
Fa
ch

be
re

ic
h

In
fo

rm
at

ik
U

ni
ve

rs
itä

t K
ai

se
rs

la
ut

er
n

P
os

tfa
ch

 3
04

9
D

-6
76

63
 K

ai
se

rs
la

ut
er

n
SE

KI
 -

R
EP

O
R

T

Goal oriented equational theorem
proving using team work

Jorg Denzinger, Matthias Fuchs
SEKI Report SR-94-04

Goal oriented equational theorem proving using
team work*

Jörg Denzinger, Matthias Fuchs
Department of Computer Science

University of Kaiserslautern
Postfach 3049

67653 Kaiserslautern
Email: {denzinge, fuchs}@informatik.uni-kl.de

Abstract

The team work method is a concept for distributing automated theorem
provers and so to activate several experts to work on a given problem. We have
implemented this for pure equational logic using the unfailing Knuth-Bendix
completion procedure as basic prover. In this paper we present three classesof
experts working in a goal oriented fashion. In general, goal oriented experts per-
form their job ”unfair” and so are often unable to solve a given problem alone.
However, as a team member in the team work method they perform highly effi-
cient, even in comparison wi th such respected provers as Otter 3.0 or REVEAL,
as we demonstrate by examples, some of which can only be proved using team
work.

The reason for these achievements results from the fact that the team work
method forces the experts to compete for a while and then to cooperate by ex-
changing their best results. This allows one to collect “good” intermediate results
and to forget “useless” ones. Completion based proof methods are frequently re-
garded t o have the disadvantage of being not goal oriented. We believe that our
approach overcomes this disadvantage to a large extend.

Keywords :
Automated theorem proving, distributed deduction, goal oriented completion.

*This work was supported by the ”Forschungsschwerpunkt Deduktion” of the DFG

1 Introduction

The Knuth-Bendix completion procedure ([KB70J) is known to be highly efficient for
proving that a given equation s = t is a logical consequence of a set E of equations,
provided that the completion of E stops after a finite amount of time and produces a
confluent and terminating rewrite system R. In this case, s = t is a logical consequence
of E iff the R-normal forms of sand t are identical. That is to say, the preprocessing
of E restricts the search space for proving a logical consequence to be linear.

Unfortunately, this preprocessing of E does often not stop after a reasonable (or even
finite) amount of time. So Bachmair, Dershowitz and Plaisted ([BDP89]) have devel
oped an unfailing Knuth-Bendix completion procedure that is sound and complete for
proving s = t to be a logical consequence of E. This method inherits the main advan
tage of the original completion procedure: It has strong simplification capabilities to
keep the relevant information as small as possible. But, from tl;le theorem proving point
of view, it has the disadvantage of not being goal oriented. In principle, it generates all
logical consequences of E until s = t is generated. This results in a huge search space.

There are some general methods to deal with this problem. One can apply special
strategies and heuristics for determining the next inference step and so to guide the
search. The strategies are based on statistic measures while the heuristics can also use
semantic measures (see [De93] and [AD93]). There are also some proposals for explicit
goal-directed search (see [BI86] and [eR93]), but these attempts, as far as they are
implemented, were not very successful due to the following facts:

- intermediate results needed for the proof were not found,

- goals with almost n6 structure did not provide enough information for guiding
the search,

fixed sequences of inferences were repeated very often,

- completeness results under reasonable conditions were hard to establish.

We believe that it is hard to ~olve these problems by using one fixed search strategy
or heuristic. Instead we believe that some progress can be achieved by following differ
ent search strategies in parallel in such a way that important intermediate results or
intermediate system states can be exchanged and so some cross-fertilization becomes
possible.

We have developed the team work method to distribute automated theorem provers
and so to allow several experts (following their own search strategy) to work on the
given problem. We have implemented this for pure equationallogic using the unfailing
Knuth-Bendix completion procedure as basic prover. There is a fixed schedule (set up
by a supervisor) to activate a team of experts, to let them work independently (thus
competing), then to exchange their most important results (to cooperate) and to start
a new round. This architecture has the following advantages:

- restricted, but efficient control and communication,

2

1 Introduction

The Knuth-Bendix completion procedure ([KB70]) is known to be highly efficient for
proving that a given equation s = t is a logical consequence of a set E of equations,
provided that the completion of F stops after a finite amount of t ime and produces a
confluent and terminating rewrite system R. In this case, s = t is a logical consequence
of E iff the R-normal forms of s and t are identical. That is to say, the preprocessing
of E restricts the search space for proving a logical consequence to be linear.
Unfortunately, this preprocessing of E does often not stop after a reasonable (or even
finite) amount of time. So Bachmair, Dershowitz and Plaisted ([BDP89]) have devel-
oped an unfailing Knuth-Bendix completion procedure that is sound and complete for
proving s = t to be a logical consequence of E . This method inherits the main advan-
tage of the original completion procedure: I t has strong simplification capabilities to
keep the relevant information as small as possible. But , from the theorem proving point
of view, i t has the disadvantage of not being goal oriented. In principle, i t generates all
logical consequences of E until s = £ is generated. This results i n a huge search space.

There are some general methods to deal wi th this problem. One can apply special
strategies and heuristics for determining the next inference step and so to guide the
search. The strategies are based on statistic measures while the heuristics can also use
semantic measures (see [De93] and [AD93]) . There are also some proposals for explicit
goal-directed search (see [BI86] and [CH93]), but these attempts, as far as they are
implemented, were not very successful due to the following facts:

- intermediate results needed for the proof were not found,

goals wi th almost no structuredid not provide enough information for guiding
the search,

fixed sequences of inferences were repeated very often,

completeness results under reasonable conditions were hard to establish.

We believe that i t is hard to solve these problems by using one fixed search strategy
or heuristic. Instead we believe that some progress can be achieved by following differ-
ent search strategies i n parallel i n such a way that important intermediate results or
intermediate system states can be exchanged and so some cross-fertilization becomes
possible.

We have developed the team work method to distribute automated theorem provers
and so to allow several experts (following the i r own search s t ra tegy) to work on the
given problem. We have implemented this for pure equational logic using the unfailing
Knuth-Bendix completion procedure as basic prover. There is a fixed schedule (set up

- by a supervisor) to activate a team of experts, to let them work independently (thus
competing), then to exchange their most important results (to cooperate) and to start
a new round. This architecture has the following advantages:

- restricted, but efficient control and communication,

2

2

- measurement of intermediate results and evaluation of experts,

- forgetting of "useless" intermediate results.

There are theoretical results ([AD93]) that allow for using "unfair" experts (which are
unable to find solutions alone) without losing completeness of the whole system. This
allows us to incorporate into a team goal oriented experts which are typically unfair. If
such a goal oriented expert is well suited for the given problem it may produce valuable
intermediate results to shorten the search of other experts or even complete the proof
using results of the other experts. If it does not produce reasonable. results, it's results
are just forgotten and the expert may be replaced by another one.

In this paper we present three goal oriented experts which proved to be highly efficient
in experiments. We describe them in detail, discuss how they work and demonstrate
their power by examples. We present problems that we could not solve without these
goal directed experts but which were easy to solve using them. One of these experts
even proved to perform highly efficient as stand-alone prover. We compare our results
with those produced (or sometimes not produced) by other well known provers, i.e.
Otter 3.0 ([Mc94]) and REVEAL ([CA94]).

This paper is organized as follows: After this introduction we describe in section 2 the
completion algorithm we use as basis for our goal oriented heuristics. Then we give a
brief overview of the team work method and its application to completion (section 3).
In section 4 we describe in detail the three goal oriented heuristics which were used
to obtain the results of section 5. In this section 5 we will not only state the results,
but we will also analyze why goal oriented heuristics allow one to get these results.
In section 6 we will describe other approaches to goal oriented equational theorem
proving. Finally, we will sketch possible further improvements of our method.

Equational deduction by completion

Equational theorem proving is concerned with the following problem:

Input: A set E of equations and a goal s = t over a fixed signature'sig
Question: Is s = t a logical consequence of E ?

As usual, sig = (F,T) consists of a set F of function symbols and a function T denoting
the arity of the elements of F. Here we restrict to the unsorted case, the extension to
the many sorted case is simple. We denote by Term(F,V) the set of terms over F and
a set V of variables. If s is a term and p a position in s then sip denotes the subterm
of s at position p and the term s[Pf-t] results from s by replacing sip with t.

A reduction ordering >- on Term(F,V) is a well-founded partial ordering on Term(F,V)
that is compatible with substitutions and the term structure, i.e. s >- t implies to[Pf
O'(s)] >- to[Pf- O'(t)] for any term to, position p in to and substitution 0'. A ground
reduction ordering is a reduction ordering that is total on the ground terms, i.e. terms
without variables, denoted by Term(F). By == we denote the identity on Tenn(F,V).

3

- measurement of intermediate results and evaluation of experts,

- forgetting of ”useless” intermediate results.

There are theoretical results ((AD93]) that allow for using ”unfair” experts (which are
unable to find solutions alone) without losing completeness of the whole system. This
allows us to incorporate into a team goal oriented experts which are typically unfair. I f
such a goal oriented expert is well suited for the given problem i t may produce valuable
intermediate results to shorten the search of other experts or even complete the proof
using results of the other experts. If i t does not produce reasonable results, i t ’s results
are just forgotten and the expert may be replaced by another one.
In this paper we present three goal oriented experts which proved to be highly efficient
i n experiments. We describe them in detail, discuss how they work and demonstrate
their power by examples. We present problems that we could not solve without these
goal directed experts but which were easy to solve using them. One of these experts
even proved to perform highly efficient as stand-alone prover. We compare our results
with those produced (or sometimes not produced) by other well known provers, i.e.
Otter 3.0 ([Mc94]) and REVEAL ([CA94]).
This paper is organized as follows: After this introduction we describe i n section 2 the
completion algorithm we use as basis for our goal oriented heuristics. Then we give a
brief overview of the team work method and i ts application to completion (section 3).
In section 4 we describe i n detail the three goal oriented heuristics which were used
to obtain the results of section 5. In this section 5 we wil l not only state the results,
but we will also analyze why goal oriented heuristics allow one to get these results.
In section 6 we will describe other approaches to goal oriented equational theorem
proving. Finally, we will sketch possible further improvements of our method.

2 Equational deduction by completion

Equational theorem proving is concerned with the following problem:

Input: A set E of equations and a goal s = t over a fixed signature’ stg
Quest ion: Is s = t a logical consequence of E ?

As usual, sig = (F,7) consists of a set F of function symbols and a function 7 denoting
the arity of the elements of F . Here we restrict to the unsorted case, the extension to
the many sorted case is simple. We denote by Term(F,V) the set of terms over F and
a set V of variables. I f s is a term and p a position i n s then s/p denotes the subterm
of s at position p and the term s [p«t] results from s by replacing s/p with t.
A reduction ordering > on Term(F,V) is a well-founded partial ordering on Term(F,V)
that is compatible with substitutions and the term structure, i.e. s = t implies to[p—
o (s)] > t o [p— o (t)] for any term to , posi t ion p i n t y and subst i tu t ion o . A ground
reduction ordering is a reduction ordering that is total on the ground terms, i.e. terms
wi thou t var iab les , denoted by Term(F). By = we denote the i den t i t y on Term(F,V).

3

The completion procedure is based on two basic inference steps: (1) generation of criti
cal pairs (paramodulation) and (2) simplification of terms (demodulation) according to
a fixed reduction ordering. To explain this, let h = rt and h = r2 be two equations with
no variables in common, let p be a position in It such that hip is no variable and a =
mgu(lIfp,h) exists. If neither a(rt) ::- a(h) nor a(r2) ::- a(h) tfen (a(rl),a(h[p+--r2]) is
a critical pairof these equations. We denote by CP(Eo) the set of critical pa~rs induced
by the equations in Eo wrt. ::-. If s is a term, I = r an equation and a a substitution
such that sip == a(l) and a(l) ::- a(r), then s =? s[p+-- a(r)]. We call =? = =?EO the
rewrite relation of Eo wrt. ::-. We call s reducible if s =? t for some term t. We call t
a normal form of s if s =?'" t and t is irreducible. Here =?'" denotes the reflexive and
transitive closure of =? An equation I = r is interreduced iH and r are irreducible.

In order to simplify notations and to save comparisions of terms wrt. ::-, we split the
set Eo of equations into the set R = { I-+r 1I = r in Eo, 1 ::- r} of rules (orientable
equations) and the set E = { 1 = r 11 = r in Eo, neither 1::- r nor r ::- I} of unorientable
equations. Note that we have a(l) ::-a(r) for each rule 1-+ r and each substitution. If I
= r in E then there may be substitutions ai such that al(l) ::- at(r) and a2(r) ::- a2(l).

We now describe our basic prover. It takes as input a set Eo of equations, a goal s = t
and a reduct;on ordering ::- that can be extended to a ground reduction ordering. It
works on three sets: the set R of rules, the set E of unorientable equations and the set
CP of critical pairs that are unprocessed. Initially, both Rand E are empty and CP
= Eo. Now the basic prover consists of the following loop.

basic prover:

while CP is not empty and the normal forms of sand t are not identical do

- choose an equation u' = v' from CP.
- let u and v be the normal forms of u' and v'.
- if not u == v then

- if either u ::- v or v ::- u then
- let I be max(u,v) and r be min(u,v).
- interreduce Rand E with I -+ r.
- R := R U { 1-+ r}.
- let CPnew be the set of critical pairs of 1 -+ rand Rand 1 -+ rand E.

else'
- interreduce Rand E with u = v.
-E:=EU{u=v}.
- let CPnew be the set of critical pairs of u = v and Rand u = v and E.

- CP := CP U CPnew.

There is one basic point of indeterminism within this prover: How to select the equation
u' = v' from ep to be processed next. The way how this indeterminism is fixed
determines the search for the proof by the prayer (the so-called search plan of [BH91]).
This allows one to integrate different search strategies and heuristics into the prover and
so to realize different experts (see below). A search plan that guarantees to find a proof
if there is one (i.e. a "fair" plan, see [BDP89] and [AD93] for the definition of fairness)
will in the following be called a strategy while unfair search plans are heuristics. A
general way to describe a strategy or heuristic is to define for each equation u = v

4

The completion procedure is based on two basic inference steps: (1) generation of criti-
cal pairs (paramodulation) and (2) simplification of terms (demodulation) according to
a fixed reduction ordering. To explain this, let 1; = r ; and 1; = r2 be two equations with
no variables in common, let p be a position in I ; such that 1;/p is no variable and 0 =
mgu(l;/p,l2) exists. If neither a(r1) > o(l1) nor o(rz) > a (lz) then (o(ry),0(li[per2]) is
a critical pair of these equations. We denote by CP(Eo) the set of critical pairs induced
by the equations i n Eq wr t . > . I f s is a term, | = r an equation and o a substitution
such that s/p = o(l) and o(l) > o(r) , then s = s[p— o(r)]. We call = = =>; the
rewrite relation of Eg wrt. > . We call s reducible i f s => t for some term t . We call t
a normal form of s i f s = t and t is irreducible. Here =>* denotes the reflexive and
transit ive closure of =>. An equation | = r is interreduced i f | and r are irreducible.

In order to simplify notations and to save comparisions of terms wrt. > , we split the
set Eg of equations into the set R = { l—=r | 1 = r i n Eo, 1 > r } of rules (orientable
equations) and the set E = {1 = r | 1 = r i n Eg, neither1> r nor r > 1} of unorientable
equations. Note that we have o(l) -o (r) for each rule 1 — r and each substitution. If 1
= r in E then there may be substitutions o; such that oy(1) = o;(r) and o2(r) > o2(1).
We now describe our basic prover. I t takes as input a set Eg of equations, a goals = ¢
and a reduction ordering > that can be extended to a ground reduction ordering. I t
works on three sets: the set R of rules, the set E of unorientable equations and the set
CP of critical pairs that are unprocessed. Initially, both R and E are empty and CP
= Eo. Now the basic prover consists of the following loop.
basic prover:
while CP is not empty and the normal forms of s and t are not identical do

- choose an equation u ’ = v ’ from CP.
- let u and v be the normal forms of u ’ and v’.
- i f not u = v then

- i f ei ther u > vo r v > u then
- let 1 be max(u,v) and r be min(u,v).
- interreduce R and E with 1 — r .
-R :=RuU{ l - r }
- let CPnew be the set of critical pairs of 1 — r and R and | — r and E.

else :

- interreduce R and E with u = v.
-E :=EU {u=v }
- let CPnew be the set of critical pairs of u = v and R and u = v and E.

- CP := CP U CPnew.
There is one basic point of indeterminism wi th in this prover: How to select the equation
u ’ = v ’ from CP to be processed next. The way how this indeterminism is fixed
determines the search for the proof by the prover (the so-called search plan of [BH91]).
This allows one to integrate different search strategies and heuristics into the prover and
so to realize different experts (see below). A search plan that guarantees to find a proof
i f there is one (i.e. a "fair” plan, see [BDP89] and [AD93] for the definition of fairness)
will i n the following be called a strategy while unfair search plans are heuristics. A
general way t o describe a strategy o r heuristic i s t o define for each equation u = v

4

3

in CP a value or weight (an integer) val(u = v) and to select the equation u = v in
CP with minimal weight to be processed next. Ties are broken arbitrarily. We give
some standard strategies by defining val as already used in [Ru80]. Here Isl denotes
the length of the term s.

val(u = v) = lul + Ivl smallest sum strategy
val(u = v) = MAX{lul,lvl} smallest maximum strate~y

In section 4 we will present and discuss goal oriented heuristics (Note that the two
strategies mentioned above are totally independent from the goal s = t to be proved).

The team work method

The team work method (see [De93], [AD93]) is a general approach to distribute theorem
proving procedures. It has been inspired by human project teams and has been used to
distribute equational theorem proving by completion. A proof system based on team
work models human project teams by use of multiple processes running on different
processors.

A team consists of a single supervisor and a number of experts, each accompanied by
a referee evaluating his work. Usually each expert is working on a problem without
communication with the other team members. Only at team meetings, scheduled by
the supervisor results are exchanged.

The supervisor is selecting the experts to work on a given problem, initially by judging
their previous successes on related problems, later by using the referees' evaluation of
their performance in dealing with the given problem. Also he determines the lengths
of the working phases of the experts between the team meetings.

The referees are evaluating the achievements of the different experts. Their assessments
are used for selecting a new team and important results (from their respective experts)
during the team meetings.

The experts are the members of the team working directly on the problem. In our case
each of them is using the completion algorithm as described in section 2. They differ
in the methods used to choose the next critical pair. At team meetings, the system,
i.e. the sets R, E and CP, of the best expert is chosen as the basis for further work.
As only one system survives completely, the experts are competing for the best result.

However, competition is only one aspect of the team work method. The second im
portant element is the cooperation between the experts. Cooperation is achieved by
integrating outstanding results from inferior experts (as chosen by their referees) into
the system of the best expert. This is accomplished by the supervisor during the team
meetings, before he presents a new and updated problem description to the experts for
the next working phase. In our case of a completion based theorem prover the out
standing results - rules and equations - are handled as new critical pairs to be processed
immediately.

It is important to note that most of the results generated by the inferior experts are

5

i n CP a value or weight (an integer) val(u = v) and to select the equation u = v in
CP with minimal weight to be processed next. Ties are broken arbitrarily. We give
some standard strategies by defining val as already used in [Hu80]. Here |s| denotes
the length of the term s.
val(u = v)= |u| + |v] smallest sum strategy
val(u = v) = MAX{|ul,|v|]} smallest maximum strategy

In section 4 we will present and discuss goal oriented heuristics (Note that the two
strategies mentioned above are totally independent from the goal s = ¢ to be proved).

3 The team work method

The team work method (see [De93], [AD93]) is a general approach to distribute theorem
proving procedures. I t has been inspired by human project teams and has been used to
distribute equational theorem proving by completion. A proof system based on team
work models human project teams by use of multiple processes running on different
processors.
A team consists of a single supervisor and a number of experts, each accompanied by
a referee evaluating his work. Usually each expert is working on a problem without
communication with the other team members. Only at team meetings, scheduled by
the supervisor results are exchanged.
The supervisor is selecting the experts to work on a given problem, init ial ly by judging
their previous successes on related problems, later by using the referees’ evaluation of
their performance in dealing wi th the given problem. Also he determines the lengths
of the working phases of the experts between the team meetings.

The referees are evaluating the achievements of the different experts. Their assessments
are used for selecting a new team and important results (from their respective experts)
during the team meetings.
The ezperts are the members of the team working directly on the problem. In our case
each of them is using the completion algorithm as described i n section 2. They differ
in the methods used to choose the next critical pair. A t team meetings, the system,
i.e. the sets R, E and CP, of the best expert is chosen as the basis for further work.
As only one system survives completely, the experts are competing for the best result.
However, competition is only one aspect of the team work method. The second im-
portant element is the cooperation between the experts. Cooperation is achieved by
integrating outstanding results from inferior experts (as chosen by their referees) into
the system of the best expert. This is accomplished by the supervisor during the team
meetings, before he presents a new and updated problem description to the experts for
the next working phase. I n our case of a completion based theorem prover the out-
standing results - rules and equations - are handled as new critical pairs to be processed
immediately.
I t is important to note that most of the results generated by the inferior experts are

5

dropped or forgotten. We believe that one of the reasons for the success of team work
is this feature of forgetting that avoids blowing up the search space. Furthermore, it
allows the use of very specialized selection heuristics for critical pairs that are only
capable of generating a few of the necessary results to prove a goal. But these results
are generated as early as possible without many unnecessary steps. Our heuristics
based on goal similarity are members of this category of experts.

Although goal oriented experts are in the center of this paper, we want to mention·
that also the other components of teams have goal oriented features. Firstly, referees
can ground their judgement of intermediate results on goal similarity. Secondly, the
supervisor can decide when to choose goal oriented experts to become team members.
But in the rest of the paper we will concentrate on goal oriented experts.

Note that one can prove the completeness of the team work method under relatively
weak conditions (see [AD93] for the definition of team-fairness. These conditions allow
one to have unfair experts in the team (even as winner of a round), one only has to
guarantee that in an infinite computation infinitely often a team-fair expert becomes
the winner of a competition round. This is easy to achieve, since for example experts
following the smallest sum strategy or the smallest maximum strategy are team-fair.
For this reason one can activate unfair experts frequently (and design special experts
for different proof stages) without losing completeness for the whole team.

4 Goal oriented selection heuristics for completion

In this section we present two kinds of goal oriented heuristics. As explained in section
2, these heuristics are used to select the next equation in CP to be processed· by the
basic prover. So they define an expert.

The first kind of heuristics is based on the notion of structural complexity of terms
and equations. The idea behind the definition of these heuristics is the hypothesis
that, given a fixed structural complexity measure, simple statements only need simple
lemmata to be proved. So those equations in CP should be preferred whose structural
complexity does not exceed that of the goal. Clearly, this hypothesis does not hold
true in general, but it turns out to lead to good heuristics (as demonstrated by Table
1 in section 5).

The second kind of heuristics is based on the notion of similarity between terms. We
define several notions of similarity between an equation and a goal and measure this
similarity by a natural number. Now the heuristics prefer those equations in CP which
have a high similarity to the goal. It turns out that this kind of heuristics performs
well at the end of a proof.

4.1 The structural complexity expert occnest

Our heuristics based on structural complexity derive from the measures proposed in
[AA90] to guide the search in a completion based prover. The measures of a term t in

6

dropped or forgotten. We believe that one of the reasons for the success of team work
is this feature of forgetting that avoids blowing up the search space. Furthermore, i t
allows the use of very specialized selection heuristics for critical pairs that are only
capable of generating a few of the necessary results to prove a goal. But these results
are generated as early as possible without many unnecessary steps. Our heuristics
based on goal similarity are members of this category of experts.

Although goal oriented experts are i n the center of this paper, we want to mention:
that also the other components of teams have goal oriented features. Firstly, referees
can ground their judgement of intermediate results on goal similarity. Secondly, the
supervisor can decide when to choose goal oriented experts to become team members.
But i n the rest of the paper we wi l l concentrate on goal oriented experts.
Note that one can prove the completeness of the team work method under relatively
weak conditions (see [AD93] for the definition of team-fairness. These conditions allow
one to have unfair experts in the team (even as winner of a round), one only has to
guarantee that in an infinite computation infinitely often a team-fair expert becomes
the winner of a competition round. This is easy to achieve, since for example experts
following the smallest sum strategy or the smallest maximum strategy are team-fair.
For this reason one can activate unfair experts frequently (and design special experts
for different proof stages) without losing completeness for the whole team.

4 Goal oriented selection heuristics for completion

In this section we present two kinds of goal oriented heuristics. As explained in section
2, these heuristics are used to select the next equation in CP to be processedby the
basic prover. So they define an expert.
The first kind of heuristics is based on the notion of structural complexity of terms
and equations. The idea behind the definition of these heuristics is the hypothesis
t ha t , given a fixed structural complexity measure, simple statements only need simple
lemmata to be proved. So those equations in CP should be preferred whose structural
complexity does not exceed that of the goal. Clearly, this hypothesis does not hold
true in general, but i t turns out to lead to good heuristics (as demonstrated by Table
1 in section 5).
The second kind of heuristics is based on the notion of similarity between terms. We
define several notions of similarity between an equation and a goal and measure this
similarity by a natural number. Now the heuristics prefer those equations in CP which
have a high similarity to the goal. I t turns out that this kind of heuristics performs
well at the end of a proof.

4 .1 The structural complexity expert occnest

Our heuristics based on structural complexity derive from the measures proposed in
[AA90] to guide the search in a completion based prover. The measures of a term t in

6

[AA90] are base~ on the occurrences of a function symbol fin t, see the function occ(f,t)
defined below as one example. This defines a value of an equation and this value is
combined in a lexicographical way with other measures on the equation. According to
the order induced by these measures the smallest equation is selected to be processed
next. In this way the measures act as a sequence of filters.

Our experiments showed that these sequences of filters define an ordering that is not
smooth enough. The combination of different values can be improved by using an
arithmetic combination instead of a lexicographic one. We propose the combination of
the following values: (1) <p(t), which is a modified length of t, (2) occ(f,t), which denotes
the number of occurrences of f in t and (3) nest(f,t), which is equal to the maximum
number of direct 'following occurrences of f on a branch of t, when t is presented as a
tree. (2) and (3) lead to a value for each element of F. The combination of these values
will define our goal oriented heuristic occnest(u=v). We make this precise. '

Definition 4.1 (Weight of a term, OCC, nest)

a) The weight </J(t) of a term t is recursively defined by

: (t) = 1, if t is a variable,

</J(t) = 2 + </J(tt) + '" + </J(tn), if t =j(tl, ... ,tn).

b) The number of occurrences occ(J,t) is recursively defined by

occ(J,t) = 0, if t is a variable,

occ(J,t) = occ(f,tt) + ... + occ(J,tn), if t =g(tt, ... ,tn), #g,

occ(f,t) = 1 + occ(f,tt) + ... + occ(J,tn), if t =f(tt, ... ,tn).

c) The nesting nest(J,t) is recursively defined by

nest(j,t) = 0, if f is a constant

nest(J,t) = hnest(J,t,O,O), if f is not a constant, where

hnest(J,t,cur,abs) = MAX({cur,abs}),
if t is a variable or a constant,

hnest(J,t,cur,abs) = MAX({hnest(J,li,O,MAX({cur,abs})) 11:S;i:S;n}),
if t =g(tl, ... ,tn), #g,

hnest(j,t,cur,abs) = MAX({hnest(f,li,cur+1,abs) I 1:S;i:S;n}),
if t = f(tt, ... ,tn)

To give an example, if t == f(g(a,x),f(a,g(b,y»), then </J(t) = 16, occ(f,t) = occ(g,t) =
occ(a,t) = 2 and nest(f,t) = 2 and nest(g,t) = 1. For Ut == f(x,y) and U2 = f(a,y) we
have </J(ut} = 4 and </J(U2) = 5. This way, an equation Ut = v would be preferred over
U2 = v (using the smallest sum strategy and also in our goal oriented heuristics). The
reason why we prefer this is that Ut = v is more general and therefore more powerful
for deduction than U2 = v.

We will use </J(t) as the basic value of a term t and occ(f,t) and nest(f,t) for refinements
to express the structure of t. Next we extend occ and nest to equations u = v by

7

[AA90] are based on the occurrences of a function symbol f in t , see the function occ(f,t)
defined below as one example. This defines a value of an equation and this value is
combined i n a lexicographical way with other measures on the equation. According to
the order induced by these measures the smallest equation is selected to be processed
next. In this way the measures act as a sequence of filters.
Our experiments showed that these sequences of filters define an ordering that is not
smooth enough. The combination of different values can be improved by using an
arithmetic combination instead of a lexicographic one. We propose the combination of
the following values: (1) ¢(t), which is a modified length of t , (2) occ(f,t), which denotes
the number of occurrences of f in t and (3) nest(f,t), which is equal to the maximum
number of direct following occurrences of f on a branch of t , when t is presented as a
tree. (2) and (3) lead to a value for each element of F . The combination of these values
will define our goal oriented heuristic occnest(u=v). We make this precise.

Definition 4 .1 (Weight of a term, occ, nest)

a) The weight ¢(t) of a term t is recursively defined by

L t) = 1, i f t is a variable,
Bt) = 2+ b(t) +... + (tn), i f t= f t , tn).

b) The number of occurrences occ(f,t) is recursively defined by

occ(fit) = 0, i f t is a variable,
oce(f,t) = occ(fith) + ... + occ(fitn), i f t = g(t,...,tn), f#9,
occ(fit) = 1 + occ(fity) + ... + occ(fitn), i f t = f (t , . . . ,ta).

¢) The nesting nest(f,t) is recursively defined by

nest(f,t) = 0, if f is a constant
nest(f,t) = hnest(f,t,0,0), if f is not a constant, where

hnest(f,t,cur,abs) = MAX({cur,abs}) ,
if t is a variable or a constant,

hnest(f,t,cur,abs) = MAX({hnest(f , t ; ,0,MAX ({cur,abs})) | 1<i<n}),
i f t = g(t , , ta), JE

hnest(f,t,cur,abs) = MAX({hnest(f,t;,cur+1,abs) | 1< i<n }) ,
i f t = f t . . . tn)

To give an example, i f t = f(g(a,x),f(a,g(b,y))), then #(t) = 16, occ(f,t) = occ(g,t) =
occ(a , t) = 2 and nest (f , t) = 2 and nest (g, t) = 1 . For u ; = f (x ,y) and up; = f (a ,y) we
have ¢(u;) = 4 and ¢(uz) = 5. This way, an equation u ; = v would be preferred over
u2 = v (using the smallest sum strategy and also in our goal oriented heuristics). The
reason why we prefer th is is that u ; = v is more general and therefore more powerful
for deduction than uy; = v .

We will use # (t) as the basic value of a term t and occ(f , t) and nest (f , t) for refinements
to express the structure of t . Next we extend occ and nest to equations u = v by

7

occ(f,(u,v)) := MAX({occ(f,u) , occ(f,v)})

nest(f,(u,v)) := MAX({nest(f,u) , nest(f,v)})

Finally we define the value occnest(u=v) according to the following idea: We start with
the weight of the equation u = v and modify it by a penalty to describe the difference
of the structural complexity of u = v and the goal s = t. There are several ways to
combine these values. One easily sees that it is reasonable to add the penalty in the
form of an factor. This factor has to be at least 1; this is ensured by using the function

1/;(x) = 1, if x:S;O,

.,p(x) = x + 1, else.

To be flexible, we also allow a set D ~ F to describe which operators f in F should
contribute to the value occnest(u=v).

Definition 4.2 (occnest)

Let u = v be a critical pair, s = t the goal and <jJ the weighting function for terms as

defined earlier. Let furthermore D ~ F, where F ;<; the set of all function symbols of

sig. We define for all f E F:

mf:= 1, ifft/. D,

mf := 1/;(occ(f,(u,v)) - occ(f,(s,t)) * .,p(nest(f,(u,v)) - nest(f,(s,t))), otherwise.

Then we have :
occnest(u = v) = (<jJ(u) + <jJ(v)) * IT mf·

fEF

Clearly, there are many other ways to define structural complexity and to relate the
complexity of the goal s = t to that of an equation. We have experimented with occnest
and present some experimental results in section 5. .

4.2 Experts based on goal similarity

There are many ways to define the notion "similarity" . They differ in the operations
under which the objects to compare should be similar. Although one could say that
the measures of the last section can be used as a function to measure similarity of
equations, in this section we are interested in the similarity of two equations with
respect to the basic operations of completion, namely reduction and generation of
critical pairs. Therefore we want to say that two equations are similar if they can be
transformed into each other by means of several reductions or the generation of several
critical pairs. Note that this definition depends on all other rules and equations that
are known to be valid.

Now, if we know that an equation and a goal are similar with respect to this criterion
then we already have the proof of the goal. Therefore we have to relax this criterion

8

occ(f,(u,v)) : = MAX({occ(f,u) , occ(f,v)})

nest(f,(u,v)) : = MAX({nest(f,u) , nest(f,v)})

Finally we define the value occnest(u=v) according to the following idea: We start with
the weight of the equation u = v and modify i t by a penalty to describe the difference
of the structural complexity of u = v and the goal s = t . There are several ways to
combine these values. One easily sees that i t is reasonable to add the penalty in the
form of an factor. This factor has to be at least 1; this is ensured by using the function

P(x) = 1, i f x<0 ,

P(x) = x + 1, else.

To be flexible, we also allow a set D C F to describe which operators f in F should
contribute to the value occnest(u=v).

Definition 4.2 (occnest)
Let u = v be a critical pair, s = t the goal and ¢ the weighting function for terms as
defined earlier. Let furthermore D © F, where F 7s the set of all function symbols of
sig. We define for a l l f € F:

my i= 1 , i f f ¢ D ,

my := Pp (occ(f, (u,v) - occ(f,(s,t)) * P(nest(f, (u,v) - nest(f,(s,t))), otherwise.

Then we have :
occnest(u = v) = ((u) + ¢(v)) * I] my.

f e r

Clearly, there are many other ways to define structural complexity and to relate the
complexity of the goal s = ¢ to that of an equation. We have experimented with occnest
and present some experimental results in section 5.

4.2 Experts based on goal similarity

There are many ways to define the notion -"similarity”. They differ i n the operations
under which the objects to compare should be similar. Although one could say that
the measures of the last section can be used as a function to measure similarity of
equations, in this section we are interested i n the similarity of two equations wi th
respect to the basic operations of completion, namely reduction and generation of
critical pairs. Therefore we want to say that two equations are similar i f they can be
transformed into each otherby means of several reductions or the generation of several
critical pairs. Note that this definition depends on all other rules and equations that
are known to be valid.
Now, i f we know that an equation and a goal are similar wi th respect to this criterion
then we already have the proof of the goal. Therefore we have to relax this criterion

8

such that we try to estimate the possibility that such a proof can be found. This
relaxation should lead to a function measuring similarity that only needs to know the
two equations to compare and not any other rules and equations. We developed such
functions by means of matching and weighting superfluous parts of terms.

In the following we will make this idea more precise. Because we have two basic
operations, we also have two similarity functions. These functions, Goal-in-CP and
CP-in-Goal, weight equations according to their similarity to a given goal which is
assumed to be ground. First we need to define the similarity of a term u to a goal term
s.

Definition 4.3 (Similarity of terms)
Let s be a ground term (goal term) and u a term.
The CP-in-Goal-Similarity sirncGp at position p with substitution u is defined by

sirncGp (u,s,u,p) = c/J{s) - c/J{s/p), if u{u) =sip

sirncGp{u,s,u,p) = 00, otherwise.

The CP-in-Goal-Similarity sirncG with substitution u is

sirncG (u,s,u) = MINp{sirncGp{u,s,u,p)).

The Goal-in-CP-Similarity sirnacp at position p with substitution u is defined by

simacp{u,s,u,p) = c/J{u) - c/J{u/p), if u{u/p) == sand c/J{u/p) 2: min-struct,

simacp (u,s,u,p) = 00, otherwise.

The Goal-in-CP-Similarity simGc with substitution u is

sirnac (u,s,u) = MINp{simacp(u,s,u,p)).

The reason for introducing the parameter min-struct is to prevent simGc from using
positions in terms that are variables or terms of the form f(xl, ... ,xn) which would be
similar to all goals resp. all goals with top-level symbol f. By choosing min-struct :::
n+3 this can be achieved (see the definition of c/J).

If we want to extend our two similarity notions to an equation u = v and a goal s = t
then we encounter the following three cases (note that equations are symmetric, so
that u and v can be exchanged) :

We use sim for either simGc or simCG.

I. There is a u, such that sim(u,s,u) < 00 and sim(v,t,u) < 00.

H. There is a u, such that either sim(u,s,u) < 00 or sim(v,t,u) < 00.

HI. There is no u, such that sim(u,s,u) < 00 or sim(v,t,u) < 00.

9

such that we try to estimate the possibility that such a proof can be found. This
relaxation should lead to a function measuring similarity that only needs to know the
two equations to compare and not any other rules and equations. We developed such
functions by means of matching and weighting superfluous parts of terms.

In the following we will make this idea more precise. Because we have two basic
operations, we also have two similarity functions. These functions, Goal-in-CP and
CP-in-Goal, weight equations according to their similarity to a given goal which is
assumed to be ground. First we need to define the similarity of a term u to a goal term
Ss.

Definition 4.3 (Similarity of terms)
Le t s be a ground term (goal term) and u a term.
The CP-in-Goal-Similarity simcap at position p with substitution o is defined by

simcGp (4 ,5 ,0 ,0) = $(s) - $(s/p), if o(v) = s/p

simcayp (4,5,0,p) = co, otherwise.

The CP-in-Goal-Similarity simcca with substitution o is

simeg (4,8,0) = MIN, (simcgy (u,8,0,p)).

The Goal-in-CP-Similarity simgc, at position p with substitution o is defined by

simgeyp (v,8,0,p) = ¢(u) - ¢(u/p), if o(u/p) = s and ¢(uv/p) > min-struct,

stmgcyp (,8,0,p) = co, otherwise.

The Goal-in-CP-Similarity simgc with substitution o is

simgc (u,3,0) = MIN, (simgep(u,s,0,p)).

The reason for introducing the parameter min-struct is to prevent simge from using
positions in terms that are variables or terms of the form f(x,,...,x,) which would be
similar to all goals resp. all goals with top-level symbol f. By choosing min-struct >
n+3 this can be achieved (see the definition of ¢).

If we want to extend our two similarity notions to an equation u = v and a goal s = ¢
then we encounter the following three cases (note that equations are symmetric, so
that u and v can be exchanged) :

We use s im for e i ther simgc or s imcg.

I . There is a cr, such that sim(u,s,0) < co and sim(v,t,0) < co.

I I . There is a 0 , such that either sim(u,s,0) < oo or sim(v,t,0) < co.

I I I . There is no o , such that sim(u,s,0) < co or s im(v, t ,0) < co.

9

It is obvious that case I is the most desirable of these three. In order to achieve a
distinction between these cases while nevertheless describing each critical pair with
one value, we use in the following definition two factors, namely single-match and no
match, that are greater than 1. These factors can be considered as handicaps for the
cases II and Ill. In our implementation we use single-match = 5 and no-match = 50
as default.

Definition 4.4 (Goal-in-CP , CP-in-Goal)
Let u=v be a critical pair and s = t be the goal.

CP-in-Goal(u=v,s=t) = MINu (sirnca (u,s,a) + sirnca (v,t,a),

simcG(u,t,a} + sirncG(v,s;a)),

if thlfre are a with respect to case /.

CP-in-Goal(u=v,s=t) = MINu (sirncG (u,s,a) + 4>(t),
sirnca(u,t,a) + 4> (s),
sirnca(v,s,a) + 4>(t),
simcG(v,t,a) + 4>(s)) * single-match,

if there are a with respect to case II.

CP-in-Goal(u=v,s=t) - N(u) + 4>(v)) * no-match,

otherwise.

Goal-in-CP(u=v,s=t) = M/Nu (simac (u,s,a) + simac (v,t,a),

simac (u,t,a) + simac (v,s,a)),

if there are a with respect to case /.

Goal-in-CP(u=v,s=t) = M/Nu (simac (u,s,a) + 4>(v),
simac (u,t,a) + 4> (v),
simac (v,s,a) + 4>(u),
simcc (v,t,a) + 4>(u)) * single-match,

if there are a with respect to case II.

Goal-in-CP(u=v,s=t) = (4)(u) + </>(v)) * no-match,

otherwise.

As in the case of occnest, the heuristics Goal-in-CP and CP-in-Goal choose the critical
pair with the resp. lowest value.

Note that although we use 4>(s)' resp. 4>(t), in the definition ofCP-in-Goal for the cases
I and II, we define the weight of the critical pair in case Ill, if there is no similarity, by
</>(u) and </>(v). Otherwise, each critical pair classified into case III would be given the
same weight.

As we stated before presenting the definitions, we want to define similarity of critical
pairs to the goal with respect to the operations reduction and generation of critical
pairs. Goal-in-CP measures the similarity with respect to the generation of critical
pairs and CP-in-Goal with respect to reductions. We will demonstrate this with the
following example.

10

I t is obvious that case I is the most desirable of these three. In order to achieve a
distinction between these cases whi le nevertheless describing each cr i t ical pa i r w i th
one value, we use in the following definition two factors, namely single-match and no-
match, that are greater than 1. These factors can be considered as handicaps for the
cases I I and I I I . In our implementation we use single-match = 5 and no-match = 50
as default.

Definition 4.4 (Goal-in-CP , CP-in-Goal)
Let u=v be a critical pair and s = t be the goal.

CP-in-Goal(u=v,s=t) = MIN, (simca(u,s,0) + simca (v,t,0),
simeg (u,t,0) + simeg (v,5;0)),

if there are o with respect to case I.

CP-in-Goal(u=v,s=t) = MIN, (simce(u,s,0) + (tt),
stmeg(u,t,0) + é(s),
simeg (v,5,0) + $(t),
simeg (v,t,0) + @(s)) * single-match,

if there are 0 with respect to case II.

CP-in-Goal(u=v,s=t) = (¢(u) + é(v)) * no-match,
otherwise.

Goal-in-CP(u=v,s=t) = MIN, (simgc(u,s,0) + simgc (v,t,0),
simge (v,t,0) + simge (v,5,0)),

if there are o with respect to case I.

Goal-in-CP(u=v,s=t) = MIN, (simcc (u,s,0) + ¢(v),

simge (1,0) + 6(v),
simac (v,5,0) + (u),
simge (v,t,0) + ¢(u)) * single-match,

if there are o with respect to case II.

Goal-in-CP(u=v,s=t) = (¢(uv) + ¢(v)) * no-match,
otherwise.

As in the case of occnest, the heuristics Goal-in-CP and CP-in-Goal choose the critical
pair with the resp. lowest value.
Note that although we use ¢(s), resp. #(t), i n the definition of CP-in-Goal for the cases
I and I I , we define the weight of the critical pair i n case III, i f there is no similarity, by
(u) and ¢(v). Otherwise, each critical pair classified into case I I I would be given the
same weight.
As we stated before presenting the definitions, we want to define similarity of critical
pairs to the goal with respect to the operations reduction and generation of critical
pairs. Goal-in-CP measures the similarity with respect to the generation of critical
pairs and CP-in-Goal with respect to reductions. We wil l demonstrate this with the
following example.

10

5

Example:
Let s == f(g(a),f(a,g(b))) = g(f(a,b)) =t be the goal.

1.	 Let u == g(f(f(g(x),f(y,z)),d)) = g(f(y,b)) == v be a critical pair and g(f(f(g(a),x),d))
-t f(g(a),y) be a rule.
If we assume that the critical pair is ordered from left to right then the now two
rules have, besides others, the following critical pair:

u' == f(g(a),f(y,z)) = g(f(y,b)) = v',
which proves the goal.
Although the terms u and v are quite big, Goal-in-CP weights u = v with a value
of 6, which results in an early selection. Among the several critical pairs that can
be generated from the two rules the pair u' = v' has a Goal-in-CP value of 0 and
will therefore be processed immediately (Note that also the CP-in-Goal value of
u' = v' is 0).

2.	 Let f(a,x) = f(x,b) and f(a,x) = f(a,b) be two critical pairs. They are nearly
identical and would be weighted by </> with 10 and 11.
CP-in-Goal makes a better distinction by weighting them with 5 * 14 = 70 and
6 + 2 = 8.

It is obvious that both heuristics based on similarity are highly specialized. Although
there are some examples that can be proved using one of these heuristics working
alone, their effectiveness lies in their use in teams. The general idea is that other
experts generate a situation in which there are critical pairs that can be classified into
case I or 11 for one of the heuristics. Then this heuristic is very often capable of finishing
the proof very fast (see next section).

Note that a reduction of the goal should actually result in the necessity to recompute
the weights for all critical pairs. However, as we mainly use these heuristics in teams
we can neglect this fact, because during a team meeting this recomputation has to be
done anyway.

Experiments

The problems the lack of goal orientation causes for completion can be best observed
when one is trying to prove several theorems in a fixed domain of interest. The known
(non-goal oriented) selection strategies for critical pairs generate for each theorem ex
actly the same sequence of steps as for other theorems that appear later in the enu
meration done by the strategy. Even worse, if there are equations that are suspected
to be unnecessary for obtaining a proof for a theorem then the consequences of these
equations will nevertheless be generated. This is the reason why one is interested in
goal orientation, because such equations (and their successors) would not be considered
if the goal would be taken into account.

Therefore the usefulness of goal oriented selection heuristics can be best demonstrated
by proving many theorems in such a domain of interest. We have chosen the domain of

11

Example :
Let s = f(g(a),f(a,g(b))) = g(f(a,b)) = t be the goal.

1. Let u = g(f(f(g(x),f(y,z)),d)) = g(f(y,b)) = v be a critical pair and g(f(f(g(a),x),d))
— f(g(a),y) be a rule.
If we assume that the critical pair is ordered from left to right then the now two
rules have, besides others, the following critical pair :

u ’ = f(g(a)f(v,2)) = g(f(y,b)) = v ’ ,
which proves the goal.
Although the terms u and v are quite big, Goal-in-CP weights u = v with a value
of 6, which results i n an early selection. Among the several critical pairs that can
be generated from the two rules the pair u ’ = v ’ has a Goal-in-CP value of 0 and
will therefore be processed immediately (Note that also the CP-in-Goal value of
u ’ = v ’ is 0).

2. Let f(a,x) = f(x,b) and f(a,x) = f(a,b) be two critical pairs. They are nearly
identical and would be weighted by ¢ with 10 and 11.
CP-in-Goal makes a better distinction by weighting them with 5 * 14 = 70 and
6 + 2 = 8.

It is obvious that both heuristics based on similarity are highly specialized. Although
there are some examples that can be proved using one of these heuristics working
alone, their effectiveness lies in their use in teams. The general idea is that other
experts generate a situation in which there are critical pairs that can be classified into
case I or I I for one of the heuristics. Then this heuristic is very often capable of finishing
the proof very fast (see next section).
Note that a reduction of the goal should actually result i n the necessity to recompute
the weights for all critical pairs. However, as we mainly use these heuristics i n teams
we can neglect this fact, because during a team meeting this recomputation has to be
done anyway.

5 Experiments

The problems the lack of goal orientation causes for completion can be best observed
when one is trying to prove several theorems in a fixed domain of interest. The known
(non-goal oriented) selection strategies for critical pairs generate for each theorem ex-
actly the same sequence of steps as for other theorems that appear later in the enu-
meration done by the strategy. Even worse, i f there are equations that are suspected
to be unnecessary for obtaining a proof for a theorem then the consequences of these
equations wi l l nevertheless be generated. This is the reason why one is interested in
goal orientation, because such equations (and their successors) would not be considered
i f the goal would be taken into account.

Therefore the usefulness of goal oriented selection heuristics can be best demonstrated
by proving many theorems i n such a domain of interest. We have chosen the domain of

11

lattice ordered groups (see [KK74]) for our examples. After a short introduction to this
domain, we will first demonstrate that our goal oriented heuristics, namely occnest,
can solve many examples very fast, even several examples where standard strategies
have tremendous difficulties.

For each theorem prover and nearly each domain there are theorems that are beyond
the limits of the prover. This is also the case for our goal oriented heuristics and the
lattice ordered groups. But we will demonstrate that the use of team work enables·
us to reach beyond the limits of all our sequential experts. We were able to improve
run times significantly for problems that can be solved sequentially and even to prove
theorems that could not be proved by any of our experts working alone. These theorems
are very hard, indeed, which will be demonstrated also by results (or better the lack
of) obtained with the provers REVEAL 1.0 (see [CA94]) and Otter 3.0 (see [Mc94]).
Finally, we will also give a few examples from other domains where team work in
combination with goal oriented heuristics has been successful.

Lattice ordered groups combine the axioms of two mathematical structures, namely
lattices and groups, as the name suggests. So, we encounter for many theorems the
problem mentioned above, that indeed not all axioms are needed for a proof. In order
to axiomatize Lttice ordered groups we need the operator f of arity 2 for the group
operator, its. neutral element I and an operator i of arity I denoting the inverse of an
element. A lattice is based on a partial ordering :5 and two binary functions I and
u, the greatest lower bound and the least upper bound of two elements. The two
functions I and u can be used to get rid of the partial ordering :5 with the help of the
definition

x :5 y iff l(x,y) = x or x :5 y iff u(x,y) = y.

So, we get the following equational axiomatization for lattice ordered groups :

f(f(x,y),z) = f(x,f(y,z)) f(l,x) = x f(i(x),x) = 1
1(1(x,y),z) = l(x,l(y,z)) l(x,y) = l(y,x) l(x,x) = x
u(u(x,y),z) = u(x,u(y,z)) u(x,y) = u(y,x) u(x,x) = x
f(x,l(y,z)) = l(f(x,y),f(x,z)) u(x,l(x,y)) = x f(l(x,y),z) = l(f(x,z),f(y,z))
f(x,u(y,z)) = u(f(x,y),f(x,z)) l(x,u(x,y)) = x f(u(x,y),z) = u(f(x,z),f(y,z))

In Table I and Table 2 we use the theorems listed below. As there are two ways to
eliminate :5, we derive two problem sets, one using the operator 1, denoted by the
suffix .a, and one using the operator u, denoted by the suffix .b. (Because plO does not
contain :5, we get only one example from this theorem.) As usual, the theorems must
be negated and skolemized, conditions are added to the set of axioms. (More theorems
can be found in [Fu94].)

Problems:

monol: f(x,z):5f(y,z), if x:5Y mon02: f(z,x):5f(z,y), if x:5y
pI: f(i(z),f(x,z)):5f(i(z),f(y,z)), if x:5Y p2: xSY, if i(Y):5i(x)
p3: f(x,z):5f(y,w), if x:5Y, z:5w p4: l:5f(x,y), if l:5x, l:5y
p6: l:5f(i(x),f(y,x)), if I:5Y plO: i(u(x,y)) = l(i(x),i(y))
p9: l(x,f(y,z)) = l(x,z), p8: l(x,f(y,z)):5f(l(x,y),l(x,i)),

if l:5x, I:5Y, lsz, 1:5I(x,y) if I :5x, I Sy, l:5z

12

lattice ordered groups (see [KK74]) for our examples. After a short introduction to this
domain, we will first demonstrate that our goal oriented heuristics, namely occnest,
can solve many examples very fast, even several examples where standard strategies
have tremendous difficulties.
For each theorem prover and nearly each domain there are theorems that are beyond
the limits of the prover. This is also the case for our goal oriented heuristics and the
lattice ordered groups. But we will demonstrate that the use of team work enables
us to reach beyond the limits of all our sequential experts. We were able to improve
run times significantly for problems that can be solved sequentially and even to prove
theorems that could not be proved by any of our experts working alone. These theorems
are very hard, indeed, which wil l be demonstrated also by results (or better the lack
of) obtained with the provers REVEAL 1.0 (see [CA94]) and Otter 3.0 (see [Mc94]).
Finally, we will also g ive a few examples from other domains where team work i n
combination with goal oriented heuristics has been successful.
Lattice ordered groups combine the axioms of two mathematical structures, namely
lattices and groups, as the name suggests. So, we encounter for many theorems the
problem mentioned above, that indeed not all axioms are needed for a proof. In order
to axiomatize !uttice ordered groups we need the operator f of arity 2 for the group
operator, i tsneutral element 1 and an operator i of arity 1 denoting the inverse of an
element. A lattice is based on a partial ordering < and two binary functions 1 and
u, the greatest lower bound and the least upper bound of two elements. The two
functions 1 and u can be used to get r id of the partial ordering < with the help of the
definition

x <yi f f l (x ;y) =xo rx < y iff u(x,y) = y.

So, we get the following equational axiomatization for lattice ordered groups :

f(f(x,y),z) = f(x,f(y,z)) f(1,x) = x f(i(x),x) = 1
1(1(x,y),2) = 1x,1(y,z)) I(x,y) = (yx) 1(x,x) =x
u(u(x ,y) ,z) = u(x,u(y,z)) u(xy) = u(yx) u (xx)=x
f(x,1(y,z)) = 1(f(x,y),f(x,2)) u(x,l(x,y)) =x f(Ux,y);z) = 1(f(x,2),f(y,2))
f(x,u(y,z)) = u(f(x.y)f(x,2)) Uxu(xy)) =x f(u(x,y);z) = u(f(x,z),f(y,z))

In Table 1 and Table 2 we use the theorems listed below. As there are two ways to
eliminate < , we derive two problem sets, one using the operator 1, denofed by the
suffix .a, and one using the operator u , denoted by the suffix .b. (Because p10 does not
contain < , we get only one example from this theorem.) As usual, the theorems must
be negated and skolemized, conditions are added to the set of axioms.. (More theorems
can be found in [Fu94].)
Problems:

monol: f(x,z)<f(y,z), i f x<y mono2: f(z,x)<f(z,y), i f x<y
p l : f(i(z),f(x,z))<f(i(z),f(y,z)), i f x<y p2: xy , if i(y)<i(x)
p3: f(x,z)<f(y,w), i f x<y, z<w p4: 1<f(x,y) , i f 1<x , 1<y
pb: 1<f(i(x),f(y,x)), i f 1<y plo: i(u(x,y)) = 1(i(x),i(y))
p9: Ux,f(y,z)) = 1(x,2), p8: U, f(y,z))Sf(1x,y),1x,2)),

i f 1<x, 1<y, 1<z, 1<1(x,y) i f 1<x, 1<y, 1<z

12

The run-times given below were obtained on SUN-ELC workstations, the team runs
on a network of two such workstations.

Table 1 compares for most of the examples the run-time of occnest with the run-time of
the best so-called standard strategy. Standard strategies are based on the term weight
<p. Since a critical pair has two sides, there are several possibilities to combine the
<p-values of these sides, sum them up (the Smallest-Component strategy of [Ru80]), use
the maximum of the sides or use the weight of the side that is bigger with respect to the
used reduction ordering (see section 2). We call these strategies standard, because they
do not use any interpretations of symbols and can therefore be used without changing
parameters for all possible examples.

Table 1 shows that goal orientation as defined by occnest is able to solve most of the
examples dramatically faster than the standard strategies. Even several examples that
took over 3 hours run-time with the standard strategies (and were therefore stopped,
because we set this as time limit) can be solved in less than 5 seconds.

I Example I occnest I std. strategy ~ Example I occnest I std. strategy I
monol.a 0.045 45.639 monol.b 0.045 46.668
mon02.a 0.030 43.995 mon02.b 0.030 44.917
pl.a 0.272 - pl.b 0.281 -

p3.a 4.135 - p3.b 2.547 -

p4.a 1.840 32.437 p4.b 1.712 9.263
p6.a 0.388 - p6.b 0.157 160.049
p9.a 19.568 209.102 p9.b 50.953 207.176

Table 1: run-tIme companson occnest vs standard strategIes (Ill seconds)

But, as it is the case with all heuristics, there are examples that also occnest can not
solve alone. Table 2 shows that most of these examples can be solved (quite fast!)
using team work and our goal oriented heuristics. We want to mention that the best
(and only) sequential heuristic that was able to prove p2.a was Goal-in-CP, showing
that also our heuristics based on goal similarity can solve examples working alone, but
only very few. This is the reason why we did not include these heuristics in Table 1.

Example team goal heuristic·
used in team

best seq.
heuristic

REVEAL Otter 3.0

p2.a 5.413 occnest 79.516 591.06 17
p2.b 5.381 occnest - 592.08 16
p8.b 56.837 Goal-in-CP - - sos-empty
p9.a 8.659 occnest 19.568 - sos-empty
p9.b 8.440 occnest 50.953 - sos-empty
plO 23.203 Goal-in-CP - - -

Table 2: run-time comparison team vs sequential experts vs REVEAL vs Otter 3.0
(in seconds)

Table 2 shows that team work enables us to prove more examples than our sequential

system can. In order to show that the reason for this is not a weak implementation of

13

The run-times given below were obtained on SUN-ELC workstations, the team runs
on a network of two such workstations.

Table 1 compares for most of the examples the run-time of occnest with the run-time of
the best so-called standard strategy. Standard strategies are based on the term weight
¢ . Since a critical pair has two sides, there are several possibilities to combine the
¢-values of these sides, sum them up (the Smallest-Component strategy of [Hu80]), use
the maximum of the sides or use the weight of the side that is bigger with respect to the
used reduction ordering (see section 2). We call these strategies standard, because they
do not use any interpretations of symbols and can therefore be used without changing
parameters for all possible examples.

Table 1 shows that goal orientation as defined by occnest is able to solve most of the
examples dramatically faster than the standard strategies. Even several examples that
took over 3 hours run-time wi th the standard strategies (and were therefore stopped,
because we set th is as t ime l im i t) can be solved i n less than 5 seconds.

| Example| occnest| std. strategy | Example| occnest| std. strategy|
monol .a 0.045 45.639 || monol .b 0.045 46.668
mono2.a 0.030 43.995 | | mono2.b 0.030 44.917
p l . a 0.272 — | p l . b 0.281 —
p3.a 4.135 — || p3.b 2.547 —
p4.a 1.840 32.437 || p4.b 1.712 9.263
p6.a 0.388 — || p6.b 0.157 160.049
p9.a 19.568 209.102 || p9.b 50.953 207.176

Table 1: run-time comparison occnest vs standard strategies (in seconds)

But, as i t is the case wi th all heuristics, there are examples that also occnest can not
solve alone. Table 2 shows that most of these examplescan be solved (quite fast!)
using team work and our goal oriented heuristics. We want to mention that the best
(and only) sequential heuristic that was able to prove p2.a was Goal-in-CP, showing
that also our heuristics based on goal similarity can solve examples working alone, but
only very few. This is the reason why we did not include these heuristics in Table 1.

Example | team | goal heurist ic| best seq. | REVEAL | Otter 3.0
used in team | heurist ic |

p2.a 5.413 | occnest 79.516 591.06 17
p2.b 5.381 | occnest — 592.08 16
p8.b 56.837 | Goal-in-CP — — | sos-empty
p9.a 8.659 | occnest 19.568 — | sos-empty
p9.b 8.440 | occnest 50.953 — | sos-empty
p l0 23.203 | Goal-in-CP — — —

Table 2: run-time comparison team vs sequential experts vs REVEAL vs Otter 3.0
(in seconds)

Table 2 shows that team work enables us to prove more examples than our sequential
system can. In order to show that the reason for this is not a weak implementation of

13

unfailing completion we tried to prove these examples using the REVEAL l.O-system
and using the new Otter 3.G-system. Because both systems allow various parameter
adjustments, we used the default settings of REVEAL and the auto-mode of Otter.
One should note that REVEAL allows completion modulo the theory AC (which is not
the case for Otter or our system) and the run-times reported in Table 2 were obtained
using AC-completion. Without AC-completion REVEAL was not able to prove any
of the examples of Table 2. Otter's very sophisticated auto-mode encountered several
problems while trying to prove examples p8.b, p9.a and p9.b. Otter restrained itself
to only generating critical pairs that had a limited size which resulted in emptying the
set-of-support list and therefore in termination without success.

The teams we used consisted of two experts, a standard strategy and a goal oriented
heuristic. For the domain lattice ordered groups occnest and Goal-in-CP were useful
(as indicated by the column 'goal heuristic used ... '). Table 3 shows that in other
domains also CP-in-Goal was useful, and there are even examples (namely luka3) that
can be proved using a team consisting of goal oriented heuristics only.

IExample I team Igoal heuristic used in team I best seq. heuristic I
boo15b 72.859 Goal-in-CP -

ra2 125.373 CP-in-Goal 227.876
sa2 10.745 Goal-in-CP -
herky3 6.811 occnest 16.091
luka3 8l.680 Goal-in-CP, CP-in-Goal -

Table 3: run-times for teams using goal oriented heuristics in other domains (in
seconds)

Example bool5b states that in a boolean ring the associativity axioms are redundant.
Example ra2 is taken from [LW92], sa2 from [BH93] and herky3 from [Zh93]. Example
luka3 uses the equational axiomatization of the propositional calculus given in [AD93]
to prove that (not(x) -+ not(y)) -+ (y ---+ x).

In order to explain the success of our goal oriented heuristics we used the proof pre
sentation tools developed in [DS94]. An analysis of the runs with which the results
of Table 1 were obtained showed that the better performance of occnest is due to a
faster selection of the results needed for a proof. As stated before, standard strategies
have a very limited view on a problem and therefore many unnecessary critical pairs
were selected. Although our analysis showed that occnest also does select many critical
pairs that are not needed in the proof the ratio between needed and not needed pairs
is much higher than that of standard strategies.

The even bigger success of team work can be explained by two typical behaviours our
teams showed. Teams in which occnest is a team member show the characteristic that
in most team meetings occnest is rated as the best expert. Due to the general problem
that there are examples that need equations for a proof that a goal oriented heuristic
does not rate good although they are in the list of critical pairs, occnest alone can not
find a proof (or needs quite some time for it). But in combination with a standard
strategy, that does rate these equations good and therefore allows a referee to judge the

14

unfailing completion we tried to prove these examples using the REVEAL 1.0-system
and using the new Otter 3.0-system. Because both systems allow various parameter
adjustments, we used the default settings of REVEAL and the auto-mode of Otter.
One should note that REVEAL allows completion modulo the theory AC (which is not
the case for Otter or our system) and the run-times reported i n Table 2 were obtained
using AC-completion. Without AC-completion REVEAL was not able to prove any
of the examples of Table 2. Otter’s very sophisticated auto-mode encountered several
problems while trying to prove examples p8.b, p9.a and p9.b. Otter restrained itself
to only generating critical pairs that had a limited size which resulted in emptying the
set-of-support list and therefore in termination without success.
The teams we used consisted of two experts, a standard strategy and a goal oriented
heuristic. For the domain lattice ordered groups occnest and Goal-in-CP were useful
(as indicated by the column ’goal heuristic used ...’). Table 3 shows that in other
domains also CP-in-Goal was useful, and there are even examples (namely luka3) that
can be proved using a team consisting of goal oriented heuristics only.

| Example | team| goal heuristicused in team | best seq. heuristic
bool5b 72.859 | Goal-in-CP CT —
ra2 125.373 | CP-in-Goal 227.876
sa2 10.745 | Goal-in-CP —
herky3 6.811 | occnest 16.091
luka3 81.680 | Goal-in-CP, CP-in-Goal —

Table 3: run-times for teams using goal oriented heuristics in other domains (in
seconds)

Example bool5b states that in a boolean ring the associativity axioms are redundant.
Example ra2 is taken from [LW92], sa2 from [BH93] and herky3 from [Zh93]. Example
luka3 uses the equational axiomatization of the propositional calculus given i n [AD93]
to prove that (not(x) — not(y)) — (y — x).
In order to explain the success of our goal oriented heuristics we used the proof pre-
sentation tools developed in [DS94]. An analysis of the runs with which the results
of Table 1 were obtained showed that the better performance of occnest is due to a
faster selection of the results needed for a proof. As stated before, standard strategies
have a very l imited view on a problem and therefore many unnecessary critical pairs
were selected. Although our analysis showed that occnest also does select many critical
pairs that are not needed in the proof the ratio between needed and not needed pairs
is much higher than that of standard strategies.
The even bigger success of team work can be explained by two typical behaviours our
teams showed. Teams i n which occnest is a team member show the characteristic that
in most team meetings occnest is rated as the best expert. Due to the general problem
that there are examples that need equations for a proof that a goal oriented heuristic
does not rate good although they are in the list of critical pairs, occnest alone can not
find a proof (or needs quite some time for i t) . But i n combination wi th a standard
strategy, that does rate these equations good and therefore allows a referee to judge the

14

6

impact of these equations on the problem, success can be achieved. A typical behaviour
of such teams is that during the team meetings always a few equations of the standard
strategy are used to improve the system of the winner occnest until occnest is able to
finish the proof.

Teams that use Goal-in-CP or CP-in-Goal show a different behaviour. In the first team
meetings the used goal similarity heuristic generates nothing useful. But, also in the
later team meetings the standard strategy expert gets better ratings by the referees.
Nevertheless, there is always a team meeting after which the goal similarity heuristic,
using the system of the other expert, can finish the proof. So for these teams the
standard strategy is always the winner, but the goal oriented heuristic completes the
proof. As mentioned earlier, this is exactly the behaviour we did want to achieve with
Goal-in-CP and CP-in-Goal.

Finally we want to mention that one could be led to the assumption that team work
is not necessary to achieve the results of Tables 2 and 3. One other way could be to
change the used selection heuristic during a sequential run (for examples where the
goal similarity heuristics were useful). A second possibility could be a new heuristic
combining a standard strategy and a goal oriented heuristic. Both suggestions can not
be realized. There is no way to tell during a run whether a change of the selection
heuristic should be made. The important point in the typical behaviour of teams with
goal similarity heuristics is that after each team meeting such a change is tried (by
means of distribution) and its success is determined in the next (or better before the
next) team meeting.

We can not prove that there is no means by which the second suggestion can be realized,
but from the definitions of our goal oriented heuristics it should be obvious that we
tried to embed as much as possible the notion of term weight (which is the basis of the
standard strategies) into them. Trying to mix the behaviour of a standard strategy
and a goal oriented heuristic leads in nearly all cases to selection heuristics that behave
worse than both "parents".

Related Work

A first attempt to develop goal oriented equational deduction was documented by
Blasius in [Bl86]. The general idea was to start with the two sides of the goal and
then to use the given equations to reduce the difference (in the term structure) of
these two terms. This was repeated until an equational chain between the terms was
constructed. But the few examples where this approach was useful can be proved easily
by completion (without goal orientation). Without a concept for reduction one could
observe that many steps were repeated very often. Moreover, there are many examples
where a proof can only be found using equations that do not reduce the difference
between the sides of the goal, but instead increase the difference before all differences
can be reduced by other equations.

The approach of Cleve and Hutter has to face similar problems (see [CR93]). Although

15

impact of these equations on the problem, success can be achieved. A typical behaviour
of such teams is that during the team meetings always a few equations of the standard
strategy are used to improve the system of the winner occnest until occnest is able to
finish the proof.

Teams that use Goal-in-CP or CP-in-Goal show a different behaviour. In the first team
meetings the used goal similarity heuristic generates nothing useful. But, also in the
later team meetings the standard strategy expert gets better ratings by the referees.
Nevertheless, there is always a team meeting after which the goal similarity heuristic,
using the system of the other expert, can finish the proof. So for these teams the
standard strategy is always the winner, but the goal oriented heuristic completes the
proof. As mentioned earlier, this is exactly the behaviour we did want to achieve wi th
Goal-in-CP and CP-in-Goal.
Finally we want to mention that one could be led to the assumption that team work
is not necessary to achieve the results of Tables 2 and 3. One other way could be to
change the used selection heuristic during a sequential run (for examples where the
goal similarity heuristics were useful). A second possibility could be a new heuristic
combining a standard strategy and a goal oriented heuristic. Both suggestions can not
be realized. There is no way to tell during a run whether a change of the selection
heuristic should be made. The important point in the typical behaviour of teams with
goal similarity heuristics is that after each team meeting such a change is tried (by
means of distr ibution) and i t s success is determined i n the next (or better before the
next) team meeting.
We can not prove that there is no means by which the second suggestion can be realized,
but from the definitions of our goal oriented heuristics i t should be obvious that we
tr ied to embed as much as possible the not ion of term weight (which i s the basis of t he
standard strategies) into them. Trying to mix the behaviour of a standard strategy
and a goal oriented heuristic leads in nearly all cases to selection heuristics that behave
worse than both ”parents”.

6 Related Work

A first attempt to develop goal oriented equational deduction was documented by
Bläsius in [BI86]. The general idea was to start wi th the two sides of the goal and
then to use the given equations to reduce the difference (i n the term structure) of
these two terms. This was repeated unt i l an equational chain between the terms was
constructed. But the few examples where this approach was useful can be proved easily
by completion (without goal orientation). Without a concept for reduction one could
observe that many steps were repeated very often. Moreover, there are many examples
where a proof can only be found using equations that do not reduce the difference
between the sides of the goal, but instead increase the difference before all differences
can be reduced by other equations.

The approach of Cleve and Hutter has to face similar problems (see [CH93]). Although

15

7

they introduce several notions of difference between terms (and heuristics when to use
which one), they are bound to reduce with each step at least one of them. As we know
at the moment of no implementation, no comparisons of this approach to completion or
to our work are possible. The lack of a concept for redundancy elimination (i.e. term
rewriting) in their approach seems to favour completion. Nevertheless, the different
notions of difference between terms could be very useful for developing goal oriented
selection heuristics for critical pairs. Furthermore, a combination with standard com
pletion techniques using our team work concept would also overcome the lack of any
completeness results for the approach of Cleve and Hutter. The examples sketched in
[CH93] suggest that the approach can also be used with sets of conditional equations,
that will be very interesting in the future.

The measure approach of [AA90] was already presented in section 4. Here we want
to point out our modifications, namely the new measure nest and the combination of
various measures and <P into one selection function based on the comparison of one
value for each critical pair.

Finally, there is an approach to goal oriented completion by Socher (see [S091]) that
tries to incorporate the goal into the inference rules of completion. Although this set
of inference rules can be shown to be complete, the pp.ctical problem which inference
rule to use next remains. It is not clear whether the standard selection strategies have
the same success for these inference rules as in the case of completion.

Conclusion

We presented several goal oriented selection heuristics for critical pairs that can be
used to incorporate goal orientation into,equational deduction by unfailing completion.
The heuristics ranged from methods comparing statistical aspects of goal and critical
pairs to methods applying similarity criteria.

The team work method for distributing deduction processes allowed us to combine
these goal oriented heuristics with standard selection strategies. This resulted in a
system that combines the advantage of working goal oriented and thus re.ducing the
search space with the advantages of completion, namely minimal representation of the
actual problem state and the generation of strong rules (independent of the goal). Even
completeness of this combination can be ensured. So, none of the known disadvantages
of goal oriented equational deduction remain.

We demonstrated the success of our approach with many examples from the domain
lattice ordered groups and also with examples from other domains. The important
observation was that the distributed system is, able to prove several examples that can
neither be proved by goal oriented heuristics nor by other selection strategies working
alone.

Further improvements of our results seem to be possible in two directions. Firstly,
the supervisor can be improved to enable the system to determine which goal oriented
heuristic should be used in the team. The analysis of section 5 suggests that occnest

16

they introduce several notions of difference between terms (and heuristics when to use
which one), they are bound to reduce wi th each step at least one of them. As we know
at the moment of no implementation, no comparisons of this approach to completion or
to our work are possible. The lack of a concept for redundancy elimination (i.e. term
rewriting) in their approach seems to favour completion. Nevertheless, the different
notions of difference between terms could be very useful for developing goal oriented
selection heuristics for critical pairs. Furthermore, a combination wi th standard com-
pletion techniques using our team work concept would also overcome the lack of any
completeness results for the approach of Cleve and Hutter. The examples sketched in
[CH93] suggest that the approach can also be used with sets of conditional equations,
that will be very interesting in the future.
The measure approach of [AA90] was already presented in section 4 . Here we want
to point out our modifications, namely the new measure nest and the combination of
various measures and ¢ into one selection function based on the comparison of one
value for each critical pair.
Finally, there is an approach to goal oriented completion by Socher (see [So91]) that
tries to incorporate the goal into the inference rules of completion. Although this set
of inference rules can be shown to be complete, the practical problem which inference
rule to use next remains. I t is not clear whether the standard selection strategies have
the same success for these inference rules as in the case of completion.

7 Conclusion

We presented several goal oriented selection heuristics for critical pairs that can be
used to incorporate goal orientation into equational deduction by unfailing completion.
The heuristics ranged from methods comparing statistical aspects of goal and critical
pairs to methods applying similarity criteria.
The team work method for distributing deduction processes allowed us to combine
these goal oriented heuristics with standard selection strategies. This resulted in a
system that combines the advantage of working goal oriented and thus reducing the
search space with the advantages of completion, namely minimal representation of the
actual problem state and the generation of strong rules (independent of the goal). Even
completeness of this combination can be ensured. So, none of the known disadvantages
of goal oriented equational deduction remain.
We demonstrated the success of our approach with many examples from the domain
lattice ordered groups and also wi th examples from other domains. The important
observation was that the distributed system is able to prove several examples that can
neither be proved by goal oriented heuristics nor by other selection strategies working
alone.

Further improvements of our results seem to be possible in two directions. Firstly,
the supervisor can be improved to enable the system to determine which goal oriented
heuristic should be used i n the team. The analysis of section 5 suggests that occnest

16

is useful from the beginning of a proof attempt on, while CP-in-Goal and Goal-in-CP
have a better usage in later stages of a proof.

The second improvement is the development of other goal oriented heuristics. Besides
the ideas of Cleve and Hutter there is also the possibility to develop heuristics that
concentrate on only a few stages of a proof (leaving the other stages for their colleagues
in the team). Goal-in-CP and CP-in-Goal are a first step in this direction. The
prerequisite for the use of such heuristics is a good selection of team members by the
superVIsor.

References

[AA90] Anantharaman, D. ; Andrianarievelo, N.: .Heuri6tical criteria in refutational theorem proving, Proc.
DISCO '90, LNCS 429, 1990, pp. 184-193.

[AD93) Avenhaus, J. ; Denzinger, J.: Di6tributing equationo.l theorem proving, Proc. 5th RTA, Montreal, LNCS
690,1993, pp. 62-16.

[BDP89) Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without Fo.ilure, Coli. on the Resolution
of Equations in Algebraic Structures, Austin (1987), Academic Press, 1989.

[BH91) Bonacina, M.P. ; Hsiang, J. : On fo.irneu of completion-b0.6ed theorem proving 6tro.tegies, Proc. 4th
RTA, Como, LNCS 488, 1991, pp. 348-360.

[BH93] Bonacina, M.P. ; Hsiang, J. : The clo.uu diffusion methodology for di.tributed deduction, Proc. DISCO
'92, LNCS 122, 1993, pp. 272-287.

[BI86] Blisius, K.H.: Equo./itl/ reo..oning bo..ed on gro.ph., Ph.D. thesis, University of Kaiserslautern, 1986.
[CA94] Chalin, J. ; Anantharaman, S. et al. : REVEAL - 4 user'. guide, Tech. rep. LIFO.94-12, University of

Orleans, 1994.
[CH93] Cleve, J. ; Hutter, D. : Guiding equo.tiono.l proof. bl/ attrilnde functions, SEKI-Report SR-93-15, Uni

versity of Saarbriicken, 1993.
[De93] Denzinger, J.: Teamwork: A method to de.ign di.tributed knowledge bo.sed theorem proven (in Germo.n),

Ph.D. thesis, University of Kaiserslautern, 1993.
[De93] Denzinger, J. ; Schulz, S.: Anall/.i. and Repre.ento.tion of Eq..ationo.l Proof6 Generated by 4 Di.tributed

Completion Bo..cd Proof SI/.tem, 3EKI-Report (to appear).
[Fu94)	 Fuchs, M.: The o.pp/ico.tion of goo.l-oriented he ..ri.tic. for proving equo.tiono.l theorem. vio. the unfo.iling

Kn'dh-Bendiz: completion procedure. A co..e .tudl/: Io.ttice ordered group6, SEKI-Report SR-94-02, University
of Kaiserslautern, 1994.

[Hu8O] Huet, G.: Confluent Reduction.: Ab.tro.ct Properties o.nd Applications to Term Rewriting SI/.tems, J. of
ACM 21, No. 4, 1980, pp. 798-821.

[KB70] Knuth, D.E. ; Bendix, P.B.: Simple Word Problem. in Universo.l Algebro., Computational Algebra, J.
Leech, Pergamon Press, 1970, pp. 263-291.

[KK14] Kokorin, A.I. ; Kopytov, V.M. : Fulll/ ordered group., Halsted Press, 1914.

[LW92] Lusk, E. ; Wos, L. : Benchmo.rk problem. in which equo.litl/ plo.ys the mo.jor role, Proc. CADE-n, LNAI
601, 1992, pp. 781-785.

[Mc94] McCune, W.W.: OTTER 3.0 Reference mo.nual o.nd Guide, Tech. rep. ANL-94/6, Argonne National
Laboratory, 1994.

[S091] Socher, R.: A Goal Oriented Strategy Bo..ed on Completion, Tech. rep. TR#91/18, SUNY at Stony Brook,
1991.

[Zh93] Zhang, H.: Automo.ted proof. of equalitl/ problems in Overbeek'. competition, JAR 11, 1993, pp. 333-351.

17

is useful from the beginning of a proof attempt on, while CP-in-Goal and Goal-in-CP
have a better usage i n later stages of a proof.
The second improvement is the development of other goal oriented heuristics. Besides
the ideas of Cleve and Hutter there is also the possibility to develop heuristics that
concentrate on only a few stages of a proof (leaving the other stages for their colleagues
in the team). Goal-in-CP and CP-in-Goal are a first step in this direction. The
prerequisite for the use of such heuristics is a good selection of team members by the
supervisor.

References
[AA90] Anantharaman, D . ; Andrianarievelo, N . : Heuristical criteria in refutational theorem proving, Proc.

DISCO '90, LNCS 429, 1990, pp. 184-193.
[AD93] Avenhaus, J . ; Denz inger , J . : Distributing equational theorem proving, Proc. 5th RTA, Montreal, LNCS

690, 1993, pp . 62-76.
[BDP89] Bachmair, L . , Dershowitz, N . , Plaisted, D .A . : Completion without Failure, Coll. on the Resolution

of Equations in Algebraic Structures, Austin (1987), Academic Press, 1989.
{BH91) Bonacina, M.P. ; Hsiang, J . : On fairness of completion-based theorem proving strategies, Proc. 4 th

RTA, Como, LNCS 488, 1991, pp. 348-360.
[BH93] Bonacina, M.P. ; Hsiang, J . : The clause diffusion methodology fo r distributed deduction, Proc. DISCO

'92 , LNCS 722, 1993, pp. 272-287.
[B186] Bläsius, K .H . : Equality reasoning based on graphs, Ph.D. thesis, University of Kaiserslautern, 1986.
[CA94] Chalin, J . ; Anantharaman, S . e t al. : REVEAL - a user’s guide, Tech. rep. LIFO.94-12, University of

Orleans, 1994.
[CH93] Cleve, J . ; Hu t te r , D . : Guiding equational proofs by attribute funct ions, SEKI-Report SR-93-15, Uni-

versity o f Saarbrücken, 1993.
[De93] Denz inger , J . : Teamwork : A method t o design distributed knowledge based theorem provers (in German),

Ph .D . thesis, University o f Kaiserslautern, 1993.
[De93] Denzinger, J . ; Schu lz , S . : Analysis and Representation of Equa t iona l Proofs Generated by a Distributed

Completion Based Proof System, SEKI-Report (t o appear).
[Fu94] Fuchs, M.: The appl icat ion of goal-oriented heuristics fo r proving equational theorems via the unfailing

Knuth-Bendiz complet ion procedure. A case study: lattice ordered groups, SEKI-Report SR-94-02, University
of Kaiserslautern, 1994.

[Hu80] Hue t , G . : Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems, J. of
ACM 27, No. 4, 1980, pp . 798-821.

[KB70] Knu th , D .E . ; Bendix, P .B . : S imp le Word Prob lems i n Un iversa l A lgeb ra , Computational Algebra, J.
Leech, Pergamon Press, 1970, pp. 263-297.

[KK74] Kokorin, A .L ; Kopytov, V .M . : Fully ordered groups, Halsted Press, 1974.
[LW92] Lusk , E . ; Wos, L . : Benchmark problems i n which equality plays the major role, Proc . CADE-11, LNAI

607, 1992, pp . 781-785. ;
[Mc94] McCune, W.W.: OTTER 3.0 Reference manual and Guide, Tech. rep. ANL-94/6, Argonne National

Laboratory, 1994. :

[S091] Socher, R . : A Goal Oriented Strategy Based on Complet ion, Tech. rep. TR#91 /18 , SUNY at Stony Brook,
1991.

[Zh93] Zhang, H . : Automated proofs of equality problems in Overbeek’s competition, JAR 11 , 1993, pp . 333-351.

17

