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Abstract 

The introduction of sorts to first-order automated deduction has brought 
greater conciseness of representation and a considerable gain in efficiency by 
reducing the search space. It is therefore promising to treat sorts in higher 
order theorem proving as well. 

In this paper we present a generalization of Huet's Constrained Resolution 
to an order-sorted type theory LT with term declarations. This system builds 
certain ta.xonomic axioms into the unification and conducts reasoning with 
them in a controlled way. We make this notion precise by giving a relativization 
operator that totally and faithfully encodes LT into simple type theory. 
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1 Introduction 

In the quest for calculi best suited for automating logic on computers, the intro
duction of sorts has been one of the most important contributions. Sort techniques 
consist in syntactically distinguishing between objects of different classes and then. 
assigning sorts (specifying the membership in some class) to objects and restrict 
the range of variables to particular sorts. Since a good. part of the set membership 
and subset information can be coded into the sorted signature, sorted logics lead 
a more concise representation of problems and proofs than the un-sorted variants. 

The exploitation of this information during proof search, can dramatically reduce the 
search space associated with theorem-proving and hence the resulting sorted calculi 
are much more efficient for deduction purposes. In the context of first-order logic sort 
information has been successfully employed by A. Oberschelp [19], C. Walther [26], 
M. Schmidt-SchauB [22], A. G. Cohn [8], and others. 

On the other hand there is an increasing interest in deduction systems for higher
order logic, since many problems in mathematics are inherently higher order. Current 
automated deduction systems for higher-order logic like TPS [4] are rather weak on 
the first-order fragment. 

The question about the behavior of higher-order logic under the constraints of 
a full order-sorted type structure is a natural one to ask, in particular since calculi 
in this system promise the development of more powerful deduction systems for 
real mathematics. G. Huet proposed the study of a simple version of order-sorted 
type theoryl in an appendix to [9]. The unification problem in extensions of this 

system have since been studied by Nipkow and Qian (18J and Pfenning and the 
author [16]. Furthermore typed A-calculi with order-sorted type structures have been 
of interest in the programming language community as a theoretical basis for object
oriented programming and for more expressive formalisms for higher-order algebraic 
specifications [21, 6, 5, 20]. We will use the term "type theory" for the simply typed 
A-calculus with logical axioms just as Church did in his original paper [7]. 

In [14] we have proposed a rich system 'ET of order-sorted type theory with term 
declarations and order-sorted function universes, for which we presented unification 
and pre-unification algorithms. In this paper we present a corrected system and 
complete the enterprise of building order-sorted higher-order deduction systems by 
presenting a resolution calculus for 'ET that uses the unification and pre-unification 
algorithms from [14] as a basis. For details and proofs we refer the reader to [15] 
and [10], where we treat a subsystem. 

In the following we will shortly motivate the primary features of 'ET. In unsorted 
, logics the only way to express the knowledge that an object is a member of a certain 

1 However Huet only allows order-sorting the universe of individuals 
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2 2 ORDER-SORTED TYPE THEORY 

class of objects is through the use of unary predicates, such as the predicate S)l_o, in 
the formulae (SJ12 t ), i.e. "2 is a natural number", or -,(SJ1Peter.), i.e. "Peter is not a 
natural number". This leads to a multitude of unit clauses (6 t _ o A) in the deduction 
that only carry the sort information for A. Since quantification is unrestricted in 
unsorted logics, the restricted quantification has to be simulated by formulae like 
VX t(SJ1Xt) =? (2:t-t-O XtOt). This approach is unsatisfactory because inter alia the 
derivation of the non-sensical f0ITIl:ula (SJ1Peter) =? (2: Peter 0) is permitted, even 
though (;::: Peter 0) can never be derived because of -'(SJ1Peter). 

In type theory the idea of associating sort information is all the more natural, 
as all objects are already typed, which amounts to a - very coarse - division of the 
universe into classes of the same type. The simple type system is merely refined by 
considering the sort symbols as additional base type symbols, so that, for example, 
the last formula above would read VX'J1.(2:'J1-'J1_o X'J10()1). Sorting the universe of 
individuals gives rise to new classes of functions, namely functions the domains and 
codomains of which are just the sorts. In addition to this essentially first-order way 
of sorting the function universes, the classes of functions defined by domains and 
codomains can be further divided into subclasses, since functions are explicit objects 
of type theory. This possibilities modeled by sort symbols of functional type, i.e. 
base sort symbols that denote classes of functions. 

In r.T we relax the implicit condition that only the sorts of constants and variables 
can be declared, and allow declaration of the form [V[X1 :: 2[1], ... , [xn :: 2ln ]A :: 2l] 

called term declarations, where A can be an arbitrary formula of appropriate type. 
Thus we obtain a more expressive system, in which term declarations of the form 
[V(X:: 2t).X::!E] entail that 2l is a subsort of!E, thus giving rise to the name "order
sorted type theory", since the subsort relation induced by these declarations turns 
out to be a partial ordering relation. These subsort declarations induce the intended 
partial ordering on the set of sort symbols by covariance in the codomain sort and 
natural inclusion of the base sorts. The term declarations restrict the class of models 
for the logic, and so the well-formed formulae have to meet certain restrictions to 
denote meaningful objects, that is, formulae have to be well-sorted. For instance, 
for any application (AB) in type theory, there must be sort symbols 2l and !B, such 

that A is of sort 2l, B is of sort !B and !B" is a subsort of the domain sort of 2l. The 
sort of the applicati~n (AB) is defined to be the codomain sort of 2l. 

2 Order-Sorted Type Theory 

\Ve assume the reader to be familiar with the syntax and semantics of simple type 
theory, as presented e.g. in [7, 2]. \Ve will proceed by giving the relevant defini
tions of [14] for the order-sorted type theory r.T, which we have motivated in the 
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that A is of sort A,  B is of sort B and B is a subsort of the domain sort of X. The
sort of the application (AB)  is defined to be the codomain sort of 2L.

2 Order-Sorted Type Theory

We assume the reader to be familiar with the syntax and semantics of simple type
theory, as presented e.g. in  [7, 2]. We will proceed by giving the relevant defini-
tions of [14] for the order-sorted type theory ZT,  which we have motivated in the
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introduction. 

Definition 2.1 (Sort System) A sort system is a quintuple (S,So,t,Zl,r), where 
So is a finite set of symbols, called base sort symbols, which we assume to contain 
the symbol 0 for the sort of truth values but not type symbols 0 and t. like m, ~, 

It, 1:',....We will denote sort symbols by uppercase Gothic letters. The set of sort 
symbols S is the closure So under the function construction that is, ~ -+ m E S, 

whenever m, ~ E S. The functions t, D and r specify the sorts of the codomain, 
domain and the type of a sort symbol. Furthermore we will often use the shorthands 
Dk(m) and tk(m) for the ph domain sort and the k-fold codomain sort of m, which 

we define by 
m ti+l(m) _ t(ti(m)) 

_ m Di+1 (m) D(ti(m)) 

It will be important that the signatures over which our well-sorted terms are 
built "respect function domains," i.e., that for any term A and any sorts m and 
~ of A, the identity Zl(m) = l:l(~) holds. The proof that signatures indeed satisfy 
this property depends on the consistency conditions for valid signatures, given in 
terms of the equivalence relation Rdom, where mRdom~ if either m, ~ E sn j and 
r(ill) = r(~) or t(m)Rdomt(~) and l:l(m) ..:. D(~). 

Next, we will introduce the concept of well-sortedness for well-formed formulae. 
A term A will be well-sorted with respect to a signature :E and a context r, if the 
judgement r h: A :: ill is derivable in the inference system :ET. Here the context 
gives local sort information for the variables, whereas the signature contains sort 
information for term schemata (term declarations). One of the difficulties in devising 
a formal system with term declarations is that the signature needed for defining 
well-sortedness in itself contains terms that have to be well sorted. Therefore we 
need to combine the inference systems for valid signatures I-sig :E and that for well
sortedness into one large system 'f.T. Another difficulty is that we also have to 
treat ,B-7]-conversion r h: A=.t317B in "f,T, since we want ,81]-conversion to be sort 
preserving, because otherwise conversion might increase the sort of a subterm and 
thereby possibly convert a well-sorted term to an ill sorted one. 

Definition 2.2 Let X a be a variable and m a sort symbol, then we call a pair [X:: ill] 
a variable declaration for X, iff rem) = c¥. vVe call a sequence of variable declarations 
a context and write r(X) := ill, iff [X:: ill] is the rightmost declaration for X in r, we 
will often indicate this situation by writing the sort ill in the index of X<J. 

Definition 2.3 (Valid Signatures and ~ell-Sorted Formulae) vVe first present 
the inference system for valid signatures; for this we assume the existence of typed col
lection 'f.T of constant symbols. Now a signature is a set of term declarations (triples 
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Next, we will introduce the concept of well-sortedness for well-formed formulae.
A term A will  be well-sorted with respect to a signature ¥ and a context T, if the
judgement I" Fx A :  is derivable in the inference system ZZ. Here the context
gives local sort information for the variables, whereas the signature contains sort
information for term schemata (term declarations). One of the difficulties in  devising
a formal system with term declarations is that the signature needed for defining
well-sortedness in  itself contains terms that have to be well sorted. Therefore we
need to combine the inference systems for valid signatures Fig X and that for well-
sortedness into one large system £7. Another difficulty is that we also have to
treat Sn-conversion I' Fg A=3,B in ZT ,  since we want Sn-conversion to be sort
preserving, because otherwise conversion might increase the sort of a subterm and
thereby possibly convert a well-sorted term to an ill sorted one.

Definition 2.2 Let X .  be a variable and 2 a sort symbol, then we call a pair [X  :: 2]
a variable declaration for X ,  iff 7(A) = a. We call a sequence of variable declarations
a contezt and write ['(X) : =  2 ,  iff [X  = ]  is the rightmost declaration for X in  I ,  we
will often indicate this situation by  writ ing the sort A in  the index of  Xq.

Definition 2.3 (Valid Signatures and Well-Sorted Formulae) We first present
the inference system for valid signatures; for this we assume the existence of typed col-
lection Z r  of constant symbols. Now a signature is a set of term declarations (triples
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of the form [Vr.A :: 21.]) that obey certain restrictions which are verified by the infer
ence system 'ET given below. The idea of term declarations is that there can be sort 
information within the structure of a term, if the term matches a certain schematic 
term (a term declaration). Consider e.g. the addition function + :: 91 -+ 91 -+ 91 
and +: CC -+ CC -+ <E on the natural numbers SJ1 and the evens CC respectively, then 
the expression (+aa) is an even, even if a is not. This information can be formalized 
by declaring the term (+X<JtX<Jt), to be of sort CC (an even number) using a term 
declaration [V[X :: 91]. + XX :: <E]. 

~sig 0
 
f- sig 'E c rt. 'E c E 'Ea 21. E S 7(21.) = a
 

I-sig 'E, [c :: 21.]
 
r f-~ A :: 21. 'E f- 21.RdomQ3
 

I-sig 'E, [Vr.A:: Q3] 

Theses inference rules allow to add term declarations to valid signatures, if either 
they are the first declarations for new constants, or if the formula A is well-sorted 
and the new sort 21. respects function domains. The last inference rule needs the 
judgement of well-sorted formulae, which we will define next set of inference rules: 

r(x) = 21. [VL\.A ::21.] E 'E I-sig'E L\ ~ r 

r I-~ X :: 21. r h:: A :: 21. 
r I-~ A:: 21. L\ I-~ B :: ()(21.) r, X:: Q3 I-~ A:: 21. 

L\ Ur I-~ (AB) :: t(21.) r I-~ (,XX :: Q3.A) :: Q3 -+ 21. 
r I-~ A :: 21. L\ I-~ B :: Q3 r f-~ A=,87/B L\ ~ r 

r I-~ :ff:: 21. 

For a fixed signature 'E and a context r we say that a formula A is of sort 21., iff 
r I-~ A:: 21. and we denote the set of well-sorted formulae of sort 21. by wsf~cr" r). 

Note that the rules for variables, application and abstraction are the obvious 
generalizations of the corresponding rules for simple type theory. In the setting with 
term declarations we do not need a separate rule for constants, since all constants 
have to be declared in term declarations. 

Now we only have to define the judgements for order-sorted 13"l equality needed 
in the last inference rule. Let r f-~ A=,87/B be the congruence judgement induced by 
the reduction judgement. 

r f-~ A:: 21. r, X:: Q3 I-~ A:: 21. r I-~ B :: 23" 

r I-~ (AX :: ()(21.).AX) -+~ A r I-~ (AX.A)B -+$ [BIX]A 
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of the form [VT.A :: A])  that obey certain restrictions which are verified by the infer-
ence system L7  given below. The idea of term declarations is that there can be sort
information within the structure of a term, if the term matches a certain schematic
term (a term declaration). Consider e.g. the addition function +:N — MN — N
and +:  € — € — € on the natural numbers N and the evens & respectively, then
the expression (+aa) is an even, even if a is not. This information can be formalized
by  declaring the term (+XxXn),  to  be  of  sort € (an even number) using a term
declaration [V[X = ] .  + XX  =: € ] .

Fig 9
F ig 5 c¢X  ce l ,  NES  1A) =a

Fsig 3 ,  [c= 2]
hg  Aud  I + ARdom'B

Fsig 5 ,  [WTA = B]

Theses inference rules allow to add term declarations to valid signatures, if either
they are the first declarations for new constants, or if the formula A is well-sorted
and the new sort A respects function domains. The last inference rule needs the
judgement of well-sorted formulae, which we will define next set of inference rules:

I(X) =2  VAA : 2  eZ  Fig& ACT

The  XA  The  AA
ky  Az  A bs  B =: 9(2l) I ,X : :Bhs  A :

AUT Fg (AB)= v(Q) FFs  (AX :BA) :B—>Q
Th  Az  AF  B=29B TFsA=4B  ACT

IN bs  B :2A

For a fixed signature X and a context I’ we say that a formula A is of  sort  2 ,  iff
Ts  A:  and we denote the set of well-sorted formulae of sort A by wsfy(X,T).

Note that the rules for variables, application and abstraction are the obvious
generalizations of the corresponding rules for simple type theory. In the setting with
term declarations we do not need a separate rule for constants, since all constants
have to be declared in term declarations.

Now we only have to define the judgements for order-sorted Sn equality needed
in  the last inference rule. Let T' Fy A=p,B be the congruence judgement induced by
the reduction judgement.

Ths  Ax  [LX:B lsg Az  t s  BB

Ts  (AX 20(A) .AX)  — A T bs  (AX.A)B — [B/X]A
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In the definition of order-sorted 7]-reduction we have taken care to identify the 
(unique) supporting sort D(2l) of A, since the formula AX :: Q3AX denotes the re
striction of the function A to sort ~, if Q3 is a subsort of D(21.). 

It is easy to see that the judgements defined above respect well-typedness, z.e. 
that the information described by L,T merely refined the type information. In partic
ular sorted ,B7]-conversion is a sub-relation of well-typed conversion and well-sorted 
terms are well-typed. Furthermore, if we only have one base sort per base type, 
then wsf(L" f) is isomorphic to the set of well-typed formulae, therefore L,T is a 

generalization of Q. 

It is an important property of our system, that any valid signature is subterm
closed, that is each subterm of a well-sorted term is again well-sorted. This fact is 
natural, since it does not make sense to allow ill-formed subexpressions in well-formed 
expressions. Now we see why we had to require the term B to be well-sorted in the 
inference rule for well-sorted ,B-reduction, since otherwise cL term B := (AX :: 2Lc)D 
would be well-sorted for arbitrary \vell-typed terms D whenever c is a well-sorted 
constant and then our system would not be subterm-closed any more. 

Definition 2.4 (well-sorted substitution) A substitution a is called a well-sor
ted substitution (L,-substitution) in context f, iff the judgement L, f- a:: f is derivable 
in the following inference system. 

:E f- a :: f f h: A :: 2l 

~ f- 0 :: f :E f- a, [AIX] :: f[X :: 21.], 

In other words, if a := [AilXi] and f( Xi) = 2ti, then f h: Ai:: 2li . The set of 
well-sorted substitutions is denoted by wsSub(f, :E). 

\Ve can show that if f r- k A :: 2l and ~ f- a:: f, then r r- k a(A) :: 21.. Thus ap
plication of well-sorted substitution conserves the property of well-sortedness. Thus 
this notion of well-sorted substitution is the appropriate for our purposes. 

Remark 2.5 (Semantics) vVe adapt the usual set theoretic semantics of simple 
type theory (see e.g. [2]) by allowing universes of partial functions (Vex)exET and 
fixing subsets V'21 .~ V r ('21) for all sort symbols 2l, such that for all functional sorts 
Q3 and all f E V~ is total on Vi)(~) with codomain in Vt(~). We get the appropriate 
class of models (V, T) for :ET by requiring that the homomorphic extension T", of the 
interpretation T maps a formula A into V'J., whenever [A :: 2t] is a term declaration 
and that that T maps ='21 to the identity relation on V'J.' 

~ote that this only describes the intended semantics of :ET, since this semantics 
is extensional we will not be able' to show completeness of our resolution calculus with 

In the definition of order-sorted n-reduction we have taken care to identify the
(unique) supporting sort (2) of  A ,  since the formula AX :BAX  denotes the re-
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terms are well-typed. Furthermore, i f  we only have one base sort per base type,
then wsf(X,T") is isomorphic to the set of well-typed formulae, therefore £7  is a
generalization of Q.

It is an important property of our system, that any valid signature is subterm-
closed, that is each subterm of a well-sorted term is again well-sorted. This fact is
natural, since i t  does not make sense t o  allow ill-formed subexpressions in  well-formed
expressions. Now we see why we had to require the term B to be well-sorted in the
inference rule for well-sorted B-reduction, since otherwise a term B :=  (AX ::2Lc)D
would be well-sorted for arbitrary well-typed terms D whenever c is a well-sorted
constant and then our system would not be subterm-closed any more.

Definition 2.4 (well-sorted substitution) A substitution o is called a well-sor-
ted substitution (L-substitution) in context I ,  iff the judgement X 0 =: T is derivable
in  the following inference system.

Ero l  T res  Ad

EH0 :T  YFo,[A/X]=T[X =9 ,

In other words, if o : =  [A’/X?] and T(X*) = 2 ’ ,  then T bg  A ’ :  The set of
well-sorted substitutions is denoted by wsSub(T, X).

We can show that i f  ' Fg A z% and ¥ F og =T, then I" kg  o (A ) : :  A .  Thus ap-
plication of well-sorted substitution conserves the property of well-sortedness. Thus
this notion of well-sorted substitution is the appropriate for our purposes.

Remark 2.5 (Semantics) We adapt the usual set theoretic semantics of simple
type theory (see e.g. [2]) by allowing universes of partial functions (Da)aer and
f ix ing subsets Da  © D, (q )  for all sort symbols 2 ,  such that for all functional sorts
B and all f € Dy  is total on Dy)  with codomain in  Dy»).  We get the appropriate
class of  models (D,  Z)  for ZT  by  requiring that the homomorphic extension Z,, of the
interpretation Z maps a formula A into Da, whenever [A  = 2] is a term declaration
and that that Z maps =* to the identity relation on Da.

Note that this only describes the intended semantics of ZT ,  since this semantics
is extensional we will not be able t o  show completeness of our  resolution calculus with



6 2 ORDER-SORTED TYPE THEORY 

respect to this class of models. In fact our calculus fails to capture extensionality 
in exactly the same way as the unsorted version, therefore we can only hope for a 
relative completeness theorem like 3.10. 

It is important to our program of developing an order-sorted calculus for higher
order automated theorem proving, that the fundamental operations of the calculus 
do not allow the formation of ill-sorted terms from well-sorted ones. This will ensure 
that our calculus never has to handle ill-sorted terms, even intermediately. In fact 
we can show that if r r-~ A=,s71B, then A and B have the same set of sorts. This 
fact can be used to to show that order-sorted reduction is strongly normalizing and 
all results carry over from the typed case. Termination is a consequence of the fact 
that order-sorted ,87J-reduction is a sub-relation of unsorted ,87J-reduction, which is 
known to be terminating for typed ).-calculi. For the confluence result we need that 
well-sorted functional formulae have unique domain sorts, which is a consequence 
of the fact that if a well-sorted formula A has sorts 2l and Q3, then 2lRdomQ3. In 
fact the formal system ET is designed to capture informal mathematical practice, 
where functions have unique domains associated with them. This fact a posteriori 
justifies our definition of order-sorted 7]-conversion and the Rdom-restrictions in the 
inference rules for valid signatures. 

vVe observe that if r h: X :: Q3 for a context r with r(X) = :: 2l, then V<J1. ~ 

ViJj. This is just the situation that is traditionally captured with the notion of sort 
inclusion in sorted logics and written as r r-~ 2l ~!: Q3, where ~~ is the smallest 
partial ordering that contains the subsort declarations, i.e. term declarations of the 
form [\IX :: 2l.X :: Q3]. In our system ET we do not have to take sort inclusion as 
primitive, since this judgement is derivable in ET. 

Definition 2.6 (Sort Inclusion) Term declarations of the forms [\I[X :: 2l).X :: Q3) 
are called subsort declarations and are abbreviated by [2l ~!: Q3). 

L. \'[\IX:: 2l.X :: Q3) E E r-si.,. "E,"/ I SIg <-Jo 

Er-Q3~2l Er-2l~2l 

Er-2l~Q3 Br-Q3~Q: 

Lr-2l~Q: 

B r- 2l ~ D(2l) -7 r(2l) 

The first set of inference rules extend the declarations to a p~rtial ordering relation, 
whereas the last two rules propagate subsort information to function sorts by '"nat
ural inclusion of function sorts" and ;:covariance in the codomain sort". Since our 
signatures respect function domains the widely studied propagation schema [18, 16J 

6 2 ORDER-SORTED TYPE THEORY

respect to this class of models. In fact our calculus fails to capture extensionality
in  exactly the same way as the unsorted version, therefore we can only hope for a
relative completeness theorem like 3.10.

It is important to our program of developing an order-sorted calculus for higher-
order automated theorem proving, that the fundamental operations of the calculus
do not allow the formation of ill-sorted terms from well-sorted ones. This will ensure
that our calculus never has to handle ill-sorted terms, even intermediately. In fact
we can show that i f  I' Fg A=g,B,  then A and B have the same set of sorts. This
fact can be used to  to  show that order-sorted reduction is strongly normalizing and
all results carry over from the typed case. Termination is a consequence of  the fact
that order-sorted An-reduction is a sub-relation of unsorted Bn-reduction, which is
known to be terminating for typed A-calculi. For the confluence result we need that
well-sorted functional formulae have unique domain sorts, which is a consequence
of the fact that if  a well-sorted formula A has sorts A and 3 ,  then 2RdomB. In
fact the formal system ¥7  is designed to capture informal mathematical practice,
where functions have unique domains associated with them. This fact a posteriori
justifies our definition of order-sorted n-conversion and the Rdom-restrictions in the
inference rules for valid signatures.

We observe that if I' Fg  X :  for a context I" with I'(X) = =%, then Da  ©
Dg. This is just the situation that is traditionally captured with the notion of sort
inclusion in sorted logics and written as I' Fy  X <5  9B, where <x  is the smallest
partial ordering that contains the subsort declarations, i.e. term declarations of the
form [VX =2LX = ] .  In  our system £7  we  do  not have t o  take sort inclusion as
primitive, since this judgement is derivable in ZT.

Definition 2.6 (Sort Inclusion) Term declarations of the forms [V[X= AX  = DI
are called subsort declarations and are abbreviated by [A <z  B].

VX 2X  BEN Fig 3 Fsig ©

TFB<A TRALA
TFALB IFB<LCE

TFALC
Fsig Z TFA B

TFA LA) — (2A) SFEC-A<EC—B

The first set of inference rules extend the declarations to a partial ordering relation,
whereas the last two rules propagate subsort information to  function sorts by “nat-
ural inclusion of function sorts” and “covariance in the codomain sort”. Since our
signatures respect function domains the widely studied propagation schema [18, 16]
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of "contravariance in the domain sort" cannot be a admissible in our system. We do 
not need this rule, which semantically corresponds to function restriction, since we 
can treat that explicitly as we have argued in the context of TJ-conversion. 

The subsort judgement interacts with well-sorted formulae by the traditional 
weakening rule, which allows to weaken the sort information. 

r h: A :: 2l ~ r- 2l :::; ~ 

rh: A ::~ 

"Ve can show that [X :: 2l] E r h:: X ::~, if ~ r- 2l :::; ~, and therefore the 
above inference rules for the subsort judgement are admissible in ~T. Thus we have 
recovered the mechanism for subsorting from the mechanism of term declarations. 

Example 2.7 Let ~ be a higher-order signature with So := {91, It, 1>, ~o} where 
the intended meaning 91 is the set of real numbers, <!: continuous functions, 1>: 
differentiable functions and s,p-: polynomials. Therefore the types are r(91) = [" 
r(<!) = r(1)) = r(~) = [, -;. [, and t(<!) = l:l(<!) = 91, .... In this example we \vant to 
model a taxonomy for elementary calculus, so let I; be the set containing the subsort 
declarations [V[X:: <!.X :: 1>], [V[X:: 1>]X :: ~], and the term declarations 

for polynomials and furthermore [8:: 1> -+ i], [8:: ~ -+ ~] for the differentiation op
erator 8, then I; is a valid signature. "Ve can see that we have coded a great deal 
of of information about polynomials and differentiation into the term declarations of 
I;, that can be used in the unification during proof search in our resolution calculus. 
For instance we can check (up to arithmet~c) that any real polynomial is indeed of 
sort s,p-. 

3 A Resolution Calculus for LT 

In this section we will present a variant of Huet's Constrained Resolution calculus [9] 
and prove it correct and complete relative t9 a Hilbert-style calculus '!. 

General Assumption 3.1 (Sorted Logical Constants) For a Resolution calcu
lus \ve have to assume declarations for the logical constants in the signature. Thus 
we always assume that our signatures contain the declarations for conjunction and 
negation [/\ :: 0 -+ 0 -+ 0], ...., :: -;. 0 -+ 0] and the quantification constants [Ir2l :: (21 -;. 
0) -+ 0] for all 2l E S. "Ve assume all other logical constants to be defined from these 
in the usual way. 

of “contravariance in the domain sort” cannot be a admissible in  our system. We do
not need this rule, which semantically corresponds to  function restriction, since we
can treat that explicitly as we have argued in  the context of n-conversion.

The subsort judgement interacts with well-sorted formulae by the traditional
weakening rule, which allows to weaken the sort information.

Th  Az  TFA<LB

TFs  A :

We can show that [X =A] € T Fg X :B ,  if ZF U < B ,  and therefore the
above inference rules for the subsort judgement are admissible in £7.  Thus we have
recovered the mechanism for subsorting from the mechanism of term declarations.

Example 2.7 Let X be a higher-order signature with Sp :=  {X}, €, D, Bo}  where
the intended meaning X is the set of real numbers, €: continuous functions, D :
differentiable functions and PB: polynomials. Therefore the types are 7(R) = ı,
7(€) =7 (D )  =7 (P )  = ¢ — ¢ and (CE) = (€)  =R , . . . .  In this example we want to
model a taxonomy for elementary calculus, so let X be the set containing the subsort
declarations [V[X = €X  =D], [V[X =D].X =P], and the term declarations

[AXnX =P], [A XnYn 2B], Ma  + (FpX)(GpX) =P), [A Xn.  * (FpX)(GpX) =P]

for polynomials and furthermore [0 :®  — €], [0 = — ‘B] for the differentiation op-
erator 0, then ¥ is a valid signature. We can see that we have coded a great deal
of of information about polynomials and differentiation into the term declarations of
X, that can be used in the unification during proof search in our resolution calculus.
For instance we can check (up to arithmetic) that any real polynomial is indeed of.
sort P.

3 A Resolution Calculus for XT

In  this section we will present a variant of Huet’s Constrained Resolution calculus [9]
and prove i t  correct and complete relative to a Hilbert-style calculus ¥.

General Assumption 3.1 (Sorted Logical Constants) For a Resolution calcu-
lus we have to assume declarations for the logical constants in the signature. Thus
we always assume that our signatures contain the declarations for conjunction and
negation [A : 0 — 0 — 0], - : :  — 0 — 0] and the quantification constants [II* : (2A —
0) — o] for all A € S. We assume all other logical constants to be defined from these
i n  the usual way.
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This is a problem at first glance, since this set of declarations is infinite, which is 
not warranted by our definitions. However we can always add the II21-declarations to 
valid signatures, since they are new constants. In any proof situation we only have 
finitely many quantors, so we can always chose the signature sufficiently large to 
contain all necessary declarations, so we can treat the infinite signature as an abbre
viation of all needed subsets. vVe can proceed analogously for the skolem constants' 
needed in the computation of the clause normal form. 

For the semantics we assume that I(I\) and I( -,) always are the conjunction and 
negation relations, whereas I(IIl2l ) is a set that only contains the constant predicate 
in 1)l2l_o that is true on all members of 1)21. Note that this definition, together with 
the traditional convention that VX:: 2LA stands for II l2l (.\X:: 2LA) recovers the usual 
quantification bounded by the sort Ql. 

General Assumption 3.2 vVe furthermore assume that for each Ql E 5, there is 
.a ground formula GQl E wsfl2l('E, f). This will guarantee that sorts are not empty. 
Automated deduction systems based on unification usually work with this implicit 
assumption, since otherwise the calculus becomes unsound: if the sort Ql is empt}· 
the formula [pXl2l] 1\ ...,[pXl2l] is contradictory but not unsatisfiable. 

Note, that it is sufficient to assume a ground formula G Ql for all Ql E 5, if we 
set Gl2l--~ := [.\X :: QlG~]. Therefore each well-sorted formula A E wsfQl('E,r) has a 
\vell-sorted ground instance, that is there exists a 'E-substitution (J E wsSub(r, 'EL 
such that (J( A) is a ground term. In this case the contradiction above really is 
unsatisfiable. 

Definition 3.3 (Equational System) An equational system is a finite set of pairs 
of well-sorted formulae of the form:=: = {(Ai,Bi) I i = 1, ... ,n}. A substitution 
(J E wsSub(f, 'E) is called a 'E-unifier of ?:.pair (A, B), if (J(A) = (J(B) and a L
unifier of 3, iff (J is a L-unifier of all pairs (Ai,B i). We denote the set of L-unifiers 
of =: by wsU(r, 'E, 3). 

A pair (A, B) is in 'E-solved form in an equational system 3, iff A is the the 
variable XQl, which does not occur anywhere else in 3 and f h; B :: Ql, it is called 
L-pre-solved, iff A and B are flexible, i.e. the heads are free variables. Obviously 
a system 3 = {(Xl, A I ) , ... , (xn, An)} in L-solved form, i.e. all of its pairs are in 
:E-solved form corresponds to a well-sorted substitution 0 := [S I /Xl J, ... , [An / xn]. 
"Ve write (0) := 3 and (J=. := () and note that (J=. is the most general 'E-unifier for :=:. 

Definition 3.4 (General Binding) Let [V[y1 :: lt1], ... , [yn:: ltn].B:: 'E] be a term 
declaration in 'E with head(B) = h or let B = h be a variable of sort 'E, then 

G := (.\X1 
••• X/.B/V1 

... V m 
) 

is called a general binding of sort Ql and head h, if 

8 3 A RESOLUTION CALCULUS FOR ZT

This is a problem at first glance, since this set of declarations is infinite, which is
not warranted by our definitions. However we can always add the II%-declarations to
valid signatures, since they are new constants. In any proof situation we only have
finitely many quantors, so we can always chose the signature sufficiently large to
contain all necessary declarations, so we can treat the infinite signature as an abbre-
viation of all needed subsets. We can proceed analogously for the skolem constants
needed in the computation of the clause normal form.

For the semantics we assume that Z(A) and Z(=) always are the conjunction and
negation relations, whereas Z(II?) is a set that only contains the constant predicate
in  Da  that is true on all members of Dy. Note that this definition, together with
the traditional convention that VX  = 2L.A stands for IT*(AX : 2LA) recovers the usual
quantification bounded by the sort 2A.

General Assumption 3.2 We furthermore assume that for each 2 € S,  there is
‚a ground formula G*  € wsfy(Z,I’). This will guarantee that sorts are not empty.
Automated deduction systems based on unification usually work with this implicit
assumption, since otherwise the calculus becomes unsound: if the sort 2 is empty
the formula [pXx] A =[pXg] is contradictory bu t  not unsatisfiable.

Note, that it is sufficient to assume a ground formula G* for all A € S, ifwe
set G*—3:=  [AX: AGP]. Therefore each well-sorted formula A € wsfy(Z,T) has a
well-sorted ground instance, that is there exists a E-substitution oc € wsSub(T, X).
such that o(A)  is a ground term. In this case the contradiction above: really is
unsatisfiable.

Definition 3.3 (Equational  System) An  equational system is a finite set of pairs
of well-sorted formulae of  the form = = {{(A*,B*) | :  = 1 , . . . , n } .  A substitution
o € wsSub(T, ©) is called a X-unifier of a pair (A,B), if 0(A)  = ¢(B) and a X-
unifier o f  = ,  iff ¢ i s  a Z-unifier of  all pairs {A  B f ) .  We  denote the set of  L-unifiers

o f = by wsU(T, L ,  3).
A pair (A ,B )  is in Z-solved formi n  an equational systemZ,  iff A is the the

variable Xy ,  which does not occur anywhere elsein  = and I" Fx B = 4,  i t  is called
Y-pre-solved, iff A and B are flexible, i.e. the heads are free variables. Obviously
a system = = { (X * ,  A l ) , . . . , (X ” ,  A")  } in Z-solved form, i.e. all of i ts pairs are in
T-solved form corresponds to a well-sorted substitution 8 : =  [S /X? ] , . . . , [A * /X " ] .
We write (0) : =  © and o= :=  0 and note that oz is the most general X-unifier for = .

Definition 3.4 (General Binding) Let [V[Y':¢;] , . . . , [Y"  = €,].B =B] be a term
declaration in  ¥ with head(B) = h or let B = h be a variable of sort B ,  then

G:=(X'.. X 'B 'V l . .  Vm
is called a general binding of sort A and head h, if
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1.	 1= length(2l) and m = 1+ length(r(2l)) -length(r(Q3")) 

3.	 Vi = (HiXI ... X I ), where Hi are fresh variables of sort -o1(2l) -+ '" -ol(2l) -+ 

-oi(Q3"). 

4.	 B' = B if B is a variable or B' == [Wijyi]B where W i = (f{iXI ... Xl), where 
f{i are fresh variables of sort "'(2l) -+ '" -o1(2l) -+ <ri. 

'Here length(2l) stands for the number of arrows in 2l and the term "fresh variables" 
stands variables not in the current context r, but are added to it in the process. 

The general bindings get their importance from the fact that if G is a general bind
ing of sort 2l, then rh::: G:: 2l and for any other formula A of sort 2l there is a 
substitution p, such that p(G)=,6T/A. This fact makes it possible to define a sound 
and complete higher-order unification and pre-unification algorithms 'EUT [15, 13] 

and 'EPT by substituting the well-sorted general bindings for the well-typed ones in 
Huet's unification algorithms [23]. 

Definition 3.5 (Constrained Clause) Let A he an application, constant or vari
able of sort 0, such that head(A) is not one of the logical constants, then A is 
called atomic. Atoms and their negations are together called literals, and finite sets 
of literals are called clauses. 

A	 pair C = Cl I::::, where C is a clause and:=: is an equational system is called a 
constrained clause, and C is called the clause of C and:::: the constraint of C. 

Just as in first-order logic we have that-each set <P of sentences can effectively be 
transformed into a set of clauses ICCNF( <p) that are satisfiable, iff <P is. The only 
difference to the simply typed case is that Skolem constants have to be well-sorted, 
so we have to add term declarations to the current signature. For a discussion of 
soundness of skolemization see 3.8. 

Definition 3.6 (Primitive Substitution) We call a term. P a primitive instance 
of sort 2l := 2l I -+ ... -+ 2ln -+ 0, if P is of the forms 

where HI and H2 are variables of sort 2l and H3 is a variable of sort 2l := ~ -+ 2L 
or if P is a j-projection binding of sort 2L Let P be a variable of sort 2l, then ,ye 

will call the substitution [P j P] a primitive substitution. 

1. I =length(2A) and m = + length(7(2)) — length(7(*B))

2. (BB) < t (A)

3. V i=  (H 'X ' . . .X " ) ,  where H*  are fresh variables of sort HA)  — ...2!/(A) —
?*(B).

4. B'  = B if  B is a variable or B’  = [W*/Y?|B where W* = (K'X'... X!), where
K* are fresh variables of sort 2*(2) — ...0'(2A) — €.

“Here length(2l) stands for the number of arrows in  2 and the term “fresh variables”
stands variables not in the current context I', but are added to i t  in the process.

The general bindings get their importance from the fact that if  G is a general bind-
ing of sort A ,  then I Fy G =% and for any other formula A of sort A there is a
substitution p, such that p(G)=g,A. This fact makes i t  possible to define a sound
and complete higher-order unification and pre-unification algorithms ZUT [15, 13]
and PT  by substituting the well-sorted general bindings for the well-typed ones in
Huet’s unification algorithms [23].

Definition 3.5 (Constrained Clause) Let A be an application, constant or vari-
able of sort 0 ,  such that head(A) is not one of the logical constants, then A is
called atomic. Atoms and their negations are together called literals, and finite sets
of literals are called clauses.

A pair C = C IE ,  where C is a clause and Z is an equational system is called a
constrained clause, and C is called the clause of C and = the constraint of C.

Just as in  first-order logic we have that-each set ® of sentences can effectively be
transformed into a set of clauses ICCNF(®) that are satisfiable, iff ® is. The only
difference to  the simply typed case is that Skolem constants have to be well-sorted,
so we have to add term declarations to the current signature. For a discussion of
soundness of skolemization see 3.8.

Definition 3.6 (Primitive Substitution) We call a term P a primitive instance
of sort A:=A;, —. . . > 2A, — 0 ,  i f  P i s  of the forms

AXE(HX)V (HX) (AXF-(H'X)) (MXEMY = BHXY)

where H !  and H? are variables of sort A and H? is a variable of sort 2 : =  8B — A.
or if  P is a j-projection binding of sort X. Let P be a variable of sort A,  then we
will call the substitution [P /P ]  a primitive substitution.
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Definition 3.7 (1fR,) The 1fR, calculus is a variant of Huet's constrained resolution 
and has the following rules of inference. Let 0 stand for any constrained clause 011B, 
where B is an equational system in pre-solved form. A derivation of 0 from a set C 

of constrained clauses with the inference rules below is called a refutation of C. 

1fR,(Res) 

1fR,(Fac)
{N2 

, ••• , Nn}ll= * (NI, N2
) 

{...,MI, ... ,Mm} liB 
1fR,(Prim)

{M1
, ... , Mm} liB U (P, P) 

{M1
, ... , Mm}113, (0") 

7-CR(Solv)
{CNF(O"(MI) V ... V 0"(Mm))}113, (0") 

CIIB 7-CR('L/PU)
cI13' 

For 7-CR(Prim) we have the proviso that one of the Mi is a flexible literal of the 

form Pc< Uk and P is a primitive instance of sort 2l and in 7-CR(r,PU) the unification 
problem 3' is obtained from 3 by a r,PT transformation. 

The rule 7-CR( S olv) will propagate partial solutions from the constraints to the 
clause part and thus help detect clashes early. Since the substitution may well change 
the propositional structure of the clause by instantiating a predicate variable we have 
to renormalize the clause on the fly. 

::;ote that in contrast to Huet's calculus we use Andrews' primitive substitu
tions [3] instead of splitting rules and that "'we are able to perform unification every
where in the deduction in contrast to only at the end. The rule 7-CR(Solv) will 
propagate partial solutions from the constraints to the clause part and thus help de
tect clashes early. Since the substitution may well change the propositional structure 
of the clause by instantiating a predicate variable we have to renormalize the clause 
on the fly. 

\Ve will call a set <I> of well-formed sentences 7-CR-refutable, iff 0 is derivable 

from the set of constrained clauses CNF(<I»110. Note that 0 denotes falsehood or 
contradiction. so by 3.8 a refutation of a set of sentences <I> proves the unsatisfiability 
of <I>. 

Xaturally a practical implementation of 7-CR would split the set of unification 
transformations in 7-CR(~PU) rule into sets Simpl (trivial, decompose, eliminate-var) 
and Jlatch (imitate, project) and destructively apply the Simpl rules whenever one 

10 3 A RESOLUTION CALCULUS FOR ET

Definition 3.7 (HR) The HR  calculus is a variant of Huet’s constrained resolution
and has the following rules of inference. Let O stand for any constrained clause ( | | ,
where = is an equational system in  pre-solved form. A derivation of O from a set C
of constrained clauses with the inference rules below is called a refutation of C.

bod

(N1, . . . ,N*} | IE  { -M , . . . ,M" } | |A
(NZ, NN", MB,... .M™}|]ZU A * (N! ,  MY) HR (Res)

(N , . . .  N"} | |E
{NZ, . . . ,N" } | |=  * (N*, N?)

{SM l , . . . ,  M7}IIE
{M} , . . . ,M™} | [EU  (PP)

{M} , . . . ,M” } | IE ,  (0)
[CNF(e(M)  V . . .V  o (M" ) )H IS ,  (6)

Cll=
CIE

For HR(Prim) we have the proviso that one of the M ’  is a flexible literal of the
form P,U* and P is a primitive instance of sort 2 and in  HR(ZPU) the unification
problem ='  is obtained from = by a ZPT transformation.

The rule HR(Solv) will  propagate partial solutions from the constraints to the
clause part and thus help detect clashes early. Since the substitution may well change
the propositional structure of the clause by  instantiating a predicate variable we have
to  renormalize the clause on the fly.

HR(Fac)

HR (Prim)

HR (Solv)

HR(ZPU)

Note that in  contrast to Huet’s calculus we use Andrews’ primitive substitu-
tions [3] instead of splitting rules and that we are able to perform unification every-
where in the deduction in  contrast to only at the end. The rule HR(Solv) will
propagate partial solutions from the constraints to  the clause part and thus help de-
tect clashes early. Since the substitution may well change the propositional structure
of the clause by instantiating a predicate variable we have to renormalize the clause
on the fly.

We will call a set ® of well-formed sentences HR-refutable, iff O is derivable
from the set of  constrained clauses CNF(®) | | 8 .  Note that O denotes falsehood or
contradiction. so by  3.8 a refutation of a set of sentences ® proves the unsatisfiability
of ®.

Naturally a practical implementation of HR  would split the set of unification
transformations in  HR(EPU) rule into sets Simpl (trivial, decompose, eliminate-var)
and Watch (imitate, project) and destructively apply the Simpl rules whenever one
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of the nondeterministic Match rules has been applied or the equational system has 
been instantiated. 

Theorem 3.8 (Soundness) The m calculus is sound. 

Proof sketch: It is well known that naive skolemization in higher-order logic is not 
sound. In fact it is possible to prove an instance of the axiom of choice, which is known 
to be independent, in a resolution system with naive skolemization. In his thesis [17] 
Dale Miller gives a sound version of skolemization in the context of expansion trees 
and higher-order matings. The idea is to restrict the unification algorithm, such that 
only formulae can be produced by substitution where the Skolem functions always 
have enough arguments. This method can also be utilized in the resolution context 
and yields a soundness theorem. 0 

Re,mark 3.9 For the relative completeness theorem we consider the Hilbert-style 

calculus X with the usual propositional axioms (Po V p) :::} p, Po :::} (q :::} p), (Po V qo) :::} 
(qVp) and (Po:::} qo):::} .(roVp):::} (rVq), the quantor axioms ITo(oa)Foa :::} FXa and 
ITpXa(Ya V FoaX)) :::} .Y V ITo(oa)F. As rules of inference we have a,81]-conversion, 
the substitution rule, i.e. AXa r.r AB, for any B E wsffJ(''E, f), modus ponens and 
universal generalization. Note that this is a generalization of a subset of the calculus 
in [7], where the notion of well-formed formulae and substitution is simply changed 

. to \vell-sorted. 

Theorem 3.10 (Completeness) m is complete relative to X, in other words} m 
can refute the negation of all X-theorems. 

Proof sketch: To prove completeness of m we proceed along the lines of the 
proofs for completeness of Huet\ unsorted resolution calculus in [9] and redo all ar
guments in the order-sorted setting. In particular we have to generalize the "Unifying 
Principle" for type theory from [1] to "'E,Y. For this enterprise we suitably modify the 
definition of abstract consistency property by requiring well-sorted substitutions for 
the IT quantor and show that all sets <f? of sentences that have an abstract consist
ency property can be extended to higher-order order-sorted Hintikka sets, which are 
closely related to Andrews' semivaluation v. For these we can build a term model 
along the lines of the construction of v-complexes. In order to prove the unifying 
principle which states that is <f? is X-consistent it is now only necessary to verify that 
X is sound with respect to v-complexes. 

The completeness proof for m concludes by verifying that the property of sen
tences not to be m-refutable is an abstract consistency property and therefore X
consistent. Since the negations of X-theorems are X-inconsistent, they must therefore 
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of the nondeterministic Match rules has been applied or the equational system has
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universal generalization. Note that this is a generalization of a subset of the calculus
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definition of abstract consistency property by  requiring well-sorted substitutions for
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closely related to  Andrews’ semivaluation v .  For these we can build a term model
along the lines of the construction of v-complexes. In order to prove the unifying
principle which states that is ® is T-consistent i t  is now only necessary to verify that
T is sound with respect to v-complexes.

The completeness proof for HR  concludes by verifying that the property of sen-
tences not to be HR-refutable is an abstract consistency property and therefore T-
consistent. Since the negations of T-theorems are T-inconsistent, they must therefore
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be 7-O?-refutable. We stress that the completeness of the pre-unification algorithm 
"EFT is a key fact in the verification of the conditions for an abstract consistency 
property. 0 

4 Relativization 

In first-order logic, passing to a sorted signature only enhances the expressive power 
of the system with respect to practical considerations, such as the conciseness of 
representation, the size of search spaces and the like. It does not enhance the ex
pressive power in principle, as the sorted language and model theory can always be 
coded into an unsorted version by the technique of relativization (see the sort the
orems in [25, 22]). However the system loses much of its deductive power in the 
sense of larger search spaces. Relativization in "ET is even more awkward than in 

the first-order case, as order-sorted type theory captures a nontrivial fragment of a 
type theory with partial functions, which would have to be coded into relativization. 

It is noteworthy that, even though we do not require description functions in "ET, 
we need them in our target system for coding partial functions. So in this section 
\ve consider a formulation of simple type theory with description functions as in [7]. 

This system is obtained by adding a logical constant la(oa) for each a E T and the 
aXIOm 

to 'r. Furthermore in the definition of general models we have to specify that the 
value of l is that function that maps singleton sets to their unique member. It is well 
known that in this system we can define conditionals like W aao , such that (wPoAa ) 

is A, iff P is true. 

Definition 4.1 (Relativization) Let "E be a higher-order order-sorted signature. 
"Ve first extend .E by a predicate symbol P~ of type r(2t) -+ 0 for each base sort 
symbol 2t and then define the relativization operator ReI on sort symbols by 

•	 Rel(2t) := P~ if 2t is a nonfunctional base sort symbol, 

•	 Rel(2t) := (.\X"('l)o(P~X) 1\ (Rel(Zl(2t) -+ r(2t))X)), if 2t is a functional base 
sort symbol, and 

•	 Rel(2t -+ ~) := (.\FaoVX1"(Ql).(Rel(2t)X) ~ (Rel(~)(F X))) and a = r(2t) -+ 

r(~). 

ReI acts as the identity on well-sorted terms except that it changes sorts to their 
types on variables and abstractions of the form (AX~oA) are relativized to the formula 
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(AX7"(!B).w(Rel(Q3)X)A). For term declarations we have 

where {xt, ... ,X~,J is the set of free variables of A. Now Rel(~) is just the 
universal closure of the conjunction of all term declarations in ~. 

Example 4.2 Let [2l'~ ~] be a subsort declaration in ~, then 

Rel([2l·~ ~]) = [V[X:: 2t]X::~] = VX7"('J).(Rel(2l)X) =? .Rel(Q3)X) , 

just as in first-order logic, if we keep in mind that w000 is just implication. 

The following theorem shows that the ReI operator is a total and faithful encoding 
of order-sorted type theory into simple type theory. 

Theorem 4.3 (Sort Theorem) Let <i> be a set of sentences, then <i> has a ~-model, 

iJJ Rel( <i» has a ~ U Ps -model that entails Rel(~). 

Example 4.4 vVe will take another look at example 2.7 to compare deduction in 
Y:.T to that in simple type theory from a practical point of view. If ~ is the sorted 
signature defined in 2.7, then Rel(~) is the following set of formulae. So in the 
light of the previous theorem this is the taxonomic information present in the sorted 
signature ~. 

VF,((P:D F ) /\ VY.(Pl/tY) =? (Pl/t(FY))) =? .(Pd8F)) /\ (VY.(Pl/tY) =? (Pl/t(8F)Y)) 
VF.((R~F) /\ VY.(Pl/tY) =? (Pl/t(FY))) => .(P,~(8F)) /\ (VY.(Pl/tY) =? Pl/t(8F)Y) 
R~(.\X.w(Pl/tXX))VY.(P~Y) =? (Pl/t(w(P~X)X)) 

VZ.(Pl/tZ =? P~(.\X.w(PiRXZ))VY.(P9tY))=? (P~(w(PiRX)Z))) 

VF, G.(P~F) =? .(R~G) =? 

R~(.\X.w(P9tX.+ (FX)(GX)))VY.(B:'tY) =? (P9t (w(Pl/tY) + (FY)(GY)))
 
VF, G.(R:jJF) =? ,(p$G) =?
 

R~(AX.w(P9tX. * (FX)(GX)))VY.(P~Y) =? (P9t(w(PiR Y) * (FY)(GY)))
 

This set of axioms would have to be added to the relativization of any well-sorted 
theorem that we want to prove in the relativized form: A further effect that we have 
not illustrated for lack of space is that the unification in the order-sorted setting will 
find out conflicting taxonomic information for proof objects and prevent any inference 
that would yield ill-sorted objects. These objects arise naturally in the relativized 
context but due to Rel(E) can never contribute to any proof. Thus resolution in ET 
gives us the further advantage of cutting off redundant branches in the search space. 
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theorem that we want to prove in the relativized form. A further effect that we have
not illustrated for lack of space is that the unification in  the order-sorted setting will
find out conflicting taxonomic information for proof objects and prevent any inference
that would yield ill-sorted objects. These objects arise naturally in  the relativized
context but due to  Re l (X)  can never contribute to any proof. Thus resolution in ZT
gives us the further advantage of cutting off redundant branches in  the search space.
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5 Conclusion and Further Work 

vVe have presented a generalization of Huet's Constrained Resolution calculus for 
order-sorted type theory and a systematic procedure in which sorted type theory 
can be encoded into the simple type theory of [2]. This shows that in theory all 
theorems of ~T can be proven by coding them into simple type theory and then 
proving them by simply typed constrained resolution. However as example 4.4 shows 
the search spaces involved are so much bigger that order-sorted resolution is of clearly 
practical advantage. In an a posteriori view we can view order-sorted resolution as 
the process of building certain classes of axioms, namely those that correspond to 
term declarations, into the unification. This takes axioms of the form (VXk.p1Xl '* 
... '* pkXk '* (qA)), where the pi and q are predicate constants and Xi are the free 
variables of A, out of the search and treats them algorithmically in the unification 
process. 

On the other hand it is clear that the basic operations like unification are more 

complicated than in the unsorted case, and it is conceivable that with the use of 
term declarations it is possible to encode so much information into the signature 
that sorted deduction systems may in some cases be less efficient than unsorted ones. 

In first-order predicate logic the introduction of term declarations has been a 
major step to the development of dynamic order-sorted logics [27], where variables 
are restricted to sorts, but where the sorts can also be treated as unary predicates 

in the logic, allowing the specification of conditioned term declarations; thus the 
signature is no longer fixed across the deduction, as sort information can appear 
in the deduction process. The resolution rule always uses sorted unification with 

respect to the signature specified by the current state of the proof. Since predicates 
are primary objects of type theory, a generalization of that in [27] may yield very 
powerful calculi for mechanizing mathematics and in particular analysis. Recently 
\Veidenbach's results have been applied by the author in collaboration with Kerber 
to obtain an efficient resolution calculus for first-order logic with partial functions. 
\Ve believe that this result can be generalized to higher-order logic and lead to a very 
natural and powerful logic system for mechanizing informal mathematical practice. 
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