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Abstract 

This paper develops a sound and complete transformation-based algorithm for 
unification in an extensional order-sorted combinatory logic supporting constant 
overloading and a higher-order sort concept. Appropriate notions of order-sorted 
weak equality and extensionality - reflecting order-sorted ,8"1-equality in the 
corresponding lambda calculus given by Johann and Kohlhase - are defined, and 
the typed combinator-based higher-order unification techniques of Dougherty are 
modified to accommodate unification with respect to the theory they generate. The 
algorithm presented here can thus be viewed as a combinatory logic counterpart 
to that of Johann and Kohlhase, as well as a refinement of that of Dougherty, and 
provides evidence that combinatory logic is well-suited to serve as a framework for 
incorporating order-sorted higher-order reasoning into deduction systems aiming 
to capitalize on both the expressiveness of extensional higher-order logic and the 
efficiency of order-sorted calculi. 

Introduction 

Despite intensive investigation of equational reasoning (see, for example, the surveys 
[DJ90], [Kl091J, [Pla93J) and the existence of powerful first-order deduction systems 
([OS89J, [Sti90J, [LSBB92], [Lus92J), the inherently higher-order nature of many 
problems whose solutions one would like to deduce automatically has sparked a growing 
interest in higher-order deduction ([ALMP84J, [Gor85], [PaugO], [Mil9i]). 

On the other hand, the fact that human reasoning naturally assumes an intrinsically 
structured universe, in which one typically wants to make assertions about every object 
in a certain class rather than about every object in the entire domain of discourse, often 
aids us in efficiently drawing logical conclusions. Making use of taxonomic distinctions in 
an automated deduction setting requires capturing the meta-level knowledge associated 
with reasoning in a structured universe by means of a purely syntactic calculus of formal 
reasoning. The incorporation of sort information into deduction calculi, the formal 
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mechanism for accomplishing this task, has been seen to dramatically reduce the search 
space associated wit.h deduction in first-order logic ([Obe62], [Wal87], [Wal88], [CohS9], 
[SchS9]). Once employed, for example, to express inclusion relations among various 
classes of objects, or to record the fact that certain functions always return values in 
certain of those classes, sort information can be used to detect inferences which violate 
the constraints it imposes. Sort information is in fact now considered so crucial to the 
efficient automation of logical deductiori that it is "common place [sic] to assert that 
without it no realistic applications of a deduction system are possible" ([OS89]). 

In this light, the investigation of sorted higher-order calculi, which date back to 
Herbrand ([Her71]) and boast both the expressiveness of typed higher-order logic and 
the efficiency of sorted calculi, is only natural. The fact that type information can be 
regarded as coding very coarse taxonomic distinctions between disjoint classes.of objects 
- so that sorts and ordering relations on them merely refine an already present structure 
- perhaps makes it even more so. But current sorted deduction systems typically make 
rather limited use of sort information, employing it primarily to determine which terms 
may, as governed by the constraints it imposes, be substituted for which variables in 
a deduction step. For this reason, sort information is built into deduction systems 
primarily by means of (pre- )unification algorithms rich enough to accommodate the 
relevant sorted calculi. 

To date, all sorted higher-order calculi intended for use in deduction systems have 
been developed in terms of the lambda calculus ([NQ92], [Pfe92], [JK93], [KP93]), their 
unification algorithms being adaptations of Huet's classical algorithm for unification of 
simply typed lambda terms ([Hue73], [Hue75]). But recent inroads using a formulation 
of typed higher-order unification problems in terms of combinatory logic ([Dou93]), 
together with the aforementioned successes in order-sorted equational unification, 
suggest that an algebraic approach to unification in sorted higher-order calculi is 
also feasible. Indeed, this, paper develops a sound and complete transformation
based algorithm for unification modulo an extensional order-sorted combinatory logic 
supporting constant overloading and a higher-order sort concept. This order-sorted 
higher-order unification algorithm may be viewed simultaneously as both a combinatory 
logic counterpart to the order-sorted lambda calculus-based algorithm of [JK93], and 
a refinement of the typed combinator-based algorithm of [Dou93]. Its development 
provides further support for a thesis advanced in [Joh91], [DJ92], and [Dou93], namely 
that combinatory logic can provide a computational framework for deduction in higher
order logic and its more expressive extensions. 

The main features of this paper are as follows. Section 2 begins with a description of 
the sorted signatures over which our terms are quilt, as well as of the combinatory logic 
in which we are interested. We capitalize on the fact that functions are explicit objects 
of higher-order logic by allowing classes of functions defined by domains and codomains 
themselves to be divided into subclasses. Our signatures, precisely those of [JK93], thus 
support functional base sorts, i. e., base sorts denoting classes of functions, in addition 
to base sorts denoting classes of individuals. Syntactically, each sort A comes with a 
type r(A), a codomain sort ,(A), and - iffunctional- also with a domain sort 8(A). 
Partial orders on the set of sorts, capturing inclusion relations among the various classes 
of objects, are induced under covariance in the codomain sort via subsort declarations. 
But in the presence of functional base sorts, an additional mechanism for inducing 
subsort information is needed: since any function of sort A is indeed a function with 
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domain 8(A) and codomain ,(A), a functional sort A must always be a subsort of the 
sort 8(A) -t 'j'(A). 

The calculus presented here supports constructs for restricting the ranges of variables 
to, and assigning constants - including the various redex constants I, [{, and S 
membership in, certain classes of objects. Depending on the partial order induced on 
the sorts, certain classes of terms built from these atoms by function application then 
become the objects of study - the partial order restricts the models of the calculus so 
that terms must meet certain conditions to denote meaningful objects, i.e., to be well
sorted. For example, the application of the functional term M to the argument term N 
is allowed only if there exist sorts A and B such that M has sort A, N has sort B, and 
B is a subsort of 8(A). The sort of the application term M N is defined to be ,(A). 

Next, notions of weak reduction and extensional equality which appropriately 
generalize the corresponding notions in typed combinatory logic, are defined. Together 
these generate the equality induced on well-sorted combinatory logic terms by sorted (31]
equality, as originally defined on their lambda calculus counterparts in [JK93]. Despite 
the fact that there is no known convergent rewriting relation on terms generating 
this induced equality, our combinatory logic framework allows us to define an "almost 
convergent" reduction relation on systems which does indeed capture it. This reduction 
relation is then lifted to transformations on systems serving as the basis of our unification 
algorithm. The unification transformations given in Section 3 include one for narrowing 
at the heads of terms, one accommodating sorted extensionality, and a generalized 
decomposition transformation designed to handle paramodulating into a head variable 
(thereby changing the sort of a term, since the sorts of combinatory logic terms are 
determined by the sorts of their heads). Because systems are normalized with respect 
to the reduction relation before being submitted to the unification transformations, our 
algorithm can be seen as a "normalized narrowing" algorithm. It is proved complete at 
the end of Section 3, and a discussion follows in Section 4. 

By using essentially equational, rather than higher-order methods, in our computa
tions, we avoid some of the technical difficulties which arise in the treatment of order
sorted higher-order unification in [JK93]. In particular, our terms contain no bound 
variables and need not be kept in 1]-expanded form. But more importantly, the subtle 
interaction between 1]-equality and functional base sorts which requires much attention 
in [JK93] is circumvented entirely, since extensionality is coded here by a reduction on 
systems, rather than on individual terms. 

The unification procedure described above is not fundamentally new, being developed 
by Dougherty ([Dou93]) for a typed combinatory logic, but our algorithm differs from 
his in two important ways. First, our transformations must account for the fact that a 
given term may have multiple, perhaps related, sorts, and must therefore subsume an 
order-sorted syntactic unification algorithm rather than that of Martelli and Montanari 
([MM82]). Secondly, we subscribe to the Church view of the lambda calculus (and 
therefore of combinatory logic) and require the sorts of our terms to be completely 
specified. Dougherty allows incompletely specified types, and as a result his algorithm 
is finitely branching while ours is not, although we expect to 'be able to recover this 
feature by introducing sort variables. Nevertheless, when the sort structure collapses to 
a simple type structure, we obtain precisely the fragment of Dougherty's typed terms 
whose types are completely specified and, for those terms, our algorithm coincides with 
his. 
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The benefits for automated deduction afforded by incorporating sort information are 
more pronounced in calculi supporting a higher-order sort concept than in calculi all of 
whose base sorts are required to be non-functional. This is because the sort hierarchy 
propagates into the higher-order structure of the logic by means of the induced partial 
orders on sorts. Methods other than ours for inducing orderings on the set of all sorts 
from a given ordering on base sorts exist in the literature ([Car88], [Qia90], [Mit91], 
[NQ92]), but none of these permit functional base sorts. Our more expressive sort 
system, together with the requirements that systems to be unified are normalized and 
that narrowing is restricted to the heads of terms, results in a unification search space 
considerably more constrained than that of a naive order-sorted higher-order unification 
algorithm - developed, for example, along the lines of that in [5ch89]. This pruning of 
course contributes to the efficiency of any (reasonable) deduction calculus based on our 
algorithm. 

Huet observed that although higher-order unification is undecidable ([Hue73], 
[GoI81]) - so that higher-order unification algorithms cannot be guaranteed to 
terminate in general - for deduction purposes a higher-order unification computation 
need only detect the possibility of unification ([Hue75]). While our algebraic rendering 
of the order-sorted higher-order unification problem naturally inherits the basic 
characteristics of the problem in its more traditional guise, we expect our solution to be 
suitable for pre-unificaiion, as well as for complete order-sorted higher-order unification 
(see Section 4 for a brief discussion). 

The importance of sorted calculi for automated deduction was initially recognized 
by Hayes ([Hay71]); Walther ([WaI87]) developed the first calculus combining resolution 
and sorted logic via an order-sorted unification procedure. Sorted higher-order logic 
has also been the focus of considerable interest from the point of view of higher-order 
program specification; the theory of functional programming languages, and object
oriented programming (e.g., [Car88], [BL90], [Qia90], [CG91], [FP91], [Mit91], [Pie91], 
[Qia91]). Dougherty's typed algorithm is currently being implemented by Silverman 
([5iI94]); implementations of the algorithms developed here and in [JK93], which would 
provide further data for comparing the efficiencies of lambda calculus and combinatory 
logic-based unification, have not yet been attempted. 

1.1 Typed Calculi 

We begin with a discussion of the simply typed lambda calculus, simply typed 
combinatory logic, and the relationship between them, since the sorted calculi which 
we define will generalize these standard higher-order calculi. We assume that the reader 
is familiar with the basic results concerning the simply typed lambda calculus and simply 
typed combinatory logic; [HS86] is an excellent source covering both. 

Definition.l.1 The set T of types is obtained by inductively closing a set of base types 
Ta under function construction, i. e., under the operation a -+ p. The length of a type 
O:',denoted length(O:') , is the number of top-level arrows appearing in it. 

Types will be denoted by lower case Greek letters. In theorem proving applications, 
we might have only two base types, 0 denoting truth-values and L denoting the universe 
of individuals. All other subdivisions of the universe would then be coded into sort 
distinctions amollg individuals, as described in the next section. 
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For each type 0:' ET, fix a countably infinite set of variables of type 0:' and 
a countably infinite set of constants of type 0:'. Write x a , Ya, Za ... for variables of 
t.ype 0:' and aa, ba, C", ..• for constants of type 0:'. When discussing combinatory logic, 
we assume that there are typed redex atoms la == 1",-+"" Kaf' == Ka-+f'-+a, and 
S"'f''Y == 5'(a-+f'-+'Y)-+(a-+f')-+a-+'Y for all types 0:', /3, and ,. The variables, constants, 
and various I, K, and S are collectively called typed atoms; we assume that no two 
distinct typed non-redex atoms have the same type erasure. 

£..C is the set of explicitly simply typed lambda terms over the typed atoms excluding 
the various I, K, and S; C£.. is the set of explicitly simply typed combinatory logic terms 
over all typed atoms. By a "typed term" we will mean either a £..C- or C£..-term. We 
will write T", if T is a typed term with type 0:', and omit the type of T when this will 
not lead to confusion. 

On £..C, /3'fJ-equality is generated by /3'fJ-reduction, determined by the rules 

(AX.X)Y ~X[x := Y] for /3-reduction, and AX.XX ~X for 'fJ-reduction. We assume 
that /3-reduction occurs without free variable capture, and that x is not free in X for 
the 'fJ-reduction rule. On C£.., weak equality is generated by weak reduction, determined 
by the (type-preserving) rules I x --+ x, K xy --+ x, and 5'xyz --+ xz(yz). Each of /3T/
reduction and weak reduction is terminating and confluent (i.e., convergent) on typed 
terms, so we can speak of the /3'fJ-normal form and the long /3-normal form of a £..C
term, as well as the weak normal form of a C£..-term. As usual, we denote /3-reduction 

on £..C-terms by ~, 'fJ-reduction on £..C-terms by ~, /3'fJ-reduction on £..C-terms by 

!.!!-., and weak reduction on C£..-terms by ~. 
The reflexive, transitive closure of a relation ~ is denoted ~, and we will write 

=v for the symmetric closure of ~, i.e., for the equivalence relation generated by 
~. T1 == T2 indicates that the terms T1 and T2 are identical up to renaming of bound 
variables. We consider terms identical up to renaming of bound variables to be the same. 

There are effective translations between £..C and C£... As in [HS86], we define 
£.. : C£.. -+ £..C and 1i : £..C ....... C£.. by: 

• £..(a) == a, when a is a non-redex atom, 

• £..(1) == AX.X, 

• £..(K) == Axy.X, 

• £..(5') == AXYZ.XZ(Yz), and 

• £..(M N) == £..(M)£..(N); 

and 

• 1i(a) == a, 

• 1i(PQ) == 1i(P)1i(Q), and 

• 1i(A.r:.L) == [x]1i(L), where 

[x]M == KM when x does not occur in M, 

[x]x == I, 

- [x](Mx) == M when x does not occur in M, and 
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- [x](MN) == S([x]M)([x]N) otherwise. 

Here the types of the terms are such that these translations are type~preserving. 

Although 1i and £ translate terms between £C and C£, they are not translations 
of the respective theories - weak equality on C£ is not .sufficiently fine to reflect j3TJ
equality on £C. As pointed out in [Dou93], this can be seen by considering the distinct 
weak normal forms Sf{ and f{ I and observing that they have j3TJ-equal translations 
under £. 

Define extensional combinatory equality, henceforth C-equality, on C£-terms by 

M =c N iff £(M) =(31/ £(N). 

The translations £ and 1i have the properties that 

£(1i(X)) =(31/ X and 1i(£(M)) == M, 

and it follows that for any £C-terms X and Y, 

X =(31/ Y iff 1i(X) =c 1i(Y). 

A C£-term M is said to be in C -normal form if it is 1iX for some X in long j3-normal 
form. 

2 The Sorted Calculi 

In this section, we develop the order-sorted lambda and combinatory calculi with which 
we will be concerned. The combinatory logic defined here is shown to be a counterpart 
to the order-sorted lambda calculus originally developed in [JK93] in the sense that i) it 
refines the simply typed extensional combinatory logic just as the order-sorted lambda 
calculus in [JK93] refines the simply typed lambda calculus, and ii) the translations £ 
and 1i of the last section can be generalized to translations of the respective terms, as 
well as of the theories, of the two order-sorted calculi. We show in Lemma 3.7 that we 
may therefore solve any higher-order order-sorted unification problem given in terms of 
the lambda calculus of [JK93] by solving the translation of said problem in the order
sorted combinatory logic setting developed Qere. 

2.1 Order-sorted Structures 

The order-sorted structures over which the order-sorted lambda calculus and our order
sorted combinatory logic are defined are precisely those of [JK93]. We repeat relevant 
definitions and comments here, but refer to reader to that document for omitted proofs. 

The sort mechanism on which our calculi will be based supports both essentially first
order and higher-order classification of terms. In mathematics, subdividing the universe 
of individuals gives rise to new classes of functions, namely those whose domains and 
codomains are among the various subdivisions. But in addition to this essentially first
order way of partitioning function universes, the classes of functions defined by domains 
and codomains can be further divided into subclasses, since functions are explicit objects 
of higher-order logic. To reflect this richer structuring of higher-order objects, we 
introduce into our calculus base sorts of functional type, i.e., baSe sorts that denote 
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classes of functions, as well as non-functional base sorts. Syntactically, each sort comes 
~ith a type, a codomain sort, and - if it is of functional type - also with a domain 
sort. 

Definition 2.1 A sort system is a quintuple (So, S, T, 6, ,) such that: 

•	 So is a set of base sorts distinct from the set of type symbols. The set of sorts 
obtained by closing So under function construction comprises S . 

•	 The type function T is a mapping T : So --+ T. If T(A) E To, then A is said to 
be non-functional; A is said to be functional otherwise. The set of non-functional 
(resp., functional) sorts is denoted by Snf (resp., Sf). For all A E S, we require 
that T(A) = T(6(A)) --+ T(,(A)), where 

the domain sort function 6 is a map 6 : S6 --+ S, 

the codomain sort function, is a map, : So --+ S with, IsnJ the identity 
map, and 

the mappings 6 and, are extended to S by defining 6(A) = B and ,(A) =C 
for A == B --+ C E S.	 . 

Sorts will be denoted by upper case Roman letters from the beginning of the alphabet. 
If the context is clear, we will abbreviate by S the sort system (So, S, T, 6, ,), and 
we may suppress references to S entirely when no confusion will arise. Since we are 
ultimately interested in sorted terms and their typed counterparts, we will only consider 
sort systems for which T is surjective. We will further assume that for each a ET there 
exist only finitely many A E So such that T(A) = a, i.e., that sort systems have finitely 
many base sorts per type. The type T(A) is called the type of the sort A. 

It will be useful to have some notational conventions for domain and codomain 
sorts. For any A E S, recursively define the following notation: ,O(A) == A, 
6°(A) == A, 60 (A) == A, and for i 2: 1, ,i(A) == ,(,i-leA)), 6i (A) == 6(6i - l (A)), 
and 6;(A) == 6(,i-l(A)). If A == (B --+ C) --+ D --+ E, for example, then ,2(A) = E, 
peA) =B, and 62(A) =D. 

Example 2.2 Functional base sorts are useful, for example, in the study of elementary 
analysis, where one can postulate a non-functional base sort R denoting the reals, and a 
functional base sort C such that 6(C) = Rand ,(C) = R denoting the class of continuous 
real-valued functions on the reals. It is worth noting that it is not possible to syntactically 
distinguish the continuous real-valued functions on reals solely in terms of their domains 
and codomains, so that functional base sorts indeed increase the expressiveness of a 
calculus. 

While types represent disjoint classes of objects, certain kinds of orderings on sorts 
reflect permissible inclusion relations among classes of objects represented by sorts. The 
next definition captures a consistency condition we require such orderings to satisfy. 

Definition 2.3 Given a sort system S, for each pair of sorts A and B in S such that 
T(A) = T(B), the set Con(A, B) of subsort declarations (for S) is defined to be the set 
{lA::; B]} if A, BE sn f , and 

Con(6(A), 6(B)) U Con(6(B), 6(A)) U Con('(A), ,(B)) U {[A::; B]} 

if A, BE Sf. 
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Definition 2.4 Given a sort system S, a sort structure (for S) is any set d of subsort 
declarations such that the judgement 1-•• ~ is provable in the following calculus: 

(ss - start) 
1-•• 0 

(ss - ext) 
1-•• ~ U Con(A, B) 

The judgement 1-•• ~ is precisely the declaration that ~ is a sort structure. The 
rule (ss-start) guarantees that the empty set is a sort structure, and (ss-ext) indicates 
that sort structures may be built inductively by adding to an existing sort structure a 
set of subsort declarations of the fdrm Con(A, B). Note that T(A) = T(B) is entailed 
in the assumption that Con(A, B) is defined; this implies that for any sort structure 
~, if [A ::; B] E ~, then T(A) = T(B). In addition, since sort structures have finite 
derivations and since Con(A, B) is always finite, sort structures are themselves always 
finite. 

The following lemma is not difficult. 

Lemma 2.5 For a sort structure ~, [A::; B] E ~ if] Con(A, B) ~ d. 

Proof. Necessity follows from Definition 2.3.-Sufficiency is proved by observing that if 
[A::; B] E ~, then [A::; B] E Con(D, E) for some D, E E S such that T(D) = T(E) and 
[D::; E] E ~, and then inducting on length(r(D». 0 

Any sort structure ~ induces an inclusion ordering::; on S, inductively defined by 
the rules of Definition 2.6. The rule (::;-start) indicates that the inclusion ordering is 
indeed determined by d, (::;-incl) reflects the natural inclusion of function spaces, (::;
cov) insures covariance in the codomain sort, and (::;-refl) and (::;-trans) require that 
the inclusion ordering determined by ~ be a quasi-ordering. For this ordering, we will 
write ::;a, or just::; as above if ~ is clear from the context, and", for the equivalence 
nilation induced by::;. 

Definition 2.6 For any sort structure ~, the inclusion ordering determined by ~ 

contains all judgements of the form ~ I- A ::; B which are provable by the following 
calculus: 

[A::; B] E ~ 
(::; -start) 

AI-A::;B 

(::; -incl) 
A I- A ::; 6(A) -+ 'Y(A) 

(::; -eav) 

(::; -reIl) 

~I-A::;B AI-B::;C 
(::; -trans) 

AI-A::;C 
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We do not insist in (::;-cov) that ~ I- A ::; B holds for any sorts A and B with 
a common domain sort D whose codomain sorts satisfy ~ f- 'Y(A) ::; 'Y(B). Letting 
A and B denote the class of surjective functions from D to 'Y(A) and the class of 
surjective functions from D to 'Y(B), respectively, demonstrates the undesirability of 
such a constraint (assuming, for example, a standard semantics). 

Using Lemma 2.5, it is not hard to see that if ~ is a sort structure and A, B E Si, 
then ~ f- A ::; B implies ~ I- 6(A) ...., 6(B) and ~ f- 'Y(A) ::; 'Y(B). In addition, the 
fact that any sort structure ~ contains only finitely many subsort declarations [A ::; Bl, 
together with the assumption that sort systems have only finitely many base sorts per 
type, implies the decidability of the inclusion ordering::; determined by~. Although 
only semi-decidability of :::; will be necessary for establishing semi-decidability of sort 
assignment - and hence for determining applicability of our unification algorithm - in 
fact decidability is not hard to prove. The proof requires the next three results, which, 
like it, are taken from [JK93]. 

Lemma 2.7 For a sort structure ~, if ~ f- A :::; B, then T(A) = T(B). 

Corollary 2.8 A sort system S is the disjoint union of infinitely many subsets 
Sa = {A E S I T(A) = a} of sorts which are mutually incomparable. That is, if 
A E Sa and B E Sf3 with a 't (3, then A .and B are incomparable with respect to :::;. 
Moreover, since S has only finitely many base sorts per type, the subsets Sa are finite, 
i.e., S has finitely many sorts per type. 

Theorem 2.9 For any type a E T and any sort structure ~, if:::; is the inclusion 
ordering determined by ~, then the restriction :::;a of:::; to sorts of type a is effectively 
computable. 

Corollary 2.10 For any sort structure ~, the inclusion ordering determined by ~ is 
decidable.. 

To define the signatures over which our well-sorted terms will be built, we require 
a final preliminary notion. It will turn out to be important that signatures "respect 
function domains," in the sense that for any term T and any sorts A and B such that 
T has sort A and also sort B, 6(A) ...., 6(B) holds. The proof that signatures indeed 
satisfy this property (see Lemma 2.22) will depend in part on the consistency conditions 
embodied by Definition 2.3 and in part on the fact that constant declarations meet the 
sort condition of the fifth clause of Definition 2.13 below, given in terms of the relation 
Rdom, which we now define. 

Definition 2.11 Given a sort structure ~, the binary relation Rdom~ is defined by 

A, B E Snf T(A) = T(B) 

Rdom~(A,B) 

A,B E Sf ~ f- 6(A) ...., 6(B) Rdom~(J(A),'Y(B» 

"Ve will write Rdom for Rdom~ when ~ can be discerned from the context, and 
A Rdom B in place of Rdom(A, B). 

We collect some easy but important facts about Rdom. 
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Lemma 2.12 For any sort structure ~, the following statements hold: 

1.	 Rdom is an equivalence relation. 

2.	 If A Rdom B, then r(A) = r(B). 

3. If ~ f- A ::; B, then A Rdom B. 

"Ve are at last in a position to describe the signatures which are suitable for our 
purposes. In testing equality and unifiability of terms it will be convenient to have at 
our disposal a set of constants not appearing in any term in the given context; this is 
the motivation for the set Pars below. 

Definition 2.13 A (sorted) signature I; comprises 

•	 a sort system S = (So, S, 8, I, r), 

•	 a sort structure ~ (for S), 

•	 a countably infinite set VarsA of (sorted) variables x, y, z, ... for each A E S, and, 
when discussing combinatory logic, an infinite well-sorted set ParsA of (sorted) 
parameters d, e, ... as well, 

•	 a set C of typed (but unsorted) constants, including the various I, K, and 3 when 
discussing combinatory logic, and 

•	 a set of constant declarations of the form [C", :: A] for c E C such that r(A) = a. 
We require that constant declarations for I, K, and 3 be of the form [I'" :: A ~ 

A], [K"',6 :: A ~ B ~ A], and [3"',6,. :: (A ~ B ~ C) ---+ (A ---+ B) ~ A ~ Cl. 
respectively. We further assume that there is at least one constant declaration per 
redex constant, and that if [c :: A] and [c :: B] are any constant declarations, then 
A Rdom B. 

Let Pars = U{ParsA I A E S}. 
While not necessary for strictly theoretical concerns, in a computational setting it is 

both reasonable and convenient to insist that for each a E T, any signature contains only 
finitely many constant declarations involving constants of type a, i. e., only finitely many 
constant declarations per type. We will do so throughout this paper. As a consequence, 
signatures which respect function domains will contain precisely one constant declaration 
(up to ~-equivalenceof sorts) for each typed redex atom. 

The sorted variables and parameters, and the typed constants appearing in the 
constant declarations of a signature E, will be called sorted atoms (for E). The various 
I, K, and 3 appearing in constant declarations are called sorted redex atoms (for E). 
Any sorted variable can be regarded as a typed variable in a natural way by "forgetting" 
its sort information and retaining only its type information; if we denote the forgetful 
functor by -, then we may regard the sorted variable x E VarsA as the typed variable 
XT(A)' By prudently naming the sorted variables, we may arrange that the forgetful 
functor provides a bijection between the typed and sorted variables. We may also 
arrange that the images of parameters under the forgetful functor are distinct non-redex 
constants from C not appearing in any constant declarations in E. These assumptions 
are intended to avoid (merely) technical complications that might otherwise arise. 

The requirement that r(A) = a for a constant declaration [c'" :: A] insures that sort 
assignments respect the types of constants. According to Definition 2.13, signatures 
permit constant overloading of a restricted nature, consistent with this requirement. 
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2.2 Sorted Terms and Their Properties 

We now define and explore properties of the calculi with which we will be concerned. 

Definition 2.14 The set of .cC('E)-preterms is built inductively from the sorted non
redex atoms for the signature E by abstraction and application. The set of C£(E)
preterms is built inductively from the set of all sorted atoms for E by application. 

We will write P .cC(E) and PC.c(E) for the set of .cC(E)-preterms and the set of 
C.c(E)-preterms, respectively. 

Definition 2.15 Sort assignment for P .cC(E) is given inductively by the following 
inference rules: 

x E VarsA 
(var) 

Ef-x :A 

pE ParsA 
(par) 

Ef-p:A 

le:: A] E E 
(const) 

Ef-c:A 

E f- X : A and E f- Y : B and ~ f- B '" 6(A) 
(app) 

E f- XY : 'Y(A) 

xEVarSB Ef-X:A 
(abs)

E f- AX.X : B --+ A 

Ef-X:A 
(1])
 

Ef-X:B ~f-B~A 
(weaken) 

Ef-X:A 

Definition 2.16 Sort assignment for PC.c(E) is given inductively by the following 
inference rules: 
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xEVarsA 
(var) 

~f-x:A 

pE ParsA 
(par) 

~f-p:A 

[c:: A] E ~ 
(const) 

~f-c:A 

~ f- M : A and ~ f- N : B and A f- B --- 6(A) 
(app) 

~ f- MN; ,(A) 

~f-M:B Af-B:5A 
(weaken) 

~f-M:A 

Let .cCA(~) = {X E p.cC(~) I ~ f- X : A} and .cC(~) = UAES .cCA(~)' Similarly, 
let e.cA(~) = {M E PC.c(~) I ~ f- M : A} and C.c(~) = UAES C.cA(~)' Then .cC(~) 
is the set of well-sorted .cC-preterms, and similarly for C.c(~). We will henceforth refer 
to the elements of .cC(~) and C.c(~) as .cC(~)-terms or C.c(~)-terms, as appropriate. 
By the unqualified word "term" or "well-sorted term" we will mean a .cC(~)-term or 
-C.c(~)-term unless otherwise specified. 

For ~ny term T, write 8I;(T) for {A E 8 I T E .cCA(~) u C.cA(~)}' If A E 8I;(T) 
we say that T has sort A. The first five clauses of Definition 2.15 and all but the last of 
Definition 2.16 give an inductive assignment of a sort to every well-sorted term over the 
signature ~. As with types, we will not explicitly indicate the sorts of terms unless it is 
necessary. We consider terms which are identical up to renaming of (sorted) variables 
to be the same. 

A pure term is one containing no parameters. A C.c(~)-term is functional if it is of 
one of the forms I, K, KM,S, SM, or SMN; it is passive if it is of the form hM1 ...Mk, 
k ?: 0, where the head h of the term is a sorted non-redex atom. Note that functional 
terms must have functional sorts. A passive term is flexible if its head h is a variable, and 
rigid otherwise. These notions extend those already defined for .cC by Huet ([Hue75]) 
and for C.c by Dougherty ([Dou93]). 

If ~ is a signature with sort system 8 and sort structure A, and if --- is the equivalence 
relation determined by A, then by the rules (weaken) in Definitions 2.15 and 2.16, 
.cCA(~) = .cCB(~) (resp. C.cA(~) = C.cB(~» whenever A f- A --- B. By passing to 
the quotient signature ~' with respect to ---, i.e., to the signature with sort system 8' 
equal to 8/ --- obtained by replacing all sorts in 8 by canonical ----equivalence class 
representatives, we arrive at a signature whose equivalence relation is trivial and such 
that .cCA(~') = .cCA(~) (resp., C.cA(~') = C.cA(~» for all sorts A. We may, and will 
therefore, assume without loss of generality that :5 is a partial ordering for all signatures 
in the remainder of this paper. We will also assume that we have ridded our sort 
structure of redunclant subsort declarations of the form [A:5 A]' and that if A f- A:5 B, 
then length(A) :5 length(B) holds. The latter assumption, which is required for the 
unification algorithm for .cC(~) given in [JK93], is without loss of generality under, for 
example, a standard semantics. 
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A signature is said to be subterm closed if each subterm of a well-sorted term is 
again well-sorted. It is natural in the context of mathematics to expect signatures 
to be subterm closed, since it does not make sense to allow ill-formed subexpressions 
in well-sorted expressions (a situation that may be different in, for example, field of 
natural language processing). The proof that signatures are indeed subterm closed 
is straightforward, although because the rules (1J) and (abs) provide different ways of 
sorting certain abstraction terms, we must look at the derivation proving that a .cC(1:)
term is well-sorted, rather than only at the structure of X itself, to prove this - and; 
in fact, any - result concerning the sort of a subterm ofaX. Except for use of the 
(weaken) rule, sort assignment in C.c(1:) , on the other hand, is entirely structural, so 
that consideration of the structure of terms themselves often suffices to prove analogous 
results in that setting. In any case, we may assume without loss of generality that 
we never follow one application of a rule (weaken) by another in constructing any sort 
derivation for any term, since the inclusion ordering:::; determined by Ll is transitive. 

In any signature, variables and parameters have unique least sorts: 

Lemma 2.17 If 1: is a signature with sort structure Ll and t E VarsA U ParsA, then t 
has least sort A in 1:, i.e., for all BE S'E(t), Lll- A :::; B. 

Proof. According to Definitions 2.15 and 2.16, if 1: I- t : B for any B :t= A, then this fact 
must be the conclusion of an application of (weaken). The result is thus immediate. 0 

On the other hand, due to the possibility of constant overloading, it is not necessarily 
true that every term will have a unique least sort, i.e., not every signature is a regular 
signature. Yet the various sorts a given term may have are guaranteed to be related in 
at least a rudimentary way: 

Lemma 2.18 For any signature 1: and any term T, if 1: I- T : A and 1: I- T : B, then 
r(A) = r(B). 

Proof. For .cC(1:) this is proved in [JK93]; for C.c(1:) , it is immediate from 
Definitions 2.13 and 2.16, and Lemmas 2.7 and 2.12. 0 

As a corollary, we observe that for every T E .cC(1:) or C.c(1:) , the set S'E(T) is finite, 
since 1: has only finitely many sorts per type. 

As a further consequence of Lemma 2.18 and the fact that signatures are subterm 
closed, we see that if we consider the forgetful functor to be the identity on typed 
constants, then it can be extended to well-sorted terms by induction on the derivations 
proving the ter~s well-sorted. This extension gives injections from .cC(1:) into .cC and 
from C.c(I;) into C.c. The forgetful functor is not, however, bijective on .cC(I;) or C.c(1:) 
in general. 

If 1: is a signature with exactly one sort A such that r(A) = a for each a E To, and 
such that Ll is the empty sort structure, then Lemma 2.7 implies that the sort system 
S of 1: is isomorphic to T via the type assignment r. Moreover, the set of constant 
declarations contains at most one declaration [c :: A] per constant c E C, since constant 
declarations must respect the typing of the constants, and so .cC(1:) (resp., C.c(1:» is 
isomorphic to a fragment of .cC (resp., C.c) whose only constants are the finitely many 
per type appearing in the constant declarations of 1: together with the constants which 
are images of parameters under the forgetful functor. The inclusion ordering determined 
by Ll can thus be seen as refining the type structure of the simply typed lambda calculus 
(resp., simply typed combinatory logic). 
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In order to prove computability of sort assignment for .cC(E) and C.c(E), we extend 
the function SEC) on .cC(E) (resp., C.c(E» to all of .cC (resp., C.c) via the forgetful 
functor. 

Definition 2.19 For T E .cC (resp., C.c) and a signature E, define 

SE(T) = {SE(U) IU E .cC(E) u C.c(E) and U == T} 

According to this definition, T E .cC \ .cC(E) (resp., C.c \ C.c(E» iff SE(T) = 0, i.e., 
iff there exists no U E .cC(E) (resp., C.c(E» such that U == T. If such a U exists it is 
unique; in this case we abuse terminology and say that T E .cC (resp., C.c) is well-soned 
with respect to E. 

Theorem 2.20 For any signature E and term T, SE(T) is effectively computable. 

Proof. For .cC(E), the result is proved in [JK93]; for C.c(E), we proceed by induction 
on the structure of T. 

•	 If T == tA for t E Vars U Pars, then SE(T) = {B I ~ f- A :5 B}, which is 
computable by Corollary 2.10. 

•	 1fT = ca' then SE(T) = {B I~ f- A:5 B for some A E S with [c:: A] E ~}. This 
set is also computable by Corollary 2.10 and the fact that signatures have finitely 
many constant declarations per type. 

•	 If T == UV, then 

SE(T) = {B I ~ f- ,(A) :5 B for some A E S with A E SE(U) and 6(A) E SE(V)}, 

This set is computable by the induction hypothesis and Corollary 2.10. 

o 

Corollary 2.21 For any signature E and typed term T, it is decidable whether or not 
T is well-soned with respect to E. 

We now prove that signatures respect function domains, in the sense that for every 
term T of functional sort and any sorts A, B E SE(T), we must have 8(A) = 8(B). This 
unique domain sort is called the supporting sort of T and is denoted supp(T). At first 
glance, requiring signatures to respect function domains appears to be a grave restriction 
on the expressiveness of a calculus. But functional extensionality itself relies heavily on 
the notion of explicitly specified domains of functions, which unique supporting sorts 
are intended to syntactically capture. Indeed, in mathematics, functions are assumed 
to have a unique (explicitly specified) domain, and must therefore be distinguished 
from restrictions to subdomains. For example, the addition function on the reals must 
be distinguished from the addition function on the natural numbers, and in general 
functions f and g should only be considered the same if fa = ga for all a in the common 
(explicitly specified) domain of f and g. Observing these distinctions is necessary for a 
correct treatment of extensional higher-order calculi, and they must be reflected in the 
syntax of any such calculus. 
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Lemma 2.22 If"E f- T : A and "E f- T : B, then A Rdom B. That is, any signature "E 
respects function domains. 

Proof. For £C("E), the proof appears in [JK93]j for C£("E) the proof is by induction on 
the derivations of"E f- T : A and "E f- T : B. If A ~ B or B ~ A, then the lemma holds 
by the third part of Lemma 2.12. We may therefore assume without loss of generality 
that no (weaken) steps appear in the derivations "E f- T: A and "E f- T: B. 

•	 If"E f- T : A by (var) , then "E f- T: B is also the result of (var), and so A == B. 

•	 If"E f- T : A by (par), then "E I- T : B is also the result of (par), and so A == B. 

•	 If"E f- T : A by (const), then "E f- T : B is· also the result of (const). Thus A Rdom 
B by Definition 2.13. 

•	 If"E f- T : A by (app), then T == UV for some U, V, and"E I- T : B is also the result 
of (app). The result follows immediately by applying the induction hypothesis to 
U. 

o 

Because the forgetful functor provides injections £C("E) <---+ £C and C£(~) <---+ C£, we 
can extend the translations £ and 1i on typed terms to translations (which we also call 
£ and 1i) between £C("E) and C£(~), as follows: 

Definition 2.23 Let "E be any signature. Given X E £C("E), let Mx be the unique 
C£("E)-term such that Mx == 1iX. Likewise, given M E C£(~), let XM be the unique 
£C(~)-term such that XM == £M. 

Define 1i : £C(~) --> C£(~) and .c :C£(~) --> £C("E) by 

1i(X) == Mx and £(M) == XM. 

Writing suppi(T) for 6i(A) when "E f- T : A, it is tedious but not difficult to see 
that these translations are sort preserving, and that they act on terms as do their typed 
counterparts, i. f., that 

•	 £(a) == a when a is a non-redex atom, 

•	 £(I) == AX.X for x E Varssupp(I)' 

• £(I<) == AXY.X for x E VarSsupp(K) and yE Varssupp2(K), 

•	 £(5) == AXYZ.XZ(Yz) for x E Varssupp(S), yE Varss'U pp2(S), and Z E Varss'U pp3(S), 
and 

•	 £(M N) == £(M)£(N); 

and 

• 1i(a) == a if a is an atom, 

•	 1i(XY) == 1i(X)1i(Y), and 

• 1i(AX.X) == [x]1i(X) where x E VarsA and 
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[x]M == J{/3 aM when x does not occur in M, r(A) =a, and r(M) =(3, 

-- [x]x == la if r(A) == a, 

- [x](Mx) == M when x does not occur in M, and 

[x](M N) == sa/31'([x]M)([x]N) if r(A) = a, r(M) = (3 ...... " and r(N) = (3, 
otherwise. 

2.3 Order-sorted Reduction and Equality 

We now fix an arbitrary signature E for use throughout the remainder of this paper. 
As per the discussion immediately preceding Lemma 2.22 7]-expansion of the term 

X A to AXB.XX, which corresponds to restricting the function denoted by X to the 
sort denoted by B, should only yield the original function again if B represents the 
(explicitly specified) domain of the function denoted by X. This restriction is embodied 
in the order-sorted 7]-rule of the next definition. 

Definition 2.24 Order-sorted (37]-reduetion is defined to be the least reduction relation 
on .cC(E) generated by the following rules: 

• (AX.X)y L X[x := Y] 

• AXB·XXB ~X if XB et FV(X) and B == supp(X) 

The first rule above, which we assume to happen without free variable capture, 
is called order-sorted (3-reduetion and the second is called order-sorted 7]-reduction. Of 
course there are restrictions on the sorts of the terms implicit in the rules for .cC(E)-term 
formation. Observe, for example, that we must have B ::; supp(X) in the order-sorted 7]
rule in order to ensure that AX.XX E .cC(E). But in fact we require the stronger condition 
that B actually be identically supp(X) for the sake of properly handling extensionality. 

It is possible to define order-sorted (3-reduction without reference to typed (3
reduction by 

XLYiff XLy, 

an equivalence of which we will make much use in what follows. But in the interest 
of having a self-contained definition, we prefer instead to define (3-reduction wholly in 
terms of the order-sorted calculus. 

Since order-sorted (31J-reduction generalizes ordinary typed (37]-reduction, we will 

write !!!... for order-sorted (31J-reduction as well as for the typed version. We will 
similarly abuse notation in denoting the transitive, as well as the reflexive, symmetric, 

and transitive, closure, of !!!!..., since the typed relations are subsumed by their order
sorted versions. 

It is important to our program that the fundamental operations of our calculi do not 
allow the formation of ill-sorted terms from well-sorted ones. This will ensure that 
our unification algorithm never has to handle ill-sorted terms, even intermediately. 

It is shown in [JK93] that 7]-equality is sort-preserving, and that X -..!!.....,. y implies 
S1;(X) ~ S1;(Y), although the reverse inclusion does not hold in general. 
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Order-sorted ,8-reduction satisfies the usual properties associated with typed ,8
reduction, particularly convergence. That order-sorted ,B17-reduction on .eC(E) is 

terminating follows from the fact that X ~ Y implies X A Y; confluence follows 

from weak .confluence of typed ,87]-reduction and the fact that if X ~ Y then 
supp(X) == supp(Y). It therefore makes sense to speak of the order-sorted ,8-normal 
form of a .eC(E)-term X. It is also sensible to refer to the order-sorted long ,B-normal 
form of a .eC(E)-term X, denoted osl,Bnf(X). By this we mean the term obtained by 
computing the order-sorted long ,B-normal form of X and then performing (if needed) 
some order-sorted 7]-l-reductions, as in [Bre88]. 

We are of course interested in the equality induced on C.e(E) by order-sorted ,81]
equality on .eC(E) under the (extended) translation.e. If we define order-sorted C
equality to be precisely this equality, i. e., if we define 

M =c N iff .eM =f3,., .eN, 

then as for the typed calculi, we have 

.e(1i(X)) =f3,., X and 1i(.e(M)) == M, 

and it follows that for any .eC(E)-terms X and Y, 

X =f3,., Y iff 1i(X) =c 1i(Y). 

By analogy with the typed calculi, a C.e(E)-term M is said to be in order-sorted C
normal form if M == 1iX for some X in order-sorted long ,B-normal form. 

Unfortunately, the natural extension of typed weak equality, defined immediately 
below, does not capture order-sorted C-equality (this is a consequence of the well-known 
fact that typed weak equality does not capture typed C-equality). But we see now that 
as in the typed case, closing the rules for order-sorted weak equality under an appropriate 
notion of extensionality will indeed be enough to reflect order-sorted C-equality. The 
fact that order-sorted weak equality and order-sorted C-equality stand in exactly the 
same relation to one another as do weak equality and C-equality on C.e is crucial for 
extending Dougherty's techniques for unification in C.e to the order-sorted combinatory 
logic setting. 

Definition 2.25 Order-sorted weak reduction is defined to be the least reduction 
relation on C.e(E) stable under instantiation by well-sorted substitutions (to be defined 
in Section 3.1) and generated by the following rules: 

•	 I"'x --+ x if x E VarsA and [la :: A -+ A] E E 

•	 [{af3 xy --+ x if X E VarsA, yE VarsB, and [[{a f3 :: A -+ B -+ A] E E 

•	 saf3 'Y xyz --+ xz(yz) if x E VarsA_B_D,y E VarsA_B,z E VarsA, and 
[sa f3"Y :: (A -+ B -+ D) -+ (A -+ B) -+ A -+ D] E E 

We defer the definition of "well-sorted substitution" merely for convenience of 
presentation. As with order-sorted ,B-reduction, it is possible to define order-sorted 
weak reduction on C.e(E) with reference to the corresponding typed reduction, as in, 
for example, I M --+ M iff I M --+ M. But as above, we will not. The properties 
of order-sorted weak reduction investigated in this section follow from this alternative 
characterization of order-sorted weak reduction, however. 
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Since order-sorted weak reduction generalizes the corresponding typed reduction we 
write ~ for order-sorted weak reduction as well as for typed weak reduction. We 
again abuse notation and denote the transitive closure of ~ by ~,and its reflexive, 
symmetric, transitive closure by =w. That order-sorted weak reduction is convergent 
follows easily from the analogous result for typed weak reduction. We will therefore speak 
of the order-sorted weak normal form of a C.c(E)-term M. We will see in Lemma 3.19 
that every C-normal form is also in weak normal form. 

Although it is not in g~neral possible to deduce any relationship between S'E(M) 
and S'E(N) for M =c N, it is immediate from Definition 2.25 that S'E(M) ~ S'E(N) 
whenever M ~ N. 

Again taking care to properly handle extensionality in the presence of ordered sorts, 
we have 

Definition 2.26 The order-sorted extensionality rule is: for terms M and N of the 
same supporting sort A, IvI =ext N iff Mz =ext Nz for any (and hence all) z E VarsA 
such that z rI. Vars(M) U Vars(N). 

This order-sorted extensionality rule clearly extends the usual extensionality rule to 
the sorted setting. Write =w+ext for the equality generated by adding the order-sorted 
extensionality rule to the rules for order-sorted weak reduction. 

The relationship between order-sorted ,B7]-reduction and the combination of order
sorted weak reduction and extensionality exactly parallels that in the typed case: 

Lemma 2.27 1. If M ~ M', then .c(M) L .c(M') via a non-empty sequence of 
,B-reductions. 

2. If X!:!.... X', then 1i(X) =w+ext 1i(X'). 

Proof. The first statement follows directly from the analogous result for the typed 

calculus. For the second, first observe that it suffices to see that X L X' implies 
1iX =w+ext 1iX'. The proof is by induction on, the structure of X. 

•	 If X == >.x.Y L >.xY' with Y L Y', then by the induction hypothesis, 
([x](1iY))x =w 1i(Y) =w+ext 1i(Y') =w ([x] (1iY')) x , so that the order-sorted 
extensionality rule, which does indeed apply, gives 1i(>'x.Y) == [x](1iY) =w+ext 

[x](1iY') == 1i(>'x.Y'). 

•	 If X == (>.x.Y)Z L Y[x := Z]' then 1iX == ([x]1iY)(1iZ) ~ (1iY)[x := 1iZ] == 
1i(Y[x := Z]). 

•	 If X == YZ L Y'Z' where Y L Y' and Z L Z', then the result follows 
immediately from the induction hypothesis. 

Cl 
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The order-sorted extensionality rule, together with weak reduction, is expressive 
enough to capture order-sorted C-equality: 

Theorem 2.28 M =w+ext N iff M =c N 

Proof. For the first direction, it suffices to see that M =c N if either M ~ N 
or M =c N by an application of the order-sorted extensionality rule. We have 

M ~ N implies £M L £N, which in turn implies M == 1i£M =e 1i£N == N. We 
also have that if M =w+ext N by an application of order-sorted extensionality, then 
Mz =ext Nz for all z E VarsA, where A is the common supporting sort of M and 
Nand z fJ. Vars(M) U Vars(N). Then Mz =c Nz, so that (£M)z == £(Mz) =(J1) 

£(Nz) == (£N)z, and thus £M =1) Az.(£M)z =(J1) Az.(£N)z =1) £N. Therefore 
M == 1i£M =e 1i£N == N. 

Conversely, M =e N iff £M =(J1) £N, so that Lemma 2.27 implies M _ 
1i£M =w+ext 1i£N == N. D 

3 Order-sorted C-unification 

Narrowing is a method for generating unifiers of systems modulo equational theories 
which is complete for theories admitting presentation as convergent term rewriting 
systems. Because it imposes constraints on the deduction steps that can be performed, 
narrowing, when complete, results in a smaller unification search space than would 
be obtained using more generally applicable techniques. Order-sorted weak reduction 
is convergent; narrowing is therefore a promising approach to unification modulo the 
equational theory generated by order-sorted weak equality. 

As we observed in the last section, however, order-sorted weak reduction does not 
generate order-sorted C-equality. But adaptations of Curry's four equations (see [HS86]) 
which generate typed C-equality when added to the defining equations for the typed I, 
K, and S do combine with the rules for order-sorted weak reduction to exhibit an 
(infinite) equational presentation of order-sorted C-equality. It is thus not hard to 
see that order-sorted C-equality could submit to an order-sorted equational unification 
algorithm developed along the lines of that in [Sch89]. On the other hand, since 
order-sorted C-equality is decidable (by passing to £C(E) and performing order-sorted 
,B7]-reductions), we might hope for a convergent term rewriting system capturing it 
and therefore providing the foundation for a narrowing algorithm for order-sorted C
unification. Unfortunately, no confluent rewriting system is known, even for typed C
equality. 

We nevertheless see in this section how the fact that order-sorted weak equality 
and order-sorted extensionality together generate order-sorted C-equality can be used 
to extend rewriting by order-sorted weak reduction to a relation on systems which is 
expressive enough to capture order-sorted C-equality. This technique, adapted to our 
sorted setting from [Dou93], is justified by Theorem 2.28. Furthermore, we will show 
that this relation on systems indeed supports a narrowing-like algorithm for unification 
modulo order-sorted C-equality in the presence of constant declarations, as does its 
unsorted counterpart for C-equality on CL. 
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3.1 Substitutions and Systems 

In the following, we represent unification problems by equational systems comprising 
the pairs of C.c(E)-terms to be simultaneously unified, and use transformations of such 
systems as our main tool for solving the unification problems they represent. Systems 
are also a convenient way to phrase questions of C-equality between terms. In this 
section notions of "system" and "substitution" appropriate to our order-sorted setting 
are defined and the connections between them are investigated. 

Definition 3.1 A pair is a two-element multiset of C.c(E)-terms. A system is a finite 
set of pairs. A pair is trivial if its elements ar~ identical, and order-sorted C -valid if 
its elements are equal modulo order-sorted C-equality. A system is trivial if each of its 
pairs is trivial, and order-sorted C-valid if each of its pairs is order-sorted C-valid. 

If the symmetric difference of the systems rand r' is trivial, we write r ~ r'. 
Vars(r) denotes the set containing all variables appearing in terms in the system r. 
As usual, we write r, (M, N) instead of r U {(M, N)}, but since r mayor may not also 
contain (M, N), such a decomposition is ambiguous. We will use the notation f; (M, N) 
to abbreviate r u {(M, N)} when (M, N) is not a pair in r. 

Definition 3.2 A pair (M, N) is solved in r ~f it is either trivial or of the form (x, M) 
where x E VarsA appears exactly once in r and A E S~(M). In the latter case, x is 
said to be solved in r. If each pair in r is solved in r, then f is a solved system. 

Definition 3.3 A substitution is an ordinary (type-preserving) finitely supported map 
from variables to .cC(E)- or C.c(E)-terms, as appropriate. A substitution 0 induces a 
mapping on terms, which we will also denote by O. 

We will write substitution application as juxtaposition, so that OT is the application 
of the substitution 0 to the term T. By D(O) and 1(0) we will denote the set of variables 
in the domain of 0 and the set of variables introduced by 0, respectively. 

Definition 3.4 A substitution 0 is well-sorted (or a well-sorted substitution) iffor every 
x E V arSA, A E S~( Ox); 0 is pure if for every x E Vars, Ox is a pure term. 

It follows that if T E .cC(E) (resp., C.c(E)) and 0 is well-sorted, then OT E £C(E) 
(resp., C£(E)) as well. That the set of well-sorted substitutions is closed under 
composition is not hard to prove. We assume the .standard results about ordinary (not 
necessarily well-sorted) substitutions. 

We can extend equalities on terms to (well-sorted) substitutions in the usual manner: 

Definition 3.5 Let =* be an equational theory on £C(E) or C£(E), W be a set of 
variables, and 0 and 9' be substitutions. Then 0 =* O/[W] means that for every variable 
in x E W, Ox =* 0/ x. Define the subsumption relation 0/ $* O[W] to hold provided 
there exists a substitution p such that 0 =* pO'[W]. 

If W is the set of all variables, we drop the notation "[W]." We will be primarily 
concerned with the cases when =* is =/3'/l =e, or the empty equational theory. In the 
latter case, we write simply "=" and "~" for the induced equality and subsumption 
ordering on substitutions. 

Substitutions on terms can be extended to mappings on systems f == {(Mi, Ni) I i $ 
n} by defining Of to be the system {(9Mi ,ONi) I i $ n}. 
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Definition 3.6 A well-sorted substitution () is an order-sorted C-unifier (resp., order
sorted syntactic unifier) of a system r if (}r is C-valid (resp., trivial). If u is 
an idempotent C-unifier (resp., syntactic unifier) of r with the properties that 
D(u) ~ Vars(r) and that for any order-sorted C-unifier (resp., order-sorted syntactic 
unifier) () of r, u :::;c () (resp., u :::; ()) holds, then u is said to be a most general order
sorted C-unifier (resp., most general order-sorted syntactic unifier) of r. A system r is 
order-sorted C-unifiable (resp., order-sorted syntactically unifiable) if there exists some 
order-sorted C-unifier (resp., order-sorted syntactic unifier) of r. 

The following lemma shows how a method for unification with r~spect to order-sorted 
C-equality yields an alternate method for order-sorted higher-order unification in £C(I:) 
to that in [JK93] , and justifies our translation of unification problems from £C(I:) to 
C£(I:). If u is a substitution, let the substitutions (1i 0 u) and (£ 0 u) be defined by 
(£ 0 u)T == £(uT) and (11. 0 u)T == 11.(uT). 

Lemma 3.7 Let X and Y be well-sorted terms. The well-sorted substitutions u such 
that uX =13'7 uY are (up to pointwise order-sorted f3",-conversion) those of the form 
(£ 0 ()) where () ranges over the order-sorted C-unifiers of (1i(X), 1i(Y)). 

Proof. As in [Dou93], with the added observation that the translations preserve sorts. Cl 

The remainder of this subsection explores the relationship between systems and 
substitutions. 

If r is a solved system whose non-trivial pairs are (Xl, M 1), ••. , (xn , M n ) then these 
pairs determine an idempotent well-sorted substitution ur = {Zl 1-+ M 1 , ... , Xn 1-+ M n }. 

Note that such a pair (x, y) requires a choice as to which of x and y is to be in the 
domain of the substitution; we will assume that a uniform way exists for making such a 
choice, and so will refer to the well-sorted substitution determined by a solved system. 
On the other hand, idempotent well-sorted substitutions can be represented by solved 
systems without trivial pairs. If u is such a substitution, write [0-] for any solved system 
which represents it. 

Note that any system r can be written as r'; [u] where u is the set of solved pairs in 
r. Call [u] the solved part of r. 

Transformation-based unification methods attempt to reduce systems to be unified 
to solved systems which represent their unifiers. The fundamental connection between 
solved systems and order-sorted unifiers is the following fact, which shows that solved 
systems indeed describe their own solutions: 

Lemma 3.8 Ifr == (M1 , N 1), ... , (Mn , N n ) is a solved system, then ur is a most general 
order-sorted C -unifier (resp., most general order-sorted syntactic unifier) for r. In fact, 
for any order-sorted C-unifier () of r, () =c (}o-r (resp., () == (}o-r). 

Proof. Clearly ur is an order-sorted C-unifier (resp., order-sorted syntactic unifier) 
of r. Suppose that the non-trivial pairs of rare (Xij' Msj ). If () is any order-sorted 
C-unifier (resp., order-sorted syntactic unifier) of r, then Oo-riCo; == OMs; =c Oxs; (resp., 
(}urx'j == OM.; == (}Xi;) for j = 1, ... , k, and (Jx == (}urx for x (/. D(ur) , so that indeed 
() =c Our (resp., () == (Jur). Cl 
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In general, however, an order-sorted syntactically unifiable system f will not have 
a single most general order-sorted syntactic unifier, although such a system will indeed 
have a finite complete set of order-sorted syntactIc unifiers since signatures contain only 
finitely many constant declarations per type. An order-sorted C-unifiable system may 
not have a finite complete set of order-sorted C -unifiers, i. e., a finite set U oforder-sorted 
C-unifiers such that for every order-sorted C-unifier () of f there exists a substitution 
(J' E U such that (J' ~c (}[Vars(r)]. This quarrelsome behavior has nothing to do with 
sorts or our combinatory logic framework, however - it is inherited from the simply 
typed lambda calculus ([Gou66]). 

3.2 Order-sorted C-validity 

In extensional calculi, deciding order-sorted C-equality for arbitrary C£(E)-terms 
reduces to the problem of deciding it for order-sorted weak normal forms of non
functional sort. The observation that two such terms hM1 ...Mk and h'M{ ...M~, are 
equal modulo order-sorted C-equality precisely when h == h', k = k', and for each i, 
Mi =c Mf provides a straightforward treatment of order-sorted C-validity~ By a fresh 
parameter we will mean one not occurring in any term in the current context. 

Definition 3.9 The set OSVT consists of the following reductions: 

1.	 REDUCE
 

f; (M, N) ----4 f, (M', N)
 

when M reduces to M' by order-sorted weak reduction. 

2.	 ADD ARGUMENT
 

f; (M, N) --> f, (Md, Nd)
 

when at least one of M and N is functional, M and N have the same supporting 
sort A, and d is the first fresh parameter in ParsA. 

3. PASSIVE DECOMPOSE 

when h is a non-redex atom. 

Note that ";" is used on the left-hand sides of transformations, so that the effect of 
transformations is unambiguous, whereas "," is used on their right-hand sides to preclude 
repetition of identical pairs. We adopt the convention that no OSVT reduction is done 
out of a trivial pair. 

The notation for the OSVT reductions exploits our convention that pairs are 
unordered. In ADD ARGUMENT, fresh parameters rather than variables are used as 
a reminder that these new arguments are not part of the original terms and should 
therefore not be instantiated. The restriction on d in that transformation is necessary 
to avoid generation of an order-sorted C-valid pair from one which is not order-sorted 
C-valid. 
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Although we may think of the OSVT transformations as a rewriting system on 
systems of C.c(~)-terms, this analogy is imperfect in that i) ADD ARGUMENT can 
be applied only to the heads of terms since it changes their sorts, and ii) PASSIVE 

DECOMPOSE is not stable under substitution for a head variable. Fortunately, the facts 
that rewriting systems are closed under term-formation and stable under substitution 
do not have any effect on their ability to support unification procedures, as observed in 
[Dou93]. 

The analogous observations in [Dou93] directly give the following facts about OSVT: 

Lemma 3.10 1. Suppose r ---+ r'. Then r' is order-sorted C-valid iff r is. 

2. Suppose that r is OSVT-irreducible. Then r is order-sorted C-valid iff it is trivial. 

3. Every sequence of OSVT reductions terminates. 

Proof. The proofs of 1) and 2) are exactly as in the typed case. To establish 3), 
observe that any sequence of OSVT reductions induces a non-collapsing sequence of 
VT reductions as defined in [Dou93], which are shown there to terminate (the OSVT 
reductions clearly extend VT to our sorted setting.) 0 

We may thus decide order-sorted C-equality between terms M and N simply, by 
repeatedly applying OSVT reductions in any order to the system originally comprising 
(M, N). Lemma 3.10 guarantees that any such reduction sequence terminates, and that 
M ==c N iff the OSVT-irreducible system thus obtained is trivial. As observed in 
[Dou93], we may halt and report that M and N are not order-sorted C-equal if ever we 
generate a pair of passive terms whose heads are not identical. 

Since the proof of the second part of Lemma 3.10 depends only on the assumption 
that terms M and N admit no weak head reductions, restricting REDUCE to applications 
at the heads of terms still leads to a complete decision procedure for order-sorted C
validity. This observation will allow us to correspondingly restrict the search space in 
our unification procedure, as discussed in Section 3.5. 

Finally, it is worth observing that by contrast with validity in C.c, a pair of C.c(~)
terms need not comprise terms having precisely the same sorts to be order-sorted C-valid. 
Consequently, terms having different sorts can be order-sorted C-unifiable, although the 
images under the forgetful functor of order-sorted C-unifiable terms, like those of order
sorted C-valid terms, must have the same types. 

3.3 Transformations for Order-sorted C-unification 

In the remainder ofthis section we show how the reduction relation on systems developed 
in the last subsection can be lifted to give a narrowing-like order-sorted C-unification 
algorithm in which terms are "normalized" with respect to that relation. The following 
set of transformations, a refined version of which is proved in Section 3.6 to induce an 
order-sorted higher-order unification algorithm complete for all higher-order unification 
problems in our calculi, is adapted from the set UT in [Dou93], with which it coincides 
when S is isomorphic to T. That these transformations are also complete for order-sorted 
syntactic unification in C.c(~), as shown in Corollary 3.16, will be useful in proving their 
order-sorted C-unification completeness. 

Definition 3.11 The set OSUT comprises the following transformations: 
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1. Decompose 

if h is any atom. 

2.	 Eliminate
 
f; (x, M) =?oT, (x, M)
 

where x E VarsA, x tJ. Vars(M), x E Vars(r), and 0' = {x 1-+ M} is well-sorted. 

3. Narrow 

where there exists a non-variable subterm occurrence U of M and an order
sorted weak reduction rule L --;. R with fresh variables such that Land U have 
most general· order-sorted syntactic unifier 0', and M* is obtained from M by 
substituting R for U. 

4.	 Add Argument
 
fj (M, N) =?f, (Md, Nd)
 

where d is the first fresh parameter of sort supp(M) == supp(N). 

5.	 Split
 
f; (xM1 Mn, hP1 ...PkNl ...Nn) =?
 

O'f, [0'], (Zll O'Pl ), , (Zk, O'Pk) ,O'(Ml , Nl ), ... , O'(Mn, Nn)
 

where k,n 2: 0, x E VarsA, h is a pure atom, and either
 

(a)	 h E VarsB or [h :: B] E E for some sort B such that Ll I- -yk(B) ~ A, 
Zi E Vars,upp'(h) is fresh for i = 1, "'1 k, and 0' = {x 1-+ hzl ...zd, 

(b)	 h E VarsB and y E VarsD is fresh for some sorts B and D such that 
m = length(r(D)) - length(r(B)) 2: 0, Ll I- -yk+m(D) ~ A, and Ll I
-yk+m(D) ~ -yk(B), Wi E Vars6i(D) is fresh for i = 1, ... , m, Zi E Vars6m+i(D) 
is fresh for i =1, ... , k, and 0' = {x 1-+ YWl ...WmZl ...Zk, h 1-+ YWl ...Wm}, or 

(c)	 h E VarsB and there exist constant declarations [a :: D] and [a :: E] in E for 
some sorts B, D, and E, such that m = length(r(D)) -length(r(B)) 2: 0, 
Ll I- -yk+m(D) ~ A, Ll I- -yk+m(E) ~ -yk(B), Wi E Vars6i(D) is 
fresh for i = 1, ... , rn, Zi E Vars6m+i(D) is fresh for i = 1, ... , k, and 
0' = {x 1-+ aWl ...wmZl ...Zk,h 1-+ aWl ...wm}. 

In light of our observation that order-sorted syntactically unifiable terms need not 
have a most general order-sorted syntactic unifier, the assertion in Narrow, that Land 
U have a most general syntactic unifier requires comment. But it is easy to see that 
this follows from the fact that the left-hand-sides of order-sorted weak reduction rules 
do not have variables at the heads. 

We adopt the convention that no aSUT transformation is done out of a solved pair. 
This accords with our intuition that the solved pairs in a system are merely recording 
an answer substitution as it is incrementally built up. Notice that if f =? f', then 
{x I x is solved in r} ~ {x I x is solved in f'}, so that solved variables remain solved 
after application of a aSUT transformation. 
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We emphasize that there is no deletion of trivial pairs involving variables in 
this presentation, which simplifies certain arguments. For example, when a fresh 
variable is chosen during a computation, that variable is guaranteed to be new to 
the entire computation. This ensures that if r ==> r' under OSVT or OSUT, then 
Vars(r) ~ Vars(r'), and in Lemma 3.15 and Theorem 3.27 below eliminates the 
manipulation of "protected sets of variables" typically found in completeness proofs 
in the literature. It also eliminates complications in proving the soundness of resolution 
procedures based on our unification algorithm, and respects the fundamental idea behind 
the use of transformations to describe algorithms, namely, that the logic of the problem 
being considered can be abstracted from issues of data structures and control. 

To reinforce the intuition that parameters are not part of out unification problems 
but are introduced only as dummy arguments, we will focus on pure answer substitutions 
in proving the order-sorted C-unification completeness of OSUT. While this ostensibly 
requires that we restrict our attention to pure unification problems, by suitably defining 
the set Pars, as pointed out in [Dou93], any problem may be considered a pure one. 

Since Split is the only transformation in OSUT differing significantly from its UT
counterpart, we briefly illustrate its use. 

Example 3.12 Let [ha :: E], [fa :: D -> E -> A], and [fa :: D -> B] be non-redex 
constant declarations in a signature ~ with base sorts A, B, D, and E such that T(A) = t, 

T(B) = t -> t, T(D) = t, T(E) = t, and 8(B) = E. Assume that '"I(B) is distinct from 
A, and that ~ contains any constant declarations according with Definition 2.13 for the 
redex constants and no subsort declarations. Let f E VarsA and 9 E VarsB. Consider 
the order-sorted C-unifiable system 

r == (I, gho). 

This pair is not solved since ~ If gho : A, and Eliminate, Decompose, Narrow, and Add 
Argument do not apply to r. But clause (c) of Split does apply, since [fa :: D -> E -> A] 
and [fa :: D -+ B] are in ~, m = 1, and ~ ~ '"I2(D -+ E -> A) = A and 
~ I- '"I2 (D -> B) = '"I(B). Letting w be fresh in VarsD and z be fresh in VarsE, 
we have the Split step 

r == (I, gho) ==> (I, fowz), (g, fow), {z, ha}. 

An application of Eliminate yields the solved system 

(I, fowho), (g, fow), (z, ha), 

from which, anticipating Lemmas 3.13 and 3.17, we conclude that the substitution 
(J' = {f ~ fowho,9 f-+ fow} is both an order-sorted syntactic unifier, and an order
sorted C-unifier, of r. 

Applications of the other clauses of Split to order-sorted C-unification problems 
proceed in a similar manner. 

Let FOSUT be the subset of OSUT comprising Decompose, Eliminate, and Split. 
Then FOSUT is a sound and complete set of transformations for order-sorted syntactic 
unification in C.c(~): 

Lemma 3.13 FOSUT is sound for order-sorted syntactic unification in C..c(~), i.e., if 
r ==> r' by a FOSUT transformation and (} is an order-soTted syntactic unifier of r', 
then (} is also an order-soTted syntactic unifier of r. 
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Proof. Since (J is assumed to be well-sorted, it suffices to see that it is a syntactic unifier 
of f. 

When f' is obtained from f by Decompose or Eliminate this is proved in the 
usual way. In case f' is obtained from f by Split, the hypothesis entails that 
(J[u] is trivial, so that (Ju == (J. Thus Ouf == Of, and so we need only see that 
O(xMl Mn) == O(hPl ...PkNl ...Nn). But by hypothesis, OZi == OUPi == OPi for 
i = 1, , k, and OMi == (JUMi == (JUNi == ONi for i = 1, ... , n, so that in fact we need only 
argue that Ox == O(hPl ...Pk). If clause (b) of Split was used to obtain f/, we compute 

The result follows in a similar fashion in case clause (a) or (c) was used to obtain f/. [J 

The proof of completeness uses the straightforward fact that if E I- hMl ...Mn : A 
then there exists a sort B such that either h E VarsB or [h :: B] E E, and 
L\. I- ,n(B) ~ A, i.e., that sort assignment for C.c(E)-terms is determined by the sorts 
of their heads. The proof is ultimately by induction on the measure J1. defined on a 
substitution °and a system f by letting J1.«(J, f) be the multiset of depths of terms in 
O(fu), where fu is the unsolved part of f. 

Lemma 3.14 Let °be a pure order-soned syntactic unifier of an unsolved system f. 
Then there exist a system r' obtained from r by a FOSUT transformation, and a pure 
order-sorted syntactic unifier 0' of f/, such that 0' == O[Vars(f)] and J1.(0' , f/) < J1.(0, f). 

Proof. Choose (M, N) unsolved in f. If the heads of M and N are not in D(O), then 
they must be identical, so that we can apply Decompose to obtain f' and take 0' == O. 
Otherwise, (M, N) is of the form 

with x E; VarsA n D(O), k, n ~ p, and h pure. 
If n = 0 and E I- hPl ...Pk : A, then Eliminate must apply to f since (M, N) is not 

solved. We may thus obtain f' and take ()' == (). Suppose, then, that neither Decompose 
nor Eliminate apply to f. Since (M, N) is order-sorted syntactically unifiable, we 
must have ()x == O(hPl ...Pk) and ()Mi == ()Ni for i = 1, ... , n. Write h'Vl ...Vm for 
Oh and Wi for ()Pi, i = 1, ... ,k. Then E I- Bx == h'Vl .. .vmWl ...Wk : A, and 
E I- Bx == h'Vl .. .vmWl ...Wk : ,k(B), since E I- x : A and E I- h : B, respectively. 
There must therefore exist a sort D such that either h' E VarsD or [h' :: D] E E and 
A I- ,m+k(D) ~ A, and there must exist a sort E such that either h' E VarsE or 
[h' :: E] E E and A I- ,m+k(E) ::; ,k(B). 

•	 If h' E Vars, then D == E and indeed m = length(r(D)) - length(r(B)) ~ 0, 
so that we can apply clause (b) of Split with y == h' to (M, N) to get f' and 
take B' to be OU{Zl Wl,,,,zn Wk,Wl Vl, ... ,Wm f-+ Vm}. That B' is a f-+ f-+ f-+ 

well-sorted, pure, order-sorted syntactic unifier of f' agreeing with B on Vars(f) 
is clear. To see that J1.(B', f') < J1.(0, f), observe that tu] is solved in f' and 
that B'uf == BT == (Jf, so that it suffices to see that for each pair (Zi, BPi ) we 
have J1.(O',(Zi,UPi)) < J1.(O,(M,N)), and that for each pair (Mi,Ni) we have 
J1.«(J',(UMi,uNi)) < j.l(B,(M,N)). But this is indeed true since for i = 1, ... ,k, 
B' Zi == Wi is a proper subterm of Bx and (J' uPi == B' Pi == BPi is a proper subterm 
of O(hPl ...Pk), and O'uMi == (JMi and B'uNi == BNi for i = 1, ... , n. 



27 

•	 If h' E C, then [h' :: D] and [h' :: E] are in E and indeed m = 
length(r(D)) - length(r(B)) ~ O. If h == h', then m = 0 and [h :: D] E E 
with "/(D) ~ A, so that we can apply clause (a) of Split to (M, N) to 
get f' and take 0' to be () U {Zl W 1 , ... ,Zk f-+ Wk}. If h =f=. h', thenf-+ 

we can apply clause (c) of Split with a == h' to get f' and take 0' to be 
oU {Zl f-+ W 1 , ... Zn f-+ Wk, Wl f-+ V1 , ... , W m f-+ Vm}. In either case, the analysis 
then proceeds exactly as above. 

Cl 

Lemma 3.15 FOSUT is a complete set of transformations for order-sorted syntactic 
unification in C.c(E), i.e., if0 is a pure order-sorted syntactic unifier of a system f, then 
there exists a sequence of FOSUT transformations yielding a solved system [0"] where E 
is a pure order-sorted syntactic unifier of f such that 0" ~ O[Vars(f)]. 

Proof. Let 0 be a pure order-sorted syntactic unifier of f. The proof is by induction 
on the well-founded measure Il(O, f). 

•	 If Il(O, f) =0, then every pair in f ~ [O"r] is solved. By Lemma 3.8, O"r ::; O. 

•	 If Il(O, f) > 0, then f is unsolved, so that by the previous lemma, there exist 
a system f' such that f' is obtained from f by a FOSUT transformation and 
a pure order-sorted syntactic unifier 0' of f' such that 0' == O[Vars(f)] and 
Il(O', r') < Il(O, f). By the induction hypothesis, there is a sequence of FOSUT 
transformations out of f' yielding a solved system [0"] whose associated substitution 
0" is a pure order-sorted syntactic unifier of f' satisfying 0" ~ O'[Vars(f')]. The 0" is 
an order-sorted syntactic unifier of f, and [0"] can be obtained from f by a sequence 
of FOSUT transformations, and since Vars(f) ~ Vars(f'), 0" ~ O'[Vars(f)] 
holds. Finally, since 0' == O[Vars(f)], we have 0" ~ O[Vars(f)], as desired. 

Cl 

Corollary 3.16 OSUT is a complete set of transformations for order-sorted syntactic 
unification in C.c(E). 

OSUT is also sound for order-sorted C-unification. 

Lemma 3.17 OSUT is sound for order-sorted C-unification on C.c(E), i.e., iff ==> f' 
by an OSUT transformation and 0 is an order-sorted C -unifier of f', then 0 is also an 
order-sorted C-unifier of f. 

Proof. We need only check that 0 is a C-unifier of f. When f' is obtained from r by 
Decompose or Eliminate this is easily proved in the usual manner. 

When f' is obtained from f by Add Argument, we must deduce OM =c ON from 
O(Md) =c O(Nd), where d is the first fresh parameter of sort A where A is the common 
supporting sort of M and N. But (OM)d == O(Md) == O(Nd) == (eN)d, and A is also the 
common supporting sort of OM and ON, so that by order-sorted extensionality we may 
conclude OM =c ON. 

When f' is obtained from r by Narrow or Split, the hypothesis entails that 0[0"] is 
order-sorted C-valid, so that 00" =c e. Thus OO"f =c or, and so we need only show that 
oorder-sorted C-unifies the "redex pair" of each transformation. 
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When the transformation applied is Narrow, we have u M =c u M", so that 
eM =c euM =c OuM" =c ()uN =c ON, as desired. 

When the transformation applied is Split, the hypothesis guarantees that ()Zi =c 
()UPi =c (JPi for i = 1, ... , k, and OM; =c ()uM; =c OuN; =c ON; for i = 1, ... , n. We need 
only argue that Ox =c O(hP1 ...Pk). But the proof that this indeed holds is as exactly in 
Lemma 3.13 except that syntactic identity must be replaced throughout by order-sorted 
C-equality. Cl 

We now address the completeness of aSUT for order-sorted C-unification. 

3.4 The Key Lemma 

In proving the order-sorted C-unification completeness of aBUT it is convenient to 
isolate a notion of C-unifier satisfying certain technical conditions. First, as mentioned 
above, we focus on pure answer substitutions. Second, following Dougherty, we relax the 
standard requirement that normalized substitutions map all variables to normal forms 
and allow solved variables to be mapped' arbitrarily. 

Definition 3.18 A pure idempotent well-sorted substitution 0 is an normalized order
sorted C -unifier of f if 

•	 D(O) ~ Vars(f), 

• Of is C-valid, and 

• for every variable x not solved in f, Ox is in order-sorted C-normal form. 

Write NSCU(f) for the set of order-sorted normalized C-unifiers of f. 
It is clear that every well-sorted substitution 0 is order-sorted C-equal to a well

sorted substitution (J' with D((J) = D(0') and (J' x in order-sorted C-normal form for 
all x E Vars. Such a substitution is said to be in order sorted C -normal form. Thus 
for any order-sorted C-unifier 0 of a system f, there exists a 0' E NBCU(f) such that 
(J' =c ()[Vars(f)]. In particular, every order-sorted C-unifiable system has a normalized 
order-sorted C-unifier. 

The Lifting Lemma below is the key step in showing the order-sorted C-unification 
completeness of aBUT. The following properties of order-sorted C-normal forms, which 
rely on the corresponding results for typed combinatory logic (see [CF58]), guarantee 
behavior of order-sorted C-normal forms crucial to its proof. 

Lemma 3.19 The class of order-sorted C-normal forms has the following properties: 

1.	 Order-sorted C-normal forms are unique in their order-sorted C -equivalence 
classes. 

2.	 Every order-sorted C-normal form is in order-sorted weak normal form. 

3.	 Every subterm of an order-sorted C-normal form is also in order-sorted C-normal 
form. 

Proof. 
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1.	 If M =c N and M and N are in order-sorted C-normal form, then there exist order
sorted long ,B1J-normal forms X and Y such that fiX: M and fiY : N, and 
X =1311 Y. But order-sorted long ,B-normal forms are unique in their order-sorted 
jJ1J-equivalence classes, so that X : Y follows. Therefore M : fiX : fiY : N. 

2.	 We first see that if M is in C-normal form, then M is as well: since M : fiX 
for some order-sorted long jJ-normal form X, M : fiX, and X is in ,B-normal 
form since X is (although not necessarily in long jJ-normal form). Then M : fiY 
where Y is the long jJ-normal form of X, and therefore M is indeed in C-normal 
form. With this fact in hand, we infer that since M is weakly irreducible, M is as 
well. 

3.	 This follows from the observation that if M is in order-sorted C-normal form, then 
M is in C-normal form, together with the converse, a corollary of the next lemma. 
Momentarily assuming this, let M be in order-sorted C-normal form and let N 
be a subterm of M. Then N is a subterm of the C-normal form M, and by the 
corresponding result for the typed case, N is in C-normal form. Therefore, so is 
N. 

o 

Lemma 3.20 If X is the unique long ,B1J-normal form such that fiX : M, then there 
exists an order-sorted long ,B1J-normal form Y such that fiY : M and Y : X. 

Proof. The proof is by structural induction on M . 

•	 If M is a variable, parameter, or constant, take Y : osl,Bnf(£M) . 

•	 If M : UV and M : fiX : UV, then X : YZ with fiY : U and fiZ : V. 
Then Z is in long ,B1J-normal form since X is, and so is AW.YW. In addition, 
H(AW.YW) : fiY : U. By the induction hypothesis, there are order-sorted 
long jJ7J-normal forms Y' and Z' such that HY' : U, fiZ' : V, Y' : AW.YW, 
and Z' : Z. Thus Y' : AU.WU where W : Y, and fi(WZ') : M and 
W Z' == YZ : X. Finally, W Z' is in long ,B1J-normal form since X is. 

o 

Corollary 3.21 If M is in C -normal form, then M is in order-sorted C -normal form. 

We are now in a position to prove the main lemma necessary for our completeness 
argument. 

Lemma 3.22 (Lifting Lemma) Let 0 E N SCU(r) and let (M, N) be an unsolved pair 
in r. If 

Or--+A, 

is an aSVT reduction out of (OM, ON), then there exists a r' and a 0' with 

r==> r' 

via aSUT such that 
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1. B' == B[Vars(r)] , 

2. B'f'::: A, and 

3. B' E NSGU(f'). 

Proof. Let f == IT; (M, N), where (M, N) is not solved and B is order-sorted G
normal on the variables of M and N. The proof proceeds analogously to that in [Dou93]. 

If A is obtained by REDUCE, then 

Bf == BIT, (BM, BN) --+ BIT, ((BM)', BN) == A, 

where (BM)' is obtained from BM by an order-sorted weak reduction rule L --+ R with 
fresh variables replacing, in BM, subterm V == 6L by 6R. Note that 6 is well-sorted here. 
Then V is of the form BU for some subterm U of M. Since B is pointwise order-sorted 
G-normal on the variables of M, U is not a variable. Construct M* by substituting R 
for U in M and let u be a most general order-sorted syntactic unifier of Land U, so 
that 

f == IT; (M, N) ===> [u], uf, (uM*, uN) == f' 

is a Narrow step. If B' is B U 6, then B' is well-sorted since both Band 6 are, and the 
proof the conditions of the lemma hold proceeds exactly as in [Dou93]. 

If A is obtained by ADD ARGUMENT, then 

Bf == BIT, (BM, BN) --+ BIT, ((BM)d, (BN)d) == A. 

Since d is the first fresh parameter of sort A, where A is the common supporting sort of 
BM and BN (and therefore of M and N), an application of Add Argument to f yields 

f == IT; (M, N) ===> IT,(Md, Nd) == f'. 

If we take B' to be B, then the proof that the conditions of the lemma hold is again as 
in [Dou93]. 

If A is obtained by PASSIVE DECOMPOSE, there are two cases. If neither M nor N 
has a variable in D(B) at the head, then we can obtain f' by applying Decompose to 
(M, N) and take B' to be B. .Otherwise we can describe (M, N) as 

(M, N) == (xM1 ...Mn, hP1 ...PkNl ...Nn), 

where x E VarsA n D(B), k, n 2:: 0, and h is a pure atom. We can describe (BM, BN) as 

(BM,BN) == (aVl .. .vmUl ...UkLl ...Ln,aVl .. .vmWl ...WkQl ...Qn), 

for some m 2:: 0, with 
Bx == aV1 ...VmU1: ..Uk, 

Bh == aVl ...Vm, 

BPi == Wi , I ~ i ~ k, 

BMi == Li,l ~ i~ n, and 

BNi == Qi, I ~ i ~ n. 

The repetition of the Vi is justified by the facts that B is order-sorted G-normal on 
the variables of M and N and that order-sorted G-normal terms are unique in their 
order-sorted G-equivalence classes. Note that h cannot be a parameter since B is pure. 
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If h fj. D(O), then Oh == hand Er-Ox == hU1 ...Uk : A. Then there must exist a sort B 
such that either h E VarsB or [h :: B) E E and ~ r- 'l(B) ::; A. We can apply clause (a) 
of Split to get f' and let 0' be OU{Zl ......... U1 , •.. , Zk ......... Ud, so that indeed 0' == O[Vars(r)]. 
To see that O'f' ~ A, we first note that O'x == Ox == hU1 ...Uk == (}'(hz1 ...Zk) == O'ux, so 
that 0'u == 0'. Thus the pairs of OT' are identical to the pairs of A except that the trivial 
subsystem O[u] of O'f' does not appear in A and the trivial pair (h, h) does not appear in 
OT'. That 0' E NSCU(f') follows from the facts that 0 E NSCU(f), Er- Ui: suppi(h) 
for i = 1, ... , k, O'f' ~ A, and OSVT reductions preserve order-sorted C-validity. 

If h E VarsB n D(O), then Er-Ox : A and Er-Ox == Oh : B; Thus if 
a E VarsD, then m = length(r(D)) - length(r(B)), ~ r- ,m+k(D) ::; A, and 
~ r- -l+m(D) ::; ,k(B). We can apply clause (b) of Split with y == a to get f' and 
let 0' be 0 U {Wl ......... V1 , ... , W m ......... Vm , Zl ......... U1, ... , Zk ......... Ud, so that ()' == O[Vars(r)] 
is immediate. To see that O'f' ~ A, we observe that O'x == (}'(awl",wmZl ...Zk) and 
O'h == (}'(awl ...wm) so that (}'u == ()'. The rest of the analysis proceeds as in the case 
h fj. D(O). 

If h E VarsB n D«(}) and A E C, then Er-Oh == aVl ...Vm : B implies that 
there exists a sort E such that [a :: E] E E, m = length(r(E)) - length(r(B)), and 
~ r-,Hm(E) S ,k(B). On the other hand, Er-Ox == aV1 ...VmUl ...Uk : A implies that 
there exists a sort D such that [a :: D] E E and.6. r-,m+k(D) ::; A. We can apply clause 
(c) of Split to get f' and let ()' be () U {Wl ......... Vb ... , W m ......... Vm , Zl ......... U1, ... , zk ......... Uk}, 
and then proceed as in the previous cases to verify the conclusion of the lemma. 0 

3.5 Refinements 

Before presenting our order-sorted C-unification algorithm based on OSUT and proving 
its completeness, we describe the sense in which it is a "normalized narrowing" algorithm, 
and make a few additional observations which help constrain the non-determinism of the 
algorithm. First we note that rigid/rigid reductions preserve the order-sorted C-unifiers 
of systems, where a rigid/rigid reduction is an application of PASSIVE DECOMPOSE out 
of a pair of rigid terms. If we say that a system f is simple if each term in f is passive 
and irreducible with respect to order-sorted weak reduction and there is no pair of rigid 
terms in f with identical heads, then the next lemma is an immediate consequence of 
the fact that OSVT is terminating. 

Lemma 3.23 Any sequence of REDUCE, ADD ARGUMENT, and rigid/rigid PASSIVE 

DECOMPOSE reductions applied to a system will terminate in a simple system with the 
same order-sorted C -unifiers. 

Simple systems are thus those which are "normalized" with respect to OSVT 
reductions. 

In light of our convention that OSVT reductions not be applied out of trivial pairs, 
it will be most efficient to perform rigid/rigid PASSIVE DECOMPOSE reductions eagerly. 
In Section 3.2 we observed that applications of OSVT reductions can be confined to the 
heads of terms in order-sorted C-validity proofs, suggesting that the transformations of 
the next definition, together with Decompose, Eliminate, Add Argument, and Split, are 
a suitable basis for an order-sorted C-unification algorithm. 

Definition 3.24 The set HOSUT consists of Decompose, Eliminate, Add Argument, 
and Split, together with the following order sorted Head-Narrow transformations: 
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•	 I-Narrow
 
f; (xU Zl ...Zn, Y) :::::=> aT, [u], u{UZl ...Zn, Y}
 

if x E VarsA, r(A) == a -> a, and u = {x 1-+ la} is well-sorted. 

•	 K-Narrow
 
fj {xUVZl ...Zn, Y} :::::=> uf, [u], u{UZl ...Zn, Y)
 

if x E VarsA, r(A) = a -> f3 -> a, and u = {x 1-+ K a l3} is well-sorted. 

•	 Kz-Narrow
 
fj (xVZ1 ...Zn,Y) :::::=>uf, [U],U{ZZl ...Zn, Y)
 

if x E VarsA, z E Vars1'(A) is fresh, r(A) = f3 -> a, and u = {x 1-+ K al3 z } is 
well-sorted. 

• S-Narrow 

where x E VarsA, r(A) = (a -> f3 -> ,) -> (a -> f3) -> a -> " and 
u == {x 1-+ sa131'} is well-sorted. 

• Sz-Narrow 

where x E VarsA, z E VarS62(A)_1'(6(A»_1'2(A) is fresh, r(A) =(a -> f3) -> a-> 
" and u = {x 1-+ sal31' z} is well-sorted. 

• Syz-Narrow 

where x E VarsA, f3 is any type and B is any sort such that r(B) = f3, 
y E VarS6(A)_B_1'(A) and z E VarS6(A)_B are" fresh, r(A) = a -> " and 
u = {x 1-+ sal31' yz} is well-sorted. 

The Head Narrow transformations correspond to order-sorted weak reductions out 
of the heads of terms. 

Application of the transformations is more constrained than the notation here 
suggests, since all terms in systems resulting from their application must be well-sorted 
and have appropriate associated types. But the fact that B cannot be completely 
specified in Syz-Narrow means that while each of the other transformations in HOSUT 
is finitely branching, it is not; this undesirable behavior comes from the corresponding 
behavior in CL, although it may be remediable via the introduction of sort variables in 
a manner similar to that of [Dou93]. Our order-sorted C-unification algorithm based on 
HOSUT is therefore not necessarily finitely branching. 
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3.6 The Algorithm and its Completeness 

Bearing in mind the above discussion, we arrive at the following algorithm. 

Definition 3.25 The non-deterministic algorithm OSU is the following process. 
Repeatedly 

1.	 Reduce the system to a simple system and then apply some OSUT transformation 
out of an unsolved pair. 

2.	 If at any point we arrive at a system f which is order-sorted syntactically unifiable, 
then optionally use FOSUT to compute an order-sorted syntactic unifier 7 of the 
unsolved part of f, and return 7U, where [u] is the solved part of f. 

Of course if at any point in an OSU computation we arrive at a pair of passive 
terms whose heads are distinct constants, or at a pair of terms with different types, then 
we may halt and report non-unifiability. Correctness of Algorithm OSU follows from 
Lemmas 3.23 and 3.17. 

We saw in Lemma 3.8 that solved systems represent their own most general order
sorted syntactic and C-unifiers. But it is clear that semantic unification procedures 
cannot simply transform systems to be unified into solved systems, since some semantic 
unifiers of a system may be more general than each of its most general syntactic unifiers. 
The system (Ka3:, f{ ay) given in [Dou93], for example, has the identity as an order-sorted 
C-unifier, but each of its most general order-sorted syntactic unifiers has non-empty 
domain. This explains why computing order-sorted syntactic unifiers in the second step 
of Algorithm OSU must be optional. The restriction in Definition 3.25 to unsolved 
pairs is justified by the following lemma, which shows that we need not be concerned 
with solved pairs of a system when computing its order-sorted C-unifiers. The lemma 
is therefore consistent with the intuition that the solved part of a system is merely a 
record of an answer substitution in the process of being constructed. 

Lemma 3.26 Suppose f is an order-sorted syntactically unifiable system with solved 
part [u] and unsolved part fu. If (} is an order-sorted C -unifier of f and an order-sorted 
syntactic unifier of f u , then for every order-sorted syntactic unifier 7 of fu such tha.t 
D(7) ~ Vars(fu) and 7 ::; (}[Vars(fu)], ,U is an order-sorted syntactic unifier of f 
and ,U :Se (}[Vars(f)]. 

Proof. Let v be an order-sorted syntactic unifier of fu such that D(v) ~ Vars(fu ) 
and v :S O[Vars(fu )]. Then vu :S Ou[Vars(f)] and vu unifies f since vu[u] is trivial 
and vufu == vfu is trivial. Since (} C-unifies [u] and u is idempotent, we have (}u =e (}. 

That vu ::; (}u =e (}[Vars(f)] follows. 0 

Theorem 3.27 (Completeness) Let (} be a pure order-sorted C -unifier of r. Then there 
is a computation of Algorithm OSU on f producing a pure order-sorted C-unifier v of 
f with v :Se (}[Vars(f)]. 

Proof. Since every pure C-unifier of f is pointwise Coequal to an order-sorted 
normalized C-unifier, we may prove the theorem under the additional hypothesis that 
(} E NSCU(f). 

Let the degree of a system be the maximum length of an OSVT sequence out of it. 
The proof is by induction on the degree of Of. 
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Let [0-] be the solved part of f and f u be its unsolved part. If () is an order
sorted syntactic unifier of fu, then since the FOSUT transformations are complete for 
order-sorted syntactic unification, we can apply a sequence of them to fu to arrive at 
an order-sorted syntactic unifier 0-' of fu such that 0-' ::s; ()[Vars(fu)]. Let, be the 
restriction of 0-' to Vars(fu). Then, ::s; ()[Vars(fu)] and so by Lemma 3.26, ,0- is an 
order-sorted syntactic unifier of f with ,0- ::S;C ()[Vars(f)]. We may return v == ,0- as an 
answer substitution. This situation obtains when the degree of ()f is O. 

Otherwise we define a system f' and a substitution ()' as follows: 

1.	 If f is not simple, apply an OSVT reduction to obtain f' and let ()' be (). 

2.	 Otherwise there exists an unsolved pair (M, N) from f such that ()M t:. ()N and an 
OSVT reduction out of (()M, ()N) (at the head if it is to be a REDUCE reduction) 
yielding Ll. The lifting lemma applies, yielding f' and ()'. 

In each case the action performed is an OSU step, ()' E NSCU(f'), and the degree 
of ()'f' is less than the degree of ()f (since ()f' and Ll are identical up to trivial pairs, 
and no OSVT reductions are done out of trivial pairs). 

By induction, there is a computation of Algorithm OSU on f' producing a C-unifier 
v off' with v::S;c ()'[Vars(f')]. v is a C-unifier off, and since Vars(f) ~ Vars(f'), we 
have v ::S;c ()'[Vars(f)]. But since 8' == ()[Vars(f)], v ::S;c 8[Vars(f)] as desired. [J 

Since the choice of OSUT transformation to be applied in Algorithm OSU is non
deterministic (as is the choice of pair to which it is to be applied), we may infer that the 
C-unification strategy of eagerly applying Eliminate to systems is complete. It is not, 
however, known to be true that eager variable elimination is complete for an arbitrary 
calculus and equational theory, even if both are first-order. 

We conclude with an example illustrating the way in which Algorithm OSU can also· 
be used to discover non-unifiability of systems constrained by sort requirements. 

Example 3.28 Let ~ be a signature with base sorts D, I, and R, where the non
functional sort R (with r(R) = L) is intended to denote the real numbers, and the 
functional sorts D and I denote the strictly decreasing and strictly increasing functions 
on the reals, respectively. Suppose further that c5(D) =c5(I) =Rand ')'(D) =,(I) =R. 
Let [n :: D -+ 1] and [4 :: R] comprise the set of non-redex constant declarations of 
~, where n is intended to denote the "negation functor" mapping each function F to 
- F, and 4 denotes .the real number four. Finally, assume any constant declarations in 
accordance with Definition 2.13 for the redex constants. 

Let x E VarsR, f E VarsI, and 9 E VarsD, and consider the unification problem 
given by the pairs 

f == (14, ngx), (gx,4). 

We may apply Split to get 

(I, nz), (z, g), (x, 4), (gx, 4), 

where z is fresh in VarsD. Two applications of Eliminate (the only transformations 
which apply) yield 

(I, ng), (z, g), (x, 4), (g4, 4), 

which is unsolvable, because the last pair is. The only other possible transformation 
applying to the original pair is Decompose, which gives 

(I,ng), (x,4), (gx,4). 
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Again, only Eliminate applies, yielding a system essentially the same as that obtained 
via the first sequence, and which contains the unsolvable pair (g4,4). We may therefore 
conclude that the original system is unsolvable, in accordance with the fact that neither 
the identity function nor the function which is constantly four is strictly decreasing. 

Of course, if we were to interpret D as denoting the (not strictly) decreasing real
valued functions on the reals, then we would want to be able to compute the function 
whose value is constantly four as a binding for 9 in Example 3.28. So while considering 
the original system r there as a typed system permits too many bindings for certain 
applications, a system supporting only constant declarations may permit too few. A 
calculus allowing arbitrary term declarations finds a middle road: in a signature with 
a term declaration assigning K 4 to have sort D (for an appropriate K) r would have 
precisely the desired solutions. ' 

4 Discussion 

4.1 Implementation Issues 

For implementation purposes, several refinements of OSU are possible. As noted in 
[Dou93], one may, for example, incorporate Add A rgument into more generous versions 
of the Head Narrow transformations which supply arguments as needed, rather than 
treating it as a separate transformation. In addition, solved pairs (x, M) where x does 
not appear in the original system r to be solved can be deleted from OSU computations 
originating with r, and if a "relevant" set of variables is explicitly indicated for each 
system ([GM81], [GM85]), then the deletion of trivial pairs, which one would not want 
to carry along in an implementation, will pose no computational difficulties (such as 
might otherwise occur, for example, in resolution computations). 

In an implementation of aBUT, we would require the sort D in clause (b) of Split 
to be maximal meeting the other requirements for application of this transformation. 
This eliminates some redundant branching in the solution search space by allowing only 
"most general" inference steps. In regular signatures, we can also require in clause (a) of 
Split that the least sort B of h be such that ~ f- "l (B) :::; A, and in clause (c) that the 
least sort of a satisfy the conditions on D and E stated there. The restriction to regular 
signatures is not unreasonable; for example, Smolka, et. al. ([SNGM89]) maintain that 
the only non-regular signatures appearing in theorem proving practice are pathological. 

4.2 Topics for Investigation 

Investigations of combinator-based order-sorted higher-order unification algorithms can 
benefit from appropriate modifications of any advances for unification in C£, such as 
the integration of additional combinators (e.g., B and C) and the development of 
transformations, along the lines of those presented in [DJ92] , accommodating first
order order-sorted equational theories into the higher-order paradigm. For automated 
deduction purposes, the development of techniques permitting the added expressiveness 
of Schmidt-SchauB-style sort declarations for arbitrary terms ([Sch89]), rather than just 
for constants, represents an important direction for future research. The development of 
a resolution calculus and a pre-unification algorithm for C£(E) and its future extensions 
will also prove crucial to any automated deduction applications. 
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Since simply typed higher-order unification is undecidable, so is order-sorted higher
order unification. Algorithm OSU, which is complete, can therefore not be terminating 
in general. Huet ([Hue73], [Hue75]) observed, however, that for deduction purposes 
a higher-order computation need not always discover actual higher-order unifiers, 
and that pre-unification, or the detection of the possibility of higher-order unifiers, 
suffices. This observation has resulted in an irredundant (and therefore incomplete) pre
unification procedure which has proven instrumental in making higher-order resolution
like computations practicable. 

We expect that our algorithm is suitable for order-sorted pre-unification as well as 
order-sorted C-unification. Although there exists at present a pre-unification algorithm 
for neither Dougherty's typed combinatory logic nor the order-sorted lambda calculus of 
[JK93], once detailed, any correspondence between pre-unification processes in the typed 
lambda and combinatory calculi, and/or pre-unification refinements of the algorithm in 
[JK93], would serve as a point of departure for investigating pre-unification in the order
sorted combinatory logic presented here. Such studies might determine, for example, 
whether or not there exist restrictions on Algorithm OSU or its typed counterpart 
making the induced pre-unification procedures, like Huet's, irredundant. Since any 
reasonable notion of pre-unification seems to require restricting attention to regular 
signatures (see [JK93] for a brief discussion), the refinements discussed in the previous 
subsection can be incorporated into a pre-unifying version of Algorithm OSU as well. 

Finally, Huet's pre-unification procedure is finitely branching. Dougherty's 
combinator based unification algorithm is also finitely branching, by virtue of a typing 
scheme flexible enough to accommodate incompletely specified types. The calculus 
given here supports only completely specified sorts, and is therefore infinitely branching 
(because of sort non-determinism in the Syz-Narrow transformation), but it would be 
useful to be able to recover, if possible, finite branching by enriching our sort structure 
to allow incompletely specified sorts. 

References 

[ALMP84] P. B. Andrews, E. Longini-Cohen, D. Miller, and F. Pfenning. Automating 
Higher-order Logics. Contemporary Mathematics 29, pp. 169 - 192, 1984. 

[BL90]	 K. B. Bruce and G. Longo. A Modest Model of Records, Inheritance, and 
Bounded Quantification. Information and Computation 87, pp. 196 - 240, 1990. 

[Bre88]	 V. Breazu-Tannen. Combining Algebra and Higher-order Types. In Proceedings 
of the Third Annual Symposium on Logic in Computer Science, IEEE, pp. 82 
90, 1988. 

[Car88]	 1. Cardelli. A Semantics of Multiple Inheritance. Information and Computation 
76, pp. 138 - 164, 1988. 

[CF58]	 H. B. Curry and R. Feys. Combinatory Logic, Volume I, North-Holland, 
Amsterdam, 1958. 

[CG91] P.-L. Curien and G. Ghelli. Subtyping + Extensionality: Confluence of f3T]top 
reduction in F5,. In Springer-Verlag LNCS 526, pp. 731- 749,1991. 



37 

[Coh89] A. G. Colm. Taxonomic Reasoning with Many-sorted Logics. Artificial 
Intelligence Review 3, pp. 89 - 128, 1989. 

[DJ90]	 N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In Handbook of 
Theoretical Computer Science B: Formal Methods and Semantics, J. van 
Leeuwen, ed., North-Holland, Amsterdam, 1990. 

[DJ92]	 D. J. Dougherty and P. Johann. A Combinatory Logic Approach to Higher~ 

order E-unification. In Proceedings of the Eleventh International Conference on 
Automated Deduction, Springer-Verlag LNAI 607, pp. 79 - 93, 1992. Revised 
and expanded version submitted, Theoretical Computer Science. 

[Dou93] D. J. Dougherty. Higher-order Unification via Combinators. Presented at the 
Fourth Workshop on Unification, University of Leeds, UK, 1990. Theoretical 
Computer Science B, 114, pp. 273 - 298, 1993. 

[FP91]	 T. Freeman and F. Pfenning. Refinement Types for ML. In Proceedings 
of the SIGPLAN '91 Conference on Programming Language Design and 
Implementation, ACM, pp. 268 - 277, 1991. 

[GoI81]	 W. Goldfarb. The Undecidability of the Second-order Unification Problem. 
Theoretical Computer Science 13, pp. 225 - 230, 198!. 

[Gor85] M. Gordon. HOL: A Machine Oriented Formulation of Higher-order Logic. 
University of Cambridge, Computer Laboratory, Report 68, 1985. 

[Gou66] W. E. Gould. A Matching Procedure for Omega-order Logic. Dissertation, 
Princeton University, 1966. 

[Hay71] P. Hayes. A Logic of Actions. Machine Intelligence 6, pp. 495 - 520, 1971. 

[Her71]	 J. Herbrand. Sur la Theorie de la Demonstration. In Logical Writings, W. 
Goldfarb, ed., Cambridge University Press, Cambridge, 1971. 

[HS86]	 J. R. Hindley and J. P. Seldin. Introduction to Combinators and A-Calculus. 
Cambridge University Press, 1986. 

[Hue73] G. Huet. The Unidecidability of Unification in Third-order Logic. Information' 
and Control 22, pp. 257 - 267, 1973. 

[Hue75] G. Huet. A Unification Algorithm for Typed A-Calculus. Theoretical Computer 
Science 1, pp. 27 - 57, 1975. 

[JK93]	 Unification in an Extensional Lambda Calculus with Ordered Function Sorts 
and Constant Overloading. SEKI-Report SR-93-14 (SFB), Universitiit des 
Saarlandes, Saarbriicken, Germany. Extended Abstract submitted, Twelfth 
International Conference on Automated Deduction (1994). 

[Joh91] P. Johann. Complete Sets of Transformations for Unification Problems. 
Dissertation, Wesleyan University, 1991. 

[Kl091]	 J. W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer 
Science, Volume 1, S. Abramsky and D. M. Gabbay, eds., Oxford University 
Press, Oxford, 1991. 



38 

[KP93]	 M. Kohlhase and F. Pfenning. Unification in a A-calculus with Intersection 
Types. To appear in Proceedings of the International Logic Programming 
Symposium, 1993. 

[LSBB92] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High 
Performance Theorem Prover. Journal of Automated Reasoning 8, pp. 183 
212, 1992. 

[Lus92] E. L. Lusk. Controlling Redundancy in Large Search Spaces: Argonne-style 
Theorem Proving Through the Years. In Springer-Verlag LNAI 624, pp. 96 
106, 1992. 

[Mi191]	 D. Miller. A Logic Programming Language with Lambda Abstraction, Function 
Variables, and Simple Unification. Journal of Logic and Computation 2, pp. 
497 - 536, 1986. 

[Mit91]	 J. C. MitcheIl.· Type Inference with Simple Types. Journal of Functional 
Programming 1, pp. 245 - 285, 1991. 

[MM82] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM 
Transactions on Programming Languages and Systems 4, pp. 258 - 282, 1982. 

[NQ92]	 T. Nipkow and Z. Qian. Reduction and Unification in Lambda Calculi with 
Subtypes. In Springer-Verlag LNAI 607, pp. 66 - 78, 1992. 

[Obe62] A. Oberschelp. Untersuchung zur Mehrsortigen Quantorenlogik. Mathematische 
Annalen 145, pp. 297 - 333, 1962. 

[OS89]	 H.-J. Ohlbach and J. Siekmann. The Markgraph Karl Resolution Procedure. In 
Computational Logic - Essays in Honor of Alan Robinson, J.-L. Lassez and G. 
Plotkin, eds., MIT Press, pp. 41 - 112, 1989. 

[Pau90] L. C. Paulson. Isabelle: The Next 700 Theorem Provers. In Logic and Computer 
Science, P. Odifreddi, ed., Academic Press, 1990. 

[Pfe92]	 F. Pfenning. Intersection Types for a Logical Framework. POP-Report, Carnegie 
Mellon University, 1992. 

[Pie91]	 B. C. Pierce. Programming with Intersection Types and Bounded Polymorph
ism. Dissertation, Carnegie Mellon University, 1991. 

[Pla93] D. A. Plaisted. Equational Reasoning and Term Rewriting Systems. In Handbook 
of Logic in Artificial Intelligence and Logic Programming, Volume 1, D. Gabbay 
and J. Siekmanll, eds., Oxford University Press, Oxford. To appear. 

[Qia90]	 Z. Qian. Higher-order Order-sorted AIgebras. In Springer-Verlag LNCS 463, pp. 
86 - 100, 1990. 

[Qia91]	 Z. Qian. Extensions of Order-sorted Algebraic Specifications: Parameterization, 
Higher-order Functions and Polymorphism. Dissertation, Universitat Bremen, 
1991. 

[Sch89]	 M. Schmidt-SchauB. Computational Aspects of an Order-sorted Logic with Term 
Declarations. Springer-Verlag LNAI 395, 1989. 



39 

[SiI94]	 R. Silverman. An Implementation of Higher-order Unification via Combinatory 
Logic. Master's Thesis, Wesleyan University. To appear, 1994. 

[Sti90]	 M. E. Stickel. A Prolog Technology Theorem Prover. In Proceedings of the Tenth 
International Conference on Automated Decuction, Springer-Verlag LNAI 449, 
pp. 673 - 674, 1990. 

[WaI87] C. Walther. A Many-sorted Calculus Based on Resolution and Faramodulation. 
Pitman and Kaufman, 1987. 

[WaI88]	 C. Walther. Many-sorted Unification. Journal of the ACM 35, pp. 1 - 17, 1988. 




