-e Lo, L3)

( Le )  Hg  = ¥ )  ( de f -e  Ls,  La)

(L7) Ha t  Wo (OPEN Ly, Ls, Le)
(Ls) Hast P(F'(C,D)) (def- i  Lo, Ly)

Procedural ,
Content schema — interpreter

Figure 5.1: The hom1-2 method.’

We illustrate this definition with the hom1-1 method introduced in section 3.2.5. The
method hom1-1 simplifies a problem by generating an intermediate goal, where a unary
function symbol is eliminated. Suppose we are facing the new but similar problem of
proving that the intersection of symmetric relations is itself a symmetric relation. What we
need is a variant of hom1-1, which is able to handle a binary function symbol (intersection)
in a similar way.

In the following, we illustrate how to use a meta-method called add-argument to  obtain
a binary version hom1-2 from the unary version homi-1. homi-1 is suited to  situations with
a unary predicate constant P and a unary function constant F ,  while hom1-2 can handle
situations with a unary predicate constant P and a binary function constant F ’ .  Note
that P ,  F ,  and F’  are meta-variables standing for object constants. The meta-method
add-argument takes as input a method M and a unary function or predicate constant F.

This meta-method is supposed to add an argument to a key constant symbol F which is
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Meta-Method add-argument(M,F) 
Elating meta-add-argument-rating 
Procedure proc-add-argument 

a unary predicate or function used in a method, the modified function or predicate constant 
is called F'. 

The procedure proc""add-argument creates a method M' by carrying out the following 
modification on the declarative content of M: 

• replace all occurrences ofterms F(x) by F'(x, y) and augment the corresponding quan
tifications, 

• replace	 all occurrences of terms F(C) by F'(C, D) (D has to be a new meta.-variable 
standing for a constant), 

•	 if C occurs in a proof line, but not in a term F(C), a copy of this line will be inserted 
into the proof schema, replacing C by D (in the example below, line 4 is copied 
from 3). Such a copy must be accompanied by a corresponding augmentation to the 
specification of the method. 

Let us reiterate that as the crucial advantage of separating the procedural and the 
declarative knowledge in methods, the procedural part of Mcan be taken over for the new 
method. The method hom1-2 below can be obtained by applying add-argument with the 
arguments hom1-1 and F. 

Note that the hom1-2 method is indeed useful to solve the intended problem of showing 
that the intersection of two symmetric relations is symmetric too. From the initial problem 
the method hom1-2 produces the following partial proof: 

1. 1 f- Vp,fj.Vx,y.(x,y) E intersection(p,fj) +-+ (x,y) E p/\ (x,y) E fj (J1) 
2. 2 f- Vfj.symmetric(fj) +-+ Vx,y.(x,y) E fj ~ (y,x) E fj (J2) 
3. 1,2, f- symmetric(p)	 (J3) 
4. 1,2, f- symmetric(fj)	 (J4) 
5. 1,2, f- Vx,y.(x,y) E P ~ (y,x) E p	 (def-e 2 3) 
6. 1,2, f- Vx, y.(x, y) E fj ~ (y, x) E fj	 (def-e 2 4) 
7. 1,2, f- Vx, y.(x, y) E intersection(p, fj) ~ (y, x) E intersection(p, fj) (OPEN 1 5 6) 
8. 1,2, f- symmetric(intersection(p,fj))	 (def-i 27) 

Analogously a method hom2-1 (for handling a unary function symbol but a binary 
predicate symbol) can be obtained by applying add-argument with the arguments hom1-1 
and P. 

In an interactive proof development environment like !1-l\1KRP [17] the user has the op
portunity to choose and apply a meta-method himself. To provide the user with heuristic 
support or even to automatize this complex procedure, heuristics are necessary. For discus
sions on heuristics and for a preliminary classification of meta-methods, readers are referred 
to [18]. 
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Meta-Method add-argument(M,F)
Rating meta-add-argument-rating
Procedure proc-add-argument

a unary predicate or function used in a method, the modified function or predicate constant
is called F’,

The procedure proc-add-argument creates a method M by carrying out the following
modification on the declarative content of M:

e replace all occurrences of terms F(z) by F/(z, y) and augment the corresponding quan-
tifications,

e replace all occurrences of terms F(C) by F/(C,D) (D  has to be a new meta-variable
standing for a constant),

e if C occurs in a proof line, but not in a term F(C'), a copy of this line will be inserted
into the proof schema, replacing C by D (in the example below, line 4 is copied
from 3). Such a copy must be accompanied by a corresponding augmentation to the
specification of  the method.

Let us reiterate that as the crucial advantage of separating the procedural and the
declarative knowledge in  methods, the procedural part of M can be taken over for the new
method. The method hom1-2 below can be obtained by applying add-argument with the
arguments homi~1 and F .

Note that the hom1-2 method is indeed useful to solve the intended problem of  showing
that the intersection of two symmetric relations is symmetric too. From the initial problem
the method hom1-2 produces the following partial proof:

1.  1 F Vp,0.Vz, ys(z,y) € intersection(p,c) « ( z , y )  € pA  ( x , y )  € a (J1)
2. 2 F Yow.symmetric(o) « Vz,  y . (z ,y)  € 0 — (y , z )  EM (32)
3. 1,2,...  symmetric(p) (J3)
4. 1,2,... + symmetric(o) (J4)
5 .1 ,2 , . . .  FE Vz,y5{z,y) € p— (y,2) Ep  (def-e  2 3)
6. 1,2,... FE Vz ,y (z ,y )€  0 — (y,2) EC  (def-e 2 4)
7 .  1 ,2 , . . .  F Vz , y . ( z , y )  € intersect ion(p,o)  — ( y , x) € intersect ion(p,0) (OPEN1  5 6 )
8. 1,2,. . .  + symmetric(intersection(p,o)) (de f - i  2 7)

Analogously a method hom2-1 (for handling a unary function symbol but a binary
predicate symbol) can be obtained by applying add-argument with the arguments hom1-1
and P .

In an interactive proof development environment like Q-mxrr [17] the user has the op-
portunity to choose and apply a meta-method himself. To provide the user with heuristic
support or  even to  automatize this complex procedure, heuristics are necessary. For discus-
sions on heuristics and for a preliminary classification of  meta-methods, readers are referred
to  [18].
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Chapter 6 

Conclusion 

A good mathematician has to learn a remarkable repertoire of technical knowledge. On the 
one hand this is factual knowledge, namely definitions, theorems, and proofs. On the other 
hand he has to learn problem solving know-how as well. This kind of knowledge consists of 
standard methods for manipulating proofs, like mathematical induction or diagonalization. 
Among other important activities of mathematical reasoning (like defining new concepts 
and adapting a definition so that new theorems can be proved) there is one very important 
feature, namely the ability to adapt existing problem solving facilities to new, not directly 
fitting situations. 

In order to model such mechanical modification, we have presented in this report a 
formal definition of a method language. In particular we have defined the notion of a 
method with the components: declarations, premises, constraints, conclusions, declarative 
content, and procedural content. The main feature is the separation of procedural and 
declarative knowledge in the tactic part. In this way, all parts are declarative and subject 
to automatic modification, except the procedural content of the tactic. Another emphasis 
of this paper is a detailed description of a declarative constraint language. With this 
language we can bind free variables and formulate applicability conditions not expressible 
in terms of proof line schemata. In order to compromise .competing requirements, namely 
expressivity, adaptability, and tractability, we have designed the constraint language as a 
decidable variant of sorted first-order logic. 

The duality of the semantics of a method corresponds to its two main aspects: a method 
is a tactic and a plan operator. The semantics of the tactic part specifies the effect of its 
execution while the semantics of the plan operator specifies the behavior in a planning 
process. In order to model the latter we have presented how a method can be translated 
into a STRIPS plan operator, together with a first version of a planning algorithm. In the 
last chapter we have shown how the modification of methods can be performed by so-called 
meta-methods, producing new methods applicable in new situations. 

To summarize we have proposed a declarative extension to Bundy's proof planning 
framework in order to enable reformulations of methods. Much work remains to be done. 
We are currently extending our first implementation, in particular an interpreter for the 
constraint language is under construction. The efficiency of the whole approach depends 
strongly on the implementation of a planning algorithm more suitable than the naive 
STRIPs-like planner. The ultimate adequacy of our approach, of course, still has to be 
judged by experience accumulated with more examples. 
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Conclusion

A good mathematician has to  learn a remarkable repertoire of technical knowledge. On the
one hand this is factual knowledge, namely definitions, theorems, and proofs. On the other
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process. In order to model the latter we have presented how a method can be translated
into a STRIPS plan operator, together with a first version of a planning algorithm. In the
last chapter we have shown how the modification of methods can be performed by so-called
meta-methods, producing new methods applicable in new situations.

To summarize we have proposed a declarative extension t o  Bundy’s proof planning
framework in order to  enable reformulations of methods. Much work remains to be done.
We are currently extending our first implementation, in particular an interpreter for the
constraint language is under construction. The efficiency of the whole approach depends
strongly on the implementation of a planning algorithm more suitable than the naive
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Appendix A 

Examples 

The framework described in this paper is currently under implementation. In this ap
pendix we want to show some results of a prototype implementation of the proof planning 
algorithm. Only the specification part of methods has been implemented. The tactic part, 
which is responsible for the application of methods and for the construction of a proof" is 
still missing. Therefore the methods presented here contain only information used for the 
planning process, that is, there are no additional lines in the declarative content that would 
only be used when the tactic is applied and the proof is constructed. 

A.l Methods 

The following methods are used in the examples. The first method is the hom1-2-Method 
that has been presented before. 

Method : hom1-2 

Declarations 

L1, L 2 , L3 , L4 , Ls :prln; 
HI, H 2 , H s :Iist(prln); 
J1 ,h,h,J4 :just; 
P,F',C,D :const; 
L 1 , L 2 , ffiL3 , ffiL4 

1\Ht x:prln.VHs y:prln.x = y & 
J\H2x:prln.VHsy:prln.x = 11 

8Ls 
L 1 HI I- vy.~ (J1 ) 

L 2 H2 I- VX.P(X) ...... w (h) 
L3 H s I- P(C) (h) 
L4 H s I- P(D) (J4 ) 

L s H s I- P(F'(C,D)) (hom1-2) 

schema  interpreter 

Premises 

Constraint 

Conclusions 

Declarative 
Content 

Procedural 
Content 

The next five methods are reflecting simple ND calculus rules. The distribution of the 
labelled lines in the premises and conclusion slot of the implies-I~methodseems to be 
a little bit weird. This stems from the introduction of a hypothesis which can hardly be 
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Examples

The framework described in this paper is currently under implementation. In this ap-
pendix we want to  show some results of  a prototype implementation of  the proof planning
algorithm. Only the specification part of methods has been implemented. The tactic part,
which is responsible for the application of methods and for the construction of a proof,is
still missing. Therefore the methods presented here contain only information used for the
planning process, that is, there are no additional lines in  the declarative content that would
only be used when the tactic is applied and the proof is constructed.

A.1  Methods

The following methods are used in the examples. The first method is the hom1-2-Method
that has been presented before.

| Method : hom1-2
Ly,L3,L3,L4,Ls :prin;

. H ı ,  Ha, Hs :list(prin);
Declarations Tyo Ja, Ja  da ust :

P,F ' ,C ,D  :const;
Premises L i ,  L2,©L3,DLa4
Constraint AB  z:prin. VPS yiprin.z = y &

APRp r in . VPS 4:prin.z = u
Conclusions 6Ls

I ,  Hy FW.  (I)

Declarative Ly, HFVX.P (X )e¥  (J)
Content Ly Hs }  P(C) (Ja)

Ly, Hs }  P (D)  (Ja)
Ls Hs }  P(F'(C,D)) (hom1-2)

Procedural ]

Content schema — interpreter

The next five methods are reflecting simple ND calculus rules. The distribution of the
labelled lines in the premises and conclusion slot of the implies-I-method seems to be
a little bit weird. This stems from the introduction of  a hypothesis which can hardly be
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APPENDIX A. EXAMPLES A.i. METHODS 

described in terms of premises and conclusions. But the planning operator defined by this 
method performs what it is supposed to do: In a planning state an open line H f- <P-+ W 
can be replaced by a support line (L 1 ) f- <P and an open line H U {L1 } f- W. 

Method: implies- I 

Declarations 

L 1 , L 2 , L 3 :prln; 
H 2 ,H3 :Iist(prln); 
J :just; 
w,<P :term; 
ffiL 2 

H 2 f- listcons(L1 , H3 ) 

8L3 , ffiL 1 

L 1 (L 1 ) f- <P (Hyp) 
L 2 H 2 f-w (J) 
L 3 H 3 f-<P-+W (implies-I L 2 ) 

schema - interpreter 

Premises 
Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

Method: equiv-I 

Declarations 

L 1 ,L2 , L 3 :prln; 
H :Iist(prln); 
JI,h :just; 
w,<P :term; 
ffiLI, ffiL 2 

t 
8 L 3 

L 1 H3 f- <P-+ W (J1) 

L 2 H 3 f- W-+<P (h') 
L3 H3 f- <PH- W (equiv-I L 2 , L 1 ) 

schema - interpreter 

Premises 
Constraint 
Conclusions 

Declarative 
Content 

Procedural 
Content 

The methods or-I -1 and or-I -r suggest to prove an open line with a disjunction <P VW 
by proving the left side <P or the right side W, respectively. 

Method: or-I-1 

Declarations 

L 1 ,L2 :prln; 
H :Iist(prln); 
J :just; 
w,<P :term; 
ffiL 2 

t 

8L1 

L 2 Hf-<p (J) 
L 1 H f- <PVW (or-I-l L 2 ) 

schema  interpreter 

Premises 
Constraint 
Conclusions 
Declarative 
Content 
Procedural 
Content 
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described in terms of premises and conclusions. But the planning operator defined by this
method performs what i t  is supposed to do: In a planning state an open line H + ®—W
can be replaced by a support line (Z i )  + ® and an open line HU { L , }  F ©.

Method  : implies-I
Ly, La ,  Ls  p r i n ;

Declarations Hy,  Hs Hlist(prin);
J ;just;
vv, term;

Premises BSL:
Constraint Hy « l is tcons(L, ,Hz)
Conclusions Ls ,  e l ,

Declarative L i  (Z i )  ® (Hyp)
Content L ;  Hy, FW ( / )L;  Hz + ®—W (implies-I Lj)
Procedural ]

Content schema — interpreter

Method : equiv-I
Ly ,  Ly, Ls  : p r l n ;

Declarations 7 J lp r )

Uv, term;
Premises 9L1,9L2
Constraint t
Conclusions SLs

Declarative Ly H t  2 -¥  (Jy)
Content Ly  Hk  WS (X)

L j  Hs  FSU (equ i v - I  L2 ,  Ly )

Procedural ]

Content schema — interpreter

The methods or - I -1  and or - I - r  suggest to  prove an open line with a disjunction ®v  ¥
by proving the left side ® or the right side ¥ ,  respectively.

Method : o r - I - 1
Ly ,Ly pr in;

Declarations a Hist prin);
J ;just;
UV. od term;

Premises SL ,
Constraint t
Conclusions e l
Declarative L ,  H+ ® ( J )
Content Ly HF  ®VY (o r - I -1  Le)
Procedural ,Content schema — interpreter
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Method : or- I-r 

Declarations 

L1 ,L2 :prln; 

H :Iist(prln)j 

J :justj 

w,iP :termj 

$L2 

t 

8L1 

L2 HI-W (J) 
L1 H I- iPvw (or-I-r L2 ) 

schema  interpreter 

Premises 
Constraint 
Conclusions 
Declarative 
Content 
Procedural 
Content 

The or-E method is used to eliminate a disjunction in a support line. As in the corres
ponding ND calculus rule, the actual goal is also needed in this method. The first line in 
the constraints demands that HI is a subset of H 6 • 

Method: or-E 

Declarations 

LI, L2 , L3 , L4 , Ls, L6 :prlnj 
HI, H3 , Hs, H6 :Iist(prln)j 

J1 , J3 , Js :just; 

W,iP,3 :termj 

8L1 , EBL3 , EBLs 
I\Hlx:prln.VH6y:prln.x = y& 
H3 -listcons(L2,H6 )&Hs -listcons(L4 ,H6 ) 

Premises 

Constraint 

Conclusions 8L6 , $L2 , $L4 

L1 HI I- iPvw (h) 
L2 (L2) I- iP (Hyp) 
L3 H3 1-3 (h) 
L4 (L4 ) I- W (Hyp) 
Ls Hs 1-3 (Js) 
L6 H6 1-3 (or-E) 

schema  interpreter 

Declarative 
Content 

Procedural 
Content 

The same-method eliminates trivial gaps. If a support line HI I- iP and an open line 
H 2 I- iP have been constructed by forward and backward reasoning, the gap can be closed 
by deleting the open line if HI ~ H 2 • 
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Method : o r - I - r
L i , L2 prin;

. H list(prin);Declarations 7 just;

U,® term;
Premises BL
Constraint t
Conclusions el ,
Declarative Ly, HFT  (J)
Content Ly HF  ®VY (or- I - r  L , )
Procedural .Content schema — interpreter

The or-E method is used to  eliminate a disjunction in a support line. As in the corres-
ponding ND  calculus rule, the actual goal is also needed in this method. The first line in
the constraints demands that H ;  is a subset of  Hg.

Method : o r -E

Ly ,L3 ,L3 ,L4 ,Ls ,Le  :prin;
> H ı ,  Ha, Hs,  He :list(prin);

Declarations Ju, Ja, Js ust :

7 ,8 ,=  term;
Premises OL ,  ®L3,®Ls

Constraint A zzprin.\/ 6 y:prin.z =y&
Hs « l istcons(Lo,Hg) & Hs  — listcons(Ly, Hg)

Conclusions ©Le,  DLs ,  ®L4
L i  Hy  + VE  (J1 )

Ly (Lo) ® (Hyp)
Declarative Ls  Ha  FZ  (J3)
Content Ly (La) © (Hyp)

Ls Hs FZ  (Js)
I s  Hg  FE  (or -E)

Procedural
schema — interpreter

Content TP

The same-method eliminates trivial gaps. If a support line #;  + ® and an open line
H;  F ® have been constructed by forward and backward reasoning, the gap can be closed
by deleting the open line if H ;  C Ha.
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Method: same 

Declarations 

L 1. L 2 :prln; 
H 1 ,H2 :Iist(prln); 
J :just; 
q> :term; 
L 1 

,A.Hlx:prln.VH2y:prln.x = Y 

Premises 
Constraint 
Conclusions 8L2 

L 1 HI f- q> (J) 
L 2 H 2 f- iP (same Ld 

schema  interpreter 

Declarative 
Content 
Procedural 
Content 

The next method is an extension of the rule V-I that can handle a list of quantified 
variables at one stroke. Note that this is an implemented extension of the syntax that 
has not been discussed in chapter 3. Meta-variables that are declared as lists of terms are 
notated with an overline in this chapter: X, Y, T. They can be used in quantifications, 
in applications (e.g. VX .P(X)), and with the predefined functions and predicates of the 
constraint language. . 

Method: forall-I 

Declarations 

L 1. L 2 :prln; 
H :Iist(prln); 
J :just; 
X :Iist(var); 
iP,iP1 :term; 
EBL 1 

(J" - substaddcomp(X, newconst(termtype(X)), emptysubst) 
& iP 1 .- substapplv( (J", iP) 

Premises 

Constraint 

Conclusions 8 L 2 

L 1 H f- iP1 (J) 
L 2 H f- VX.iP (forall-I L 1 ) 

schema  interpreter 

Declarative 
Content 
Procedural 
Content 

The following methods deal with the application of definitions or theorems. These 
methods instantiate a universal quantified line and apply the resulting equivalence or im
plication to the specified line. They are variants of the def-i and def-e method in chapter 
4, taking into account additionally that the defined predicate can be placed at the right 
hand side of the equivalence or that an implication instead of an equivalence is used in the 
definition. 
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Method : same
L1i,L2 :prln;

Declarations H ı ,  Hz Hist prin);J just;
P term;

Premises IA
Constraint AP z:prin.\/P2 ysprin.z = y
Conclusions SL:
Declarative L i  H,-H® (J)
Content Ly Ho l  ® (same L ; )
ProceduralContent schema — interpreter

The next method is an extension of the rule V-I that can handle a list of quantified
variables at one stroke. Note that this is an implemented extension of the syntax that
has not been discussed in chapter 3. Meta-variables that are declared as lists of terms are
notated with an overline in this chapter: X ,Y,T.  They can be used in quantifications,
in applications (e.g. VX.P(X)),  and with the predefined functions and predicates of the
constraint language. ;

Method : forall-I
L i ,  L2 :prln;
H :list(prin);

Declarations J :just;
X :list(var);
P,P ;  term;

Premises BL :
Constraint o — substaddcomp(X,  newconst(termtype(X)), emptysubst)

& ®, — substapply(c, ®)}
Conclusions OL2
Declarative Ly HF  ® (J )
Content Ly, HFVYX.® (foral l- I  IL)
Procedural .Content schema — interpreter

The following methods deal with the application of definitions or theorems. These
methods instantiate a universal quantified line and apply the resulting equivalence or  im-
plication to  the specified line. They are variants of the def - i  and def-e  method in  chapter
4, taking into account additionally that the defined predicate can be placed at the right
hand side of  the equivalence or that an implication instead of  an equivalence is used in the
definition.
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Method: def-I-l 

Declarations 

L1 , L2 , L3 :prln; 
H1 ,H3 :Iist(prln); 
J1 ,h :just; 
X :Iist(var); 
P :const; 
W,Wl :term; 
T :Iist(term); 
LI,EBL2 

1\HI x:prlnVH3 y:prln.x = y & 
Wl -- substapply(substaddcomp(X,T emptysubst), W) 

Premises 

Constraint 

Conclusions 8L3 

L1 HI f- 'iX.P(X)+-+W (Jl) 
L2 H3 f- Wl (h) 
L3 H3 f- P(T) (def-I-l L1 , L2 ) 

Declarative 
Content 

Procedural 
Content 

schema  interpreter 

Method: def-back 
L1 , L2 , L3 :prln; 
H1 ,H3 :Iist(prln); 
J1 , J2 :just; 

Declarations X :Iist(var);
 
P :const;
 

W,Wl :term;
 
T :Iist(term);
 

Premises L1 , EBL2 

1\HI x:prln.VH3 y:prln.x = y &Constraint 
Wl -- substapply(substaddcomp(X, T, emptysubst), W) 

Conclusions 8L3 

L1 HI f- 'iX.W~P(X) (J1 )
Declarative 

L2 H3 f- Wl (h)Content 
L3 H3 f- P(T) (def-back L1 , L2 ) 

Procedural 
schema - interpreter

Content 
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Method : de f - I - 1

Ly,L3,L3 :prin;
H ı ,  H3 :list(prin);
Ju, Ja :Just;

Declarations | X :l ist(var);
P :const;
V,Y ı  :term;
T list(term);

Premises L ,®L ,
Constraint ATzpr in . \ /EB yepring = y & _

VU, «— substapply(substaddcomp(X,T, emptysubst), ¥ )
Conclusions SLs  _
Declarative L i  H iFVYX.P(X)=¥ (Jy)

Content I Hk  Ty  (J2)
L3  Hs  FF P (T )  ( de f - I - 1  L i ,  L2 )

oroeedural schema — interpreter

Method : def-back
Ly ,  La ,  Ls  : p r i n ;
Hy, H3 list(prin);
J1,J2 just;

Declarations | X :list(var);
P :const;
TU, 0 ,  term;
T :list(term);

Premises L i ,  ©L2

Constraint AR zzp r in .VS y:prln.z = y & _ =

: U,  « substapply (substaddcomp(X,T, emptysubst), ¥ )
Conclusions SL;  _

Declarative Ly HFYXI=PX)  (41)
Content L ,  H t  Y in  (Ja)Ls Hz }  P(T)  (def-back Ly,  Ly)
Procedural  .
Content schema — in terpreter
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Method: def-E-l' 

Declarations 

L1 , L2 , L3 :prln; 
H1 ,H2,H3 :Iist(prln); 

J1 , Jz :just; 
X,Y :Iist(var); 
P :const; 
W,W1 :term; 

a 

T :Iist(term); 
a :subst; 

L1,8L2 

a f- unify(X, T) & a & 
W1 f- substapply(a, W) & H3 f- listappend(H1 Hz) 
$L3 
L1 HI f- VY.P(X)+-+W (J1) 

L2 H2 f- peT) (J2 ) 

L3 H3 f- W1 (def-E-l' L1 , L2 ) 

schema  interpreter 

Premises 

Constraint 

Conclusions 

Declarative 
Content 

Procedural 
Content 

Method: def-E-r' 

Declarations 

L1 , Lz, L3 :prln; 
H1 ,H2,H3 :Iist(prln); 
J1 , Jz :just; 
X,Y :Iist(var); 
P :const; 
W,W1 :term; 
T :Iist( term ); 
a :subst;

L1,8L2 

a f- unify(X, T) & 
W1 f- substapply(a, w)&H3 f-listappend(Hll H z) 

Premises 

Constraint 

Conclusions $L3 
L1 HI f- VY.W+-+P(X) (J1 ) 

L2 H2 f- peT) (Jz) 
L3 H3 f- W1 (def-E-r' L1 , L2 ) 

schema  interpreter 

Declarative 
Content 

Procedural 
Content 

A.2 Proof Plans 

In this section we show an example of an application of the haml-2 method that results in 
a hierarchical plan. We want to prove that 11 U 1., namely the union of the two relations 
parallel and orthogonal, is symmetric. We use the definitions for 11 (line A z in figure A.I), 
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Method : def-E-1°
Ly,Ly,L3 prin;
Hy, Hy, Hs list(prin);
Ji, Ja just;

Declarations BD Y .pe t );

v ,  term;
T :list(term);
a :subst;

Premises L1 ,6L ,
: oc —unify(X,T)&ok&Constraint Uy — AA  ¥ )  & Hs « listappend (Hy, Ho)

Conclusions ©L3

Declarative L i  H r  WY.P(X)S (Ji)
Content L;  Hk} P(T) (Ja)

Ls Ha l  Y ı  (de f -E-1 ’  Ly ,  L2)

orocedural schema — interpreter

Method : def -E-r ’
Ly,Ly,Ls pr in
Hy,  Hy, Hs list(prin);
J1,J2 ;just;

Declarations | +7  l ist var);
P :const;
v ,¥ ,  term;
T list(term);
o :substy

Premises L1.,9L2
. o « unify(X,T) &Constraint U ,  « substapply(o, U)  & Ha — listappend(Hy,Hy)

Conclusions OL;

Declarative L i  H r  WW.WSP(X) (Jı)
Content IL2 HF  P(T) (Ja)

Ls H3k Yı (def-E-r’ Ly, Ly)
Procedural |

Content schema — interpreter

A.2  Proof Plans

In this section we show an example of an application of the hom1-2 method that results in
a hierarchical plan. We want to  prove that || U L ,  namely the union of  the two relations
parallel and orthogonal, is symmetric. We use the definitions for || (line A;  in figure A.1),
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(!) Al (AI) symmetric(1.) 
(!) A2 (A2) 'rfg, f.f 11 g+-+'rfh.h 1. f+-+h 1. g 
(!) A3 (A3 ) 'rfer.syrrimetric( er) +-+'rfx, y.xery-+yerx 
(!) A4 (A4 ) 'rfU, VVx, y.x(U U V)y+-+U(x, y)VV(x, y) 
(7) TH (AI, A2 , As, A4 ) symmetric( 11 U 1.) 

1 
homl-2(As A4 8TH ffiLs ffiL4 ) 

1 
(!) AI ,-A2 , A3 , A4 

(7) L4 (AI, A2 , A3 , A4 ) symmetric(11) 
(7) Ls (AI, A2 , A3 , A4 ) symmetric(1.) 

1 
same(AI 8L3 ) , 

1 
(!) AI, A2 , A3 , A4 

(7)	 L4 (AI, A2 , A3 , A4 ) symmetric(lI)
 

1
 
def-I-I(A3 8L4 ffiL6 ) 

1 
0) AI, A2 , A3 , A4 

(7) L6 (AI, A2 , A3 , A4 ) 'rfx, y.x 11 y-+y 11 x 

Figure A.I: The planning states and planning operators of the first steps in the proof plan 

symmetric (line A3 ), and U (line A4). Additionally we use the assumption that 1. is 
symmetric (line AI). 

The initial planning state and the first planning steps with the resulting planning states 
can be seen in figure A.I. The initial state consists of the four support lines AI-A4 con
taining the assumptions and the open line TH containing the theorem. In the first step 
hom1-2 is applied; it removes TH from the planning state and adds two new open lines, 
L3 : symmetric(1.) and L4 : symmetric(II). This step will cause a new call to the plan
ning algorithm after the plan has been completed, because of the the remaining open goal: 
symmetric(1I U 1.) follows from symmetric(lI) and symmetric(1.). The unlabeled lines A3 

and A4 in the application of homl-l are not needed during the planning phase but they 
will be needed when the tactic homl-l is applied. 

The first subgoal in L3 can be solved immediately because it already exists as an as
sumption; so the method same is applied to Al and L3 , removing L3 from the planning 
state. Then def-I-l is applied, expanding the predicate symmetric in L4 with its defin
ition in A3 , constructing a new open line L6 , and deleting L4 • After demonstrating these 
steps in greater detail, we only give for the rest of the plan the list of planning operators 
that are applied, and a list of all lines that are used in this plan (figure A.2). The lines 
are ordered like they would be in the resulting proof. The numbers of the· new lines are 
generated by the planner, that is, they indicate that more lines have been created during 
the planning process than are used in the final plan. Note that the list of lines is not the 
final planning state but a list of all lines that are needed in the plan. The final planning 
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Ar  (Ay)  symmetric(Ll)
(!) Az (Ag) Va, f.f  || geNh.h L f h  Lg
(1) Az  (As) Vo.symmetric(o0)—\Vz, y.20Yy—yoz
( )  Ay (As) VU, VVa,y.z(U U V )yeU(z ,  y )VV(z,  y )
(?) TH  (A i ,  Az,  As,  Ay) symmetric(||U L )

l
hom1-2(A3 A ,  STH ©L;3 ®L4 )

l
( !  Ag ,  Az ,  As,  Ay
7) Ls (Ai,  Az, As, Ay) symmetric(||)

(1) Lz (A,  Ag, Az, Ay) symmetric(Ll)
}

same(A ;  OLs3) ,

J
( Ay ,  Az ,  As, Ay
(7) Ls (A,  Ag, Az, Ay) symmetric(]))

l
def-I-1(As OL4  ®Le )

|
( )  Ay ,  Az;  As,  Ay

(7) Le (A, Az, As, Ay) Vz , yz | y—y l=

Figure A.1: The planning states and planning operators of the first steps in the proof plan

symmetric (line Az), and U (line Ay). Additionally we use the assumption that L is
symmetric (line Ay).

The initial planning state and the first planning steps with the resulting planning states
can be seen in figure A . l .  The initial state consists of  the four support lines A;~A4 con-
taining the assumptions and the open line TH  containing the theorem. In the first step
hom1-2 is applied; i t  removes TH  from the planning state and adds two new open lines,
Ls : symmetric(L) and Ly : symmetric(||). This step will cause a new call t o  the plan-
ning algorithm after the plan has been completed, because of  the the remaining open goal:
symmetric(||U L )  follows from symmetric(||) and symmetric(L). The unlabeled lines Az
and Ay in the application of homi-1 are not needed during the planning phase but they
will be needed when the tactic hom1-1 is applied.

The first subgoal in L3 can be solved immediately because i t  already exists as an as-
sumption; so the method same is applied to A;  and Ls, removing Lz from the planning
state. Then de f - I -1  is applied, expanding the predicate symmetr ic  in Ly with i ts  defin-
ition in Az, constructing a new open line Lg, and deleting Ls. After demonstrating these
steps in greater detail, we only give for the rest of the plan the list of planning operators
that are applied, and a list of all lines that are used in this plan (figure A.2). The lines
are ordered like they would be in the resulting proof. The numbers of the new lines are
generated by the planner, that is, they indicate that more lines have been created during
the planning process than are used in the final plan. Note that the list of lines is not the
final planning state but a list of all lines that are needed in the plan. The final planning

42



APPENDIX A. EXAMPLES A.2. PROOF PLANS
 

state consists of all support lines except L8 , L17 , and L22 • 

Ihoml-2(A3 A4 8TH 67L3 67L4 ) I- Isame(Al 8L3 ) I-1def-I-I(A3 8L4 67L6 ) [ 

1forall-I(8L6 67L7 ) I- Iimplies-l(8L7 67L8 67L9 ) I- Idef-I-I(A2 8L9 67LlD ) I
1forall-l(8LlD 67L12 ) I- Iequiv-l(8L12 67L14 67L15 ) [ 

implies-le8L14 67L17 67L18 ) - implies-le8L15 67L22 67L23 ) 

def-E-1'(A2 8L8 67L25 ) - def-E-1'(L25 8L17 67L26 ) - same(L26 8L18 ) 11 

def-E-r'(L25 8L22 67L33 ) same(L33 8 L23) 

(!) Al (AI) symmetric(..l ) 
(!) A2 (A2 ) 'Vg, J.! 11 g,,""",,'Vh.h 1. !"""",,h 1. g 
(!) A3 (A3 ) 'VO".symmetric(0" ) ,,""",,'Vx, y.xO"Y-+YO"x 
0) A4 (A4 ) 'VU, V'v'x, y.x(U U V)y"""",,U(x, y)VV(x, y) 
(!) L8 (L8 ) xIII Y2 
(!) L25 (A2 , L8 ) 'Vh.h 1. Xl +-+h 1. Y2
 
(!) L17 (L17) h3 ..1 Xl
 
(!) L26 (L8 , A2 , L17) h3 ..1 Y2
 
(1) L22 (L22 ) h3 1. Y2
 
(!) L33 (L8 , A2 , L22 ) h3 1. Xl
 
(?) L23 (L22 , L8, AI, A2 , A3, A4 ) h3 1. Xl
 
(?) L15 (L8, AI, A2 , A3 , A4 ) h3 1. Y2-+h3 1. Xl
 
(?) L18 (L17 , L8 , AI, A2 , A3' A4 ) h3 1. Y2
 
(?) L14 (L8, AI, A2 , A3, A4 ) h3 1. xl-+h3 1. Y2
 
(?) L12 (L8 , AI, A2, A3, A4 ) h3 ..1 Y2+-+h3 1. Xl
 
(?) LlD (L8, AI, A2 , A3, A4 ) 'Vh.h 1. Y2+-+h 1. Xl
 
(?) L9 (L8, AI, A2 , A3, A4 ) Y2 11 Xl
 
(?) L 7 (AI, A2, A3 , A4 ) XIII Y2-+Y2 11 Xl
 
(?) L6 (AI, A2 , A3, A4 ) 'Vx, y.x 11 Y-+Y 11 X
 

(?) L4 (AI, A2, A3 , A4) symmetric( 11)
 
(?) L3 (AI, A2, A3, A4 ) symmetric( 1.)
 
(?) TH (AI, A2, A3, A4 ) symmetric(1I U 1.)
 

Figure A.2: The proof plan for our example and a list of all used lines 

After line L6 is created, the plan continu~s by simplifying this line in a straitforward 
way: the quantifier is removed with forall- I and the resulting implication is eliminated 
with implies-I. This results in a planning state with the open lineL9 : Y211xl and the 
additional support line L8 : xlllY2. Now the plan repeats the preceeding procedure with 
L9 : the predicate 11 is expanded with its definition, the quantifier in LlD is removed, the 
equivalence in L12 is split, and the implications in L14 and L15 are split. The resulting 
planning state contains the open lines L18 : h3 ..lY2 and L23 : h3..lXl and the additional 
support lines L17 : h3 ..lxl and L22 : h3 1.Y2. Note that the method same can not be applied 
in this state because the hypotheses of L17 are not a subset of the hypotheses of L23 , and 
the same holds for L22 and L18' 
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state consists of  all support lines except Ls,  Ly7, and Las.

hom1-2(A3 A4 STH ®L3 @L4)| — | same(A; OL3)| — | def-I-l(A3 OL4 OLg) | —

forall-1(6Le ®L7)  | — | implies-I(6L7 @Ls GLg) | — | def-I- (A;  OL9 ®L1o) | —

forall-I(©L1o ®L12)| — | equiv-I(©L12 ®L14 SLs )  | —
implies-I(©L14 ®L17 ®L18)| — | implies-I(OLys ®L22 SLs)  | —
def-E-I'(A; ©Lg ®Lgs) | — | def-E-I'(Lgs OL17 ®L26)| — | same(L26 OLı8 )| —

def-E-1’(Los OL22 ®L33) | — | same(Laz OL2s)

( )  Az (Ay) symmetric(Ll)

( )  Az (Ag) Va, f.f  || ge  Vh.h L f h  Lg
( )  As (As) Vo.symmetric(o)Vz,y.zoy—yoz
(I) Ay (Ad) WU, VVa,y.z(U U V)yesU (2, y)VV (2,9)
( )  Ls (Ls) z1 || 92
(N  Los  (Aq ,  Ls)  Vh .h  L Z i  «+h 1 Y2

(N  L i t  ( L17 )  hs  L zy

(1) Las (Ls, Ag, L ır)  hs L yo
(1) Lao (Lag) hs Lys
( )  Las (Ls, Az, L22) hs Lz ,
(7) Laz (Laz, Ls, A ı ,  Az, Az, Ay) hs l z
(7) L i s  (Ls, Az, Az, As, Ay) hs L yo—hs L 2 ,

(?) Lis (Li17, Ls, A ı ,  Az, As, Ay) ha Lys
(7) L is  (Ls,  Ay, Az, Az, Ay) hs L z1—ha Ly ,
( ? )  L12  (Ls, Aq, As, As, Au) hs  L ya +>rhg Lz

( ? )  L i o  (Ls, A ,  Aa,  As,  Ay)  Vh .h  L Yah  L 1

(?) Lo (Ls, Az, Az, Az, Ay) yo || 21

(7) Lr (Az, Az, Az, Ay) zy || 2 -2  || 21

(7) Le (A,  Az, As, As) Vz,y.z || y—y |] =
(?) Ls (Az, Ag, Az, Ay) symmetric(||)
(?) Ls (A i ,  Ag, Az, As) symmetric(L)
(?) TH  (Ay, Az, Az, Ay) symmetric(|| U L )

Figure A.2: The proof plan for our example anda list of all used lines

After line Lg is created, the plan continues by simplifying this line in a straitforward
way: the quantifier is removed with foral l - I  and the resulting implication is eliminated
with impl ies- I .  This results in a planning state with the open line Lg  : y ı | z ı  and the
additional support line Lg : z1||y2. Now the plan repeats the preceeding procedure with
Lg: the predicate || is expanded with i ts  definition, the quantifier in L19 is removed, the
equivalence in L j ;  is split, and the implications in  Li4 and L 5 are split. The resulting
planning state contains the open lines Lig : h3Ly2 and L23 : hsLz ;  and the additional
support lines Ly7 : hgLz ;  and L22 : ha Lys .  Note that the method same can not be applied
in this state because the hypotheses of  L17  are not a subset of  the hypotheses of  L23 ,  and
the same holds for Ly;  and L i s .
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Up to this point only backward reasoning has been used in the plan, because this is one 
of our simple heuristics. But now no more methods can be applied to the open lines. So 
from now on the plan performs forward reasoning: first the predicate 11 in L8 is expanded 
by the method def-E-1'. Then the resulting support line L2S is used like a definition: 
it is applied to L11 and L22 by def-E-1' and def-E-r', respectively. With the resulting 
lines L26 and L33 the plan can be completed by two applications of the method same which 
delete the last two open lines L18·and L23. 

This proof plan for the goal symmetric(11 U .l) uses the homl-2 method. After the 
plan is found and the corresponding tactics are applied in order to construct the proof, 
the application of the hom1-2 tactic leaves a gap in the proof. In this gap the expanded 
definition of symmetric(1I U.l) (see line LEM in figure A.3) has to be proved with the help 
of the expanded definition of symmetric(lI) and symmetric(1.) (lines As and A6). The 
method hom1-2 (see line L 7 in figure 5.1) proposes additionally to use the definition of the 
function U (line A4). This gap is closed with another call to the proof planner. The proof 
plan and the used lines in this plan are shown in figure A.3. 

1forall-I(8LEM $L4) 1---+ 1implies-I(8L4 $Ls $L6) 1---+ 1def-I-I(A4 8L6 $L7) 1---+ 
[ def-E-1'(A4 8Ls $L11 ) 1---+ 1or-E(8Lll 8L7 $L82 $L83 $L84 $L8S ) [ ---+ 
1or-I-le8L8S $L87) 1---+ I def-back(A6 8L87 $L116 ) 1---+ I same(L83 8L116 ) 1---+ 
1or-I-r(8L84 $L121 ) [---+ 1def-back(As 8L121 $L122 ) 1---+ 1same(L82 8L122 ) I 

(!) A4 (A4 ) vu, V'v'x, y.x(U U V)y+-+U(x, y)VV(x, y) 
(!) As (As) Vx, y.x 11 y-y 11 x 
(!) A6 (A6 ) Vx, y.x 1. y-y 1. x 
(!) L5 (Ls) Xl(1. U II)Y2 
(l) L11 (A4 , Ls) Xl 1. Y2 VXl 11 Y2
 
(!) L82 (L82 ) XIII Y2
 
(!) L83 (L83) Xl .l yz
 
(?) L116 (L83 , Ls, A4 , As, A6 ) Xl .l yz
 
(?) L87 (L83 , L s , A4 , As, A6 ) yz .l Xl
 
(?) L8S (L83 , Ls , A4, As, A6 ) yz .l Xl VY2 11 Xl
 
(?) L122 (L82 , Ls, A4, As, A6 ) XIII Y2
 
(?) L121 (L82 , Ls, A4 , As, A6 ) yzll Xl
 
(?) L84 (L82 , Ls, A4 , As, A6 ) yz 1. Xl VY2 11 Xl
 
(?) L7 (L5 , A4, As, A6 ) yz 1. Xl Vyz 11 Xl
 
(?) L6 (Ls, A4, As, A6 ) yz(1. U II)x1
 
(?) L4 (A4 , As, A6 ) Xl(1. U II)Yi-Y2(.l U II)Xl
 
(?) LEM (A4, As, A6 ) Vx, y.x(1. U II)y-y(1. U lI)x
 

Figure A.3: The proof plan for the gap left open by hom1-2 in the first proof plan 

In the first two steps the quantifier in LEM is removed and the implication is eliminated. 
Then the definition of U is applied to L6 (backward reasoning by def - I -1) and to L5 

(forward reasoning by def - E-1 ' ). After this or-Eis applied to L7 and L11 , splitting 

44
 

A.2. PROOF PLANS APPENDIX A. EXAMPLES

Up to this point only backward reasoning has been used in the plan, because this is one
"o f  our simple heuristics. But now no more methods can be applied to the open lines. So

from now on the plan performs forward reasoning: first the predicate || in Lg  is expanded
by the method def~E-1’. Then the resulting support line Las is used like a definition:
i t  is applied to Ly7  and L22 by def-E-1’ and de f -E- r ’ ,  respectively. With the resulting
lines Log and Laz the plan can be completed by two applications of the method same which
delete the last two open lines Lig  and Los.

This proof plan for the  goal symmet r i c ( | |U  L )  uses the hom1-2 method. After the
plan is found and the corresponding tactics are applied in order to construct the proof,
the application of  the hom1-2 tactic leaves a gap in the proof. In this gap the expanded
definition of  s ymmet r i c ( | |U  L )  (see line LEM  in figure A .3 )  has to  be  proved with the help
of the expanded definition of symmetric(||) and symmetrie(L) (lines As and Ag). The
method hom1-2 (see line L7 in figure 5.1) proposes additionally to  use the definition of the
function U (line A4). This gap is closed with another call to  the proof planner. The proof
plan and the used lines in this plan are shown in figure A.3.

forall. (6LEM @L4) | — | implies-I(6L4 @Ls ®Lg) | — | def-I-1(A4 6L¢ §L7)| —

def-E-I'(A4 ©Ls ©L11) — | or-E(@L11 6L7 ®Ls2 @Le3 OLs4 GLss) | —
or-1-1(6Lgs ®Ls7) | — | def-back(Ag SLs? ®L116) | — | same(Lgz Ol ı16  ) | —

or-I-1(©Lss ©L121)| — | def-back(As 91121  ®L122)| — | same(Lgy OLı122 )

( )  Ay (Ay) YU, Vz ,  y.z(U  U V )y=U(z ,y )VV(z , y )
( )  As (As) “Ve  ya  || y—ylz
( )  As  (As) Vz , yz  Ly—y Lz
( Ls (Ls) z1(L U ||)y2
( )  Ln  (Ag Ls) zy L yaVz || v2
(!) Lsz (Le2) z1 || y2

(!) Lass (Les) z ı  L p
(?) Lue (Ls3, Ls, Au, As, As) z ı  L ya
(?) Lsr (Les, Ls, Ag, As, As) 3217
(?) La5 (Les, Ls, As, As, Ag) yıLlzıVy%2 || 21

(?) Lizz (Le2, Ls, Ag, As, As) zıl|| 92
(?) Lızı (Le2, Ls, Ag, As, Ag) % || 71

(?) Las (Ls,  Ls, Ay, As, Ag) y ı l z ıVyn  || z ı
( L r  (Ls, Ag, As, Ag) yo L z1Vy2 || 21

(7) Le (Ls, As, As, Ag) y2(L U |])z1
(?) La (As, As, As) 21 (L  U |)yz—>y2(L U e
(?) LEM (As, As, Ag) Ve, y.z(LU||)y—y(LU|)z

Figure A.3: The proof plan for the gap left open by hom1-2 in the first proof plan

In the first two steps the quantifier in  LEM  is removed and the implication is eliminated.
Then the definition of U is applied t o  Lg (backward reasoning by de f - I -1 )  and to  Ls
(forward reasoning by def-E-1’) .  After this or-E is applied to Ly and Ly;, splitting
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APPENDIX A. EXAMPLES A.2. PROOF PLANS
 

the supporting disjunction into L82 and L83 , deleting the goal L7 , and creating two new 
subgoals L84 and L85 , each having one ofthe disjuncts L82 and L83 as additional hypotheses. 
Both subgoals are proved analogously: the left disjunct of L85 is proved with or-I -1 (the 
right disjunct of L84 with or-I -r,respectively), in order to prove the disjunction; then the 
assumption A6 (respectively As) is applied with def-back; and finally the gap is closed 
with same. 

After executing the two plans consecutively by carrying out the tactic part of the 
methods, all gaps are closed and the result is a complete proof for symmetric(11 U .i). 

45
 

APPENDIX A. EXAMPLES A.2. PROOF PLANS

the supporting disjunction into Lg; and Les, deleting the goal L7, and creating two new
subgoals Lgs and Lgs, each having one of  the disjuncts Lg; and Lgz as additional hypotheses.
Both subgoals are proved analogously: the left disjunct of Lgs is proved with o r - I -1  (the
right disjunct of Lg4 with or-I-r, respectively), in order to prove the disjunction; then the
assumption Ag (respectively As) is applied with def-back; and finally the gap is closed
with same.

After executing the two plans consecutively by carrying out the tactic part of the
methods, all gaps are closed and the result is a complete proof for symmetric(||U 1).
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