
U
N

IV
E

R
S

IT
Ä

T
D

E
S

S
A

A
R

L
A

N
D

E
S

F
A

C
H

B
E

R
E

IC
H

IN
F

O
R

M
A

T
IK

0
—

6
6

1
2

3
S

A
A

R
B

R
Ü

-C
K

E
N

G
E

R
M

A
N

Y
W

W
W

:
h t

tp
zfi

m
.a

ga
.u

n i
- s

b .
de

l

S
E

K
I—

R
E

P
O

R
T

IS
S

N

1
4

3
7

—
4

4
4

7

Disproving False Conjectures-

Serge Autexier
FR 6.2 Informatik, Saarland University & German
Research Center for Artificial Intelligence (DFKI).

Saarbrücken, Germany, autexieredfk-i ‚d'-e

Carsten SChür-mann
Yale University, New Haven, USA

c-ar'sten’ocs . ya-le . edu

SEKI- Report 'SR—2003—05

The following publication is a short version of this SEKI Report:
Serge Autexi‘er, Carsten “Schürmann. Dies-roving False Conjectures. Proceedings: of the 10th
International Conference on Logic for Programming, Artificial Intelligence, and Reamning;
Almaty, Kazakhstan.

The above short version of this SEKI Report successfully passed the following-
external anonymous referee process:
LPAR 2003, 10th International Conference on Logic for Programming, Artifiicfial Intelli-
gence, and Reasoning; full paper, 15 pp.

Editor of SEKI series:
Claus-Peter Wirth
FR Informatik, Universität “des Saarlendes, 13—66123 Saarbrücken, Germany
E-mail: cagsmni—s‘boe
WWW: http : / NW . age. uni — sb . de/ "GP/selcome . html

‘Disproving False Conjectures

Serge Autexier
FR 6.2 Informatik, Saarland University & German
Research Center for Artificial Intelligence (DFKI)

Saarbrücken, Germany, autexier©dfki .de

Carsten Schürmann
Yale University, New Haven, USA

carsten©cs.yale.edu

July 22, 2003

Abstract

For automatic theorem provers it is as important to disprove false conjectures as
it is to prove true ones, especially if it is not known ahead of time if a formula is
derivable inside a particular inference system. Situations of this kind occur frequently
in inductive theorem proving systems where failure is a common mode of operation.
This paper describes an abstraction mechanism for first-order logic over an arbitrary
but fixed term algebra to second-order monadic logic with 0 successor functions. The
decidability of second-order monadic logic together with our notion of abstraction
yields an elegant criterion that characterizes a subclass of unprovable conjectures.

The research on automated theorem proving is inspired by Leibniz’ dream to deve10p a
"‘lingua characteristica” together with a “calculus ratiocinator” in order to mechanize logical
reasoning. He advocated using the purely rational and incorruptible mechanized reasoners
in order to decide whether a given logical consequence holds or not. While this vision
has spurred a lot of research devoted to proving true conjectures, disproving false con-
jectures that occur frequently in proof assistants, inductive theorem provers, and logical
programming systems has attracted far less interest.

In fact, in most theorem proving systems, the default mode of Operation is failure:
conjectures are often entered in the hope that they are correct, the proof by cases is typically
triggered by failure to prove a given subgoal, and even in logic programming, backtracking is
always preceded by failure to construct a proof of a subgoal be it in Horn logic or hereditary
Harrop logic [8].

In practice, the development of conjectures is an evolutionary process and typically a
true conjecture is the result of a sequence of false conjectures and their disproofs. Thus,
research on automatic disproving of false conjectures is equally important as automatic

proving of true conjectures. Automatic disproving is of increasing relevance in the context
of formal software deveIOpment [2, 3], where early detection of flaws in programs reduces
the overall development cost:

The key idea underlying our technique presented in this paper consists of the definition
of a representational abstraction function of first-order logic formulas into a decidable frag—
ment of second-order logic, namely second-order monadic logic without successor functions,
SOS [9]. The abstraction function is effectively polynomial—time computable, preserves the
structural form of the original formula, and most importantly preserves non-provability.
Second-order monadic logic is decidable, and therefore disproving a conjecture in SOS im-
plies contrapositively that the original conjecture could not have been provable either. The
decision procedure of SOS is PSPACE—complete [13], but will always report true or false.
Only if no proof in SOS exists, we can be sure that the conjecture is indeed false. If a proof
exists, in terms of provability, nothing can be learned from it . However, the proof may
contain vital information that can assist the theorem prover to try to prove the conjecture,
a question which we will consider in future work.

In preliminary studies [10], we have developed a similar criterion for the first-order
meta—logic M3; for the logical framework LF [5], although without negation, disjunction, or
implication. Besides truth and falsehood we did not consider any other logical constants or '
predicates. The abstraction mechanism presented in this paper, on the other hand, scales
to first-order logic with equational theories (e. g. Peano Arithmetic) and is based on Leibniz
equality which is prevalent in many higher-order theorem proving systems [1, 12].

The paper is organized as follows: In Sec. 1 we define syntax and sequent calculi of
first-order and second-order monadic logics. The abstraction of first-order logic formulas to
second-order logic formulas and the relevant meta theory is presented in Sec. 2. In Sec. 3 .
we extend our techniques to first-order logic with equality and show in Sec. 4 that the class
of disprovable formulas includes formulas with infinite counter—models. In Sec. 5 we present
details about the implementation of the technique before concluding and assessing results
in Sec. 6.

1 First-Order Logic and Second-Order Monadic Logic

We recapitulate the definitions of first-order and second-order monadic logic with O succes-
sors (SOS) as well as the decidability result of second—order modal logic [9] that is relevant
for the technique presented in this paper.

1. 1 First-Order Logic

Definition 1.1 (First—Order Logic Formulas) Let T(C, V) be a term algebra freely
generated from a set of constant symbols C and a list of pairwise different variable symbols
V. Let 73 be a set of predicates. Then first-order logic formulas are defined by

First—order Logic Formulas: F ::= P(t1 . . .tn) | T | J. | F1 3 F2 | F1 A F2 | -1F
| Vx. F | 3:13.17

Terms: VC:=(:r) [a:] 7:VC'(c=) [c] VC(fft1,(%)) =$$=1 Voltz')

Formulas: VC(P(t1‚ . .. in:-:)) 69,-..1 VC(t i v)6(1-): VC(—L) := ll
VC(F13 F2): VC(F1 /\ F2):= VC(F1) EB VC'(F2)
VC—.(F)_-= VC(F) VC(V3:.F-_— VC(Ex. F) := VC(F) \ {a:}

Figure 1: List of constants and free variables in formulas and terms, where [a:] denotes
the singleton list with the variable as, [c] the singleton list with the constant c, ® denotes
the concatenation of lists, and L \ {a:} denotes the list obtained from L by removing any
occurrence of the variable a:.

where 131,. . .,t,, € T(C, V) and P E 73. In first—order logic, we write a:, y, z for variables.
For formulas F and terms t we write VC(F) and VC(t) to refer to the list1 of free variables
and constants in F and t (cf. Fig. 1).

Substitutions are capture avoiding and play an important role in this paper, especially
in the proof of the soundness Theorem 2.7. We do not distinguish between substitutions
for first—order or second-order monadic logic.

Definition 1.2 (Substitutions) A substitution 0 is a syntactically defined object a :::
- | a,t/:r. As usual, we write (f(x) to apply a to the variable a: and the domain of a
substitution is the set of variables for which 0(33) is defined. The domain of a substitution
is always finite.

Definition 1.3 (First—Order Substitution Application) We denote by [o]t and [0‘]F
the standard application of a to first-order terms and formulas.

A sequent calculus for classical first-order logic is given in Fig. 2. All rules are standard. The
subscript 1 in the rule names identifies the quantifier rules as first—order. The superscript “
indicates that a is fresh in F => W:. F for VII“ and in 1" => H for 31E“. First-order logic
provides a foundation of several theorem proving systems, Spass, INKA, and others, and
we illustrate its use with our running example about binary trees.

Example 1.4 (Binary trees) In first—order logic, properties of trees and paths can be
expressed as formulas ranging over terms generated by a term algebra that consists of
two constant symbols here (for the empty path) and leaf (for leaves in a tree), two unary
function symbols left and right (for paths denoting respectively left and right subtrees),
and one binary function symbol node (for non-leaf nodes of trees). We use the validtree
and validpath as unary predicates that describe the well-formedness of trees and paths,
respectively, mirror and reflect as binary predicates, where mirror(t, t’) stands for t’ is a tree
that is derived from t by subtreewise exchanging left and right subtrees, and reflect(p, p’)
for p’ is a path that is derived from p by exchanging constant left by right and vice versa.
A set of axioms that relate terms is given in Fig. 3.

1We define VC (t) as a list of variables and constants as the order of the symbols simplifies the proofs.
However, the reader may think of VC(t) as a set.

TR J_Lr£= :A ,F” :n :AT IUJ=A
P=>A P=>A_—FF=>AweakL mweakR

F=>A,F P=>A,G I ‘ , , , FG=>A
F=¢A,FAG AR FFAGzäA L

r=A,m3 FJ=AFß=A
rzsAFwG VR RFVG=$A
I ‘ , ,F=¢»AG I ‘ ,=>A,F I ‘ ,G=>A

F=>A,3F :>G I ‘ ,F :>G=>A
. F ,F=>A I ‘=>A,F
P=>AjfiF fiR P‚” ' 1F=>A

F‚V;c .F , [t / x]F=> A
F=>A,V:c .F P ,V1 : .F=>A

P => A, 33:. F, [t/x]F l", [a,/a:]F => A
F=>A,E | : c .F I ‘ , 33 : .F=>A

F,F=¢A F=>F,A
P=>A

VL

D L

-IL

VlL

31R 31L“

Cum)

Figure 2: Sequent Calculus for Classical First-Order Logic

A property about binary trees that one may be interested in is to show that mirrored
subtrees are preserved under reflecting paths which can be formally expressed as

Vt. Vs. Vp. (validtree(t) /\ validtree(s) /\ validpath(p) /\ subtree(t,p, s))
D Elt’. Els’. 319’. (validtree(t’) /\ validtree(s’) /\ validpath(p’) /\ subtree(t’‚p’, s')
A mirror(t, t’) /\ reflect(p,p’) /\ mirror(s, 3’)

Without induction principles, this theorem is not provable in first-order logic. El

1.2 Second-Order Monadic Logic without Successor Functions

Second-order monadic logic without successor functions (SOS) restricts atomic formulas to
the form P(:z:) or X (a:) where a: E V U C is either a variable or a constant, P is a unary
predicate, and X is a unary variable that ranges over unary predicates.

Definition 1.5 (Second-Order Logic Formulas SOS) Let T(C, V) be a term algebra
with constants and variables only, and ? be defined as above in Definition 1.1 and W a list
of pairwise distinct second-order variable names. Second-order monadic logic formulas are
defined by

SOSformulas: G ::: P (a : c : cc) |P () |X() |X() |T | J_ | 013G2 |G1 / \Gg
l—lGl‘v’x.G|Elz.G|VXG [HX

validtree(leaf)
Vt1.Vt2. validtree(t1) /\ validtree(t2) D validtree(node(t1, 752))
validpath(here) '
Vp. validpath(p) D validpath(|eft(p))
Vp. validpath(p) D validpath(right(p))
mirror(leaf, leaf)
V251. Vt’l.Vt2.Vt’2. mirror(t1,ti) /\ mirror(t2,t'2) D mirror(node(t1,t2),node(t§,t'1))
reflect(here, here)
Vp. Vp’. reflect(p, p') D reflect(|eft(p), right(p’))
Vp. Vp’. reflect(p, p') D reflect(right(p), |eft(p'))
Vt. subtree(t, here, if)
V751. Vtg. Vp. Vt’. subtree(t1,p, t') D subtree-(node(t1, tz), |eft(p), t')
V731. W2. Vp. Vt’. subtree(t2, p, t') D subtree(node(t1, t2), right(p), t')

Figure 3: Sample set of axioms defining properties of trees

r => [p/X]A, A Rp nvx. A, [P/X]A => A
I‘=;>VX.A,A I‘,VX.A=>A VL
1"=>[P/X]A,3X.A‚A T,[p/$]A=>A_ ?

r=>3X.A‚A 3R T,Ela:.A=>A HL

Figure 4: Additional Rules for second-order logic

where x E V, c € C, X E W and P € 'P. In second—order monadic logic, we write a:, y, 2 for
variables, and X, Y, Z for variables that range over predicates.

The sequent calculus for classical SOS is obtained by adding four left and right rules
for the second-order quantifiers to the respective first-order natural deduction calculi as
depicted in Fig. 4 where P is any predicate from 73 and p is new with respect to the sequent.
Since we consider second-order monadic logic without successors, t E V UC in rules 31| and
V1 E, respectively. For the purpose of our paper the main result about second-order monadic
logic is that it is decidable, which has been proved by Rabin [9].

Theorem 1.6 (Rabin, 1969) Second-order monadic logic with k successor functions is
decidable. U

2 Abstraction

It is well—known that brute force search for proofs of conjectures may easily exhaust system
resources regarding space and time. If a conjecture is true, the traversal of the search Space
in one way or another is necessary to find the derivation that is known to exist. Often,

however, interim conjectures are not necessarily known to be derivable. These situations
arise frequently in systems where induction principles are not axiomatized but encoded
via special elimination rules.‘ In many inductive theorem provers, therefore, failure to find
a derivation in the non-inductive fragment indicates that subsequent case analyses are
necessary and failure is therefore the predominant way of Operation.

Of course, before a theorem prover can meaningfully fail, it must have visited every
node in the search space that is potentially infinite. Alternatively, following the algorithm
outlined in this paper, it is often possible to disprove formally a conjecture. Our proposed
technique relies on an abstraction into second-order monadic logic without successor func-
tions that is known to be decidable. If the abstracted formula is false, by the soundness
of abstraction (Theorem 2.7), the original formula is false as well. Therefore, following
the proposed classifications of abstractions by Giunchiglia and Walsh HF, our notion of
abstraction satisfies the properties of a TI abstraction with a consistent abstract space. For
the domain of first-order logic, first-order monadic logic would suffice as abstract space, but
equality (see Sec. 3) requires the use of second—order monadic logic.

The abstraction can be intuitively explained as follows. A derivation - => P (731, . . . , tn)
must contain information about the individual t,’s in one form or another. Without axiom—
atizing this relation, we instead pr0pose to approximate it , and we rewrite P (t1, . . . , tn) to '
a conjunction of unary atomic formulas P(:1:) and P(c) for any variable a: and any constant
c that occurs in the terms. The abstraction preserves the structure of a formula, and is
defined as follows.

Definition 2.1 (Abstraction)

()(—|_) := T (1) 05(F1 3 F2) Of(F1) D (1(F2) (5)

Mi) == i (2) 0é(—'F) == —1(a(F)) (6)
a(F1 V F2) = a(F1) V o:(F2) (3) ' ar(V:c. F) := Van. a(F) (7)
o:(F1 /\ F2) - oz(F1) A a(F2) (4) 043:1: F) := 3x. a(F) (8)

aP((in -- t n=)) /\ PM?) (9)
me VC(P(t1‚---‚tn))

The cases (l)—(8) are straightforward, which leaves (9) to be explained. In case (9) the
expresion Ame VC(P(t1,...,tn)) P(:c) is the conjunction of formulas defined by

AP(:r) .= T, /\ P(x) := P(a:’), and /\ P(x PW) /\ (A Pm)
:rEÜ x€[x'] z e [:r']€BL mEL

Example 2.2 We illustrate the technique by abstracting the axioms depicted in Fig. 3.
The result is shown in Fig. 5.

The following lemma ensures that the abstraction of any first-order logic formula is
always a second-order monadic formula with respect to SOS.

2Th i s paper also provides an overview of different abstraction mechanisms.

validtree(|eaf)
Vt1.Vt2. validtree(t1) /\ validtree(t2) D validtree(t1) /\ validtree(t2)

validpath(here)

Vp. validpath(p) D validpath(p)

Vp. validpath(p) D validpath(p)
mirror(|eaf) /\ mirror(|eaf)

Vt1.Vt3.Vt2.Vt'2. mirror(t1) /\ mirror(t’1) /\ mirror(t2) /\ mirror(t§)

I) mirror(t1) /\ mirror(t2) /\ mirror(t'2) /\ mirror(t’1)
reflect(here) /\ reflect(here)
Vp. Vp’. reflect(p) /\ reflect(p’) I) reflect(p) /\ reflect(p')
Vp. Vp’. reflect(p) /\ reflect(p') D reflect(p) /\ reflect(p')
Vt. subtree(t) /\ su_btree(here) /\ subtree(t)

t. Vtg. Vp. Vt’. subtree(t1) /\ subtree (p) /\ subtree(t’) D
subtree(t1) /\ subtree(t2) /\ subtree(p) /\ subtree(t')

t. Vtg. Vp. Vt’. subtree(t2) /\ subtree(p) /\ subtree(t') D
subtree(t1) /\ subtree(t2) /\ subtree(p) /\ subtree(t’)

Figure 5: Abstractions of the sample set of axioms

Lemma 2.3 For any first-order logic formula F, a(F) is a second—order monadic formula
without successor functions, and it holds VC(F) : VC(O.’(F)).

Proof. The proof is by induction over the structure of the formula F:

Base Case: If F is an atomic formula, then F is either T, or J., or of the form P(t1, . . . ,tn).
If F E {T, J.}, then o:(F) == F and thus a(F) is a second-order monadic logic formula
and it holds VC(F) : VC(a(F)).
Otherwise, ifF := P(t1, . . . ,tn), then oa(P(t1, . . . ‚t„)) is

A P(:t).
me VC(_P(t1 ----- tall

By simple induction over the length of VC(P(t1, . . . ,tn)) it follows that this for-
mula is indeed a second-order monadic logic formula Without successor functions.
Furthermore VC'(P(t1, . . . ,tn)) =_ VC(/\me®?=1 vom) P(:c)) follows directly from the
definition.

Induction Step: Assume that the abstractions of F1, F2 are second-order monadic logic
formulas and it holds VC(F,) = VC(o:(F,-)), i = 1,2. Then for all o E {A,V,D}
obviously o:(F1 0 F2) := oz(F1) o a(F2) is a second-order monadic logic formula. The
analogous argument applies to -IF1, Var. F1, and 3:13.171.

For the second part of the lemma it holds for F1 0 F2:

VC(F10F2) = vom) o vom?) E" o:(VC(F1)) ea a(Vo(F2))
= a(VC(F1)) °a (VC(F2))

and analogously for -IF1. For Q E {V, 3} it holds

mm. a) =-V0(F1) \ {x} Iii Wow) \ {as} = mew. am»

[]

We now address the question of how substitutions and abstraction interact. Following
Definition 1.2 the standard definition of substitutions may contain non-monadic terms,
which complicates the interaction with abstraction. Consider the following example. Let
P(f (at, y)) be a predicate and o = g(u‚ u) /:r a substitution. Applying o naively to the result
of abstraction P(:c) /\ P(y) would yield P(g(u, w)) /\ P(y), which is not an SOS formula and
differs from

a([ol(P(f($. yllll = Cl<(P(f(9(7~t v), y))) = PW) /\ P(‘v) /\ 13(9)-

Thus, substitution application of o to t differs from the standard form of application, since
it is required to flatten the structure of atomic formulas, as well. It is defined over the
structure of t and 0, simultaneously.

Definition 2.4 (Flattening substitution application) We denote by [[0]](t) and [[0]] (F)
the application of the homomorphic extension of o to second-order terms and formulas de—
fined by:

taupe» == /\ Pa) (10)
ye VC(0(m))

[GM—‘n == “(l0l(F)) (11)
for 0 E {A, V, D} [[0]](F1 0 F2) ': |[0]|(F1) o [[0]](F2) (12)

for Q E {V,3} [[0](Q33.F) := s. [o,x/xIKF) (13)

where (o, x/x) denotes the substitution that maps a: to a: and otherwise is identical to o.

Substitutivity in first—order logic and SOS commute with abstraction, which is the crucial
property used at several occasions in the proof of the soundness Theorem 2.7.

Lemma 2.5 Let F be a first-order logic formula and o a. first-order substitution. Then it
holds:

0([01F) = l0l(a(F))

Proof. by induction on the structure of F. We only show two representative cases..-

Case: If F is an atomic formula of the form P(t1, . . . , tn) then

a([o]P(t1, . . . ,tn)) = a(P([a]t1‚ . . . , [o]tn))

= A P(:r)
m6®?=.1 V C ([U] t i)

= /\ /\ PW
yEGBLiVCUi) wEVC(0(y))

= /\ lalPW)
y6633=1 VCM)

= [[0]] /\ PL?!)
£9221 VOW)

: [[a]](a(P(t1, . . . , tn)))

Case: F = Qcc .F ’

05(l0](Q33 F l) = 04(Q$ laaifi/SENF'D
QSC -G([0‚$/$](F'))
Qsc .|[o,3:/3:]](o: F '))

[[0]](Q33 -(05(F’)))
= lalWlQ-"E Fl)

El

Unfortunately, the proof theory of second-order monadic logic is not defined in terms of
flattening substitution application, but rather in terms of the standard form of application,
as used in the quantifier rules in Fig. 2. However, there is a direct relationship between
flattening substitution application and renaming substitutions p

9 === 'lpay/x l 0.6/33-
A renaming p can only substitute variables or constants for variables because no successor
functions are available.

This relationship is captured by extending the notion of abstraction a that currently
maps only atomic formulas into conjunctions of monadic SOS predicates, to map substitu-
tions 0 into renaming substitutions p. Intuitively, 05(0) computes the witness substitution
for the SOS quantifier rules.

at) =
ahnt /x) = a(a)‚y/:c for some y E VC(a(:c))

If a maps &: to t , the corresponding p maps m to some variable or constant that occurs in t .
Substitution abstractiOn is hence a necessary step to embed substitutions that arise in first—
order logic derivations in SOS, but is i t the right choice? Does it preserve the derivability
of abstracted sequents?

The answer to this question is contingent on a suitable choice of abstraction to first-
order logic derivations that we describe inductively. Abstracting a derivation tree pro-
ceeds by replacing each formula in the tree by its abstraction. Axioms F , P(t1, . . . , t,,) I-
P(t1, . . . , tn), A, for example, are mapped into OM"), a(P(t1, . . . ,t„)) l- a(P(t1, . . . , %)), a(A).
It remains to show that the abstracted derivation is really an SOS derivation which we do
in two steps.

10

First, we show that the choice of renaming substitution is well chosen and compatible
with the previous notion of flattening substitution application (see Definition 2.4). In the
interest of brevity, we write [F] for a context that consists of [01]]F1 . . . [[en]]Fm and [F] for a
context of the form [a(01)]F1 . . . [a(on)]Fn. Second, we prove soundness of our abstraction.

Lemma 2.6 (Compatibility) If [F] => [A] is the result of abstracting a derivation
then [P] => [A].

Proof. By induction on the derivation of I‘ =— A. The proof is quite straightforward. We
only show three representative cases.

Case: [r im]? ==,» [[0]]P, [A] a"

Similarly, we obtain [P], [o]P => [0]P, [A] by the ax rule.

[1"],Vx. [0, a:/:t]]F, [t/zt][[o, 13/51:]F => [A]
Case: [F],V:t. [o,:t/x]]F => [A]

Since we are considering substitutions in SOS, the term t must always be a variable
or a constant. By renaming we obtain that [t/r][o,:c/st]]F = [o,t / : t]F, on which we
can apply the induction hypothesis.

[P],V:t. [o,:t/:13]F, [o,t/:t]F => [A]

We can always rewrite the formula [o,t/3:]F as [t/r][o,$/:r]F by factoring out the
renaming substitution and a renewed application of VL yields the desired

[F],V:t. [o,tt/:t]F => [A]

[F] => [0/50]a :2:/:t][F[A]]
Case: [1"] =>,Vst. [o,x/a:][F[A]|

As above, by renaming we obtain that [o/x][o, a:/:t]]F = [[0, a/x]F, on which we can
apply the induction hypothesis.

VR“

[F] =" [ma/11W: [A]
We can always rewrite the term [o,a/:1:]F as [a/x][o, :c/zc]F by factoring out the re-
naming substitution. After discharging the parameter a , a renewed application of ‘v’L"'I
yields the desired

' [I‘] => V55. [0, 33/51:]F, [A] El

The translation into monadic second-order logic reduces an intrinsically undecidable
problem to a decidable one and allows us to conclude from the disproof of an abstracted
conjecture that the original conjecture could not have been true. The follOwing theorem
establishes that relationship with the benefit that i t defines implicitly a procedure to dis-
prove false conjectures: Using the abstraction, convert a conjecture from first-order logic
into second-order monadic logic, and then run an implementation of a decision procedure
for SOS. This insight can be seen as the central contribution of this work.

11

Theorem 2.7 (Soundness) The abstraction a of derivations in first-order logic into
derivations of first-order monadic logic without successor functions preserves the non—provability
offormulas: Ifl‘ 2- A then a(l‘) 2 a(A) .

Proof. By induction on the derivation of F 2 A. We only show the two challenging cases
for the universal quantifier. All others are analogous.

l‘ ==>> A,V:z:. F, [a/st]F
Case: I‘ 2 A,Va:. F

la ,

ce(1") => a (A‚ Vcc. F, [a/sc]F) by induction hypothesis
Ora“) 2 a(A, V33. F), fla/lodF) by Lemma 2.5
a(l‘) 2 oe(A,V:r. F) , [a/sc]o:(F) by Lemma 2.6
all“) 2 a(A,V:c. F) by VR

F,V:r. F, [t/$]F 2 A
Case: l",Va:. F 2 A VE:

a(F,Va:. F, [t/$]F) 2 cv(A) by induction hypothesis
oz(I‘,Va:. F) , [[t/zr]o:(F) 2 o:(A) by Lemma 2.5
Oz(P, Vsc. F), [oz(t/a:)]oz(F) 2 a(A) by Lemma 2.6
(oz l‘,Va:. F) 2 oz(A) by VL

. Ü

Example 2 .8 (Mirrored subtrees) Let F0 be the conjunction of all axioms from Fig. 3
and a(F0) the conjunction of all axioms from Fig. 5. Recall the problem from Example 1.4
of proving that a reflected path p in a mirrored tree t’ leads to the same subtree as mirroring
the subtree s that is found at p in the original tree t .

F0 3 Vt. Vs. Vp. (validtree(t) /\ validtree(s) /\ validpath(p) /\ subtree(t, p, s))
D Elt’. Els’. Elp' . (validtree(t’) ‘/\ validtree(s’) /\ validpath(p’) /\ subtree(t’, p’ , s’)
/\ mirror(t, t’) /\ reflect(p,p’) /\ mirror(s, s’))

In second-order-monadic logic without successors the abstracted version of ' th is formula is
not provable either.

F0 3 Vt. Vs. Vp. (validtree(t) /\ validtree(s) A validpath(p)
/\ subtree(t) /\ subtree(p) /\ subtree(s))

D Elt’. Els’. Bp’. (validtree(t’) /\ validtree(s’) /\ validpath(p’)
/\ subtree(t’) /\ subtree(p’) A subtree(s’)
/\ mirror(t) /\ mirror(t') /\ ref|ect(p) /\ reflect(p’) /\ mirror(s) /\ mirror(s'))

Consequently, there is no need to invoke a first-order theorem prover, because by Theo-
rem 2.7 it is determined to fail. On the other hand with induction, analyzing cases over p
yields three conjectures whose abstractions are all provable in SOS assuming a few neces-
sary but simple lemmas about binary trees and their abstractions, which we omit from this
presentation. El

The abstraction has many applications. For example, by trial and error it can be helpful to
determine which axioms are indispensable for proof search. We also suspect that the proof
derivations of the abstracted formula contains much information that is useful to guide a
theorem prover during the proof search process.

12

3 Treating Primitive Equality

The decision procedure defined in the previous sections is restricted to first—order logic
without primitive equality. Thus, equality is treated like any other binary predicate and an
equation s = t is abstracted to the monadic formula (/\me yam.) = (cc))

In order to support primitive equality in an adequate way we extend the abstraction
function to primitive equality and abstract equations to

05(5 =13) := VX- (Axevo(s)X(33)) 3 (Axev0(t)X($))
AVX- (Asse v0(t)X(—'5)) 3 (Axe VC(s)X(33))

Differently to the first-order case without equality, second-order quantifiers are necessary
to range over predicates,-such as subtree, mirror, or reflect.

Remark 3 .1 This mapping is inspired by the Leibniz’ definition of equality in higher-
order logic, which is s =Leibm-z t := VP.P(3) D P(t) with the only difference that be-
sides the covariant i t also involves the contravariant direction of implication. Without .
VX . (Ame VC(,)X(:C)) D (Ame VC(S)X(32)) , for example, primitive equality would not be
adeQuately captured in SOS. In higher-order logic P may be instantiated with any predi-
cate pHo as well as with Ax. np(a :) , while in SOS the latter is not posSible. However, the
latter is necessary in order to obtain for each p not only p(s) D p(t), but also the converse
p(t) :) p(s), as used in the base case of Lemma 3.2.

It can be easily seen that the abstraction of a first-order equation is a second-order monadic
formula due to the quantifier over X .

In the presence of primitive equality, we add the following rules to complete the sequent
calculus for first-order logic with primitive equality. For those rules we denote by (3|q the
replacement of exactly one occurrence of u with v-in C .

F38 = t => Flu—s: Pas= t=>P lS<—ta

l"=>t=t,A "ef' P,s=t=>F‚A
ASb"

P‚s= t=>F ,A u , .
A

Sub?

Fafi t b sa s= t=>A l P , .F l s (_ . t , 5= t==>A l
P,F,s=t=>A 5“ ! P,F,s=t==>A Subr

where for Sub-rules none of the variables in s and t are bound in F .

Lemma 3 .2 Any SOS sequent of the form l " ,a (s = t),oe(F|,,_t) => a (F) ,A or l",or(s =
t), a (F) => oz(F's,_t), A is provable.

Proof. The proof is by induction over the structure of F .

Base Case: F = P(t1, . . . , t n) : In that case i t holds

a(F,,..,) = o:(P(t1, . . .,t,,),.._t) = /\ Pa)

13

and a(F) = a(P(t1‚...,t„)) = AmEVC(P(t1
‚‚‚‚‚z„))P($)° Note that by definition of

VC there exist lists L,L’ such that VC(P(t1, . . . ‚tn)|s<_t) = L EB VC(t) EB L’ and
VC(P(t1, . . . ‚tr-L)) = L @ VC(3) @ L’. Furthermore,

a(s = t) = VX. (Newman) 3 (A,EVC(S)-X(x))
AVX' (AmGVC’(s)X(I)) 3 (AmEVC(t)X(x))

By instantiating the first X with P and the observation that VC(s) is a sublist of
VC(P(t1, . . . ,tn)) and V005) is a sublist of VC(P(t1, . . . ,tn)|,,_t), it is trivial to see
that there is a proof for

P! VX (A336 VC(t) X(.’E)) 3 (A36 VC(s) X(£L‘))

Avxa (Axel/as) XM) a (AM—„) Xm) ‚AM—(pm MM,
Per)

=> Axe VC(P(t1,...,-tn)) PUB)? A

The case for F,a(s = t),a(F) => a(F|s+_t),A is analogous, except that we must
instantiate the second X . This is were the adequacy of the abstraction of an equa-

tion to both VX. (Aa:€VC(s)X(-'l3)) D (Axevo(t)X($l) and VX. (AmeVC(t)X(—'U)) :)

(Ame vom X (x)) is formally visible.

Induction Step: We proceed by case analysis over the structure of F:

1. F : fiF’: It is obviOus to see that a(fi(F’)|„_t) = -:(oz(F|’s,_t)). Then

, , , I.H.
I‘ ,o:(s = t),a(F) => o:(F|s+__t),A

I"=fi(a(fiz„))‚a(s = t), a(F') => A fi
_!

I", wamgrams = t) => mm), A
L

2. F = F1 /\ F2: Without loss of generality we assume that 8 occurs in F1. Again,
it is obvious to see that a((F1 /\ F2)|s<—t) : a(F1|„_t) /\ o:(F2). Then we have to
prove I", 0f(F1|s<—t) /\ a(F2), a(s = t) => a(F1) /\ 04172), A.

|. H.
I”: a(Fl|s<—t)a 05(3 = t)

=> a(F1) ,A k L
wea1", meta), aw», a(s = t)

==> Of(F1) ‚ A
AL ax

I”, G(F1 | s+—t) /\ 01(F2), a(s = t) I”, a (F1 | „_ t) ‚ a (F2) , a(s = t)

= O!(F1) ,A => a (F2)aA R
/\

1'", a(F1|s<—t) /\ a(F2), a(s = t) => a(F1) A a(F2), A

3. F : VLF: Again, it trivially holds that a((Va:. F’)|s,_t) = Vx.oa(F|’s,_t). Note
that a: does neither occur in 3 nor in t. Then we have to prove I", ‘v’r. oz(Fl’s,_t), a(s =
t) = V33. a(F’), A:

14

LH.
(la/xlfl'satlads = or),A([a/$]F’ .

Lemma 2.5 x 2
) =>

I"F fl a / x] a (Flaw—t)“o:(s ==)=> [[a/m]oz(F’), A
1” [am)a/sc] (11mm=t>=>la<a)/x1a<F).A

1'",Va:.a(F|s(_t), [oz(a)(/a:]o:(Flget)a(s = t) => [a(a)/m]a(F’),A weak L
I‘ Van. a(Fl’M_t)a(s = t) => [a(a)/:r]a(F')‚A

1" ‚Var. a(F|’s+__t)‚ a(s = t) => Vm. a(F’)_, A

Lemma 2.6 x 2

4. The remaining cases are analogous. El

The soundness theorem with respect to first-order logic with primitive equality is then

Theorem 3.3 The abstraction oz of first-order logic formulas with primitive equality to
second-order monadic logic formulas preserves the non-prooability.

Proof. Again we have to prove that whenever there is a proof for the original formula in
first-order logic with primitive equality, then so there is for the abstracted formula. The
proof is essentially the same as before, except that there are 5 additional cases to consider,
one as an additional base case and four additional cases in the induction step:

Base Case: Assume there is a derivation P l- t = t, A, then we have to prove that there is
a derivation for all") I- a(t : t)‚a(A). Let 90(X) := Axe VC(t) X(a:), then oz(t = t) :=
(VX. @(X) D cp(X)) /\ VX. @(X) 3 cp(X)‚ and we must find a derivation in second-
order monadic logic for ad“) => (VX. (;)(X) 3 go(X)) /\ (VX. 4,0(X) D cp(X)), a(A).

a(1“)‚<p(p) t <p(p)‚a(A) ax) R acrwm = so(p)‚a(A) a: R
041“) = 9003) D MP), GUS) VRP 041") = 9909) D so(p)‚a(A) VRP

a(1") => VX. (p(X) D 90(X), o:(A) a(I‘) => VX. cp(X) D cp(X),a(A)
GU“) ==> (VX- 90(X) D so(X)) A (VX- 90(X) D so(X))‚0-'(A)

Induction Step:

1. Assume there is a derivation for F, s = t => FlsH, A and by induction hypoth-
esis we can assume that there is an SOS derivation D for a(I‘),a(s = t) =>
a(Fls._t),o:(A). Then we have to prove that there is a second-order monadic
logic derivation for a(1"),a(s = t) ==> a (F) , a(A).

acr)‚a(s = t) "““
Lemma 3 2 => MEN—„’MA) weak R

au")? “(5 : t l a aa(F | s<—t) . “(Da €)!(5 = t)

= 0(F ‚MA) => 01(F | s<—t) ‚a (F) ‚a (A) Cut(a(F|))
s+—ta(I‘), a(s = t) => a(F),a(A)

2. The proofs for the other cases are analogous. El

15

Example 3.4 Let F0, and a(F0) as in Example 2.8. A formula in first—order logic that
concludes that any subtree in a tree 75 at path p is unique is

'Fg D Vp. Vp’. Vt. Vs. Vs’. subtree(t‚p, s) /\ subtree(t,p’‚ s’) D s = s’.

Its abstraction expands the equality predicate as described above.

F0 2) Vp. Vp’ . Vt. V3. V3’ . subtree(t) /\ subtree(p) /\ subtree(s)
/\ subtree(t) /\ subtree(p’) /\ subtree(s’)
I) (VX.X(s) D X(s’)) /\ (VX. X(s’) D X(s)).

The resulting formula is not provable in SOS and can therefore not be proved in first—order
logic with primitive equality by Theorem 3.3. On the other hand with induction, if one
would consider cases over p , abstraction yields three cases, each of which is provable in SOS.
D

4 About the Subclass of Unprovable Formulas

The question now arises which class of false conjectures can be tackled by the presented
technique. Although we have no formal characterization for that class of formulas, we know
that i t includes first-order logic formulas that have only infinite counter-models. To see this
consider the non—valid first—order logic formula in Fig. 6 and assume I is a counter—model
that falsifies that formula. Then I(<‚o) = _L entails that (1) I validates the left—hand side of
the implication and (2) falsifies Elm. -P(a:). From (1) it follows that the interpretations of P ,
> , and = must be infinite. A possible infinite interpretation for P is ALT. The abstraction

FOL formula: (‚0 := (3x. P(a:) /\ Var. 3y. P(a:) 3 (3; > a: /\ P(y)) /\
Vx,y,z. (a; > yAy > z) 3 :1: > zAVx.a: # :r) D 3x.—=P(x)

SOS formula: 050,0) := (3x. P(a:) /\ Vx. 3y. P(:I:) D (> (y)/\ > (17) /\ P(y)) /\
Vcc,y‚z. (> (x)/\ > (y)/\ > (z)) 3> (x)/\ > (z) /\
Vac. -I(VX. X(3:) D X(a:) /\ VX.X(:1:) D X(a:))) 3 Elm. —-uP(:r:)

Figure 6: Disproven first—order logic formula with infinite counter-model.
o:(<,0) is also invalid with respect to SOS, also by interpreting P as An:.T. Thus, with our
technique we can disprove first-order logic formulas that have no finite counter-models.

5 Implementation

The procedure for disproving false conjectures has been implemented in the MAYA sys-
tem [3]. MAYA is an in-the—large verification tool for structured specifications. It is based
on the notion of deve10pment graphs and incorporates an efficient management of change
to preserve and adjust proof information when changing the specification. Each node of
the development graph corresponds to an axiomatically defined theory and the procedure

16

presented in this paper can be used to disprove false conjectures with respect to some the—
ory. The implementation abstracts the first-order logic subset (I) of the axioms defining a
theory to second-order monadic logic. To disprove a false conjecture d), the validity of the
SOS formula oa(<I) 3 7,0) is checked.

In order to decide the validity of an SOS formula, rather than implementing our own SOS
decision procedure, we have linked MAYA with the MONA system [7] Although MONA
implements only a decision procedure for weak second-order monadic logic, i t is still useful
since it is conservative over full second—order monadic logic without successor functions.
Counter-models found in MONA are also counter-models in the more general setting. To
our knowledge there is no available implementation of a full SOS decision procedure.

6 Conclusion

We have outlined a technique to disprove false conjectures in first-order logic with and
without equality over a given and fixed term algebra. The central idea is that of abstraction.
Formulas are transformed into second-order monadic logic without successor functions,
which is known to be decidable. We have shown that the abstraction is sound, which
means it preserves provability. Thus the absence of a proof in second—order monadic logic
entails that the initial Conjecture is unprovable, as well.

As related work we conSider the tableau method [11] as well as combinations of model
generation with automated theorem provers, such as the SCOTT system [6]. The tableau
method not only detects unsatisfiability of the negated conjecture but also generates models
for it . This is similar to the use of model generating systems during refutation proofs, as
done in the SCOTT system. Thus, certain classes of false conjectures can be detected by
generating counter-models. However, the relationship between these classes and the class
characterized by the procedure presented in this paper is unclear yet and is left for future
work.

Further future work is planned in different directions: First, we plan to investigate how
to obtain from a counter-example for a non-valid SOS formula a counter-example for the
original first-order logic formula, which would be highly beneficial especially in MAYA’S
application context which is formal software develOpment. Also we assume it to be helpful
to deve10p a characterization for the subclass of unprovable first—order logic formulas. Sec—
ondly, we plan to experiment with abstractions that preserve more of the term structures
when mapping first-order logic formulas to second—order monadic logic formulas. Thereby
we would leave the SOS fragment and employ larger fragments of second—order monadic
logic, e.g. SkS. Preserving the structure should result in an increased efficiency for equa-
tional first-order logic theories. A third line of research will consist of using second-order
logic proofs as proof plans to guide the actual proof search for the initial first-order logic
formulas.

References

[1] P. B. Andrews, M. Bishop, and C. E. Brown. System Description: TPS: A Theorem
Proving System for Type Theory. In D. McAllester, editor, Proceedings of CADE—J 7,

17

LNCS 1831, pages 164—169. Springer, 2000.

[2] S. Autexier, D . Hutter, B. Langenstein, H. Mantel, G . Rock, A. Schairer, W. Stephan,
R. Vogt, and A. Wolpers. Vse: Formal methods meet industrial needs. International
Journal on Software Tools for Technology Transfer, Special issue on Mechanized The-
orem Proving for Technology, Springer, September 1998.

[3] S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development graph
manager MAYA. In H. Kirchner and C. Ringeissen, editors, Proceedings 9th Int. Con-
ference on Algebraic MethodologyAnd Software Technology (AMAST’OQ), LNCS 2422.
Springer, September 2002.

[4] F. Giunchiglia and T. Walsh. A theory of abstraction. Artificial Intelligence, 57(2-
3y323—389,1992. .

[5] R. Harper, F . Honsell, and G. Plotkin. A framework for defining logics. Journal of the
Association for Computing Machinery, 40(1):143—184, January 1993.

[6] K. Hodgson and J . Slaney. Development of a semantically guided theorem prover. In
R. Goré, A. Leitsch, and T . Nipkow, editors, Automated Reasoning, LNAI 2083, pages
443—447. Springer, June 2001.

[7] N. Klarlund. Mona & fido: The logic—automaton connection in practice. In Computer
Science Logic, CSL ’97, LNCS 1414, 1998.

[8] G. Nadathur and D. Miller. An overview of AProlog. In K. A. Bowen and R. A.
Kowalski, editors, Fifth International Logic Programming Conference, pages 810—827,
Seattle, Washington, August 1988. MIT Press.

[9] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1—35, 1969.

[10] C. Schürmann and S. Autexier. Towards proof planning for M3 . Electronic Notes in
Theoretical Computer Science, 70(2), 2002.

[11] R. Smullyan. First-Order Logic. Springer, 1968.

[12] J . Siekmann et. al. Proof deve10pment with QMEGA. In A. Voronkov, editor, Proceedings
of CADE-Ig, LNAI 2392, pages 144—149, COpenhagen, Denmark, 2002. Springer.

[13] M. Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the 14th Annual ACM Symposium on Theory of Computing, pages 137—
146, 1982.

