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Abstract. We will answer a question posed in [DJK91], and will show that Huet's completion 
algorithm [Hu81] becomes incomplete, i.e. it may generate a term rewriting system that is not 
confluent, if it is modified in a way that the reduction ordering used for completion can be 
changed during completion provided that the new ordering is compatible with the actual rules. 
In particular, we will show that this problem may not only arise if the modified completion 
algorithm does not terminate: Even if the algorithm terminates without failure, the generated 
finite noetherian term rewriting system may be non-confluent. Most existing implementations 
of the Knuth-Bendix algorithm provide the user with help in choosing a reduction ordering: If 
an unorientable equation is encountered, then the user has many options, especially, the one 
to orient the equation manually. The integration of this feature is based on the widespread 
assumption that, if equations are oriented by hand during completion and the completion 
process terminates with success, then the generated finite system is a maybe nonterminating 
but locally confluent system (see e.g. [KZ89]). Our examples will show that this assumption 
is not true. 
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1 Introduction 

The Knuth-Bendix completion procedure is an important deduction tool for term rewriting 
systems. Given a (finite) set of equations E and a reduction ordering> as input, the Knuth­
Bendix completion procedure tries to generate a complete (confluent and terminating) term 
rewriting system R that presents the same equational theory as E. The basic steps of the com­
pletion procedure are the computation of certain equational consequences and the generation 
of rewrite rules by orienting equations according to the given reduction ordering. Th~ com­
pletion procedure may either terminate with success, i.e. it generates a finite complete term 
rewriting system R equivalent to E, or with failure, or it may not terminate. In the latter case 
it computes successive approximations R o, RI, R 2 , ••• of an infinite complete system R which 
is equivalent to E. If the completion procedure terminates with success, then the generated 
finite complete system R can be used to decide the word problem of E, since then two terms 
are equivalent if and only if their normal forms w.r.t. R are the same. 
Correctness of a specific version of the Knuth-Bendix completion procedure was first proved 
by Huet [Hu81]. In [BDH86] Bachmair et al. introduced a more abstract approach: They 
formalized the notion of completion within the framework of an eql''"I ti 0nal inference system 
and introduced the notion of proof orderings for proving correctness of a completion proce­
dure. Moreover, they proved the correctness of a large class of completion procedures. The 
proof of Huet as well as the one of Bachmair et al. is based essentially on the fact that all 
rules generated during a completion process are oriented according to the same reduction or­
dering >: Huet's proof is based mainly on noetheriap induction using the reduction ordering 
>. Bachmair et al. used a proof ordering that is an extension of > for their proof. 

The requirement to use a fixed reduction ordering during completion guarantees that the 
successively generated systems R o, RI, R 2 , ••• are noetherian. One may wonder if a completion 
procedure remains corr,ect if it is only required that the systems R o,RI, R2' ... are noetherian, 
instead of requiring that the termination of these systems can be proved using the same 
reduction ordering. From a practical point of view this would be a desirable property, since it 
would allow to change the reduction ordering during completion. In general, it is not easy to 
choose an appropriate reduction ordering for a set E of equations. A completion procedure will 
fail if it tries to orient an equation and the corresponding terms are incomparable w.r.t. the 
given reduction ordering. Sometimes failure cannot be avoided, e.g. if E cannot be presented by 
a complete term rewriting system. But even if failure can be avoided, completion may fail. If 
an equation cannot be oriented w.r.t. the given ordering, then in many cases this problem could 
be circumvented by choosing anoth~r ordering. But instead restarting the completion process 
for E with a new reduction ordering, one would prefer to carry out the completion process in an 
incremental fashion, i.e. to continue completion with the new ordering without recomputing 
critical pairs between rules that have been previously considered. Which requirements are 
needed to ensure that completion remains correct under these modifications? Obviously, the 
new ordering should be compatible with the actual term rewriting system in order to guarantee 
that the system is terminating. Is this requirement strong enough to guarantee correctness of 
this procedure? 
In practice, the Knuth-Bendix algorithm is usually used interactively. One reason for human 
interaction is to specify incrementally the reduction ordering during completion, Le. to step­
wise refine the reduction ordering given as input if needed. In current implementations of 
completion ~ased methods, like for example in the system RRL [KZ89], the user cannot only 
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1 Introduct ion

The Knuth-Bendix completion procedure is an important deduction tool for term rewriting
systems. Given a (finite) set of equations £ and a reduction ordering > as input, the Knuth-
Bendix completion procedure tries to generate a complete (confluent and terminating) term
rewriting system R that presents the same equational theory as £ .  The basic steps of  the com-
pletion procedure are the computation of certain equational consequences and the generation
of  rewrite rules by orienting equations according to  the given reduction ordering. The com-
pletion procedure may either terminate wi th success, i.e. i t  generates a finite complete term
rewriting system R equivalent t o  £ ,  or with failure, or i t  may not terminate. In the latter case
i t  computes successive approximations Ro, Ry, R ı , . . .  of an infinite complete system R which
is equivalent to £.  I f  the completion procedure terminates wi th  success, then the generated
finite complete system R can be used to decide the word problem of  £ ,  since then two terms
are equivalent i f  and only i f  their normal forms w.r.t. R are the same.
Correctness of a specific version of the Knuth-Bendix completion procedure was first proved
by Huet [Hu81]. In  [BDHS86] Bachmair e t  al. introduced a more abstract approach: They
formalized the notion of  completion within the framework of  an equ~tional inference system
and introduced the notion of  proof orderings for proving correctness of a completion proce-
dure. Moreover, they proved the correctness of a large class of  completion procedures. The
proof of  Huet as well as the one of Bachmair et al. is based essentially on the fact that all
rules generated during a completion process are oriented according to the same reduction or-
dering > :  Huet’s proof is based mainly on noetherian induction using the reduction ordering
> .  Bachmair et al. used a proof ordering that is an extension of > for their proof.

The requirement to  use a fixed reduction ordering during completion guarantees that the
successively generated systems Ro,  R ı ,  Ra,  ...  are noetherian. One may wonder if  a completion
procedure remains correct i f  i t  is only required that the systems Ro,  R1,  Ra ,  ... are noetherian,
instead of requiring that the termination of these systems can be proved using the same
reduction ordering. From a practical point of view this would be a desirable property, since i t
would allow to  change the  reduct ion order ing dur ing completion. In  general, i t  is  not  easy t o
choose an appropriate reduction ordering for a set £ o f  equations. A completion procedure will
fail i f  i t  tries to  orient an equation and the corresponding terms are incomparable w.r.t. the
given reduction ordering. Sometimes failure cannot be avoided, e.g. i f  £ cannot be presented by
a complete term rewriting system. But even i f  failure can be avoided, completion may fail. If
an  equation cannot be  oriented w.r . t .  the  given ordering,  then i n  many cases this problem could
be circumvented by choosing another ordering. But instead restarting the completion process
for £ with a new reduction ordering, one would prefer to  carry out  the completion process in  an
incremental fashion, i .e. to  continue completion with the new ordering without recomputing
critical pairs between rules that have been previously considered. Which requirements are
needed t o  ensure that completion remains correct under these modifications? Obviously, the
new ordering should be compatible with  the actual term rewriting system in  order to  guarantee
that the system is terminating. Is this requirement strong enough to  guarantee correctness of
this procedure?
In practice, the Knuth-Bendix algorithm is usually used interactively. One reason for human
interaction is to specify incrementally the reduction ordering during completion, i.e. to step-
wise refine the reduction ordering given as input if needed. In current implementations of
completion tased methods, like for example in  the system RRL [KZ89], the user cannot only



refine the actual reduction ordering during completion, but also orient equations that are not 
comparable w.r.t. the actual ordering by hand. This feature allows to delay testing for ter­
mination until all critical pairs have been considered as proposed e.g. in [De89]. In that case 
it is no longer guaranteed that the resulting system as well as the intermediately generated 
systems are terminating, and hence, a completion process may not terminate due to the com­
putation of an infinite reduction sequence. Methods that can be used to detect certain kinds 
of non-termination in rewriting have been proposed by Plaisted [PI86] and Purdom [Pu87]. 
However, what about a successful computation in case that the termination test is delayed? Is 
the resulting term rewriting systerriconfluent if it is noetherian, Le. is it locally confluent, as 
often implicitly used in the literature (see e.g. [De89], [Pu87]) and explicitly stated for example 
in [KZ89]? Of course, this is true if interreduction.is not used during completion, since then a 
critical pair that is joinable in an intermediate system will be joinable in the resulting system 
as well. In practice, interreductian is essential for reasons of efficiency. But, if interreduction 
is used, then ·a rule that is used to resolve a critical pair during completion may not exist in 
the final system. Will the final system yet be confluent? 

In this paper we will consider these questions and analyse which problems may arise if a com­
nletion algorithm is modified in the ways described. Doing this we will focus our attention 
on string rewriting systems. String rewriting systems can be viewed as s'pecial term rewriting 
systems, namely such term rewriting systems where only unary function symbols occur. Usu­
ally, in order to complete a string rewriting system, a total reduction ordering is used. Hence, 
in this case failure cannot arise, and a completion procedure will generate a (maybe infinite) 
complete string rewriting system. But also if a string rewriting system.is completed, it would 
be desirable to have the possibility to change the ordering during completion in an incremental 
fashion, since in this way divergence of completion, Le. non-termination of completion, may 
sometimes be avoided too [He88]. 

It will turn out that a lot of problems may arise, if it is allowed to change the ordering 
during completion, as mentioned above, even if the input is restricted to string rewriting 
systems. Even if interreduction is not being used, this modified completion algorithm is 
not correct: If the algorithm does not terminate, Le. if it enumerates an infinite system, 
then this infinite system can be nOn-confluent. This is due to the fact that the generated 
system can be non-noetherian, and hence, local confluence and confluence may not coincide. 
Concerning interreduction we will prove the following result: If interreduction is used and a 
corresponding modified completion process does not terminate, then the generated system may 
not even be equivalent to the initial set of equations. Moreover, the corresponding modified 
completion algorithm is not even partially correct in the sense that the generated system will 
be complete whenever the algorithm terminates with success. Obviously, the generated system 
is noetherian in that case. But, as we will show, it does not need to be locally confluent, since 
rules that have been used to resolve critical pairs during completion may have been deleted by 
interreduction. The example that we will construct to illustrate this phenomenon is not only 
interesting from a theoretical point of view, because neither artificial reduction orderings nor 
an artificial completion strategy are used within: The example is based on only two recursive 
path orderings [De82] and Huet's completion algorithm [Hu81]. 
These results give an answer to one of the 'open problems' listed in [DJK91] (which is still open 
(see [DJK93])), asking for an example showing that Huet's completion algorithm [Hu81] be­
comes incomplete, if one allows to change the reduction ordering during completion, provided 
the new ordering is compatible with the actual rules. Moreover, one of our examples disproves 
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refine the actual reduction ordering during completion, but also orient equations that are not
comparable w.r.t. the actual ordering by hand. This feature allows to  delay testing for ter-
mination until all critical pairs have been considered as proposed e.g. i n  [De89]. In that case
i t  is no longer guaranteed that the resulting system as well as the intermediately generated
systems are terminating, and hence, a completion process may not terminate due to  the com-
putation o f  an infinite reduction sequence. Methods that can be used to detect certain kinds
of non-termination in rewriting have been proposed by Plaisted [P186] and Purdom [Pu87].
However, what about a successful computation i n  case that the termination test is delayed? Is
the resulting term rewriting system confluent i f  i t  is noetherian, i.e. is i t  locally confluent, as
often implicitly used in the literature (see e.g. [De89], [Pu87]) and explicitly stated for example
i n  [KZ89]? Of  course, this is true i f  interreductionis not used during completion, since then a
critical pair that  is  joinable in  an intermediate system will be joinable in  the resulting system
as well. In practice, interreduction is essential for reasons of  efficiency. But, i f  interreduction
is used, then a rule that is used to  resolve a critical pair during completion may not exist in
the final system. Will the final system yet be confluent?

In this paper we will consider these questions and analyse which problems may arise i f  a com-
pletion algorithm is modified i n  the ways described. Doing this we will focus our attention
on string rewriting systems. String rewriting systems can be viewed as special term rewriting
systems, namely such term rewriting systems where only unary function symbols occur. Usu-
ally, in  order to complete a string rewriting system, a total reduction ordering is used. Hence,
i n  this case failure cannot arise, and a completion procedure will generate a (maybe infinite)
complete string rewriting system. But  also i f  a string rewriting systemis completed, i t  would
be desirable t o  have the possibility to  change the ordering during completion in  an incremental
fashion, since i n  this way divergence of completion, i.e. non-termination of  completion, may
sometimes be avoided too [He88].

It will turn out that a lot of problems may arise, i f  i t  is allowed to change the ordering
during completion, as mentioned above, even i f  the input is restricted to string rewriting
systems. Even i f  interreduction is not being used, this modified completion algorithm is
not correct: If the algorithm does not terminate, i .e.  i f  i t  enumerates an  infinite system,
then this infinite system can be non-confluent. This is due to  the fact that the generated
system can be non-noetherian, and hence, local confluence and confluence may not coincide.
Concerning interreduction we will prove the following result: If interreduction is used and a
corresponding modified completion process does not terminate, then the generated system may
not even be equivalent to the initial set of  equations. Moreover, the corresponding modified
completion algorithm is not even partially correct in the sense that the generated system will
be complete whenever the algorithm terminates with success. Obviously, the generated system
is noetherian in  that case. Bu t ,  as we will show, i t  does not need to  be locally confluent, since
rules that have been used to  resolve critical pairs during completion may have been deleted by
interreduction. The example that we will construct to  illustrate this phenomenon is not only
interesting from a theoretical point of  view, because neither artificial reduction orderings nor
an artificial completion strategy are used within: The example is based on only two recursive
path orderings [De82] and Huet’s completion algorithm [Hu81].
These results give an answer to  one of  the "open problems’ listed in  [DJK91] (which is still open
(see [DJK93])), asking for an example showing that Huet’s completion algorithm [Hu81] be-
comes incoraplete, i f  one allows to change the reduction ordering during completion, provided
the new ordering is compatible with the actual rules. Moreover, one of  our examples disproves
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the widespread assumption which says that even if termination is not guaranteed during com­
pletion, local confluence will be assured as soon as all critical pairs have been considered (see 
e.g. [KZ89]). Hence our results may affect the correctness of existing implementations of 
completion that provide the option to orient equations by hand. 

Basic Definitions and Notations 

Here we recall the basic definitions and notation that we will use in the following in brief. For 
further reading concerning string rewriting systems we refer to [Bo87] , [B093] and [Ja88]. 

Let E be a finite alphabet. Then E* denotes the set of all strings over E including the empty 
string c. A string rewriting system (SRS in short) Rover E is a subset of E* x E*. Its elements 
are called (rewrite) rules and are also written as l ---+ r instead of (1, r). A SRS R induces a 
one-step reduction relation ---+R on ~* which is defined in the following way: For x, y E E*, 
x ->R y if and only if there exist two strings u, v E ~* and a rule l ---+ r E R such that x = ulv 
and y = urv. The reflexive and transitive closure of ->R is denoted by ~R. If X~RY, then 
we say that x reduces to y and that y is a descendant of x. A string x is called irreducible 
(modulo R) if x ---+R y does not hold for any string y. If x reduces to y and y'is irreducible 
then y is called a normal form of x. 
Analogously to ~R, :"'R denotes the reflexive, symmetric and transitive closure of -R. This 
relation is called the Thue-congruence induced by R. Two SRSs are called equivalent if they 
induce the same Thue-congruence. 

Given a SRS R an important problem is its word problem, that is to decide whether or not 
two arbitrary strings x, y are congruent (modulo R), i.e. X:"'RY. The word problem for a 
SRS R can be undecidable even if R is finite. But it is decidable if R is finite, noetherian 
and confluent: Here a string rewriting system R is called noetherian if no infinite chain of the 
form XO-RXt-RXZ->R ... exists, and it is called confluent if, for all x, y, Z E E*, the following 
holds: if y and z are descendants of x then they are joinable (i.e., y and z have a common 
descendant). String rewriting systems that are both, noetherian and confluent, are called 
complete or convergent. If a SRS R is complete, then each string has a unique normal form, 
and it holds that two arbitrary strings x and y are congruent (modulo R) if and only if their 
normal forms (modulo R) are the same. Thus, if a SRS R is complete and in addition finite, 
the word problem for R can simply be solved by reduction. 

In [KB70] Knuth and Bendix have shown that a noetherian SRS R is confluent if and only if 
the so called critical pairs of R are joinable. Thereby a pair of strings (Ct, cz) is called a critical 
pair of R, if there exist two rules It - rl and lz - rz in R such that one of the following 
conditions is satisfied: 1. It = ulzv for some u, v E E*, and Ct = Tt and Cz = UTzV, 2. itu = vlz 
for some u, v E E* with I u 1<llz I, and Ct = rlv and Cz = VTZ. Thus, it is decidable whether 
or not a finite and noetherian SRS R is confluent. 
There remains the problem to decide if a finite SRS R is noetherian. While in general this 
problem is undecidable, it is possible to transform R into an equivalent finite and noetherian 
SRS R' according to the following idea: A SRS R is noetherian if and only if there exists an 
ordering> on E* that is admissible (i.e., u > v implies xuy > xvy f0r all U.1', x, y E E*), 
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the widespread assumption which says that even i f  termination is not guaranteed during com-
plet ion, local confluence will be assured as soon as all critical pairs have been considered (see
e.g. [KZ89]). Hence our results may affect the correctness of existing implementations of
compietion that provide the option to  orient equations by hand.

2 Basic Definitions and Notations

Here we recall the basic definitions and notation that we will use in  the following in  brief. For
further reading concerning string rewriting systems we refer to [Bo87] , [BO93] and [Ja88].

Let X be a finite alphabet. Then X*  denotes the set of  all strings over X including the empty
string £ .  A string rewriting system (SRS i n  short) R over X is a subset of  ¥ *  x £ * .  I ts  elements
are called (rewrite) rules and are also written as | — r instead of ( I ,7).  A SRS R induces a
one-step reduction relation —r  on X* which is defined in  the following way: For z , y  € X”,
zr —R y i f  and only i f  there exist two  strings u,v € £ *  and a rule ! — r € R such that  z = u lv
and y = urv.  The reflexive and transitive closure of —x is denoted by =r. I f  z y ,  then
we say that  x reduces t o  y and tha t  y is a descendant of  z .  A s t r ing « is called irreducible
(modulo R )  i f  z —x  y does not hold for any string y. If reduces to  y and y'is irreducible
then y is called a normal form of z.
Analogously to  =r,  Ar  denotes the reflexive, symmetric and transitive closure of  —x .  This
relation is called the Thue-congruence induced by R .  Two SRSs are called equivalent if they
induce the same Thue-congruence.

Given a SRS R an important problem is i ts  word problem, that is t o  decide whether or not
two arbitrary strings z , y  are congruent (modulo R), i.e. z&gy .  The word problem for a
SRS R can be undecidable even i f  R is finite. But  i t  is decidable i f  R is finite, noetherian
and confluent: Here a string rewriting system R is called noetherian i f  no infinite chain of  the
form 2p— r z ;  ARI2—R. . .  exists, and i t  is called confluent if, for all x , y ,  z € T * ,  the following
holds: i f  y and z are descendants of x then they are joinable (i.e., y and z have a common
descendant). String rewriting systems that are both, noetherian and confluent, are called
complete or convergent. If a SRS R is complete, then each string has a unique normal form,
and i t  holds that two arbitrary strings z and y are congruent (modulo R )  if and only if their
normal forms (modulo R )  are the same. Thus, i f  a SRS R is complete and in  addition finite,
the word problem for R can simply be solved by reduction.

In [KB70] Knuth and Bendix have shown that a noetherian SRS R is confluent if and only i f
the so called critical pairs of R are joinable. Thereby a pair of  strings (c ı ,  cz) is called a critical
pair of  R ,  i f  there exist two rules I ;  — r ;  and lI; — 7;  in R such that one of  the following
conditions is satisfied: 1. / ;  = ulzv for some u ,  v € £ * ,  and ¢ ;  = r i  and ca = urzv,  2. hu  = vi,
for some u ,  v € * with | u | < !  [2 | ,  and ¢ ;  = ryv and cz = vr2. Thus, i t  is decidable whether
or not a finite and noetherian SRS R is confluent.
There remains the problem to decide i f  a finite SRS R is noetherian. While in  general this
problem is undecidable, i t  is possible to  transform R into an equivalent finite and noetherian
SRS R’  according to the following idea: A SRS R is noetherian i f  and only if there exists an
ordering > on X*  that is admissible (i.e., u > v implies zuy > zvy  for all u.n,  x , y  € T* ) ,
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wellfounded (i.e., there is no infinite descending chain Uo > Ut > U2 > ... ) and compatible with 
R (i.e., I > r holds for all rules I ---- r of R). Thus, given a total, wellfounded and admissible 
ordering> on ~*, a finite SRS R can be transformed to an equivalent, finite and noetherian 
SRS R' by orienting the rules of R ::Lccording to >. 
If R' is not confluent, then there exists a critical pair (Cl, C2) such that corresponding normal 
forms nI, n2 are not identical. Thus, by adding the rule nl ---- n2 (n2 ---- nl ), if nl > n2 
(n2 > nd to R', we obtain an equivalent system R" that is noetherian too. By repeating this 
process for the system R" if R" is not confluent, R' can be transformed to a (maybe infinite) 
equivalent complete system. The algorithm sketched here is due to Knuth and Bendix [KB70] 
and known as the Knuth-Bendix completion algorithm (for SRSs). 

One class of admissible and wellfounded orderings is the class of syllable orderings: Let > be 
a total ordering on ~ called precedence and let for U E ~*, max( u) denote the largest letter 
with respect to the precedence> that occurs in u. Then the induced syllable ordering> syl is 
defined as follows: . 

U >syl v 
iff
 

I U Imax(ulJ) > I v Imax(ulJ) or
 
(max(uv) = a, I u la = I v la = n, u = ula ... unaun+l, V = VIa vnavn+l,
 

and:JiE{l, ... ,n+l}: Ui >syl Vi and Uj = vjforalljE{i+l, ,n+l}).
 

This syllable ordering corresponds to the well-known recursive path ordering for monadic terms 
[St89] . 
Already in their seminal paper [KB70], Knuth and Bendix have suggested to keep all the 
rules as small as possible by interreduction during the execution of their algorithm. A SRS 
R is called interreduced if, for each rule I ---- r, r is irreducible w.r.t. R and I is irreducible 
w.r.t. R - {I ---- r}. If> is an admissible well-ordering, then there exists a unique (possibly in­
finite) interreduced complete system that is compatible with this ordering and equivalent to R. 

The original Knuth-Bendix completion algorithm given in [KB70] is defined for general term 
rewriting systems. (String rewriting systems may be viewed as special term rewriting systems, 
namely such term rewriting systems where only monadic terms, but no constants, occur.) 
Given a set of equations and a reduction ordering> as input, the algorithm generates (provided 
that it does not stop with failure) a (maybe infinite) sequence (Ro, £0), (RIJd, (R2J2) ... , 
where R o, RI, R 2 , ••• are term rewriting systems and £0, £1' £2, ... are sets pf equations, sat­
isfying: 1. Ri is compatible with >, 2. :"niut'i = :"ni+1Ut'i+l , 3. the set £00 of persisting 
equations is empty and 4. the set R oo of persisting rules (a rule is called persistent if for some 
j E IN it belongs to any Rk with k :2: j) is complete. In the following we will call R oo the limit 
system or the system generated (by the Knuth-Bendix completion algorithm). 
For more information about completion of term rewriting systems we refer to the literature 
(see e.g. [De89]). 
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wellfounded ( i .e.,  there is no  infinite descending chain ug > uy > u2 > . . . )  and compatible wi th
R (i .e., | > r holds for all rules I — r of  R ) .  Thus, given a to ta l ,  wellfounded and admissible
order ing > on  X* ,  a finite SRS R can be transformed t o  an  equivalent, finite and  noetherian
SRS R'  by orienting the rules of R according to > .  :

If R '  is not confluent, then there exists a critical pair ( c y ,cz) such that corresponding normal
forms n ; , n ;  are not identical. Thus, by adding the rule ny — nz (ng — ny ) ,  if #7  > no
(nz  > np)  to  R ' ,  we obtain an  equivalent system R ”  that i s  noetherian too .  By  repeating th is
process for the system R"  i f  R ”  is not confluent, R ’  can be transformed t o  a (maybe infinite)
equivalent complete system. The algorithm sketched here is due t o  Knuth and Bendix [KB70]
and known as the Knuth-Bendiz completion algorithm (for SRSs).

One class of  admissible and wellfounded orderings is the class o f  syllable orderings: Let > be
a total ordering on © called precedence and let for u € ¥ * ,  maz(u)  denote the largest letter
with respect to  the precedence > that occurs in  u. Then the induced syllable ordering > ,  is
defined as follows:

U Da l  U
iff

| u Imaz(uv) > | v | maz(uv) o r
(maz(uv) =a ,  | u | a= |V  [ a=  7 ,  U=  U10 . . .  UndUpn41 ,  VU = V1Q ... Upn@Vny],

and 3 i  € { l , . . . , n  +1}: u ;  > ;  vi and u; = v; f o ra l l  je { i +  1 , . . . , n+1 } ) .

This syllable ordering corresponds to  the well-known recursive path ordering for monadic terms
[St89].
Already in their seminal paper [KB70], Knuth and Bendix have suggested to  keep all the
rules as small as possible by interreduction during the execution of their algorithm. A SRS
R is called interreduced if, for each rule [ — r ,  r i s  irreducible w. r . t .  R and [ is  irreducible
wr t .  R—-  { I  — r } .  If > is an admissible well-ordering, then there exists a unique (possibly in-
finite) interreduced complete system that is compatible wi th  this ordering and equivalent to  R .

The original Knuth-Bendix completion algorithm given in  [KB70] is defined for general term
rewriting systems. (String rewriting systems may be viewed as special term rewriting systems,
namely such term rewriting systems where only monadic terms, but no constants, occur.)
Given a set of  equations and a reduction ordering > as input, the algorithm generates (provided
that i t  does not stop with failure) a (maybe infinite) sequence (Ro, &), (R1, £1), (Rz, E2)...,
where Rg, R1, R2,... are term rewriting systems and &,  £3, &2, ... are sets of  equations, sat-
isfying: 1 .  R ;  is  compatible wi th  > ,  2 .  S r ,us  = AR 41UE 41 :  3- the set Ex  of  persisting
equations is empty and 4. the set Ro, of  persisting rules ( a  rule is called persistent if for some
J € IN  it belongs to  any Ry  with  k > j )  is complete. In the following we will call Roo the limit
system or  the system generated (by the Knuth-Bendix completion algorithm).
For more information about completion of  term rewriting systems we refer to the literature
(see e.g. [De89]).



3 Modified Completion 

In order to complete a term rewriting system a fixed reduction ordering is used.' This ensures
 
that any of the successively generated term rewriting systems 'Ro, 'RI, 'Rz, ... is terminating.
 
As already pointed out above, an important question is whether or not a Knuth-Bendix com­

pletion procedure remains correct, if it is modified by requiring only that the generated systems
 
'Ri are noetherian. In the following we will call a corresponding algorithm modified completion
 
algorithm and a corresponding process modified completion in short.
 
In the present paper we will consider this problem by studying Huet'~ completion algorithm,
 
and analyse whether or not it remains correct, if it is allowed to change the reduction ordering
 
during a completion process provided that the new ordering is compatible with the actual term
 
rewriting system. More precisely, we will analyse the correctness of the following algorithm.
 

MODIFIED COMPLETION ALGORITHM CA~ODl :
 
Initial data: a (finite) set of equations £, and
 

a family of (recursive) reduction orderings (>;)iEIN' 
£0 := £ ; 'Ro := 0 ; t := 0 ; p := 0 ; 
loop 

while £i f:. 0 do
 
Reduce equation: Select equation M = N in £i.
 
Let Mt (resp. Nt) be an ni-normal form of M (resp. N) obtained
 
by applying rules of ni in any order, until none applies.
 
if Mt = N1 then £i+1 :=£i - {M = N} ; ni+1 := ni ; i := i + 1 ;
 
else if >i is compatible with ni then
 

if (Ml >i Nl) or (N1>i Ml) then 
begin 
if Mt >i Nl then A:= Mt ; p:= Nt 

else A: = N1 ; p := M! 
(*) Add new rule: Let K be the set of labels k of rules of ni whose left­
(*) hand side Ak is reducible by A -+ p, say to AI.. 
(*) £i+1 := £i - {M = N} U PI. = Pk I k: Ak -+ Pk E ni with k E K}; 
(*) p := p + 1 ; 
(*) ni+1 := {j : Aj -+ pj I j : Aj -+ Pj E ni with j rf. K} U {p: A -+ p} , 
(*) where pj is a normal form of Pj , using rules from ni U P -+ p} . 

The rules coming from 'Ri are marked or unmarked as they were in 
ni, the new rule A -+ P is unmarked. 

i := i + 1 
end 

else exitloop (failure) endif
 
else exitloop (failure) endif
 

endwhile; 
Compute critical pairs: If all rules in ni are marked, exitloop ('Ri complete). 
Otherwise, select an unmarked rule in ni, say with label k. Let £i+1 be the set of 
all critical pairs computed between rule k and any rule of 'Ri of label not greater 
than k. Let 'Ri+1 be the same as ni, except that rule k is now mark~d. 

i := i + 1 
endloop 
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3 Modified Completion

In order t o  complete a term rewriting system a fixed reduction ordering is used. This ensures
that any of  the successively generated term rewriting systems Ro,  R ı ,  Ra, ... is terminating.
As already pointed out above, an important question is whether or not a Knuth-Bendix com-
pletion procedure remains correct, i f  i t  is modified by requiring only that the generated systems
R;  are noetherian. In the following we will call a corresponding algorithm modified completion
algorithm and a corresponding process modified completion in  short.
In the present paper we will consider this problem by studying Huet’s completion algorithm,
and analyse whether or not  i t  remains correct, i f  i t  is allowed to  change the reduction ordering
during a completion process provided that the new ordering is compatible wi th  the actual term
rewriting system. More precisely, we will analyse the correctness of  the following algorithm.

MODIFIED COMPLETION ALGORITHM CA_MOD1 :
Initial data: a (finite) set of equations &, and

a family of (recursive) reduction orderings (>;);cIN-
Eo :=  E ;  Ro  =0 ; i : =0 ;p :=0 ;
loop

while &; £ 0 do
Reduce equation : Select equation M = N i n  &;.
Let M |  (resp. N | )  be an R;-normal form of  M (resp. N )  obtained
by applying rules of  R ;  in  any order, unti l  none applies.
if M |=N | then  & ; ; 1 :=6 , - {M=N} ;R i z1 :=R i j i : = i+1 ;
else i f  > ;  is compatible wi th  R;  then

if (M |  > ;  N | )o r  (N |> ;  M | )  then
begin
i f M|> ;  N ]  then A :=M]  ; p :=N |

else A :=N |  ; p :=M|
( * )  Add new rule: Let K be the set of  labels k of  rules of  R ;  whose left-
(+) hand side Ag is reducible by A — p ,  say to AL.
( * )  E r  = Ei - {M=N}U{M =p r | k :  A — pr  € R;  wi th k € K } ;

(+)  P :=p+1 ;
( * )  R i s1 := { j : A j  =p: 2 — pj € Ri with jE  K }U{p :  A —p},

(+) where p’  is a normal form of p; , using rules from R;  U {A—=p}.
The rules coming from R;  are marked or unmarked as they were in

\ Ri ,  the new rule A — p is unmarked.
it: = t +41
end

else exitloop (failure) endif
else exitloop (failure) endif

endwhile ;
Compute critical pairs: I f  all rules in  R;  are marked, exitloop (R; complete).
Otherwise, select an unmarked rule in  R ; ,  say with  label k .  Let E;+1 be the set of
all critical pairs computed between rule k and any rule of  R ;  of  label not greater
than k .  Let R;4;  be the same as R;, except that  rule k is now marked.
t : = i+1
endloop



The starting point of this work was the following problem which is stated in the list of 'open 
problems' collected by Dershowitz et al. in [DJK91]: 

Problem 35. Huet's proof [Hu81] of the "completeness" of completion is predicated on the as­
sumption that the ordering supplied to completion does not change during the process. Assume 
that at step i of completion, the ordering used is able to order the current rewriting relation 
-+ R" but not necessarily -+ R k for k < i (since old rules may have been deleted by completion). 
Is there an example showing that completion is then incomplete (the persisting rules are not 
confluent) ? 

Analysing the correctness of the algorithm CA_MODI we will particularly direct our attention 
to this problem. 
The formulation of problem 35 points out that the use of interreduction might play an essential 
role in that context. Hence, the question arises whether or not the algorithm CA.-MODI is 
correct, if interreduction is not used, i.e. if we replace the lines marked with (*) by the following 
ones: 

Ei+l := Ei - {M = N};
 
p:= p+ I ;
 
Ri+l:= Ri U {P:A-+p}
 

In the present paper we also will analyse the correctness of this algorithm which we will denote 
CA.-MOD2. 
For both algorithms we will adopt the fairness of selection hypothesis given in [Hu81]. This 
hypothesis states that for every rule label k, there is an iteration i such that either the rule of 
label k is deleted from Ri, or the rule of label k is selected at "compute critical pairs". 
In the following we will assume, until otherwise stated, that a modified completion algorithm 
always is fair in that sense. Moreover, we will assume that the algorithms CA.-MODl and 
CA.-MOD2 use the following simple strategies: 
In order to compute critical pairs, the unmarked rule with the least label is selected. Further­
more, the sets Ei are implemented as queues. If a rule is overlapped with a set of rules, this 
also will be done according to the labels of the rules, Le. in the set of rules to be considered 
the rule with least label has highest priority. 
In case that the algorithm CA.-MODI (CA.-MOD2) terminates with success, say with the pair 
(Rn, En), we define for any j > n, R j := Rn and Ej := En. 

3.1 Modified Completion without Interreduetion 

If interreduction is not used during completion, then the generated term rewriting systems 
R o, 'RI, R 2, ... form an increasing chain, Le. Ro ~ RI ~ 'R2 ~ ... holds, and we have 'Roo = 
UieN'Ri. Moreover, since only equational consequences are added during completion, R oo is 
equivalent to the input system E. 
Obviously, these properties are independent of the fact that a fixed reduction ordering is used 
during completion. Thus, they also hold for modified completion. In modified completion 
it only is allowed to chi:l.uge the reduction ordering if the new ordering is compatible with 
the actual rewrite system. Hence, it is guaranteed that any of the inte- mediately generated 
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The starting point of  this work was the following problem which is stated in the list of  ’open
problems’ collected by Dershowitz et  al. in  [DJK91]:

Problem 35.  Huet’s proof [Hu81] of the “completeness” of completion is predicated on the as-
sumption that the ordering supplied to completion does not change during the process. Assume
that at step i of  completion, the ordering used is able to order the current rewriting relation
—R; ,  but not necessarily — pr, for k < i (since old rules may have been deleted by completion).
Is there an example showing that completion is then incomplete (the persisting rules are not
confluent)?

Analysing the correctness of  the algorithm CA_MOD1  we will particularly direct our attention
to  this problem.
The formulation of  problem 35 points out that the use of  interreduction might play an  essential
role in  that context. Hence, the question arises whether or not the algorithm CA_MODI is
correct, i f  interreduction i s  no t  used, i .e .  i f  we  replace t he  lines marked w i th  (+) by the  following
ones:

E i  = E i - {M=  N}
Pp:=p+1;
Rıiyı = Ri  U { p :A—p}

In  the present paper we also will analyse the correctness of  this algorithm which we will denote
CA_MOD2.
For both algorithms we will adopt the fairness of selection hypothesis given in [Hu81]. This
hypothesis states that for every rule label k ,  there is  an  i terat ion ¢ such that  either the rule of
label k is deleted from R;, or the rule of  label k is selected at “compute critical pairs”.
In the following we will assume, until otherwise stated, that a modified completion algorithm
always is fair i n  that sense. Moreover, we will assume that the  algorithms CA_MOD1 and
CA_MOD2 use the following simple strategies:
In order to  compute critical pairs, the unmarked rule with the least label is selected. Further-
more, the sets £; are implemented as queues. I f  a rule is overlapped with a set of  rules, this
also will be done according to  the labels of  the rules, i.e. in  the set of  rules to  be considered
the rule with least label has highest priority.
In case that the algorithm CA _MOD1 (CA_MOD?2) terminates wi th  success, say with the pair
(Rn,  En), we define for any j > n ,  R j  : =  Rn  and E; : =  Ep.

3 .1  Modified Complet ion without Interreduction

If interreduction is not used during completion, then the generated term rewriting systems
Ro, R1, Ra, ... form an  increasing chain, i.e. Ro € Ry; C R;  C ... holds, and we have Ro  =
U;elNR:. Moreover, since only equational consequences are added during completion, Ro  is
equivalent to  the input system £ .
Obviously, these properties are independent of  the fact that a fixed reduction ordering is used
during completion. Thus, they also hold for modified completion. In modified completion
i t  only is allowed to  change the reduction ordering if the new ordering is compatible with
the actual rewrite system. Hence, i t  is guaranteed that any of the inte: mediately generated



systems Ri is noetherian if modified completion is used. Moreover, since the successive term 
rewriting systems R o, RI, R 2 , ••• generated by modified completion form an increasing chain, 
a critical pair that is joinable W.r.t. Ri for some i is also joinable W.r.t. any Rj with j 2: i. 
Hpnce, since it is assumed that a fair strategy is used, Reo is locally confluent. Now consider 
the case that modified completion stops with success. In that case we have that the generated 
finite system Reo is noetherian in addition. Thus, modified completion is partially correct in 
that it generates a complete system equivalent to the input system E: wheneyer it terminates 
with success. But, what about those cases when modified completion does not terminate? Is 
the generated infinite system Reo complete in those cases too? We will consider this case in 
the following. 

The union of a family of noetherian term rewriting systems that form an increasing chain need 
not be noetherian, and in fact, the systems R oo generated by modified completion without 
interreduction can be non-noetherian. 

Example 1. Let R = {wa --> ab,ae ~ abe}. 
Obviously, R is noetherian and there is an overlap between the first rule and the second 
one. The corresponding critical pair is: (abe, wabe). While abe is irreducible, wabe can be 
reduced to the irreducible string abbe. Hence, R is not confluent and a Knuth-Bendix com­
pletion procedure will generate either the rule abe --> abbe or the rule abbe --+ abe, depend­
ing on the ordering used for completion. Consider the first case: If the rule abe -+ abbe is 
added, then the resulting system R o = {wa -+ ab, ae -+ abe, abe -+ abbe} will be noethe­
rian, too. But, there will be a new overlap between this new rule and the first one: We 
have wabe -+ abbe and wabe -+ wabbe -+ abbbe. Thus, a further rule has to be added. If 
we add the rule abbe -+ abbbe, then the situation will be similar to the one before: The re­
sulting system RI = {wa -+ ab, ae -+ abe, abe -+ abbe, abbe -+ abbbe} will be noetherian, 
but there will be a new overlap between the rule added and the first one. Going on in 
the way described, we will generate an infinite sequence ·of noetherian string rewriting sys­
tems Ro, RI, R 2 ,... satisfying Ri = {wa -+ ab} U {abne -+ abnHe I 0 ::; n ::; i + 1} 
(i E IN). Since interreduction has not been used during the described process, we have 
Reo = UjEINRj = {wa -+ ab} U {abne -+ abnHe I n E IN}. Hence, Reo is not noethe­
rian. 

Thus, in general modified completion is not correct, since it may generate a non-noetherian 
system. As mentioned above, the generated systems Reo are always locally confluent. Are 
they confluent too? Note that the system Reo of example 1 is confluent since it is strongly 
confluent [Hu80]. For non-noetherian SRSs local confluence and confluence do not coincide. 
Hence, modified completion might generate also non-confluent systems. 
We know that the reduction induced by Reo is acyclic, since all the intermediate systems Ri are 
noetherian. Nevertheless, as the following example will show, Reo can indeed be non-confluent. 

Example 2. Let R = {1 : uv -+ xA,2 : vbe -+ W,3 : uW -+ 0,4 : Abe -+ abbe, 5 : wa-+ 
Ab,6: wA -+ ab, 7 :'xa -+ 0,8: ob -+ 0,9: oe -+ 0,10: xA -+ 0,11 : Ob -+ 0,12: Oc -+ O}. 
R is noetherian. There are 3 overlaps: Rule 1 overlaps with rule 2, and rule 4 overlaps with 
rule 6 and 10. Overlapping rule 1 with rule 2 yields the critical pair (xAbe, uW), which is 
joinable in the following way: xAbe -+ xabbc -+ obbe -+ obe -+ oe -+ 0 ~ uW. Overlapping 
rule 4 with rule 6 yields the critical pair (abbe, wabbe). While abbe is irreducible, wabbe will 
be reduced to the irreducible string Abbbe using rule 5. Adding the rule abbe -+ Abbbe will 
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systems R ;  is  noetherian i f  modified completion is  used. Moreover, since the  successive term
rewr i t ing systems Ro,  R ı ,  R ı2 , . . .  generated by  modified completion form an  increasing chain,
a critical pair tha t  is  joinable w. r . t .  R ;  for some i is also joinable w. r . t .  any R ;  w i th  j > 2.
Hence ,  since i t  is assumed that  a fair strategy is used, Ro, is locally confluent. Now consider
the case that modified completion stops with success. In that case we have that the generated
finite system Ra  is noetherian i n  addition. Thus, modified completion is partially correct in
that i t  generates a complete system equivalent to  the input system £ whenever i t  terminates
with  success. But ,  what about those cases when modified completion does not terminate? Is
the generated infinite system Ro, complete in those cases too? We will consider this case i n
the following. g

The union of  a family of  noetherian term rewriting systems that form an increasing chain need
not  be noetherian, and i n  fact,  the  systems Ro, generated by  modified completion wi thout
interreduction can be non-noetherian.

Example 1 .  Let R = {wa  — ab ,ac — abc}.
Obviously, R is noetherian and there is  an  overlap between the first rule and the  second
one. The corresponding critical pair is: (abe, wabe). While abc is irreducible, wabe can be
reduced to the irreducible string abbc. Hence, R is not confluent and a Knuth-Bendix com-
pletion procedure will generate either the rule abc — abbe or the rule abbc — abc, depend-
ing on the ordering used for completion. Consider the first case: I f  the rule abc — abbc is
added, then the resulting system Ro = {wa — ab,ac — abc,abc — abbc} will be noethe-
rian, too. But ,  there will be a new overlap between this new rule and the first one: We
have wabec — abbe and wabc — wabbc — abbbe. Thus, a further rule has to  be added. If
we add the rule abbc — abbbc, then the situation will be similar to the one before: The re-
sulting system R ı  = {wa  — ab,ac — abe,abc — abbec,abbc — abbbc} will be noetherian,
but there will be a new overlap between the rule added and the first one. Going on in
the way described, we will generate an infinite sequence ‘of noetherian string rewriting sys-
tems Ro, R1, Ra, - . .  satisfying R;  = {wa — ab} U {abc — abc  | 0 <n  < i +1}
(ft € IN). Since interreduction has not been used during the described process, we have
Roo = UjenRi = {wa — ab} U {ab"c — ab"+e | n € IN}. Hence, Ro  is not noethe-
rian.

Thus, in general modified completion is not correct, since i t  may generate a non-noetherian
system. As mentioned above, the generated systems Ro, are always locally confluent. Are
they confluent too? Note that the system R., of  example 1 is confluent since i t  is strongly
confluent [Hu80]. For non-noetherian SRSs local confluence and confluence do not coincide.
Hence, modified completion might generate also non-confluent systems.
We know that the reduction induced by Ra,  is acyclic, since all the intermediate systems R;  are
noetherian. Nevertheless, as the following example will show, R., can indeed be non-confluent.

Example 2 .  Let R = { 1  : uv  — zA ,2 :  vbe — W,3 :  uW — 0,4  : Abc — abbe,5 : wa —
Ab ,6 :  wA — ab, 7 za  — 0 ,8 :  0b — 0 ,9 :  0c  — 0 ,10 : 2A — 0 ,11 :  Ob — 0 ,12 :  Oc — O}.
R is noetherian. There are 3 overlaps: Rule 1 overlaps with rule 2, and rule 4 overlaps with
rule 6 and 10. Overlapping rule 1 with rule 2 yields the critical pair ( z  Abc, uW) ,  which is
joinable in the following way: zAbc — zabbc — obbc — obc — oc — 0 — uW. Overlapping
rule 4 with rule 6 yields the critical pair (abbc, wabbc). While abbc is irreducible, wabbe will
be reduced to  the irreducible string Abbbc using rule 5. Adding the rule abbc — Abbbc will



result in the noetherian system 'Ro = 'R U {abbe -+ Abbbe}. Overlapping rule 4 with rule 
10 results in the critical pair (Obe, xabbe), which is joinable, since Obe <- Obbe <- Obbbe <­

xAbbbe <- xabbe. The rule added overlaps with rule 5 and with rule 7. The corresponding 
critical pairs are (Abbbe, wAbbbe) and (obbe,xAbbbe). Abbbe is irr"ducible and wAbbbe can be 
reduced to abbbbe, which is irreducible too. Adding the rule Abbbe -+ abbbbe will result in the 
system 'Rl = 'R u {abbe -+ Abbbe, Abbbc -+ abbbbe} , which is noetherian. In 'Rl the critical pair 
(obbe, x Abbbc) is joinable: obbe <- obbbe +- obbbbe <- xabbbbc +- x Abbbe. Thus in the next step 
the new rule Abbbe -+ abbbbe will be overlapped with the other rules. In this way the infinite, lo­
cally confluent system 'R= = 'RU{abne --+ Abn+I e I n ~ 2,neven }U{Abne --+ abn+I e I n ~3,n 

odd} will be generated. Since 0 <- uW +- uvbe -+ xAbe -+ Obe --+ Oe -+ 0, and 0 and 0 are 
'Roe-irreducible, 'Roe is not confluent. 

In the examples 1 and 2 we have used a very simple modified completion algorithm. It can be 
easily checked that the algorithm CA_MOD2 will generate the same infinite systems in these 
cases if appropriate reduction orderings are chosen. Thus, the algorithm CA.-MOD2 is not 
correct in general. 
Usually, the reduction orderings used for completion belong to the class of simplification or­
derings [De82]. Termination of the systems 'Ri that have been constructed in the previous 
examples cannot be proved using simplification orderings: In example 1 the initial system 
'R, and hence, any of the successively generated systems 'Ri, is self-embedding and thus not 
compatible with a simplification ordering. In example 2 any of the systems 'Ri contains the 
set {Abe --+ abbe, abbe -+ Abbbc}. Since any simplification ordering contains the homeomorphic 
embedding relation, we have that the string Abbbe is greater than the string Abe w.r.t. any 
simplification ordering. Hence any SRS containing the rules Abe -+ abbe, abbe -+ Abbbe is not 
compatible W.r.t. a simplification ordering. 
As mentioned before, one class of orderings often used to complete SRSs is the class of syllable 
orderings. Since syllable orderings are simplification orderings, they cannot be used to prove 
termination in the previous examples. Thus, the question arises whether or not similar phe­
nomena may occur, if we restrict the reduction orderings that may be used during modified 
completion to the class of syllable orderings. 
1f'R is a finite SRS and ~ the underlying alphabet, then there are only finitely many, namely 
I~ I ! , different syllable orderings on ~*. But, if the family (>;)iEIN of reduction orderings 
used during a modified completion process is restricted to a finite set and if in addition in­
tet:reduction is not used, then one of these orderings is compatible with any of the successively 
generated systems 'Ri and thus with the set 'Roe. Hence, modified completion without interre­
duction is correct if the reduction orderings >i (i E IN) given as input belong to a finite set. 

We conclude this section with the following theorem that summarizes the main results obtained 
so far. 

Theorem 3.1 For the algorithm CAJfOD2 holds: 

1.	 The algorithm CA_MOD2 is not correct in general: If it terminates on input (E,(>i)iEN)' 
then the generated finite system 'Roe is complete and equivalent to E, but otherwise it 
may generate an equivalent infinite system 'Reo that is neither noetherian nor confluent. 

2.	 The algorithm CA_MOD2 is correct for string rewriting systems and the class of syllable 
orderings: If it is started on input (E ,( >;)iEN) where E is a .string rewriting system and 
(>dieN is a family of syllable orderings, then the generated system 'Roe is noetherian, 
confluent and equivalent to £. 
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result in  the noetherian system Ro  = R U {abbc — Abbbc}. Overlapping rule 4 with rule
10 results in  the critical pair (Obe, zabbc), which is joinable, since Obc — Obbe — Obbbc —
z Abbbc — zabbc. The rule added overlaps with rule 5 and wi th rule 7. The corresponding
critical pairs are (Abbbc, wAbbbc) and (obbc ,x Abbbc). Abbbe is irreducible and wAdbbe can be
reduced to abbbbe, which is irreducible too. Adding the rule Abbbc — abbbbc will result in  the
system Ry  = RU  {abbc — Abbbc, Abbbc — abbbbc}, which is  noetherian. In  R ı  the  critical pair
(obbe ,z Abbbc) is joinable: obbc — obbbe — obbbbc — zabbbbe — x Abbbc. Thus in  the next step
the new rule Abbbc — abbbbe will be overlapped wi th  the other rules. In  this way the infinite, lo-
cally confluent system Ro, = RU{ab"c — Ab" t i c | n  > 2,neven }U{Ab"c — ab™tlc|n >3 ,n
odd} will be generated. Since 0 — uW — uvbe — z Abc — Obc — Oc — O, and o and O are
R o-irreducible, Roo is  not confluent.

In the examples 1 and 2 we have used a very simple modified completion algorithm. I t  can be
easily checked tha t  the algorithm CA_MOD2 will generate the same infinite systems in these
cases i f  appropriate reduction orderings are chosen. Thus, the algorithm CA_MOD?2 is not
correct in  general.
Usually, the reduction orderings used for completion belong to the class of simplification or-
derings [De82]. Termination of the systems R ;  that have been constructed in  the previous
examples cannot be proved using simplification orderings: In example 1 the initial system
R,  and hence, any of the successively generated systems R;, is self-embedding and thus not
compatible with a simplification ordering. In example 2 any of  the systems R;  contains the
set {Abc — abbc, abbc — Abbbc}. Since any simplification ordering contains the homeomorphic
embedding relation, we have that the string Abbbc is greater than the string Abe w.r.t. any
simplification ordering. Hence any SRS containing the rules Abc — abbe, abbc — Abbbe is not
compatible w.r.t. a simplification ordering.
As  mentioned before, one class o f  orderings often used to  complete SRSs i s  the class of  syllable
orderings. Since syllable orderings are simplification orderings, they cannot be used to  prove
termination i n  the previous examples. Thus, the question arises whether or not similar phe-
nomena may occur, i f  we restrict the reduction orderings that may be used during modified
completion to the class of syllable orderings.
If R is a finite SRS and X the underlying alphabet, then there are only finitely many, namely
| Z } !  different syllable orderings on X“. But, i f  the family (>;);eın of reduction orderings
used during a modified completion process is restricted to  a finite set and i f  in addition in-
terreduction is not used, then one of  these orderings is compatible wi th  any of  the successively
generated systems R;  and thus wi th  the set R.,. Hence, modified completion without interre-
duction is correct i f  the reduct ion orderings > ;  (¢ € IN) given as input  belong t o  a finite set .

We conclude this section with  the following theorem that  summarizes the main results obtained
so far.

Theorem 3.1 For the algorithm CA_MOD?2 holds:
1. The algorithm CA_MOD2 is not correct in  general: If  it terminates on input (£,(>i) ;cN),

then the generated finite system Ro, is complete and equivalent to £ ,  but otherwise i t
may generate an equivalent infinite system Ro, that is neither noetherian nor confluent.

2. The algorithm CA_MOD?2 is correct for string rewriting systems and the class of  syllable
orderings: If it is started on input (£,(>:)icIN) where £ is a string rewriting system and
(> : ) i eN  is a family of  syllable orderings, then the generated system Ro, is noetherian,
confluent and equivalent to £ .



3.2 Modified Completion with Interreduction 

As :.hown ;n the previous section Huet 's ompletion algorithm remains corrpct if it is allowed to 
change the reduction ordering during completion (provided that the new ordering is compati­
ble with the actual set of rules) if interreduction is not used and in addition, the orderings used 
belong to the class of syllable orderings. Example 2 has illustrated that the second condition, 
Le. the restriction of the reduction orderings to the class of syllable orderings, is essential for 
the correctness of this modified completion algorithm. What about the fir~t condition not to 
use interreduction during completion? Is this requirement essential for the correctness of the 
algorithm, too? 

In this section we will consider this question and analyse the correctness of the algorithm 
CA...MODl. But before investigating this special algorithm, let us first consider example 1 
again and analyse what will happen if interreduction is incorporated in the simple algorithm 
used there. 

Example 3. Let R = {wa -+ ab, ac - abc}. 
As mentioned in example 1 a Knuth-Bendix algorithm may generate the rule abe - abbe by 
overlapping. Now, this new rule could be used to reduce the right hand side of the second rule. 
In this way we obtain the noetherian system Ro == {wa - ab, ae -+ abbe, abe -+ abbe}. Again, 
there is an overlap between the new rule, and the first one and the rule abbe -+ abbbe may be 
generated. If interreduction is used, then this rule will be used to reduce the right hand sides 
of the second and the third rule. This yields RI = {wa -+ ab, ae -+ abbbe, abe - abbbe, abbe -+ 

abbbe}. The new rule overlaps with the first rule too, and this overlap may result in the rule 
abbbe -+ abbbbc, which could be used for interreduction. Using the strategy described, we may 
generate an infinite sequence of noetherian string rewriting systems Ro, RI, R 2 , •• , satisfying 
Ri == {wa -+ ab} U {abne - abi+2e I 0 S; n S; i + I} (i E IN). Since the right hand side of 
any rule different from wa -+ ab will be modified infinitely many times by interreduction, we 
have R oo == {wa -+ ab}. Hence, in this case R oo is noetherian and confluent, but it is not 
equivalent to R. 

Thus, if interreduction is used during modified completion, then the system £ that has been 
given as input and the limit system R oo that will be generated can be 'non-equivalent. This 
phenomenon is due to the facts that the set UiElNRi may be non-noetherian and that the 
interreduction process in some sense simulates the computation of certain reduction sequences 
with respect to UielNRj. Of course, any of the intermediate systems Ri (i E IN) is noetherian, 
and hence, any reduction process that will be performed will terminate. But, if UiElNRj is not 
noetherian, then the computation of a certain infinite reduction sequence w.r.t. UjelNRi may 
be simulated stepwise by interreduction in the following way: A rule 1 -+ r may be simplified 
to another rule which will be simplified to another one later on, and so on. Hence, neither 
the original rule 1 -+ r nor one of its simplified forms will belong to the limit system n oo ' 

Therefore, n oo may be non-equivalent to R. 

Example 3 differs from our intended one in the way that no syllable ordering is compatible with 
n. But, the next example, which is based on a simple modified completion strategy different 
from CA...MODl, shows that even if syllable orderings are used during modified completion, 
it is no longer guaranteed that the initial system and the generated limit system are equivalent. 
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3.2 Modified Completion wi th Interreduction

As shown i n  the previous section Huet’s completion algorithm remains correct i f  i t  is  allowed to
change the reduction ordering during completion (provided that the new ordering is compati-
ble with the actual set of rules) i f  interreduction is not used and in  addition, the orderings used
belong to the class of syllable orderings. Example 2 has illustrated that the second condition,
i.e. the restriction of the reduction orderings t o  the class of syllable orderings, is essential for
the correctness of this modified completion algorithm. What about the first condition not to
use interreduction during completion? Is this requirement essential for the correctness of  the
algorithm, too?

In this section we wil l consider this question and analyse the correctness of the algorithm
CA MODI .  But  before investigating this special algorithm, let us first consider example 1
again and analyse what will happen i f  interreduction is incorporated in  the simple algorithm
used there.

Example 3 .  Let R = {we  — ab, ac — abc}.
As mentioned i n  example 1 a Knuth-Bendix algorithm may generate the rule abc — abbc by
overlapping. Now, this new rule could be used to reduce the right hand side of the second rule.
In this way we obtain the noetherian system Ro  = {wa — ab ,ac — abbc,abc — abbc}. Again,
there is an overlap between the new rule, and the first one and the rule abbc — abbbc may be
generated. If  interreduct ion is  used, then  this rule will be used t o  reduce the  right hand sides
of  the second and the third rule. This yields Ry = {wa — ab ,ac — abbbe, abc — abbbc, abbec —
abbbc}. The new rule overlaps wi th  the first rule too, and this overlap may result in the rule
abbbec — abbbbe, which could be used for interreduction. Using the strategy described, we may
generate an  infinite sequence of  noetherian str ing rewri t ing  systems Ro,  R i ,  Ro, . . .  satisfying

= {wa — ab} U {ab"c — ab'*%c | 0 < n < i +  1}  ( i  € IN). Since the right hand side of
any rule different from wa — ab will be modified infinitely many times by interreduction, we
have Roc = {wa — ab}. Hence, in this case Ro  is noetherian and confluent, but i t  is not
equivalent to  R .

Thus, i f  interreduction is used during modified completion, then the system £ that has been
given as input and the limit system Ro  that will be generated can be'non-equivalent. This
phenomenon is due to the facts that the set U;c)yR; may be non-noetherian and that the
interreduction process in some sense simulates the computation of  certain reduction sequences
with respect to  U;cjyRi. Of  course, any of the intermediate systems R;  ( i  € IN) is noetherian,
and hence, any reduction process that will be performed will terminate. But, if  U;cpyR: is not
noetherian, then the computation of  a certain infinite reduction sequence w.r.t. U,cyR;  may
be simulated stepwise by interreduction in the following way: A ru l e !  — r may be simplified
to another rule which will be simplified to another one later on, and so on. Hence, neither
the original rule / — r nor one of i ts simplified forms will belong to  the limit system Reo
Therefore, Ro  may be non-equivalent to  R .

Example 3 differs from our intended one in the way that no syllable ordering is compatible with
R.  But, the next example, which is based on a simple modified completion strategy different
from CA_MOD1, shows that even i f  syllable orderings are used during modified completion,
i t  is no  longer guaranteed that the init ial  system and the generated limit system are equivalent.
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Example 4. Let R = {a -+ b,b ---+ cl. 
Moreover, let >- h >-2 and >-3 be the syllable orderings induced by the precedence a > b > c, 
b > c > a and c > a > b, respectively. R is compatible with >-1. Interreduction ofR may result 
in no = {b -+ c} and £0 = {a = cJ. Since Ro is compatible with >-2, we may use >-2 for the 
next step, and thus, the rule c ---+ a will be added. In this way we obtain R 1 = {b -+ c, c -+ a} 
and £1 = 0 . Interreduction of RI may result in R 2 = {c -+ a} and £2 = {b = a} . Since R 2 

is compatible with >-3, we may use >-3 for further computations. Hence, the rule a -+ b will 
be added, and we have R 3 = {c -+ a, a -+ b} , £3 = 0. Again, the new rule can be used to 
reduce the right hand side of the other rule. Interreduction of R3 results in R 4 = {a -+ b} and 
£4 = {c = b}. Now we may again change the ordering and use >-1 instead of >-3. In this way we 
obtain 'R.s = Rand £5 =0. Thus, using the strategy described, an infinite sequence (Ro, (0), 
(R 1 ,Ed, (R2 , (2), ... will be generated. Since there are no persisting rules, the corresponding 
limit system R oo is empty. Hence, R oo is not equivalent to R. 

The main difference between the algorithm CA_MODI and the one used in example 4 is the way 
how right hand sides of rules are simplified: Huet's completion procedure [Hu81] is a standard 
completion procedure in the sense of Bachmair et al. [BDH86]. In a standard completion 
procedure, and hence in the algorithm CA-MODI, the simplification of a right hand side of a 
rule results in a new rule. In contrast to this, the above used algorithm has generated a new 
equation each time when a right hand side of a rule could be simplified. 
If the algorithm CA-MODl is applied on the input system given in the last example and a 
family (>i)iEIN' of reduction orderings satisfying >0 = >-1 and >1 = >-1, the following steps 
will be performed: First the sets RI = {a -+ b}, £1 = {b = c} will be generated. Then the 
equation b = c will be oriented according to the ordering >-1. Thus, the rule b -+ c will be 
added. In addition, the right hand side of the rule a -+ b will be simplified. In this way we 
obtain R 2 = {a -+ c, b ---+ c}, £2 = 0. Since there are no overlaps between rules of R 2 , the 
algorithm CA-MODI will stop with the sets R 4 = R 2 and £4 = 0. Hence, the generated 
system R 4 is complete and interreduced and it is equivalent to R. 

An important fact illustrated by example 4 is that a modified completion algorithm may not be 
fair, although the corresponding original completion algorithm is. If a fixed reduction ordering 
is used, then the interreduction process will always terminate. Example 4 illustrates that this 
is no longer true if we allow to change the reduction ordering during the interreduction process. 
Hence, it is possible in that case that certain overlaps between persisting rules are not consid­
ered. For example, consider what happens if we slightly modify the input of example 4. If we 
add the rules de -+ 9 and ef ---+ 9 and extend the orderings appropriately, then the algorithm 
used may generate the sequence ({de -+ g, ef -+ g} URdiEIN' instead of (RdiEIN" Hence the 
overlap between the rules de ---+ g, cf -+ 9 will never be considered. This problem can be 
circumvented by requiring that the ordering only may be changed during modified completion 
if the actual set of equations is empty. In that case it is guaranteed that any interreduction 
process will terminate. 

Another striking point in example 4 is the fact that the process described does not terminate, 
although the set UiEIN'Ri is finite. Such a phenomenon cannot arise if Huet's completion algo­
rithm or one of its modified versions CA-MODI or CA_MOD2 is used, since then a string that 
is reducible at some step i of the process is reducible with respect to any of the systems Rj 
with j ~ i. Since in addition new rules are built only from normal forms, it cannot happen that 
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Example 4. Let R = {a — b,b — c}.
Moreover, let > ; ,  >2 and >3 be the syllable orderings induced by the precedence a > b > c,
b>  c > aandc  > a>  b, respectively. R is compatible wi th  > ; .  Interreduction of R may result
in Ro  = {b — ¢} and & = {a  = c}. Since Ro is compatible with >2, we may use > ;  for the
next step, and thus, the rule ¢ — a will be added. In this way we obtain R ;  = {b  — ¢ ,c  — a }
and & = 0 . Interreduction of R ı  may result in Ro = {c — a} and & = {b = a} . Since Rz
is compatible with >3,  we may use >3 for further computations. Hence, the rule a — b will
be added, and we have R3 = {¢ — a,a — b} , £3 = @. Again, the new rule can be used to
reduce the right hand side of the other rule. Interreduction of R3 results in  R4 = {a — b} and
&4 = {c  = b}. Now we may again change the ordering and use > ;  instead of  >3. In this way we
obtain Rs  = R and Es = 0. Thus, using the strategy described, an infinite sequence (Ro,  £0),
(R ı ,  E i ) ,  (R2, £2), ... wil l  be generated. Since there are no persisting rules, the corresponding
limit system Ro, is empty. Hence, Ro, is not equivalent to  R .

The main difference between the algorithm CA_MOD1 and the one used i n  example 4 is the way
how right hand sides of rules are simplified: Huet’s completion procedure [Hu81] is a standard
completion procedure i n  t he  sense o f  Bachmair e t  al. [BDH86]. In a standard completion
procedure, and hence i n  the algorithm CA_MOD1, the simplification o f  a right hand side of  a
rule results in  a new rule. I n  contrast to this, the above used algorithm has generated a new
equation each time when a right hand side of  a rule could: be simplified.
I f  the algorithm CA_MODI is applied on  the input  system given i n  the  last example and a
family (>;)jein of  reduction orderings satisfying >¢  = > ;  and > ;  = >1 ,  the following steps
will be performed: First the sets Ry = {a — b}, Ei = {b = ¢} will be generated. Then the
equation b = c will be oriented according to the ordering > ; .  Thus, the rule 6 — ¢ will be
added. In addition, the right hand side of the rule a — b will be simplified. In this way we
obtain Ry  = {a  — ¢,b — c } ,  & = 0. Since there are no overlaps between rules of  Ro,  the
algorithm CA_MOD1 will stop w i th  the sets Ry  = R ;  and £ = @. Hence, the generated
system Ra  is complete and interreduced and it is equivalent to  R .

An  important fact illustrated by example 4 is that a modified completion algorithm may not be
fair, although the corresponding original completion algorithm is. If a fixed reduction ordering
is used, then the interreduction process will always terminate. Example 4 illustrates that this
is no  longer true if we allow to  change the reduction ordering during the interreduction process.
Hence, it is possible in  that case that certain overlaps between persisting rules are not consid-
ered. For example, consider what happens i f  we slightly modify the input of  example 4. If we
add the rules de — g and e f  — g and extend the orderings appropriately, then the algorithm
used may generate the sequence ({de — g ,e f  — g }  U R ı ) ;en  instead of  (R ; ) ;en-  Hence the
overlap between the rules de — g ,e f  — g will never be considered. This problem can be
circumvented by  requiring that the ordering only may be changed during modified completion
if the actual set of  equations is empty. In that case i t  is guaranteed that any interreduction
process will terminate.

Another striking point in  example 4 is the fact that the process described does not terminate,
although the set U;c NR; is finite. Such a phenomenon cannot arise if Huet’s completion algo-
rithm or one of  i ts  modified versions CA.MOD1 or CA_MOD2 is used, since then a string that
is reducible at some step i of  the process is reducible with respect to any of  the systems R;
wi th  j > i .  Since i n  addition new rules are built only from normal forms, i t  cannot happen that
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a rule is generated twice if Huet's completion algorithm or the modified versions CA..MODl
 
or CA_MOD2 are used.
 

But ,~ven if the algorithm CA-MODI is used and in addition, the changes of the ordering are
 
restricted to those cases where the corresponding sets of equations are empty, a system that
 
is not equivalent to the input system can be generated.
 

Example 5. Let R = {I : X -+ egabc, 2 : QH -+ ga, 3: QA -+ Eega, 4 : Qh -+ ga, 5: qH -+
 

a,6: qA -+ q,7: qd -+ q,8: qe -+ 0,9: qh -+ a,lO: qb -+ q,ll: WH -+ Hbb,12: WA-+
 
Add, 13 : wh -+ hdd,14 : wA -+ Abb, 15 : eE -+ c,16 : Eego -+ go, 17 : H be -+ Adde, 18 :
 
hddc -+ Abbbc}.
 
Moreover, let >-1 be the syllable ordering induced by the precedence X > W > w > Q > q >
 
H > h > b > d > a > c > 9 > e > A > E > 0 and >-2 the syllable ordering induced by the
 
precedence X > W > w > Q > q > H > h > d > b > a > c > 9 > e > A > E > 0, and let
 
(>;)iEIN be defined by: >i = >-1 for 0 s: i s: 39, >40+l4j+k = >-2 for j E IN and 0 s: k s: 6,
 
and >40+14j+k = >-1 for j E IN and 7 s: k s: 13.
 
Claim: Given Rand (>;)iEIN as input, the algorithm CA..MODl will generate an infinite
 
sequence (RoJo), (RI, [d, (R2J2), ... such that for all j E IN the following holds:
 

1) [40+14) = 0
 
2) R 40+ l4 j = Rj where
 

Rj = (R - {I: X ---. egabc}) 
U {I: X -+ egad2j+2c} 
U {Hbnc -+ Adn+I c I n odd and 1 s: n s: 2j + I} 
U {abnc -+ 0 I n odd and 1 s: n s: 2j} 
U {hdnc -+ Abn+lc I n even and 2 s: n s: 2j} 
U {adnc -+ 0 I n even and 2 s: n s: 2j} 
U {lj,l: hd2j+2c -+ Ab2j+3c} 
U {lj,2: ab2j+I c -+ o} 
U {l j,3: Hb2j+3c -+ Ad2j+4C} 

U {lj,4: Eegad2j+2 c -+ go} 

where ij,l, 1j,2, ij,3, ij ,4 E IN with [j,l < ij ,2 < ij ,3 < ij,4 and all rules except the rules 
ij,l, ij,2, 1j ,3 and ij ,4 are marked. 

Proof. The proof can be found in the appendix. 
AnalysIs of the proof shows that whenever the ordering is changed the corresponding set of 
equations is empty (i.e. if for some i E IN, >i and >i+I are different, then [i+l is empty). 
As mentioned before a rule may not be generated twice during the execution of the algorithm 
CA..MODl. Hence the above claim implies that for the set R= of persisting rules the following 
holds: 

R= = (R- {1:X-+egabc}) 
U {Hbnc -+ Adn+I c I n odd and 1 s: n} 
U {abnc -+ 0 I n odd and 1 s: n} 
U {hdnc -+ Abn+I c I n even and 2 s: n} 
U {adnc -+ 0 I n even and 2 s: n} 

Since the orderings >-1 and >-2 are both used infinitely many time~ during the described pro­
cess, R= is compatible with both of them. Thus, R= is noetherian. But, R= is not equivalent 
to the initial system R: X -+ egabc is an initial rule, but X and egabc are obviously not con­
gruent modulo R=. 
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a rule is generated twice if Huet’s completion algorithm or the modified versions CA_MOD1
or CA_MOD?2 are used.

Bu t  ven i f  the  algorithm CA_MODI is  used and i n  addit ion,  the  changes of  the ordering are
restricted to those cases where the corresponding sets of  equations are empty, a system that
is not equivalent to  the input system can be generated.

Example 5 .  Let R = { 1 :  X — egabc,2: QH  — ga ,3 :  QA  — Eega ,4 :Qh — ga ,5 :qH  —
a,6:9gA — ¢ ,7 :qd  -¢ ,8 :9c  = 0 ,9 :  ¢gh —> a , 10 :qb  — ¢q,11: WH — Hbb,12 :  WA —
Add ,13  : wh  — hdd ,14  : wA  — Abb ,15 :  eE  — ¢ ,16  : Fego — go ,17  : Hbc  — Addc,18 :
hddc — Abbbc}.
Moreover, let > ;  be the syllable ordering induced by the precedence X > W > w > @Q > ¢ >
H>h>b>d>a>c>g>e>A>FE > o0and > ;  the syllable ordering induced by the
precedence X >W >w>Q >¢>H>h>d>b>a>c>g>e>A> FE > o,and let
(>i) ieIN be defined by: > ;  => ;  for 0 < i < 39, >40414 j+k  =>2  for j €e Nand 0 < k <6 ,
and >40+14j+k = >1  for je Nand  7<  k <13 .
Claim: Given R and (> ; ) ;eN  as input, the algorithm CA_MOD1 will generate an infinite
sequence (Ro,  Eo), (R ı ,  Ei), (Rz, E32), ... such that for all j € IN the following holds:

1)  E0414; = 0
2 )  Rao+14 ;  = R ;  where

R;=  (R -  { 1 :X  — egabc})
{ 1 :  X — egad¥*2c}
{Hb"c — Ad"* 'c |noddand 1 <n  <2 j+1 }
{ abc — o|n odd and 1 < n < 25}
{hd™c — Ab™*lc | n even and 2 < n < 25}
{ad™c — o |  n even and 2 < n < 2 j }
{ l ; 1  : hd¥*2c — ADPI+3¢}
{l;2 : ab¥+lc — 0}
{ l j  : HC — Ad*+4c}
{ l ;4 : Eegad#+?c — go}

where [;1,0;2,1;3,1;,4 € IN with lj; < l j» < l ;3 < l ; 4  and all rules except the rules
l;1,  12,  l ;3  and I ; 4 are marked.

Proof. The proof can be found i n  the appendix. Oo
Analysis of  the proof shows that whenever the ordering is changed the corresponding set of
equations is empty (i.e. if for some ¢ € IN, > ;  and > ;41  are different, then Ej4+1 is empty).
As mentioned before a rule may not be generated twice during the execution of the algorithm
CA_MOD1. Hence the above claim implies that for the set Ro,  of  persisting rules the following
holds:

Ro = (R— {1 :X  — egabec})
u {Hb  — Ad" * ' c | n  odd and 1 < n }
U {ab — o|  n odd and1 < n}
U {hd™c — Ab"+lc | n even and 2 < n}
U {ad" — o |n  even and 2 < n }

c
c

c
c

c
c

c
c

c

Since the orderings > ;  and > ;  are both used infinitely many times during the described pro-
cess, Roo is compatible with both of them. Thus, R ,  is noetherian. But,  Ra, is not equivalent
to  the initial system R:  X — egabc is an initial rule, but X and egabc are obviously not con-
gruent modulo RR.
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It can easily be checked that the limit system 'Roo generated in the last example is confluent. 
Hence, the algorithm CA_MODI has generated a noetherian and confluent system in that 
case. But, as mentioned before 'Roo is not equivalent to 'R. This is due to the following facts: 
The right hand side of rule 1 is simplified infinitely many times during the process described 
(egabc ~ egad2c ~ egab3c ~ egad4c ~ egab5c ~ ... ). Hence neither the original form of 
rule 1 nor one of its simplified forms belong to 'R<x;,. On the other hand, none of these rules is 
redundant w.r.t. 'Roe. 

Obviously, if a non-redundant rule is simplified infinitely many times, then the generated limit 
system may also be non-confluent, since the crucial non-redundant rule may have been used to 
resolve critical pairs. For instance, consider the following modification of example 5. Extend 
the precedences used by U > V > Y > Z > F > X, and let :>-1 and :>-2 be the syllable 
orderings induced. Moreover, add the rules UV -> Y, VZ -> Fgabc, YZ -> X, UF -> e 
in a way that the overlap between the rules UV ---. Y and V Z -> Fgabc is the first to be 
considered. If the algorithm CA_MODI is started on this input, then the following will hap­
pen: At the moment the rules UV -> Y and V Z -> Fgabc are overlapped the corresponding 
critical pair (Y Z, UFgabc) is joinable in the following way: Y Z ---. X ---. egabc f- UFgabc. 
Since the symbols of the left hand sides of the rules added are 'new' ones, the new rules 
will not have any further influence on the execution of the algorithm CA..MOD1, Le. the 
limit system that will be generated is the union of the limit system of example 5 and the set 
{UV ---. Y, VZ ---. Fgabc,YZ -> X,UF ---. e}. Thus, the critical pair (YZ,UFgabc) will not 
be joinable w.r.t. the limit system, i.e. th'e limit system is not confluent in that case. 

This example already gives an answerto the problem 35 of [DJK91], but we can even give an 
example where the algorithm generates an equivalent, noetherian system that is not confluent. 
For this purpose let us consider example 5 again, and see what will happen if we remove the 
crucial rule X -> egabc. Since this rule has neither been used for overlapping nor for reduction, 
the algorithm CA-MOD1 will generate the same limit system as before. Hence, in that case 
the generated limit system is complete and equivalent to the input system. But nevertheless, 
there is still a rule in the set UiENRi that is simplified infinitely many times during this mod­
ified completion process: The rule gabc -> Eegad2c generated by overlapping is simplified to 
the equation go = Eegad2c, which will be oriented to the rule Eegad2c -> go, which will be 
simplified to the equation EeEegab3c = go, which will yield the rule Eegab3c -> go, which 
will be simplified to the equation go = EeEegad4c, which will yield the rule Eegad4c -> go, 
and so on. But, in this case this infinite simplification does not affect the equational the­
ory presented by the limit system, since the rules and equations generated during this sim­
plification process are redundant: In Roe the following reduction steps can be performed: 
EeEegabnc -> Eegabnc -> Eego -. go if n is odd, and EeEegadnc -. Eegadnc -. Eego -> go 
if n is even and greater than 1. 

The proof of the above claim shows that the rule Eego -> go will never be used for reductions 
during the execution of the algorithm CA_MODI. Moreover, it shows that this rule will be 
overlapped only once and the corresponding critical pair is trivial in that case. Hence, if we 
remove the rule Eego -. go as well as the rule X -> egabc from the input system of exam­
ple 5, the algorithm CA..MOD1 will generate the limit system 'R'oo = Roe - {Eego -. go} 
where 'Roe is the limit system generated in example 5. Again the rule gabc -. Eegaddc will 
be generated by overlapping and it will be simplified infinitely many times as in example 
5. But the limit system 'R'oo that will be generated is a superset of the input system and 
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I t  can easily be checked that the limit system Ra, generated in the last example is confluent.
Hence, the algorithm CA_MOD1 has generated a noetherian and confluent system in that
case. Bu t ,  as mentioned before Ro,  is not equivalent t o  R .  This is due to the following facts:
The right hand side of  rule 1 is simplified infinitely many times during the process described
(egabe — egad®c = egab®c — egadic = egabSc — ...). Hence neither the  original form of
rule 1 nor one of  i ts  simplified forms belong to  Roo. On  the other hand, none of  these rules is
redundant w.r.t. Reo.

Obviously, if  a non-redundant rule is simplified infinitely many times, then the generated limit
system may also be non-confluent, since the crucial non-redundant rule may have been used to
resolve critical pairs. For instance, consider the following modification of  example 5. Extend
the precedences used by  U > V >Y  > Z > F > X ,  and let > ;  and 2 be  the syllable
orderings induced. Moreover, add t he  rules UV  — Y ,VZ  — Fgabe,  YZ  — X ,  UF  — e
i n  a way that the overlap between the rules UV — Y and VZ  — Fgabé is the first t o  be
considered. I f  the algorithm CA_MODI is started on this input, then the following will hap-
pen: At  the moment the rules UV — Y and VZ  — Fgabc are overlapped the corresponding
critical pair (YZ ,  U Fgabc) is joinable in  the following way: YZ  — X — egabc — UFgabe.
Since the symbols of the left hand sides o f  the rules added are 'new’ ones, the new rules
will not have any further influence on the execution of the algorithm CA MODI, i.e. the
limit system that will be generated is the union of  the limit system of example 5 and the set
{UV  -Y ,VZ  — Fgabe,YZ — X ,UF  — e}. Thus, the critical pair (YZ ,  U Fgabc) will not
be joinable w.r.t. the limit system, i.e. the l imit system is not confluent i n  that case.

This example already gives an answerto the problem 35 of  [DJK91], but we can even give an
example where the algorithm generates an equivalent, noetherian system that  is not confluent.
For this purpose let us consider example 5 again, and see what will happen if we remove the
crucial rule X — egabe. Since this rule has neither been used for overlapping nor for reduction,
the algorithm CA_MOD1 will generate the same limit system as before. Hence, in that case
the generated limit system is complete and equivalent to  the input system. But  nevertheless,
there is still a rule in  the set U;cpyR; that is simplified infinitely many times during this mod-
ified completion process: The rule gabc — Fegad?c generated by overlapping is simplified to
the equation go = Eegad’e, which will be oriented to  the rule Fegad?c — go, which will be
simplified to the equation EeEegab3c = go, which will yield the rule Eegab3c — go, which
will be simplified to  the equation go = EeFegad®c, which will yield the rule Eegadic — go,
and so on. But, in this case this infinite simplification does not affect the equational the-
ory presented by the limit system, since the rules and equations generated during this sim-
plification process are redundant: In Ro, the following reduction steps can be performed:
EeEegab™c — Fegab“c — Eego — go i f  n is odd, and FeFegad™c — Eegad"c — Eego — go
i f  n is even and greater than 1.

The proof of  the above claim shows that the rule Fego — go will never be used for reductions
during the execution of the algorithm CA_MOD1.  Moreover, i t  shows that this rule will be
overlapped only once and the corresponding critical pair is trivial in that case. Hence, i f  we
remove the rule Fego — go as well as the rule X — egabc from the input system of exam-
ple 5, the algorithm CA_MOD1 will generate the limit system R., = Ro, — {Eego — go}
where Ro, is the limit system generated in example 5. Again the rule gabe — Eegaddc will
be generated by overlapping and i t  will be simplified infinitely many times as in example
5. But  the limit system RL, that will be generated is a superset of  the input system and
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hence, both systems are equivalent. In R'oo the following reduction steps can be performed: 
go <- gabc <- QHbc ----+ QAddc ----+ Eegaddc -+ Eego. Hence we have go:"'R'ooEego. Thus, R'oo 
is noetherian and equival~nt to the input system, but it is not confluent. 

In order to examine this phenomenon more closely, let us consider how the relationship between 
the components of the critical pair (gabc, QAddc).changes during the execution ofthe algorithm 
CA.MODl. 
At the moment when the critical pair (gabc, Q Addc) is considered, the string gabc is irreducible 
and the string QAdde can be reduced to the irreducible string Eegaddc. Since the ordering 
>-1 is used in that step, the rule gabc -+ Eegad2c is generated, and we have the situation 
illustrated in figure 5.1. Later on, the rules abc -+ 0 and Eegad2e -+ go are generated. Hence 
then the critical pair (gabc, Q Addc) is joinable as illustrated in figure 5.2. Note that the strings 
gabc and Eegad2c are not comparable w.r.t. the reduction ordering that is induced by the 
current set of rules at that moment. Hence, the ordering >-2 can be used for further steps. 
Doing this the rule gad2c -+ Eegab3c will be added. Then, this new rule is used to simplify 
the rule Eegad2c -+ go. In this way the equation EeEegab3c = go is obtained (s. figure 5.3). 

QHbc QHbc QHbc 
/~ /~ /~ 

gabc QAddc gabc QAddc gabc QAddc 

~. • •Eegad2c go• • Eegad2c go Eegad• 2c 

'leEegab3
C 

fig. 5.1 fig. 5.2 fig. 5.3 

Next, the rule ad2 c -+ 0 is added and hence, the rule gad2 c -+ Eegab3c is being simplified 
to the equation Eegab3c = go (s. figure 5.4). The equation EeEegab3c = go yields the rule 
Eegab3c -+ go. Hence, the string EeEegab3c can be reduced to Eego as well as to go. Now, 
the critical pair (gabc,Q Addc) is not joinable, but it is connected below the string Q H be (s. 
figure 5.5). 

QHbc
/H~ /~ 

gabc QAddc gabc QAddc 

t t 
go Eegad2 c• • go Eegad2c 

'E;:;:;;--- Eego E~E<gO"" 

3 
"" Eegab c 

fig. 5.4 fig. 5.5 

For the next steps >-1 is used again. By overlapping the rule gab3c -+ Eegad4c is generated. 
This new rule is used for simplification and the situa.tion illustrated in figure 5.6 arises. Then, 
the rule ab3 c -+ 0 is generated by overlapping and thus, the strings gabe and Q Addc are related 
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hence, both systems are equivalent. In RL  the following reduction steps can be performed:
go  — gabe — QHbc  — Q Addc — Eegaddc — Eego.  Hence we have go—Rrı  Eego. Thus,  RL,
is noetherian and equivalent to the input system, but i t  is not confluent.

In  order to  examine this phenomenon more closely, let us consider how the relationship between
the components of  the critical pair (gabc, Q Addc) changes during the execution of  the algorithm
CA MODI. “
At  the moment when the critical pair (gabe, Q Addc) is considered, the string gabe is irreducible
and the string Q Addc can be reduced to  the irreducible string Eegaddc. Since the ordering
>1  is used in that step, the rule gabc — Eegad’c is generated, and we have the situation
illustrated in  figure 5.1. Later on, the rules abc — o and Fegad?c — go are generated. Hence
then the critical pair (gabe, Q Adde) is joinable as illustrated in  figure 5.2. Note that the strings
gabe and Eegad?®c are not comparable w.r.t. the reduction ordering that is induced by the
current set o f  rules at  that  moment.  Hence, the  ordering > ;  can be  used for further steps.
Doing this the rule gad?c — Eegab3c will be added. Then, this new rule is used to simplify
the rule Eegad®c — go. In  this way the equation EeEegab3c = go is obtained (s. figure 5.3).

QHbe QHbc QHbe

gabe QAdde gabe QAdde gabe QAddc

~_  | | | | |
Eegad’c go Eegad?c go Eegad?c

}
EeEegab3c

fig. 5.1 fig. 5.2 fig. 5.3

Next, the rule ad?c — o is added and hence, the rule gad?c — Eegab3c is being simplified
to the equation Eegab®c = go  (s. figure 5.4). The equation EeEegab®c = go  yields the rule
Eegab®c — go. Hence, the string EeFegab3c can be reduced to Eego as well as to  go. Now,
the critical pair (gabc,@ Addc) is not joinable, but i t  is connected below the string Q Hbe (s.
figure 5.5).

AR aS
gabe QAdde gabe QAdde

| | | {
go Eegad®c go Eegad?c

Dee  —— Eego EeEegabbc —— Eego
{

\ Eegabiec

fig. 5.4 fig. 5.5

For the next steps > ;  is used again. By overlapping the rule gab3c — Eegad?c is generated.
This new rule is used for simplification and the situation illustrated in figure 5.6 arises. Then,
the rule able — o is generated by overlapping and thus, the strings gabe and Q Addc are related
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as illustrated in figure 5.7. 

QHbc 

/~ 
gabc QAddc 

~ ~ 
go Eegad2c 

EeEegab3 c Eego 

~--::------- 11 
Eegab3 c EeEeEegad4 c 

~ 
EeEegad4 c 

fig. 5.6 fig. 5.7 

The equation EeEegad4c = go is simplified to the rule Eegad4 c -+ go. Hence, the situation is 
similar to the one illustrated in figure 5.5: The critical pair (gabc, Q Addc) is connected below 
the string QHbc, but now, via the 'peak' go :-- EeEegad4c -+ Eego (s. figure 5.8). And in 
fact, at one of the subsequent steps the situation given by figure 5.9 will arise. 

QHbc 

/~ 
gabc QAddc 

~ ~ 
go Eegad2 c go 

-----------Eego

EP
 
EeEegad4 c 

~ 
Eegad4 c 

EeEegab5 c 

+ 
Eegab5 c 

fig. 5.8 fig. 5.9 

Hence in small steps the critical pair (gabc, QAddc) will be being connected (w.r.t. rl as well 
as w.r.t. r2) below QHbc via the 'peaks' go :.... EeEegabnc -+ Eego where n E ll'l is an odd 
number greater than 2, as well as via the 'peaks' go :.... EeEegadnc -+ Eego where n E ll'l is 
an even number greater than 3. Thus the original rewrite prooffor gabc :.. QAddc, illustrated 
in figure 5.1, will be transformed infinitely many times during the execution of the algorithm 
CA..MODl, and in the generated limit system gabc and QAddc will not be joinable. 
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as i lustrated in  figure 5.7.

QHbe g i e
gabe QAddc gabe QAddc

| J | |
N ES  

N mr
EeEegab3c Eego Eego

Eegab3c EeEeEegadic Eegab®c

{
EeEegadic EeEegadc

fig. 5.6 fig. 5.7

The equation EeEegadic = go is simplified to  the rule Eegad*c — go. Hence, the situation is
similar to  the one illustrated in  figure 5.5: The critical pair ( gabe ,Q Addc) is connected below
the string Q Hbc, but now, via the ‘peak’ go «— EeFegadic — Eego (s. figure 5.8). And in
fact, at one of the subsequent steps the situation given by figure 5.9 will arise.

A | QHbe

gabe QAddc gabe QAddc

| | | |
go Fa  go Eegad?®c

= 
J

s r  Eegab®c

FeEegad*c
|

Fegadic Eegadic

EeEegab®c
|

EegabSc

fig. 5.8 fig. 5.9

Hence in small steps the critical pair (gabe, Q Addc) will be being connected (w.r. t .  > ;  as well
as w.r.t. >2) below Q Hbc via the peaks’ go — EeEegab™c — Eego where n € IN  is an odd
number greater than 2,  as well as via the 'peaks’ go & EeFEegad™c — Eego where n € N is
an  even number greater than 3.  Thus the  original rewrite proof for gabe & Q Adde, illustrated
in  figure 5.1, will be transformed infinitely many times during the execution of  the algorithm
CA_MODI, and in  the generated limit system gabc and Q Addc will not be joinable.
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The last example has shown that even if the algorithm CA-MODI generates an infinite, noethe­
rian system presenting the same equational theory as the input system, this limit system may 
be non-confluent. There remains to check whether the algorithm CA_MODI at least is par­
tially correct, i.e. if it always generates correct results whenever it terminates with success. 
If the algorithm CA-MODI terminates with success, then the finite system is noetherian and 
equivalent to the input system. But even in this case, the generated system may be non­
confluent. 

Example 6. Let R = {I : xwef ---+ xweg,2 : egc ---+ dgc,3 : xwd ---+ xwi,4 : ubc ---+ 0,5 : 
xwigc ---+ 0,6: xwa ---+ u, 7: abc ---+ efc,8: zf ---+ c,9: hz ---+ we,lO: yb ---+ g, 11: iy ---+ a}. 
Moreover, let ?-1 be the syllable ordering induced by the precedence z > x > y > a > f > 
9 > b > w > e > d > c > i > 0 > h > u and ?-2 be the syllable ordering induced by the 
precedence z > x > y > 9 > a > f > b > w > e > d> c > i > 0> h > u, and let (>i)ielN be 
a family of syllable orderings satisfying: >i = ?-1 for 0 ::; i ::; 24 and >i = ?-2 for 25 ::; i ::; 30. 
Since R is compatible with ?-1 and R is interreduced, the algorithm CA_MOD1 will generate 
the sets R u = R, £u = 0, where all rules in R u are unmarked. Since there are no overlaps 
between rules of R - {7 : abc ---+ efc,8 : zf ---+ c,9 : hz ---+ we, 10 : yb ---+ g,l1 : iy ---+ a}, 
we have R 17 = R, £17 = 0, where all rules of R 17 except the rules 7, 8, 9, 10 and 11 are 
marked. Hence, in the next step the rule 7 will be marked and all critical pairs between 
the rule 7 and the rules 1-7 will be computed. Rule 7 only overlaps with rule 6. The cor­
responding critical pair is (ubc, xwefc). Thus we obtain R 18 = R, where all rules except 
the rules 8-11 are marked, and £18 = {ubc = xwefc}. Since the critical pair (ubc,xwefc) is 
joinable ( ubc ---+ 0 <- xwigc <- xwdgc ,....... xwegc <- xwefc) the following holds: R 19 = Rand 
£19 = 0. In the next step rule 8 will be marked and the corresponding critical pairs will be 
computed. Since there are no overlaps between rule 8 and the rules 1-8, we obtain R20 = R, 

£20 = 0, where all rules except the rules 9-11 are marked. Rule 9 overlaps only with rule 8. 
The corresponding critical pair is (wef,h). Thus, we have R21 = Rand £21 = {wef = h}. 
Since wef and h are irreducible w.r.t. R 21 and wef ?-1 h, the rule 12 : wef ---+ h will be 
added. Now this new rule will be used to reduce the left hand side of the first rule. This 
gives R 22 = (R - {1 : xwef ---+ xweg}) U {12 : wef ---+ h} and £22 = {xweg = xh}. Since 
xweg and xh are irreducible w.r.t. Rn and xweg ?-1 xh, the rule 13 : xweg -+ xh will be 
added. This yields: R 23 = (R - {1 : xwef ---+ xweg}) U {12 : wef ---+ h,13 : xweg ---+ xh} 
and £23 = 0, where all rules except the rules 10-13 are marked. Since there are no over­
laps between rule 10 and the rules 1-10, the sets R 24 = R 23 and £24 = 0 will be gener­
ated. In the next step rule 11 will be overlapped with rule 10. This gives R 25 = R 23 and 
£25 = {ab = ig}. R 25 is compatible with ?-2. Hence,?-2 can be used for the next step. 
Since ab and ig are R 25-irreducible and ig ?-2 ab, the rule 14 : ig ---+ ab will be generated. 
This new rule will be used to reduce the left hand side of rule 5. In this way we obtain 
R 26 = {2 : egc ---+ dgc,3 : xwd ---+ xwi,4 : ubc ---+ 0,6 : xwa ---+ u,7 : abc ---+ efc,8 : zf ---+ c, 
9: hz ---+ we, 10 : yb ---+ g,l1 : iy ---+ a,12: wef ---+ h,13: xweg ---+ xh,14: ig ---+ ab} and 
£26 = {xwabc = o}. Since xwabc ---+ ubc ---+ 0, the sets R 27 = R 26 and £27 = 0 will be gener­
ated. Rule 12 does not overlap with any of the rules 1-12. Therefore we obtain R28 =R 26 and 
£28 = 0, where all rules except the rules 13 and 14 are marked. Next, rule 13 will be marked. 
Rule 13 only overlaps with rule 2. The corre,>ponding critical pair (xhc, xwdgc) is joinable in 
the following way: xwdgc ---+ xwigc ---+ xwabc ---+ xwefc ---+ xhc. Hence. we have 'R29 = 'R26 and 
£29 = 0. Since rule 14 does not overlap with any of the other rules, the algorithm CA..MOD1 
will stop with the sets 'R30 = R 26 and £30 =0. Hence, R= = 'R26. But 'R26 is not confluent: 
0;' xhc (since 0 <- ubc <- xwabc ---+ xwefc ---+ xhc), and 0 and xhc are 'R26-irreducible. 
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The last example has shown that even i f  the algorithm CA_MOD1 generates an infinite, noethe-
r ian system presenting the  same equational theory as the  i npu t  system, th is  limit system may
be non-confluent. There remains to  check whether the algorithm CA_MODI1 at least is par-
t ial ly correct, i.e. i f  i t  always generates correct results whenever i t  terminates wi th  success.
If the algorithm CA_MODI1 terminates with success, then the finite system is noetherian and
equivalent to the input system. But even in  this case, the generated system may be non-
confluent.

Example 6 .  Let R = {1  : zwe f  — zweg,2 : egc — dgc,3 : zwd — zw i ,4 : ubc — 0 ,5 :
Twige— 0 ,6 : zwa — u ,7 :  abc — e fe ,8 :2 f  —»¢€,9:hz  — we, 10 :  yb — g,11: i y — a } .
Moreover, let > ;  be the syllable ordering induced by the precedence z > z > y >a  > f >
g>b>w>e>d>c>1>0>h  > uand > ;  be the syllable ordering induced by the
precedence 2 >z>y>g>a>  f>b>w>e>d>e> i>0>h > u,  and let (>;)eN be
a family of  syllable orderings satisfying: > ;  = > ;  for 0 <<  24 and > ;  = > ;  for 25 < i  < 30.
Since R is compatible with > ;  and R is interreduced, the algorithm CA_MOD1 will generate
the sets Ry ;  = R ,  £11  = 0, where all rules i n  R ız are unmarked. Since there are no overlaps
between rules o f R — {7  : abc — efec,8 : 2 f  — £,9 : hz  — we ,10 : yb — g ,11  : i y  — a } ,
we have R17 = R ,  £7  = 0 ,  where all rules of  Ry ;  except the rules 7 ,  8 ,  9 ,  10 and 11  are
marked. Hence, in  the next step the rule 7 wi l l  be marked and all critical pairs between
the rule 7 and the rules 1-7 will be computed. Rule 7 only overlaps wi th rule 6. The cor-
responding critical pair is (ubc,zwefc). Thus we obtain R ıs  = R ,  where all rules except
the rules 8-11 are marked, and &;5 = {ube = zwefc}. Since the critical pair (ube, zwefc) is
joinable ( ubc — 0 — zwigc — zwdgc — zwegc — zwe fc)  the following holds: Rig = R and
£19 = 0. In the next step rule 8 will be marked and the corresponding critical pairs will be
computed.  Since there are no  overlaps between rule 8 and the rules 1-8, we obtain Rog = R ,
Exo = 0, where all rules except the rules 9-11 are marked. Rule 9 overlaps only wi th  rule 8.
The corresponding critical pair is (wef, h). Thus, we have Ry; = R and E21 = {wef  = h}.
Since we f  and h are irreducible w. r . t .  Ry ;  and wef > ,  h ,  the rule 12 : wef  — h will be
added. Now this new rule will be used to  reduce the left hand side of the first rule. This
gives Ry;  = (R— {1  : zwef  — zweg})U {12 : wef  — h }  and E22 = {zweg = zh } .  Since
zweg and zh  are irreducible w.r.t. R ız  and zweg > ;  zh ,  the rule 13 : zweg — zh  will be
added. This yields: R ız = (R  — {1  : zwe f  — zweg} )U  {12 : wef  — h,13 : zweg — zh}
and £3  = @, where all rules except the rules 10-13 are marked. Since there are no over-
laps between rule 10 and the rules 1-10, the sets Rpg  = R23 and E24 = ( will be gener-
ated. In the next step rule 11 will be overlapped wi th  rule 10. This gives Ras = R ı3 and
E35 = {ab = ig } .  R ıs is compatible with >2. Hence, >2 can be used for the next step.
Since ab and ig are Rjs-irreducible and ig > ,  ab, the rule 14 : ig — ab will be generated.
This new rule will be used to reduce the left hand side of rule 5. In this way we obtain
Rae = {2  : ege — dgc,3 : zwd  — zw i ,  4: ube — 0,6 : zwa — u ,7 :  abc — e fe ,8 :  2f — ¢,
9 :  hz  — we ,  10: yb — g ,11  : ty  — a,12 : wef  — h,13 : zweg — zh,14 : ig — ab} and
E36 = {zwabe = o } .  Since zwabe — ube — o, the sets R27  = Rae and E27 = @ will be gener-
ated. Rule 12 does not overlap with any of the rules 1-12. Therefore we obtain R35 = Rg¢ and
E28 = 0, where all rules except the rules 13 and 14 are marked. Next, rule 13 will be marked.
Rule 13 only overlaps wi th  rule 2. The corresponding critical pair (zhe,zwdgc) is joinable in
the following way: zwdgc — zw igc  — zwabc — zwefc  — xhc .  Hence. we have Rag = R36 and
E29 = 0. Since rule 14 does not overlap with any of  the other rules, the algorithm CA_MOD1
will s top with the sets R3g = R ı6 and £30 = 0 .  Hence, Ro, = Rag.  But  Roe is  not confluent:
0 & zhe (since 0 — ubc — zwabc — zwefc — zhc),  and o and zhe are Ryg-irreducible.
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Thus, even if the algorithm CAJ.:I0Dl terminates with success, the generated noetherian 
system can be non-confluent. 
In order to illustrate this phenomenon, let us consider how the relationship between the strings 
ubc and xwefc (which form a critical pair) changes during the described process: At the 
moment of the process when this critical pair is considered it is joinable (see figure 6.1). Later 
on, the rule 1 : xwef ---> xweg that has been used to solve the critical pair (ubc, xwefc) is 
simplified. Therefore, the critical pair is no longer joinable, but it is connected below xwabc 
with respect to )--1 as illustrated in figure 6.2. 

xwabc xwabc 
/~ /~ 

ubc xwefc 

.be ::~+ xwegc 

+xwdgc xL~c 
xwigc xwigc 

o ------
+

o ------
+

fig. 6.1 fig. 6.2 

In one of the further steps the ordering used is changed such that ig is greater than ab with 
respect to the new ordering. In order to illustrate this fact, we have rewritten the graph of figure 
6.2 to the one of figure 6.3. During the following steps the rule ig ---> ab will be generated by 
overlapping. Thus, the rule 5 : xwigc ---> 0 will be deleted, and the situation illustrated in 
figure 6.4 arises. In the graph of figure 6.4 there are two 'peaks'. For the corresponding critical 
pairs the following holds: The critical pair (ubc,xwefc) has already been considered and the 
critical pair (xwdgc, xhc) is joinable. But, nevertheless the critical pair (ubc, xwefc) is not 
joinable any more. 

xwegc xwegc 

~ ~ 
xwdgc xwdgc 

t t 
xwigc xwigc

xwabc xwabc -­
.be 

/~ /.~ 

.w~ .b, .w~ 

xhc xhc 

o o 

fig. 6.3 fig. 6.4 
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Thus, even i f  the algorithm CA_MODI  terminates with success, the generated noetherian
system can be non-confluent.
In  order to  illustrate this phenomenon, let us consider how the relationship between the strings
ubc and zwefc (which form a critical pair) changes during the described process: At  the
moment of  the process when this critical pair is considered i t  is  joinable (see figure 6.1). Later
on, the rule 1 : zwe f  — zweg that has been used to solve the critical pair (ube, zwe fc) is
simplified. Therefore, the critical pair is no longer joinable, but i t  is connected below zwabc
with respect to  > ;  as illustrated i n  figure 6.2.

zwabc zwabc
~~

ube zwefc ube zwefe

|
Twegc zwege
| FT

zwdgce zwdgce zhe

3 V
rw ige  Tw ige

'
0 0

fig. 6.1 fig. 6.2

In one of  the further steps the ordering used is changed such that ig is greater than ab with
respect to  the new ordering. In  order to  illustrate this fact, we have rewritten the graph of  figure
6.2 to the one of figure 6.3. During the following steps the rule ig — ab will be generated by
overlapping. Thus, the rule 5 : zwige — o will be deleted, and the situation illustrated in
figure 6.4 arises. In  the graph of figure 6.4 there are two peaks’. For the corresponding critical
pairs the following holds: The critical pair (ubc, zwe fc)  has already been considered and the
critical pair (zwdgc, zhe) is joinable. Bu t ,  nevertheless the critical pair (ube, zwefc) is not
joinable any more.

Twegc zwegc

zwdge zwdge

Twigc Twige

Da we

ube zwefc  ube zwefc

zhe zhe

0 0

fig. 6.3 fig. 6.4
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4 

Concluding our analysis of the correctness of the algorithm CA_MODl we summarize the 
results obtained. 

'I neorem 3.2 The algorithm CAjlJOD 1 is not correct: 

1.	 If it does not terminate on input (£,(>i)iEIN), then the genemted infinite system R oo 

may be non-equivalent to £. In a.ddition, R oo mayor may not be confluent. 

2.	 If it terminates on input (£,(>;)iEIN), then the genemtedfinite system R oo is noetherian 
and equivalent to £, but it may be non-confluent. 

Concluding Remarks 

We have analysed whether or not Huet's algorithm remams correct if it is modified in the 
following way: 
Insteaa of one (recursive) reduction ordering, a family (>;)iEIN of (recurs:.L) reduction order­
ings is required as input. If the equation that is considered at step i of the algorithm is not 
trivial, the algorithm will proceed as follows. It will stop with failure if the ordering >i is not 
compatible with the actual set of rules Ri. Otherwise, the equation under consideration will 
be oriented W.r.t. >i if possible. 

We have shown that this variant of Huet's completion algorithm is not correct regardless of 
the fact whether or not interreduction is used within. In particular, we have proved that in 
case interreduction is used the algorithm is not even partially correct: Even if the algorithm 
terminates with success, the generated finite, noetherian system may be non-confluent. 

Since a finite term rewriting system R is noetherian if and only if there exists a (recursive) 
reduction ordering that is compatible with R, the same systems can be generated if we modify 
Huet's algorithm as follows: 
Instead of using a reduction ordering to ensure termination of the successively generated term 
rewriting systems, we allow to choose an arbitrary orientation of the equations. If the resulting 
system can be proved to be noetherian (using a certain method), the algorithm will continue 
in the usual way. Otherwise, the algorithm will terminate with failure. 
This variant of the Knuth-Bendix completion algorithm (apart from slight modifications) has 
been considered several times in the literature (see e.g. [BL82], [H080], [P186], [KKW89]). 
In these versions usually interreduction is not used and the authors restrict their attention 
to those cases where the algorithm considered terminates with success. Of course, a system 
generated in that way is finite, complete and equivalent to the corresponding input. 
Our examples show that one must be careful if these restrictions are not included. Even 
if interreduction is not used, an infinite, non-noetherian and non-confluent term rewriting 
system may be generated in that way. Hence, in contrast to the usual completion algorithm, 
the modified algorithm cannot be used as a semidecision procedure for the word problem of the 
input system. Moreover, if interreduction is incorporated, a lot of problems may arise. The 
generated limit system may be non-equivalent to the corresponding input, or even noetherian 
and equivalent to the input system, but not confluent. Example 6 has shown that the latter 
case even may arise if the algorithm terminates with success. 
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Concluding our analysis of the correctness of the algorithm CA_MOD1 we summarize the
results obtained.

Tneorem 3.2 The algorithm CA_MODI is not correct:

1. If  it does not terminate on input (£,(>:);eIN), then the generated infinite system Ro
may be non-equivalent to £ .  In addition, R., may or may not be confluent.

2. If i t  terminates on input (£,(>;);cIN), then the generated finite system Ro, is noetherian
and equivalent to E,  but i t  may be non-confluent.

4 Concluding Remarks

We have analysed whether or not Huet’s algorithm remains correct i f  i t  is modified in the
following way:
Instead of  one (recursive) reduction ordering, a family (>;);e ın of  (recurs: .¢) reduction order-
ings is required as inpu t .  I f  the equation that  is considered at step ¢ of  the algorithm is not
trivial, the algorithm will proceed as follows. I t  will stop with failure i f  the ordering > ;  is not
compatible wi th  the actual set of  rules R ; .  Otherwise, the equation under consideration will
be oriented w . r . t .  > ;  i f  possible.

We have shown that this variant of  Huet’s completion algorithm is not correct regardless of
the fact whether or not interreduction is used within. In particular, we have proved that in
case interreduction is used the algorithm is not even partially correct: Even i f  the algorithm
terminates wi th  success, the generated finite, noetherian system may be non-confluent.

Since a finite term rewriting system R is noetherian i f  and only if there exists a (recursive)
reduction ordering that is compatible with  R ,  the same systems can be generated if we modify
Huet’s algorithm as follows:
Instead of  using a reduction ordering to  ensure termination of  the successively generated term
rewriting systems, we allow to  choose an arbitrary orientation of  the equations. If the resulting
system can be proved to  be noetherian (using a certain method), the algorithm will continue
in the usual way. Otherwise, the algorithm will terminate with failure.
This variant of the Knuth-Bendix completion algorithm (apart from slight modifications) has
been considered several t imes i n  the literature (see e.g. [BL82], [HO80], [P186], [KKW89]).
In these versions usually interreduction is not used and the authors restrict their attention
to those cases where the algorithm considered terminates with success. Of course, a system
generated in that way is finite, complete and equivalent t o  the corresponding input.
Our examples show that one must be careful i f  these restrictions are not included. Even
if interreduction is not used, an infinite, non-noetherian and non-confluent term rewriting
system may be generated in  that way. Hence, in  contrast to the usual completion algorithm,
the modified algorithm cannot be used as a semidecision procedure for the word problem of  the
input system. Moreover, if interreduction is incorporated, a lot of  problems may arise. The
generated limit system may be non-equivalent to  the corresponding input,  or even noetherian
and equivalent to the input system, but  not confluent. Example 6 has shown that the latter
case even may aise i f  the algorithm terminates with success.
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While Huet and Oppen state in [H080] that in case that the algorithm terminates with success 
the generated system is locally confluent, in [Hu81] Huet makes the following brief remark: 
"The proof turned out to be more difficult than we had expected, and revealed critical condi­
ttuns for the justification of rewrite rules simplifications, which may not be met by existing 
implementations. In particular, it is not enough to require that all the successive term rewrit­
ing systems RI, R2, ••• constructed by the algorithm be noetherian. They must be terminating 
for the same reason; i.e. there must exist some uniform reduction ordering> showing the 
termination of all these sets.". But unfortunately, Huet does not explain why this restriction 
is needed. 
Apart from this remark we are not aware of any other hints in the literature that Huet's algo­
rithm becomes incorrect if it is modified in the way described. On the contrary, usually it is 
assumed that the modified completion algorithm is at least partially correct in that it gener­
ates a complete system equivalent to the corresponding input systeII\ whenever it terminates 
with success. Example 6 disproves this widespread assumption. 

These results also are important from a practical point of view, since most existing imple­
mentations of the Knuth-Bendix algorithm provide the option to orient equations by hand. 
Exa.-v->r1e 6 shows that in case this option is used during a completion process and the corre­
sponding process terminates with success, the only thing we can conclude for the generated 
system is that it is equivalent to the input system, nothing more. 
This observation may affect the correctness of existing implementations of the completion al­
gorithm. For example, we have run example 6 with the system RRL (version 4.1) [KZ89] using 
the option to orient equations manually. By choosing the parameters 'option critical pick f', 
'option norm m' (which determine the strategy used for computing critical pairs as well as 
the normalization strategy) we obtained the same result as in example 6 but with the remark: 
"Your system is locally-confluent". 

Acknowledgement: I would like to thank Klaus Madlener and Birgit Reinert for their 
valuable comments on a previous version of this paper. 
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While Huet and Oppen sta te  in [HO80] that in case that the algorithm terminates with success
the generated system is locally confluent, in [Hu81] Huet makes the following brief remark:
”The proof turned out t o  be more difficult than we had ezpected, and revealed critical condi-
tions for the justification of  rewrite rules simplifications, which muy not be met by existing
implementations. In  particular, it is not enough to require that all the successive term rewrit-
ing systems R ı ,  Rg, ... constructed by the algorithm be noetherian. They must be terminating
for the same reason; i.e. there must exist some uniform reduction ordering > showing the
termination of al l  these sets.”. But unfortunately, Huet does not explain why this restriction
is needed.
Apart from this remark we are not  aware of  any other hints i n  the  literature that  Huet’s algo-
rithm becomes incorrect i f  i t  is modified in  the way described. On the contrary, usually i t  is
assumed that the modified completion algorithm is at least partially correct in  that i t  gener-
ates a complete system equivalent to  the corresponding input system whenever i t  terminates
with  success. Example 6 disproves this widespread assumption.

These results also are important from a practical point of view, since most existing imple-
mentations of the Knuth-Bendix algorithm provide the option to  orient equations by hand.
Example 6 shows that i n  case this option is used during a completion process and the corre-
sponding process terminates with success, the only thing we can conclude for the generated
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Appendix 

Example 5. Let R = {I: X - egabc,2: QH - ga,3: QA - Eega,4: Qh - ga,5: qH­

a, r: : qA - q,7 : qd -+ q,8 : qc --. 0,9 : qh --> a, 10 : qb - q,11 : lV H - Hbb,12 : W A ­

Add, 13 : wh --> hdd,14 : wA --> Abb,15 : eE -+ c,16 : Eego --> go, 17 : Hbc - Addc,18 :
 
hddc - Abbbc}.
 
Moreover, let ~l be the syllable ordering induced by the precedence X > W > w > Q > q >
 
H > h > b > d > a > c > 9 > e > A > E > 0 and ~2 the syllable ordering induced by the
 
precedence X > W > w > Q > q > H > h > d > b > a > c > g > e > A > E > 0, and let
 
(>i)ieN be defined by: >i = ~l for 0 ~ i ~ 39, >40+14j+k = ~2 for j E IN and 0 ~ k ~ ~,
 

and >40+l4j+k = ~l for j E IN and 7 ~ k ~ 13.
 
Claim: Given Rand (>dielN as input, the algorithm CA_MODI will generate an infinite
 
sequence (Ro'£o), (Rl,£d, (R2,£2),'" such that for all j E IN the following holds:
 

1) £40+14j = 0 
2) R 40+14j = Rj where 

Rj= (R- {1:X-egabc}) 
U {1:X_egad2j+2c} 
U {Hbnc - Adn+1c I n odd and 1 ::; n ::; 2j + I} 
U {abnc --> 0 I n odd and 1 ::; n ::; 2j} 
U {hdnc - Abn+lc I n even and 2 ::; n ~ 2j} 
U {adnc -+ 0 I n even and 2::; n ::;2j} 
U {lj,1: hd2j+2c _ Ab2j+3c} 

U {lj,2: ab2j+1 c - o} 
U {lj,3: Hb2j+3c --> Ad2j+4 c} 
U {I j,4: eegad2j+2c - go} 

where Ij,l, Ij,2, lj,3, lj,4 E IN with Ij,l < Ij,2 < Ij,3 < Ij,4 and all rules except the rules 
Ij,l, Ij,2, Ij,3 and lj,4 are marked. 

Proof. The proof is done by induction on j. 
Let (no, £0), (Rl,£d, (R2 , £2), ,., be the sets that are generated by the algorithm CA-MODl 
if it is started on input Rand (>dielN' 
(Note that for any j E IN, Rj is compatible with ~l as well as with ~2' Therefore, we will 
check the orientation of a rule generated by the algorithm CA_MODI only if the rule does not 
belong to any of these sets,) 
Induction basis: Since R is interreduced and compatible with ~l, it holds that 

where all rules in R 18 are unmarked. There are no overlaps between rules of R - {16 : Eego ­
go, 17 : H be - Adde, 18 : hddc - Abbbe}. Hence, we have 

R 33 R 

£33 = 0 

where all rules of R 33 except the rules 16, 17 and 18 are markE-d. In the next step rule 16 will 
be marked and all critical pairs between rule 16 and the rules 1-16 will be computed. Rule 16 
only overlaps with rule 15. This overlap yields the trivial critical pair (ego, ego). Hence, the 
algorithm CA_MODI generates tpp sets 
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Appendix

Example 5 .  Let R = { 1 :  X — egabc,2: QH  — ga ,3 :  QA  — Eega,4:  Qh  — ga ,5 :qH  —
a ,  : 9A  —> ¢ ,7 :9d — ¢ ,8 :qc  - -  0 ,9 :¢h  — a,10:  gb — ¢q,11 : WH — Hbb,12: WA —
Add,13 : wh — hdd,14 : wA — Abb,15 : eE — 6,16 : Eego — go,17 : Hbc — Addc,18 :
hdde — Abbbc}.
Moreover, let >»; be the syllable ordering induced by the precedence X > W > w > Q > ¢ >
H>h>b>d>a>c>g>e>A>FE > o0 and > ;  the syllable ordering induced by the
precedence X >W>w>Q@>q>H>h>d>b>a>ec>g>e> A>  E > o0,and let
(>i)ienN be defined by: > ;  => ;  for 0 < i  < 39, >40+14j+k = >2 for je Nand 0 < k <6 ,
and >40+14j+k = >1  for jE N and 7<  k < 13.
Claim: Given R and (>;) ;en as input, the algorithm CA_MODI1 will generate an infinite
sequence (Ro,  Eo), (R1,  E i ) ,  (Ra,  Er), ... such that for all 7 € IN the following holds:

1) Eao+14; = 0
2) Rao+14; = R;  where

R;i= (R- { 1 :X  — egabc})
{1 :  X — egad¥+%c}
{Hb"c — Ad" * ' c |nodd  and 1 <n  <2 j+1}
{ab "c— o|n odd and 1 < n < 25}
{hd"c — Ab"* 'c  | n even and 2 < n < 25}
{ad"c — o |  n even and 2 < n < 2 j }
{Lis : hd? +2c — Ab%H+3c}
{ l j2 : ab¥ +c — 0}
{l;3 : Hb¥Y3c — Ad¥t4c)
{l;4 : Eegad2+?c — go}

where 11,0;2,053,1;4 € IN with l j ;  < 12  < l j 3  < l j4 and all rules except the rules
Las  l i 2 ,  13  and I; 4 are marked.

cc
C

cc
C

cc
cc

cc
a
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Proof. The proof is done by induction on j .
Let (Ro, £0), (R1,€1), (R2,&2), ... be the sets that are generated by the algorithm CA_MOD1
i f  i t  is started on input R and (>;)ieN-
(Note that for any j € N ,  R ;  is compatible wi th > ;  as well as with >2. Therefore, we will
check the orientation of a rule generated by the algorithm CA_MOD1 only if the rule does not
belong to  any of  these sets.)
Induction basis: Since R is interreduced and compatible with > ,  i t  holds that

Ris = R ,

Eis  = 0 [)

where all rules in R ıs are unmarked. There are no overlaps between rules of R — {16 : Eego —
90,17:  Hbc — Addc, 18 : hddc — Abbbc}. Hence, we have

Raz  = R ,

Es  = 0 ,

where all rules of R33 except the rules 16, 17 and 18 are marked. In the next step rule 16 will
be marked and all critical pairs between rule 16 and the rules 1-16 will be computed. Rule 16
only overlaps with rule 15. This overlap yields the trivial critical pair (ego, ego). Hence, the
algorithm CA_MOD]1 generates the sets
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£35 = 0 

where all rules of R 35 except the rules 17 and 18 are marked. In the next step the rule 17 will be 
considered. Rule 17 only overlaps with the rules 2, 5 and 11. The corresponding set of critical 
pairs is £36 = {gabc = QAddc,abc = qAddc, Hbbbc = WAddc}. Consider the critical pair 
gabc = QAddc. While gabc is irreducible, the string QAddc can be reduced to the irreducible 
string Eegaddc. Since >36 = hand gabc h Eegaddc, the rule 19 : gabc -+ Eegaddc will be 
generated. This new rule will be used to simplify rule 1. In this way we obtain 

R 37 = (R - {I: X -+ egabc}) 

U {19: gabc -+ Eegaddc, 1 : X -+ egaddc} , 

£37 {abc = qAddc, Hbbbc = WAddc} . 

In the next step the critical pair abc = qAddc will be considered. Since qAddc -+ qddc ~ qc -+ 

0, the rule 20 : abc - 0 will be added. This new rule will be used to simplify rule 19. In this 
way we obtain 

R 38 (R - {I: X - egabc}) 

U {I: X - egaddc, 20 : abc -- o} 

£38 {Hbbbc = W Addc, go = Eegaddc} 

Normalizing the critical pair Hbbbc = W Addc will result in the pair Hbbbc = Addddc and the 
rule 21 : Hbbbc -+ Addddc will be added. Thus it holds: 

R39 (R-{l:X-egabc}) 

U {I: X -+ egaddc, 20: abc -+ 0, 21 : Hbbbc -+ Addddc} , 

£39 {go = Eegaddc} . 

The strings go and Eegaddc are irreducible. Thus, we obtain 

R 40 = (R-{l:X-+egabc}) 

U {I: X -+ egaddc, 20: abc -+ 0, 21 : Hbbbc -+ Addddc, 22: Eegaddc -+ go} , 

£40 0, 

where all rules except the rules 18, 20, 21 and 22 are marked. Hence our claim holds for j = o. 
Induction step: Assume the claim holds for some j E IN. Suppose that the algorithm 
CAMOD1 has just generated the sets R.40+14j and £40+14j, and consider the steps the algo­
rithm will perform next. First the rule /j,l is marked. Rule /j,l only overlaps with the rules 4, 9 
and 13. The corresponding set of critical pairs is £41+14j = {gad2j+2c = Q Ab2i+3c, ad2j+2c = 
qAb2i+3c,hd2(j+1)+2c = wAb2i+3c}. While gad2i+2c is irreducible, the string QAb2i+3c will 
be reduced to Eegab2j+3c using rule 3. Since >41+14i = >-2 and gad2i+2c >-2 Eegab2j+3c, the 
rule /i,4 +1 : gad2i+2c -+ Eegab2i+3c will be added. This new rule will be used to simplify the 
rules 1 and /i,4' The resulting sets will be 

R 42+14i (ni - {I : X -+ egad2i+2c, /i,4 : Eegad2i+2c -+ go}) 

U {li,4 + 1 : gad2i+2c -+ Eegab2i+3c, 1: X -+ egab2j+3c} , 

£42+14j = {ad2i+2c = qAb2j+3c, hd2(j+1)+2 c = wAb2j+3c, EeEegc.,b2j+3c = go} 
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Ras = R ,

Es = 0 ,
where all rules of  R35 except the rules 17 and 18 are marked. In  the next step the rule 17 will be
considered. Rule 17 only overlaps with the rules 2, 5 and 11. The corresponding set of  critical
pairs is £3  = {gabc = QAddc,abc = qAddc, Hbbbc = W Addc}. Consider the critical pair
gabe = Q Addc. While gabe is irreducible, the string Q Addc can be reduced to  the irreducible
string Fegadde. Since >36  = > ;  and gabe > ,  Fegadde, the rule 19 : gabc — Eegaddc will be
generated. This new rule will be used to  simplify rule 1. In this way we obtain

Rar = (R - {1 :X  — egabe})
u {19:gabc — FEegadde, 1 : X — egaddc} ,

Er  = {abc = qAdde, Hbbbe = W Addc} .

In the next step the critical pair abc = qAddc will be considered. Since gAddc — qddc = gc —
o, the rule 20 : abc — o will be added. This new rule will be used to  simplify rule 19. In this
way we obtain

Ras = (R - {1 :X — egabc})

U {l:X — egaddc, 20: abc — 0} ,

Eis = {Hbbbc = WAddc, go = Eegaddc} .
Normalizing the critical pair Hbbbc = W Addc will result in  the pair Hbbbc = Addddc and the
rule 21 : Hbbbe — Addddc will be added. Thus i t  holds:

Rag = (R - {1 :X  — egabc})

u {1 :X  — egaddec, 20 : abc — o, 21 : Hbbbe — Addddc} ,

E39 = {go = Eegaddc} .

The strings go and Eegaddc are irreducible. Thus, we obtain

Rao = (R—- {1 :X  — egabc})

u {1 :X  — egadde, 20:  abc — o, 21 : Hbbbe — Adddde, 22 : Eegaddc — go} ,

Eo = 0 ,
where all rules except the rules 18, 20, 21 and 22 are marked. Hence our claim holds for j = 0.
Induction step: Assume the claim holds for some j € IN. Suppose that the algorithm
CA  MOD] has just generated the sets R4g414; and £40414, and consider the steps the algo-
rithm will perform next. First the rule /;; is marked. Rule /;; only overlaps with  the rules 4,  9
and 13. The corresponding set of  critical pairs is  £41414; = {gad +c = QAb%+3¢, ad? 2c  =
qAbH+3C, hd?I+D+2¢ = 1 Ab2+3¢}, While gad#+2e is irreducible, the string Q Ab?+3¢ will
be reduced to Eegab?*3¢ using rule 3. Since >41414 ;  = >2 and gad? +2c = ,  Eegab®+3¢, the
rule lj 4 +1  : gad?”+2¢ — Eegab®**3¢ will be added. This new rule will be used to  simplify the
rules 1 and l j  4. The resulting sets will be

Raz+14; = (R j—{1 :X  — egad®*2c, 1 ;  4: Eegad®*%c — go } )

U { l j s+1 :gad¥ t%c  — Eegab?*3¢, 1 :  X — egab®*3¢}

Esai  = {ad¥¥2c= qAb2+3c, hd?2i+D42e = wAB2+3e, EeFegub+3c = go} .

22



2 3	 ad2jNormalizing the critical pair ad2j+ c = qAb2j+ c will result in the pair +2c = o. 
Thus the rule /j,4 + 2 : ad2j+2c ~ 0 will be added. Rule Ij,4 + 2 will be used to simplify 
the rule /j,4 + 1. In this way the sets 

2'R.43+14j	 = (Rj - {I : X ~ egad2j+ c, /j,4 : Eegad2j +2c ~ go})
 

U {I: X ~ egab2j+3c,/j,4 +2: ad2j+2c -+ o} ,
 

[43+14j {hd2(j+1)+2 c = wAb2j+3c, EeEegab2j+3c = go, go = Eegab2j+3c} 

are obtained. While hd2(j+1)+2 c is irreducible, the string wAb2j+3C will be reduced to 
Ab2(.j+1)+3c, and we get 

'R.44+14j 'R.43+14j
 

U {lj,4 + 3: hd2(j+1)+2 c ~ Ab2(j+1l+3c } ,
 

3
£44+14j	 = {EeEegab2j+ c = go, go = Eegab2j+3c} 

Using rule 15 the string EeEegab2j+3c can be reduced to Eegab2j+3c. This gives 

'R.45+14j 'R.44+14j
 

U {/j,4 +4: Eegab2J+3c ~ go} ,
 

£45+14j {go = Eegab2j
+ 3c} .
 

3
Since go and Eegab2j+ c are joinable w.r.t. 'R.45+14j, we have 

2 2'R.46+14j	 = (Rj - {I : X ~ egad2j+ c, /j,4 : Eegad2j+ c -+ go}) 

U {I: X ~ egab2j+3c, /j,4 + 2: ad2j+2 c -+ o} 

U {/j,4 + 3 : hd2(j+1)+2 C -+ Ab2(j+1)+3c, Ij,4 + 4: Eegab2j+3c -+ go} , 

[46+14j 0 .
 
1
Hence in the next step rule /j,2 : ab2j+ c ~ 0 will be marked. Since there are no overlaps 

between rule 1j ,2 and any of the rules of 'R.46+14j that has a label smaller than Ij ,3, we obtain 

'R.47+14j 

[47+14j o 
where now all rules with a number smaller than' /j,3 are marked. Rule /j,3 only overlaps 
with the rules 2, 5 and 11. The corresponding critical pairs are £48+14j, = {gab2j+3c = 

3QAd2j+4c, ab2j+ c = qAd2j+4c, Hb2(j+1)+3c = W Ad2j+4c}. Normalizing the critical pair 
3gab2j+3c = QAd2j+4c yields the pair gab2j+ c	 = Eegad2j +4c. Since >48+14j = rl and 

3gab2j+3c r1 Eegad2j+4c, the rule 1j,4 + 5 : gab2j+ c -+ Eegad2j+4c will be generated. This 
new rule will be used to simplify the rules 1 and /j,4 +4. In this way the sets 

'R.49+14j = (Rj - {I : X ~ egad2j+2c, Ij ,4 : Eegad2i+2c ~ go})
 

U {/j,4 + 2: ad2j+ 2c -+ 0, I j ,4 +3: hd2(j+1)+2 c -+ Ab2(j+1)+3C}
 

3
U {l j ,4 +5 : :;ab2j+ c -+ Eegad2j+4c, 1 : X -+ egad2(j+1)+2c} , 

3£49+14j = {ab2j+ c = qAd2j+4c, Hb2(j+1)+3c = W Ad2j+4c, EeEegad2j+4c = go} 
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Normalizing the critical pair ad#+2c = qAb**+3¢ will result in  the pair ad®+?c = o.
Thus the rule /;4 + 2 : ad+2c — o will be added. Rule { 4  + 2 will be used to simplify
the rule /;4 + 1. In  this way the sets

Razera; = (Rj  —{1 :X  — egad¥+2c, l ; 4 :  Eegad®*%c — go } )

U {1 :X  — egab?+3¢, l ;4 + 2 :  ad?*%c — 0} ,

Es34+14; = {hd2G+V)+2e = wAbY*3¢c, EeEegab¥*3c = go, go = Eegab®+3c}

are obtained. While hd?U*1+2¢ is irreducible, the string wAb?*3¢ will be  reduced to
Ab2G+U+32, and we get

Rass14; = Raz+14 j

U { l j a+3 :  hd2U+142¢  —, A620+1 )+3 , }

Eqa+14)  = {EeEegab®*+3c = go, go = Eegab?+3c} .

Using rule 15 the string EeEegab®*3c can be reduced to Eegab®*3c. This gives

Ras+14) = Rasrzı4j
U {l;4 +4 :  Eegab¥*+3c — go}  ,

Eas+14; = {go = Eegab®*+3c} .

Since go  and Eegab?+3¢ are joinable w.r . t .  R45+4145, we have

Ras+14j = (Rj  —{1 :X  — egad®*2c, 1;4 : Eegad®+%c — go})
U { 1 :X  — egab¥*3¢,  l ;4 + 2 :  ade  — 0}
U {Ilja +3 :  hd2G+V+20  AB20+  143 |. 4 + 4 :  Eegab?+3c — go} ,

E4145 = 0 .
Hence in  the next step rule I ;  : ab#+1e — o will be marked. Since there are no overlaps
between rule !;2 and any of  the rules of  Ra4a6414; that has a label smaller than [;3,  we obtain

Rar414;  = Ras+414j

Sarre; = 0 ,

where now all rules with a number smaller than [;3 are marked. Rule /;3 only overlaps
with the rules 2, 5 and 11. The corresponding critical pairs are £44145 = {gab¥*3c =
QAd*  Hie, ab? +3  = qAd* t ic ,  H5G+V+3- = WAd%*+4c}. Normalizing the critical pair
gab®t3c = QAd**4c yields the pair gab®’*3c = Eegad®**c. Since >4s+14j = >1  and
gab®*3¢c > ,  Eegad®*+4c, the rule l ;4 + 5 : gab**3¢c — Eegad?+4c will be generated. This
new rule will be used to  simplify the  rules 1 and [; 4 + 4.  In this way the sets

Rata; = (Rj —{1 :X  — egad®*%¢c, l;4: Eegad®*%c — go})
U {lja+2:ad%*2% — 0 ,  l j 4 + 3 :  hd?2G+V+22 _,  pp2 ( i+1+3 . )

U { l ;4+5:9ab?*3c — Eegad®*4c, 1 :  X — egad?+1)+2¢} |

{ab¥*3¢ = qAd¥ Hie, HHUA 3c  = W Ad? +c, EeEegad®itic = go}HE49414;
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are obtained. Since qAd2j+4 c - qd2j+4 c ~ qc -+ 0, the rule Ij,4 + 6 : ab2(j+1)+1 c -+ 0 will be 
generated next. Thus, the rule /).4 +.5 : gab2j+3c -+ Eegad2j+4c will be simplified and we have 

~JO+14j	 = (Rj - {I : X -+ egad2j+2c , Ij ,4 : Eegad2j+2c -+ go})
 

U {/j,4 + 2: ad2j+2c - 0, Ij ,4 + 3: hd2(j+l)+2 C -+ Ab2(j+l)+3c }
 

U {I : X -+ egad2(j+l)+2 c, /j,4 + 6: ab2(j+l)+l c -+ o} ,
 

£50+14j	 = {Hb2(j+l)+3c = W Ad2j+4 c , EeEegad2j+4c = go, go = Eegad2j+4c} 

Normalizing the equation Hb2(j+l)+3c = W Ad2j+4 c yields Hb2(j+l)+3c = Ad2(j+1)+4 C• This 
gives 

'R51+14j 'R50+14j
 

U {/j,4 + 7 : Hb2(j+1)+3c _ Ad2(j+l)+4 c }
 

£51+14j {EeEegad2j+4c = go,go = Eegad2j+4c } 

By applying rule 1.5 the string Ee Eegad2j+ 4c can be reduced to Eegad2j+4c. Thus, the rule 
/j,4 + 8: Legad2(j+l)+2c - go will be generated, and we have 

2
'R52+14j (Rj - {1 : X - eg(uI2j+ c, lj,4 : Eegad2j+2c -+ go}) 

U {IJ,4 + 2; ad2J + 2c -+ 0, lj,4 + 3 : hd2(j+l)+2 c -+ Ab2(j+l)+3 c} 

U {I : X	 - egad2(j+1)+2c, /j,4 + 6: ab2(j+1)+1 c -+ o} 

U {/j,4 + 7 ; Hb2(j+1)+3c -+ Ad2(j+l)+4 C , /j,4 +8: Eegad2(j+1)+2c -+ go} , 

£52+14j {go = Eegad2j+4c } . 

The critical pair go = Eegad2i+4c resolves trivially. Thus it holds: 

'R53+14j
 

£53+14j o .
 
2
Hence in the next step rule /j,4 + 2 : ad2j+ c -+ 0 will be marked. Since there are no overlaps 

between rule /j,4 +2 and any of the rules of'R5;3+14j that has a label smaller than Ij,4 + 3, we 
obtain 

'R54+14j = 'R53+14j
 

£54+14j = 0 ,
 

where rrow all rules except the rules I j ,4 +3,lj,4 +6,/j,4 + 7 and Ij,4 +8 are marked. Thus our 
claim also holds for j + 1. 
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are obtained. Since qAd#+4e — gd%*+4c 5 gc — 0 ,  the rule liq +6  : ab?G+V+Ie — 9 will be
generated next. Thus, the rule /, 4 + 5 : gab?’ +3¢ — Eegad?*4c will be simplified and we have

Rosai = (R j—{1 :X  — egad¥*?c, l ;  4: Eeqad?+%c — go})

U { l ; 4+2 :ad%*%  — 0 ,  L ia+3 :  hd2G+V+24 _,  Ap2U+1)+3c)

U {1 :X  — egad?UtV+2¢, | ; 4 +6 :  ab2G+D+16 — 0} |

Eso+14; = {HBO+HVH+3C = W Ad? +c ,  EeEegad¥t4c = go, go = Eegad¥*c} .

Normalizing the equation. Hb2U+D+3c = W Ad¥4c yields Hb2U+D+3¢ = Ad2i+1)+4c, This
gives

Rs14+14i = Rso4145
U { l a+  7 :  HHU+D+3c  _,  Aq2 i+1)+4. )

Es1+14j = {FEeFegad®tic = go,go = Fegad®+4c} .

By applying rule 15 the string EeEegad®*4c can be reduced to Eegad®+4c. Thus, the rule
l is +8 :  Legad?G+V+20 _ go will be generated, and we have

Rsz414j = (Rj— {1 :X  — egad¥*%c, I ;  : Eegad®*2c — go})

u { j a+2 :  ad2+26 — 0 ,  La  +3 :  hd20+1U)+24 _,  Ab2G+1)+36 }

U {1 :X  — egad?0+V+2e, 1.4 + 6 :  ab2G+V+IE _ 0 }

U { l j a+  7 :  HOG+V+36 — Ad2G+D+40, | ,  +8 :  Eegad?G+1+20 — go} ,

Es2414;  = {go=  Eegad#+4e} .

The critical pair go = Fegad**4¢ resolves trivially. Thus i t  holds:

Rsa+14; = R ı2414 ;  ı

Esa+14; = 0 .

Hence in the next step rule I;4 + 2 : ad#+2c — 9 will be marked. Since there are no overlaps
between rule / ; 4 + 2 and any of the rules of Rs3+14; that has a label smaller than [;4 + 3, we
obtain

Rsst14i = Rsay4i = Rip s

Esa+14j  = 0 ,
where row all rules except the rules /j 4+3 ,1 ;4  +6 ,1 ;4  +7  and I; 4 + 8 are marked. Thus our
claim also holds for j +1. 0
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