
.n
xn

. . . . . { .

I

Orderings

Joachim Steinbach

SEKI Report SR-93-18 (SFB)

==$
d3©=AENC
ot
Q>4o p

f

a]
p

n
d

=S©OQ
O

H
w

)
+=®

sommes] sens 
1N

O
dIY

 - IN
AS

¥138 WJI0oJuU| YdIa4aqyde





1 

On the Complexity of Simplification Orderings* 

Joachim STEINBACH
 

Universitat Kaiserslautern
 
FB Informatik
 
Postfach 3049
 

67653 Kaiserslautern
 
Germany
 

e-mail: steinba@informatik.uni-kl.de
 

December 17, 1993
 

Abstract 

Various methods for proving the termination of term rewriting systems have 
been suggested. Most of them are based on the notion of simplification ordering. 
In this paper, the theoretical time complexities (of the worst cases) of a collection 
of well-known simplification orderings will be presented. 

Introduction and Summary 

Term rewriting systems (TRSs, for short) provide a powerful tool for expressing non
deterministic computations and as a result they have been widely used as, for example, 
in theorem provers. Moreover, they can usefully be applied in many other areas of com
puter science and mathematics such as abstract data type specifications and program 
verification. A main requirement of TRSs is expressed by the termination property. 

There exist various methods of proving the termination of TRSs. Most of these are 
based on reduction orderings which are well-founded, compatible with the structure of 
termsl and stable with respect to (w.r.t., for short) substitutions. The notion of reduc
tion ordering leads to the following description of termination of rewriting systems: A 
TRS 'R terminates if, and only if, there exists a reduction ordering >- such that l >- r 
for each rule l -+ r of 'R. With simplification orderings we refer to a special class 
of reduction orderings that require the so-called subterm property (see, for example, 
[Dershowitz, 1987]). 

·This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt). 
1also called monotonic 

1 

On  the Complexity of Simplification Orderings®

Joachim STEINBACH

Universitat Kaiserslautern
FB  Informatik
Postfach 3049

67653 Kaiserslautern
Germany

e-mail: steinba@informatik.uni-kl.de

December 17, 1993

Abstract

Various methods for proving the termination of  term rewriting systems have
been suggested. Most of  them are based on  the notion of  simplification ordering.
In this paper, the theoretical time complexities (of the worst cases) of  a collection
of  well-known simplification orderings will be presented.

1 Introduction and Summary

Term rewriting systems (TRSs, for short) provide a powerful tool for expressing non-
deterministic computations and as a result they have been widely used as, for example,
in theorem provers. Moreover, they can usefullybe applied in  many other areas of com-
puter science and mathematics such as abstract data type specifications and program
verification. A main requirement of TRSs is expressed by the termination property.
There exist various methods of proving the termination of TRSs. Most of these are
based on reduction orderings which are well-founded, compatible with the structure of
terms! and stable with respect to (w.r.t., for short) substitutions. The notion of reduc-
tion ordering leads to the following description of termination of rewriting systems: A
TRS R terminates if, and only if, there exists a reduction ordering > such that ! > r
for each ru le [ — r o f  R .  With simplification orderings we  refer to a special class
of reduction orderings that require the so-called subterm property (see, for example,
[Dershowitz, 1987]).

*This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt).lalso called monotonic

mailto:steinba@informatik.uni-kl.de


After briefly recapitulating the most essential notions used in connection with TRSs 
and termination, we will give (in section 3) the definitions of well-known simplification 
orderings including the recursive path ordering with status (Rpos), the path of sub
terms ordering (Pso), the path ordering with status of Kapur & Narendran & Sivaku
mar (KNSS), the improved recursive decomposition ordering with status (IRDS), the 
path of subterms ordering with status on decompositions (PSDS), the Knuth-Bendix 
ordering with status (KBOS) and the polynomial ordering (POL). In section 4, the 
time complexities of these orderings will be studied. More formally, the time for com
paring two terms w.r.t. a given ordering2 will be presented. The following (worst case) 
complexities will be proved3 (s and t are the terms to be compared while 1.1 represents 
the number of symbols occurring in a term): 

I IRDS I KBOS I KNSS I PSDS I Pso I Rpo I 

I 0(ls1 4
• It 1 

4
) I O(lsl· Itl) I 0(ls1 3 ·ltI3

) I 0(ls14 'It/ 4
) I 0(ls1 3

• It1 3
) I O(lsl· It I) I 

2 Notations 

We assume familiarity with the standard definitions4 of the set of function symbols (or 
operators) :F and their arities Ar, the set of variables X, the set of terms T(:F,X) 
and the set of (terminal) occurrences Pos(t) (Pos*(t)) of a term t. Furthermore, the 
leading function symbol and the tuple of the arguments of a term t are referred to by 
'Head(t) and Args(t), respectively. The sizeS of a term t (the cardinality of a set M) 
is denoted by ItI (IM I). Iltll stands for the depth of t, i.e. (i) II~II = 1 if ~ E X or 
~ E:F 1\ Ar(~) = 0 and (ii) Ilf(tl, ... ,tn)11 = 1 +max{lltilll i = 1, ... ,n}. 

The lexicographic (multiset) extension of an ordering ~ to tuples (nmltisets) of elements 
is denoted by ~le:r (~mul).6 In order to combine ~le:r and ~mul, each operator f has 
a so-called status T that determines the order according to which the arguments of 
f are compared ([Kamin and Levy, 1980]). Formaliy speaking, T maps :F into the 
set {mul,left,right}.7 The orderings of this paper (except POL) use a congruence '" 
depending on :F and T via f(s1," ., sm) '" g(t1 , ••• , tn) if, and only if, f = g and 
m = n and (i) T(f)= mul and there exists a permutation 11'" of the set {I, ... , n} such 
that Si '" t 1f(i), for all i E [1, n] or (ii) T(f) =f:. mul 1\ Si '" ti, for all i E [1, n]. 

For the sake of compactness, the representations of figure 1 will be used for formal 
descriptions of orderings. Case (i) states that s ~ t if, and only if, at least one of the 

2i.e. the ordering is completely defined by its parameters (a precedence, a weight function, an 
interpretation .and a status function) 

3The complexity of Rpo is proved in [Krishnamoorthy and Narendran, 1985]. In [Kapur et al., 
1985], it is shown that 0(1815 . It15) is an upper bound for KNSS. 

4 see, for example, [Huet and Oppen, 1979] and [Dershowitz, 1987] 
5i.e. the number of symbols . 
6(ml,m2,""mp) >-'ez (nl,n2, ... ,nq ) iff(i) p > 0 1\ q = 0 or (ii) ml >- nl or (iii) ml"" nl 1\ 

(m2, ... ,np ) >-'ez (n2, ... ,nq ). M1 >-mul M2 iffM1 #M2 /I. ('v'yEM2\Mt}(3xEM1 \M2)X>-Y. 
7The arguments of f will be compared as multisets (lexicographically from left to right or vice 

versapr TU) = mul (TU) = left or TU) = right). . 

2 

After briefly recapitulating the most essential notions used in  connection with TRSs
and termination, we wil l  give ( in  section 3) the definitions of well-known simplification
orderings including the recursive path ordering with status (RPOS), the path of sub-
terms ordering (Ps0), the path ordering with status of Kapur & Narendran & Sivaku-
mar (KNSS), the improved recursive decomposition ordering with status (IRDS), the
path of subterms ordering with status on decompositions (PsDS), the Knuth-Bendix
ordering with status (KBOS) and the polynomial ordering (POL). In section 4, the
time complexities of these orderings wil l  be studied. More formally, the time for com-
paring two terms w.r.t. a given ordering? will  be presented. The following (worst case)
complexities wil l  be proved? (s and t are the terms to be compared while |.| represents
the number of  symbols occurring i n  a term):

IRDS KBOS KNss  PsDs Pso  RPO

O([s[*- 181*) | Os ]- 181) | O(sP- 161°) | O ( l s l *- [£]*) | OCs- 181°) | OCls |- It])

2 Notations

We assume familiarity with the standard definitions® of the set of function symbols (or
operators) F and their arities Ar, the set of variables X ,  the set of terms T (F ,X )
and the set of (terminal) occurrences Pos(t) (Pos*(t)) of a term t. Furthermore, the
leading function symbol and the tuple of  the arguments of a term t are referred to by
Head(t) and Args(t),  respectively. The size? of a term t (the cardinality of a set M )
is denoted by |t| ( |M ] ) .  ||t|| stands for the depth of t ,  i.e. ( i)  ||A|l| = 1 :f A € X or
Ae€F AN Ar(A)  = 0 and (i i) | | f ( t1 , . . . , t : ) ] |  = 1 + max{| | t ] |  |: = 1 , . . . , n } .
The lexicographic (multiset) extension of an ordering > to  tuples (multisets) of elements
is denoted by > "  (ml)$ In order to combine > "  and »™*/, each operator f has
a so-called status r that determines the order according to which the arguments of
f are compared ([Kamin and Lévy, 1980]). Formally speaking, 7 maps F into the
set {mul left,right}.” The orderings of this paper (except POL) use a congruence ~
depending on F and 7 via f(sı,...,Ssm) ~ g ( t ı , . . . , t n )  if, and only if, f = g and
m =n  and ( i )  7 ( f ) = mul  and there exists a permutation 7 of the set { 1 , . . . , n }  such
that s; ~ t , ( ; ,  for all i € [1,n] or ( i i )  7 ( f )  # mul  A s ;  ~ t ; ,  for all i € [1,n].

For the sake of compactness, the representations of figure 1 will be used for formal
descriptions of orderings. Case (7) states that s > t if, and only if, at least one of the

2l.e. the ordering is completely defined by its parameters (a  precedence, a weight function, an
interpretation and a status function)

3The complexity of  RPo is proved in  [Krishnamoorthy and Narendran, 1985]. In [Kapur et al.,
1985], i t  is shown that O(|s|® - | | )  is an  upper bound for KNss.

“see, for example, [Huet and Oppen, 1979] and [Dershowitz, 1987]
%i.e. the number of  symbols
S(mı,ma2,..., my) > l ex  (ny, na , . . . , n , )  iff i )  p>0 A g=0o0 r  ( i i )  m ;  > ny or (i i i) my ~ nm A

(m2, . . . ,np)  > "  (ng , . . . ,n , ) .  My > "  M ,  iff My # Ma A (Vy € M2\M,)(3z € M;\ M2) z > y.
“The arguments of f will be compared as multisets (lexicographically from left to right or vice

versa) i f  r( f )  = mul ( r ( f )  = left or  7( f )  = right).

2



conditions cond; is satisfied. Case (ii) stands for the lexicographic evaluation, i.e. s >- t 

if, and only if, s >-1 tor (s "'1 t 1\ S >-2 t), and so on. 

(i) s>- t iff 1) cond1 (ii) s >- t iff - s >-1 t 

n) condn S >-n t 

Figure 1 

Most of the orderings presented in this paper are based on an ordering >- on the 
operators, called precedence. We use >- ord for denoting the ordering ord using the 
precedence >-. 

3 Definitions of the Orderings 

This section gives a description of the orderings to be examined. The formal definitions 
can be found in figures 2 and 3. 

3.1 Path and Decomposition qrderings 

The method of comparing two terms w.r.t. the recursive path ordering with status 
(Rpos, for short) depends on their leading function symbols ([Dershowitz, 1982], [Ka
min and Levy, 1980], see figure 2). The relationship between these operators w.r.t. 
the precedence is responsible for decreasing one (or both) of the terms in the recursive 
definition of the Rpos.If one of the terms is 'empty' (i.e. totally decreased), then the 
other one must be greater. 

In order to define other path orderings, we need some kind of formalism. A path of a 
term is a sequence of terms starting with the whole term followed by a path of one of 
its arguments: 

• PathA(D.) =D. if Do is a constant or a variable 
• Path;...(f(tl, ... , tn))=j(tl,"" tn); Path.. (t;) if i E [1, n] and u E Pos*(t;) 

Moreover, 

• Path( {i1, . .. ,tn}) = {Pathu(t;) liE [1, nl, u E Pos*(t;)} 

is the multiset of all paths of the specified terms t 1 , ••• ,tn • A path is enclosed in square 
brackets. The set {t1, ... , tn} of all the terms occurring in a path P = [t1; ... ;tn] is 
denoted by Set(P). The path of subterms and the path of superterms of a path relative 
to a term t; are defined as follows: 

• Sub([t1; ;t;; ;tn], t;) - [ti+1;"'; in] 
• Sup([t1; ;ti; ; tn], ii) - [t1;... ;ti-1] 

3 

conditions cond; is  satisfied. Case (zz) stands for the lexicographic evaluation, i.e. s > {

if, and only if, s > ;  tor (s ~y  t As > ,  t ) ,  and so on.

(z) s> t  iff 1 )  cond, ( 2 )  s> t  f f  — s> ;1

Figure 1

Most of the orderings presented in  this paper are based on an ordering > on the
operators, called precedence. We use »,.4 for denoting the ordering ord using the
precedence > .

3 Definitions of  the Orderings

This section gives a description of the orderings to  be examined. The formal definitions
can be  found in  figures 2 and 3.

3.1 Path and Decomposition Orderings

The method of  comparing two terms w.r.t. the recursive path ordering with status
(RPOS, for short) depends on their leading function symbols ([Dershowitz, 1982], [Ka-
min and Lévy, 1980], see figure 2). The relationship between these operators w.r.t.
the precedence is responsible for decreasing one (or both) of the terms in  the recursive
definition of the RPOS. If one of the terms is ‘empty’ (i.e. totally decreased), then the
other one must be greater.
In order to define other path orderings, we need some kind of formalism. A path of  a
term is a sequence of terms starting with the whole term followed by  a path of one of
i ts arguments:

e Pa thp(A)  =A  | i f  A is a constant or  a variable
o Path; ,(f(t1,...,tx))=F(t1,..., t s ) ;  Path,(t;) i f i € [1,n] and u € Pos*(t;)

Moreover,

e Path({t1,...,ta}) = {Path,(t;) | i  € [1,n],u € Pos*(t;)}

is the multiset of all paths of the specified terms t , , . . . , ¢ , .  A path is enclosed in  square
brackets. The set { t ; , . . . , t , }  of all the terms occurring in a path P = [ t ; ; . . . ; t , ]  is
denoted by  Set(P). The path of subterms and the path of  superterms of a path relative
to  a term i; are defined as follows:

eo Sub( [ t r ; . .i t i .  italsts) = [tigr;.. 5a ]
oe Sup ( [ t y ; . . . ; t i 5 . .ita) te) = [ t1 ; . . .581)



S >-Rpos t 
iff 1) 1iead(s)>-1iead(t) 1\ is} >-R;~S Args(t) 

2) 1iead(s)=1iead(t) 1\ r(1iead(s» = mul 1\ Args(s) >-R;~S Args(t) 
3) 1iead(s)=1iead(t) 1\ r(1iead(s») i- mul 1\ Args(s) >-~~~~ad(3» Args(t) 

1\ {s} >-R;~s Args(t) 

4) 
:--mul 

Args(s) ""Rpos it} 

s >-Pso t iff Path( {s}) >-£;'ti Path( {t}) 
with p >-po q iff Set(p) >-p'ul Set(q) 

with u >-T v iff - 1iead(u) >- 1iead(v) 
- Path(Args(u» >-£;01Path(Args(v» 

S >-KNSS t iff Path( {s}) >-'E;:/ Path( {t} ) 
with P >-LK q iff (Vt/ E q)(3s' E p) s/ >-LT t/ 

with p 3 u >- LT V E q 
iff 1) 1iead(u) >- 1iead(v) 

2) 1iead(u) = 1iead(v) 1\ r(1iead(u» = mul 1\ 

- Sub(p, u) >-LK Sub(q, v) 
- Path(Args(u» >-'Ei/ Path(Args(v» 
- Sup(p, u) >-LK Sup(q, v) 

3) 1iead(u) = 1iead(v) 1\ r(1iead(u» -I mul 1\ 

- Args(u) >-~~:ad(u» Args(v) 
- Sup(p, u) >-LK Sup(q, v) 

S >-IRDS t iff 'Dec( {s }) (>-ELl )mul Vec( {t} ) 
with 'Decp(Si) 3 u >- EL v E 'Decq(t') 

iff 1) 1iead(u) >- 1iead(v ) 
2) 1iead(u) = 1iead(v) 1\ r(1iead(u» = m ul 1\ 

- Sub(Vecp(s'), u) >-ELl Sub(Vecq(t'), v) 
- Vec(Args(u» (>-EL1)mul Vec(Args(v» 

3) 1iead(u) = 1iead(v) 1\ r(1iead(u» -I mul 1\ 

Args(u) >-~E:sead(u» Args(v) 

s>-Psost iff Vec({s}) (>-'Epl)mul Vec({t}) 
with u >- LP v iff 1) 1iead(u) >- 1iead(v ) 

2) 1iead(u) = 1iead(v) 1\ r(1iead(u» = mul /\ 
Vec(Args(u» (>-'Epl)mul Vec(Args(v» 

3) 1iead(u)= 1iead(v ) 1\ r(1iead(u» i- m ul /\ 
Args(u) >-~~~:..d(u» Args(v) 

Figure 2: Path and Decomposition Orderings 

4 

iff . 1) Head(s)>  Head(t)
2) Head(s)=Head(t)
3) Head(s)="Head(t)

{s} »pu   Args(t)

T(Head(s)) # mul A Args(s) > 7(Head(s))

{ s }  > os  Args( t )>
>

 
> 

>

mul
4) A rgs (s )  A Repos { t }

s>pso t  iff Pa th ( {s } )  ~BY Pa th ( { t } )
with p >po ¢ iff Set(p) 7 Set(q)

with u 7 v i f  - Head(u) > Head(v)

r(Head(s)) = mul A Args(s)  RW.  Args( t )

— Path(Args(u)) >BY Path(Args(v))

s >Knsst iff Path({s}) =T# Path({t})
with p>px  q iff (ve €q)(As' €p )s ’  p r t

wi th  D Iu>XLTvEq
iff 1) Head(u) > Head(v)

2) Head(u) = Head(v) A 7(Head(u)) = mul A
— Sub(p,u) »rx Sub(q,v)
~ Path(Args(u)) »T¥ Path(Args(v))
—- Sup(p,u) >LK Sup(a, v)

3) Head(u)= Head(v) A t(Head(u)) # mul A
- Args(u) mr Head(u)) Args(v)
- Sup(p,u)  Lk  Sup(q ,v )

8> tps t  iff Dec({s}) ( > )  Dec({t})
with Decy(s') 3 u >pgr v € Dec,y(t')

iff 1) Head(u) > Head(v)
2) Head(u)= Head(v) A 7(Head(u))= mul A

— Sub(Decy(s'), u) = Sub(Decy(t'),v)
— Dec(Args(u)) (ms md  Dec(Args(v))

3) Head(u)= Head(v) A 1(Head(u)) # mul A
Args(u)  >]Keod(u) Args(v)

S>Pspost iff Dec({s}) (>PE ym  Dec({t})
with u>z ıpv  iff 1) Head(u) > Head(v)

2) Head(u) = Head(v) A T(Head(u))= mul A
Dec(Args(u)) ( >Tpym Dec(Args(v))

3) Head(u)= Head(v) A T(Head(u)) # mul A
Args(u)  pad )  grgs(v)

Figure 2: Path and Decomposition Orderings

4



Consider the following example: t = (x+y)*z implies Path I2(t) = it; x+y; y], Path({ t}) 
= {Path u (t), PathI2 ( t), Path2 ( t)}, Sub(Path2(t), z) = [] and Sup(Pathu(t), x + y) = 
[t] . 

Plaisted's path of subterms ordering (Pso, for short) is a predecesso:" of the recursive 
path ordering (Rpo) of Dershowitz and compares two terms by comparing all their 
paths ([Plaisted, 1978]). A slightly modified version (which is equivalent to. the original 
one) of Rusinowitch ([Rusinowitch, 1987], [Steinbach, 1989]) is given in figure 2. 

A further ordering based on paths has been devised by I<apur, Narendran and Sivaku
mar ([Kapur et al., 1985]). It is called KNSS (KNS with status, see figure Z) and extends 
Rpos. In [Kapur et al., 1985], it has been stated that the ordering relation p >- LK q 
between two paths implies the ordering relation of two paths p.p' >-LK q.p', where p 
and q have been extended on the right-hand side by a path p'. 

The specific definitions of the decomposition orderings require some additional nota
tions. The set Set(P) of a path P is called path-decomposition and its abbreviation 
IS 

• Decu(t) = Set(Pathu(t)). 

An element (i.e. a term) of a path-decomposition is called an elementary decomposition. 
Analogous to paths, the decomposition 

represents the multiset of all path-decompositions8 of the terms t I , . .. ,tn as well as 
Sub and Sup denote subsets of path-decompositions.9 

As in the case of KNSS, the first recursive decomposition ordering has been developed 
from RpO.IQ One of the important differences to Rpo is the fact that a comparison is 
stopped as soon as incomparable operators are to be compared. We will present an ex
tension (called IRD) of the original decomposition ordering, developed by Rusinowitch 
([Rusinowitch, 1987}). We have incorporated status ([Steinbach, 1989]) to IRD (IRDS, 
for short), so that it is equivalent to KNSS (see figure 2). Moreover, our decomposi
tion orderings employ a different concept of decomposition: We use terms instead of 
triples (see [Steinbach, 1989}). A term s is greater than a term t (w.r.t. IRDs) if the 
decomposition of s is greater than the decomposition of t. The ordering (>-Etru1 on 
these multisets is an extension of the basic ordering on terms (>-EL) to rrlultisets of 
multisets. 

A further ordering based on decompositions results from Pso. We have succeeded in 
redefining this path ordering such that the resulting ordering, called PSD, provides a 

8Note that a path-decomposition is a set of terms, whereas a decomposition is a multiset of path
decompositions. 

9For example, let t = (r + y) * z. Then Vecl1(t) = it, x + y, r}, Vec( it}) = Ht, x + y, x}, it, x + 
y, y}, it, z}}, SUb(VeC2(t), z) =0 and Sup(Vecu(t), x + y) = it}. 

lOThe idea of decomposition orderings goes back to Lescanne, Jouannaud and Reinig ([Jouannaud 
et al., 1982]). 

5 

Consider the following example: t = (z+y)*z implies Pathy,(t) = [t; z+y;y],Path({t})
= {Path ( t ) ,  Pathyy(t), Pathy(t)}, Sub(Pathy(t), z) = [] and Sup(Pathni(t),z +y )  =
[1].

Plaisted’s path of subterms ordering (PSO, for short) is a predecessor of the recursive
path ordering (RPO) of Dershowitz and compares two terms by comparing all their
paths ([Plaisted, 1978]). A slightly modified version (which is equivalent to.the original
one) of Rusinowitch ([Rusinowitch, 1987], [Steinbach, 1989]) is given in figure 2.

A further ordering based on paths has been devised by Kapur, Narendran and Sivaku-
mar ([Kapur et al., 1985]). I t  is called KNss (KNs with status, see figure 2) and extends
RPos. In  [Kapur et al, 1985], i t  has been stated that the ordering relation p »rx q
between two paths implies the ordering relation of two paths p.p’ > .  ¢.p’, where p
and qg have been extended on the right-hand side by a path p’.

The specific definitions of the decomposition orderings require some additional nota-
tions. The set Set(P) of a path P is called path-decomposition and its abbreviation
1s

® Dec,(t) = Set(Path,(t)).

An element (i.e. a term) of a path-decomposition is called an elementary decomposition.
Analogous to paths, the decomposition

o Dec({ t1, . . . , tn})  = {Decu(t;) | i € [1,n],u € Pos*(t;)}

represents the multiset of all path-decompositions® of the terms t , , . . . , t ,  as well as
Sub and Sup denote subsets of path-decompositions.”
As in the case of KNss, the first recursive decomposition ordering has been developed
from RPO.!° One of  the important differences to RPO is the fact that a comparison is
stopped as soon as incomparable operators are to be compared. We will present an ex-
tension (called IRD) of the original decomposition ordering, developed by Rusinowitch
([Rusinowitch, 1987]). We have incorporated status ([Steinbach, 1989]) to IRD (IRDS,
for short), so that i t  is equivalent to KNsS (see figure 2). Moreover, our decomposi-
tion orderings employ a different concept of  decomposition: We  use terms instead of
triples (see [Steinbach, 1989]). A term s is greater than a term t (w.r.t. IRDS) if the
decomposition of  s is  greater than the decomposition of  t .  The ordering (>2%)™* on
these multisets is an extension of the basic ordering on terms (>gr) to multisets of
multisets.

A further ordering based on decompositions results from Pso. We have succeeded in
redefining this path ordering such that the resulting ordering, called Psp,  provides a

8Note that a path-decomposition is a set of  terms, whereas a decomposition is a multiset o f  path-
decompositions.

For example, let t = (z  + y) * z. Then Dec11(t) = { t , z  + y ,z} ,  Dec({t}) = { { t , x + y , z } , { t , z  +
y ıy},  { t ,  z } } ,  Sub(Decy(t), z) = 0 and Sup(Dec11(t),z + y) = { t } .

10The ea  of  decomposition orderings goes back to  Lescanne, Jouannaud and Reinig ([Jouannaud
et al., 1982]).



much simpler method of using decompositions (see [St~inbach, 1988]). PSD has another 
advantage over Pso: The combination with the concept of status (PSDS, for short) is 
much easier ([Steinbach, 1989], see figure 2). The essential difference between PSDS and 
IRDS lies in the method by which a comparison is processed: If the leading function 
symbols of the terms to be compared are identical, IRDS chooses only one subterm 
while PSDS proceeds by simultaneously considering the multiset of the decompositions 
of all subterms. 

3.2 Knuth-Bendix Orderings with Status 

The ordering of Knuth and Bendix (KBO, for short) assigns natural (or possibly real) 
numbers to function symbols. The value or weight of a term is obtained by adding 
the numbers of the operators it contains. Two terms are compared by comparing their 
weights, and, if the weights are equal, by lexicographically comparing their subterms 
(see [Knuth and Bendix, 1967]). In [Lankford, 1979], a generalization of this ordering 
is described: The comparison of terms depends on polynomials instead of weights (see 
subsection 3.3). 

If x is a variable and t is a term, we denote the number of occurrences of x in t by 
#x(t). We assign a non-negative integer c.pU) (the weight of J) to each operator in :F 
and a positive integer c.po to each variable such that 

• c.p( c) > c.po if c is a constant and 
o for one unary operator f, at most: f has to be maximal w.r.t. >-.• c.pU) 

Now we extend the weight function to terms. For any term t = g(tt, ... , t n ) let c.p(t) = 
c.p(g) + I: c.p(ti). 

KBOS ([Steinbach, 1989], see figure 3) is an extended version of the original KBO which 
does not consider a status function. 

3.3 Polynomial Orderings 

Polynomial orderings (POL, for short) have been developed by Manna & Ness ([Manna 
and Ness, 1970]) and Lankford ([Lankford, 1975], [Lankford, 1979]). Terms are com
pared w.r.t. POL (i) by mapping them into polynomials over Nand (ii) by comparing 
the polynomials w.r.t. >N where natural numbers are substituted for the variables 
(see figure 3). 

The set of all polynomials over a set {xt, ... , x n } of n distinct variables and with 
coefficients in N is denoted by N[xt, , xn ]. A polynomial is composed of a sum of 
monomialsll of the form Qrl ...rn .X~l x~n. A polynomial I:Qrl ...rn .X~l ..... x~n based 
on n distinct variables is represented by p(xt, ... , xn ). Since every ground polynomial 
is equal to a natural number, we identify the set of ground polynomials with N. A 
polynomial p == I:rl ...rn Qrl ...rnx~l ..... x~n E N[xt, ... , xn ] possesses a strict arity 

llWe use Qrl ...r .. for referring to the exponents of the variables (e.g., Q21oz2y + Q101ZZ). 

6 

much simpler method of using decompositions (see [Steinbach, 1988]). PSD has another
advantage over PSO: The combination with the concept of status (PSDS, for short) is
much easier ([Steinbach, 1989], see figure 2). The essential difference between PSDS and
IRDS lies in the method by which a comparison is processed: If the leading function
symbols of the terms to be compared are identical, IRDS chooses only one subterm
while PSDs proceeds by simultaneously considering the multiset of the decompositions
of all subterms.

3.2 Knuth-Bendix Orderings with Status

The ordering of  Knuth and Bendir (KBO, for short) assigns natural (or possibly real)
numbers to function symbols. The value or weight of a term is obtained by adding
the numbers of the operators i t  contains. Two terms are compared by comparing their
weights, and, i f  the weights are equal, by lexicographically comparing their subterms
(see [Knuth and Bendix, 1967]). In [Lankford, 1979], a generalization of this ordering
is described: The comparison of terms depends on polynomials instead of weights (see
subsection 3.3).

If z is a variable and ¢ is a term, we denote the number of  occurrences of x in t by
# : ( t ) .  We assign a non-negative integer o( f )  (the weight of f )  to each operator in  F
and a positive integer vo to each variable such that

e p(c)  > wo i f  c is  a constant and
e f )  = 0 for one unary operator f ,  at most: f has to be maximal w.r.t. > .

Now we extend the weight function to terms. For any term t = g( t1, . . . , tn)  let p ( t )  =
P(g )+X lt).
KBOs ([Steinbach, 1989], see figure 3) is an extended version of the original KBO which
does not consider a status function.

3.3 Polynomial Orderings

Polynomial orderings (POL, for short) have been developed by Manna & Ness ((Manna
and Ness, 1970]) and Lankford ([Lankford, 1975], (Lankford, 1979]). Terms are com-
pared w.r.t. POL ( i )  by  mapping them into polynomials over IN and (ii) by  comparing
the polynomials w.r.t. >py where natural numbers are substituted for the variables
(see figure 3).
The set of all polynomials over a set { z ; , . . . , z , }  of n distinct variables and with
coefficients in IN  is denoted by IN[z , , . . . ,z , ] .  A polynomial is composed of a sum of
monomials'! of the form a ,  , , - z ] ' - . . . - z ’ * .  A polynomial X a, .  , , - z * - . . .  27” based
onn distinct variables is represented by p ( z , . . . , z , ) .  Since every ground polynomial
is equal to a natural number, we identify the set of ground polynomials with IN. A
polynomial p = 3 . _ oy 2 ) . . .  z *  € N i zy , . . . , T , ]  possesses a strict arity

l1We use Qy, . . . r ,  for referring to the exponents of  the variables (e.g., a2102%y + 10122).

6



4 

S~KBost iff ('v'xEX)#As)~#r(t)1\ 1) s=f(t) 
2) - iP(s) > iP(t) 

- Head( s) ~ 1iead(t) 
- Args(s) ~~<:,~ad(6» Args(t) 

S ~POL t iff [s]::J [t] 

where J1. = min{[c]() ICE :F 1\ Ar(c) = OP2 

Figure 3: Knuth-Bendix and Polynomial Orderings 

m (:s; n) if there occur m variables in p that differ by pairs, i.e. for every Xi there is a 
monomial in p containing Xi with a non-zero coefficient. 

A polynomial interpretation [.]: :F U X f--l. IN[V] over IN assigns a polynomial p E 

IN[X1,"" Xn] of strict arity n to each n-ary function symbol and a variable X over 
IN to each variable X E X where V is a finite set of (polynomial) variables over IN. 
This mapping can be extended to [.]: T(:F, X) f--l. IN[V] by defining [J(tt, . .. ,in)] = 
[J] ([tt], ... , [in)). 

Complexity of the Orderings 

In this section, we study time complexities of the orderings presented in the former 
section. The following lemmas consider upper bounds which are not necessary be 
strict. Obviously, these time complexities depend on the formal definitions of the 
orderings. Thus, two equivalent (w.r.t. the power) orderings can possess different 
complexities. Note that the powers of KNSS and IRDS are equivalent. However, their 
time complexities differ (see lemmas 4.1 and 4.3). Analogously, Psa and PSDS are 
equivalent if lexicographic status is excluded (see lemmas 4.4 and 4.5). One of the most 
interesting results is the fact that decomposition orderings are more time-consuming 
than path orderings. This has also been confirmed by various examples of sets of 
equations oriented with the help of our completion environment COMTES ([Avenhaus 
et al., 1989]). 

To prove any assertion on the time complexity of polynomial orderings is somewhat 
difficult. It depends (i) on the method for proving the positiveness of polynomials and 
(ii) on the interpretations of the operators. Thus, for example, the time complexity of 
the approach of {BenCherifa and Lescanne, 1987] cannot be determined since it is no 

121£ :F does not contain any constant symbol, Jl can be arbitrarily chosen. 

7 

 s>ksos t  i f  (Vz € X )# : ( s )  2 #,.(t) A 1) s=  f ( t )
2) - p l s )  > oft)

° —- Head(s) > Head(t)
— Args(s) »pacadle)) A rgs ( t )

S >PoL  t i f f  [ s ]  —]  [ £ )

with pOg  iff (VX; > pg) p (X i , . . . ,Xs) > q (X i , . . . ,Xk)

where u = min{[c|() | c€ FA  Ar(c) = 0}'?

Figure 3: Knuth-Bendix and Polynomial Orderings

m (<  n )  if there occur m variables in  p that differ by  pairs, i.e. for every x;  there is a
monomial in  p containing x; with a non-zero coefficient.
A polynomial interpretation [.|: F UX  — IN[V] over IN assigns a polynomial p €
IN[zy,...,z,] of  strict arity n to each n-ary function symbol and a variable X over
N to each variable z € X where V is a finite set of (polynomial) variables over IN.
This mapping can be extended to [.]: T (F ,X)  — IN[V] by defining [ f ( t ı , . . . , tn) ]  =
[FI( [Ea],++ [6n])-

4 Complexity of  the Orderings

In this section, we study time complexities of the orderings presented in the former
section. The following lemmas consider upper bounds which are not necessary be
strict. Obviously, these time complexities depend on the formal definitions of the
orderings. Thus, two equivalent (w.r.t. the power) orderings can possess different
complexities. Note that the powers of KNSS and IRDS are equivalent. However, their .
time complexities differ (see lemmas 4.1 and 4.3). Analogously, PSO and PSDS are
equivalent if  lexicographic status is excluded (see lemmas 4.4 and 4.5). One of the most
interesting results is the fact that decomposition orderings are more time-consuming
than path orderings. This has also been confirmed by various examples of sets of
equations oriented with the help of our completion environment COMTES ([Avenhaus
et al., 1989).

To prove any assertion on the time complexity of polynomial orderings is somewhat
difficult. It depends (i)  on the method for proving the positiveness of polynomials and
( i i )  on the interpretations of the operators. Thus, for example, the time complexity of
the approach of {BenCherifa and Lescanne, 1987] cannot be determined since it is no

UI  F does not contain any constant symbol, x can be arbitrarily chosen.



decision procedure. However, the polynomial ordering's empirical time complexity is 
higher than that of the other orderings. 

The technique of proving (most of) the lemmas is based on a method similar to dynamic 
programming (introduced in [Kapur et al., 1985] for the first time). All orderings except 
POL are recursively defined. Therefore, we assume that substructures of elements are 
already compared by simultaneously storing the results in an array that can easily be 
accessed. Then it remains to compute the additional time required to compare two 
elements under these assumptions. 

Lemma 4.1 Given two terms s, t, a precedence }- and a status function T, S >-IRDS t 
can be determined in time 0(ls1 4 

• ItI 4 ). 

Proof: This upper bound will be proved by a method similar to dynamic programming. 
In order to compare sand t w.r.t. IRDS, all path-decompositions must be compared 
w.r.t. >-~'i. Thus, the time for comparing sand t w.r.t. IRDs is not greater than 

O(IPos*(s)I·/Isll·IPos*(t)I·lltll· TEL(s,t)) 

where TEL provides the time for comparing two terms w.r.t. >-EL. We will prove that 
TEL(u, v) = O(IPos*(u)I'llull'IPos*(v)I'llvll) holds. This implies the time for 
comparing sand t w.r.t. IRDs to be 

O(IPos*(s)I·/Isll·IPos*(t)I·lltll·/Pos*(s)I·llsll·IPos*(t)I·lltll) 

which concludes the proof since IPos*(u)1 $ lul and Ilull $ lul for all terms u. 

It remains to be proved that two terms u and v can be compared w.r.t. >-EL in time 
TEL(u, v) = O(IPos*(u)I' Ilull' IPos*(v)I' Ilvll). Assume that all proper subterms 
of u have already been compared w.r.t. >-EL with all proper subterms of v. Assume 
further that the results are stored in a 2-dimensional array A that can be accessed 
easily: A(p, q) provides the result of comparing u/p and vl q (p i:- A i:- q). Now, we have 
to determine the additional time required to compare u and v. We consider the worst 
case (i.e. 1tead(u) = 1tead(v) /\ T(1tead(u)) = mul): In order to compare 

• Sub(Veep(s'), u)	 and Sub(Vecq(t'), v), Ilull . Ilvll comparisons w.r.t. >-EL are 
needed 

• Vec(Args(u))	 and Vec(Args(v)), IPos*(u)l· IPos*(v) I . Ilull' Itvll comparisons 
are needed since IPos*(Args(t)) I = IPos*(t)1 and each path-decomposition of 
Vec(Args(t)) contains at most Iltll elements. 

These observations, together withJIPos*(t)1 $ It I and Iltll $ It I (for all terms t), imply 
the complexity of >- EL as it is stated above. 

Lemma 4.2 Given two terms s, t, a precedence >-, a weight function 'P and a status 
function T, S }-KBOS t can be determined in time O( IsI. It I). 

8
 

0 

decision procedure. However, the polynomial ordering’s empirical t ime complexity is
higher than that of the other orderings.

The technique of proving (most of) the lemmas is based on a method similar to  dynamic
programming (introduced i n  [Kapur et al., 1985] for the first time). Al l  orderings except
POL are recursively defined. Therefore, we assume that substructures of elements are
already compared by simultaneously storing the results in  an array that can easily be
accessed. Then i t  remains to compute the additional time required to compare two
elements under these assumptions.

Lemma 4 .1  Given two terms s , t ,  a precedence > and a status function 7 ,  s>yppst
can be determined in t ime O( | s | *  - |t|%).

Proof: This upper bound will  be proved by a method similar to  dynamic programming.
In order to compare s and ¢ w.r.t. IRDS, all path-decompositions must be compared
w.r.t.  >27,  Thus, the t ime for comparing s and ¢ w.r. t .  IRDS is not greater than

O(|Pos™(s)]  I Is l l  - [Pos™(t]] - [I¢]| - TEL(s, ?))

where TEL provides the time for comparing two terms w.r.t. >gz.  We will prove that
TEL(u,v) = O(|Pos*(u)|- ||ul| - |Pos*(v)| - ||v|]]) holds. This implies the time for
comparing s and t w.r . t .  IRDS to be

O(|Pos*(s)| - |Isil - [Pos*(¢)] - [|t]] - |Pos*(s)] - l ls ]  - [Pos™(¢)| - [1411)

which concludes the proof since |Pos*(u)| < |u| and ||u|| < |u| for all terms u.
I t  remains to be  proved that two terms u and v can be  compared w.r . t .  g r  in time
TEL(u,v) = O(|Pos*(u)|- ||u|| - [Pos™(v)|- ||v||])- Assume that all proper subterms
of u have already been compared w.r.t. >gr with all proper subterms of v. Assume
further that the results are stored in a 2-dimensional array A that can be accessed
easily: A(p, ¢) provides the result of comparing u | ,  and v|,  (p # A # q). Now, we have
to  determine the additional time required to compare u and v. We consider the worst
case (i.e. Head(u) = Head(v) A T7(Head(u)) = mul) :  In order to compare

eo Sub(Decy(s'),u) and Sub(Dec,(t'),v), ||u|| - ||v]] comparisons w.r.t. >gr are
needed

e Dec(Args(u)) and Dec(Args(v)), |Pos*(u)| - [Pos*(v)| - [ | | |  - ||v]|| comparisons
are needed since |Pos*(Args(t))| = |Pos*(t)| and each path-decomposition of
Dec(Args(t)) contains at most ||t|| elements.

These observations, together with |Pos*(t)| < |t| and ||t]] < |t| (for all terms ¢), imply
the complexity of > g r  as i t  is stated above. 0

Lemma 4.2 Given two terms s , t ,  a precedence > ,  a weight function ¢ and a status
Junction Tr, 8s>kpost can be determined in time O(|s| - |t]).

8



Proof: We use induction on the size of the terms. 

Basis step: Isl = It I = 1. obvious 
Induction step: Let s = f( SI, ... ,sm) and t = g( t l , .•. , tn). 

1) ep(s) > ep(t): We need time O(lsl + Itl) for computing the weights of the terms. 

2) ep(s) = rp(t) 1\ f;- g: analogous to 1) 

3) ep(s) = ep(t) 1\ f = 9 1\ rU) = mu/ 1\ {SI, ... ,sm} ;-K:;5 {tl, ... ,tn}: While 
comparing the two multisets, each Si, 1 :S i :S m, will have to be compared with 
each tj, 1 :S j :S n, in the worst case. This will take at most 

m n 

2:(lsil+1)' 2: (Itjl + 1) = (ls[+m-1)·(Itl+n-1) 
;=1 j=1 

comparIsons. 

4) ep(s) = ep(t) 1\ f = 9 1\ rU) =J mul 1\ (SI,'''' Sm) ;-~\!Js (tl,"" tn): Then at 
most 

rnm{m,n} min{rn,n} min{rn,n}

L (is,l· It,l) < L (Isil + 1) . 2:(Iti! + 1) = 
i=l i=l ;=1

(lsl + min{m,n} - 1)· (It I+min{m,n} -1) 

comparisons have to be done. o 

Lemma 4.3 Given two terms s, t, a precedence ;- and a status function r, s ;-KNSS t 
can be determined in time 0(ls13

. It/ 3 
). 

Proof: This upper bound will be proved similarly to that of lemma 4.1. In order to 
compare s and t w.r.t. KNSS, all paths of sand t must be compared w.r.t. ;-LK. Thus, 
the time for comparing sand t w.r.t. KNSS is not greater than 

O(lPoS*(s)/'IPos*(t)I' TLK(P,Q)) 

where P (Q) is the maximal path of s (t) and TLK provides the time for comparing 
two paths w.r.t. ;-LK. We will prove that TLK([Ul;"'; urn], [VI;"'; Vn ]) = O(m· 
n· l'Pos*(Udl' IPos*(vl)!) holds, which implies the time for comparing sand t w.r.t. 
KNSS to be 

O(l'Pos*(s)I'IPos*(t)I' IIsll' II t ll ·IPos*(s)I·IPos*(t)l) 

which concludes the proof siIice Ilull :S lul and IPos*(u)1 ~ lul for all terms u. 

It remains to be proved that two paths P = [Ul;"'; Urn] and Q = [VI;."; Vn] can be 
compared in time TLK(P, Q) = O(m·n·IPos*(Ul)I·IPos*(vt}l). Assume that all paths 
of the proper subterms of Ul have been compared with all paths of the proper subterms 
of VI. Let A be a 4-dimensional array in which the results are stored: A(p, i, q, k) 

9
 

Proof: We use induction on the size of the terms.
Basis step: ls] = | t |  = 1 .  obvious
Induction step: Let s = f ( s1 , . . . , 5m)  and t = g l t ı , . . . , t n ) -

1) ¢(s) > ¢(t): We need time O(|s| + |t|) for computing the weights of the terms.

2) v ( s )=  v l t )  A f > g: analogous to 1)

3) p(s) = v l t )  A f=g A T(f) = mul A {s1,...,8m} PR  { t1, . . . , t . } :  While
comparing the two multisets, each s;, 1 <1: < m ,  will have to be compared with
each t ; ,  1 < j  <n ,  i n  the worst case. This wil l  take at most

EEUsl 1650) < Edad+1)- Z061+1D = ( s l +m=1) (ltl +n -1)
i=1 j =

Comparisons.

4) p(s) = v l t )  A f =g  A 7 ( f )  mul  A (S1 , . . . , 5m)  =)  ( t1 , . . . , t , ) :  Then at
most

min {m,n }  m in {m ,n }  m in {m ,n

X Usil l t )  <x  ( s+ )  2 ( l +1 )  =

(|s| + min {m,n }  — 1) - (Jt| + min {m,n }  — 1)

comparisons have to be  done. 0

Lemma 4 .3  Given two terms s , t ,  a precedence > and a status function 7 ,  s>xnsst
can be determined in time O(|s|®- |t|°).

Proof: This upper bound will be proved similarly to that of lemma 4.1. In order to
compare s and t w.r.t. KNSs, all paths of  s and ¢ must be compared w.r.t. > rx .  Thus,
the time for comparing s and t w . r . t .  KNSS is not greater than

O(|Pos*(s)| - |Pos*(t)| - TLK(P,  Q))

where P (Q) is the maximal path of s (t) and TLK provides the time for comparing
two paths w.r.t. >rx .  We wil l  prove that TLK( [uy ; . . . ;um] ,  [v1; . . . ;0 . ] )  = O(m -
n - |Pos*(uy)| - |Pos*(v1)|) holds, which implies the time for comparing s and ¢ w.r.t.
KNss to be

O(|Pos™(s)| - |Pos*(t)| - lIsl} - l|t]] - {Pos*(s)]| - |Pos(2)])

which concludes the proof since (|u| < |u| and [Pos*(u)| < |u] for all terms u.
It remains to be proved that two paths P = [u ; ; . . . ;un]  and Q = [v ı ; . . . ;  vn] can be
compared in  time TLK(P,Q) = O(m-n-|Pos*(u1)|:|Pos*(v,)|). Assume that all  paths
of the proper subterms of u,  have been compared with all paths of the proper subterms
of v; .  Let A be a 4-dimensional array in which the results are stored: A(p,i ,q,  k)

9



provides the result of comparing Path;(ul p ) with Pathk(vl q ) such that p =I A =I q. 
PCOMP(P, Q) denotes the additional time required to compare P and Q under these 
assumptions. 

For any term v in Q, we can determine in time O(IPos*(u)I' IPos*(1')1) whether there 
exists a term u in P that covers it: 

The equivalence of the leading operators of u and v of which the status is 
of type multiset presents the worst case. Then the following observations 
lead to the complexity stated above: 

•	 The comparison of Sub(P, u) and Sub(Q, v) w.r.t. 'rLK needs a time 
of O(1) by using the array A. 

•	 In order to compare the multisets Path(Args(u)) and Path(Args(v)) 
w.r.t. 'rr/!, IPos*(u)I'IPos*(v)1 comparisons must be done (by using 
the array A) since IPath(Args(t))1 = IPath( {t})1 = IPos*(t)1 holds 
for all terms t. 

•	 The comparison of Sup(P,u) and Sup(Q,v) is redundant if the com
monsuffix of the paths (P and Q) has been removed. 

Therefore, PCOMpep, Q) = O(IPos*(udl'IPos*(vdD because Ut (vd is the greatest 
term w.r.t. 1.1 of P (Q). Note that P (Q) contains m (n) terms. Thus, m·n comparisons 
are necessary in the worst case, and each of these is bounded by PCOMpep, Q). This 
concludes the proof: TLK(P, Q) = O(m· n . IPos*(Ut)I'IPos*(vtll)· 0 

Lemma 4.4 Given two terms s, t, a precedence 'r and a status function T, s'rPSDst 
can be determined in time O(Isl4 ·ltJ4). 

Proof: This upper bound will be proved similarly to lemma 4.1. In order to compare 
s and t w.r.t. PSDS, all path-decompositions must be compared w.r.t. 'rLP'. Thus, 
the time for comparing sand t w.r.t. PSDS is not greater than 

O(IPos*(s)I·llsll·IPos*(t)I·lltll· TLP(s, t)) 

where TLP provides the time for comparing two terms w.r.t. 'rLP. We will prove that 
TLP(u, v) = O(IPos*(u)I' Ilull' IPos*(v)', liviD holds, which implies the time for 
comparing sand t w.r.t. PSDS to be 

O(IPos*(sW ·llsW ·\PoS*(t)\2 ·lltW) 

which concludes the proof since Ilull :5 lul and IPos*(u)1 :5 lul for all terms u. 
It remains to be proved that two terms u and v can be compared w.r.t. 'rLP in time 
TLP(u, v) = O(IPos*(u)I·lIull·IPos*(v)I·lIvll). Assume that all proper subterms of 
u have already been compared w.r.t. 'r LP with all proper subterms of v. Assume in 
addition that the results are stored. in a 2-dimensional array A that can be accessed 

10
 

provides the result of comparing Path;(u|,) with Path i (v | , )  such that p # A # q.
PCOMP(P,Q)  denotes the additional time required to compare P and Q under these
assumptions.
For any term v in  Q ,  we  can determine i n  t ime  O( |Pos * (u ) | -  [Pos * ( v ) | )  whether there
exists a term u in  P that covers i t :

The equivalence of the leading operators of u and v of which the status is
of type multiset presents the worst case. Then the following observations
lead to the complexity stated above:

e The comparison of Sub(P,u) and Sub(@,v) w.r.t. >px needs a time
of O(1) by using the array A.

e In  order to compare the mult isets Pa th (Args(u ) )  and Path(Args(v))
w. r . t .  =T%, |Pos * (u ) | - |Pos * ( v ) |  comparisons must be  done (by using
the array A)  since |Path(Args(t))| = |Path({t})| = |Pos*(t)| holds
for all terms t.

e The comparison of Sup(P ,u )  and Sup(Q,  v )  is  redundant i f  the com-
mon suffix of the paths (P  and Q) has been removed.

Therefore, PCOMP(P,Q) = O(|Pos*(uy)|-|Pos*(v1)|) because u;  (v1) is the greatest
term w.r.t. |.|  of P (Q). Note that P (Q)  contains m (n)  terms. Thus, m -n  comparisons
are necessary in  the worst case, and each of these is bounded by PCOMP(P,Q) .  This
concludes the proof: TLK(P,Q) = O(m - n - |Pos*(u;)| - |Pos*(v1)])- D

Lemma 4.4 Given two terms s , t ,  a precedence > and a status function T ,  s>psps t .

can be determined in time O(]s|* - |t]?).

Proof: This upper bound will be proved similarly to lemma 4.1. In order to compare
s and t w.r.t .  Psps, all path-decompositions must be compared w.r.t. 7%.  Thus,
the time for comparing s and t w.r.t. PSDS is not greater than

O([Pos™(s)| - Isl]  - [Pos*(¢)] - [1611 - TLP(s,2))

where TLP provides the time for comparing two terms w.r.t. > p .  We will prove that
TLP(u,v) = O(|Pos*(u)| - ||u]] - |Pos*(v)| - ||v||) holds, which implies the time for
comparing s and t w . r . t .  PSDS to be

O([Pos*(s)|* - |[s]|* - [Pos*(£)]* - 11411°)

which concludes the proof since ||u|| < |u| and [Pos*(u)| < |u| for all terms u .
It remains to be proved that two terms u and v can be compared w.r.t. >rp in time
TLP(u,v) = O(|Pos*(u)|- |{ul|- [Pos*(v)|- ||v||). Assume that all proper subterms of
u have already been compared w.r.t. >pp with all proper subterms of v. Assume in
addition that the results are storedin a 2-dimensional array A that can be accessed

10



easily: A(p, q) contains the result of the comparison of u/p and vl q (with p f. A f. q) 
w.r.t. 'r-LP. TCOMP(u,v) denotes the additional time required to compare u and 
v under these assumptions. A straightforward 2-pass algorithm can decide in time 
O(IPos*(u)I·I/ull·IPos*(v)/·llvID whether u 'r-LP v: In the pt pass, it i::: checked whether 
Head(u) 'r- Head(v). The 2nd pass uses the array A for comparing the decompositions 
of the arguments of u and v (while Head(u) = Head(v». If r(Head(u» = mul, then 
at most IPos*( u) l'IPos*( v) I path-decompositions must be compared. Since each path
decomposition of a subterm of u (v) contains at most lIull (1Ivll) terms, the upper 
bound stated above is correct. 0 

Lemma 4.5 Given two terms s, t and a precedence 'r-, s 'r-pso t can be determined in 
time 0(ls/3 . ItJ3). 

Proof: This upper bound will be proved similarly to lemma 4.3. In order to compare 
sand t w.r.t. Pso, all paths of sand t must be compared w.r.t. 'r-po. Thus, the time 
for comparing sand t w.r.t. Pso is not greater than 

O(/Pos*(s)I·IPos*(t)/. TPO(P, Q» 

where P (Q) is the maximal path of s (t) and TPO([ut; ... ; urn], [Vt; ... ; vn)) 
O(m· n ·/'Pos*(udl'IPos*(vdl) provides the time for comparing two paths w.r.t. 'r-po. 
This concludes the proof (see the pt part of the proof of lemma 4.3). 

It remains to be proved that two paths P = [Ut; ... ; urn] and Q = [Vt; ... ; vn] can be 
compared in time TPO(P, Q) '= O(m·n·IPos*(udl·IPos*(vt)l). Assume that all paths 
of the proper subterms of Ut have been compared with all paths of the proper subterms 
of Vt. Let A be a 4-dimensional array in which ,the results are stored: A(p, i, q, k) 
provides the result of comparing Pathi(ul p ) with Pathk(vl q ) such that p f. A f. q. 
PCOMpep, Q) denotes the additional time required to compare P and Q under these 
assumptions. 

For any term v in Q, we can find out whether there exists a term u in P that covers 
it in time O(IPos*(u)I'IPqs*(v)l) by a straightforward 2-pass algorithm: In the 1st 

pass, it is checked whether there is a term u in P such that 1iead(u) 'r- 1iead(v); if 
none exists, then in the 2nd pass, we check whether 1iead(u) = 1iead(v) in which case 
the array A is used to compare the paths of the arguments of u and v. It is obvious 
that IPath(Args(t» I = IPath( {t})/ = IPos*(t)! holds for all terms t. Therefore, 
PCOMP(P,Q) = O(IPos*(udl'IPos*(vdl) since Ut (vd is the greatest term w.r.t. 
1.1 of P (Q). Note that P (Q) contains m (n) terms. Thus, m· n comparisons are 
necessary in the worst case, and each of these is bounded by PCOMpep, Q). This 
concludes the proof: TPO(P,Q) = O(m· n . l'Pos*(ut)I'IPos*(vt)l). 0 

Lemma 4.6 ([Krishnamoorthy and Narendran, 1985]) Given two terms s, t and 
a precedence 'r-, S'r-Rpot can be determined in time O(ls/·ltl). 

In [Snyder, 1993], it has been shown that although the straightforward implementation 
of the recursive definition of the Rpos can result in exponential behaviour in the general 

11
 

easily: A(p , q) contains the  result  of  the comparison of  u l ,  and v l ,  (wi th p # A # q)
w.r.t. r p .  TCOMP(u ,v )  denotes the additional time required to compare u and
v under these assumptions. A straightforward 2-pass algorithm can decide in time
O(|Pos*(u)|-||u||-|Pos*(v)|-||v|]) whether u r p  v: In  the 1 *  pass, i t  is checked whether
Head(u) > Head(v ) .  The 2™® pass uses the array A for comparing the decompositions
of the arguments of u and v (while Head(u) = Head(v)). If 1(Head(u)) = mul,  then
at most |Pos * (u ) | - |Pos * ( v ) |  path-decompositions must be  compared. Since each path-
decomposition of  a subterm of  u ( v )  contains at  most | | u | |  ( ] | v | | )  terms, the upper
bound stated above is correct. 0

Lemma 4 .5  Given two terms s , t  and a precedence > ,  s>pso t  can be determined in
time O(|s|® - |t]°)-

Proof: This upper bound will be proved similarly to lemma 4.3. In order to compare
s and t w.r . t .  PsoO, all paths of  s and t must be  compared w.r . t .  >po.  Thus, the t ime
for comparing s and ¢ w.r . t .  PSO is not greater than

O(|Pos*(s)| - |Pos*(t}| - TPO(P,  Q))

where P (Q) is the maximal path of s (t) and TPO( [us ; . . . ;um], [vı;...;Un]) =
O(m  -n-|Pos*(uy)|-|Pos*(v1)|) provides the time for comparing two paths w.r.t. > po .

This concludes the proof (see the 1 *  part of the proof of lemma 4.3).

It remains to be proved that two paths P = [u3;.. . ;  um] and Q = [vı;...; vn]  can be
compared in  time TPO(P,Q) = O(m-n-|Pos*(u1)|:-|Pos*(v1)]|). Assume that all  paths
of the proper subterms of u;  have been compared with all  paths of the proper subterms
of v ; .  Let A be a 4-dimensional array in  which the results are stored: A (p , i , q , k )
provides the result of comparing Pathi(u|,) with Pathi(v|,) such that p # A # gq.
PCOMP(P,Q) denotes the additional time required to compare P and @ under these
assumptions.

For any term v in Q ,  we can find out whether there exists a term u in P that covers
it in time O(|Pos*(u)| - [Pos*(v)|) by a straightforward 2-pass algorithm: In the 1%
pass, i t  is checked whether there is a term u in P such that Head(u) > Head(v); if
none exists, then in the 2"® pass, we check whether Head(u) = Head(v) in which case
the array A is used to compare the paths of the arguments of u and v. It is obvious
that |Path(Args(t))| = |Path({t})] = [Pos*(t)| holds for all terms t. Therefore,
PCOMP(P,Q) = O(|Pos*(u1)|: |Pos*(v1)]) since u,  (v;) is the greatest term w.r.t.
|.) o f  P (Q ) .  Note that P (Q )  contains m (n)  terms. Thus, m - n comparisons are
necessary in the worst case, and each of these is bounded by PCOMP(P,Q). This
concludes the proof: TPO(P,Q) = O(m - n - |Pos*(u1)| - |Pos*(v1)|). |

Lemma 4.6 ([Krishnamoorthy and Narendran, 1985]) Given two terms s , t  and
a precedence > ,  s>Rppot can be determined in time O(|s| - | t |).

In [Snyder, 1993], it  has been shown that although the straightforward implementation
of the recursive definition of the RPOS can result in  exponential behaviour in  the general

11



case, it is possible to compare two ground terms w.r.t. the Rpos with total precedences 
in O(n . 19n), where n is the combined size of the two terms to be compared. The 
algorithm is based on the following concepts: (i) sorting the set of all subterms of 
the two terms to be compared, (ii) using a priority queue to order the subterms (i.e. 
doing a Heap sort) and (iii) proceeding bottom-up to insert the subterms into the 
queue. Unfortunately, this approach probably cannot be generalized for comparing 
non-ground terms with the Rpos based on non-total precedences. 

References 

[Avenhaus et al., 1989] Jurgen Avenhaus, Klaus E. Madlener, and Joachim Steinbach. 
COMTES - An experimental environment for the completion of term rewriting sys
tems. In N. Dershowitz, editor, Proc. 3rd RTA (LNCS 355), pages 542-546, Chapel 
Hill (North Carolina), April 1989. 

[BenCherifa and Lescanne, 1987] Ahlem BenCherifa and Pierre Lescanne. Termina
tion of rewriting systems by polynomial interpretations and its implementation. SCP, 
9(2):137-160, October 1987. 

[Dershowitz, 1982] Nachum Dershowitz. Orderings for term rewriting systems. JTCS, 
17(3):279-301, March '1982. 

[Dershowitz, 1987] Nachum Dershowitz. Termination of rewriting. JSC, 3:69-116, 
February/ April 1987. see also Corrigendum - Termination of rewriting (JSC 4:409
410, 1987) and 1st RTA, volume 202 of LNCS, pages 180-224, Dijon (France), May 
1985. 

[Huet and Oppen, 1979] Gerard Huet and Derek C. Oppen. Equations and rewrite 
rules: A survey. In R. Book, editor, Symposium on Formal Language Theory, pages 
349-405, Santa Barbara (California), December 1979. Academic Press. 

[Jouannaud et al., 1982] Jean-Pierre Jouannaud, Pierre Lescanne, and Fernand 
Reinig. Recursive decomposition ordering. In D. Bjl/Srner, editor, Working Con
ference on Formal Description of Programming Concepts II (IFIP), pages 331-348, 
Garmisch-Partenkirchen (Germany), 1982. 

[Kamin and Levy, 1980] Sam Kamin and Jean-Jacques Levy. Attempts for generalizing 
the recursive path orderings. Urbana (Illinois), February 1980. 

[Kapur et al., 1985] Deepak Kapur, Paliath Narendran, and G. Sivakumar. A path 
ordering for proving termination of term rewriting systems. In H. Ehrig, editor, 10th 
CAAP, volume 185 of LNCS, pages'173-187, Berlin (Germany), March 1985. 

[Knuth and Bendix, 1967] Donald E. Knuth and Peter B. Bendix. Simple word prob
lems in 'universal algebras. In J. Leech, editor, Conference on Computational Prob
lems in Abstract Algebra, pages 263-297, Oxford (England), August/September 
1967. Pergamon Press. 

12 

case, i t  is  possible to  compare two ground terms w.r . t .  the  RPOS with total  precedences
in  O(n  - I gn ) ,  where n is the combined size of  the two terms to be compared. The
algorithm is  based on  the following concepts: ( i )  sort ing the set of  all subterms of
the  two terms to be  compared, ( i i )  using a priori ty queue to order the subterms ( i .e .
doing a Heap sort) and (i i i )  proceeding bottom-up to insert the subterms into the
queue. Unfortunately, this approach probably cannot be generalized for comparing
non-ground terms with the RPOS based on non-tfotal precedences.

References

[Avenhaus et al., 1989] Jürgen Avenhaus, Klaus E.  Madlener, and Joachim Steinbach.
COMTES - An  experimental environment for the completion of term rewriting sys-
tems. In N .  Dershowitz, editor, Proc. 3rd RTA (LNCS 355), pages 542-546, Chapel
Hill  (North Carolina), April 1989.

[BenCherifa and Lescanne, 1987] Ahlem BenCherifa and Pierre Lescanne. Termina-
tion of rewriting systems by polynomial interpretations and its implementation. SCP,
9(2):137-160, October 1987.

[Dershowitz, 1982] Nachum Dershowitz. Orderings for term rewriting systems. JTCS,
17(3):279-301, March 1982.

[Dershowitz, 1987] Nachum Dershowitz. Termination of rewriting. JSC, 3:69-116,
February/April 1987. see also Corrigendum - Termination of rewriting (JSC 4:409-
410, 1987) and 1st RTA, volume 202 of LNCS, pages 180-224, Dijon (France), May
1985.

[Huet and Oppen, 1979] Gérard Huet and Derek C. Oppen. Equations and rewrite
rules: A survey. In R.  Book, editor, Symposium on Formal Language Theory, pages
349-405, Santa Barbara (California), December 1979. Academic Press.

[Jouannaud et al., 1982] Jean-Pierre Jouannaud, Pierre Lescanne, and Fernand
Reinig. Recursive decomposition ordering. In D.  Bjgrner, editor, Working Con-
ference on Formal Description of  Programming Concepts I I  (IFIP), pages 331-348,
Garmisch-Partenkirchen (Germany),  1982.

[Kamin and Lévy, 1980] Sam Kamin and Jean-Jacques Lévy. Attempts for generalizing
the recursive path orderings. Urbana (Illinois), February 1980.

[Kapur et al., 1985] Deepak Kapur, Paliath Narendran, and G. Sivakumar. A path
ordering for proving termination of  term rewriting systems. In  H .  Ehrig, editor, 10th
CAAP, volume 185 of LNCS, pages 173-187, Berlin (Germany), March 1985.

[Knuth and Bendix, 1967] Donald E.  Knuth and Peter B .  Bendix. Simple word prob-
lems in  universal algebras. In J.  Leech, editor, Conference on Computational Prob-
lems in Abstract Algebra, pages 263-297, Oxford (England), August/September
1967. Pergamon Press.

12



[Krishnamoorthy and Narendran, 1985J M.S. Krishnamoorthy and Paliath Narendran. 
Note on recursive path ordering. JTCS, 40:323-328, 1985. 

[Lankford, 1975J Dallas S. Lankford. Canonical algebraic simplification in computa
tionallogic. Memo ATP~25, U. of Texas, Austin (Texas), May 1975. 

[Lankford, 1979] Dallas S. Lankford. On proving term rewriting systems are noethe
rian. Memo MTP-3, Louisiana Technical U., Dept. of Mathematics, Ruston 
(Louisiana), May 1979. 

[Manna and Ness, 1970] Zohar Manna and Stephen Ness. On the termination of 
Markov algorithms. In 3rd International Conference on System Science, pages 789
792, Honolulu (Hawaii), 1970. 

[Plaisted, 1978] David Alan Plaisted. A recursively defined ordering for proving termi
nation of term rewriting systems. Report UIUCDCS-R-78-943, Dept. of Computer 
Science, U. of Illinois at Urbana-Champaign, Urbana (Illinois), September 1978. 

[Rusinowitch, 1987] Michael Rusinowitch. Path of subterms ordering and recursive de
composition ordering revisited. JSC, 3:117-131, February/ April 1987. also appeared 
in 1st RTA, Dijon (France), pp. 225-240, May 1985. 

[Snyder, 1993] Wayne Snyder. On the complexity of recursive path orderings. IPL, 
46:257-262, July 1993. 

[Steinbach, 1988]- Joachim Steinbach. Term orderings with status. SEKI-Report SR
88-12, Dept. of Computer Science, U. of Kaiserslautern, Kaiserslautern (Germany), 
1988. 

[Steinbach, 1989] Joachim Steinbach. Extensions and comparison of simplification or
derings. In N. Dershowitz, editor, 3rd RTA, volume 355 of LNCS, pages 434-448, 
Chapel Hill (North Carolina), April 1989. 

13
 

[Krishnamoorthy and Narendran, 1985] M.S. Krishnamoorthy and Paliath Narendran.
Note on recursive path ordering. JTCS, 40:323-328, 1985.

[Lankford, 1975] Dallas S. Lankford. Canonical algebraic simplification in computa-
tional logic. Memo ATP-25, U. of Texas, Austin (Texas), May 1975.

[Lankford, 1979] Dallas S. Lankford. On proving term rewriting systems are noethe-
rian. Memo MTP-3, Louisiana Technical U., Dept. of Mathematics, Ruston
(Louisiana), May 1979.

[Manna and Ness, 1970] Zohar Manna and Stephen Ness. On the termination of
Markov algorithms. In 3rd International Conference on System Science, pages 789-
792, Honolulu (Hawaii), 1970.

[Plaisted, 1978] David Alan Plaisted. A recursively defined ordering for proving termi-
nation of term rewriting systems. Report UITUCDCS-R-78-943, Dept. of Computer
Science, U .  of Illinois at Urbana-Champaign, Urbana (Illinois), September 1978.

[Rusinowitch, 1987] Michael Rusinowitch. Path of subterms ordering and recursive de-
composition ordering revisited. JSC, 3:117-131, February /April 1987. also appeared
in  1st RTA, Dijon (France), pp. 225-240, May 1985.

(Snyder, 1993] Wayne Snyder. On  the complexity of  recursive path orderings. IPL,
46:257-262, July 1993.

[Steinbach, 1988] Joachim Steinbach. Term orderings with status. SEKI-Report SR-
88-12, Dept. of Computer Science, U.  of Kaiserslautern, Kaiserslautern (Germany),
1988.

[Steinbach, 1989] Joachim Steinbach. Extensions and comparison of simplification or-
derings. In N .  Dershowitz, editor, 3rd RTA, volume 355 of LNCS, pages 434-448,
Chapel Hill  (North Carolina), April 1989.

13


